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Preface i3 213

In the 17th century, Sir Isaac Newton formulated his now famous laws of mechanies.
These remarkably simple laws served to describe and predict the motions of observable
objects in the universe, including those of the planets of our solar system.

Early in the 20th century it was discovered that various theoretical conclusions de-
rived from Newton's laws were not in accord with certain conclusions deduced from theories
of electromagnetism and atomic phenomena which were equally well founded experimentally.
These discrepancies led to Einstein’s relativistic mechanics which revolutionized the con-
cepts of space and time, and to quantum mechanics. For objects which move with speeds
much less than that of light and which have dimensions large compared with those of atoms
and molecules Newtonian mechanics, also called classical mechanics, is nevertheless quite
satisfactory. For this reason it has maintained its fundamental importance in science and
engineering.

It is the purpose of this book to present an account of Newtonian mechanics and its
applications. The book is designed for use either as a supplement to all current standard
textbooks or as a textbook for a formal course in mechanics. It should also prove useful to
students taking courses in physics, engineering, mathematics, astronomy, celestial me-
chanics, aerodynamics and in general any field which needs in its formulation the basic
principles of mechanics.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
s0 vital to effective learning. Numerous proofs of theorems and derivations of basic re-
sults are included in the solved problems. The large number of subplementary problems
with answers serve as a complete review of the material of each chapter,

Topies covered include the dynamics and statics of a particle, systems of particles and
rigid bodies. Vector methods, which lend themselves so readily to concise notation and to
geometric and physical interpretations, are introduced early and used throughout the book.
An account of vectors is provided in the first chapter and may either be studied at the be-
ginning or referred to as the need arises. Added features are the chapters on Lagrange’s
equations and Hamiltonian theory which provide other equivalent formulations of
Newtonian mechanics and which are of great practical and theoretical value.

Considerably more material has been included here than can be covered in most courses.
This has been done to make the book more flexible, to provide a more useful book of
reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank the staff of the Schaum Publishing Company
for their splendid cooperation.

P T M. R. SPIEGEL
Rensselaer Polytechnic Institute A fﬁ_‘;‘: el

February, 1967 f T
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 VECTORS, VELOCITY
"and ACCELERATION

Chapter 1

MECHANICS, KINEMATICS, DYNAMICS AND STATICS

Mechanics is a branch of physics concerned with motion or change in position of
physical objects. It is sometimes further subdivided into:

1. Kinematies, which is concerned with the geometry of the motion,
2. Dynamics, which is concerned with the physical causes of the motion,

3. Staties, which is concerned with conditions under which no motion is apparent.

AXIOMATIC FOUNDATIONS OF MECHANICS

An axiomatic development of mechanics, as for any science, should contain the following
basic ingredients:

1. Undefined terms or concepts. This is clearly necessary since ultimately any
definition must be based on something which remains undefined.

2. Unproved assertions. These are fundamental statements, usually in mathematical
form, which it is hoped will lead to valid descriptions of phenomena under study.
In general these statements, called axioms or postulates, are based on experimental
observations or abstracted from them. In such case they are often called laws.

3. Defined terms or concepts. These definitions are given by using the undefined
terms or concepts.

4. Proved assertions. These are often called theorems and are proved from the
definitions and axioms.

An example of the “axiomatic way of thinking” is provided by Ewuclidean geometry in
which point and line are undefined concepts.

MATHEMATICAL MODELS

A mathematical description of physical phenomena is often simplified by replacing
actual physical objects by suitable mathematical models. For example in describing the
rotation of the earth about the sun we can for many practical purposes treat the earth
and sun as points.

SPACE, TIME AND MATTER

From everyday experience, we all have some idea as to the meaning of each of the
following terms or concepts. However, we would certainly find it difficult to formulate
completely satisfactory definitions. We take them as undefined coicepts.

1



2 VECTORS, VELOCITY AND ACCELERATION [CHAP. 1

1. Space. This is closelv related to the concepts of point, pesition, direction and
displacement. Measarement in space involves the concepts of length or distance,
with which we assume familiarity. Units of length are feet, meters, miles, etc.
In this book we assume that space is Fuclidean, i.e. the space of Ewclid's geometry.

2. Time. This concept is derived from our experience of having one ecwent taking
place after, before or simultaneous with another event. Measuremént of time is
achieved, for example, by use of clocks. Units of time are seconds, hours, years, ete,

3. Matter. Physical objects are composed of “small bits of matter” such as atoms
and molecules. From this we arrive at the concept of a material object called a
particle which can be considered as occupying a point in space and perhaps moving
as time goes by. A measure of the “quantity of matter” associated with a particle
is called its mass, Units of mass are grams, kilograms, etec. Unless otherwise
stated we shall assume that the mass of a particle does not change with time.

Length, mass and time are often called dimensions from which other physical quantities
are constructed. For a discussion of units and dimensions see Appendix A, Page 339.

SCALARS AND VECTORS

Various quantities of physies, such as length, mass and time, require for their specifica-
tion a single real number (apart from units of measurement which are decided upon in
advance). Such quantities are called scalars and the real number is called the magnifude
of the quantity. A scalar is represented analvtically by a letter such as t, m, etc.

Other quantities of physics, such as displacement, require for their specification a
direction as well as magnitude. Such quantities are called vectors. A vector is repre-
sented analytically by a bold faced letter such as A in Fig. 1-1. Geometrically it is
represented by an arrow PQ where P is called the initial point and @ is called the terminal
point, The magnitude or length of the vector is then denoted by |A| or A.

Q A S
A
B —~A
P
Fig.1-1 Fig. 1-2 Fig.1-3

VECTOR ALGEBRA

The operations of addition, subtraction and multiplication familiar in the algebra of
real numbers are with suitable definition capable of extension to an algebra of vectors.
The following definitions are fundamental.

1. Two vectors A and B are equal if they have the same magnitude and direction
regardless of their initial points. Thus A=B in Fig. 1-2 above.

2. A vector having direction opposite to that of vector A but with the same length is
denoted by —A as in Fig. 1-3 above.

3. The sum or resultant of vectors A and B of Fig. 1-4(a) below is a vector C formed
by placing the initial point of B on the terminal point of A and joining the initial
point of A to the terminal point of B [see Fig. 1-4(b) below]. We write C = A+B.
This definition is equivalent to the parallelogram law for vector addition as indicated
in Fig. 1-4(c) below.
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a -
2 S / e
C=A+B _~~
/
(a)

C=A+B /i)
B B

ib) (¢)
Fig.1-4

Extensions to sums of more than two vectors are immediate. For example,
Fig. 1-5 below shows how fo obtain the sum or resultant E of the vectors A,B,C
and D.

Fig. 1-5

4. The difference of vectors A and B, represented by A —B, is that vector C which
when added to B gives A. Equivalently, A— B may be defined as A+ (-B). If
A =B, then A — B is defined as the null or zero vector represented by 0. This has
a magnitude of zero but its direction is not defined.

5. The product of a vector A by a scalar p is a vector pA or Ap with magnitude
Ip| times the magnjtude of A and direction the same as or opposite to that of A
according as p is positive or negative. If p =0, pA =0, the null vector.

LAWS OF VECTOR ALGEBRA
If A,B and C are vectors, and p and ¢ are scalars, then

1. A+B=B+A Commutative Law for Addition

2. A+(B+C) = (A+B)+C Associative Law for Addition

3. p(qA) = (pq)A = q(pA) Associative Law for Multiplication
4. (p+q9A = pA +qgA Distributive Law

5. p(A+B) = pA + pB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is
defined. On pages 4 and 5 we define products of vectors.

UNIT VECTORS

Vectors having unit length are called unit vectors. If A is a vector with length A4 >0,
then A/A =a is a unit vector having the same direction as A and A = Aa.

RECTANGULAR UNIT VECTORS

The rectangular unit vectors i, j and k are mutually perpendicular unit vectors having
directions of the positive x, ¥ and z axes respectively of a rectangular coordinate system
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[see Fig. 1-6]. We use right-handed rectangular coordinate
systems unless otherwise specified. Such systems derive
their name from the fact that a right threaded screw ro-
tated through 90° from Oz to Oy will advance in the posi-
tive z direction. In general three vectors A, B and C which
have coincident initial points and are not coplanar are said
to form a right-handed system or dextral system if a right
threaded screw rotated through an angle less than 180° from
A to B will advance in the direction C [see Fig. 1-7 below|. Fig.1-6

Fig.1-7 Fig.1-8

COMPONENTS OF A VECTOR

Any vector A in 3 dimensions can be represented with initial point at the origin O of
a rectangular coordinate system [see Fig. 1-8 above]. Let (4, Az, As) be the rectangular
coordinates of the terminal point of vector A with initial point at O. The vectors Aii,
Ajj and Azk are called the rectangular component vectors, or simply component vectors,
of A in the 2, ¥ and 2 directions respectively. A, A, and As are called the rectangular
components, or simply components, of A in the z, ¥ and z directions respectively.

The sum or resultant of A.i, A:j and Ak is the vector A, so that we can write

A= A+ Aj+ Ak (1)
The magnitude of A is A= |A = VA2 + A2+ A? (2)

In particular, the position vector or radius vector r from O to the point (x,y,z2) is

written
r = zi+yj+zk (3)

and has magnitude r = [r| = Va2 + 42 +22.

DOT OR SCALAR PRODUCT

The dot or scalar product of two vectors A and B, denoted by A-B (read A dot B)
is defined as the product of the magnitudes of A and B and the cosine of the angle
between them. In symbols,

A'B = AB cos¥, 0=9¢

A

v (4)

Note that A+B is a scalar and not a vector.
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The following laws are valid:

1. A‘B = B‘A Commutative Law for Dot Products
2. A-(B+C) = A‘B+A-C Distributive Law
3. p(A-B) = (pA)'B = A-(pB) = (A-B)p, where p isa scalar.
4 i'i=jj=k'k=1, i*j=jk=ki=0
5 If A= A1i+Agj+A3k and B = Bli+sz+Bsk, then
AB = AB:+ A:B: + A3B;
A'A = A’ = A2+ A2 + A
BB = B* = B!+ B}+ Bj
6. If A‘B = 0 and A and B are not null vectors, then A and B are perpendicular.

CROSS OR VECTOR PRODUCT

The cross or vector product of A and B is a vector C = A X B (read A cross B). The
magnitude of A x B is defined as the product of the magnitudes of A and B and the sine
of the angle between them. The direction of the vector C = A x B is perpendicular to the
plane of A and B and such that A, B and C form a right-handed system. In symbols,

AxB = ABsindu, 0=6=~r (5)

where u is a unit vector indicating the direction of AxXxB. If A=B or if A is parallel
to B, then sin# =0 and we define AxB = 0.

The following laws are valid:
1. AxB=-BxA (Commutative Law for Cross Products Fails)

2. AX(B+C) = AxB+AxC Distributive Law
3. p(AXB) = (pA)XB = AX(pB) = (AXB)p, where p is a scalar.
4, iXi=jXj=kxk =0, ixXj=k, jxk=1 kXi=]
5. If A= Aii+Aj+Ask and B = Bii+ B;j + B:sk, then
i ] k
AxB = A, A A
B, B: Bs

6. |A X B| = the area of a parallelogram with sides A and B.
7. If AxB =0 and A and B are not null vectors, then A and B are parallel.

TRIPLE PRODUCTS
The scalar triple product is defined as

Al AE As
A-(BxC) = |B: B: Bs (6)
Cl CE Cﬂ

where A = A i+ Ayj+Ask, B = Bii+ B:j+ Bk, C = Cii+C:j+ Csk. It represents the
volume of a parallelepiped having A, B, C as edges, or the negative of this volume according
as A, B, C do or do not form a right handed system. We have A:(BxC) = B-(CxA) =
C:(A xB).
The wvector triple product is defined as
Ax(BxC) = (A-C)B—(A-B)C M
Since (AXB)xC = (A-C)B— (B:C)A, it is clear that AX(BXC) » (AXB)xC.
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DERIVATIVES OF VECTORS

If to each value assumed by a scalar variable u there corresponds a vector A(u), or
briefly A, then A(u) is called a (vector) function of u. The derivative of A(x) is defined as

dA  _ o Al+aw) — Ay
W = A Au )
provided this limit exists, If A(u) = Ai(u)i+ Aq(w)j+ As(u)k, then
dA _ dA,. dA;. dAs
de ~ du' Tt ® ®)
Similarly we can define higher derivatives. For example the second derivative of A(u)
if it exists is given by
A d*A,. d?A, . n dzAak 10
dwz —  du? 1 dn? ] du? (10)

Example. If A = (2u®—3u)i+ 5cosu j— 3sinuk, then

1A %
5= = (4u—38)i — 5sinuj — 3cosuk, #A, = 4i — Scosuj + 3sinuk

du?

The usual rules of differentiation familiar in the calculus can be extended to vectors,
although order of factors in products may be important. For example if 4(u) is a scalar
function while A(u) and B(u) are vector functions, then

d _ dA | d¢

2 (A) = g T A (11)
d . gy

du(A'B) = A i + d B (12)
d _ dB dA

EE(AXB) == AXE + —duXB (13)

INTEGRALS OF VECTORS

Let A(u) = Ay(u)i+ Ax(u)j + As(uw)k be a vector function of #. We define the indefinite
integral of A(u) as

fA{u)du — if Ay(u)du + j‘f Aq(u)du + kf As(u) du (14)
If there exists a vector function B(uz) such that A(u) = %{B(u)}, then
f Alu)dn = [%{B(u)} du = Bln) + ¢ (15)

where ¢ is an arbitrary constant vector independent of w. The definite integral between
limits # =« and =4 is in such case, as in elementary calculus, given by

8 8 d B
j‘ Aw)du = j‘ o (B)Ydu = B +e¢| = B(f) — Bla) (16)

The definite integral can also be defined as a limit of a sum analogous to that of elementary
calculus.

VELOCITY

Suppose that a particle moves along a path or curve C [Fig. 1-9 below]. Let the position
vector of point P at time ¢t be r =r(¢) while the position vector of point Q at time ¢+ At is
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r+Ar =r(t+ At). Then the velocity (also called the instantaneous velocity) of the particle
at P is given by

= 0 d_!_‘_ - . Ar
Vo= I‘-\I dt l}?}n?{
L r(t+Al) — x(t)
N :}rlz-r}) at (27)
and is a vector tangent to C at'P.
If r=r(t) = 2(t)i +y(t)j +2()k = xi+yj+2k, v
we can write
_dr _  dzx, dy, , dz :
Y= 3 T i@ + ) Ek (18) Fig.1-9

The magnitude of the velocity is called the speed and is given by
dr

it \f (&)« @)+ (&) = Z (19)

where s is the arc length along C measured from some initial point to P.

@ = I\r] =

ACCELERATION

If v = dr/dt is the velocity of the particle, we define the acceleration (also called the
instantaneous acceleration) of the particle at P as

_ dv . v(t+at) —v(t)
s - @ - e e
In terms of r = zi+yj+2k the acceleration is
d*r d*z . dy . d?z
a = ae - W1+-¢£_‘Z¥J+E§k (21)
and its magnitude is
= o= (@ (B (Y
¢ = la = \Kdtﬂ) i dﬁ) +\ 3 %)

RELATIVE VELOCITY AND ACCELERATION

If two particles P, and P, are moving with respective velocities v, and v. and accelera-
tions a; and as, the vectors

Veyp, = Va—vy and apye, = az—a (23)

are respectively called the relative velocity and relative acceleration of Pe with respect to P..

TANGENTIAL AND
NORMAL ACCELERATION

Suppose that particle P with position vec-
tor r = r(¢) moves along curve C [Fig. 1-10].
We can consider a rectangular coordinate
system moving with the particle and defined
by the unit tangent vector T, the unit princi-
pal normal N and the unit binormal B to
curve C' where Fig.1-10
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dr _ pdT =
T=2 N=RZ, B=TxN (24)

s being the arc length from some initial point to P and R the radius of curvature of C at P.
The reciprocal of the radius of curvature is called the curvature and is given by « = 1/R.
We can show [see Problem 1.35, page 20| that the acceleration along C is given by

g = By 4Py (25)
dt R
The first and second terms on the right are called the tangential acceleration and normal
or centripetal acceleration respectively.

