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Abstract

Ultracold atomic condensates have emerged as fascinating systems for performing quan-

tum simulation of physical systems which are otherwise difficult to study. In this thesis

we study the quantum simulation of Supersolid phase using ultracold atomic conden-

sates with long range interactions in presence of artificial gauge field. Due to tunability

of the interaction and the interesting properties of these condensates in gauge fields, we

explore the possibility of simulating Supersolid phase in such controllable system.

We first examine the ground state properties of ultracold atomic condensates with long

range interactions loaded in optical lattice, in presence of gauge field. We study the

system using extended Bose Hubbard model with nearest-neighbor interaction which

describe minimally the effect of long-range interaction on ultracold atoms in deep opti-

cal lattices. The rotation of such optical lattices subjects such neutral cold atoms to the

effect of an artificial magnetic field. We show that the modification of the phase bound-

aries of the Density Wave and Mott Insulator phases due to this rotation are shown to

be related to the edge spectrum of spinorial and scalar Harper equations. We calculated

the checkerboard vortex structure in a supersolid phase near the phase boundary and

highlight its distinct structure compared to vortex in a superfluid.

We further go on to study the effect of an artificial gauge field on extended Bose Hubbard

model by using strong-coupling perturbation theory. Using this technique, we determine

analytically the effect of the artificial gauge field on the Density Wave-Supersolid (DW-

SS) and the Mott Insulator Superfluid (MI-SF) transition boundary. We also calculate

the momentum distribution at these two transition boundaries and show that such a

momentum distribution, which can be observed in time-of-flight measurements, reveals

the symmetry of the gauge potential through the formation of a magnetic Brillouin zone

and clearly carry the distinguishing signatures between the DW-SS and MI-SF boundary.

Finally to complete our study of supersolid phase, we performed the study of such ul-

tracold atomic condensates with long range interactions in presence of gauge field in

the continuum limit. We construct a Gross-Pitaevskii hydrodynamic theory for rotating

supersolid and treat the supersolid within the framework of well known two fluid ap-

proximation. Under fast rotation limit the superfluid part of the system forms a vortex

lattice which co-exists with the supersolid lattice. We analyze the dispersion relations of

such collective excitations within this hydrodynamic approach and calculate the distinct

modes due to co-existence of two lattices in the system.
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Chapter 1

Introduction

1.1 Bose Einstein Condensation

In 1924 S. N. Bose [1] examined the nature of photons and was able to rederive Planck’s

law for black-body radiation assuming indistinguishability of the light quanta of photons.

His work was subsequently extended by A. Einstein [2] in 1925, to an ideal gas of bosons,

dealing with statistical properties and predicted a new state of matter. He predicted a

phase transition of a gas of non-interacting particles with integer spin, to a phase where

the lowest energy quantum mechanical state is macroscopically occupied [1, 2], forming

a Bose-Einstein condensate (BEC) below a critical temperature. The occupation of

a single quantum state by macroscopic number of particles in BEC is entirely due to

quantum statistical effects. The occurrence of this peculiar phenomenon is explained as

follows.

The statistical properties of massless photons, proposed by Bose [1] was extended by

Einstein [2] for non-interacting massive bosons who arrived at the following distribution

function for the ith state of the trapping potential

f(ϵi) =
1

e(ϵi−µ)/kBT − 1
(1.1)

which is termed as the Bose-Einstein distribution. Here, ϵi is the energy of the ith

state, kB is the Boltzmann’s constant and T is the temperature. The conservation of

the number of particles is taken into account by the chemical potential µ.

Consider a collection of N indistinguishable, non-interacting particles, trapped in some

potential. As the temperature of this system is lowered, the particles start moving to

lower quantum states of the trap potential. If the particles are fermions (half-integer

spin), there cannot be more than two particles staying in the same state by the Pauli

1
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exclusion principle. At T = 0 therefore all the N lowest quantum states will be occupied

by precisely one particle, and nothing further can happen. However, bosons (particles

with integer spin) do not have such constraint, and any arbitrary number of particles

can occupy the same quantum state. Therefore, as the temperature is lowered, more

and more particles are able to fall into the ground state of the trap and the population

of this state becomes macroscopic.

When the temperature T is lowered, then chemical potential µ must increase in order

to keep the number of particles N =
∑

i f0(ϵi) fixed. However, to avoid the negative

occupation numbers, µ < ϵ0 must also hold. Therefore, for an arbitrary excited state

(i > 0), the occupation number cannot exceed (e(ϵi−ϵ0)/kBT −1)−1 and hence this imposes

an upper bound of the total number of particles in the excited state. Thus, when the

system is cooled below a critical temperature Tc, the N particles can no longer be

accommodated in the excited states. The form of f(ϵi) ensures that below a critical

temperature the population of excited states gets saturated and hence the remaining

particles must reside in the ground state of the system. This leads to a macroscopic

occupation of the ground state which is called as Bose Einstein condensation.

It is to note that Einstein’s original prediction of Bose condensation was for an ideal

non-interacting gas of bosons with little relevance to real physical systems. For an ideal

gas the many body wave function of N bosons is simply the product of identical sin-

gle particle ground state wave function. This single particle wave function is termed

as macroscopic or condensate wave function. However, there are always interactions

between atoms in any physical system, and one needs to go beyond the ideal gas formal-

ism. In an interacting system, the ground state many body wave function should also

account for the correlations among the particles. The microscopic theory of interacting

bosons in the context of BEC was formulated first time in 1947 by N.N. Bogoliubov [3]

and further, Penrose and Onsager [4] formally defined BEC in interacting systems and

showed that the macroscopic nature of wave function retains its validity in this case too.

A general criterion for BEC was formulated by Penrose and Onsager [4] for interacting

bosons, which is of fundamental importance for the understanding of macroscopic quan-

tum phenomena. It states that the existence of a condensate refers to a non-vanishing

value of the single particle density matrix

ρ(r, r′) = ⟨ψ̂†(r)ψ̂(r)⟩ (1.2)

They peculiar property of BEC is termed as Off diagonal long range order (ODLRO).

This feature states that a Bose condensed system is characterised by finite long range

correlations in the condensate and hence the condensate is phase coherent at large
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distances. Subsequently, it was shown that both superconductivity [5] and superfluidity

are quantum phases characterized by the existence of ODLRO.

We now present a simplified quantum mechanical description for the achievement of

Bose condensed gas. In quantum mechanics we know that atoms are represented by

wave packets with a spatial extension given by the de Broglie wavelength

λdB =

√
2π~2

mkBT
(1.3)

with m as the particle mass and h as the Planck’s constant. For high temperatures, the

de Broglie wavelength becomes very small and the particles can be regarded as classical

point masses, whereas for low temperatures the particles behave much more like waves.

When BEC occurs the particles wavepackets overlap, or in other words, the de Broglie

wavelength becomes equal to the mean atomic separation. Using n to denote the density

of the atoms, we thus obtain

nλ3
dB ≈ 1 (1.4)

Using the definition of λdB from equation (1.3) in (1.4) one gets an estimate for the

transition temperature Tc at which BEC occurs

Tc =
2π~2n2/3

mkB
(1.5)

To satisfy the condition (1.4) and achieve BEC, the experimentalists could either lower

the temperature or increase the particle density. However, at low temperatures gases

tend to liquify or solidify, and hence the gas actually needs to be very dilute instead.

Typically, particle densities of 1013−1015 cm−3 are needed to achieve BEC. At such low

densities, three-body collisions are rare, and the rate at which atoms clump together

and form liquids or solids is so slow that metastable BEC states can be achieved with

lifetimes of seconds or even minutes, long enough for experiments to be conducted.

Bose Einstein condensate is a unique system in which quantum mechanical phenomena

manifest themselves at a macroscopic scale. In 1995 the field of BEC took a huge leap

when BEC was achieved experimentally for the first time in a dilute weakly-interacting

gas of trapped 87Rb atoms [6] and 23Na atoms [7]. In contrast to liquid helium [8], where

the strong interactions between particles leads to a substantial depletion of the BEC,

the relatively weak two-particle interaction in dilute alkali atoms allows these systems

to be used as a much better theoretical and experimental avenue for studying coherent

matter wave phenomenon on a macroscopic scale.

Theoretically, the weakly interacting regime has the advantage that all the atoms can

be described by a single macroscopic wave function. In 1961 an important equation was
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derived for the treatment of weakly interacting dilute Bose condensed gases - the Gross

Pitaevskii equation (GPE) [9], which considers the mean field of the quantum system.

i~
∂ψ

∂t
=
[
− ~2

2m
∇2 + Vext + g|ψ(r, t)|2

]
ψ(r, t) (1.6)

where ψ(r, t) is the wave function of the condensate and g is the contact interaction.

The GPE assumes that all the atoms are in the condensate and completely neglects the

quantum fluctuations around the ground state. To further go beyond the simple mean

field theory, Bogoliubov [3] proposed a description where the small quantum fluctuations

are treated as perturbations. The effect of fluctuations results in the small depletion

of the condensate mode since other excited states different from the condensate ground

state gets populated. Since in most of the experiments with dilute gases the conden-

sate depletion fraction is quite small, the GPE [9] together with Bogoliubov analysis

[3] have been in general very successful in predicting and describing the experimental

observations [6, 7].

With the first experimental realization of BEC, both theoretical and experimental progress

in this field has grown at an enormous rate. We highlight the history of the experimen-

tal realisation and research progress in ultra cold atomic gases over several years in the

following section.

1.2 Research progress in ultra cold atomic condensates

Even though the discovery of macroscopic quantum phenomena like superconductivity [5]

or superfluidity are related to the occurrence of Bose Einstein Condensation, it remained

an elusive goal for experimentalists for many years to achieve BEC as envisaged by

Einstein. This was because reaching the incredibly low temperatures for condensation

of atomic systems was a great challenge. The reason lies in the experimental difficulties

to cool down the atoms to temperatures in the required nK regime and catch and hold

them in a trap.

It was only after 70 years of Einstein’s prediction, that the first experimental realization

of BEC was observed in dilute gases of Rubidium atoms [6] and Sodium atoms [7], and

was honored with the Nobel Prize in 2001 [10]. This was possible due to the development

of effective laser cooling and trapping techniques over the preceding decades, which were

essential to observe this novel quantum phase at ultracold temperatures (v100 nK). This

was also honored with the Nobel Prize in 1997 [11]. These experimental achievements

provided novel systems for studying BEC, superfluidity, and allow one to experimentally

achieve many other phenomena that demonstrate quantum physics on macroscopic scale.
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Bose Einstein condensates have now been achieved for most of the alkali species atoms

in numerous experimental groups typically with 87Rb [6], 23Na [7], Li [12], 85Rb [13],
41K [14], and 133Cs [15] as well as in 1H [16] and meta-stable 4He [17, 18] in external

traps (harmonic confinement).

In the beginning of BEC experiments the condensing atoms were alkali metals. In such

dilute alkali gases the interaction is described quite well by the Lennard-Jones potential.

In the theory of pseudo-potentials, the two-particle interactions in dilute alkali gases are

theoretically using the short-range pseudo potential [19]

Uδ(r − r′) =
4π~2a

m
δ(r − r′) (1.7)

This pseudo potential is called contact- or delta-potential. Here, parameter a is the

s-wave scattering length known from classical scattering theory. For alkali atoms, higher

orbital waves like p, d or f waves are suppressed at low energy due to the centrifugal

barrier in such extremely cooled systems. Thus, the atoms in alkali BEC interact through

the isotropic, short range s wave interactions.

In addition to achievement of BEC with alkali species, experimental progress has also

allowed to achieve BEC of atoms with long range interaction, realized for the first time

with 52Cr atoms [20], which have dipolar interactions among them. Chromium was

recommendable due to its electronic structure 1s22s22p63s23p63d54s1, which following

Hund’s rule leads to a large magnetic dipole moment of six Bohr magnetons. So, in

addition to equation (1.7), the atoms interact additionally via a magnetic dipole-dipole

potential

Udd(r) =
µ0

4π
m1 · m2 − 3(m1 · r̂)(m2 · r̂)

r3
(1.8)

which, in comparison to equation (1.7), is not isotropic and depends on the specific angle

between the dipoles and their distance vector. A further significant difference between

contact and dipole interaction is their particular range. While the pseudo potential acts

only on contact of two atoms, the dipole-dipole interaction falls off as 1/r3 and thus acts

over long distances.

Long range interactions provide a rich theoretical laboratory for statistical physics, and

therefore Bose-Einstein condensates with dipolar interactions could become a key system

to investigate them. There has been subsequent progress to achieve BEC with control-

lable long range interactions. This has lead to the achievement of BEC of lanthanide

bosonic Erbium atoms [21], quantum degenerate gas of fermionic dysprosium [22], and

heteronuclear polar molecules [23]. Controllable long range interaction among ultra cold

atoms nowadays can also be induced by making use of radiative coupling between elec-

trical dipoles induced by off-resonant laser light which introduces a modified long range
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interaction among dressed atoms [24–26]. Very recent progress in ultracold atomic gases

is the observation of strong and controllable long-range interactions between Rydberg

atoms [27] which provide a wide range of possibilities to tailor interactions in a ultracold

gases [28].

One of the remarkable features of the ultracold atomic BEC is their high controllability.

It makes this system a better choice for realizing a large number of quantum phenomenon

where a macroscopic quantum order exists, in a highly controllable environment. Since

this is going to be one of the main subject matter of this thesis, we shall explain this

fact in more detail below.

Feshbach Resonance: An important experimental tool for ultra cold gases is the

adjustability of the interaction between atoms achieved by means of Feshbach resonances

[29]. This is the simplest, and so far most commonly used technique which allows for

arbitrary tuning of atomic scattering lengths and hence the interaction strength between

atoms, by varying an external magnetic field. Moreover, the nature of the interactions

(sign of the scattering length) can also be turned from repulsive to attractive or vice

versa by varying the applied magnetic field. We briefly describe it below.

We start by considering two potential curves Vbg(R) and Vc(R), as shown in Fig. 1.1

following [29]. For large internuclear distances R, the background potential Vbg(R)

asymptotically connects to two free atoms in the ultracold gas. For a collision process

with small energy E, this potential represents the energetically open channel or an en-

trance channel. The other potential Vc(R) represents the closed channel. It is important

too as it can support bound molecular states near the threshold of the open channel.

A Feshbach resonance occurs when the bound molecular state in the closed channel en-

ergetically approaches the scattering state in the open channel. Consequently even weak

coupling can lead to strong mixing between the two channels. The energy difference is

controllable via a magnetic field when the corresponding magnetic moments are differ-

ent. This tuning is termed as magnetically tuned Feshbach resonance. The magnetic

tuning method is the common way to achieve resonant coupling. A simple expression

representing the magnetically tuned Feshbach resonance [30] is given by

a(B) = abg

(
1 − ∆

B −B0

)
(1.9)

Here, abg is the background scattering length associated with Vbg(R) which represents

the off resonant value. The parameter B0 denotes the resonance position, where the

scattering length diverges and the parameter ∆ is the resonance width [29].
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Alternatively, there are ways where resonant coupling can be achieved by optical meth-

ods [31], leading to optical Feshbach resonances which are promising for cases where

magnetically tunable resonances are absent. Thus, with such precision control over in-

teraction strengths in ultracold gases, they promise to be an ideal toolbox to study

quantum many body phenomena.

Figure 1.1: Basic two-channel model for a Feshbach resonance. The phenomenon
occurs when two atoms colliding at energy E in the entrance channel resonantly couple
to a molecular bound state with energy Ec supported by the closed channel potential.

The idea of the figure taken from ref. [29].

Optical Lattices: Another way of tuning the interaction strength is by loading the

atoms into tightly confining optical lattice potentials whose depth can be easily con-

trolled [32, 33]. Optical lattices are periodic potentials created by counter-propagating

laser beams which produce a standing light field. Cold atoms interacting with a spatially

modulated optical potential resemble in many respects electrons in ion-lattice potential

of a solid crystals. However, optical lattices have several advantages with respect to

prototype solid state systems. They can be made to be largely free from defects. More-

over, optical lattices are highly controllable by changing the laser field properties. For

example the lattice depth can be changed by modifying the laser intensity and the lattice

geometry can be modified by changing the laser configuration. The interaction strengths

between the atoms can be changed by changing the lattice depth of the optical lattice po-

tential. The effective interaction strength is given by interaction matrix element between

the Wannier orbits whose shape depends on the laser intensity. This allows to tune the

effective interaction strength between atoms in optical lattices by changing intensity of

the laser light. Moreover, in contrast to solids, where the lattice spacings are generally

of order of Angstrom units, the lattice constants in optical lattices are typically three (or
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more) order of magnitude larger. Thus, the combination of macroscopic matter waves

like BECs and periodic potentials (optical lattices) offers the possibility to investigate

the basic properties of condensed matter system with a much better external control.

Probing Techniques : The probing techniques in these systems allow a direct obser-

vation of the BEC in experiments. For instance, the velocity distribution of atoms taken

by means of time of flight expansion method has clearly shown the appearance of a

condensate below the transition temperature [6, 7]. In Fig. 1.2 the velocity distribution

profile shows the experimental realization of BEC.

Figure 1.2: Observation of Bose-Einstein condensation by absorption imaging. The
sharp peak is the Bose-Einstein condensate, characterised by its slow expansion ob-
served after time of flight. The left picture shows an expanding cloud cooled to just
above the transition point; middle: just after the condensate appeared; right: much
below the critical temperature left an almost pure condensate. Picture is taken for data

from ref. [6] with due permission from the author.

Furthermore, a lot of quantitative information can be extracted from simple spatial

images of atomic cloud about the nature of the macroscopic quantum states, which is not

possible in prototype condensed matter experiments. A sequence of in-situ observation

has shown collective excitations of a condensate [34], which implies that one gets a

detailed description of quantum mechanical ground state of the many body system and

low energy excitations, in a clean and controlled manner.

These are the key features which make ultra cold atomic systems a powerful laboratory

for studying a wide range of quantum many body problems. The great attraction that

lead to the remarkable growth of this field arises from the fascinating properties of this

system. Due to such controllable properties, ultracold atomic systems finds application

to be used as efficient quantum simulators, which is the subject matter of discussion of

next section.
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1.3 Ultracold atomic gases as quantum simulators

Ultracold atomic systems can act as very efficient quantum simulators and, can imple-

ment Richard Feynmann’s idea of quantum simulation [35]. This implies the simulation

of properties of one quantum system by means of controlling and observing the properties

of other quantum system. The purpose of a quantum simulation is to use a well un-

derstood and controllable physical system to simulate the various properties of another

quantum system which otherwise is difficult or sometimes even impossible to investigate

experimentally. Quantum simulation using cold atomic condensate thus promise to rev-

olutionize scientific research by allowing us to simulate otherwise intractable physical

systems. We explain in detail two remarkable examples of quantum simulation using

cold atoms.

Quantum Simulation of Mott insulator - superfluid transition using cold

atomic condensates: One of the well established examples of quantum simulation

is the observation of quantum phase transition from the superfluid to a Mott insulator

phase using cold atomic condensates in optical lattices [33]. This phase transition was

originally proposed to occur in context of solid 4He adsorbed in porous media and in

granular superconductors [36] and described using Bose Hubbard Model. But due to

incredibly complex nature of real solid state systems, presence of disorder and other such

effects, it is quite difficult for experimentalists to test and prove such theoretical results

in real solid state systems. Because of these reasons, such quantum phase transition is

quite difficult to cleanly observe in the proposed solid state systems.

However, after the successful discovery of BEC in laboratory in 1995, Jaksch et.al [37]

in 1998 proposed that such a phase transition could be feasible to observe with ultracold

atoms in optical lattices. They theoretically showed that ultracold atomic condensates

loaded in an optical lattice realizes exactly a Bose Hubbard Hamiltonian described in

[36].

Ĥ = −t
∑

<i,j>

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +
∑

i

ϵin̂i (1.10)

Here, t is the hopping parameter, U is the onsite interaction among atoms, ϵi is the zero-

point energy. The tight binding condition can be experimentally controlled because of

the unprecedented control of optical lattice parameters. Four years after this proposal,

in 2002 such quantum phase transition from a superfluid to Mott insulator state was

experimentally achieved [33] in laboratory using cold atoms in optical lattices. When

the kinetic energy of the atoms is much larger the atom-atom interaction energy, i.e. for

a sufficiently weak lattice potential, the system favors a superfluid many-body ground

state. The condensate fraction is large and there is long-range phase coherence in the
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system due to macroscopic occupation of a single quantum state. However when the lat-

tice height is raised, the energetically preferable single-particle states are localized about

each site, such that the many-body ground state is a Mott insulator. Experimentally,

this phase transition has been observed by taking absorption images of the matter wave

interference pattern [33] in time of flight.

Realization of such quantum phase transition is one of the many examples where ultra-

cold atomic gases have proved their efficiency to be used as quantum simulators.

Thus, as already described in detail in section 1.2, combination of BEC with optical

lattice potential [32, 33] provides an opportunity for exploring a quantum system analo-

gous to electrons in solid state crystals with unprecedented control over the lattice and

particles. This gives us a well established example of quantum simulation using ultracold

atomic condensates.

Quantum Simulation of BEC-BCS crossover: Another example of quantum simu-

lation using cold atomic condensates is the observation of BEC-BCS crossover obtained

with the help of Feshbach resonance technique [29]. This subject describe the system

of collection of interacting Fermi atoms being cooled to quantum degeneracy, where a

macroscopic fraction of them can occupy the same quantum state. As already explained

in section 1.1, that due to the Pauli exclusion principle, a single quantum state cannot

be macroscopically occupied by individual fermions. However, if the fermionic atoms

form pairs they can then be considered as composite bosons, making such a two-body

bound state a diatomic molecule. Below a critical temperature, it can be expected that

these two-body molecules condense like bosons when they are cooled below a critical

temperature. This regime is called as the BEC side of the BEC-BCS crossover physics

(the left panel of Fig. 1.3).

The other limiting case is that when fermions are only weakly attracting, which corre-

sponds to a situation studied in the context of superconductivity [38]. In superconductiv-

ity, electrons form pairs called as Cooper pairs, in the presence of a weak inter-attraction

mediated by crystal vibrations or phonons. According to the BCS theory, the favored

ground state is that in which fermions form pairs in momentum space and condense

below the critical temperature. Their two-body wavefunctions extend in space and sig-

nificantly overlap with each other. This regime is thus called the BCS side (the right

panel of Fig. 1.3).

The intermediate region between the BEC and BCS regime is defined when the two

tightly bound fermions on the BEC side start to dissociate, or the overlap of the two-

body wavefunctions on the BCS side diminishes (the middle panel of Fig. 1.3). In this

region, called the unitary region [39], the crossover physics of the Fermi systems should



Introduction 11

Figure 1.3: Schematic diagram of BEC-BCS crossover. Different colors of atoms
represents the two spin types of fermionic atoms. In the BEC regime, two spin atoms
form deep-bound molecules (composite bosons), while in the BCS regime, the fermions
are loosely bound and paired in the momentum space. In the middle region the effective

scattering length diverges, indicating a strong interaction between atoms

show unique properties, neither entirely bosonic nor fermionic in nature; interesting

behaviors are expected and explored. With the help of Feshbach resonances, as already

mentioned in detail in section 1.2 that the interaction between atoms can be tuned to

change from attractive to repulsive. The existence of two separate states, a fermionic

and a bound bosonic one, can be seen from the emergence of characteristic superfluid

vortices [40]. This transition between the bosonic and fermionic state by simply tuning

the scattering length in ultracold atomic systems simulates the so called BEC-BCS

crossover [39], which was for long only a theoretical proposal [41, 42].

The technique of Feshbach resonances has become by now an important laboratory tool

to prepare, control, and probe ultracold gases. This is another example where ultra cold

gases act as quantum simulator for observation of BEC-BCS crossover in degenerate

fermionic system [39], which otherwise was not realized experimentally.

These successful achievement opens up perspectives for a much broader range of quan-

tum simulations using cold atomic condensates with much better external control. Sev-

eral physical systems have been proposed and simulated using cold atomic condensates.

Some examples of which are spin models [43], many-body systems with Rydberg atoms

[44], simulation of the Tonks-Girardeau regime with BEC in 1D optical lattices [45],

observation of Anderson Localization using BEC in random potentials [46] and many

more.

One of such particular quantum simulation of interest is the simulation of properties of

exotic supersolid phase in ultra cold atomic condensates which is the subject matter of

the proposed thesis and is explained in detail in the following section.
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1.4 Quantum simulation of Supersolid phase

Before getting into quantum simulation of supersolid phase in ultracold atomic system

and its detection, we shall provide a historical perspective of the earlier theoretical and

experimental work on the realization of supersolid phase.

1.4.1 History of Supersolid phase

The phenomenon of supersolidity is as interesting and fundamental as the phenomenon

of superconductivity and superfluidity, and refers to a quantum many body state of in-

teracting particles where off-diagonal long range order (ODLRO) co-exists with diagonal

long range order [4]. It implies that a supersolid shows the properties of a superfluid

and a solid simultaneously. However, it was concluded by Penrose and Onsager [4] in

1956 in their seminal paper that ODLRO cannot coexist with in a crystalline solid,

and hence no such supersolid phase can exist. Their argument was based on a varia-

tional model of a crystal of atoms which are pinned at equilibrium lattice positions, and

hence prevent the macroscopic quantum mechanical exchange of indistinguishable par-

ticles, thereby removing all effects of quantum statistics including BEC. This argument

though recapitulated even many years later [47] has no formal proof for the non-existence

of supersolid.

After the argument by Penrose and Onsager(1956), Gross [48, 49] showed that a su-

perfluid system described by the nonlinear classical field equation has the possibility to

exhibit a density wave modulation. This finding was formally the first theory of the

supersolid phase but it was essentially overlooked, due to incomplete understanding of

the conditions of the validity of calculation by Gross. Further, Yang [5] in 1962 proposed

that the atoms in a crystal of helium possess a high degree of quantum delocalization

and exchanges of adjacent atoms might be significant in this case. Successively, Leggett

[50] in 1970 extended Yang’s argument to suggest an experiment in which the superfluid

response of a 4He crystal could be measured.

A different context for the occurrence of supersolid was proposed by Andreev and Lifshitz

[51] in 1969 and Chester [52] in 1970. They described supersolidity arising due to the high

mobility of point defects such as vacancies or interstitials that may be present even in the

ground state of some quantum many-body systems such as 4He at low temperature. They

proposed that it was likely that a gas of such repulsively interacting point defects ought

to undergo BEC, and turn superfluid, at low temperatures. Recently, it was pointed out

by Prokof’ev and Svistunov [53] in 2005 that the zero-point defects supersolid scenario

is the only one possible in perfect continuous-space crystals. However, many apparently
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contradictory findings have raised doubts on the applicability of this model to search

the supersolid phase of matter.

The remarkable property of superfluidity observed in He-4 by P.L. Kapitza [54] and the

solidification of Helium being achieved by Keesom [55], together with Yang’s argument

[5], made He-4 a suitable candidate to look into for supersolid behaviour. Leggett [50]

particularly suggested way back in 1970 that the observation of Non Classical Rotational

Inertia (NCRI) in solid He-4 could be one of the ways to confirm the existence of super-

fluid behavior in solid. NCRI refers to an observable drop in the moment of inertia of a

solid below a certain temperature due to the formation of superfluid fraction which does

not follow the rigid body rotation of an ordinary solid, and hence does not contribute

to the inertia value.

In 2004, the first successful yet questionable test for the existence of supersolid phase

was reported by Kim and Chan [56]. They observed a downward shift in the period of

a torsional oscillator filled with solid 4He, at temperatures below 250 mK [56, 57]. The

findings of this experiment have been explained in terms of decoupling of the superfluid

fraction within the solid helium at low temperatures, and appears to be acceptable.

However, there are other experimental observations which remain unexplained within

the present context. This includes the increase in shear modulus for solid helium with

a similar temperature dependence as that of NCRI [58–60], which cannot explain me-

chanically the drop in NCRI. Moreover, there is no evidence of superfluid in solid helium

when it is subjected to localized pressure gradient [61–63] under the conditions of NCRI.

It has also been proposed that supersolidity does not exist in perfect crystals [64] and

that defects such as dislocations in single crystals, grain boundaries in polycrystals are

necessary. Balibar [65] interpreted the observation of flow in He as arising due to the

formation of grain boundaries in crystals. In contrast, Anderson, Brinkman and Huse

[66] have presented a theory based on the idea that solid helium is ’incommensurate’.

Anderson [67] proposes that supersolidity can be an intrinsic property of ideal crystals

that is only enhanced by disorder. These are among some of the issues whose inter-

pretation remains partly unexplained and hence, controversial. These outcomes require

a robust and unified theoretical and experimental approach for the case of solid He-4,

which is not yet achieved.

Very recently, the controversy with solid 4He appears to be eventually resolved by Kim

and Chan [68] themselves, with the conclusion that solid 4He does not support the

direct and clear observation of supersolid phenomenon. The question of existence of

supersolidity is still intact and thus one needs to look into other physical systems that

may allow a relatively easy and clear identification of this novel phase.



Introduction 14

The search for the supersolid phase of matter has thus now extended beyond solid helium,

in many new directions. One of the exciting direction could be spatially confined dilute

ultracold atoms interacting via a pair potential. The remarkable progress in cold atom

physics has made it feasible to investigate such exotic phases of matter, in a clean

and controlled experimental many-particle system. Moreover, as explained in detail in

section 1.3, cold atomic systems allows one to tailor the inter particle potential which

can stabilise the supersolid phase and hence, confirm its existence rigorously. Thus,

ultracold atomic condensates are promising candidates for the quantum simulation of

the supersolid phase of matter, whose existence is otherwise a matter of debate.

Here we shall describe briefly relevant ultracold atomic system which may be considered

for realization of supersolid phase.

1.4.2 Ultracold atomic condensates as quantum simulators for Super-

solid phase

As already explained in detail in section 1.3, due to the unprecedented tunability of

the interaction potentials between atoms under well defined and highly controllable

conditions, ultracold atomic condensates have emerged as prominent candidates to study

the supersolid phase. It has been pointed out by several theoretical works that certain

type of long range interaction potentials [24, 48, 69, 70] stabilize the supersolid phase in

BEC and since the interactions are tunable in these systems, they are excellent systems

to study supersolidity and its properties. Prominent candidates in the domain of ultra

cold atomic system with long range interaction are ultra cold gases with strong dipolar

interactions, realized with atoms like 52Cr [20], ultra cold lanthanide bosonic Erbium

atoms [21], quantum degenerate gas of fermionic dysprosium [22], and heteronuclear

polar molecules [23]. We discuss the progress and possibility of supersolid phase in two

such cases below.

Dipolar quantum gases : Ultracold quantum gases with alkali atoms are usually dom-

inated by isotropic (s-wave) contact interactions. On the other hand, dipolar quantum

gases possess dipole-dipole interaction (DDI) between permanent dipole moments which

play a significant or even dominant role in determining the system properties. Recently,

there has been much progress in bringing longer-ranged interactions into the system by

using dipolar atoms or molecules [71]. Long range interactions provide a rich theoretical

laboratory for statistical physics, and therefore Bose-Einstein condensates with dipolar

interactions could become a key system to investigate them in. Peculiar effects of long-

range interactions such as new quantum phase transitions have been found theoretically

in dipolar BECs [72]. It is expected that due to long range nature of dipolar interactions,
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the dipolar gases support the existence of supersolid phase. It has been predicted that in

2D lattices the presence of finite range interactions (where the interactions are generally

cut off at the nearest or next-nearest neighbor) gives rise to novel quantum phases, like

the density wave (checkerboard), namely an insulating phase with modulated density,

and the supersolid phase [73].

On the other hand, numerical studies of the ground-state phase diagram of a two-

dimensional homogeneous system of dipolar bosons have yielded evidence of a superfluid-

to-crystal quantum phase transition [74] and not exactly superfluid to supersolid phase

transition. These implications make the existence and stability of supersolid phase in

such purely dipolar systems a matter of debate [75].

Rydberg atom condensates : One of the promising candidates which support the

formation of supersolid phase are the ultracold atomic condensates with long range in-

teractions between atoms in Rydberg states [24]. Combination of high-lying Rydberg

states with cold atomic gases provides a promising approach to achieve the supersolid

phase. This is because the strong long-range van der Waals interactions between Ryd-

berg atoms cause strongly correlated, many-body quantum states to emerge directly as

Rydberg atoms are excited in dense clouds of cold atoms. This is related with a physi-

cal mechanism called Rydberg Blockade [76, 77] which occurs when the excitation of an

atom to a Rydberg state does not occur, if another already excited atom is less than the

so-called blockade radius away, which has been demonstrated in experiments using two

independent atoms [78]. Recent theoretical work has studied the excitation dynamics

and the many-body phase diagram of large Rydberg atom in chains and lattices, and

demonstrated their utility for quantum simulation of exotic many-body Hamiltonians

[79].

The idea of quantum simulation using Rydberg atoms, for instance, has led to the pre-

diction of long-range ordered, crystalline Rydberg atom structures [80], whose properties

and stability are being investigated by several groups. This was also proposed as a way

to engineer novel type of interaction potentials between ultra cold atoms that lead to

the formation of supersolid phase. Specifically, an interaction of the type which flattens

and essentially remains constant below a characteristic cut-off [24] has been shown to

support the supersolid phase in Rydberg excited cold atomic condensates.

Vryd =
C̃6

r6ij +R6
c

(1.11)

For atomic pairs at large distance, this potential is vdW type with an effective coefficient

C̃6 =
(

Ω
2∆

)4

C6 (1.12)
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whereas it approaches a constant value below a critical distance Rc = (C6/2~|∆|)1/6.

Prospects of obtaining ultracold atomic supersolid became brighter with the recent ex-

periments where roton like mode softening [81], which indicates the instability towards

the formation of uniform superfluid, has been demonstrated through cavity mediated

long-range interaction in ultra cold atomic BEC [82]. These type of long range interac-

tion are thus realizable in assemblies of cold atoms, making cold atomic gases an entirely

new, likely more direct pathway for the quantum simulation of supersolid phase.

Given this exciting theoretical development in identifying the correct type of long-range

interaction that can lead to the formation of supersolid phase and associated experi-

mental progress in achieving the relevant system, it is crucial to understand the nature

of such supersolidity in ultra cold atomic system and differentiate it from the relatively

well understood ordinary superfluidity in such system which forms the motivation of the

work done in this thesis.

As mentioned earlier, supersolid is defined as a quantum system which exhibits crys-

talline structure and superfluid properties simultaneously. It is known that one of the

most distinct features of superfluidity is the quantization of circulation and formation

of vortices in such systems due to the existence of a macroscopic wave function for the

system. Superfluid forms vortices as a response to application of an effective gauge

(magnetic) field. To differentiate the supersolid phase from the superfluid in ultracold

atomic system, one of the ways is to probe their response in presence of effective gauge

field and point out the distinguishing features between them. Before going into details

of this motivation, in the next section we describe the effective gauge fields for such

neutral ultra cold atomic system and its effect on cold atomic condensates.

1.5 Artificial gauge fields for cold atoms

The generation of artificial gauge fields for quantum gases has intrigued much interest

since the first realization of BEC. Unlike the charged systems which respond to a mag-

netic field, one needs to rely on methods that applies a magnetic field on such neutral

systems in an artificial manner. The conceptually convenient way is by uniformly ro-

tating the cloud of atoms, which mimicks the Lorentz force experienced by a charged

particle in a magnetic field. Due to the existence of macroscopic wave function for the

system, BEC shows the quantization of circulation and formation of vortices under rota-

tion. The spectacular generation of a vortex lattice in a BEC by rotation [34], which in

addition to proving its superfluidity, provides a direct analogue of the Abrikosov lattice

in a type-II superconductor under a magnetic field [83].
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There are many proposals put forward and hence implemented to generate gauge fields

without a large scale rotation [84]. This is because of the constraint on the rotation

frequency Ω < ω (trap frequency) which does not allow application of very high effective

magnetic fields (of the order Ω ∼ ω) by rotating the system. On the experimental

front, such proposals have been successfully implemented by means of Raman techniques

[85, 86], which generates relatively very high effective magnetic fields with high stability

of the system compared to rotating potentials. The details of the application of magnetic

field either by rotation or by light induced gauge potentials is provided in chapter 2 of

this thesis.

This experimental progress has opened up study of wide range of new features in the

physics of quantized vortices and vortex arrays, allowing access to parameter regimes

unlike those accessible in the helium superfluids or type-II superconductors. Moreover

this has lead to novel properties of the ground states in presence of gauge (magnetic)

fields, including the possibility of exotic strongly correlated phases.

Examples of which include the realization of Fractional Quantum Hall effect [87] in ultra-

cold atomic systems. The fractional quantum Hall phases realized by two-dimensional

electron gases in very large magnetic fields are among the most intriguing states of

matter [88]. In such systems, electrons ’bind’ to magnetic vortices, forming strongly

correlated phases with striking properties, such as exotic excitations (’anyons’) which

obey fractional statistics [89]. Experimental evidences [90] strongly support the existence

of fractionally charged excitations in these systems, but evidence for their statistics is

less conclusive [91]. Due to the similarity with the electron system, the physics of the

FQHE should emerge for a two-dimensional (2D) condensate in the regime of very high

magnetic fields, which is now feasible by using light induced gauge potentials [85, 86].

With ultracold atoms in optical lattices, the application of gauge field mimicks the trivial

problem of Bloch electrons in a magnetic field. In context of the Bose Hubbard model

in presence of a uniform magnetic field, the system shows the breaking of degeneracy

of Landau levels and the formation of Hofstadter Butterfly energy spectrum [92] in the

strongly correlated regime. This has been explained in chapter 2 of the thesis.

With the background of ultracold atoms, optical lattices, supersolid phase and artificial

gauge fields, in the next section we present the motivation of the work done in this

thesis.
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1.6 Motivation of the thesis

As mentioned in detail in earlier sections, supersolid is a quantum phase which exhibits

crystalline and superfluid properties simultaneously. One of the ways to characterize su-

perfluidity is by the quantization of circulation and formation of vortices. This happens

due to the existence of a macroscopic wave function for the system. Superfluid forms

vortices as a response to application of an effective gauge (magnetic) field. This effective

gauge field can be generated either by rotation [93–96] or by engineering the phase of

the condensate using certain type of laser-atom interaction [85, 86, 97] which couples

their internal states with raman lasers. The formation of quantized vortices and their

collective oscillations has been experimentally observed [34] and studied extensively in

case of superfluid of ultracold atomic condensates [98, 99].

Motivated by theoretical and experimental success in the observation of vortices and

their collective motion, we theoretically explore the possibility for the detection of su-

persolid phase in ultracold atomic condensates, by probing their response to rotation

or application of equivalent gauge fields. To confirm the existence of supersolid, one

needs to look into the signatures for solid like behavior coexisting with superfluidity

simultaneously. In this thesis, we performed calculations for such supersolid phase both

for the lattice and continuum systems under the effect of such artificial gauge field.

The thesis highlights the interesting features exhibited by supersolid phase in artificial

gauge potentials. After this brief introduction to the problem considered in the thesis,

we describe below the detailed description of the system and specifically mention the

properties we investigate in the proposed thesis.

We start our study of the supersolid phase in the context of ultracold atoms with gen-

eral long range interactions in the presence of optical lattice potentials. As mentioned,

lattice potentials can act as a bridge where one can simulate the periodically modulated

condensed matter systems on a macroscopic scale and in clean environment, with ex-

treme control over parameters. For atoms interacting via contact interaction, a quantum

phase transition [100] from a superfluid (SF) to a Mott insulator (MI) has been predicted

and observed [33]. In the simplest case, these systems can be theoretically described by

the Bose-Hubbard model (BHM), which has two parameters: hopping parameter t and

on-site interaction U [37]. A natural extension of the BHM comes from including above

mentioned long-range interactions between atoms which is called as extended Bose hub-

bard model (eBHM). Under tight binding approximation, the long range interaction

term in the eBHM can be written as sum of contribution from the onsite interaction,

nearest neighbor interaction, the next nearest neighbor interactions between atoms and

so on [101, 102].
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As mentioned before, recent experiments in observing BEC of ultracold atoms with

long range interactions and polar molecules have deepened interest in such extended

Bose-Hubbard models [101, 102]. Long-range interactions play a crucial role in the

collective behavior of the system, leading to the appearance of states with different

types of long-range order, like various insulating states as well as supersolids. In the

deep optical lattice situation, one considers minimal eBHM with only the onsite and

nearest neighbor interactions, and the new phases which appear are the Density Wave

(DW) and supersolid (SS) phases [103] alongwith the MI and SF phases. These phases

have different characterising properties and behavior as compared to their MI and SF

counterparts.

Chapter 2 and 3 describe the detailed study of the effect of an artificial gauge field on

the SS phase and its signatures at the DW transition boundary, lying deeply inside the

strongly interacting regime. The summary of work done in these chapters is given in

section 1.6.1.

As we decrease the height of the lattice potential, we move away from the strongly inter-

acting regime to the weakly interacting regime, where the Hubbard model description

can be replaced by the weakly interacting Gross-Pitaevskii mean field formalism [19].

In the absence of optical lattice, the continuum limit of studying supersolid phase and

its signatures in an artificial gauge field are much more convincing as compared to the

lattice counterparts. The reason is that the induced periodicity of the underlying lattice

is partly responsible for supersolidity.

An important method of investigation of such continuum supersolids is to study the col-

lective modes of the system and detect the various sound modes which are the reflection

of system’s elastic properties. The study of vortex dynamics in rotating superfluids is

quite remarkable both theoretically and experimentally and served as an important test

for superfluidity [34, 98, 104]. The theoretical approach based on macroscopic Gross-

Pitaevskii based hydrodynamics was found capable of describing the oscillation modes

of a regular vortex lattice in ultracold atomic superfluids [98, 104], which was subse-

quently verified experimentally by Coddington et al. [34]. They were able to detect the

Tkachenko modes, which are transverse sound modes in the vortex lattice.

Motivated by this success in observation of collective vortex lattice oscillation in ultracold

atomic rotating superfluid, in Chapter 4 of the thesis we constructed a Gross-Pitaevskii

hydrodynamic theory for rotating supersolid in the weakly interacting regime, where a

vortex lattice co-exist with supersolid lattice. The purpose of our study is to understand

the nature of the collective excitations of such vortex lattice as much as possible within

an analytical framework and point out its difference with the corresponding situation
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in a superfluid. Rotating supersolids when subjected to small perturbations reveal in-

teresting features that result due to the interplay of two embedded lattice structures,

the supersolid lattice and the vortex lattice, and provide signatures in the sound modes

to detect it in comparison to rotating superfluids. The appearance of such modes in

the excitation spectrum differentiate the system from rotating superfluids and can be

a signature for supersolid behavior. This may provide a convincing way of verifying

supersolidity in continuum systems.

In the next sub section 1.6.1, we provide the chapter wise description of the work done

in this thesis.

