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Abstract 
The traditional focus for Information Systems (IS) quality assurance relies on the evaluation of 
its implementation.  However, the quality of an IS can be largely determined in the first stages 
of its development. Several studies reveal that more than half the errors that occur during 
systems development are requirements errors. A requirements error is defined as a mismatch 
between requirements specification and stakeholders’ needs and expectations.  

Conceptual modeling is an essential activity in requirements engineering aimed at developing 
the conceptual schema of an IS. The conceptual schema is the general knowledge that an IS 
needs to know in order to perform its functions. A conceptual schema specification has 
semantic quality when it is valid and complete. Validity means that the schema is correct (the 
knowledge it defines is true for the domain) and relevant (the knowledge it defines is 
necessary for the system). Completeness means that the conceptual schema includes all 
relevant knowledge. The validation of a conceptual schema pursues the detection of 
requirements errors in order to improve its semantic quality.  

Conceptual schema validation is still a critical challenge in requirements engineering. In this 
work we contribute to this challenge, taking into account that, since conceptual schemas of IS 
can be specified in executable artifacts, they can be tested. In this context, the main 
contributions of this Thesis are (1) an approach to test conceptual schemas of information 
systems, and (2) a novel method for the incremental development of conceptual schemas 
supported by continuous test-driven validation. As far as we know, this is the first work that 
proposes and implements an environment for automated testing of UML/OCL conceptual 
schemas, and the first work that explores the use of test-driven approaches in conceptual 
modeling.  

The testing of conceptual schemas may be an important and practical means for their 
validation. It allows checking correctness and completeness according to stakeholders’ needs 
and expectations. Moreover, in conjunction with the automatic check of basic test adequacy 
criteria, we can also analyze the relevance of the elements defined in the schema. The testing 
environment we propose requires a specialized language for writing tests of conceptual 
schemas. We defined the Conceptual Schema Testing Language (CSTL), which may be used 
to specify automated tests of executable schemas specified in UML/OCL. We also describe a 
prototype implementation of a test processor that makes feasible the approach in practice. 

The conceptual schema testing approach supports test-last validation of conceptual schemas, 
but it also makes sense to test incomplete conceptual schemas while they are developed. 
This fact lays the groundwork of Test-Driven Conceptual Modeling (TDCM), which is our 
second main contribution. TDCM is a novel conceptual modeling method based on the main 
principles of Test-Driven Development (TDD), an extreme programming method in which a 
software system is developed in short iterations driven by tests. We have applied the method 
in several case studies, in the context of Design Research, which is the general research 
framework we adopted. Finally, we also describe an integration approach of TDCM into a 
broad set of software development methodologies, including the Unified Process development 
methodology, MDD-based approaches, storytest-driven agile methods and goal and scenario-
oriented requirements engineering methods.  
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1 
1 Introduction 

 

 

Throughout history, testing has been a widely 
used technique in order to increase confidence 
about the quality of human-developed artifacts. 

In many scientific and technical fields that have been traditionally a base for social 
progress, such as medical research, civil engineering or aeronautics, testing is a 
critical activity to enhance confidence on quality. 

Over the last decades, software has become an intrinsic part of business and 
society. All developed economies depend on software. In the United States, the 
National Institute of Standards and Technology reported in 2002 that software errors 
cost the U.S. economy an estimated $59.5 billion annually (RTI International 2002).  

Furthermore, social and technological progress has increased the complexity and 
the diversity of domains in which software is expected to contribute. Therefore, in 
the 60s, software engineering was born to face up the complexity of software 
development.  

http://www.nist.gov/
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Software engineering is a discipline that promotes software engineers to “adopt a 
systematic and organized approach to their work and use appropriate tools and 
techniques depending on the problem to be solved, the development constraints 
and the resources available” (Sommerville 2010). Several software engineering 
methods and techniques have been proposed in order to develop software 
according to user expectations, quality criteria, estimated costs and planned 
delivery time. 

In the context of software engineering, the need for and the importance of software 
testing are undisputed (Glass 2008). We adopt the precise and concise definition of 
testing proposed by Meyer: “To test a program is to try to make it fail”, from which 
the goal of testing becomes “to uncover faults by triggering failures” (Meyer 2008).  

In the last decades, most work on software testing has been focused on testing 
software code. In this direction, several testing languages, methods and techniques 
have been proposed to test software implementations (Myers et al. 2004). However, 
the quality of an information system is largely determined early in the development 
cycle, especially during the requirements engineering stage. Requirements 
engineering comprises the elicitation, specification and validation of the expected 
functions and quality constraints of the system (Van Lamsweerde 2009, Pohl 2010).  

Empirical studies show that more than half the errors that occur during systems 
development are requirements errors (Moody 2005). A requirements error is defined 
as a mismatch between requirements specification and stakeholders’ requirements. 
Moreover, requirements errors are usually much more expensive to correct than 
errors introduced during design or implementation (Endres et al. 2003).  

These observations justify the necessity of making quality assurance efforts in the 
requirements engineering stage, aimed at the early detection of software errors.   

A big range of software engineering methods supports the development of 
information systems by considering requirements engineering as an essential 
activity.  An information system is aimed at managing the information of a domain 
by performing the following functions (1) Maintaining a consistent representation of 
the state of the domain of interest, (2) Providing information about the state, and (3) 
performing actions to change the state of the domain (Boman et al. 1997).  

In order to perform its functions, an information system needs general knowledge 
about its domain, as well as knowledge about the functions it has to perform. In the 
information systems field, this knowledge is called conceptual schema (Olivé 2007). 
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Most of the existing information systems development methods include conceptual 
modeling activities in requirements engineering stages. The purpose of conceptual 
modeling is to determine and define the conceptual schema of an information 
system, which must include all relevant static and dynamic aspects of its domain.   

Correctness and completeness are two fundamental semantic quality properties of 
conceptual schemas (Lindland et al. 1994). Correctness means that the defined 
knowledge is true for the domain, and completeness means that all relevant 
knowledge is defined in the schema, according to the needs and expectations of 
stakeholders. The validation of these properties is a research challenge, which is 
open to new contributions. 

If conceptual schemas are specified in a formal conceptual modeling language, then 
they may be executable. Therefore, the following question arises: Can we test 
conceptual schemas as a requirements validation and quality assurance technique, 
in order to enhance the early detection of errors in information systems 
development?     

In this thesis, we present two main contributions:   

- An approach to test conceptual schemas in order to validate them 
according to stakeholders’ needs and expectations. 

- A method for performing test-driven development of conceptual 
schemas by continuous validation of its semantic quality. 

In this introductory chapter, we explain the essentials of these two main 
contributions. Firstly, we introduce conceptual modeling (Section 1.1), which is the 
activity aimed to develop conceptual schemas. Secondly, we state the problem of 
conceptual schema validation (Section 1.2). After that, we present the research 
questions addressed in this Thesis (Section 1.3). Finally, in Section 1.4, we 
introduce Design Science Research, which is the research approach adopted for 
the development of this Thesis. We also point out the Thesis contributions in the 
context of this research framework.  

  



 

4 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

1.1 On Conceptual Modeling 

In the context of software engineering, a model is “an artifact formulated in a 
modeling language describing a system” (Kühne 2005). Most software development 
methods include specification and design of models in their activities and artifacts. 
OMG’s Model-Driven Development (MDD) approach (Mellor et al. 2002, Pastor et al. 
2007) conceives software development as a sequence of evolution of models, from 
Platform-Independent Models (PIM) to Platform-Specific Models (PSM).   

A conceptual schema defines the general knowledge that an information system 
needs to know in order to perform its functions (Olivé 2007). A conceptual schema 
can be represented as a PIM which consists of a structural (sub)schema and a 
behavioral (sub)schema. The structural schema specifies the static knowledge of 
the system, which determines the valid states of the domain. The behavioral 
schema specifies the events of the system, which determine the valid state changes 
and queries. Conceptual modeling is an essential requirements engineering activity. 
The principle of necessity of conceptual schemas (Olivé 2007) states that it is not 
possible to develop a system without considering its conceptual schema. The main 
purpose of conceptual modeling is eliciting and defining the conceptual schema of 
an information system. 

Requirements engineering is the branch of software engineering concerned with the 
real-world goals for, functions of, and constraints on software systems. It is also 
concerned with the relationship of these factors to precise specifications of software 
behavior, and to their evolution over time and across software families. The main 
result of a requirements engineering process is a set of artifacts that describe the 
system the users require and that the designers have to design and build (Van 
Lamsweerde 2009, Pohl 2010). One of these artifacts is the specification of the 
conceptual schema (in the desired level of formalism), which defines the functions 
that the system needs to perform and the required structural knowledge about the 
domain.   

Conceptual schemas can be formally specified by using the Unified Modeling 
Language (UML) (Object Management Group (OMG) 2009, Booch et al. 2005), and the 
Object Constraint Language (OCL) (Object Management Group (OMG) 2010b). UML is the 
de facto standard for representing conceptual schemas graphically. Some schema 
elements such as integrity constraints, derivation rules or the effect of events cannot 
be graphically represented, but they can be formally defined in OCL.   

Fig. 1 shows a simple fragment of the structural schema of a meeting scheduler 
system. The conceptual schema specifies the event MeetingRequest, which creates 
a non-scheduled meeting with its subject, the initiator of the meeting, the set of 
possible dates and the set of invited participants. 
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1.2 On Conceptual Schema Validation 

According to (IEEE 1998b), “validation concerns the process of examining a product 
to determine conformity with user needs”. In this context, the main purpose of 
conceptual schema validation is to ensure correctness and completeness (Lindland et 
al. 1994, Moody et al. 2003) according to stakeholders’ needs and expectations.   

A big range of techniques has been already proposed in order to achieve (at 
different degrees) correct and complete conceptual schemas. Some popular 
techniques are paraphrasing in natural language, generation of abstractions and 
abstracts, explanation generation, constraint acquisition, simulation and animation, 
etc. These techniques are reviewed in the state of the art presented in Chapter 3. 

There has been also a lot of work on automated reasoning procedures for checking 
internal schema properties such as schema satisfiability, liveliness of entity types 
and relationship types, contradictions between integrity constraints, etc. (see 
Section 3.2.7).  Satisfying these internal properties is a necessary (but not 
sufficient) condition for correctness.  These verification techniques do not take into 
account the needs and expectations of stakeholders. The conceptual schema 
testing approach proposed in this work may be used with other existing verification 
and validation techniques, in order to achieve higher levels of completeness and 
correctness by considering expected scenarios.   

Fig. 1. Conceptual schema fragment of a meeting scheduler system 

Meeting
subject : String
possibleDate : Date [*]
scheduledDate : Date [0..1]
/numberOfParticipants : Natural

MeetingRequest
subject : String
possibleDate : Date [*]

effect()

User
eMail : EMail
name : String

«Event»

invitedParticipant
1..**

initiator
1*

invitedParticipant
1..*

initiator
1

 

context MeetingRequest::effect() 
  post:  
 (Meeting.allInstances –  
  Meeting.allInstances@pre) 
  ->one(m |  
        m.subject=self.subject and  
        m.possibleDate =  
        self.possibleDate and 
        m.invitedParticipant =  
        self.invitedParticipant and 
        m.initiator = self.initiator) 
 
 

 

context Meeting::numberOfParticipants:Natural  
  derive: self.invitedParticipant->size() 
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As an example, the schema fragment of Fig. 1 is syntactically correct (it complies 
with UML/OCL language rules) and satisfiable (the schema admits at least one non-
empty state of the information base), and no inconsistent integrity constraints are 
found on it. However, if we take into account the expectations of some stakeholders 
shown in Fig. 2, the schema is incomplete and incorrect. The reason is that the 
schema does not have the knowledge to satisfy the expectations highlighted in bold 
because (1) there is no constraint to prevent two users with the same email; (2) 
there is no event type to schedule a meeting in a date; and (3) the derivation rule 
numberOfParticipants does not take into account that the initiator of a meeting is 
also a participant, as it is expected by one of the expectations of Fig. 2.  

The conceptual schema testing approach and the Test-Driven Conceptual Modeling 
method proposed in this Thesis are aimed to enhance validation of the semantic 
quality (correctness, relevance and completeness) by considering the needs and 
expectations of stakeholders involved in the system under development. 

 

Fig. 2. Stakeholders’ needs and expectations 

1.3 Research Questions 

In this section, we introduce the addressed research questions, which are the base 
for the contributions of this Thesis. The contributions are explained in detail in the 
following chapters of this document. 

“Users of the system 
are identified by 
his/her email.  We 
also want to know 
his/her name”. 

“I need to request a meeting. Each meeting 
has a subject, and a set of possible dates. 
Each meeting has also a set of invited 
participants (at least one).” 

“When the meeting date 
is decided we want to 
specify the scheduled 
date in the system”. 

“For each 
meeting we 
want to know 
the number 
of 
participants”
 

“The initiator of a 
meeting is a 
participant of the 
meeting”. 
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1.3.1 Testing Conceptual Schemas 

Most work has been devoted to test software implementations (code). Code testing 
assumes that the System Under Test (SUT) consists of programs (objects, 
components) that provide only a set of operations, and testing a SUT means calling 
those operations with appropriate context and input parameters, and checking that 
they return the expected outputs. For example, the recent UML Testing Profile 
(UTP) is based on this assumption (Object Management Group (OMG) 2005, Baker et al. 
2008) and the same happens in popular testing frameworks like JUnit (Gamma et al. 
1999).  

If a conceptual schema were like an ordinary program, then its testing would not be 
remarkably different from testing a program. However, a conceptual schema is 
knowledge or, more precisely, it is the general knowledge that an information 
system needs to know about the domain and about the functions it has to perform 
(Olivé 2007). Consequently, we may find some similarities between testing a program 
and testing a conceptual schema, but there are significant differences. In contrast 
with lines of code, conceptual schemas explicitly define concepts, relationships 
between these concepts, integrity constraints, derived information, domain events, 
queries, etc. 

 

 

Fig. 3. Conceptual schema testing overview 

 



 

8 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

Currently, most work in conceptual modeling assumes that conceptual schemas can 
be executable (Mellor et al. 2002, Insfrán et al. 2002, Olivé 2005). Then, a first research 
question naturally arises:   

Main Research Question 1.  
Can we test conceptual schemas? 

In order to answer Research Question 1, in this Thesis we explore what it means to 
test conceptual schemas, and we present a language and a testing processor for 
writing and running automated tests of conceptual schemas. The purpose of 
conceptual schema testing is enhancing its validation according to stakeholders’ 
needs and expectations.  

As shown in Fig. 3, conceptual schema testing contributes to requirements 
validation. Conceptual test cases formally represent expected user stories, and 
these test cases are checked on the conceptual schema, which formally represents 
the functional requirements of the system. 

In order to answer Research Question 1, it is required to address the following 
specific research questions: 

Research Question 1.1.  
What it means to test conceptual schemas? 

Research Question 1.2.  
Which kinds of tests are required to test conceptual schemas? 

Research Question 1.3.  
Why do we want to test conceptual schemas? 

Research Question 1.4.  
Which are the requirements of an environment for conceptual schema testing? 

Research Question 1.5.  
How can we determine the suitability of a test for testing a conceptual schema? 

1.3.2 Test-Driven Development of Conceptual Schemas 

Test-Driven Development (TDD) (Janzen et al. 2005, Beck 2003) is an extreme 
programming development method (Beck et al. 2001) in which a software system is 
implemented in short iterations. In each iteration the developer: (1) Writes a test for 
the next bit of functionality that he wants to add; (2) Writes the functional code until 
the test passes; and (3) Refactors both new and old code to make it well structured.  
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If conceptual schema testing is feasible as considered in the first contribution of this 
research work (Section 1.3.1), then another main research question arises:  

Main Research Question 2.  
Can we develop conceptual schemas using a TDD-based method? 

In this Thesis, we present a TDD-based method to elicit and define conceptual 
schemas of information systems. We name it Test-Driven Conceptual Modeling 
(TDCM). In TDCM, conceptual schema development is driven by test cases that 
formally specify concrete needs and expectations about the functions of the system. 
Furthermore, TDCM integrates and fosters continuous validation during conceptual 
modeling, by taking into account that the quality of a conceptual schema should not 
be considered as an afterthought and it should be aimed for in each step of the 
conceptual modeling process.  

In order to answer Research Question 2, it is required to address the following 
specific research questions: 

Research Question 2.1.  
Which are the activities and the process that define TDCM? 

Research Question 2.2.  
How TDCM may contribute to the quality of conceptual schemas? 

Research Question 2.3.  
Can TDCM be integrated in existing requirements engineering and software 
development methods? 

Research Question 2.4.  
Which are the requirements of an environment to support TDCM? 

1.4 The Research Approach 

The overall framework of the research presented in this Thesis is that of Design 
Science (Hevner et al. 2004). In this section, we introduce the Design Science 
Research framework, and we present the main contributions of the Thesis in the 
context of this research approach.   

1.4.1  Design Science Research 

According to (Brinkkemper 1996), it is convenient to adopt a “discipline to design, 
construct and adapt methods, techniques and tools for the development of 
information systems”.   
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Fig. 4. Design Science Research framework 

The Association of Information Systems (AIS) states that Design Science Research 
(DSR) is “another lens or set of analytical techniques and perspectives for 
performing research in IS” (Association for Information Systems (AIS) 2009).  DSR is a 
problem-solving paradigm based on the creation and evaluation of artifacts intended 
to solve identified organizational problems.   

(Hevner et al. 2004) argues that “the design-science paradigm has its roots in 
engineering and the sciences of the artificial”. However, in DSR, “artifacts are not 
exempt from natural laws of behavioral theories. To the contrary, their creation 
relies on existing kernel theories”. This idea is the base of the Information Systems 
Research Framework proposed by (Hevner et al. 2004). Fig. 4 shows the schema of 
this research framework. Its main principles are the base of our research approach. 

Several guidelines are proposed in order to perform Design Science Research: 

- Design as an artifact: DSR must produce a viable artifact in the form of a 
construct, a model, a method, or an instantiation. 

- Problem relevance: The objective of DSR is to develop technology-based 
solutions to significant and relevant business problems. 

- Design evaluation: The utility, quality, and efficacy of a design artifact must 
be rigorously demonstrated via well-executed evaluation methods. 

- Research rigor: DSR relies upon the application of rigorous methods in 
both the construction and evaluation of the design artifact. 
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- Design as a search process: The search for an effective artifact requires 
using available means to reach desired ends while satisfying laws in the 
problem environment. 

- Communication of research: DSR research must be presented effectively 
both to technology-oriented as well as management-oriented audiences. 

Additionally to the popular design research framework proposed by (Hevner et al. 
2004), other papers have contributed to DSR. (Peffers et al. 2007) argued that a 
framework with a set of guidelines is not sufficient in order to provide a DSR 
methodology (DSRM). Consequently, a process model was proposed in order to 
suggest how to apply DSR.   

Fig. 5 illustrates the process model proposed in (Peffers et al. 2007), which can be 
adapted in each particular research process. This model suggests that a research 
process should start by identifying the problem, its motivation and its relevance. 
Then, by inference, an initial definition of the research objectives should be defined. 
After that, the design and development of an artifact for solving the problem may be 
performed. This task may imply the refinement of the research objectives iteratively. 
Once we reach a stable artifact, it is important to demonstrate that it is able to solve 
the problem in a suitable context. Furthermore, an evaluation of the solution should 
be carried out in order to determine its effectiveness and efficiency. Again, the 
evaluation of the artifact may suggest refinements to the artifact design and to the 
research objectives. Finally, the achieved solution needs to be communicated to the 
research community. The feedback obtained by the community members may be 
useful to improve the presented solutions, to refine the research objectives or to 
identify relevant future work.  

 

 

Fig. 5. DSRM Process Model 
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The DSRM Process model has been taken into account during the planning and 
development of this Thesis.  

Finally, for the development of the Test-Driven Conceptual Modeling method, we 
also took into account that three perspectives should be considered when 
developing an engineering method (Lings et al. 2004): the method-in-concept (the 
formal definition of the method, consisting of the main activities and its 
dependencies), the method-in-practice (how the method-in-concept should be used 
to make it effective) and the method-in-tool (which are the requirements of a tool to 
support the method-in-practice). The three perspectives are dependent, and they 
are usually in tension between them.  

1.4.2 Contributions of the Thesis in the Context of Design 
Science Research 

In the following, we state the contributions of this Thesis by taking into account the 
Design Science Research Framework explained in Section 1.4.1.  

This Thesis is aimed to contribute to the development of correct, relevant and 
complete conceptual schemas. The problem is significant because (1) each 
information system development project requires the development of its conceptual 
schema according to the principle of necessity of conceptual schemas, which states 
that “developers need to know the conceptual schema in order to develop an 
information system”, and (2) that conceptual schemas must be correct, relevant and 
complete (Olivé 2005). On the other hand, it is widely recognized that errors at the 
conceptual level must be detected and corrected as soon as possible.  

In this Thesis, we present an approach for testing conceptual schemas and a novel 
method for the development of conceptual schemas that we call Test Driven 
Conceptual Modeling (TDCM), which is a variant of the popular Test-Driven 
Development (TDD).  

As far as we know, this is the first work that proposes and implements an 
environment for automated testing of UML/OCL executable conceptual schemas 
and the first work that explores the use of TDD in conceptual modeling.  

From the research questions, the problem context and the objectives introduced in 
Chapter 1, we developed a testing environment (Chapter 4) and the TDCM method 
(Chapter 8 and 10) (research contributions) in order to contribute to conceptual 
schema validation in Information Systems development (Chapter 2) (problem 
relevance).  
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We also developed a tool (Chapter 5) to put into practice both the testing approach 
and the method. The proposed testing environment, the TDCM method and the 
associated tool are artifacts which have been incrementally designed as a search 
process in the context of Design Research (design as an artifact). The research 
work was evaluated by applying the testing approach and the method in several 
case studies (Chapters 6 and 9) by using the associated tool under development 
(design evaluation).  

The contributions of this Thesis are based on the state of the art related to 
conceptual schema validation (Chapter 3) and Test-Driven Development 
fundamentals (Chapter 7) (research rigor).  

We also made new assumptions based on the state of the art and according to the 
thesis objectives. Then, we incrementally experienced them by using a tool 
(Chapter 5) for analyzing its effectiveness and obtaining feedback to drive the 
research process (design as a search process).  

Finally, we have published the main contributions in research publications aimed to 
communicate the research results (communication of research).  
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2 
2 The Challenge of 

Conceptual Schema 
Validation 

This Thesis contributes to the challenge of conceptual schema validation by the use 
of testing in conceptual modeling. 

In this chapter, we review basic concepts on conceptual modeling, and we describe 
the elements that constitute the conceptual schema specifications considered in this 
Thesis (Section 2.1). We also review the main quality properties of conceptual 
schemas according to well-known conceptual modeling quality frameworks, 
focusing on those properties addressed in this work (Section 2.2). Finally, we state 
the problem of validation of conceptual schemas (Section 2.3).  

2.1  Basic Concepts on Conceptual Modeling 

Every information system embodies a conceptual schema. A conceptual schema 
defines the general knowledge that an information system needs to know in order to 
perform its functions (Olivé 2007).  Conceptual modeling is an essential requirements 
engineering activity, the main purpose of which is the development of the 
conceptual schema of an information system.   

We focus on conceptual schemas that comprise the structural and the behavioral 
knowledge of the system under development. The structural knowledge allows 
maintaining a consistent representation of the state of the domain.  An information 
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system maintains the representation of the state of the domain in the Information 
Base (IB) at each moment of the system’s lifetime. The IB is an instantiation of the 
general structural knowledge defined in the conceptual schema.  The behavioral 
knowledge of the conceptual schema corresponds to the functions of the system, 
which may be specified as a set of events. Each event defines general knowledge 
related to valid changes in the IB state or queries about the state of the domain. 

According to the principle of conceptualization (International Standards Organization (ISO) 
1982), conceptual schemas “should only include conceptually relevant aspects, both 
static and dynamic, of the domain, thus excluding all aspects of data representation, 
physical data organization and access as well as aspects of particular external user 
representation such as message formats, data structures, etc.” 

In the context of Model-Driven Development (MDD) (Mellor et al. 2002, Pastor et al. 
2007), conceptual schemas are Platform-Independent Models (PIM) that can be 
manually or automatically transformed into Platform-Specific Models (PSM). When 
the transformation is automatic, a conceptual schema becomes the last description 
(of the domain and data management layers) of the information system that needs 
to be created in its development (Insfrán et al. 2002, Olivé 2005). Moreover, conceptual 
schemas written in formalized languages like UML/OCL are software artifacts that 
can be executed to a varying degree (Mellor et al. 2002, Insfrán et al. 2002, Olivé 2005). 

We adopt UML/OCL as the conceptual modeling language. In the last years, the 
UML (Unified Modeling Language) (Object Management Group (OMG) 2009, Booch et al. 
2005) has become a de facto standard in conceptual modeling. We use UML in 
conjunction with OCL (Object Constraint Language) (Object Management Group (OMG) 
2010b) in order to formally specify integrity constraints, derivation rules and the effect 
of the events, which cannot be graphically represented by using UML.  

In this section, we review the main concepts and notation we have used to define 
conceptual schemas in this Thesis. 

2.1.1 UML/OCL Conceptual Schemas 

In this thesis, we deal with conceptual schemas that consist of a structural 
(sub)schema and a behavioral (sub)schema.  

Fig. 6 shows the structural schema of a civil registry domain that will be used as an 
example in this section. The civil registry records information about the birth and 
death of the people registered in municipalities. The marital status and the marriage 
relationships of the inhabitants are also maintained. The main purpose of civil 
registration systems is computing demographic information such as the population, 
the life expectancy, etc. 
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Fig. 7 shows an example of the domain event Marriage, in order to illustrate the 
specification of an event in the behavioral schema.  

The Structural Schema 

The structural schema consists of a taxonomy of entity types (a set of entity types 
with their generalization/specialization relationships and the taxonomic constraints), 
a set of relationship types (either attributes or associations), the cardinality 
constraints of the relationship types and a set of other constraints formally defined in 
OCL (OMG 2006).  

An entity type is a concept whose instances at a given time are identifiable 
individual objects that are considered to exist in the domain at that time. The 
instances of an entity type are called entities. Entity types are specified in UML as 
classes, and entities can be represented as UML objects.  

 

 

 

Fig. 6. Structural schema fragment of a civil registry system 

citizenId : String
name : String
dateOfBirth : Date

Person

AlivePerson
maritalStatus : MaritalStatus

Municipality
name : String
/population : Natural
/lifeExpectancy : Real

DeadPerson
dateOfDeath : Date
/ageAtDeath : Real

Country
name : String
/population : Natural
/lifeExpectancy : Real

MaritalStatus
Single
Married
Divorced
Widowed

WomanMan

{disjoint, complete}

{disjoint, complete}
«enumeration»

IsRegisteredIn 1*

wife
0..1

husband
0..1

1*

mother
0..1

child
*

child
*

father
0..1

 

OCL Derivation rules 
 

context Municipality::population:Natural 
derive: self.person->select(oclIsTypeOf(AlivePerson))->size() 
 

context Municipality::lifeExpectancy:Real 
derive: let deadPeople:Set(Person)=self.person->select(oclIsTypeOf(DeadPerson))   
        in  if deadPeople->size()>0 then 
    deadPeople.oclAsType(DeadPerson).ageAtDeath->sum() / deadPeople->size() 
 else 0.0  
 endif 

 

context Country::population:Natural 
derive: self.municipality.population->sum() 
 
context Country::lifeExpectancy:Real 
derive: let deadPeople:Set(Person)=  
   self.municipality.person->select(oclIsTypeOf(DeadPerson))->asSet()   
        in  if deadPeople->size()>0 then 
    deadPeople.oclAsType(DeadPerson).ageAtDeath->sum() / deadPeople->size() 
 else 0.0  
 endif 
 

context DeadPerson::ageAtDeath:Real  
 derive: dateOfDeath-dateOfBirth 
 
OCL Integrity constraints 
 context Country inv identifiesInhabitantsByCitizenId:  
 self.municipality.person->isUnique(citizenId) 
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We deal with schemas that may also include data types and enumerations, which 
are particular kinds of entity types. A data type consists of a set of values and a set 
of literals. The set of values is the population of the data type and is called the value 
space of the type. The set of lexical representations is called the lexical space of the 
type. Each value in the value space is denoted by one or more literals of the lexical 
space. Values are represented in an information base by means of one of their 
literals. The value space of a data type does not change over time. We consider the 
following set of predefined data types: 

- String. The values are finite-length sequences of characters. 

- Boolean. The values are {true, false}, represented by the literals {true, 
false, 1, 0}. 

- Decimal. The value space is the set of values i  x 10-n, where i and n  are 
integers and n ≥ 0. The lexical space is the set of finite sequences formed 
by the set of digits {0..9} with a point, optionally preceded by a sign. 

- Integer. Decimal values without digits in the fractional part. The space of 
values is the set {…, -2, -1, 0, 1, 2, …}. 

- PositiveInteger. The value space is the subset {1, 2, …} of integers. 

- NonNegativeInteger, which we shall call Natural. These are the positive 
integers and zero. 

- Date. The space of values is the set of dates in the Gregorian calendar. 

- Time. The value space is the set of times in a day, starting from midnight. 

- DateTime. The values are specific instants. The value space comprises all 
valid combinations of Date and Time.  

Enumerations are particular kinds of data types whose values are enumerated in 
the model as enumeration literals.  

In the example of Fig. 6, there are seven entity types (Person, Man, Woman, 
DeadPerson, AlivePerson, Country and Municipality). In this example, it has been 
also defined the enumeration MaritalStatus, which allows the enumeration literals 
Single, Married, Divorced and Widowed. 

A relationship type is a concept whose instances at a given time are identifiable 
individual relationships between entities that are considered to exist in the domain at 
that time. Each related entity is a participant of the corresponding relationship type.  
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Relationship types may be specified in UML as associations or attributes.  When a 
relationship type is represented as an association, its instances are represented in 
UML as links. In this work, we allow the use of n-ary relationships. An n-ary 
relationship is a relationship between n participants, where n ≥  2. In the structural 
schema of Fig. 6, there are two binary (n = 2) relationship types (IsRegisteredIn and 
the relationship type between Municipality and Country). Relationship types have 
cardinality constraints, which constraint their population. Cardinality constraints can 
be graphically specified in UML. In Fig. 6, the cardinality constraints state that each 
Person must be registered in one Municipality and that municipalities belong to one 
Country. 

Our conceptual schemas also include the concept of attribute of an entity type. 
Attributes are particular kinds of binary relationship types that allow a subordination 
of one relationship participant to another (usually a relationship between an entity 
type and its particular characteristics). The schema reproduced in Fig. 6 shows 
several examples of attributes. In UML, by default, its multiplicity (the cardinality 
constraint of the attribute) is 1. For example, a Person must have a citizenId, a 
name, and a dateOfBirth. If the Person is an AlivePerson, we also need to know its 
maritalStatus. 

Other constraints that can be graphically specified in UML are the taxonomic 
constraints. A generalization set satisfies the covering constraint if the instances of 
the superclass must be instances of at least one of the subclasses. The 
generalization sets that satisfy the covering constraint are called complete; 
otherwise, they are called incomplete. Additionally, a generalization set satisfies the 
disjointness constraint if each instance of the superclass is an instance of at most 
one subclass. The generalization sets that satisfy the disjointness constraint are 
called disjoint; otherwise, they are called overlapping.  In the schema of Fig. 6, each 
instance of the entity type Person must be either a Man or a Woman, and also 
either a DeadPerson or an AlivePerson. 

Those constraints that cannot be represented graphically in the schema can be 
included as OCL invariants. Those IB states which do not satisfy the constraints 
defined in the schema are considered to be inconsistent. Fig. 6 includes an OCL 
integrity constraint (Country::identifiesInhabitantsByCitizenId) in order to ensure that 
the inhabitants of a country are identifiable by a unique citizen identifier.  

The Information Base (IB) state is the set of instances of the entity and relationship 
types of the conceptual schema at a given time. We assume that an entity may be 
an instance of several entity types not related by IsA relationships. This 
characteristic is called multiple classification and UML admits it. Otherwise, we 
would say that our IB only admits single classification of entity types.  
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Entity and relationship types may be base or derived. The population of the base 
entity and relationship types is explicitly represented in the Information Base (IB). If 
they are derived, there is a formal derivation rule in OCL that defines their 
population in terms of the population of other types.  Fig. 6 includes the derivation 
rules of five derived attributes (DeadPerson::ageAtDeath, Municipality::population, 
Municipality::lifeExpectancy, Country::population and Country::lifeExpectancy).  

The Behavioral Schema 

The behavioral schema consists of a set of event types. An event entity is an 
instance of an event type. There are two main kinds of event types: 

- Domain events: A state change that consists of a nonempty set of structural 
events that are perceived or considered a single change in the domain.  A 
structural event is an elementary change in the population of an entity or 
relationship type. There are four kinds of structural events: entity insertion, 
entity deletion, relationship insertion and relationship deletion.  

- Queries: An external request whose effect is to provide some information 
(answer) about the domain. 

We adopt the view that an event can be modeled as a special kind of entity, which 
we call event entity (Olivé et al. 2006). The main advantage of this method is the 
uniform treatment given to event and entity types. By this way, event types may 
have constraints and derived characteristics, additionally to its effect. Moreover, 
when events types are specified as entity types, specialization allows the 
incremental definition of new event types, as refinements of their supertypes (Olivé et 
al. 2006). 

The characteristics of an event are the set of relationships (attributes or 
associations) in which it participates. The constraints are the conditions that events 
must satisfy in order to occur. An event constraint involves the characteristics and 
the state of the IB before the event occurrence. An event may occur in the state S of 
the IB if S satisfies all constraints, and the event satisfies its event constraints. Each 
event type has an operation called effect() that gives the effect of an event 
occurrence. The effect is declaratively defined by the postcondition of the operation. 
We define both the event constraints and the postcondition in OCL.  

Given that there is a direct correspondence between events and invocations of 
system operations, the adaptation of our work to languages that view events as 
invocations of system operations is straightforward (Larman 2005). 
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For domain event types, the postcondition defines the state of the IB after the event 
occurrence. It is assumed that the state of the IB after the event occurrence also 
satisfies all constraints defined over the IB. Therefore, the effect of a domain event 
is a state that satisfies the postcondition and all IB constraints. Note that the OCL 
expressions used in constraints, derivation rules and pre/post conditions are without 
side-effects. These expressions are evaluated over the IB and their evaluation 
cannot change the IB.  

Given that we want to deal with executable conceptual schemas, we also need a 
procedural specification of the method of the effect() operation. An execution of an 
effect() operation can change the IB. A method is correctly specified if the result it 
produces always satisfies the postcondition and the IB constraints. UML does not 
include any particular language for writing methods (Booch et al. 2005). In the work 
reported here, we write the methods of the effect() operations using a subset of the 
Conceptual Schema Testing Language (CSTL) developed in this Thesis. However, 
we envision the use of standard languages for writing actions in UML schemas, 
such as the recent Action Language for Foundational UML (Alf) (Object Management 
Group (OMG) 2010a) proposed by the Object Management Group (OMG), as soon as 
they become mature and associated compilers are developed. 

Fig. 7 shows the complete and formal specification in UML/OCL of the domain 
event Marriage including its initial integrity constraint (marriageIsAuthorized), its 
postcondition and the method of its effect() operation. 

 

 

 

 

 

 

 

 

 
•  

Fig. 7. Marriage domain event example 

Event constraint 
context Marriage::marriageIsAuthorized():Boolean  
 body:  
 self.husband.oclIsTypeOf(AlivePerson)and self.wife.oclIsTypeOf(AlivePerson)and 
 self.husband.oclAsType(AlivePerson).maritalStatus <> MaritalStatus::Married and   
 self.wife.oclAsType(AlivePerson).maritalStatus <> MaritalStatus::Married 
 

Event postcondition 
context Marriage::effect() 
 post: self.husband.wife=self.wife and 
   self.husband.oclAsType(AlivePerson). 
    maritalStatus=MaritalStatus::Married and 

self.wife.oclAsType(AlivePerson). 
    maritalStatus=MaritalStatus::Married 
 
 
Event method 
method Marriage::effect(){ 
self.husband.wife := self.wife; 
self.husband.maritalStatus := MaritalStatus::Married; 
self.wife.maritalStatus := MaritalStatus::Married; 
} 
 

Marriage
effect()

«iniIC»marriageIsAuthorized()

WomanMan

«DomainEvent»

husband 1 wife1
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2.2 Quality of Conceptual Schemas 

In general, the quality of a product is the degree to which a set of quality properties 
is present. Some conceptual modeling quality frameworks have been proposed in 
the literature in order to state quality properties for conceptual schemas.  In (Moody 
2005), several existing quality frameworks are reviewed. However, although there is 
an international standard for evaluating the quality of software products (International 
Standards Organization (ISO) 2000), there is no specific standard for evaluating the 
quality of conceptual schemas.  

(Moody 2005) argues that, in the absence of a standard, practitioners continue to 
evaluate conceptual schemas in an ad hoc and subjective way, based on common 
sense and experience. A possible explanation for the non-existence of a conceptual 
modeling quality standard is that “it is easier to evaluate the quality of a finished 
product than a logical specification which needs to be aligned with the expectations 
of people involved in the system under development” (Vliet 2000). In this Thesis, we 
face the challenge of evaluating fundamental semantic quality properties of 
conceptual schemas by testing. 

Conceptual modeling naturally belongs as a sub discipline of Requirements 
Engineering in Software Engineering. Therefore, (Moody 2005)  suggests that any 
conceptual quality analysis should comply with both ISO 9000 and ISO/IEC 9126. 
ISO 9000 defines a framework of quality concepts, terminology, principles and 
processes that apply to all software products and services (a conceptual schema is 
a particular type of product) (International Standards Organization (ISO) 2000). ISO/IEC 
9126 defines a framework for evaluating the quality of software products and covers 
the software development lifecycle (conceptual schemas exists as models of 
information systems).  

 

Fig. 8. Moody and Shanks data quality framework 
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In software development, ISO 9000 defines software quality as “the totality of 
features and characteristics of a product or service that bear on its ability to satisfy 
stated or implied needs” (International Standards Organization (ISO) 2000). Similarly, (Moody 
2005) adapts this definition to conceptual modeling as “the quality of features and 
characteristics of a conceptual schema that bear on its ability to satisfy stated or 
implied needs”.  Again, this definition makes clear that the quality of a conceptual 
schema needs to be checked according to the needs and expectations of the 
people involved in the domain. 

Relevant frameworks have been proposed in the literature in order to evaluate the 
quality of data models such as the one proposed in (Moody et al. 1994) which was 
refined and extended in (Moody et al. 2003) (Fig. 8).  This framework proposes a set of 
quality factors (completeness, correctness, simplicity, flexibility, integration, 
understandability and implementability), its relationships with stakeholders, its 
contribution to the improvement strategy, its importance, and quality measures to 
evaluate them. The completeness factor analyzes if the model contains all relevant 
requirements. The quality framework used in this thesis provides a similar definition. 
However, the correctness factor is not related to stakeholders’ expectations and it is 
defined as the absence of errors when using the modeling language. 

There also exist quality frameworks that are focused on the quality of the modeling 
process. Fig. 9 shows the framework proposed by (Wand et al. 1996). In this 
framework, the application domain is conceptualized by analysts in a conceptual 
modeling language (Information system) by using a grammar (a set of ontological 
constructs that are used to represent the real world). The domain is observed by the 
stakeholders (users), and the conceptual schema is interpreted.  

 

Fig. 9. Wand and Wang’s conceptual modeling quality framework 
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Note that the semantic quality defined in Section 2.2.1 corresponds to the alignment 
between the interpreted knowledge of the schema and the knowledge of the 
domain, which is directly observed by the stakeholders. The non-continuous line of 
Fig. 9 (possible data deficiencies) represents this quality relationship. The 
conceptual schema testing environment and the TDCM method proposed in this 
thesis contribute to this quality relationship.    

Finally, it is necessary to remark that new frameworks that combine both existing 
product and process quality frameworks have been also recently published (Nelson et 
al. 2011). 

For the purpose of contextualizing the quality properties considered in this Thesis, 
we adopt the popular conceptual modeling quality framework proposed by (Lindland 
et al. 1994) and the extension of this framework presented by (Krogstie et al. 2006).  

According to (Lindland et al. 1994), there are three main conceptual schema quality 
goals: Syntactic quality, semantic quality and pragmatic quality. The Lindland 
framework was extended by the SEQUAL framework (Krogstie et al. 2006). These 
frameworks consider that conceptual schemas are defined as sets of statements in 
a modeling language, and they have their foundations in the theory of semiotics 
(Posner 1987). Semiotics consists of a theory of codes and signs, which are used to 
convey meaning about things in the world. Semiotics is closely related to the field of 
linguistics and includes the evaluation of codes and signs based on three main 
points of view: syntactic (relations among signs in formal structures), semantic 
(relations between signs and the things to which they refer) and pragmatic (relation 
between signs and the effects they have on the people who use them). 

SEQUAL identifies eight quality types and the quality goals to be achieved in each 
type. Table 1 is an overview of the conceptual schema quality properties proposed 
in the SEQUAL framework.  

The main quality properties addressed in this Thesis are described in detail in 
Section 2.2.1, according to the SEQUAL quality framework. The conceptual schema 
testing approach and the Test-Driven Conceptual Modeling method presented in 
this work are focused on semantic quality validation, which is pursued by means of 
perceived semantic quality. Semantic quality includes validity and completeness. 
Validity comprises correctness and relevance. In Section 2.2.2, we briefly describe 
other quality properties that are not directly addressed in this Thesis. Some of these 
other properties have an impact on perceived semantic quality and, consequently, 
they have an effect on the quality of the conceptual schema testing process. 
Therefore, we briefly analyze them, and we explore its relationship with the 
validation of semantic quality by conceptual schema testing. 

http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Language
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 Quality type Goals Description 

Physical quality 

 
 
 

Externalization 

 

The conceptual schema is available as a physical 
artifact, representing the knowledge of some social 
actor using statements of the modeling language.  

Internalizability 

 

The conceptual schema is available and 
persistently enabling the model audience to 
interpret it. 

Empirical quality Minimal error frequency The conceptual schema can be evaluated looking 
only at the schema itself, comprising 
understandability matters such as layout for graphs 
and readability indexes for text. 

Syntactic quality Syntactic correctness All statements in the model are according to the 
syntax and vocabulary of the modeling language. 

Semantic quality Feasible validity  The knowledge in the schema is sufficiently correct 
and relevant to the problem.  

Feasible completeness The model contains all valuable statements that 
would be correct and relevant for the problem 
domain.  

Pragmatic quality Feasible 
comprehension 

The model can be understood by the audience. 

Perceived semantic 
quality 

Perceived validity and 
completeness 

The model is valid and complete according to 
actors’ interpretation of the schema and their 
current knowledge about the domain. 

Social quality Feasible agreement Implies resolving inconsistencies by choosing 
alternatives where benefits of choosing exceed the 
costs of working out consensus. 

Organizational quality Modeling goals 
satisfaction 

The model satisfies the modeling goals, which 
define why the conceptual modeling process is 
undertaken according to the tasks to be performed 
by each stakeholder in the organization. 

Knowledge quality Feasible knowledge 
validity and 
completeness 

Validity and completeness taking into account the 
audience knowledge about the domain.  

Table 1. SEQUAL quality framework 
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2.2.1 Semantic quality properties 

Semantic Quality 

The contributions of this Thesis are focused on the validation of (feasible and 
perceived) semantic quality properties. A conceptual schema of an information 
system has semantic quality when it is valid and complete. Validity means that the 
schema is correct and relevant.  

A conceptual schema is correct if the knowledge it defines is true for the domain, 
and it is relevant if the knowledge it defines is necessary for the system. 
Completeness means that the conceptual schema includes all relevant knowledge. 

