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Analytic Singularities of Solutions to Certain Nonlinear
Ordinary Differential Equations Associated

with p-Laplacian
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Abstract. Analytic singularities of local solutions to the nonlinear ordinary differential equation

(|ux |p−2ux)x + |u|q−2u = 0 are obtained through Briot-Bouquet type nonlinear analytic differential equations
with regular singularity.

1. Introduction

In connection with the determination of the best possible constant for Sobolev - Poincaré
inequalities, the following one dimensional nonlinear Dirichlet problem (1) and (2) associated

with the so-called p-Laplace operator has been studied by M. Ôtani ([3], [4]) and T. Idogawa

and M. Ôtani ([1]) and by others (e.g. P. Lindqvist [5]):

(|ux |p−2ux)x + |u|q−2u = 0 (1)

on (a, b) and

u(a) = u(b) = 0 (2)

where 1 < p < ∞.
The existence of a unique positive solution in (a, b), determination of the set of the

nontrivial solutions and classical differentiability of solutions are established in [3] and [4],

when u ∈ W
1,p
0 (a, b) satisfies (1) in the distribution sense.

We consider in this paper local solutions. Let I be a subinterval contained in [a, b]. A

real-valued function u is said to be a local solution to (1) on I , if u ∈ W 1,p(I ) and u satisfies
(1) in distribution sense. The objective of this paper is to give local analytic singularity of
solutions on I to (1), making use of Briot-Bouquet type nonlinear differential equations with
regular singularity. Our analytic expression provides convergent expansions when x tends to
a point x0 where u(x0) = 0 or ux(x0) = 0. They also reproduce easily the known differentia-
bility and analyticity obtained in [3], [4] and [1].
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CASE 1. Analytic Expression of a local solution u(x) on I near a point σ ∈ I where
u(σ) = 0 and ux(σ ) = A �= 0. We can assume A > 0 without loss of generality, since −u is
also a solution when u is a solution.

THEOREM 1.1. For any p and q satisfying 1 < p, q < ∞, there exists a unique
analytic function F(ξ) near the origin such that we have near x = σ

u(x) = (x − σ)F (|x − σ |q) . (3)

F(ξ) is a unique holomorphic solution to

(p − 1)[F(ξ) + qξF ′(ξ)]p−2[q(q + 1)F ′(ξ) + q2ξF ′′(ξ)] + (F (ξ))q−1 = 0 (4)

with F(0) = A and F ′(0) = −Aq−p+1

q(q+1)(p−1)
.

Consequently, u(x) has a convergent expansion near x = σ :

u(x) = A(x − σ) − Aq−p+1

q(q + 1)(p − 1)
(x − σ)|x − σ |q + · · · . (5)

CASE 2. Analytic expression of a local solution u(x) on I near τ ∈ I where u(τ) =
A �= 0 and ux(τ ) = 0. We can assume A > 0 without loss of generality as before.

THEOREM 1.2. For any p and q satisfying 1 < p, q < ∞, there exists a unique
analytic function G(ξ) near the origin such that we have near x = τ

u(x) = G

(
|x − τ | p

p−1

)
. (6)

G(ξ) is a unique holomorphic solution to a nonlinear equation:
(

p

p − 1

)p−1

(−G′(ξ))
p−2[G′(ξ) + pξG′′(ξ)] + (G(ξ))q−1 = 0 (7)

with G(0) = A and G′(0) = −p−1
p

A
q−1
p−1 .

Consequently, we have a convergent expansion near x = τ :

u(x) = A − p − 1

p
A

q−1
p−1 |x − τ | p

p−1 + · · · . (8)

In the extreme case p = q = 2, the equation (1) reduces to

uxx + u = 0 . (9)

We explain our heuristic procedure by this simplest case.
Assume σ = 0 for simplicity. The solution u(x) with u(0) = 0 and ux(0) = A has a

convergent power series expansion u(x) = A{ x
1! − x3

3! + x5

5! + · · · }, which is equal to A sin x.

If we put xF(x2) = A sin x, then F(ξ) is a well defined analytic function and satisfies a linear
equation with regular singularity

4ξF ′′(ξ) + 6F ′(ξ) + F(ξ) = 0
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with

F(0) = A , F ′(0) = −A

6
.

Next, we suppose u(0) = A and ux(0) = 0, assuming τ = 0. The solution u(x) has a

convergent expansion u(x) = A{1 − x2

2! + x4

4! + · · · }, which is equal to A cos x. If we put

G(x2) = A cos x, G(ξ) is a well defined analytic function and satisfies a linear equation with
regular singularity

4ξG′′(ξ) + 2G′(ξ) + G(ξ) = 0

with

G(0) = A , G′(0) = −A

2
.