CIRCULAR MOTION y
Suppose particle P maves on a cirele C of radius \

R. If s is the arc length measured along € from P
A to P and 4 is the corresponding angle subtended R i
at the center O, then s = R6. Thus the magnitudes ~
of the tangential velocity and acceleration are given 0 A *
respectively by

ds df

_d_t_ Ra = Rl') {26)

dv _ d*s _ ,d* _ ,. :

and qE - de REt_z = Rea (27) Fig. 1-11

We call w = df/dt and « = d*0/dt* the angular speed and angular acceleration respectively.
The normal acceleration as seen from (25) is given by ¥R = v°E.

NOTATION FOR TIME DERIVATIVES

We shall sometimes find it convenient to use dots placed over a symbol to denote
derivatives with respect to time #, one dot for a first derivative, two dots for a second
derivative, etc. Thus for example r = dr/dt, ¥ = d’/dt?, v = dv/dit, ete.

GRADIENT, DIVERGENCE AND CURL

If to each point (z,y, 2) of a rectangular coordinate system there corresponds a vector A,
we say that A = A(z,y,2) is a vector function of x,y,z. We also call A(x,y,2) a vector
field. Similarly we call the (scalar) function ¢{x,¥,2) a scalar field.

It is convenient to consider a vector differential operator called del given by

o . d d
Vo= g by by (28)
Using this we define the following important quantities.
. = (i 438 gy = 12y 400 a¢
1. Gradient V¢ = (1 + ]ay + k )4: = iy, ¥ 35, + k (29)

This is a vector called the gradient of ¢ and is also written grad q',.

fl

2. Divergence VA ( 3 4t +xd ) (Aui + Asj + Ak)

ar oy
A, 04, DA,
dx + oy 3 dz

(30)

This is a scalar called the divergence of A and is also written div A.
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3. Curl VXA = (1% 4 ;% P, )x A+ A & Ak
i j k
R TR )
T lax dy oz Lo
Al An A:i
dA g aAz). (GA'] dAs) . KGAQ 6A1 \
2T 4 (SRR o (S22 k
( oy az ) az ox /] \ dx oy /
This is a vector called the curl of A and is also written curl A.
Two important identities are
diveurlA = V(Y XA) =0 (32)
curlgrad¢ = VX (Vo) =0 (33)

LINE INTEGRALS

Let r(t) = z(D)i+ y(t)j +z(t)k, where r(t) is the position vector of (x,¥,2), define a
curve C joining points P, and P: corresponding to t=1¢, and t=1, respectively. Let
A = A(zr,y,2) = Aii + A2j + Ask be a vector function of position (vector field). The
integral of the tangential component of A along C from P, to P, written as

A dr f Ardr = f Ajde + A:dy + A dz (3-’”
Py c
is an example of a line integral.

If C is a closed curve (which we shall suppose is a simple closed curve, i.e. a curve
which does not intersect itself anywhere) then the integral is often denoted by

f Acdr = § Avdr + Awdy + Asdz (35)
C C

In general, a line integral has a value which depends on the path. For methods of
evaluation see Problems 1.39 and 1.40.

INDEPENDENCE OF THE PATH
The line integral (34) will be independent of the path joining P; and P: if and only if
A= V¢, or equivalently ¥ X A = 0. In such case its value is given by

Py Py

A-dr = de = ¢(Pr) — ¢(P)) = (@2,¥2,2) — o(21,%,21) (86)
Py Py

assuming that the coordinates of P, and P: are (z,¥,,2,) and (x,,¥,,2,) respectively while

¢(z, 4, 2) has continuous partial derivatives. The integral (35) in this case is zero.

FREE, SLIDING AND BOUND VECTORS

Up to now we have dealt with vectors which are specified by magnitude and direction
only. Such vectors are called free vectors. Any two free vectors are equal as long as
they have the same magnitude and direction [see Fig. 1-12(a) below].



10 VECTORS, VELOCITY AND ACCELERATION [CHAP. 1

™

(a) Equal free vectors () Equal sliding vectors (¢) Bound vector
Fig.1-12

Sometimes in practice the particular line of action of a vector is important. In such
case two vectors are equal if and only if they have the same magnitude, direction and line
of action. Such vectors are often called sliding vectors [see Fig. 1-12(b)].

Sometimes it is important to specify the point of action of a vector. Such a vector

[see Fig. 1-12(c)] is called a bound vector. In this case two vectors will be equal if and
only if they are identical.

Most cases with which we shall deal involve free vectors. Cases where sliding vectors
or bound vectors need to be employed will in general be clear from the context.

Solved Problems
VECTOR ALGEBRA

1.1. Show that addition of vectors is commutative, i.e. A+B = B+ A. See Fig. 1-13
below.
OP+PQ = 0@ or A+B=C
and OR + RG@ = 0Q or B+A =
Then A+ B = B + A.

|
(]

Fig.1-13 Fig.1-14

12. Show that the addition of vectors is associative, ie. A+ (B+C) = (A+B)+C. See

Fig. 1-14 above.
OP+PQ = 0Q = (A+B) and PQ+QR = PR = (B+C)
Since OP +PR = OR =D, ie. A+ (B+C) =D

OQ+QR = O0OR =D, ie. (A+B)+C =D
we have A+ (B+C) = (A4B)+ C.

Extensions of the results of Problems 1.1 and 1.2 show that the order of addition of any
number of veetors is immaterial.
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Given vectors A, B and C [Fig. 1-15(a)] construct (a) A—B+2C, (b) 3C— }(2A —B).

L.3.

Fig.1-15

(e}

1.4.

Prove that the magnitude A of the vector A =
Ai+Aj+ Ak is A = VAT + A} + A2, See

Fig. 1-16.
By the Pythagorean theorem,
(OP): = (0Q) + (QP)?
where OP denotes the magnitude of vector OP, ete.
(0Q)2 = (OR) + (RQ).

Similarly,
Then (OP)2 = (OR):+ (RQ)? + (QP)* or
ie. A = VAI+AZ+AL

A? = AT 4 A2+ A2 e A
Determine the vector having the initial point
P(ry,%1,2)) and the terminal point @Q(zs, ys, 22)
and find its magnitude. See Fig. 1-17,
The position vector of P is r; = xi+y,j+ z;k.
The position vector of @ is r, = =i + woj + zk.

rp+PQ = r, or
(xol + yaj + Egk) — i+ yit+ z1k)
(zp—x )i + (Yo —¥)i + (z— 2 )k

PQ = r, — 1y

= PQ
= Vizgg— )2+ Wa— 1) + (23— 2)?
the distance between points P and Q.

Magnitude of PQ

Note that this is
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1.6.
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Find (a) graphically and (b) analytically the sum or resultant of the following
displacements:

A, 2m northwest; B, 4 m 30° north of east; C, 7m due south. See Fig. 1-18,

Graphically.
; ; S i N Q
At the terminal point of A place the initial point B
of B. At the terminal point of B place the initial
point of C.
The resultant D is formed by joining the initial P 80° ]
point of A to the terminal point of C, ie. D = 2
A+B+C. c
The resultant is measured to have magnitude of w s E
4.1 units = 4.1 m and direction 60° south of east. Q 80°
Analytically.
From Fig. 1-18, if i and j are unit vectors in the — D
E and N directions, we have Unit = Im
A = —2cos45°i 4 2sm 45°j
B = 4cos30°i + 4sin 30°§ & B
C = —17j Fig.1-18
Then the resultant is
D = A+ B+ C = (— 2cos45” + 4 cos 30°)i + (2 sin 45° + 4 sin 30° — 7)j

= (=2 PV E 28—l = 208l «:3:68
Thus the magnitude of D iz 1/(2.056)* + (3.68) = 4.12 m and the direction is
tan—1 3.58/2.05 = tan—! 1.746 = 60° 45’ south of east.

Note that although the graphical and analytical results agree fairly well, the analytical result is
of course more accurate.

THE DOT OR SCALAR PRODUCT

14.;

14

1.8.)

Prove that the projection of A on B is equal to A- b,
where b is a unit vector in the direction of B,

E

i

Through the initial and terminal points of A pass 'l
planes perpendicular to B at G and / respectively as in the f
adjacent Fig. 1-19; then G

Projectionof AonB = GH = EF = Acoss = A-b Fig.1-19

Prove A:(B+C) = A-B+A-C.

Let a be a unit vector in the direction of A; then [see
Fig. 1-20)

Projection of (B+C)on A = projection of B on A
+ projection of C on A
(B+C)ra = B+a + C-a
Multiplying by A4,
(B+C)»4a = B+Aa + C-Aa

and (B+C)*A = B-A+ C+A

Then by the commutative law for dot products,
A-(B+C) = A‘B+ A*C

and the distributive law is valid. Fig.1-20

Y
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(15) Evaluate each of the following.

(@ i*i = [i|}ijeos0° = (L(IX1) = 1
(®) ik = Jij[k] cos90° = (1)(1)(0) = 0
fe) k+j = [k[[|jl cos90° = (1)(1)(0) = 0
(d) §*(2i—8j+k) = 2j-i—3j-j+jk = 0—-8+0 = -3

() (2i—j)+Bi+k) = 2i+Bi+k) —jBi+k) = 6ii+2i+k—8ji—j-k
= 6+0-0—-0 =6

110.) If A = Aii+Asj+ Ak and B = Bii+ Buj+ Bsk, prove that A-B = A,B,+ A;B:+

" AaBs. . . . ;
A'B = (A|i+Ayj+ Ask)-(B,i+ Byj+ Bik)

= Ayi* (Bii+ Byj+ Bak) + Agj+ (Byi + Byj + Bak) + Agk (Bi + Byj + Bak)
= ABji*i+ AByi+j+ ABjik+ AB i+ AByicj+ ABjk

+ AgBk+i+ AgBk+j + ABgk -k
= A B, + AyBy + AgB,

since i*1 = j*j = k+*k = 1 and all other dot products are zero.

LU. If A = Aii+A:j+Ak, show that A = JA-A = /AT + A2 + AL
A-A = (AXA)ecos0° = A2 Then A = VA+A,

Also, A*A = (A)i+A,i+ Ak (A,i+Azi+ Ak)
= (A)A) + (A)A) + (A)Ay) = AT+ Al + A2
by Problem 1.10, taking B = A.

Then A = VA-A = A% + A%+ A} is the magnitude of A. Sometimes A - A is written A2

B(4,6,0
1.12. Find the acute angle between the diagonals of a ( )

quadrilateral having vertices at (0, 0,0), (3,2, 0),
(4,6,0), (1,8,0) [Fig. 1-21].

We have OA = 3i+2j, OB =4i+6j, OC =i+ 8j
from which

CA =0A~-0C = 2i—j
Then OB-CA = |[OB||CA|coss
i.e.
(4i +6§) (2i—j) = V(4)2+ (6)2V(2)2+ (—1)2 cos #

from which cos# = 2/(V62 V6 ) = .1240 and ¢ = 82°53'.

A(8,2,0)

THE CROSS OR VECTOR PRODUCT
1.13. "Prove AXB = —BXA.,

BXxA=D '

(&)
Fig.1-22

A X B = C has magnitude AB sin¢ and direction such that A, B and C form a right-handed
system [Fig. 1-22(a) above).
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B <A = D has magnitude BA sings and direction such that B, A and I form a right-handed
system [Fig. 1-22(b) above].

Then D has the same magnitude as C but is opposite in direction,i.e. C=—D or AXB = —-B X A,
The commutative law for cross products is not valid.

1.14. Prove that
AXx(B+C) = AXB+AXC

for the case where A is perpendicular
to B and also to C.

Since A is perpendicular to B, AX B is a
vector perpendicular to the plane of A and B
and having magnitude AB sin 90 = AR or
magnitude of AB. This is equivalent to mul-
tiplying vector B by A and rotating the
resultant vector through 90° to the position
shown in Fig. 1-23.

Similarly, A X € is the vector obtained by
multiplying C by A and rotating the resultant
vector through 90° to the position shown.

In like manner, A X (B + C) is the vector
obtained by multiplying B + C by A and rotat-
ing the resultant vector through 90° to the
position shown.

Since A X (B + C) is the diagonal of the
parallelogram with A X B and A X C as sides,
we have AX(B+C) = AXB+ AXC. Fig.1-23

1.15. Prove that Ax(B+C) = AxB+ AxC
in the general case where A, B and C are
non-coplanar. See Fig. 1-24,

Resolve B into two component vectors, one
perpendicular to A and the other parallel to A,
and denote them by B, and B, respectively.
Then B = B, + B

If s is the angle between A and B, then
B | = B sing. Thus the magnitude of AXB | is
AB gin ¢, the same as the magnitude of A X B.
Also, the direction of A X B is the same as the
direction of AXB. Hence AXB, = AXB.

Sim:larly if C is resolved into two component
vectors C;| and C |, parallel and perpendicular
respectively to A, then AXC, = AXC. Fig.1-24

Also, since B+C = B, +B;+C, +C;, = (B, +C )+ (B, +C;) it follows that
AX(B +C ) = AX(B+C)
Now B, and C| are vectors perpendicular to A and so by Problem 1.14,
AX(B, +C ) = AXB, +AXC
Then AX(B+C) = AxB+AXC

and the distributive law holds. Multiplying by —1, using Problem 1.13, this becomes (B+C) x A =
B X A+ CxA. Note that the order of factors in cross products is important. The usual laws of
algebra apply only if proper order is maintained.

i i k
@ If A= A,i+As;j+Ask and B = Bii + Bsj + Bk, prove that AxB =| A1 Az As |
B: B: Bj
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AXB

Il

(A,i + Ay + Agk) X (Byi + Byj + Byk)
A,i X (Byi+ Byj o+ Bgk) + Agj X (Byi+ Byj + Byk) + Agk X (Bji + Byj + Bik)
ABixXi+ AByixij+ AByi Xk + AyB1j X i+ AuByjx j+ ABsjx k

4+ AsBk X i+ A8k X+ ABk X k

i J k
= (A233"_A382)i =+ (A3B; - AlBs}j 4 (Axgz_Aggj}k = Al A2 Ay
B, By B,
1.17. If A=3i—j+2k and B=2i+3j—k, find A xB.
i j k
J-1 2 3 2 3 -1
AXB = 3 -1 2 = - T
A | = =i 2 3
2 3 -1
= —5i + 7j + 11k
Il.}ﬂ'.:" Prove that the area of a parallelogram with |
sides A and B is |[A X B|. I
Area of parallelogram = h |B| A :h
= |A] sin¢ |B| I
= |
= |AXB| ¢ .
Note that the area of the triangle with sides A and B
Bis }|AXB|. Fig.1-25

1.19. Find the area of the triangle with vertices at P(2,3,5), Q(4,2,—1), R(3,6,4).
PQ = (4—-2)i+(2-3)i+(-1—5k = 2 —j— 6k
PR = (3—-2)i+(6—-3)i+(d—56k = i+3j—k

Area of triangle = L} [PQ*PR| = 1](2i—j—6k)x{i+3j—k)|
[ T
= 31l2 -1 —6|l = 3119i—4j+7K|
1 3 -1

@92+ (=92 + (N2 = }V426

It

TRIPLE PRODUCTS

.20. \Show that A - (B x C) is in absolute value equal //r’
to the volume of a parallelepiped with sides /
A, B and C. A h,i__-.._...zf_.__._-
Let n be a unit normal to parallelogram /, having . IB -
the direction of B X C, and let & be the height of the
terminal point of A above the parallelogram J. Fig.1-26

i

(height h)(area of parallelogram I)
(A-n)(|BxC|)
= A-{BxXCn} = A*(BXC)
If A, B and C do not form a right-handed system, A+n < 0 and the volume = |A - (BxC)|.