 

Fig. 10. Relationship between completeness and correctness 

Ensuring that a conceptual schema has semantic quality implies checking that the 
knowledge the system requires to know in order to perform its functions is the same 
as the knowledge defined by the conceptual schema. Fig. 10 shows the relationship 
between completeness and correctness. Circle D represents the domain knowledge 
that the system needs to perform its functions. Circle C represents the knowledge 
defined in the conceptual schema. In a complete conceptual schema, D is a subset 
of C. In a correct conceptual schema, C is a subset of D. In a complete and correct 
conceptual schema, D = C. 

Perceived Semantic Quality 

(Krogstie et al. 2006) states that “the primary goal of semantic quality is a 
correspondence between the externalized model and the domain. However, this 
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correspondence can neither be established nor checked directly: to build the model, 
one has to go through the participants’ knowledge regarding the domain, and to 
check the model one has to compare this with the participants’ interpretation of the 
externalized model”. According to this analysis, we need to achieve semantic quality 
by considering perceived semantic quality, which is based on the alignment 
between stakeholders’ interpretation of the conceptual schema and their current 
knowledge of the domain.  

Feasible Semantic Quality 

(Krogstie et al. 2006) affirms that for anything but extremely simple and highly inter-
subjectively agreed domains total validity and completeness cannot be achieved. 
(Lindland et al. 1994) states that “attempts to do so would require spending unlimited 
amounts of time and money, which is unacceptable”. For this reason, the SEQUAL 
quality framework introduces a relaxed and realistic kind of validity and 
completeness (feasible validity and feasible completeness). Feasible validity and 
completeness are achieved “not when the model is perfect (which will never 
happen) but when it has reached a state where further modeling is less beneficial 
than applying the model in its current state”. Considering the terminology of this 
framework, we may observe that when talking about semantic quality checking, we 
are, in fact, referring to feasible semantic quality checking. 

The proposed conceptual schema testing approach fosters the validation of feasible 
semantic quality, by specifying the needs and expectations of the people involved in 
the domain as test cases that are executed. Conceptual test cases formally define 
concrete user stories that represent the knowledge that is expected to be relevant 
and correct as perceived by stakeholders. These test cases may be checked 
against a formally defined and executable conceptual schema. 

2.2.2 Other quality properties 

Fig. 11 shows the main concepts and relationships considered in the conceptual 
modeling quality framework that we adopt in this Thesis.  As explained in Section 
2.2.1, we may observe that semantic quality corresponds to the alignment between 
the Model externalization (the specification of the conceptual schema) and the 
Modeling domain (the domain of interest for the system under development).  

Since we cannot directly check this relationship and that we need to interpret the 
domain and the needs and expectations in accordance with stakeholders (Social 
and technical actor interpretation), what we observe in quality control is not the 
actual semantic quality of the schema, but a perceived semantic quality.   
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Fig. 11. SEQUAL quality framework 

Although the present work is focused on the validation of semantic quality 
properties, conceptual schema quality comprises other properties that we briefly 
review in this section. It is important to note that these properties may have an 
impact on semantic quality, as analyzed in the following. 

Physical Quality 

Conceptual schemas may be explicitly specified by using conceptual modeling 
languages such as UML/OCL. These schemas can be stored and distributed in 
physical supports (paper, disk, etc.).   

Two basic quality features determine the physical quality of a conceptual schema: 

- Externalization: The knowledge of participants is physically represented 
(externalized) in the conceptual schema. 

- Internalizability: The conceptual schema representation is persistent 
(protected against loss or damage) and available (the interested audience 
can access it).  
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In this Thesis, we consider formally specified conceptual schemas in an executable 
form, which are saved as electronic files. These files can be stored in physical 
memory and they can be easily accessible. 

Empirical Quality 

Empirical quality deals with the distinction of schema elements, the error 
frequencies when schemas are written or read, coding aspects such as the 
graphical shapes being used, and ergonomics (layout mechanisms, aesthetics, 
etc.). Therefore, empirical quality influences the comprehension of the model. These 
quality aspects are not addressed in this Thesis. 

Syntactic Quality 

Syntactic quality refers to the correspondence between the conceptual schema 
representation (the model) and the language in which the model is written.  

Given that conceptual schemas are represented in a language, all statements in the 
model should be according to the language syntax. In the case of conceptual 
schemas formally defined in UML and OCL, schemas should be valid instances of 
UML and OCL metamodels (Object Management Group (OMG) 2009, Object Management 
Group (OMG) 2010b). 

In the context of this Thesis, syntactic quality is a sine qua non condition. The 
reason is that conceptual schema specifications are interpreted by testing software 
that assumes (and checks) that conceptual schema specifications comply with the 
syntax of UML and OCL modeling languages. 

Pragmatic Quality 

Pragmatic quality is defined as the effect that the model has on the participants and 
the world. The main pragmatic quality goal in conceptual modeling is 
comprehension. Conceptual schemas are functional requirements specifications 
and, consequently, all concerned parties should understand it.  

This quality property is not directly addressed by the main contributions of the 
thesis, but it is positively influenced when refactoring is performed during TDCM. 
Moreover, our testing environment and the TDCM method take pragmatic quality 
into account, because the resultant schema is systematically based on test cases 
that promote to preserve the names used for concepts and relationships in the user 
stories acquired through stakeholders. 
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Social Quality 

The main goal for social quality is (feasible) agreement in the knowledge required 
by the system, and, therefore, in the knowledge to be defined in the conceptual 
schema. Achieving this quality level may require negotiation, conflicts resolution and 
capability of reaching agreements on the defined requirements. 

This quality property is not directly addressed in this Thesis, because it relies on 
social capabilities. Nevertheless, both the conceptual schema testing approach and 
the Test-Driven Conceptual Modeling method presented in this Thesis are able to 
detect test cases that contain contradictory expectations. Therefore, the present 
work fosters the detection and resolution of conflicts, although the decisions to solve 
them require a social process, which is out of the scope of this work.  

Organizational Quality 

Organizational quality corresponds to the alignment between the conceptual 
schema representation and the modeling goals. Modeling goals ask the question of 
why the conceptual modeling process is undertaken according to the tasks 
performed by the stakeholders involved in the organization.  Modeling goals are 
more related to have an up to date, tailored model to support the individual users in 
their actual tasks, and is less directly linked to the overall goals of the organization. 

This quality property is implicitly addressed in this Thesis, because the resultant 
conceptual schema obtained by testing is based on a set of test cases, which in 
turn, are based on stories the source of which are the stakeholders involved in the 
organization. Therefore, the conceptual schema is influenced by this source and, 
consequently, the schema may better help users in their organizational tasks.  

Knowledge Quality 

Knowledge quality corresponds to the relationship degree between the audience 
knowledge and the domain knowledge. Usually, not all the stakeholders have the 
same valid knowledge about the domain. Therefore, careful participant selection 
and stakeholder identification is required. 

This quality property is not addressed in this Thesis, although it is necessary to be 
considered when defining the testing strategy in our conceptual schema testing 
processes. Obviously, the quality of stakeholders’ expectations, which are the 
source for conceptual schema test cases, relies on their knowledge about the 
domain and, consequently, it must be taken into account.  
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2.3 Validation of Conceptual Schemas 

In software engineering, information systems are developed to satisfy the needs 
and the expectations of the people involved in a domain. A key activity for the 
development of an information system is identifying these needs and expectations, 
as a base for determining the features of the system we are going to develop. The 
requirements of an information system are the features that the system must have 
in order to satisfy the stakeholders’ needs and expectations.  

In general, a requirement is “a condition or capability needed by a user to solve a 
problem or achieve an objective” (IEEE 1998a).  In the context of information systems 
development, there are two kinds of software requirements: functional requirements 
and quality requirements. Functional requirements define the functional effects that 
the software is required to have. The conceptual schema specifies the functional 
requirements of an information system (Olivé 2007). Quality requirements define 
constraints on the way the software-to-be should satisfy functional requirements. 

Requirements engineering “is the branch of software engineering concerned with 
the real-world goals for, functions of, and constraints on software systems” (Zave 
1997). Requirements engineering is a complex process, because it involves different 
actors who may all have different views, needs, and interests.  Requirements 
engineering involves requirements elicitation, requirements specification and 
requirements validation. These processes are far from trivial. (Van Lamsweerde 2009) 
explains that “We must correctly understand and define what problem needs to be 
solved. This seems common sense at first sight. However, […] we need to discover, 
understand, formulate, analyze and agree on the problem to be solved”.  

Several requirements elicitation techniques are proposed in the literature (data 
collection, background studies, questionnaires, interviews, storyboards, prototypes, 
knowledge reuse, etc.) (Van Lamsweerde 2009). Once a requirement is elicited, it is 
convenient to be specified. After that, requirements specifications need to be 
verified and validated for ensuring their quality. 

2.3.1 The Need for Software Validation 

In the context of information systems development, software artifacts may be 
verified and validated according to a set of quality criteria.  

In the literature, we may find several definitions of verification and validation. For 
notation purposes, it is important to clarify the difference between both activities. In 
this Thesis, we adopt the general definitions of these terms proposed in (IEEE 1998b), 
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which are illustrated in Fig. 12. As explained in Section 2.3.2, in our work we focus 
on validation techniques applied to conceptual schemas. 

According to (IEEE 1998b), validation is the “confirmation by examination and 
provisions of objective evidence that the particular requirements for a specific 
intended use are fulfilled”. In software development, “validation concerns the 
process of examining a product to determine conformity with user needs”. In 
software engineering, all software artifacts (requirements specifications, design 
artifacts, implementation modules, etc.) should satisfy requirements and, 
consequently, they may be validated.  

 

Fig. 12. Verification and Validation 

Verification is the “confirmation by examination and provisions of objective evidence 
that specified requirements have been fulfilled” (IEEE 1998b). Verification asks the 
question “are the requirements right?” and validation asks the question “are the right 
requirements?” (Pohl 2010). As shown in Fig. 12, verification includes those 
techniques for checking internal defects (inconsistencies, syntax errors, unsatisfied 
correctness properties, etc.).  Internal defects in software artifacts imply that the 
specified software requirements cannot be valid. However, the non-existence of 
internal defects does not imply that software requirements are valid (we also need 
to check that these are the “right requirements”). It is essential to note that, in 
contrast with verification, validation techniques need to check the expectations and 
needs of stakeholders. 

In general, validation and verification techniques can be complementary used. 
Verification&Validation (V&V) is “the process of determining whether the 
requirements for a system are complete and correct and the final system complies 
with specified requirements” (IEEE 1990). 
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2.3.2 Conceptual Schema Validation in Requirements 
Engineering 

Software systems are always validated by their users once the system is delivered. 
The use of the implemented system is, in fact, a validation-by-use process in which 
requirements defects may be identified directly by users.  

However, since software artifacts are usually based on other artifacts created in 
previous development stages, validation can also be performed in artifacts prior to 
the implementation. If the validated artifact is a requirements specification, then the 
validation process is called requirements validation. More specifically, if the artifact 
under validation is a conceptual schema specification, then the process is called 
conceptual schema validation.  

The contributions of this Thesis are aimed at enhancing conceptual schema 
validation in the context of requirements engineering. (Pohl 2010) affirms that 
requirements validation “require additional effort during requirements engineering. 
However, it also reduces the cost and the risks caused by requirements defects in 
later development phases”.  

According to (Van Lamsweerde 2009), requirements can be specified in different kinds 
of artifacts and in different levels of formalization (in unrestricted natural language, 
in disciplined documentation or in formal notation). The application of techniques 
aimed at validating requirements may depend on the formalization level of the 
requirements specifications. In particular, conceptual schemas defined in UML/OCL 
are formal specifications of functional requirements. 

 

 

Fig. 13. Trace of a RE process (Pohl's quality framework) 
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(Pohl 2010) explains that a formal representation of the requirements is regarded as 
desirable in order to reach higher levels of quality (see Fig. 13). The main reason is 
that when using formal specifications of a conceptual schema, then more validation 
opportunities are feasible. In this Thesis, we propose using formally specified 
conceptual schemas (see Section 2.1) in order to support our validation approach. 

Several techniques have been proposed in the literature in order to perform 
validation of conceptual schemas (see Section 3) as a quality control process to 
check those semantic quality properties explained in Section 2.2.1. However, 
conceptual schema validation is still a challenge open to new contributions, which 
would be aimed at enhancing the existing techniques. 

We propose testing of explicitly and formally defined conceptual schemas (Chapter 
4), in order to enhance the validation of feasible completeness and validity quality 
properties. Moreover, given that the quality of a conceptual schema should not be 
considered as an after-thought (it should be aimed for in each step of the 
conceptual modeling process), the second contribution of the Thesis is a conceptual 
modeling method based on continuous validation by testing (Chapter 8). 
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3 
3 Related Work on 

Conceptual Schema 
Validation 

In Chapter 2, we explained the general challenge of software validation and, in 
particular, the problem of conceptual schema validation in requirements 
engineering.  

In this chapter, we review a representative set of existing software validation 
techniques. We focus on the validation of functional requirements specifications 
and, in particular, on the work related to conceptual schema validation, which is a 
fundamental challenge addressed by the main contributions of this Thesis.  

Additionally, we also review some relevant validation techniques which are aimed at 
checking stakeholders’ expectations on implementation artifacts, because some of 
their principles are related to our conceptual schema testing approach. 

In Section 3.1, we present prototyping and software testing as popular validation 
techniques which have been traditionally applied to software implementations. Our 
approach brings the principles of code testing to conceptual modeling, which is 
performed in initial stages of the development.  

In section 3.2, we analyze a set of representative validation techniques applicable to 
requirements specifications, focusing on those that can be used for conceptual 
schema validation.  
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3.1 Validation of Software Implementations 

Programs that implement information systems consist of lines of code, which are 
written in a programming language. This code may contain different kinds of 
defects. On the one hand, code must conform to the programming language syntax. 
Language compilers usually include syntactic analysis in order to perform automatic 
detection of syntactic defects in the code. On the other hand, other kinds of 
execution errors can be detected while running a program. Nevertheless, even if the 
code “is right”, it does not imply that this code implements “the right requirements”. 
Therefore, code needs to be validated.  

Several techniques have been proposed in the literature in order to verify and 
validate software implementations. Verification&Validation (V&V) of code is aimed at 
preventing runtime errors and checking if the implementation is according to the 
expected functionalities.  

The main techniques to validate code are testing and prototyping. We review them 
in sections 3.1.1 and 3.1.2. In Section 3.1.3, we summarize code inspections and 
reviews, which are verification techniques that may contribute to code V&V.  

3.1.1 Testing 

Testing Techniques 

Testing is commonly-used to verify and validate software. Most of the work in 
software testing assumes that the System Under Test (SUT) consists of programs 
that provide only a set of operations, and testing a SUT means calling those 
operations with appropriate context and input parameters, and checking that they 
return the expected outputs. For example, the recent UML Testing Profile (UTP) is 
based on this assumption (Object Management Group (OMG) 2005, Baker et al. 2008).  

Based on the purpose and the scope of tests, testing techniques can be classified 
as follows (Myers et al. 2004, Beizer 2002):  

- Unit testing is a verification technique focused on testing basic units of 
software. A basic unit is the smallest testable piece of software.  

- Integration testing is a verification technique focused on testing sets of  
tested software units, which interact to constitute larger program structures. 

- System testing is performed to test the functional (and some non-
functional) requirements of the system. It is performed to test the end to 
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end quality of the entire system. If the requirements have been previously 
specified, then system testing becomes a verification technique to check 
that the implementation satisfies the specified requirements. In contrast, 
some agile methodologies do not assume the existence of previous 
requirements artifacts and the tests itself act as specifications of 
stakeholders expectations. In this case, system testing is a validation 
technique. 

- Acceptance testing is a validation technique aimed at checking that the 
program satisfies the current needs and expectations of its end users. It is 
usually performed by customers and end users. 

Testing techniques can also be classified into black-box and white box techniques. 
Black-box testing (also named functional testing) tests the specified functions of the 
system without knowing its internal implementation. White-box testing (also named 
structural testing) assumes that the internal workings of a program are known by the 
tester. White-box tests are conducted to assure that all internal components have 
been exercised (Beizer 2002). 

Testing Languages 

Tests programs written in a testing language allows the specification of test cases. 
A test case is a set of specified conditions under which a tester is able to determine 
whether an information system is working as expected or not.  

Test cases can be written in the same language that is used to implement the 
software under test. However, tests may also be written in specialized testing 
languages. We focus on testing languages that allow automated tests. Test 
automation is a basic property of the Conceptual Schema Testing Language (CSTL) 
proposed in this Thesis. 

Test automation is “the use of software to control the execution of tests, the 
comparison of actual outcomes to predicted outcomes, the setting up of test 
preconditions, and other test control and test reporting functions” (Janzen et al. 2005, 
British Computer Society 2009). 

Several testing frameworks that allow test automation are known collectively as 
xUnit frameworks. xUnit frameworks include built-in constructs for the formalization 
of test assertions. Test assertions formally specify expectations that can be 
automatically checked. Assertions make tests automatically executable as many 
times as needed. Such frameworks are based on SUnit (Beck 1994), designed by 
Kent Beck and originally implemented for Smalltalk. The main ideas of SUnit have 
been ported to many programming languages and development platforms. Some 

http://www.testingstandards.co.uk/bs_7925-1_online.htm#Actualoutcome
http://www.testingstandards.co.uk/bs_7925-1_online.htm#Predictedoutcome
http://www.testingstandards.co.uk/bs_7925-1_online.htm#Precondition
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Smalltalk
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widely-used examples (Gamma et al. 1999, Ostroff et al. 2005) are JUnit (for testing 
programs written in Java), CppUnit (for C++), NUnit (for .NET), XMLUnit (for XML 
specifications), E-Tester (for Eiffel), etc.  

 

Fig. 14. Example of a simple JUnit test case 

Other research works have been devoted to specifying validation test cases in more 
understandable forms for domain stakeholders. Fit is a representative framework 
that promotes the use of Fit tables to express storytests (Mugridge 2008). Fit tables 
specify user expectations in a form which is assumed to be more understandable for 
business people than test cases written in a programming language. Fit was 
proposed by Ward Cunningham (Mugridge et al. 2005) for programs developed in Java. 
Since 2005, versions for Java, C#, Python, Perl, PHP and Smalltalk have been 
developed. Several tools to support Fit tables have also been proposed (the most 
popular is Fitness (Myers et al. 2004, Mugridge 2008, Murphy-Hill et al. 2008, Martin et al. 
2008)). These tables are executed on the software implementation in order to check 
for compliance.  

 

Fig. 15. Example of a Fit table checked by the Fitness tool 

MDD and Software Testing 

In the context of Model-Driven Development (Mellor et al. 2002), there has been some 
work that relates testing to modeling. (Hierons et al. 2009) provides a thorough survey 
on the state of the art regarding the many relationships between formal 
specifications and testing. One such relationship which attracted a lot of work is that 
specifications can be used for deriving, automatically, test cases of the final system 
and/or of some intermediate artifact (Pickin et al. 2002, Gargantini et al. 1999, Nebut et al. 
2006, Santos Neto et al. 2005, Hartman et al. 2004, Briand et al. 2001, Zhang 2004, Pilskalns et al. 
2007, Javed et al. 2007).  

public class TestProgram extends TestCase 
{ 
    public void testAddition (){ 
   assertEquals(3+2, 5); 
    } 
} 

 

http://en.wikipedia.org/wiki/CppUnit
http://en.wikipedia.org/wiki/NUnit
http://en.wikipedia.org/wiki/.NET
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Smalltalk
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It is important to note that, in these verification approaches, the artifact under test is 
software code. Moreover, the source models are assumed to be valid. These 
approaches contrast with those explained in Section 3.2, in which the artifact under 
test is a requirements specification or a system model. Our testing approach 
(Chapter 4) assumes that the artifact under test is an executable conceptual 
schema. In contexts in which the design and the implementation of the system are 
not automatically obtained and correct-by-construction from the conceptual schema, 
then the reviewed testing generation approaches (Model-Driven Testing) could 
support the automatic generation of design and implementation test cases from 
those specified when testing the conceptual schema by using our approach. 

Testing Strategies 

A testing strategy’s most valuable property is producing failures revealing faults as 
fast as possible (Meyer 2008). Not all possible tests equally contribute to this 
objective. Therefore, it is necessary to plan a test strategy, according to the testing 
objectives and available resources. 

(Goodenough et al. 1975) pointed out in the 70s that a central question in software 
testing was analyzing what constitutes an adequate test. This analysis may be 
performed by means of defining adequacy test criteria.  

A great number of such criteria have been proposed and investigated. Test 
adequacy criteria allow measuring the coverage of a set of tests, i.e. which parts of 
the code are not exercised enough. (Zhu et al. 1997) surveys the research work on 
test coverage metrics and test adequacy criteria.  

A large variety of test adequacy criteria have been proposed in the literature. For 
example, the statement coverage criterion requires that each statement of the 
program is executed at least once by a test set. Statement coverage is neutral to 
control structures. Other criteria have been proposed, such as decision coverage 
(requires each boolean expression tested in control structures to be evaluated to 
both true and false), condition coverage (partitions each boolean sub expression 
and requires to be evaluated to both true and false), etc. (Whalen et al. 2006) proposes 
a set of adequacy criteria for software testing, based on requirements formalized in 
logics. Several tools have been developed to measure coverage (Yang et al. 2007). 

Each criterion implies a different level of testing and, therefore, a different testing 
effort. Defining the testing strategy requires choosing the most adequate testing 
criterion, or a combination of them.  

In Chapter 11, we complement the conceptual schema testing approach described 
in Chapter 4 with a set of basic adequacy criteria for testing conceptual schemas. 



 

40 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

3.1.2 Prototyping 

(Vonk 1990) defines a prototype as a “working model of (parts of) an information 
system, which emphasizes specific aspects of that system”. Prototypes can be used 
to elicit and validate requirements (Beynon-Davies et al. 1999).  

Prototypes may implement in detail some particular functionalities of a system 
(vertical prototyping) or consider a wider range of functionalities without entirely 
developing them (horizontal prototyping) (Beynon-Davies et al. 1999). In horizontal 
prototyping, it is common to use prototypes that only implement the user interface. 
Either vertical and horizontal prototyping (or a combination of them) can be used 
and evaluated by stakeholders. By this way, prototypes promote software validation 
and contribute to the elicitation of unrevealed requirements. Prototypes are 
especially useful to elicit and validate requirements for innovative software projects 
in which goals are not clear enough (Doke et al. 1995).  

Prototypes are based on a partial implementation of the system, and their validation 
requires manual experimentation and observation. In contrast, conceptual schema 
validation by testing, as proposed in this Thesis, simulates the execution of the 
conceptual schema. Prototyping may be used in conjunction with conceptual 
schema testing, since prototypes may be automatically generated from conceptual 
schemas (Pastor et al. 2007).  

3.1.3 Code inspections and reviews 

Code inspections and reviews are verification techniques which are applied to code 
that implements an information system.  

Inspections and reviews may be used cooperatively in an inspection&review 
process. Depending on the configuration of the inspection&review process, these 
techniques may also contribute to software code validation. Inspections and reviews 
consist of analyzing the code without executing them: “For many years, most of us 
in the programming community worked under the assumption that programs are 
written solely for machine execution and are not intended for people to read, and 
that the only way to test a program is to execute it on a machine. This attitude 
began to change in the early 1970s through the efforts of program developers who 
first saw the value in reading code as part of a comprehensive testing.” (Myers et al. 
2004).  

Inspections and reviews are known to be quite effective for source code (Van 
Lamsweerde 2009).   Code inspections may be more or less structured. Walkthroughs 
are internal inspections involving members of the project team. Walkthroughs are 
the simplest and less structured verification approach to find defects in code. The 
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inspection process can be made more formal through having external reviewers, 
meetings with specific agendas, and inspection reports (Van Lamsweerde 2009, Pohl 
2010). Fagan proposed in 1976 a well-known example of a structured inspection & 
review process (Fagan 1976, Fagan 1986). Reviews may be performed in free mode; 
based on defect-based, quality-specific or domain-specific checklists (Jaffe et al. 1991, 
Lutz 1993, Sommerville et al. 1998); or based on a specific process to follow for defect 
search (Porter et al. 1995).  If the Inspection&Review process pursues domain-specific 
defects, then it also contributes to validation.  

3.2 Requirements Validation  

In Section 3.1, we have seen that software code may be validated in order to check 
if it implements the expected requirements. Nevertheless, in software engineering, 
requirements are usually elicited and specified before implementing them. 
Therefore, requirements can be validated earlier in the development. In this section, 
we analyze how requirements specifications can be validated.  

According to (Van Lamsweerde 2009), requirements can be specified in different kinds 
of artifacts and in different levels of formalization (in unrestricted natural language, 
in disciplined documentation or in formal notation). The application of techniques 
aimed at validating requirements may depend on the formalization level of its 
specification. In particular, conceptual schemas defined in UML/OCL are formal 
specifications of functional requirements. Its validation is the main objective of the 
conceptual schema testing approach and the Test-Driven Conceptual Modeling 
method proposed in this document (Sections 4 and 8).  

In the following, we review requirements validation techniques that may be 
applicable to conceptual schemas (sections 3.2.1 to 3.2.6). Some of them are 
general techniques that can be applied to other kinds of requirements specifications. 
Others have been specifically proposed to validate conceptual schemas. 
Conceptual schema testing belongs to the category of simulation & animation 
reviewed in Section 3.2.6. In Section 3.2.7, we briefly review a representative set of 
verification approaches which can be used in conjunction with validation techniques 
to enforce the V&V process, as explained in Section 2.3.1. 

3.2.1 Inspections and Reviews 

In Section 3.1.3, we have seen that, since 70s, inspections and reviews are used 
for code Verification&Validation. In requirements engineering, most of the 
requirements specifications can also be inspected and reviewed. 
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Some studies in the literature reveal the effectiveness of inspections and reviews 
when applied to requirements documents, in terms of high defect detection rates, 
quality benefits and cost savings (Doolan 1992). Fagan’s inspection & review process 
(originally designed for code inspection) can also be applied to requirements 
specifications (Van Lamsweerde 2009). If the process checks for specific defects 
related to domain needs and expectations, then it contributes to validation. The 
process consists of an iterative cycle of four activities:  

• Inspection planning: In this phase, the members of the inspection team, the 
timing of the process, the schedule and scope of the review meetings and 
the format of the inspection documentation are determined. 

• Individual reviews: Each inspector analyzes the requirements specifications 
or parts of it individually to look for defects. Reviews can be based on 
checklists or specific defect-search processes.  

• Defect evaluation at review meetings: The defects found by each inspector 
are collected and discussed by the meeting participants in order to reach 
an agreement. 

• Requirements document consolidation: The requirements document is 
revised to address all concerns revealed in the previous phases. 

Inspections do not require formal requirements specifications. However, when semi-
formal or formal specifications are the requirements artifacts under inspection, the 
process may be more clear, structured and traceable.  

Templates can be used to organize the elicitation and specification of requirements. 
The IEEE Std-830 template (IEEE 1984) and the Volere template (Robertson et al. 1997) 
are well known examples of requirements templates, which are structured 
documents to be inspected and reviewed.  

Specific kinds of requirements can be specified in other types of structured 
specifications. Functional requirements, for example, can be informally described as 
use cases (Cockburn 1999). Scenarios are concrete instances of use cases, which 
“are captured as text narratives, sketches and informal media. As analysis 
progresses, informal representations may be replaced by models” (Sutcliffe 1998). 
Software development methodologies, such as the popular Unified Process (Larman 
2005) include models to specify scenarios. This fact lays the ground for scenario-
based inspections (Leite et al. 2005, Leite et al. 1997, Regnell et al. 2000, Regnell et al. 1995), 
which are an adaptation of the Fagan’s process aimed to inspect scenario models.  

Conceptual schemas specify functional requirements and they can also be 
inspected and reviewed. This is why understandability is a fundamental property of 
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conceptual schema representations (see Section 2.2.2). If conceptual schemas are 
formally defined, some defects that may be pursued by inspections and reviews can 
be automatically detected, as explained in the following.  

3.2.2 Validation by Reasoning 

(Grüninger et al. 1995) state that conceptual schemas must be able to answer 
competency questions, which are requirements specified in the form of questions. 

(Queralt 2009, Queralt et al. 2009, Queralt et al. 2008) propose to translate conceptual 
schemas into logic. Then, user-defined properties can be specified as questions, 
which are formalized as logical predicates. This approach reasons on the logical 
translation of the schema, trying to construct a state of the Information Base (IB) in 
which the specified property holds.  

 

 

Fig. 16. Example of a user-defined question and the provided feedback 

It is well known that the problem of reasoning with integrity constraints and 
derivation rules in its full generality is undecidable. Therefore, the available 
procedures are restricted to certain kinds of constraints and derivation rules or 
domains, or they may not terminate in some circumstances (Queralt 2009). 

In contrast, the conceptual schema testing technique that we propose in this Thesis 
can be applied to conceptual schemas that include any kind of OCL constraint or 
derivation rule and, if there is not an infinite loop in a derivation rule or method, test 
cases usually terminate in a very short time. Moreover, tests are significantly 
different from property questions: tests are formalizations of concrete scenarios 
(that is instantiations of the conceptual schema) and questions are formalizations of 
properties. The results obtained by testing are not as strong as those obtained by 
automated reasoning procedures when they are applicable. Like it has been 
observed in the general field of software (Hierons et al. 2009), testing and automated 
reasoning procedures are complementary and can be used in conjunction in order 
to enhance validation. 

“May a user place a bid on a product he is offering?”  
bidderAndOwner ← bid(B,Prod,Usr,Amt,T) ∧ offeredBy(Prod,Usr,T) 

 
bidderAndOwner is satisfiable, as shown by the sample instantiation: 

{registerUser(john, john@upc.edu, 111, prod1, pen, 10, 1), placeBid(john, prod1, 15, 3) } 
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Many reasoning techniques have been also proposed in order to verify general 
properties of conceptual schemas. We briefly reference them in Section 3.2.7. 
These techniques can also be used in combination with validation techniques in 
order to contribute to the whole V&V process. 

3.2.3 Paraphrasing  

The acquisition of requirements is achieved through language manipulation 
(communication with stakeholders). However, it is usually convenient to specify 
these requirements in models, such as conceptual schemas. As we have seen, 
some V&V techniques require semi-formal or formal models to be applied. 
Moreover, models are usually used for specification purposes and as a base for 
design and implementation (including automatic generation of code). 

Several works propose the use of paraphrasing in natural language for making 
easier the validation of conceptual schemas. According to (Rolland et al. 1992), domain 
analysts “are able to correctly use concepts of a conceptual schema but have 
difficulties to abstract reality in order to represent it through concepts”. In order to 
address this issue, paraphrasing techniques generate accurate natural language 
descriptions of a conceptual schema, which can be easily understood by domain 
people who performs validation.  

Paraphrasing is usually manually performed by system engineers when 
communicating with stakeholders. However, (Dalianis 1992) states that “it would be 
convenient if it could be carried out automatic, so the domain expert himself could 
validate the requirements model without having deeper knowledge in the 
formalism”.  

Many researches focused their work on paraphrasing techniques in the 90s (Rolland 
et al. 1992, Dalianis 1992). Nowadays, some authors point out paraphrasing challenges, 
arguing that “the main techniques proposed for semantic matching are ontology 
based. […] Numerous proposals can be found. However, not any one is really 
convincing” (Métais 2002). 

Some recent work proposes paraphrasing in structured languages. (Cabot et al. 2010) 
proposes an approach for automatically paraphrasing UML/OCL conceptual 
schemas to SBVR to facilitate its comprehension and validation. SBVR (Semantics 
of Business Vocabulary and Business Rules) is a language conceptualized 
optimally for business people, and it is assumed to be better understood for domain 
people than UML/OCL. There also exist approaches to generate abstracts of model 
specifications (such as documentation in natural language, user manuals, etc.) 
(Jesus et al. 1992).  



 

45 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

Paraphrasing efforts are closely related to many attempts to verbalize facts from the 
universe of discourse in order to automatically support the conceptual modeling 
activity. The main purpose of these research efforts is deriving a conceptual schema 
from a set of sample sentences verbalized in a language that is better 
understandable by the domain experts.  

Some work has been done in this direction for Object-Role Modeling (ORM) (Halpin 
et al. 2008, Halpin 2001).  Object-Role Modeling (ORM) is a method for modeling and 
querying an information system at the conceptual level. ORM diagrams represent 
the domain as objects (entity types), the relationships (fact types) between them, 
the roles that the objects play in those relationships and constraints within the 
problem domain. (ter Hofstede et al. 1997) proposes techniques in order to elaborate 
verbalization of sample facts from the universe of discourse, in order to be the input 
to derive ORM representations. Moreover, these verbalizations also provide means 
to paraphrase the resulting model in order to be validated by domain experts.  

3.2.4 Explanation Generation 

Explanation generation is another research direction to contribute to the validation 
of conceptual schemas. (Gulla et al. 1993) describes that “explanation generation 
components can form a question-answer facility, where explanations are user 
tailored and may include graphical model views in addition to the textual 
descriptions”. 

Explanation generation techniques provide explanations about the behavior of 
conceptual schemas from an explanation request. In contrast with paraphrasing, 
explanation generation techniques usually take into account states of the 
Information Base (IB).   

 

 

Fig. 17. A question-answer example 
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(Olivé et al. 1996) propose an explanation generation framework in which domain 
people ask catalogued questions to the system and analyzes if the provided 
explanations satisfy their expectations. This work provides explanations about the 
contents of the information base (why fact?, why_not fact?), the changes to the IB 
(why_inserted fact?, why_deleted fact?, how_not fact?), the historical evolution of 
the IB (why fact at state?, why_not fact at state?, what_known_about fact type at 
state?, when fact?, when update?) and about hypothetical past updates (what_if 
update at state on fact?, what_if_not update at state on fact?). 

3.2.5 Constraint Acquisition 

Requirements validation consists in ensuring that the system satisfies stakeholders’ 
expectations. It is important to note that these expectations are not only about what 
the system is able to perform, but also about what invalid states the developed 
system should prevent. Invalid states are those that violate the constraints defined 
in a conceptual schema. 

Constraint acquisition is an approach specifically aimed to assist the elicitation and 
validation of constraints in Entity-Relationship models. (Hartmann et al. 2009) defines 
this technique as “an iterative process of inspection: some participant suggests the 
significance of some integrity constraint ϕ for the application domain (i.e., ϕ 
becomes a candidate constraint that might be specified).” Then, object sets for the 
model related to the candidate constraint are generated. Object sets satisfy 
Armstrong database principles (Armstrong 1974). A database instance is defined to be 
an Armstrong database for a constraint set Σ, if the database instance satisfies an 
integrity constraint ϕ (the candidate constraint), precisely when ϕ is implied by Σ. If 
no object sets can be generated, then the candidate constraint may be redundant. 
Otherwise, if an object set is acceptable, then the constraint should be discarded. If 
all generated object sets are not acceptable, then the constraint can be added to the 
constraints set of the model. 

3.2.6 Simulation & Animation 

Formal requirements specifications (like conceptual schemas defined in a formal 
modeling language) can be validated by using testing techniques that execute them 
through animation (Mellor et al. 2002, Zhang 2004, Ostroff et al. 2007). In general, 
animation facilities allow users to execute operations of the specification with user 
supplied parameters, thereby calculating the value of the output parameters and the 
new system state (Bicarregui et al. 1997). The method we propose to test conceptual 
schemas belongs to this category of validation techniques. 
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The idea of animating conceptual schemas for testing purposes dates back to the 
mid-80's. (Dignum et al. 1987) describes a conceptual language (CPL) and a tool that 
generates a prototype from a CPL schema, which can be tested. The generated 
prototype makes it possible to build an IB state, perform consistency checks and 
ask questions about the contents of the IB. A similar approach was taken in (Lindland 
et al. 1993) and (Gogolla et al. 1995), with the PPP and TROLL light language and 
environment, respectively. Others, such as (Trong et al. 2005) are focused on 
animating design models. 

The most recent work, and the one most closely related to our approach, is the USE 
tool (Gogolla et al. 2007, Gogolla et al. 2005, Richters et al. 2000). USE (Fig. 18) makes it 
possible to define snapshots (instantiations) of structural schemas expressed in a 
subset of UML/OCL and checking if they are valid instantiations of the schema. 
(Seybold et al. 2006) is a similar approach focused on behavior, which allows 
simulation of scenarios (specified as message sequence chars) of use cases 
modeled in the ADORA language.  

 

Fig. 18. USE validation framework 

The information processor that allows the execution of conceptual schemas in our 
tool (Chapter 5) is based on the USE core, although it has been extended to deal 
with additional language features (taking into account advanced structural schema 
elements and the behavioral schema).  

In contrast with the USE tool, in this Thesis we specify conceptual schema tests in 
an xUnit-styled conceptual schema testing language (Section 4.4). This language 
allows specifying assertions (formalizations of expectations) that make possible to 
run automated tests as many times as needed. By this way, the modeler is alerted 
only in case of failing assertions. Moreover, in this Thesis we present the TDCM 
method (Section 8) in order to use these tests to drive the conceptual modeling 
activity and a complete environment to support the application of the method in 
practice.  
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3.2.7 Conceptual Schema Verification Techniques 

Although the contributions of this Thesis are related to conceptual schema 
validation, it is important to remark that formal requirements specifications (such as 
conceptual schemas) also admit verification checks which are usually automated by 
tools (Van Lamsweerde 2009). Our conceptual schema testing approach (Chapter 4) 
and our Test-Driven Conceptual Modeling method (Chapter 8) are validation 
techniques that can be used in conjunction with existing procedures aimed to verify 
conceptual schemas.  

There has been a lot of work on automatic verification procedures applicable to 
conceptual schemas. A representative set of recent papers is (Pilskalns et al. 2007, 
Pilskalns et al. 2007, Queralt et al. 2009, Queralt et al. 2008, Formica 2003, Berardi et al. 2005, 
Jarrar 2007, Cabot et al. 2008, Kalyanpur et al. 2005, Glinz 2000)). Their general objective is 
to automatically check that a conceptual schema has a set of properties. Some of 
these properties are general and must be satisfied by all conceptual schemas, while 
others apply only to a particular conceptual schema. The most studied general 
properties are integrity constraints satisfiability, liveliness of an entity or relationship 
type, non-redundancy of integrity constraints and operation executability.  
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4 
4 An Approach to Test 
Conceptual Schemas 

In this chapter, we present the first main contribution of this Thesis: an approach to 
test conceptual schemas. The fundamental aspects of this contribution are 
published in (Tort et al. 2010).  

This chapter presents the fundamentals of conceptual schema testing (Section 4.1), 
the set of elementary test kinds for testing conceptual schemas (Section 4.2), and 
an overview of the proposed testing environment (Section 4.3).  After that, we 
present the Conceptual Schema Testing Language (CSTL), a specialized language 
for writing tests of executable conceptual schemas defined in UML/OCL (Section 
4.4).  

4.1 Fundamentals of Conceptual Schema Testing 

As we have seen in Section 2.1, a conceptual schema defines the general 
knowledge that an information system needs to know in order to perform its 
functions. Conceptual modeling is the activity aimed to elicit, specify and validate 
conceptual schemas of information systems.  

According to well-known conceptual modeling quality frameworks (Section 2.2), 
correctness (i.e. the knowledge defined in the schema is true for the domain) and 
completeness (i.e. all relevant knowledge is defined) are fundamental semantic 
quality properties of conceptual schemas. The validation of these properties is a key 
challenge as explained in Section 2.3.  
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The main objective of our approach is checking these properties by executing and 
checking concrete user stories formally defined as test cases. These test cases may 
be collected and automatically executed as many times as needed. Our approach to 
test conceptual schemas promotes continuous refinement and evolution of the 
schemas under test, with the aim of pursuing higher levels of semantic quality.  

The presented approach can be used in conjunction with the existing validation and 
verification techniques reviewed in Chapter 3. In conjunction with an associated test 
processor capable to interpret and execute CSTL test cases (described in Chapter 
5), our approach allows the automation of tests (Janzen et al. 2005) of conceptual 
schemas, that is, the use of software to control the execution of tests, the 
comparison of actual outcomes to predicted outcomes, the setting up of test 
preconditions, and other test control and test reporting functions (British Computer 
Society 2009). 

Our approach to test conceptual schemas is based on three main observations: 

1. The validation of the functional requirements defined in a conceptual 
schema is a challenge that admits new contributions (Section 3.2). These 
contributions should be aimed at achieving higher semantic quality levels.  

2. In the programming field, testing is a widely-used technique in order to 
address the validation of software implementations (Section 3.2). Since (1) 
conceptual schemas may be executable and (2) software testing is being 
successfully used in programming, we could adopt many basic principles of 
software testing in conceptual schema testing.    

3. In contrast with code testing, in which the artifact under test is a system 
implementation, in conceptual schema testing the conceptual schema 
specification is the artifact under test. Therefore, the objective of conceptual 
schema testing is to early reveal requirements errors that may be detected 
at the conceptual modeling stage. 

Validation of Conceptual Schemas: An Open Challenge 

As we have seen in the state of the art on conceptual schema validation presented 
in Section 2.2, several existing techniques are used to achieve correct and 
complete conceptual schemas in different degrees. These include paraphrasing in 
natural language (Rolland et al. 1992, Dalianis 1992, Métais 2002, Frederiks et al. 2006), 
generation of abstractions and abstracts (Jesus et al. 1992), explanation generation 
(Gulla et al. 1993, Olivé et al. 1996, Gulla 1996), constraint acquisition (Hartmann et al. 2009) 
or simulation and animation (Van Lamsweerde 2009, Lindland et al. 1994, Dignum et al. 1987, 
Gogolla et al. 1995, Gogolla et al. 2007).  
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The first rationale of conceptual schema testing is that conceptual schema 
validation is a research area that admits new methods and techniques, with the 
purpose of improving semantic schema quality assurance. 

The approach to conceptual schema testing described in this chapter belongs to the 
category of simulation and animation, and it can be used in conjunction with other 
existing techniques (see Chapter 3).  

Application of Software Testing Principles in Conceptual Modeling  

In professional practice, software testing is a dominant technique which is widely 
used for validating implementations of information systems (Glass 2008, Myers et al. 
2004, Beizer 2002).  

However, the development of information systems in most software engineering 
methods is the result of the evolution of different artifacts. In particular, in the OMG’s 
Model-Driven Development (MDD) approach (Mellor et al. 2002, Pastor et al. 2007), 
software development is viewed as an evolution of models, from platform-
independent models (PIM) to platform-specific models (PSM). A Conceptual 
schema is a PIM that defines the functions that the systems under development 
need to perform and the required structural knowledge about the domain required 
by these functions.  

Since a conceptual schema is a formal specification of the functional requirements 
of a system, it is possible to develop techniques for the early detection of errors in 
software developments and, in particular, in conceptual modeling. 

Moreover, conceptual schemas specified in a formal language can be executable 
(Mellor et al. 2002, Insfrán et al. 2002, Olivé 2005). Executability may be achieved by an 
automatic and complete transformation of the conceptual schema into software 
components (including the database schema) written in the languages required by 
the production environment, or by the use of a virtual machine that interprets the 
modeling language and simulates the execution of the schema. 

The second rationale of our approach is that if conceptual schemas can be 
executable, they are, in fact, software artifacts and, therefore, they can be tested. 
Additionally, conceptual schemas may contain requirements errors, and these 
errors can be early detected in the schema. Then, it seems feasible to define a 
testing environment in order to enhance the early validation of the functional 
requirements defined in conceptual schemas. This is the main purpose of the 
approach for testing conceptual schemas presented in this chapter. 
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The third rationale of our approach is that if testing is a widely used technique in 
programming, some basic principles and techniques which have been successfully 
applied in software testing can be adapted to conceptual modeling. In this sense, 
our approach applies modern techniques developed in the software testing field to 
conceptual schemas. We adopt the definition of testing proposed by Meyer: “To test 
a program is to try to make it fail” from which the goal of testing becomes “to 
uncover faults by triggering failures” (Meyer 2008).  

If a conceptual schema were like an ordinary program, then its testing would not be 
remarkably different from testing a program. However, a conceptual schema is 
knowledge or, more precisely, it is the general knowledge that an information 
system needs to know about the domain and about the functions it has to perform 
(Olivé 2007).  