1.6.1 Outline of the thesis

In the following chapters, we present a detailed theoretical study of the properties of

supersolid phase in artificial gauge fields, including both the strongly interacting and

weakly interacting regime. The outline of the thesis is as below :

Chapter 2 provides the calculations of modification of the DW-SS phase boundary

as a function of increasing strength of artificial gauge field and the structure of vor-

tex profiles in the supersolid phase near the DW-SS phase boundary using mean field

Gutzwiller variational formalism [105]. We perform analytical calculations using mean

field Gutzwiller variational formalism to study the effect of artificial gauge field on cold

atomic condensates with long range interactions loaded in optical lattices in the frame-

work of extended BHM so that it can be contrasted against similar studies done using

Bose Hubbard model [106, 107]. In this chapter, we report the modification of the DW

and MI phase boundary by using a reduced-basis ansatz for the Gutzwiller variational

wave function, within the framework of mean-field approximation. The minimization of

the energy functional very close to the DW phase boundary shows that the superfluid

order parameter satisfies a spinorial Harper equation [105]. Consequently, the phase

boundary can be determined from the edge of a Hofstadter butterfly (HB) spectrum

[92].

In the resulting vortices, the spatial profile of the superfluid density shows a checkerboard-

like two sublattice modulation with a relative phase winding between the superfluid order

parameter defined on each of these sublattices. Thus, from the spectrum of the Harper

equation (equation for electron in a periodic potential in presence of a magnetic field),

we have analytically demonstrated how the superfluid and crystal order coexist in the

vortex profile of a supersolid around a DW vortex core [105]. This can be used to iden-

tify the supersolid phase in cold-atom experiments. We also discuss their possible ways

of experimental detection, which includes the Time of Flight (TOF) imaging technique
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to get the sublattice modulation of the superfluid density and to get the detailed vortex

structure, one can use the Bragg scattering technique, which is sensitive to the spatial

phase distribution of the initial state and the direction of rotation.

In Chapter 3 we adopt the strong coupling perturbation theory [108] to calculate the

effect of artificial gauge field on the phase diagram and the experimental signatures of

the vortex structures in a supersolid phase [109]. We also show that, in the presence of an

artificial magnetic field, the TOF image actually depends on the means to produce such

an effective magnetic field, and hence one can notice that the momentum distribution

depends on the type of the gauge potential, and hence, not gauge invariant. We explain

this apparent gauge dependence of momentum distribution as a direct result of the

realization of a specific vector potential and not the field, in the typical experimental

setups.

In part 3A of the chapter, we look into the modification of the DW and MI phase bound-

aries as a function of magnetic field in the framework of strong coupling perturbation

approach. This is basically a many-body perturbation expansion in terms of hopping

parameter t/U , and can have higher order corrections in t/U , which gives us a quan-

titative insight of the critical points. As expected, we found that the shapes of the

insulating lobes depend on the dimensionality of the system and, also on the applica-

tion of artificial gauge field. Mean-field theory always gives a concave shape to the MI

and DW lobes because the dimensionality only enters as a prefactor in the expressions,

while the strong-coupling expansion easily distinguishes the shape of insulating lobes in

different dimensions, both in the absence and presence of the artificial magnetic field.

The determination of DW-SS and MI-SF transition boundaries as a function of gauge

field, using strong-coupling perturbation theory, is one of the important results of this

work [109].

We carried out an extrapolation of phase boundaries using chemical potential exploration

technique to go beyond the finite order strong coupling expansion scheme. The system

shows the increasing stability of the insulating phase (i.e. the DW and MI phases grow

in size as the strength of the magnetic field is increased from zero to finite values). This

can be explained due to the localization effect of magnetic field on the moving bosons,

thus favoring the insulating phases to occupy a larger area in the phase diagram.

In part 3B of the chapter, we calculate some possible experimental signatures for vortex

structures in a SS obtained in chapter 2. Using the strong coupling perturbation theory,

we determine the momentum distribution profile in presence of artificial gauge field,

which gives us distinguishing features to detect a rotating SS. The standard experimental

way to probe the properties of an ultracold atomic condensate is through TOF absorption

imaging of the freely expanding atoms released from the trap. The same method is used



Introduction 22

to probe the condensate loaded in optical lattices as well. The quantity that is measured

experimentally in such TOF expansions is the momentum distribution of the ultracold

atomic ensembles in the long time limit. Since, we perform our calculations at the

phase boundary, so the results for the momentum distribution at the DW and MI phase

boundary, in the presence of a symmetric gauge potential provides information about

the vortex signature in a SS (at the DW-SS phase boundary) and the vortex in a SF

(at the MI-SF phase boundary) [109]. Our calculations demonstrates that the rotating

SS reflects some extra peaks in the momentum distribution in addition to the peaks

observed in a rotating ordinary SF. This occurrence of extra peaks in the momentum

distribution for a rotating SS is another important result of this work [109].

To analyze this issue further, we compared the momentum distribution in a symmetric

gauge to the momentum distribution corresponding to the many-body states having

definite quasi-angular momentum in a symmetric gauge potential. This quasi-angular

momentum is analogous to the Bloch momentum for a rotationally invariant system in

presence of lattice. Thus, we re-evaluate the momentum distribution, but for a given

fixed quasi-angular momentum and found that the results at the DW-SS phase boundary

can be distinguished from the MI-SF phase boundary by noting the appearance of small

extra peaks in the former [109]. The fact that a zero quasi-angular momentum state

can be distinguished from a nonzero one by looking at the corresponding momentum

distribution allows the experimentalists to verify that vorticity has entered the system

through the TOF measurement.

Chapter 4 of the proposed thesis is devoted to the study of rotating supersolid in

continuum systems [110]. As already mentioned about the necessity of the continuum

model, we develop the hydrodynamic theory for rotating Supersolids in such continuum

systems. More specifically, we construct a Gross-Pitaevskii based hydrodynamic theory

[104] for rotating supersolid in the regime where a vortex lattice co-exists with the

supersolid [110]. The purpose of our study is to understand the nature of the collective

excitations of such vortex lattice as much as possible within an analytical framework

and point out its difference with the corresponding situation in a superfluid.

The lattice part of the supersolid is described as the normal component within the well

known two-fluid approximation. Within this framework, we derive the set of hydrody-

namic equations for rotating supersolid. This is valid under the general conditions of

applicability of hydrodynamic theory, in particular the perturbations under considera-

tion are long wave (practically much longer than the lattice size). We also point out

typical cold atomic systems where such theory may be applicable. Using these equations,

we calculate and analyze the dispersion relations for such collective excitations of vor-

tex lattice in a supersolid within this hydrodynamic approach [110] and compare them
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against the results for a fast rotating superfluid that was studied theoretically and ex-

perimentally. We also check and describe the solutions of such hydrodynamic equations

under various limits, like for a rotating superfluid and for non-rotating supersolid. We

shall also briefly discuss how such hydrodynamic equations gets modified where mutual

friction between the supersolid lattice and the vortex lattice is taken into account. We

calculate the excitations for the vortex lattice in supersolid and found that it distinctly

depends on the quantized nature of circulation in a supersolid and provide unambiguous

signature of the existence of macroscopic quantum order [110].

Chapter 5 of the thesis will be the concluding chapter, summarizing the outcome of

the thesis with a brief outline about the future possible scope of the work.



Chapter 2

Extended Bose Hubbard Model

in presence of artificial gauge

field: Mean field approach

This chapter is based on the publication R. Sachdeva, S. Johri and Sankalpa

Ghosh, ’Cold atoms in rotating optical lattice with nearest neighbor interac-

tion’, Physical Review A, 82, 063617 (2010) [105]

Remarkable progress has been made in the study of strongly interacting atomic regime,

realized experimentally with the help of cold atoms in optical lattices. The study of

interacting bosons in a lattice was originally proposed by M.P.A. Fisher et.al in 1989

[36]. In their landmark paper, they proposed the Hubbard Hamiltonian for the bosonic

atoms in a periodic potential and predicted the Mott Insulator(MI)-superfluid (SF)

quantum phase transition for bosonic systems. In 1998, Jaksch et.al [37] proposed that

this description for interacting bosons in lattice could be extended to cold bosonic atoms

in an optical lattice and it was further experimentally established in 2002 by Greiner

et.al [33]. They observed MI-SF transition with ultracold atomic condensates with short

range interactions. This experimental success has proved the usefulness of optical lattice

for studying strongly correlated systems using cold atomic condensates and opened up

a new direction for this field of study.

A further step in this direction is the study of ultracold atoms with long range interac-

tions placed in optical lattice potential. They are described by an extended version of

Bose Hubbard (BHM) model [111] where in addition to onsite interactions, one needs

to take into account the interactions between atoms at different lattice sites [112]. The

interest in this model stems from the appearance of new phases, namely the Density

24
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Wave (DW) phase and the Supersolid (SS) phase, apart from the MI and SF phase. As

explained in detail in chapter 1, there are quite a number of promising candidates of

such ultra cold atomic system with long range interaction, that could be suitable for

observing the new phases.

Before going into further discussion we provide a systematic derivation of the Hamil-

tonian for the extended Bose Hubbard Model (eBHM) that describes ultracold atomic

condensates with long range interaction in optical lattice under tight binding approxi-

mation. In this context, we also introduce artificial gauge field for such neutral ultracold

atoms and differences for true gauge field that represent electromagnetic field for charged

particle.

2.1 Derivation of Hamiltonian

We begin with the derivation of extended Bose Hubbard Hamiltonian. Accordingly,

this section is thus divided into three parts. The first part introduces the general ex-

tended Bose Hubbard Hamiltonian used to study bosons with long range interactions

in a stationary periodic potential under the tight binding approximation. The second

part presents the effect of rotation on the system and provides a detailed explanation for

showing its equivalence with application of artificial gauge field. The third part describes

the derivation of modified extended Bose Hubbard Hamiltonian to include the effect of

artificial gauge field on the system, done using a symmetric gauge transformation.

2.1.1 Extended Bose Hubbard Hamiltonian for bosons in an optical

lattice potential

An optical lattice is created by making coherent laser beams propagating in opposite

directions interfere with each other. It results in the formation of standing wave with a

periodic alternate pattern of dark and bright regions [19]. The basic mechanism involves

the interaction of the electric field with the dipole moment of the atom which leads to

an effective potential proportional to the intensity of the laser field. To describe the

interaction between the atom and the electric field, within the dipole approximation the

Hamiltonian can be written as

Hdip = −d · E(r, t) (2.1)

where d is the electric dipole moment of the atom and E(r, t) is the electric field. For

two identical laser beams counter- propagating along the x-direction polarized in the ϵ
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direction, with electric fields E±(x, t) = ϵE0e
i(±kx−ωLt), the standing light field is given

by

E(x, t) = E+(x, t) + E−(x, t) = 2ϵE0cos(kx)e−iωLt → 2ϵE0cos(kx)cos(ωLt) (2.2)

where k = ωL/c is the magnitude of the wave vector of the laser light. Due to the AC

Stark effect, an electric dipole moment is induced in the ultracold atoms and hence their

energy is modified.

∆Eg(x) = −1
2
α⟨E2(x, t)⟩ (2.3)

with α as the atomic polarizability. With only the term in α with the smallest energy

denominator [19]

α ≈ −|⟨e|d · ϵ|g⟩|2

~δ
(2.4)

where |g⟩ is the ground state, |e⟩ is the single excited state and δ is the detuning. The

time average of the squared electric field can be calculated from equation (2.2) from

which the optical lattice potential can be written as

VL(x) ≡ ∆Eg(x) = V0sin
2(kx) (2.5)

where the lattice height V0 = −αE2
0 is proportional to the laser intensity. The atoms are

pulled towards either the bright or the dark regions depending on the frequency of light

and are thus trapped in localized region in space. For 2D optical lattices, the effective

potential energy experienced by the atoms is given by

VL(r) = V0(sin2(kxx) + sin2(kyy)) (2.6)

where d is the lattice spacing and V0 is proportional to the laser power intensity. We

write the Hamiltonian for a single particle in this lattice potential

H0(r) = − ~2

2m
∇2 + VL(r) (2.7)

where m is the mass of single particle. The corresponding Schrödinger equation is

H0(r)ϕl
q(r) = El

qϕ
l
q(r) (2.8)

and the eigen solutions are El
q which are Bloch functions [113]. Here, l is the band index

and q is the quasi momentum associated with eigen functions. It is known that, for any

band l the Bloch functions can be combined to yield a set of orthonormal Wannier basis
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functions [114]. This is done by using discrete fourier transform as

W l
S(r − ri) =

1√
N

∑
q

e−iq·riϕl
q(r) (2.9)

where ri denotes the center of ith site and N is the total number of sites. This gives site

localized Wannier wavefunctions. For small interaction energies, the particles can be

considered to be confined in the lowest Wannier orbitals because the energy separation

between the lowest and first excited band is quite large as compared to interaction

energy. We work in this regime and now onwards drop the band index l.

Extending the single particle picture to many particles, we consider bosonic atoms with

long range repulsive interactions. We then use the following second quantized Hamilto-

nian

Ĥ0 =
∫
drψ̂†(r)

[
H0(r) +

∫
dr′V (|r − r′|)ψ̂(r′)ψ̂(r)

]
ψ̂(r) (2.10)

Here, V (|r− r′|) is the non-local long range interaction between atoms at different sites

of lattice. ψ̂(r) is the bosonic field operator and it obeys the commutation relation

[ψ̂(r), ψ̂†(r′)] = δ(r − r′). The bosonic field operator ψ̂(r) can be expanded in terms of

the Wannier basis, WS(r − ri) and the site-specific annihilation operators as

ψ̂(r) =
N∑

i=1

âiWS(r − ri) (2.11)

We work in the tight binding regime, where the Wannier function are completely site

localized which implies that only the tunneling between sites which are nearest neighbors

will be considered. This is because in the tight binding regime, the Wannier functions

roughly assumes the form of a highly localized gaussian in the lowest Bloch band (s

band) (as shown in Fig. 2.1), only tunneling between sites which are nearest neighbors

will be finite. The tunneling between sites which are not nearest neighbors can be

neglected. However, the interaction between particles on the neighboring sites will be

taken into account due to long range of interactions. Under this approximation, we

substitute ψ̂(r) and ψ̂†(r) into equation (2.10), which yields the general extended Bose

Hubbard Hamiltonian [101] given as

Ĥ0 = −t
∑

<i,j>

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +
∑

i

ϵin̂i +
1
2
Vσ1

∑
<i,j>

n̂in̂j

+
1
2
Vσ2

∑
≪i,j≫

n̂in̂j + .. (2.12)

where i and j are the site indices, < i, j > indicates that the sum is over nearest

neighbor, ≪ i, j ≫ indicates the sum over next nearest neighbors and so on. n̂i is
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the number operator for site i. The parameters t and ϵi are integrals describing the

hopping(tunneling) and onsite zero-point energy respectively, given by

t =
∫
⟨i,j⟩

drW ∗
S(r − ri)H0(r)WS(r − rj) (2.13)

ϵi =
∫
drW ∗

S(r − ri)H0(r)W ∗
S(r − ri) (2.14)

The tunneling parameter t is independent of choice of < i, j >, where ⟨⟩ implies nearest

neighbors. The inter particle interactions are characterized by the parameter

Vσ =
∫

|W ∗
S(r − ri)|2V (|r − r′|)|WS(r − rj)|2drdr′ (2.15)

where |r−r′| = 4πσ/|k|. U determines the on-site interactions, Vσ1 the nearest-neighbor

interactions, Vσ2 the interactions between the next-nearest neighbors, etc. In this way,

the summations in equation (2.12) can be carried out over appropriate pairs of sites,

giving rise to terms with nearest neighbor, next nearest neighbor and so on. This gives

the general form of extended Bose Hubbard Hamiltonian.

It is to note that, to study this system one of the convenient unit is the recoil energy

given by

ER =
π2~2

2md2
(2.16)

The energies measured in Fig. 2.1 for the single particle density profiles in tight binding

regime are in units of recoil energy ER. However, in our subsequent calculations, the

energies are scaled in units of onsite interaction strength U . Again, as seen from the

density profile in Fig. 2.1, the density falls off very rapidly and hence, the long range

interaction is cut-off only till nearest neighbor interactions. The other interaction terms

beyond the nearest neighbor are too small to be taken into account. Thus, in this thesis

we take into account the interaction between particles sitting on the same site and on

the nearest neighboring sites. So, the extended Bose Hubbard Hamiltonian with onsite

and nearest neighbor interaction is given as below

Ĥ0 = −t
∑

<i,j>

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +
∑

i

ϵin̂i + V
∑

<i,j>

n̂in̂j (2.17)

with t as the hopping parameter, U as the onsite interaction, ϵi as the zero-point energy

and V as the nearest neighbor interaction strength. Here and throughout the thesis, we

denote the nearest neighbor interaction strength Vσ1 in equation (2.12) by V . Now we

shall describe the effect of artificial gauge (magnetic) field on such ultracold atoms.
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Figure 2.1: Single particle density profiles for lattice depth V0 = 10ER described
using Wannier functions. It shows density profile for V0 = 10ER, a depth at which the
system is in the tight-binding regime where the Wannier functions extend up to nearest
neighboring sites, where ER = π2~2

2md2 is the lattice recoil energy with d as the lattice
spacing. The Wannier function extend up to nearest neighboring sites and no further.

2.1.2 Application of artificial gauge field on cold atomic system

Rotation: One of the conventional ways to apply an effective magnetic field to the

neutral cold atomic system is to rotate the trap plus lattice potential. Combination

of effective magnetic fields and optical lattices also increases the stability of the exper-

imental systems. It was realized experimentally [95, 96] for trapped cold atoms with

and without optical lattice. The first experiments with rotating lattices used masks [95]

to produce parallel beams, whose subsequent interference formed the optical lattice po-

tential. Mechanical rotation of the mask caused the interference pattern to rotate, and

hence imparts an effective magnetic field on the system. More recently [96] the mask

has been replaced with an acousto-optic modulator which allows for considerably deeper

lattices and lower temperatures.

However an obvious outcome of rotation represents a complicated time dependence in

rotating potentials. This makes the theoretical study of the system quite difficult re-

sulting in subtlety in understanding the fundamentals of the related phenomena. It can
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be avoided by switching to a coordinate system rotating with same angular velocity as

the potential. It is explained as below [115, 116].

Let us consider a cylindrically symmetric Hamiltonian H0 in the laboratory frame and

a stirring potential V (X,Y ) is applied to the system. The coordinates (X,Y ) in the

rotating frame are related to the coordinates (x, y) in the laboratory frame by

X = xcos(Ωt) + ysin(Ωt)

Y = −xsin(Ωt) + ycos(Ωt) (2.18)

In experimental system, when the stirring potential is acting on the fluid, the only frame

where the Hamiltonian is time-independent is the frame rotating with the stirrer. It is

in this frame only where one can apply the principles of equilibrium statistical physics.

Hence, the Hamiltonian in the rotating frame is H = H0 − ΩLz.

This implies that we perform our calculations in the rotating frame and thus, we rewrite

the Hamiltonian in rotating frame coordinates. To show the transformation, as an

example we take the case of classical free particle following [117].

2.1.2.1 Transformation to rotating frame coordinates

Consider a particle rotating about the z axis with an angular velocity ω in the stationary

frame. We denote the position vector of the particle by r(≡ r0) and the velocity in the

stationary frame by v0 = ω × r. The angular momentum in the stationary frame is

given by L0 = m(r× v0) = r× p0. In the stationary frame, the Lagrangian is given by

L =
1
2
mv2

0 = H0 (2.19)

with H0 as the Hamiltonian in the stationary coordinate system.

If we examine the particle in a frame of reference rotating with an angular velocity Ω

with respect to the stationary frame. The velocity of the particle in the rotating frame

is

v = v0 − Ω × r = (ω − Ω) × r (2.20)

The principle of least action is frame independent, thus the Lagrangian in rotating frame

coordinates is

L = L0 =
1
2
mv2

0 =
1
2
m(v + Ω × r)2

=
1
2
mv2 +mv · (Ω × r) +

1
2
m(Ω × r)2 (2.21)
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The conjugate momentum is given by

dL = mv · dv +m(Ω × r) · dv +mv · (Ω × dr) +m(Ω × dr) · (Ω × r) (2.22)

p =
∂L
∂v

= mv +m(Ω × r) = mv0 = p0 (2.23)

It is to note that the angular momentum in the rotating frame which is constructed

using the conjugate momentum p is the same as the angular momentum operator in the

stationary frame

L = r × p = r × p0 = L0 (2.24)

The Hamiltonian in the rotating frame is thus

H = p · v − L = mv2 +mv · (Ω × r) − 1
2
mv2 −mv · (Ω × r) − 1

2
m(Ω × r)2

=
1
2
mv2 − 1

2
m(Ω × r)2

=
1
2
m(v0 − Ω × r)2 − 1

2
m(Ω × r)2

=
1
2
mv2

0 − Ω · (r × p0) =
p2
0

2m
− Ω · L

= H0 − Ω · L0 (2.25)

This coordinate transformation renders the Hamiltonian time independent and hence

facilitates the calculation of the ground state in the laboratory frame. This example is

for a single classical particle, the analogy can be extended to other systems with many

particles as long as the system is undergoing uniform rotation [117].

The Hamiltonian for bosons in a rotating optical lattice [93, 95, 96] is thus given by,

Hrot = − ~2

2m
∇2 +

1
2
mω2(x2 + y2) + VL(r) − ~Ω

i
(x∂y − y∂x)

This can be re-written as

Hrot =
1

2m

(
~
i
∇−m(Ω × r)

)2

+
1
2
m(ω2 − Ω2)(x2 + y2) + VL(r)

=
1

2m
(p −mA)2 +

1
2
m(ω2 − Ω2)(x2 + y2) + VL(r) (2.26)

with A = Ω × r. It may be seen that the kinetic energy part of the Hamiltonian can

be written in a form which is similar to the one that describes a charged particle in

magnetic field in a symmetric gauge with A = B(−y, x, 0). Thus rotation of this cold

atomic system is equivalent to application of an artificial magnetic field with symmetric

gauge vector potential.
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As seen from equation (2.26), in case of rotating potential, the effect of rotation is

partitioned into two parts. The role of the first part is to modify the kinetic energy

term, producing an effective magnetic field, whereas the other part weakens the trapping

potential of the system. The effect of rotation (which is equivalent to symmetric gauge

vector potential) in the term 1
2m(ω2 − Ω2)(x2 + y2) in equation (2.26) implies that the

centrifugal potential weakens the role of trapping potential. In order to stabilize the

system for rotating potentials, the constraint on the rotation frequency is Ω < ω and

thus not very high enough effective magnetic fields (of the order Ω ∼ ω) can be applied

by rotating the system.

One can get rid of such constraint by engineering vector potentials by means of Raman

lasers as in [86]. In such system, there is no such weakening of trap potential and hence

relatively very high effective magnetic fields can be applied to the system with high

stability of the system compared to rotating potentials. This has been explained in

detail below.

Application of artificial gauge field using laser induced potentials:

In addition to the conventional method like rotation to apply an effective magnetic

field to the neutral cold atomic system as described in (2.1.2.1), there are more efficient

ways which uses laser coupling to realize such magnetic field on the system. There have

been many proposals [118–121] for creating high enough effective magnetic fields without

rotation, which include optical coupling between internal atomic states, where the atoms

are dressed in a spatially dependent manner. Here, the light induced gauge potentials

generate an effective magnetic field as a consequence of changing into a spatially varying

basis of internal states. This was firstly experimentally reported [85, 86] in 2009 where

a spatially varying Hamiltonian for ultra cold atoms was created by dressing them in an

optical field which couples different spin states of the atoms.

The technique involves two counter propagating Raman laser beams which couple inter-

nal spin states with linear momenta which differ by two times of the photon momentum.

This coupling gives rise to spatial gradient of the phase difference between the spin com-

ponents of the dressed state. Eventually, this spatially varying state leads to non-zero

vector potential when the coupling is detuned from the Raman resonance. Thus, the ac-

tual physical system of cold neutral bosonic atoms interacts with laser induced potential,

and uses the concept of laser assisted tunneling [97]. It allows one to control the phase

of the tunneling matrix elements and realize artificial gauge potentials. We explain in

detail how a vector potential A = Axx̂ is engineered in practice, which produces an

effective magnetic field for ultracold atoms.
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In the NIST set up [86], to engineer a vector potential A = Axx̂, the condensate is illumi-

nated with pair of counter propagating Raman laser beams along x̂. These beams couple

internal states |mF , kx⟩ which differ in internal angular momentum by ~(∆mF = ±1)

and in linear momentum ~kx by 2~kr, with ~kr as the single photon recoil momentum.

Since the momentum transfer is only along x̂ direction, the Hamiltonian associated with

motion along x̂ direction is given by

H∗
x =

~2

2m∗

(
kx − q∗Ax

~

)2

(2.27)

where Ax is the engineered vector potential which depends on the externally controlled

Zeeman shift of the atom with q∗ as the artificial charge of the atom and m∗ is the

effective mass along x̂ direction. The complete single atom Hamiltonian is

H = H∗
x +

~2

2m
(k2

y + k2
z) + V (r) ⊗ 1 (2.28)

where 1 is the 3 × 3 unit matrix acting on the spins. In above expression, H∗
x when

expanded in the state basis of the family of three states coupled by the Raman field, is

given by 
~

2m(k̃x + 2kr)2 − δ ΩR/2 0

ΩR/2 ~
2m k̃

2
x − ϵ ΩR/2

0 ΩR/2 ~
2m(k̃x − 2kr)2 − δ

 (2.29)

Here δ = (∆ωL −ωz) is the detuning from Raman resonance, ΩR is the resonant Raman

Rabi frequency, and ϵ accounts for a small quadratic Zeeman shift. k̃x is the wave vector

for the quasi momentum. For each k̃x , diagonalizing H∗
x gives three energy eigenvalues

Ej(k̃x)(j = 1, 2, 3), which is the effective dispersion relation depending on experimental

parameters, δ, ΩR, and ϵ. The number of energy minima (from one to three) and their

positions k̃min are thus experimentally tunable. Around each k̃min, the dispersion can

be expanded as

E(k̃x) ≃ ~2

2m∗ (k̃x − k̃min)2 (2.30)

where m∗ is the effective mass. In this expansion, we identify k̃min with the light-induced

vector gauge potential, in analogy to the Hamiltonian for a particle of charge q in the

usual magnetic vector potential A: (p − eA)2/2m.

Thus, the kinetic energy part again resembles the one for charged particle in magnetic

field, but with vector potential in Landau gauge, A = B(0, x, 0). The artificial gauge

field defined for this problem however, could be the same as the one in previous. There-

fore, one can see that in principle, the actual physical interaction is represented by the

artificial gauge potential and not by the artificial gauge field. The corresponding Hamil-

tonian is written in a way so that it resembles that of a particle in a gauge field for a
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specific choice of the gauge potential. Unlike the real gauge field, for example one used

in standard electromagnetic theory, this artificial gauge field does not have any inde-

pendent dynamics or alternatively it does not obey any Maxwell’s like equation. This

is why such a gauge field is artificial and all observable quantities are not necessarily

gauge invariant. The gauge dependence of the momentum distribution profile which is

an experimentally observable quantity is calculated using strong coupling perturbation

theory and is described in detail in chapter 3.

In the next subsection, we derive the eBHM in rotating frame coordinates to get rid of

the time-dependence of rotating potentials in the laboratory frame of coordinates.

2.1.3 Extended Bose Hubbard Hamiltonian in rotating frame coordi-

nates

As mentioned in previous subsection 2.1.2, the effect of rotation is equivalent to a appli-

cation of artificial gauge field resulting from a symmetric gauge potential. To avoid the

complicated time dependence in rotating potentials, we switch to a coordinate system

rotating with same angular velocity as the potential. Thus, we rewrite the Hamiltonian

for eBHM with rotating optical lattice in the reference frame co-rotating with same

angular velocity Ω about the z-axis as

Ĥ = Ĥ0 −
∫
drψ̂†(r)ΩLzψ̂(r) (2.31)

which can be written more explicitly as

Ĥ =
∫
drψ̂†(r)[− ~2

2m
∇2 + VL(r) + Vtrap(r) +

g

2
ψ̂†(r)ψ̂(r)

+
∫
dr′V (|r − r′|)ψ̂(r′)ψ̂(r) − ΩLz]ψ̂(r) (2.32)

Here, VL(r) is the lattice potential given by equation (2.6) and Vtrap(r) is the trapping

potential given by Vtrap(r) = mω2r2/2 with r = |r|. Equation (2.32) can be written in

the following form as

Ĥ =
∫
drψ̂†(r)[

[
1

2m

(
~
i
∂x +mΩy

)2

+
(

~
i
∂y −mΩx

)2
]

+ VL(r) +
1
2
m(ω2 − Ω2)r2

+
g

2
ψ̂†(r)ψ̂†(r) +

∫
dr′V (|r − r′|)ψ̂(r′)ψ̂(r)]ψ̂(r)

=
∫
drψ̂†(r)[

Π2

2m
+ VL(r) +

1
2
m(ω2 − Ω2)r2 +

g

2
ψ̂†(r)ψ̂(r)

+
∫
dr′V (|r − r′|)ψ̂(r′)ψ̂(r)]ψ̂(r) (2.33)
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Here, the covariant momentum is given by

Π(r) = −i~∇ +mA(r) (2.34)

and the effective magnetic vector potential due to rotation which is equivalent to sym-

metric gauge is

A(r) = r × Ω (2.35)

As mentioned in section 2.1.1, the field operator can be expanded in terms of Wannier

functions W l
S(r − ri) and annihilation operator âi for the stationary lattice problem

[37]. At very low rotational frequency, the the lowest Bloch band and the first excited

energy band are well separated, and hence the particle dynamics is effectively described

by considering only the lowest Bloch band l = 0. It takes into account Wannier orbitals

only from the lowest band which is an excellent approximation for small Ω and deep

lattice.

To take into account relatively higher rotational frequencies or equivalently, moderate

magnetic field strengths, a better suited basis is given by the modified Wannier functions

[122]. This is because at higher rotational frequencies, the rotational term get mixed up

with the higher bands to a considerable extent. This results mainly in the modification

of the phase structure within the sites. So, instead of choosing the usual Wannier basis

functions for the expansion of field operators, we consider a modified Wannier basis [122]

which is given by

WR(r − ri) = exp

(
−im

~

∫ r

ri

A(r′)dr′
)
WS(r − ri) (2.36)

The choice of modified Wannier basis captures the phase gradient within the sites which

is proportional to the rotational frequency Ω. The modified Wannier basis WR(r− ri) is

connected to the usual Wannier basis functions WS(r − ri) by the transformation [122]

ΠWR(r − ri) = exp

(
−im

~

∫ r

ri

A(r′)dr′
)

~
i
∇WS(r − ri) (2.37)

We restrict our calculations to the rotational frequencies (Ω ∼ ω) where the relation

(2.37) is applicable and takes into account the modification of phase within the sites.

Using this modified Wannier basis WR(r − ri), the field operator can now be expressed

as

ψ̂(r) =
N∑

i=1

âiWR(r − ri) (2.38)
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with âi as the site-specific annihilation operator. Substituting this expansion of field

operator (2.38) into equation (2.33) under the tight binding approximation, we get

Ĥ = −
∑

<i,j>

(
t+

m(Ω2 − ω2)
2

A1

)
(â†i âje

−iφij + âiâ
†
je

iφij )

+
∑

i

(
ϵi −

m(Ω2 − ω2)
2

(r2i +A2)
)
n̂i +

U

2

∑
i

n̂i(n̂i − 1) + V
∑

<i,j>

n̂in̂j

(2.39)

Here again ⟨i, j⟩ indicates that the sum is over nearest neighbor sites and n̂i = â†i âi is

the number operator, which gives the number of particles at any site i. It is to note

that we have kept only the nearest neighbor interaction term, which is the minimal

version of eBHM. There can be other successive terms too, which are too small to be

taken into account. The parameters t and ϵ are defined as in equations (2.13) and (2.14)

respectively. The modification to the hopping and onsite energies due to rotation are

proportional to (Ω2 − ω2) and the parameters A1 and A2 are given as

A1 =
∫
dxW ∗

S(x− xi)(x− xi)2WS(x− xj) (2.40)

A2 = 2
∫
dxW ∗

S(x− xi)(x− xi)2WS(x− xi) (2.41)

The phase in the hopping term is given in terms of vector potential as

ϕij =
∫ ri

rj

A(r′) · dr′ (2.42)

with the effective vector potential

AS(r) = (m/~)(r × Ω) = πν(xŷ − yx̂)

in the symmetric gauge. The resulting artificial magnetic field is 2Ωẑ with Ω is the

frequency of rotation in the xy-plane. As mentioned before, a similar expression can be

obtained by using the Landau gauge where the vector potential is

AL(r) = 2πνxŷ

which is more suitable for the experimental set-up in ref. [86]. In the symmetric gauge,

the particle picks up along all sides of the plaquette while in the Landau gauge, the

particle picks up phase only along either the x direction or y direction. The quantity

ν =
2Ω
h
m

= − 1
2π

∮
dr · ∇φi,j
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gives the number of circulation quanta through a unit cell in the square lattice and is

gauge invariant which is discussed as follows [123].

This quantity ν represents an important topological feature of the system. If we consider

an arrow whose directional angles are given by φij(x, y) of the wave function, then as we

go around the boundary the arrow rotates p times and thus gives a topological constraint

to the wave function. For ν = p
q (p and q are co-prime) as the boson hops around a unit

cell in the square lattice it acquires a non trivial phase factor exp(−2πiν). To achieve

a winding which is integer multiple of the 2π, the boson should therefore hop around q

such unit cell leading to the formation of magnetic unit cell [124]. This in turn implies

Figure 2.2: Schematic diagram for a particle tunneling around a plaquette in a square
lattice. Here, dark (pink) regions correspond to lattice sites and the light (yellow)
regions correspond to the maxima in lattice potential. The particle picks up a phase of

2πν when it returns to its original position as marked by the solid (red) circle.

that if we denote the phase of the bosonic wave function by the direction of an arrow

then as one goes around such magnetic unit cell, the arrow will rotate p times and the

magnetic field imposes the wave function to have −p vorticity in a magnetic unit cell.

The same thing will happen even if we start from some other lattice than the square

lattice as long as the number of flux quanta goes through the unit cell will remain ν.

This is a topological constraint because the total vorticity in the magnetic unit cell does

not depend on the local features such as the type of the lattice potential [123].

When the angular velocity Ω is equal to the frequency ω of the harmonic trap i.e the effect

of an overall trap potential can be neglected assuming that it is sufficiently shallow and
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gets neutralized by the centrifugal force. The Hamiltonian (2.39) in this limit becomes

Ĥ = −
∑

<i,j>

t(â†i âje
−iφij + âiâ

†
je

iφij ) +
∑

i

ϵin̂i +
U

2

∑
i

n̂i(n̂i − 1) + V
∑

<i,j>

n̂in̂j

(2.43)

As seen from equation (2.14), ϵi is the energy offset at lattice site i due to the external

potential. We deal with the grand-canonical ensemble, by introducing the chemical

potential µ which fixes the average occupation. Thus, we write the full Hamiltonian,

Ĥfull = Ĥ − µ
∑

i

n̂i

From now on we drop the subscripts from Ĥ and, unless otherwise stated, always work

with the full Hamiltonian. The chemical potential term follows directly from the argu-

ment leading to ϵi. Since both parameters multiply the number operator, it is convenient

to define a local chemical potential for each site,

µi = µ− ϵi

For a trapped system, by applying the local density approximation (LDA) [125], the

local density at site i in the trapped case is given by the density of a homogeneous

system with a chemical potential

µi = µ− ϵi − Vtrapr
2
i

Here µ refers to the chemical potential at the center of the lattice where the trap potential

is zero. This results in formation of plateaus in the density profile of the system which

is effectively due to the trap potential. However, we restrict our study to spatially

uniform system Thus, the spatially uniform eBHM in presence of artificial gauge field

is described by the full Hamiltonian

Ĥ = −t
∑
⟨i,j⟩

(â†i âj exp(iφij) + h.c.) +
1
2

∑
i

n̂i(n̂i − 1) + V
∑
⟨i,j⟩

n̂in̂j − µ
∑

i

n̂i

(2.44)

2.2 Extended Bose Hubbard model in presence of mag-

netic field

In this section we study the effect of rotation on such eBHM that includes nearest

neighbor interaction (NNI) apart from the on-site interaction. The addition of the
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NNI to the Bose-Hubbard Hamiltonian has pronounced effect on the phases since the

corresponding phase diagram [103, 126, 127] contains the DW and SS phases apart

from the MI and SF phases. The DW and MI phases lack coherence as the SF order

parameter vanishes. Both have fixed number of particles at a given site. But DW has

alternating particle numbers on successive sites (Fig. 2.3(a)) where as in the MI phase

they are uniform. In the intriguing SS phase the superfluid order parameter and the

crystal order co-exist and the superfluid density gets spatially modulated.

Figure 2.3: (a) Alternating particle number in Density Wave phase (b) Superfluid
order parameter in Supersolid phase on the sites of A (red) and B(green) sublattices.

As already mentioned, SS is defined as a quantum system which exhibits crystalline

structure and superfluid properties simultaneously. One of the most distinct features of

superfluidity is the quantization of circulation and formation of vortices in such systems

due to the existence of a macroscopic wave function for the system [19]. Superfluid forms

vortices as a response to application of an effective gauge (magnetic) field. Motivated

by theoretical and experimental success in the observation of vortices for the rotating

ultracold atomic superfluid system [93–96], we explore the possibility to detect super-

solid phase in ultracold atomic condensates, by probing their response to rotation or

application of equivalent gauge fields. An unambiguous way of identifying the SS phase

is to study the modulation of the superfluid order in the vortices created in such phase

which will be different from the vortices created in an uniformly rotated superfluid. To

understand such vortex profiles one thus need to study the effect of such gauge field on

the phases of EBH model which was introduced through equation (2.44) in section 2.1.3.
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In the subsequent parts of this chapter, we describe the modification of the DW-SS

phase boundary and the novel vortex profiles in SS phase near such phase boundary

due to such gauge field [105]. We calculate the modification of the DW phase boundary

in the mean field approximation by using a reduced basis ansatz for the Gutzwiller

variational wavefunction. The minimization of the energy functional very close to the

DW phase boundary shows that the superfluid order parameter satisfies a spinorial

Harper equation [128]. Consequently the phase boundary can be determined from the

edge of a Hofstadter butterfly (HB) spectrum [92]. In the resulting vortices, the spatial

profile of the superfluid density shows a checkerboard like two sublattice modulation

with a relative phase winding between the superfluid order parameter defined on each

of these sublattices [105]. We also discuss possible ways to experimentally detect such

vortex profiles in SS.

2.2.1 Phase diagram of the Extended Bose-Hubbard Hamiltonian in

mean field approximation

As already introduced in equation (2.44), the extended Bose Hubbard Hamiltonian with

onsite interaction and NNI is given as

Ĥ = −t
∑
⟨i,j⟩

(â†i âj exp(iφij) + h.c.) +
1
2

∑
i

n̂i(n̂i − 1) + V
∑
⟨i,j⟩

n̂in̂j − µ
∑

i

n̂i

(2.45)

For simplicity we work in the grand-canonical ensemble by introducing the chemical

potential µ which fixes the average occupation. Here, we have rescaled the Hamiltonian

by the onsite interaction strength U and thus, all parameters are measured in units of U .

The first term gives us the nearest neighbor hopping where the hopping matrix elements

are non zero only for nearest neighbors with φij =
∫ ri

rj
dr ·A(r) and A(r) is the vector

potential corresponding to the artificial gauge field.⟨⟩ implies that site index i, j on the

two dimensional square lattice are the nearest neighbors and â†i , âi and n̂i are the boson

creation, annihilation and number operators respectively. V is the strength of nearest

neighbor interaction that minimally captures the effect of long range interaction, µ is

the chemical potential. As already explained in previous sub section 2.1.3, the effect of

overall trap potential is neutralized by the centrifugal force in the bulk of the system

and hence is neglected in above expression.

Gutzwiller approach : The basis of our mean field approximation is the Gutzwiller

(GW) approach, based on an ansatz for the many-body ground state that factorizes

the many body wave function into single lattice-site wavefunctions. It was originally

proposed by Gutzwiller for strongly correlated fermionic systems [129]. However when
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generalized for the bosonic systems [130],

Ψg =
∏

i

γ(ni)|G⟩ (2.46)

where
∏

i γ(ni) is a factor which suppresses the amplitudes of states with large potential

energies and |G⟩ is the non interacting ground state. For bosonic system, the non

interacting ground state can be occupied macroscopically i.e

|G⟩ = (â†k=0)
N |0⟩ (2.47)

In the grand canonical ensemble, it can be written as a coherent state of definite phase

as

|G⟩ = exp[
√
λâ†k=0]|0⟩ =

∏
i

exp[
√
λa†i ]|0⟩ (2.48)

Since the bosonic operators on different sites commute with each other,

[Ψ†(r),Ψ(r)] = δr,r′ (2.49)

both the non-interacting ground state (2.48) and the variational wave function (2.46) can

be written as a product of single site wave functions. This permits an exact treatment

of GW function for bosons [130].

The Gutzwiller approach is a self-consistent mean-field method which corresponds to

the approximation in which the hopping term is decoupled as [131, 132]

â†i âj = ⟨â†i ⟩âj + â†i ⟨âj⟩ − ⟨â†i ⟩⟨âj⟩

= ϕiâj + â†iϕj − ϕiϕj (2.50)

The average value ⟨âi⟩ = ϕi represents the order parameter that accounts for the tran-

sition from insulating phase to SF/SS phase. It is equal to zero on the insulator side

of the transition when the ground state of the system has a definite particle number on

every site of the lattice, and has a nonzero value for the SF or SS state when there are

large quantum fluctuations of the atom number in the optical lattice i.e

n̂ = ⟨n̂⟩ + δn̂

The Gutzwiller product ansatz [129] for the present case of ultracold bosonic atoms in

optical lattice is given by

|Ψ⟩ =
∏

i

∑
n

f i
n|ni⟩
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Under this approximation the eigenstates of Hamiltonian can be expanded in terms of

Fock states and then this Hamiltonian matrix is diagonalised under Fock basis trun-

cated until a given number of particle to obtain the eigenvalues. Here, the variational

parameters f i
n are the amplitudes for the Fock state |ni⟩ with n particles at site i, the

sum is over all possible occupation numbers, and the product is over all sites. Using the

GW ansatz to obtain an approximate variational solution for the eBHM corresponds,

however, to restricting the Hilbert space to the subset of product states.

But, due to the factorized form of the wave function and restriction of Hilbert space, the

GW approximation recapitulated so far is unable to incorporate any type of intersite

correlations. The calculation of inter site correlations is important for determination of

experimentally measurable observables, such as momentum distribution which is pro-

portional to the fourier transform of atom-atom correlation function [133]. To get such

momentum distribution profiles for the eBHM phases in presence of artificial gauge fields,

in the next chapter 3 we have done calculations using strong coupling expansion tech-

nique which is comparatively more accurate and reliable method to capture the short

range correlations between different lattice sites.

We perform our calculations at the boundary of the insulating phases (DW and MI)

where we truncate the fock space basis such that only the neighboring Fock states become

occupied, where also the GW wave function is fairly valid. Thus, the ground state of

the Hamiltonian (2.45) can be found by calculating the expectation value ⟨Ψ|Ĥ|Ψ⟩ in

the mean field approximation.

