Toward a Design Handbook for I ntegrating Software Components

Chrysantho®ellarocas
Sloan School of Management
Massachusetts Institute of Technology
Room E53-315, Cambridge, MA 02139,S.A.
Tel: +1 (617) 258-8115
dell@mit.edu

Abstract:

In comporent-based software devdopment the
identification and poper management of
interconnedions among the pieces of a system beacomes
a central concern. Nevetheless today’s programrming
languages and tools dill place an emphasis on
representing comporents, leaving the description and
management of comporent interdependencies implicit,
or distributed among the mporents. This paper
propcses a new perspedive for designing software
which elevates the representation and management of
software comporent interdependencies to a dstinct
design problem, orthogona to that of representing and
implementing the mre functiond pieces of an
application. The perspediveis based on ataxonamy of
comnon software interconnedion dependencies and
sets of alternative protocols for managng them. The
taxonamy can form the basis of design handboks for
guiding the systematic solution d comporent
integration problems. SYNTHES'S, a prototype software
apgication devdopment tod based onthat perspedive,
has been devdoped and succesdully used to minimize
the manud effort required to integrate independently
developed components into new applications.

1. Motivation

As the size aad complexity of software systems
grows, the identificaion and proper management of
interconredion dependencies among \various pieces of a
system has bemme resporsible for an increasingly
important part of the development effort. In today’s
large systems, the variety of encourtered
interconnedion dependencies (such as communication,
data trandation, resource sharing, and synchronization
dependencies) is very large, while the complexity of

Accepted to the Fifth International Symposium on Assessment of Software Tools and Technologies (SAST97),

June 3-5, 1997, Pittsburgh, PA.

protocols for managing them can be very high.

Dependencies among software @mponents are
espedaly important in component-based software
development. In this case, the cre functional elements
of an applicaion are implemented using off-the-shelf
components. The focus of the design effort then lies in
integrating these mponents by identifying and
properly managing their interdependencies and
mismatches. The pradicd difficulty of achieving wide-
spread software reuse is a manifestation of the fad that
component integration is not a trivial problem.
Nevertheless most current programming langueges and
tools have so far failed to remgnize ©mponent
interconnedion as a distinct design problem which
should be separated from the spedfication and
implementation of the underlying components.

The distinct nature ad egual importance of
components and dependenciesis cagptured relatively well
in high-level, architedural descriptions of systems. In
such descriptions components are typicaly depicted
using boxes and dependencies using arrows. However,
at that level of description dependencies are usualy
informal artifads and their exad trandation into
implementation-level concepts is not obvious.

As design moves closer to implementation, current
design and programming tods increasingly focus on
components, leaving the description of
interdependencies among components implicit, and the
implementation of protocols for managing them
fragmented and dstributed in various parts of the
system. At the implementation level, software systems
are sets of modules in one or more programming
languages. Although modules come under a variety of
names (procedures, padkages, objeds, clusters etc.),
they are all essentially abstractions for components.

Most programming languages diredly suppat a
small set of primitive interconnedion mechanisms, such
as procedure cdls, method invocaions, shared
variables, etc. Such medhanisms are not sufficient for

managing more mplex dependencies that are
commonplace in today's Sftware systems. Complex
dependencies require the introduction of more complex
managing protocols, typicdly comprising several lines
of code. By failing to suppart separate astradions for
representing such complex protocols, current
programming langueges force programmers to dstribute
and embed them inside the interading components [13].
Furthermore, the ladk of means for representing
dependencies and protocols for managing them has
resulted in a arresponding lack of theories and
systematic taxonomies of interconnedion relationships
and ways of managing them.

This expressve shortcoming of current languages
and toals is diredly conneded to a number of pradicd
problems in software design:

 Discontinuity between architedural and
implementation models. There is currently a gap
between architedural representations of software
systems (sets of adivities explicitly conneded through
rich vocabularies of informa relationships) and
implementation-level descriptions of the same systems
(sets of modules implicitly conneded through
defines/uses relationships).

« Difficulties in apgication maintenance By not
providing abstradions for locdi zing information about
dependencies, current languages force programmers to
distribute managing protocols in a number of different
places inside a program. Therefore, in order to
understand a protocol, programmers have to look at
many places in the program. Likewise, in order to
replace aprotocol, modifications must be made in
many different modules.

« Difficulties in comporent reuse. Components
written in today’s programming languages inevitably
contain some fragments of coordination protocols
from their original development environments. Such
fragments ad as (often urdocumented) assumptions
about the structure of the gplicaion where such
components will be used. When attempting to reuse
such a @mponent in a new environment, such
assumptions might not match the interdependency
patterns of the target application. In order to ensure
interoperability, the original assumptions then have to
be identified, and subsequently replaced or bridged
with the valid assumptions for the target applicaion
[7]. In many cases this requires extensive mde
modificaions or the introduction of additional code
around the @mponent. In most cases, such
modifications are designed and implemented in an ad
hoc manner.