Thus appear analytic differential equations with regular singularity. For general p and q , the
nonlinear equations with regular singularity (4) and (7) describe the solution near x0 = σ or
τ .

This research is a continuation of a joint work done in the framework of Japan and
the Philippines (JSPS-DOST) Joint Scientific Cooperation Program in the field of Breeder

Sciences. We thank Prof. M. Ôtani for his comment on related results and Prof. H. Tahara for
his advice on nonlinear ordinary differential equations in the complex domain.

2. Local uniqueness

We need local uniqueness of solutions to the Cauchy problem to (1). This will be proved
through localizing the energy equality obtained in [4] for global problems. Let I be a subin-
terval and [c, d] = Ī , its closure in [a, b].

PROPOSITION 2.1. Every nonzero local solution u on I has C1(Ī ) regularity and sat-
isfies for some positive constant C the energy equality

(p − 1)|ux(x)|p/p + |u(x)|q/q = C (10)

for all x ∈ Ī .

PROOF. At first, we recall an expression (11) below, which was obtained in [4]

and is a key equality in our discussion. Since W 1,p(I ) is embedded in C(Ī ), u is

continuous on Ī . Therefore, 〈(|ux |p−2ux)x + |u|q−2u, ϕ〉 = 〈|ux |p−2ux,−ϕx〉 +
〈− ∫ •

x0
|u(σ)|q−2u(σ)dσ, ϕx(·)〉 = 0 for arbitrarily fixed x0 ∈ [c, d] and for every

ϕ ∈ C∞
0 (c, d). Hence, there exists a constant K such that |ux(x)|p−2ux(x) =

− ∫ x

x0
|u(σ)|q−2u(σ)dσ + K. It follows that u is in C1([c, d]) and

|ux(x)|p−2ux(x) = −
∫ x

x0

|u(σ)|q−2u(σ)dσ + |ux(x0)|p−2ux(x0) . (11)
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We see that u is in C2([c, d]) where ux does not vanish.
If u(x) does not identically vanish on [c, d], |u(x)| is positive for a certain open subinter-

val (c0, d0) in I . We assume u(x) is positive on (c0, d0). Then, ux(x) is strictly decreasing in

(c0, d0). Since ux(x) vanishes at most once at x = x1 in (c0, d0), u(x) is of C2 in (c0, x1) and
(x1, d0). Multiplying the equation (1) by ux , we have ((p − 1)|ux(x)|p/p + |u(x)|q/q)x = 0
for all x ∈ (c0, d0) \ {x1}. Hence, by continuity, we have a positive constant C such that
(p − 1)|ux(x)|p/p + |u(x)|q/q = C for all x ∈ [c0, d0]. In case u(x) is negative, we have
similarly (10) on [c0, d0].

Next, starting with (c0, d0) where u(x) is positive, we enlarge the subinterval (c0, d0), as
long as u is positive. If (c0, d0) = (c, d), we have (10) on [c, d] and the proof is complete.
We assume c0 be the first zero point of u in continuation to the negative direction. Note that
the right derivative ux(c0) is positive. u(x) is negative in a left neighborhood of c0, since
ux(c0) > 0. While u is negative, we have the energy equality as in the positive case. We have
the same conclusion, starting with (c0, d0) where u(x) is negative.

At last, repeating this process, we arrive at c after at most finite zero points. In fact,
if there exists accumulation of zero points at ξ(≥ c) , we have u(ξ) = 0 and |ux(ξ)| > 0
by continuity and the energy equality (10). This contradicts to accumulation of zero points.
Thus, the energy equality (10) holds in [c, d0]. Similar argument to the right direction leads
us the energy equality (10) on [c, d]. �

PROPOSITION 2.2 (Local uniqueness). Let x0 be an arbitrary point in I . Local solu-
tions on I are uniquely determined by initial data u(x0) and ux(x0).

PROOF. Take any two solutions u1(x) and u2(x) on I such that u1(x0) = u2(x0) and
u1,x(x0) = u2,x(x0). Define a subset of I by U = {x ∈ I ; u1(x) = u2(x), and u1,x(x) =
u2,x(x)}. We will show that U is a closed and open set in I . Then, U = I and the desired
conclusion is proved.

Since U is clearly closed, we will show that U is open. Take any point x1 ∈ U . We
consider the three cases.

