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Introduction

In this text we collect some material related with the multiplicative norm for the
Grothendieck-Witt ring. It is a first draft.

1. Polynomials on semi groups

Let A be an additive semi group. In other words, we are given a set A and a
commutative and associative operation (x, y) 7→ x+ y on A.

We do not assume that A contains a neutral element 0. In any case, there is the
semi group with neutral element A0 = A ∪ {0} (with A0 = A if 0 ∈ A).

Let A→ Ā be the group completion of A.
Let further B be a commutative group. Then, by the very definition of group

completion, a semi group homomorphism P : A → B extends to a unique group
homomorphism P̄ : Ā→ B.

The purpose of this section is to note that every polynomial map P : A → B
extends to a unique polynomial map P̄ : Ā → B. This is perhaps well known
(indeed, see [2]); it becomes almost a triviality after relating group completions
and polynomial maps with the corresponding (semi) group rings.

Let Z[A] be the semi group ring of A. As a group, Z[A] is the free abelian group
on A. For x ∈ A we denote by [x] the corresponding generator of Z[A]. Then the
multiplication in Z[A] is given by [x][y] = [x+ y].

If 0 ∈ A, then [0] = 1 is the unit element of Z[A]. In general, Z[A] is an ideal of
the unital ring Z[A0].

We consider A as subset of Z[A] in the natural way, via x 7→ [x]. It is clear that
any map P : A→ B extends to a unique group homomorphism P̂ : Z[A]→ B.

The subset A of Z[A] is a multiplicative subset. It is tautological that the group
ring of the group completion Ā is localization of Z[A] at A:

Z[Ā] = A−1Z[A]

Definition. Let P : A→ B be a map.
(1) P is called a polynomial map of degree ≤ −1 if P = 0.
(2) For n ≥ 0, P is called a polynomial map of degree ≤ n if for each x ∈ P

the map

∆xP : A→ B

∆xP (y) = P (y + x)− P (y)

is a polynomial map of degree ≤ n− 1.
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(3) P is called a polynomial map if it is a polynomial map of degree ≤ n for
some n.

We denote by

εA : Z[A0]→ Z

εA([x]) = 1 (x ∈ A0)

the augmentation homomorphism and by IA = ker εA its kernel.
For α ∈ Z[A] one has

∆̂xP (α) = P̂
(
([x]− 1)α

)
This implies easily by an induction argument the following

Lemma 1. A map P : A→ B is a polynomial map of degree ≤ n if and only if

P̂ (In+1
A Z[A]) = 0

Corollary 1. There is a bijection

P 7→
(
α mod In+1

A Z[A] 7→ P̂ (α)
)

from the group of polynomial maps A→ B of degree ≤ n to

Hom(Z[A]/In+1
A Z[A], B)

Example. The polynomial maps on A = Nr
0 are the linear combinations of the

polynomials of the form

P (x1, . . . , xr) =
r∏
i=1

(
xi
ni

)
where the ni are nonnegative integers. (Use Corollary 1.)

For x ∈ A one has 1− [x] ∈ IA and therefore [x] mod In+1
A is invertible. Thus

Z[Ā]/In+1
Ā

= A−1Z[A]/In+1
A Z[A] = Z[A]/In+1

A Z[A]

and we have

Corollary 2. A polynomial map P : A→ B extends uniquely to a polynomial map
P̄ : Ā→ B. If P is of degree ≤ n, then P̄ is of degree ≤ n.

Let P : A→ B be a polynomial map of degree ≤ n. Its extension P̄ can be made
explicit as follows. For x, y ∈ A we have

[x− y](1− [y])n+1 =
n+1∑
i=0

(−1)i
(
n+ 1
i

)
[x+ (i− 1)y]

On the other hand, one has [x− y](1− [y])n+1 ∈ In+1
Ā

and thereforê̄P ([x− y](1− [y])n+1
)

= 0

This gives

(1) P̄ (x− y) =
n∑
i=0

(−1)i
(
n+ 1
i+ 1

)
P (x+ iy)

expressing any value of P̄ in terms of values of P .
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2. Multiplicative polynomials on Z

Multiplicative polynomial maps appear from multiplicative transfer maps on
cohomology rings, Grothendieck-Witt rings of symmetric bilinear forms, etc. In
those cases it is an obvious question to compute the restriction to the subring
generated by 1.