Based on the previous observations this paper claims
that, if we ae to achieve large-scde omponent-based

software development, we need new methoddogies and
tools which trea the interconnedion of software
components into new applicaions as a distinct design
problem, entitled to its own representations and design
frameworks. Such methoddogies will be based on
theories of component interconnedion that organize and
systematize the eisting krowledge in the field o
component integration, as well as fadlit ate the aedion
of new knowledge in the field.

To this end, Sedion 2 of this paper propcses a
framework for studying software component
interconnedion. The framework is based on software
system representations that provide distinct abstradions
for components and their interdependencies. Such
representations allow the systematic dassficaion of
different kinds of dependencies and asociated
coordination protocols into design handbodks of
component integration, similar to the well-established
handbodks that asdst designin more mature engineaing
disciplines. Sedion 3 briefly reports on SYNTHESIS, a
component-based software development environment
based on our framework. Sedion 4 dscusses related
work. Finaly, Sedion 5 sums up our conclusions and
presents some directions for future research.

2. A Framework for Studying Software
Component Interconnection

2.1 A Coordination Perspective for
Representing Software Systems

One of the reasons behind the failure of today’s
programming languages and methoddogies to recognize
component interconnedion as a distinct design problem
is the ladk of expresive means for representing
interdependencies and their assciated coordination
protocols as distinct and separate enttities from the
interading components. Therefore the first ingredient of
our framework is a representation that achieves this
distinction. The representation is based on the principles
of coordination theory.

Coordination theory [12] is an emerging reseach
area that focuses on the interdisciplinary study of
coordination. One of the intended applicaions of
coordination theory is the design and modeling of
complex systems, ranging from computer systems to
red-life organizations. Coordination theory views sich
systems as colledions of interdependent processes
performed by machine and/or human adors. Proceses
are sets of adivities. Coordination theory defines
coordination as the management of dependencies among
adivities. It makes a distinction between two orthogonal
kinds of activities:

Legend

Activity

Start Viewer

Display Part
Description

Start database

Prerequisite
Data Flow

Retrieve Part (Part
Description Description
Filename)

Data Flow
(Part
Nurber)

Select Part
Numbers

Specification level

Start MS
Access
Coord (DOS
Protocol Command)

Start MS Word
(DOS
Command)

Open file in MS
Word
(Function provided
by Word OLE
interface)

Send SQL
query to Access
(Visual Basic
procedure)

Select Part
Numbers
(C program)

Implementation level

Figure 1: Representing a software application
as a set of activities interconnected through
dependencies.

» Production (or core) activities. Activities diredly
related to the stated goals of a system. For example,
the SQL engine of a database system would qualify as
a production activity in that system.

» Coordination ectivities. Activities which do not
diredly relate to the stated goals of a process but are
necessary in order to manage interdependencies
among production adivities. Algorithms that control
concurrent access in multi-user databases would be
considered coordination adivities under this
framework.

The aove definitions suggest representations in
which software systems are depicted as sts of
interdependent software adivities. At the spedficaion
level, adivities represent the core functional elements of
the system while dependencies represent their
interconnedion relationships and constraints. At the
implementation level, adivities are mapped to software
components that provide the intended functionality,
while dependencies are mapped to coordination
protocols that manage them. Figure 1 depicts an
example of a software system spedficaion and
implementation using such a representation.

2.2 A Design Handbook for Integrating
Software Components

The «istence of representations that trea
dependencies and coordination proceses as distinct

entities enable the wnstruction of taxonomies of
software interconnedion problems and solutions. This
sedion presents the beginnings of such ataxonomy. The
taxonomy contains the following elements:

ea cdadog of the most common kinds of
interconnedion dependencies encountered in software
systems

« for ead kind of dependency, a cdalog of sets of
alternative coordination protocols for managing it

Our taxonomy uses multi-dimensional design spaces
to classfy both dependencies and coordination
protocols. It begins by identifying a small number of
generic dependencies. For ead generic dependency, it
defines a number of design dimensions that can be used
to further spedalize the relationship. These dimensions
form a design gspace that contains different
spedalizations of the given dependency. Each point in
the design space defines a different spedalized
dependency type.

Furthermore, for eat dependency, our taxonomy
identifies a few generic ooordination processes that
manage it. It also defines a design spacethat contains
several related spedaized versions of these
coordination protocols. The dimensions of the design
space ae the questions the designer will have to answer
in order to seled one of the avalable @ordination
processes for managing a given dependency.

