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Estimation of the parameters of an ARMA model

An ARMA(p, q) model

xt − φ1xt−1 − ...− φpxt−p = ut + θut−1 + ... + θut−p

ut ∼ WN(0, σ2)

is characterized by p + q + 1 unknown parameters

φ = (φ1, ..., φp)′

θ = (θ1, ..., θq)′

σ2

that need to be estimated.
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This lesson considers three techniques for estimation of the
parameters φ, θ and σ2. They are:

1 Two-Step Regression Estimation

2 Yule-Walker Estimation

3 Maximum Likelihood Estimation
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Estimation for ARMA(p, q) process using two-step

regression

This method works as follows:
1 We start by regressing xt on its past xt−1, ..., xt−m. We

derive the OLS estimates of the coefficients πj ,
j = 1, ...,m and of the estimation residuals as well

ût = xt −
m∑
j=1

π̂jxt−j

2 We turn to the ARMA representation of the process by
writing it in the form

xt = −φ1xt−1 − ...− φpxt−p + θ1ut−1 + ... + θqut−q + ut

This expression suggests to us to regress xt on
xt−1, ..., xt−p, ût−1, ..., ût−q estimating the coefficients by
OLS.
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Estimation for ARMA(p, q) process using two-step

regression

The regression coefficients so obtained provide consistent
estimate of −φ1, ...− φp, θ1, ...θq.

The sum of the squared corrisponding residuals divided by the
number of observation corrected by the degrees of freddom is
an estimator of σ2
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Estimation for ARMA(p, q) process using two-step

regression

Example. We have simulated an MA(1) process defined by

xt = ut + .7ut−1

with ut ∼ i .i .d .N(0, 1)

Umberto Triacca Lesson 12: Estimation of the parameters of an ARMA model



Estimation for ARMA(p, q) process using two-step

regression

By using the two-step regression, with m = 3, we obtain the
following estimates

θ̂ = 0.765744

σ̂2 = 1, 0233
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The Yule-Walker Estimation

Consider an autoregressive stochastic process xt of order p. It
is well known that there is a link among the autoregressive
coefficients and the autocovariances.In particular, we have

Γφ = γ

and
σ2 = γ(0)− φ′γ

where

Γ =


γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2
...

...
. . .

...
γp−1 γp−2 · · · γ0


is the covariance matrix and

γ = (γ1, ..., γp)′

Umberto Triacca Lesson 12: Estimation of the parameters of an ARMA model



The Sample Yule-Walker equation

If we replace the theoretical autocovariances by the
corresponding sample autocovariances,we obtain

Γ̂φ = γ̂

where

Γ̂ =


γ̂0 γ̂1 · · · γ̂p−1

γ̂1 γ̂0 · · · γ̂p−2
...

...
. . .

...
γ̂p−1 γ̂p−2 · · · γ̂0


is the sample autocovariance matrix and

γ̂ = (γ̂1, ..., γ̂p)′
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The Yule-Walker Estimation

We assume γ̂(0) > 0.To obtain the Yule-Walker estimators as
a function of the autocorrelation function, we divide the two
sides of equation

Γ̂φ = γ̂

by γ̂(0) > 0.
We have

R̂φ = ρ̂

where

R̂ =


ρ̂0 ρ̂1 · · · ρ̂p−1

ρ̂1 ρ̂0 · · · ρ̂p−2
...

...
. . .

...
ρ̂p−1 ρ̂p−2 · · · ρ̂0


is the sample autocorrelation matrix and

ρ̂ = (ρ̂1, ..., ρ̂p)′
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The Yule-Walker Estimation

It is possible to show that

γ̂(0) > 0⇒ detR̂ 6= 0
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The Yule-Walker Estimation

Thus we can solve the system

R̂φ = ρ̂

obtaining the so-called Yule-Walker estimators, namely

φ̂ = R̂−1ρ̂

and
σ̂2 = γ̂(0)

[
1− ρ̂′R̂−1ρ̂

]
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The Yule-Walker Estimation