Definition. Let A, B be commutative rings. A polynomial map P : A → B is
called multiplicative if P (1) = 1 and if

P (xy) = P (x)P (y)

for x, y ∈ A.

Let P : A → B be a multiplicative polynomial map. Then P (0)2 = P (0). If
P (0) = 1, then P is constant, P ≡ 1. If P (0) = 0, we call P proper. If B is
connected, then P is either constant or proper.

A polynomial map P : Z→ B of degree ≤ n can be written uniquely as

(2) P (k) = a0 + a1k + a2

(
k

2

)
+ · · ·+ an

(
k

n

)
with ai ∈ B. If P (0) = 0 and P (1) = 1, then a0 = 0 and a1 = 1 and

(3) P (k) = k + a2

(
k

2

)
+ · · ·+ an

(
k

n

)
Let Xn be the scheme over Spec Z representing the multiplicative polynomi-

als on Z. The presentation (2) identifies Xn as a closed subscheme of the affine
space An+1 with coordinates a0, . . . , an.

Note that a0 + a1 = 1 and a2
0 = a0 on Xn.

Let Yn = Xn ∩{a0 = 0, a1 = 1}. Then Xn is the disjoint union of Yn and a copy
of Spec Z given by (a0, a1, . . . , an) = (1, 0, . . . , 0). The latter represents P = 1 and
we may write

Xn = Yn ∪ {1}
The scheme Yn represents the proper multiplicative polynomials on Z. The pre-
sentation (3) identifies Yn as a closed subscheme of the affine space An−1 with
coordinates a2, . . . , an.

Lemma 2. The scheme Xn is flat and finite over Spec Z of degree n+ 1.
Let T = Z[(n!)−1]. Then (Xn)T is consists of n+ 1 copies of SpecT .

Proof. If n! is invertible in B, one may parametrize polynomial maps P : Z→ B of
degree ≤ n as

(4) P (k) = b0 + b1k + b2k
2 + · · ·+ bnk

n

with bi ∈ B. It is easy to see that P is multiplicative if and only if the bi are
pairwise orthogonal idempotents. This proves the second claim.

For the general case observe that Xn is the spectrum of

Rn = Z[a0, . . . , an]/I

where the ideal I is generated by a0 +a1−1 and elements aiaj− lij (1 ≤ i ≤ j ≤ n)
with the lij linear in the ak. Hence Rn is generated by a0, . . . , an as a Z-module.
Since dimQRn ⊗Q = n+ 1 by the first part of the proof, it follows that Rn a free
Z-module of rank n+ 1. �
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Example. The case n = 2. The proper multiplicative quadratic polynomials Z→ B
are

P (k) = k + a

(
k

2

)
where a is subject to a2 = 2a. This follows easily from(

kl

2

)
= 2
(
k

2

)(
l

2

)
+
(
k

2

)
l +
(
l

2

)
k

This describes Y2 completely.

Example. The case n = 3 with 2 = 0 in B. If 2B = 0, the proper multiplicative
polynomials Z→ B of degree ≤ 3 are

P (k) = k + a

(
k

2

)
+ b

(
k

2

)
k

where a, b are subject to a2 = ab = b2 = 0. This describes (Y3)F2 completely.

Exercise. Let L/F be a finite field extension and let NL/F denote the multiplicative
norm for the Grothendieck-Witt ring (to be defined later). Describe the polynomial
k 7→ NL/F (k), k ∈ Z.

It is clear by Serre that the coefficients of NL/F |Z can be expressed in terms of
the exterior powers of the trace form. Is there a nice formula for that? Does the
Pfister form P (L/F ) show up? I have not considered anything here.