As shown in Fig. 2.4, for t = 0 and V d < 1/2, we have transitions between DW(n0/2)

to MI(n0) at µ = (n0 − 1) + 2V dn0 and then to DW(n0/2 + 1) at µ = n0 + 2V dn0 and

hence can be obtained analytically. Whereas, for V d > 1/2, the MI lobes vanish and the

new DW phases such as DW(1) with particle modulation | · · · , 2, 0, · · · > appear [127].

At t = 0, the DW(1/2) transforms to DW(1) when µ > U , which in turn transforms to

DW(3/2) when µ > 2U .

We restrict to the two dimensional lattice (d = 2) such that 0 < V < 1
4 for which

at t = 0, the system goes through an alternating sequence of DW phase with n0 and

n0 − 1 particles at successive sites, followed by a MI phase with n0 particles per site

with n0 = 1, 2, 3, · · · (Fig. 2.4). As t increases a SS phase appears before the DW states

makes transition to a uniform superfluid phase.

Before performing the detailed calculations and analysis for the rotating eBHM, in the

next sub-section we analytically determine the phase boundary for the DW and MI

phases for the non-rotating case to demonstrate our method.
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2.2.2 Phase boundary for the non rotating case

The phase boundary of the DW and MI phase can be determined analytically by ob-

taining the energy of the particle-hole type excitations using a reduced basis variational

ansatz for the Gutzwiller wave function near the phase boundary. The DW phase con-

sists of two sublattices A and B having fixed n0 and n0−1 particles per site (Fig. 2.3(a)).

Thus it is convenient to decompose

|Ψ⟩ = (|ΨA⟩)(|ΨB⟩) (2.51)

Here

|ΨA⟩ =
N/2∏
iA=1

|ψiA⟩

with

|ψiA⟩ =
∑

n

f iA
n |niA⟩

with f iA
n = δn,n0 . Similarly

|ΨB⟩ =
N/2∏
iB=1

|ψiB ⟩

with

|ψiB ⟩ =
∑
m

f iB
m |miB ⟩

with f iB
m = δm,n0−1. For brevity, we write nA as n and mB as m in the subsequent

expressions. For the non rotating case of Ω = 0, very close to the DW phase boundary

only the neighboring Fock states are populated [106, 107]. Thus for all i and j

|ψiA⟩ = f iA
n−1|n− 1⟩ + f iA

n |n⟩ + f iA
n+1|n+ 1⟩, n = n0 (2.52)

|ψiB ⟩ = f iB
m−1|m− 1⟩ + f iB

m |m⟩ + f iB
m+1|m+ 1⟩,m = n0 − 1 (2.53)

We set the variational amplitudes

(f iA
n−1, f

iA
n , f iA

n+1) = (ϵ1A,
√

1 − ϵ21A − ϵ22A, ϵ2A) (2.54)

and

(f iB
m−1, f

iB
m , f iB

m+1) = (ϵ1B,
√

1 − ϵ21B − ϵ22B, ϵ2B) (2.55)

with variational parameters ϵ1A,1B,ϵ2A,2B all ≪ 1 and ensure the normalization condition

of states |ψiA⟩, |ψiB ⟩. The expectation value of the Hamiltonian using the decomposed
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wave function (2.51) can be written as

⟨Ψ|Ĥ|Ψ⟩ = −t
∑
⟨i,j⟩

(⟨â†i ⟩⟨âj⟩ + ⟨h.c.⟩) +
N/2∑
i=1

[
1
2
⟨n̂2

i ⟩ −
(
µ+

1
2

)
⟨n̂i⟩

]

+
N/2∑
j=1

[
1
2
⟨n̂2

j ⟩ −
(
µ+

1
2

)
⟨n̂j⟩

]
+ V

∑
⟨i,j⟩

⟨n̂i⟩⟨n̂j⟩ (2.56)

We calculate the quantities ⟨â†i ⟩⟨âj⟩, ⟨n̂i⟩⟨n̂j⟩, ⟨n̂i⟩ and ⟨n̂2
i ⟩ using the reduced basis

ansatz from equations (2.52) and (2.53) as below,

⟨â†i ⟩ =
∑

n

√
nfn−1f

∗
n

=
√
nfn−1fn +

√
n+ 1fnfn+1

and,

⟨âj⟩ =
∑
m

√
mf∗m−1fm

=
√
mfm−1fm +

√
m+ 1fmfm+1

which using (2.54) and (2.55) implies

⟨â†i ⟩⟨âj⟩ ≃
√
nmϵ1Aϵ1B +

√
n(m+ 1)ϵ1Aϵ2B

+
√
m(n+ 1)ϵ2Aϵ1B +

√
(n+ 1)(m+ 1)ϵ2Aϵ2B (2.57)

Similarly, we calculate

⟨n̂i⟩ =
∑

n

n|fn|2

= n+ (ϵ22A − ϵ21A) (2.58)

⟨n̂j⟩ = m+ (ϵ22B − ϵ21B) (2.59)

which implies

⟨n̂i⟩⟨n̂j⟩ ≃ nm+ n(ϵ22B − ϵ21B) +m(ϵ22A − ϵ21A) (2.60)

Using equations (2.57)- (2.60) into equation (2.56), we get

⟨Ĥ⟩
N

= f(ϵ1A, ϵ2A, ϵ1B, ϵ2B)
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with

f(ϵ1A, ϵ2A, ϵ1B, ϵ2B) =
1
2

[
1
2
n2 −

(
µ+

1
2

)
n+

1
2
m2 −

(
µ+

1
2

)
m+ 4V nm

]
+

1
2
[
(n− µ+ 4V m)ϵ22A + (−n+ 1 + µ− 4V m)ϵ21A

]
+

1
2
[
(m− µ+ 4V n)ϵ22B + (−m+ 1 + µ− 4V n)ϵ21B

]
− 4t[

√
nmϵ1Aϵ1B +

√
n(m+ 1)ϵ1Aϵ2B

+
√
m(n+ 1)ϵ2Aϵ1B +

√
(n+ 1)(m+ 1)ϵ2Aϵ2B] (2.61)

Minimizing f(ϵ1A, ϵ2A, ϵ1B, ϵ2B) with respect to the parameters ϵ1A, ϵ1B, ϵ2A and ϵ2B,

we get the following four equations,

[(n− 1) − µ+ 4V m]ϵ1A + 4t
√
nmϵ1B + 4t

√
n(m+ 1)ϵ2B = 0 (2.62)

[n− µ+ 4V m]ϵ2A − 4t[
√
m(n+ 1)ϵ1B − 4t

√
(n+ 1)(m+ 1)ϵ2B = 0 (2.63)

[(m− 1) − µ+ 4V n]ϵ1B + 4t
√
nmϵ1A + 4t

√
m(n+ 1)ϵ2A = 0 (2.64)

[m− µ+ 4V n]ϵ2B − 4t
√
n(m+ 1)ϵ1A − 4t

√
(n+ 1)(m+ 1)ϵ2A = 0 (2.65)

Their non trivial solution demands

det

∣∣∣∣∣∣∣∣∣∣∣

(n− 1) − µ+ 4V m 0 4t
√
nm 4t

√
n(m+ 1)

0 (n− µ+ 4V m) −4t
√
m(n+ 1) −4t

√
(m+ 1)(n+ 1)

4t
√
nm 4t

√
m(n+ 1) (m− 1) − µ+ 4V n 0

−4t
√
n(m+ 1) −4t

√
(n+ 1)(m+ 1) 0 (m− µ+ 4V n)

∣∣∣∣∣∣∣∣∣∣∣
= 0

(2.66)

A particle (p) or hole (h) like excitation from either site of A and B are respectively

given by

εAp = n+ 4V m, εA
h = −[(n− 1) + 4V m]

εBp = m+ 4V n, εB
h = −[(m− 1) + 4V n]

Defining ε̃A,B
p,h = εA,B

p,h ± µ equation (2.66) gives the relation [103]

ε̃Ap ε̃
B
p ε̃

A
h ε̃

B
h − (4t)2

[
(n+ 1)ε̃Ah + nε̃Ap

] [
(m+ 1)ε̃Bh +mε̃Bp

]
= 0 (2.67)

The above equation determines the minima of the particle hole like excitations in the

limit k → 0 where k is the wave vector of such particle-hole like excitations. It will

determine the chemical potential µ at each t for a given strength V of the nearest

neighbor interaction and will give the phase boundary between the DW-SS and MI-SF

phase. To understand the significance of this equation in a better way we compare it
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with the similar results obtained within the framework of other mean field approaches

such as time dependent Gutzwiller mean field theory [103].

In the time dependent Gutzwiller mean field theory, the minimal perturbation around

a perfect DW state is also considered in the Fock space basis. In the time dependent

theory, the excitation spectrum of the system is calculated by dynamical Gutzwiller

approach with the variational parameters f i
n being time dependent. Minimization of the

effective action < ψ|i ∂
∂t − Ĥ + µN̂ |ψ > gives the equation of motion for f i

n [103]

i
∂f i

n

∂τ
=
[
U

2
n(n− 1) − µn+ V nρ(i)

]
f i

n − t(ϕ∗i
√
n+ 1f i

n+1 + ϕ∗i
√
nf i

n−1) (2.68)

where ρ(i) =
∑

δ,n n|f i+δ
n |2 and τ is the time. The small amplitude fluctuations δf i

n(t)

around the ground state give the excitation spectrum. The DW state can have four low-

lying excitations corresponding to particle and hole excitations in each of the A (with

nA particles per site) and B (with nB particles per site) sublattices. When a particle

or hole like excitation is created over a perfect DW or MI state, they do not remain

localized at a site, but moves around the lattice to create a Bloch wave to minimize

their energy. The kinetic energy of such a Bloch wave is given by

ϵ(k) = 2t(coskx + cosky)

where kx, ky are the components of the Bloch wave vector. The excitation spectrum

of such particle-hole like excitations with finite wave vector obtained within the time

dependent Gutzwiller mean field theory is given as below

ε̃Ap ε̃
B
p ε̃

A
h ε̃

B
h − ϵ(k)2

[
(n+ 1)ε̃Ah + nε̃Ap

] [
(m+ 1)ε̃Bh +mε̃Bp

]
= 0 (2.69)

where k = (kx, ky). From the dispersion spectrum, one can obtain the nature of excita-

tions of different phases. The excitation spectra is gapped for the insulating phases (MI

or DW) since a finite amount of energy is required for particle or hole excitation in such

incompressible phase. On the other hand, the excitation spectra becomes gapless for

SF or SS compressible phases. Hence the system shows a transition when the excitation

spectrum changes from becoming gapped to gapless and thus the phase boundary can

be determined [103].

The analytical form of the phase boundaries can be retrieved by taking the zero wave vec-

tor limit, namely kx → 0, ky → 0, ϵ(k) = 0 and ω = 0 in the dispersion equation (2.69)

obtained using the time dependent Gutzwiller theory [103]. It expectedly reproduces

our result equation (2.67). We again emphasize that all the above displayed relations

are for two dimensional square lattice, but can be generalized in other dimensions.
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Figure 2.4: (a) Phase diagram for the eBHM for 2V=0.4. Note that t, µ and V are
measured in units of U .

In the next subsection we shall extend the above treatment for the rotating case and

will show that the limiting particle-hole excitation spectrum that determines such phase

boundary in presence of the finite rotation (or magnetic field) is actually the edge of a

Hofstadter butterfly (HB) energy spectrum.

2.2.3 Rotated case

For the rotated case, the Hamiltonian is given by equation (2.45)

Ĥ = −t
∑
⟨i,j⟩

(â†i âj exp(iφij) + h.c.) +
1
2

∑
i

n̂i(n̂i − 1) + V
∑
⟨i,j⟩

n̂in̂j − µ
∑

i

n̂i

(2.70)
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The expectation value of this equation (2.70) using the DW wave function (2.51) can be

calculated as

⟨Ψ|Ĥ|Ψ⟩ = −t
∑

⟨iA,iB⟩

(⟨â†iA⟩⟨âiB ⟩ exp(iφiAiB ) + ⟨h.c.⟩) +
1
2

i=N∑
i=1

(⟨n̂2
i ⟩ − ⟨n̂i⟩) − µ

i=N∑
i=1

⟨n̂i⟩

+
∑

⟨iA,iB⟩

⟨n̂iA⟩⟨n̂iB ⟩

= −2tRe
∑

⟨iA,iB⟩

[eiφiAiBϕiA∗
A ϕiB

B ] +
1
2

iA=N/2∑
iA=1

∑
nA

(n2
A − nA)|f iA

nA
|2


−µ
iA=N/2∑

iA=1

∑
nA

nA|f iA
nA

|2 +
1
2

iB=N/2∑
iB=1

∑
mB

(m2
B −mB)|f iB

mB
|2


−µ
iB=N/2∑

iB=1

∑
mB

mB|f iB
mB

|2 + V
∑

⟨iA,iB⟩

(∑
nA

nA|f iA
nA

|2
)(∑

mB

mB|f iB
mB

|2
)
(2.71)

The first, second, fourth and sixth term gives the mean kinetic, on site energy for

sublattice A and B and nearest neighbor interaction energy respectively. The superfluid

order parameter on two sublattices (Fig. 2.3 (b)) are given by

ϕiA
A , ϕ

iB
B = ⟨âiA⟩, ⟨âiB ⟩

whereas the DW order parameter is given by

ϕDW = (−1)i

[
⟨ni⟩ −

1
N

⟨
∑

i

ni⟩

]

on any site i on either sublattices.

Near the DW phase boundary we again assume that only the neighboring Fock states

become occupied. This approximation is valid very close to the phase boundary because

in the vicinity of the insulating DW or MI phase, number fluctuations are small. In this

regime, the effective Hamiltonian truncated into the subspace of lowest local number

states is able to capture the essential correlations around the transition [134]. The

corresponding variational parameters (f iA
nA−1, f

iA
nA
, f iA

nA+1) for iA sites are

(f iA
nA−1, f

iA
nA
, f iA

nA+1) = [λiA
1 ∆ϕiA∗

A ,

√
1 − |∆ϕiA

A |2(|λiA
1 |2 + |λiA

2 |2), λiA
2 ∆ϕiA

A ] (2.72)

and, for iB sites we write

(f iB
mB−1, f

iB
mB

, f iB
mB+1) = [δiB

1 ∆ϕiB∗
B ,

√
1 − |∆ϕiB

B |2(|δiB
1 |2 + |δiB

2 |2), δiB
2 ∆ϕiB

B ] (2.73)
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The superfluid order parameters on the two sublattices are respectively given by

ϕiA
A =

∑
nA

√
nA + 1f iA∗

nA
f iA

nA+1

ϕiB
B =

∑
mB

√
mB + 1f iB∗

mB
f iB

mB+1

From the definition of superfluid order parameter ϕiA
A , ϕ

iB
B it can be shown

ϕiA
A = ∆ϕiA

A + O((∆ϕiA
A )3)

with

λiA
2 =

1√
nA + 1

(1 −
√
nAλ

iA
1 ) (2.74)

and similarly

ϕiB
B = ∆ϕiB

B + O((∆ϕiB
B )3)

with

δiB
2 =

1√
mB + 1

(1 −
√
mBδ

iB
1 ) (2.75)

Thus if we neglect third and higher order corrections, ∆ϕA,B can be replaced by the

superfluid order parameter ϕA,B on the two sublattices. We also calculate ⟨n̂A⟩, ⟨m̂B⟩,
⟨n̂2

A⟩ and ⟨m̂2
B⟩ as below,

⟨n̂A⟩ =
∑
nA

nA|f iA
nA

|2

= nA + |∆ϕiA
A |2(|λiA

2 |2 − |λiA
1 |2) (2.76)

⟨m̂B⟩ =
∑
mB

mB|f iB
mB

|2

= mB + |∆ϕiB
B |2(|δiB

2 |2 − |δiB
1 |2) (2.77)

⟨n̂2
A⟩ = n2

A + 2nA(|λiA
2 |2 − |λiA

1 |2)|∆ϕiA
A |2 + (|λiA

2 |2 + |λiA
1 |2)|∆ϕiA

A |2 (2.78)

⟨m̂2
B⟩ = m2

B + 2mB(|δiB
2 |2 − |δiB

1 |2)||∆ϕiB
B |2 + (|δiB

2 |2 + |δiB
1 |2)|∆ϕiB

B |2 (2.79)

Using equations (2.74) and (2.75), we calculate

|λiA
2 |2 − |λiA

1 |2 =
1

nA + 1
(1 − 2

√
nA|λiA

1 |2 − |λiA
1 |2) (2.80)
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|λiA
2 |2 + |λiA

1 |2 =
1

nA + 1
(1 − 2

√
nA|λiA

1 |2 + 2nA|λiA
1 |2 + |λiA

1 |2) (2.81)

and

|δiB
2 |2 − |δiB

1 |2 =
1

mB + 1
(1 − 2

√
mB|δiB

1 |2 − |δiB
1 |2) (2.82)

|δiB
2 |2 + |δiB

1 |2 =
1

mB + 1
(1 − 2

√
mB|δiB

1 |2 + 2mB|δiB
1 |2 + |δiB

1 |2) (2.83)

In all further description again for brevity nA and mB will be written as n and m. Sub-

stituting these replacements and the expressions for variational parameters in equation

(2.71), we obtain

⟨Ψ|Ĥ|Ψ⟩ = −2tRe
∑

⟨iA,iB⟩

[eiφiAiBϕiA∗
A ϕiB

B ]

+
∑
iA

[
(n− µ+ 4V m)

n+ 1

[
1 − 2

√
n|λiA

1 | − |λiA
1 |2
]

+ |λiA
1 |2
]
|ϕiA

A |2

+
∑
iB

[
(m− µ+ 4V n)

m+ 1

[
1 − 2

√
m|δiB

1 | − |δiB
1 |2

]
+ |δiB

1 |2
]
|ϕiB

B |2 + EG

(2.84)

with EG is the energy of the pure density wave state, given by

EG =
N/2∑
iA=1

1
2
n(n− 1) +

N/2∑
iB=1

1
2
m(m− 1) − µ

N/2∑
iA=1

n− µ

N/2∑
iB=1

m+
∑

⟨iA,iB⟩

V nm

To obtain the ground state energy, ⟨Ψ|Ĥ|Ψ⟩ is extremized with respect to λiA
1 and δiB

1

i.e.
∂⟨Ĥ⟩
∂λiA

1

= 0,
∂⟨Ĥ⟩
∂δiB

1

= 0

yielding

λiA
1 =

√
n
n− µ+ 4V m
1 + µ− 4V m

δiB
1 =

√
m
m− µ+ 4V n
1 + µ− 4V n

Here the second order derivative is positive which implies the minimization of the energy.

Substituting the above expressions in ⟨Ψ|Ĥ|Ψ⟩, and setting

ϕ̃iA
A =

√
ϵ1ϕ

iA
A ; ϕ̃iB

B =
√
ϵ2ϕ

iB
B ; t̃ =

t
√
ϵ1ϵ2
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where

ϵ1 =
(n− µ+ 4V m)

n+ 1

[
1 − n

n− µ+ 4V m
1 + µ− 4V m

]
; ϵ2 =

(m− µ+ 4V n)
m+ 1

[
1 −m

m− µ+ 4V n
1 + µ− 4V n

]
(2.85)

gives us the energy functional E near the DW phase boundary as

E = −t̃
∑

⟨iA,iB⟩

ϕ̃iA∗
A ϕ̃iB

B +
∑
iA

|ϕ̃iA
A |2 +

∑
iB

|ϕ̃iB
B |2 + EG (2.86)

It can also be written as

E = −t̃
∑

⟨iA,iB⟩

[
ϕ̃iA∗

A ϕ̃iB∗
B

]
(n̂ · σ)

[
ϕ̃iA

A ϕ̃iB
B

]T
+
∑
iA

|ϕ̃iA
A |2 +

∑
iB

|ϕ̃iB
B |2 + EG

(2.87)

The unit vector

n̂ = cosφiAiB x̂+ sinφiAiB ŷ

and

σ = σxx̂+ σyŷ

where σx,y are the Pauli matrices. As already explained, the reduced basis ansatz as-

sumes very low superfluid density (ϕA,B ≪ 1). Thus E contain terms only linear in the

superfluid density. This is unlike the Gross-Pitaevskii energy functional [19]

E(ψ) =
∫
dr
[

~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1
2
U0|ψ(r)|4

]
(2.88)

which contains terms quadratic in the superfluid density and is valid deep inside the

superfluid regime.

Minimization of the above energy functional with respect to ϕ̃iA∗
A , ϕ̃iB∗

B gives equations

for the superfluid order parameter that can be written as a spinorial Harper equation,

∑
⟨iA,iB⟩

(n̂ · σ)
[
ϕ̃iA

A ϕ̃iB
B

]T
=

1
t̃

[
ϕ̃iA

A ϕ̃iB
B

]T
(2.89)

Its solution can be written as

ϕ̃(x, y) ⊗
[
exp(−iφiAiB

2 ) exp(iφiAiB
2 )

]T
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where ϕ̃(x, y) satisfies the following symmetric gauge Harper equation [128]

ϕ̃(x+ 1, y)eiπνy + ϕ̃(x− 1, y)e−iπνy + ϕ̃(x, y + 1)e−iπνx + ϕ̃(x, y − 1)eiπνx =
1
t̃
ϕ̃(x, y)

(2.90)

1
t̃

in the right hand side of the equation (2.90) can be mapped on the eigenvalues ε of

HB [92] spectrum plotted in Fig. 2.6. Before discussing our results we shall provide a

brief description to Harper equation and Hofstadter butterfly.

2.2.4 Harper equation and Hofstadter Butterfly spectrum

In the previous subsection, the Harper equation is obtained from the modified extended

Bose Hubbard Hamiltonian, effectively showing the analogy between bosons in a rotating

optical lattice and electrons in a magnetic field. It is known that a free electron which is

subjected to a magnetic field performs a circular motion with a frequency given by the

cyclotron frequency. Quantum mechanically, its eigen states are the well-known Landau

levels - evenly spaced cyclotron energies that linearly increase with magnetic field (Fig.

2.5). The combination of a periodic potential along with the magnetic field creates a

rather interesting problem, for which exist a specialized solution named as Hofstadter’s

Butterfly [92]. As can be clearly seen from Fig. 2.6, the spectrum of an electron in a

periodic potential and a strong magnetic field bears little resemblance of Landau levels

(Fig. 2.5) and reveals a complex fractal spectrum instead. It shows that in the high

magnetic field limit, the weak periodic potential lifts the high degeneracy of the Landau

levels which split into a complex mini band structure.

For a magnetic flux ν = p/q, this Landau level splits into p magnetic mini bands. This

is due to the commensurability effect of the magnetic fields. It means that whenever

the magnetic flux through the unit cell is a rational multiple of the flux quantum h/e,

the periodic potential alongwith the magnetic field act as an effective periodic potential

with a periodicity that is a multiple of the unit cell dimension. It is responsible for the

highly aesthetic, self similar structure of energy bands and gaps. As mentioned, the

magnetic field must be strong to reveal this effect. Strong in this context means that

the cyclotron energy must be comparable to the strength of the periodic potential.

Alternatively, this problem can also be seen as free electrons in a periodic potential

with single particle spectra of Bloch bands subjected to a magnetic field. In theory, the

self-similar energy spectrum can be obtained from either of the methods. Though both

the methods are complementary to each other, but they are mathematically equivalent

and are the limiting cases, where either the influence of the magnetic field on the strong

lattice potential in the tight-binding approximation is considered or the influence of the
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Figure 2.5: Landau level energy spectra for free electrons in two dimensional in the
presence of magnetic field. The energy spectrum is given by E = ~ωc(n + 1

2 ) with
ωc = eB

m .

modulation potential on the Landau levels in two-dimensional electron system may be

considered as a small perturbation. In both cases, the energy spectrum is obtained by

solving the Harper equation [128]. We here show the derivation by the alternate method

where the energy bands associated with Bloch waves are subjected to magnetic field.

The Harper equation was originally used to obtain the single particle energy spectra for

electrons in a periodic potential (Bloch electrons) in the presence of gauge field [128].

The description for the Bloch electrons in a magnetic field was suggested by Peierls by

substituting the crystal momentum ~k in a tight binding band by the kinetic momentum(
p − eA

c

)
and is known as Peierls substitution [135].

We start with a single tight binding band for a two-dimensional square lattice with

lattice constant a with the following dispersion as

E(k) = 2E0(cos(kxa) + cos(kya)),k = (kx, ky)

Applying Peierls substitution, k → 1
~
(
p − eA

c

)
, we obtain a tight binding Hamiltonian

Htb whose spectrum depends on the magnetic field. For the Landau gauge AL(r) =
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B(0, x, 0), Htb takes the form

Htb = E0

(
e

i
~ pxa + e−

i
~ pxa + e

i
~ (py− eB

c
x)a + e−

i
~ (py− eB

c
x)a
)

(2.91)

The exponential factors with the momentum operators px, py are the translational op-

erators, thus the eigenvalue equation Htbϕ(x, y) = Eϕ(x, y) can be written as

E0

(
ϕ(x+ a, y) + ϕ(x− a, y) + e

−i xa
~c/eB ϕ(x, y + a) + e

i xa
~c/eB ϕ(x, y − a)

)
= Eϕ(x, y)

We make use of translational invariance along y direction in Landau gauge by replacing

x = ma, y = na and ϕ(x, y) = eiσnϕm which gives the following Harper equation

ϕm+1 + ϕm−1 + 2cos(2πmν − σ) = ϵϕm (2.92)

where ϵ = E/E0 and ν = Ba2/ϕ0 is the number of flux quanta through the unit cell of

the square lattice.

In the present case for bosons in a rotating optical lattice, we get a similar Harper equa-

tion (2.89) in coupled form for two sublattices, by minimization of the energy functional

for eBHM in presence of artificial gauge field. In the Landau gauge AL(r) = B(0, x, 0),

following [136] we denote the co-ordinate of a site i on the square lattice by pair

of integers {x, y} in the unit of the lattice spacing a. For Landau gauge potential

therefore the phase of the hopping parameter φij = 0 if the link along x direction

(i → j = {x, y} → {x + 1, y}) and ϕij = 2πnν if the link is along the y direction such

(i → j = {x, y} → {x, y + 1}). In terms of these notations the eigenvalue equation on

the lattice can be written as

ϕ̃(x+ 1, y) + ϕ̃(x− 1, y) + e2πiνxϕ̃(x, y + 1) + e−2πiνxϕ̃(x, y − 1) =
1
t̃
ϕ̃(x, y) (2.93)

The lattice wavefunctions that appears in equation (2.93) can be obtained by operating

ϕ̃(x, y) by magnetic translation operator. Such operators are given as TR = exp( i
~R ·

[p + h
mA(r)]) [124] where R is the lattice translational vector and it is known that the

operators along the x and y axis do not commute since T̂ax̂T̂aŷT̂
−1
ax̂ T̂

−1
aŷ = exp(2πiν).

For ν = p
q , the required commutator is given by [Tqax̂, Taŷ] = 0. To ensure that the

wave function remain single valued at a given lattice point as a unit cell is traversed, the

enlarged unit cell known as magnetic unit cell, therefore, has 1× q sites as compared to

the unit cell in the absence of such magnetic field. Correspondingly the Brillouin Zone

(BZ) is reduced with

− π ≤ kx ≤ π,−π/q ≤ ky ≤ π/q

and is called the magnetic Brillouin zone (MBZ).
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Similarly, for symmetric gauge potential, the Harper equation assumes the following

form

ϕ̃(x+ 1, y)eiπνy + ϕ̃(x− 1, y)e−iπνy + ϕ̃(x, y + 1)e−iπνx + ϕ̃(x, y − 1)eiπνx =
1
t̃
ϕ̃(x, y)

(2.94)

When one uses a symmetric gauge potential AS(r) = B(−y, x, 0), the commutating

magnetic translation operators are T̂2qax̂ and T̂2qaŷ. Following the preceeding discussion

it can be shown that the magnetic unit cell should be 2q × 2q of the unit cell in the

absence of the magnetic field. The factor 2 comes because the phase accumulated when

one goes around an unit cell in the square lattice is πiν in presence of the gauge potential.

Accordingly, the MBZ will be defined as(
− π

2q
≤ kx ≤ π

2q
,− π

2q
≤ ky ≤ π

2q

)
The solution of Harper equation in either of the gauge choices yield the energy spectrum

as a function of increasing magnetic flux as shown in Fig. 2.6. This energy spectrum of

Figure 2.6: Hofstadter butterfly: the energy (ε) spectrum for equation (2.93) or (2.94)
for various ν{0, 1}.

the Harper equation as a function of increasing magnetic flux is termed as Hofstadter

Butterfly spectrum [92]. The most striking feature of this spectrum is the fractal or

self similarity of the structure of energy bands and gaps, which implies that if we take
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a suitable portion of this spectrum, we can obtain the full spectrum again [92]. Its

graph is periodic in ν with period 1 so that the pattern repeats for each additional flux

quantum per unit cell and the unit interval (0, 1) exhibits reflection symmetry in the

lines ϵ = 0 and ν = 1
2 as seen from Fig. 2.6. When looking at the spectrum as evolving

from a single Landau level due to weak periodic potential, this Landau level splits into

p magnetic bands for flux ν = p/q.

2.3 Results and discussion

2.3.1 Modification of phase boundaries of DW and MI phases

An important feature of the HB spectrum obtained in previous section is that the edge

of the HB spectrum (marked red in Fig. 2.7(a)) is related to the highest eigenvalue of

the equation (2.90) as function of ν{0, 1}. This corresponds to the minimum value of t̃

t̃ = t̃c =
tc√
ϵ1ϵ2

with non vanishing SF order parameter ϕ̃ for each given value of µ, and, hence the

boundary of the DW phase at that particular ν (marked red in Fig. 2.7(b)). Same

observation holds true for MI boundary at the MI-SF transition in a rotating optical

lattice [106, 107]. Setting m = n in the preceeding analysis the MI-SF transition in

rotated lattice can be studied for eBHM. The phase boundary of the ordinary BHM

under rotation or magnetic field can be retrieved by setting V = 0 and also putting

n = m in the preceding analysis. The results obtained in this way matches with those

in reference [106, 107] for BHM in presence of such artificial magnetic field. However

the superfluid order parameter of the excitations at the boundary of the DW phase are

different from those near the MI boundary as we shall see in Fig. 2.9. The modification

of DW as well as MI phase boundaries are plotted in Fig. 2.7 as a function of increasing

magnetic flux, which clearly follows the edge eigen-value spectrum of HB. The cross

sectional plot in Fig. 2.8 shows the modification of DW and MI phase boundaries as a

function of increasing magnetic flux ν. As compared to the modification of the phase

boundary of a MI phase in ordinary BH model here also the phase boundary of the

DW phase extends as the strength of the gauge field ν is enhanced. This is due to the

stronger localization of the bosonic states by the increasing strength of the gauge field.

However it is important to note that the Fig. 2.8 only provides analytically the phase

boundary of DW as well as MI phases and does not provide the phases themselves over

the entire t−µ plane for various ν unlike in the references [103, 126, 127]. The boundary

seperating the SS and SF phases from the DW and MI phases cannot be determined
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Figure 2.7: (Left) Hofstadter butterfly: the energy (ε) spectrum for the equation
(2.90) for various ν{0, 1}. The upper edge (marked red) gives the boundary of the
density wave and the Mott Insulator lobe as explained in the text. (Right) The first
DW and MI lobe as a function of t, µ, ν in mean field approximation where t and µ are

in the unit of U . V has been taken as 0.2 in the unit of U

within the Gutzwiller mean field analytical calculations performed. So, the approximate

positions of these phases is shown in Fig. 2.8. But, in mean field approximation it can

be obtained numerically by using the full Gutzwiller wavefunction as was done in [103]

with no magnetic flux.

2.3.2 Superfluid density profile for vortex in a supersolid near the

DW-SS boundary

In addition to the modification of the phase boundaries of the insulating lobes, we can

also calculate the effect of artificial gauge field on the superfluid density profile near the

DW and MI phases. It is known that the SS phase starts appearing near the phase

boundary of DW phase and hence the effect of rotation on such phase will result in the

formation of vortex structures in SS phase. We calculated the resulting vortex profiles

and found that the spatial profile of the superfluid density shows a checkerboard- like

two sublattice modulation with a relative phase winding between the superfluid order

parameter defined on each of these sublattices.

At t̃ = t̃c and ν = 1
L2 each magnetic unit cell that consists of L×L lattice sites, contains

one single vortex of unit winding. The strong sublattice modulation of the superfluid

density around the vortex core is calculated shown in Fig. 2.9(a) for L = 16. It shows

the formation of a single vortex in a rotating supersolid and clearly show the structural

difference of vortex in supersolid as compared to vortex in a superfluid. The DW order

parameter given in Fig. 2.9(b) becomes 1 at the vortex core and co exists alongside the
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Figure 2.8: Cross section of the phase diagram in Fig. (2.6) that shows the modifi-
cation of the first two density wave lobe and the first Mott lobe at various values of
circulation quanta ν. In all these plots V has been taken as 0.2 in the unit of U . The
SS phase which appears after the DW phase followed by appearance of SF phase is also
shown approximately. Please note that the position of the SS and SF phases shown is

only approximate and is not calculated within the theory.

superfluid order in the bulk. From the spectrum of the Harper equation, we have thus

analytically demonstrated how the superfluid and crystal order coexist in the vortex

profile of a SS around a DW vortex core.

We know that in a HB problem, for ν = p
q , a given degenerate Landau level is broken

into q bands for p fluxes through a given magnetic unit cell. In our present case we have

taken ν = 1
256 . The highest of these energy levels correspond to the critical value of t̃ = t̃c

at the phase boundary. Thus one may think that the eigenfunction for the lower energy

levels that correspond to higher values of t̃ can be related with the superfluid phases

away from the phase boundary of the DW state inside the supersolid regime. However

this simplistic argument is not correct since the entire derivation presented above is only

within the reduced basis ansatz, which is valid only at t̃ ∼ t̃c. Nevertheless we also plot

the eigenfunction corresponding to a band which is very close to the highest band in Fig.

2.10. This approximately depicts the superfluid order parameter in a rotated SS phase

for t̃ > t̃c , but still very close to the DW phase boundary. This state, corresponding

to the lower band of the same spectrum contains multiple vortices in a given magnetic

unit cell and the winding number of these vortices could also be integers > 1. Such
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Figure 2.9: (a) Checkerboard vortices at the density wave ( |2, 1, 2, 1, · · · ⟩) phase
boundary (t̃ = t̃c) corrrsponding to the highest eigenvalue (the edge) of the hofstadter
butterfly spectrum for ν = 1

16×16 . The direction of the arrow gives φiA,iB
where as

the color axis gives the superfluid density. The superfluid density is normalized by the
maximum superfluid density at the boundary. The x and y coordinates are given in
units of optical lattice spacing and are the same in all the plots. (b) corresponding DW

order parameter

a vortex structure is plotted in Fig. 2.9. For calculating vortex structure at higher t̃

that corresponds to deep inside the SS phase, one needs to go beyond the reduced basis

ansatz and include the non linear terms due to SF interaction.

2.4 Possibilities of experimental detection

Experimental detection of the SS vortices near the phase boundary seems to be prac-

tically possible with the presently available techniques. The characterising feature of

SS phase is the sublattice modulation of the superfluid density and can be detected

through the time of flight measurement and studying the resulting interference pattern.

Time-of-flight expansion gives access to the momentum distribution and correlations via

detection of the average density and noise. The periodicity in the superfluid density in

the SS phase will give rise to additional peaks at finite momenta values in the reduced

magnetic BZ, in addition to the zero momentum peak already observed for superfluid

phase [33]. The signatures of the gauge potential will appear in the reciprocal space in
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Figure 2.10: (a) More complicated vortex structure corresponding to the higher value
of t̃ corresponding to a lower eigenvalue ((254(16 × 16 − 2)th band)(b) corresponding
DW order parameter. The direction of the arrow gives φiA,iB

where as the color axis
gives the superfluid density. The superfluid density is normalized by the maximum
superfluid density at the boundary. The x and y coordinates are given in units of

optical lattice spacing and are the same in all the plots.

the form of reduction of the BZ and further the signature for vortex in SS can be probed

using standard time of flight imaging by detecting peaks at finite momenta values in

addition to the peak at zero momentum.

We shall describe this in more detail in the next chapter 3, where we calculate the

momentum distribution and quasi-momentum distribution for SS phase in presence of

artificial gauge field using the strong coupling perturbation technique.

To measure the detailed vortex structure in a magnetic unit cell one can also use the

Bragg scattering technique [137–140] which is sensitive to the spatial phase distribution

of the initial state [141]. In the Bragg scattering technique, two momentum states of

the same ground state are connected by a stimulated two-photon process. It can be

thought of as a Raman process where two momentum states are coupled as opposed to

the internal states of the atoms. This stimulated two photon process is referred to as

Bragg spectroscopy in analogy to Raman spectroscopy. It is explained as below.

When an atomic beam passes through a periodic optical potential formed by a standing

light wave, and interacts with it for a sufficiently long time, it can Bragg diffract in a
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Figure 2.11: Bragg spectroscopy set up. The momentum transfer is determined by
the angle between the Bragg beams θ and the frequency ∆ω = ω2 − ω1 determines the

energy transfer.

manner similar to the Bragg diffraction of X-rays from a thick crystal. In each case the

incident beam must satisfy a condition on the angle of incidence. In contrast to the

Bragg diffraction of an atomic beam [142], the interaction time is determined not by

the passage of the atoms through a standing wave, but by the duration of a laser pulse.

The condition on the angle of incidence becomes a condition on the frequency difference

between the two beams comprising the standing wave, or equivalently, the velocity of

the moving standing wave [137, 138]. The momentum transfer q and energy transfer ~ω
are given by

|q| = 2N~ksin
(
θ

2

)
and,

ω = N∆ω

where θ is the angle between the two laser beams with wave vector k and frequency

difference ∆ω (Fig. 2.11).

Thus, Bragg diffraction under these conditions can also be thought conveniently as a

stimulated Raman transition between two momentum states. This process can be used

to probe density fluctuations of the system and thus to measure directly the dynamic

structure factor S(q, ω) [137, 138]. The dynamic structure factor is the Fourier transform

of the density-density correlation function between atoms at various sites and is given

by [143]

S(q, ω) =
1
Z

∑
mn

e−βEm |⟨m|ρq|n⟩|2δ(E − Em − En) (2.95)
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where q is the wave vector of the momentum, E is the energy transfer to the system

from the probe, En is the eigen value of the state |n⟩, ρq =
∑

j e
iq·rj/~ is the fourier

transform of the single particle density operator and Z is the canonical partition function.

From the density fluctuations and hence the dynamic structure factor obtained using

Bragg scattering technique, one can look into the signatures of the vortex structure in

supersolid compared to that of a superfluid.

Thus, Bragg scattering is a stimulated process which greatly enhances resolution and

sensitivity to the direction of rotation [144] and could be an efficient way for a robust

signature of the vortex state in a SS.

2.5 Summary of the chapter

To summarize, in this chapter we report the modification of the DW and MI phase

boundary by using a reduced-basis ansatz for the Gutzwiller variational wave function,

within the framework of mean-field approximation. The minimization of the energy

functional very close to the DW phase boundary shows that the super fluid order pa-

rameter satisfies a spinorial Harper equation. Consequently, the phase boundary can be

determined from the edge of a HB spectrum [105].

In the resulting vortices, the spatial profile of the superfluid density shows a checkerboard-

like two sublattice modulation with a relative phase winding between the superfluid order

parameter defined on each of these sublattices. Thus, from the spectrum of the Harper

equation (in analogy with equation for electron in a periodic potential in presence of a

magnetic field), we have analytically demonstrated how the superfluid and crystal order

coexist in the vortex profile of a supersolid around a DW vortex core [105]. This can be

used to identify the supersolid phase in cold-atom experiments. We also discuss their

possible ways of experimental detection, which includes the Time of flight imaging tech-

nique to get the sublattice modulation of the superfluid density and to get the detailed

vortex structure, one can use the Bragg scattering technique, which is sensitive to the

spatial phase distribution of the initial state and the direction of rotation and thus can

provide signature of the vortex state in a SS.



Chapter 3

DW-SS and MI-SF transition in

presence of an artificial gauge

field : a strong coupling

perturbation approach

This chapter is based on the publication R. Sachdeva and Sankalpa Ghosh,

’Density Wave Supersolid and Mott InsulatorSuperfluid transition in the

presence of an artificial gauge field: a Strong Coupling perturbation ap-

proach’, Physical Review A, 85, 013624 (2012) [109]

The effect of artificial gauge field on the MI-SF transition in BHM has been studied

extensively in recent times both within mean field approximation [106, 107, 122, 145–

148] and also by going beyond mean field description [149–152]. In comparison, the

DW-SS transition in eBHM in presence of a finite flux due to such gauge field [105] as

well as in presence of a staggered flux [153] is still in very early stage and was carried

out only in mean field framework.

The results for eBHM obtained using mean field approach in Chapter 2 gave us important

information namely the modification of the phase boundaries of the insulating phases

as a function of magnetic flux, and the structure of vortex in a SS. But one of the

drawbacks of mean field theory is that it is linear in the hopping parameter t, and hence

the accuracy of the critical transition points is somewhat limited. Also, we can not

extract information about the dimension dependence of the lobes of phase diagram with

in the mean field theory. Other methods which are frequently used to study such systems

face some issues, namely Quantum Monte Carlo (QMC) which is extremely successful

63
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without gauge field [154] suffers with a sign problem in presence of gauge fields, and

thus cannot be implemented; Density Matrix Renormalization Group (DMRG) [155] is

restricted to work mostly in one dimension and cannot take into account the vortex

formation for which d = 2 is the minimum spatial dimension.

So, to overcome most of the limitations in above listed methods, we use strong coupling

perturbation theory [108] which is one of the strong and reliable technique to study

such systems in strongly correlated regimes. Strong coupling perturbation theory has

no dimension restriction like DMRG [155] and thus gives the correct dependence on

the dimensionality of the spatial lattice. Applying perturbation theory improves the

Gutzwiller correlation function. It reproduces the correct slope for the off-diagonal

decay and thus, the perturbative approach represents a qualitative improvement on the

Gutzwiller result. Also, this technique works equally well in presence of gauge fields.

Since QMC is difficult to implement in presence of gauge field, and DMRG is 1d spe-

cific, strong coupling perturbation theory is arguably one of the most accurate way to

evaluate the phase diagram and the present work accomplishes this partly. Thus, in

two dimensions, and in presence of artificial gauge fields, strong coupling perturbation

theory emerge as one of the most reliable technique to study the effect of artificial gauge

field on such system. We will describe it in details in the chapter.

