
Programming for Fujitsu Supercomputers

Koh Hotta

The Next Generation Technical Computing

Fujitsu Limited

To Programmers who are busy on their own research,

Fujitsu provides environments for

Parallel Programming

Tuning Parallel Programs

Copyright 2012 FUJITSU LIMITED

Technical Computing Suite

Copyright 2012 FUJITSU LIMITED

System Software Stack

User/ISV Applications

High-performance file system

 Lustre-based distributed file system
 High scalability
 IO bandwidth guarantee
 High reliability & availability

HPC Portal / System Management Portal

Super Computer: PRIMEHPC FX10

System operations management

 System configuration management
 System control
 System monitoring
 System installation & operation

Job operations management

 Job manager
 Job scheduler
 Resource management
 Parallel execution environment

VISIMPACTTM

 Shared L2 cache on a chip
 Hardware intra-processor

synchronization

Compilers

Support Tools

MPI Library
 Scalability of High-Func.
 Barrier Comm.

 IDE
 Profiler & Tuning tools
 Interactive debugger

 Hybrid parallel programming
 Sector cache support
 SIMD / Register file extensions

Linux-based enhanced Operating System

PC cluster: PRIMERGY

Red Hat Enterprise Linux

HPC-ACE architecture & Compiler

Expanded Registers

 reduces the wait-time of instructions

SIMD instructions

 reduces the number of instructions

Sector Cache

 improves cache efficiency

Copyright 2012 FUJITSU LIMITED

Compiler Gives Life to HPC-ACE

NPB3.3 LU: operation wait-time dramatically reduced

NPB3.3 MG: number of instruction is halved

0

0.2

0.4

0.6

0.8

1

1.2

Memory wait Cache misses
Operation wait Instructions committed

NPB3.3 LU
Execution time comparison (relative values)

FX1 PRIMEHPC FX10

Faster

Efficient use of

Expanded registers

reduces operation wait

0

0.2

0.4

0.6

0.8

1

1.2

Memory wait Cache misses
Operation wait Instructions committed

NPB3.3 MG
Execution time comparison (relative values)

FX1 PRIMEHPC FX10

Faster

SIMD implementation

reduces Instructions

committed

Copyright 2012 FUJITSU LIMITED

Copyright 2012 FUJITSU LIMITED

Parallel Programming for Busy Researchers

Large # of Parallelism for Large Scale Systems

 Large # processes need Large Memory & Overhead

• hybrid thread-process programming to reduce number of processes

 Hybrid parallel programming is annoying for programmers

Even for multi-threading, the more coarse grain, the better.

 Procedure level or outer loop parallelism is desired

 Little opportunity for such coarse grain parallelism

 System support for “fine grain” parallelism is required

VISIMPACT solves these problems

Mechanism that treats multiple cores as one high-speed CPU

through automatic parallelization

 Just program and compile, and enjoy high-speed

You need not think about hybrid

Copyright 2012 FUJITSU LIMITED

VISIMPACTTM

 (Virtual Single Processor by Integrated Multi-core Parallel Architecture)

Memory

CPU

Core

L2$

 Process

Core

L2$

 Process

Memory

CPU

Core

Core

L2$

Process
Inter-core
thread
parallel
processing

VISIMPACTTM

 (Virtual Single Processor by Integrated Multi-core Parallel Architecture)

Technologies to make multiple cores

to single high speed CPU

 Shared L2 cache memory to avoid false sharing

 Inter-core hardware barrier facilities to reduce overhead of

thread synchronization

Thread parallel programs

use these technologies

Copyright 2012 FUJITSU LIMITED

Core • • •

Barrier synchronization

Thread 1

Hardware barrier synchronization: 10

times faster than conventional system

T
im

e

• • •

• • •

Core

Thread 2

Core

Thread N

thread & process Hybrid-Parallel Programming

 thread parallel in a chip

 Auto-parallel

or explicit parallel description using

OpenMPTM API

 VISIMPACT enables low overhead

thread execution

 process parallel beyond CPU

 MPI programming

 Collective communication is tuned

using Tofu barrier facility

Copyright 2012 FUJITSU LIMITED

MPI Software stack

MPI

PML

BML

BTL
openib BTL

ob1 PML

r2 BML

OpenFabrics Verbs

MPI

PML

(Point-to-Point Messaging Layer)

BML

(BTL Management Layer)

BTL

(Byte Transfer Layer)

COLL

Original Open MPI Software Stack

(Using openib BTL)

MPI

BML

BTL
tofu BTL

r2 BML

Tofu Library

MPI

BML

BTL

tofu

LLP

COLL

 ob1 PML PML

tofu common

Supported special Bcast・Allgather・

Alltoall・Allreduce for Tofu

Special Hardware dependent layer

For Tofu Interconnect

LLP (Low Latency Path) Providing Common Data processing

and structures for BTL・LLP・COLL

Rendezvous Protocol Optimization etc

Adapting
to tofu

Extension
Extension

Hardware
dependent

Copyright 2012 FUJITSU LIMITED

Customized MPI Library for High Scalability

Point-to-Point communication

•Two methods for inside communication

•The transfer method selection by

•the data length

•process location

•number of hops

Collective communication

•Barrier, Allreduce, Bcast and Reduce

use Tofu-barrier facility

•Bcast, Allgather, Allgatherv, Allreduce

and Alltoall use Tofu-optimized

algorithm

Copyright 2012 FUJITSU LIMITED

Quotation from K computer
performance data

Copyright 2012 FUJITSU LIMITED

Application Tuning Cycle and Tools

Execution

MPI Tuning

CPU Tuning

Rank

mapping

Collecting

Job Info.

PAPI

Vampir-trace

Profiler

Analysis &

Tuning

RMATT

Tofu-PA

Open Source

Tools

Vampir-trace

Profiler

Overall

tuning

Fujitsu Tools

Copyright 2012 FUJITSU LIMITED

Program Profile (Event Counter Example)

 3-D job example

 Display 4096 procs in

16 x 16 x 16 cells

 Cells painted in colors

according to the proc status

(e.g. CPU time)

 Cut a slice of jobs along

x-, y-, or z-axis to view

Copyright 2012 FUJITSU LIMITED

Optimized Rank Map

Reduce number of hop and congestion

Rank Mapping Optimization (RMATT)

x,y,z order mapping

Remapping used RMATT

22.3ms

5.5ms

•0 •1 •2

•3 •4 •5

•6 •7 •8

•8 •6 •2

•1 •3 •0

•5 •7 •4

•Rank number : 4096 rank

•Network construction : 16x16x16 node (4096)

Apply MPI_Allgather Communication Processing Performance

Network Construction

Communication Pattern (Communication

processing contents between Rank)

RMATT

4 times performance Up

input

output

apply

Copyright 2012 FUJITSU LIMITED