Volume of parallelepiped

i

@ @ If A= Ai+Asj+Ak, B = Bii+Bj+Bk, C = Cii+Csi+Csk show that
d A, Ay As

A-(BXC) = |B B: Bs

C: C: Ca‘
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(b) Give a geometric significance of the case where A-(B>C) = 0.

i j Kk
(@ A“(BXC) = A+| B, B, B,
Ci C Gy
= (Ayi+ Ay + Agk) - [(ByCs — B3Co)i + (B3Cy — B,C,)j + (B,Cy— B3Cy)k]
A, Ay Ay
= A,(B3Cy— B3Cy) + Ay(B3C, — BCy) + As(B,C,— B,C,) = | By By, By
C, C Cj

(b) By Problem 1.20 if A+-(BXC) =0 then A, B and C are coplanar, i.e. are in the same plane,
and conversely if A, B, C are coplanar then A-(BX C) = 0.

1.22. Find the volume of a parallelepiped with sides A=38i—j, B=3j+2k, C=1+5j+4k.

3 -1 0
By Problems 1.20 and 1.21, volume of parallelepiped = |A+(BXC)| = || 0 1 2 1]
1 5 4

Il

|-20] = 20.

1.23. If A=i+j, B=2i—-3j+k, C = 4j—3k, find (a) (AXB)xC, (b) Ax (BxC).

i § k i ik
(@ AXB=|1 1 0|=i~j—5k Then (AXB)XC =|1 —1 —5|= 23i+38j+4k
2 -3 1 0 4 -3
i §j k i j k
(b) BXC =|2 -3 = Bi+6j+8 Then AXBxC) =|1 1 0 |=8i—8j+k
4 -3 5 6 8

It follows that, in general, (A xB) X C = A X (B X C).

DERIVATIVES AND INTEGRALS OF VECTORS
d2r
124, If r= (8+2t)i—3e~*j+ 2sinbtk, find () :—;, (b)

d*r
, (0) g (@ |g5| att=o.

dr
at

dr _ d d o e .
(a) 35 = gzt + 201+ Gr(—8e~3)j + (2 sin5t)k = (3822 +2)i + 62 + 10 cosbt k
At t=0, dr/dt = 2i+ 6j+ 10k.

(b) From (a), ldr/dt] = V(22 + (6)2+ (10)2 = V140 = 2/35 at t=0.

L L 5 d [d d A L

(c) T (d_:) = EE{(St’-J- 2)i + 6e—2tj + 10 cosbtk} = 6ti — 12¢—2j — 50 sin btk
At t=0, dr/de? = —12j,

{d) From (c), |d?r/dt?| = 12 at t=0.

1.25._Prove that t—%(A'B) = A-‘—iE+ g'é-B, where A and B are differentiable func-

tions of w. du ' du
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Method 1. dim-m = i AtAM-B+AB) ~ AB
U A0 Au
S A-AB + AA-B + AA-AB
Au=+0 Au
_. g AB  aA AA N dB | dA
- A}:TD(A Au Fi!m B+Au.bn - A';E+E.B

Method 2. Let A = A,i+ Ayj+ Ask, B = Bji+ Byj + Bsk.  Then

d d
EE(A'B) = &E(AlBl“'Asz‘*”AsBa}
B dB, dB, dB, ‘dA, dA, dA,
— (Ald_u“_AzEJrAa_d_z:) (EBI+WB2+7L¢_B:!>
dB dA
= A.du % d_u'B
2
1.26. If (2, y,2) = x*y2z and A = Bx%yi +y2*j — xzk, find a;az (¢A) at the point (1,2, ~1).

oA = (22yz)(3xyi+ y2?j —x2k) = 3BatyZzi + 223§ — x3y2%k

d

E{sﬁ.&) = -‘%{Sﬁyszi + 22y22%) — 23y2%k) = 3Bxiy?i + 3x2y22%) — 2udyzk
? -9 2 2,,2,23 433 24,223 3

m(m&} = E{3:L“yl+3xyz)—213y:]c) = Bxtyi + 6x2y2%j — 223zk

If x=1, y=-2, z=—1, this becomes —12i — 12j + 2k.

2
1.27. Evaluate f Au)du if A(u) = (Bu?—1)i+ (2u—3)j + (6u® — du)k.
u=1

i A4 = Vs

The given integral equals S -
2 2
f (G2~ 1)i + (2u—23)j + (6u® — 4w)k) du
vu=1 2
= (W3 —wi+ (u2—3u)j + (2ud - 2u2)k
=

o

= {8—2)i+ (4—6)j+ (16—8)k) — {(1—1)i+ (1—3)j + (2—2)k}
= 6i + 8k

VELOCITY AND ACCELERATION

1.28. A particle moves along a curve whose parametric equations are x = 3e %, y = 4 sin 3¢,
z = 5 cos3t where ¢ is the time.
(e) Find its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at ¢t=0.

(a) The position vector r of the particle is
r = xi +yj +2zk = 8¢ 2 + 4s5in3tj + 5cosdtk

Then the velocity is
v = dr/fdt = —6e 2 + 12co83tj — 15sin3tk

and the acceleration is
a = dv/dt = d/dt2 = 12e~2ti — 36s8in3tj — 46 cos 3tk
(b) At t=0, v = dr/dt = —6i+12j and a = d?r/dit2 = 12i — 46k. Then
magnitude of velocity at t =0 is V(—6)2 4+ (12)* = 65
magnitude of acceleration at ¢ =0 is V(12)? + (—45)2 = 8V241
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1.29. A particle trayels so that its acceleration is given by

a = 2e7'i + 5costj — 3sintk
If the particle is located at (1, -3,2) at time t=0 and is moving with a velocity
given by 4i —3j 4+ 2k, find (@) the velocity and (b) the displacement of the particle
at any time £>0. 3

d:
(a) a = % = ?: = 2eti+ Beostj — 3sintk
Integrating, v = f (e~ i+ bcostj— 3sint k)dt

= —2¢ 4 + bsintj+ Bcostk + ¢
Since v = 4i—3j + 2k at t=0, we have
4i —3j+ 2k = —2i+3k+e or ¢ = 6i—-3j—k
Then v = —2e7ti+ 5sintj+ 3costk + 61 —3j — k
= (6—2e7Yi + (Esint —3)j + (3cost— 1)k 0
(b) Replacing v by dr/dt in (1) and integrating, we have
_— [ ((6—2e~Yi + (6 sint—3)j + (3 cost — 1)k] dt
= (6t+2e i — (beost+ 3t)j + (3sint — )k + ¢4
Since the particle is located at (1,—3,2) at t=0, we have ‘r = i—3j+2k at t=0, so that
i—8j+2k = 2i—-5j+¢, or ¢ = —-i+2j+2k

Thus r = (6t+2et—1)i + (2 —5cost—3t)j + (3sint —t+ 2}k (2

RELATIVE VELOCITY AND ACCELERATION

1.30. An airplane moves in a northwesterly

direction at 200 km/h relative to the N
ground, due to the fact that there is a -W
westerly wind [i.e. from the west] of
80 km/h relative to the ground. Deter-
mine (a) graphically and (b) analytically A
how fast and in what direction the r v,
plane would have traveled if there were g

no wind. 73

(a) Graphically. Unit = 40 km/h
Let W

V, = velocity of plane
with wind

1

wind velocity W E

il

velocity of plane
without wind. Fig.1-27

Then [see Fig. 1-27] V. = Vu,+W or V, = V,— W = V,+(—-W).
V, has magnitude 6.5 units = 280 km/h and direction 33° north of west.

Vy

(b) Analytically.
Letting i and j be unit vectors in directions E and N respectively, we see from Fig. 1-27
that
Vo, = — 200cos 45° i 4 200 sin 45° j and W = 80i

Then V, = Vo— W = (— 200 cos 45° — 80)i + 200 sin 45° j — 221.42i + 141.42j

Thus the magnitude of vh is +(— 22].42]’ —+ {14142]' = 262.73 km/h and the direction |
tan ' 141.42/221.42 = tan —! .6387 = 32° 34’ north of west.
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1.31. Two particles have position vectors given by r = 2ti—t*j+ (3t*—4t)k and
r» = (5t°— 12t +4)i+ £*j— 3tk. Find (a) the relative velocity and (b) the relative
acceleration of the second particle with respect to the first at the instant where =2,

(a) The velocities of the particles at t=2 are respectively

Vi = Iy

1l

2i—2rj+(ﬁt—4]k| = 2i—4j+ 8k

=4

ve = y = (10t —12)i + 3% — 3k = Bi+ 12§ — 3k

=2
Relative velocity of particle 2 with respect to particle 1
= v, —v, = (Bi+12i—3k) — (2i—dj+8k) = 6i + 16j — 11k

() The.accelerations of the particles at + =2 are respectively

a, = v, =1 = —2j+6k = —2j + 6k

t=2

2 = S = o= 10i+sr;| = 10i + 12j
t=2

Relative acceleration of particle 2 with respect to particle 1

= a,—a; = (10i + 12§) — (—2j + 6k) = 10i + 14j — 6k

NGENTIAL AND NORMAL ACCELERATION (V4% )
32. |Given a space curve C with position vector
r = 8cos2ti + 3sin2tj + (8t—4)k
(a) Find a unit tangent vector T to the curve.

(b) If r is the position vector of a particle moving on C at time f, verify in this
case that v=12T.

(¢) A tangent vector to C is
dr/dt = —63sin2ti + 6cos2tj + 8k
The magnitude of this vector is

|dr/dt| = ds/dt = V(=6 sin 2t)% + (6 cos 2t)2 + (8)2 = 10

Then a unit tangent vector to C is
dr/dt _ dr/dt _ dr _ —6sin2ti + 6cos2tj + 8k

|dr/dt| ds/dt ~— ds 10
= —Esin2ti + Jcos2tj + gk

T =

(b) This follows at once from (a) since
v = dr/fdt = —6sin2ti + 6cos2tj + 8k
= (L0(—%sin2ti + 3 cos2tj + $k) = T

Note that in this case the speed of the particle along the curve is constant.

1.?3.,\ If T is a unit tangent vector to a space curve C, show that dT/ds is normal to T.

Since T is a unit vector, we have T+T = 1. Then differentiating with respect to s, we obtain
dr | dT _ dT  _ ar _
T'I L T = 2T = = 0 or T i = 0

which states that dT/ds is normal, i.e. perpendicular, to T.
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If N ig a unit vector in the direction of dT/ds, we have
dT/ds = «N

and we call N the unit principal normal to C. The scalar « = |dT/ds| is called the curvature,
while B = 1/x is called the radius of curvature.

Find the (a) curvature, (b) radius of curvature and (c) unit principal normal N to
any point of the space curve of Problem 1.32.

(a) From Problem 1.32, T = —}sin2ti+ §cos2tj+ gk. Then
dr _ dT/dt _ (—6/5) cos2ti — (6/5) sin 2t j
ds ~ dsjdt 10
= —2coslti— sin2tj
Thus th ture i = [9E - \[(--l 2ty2 + (— & sin2t)2 = &
us e curvature 18 x — d& —_ 75 cos 25 5mn = 5

(b) Radius of curvature = R = 1/k = 25/8
(¢} From (a), (b) and Problem 1.33,

_ 1dr _
N—xda—R

% = =—cos2ti — sinltj

Show that the acceleration a of a particle which travels along a space curve with
velocity v is given by ~ @T s v_‘
R 7 E

where T is the unit tangent vector to the space curve, N is its unit principal normal
and R is the radius of curvature.

N

Velocity v = magnitude of v multiplied by unit tangent vector T, or

v = T
Differentiating, a = % | %(ﬂ) = %:—T 4 v%
But =T L. NE - N =
Then a = %%uw:.-(%‘) = %T+%N

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and
v?/R in the direction of the principal normal to the path. The latter acceleration is often called
the ¢entripetal acceleration or briefly normal acceleration.

RCULAR MOTION
1.36. " A particle moves so that its position vector is given by r = coswli + sinwt j where

» i3 a constant. Show that (a) the velocity v of the particle is perpendicular to r,
(b) the acceleration a is directed toward the origin and has magnitude proportional
to the distance from the origin, (¢) r X v = a constant vector.

@ v = % = —geineti+ wcoswlj. Then
rv = [coswti+ sinawtj]*[—wsinwti+ wcoswt j|
= (cos wt)(—w sin wt) + (8in wt)(w coswt) = 0

and r and v are perpendicular.



CHAP. 1]

VECTORS, VELOCITY AND ACCELERATION 21

dv

(b) g} = = ~w?coswti— w?sinutj = —w? [coButi+ sinwtj] = —uir

()

dt
Then the acceleration is opposite to the direction of r, i.e. it is directed toward the origin.
Its magnitude is proportional to |r| which is the distance from the origin.

rXv = [coswti+t sinetj] X [~wsinwti+ wcoswt j]
i i k
= coB wt sinwt 0 = w(cos?wt + sin2wt)k = ok, a constant vector.

—w sinwt wcoswt 0

Physically, the motion is that of a particle moving on the circumference of a circle with
constant angular speed w. The acceleration, directed toward the center of the circle, iz the
centripetal acceleration.

GRADIENT, DIVERGENCE AND CURL
137. If ¢ = 2%z and A = zzi— 9% +22%k, find (a) Ve, (b) V A, (¢) VXA, (d) div

(A

(a)

), (e) curl (¢pA).
e il g B8, = . %,.%
Ve = (£‘+ayi+ask)” « o ¥ ot # Tk

Il

-}x(x!yz’)i 5 é‘—:—'(wzyz’)j & Ea;(x’yz’)k = 2aysdi + 2% + 8xyek

= (s gLk ) vt
(b) V'A = (axi+ yj+azh) (zzl — % + 22%yk)

ay

= %{:x) + %(—ﬁ) + :%(2::’1;) = 2—2y
d
© VXA = (%i +§;i +3;k) X (wzd — y2j + 22%k)
1§k
= | alex /oy ofaz
zz —y 22
a d . d d
= (e - 5m)i+ (Ze - )i+ (Hew -F e )x
= 2% + (x—4zy)j
@) divigh) = V-(pA) = V- (zdyzhi — 2973 + 2uty22%k)

(e) curl (pA)

0 0 d
= a—x(w’yz‘] + 5;{—5:’1/‘:3} + a—z{Zz‘yzz")
= 4xPyz* — 322278 + Gxiylz?

V X (pA) = V X (xdyzhi — 22825§ + 2aty?zk)
i i k
alex  dldy  a/oz
Byh  —a2PB DAyt
(4xtye® + Bxya?)i + (dadysd — 8zdy228)j — (227 + xdri)k

(@) If A = (2zy +2%)i+ (x*+2y)j + (Bxz2* —2)k, show that VY XA = 0.
" (b) Find a scalar function ¢ such that A = V4.

i i k

o) VXA = 8/dx a/dy 88z = @

2ey + 22 224 2y Bx2?—2
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(b) Method 1. 1If A = Vg = g—"i i %51 s %4:1: Shets B

¥ _ 9% _ 2 % 22
(1) 5 2ay + 23 (2) ol x2 + 2y (%) Py 32z
Integrating, we find
(4) ¢ = x%y + 228 + Fy(y,2) (5) o = x2y + y2+ Fy(z,2)

(6) ¢ = z22 — 2z + Fy(x,y)

Comparing these we must have F\(y,z) = y2—2z, Falx,z) = xz8—2z, Fylx,u) = 2%y +y?
and so ¢ = x%y + xz3 + y2 — 2z.

Method 2. We have if A = Vg,

vde = (B1+ 250080, init iy
Ardr = (ax’ + ay" + azk) (dri+ dyj+ dzk)
9 ¢ 9% .. —
azdx 4= aydy + azdz de
an exact differential. For this case,
dg¢ = A+dr = (2xy+29)dr + (224 2y)dy + (3z22—2)dz

]

[(2xy + 28 dz + z2dy + 3zz2dz) + 2ydy — 2dz
d(x2y + x23) + d(y?) + d(—2z2)
d(x2y + x23 + y% — 22)

Then ¢ = x%y + 228+ 2 —2z. Note that an arbitrary constant can also be added to ¢.