Keeping in mind the detailed nature of calculations, we have divided this chapter of the

thesis into two sub-parts, namely 3A and 3B.
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Chapter 3A
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3.1 Introduction

In this part of the chapter, we use the strong coupling perturbation formalism to deter-

mine the phase diagram of the system in presence of gauge field. The strong coupling

perturbation expansion which we adopt here to study the eBHM model treats the hop-

ping as perturbation [108, 156, 157] and we perform the energy and wave function

expansion for the insulating and particle hole excited phases as a function of hopping

parameter.

The part 3A of this chapter is organized as follows. In section 3.2, we present the model

Hamiltonian and the formalism of our calculations within the framework of strong cou-

pling perturbation theory. In section 3.3, we develop the strong coupling perturbation

theory in the hopping parameter and derive the analytical expressions for the phase

boundaries between the incompressible (DW and MI) phases and compressible (SS and

SF) phases, in presence of artificial gauge field. We found that the shapes of the insu-

lating lobes depend on the dimensionality of the system and, also on the application of

artificial gauge field, unlike the mean field results. Further we carried out an extrapola-

tion of phase boundaries using chemical potential exploration technique to extrapolate

our expansion into a functional form appropriate for MI and DW phases in section 3.4.

3.2 Extended Bose Hubbard Model in presence of mag-

netic field

We take the same eBHM Hamiltonian (equation (2.44)) with nearest neighbor interaction

which was treated in variational mean field approximation in the previous chapter 2.

H = −t
∑
i,j

(â†i âje
−iφij + h.c) +

1
2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i + V
∑
i,j

n̂in̂j (3.1)

Though all the quantities in the above Hamiltonian are already described in detail in

chapter 2, for convenience we briefly mention them again here.

The Hamiltonian in above equation (3.1) is rescaled by U and thus, all parameters are

measured in units of U . The first term gives us the nearest neighbor hopping where

φij =
∫ ri

rj

dr · A(r)

where A(r) is the vector potential corresponding to the artificial gauge field. Again, â†i ,

âi and n̂i are the boson creation, annihilation and number operators respectively, and V
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is the strength of nearest neighbor interaction that minimally captures the effect of long

range interaction, µ is the chemical potential. The effect of an overall trap potential

is neglected assuming that it is sufficiently shallow and is neutralized by the effect of

centrifugal force particularly at the central region of the condensate.

We are particularly interested in the limit when V d < 1/2, where d is the dimension

of the system which is 2 in the present case. In this limit, the alternating sites of the

lattice in the DW phase contains n0 and n0−1 particles and such a phase is called n0− 1
2

DW phase. In the rest of the chapter, for the the alternative sites of DW phase having

population nA and nB, we set nA = n0 and nB = n0 − 1 to obtain the corresponding

results for n0 − 1
2 DW phase. However the theory is generalizable to other type of DW

phases as well in a straightforward manner.

3.2.1 Formalism

Within the framework of the strong coupling perturbative expansion we calculate the

ground-state energy EDW (nA, nB) of the DW phase with nA and nB bosons on alternat-

ing lattice sites, and EMI(nA = nB = n0) of the MI phase with n0 bosons on each lattice

site, respectively. Then we calculate the energies of the DW particle-hole excitations

and MI particle-hole excitations (states with an extra particle or hole), Epar
DW (nA, nB),

Ehol
DW (nA, nB), and Epar

MI (n0), Ehol
MI(n0), respectively. The unperturbed system corre-

sponds to the case t → 0 where t refers to the scaled hopping amplitude. Using the

Rayleigh-Schroedinger perturbative expansion [158], the ground state energy of DW

and MI phases as well the energy of particle hole like excitations over these ground state

is calculated in various orders of t.

Both the DW and MI states are gapped since the energy to create a single particle-hole

excitations is finite. With increasing t this excitation gap starts decreasing (Fig. 2.4).

At the critical hopping parameter t = tc the energy to create a particle-hole pair vanishes

and DW phase becomes degenerate with its particle and hole excited state. This gives

the value of t at which DW-SS transition takes place. Thus, the phase boundary between

DW and SS phase is determined by :

EDW (nA, nB) = E
par/hol
DW (nA, nB) (3.2)

Similarly, the phase boundary between MI phase and SF phase is determined as :

EMI(n0) = E
par/hol
MI (n0) (3.3)
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These conditions determine the particle and hole branches of both the insulating lobes

(DW and MI), giving us µpar and µhol as functions of t, V, nA, nB (for DW phase) or

t, V, n0 (for MI phase).

3.2.2 Wave functions at zeroth order in t

In this section we shall define the ground state wave functions for the DW and MI phases

after setting the scaled hopping amplitude t = 0 for Hamiltonian defined in (3.1). In

this limit these wavefunctions are determined by the competition between interaction

energies alone and can be found out exactly. The wave functions for the particle and

hole excited states above these ground states will also be mentioned both for DW and MI

phase and we shall particularly emphasize the degeneracy associated with such excited

states in the t→ 0 limit.

For the DW state, we divide the lattice into sublattices A and B, where each site in

sublattice A contains nA particles and each site in sublattice B contains nB particles.

For t = 0, DW wave function can be written as

|Ψ(0)
DW ⟩ =

M/2∏
iϵA,jϵB

(â†i )
nA

√
nA!

(â†j)
nB

√
nB!

|0⟩ (3.4)

where M is the total number of lattice sites, and |0⟩ is the state with no particle. Here

â†i,j refer to boson creation operator on A and B sublattices, respectively. Since we are

interested in calculating the wave function as well as energy of such a state for finite t,

as a perturbative expansion in the parameter t, the wavefunction defined in (3.4) is also

the wavefunction at the zeroth order of this perturbative expansion.

Unlike the ground state wave function defined in (3.4), the wave functions for the DW

states with an extra particle or hole for t = 0 is degenerate. This is because when an

extra particle or hole is added to the system, it can go to any of the M lattice sites. In

the present case, the alternating sites belong to A and B sublattice and contain nA = n0

and nB = n0 − 1 number of particles. Therefore a particle state over the DW ground

state will consist of one particle added to any of site in sublattice B, which contains less

number of particle in the ground state. All such states as well their linear combination

are degenerate for t = 0. Since the total number of sites in B sublattice is M
2 , therefore

the dimension of this degenerate subspace of the one particle excitation is also M
2 . For

the single hole type of excitation over the DW ground state similarly the hole can be

created in any site that belongs to sublattice A, containing higher number of particle in

the ground state. Therefore the dimension of the degenerate subspace of single hole like

excitation is also M
2 . Because of this degeneracy, to find out the states and energies of
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particle and hole like excitation for finite t as perturbative expansion in t, we need to

use the degenerate perturbation theory.

To use degenerate perturbation theory to find out the wave function as well as the energy

for particle or hole like excited state, we need to diagonalize the perturbed part of the

Hamiltonian in this degenerate subspace. To do this we write H given in equation (3.1)

as

H = H0 +HP (3.5)

The unperturbed part is

H0 =
1
2

∑
i

n̂i(n̂i − 1) − µ
∑

i

n̂i + V
∑
i,j

n̂in̂j (3.6)

and the perturbed part, which is the kinetic energy (hopping) term.

HP = −
∑
i,j

te−φij â†i âj

= −
∑
i,j

tij â
†
i âj (3.7)

where tij = te−φij . It is to note that HP is actually the Harper Hamiltonian [128], whose

energy eigen value spectrum is the Hofstadter Butterfly [92]. This has been explained

in detail in section 2.2.4 in chapter 2.

When we diagonalize HP in the degenerate subspace of either particle or hole like exci-

tation over the DW ground state, we shall find that the degeneracy is only lifted when

we include the second order (next nearest neighbor) hopping processes. This is because,

each site in sublattice A(B) has only the sites of sublattice B(A) as its neighbor. Thus

all the matrix element related by the first order hopping is 0 and we need to go upto

the second order to lift the degeneracy.

Here we briefly mention the methodology.

To find out the particle and hole excited state which will break the degeneracy when the

perturbation is included, we write it as a linear superposition of the degenerate basis

states, namely

|Ψpar(0)
DW ⟩ =

1√
nB + 1

M/2∑
jϵB

fDWB
j â†j |Ψ

(0)
DW ⟩ (3.8)

|Ψhol(0)
DW ⟩ =

1
√
nA

M/2∑
iϵA

fDWA
i âi|Ψ(0)

DW ⟩ (3.9)
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The correct choice for fj and fi will be obtained by diagonalizing the second order

perturbation due to the hopping matrix −tij and identifying the corresponding minimum

eigenvalue. Therefore fDWB
j will be the eigenvector of

∑
i tjitij′ with the minimum

eigenvalue (ϵ2t2) such that

∑
i,j′

tjitij′f
DWB
j′ = ϵ2t2fDWB

j (3.10)

and fDWA
i will be the eigenvector of

∑
j tijtji′ with the minimum eigenvalue (ϵ2t2) such

that ∑
j,i′

tijtji′f
DWA
i′ = ϵ2t2fDWA

i (3.11)

This is derived as shown below.

We already know that ∑
k′

tkk′fk′ = ϵtfk (3.12)

This can be written in the matrix form as below:
t11 t12 t13 . . . t1M

t21 t22 t23 . . . t2M

...
...

...
...

tM1 tM2 tM3 . . . tMM




f1

f2

...

fM

 = ϵt


f1

f2

...

fM

 (3.13)

where M is the number of lattice sites.

We can separately write the equations for different k components of above relation (3.12)

or (3.13) as

t11f1 + t12f2 + . . .+ t1MfM = ϵtf1 (3.14)

t21f1 + t22f2 + . . .+ t2MfM = ϵtf2 (3.15)
...

tM1f1 + tM2f2 + . . .+ tMMfM = ϵtfM (3.16)

Now, for the DW phase we have the following eigen value equation given by (3.10) or

(3.11) ∑
ij′

tjitij′fj′ = ϵ2t2 (3.17)

To derive this equation, we start with the left hand side as

∑
ij′

tjitij′fj′ =
∑
j′

(∑
i

tjitij′

)
fj′ =

∑
j′

Tjj′fj′
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Here,

Tjj′ =
∑

i

tjitij′

= (tj1t1j′ + tj2t2j′ + tj3t3j′ + . . .+ tjM tMj′) (3.18)

Now, we finally calculate

∑
j′

Tjj′fj′ =
∑
j′

[tj1t1j′ + tj2t2j′ + tj3t3j′ + . . .+ tjM tMj′ ]fj′

= [tj1(t11f1 + t12f2 + . . .+ t1MfM )

+tj2(t21f1 + t22f2 + . . .+ t2MfM )

+tj3(t31f1 + t32f2 + . . .+ t3MfM )

+ . . .+ tjM (tM1f1 + tM2f2 + . . .+ tMMfM )]

= [tj1(ϵt)f1 + tj2(ϵt)f2 + . . .+ tjM (ϵt)fM ] (3.19)

= (ϵt)[tj1f1 + tj2f2 + . . .+ tjMfM ]

= (ϵt)(ϵt)fj (3.20)

= ϵ2t2fj (3.21)

We have used equation (3.14)-(3.16) in steps (3.19) and (3.20) to get the right hand side

of above equation (3.17). Thus, it is proved that

∑
ij′

tjitij′fj′ = ϵ2t2 (3.22)

The normalization condition also requires that

M/2∑
jϵB

|fDWB
j |2 = 1

M/2∑
iϵA

|fDWA
i |2 = 1

Similarly for the MI phase, the non degenerate ground state wave function for t = 0 is

given by:

|Ψ(0)
MI⟩ =

M∏
k=1

(â†k)
n0

√
n0!

|0⟩ (3.23)

where the index k refers to all the lattice sites. Here also, for t = 0 the single particle or

hole like excited states over this non-degenerate ground state is degenerate and dimen-

sion of the degenerate subspace is M , the total number of lattice sites. Since all sites
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are equivalent, this degeneracy is lifted in the first order correction of the degenerate

perturbation theory, namely when the nearest neighbor hopping is included, unlike the

previous case in DW phase, where to lift the degeneracy one needs to include the next

nearest neighbor hopping.

Figure 3.1: Single particle and hole excitations over pure DW phase. The picture
shows that an extra particle or hole can go to any of the lattice site, resulting in
degeneracy. Hence, to calculate particle or hole excited states and energies, degenerate

perturbation theory is needed.

The single particle and hole excited state (Fig. 3.1) wave functions that will break the

degeneracy for finite t is written as

|Ψpar(0)
MI ⟩ =

1√
n0 + 1

M∑
k=1

fMI
k â†k|Ψ

(0)
MI⟩ (3.24)

|Ψhol(0)
MI ⟩ =

1
√
n0

M∑
k=1

fMI
k âk|Ψ

(0)
MI⟩ (3.25)

The correct choice of fk will be obtained by diagonalizing the first order perturbation

due to hopping and locating the minimum eigenvalue state. Thus fMI
k is the eigenvector

of the hopping matrix −tkk′ with the minimum eigenvalue ϵt which can be written in

matrix form as in equation (3.13).

It may be noted that HP (equation (3.7)) is same as the Harper Hamiltonian whose eigen

value spectrum is given by the Hofstadter butterfly. This has beem already explained in

detail in section 2.2.4. Formally, finding the solution that corresponds to the minimal

eigenvalue of the hopping matrix −tij is identical to finding the band minimum in the

Hofstadter problem and to locate their corresponding eigenstates in either of the gauge
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potentials [92, 128]. The hopping term in HP has a complex phase φij which basically

changes the eigen value of the hopping matrix, which is a function of magnetic field. The

effect of magnetic field appears in the form of magnetic flux 2πν enclosed by a plaquette

when a particle or hole travels around the plaquette. Also, it changes the minimal energy

of extra particle or hole which moves in the insulating phase background. This minimal

eigen value is independent of gauge choice, however its location in the BZ is dependent

on the type of gauge potential. This feature appears in the physical observables such as

momentum distribution function and is shown in detail in part 3B of this chapter.

In the following section, we shall provide the analytical expression of the perturbatively

calculated energy of the ground state and the particle-hole excitation energy at finite

t and evaluate the phase boundary of the DW-SS transition and the MI-SF transition

from this result.

3.3 Analytic expressions for the modification of phase bound-

aries

Using many body version of the Rayleigh-Schroedinger perturbation theory [158], the

ground state energy of the insulating phases (DW or MI) as well as the energies of the

particle or hole like excitation can be expressed as a power series in the scaled hopping

amplitude t

E(t) = t0E(0)
n + t1E(1)

n + t2E(2)
n + t3E(3)

n + · · · (3.26)

where E(0)
n is the energy in the limit t = 0, and tE

(1)
n , t2E(2)

n and t3E
(3)
n are the first

order, second order and third order corrections to energy. In the following, we present

the perturbative results upto the third order in t and the details of the calculations is

provided below.

3.3.1 Ground state energy calculations for DW and MI phase

Here we provide the detail expressions of E(0)
n , E

(1)
n , E

(2)
n , E

(3)
n for calculating the ground

state energy for DW phase with nA and nB particles on alternating sites. The various

terms appearing at the various orders of the perturbation theory are calculated by

considering all the first and second order hopping processes respectively, as shown in

Fig. 3.4 and Fig. 3.5 for the simplest case of a 2 × 2 square lattice unit cell. To get

the correct dependence of the energy and wave function expansion on the number of

lattice sites M , we start the calculations with the simplest 2 × 2 lattice, and generalise

the calculations for any number of lattice sites. For a finite square lattice of M sites, the



Density Wave-Supersolid and Mott Insulator-Superfluid transition in presence of an
artificial gauge field : a strong coupling perturbation approach 74

expressions are obtained by taking into account the fact that the hopping of the atom at

the left edge of the lattice is restricted to only along the right side in addition to up and

down directions. Similarly, the calculations for the atoms on the other edges of the square

lattice are done by restricting hopping to only within the finite lattice, which effectively

implies hard wall boundary conditions for the hopping parameter. The calculations are

done for the energy expression for the ground state, and for the particle-hole excited

states too. The zeroth order term is given by

E
(0)
DW = ⟨Ψ(0)

DW |H0|Ψ(0)
DW ⟩

=
M/2∏

iϵA,jϵB

⟨0|(âi)nA

√
nA!

(âj)nB

√
nB!

∣∣∣∣∣∣12
∑

i

n̂i(n̂i − 1) − µ
∑

i

n̂i + V
∑
i,j

n̂in̂j

∣∣∣∣∣∣
M/2∏

iϵA,jϵB

(â†i )
nA

√
nA!

(â†j)
nB

√
nB!

|0⟩

= M

(
nA(nA − 1) + nB(nB − 1)

4
− µ

nA + nB

2
+ zV

nAnB

2

)
(3.27)

The first order correction is given as

E
(1)
DW = ⟨Ψ(0)

DW |HP |Ψ(0)
DW ⟩ = 0 (3.28)

This is because

⟨nA − 1|nA⟩i = ⟨nB − 1|nB⟩j = 0 (3.29)

where i and j can be any site. For the same reason, all odd order correction like E(3)
n

also vanishes.

The second order correction, which is also the first non-vanishing correction is given by

E
(2)
DW =

∑
m̸=n

|⟨ΨDW (mA,mB)|HP |Ψ(0)
DW (nA, nB)⟩|2

(EnA,B −EmA,B)

=
[

nA(nB + 1)
(nA − nB − 1) + (znB − znA + 1)V

+
nB(nA + 1)

(nB − nA − 1) + (znA − znB + 1)V

]
×Mzt2

2
(3.30)
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Substituting the above expressions in the right hand side of equation (3.26) one gets the

ground state energy of the DW state upto the third order as

Eins
DW (nA, nB)

M
=

nA(nA − 1) + nB(nB − 1)
4

+ zV
nAnB

2
− µ

nA + nB

2

+[
nA(nB + 1)

(nA − nB − 1) + (znB − znA + 1)V

+
nB(nA + 1)

(nB − nA − 1) + (znA − znB + 1)V
]
zt2

2
+O(t4) (3.31)

Setting nA = n0 and nB = n0 − 1 in the above equation we get the expression

Eins
DW

M
=

[
1
2
(n0 − 1)2 + zV

n0(n0 − 1)
2

− µ
2n0 − 1

2

]
− z

[
n2

0

V (z − 1)
+

n2
0 − 1

2 − V (z + 1)

]
t2

2
+O(t4) (3.32)

In the above expressions z = 2d is the co-ordination number of given lattice site, which

in the case of a square lattice is 4.

Also, we can get the corresponding corrections for the ground state in MI phase by

substituting in the above expressions for the DW state nA = nB = n0. The ground

state energy of the MI phase is given below and is obtained from the expression (3.31)

by putting nA = nB = n0.

Eins
MI

M
=

1
2
n0(n0 − 1) − µn0 + zV

n2
0

2
− zt2

n0(n0 + 1)
(1 − V )

+O(t4) (3.33)

In the next subsection, we calculate the energies of the DW states with an extra particle

or hole, using equations (3.8) and (3.9) in the framework of degenerate perturbation

theory.

3.3.2 Calculation of energy of DW state with an extra particle or hole

The explicitly written wave function of the DW phase with an extra particle is

|Ψpar(0)
DW >=

M/2∑
jϵB,j=1

f
DW (B)
j |n(1)

A , n
(3)
A ...n

(M/2)
A ;n(2)

B ...n
(j−1)
B , n

(j)
B + 1...n(M)

B ⟩ (3.34)

where fDW (B)
j is the eigenvector of

∑
i tjitij′ with the minimum eigenvalue (ϵ2t2)fDWB

j ,

as shown in equation (3.22)

∑
ij′

tjitij′f
DW (B)
j′ = ϵ2t2f

DW (B)
j
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The zeroth order energy of the DW phase is

E
par(0)
DW = < Ψpar(0)

DW |H0|Ψpar(0)
DW >

= E
(0)
DW + nB + zV nA − µ (3.35)

where E(0)
DW is given by equation (3.27). The first-order correction in energy is

E
par(1)
DW =< Ψpar(0)

DW |HP |Ψpar(0)
DW >= 0 (3.36)

Here again all the odd order terms vanishes by the same reason as given by equation

(3.29).

The second order correction to the energy of DW phase with an extra particle is calcu-

lated and given as

E
par(2)
DW =

∑
m̸=n

| < Ψpar
DW (mA,mB)|HP |Ψpar(0)

DW (nA, nB) > |2

(EnA,B − EmA,B )

= E
(2)
DW +

(nA + 1)(nB + 1)ϵ2t2

(nB − nA) + (znA − znB)V
− nA(nB + 1)ϵ2t2

(nA − nB − 1) + (znB − znA + 1)V

− nB(nA + 1)ϵ2t2

(nB − nA − 1) + (znA − znB + 1)V
+

nA(nB + 2)zt2

(nA − nB − 2) + (znB − znA + 2)V

+
nB(nA + 1)(ϵ2 − z)t2

(nB − nA − 1) + (znA − znB)V
+

2nA(nB + 1)(ϵ2 − z)t2

(nA − nB − 1) + (znB − znA + 2)V
(3.37)

Thus, adding equations (3.35)-(3.37) gives us the energy of DW state with an extra

particle upto the third order. For DW state with nA = n0 and nB = n0 − 1 particles on

alternating sites, we get the following expression for the particle excited DW state

Epar
DW = Eins

DW + (n0 − 1) + zV n0 − µ+ t2[−n0(n0 + 1)ϵ2

1 − zV
+

n2
0ϵ

2

(z − 1)V
+

(n2
0 − 1)ϵ2

2 − (z + 1)V

− n0(n0 + 1)z
1 + (z − 2)V

− (n2
0 − 1)(ϵ2 − z)

2 − zV
− 2n2

0(ϵ
2 − z)

(z − 2)V
] +O(t4) (3.38)
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where EDW
ins is given by equation (3.31). In the same way, the energy of the DW phase

with an extra hole can be calculated and is given as

Ehol
DW (nA, nB) = Eins

DW (nA, nB) − (nA − 1) − zV nB + µ+
nAnBϵ

2t2

(nB − nA) + (znA − znB)V

− nA(nB + 1)ϵ2t2

(nA − nB − 1) + (znB − znA + 1)V

+
nB(nA + 1)(ϵ2 − z)t2

(nB − nA − 1) + (znA − znB)V

− nB(nA + 1)ϵ2t2

(nB − nA − 1) + (znA − znB + 1)V

+
(nA − 1)(nB + 1)zt2

(nA − nB − 2) + (znB − znA + 2)V

+
2nA(nB + 1)(ϵ2 − z)t2

(nA − nB − 1) + (znB − znA + 2)V
+O(t4) (3.39)

Thus, for the hole excited DW state with nA = n0 and nB = n0 − 1, the expression for

the energy turns out to be

Ehol
DW = Eins

DW − (1 + zV )(n0 − 1) + µ+ t2[−n0(n0 − 1)ϵ2

1 − zV
+

n2
0ϵ

2

(z − 1)V
+

(n2
0 − 1)ϵ2

2 − (z + 1)V

− n0(n0 − 1)z
1 + (z − 2)V

− (n2
0 − 1)(ϵ2 − z)

2 − zV
− 2n2

0(ϵ
2 − z)

(z − 2)V
] +O(t4) (3.40)

3.3.3 Calculation of energy of MI state with an extra particle or hole

The expression for energy of the MI single particle or hole excitation calculated over

ground state as perturbative expansion in the scaled hopping parameter t upto third

order is calculated in a similar manner. Unlike the case of DW phase (section 3.3.2), for

the MI phase, the perturbative correction to the energy for finite t appears in the first

order term itself and the second and third order corrections calculated below in equation

(3.45) and (3.46) are comparatively much smaller in magnitude. However we still kept

the calculation upto the same order so that the entire phase diagram which comprises

of DW as well as MI phase is given within the same order of the perturbation theory.

The MI phase with an extra particle has the following wave function,

|Ψpar(0)
MI ⟩ =

M∑
j=1

fMI
j |n(1)

0 , n
(2)
0 ...n

(j)
0 + 1, ...n(M)

0 ⟩

where the coefficient fj are to be determined from the lowest eigenvalue

−
∑
j′

tjj′f
MI
j′ = ϵtfMI

j
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The zeroth order correction to the energy of MI phase with an extra particle is now

given as

E
par(0)
MI = ⟨Ψpar(0)

MI |H0|Ψpar(0)
MI ⟩

= E
(0)
MI + n0 + zV n0 − µ (3.41)

The first order correction to the energy of this state is

E
par(1)
MI = ⟨Ψpar(0)

MI |HP |Ψpar(0)
MI ⟩ = (n0 + 1)ϵt (3.42)

The second order energy correction for the extra particle MI phase is as calculated below

E
par(2)
MI =

∑
m̸=n

|⟨Ψpar
MI(m0)|HP |Ψpar(0)

MI (n0)⟩|2

(E0
n − E0

m)

= E
(2)
MI + n0(n0 + 1)

[
(z − ϵ2) +

2(z − ϵ2)
(1 − 2V )

+
2ϵ2

(1 − V )

]
t2 − n0(n0 + 2)zt2

2(1 − V )
(3.43)

Next is the third order correction, which is finite for the case of MI phase unlike the

DW phase,

E
par(3)
MI =

∑
k ̸=n

∑
m̸=n

⟨Ψpar(0)
MI (n0)|HP |Ψpar

MI(m0)⟩⟨Ψpar
MI(m0)|HP |Ψpar

MI(k0)⟩⟨Ψpar
MI(k0)|HP |Ψpar

MI(n0)⟩
(E0

m − E0
n)(E0

k − E0
n)

− ⟨Ψpar(0)
MI (n0)|HP |Ψpar(0)

MI (n0)⟩
∑
m̸=n

|⟨Ψpar(0)
MI (n0)|HP |Ψpar

MI(m0)⟩|2

(E0
m − E0

n)2

= n0(n0 + 1)n0

[
(z − 2)ϵ+

(ϵ2 − 3z + 3)ϵ
(1 − V )2

]
t3

+ n0(n0 + 1)(n0 + 1)[(z − ϵ2)ϵ− (2ϵ2 − 6z + 6)ϵ
(1 − V )2

+
2ϵ(z − ϵ2)
(1 − 2V )2

+
2ϵ(ϵ2 − 3z + 3)

(1 − V )
+

4(z − 2)ϵ
(1 − 2V )

]t3 + n0(n0 + 1)(n0 + 1)
4ϵ(ϵ2 − 3z + 3)
(1 − V )(1 − 2V )

t3

−n0(n0 + 1)(n0 + 2)
[
ϵ(z − 1)
(1 − V )

− zϵ

4(1 − V )2

]
t3 (3.44)
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Adding equations (3.41)-(3.44) gives the energy expression for MI phase with an extra

particle given as

Epar
MI = Eins

MI + n0 + zV n0 − µ

+t(n0 + 1)ϵ+ n0t
2{(n0 + 1)

[
(z − ϵ2) +

2(z − ϵ2)
1 − 2V

+
2ϵ2

1 − V

]
− (n0 + 2)

z

2(1 − V )
} + n0(n0 + 1)t3[n0

[
(z − 2)ϵ+

(ϵ2 − 3z + 3)ϵ
(1 − V )2

]
+ (n0 + 1)[(z − ϵ2)ϵ− (2ϵ2 − 6z + 6)ϵ

(1 − V )2
+

2(z − ϵ2)ϵ
(1 − 2V )2

+
2ϵ(ϵ2 − 3z + 3)

1 − V

+
4(z − 2)ϵ
1 − 2V

+
4ϵ(ϵ2 − 3z + 3)
(1 − V )(1 − 2V )

] + (n0 + 2)
[
ϵ(z − 1)
1 − V

− zϵ

4(1 − V )2

]
] +O(t4)

(3.45)

where Eins
MI is given by equation (3.33). This expression recovers the known result of

onsite Bose Hubbard model [156] when V = 0 and ϵ = z. The energy expression for MI

phase with extra hole is calculated in a similar manner and is given as

Ehol
MI = Eins

MI − (n0 − 1) − zV n0 + µ

+ tn0ϵ+ (n0 + 1)t2{n0

[
(z − ϵ2) +

2(z − ϵ2)
1 − 2V

+
2ϵ2

1 − V

]
− (n0 + 1)(n0 − 1)

z

2(1 − V )
} + n0(n0 + 1)t3[(n0 + 1)[(z − 2)ϵ

+
(ϵ2 − 3z + 3)ϵ

(1 − V )2
] + n0[(z − ϵ2)ϵ− (2ϵ2 − 6z + 6)ϵ

(1 − V )2
+

2(z − ϵ2)ϵ
(1 − 2V )2

+
2ϵ(ϵ2 − 3z + 3)

1 − V
+

4(z − 2)ϵ
1 − 2V

+
4ϵ(ϵ2 − 3z + 3)
(1 − V )(1 − 2V )

]

+(n0 − 1)
[
ϵ(z − 1)
1 − V

− zϵ

4(1 − V )2

]
] +O(t4) (3.46)

In the following section, using the above expressions of energy of the ground state and

their corresponding particle hole excitation, we shall determine the MI-SF and DW-SS

phase boundary using the relations (3.2) and (3.3).

3.3.4 Determination of the DW-SS and MI-SF boundary from the

strong coupling expansion

The minimum eigen value ϵ used in calculation of energy expressions, involves the diag-

onalization of the hopping matrix, where the hopping matrix is gauge dependent. The

location of the minimum eigen value ϵ depends on the choice of the gauge potential,

while the eigen value itself is not. We consider a rational flux ν = p/q through the
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square lattice and calculate the minimum eigen values of the hopping matrix −tij fol-

lowing [136]. The shape of the insulating lobes for the Mott phase is different from the

DW phase, as observed in Fig. 3.2 in two dimensions. This is because, the Mott states

with an extra particle or hole, have corrections to first order in t, while the DW states

have corrections to second order in t. So, as t → 0, the slope of the Mott state will be

finite, while it will vanish for the DW lobes. Hence, the shapes of the two insulating

lobes are always different.

Moreover, the shapes of the insulating lobes depend on the dimensionality of the system

and also depends on the applied artificial magnetic field [149]. The mean field theories

always give a concave shape to the MI and DW lobes [105] as the dimensionality only

enters as a prefactor in the expression for µ as a function of t as can be seen from

equation (2.85), while the strong coupling expansion easily distinguishes the shape of

insulating lobes in different dimensions and also, in presence of artificial magnetic field.

The determination of these transition boundary as a function of the gauge field, using

strong coupling perturbation theory is one of the main results of this work.

The strong coupling expansion performed here has limited accuracy because the expan-

sion is truncated upto third order. For this reason, an extrapolation of this third order

expansion to infinite order in t is required to determine more accurate phase diagrams

and the critical transition points. Since the transition at the boundary in this model

belongs to the universality class of (2+1) dimensional XY model [36], the critical expo-

nents can also be found out through an expansion of the chemical potential and hence,

an extrapolation of phase boundary can be done. This was done in [156, 157] and we

also describe it in the next subsection.

3.4 Extrapolation of the phase boundaries via Scaling the-

ory

The accuracy of the phase boundary obtained from the strong coupling expansion is

limited by the fact that the expansion is cut-off at a finite order in the scaled hopping

amplitude t. An extrapolation technique is used to extend these results beyond finite

order in t to yield a more accurate phase boundary.

Several earlier works [149, 156, 157, 159] implemented extrapolation techniques using

different methods for Bose Hubbard models with and without a gauge field. In the

vicinity of the phase transition, using scaling arguments it is known that around the

critical point, most physical quantities (which we denote here by X) scale according to
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the general rule [36] given by

XLξ/ν = F (|µ− µc|)L1/ν (3.47)

where F is a universal scaling function, µ − µc is the shifted control parameter (µ

being the control parameter and µc its critical value), ν is the correlation length critical

exponent, and ξ is the critical exponent belonging to the observable X. The values of

these exponents are determined by the universality class the transition belongs to. The

concept of universality classes of critical behavior was first clearly put forth by Kadanoff

[160].

For bosons placed in optical lattice, it is known that at the tip of the DW and MI

lobe the scaling behavior lies in the universality class of a (d+ 1) dimensional classical

XY model. Such an extrapolation technique is based on the observation that critical

hopping parameter at which the MI-SF and DW-SS transition takes place, has the

scaling behavior of the (d+1) dimensional XY model [36, 156, 157] and hence, the lobes

have Kosterlitz Thouless shape for d = 1 and power law shape for d > 1. Fitting of the

chemical potential or the particle/hole excitation energy to its scaling form given by the

corresponding XY model, thus obtained a critical hopping parameter whose accuracy is

not limited by the finite orderness of the perturbation expansion.

Thus for the case of the eBHM in the presence of an artificial gauge field we employ the

chemical potential extrapolation technique following [156, 157] to go beyond the finite

order strong-coupling scheme. This way of doing the scaling based extrapolation using

the known critical behavior of the (d + 1) dimensional XY model is valid for BHM or

eBHM in the absence of gauge field. Here we are assuming that, for not too strong gauge

field, a similar extrapolation can be done.

In the subsequent discussion, we employ this extrapolation technique to yield the im-

proved phase boundary and compare this with the one obtained from bare strong cou-

pling expansion as well as the one obtained from the mean field treatment [105]. However

unlike the references [156, 157] we shall limit our discussion only for d = 2 and will not

generalize it for higher dimension. The reason of this restriction will be explained in the

later part of this section.

The extrapolation technique is done in the following manner. The chemical potential

that determines the boundary of the insulating lobes (MI/DW) are fitted to the form

µp
ins = Ains(x) +Bins(x)(xc

ins − x)zν

µh
ins = Ains(x) −Bins(x)(xc

ins − x)zν (3.48)
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where the critical exponent zν ≈ 2/3 is known from the critical behavior of (2 + 1)

dimensional XY model [36, 156]. Here xc
ins is the critical point which determines the

location of tip of the insulating (MI and DW) lobes. The coefficient A and B are regular

function of x = td and thus can be expanded as

Ains(x) = ains + binsx+ cinsx
2 + dinsx

3 + · · ·

Bins(x) = αins + βinsx+ γinsx
2 + δinsx

3 + · · ·

The coefficients ains, bins, cins, dins and αins, βins, γins, δins can be extracted by matching

the above form with the strong coupling results. These results are given upto the second

order for DW lobe and upto the third order for MI lobe in equations (3.38)-(3.40),

(3.45)-(3.46), such that

Ains(x) =
µp

ins + µh
ins

2

Bins(x)(xc
ins − x)

2
3 =

µp
ins − µh

ins

2

From this relation the extrapolated values for chemical potential as a function of td can

be found which determined DW and MI lobe respectively and thus the phase-boundaries

can be redrawn using these scaling results.

Fig. 3.2 represents the phase diagram of the first four insulating lobes for the eBHM

in two dimension (square lattice) in presence of artificial magnetic field, obtained un-

der scaling hypothesis using chemical potential extrapolation technique. It shows the

increasing stability of the insulating phase i.e the DW and MI phases grows in size as

the strength of magnetic field is increased from zero to finite values. This is due to the

localizing effect of magnetic field on the moving bosons, thus favoring the insulating

phases to occupy a larger area in the phase diagram. As discussed in [108], the cor-

rect shape of the DW and MI lobes should be dimension dependent. Since our strong

coupling calculations are restricted to finite order and for d = 2, it is pertinent to ask

does the dimension dependence already appears at the order where we have terminated

the perturbation expansion. To extract the dimension dependence of the strong cou-

pling results we rewrite the expression of chemical potential for DW-SS phase boundary
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Figure 3.2: Phase diagram for the eBHM in presence of artificial magnetic field for
Vd=0.2 obtained after scaling analysis. As seen, the effect of increasing magnetic field
is to increase the stability of the DW and MI lobes. Please note that the position of the
SS and SF phases shown is only approximate and is not calculated within the theory.

(equation (3.38)) upto the second order, in the following form.

µpar
DW (B) = (n0 − 1) + 2V dn0 −

4n0(n0 + 1)(td)2g2

1 − 2V d
+

4n2
0(td)

2g2

V d(2 − 1
d)

+
4(n2

0 − 1)(td)2g2

2 − V d(2 + 1
d)

−2(n2
0 − 1)(td)2g2

1 − V d
− 4n2

0(td)
2g2

V d(1 − 1
d)

− 2n0(n0 + 1)
1 + 2V d(1 − 1

d)
+

(n2
0 − 1)

1 − V d
+

2n2
0

V d− 1

= (n0 − 1) + 2V ′n0 + x2[−4n0(n0 + 1)g2

1 − 2V ′ +
4n2

0g
2

2V ′ − V
+

4(n2
0 − 1)g2

2 − (2V ′ + V )

−2(n2
0 − 1)g2

1 − V ′ − 4n2
0g

2

V ′ − 1
] + x2

[
− 2n0(n0 + 1)

1 + 2(V ′ − V )
+

(n2
0 − 1)

1 − V ′ +
2n2

0

V ′ − 1

]
d−1

(3.49)

Here, x = td is a dimensionless constant in any dimension since the scaling behavior of

t goes as 1
d [161] and for the same reason V ′ = V d is also a dimensionless constant. g is

a constant which is dependent on the amount of artificial magnetic flux and it is equal

to 1 in absence of such gauge field. The above expression is upto second order in t and
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one can see that the 1
d type dimension dependence already appears in the this term and

shows the presence of correction due to finite dimension.

The next significant order is fourth order correction which is proportional to t4. For

the values of scaled hopping amplitude t that we use, these terms are insignificantly

small and their analytical expressions are very large. Thus we do not explicitly mention

them. The corresponding result for eBHM in the absence of such artificial gauge field

was reported in [157], and is given by equation (3.50). As can be seen, the substitution

g = 1 in expression (3.49) produce expression (3.50).

µpar
DW = (n0 − 1) + 2V ′n0 + x2[−4n0(n0 + 1)

1 − 2V ′ +
4n2

0

2V ′ − V
+

4(n2
0 − 1)

2 − (2V ′ + V )
− 2(n2

0 − 1)
1 − V ′

− 4n2
0

V ′ − 1
] + x2[− 2n0(n0 + 1)

1 + 2(V ′ − V )
+

(n2
0 − 1)

1 − V ′ +
2n2

0

V ′ − 1
]d−1 (3.50)

A similar analysis can also be performed for the Mott lobes to show their dimension

dependence.

The above expansion suggests that one can write the expressions for µpar
DW and µhol

DW as

a function of dimensionless constant td and V d which yields a dimension dependence

of the form 1
dn . In the absence of gauge field, such a calculation can be generalized for

an infinite dimensional BHM by setting these dimension dependent term in the limit

d → ∞, to 0 [161]. These results can then be compared to the mean field result in the

same limit which is exact [36, 162].

We could not perform this trick here. Our calculations are specific for a two-dimensional

system and the effect of gauge field enters as the minimum eigen value ϵ of the hopping

matrix which gives a Hofstadter Butterfly (HB) spectrum. Thus a generalization of

these results to higher dimension in the presence of gauge field requires the solution

of HB problem for the corresponding dimension. This is a highly non-trivial problem.

For the same reason a straightforward generalization of the mean field treatment of the

2d eBHM done in [105, 163] to the infinite dimensional case is also quite non-trivial.

Because of these all the comparisons we have done is restricted to two dimensional

problem. For our case of d = 2, we have compared the strong coupling perturbative

expansion results, scaling results and mean field results. It is expected that the scaling

analysis is most appropriate due to the universality of (d + 1) dimensional XY model.

For the first DW lobe |1, 0, 1, 0...⟩, with a flux ν = 0.09, the mean field value of the

critical hopping parameter tc = 0.08946 [105] for two dimensions, the strong coupling

perturbative results gives the value of tc = 0.114 whereas the scaling analysis gives the

value as tc = 0.09631.
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Figure 3.3: Comparison of the strong coupling (dotted line), scaling (dash dot line)
and the mean field results (solid line) for flux ν = 0.09 and V d = 0.2. Please note that
the position of the SS and SF phases shown is only approximate and is not calculated

within the theory.

Fig. 3.3 shows the comparison between phase boundaries obtained from the strong cou-

pling expansion results, the scaling results and the mean field results in two dimensions

with flux ν = 0.09. It is to note that the strong-coupling expansion overestimates the

phase boundaries leading to unphysical pointed tips for all the Mott and DW lobes.

This is because of the finite orderness of the perturbation expansion which cannot take

into account the physics at the critical point correctly. The mean field results in d = 2

are compared with the scaling results which is comparatively more accurate. As already

mentioned, the accuracy of mean field is higher in higher dimensions and it becomes ex-

act in the limit d → ∞ [162]. Therefore, we conclude that, the scaling results obtained

after extrapolation of strong coupling expansion are comparatively more accurate and

reliable.
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Chapter 3B
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3.5 A brief overview of experimental methods and relation

to momentum distribution

As mentioned earlier, the standard experimental way of probing the properties of an

ultra cold atomic condensate is through the Time of flight (TOF) absorption imaging

of the freely expanding atoms released from the trap [164]. Same method is used for

probing the condensate loaded in optical lattice as well.In a time-of-flight measurement,

the trapping potential confining the atoms within the lattice is suddenly switched off,

causing a rapid expansion. After a fixed period of time, the density profile of the cloud

is determined in an indirect manner, by illuminating the atoms and measuring the

transmitted intensity also known as absorption spectroscopy [33]. Since the interactions

between the atoms during the expansion are sufficiently weak, the expansion is ballistic.

So, the particle positions in the absorption image are strongly correlated with their

velocity distribution which is given by their momentum distribution at the moment of

release from the trap. Thus, the quantity that is measured experimentally in such TOF

expansion is the momentum distribution of these ultra cold atomic ensembles.

In the absence of artificial magnetic field, the density profile after a fixed time-of-flight

measures the original momentum distribution in the trap [33]. The same is true with a

field, apart from the fact that TOF images depend on certain details of the experiment

and, in particular, the means used to produce the effective artificial magnetic field.

In the case of a rotating system, the momentum in the stationary (laboratory) frame is

equal, up to a possible global rotation, to the symmetric gauge momentum in the rotating

frame. Thus, as explained in detail in chapter 2 the Hamiltonian is time independent in

the rotating frame of reference and the principles of equilibrium statistical physics are

applicable in this frame only [115].

With artificial gauge field produced using Raman lasers as in the experiments by Lin et.

al [85, 86], the Raman beams are suddenly switched off simultaneously with the trap.

The expansion of an atomic cloud is determined by the momentum immediately after

the gauge field is switched off, which is equal to the Landau gauge momentum before

switch-off.

The strong coupling perturbation technique allows to calculate this very important phys-

ically observable with high accuracy, and can give us an insight of the effect of artificial

magnetic field on ultracold atomic system with long range interactions. We perform our

calculations at the phase boundary of the DW and MI lobes. The results obtained using

this technique in the presence of a either of the gauge potential provides information

about the characterising behavior of a SS (at the DW-SS phase boundary) as compared

to a SF (at the MI-SF phase boundary) in presence of gauge field.
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This part of the chapter is organized as follows. Section 3.6 includes the calculation

of momentum distribution in presence of artificial gauge field obtained by using wave

function for insulating phases calculated by strong coupling perturbation theory expan-

sion. We shall particulary show that in the presence of an artificial magnetic field, the

TOF image actually depends on the means to produce such effective magnetic field, and

is thus gauge dependent. Subsequently in section 3.8 we calculate the quasi angular

momentum distribution of the states in a symmetric gauge potential.