Exercise. Let L be a finite field extension of the field of rational numbers Q of
degree d. For k ∈ Z let P (k) be the signature of NL/Q(k), where NL/Q is the
multiplicative norm for the Grothendieck-Witt ring (to be defined later).

Show that P (k) = kr+s where r, s are the numbers of real, complex embeddings
of L, respectively (d = r + 2s).

3. The norm

See also [1].

3.1. Notations. The symmetric group on i letters is denoted by Si. Let

sgn: Si → {±1}

be the signature homomorphism.
Let F be a commutative ring and let M be an F -module. Let

T iM = T iFM = M⊗i = M ⊗F · · · ⊗F M︸ ︷︷ ︸
i factors

be the i-fold tensor power of M over F . The symmetric group Si acts in a natural
way on M⊗i by

s(x1 ⊗ · · · ⊗ xi) = xs−11 ⊗ · · · ⊗ xs−1i

We write

ΛiM = ΛiFM = M⊗i/
∑
s∈Si

(
1− sgn(s)s

)
M⊗i

SiM = SFi M = (M⊗i)Si = {α ∈M⊗i | s(α) = α for s ∈ Si }

for the i-th exterior power of M and the module of symmetric i-tensors, respectively.
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For x ∈M we use the notation

[x] = [x]i = x⊗ · · · ⊗ x︸ ︷︷ ︸
i factors

∈ SiM

We will also use the trace maps

Ti,j =
∑

s∈Si+j/Si×Sj

s : SiM ⊗ SjM → Si+jM

3.2. The norm. Let F be a commutative ring and let E be a locally free ring
extension of F of rank n.

For discussion of geometric interpretations let us write X = SpecE and Y =
SpecF . Thus we have a morphism of schemes X → Y , finite and flat of degree n.

The tensor power E⊗i is a locally free ring extension of F of rank ni containing
SiE as subring (all tensors are considered over F ). The SiE-module structure on
E⊗i induces an SiE-module structure on ΛiE and thus we have homomorphisms

ρi : SiE → EndF (ΛiE)

The F -module ΛnE is invertible. Therefore we get a ring homomorphism

νE/F = ρn : SnE → EndF (ΛnE) = F

called the norm of E/F . Indeed, for x ∈ E one has

νE/F ([x]) =
(
ΛnE

Λnµx−−−→ ΛnE
)

= det(µx) = NE/F (x)

where µx : E → E is the multiplication map.
For a finitely generated locally free E-module M we put

νE/F (M) = SnM ⊗SnE F = (νE/F )∗(SnM)

Suppose E/F is separable. Then νE/F (M) is a locally free F -module. If M is
of rank d as E-module, then νE/F (M) is of rank dn as F -module. If e1, . . . , en are
orthogonal idempotents of E (necessarily of rank 1: eiE = F ), then

(5) νE/F (M) = M1 ⊗ · · · ⊗Mn

where Mi = eiM .
Let b : M ×M → E be a non-degenerate bilinear symmetric form. Then the

form
b⊗n : M⊗n ×M⊗n → E⊗n

restricts to a form
Snb : SnM × SnM → SnE

which we tensor with SnE → F to get a form

νE/F (b) : νE/F (M)× νE/F (M)→ F

If E/F is separable, then νE/F (b) is again a non-degenerate bilinear symmetric
form. In the situation of (5) we have

νE/F (b) = b1 ⊗ · · · ⊗ bn
with bi = b|(Mi ×Mi).

In the next sections we study basic properties of the norm.
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4. The extensions Ci1,...,irE

Let (i1, . . . , ir) be a sequence of integers ij ≥ 0 with i1 + · · · + ir = n. Such a
sequence will be called a partition of n. (We allow ij = 0 for convenience.)

