Maxwell Equation solver for plasma simulations
based on mixed potential formulation
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New algorithms for solving Maxwell’s equations written in their mixed potential form
are presented. Numerical solutions to Maxwell’s equations are traditionally obtained
using the finite difference time domain method, or the method of moments. Although
these methods are successful in obtaining accurate solutions for problems on rectangular
grids, they have inherent limitations when applied to non—orthogonal grids, specially of
the type used in computational fluid dynamics applications. Two methods, the first based
on finite volume schemes for hyperbolic conservation laws, and the second based on a finite
difference scheme which gives a third order accurate spatial and second order accurate
temporal algorithm are presented. Results to show that our algorithm perform well when
compared to analytical solutions are shown. It is also shown that the algorithms handle
the difficult case of absorbing boundary condition correctly.

Nomenclature

Electric field, volts/m

Magnetic flux density, weber/m?
volume charge density, coulomb/m?
current density, amperes/m?
permittivity of free space, farad/m
permeability of free space, henry/m
speed of light, m/s

scalar potential, volts

vector potential, weber/m
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Introduction and motivation

Numerical solutions to Maxwell’s equations are re-
quired in a number of fields, including, among others,
geophysics, circuit analysis and design, radar detec-
tion of vehicles, electromagnetic wave propagation in
tissue, and plasma physics. Among the most com-
monly used methods for solving Maxwell’s equations
are the finite difference time domain (FDTD) method
and the method of moments (MOM).

FDTD' method is based on finite-differencing the
Maxwell field equations in their differential form on a
uniform rectangular grid. This method is used when
the electromagnetic (EM) field quantities are required
at all temporal and spatial points in the computa-
tional space and specially if the medium properties
are continuous functions of space and/or of frequency.
The drawbacks of the FDTD method is that it re-
quires a staggered grid in both space and time to
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maintain second order accuracy and that it is diffi-
cult to handle complex geometries. The method of
moments is based, on the other hand, on the solu-
tion of integral equations derived from the frequency
domain Maxwell’s equations. As is common with in-
tegral equation solution methods the MOM is based
on Green’s function for the problem. This reduces the
EM problem to one of finding equivalent currents on
the domain surfaces. The MOM? is applied mainly
to circuit problems and those involving scattering of
electromagnetic waves from complex geometries. For
such configurations (for example, scattering from air-
craft bodies) the MOM has a distinct advantage over
the FDTD method: the MOM requires only surface
meshes while FDTD requires a space mesh for com-
plete domain. This leads to tremendous saving in both
memory and execution time for codes implementing
these methods. The disadvantage of the MOM is that
it is a frequency domain method (although time do-
main MOM have been reported recently) and that it
can not handle volume distributed sources well.

In this work a electromagnetic field solver based on
the mixed potential formulation® of Maxwell’s equa-
tions is described. The intended application of the
solver is for a two-fluid plasma model,* which treats
the plasma as a combination of an electron and ion
fluids coupled through their electromagnetic fields. In
this application the electromagnetic fields contribute
source terms to the electron and ion fluid equations,
while the electron and ion currents contribute source
terms to the electromagnetic field equations. Our ini-
tial approach to solve Maxwell’s equations was based
on traditional computational fluid dynamic techniques
(CFD) for hyperbolic conservation laws.> Although
our solver works well in one dimension, in two dimen-
sions large damping of the fields, which is especially
severe for problems involving static discrete current
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sources, is observed. As a way to overcome this the
Maxwell’s equations can be recast in their mixed po-
tential form. The advantage of this formulation is
that it reduces Maxwell’s equations to a set of inho-
mogeneous wave equations which can be solved using
standard CFD techniques. A further advantage of this
approach is that the resulting equations are uncoupled
when formulated on rectangular grids which makes the
solution technique much simpler.

The rest of the paper is organized as follows. First a
brief derivation of the mixed potential equations from
Maxwell’s equations is presented. The implementation
of boundary conditions is discussed, which can be dif-
ficult to handle properly on open, outflow boundaries.
A number of these absorbing boundary conditions of
which the method of using perfectly matched layers
(PML) is described in some detail. Results with our
algorithms and directions for future work are outlined.