(a): if ui(x1)ui,x(x1) �= 0, x1 is an interior point of U by the usual uniqueness theorem
for the Cauchy problems of explicit analytic differential equations.

(b): if ui(x1) = ui,x(x1) = 0, ui(x)’s identically vanish on I in virtue of the energy
equality (10). Hence, U = I .

(c): if either ui(x1) or ui,x(x1) is 0 and if the other is not zero, we will show as follows
that x1 is an interior point of U .

If ui,x(x1) = 0, then |ui,x(x)|p−2ui,x(x) = − ∫ x

x1
|ui(σ )|q−2ui(σ )dσ by (11). If

ui(x1) = 0, then ui(x) = ∫ x

x1
ui,x(σ )dσ . We see through these equalities that there exists

ε0 in the case (c) such that u1(x)u2(x) and u1,x(x)u2,x(x) are positive on a deleted neighbor-
hood D of x1, that is, D = (x1 − ε0, x1) ∪ (x1, x1 + ε0). Especially, if u1(x2) = u2(x2) for
some x2 ∈ D, then x2 ∈ U by (10). Moreover, x2 is an interior point of U by the case (a).
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Assume that x1 is not an interior point of U . Then, there exsits ξ ∈ D such that ξ /∈ U .
Therefore, u1(ξ) �= u2(ξ). We assume that ξ ∈ (x1, x1 + ε0).

We claim that u1(x) �= u2(x) on (x1, ξ ]. Put Y = {x ∈ (x1, ξ); u1(x) = u2(x)}. As-
sume that Y �= φ. Since Y is open and closed in (x1, ξ), Y = (x1, ξ). Hence, u1(ξ) = u2(ξ).
This contradicts to the definition of ξ . Hence, Y = φ. We can then assume that u1(x) <

u2(x) on x ∈ (x1, ξ ]. We have from (11) |u1,x(x)|p−2u1,x(x) − |u2,x(x)|p−2u2,x(x) =
− ∫ x

x1
{|u1(σ )|q−2u1(σ ) − |u2(σ )|q−2u2(σ )}dσ . Therefore, u1,x(x) > u2,x(x) on (x1, ξ ]. On

the other hand, u1(x) − u2(x) = ∫ x

x1
{u1,x(σ ) − u2,x(σ )}dσ . Hence, u1(x) > u2(x), which

contradicts to the above inequality.
Similarly, we have contradiction, when ξ ∈ (x1 − ε0, x1). Therefore, x1 is an interior

point of U . Since x1 is arbitrary, U is an open set. The proof of the proposition is com-
plete. �

3. Analytic singularities

We shall now describe local analytic singularities of the solution u(x) to (1). If u(x0) �= 0
and ux(x0) �= 0, the solution u is real analytic at x = x0 through Cauchy’s theorem and the
local uniqueness in the previous section. Therefore, we restrict ourselves near a point x0 = σ

where u(σ) = 0 and ux(σ ) = A �= 0 and at a point x0 = τ where u(τ) = A �= 0 and
ux(τ ) = 0.

We quote a classical Briot-Bouquet type theorem on the unique existence of analytic
solution to a system of analytic nonlinear ordinary differential equations with singularity of
regular type (e.g. [1] p.261, Prop.1.1.1).

THEOREM 3.1. Consider a system of equations

ξy ′
i (ξ) = Ui(ξ, y1, y2) (i = 1, 2) , (12)

where the Ui(ξ, y1, y2) are analytic at ξ = 0, y1 = 0, y2 = 0 and satisfy

Ui(0, 0, 0) = 0 (i = 1, 2) .

If none of the eigenvalues of the matrix {∂Ui/∂yj ; i, j = 1, 2} at (0, 0, 0) is a positive
integer, then the equation (12) has a unique analytic solution at ξ = 0 satisfying yi(0) = 0,
i = 1, 2.

CASE 1. Analytic Expression of a local solution u(x) on I near a point σ where
u(σ) = 0 and ux(σ ) = A �= 0. We assume A > 0 without loss of generality, since −u

is also a solution when u is a solution.

THEOREM 3.2. For any p and q satisfying 1 < p, q < ∞, there exists a unique
analytic function F(ξ) in a neigborhood of the origin such that we have near x = σ

u(x) = (x − σ)F (|x − σ |q) . (13)
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F(ξ) is a holomorphic solution to

(p − 1)[F(ξ) + qξF ′(ξ)]p−2[q(q + 1)F ′(ξ) + q2ξF ′′(ξ)] + (F (ξ))q−1 = 0 (14)

with

F(0) = A and F ′(0) = B , (15)

where B = −Aq−p+1

q(q+1)(p−1)
.