LINE INTEGRALS AND INDEPENDENCE OF THE PATH

1.39. If A = (8% —6yz2)i + (2y + 3x2)j + (1 —4xy2*)k, evaluate j A-dr from (0,0,0) to
(1,1,1) along the following paths C: 4
a) =t y=1, 2=1¢,
(b) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and then to (1,1,1).
(¢) the straight line joining (0,0,0) and (1, 1,1).

f Adr
c

I

f {(822—6yz)i + (2y + 3gz)j + (1 —4dayz?)k}+(dzi+ dyj+ dzk)
c

I

f (822 — 6yz)de + (2y+ 8x2)dy + (1 —4dzyz?)dz
c

(@) If x=t, y =12 z=1t3 points (0,0,0) and (1,1,1) correspond to ¢t =0 and ¢ =1 respectively. Then

1
J; A-dr = f {322 — 6(£2)(t3) ) dt + {262+ 3(£)(t9)} d(t2) + {1 — 4(e)(e2)(£3)2} d(t9)
3 =0
= f l (822 —615)dt + (413 +6t5)dt + (32 —12t1)dt = 2
t=0

Another method.

Along C, A = (32— 645 + (262 +3t4)j + (1 — 419k and r = xi+yi+zk = ti+ 2j + 3k,
dr = (i+ 2tj+ 3t%k) dt. Then ~

I
L]

1
f Acdr = f (362 —6t5) dt + (4¢3 + 65)dt + (3¢2 — 12¢11) dt
¢ 0

(b) Along the straight line from (0,0, 0) to (0,0,1), =0, y =0, de =0, dy =0 while z varies from
0 to 1. Then the integral over this part of the path is

1 1
f 0{3(0}2*'6(0)(3)}0 + {2(0) + 3(0)(2)}0 + {1 —4(0)0)(z%)}dz = f_ndz = 1
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Along the straight line from (0,0,1) to (0,1,1), =0, 2=1, de =0, dz=0 while y varies
from 0 to 1, Then the integral over this part of the path is
1 1
f (802 —6()(1)}0 + {2y +3(0)(1)}dy + {1—4(0)y)(1)2}0 = f 2y dy
y=10 =

v=0

Il
-

Along the straight line from (0,1,1) to (1,1,1), y=1, 2=1, dy =0, dz=0 while x varies
from 0 to 1. Then the integral over this part of the path is
1

b5
f {322 —6(1)(1)} dx + {2(1) + 3=(1)}0 + {1 —4dx(1)(1)2}0 = f (8z2—6)dx = —5
=0 r=0
Addi - = — = —3.
ing, L A-dr bt L—F 3

(¢) Along the straight line joining (0,0,0) and (1,1,1) we have z=¢, y=¢, z=*. Then since
dx = dy = dz = dt,

J Ardr = f (3z2—6yz)dz + (2y+3xz)dy + (1—4xyz?) dz
c c

1
f (322 —6t2)dt + (2t + 3t dt + (1 —4th)dt

1=%

1
f @t+1—4thdt = 6/5
t=0

Note that in this case the value of the integral depends on the particular path.

140. If A = (2zy +2%i + (2% + 2y)j + (Bx2* —2)k show that (a) f A-dr is independent
c

of the path C joining the points (1,—1,1) and (2,1,2) and (b) find its value.

By Problem 1.38, VXA =0 or A-+dr = d¢ = d(z2y + 223+ y2—22). Then the integral is
independent of the path agd its value is

(2,L,2) 2,1,2)
f A+rdr = f d(z2y + x2% + y2 — 22)

o, —1,1) (1, —1.1)
(2,1,2)

2y + x23 + y2 — 2z = 18
a,-1,1

MISCELLANEQUS PROBLEMS
141. Prove that if a and b are non-collinear, then za+yb = 0 implies z =y = 0.

Suppose 27 (. Then xa+yb = 0 implies za = —yb or a =—(y/z)b, i.e a and b must be parallel
to the same line (collinear), contrary to hypothesis. Thus x =0; then yb =0, from which y=0.

142. Prove that the diagonals of a parallelogram bi-
sect each other,

Let ABCD be the given parallelogram with diagonals
intersecting at P as shown in Fig. 1-28.

Since BD+a=b, BD =b—a, Then BP = z(b—a).
Since AC=a+b, AP = y(a+b).

But AB = AP+ PB = AP — BP,
ie..a = y(a+b) —x(b—a) = (z+y)a+ (y—a)b.

Since a and b are non-collinear we have by Problem
141, 2+y=1 and y—z =0, ie. z=y=4 and P
is the midpoint of both diagonals.
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@Prove that for any vector A,

(@) A = (A-i)i+(AJi+ (Akk
(b)) A = A(cosai+cospj+ cosyk)
where q, 8, y are the angles which A makes with i, j, k respectively and cosa, cosB,
cos y are called the direction cosines of A.
(@) Wehave A = Aji+A,j+Azk. Then
Ari = (Aji+Aj+AK) i = A,

Avj = (A[i+Aj+AK)j = 4,

Ak = (Aji+Aj+Ak) k = A4
Thus A= (Ari)i+ (A-§)i+(A-kk
(b) A*i = |A|lijcosa = Acosa
A+j = |A|ljlcosf = Acosp
Ak = |A||k|cosy = A cosy

Then from part (a),
A= (Ai+(A*j)j+ (A-klk = A(cosai+ cospBj+ cosyk)

rove that ¥ ¢ is a vector perpendicular to the surface ¢(»,y,z) = ¢, where ¢ is a

constant.
Let r = zi+ yj+ zk be the position vector to any point P(z,y,z) on the surface.
Then dr = dxi+ dyj+ dzk lies in the plane tangent to the surface at P. But
_de, 0 9, _ VN ——— .
de¢ = axd:r: + aydy -I—Edz =0 or P + 6y’ + azk (dei+dyj+dzk) = 0
ie. Vg+dr = 0 so that Vg is perpendicular to dr and therefore to the surface.

1.45. Find a unit normal to the surface 2x%+4yz—522 = —10 at the point P(3,—1,2).
By Problem 1.44, a vector normal to the surface is

V(2x2+ 4dyz —b622) = d4dzi + 4zj + (dy—102)k = 12i + 8j — 24k at (3,—1,2)
Then a unit normal to the surface at P is 12i + 8j — 2k = B8k i
V(12)2 + (8)2 + (—24)2 7
i — 6k
Another unit normal to the surface at P is — %-6—-

146. A ladder AB of length a rests against a vertical wall OA [Fig. 1-29]. The foot B
of the ladder is pulled away with constant speed v.. (a) Show that the midpoint
of the ladder describes the arc of a circle of radius a/2 with center at 0. (b) Find
the velocity and speed of the midpoint of the ladder at the instant where B is distant
b <a from the wall.

v
(a) Let r be the position vector of midpoint M of AB.
If angle OBA = ¢, we have
OB = acosé¢i, OA = asinéj ‘A
AB = OB—0A = acosg@i—asingj
Then M
r = 0A+ AM = OA+«}AB
= asingj+ 4lacosei—asinoej iy c
= 4a(cose i + siné j) o ’ B i
(0] "'

Thus |r| = §a, which is a circle of radius a/2
with center at O. Fig.1-29
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(b) The velocity of the midpoint M is
dr _d . ey TR o
= a—{-}a{cos& i+ singj)} = 3a(—sine di+ cosé éj) ()
where § = dg/dt.

The velocity of the foot B of the ladder is
g o d s - o g
vl = EZ—t(OB] = E[a cosgi) = —asingdi or asingd = - (2)

At the instant where B is distant b from the wall we have from (2),

Va2 — b? . -1y —1,

sing = ————, & = =

a a 8in ¢ vVaZ — b2

Thus from (1) the required velocity of M at this instant is

dr = }v (1 S °)
a "N Ve-w
and its speed is avy/2Va?— b2 C

147. [Let (r,8) represent the polar coordinates describing the position of a particle. If
/¥y is a unit vector in the direction of the position vector r and 6: is a unit vector
*erpendlcular to r and in the direction of increasing # [see Fig. 1-30], show that

(a) ry = cosfi+sindj, 6, = —sindi+ cosdj

L/ .'_./ (b) i = cosfr,—8indf,, j = sinfr,+cosha

(a) If r is the position vector of the particle at any

time t, then dr/dr is a vector tangent to the ¥ g
curve # = constant, i.e. a vector in the direc- L
- tion of r (increasing ). A unit vector in this
direction is thus given by #1 "
1
_ dr ar
"= o/ o @) T
Since -
. . . r sing
r = zi+yj = reosgei+rsingj (2) 1
]
as seen from Fig. 1-30, we have ] j
— ¥
ar _ AR I A o i N
o cosé 1+ 8inéd j, arl = 1 PO
so that
T, = cosdi+tsinegj {3) Fig.1-30

Similarly, ar/de is a vector tangent to the curve r = constant. A unit vector in this
direction is thus given by

_ or [l
fr = as/ as‘ w
Now from (2),
o, _ .. A ar| _
% = reingi + rcosé j, le =7r
so that (4) yields
¢, = —singi+ cossij (8)

(b) These results follow by solving the simultaneous equations (8) and (5) for i and j.
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@vae that () r =06, (b) 6:1=—br..

(a) From (8) of Problem 1.47 we have

. _ dry _ Orgr  Ordy
1 dt  or dt | 3 dt
= (0)(r) + (—sine i+ cossj)e) = 60,
(b) From (5) of Problem 1.47 we have
e Widr 0
@ = G T o dt Gedt
= (0)(r) + (—cosei—singj)§) = —br
~ . * - . -
1.49.1' Prove that in polar coordinates (a) the velocity is given by
v = 7 + 780,
and (b) the acceleration is given by
a = (F—ré®r + (ré +276)0,
(a) We have r=rr; so that
di d; dr i 3 i ;
vy = a—% = -&rtr1+ra?l = tr;+rry = rr, + ree,

by Problem 1.48(a).

(b) From part (a) and Problem 1.48 we have
dv

A di

= Lr, +rdey)

= 7r, + 7, + 168, + r56, + rés,

= (F—réYr, + (r6 + 278)e,

Supplementary Problems

VECTOR ALGEBRA

rr, + r(ée,) + rée, + roe, + (ré)(—ér,)

[CHAP. 1

1.50. Given any two vectors A and B, illustrate geometrically the equality 4A+3(B—A) = A+ 3B.

1.51.  Given vectors A, B and C, construct the vectors (a) 2A—3B+4C, (b) C—JA+1B.

1.52. If A and B are any two non-zero vectors which do not have the same direction, prove that pA + ¢B

is a vector lying in the plane determined by A and B.

1.53. (a) Determine the vector having initial point (2, —1,3) and terminal point (3,2, —4).

distance between the two points in (a). Ams. (a) i+3j—7k, (b) V59

1.54. A triangle has vertices at the points A(2,1,-1), B(—1,3,2), C(1,—-2,1).
median to the side AB. Ans. \}\("66

(b) Find the

Find the length of the

1.55 A man travels 25 km northeast, 15 km due east and 10 km due south. By using an appropriate scale
determine (a) graphically and (b) analytically how far and in what direction he is from his starting

position. Ans. 33.6 km, 13.2° north of east.
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156. Find a unit vector in the direction of the resultant of vectors A = 2i—j+k, B = i+i-+2k,
C = 3i—2j+ 4k. Ans. * (6i — 2j + Tk)/V/8D

THE DOT OR SCALAR PRODUCT
157. Evaluate [(A+B)*(A—B)| if A = 2i—3j+5k and B = 3i+j— 2k Ans. 24

158. Find a so that 2i —3j+ 5k and 3i+ aj —2k are perpendicular. Ans. a = —4/3

159. If A=2i+j+k, B =1i—-2j+2k and C = 3i—4j+ 2k, find the projection of A+ C in the
direction of B. Ans. 17/3

1.60. A triangle has vertices at A4(2,3,1), B(—1,1,2), C(1,—2,3). Find the acute angle which the
median to side AC makes with side BC. Ans. cos! \/B_fflé

1/81. | Prove the law of cosines for triangle ABC, ie. ¢ = a®+ b2 — 2ab cos C.
C : [Hint. Take the sides as A,B,C where C = A—B. Then use C:-C = (A—B)*(A—B)]

162. Prove that the diagonals of a rhombus are perpendicular to each other.

THE CROSS OR VECTOR PRODUCT
163, If A =2 —j+k and B = i+2j—3k, find [(2A+B) ¥ (A —2B)|. Ans. 25V3

164, Find a unit vector perpendicular to the plane of the vectors A = 3i—2j+ 4k and B = i+j— 2k
Ans. = (2j + k)5

165. Find the area of the triangle with vertices (2,-3,1), (1,—1,2), (—1,2, 3). Ans. ﬁVfg
166. Find the shortest distance from the point (3,2,1} to the plane determined by (1,1,0}, (3,—1,1),
(—1,0,2). Ans. 2
2 ; in A in B i
167. | Prove the law of sines for triangle ABC, i.e. su; = sn; = su;C

[Hint. Consider the sides to be A,B,C where A+ B+ C = 0 and take the cross product of both
sides with A and B respectively.]

TRIPLE PRODUCTS
168, If A =2i+j—3k B=i—2j+k and C = —i+j—4k, find (a) A-(BXC), (b) C*(AXB),
(¢) AX (BXC), (d) (AXB)XC, Ans. (a) 20, (b) 20, (c¢) Bi—19j—k, (d) 25i—15j—10k

169. Prove that A+*(BXC) = (AXB)+C, ie. the dot and the cross can be interchanged.

170. Find the volume of a parallelepiped whose edges are given by A = 2i+3j—k, B = i—2j+2k,
C =38i—j—2k Ans. 31

171.  Find the volume of the tetrahedron with vertices at (2,1,1), (1,-1,2), (0,1,—1), (1,-2,1).
Ans. 4/3

Prove that (a) A<(BxC) = B+(CxA) = C-(AXB),
(b)) Ax(BxC) = B(A-C) — C(A*B).

(a) Let ry,ts, 1y be position vectors to three points P, P,, P, respectively. Prove that the equation

(r—ry) * [(r—ry) X (r—ry)] = 0, where r = zi+yj+zk, represents an equation for the plane
determined by P,, P, and P;. (b) Find an equation for the plane passing through (2,-1,-2),
(—1,2,-8), (4,1,0).  Ans. (b) 2z+y—3z = 9

DERIVATIVES AND INTEGRALS OF VECTORS
174, Let A = 3ti— (12+t)j+ (3—2¢2k. Find (a) dA/dt and (b) d?A/dt? at t=1.
Ans. (a) 3i—3j—k, (b) —2j+2k

If r=acoswt + b sinwt, where a and b are any constant non-collinear vectors and w is a constant
scalar, prove that (a) rXdr/dt = o(axb), (b) dir/di2+o?r = 0.




28 VECTORS, VELOCITY AND ACCELERATION [CHAP. 1

L7, If A =ti—sintk and B = costi+sintj+ k, find %{A-B). Ans. —tsint

d dB dA
—(AXxB) = AX—=—+——xB where A and B are differentiable functions of u.

1.77.  Prove that b g T

1.78. If A(u) = 4(u—1)i — (2u+ 3)j + 6u’k, evaluate (a) f Alu)du, (b) J (ui — 2k) » A(n) du.
. (a) 6i—8j+ 38k, (b) —28

1.79. Find the vector B(u) such that d?B/du? = 6ui —48u2j+ 12k where B = 2i — 3k and dB/du =

i+5j for u=0. Ans. (3 +u+ 2)i + (5u—dud)j + (6u2 — 3k
1.80. Prove that f A X f——::-dr = A X %&4— ¢ where ¢ is a constant vector.
g ; R °R .
181, If R = x%yi— 2y%2) + xy222k, find E-; M — 33 at the point (2,1, —2). Ans. 165
'}

2
18 If A= »%i—yj+xzk and B = yi+ xj —ryzk, find ﬁ(ﬁx B) at the point (1,-—1,2),
Ang. —4i+ Bj

VELOCITY AND ACCELERATION

1.83. A nparticle moves along the space curve r = (#2+8)i+(3t—2)j+ (2t*—4dt2)k. Find the
(a) veloecity, (b) acceleration, (¢) speed or magnitude of velocity and (d) magnitude of accelera-
tion at time t =2, Ans. (a) 5i+3i+8k, (b) 2i+ 16k, (¢) TV2, (d) 2V/65

1.84. A particle moves along the space curve defined by * = e fcost, y = e tsint, 2 = ¢~ t. Find

the magnitude of the (a) velocity and (b) acceleration at any time ¢

Ans. (a) V3e—t, (b) Vet

1.85. The position vector of a particle is given at any time ¢ by r = g coswti+ asinafj+ biZk,
(a) Show that although the speed of the particle increases with time the magmitude of the
acceleration is always constant. (b) Describe the motion of the particle geometrically.