Theorem. If xt is a zero-mean stationary autoregressive
process of order p with ut ∼ iid(0, σ2), and φ̂ is the
Yule-Walker estimator of φ, then

T 1/2(φ̂− φ)

has a limiting normal distribution with mean 0 and covariance
matrix σ2Γ−1. Moreover

σ̂2 P→ σ2

Thus, under the assumption that the order p of the fitted
model is the correct value, we can use the asymptotic
distribution of φ to derive approximate large-sample
confidence regions for φ and for each of its components.
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The Yule-Walker Estimation

Numerical example. We have simulated the following AR(1)
process:

xt = 0.7xt−1 + ut

with ut ∼ i .i .d .N(0, 1)
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The Yule-Walker Estimation

By using the Yule-Walker estimator we obtain the following
estimates

φ̂1 = ρ̂1 = 0.6877

σ̂2 = γ̂0(1− ρ̂1) = 0.97989
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The Yule-Walker estimators with q > 0

When q > 0 the Yule-Walker estimators are obtained solving
the following system

γ̂k − φ1γ̂k−1 − ...− φpγ̂k−p = σ2

q∑
j=k

θjψj−k , 0 ≤ k ≤ p + q

with ψj = 0 for j < 0, θ0 = 1 and θj = 0 for j /∈ {0, 1..., q}.
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The Yule-Walker equations with q > 0

We note that the equations of the system are nonlinear in the
unknown coefficients. This can lead to possible nonexistence
and nonuniqueness of solutions.

Umberto Triacca Lesson 12: Estimation of the parameters of an ARMA model



The Yule-Walker equations with q > 0

Example. Consider an MA(1) process, The sample
Yule-Walker equation are:

γ̂0 = σ̂2(1 + θ2
1)

ρ̂1 =
θ1

1 + θ2
1

We note that if |ρ̂1| > .5, there is no real solution.
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The Yule-Walker equations with q > 0

If |ρ̂1| ≤ .5, then the solution (with |θ̂1| ≤ 1) is

θ̂1 =
1−

√
1− 4ρ̂2

1

2ρ̂1

σ̂2 =
γ̂0

1 + θ̂2
1
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The Yule-Walker equations with q > 0

Numerical Example. Consider again the MA(1) process
defined by

xt = ut + .7ut−1

with ut ∼ i .i .d .N(0, 1)
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The Yule-Walker equations with q > 0

In this case |ρ̂1| = 0.4751 ≤ .5 Thus the Yule-Walker
estimates are

θ̂1 = 0.16352

σ̂2 = 1.51791
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

Let θθθ = (φ1, ..., φp, θ1, ..., θq, σ
2)′ denote the vector of

population parameters.
Suppose we have observed a sample of size T

x = (x1, ..., xT )
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

Let the joint probability density function (p.d.f.) of these data
be denoted

f (xT , xT−1, ..., x1;θθθ)

The likelihood function is this joint density treated as a
function of the parameters θθθ given the data x:

L(θθθ|x) = f (xT , xT−1, ..., x1;θθθ)
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

The maximum likelihood estimator (MLE) is

θ̂θθMLE = arg max
θθθ∈ΘΘΘ

L(θθθ|x)

where ΘΘΘ is the parameter space.
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

For simplifying calculations, it is customary to work with the
natural logarithm of L, given by

logL(θθθ|x) = l(θθθ|x).

This function is commonly referred to as the log-likelihood.
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

Since the logarithm is a monotone transformation the values
that maximize L(θθθ|x) are the same as those that maximize
l(θθθ|x), that is

θ̂θθMLE = arg max
θθθ∈ΘΘΘ

L(θθθ|x) = arg max
θθθ∈ΘΘΘ

l(θθθ|x)

but the the log-likelihood is computationally more convenient.
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

Now, we assume that the derivative of l(θθθ|x) (w.r. θθθ) exists
and is continuous for all θθθ.