Let
Si1,...,irE = Si1E ⊗ · · · ⊗ SirE

Note that SnE is a subring of Si1,...,irE.
We define

Ci1,...,irE = (νE/F )∗(Si1,...,irE) = Si1,...,irE ⊗SnE F

Let Ci1,...,irX = SpecCi1,...,irE. Then there is a pull back diagram

Ci1,...,irX −−→ Si1X × · · · × SirXy y
Y

ν−−→ SnX

If X/Y is separable, then Ci1,...,irX represents the decompositions of the fibers into
subsets of size i1, . . . , ir.

If E/F is separable, then Ci1,...,irE is a separable F -algebra of rank(
n

i1, . . . , ir

)
=
(
i1 + · · ·+ ir

i1

)(
i2 + · · ·+ ir

i2

)
· · ·
(
ir
ir

)
Example. If E/F is separable, then

Ē = C1,...,1E = E⊗n ⊗SnE F

is a separable F -algebra of rank n!. Moreover there is a natural Sn-action on Ē. If
E/F is a field extension with maximal possible Galois group, then Ē is the Galois
closure of E with the n embeddings E → Ē given by the maps

E 7→ E⊗n

x 7→ 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · 1

5. The extensions CiE

This section contains a first attempt to understand the algebras Ci1,...,irE.
We study the case r = 2. For 0 ≤ i ≤ n let CiE = Ci,n−iE.
First a general fact:

Lemma 3. One has SiE ⊗ SjE = (SiE ⊗ 1)Si+jE.

Proof. In this first draft, we leave the proof to the reader. �

Geometrically speaking, the lemma says that

SiX × SjX → SiX × Si+jX

is a closed embedding.

Corollary 3. The homomorphism

νi : SiE
⊗1−−→ SiE ⊗ Sn−iE → CiE

is surjective.
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Geometrically speaking, this means that

CiX → SiX × Sn−iX projection−−−−−−→ SiX

is a closed embedding.
Note that we have a canonical isomorphism τ : CiE → Cn−iE by switching

factors of SiE ⊗ Sn−iE (so that τ ◦ τ(α) = α when defined). If n is even, we get
an involution τ : Cn/2 → Cn/2.

Example. If E/F is separable, then CiE is a separable F -algebra of rank
(
n
i

)
.

Example. If E/F is separable of degree 4, then (C2E)τ is the “cubic resolvent” of
E/F .

Example. Consider the “most degenerate” extension of degree 4, E = F [x, y, z],
x2 = y2 = z2 = xy = xz = yz = 0. In this case one finds that S2E → C2E
is an isomorphism. Hence C2E is of rank 10 in this case, in contrast to the case
of separable quartic extensions where C2E is of rank 6. See [1] for closely related
examples.

Recall the homomorphisms ρi : SiE → EndF (ΛiE). Composing ρn−i with dual-
ity

EndF (Λn−iE) = EndF
(
ΛnE ⊗ (ΛiE)∗

)
= EndF

(
(ΛiE)∗

)
= EndF (ΛiE)

we get a homomorphism

ρ̄n−i : Sn−iE → EndF (ΛiE)

Lemma 4. The homomorphisms ρi, ρ̄n−i commute, i.e.,

ρi(α)ρ̄n−i(β) = ρ̄n−i(β)ρi(α)

The resulting homomorphism

ρi ⊗ ρ̄n−i : SiE ⊗ Sn−iE → EndF (ΛiE)

factors through a homomorphism

ρ̂i : CiE → EndF (ΛiE)

Proof. In this first draft, we leave the proof to the reader. Note that we don’t
assume any separability condition here.

One may check this first in the split separable case, which gives the general
separable case, and then use specialization to the degenerate case. (I don’t like this
way, rather I prefer a tensor game, which shouldn’t be very technical.) �

Let us define
tracei = traceEndF (ΛiE) ◦ ρ̂i : CiE → F

In the separable case, ρ̂i is the embedding of a maximal commutative subalgebra
of EndF (ΛiE). In this case tracei is the usual trace map for CiE/F .

Example. Consider the “most degenerate” extension of degree 4, see above. In this
case one finds that the image of ρ̂2 has rank 4.

