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A.1 Algebra

Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra
on which we rely. We develop some algebraic background that is needed in the text. This
may not be an adequate substitute for a course in abstract algebra. Proofs can be found
in give some useful texts.

A.1.1 Fields and Rings

We are all familiar with the real numbers, R, with the rational numbers Q, and with
the complex numbers C. These are the most common examples of fields, which are the
basic building blocks of both the algebra and the geometry that we study. Formally
and briefly, a field is a set F equipped with operations of addition and multiplication
and distinguished elements 0 and 1 (the additive and multiplicative identities). Every
number a ∈ F has an additive inverse −a and every non-zero number a ∈ F× := F − {0}
has a multiplicative inverse a−1 =: 1

a
. Addition and multiplication are commutative and

associative and multiplication distributes over addition, a(b + c) = ab + ac. To avoid
triviality, we require that 0 6= 1.

The set of integers Z is not a field as 1
2

is not an integer. While we will mostly be
working over Q, R, and C, at times we will need to discuss other fields. Most of what
we do in algebraic geometry makes sense over any field, including the finite fields. In
particular, linear algebra (except numerical linear algebra) works over any field.

Linear algebra concerns itself with vector spaces. A vector space V over a field F

comes equipped with an operation of addition—we may add vectors and an operation of
multiplication—we may multiply a vector by an element of the field. A linear combination
of vectors v1, . . . , vn ∈ V is any vector of the form

a1v1 + a2v2 + · · · + anvn ,

where a1, . . . , an ∈ F. A collection S of vectors spans V if every vector in V is a linear
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combination of vectors from S. A collection S of vectors is linearly independent if zero is
not nontrival linear combination of vectors from S. A basis S of V is a linearly independent
spanning set. When a vector space V has a finite basis, every other basis has the same
number of elements, and this common number is called the dimension of V .

A ring is the next most complicated object we encounter. A ring R comes equipped
with an addition and a multiplication which satisfy almost all the properties of a field,
except that we do not necessarily have multiplicative inverses. While the integers Z do
not form a field, they do form a ring. An ideal I of a ring R is a subset which is closed
under addition and under multiplication by elements of R. Every ring has two trivial
ideals, the zero ideal {0} and the unit ideal consisting of R itself. Given a set S ⊂ R of
elements, the smallest ideal containing S, also called the ideal generated by S, is

〈S〉 := {r1s1 + r2s2 + · · · + rmsm | r1, . . . , rm ∈ R and s1, . . . , sm ∈ S} .

A primary use of ideals in algebra is through the construction of quotient rings. Let
I ⊂ R be an ideal. Formally, the quotient ring R/I is the collection of all sets of the form

[r] := r + I = {r + s | s ∈ I} ,

as r ranges over R. Addition and multiplication of these sets are defined in the usual way

[r] + [s] = {r′ + s′ | r′ ∈ [r] and s′ ∈ [s]} !
= [r + s], and

[r] · [s] = {r′ · s′ | r′ ∈ [r] and s′ ∈ [s]} !
= [rs] .

The last equality (
!
=) in each line is meant to be surprising, it is a theorem and due to

I being an ideal. Thus addition and multiplication on R/I are inherited from R. With
these definitions (and also −[r] = [−r], 0 := [0], and 1 := [1]), the set R/I becomes a
ring.

We say ‘R-mod-I’ for R/I because the arithmetic in R/I is just the arithmetic in R,
but considered modulo the ideal I, as [r] = [s] in R/I if and only if r − s ∈ I.

Ideals also arise naturally as kernels of homomorphisms. A homomorphism ϕ : R → S
from the ring R to the ring S is a function that preserves the ring structure. Thus for
r, s ∈ R, ϕ(r + s) = ϕ(r) + ϕ(s) and ϕ(rs) = ϕ(r)ϕ(s). We also require that ϕ(1) = 1.
The kernel of a homomorphism ϕ : R → S,

ker ϕ := {r ∈ R | ϕ(r) = 0}

is an ideal: If r, s ∈ ker ϕ and t ∈ R, then

ϕ(r + s) = ϕ(r) + ϕ(s) = 0 = tϕ(r) = ϕ(tr) .