3.6 Calculation of Momentum distribution

The momentum distribution n(k) measured in TOF experiments is mathematically cal-

culated by taking the fourier transform of the one body density matrix [133] given by

ρ(r, r′) = ⟨ψ̂†(r)ψ̂(r′)⟩ (3.51)

The diagonal components (r = r′) of the one-body density matrix gives the diagonal

density of the system, whereas for r ̸= r′, it gives the correlation between atoms at

different sites. Therefore,

n(k) =
∫
dr
∫
dr′ρ(r, r′)eik·(r−r′) (3.52)

where ψ̂†(r) and ψ̂(r) are the bosonic field operators at the position r, respectively, and

k is the momentum.

The expectation value in equation (3.51) is taken in the many-body ground state and

the corresponding wave function for the insulating DW and MI phases is determined

using strong coupling perturbation theory as a power series in scaled hopping amplitude

t (in units of U). To evaluate (3.52), we expand the field operators in the basis set of

Wannier functions, such that

ψ̂(r) =
1√
M

∑
l

W (r − Rl)âl

where M is the total number of lattice sites, W (r−Rl) is the Wannier function localized

at site l with position Rl and âl is the boson annihilation operator. Consequently, the

momentum distribution becomes

n(k) =
1
M

∑
Rl,Rl′

W ∗(kl)W (kl)⟨â†l âl′⟩eik·(Rl−Rl′ ) (3.53)
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where W (k) =
∫
drW (r)eik·r is the fourier transform of the usual Wannier function

W (r). The summation indices lϵ {A,B} and l′ϵ {A,B} includes the entire lattice. We

can see that the momentum distribution is actually proportional to the fourier trans-

form of the atom-atom correlation function, with proportionality factors as the Wannier

functions of the trapped atoms.

3.6.1 Wave function expansion for the DW insulating phase

The wave functions for the insulating phases are calculated perturbatively using degen-

erate perturbation theory, upto second order in t which is the first significant order.

The higher order correction can be neglected since t≪ 1. Upto second order, the wave

function for the insulating state (MI/DW) can then be written as

|ψins⟩ = |Ψ(0)
ins⟩ + |Ψ(1)

ins⟩ + |Ψ(2)
ins⟩ +O(t3) (3.54)

Here, |Ψ0
ins⟩ = |Ψ(0)

MI/DW ⟩ defined in (3.4) and (3.23) and

|Ψ(1)
ins⟩ =

∑
m̸=|Ψ(0)

ins⟩

⟨m|HP |Ψ(0)
ins⟩

E0m
|m⟩ (3.55)

|Ψ(2)
ins⟩ =

∑
m,m′ ̸=|Ψ(0)

ins⟩

⟨m′|HP |m⟩⟨m|HP |Ψ(0)
ins⟩

E0m′E0m
|m′⟩ (3.56)

In the expression for the first order correction (3.55), the matrix element of HP (hopping

matrix) is taken between the first-order intermediate (excited) state |m⟩ and the zeroth-

order state defined in (3.4) and (3.23), where as |m′⟩ in the expression of the second order

correction (3.56) is the second order intermediate (excited) state. Also, E0m = E0 −Em

is the energy difference between the first order intermediate state |m⟩ and zeroth order

state |Ψ(0)
ins⟩ and E0m′ = E0 − Em′ is the energy difference between the second order

intermediate state |m′⟩ and zeroth order state |Ψ(0)
ins⟩.

Thus, when the wave functions are expanded upto second order in t (equation (3.54)),

the momentum distribution in equation (3.53) can be written as

n(k) =
|W (k)|2

M

∑
l,l′

⟨ΨDW |â†l âl′ |ΨDW ⟩e−ik·(Rl−Rl′ )

= n(k)(0) + n(k)(1) + n(k)(2)
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where

n(k)(0) =
|W (k)|2

M

∑
l,l′

{⟨Ψ(0)
DW |â†l âl′ |Ψ

(0)
DW ⟩}e−ik·(Rl−Rl′ ) (3.57)

n(k)(1) =
|W (k)|2

M

∑
l,l′

(⟨Ψ(0)
DW |â†l âl′ |Ψ

(1)
DW ⟩ + ⟨Ψ(1)

DW |â†l âl′ |Ψ
(0)
DW ⟩)e−ik·(Rl−Rl′ )

(3.58)

n(k)(2) =
|W (k)|2

M

∑
l,l′

(⟨Ψ(0)
DW |â†l âl′ |Ψ

(2)
DW ⟩ + ⟨Ψ(1)

DW |â†l âl′ |Ψ
(1)
DW ⟩

+ ⟨Ψ(2)
DW |â†l âl′ |Ψ

(0)
DW ⟩)e−ik·(Rl−Rl′ ) (3.59)

Here we keep terms only upto second order and terms ⟨Ψ(1)
DW |â†l âl′ |Ψ

(2)
DW ⟩, ⟨Ψ(2)

DW |â†l âl′ |Ψ
(1)
DW ⟩,

⟨Ψ(2)
DW |â†l âl′ |Ψ

(2)
DW ⟩ and higher order terms are neglected.

To elucidate the meaning of the above terms appearing at the various orders of the

perturbation theory, we depict the first and second order hopping processes respectively

in Fig. 3.4 and Fig. 3.5 for the simplest case of a 2 × 2 square lattice unit cell. In the

diagram given in Fig. 3.4(a), we depict the ground state wave function for the DW state

for t = 0 for this unit cell as

|Ψ(0)
DW ⟩ = |n(1)

A , n
(2)
B , n

(3)
A , n

(4)
B ⟩ (3.60)

Here the superscript (i) correspond to the location of a given lattice site. All the sub-

sequent diagrams in the same figure (Fig. 3.4(b)-(i)) depict all the possible |m⟩ state

defined in (3.55) which is connected to the DW ground state in Fig. 3.4(a) by a single

hopping.

For example, the state depicted in Fig. 3.4 correspond to

|m⟩ = |n(1)
A + 1, n(2)

B − 1, n(3)
A , n

(4)
B ⟩ (3.61)

The matrix element of HP between this state and the ground state can be calculated as

⟨m|HP |Ψ(0)
ins⟩

E0m
=

−
√
nB(nA + 1)t12

−2 + (z + 1)V

and contribute to the first order corrections in the expression (3.55). Similarly all the

first order possibilities are taken into account and added for size of square lattice. Thus,

using the diagrams given in Fig. 3.4, the 1st order correction to the ground state wave

function of DW state for a unit cell in a 2 × 2 square lattice (for all possible |m′⟩) can
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Figure 3.4: Possibilities for the first order intermediate (excited) state for the DW
phase in a 2x2 lattice. Figure (a) corresponds to the ground state wave function in the

limit t = 0

be explicitly written as

|Ψ(1)
DW ⟩ =

∑
m̸=|Ψ(0)

DW ⟩

−
∑

ll
′ tll′⟨m|â†l âl′ |0⟩
E0m

|m⟩

= −
√
nB(nA + 1)

E1
[t12|n(1)

A + 1, n(2)
B − 1, n(3)

A , n
(4)
B ⟩

+t14|n(1)
A + 1, n(2)

B , n
(3)
A , n

(4)
B − 1⟩ + t32|n(1)

A , n
(2)
B − 1, n(3)

A + 1, n(4)
B ⟩

+ t34|n(1)
A , n

(2)
B , n

(3)
A + 1, n(4)

B − 1⟩]

−
√
nA(nB + 1)

E2
[t21|n(1)

A − 1, n(2)
B + 1, n(3)

A , n
(4)
B ⟩

+t23|n(1)
A , n

(2)
B + 1, n(3)

A − 1, n(4)
B ⟩ + t41|n(1)

A − 1, n(2)
B , n

(3)
A , n

(4)
B + 1⟩

+ t43|n(1)
A , n

(2)
B , n

(3)
A − 1, n(4)

B + 1⟩] (3.62)
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where

E1 = (nB − nA − 1) + (znA − znB + 1)V (3.63)

E2 = (nA − nB − 1) + (znB − znA + 1)V (3.64)

Next, we calculate the second order correction to the wave function of the DW state

(equation (3.56)). For every first order intermediate state |m⟩, there will be number of

possible second order intermediate states. For example, for the just discussed |m⟩ =

|n(1)
A + 1, n(2)

B − 1, n(3)
A , n

(4)
B ⟩ Fig. 3.4(b) which is connected to the ground state by single

hopping, the corresponding possibilities for |m′⟩ are shown in Fig. 3.5(a)-(g) which is

seven in number.

Figure 3.5: Second order intermediate states for |m⟩ = |n(1)
A + 1, n(2)

B − 1, n(3)
A , n

(4)
B ⟩ (

the first diagram)

For |m⟩ = |n(1)
A + 1, n(2)

B + 1, n(3)
A , n

(4)
B ⟩

⟨m|HP |0⟩
E0m

=
−
√
nB(nA + 1)t12

E1
(3.65)



Density Wave-Supersolid and Mott Insulator-Superfluid transition in presence of an
artificial gauge field : a strong coupling perturbation approach 93

The corresponding possibilities for |m′⟩ for |m⟩ = |n(1)
A + 1, n(2)

B − 1, n(3)
A , n

(4)
B ⟩ are repre-

sented in Fig. 3.5(a)-(g). For illustration let us choose

|m′⟩ = |n(1)
A + 2, n(2)

B − 2, n(3)
A , n

(4)
B ⟩

Then

E0m′ = E0 − Em′ = E01 = 2(nA − nB − 2) + (2znA − 2znB + 4)V

The contribution of this |m′⟩ state to the second order correction to DW wave function

is

|Ψ(2)
DW ⟩a1 =

√
nB(nA + 1)(nA + 2)(nB − 1)

(E1)(E01)
t212|n

(1)
A + 2, n(2)

B − 2, n(3)
A , n

(4)
B ⟩

Summing over these contributions, we get the second order correction to the wave func-

tion due to this |m⟩ state which looks like

|Ψ(2)
DW (|m⟩)⟩a =

√
nB(nA + 1)(nA + 2)(nB − 1)

(E1)(E01)
t212|n

(1)
A + 2, n(2)

B − 2, n(3)
A , n

(4)
B ⟩

+
nB

√
(nA + 1)(nA + 2)
(E1)(E02)

t12t14|n(1)
A + 2, n(2)

B − 1, n(3)
A , n

(4)
B − 1⟩

+
(nA + 1)

√
nB(nB + 1)

(E1)(E03)
t12t41|n(1)

A , n
(2)
B − 1, n(3)

A , n
(4)
B + 1⟩

+
(nA + 1)

√
nB(nB − 1)

(E1)(E04)
t12t32|n(1)

A + 1, n(2)
B − 2, n(3)

A + 1, n(4)
B ⟩

+
nB

√
nA(nA + 1)

(E1)(E05)
t12t23|n(1)

A + 1, n(2)
B , n

(3)
A − 1, n(4)

B ⟩

+

√
nAnB(nA + 1)(nB + 1)

(E1)(E06)
t12t43|n(1)

A + 1, n(2)
B − 1, n(3)

A − 1, n(4)
B + 1⟩

+
nB(nA + 1)
(E1)(E07)

t12t34|n(1)
A + 1, n(2)

B − 1, n(3)
A , n

(4)
B − 1⟩ (3.66)

Following the same procedure for all other |m⟩ states defined in Fig. 3.4 and adding

all contributions, we get the total second order correction to wave-function for the DW

phase. We mention here again that, for a finite square lattice of M sites, the expressions

are obtained by taking into account the fact that the atoms on the edges of the square

lattice are restricted to hop to only within the finite lattice and not beyond the edges,

which effectively implies hard wall boundary conditions for the hopping parameter as

also evident from Fig. 3.4.
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3.6.2 Momentum distribution as a function of gauge field

With the help of expressions (3.62),(3.66) for perturbation corrections in previous sec-

tion, the DW ground state wave function can be determined upto the second order in

perturbation theory using the general expression (3.54) and subsequently normalized

within the same order of perturbation theory. Thus, substituting the obtained wave-

function in the expression (3.53) for momentum distribution yields the n(k)(0), n(k)(1)

and n(k)(2) for the DW phase with nA and nB as

n(k)(0) = |W (k)|2
(
nA + nB

2

)
(3.67)

n(k)(1) = −nB(nA + 1)
E1

|W (k)|2

M/2

∑
l,l′

tll′e
ik.(Rl−Rl′ )

−nA(nB + 1)
E2

|W (k)|2

M/2

∑
l,l′

tll′e
ik·(Rl−Rl′ )

= |W (k)|2
[
nB(nA + 1)

E1
+
nA(nB + 1)

E2

]
ϵ(k) (3.68)

n(k)(2) =
|W (k)|2

M/2

[
nB(nA + 1)

2E2
1

+
nA(nB + 1)

2E2
2

− nB(nA + 1)
E1

− nA(nB + 1)
E2

]

×(nB + nA + 1)

∑
l,l′,l′′

tll′tl′l′′e
ik.(Rl−Rl′′ )


= |W (k)|2[nB(nA + 1)

2E2
1

+
nA(nB + 1)

2E2
2

− nB(nA + 1)
E1

− nA(nB + 1)
E2

]

×(nB + nA + 1)(ϵ2(k) − 2dt2) (3.69)

where

ϵ2(k) − 2dt2 =
2
M

∑
l,l′,l′′

tll′tl′l′′e
ik·(Rl−Rl′′ ) (3.70)

and, E1 and E2 are given by equation (3.63) and (3.64) respectively. The expression

(3.70) is obtained as shown below

ϵ2(k) =
2
M

∑
ll′l′′

tll′tl′l′′e
ik·(Rl−Rl′ )eik·(Rl′−Rl′′ )

=
2
M

∑
ll′l′′

tll′tl′l′′e
ik·(Rl−Rl′′ ) +

2
M
t2(2d)M

This implies

ϵ2(k) − 2dt2 =
2
M

∑
l,l′,l′′

tll′tl′l′′e
ik·(Rl−Rl′′ ) (3.71)
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This is also evident from equation (3.22) where ϵ2t2 is the eigen value of t2 matrix. It is

to note that the term |W (k)|2 in the expression for momentum distribution (3.68-3.69) is

dependent on the experimental details i.e the optical lattice parameters and the effective

gauge potential, while the theoretical analysis gives the calculation of the the correlation

function ⟨â†l âl′⟩ [165]. Since, the Wannier function W (k) is a non universal property of

the lattice potential and has nothing to do with the eBHM model in presence of gauge

field, in our subsequent calculations we set this to unity [166].

For DW phase we substituted nA = n0 and nB = n0 − 1 particles on alternating sites

in the expression (3.67)-(3.69). This yields the momentum distribution in presence of

gauge field as

nDW (k) =
2n0 − 1

2
−
[

n2
0

(z − 1)V
+

(n2
0 − 1)

2 − (z + 1)V

]
ϵ(k)

+ 2n0

[
n2

0

2V 2(z − 1)2
+

(n2
0 − 1)

2(2 − (z + 1)V )2
+

n2
0

(z − 1)V
+

(n2
0 − 1)

(2 − (z + 1)V )

]
× (ϵ2(k) − 2dt2) +O(t3) (3.72)

Similarly, for the MI phase with n0 particles on each lattice site, the momentum distri-

bution in presence of gauge field is

nMott(k) = n0 −
2n0(n0 + 1)

1 − V
ϵ(k) + n0(n0 + 1)(2n0 + 1)(ϵ2(k) − 2dt2)

3 − 2V
(1 − V )2

+O(t3) (3.73)

In either of the above expression of momentum distribution (3.72) and (3.73), the dis-

persion ϵ(k) is the minimum eigenvalue of the artificial magnetic flux dependent hopping

matrix T or −tij multiplied by a pre-factor 2
M for DW phase and 1

M for the MI phase

where M is the total number of sites along a given direction. The matrix T in the lattice

site basis is already shown in equation (3.13).

As described in equation (3.1), tij = teiφij is the gauge dependent hopping amplitude

from site i to site j and non-vanishing only if i and j are nearest neighbors. Through

φij =
∫ ri

rj
dr ·A(r), this hopping amplitude explicitly depend on the gauge potential with

A(r) as the vector potential. The calculation of eigen value ϵ(k) is explained in detail

in next section.
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3.6.3 Effect of the presence of gauge field on the momentum distribu-

tion

The effect of artificial gauge field on the MI-SF and DW-SS transition boundary have

distinctive features which can be demonstrated by plotting the momentum distribution

derived in (3.72) and (3.73) in the kx−ky plane at these transition boundaries. Since the

matrix T in (3.13) explicitly depends on the gauge potential, the momentum distribution

reflects in itself the gauge potential structure, since the location of eigenvalues ϵ(k) is

gauge dependent.

The calculation of eigen value of the hopping matrix and its dependence on the type

of gauge potential has already been explained in detail in section 3.2.2. However for

completeness of the discussion, we briefly mention some salient points here again.

We calculate the dispersion ϵ(k) for two types of artificial gauge fields on the system,

the Landau gauge and the Symmetric gauge and evaluate the corresponding momentum

distribution structure. The vector potential in Landau (L) and Symmetric (S) gauge are

respectively given as

AL(r) = B(0, x, 0) = 2πνxŷ (3.74)

AS(r) = B(−y, x, 0) = πν(xŷ − yx̂) (3.75)

where we consider that the flux through the unit cell ν = p/q is rational.

In the Landau gauge AL, following [136] we denote the co-ordinate of a site i on the

square lattice by pair of integers {m,n} in the unit of the lattice spacing a. In terms of

these notations the eigenvalue equation Tψ = ϵψ on the lattice can be written as

− t[ψn+1,m + ψn−1,m + e2πiνnψn,m+1 + e−2πiνnψn,m−1] = ϵψn,m (3.76)

The lattice wave functions that appears in equation (3.76) can be obtained by operating

ψn,m by magnetic translation operator. Such operators are given as [124]

TR = exp

(
i

~
R ·

[
p +

h

m
A(r)

])
where R is the lattice translational vector. The Brillouin Zone (BZ) is reduced in Landau

gauge as

− π ≤ kx ≤ π,−π/q ≤ ky ≤ π/q

and is called the magnetic Brillouin zone (MBZ). As we shall see the momentum distri-

bution n(k) shows the formation of such MBZ.
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Since [T, p̂y] = 0 in the Landau gauge, the wave function

ψn,m(kx, ky) = eikymeikxnϕn(kx, ky)

where kx,y are the components of the Bloch wave vectors. Substituting this expression in

the eigenvalue equation (3.76) one gets the following one dimensional eigenvalue equation

− t[eikxϕn+1 + e−ikxϕn1 + 2 cos(ky + 2πνn)ϕn] = ϵϕn (3.77)

The eigenvalues ϵ(k) now can be determined from the condition

det



M1 e−ikx 0 . . . eikx

eikx M2 . . . . . .

0
...

...
... 0

. . . . . . Mq−1 e−ikx

Nq 0 eikx Mq


= 0 (3.78)

with

Mn = 2cos(kya+ 2πnϕ) − ϵ(k)

and, where n = 0, 1, ..., q− 1. The eigenvalue matrix is q× q dimensional because of the

q times enhancement of the magnetic unit cell. And its minimum eigenvalue ϵ(k) is q

fold degenerate, since

ϵ(kx, ky) = ϵ

(
kx, ky +

2πα
q

)
where α = 0, · · · , (q − 1). Each of this minimum will correspond to a peak in the

momentum distribution which is calculated using (3.72) and (3.73). This has been

plotted in Fig. 3.6(a) and (b) for MI and DW phase.

3.7 Results and Discussions: Apparent Gauge dependence

of momentum distribution function

For a flux ν = p/q, q peaks appear in the first Brillouin zone for the momentum distri-

bution for both gauge choices, near the MI-SF boundary. However, the positions of the

peaks in the Brillouin zone depends on the specific form of vector potential realized in

the experiments. The number of peaks for a flux ν = p/q depends only on q and also,

on the lattice geometry.

For Landau gauge potential, the peaks appear at (2πα/q, 0), while for the symmetric

gauge choice, it appears at (πα/q, πα/q). This is because, the magnitude of eigen
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value is the same for two gauge choices but the location of the minimum eigen value in

the Brillouin zone depends on the specific form of the vector potential for the reasons

elaborated in the preceeding discussion. It is because of this, the manifestly gauge choice

dependent form of the momentum distribution function that we use, is justifiable here.

Thus, for this artificial gauge potential, this apparent gauge dependence does not violate

any fundamental principle.

Figure 3.6: Momentum distribution at the (a) MI-SF and (b) DW-SS phase boundary
in Landau gauge potential for ν = 1

4 , plotted in the reduced Brillouin zone −π ≤ kx ≤ π
and −π/4 ≤ ky ≤ π/4

It is to note that the calculations are performed at the DW-SS and MI-SF transition

boundaries, where the superfluidity, though small, is finite and hence the the momentum

distribution at the boundaries show the signatures of the SS and SF phases. Moreover,

the pure MI and DW phases are insulating and incoherent phases, which results in a

flat momentum distribution for these phases, indicating no correlations between atoms.

We show here appearance of distinct peaks at the DW-SS and MI-SF boundary which

is due to finite superfluidity at the transition boundaries.

In the Landau gauge potential, at the MI-SF phase boundary one gets q peaks in n(k) at

(kx, ky) = (2πn
q , 0), with n = 0, 1, ..q− 1. Accordingly, Fig. 3.6(a) shows the momentum

distribution for q = 4 which has peaks at (0, 0), (±π/2, 0) and (±π, 0).

At the DW-SS phase boundary, for ν = 1/q with q = 4, we again get peaks at n(k) at

(0, 0), (±π/2, 0) and (±π, 0), but in addition, there also exists small peaks at the corners

of the reduced BZ, as shown in Fig. 3.6(b).
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The appearance of extra peaks at the BZ corners is a distinguishing feature at the DW-

SS phase boundary from the MI-SF boundary. Since the DW phase consists of two

interpenetrating sublattices A and B, even in the absence of any applied magnetic field,

the BZ structure at the DW-SS phase boundary has double periodicity whereas the usual

MI-SF phase boundary has a single periodicity. This results in appearance of small extra

peaks in the momentum distribution at DW-SS phase boundary even in the absence of

magnetic field [166]. Upon application of magnetic field, we observe small peaks in

the momentum distribution at the BZ corners at the DW-SS phase boundary, which is

again attributed to the reduced periodicity at the DW-SS phase boundary compared to

MI-SF phase boundary (Fig. 3.6). The effect of the applied magnetic field can be seen

through the enlargement of the unit cell in real space or equivalently reduction in the

BZ in the fourier space [109]. The reduced Brillouin zone is a clear sign that the flux

per plaquette is at (or sufficiently close to) a rational value and the additional peaks at

these BZ corners is a clear distinction at the DW-SS phase boundary from the MI-SF

phase boundary in presence of gauge field as can be seen from Fig. 3.6 [109].

When one uses a symmetric gauge potential given in (3.75), the commutating magnetic

translation operators are T̂2qax̂ and T̂2qaŷ. The corresponding discretized eigenvalue

equation was discussed in detail in chapter 2. Following the preceeding discussion it can

be shown that the magnetic unit cell should be 2q × 2q of the unit cell in the absence

field. Accordingly, the MBZ will be defined as(
− π

2q
≤ kx ≤ π

2q
,− π

2q
≤ ky ≤ π

2q

)
This results in the formation of peaks in momentum distribution at (±πn/q,±πn/q).

The momentum distribution at the MI-SF phase boundary in presence of symmetric

gauge potential, for rational flux ν = 1/2 is shown in Fig. 3.7(a). The peak in the

momentum distribution is observed at the center (0, 0) and smaller peaks are seen at

the corners in the range (−π/4 ≤ kx ≤ π/4,−π/4 ≤ ky ≤ π/4) [109].

Same calculation at the DW-SS phase boundary, in a symmetric gauge potential, shows

the existence small peaks at the BZ (doubly reduced) corners, in addition to the peak

at (0, 0), as shown in Fig. 3.7(b).

The effect of application of symmetric gauge potential to the system is equivalent to

rotating the system [105, 107] and thus, leads to formation of vortices in the system

when the superfluid order parameter is finite. Since we perform our calculations at the

phase boundary, the results for the momentum distribution of the DW and MI phases

in presence of symmetric gauge potential, provides information about the signature of

vortex in a SS (at the DW-SS phase boundary) and vortex in a SF (at the MI-SF
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Figure 3.7: Momentum distribution for the (a) MI and (b) DW phase in symmetric
gauge potential for ν = 1/2, plotted in the range −π/4 ≤ kx ≤ π/4 and −π/4 ≤ ky ≤

π/4

phase boundary). Fig. 3.7 demonstrate rotating SS reflects some extra peaks in the

momentum distribution in addition to the peaks observed in a rotating ordinary SF

and the corresponding reduction in the BZ shows that there is a finite rational flux per

plaquette [109].

These extra peaks are clearly demonstrated in Fig. (3.8 and is one of the central result of

this work. Since momentum distribution can be measured using TOF absorption imag-

ing technique, this provides a way to experimentally distinguish between the supersolid

phase and superfluid phase by comparing the respective vortex profile. Our calculations

demonstrates that the rotating SS reflects some extra peaks in the momentum distri-

bution in addition to the peaks observed in a rotating ordinary SF together with the

reduction of the size of the BZ depending on the amount of flux passed through the unit

cell [109]. This occurrence of extra peaks in the momentum distribution for a rotating

SS one of the important result of this work and has been illustrated in Fig. 3.8.

3.7.1 Apparent gauge dependence of the momentum distribution

From above set of results, we can see that the momentum distribution profiles depend

on the type of gauge potential used to produce the artificial gauge field. This apparent

gauge dependence of n(k) is a direct result of the realization of specific vector poten-

tial and not the field, in the typical experimental set ups. This was also discussed in
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Figure 3.8: Extra small peaks in the DW momentum distribution n(k) symmetric
gauge potential. The arrows show the location of the extra peaks at intermediate

positions

[152] using strong coupling RPA theory. They obtained the following expression for the

momentum distribution of the MI phase in presence of synthetic gauge field.

n(k) =
∑

α=0...q−1

Eα−
q (k) + δµ+ Ux

Eα+
q − Eα−

q
(3.79)

where δµ = µ− U(n0 − 1/2), x = n0 + 1/2 and

Eα±
q (k) =

1
2
[−2δµ+ ϵαq (k) ±

√
ϵαq (k)2 + 4ϵαq (k)Ux+ U2]

Comparing the above expression with our expression in equation (3.73), one can see

that the momentum distribution actually depends on ϵ(k), which is a gauge independent

quantity. However location of these eigenvalues in the k plane is dependent on the form

of the artificial gauge potential used.

As already explained in detail in section 2.1.2 in chapter 2, the actual physical interaction

is represented by the artificial gauge potential and not by the artificial gauge field. This

is why such a gauge field is actually artificial and the observable quantities such as
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momentum distribution are not necessarily gauge invariant. The same point has been

emphasized also in ref. [167] in context of Bose Hubbard Model with stagggered flux.

To analyze this issue further in the next section, we compare the momentum distribution

n(k) in symmetric gauge to the momentum distribution corresponding to the many

body states having definite quasi-angular momentum in a symmetric gauge potential.

This quasi-angular momentum are analogues of the Bloch-momentum, for a rotationally

invariant system and has been discussed in following section.

3.8 Quasi-angular momentum distribution

In this section, we present results for quasi angular momentum distribution for strongly-

interacting bosons with long range interactions in rotating optical lattices. Quasi-angular

momentum is analogous to quasi-momentum for periodic translationally invariant sys-

tems and has been previously used in the context of rotating ring lattices [168, 169] to

label eigenstates.

Discrete rotational symmetry and quasi angular momentum

Quasi angular momentum is a quantum number for systems with a discrete rotational

symmetry and can be a useful tool in investigating the symmetry properties of the ground

state. The continuous rotational symmetry of the system is broken by the presence of

the lattice resulting in discrete rotational symmetry, and thus the eigenvalues of the

angular-momentum operator are therefore no longer good quantum numbers. Here, the

concept of discrete translational symmetry and Bloch’s theorem are mapped onto the

system with discrete rotational symmetry to generate quasi-angular momentum states

[170].

We can say that a moving N site linear lattice with periodic boundary conditions is

analogous to a rotating N site ring lattice. The analogy can be made by writing the

Hamiltonian of a moving, one-dimensional, sinusoidal N site lattice in the co-moving

frame, given by

H(x) = − ~2

2m
∂2

∂x2
+ V0cos

2(qx) − v
~
i

∂

∂x
(3.80)

The wave number of the lattice is q = π/d, with d as the lattice spacing. The periodic

boundary conditions for the wave function is ψ(x+Nd) = ψ.

On the other hand, the Hamiltonian of a rotating, sinusoidal N site ring lattice in the

rotating frame is given by

H(ϕ) = − ~2

2m
1
R2

∂2

∂ϕ2
+ V0cos

2

(
N
ϕ

2

)
− Ω

~
i

∂

∂ϕ
(3.81)
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with Ω as the rotation frequency, and R as the radius of the ring. The two Hamil-

tonians in equations (3.80) and (3.81), are mathematically identical if we perform a

transformation x = ϕNd/2π and identify Nd/2π with R and v/R with Ω.

We can see that the Hamiltonian given by equation (3.80) and (3.81) are identical

implying that the properties of one-dimensional systems with a discrete translational

invariance can be mapped over for ring systems with a discrete rotational invariance.

The analogy can be carried further for two dimensional system with free-space solution

in polar coordinates,

ψj(ϕ, ρ) = eijϕRj(ϕ) (3.82)

Here Rj(ϕ) is the radial function and j is an integer. The presence of a potential breaks

the rotational symmetry of the system and hence the eigenstates are linear combinations

of these free-space solutions (3.82). If the potential has a discrete N fold rotational

symmetry, its eigenstates can be expanded in the free space solutions given below

ψm(ρ, ϕ) =
∞∑

j=−∞
a

(m)
j

ei(Nj+m)ϕ

√
Nπ

Rj(ρ) (3.83)

From above expression (3.83), we have

ψm

(
ϕ− 2π

N
, ρ

)
= e−i2πm/Nψm(ϕ, ρ) (3.84)

Thus, ψm(ϕ, ρ) is an eigen vector of the discrete rotation operator R2π/N with e−i2πm/N

as the eigen value. R2π/N rotates the system by 2π
N and takes the place of the trans-

lational operator Td. It is to note that the analogy is complete when the eigenstates

are linear combinations of angular momentum eigenstates, where ~m is called as the

quasi-angular momentum of the state ψm(ϕ, ρ). For simplicity, we drop the factor of ~
and call the value m as the quasi-angular momentum.

After explaining the physical meaning of quasi angular momentum, we perform our cal-

culations to identify transitions between states of different symmetry for the ground

state of a rotating system. However, it cannot be directly measured in experiments. A

possible avenue for experimentally detecting these results is via the momentum distribu-

tion of the ground state is presented. So, for detecting quasi-angular momentum states,

we look for a signature of quasi-angular momentum in the momentum distribution of a

state.

In this sub section, we re evaluate the momentum distribution n(k), but for a fixed quasi

angular momentum and compare this with n(k) demonstrated in Fig. 3.7.
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To simplify calculation, we approximate the Wannier functions as delta functions to

calculate the correlation function with a fixed value of angular momentum given to the

system. The field operators can now be expanded as

ψ̂(r) =
1√
M

∑
l

ei2πml/Mδ(r − rl)âl (3.85)

where m is the quasi-angular momentum, M is the number of lattice sites, δ(r − rl) is

the delta function localized at site l with position rl and âl is the boson annihilation

operator. Substituting this in the expression (3.52) yields

n(k) =
1
M

∑
l,l′

ei2πm(l−l′)/Mδ∗(r − rl)δ(r − rl′) × ⟨ψins|â†l âl′ |ψins⟩eik·(rl−rl′ ) (3.86)

As compared to the expression (3.53), in (3.86) the system now has a prefixed value of

quasi angular momentum. Hence, we can associate a vortex phase with the system and

determine the difference in symmetry of the ground state with different pre-fixed quasi

angular momentum.

Using the wave function obtained by strong coupling expansion for the DW phase ob-

tained in section 3.6.1 and substituting in equation (3.86), we can get the quasi momen-

tum distribution [109]. For DW phase with n0 and n0 − 1 particles on alternating sites

it is given by

nDW (k) =
1
M

∑
l,l′

ei2πm(l−l′)/Mδ∗(r − rl)δ(r − rl′)eik·(rl−rl′ ) ×

(
2n0 − 1

2
−
[

n2
0

V (z − 1)
+

(n2
0 − 1)

2 − V (z + 1)

]
t

+2n0

[
n2

0

2V 2(z − 1)2
+

(n2
0 − 1)

2(2 − V (z + 1))2
+

n2
0

V (z − 1)
+

(n2
0 − 1)

2 − V (z + 1)

]
t2

+O(t3))

Similar expression for n(k) with a given quasi angular momentum for the MI phase can

also be evaluated within strong coupling expansion.

We consider the most simple example of square lattice with four sites. Fig. 3.9(a) shows

the momentum distribution for m = 0 for DW phase. It can be seen that the m = 0

state has a peak at k = 2πn, with n as an integer. However for higher quasi angular

momentum state m=1, n(k) vanishes at k = 2πn in Fig. 3.9(b). Thus we see that the

quasi momentum distribution changes the symmetry and position of peaks as vorticity

enters into the system [109].
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Figure 3.9: Quasi angular momentum distribution of the DW phase for (a) m=0 ,(b)
m=1, plotted over a range −4π ≤ kx, ky ≤ 4π

Here, again the results at the DW-SS phase boundary can be distinguished from the

MI-SF phase boundary by noting the appearance of small extra peaks in the former

case. To demonstrate these small peaks clearly, we plot the cross sectional plots for the

quasi momentum distribution state m = 0 and m = 1 for both DW phase and MI phase

in Fig. 3.10 at the DW-SS boundary and MI-SF boundary [109]. It shows that there

are additional peaks for DW phase at DW-SS phase boundary as compared to MI phase

at MI-SF boundary, for any value of quasi momentum m. The reason is the reduced

periodicity of the DW phase unlike the MI phase. It is important to note that there is

a shift in peaks as the quasi momentum value changes from m = 0 to m = 1. This shift

characterises that vorticity has entered the system and is thus a clear signature that a

zero quasi angular momentum state can be distinguished from a non-zero one. It allows

the experimenters to verify that vorticity has entered in the system through the TOF

measurement by looking at the corresponding n(k).

Thus, the quasi momentum distribution gives us clear measurable distinctions between

states with different quasi momentum and also, the distinguishing features for the MI

and DW phases with same quasi momentum. This confirms the results obtained for

momentum distribution in section 3.7.

3.9 Summary of results of this chapter

To summarize, part 3A of the chapter presented a strong coupling expansion up to third

order in hopping parameter to study the DW-SS and MI-SF phase transitions of the

two-dimensional eBHM under the influence of an artificial magnetic field. We found



Density Wave-Supersolid and Mott Insulator-Superfluid transition in presence of an
artificial gauge field : a strong coupling perturbation approach 106

−10 0 10
0

0.5

1

k
x

n
M

I

−10 0 10
0

0.5

1

k
x

n
D

W

−10 0 10
0

0.5

1

k
x

n
M

I

−10 0 10
0

0.5

1

k
x

n
D

W

(c)

(b)(a)

(d)

Figure 3.10: The cross sectional plots for m=0 and m=1 quasi angular momentum
state for MI (a),(c) and DW (b),(d) phases. The DW phase shows distinctive peaks

compared to MI phase

that the insulating phases (both DW and MI) enlarges with an increasing magnetic field

[109]. This is explained by the localizing effect of the magnetic field on the moving

bosons. The perturbative results can be extrapolated in a number of different ways

and we performed a chemical potential extrapolation technique to determine the critical

points of the phase transition in presence of small magnetic field strengths [109]. More

work is needed to understand the change in character of the DW to SS and MI to SF

phase transition at higher strengths of magnetic field. It would also be interesting to

extend the scaling analysis of the eBHM to include its behavior in an external magnetic

field.

In part 3B of the chapter, using the strong coupling perturbation calculations, we cal-

culated the momentum distribution at the phase boundary which can be verified exper-

imentally using the TOF imaging. The momentum distribution reflects the symmetry

of the gauge potential. The momentum distribution shows distinctive feature at the

DW-SS phase boundary as compared to the MI-SF phase boundary. Our calculations
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demonstrates that the rotating SS reflects some extra peaks in the momentum distri-

bution in addition to the peaks observed in a rotating ordinary SF. This occurrence of

extra peaks in the momentum distribution for a rotating SS is another important result

of this work [109].

We re-evaluate the momentum distribution, but for a given fixed quasi-angular momen-

tum and found that the results at the DW-SS phase boundary can be distinguished

from the MI-SF phase boundary by noting the appearance of small extra peaks in the

former. This is also useful in experimentally detecting whether the system acquires vor-

ticity because quasi-angular momentum is connected with the phase information and

thus, the vorticity. Particularly, evaluating the momentum distribution for states with

definite quasi-angular momentum at such phase boundary in a symmetric gauge, we

clearly demonstrate how this can be used to probe the vortex profile of the SS phase at

the DW-SS boundary due to the action of the gauge field.

There has been significant progress in cold atom experiments in identifying the enigmatic

SS phase in ultra cold atomic systems [171–173] and our calculations will hopefully be

useful for the identification of SS phase in optical lattices.

So far the calculations for the supersolid phase have been done when the ultracold

atomic condensates with long range interactions are placed in an optical lattice. In

the tight binding regime, this is well described by the Hubbard model description, and

the calculations were performed very near to the transition boundaries [105, 109]. In

this regime, the optical lattice might be partially responsible for the induced periodicity

in the ultracold atomic supersolid. Thus, for more convincing study of supersolid we

also perform the calculations without the presence of any optical lattice potential, to

verify that the superfluid density modulations in the supersolid phase are entirely due

to long range nature of interactions. As the depth of the lattice potential is reduced,

we move away from the strongly interacting regime to the weakly interacting regime,

where the Hubbard model description is replaced by the weakly interacting mean field

Gross-Pitaevskii formalism [19]. In the absence of optical lattice, the continuum limit

of studying supersolid phase and its signatures in an artificial gauge field will be much

more convincing as compared to the lattice counterparts. This forms the basis for the

work done in chapter 4.



Chapter 4

Hydrodynamic theory for

rotating supersolids

Apart from the review of the work on rotating superfluids, this chapter

contains new results based on Rashi Sachdeva and Sankalpa Ghosh, Hydro-

dynamic theory for rotating supersolids, arXiv:1308.1592[110]

4.1 The Gross Pitaevskii equation

As already mentioned in chapter 1, the theoretical formalism of trapped weakly inter-

acting BEC was formulated by Gross and Pitaevskii [9]. This lead to the formulation of

the Gross-Pitaevskii equation, which forms the basis and starting point of this chapter.

Here we outline an overview and origin of this equation.

We consider a gas of N bosons at zero temperature. Within the framework of second

quantization, the many-body problem with N interacting bosons can be described by

the following Hamiltonian

Ĥ =
∫
drΨ̂†(r)

[
H0(r) +

∫
dr′U(r − r′)Ψ̂(r′)Ψ̂(r)

]
Ψ̂(r) (4.1)

Here, U(r − r′) is the effective two body interaction potential, and

H0 = − ~2

2m
∇2 + Vext (4.2)

and, Ψ̂(r) is the bosonic field operator satisfying the following commutation relations

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′) (4.3)

108
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and,

[Ψ̂(r), Ψ̂(r′)] = [Ψ̂†(r), Ψ̂†(r′)] = 0 (4.4)

We now use Heisenberg’s relation

i~
∂Ψ̂
∂t

= [Ψ̂, Ĥ] (4.5)

and the commutation relations (4.3) and (4.4) for bosonic field operators to get the

following equation of motion

i~
∂Ψ̂(r, t)
∂t

= H0Ψ̂(r, t) +
∫
drΨ̂†(r′, t)U(r − r′)Ψ̂(r′, t)Ψ̂(r, t) (4.6)

As already explained in chapter 1, BEC involves the macroscopic occupation of a single

quantum state. Particularly at sufficiently low temperature, for a weakly interacting

system, it is appropriate to use a mean field approach. We decompose the field operator

as

Ψ̂(r, t) = ψ(r, t) + δΨ′(r, t) (4.7)

Here ψ(r, t) ≡ ⟨Ψ̂(r, t)⟩ is the classical field or the expectation value of Ψ(r, t). The wave

function of macroscopically occupied single particle state generally termed as macro-

scopic wavefunction, defines order parameter of the system. For a weakly interacting

system, the order parameter can be thought of as the one particle wave function into

which the particles Bose condense, multiplied by the number of condensed atoms. This

picture is good for a non- or weakly interacting system. For a strongly interacting sys-

tem a better definition for the order parameter is the expectation value of the particle

annihilation operator.

The latter quantity δΨ′(r, t) represents the fluctuations about this value and associated

with the non-condensed atoms, induced by thermal and quantum effects.

In the limit of zero temperature, the thermal component of the system can be neglected.

Moreover, due to the weakly-interacting nature (a << λdB) of the condensate, quantum

depletion at zero temperature is negligible and hence as a first approximation one can

neglect the non-condensed atoms component i.e. δΨ′(r, t) → 0 and consider only the

condensed atoms contribution i.e Ψ̂(r, t) → ψ(r, t). Here, a is the inter atomic seperation

and λdB is the de-Broglie wavelength defined in equation 1.3 in Chapter 1.

Also, when the gas is sufficiently dilute, the atomic interactions are dominated by low

energy, two-body s-wave collisions, characterised by a single parameter a which is the

s-wave scattering length. The effective two body potential is given by

U(r − r′) = gδ(r − r′) (4.8)
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and is characterised by a single parameter a which is the s wave scattering length. The

parameter g is given by

g =
4π~2a

2m
(4.9)

where m is the atomic mass. It is to be noted that the interactions are attractive or

repulsive depending on whether g < 0 or g > 0 respectively. Substituting equation (4.8)

into (4.6) we get the equation for the macroscopic wave function

i~
∂ψ(r, t)
∂t

=
(
− ~2

2m
∇2 + Vext(r, t) + g|ψ(r, t)|2

)
ψ(r, t) (4.10)

This time-dependent equation is known as the Gross-Pitaevskii equation (GPE) [19, 174].

The GPE resembles the time-dependent Schrödinger equation apart from the |ψ(r, t)|2

nonlinear term, which arises due to the atomic interactions and has important effects

on the properties of the system.

The time independent solutions of the GPE can be written in the form

ψ(r, t) = ψ(r)e−iµt/~ (4.11)

Here, µ is the chemical potential which is the energy associated with adding or removing

a particle from the system and characterises the ground state energy of the condensate.

Substituting equation (4.11) into (4.10), we get the following time independent GPE as(
− ~2

2m
∇2 + Vext(r, t) + g|ψ(r)|2

)
ψ(r) = µψ(r) (4.12)

The GPE is used to study the macroscopic behavior of the BEC, at length scales larger

than the interatomic separation distance. The validity of this equation depends on the

macroscopic occupation of the ground state and small fluctuation around mean field

which is necessary for making the Bogoliubov approximation [3]. Also, the interatomic

distances should be much larger than the interaction range such that a contact potential

can be employed.