Exercise. Show that if E is a subalgebra of an Azumaya algebra A, then there is a
natural homomorphism CiE → λiA (see [3] for the definition of the exterior powers
of Azumaya algebras). If E is locally a maximal commutative separable subalgebra
of A, then CiE locally a maximal commutative separable subalgebra of λiA. (I
have not done this exercise.)
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Proposition 1.
(1) C0E = CnE = F
(2) The map ν1 : E → C1E is an isomorphism.
(3) The map

# : Sn−1E
νn−1−−−→ Cn−1E

τ−→ C1
ν−1
1−−→ E

is the adjoint map ([x]#x = N(x)).

Proof. In this first draft, we leave the proof to the reader. Note that we don’t
assume any separability condition here.

One may check this easily in the split separable case, which gives the general
separable case.

As for (2) in the general case: We know from Corollary 3 that ν1 is surjective.
On the other hand, one has

ρ̂1 ◦ ν1(x) = µx

for x ∈ E. This shows the injectivity of ν1. �

Lemma 5. The trace maps Ti,j : SiE ⊗ SjE → Si+jE induce trace maps

T̄i,j : CiE ⊗ CjE → Ci+jE

which are Ci+jE-linear. One has

T̄i,n−i(α⊗ β) = tracei
(
ατ (β)

)
Proof. No proof. �

We formulate a basic formula.

Proposition 2. Let x, y ∈ E. Then

νk([x+ y]) =
k∑
i=0

Ti,k−i
(
νi([x])⊗ νk−i([y])

)
In particular,

NE/F (x+ y) =
n∑
i=0

tracei
(
νi([x])τ

(
νn−i([y])

))
Proof. In this first draft, we leave the proof to the reader. Note that we don’t
assume any separability condition here.

�

It follows that the tracei
(
νi([x])

)
are the coefficients of the characteristic poly-

nomial of x.

6. The tensorial norm

Let F be a commutative ring and let E be a locally free ring extension of F of
rank n. We assume that E/F is separable (=etale).

Let M1, . . . , Mr be finitely generated locally free E-modules and let (i1, . . . , ir)
be a partition of n.

We put
Si1,...,ir (M1, . . . ,Mr) = Si1M1 ⊗ · · · ⊗ SirMr
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and

Ci1,...,ir (M1, . . . ,Mr) = (νE/F )∗
(
Si1,...,ir (M1, . . .Mr)

)
= Si1,...,ir (M1, . . . ,Mr)⊗Si1,...,irE Ci1,...,irE

Lemma 6. Let fr : Ci1,...,irE → Cr,i1−r,...,irE be the natural homomorphisms, in-
duced from Si1E → SrE ⊗ Si1−rE. Then

Ci1,...,ir (M ⊕N,M2, . . .Mr) =
i1⊕
r=0

f∗r
(
Cr,i1−r,...,ir (M,N,M2, . . .Mr)

)
Proof. Easy. �

Corollary 4. There exist a unique multiplicative polynomial map

NE/F : K⊕0 E → K⊕0 F

of degree n such that
NE/F ([M ]) = [νE/F (M)]

Proof. Use Lemma 6 and Corollary 2... �

7. The norm for the Grothendieck-Witt ring

We denote by GW (F ) the Grothendieck-Witt ring of F of symmetric bilinear
forms (let us say in this draft that F is a field).

Let E/F be a separable field extension of degree n. Using an obvious extension
of section 6, one gets

Corollary 5. There exist a unique multiplicative polynomial map

NE/F : GW (E)→ GW (F )

of degree n such that
NE/F ([b]) = [νE/F (b)]

I guess one should also define polynomial maps

νi : GW (E)→ GW (CiE)

of degree i. For instance, for n = 4 this would give a quadratic map

GW (E) ν2−→ GW (C2E) trace−−−→ GW
(
(C2E)τ

)
to the Grothendieck-Witt ring of the cubic resolvent. . .

8. Computations

I haven’t done much besides for the case of a quadratic field extensions in char-
acteristic not 2. See the text “A Pfister form invariant for etale algebras”.
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