Homomorphisms are deeply intertwined with ideals. If I is an ideal of a ring R, then
the association r 7→ [r] defines a homomorphism ϕ : R → R/I whose kernel is I. Dually,
given a homomorphism ϕ : R → S, the image of R in S is identified with R/ ker ϕ. More
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generally, if ϕ : R → S is a homomorphism and I ⊂ R is an ideal with I ⊂ ker ϕ (that is,
ϕ(I) = 0), then ϕ induces a homomorphism ϕ : R/I → S.

Properties of ideals induce natural properties in the associated quotient rings. An
element r of a ring R is nilpotent if r 6= 0, but some power of r vanishes. A ring R is
reduced if it has no nilpotent elements, that is, whenever r ∈ R and n is a natural number
with rn = 0, then we must have r = 0. An ideal radical if whenever r ∈ R and n is a
natural number with rn ∈ I, then we must have r ∈ I. It follows that a quotient ring R/I
is reduced if and only if I is radical.

A ring R is a domain if whenever we have r · s = 0 with r 6= 0, then we must have
s = 0. An ideal is prime if whenever r · s ∈ I with r 6∈ I, then we must have s ∈ I. It
follows that a quotient ring R/I is a domain if and only if I is prime.

A ring R with no nontrivial ideals must be a field. Indeed, if 0 6= r ∈ R, then the ideal
rR of R generated by r is not the zero ideal, and so it must equal R. But then 1 = rs
for some s ∈ R, and so r is invertible. Conversely, if R is a field and 0 6= r ∈ R, then
1 = r · r−1 ∈ rR, so the only ideals of R are {0} and R. An ideal m of R is maximal

if m ( R, but there is no ideal I strictly contained between m and R; if m ⊂ I ⊂ R
and I 6= R, then I = m. It follows that a quotient ring R/I is a field if and only if I is
maximal.

Lastly, we remark that any ideal I of R with I 6= R is contained in some maximal
ideal. Suppose not. Then we may find an infinite chain of ideals

I =: I0 ( I1 ( I2 ( · · ·

where each is proper so that 1 lies in none of them. Set J :=
⋃

n In. Then we claim that
the union I :=

⋃
n In of these ideals is an ideal. Indeed, if r, s ∈ I then there are indices

i, j with r ∈ Ii and s ∈ Ij. Since Ii, Ij ⊂ Imax(i,j), we have r + s ∈ Imax(i,j) ⊂ J . If t ∈ R,
then tr ∈ Ii ⊂ J

A.1.2 Fields and polynomials

Our basic algebraic objects are polynomials. A univariate polynomial p is an expression
of the form

p = p(x) := a0 + a1x + a2x
2 + · · · + amxm , (A.1)

where m is a nonnegative integer and the coefficients a0, a1, . . . , am lie in F. Write F[x] for
the set of all polynomials in the variable x with coefficients in F. We may add, subtract,
and multiply polynomials and F[x] is a ring.

While a polynomial p may be regarded as a formal expression (A.1), evaluation of a
polynomial defines a function p : F → F: The value of the function p at a point a ∈ F is
simply p(a). When F is infinite, the polynomial and the function determine each other,
but this is not the case when F is finite.

Our study requires polynomials with more than one variable. We first define a mono-
mial.
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Definition. A monomial in the variables x1, . . . , xn is a product of the form

xα1

1 xα2

2 · · ·xαn

n ,

where the exponents α1, . . . , αn are nonnegative integers. For notational convenience, set
α := (α1, . . . , αn) ∈ Nn and write xα for the expression xα1

1 · · ·xαn

n . The (total) degree of
the monomial xα is |α| := α1 + · · · + αn.