Consequently, u(x) has an expansion near x = σ :

u(x) = (x − σ){A + B|x − σ |q + C|x − σ |2q + · · · } , (16)

and C = 1+3q−p−pq

2(q+1)q2(2q+1)(p−1)2 A
2q−2p+1.

PROOF. At first, we prove unique existence of the solution F(ξ) to (14) with (15).
We reduce equation (14) by change of variable

F(ξ) = A + Bξ + y(ξ) = A − Aq−p+1

q(q + 1)(p − 1)
ξ + y(ξ)

into

ξy ′′(ξ) = −q + 1

q
y ′(ξ) + Aq−p+1

q2(p − 1)

−

(
A − Aq−p+1

q(q+1)(p−1)
ξ + y(ξ)

)q−1

q2(p − 1)

[
A − Aq−p+1

q(p−1)
ξ + y(ξ) + qξy ′(ξ)

]p−2 (17)

with

y(0) = y ′(0) = 0 . (18)

Introducing y1 = y(ξ) and y2 = y ′(ξ) will convert (17) into the following system of first
order equations:

ξy ′
1(ξ) = U1(ξ, y1, y2) = ξy2, (19)

ξy ′
2(ξ) = U2(ξ, y1, y2) = − (q + 1)

q
y2 + Aq−p+1

q2(p − 1)

−
(
A − Aq−p+1

q(q+1)(p−1)
ξ + y1

)q−1

q2(p − 1)
[
A − Aq−p+1

q(p−1)
ξ + y1 + qξy2

]p−2
(20)
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with

y1(0) = y2(0) = 0 . (21)

We have clearly U1(0, 0, 0) = U2(0, 0, 0) = 0. Since we have also
⎛
⎜⎜⎝

∂U1

∂y1
(0, 0, 0) ,

∂U1

∂y2
(0, 0, 0)

∂U2

∂y1
(0, 0, 0) ,

∂U2

∂y2
(0, 0, 0)

⎞
⎟⎟⎠ =

⎛
⎝ 0 , 0

(p − q − 1)Aq−p

q2(p − 1)
, −q + 1

q

⎞
⎠ ,

we have nonpositive eigenvalues 0 and −(q + 1)/q . By Theorem 3.1, we have a unique
analytic solution y(ξ) to (17) with (18). This gives an analytic solution F(ξ) = A+Bξ +y(ξ)

to (14) with (15).
Next, (x − σ)F (|x − σ |q) is a C2 function near σ . It satisfies (1) with the prescribed

Cauchy data. By Proposition 2.2, it is equal to the unique solution u(x) with the same Cauchy
data.

Putting

y1 ∼ Cξ2 + o(ξ2) , y2 ∼ 2Cξ + o(ξ) , (22)

we substitute them into (20). We have

C = 1 + 3q − p − pq

2(q + 1)q2(2q + 1)(p − 1)2
A2q−2p+1 . (23)

�

COROLLARY 3.1 ([1], [4]). (i) When q is an even integer more than 1, the solution
u(x) is real analytic near σ .

(ii) When q is not an even integer, the solution u(x) is of class C<q> at σ , where < q >

is the least integer greater than or equal to q .

CASE 2. Analytic expression of a local solution u(x) on I near a point τ where u(τ) =
A and ux(τ ) = 0. As in the case 1, we can assume without loss of generality that A > 0 by
symmetry of the equation.

THEOREM 3.3. For any p and q satisfying 1 < p, q < ∞, there exists a unique
analytic function G(ξ) in a neigborhood of the origin such that we have near x = τ

u(x) = G(|x − τ | p
p−1 ) , (24)

where G(ξ) is a holomorphic solution to the nonlinear equation:
(

p

p − 1

)p−1

(−G′(ξ))
p−2 [

G′(ξ) + pξG′′(ξ)
] + (G(ξ))q−1 = 0 (25)

with

G(0) = A and G′(0) = B , (26)



236 LORNA I. PAREDES AND KOICHI UCHIYAMA

where B = −p−1
p

A
q−1
p−1 .

Consequently, we have a convergent expansion near x = τ :

u(x) = A + B|x − τ | p
p−1 + C|x − τ | 2p

p−1 + · · · , (27)

where C = q−1
2(2p−1)

(
p−1
p

)2
A

1+ 2(q−p)
p−1 .