2.2.1 Overview of the Dependencies Space

An important dedsion in making a taxonomy of
software interconnedion problems is the dchoice of the
generic dependency types. If we ae to trea software
interconnedion as an orthogonal problem to that of
designing the ore functional components of an
applicaion, dependencies among components sould
represent relationships which are dso orthogonal to the
functional domain of an application. Fortunately, this
requirement is consistent with the nature of most
interconnedion problems. Whether our applicaion is
controlling inventory or driving a nuclear submarine,
most problems related to conneding its components
together are related to a relatively narrow set of
concepts, such as resource flows, resource sharing, and
timing dependencies. The design of assciated
coordination protocols involves a simil arly narrow set of
medhanisms suich as dared events, invocation
mechanisms, and communication protocols.

After making a survey of existing systems, and
building on ealier results of coordination theory
[11,12], we have based the taxonomy of dependencies
presented in this paper on the aamption that
component interdependencies are explicitly or implicitly

related to petterns of resource production and usage. In
other words, activities nead to interconred with ather
activities, either because they use resources produced
by other activities, or because they share resources with
other activities.

Based on this asamption, the most generic
dependency families in our taxonomy include:

* Flow dependencies. Flow dependencies represent
relationships between producers and consumers of
resources. They are spedalized acording to the kind
of resource, the number of producers, the number of
consumers, etc. Coordination protocols for managing
flows demmpose into protocols which ensure
accesshility of the resource by the mnsumers,
usability of the resource as well as g/nchronization
between producers and consumers.

» Shaing dependencies. They encode relationships
among consumers who use the same resource or
producers who produce for the same @nsumers.
Sharing dependencies are spedalized acording to the
sharing properties of the resource in use (divisihility,
consumability, concurrency). Coordination protocols
for sharing dependencies ensure proper enforcement
of the sharing properties, usualy by dividing a
resource anong competing wers, or by enforcing
mutual exclusion protocols.

e Timing dependencies. Timing dependencies
express constraints on the relative flow of control
among a set of adivities. Examples include
prerequisite dependencies and mutual exdusion
dependencies. Timing dependencies are used to
spedfy applicaion-spedfic ocooperation patterns
among adiviti es which share the same resources. They
are dso used in the decompasition of coordination
protocols for flow and sharing dependencies.

It is not posshle to complete describe the taxonomy
in the limited spaceof this paper. Instead, the following
sedions will present a small subset of the taxonomy of
flow dependencies, as well as an example of how it can
be used to guide the design of software interconnedion
protocols. A full description of the taxonomy is
contained in [3].

2.2.2 A Taxonomy of Flow Dependencies

Flow dependencies encode relationships among
producers and consumers of resources. This sdion
presents a generic model for classfying flow
dependencies and a framework for designing
coordination protocols for such dependencies. The
framework is based on some results of coordination
theory, extended and adapted for the field of software
components.

Malone axd Crowston [12] have observed that,
whenever flows occur, one or more of the foll owing sub-
dependencies are present:

» Usability. Users of a resource must be ale to
effectively use the resource.

* Accessbhility. In order for aresourceto be used by
an activity, it must be accessible to that activity.

* Prerequisite. A resource can only be used after it
has been produced.

In the following paragraphs we will introduce
dependency and coordination process design spaces for
ead of the lower-level dependencies. The design space
for generalized flow dependencies is defined by the
product of the design spaces of the mmponent
dependencies.

Usabhility Dependencies. Usability dependencies gate
the fad that resource users sould be ale to properly
use produced resources. This is a very genera
requirement that encompasses compatibility issues sich
as:

« data type compatibility

« format compatibility
 database schema compatibility
« device driver compatibility

The ead meaning and range of usability
considerations varies with ead kind of resource One
interesting observation resulting from this work is that,
irrespedive of the particular usability isue being
managed, coordination alternatives for managing
usabilit y dependencies can be dassfied using the design
dimensions listed in Table 1.

Design Dimension
Who is responsible
for ensuring
usability?

Design Alternatives

- Designer (Standardization)

- Producers

- Consumers

- Both producers and consumerg
(use intermediate format)

- Third party

When are usability
requirements fixed?

- At design-time
- At runtime (format negatiation
might take place)

Table 1. Design dimensions of usability
coordination protocaols.

Principal design alternatives

First-level of specialization

Second-level of specialization

Place producers and
consumers’ close togethet

* Place at run-time

» Place at design-time

- Package in same sequential module
- Package in same executable

- Assign to same processor

- Assign to nearby processors

- Code is accessible to all processors
- Physical code transportation required

Transport resource

Actual protocols depend on resource kind (see Table 3)

Table 2: Design dimensions of accessibility coordination protocols.