Problem Formulation

Electromagnetic fields in homogeneous isotropic me-
dia are described by Maxwell’s equations?
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where E is the electric field, B is the magnetic flux den-
sity, pe is the charge density, J is the current density,
and ¢y and po are the permittivity and permeability
of free space respectively. To rewrite these equations
in the mixed potential formulation the scalar potential
¢, and vector potential A are introduced by defining

0A
E=-V¢— — 5
B=VxA, (6)
to obtain a set of inhomogeneous wave equations
o p
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In obtaining these equations it is assumed that the
potentials satisfy the Lorentz gauge condition

9¢
V-A=- — 9
Ho€o ot (9)
In this paper results for two dimensional problems
are presented, for which Egs. (7) and (8) reduce, on
rectangular cartesian grids, to
10%f O0*f 0°f

ZoE o o0 (10

where, ¢? = (uoeo) ! and for f € {¢, Az, Ay, A}, and
S e {pc/eo, oz, oy, toJ-}. It is clear from this set
of equations that for cartesian meshes an algorithm to
solve the inhomogeneous wave equation needs to be
developed, and then repeatedly used to solve for each
variable f.

Algorithms

Two different algorithms to solve the inhomoge-
neous wave equations, Egs. (7) and (8) or, on cartesian
grids, Eq. (10), are explored. The first algorithm con-
sists of rewriting the wave equation as a set of first
order equations and then using standard finite volume
high resolution schemes for hyperbolic equations to
solve the resulting system. This approach is more gen-
eral as it is based on the finite volume method and can
thus take into account arbitrary grids. The second ap-
proach used is that of finite differencing the equations
directly. Each of these methods is discussed briefly in
the following subsections.

Finite Volume approach

To use methods developed for hyperbolic systems of
equations, the wave operator in the governing equa-
tions are rewritten by defining,® 6

_of
u= o (11)
v=Vf, (12)

to get a set of linear first order hyperbolic equations
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This set of equations is solved using a high-resolution
shock capturing scheme based on solutions of the Rie-
mann problem. The source term is treated by using
Strang-splitting,® which splits each time step advance
into three sub—steps. The first step solves the source
free problem over a half time-step, the second the flux
free problem (but with sources) over a full time step,
and the third again solves the source free problem over
half a time step. At each step the values of the pre-
vious step are used as input data. Strang splitting
ensures that that the method maintains second order
accuracy in the presence of sources.

Finite Difference approach

To solve the inhomogeneous wave equations using
finite differences on arbitrary grids the Laplacian oper-
ator is recalculated by applying a grid transformation
from the physical space, (z,y), to the grid space, (£, 7),
using”

V2f=%divs-(\/ﬁglvgf) L)
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where G is the metric tensor, g = det G, and div¢ and
V¢ are the divergence and gradient operators in (&, n)
space respectively. With this the transformed equa-
tions become

1of 1
2ot /g

To solve this equation a second order central differ-
ence approximation in time and a third order upwind
biased difference approximation in space is used. The
third order accuracy is achieved by using the difference
approximations of the type

az_f: fa—3fs+2fsB
o&? -3 +¢kp

where A, B, BB are the downwind point and two up-
wind points respectively. The actual direction of dif-
ferencing used at a node depends on the local direction
of wave propagation at that node. This scheme, which
is similar to the QUICK (Quadratic Upwind Interpola-
tion of Convective Kinematics) scheme, ensures third
order accuracy while enforcing proper upwinding.

diVE . (\/§971V5f) =9. (16)

(17)

Boundary conditions

The boundary condition for Maxwell’s equations de-
pend on the type of problem being solved. In general,
in the absence of surface charges and surface cur-
rents, it is required that the tangential components of
the electric field vector and magnetic field vector are
continuous across boundaries. In addition, it is also
required that normal components of the electric dis-
placement vector and the magnetic flux density vector
are continuous across boundaries. Thus,?

nxE =nxE,; |, (18)

nxH_=nxH,y, (19)
and

n-D_=n-D,, (20)

n-B_=n-B,, (21)

where the subscripts +, — represent the exterior and
the interior of the boundary respectively, n is a unit
vector on the surface, and where, D = ¢gE and H =
1/poB. In general, it is straightforward to use these
equations, along with the definitions Egs. (5) and (6),
to derive the corresponding boundary conditions for
the potential equations.

