
MA 261 Homework 6 - Solutions

1. (i) Find all solutions to the linear Diophantine equation

7x + 10y = 1

Proof. Applying the Euclidean algorithm, we have

10 = 7(1) + 3

7 = 3(2) + 1

3 = 1(3) + 0

Thus
1 = 7− 3(2) = 7− (10− 7(1))(2) = 7(3) + 10(−2),

so we have an initial solution x0 = 3, y0 = −2. Then by Theorem 1.53, all
solutions are of the form

x = 3 + 10k, y = −2− 7k.

(ii) Find all solutions to the linear Diophantine equation

6x + 15y = 3

Proof. Applying the Euclidean algorithm, we have

15 = 6(2) + 3

6 = 3(2) + 0

Thus
3 = 6(−2) + 15(1)

so we have an initial solution x0 = −2, y0 = 1. Then by Theorem 1.53, all
solutions are of the form

x = −2 + 5k, , y = 1− 2k.

2. Exercise 1.50 from the book (rephrased here for clarity): A farmer pays $1770 for
horses and oxen. Each horse costs $31, and each ox costs $21. What are the possible
numbers of horses and oxen that the farmer bought? (Note that you can’t buy a
negative number of animals.)
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Proof. Let x be the number of horses, and y the number of oxen. We are looking
for non-negative solutions to the equation 31x + 21y = 1770. Applying the Euclidean
algorithm, we have

31 = 21(1) + 10

21 = 10(2) + 1

10 = 1(10) = 0

Thus
1 = 21− 10(2) = 21− (31− 21(1))(2) = 31(−2) + 21(3),

and so
1770 = 31(−3540) + 21(5310),

and hence our initial solution is x0 = −3540 and y0 = 5310. By Theorem 1.53, all
solutions are of the form

x = −3540 + 21k, y = 5310− 31k.

In order for x to be positive, we need k ≥ 169; for y to be positive, we need k ≤ 171.
Thus the possible k values are 169, 170, and 171, so our possible solutions are:

• 9 horses and 71 oxen,

• 30 horses and 40 oxen, and

• 51 horses and 9 oxen.

3. Given any natural numbers a and b, let lcm(a, b) denote the least common multiple
of a and b. Prove Theorem 1.57: For any natural numbers a and b,

gcd(a, b) · lcm(a, b) = ab.

(Hint: Theorem 1.55 may be helpful.)

Proof. By definition, lcm(a, b) is the minimal multiple of both a and b, so there exist
positive integers k, l such that

lcm(a, b) = ak = bl.

Then Theorem 1.55 implies that

gcd(a, b) · lcm(a, b) = gcd(a · lcm(a, b), b · lcm(a, b)) = gcd(abl, abk) = ab · gcd(l, k).

There exist integers k′, l′ so that k = gcd(l, k)k′ and l = gcd(l, k)l′. Thus lcm(a, b) =
a gcd(l, k) · k′ = b gcd(l, k) · l′. If gcd(l, k) 6= 1, then a gcd(l, k) = b gcd(l, k) is a smaller
common multiple of a, b then lcm(a, b), a contradiction. Hence gcd(l, k) = 1, so

gcd(a, b) · lcm(a, b) = ab · gcd(l, k) = ab.
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4. Prove Lemma 2.8: If the natural numbers p, q1, . . . , qn are all prime, and if p divides
the product q1 · · · qn, then p = qi for some 1 ≤ i ≤ n. (Hint: Use induction on n.)

Proof. We go by induction on n. In the base case, for n = 1, we have p|q1, and since
q is prime, the only divisor of q1 bigger than 1 is q1 itself. Since p > 1, p = q1.

Suppose for induction that the result holds for all primes p and lists of n primes q1,
. . . , qn. Now, let p, q1, . . . , qn+1 be prime, and suppose p|q1 · · · qn+1. We split into
two cases. First, if p = qn+1, then p = qi for i = n + 1. Otherwise, by the base case,
we have that gcd(p, qn+1) = 1. Thus, Theorem 1.41 implies that p|q1 · · · qn, so by the
induction hypothesis, p = qi for some 1 ≤ i ≤ n.
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