RELATIVE VELOCITY AND ACCELERATION

1.86. The position vectors of two particles are given respectively by r, = ti—2j+(2t+3)k and
ry = (2t —3t2)i+ 4tj — t*%k. Find (a) the relative velocity and (b) the relative acceleration of the
second particle with respect to the first at ¢ =1. Ans, (a) —bi+6j—bk, (b) —6i+2j— 6k

1.87. An automobile driver traveling northeast at 41.6 km/h notices that the wind appears to be coming
from the northwest. When he drives southeast at 48 km/h the wind appears to be coming from 60°
south of west. Find the velocity of the wind relative to the ground.

Ans. 83.2 km/h in a direction from 30° gsouth of west.

1.88. A man in a boat on one side of a river wishes to reach a point directly opposite him on the other
side of the river. Assuming that the width of the river is D and that the speeds of the boat and
current are V and v < V respectively, show that (a) he should start his boat upstream at an angle

of sin—1(v/V) with the shore and (b) the time to cross the river is D/y V2 — 2,

TANGENTIAL AND NORMAL ACCELERATION

1.89. Show that the tangential and normal acceleration of a particle moving on a space curve are given
by d2s/dt? and «(ds/dt)2 where s is the arc length of the curve measured from some initial point

and « is the curvature.

1.90. Find the (a) unit tangent T, (b) principal normal N, (¢) radius of curvature R and (d) curvature
x to the space curve x=t, y=12/2 z=L
Ans. (@) (i+ti+R/NVEF2, (b) (—ti+2i— th)/VZE+4, (c) (2+2)32)V2, (d) V2 /(12 +2p2
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1.91, A‘ particle moves .in such a way that its position vector at any time ¢ is r = i+ 4%+ tk
Find (a) the velocity, (&) the speed. () the accslaration, (<) the magnitude of the avceleration,
fe) the magnitude of the taneentia) sersleration [ Fhe cewibende oF Al wocvrsnl  woes e b,

Ans. (@) i+ti+k, 0) VETZ, ()i, (d 1, (o) tWEFZ, ()h VZWVET 2

182. Find the (a) tangential acceleration and (b) normal acceleration of a particle which moves on
the ellipse r = acoswti+ b sinwtj.

wi{a? — b?) sin wt cos wt wlah
— (b) = —
Va2 sin? ot + b2 cos? wt Va? sinwt + b* cos?ut

Ans.  (a)

CIRCULAR MOTION

193, A particle moves in a circle of radius 20 em. If its tangential speed is 40 em/s, find (a) its angular
speed, (b) its angular acceleration, (¢) its normal acceleration.
Ans. (a) 2radfs, (b) 0 radfs?, (c) 80 cm/s?

1. A particle moving on a circle of radius B has a constant angular acceleration a. If the particle
starts from rest, show that after time t (a) its angular velocity is w =at, (b) the are length
covered is s = LRt

195, A particle moves on a circle of radius R with constant angular speed u,. At time ¢t =0 it starts
to slow down so that its angular acceleration is —a (or deceleration a). Show that (a) it comes to
rest after a time wy/a and (b) has travelled a distance Rug/2a.

196, 1f the particle in Problem 1.95 is travelling at 3600 revolutions per minute in a circle of radius
100 cm and develops a constant deceleration of 5 rad/s®, () how long will it be before 1t comes to
rest and (b) what distance will it have traveled? Ans. (a) 75.4 8, (b) 1.42 x 10%cm

GRADIENT, DIVERGENCE AND CURL
187, If A = 22i+ (222 —y)j—w2?k and ¢ = Bax2y+y2ed find (a) Ve, (b)) V-A and (¢) VXA

at the point (1,—1,1). Ana. (a) —6i+j+3k, (b) 2, (¢) —i+j+4k

198 If ¢ =zy+yz+zer and A = zyi+ y%zj+ 222k, find (a) A- V¢, (b) ¢V +A and (c) (Vo) XA
at the point (3,—1,2). Ans, (a) 25, 4b) 2, (e) 56i —30j+ 47k

199. Prove that if U, V,A,B have continuous partial derivatives, then (a) V(U+V) = VU+ VYV,

(b)) V*(A+B) = V-A+ V+B, (¢) VX(A+B) = VXA+VXB,
Show that ¥ X (#2r) = 0 where r = zi+yj+zk and r = 1|

Prove that (a) div curl A = 0 and (b) curl grad ¢ = 0 under sunitable conditions on A and ¢.

If A = (222—y2)i+ (¥2—2x2)j+ 22k and ¢ = 22y —~3xz2+ 2xyz, show directly that
diveurl A = 0 and curl grad ¢ = 0.

1103. If A = 3xz% — yzj + (x +22)k, find curl curl A. Ans. —6xi+ (62— 1k

1104. (a) Prove that ¥ X (V X A) = —V2A+ V(V +A). (b) Verify the result in (a) if A is as given in
Problem 1.103.

1105. Prove: (a) V X (UA) = (VU)X A+ U(V xA). (b)) V-(AXxB) = B«(VXA)—A-(VxB).

LINE INTEGRALS AND INDEPENDENCE OF THE PATH

L106. If F = (8z—2y)i+ (y+ 22)j — 2%k, evaluate f F+dr from (0,0,0) to (1,1,1), where C is a path
C

consisting of: (a) the curve z=t, y=t% z=13; (b) a straight line joining these points; (c) the
straight lines from (0,0,0) to (0,1,0), then to (0,1,1) and then to (1,1,1); (d) the curve =z =22,
z=y2 Ans. (a) 22/15, (b) 65/3, (e) 0, (d) 13/30
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1.107.

1.108.

1.109.

( 1.110. |

v
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Evaluate f A+dr where A = 32%i+ (2xz—y)j +2k along (a) the straight line from (0,0,0)
c

to (2,1,3), (b) the space curve x =22, y=¢, 2 = 4t2— ¢t from t =0 to t =1, (¢) the curve defined
by x*=4y, 3x3 =8z from 2 =0 to =2, Ans. (a) 16, (b) 14.2, (¢) 16

Find § F+dr where F = (x—3y)i+(y—2x)j and C is the closed curve in the xy plane,
C

x=2cost, y=38sint, 2=0 from t=0 to t=2r. Ans. br

(@) If A = (doy —3x222)i+ (4y + 2x%)j + (1 — 22%2)k, prove that f A-dr is independent of the
[
curve C joining two given points. (b) Evaluate the integral in (a) if C is the curve from the
points (1,—1,1) to (2,—2, —1). Ans. (b) —19
Determine whether f A +dr is independent of the path C joining any two points if (a) A = 2ryzi+
c

x2zj + x2yk, (b) 2xzi+ (x2— )i+ (22— x2k. In the case where it is independent of the path,
determine ¢ such that A = Vg.

Ans. (a) Independent of path, ¢ = x2yz+c¢; (b) dependent on path

Evaluate § E+dr where E = rr. Ans. 0
c

MISCELLANEOUS PROBLEMS

1.112.

1.113.

1.114.

1.115.

1.116.

1.117.

1.118.

1.119.

1.120.

1.121.
1122,
1.123.

1.124,

1.125.
1.126.

If AXB =8 —14j+k and A+B = 5i+3j+2k, find A and B.
Ans. A = 2i+j—2k, B = 3i+2j+4k

Let 1), m,,n, and l,, m4 n, be direction cosines of two vectors. Show that the angle ¢ between them
is such that cose = [lo+mms+ nyn,.

Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side
and has half its length.

Prove that (A X B)2 4+ (A-B)2 = AB2

If A, B and C are non-coplanar vectors [vectors which do not all lie in the same plane] and
A+ yB+2C = 2,A+ y,B+2,C, prove that necessarily =z =2, ¥;=v3 2 =2y

Let ABCD be any quadrilateral and peints P, @, R and S the midpoints of successive sides. Prove
that (a) PQRS is a parallelogram, (b) the perimeter of PQRS is equal to the sum of the lengths
of the diagonals of ABCD.,

Prove that an angle inscribed in a semicircle is a right angle.

Find a unit normal to the surface 2x2y— 2xz+ 2y%z* = 10 at the point (2,1, -1).
Ans. = (3i+ 4j — 6k)/\/B1

dA _ ,d4
Prove that A e Adt'

If A(n) is a differentiable function of » and |A(u)| = 1, prove that dA/du is perpendicular to A.
Prove V:(pA) = (Va)* A+ 4(V*A)
If AXxB = AXC, does B=C necessarily? Explain.

A ship is travelling northeast at 24 km/h. A man on this ship observes that another ship located 8 km
west seems to be travelling south at 8 ki per hour. (z) What is the actual veloeity of this ship? (b) At
what distance will the two ships be closest together?

Prove that (AXB)-(CXD)+ (BXC)+(AXD)+ (CxA)*(BXD) = 0.

Solve the equation d?r/dt? = —gk where y is a constant, given that r=0, dr/dt =vk at t=0.
Ans. r = (vt — dgt)k
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1127,

1,128,

1129,

1.130,

1,131,

L132.

L133.

1134,

L135.

1.136.

L137.

1.138.

1.139.

1.140.

1141,

1142,

If ¢ = (x2+y2+22)~12, show that V2p = V-(Vg¢) = 0 at all points except (0,0,0).

The muzzle velocity of a gun 18 100 km/h. How long does it take for a bullet to travel through the
gun barrel which is 0.7 m long, assuming that the bullet is uniformly accelerated? Ans. 058

A 8 m ladder 4 B rests against a vertical wall 04 as in Fig. 1-29, page 24. If the foot of the ladder B
is pulled away from the wall at 4 m/s, find (2) the velocity and (&) the acceleration of the top of the
ladder 4 at the instant where B is 4.6 m from the wall.

Ans. (a) 2.81 m/s downward; (b) 3.48 m/s? downward

Prove that (a) |[A+B| = |A|+|B|, (b)) |A+B+C| = |A|+ B|+|C|. Give a possible geometric
interpretation.

A train starts from rest with uniform acceleration. After 10 seconds it has a speed of 32 km/h. (a) How
far has it traveled from its starting point after 15 seconds and (b) what will be its speed in km/h?
Ans. (a) 100 m, (b) 48 km/h.

Prove that the magnitude of the acceleration of a particle moving on a space curve is

V(dv/dt)?2 4 vi/R2

where v is the tangential speed and R is the radius of curvature.

If T is the unit tangent vector to a curve C and A is a vector field, prove that

fﬁ-dr = JA-Tds
c c

where s is the arc length parameter.

If A = (22—y+4)i+ (5y+ 3z —6)j, evaluate § A+dr around a triangle with wvertices at
(0,0,0), (3,0,0), ¢3,2,0). Ans. 12

An automobile driver starts at point A of a highway and stops at point B after traveling the
distance IJ in time 7. During the course of the trip he travels at a maximum speed V. Assuming
that the acceleration is constant both at the beginning and end of the trip, show that the time
during which he travels at the maximum speed is given by 2D/V — T.

Prove that the medians of a triangle (a) can form a triangle, (b) meet in a point which divides the
length of each median in the ratio two to one.

If a particle has velocity v and acceleration a along a space curve, prove that the radius of
curyature of its path is given numerically by
413
v % al

Prove that the area of a triangle formed by vectors A, B and C is $|AXB+BXC+ CxA].

(a) Prove that the equation A X X = B can be solved for X if and only if A+B = 0 and A=0.
(b) Show that one solution is X = B X A/A2. (¢) Can you find the general solution?

Ans. (e) X = B X A/A2 + )A where ) is any scalar.

Find all vectors X such that A-X = p.
Ans. X = pA/A? + VX A where V is an arbitrary vactor.

Through any point inside a triangle three lines are constructed parallel respectively to each of
the three sides of the triangle and terminating in the other two sides. Prove that the sum of the
ratios of the lengths of these lines to the corresponding sides is 2.

T Nand B= TxN are the unit tangent vector, unit principal normal and unit binormal to
a space curve r =r(u), assumed differentiable, prove that

g—th‘, %:—TN. %:TB‘—IT
These are called the Frenet-Serret formulas. In these formulas « is called the curvature, 7 is the
torgion and their reciprocals R=1/k, a=1/r are called the radius of curvature and radius of
torsion.
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1.143. In Fig. 1-31, AB is a piston rod of length I. If A moves along horizontal line CD while B moves
with coustant angular speed  around the circle of radius @ with center at O, find (a) the velocity

and (b) the acceleration of 4.
P

<

C
]
D'::\-/;
*\

Fig.1-31 Fig.1-32

1.144. A boat leaves point P [see Fig. 1-32] on one side of a river bank and travels with constant velocity
V in a direction toward point @ on the other side of the river directly opposite P and distance D
from it. If r is the instantaneous distance from @ to the boat, ¢ is the angle between r and PQ,
and the river travels with speed v, prove that the path of the boat is given by

D sec s

r = e T A
(sec § + tan g)V'v

1.145. If » =V in Problem 1.144, prove that the path is an are of a parabola.

1.146. a) Prove that in cylindrical coordinates (p, ¢.z) [see Fig. 1-33] the position vector is
r = pcosgpi + psingj + 2k

(b) Express the velocity in eylindrical coordinates.
(c) Express the acceleration in cylindrical coordinates.

Ans. (b)) v = jp,+ ppey + 2k
(¢) a = (35— pd2p, + (8 + 2p8) ¢y + Tk

P(r, !,9).)

P(p,9,7)
z
vV ¥
Cylindrical coordinates Spherical coordinates
Fig.1-33 Fig. 1-34

1.147. \(a) Prove that in spherical coordinates (r,s,¢) [see Fig. 1-34] the position veetor is
r = rsinfcosgi+ rsindsingj + reosek
(b) Express the velocity in spherical coordinates.
(¢) Express the acceleration in spherical coordinates.
Ans. (b) v = 7r; + 780, + vé sine ¢,
(¢) a = (¥— r§2 — rg2 gin2 8)r, + (276 + 16 — ré? sin 6 cos 4)#,
+ (2r9¢ + 27¢ sine + r¢ sin 0)¢

1.148. Show that if a particle moves in the xy plane the results of Problems 1.146 and 1.147 reduce to
those of Problem 1.49.



Chapter 2 NEWTON'S LAWS of MOTION
WORK, ENERGY and MOMENTUM

NEWTON’S LAWS

The following three laws of motion given by Sir Isaac Newton are considered the
axioms of mechanics:

1. Every particle persists in a state of rest or of uniform motion in a straight line
(ie. with constant velocity) unless acted upon by a force.

2. If F is the (external) force acting on a particle of mass m which as a consequence is
moving with velocity v, then

_ 4 0
F=gm =5 (1)
where p=mv is called the momentum. If m is independent of time ¢ this becomes
dv _
F = mg = ma (2)

where a is the acceleration of the particle.

3. If particle 1 acts on particle 2 with a force Fi: in a direction along the line joining
the particles, while particle 2 acts on particle 1 with a force Fz, then Foy=—Fip2. In
other words, to every action there is an equal and opposite reaction.

DEFINITIONS OF FORCE AND MASS

The concepts of force and mass used in the above axioms are as yet undefined, although
intuitively we have some idea of magss as a measure of the “quantity of matter in an object”
and force as a measure of the “push or pull on an object”. We can however use the above
axioms to develop definitions [see Problem 2.28, page 49].

UNITS OF FORCE AND MASS

Standard units of mass are the gram (g) in the cgs (centimeter-gram-second) system, kilogram
(kg) in the ST system. Standard units of force in these systems are the dyne (dyn) and the newton
(N). A dyne is that force which will give a 1 g mass an acceleration of 1 em/s?, A newton is that
force which will give a 1 kg mass an acceleration of 1 m/s?. For relationships among these units
see Appendix A, page 341.

INERTIAL FRAMES OF REFERENCE. ABSOLUTE MOTION

It must be emphasized that Newton’s laws are postulated under the assumption that
all measurements or observations are taken with respect to a coordinate system or frame

33
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of reference which is fixed in space, i.e. is absolutely at rest. This is the so-called assump-
tion that space or motion is absolute. It is quite clear, however, that a particle can be
at rest or in uniform motion in a straight line with respect to one frame of reference and
be traveling in a curve and accelerating with respect to another frame of reference.