An executable conceptual schema can be considered a program only when there is 
a general-purpose information processor (virtual machine) able to behave according 
to the structural and behavioral rules defined in the conceptual schema (International 
Standards Organization (ISO) 1982). Consequently, we may find some similarities 
between testing a program and testing a conceptual schema, but there are 
significant differences. Most of the work in software testing assumes that the system 
under test (SUT) consists of programs (objects, components) that provide only a set 
of operations, and testing a SUT means calling those operations with appropriate 
context and input parameters, and checking that they return the expected outputs. 
For example, the recent UML Testing Profile (UTP) is based on this assumption 
(Object Management Group (OMG) 2005, Baker et al. 2008) and the same happens in 
popular testing frameworks like JUnit. However, in contrast with lines of code, 
conceptual schemas explicitly define concepts, relationships between these 
concepts, integrity constraints, derived information, domain events, queries, etc.   

Therefore, it is necessary to clarify what it means to test conceptual schemas by 
means of which kinds of tests are applicable. Section 4.2 defines the five kinds of 
tests that can be applied to conceptual schemas regardless of the conceptual 
modeling language.  

Testing Executable Conceptual Schemas 

Testing conceptual schemas is as important as testing programs in projects that 
follow the OMG’s Model-Driven Development (MDD) approach (Pastor et al. 2007, 
Object Management Group (OMG) 2003) when the transformation from platform-
independent models (PIM) to platform-specific models (PSM) is fully automatic and 
correct-by-construction. Our PIMs are complete conceptual schemas that include all 
structural and behavioral aspects, and the obtained PSMs include all aspects 
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related to database design, integrity constraints enforcement procedures, derivation 
rules procedures and the operations that correspond to the behavioral aspects. In 
the MDD approach, the testing activity is done at the conceptual schema level and, 
given that the transformation is correct-by-construction, there is no need to test 
again the outputs from that transformation.  

Testing conceptual schemas is also beneficial in those projects in which the quality 
(Lindland et al. 1994, Gemino et al. 2005, Genero et al. 2008, Schewe et al. 2005, Burton-Jones et 
al. 2005) of the conceptual schema must be maximal, even if the transformation to 
the PSMs will be manual and, therefore, there will be the need to test again those 
PSMs. In particular, achieving maximal quality degrees is an important objective 
when the conceptual schema is the basis for the development of several information 
systems to be done by independent project teams working in parallel, when the 
conceptual schema is going to be used as a reference model for several 
applications, or when the conceptual schema is a metaschema to be instantiated in 
several applications. Testing conceptual schemas may also be useful in conceptual 
modeling education as a means for students to check that their conceptual schemas 
do in fact represent the knowledge they intend to define. 

Even if we deal with complete conceptual schemas, we think that it makes sense to 
test incomplete conceptual schemas while they are developed, as a means of 
increasing their quality (Section 2.2). Even small fragments consisting of a few 
entity and relationship types, integrity constraints and derivation rules can be tested 
in order to uncover faults during the early stages of the development of a conceptual 
schema. This fact lays the groundwork for the development of a test-driven 
conceptual modeling methodology, based on the popular Test-Driven Development 
(Beck 2003), which is the second main contribution of this Thesis (see Chapter 8). 

4.2 Test Kinds 

A test case of a conceptual schema is a formalization of a concrete user story. This 
story is expected to be successfully executed if the required knowledge is correctly 
defined in the schema.  

In conceptual modeling, (a fragment of) the lifetime of an information system is a 
sequence of Information Base (IB) states. The IB represents a snapshot of the state 
of the domain as an instance of the conceptual schema. In our approach, we 
conceive test cases for testing conceptual schemas as a sequence of states of the 
IB, together with formalized expectations about these states. IB states may be 
directly created, or they may be achieved by means of the occurrence of events.  
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In order to state what it means to test conceptual schemas, we define a complete 
set of test kinds that may be applied to conceptual schemas. Test kinds define 
which general types of expectations are needed to specify test cases for testing 
conceptual schemas.  

Conceptual schemas define the functional requirements of an information system. 
Therefore, the definition of test kinds is based on the general functions that 
characterize any information system. According to (Boman et al. 1997), an information 
system performs three general kinds of functions: memory (maintains a 
representation of the state of the domain), informative (provides information about 
the state of the domain) and active (performs actions that change the state of the 
domain). Based on these functions, we determine which kinds of tests are needed 
to formalize expectations about the knowledge defined in a conceptual schema. 

The result is a list of five test kinds that can be applied to conceptual schemas. We 
define these test kinds regardless the conceptual modeling language. These kinds 
of tests are the assertions of (1) the consistency of the Information Base (IB); (2) the 
inconsistency of the IB; (3) the occurrence of a domain event; (4) the non-
occurrence of a domain event, and (5) the contents of an IB state. Sections 4.2.1, 
4.2.2, 4.2.3, 4.2.4 and 4.2.5 describe the enumerated test kinds. In Section 4.4, we 
present the Conceptual Schema Testing Language (CSTL), which supports the 
specification of test cases for UML/OCL Conceptual Schemas, based on these 
general test kinds. 

4.2.1 Asserting the Consistency of an IB State 

The objective of the memory function of an information system is to maintain an 
internal representation of the state of the domain. This representation is needed by 
the other functions of the system and changes over time (since the information in 
the domain it represents also changes).  

Usually, not all IB states are expected to be valid. Determining the IB states that are 
considered to be valid in the system is a key activity in requirements engineering. 
The set of integrity constraints of the conceptual schema restricts the set of valid IB 
states. An IB state which satisfies the defined integrity constraints is a consistent IB 
state.  

This is the rational for the first test kind, which corresponds to the assertion of the 
consistency of an IB state reached by a test case.  If the assertion is true, then no 
constraints prevent the IB state as expected (the state is consistent). Otherwise, 
some constraints of the conceptual schema are too restrictive. 
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4.2.2 Asserting the Inconsistency of an IB State 

Determining the IB states that are considered to be invalid in the system is also a 
key activity in requirements engineering. The set of integrity constraints of the 
conceptual schema determines the set of invalid IB states. An IB state that does not 
satisfy some of the defined integrity constraints is an inconsistent IB state.  

This is the rational for the second test kind, which corresponds to the assertion of 
the inconsistency of an IB state reached by a test case.  If the assertion is true, then 
the conceptual schema include constraints to prevent the IB state as expected (the 
IB state is inconsistent). Otherwise, the set of constraints need to be more restrictive 
in order to prevent the asserted state as expected. 

4.2.3 Asserting the Contents of an IB State 

The objective of the informative function of an information system is to provide users 
with information about the state of the domain.  

Determining if the knowledge defined in a conceptual schema is aligned to the 
expectations about its correctness is a critical activity in conceptual modeling. The 
objective of this test kind is checking that, in a concrete IB state (explicitly created or 
achieved by means of the occurrence of a set of events) the value of basic and 
derived knowledge defined in the schema is as expected.   

This is the rational for the third test kind, which corresponds to the general assertion 
of the contents of an IB state reached by a test case.  If the assertion is true, then 
the conceptual schema has the correct knowledge to provide information about the 
IB state as expected. Otherwise, the knowledge defined in the conceptual schema 
needs to be changed (the specification of the derived knowledge or the specification 
of some events is incorrect). 

This test kind is the one more closely related to the kinds of tests used in 
programming. It is important to note that in code testing, tests are usually limited to 
check if the obtained results (after the execution of a set of operations) are those 
which are expected (Object Management Group (OMG) 2005, Baker et al. 2008).   

4.2.4 Asserting the Occurrence of a Domain Event 

With the active function, an information system performs actions that modify the 
state of the domain. In this context, conceptual schemas that define behavioral 
knowledge include domain events that specify changes in the state of the domain.  
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Usually, not all changes in the state of the domain are considered to be valid. In 
other words, not all domain events are expected to be allowed to occur in all 
situations. Therefore, determining which occurrences of domain events are valid in 
the system is a valuable activity in requirements engineering and, in particular, in 
conceptual modeling. The set of integrity constraints that are associated to the 
domain event restricts the states in which an event is allowed to occur. The 
occurrence of a domain event in a concrete IB state comprises checking (1) that the 
occurrence of the event is allowed by its constraints, and (2) checking that the IB 
state achieved by the occurrence of the event is according to the specification of the 
domain event. 

This is the rational for the fourth test kind, which corresponds to the assertion of the 
occurrence of a domain event in an IB state reached by a test case.  If the assertion 
is true, then the domain event has occurred as expected and the resultant IB state 
complies with its specification. Otherwise, some constraint prevents the domain 
event to occur, or the specification of the domain event is not correct. 

4.2.5 Asserting the Non-Occurrence of a Domain Event 

Determining the occurrences of domain events that should not be allowed by the 
system is also crucial for the conceptual modeling activity. The set of integrity 
constraints that are associated to the domain event prevent the states in which an 
event is not allowed to occur.  

This is the rational for the fifth test kind, which corresponds to the assertion of the 
non-occurrence of a domain event.  If the assertion is true, then the domain event 
has been not allowed to occur as expected. Otherwise, the set of constraints related 
to the event need to be modified in order to prevent its occurrence. 

4.3 The Testing Environment 

In order to perform conceptual schema testing, our approach is based on the testing 
environment (Tort et al. 2010) shown in the schema of Fig. 19.  

In our approach to test conceptual schemas, conceptual modelers define an explicit 
specification of the conceptual schema of the information system under 
development and a collection of automated tests aimed to test the schema.  

A formal language to define the conceptual schema and a formal language to define 
the test programs are required to make this approach applicable in practice. In this 
Thesis, we test conceptual schemas defined in UML and OCL modeling languages 
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(the corresponding concepts and notation are explained in detail in Section 2.1.1). 
One of the key contributions of this Thesis is the definition of a specialized language 
to specify test cases of conceptual schemas. This language, named Conceptual 
Schema Testing Language (CSTL), is presented in detail in Section 4.4. The CSTL 
language allows formally specifying the test kinds for testing conceptual schemas 
defined in Section 4.2. 

 
Fig. 19. Testing environment to test conceptual schemas 

This approach also requires conceptual schemas to be executed by simulating the 
states of the IB base and its evolution. The execution of conceptual schemas is 
done by an information processor, while the execution of test programs is done by a 
test processor, which interacts with the information processor in order to modify and 
query the Information Base (IB) according to the test statements. Specific 
implementations of the information processor and the test processor are the main 
components of the CSTL Processor, a prototype tool that supports the creation, 
management, execution and computation of the verdicts of test cases defined in 
CSTL for testing UML/OCL conceptual schemas. More details on the features and 
the implementation of the CSTL Processor are described in Chapter 5. 
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In order to test conceptual schemas, the system's functions are captured by a set of 
concrete scenarios formalized as test cases. If the execution of these test cases 
produces the expected results, then, by definition, we can ascertain that the 
conceptual schema is complete according to the needs and expectations formalized 
in the test cases. If the conceptual schema were not complete, then some test case 
would not succeed because of required knowledge that is relevant but not defined in 
the schema.  

 

Fig. 20. Contributions to semantic quality by conceptual schema testing 

By using conceptual schema testing, we can also ascertain that the part of the 
conceptual schema involved in the execution of the scenarios defined in test cases 
is correct, because otherwise some test case execution would not succeed due to 
failing expectations. However, the testing approach itself does not address the 
relevance of all the elements of the schema. It may happen that the conceptual 
schema (correct and complete according to the test set) includes more knowledge 
that is not relevant for the scenarios defined in the set of test cases, and this 
irrelevant knowledge could be incorrect.  

In conclusion, the approach to test conceptual schemas proposed in this Thesis 
addresses the completeness and the correctness of the schema in accordance with 
the test set as sketched by Fig. 20.  
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However, the relevance of the knowledge defined in the schema is not addressed 
by the testing approach itself. As an extension of the presented approach, this 
Thesis presents a basic set of test adequacy criteria which allows automatic 
analysis of the relevance of all the schema elements. These criteria are a 
complementary contribution of this Thesis and they are presented in Chapter 11. An 
extension of the tool presented in Chapter 5 is presented in Section 5.4. The 
purpose of this extension is performing automatic coverage analysis.  

4.4 The CSTL Language  

The Conceptual Schema Testing Language (CSTL) is a specialized language 
developed in this Thesis in order to specify automated tests (Janzen et al. 2005) for 
testing conceptual schemas. CSTL makes possible to write programs to test 
conceptual schemas in the style of the modern xUnit software testing frameworks 
(Gamma et al. 1999), which are successfully used in many programming projects.  

In these frameworks, test programs include assertions the verdict of which can be 
automatically computed by a test processor.  This fact allows executing test sets as 
many times as needed, without the participation of people that observes if the 
results are the expected ones.  

The assertions included in the CSTL language comply with the test kinds for testing 
conceptual schemas defined in Section 4.2. The expressiveness of CSTL relies on 
its capability of formally specifying the defined test kinds. Moreover, CSTL language 
syntax is designed to be readable and easily understandable to stakeholders, which 
are usually the source of the defined tests. 

4.4.1 CSTL Test Programs 

A CSTL program consists of a: 

- A fixture (may be empty). 

- A set (may be empty) of fixture components. 

- A set of one or more test cases.  

Fig. 21 shows a fragment of the metamodel of the structure of a CSTL program. We 
describe each CSTL Program component in the following. Fig. 23 shows a test 
program example based on the osCommerce case study described in Chapter 6. 
This test program is aimed at testing the conceptual schema of Fig. 24. 
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Fig. 21. Metamodel fragment of the structure of a CSTL program. 

Test Cases 

We adopt the UTP’s terminology and consider that a test case is a “specification of 
one case to test the system including what to test with, which input, result, and 
under which conditions […] A test case always returns a verdict”. The verdict may 
be Pass, Fail, Inconclusive or Error (Object Management Group (OMG) 2005). We 
consider that the verdict is Error when the conceptual schema or the test case is ill-
formed (i.e. it is not a valid instance of the corresponding metaschema).  The 
objective of the conceptual modeler is to write test cases whose final verdict is 
Pass. 

In CSTL, the basic construct for testing conceptual schemas is a concrete test case. 
Each concrete test case has a name and consists of a set of statements (Fig. 22). 
The last statement of a concrete test case is an assertion, but in general there may 
be several assertions in the same test case.  

 

  

Fig. 22. Basic Structure of a Concrete Test Case 
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test testName {  
...  
assert ...  
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Fig. 23. CSTL program for testing order confirmations in the osCommerce system. 

 

testprogram OrderConfirmation{  
 
       //FIXTURE 
       //Attributes initialization  
       shirtSize := new Option;  
       extraLarge := new Value;  
       small := new Value;  
       smallSize := new Attribute(option := shirtSize, value := small);  
       extraLargeSize := new Attribute(option := shirtSize, value := extraLarge);  
       //Products initialization  
       fashionTShirt := new Product; 
       fashionTShirt.netPrice := 10;  
       smallFashionTShirt := new ProductAttribute 
                                (product := fashionTShirt, attribute := smallSize);  
       smallFashionTShirt.increment := 2;  
       smallFashionTShirt.sign := Sign::minus;  
       extraLargeFashionTShirt := new ProductAttribute 
                                (product := fashionTShirt, attribute := extraLargeSize);  
       extraLargeFashionTShirt.increment := 1;  
       extraLargeFashionTShirt.sign := Sign::plus;  
 
       //Customer shopping cart initialization  
       c := new Customer;  
       sc := new ShoppingCart; 
       sc.customer := c; 

 
       fixturecomponent addRegularSizedTShirts{  

item1 := new ShoppingCartItem; 
item1.product := fashionTShirt; 
item1.quantity := 3; 
item1.shoppingCart := sc; 

       }  
        
       fixturecomponent addSpecialSizedTShirts{  

item1 := new ShoppingCartItem; 
item1.product := fashionTShirt; 
item1.shoppingCart := sc; 
item1.quantity := 2;  
item1.attribute := Set{smallSize};  
item2 := new ShoppingCartItem; 
item2.product := fashionTShirt; 
item2.shoppingCart := sc; 
item2.quantity := 1;  
item2.attribute := Set{extraLargeSize}; 

}  
        

       test emptyShoppingCart{  
          assert consistency;  
       }  
               
       abstract test confirmedOrderTotal (Fixture itemsAddition, Money expectedTotal){ 

load itemsAddition;  
oc := new OrderConfirmation(shoppingCart := sc) occurs;  
assert equals oc.orderCreated.total expectedTotal;  

}  
 

test confirmedOrderTotal  
           (itemsAddition := addRegularSizedTShirts,expectedTotal := 30);  
 
 

test confirmedOrderTotal  
(itemsAddition := addSpecialSizedTShirts,expectedTotal := 30); 
 

}  
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Fig. 24. Fragment of the osCommerce case study focusing on shopping cart items 

Fixture 

It is assumed that the execution of each test case of a CSTL program starts with an 
empty IB state. With this assumption, the test cases of a program are independent 
each other, and therefore the order of their execution is irrelevant. However, the test 
cases of a program often have a common initial IB state and variables, and it is 
practical to define this common part, called a fixture, separately.  

The fixture is a set of statements that create an IB state and define the values of the 
common program variables. It is assumed that the execution of a test case starts 
with the execution of the fixture. 

In the example of Fig. 23, the fixture initializes attributes of products and a customer 
shopping cart, which may be used in the test cases defined within the test program. 

quantity : PositiveInteger
/added : DateTime
/price : Money
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**
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context ShoppingCartItem inv onlyOneAttributePerOption: 
self.attribute -> isUnique(option) 

  
context ShoppingCartItem inv productHasTheAttributes: 

self.product.attribute -> includesAll(self.attribute)  
  
context ShoppingCartItem::price:Money 

derive: 
     if self.attribute -> isEmpty() then self.product.netPrice 
     else 

           self.attribute.productAttribute 
             -> select(pa|pa.product = self.product) -> collect  
                      (if sign = Sign::plus then increment 
              else –increment 
               endif) -> sum() + self.product.netPrice 
     endif 
 
context ShoppingCartItem::added:Datetime 

derive: Now() 
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Fixture Components 

A fixture component is a named set of statements that create a fragment of the state 
of the IB and define the values of a set of variables. If fc is a fixture component, then 
a test case may use the following statement:  

load fc;  

to add to the current state of the IB and to the current variables the fragment defined 
by fc. Fig. 23 shows a test program example based on the osCommerce case study 
reported in Section 6.1. In this example, there are two fixture components: one that 
instantiates a shopping cart item with a product without attributes, and another that 
instantiates two items with products having attributes. The same fixture component 
can be loaded by several test cases. 

Concrete and Abstract Test Cases 

In CSTL, there are three kinds of test cases: concrete, abstract and abstract 
invocation. 

A concrete test case is a set of statements that builds a state of the IB, defines 
values of its variables, and executes one or more tests of one of the five test kinds 
described in the previous section. In Fig. 23, an example is the test 
EmptyShoppingCart, which checks the consistency of the IB state defined by the 
fixture. The verdict of this test is Fail, because the shopping cart sc has no items 
and, according to the cardinality constraints shown in Fig. 24, it should have at least 
one.  

An abstract test case is a parameterized test case intended to be invoked one or 
more times in the same program. The parameters of an abstract test case may 
include fixture components and variables. An example in Fig. 23 is 
confirmedOrderTotal. The aim is to test that the total amount of the order created 
when the customer checks out his shopping cart (event OrderConfirmation) is as the 
domain expert expects (see (Tort 2009b) for further details). It loads the fixture 
component received, asserts that the domain event OrderConfirmation (with 
characteristic sc) occurs, and asserts that the amount of the order just created is 
expectedTotal.  

An abstract test case invocation is the invocation of an abstract test case with the 
desired values of the parameters. In Fig. 23, there are two invocations of the 
abstract test case. The verdict of the first invocation is Pass and the second verdict 
of the one is Fail.  
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The execution of a concrete test case or of an abstract test case invocation always 
returns a verdict. The verdict is obtained from the verdicts of the test kinds defined 
in the previous section as follows:    

1. If the verdict of an assertion of a test case is Error, then the execution of 
the test case ends, and the verdict of the whole test case is Error.  

2. If the verdict of an assertion of a test case is Fail, then the execution of the 
test case ends, and the verdict of the whole test case is Fail.  

3. The verdict of a test case is Pass if the verdicts of all its assertions are 
Pass.  

CSTL Statements 

All CSTL program components (fitxture, fixture components and test cases) are 
specified by using CSTL statements.  

The formal definition of the CSTL language syntax is given in Appendix A. In the 
following subsections, we describe the syntax and the semantics of the four kinds of 
statements related to testing conceptual schemas:  

− Statements that update the IB (Section 4.4.2).  

− Statements that assert the state of the IB (Sections 4.4.3, 4.4.4 and 4.4.7).  

− Statements that create domain events (Section 4.4.5) and assert its 
occurrence (Sections 4.4.5 and 4.4.6)   

4.4.2 Updating the Information Base  

When the execution of a test case begins, the IB is assumed to be empty and, 
during the normal execution of an IS, the IB can only change due to the occurrence 
of domain events, and a particular IB state can only be reached by the successful 
occurrence of one or more domain events. However, in testing conceptual schemas, 
we often need to set up an IB state independently of the domain events (Mellor et al. 
2002). This happens when the domain events are not available, i.e. they have not yet 
been specified, or when we want to check an inconsistent state that cannot be 
reached by valid domain events.  
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Fig. 25. A basic schema fragment 

CSTL includes statements in order to explicitly set up an IB state in a test case. We 
describe them below using examples based on the schema fragment of Fig. 25. 

We define that entityID is a new instance of the entity types EntityType1,..., 
EntityTypen with the following statement:  

entityID := new EntityType1,...,EntityTypen;  

where entityID must be a new identifier. For example: 

cat1 := new Category; 

Note that we assume multiple classification (Olivé 2007), and therefore we allow that 
an entity is an instance of two or more entity types not related by 
generalization/specialization relationships. 

Entities can be deleted with the following statement: 

delete entityExpr; 

where entityExpr is an identifier or, in general, an OCL expression that evaluates to 
a previously created entity. The deletion of an entity implies the deletion of its 
attributes and the links in which it participates. 

To define that the value of attribute att of entity entityID is val (where val is a valid 
OCL expression) we write: 

entityID.att := val;  

The types of att and val must be compatible; otherwise the verdict of the test case in 
which the statement appears is Error. 

Similarly, to define that the entity entityID is related with role role in a binary link (an 
instance of an association) to one or more entities given by the OCL 
expression participants we write:  

entityID.role := participants;  

Category*
child

parent1
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The types of role and participants must be compatible; otherwise the verdict of the 
test case in which the statement appears is Error. For example: 

cat1.parent := cat2; 

Often, it is convenient to state in a single statement the creation of a new 
entity entityID as an instance of entity type EntityType1 and the assignment of an 
initial value for its attributes att1,...,attn and of its binary links with roles r1,...,rm. The 
syntax is as follows:  

entityID := new EntityType1  
               (att1:= value1,..., attn:= valuen,  
                r1:= participants1,..., rm:= participantsm); 

where valuei and participantsi are OCL expressions. For example: 

cat3 := new Category(parent:=cat1); 

Instances of an n-ary UML association Assoc with roles r1,...,rn are created with the 
following statement:  

new Assoc(r1:= entityExp1,..., rn:= entityExpn);  

If Assoc is an association class, then the above statement returns the identifier of 
the instance of that class.  

4.4.3 Asserting the Consistency of an IB State  

A conceptual schema may include a large number of constraints, and the task of 
ensuring that all of them are correct is far from trivial. Using an appropriate modeling 
environment, testing the schema may be a practical means of uncovering faulty 
constraints. This is done by setting up one or more test cases, each with an IB state 
that domain experts believe is valid, followed by an assertion that the state satisfies 
all defined constraints. An IB state is called consistent if it satisfies all constraints 
defined in the conceptual schema.   

In CSTL, the conceptual modeler asserts that the current IB state must be 
consistent by writing the following statement:  

assert consistency;  

The verdict of the assertion is Pass if the IB state satisfies all defined constraints. 
The verdict is Fail if, contrary to what the conceptual modeler expects, the IB is not 
consistent. When the verdict is Fail two cases are possible: (1) domain experts 
consider that the IB state is indeed invalid or, if it is valid, then (2) the non-satisfied 
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constraint(s) is incorrect. In the former, the problem lies in the test case, and the 
conceptual modeler may prefer to change the assertion to assert inconsistency (see 
below). In the latter, the corresponding constraint(s) must be corrected.  

As an example, assume the schema shown in Fig. 25, and consider the following 
test case: 

test CategoryCanBeInstantiated{ 
      cat := new Category; 
      assert consistency; 
} 

The verdict will be Fail because according to the schema, each category should 
have a parent. If the domain experts confirm that the IB state just defined is valid 
(cat is a root category), then the test case has uncovered a schema error, which 
must be corrected by changing the cardinality (multiplicity) of parent to 0..1. 

A conceptual modeler may use this kind of assertion not only to check that the 
constraints defined in the schema behave as expected, but also to check that each 
entity type is satisfiable (i.e. it may have a non-empty population). If the conceptual 
modeler is able to set up an IB state in which there is at least one instance of entity 
type E and that state is asserted as consistent, then by definition E is satisfiable. If 
the conceptual modeler is unable to set up such a state, this is not a formal proof 
that E is unsatisfiable, but in many practical cases it provides a clue that helps to 
uncover a faulty constraint. 

For example, consider the original schema of Fig. 25 again, and assume that it is 
extended with the following invariant: 

context Category inv thereMayNotBeCycles: 
  not self.allChildren() -> includes(self) 

where the operation allChildren() returns the whole set of subcategories of the 
category in the hierarchy (Gogolla et al. 2005). 

Now Category becomes unsatisfiable, and the conceptual modeler is unable to set 
up a test case with at least one instance of Category and an assert consistency 
statement whose verdict is Pass. This result is not formal proof that Category is 
unsatisfiable, but in many practical cases it provides a clue that helps the 
conceptual modeler to uncover a faulty constraint. In this example, Category is 
satisfiable if we make the same change as above: set the cardinality of parent to 
0..1. 
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Fig. 26. Extension of Fig. 25 with names of categories 

4.4.4 Asserting the Inconsistency of an IB State  

For the set of constraints defined in the schema to be correct and complete, not only 
the constraints must be satisfied by valid IB states, but those constraints must also 
rule out invalid states. Testing the schema may be a practical means of detecting 
missing constraints. This is done by setting up one or more test cases; each with an 
IB state that domain experts believe is invalid, followed by an assertion that the 
state does not satisfy at least one schema constraint.  

In CSTL, in order to assert that the current IB state is inconsistent, the conceptual 
modeler simply writes the following statement: 

assert inconsistency; 

The verdict of the assertion is Pass if the IB state does not satisfy one or more 
constraints; otherwise, it is Fail. If the verdict of the assertion is Fail then two cases 
are possible: (1) the IB state is indeed valid or, if it is not, then (2) some constraint is 
missing. In the former, the conceptual modeler may prefer to change the assertion 
to assert consistency (see above). In the latter, the conceptual modeler must define 
a new constraint or refine an existing one in order to make it more constraining. 

For example, consider the schema of Fig. 26, which extends the schema of Fig. 25 
with categories in a multilingual e-commerce system. Assume that the conceptual 
modeler writes the following test case to assert that if a category has no name in 
one language, then the IB state is inconsistent: 

test CategoriesHaveANameInEachLanguage{ 
      cat := new Category; 
      english := new Language; 
      catalan := new Language; 
      catInEnglish := new CategoryInLanguage 
                      (category:=cat, language:=english); 
      catInEnglish.name := “Food”; 
      assert inconsistency; 
} 

CategoryInLanguage
name : String

Category Language1..***
child

parent0..1



 

69 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

Contrary to what it is expected, the execution of the test case fails. This fact reveals 
to the conceptual modeler that the schema does not enforce that categories have a 
name in each language. If the domain expert confirms this requirement, then the 
test case has uncovered a schema error, which must be corrected by adding the 
following constraint to the schema:       

context Category inv CategoriesHaveANameInEachLanguage: 
  self.language = Language.allInstances() 

Now, the verdict of the above test case is Pass, as desired.  

4.4.5 Asserting the Occurrence of Domain Events  

A domain event type is a complex schema element that may have several kinds of 
defects:  

1. The constraints of the event type may not allow the occurrence of valid 
events.  

2. The postconditions may not precisely define the intended effect of events.  

3. The method of the effect operation may produce an IB state that does not 
satisfy both the postconditions and the schema constraints.  

Testing the schema may be a practical means of detecting those defects. This is 
done by setting up for each domain event type one or more test cases with an IB 
state and an instance of that event type that domain experts believe may occur in 
that state, followed by an assertion of the (satisfactory) occurrence of that event.  

In CSTL, the instances of a domain event type can be created in the same way as 
those of entity types. If EventType1 is a domain event type, then: 

eventId := new EventType1; 

creates the instance eventId of EventType1, whose characteristics (attribute values, 
binary links) can be defined as in the case of entities. Often, it is convenient to 
define in a single statement the creation of a new event eventId as an instance of 
domain event type EventType1 and the assignment of the value for its attributes 
att1,...,attn and of its binary links with roles r1,...,rm. The syntax is as follows: 

eventId := new EventType1(att1:=value1,..., attn:=valuen, 
               r1:=participants1,..., rm:=participantsm); 
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Fig. 27. Extension of Fig. 26 with products and manufacturers 

Once the concrete event eventId has been created in a test case in order to assert 
that it may occur in the current state of the IB, the conceptual modeler writes the 
following sentence: 

assert occurrence eventId; 

The verdict of this assertion is determined as follows: 

1. Check that the current IB state is consistent (as defined in Section 4.4.3). 
The verdict is Error if that check fails (events may not occur in inconsistent 
IB states).  

2. Check that the constraints of the event are satisfied. The verdict is Fail if 
any of the event constraints is not satisfied.  

3. Execute the method of the corresponding effect() operation. 

4. Check that the new IB state is consistent (as defined in Section 4.4.3). The 
verdict is Fail if any of the constraints is not satisfied. 

5. Check that the event postconditions are satisfied. The verdict is Fail if any 
of the postconditions is not satisfied; otherwise the verdict of the whole 
assertion is Pass. 

If the verdict from step 1 is Error, then the conceptual modeler must change the IB 
state in order to make it valid. If the verdict from steps 2, 3 or 4 is Fail, then the 
event has not occurred as expected by the conceptual modeler. If the verdict from 
step 2 is Fail then the following two cases are possible: (1) domain experts consider 
that the IB state and event occurrence are indeed invalid or, if it is valid, then (2) the 
non-satisfied constraint(s) is incorrect. In the former, the conceptual modeler may 
prefer to change the assertion to assert non-occurrence (see below). In the latter, 
the corresponding event constraint(s) must be corrected. If the verdict from step 4 is 

DeleteManufacturer
effect()

Category
/numProducts : Natural

ManufacturerProduct

«event»

*
child

parent0..1
1*

1

*1

context DeleteManufacturer::effect()  
  post: not self.manufacturer@pre.oclIsKindOf(OclAny) 
 
method DeleteManufacturer{ 
  delete self.manufacturer; 
} 
 



 

71 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

Fail, then the effect method, the event constraints or some schema constraint must 
be ill-specified. If the verdict from step 5 is Fail then either the method of the effect 
operation or some postcondition is incorrect: the method may not produce the 
intended IB state, or the postconditions may be ill-specified.  

As an example, assume the extension of Fig. 26 shown in Fig. 27, in which 
products are classified in a category and manufactured by a manufacturer. The 
figure also shows the specification of the DeleteManufacturer event, including the 
postcondition and the method of the corresponding effect operation. The 
postcondition states that the manufacturer given by the event 
(self.manufacturer@pre) must not exist after the event occurrence (in OCL this 
can be stated by requiring that it is not an instance of OclAny, the supertype of all 
types). The only event constraint is that an instance of DeleteManufacturer is 
associated with a manufacturer. Consider, now, the following test case: 

test AManufacturerIsDeleted{ 
      cat1 := new Category; 
      english := new Language; 
      cat1InEnglish := new CategoryInLanguage 
                       (category:=cat1, language:=english); 
      cat1InEnglish.name := “Food”; 
      m1 := new Manufacturer; 
      p1 := new Product(manufacturer:=m1, category:=cat1); 
      dmEv := new DeleteManufacturer(manufacturer:=m1); 
      assert occurrence dmEv; 
} 

The execution of the test case fails (as detected in step 4) because the occurrence 
of the event dmEv reaches an invalid state in which p1 is not manufactured by any 
manufacturer. There are at least two possible actions that can be performed to 
make the test case Pass: 

1. If products may exist without a manufacturer, then the cardinality of 
manufacturer is set to 0..1.  

2. If domain experts confirm that when a manufacturer is deleted, the system 
must also delete the products it manufactures, then the postcondition and 
the method of the event DeleteManufacturer must be changed to the 
following: 

context DeleteManufacturer::effect()  
  post theManufacturerDoesNotExistAnyMore:  
    not self.manufacturer@pre.oclIsKindOf(OclAny) 
  post theProductsAreDeleted:  
    self.manufacturer@pre.product@pre->forAll(p| 
                                not p.oclIsKindOf(OclAny)) 
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method DeleteManufacturer::effect(){ 
  delete self.manufacturer; 
  for each p in self.manufacturer.product do 

    delete p; 
  endfor 
} 

A conceptual modeler may use this kind of assertion not only to check that the 
domain events defined in the schema behave as expected, but also to check that 
each domain event type is satisfiable. A domain event type is satisfiable if there is at 
least one consistent IB state and one instance of that event type such that the event 
constraints are satisfied (Olivé 2007). If the conceptual modeler is able to set up an IB 
state and an instance of the event type Ev for which assert occurrence gives the 
verdict Pass, then by definition Ev is satisfiable. If the conceptual modeler is unable 
to set up such an IB state and event, this is not a formal proof that Ev is 
unsatisfiable, but, in many practical cases, it provides a clue that helps to uncover a 
faulty event specification. 

As an example, assume that we extend the schema in Fig. 27 with a new event 
type named AddNewCategory with characteristics product and addedCategory. The 
effect of AddNewCategory is adding a new category to a product. Consider, also, 
the following event constraint: 

context AddNewCategory inv productHasNoCategories: 
   self.product.category->isEmpty() 

The conceptual modeler is unable to set up any IB state in which the event 
constraints are satisfied because the event AddNewCategory is unsatisfiable. 

4.4.6 Asserting the Non-Occurrence of Domain Events 

A correct domain event specification must not only accept valid event instances, but 
also reject invalid ones. An event instance is invalid if it may not occur in the current 
IB state. Testing the schema may be a practical means of detecting missing event 
constraints. This is done by setting up for each domain event type one or more test 
cases with an IB state and an instance of that event type that domain experts 
consider may not occur in that state, followed by an assertion of the non-occurrence 
of that event.  

In CSTL, in order to assert that the event eventId may not occur, the conceptual 
modeler writes the following sentence: 

assert non-occurrence eventId; 
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The verdict of this assertion is determined as follows: 

1. Check that the current IB state is consistent (as defined in Section 4.4.3). 
The verdict is Error if that check fails. 

2. Check the satisfaction of the event constraints. The verdict is Fail if the 
event constraints are satisfied and Pass if one or more event constraints 
are not satisfied. 

If the verdict of the assertion is Fail, then two cases are possible: (1) the event is 
indeed valid or, if it is not, then (2) some event constraint is missing. In the former, 
the event may occur in the domain, and the conceptual modeler may prefer to 
change the assertion to assert occurrence (see above). In the latter, the conceptual 
modeler must define a new event constraint or refine an existing one in order to 
make it more constraining. 

In the example of Fig. 27, if we assume now that a manufacturer cannot be deleted 
if there are products manufactured by it, then the following event constraint must be 
added: 

context DeleteManufacturer inv manufacturerHasNoProducts: 
  self.manufacturer.product->isEmpty() 

With the above event constraint, the following test case will pass (as expected): 

test theManufacturerCannotBeDeleted{ 
      cat1 := new Category; 
      english := new Language; 
      cat1InEnglish:= new CategoryInLanguage 
                      (category:=cat1, language:=english); 
      catInEnglish.name := “Food”; 
      m1 := new Manufacturer; 
      p1 := new Product(manufacturer:=m1, category:=cat1); 
      dmEv2 := new DeleteManufacturer(manufacturer:=m1); 
      assert non-occurrence dmEv2; 
} 

4.4.7 Asserting the Contents of an IB state 

It is often useful to include in a test case an assertion on the current state of the IB. 
The purpose may be to check that one or more derivation rules derive the expected 
results, or that a navigational expression yields the expected results or that the 
effect of one or more domain events implies an expected result in the IB. 

In CSTL, to assert that the current state of the IB satisfies a boolean condition 
defined in OCL, the conceptual modeler writes the following statement: 
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assert true booleanExpression; 

where booleanExpression is an OCL expression over the types of the IB and the 
variables of the test case. The verdict of the assertion is Error if the current state is 
inconsistent (as defined in Section 4.4.3). The verdict 
is Pass if booleanExpression is true and Fail otherwise. If the verdict is Fail, two 
cases are possible: (1) booleanExpression should not be True or (2) the derivation 
rules and/or domain events do not give the expected results. In the former, the 
conceptual modeler may prefer to change the assertion to assert false (see below). 
In the latter, the conceptual modeler must change the derivation rules and/or the 
domain events specification. 

A similar CSTL statement is as follows:  

assert false booleanExpression; 

Additionally, CSTL includes the following assertions: 

assert equals valueExpression1 valueExpression2; 
assert not equals valueExpression1 valueExpression2; 

As an example, consider again the schema of Fig. 27 and that the derivation rule of 
the derived attribute numberOfProducts is defined as follows: 

context Category::numberOfProducts:Natural 
   derive: self.product->size()  

A conceptual modeler that wants to test that derivation rule may write the test case: 

test NumberOfProductsInACategory{ 
      cat1:= new Category; 
      english := new Language; 
      cat1InEnglish := new CategoryInLanguage 
                       (category:=cat1,language:=english); 
      cat1InEnglish.name := “Food”; 
      cat2 := new Category; 
      cat2InEnglish := new CategoryInLanguage 
                      (category:=cat2, language:=english); 
      cat2InEnglish.name := “Bakery”; 
      cat2.parent := cat1; 
      m := new Manufacturer; 
      p1 := new Product(manufacturer:=m, category:=cat1); 
      p2 := new Product(manufacturer:=m, category:=cat2); 
      assert equals cat2.numberOfProducts 1; 
      assert equals cat1.numberOfProducts 2; 
} 
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The verdict of the first assertion is Pass, but that of the second is Fail. The 
conceptual modeler expects that numberOfProducts includes the products of the 
children categories, and therefore the result should be 2 (p1 and p2). The derivation 
rule does not derive the expected results because it does not take into account the 
products of children categories. The test case will pass if the derivation rule is 
corrected as follows: 

context Category::numberOfProducts:Natural 
   derive:  
       let allParents() : Set(Category) =  
         self.parent -> union(self.parent.allParents())  
       in 
       Category.allInstances() -> select(c | c.allParents()  
       -> includes(self) or c=self).product->size()  
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5 
5 The CSTL Processor 

In Chapter 4, we proposed an approach for testing executable conceptual schemas. 
In this chapter, we present the CSTL Processor (Tort et al. 2011b), a research 
prototype that supports the specification, management and execution of automated 
tests (Janzen et al. 2005) of executable conceptual schemas. The CSTL Processor 
makes the proposed testing approach feasible in practice. 

In Section 5.1 we describe the tool architecture. In Sections 5.2, 5.3 and 5.4, we 
present the main tool components of the CSTL Processor and remarks about its 
implementation. In Section 5.5, we describe the extension of the processor that 
deals with temporal constraints.  

5.1 General Overview and Architecture 

The CSTL Processor is a testing tool that supports automated testing of conceptual 
schemas specified according to our testing approach presented in Chapter 4.  The 
CSTL Processor is available for downloading from the project website (Tort 2010). 
Video tutorials with examples of use for different purposes may also be found in the 
project website, together with additional information and resources such as source 
files, screenshots and complementary documentation. 

The CSTL Processor has been developed in the context of Design Research (Hevner 
et al. 2004), which is the general framework of the present research work (Section 
1.4). The development and refinement of the contributions presented in this Thesis 
were supported by the knowledge and experience acquired during continuous 
development of this tool and by its application in several case studies (Chapter 6 
and Chapter 9).  
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This prototype is intended to be used in different application contexts in which 
conceptual schemas can be tested. The CSTL Processor supports: 

- Test-last validation, in which correctness and completeness are checked by 
testing after the schema definition. 

- Test-first development of conceptual schemas, in which the elicitation and 
definition of the schema is driven by a set of test cases.  

The Test-Driven Conceptual Modeling (TDCM) method described in Chapter 8 is a 
test-first conceptual modeling method. TDCM requires the execution of CSTL test 
cases and, consequently, the CSTL Processor is also a necessary resource to put 
this method in practice.  

The implemented release of the tool deals with schemas defined in UML/OCL (see 
Section 2.1.1). Additionally, the CSTL Processor is also able to deal with a 
representative set of constraints that involve two successive states of the IB, and on 
creation-time constraints. The definition of these additional features and its 
implementation are explained in Section 5.5.  

Fig. 28 shows the main components of the CSTL Processor environment. The 
execution of test programs is done by the Test Processor, while the execution of 
conceptual schemas is done by the Information Processor. Moreover, automatic 
coverage analysis (according to the basic set of test adequacy criteria proposed in 
Chapter 11) is provided by the Coverage Processor.  

The CSTL Processor integrates user input facilities for managing and executing 
both the CSUT and the test set.  

The main features of the CSTL Processor are:  

1. The definition of executable conceptual schemas under test. 

2. The definition and management of CSTL test programs. 

3. The execution of the test set and the automated computation of its verdicts, 
including reports of error and failing information.  

4. The automatic analysis of testing coverage according to a basic set of 
testing adequacy criteria. 

The user interface of the tool is composed by four tabs. Each tab corresponds to 
one of the above main features. 
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Fig. 28. CSTL Processor architecture 

In the following sections, we describe the responsibilities and the implementation of 
the Information Processor (Section 5.2), the Test Processor (Section 5.3) and the 
Coverage Processor (Section 5.4). 

5.2 Information Processor 

The Information Processor provides functionalities for creating and editing the 
Conceptual Schema Under Test (CSUT), and it is responsible for its execution when 
requested by the Test Processor (Section 5.3). Fig. 29 shows the components of 
the Information Processor. We describe them in the following according to the three 
main capabilities of this component: (1) Managing the CSUT, (2) executing the 
CSUT, and (3) querying the CSUT. 

5.2.1 CSUT Management 

As explained in Section 2.1, the specification of the conceptual schema in an 
executable form includes both the definition of the structural knowledge and the 
behavioral knowledge as a set of domain events. Moreover, each domain event is 
associated to its procedural specification (method) in order to allow the simulation of 
its execution. 
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Fig. 29. Information Processor design 

The Information Processor provides two editors to specify both the conceptual 
schema and the methods of the domain events.  

An extended USE (Gogolla et al. 2005) syntax is used to specify the conceptual 
schemas under test in an executable form. The extensions included in the USE 
syntax are described in the next section. The methods are written in a subset of the 
CSTL language (Section 4.4) which does not include the assert statements.  

Fig. 30 shows a screenshot of the CSUT editor that provides syntax validation and 
automatic highlighting of the language keywords. The CSUT editor also provides 
functionalities to open existing conceptual schemas, saving them as persistent files, 
and opening them in the structural diagram view provided by the USE tool (Gogolla et 
al. 2005). 

5.2.2 CSUT Execution 

The execution of test cases is required in order to execute test cases, which are 
sequences of IB states that represent user stories. In order to simulate the 
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execution of conceptual schemas, the Information Processor needs representing 
the conceptual schema in memory and providing operations in order to set up and 
update the information base state.  

In order to represent the conceptual schema in memory, the CSTL Processor 
includes an extended implementation of the subset of the UML and OCL 
metamodels (Object Management Group (OMG) 2009, Object Management Group (OMG) 
2010b)  provided by the core of USE (Gogolla et al. 2005).  