Alternatively the GPE can be obtained by the variational formulation starting from the

action principle

δ

∫ t2

t1

Ldt = 0 (4.13)

where the mean field Lagrangian L is given by

L =
∫
dr
[
i~
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)]
− E

=
∫
dr
[
i~
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

]
(4.14)
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Here, E is the energy and E is the energy density given by

E =
~2

2m
|∇ψ(r)|2 + Vext(r, t)|ψ(r)|2 + g|ψ(r)|4 (4.15)

In the variational principle the variations of ψ or ψ∗ is arbitrary with the requirement of

suitable boundary conditions. The variational principle can be used for the approximate

solutions of dynamical problems with an appropriate choice of the trial function for ψ.

The GPE has proven to give an excellent qualitative and quantitative description of

many static and dynamic properties in dilute BECs at temperature much less than

the transition temperature. Examples include the condensate density profile, dynamics

under expansion, interference effects, collective excitations and sound [174], vortices

[175–177] and bright [178, 179] and dark solitary waves [180].

In this section, we use GPE to determine the dynamics of the condensate, and derive

equations very similar to those of classical hydrodynamics. This is very useful in calcu-

lating the collective modes of the condensate. As will be explained in further sections,

this is an extremely important property to study the dynamics of the condensate.

4.1.1 Hydrodynamic theory

The Gross Pitaevskii equation (4.6) may be conveniently represented in terms of classical

fluid dynamics by employing the Madelung transformation [181]

ψ(r, t) =
√
ρ(r, t)eiϕ(r,t) (4.16)

where ρ(r, t) can be identified as superfluid density and ϕ(r, t) represents a macroscopic

phase factor. The fluid velocity is defined by the gradient of the phase i.e

vs(r, t) =
~
m
∇ϕ(r, t) (4.17)

Substituting equations (4.16) and (4.17) into GPE (4.6) and equating real and imaginary

parts, we get
∂ρ

∂t
+ ∇ · (ρvs) = 0 (4.18)

m
∂vs

∂t
+ ∇

(
1
2
mv2

s + Vext + gρ− ~2

2m
√
ρ
∇2√ρ

)
= 0 (4.19)

These equations resembles the classical continuity and Euler equation for an ideal fluid.

The Euler equation (4.19) can also be written as

∂vs

∂t
+ ∇

(
1
2
v2
s

)
= −∇

(
Vext + gρ+ T

m

)
= −∇µ

m
= −∇P

mρ
(4.20)
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where µ = (Vext + gρ + T ) is the chemical potential, which is related to pressure as

dP = ρdµ. T is the quantum pressure term given by

T =
~2

2m

[
(∇ρ)2

4ρ2
− 1

2ρ
∇2ρ

]
(4.21)

As we can see from the form of the quantum pressure term, it describes the forces due

to spatial variations in the magnitude of the wavefunction of the condensate. This term

becomes less important when the spatial variations in the density occur on length scale

larger than the coherence length and hence can be neglected.

In the hydrodynamic formalism, we have specified the equation of motion of the conden-

sate in terms of a local density ρ(r, t) and a local velocity vs(r, t), which are the degrees

of freedom of the condensate wave function. For ordinary liquids and gases, generally

one needs a microscopic description in terms of distribution function because there are

many more degrees of freedom associated with their motion [19].

Such a hydrodynamic description can be employed for ordinary gases and liquids also,

provided the collisions between particles are sufficiently frequent that thermodynamic

equilibrium is established locally. In such situation, the motion of the fluid can be

specified completely in terms of the local particle density, the local velocity, and the

local temperature. At zero temperature, just as for condensate, the motion is completely

described in terms of the local density and the local fluid velocity. The equations of

motion for a perfect fluid and a condensate are similar under such conditions, as they

are just the expressions of the particle number and momentum conservation law for the

systems. However, the physical reasons behind such description are quite different for

the two situations [19].

The hydrodynamic equations can be used to investigate the properties of elementary

excitations by considering small deviations of the state of the gas from the equilibrium

state. BEC exhibits completely different type of excitations termed as collective ex-

citations. These excitations are associated with density fluctuations and involve the

collective wave-like motion of all particles. A striking property of a BEC is that its

elementary and collective excitations are identical. This is because of the fact that all

atoms in a condensate are described by the same single-particle wave function. Thus, any

excitation involving one particle automatically involves all others leading to a collective

response, and hence it is termed as collective excitation of the condensate.

The calculations of the energy of the elementary excitations can be determined from the

hydrodynamic formalism [19] and the results agree with the spectrum derived by Bogoli-

ubov method [3] at low values of wave vector. The calculations provides sound waves for

the BEC superfluid systems which are obvious elementary excitations in hydrodynamic
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systems. For ultracold atomic BEC system, such elementary excitations give rise to

appearance of additional sound mode termed as second sound which is the signature of

the presence of superfluidity in the system. Moreover, in many experimental situations,

the response of the system will be determined by its elementary excitations produced

by application of small fluctuations to the equilibrium system and study the response of

system after it.

Such hydrodynamic formalism and determination of collective excitations has been ex-

tended for rotating condensates, and there are a number of theoretical [104, 182–185]

and experimental works [34] which describe the same. Collective excitations is one of

the most useful tool to study the dynamics of rotating condensates with vortex lattice

[34, 182, 184] and it is the topic of discussion of next section.

4.1.2 Hydrodynamic equations for a rotating superfluid

We consider a superfluid gas rotating in the xy plane with angular velocity Ω = Ωẑ,

with ẑ as the unit vector along the z direction. To get a time dependent description

of such system, we consider the Gross Pitaevskii equation in the rotating frame can be

written as

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Vextψ + g|ψ|2ψ − ΩL̂zψ (4.22)

Substitute ψ =
√
ρeiϕ in terms of density and phase in above equation (4.22) and

equating the real and imaginary parts, we get

∂ρ

∂t
+ ∇ · [ρ(vs − Ω × r)] = 0 (4.23)

and,
∂vs

∂t
+ ∇

(
1
2
v2

s +
Vext + gρ+ T

m
− vs · (Ω × r)

)
= 0 (4.24)

Equation (4.23) and (4.24) are the modified Continuity equation and Euler equation

for a condensate rotating at an angular frequency Ω. Here, vs is the velocity in the

laboratory (inertial) frame of reference. We briefly discuss the relation between the

inertial and rotational frames of reference below [186].

Laboratory and Rotational frames of reference

We consider a frame of reference rotating at an angular velocity Ω with respect to an

inertial frame. If a position vector is at rest in rotating frame, it undergoes circular
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motion with angular velocity Ω as seen in the inertial frame, thus(
dr
dt

)
I

= Ω × r (4.25)

We use (·)I and (·)R to indicate quantities measured in the inertial and rotating frame

respectively. Assuming now that, r moves in the rotating frame, then(
dr
dt

)
I

=
(
dr
dt

)
R

+ Ω × r

or,

vsI = vsR + Ω × r (4.26)

Applying equation (4.25) to vI , we get(
dvsI

dt

)
I

=
(
dvsI

dt

)
R

+ Ω × vsI

=
(
dvsR

dt

)
R

+ Ω ×
(
dr
dt

)
R

+ Ω × (vsR + Ω × r)

=
(
dvsR

dt

)
R

+ 2Ω × vsR + Ω × (Ω × r) (4.27)

Thus, we hereby use above equations (4.26) and (4.27) to write the continuity and Euler

equations in terms of velocity in rotating frame vsR.

∂ρ

∂t
+ ∇ · (ρvsR) = 0 (4.28)

and,
∂vsR

∂t
+ 2Ω × vsR −∇

(
1
2
Ω2r2

)
+ ∇

(
Vext + gρ+ T

m

)
= 0 (4.29)

We shall drop the subscript R with the understanding that from now on all quantities

are measured in the rotating frame, thus equations (4.28) and (4.29) can be written as

∂ρ

∂t
+ ∇ · (ρvs) = 0 (4.30)

m

(
∂vs

∂t
+ 2Ω × vs

)
= −∇P ′

ρ
(4.31)

where

P ′ = ρ

(
Vext + gρ+ T − 1

2
mΩ2r2

)
(4.32)

Here, 1
2mΩ2r2 is the centrifugal force which modifies the pressure term and 2Ω × vs

represents the Coriolis force. We mention here that we neglect the overall effect of the
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trap potential, because in the limit of high rotation, Ω ∼ ω the term Vext − 1
2mΩ2r2 =

1
2m(ω2−Ω2)r2 is zero and hence the trap is effectively cancelled by the centrifugal force.

Equation (4.31) can be written as

m

(
∂vs

∂t
+ (2Ω + ∇× vs) × vs

)
= −∇P ′

ρ
(4.33)

where ∇ × vs is zero except at the location of vortices. The transformation to the

rotating frame changes the vorticity too, which means that the velocity field which

was irrotational in the laboratory frame, possesses the vorticity ∇×vs = −2Ω after the

transformation. We always deal with absolute vorticity which is related to the superfluid

velocity in the rotating frame by the relation

ω̃ = 2Ω + ∇× vs (4.34)

Hence the above equation (4.33) is

m

(
∂v
∂t

+ ω̃ × vs

)
= −∇P ′

ρ
(4.35)

It is to note that the continuity equation represents the law of conservation of mass and

the Euler equation is momentum conservation equation, balancing the Coriolis and the

Centrifugal force arising due to rotation.

It is known that when a quantum fluid is rotated at a frequency Ω, it attempts to

distribute the vorticity as uniformly as possible. This is similar to a rigid body, for

which the vorticity is constant ∇ × vs = 2Ω. As mentioned in equation (4.17), the

circulation of the superfluid velocity field v is quantized in units of κ = h/M , with M

as the atomic mass. These quantized vortex lines are distributed in the fluid with a

uniform area density [143]

nv =
2Ω
κ

(4.36)

Thus the quantum fluid achieves the same average vorticity as that of a rigidly rotating

body, when coarse-grained over several vortex lines.

For rotating ultracold atomic superfluids, the vortices arrange themselves in highly or-

dered triangular lattices [187]. This has been both theoretically predicted in context of

type-II superconductors by Abrikosov [83] and then experimentally verified in rotating

ultracold atomic condensates [187]. The striking feature of the experimental observation

was the extreme regularity of these lattices, free of any major distortions, even near the

boundary Such regular vortex lattices were first predicted for quantized magnetic flux
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lines in type-II superconductors [83], and further Tkachenko showed that their lowest

energy configuration structure should be triangular for an infinite system [185].

Thus, we average above equation (4.35) over a vortex lattice cell, the assumption is that

any vortex line bears only one quantum of circulation κ = h/m, with m as the mass of

the atom. The vorticity is given by

ω̃(R) =
∑

j

κj

∫
dRjδ(R − Rj) (4.37)

Substituting in equation (4.35),

m

∂vs

∂t
+
∑

j

κj

∫
[dRj × vs(R)]δ(R − Rj)

 = −∇P ′

ρ
(4.38)

In above equation (4.38), the second term involves local velocity of the point on the

vortex line, which is denoted by vL. Thus, when averaged over the vortex lattice cell,

the hydrodynamic equation becomes

m

(
∂vs

∂t
+ ω̃ × vL

)
= −∇P ′

ρ
(4.39)

with vs as the averaged superfluid velocity and ω̃ as the absolute vorticity. Here, due to

the singular nature of the vorticity field, the velocity of the fluid in the vector product

remains unaffected. It continues to be the local velocity of the point of vortex line and

denoted by vL. Equation (4.39) is obtained by averaging equation (4.35) over the entire

vortex lattice cell.

The velocity of the vortex is given by vL and it is equal to time derivative of the

displacement vector of the vortex lattice vL = duv

dt . Alternatively, for a set of parallel

vortex lines [104], the velocity of the ith vortex line is given by

duv
i

dt
=
∑
j ̸=i

κj × (uv
i − uv

j )
2π|uv

i − uv
j |2

(4.40)

with uv
i is the position vector of the ith vortex line.

When there is an embedded vortex lattice in the superfluid, there can be small deforma-

tions due to the displacement of the vortex lattice [19]. It demands to take into account

the elastic behavior of the vortex lattice under long wavelength description. Within

this description, the vortex lattice may be treated by continuum elasticity theory, with

the condition that the quantities are averaged over a volume containing many vortices,

which has been explained above. This limits the validity of the hydrodynamic approach

to wavelengths that are long compared to the inter vortex spacing. Thus, the next step
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is to rewrite equation (4.39) as

m

(
∂vs

∂t
+ ω̃ × vs + ω̃ × (vL − vs)

)
= −∇P ′

ρ

or,

m

(
∂vs

∂t
+ ω̃ × vs

)
= −∇P ′

ρ
− f
ρ

with

f = −mρω̃ × (vL − vs) (4.41)

Here, f is the force acting per unit volume of the fluid moving with velocity vs, and it

should be connected with a variation of energy due to vortex displacements.

To determine the complete set of hydrodynamic equations for a rotating superfluid, we

write the total energy density in terms of the density ρ, phase ϕ and the displacement

of the vortex lattice uv as below

E = Ein(ρ) + Eph(ϕ) + Eel(∇uv) (4.42)

with

Ein =
~2

2m

(
1
4ρ

(∇ρ)2
)

+
g

2
ρ2 = µρ (4.43)

Eph =
~2

2m
ρ(∇ϕ)2 −mρvs · (Ω × r) (4.44)

Eel =
1
2
λv

iklmϵ
v
ikϵ

v
lm (4.45)

Here, Ein is the internal energy density which depends only on the fluid density ρ, and

Eph is the energy density contribution due to the phase ϕ of the fluid, written in terms

of the fluid velocity vs = ~
m∇ϕ.

The last equation (4.45) is the general form of the free energy of the deformed crystal

[188]. It is a functional of vortex line displacements uv. Here ϵik is the strain tensor,

given by

ϵik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
(4.46)

and λiklm is a tensor of rank four, called the elastic modulus tensor. The number of

different components of a tensor of rank four is in general 21, and if the crystal possesses

symmetry, relations exist between the various components of the tensor λiklm so that

the number of independent components is less than 21. For a hexagonal system, the
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modulii of elasticity components reduces to 5 in number due to symmetry properties

[188]. We discuss this in detail in section 4.1.3.

From equation (4.45), we see that the elastic energy of the lattice, depends on the

gradient of the displacement field uv, and not on the displacement vector itself. Now,

we use coupled hydrodynamic-elastic formalism for further calculations and write the

change in energy in terms of functional derivatives of the density, phase and gradient of

the displacement vector.

dE =
∂E
∂ρ
dρ+

∂E
∂ϕ

dϕ+
∂E

∂∇uv
d∇uv (4.47)

We calculate the last term in above equation (4.47) as follows. It is know that for the case

of rotating superfluids the vortices arrange themselves in the form of triangular lattice

with hexagonal symmetry [185]. It is known that triangular lattice is isotropic i.e the

elastic properties are identical in all directions and hence the number of essential elastic

constants which describe the system completely reduces to 2 [188]. Thus we can use the

elastic energy density expression for an isotropic triangular vortex lattice to calculate

the variation of elastic energy of the vortex lattice with respect to the displacement

vector.

We consider the axis of rotation to be in the z direction. The elastic energy density Eel

for a triangular lattice with hexagonal symmetry [183, 188] is given by

Eel = 2C1(∇ · uv)2 + C2

[(
∂uv

x

∂x
−
∂uv

y

∂y

)2

+
(
∂uv

x

∂y
+
∂uv

y

∂x

)2
]

(4.48)

where C1 and C2 are constants related to the compressional modulus and shear modulus

of the vortex lattice. This implies

fel,i = −δEel

δuv
i

= − ∂

∂xk

(
δEel

δ(∂uv
k/∂xi)

)
which gives

fel = −[4C1∇(∇ · uv) + 2C2∇2uv] (4.49)

We can also alternatively write the the expression in terms of Lameé coefficients as

fel = −[(λv + µv
s)∇(∇ · uv) + µv

s∇2uv] (4.50)

where λv = Kv− 2
3µ

v
s is the Lamé coefficient [188] with Kv and µv

s as the compressibility

and shear modulus of the vortex lattice.
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Thus, from equations (4.140), (4.48) and (4.49), we can write

2Ωρ[ẑ × (vL − vs)] =
[4C1∇(∇ · uv) + 2C2∇2uv]

m
(4.51)

Equations (4.30), (4.39) and (4.51) constitute the equations of motion of a superfluid in

a rotating co-ordinate frame and are written together as below

∂ρ

∂t
+ ∇ · (ρvs) = 0 (4.52)

∂vs

∂t
+ 2Ω × vL = −∇P ′

ρ
(4.53)

2Ωρ[ẑ × (vL − vs)] =
[4C1∇(∇ · uv) + 2C2∇2uv]

m
(4.54)

Above set of equations (4.52-4.54) are the hydrodynamic equations of motion for a

rotating superfluid and describes the long wavelength low frequency behavior of the

system. Before going into the dispersion calculations for the hydrodynamic equations

obtained above, we briefly describe the symmetry properties and the elastic constants

for crystals in next section.

4.1.3 Components of the elastic modulus tensor

The elastic modulus tensor λijkl used in equation (4.134) in above section, is a rank

four tensor which relates the stress tensor to the strain tensor. This is because the

stress and strain tensors are both 2nd order tensors and it implies that the most general

relationship between them would involve a fourth order tensor. It is also termed as

stiffness tensor. In the most general case, the stiffness tensor λijkl has 3×3×3×3 = 81

components.

But, both the stress and strain tensors are symmetric so that the stiffness tensor must

also have some symmetries, called minor symmetries

λijkl = λjikl = λijlk

In elasticity, there exists a strain energy density function W which is related to stress

by

σij =
∂W

∂eij
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which implies

λijkl =
∂2W

∂eij∂ekl

Here, since the order of differentiation is irrelevant, the stiffness tensor has the property

λijkl = λklij

and termed as the major symmetry of the stiffness tensor. This reduces the number of

elastic constants to 21, the most for a completely anisotropic solid.

For an isotropic medium, the stiffness tensor has no preferred direction which implies

that an applied force will give the same displacements (relative to the direction of the

force), no matter the direction in which the force is applied [113, 189]. Thus the material

properties are independent of direction. Such materials have only 2 independent vari-

ables, in their stiffness matrix as opposed to 21 elastic constants in general anisotropic

case. The Stiffness tensor for an isotropic material can be expressed as

λijkl = λδijδkl + µ(δikδjl + δilδjk)

where λ and µ are Lamè constants, with µ as the shear modulus and λ is related to

Poisson’s ratio ν as

λ =
2µν

1 − 2ν

After this brief description of the elastic modulus tensor and its properties for isotropic

and anisotropic lattices, we carry on with the calculations for dispersion relations for

rotating superfluid using the hydrodynamic equations of motion obtained in section

4.1.2.

4.1.4 Collective modes in a vortex lattice for rotating ultracold atomic

superfluids

From the hydrodynamic equations of motion for a rotating superfluid, we can determine

the excitation spectrum for the low energy long wavelength modes of the system. To

characterize the dynamics of the system, we investigate the small perturbations around

the equilibrium state and thus write the linearized version of above equations as

∂ρ′

∂t
+ ρ0∇ · vs = 0 (4.55)

ρ0

(
∂vs

∂t
+ 2Ω × vL

)
= −c2s∇ρ′ (4.56)
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2Ωρ0 × (vL − vs) =
[4C1∇(∇ · uv) + 2C2∇2uv]

m
(4.57)

As mentioned before, the trapping effectively gets cancelled by the centrifugal term in

the limit Ω ∼ ω and the system is homogenous. Here ρ′(r) is the oscillating component

of the density ρ(r) = ρ0(r) + ρ′(r) around the equilibrium homogenous density, cs is the

sound velocity which is given by the expression

∇P ′ = mc2s∇ρ′ (4.58)

The dispersion relation [104, 183, 184] is obtained by considering the spectrum of plane

waves ∝ exp(iq · r − iωt)

ω4 − ω2

[
4Ω2 +

(
c2s +

4(C1 + C2)
mρ

)
q2
]

+
2c2sC2

mρ
q4 = 0 (4.59)

As is generally the case that the shear mode of the vortex lattice which depends on C2

is very small, in the long wavelength limit the condition becomes

2c2sC2

mρ
q4 << {4Ω2 +

(
c2s +

4(C1 + C2)
mρ

)
q2}2 (4.60)

the modes frequencies are given by

ω2
I = 4Ω2 +

(
c2s +

4(C1 + C2)
mρ

)
q2 (4.61)

and,

ω2
T =

2C2

mρ

 c2sq
4

4Ω2 +
(
c2s + 4(C1+C2)

mρ

)
q2

 (4.62)

The first mode given in equation (4.61) is the standard inertial mode of a rotating

superfluid. In the limit Ω2 << c2sq
2, we can see that it yields the sound wave with

frequency varying linearly with q and given by

ω2
I =

(
c2s +

4(C1 + C2)
mρ

)
q2 (4.63)

whereas in the other limit, for Ω2 >> c2sq
2, the mode frequency begins at 2Ω

ω2
I = 4Ω2 +

(
c2s +

4(C1 + C2)
mρ

)
q2 (4.64)

which is the gapped sound mode. Further, in the limit 4(C1 + C2) << mρc2s it corre-

sponds to the usual sound mode of the superfluid modified by rotation [104, 182]. This

limit follows from the fact that the elastic constants of the vortex lattice are too small
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Figure 4.1: Inertial and Tkachenko mode frequencies vs wave vector, in units of Ω/cs
for a rotating superfluid system. Both the mode frequencies are in units of Ω.

to contribute and their speed contribution can be taken to be very small compared to

the usual sound speed cs.

These modes are termed as inertial waves which implies that the vortices rotate about

the equilibrium position in the same sense as the underlying superfluid.

Essentially in the limit when there is no vortex lattice (vanishing elastic constants) in

the system, equation (4.64) gives the inertial wave (ωI = 2Ω) familiar for rotating fluids

[104] in the q = 0 limit and equation (4.63) gives the usual linear spectrum of superfluids

ωI = csq. It is interesting to point out that the rotation induced gap is (2Ω)2 because of

the inherent 2Ω in the Coriolis force term (4.31). This is because the vorticity assumes a

value ∇×vs = −2Ω in the rotating frame, whereas it was irrotational in the laboratory

frame.

The second mode (4.62) is the elliptically polarized Tkachenko mode [182, 185] observed

in [34]. The elliptical nature of polarization is described in detail in Appendix A. The

Tkachenko modes are the lowest energy branch of the spectrum involving the oscillations

of the vortex lines about their equilibrium position. Microscopically, the vortices are

observed to perform elliptical oscillations with major axis perpendicular to the direction

of wave propagation. On a macroscopic scale over length scale >> uv, the lattice

undergoes shear distortions which causes the rotation of the array to alternatively slow

down and speed up. This ability of the fluid to support transverse Tkachenko waves

is remarkable and can be seen as arising from a non-trivial shear modulus due to the

intervortex force.
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The components of velocity vs and vL are introduced as follows: the component vsq and

vLq along the wave vector q and the component vst and vLt along the axis normal to

both q and the rotation axis. The oscillatory motion of the fluid with no vortex lattice is

circularly polarized. As the Tkachenko wave velocity increases from zero, the oscillatory

motion of the fluid transforms from the circularly polarized motion into the motion with

transverse linear polarization corresponding to the Tkachenko wave. For vortices, they

move in the xy plane on elliptical paths with their major axes perpendicular to q. The

ratio of the axes of the ellipse is small at ω << Ω and hence the small longitudinal

components of the velocities vq and vLq can be neglected. This allows to consider the

slow motion in the xy plane to be transverse with coinciding vortex and averaged fluid

velocities vt = vLt. Thus, the Tkachenko waves are the transverse sound modes in a

vortex lattice [104, 183].

In the limit

4(C1 + C2) << mρc2s (4.65)

the dispersion relation (4.62) becomes

ω2
T =

2C2q
2

mρ

c2sq
2

4Ω2 + c2sq
2

(4.66)

where we can define the Tkachenko wave velocity [185]

cT =

√
2C2q2

mρ
(4.67)

It is to note that large values of q, the frequency of Tkachenko mode (4.62) is linear in

q and proportional to the square root of elastic constant C2 similar to the shear wave in

an isotropic solid, i.e

ωT =

√
2C2

mρ
q

This is actually the limit where the Tkachenko wave frequency depends linearly on wave

vector q and is related by the shear modulus C2 of the isotropic vortex lattice, and hence

it is the pure shear wave limit of the vortex lattice oscillations.

Whereas in the long wavelength limit q << Ω/cs which we are studying, the Tkachenko

mode wave with the sound spectrum ωT = cT q transforms to a mode of lower frequency

with ωT ∝ q2, and is given by

ωT =

√
C2

2mρ
csq

2

Ω

These soft Tkachenko waves for oscillations of a vortex lattice have been observed ex-

perimentally [34] for rotating ultracold atomic superfluids and in the next subsection,
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we describe in detail how the oscillations are measured experimentally for a rotating

superfluid system.

4.1.5 Experimental measurement of Tkachenko waves

The first experimental measurement of Tkachenko waves in a rotating superfluid of

ultracold atomic condensate was done by Coddington et.al [34]. It involved firstly the

formation of vortex lattice in the condensate, followed by perturbing the vortex lattice

and subsequently measuring the lattice oscillations in the system. The first step involves

the generation of a lattice of vortices, which is done by rotating the trap potential and

hence the condensate at high frequency which results in the formation of vortex lattice

in the condensate. The next step is to give small perturbation to the system, which can

be done experimentally by two ways.

The 1st mechanism involves the selective removal of atoms [34], which implies that

some atoms are removed from the center of the condensate. This is done with the help

of a focused laser beam sent through the condensate along the axis of rotation which

removes a small fraction of atoms from the center of condensate. This selective removal

results in the increase in average angular momentum per particle, and hence requires

a corresponding increase in the condensate radius. Moreover, the atom removal also

creates a density dip in the center of condensate, which results in the inward motion of

fluid flow to fill the density dip.

Thus, there is an inward flow due to the density dip and an outward flow of the fluid

due to the expansion of condensate to increase the radius. The Coriolis force due to

rotation acts on on these flows which causes the inward motion to be diverted in the

lattice rotation direction and the outward flow to be diverted in the opposite direction.

This produces a sheared fluid flow in the system, which drags the vortices from their

equilibrium position and sets the initial conditions for the lattice oscillations.

The other mechanism to create lattice oscillations in vortex lattice is the inverse of

the previous method. In this method [34], a beam is sent through the center of the

condensate along the direction of rotation which creates a Gaussian dip in the trapping

potential of the atoms. Thus, instead of removing the atoms, as done in previous method,

here an optical potential is used to draw atoms into the middle of the condensate. The

dip in the trapping potential creates an inward fluid flow similar to before.

These two methods are equivalent since one works by creating a dip in the interaction

potential and the other creates a similar dip in the trapping potential. After inducing
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small lattice oscillations in the system by either of the above mentioned methods, the

next and most important step is to measure such lattice oscillations experimentally.

The data is extracted in experiments by by destructively imaging the vortex lattice

in expansion and then fitting the lattice oscillations [34]. It is performed by fitting a

curvilinear row of vortices going through the center of the cloud, after which sinewave

is fitted to the locations of the vortex centers, recording the sine amplitude. This is

repeated for all the directions of lattice symmetry, with the amplitudes averaged to

yield the net fit amplitude of the distortion. In this way, the amplitude of distortion is

determined in experiments and the frequency of oscillation is determined by fitting it to

the sinewave. The Tkachenko modes are confirmed to exist because of the characteristic

s-bend shape and the low resonant frequency of these oscillations as predicted by theory

[104, 182–185]

Motivated by theoretical [104, 183, 184] and experimental [34] success in prediction

and observation of collective oscillation modes of a vortex lattice in rotating ultracold

superfluid system, we study the properties of collective modes of a rotating supersolid

within the hydrodynamic approach. In the next section, we develop a hydrodynamic

theory for rotating supersolid starting from Gross-Pitaevskii like model for supersolid

and calculate the oscillation frequencies for small perturbations around the non-deformed

state [110].

4.2 The Gross Pitaevskii like model of Supersolid

Our model is based upon the original form of the GPE for wavefunction of a weakly

interacting BEC, as explained in section 4.1.

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Vextψ + ψ(r)

∫
U(|r − r′|)|ψ(r′|2dr′ (4.68)

The difference with the most commonly used GPE equation (4.10) is that the potential

of interaction between atoms includes a non-trivial dependence on the distance although

usually for alkali gases this interaction is taken as a delta function in such a way that

the cubic term in equation (1) becomes simply gψ(r)|ψ(r)|2. It was shown in [69] that

such non-local GPE can be used to model a supersolid phase with a suitable two body

interaction potential U(|r − r′|).

The existence of supersolid phase which is periodic pattern in the superfluid density,

has been regarded as a manifestation of an instability as the roton minum in the energy

momentum spectrum touches the zero energy line [69, 190]. The roton minimum can be
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interpreted with the help of Feynman’s formula for the dispersion relation for excitations

of energy E and momentum ~k of a Bose liquid [143] given by

E(k) =
~2k2

2mS(k)
(4.69)

with m as the atomic mass. We can see that this formula relates the excitation spectrum

to the static structure factor S(k). The static structure factor gives the correlation

properties and is the Fourier transform of the pair correlation function as explained in

chapter 2. Relation (4.69) shows that a peak in the structure factor indicates a minimum

in the energy spectrum of the system. A distinguished example of a roton minimum is

He II, where a roton minimum occurs and is regarded as an indication that the superfluid

is very close to crystallization [191, 192]. This is because ordering of atoms in a periodic

lattice pattern will give rise to peak in structure factor and hence, a minimum in the

the energy spectrum.

In context of mean field GPE with non-local potential, it was proposed by Pomeau et.

al [69, 190] that a roton minimum in the dispersion relation could be a signature of

first order transition to a crystalline state. Since the inter atomic potentials in ultracold

atomic condensates can be tailored, these systems are ideal to see signatures of roton

minimum in the dispersion, and hence the possible formation of supersolid phase in the

system. Motivated by this, we calculate the Bogoliubov [3] energy momentum dispersion

relation in the next subsection and show that certain type of inter atomic potentials re-

sults in the roton minimum in the excitation spectrum and hence the instability towards

the formation of supersolid phase.

4.2.1 Calculation of Bogoliubov dispersion relation

Our starting point is the uniform nonlinear, nonlocal GPE (4.68)

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + ψ(r, t)

∫
dr′U(|r − r′|)|ψ(r′, t)|2 (4.70)

where ψ is the condensate wave function, U(|r − r′|) is the interparticle potential and

2π~ is the Planck’s constant. This equation has a uniform solution ψ0e
iE0t/~, and small

perturbations around this uniform solution are dispersive waves:

ψ(r, t) = ψg + δψ

where ψg = ψ0e
−iE0t/~ and

δψ = e−iE0t/~[u(r)e−iωt − v∗(r)eiωt] (4.71)
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Since, the bose gas is uniform (no trap considered), due to translational invariance, the

solutions could be plane waves, with

u(r) = uqe
iq·r (4.72)

and,

v(r) = vqe
−iq.r (4.73)

Using above plane wave solutions for u(r) and v(r), the momentum q and frequency ω

are found to obey the following dispersion relation

ϵ(q) = ~ω =

√
~2q2

2m

(
~2q2

2m
+ 2nÛq

)
(4.74)

Here, Ûq is the fourier transform of the interaction potential

Ûq =
∫
U(|r|)eiq·rdr (4.75)

We assume that the potential scales as Û0 and possesses a single length scale a, thus the

spectrum depends on single dimensionless parameter,

Λ =
ma2

~2
nÛ0

with the following dimensionless dispersion relation

~ωq =
~2

ma2
ωΛ(qa) =

√
(qa)4

4
+ Λ(qa)2uD(qa) (4.76)

For getting some analytical results and for ease of numerics, we choose the interaction

U to be positive and constant U0 within a certain range a and zero elsewhere i.e.

U(|r − r′|) = U0 > 0, |r − r′| < a

= 0, |r − r′| < a (4.77)

For this kind of interaction, the fourier transform of the interaction potential Ûk takes

the following form [193] in one, two and three dimensions respectively.

u1D(qa) =
sin(qa)
qa

u2D(qa) = 2
J1(qa)
qa

u3D(qa) =
3

(qa)2

[
sin(qa)
qa

− cos(qa)
]

(4.78)
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Figure 4.2: Model interaction potential (Step-like)

where J1(qa) is the Bessel function. We show the dispersion spectrum for three dimen-

sional step like potential in Fig. 4.3. One can see that at small values of q, ϵ(q) has

a phonon like character, while at sufficiently higher values of q, it has the free particle

character. However, with Ûq having a negative minimum at finite momentum, ϵ(q) drops

near that particular momentum and eventually becomes imaginary when increasing the

strength Λ, which is proportional to the number density. Thus, from the dispersion spec-

trum, one can conclude that the assumed uniform superfluid state is unstable beyond

a critical interaction strength of the long range interaction, and indicates the possible

formation of non uniform (periodic) order.

After calculating the Bogoliubov dispersion relation, which indicates the formation of

supersolid ground state in the system, we verify the same by solving the GPE with

non-local potential given by equation (4.68). We perform numerical simulations in one

and two dimensions for the GPE (equation (4.68)) using imaginary time propagation

technique for a model step like interparticle interaction potential shown in Fig. 4.2 with

periodic boundary conditions. We numerically obtained the ground state density profile

of the system, which indeed shows that the system shows a crystalline modulation in

superfluid density above a certain value of interaction strength, both in one and two

dimensions. As shown in Fig. 4.4, the system minimizes its energy by transforming to

a state with density modulations. The two dimensional superfluid density profile shows

formation of a periodic hexagonal lattice as shown in Fig. 4.4.

As already explained in section 1.3, due to the tunability of the interaction potentials

between atoms under well defined and highly controllable conditions, ultracold atomic

condensates have emerged as prominent candidates to study the supersolid phase. Sev-

eral theoretical works have shown that specific type of long range interaction potentials

[24, 48, 70] stabilize the supersolid phase in BEC. Recent experiments with cavity medi-

ated long-range interaction in ultra cold atomic BEC demonstrates the roton like mode
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Figure 4.3: Plot of dispersion relation ϵ(q) in three dimensions for increasing val-
ues of interaction strength, Λ = 10, 25, 65, 92. Roton instability where the minima in
the energy spectrum touches the q axis, is seen to occur after a critical value of the

interaction strength, indicating the possible formation of a periodic ground state

softening [81], which indicates the instability towards the formation of uniform super-

fluid. Hence, ultracold atomic condensates with specific type of long range interactions

are excellent systems to study supersolidity and its properties.

Supersolid phase possesses the superfluid and solid like properties simultaneously. In

analogy with rotating superfluids where collective behavior is well understood both the-

oretically [104, 182–184] and experimentally [34], we develop hydrodynamic theory for

rotating supersolid and determine the collective oscillations in the system. The collec-

tive oscillations in the rotating supersolid system might carry additional signatures due

to presence of modulation in superfluid density and hence could be one of the efficient

ways to detect the supersolidity in ultracold atomic condensates. Thus to explore such

properties, we develop hydrodynamic theory for rotating supersolids in the next section

and calculate the collective modes which carry signatures of co-existing superfluid and

crystalline behavior in such systems.
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Figure 4.4: Ground state of the GPE obtained numerically for one and two dimen-
sions, using imaginary time propagation technique. The ground state shows a periodic
modulation in density after critical value of interaction strengths. It is to note that the

system favors the formation of a hexagonal lattice in two dimensions.

4.3 Hydrodynamic theory for rotating supersolids

In this section we present the derivation of the equations of motion for a rotating su-

persolid by developing a hydrodynamic theory for the system [110]. By hydrodynamic

formalism, we mean that we will be concerned with phenomenon whose characteristic

length is much larger than the lattice parameters of the vortex as well as supersolid

lattice.

To do this we begin with the mean field Gross Piteavskii description of an ultra cold

atomic condensate at zero temperature with non-local interaction. Such condensate is

characterized by a complex superfluid order parameter ψ(r) and the mean field La-

grangian, which is the space integral of Lagrangian density L, can be written as

L =
∫
drL =

∫
dr

[
i
~
2
(ψ∗∂ψ

∂t
− ψ

∂ψ

∂t
) − E(ψ,ψ∗)

]
(4.79)

E can be identified as the usual Gross-Pitaevskii energy functional and is given by

E(ψ,ψ∗) =
~2

2m
|∇ψ|2 + V (r)|ψ|2 +

∫
dr′|ψ(r)|2U(|r − r′|)|ψ(r′)|2 (4.80)

Upon writing the superfluid order parameter as ψ(r, t) =
√
n(r, t)eiΦ(r,t) in terms of the

density n and phase Φ the above Lagrangian density L takes the form

L = −
[
~n
∂Φ
∂t

+
~2

2m

(
n(∇Φ)2 +

1
4n

(∇n)2
)]

dr +
1
2

∫
U(|r − r′|)n(r)n(r′)dr′ (4.81)
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For the theory of supersolids, we denote the density of particles by n unlike ρ as in

the case for superfluids. We denote ρ to represent the average density of particles

shown further in this section. It is shown in [69] that a model of supersolid is found by

considering the non-local GP equation with energy functional given by equation (4.80).

The possibile experimental system can be an ultracold atomic BEC with cavity mediated

long range interactions, which already indicates the instability towards formation of

uniform superfluid phase [81], and the ultracold atomic Rydberg dressed atoms [78].

The action S =
∫
dt
∫
drL =

∫
dtL defined through the above Lagrangian density can

be extremized to obtain the Euler Lagrangian equation for superfluid density n(r, t) =

|ψ(r, t)|2 the velocity field

vs(r, t) =
ψ∗(r, t)∇ψ(r, t) − ψ(r, t)∇ψ∗(r, t)

2imn(r, t)
(4.82)

These equations provides a hydrodynamic description of such ultra cold atomic super-

fluid.

It is well known that for certain type of effective interaction potential U(|r − r′|) the

condensate shows a supersolid ground state as the critical strength of the non-local in-

teraction strength exceeds a critical value [24, 69]. The supersolid ground state behaves

simultaneously as superfluid as well as a solid and a low energy long wavelength hydro-

dynamic theory can be constructed for such a superolid condensate following Landau

two fluid model [194, 195]. Here superfluid component of this two fluid model will be

the superfluid order itself, the density modulation of the superfluid which is treated as

a lattice structure embedded in the superfluid will be treated as the normal component.

Given that the normal component is now no more a fluid, but a solid like lattice con-

figuration, the contribution from this part to the energy functional is also needed to be

handled accordingly.

We are interested in studying the effect of the artificial gauge field on such superfluid

created either by rotating such ultra cold atomic condensate or by any other technique

that will induce vortices in such supersolid due to presence of the superfluid component.

These supersolid vortices are topological defects in the superfluid density with a ±2π

jump around the vortex core. At high enough rotational frequency, such vortices are

expected to form an Abrikosov lattice [83] like structure. Assuming this condition is

satisfied, within this two-fluid approximation, we develop a hydrodynamic theory for a

rotating supersolid, where the vortex lattice co-exists with the density modulations or

the crystal lattice of superfluid component.
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To extend the usual hydrodynamics description of a ultra cold atomic superfluid to

a rotating supersolid we first introduce the lattice vector uss(r, t) to denote the co-

ordinates of the supersolid lattice and the vector uv(r, t). In the absence of any normal

crystal like component, for a prototype ultra cold atomic superfluid the average number

density of the particles ρ is defined through the normalisation condition

ρ =
1
V

∫
V
n(r)dr (4.83)

and does not vary as function of (r, t). Thus for a ultra cold atomic superfluid ρ cannot

be changed without changing the number of ultra cold atoms in a given volume. On the

other hand in a classical crystalline solid ρ represents fixed number of atoms per unit cell

for a given set of lattice vectors and given number of atoms in the solid. So for a fixed

number of atoms, the lattice vectors and the number density of atoms are constrained to

depend on each other. The following equation takes into account the change in number

density due to elastic deformations of the classical lattice

δρ

ρ
= −∇ · uss

The above condition needs to be relaxed in the case of an ultra cold atomic supersolid.

For such a system the crystalline solid component of the supersolid is superfluid density

modulation which can be identified with a crystalline structure. In a more naive language

this corresponds to set of position vectors that gives us the location of the local maxima

and minima’s of the superfluid density. Thus number density is liable to get change

due to the compression/dilation effects of the lattice (which is basically the change

in displacement vector uss(r, t)) or equivalently by changing the density of superfluid

component. In a quantum supersolid, the equation is

δρ

ρ
+ ∇ · uss = O(ρss)

with ρ as the average number density of the system.

Same is also true for the vortex lattice which can also be characterized as a patterned

modulation in the superfluid density and phase. Thus the lattice vectors uss(r, t) and

uv(r, t) as well as the average density ρ can be varied independently and the phase

and density of the mean field order parameter ψ(r, t) is now a functional of three field

variables, namely ρ(r, t), uss(r, t), uv(r, t)

n(r, t) = n(ρ(r, t),us(r, t)uv(r, t) (4.84)

To entail a time independent description of such a rotating supersolid again one goes to
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the energy functional in the co-rotating frame is related with the non rotating energy

functional as shown in section 4.1.2

ER = E − Ω · (r × p)

In the following section we provide a systematic derivation of the Lagrangian density for

the rotating supersolid, where supersolid lattice co-exist with the vortex lattice. We also

provide the limiting cases of the non-rotating supersolid and rotating superfluid from

the effective Lagrangian for rotating supersolid.

4.3.1 Homogenization technique for long wave effective Lagrangian

Here, we derive the coupled equations for the three fields ρ(r, t), u(r, t) = uss(r, t) +

uv(r, t) and ϕ(r, t), following the method called Homogenization [196]. This technique

splits the long wave behavior of various parameters and the short range periodic depen-

dence on the lattice parameters.

Following the work by Josserand et. al [69, 194] to perform the long wavelength analysis

of the system, we use the ansatz for density and phase as

n(r, t) = ρ0(r − uss(r, t) − uv(r, t)|ρ(r, t)) + ρ̃(r − uss − uv, ρ, t) + ... (4.85)

Φ(r, t) = ϕ(r, t) + ϕ̃(r − uss − uv, ρ(r, t), t) + ... (4.86)

Here, the displacement of the vortex lattice and the supersolid lattice enters the modu-

lated density as ρ0(r−uss(r, t)−uv(r, t)|ρ(r, t)). Also, ϕ, u = uss +uv and ρ are slowly

varying fields and ϕ̃ and ρ̃ are small and fast varying periodic functions.

Now we calculate the gradients and time derivatives of various expressions which will

be further used in the calculations.