Producers-Consumers | Generic Mechanism

Examples

* Synchronous Calls

one-one * Point-to-point channels - OCCAM channels [8]
- UNIX sockets
» Pipes - UNIX pipes
one-many » Broadcast Calls -1SIS Multicast [2]
many-one e Asynchronous Calls - Asynchronous message passing

- Procedure calls
-RPC
- MS Windows DDE

many-many » Broadcast Calls

- ISISMulticast [2]

Table 3: Examples of transport protocols for data resources.

Accesshility Dependencies. Accesshility
dependencies edfy that a resource must be accssble
to a user before it can be used. Since users are software
adivities, accesshility spedfies more acarately that a
resource must be accesble to the processthat exeautes
a user adivity before it can be used. Important
parameters in spedfying accesshility dependencies are
the number of producers, the number of users, and the
resource kind.

There ae two broad dternatives for making
resources accessible to their users (Table 2):

* Place producers and users “close together”
* Transport resources from producers to users

Depending on the type of resource being transferred,
either or both aternatives might be needed. Pladng
producer and user adivities “close” to one aother
generaly deaeases the mst of transporting the resource
Combinations of pladng adivities and transporting
resources sould be cnsidered in situations where the
cost of pladng the adivities is lower than the
corresponding @ain in the st of transporting the
resource.

Prerequisite Dependenciess. A fundamental
requirement in every resource flow is that a resource

Accepted to the Fifth International Symposium on Assessment of Software Tools and Technologies (SAST97), June

3-5, 1997, Pittsburgh, PA.

must be produced before it can be used. Thisis captured
by including a prerequiste dependency in the
decomposition of every flow dependency.

Prerequisite dependencies can be further clasdfied
according to:

« the number of precedent activities

« the number of consequent activities

« the relationship (and/or) among the precedent
adivities: In And-prerequisites, al adivities in the
precalent set must occur before adivities in the
conseguent set can begin exeaution. By contrast, in
Or-prerequisites, occurrence of at least one adivity
in the precalent set satisfies the prerequisite
requirement.

Table 4 shows four generic processes for managing
prerequisite dependencies. Each generic processcan be
further spedalized acording to a number of design
dimensions gedfic to the process For example, pea
synchronization can be spedalized acwrding to the type
of event used for synchronization. Table 5 contains a
partial list of events. For eat event, different exeaution
environments provide different sets of corresponding
system cdls, providing yet another level of protocol
specialization.

Producer Push As 0n as the precalent completes, it invokes the
A eowros B consequent by explicitly passing control to it.
Consumer Pull Same Thread Before it begins exeaution, the @nsequent

S synchronously calls the precedent.
A |<«—Control OV\r*Ca”A

—Control Flow—>|

B
Peer Both precedent and consequent are exeauted by
Synchronization A B independent threads of control and synchronize
l T themselves using shared events.
Generate Detect
Event Event
Controlled A third party controls the invocaion d both the
Hierarchy d c precedent and the consequent
Control Flow Control Flow
A B

Table 4: Generic processes for managing prerequisite dependencies.

Event type Generate Detect Reset

Semaphore Signal Semaphore (V) | Wait on Semaphore (P) Reset Semaphore

File Creation Create File Test File Existence Delete File

File Write File Compare file modification time | Set stored modification time to
Modification with stored modification time file modification time

Process Creation Create Process Test Process Existence Kill Process

Table 5: Examples of synchronizing events.

Suppcse we would like to conned two existing

2.2.3 Designing Interconnection Protocols pieces of code: A C program providing a graphicd
This =dion will provide a1 example of how the interfacethat repeaedly asks the user for part numbers,
framework can be used to gude the design of @nd & Visua Basic program which queries a database
interconnedtion protocols among software wmponents. ad dsplays descriptions of the corresponding parts.
Becaise only a smal subset of the taxonomy is The C program returns integer part numbers while the

presented in this paper, the example will aso by Visua Basic program expeds drings. Figure 2 shows
necessity be very simple. the components and their interconnedion relationship,

in this case a simple data flow.

Accepted to the Fifth International Symposium on Assessment of Software Tools and Technologies (SAST97), June
3-5, 1997, Pittsburgh, PA.

Select Part
Numbers

Data Flow
(Part Number)

Display Part
Description

Figure 2: A simple software system.

According to our framework, in order to interconned

generic model for flows, this means that we have to
design protocols for managing wsability, accesshility,
and prerequisite dependencies.