 

 

Fig. 30. CSUT Management screenshot 

The implementation of the schema representation in memory consists of a set of 
Java classes (Fig. 31).  Each Java class implements a metaclass of the 
metamodels that specify UML and OCL modeling languages. Since a conceptual 
schema specification is an instantiation of these metamodels, a conceptual schema 
may be represented in Java as a set of objects, which are instance of Java classes.  

The IB state of a conceptual schema is also implemented in Java.  The IB state is a 
set of instances of classes with operations to setup IB states by creating, deleting 
and updating entities, attributes and associations.  
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Fig. 31. Conceptual schema representation in memory 

The current implementation of our testing prototype assume static classification 
(when an entity is created in the IB at some point in time, it is classified as an 
instance of one or more entity types at that time and these classifications do not 
change during the entities’s lifespan). Reclassification operations should be 
considered in order to admit entities to be instances of different entity types at 
different times (dynamic classification).  

The USE core has been extended in order to be able to deal with several new 
language features such as derived attributes, default values, multiplicities in 
attributes, domain events, temporal constraints, initial integrity constraints and 
generalization sets.  

The extension also includes changes in the user interface in order to show the new 
schema elements. This extension is named USEx and it is comprehensibly 
described in the documentation of the CSTL Processor (Tort 2010). The referenced 

UML/OCL Metamodels  

UML/OCL  
Conceptual schema  

Java Classes & 
Operations 

  

Implements 

Instance Of 

Java Objects 
  

Instance Of 

Implements 

IB State  

Instance Of 

Java Objects 
  

Implements 

Java Classes & 
Operations 

  
Instance Of 

 

CONCEPTUAL MODELING CSTL PROCESSOR 



 

83 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

description includes examples of use. In the following, we summarize the main 
extensions which are relevant to this work. 

Derived attributes 
 
If a property (attribute or association end) is derived, then its value or values can be 
computed from other information. A derivation rule specifies how to compute the 
derived information. USEx allows specifying derivation rules as OCL expressions.  

USEx graphical view shows derivation rule expressions in the frame that describes 
the schema elements. It also automatically computes and represents the value of 
derived types in the object diagram view, by taking into account the current 
Information Base state. The OCL evaluation dialog also takes into account the 
derived information when evaluating side-effect free expressions. 

The syntax is as follows: 
 
Attribute 
[/] attributeName:attributeType [multiplicity] 
[=derivationOCLExpression] 
 
Association end 
associationEndClassName multiplicity role roleName  
[= derivationOCLExpression] 
 

Default values 
 
Default values can be defined for properties (attributes and association ends). In 
USEx, the default value is specified as an OCL expression. This expression is 
computed when an instance of the property is evaluated, only in the case that a 
value of the property has not been explicitly set. The default value becomes the 
initial value (or values) of the property. The resultant type of the default OCL 
expression must conform to the property type or must result in a collection of 
objects of the property type (if its upper multiplicity is greater than 1). 

USEx graphical view shows the default expressions in the schema elements 
description frame. It also shows the expression in the class diagram. Moreover, it 
automatically computes and represents the computed value in the object diagram, 
taking into account the Information Base state. The OCL evaluation dialog also 
takes into account the default values when evaluating side-effect free expressions. 
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The syntax is as follows: 
 
Attribute 
attributeName:attributeType [multiplicity] 
[=defaultOCLExpression] 
 
Association end 
associationEndClassName multiplicity role roleName 
[=defaultOCLExpression] 
 
 

Multiplicity of attributes 
 
The multiplicity of attributes allows users to specify a lower and an upper value of 
their cardinality. USEx allows the specification of attributes' multiplicity. By default, if 
no multiplicity is defined, the multiplicity of attributes in USEx is [1..1]. 

The syntax is as follows: 
 
( class | event | domainevent | query | datatype ) name 
  attributes 
     attributeName: attributeType [lower..upper] 
end 

 
Note that allowed multiplicities are: 

- [n..*] or only [*]. 

- [n..m] where n and m are Naturals, so that n < m. 

- [n..n] or only [n] where both lower and upper values are equal. 

 
Domain events 
 
The definition of the domain event types is crucial for the specification of the 
behavioral schema, as explained in Chapter 2. 

USEx supports the specification of domain events. The syntax is as follows: 

domainevent  name 
   attributes 
   operations 
   constraints 
end 
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Temporal constraints 
 
Temporal constraints take into account the evolution of the IB state. Many kinds of 
temporal constraints have been studied in the literature. USEx allows the 
specification of constant, permanent and creation-time invariants. More information 
on these constraint types can be found in (Olivé 2007) and in Section 5.5, where the 
implementation of temporal constraints in the CSUT Processor is discussed. 

USEx allows specifying these constraints, which are shown in the schema elements 
description view and, also, in the class diagram view provided by the USE tool.  

The syntax is as follows: 

Constant/Permanent classes 
[abstract] [constant | permanent] class  className 
   attributes 
   operations 
   constraints 
end 
 
 
Constant/Permanent attributes 
[/] attributeName:attributeType [multiplicity] [constant | 
permanent] 
 
 
Constant/Permanent association ends 
associationEndClassName multiplicity role roleName  
[constant | permanent] 
 
 
Creation-time invariants 
[ini] inv invariantName: invariantExpression domainevent  name 
   attributes 
   operations 
   constraints 
end 
 
 

Multiple Classification 
 
Multiple classification allows objects to be instance of one or more classes. USEx 
incorporates multiple classification to USE. Therefore, objects can be instance of 
more than one class. 

USEx extends the object creation dialog of USE to allow the creation of objects 
classified into one or more classes. Moreover, object diagrams specify the classes 
of each object. 
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Generalization Sets 
 
Multiple classification allows objects to be instance of one or more classes. USEx 
assumes multiple classification and so that, objects can be an instance of more than 
one class. In this context, USEx allows the specification of generalization sets and 
its constraints (see Chapter 2 for details about taxonomic constraints).  

The syntax is as follows: 

generalizationset (disjoint | overlapping)  
                  (complete | incomplete)  
between 
   genclass parentName 
   specificclass descendantName1 [ , descendantName ]* 
end 
 

Data Types 
 
A data type consists of a set of values and a set of lexical representations, or 
literals. The set of values is the population of the data type, and is called the value 
space of the type. The set of lexical representations is called the lexical space of the 
type. Each value in the value space is denoted by one or more literals of the lexical 
space. Values are represented in an information base by means of one of their 
literals. The value space of a data type does not change over time. For this reason, 
data types are constant entity types. 

The current implementation of the test processor prototype only admits the 
predefined data types String, Boolean, Decimal and Integer, although other custom 
data types may be defined. The syntax is as follows: 

[abstract] datatype name 
   attributes 
   operations 
   constraints 
end 

 
For example, we can specify an Email datatype as follows: 

datatype Email 
attributes 
 
 email:String 
end 
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5.2.3 Queries about the Information Base State 

In order to compute the verdict of test assertions, the Test Processor (Section 5.3) 
may need to request the evaluation of OCL expressions about the IB State. OCL 
expressions that represent queries do not change the state of the domain (they are 
side-effect free). 

The evaluation of OCL expressions on the IB state consists of three main steps: 

- Syntactic analysis of the OCL expression. 

- Parsing of the expression and its instantiation as Java classes that 
implement a semantic tree. 

- Computation of the OCL expression by using the operations associated to 
each node type included in the semantic tree. 

Operations aimed to query the IB State are provided by USE and extended by our 
USEx implementation according to the schema elements we deal with. 

5.3 Test Processor 

The Test Processor implements the management and the execution of the test 
cases. Fig. 32 shows the main components of the Test Processor, which consists of 
the presentation manager, the test manager and the test interpreter.  In the 
following, we describe them. 

5.3.1 Presentation Manager 

The Presentation Manager implements two user interface parts: the one related to 
the management of the test set (Fig. 33), and the one related to the presentation of 
the execution results (Fig. 34). The user interface of the CSTL Processor is 
implemented in Java Swing (Loy et al. 2002), assisted by a specialized tool to design 
graphical interfaces in Java, called JFormDesigner. 

The user interface for managing test programs allows creating, editing and deleting 
test cases, which are saved as persistent files in a specified directory of the files 
system. The editor for test cases is implemented by using the JSyntaxPane library. 
JSyntaxPane provides resources to handle basic syntax highlighting and editing of 
various languages within Java Swing application. Since JSyntaxPane does not 
include syntax highlighting for CSTL and USE, we have extended it to allow them. 
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Fig. 32. Test Processor Design 

On the other hand, the presentation of results includes a button to request the 
execution of test cases. After the execution, this module shows the errors (if any), 
the global verdict of the whole test set, and a visual tree that contains the summary 
of the verdict of all test cases in a hierarchical form. All this information is collected, 
organized and transmitted to this component by the Test Manager. 

Fig. 34 shows the result of the execution of a CSTL program example. One test 
case has passed whereas the other one has failed, and therefore the global verdict 
is Fail.  

Note that the test processor indicates the test case that fails, the number of the lines 
where the failure has been revealed, and gives an explanation of the failure in 
natural language. This information assists the modeler in order to point out the 
errors and failures. 
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Fig. 33. Screenshot of a test set management example in the CSTL Processor 

 

Fig. 34. Screenshot of a test execution report in the CSTL Processor 
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5.3.2 Test Manager 

The Test Manager has two main roles in the process of executing test cases: (1) the 
orchestration of the test cases execution, and (2) the collection and organization of 
the results to be shown by the Presentation Manager (Section 5.3.1). This logical 
module is implemented in Java. 

The orchestration of test cases consists of collecting all the test cases that are 
included in the test set, and requesting its execution by the test interpreter. The 
individual results provided by the Test Interpreter (Section 5.3.3) are collected, 
organized and transmitted to the Presentation Manager (Section 5.3.1).  Moreover, 
the global verdict is computed as follows: 

- The global verdict is Pass if the verdict of all test programs is Pass. 

- The global verdict is Error if the verdict of one or more test programs is 
Error. 

- The global verdict is Fail if there no errors in any test case, and the verdict 
of one or more test programs is Fail.  

5.3.3 Test Interpreter 

The Test Interpreter has two main roles: (1) read and parser the test programs 
written in CSTL (Section 4.4) and (2) perform the execution of the test cases 
specified in test programs as requested by the Test Manager (Section 5.3.2).  

CSTL test programs are read by a module of the Test Interpreter, which has been 
implemented by using ANTLR facilities (Parr 2007). ANTLR is a parser generator for 
Java from grammatical descriptions. The result is a parser tree composed by nodes 
that are associated to a node type. Each node type has an associated operation 
that evaluates it.  

For each test case, the interpreter sets up the common fixture (if any), executes the 
statements of each test case and computes the verdicts. The interpreter invokes the 
services of the Information Processor (Section 5.2) to create, delete and change 
entities, attributes and associations of the IB, and also to evaluate OCL expressions 
over the IB. The assert statements are executed as follows: 

- Assert consistency. The interpreter requests that the information processor 
check all static and temporal constraints. The result is the set of constraints 
that are not satisfied. The verdict is Fail if the set is non-empty. 
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- Assert inconsistency. The interpreter requests that the information 
processor check all static and temporal constraints. As before, the result is 
the set of constraints that are not satisfied. The verdict is Fail if the set is 
empty. 

- Assert event occurrence. In the first step, the interpreter requests that the 
information processor check all static and temporal constraints. The result 
is the set of constraints that are not satisfied. The verdict is Error if the set 
is non-empty. In the second step, the interpreter requests the information 
processor to check the event constraints. The result is the set of event 
constraints that are not satisfied. The verdict is Fail if the set is non-empty. 
In the third step, the test interpreter executes the method of the effect() 
operation corresponding to the event (recall that the methods are written in 
the CSTL language, but without using assert statements). The test 
interpreter executes the statements of this method in the same way as 
those of the test programs: by invoking the services of the information 
processor. In the fourth step, the interpreter again requests the information 
processor to check all static and temporal constraints. The result is the set 
of constraints that are not satisfied. The verdict is Fail if the set is non-
empty. Finally, the interpreter requests that the information processor check 
the event postconditions. The result is the set of postconditions that are not 
satisfied. The verdict is Fail if the set is non-empty. 

- Assert event non-occurrence: In the first step, the interpreter requests that 
the information processor check all static and temporal constraints. The 
result is the set of constraints that are not satisfied. The assertion is Error if 
the set is non-empty. In the second step, the interpreter requests that the 
information processor check the event constraints. The result is the set of 
event constraints that are not satisfied. The verdict is Pass if the set is non-
empty. 

- Assert IB contents. In the first step, the interpreter requests that the 
information processor check all static and temporal constraints. The result 
is the set of constraints that are not satisfied. The assertion is Error if the 
set is non-empty. In the second step, the interpreter requests that the 
information processor evaluate the OCL expression(s), and the interpreter 
computes the verdict from the results obtained. 
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5.4 Coverage Processor 

The design and the implementation of our Test Processor were extended in order to 
include automatic coverage analysis, according to the basic set of test adequacy 
criteria defined in Chapter 11. The formal details and notation of these test 
adequacy criteria are explained in detail in that chapter. In this section, we describe 
the Coverage Processor, which has been designed to be extended with other 
criteria that could be proposed in the future. 

The Preprocessor initializes the coverage database. The role of this database is to 
maintain the set of covered and uncovered elements for each test adequacy 
criterion. Initially, each element is registered in the database and marked as 
uncovered. 

When the modeler requests the execution of the test set, the Test Manager (Section 
5.3.2) delegates its execution to the Test Interpreter (Section 5.3.3). The Test 
Interpreter communicates information about the tests execution to the Adequacy 
Criteria Analyzer which is the responsible of updating the coverage database. The 
update process is as follows: 

Every time the Test Interpreter asserts the consistency of the IB, it communicates to 
the Adequacy Criteria Analyzer the set VTC(TA) of valid type configurations and the 
set BaseTypes(TA) that have valid instances in the current state of the IB. The 
analyzer marks as covered the valid type configurations included in VTC(TA). It also 
marks as covered the entity types included in BaseTypes(TA). 

Every time the Test Interpreter requests the evaluation of a derivation rule to the 
Information Processor, the Test Interpreter communicates it to the Adequacy 
Criteria Analyzer. Each evaluated derived type is marked as covered. 

Note that a derivation rule may be evaluated when an integrity constraint is 
checked, when evaluating other derivation rules, when asserting the contents of the 
IB or when an event occurs. 

The test interpreter informs the Adequacy Criteria Analyzer when a valid domain 
event occurs. The analyzer marks as covered the asserted domain event type. 

After the execution of all test programs, the Adequacy Criteria Analyzer queries the 
Coverage Database in order to obtain the sets of covered and uncovered elements 
for each criterion. The analyzer also computes some statistical information about 
the coverage results. All this information is used by the Coverage Results module of 
the Presentation Manager in order to show the results of the coverage analysis. 
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These results are only relevant when the global verdict of all the test programs is 
Pass. 

Fig. 35 shows a screenshot of the coverage results provided during the execution of 
a test set execution on the conceptual schema example of a Civil Registry system. 
Note that the set of uncovered elements and an intuitive progress measure for each 
criterion is shown. 

 

Fig. 35. Screenshot of coverage analysis in the CSTL Processor 

5.5 Testing Conceptual Schemas with Temporal 
Constraints and Derivation Rules  

Many kinds of temporal constraints have been studied in the literature, and testing 
them poses particular problems. In this section, we explain the extensions of the 
CSTL Prototype in order to test schemas that use a representative set of constraints 
that involve two successive states of the IB (sections 5.5.1 and 5.5.2), and on 
creation-time constraints (section 5.5.3). We also explain (in section 5.5.4) how to 
test schemas with a particular kind of derived relationship types, which are similar to 
creation-time constraints.  
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The examples in this section are based on the schema fragment shown in Fig. 36, 
which is part of the osCommerce case study reported in Chapter 6. 

5.5.1 Temporal Constraints on the Population of Entity 
Types 

Two representative constraints on the population of entity types that can be 
evaluated taking into account two successive states of the IB are the constant and 
permanent entity types (Olivé 2007). An entity type is constant if its population is the 
same at all times, and permanent if its instances never cease to be instances of it. 
Most conceptual schemas include several entity types that are permanent. In the 
example of Fig. 36, Order is a permanent entity type because its instances never 
cease to be instances of it. 

 

 
Fig. 36. Fragment of the osCommerce case study focusing on shopping cart items 
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/added : DateTime
/price : Money
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context ShoppingCartItem inv onlyOneAttributePerOption: 
self.attribute -> isUnique(option) 

  
context ShoppingCartItem inv productHasTheAttributes: 

self.product.attribute -> includesAll(self.attribute)  
  
context ShoppingCartItem::price:Money 

derive: 
     if self.attribute -> isEmpty() then self.product.netPrice 
     else 

           self.attribute.productAttribute 
             -> select(pa|pa.product = self.product) -> collect  
                      (if sign = Sign::plus then increment 
              else –increment 
               endif) -> sum() + self.product.netPrice 
     endif 
 
context ShoppingCartItem::added:Datetime 

derive: Now() 
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When a conceptual schema includes one or more temporal constraints of the above 
kinds, then the semantics of the assert consistency and assert inconsistency 
statements defined in 4.4.3 and 4.4.4, respectively, must be extended as follows. In 
a test case, there is a consistent IB state every time that an assert consistency is 
executed and the obtained verdict is Pass. Note that such an assertion is executed 
in each of the assertions described in Section 4.4, except for assert inconsistency 
(Section 4.4.4). Once there is a consistent IB state in a test case, the next time that 
an assert consistency or assert inconsistency is executed in that test case, the 
constant and permanent constraints must be evaluated taking into account the 
current IB state and the previous consistent IB state. 

For example, assume the following test case: 

test DeletingAnOrder{ 
      c1 := new Customer; 
      order1 := new Order; 
      order1.customer := c1; 
      assert consistency; 
      delete order1; 
      assert consistency; 
} 

The verdict of the first assertion will be Pass, but that of the second will be Fail and, 
therefore, the verdict of the test case will be Fail. If the domain experts confirm that 
the existing IB state in the second assert consistency is not valid, then the 
conceptual modeler may prefer to change that assertion to assert inconsistency in 
order to make the verdict Pass. 

The above constraints can be evaluated in several ways. In our implementation, we 
simulate the execution of an operation between the two IB states. The operation has 
one postcondition for each temporal constraint. We may use the standard OCL in 
those postconditions in order to ensure that the constraints are satisfied. If E is a 
constant entity type, then the postcondition is as follows: 

E.allInstances() = E.allInstances@pre() 

where @pre is the OCL keyword to refer to the previous state. If E is a permanent 
entity type, then the postcondition is as follows: 

E.allInstances() -> includesAll(E.allInstances@pre()) 
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5.5.2 Temporal Constraints on the Population of 
Relationship Types 

Two representative constraints on the population of relationship types (attributes, 
associations) that can be evaluated taking into account two successive states of the 
IB are the constant and permanent relationship types (Olivé 2007). A relationship type 
R(p1:E1,...,pn:En) is constant with respect to a participant pi if the instances of R in 
which an instance ei of Ei participates are the same during the temporal interval in 
which ei exists. A relationship type R(p1:E1,...,pn:En) is permanent with respect to a 
participant pi if the instances of R in which an instance ei of Ei participates never 
cease to exist during the temporal interval in which ei exists. Most conceptual 
schemas include several relationship types that are constant or permanent with 
respect to one of their participants. 

In the example of Fig. 36, Order is constant with respect to its participation in 
Places because the instances of Places in which an order participates are the same 
during the temporal interval in which the order exists. The product and the attributes 
of a shopping cart item are constant because they remain the same during the 
temporal interval in which that item exists. Customer is permanent with respect to its 
participation in Places, because the instances of Places in which a customer 
participates never cease to exist during the temporal interval in which the customer 
exists. 

As in the previous case, once there is a consistent IB state in a test case, the next 
time that an assert consistency or assert inconsistency is executed in that test case, 
the constant and permanent constraints must be evaluated taking into account the 
current IB state and the previous consistent IB state. In our implementation, the 
postconditions that we add to our simulated operation are as 
follows. If  R(p1:E1,...,p2:E2) is constant with respect to participant p1, then: 

E1.allInstances()-> intersection (E1.allInstances@pre)-> 
forAll(e1|  

e1.p2 = e1.p2@pre) 

If R(p1:E1, ...,p2:E2)  is permanent with respect to a participant p1 and the multiplicity 
of p2 is 1 or 0..1, then: 

E1.allInstances()-> intersection (E1.allInstances@pre)-> 
forAll(e1|  

e1.p2 ->includes(e1.p2@pre)) 

And if the maximum multiplicity is greater than 1, then: 
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E1.allInstances()-> intersection (E1.allInstances@pre)-> 
forAll(e1|  

e1.p2 ->includesAll(e1.p2@pre)) 

For example, assume the following test case:  

test ChangingTheCustomerOfAShoppingCart{ 
      c1 := new Customer; 
      sc := new ShoppingCart; 
       
    sc.customer := c1; 
      fashionTShirt:= new Product; 
      fashionTShirt.netPrice := 10; 
      sci1 := new ShoppingCartItem; 
      sci1.shoppingCart := sc; 
      sci1.product := fashionTShirt; 
      assert consistency; 
      c2 := new Customer; 
      sc.customer := c2; 
      assert consistency; 
} 

The verdict of the first assertion will be Pass, but that of the second will be Fail and, 
therefore, the verdict of the test case will be Fail. The customer of a shopping cart 
has been defined as constant, and therefore it cannot be changed. The 
postcondition that is not satisfied is as follows: 

ShoppingCart.allInstances()-> intersection 
(ShoppingCart.allInstances@pre()) 

    -> forAll(sc| sc.customer = sc.customer@pre) 

If the domain experts confirm the temporal constraint, then the conceptual modeler 
may prefer to change the last assertion to assert inconsistency in order to make the 
test Pass. 

5.5.3 Creation-time Constraints 

 A creation-time constraint is a particular kind of temporal constraint that appears 
several times in most conceptual schemas. A creation-time constraint of an entity 
type E is a constraint that its instances must satisfy only at the time when they 
become an instance of that entity type. As proposed in (Olivé 2006) we define 
creation time constraints by means of operations stereotyped «iniIC» that must give 
a True result when the corresponding entity is created.  

Consider, as an example, the schema of Fig. 36 and assume that the conceptual 
modeler adds the following constraint in order to enforce that the product attributes 
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of the attributes of a shopping cart item must be enabled when that item is created. 
The formal specification in OCL is as follows: 

context ShoppingCartItem::productAttributesEnabled():Boolean  
  body: self.attribute.productAttribute->forAll(status = 

Status::enabled) 

where the operation productAttributesEnabled has the stereotype «iniIC». 

In the following test case, the conceptual modeler declares that the schema allows 
changing the state of a product attribute once it has been used in the creation of a 
shopping cart item: 

test changeProductAttributeStatus{ 
     color := new Option; 
     black := new Value; 
   blackColor := new Attribute(option:=color, value:=black); 
 
     carInsurance := new Product(netPrice:=300); 
     blackCarInsurance := new ProductAttribute 
            (product:=carInsurance,  
             attribute:=blackColor); 
   blackCarInsurance.increment := 80; 
   blackCarInsurance.status := Status::enabled; 
   blackCarInsurance.sign := Sign::plus; 
    
   c := new Customer; 
   sc := new ShoppingCart(customer:=c); 
   item1 := new ShoppingCartItem(shoppingCart:=sc); 
   item1.product := carInsurance; 
   item1.quantity := 1; 
   item1.attribute := Set{blackColor}; 
   assert consistency; 
 
   blackCarInsurance.status := Status::disabled; 
   assert consistency; 
} 

The verdict of the first assertion is Pass. The verdict of the second assertion is also 
Pass because the constraint productAttributesEnabled is only evaluated when 
shopping cart items are created.   

Creation-time constraints must be evaluated every time an assert consistency or 
assert inconsistency is explicitly or implicitly executed in a test case, taking into 
account the current IB state and the previous consistent IB state, if it exists.  
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The first time that the assertion is executed, the previous IB state is assumed to be 
empty. In the example, the constraint must be evaluated only for the shopping cart 
items that have been created since the execution of the previous assertion. 

In our implementation, the evaluation of a creation-time constraint ct of entity type E 
is performed by adding the following postcondition to our simulated operation: 

(E.allInstances() - E.allInstances@pre())  
    -> forAll (e| ct replacing self by e) 

 

In the example, the postcondition becomes the following: 

(ShoppingCartItem.allInstances() - 
ShoppingCartItem.allInstances@pre())  

   -> forAll (sci|sci.attribute.productAttribute 
                  ->forAll(status= Status::enabled)) 

5.5.4 Derived Constant Relationship Types 

A particular class of derived relationship type that often appears in many conceptual 
schemas is the derived constant relationship type, whose instances can be derived 
when the instances of one of its participants are created, and they remain fixed 
during their lifetime (Olivé 2003). 

Fig. 36 shows two simple examples: attributes ShoppingCartItem::added, price. 
Their value is determined when an instance of ShoppingCartItem is created (using 
the derivation rules shown at the bottom of the figure), and those values do not 
change later on. 

Consider as an example the following test case: 

test priceDoesNotChange{ 
     p := new Product(netPrice:=15); 
     c := new Customer; 
   sc := new ShoppingCart(customer:=c); 
   item1 := new ShoppingCartItem(shoppingCart:=sc); 
   item1.product := p; 
   item1.quantity := 1; 
   assert equals item1.price 15; 
     p.netPrice := 20; 
   assert equals item1.price 15; 
} 
 

The verdict of the first assertion is Pass and the verdict of the second one is also 
Pass given that the attribute price is derived and constant.   
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Derived constant relationship types must be materialized when the corresponding 
entity is created, before the evaluation of the constraints. In our implementation, we 
materialize those types every time an assert consistency or assert inconsistency is 
explicitly or implicitly executed in a test case. The materialization needs to be done 
only for the entities that have been created since the execution of the previous 
assertion. 
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6 
6 Case Studies on 

Conceptual Schema 
Testing 

The approach to test conceptual schemas presented in Chapter 4 and its 
associated tool (Chapter 5) were tested and refined by applying them in case 
studies, taking advantage of the lessons learned when using them (Fig. 37). This 
research strategy is supported by the Design Science Research approach (Section 
1.4), the main principles of which are adopted in this Thesis.  

 

Fig. 37. Case studies in the context of Design Science Research 
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In this chapter, we present an overview of two case studies in which our conceptual 
schema testing environment (including the CSTL language and the CSTL 
Processor) was applied in practice. We also reference the reports in which the 
application results are detailed. Finally, we explain the lessons learned in each 
case. 

In Chapter 9, more case studies on using our testing approach to perform Test-
Driven Conceptual Modeling (Chapter 8) are reported. 

6.1 The osCommerce Case Study 

E-commerce is a professional domain of interest in the context of information 
systems. It allows people exchanging goods and services with no barriers of time or 
distance. 

osCommerce (www.oscommerce.com) is an e-commerce solution available as free 
software under the GNU (General Public License). osCommerce project was started 
in March 2000 in Germany and since then, it has become the base of thousands of 
online stores around the world. osCommerce can be customized in order to operate 
in different countries (taking into account different languages, taxes, currencies, 
etc.) and can be used in several kinds of online stores. A conceptual schema of the 
osCommerce system was developed in (Tort 2007).  

The objective of this case study was to test the conceptual schema of this system 
by writing a representative set of CSTL test cases and executing them by using the 
CSTL Processor. This conceptual schema specifies the structural knowledge and 
the main domain events of this real-sized system. It consists of 78 entity types, 202 
attributes, 60 associations, 215 invariants and 216 event specifications.  

The experience was performed with a preliminary version of both the CSTL 
definition and the tool. In this context, the purpose of the case study was twofold: (1) 
Analyzing the feasibility of writing and executing test cases for checking conceptual 
schema quality by using the CSTL language and the CSTL Processor, and (2) 
identifying improvement proposals and refinements to make progress in the 
development of the testing environment and the testing approach. 

The testing process consisted in the specification and the execution of 162 test 
cases grouped into 35 test programs. Each test program was aimed at testing each 
knowledge group of the conceptual schema (Store Data, Configuration values, 
Payment methods, Shipping methods, Languages , Currencies, Location & Taxes, 
Products, Product attributes and options, Product categories, Specials, 
Manufacturers, Banners, Newsletters, Customers, Reviews, Shopping carts & 

http://www.oscommerce.com/
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Orders). The resultant set of test cases consisted of 2752 lines of CSTL code. The 
test cases were inspired in real-world online shops which are based on 
osCommerce. Fig. 38 shows a fragment of a test program that was used in the 
experiment. Test cases were specified by using a preliminary version of the CSTL 
Language and Processor, which were refined according to the lessons learned. 

testprogram PlaceAndOrder{ 
 
//The fixture (which is not reproduced here) contains the initialization of:  
//Locations, currencies, languages, store configuration, default order status, stock, products,  
//taxes, payment methods and shipping configuration 
… 
   
test placeAndOrder{ 
 
//Customer initialization 
a:= new Address(country:=spain, zone:=catalonia, state:='Catalonia'); 
c := new Customer(address:=a,primary:=a); 
//The customer logs in 
ns:=new NewSession(currentLanguage:=english, currentCurrency:=euro) occurs; 
       
/* 
The customer adds to the shopping cart the following items: 2 standard laptops with no warranty, 1 Standard 
laptop with Premium warranty, 1 Illustrated Start guide 
*/       
new AddProductToShoppingCart(session:=ns.createdSession,product:=standardLaptop,quantity:=2) occurs; 
 
new AddProductToShoppingCart(session:=ns.createdSession,product:=standardLaptop,quantity:=1, 
                             attribute:=premiumWarranty) occurs; 
 
new AddProductToShoppingCart(session:=ns.createdSession, 
                             product:=illustratedStartGuide,quantity:=1) occurs; 
    
new LogIn(session:=ns.createdSession, customer:=c) occurs; 
    
sc:=ns.createdSession.shoppingCart; 
oc := new OrderConfirmation 
             (shoppingCart:=ns.createdSession.shoppingCart, currency:=euro, 
              shippingMethod:=sm, paymentMethod:=pm, billing:=a) occurs; 
orderCreated:=oc.orderCreated; 
    
assert equals orderCreated.orderLine.product->asSet()->size() 2; 
assert equals orderCreated.orderLine->select(product=standardLaptop).quantity->sum() 3; 
assert equals orderCreated.orderLine->select(product=illustratedStartGuide).quantity->sum() 1;   
assert equals standardLaptop.quantityOnHand 297; 
assert equals illustratedStartGuide.quantityOnHand 49; 
  
/* 
Order total details 
========================= 
 2 x standard laptop (no warranty)  x 949  =  1898,00 
 1 x standard laptop (premium warranty) x 1061 = 1061,00 
 Subtotal ............................................  2959,00 
 VAT 16%..............................................             473,44 
 Total (16%)..........................................  3432,44  
 1 x illustrated start guide  x 15 =   15,00 
 Subtotal ............................................    15,00 
 VAT 4%...............................................      0,60 
 Total (4%)...........................................    15,6  
 ---Shipping costs (Per Item) 
 Handling fee ........................................     5,00 
 4 x Per Item Rate    x 10 =   40,00 
   
 Order Total _________________________________________  3493,04  
*/   
assert equals orderCreated.total() 3493.04; 
    
//The store administrator can change the status of the order... 
new UpdateOrderStatus(order:=orderCreated,newOrderStatus:=delivered) occurs; 
assert equals orderCreated.orderStatus Sequence{pending,delivered}; 
    
//...or he can cancel the order (order information cannot be deleted) 
new CancelOrder(order:=orderCreated) occurs; 
assert equals orderCreated.orderStatus  Sequence{pending,delivered,cancelled}; 
 
} 
} 

Fig. 38. Fragment of a test program used in the osCommerce Case Study 
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The full details about the case study and the results (including the tested conceptual 
schema and the executed test programs) are detailed in the report (Tort 2009b). 

6.1.1 Lessons Learned 

In the following, we review some relevant lessons learned from the application of 
the testing approach to this case study. 

Feasibility of the Conceptual Schema Testing Approach 

The first version of the testing approach was based only on the state of the art on 
software testing and conceptual schema validation (Chapter 3). The successful 
application of the preliminary prototype version of the CSTL Processor in this case 
study gave us confidence about the feasibility of the testing approach. It also 
encouraged us to perform more experiences, such as the one referenced in the next 
section and those explained in Chapter 9. 

Improvement Needs  

The most significant challenge of this case study was analyzing if the test kinds 
defined in Section 4.2 were suitable to test a real-sized conceptual schema, like the 
one used in this case study. 

Since each test kind has associated statements in the CSTL Language, we 
confirmed that these test kinds were suitable to test UML/OCL conceptual schemas 
with the constructs specified in Section 2.1.1. However, we detected some 
improvements proposals related to the CSTL language. Most of them were included 
in the CSTL language during the experience. The most relevant ones are: 

- The necessity of fixture components in order to reuse sets of CSTL 
statements (pieces of stories). The fixture component construct avoids 
repeating the initialization of shared states in different test cases that 
belong to the same test program. For example, in the context of this case 
study, it was very useful to encapsulate the instantiation of shopping carts, 
which were reused in different test cases. Fixture components and 
statements to call them were added to the CSTL language. The addition 
was limited to the scope of test programs. An additional feature would be 
adding global fixture components to be shared by all test programs of the 
test set. 
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Fig. 39. Screenshot of the preliminary version of the CSTL Processor (osCommerce Case Study) 

- Creating states by direct instantiation. In a test case, states may be 
reached by: (1) using the CSTL statements aimed at instantiating entity 
types and relationship types, or (2) asserting the occurrence of domain 
events. By applying CSTL to this case study, we conclude the following 
guidelines: 

 If the conceptual modeling objective is to define a correct and 
complete set of domain event types, then all states should be 
achieved by means of the occurrence of domain event types. If this 
rule is satisfied, then we are sure that all tested IB states may be 
reached by the define set of event types.  

 If we only plan to define a representative (and non-complete) set of 
relevant domain event types, then it is useful to define testing 
states by using the CSTL operations that allow building IB states.  

We also detected some improvement needs related to the usability of the 
preliminary version of our tool (Fig. 39) in order to enhance the efficient application 
of the conceptual schema testing activity: 

- Edition of the test set and the conceptual schema from the CSTL 
Processor. The preliminary version of the CSTL Processor only allowed 
modelers to execute test cases on conceptual schemas specified in USE. 
The definition of the conceptual schema and the definition of test cases 
were performed in external text editors. Since test case executions give 
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information to modify the conceptual schema and the test cases, we 
realized that providing integrated editors in the CSTL Processor tool would 
be a key usability improvement. Therefore, editors with syntax highlighting 
for creating and modifying the schema and the test set were developed. 

- Errors and failure information. The error and failure information provided 
by the tool suggests changes to improve the quality of the schema. We 
used the experience acquired during the development of this case study in 
order to improve the error and failure messages. 

Finally, many minor errors were also fixed in the CSTL processor as a result of 
testing the osCommerce conceptual schema. 

The Necessity of Coverage 

In this case study, we specified several test cases aimed at testing the existing 
conceptual schema specification of the explored system. One of the main difficulties 
experienced was keeping track of the specified tests and checking if they covered 
all elements of the schema. This fact suggested the necessity of analyzing the 
degree in which the set of developed test cases covered the elements of the 
conceptual schema under test. This is the rationale of the basic coverage proposal 
explained in Chapter 11. The present case study was complemented with the 
analysis of coverage for a subset of the osCommerce conceptual schema. The full 
details of the coverage application in this case study can be found in (Tort 2009a). 

Mock Entities 

By applying our conceptual schema testing approach to this case study, we realized 
that we were not able to test aspects that depend on unavailable external systems 
(e.g. the email service) or uncontrolled data (e.g. the current time or random data). 

This is a limitation that has been also experienced in program testing, and it has 
been overcome by the use of mock objects. Mock objects “are simulated objects 
that mimic the behavior of real objects for testing purposes” (Hamill 2004). In 
conceptual schema testing, we can also define schema elements that simulate 
knowledge for testing purposes. In the following, we describe three examples about 
the use of mock objects in conceptual schema testing. 

Testing time 

Some test cases depend on time. For example, in the present case study, we can 
test that specials/offers may expiry in a given date. These test cases must preserve 
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the property that they can be executed as many times as needed regardless of time 
passing. Therefore, we realized that during the testing process we need to control 
the testing time instead of using the (uncontrollable) real time.  

In order to set time as desired for testing purposes, we may represent the current 
testing date time as a property of a mock entity. 

The used mock entity is an instance of a mock entity type that simulates the 
knowledge about the current time. Mock entities should be implemented in the 
developed system by external systems. In the case of time, the implementation 
derived from the conceptual schema will probably use the real system clock 
functions in order to implement the specified time knowledge.   

External systems: The email case 

In general, mock objects may be used to represent external systems that are not 
available during the testing process. In case we need to keep track of some 
knowledge about these external systems, we may define mock entity types to 
represent the required information for testing purposes.  

As an example, assume that the system under development needs to save 
information about the emails sent by the system. Fig. 40 represents a mock 
conceptual schema fragment that can be used to define test cases considering this 
information. This mock schema fragment will be implemented in the final system by 
a real email service system.   

 

Fig. 40. Mock conceptual schema fragment example 

Random instances 

In general, we need to be careful when using random functions for testing purposes. 
Assertions that formalize expectations that involve random values may be invalid 
because (1) the results of computing two random values are not equal by definition, 
and (2) random values may vary in each test case execution. 

In order to overcome this testing limitation, again we need to simulate random 
computation as mock functions that return a predefined constant which is controlled 
by the tester. By this way, we take control of random values for testing purposes. 

EMail
timeStamp : Datetime
fromAddress : String
toAddress : String
ticketNumber : Integer
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6.2 The Magento Case Study 

Magento (www.magentocommerce.com) is another popular e-commerce solution 
and, consequently, an interesting domain to develop its conceptual schema. The 
Magento system was made available in 2008 and it was developed by Varien 
company.  

This system is widely used in the e-commerce business field (1.5 million downloads, 
more than 280.000 visits per day, etc.). Magento is presented as a “feature-rich, 
professional open-source e-commerce solution that offers merchants complete 
flexibility and control over the look, content, and functionality of their online store. 
Magento’s intuitive administration interface contains powerful marketing, 
merchandising and content management tools to give merchants the powers to 
create sites that are tailored to their unique business needs”. 

The objective of this case study was to develop the conceptual schema of this 
system and to test it by writing and executing a representative set of CSTL test 
cases. The resulting conceptual schema consists of 218 entity types, 982 attributes, 
255 associations, 703 invariants and 202 event specifications.  

The experience used the revised version of the CSTL definition and the tool used in 
the case study reviewed in Section 6.1. In this context, the purpose of the case 
study was threefold: (1) Analyzing the feasibility of the conceptual schema testing 
approach by analyzing its use performed by a modeler not familiar with the CSTL 
language, (2) identifying improvement proposals and refinements to the CSTL 
Processor, and (3) analyzing the kinds of errors revealed during the testing process.  

The testing process consisted in the specification of 30 test cases aimed at testing 
the main use cases of the system, which were previously prioritized. The resultant 
set of test cases consisted of 1140 lines of CSTL code. Test cases were inspired in 
real-world online shops which are based on the Magento system.  

The full details about the case study and the results (including the tested conceptual 
schema and the executed test programs) are detailed in (Tort 2009a, Ramirez 2011). 
The study also includes a comparison between the osCommerce system and the 
Magento system performed by means of the comparison of their conceptual 
schemas. 

6.2.1 Lessons Learned 

In the following, we review some relevant lessons learned from the application of 
the testing approach to this case study. 

http://www.magentocommerce.com/
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Feasibility of the Conceptual Schema Testing Approach 

Our conceptual schema testing language and its associated tool (refined according 
to the improvement proposals of the case study explained in Section 6.1) have been 
successfully applied in this case study. The application has been performed by a 
master project student with no previous experience about the testing environment. 
This fact confirms the feasibility of the approach in a real-sized case performed by 
an independent modeler. 

Improvement Proposals to the CSTL Processor 

Some improvement proposals have been proposed during the use of the CSTL 
Processor in this case study. We briefly summarize them in the following: 

- Specification of the executable conceptual schema in modules. For 
large conceptual schemas, it would be interesting to encapsulate parts of 
the schema as modules, in order to be more manageable. In particular, it is 
suggested to provide functionalities to enable or disable schema modules 
for testing purposes (e.g. for testing only specific parts without considering 
other knowledge specified in the schema). We plan to include this 
functionality. However, it should be required that, at the end of the testing 
process, all test cases should pass with all modules enabled. Otherwise, 
some test cases could fail or contain errors because they did not consider 
all knowledge defined in the schema.  

- Select specific test programs to be executed. The CSTL Processor 
executes all test cases that are included in the test set. It would be 
convenient to provide the possibility of executing only some test cases for 
better efficient executions.  

- Testing break points. It would be interesting to set break points in test 
program specifications, and the possibility to explore the IB state at that 
point. This additional functionality would be interesting to provide better 
facilities in order to analyze failing and error causes. 

- Pre/postconditions failing trace. When a pre or postcondition causes a 
failure or an error during the execution of a test case, the failing information 
could be complemented by including the evaluation trace of the failing 
pre/post expression.  

Thanks to this case study application, other minor errors in the CSTL Processor 
have been fixed. 
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Analysis of Error Kinds 

One of the main objectives of this case study was analyzing whether the testing 
process was able to correct requirements errors in the schema specification, in 
order to enhance its semantic quality.  

During the testing phase, more than 400 errors and failures were tracked and 
categorized. The testing process was performed in two phases: 

- Conceptual schema specification in an executable form. During the 
formal specification of the conceptual schema in USEx (Tort 2010), some 
errors were fixed. Most of the errors detected in this stage corresponded to 
UML/OCL syntactic errors, which were revealed by the USEx parser (Fig. 
41). Other errors were detected by the semantic analyzer of this parser 
(referenced types that were not defined, expressions with incompatible 
resulting types, etc.). Finally, a few requirement errors were fixed by the 
modeler during the inspection process that was performed during the 
specification of the executable version of the schema. 

- Conceptual schema testing. The main objective of conceptual schema 
testing is detecting and fixing requirements errors according to 
stakeholders’ expectations formalized as test cases. When assisted by the 
execution of these test cases, more requirements errors are revealed as 
shown in Fig. 41. Moreover, fixing requirements errors implies modifying 
existing knowledge. These modifications also lead to fix new syntactic and 
semantic errors of the specification language definition. 

 

 

Fig. 41. Revealed errors during the executable specification of the conceptual schema 

84% 

10% 6% 

UML/OCL syntactic error

UML/OCL semantic error

Requirement error
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Fig. 42. Revealed errors during the conceptual schema testing process 

The conceptual schema testing process also revealed conceptual improvement 
needs. These improvement needs are vital because, if not properly corrected, they 
may affect the semantic quality of the implemented system in the production 
environment.  

Fig. 43 shows a screenshot of the real Magento system that illustrates an example 
of an error caused by a requirement error. This error was detected in this case study 
at the conceptual level, by applying conceptual schema testing. In this example, we 
show that, currently, the system does not consider countries and municipalities as 
entity types related between them and, consequently, inconsistent data is allowed 
by the system.  

 

 

Fig. 43. Screenshot that illustrates a 
conceptual improvement need in Magento  

 

 

 
 

Fig. 44. Change in the schema of Magento in order 
to fix the improvement need of Fig. 43. 
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7 
7 Related Work on 

Test-Driven 
Development 

In this chapter, we review relevant state of the art regarding Test-Driven 
Development (TDD). The second main contribution of this Thesis, the Test-Driven 
Conceptual Modeling (TDCM) method (Chapter 8), lays on the basic principles of 
TDD.  

In Section 7.1 we describe the main TDD activities. We also explain that regression 
testing is a basic property of a TDD environment (Section 7.2). Several languages 
and tools are aimed to support TDD. We review some of them in Section 7.3. In 
Section 7.4, existing studies about the effectiveness of TDD are presented. Finally, 
in sections 7.5 and 7.6 we discuss Acceptance TDD and the relationship between 
TDD approaches and modeling. 