(∇n)i =
∂ρ0

∂xi
− ∂ρ0

∂uss
k

∂uss
k

∂xi
− ∂ρ0

∂uv
k

∂uv
k

∂xi
+
∂ρ0

∂ρ

∂ρ

∂xi
+
∂ρ̃

∂xi
− ∂ρ̃

∂uss
k

∂uss
k

∂xi
− ∂ρ̃

∂uv
k

∂uv
k

∂xi
+
∂ρ̃

∂ρ

∂ρ

∂xi

= (δik − ∂iu
ss
k − ∂iu

v
k)∂kρ0 +

∂ρ0

∂ρ

∂ρ

∂xi
+ (δik − ∂iu

ss
k − ∂iu

v
k)∂kρ̃+

∂ρ̃

∂ρ

∂ρ

∂xi

Next,

∂tΦ =
∂ϕ

∂t
− ∂ϕ̃

∂uss
k

∂uss
k

∂t
− ∂ϕ̃

∂uv
k

∂uv
k

∂t
+
∂ϕ̃

∂t
+
∂ϕ̃

∂ρ

∂ρ

∂t

= ∂tϕ− ∂tu
ss
k ∂kϕ̃− ∂tu

v
k∂kϕ̃+ ∂tϕ̃+

∂ϕ̃

∂ρ
∂tρ
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(∇Φ)i =
∂ϕ

∂xi
+
∂ϕ̃

∂xi
− ∂ϕ̃

∂uss
k

∂uss
k

∂xi
− ∂ϕ̃

∂uv
k

∂uv
k

∂xi
+
∂ϕ̃

∂ρ

∂ρ

∂xi

= (∇ϕ)i + (δik − ∂iu
ss
k − ∂iu

v
k)∂kϕ̃+

∂ϕ̃

∂ρ
(∇ρ)i

Now keeping the relevant contributions for the long-wave description and calculating

n∂tΦ = (ρ0 + ρ̃)

(
∂tϕ− ∂tu

ss
k ∂kϕ̃− ∂tu

v
k∂kϕ̃+ ∂tϕ̃+

∂ϕ̃

∂ρ
∂tρ

)
= ρ0∂tϕ− ρ0∂tu

ss
k ∂kϕ̃− ρ0∂tu

v
k∂kϕ̃+ ∂tϕρ̃+ h.o.t, (4.87)

Here and throughout the chapter h.o.t are the higher order terms. In above equation

(4.87), the fast varying terms in ϕ̃multiplied by other fast varying term such as ρ̃∂tu
ss
k ∂kϕ̃

and ρ̃∂tϕ̃ are ignored and not taken into account.

(∇n)2 =
(

(δik − ∂iu
ss
k − ∂iu

v
k)∂kρ0 +

∂ρ0

∂ρ

∂ρ

∂xi
+ (δik − ∂iu

ss
k − ∂iu

v
k)∂kρ̃+

∂ρ̃

∂ρ

∂ρ

∂xi

)2

=
(

(δik − ∂iu
ss
k − ∂iu

v
k)∂kρ0 +

∂ρ0

∂ρ

∂ρ

∂xi

)2

+
(

(δik − ∂iu
ss
k − ∂iu

v
k)∂kρ̃+

∂ρ̃

∂ρ

∂ρ

∂xi

)2

+2
(

(δik − ∂iu
ss
k − ∂iu

v
k)∂kρ0 +

∂ρ0

∂ρ

∂ρ

∂xi

)(
(δik − ∂iu

ss
k − ∂iu

v
k)∂kρ̃+

∂ρ̃

∂ρ

∂ρ

∂xi

)
(4.88)

We calculate this quantity (4.88) term by term as follows :

Term 1:(
(δik − ∂i(uss

k + uv
k))∂kρ0 +

∂ρ0

∂ρ

∂ρ

∂xi

)2

= [(δik + (∂i(uss
k + uv

k))
2 − 2δik∂i(uss

k + uv
k)]
(
∂ρ0

∂xk

)2

+
(
∂ρ0

∂ρ

∂ρ

∂xi

)2

+ 2(δik + ∂i(uss
k + uv

k)
∂ρ0

∂xk

∂ρ0

∂ρ

∂ρ

∂xi

= δik
∂ρ0

∂xi

∂ρ0

∂xk
+ (∂lu

ss
i + ∂lu

v
i )(∂lu

ss
k + ∂lu

v
k)
∂ρ0

∂xi

∂ρ0

∂xk

−2(∂iu
ss
k + ∂lu

v
k)
∂ρ0

∂xi

∂ρ0

∂xk

= (δik − 2(∂iu
ss
k + ∂lu

v
k) + (∂lu

ss
i + ∂lu

v
i )(∂lu

ss
k + ∂lu

v
k))

×∂ρ0

∂xi

∂ρ0

∂xk

= (δik − 2∂iu
ss
k − 2∂iu

v
k + ∂lu

v
i ∂lu

v
k + ∂lu

ss
i ∂lu

ss
k )
∂ρ0

∂xi

∂ρ0

∂xk

= (δik + 2ϵsik + 2ϵvik)
∂ρ0

∂xi

∂ρ0

∂xk
+ h.o.t (4.89)

where

ϵsik =
1
2
(∂iu

ss
k + ∂ku

ss
i ) +

1
2
∂lu

ss
i ∂lu

ss
k (4.90)
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is the strain tensor [188] for supersolid lattice and,

ϵvik =
1
2
(∂iu

v
k + ∂ku

v
i ) +

1
2
∂lu

v
i ∂lu

v
k (4.91)

is the strain tensor [188] for vortex lattice.

Term 2

(δik − (∂iu
ss
k + ∂iu

v
k))

2

(
∂ρ̃

∂xk

)2

+
(
∂ρ̃

∂ρ

∂ρ

∂xi

)
+ 2(δik − (∂iu

ss
k + ∂iu

v
k))

∂ρ̃

∂xk

∂ρ̃

∂ρ

∂ρ

∂xi

= δik

(
∂ρ̃

∂xk

)2

+ h.o.t

= (∂iρ̃)2 + h.o.t (4.92)

Here, again to keep the relevant terms for long wavelength description, terms which are

quadratic in fast varying variable ρ̃ multiplied by other derivatives are ignored.

Term 3

2
(

(δik − ∂iu
ss
k − ∂iu

v
k)∂kρ0 +

∂ρ0

∂ρ

∂ρ

∂xi

)(
(δik − ∂iu

ss
k − ∂iu

v
k)∂kρ̃+

∂ρ̃

∂ρ

∂ρ

∂xi

)
= 2(δik − ∂iu

ss
k − ∂iu

v
k)

2 ∂ρ0

∂xk

∂ρ̃

∂xk
+ h.o.t ≃ 2(δik + 2ϵsik + 2ϵvik)∂kρ0∂kρ̃ (4.93)

Substituting equations (4.89),(4.92),(4.93) into equation (4.88), we get

(∇n)2 = (δik + 2ϵsik + 2ϵvik)∂iρ0∂kρ0 + 2(δik + 2ϵsik + 2ϵvik)∂kρ0∂kρ̃+ (∂iρ̃)2 + h.o.t

(4.94)

Next we calculate

(∇Φ)2 =

[
(∇ϕ)2 + (δik − (∂iu

ss
k + ∂iu

v
k))

∂ϕ̃

∂xk
+
∂ϕ̃

∂ρ
(∇ρ)

]2

= (∂iϕ)2 + [δik + (∂iu
ss
k + ∂iu

v
k)

2 − 2δik(∂iu
ss
k + ∂iu

v
k)]

(
∂ϕ̃

∂xk

)2

+2(δik − (∂iu
ss
k + ∂iu

v
k))

∂ϕ

∂xi

∂ϕ̃

∂xk
+ h.o.t

= (∂iϕ)2 + (∇ϕ̃)2 + 2(δik − (∂iu
ss
k + ∂iu

v
k))∂iϕ∂kϕ̃+ h.o.t (4.95)

The higher order terms are the terms quadratic in fast varying variable ϕ̃ multiplied by

other derivatives, which we again neglect in the long wavelength description. The next



Hydrodynamic theory of rotating Supersolids 136

term is

n∇Φ = (ρ0 + ρ̃)

(
(∇ϕ) + (δik − ∂iu

ss
k − ∂iu

v
k)∂kϕ̃+

∂ϕ̃

∂ρ
(∇ρ)

)

= ρ0∇ϕ+ ρ0(δik − ∂iu
ss
k − ∂iu

v
k)
∂ϕ̃

∂xk
+ ρ0

∂ϕ̃

∂ρ
(∇ρ) + h.o.t

Before going into the calculation for the non-local interaction term, we calculate the 1st

and 2nd term of Lagrangian (4.79) and label their contribution to the corresponding

energy part of the Lagrangian, which will be explained later.

In the 1st term L1 we use equation (4.87) and get the following expression

L1 = −
∫

~n
∂Φ
∂t
dr

= −
∫

~∂tϕρ0dr︸ ︷︷ ︸
Lϕ

+
∫

~ρ0∂tu
ss
k ∂kϕ̃dr︸ ︷︷ ︸

Lϕ̃

+
∫

~ρ0∂tu
v
k∂kϕ̃dr︸ ︷︷ ︸

Lϕ̃

−
∫

~∂tΦρ̃dr︸ ︷︷ ︸
neglected

(4.96)

2nd term of Lagrangian (4.79) is calculated using (4.95) as

L2 = −
∫

~2

2m
n(∇Φ)2dr

= −
∫

~2

2m
[ρ0(∂iϕ)2 + ρ0(∇ϕ̃)2 + 2ρ0(δik − ∂iu

ss
k − ∂iu

v
k)∂iϕ∂kϕ̃

+ρ̃(∂iϕ)2 + ρ̃(∇ϕ̃)2 + 2ρ̃(δik − ∂iu
ss
k − ∂iu

v
k)∂iϕ∂kϕ̃]dr

= − ~2

2m

∫
(∇ϕ)2ρ0(r)dr︸ ︷︷ ︸

Lϕ

+
~2

m

∫
(∂iu

ss
k + ∂iu

v
k)∂iϕ∂kϕ̃ρ0(r)dr︸ ︷︷ ︸

Lϕ̃

− ~2

m

∫
∇ϕ · ∇ϕ̃ρ0(r)dr︸ ︷︷ ︸

Lϕ̃

− ~2

2m

∫
(∇ϕ̃)2ρ0(r)dr︸ ︷︷ ︸

Lϕ̃

(4.97)

Considering the non-local term now, given by

N(ρ(r), ρ(r′)) =
1
2

∫
U(|r− r′|)ρ(r− uss(r)− uv(r))ρ(r′ − uss(r′)− uv(r′)drdr′ (4.98)

STEPS

1) Using the change of variables, R = r − u(r) and, R′ = r′ − u(r′), we can determine

dR = d(r − (uss(r) + uv(r)))
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with

(dR)i = d(r − (uss(r) + uv(r)))i =
(
dxi −

∂(uss
i + uv

i )
∂xk

dxk

)
which implies

|dR|2 = (dR)i · (dR)i

=
(
dxi −

∂(uss
i + uv

i )
∂xk

dxk

)2

= dxidxkδik − 2dxi
∂(uss

i + uv
i )

∂xk
dxk +

(
∂(uss

i + uv
i )

∂xk

)2

(dxk)2

= (δik − 2(∂ku
ss
i + ∂ku

v
i ) + (∂ku

ss
i + ∂ku

v
i )(∂ku

ss
i + ∂ku

v
i ))dxidxk

= (δik + 2ϵsik + 2ϵvik)dxidxk (4.99)

with strain tensors ϵsik and ϵvik defined in equations (4.90) and (4.91). Similarly,

|dR′|2 = (δik + 2ϵsik′ + 2ϵvik′)dx′idx
′
k

2) Any integral with argument r − u(r) may be transformed to∫
Q(r − u(r))dr =

∫
Q(R)dr

=
∫
Q(R)

dR√
det(δik + 2ϵsik + 2ϵvik)

(4.100)

=
∫
Q(r)

dr√
det(δik + 2ϵsik + 2ϵvik)

=
∫
Q(r)(δik + 2ϵsik + 2ϵvik)

−1/2dr

≃
∫
Q(r)(1 − ϵskk − ϵvkk)dr (4.101)

The step (4.100) in equation (4.101) is obtained by using equation (4.99).

3) Relative distance

∆R = R − R′

= ∆r − (uss(r) − uss′(r′)) − (uv(r) − uv′
(r′))

= ∆r − ∆(uv(r) + uss(r)) (4.102)

where ∆r = r − r′. Above equation (4.102) implies

|∆R|2 ≃ |∆r|2 + |∆u(r)|2 − 2∆r · ∆u(r)

= |∆r|2 +
∂ul

∂xi

∂ul

∂xk
∆xi∆xk + ∆r · (−∂iuk − ∂kui)∆x

= |∆r|2 + 2ϵsik∆xi∆xk + 2ϵvik∆xi∆xk
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Thus,

|∆r| ≃ ∆R −
(ϵsik + ϵvik)∆xi∆xk

∆R
(4.103)

The final result of non-local term given by (4.98) thus can be calculated as

N(ρ(r), ρ(r′)) =
1
2

∫
U

(
|∆R| − (ϵsik + ϵvik)

∆xi∆xk

|∆R|
+ ...

)
ρ(R)dR√

det(δik + 2ϵsik + 2ϵvik)

× ρ(R′)dR′√
det(δik + 2ϵsik′ + 2ϵvik′)

=
1
2

∫
(1 − (ϵsll + ϵs

′
ll + ϵvll + ϵv

′
ll )(U(|r − r′|)

−(ϵsik + ϵvik)((xi − xi′)(xk − xk′)
U(r − r′)
|r − r′|

+ ...)ρ(r)ρ(r′)drdr′

=
1
2

∫
(1 − (ϵsll + ϵs

′
ll ) − (ϵvll + ϵv

′
ll ))(U(|r − r′|) − (ϵsik + ϵvik)fik(r − r′) + ...)

ρ(r)ρ(r′)drdr′ (4.104)

Here, in the last expression the variables R and R′ have been renamed as r and r′, and

fik(r − r′) = (xi − xi′)(xk − xk′)U(r−r′)
|r−r′| .

The 1st and 2nd term of the Lagrangian (4.79) are already calculated. Here we determine

the 3rd and 4th terms by substituting the ansatz in equations (4.85) and (4.86) in the

Lagrangian (4.79). 3rd term of the Lagrangian (4.79) is calculated using (4.94) and

(4.101) as

L3 = − ~2

2m

∫
1
4n

(∇n)2dr

= − ~2

2m

∫
(∇n)2

4
1

(ρ0(r − u) + ρ̃(r − u))
dr

≃ − ~2

2m

∫
(∇n)2

4
1

ρ0(r − u)

(
1 − ρ̃(r − u)

ρ0(r − u)

)
dr

= − ~2

2m

[∫
(∇n)2

4
1

ρ0(r − u)
dr −

∫
(∇n)2

4
ρ̃(r − u)
ρ0(r − u)

dr
]

= − ~2

2m

∫
[(δik + 2ϵsik + 2ϵvik)∂iρ0∂kρ0 + 2(δik + 2ϵsik + 2ϵvik)∂iρ0∂kρ̃+ (∂iρ̃)2 + h.o.t]

·
(

1
4ρ0(r)

+
ρ̃(r)

4ρ2
0(r)

)
(1 − ϵskk − ϵvkk)dr
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= − ~2

8m

∫
(∇ρ0)2

ρ0
dr︸ ︷︷ ︸

Lρ

+
~2

8m

∫
(∇ρ0)2

ρ0
(ϵskk + ϵvkk)dr︸ ︷︷ ︸

Lu

− ~2

4m

∫
(ϵsik + ϵvik)

∂iρ0∂kρ0

ρ0
(1 − ϵsll − ϵvll)dr︸ ︷︷ ︸

Lu

− ~2

4m

∫
∂iρ0∂iρ̃

ρ0
dr︸ ︷︷ ︸

Lρ̃

− ~2

2m

∫
(ϵsik + ϵvik)

∂iρ0∂iρ̃

ρ0
dr︸ ︷︷ ︸

Lρ̃

− ~2

8m

∫
(∇ρ̃)2

ρ0
dr +

~2

8m

∫
(∇ρ0)2

ρ2
0

ρ̃dr︸ ︷︷ ︸
Lρ̃

+...

(4.105)

Now, the 4th term of the Lagrangian (4.79) is calculated using (4.104) as

L4 = −1
2

∫
U(|r − r′|)n(r)n(r′)drdr′

= −1
2

∫
(1 − (ϵsll + ϵs

′
ll ) − (ϵvll + ϵv

′
ll ))(U(|r − r′|) − (ϵsik + ϵvik)fik(r − r′) + ...)

·(ρ0(r)ρ0(r′) + ρ0(r)ρ̃(r′) + ρ̃(r)ρ0(r′) + ρ̃(r)ρ̃(r′))drdr′

= − 1
2

∫
U(|r − r′|)ρ0(r)ρ0(r′)drdr′︸ ︷︷ ︸

Lρ

− 1
2

∫
U(|r − r′|)(ρ0(r)ρ̃(r′) + ρ̃(r)ρ0(r′))drdr′︸ ︷︷ ︸

Lρ̃

− 1
2

∫
U(|r − r′|)ρ̃(r)ρ̃(r′)drdr′︸ ︷︷ ︸

Lρ̃

− 1
2

∫
[(ϵsik + ϵvik)fik(r − r′)](ρ0(r)ρ̃(r′) + ρ̃(r)ρ0(r′))drdr′︸ ︷︷ ︸

Lρ̃

− 1
2

∫
[((ϵsll + ϵs

′
ll ) + (ϵvll + ϵv

′
ll ))fik(r − r′)](ρ0(r)ρ̃(r′) + ρ̃(r)ρ0(r′))drdr′︸ ︷︷ ︸

Lρ̃

(4.106)

So, adding and collecting all the terms, we get following five kind of terms

L = Lρ + Lϕ + Lu + Lϕ̃ + Lρ̃ (4.107)

Lρ : Internal energy part which includes only the slowly varying variable ρ0(r).

Lϕ : This part arises from the mixing of slowly varying phase and slowly varying density,

hence the name Hydrodynamical part I.

Lu : This is the Elastic energy I part involving strain tensor terms mixed with the slowly

varying density.

Lϕ̃ : Hydrodynmical part II, involving the fast varying terms in density and phase.

Lρ̃ : Labelled as Elastic energy II, this part involves the strain tensor terms moxed with
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fast varying components of density.

Below we simplify these terms separately.

(1) Lρ is the internal energy part, which only depends on ρ0(r) which is slowly

varying, and is given by

Lρ = − ~2

8m

∫
(∇ρ0)2

ρ0
dr − 1

2

∫
U(|r − r′|)ρ0(r)ρ0(r′)drdr′ (4.108)

(2) Lϕ is the hydrodynamical part I, which mixes the slowly varying phase ϕ(r, t)

and slowly varying density ρ0(r), and is given below

Lϕ = −
∫ (

~∂tϕ+
~2

2m
(∇ϕ)2

)
ρ0(r)dr (4.109)

The term in the integral (4.109) is the Lagrangian density. This quantity when integrated

over a unit cell of the lattice gives an average energy density for the system that depends

on parameter ϕ only. Thus, we shall write the term as

E(ϕ) =
1
V

∫
V

(
~∂tϕ+

~2

2m
(∇ϕ)2

)
ρ0(r)dr

=
(

~∂tϕ+
~2

2m
(∇ϕ)2

)
1
V

∫
V
ρ0(r)dr −

1
V

∫
V

(
∇
(

~∂tϕ+
~2

2m
(∇ϕ)2

)∫
V
ρ0(r)dr

)
dr

≃
(

~∂tϕ+
~2

2m
(∇ϕ)2

)
ρ (4.110)

Here, we performed integration by parts and ignored the terms with higher order deriva-

tives.

(3) Lu is the elastic part I, given by

Lu = − ~2

4m

∫
(ϵsik + ϵvik)

∂iρ0∂kρ0

ρ0
(1 − ϵsll − ϵvll)dr +

~2

8m

∫
(∇ρ0)2

ρ0
(ϵskk + ϵvkk)dr

+
1
2

∫
((ϵsik + ϵvik)fik(r′ − r) + (ϵsll + ϵs

′
ll + ϵvll + ϵv

′
ll )U(|r − r′|)ρ0(r)ρ0(r′)drdr′

(4.111)

It can be averaged directly. However it involves both quadratic and linear terms, they

can be grouped and simplified and hence, the elastic part I of the Lagrangian reduces

to,

Lu =
∫ (

1
2
c
(2)
ik ϵ

s
ikϵ

s
ll − µρϵsll

)
dr +

∫ (
1
2
c
(2)
ik ϵ

v
ikϵ

v
ll − µρϵvll

)
dr (4.112)

where c(2)
ik is the elastic constant entering through the quadratic term, and is given by

c
(2)
ik =

1
V

∫
V

~2

2m
∂iρ0∂kρ0

ρ0
dr
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and

µ =
~2

4m

(
(∇ρ0)2

2ρ2
0

− ∇2ρ0

ρ0

)
+
∫
U(|r − r′|)ρ0(r′)dr′ (4.113)

(4) Lϕ̃ is the hydrodynamical part II, given as

Lϕ̃ = ~
∫
ρ0(r)(∂tu

ss
k ∂kϕ̃+ ∂tu

v
k∂kϕ̃+

~
m
∂iu

ss
k ∂iΦ∂kϕ̃+

~
m
∂iu

v
k∂iΦ∂kϕ̃

− ~
m
∇ϕ · ∇ϕ̃− ~

2m
(∇ϕ̃)2)dr (4.114)

Now, above equation (4.114) can be re-written as

Lϕ̃ = = − ~2

2m

∫
(2ρ0As · ∇ϕ̃+ 2ρ0Av · ∇ϕ̃+ ρ0(∇ϕ̃)2)dr

with

As =
(
∇ϕ− (∇ϕ · ∇)uss − m

~
∂tuss

)
(4.115)

and,

Av =
(
−(∇ϕ · ∇)uv − m

~
∂tuv

)
(4.116)

The Euler-Lagrange condition for this part of Lagrangian Lϕ̃ is

As · ∇ρ0 + Av · ∇ρ0 + ∇ · (ρ0∇ϕ̃) = 0

Solving this equation for ϕ̃ we get ϕ̃ = Ki(As
i + Av

i ) with K(r) is a periodic function

[194] which satisfies

∇iρ0 + ∇ · (ρ0∇Ki) = 0 (4.117)

Above equation is to be solved within the unit cell of the lattice i.e. for a function ϕ̃

which is periodic with the same period as ρ0. It can be written as ϕ̃ = Ki(Av
i + As

i ),

which is a periodic function of r and linear in A.

Substituting this expression into the condition (4.117), we see that the function K(r)

satisfies

∇iρ0 + ∇ · (ρ0∇Ki) = 0 (4.118)

and Lagrangian (4.114) for the phase part is

Lϕ̃ =
~2

2m

∫
ρc

ijA
s
iA

s
j + ρv

ijA
v
iA

v
jdr (4.119)

with ρc
ij is the tensor which for symmetric crystal structures is ρc

ij = ρδij − ρss
ij , defined

as

ρc
ij =

1
V

∫
V
ρ0(r)∇Ki · ∇Kjdr
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The quantity ρss = ρ if the crystal modulation is absent. It is to note that we neglected

the last term in equation (4.119) because we donot want to take into account the vortex

crystal effective mass. We only consider the mass density of the supersolid lattice and

the superfluid component in the system. However when this term is included it will

probably give rise to terms with interaction between the two lattices. In present set

of calculations, we assume both the lattices to be independent of each other with no

interaction among them.

(5) Lρ̃ is the elastic part II, given by

Lρ̃ =
~2

4m

∫ (
(∇ρ0)2

2ρ2
0

ρ̃− ∂iρ0

ρ0
∂iρ̃

)
dr − 1

2

∫
U(|r − r′|)(ρ0(r)ρ̃(r′)

+ρ̃(r)ρ0(r′)drdr′ (4.120)

− ~2

8m

∫ (
−2(ϵsik + ϵvik)

∂iρ0∂kρ0

ρ2
0

ρ̃+ 4(ϵsik + ϵvik)
∂iρ0

ρ0
∂kρ̃+

1
ρ0

(∇ρ̃)2
)
dr

−1
2

∫
U(|r − r′|)ρ̃(r)ρ̃(r′)drdr′

−1
2

∫
((ϵsik + ϵvik)fik(r − r′)) + ((ϵsll + ϵsll′) + (ϵvll + ϵvll′))U(|r − r′|)

(ρ0(r)ρ̃(r′) + ρ̃(r)ρ0(r′)drdr′ (4.121)

The terms which are quadratic in the gradients of ρ̃ are the relevant terms because the

terms linear in ρ̃ disappears, as the action is at minimum when n = ρ0(r). Also, the line

(4.120) in above equation is equal to −µ
∫
ρ̃(r)dr. Thus, keeping only relevant terms as

below:

~2

4m
∇ ·
(
∇ρ̃
ρ0

)
−
∫
U(|r − r′|)ρ̃(r′)dr′ = µ(ϵskk + ϵvkk)

+
~2

4m
(ϵsik + ϵvik)

(
∂iρ0∂kρ0

ρ2
0

− 2
∂ikρ0

ρ0

)
+ϵik

∫
(fik(r − r′) + 2δikU(|r − r′|))ρ0(r′)dr′

(4.122)

The solution of above equation is periodic function Eik(r) (following ref. [194, 196])

and of the form ρ̃ = ϵikEik(r). Putting in expression (4.122) and adding the expression

(4.112) we get

Lu + Lρ̃ = −1
2

∫
(λs

iklmϵ
s
ikϵ

s
lm + λv

iklmϵ
v
ikϵ

v
lm)dr (4.123)

This particular form comes from the two elastic energy contributions given in equations

(4.111) and (4.121) originating from the third and fourth terms of the original Lagrangian
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density (4.81). Here λiklm is given by

λs
iklm = − 1

V

∫
V

~2

2m
∂iρ0∂kρ0

ρ0
δlmdr −

1
V

∫
V
µ(δikEs

lm(r) + δlmE
s
ik(r))dr

− 1
V

∫
V
dr
(

~2

4m
1
ρ0

(∇Es
ik) · (∇Es

lm) +
∫
U(|r − r′|)Es

ik(r)E
s
lm(r′)dr′

)
(4.124)

and,

λv
iklm = − 1

V

∫
V

~2

2m
∂iρ0∂kρ0

ρ0
δlmdr −

1
V

∫
V
µ(δikEv

lm(r) + δlmE
v
ik(r))dr

− 1
V

∫
V
dr
(

~2

4m
1
ρ0

(∇Ev
ik) · (∇Ev

lm) +
∫
U(|r − r′|)Ev

ik(r)E
v
lm(r′)dr′

)
(4.125)

The expression 1
2λiklmϵikϵlm is the expression for the elastic energy density of a solid,

and λiklm is the elastic modulus tensor.

Hence, we can write the effective Lagrangian for the long wave perturbations of dis-

placement of both lattices, of average density and of the phase as the sum of various

contribution mentioned above.

Leff = −~ρ
∂ϕ

∂t
− ~2

2m

[
ρ(∇ϕ)2 − (ρδik − ρss

ik)
(
∇ϕ− m

~
Duss

Dt

)
i

(
∇ϕ− m

~
Duss

Dt

)
k

]
− E(ρ) − 1

2
λs

iklmϵ
s
ikϵ

s
lm − 1

2
λv

iklmϵ
v
ikϵ

v
lm −mρvs · (Ω × r) (4.126)

where
Duss

Dt
=
∂uss

∂t
+

~
m
∇ϕ · ∇uss (4.127)

It can be clearly seen from the above equation (4.126) that the crystal lattice may

have a different velocity than the superfluid component, with the velocity difference

proportional to
(
∇ϕ− ~

m
Duss

Dt

)
, with uss as the displacement vector of crystal lattice

due to density modulations in superfluid. Hence the third term in equation (4.126) gives

the product of the mass density of the supersolid lattice and the square of the supersolid

lattice velocity.

One should expect a similar term arising from the relative motion of vortex with respect

to the local superfluid, given by product of mass density of vortex lattice and square of

vortex lattice velocity. But for sake of simplicty, we have assumed effective mass of the

vortex to be negligible, valid for all practical purposes and hence no such term appears

in the calculations. For the case of rotating superfluids, it has been taken into account

in [183] where one can see the vortex effective mass contribution. In our case, we assume
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it to be negligible and consider only the effective mass of supersolid crystal lattice for

the system.

Here ρss
ik is the superfluid density tensor, which is in general a symmetric matrix. The

reason is that we consider the supersolid as consisting of a crystal lattice and a superfluid,

using Landau two fluid model, with crystal lattice as the normal component of the fluid.

In free space, the superfluid density is just the density of the superfluid component,

whereas the situation is different in presence of lattice. In the lattice, the superfluid

density is a tensor and not just a scalar quantity, because the hopping and hence the

effective masses can depend on the direction [197]. In our further calculations, we express

that the superfluid density is a function of local number density ρ and for isotropic

symmetry of lattice, it is given by ρss
ik = ρss(ρ)δik.

We mention here again that we consider a very shallow trap so that the system is

effectively flattened in the bulk. Moreover, at high rotational frequencies Ω ∼ ω the

centrifugal force cancels the trapping potential, so that the system is translationally

invariant.

It may be noted from the structure of the proposed Lagrangian that we donot take into

account coupling of the two lattices with displacement vectors uss,uv in the lowest order

expansion and thus the elastic deformations of the two lattices do not interact with each

other directly.

Before obtaining the equations of motion for the rotating supersolid case, we show below

that the above Lagrangian (4.126) reduces to that of non-rotating supersolid and rotating

superfluid in the respective limits. We show the limiting cases below.

(a) Non-rotating Supersolid

For the case of non-rotating supersolid, the field variables are the density ρ, phase ϕ

and the displacement vector of the supersolid lattice uss. There is no vortex lattice in

the system, and hence the elastic energy contribution from the vortex lattice is kept

zero. Also, the rotational term is zero (Ω = 0). Thus, the effective Lagrangian for the

non-rotating supersolid is

Leff = −~ρ
∂ϕ

∂t
− ~2

2m

[
ρ(∇ϕ)2 − (ρδik − ρss

ik)
(
∇ϕ− m

~
Duss

Dt

)
i

(
∇ϕ− m

~
Duss

Dt

)
k

]
−E(ρ) − 1

2
λs

iklmϵ
s
ikϵ

s
lm (4.128)

This agrees with the results obtained in [69, 194] for the effective Lagrangian for the

supersolid phase.

(b) Rotating superfluid
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From equation (4.126), we can recover the Lagrangian for rotating superfluid by switch-

ing off the supersolid crystalline component in the equation. The contribution of elastic

energy due to the supersolid lattice is zero, and only the elastic energy of vortex lattice

is taken into account. Also, the third term in equation (4.126) is zero for rotating su-

perfluid case since it gives the product of mass density of the supersolid crystal lattice

multiplied by difference in the superfluid velocity and the crystal lattice velocity. This

is because no crystal lattice is present in the system which implies ρ = ρss
ik thus making

(ρδik − ρss
ik) = 0 in the third term of equation (4.126). In addition to this the crystal

lattice velocity given by Du/Dt also vanishes for same reason. Thus, the Lagrangian for

the limiting case of rotating superfluid is

Leff = −~ρ
∂ϕ

∂t
− ~2

2m
ρ(∇ϕ)2 − E(ρ) − 1

2
λv

iklmϵ
v
ikϵ

v
lm +mρvs · (Ω × r) (4.129)

where ρ is the smoothened density [183] of the rotating superfluid system and E(ρ) is

the internal energy of the rotating fluid depending on the chemical potential as shown

in equation (4.43)

E(ρ) = µρ =
~2

2m
(∇ρ)2

4ρ
+
g

2
ρ2 (4.130)

It is to note that ρ is not identified with n here, which is the density of the superfluid

defined from the mean field order parameter. ρ is the average density and related to n

by the relation (4.83). It differs from the supersolid case as there is no superfluid density

tensor, hence ρ = ρss
ik , removing all the supersoild crystal lattice terms. Else it can be

derived using the homogenization technique in the same manner.

After verification of the existing cases, we derive the hydrodynamic equations of motion

for the rotating supersolid system.

4.4 Hydrodynamic equations of motion for rotating super-

solid

The dynamical equations are derived by variation of action S taken as a functional of

ρ, ϕ, uss and uv. This yields a set of coupled of partial differential equations for those

fields. The action to be extremised is S =
∫
Leffdt, gives the condition

δ

∫
Ldt = 0

where, Leff = Leff (ρ, ϕ,∇uss,∇uv), which implies

∂Leff

∂ρ
dρ+

∂Leff

∂ϕ
dϕ+

∂Leff

∂(∇uss)
d(∇uss) +

∂Leff

∂(∇uv)
d(∇uv) = 0 (4.131)
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The above Lagrangian can also be written as

Leff =
∫
dr
[
−~ρ

∂ϕ

∂t
− E

]
where

E = Ein(ρ) + Eph(ϕ) + Ess
el (∇uss) + Ev

el(∇uv) (4.132)

with

Ein(ρ) =
~2

2m
(∇ρ)2

4ρ
+ ρ

∫
U(|r − r′|)ρ(r′)dr′ = µρ

Eph(ϕ) =
~2

2m

[
ρ(∇ϕ)2 − (ρδik − ρss

ik)
(
∇ϕ− m

~
Duss

Dt

)
i

(
∇ϕ− m

~
Duss

Dt

)
k

]
+mρvs · (Ω × r)

Ess
el (∇uss) =

1
2
λs

iklmϵ
s
ikϵ

s
lm

Ev
el(∇uv) =

1
2
λv

iklmϵ
v
ikϵ

v
lm (4.133)

The elastic energy density has a general form [188] given by

Eel =
1
2
λiklmϵikϵlm (4.134)

The equation (4.134) is the general form of the free energy of the deformed crystal. Here

ϵik is the strain tensor, given by

ϵik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
(4.135)

and λiklm is a tensor of rank four which relates the strains to the stresses and called

as the elastic modulus tensor. The elastic modulus tensor and its symmetry properties

have already been explained in detail in section 4.1.3.

From extremisation condition, we get the following equations of motion for the density

and phase of the rotating supersolid system, in the rotating reference frame along with

the equations of elastic response of the system due to the supersolid lattice and the

vortex lattice. The equations of motion for the density and phase are given as

∂ρ

∂t
+ ∇ ·

(
ρ

~
m
∇ϕ
)

+
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]
= 0(4.136)

and,

m

(
∂vs

∂t
+ 2Ω × vs

)
= −∇P ′

ρ
(4.137)
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Here, ρss
ik is the superfluid density tensor which assumes the form ρss

ik = ρssδik for

isotropic symmetry of the system and,

P ′ = ρ

(
T +

∫
U(|r − r′|)ρ(r′)dr′

)
(4.138)

In the equation (4.137), we have kept only the linearized terms and the nonlinear terms

with higher orders of derivatives have been dropped. The neglected terms in equation

(4.137) are given below.

∂

∂ρ
(ρ− ρss)

(
∇ϕ− m

~
Duss

Dt

)2

=
(

(ρ2 − 1)δρ
ρ

−∇ · uss

)(
∇ϕ− m

~
Duss

Dt

)2

=
(

(ρ2 − 1)δρ
ρ

−∇ · uss

)
((∇ϕ)2 +

(m
~

)2
(
Duss

Dt

)2

−2
m

~
∇ϕ · Duss

Dt
)

These terms contain the product of the derivatives of different terms, for example,
(ρ2−1)δρ

ρ (∇ϕ)2 , ∇ · uss
(

m
~
)2 (Duss

Dt

)2, and hence are neglected and not taken into ac-

count. As pointed out earlier, when averaged over a vortex lattice cell, equation (4.137)

can be written as

m

(
∂vs

∂t
+ ω̃ × vL

)
= −∇P ′

ρ
(4.139)

with vs as the averaged velocity and ω̃ = 2Ω + ∇ × vs as the averaged vorticity. The

velocity of the vortex is given by vL and it is equal to time derivative of the displacement

vector of the vortex lattice u̇v.

As already mentioned, the continuity equation (4.136) represents the law of conservation

of mass and the Euler equation (4.139) is momentum conservation equation, balancing

the various force terms arising due to rotation, the Coriolis and the Centrifugal force. As

already mentioned in section 4.1.2, for the case of rotating superfluid with an embedded

vortex lattice, the small deformations due to displacement of the vortex lattice are taken

into account using the classical theory of elasticity. The force f acting per unit volume

of the fluid moving with velocity vs is

fv
el = −ρω̃ × (vL − vs) (4.140)

and it should be connected with a variation of energy due to vortex displacements. Thus,

fv
el,i = −

δEv
el

δuv
i

= − ∂

∂xk

(
δEv

el

δ(∂uv
k/∂xi)

)
= −[(λv + µv

s)∇(∇ · uv) + µv
s∇2uv] (4.141)
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Here the general expression for elastic energy density equation (4.134) is used and when

the lattice is isotropic (section 4.1.3) i.e it has the same properties in all directions.

Hence using equations (4.140) and (4.141) we get

ρ2Ω[ẑ × (vL − vs)] =
(λv + µv

s)∇(∇ · uv) + µv
s∇2uv

m
(4.142)

where λv = Kv− 2
3µ

v
s is the Lamé coefficient [188], and Kv and µv

s are the compressibility

and shear modulus of the vortex lattice. Equation (4.142) is the equation of motion of

the system due to the elastic response of the vortex lattice.

Next we determine the equation of motion due to the elastic response of the supersolid

crystal lattice by considering the 3rd term in equation (4.131) and is thus given by

m
∂

∂t

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)]
+ ~

∂

∂xk

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)
∂kϕ

]
+

∂

∂xk
(λs

iklmϵ
s
lm) = 0 (4.143)

Here also when the lattice is assumed to be isotropic then above equation (4.143) can

be written as

m
∂

∂t

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)]
+ ~

∂

∂xk

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)
∂kϕ

]
+ (λss + µss

s )∂iku
ss
k + µss

s ∇2uss
i = 0

(4.144)

where λss = Kss − 2
3µ

ss
s is the second Lame coefficient [188], and Kss and µss

s are the

compressibility and shear modulus of the solid [188].

Thus, equations (4.136), (4.139), (4.142) and (4.144) are the equations of motion for a

rotating supersolid with elastic properties of both vortex lattice and supersolid crystal

lattice taken into account [110].

∂ρ

∂t
+ ∇ ·

(
ρ

~
m
∇ϕ
)

+
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]
= 0(4.145)

m

(
∂vs

∂t
+ 2Ω × vL

)
= −∇P ′

ρ
(4.146)

ρ2Ω[ẑ × (vL − vs)] =
(λv + µv

s)∇(∇ · uv) + µv
s∇2uv

m
(4.147)
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m
∂

∂t

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)]
+ ~

∂

∂xk

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)
∂kϕ

]
− (λss + µss

s )∂iku
ss
k + µss

s ∇2uss
i = 0

(4.148)

These set of four equations form the hydrodynamic equations of motion for a rotating

supersolid system [110]. For consistency, we write all the equations in tensorial notation

as given below

∂ρ

∂t
+ ρ

~
m
∇2ϕ+

∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]
= 0 (4.149)

m

(
∂vi

s

∂t
+ 2ϵijkΩjvk

L

)
= −∂iP

′

ρ
(4.150)

2ρϵijkΩj(vL − vs)k =
(λv + µv

s)∂
2
iku

v
k + µv

s∇2uv
i

m
(4.151)

m
∂

∂t

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)]
+ ~

∂

∂xk

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)
∂kϕ

]
− (λss + µss

s )∂2
iku

ss
k + µss

s ∇2uss
i = 0

(4.152)

where ϵijk is the Levi Civita symbol.

In the next section, we investigate the small perturbations around a non-deformed steady

state of system to characterize the dynamics of the system [110].

4.5 Dispersion calculations

Using the set of hydrodynamic equations obtained in previous section, we investigate

the small perturbations around a non-deformed (uss = 0, uv = 0) state of average

density ρ̄ to characterize the dynamics of the rotating supersolid system. So, we write

the linearized version of the four equations derived in previous section in terms of small

perturbations for δρ, δϕ, ∇ · uss = δJss and uv.