To manage usahility, we ded that the producer will
be responsible for making the data usable to the
consumer (see Table 1). In this example, this will
require the aldition of code & the C component for

- St converting data from integers to strings.
the two components, we need to design a ordination
protocol for the data flow dependency. Following our
C module:
Manage Data Flow X L
Manage Usability by Converting Data to Consumer's Format DDE_InIt(& Cll_ld);
Select Part o | Convert Integer to - Display Part “._ .
Numbers - String - Description n= ,SeleCt—Part()'
s = itos(n);
DDE_Send(cli_id, s);
v
Send data using DDE handler - -
DDE wrapper Visual Basic Module:
DDE_Init DDE_handler
Initialize DDE Initialize DDE
connection connection
(client side) (server side) SUb DDE—handler(S)
Manage Accessibility by Transporting Data using DDE Dlsplay Part s
End Sub
Figure 3: One protocol for managing the data flow dependency of Figure 2.
Manage Data Flow
Manage Usability by Converting Data from Producer's Format C module:
| |
Numbers. g > Decenpton Reset(sema);

Y y
Write Shared Read Shared
Memory Memory

A
Manage Accessibility by Transporting Data usin

Shared Memjo

<

A

Signal Semaphorg
i s

Reset Semaphore|

Wait Semaphore

Manage Prerequisite by Semaphore Synchronization

huz Select_Part();
Write_Mem(loc, n);
Signal(sema);

Visual Basic Module:

Wait sema
Read_Mem loc, n
s= CStr(n)
Display_Part s

Figure 4: An alternative protocol for managing the data flow dependency of Figure 2.

To manage accssbhility we first predude the
possbility of integrating the two components in the
same eeautable, because they are written in different
languages. We therefore have to transport the data from
producer to consumer. Our framework provides a set of
possibilities for doing this:

One posshility would be to use aa RPC protocol to
transmit the data from producer to consumer. DDE
(Dynamic Date Exchange) is one such protocol
suppated by Microsoft Windows. The alvantage of
such a protocol is that it explicitly passes control from
producer to consumer, thus managing the prerequisite
dependency as well. The resulting protocol is depicted
in Figure 3. In this protocol, the C component ads as a
client, while the Visual Basic component is wrapped

inside a handler for a DDE call and acts as a server.

Another possbility would be to use ashared memory
location or a shared file, whose filename is fixed in
advance ad known to bah parties. This lution would
require us to address the prerequisite relationship
separately: Make sure that the Visual Basic program
only reads the next part number after it has been written
by the C program. We seled a pea synchronizaion
medanism spedalized to use semaphores as the
synchronization event. Finally, as <ared memory
locdions are best for storing nunbers, conversion from
integers to strings is done & the @nsumer side. Our
choices result in the protocol depicted in Figure 4.
Notice that, in this protocol, the two components are
eventually wrapped in two exeautables which run
independently and synchronize implicitly

In conclusion, our framework can not only guide the
design of interconnedion protocols in a systematic way,
but also padnt out the range of aternatives avail able to
the designer at each step.

3. The SYNTHESIS Application Development
Environment

3.1 Overview

The mordination perspedive on software design
introduced in the previous sdion has been reduced to
pradice by building SYNTHESIS, an applicaion
development environment based on its principles.
SYNTHESIS is particularly well suited for component-

' The protocol for managing prerequisite dependencies sown in
Figure 3 allows more than ore part numbers to be generated before
one of them is displayed. In this applicaion such behavior would
most likely nat be accetable. Reference [3] contains a taxonamy of
different variations of prerequisite dependencies and correspondng
coordination protocols that would give afully satisfactory solution to
this problem.

based software development. This dion is devoted to
a very brief description of the SYNTHESIS system. A
detailed description can be found in [3].

SYNTHESIS consists of three elements:

e SYNOPSS, a software achitedure description
language

» an on-line design handbodk of dependencies and
associated coordination protocols

e a design assstant which generates exeautable
applicaions by successve speddlizaions of their
SyNoPsiIsdescription

SYNoPS'S. An Architedure Description Languagg.
SYNOPSS supparts graphicd descriptions of software
applicaion architedures at both the spedfication and
the implementation level. The languege provides
separate languege antities for representing software
activities and dependencies. It also suppats the
mechanism of entity spedalization. Spedalizaion
allows new entities (adivities and dependencies) to be
defined as variations of other existing entities.
Spedalized entities inherit the decomposition and
attributes of their parents and can differentiate
themselves by modifying any of those dements.
Spedalizaion enables the incremental generation of
new designs from existing ones, as well as the
organizaion of related designs in concise hierarchies.
Finadly, it enables the representation of reusable
software achitedures at various levels of abstradion
(from very generic to very specific).