The treatment of open boundaries, on the other
hand, is difficult. To treat open boundaries prop-
erly the outgoing waves at the boundary must get
“absorbed”, or equivalently, not show any spurious os-
cillations. A number of methods can be used to enforce
these absorbing boundary conditions (ABCs). One of
the simplest methods is to split the wave operator into

outgoing and ingoing wave equations (one way wave
equations, or the advection equation) and then solve
these split equations at the boundaries. For one di-
mensional problems this splitting can be done exactly,
and hence all outgoing waves can be completely ab-
sorbed. Unfortunately, in higher dimensions such a
splitting can only be done approximately. This ap-
proximate splitting causes a fraction of the outgoing
waves to get reflected back into the domain, which po-
tentially can cause large inaccuracies in the interior
solution. Moore et al.® have studied various operator
splitting methods and their effects on the interior so-
lution in detail. In our code the so called second order
Mur absorbing boundary conditions is implemented,
which is based on splitting the two—dimensional wave
operator to second order accuracy.

The second type of ABC explored is the Perfectly
Matched Layer (PML) method.? ! The PML method
essentially consists of adding a few layers of cells
outside the domain in which modified equations are
solved. These modified equations are constructed such
that they admit non oscillating evanescent waves as
solutions. This ensures that all incident waves decay
as they propagate into the PML layer, thus prevent-
ing any spurious reflections. In our code a recently
proposed optimal finite difference approximation of
PML!'! which ensures that the reflection from the
boundaries is minimum is implemented.

Results

To test our algorithms a number of simple prob-
lems for which analytical solutions are available were
solved. In most cases it was seen that on rectangu-
lar grids both the finite volume method based on the
Riemann solver, and the finite difference method based
on the QUICK scheme give similar results. The results
shown below are all obtained from the finite difference
scheme. It was found, though, that the finite volume
method does not perform well when solving problems
with open boundaries and shows considerable spurious
reflection. This problem arises due to the fact that on
open boundaries the outgoing wave speeds were set to
zero, which is equivalent to using the first order ac-
curate splitting of the one-dimensional wave operator.
Currently the use of PML layers in the finite volume
algorithm is being explored.

The first test problem is that of wave propagation
in a square wave guide L = 20 units to a side. For this
problem a 100 x 100 grid was used with a sinusoidal
initial condition ¢(z,y,0) = sin(2mrz/L)sin(27ry/L)
which is also an eigenfunction for the wave equation.
Fig. (1) shows the calculated potential at time ¢t = 20
while, Fig. (2) shows the potential ¢(x,y = 5,t = 20).
Comparison with analytical results for a square wave
guides shows that the computed results have an RMS
error of less than a percent.

The second test problem solved is that of evaluating
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Fig. 1 Calculated solution to wave guide problem
at t = 20. The wave guide is square and is initialized
with a sinusoidal potential.

Fig. 3 Calculated magnetic field for a square cur-
rent carrying conductor at time ¢ = 80.
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Fig. 4 Calculated magnetic field for a square cur-
Fig. 2 Calculated solution to wave guide problem rent carrying conductor at time t = 180.
at t = 20. The plot shows the potential along a line

parallel to the X—axis at y = 5.

70
the potential around a square current carrying conduc-
tor in an open domain. Fig. (3) shows the potential at 6ol 1
time t = 80. From this figure it is seen that the po-
tential has yet to reach a steady-state value. Fig. (4) sof 1
shows the potential at time ¢ = 180 at which the
potential has reached a steady state value. Fig.(5) gaor 1
shows the magnetic field along the X-axis. When g
compared with the exact magnetic field obtained by Zaol 1
using Ampere’s law it is seen that the total RMS er-
ror is about 1.5%. It should be mentioned that this 20 1
problem, although it seems simple, is a difficult one to
solve numerically, specially using finite volume meth- 10} ,
ods using approximate Riemann solvers. It is observed
that when these methods are applied to the field equa- 0 \ \ \ \
tions directly the calculated fields are approximately ° * © g i ® mo ”

zero everywhere except along the X and Y axis.