Here, δJss = ∇ · uss is the elastic compressibilty of the supersolid lattice.
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Since an ordinary compression in a solid changes the number density of particle, because

of the small deformation itself we take

ρ = ρ̄+ ρ̄∇ · uss + δρ (4.153)

Here, ρ is the total average density which is related to the superfluid density n by equa-

tion (4.83). The above equation (4.153) implies the oscillations around the equilibrium

state ρ̄. ρ̄ is the average density of the non-deformed state over which small pertur-

bations are taken into account. Here the perturbation around the uniform state ρ̄ is

unusual because it takes into account two types of density variations : one is the usual

change in the density of solids which is because of strain in the solid ∇ · uss and the

second change comes from the long range superfluid behavior δρ. Due to negligible vor-

tex effective mass, there is no such term due to the compression effects of vortex lattice

in the expansion for average density ρ in equation (4.153). This first hydrodynamic

equation is given by

∂ρ

∂t
+ ∇ ·

(
ρ

~
m
∇ϕ
)

+
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]
= 0

(4.154)

Linearization around the steady state solution ρ = ρ̄, gives

∂ρ

∂t

∣∣∣∣
ρ=ρ̄

+
∂

∂ρ

(
∂ρ

∂t

) ∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄) + ∇ · (ρvs)
∣∣∣∣
ρ=ρ̄

+
∂

∂ρ
[∇ · (ρvs)]

∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄)

+
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)] ∣∣∣∣
ρ=ρ̄

+
∂

∂ρ

[
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]] ∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄) = 0 (4.155)

The steady state solution (4.136), sets the combination 1st, 3rd and 5th terms in above

equation to zero leaving us with,

∂

∂t
(ρ̄∇ · uss + δρ) +

∂

∂ρ
[∇ · (ρvs)]

∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

+
∂

∂ρ

[
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]] ∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄) = 0

(4.156)
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Starting from equation (4.156), further derivation is provided below

∂

∂t
(ρ̄∇ · uss + δρ) +

∂

∂ρ
[∇ · (ρvs)]

∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

+
∂

∂ρ

[
∂

∂xk

[
(ρ− ρss)(δik − ∂ku

ss
i )
(
u̇ss

i − ~
m
∂iϕ

)]] ∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄) = 0

⇒ ∂

∂t
(ρ̄∇ · uss) +

∂

∂t
δρ+ h.o.t

+
∂

∂ρ

[
∂

∂xk
[(ρ− ρss)(δik − ∂ku

ss
i ) (u̇ss

i − (vs)i)]
] ∣∣∣∣

ρ=ρ̄

· (ρ̄∇ · uss + δρ) = 0

⇒ ∂

∂t
δρ+

∂

∂ρ

[
∂

∂xk
[(ρ− ρss) (u̇ss

k − (vs)k − ∂ku
ss
i (u̇ss

i − (vs)i))]
] ∣∣∣∣

ρ=ρ̄

· (ρ̄∇ · uss + δρ) = 0

⇒ ∂

∂t
δρ+

∂

∂ρ

{
(ρss − ρ)

(
∇ · vs −

∂

∂t
δJss

)} ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ) + h.o.t = 0 (4.157)

We now focus on the last term seperately as shown below

∂

∂ρ

{
(ρss − ρ)

(
∇ · vs −

∂

∂t
δJss

)} ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

=
∂

∂ρ

{
ρss

(
∇ · vs −

∂

∂t
δJss

)} ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

− ∂

∂ρ

{
ρ

(
∇ · vs −

∂

∂t
δJss

)} ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

=
(
∇ · vs −

∂

∂t
δJss

)
∂ρss

∂ρ
· (ρ̄∇ · uss + δρ)

+ρss
∂

∂ρ

(
∇ · vs −

∂

∂t
δJss

) ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

−∂ρ
∂ρ

∣∣∣∣
ρ=ρ̄

(
∇ · vs −

∂

∂t
δJss

)
· (ρ̄∇ · uss + δρ)

−ρ̄ ∂
∂ρ

(
∇ · vs −

∂

∂t
δJss

) ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ)

=
(
∇ · vs −

∂

∂t
δJss

)
∂

∂ρ
[ρss · (ρ̄∇ · uss + δρ)] − ρss

∂

∂ρ
(ρ̄∇ · uss + δρ)

+zero − h.o.t− zero

=
(
∇ · vs −

∂

∂t
δJss

)
ρss · 1 (4.158)

So from equation (4.157) and (4.158) we get

∂δρ

∂t
+ ρss

(
∇ · vs −

∂

∂t
δJss

)
= 0 (4.159)

Here, we have ignored the higher order terms. This gives us the first linearized hydro-

dynamic equation.
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We next linearize the second hydrodynamic equation which is given by

m

(
∂vs

∂t
+ 2Ω × vL

)
= −∇P ′

ρ
(4.160)

Now, it is known that the change in pressure is related to density change by

∇P ′ = mc2s∇ρ (4.161)

Thus, the equation (4.160) can be written as

ρ

(
∂vs

∂t
+ 2Ω × vL

)
= −c2s∇ρ

Linearizing,

ρ

(
∂vs

∂t
+ 2Ω × vL

) ∣∣∣∣
ρ=ρ̄

+
∂

∂ρ

{
ρ

(
∂vs

∂t
+ 2Ω × vL

)} ∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄)

= −c2s∇ρ
∣∣∣∣
ρ=ρ̄

− ∂

∂ρ
(c2s∇ρ)

∣∣∣∣
ρ=ρ̄

· (ρ− ρ̄) (4.162)

which implies

ρ̄

(
∂vs

∂t
+ 2Ω × vL

)
= −c2s∇δρ (4.163)

and can be written as

ρss

(
∂vs

∂t
+ 2Ω × vL

)
= −c2sm∇δρ (4.164)

where

c2sm = c2s(ρ
ss/ρ̄) (4.165)

is the modified sound wave velocity. Thus, equation (4.164) is the linearized second

hydrodynamic. The third hydrodynamic equation of motion in linearized form is very

straightforward to obtain and is given below

ρ̄2Ω[ẑ × (vL − vs)] =
(λv + µv

s)∇(∇ · uv) + µv
s∇2uv

m
(4.166)

Now the fourth hydrodynamic equation of motion

m(ρ̄− ρss)
∂

∂t

(
∂

∂t
δJss −

~
m
∇2δϕ

)
− (λss + 2µss

s )∇2δJss = 0 (4.167)

Equation (4.167) has been obtained after taking divergence of the equation for the

elastic response of the supersolid lattice and linearized in terms of small perturbations
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in the elastic compressibility δJss [110] . This is done as follows, starting from the 4th

hydrodynamic equation

m
∂

∂t

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)]
+ ~

∂

∂xk

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)
∂kϕ

]
−
[
(λss + µss

s )∂iku
ss
k + µss

s ∇2uss
i

]
= 0 (4.168)

Take divergence,

m
∂

∂t

[
(ρ− ρss)

(
∂

∂t
δJss −∇ · vs

)]
+ ~∇2

[
(ρ− ρss)

(
u̇ss

i − ~
m
∂iϕ

)
∂kϕ

]
−
[
(λss + µss

s )∇2δJss + µss
s ∇2δJss

]
= 0 (4.169)

which implies

m
∂

∂t

[
(ρ− ρss)

(
∂

∂t
δJss −∇ · vs

)]
− (λss + 2µss

s )∇2δJss = 0

Here we have ignored the second term which is of higher order in equation (4.169). Now

we move ahead to linearize above equation

m
∂

∂t

[
(ρ− ρss)

(
∂

∂t
δJss −∇ · vs

)] ∣∣∣∣
ρ=ρ̄

+
∂

∂ρ

{
m
∂

∂t

[
(ρ− ρss)

(
∂

∂t
δJss −∇ · vs

)]} ∣∣∣∣
ρ=ρ̄

· (ρ̄∇ · uss + δρ) − (λss + 2µss
s )∇2δJss = 0

(4.170)

implying the following equation,

m
∂

∂t

[
(ρ̄− ρss)

(
∂

∂t
δJss −∇ · vs

)]
− (λss + 2µss

s )∇2δJss = 0 (4.171)

We ignored the second term in above equation being of higher order and hence not taken

into account in the linearization process. It is to note that we ignore the effect of an

overall trap potential, which gets cancelled due to the centrifugal force at high rotation

frequency.

The set of linearized hydrodynamic equations for rotating supersolid is given below

∂δρ

∂t
+ ρss ~

m
∇2δϕ+ (ρ̄− ρss)

∂

∂t
δJss = 0 (4.172)

ρss

(
∂vs

∂t
+ 2Ω × vL

)
= −c2sm∇δρ (4.173)
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ρ̄2Ω[ẑ × (vL − vs)] =
(λv + µv

s)∇(∇ · uv) + µv
s∇2uv

m
(4.174)

m(ρ̄− ρss)
∂

∂t

(
∂

∂t
δJss − ~

m
∇2δϕ

)
− (λss + 2µss

s )∇2δJss = 0 (4.175)

Also, in equation (4.173) csm is the modified sound velocity which is related to usual

sound velocity and as shown in equation (4.165) given by

c2sm = c2s(ρ
ss/ρ̄) (4.176)

The superfluid sound velocity cs connects the deviations of the pressure and density by

δP ′ = mc2sδρ (4.177)

where P ′ is given by expression (4.138).

As mentioned earlier, we ignore the effect of an overall trap potential which gets cancelled

due to the centrifugal force at high rotation frequency. Thus to calculate the dispersion

relation and the sound modes for the rotating supersolid system. we can write the

solutions in terms of plane waves, as given below

δρ = δρ(q)exp(iq · r − iωt)

vs = vs(q)exp(iq · r − iωt)

δJss = δJss(q)exp(iq · r − iωt)

Here, r is the two dimensional position vector, in the xy plane normal to the rotation

axis. Two components of velocity vs are introduced as follows: the component vsq along

the wave vector q and the component vst along the axis normal to both q and the

rotation axis.

We begin by transforming the continuity equation (4.172) and the Euler equation (4.173)

in fourier space. This is done as follows.

− iωδρ+ iρssq · vs − iω(ρ̄− ρss)δJss = 0 (4.178)

− iωvs + 2Ω × vL +
c2sm
ρss

iqδρ = 0 (4.179)

From equation (4.178), we write

δρ =
ρssqvsq − ω(ρ̄− ρss)δJss

ω
(4.180)
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Eliminating δρ from equations for vq and vt given by equation (4.179) yields two equa-

tions,

ivsq + 2Ω
ω

(ω2 − c2smq
2)
vLt −

iωc2smq(1 − ρ̄/ρss)
(ω2 − c2smq

2)
δJss = 0 (4.181)

− iωvst + 2ΩvLq = 0 (4.182)

Now, for further simplification we write the q and t components of equation (4.174),

iω(vLt − vst) =
(λv + 2µv

s)q
2

2Ωmρ̄
vLq (4.183)

− iω(vLq − vsq) =
µv

sq
2

2Ωmρ̄
vLt (4.184)

From equations (4.181) and (4.182),

vst = −i2Ω
ω
vLq (4.185)

vsq = i
2Ωω

(ω2 − c2smq
2)
vLt +

c2smqω(1 − ρ̄/ρss)
(ω2 − c2smq

2)
δJss (4.186)

Substituting values from equations (4.185) and (4.186) into equations (4.183)-(4.184),

we get the following equations for determining the dispersion relation :

iωvLt − vLq

(
c2vlq

2

2Ω
+ 2Ω

)
= 0 (4.187)

iωvLq + vLt

[
c2vsq

2

2Ω
+ 2Ω

ω2

(ω2 − c2smq
2)

]
− i

c2smqω
2(1 − ρ̄/ρss)

(ω2 − c2smq
2)

δJss = 0 (4.188)

[
mω2(ρ̄− ρss)

ω2 − c2sq
2

ω2 − c2smq
2
− q2(λss + 2µss

s )
]
δJss + im(ρ̄− ρss)2Ω

ω2

ω2 − c2smq
2
qvLt = 0

(4.189)

where we have labelled the longitudinal and shear parts of vortex lattice velocities by

c2vl =
λv + 2µv

s

mρ̄
; c2vs =

µv
s

mρ̄

We write these equations in matrix form as below :
iω −

(
c2vlq

2

2Ω + 2Ω
)

0[
c2vsq2

2Ω + 2Ω ω2

(ω2−c2smq2)

]
iω −i (c

2
sm−c2s)qω2

(ω2−c2smq2)

2imΩω2(ρ̄−ρss)
ω2−c2smq2 q 0

[
mω2(ρ̄− ρss) ω2−c2sq2

ω2−c2smq2 − q2(λss + 2µss
s )
]


vLt

vLq

δJss

 = 0

(4.190)

Before solving these set of coupled equations to determine the various modes for this

system, we determine the decoupled shear waves for the rotating supersolid system. It is
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obtained by taking curl of equation (4.148) after expanding in terms of small fluctuations,

as below

∇×
(
m(ρ̄− ρss)

∂

∂t

(
∂uss

∂t
− ~
m
∇δϕ

)
− (λss + 2µss

s )∇(∇ · uss) − µss
s ∇2uss

)
= 0

(4.191)

⇒ m(ρ̄− ρss)
∂

∂t

(
∂

∂t
(∇× uss) − 0

)
− 0 − µs∇2(∇× uss) = 0 (4.192)

which gives

m(ρ̄− ρss)
∂2

∂t2
ϖ − µss

s ∇2ϖ = 0 (4.193)

where

ϖ = ∇× uss (4.194)

This equation (4.193) gives the shear mode velocity which depends on the supersolid

density, namely

vss
shear =

√
µss

s

m(ρ̄− ρss)
(4.195)

We note that the shear mode for the supersolid is obtained by taking curl of the equation

(4.148) for elastic response of the supersolid lattice, and the divergence of the same

equation is used to calculate the longitudinal modes of the supersolid lattice. Solving

this linear system of equations (4.187-4.189) provides the following algebraic equation

for the dispersion equation given by

ω6 − ω4(c2kmq
2 + c2sq

2 + (b1q2 + 2Ω)(b2q2 + 2Ω))

+ ω2[(c2smq
2 + (b1q2 + 2Ω)(b2q2 + 2Ω))c2kmq

2 + (b1q2 + 2Ω)(b2q2)(c2sq
2)]

− (b1q2 + 2Ω)(b2q2)(c2smq
2)(c2kmq

2) = 0

(4.196)

where

b1 =
c2vl

2Ω
=

1
2Ω

[
λv + 2µv

s

mρ̄

]
(4.197)

b2 =
c2vs

2Ω
=

1
2Ω

[
µv

s

mρ̄

]
(4.198)

ckm =

√
λss + 2µss

s

m(ρ̄− ρss)
(4.199)

is a quantity that can be written in terms of usual sound speed ck as

ckm ≈ ck

(
1 +

ρss

ρ̄

)
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To confirm the validity of our formalism, in the next section, we check the various

existing limits from our obtained dispersion equation (4.196) for rotating supersolid.

4.5.1 Checking with various existing limits: Non rotating Supersolid,

Rotating superfluid and Non-rotating superfluid

a) Non-rotating Supersolid

We start to cross check the case for a two dimensional non-rotating supersolid. Disper-

sion relation of a non-rotating supersolid is obtained by setting the condition that for

Ω = 0, there is no vortex lattice. Hence equation (4.196) reduces to

ω4 − ω2(c2kmq
2 + c2sq

2) + (c2smq
2)(c2kmq

2) = 0 (4.200)

Solution of above equation gives us the following dispersion modes

ω2 =
1
2
(c2km + c2s)q

2

[
1 ±

(
1 −

4c2smc
2
km

(c2km + c2s)2

)1/2
]

(4.201)

The roots obtained in equation (4.201) confirms with the modes for a non-rotating

supersolid as calculated in [69, 194].

It can be easily seen that the dispersion is linear, ω = vq, where v gives the speed of the

sound modes which in the limit of small superfluid fraction ρss → 0 are given by

vss
1 =

√
c2s + c2k (4.202)

vss
2 =

√
c2kc

2
s

c2k + c2s

√
ρss

ρ̄− ρss
(4.203)

In addition, a decoupled shear mode is also obtained as in equation (4.195) and is given

by

vss
shear =

√
µss

s

m(ρ̄− ρss)
(4.204)

This also comply with the results for dispersion modes for non rotating supersolid ob-

tained in [69, 194]. We show the plots of these dispersion modes in Fig. 4.5. The

analytical results [110] which show the appearance of two distinct longitudinal modes

for a supersolid, are also verified by Saccani et. al [198]. The calculations in [198] are

carried out using Quantum Monte Carlo technique and the excitation spectrum of the

supersolid phase is obtained. The calculations showed that the spectral weight gets par-

titioned in two distinct branches. The higher energy mode is the longitudinal acoustic

phonon mode, with a linear dispersion at small q and the lower branch of the supersolid
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Figure 4.5: Dispersion roots for non-rotating supersolid, ω as a function of wave
vector q. It is to note that the parameters for the the elastic wave ck velocity, super-
fluid velocity cs are taken from quantum monte carlo calculations done in [198] with

superfluid fraction fss = 0.3.

spectrum appears due to the presence of a superfluid fraction co-existing along with the

crystal lattice and the dispersion is again linear at small wave vectors.

Similar results are obtained using the hydrodynamic formalism which is valid in the

long wavelength or small wave vectors limit. The equations (4.202) and (4.203) are the

corresponding two distinct branches or modes as obtained in [198] and shown in Fig.

refnrss. However, using the hydrodynamic approach, we also get additional shear mode

which is transverse in nature. This mode is not reported in [198] as the calculations are

performed only for the longitudinal modes and not the transverse modes for the system.

The agreement of the distinct branches for the supersolid in small wave vector limit with

the exact Quantum Monte Carlo results, proves the reliability of hydrodynamic theory

in long wavelength limit and thus, one expects to see distinct behavior of the supersolid

phase compared to superfluid within this theory.

b) Rotating Superfluid

Here we provide the results for the limiting case of a superfluid which is rotating at an

angular frequency Ω. To verify this limit of rotating superfluids using the dispersion

equation (4.196) for rotating supersolids, we proceed as below.
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Since we have only the superfluid component present now with no co-existing lattice

or crystal component, the entire contribution to the density is due to the superfluid.

Hence, we have to substitute

ρ̄ = ρss (4.205)

since there is no crystalline order present. Under these circumstances the following

things happen. First the modified elastic wave speed due to presence of the normal

component drops out the description. Secondly the modified second sound velocity

c2sm = c2s
ρss

ρ̄

becomes the second side velocity csm = cs.

To see how this limit correctly reproduces the result for a rotating superfluid, we separate

out in the equation the terms that depend on c2km by writing it as

[ω6 − ω4(4Ω2 + (c2vl + c2vs)q
2 + c2sq

2) + ω2c2vsq
2c2sq

2]

= c2kmq
2[ω4 − ω2(4Ω2 + c2smq

2 + (c2vl + c2vs)q
2) + c2vsq

2c2smq
2]

We now multiply both side of the equation by ρ̄ − ρss and take the limit ρss → ρ̄ We

also set csm = cs. This yields ( since the left hand side becomes 0).

ω4 − ω2(4Ω2 + c2sq
2 + (c2vl + c2vs)q

2) + c2vsq
2c2sq

2 = 0 (4.206)

It is known that for rotating superfluids, the lattice of vortices arrange themselves in

the form of triangular lattice with hexagonal symmetry [34, 185]. The constants b1 and

b2 are thus written in terms of constants C1 and C2 of hexagonal isotropic lattice as

b1 =
1

2Ω
4C1 + 2C2

mρ̄
; b2 =

1
2Ω

2C2

mρ̄
(4.207)

Substituting relations (4.207) in above equation (4.206) we get

ω4 − ω2

[
c2sq

2 + 4Ω2 +
4(C1 + C2)

mρ̄

]
+

2c2sC2

mρ̄
q4 = 0 (4.208)

For the general case, the shear mode is very small compared to the other modes of the

rotating superfluid, hence

2c2sC2

mρ̄
q4 <<

[
c2sq

2 + 4Ω2 +
4(C1 + C2)

mρ̄

]2

(4.209)
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the mode frequencies are given by

ω2
I =

[
c2sq

2 + 4Ω2 +
4(C1 + C2)

mρ̄

]
(4.210)

and,

ω2
T =

2C2

mρ̄

c2sq
4[

c2sq
2 + 4Ω2 + 4(C1+C2)

mρ̄

] (4.211)

The explanation of the roots obtained and the experimental observation of the modes
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Figure 4.6: Dispersion roots for a rotating superfluid, ω in units of Ω as a function
of wave vector q in units of Ω/cs

for a rotating superfluid has already been done in detail in section 4.1.4. Fig. 4.1 shows

the plot of the dispersion roots for rotating superfluid system.

Thus, we show that the dispersion equation for rotating supersolid (4.196) reproduces

the known results for rotating superfluid [104, 182–184] in the correct limit.

c) Non-rotating Superfluid

Last we consider the limit when we have the case of non-rotating superfluid, for which

the parameters reduces as

Ω = 0; ρ̄ = ρss
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Substituting the values in equation (4.196), we recover the following mode relation for

non-rotating superfluid

ω2 = c2sq
2

where cs is the usual Bogoliubov sound speed for the superfluid, also termed as second

sound. We point out that the density ρ in non-rotating superfluid case is the usual

density of the superfluid whereas for rotating superfluid with a vortex lattice, it is the

smoothened density [182] averaged over the entire lattice cell.

Hence, we have verified the obtained dispersion relation with the case of a) non-rotating

supersolid, b) rotating superfluid, c) non-rotating superfluid. In the next section, we

calculate the sound modes for rotating supersolid by solving the third order equation

(4.196)

4.6 Roots of the Dispersion Relation for Rotating Super-

solid

In this section, we determine the roots of the dispersion equation (4.196) for a rotating

supersolid. In the low energy long wavelength limit the frequency of the modes is given

by solution of the following equation

ω6 − ω4(4Ω2 + c2kmq
2 + c2sq

2 + (c2vl + c2vs)q
2)

+ ω2[(4Ω2 + c2smq
2 + (c2vl + c2vs)q

2)c2kmq
2 + (c2vsq

2)(c2sq
2)] − (c2vsq

2)(c2smq
2)(c2kmq

2) = 0

(4.212)

Even though the general nature of solutions of such cubic ( in terms of ω2) equations

are quite involved, the above dispersion relation gets simplified when the velocity asso-

ciated with the shear mode of the vortex lattice is smaller compared to the other mode

velocities. This criteria is generally met for the rotating ultra cold atomic superfluid

[182, 183] and therefore it is reasonable to assume a similar condition for ultra cold

atomic supersolid as well. Such a condition reads as

(c2vsq
2)(c2smq

2) <<
(

4Ω2 + c2smq
2 + (c2vl + c2vs)q

2 + c2vsq
2 c2s
c2km

)2

(4.213)

which is generally the case for long wavelengths in both the incompressible and quantum

Hall limits [199]. This approximation is valid since the shear mode of the vortex lattice

with velocity given by cvs is too small compared to the other velocities in the system.
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Using approximation (4.213) in (4.212) reduces it to a quadratic equation in ω2 which

effectively implies that one of the roots of above equation is very small and can be

neglected to zero. The equation reduces to

ω4 − ω2(4Ω2 + c2kmq
2 + c2sq

2 + (c2vl + c2vs)q
2)

+ [(4Ω2 + c2smq
2 + (c2vl + c2vs)q

2)c2kmq
2 + (c2vsq

2)(c2sq
2)] = 0 (4.214)

Under the condition of very high rotation frequencies and low q

[(4Ω2 +c2smq
2 +(c2vl +c

2
vs)q

2)c2kmq
2 +(c2vsq

2)(c2sq
2)] < (4Ω2 +c2kmq

2 +c2sq
2 +(c2vl +c

2
vs)q

2)2

(4.215)

Consequently the two mode frequencies are

ω2
1 ≃ 4Ω2 + c2kmq

2 + c2sq
2 + (c2vl + c2vs)q

2 (4.216)

and,

ω2
2 ≃

[(4Ω2 + c2smq
2 + (c2vl + c2vs)q

2)c2kmq
2 + (c2vsq

2)(c2sq
2)]

(4Ω2 + c2kmq
2 + c2sq

2 + (c2vl + c2vs)q2)
(4.217)

In addition to this, as obtained in equation (4.195) there exists a supersolid shear mode

which is decoupled from other modes and is given by

ω2
3 =

µss
s

m(ρ̄− ρss)
q2 (4.218)

Within the approximation (4.215), the first mode (4.216) is the inertial mode of the

rotating supersolid. For Ω2 << c2kmq
2 it is a sound wave while for Ω2 >> c2kmq

2 the

mode frequency begins essentially at 2Ω.

The second mode (4.217) is the coupled mode where all the three velocities, the super-

solid lattice velocity, the superfluid velocity and the vortex lattice velocity gets coupled.

The last mode (4.218) is the decoupled shear mode of the supersolid lattice which de-

pends on the supersolid density [110]. Thus , the dispersion equation provides us the bulk

excitation spectrum of the rotating supersolid within this hydrodynamic approximation.

All three modes have been plotted in the figure (4.7), where the wave vector is scaled in

units of 2Ω/ckm and the mode frequencies are scaled in units of 2Ω.

To understand the significance of the mode frequencies, we can rewrite the first collective

mode frequency (4.216) ω2
1 = ω2

vl + ω2
ss where where ω2

vl = [4Ω2 + (c2vl + c2vs)q
2], ω2

ss =

(c2kmq
2 + c2sq

2). This is a symmetric combination of the modes corresponding to the

vortex lattice and the supersolid lattice. In the limit of first rotation and small wave
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Figure 4.7: Dispersion roots for rotating supersolid. Inertial(ω1), coupled mode(ω2)
and shear mode (ω3) frequencies as a function of wave vector q. The wave vector is
in units of Ω/csm and the mode frequencies are in units of Ω. The value of vortex
lattice velocity cvl and cvs have been taken from [182] and the elastic wave ck velocity,
superfluid velocity cs are taken from quantum monte carlo calculations done in [198]

with superfluid fraction fss = 0.3.

vector, the second mode (4.217) can be approximately written as

ω2
2 ≈ ω2

ss

ω2
vl

(
ω2

vl − ω2
ss + c2smq

2 + c2vsq
2 c2s
c2km

)
(4.219)

To understand this mode, we set the simplifying assumtion ωvl = ωss, and also takes

c2smq
2 ≪ 4Ω2 and c2vsq

2(c2s/c
2
km) ≪ 4Ω2 due to fast rotation and small q. This yields

ω2
2 = ω2

vl − ω2
ss

Thus this mode represents the antisymmetric coupling between the vortex and the su-

persolid lattice. For a more realistic situation one can readily calculate the modification

of this mode frequency due to the difference between ωvl and ωss as well as finite csm.

Thus the normal modes frequencies ω1 and ω2 indicates symmetric and antisymmetric

combination of modes corresponding to vortex lattice and supersolid lattice and indi-

cates in and out of phase oscillation of two coupled harmonic lattices. Even though

hydrodynamic Lagrangian is derived retaining only the lowest order terms and there

is no direct coupling between supersolid lattice dispacement uss and the vortex lattice

dispalcement and the vortex lattice displacement uv, the symmetric and antisymmetric

modes indicates the in and out of phase oscillations of these lattices.
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We depict this in and out of phase oscillation of these two lattices with the help of a

schematic diagram in Fig. 4.8. The general nature of our results suggests its applicability

well beyond the hydrodynamic approximations and other simplifying assumptions made

and may shed light on supersolidity in other systems also

This is one of the main results of this chapter, where we can explicitly observe the

coupling between the two lattices in the dispersion and hence the sound modes of the

system [110]. It is thus possible to detect the co-existing superfluid and crystalline

behavior in the form of coupled sound modes for rotating supersolid system as compared

to the rotating superfluid system. We explain the possibilities to observe such coupled

modes in experiments in the next section.

Figure 4.8: Schematic diagram to show the symmetric (in phase) and antisymmetric
(out of phase) oscillations of the two coupled lattices. The direction of the arrows shows

the in-phase or out of phase oscillations of the lattices.

4.6.1 Possibility of experimental verification

As already explained in detail in section 4.1.5, the collective oscillations for the case

of rotating superfluids have been successfully observed experimentally [34]. Motivated

by this, one can a pply the same techniques used for rotating superfluids to perturb

the system slightly and hence induce a deformation in the co-existing supersolid and

vortex lattice for the case of rotating supersolids. The oscillations of these lattices can

be observed using the TOF expansion technique and the data for the frequency of the

oscillations can be extracted by fitting the lattice oscillations [34] as done for rotating

superfluids.
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In the limit of long wavelength low frequency limit, the rotating supersolid system shows

symmetric and anti-symmetric coupled modes of the two lattices and hence detection of

such coupled modes could be a convincing proof of the existence of two lattices in the

rotating supersolid system. The rotating supersolid system shows a normal mode split-

ting in the oscillation modes, which is a novel proof of the supersolidity, since it indicates

the existence of a supersolid lattice alongwith the vortex lattice in the superfluid. In

addition to these modes, there could be other complicated oscillation modes which may

be present in the system due to the interaction of the two lattices. This has not been

considered in the current thesis and will be a subject matter of research in future work.

4.7 Summary of the work done in this Chapter

To summarize, in this chapter we study the rotation of supersolids in continuum sys-

tems. Following the Gross-Pitaevskii theory for rotating superfluids, we developed the

hydrodynamic theory for rotating supersolid in such continuum systems [110]. We ob-

tain an effective Lagrangian for the system by Homogenization technique where the

vortex lattice co-exists with the supersolid lattice. We describe the lattice part of the

supersolid as the normal component within the well known two fluid component. The

resulting hydrodynamic equations of motion are obtained which enables us to calculate

the dispersion relations and hence collective oscillations for the system with embedded

vortex lattice and the supersolid lattice. We showed that the oscillation modes of the

rotating supersolid system carry signatures of superfluid, the supersolid lattice and the

vortex lattice in the system and are comparatively different from rotating superfluids.

It is also shown that the system exhibits coupled harmonic lattice oscillation modes cor-

responding to a normal mode splitting in the system [110]. This is the most important

result of this work. We also suggest the experimental ways by which such oscillations

can be induced and observed in the system. As mentioned earlier in this chapter, there

are quite a number of candidates to realise these specific type of long range interac-

tion potentials which stabilize the supersolid phase in BEC. A promising candidate are

the experiments with cavity mediated long-range interaction in ultra cold atomic BEC

which can possibly demonstrate the formation of supersolid phase and study the effect

of rotation on such system.

Experiments with rotating ultracold condensates with non-local long range interactions

opens new avenue to look into the physics of the interior of the neutron stars [200]. It

is established that the superfluids form vortices when they are rotated. In context of

neutron stars, astronomers believe that the superfluid in neutron stars contain giant

vortices or in other words, superfluid tornadoes. This is because the many neutron stars
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are pulsar stars, which emits radio waves, light regularly while spinning at extremely

high rotational speeds. It is observed that some times these pulsars start running very

fast or very slow, and the belief is that this is because of the decay and formation of

vortices in the rotating superfluid neutron star system.

Moreover, the hydrodynamic equations for neutron star systems [201] have similar struc-

ture as that of rotating superfluid and rotating supersolid systems. The neutron star

systems can have coexisting superfluid and elastic component [202] which provides an

additional dynamical degree of freedom to the system. The understanding of rotating

superfluid and rotating supersolid systems using hydrodynamic equations can find ap-

plications to study the behavior of analogous spinning neutron star systems, which is an

important field of study in astrophysics.



Chapter 5

Conclusions

5.1 Summary

In this thesis we have discussed the quantum simulation of the supersolid phase using

ultracold atomic condensates in the presence of artificial gauge potentials. For ultracold

BEC with certain type of long range interactions, our theory provides results for the

exotic supersolid phase in such gauge potentials, in both lattice and continuum systems.

The main proposition of this thesis is that behavior of the supersolid phase under such

artificial gauge fields could be a convincing proof of supersolidity whose occurrence is

otherwise debated in context of other systems such as solid 4He [51, 56–59, 67, 68]. We

particularly show how the signatures for solid like behavior coexisting with superfluidity

can be demonstrated in the presence of such gauge fields and is the major content of the

work done in this thesis.

We begin our study of supersolid phase in the context of ultracold atoms with general

long range interactions in the presence of optical lattice potentials. Depending on the

strength of long range interactions, it can lead to appearance of states with different

types of long range order like various types of Density Wave (DW) phases and supersolid

(SS) phases, in addition to the Mott Insulator (MI) and superfluid (SF) phase. In deep

optical lattice potential, under tight binding approximation, this system is described

by the extended Bose Hubbard model where the long range interactions splits up into

onsite, nearest neighbor interactions, next nearest neighbor interactions and so on. We

have studied the minimal extended Bose Hubbard model where the system shows DW

phase with n0 and n0 − 1 particles on alternating sites and the SS phase along with MI

and SF phase.

In chapter 2 we report the calculations for the effect of artificial gauge field on the DW-

SS and MI-SF transition boundaries. We perform the calculations analytically using

167
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the mean field Gutzwiller variational formalism in the framework of extended Bose

Hubbard model under the effect of such gauge fields. The minimization of the energy

functional very near to the transition boundaries, shows that both the DW-SS and MI-

SF phase boundaries extends with increasing values of the gauge fields. It shows that

in a supersolid phase, superfluid order parameter very near the transition boundaries

satisfies the spinorial Harper equation, and the such boundaries can be analytically

determined from the edge of the eigen value of the corresponding Hofstadter Butterfly

spectrum [105].

Further, the spatial vortex profile of the superfluid density in the supersolid phase shows

a checkerboard-like two sublattice modulation with the vortex like relative phase winding

of the superfluid order parameter defined on each of these sublattices. We analytically

determined such vortex profiles and demonstrated the co-existence of superfluid and

crystal order in the system near the transition boundary, which provides a distinct sig-

nature of supersolidity. We have shown structural difference in vortex in a supersolid

compared to vortex in a superfluid [105], can be used to identify the supersolid phase

in cold-atom experiments. In chapter 2, we also discussed the possible ways to experi-

mentally detect such vortices. One can use the Time of Flight (TOF) imaging technique

to get the sublattice modulation of the superfluid density in the form of extra peaks in

momentum distribution. Moreover, for getting the detailed vortex structure, one can

use the Bragg scattering technique, which is sensitive to the spatial phase distribution

of the initial state and the direction of rotation.

All the research results in chapter 2 have been published in Physical Review A 82,

063617 (2010) [105].

Chapter 3 of the thesis continues to explore properties of supersolid phase within the

strongly interacting regime, but with a more accurate and reliable technique, called as

the strong coupling perturbation theory. We use this approach to calculate the effect

of artificial gauge field on the transition boundaries of DW-SS and MI-SF phase and

also calculate the experimental signatures of the vortex structures in a supersolid phase.

Due to the involved nature of calculations, we divide this chapter into two parts and

study the effect of an artificial magnetic (gauge) field on the supersolid phase within

this strong coupling perturbation formalism.

In part 3A of the chapter, we calculate the modification of the DW-SS and MI-SF phase

boundaries as a function of increasing magnetic field using strong coupling perturba-

tion approach. As compared to the mean field theory, which is linear in t and has

limited accuracy in lower dimensions, the strong coupling perturbation theory which is

a many body perturbation expansion in terms of the scaled hopping parameter t/U ,

includes higher order corrections in t/U , and hence provides more accuracy and gives
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us a quantitative insight of the critical points. We found that the shapes of the insu-

lating lobes depend on the dimensionality of the system and, also on the application of

artificial gauge field. Mean-field theory always gives a concave shape to the MI and DW

lobes because the dimensionality only enters as a prefactor in the expressions, while the

strong-coupling expansion easily distinguishes the shape of insulating lobes in different

dimensions, both in the absence and presence of the artificial magnetic field. The de-

termination of DW-SS and MI-SF transition boundaries as a function of artificial gauge

field, using strong-coupling perturbation theory, is one of the important results of this

work [109].

To further go beyond the finite order strong coupling perturbation expansion, we also

carried out an extrapolation of phase boundaries using chemical potential exploration

technique based on the scaling hypothesis and compared with the results obtained from

mean field in chapter 2. The effect of increasing artificial gauge field again shows the

increasing stability of the insulating phase (i.e. the Density Wave and Mott Insulator

phases grow in size as the strength of the magnetic field is increased from zero to finite

values). This is again explained due to the localization effect of magnetic field on the

moving bosons, hence favoring the insulating phases to occupy a larger area in the phase

diagram [109].

Further, in the other part 3B of the chapter, we calculate the possible experimental

signatures for effect of gauge field on the supersolid phase, within the framework of

strong coupling perturbation theory. We calculated the momentum distribution profile

at the Density Wave - supersolid and Mott Insulator - superfluid phase boundary in

presence of artificial gauge field for both type of gauge potentials, the Landau gauge

and the symmetric gauge potential. The results for the momentum distribution shows

the dependence of this physically observable quantity on the type of artificial gauge

potential used to generate the artificial gauge field. We explain this apparent gauge

dependence of momentum distribution as a direct result of the realization of a specific

vector potential and not the field, in the typical experimental setups. The momentum

distribution profiles show the reduction in the Brillouin zone depending on the type of

gauge potential used. Another very important conclusion of these calculations is that

the momentum distribution profiles at the DW-SS phase boundary shows small extra

peaks in addition to the peaks observed at the MI-SF transition [109]. The extra peaks

in addition to peaks for rotating superfluid for symmetric gauge potential reflects that

the system possesses co-existing crystalline and superfluid behavior will help to identify

supersolidity experimentally.

In the presence of a symmetric gauge potential in optical lattice, the system will have

conserved quasi angular momentum. This quasi-angular momentum is analogous to the
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Bloch momentum for a rotationally invariant system in presence of lattice. Thus, we

re-evaluate the momentum distribution, but for a given fixed quasi-angular momentum

and found that the results at the DW-SS phase boundary can be distinguished from the

MI-SF phase boundary by noting the appearance of small extra peaks in the former.

The fact that a zero quasi-angular momentum state can be distinguished from a nonzero

one by looking at the corresponding momentum distribution allows the experimentalists

to verify that vorticity has entered the system through the TOF measurement.

All the research results in chapter 3 have been published in Physical Review A 85,

013624 (2012) [109].

To complete our study of the supersolid phase, we also did calculations for the same

in the weakly interacting regime for a continuum system. As we decrease the depth of

the lattice potential, we move away from the strongly interacting regime to the weakly

interacting regime, where the Hubbard model description is replaced by the mean field

Gross-Pitaevskii formalism. In the absence of optical lattice, the continuum limit of

studying supersolid phase and its signatures in an artificial gauge field are much more

convincing as compared to the lattice counterparts. As we explained in chapter 4, the

reason is that the induced periodicity of the underlying lattice is partly responsible for

the occurrence of supersolidity. In the continuum limit, the supersolidity in ultracold

atomic condensates is entirely intrinsic or in other words interaction driven and not an

artifact of the applied optical lattice potential.

An important method of investigation of such continuum supersolids is to study the

collective modes of the system and detect the various sound modes which are the reflec-

tion of system’s elastic properties. The study of vortex dynamics in rotating superfluids

is quite remarkable both theoretically and experimentally and served as an important

test for ultracold atomic superfluidity. The theoretical approach based on macroscopic

Gross-Pitaevskii based hydrodynamics was found capable of describing the oscillation

modes of a regular vortex lattice in ultracold atomic superfluids, which was also subse-

quently verified experimentally. They were able to detect the Tkachenko modes, which

are transverse sound modes in the vortex lattice.

Chapter 4 of the thesis focuses in construction of a Gross-Pitaevskii hydrodynamic

theory for rotating supersolid in the weakly interacting regime, where a vortex lattice

co-exist with supersolid lattice. The purpose of our study is to understand the nature of

the collective excitations of such vortex lattice as much as possible within an analytical

framework and point out its difference with the corresponding situation in a superfluid.

Rotating supersolids when subjected to small perturbations reveal interesting features

that result due to the interplay of two embedded lattice structures, the supersolid lattice
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and the vortex lattice, and provide signatures in the sound modes to detect it in com-

parison to rotating superfluids. We find the nature of collective oscillations of a rotating

supersolid is quite different from the rotating superfluids and non-rotating supersolids.

The lattice part of the supersolid is described as the normal component within the well

known two-fluid approximation. Within this framework, we derive the set of hydrody-

namic equations for rotating supersolid. This is valid under the general conditions of

applicability of hydrodynamic theory, in particular the perturbations under considera-

tion are long wave (practically much longer than the lattice size). We also point out

typical cold atomic systems where such theory may be applicable. Using these equa-

tions, we calculate and analyze the dispersion relations for such collective excitations

of vortex lattice in a supersolid [110] within this hydrodynamic approach and compare

them against the results for a fast rotating superfluid that was studied theoretically and

experimentally. We also showed that our theory [110] can reproduce known solutions

of such hydrodynamic equations under various limits, like for a rotating superfluid and

for non-rotating supersolid. We also briefly discussed how such hydrodynamic equations

gets modified where mutual friction between the supersolid lattice and the vortex lattice

is taken into account. We calculate the excitations for the vortex lattice in supersolid and

found that it distinctly depends on the quantized nature of circulation in a supersolid

and provide unambiguous signature of the existence of macroscopic quantum order.

The most important result of this work is the coupled modes which form as a result of

normal mode splitting of the harmonic oscillations of the supersolid and the vortex lat-

tice. The appearance of such novel modes can indeed be a clear signature for supersolid

behavior in the system. This may provide a convincing way of verifying supersolidity in

continuum systems.

These results will be submitted for publication [110].

To conclude, we study the quantum simulation of the supersolid phase using ultracold

atomic condensates with long range interactions in presence of artificial gauge field.

We performed the study covering both the strongly interacting and weakly interacting

regime of the system and hence, this concludes the work done in the thesis.

5.2 Future scope

The work done in this thesis can lead to exploration of interesting future prospects. This

includes the generalization of the mean field calculations done for the minimal extended

Bose Hubbard model. The effect of artificial gauge fields on other variants of the eBHM

can be studied such as one that includes next nearest neighbor interaction, which shows
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other types of Density Wave and supersolid phases. Moreover, with recent progress

in manipulating the interactions, these studies will possibly lead to the detection of

interesting phases, particularly the supersolid phase and the study of many associated

interesting phenomena which are yet to be explored. Thus, our calculations will hopefully

stimulate further study in the behavior of different types of supersolid phase in the

presence of an artificial gauge field.

The calculations done using the strong coupling perturbation for the eBHM in presence

of gauge field can be generalized to higher dimensions. This requires the solution of the

Hofstadter Butterfly (HB) problem for the corresponding dimension, which is a highly

no-trivial problem. Subsequently the momentum distribution in higher dimensions can

also be determined using the minimum eigen value of the HB problem. Morover, the

strong coupling perturbation expansion can also be extended to ultracold atomic systems

in optical lattices in presence of non-abelian gauge fields.

The calculations done within the continuum Gross-Pitaevskii hydrodynamic theory

could be extended by taking into account higher order terms and including the effect

of interaction between the vortex lattice and the supersolid lattice explicitly in the cal-

culations. This might lead to a kind of mutual friction between the two lattices, that

result in modification of the collective oscillations in the system. Moreover, new modes

in addition to the already obtained modes are expected to occur due to mutual friction

between the two components. One can also go beyond the hydrodynamic theory whose

validity is limited to long wavelength or low frequency and solve the full Bogoliubov

dispersion equations for getting all the oscillation modes of the rotating supersolid sys-

tem. The calculations can also be extended for case of trapped systems, where the small

perturbations will no longer be plane waves and hence, should be expanded for finite

systems with different geometry.

The hydrodynamic study of the rotating superfluid and rotating supersolid phases may

find applications to study the analogous spinning neutron star system. A similar hy-

drodynamic study of co-existing superfluid and elastic components [202] for spinning

neutron stars is an active field study and the study of ultracold atomic condensates can

provide some interesting clue for further understanding of these astrophysical systems.



Appendix A

Elliptical Polarization of

Tkachenko waves

As mentioned in section 4.1.4, Tkachenko waves are elliptically polarized in nature. We

calculate and show below the polrization of these waves from the dispersion equations.

The linearized continuity equation for rotating superfluid is given by

∂δρ

∂t
+ ρ∇ · vs = 0 (A.1)

Writing the x component of above equation in fourier space gives

− iΩδρ+ ρiqvsx = 0 (A.2)

We next write the equation for momentum conservation as derived in section 4.1.2 as

∂vs

∂t
+ 2Ω × vs = −c

2
s∇δρ
ρ

− f
mρ

(A.3)

We write the x and y components of the above equation for momentum conservation.

It is given below as
∂vsx

∂t
− 2Ωvsy = −c

2
s∇δρ
ρ

− fx

mρ
(A.4)

and,
∂vsy

∂t
+ 2Ωvsx = − fy

mρ
(A.5)

where fx = (4C1 + 2C2)
∂2uv

x
∂x2 and fy = 2C2

∂2uv
y

∂x2 .
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In addition to these equations, we also write the x and y components of the acceleration

equation given by equation (4.39) as

∂vsx

∂t
− 2Ω

∂uv
y

∂t
= −c

2
s∇δρ
ρ

(A.6)

and,
∂

∂t
(vsy + 2Ωuv

x) = 0 (A.7)

We now use equation (A.7) and write equations (A.4) and (A.5) in fourier space as

− iωvsx + (2Ω)2uv
x − (4C1 + 2C2)

mρ
q2uv

x +
c2s
ρ
iqδρ = 0 (A.8)

and,

2Ωiωuv
x + 2Ωvsx − 2C2

mρ
q2uv

y = 0 (A.9)

Also, we have the fourier space form of the x component of acceleration equation (A.6)

as

− iωvsx + 2Ωiωuv
y +

c2s
ρ
iqδρ = 0 (A.10)

Thus, we proceed with equations (A.2), (A.8), (A.9) and (A.10) and get the following

two equations relating the x and y components of the lattice displacement vector uv as

− 2Ωiωuv
y +

[
(2Ω)2 − (4C1 + 2C2)

mρ
q2
]
uv

x = 0

2Ωiωuv
x +

[
(2Ω)2

ω2

ω2 − c2sq
2
− 2C2

mρ
q2
]
uv

y = 0 (A.11)

It is evident from the above derived two equations for x and y components of the

displacement field of the vortex lattice vector that the Tkachenko waves are elliptically

polarized. The x and y components differ in amplitude and phase by 900, which defines

elliptical motion of the waves.
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382 (2010).
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