A Design Handbod of Sdtware Interconnedion. A
prototype version of a handbod of common software
interdependencies and coordination protocols has been
developed. The handbodk is an on-line version of our
taxonomy of dependencies and coordination processes.
The design spaces of our framework have been
implemented by hierarchies of increasingly spedalized
SYNOPSS entiti es. For example, Figure 5 shows a partial
hierarchy of incresingy speddized processes for
managing prerequisite dependencies. Each process
contained in the handbodk contains attributes that enable
the system to automaticdly determine whether it is a
compatible cadidate for managing a dependency
between a given set of components.

A Design Process for Generating Exeatable
Applications. SYNTHESIS suppats a process for
generating exeautable systems by successve
spedalizaion of their SyNoPSS descriptions. The
process automates the reasoning we used in Sedion
2.2.3 to design a @ordination protocol for the flow

GENERIC EXECUTABLE

Prerequisite
Dependency

\ Increasingly specialized Coordination Processes >

Semaphore
Signaling in
UNIX

Use
Semaphore
Signaling

Synchronization| Semaphore
Signaling in

0s/2

Manage Create File

upon
Termination

Precedent
Calls
Consequent

DESIGN
DIMENSION: Process

Execution
Environment

Generic ’Type of Event

Figure 5: A hierarchy of increasingly
specialized coordination protocols for
managing prerequisite dependencies.

dependency and integrate our two components into a
complete system. It can be summarized as follows:

1.

2.

Users describe their application using SYNOPSS, as a

3.2 Using Synthesis to Facilitate Component-
Based Software Development

We have tested the cagabilities of SYNTHESIS by
using it to huild a set of applicaions by integrating
independently written pieces of software. Each
experiment consisted in:

e describing a test applicaion as a SYNOPSS
diagram of activities and dependencies

* seleding a set of pre-existing components
exhibiting various mismatches to implement activities

« using the design process outlined above to semi-
automaticdly manage dependencies and integrate the
selected components into an executable system

* exploring aternative exeautable implementations
based on the same set of components

The results of our experiments were very
encouraging. Overall, we used SYNTHESIS to build 4 test

pattern of activities connected through dependenciegyplications. Each application was integrated in at least

The design asdsstant of SYNTHESIS scans the

applicaion description and iteratively does the

following for ead application element which is dill

not spedfic enoughfor code generation to take place

(eg. a dependency for which no coordination

protocol has been specified):

a) It seaches the on-line design handbod for
compatiblespecializations.

b) It sdleds one of the mmpatible spedalizaions
found, either automaticdly, or by asking the user.
If no compatible spedalizaion can be found, it
asks the user to provide one.

c) It replaces the generic goplicaion element with
the sdleded spedalizaion (e.g. it replaces the
above dependency with a cmpatible
coordination protocol for managing it) and
reaursively applies the same process to all
elements in the decomposition of this element.

After all applicaion elements have been replaced by

implementable spedalizaions, the design asdstant

integrates them into a set of modules in one or more
languages and generates an exeautable gplicaion
out of the collection.

The &ove design process minimizes the manual

effort required to integrate software cmponents into
new systems. Users only neal to participate in the
spedalization process by making the final seledion
when more than one mpatible spedalizaions have
been found. In the rare caes when no compatible
spedalization can be found, users nea to provide the
code for such a spedalizaion. Spedalizaions thus
provided become a permanent part of the repository.

two dfferent ways. For example, for one gplicaion we
built one implementation where mponents were
organized around client/server interadions, and a
seond where the same @mponents were organized
around pea-to-pee interadions. This resulted in a total
of 14 dfferent implementations. SYNTHESIS was able to
build al 14 implementations, typicdly generating
between 30-200 lines of additional glue cde in eah
case in order to manage interdependencies and integrate
the components. In only 2 cases, users had to manually
write 16 lines of code (eat time), to implement two
data onversion routines that were mising from the
design hendbodk. Reference [3] contains a detailed
description of our experiments.

4. Related Work

4.1 The Process Handbook Project

The work reported in this paper grew out of the
Process Handbok projed a MIT's Center for
Coordination Science [4, 11]. The Process Handbodk
projed applies the ideas of coordination theory to the
representation and design of business processes. The
goa of the Process Handbod projed is to provide a
firmer theoreticd and empiricd foundation for such
tasks as enterprise modeling, enterprise integration, and
process re-engneging. The projed includes (1)
colleding examples of how different organizaions
perform similar processes, and (2) representing these
examples in an on-line “Process Handbodk” which
includes the relative alvantages of the dternatives.
SYNOPSS has borrowed the ideas of separating adivities
from dependencies and the notion of entity

spedalization from the Process Handbodk. It is
espedaly concerned with (1) refining the process
representation so that it can describe software
applicaions at a level predse eough for code
generation to take place and (2) populating repaositories
of dependencies and coordination protocols for the
specialized domain of software systems.