7.1 Test-Driven Development 

Test-Driven Development (TDD) (Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007) 
is a software development method in which: (1) an exhaustive suite of test programs 
is maintained; (2) no code goes into production unless it has associated tests; (3) 
tests are written first; and (4) the tests determine what code needs to be written 
(Astels 2003). 
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Throughout software engineering history (Sommerville 2010), several development 
process paradigms have been proposed. The traditional waterfall process model 
was conceived as a sequential development process consisting of five phases: 
Requirements analysis, design, implementation, testing and maintenance. After 
that, iterative paradigms such as the spiral model or the incremental model were 
proposed to allow more flexible development processes.  In 1998, eXtreme 
Programming (XP) was introduced as an agile process based on very short 
development iterations.  

TDD emerged in conjunction with the rise of agile paradigms for software 
development (Janzen et al. 2005), although some authors claim that test-first 
approaches were informally used as early as 1950s in the NASA’s Project Mercury 
(Larman et al. 2003). Most popular development methodologies, like the Unified 
Process (UP), promote the use of agile practices. 

XP is described in the Agile manifesto (Beck et al. 2001). It is based on the principle 
that the “highest priority is to satisfy the customer through early and continuous 
delivery of valuable software” and that changing requirements are “welcome, even 
late in development. Agile processes harness change for the customer's competitive 
advantage”. TDD is considered to be a key practice of XP (Beck 2003). Its particularity 
is that testing plays a central role in the development process, instead of being a 
validation phase at the last stages of the development. TDD is a test-first approach, 
in contrast with the traditional test-last approaches.  

In TDD, software is developed in short iterations. In each iteration, the developer: 
(1) Writes a test for the next bit of functionality that he or she wants to add; (2) 
Writes the functional code until the test passes; and (3) Refactors both new and old 
code to make it well structured.  

Write a Test 

For each bit of functionality to be implemented, the developer first writes a test that 
should pass. (Astels 2003) explains that developers should program tests by intention: 
“write tests without worrying about what classes or methods you will need to add”. In 
other words, code that will test a required functionality is written before 
implementing the functionality itself. Note that, in this context, a test formalizes an 
implementation objective to be achieved.  

Write Code to Pass the Test 

After writing a non-passing test, its execution gives information about the failure. 
This information can be used to add code to pass the test.  

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Software_Development
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TDD prescribes that changes in the code must be the minimum ones to make the 
test pass. According to (Astels 2003), “you write only enough to pass the test, no 
more. That means that you do the simplest thing that could possible work”. 
Changing the code as a reaction to a failing test, allows validating the code changes 
just after the change is made. The reason is that we have the test and we can 
execute it immediately after a change. 

Writing a test and changing the code to pass the test are the main activities to make 
progress in TDD: “you write a little bit of test, followed by just enough code to make 
that test pass, then a bit more test, and a bit more code, test, code, test, code, etc.” 
(Astels 2003). 

Refactoring Code 

Refactoring is the process of making changes to existing working code without 
changing its external behavior in order to improve the internal structure. In other 
words, refactoring means to “clean code that works” (Beck 2003).  

In TDD, the incremental development in small iterations raises the necessity of 
refactoring. TDD promotes refactoring when a code smell (Van Emden et al. 2002) is 
detected. The concept of code smell is widely used by the XP community to refer to 
characteristics of code that indicate less than acceptable code quality. Duplications, 
too large methods, or unclear code are typical examples of code smells. 

Although much research work has been devoted to identifying and catalog software 
anomalies (Mens et al. 2004), some recent work proposes to extend the smell concept 
to models. Refactoring smells and patterns to fix them have also been proposed for 
UML/OCL schemas (a representative set of papers is (Sunyé et al. 2001, Zhang et al. 
2005, Judson et al. 2003, Porres 2003, Correa et al. 2004)).  

7.2 Regression Testing in TDD 

Regression testing is about executing tests repeatedly throughout the project in 
order to verify that defects that once existed and were fixed do not reappear as the 
software evolves (Koskela 2007). In TDD, tests are not thrown away and they are 
used in regression testing in order to increase confidence about the already done 
work. 

After a significant change in the code is performed, the developer may run the 
previous test set to detect if any previous passing test fails after the change. If some 
previous test case ceases to pass, then the failure information provides help to find 
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out the failure cause.  Regression testing implies constant test feedback and it 
allows detecting errors in code as soon as changes cause them. 

7.3 TDD Languages and Tools 

Tools have played a decisive role in the emergence of TDD, which assumes the 
existence of an automated testing framework (Janzen et al. 2005). Automated tests 
(Meyer 2008) are fundamental to allow efficient regression testing (see Section 7.2).  
An automated testing framework consists of, at least, a formal language to specify 
tests and an interpreter to automatically execute them as many times as needed. 

Developers have created languages and tools to support TDD. The most popular 
TDD framework is JUnit (Gamma et al. 1999, Glover 2007). JUnit is a Java-based 
language which includes statements to write test cases with assertions. JUnit tools 
allow writing, managing and executing such test cases, and they provide information 
about the results of the execution and feedback to identify failing tests. JUnit is open 
source and the software community has developed extensions to provide wide-
reaching solutions to the challenge of testing (Astels 2003). By extension, other similar 
frameworks have been developed to support JUnit tests in other programming 
languages. All of them are generally referred as xUnit tools. 

Other tools can be used in conjunction with xUnit tools to help practicing TDD. Most 
of them are aimed to analyze test coverage (Zhu et al. 1997). Jester (Moore 2001) is a 
popular tool for finding untested code by applying mutations. It makes systematic 
changes to the application’s source code and runs the test suite. If all the tests still 
pass after making the change, then Jester reports that something in the code has 
not been tested. NoUnit (NoUnit team 2010) is another example that analyzes, for each 
method, whether it’s called directly, indirectly or not at all from any test method. 
Clover (Atlassian Pty 2010) is a classic coverage tool that, in runtime, measures what 
code statements are executed and how many times. As far as we know, in the 
literature there have not been made proposals of adequacy criteria for testing 
conceptual schemas. In Chapter 11, we explore this challenge in order to enhance 
the quality checking process promoted by our conceptual schema testing approach 
and the TDCM method (Chapters 4 and 8). 

JUnit can be integrated as a plug-in into Eclipse (Eclipse Foundation 2010), a widely-
used Integrated Development Environment (IDE). Eclipse also provides refactoring 
functionalities and allows adding plug-ins to enhance the TDD practice.  
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7.4 TDD Effectiveness 

The analysis of the effectiveness of Test-Driven Development (TDD) is essential to 
demonstrate the applicability and the usefulness of TDD in practice. Table 2 
summarizes the main advantages and drawback of TDD, according to the literature 
reviewed in this Section. Analyzing the advantages and drawbacks of TDD is 
important to determine whether it is indicated or not to apply this method in a 
particular development project. 

(Beck 2003), the primary author of the Agile Manifesto, explains that TDD is a way of 
managing fear during programming. In this context, he expresses the benefits of 
TDD as follows: “Instead of being tentative, begin learning concretely as quickly as 
possible. Instead of clamming up, communicate more clearly. Instead of avoiding 
feedback, search out helpful, concrete feedback”. 

(Koskela 2007) expresses that “TDD helps us speed up by reducing the time it takes 
to fix defects”. He also explains that TDD “makes sure that there is practically no 
code in the system that is not required –and therefore executed- by the tests. […] 
TDD effectively guarantees that whatever you have written a test for works”.   

Several researches have conducted studies on the effectiveness of TDD practices. 
Although a few of them conclude that there seems to be no substantial 
improvements by applying TDD in contrast with other traditional approaches (Pancur 
et al. 2003, Muller et al. 2002), most of the studies contribute to analyze the strengths of 
TDD and to point out its challenges. However, each study uses different evaluation 
parameters and experimentation contexts, and most of them consider that more 
reliable evaluations are needed to reach more solid conclusions.  

(Maximilien et al. 2003) report a case study conducted at IBM. The case study is the 
result of the development of a “non-trivial software system using TDD”. The 
conclusions of the study state that “using this practice, we reduced our defect rate 
by about 50 percent compared to a similar system that was built using an ad-hoc 
unit testing approach”. 

(Janzen et al. 2008) conducted an industrial experiment to analyze the influences of 
TDD on design. Code size, complexity, coupling and cohesion are analyzed. The 
experiment does not achieve definitely conclusions about coupling and cohesion. 
However, the experiment shows that test-first programmers “tend to write smaller, 
simpler classes and methods”. 

(Edwards 2003) explain the results of a study about the use of TDD in an educational 
context. Results indicate that “students scored higher on their program assignments 
while producing code with 45% fewer defects per thousand lines of code”. 
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Table 2. Summary of TDD advantages and drawbacks  

(Geras et al. 2004) empirically support that TDD can increase confidence during the 
development process. This study states that test-last processes may be less 
predictable than test-first approaches. Another conclusion is that TDD induces 
developers to create more tests and to execute them more frequently. Other studies 
such as (Lui et al. 2005, Madeyski et al. 2007) suggest similar benefits. 

Several studies conclude that TDD has the potential of increasing the quality of 
code and the level of testing, although it may increase the time for development. 

TDD Advantages  TDD Drawbacks 

Increasing code quality: Evolving a set of test cases 
and making them Pass increases code quality since 
code is added by fixing errors.  
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, 
Maximilien et al. 2003, Janzen et al. 2008, Edwards 2003, George et 
al. 2003) 

 Stakeholders’ availability: Stakeholders (the source 
for test cases) may not be available during the 
implementation phase.   
(Stephens et al. 2003) 

Focused objectives: The TDD cycle promotes stating 
and achieving focused objectives, instead of worrying 
about the growing whole program at any time.  Solving 
small problems, validating them and moving forward is 
a more predictable way to develop.  
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et 
al. 2008, Stephens et al. 2003, Stephens et al. 2010) 

 Tests as specifications: TDD is “code-centric” and 
lacks of focus on design and analysis. Tests are not 
substitutes of analysis and design specifications. 
(Stephens et al. 2003, Stephens et al. 2010, Boehm 2002) 

Keeping code healthy with refactoring: Refactoring 
improves the design after adding new code.  
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et 
al. 2008, Stephens et al. 2003, Stephens et al. 2010) 

 Writing test cases is time consuming: Writing test 
cases consumes time, although testing is essential 
before or after coding.  
(Maximilien et al. 2003, George et al. 2003) 

Making sure that previous code still works: Automated 
regression tests help making sure that code that 
worked, still works after adding new code. 
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et 
al. 2008, Stephens et al. 2003, Stephens et al. 2010) 

 Rewriting tests: When new code is added, previous 
tests may need to be rewritten, and it is time 
consuming. 
(Stephens et al. 2003) 

Getting continuous feedback:  Code is driven by the 
feedback provided in test errors and failure 
information. Therefore, code is evolved as a reaction to 
continuous feedback.  
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et 
al. 2008, Stephens et al. 2003, Stephens et al. 2010) 

 Tests origin: TDD assumes that developers write 
tests directly from stakeholders, but does not 
consider previous analysis or design artifacts.  
(Stephens et al. 2003, Stephens et al. 2010) 

Maintaining workable software at each iteration: After 
each iteration, you have code that works according to 
a set of tests.  
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et 
al. 2008) 

 

Increasing programmer confidence: Code is testable 
as soon as it is written. Together with the previous 
properties, it increases programmers’ confidence.  
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et 
al. 2008, Geras et al. 2004, Lui et al. 2005, Madeyski et al. 2007) 
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(George et al. 2003) report an experiment with 24 professional pair programmers. One 
group developed code using TDD while the other used a waterfall-like approach. 
The conclusions of the experiment state that “we found that the TDD developers 
produced higher quality code, which passed 18% more functional black box test 
cases. However, TDD developer pairs took 16% more time for development”.  

Other TDD evaluations, such as (Canfora et al. 2006, Bhat et al. 2006) reach similar 
conclusions.  

7.5 Acceptance TDD 

Originally, TDD only assumed the use of unit tests in order to verify and validate 
small bits of functionality. More recently, several researches realized that TDD 
approaches can enhance its contribution to requirements validation by using 
acceptance tests (Mugridge 2008, Melnik et al. 2006, Melnik et al. 2007, Sauvé et al. 2008).  

An increasing number of organizations are interested in binding requirements and 
testing more closely together (Mugridge 2008, Martin et al. 2008, Uusitalo et al. 2008). 
Acceptance tests are a kind of tests specifically conducted to determine whether or 
not a system meets the customer needs. 

Acceptance tests can also be written, automated and run in order to guide software 
development by applying the TDD principles. In the literature, this practice is named 
Acceptance Test-Driven Development (ATDD), Storytest-Driven Development or 
Customer Test-Driven development. In ATDD, user stories are written as automated 
tests.  

The main difference between traditional TDD and ATDD is that ATDD tests are 
more customer-oriented and they are specifically designed to validate requirements. 
(Melnik et al. 2007) state that ATDD is a variant of TDD that “makes it possible to 
formalize the expectation of the customer into an executable and readable contract 
that programmers follow in order to produce and finalize a working system”. (Koskela 
2007) argue that in ATDD, tests should be used as a shared language that forces to 
transform ambiguous requirements into executable tests. He also summarizes that 
ATDD is about “specifying by example”, which can be “a natural fit for our intuition 
and makes it easier to relate requirements to the concrete word and our software”. 

It is important to remark that the main difference between TDD and ATDD relies on 
the purpose and the scope of tests. Therefore, the same testing and language tools 
that support regular TDD can be directly used or extended in order to support ATDD 
(Mugridge 2008, Deng et al. 2007, Sauvé et al. 2006).  
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7.6 TDD and Modeling  

Agile development methods were originally conceived in contrast with plan-driven 
development approaches that stress more formal specification of requirements as a 
base for design and implementation. (Beck et al. 2001) argues that agile methods are 
a reaction to “documentation driven, heavyweight software development process”.  

Nevertheless, many authors advocate that plan-driven development and agile 
development can and should be used in conjunction. The main aim of agile 
development is not avoiding documentation and models but “efficiently respond to 
changes”. In other words, documents and models can also contribute to efficiently 
respond to changes during software development, especially in Acceptance TDD 
approaches. 

In the eXtreme Programming community has raised the concept of Agile Modeling 
(AM). AM is a practice-based methodology for effective modeling and 
documentation of software-based systems.   AM proposes a set 
of values, principles, and practices for applying modeling in software development 
projects in an effective and light-weight manner (Ambler 2002).  Fundamental 
practices of AM include, for example, creating several models in parallel and 
iteratively, applying the right artifacts for the situation, being focused on the active 
participation of stakeholders, using models for communication, or modeling in small 
increments (Erickson et al. 2005). The TDCM method proposed in this Thesis (Section 
8) is aligned with many of these guidelines. In this approaches, user stories and 
class diagram sketches are promoted to “think before you act”. (Astels 2003) 
concludes that “experience shows that we can and should model on a project taking 
a TDD approach”. 

(Boehm 2002) expresses that “both agile and plan-driven methods have a home 
ground of project characteristics in which each clearly works best, and where the 
other will have difficulties” and he concludes that “hybrid approaches that combine 
both methods are feasible and necessary. […] Organizations must carefully evolve 
toward the best balance of agile and plan-driven methods”.  (Meyer 2008) states that 
“TDD, given prominence by agile methods, has brought tests to the center stage, 
but sometimes with the seeming implication that tests can be a substitute for 
specifications”. He argues that “tests, even a million of them, are instances; they 
miss the abstraction that only a specification can provide”, so that “tests are not 
substitutes for specifications”.  

(Sangwan et al. 2006) analyzes the application of TDD in geographically distributed 
development teams in large projects. They express the necessity of enforcing 
communication during the development process because “the TDD process works 

http://www.agilemodeling.com/values.htm
http://www.agilemodeling.com/principles.htm
http://www.agilemodeling.com/practices.htm
http://www.agilemodeling.com/practices.htm#CreateSeveralModelsInParallel
http://www.agilemodeling.com/practices.htm#ModelInSmallIncrements
http://www.agilemodeling.com/practices.htm#ModelInSmallIncrements
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well for projects in which a collocated team develops a small to medium system, but 
it can be challenging for large systems, especially those involving geographically 
distributed teams”.   

The TDCM method presented in this Thesis (Chapter 8) contributes to agile 
development because requirements defects can be more efficiently detected during 
the conceptual modeling activity in an incremental process, which is aligned to 
stakeholders’ needs and expectations. 
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8 
8 An Approach to 

Test-Driven 
Conceptual Modeling 

In this chapter, we present the second main contribution of the Thesis: a novel 
method for the test-driven development of conceptual schemas that we call Test-
Driven Conceptual Modeling (TDCM) (Tort et al. 2011a). TDCM is based on the 
principles of Test-Driven Development (TDD) (see Chapter 7).  

Section 8.1 introduces the TDCM method and shows how to develop conceptual 
schemas using it. We explain the details of the TDCM cycle (Section 8.1.1), and two 
important guidelines (Section 8.3) on how to apply the method in some 
circumstances. Furthermore, we illustrate the method with its application to a 
fragment of the well-known Meeting Scheduler case study (Van Lamsweerde 2009) 
(Section 8.2). Finally, we present an analysis of the conjectured advantages and 
drawbacks of TDCM (Section 8.5). 

8.1 Fundamentals of TDCM 

In Chapter 4, we described an approach to test executable conceptual schemas 
written in formalized languages like UML/OCL. We also presented a tool to support 
the application in practice of the approach (Section 5). Therefore, since testing 
conceptual schemas is feasible, the following questions arise:  
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- Could we use conceptual test cases to drive the conceptual modeling 
activity?  

- Could we improve the completeness and correctness of conceptual 
schemas by developing them using a TDD-based approach?  

The Test-Driven Conceptual Modeling (TDCM) method that we present in this 
chapter is our answer to these questions. 

TDCM is an iterative method aimed to drive the elicitation and definition of the 
conceptual schema of an information system. In TDCM, a system's conceptual 
schema is obtained by performing three kinds of tasks: (1) Write a test the system 
should pass; (2) Change the schema to pass the test; and (3) Refactor the schema 
to improve its qualities.  

TDCM is a test-first approach in which conceptual schemas are incrementally 
defined and continuously validated. As far as we know, according to the state of the 
art reviewed in Section 7, this is the first work that explores the use of TDD in 
conceptual modeling. 

According to the approach proposed in Chapter 4, a test case written in a 
conceptual schema testing language is an executable concrete story of a user-
system interaction. A test case also specifies user expectations formalized as test 
assertions. The verdict of a test case is Pass if the conceptual schema includes the 
general knowledge to meet these user expectations. Otherwise, error and failing 
information is provided in order to point out why the conceptual schema does not 
meet the formalized expectations.  

The main rationale of TDCM is the evolution of the schema by continuous fixing of 
testing errors and failures. The failing and error information obtained by writing and 
executing tests during the conceptual schema development provides feedback in 
order to correct the schema. This feedback promotes incremental changes in the 
schema and continuous improvement of its semantic quality according to a test set. 

As explained in Section 1.4.2, the problem we try to solve is significant because 
each information system development project requires the development of its 
conceptual schema, and correctness and completeness are two fundamental quality 
properties of conceptual schemas (Olivé 2005). On the other hand, it is widely 
recognized that errors at the conceptual level should be detected and corrected as 
soon as possible.   
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TDCM is assumed to be used in the context of a requirements engineering (RE) 
method. This method determines the source artifacts available when TDCM begins, 
the iteration sequence, and the condition when TDCM ends.  In this chapter, we 
define the TDCM method regardless the RE method in which it is applied and, in 
Chapter 10, we provide some details of the integration of TDCM into four well-
known RE methods. 

In general, TDCM contributes to the evolution of conceptual schemas. If the starting 
point is an empty schema, then full conceptual modeling process may be supported 
by TDCM. Otherwise, we may evolve existing (partial) schemas or some critical 
parts of it. 

Test cases that drive the application of TDCM are designed from artifacts provided 
by the general method. TDCM obtains an executable conceptual schema and a 
resulting test set that validates the schema. The resulting conceptual schema may 
be used as a source for the next activities specified by the general method.  

The environment for testing conceptual schemas (Chapter 4) and the CSTL 
Processor tool (Chapter 5) support the application of the TDCM method in practice. 
By using them, we have evaluated our method by means of four cases studies, 
which are discussed in Chapter 9. 

8.1.1 TDCM Cycle 

In TDCM, a conceptual schema is defined incrementally in short iterations. The 
iterations that must be performed and the objective of each test case depend on the 
RE method in which TDCM is used.  

An iteration starts by adding a new test case to the passing test set of the previous 
iteration (previous test set)1. The previous test set is empty when the first iteration is 
initiated.  

The objective of each iteration is to change the schema so that it includes the 
knowledge to correctly execute the new test case.  

The previous test set in addition to the new test case is the current test set of the 
iteration. A TDCM iteration can only finish when the overall verdict of the current test 
set is Pass. 

                                                           
1 We follow here the TDD principle of defining one test case in each iteration, but in 

practice nothing prevents defining more than one, if so desired.   
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Fig. 45. The TDCM cycle 

Fig. 45 shows the TDCM cycle and the order of its tasks. A TDCM iteration is a 
particular instantiation of the TDCM cycle. The TDCM cycle consists of three kinds 
of tasks:  

1. Write a test case (which is expected to pass).  

2. Change the schema (to pass the test case).  

3. Refactor the schema (to improve the knowledge representation, if needed).  

Write a Test Case 

The first task of the TDCM cycle consists in setting up a new test case whose 
verdict will be Pass when the conceptual schema includes the knowledge to be 
added in the current iteration. In the general case, the schema does not include that 
knowledge initially, and therefore the verdict will be Error or Fail. At the end of the 
current iteration, the verdict will be Pass.  

If the verdict of the new test case is Error or Fail, then the new test case is suitable 
to make progress in the TDCM cycle. If the verdict of the new test case is Pass, 
then the iteration objective is already achieved and, consequently, the iteration 
finishes. Such iterations are sometimes convenient to increase the confidence about 
already defined knowledge by executing complementary test cases. 

Change the Schema 

Changing the schema to make the verdict of the new test case Pass is the focused 
objective to be achieved by the conceptual modeler in this task. The testing 

Refactor 

Change 

Regression testing 

Regression testing 

Write 
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environment provides information about the failure or the error. The next change to 
be done in the schema is fixing this error or failure.  

The changes made in the schema can be validated by the execution of the new test 
case after each change. Changing the schema and checking if the verdict of the 
new test case becomes Pass is the main activity to make progress in TDCM. 

If the verdict of the new test case is Error, then the required knowledge is not 
defined in the schema. Information about the error helps to find out required 
knowledge to be added in the schema.  

Table 3 summarizes the interpretation of the verdict of the current test set (CTC) 
and the regression test set (RTS) at each iteration. This interpretation drives the 
application of TDCM in order to evolve the Conceptual Schema Under Development 
(CSUD). 

 

Verdict Current test case (CTC) Regression test set (RTS) 

ERROR 
 

Relevant knowledge needs to 
be added to the CSUD 

Schema element 
removed 

The CSUD becomes 
incomplete and the deleted 
schema element needs to 
be restored 

Relevant constraint 
added 

Modify inconsistent states to 
maintain consistent test 
cases 

FAIL 
 

The knowledge defined in the 
CSUD needs to be corrected 
according to the asserted 
expectations 

Both CTC and RTS 
may Pass without 
changing them (only 
changing the CSUD) 

The knowledge defined in 
the CSUD needs to be 
corrected 

Neither CTC nor 
RTS can Pass 
without changing 
them  

Inconsistent requirements 

PASS The CSUD has the necessary 
knowledge and satisfies the 
asserted expectations 
formalized in CTC 

The CSUD still has the necessary knowledge and 
satisfies the asserted expectations formalized in 
RTS 

 
Table 3. Failure/error/pass interpretation 

If the verdict of the new test case is Fail, the schema needs to be changed because 
it does not produce the expected result (the schema is not correct according to the 
test assertions). The information about the failure provided by the testing 
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environment helps to find out the changes to be done in the schema in order to fix 
the failure. 

While changing the schema, test cases of the previous test set can be automatically 
executed as regression tests. The purpose of regression testing is to detect if the 
verdict of any of the previous test cases ceases to be Pass. In this case, a collateral 
effect on previous defined knowledge of the schema is detected. The problem to be 
solved is indicated by the failure/error information. Note that test sets written in a 
conceptual modeling language designed in the xUnit fashion (like CSTL) are 
automated.  

If the verdict of the previous test set becomes Fail, then two cases are possible: 

- Previous defined knowledge ceases to be correct due to the last changes: 
A derivation rule ceases to derive information as expected, an event 
occurrence ceases to produce the expected IB state or a domain event 
ceases to be applicable as it was expected.  The conceptual schema needs 
to be changed to fix the failure. 

- Inconsistent requirements are revealed: If it is not possible to change the 
schema to pass both the new test case and the previous failing test cases, 
an inconsistency between requirements has been revealed. The 
inconsistency must be resolved. Involved test cases may be changed, if 
needed, to reflect updated expectations2. 

If the verdict of a previous test case becomes Error, then two cases are possible: 

- The conceptual schema has become incomplete: A schema element that 
was necessary for a previous test case has been removed. 

- The IB state of a previous test case has become inconsistent: IB states of 
previous test cases may become inconsistent when a new constraint is 
added to the schema. Inconsistent states need to be updated in order to 
ensure that test cases formalize consistent stories. In Section 8.3, two 
guidelines are proposed to minimize this case. 

                                                           
2 The choice of what to do with the revealed inconsistency depends on the inconsistency 

handling strategy followed in the project NUSEIBEH, B. and EASTERBROOK, S. The process 
of inconsistency management: A framework for understanding, p. 364-368. In this work, we assume 
that inconsistencies must be solved when detected, but it would be interesting to 
explore the use of TDCM with other strategies, specially the one that differs the 
resolution and continues the development until such time deemed appropriate to re-
visit the inconsistency.  
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The TDCM method is adaptable to the experience of the conceptual modeler. 
Smaller changes and more frequent checking of the verdict of the new test case 
provide more failing/error information to guide the definition of the schema.  

More regression testing provides more confidence about the already included 
knowledge.  It is important to remark that TDCM encourages continuous reflection 
about the knowledge of the schema and its alignment with user expectations. 

When the whole verdict of the current test set becomes Pass, the iteration objective 
is achieved and the conceptual modeler can proceed to the next task. 

Refactor the Schema 

Refactoring aims to improve the quality of the conceptual schema without changing 
the knowledge specified in it. Much research work has been devoted to identify and 
catalog software anomalies (Mens et al. 2004). Refactoring smells to detect possible 
anomalies and refactoring patterns to fix them have also been proposed for 
UML/OCL schemas (a representative set of papers is (Sunyé et al. 2001, Zhang et al. 
2005, Judson et al. 2003, Porres 2003, Correa et al. 2004)).  

When a conceptual schema is defined in an iterative way, as proposed in TDCM, 
refactoring may be applied to improve the quality of the schema.  TDCM 
encourages the conceptual modeler to refactor the schema and, in sequence, 
request the execution of the current test set.  

If the verdict of the current test set becomes Fail or Error, then we realize that the 
knowledge of the schema has not been preserved by the refactoring process. The 
failure/error information provided by the testing environment helps to identify the 
invalid refactoring changes. If the verdict of the current test set is Pass and no more 
refactoring is felt to be needed, then we can start a new iteration.  

8.2 Example 

We now illustrate TDCM by means of an example based on the Meeting Scheduler 
system described in (Van Lamsweerde 2009). Assume that we have already developed 
the conceptual schema shown in Fig. 46. Three domain events types are included 
in this initial schema (two of them are graphically shown in Fig. 46). Their effect is 
informally described in the following: 

− MeetingRequest: A new instance of the entity type Meeting is created with 
the indicated subject, the set of possible dates, the user that convenes the 
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meeting (initiator) and the users invited to participate in the meeting 
(invitedParticipant). 

− ConstraintsSpecification: A user specifies his/her excluded dates for a 
meeting. This information is registered in the IB as an instance of 
ConstraintsSet. 

− UserCreation: A new User is created with his/her name and eMail. 

 

 
 

 
As an example, we show the formal specification of the postcondition (in OCL) and 
of the method (in CSTL) of the event MeetingRequest: 

context MeetingRequest::effect() 
 post:  (Meeting.allInstances() – Meeting.allInstances()@pre) 
        -> one(m | m.subject = self.subject and m.possibleDate=self.possibleDate and 
                   m.participant = self.invitedParticipant and   
                   m.initiator = self.initiator) 
 
 
method MeetingRequest::effect(){ 
  self.createdMeeting := new Meeting(subject := self.subject, 
                               possibleDate := self.possibleDate, 
        participant := self.invitedParticipant, 
        initiator := self.initiator);  
} 
 

In the following, the application of TDCM is illustrated by means of two example 
iterations. The purpose of these iterations is to make progress in the elicitation and 
the definition of the conceptual schema fragment of Fig. 46.  

MeetingRequest
subject : String
possibleDate : Date [*]

effect()

ConstraintsSpecification
excludedDate : Date [1..*]

effect()

Meeting
subject : String
possibleDate : Date [*]

ConstraintsSet
excludedDate : Date [1..*]

User
eMail : EMail
name : String

«Event»

«Event»

1

initiator1

*

invited
Participant

1..*

*

participant
1..**

**

initiator
1*

1

(Sub)behavioral schema (Sub)structural schema 

* 

* 

Fig. 46. Initial conceptual schema fragment of the Meeting Scheduler system 

context Meeting inv onlyRecordsConstraintsOfItsParticipants: 
self.participant->includesAll(self.user) 
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8.2.1 First Iteration Example: Invalid Meeting Scheduling 

Consider the following informal requirement: 

“A meeting cannot be scheduled on a conflicting date” 

Using TDCM, the first task consists in writing a new test case whose verdict is Pass 
if the conceptual schema satisfies this requirement. In this case, we write the test 
case invalidMeetingScheduling, included in the test program MeetingScheduling 
shown below. Note that the fixture creates two users that will appear in the test 
case. 

testprogram MeetingScheduling{ 
 

sarahCreation := new UserCreation(name:=’Sarah’,  
                                  eMail:=’sarah@sarah.edu’); 
assert occurrence sarahCreation; 
sarah := sarahCreation.createdUser; 
 
davidCreation := new UserCreation(name:=’David’,  
                                  eMail:=’david@david.edu’); 
assert occurrence davidCreation; 
david := davidCreation.createdUser; 

 
test invalidMeetingScheduling{ 
mr := new MeetingRequest(subject:=’Strategy’, 
     initiator:=sarahCreation.createdUser, 
     possibleDate:=Set{01-13-2011, 01-15-2011, 01-16-2011}, 
    invitedParticipant:=Set{sarah, david}); 
assert occurrence mr; 
 
assert true mr.createdMeeeting.participant= 
            Set{sarah, david}; 
 
sarahConstraints := new ConstraintsSpecification( 
          meeting:=mr.createdMeeting,   
          user:=sarah,  
          excludedDate:=Set{01-15-2011}); 
assert occurrence sarahConstraints; 
 
mrs := new MeetingScheduling 
          (meeting:=mr.createdMeeting,  
           scheduledDate:=01-15-2011); 
assert non-occurrence mrs; 

} 
} 

The verdict of the new test case is Error and the test processor informs that this is 
because the MeetingScheduling event does not exist in the conceptual schema. In 
order to fix the error, we add the event type MeetingScheduling with its 
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characteristics (Fig. 47, a). For the moment, we need to define neither the effect nor 
the method. 

After this small change in the schema, the verdict of the new test case becomes Fail 
and the test processor informs us that nothing prevents the occurrence of the event 
mrs as expected by the assertion “assert non-occurrence mrs”. We add the 
constraint MeetingScheduling::doesNotScheduleTheMeetingOnAConflictingDate in 
order to fix this failure (Fig. 47, b). The added constraint describes that the 
scheduled date should not be a conflicting date, but the knowledge about conflicting 
dates of meetings is not yet in the schema. Therefore, the verdict of the new test 
case is now Error. In order to fix it, we need to add the derived attribute 
conflictingDate and its derivation rule (Fig. 47, c). The derivation rule defines that 
the set of conflicting dates of a meeting is the union of the set of excluded dates of 
all the participants of the meeting. 

The verdict of the test case invalidMeetingScheduling becomes Pass and no 
previous test cases cease to be Pass. The iteration objective stated by the new test 
case is now achieved. For the moment, no refactoring is felt to be needed and a 
new iteration can be initiated. 
 

 

 
 

 
 

 

MeetingRequest
subject : String
possibleDate : Date [*]

effect()

MeetingScheduling
scheduledDate : Date

effect()

ConstraintsSpecification
excludedDate : Date [1..*]

effect()

Meeting
subject : String
possibleDate : Date [*]
/conflictingDate : Date [*]

ConstraintsSet
excludedDate : Date [1..*]

User
eMail : EMail
name : String

«Event»

«Event»

«Event»

initiator1

*

1

invited
Participant

1..*

*

1

participant
1..**

**
initiator

1*1

a 

c 

* 

* 

* 

context Meeting inv onlyRecordsConstraintsOfItsParticipants:  
  self.participant->includesAll(self.user) 
 
context Meeting::conflictingDate:Set(Date)  
  derive: self.constraintsSet.excludedDate->asSet() 

context MeetingScheduling inv doesNotScheduleTheMeetingOnAConflictingDate: 
  self.meeting.conflictingDate->excludes(self.scheduledDate) 
 

c 

b 

(Sub)behavioral schema (Sub)structural schema 

Fig. 47. Schema changes during the first iteration example 
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8.2.2 Second Iteration Example: Valid Meeting Scheduling 

In this iteration, we again apply TDCM to evolve the schema of Fig. 47. We add to 
the previous test program MeetingScheduling the following new test case, aimed to 
ensure that a meeting can be scheduled: 

test validMeetingScheduling{ 
 mr := new MeetingRequest(subject:=’FuturePlans’,  
                 initiator:=david, 
                possibleDate:=Set{02-28-2011, 02-29-2011}, 
                   invitedParticipant:=Set{sarah}); 
   assert occurrence mr; 
 

davidConstraints := new ConstraintsSpecification( 
         meeting:=mr.createdMeeting,  
         user:=david, 
         excludedDate:=Set{02-28-2011}); 
assert occurrence davidConstraints; 
 
mrs := new MeetingScheduling 
          (meeting:=mr.createdMeeting,  
    scheduledDate:=02-29-2011); 
assert occurrence mrs; 

}  

 

The verdict of the new test case is Error. The reason is that the occurrence of the 
event davidConstraints reaches an inconsistent state in which the created meeting 
violates the integrity constraint Meeting::onlyRecordsConstraintsOfItsParticipants.   

The conceptual modeler realizes that the user david is not a participant as it is 
expected by the story formalized in the new test case. We have just detected an 
inconsistency between two requirements. Therefore, we need to decide whether the 
initiator of a meeting is a participant by default (as expected in the new test case) or 
not (as expected in the previous test case).  

We assume the domain rule that the initiator of a meeting is one of its participants, 
and therefore we change the effect and the method of the domain event 
MeetingRequest to reflect this: 

context MeetingRequest::effect() 
 post:  (Meeting.allInstances() – Meeting.allInstances()@pre) 
         -> one(m | m.subject=self.subject and  
                m.possibleDate=self.possibleDate and 
                 m.participant=self.invitedParticipant->including(self.initiator) and  
               m.initiator=self.initiator) 
 
 
 
 
 



 

134 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

method MeetingRequest::effect(){ 
  self.createdMeeting := new Meeting(subject := self.subject, 
                           possibleDate := self.possibleDate, 
    participant := self.invitedParticipant 
                                                    ->including(self.initiator), 
    initiator := self.initiator);  
} 
 
 

The verdict of the new test case is now Error, because the method and the 
postcondition of the MeetingScheduling event are not specified and consequently, it 
is not possible to assert its occurrence. At this point, TDCM drives the conceptual 
modeler to define the effect postcondition and the method of the MeetingScheduling 
event: 

context  MeetingScheduling::effect() 
  post:   self.meeting.scheduledDate = self.scheduledDate 
 
method MeetingScheduling::effect(){ 
  self.meeting.scheduledDate := self.scheduledDate; 
} 
 
 

The verdict of the new test case continues to be Error because the entity type 
Meeting does not have the attribute scheduledDate. After adding this attribute, the 
verdict of the new test case is Pass. However, the verdict of the previous test set 
becomes Error unless the multiplicity of the attribute scheduledDate is set to 0..1 
(there must be meetings without a scheduled date).  

Note that TDCM drives the consistency about the behavioral and the structural part 
of the schema.  Test cases assert the occurrence of domain events, and this 
occurrence cannot success unless the needed structural knowledge is correctly 
defined. In other words, in conceptual schemas comprising both the structural and 
the behavioral part, the behavioral knowledge (the functions of the system) is what 
users require, and in turn, the structural knowledge is necessary for the behavioral 
knowledge. 

After the addition of the attribute scheduledDate and its multiplicity (Fig. 48, a), the 
verdict of the new test case becomes Pass, and no collateral effects in previous 
added knowledge are detected by the automated execution of the previous test set 
(regression testing). 

The last task of the iteration is refactoring (if it is applicable). (Correa et al. 2004) 
presents the refactoring smell “rule exposure” for OCL expressions (a domain rule is 
specified in the postcondition or the constraint of an event).  

The modified postcondition of the event MeetingRequest shown above includes the 
static domain rule “the initiator of a meeting is always one of its participants”. This 
domain rule should be represented in the structural part of the schema and removed 
from the postcondition. A possible refactoring consists in making the relationship 



 

135 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

type participant derived (Fig. 48, b). Its derivation rule specifies that the participants 
of a meeting are the explicitly invited participants (invitedParticipant) and the initiator 
of the meeting.  

The verdict of the current test set is Pass after refactoring and consequently, no 
changes in the conceptual schema knowledge are detected. The iteration finishes. 

 
 
 
 
 
 

 

 

 

8.3 Guidelines 

In previous sections of this chapter, we described the main activities that 
characterize the TDCM method. In this section, we present three guidelines aimed 
to support the efficient application of the method. Guidelines are well-grounded 
advices and they are a result of the experience acquired by applying the TDCM 
method in practice (Section 9).  

The iterative nature of TDCM implies that new knowledge is added to the 
conceptual schema incrementally. The added knowledge may change the set of 

MeetingRequest
subject : String
possibleDate : Date [*]

effect()

MeetingScheduling
scheduledDate : Date

effect()

ConstraintsSpecification
excludedDate : Date [1..*]

effect()

Meeting
subject : String
possibleDate : Date [*]
/conflictingDate : Date [*]
scheduledDate : Date [0..1]

ConstraintsSet
excludedDate : Date [1..*]

User
eMail : EMail
name : String

«Event»

«Event»

«Event»

initiator1

*

1

invited
Participant

1..*

*

1

initiator
1*

/participant
2..**

**

invitedParticipant
1..**

1

(Sub)structural schema 

b 

a 

(Sub)behavioral schema 

* 

* 

* 

context Meeting inv onlyRecordsConstraintsOfItsParticipants:  
  self.participant->includesAll(self.user) 
 
context Meeting::conflictingDate:Set(Date) 
  derive: self.constraintsSet.excludedDate->asSet() 

context Meeting::participant:Set(Participant)  
  derive: self.invitedParticipant -> including(self.initiator) 

context MeetingScheduling inv doesNotScheduleTheMeetingOnAConflictingDate: 
  self.meeting.conflictingDate->excludes(self.scheduledDate) 
 

b 

Fig. 48. Schema changes during the second iteration example 
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valid IB states considered in previous iterations. This situation may invalidate 
previously processed test cases that need to be fixed, since TDCM always 
preserves all defined test cases as valid stories. The guidelines defined in Sections 
8.3.1 and 8.3.2 are aimed at avoiding the need to fix previous test cases due to this 
reason. 

Moreover, in Section 8.3.3, we present a guideline that uses coverage information 
(see Chapter 11) in order to enhance confidence in the conceptual modeling activity 
when applying TDCM. This guideline promotes ensuring that all changes in the 
schema are validated by executed test cases. 

8.3.1 Guideline: Define Constraints as soon as They Are 
Noticed 

When adding a constraint in the schema, the number of consistent IB states 
decreases. Therefore, IB states in some previous test cases may become 
inconsistent and those test cases need to be updated in order to preserve 
consistent stories. This issue can be minimized if constraints are added to the 
schema as soon as they are noticed.  

Every time that in a new test case we define a new entity or relationship type, we 
should also define all potential constraints involving that type and satisfied by the 
new test case, even if we are not sure that future test cases will also satisfy them. If, 
later on, the need arises to remove one constraint, this can be done easily because 
in most cases the removal will not affect the test cases of the previous test set.  

In the initial schema of the example (Fig. 46), we state the constraint that each 
meeting has at all times at least one participant (multiplicity 1..*). All test cases 
written since then must specify at least one participant for each meeting. If, later on, 
we learn that sometimes we do not know yet the participants of a meeting, then we 
can weaken that constraint (multiplicity *) without impacting previous test cases. In 
contrast, if the initial multiplicity had been * and later on we need to change it to 1..*, 
it might be necessary to change previous test cases. 

8.3.2 Guideline: Use Default Values When Adding 
Properties to an Existing Type  

New properties (attributes or associations) may need to be added to an entity or 
domain event type in a new iteration. If the added property is mandatory, previous 
test cases that use the type of the schema that own this property will become 
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erroneous (because the property was not specified when the previous test cases 
were written).  

If the added property was not considered in previous test cases, it is probably 
because it was not relevant for their testing objectives (the value of the property 
does not affect the assertions of the test case). Changing previous tests due to this 
reason can be avoided by specifying a default value for the added property.  

Consider, as an example, that we start a new TDCM iteration by adding the 
following test case to the test program MeetingScheduling used in Section 8.2.2: 

test assistantInitiatesAMeeting{ 
 biancaCreation := new UserCreation( 
                             name:=’Bianca’,  

                           eMail:=’bianca@bianca.edu’); 
assert occurrence biancaCreation; 
bianca := biancaCreation.createdUser; 
 
mr := new MeetingRequest( 
            subject:=’Interview’,   
            initiator:=david, 
       urgent:=true, 
           possibleDate:=Set{03-15-2011, 04-16-2011}, 
         participant:=Set{david, sarah, bianca}); 
assert occurrence mr; 
 
sarahConstraints := new ConstraintsSpecification( 
         meeting:=mr.createdMeeting,  
         user:=sarah, 
         excludedDate:=Set{03-15-2011}); 
assert occurrence sarahConstraints; 
 
mrs := new MeetingScheduling( 

 meeting:=mr.createdMeeting,  
 scheduledDate:=03-15-2011); 

assert occurrence mrs; 
} 

This test case specifies a story in which a meeting is expected to be scheduled 
even if the meeting is considered to be urgent.  The test case specifies that the user 
david requests a meeting and indicates that the users david, sarah and bianca are 
expected to be participants of the meeting. Although the user sarah specifies a date 
constraint that conflicts with the date on which david schedules the meeting, it is 
expected that the meeting will be successfully scheduled due to its urgency. 

The verdict of the new test case is Error because the knowledge about the urgency 
of meetings is not in the schema. We need to add the attribute 
MeetingRequest::urgent:Boolean[1]. We also need to add the attribute 



 

138 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

Meeting::urgent:Boolean[1] and change the postcondition of the event 
MeetingRequest to indicate that, when the meeting is created, the value of this 
attribute is set according to the value of MeetingRequest::urgent.  

