MA 261 Homework 6 - Solutions

1. (i) Find all solutions to the linear Diophantine equation

$$
7 x+10 y=1
$$

Proof. Applying the Euclidean algorithm, we have

$$
\begin{aligned}
10 & =7(1)+3 \\
7 & =3(2)+1 \\
3 & =1(3)+0
\end{aligned}
$$

Thus

$$
1=7-3(2)=7-(10-7(1))(2)=7(3)+10(-2),
$$

so we have an initial solution $x_{0}=3, y_{0}=-2$. Then by Theorem 1.53, all solutions are of the form

$$
x=3+10 k, \quad y=-2-7 k
$$

(ii) Find all solutions to the linear Diophantine equation

$$
6 x+15 y=3
$$

Proof. Applying the Euclidean algorithm, we have

$$
\begin{aligned}
15 & =6(2)+3 \\
6 & =3(2)+0
\end{aligned}
$$

Thus

$$
3=6(-2)+15(1)
$$

so we have an initial solution $x_{0}=-2, y_{0}=1$. Then by Theorem 1.53, all solutions are of the form

$$
x=-2+5 k, \quad, y=1-2 k
$$

2. Exercise 1.50 from the book (rephrased here for clarity): A farmer pays $\$ 1770$ for horses and oxen. Each horse costs $\$ 31$, and each ox costs $\$ 21$. What are the possible numbers of horses and oxen that the farmer bought? (Note that you can't buy a negative number of animals.)

Proof. Let x be the number of horses, and y the number of oxen. We are looking for non-negative solutions to the equation $31 x+21 y=1770$. Applying the Euclidean algorithm, we have

$$
\begin{aligned}
& 31=21(1)+10 \\
& 21=10(2)+1 \\
& 10=1(10)=0
\end{aligned}
$$

Thus

$$
1=21-10(2)=21-(31-21(1))(2)=31(-2)+21(3),
$$

and so

$$
1770=31(-3540)+21(5310)
$$

and hence our initial solution is $x_{0}=-3540$ and $y_{0}=5310$. By Theorem 1.53, all solutions are of the form

$$
x=-3540+21 k, \quad y=5310-31 k .
$$

In order for x to be positive, we need $k \geq 169$; for y to be positive, we need $k \leq 171$. Thus the possible k values are 169, 170, and 171, so our possible solutions are:

- 9 horses and 71 oxen,
- 30 horses and 40 oxen, and
- 51 horses and 9 oxen.

3. Given any natural numbers a and b, let $\operatorname{lcm}(a, b)$ denote the least common multiple of a and b. Prove Theorem 1.57: For any natural numbers a and b,

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b
$$

(Hint: Theorem 1.55 may be helpful.)
Proof. By definition, $\operatorname{lcm}(a, b)$ is the minimal multiple of both a and b, so there exist positive integers k, l such that

$$
\operatorname{lcm}(a, b)=a k=b l .
$$

Then Theorem 1.55 implies that

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=\operatorname{gcd}(a \cdot \operatorname{lcm}(a, b), b \cdot \operatorname{lcm}(a, b))=\operatorname{gcd}(a b l, a b k)=a b \cdot \operatorname{gcd}(l, k) .
$$

There exist integers k^{\prime}, l^{\prime} so that $k=\operatorname{gcd}(l, k) k^{\prime}$ and $l=\operatorname{gcd}(l, k) l^{\prime}$. Thus $\operatorname{lcm}(a, b)=$ $a \operatorname{gcd}(l, k) \cdot k^{\prime}=b \operatorname{gcd}(l, k) \cdot l^{\prime}$. If $\operatorname{gcd}(l, k) \neq 1$, then $a \operatorname{gcd}(l, k)=b \operatorname{gcd}(l, k)$ is a smaller common multiple of a, b then $\operatorname{lcm}(a, b)$, a contradiction. Hence $\operatorname{gcd}(l, k)=1$, so

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b \cdot \operatorname{gcd}(l, k)=a b .
$$

4. Prove Lemma 2.8: If the natural numbers p, q_{1}, \ldots, q_{n} are all prime, and if p divides the product $q_{1} \cdots q_{n}$, then $p=q_{i}$ for some $1 \leq i \leq n$. (Hint: Use induction on n.)

Proof. We go by induction on n. In the base case, for $n=1$, we have $p \mid q_{1}$, and since q is prime, the only divisor of q_{1} bigger than 1 is q_{1} itself. Since $p>1, p=q_{1}$.
Suppose for induction that the result holds for all primes p and lists of n primes q_{1}, \ldots, q_{n}. Now, let $p, q_{1}, \ldots, q_{n+1}$ be prime, and suppose $p \mid q_{1} \cdots q_{n+1}$. We split into two cases. First, if $p=q_{n+1}$, then $p=q_{i}$ for $i=n+1$. Otherwise, by the base case, we have that $\operatorname{gcd}\left(p, q_{n+1}\right)=1$. Thus, Theorem 1.41 implies that $p \mid q_{1} \cdots q_{n}$, so by the induction hypothesis, $p=q_{i}$ for some $1 \leq i \leq n$.