4.2 Architecture Description Languages

Architedure Description Languages (ADLS) provide
suppat for representing the high-level structure of
software systems in terms of their components and their
interconnedions [9, 14]. They are a1 evolution of
Module Interconnedion Langueges (MIL), first
proposed in the ‘70s [5]. Most ADLSs provide separate
abstradions for representing components and their
interconnedions. SYNOPSS shares many of the goals and
principles of ADLs. However, wheress previousy
proposed architedural langueges only provide suppart
for implementation-level connedor abstradions (such as
apipe, or a dient/server protocol), SYNOPSS is the first
language which aso suppats edficaion-level
abstradions for encoding interconnedion relationships
(dependencies). Furthermore, apart from introducing a
new architedural language, this work propases a more
general perspedive on designing systems which also
includes the development of design handbodks for
adivities and dependencies as well as a design process
for generating exeautable systems by successve
spedalizations of their architedural descriptions. The
project that comes closest to our workJisiCon [15].

4.3 CASE Tools and Software Design Assistants

A number of reseach tods attempt to fadlit ate the
design and development of software systems by
providing gaphicd, architecura views of systems and
automated asdstants which gude users through the
design process STILE [16] provides good suppart for
graphicd component-based design, but does not provide
particular suppat for distribution or for managing
component mismatches. The Software Archited’s
Asdstant [10] is a visua environment for constructing
distributed applications. Aesop [6] exploits the notion of
architedural style to asdst users in constraining their
design alternatives and verifying the mrreanessof their
designs.

Broadly spe&ing, SYNTHESIS also provides a
graphicd architedure description language and a design
asdstant for generating exeautable gplications.
However, the spedfic models (adivities, dependencies,
and coordination processs), relationships
(decomposition, spedalization) and design operations
(replace dependencies with compatible @ordination
processes) suppated by SYNTHESIS are different from

the &ove systems and spedficdly geaed to fadlitate
the integration of heterogeneous, multilanguage, and
possbly incompatible software cmponents. It will be
interesting to seehow goodideas from various ftware
design assistants can be constructively combined.

4.4 Component Frameworks

Component frameworks sich as OLE, CORBA,
OpenDoc, etc. [1] and our coordination perspedive
were both motivated by the cmplexity of managing
component interdependencies. However, the two
approaches represent very different phil osophies.
Component frameworks enable the interoperation of
independently developed components by limiting the
kinds of alowed relationships and by providing a
standardized infrastructure for managing them. Only
components explicitly written for a framework can
interoperate with one another.

Our coordination perspedive, in contrast, is based on
the belief that the identification and management of
software dependencies dould be devated to a design
problem in its own right. Therefore, dependencies
should not only be eplicitly represented as distinct
entities, but furthermore, when dedding on a managing
protocol, the full range of posshilities dould be
considered with the help o design handbodks.
Components in SYNOPSS architedures need not adhere
to any standard and can have abitrary interfaces.
Provided that the right coordination protocol existsin its
repository, SYNTHESIS will be @le to interconned them.
Furthermore, SYNTHESIS is able to suggest several
aternative ways of managing an interconnedion
relationship and thus posdbly generate more dficient
implementations. Finally, open interconnedion
protocols defined in spedfic component frameworks can
be incorporated into SYNTHESIS repaositories as one, out
of many, aternative ways of managing the underlying
dependency relationships.

5. Conclusions and Future Directions

This work was motivated by the increasing variety
and complexity of interdependencies among components
of large software systems. It has observed that most
current programming languages and tools do not provide
adequate suppat for identifying and representing such
dependencies, while the knowledge of managing them
has not yet been systematically codified.

The initial results of this reseach provide paositive
evidence for suppating the daim that software
interconnedion can wsefully be treged as a design
problem in its own right, orthogonal to the spedficaion
and implementation of the re functional pieces of an

applicaion. More spedficdly, software interconnedion
relationships and coordination protocols for managing
them can be usefully represented as independent entities,
separate from the interdependent components.
Furthermore, they can be systematicdly organized in a
design hendbodk. Such a handbodk can asst, or even

automate the process of integrating a set of
independently developed components into a new
application.