After these changes, the verdict becomes Fail. The reason is that the event 
mrs::MeetingRequestScheduling cannot occur (as expected), because the initial 
integrity constraint (which was previously defined in the conceptual schema) 
MeetingScheduling::doesNotScheduleTheMeetingOnAConflictingDate is not 
satisfied. We change this constraint in order to allow urgent meetings to be 
scheduled on conflicting dates: 

context MeetingScheduling inv doesNotScheduleTheMeetingOnAConflictingDate: 
  not(self.meeting.urgent) implies  
    self.meeting.conflictingDate->excludes(self.scheduledDate) 

 
The verdict of the current test case becomes Pass. Nevertheless, the verdicts of the 
previous test cases (see Section 8.2) are Error. The reason is that the attribute 
MeetingRequest::urgent:Boolean[1] is mandatory and it is not specified in previous 
test cases when meetings are requested. In order to achieve the verdict Pass for 
the test set, we could manually update all previous test cases to specify a value for 
the new mandatory attribute. However, according to the proposed guideline, this 
task can be avoided by setting its default value to false. 

8.3.3 Guideline: Maintain High Basic Coverage Satisfaction 
at Each Iteration 

In the programming field, Test-Driven Development includes the principle that “no 
code goes into production unless it has associated tests”. According to (Astels 2003), 
by writing only the code required to pass the current test, the developer puts a limit 
in each iteration in the written code. Moreover, it fosters that code is written in small 
increments according to the executed test cases. The key rationale of this principle 
is that the property that all code is tested as soon as it is written gives more 
confidence during the development. In TDD, this way of working is usually promoted 
by asking developers to “do the simplest thing that could possibly work”.  

In Test-Driven Conceptual Modeling (TDCM), this TDD principle used in 
programming is not included as a must-be because (1) we allow initial conceptual 
schemas with elements that have not been tested prior to the TDCM application, 
and (2) we allow the addition of non-mandatory schema elements even if they are 
not driven by the current test case. This is possible when the conceptual modeler 
includes knowledge that he/she believes that it will be relevant according to his/her 
own knowledge about the domain, even if the test set execution has not revealed its 
relevance yet. 



 

139 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

As we explain in Chapter 11, the relevance of all the elements of the schema is 
proved only if the test set covers all the elements according to a set of adequacy 
criteria. Since TDCM pursues confidence on the semantic quality (Section 2.2) of 
each (partial) schema being developed at each iteration and fosters the incremental 
development in “small” iterations, a high degree of basic coverage satisfaction 
(Section 11.1) is desired at the end of each TDCM iteration. In other words, TDCM 
allows the conceptual modeler to specify knowledge in the schema, although it is 
not required to pass a test. However, this knowledge (the correctness and relevance 
of which is not determined by any test case) need to be confirmed by stakeholders 
and tested promptly. 

Basic coverage satisfaction indicates the degree in which the elements specified in 
the schema have been tested by the processed test cases. Therefore, it is 
convenient to check the basic coverage satisfaction at the end of each iteration. If 
there are uncovered elements, then the following actions are suggested: (1) confirm 
with stakeholders the conceptual modeler conjectures, and if confirmed, (2) 
formalize them as test objectives (in new test cases or extensions of existing test 
cases) and (3) prioritize the execution of the new test objectives to be processed by 
TDCM as soon as possible.  

By following these actions, high degrees of basic coverage are maintained during 
TDCM application and, consequently, high degrees of confidence on conceptual 
schema quality are also maintained. 

Consider as an example the test case assistantInitiatesAMeeting used in Section 
8.3.2. Imagine that the conceptual modeler adds the non-mandatory attributes 
MeetingRequest::expectedDuration [0..1]  and Meeting::expectedDuration [0..1].  
The specification of the event MeetingRequest is also updated to set up these 
attributes. The conceptual modeler adds this knowledge because, according to 
his/her experience, he/she believes that it is probably that stakeholders may need to 
specify the expected duration of a meeting, although the relevance of these 
properties has not been revealed yet by any processed test case. According to the 
guideline defined in this section, the basic coverage should be checked before the 
end of the iteration. When checking the coverage, we realize that the new attributes 
are not covered by the processed test cases and therefore, they are conjectures of 
the conceptual modeler whose relevance has not been confirmed by any test case. 
The conceptual modeler should (1) confirm with stakeholders that this feature is 
expected to be part of the system being modeled, (2) define new test cases or 
extending the existing ones to include stories that consider the expected duration of 
meetings, and (3) prioritize the new stories to be processed as soon as possible in 
order to maintain basic coverage. 
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8.4 Conceptual Schema Refactoring 

In the context of software programming, refactoring “is the process of changing a 
software system in such a way that it does not alter the external behavior of the 
code yet improves its internal structure” (Fowler et al. 1999). 

In the last decade, several catalogs of refactoring operations for modifying source 
code have been proposed.  However, more recently, several researchers have 
attempted to use refactoring operations at higher degrees of abstraction such as 
database models or conceptual schemas.  

In general, refactoring implies “rewritten material to improve its readability or 
structure, with the explicit purpose of keeping its meaning or behavior” (Wikipedia’s 
definition). This definition can be adapted to conceptual schema refactoring as 
follows: Refactoring is the process of restructuring the conceptual schema 
specification to improve its external quality (understandability, structure, etc.) by 
preserving the specified knowledge. 

The refactoring process includes two main activities: 1) identifying refactoring 
opportunities (also called refactoring smells) and 2) applying information-preserving 
schema transformations (also called refactoring operations). Some of these 
activities may be automatically applied while others are based on metrics or require 
the manual intervention of the modeler. 

Information-preserving transformations are schema transformations that preserve 
the knowledge defined in the schema. Identifying whether two conceptual schema 
specifications define the same knowledge implies analyzing the equivalence 
between the input schema and the output schema involved in the refactoring 
process. According to (Halpin 2001), “two conceptual schemas are equivalent if and 
only if whatever universe of discourse, state or transition can be modeled in one can 
also be modeled in the other”. 

TDCM fosters refactoring of the conceptual schema under development at the end 
of each iteration. Moreover, TDCM contributes to ensure the knowledge 
preservation during the refactoring process and helps identifying non information-
preserving changes promptly (see Section 8.1.1). By this way, TDCM positively 
influences the pragmatic quality of the schema (see Section 2.2.2). 

In this section, we briefly review relevant conceptual schema refactoring proposals 
(Section 8.4.1) which may be applied when using TDCM. Some of these refactoring 
proposals are based on programming refactoring catalogs, while others are specific 
to conceptual modeling. We also present a specific example of a refactoring 
process in the context of TDCM (Section 8.4.2). 
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8.4.1 Refactoring Catalogs 

The range of tools that support the refactoring of software code has increased in the 
last decades. These tools are useful and work fine for small granularity refactoring 
operations which can be applied to code. However, some refactoring operations 
require more structured knowledge representations. This is the reason why some 
authors have proposed refactoring techniques on higher levels of abstraction. We 
briefly summarize some relevant proposals in the following. 

(Sunyé et al. 2001) defined a refactoring catalog for UML class diagrams and 
statecharts. They include refactoring operations such as Insert generalization 
element, Delete generalization element, Move method, Generalize element and 
SpecializeElement.  However, only those operations related to state machines are 
formally specified.  

(Zhang et al. 2005) presented a framework for automatically executing refactoring 
operations on models. This framework allows to execute a subset of the operations 
defined by (Fowler 1999): Add class, Extract superclass, Extract class, Remove 
class, Move class, Rename class, Collapse hierarchy, Add attribute, Remove 
attribute, Rename attribute, Pull up attribute and Push down attribute.  

(Judson et al. 2003) proposed a set of model transformation operations which may be 
systematized by applying patterns. Similarly, (Porres 2003) provides a set of 
transformation rules for conceptual schema refactoring. 

(Van Gorp et al. 2003) presented a set of refactoring operations which can be formally 
specified by using Action Semantics (Sunyé et al. 2002). Refactorings are defined by 
operations composed of a precondition, a postcondition and a bad smell condition 
which is specified as an OCL operation. This approach can detect some refactoring 
opportunities for conceptu()al schemas. 

(Correa et al. 2004) worked on the application of refactoring operations to integrity 
constraints written in OCL, by adapting some classical software refactoring 
operations (Fowler et al. 1999) to OCL. They also provide a set of OCL smells (rules to 
detect refactoring opportunities) for these operations. The OCL smells are: Magic 
literal (it detects when an integrity constraint uses a literal within the constraint 
source), And chain (it detects when a constraint consists of two or more 
subconstraints linked by the operator and), Long journey (it detects when an OCL 
expression traverses a large number of associations), Rules exposure (it detects 
when the business rules are specified in the postconditions or preconditions of 
system operations) and Duplicated code (it detects when OCL expressions are 
duplicated throughout the conceptual schema).  
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Each of these works is focused on some parts of the conceptual schema. The 
refactoring opportunities and the refactoring operations can be applied when 
performing TDCM. However, an integrated catalog of refactoring operations 
applicable to conceptual schemas is desired. A first attempt to present an 
exhaustive catalog, based on the current state of the art on software refactoring and 
conceptual schema refactoring is presented by (Conesa et al. 2011). This catalog is 
organized in a taxonomy of refactoring operations (Fig. 49). The taxonomy includes 
two main categories: (1) structural refactoring operations, aimed at refactoring the 
structural elements of the conceptual schema and (2) integrity constraint refactoring 
operations, aimed at refactoring behavioral elements and integrity constraints. As a 
guide to apply refactoring operations when using TDCM, we briefly review those 
operations proposed in this taxonomy in the following. 

Moving Features between Concepts 

Move Integrity Constraint: This operation moves an integrity constraint from one 
entity type to another. This is an adaptation of Fowler’s Move method operation. 

Change relationship context: This operation changes the type of one of the 
participants in a given relationship type. The old and new participants in the 
relationship type cannot be related with a generalization/specialization relationship.  

Extract entity type: This operation splits an entity type in two and distributes its 
content between the two new entity types.  

Inline entity type: This is the inverse of the operation Extract entity type. It merges 
two entity types into one new entity type.  

Extract datatype: This operation changes an entity type into a datatype. In 
conceptual schemas that incorporate the concept of datatypes, such as in UML, this 
operation converts a class in a datatype and changes all the relationship types that 
dealt with the class to attributes.  

Organizing Data 

Delete PartOf constraint: This operation deletes a PartOf integrity constraint related 
to a given binary relationship type. In the particular case of conceptual schemas 
defined in UML, this operation replaces an aggregation with an association.  

Add PartOf constraint: This is the inverse of the operation Delete PartOf constraint.  
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Fig. 49. Catalog of conceptual schema refactoring operations (Conesa et al. 2011) 

Change unidirectional relationship type to bidirectional: This operation changes the 
navigability of a relationship type from unidirectional to bidirectional.  

Change bidirectional association to unidirectional: it is the inverse of the operation 
Change unidirectional association to bidirectional. 
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Replace enumeration with subclasses: This operation replaces an enumeration 
attribute used to determine the type of the instances of a given entity type E with a 
set of subentity types of E. Each of the entity types created represents one of the 
possible values of the deleted attribute.  

Replace subclass with an enumerated type: This is the inverse of the previous 
operation. This operation replaces a set of subtypes of a common entity type E with 
a relationship type in E that represents the same information. An integrity constraint 
is created to restrict the number of possible values of the new relationship type; this 
number is equal to the number of deleted subtypes.  

Extract ontology: Some conceptual modeling (ontology) languages allow the 
knowledge to be grouped in small blocks based on its meaning, context or domain. 
For example, the UML language allows grouping conceptual schema fragments as 
packages.  

Move concept: This operation moves a concept that belongs to one conceptual 
schema to another conceptual schema.  

Combine attributes: This operation merges several attributes into one. This 
operation is very useful when a modeler creates attributes too specific for the 
objectives of the conceptual schema.  

Split attribute: This is the inverse of the operation Combine attributes. It splits 1 
attribute into n, with n>1. The types of the new attributes should be the same as the 
original or any of its subtypes.  

Rename concept: This operation changes the name of a concept (an entity or 
relationship type). 

Apply standard types: Sometimes, different attributes that represent the same (or 
similar) concepts have different types. For example, a phone number may be 
represented by a String and a cell phone number by an Integer. Obviously, the 
quality of the conceptual schema is improved if all phone numbers are represented 
in the same way.  

Relationship type specialization: This operation change one n-ary relationship type 
for m (n-1)-ary more specific relationship types. This operation is particularly useful 
when one participant in a relationship type can only have a predefined set of values 
known prior to the conceptualization phase. In such a case, the n-ary relationship 
may be replaced with m relationship types, where m is the number of possible 
values of the participant. 
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Relationship type generalization: This is the inverse of the previous operation 
(Relationship type specialization). It replaces m n-ary relationship types with similar 
semantics with one relationship type with an arity of n+1. The new participant in the 
relationship type is used to identify the semantics (previous relationship type) used 
in each instance of the relationship type.  

External relationship specialization: This operation makes more specific a given 
relationship type based on the values of another relationship type. To do this, the 
first relationship type absorbs the second one.  

Transforming partial relationship type: This operation changes a partial relationship 
type (with a minimum cardinality of 0) into a total one (with a minimum cardinality of 
1). To do so, a new subtype that contains the instances that used to participate in 
the partial relationship type is created. Thereafter, the relationship type is redefined 
by pointing the new created subtype and changing the minimal cardinality to one.  

Transforming partial relationship types that are total in union: Sometimes, an 
integrity constraint can represent that the union of two partial relationship types is 
total, which means that for each instance of a partial participant there is at least one 
instance of these relationship types that relates it. In this case, this operation makes 
sense and replaces the two partial relationship types with one total relationship type. 
It also creates a new entity type defined as the union of the entity types that 
participated in the previous relationship types. This refactoring operation also 
deletes the integrity constraint that indicated the totality of the union of the two 
relationship types.  

Deleting relationship types redundancy: This operation deletes redundant 
relationship types. To be redundant, two relationship types must share both the 
same participants and semantics. Therefore, this operation always requires 
designer intervention to determine whether the n relationship types, which are 
supposedly redundant, have the same semantics.  

Defining derived concepts: This operation defines a new entity type or relationship 
type whose population is derived from the information base of the conceptual 
schema.  

Deleting derived concepts: This operation deletes a derived concept (entity type or 
relationship type). This is possible when a derived concept is redundant in a 
conceptual schema. If it is not relevant, then its elimination does not imply any loss 
of semantics.  

Implicit subsets: This operation deletes redundant generalization paths.  
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Dealing with Generalization 

Pull up relationship type: This operation replaces one participant in a relationship 
type with its supertype.  

Push down relationship type: This operation replaces one participant in a 
relationship type with the subtypes of that participant. It is the inverse of the 
operation Generalize relationship.  

Pull up IC: This operation replaces the context of a relationship type with the 
supertype of that context.  

Push down IC: This operation replaces the context of a relationship type with the 
subtype of that context. This operation is the inverse of the integrity constraint Pull 
up IC.  

Extract subconcept: This operation creates a new concept as a subtype of an 
existing one and moves some of the existing concept’s properties to the new one.  

Extract superconcept: The operation creates a new concept as a supertype of an 
existing one and moves some of the existing concept’s properties to the new one.  

Collapse hierarchy: This operation collapses one concept (entity type or relationship 
type) with its subtypes. The new concept contains the semantics of the two 
collapsed elements.  

Extract hierarchy: This operation splits a concept into several concepts related by 
generalization relationships and spreads the properties of the original concept to the 
new concepts. It is the inverse of the operation Collapse hierarchy. 

Promote refinement to relationship type: The relationship types defined in a 
conceptual schema tend to be used, with some restrictions, by the subtypes of the 
entity types where they are defined. In such cases, a relationship type may be 
redefined using either a predefined construction of the ontology or a general 
integrity constraint. When a relationship type is only used by the elements where it 
is redefined or their subtypes, then it and its redefinition can be replaced with 
another relationship type that uses as participants the entity types where the 
relationship type was redefined and takes into account the integrity constraints 
added in the redefinition.  



 

147 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

Composing Integrity Constraints 

Extract IC: This operation splits one integrity constraint in two and spreads its code 
to the two created constraints.  

Inline temp: This operation replaces a temporal variable used in an integrity 
constraint with the expression that defines its value. This operation is particularly 
useful when the temporal variable is used infrequently. 

Introduce explaining variable: This operation assigns a variable the result of an 
expression used in an integrity constraint and replaces the expression with a 
reference to the new variable wherever it occurs. This operation improves 
maintainability when the same expression is used several times in an integrity 
constraint.  

Replace array with tuple: This operation replaces an array used in the body of an 
integrity constraint with a tuple. The new tuple will have one field for each row of the 
array. We included this operation in our catalog because some of the languages for 
representing general integrity constraints may support tuples and arrays.  

Replace magic number with symbolic constant: This operation replaces a number 
used in an integrity constraint with a constant of the same value.  

Substitute expression: This operation replaces an expression of an integrity 
constraint with another expression with the same meaning.  

Remove double negative: This operation replaces a double negation with an 
affirmation, for example replacing if(Not NotFound) for if(Found).  

Split iterator: This operation separates one iteration in n (n>1), where each of the n 
new iterators performs a different activity. We decided to include in the catalog 
some operations that deal with iterators because they are often used in the 
languages that represent general integrity constraints.  

Replace iteration with recursion: This operation replaces an iteration structure with 
its equivalent recursive call.  

Replace recursion with iteration: This operation replaces a recursive call structure 
with its equivalent iteration structure.  

Consolidate identifier: This operation can be applied when two or more expressions 
use different identifiers to refer to the same concept. It forces all expressions to 
access the instances of a concept in the same way, which means using the same 
identifier.  
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Simplifying Conditional Expressions 

Consolidate conditional expression: This operation combines n conditionals defined 
within an integrity constraint in a single conditional.  

Consolidate duplicate conditional fragments: This operation extracts the parts of a 
conditional structure that are repeated in all of its branches.  

Replace conditional with polymorphism: This operation distributes the conditional 
through the subtypes of the context entity type of the integrity constraint where it is 
defined. Thus, for each subtype, the conditions that its instances should satisfy are 
defined.  

Introduce null object: This operation creates a new subtype of a given entity type E. 
This subtype represents the instances of E with undefined information, that is, the 
instances that have no value for a given relationship type.  

Reverse conditional: This operation modifies a conditional to make it more 
comprehensible. It negates the entire conditional and, therefore, the condition and 
the then and else branches.  

8.4.2 Refactoring Example 

The TDCM example iteration described in Section 8.2.2, includes a refactoring 
example that uses the refactoring smell Rules Exposure (see Section 8.4.1). In that 
case, a business rule specified in the postcondition of an event specification is 
extracted as an integrity constraint. 

In this section, we explain an additional refactoring example by operations included 
in the refactoring catalog explained in the previous section. 

Consider the following test case. The test objective is ensuring (1) that users of the 
meeting scheduler system can be assigned to departments, and (2) that 
interdepartmental meetings can be automatically detected, and (3) that the system 
knows the departments involved in each meeting. 

 
test meetingAndDepartments{ 
  
 marketingDptCreation := new DepartmentCreation 
                                  (name:=’Marketing’); 
 marketingDpt := marketingDptCreation.createdDepartment; 
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 financeDptCreation := new DepartmentCreation 
                                  (name:=’Finance’); 
 financeDpt := financeDptCreation.createdDepartment; 
 
 
 johnCreation := new UserCreation( 
                              name:=’John’,  

                           eMail:=’john@john.edu’ 
               department:=marketingDpt); 
assert occurrence johnCreation; 
john := johnCreation.createdUser; 
 
 

 maryCreation := new UserCreation( 
                              name:=’Mary’,  

                           eMail:=’mary@mary.edu’ 
               department:=financeDpt); 
assert occurrence maryCreation; 
mary := maryCreation.createdUser; 

 
 
mr := new MeetingRequest( 
            subject:=’Ideas’,   
            initiator:=john, 
       urgent:=true, 
           possibleDate:=Set{07-15-2011, 07-16-2011}, 
         participant:=Set{mary}, 
     involvedDepartment:= 
                            Set{financeDpt,marketingDpt); 
assert occurrence mr; 
ideasMeeting := mr.createdMeeting; 
 
 
assert true ideasMeeting.interdepartamental; 
assert equals ideasMeeting.involvedDepartment  
                 Set{financeDpt,marketingDpt); 
 
 
mrs := new MeetingScheduling( 

 meeting:=mr.createdMeeting,  
 scheduledDate:=03-15-2011); 

assert occurrence mrs; 
} 

This test case has driven the evolution of the conceptual schema obtained in 
Section 8.2.2 to the conceptual schema shown in Fig. 50. Assume that the 
following changes to the schema have been also performed (although they are not 
graphically represented in Fig. Fig. 50): (1) the UserCreation event type now admits 
specifying the department of a user, and (2) a new event type DepartmentCreation 
has been defined in order to create valid instances of the Department entity type. 
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The verdict of the test set (which includes the current test case and the previous test 
cases) is Pass. However, a refactoring opportunity is smelled because of the 
highlighted cycle in the conceptual schema specification. 

According to the refactoring operation Deleting relationship types redundancy 
explained in Section 8.4.1, if the modeler confirms that one of the paths in the cycle 
is redundant, the corresponding relationship type may be removed from the 
schema. The reason is that the knowledge it represents, may be navigated through 
other relationship types. In the conceptual schema shown in Fig. 50, the integrity 
constraint Meeting::hasOnlyValidDepartments confirms that the knowledge about 
the departments involved in a meeting may be obtained through the navigation 
self.participant.department. Therefore, the relationship type may be removed by 
applying the mentioned refactoring operation. 

After the application of a refactoring operation, TDCM encourages to execute the 
test set in order to check that refactoring does not produce errors or failures. If we 
execute the test set on the schema of Fig. 50, without the relationship type meeting-
involvedMeeting, the verdict becomes Error. The reason is that the event 
mr::MeetingRequest executed in the test case explicitly populates this relationship 

Meeting
subject : String
possibleDate : Date [*]
/conflictingDate : Date [*]
scheduledDate : Date [0..1]
/interdepartamental : Boolean

MeetingRequest
subject : String
possibleDate : Date [*]

effect()

MeetingScheduling
scheduledDate : Date

effect()

ConstraintsSpecification
excludedDate : Date [1..*]

effect()

ConstraintsSet
excludedDate : Date [1..*]

User
eMail : EMail
name : String Department

name : String

«Event»

«Event»

«Event»

initiator1

*

1

invited
Participant

1..*

*

involvedDepartment*

*1

initiator
1*

**

/participant
2..**

0..1*
1

context Meeting inv onlyRecordsConstraintsOfItsParticipants:  
  self.participant->includesAll(self.user) 
 
context Meeting::conflictingDate:Set(Date) 
  derive: self.constraintsSet.excludedDate->asSet() 
 

context Meeting::interdepartamental:Boolean 
  derive: self.involvedDepartment.size()>1 
 

context Meeting::participant:Set(Participant)  
  derive: self.invitedParticipant -> including(self.initiator) 
 

context Meeting inv hasOnlyValidDepartments: 
  self.involvedDepartment = self.participant.department 
 

context MeetingScheduling inv doesNotScheduleTheMeetingOnAConflictingDate: 
  self.meeting.conflictingDate->excludes(self.scheduledDate) 
 

Fig. 50. Meeting scheduler conceptual schema (evolution from Fig. 48) 
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type. Therefore, by applying TDCM we detect that the refactoring process is not 
finished and we need to modify the event MeetingRequest in order to delete the 
explicit instantiation of this relationship type. Note also that we need to modify the 
mr:MeetingRequest event assertion as follows: 

mr := new MeetingRequest( 
            subject:=’Ideas’,   
            initiator:=john, 
       urgent:=true, 
           possibleDate:=Set{07-15-2011, 07-16-2011}, 
         participant:=Set{mary}, 
     involvedDepartment:= 
                            Set{financeDpt,marketingDpt); 
assert occurrence mr; 

After these changes, the verdict remains Error, because the expression “assert 
equals ideasMeeting.involvedDepartment Set{financeDpt,marketingDpt);” is now 
incorrect. Then, since it is relevant to know the involved departments of a meeting, 
we can apply the refactoring operation Defining derived concepts in order to include 
the relationship type meeting-involvedDepartment as a derived relationship type. Its 
derivation rule is: 

context Meeting::involvedDepartment:Set(Department)  
  derive: self.involvedDepartment = self.participant.department 
 

After the addition of the derived relationship type, the verdict of the test set becomes 
Pass. It indicates that the test set that passed before refactoring continues to pass 
after the refactoring process.  

Finally, we could also note the smell that both the derived rule 
Meeting::involvedDepartment and the integrity constraint 
Meeting::hasOnlyValidDepartments have exactly the same OCL expression. The 
reason is that since the relationship type Meeting-involvedDepartment is now 
derived, the integrity constraint is always satisfied. Then, the integrity constraint can 
be removed. If we execute the test set again, the global verdict is Pass again, and a 
new TDCM iteration could be started. 

8.5 Conjectured TDCM Advantages and Drawbacks 

Our approach for test-driven development of conceptual schemas is based on the 
main TDD principles applied to software programming, and it has the potential of 
exporting its benefits to conceptual modeling.  
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 Advantage          Drawback           Non-applicable 

Test-Driven Development (TDD) Test-Driven Conceptual Modeling (TDCM) 

 Code quality: Evolving a set of test cases and making 
them Pass increases code quality (code is added by fixing 
errors). (Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Maximilien 
et al. 2003, Janzen et al. 2008, George et al. 2003) 

 Conceptual schema quality: Evolving a set of test 
cases and making them Pass increases the semantic 
quality (correctness and completeness) of the 
conceptual schema.  

 Focused objectives: TDD cycle promotes to state and 
to achieve focused objectives instead of worrying about 
the growing program at any time.  Solving small problems, 
validating them and moving forward is a more predictable 
way to develop. (Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, 
Janzen et al. 2008, Stephens et al. 2003, Stephens et al. 2010) 

 Focused objectives: TDCM cycle promotes to evolve 
the conceptual schema incrementally according to 
focused objectives.  Adding knowledge to the schema 
according to new expectations, validating them and 
moving forward is a more predictable way to perform 
conceptual modeling. 

 Keeping code healthy with refactoring: Refactoring 
improves the design after adding new code. (Janzen et al. 2005, 
Beck 2003, Astels 2003, Koskela 2007, Janzen et al. 2008, Stephens et al. 2003, 
Stephens et al. 2010) 

 Keeping conceptual schema specification healthy: 
Refactoring improves the way in which the conceptual 
schema is modeled.  

 Making sure that previous code still works: Automated 
regression tests help making sure that code that worked 
still works after adding new code. (Janzen et al. 2005, Beck 2003, 
Astels 2003, Koskela 2007, Janzen et al. 2008, Stephens et al. 2003, Stephens et 
al. 2010) 

 Making sure that already defined knowledge is still 
valid:  After adding new knowledge to the schema, 
regression testing helps detecting undesired collateral 
effects on previously defined knowledge. 

 Getting continuous feedback:  Code is driven by the 
feedback provided in test errors and failure information. 
Therefore, code is evolved as a reaction to continuous 
feedback. (Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen 
et al. 2008, Stephens et al. 2003, Stephens et al. 2010) 

 Getting continuous feedback: Conceptual modeling 
is driven by the feedback provided in test errors and 
failure information. Therefore, new knowledge is added 
as a reaction to continuous feedback. 

 Workable software at each iteration: After each iteration, 
you have code that works according to a set of tests. 
(Janzen et al. 2005, Beck 2003, Astels 2003, Koskela 2007, Janzen et al. 2008) 

 Complete and correct schema at each iteration: After 
each iteration, the result is a correct and complete 
conceptual schema according to the processed test 
cases. 

 Programmer confidence: Code is testable as soon as it 
is written. Together with the previous properties, it 
increases programmers’ confidence. (Janzen et al. 2005, Beck 
2003, Astels 2003, Koskela 2007, Janzen et al. 2008) 

 Conceptual modeler confidence: The conceptual 
schema is continuously validated by the execution of 
conceptual test cases. Together with the previous 
properties, it increases conceptual modelers’ 
confidence. 

Stakeholders’ availability: Stakeholders may not be 
available during the implementation phase. (Stephens et al. 2003) 

 Stakeholders’ availability: The availability of 
stakeholders is inherent to conceptual modeling (as a 
requirements engineering activity). 

Tests as specifications: TDD is “code-centric” and lacks 
of focus on design and analysis. (Stephens et al. 2003, 
Stephens et al. 2010, Boehm 2002) 

  Development of the conceptual schema: The aim of 
TDCM is defining the conceptual schema of an IS, which 
is a requirements artifact. 

 Writing test cases is time consuming: Writing test cases 
consumes time although testing is essential before or after 
coding. (Maximilien et al. 2003, George et al. 2003) 

 Writing test cases is time consuming: Writing test 
cases for testing the conceptual schema consumes time 
(during or after developing the schema) although 
conceptual schema testing increases its quality. 

 Rewriting tests: When new code is added, previous 
tests may need to be rewritten. (Stephens et al. 2003) 

 Rewriting tests: Adding new knowledge to the CSUT 
may cause rewriting previous passing test cases. Some 
guidelines are proposed in Section 4.4. to minimize this 
drawback. 

 Tests origin: TDD assumes that developers write tests 
directly from stakeholders, but does not consider previous 
analysis or design artifacts. (Stephens et al. 2003, Stephens et al. 2010) 

  TDCM is applied in the context of a general method: 
Test cases may be derived from artifacts provided by 
the general method that embeds TDCM. 

Table 4. TDD advantages and drawbacks and its potential application to TDCM 
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Several researches have conducted experiments on the effectiveness of TDD 
(Section 7.4). The first column of Table 4 summarizes seven advantages and five 
drawbacks indicated by these researches and other published literature. The 
second column of the table shows our conjectures of the extent to which such 
advantages and drawbacks may apply to TDCM. Our conjectures are based on our 
own experience and the case studies reported in Chapter 9. The table shows that 
TDCM may “inherit” the seven advantages of TDD and two of its drawbacks, and 
also that three drawbacks of TDD are not applicable to TDCM.  

 

  



 

154 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

 

 

 



 

155 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

9 
9 Case Studies on 

Test-Driven 
Conceptual Modeling 

Case study research is an observational experimentation method in which projects, 
methods or activities are monitored in a specific application case (Wohlin 2000).  In 
this chapter, we report four different experimental case studies aimed to analyze the 
application of the Test-Driven Conceptual Modeling (TDCM) method presented in 
Chapter 8. In these case studies, the application of TDCM is supported by the 
conceptual schema testing approach proposed in Chapter 4, and assisted by the 
CSTL Processor tool described in Chapter 5. 

The structure of the chapter is as follows. Section 9.1 introduces the four case 
studies. Sections 9.2, 9.3 and 9.4 report the main results of the TDCM application 
in each case. Finally, Section 9.5 discusses the lessons learned. 

9.1 Case Studies Overview 

Design Science Research, the general research framework of this Thesis (Section 
1.4), fosters experimentation and refinement by use of new developed approaches. 
This framework states that “knowledge and understanding of a problem domain and 
its solution are achieved in the building and application of the designed artifact” 
(Hevner et al. 2004).  



 

156 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

In this chapter, we report the application of TDCM in the following experimental 
case studies:  

• The development of the conceptual schema of the bowling game system, a 
well-known exemplar used for illustrating eXtreme Programming practices. 

• The reverse engineering definition of the schema of the osTicket support 
system, a real-world and widely-used open source system for managing 
customer support cases.  

• The development of the conceptual schema of two systems performed by 
groups of master students in two projects developed in consecutive editions 
of a requirements engineering course: a flexible reservation system for 
events, and a localization-based system for care-control in old people’s 
homes.   

The overall goals of these case studies are: (1) Analyzing the viability of developing 
conceptual schemas by using TDCM and evaluating its effectiveness, (2) 
Characterizing the errors and failures which drive the development and the most 
common actions aimed to fix them, (3) identifying patterns that characterize TDCM 
iterations, and (4) using the lessons learned to improve and refine the method and 
the testing environment.  

These case studies are representative of different kinds of information systems and 
they correspond to different development situations. In case studies, data is 
collected for a specific purpose throughout the study (Wohlin 2000). The CSTL 
Processor was adapted in order to automatically collect information about the 
TDCM application. We obtained information such as the errors and failures 
revealed, the time spent to complete each iteration, and the evolution of the 
conceptual schema under development.  

In the following, we briefly present, for each case study, the universe of discourse, 
the objectives to be achieved, the testing/development strategy and the application 
context. 

9.1.1 A Bowling Game System 

Bowling is a sport in which players attempt to score points by rolling a bowling 
ball along a flat surface in order to knock down as many pins as possible.  

The bowling game system is a popular case study used to demonstrate eXtreme 
Programming (XP) practices in action. Robert C. Martin popularized this case study 
in the Agile Software Develoment book (Martin et al. 2008). 
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The bowling game has two main events: the creation of a new game and the action 
of a throw. The main aspects of the system are about the computation of the game 
score, taking into account the bowling game rules and the different kinds of throws 
(regular, spare or strike). 

 

 

Fig. 51. Testing/development strategy (Bowling Game Case Study) 

The objective of the TDCM application in this case was the development of the 
conceptual schema of a bowling game system from the description of the informal 
requirements found in the case study formulation (Martin et al. 2008).The case study 
was conducted by a conceptual modeler familiar with the testing environment.   

The development strategy (Fig. 51) includes the definition of a representative set of 
game occurrences (which are formalized as test cases) that cover different types of 
throws. Test cases were processed according to a previously defined order based 
on the expected growing complexity of stories.  

9.1.2 The osTicket Support System 

Ticket support systems allow customers to create and keep track of support 
requests as tickets and allow staff members to organize, manage and respond 
them. A ticket contains all the information related to a customer support request.  

In particular, osTicket is an open source support ticket system which “is designed to 
improve customer support efficiency by providing staff with tools they need to 
deliver fast, effective and measurable support” (osTicket 2011). The osTicket system 
allows users to create new tickets online or by email. It also allows the staff to 
create tickets in behalf of customers. Moreover, the system allows the staff 
members to add internal notes to tickets. Configurable help topics, assignment of 
staff responsibility for each ticket, due dates, departments, priorities, etc. are also 
offered. Customers are also allowed to access the system in order to keep track of 
the status of their tickets and reply them.  

Domain 
rules 

Use  
cases 

Representative 
sequences of throws. 

Increasing complexity.  

User 
stories 

 

Test 
cases 
 

TDCM 



 

158 

PHD THESIS 
TESTING AND TEST-DRIVEN DEVELOPMENT  
OF CONCEPTUAL SCHEMAS 
 

osTicket is an existing system. Therefore, the objective of the TDCM application in 
this case study was the reverse engineering development of its conceptual schema. 
Chikofsky and Cross (Chikofsky et al. 1990) state that “Reverse engineering is the 
process of analyzing a subject system to identify the system’s components and their 
interrelationships and create representations of the system in another form or at a 
higher level of abstraction. The purpose of reverse engineering is to understand a 
software system in order to facilitate enhancement, correction, documentation and 
redesign”. The results and the observation of this study are the same defined for the 
previous case study (Section 9.1.1), but in the development of a real-sized and 
widely used system.  

A conceptual modeler familiar with the osTicket system and the testing environment 
conducted the TDCM application in this case study.   

Fig. 52 shows a schema of the testing strategy that was used for the development 
of the conceptual schema of the osTicket system. The development strategy 
included the partition of the system knowledge in two areas:  

- Basics and configuration of the system. 

- Tickets creation and management.  

The main reason for partitioning the knowledge is that the use case objective was to 
develop the structural schema for Basics and Configuration (excluding event types), 
and both the structural and the behavioral schema of the Tickets creation and 
management. Moreover, Tickets creation and management knowledge was 
expected to depend on the Basics and Configuration of the system. 

The definition of a representative set of expected stories (which were formalized as 
test cases) for each knowledge area was performed before applying TDCM, 
although new stories were defined and processed during the TDCM application. The 
source artifacts for the stories depended on the area of knowledge: 

- Basics and configuration of the system: The source artifacts were (1) An 
informal list (written in natural language) of requirements related to the 
basics and configuration of the system, elicited from the public 
documentation of the osTicket system and by using it; and (2) An estimated 
dependency graph between the informal requirements. 

- Tickets creation and management: The source artifacts were (1) The 
specification of the use cases that informally describe the behavior of the 
system; (2) The specification of the main domain rules of the system; and 
(3) An estimated dependency graph between the use cases and the 
domain rules. 
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Test cases about the basics and configuration were processed first and prioritized 
according to its expected complexity and dependencies. Stories about the tickets 
creation and management, which depend on previously tested configurations, were 
also processed according to the expected complexity and dependencies, in the 
second phase of the TDCM application.  

The processing order of test cases during the TDCM application was determined by 
the defined stories associated to each test case. In each TDCM iteration, the test 
case that was processed was the one that specified a story that had the minimum 
number of dependencies with those stories that were not processed yet. This rule 
was applied in order to minimize the necessity of rewriting test cases and to improve 
the efficiency of TDCM. 
 

 

9.1.3 Reservations and Old People’s Home Case Studies 

In this section, we report two application cases which were conducted in the context 
of a Requirements Engineering master course at the Barcelona School of 
Informatics (UPC–BarcelonaTech). Similar experiences have been reported in the 
literature for TDD in programming (Edwards 2003).  

Two groups of six master students used TDCM in two consecutive editions of the 
course.  
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Fig. 52. Testing/development strategy (osTicket case study) 
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The first group developed the conceptual schema of an online event ticketing 
system by using the innovative ideas of the Yuuzuu Flexible Reservation method 
(Miyashita et al. 2008). The Yuzuu method allows users to find, select and purchase 
tickets for events by introducing cooperation among customers with different 
preferences for the provided services. It admits regular reservations, flexible 
reservations (cheaper reservations in which session event and seat are admitted to 
change) and picky reservations (reservations for specific sessions or seats which 
are arranged by changing flexible reservations). 

In the second edition, the challenge was the development of a system aimed at 
taking care of the users of old people’s homes, taking into account the position of 
each resident, the care tasks to be provided, the allowed places for each of them, 
etc. 

The objective of the TDCM application in these cases was the evaluation of 
development of the conceptual schema of a new system. The resultant schemas 
and the development process were compared with two parallel groups that 
developed the conceptual schema of the same system in each case, but without 
using TDCM. After the marks were published, an exhaustive questionnaire was 
used to collect the opinions of each group member about the conceptual modeling 
activity.  

 

Fig. 53. Testing/development strategy (Yuuzzuu case study) 

The source artifacts for the TDCM application were the previously defined use 
cases specification and concrete user stories for each use case. These artifacts 
were part of the requirements specification of the system based on the Volere 
method (Robertson et al. 1997), which was developed in the first part of the course. The 
user stories were quickly sorted according to its complexity, but no testing strategy 
was previously defined. 
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Fig. 53 sketches the TDCM development strategy used in the development of the 
conceptual schema of the present case study. The source artifacts for the TDCM 
application were the previously defined use cases specification and concrete user 
stories for each use case. These artifacts were part of the requirements 
specification of the system based on the Volere method (Robertson et al. 1997), which 
was developed in the first part of the course for both groups involved in the 
experience. The user stories were quickly sorted according to its complexity. 
However, no testing strategy was previously specified in these cases. 

9.2 The Bowling Game Case Study 

In this section, we describe the results of applying TDCM in the development of the 
conceptual schema of the bowling game case study introduced in Section 9.1.1. We 
analyze the resultant artifacts, the testing effort, the errors and failures that drive the 
development, and the properties of the TDCM iterations. We performed 12 
iterations. 1,78 hours were invested in specifying the test cases and 4,59 hours 
were invested in the development of the TDCM iterations. The full details of the 
case study may be found in the research report (Tort 2011a). 

9.2.1 The Resultant Conceptual Schema and the Test Set 

The TDCM application was finished when two conditions held: 1) we formalized as 
test cases all representative stories, 2) the verdict of the whole test set became 
Pass.  

The resultant conceptual schema consists of 3 classes, 10 attributes, 8 
associations, 8 derivation rules of derived attributes and associations, 2 event types 
and 6 integrity constraints. 

The resultant test set consists of 754 lines of test cases that are part of 10 test 
cases. The test set ensures that the resultant schema is correct and complete 
according to the test cases (the defined knowledge makes the stories feasible and 
fulfills the expectations formalized as test assertions).  

9.2.2 Errors and Failures 

We categorized the errors and failures obtained when applying TDCM in this case 
study. Neither syntactical errors nor incorrectly formalized expectations in test cases 
were considered in this analysis. Table 5 shows the categorization and the 
applicable changes to fix each error and failure. 
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Table 5. Errors and failures categorization (Bowling game case study) 

The chart of Fig. 54 shows the occurrence of the different types of errors and 
failures, which drove the development of the conceptual schema of the bowling 
game case study. We observe that:  

− 39% of the errors and failures revealed basic types (Rel_BT), derived types 
(Rel_DT) or event types (Rel_ET) which were not defined in the schema.   

− 36% of the errors/failures revealed incorrect definitions of domain event 
types, either because the state before the occurrence was inconsistent 
(EvOc_bef), or because the state after the occurrence was inconsistent 
(EvOc_after), or because the postcondition was not satisfied (EvOc_post). 

Code Description Suggested changes to the schema 
to fix the error/failure 

Number 
of times 
revealed 

Perc. 
(%) 

Rel_BT An expected relevant base type (entity 
type or attribute or association) is not 
specified in the conceptual schema. 

Specify the base type in the 
conceptual schema. 

14 22,6 

Rel_DT An expected relevant derived type is 
not specified in the conceptual 
schema. 

Specify the derived type (and its 
derivation rule) in the conceptual 
schema. 

8 12,9 

Rel_ET An expected relevant event type 
(domain event or query) is not 
specified in the conceptual schema. 

Specify the event type (and its effect 
or answer) in the conceptual 
schema. 

2 3,2 

EvOc_bef The IB state before an expected event 
occurrence is inconsistent (the event 
specification is invalid). 

Some (too restrictive) static 
constraints or preconditions are 
updated. 

1 1,6 

EvOc_after The IB state after an expected 
occurrence of an event is inconsistent 
(the event specification is invalid). 

The event postcondition, the event 
method or a static constraint are 
updated. 

13 21,0 

EvOc_post The postcondition is not satisfied after 
an expected event occurrence. 

Either the method or the 
postcondition are updated. 

8 12,9 

Sem_exp An OCL expression in a test case or in 
the conceptual schema is not valid or 
inconsistent (e.g. invalid operations for 
specific types). 

Either the expression in the test 
case is corrected or an element of 
the schema needs to be changed 
according to the semantic error 
revealed. 

4 6,5 

Ib_ass A test assertion about the IB state 
fails. 

The effect of an event type or a 
derivation rule needs to be 
corrected. 

11 17,7 

NonOc_ass A test assertion about the non-
occurrence of an event fails. 

An event initial integrity constraint 
(postcondition) needs to be 
added/updated. 

1 1,6 
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Fig. 54. Errors and failures revealed (Bowling game case study) 

− 20% of the errors correspond to unexpected results (assertions that fail). 
Most of them are assertions about the Information Base (IB) state (18%). 
Others are failing assertions about the non-occurrence of events (2%).  

− Some iterations have been driven by other semantic errors in OCL 
expressions (e.g. operations which are applied to invalid element types).  

9.2.3 Iterations Analysis 

In the following we analyze and compare the 12 iterations (we name them as 
it1…it12) that have been performed by applying TDCM to the bowling game case 
study.  

Fig. 55 represents the testing specification productivity (lines of test added/minute). 
We observed that, in general, the productivity tends to increase as we make 
progress in the TDCM application. We also realized that there are peaks of 
productivity in the iterations that reuse previously used testing structures. In 
contrast, the testing specification consumed more time when we specified new and 
non-familiar stories. 

Fig. 56 represents the total time spent in each iteration. In most iterations, the time 
spent in the TDCM development (fixing errors and failures) is greater than the time 
spent in the specification of test cases. It means that in most of the iterations, the 
testing specification time worth the while because the test case drives the evolution 
of the conceptual schema. In other words, we realize that the task of writing test 
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cases (which it should be considered also in the case of test-last strategies) is 
useful in order to progressively detect errors and failures that guide the conceptual 
modeling process. 

 

 

Fig. 55. Testing specification productivity in the bowling game case study (lines per minute) 

 

 
Fig. 56. Total time per iteration in the bowling game case study 

Schema evolution time (minutes) 
Testing specification time (minutes) 
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Iterations It4 and It7 are exceptions. In these iterations, the time spent on evolving 
the schema is insignificant because the result is Pass in the first execution. They 
increase confidence on the validity of the schema but they do not drive its evolution.  