To tests the efficacy of the PML ABC a simulation
with a plane wave moving through a rectangular do-
main was run. The results for this test are shown in

Fig. 5 Calculated magnetic field for a square cur-
rent carrying conductor at time ¢ = 180. This figure
shows the magnetic field along the X—axis
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Fig (6). From the snapshots of the electric field shown
in this figure it is clear that the plane wave, on hitting
the PML region, gets completely absorbed.

Conclusions and further work

In this paper two different algorithms for solving
Maxwell’s equations in their mixed potential formu-
lation were presented. It was shown that the results
obtained by these algorithms compare well with ana-
lytical solutions. It was also shown that the difficult
case of open boundary conditions was handled cor-
rectly.

As an extension to the work presented here the PML
boundary conditions are being implemented for the for
the finite volume algorithm. Further, work is being
done to integrate the electromagnetic solvers devel-
oped here into the fluid solver to study plasma physics.

References

ITaflove, A. and Hagness, S. C., Computational Electro-
dynamics. The finite difference time domain method, Artech
House, 2000.

2Peterson, A. F., Ray, S. L., and Mittra, R., Computational
Methods for Electromagnetics, IEEE Press, 1997.

3Ishimaru, A., Electromagnetic Wave Propagation, Radia-
tion and Scattering, Prentice Hall, 1991.

4Shumlak, U. and Loverich, J., “Approximate Riemann
solver for the two fluid plasma model,” Journal of Computa-
tional Physics, 2003 (to appear).

5Leveque, R. J., Finite Volume Methods for Hyperbolic
Problems, Cambridge University Press, 2002.

8Serre, D., System of Conservation Laws, Vol. 1, Cambridge
University Press, 1999.

"Morse, P. M. and Feshbach, H., Methods of Theoretical
Physics, Vol. 1, McGraw-Hill Book Company, Inc., 1953.

8Moore, T. G., Blaschak, J. G., Taflove, A., and Kriegs-
mann, G. A., “Theory and Application of Radiation boundary
operators,” IEEE Transactions of Antennas and Propagation,
Vol. 36, No. 12, December 1988, pp. 1797-1812.

9Turkel, E. and Yefet, A., “Absorbing PML boundary lay-
ers for wave-like equations,” Applied Numerical Mathematics,
Vol. 27, 1998, pp. 533-557.

10Bonnet, F. and Poupaud, F., “Berenger absorbing bound-
ary condition with time finite-volume scheme for triangu-
lar meshes,” Applied Numerical Mathematics, Vol. 25, 1997,
pp. 333-354.

1 Asvadurov, S., Druskin, V., Guddati, M. N., and Knizh-
nerman, L., “On Optimal Finite-Difference approximation of
PML,” SIAM J. Numer. Anal., Vol. 41, No. 1, 2003, pp. 287—
305.

\\\\\\\\\\\\\\t‘i \\\\\\\\\
‘iﬁﬁﬁi\\\\\%\\\\ “
\\\\\\\\\\\\\ ““‘ i
\\\\\\\\\‘\&‘\&‘\%‘&“““

|

\\‘\‘\\\‘\\\‘\‘\\\\\\\\

“‘“\\\\\“‘
l ]
““““‘i{iﬁi\\\\\\\\\‘\‘\‘\‘\“‘“\“‘
R,

I“‘“ i

T
"\\\\\\\\\\\\\\\\\‘\‘““\\M‘g‘}‘}&&

Tl
ANy

60

20 30

T
T

\\\\\\\\W
m““““‘“‘ ‘
i “““}“&“
, i

—
%ﬁ

“‘ !
\\\\\\\\“‘““ s
-

c) t=120

Fig. 6 Propagation of a plane wave through a rect-
angular domain. The plane wave hits the far wall
and gets absorbed in the PML region. For this run
8 PML layers were used.
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