PROOF. We show unique existence of the solution G(ξ). Setting

G(ξ) = A − p − 1

p
A

q−1
p−1 ξ + z(ξ) ,

we obtain an equation for z(ξ):

ξz′′ = p − 1

p2 A
q−1
p−1 − 1

p
z′ − 1

p

(
p − 1

p

)p−1 (A − p−1
p

A
q−1
p−1 ξ + z)q−1

(
p−1
p

A
q−1
p−1 − z′)p−2

(28)

with

z(0) = 0 and z′(0) = 0 . (29)

If we let z1 = z(ξ) and z2 = z′(ξ), the corresponding system of first order equations is

ξz′
1(ξ) = V1(ξ, z1, z2) = ξz2, (30)

ξz′
2(ξ) = V2(ξ, z1, z2) = p − 1

p2
A

q−1
p−1 − z2

p

− 1

p

(
p − 1

p

)p−1

(
A − p−1

p
A

q−1
p−1 ξ + z1

)q−1

(
p−1
p

A
q−1
p−1 − z2

)p−2
(31)

with

z1(0) = z2(0) = 0 . (32)

Note that V1(0, 0, 0) = V2(0, 0, 0) = 0. Since we have also
⎛
⎜⎜⎝

∂V1

∂z1
(0, 0, 0)

∂V1

∂z2
(0, 0, 0)

∂V2

∂z1
(0, 0, 0)

∂V2

∂z2
(0, 0, 0)

⎞
⎟⎟⎠ =

⎛
⎝ 0 0

− (p − 1)(q − 1)

p2
A

q−p
p−1 −p − 1

p

⎞
⎠ ,

we have nonpositive eigenvalues 0 and −(p − 1)/p. By Theorem 3.1, we have a unique
analytic solution z(ξ) to (28) with (29). This gives an analytic solution G(ξ) = A+Bξ +z(ξ)

to (25) with (26).
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Next, we show v(x) = G(|x − τ | p
p−1 ) is a solution near τ . By construction, v(x) is a

real analytic solution to (1) in (τ, τ + ε) and in (τ − ε, τ ) for sufficiently small positive ε,
where v(x) and vx(x) have constant signature. We notice that vx(x) is continuous and vxx(x)

is integrable on (τ − ε, τ + ε), since p − 1 is positive. Hence, v(x) is a local solution on
(τ − ε, τ + ε) with the prescribed Cauchy data. By Proposition 2.2, v(x) = u(x). Using the
equation (30) and (31), C is determined as before. �

COROLLARY 3.2 ([1], [4]). (i) If p/(p − 1) is an even integer, i.e. p = (2m +
2)/(2m + 1) (m = 0, 1, 2, · · · ), u(x) is real analytic at τ .

(ii) If p/(p − 1) is not an even integer, the solution u(x) is of class C
〈 2−p

p−1 〉+1 at τ ,
where 〈r〉 is the least integer greater than or equal to r . Especially, when 1 < p ≤ 2, u(x) is

of class C2 at τ . When 2 < p, u(x) is not of class C2 at τ .

Derivation of equations for F and G with the prescribed Cauchy data is given in the
appendix A and B as below.

A. Asymptotic expansion at σ

We compute assuming σ = 0. Since u(0+) = 0 and ux(0+) = A > 0, we assume a
differentiable asymptotic expansion of the form

u(x) ∼ Ax + Bxβ + o(xβ) as x → 0+ (33)

where 1 < β.
Since |ux | = ux and |u| = u, (1) becomes

(p − 1)(ux)
p−2uxx + uq−1 = 0 . (34)

If we differentiate (33) and substitute this in (34), we get

(p − 1)(A + Bβxβ−1 + o(xβ−1))
p−2

(Bβ(β − 1)xβ−2 + o(xβ−2))

+ (Ax + Bxβ + o(xβ))
q−1 ∼ 0 .

Expanding the left hand side, we have

(p − 1)(Ap−2 + (p − 2)Ap−3Bβxβ−1 + o(xβ−1))(Bβ(β − 1)xβ−2

+ o(xβ−2)) + xq−1(Aq−1 + (q − 1)Aq−2Bxβ−1 + o(xβ−1)) ∼ 0 .

Therefore, we have

(p − 1)Ap−2Bβ(β − 1)xβ−2 + o(xβ−2) + Aq−1xq−1 + o(xq−1) ∼ 0
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We get the following:
1. β − 2 = q − 1 and hence β = q + 1,

2. (p − 1)Ap−2Bβ(β − 1) + Aq−1 = 0 and hence B = −Aq−p+1

q(q+1)(p−1)
. Next, we assume

u(x) ∼ (−A)(−x) + B ′(−x)β + o(xβ) as x → 0− .