Fig. 57 illustrates the distribution of the different kinds of errors and failures while 
TDCM is applied. We can observe that, in first iterations, the main errors found 
correspond to relevant types that are not in the schema. As we add domain events, 
inconsistent states that require refining static constraints and correctly specifying the 
effect of these events were revealed. After the peak of the first initial knowledge to 
be defined, the following iterations provided other kinds of errors and failures 
(incorrect derivation rules, inconsistent expressions, etc.) that lead to refine some 
events or to add new knowledge. 

Another observation is that not all kinds of knowledge require the same effort to be 
evolved or corrected according to the processed test cases. In first iterations, the 
number of errors and failures is greater because we mainly add relevant knowledge. 
After that, when we specify the effect of the events and we make assertions about 
derivation rules or the IB states reached by the events, the required effort is greater 
because it is less evident how to change the schema in order to reach the verdict 
Pass. 

 

 
Fig. 57. Distribution of errors/failures throughout iterations (Bowling game case study) 
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9.3 The OSTicket Case Study 

In this section, we analyze the results of the development of the conceptual schema 
of the osTicket system presented in Section 9.1.2 by applying TDCM. In this case 
study, we analyze the same aspects described in the bowling game case study in 
order to compare and verify the results by taking into account another experience in 
the development of the conceptual schema of an existing real-sized system. 

We performed 100 iterations. There was not any intention for a particular number of 
iterations. 6,38 hours were invested on test cases specification and 13,8 hours were 
spent in the evolution of the schema under development. The full details of the case 
study may be found in (Tort 2011b). 

9.3.1 The Resultant Conceptual Schema and the Test Set 

The resultant conceptual schema consists of 28 classes, 92 attributes, 44 
associations, 24 event types, 3 derivation rules and 51 integrity constraints.  In 
contrast with the conceptual schema of the bowling game system, where derived 
knowledge characterizes the system, in this case there are several event types 
which increase the complexity of the behavioral part of the schema. The resultant 
test set consists of 2002 lines which are part of 101 test cases and 25 fixture 
components (reusable initial states shared by different test cases). Table 6 
summarizes general and aggregated data about the case study. 

 

 

 
 
 
 

osTicket Conceptual Schema 

Classes 28 
Attributes 92 
Associations 44 
Event types 24 
Integrity constraints 51 

TDCM iterations 

Number of iterations 100 iterations 

Total  development time of the 
iterations 

20 hours 11 
minutes 

Total time to specify test cases 6 hours 23 minutes 

Total time to evolve the conceptual 
schema under development 

13 hours 48 
minutes 

Average of lines per test case 20,02 lines 

Average of testing specification 
time per iteration 7,6 minutes 

Average of conceptual schema 
development time per iteration 16,4 minutes 

Average of changes  to the 
conceptual schema per iteration 4 changes 

osTicket Test Set 

Number of test cases 101 
Lines of test cases 2002 
Fixture components 25 

Table 6. Aggregated data about the osTicket Case Study 
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The schema is correct according to the expectations formalized in the test set (the 
knowledge included in the conceptual schema fulfills the expectations formalized as 
test case assertions) and complete (the knowledge it contains makes feasible the 
test set execution).  

However, more user stories could be designed and, consequently, more test cases 
could be specified in order to increase our confidence about the correctness and the 
completeness, by testing the schema in more representative cases. This is a 
drawback inherent to all the testing processes, because the number of possible test 
cases is infinite. In this case study, we learned that it is very important to specify the 
test cases based on a representative set of user stories according to a planned 
testing strategy. 

9.3.2 Errors and Failures 

In this case study, we applied the same categorization of errors and failures 
obtained in the previous case study. Table 7 shows the categorization of errors and 
failures and its frequencies revealed in the present case study. We realized that this 
categorization and the suggested associated actions are useful guidelines to help 
making progress in TDCM. The description of the suggested actions was refined 
and a new kind of failure was added (failing assertions about the consistency of a 
state). The new kind of error is only applicable when states are checked without the 
use of events.  

 
Fig. 58. Errors and failures revealed (osTicket Case Study) 
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Table 7. Errors and failures categorization (osTicket case study) 

Fig. 58 shows the occurrence of the different types of errors and failures which lead 
the changes to evolve the schema when TDCM was applied in the osTicket case 
study. We observe that TDCM drove the development of the conceptual schema by 
asking to fix three main kinds of errors and failures:  

− 58,1% of the errors and failures revealed basic types (Rel_BT), derived 
types (Rel_DT) or event types (Rel_ET) which were not defined in the 
schema.   

− 17,5% of the errors/failures revealed incorrect definitions of domain event 
types, either because the state before the occurrence was inconsistent 

Code Description Suggested changes to the schema 
to fix the error/failure 

Number 
of times 
revealed 

Perc. 
(%) 

Rel_BT An expected relevant base type (entity 
type or attribute or association) is not 
specified in the conceptual schema. 

Specify the base type in the 
conceptual schema. 

210 52,4 

Rel_DT An expected relevant derived type is 
not specified in the conceptual 
schema. 

Specify the derived type (and its 
derivation rule) in the conceptual 
schema. 

2 0,5 

Rel_ET An expected relevant event type 
(domain event or query) is not 
specified in the conceptual schema. 

Specify the event type (and its effect 
or answer) in the conceptual 
schema. 

21 5,2 

EvOc_bef The IB state before an expected event 
occurrence is inconsistent (the event 
specification is invalid). 

Some (too restrictive) static 
constraints or preconditions are 
updated. 

4 1,0 

EvOc_after The IB state after an expected 
occurrence of an event is inconsistent 
(the event specification is invalid). 

The event postcondition, the event 
method or a static constraint is 
updated. 

10 2,5 

EvOc_post The postcondition is not satisfied after 
an expected event occurrence. 

Either the method or the 
postcondition is updated. 

56 14,0 

Sem_exp An OCL expression in a test case or in 
the conceptual schema is not valid or 
inconsistent (e.g. invalid operations for 
specific types). 

Either the expression in the test 
case is corrected or an element of 
the schema needs to be changed 
according to the semantic error 
revealed. 

7 1,7 

Ib_ass A test assertion about the IB state 
fails. 

The effect of an event type or a 
derivation rule needs to be 
corrected. 

39 9,7 

NonOc_ass A test assertion about the non-
occurrence of an event fails. 

An event initial integrity constraint 
(postcondition) needs to be 
added/updated. 

44 11,0 

AssConsis_
fails 

A test assertion about the consistency 
of an IB state fails. 

A static constraint prevents the IB 
state to be consistent and it is 
updated. 

8 2,0 
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(EvOc_bef), or because the state after the occurrence was inconsistent 
(EvOc_after), or because the postcondition was not satisfied (EvOc_post). 

− Other errors correspond to unexpected results (assertions that fail). Most of 
them are assertions about the non-occurrence of events (11%), and about 
the IB state (9,7%). Others are assertions that check the consistency of an 
IB state (2%). 

− In this case study, a few iterations were driven by other semantic errors in 
OCL expressions, such as incompatible types or invalid operations for 
some types. 

9.3.3 Iteration Analysis 

Fig. 59 represents the testing specification productivity (added/updated lines of test 
cases per minute). We observe that, in general, the productivity tends to increase 
and decrease periodically.  

 

Fig. 59. Testing specification productivity in the osTicket case study (test cases lines per minute) 

If we analyze the iterations, we may observe that test cases may be grouped into 
similar stories (e.g. stories which are tested with variations or using different initial 
states or conditions). The first time we specify a test case associated to different 
testing objectives, the testing specification productivity decreases. However, when 
we specify story variations, then the productivity increases.  
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Fig. 60. Total time per iteration (osTicket case study) 

We realize that there are peaks of productivity in iterations in which previously used 
testing structures are reused. In contrast, the testing specification consumes more 
time when we specify stories with new (and probably unknown) structures.  

The chart presented in Fig. 60 analyzes the total development time that were used 
to complete each iteration. As it happens in the previous case study, in most 
iterations the time spent in performing changes to evolve the schema (fixing errors 
and failures) is greater than the time spent in the specification of test cases. 
Therefore, we observe again that the testing specification time worth the while 
because many test cases encourage the conceptual schema to be evolved. 
Similarly to the previous case study, the exceptions are those iterations which pass 
in the first execution. They only increase confidence about the correctness of the 
schema but no schema changes are induced. In these iterations, the time spent by 
designing and specifying the test case is higher in comparison with the TDCM 
iteration time spent. 

Fig. 61 shows a diagram that summarizes the occurrence of errors and failures 
throughout the iterations performed in this case study. We can observe that, in first 
iterations, the main errors and failures found are about relevant types that are not in 
the schema. These iterations correspond to the processing of test cases about the 
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basics and configuration of the system. Once the main static schema elements are 
specified in the schema, the type of failures and errors that drive the schema 
evolution change significantly. As we add the first domain events, we detect 
inconsistent states which require refining static constraints and correctly specifying 
the effect of these events, but only some static knowledge is required to be added.  

 

 

Fig. 61. Distribution of errors/failures throughout iterations (osTicket Case Study) 

The analysis of the distribution of errors and failures (Fig. 61) together with the time 
spent on the evolution of the schema (Fig. 60) suggests that not all kinds of 
knowledge require the same effort to be fixed. In the first iterations the number of 
errors/failures is greater, mainly because only add relevant knowledge was added to 
the schema. After the addition of the basic static knowledge (which was necessary 
to support the execution of the following test cases), test cases that represent 
sequences of event occurrences (common user stories) were processed. When the 
specification of the events effect was defined and assertions about the IB states 
reached by the events failed, the required effort to fix them was greater, because it 
is less evident how to change the schema in order to reach the verdict Pass. 
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9.4 Event Reservations and Old People’s Home 
Case Studies 

In this section, we interpret and analyze the results of the application of TDCM for 
the two case studies presented in Section 9.4. These cases were developed by 
master students in the context of a requirements engineering course. Two different 
groups of master students developed each conceptual schema in each project from 
the same project formulation. For each project edition, one of the groups developed 
the schema by using TDCM. The objective of these cases studies was different from 
the previous ones. In this case, the main aim was collecting the opinions of 
developers who used the method for the first time.  

9.4.1 Resultant Conceptual Schema Quality 

The evaluation of the resulting schema delivered by each group showed that the 
semantic quality (correctness and completeness) of schemas developed by using 
TDCM is significantly higher in comparison with schemas developed by students 
who did not apply TDCM. Firstly, because the schema developed by TDCM was 
executed. Secondly, it was developed in conjunction with a test set that guides the 
development and enhances the validation of the schema.  

We also observed that schemas developed without TDCM contain incorrect 
knowledge such as unsatisfiable constraints, incorrect knowledge according to the 
requirements specification or inconsistencies between the structural schema and 
the behavioral schema. These kinds of errors were not present in the schema which 
was developed with continuous testing by applying TDCM. 

9.4.2 Observation of the Method in Practice 

The development of the schemas was observed by the teachers during the project 
course sessions. The observations revealed that the groups of students that used 
TDCM developed the schema in a more systematic way. The objectives to be 
achieved in order to develop the schema were clearly stated at the beginning of 
each session and the test set was used to check the evolution of objectives and the 
remaining work to be done.  

The participants who used TDCM were supported by continuous feedback. They 
also had executable tests to support the resolution of different points of view about 
the knowledge to be added and about inconsistent requirements.  
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9.4.3 Opinions about Use 

The opinions of the participants were collected through a survey once the marks 
were published. The survey included several questions with predefined answers: (1) 
the degree of difficulty experienced for each kind of knowledge, (2) the importance 
of the test set for the confidence on the schema quality, (3) the difficulties related to 
reconsideration of previously defined knowledge, and (4) the general impression 
about the utility of the method. 

The analysis of the opinions suggests that those students who apply TDCM are 
more confident about the semantic quality of the delivered schema. Note that those 
who did not use TDCM did not have the support of test cases to obtain feedback 
(only the questions answered by the teachers and the comments about a 
preliminary delivery). However, students who applied TDCM report that the time 
invested to develop the conceptual schema was greater (especially in initial 
iterations, where they need to be familiarized with the testing environment). Another 
TDCM feature that was positively rated is that TDCM provides a systematic way of 
performing conceptual modeling. Most of the students also remarked the 
importance of dealing with focused objectives as a way to avoid getting lost in a 
growing conceptual schema. Nevertheless, some of them considered that more 
effort is needed to develop more user-friendly tools to manage the application of 
TDCM.  

The participants were also asked to write between three and five advantages and 
drawbacks of the method according to their experience. The results are summarized 
in Table 8. 

 
Advantages Drawbacks 

Confidence on quality / 
executability of the schema 

45,5% Technical improvements 
(parsing, text editor, etc.) 

33,3% 

Feedback during the 
conceptual modeling activity 

27,3% Testing effort consumes time 25,0% 

Focus on small objectives / 
Work organization 

18,2% More detailed errors and 
failure information 

25,0% 

Consistency between structural 
and behavioral schemas 

9,1% More cooperative elements in 
the supporting tool 

16,7% 

Table 8. Advantages and drawbacks expressed by participants 
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9.5 Lessons Learned 

The successful application of Test-Driven Conceptual Modeling (TDCM) in the four 
case studies reported in Sections 9.2, 9.3 and 9.4 shows that this novel method 
(which is one of the main contributions of this Thesis, presented in Chapter 8) may 
be applied in practice.  

As a result from these application case studies, we categorized the kinds of errors 
and failures that drive TDCM iterations (see Table 5 and Table 7). We classified the 
most common actions to fix them in order to evolve the conceptual schema under 
development. Furthermore, we realized that this categorization is a useful guideline 
for future applications of TDCM, which complements the guidelines explained in 
Section 8.3. 

Additionally, subjective information about the use of the method was also collected 
through questionnaires and direct observation during the application of TDCM by 
the participants of the Yuuzuu reservation system and the old people’s home case 
studies. The analysis points out that TDCM contributes to increase the confidence 
on the quality (correctness and completeness) of the schema. The obtained 
feedback during schema evolution, the controlled resolution of inconsistent 
requirements and the process of taking focused decisions during conceptual 
modeling are also remarked as other significant contributions of TDCM.  

Given that TDCM is developed in the context of design research (Hevner et al. 2004), 
the reported case studies were useful to improve by use the supporting tool. We 
also refined the information provided by the test processor in order to enhance the 
response to errors and failures information in future TDCM applications.  

Finally, we experienced the importance of defining a testing strategy in the context 
of the general requirements engineering method in which TDCM is applied (see 
Section 10). The refinement of previously defined test cases may be minimized by 
defining a strategy that includes the order of testing based on the complexity and 
the dependencies between stories.  

We consider that the discussed set of test cases validates the viability of TDCM and 
serves as an analysis to identify the main properties that characterize the TDCM 
iterations. However, more experimentation in industrial contexts should be done in 
order to enhance the evaluation of this new conceptual modeling method. 

In summary, the analysis of the data collected in the case studies allows learning 
lessons about the resultant conceptual schema, the testing effort, the iterations 
productivity and the common iteration patterns have been learned and discussed. A 
summary of these lessons learned is discussed in the following. 
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9.5.1 The Viability of TDCM 

The initial objective of the present work was checking the viability of TDCM. This 
objective included the applicability of the TDCM cycle, the use of the automated 
testing language and the adequacy of the supporting tool.  

In the four case studies, TDCM was successfully applied and improvement 
opportunities were revealed. We realized, for example, that is useful and possible to 
apply TDCM with more than one test case per iteration. We also experienced that 
the general development method and the context in which TDCM is applied 
constraints the elicitation of the stories to be processed. The reported case studies 
show that TDCM is a viable method in practice.  

It is important to remark that, in these experiments, all the evolution changes in the 
schema have been systematically performed when an error or a failure has driven it. 
However, TDCM is adaptable to the experience of the modeler. Smaller changes 
and more frequent checking of the testing verdicts provide more failing/error 
information to guide the definition of the schema. More regression testing provides 
more confidence about the already included knowledge.    

9.5.2 Conceptual Schema Quality 

After the application of TDCM in the three discussed case studies, we obtained two 
artifacts: (1) an executable conceptual schema, and (2) a test set that validates the 
correctness and the completeness of the schema according to the expectations 
formalized in the test cases. 

It is important to note that, in contrast with traditional conceptual modeling 
approaches, we additionally obtain a test set which provides a high level of 
confidence on the quality of the schema. The opinions expressed by the participants 
of the case studies point out that the test set is valuable for self-confidence on the 
quality of the schema and also as a transparent and executable artifact to externally 
prove its quality.  

9.5.3 Errors and Failures to Drive Conceptual Modeling 

In TDCM, the schema evolution depends on the errors and failures information 
obtained by the automated execution of test cases. 

In the bowling game and the osTicket case studies, we focused on the analysis of 
the kinds of errors and failures that drive schema changes. Table 5 and Table 7 
show the categorization of the different kinds of errors and failures. We also 
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categorized the common actions to solve each error/failure. We first performed a 
first version of the categorization during the bowling game case study. After that, 
during the application of TDCM in the osTicket report, we refined the categorization 
and we observed that it was very helpful for the modeler, because it suggests fixing 
actions when a new failure or error needs to be processed.  

9.5.4 Testing Effort 

The reported case studies suggest that writing and managing test cases implies 
specification effort. Nevertheless, the test set is highly rated as useful or providing 
feedback during the conceptual schema evolution. It is also considered to be a 
valuable artifact because it provides justification of the validity of the resultant 
conceptual schema. In the context of automated transformation of conceptual 
schemas into executable code, the test set corresponds to the conventional 
program test set.  

It is important to remark that, in the four case studies, the time spent to specify the 
test cases in each iteration varies depending on the complexity of the formalized 
stories, according to each testing objective. In the reported case studies, we also 
observed that in most iterations, the testing effort time is significantly lower than the 
time spent on evolving the schema. This is an important observation for the 
feasibility of TDCM: the testing effort worth a while taking into account the 
continuous feedback and the schema evolution time. 

Another observation is that the testing specification productivity varies periodically: 
when a new story with different knowledge needs to be formalized, the specification 
effort increases; when variants of a story are formalized as test cases, then the 
specification effort decreases. The reason is that when testing structures are reused 
the testing specification productivity increases.  

Finally, we also observed that as the testing language is more familiar to the 
modeler, the testing specification productivity tends to increase. 

9.5.5 Iterations Productivity 

The bowling game and the osTicket case studies analysis shows that the time spent 
in the conceptual schema evolution (by fixing errors/failures) is greater than the time 
used to specify the test cases. Therefore, most of the test cases are productive 
because they lead to make progress in the evolution of the schema. The exception 
are those iterations that pass in the first execution (they increase our confidence 
about the validity of the schema, but they do not drive changes).  
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9.5.6 Iteration Patterns 

By analyzing the reported studies in conjunction, we found the following iteration 
patterns: 

− The kinds of errors and failures that drive the schema evolution are not 
uniformly distributed in the iterations: In first iterations, the most common 
errors are about missing relevant types (which are necessary to build IB 
states). After that, the most common errors/failures are about the correct 
definition of domain event types and the correctness (according to the 
assertions) of the reached IB states.  

− The time spent on evolving the schema depends on the kind of errors and 
failures to be fixed: We observed that not all errors/failures required the 
same effort to be fixed. This analysis suggests that missing relevant types 
are trivial to be fixed (they need to be added). However, the changes to fix 
failing assertions about the state of the domain or incorrect domain event 
specifications may require more complex actions such as changing 
derivation rules, integrity constraints or the precondition and postcondition 
of the effect of the event. 

These observations may be useful to estimate the development time when using 
TDCM.  

9.5.7 Feedback and Guidance 

The participants involved in the RE course case studies highly rated that, in TDCM, 
the conceptual schema is developed accompanied by a validation test set.  They 
pointed that one of the main advantages of TDCM is the constant feedback 
provided in each iteration. In contrast, the students who did not use TDCM only 
obtained feedback from the teachers in the provisional delivery. 

It is important to remark that the teachers observed that the management of the 
development was better organized and clear. The students also commented this 
feeling in several occasions. The resolution of conflicts between different points of 
view about the knowledge to be added in the schema led to long discussions in the 
group that did not apply TDCM. The main reason was that discussions were usually 
about the whole conceptual schema without centering on local decision points. In 
the group that applied TDCM, discussions about the knowledge to be added to the 
schema were focused in the testing objective to be achieved in each moment. 

Finally, the observed experience suggests that traceability between the different 
requirements engineering artifacts (including the conceptual schema) is higher 
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when TDCM is applied, because test cases are based on user stories which belong 
to use cases. In each moment, the passing test cases determine which stories the 
conceptual schema under development admits.  

9.5.8 Testing/Development Strategy 

The application of TDCM in the presented case studies reveals the necessity of a 
testing strategy to support TDCM, which should be defined prior to the method 
application. We envisioned that the incremental development of conceptual 
schemas could imply the necessity of rewriting test cases to maintain consistent 
stories while the set of valid states changes. Given that test cases drive the 
development, in TDCM the testing strategy is, in fact, the development strategy.  

We have observed that in the bowling game and the osTicket case studies, the 
rewriting testing effort and the reconsideration of previously defined knowledge is 
irrelevant. In both cases, the definition of a testing strategy prior to the TDCM 
application was performed. The strategy took into account the dependencies and 
the complexity of the user stories. The reported case study suggests that when the 
strategy is aligned to the incremental nature of TDCM and minimizes the necessity 
of testing rewriting. 

In contrast, in the case studies developed in the requirements engineering course 
no previously specified testing strategy was formalized. The developers who applied 
TDCM reported that they needed to reconsider previously defined knowledge and 
test cases several times. Nevertheless, they expressed that regression test cases 
were useful to facilitate this task. The group who did not apply TDCM expressed 
that going backs and reconsideration of knowledge was the main issue and the 
most difficult one to be solved.  
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10 
10 Integrating TDCM into 

Existing Software 
Methods 

In Chapter 8, we defined the TDCM method regardless the general method in which 
it is applied. In this chapter, we present an integration approach of TDCM into the 
Unified Process (Section 10.2), into Model-Driven Development (Section 10.3), into 
goal and scenario-oriented methods in Requirement Engineering (RE) (Section 
10.4), and into hybrid methods that combine agile storytest-driven development with 
conceptual modeling (Section 10.5).  These integration proposals are based on the 
context and notation explained in Section 10.1. 

10.1 Integration Context 

Conceptual schemas are usually developed in the context of existing requirements 
engineering or general software development methods. The Test-Driven Conceptual 
Modeling (TDCM) method presented in Chapter 8 is applicable to different kinds of 
projects and may be integrated into existing software development methods. 

Nevertheless, it is important to note that TDCM may be used even if the conceptual 
schema to be developed is the main purpose of the project. For example, TDCM 
can be applied when the developed conceptual schema is going to be used as a 
reference model, when it is a metaschema to be instantiated in several applications 
or in conceptual modeling education to assist students and novel designers to 
develop conceptual schemas.   
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Fig. 62 presents the context in which TDCM is used within a general method that 
includes conceptual modeling as a Requirements Engineering (RE) activity. The 
general method and the integration approach condition the testing strategy for 
applying TDCM. Its main purpose is determining (1) the source artifacts available 
when starting the TDCM application, (2) how test cases are derived from the source 
artifacts, (3) the iteration sequence, and (4) the finalization condition of TDCM.  
Since TDCM is driven by tests, the testing strategy is, in turn, the strategy for the 
development of the conceptual schema. Therefore, in this document, we simply 
refer it as testing or development strategy. 

 

 
Fig. 62. TDCM context 

Table 9 summarizes the integration approaches discussed in the following sections. 
For each case, we define the artifacts that may be used to specify the conceptual 
schema (target artifacts) and we describe an integration context to develop them by 
applying TDCM. We also suggest the artifacts that may be used as a base for the 
TDCM application (source artifacts). Source artifacts may contribute to suggest test 
cases for the TDCM application. These artifacts can also contribute to prioritize and 
plan the processing order of test cases. Finally, we describe the finalization 
condition of the TDCM iteration sequence.  

 

Preliminary 
Conceptual schema 

(may be empty) 
Previous  
artifacts & activities 

RE method 

TDCM 

Test set (TS) 

Validation  
test set 

Guidelines 

Conceptual schema 
structural & behavioral 

subschemas 

validates 

Next  
artifacts & activities 
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Table 9. TDCM integration summary 

Integration method Source 
artifacts  

TDCM 
iteration 
sequence 

TDCM 
finalization 
conditions 

Target artifacts 

Unified Process (UP) 
Larman, C. 
(Larman 2005) 
 

 Use case 
model 
 

 System 
Sequence 
Diagrams 
(SSDs) 
 

 Domain model 
(may be 
empty) 

Determined 
from the order in 
which use cases 
are iteratively 
defined. 

For each use case 
scenario, there is 
at least a 
representative 
concrete scenario 
formalized as a 
test case. 

 Structural design 
model 

 System events 
specification 
(contract-based) 

 Validation test set 
 

Model-Driven Development 
(MDD) 
MDA  
(Mellor et al. 2002, Pastor et al. 
2007, Object Management Group 
(OMG) 2003) 
 

 Use case 
model 
 

 Scenario 
models 
(specified as 
sequence 
diagrams) 
 

 Preliminary 
conceptual 
schema (may 
be empty) 
 

Determined 
from the defined 
use cases and 
scenarios. 

For each use case 
scenario, there is 
at least a 
representative 
concrete scenario 
formalized as a 
test case. 

 Structural schema 
(PIM) 

 Behavioral schema 
(PIM) 

 Validation test set 

Storytest-Driven agile methods 

Storytest-Driven Development  

(Mugridge 2008) 
 

 User stories 
informally 
defined 
 

 Structural 
schema 
sketch (may 
be empty) 
 

 

Determined 
from the order 
in which user 
stories are  
iteratively  
defined. 

For each user 
story, there is at 
least a test case 
that formalizes the 
story. 

 Structural schema 
 Behavioral schema  
 Validation test set 

Goal and 
scenario- 
oriented 
methods 
GORE  
(Van 
Lamsweerde 
2009) 

Specification 
of operations 

 List of 
operations  
 

 Object model 

Determined 
from the list of 
operations 
which are 
expected to 
operationalize 
the goals. 

For each 
operation 
signature, there is 
at least a test 
case that tests it 
in a consistent 
state. 

 Operational model: 
operations 
specification to 
operationalize the 
goals. 

 Object model 
 Validation test set 

Object and 
operation 
model 
refinement 
and validation 
according to 
scenarios 

 Operation 
model  
 

 Behavioral 
Model 
(scenarios) 

Determined 
from the defined 
scenarios. 

For each defined 
scenario, there is 
at least a 
representative 
concrete scenario 
formalized as a 
test case. 

 Operation model 
 Behavioral model 
 Object model 
 Validation test set 
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10.2 Unified Process 

The Unified Process (UP) (Larman 2005) is an iterative method for software 
development. UP organizes the development process into five phases (Inception, 
Elaboration, Construction and Transition).  In each phase, artifacts are started or 
refined by applying a practice. UP proposes several practices and guidelines to 
develop each artifact. Each UP project is a particular instantiation of the process 
that selects a subset of the proposed artifacts and the convenient practices used to 
develop them.  

UP encourages including new practices from other iterative methods. (Larman 2005) 
explains that “the set of possible artifacts described in the UP should be viewed like 
a set of medicines in a pharmacy. On a UP project, a team should select a small 
subset of artifacts that address its particular problems and needs”.  

In the UP, the conceptual schema is specified in several artifacts (target artifacts). 
The structural schema is defined in a UML class diagram in the design model. 
System events are specified as operations and their effects are defined in a contract 
with pre and postconditions, which can be formally expressed in OCL. By applying 
TDCM, we can obtain, in a systematic way, the conceptual schema specified in the 
structural design model and the formal specification of the events (and its 
procedural methods). We also obtain a test set that validates the schema.  

The application of TDCM in a UP project should be performed at the elaboration 
phase (Fig. 63). UP proposes guidelines and techniques to develop the conceptual 
schema. UP suggests reusing reference schemas for many common domains, 
managing category lists or analyzing use case sentences to find concepts and 
relationships between them. We propose TDCM as a UP practice aimed at 
developing the structural and the behavioral parts of the conceptual schema of an 
information system under development. 

The source artifacts for the TDCM application are: 

− Domain model: It is a preliminary sketch with some static entity and 
relationship types used in the inception phase. This model, if not empty, 
can be used as the initial schema to be evolved by applying TDCM.  

− Use case model: It specifies the expected functionalities of the system. It is 
composed by the use case diagram and textual specifications of the 
representative system-actors interactions for each use case. 
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− System Sequence Diagrams (SSD): UP considers that a use case is often 
too complex to be defined or processed in a short iteration. Therefore, 
SSDs are used to specify scenarios for each use case. A test case to 
validate each SSD diagram can be written to drive the definition of the 
conceptual schema by applying TDCM. 

The TDCM iteration sequence would be determined by the use cases and their 
corresponding SSDs. For each representative use case scenario, there should be at 
least one test case to be processed in TDCM iterations. The correctness, the 
relevance and the completeness of the source artifacts (use cases and their 
corresponding SSDs) contribute to the quality of the derived test cases, and these 
are pursued by the integration method. The iteration sequence ends once all use 
case scenarios have been considered.  

Additionally, we obtain the event methods (a procedural specification of their 
effects). Event methods are of particular interest when a UP project uses UML/OCL 
conceptual schemas as a blueprint (relatively detailed model to allow code 
generation) or as a programming language (a complete executable specification in a 
conceptual schema centric development context (Olivé 2005)).  

Use case model 

System Sequence 
Diagrams (SSDs) 

Test set 

Domain model 

Design Model 

System events 
pre:______ 
post:_____ 

Validation 
 test set 

Fig. 63. TDCM integration into the Unified Process 
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10.3 MDD Approaches  

MDD (Mellor et al. 2002, Pastor et al. 2007, Object Management Group (OMG) 2003) is a 
software development paradigm in which a system is developed as a set of 
transformations from Platform-Independent Models (PIM) to Platform-Specific 
Models (PSM).  

The Object Management Group (OMG) adopted the Model-Driven Architecture 
(MDA) (Pastor et al. 2007, Object Management Group (OMG) 2003) to support MDD. MDA 
prescribes certain kinds of models to be used in MDD and specifies relationships 
between these models.  

In MDD approaches, conceptual schemas are specified as PIMs. (Mellor et al. 2002) 
suggests defining the structural schema in a UML class diagram and the behavioral 
schema as state machines with procedures that specify events as a sequence of 
actions. TDCM can be used to incrementally define and evolve these models (target 
artifacts).  

In MDD, the UML class diagram is obtained as a manual abstraction process from 
the domain, assisted by guidelines. MDD promotes the use of executable 
conceptual schemas in order to validate and verify them. In particular, (Mellor et al. 
2002) proposes to check class diagrams with expected instantiations. In this context, 
TDCM is a systematic method that puts this idea into practice while defining the 
schema.  

Before modeling the behavioral schema in UML artifacts, it is suggested to describe 
use cases and scenarios represented as sequence diagrams.  
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Fig. 64. TDCM integration into an MDD approach 
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The source artifacts for applying TDCM are: 

− Preliminary structural schema: It is a PIM with static knowledge manually 
derived from previous artifacts such as the use case model. This model, if 
not empty, can be used as the initial schema to be evolved by applying 
TDCM.  

− Use case model: It specifies the expected functionalities of the system. It is 
composed by the use case diagram and textual specifications of the 
representative system-actors interactions for each use case.  

− Scenario models: They are PIMs that specify representative use case 
scenarios as sequence diagrams.   

The TDCM iteration sequence would be determined by the use cases and their 
corresponding scenario models. For each representative use case scenario, there 
should be at least one test case to be processed in TDCM iteration. The iteration 
sequence ends once all use case scenarios have been considered.  

After the application of TDCM, we obtain a PIM that models the conceptual schema 
(comprising both the structural and behavioral aspects) of the system-to-be. The 
resultant conceptual schema is correct and complete according to the set of 
concrete scenarios specified as test cases. The resulting test set validates these 
quality properties.  

Moreover, we obtain a set of methods that specify in a procedural way the effect of 
the events, which make the conceptual schema executable. Methods can be used 
to facilitate the transformation from PIMs to PSMs, which can be manually 
performed or automated by model compilers. In contexts in which the conceptual 
schema is sufficient to obtain executable components of the system (Insfrán et al. 
2002, Olivé 2005, Nieto et al. 2010), then no transformation to PSMs needs to be 
performed, because the conceptual schema is executable software.  

10.4 Storytest-Driven Agile Methods 

Storytest-Driven Development (SDD) (Mugridge 2008) is an agile method based on 
eXtreme Programming (XP) principles (Beck et al. 2001). Agile development methods 
were originally conceived in contrast with plan-driven development. In Storytest-
driven development, the dominant form of communicating the requirements is user 
stories. User stories are domain-oriented descriptions of concrete use examples of 
the system (Mugridge 2008). Stories are formalized as program tests that are intended 
to be executed on the implementation. (Koskela 2007) argues that in SDD, tests 
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should be used as a shared language that forces to transform ambiguous 
requirements into executable tests. He also summarizes that storytest-driven 
development is about “specifying by example”. 

As explained in the related work reviewed in Chapter 7, many authors advocate that 
plan-driven development and agile development can and should be used in 
conjunction. For instance, (Boehm 2002) indicates that “hybrid approaches that 
combine both methods are feasible and necessary. (Meyer 2008) states that program 
tests “even a million of them, are instances; they miss the abstraction that only a 
specification can provide”, so that “tests are not substitute for specifications”. In 
summary, these authors claim that the main aim of agile development is “efficiently 
respond to changes”, and models can contribute to agility by providing a base in 
order to efficiently respond to changes during software development. Class diagram 
sketches are promoted to “think before you act”.  

In projects in which requirements elicitation is performed by capturing stories and 
the conceptual schema is explicitly modeled in one or more artifacts (target 
artifacts), then TDCM can be used to define the schema. Stories can be formalized 
as conceptual schema tests, as it can be observed in Chapter 4. These stories can 
be executed at the conceptual modeling stage, providing traceability between the 
captured stories and the test cases that guide the conceptual modeling activity.  

In this context, the source artifacts for applying TDCM are the set of user stories 
and the conceptual schema sketch (if exists).  

The target artifacts are the diagrams that specify the conceptual schema in an 
executable form and at the desired level of detail.  

User stories are elicited and informally specified iteratively. The TDCM iteration 
sequence would be determined by these stories. For each story, there should be at 
least one iteration (test case) that formalizes it. The iteration sequence ends once 
all stories have been formalized as test cases and all test cases have been 
processed. 

By applying TDCM, contradictions between stories (i.e. requirements conflicts) can 
be detected (the verdict of more than one non-passing test cases cannot become 
Pass unless at least one test case is changed). Using the terminology of (Robinson et 
al. 2003), we can say that there is a negative interaction between the functional 
requirements captured by the stories, because the satisfaction of one of them is 
reduced as the result of satisfying the other one. 
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Fig. 65. TDCM integration into Story-test driven Development 

Moreover, TDCM can reveal the necessity of describing new stories. If the set of 
defined stories is prioritized, then TDCM may process user stories according to this 
prioritization.  

10.5 Goal and Scenario-Oriented Methods 

Goal-Oriented Requirements Engineering (GORE) advocates the use of goals for 
requirements elicitation, evaluation, definition and validation. A goal is a prescriptive 
statement of intent that the system should satisfy through the cooperation of its 
agents (active system components playing a specific role in goal satisfaction) (Van 
Lamsweerde 2009). 

Several approaches to identify goals and refine them have been proposed. Goals 
refinement can be modeled in diagrams (Fig. 66). Leaf nodes are goals whose 
responsibility can be assigned to a single agent. Leaf goals that can be assigned to 
a single agent are requirements.  

In the following we propose the integration context for using TDCM in the goal-
oriented requirements engineering approach which has been recently proposed by 
(Van Lamsweerde 2009). This approach is based on the development of several 
interrelated models: 

− Goal model:  It specifies the system’s goals in terms of individual features, 
such as their specification, elicitation source or priority, potential conflicts, 
etc. 
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Fig. 66. A goal model fragment of a meeting scheduler system 

− Obstacle model: It specifies conditions (in the form of a special kind of 
goals) that may obstruct the realization of the goals defined in the goal 
model. It is a goal-form of a risk analysis. 

− Object model: It models the structural view of the system by means of the 
static knowledge that concerns the realization of goals. 

− Agent model: It models the responsibility view of the system. It specifies the 
agents that are responsible for each goal. 

− Operation model: It models the functional view of the system. It specifies 
the operations (by means of pre and postconditions) that operationalize 
each goal. 

− Behavior model: It models the behavioral view of the system in terms of 
scenarios for capturing interaction (operations execution) among agents. In 
Requirements Engineering, goals and scenarios complement each other 
(Van Lamsweerde 2009, Pohl 2010, Rolland et al. 2005). Heuristics are suggested 
to ensure that the set of scenarios cover the goals, by considering both 
positive and negative scenarios.  

In this approach, the conceptual schema is defined by the object model (structural 
conceptual schema) and the operation model (behavioral conceptual schema).  

TDCM may be applied for two different purposes (Fig. 67) in the context of this 
GORE approach: 1) Specify the operations that operationalize the goal model, and 
2) refine and validate the object and the operation model according to scenarios.  
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Fig. 67. TDCM integration into a GORE method 

In the first case, the purpose is the definition of the effect (pre and postconditions) of 
the operation model and refining the object model (target artifacts) according to the 
goal model, the preliminary definition of the object model and the list of operations 
to realize each leaf goal (source artifacts). The TDCM iteration sequence would be 
determined by the operations list and the goals that they intend to operationalize. 
For each operation, there should be at least one TDCM test case that builds an 
initial state based on the associated goal description (CSTL allows defining IB 
states with specific CSTL statements, instead of asserting the occurrence of events 
(Tort et al. 2010)) and tests the occurrence of the operation. The iteration sequence 
ends once all operations have been considered. We also obtain a resulting test set 
that validates that each operation correctly operationalizes its associated goal in at 
least one representative case. 

In the second case, the purpose is refining and validating the object model and the 
operation model (target artifacts) by considering the scenarios defined in the 
behavioral model and the previous versions of the object model and the operation 
model (source artifacts). The TDCM iteration sequence would be determined by the 
scenarios of the behavioral model. For each scenario, there should be at least one 
test case. The iteration sequence ends once all scenarios have been considered. 
The resulting test set validates that both the operation model and the object model 
allow the execution of the scenarios of the behavioral model. 

It is important to note that, as proposed by GORE, TDCM preserves the user 
intention expressed in goals to the conceptual schema, because the knowledge 
added to the schema is driven from failures/errors produced by the execution of test 
cases (which are derived from goal-based models).  
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As explained in Table 3, TDCM can detect conflicts between requirements (which 
can be graphically represented in the goals model). In general, the use of TDCM 
may suggest changes (additions, updates) to the goals model. 

Techniques for goal risk analysis and prioritization are also proposed in goal-
oriented methods. These techniques may be useful to decide the processing order 
of test cases while applying TDCM. 
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11 
11 Test Adequacy 

Criteria for Testing 
Conceptual Schemas 

In this chapter, we present a set of four basic properties for determining the 
adequacy of a test set aimed to ensure the validity of the knowledge defined in a 
conceptual schema. These properties, named test adequacy criteria, may be used 
in conjunction with the approach for testing conceptual schemas (Chapter 4) and in 
Test-Driven Conceptual Modeling (TDCM) (Chapter 8).  

The structure of the chapter is as follows. In Section 11.1, we present the four 
adequacy criteria for testing the necessary conditions for conceptual schema 
validity. Furthermore, in Section 11.2, we explain a procedure for testing conceptual 
schema satisfiability by testing, based on the theory that fundaments the basic set 
of adequacy criteria.  

11.1 A Basic Set of Adequacy Criteria for Testing 
Conceptual Schemas 

In previous chapters, we have seen how to test an executable conceptual schema 
by writing a set of tests and making them pass. However, not all possible test sets 
are equally adequate to increase the confidence about the semantic quality (validity 
and completeness) of the conceptual schema.  
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In Chapter 2, we have seen that a conceptual schema of an information system has 
semantic quality when it is valid and complete. Validity means that the schema is 
correct (the knowledge defined in the schema is true for the domain) and relevant 
(the knowledge defined in the schema is necessary for the system). Completeness 
means that the conceptual schema includes all relevant knowledge. 

Our approach to test conceptual schemas (Chapter 4) is aimed at validating 
correctness and completeness according to stakeholders’ needs and expectations. 
In our approach, system's functions are captured by a set of expected concrete 
scenarios written as test cases. When their execution produces the expected 
results, then we can ascertain that the conceptual schema is complete according to 
the test set. Otherwise, some test case would not succeed, because the schema 
does not define some relevant knowledge that is required to execute the test cases. 
We can also ascertain that the part of the conceptual schema involved in the 
execution of the test cases is correct according to the expectations defined in the 
executed test set. Otherwise, some expectation formalized in the test set would be 
wrong and the test case would fail.  

However, our approach to test conceptual schemas does not guarantee by itself 
that all the knowledge defined in the conceptual schema is valid according to the 
executed test set. The reason is that the schema could include knowledge that is 
not relevant for the formalized scenarios, and this irrelevant knowledge could even 
be incorrect.  

At this point, the following question arises: Which are the basic properties that tests 
of conceptual schemas should have? The key concept developed in the software 
testing field for this purpose is that of adequacy criterion (Zhu et al. 1997). A typical 
example, in program testing, is the criterion that requires that each statement of a 
program is executed at least once by a test set. Of course, many other criteria are 
possible. In the context of conceptual schema testing, we can say that an adequacy 
criterion C is a requirement on a test set TS of a conceptual schema CS such that if 
TS satisfies C then TS is considered adequate to test CS according to C.  

In the following, we describe a basic set of four adequacy criteria for checking the 
validity of conceptual schemas by testing. The overall goal of this set is threefold: 1) 
determining which parts of the conceptual schema have been exercised by a test 
case, 2) determining which elements of the schema are potentially irrelevant (or 
even incorrect) and 3) ensuring the satisfiability of the entity types, relationship 
types, integrity constraints and domain event types, which is a necessary property 
for correctness.  
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Each of the proposed criteria is a necessary condition for conceptual schema 
validity. The criteria are independent each other but taken together they ensure the 
relevance of the defined knowledge. They also have the unifying (and interesting) 
characteristic that they ensure the satisfiability of the entity types, relationship types, 
integrity constraints and domain event types defined in a schema, which is 
a necessary property for its correctness (Thalheim 2000). This fact lays the ground to 
define a procedure for checking conceptual schema satisfiability by testing, which is 
described in Section 11.2. 

Moreover, the criteria are independent of the conceptual schema language and of 
the testing language. We have implemented its automatic analysis in our test 
processor prototype (Chapter 5).  

The proposed adequacy criteria have also been applied to a test set for a fragment 
of the osCommerce conceptual schema, a popular and widely-used e-commerce 
system. This test set completely satisfies the four criteria. The results of the 
application in this case study are reported in (Tort 2009a).  

It is important to note that our basic set of adequacy criteria may be used in Test-
Driven Conceptual Modeling (Chapter 8) in order to check, at the end of each 
iteration, that all knowledge added to the schema is relevant. The analysis of the 
proposed criteria is able to detect which schema elements have been added 
although they are not driven by any test set. In a strict application of TDCM, only the 
necessary changes to pass the current test case should be done in the schema at 
each iteration. In this situation, all the proposed properties should be satisfied at the 
end of all iterations. Even if this principle is not strictly applied, the analysis of 
elements that cause these properties to fail are useful to reveal untested parts of the 
schema and suggesting writing and processing new test cases to cover them.  

The formalization of the adequacy criteria considers the following notation aspects: 

- We denote by TS a test set that consists of a set of one or more test cases 
TCi.  

- The execution of a test case implies the execution of one or more test 
assertions TAk.  

- TA denotes the set of all the test assertions whose verdict is Pass.  