Our experience with SYNTHESIS, a prototype

applicaion development environment based on these
principles has demonstrated bah the feasibility and the
pradicd usefulness of this approach. Nevertheless we
view the work reported in this paper as only the
beginning of an ongoing effort to develop better
methoddogies and tools for supparting component-
based software development. Some aea we plan to
address in the immediate future include:

 Classfy composite dependency patterns. Our
current taxonomy includes relatively low-level
dependency types, such as flows and prerequisites. In
a sense, our taxonomy defines a vocabulary of
software interconnedion relationships. A particularly
promising path of reseach seems to be the
classfication of more cmmplex dependency types as
patterns of more elementary dependencies.

» Devdop coordination process design rules. It
will be interesting to develop design rules that help
automate the seledion step by ranking candidate
processes acording to various evaluation criteria such
as their response time, their reliability, and their
overall fit with the rest of the aplicaion. For
example, when managing a data flow dependency, one
possble design heuristic would be to use dired
transfer of control (e.g. remote procedure cdls) when
the size of the data that flows is snall, and to use a
separate carier resource, such as a file, when the size
of the data is large.

» Devdop gudelines for better reusable
comporents. The idea of separating the design of
component functionality from the design of
interconnedion protocols has interesting impli cations
about the way reusable mponents <ould be
designed in the future. At best, components sould
contain minimal asumptions about their
interconnedion patterns with other components
embedded in them. More reseach is nealed to
trandate this abstrad requirement to concrete design
guidelines.

References

1. Richard M.Adler. Emerging Standards for Component
SoftwarelEEE ComputerMarch 1995, pp. 68-77.

10.

11.

12.

13.

14.

15.

16.

K.P.Birman, A.Schiper and PStephenson. Lightweight
Causal and Atomic Grougdulticast, ACM Transactions
on Computing Systemgol. 9, Aug. 1991, pp. 77-113.
Chrysantho®ellarocasA Coordination Perspective on
Software Architecture: Towards a Design Handbook for
Integrating Software Componer(h.D. Thesis). MIT
Center for Coordination Science Working Paper #193,
February 1996.

C.Dellarocas, J. Lee, T. Wialone, K.Crowston and B.
Pentland. Using a Process Handbook to Design
Organizational Processes.Rnoceedings, AAAI Spring
Symposium on Computational Organization Design
March 21-23, 1994, Stanford, CA, pp. 50-56.
FrankDeRemer and Hans ron. Programming-in-the-
Large Versus Programming-in-the-Sm#EE
Transactions on Software Engineeringpl.SE-2, No.2,
June 1976, pp.80-86.

D. Garlan, R. Allen and Dckerbloom. Exploiting Style
in Architectural Design EnvironmentBroceedings, ACM
SIGSOFT '94 Symposium on Foundations of Software
Engineering December 1994.

D. Garlan, R. Allen and Dckerbloom. Architectural
Mismatch or Why it's hard to build systems out of existing
parts. InProceedings, 17 International Conference on
Software EngineerindSeattle WA, April 1995.

Inmos Ltd.Occam Programming ManudPrentice-Hall,
Englewood Cliffs, NJ, 1984.

PaulKogut and PauClements. Features of Architecture
Representation Languagé&arnegieMellon University
Technical Report CMU/SEI. Number to be assigned. Draft
of December 1994.

J.Kramer, JMagee, KNNg and M.Sloman. The System
Architect's Assistant for Design and Construction of
Distributed System$roceedings of @IEEE Workshop
on Future Trends of Distributed Computing SysteBept.
1993, pp. 284-290.

T.W. Malone, K.Crowston, J. Lee and Pentland. Tools
for Inventing Organizations: Toward a Handbook of
Organizational Processes,Pnoceedings, » |EEE
Workshop on Enabling Tech. Infrastructure for
Collaborative EnterprisesApril 20-22, 1993.

Thomas WMalone and KevirCrowston. The
Interdisciplinary Study of CoordinatioACM Computing
SurveysVol. 26, No. 1, March 1994, pp. 87-119.

Mary Shaw. Procedure Calls Are the Assembly Language
of Software Interconnection: Connectors Deséiivst-
Class StatugCarnegieMellon University, Technical
Report CMU-CS-94-107. January 1994.

Mary Shaw and DaviGarlan. Characteristics of Higher-
level Languages for Software Architecture. Technical
Report CMU-CS-94-210. Also appears as CMU/SEI-94-
TR-23, ESC-TR-94-023.

Mary Shaw, RoberDeLine, and DanieKlein.
Abstractions for Software Architecture and Tools to
Support ThemIEEE Transactions of Software
Engineering21, 4, April 1995, pp. 314-335.

M.P. Stovsky and B.WWeide. Buildinginterprocess
Communication Models Using STILProceedings, 21
Annual Hawaii Int.Conf. On System Scienc&988,
Vol.2, pp.639-647.