A polynomial f = f(x1, . . . , xn) in the variables x1, . . . , xn is a linear combination of
monomials, that is, a finite sum of the form

f =
∑

α∈Nn

aαxα ,

where each coefficient aα lies in F and all but finitely many of the coefficients vanish. The
product aαxα of an element aα of F and a monomial xα is called a term. The support

A ⊂ Nn of a polynomial f is the set of all exponent vectors that appear in f with a
nonzero coefficient. We will say that f has support A when we mean that the suport of
f is a subset of A.

After 0 and 1 (the additive and multiplicative identities), the most distinguished in-
tegers are the prime numbers, those p > 1 whose only divisors are 1 and themselves.
These are the numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . Every integer n > 1 has a unique
factorization into prime numbers

n = pα1

1 pα2

1 · · · pαn

n ,

where p1 < · · · < pn are distinct primes, and α1, . . . , αn are (strictly) positive integers.
For example, 999 = 33 · 37. Polynomials also have unique factorization.

Definition. A nonconstant polynomial f ∈ F[x1, . . . , xn] is irreducible if whenever we
have f = gh with g, h polynomials, then either g or h is a constant. That is, f has no
nontrivial factors.

Theorem A.1.1 Every polynomial f ∈ F[x1, . . . , xn] is a product of ireducible polynomi-

als

f = p1 · p2 · · · pm ,

where the polynomials p1, . . . , pm are irreducible and nonconstant. Moreover, this factor-

ization is essentially unique. That is, if

f = q1 · q2 · · · qs ,

is another such factorization, then m = s, and after permuting the order of the factors,

each polynomial qi is a scalar multiple of the corresponding polynomial pi.
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A.1.3 Polynomials in one variable

While rings of polynomials have many properties in common with the integers, the relation
is the closest for univariate polynomials. The degree, deg(f) of a univariate polynomial
f is the largest degree of a monomial appearing in f . If this monomial has coefficent 1,
then the polynomial is monic. This allows us to remove the ambiguity in the uniqueness
of factorizations in Theorem A.1.1. A polynomial f(x) ∈ F[x] has a unique factorization
of the form

f = fm · pα1

1 · pα2

2 · · · pαs

s ,

where fm ∈ F× is the leading coefficient of f , the polynomials p1, . . . , ps are monic and
irreducible, and the exponents αi are positive integers.

Definition. A greatest common divisor of two polynomials f, g ∈ F[x] (or gcd(f, g)) is a
polynomial h such that h divides each of f and g, and if there is another polynomial k
which divides both f and g, then k divides h.

Any two polynomials f and g have a monic greatest common divisor which is the
product of the common monic irreducible factors of f and g, each raised to the highest
power that divdes both f and g. Finding greatest comon divisor would seem challenging
as factoring polynomials is not an easy task. There is, however, a very fast and efficient
algorithm for computing the greatest common divisor of two polynomials.

Suppose that we have polynomials f and g in F[x] with deg(g) ≥ deg(f),

f = f0 + f1x + f2x
2 + · · · + fmxm

g = g0 + g1x + g2x
2 + · · · + gmxm + · · · + gnx

n ,

where fm and gn are nonzero. Then the polynomial

S(f, g) := g − gn

fm

xn−m · f

has degree strictly less than n = deg(g). This simple operation of reducing f by the
polynomial g forms the basis of the Division Algorithm and the Euclidean Algorithm for
computing the greatest common divisor of two polynomials.

We describe the Division Algorithm in pseudocode, which is a common way to explain
algorithms without reference to a specific programming language.

Division Algorithm.

Input: Polynomials f, g ∈ F[x].
Output: Polynomials q, r ∈ F[x] with g = qf + r and deg(r) < deg(f).
Set r := g and q := 0.
(1) If deg(r) < deg(f), then exit.
(2) Otherwise, reduce r by f to get the expression

r =
rn

fm

xn−m · f + S(f, r) ,



26 APPENDIX A. APPENDIX

where n = deg(r) and m = deg(f). Set q := q + rn

fm

xn−m and r := r − S(f, r), and return

to step (1).