The conceptual schema fragment of a civil registry domain presented in Fig. 69 is 
used as a running example, together with the test program shown in Fig. 68. For 
details about the CSTL language, we refer the reader to Section 4.4. 
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Fig. 68. Test program example 

testprogram PeopleRegistration{ 
 

belgiumCreation := new CountryCreation(name:=’Belgium’); 
assert occurrence belgiumCreation; 
belgium := belgiumCreation.createdCountry; 
brusselsCreation := new MunicipalityCreation(name:=’City of Brussels’, country:=belgium); 
assert occurrence brusselsCreation;  
brussels := brusselsCreation.createdMunicipality; 
antwerpCreation := new MunicipalityCreation(name:=’Antwerp’, country:=belgium); 
assert occurrence antwerpCreation;  
antwerp := antwerpCreation.createdMunicipality; 
 
test familyWithoutChildren{ 

audreyBirth := new Birth(citizenId:=’AUU’, name:=’Audrey’, sex:=Sex::Woman, 
    dateOfBirth:=’10-10-1934’, municipality:=brussels); 
assert occurrence audreyBirth;  
audrey:= audreyBirth.createdPerson; 
assert true audrey.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Single; 
 
alexBirth := new Birth(citizenId:=’ALL’, name:=’Alex’, sex:=Sex::Man,  
                       dateOfBirth:=’02-31-1936’, municipality:= antwerp); 
assert occurrence alexBirth;  
alex:= alexBirth.createdPerson; 
assert true alex.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Single; 
assert equals brussels.population 1; 
assert equals antwerp.population 1; 
assert equals belgium.population 2; 
 
m := new Marriage(husband:=alex, wife:=audrey); 
assert occurrence m; 
assert true alex.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Married; 
assert true audrey.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Married; 
 
alexDeath := new Death(person:=alex, dateOfDeath:=’06-11-2003’); 
assert occurrence alexDeath; 
assert equals belgium.population 1; 
assert true audrey.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Widowed; 

} 
 
test familyWithADaughter{ 

vincentBirth := new Birth(citizenId:=’VVV’, name:=’Vincent’, sex:=Sex::Man, 
          dateOfBirth=’01-01-1918’, municipality:= brussels); 
assert occurrence vincentBirth;  
vincent:= vincentBirth.createdPerson; 
 
emmaBirth := new Birth(citizenId:=’EEE’, name:=’Emma’, sex:=Sex::Woman,  
                       dateOfBirth:=’01-01-1922’, municipality:= brussels); 
assert occurrence emmaBirth;  
emma:= emmaBirth.createdPerson; 
 
m := new Marriage(husband:=vincent, wife:=emma); 
assert occurrence m; 
 
julieBirth := new Birth(citizenId:=’JJJ’, name:=’Julie’, sex:=Sex::Woman,  
                        dateOfBirth:=’01-01-1953’,  
                        father:=vincent, mother:=emma, municipality:= brussels); 
assert occurrence julieBirth;  
 
div := new Divorce(husband:=vincent, wife:=emma); 
assert occurrence div; 
 
vincentDeath := new Death(person:=vincent, dateOfDeath:=’01-01-1996’); 
assert occurrence vincentDeath; 
emmaDeath := new Death(person:=emma, dateOfDeath:=’01-01-2007’); 
assert occurrence emmaDeath; 
assert equals brussels.lifeExpectancy 81.5; 
assert equals belgium.lifeExpectancy 81.5; 

} 
}  
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Fig. 69. Structural schema fragment of a civil registry system 

11.1.1 Base Type Coverage 

The base types (entity types, attributes and associations) defined in a conceptual 
schema are valid if they are relevant and correct (Pohl 2010, Olivé 2007, Lindland et al. 
1994).  We denote by Tbase the set of base types. The relevance of each base type Ti 
∈ Tbase can be ensured by means of testing. The test set TS should include at least 
one test case TCj such that it: 

− builds a state of the IB having at least one instance of Ti, and 

− makes an assertion TAk that can only Pass if the above IB state is 
consistent (that is, it satisfies all constraints).  

If the test set includes such test case TCj, and the execution of TAk gives the verdict 
Pass, then it is experimentally proved that Ti is relevant according to the 
expectations formalized as test cases.  

citizenId : String
name : String
dateOfBirth : Date

Person

AlivePerson
maritalStatus : MaritalStatus

Municipality
name : String
/population : Natural
/lifeExpectancy : Real

DeadPerson
dateOfDeath : Date
/ageAtDeath : Real

Country
name : String
/population : Natural
/lifeExpectancy : Real

MaritalStatus
Single
Married
Divorced
Widowed

WomanMan

{disjoint, complete}

{disjoint, complete}
«enumeration»

IsRegisteredIn 1*

wife
0..1

husband
0..1

1*

mother
0..1

child
*

child
*

father
0..1

 

OCL Derivation rules 
 

context Municipality::population:Natural 
derive: self.person->select(oclIsTypeOf(AlivePerson))->size() 
 

context Municipality::lifeExpectancy:Real 
derive: let deadPeople:Set(Person)=self.person->select(oclIsTypeOf(DeadPerson))   
        in  if deadPeople->size()>0 then 
    deadPeople.oclAsType(DeadPerson).ageAtDeath->sum() / deadPeople->size() 
 else 0.0  
 endif 

 

context Country::population:Natural 
derive: self.municipality.population->sum() 
 
context Country::lifeExpectancy:Real 
derive: let deadPeople:Set(Person)=  
   self.municipality.person->select(oclIsTypeOf(DeadPerson))->asSet()   
        in  if deadPeople->size()>0 then 
    deadPeople.oclAsType(DeadPerson).ageAtDeath->sum() / deadPeople->size() 
 else 0.0  
 endif 
 

context DeadPerson::ageAtDeath:Real  
 derive: dateOfDeath-dateOfBirth 
 
OCL Integrity constraints 
 context Country inv identifiesInhabitantsByCitizenId:  
 self.municipality.person->isUnique(citizenId) 
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This is the rationale for the test adequacy criterion that we call base type coverage, 
which can be formally stated as follows. Let:  

BaseTypes(TAk) = {Ti|Ti ∈ Tbase and there are one or more instances of Ti in at least one 
of the IB states found consistent during the evaluation of TAk} 

  
BaseTypes(TA) = 

TATA
k

k

TABaseTypes
∈

)( . 

 

We say that a test set TS satisfies the base type coverage criterion if and only if 
Tbase = BaseTypes(TA). Then, it is experimentally proved that all types Ti ∈ Tbase 
defined in a conceptual schema are relevant. It is important to remark, that the 
accomplishment of this criterion has the interesting property of ensuring the 
satisfiability of Tbase (which is a necessary condition for the correctness of Tbase). For 
further details about checking the satisfiability of base types, see Section 11.2. 

The analysis of the set of uncovered base types (Tbase - BaseTypes(TA)) allows us 
to identify which base types of the schema have not been exercised in any 
consistent scenario. Either they need more testing in order to satisfy the base type 
coverage criterion or they are irrelevant or incorrect.  

In the test program of Fig. 68, the fixture initializes two municipalities (the City of 
Brussels and Antwerp) located in a country (Belgium). In a test program, the 
execution of any of its test cases implies the execution of its fixture. Therefore, the 
entity types Municipality and Country, its basic attributes and the relationship type 
between them are covered according to this criterion. 

Moreover, the test case familyWithoutChildren registers the births of a woman 
(audrey) and a man (alex), the marriage between them and the death of alex. The 
execution of this test case implies that the entity types Man, Woman, AlivePerson, 
DeadPerson (and Person due to the taxonomy), their basic attributes, and the 
relationship types IsRegisteredIn and husband-wife are also covered.  

However, by taking into account only the test case familyWithoutChildren, the 
coverage analysis identifies that the relationship types father-child and mother-child 
are not covered. If we consider that the test set also includes the test case 
familyWithADaughter, then all the basic types of the example become covered. 

11.1.2 Derived type coverage 

Entity and relationship types may be derived. For each derived type, the conceptual 
schema includes a derivation rule that defines the population of that type in terms of 
the population of other types. In UML, derivation rules are formally written in OCL. 
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Derived types defined in a schema are valid if they are relevant and correct (Olivé 
2007, Lindland et al. 1994).   

We denote by Tder the set of derived types defined in a conceptual schema. The 
relevance of a derived type can be checked by means of testing. The test set TS 
should include a test case that makes an assertion TAk whose evaluation requires 
the derivation of at least one instance of that type. 

We denote by DerTypes(TAk) the set of derived entity types such that TAk has 
derived one or more instances of them during its evaluation, and by DerTypes(TA) 
the set of derived entity types that have instances derived during the evaluation of 
TA.  

Formally: 

DerTypes(TAk) = {Ti | Ti ∈ Tder and the evaluation of TAk in a state found consistent  
has required the derivation of one or more instances of Ti } 

 

DerTypes(TA) = 
TATA

k
k

TADerTypes
∈

)(

 
 

We say that a test set TS satisfies the derived type coverage criterion if and only if                 
Tder = DerTypes(TA). Then, it is experimentally proved that all types Ti ∈ Tder defined 
in a conceptual schema are relevant. Moreover, the accomplishment of this criterion 
has the interesting property of ensuring the satisfiability of Tder (which is, in turn, a 
necessary condition for the correctness of Tder). For further details about checking 
the satisfiability of derived types, see Section 11.2. 

The analysis of the set of uncovered derived types (Tder - DerTypes(TA)) allows us 
to identify which derived types have not been exercised in any consistent scenario. 
Either they need more testing in order to satisfy the derived type coverage criterion 
or they are irrelevant or incorrect. 

The first test case (familyWithoutChildren) of the test program shown in Fig. 68, 
makes assertions about the population of the municipalities and the country 
initialized in the fixture.  

assert equals brussels.population 1;  
assert equals antwerp.population 1; 
assert equals belgium.population 2;  
 

The verdict of these assertions is Pass because the conceptual schema has the 
knowledge to derive the population as expected. Consequently, this test case 
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ensures that the derived attributes Municipality::population and Country::population 
have been correctly derived in a consistent state.  

In contrast, the derived attributes Municipality::lifeExpectancy, 
Country::lifeExpectancy and DeadPerson::ageAtDeath are not covered if we only 
consider the test case familyWithoutChildren. However, if we add the test case 
familyWithADaughter all derived types become covered. 

11.1.3 Valid type configuration coverage  

In conceptual models that admit multiple classification (like the UML), an entity may 
be an instance of two entity types, E1 and E2, such that (1) E1 does not subsume E2; 
(2) E2 does not subsume E1; and (3) no E3 is subsumed by both E1 and E2. In 
multiple-classification models, correctness and relevance do not only apply to the 
individual entity types, but also to the set of valid configurations of entity types (Olivé 
2007). These configurations are completely determined by the entity types and the 
taxonomic constraints of the conceptual schema.  

The example of Fig. 69 assumes multiple classification. There are six valid type 
configurations: {Person, Man, AlivePerson}, {Person, Woman, AlivePerson}, 
{Person, Man, DeadPerson}, {Person, Woman, DeadPerson}, {Municipality} and 
{Country}. 

The relevance of a valid type configuration VTCi = {E1, …, En} can be checked by 
means of testing. The test set TS should include a test case TCj such that it (1) 
builds a state of the IB having at least one entity that is an instance of VTCi and (2) 
makes an assertion TAk that can only Pass if the above IB state is consistent. 

Therefore, if we want to experimentally prove that all valid type configurations VTCi 
∈ VTC defined in a conceptual schema are relevant, we must require that for each 
of them there is at least one test assertion that checks the consistency of one or 
more IB states having at least one instance of VTCi.  

This is the rationale for the test adequacy criterion that we call valid type 
configuration coverage, which can be formally stated as follows. Let: 

VTC(TAk) = {VTCi | VTCi ∈ VTC and there are one or more instances of VTCi in at least 
one of the IB states found consistent during the evaluation of TAk }  

 

VTC(TA) = 
TATA

k
k

TAVTC
∈

)(
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We say that a test set TS satisfies the valid type configuration coverage criterion if 
and only if VTC = VTC(TA). Then, it is experimentally proved that all types VTCi ∈ 
VTC defined in a conceptual schema are relevant. Additionally, the accomplishment 
of this criterion has the interesting property of ensuring the satisfiability of VTC 
(which is, in turn, a necessary condition for the correctness of VTC) (Olivé 2007). For 
further details about checking the satisfiability of VTCs, you may read Section 11.2. 

When VTC ≠ VTC(TA) then there is at least one VTCi ∈ VTC but VTCi ∉ VTC(TA). 
The analysis of the set of uncovered valid type configurations (VTC - VTC(TA)) 
allows us to identify which type configurations may not be valid. This means that a 
valid type configuration VTCi allowed by the conceptual schema has not been 
tested. If the domain experts confirm that VTCi is valid in the domain, then the 
conceptual modeler must write more test cases. Otherwise, if VTCi is invalid in the 
domain, then the conceptual modeler must change the taxonomy to prevent it. 

The test case familyWithoutChildren proves that all the entity types are covered 
according to the Base Type Coverage (see Section 11.1.1). However, the CSUT 
example (Fig. 69) assumes multiple classification. Therefore, when analyzing the 
Valid Type Configuration Coverage satisfaction, we realize that {Person, Woman, 
DeadPerson} is not covered (no valid instances of a dead woman participate in the 
test case). If we also consider the test case familyWithADaughter, then all VTCs 
become covered. 

In single-classification schemas, the satisfaction of the base type coverage criterion 
implies the satisfaction of the valid type configuration coverage criterion.  

11.1.4 Domain event type coverage  

Domain event types must be relevant and correct (Olivé 2007). We denote by Dev the 
set of domain event types. The relevance of a domain event type Devi∈Dev can be 
checked by means of testing. The test set TS should include a test case TCj such 
that it 1) builds a state of the IB, 2) creates an instance d of Devi, and 3) asserts the 
occurrence of d. 

If the test set includes such test case TCj, and its execution gives the verdict Pass, 
then it is experimentally proved that Devi is relevant. If Devi is not relevant, then the 
test set should not include any assertion stating the occurrence of Devi.  

This is the rationale for the test adequacy criterion that we call domain event type 
coverage, which can be formally stated as follows. Let TAk be the assertion of a 
domain event occurrence. We denote by DevTypes(TAk) the type of the domain 
event whose occurrence is asserted and by DevTypes(TA) the set of domain event 
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types that have instances whose occurrence has been asserted during the 
evaluation of TA. Formally:  

DevTypes(TA) = 
TATA

k
k

TADevTypes
∈

)(

 
 

We say that a test set TS satisfies the domain event type coverage criterion if and 
only if Dev = DevTypes(TA). Then, it is experimentally proved that all types 
Devi∈Dev defined in a conceptual schema are relevant. Again, note that the 
accomplishment of this criterion has also the interesting property of ensuring the 
satisfiability of Dev (which is, in turn, a necessary condition for the correctness of 
Dev). Satisfiability comprises applicability (the initial IB state has been found 
consistent and the event constraints have been satisfied) and executability (the new 
IB state has been found consistent and the event postconditions have been 
satisfied). For further details about checking the satisfiability of domain event types, 
you may read Section 11.2. 

The set of uncovered event types (Dev - DevTypes(TA)) allows us to identify which 
event types do not have valid occurrences in any test case. Either they need more 
testing to satisfy the criterion or they are irrelevant (or even incorrect).  

Assume the existence of the ordinary domain events Birth, Death, Marriage and 
Divorce.  Events that create countries and municipalities of a country are also 
considered (MunicipalityCreation and CountryCreation). The example test case 
familyWithoutChildren (Fig. 68) exercises the valid execution of these domain 
events with the exception of the event Divorce that becomes covered if we also 
consider the test case familyWithADaughter. The satisfaction of the domain event 
type coverage criterion ensures that these domain events are satisfiable.  

The structural and the behavioral subschema should be consistent (Pilskalns et al. 
2007, Salay et al. 2009) between them. If the domain event type coverage criterion is 
satisfied but the base type coverage criterion is not satisfied, then either the 
uncovered base types are not relevant, or some event types are missing in the 
schema, or the existing ones must be instantiated in other test cases.  

11.1.5 Coverage Criteria Satisfaction and Schema Validity 

If there exists a test set TS that satisfies the four coverage criteria defined in 
sections 11.1.1, 11.1.2, 11.1.3 and 11.1.4, then we can ensure that all base and 
derived types, type configurations and domain event types are relevant and 
satisfiable, which is a necessary condition for correctness.  
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Formally, if we denote the relevance by Rel and the satisfiability by Sat, then: 

)(),()( basebasebase TSatTSTRelTABaseTypesT ∧→=

 )(),()( derderder TSatTSTRelTADerTypesT ∧→=  

)(),()( VTCSatTSVTCRelTAVTCVTC ∧→=

 )(),()( DevSatTSDevRelTADevTypesDev ∧→=  
 

The test program PeopleRegistration of Fig. 68 completely satisfies the proposed 
basic set of test adequacy criteria. Therefore, we can conclude that all the schema 
elements have been exercised by a test case in at least one consistent scenario, 
that there are no potentially irrelevant elements, and that these elements are 
satisfiable. 

11.2 Checking Conceptual Schema Satisfiability by 
Testing 

Satisfiability is one of the properties that all correct conceptual schemas must have. 
Satisfiability applies to both the structural and the behavioral parts of a conceptual 
schema. Structurally, a conceptual schema is satisfiable if each base or derived 
entity and relationship type of the schema may have a non-empty population at a 
certain time. An entity or relationship type is unsatisfiable when the set of 
constraints defined in the schema can only be satisfied if the population of that type 
is empty. Behaviorally, a conceptual schema is satisfiable if each event type is 
satisfiable, that is, there is at least one consistent state of the Information Base (IB) 
and one event of that type with a set of characteristics such that the event 
constraints are satisfied, and the effects of the event leave the IB in a state that is 
consistent and satisfies the event postconditions. A state of the IB is consistent if it 
satisfies all integrity constraints. 

As we have seen in Chapter 3, there has been a lot of work on automated 
reasoning procedures for checking satisfiability, mainly for the structural part of a 
schema (a representative set of recent papers is (Queralt et al. 2009, Queralt et al. 2008, 
Formica 2003, Berardi et al. 2005, Jarrar 2007, Brambilla et al. 2009, Gogolla et al. 2009, Clavel et 
al. 2009)). However, it is well known that the problem of reasoning in conceptual 
schemas including general integrity constraints, derivation rules and event pre and 
postconditions is undecidable. Therefore, the available automated reasoning 
procedures are restricted to certain kinds of constraints, derivation rules, 
pre/postconditions or domains, or they may not terminate in some circumstances. 

 Base type coverage: 

 Derived type coverage: 

 Valid type configuration coverage: 

 Domain event type coverage: 
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Fig. 70. Fragment of the osCommerce structural schema 

In this section, we explore an alternative approach to satisfiability checking (Olivé et 
al. 2010), which can be used when conceptual schemas are developed in the context 
of a development environment that allows their testing.  

When conceptual schemas can be tested, then their satisfiability can be proved by 
testing. The idea is that the conceptual modeler sets up a test case such that if its 
verdict is Pass then by definition the entity or relationship or event type under test is 
satisfiable. If the conceptual modeler is unable to set up such test case, then this is 
not a formal proof of unsatisfiability. We show that the unsatisfiability results 
obtained by testing are not as strong as those obtained by automated reasoning 
procedures when they are applicable, but in many practical cases testing provides a 
clue that helps to uncover a faulty schema. 

In the following, we analyze first the satisfiability of base entity and relationship 
types (Section 11.2.1), then that of derived base and relationships types (Section 
11.2.2), and finally that of domain event types (Section 11.2.3).  All the examples of 
this chapter are taken from a fragment of the conceptual schema of the 
osCommerce system (Tort 2007), a popular industrial e-commerce system. The full 
details of the case study can be found in the report (Tort 2009a).   

ShoppingCartItem
quantity : PositiveInteger
/unitPrice : Real
/price : Real

link : URL

DownloadableProductSpecial
specialNetPrice : Real

Product
name : String
netPrice : Real
quantityOnHand : Integer
/quantityOrdered : Natural
/finalNetPrice : Real

ShoppingCart

OrderLine
/name : String
/unitPrice : Real
/price : Real
quantity : PositiveInteger

Order
id : PositiveInteger
/name : String
/eMail : String
/total : Real

Customer
name : String
eMailAddress : EMail
password : String

Session
id : Natural

{overlapping,incomplete}
{ordered}

{ordered}

0..10..1

0..1
0..1

1..*

1

1*

1

*

*

1

0..1

0..1

1..*

1

context Order::total:Real  
  derive: self.orderLine.price->sum() 
 
context Product inv nameIsUnique:  
  Product.allInstances()->isUnique(name) 
 

 

context Session  
  inv CustomerCartWhenLoggedIn:  
  self.customer->notEmpty() and      
  self.shoppingCart->notEmpty()     
  implies 
  self.customer.shoppingCart= 
  self.shoppingCart 
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11.2.1 Base type satisfiability 

Satisfiability (or liveliness) is a well-known property of base entity and relationship 
types. A base type is satisfiable (or lively) if it may have a non-empty finite 
population at certain time. In a conceptual schema, a base type is unsatisfiable 
when the set of constraints defined in that schema can only be satisfied if the 
population of that type is empty or infinite (Queralt et al. 2006). In conceptual modeling, 
it is usually required that all base types be satisfiable (Parsons et al. 1997, Calvanese et 
al. 1994, Costal et al. 1996). 

Let Ti be a base type (entity types, attributes and associations) defined in a 
conceptual schema. The satisfiability of Ti can be checked by means of testing. The 
idea is to set up a test case TCj such that it: 

− builds a state of the IB having at least one instance of Ti, and 

− makes an assertion TAk that can only Pass if the above IB state is 
consistent (that is, it satisfies all constraints).  

If the execution of TAk gives the verdict Pass, then it is experimentally proved that Ti 
is satisfiable. Note that in a single test case we can instantiate several types and 
that a single assertion can experimentally prove that all of them are satisfiable. 

Assume the conceptual schema fragment shown in Fig. 70.  Moreover, Fig. 71 
shows a test program aimed to test the conceptual schema. In this test program 
example, the fixture creates the customer john and the session s. It also initializes 
the online catalog with the product shirt and the special product trousers. The 
execution of any of the test cases of the test program example implies the execution 
of this fixture and ensures that the entity types Customer, Session, Product and 
Special (and also their attributes) are satisfiable. 

Moreover, the test case confirmOrder adds a shopping cart item with two units of 
shirt and another item with a pair of trousers. The shopping cart is created when 
adding the first item. By this way, the entity types ShoppingCart and 
ShoppingCartItem (and also their relationship types, including attributes) are proved 
satisfiable. The relationship types ShoppingCart-Session, Session-Customer and 
Customer-ShoppingCart are also satisfiable when the LogIn event occurs (the 
session is assigned to a customer and the anonymous shopping cart becomes the 
shopping cart of the customer of the session). The entity types Order and OrderLine 
(and their relationship types) become satisfiable when the event OrderConfirmation 
occurs (the order and its order lines are created from the shopping cart). Finally, the 
occurrence of the instance ndp of the domain event type NewDownloadableProduct 
proves the satisfiability of the entity type DownloadableProduct. 
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testprogram PlaceOrder{ 
 
nc := new NewCustomer 
      (name:='John', eMailAddress:='john@john.com', password:='pwd'); 
assert occurrence nc; 
john := nc.createdCustomer; 
 
ns := new NewSession; 
assert occurrence ns; 
s := ns.createdSession; 
 
np1 := new NewProduct(name:='shirt', netPrice:=20, quantityOnHand:=5); 
assert occurrence np1; 
shirt := np1.createdProduct; 
np2 := new NewSpecial (name:='trousers', netPrice:=80,  
                       quantityOnHand:=25,specialNetPrice:=65); 
assert occurrence np2; 
trousers := np2.createdProduct; 
 
test confirmOrder{ 
    apsc1 := new AddProductToShoppingCart(quantity:=2,  
                                          session:=s, product:=shirt); 
    assert occurrence apsc1; 
    apsc2 := new AddProductToShoppingCart(quantity:=1,  
                                          session:=s, product:=trousers); 
    assert occurrence apsc2; 
    assert equals s.shoppingCart.shoppingCartItem->at(1).price 40; 
    assert equals s.shoppingCart.shoppingCartItem->at(2).price 65; 
     
    li := new LogIn(customer:=john, session:=s); 
    assert occurrence li; 
    oc := new OrderConfirmation(shoppingCart:= s.customer.shoppingCart); 
    assert occurrence oc; 
    assert equals oc.createdOrder.total 105;  
    assert equals shirt.quantityOrdered 2; 
    assert equals oc.createdOrder.eMail 'john@john.com'; 
    assert equals oc.createdOrder.name 'John'; 
    assert equals oc.createdOrder.orderLine->at(1).name 'shirt'; 
    assert equals oc.createdOrder.orderLine->at(2).name 'trousers'; 
} 
 
test productKindsInCatalog{ 
    ndp := new NewDownloadableProduct 
           (name:='fashionDesigner', netPrice:=43, quantityOnHand:=85,   
            link:='http://fashionshop.com/fashionDesigner.zip'); 
    assert occurrence ndp; 
    nds := new NewDownloadableSpecial 
           (name:='FashionTipsMagazine', netPrice:=3, quantityOnHand:=15,    
            specialNetPrice := 2,   
            link:='http://fashionshop.com/tips.pdf'); 
    assert occurrence nds; 
} 
 
}   

 

 

 

 

Fig. 71. Test program example 
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Fig. 72. Schema fragment with types that cannot be satisfied 

If a conceptual schema includes a base type Ti that is unsatisfiable, then the 
conceptual modeler will be unable to set up a test case that builds a state of the IB 
with at least one instance of Ti, and an assertion that can only Pass if that state is 
consistent. This is not a formal proof that Ti is unsatisfiable, but in many practical 
cases it provides a clue that helps to uncover a faulty constraint.  

For example, consider the schema example shown in Fig. 72 (adapted from 
(Calvanese et al. 1994)). The association Manages is satisfiable if we do not take into 
account that Manager IsA Employee. However, if we take this inclusion constraint 
into account then it cannot be satisfied. If the conceptual modeler writes a test case 
such as 

test  EmployeeWithTwoBosses{ 
   emily := new Employee; 
   john := new Manager(employee:=Emily); 
   natalie := new Manager(employee:=Emily); 
   assert consistency; 
} 
 
the assertion will Fail because john and natalie do not have (at least) two bosses. 
Any change of the instances of the three types will produce the same result, and the 
conceptual modeler will find out soon that the defined cardinality constraints are 
wrong. 

11.2.2 Derived type satisfiability 

Entity and relationship types may be derived. For each derived type, the conceptual 
schema includes a derivation rule that defines the population of that type in terms of 
the population of other types. In UML, the derivation rules are written in OCL. 
Derived types must be satisfiable too (Costal et al. 1996). Satisfiability of a derived type 
means that its derivation rule may derive at least one instance of it at a certain time.  

The satisfiability of a derived type can be checked by means of testing. The idea is 
to write a test case that makes an assertion TAk whose evaluation requires the 
derivation of at least one instance of that type. 

Manager 

Employee 

Manages  

 

1 

boss 
2..* 
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In the example of Fig. 70 there are ten derived attributes. The assertions “assert 
equals s.shoppingCart.shoppingCartItem->at(1).price 40” and “assert equals 
s.shoppingCart.shoppingCartItem->at(2).price 65” (specified in the test case 
confirmOrder shown in Fig. 68) imply that the attribute ShoppingCartItem::price is 
satisfiable and also the attributes ShoppingCartItem::unitPrice and 
Product::finalNetPrice. This is because the derivation of the price of a shopping cart 
item implies the derivation of its unitPrice (its derivation rule expression is 
unitPrice*quantity), and the unitPrice of a shopping cart item corresponds to the 
finalNetPrice of its associated product. Similarly, the assertion “assert equals 
oc.createdOrder.total 105” implies the satisfiability of the attributes Order::total (its 
derivation rule is shown in Fig. 70), OrderLine::price  and OrderLine::unitPrice. 
Finally, the assertions “assert equals shirt.quantityOrdered 2”, “assert equals 
oc.createdOrder.eMail ‘john@john.com’”, “assert equals oc.createdOrder.name 
‘John’”, “assert equals oc.createdOrder.orderLine->at(1).name ‘shirt’” and “assert 
equals oc.createdOrder.orderLine->at(2).name ‘trousers’” make the attributes 
Product::quantityOrdered, Order::name, Order::eMail and OrderLine::name  
satisfiable. 

11.2.3 Domain event type satisfiability  

Domain event types must be satisfiable too. Domain event type satisfiability 
comprises the properties of applicability and executability defined in (Queralt et al. 
2009, Costal et al. 1996): A domain event type Devi is applicable if there is a consistent 
IB state and one instance d of Devi with a set of characteristics such that the event 
constraints are satisfied, and Devi is executable if Devi is applicable and the effects 
of d leave the IB in a state that is consistent and satisfies the event postconditions. 

The satisfiability of a domain event type Devi can be checked by means of testing. 
The idea is to set up a test case TCj such that it: 

− builds a state of the IB, and 

− creates an instance d of Devi, and 

− asserts the occurrence of d. 

If the test set includes such test case TCj, and its execution gives the verdict Pass, 
then it is experimentally proved that Devi is satisfiable: applicable (because the 
initial IB state has been found consistent and the event constraints have been 
satisfied) and executable (because the new IB state has been found consistent and 
the event postconditions have been satisfied). 
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Assume that we consider that we have specified the following events: 
NewCustomer, NewSession, NewProduct, NewDownloadableProduct, LogIn, 
OrderConfirmation AddProductToShoppingCart and NewDownloadableSpecial. Fig. 
73 shows the complete specification of one of these domain events (New Product). 
The test program of Fig. 71 exercises the valid execution of all the domain events 
considered in the example and this ensures that these domain events are 
satisfiable.   

If a conceptual schema includes a domain event type Devi that is unsatisfiable, then 
the conceptual modeler will be unable to set ups a test case that builds a state of 
the IB, creates an instance of Devi and asserts its occurrence. Again, this is not a 
formal proof that Devi is unsatisfiable, but in many practical cases it provides a clue 
that helps to uncover a faulty constraint.  

For example, related to the schema of Fig. 70, assume that there is a domain event 
type RemoveOrder, whose intended effect is to remove the order to which it is 
associated. If one of the constraints of the event is: 

context RemoveOrder::thereAreNoOrderLines():Boolean  
  body: self.order.orderLine->isEmpty() 
 

then RemoveOrder is not applicable, because an instance of Order is always 
associated with at least one instance of OrderLine. Any assertion of the occurrence 
of an instance of RemoveOrder will Fail, and the conceptual modeler will find out 
that either the above event constraint or the cardinality constraint of Fig. 70 is 
incorrect. 

 
 

 

 

Fig. 73. Domain event specification example 

 

NewProduct

effect()
             productDoesNotExist()

name : String
netPrice : Real
quantityOnHand : Integer

DomainEvent

«iniIC»

context  NewProduct::effect() 
   post:(Product.allInstances -    
   Product.allInstances@pre) -> one(p:Product| 
       p.oclIsNew()  and 
       p.name = self.name and 
       p.netPrice = self.netPrice and 
       p.quantityOnHand = self.quantityOnHand) 
 

context NewProduct:: 
productDoesNotExist():Boolean  
  body: not Product.allInstances() 
    -> exists (pr|pr.name = self.name) 
 

method NewProduct::effect(){ 
p:=new Product; 
p.name:=self.name; 
p.netPrice:=self.netPrice; 
p.quantityOnHand:=self.quantityOnHand; 
self.createdProduct:=p; 
} 
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12 
12 Conclusions and 

Further Work 
Conceptual modeling is an essential activity in requirements engineering, which is 
aimed at eliciting, specifying and validating the conceptual schema of an information 
system (Chapter 1).  

The main objective of conceptual schema validation is checking the alignment 
between the knowledge specified in the schema and the stakeholders’ expectations. 
The validation of conceptual schemas is an important and relevant challenge in 
information systems development (Chapter 2). Conceptual schema validation 
enhances the semantic quality of the schema.  

This thesis is a contribution to the challenge of conceptual schema validation and it 
addresses the following main research questions: (1) Can we test conceptual 
schemas in order to enhance its semantic quality?, and (2) can we develop 
conceptual schemas using a test-driven conceptual modeling method? 

Conceptual Schema Testing 

The first main research question has been explored by the development of answers 
to the following specific questions: (1.1) What it means to test conceptual 
schemas?, (1.2) Which kinds of tests are required to test conceptual schemas, (1.3.) 
Why do we want to test conceptual schemas?, (1.4) Which are the requirements of 
an environment for conceptual schema testing?, and (1.5) How can we determine 
the suitability of a test for testing a conceptual schema? 
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In order to address these questions, we have shown that executable conceptual 
schemas may be tested as a means for their validation. We have described the 
fundamentals of conceptual schema testing based on a list of five kinds of tests that 
can be applied to conceptual schemas. We have explained the similarities and 
differences between testing conceptual schemas and testing programs. 
Furthermore, we have presented a conceptual schema testing approach that allows 
conceptual schemas of information systems to be tested with the goal of uncover 
requirements errors (Chapter 4).  We have seen that the semantic quality of 
conceptual schemas (Chapter 2) may be improved by testing, and that other quality 
factors such as pragmatic, social or organizational quality are also positively 
influenced. Moreover, we have explained that our approach may cooperate with 
existing conceptual schema validation and verification techniques (Chapter 3).  

We have proposed the Conceptual Schema Testing Language (CSTL), a textual 
procedural language for writing tests of executable conceptual schemas written in 
UML/OCL (Chapter 4). As far as we know, this is the first proposal of a language for 
testing conceptual schemas designed in the style of the modern xUnit software 
testing frameworks.  

We have implemented a supporting tool for automated testing of conceptual 
schemas (Chapter 5). This tool contains a test processor that manages and 
executes CSTL programs. It includes a test interpreter that coordinates the 
execution of the tests and invokes the services of an information processor. Tests 
written in CSTL may be automatically executed as many times as needed 
(regression testing). We have also shown that our test processor has been 
extended in order to be able to deal with predefined temporal constraints and 
derivation rules.  

In the context of Design Science Research, which is the adopted framework in this 
Thesis, we have evaluated the feasibility of the approach by means of its application 
in two real-sized case studies. The objective of these case studies has been the 
application of our approach in order to test the conceptual schemas of two widely-
used e-commerce systems (Chapter 6). 

We have also seen that a test set whose verdict is Pass is not sufficient to ensure 
the necessary conditions for the validity of the conceptual schema under test. We 
have defined a set of four basic adequacy criteria for ascertaining conceptual 
schema validity (Chapter 11). The overall goals of these criteria is determining 
which parts of the schema have been exercised by a test case; analyzing which 
elements of the schema are potentially irrelevant (or even incorrect); and ensuring 
the satisfiability of the entity types, relationship types, integrity constraints and 
domain event types, which is a necessary property for correctness.   
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Test-Driven Conceptual Modeling 

The second main research question has been explored by the development of 
answers to the following questions: (2.1) Which are the activities and the process 
that define TDCM?, (2.2) How TDCM may contribute to the quality of conceptual 
schemas?, (2.3) Can TDCM be integrated in existing requirements engineering and 
software development methods?, and (2.4) Which are the requirements of an 
environment to support TDCM? 

In  order to answer these specific research questions, in this  Thesis we have 
presented the Test-Driven Conceptual Modeling (TDCM) method (Chapter 8), which 
is based on the principles of Test-Driven Development (Chapter 7) applied to 
conceptual  modeling,  and  we  have  shown  that  it  is  possible and useful to  
develop a conceptual  schema  using  it.   

Using TDCM, conceptual modelers have at any time fully tested schemas. TDCM  
fosters  the  development  of  correct  and complete  schemas,  which  are  
fundamental  quality  properties  in  conceptual modeling  (Chapter 2).  We have 
seen that, using TDCM, a system’s conceptual schema is incrementally obtained by 
performing three kinds of tasks: (1) Write a test the system should pass; (2) Change 
the schema to pass the test; and (3) Refactor the schema to improve its qualities.  

We have also presented a set of guidelines on the use of TDCM.  We have dealt 
with schemas written in UML/OCL, but TDCM can be adapted for the development 
of schemas in other languages.  

We  have explored the integration of  TDCM  (Chapter 10) into four well-known 
requirements engineering methods: the  Unified  Process  development  
methodology,  the  MDD-based  approaches,  the storytest-driven agile methods 
and the goal and scenario-oriented methods.  

Finally, we have reported four complementary experimental case studies on the 
application of TDCM (Chapter 9). The successful application of TDCM assisted by 
the use of our proposed testing environment (Chapter 5) concludes the feasibility of 
the method in practice. These experimental case studies have been useful to 
categorize the kinds of errors and failures that drive TDCM iterations. Furthermore, 
lessons about the resultant conceptual schema, the testing effort, the iterations 
productivity, the confidence on quality, and common iteration patterns have been 
learned and discussed, as a knowledge base for future TDCM applications. 

Given that TDCM was developed in the context of Design Science Research 
(Section 1.4), the reported experiences were useful to improve-by-use the 
supporting tool.  
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A Work that Opens New Research Directions 

As far as we know, the work presented in this Thesis is an innovative proposal for 
making feasible the automated testing of conceptual schemas. Based on the 
contributions described in this document, we believe that our work opens new 
directions for research and development in conceptual modeling.  

Firstly, in this Thesis we have proposed a testing language and a test processor for 
testing conceptual schemas, and we have analyzed its feasibility by means of two e-
commerce case studies. However, we need to study how to use both the language 
and the processor in professional projects in order to know how and when to get the 
maximum benefit from them.  

Secondly, when the transformation from a conceptual schema to a Platform-Specific 
Model (PSM) is manual, there is the need of rewriting the conceptual schema test 
cases at the PSM level. In this context, it would be very interesting to save testing 
effort by developing automatic transformation procedures of the test cases.  

Thirdly, taking into account that we have presented a basic set of adequacy criteria 
for testing conceptual schemas that specify both the structural and the behavioral 
knowledge, it is possible to define a variant of these criteria which is applicable 
when only the structural subschema is available. The idea in this context is that the 
test cases do not build the IB states by means of the occurrence of domain events, 
but by means of explicit insertion, deletion and update (CSTL) statements. This 
variant could be useful in projects that aim at developing only the structural schema, 
or in the initial phases of the development of a complete schema. 

Fourthly, we remark that test sets should satisfy the proposed criteria given that 
they ensure the necessary conditions for conceptual schema validity. However, 
several additional criteria may be envisaged in order to enhance the confidence 
about the conceptual schema correctness and according to the testing strategy. As 
further work, we mention two of them here. The first may be inspired on the branch 
coverage criterion in program testing (Zhu et al. 1997), aiming at ensuring that all 
branches of the OCL integrity constraints have been tested. The second is a 
criterion that ensures that all integrity constraints that must be enforced by the 
system have at least one domain event precondition that prevents the occurrence of 
a domain event that could lead to its violation.  

Fifthly, we think that conceptual schema testing should be integrated with other 
validation techniques, and the test processor should be integrated with the other 
tools of a comprehensive development environment (Bouzeghoub et al. 2000). 
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Sixthly, as far as we know, our work on Test-Driven Conceptual Modeling (TDCM) is 
the first work that explores the use of TDD in conceptual modeling, and naturally 
work remains to be done. We mention some research directions related to TDCM 
here: 

 The first one is to further elaborate the integration approach of TDCM into 
the above mentioned requirements engineering methods, and analyze the 
results of its use in practice.  

 The second direction aims at experimentally determining to what extent 
TDCM brings the advantages and drawbacks of TDD to conceptual 
modeling. This may depend on the requirements engineering method in 
which TDCM is applied. We have conjectured that TDCM may "inherit" 
several advantages and drawbacks and we have analyzed its feasibility 
and application patterns in four case studies (Chapter 9), but they must be 
confirmed by rigorous development experiments in business contexts. We 
are confident that TDCM will  be  very  useful  in  those projects  that  follow  
the  OMG’s  Model-Driven  Development approach  when  the  
transformation  from  Platform-Independent  Models  to  Platform-Specific 
Models is fully automatic and correct-by-construction, and we conjecture 
that TDCM  will  be  useful  in  the other  contexts  too,  even  in  projects  
that  only  develop  the structural schema.  

 Finally, the third direction aims at enlarging the set of guidelines on the use 
of TDCM, so that they provide useful advice to the conceptual modeler in at 
least the most common situations. 
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Appendix A 
In this appendix, we provide the whole grammar of the CSTL language described in 
Section 4.4. 

testProgram : 
    testprogram <programID> { fixture fixtureComponent* testCase* } 
 
fixture : 
    statement* 
 
fixtureComponent  : 
    fixturecomponent  <fixtureComponentID> { statement* } 
 
testCase  : 
    concreteTest 
    | abstractTest 
    | abstractTestInvocation 
 
concreteTest : 
    test <testID> { statement* } 
 
abstractTest : 
    abstract test <abstractTestID> paramList { statement* } 
 
paramList : 
   ( parameter [ , parameter  ]* ) 
 
parameter : 
    parameterType <parameterID> 
 
 
type : 
    <oclPrimitiveType> 

|  <entityTypeID> 
 
parameterType : 
    type 

|  Fixture 
 
abstractTestInvocation : 
   test <abstractTestID> parametersAssignment 
 
parametersAssignment : 
( parameterAssignment [ , parameterAssignment  ]* ) 
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parameterAssignment : 
   <parameterName> :=  expression 
 
expression : 
 <oclExpressionWithVariableIDs> 
 
statement : 
   stateStatement ; 

| variableStatement ; 
| assertion  ; 
| controlFlowStatement 

 
stateStatement : 
   entityCreation 

| entityDeletion 
| binaryPropertySetting 
| nAryRelationshipCreation 
| fixtureComponentLoading 

 
variableStatement : 
   variableDeclaration 

| variableAssignment 
 
assertion : 
   assertTrue 

| assertFalse 
| assertEquals 
| assertNotEquals 
| assertConsistency 
| assertInconsistency 
| assertDomainEventOccurrence 
| assertDomainEventNonOccurrence 

 
controlFlowStatement : 
   conditional 

| whileLoop 
| forLoop 
| forEachLoop 

 
entityCreation : 
   new  <entityTypeID> [ , <entityTypeID>]* propertiesAssignment?   
 
propertiesAssignment : 
   (propertyAssignment [ , propertyAssignment  ]*  ) 
 
propertyAssignment : 
   <propertyID> :=  expression 
 
entityDeletion : 
   delete  expression 
 
binaryPropertySetting : 
   expression :=  expression 
 
nAryRelationshipCreation : 
 new  <assocID>  participantsAssignment  
 



 

233 

PHD THESIS 
ALBERT TORT PUGIBET 

 
 

participantsAssignment : 
   (participantAssignment [ , participantAssignment  ]+  ) 
 
prarticipantAssignment : 
   <roleID> :=  expression 
 
fixtureComponentLoading : 
   load  <fixturecomponentID> 
 
variableDeclaration : 
    type  <varID> 
 
variableAssignment : 
     [ <varID> | varDeclaration ]  := [ expression | entityCreation | nAryRelationshipCreation ] 
 

assertTrue : 
assert true expression 
 
assertFalse : 
assert false expression 
 
assertEquals : 
assert equals expression expression 
 
assertNotEquals : 
assert not equals expression expression 
 
assertConsistency : 
assert consistency 
 
assertInconsistency : 
assert inconsistency 
 
assertDomainEventOccurrence : 
assert occurrence <domainEventID> 

 
assertDomainEventNonOccurrence : 
assert non-occurrence <domainEventID> 

 
assertDomainEventNonOccurrence : 
assert non-occurrence <domainEventID> 
 
condition : 
if expression then statement* 
[ else if expression then statement* ]* 
[ else statement* ]? 
endif 
 
whileLoop : 
while expression do statement* endwhile 
 
forLoop : 
for variableAssignment to expression step expression do statement* endfor 
 
forEachLoop : 

for each [ variableDeclaration | varID ]  in expression do statement* endfor 
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