The necessary condition for maximizing l(θθθ|x) is

δl(θθθ|x)

δθθθ
= 0

which is called likelihood equation.
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Maximum Likelihood Estimation of the Parameters

of ARMA Models

The maximum likelihood estimate, θ̂θθMLE , will be the solution of

δl(θθθ|x)

δθθθ
= 0
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Properties of Maximum Likelihood Estimators

Maximum Likelihood Estimators are most attractive because
of their asymptotic properties.
Under regularity conditions, the Maximum Likelihood
Estimator, θ̂θθMLE , will have the following asymptotic properties:

1 It is consistent

2 It is asymptotically normally distributed

3 It is asymptotically efficient

These three properties explain the prevalence of the maximum
likelihood technique in time series analysis

Umberto Triacca Lesson 12: Estimation of the parameters of an ARMA model



The exact Gaussian likelihood of an ARMA process

To write down the likelihood function for an ARMA process,
one must assume a particular distribution for the white noise
process ut . Here, we assume that ut is a Gaussian white noise:

ut ∼ i .i .d .N(0, σ2)
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The exact Gaussian likelihood of an ARMA process

This implies that the exact Gaussian likelihood of
x=(x1, x2, ..., xT )′ is given by

L(θθθ|x) = (2π)−T/2 |Γ(θθθ)|−1/2exp

{
−1

2
x′Γ(θθθ)−1x

}
where Γ(θθθ) = E (xx′) is the T × T covariance matrix of x
depending on θθθ.
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The exact Gaussian likelihood of an ARMA process

The exact Gaussian log-likelihood is then given by

l(θθθ|x) = −1

2

[
T log(2π) + log|Γ(θθθ)|+ x′Γ(θθθ)−1x

]
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The exact Gaussian likelihood of an AR(1) process

A Gaussian AR(1) process takes the form

xt = φ1xt−1 + ut

with
ut ∼ i .i .d .N(0, σ2)

For this case, the vector of popolation parameters to be
estimated consists of θθθ = (φ1, σ

2)′.
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The exact Gaussian likelihood of an AR(1) process

The exact Gaussian likelihood of x=(x1, x2, ..., xT )′ is given by

L(θθθ|x) = (2π)−T/2 |Γ(θθθ)|−1/2exp

{
−1

2
x′Γ(θθθ)−1x

}
where

Γ(θθθ) =
σ2

1− φ2
1


1 φ1 φ2

1 · · · φT−1
1

φ1 1 φ1 · · · φT−2
1

...
...

... · · · ...
φT−1

1 φT−2
1 φT−3

1 · · · 1


In fact we recall that the j-th autovariance for an AR(1)
process is given by

E (xtxt−j) =
σ2φj

1

1− φ2
1
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The exact Gaussian likelihood of an MA(1) process

The exact Gaussian likelihood of x=(x1, x2, ..., xT )′ is given by

L(θθθ|x) = (2π)−T/2 |Γ(θθθ)|−1/2exp

{
−1

2
x′Γ(θθθ)−1x

}
where

Γ(θθθ) = σ2


(1 + θ1) θ1 0 · · · 0

θ1 (1 + θ1) θ1 · · · 0
...

...
... · · · ...

0 0 0 · · · (1 + θ1)
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Non-zero mean µ

Consider an ARMA process {xt ; t ∈ Z} with mean µ 6= 0,
defined by the equation

xt − φ1xt−1 − ...− φpxt−p = c + ut + θut−1 + ... + θut−p

ut ∼ WN(0, σ2)

where φ−1(1)c = µ. The unknown parameters in this model

are

φ = (φ1, ..., φp)′

θ = (θ1, ..., θq)′

σ2

c
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Non-zero mean µ

The equation

xt − φ1xt−1 − ...− φpxt−p = c + ut + θut−1 + ... + θut−p

can be rewritten as

(xt−µ)−φ1(xt−1−µ)−...−φp(xt−p−µ) = ut+θut−1+...+θut−p
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Non-zero mean µ

We estimate µ by

x̄T =
T∑
t=1

xt

and proceed to analyze the demeaned series

{(xt − x̄T ); t = 1, ...,T}
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