To see that this algorithm does produce the desired expression g = qf + r with the
degree of r less than the degree of f , note first that whenever we are at step (1), we will
always have g = qf + r. Also, every time step (2) is executed, the degree of r must drop,
and so after at most deg(g) − deg(f) + 1 steps, the algorithm will halt with the correct
answer.

The Euclidean Algorithm computes the greatest common divisor of two polynomials f
and g.

Euclidean Algorithm.

Input: Polynomials f, g ∈ F[x].
Output: The greatest common divisor h of f and g.
(1) Call the Division Algorithm to write g = qf + r where deg(r) < deg(f).
(2) If r = 0 then set h := f and exit.

Otherwise, set g := f and f := r and return to step (1).

To see that the Euclidean algorithm performs as claimed, first note that if g = qf + r
with r = 0, then f = gcd(f, g). If r 6= 0, then gcd(f, g) = gcd(f, r). Thus the greatest
common divisor h of f and g is always the same whenever step (1) is executed. Since the
degree of r must drop upon each iteration, r will eventually become 0, which shows that
the algorithm will halt and return h.†

An ideal is principal if it has the form

〈f〉 = {h · f | h ∈ F[x]} ,

for some f ∈ F[x]. We say that f generates 〈f〉. Since 〈f〉 = 〈αf〉 for any α ∈ F, the
principal ideal has a unique monic generator.

Theorem A.1.2 Every ideal I of F[x] is principal.

Proof. Suppose that I is a nonzero ideal of F[x], and let f be a nonzero polynomial of
minimal degree in I. If g ∈ I, then we may apply the Division Algorithm and obtain
polynomials q, r ∈ F[x] with

g = qf + r with deg(r) < deg(f) .

Since r = g − qf , we have r ∈ I, and since deg(r) < deg(f), but f had minimal degree in
I, we conclude that f divides g, and thus I = 〈f〉. �

†This is poorly written!
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The ideal generated by univariate polynomials f1, . . . , fs is the principal ideal 〈p〉,
where p is the greatest common divisor of f1, . . . , fs.

For univariate polynomials p the quotient ring F[x]/〈p〉 has a concrete interpretation.
Given f ∈ F[x], we may call the Division Algorithm to obtain polynomials q, r with

f = q · p + r, where deg(r) < deg(q) .

Then [f ] = f + 〈p〉 = r + 〈p〉 = [r] and in fact r is the unique polynomial of minimal
degree in the coset f + 〈p〉. We call this the normal form of f in F[x]/〈p〉.

Since, if deg(r), deg(s) < deg(p), we cannot have r − s ∈ 〈p〉 unless r = s, we see that
the monomials 1, x, x2, . . . , xdeg(p)−1 form a basis for the F-vector space F[x]/〈p〉. This
describes the aditive structure on F[x]/〈p〉.

To describe its multiplicative structure, we only need to show how to write a product
of monomials xa · xb with a, b < deg(p) in this basis. Suppose that p is monic with
deg(p) = n and write p(x) = xn − q(x), where q has degree strictly less than p. Since
xa · xb = (xa · x) · xb−1, we may assume that b = 1. When a < n, we have xa · x1 = xa+1.
When a = n − 1, then xn−1 · x1 = xn = q(x),

• Relate algebraic properties of p(x) to properties of R, for example, zero divisors and
domain.

• Prove that a field is a ring with only trivial ideals.

Prove I ⊂ J ⊂ R are ideals, then J/I is an ideal of R/I, and dedice that R =
F[x]/p(x) is a field only if p(x) is irreducible.

Example Q[x]/(x2 − 2) and explore Q(
√

2).

Example R[x]/(x2 + 1) and show how it is isomorphic to C.

Work up to algebraically closed fields, the fundamental theoerem of algebra (both
over C and over R).

Explain that an algebraically closed field has no algebraic extensions (hence the
name).

• Define the maximal ideal ma for a ∈ An.

Theorem A.1.3 The maximal ideals of C[x1, . . . , xn] all have the form ma for some

a ∈ An.

A.2 Topology

Collect some topological statements here. Definition of topology, Closed/open duality, dense,
nowhere dense... Describe the usual topology.