Since |ux | = ux and |u| = −u, (1) becomes

(p − 1)(ux)
p−2uxx − (−u)q−1 = 0 . (35)

We have β = q + 1 and B ′ = −B as above.
We postulate a solution of the form u(x) = xF(|x|q) with F(0) = A and F ′(0) = B.

When x > 0, substituting u(x) = xF(xq) into the equation (34) we get

(p − 1)(F (ξ) + qξF ′(ξ))
p−2

(q(q + 1)xq−1F ′(ξ)

+q2x2q−1F ′′(ξ)) + xq−1(F (ξ))q−1 = 0

where ξ = xq . Dividing both sides by xq−1, we have

(p − 1)[F(ξ) + qξF ′(ξ)]p−2[q(q + 1)F ′(ξ) + q2ξF ′′(ξ)] + (F (ξ))q−1 = 0 , (36)

for x > 0.
When x < 0, substituting u(x) = xF((−x)q) into (35), we get

(p−1)[F(ξ) + q(−x)qF ′(ξ)]p−2[−q(q + 1)(−x)q−1F ′(ξ)

− q2(−x)2q−1F ′′(ξ)] − (−x)q−1(F (ξ))q−1 = 0 ,

where ξ = (−x)q. Simplifying this, we obtain the same equation for F as (36).

B. Asymptotic expansion near x = τ

We compute assuming τ = 0. Since u(0−) = A > 0 and ux(0−) = 0, we assume this
time that we have a differentiable asymptotic expansion

u(x) ∼ A + B(−x)β + o((−x)β) as x → 0− , (37)

where 1 < β. Since |u| = u and |ux | = ux by (11), (1) becomes (34).
If we differentiate (37) and substitute this in (34), we get

(p − 1)(−Bβ(−x)β−1 − o((−x)β−1))p−2(Bβ(β − 1)(−x)β−2

+ o((−x)β−2)) + (A + B(−x)β + o((−x)β))q−1 ∼ 0 .

Expanding the left hand side, we have
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(p − 1)(−Bβ)p−2(−x)(β−1)(p−2)[1 + o(1)][Bβ(β − 1)(−x)β−2

+ o((−x)β−2)] + Aq−1
[

1 + (q − 1)
B

A
(−x)β + o((−x)β)

]
∼ 0 .

Therefore, we have

−(p−1)(−Bβ)p−1(β − 1)(−x)β(p−1)−p + o((−x)β(p−1)−p)

+ Aq−1 + (q − 1)Aq−2B(−x)β + o((−x)β) ∼ 0 .

We have necessarily:
1. β(p − 1) − p = 0 and hence β = p

p−1 ,

2. −(p − 1)(−Bβ)p−1(β − 1) + Aq−1 = 0 and hence B = −p−1
p

A
q−1
p−1 .

Next, we assume

u(x) ∼ A + B ′xβ + o(xβ) as x → 0+ .

Since |ux | = −ux and |u| = u, (1) becomes

(p − 1)(−ux)
p−2uxx + uq−1 = 0 . (38)

We have β = p/(p − 1) and B ′ = B as above. Based on this trial computation, we seek for
a solution of the form

u(x) = G(|x| p
p−1 )

with G(0) = A and G′(0) = B.
When x < 0, we get from (34)

(p − 1)

[ −p

p − 1
(−x)

1
p−1 G′(ξ)

]p−2[
p

(p − 1)2 (−x)
2−p
p−1 G′(ξ) +

(
p

p − 1

)2

(−x)
2

p−1 G′′(ξ)

]

+ (G(ξ))q−1 = 0 ,

where ξ = (−x)
p

p−1 . Simplifying this, we obtain
(

p

p − 1

)p−1

(−G′(ξ))
p−2 [

G′(ξ) + pξG′′(ξ)
] + (G(ξ))q−1 = 0 . (39)

When x > 0, substituting u(x) = G(x
p

p−1 ) into (38), we get

(p − 1)

[ −p

p − 1
x

1
p−1 G′(ξ)

]p−2[
p

(p − 1)2
x

2−p
p−1 G′(ξ) +

(
p

p − 1

)2

x
2

p−1 G′′(ξ)

]

+ (G(ξ))q−1 = 0 ,

where ξ = x
p

p−1 .
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Simplifying this, we obtain the same equation for G as (39).
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