We can show that if Newton’s laws hold in one frame of reference they also hold in
any other frame of reference which is moving at constant velocity relative to it [see
Problem 2.3]. All such frames of reference are called inertial frames of reference or
Newtonian frames of reference. To all observers in such inertial systems the force
acting on a particle will be the same, i.e. it will be invariant. This is sometimes called
the classical principle of relativity.

The earth is not exactly an inertial system, but for many practical purposes can be
considered as one so long as motion takes place with speeds which are not too large. For
non-inertial systems we use the methods of Chapter 6. For speeds comparable with the
speed of light (300,000 km/s), Newton’s laws of mechanics must be replaced by Einstein's laus
of relativity or relativistic mechanies.

WORK

If a force F acting on a particle gives it a
displacement dr, then the work done by the

force on the particle is defined as N ¢
dW = F-dr (3) 5 Py :
since only the component of F in the direction <& %
of dr is effective in producing the motion. i
The total work done by a force field (vector . I{

field) F in moving the particle from point P,
to point P; along the curve C of Fig. 2-1 is z
given by the line integral [see Chap. 1, page 9]. Fig. 2-1

o Fear = R "Fdr f F-dr )

where r; and r; are the position vectors of P; and P. respectively.

POWER

The time rate of doing work on a particle is often called the instantaneous power, or
briefly the power, applied to the particle. Using the symbols W and ¢ for work and
power respectively we have W

‘P:-—E{E— (5)

If F is the force acting on a particle and v is the velocity of the particle, then we have
P = F-v (6)

KINETIC ENERGY

Suppose that the above particle has constant mass and that at times £, and ¢. it is
located at P, and P, [Fig. 2-1] and moving with velocities v, = dr,/dt and v: = drs/dt
respectively. Then we can prove the following [see Problem 2.8].
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Theorem 2.I. The total work done in moving the particle along C from P, to P; is
given by

| W = J;F-dr = $m(v; — v?) (7)

- If we call the quantity T = {mv? (8)
. the kinetic energy of the particle, then Theorem 2.1 is equivalent to the statement

Total Work done from P, to P: along C
= Kinetic energy at P. — Kinetic energy at P,

(9)

or, in symbols, W ="T-T (10)

where T\ = 4mv?, T.= {moi.

7
CONSERVATIVE FORCE FIELDS 7

Suppose there exists a scalar function V such that F = —yV. Then we can prove the
_ following [see Problem 2.15]. -

Theorem 2.2. The total work done in moving the particle along C from P, to P: is
Py
w = L Fidr = V(P) — V(Py) (11)
| 1
In such case the work done is independent of the path C joining points P, and P.. If the

work done by a force field in moving a particle from one point to another point is
independent of the path joining the points, then the force field is said to be conservative.

The following theorems are valid.

Theorem 2.3. A force field F is conservative if and only if there exists a continuously
differentiable scalar field V such that F= -9V or, equivalently, if and only if

VXF = curlF =0 identically (12)

Theorem 24. A continuously differentiable force field F is conservative if and only
if for any closed non-intersecting curve C (simple closed curve)

§CF-dr =: {i (13)

ie. the total work done in moving a particle around any closed path is zero.

POTENTIAL ENERGY OR POTENTIAL

The scalar V such that F = —yV is called the potential energy, also called the scalar
potential or briefly the potential, of the particle in the conservative force field F. In such
case equation (11) of Theorem 2.2 can be written

Total Work done from P; to P: along C

14
= Potential energy at P, — Potential energy at P: (14)

or, in symbols, W =Vi—V, (15)
where Vl = V(P1), Vz = V(Pz)
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It should be noted that the potential is defined within an arbitrary additive constant.
We can express the potential as

v = —-J:rF-dr (16)

where we suppose that ¥V =0 when r = r.

CONSERVATION OF ENERGY

For a conservative force field we have from equations (10) and (15),
T:— T, =Vi—V:a or T+ Vi=T:+ Vs (17)
which can also be written fmvi+ Vi = dmoi + Vo (18)

The quantity E = I'+ V, which is the sum of the kinetic energy and potential energy, is
called the total energy. From (18) we see that the total energy at P; is the same as the
total energy at P;. We can state our results in the following

Theorem 2.5. In a conservative force field the total energy [i.e. the sum of kinetic
energy and potential energy| is a constant. In symbols, T'+V = congtant = E.

This theorem is often called the principle of conservation of energy.

IMPULSE
Suppose that in Fig. 2-1 the particle is located at P, and P. at times ¢, and ¢, where it
has velocities vi and v. respectively. The time integral of the force F given by

ty

Fdt (19)

L

is called the impulse of the force F. The following theorem can be proved [see Problem 2.18).

Theorem 2.6. The impulse is equal to the change in momentum; or, in symbols,

ty
f Fdt = mv, — mv, = p, — p, (20)

1

The theorem is true even when the mass is variable and the force is non-conservative.

TORQUE AND ANGULAR MOMENTUM

If a particle with position vector r moves in a
force field F [Fig. 2-2], we define

A=rxF (21)

as the torque or moment of the force F about O.
The magnitude of A is a measure of the “turning
effect” produced on the particle by the force. We
can prove the following [see Problem 2.20]

Theorem 2.7.
rxF = gt- {m(r X v)} (22) Fig. 2-2
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The guantity

2 =mrxXv) =rXp (23)
is called the angular momentum or moment of momentum about 0. In words the theorem
states that the torque acting on a particle equals the time rate of change in its angular
momentum, i.e.,

_ do
o ar (24)
This theorem is true even if the mass m is variable or the force non-conservative.
CONSERVATION OF MOMENTUM
If we let F=0 in Newton's second law, we find
gé—(mv) =0 or mv = constant (25)

This leads to the following
Theorem 2.8. 1f the net external force acting on a particle is zero, its momentum
will remain unchanged.

This theorem is often called the principle of conservation of momentum. For the case
of constant mass it is equivalent to Newton's first law.

CONSERVATION OF ANGULAR MOMENTUM
If we let A =0 in (24), we find

gf{m(rx\r)} =0 or m(rxv) = constant (26)

This leads to the following

Theorem 2.9. If the net external torque acting on a particle is zero, the angular
momentum will remain unchanged.

This theorem is often called the principle of conservation of angular momentum.

NON-CONSERVATIVE FORCES

If there is no scalar function V such that F = —yV |or, equivalently, if ¥ XF # 0],
then F is called a non-conservative force field. The results (7), {20) and (24) above hold
for all types of force fields, conservative or not. However, (11) and (17) or (18) hold only
for conservative force fields.

STATICS OR EQUILIBRIUM OF A PARTICLE

An important special case of motion of a particle occurs when the particle is, or appears
to be, at rest or in equilibrium with respect to an inertial coordinate system or frame of
reference. A necessary and sufficient condition for this is, from Newton’s second law, that

F=0 (27)

i.e. the net (external) force acting on the particle be zero.
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If the force field is conservative with potential V, then a necessary and sufficient
condition for a particle to be in equilibrium at a point is that

VV:O, i.e.%%:%zzgég:

at the point. 4

STABILITY OF EQUILIBRIUM

If a particle which is displaced slightly from an equilibrium point P tends to return
to P, then we call P a point of stability or stable point and the equilibrium is said to be
stable. Otherwise we say that the point is one of instability and the equilibrium is
unstable. The following theorem is fundamental.

Theorem 2.10. A necessary and sufficient condition that an equilibrium point be one
of stability is that the potential V at the point be a minimum.

Solved Problems

NEWTON’'S LAWS

2.1. Due to a force field, a particle of mass 5 units moves along a space curve whose
position vector is given as a function of time ¢ by

r = (284 t)i + (3t — 2+ 8)j — 12t%k

Find (a) the velocity, (b) the momentum, (¢) the acceleration and (d) the force
field at any time ¢.

(a) Veloeity = v = % = (6t2+ 1)i + (1243 — 2¢t)j — 24tk
(b) Momentum = p = mv = b5v = (30t2+4 5)i + (6023 — 10¢)j — 120tk
. dv d?r . .
(e) Acceleration = a = o 12ti + (3612 — 2)j — 24k
(d) IForce = o= W 8 ey + (180¢2 — 10)j — 120k
N Codt dt

2.2. A particle of mass m moves in the zy plane so that its position vector is
r = acoseti + bsinetj

where a, b and » are positive constants and a > b. (a) Show that the particle moves
in an ellipse. (b) Show that the force acting on the particle is always directed
toward the origin.

(a) The position vector is

r = xi+yj = acoswti+ bsinwtj m
and so x = acoswt, ¥y = b sinwt which are b| r
the parametric equations of an ellipse having wt A

semi-major and semi-minor axes of lengths a
and b respectively [see Fig. 2-3].
Since

(x/a)? + (y/b)2 = cos?wt + sinZwt = 1
the ellipse is also given by x%/a%+ y2/b% = 1. Fig. 2-3
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(b) Assuming the particle has constant mass m, the force acting on it is

dv d2r

d2
= m ae {(O‘. cos wt)i + (b sin wt}j]

m|—w?a cos wt i — &b sin wt j]

—mw?[a coswt i + b sin wt j]

which shows that the force is always directed toward the origin.

Two observers O and (0, fixed relative to
two coordinate systems Oxyz and O'x'y’z’
respectively, observe the motion of a par-
ticle P in space [see Fig. 2-4]. Show that
to both observers the particle appears to
have the same force acting on it if and
only if the coordinate systems are moving
at constant velocity relative to each other.

Let the position vectors of the particle in the
Ouryz and O'z"y'z’ coordinate systems be r and r’

respectively and let the position vector of O’
with respect to O be R=r—1r'.

Relative to observers O and O’ the forces acting on P according to Newton’s laws are given

respectively by

d’r
B’ = poefion
e
The difference in observed forces is
T d?
F-F = ‘mE'z-z-(
and this will be zero if and only if
d?R _
T i or

i.e. the coordinate systems are moving at constant velocity relative to each other. Such coordinate

systems are called inertial coordinate systems.

The result is sometimes called the classical prineiple of relativity.

A particle of mass 2 moves in a force field depending on time ¢ given by
F = 244 + (36t—16); — 12tk

Assuming that at £=0 the particle is located at ro = 8i—j+4k and has velocity
vo = 6i+ 15— 8k, find (a) the velocity and (b) the position at any time ¢.

(a) By Newton's second law,

2dv/dt = 24¢% + (36t —16)j — 12tk

or

dv/dt = 12t + (18t —8)j — 6tk

Integrating with respect to t and calling ¢, the constant of integration, we have

v = 4% + (912 —8t)j — 3t%k + ¢

Since v = v, = 6i+15j—8k at {=0, we have ¢; = 6i+15j —8k and so
v = (43+6)i + (92 —Bt+15)j — (312 +B)k
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(b) Since v = dr/dt, we have by part (a)

% (43 + 6)i + (9¢2— 8t + 15)j — (3t2+ Bk
Integrating with respect to ¢t and calling ¢, the constant of integration,

r = (t*468)i + (33 —4t2+156t)j — (P + 80k + ¢,
Since r =ryg = 3i—j+4k at £=0, we have ¢; = 3i—j+4k and so

r = (t'+6t+3)i + (388 —4e24+15t—1)j + (4— 8 —gp)k

A constant force F acting on a particle of mass m changes the velocity from v, to v
in time .

(a) Prove that F = m(va—wvi)/r.
(b) Does the result in (a) hold if the force is variable? Explain.

ta) By Newton’s second law, md—v - dvv _ F 1)
dt o dt ~ m (

Then if F and m are constants we have on integrating,

v = (F/m)t + ¢,
At £ =0, v=v, so that ¢, =v, ie.

v = (F/m)}t + v; (2)
At t=r, v=v, so that vo = (F/m)r + v,
ie. F = m(vy—wv)/r (8

- Another method.

Write (1) as mdv = Fdt. Then since v=v, at t=0 and v=v, at t=7, we have

Vg T
f mdv = f Fdt or m(vy—v,) = Fr
v, 0

which yields the required result,

(b) No, the result does not hold in general if F is not a constant, since in such case we would not
obtain the result of integration achieved in (a).

Find the constant force in the (a) cgs system and (b) SI system needed to accelerate
a mass of 10,000 g moving along a straight line from a speed of 54 km/h to 108 km/h in
5 minutes.

Assume the motion to be in the direction of the positive z axis. Then if v, and v, are the
velocities, we have from the given data v, = 64i km/h, v, = 108i km/h, m = 10,000 g, ¢{ = 5 min.

(a) In the cgs system
m=101g, v, =>54ikm/h = 1.5 x 10%cm/fs, v, = 3.0 x 10% cm/fs, ¢ = 3008

- 1.6 x 10% em
Then F = ma = m(w2 vl) = (l0tg) ‘-——E
t 3 x 108

= 0.5 x 10% gem/s® = b6 X 104 dyn

Thus the magnitude of the force is 50,000 dynes in the direction of the positive z axis.

(b) In the SI system :
m = 10kg, v, = 6dikm/h = 15im/s, v, = 30im/s, ¢ = 300s
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Vo — V /151 5
Then F = ma = m( E q Lete )
/

= (10kg) (——
t ¥\ 3008 /

= 0.5i kg m/s® = 0.5i newtons

Thus the magnitude is 0.5 newtons in the positive x direction. This result could also have been
obtained from part (g¢) on noting that 1 newton = 10° dynes or 1 dyne — 1075 newtons.

In this simple problem the unit vector i is sometimes omitted, it being understood that the
force F will have the direction of the positive x axis. However, it is good practice to work this
and similar problems with the unit vector present so as to emphasize the vector character of force,
velocity, ete. This is especially important in cases where velocities may change their directions.
See, for example, Problem 2.46, page 56.

27. What constant force is needed to bring a 900 kg mass moving at a speed of 100 km/h
to rest in 4 seconds?

We shall assume that the motion takes place in a straight line which we choose as the positive
direction of the x axis. Then we have

m = 900 kg, v, = 100i kinf/h = 27.78im/s, v, — 0imfs, t =4s

[ Ve — v /‘27.78'1:11;'5\1
Then F = ma = m| ) = 900 kg ,\.__..F_ )

\

= — .25 x 10*inewtons

Thus the force has magnitude 6.25 x 10? newtons in the negative x direction, 1.e. in a direction opposite
to the motion. This 1s of course to be expected,

WORK, POWER, AND KINETIC ENERGY

A particle of constant mass m moves in space under the influence of a force field F.
Assuming that at times ¢, and t: the velocity is vy and v. respectively, prove that
the work done is the change in kinetic energy, i.e.,

1z
j Fedr = imvi — dmo?
iy

ty d -
Work done = F-Lat = Frvdt
Iy dt t
ts ity
= f mﬁ'vdt = mj vedv
t dt i
1 1
& . ,
= 4m ‘ divev) = JImv? : = dme] — Jmyy
1 1

29, Find the work done in moving an object along a
vector r = 3i+ 2j— 5k if the applied force is
F=2i—j—k. Refer to Fig. 2-5.

Work done = (magnitude of force in direction [
of motion)(distance moved)

(F cosg)(r) = F-r
(2i —j — k) * (3i + 2j — Bk) r
6—24+5 =29 Fig. 2-5

Y
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2.40. Referring to Problem 2.2, (a) find the kinetic energy of the particle at points A

and B, (b) find the work done by the force field in moving the particle from A to B,
{¢) illustrate the result of Problem 2.8 in this case and (d) show that the total work
done by the field in moving the particle once around the ellipse is zero.

(a) Velocity = v = dr/dt = —wasinwefi+ obcoswt j.
Kinetic energy = dmv? = imlw?a®sin?wf + o?b% cos? wt).

Kinetic energy at A [where cos wt

Il

1, sinet =0] = J1ma?b?
Kinetic energy at B [where coswt = 0, sinwt =1] = ime®a?
{(b) Method 1. From part {b) of Problem 2.2,

B

B B
Work done = I Fedr = f (—muwlr)=dr = —me? J- redr
A A A
B i
- —i-muzj dieer) = —jme?r?
A A
=  dme?at — Ime?b? = Imei(a® — b?)

Method 2. We can assume that at A and B, t=0 and t = 7/2w respectively. Then:

B
Work done = f F-dr
A

/2w
f [-me?(a coswt i + b sinwt j)] * [~wa sin ot i + b cos t j] dt
0

1l

o/ 2e
J mwd(a? — b2) sin wf cos wt dt
0

w2
= {mea®— b? sin? ot Y= Imu2(a? — b2)
0

(c) From parts (a) and (b),
Work done

Ime¥(a2—b%) = Jmoa? — Jma?h?

= kinetic energy at A — kinetic energy at B

(d) Using Method 2 of part (b) we have, since t goes from 0 to ¢ = 27/w for a complete circuit
around the ellipse,

2r/w
Work done = f mwd(a? — b2) sin wt cos wt dt
0

. s 2miw
= dmo(a?— b?) sin wt = 0
0

Method 1 can also be used to show the same result.

241. Prove that if F is the force acting on a particle and v is the (instantaneous) velocity

of the particle, then the (instantaneous) power applied to the particle is given by
P = F-v
By definition the work done by a force F in giving a particle a displacement dr is
dW = F-dr
Then the (instantaneous) power is given by

AW _ o odr

P = at — Fld—t:Fl\r

as required.
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212. Find the (instantaneous) power applied to the particle in Problem 2.1 by the force
field.

By Problem 2.1, the velocity and force are given respectively by
v = (6124 1) + (1213 — 2¢)j — 24tk
F = 606 + (1802 — 10)j — 120k
Then the power by Problem 2.11] is given by
P o= Frv = (6006124 1) + (18042 — 10)(1213 ~ 2¢) + (120)(241)
= 2160t5 — 12063 + 2960¢

213, Find the work done by the force in (a) Problem 2.6, (b) Problem 2.7.

fa) In the cgs system: v, = jv;| = 1.5%10% emfs, v, = Jvo| = 3.0 108 cmfs, m = 104 g,
Then by Problem 2.8,

Work done =  change in kinetic energy
= ém(vg — ‘v?)

2
= 3{104gH0.0 x 108 — 2.25 x 10=)9§‘;~

H cm
= 388x100 8% - g8y 1910( £ )(cm}
g" s
= 338x100 dyprem = 3.38 ¥ 1010 ergs
In the SI system we have similarly:
m2
Work done = §(10 kg)(900 — 225) —
kg m
= 338X 103(-%*) (m) = 3.38 10% newton meters
(b) As in part (a), -
Work done = }(800kg) (27.78)* — 0’)-—3;
kgm
= 347 X 105 o5 = 347 x 1087

CONSERVATIVE FORCE FIELDS, POTENTIAL ENERGY, AND
CONSERVATION OF ENERGY

214. Show that the force field F defined by
F = (%2 —6xz)i + 2xy2®j + (Bzye? - 6x%2)k
is a conservative force field.
Method 1. The force field F is conservative if and only if curl F = VXF = 0. Now
i i k
Y xF = afdzx /oy ofdz
Y223 — 6xz?  2xyz®  3ay?? — 6x%

I

9 2,2 — Gx2z) — 2 3 }
i [ 5 (3xy?2% — Gx2z) Py (2xyz3)
+ i j}—(y’z" — 6xz?) — i(.‘ixyﬂzz I 6:‘:}]
iz dx

9 N . z]
. + k[ax (22p2%) ay(yz Bxz?)

Then the force field is conservative,
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Method 2.
The force field F is conservative if and only if there exists a scalar function or potential
Vixz,y,2z) such that F = —grad V = —VV  Then
_ , eV, av. &V
F — —Vl» = 3;-5] Ta? 3%

= (y22% —6xzd)i + 2xyz*j + (3xy222— 6x22)k
Hence if F is conservative we must be able to find V such that
aVidx = 6xz? — y22%, oVidy = —2xy2d, oV/dz = 6x22 — 3xy?z? 1)
Integrate the first equation with respect to x keeping y and z constant. Then
Vo= 3x%% — xy?® + g,(y,2) (2)
where g,(y,z) is a function of y and z.

Similarly integrating the second equation with respect to y (keeping x and z constant) and the
third equation with respect to z (keeping x and y constant), we have

V = —ay2® + gy(x,z) (#)
V = 3x222 — xy22® + gz, v) (4)

Equations (2), (3) and (4) yield a common V if we choose
91y, 2) = ¢, golw,2) = 3a%t +e, gaz,y) = ¢ ®)

where ¢ is any arbitrary constant, and it follows that

V = 32222 —axy?3 + ¢

is the required paotential.
Method 3. . X

T LW, T

V' = = f Frdr = — J- (w223 — 6x29)dxr + 2xy3dy + (3xy?z? — 6x2z)dz
To (Zp: ¥y, 2y)
Vru.z)
= - dlxy?:? — 30222) = Bx%% — zy?22 + ¢
LT ST Y

where ¢ = '.cﬂy;";zg - 3.1-;-::;-:.

Prove Theorem 2.2, page 35: If the force acting on a particle is given by F=-VV,
then the total work done in moving the particle along a curve C from P; to P; is

Py
W = f F-dr = V(P) — V(P
I'l
We have
Py Py Py Py
W = F-dr = =VWVseidr = —dV = =V = V(P;) — V(Ps)
JPI r fPl J"] B, 1 2,

Find the work done by the force field F of Problem 2.14 in moving a particle from
the point A(-2,1,3) to B(1,-2,-1).

B B
Work done = f F-dr = f —VV-dr
A Ja
1,-2,-1) Kl =2, 1)
= j —dy = -—V(x.y,Z)I

(-2.1,3) (-2,1,3)

(1, -2, —1)
= —3x2:2 + ay?2? — ¢ = 156

(—2.1.3
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. (a¢) Show that the force field of Problem 2.2 is conservative.
(b) Find the potential energy at points A and B of Fig. 2-3.

(¢) Find the work done by the force in moving the particle from 4 to B and compare
with Problem 2.10(b).

(d) Find the total energy of the particle and show that it is constant, i.e. demonstrate
the principle of conservation of energy.

(e} From Problem 2(8), F = —mw’r = —mw?(ri+ yjl. Then
i i k
VXxF = d/ox a/dy dfaz
—muwlx —‘mw!‘h‘ 0

8 oy 98 o IR -
i[aytO) 3! mw"-le + l[az( metx) ~ o (0)]

+ k ]ja—i-t*muzy) — ;;(‘—mwzr]]
= 0

Hence the field is conservative.

(b) Since the field ic conservative there exists a potential V such that

F = —molxi — mutyj = —-VV -—%i = % - %—Ek
Then aV/idx = mwiz, dV/dy = muly, aV/ez = 0
from which, omitting the constant, we have
Vo= dme?z? + Imo?y? = dmet(z?+ %) = Imo¥r?

which is the required potential.

(¢) Potential at point A of Fig. 2-3 [where r=a] = dmaa?,
Potential at point B of Fig. 2-3 [wherer=b] = {4mu22. Then
Work done from A to B = Potential at A — Potential at B
= dmeta? — dme?b? = fmei(a?—b?)

agreeing with Problem 2.10(b).

(d) By Problems 2.10(a) and part (b),

Kinetic energy at any point = T = {mv? = }mr?
= 4m(w?a? sin?wt + w?b? cos? wt)
Potential energy at any point = V = {4mu?r?

%mzta"' cos? wt + b? gin2 wt)

I

Thus at any point we have on adding and using sinZwt + cos?uwt = 1,
T+V = dmoila? + b2
which is a constant.

IMPULSE, TORQUE, ANGULAR MOMENTUM, AND
CONSERVATION OF MOMENTUM

218. Prove Theorem 2.6, page 36;: The impulse of a force is equal to the change in
momentum,

By definition of impulse [see (19), page 36] and Newton's second law, we have

ty d ty Iy
Fdt = f &E{m‘r)dt = dimv) = mv = Myg = Myy

Yy n f t

ty
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2.19. A mass of 5000 kg moves on a straight line from a speed of 540 km/h to 720 km/h in 2
minutes. What is the impulse developed in this time?

Method 1.
Assume that the mass travels in the direction of the positive z axis. In the SI system,
v, = 540ik__m_ — w — 1.5 % 102§ 2L
h 3600 s 8
i x
Vg = 729ikrﬂ = M = 2.0x102;] 0%
h 3600 s s
Then from Problem 2.18,
Impulse = miv,—v,;)] = (5000 kg)(0.5 % 102i m/s)

= 25 x 10%kgmfs = 2.6 x 105 N s
since IN = ITkgmfs? or I1Ns = Lkgmfs.

Thus the impulse has magnitude 2.5 ¥ 105 N s in the positive x direction,

Method 2.

Using the cgs system, v, = 5640ikm/h = 1.5 ¥ 10%em/s and v, = 720ikm/h = 2.0 x
104 em/fs. Then

Impulse = mlvg—vy) = (65000 x 102 g)(0.5 x 10%*icm/s)
2.50 x 10"igem|s = 2.50 x 10'%idyn

since ldyn = 1l gem/fs® or 1 dyns = 1gecm/s

Note that in finding the impulse we did not have to use the time 2 minutes as given in the
statement of the problem.

2.20. Prove Theorem 2.7, page 36: The moment of force or torque about the origin O of
a coordinate system is equal to the time rate of change of angular momentum.

The moment of force or torque about the origin O is
E'VA = rxXF = rxé%(mv]

The angular momentum or moment of momentum about O is

-—I"I = mrxv) = rX(mv)
e _ d _ dr a
Now we have % " @ (rxmy) = th(ﬂmv) + rxdt[mv)
= v)((mv)+r><%(mv} = 0+rxXxF = A

which gives the required result.

2.21. Determine (a) the torque and (b) the angular momentum about the origin for the
particle of Problem 2.4 at any time ¢,

v/
(a} Torgue A ! ‘= rxXF
[(t2+ 6t + 3)i + (383 — 412+ 15t —1)j + (4 — 3 — Bt)k] X [24t2i + (36t — 16)j — 12&]

i j k
= [ t#+66+3 32— 42+16t—1 4 —t2— 8t
24142 36t — 16 —12¢

(8213 4 10812 — 260t + 64)i — (125 + 192t% — 168¢2 — 361)j
— (365 — BO# + 3603 — 240¢% — 12t + 48)k
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[

S
(b) Angular momentum )= rX (mv) = mirxv)

= 2((t4+ 6t + 3)i + (33— 4£2 + 15¢ — 1)j + (4 — 3 — 8H)K]
X [(482 + B)i + (962 — Bt +15)j — (32 + 8)k]

i i k
= 2|t8+6t+3 33 —4t2+15t—1 4 — 13— 8¢
‘ 412 + 6 9t2 — 8t + 15 —3t>— 8

(8t1 + 3612 — 1302 + 64t — 104)i — (2¢5 + 4844 — 5613 — 18(2 — 96)j
— (616 — 1615+ 901+ — 8O3 — 612 + 48¢ — 102)k

Note that the torque is the derivative with respect to { of the angular momentum, illustrating
the theorem of Problem 2.20,

222 A particle moves in a force field given by F = »’r where r is the position vector of
the particle. Prove that the angular momentum of the particle is conserved.

The torque acting on the particle is
A =rXF = rX{rfr) = 23rxr) = 0

Then by Theorem 2.9, page 37, the angular momentum is constant, i.e. the angular momentum is
conserved.

NON-CONSERVATIVE FORCES
223. Show that the force field given by ¥ = x%yzi —2yz*k is non-congervative.

We have i .I k
ViR = dlox  afdy d/dz = —zz% + (x%y+ yz?)j — 2%zk
x2yz 0 — 2

Then since V X F = 0, the field is non-conservative.

STATICS OF A PARTICLE

224, A particle P is acted upon by the forces F,, F;, F;, Fy, F5 and Fs shown in Fig. 2-6.
Represent geometrically the force needed to prevent P from moving.

F,

Fig.2-6 Fig. 2-7

The resultant R of the forces F,,F,, Fy,F;, F; and Fg can be found by vector addition as
indicated in Fig. 2-7. We have R = F, +F,+F;+ F;+F;+F;. The force needed to prevent
P from moving is —R which is a vector equal in magnitude to R but oppesite in direction and
sometimes called the equilibrant,
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2.25. A particle is acted upon by the forces F, = 51 — 105+ 15k, F. = 10i+ 25j — 20k and
F; = 151 —20j+ 10k. Find the force needed to keep the particle in equilibrium.
The resultant of the forces is
R — F, + F, + F; = (5i —10j+ 15k) + (10i + 25j — 20k) + (15i — 20j + 10k)
= 30i — 5j + 5k {
Then the force needed to keep the particle in equilibrium is R = —30i + 5j — 5k. :
M
2.26. The coplanar forces as indicated in Fig. 2-8 act on a particle P. Find the resultant
of these forces (a) analytically and (b) graphically. What force is needed to keep '
the particle in equilibrium?
Y ot
i Unit = 100 N
o
- xS 8,
g‘ soﬂ "“’
@ - s
.,;5 N {\ @5 30
T ;00_1. &
an” 452 & =
— x &
- -
5 £
S R
/300 45e
Yy x
Fig. 2-8 Fig. 2-9

(a} Analytically. From Fig. 2-8 we have,
F, = B00(cos45” i + sin4b” j), F, = 500(— cos30” i + sin 307 j),

F; = 600(— cos 60 i — sin 607 j)
Then the resultant R is
R=F +F,+F
= (800 cos 45 — 500 cos 307 -
= —167.331 + 296.07j§

~ 600 cos 60°pn + (800 sin 45° + 500 sin 30° — 600 sin 60%)j

Writing R = Recosai+ Rsinaj where a is the angle with the positive 2 axis measured

counterclockwise, we see that
Rcose = —167.33, R sine = 285.07

R = /(—167.33)*4+(296.07)* = 340 N, and. the direction « with

Thus the magnitude of R is
—1.770 or « = 119° 28",

the positive x axis is given by tana = 286.07/(—167.33) =

(b) Graphically. Choosing a unit of 100 N as shown in Fig. 2-9, we find that the resultant has mag-
nitude of about 340 N and direction making an angle of about 61° with the negagive » axis (using

a protractor) so that the angle with the positive x sxis is about 119°,
A force —R, i.e. opposite in direction to R but with equal magnitude, is needed to keep P

in equilibrium.

STABILITY OF EQUILIBRIUM
2.27. A particle moves along the z axis in a force field having potential V = §x2?, x> 0.

(¢) Determine the points of equilibrium and (b) investigate the stability,

(a) Equilibrium points occur where V¥V =0 or in this case
dVjde = xx = 0 or z = 0

Thus there is only one equilibrium point, at =z = 0.
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(b) Method 1.

Since d?V/dx® =« > 0, it follows that at =0, V is a minimum. Thus by Theorem 2.10,
page 38, x =0 is a point of stability. This is also seen from Problem 2.36 where it is shown
that the particle oscillates about x = 0.

Vi)

Method 2. |

Wehave F= —VV = -‘%i = —xzi, Then ]
when z > 0 the particle undergoes a force to ‘
the left, and when x <0 the particle under- |
goes a force to the right. Thus =0 is a |
point of stability.

|
l
x
Method 3. F £ =008
minimum
The fact that # = 0 is a minimum point can point
be seen from a graph of V(x) vs = [Fig. 2-10]. Fig. 2-10

- MISCELLANEOUS PROBLEMS

228, Show how Newton’s laws can be used to develop definitions of force and mass.

Let us first consider some given particle P, assuming for the present that its mass mp is not
defined but is simply some constant scalar quantity associated with P. Axiom 1 states that if P
moves with constant velocity (which may be zero) then the force acting on it is zero. Axiom 2
states that if the velocity is not constant then there is a force acting on P given by mpap where
ap is the acceleration of P. Thus force is defined by axioms 1 and 2 [although axiom 1 is unnecessary
since it can in fact be deduced from axiom 2 by letting F =0]. It should be noted that force is a
vector and thus has all the properties of vectors, in particular the parallelogram law for vector
additior.

To define the mass wip of particle P, let us now allow it to interact with some particular
particle which we shall consider to be a standard particle and which we take to have unit mass.
If ap and ag are the accelerations of particle P and the standard particle respectively, it follows
from axioms 2 and 3 that mpap = —az. Thus the mass mp can be defined as —ag/ap.

Find the work done in moving a particle once around a circle C in the xy plane, if
the cirele hag center at the origin and radius 8 and if the force field ig given by

F = (2r—y+2)i+ (z4+y—235 + Br—2y+42)k

In the plane z=0, F = (Qe—y)i+ (x+y)j+ (8x—2y)k and dr = dri+dyj so that the
work done is

J1 Fedr = f [(@x — )i + (x+ w)j + (3z — 2y)k] - [dx i + dy j|
c c

= f 2z —y)dx + (x+y)dy
c

Choose the parametric equations of the circle as x = 3 cost, 4
¥ =3sint where t varies from 0 to 2r [see Fig. 2-11]. Then the
line integral equals
2n g
f [2(3 cos t) — B sint][—3 sint] dt + [3 cost + 3 sin t|[3 cos t] dt t | .
t=0 0
~27 9 . 27
= J (9 —9sintecost)dt = 9t — =sin2t = 18~
0 2 0
In traversing C we have chosen the counterclockwise direction indi- ) .
cated in Fig. 2-11. We call this the positive direction, or say that C r =zt yl

has been traversed in the positive sense. If C were traversed in the Bcosti+ 3sintj

clockwise (negative) direction the value of the integral would be —18+. Fig. 2-11
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2.30. (a)

(b)

{a)

(b)

NEWTON’S LAWS OF MOTION. WORK, ENERGY AND MOMENTUM [CHAP. 2

If F=-9yV, where V is single-valued and has continuous partial derivatives,
show that the work dene in moving a particle from one point Py = (zi,%,21) in
this field to another point P, = (z,,%,,2;) is independent of the path joining the
two points.

Conversely, if j; F+dr is independent of the path C joining any two points,
show that there exists a function V such that F=—-yV.

Py
Work done = f Fedr = —f VV-dr
v . 4
= —J (¥1+ ay" + B )-[dzl-i—dyj-i—dzk)
g #J""a}_{d Vd + %,
- dx ¥ Fri
Py
Py
= = dV = V(P) — V(Py) = Viz,unz) — Viza va 23)
Jp,

Then the integral depends only on points P, and P; and not on the path joining them.
This is true of course only if V(x,y,z) is single-valued at all points P, and P,.

Let F = F,i+ F,j+ Fgk. By hypothesis, f F-+dr is independent of the path C joining any
c
two points, which we take as (x,,y,,2,) and (z,y,z) respectively. Then

(x.¥.2) (z.,w2)
Viz,y,2) = —f Fedr = —-r (Fyde + Fody + Fydz)
(21.¥0.7;)

(x4, %)

is independent of the path joining (x,,¥;,%,) and (z,y,2). Thus
Vizg,y,2) = —f [Fy(x,¥,2) dx + Fy(z,y,2) dy + Fy(z,y, 2) dz|
c
where C is a path joining (z,,y,,2;) and (z,y,2). Let us choose as a particular path the

straight line segments from (z,,¥,,2,) to (z,¥,,2;) to (z,¥,7;) to (z,u,2) and call V(x,y,z) the
work done along this particular path. Then

z v z
V(J?,y,g) = _f F1(3|y||21)dﬂ= - f Fz(xry-zl)dy - f Fstz,y,z)dz
Iy ¥y L2
It follows that
W o
E — Fs(z. ¥, z}
v J” 9y f‘ oFy
— = —Fuz,y,2y) — —(z,y,2)dz = —Fs(z,v,2,) — —(x,y,2)dz
3y 2(%, 9, 21) N ay(rk‘ ) 2 (@, 4,2 i
x
= _Fﬂ(xl v, 21) - FQ(:‘: v, z)
21
= —Fg(I.v-zl) B F!(x: v, z) + Fa(ﬁ,lhzﬂ = —Fz(:e.y.z)
v o _ o [
e Fy(x, 4y, 2y) T (x,y,2,) dy . (z,¥,2) dz

Ly ol *aF
= -—F y M = f ! = f ! v Uy d
1z, v, 2y) . o (z,¥,2,) dy = (z,y,2) dz

2y

= Fl(x: Y, Z}

n

v
= —Fi(x,y,2) — Fy(z,1,2)

= -Fix,y,2) — Fy(2,9,2) + Fla,y,2) — Fi(z,y,2) + Flx,y,z)) = —F(z,9,2)
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Then F = Fii + Faj+Fek = ——i—j— "=k = —-VV

Thus a necessary and sufficient condition that a field F be conservative is that curl F = V X F = 0.

231. (a) Show that F = (2zy+2%i + 2%j + 322’k is a conservative force field. (b) Find
the potential. (¢) Find the work done in moving an object in this field from (1, -2, 1)

to (3,1, 4).
{a) A necessary and sufficient condition that a force will be conservative is that curl F = V X F = 0.
i i k
Now VXF = afox aloy  d8laz | = 0. Thus F is a conservative force field.

2xy + 28 x? 8x22
(b) As in Problem 2.14, Methods 2 or 3, we find V = —(a2y + x2z%).

13,1,4)

() Work done = —(z?y + x2%) = —202.

(1.—-2,1)

Py

232. Prove that if F-dr is independent of the path joining any two points P; and P:

Py
in a given region, then § F-dr = 0 for all closed paths in the region and conversely.

Let PyAP,BP, [see Fig. 2-12] be a closed curve. Then

B
§F-dr = f F:de = [F'dr-l- _fl?'-d: P
. 2

P,AP4BP; PiAP, PyBP,
= f Frdr — f Fedr = 0
P‘[‘-P' PIBPl
since the integral from P, to P, along a path through A is P
the same as that along a path through B, by hypothesis. ! A
Conversely if § F-dr = 0, then Fig. 2-12
Fedr = J. Fedr + f Frdr = f Fedr — [ F-dr = 0
PAP4BP P14Py F3BP, PjAP, P,BP,
so that, J. Fedr = I F - dr.
PyAPy P,BPy

233. (a) Show that a necessary and sufficient condition that F:dx + Fady + Fsdz be an
exact differential is that Y XxF = 0 where F = Fii+ F.j + F:k.

(b) Show that (y%2* cosz — 42%2)dx + 22% sinx dv + (3y*2?8inx — z*)dz is an exact
differential of a function ¢ and find ¢.
d

(a) Suppose Fidz + Fody + Fydz = dgp = %de + idy + %Edz, an exact differential. Then

since x,y and z are independent variables,
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_ 99 _ ¢ _ 92

Fi aw To T ay' By'™= 5
and so F = Fyi+ Faj+ Fk = j—‘i{n ';;:j +‘;—:’k = Vs Thus VXF = VX Vg = 0.

Conversely if VxXF = 0, then F=Vgy and so Fedr = Vgedr = d¢, ie. F,dzx+
F,dy + F3dz = dg, an exact differential.

() F = (y2z% cosz — 4282) i + 223y sinx j + (8y%2%sinx —x) k and V xF is computed to be
zero, so that by part (a) the required result follows.

$

2.34. Referring to Problem 2.4 find (a) the kinetic energy of the particle at £=1 and
t=2, (b) the work done by the field in moving the particle from the point where |
t=1 to the point where t=2, (¢) the momentum of the particle at t=1 and t=2 |
and (d) the impulse in moving the particle from t=1 to t=2.

(a) From part (a) of Problem 2.4,
v = (4834 6)i + (9¢2 — Bt + 15)j — (32 + B)k
Then the velocities at t =1 and ¢t =2 are
v, = 10i + 16j — 11k, v, = 38i + 35j — 20k
and the kinetic energies at t =1 and t =2 are
T, = dmvi = J2[(10)2+ (16)2+(—11)2] = 477, T, = %mvg = 3069

2

(b) Work done = F - dr
t=1

2
= f [2412i + (361 — 16)j — 12tk] - [(4¢3 + 6)i + (9¢2 — 8¢ + 15)j — (3¢ + B)k|dt
=1

2
= f [(24¢2)(4¢3 + 6) + (36t — 16)(9t2 — 8¢ + 1B) + (12¢)(3t2 + B)]dt = 2592
=1

Note that by part (a) this is the same as the difference or change in kinetic energies
3069 — 477 = 2592, illustrating Theorem 2.1, page 35, that Work done = change in kinetic
energy.

(¢) By part (a) the momentum at any time t is

p = mv = 2v = (8834 12)i + (18¢2— 16t + 30)j — (62 + 16)k

Then the momenta at ¢t =1 and ¢t =2 are
P = 20i+ 32j — 22k, p, = 76i+ 70j — 40k

2

(d) Impulse = f Fdt
t=1
2

f [24¢% + (36t —16)j — 12tk]dt = 56i + 38j — 18k
t=1

Note that by part (b) this is the same as the difference or change in momentum, i.e.
p: — p; = (76i+ T0j— 40k) — (20i + 32j — 22k) = 656i + 38j — 18k, illustrating Theorem 2.6,
page 36, that Impulse = change in momentum.

2.35. A particle of mass m moves along the z axis under the influence of a conservative
force field having potential V(z). If the particle is located at positions z; and z; at
respective times t1 and t,, prove that if E is the total energy,

bt — £ = (%J;:"V/%(_ﬂ
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By the conservation of energy,
Kinetic energy + Potential energy = F
Im(dz/dt)?  + V(z) =
Then (dxfdt)? = (2/m){E — V(x)} (1)

from which we obtain on considering the positive square root,

dt = ym/2(dxz/\VE — Viz))

ty " Ty dx
f at = ty — ¢ = EJ; VE — V(@) (2)

t

Hence by integration,

2.36. (a) If the particle of Problem 2.35 has potential V = }«x? and starts from rest at
z=a, prove that z = acosy/«x/mt and (b) describe the motion.

(@) From (1) of Problem 2.35, (dx/dt)? = (2/m)(E — }«x?). Since drx/dt =0 where z =a, we
find E = {xa® 20 that

(dx/dt)? = (x/m)(a®—=%) or dx/Va?-2? = =\x/mdt
Integration yields sin—!'{xz/a) = *x/mt +¢;. Since x=a at t=0, ¢, = /2. Then
sin~1(z/a) = =Ve/mt + /2 or =z = asin(z/2 X Ve/mt) = acosyVx/mt

(b) The particle oscillates back and forth along the » axis from x=a to x = —a. The time for
one complete vibration or oscillation from x = a back to x = a again is called the period of the

oscillation and is given by P = 2V m/«.

237. A particle of mass 3 units moves in the xy plane under the influence of a force field
having potential V = 12x(8y —4x). The particle starts at time £t =0 from rest at
the point with position vector 10i— 10j. (e) Set up the differential equations and
conditions describing the motion. (b) Solve the equations in (a). (¢) Find the
position at any time. (d) Find the velocity at any time,

(a) Sinee V = 12x(3y — 4dx) = 36xy — 4822, the force field is
F = —-VV = ,221 - a—Kj - éY-k = (—36y+ 96x)i — 36x)
Then by Newton's second law,
355 = (—36y+96x)i — 36z
or in component form, using r = i+ yj,
dafdit = —12y + 322, dy/di2 = —12x (1)
where z=10, =0, y=-10, ¥ =0 at t =0 ()
using the fact that the particle starts at r = 10i — 10j with velocity v =r = 0.
(b) From the second equation of (1), = = —g}; d?y/dt®. Substitution into the first equation of (1)

yields
diy/dtt — 32 d2y/dt?2 — 144y = 0 ()]

If a is constant then y = %t is a solution of (2) provided that
at — 3222 — 144 = 0O, je. {224+ 4)a?—36) = 0 or o

I
1
2
=
it
I+
<h
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Thus solutions are e, e=2, 8, ¢=6t or cos2t, sin2t, €%, 8 [in terms of real functions|
and the general solution is

¥ = ec¢ycos2t + cgsin2t + cgeft + e n
Thus from z = —3i; d?y/dt* we find, using (4),
x = #91 cos 2t + icz sin 2¢ — 3ege®t — 3e,e-6t )

Using the conditions (2) in (4) and (5), we obtain
ey —8cy — 8¢y = 10, §ey — 18¢5 + 18¢y = 0,

¢1+03+C4 = —10, 202+6C3_6C4 =0
Solving simultaneously, ¢, =—6, ¢; =0, ¢3=—2, ¢s=—2 so that
x = —6cos2t — 2eft — 28 y = —2 cos2t + 6Bt 4 Ge—6t

(¢) The position at any time is

r = zi+yj = (—6 cos2t — 2e8t — 2e B + (=2 cos 2t + Gebt + Beo—Bt)j

(d) The velocity at any time is
v =1 =i+ = (12 sin2t — 12e% + 12¢=0)i + (4 sin 2t + 36e5 — 36¢ )]
In terms of the hyperbolic functions
sinhat = (et —e~2), coshat = J(eo+ e™ar)

we can also write

r = (—6 cos 2t — 4 cosh 6t)i + (—2 cos 2¢ + 12 cosh 61)j
v =t = (12 sin 2t — 24 sinh 6¢)i + (4 sin 2t + 72 sinh 6¢)j £
2

2.38. Prove that in polar coordinates (r,#6),

aV 19V
vV = *é;_-n -+ ;wé-g&
1
Let vV = GTI+H'| (n

where G and H are to be determined. Since dr = dxi+ dyj we have on using 2z = r cosé
y =rsing and Problem 1.47(b), page 25,

dr = (cosédr — rsiné)(cosér, —singe,) + (sinedr + r coseds)(singr, + cosge,)
or dr = drr; +rdoe, (#
av oV
Now VVedr = dV = "é—"_'dr + '5;'(19
Using (1) and (2) this-becomes -
d
(Gr, + Hey)*(drre; + rdee;,) = Gdr + Hrdée = Er_dr + %da

_W 1

A G=g HE0H
_ &V 19V

Then (I) becomes vv = 3 ! + =% g,

i.% According to the theory of relativity, the mass m of a particle is given by

mo Mo

Vi—vie VI-pg '

where v ig the speed, mo the rest mass, ¢ the speed of light and g = v/c.
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b

(@) Show that the time rate of doing work is given by
4 1 e s
moc® Z5 (1 - B
(b) Deduce from (e) that the kinetic energy is
= (m—mq)c® = mqc?{(1—p%)~12 -1}

(¢) If v is much less than ¢, show that T = }mv? approximately.

(a) By Newton's second Iaw,h > .‘i(m 5 e d mgv
- @™ T

Vi-pe

Then if W is the work done,

i—‘-ﬁ = Fey = »y—d« —_’f-z.i__) = moczﬂj—( B ) o mncz_é,. -__.-_l._.
di dt m dt v’l_-——p—* dt (m)

as proved by direct differentiation.

(b) Since Work done = change in kinetic energy, we have

Time rate of doing work = time rate of change in kinetic energy
dw dT
or by part (a), - = S = 002 (
di dt Vi gt
L " myc? N
ntegrating, = — ¢
vi—g |

To determine ¢, note that, by definition, T=0 when v=0 or 8=0, so that ¢; = —mqck
Hence we have, as required,

: T mﬂcz 2 ( )e2
A = —— — mgc? = (m—mg)c
v1-— gt
(¢) For 8 <1 we have by the binomial theorem,
1 = —p2y-1/2 = 1o, 108 10866, ..
Tiegs — Mot = gl vaaR SangeF
1 2 1 g
Then I = mye? 1+E;§+ ve [ — mge? = Emvz approximately

Supplementary Problems

NEWTON'S LAWS

240.

241.

242.

A particle of mass 2 units moves along the space curve defined by r = (42— t9)i — 5tj + (t*— 2)k.
Find (a) the momentum and (b) the force acting on it at ¢t =1.

Ans. (a) 10i —10j + 8k, (b) 4i+ 24k

A particle moving in a force field F has its momentum given at any time ¢ by
p = 3eti — Z2cost) — 3sintk
Find F. Ang. —3e i+ 2sgintj—3costk

Under the influence of a force field a particle of mass m moves along the ellipse
r = acoswti+ bsinetj

If p is the momentum, prove that (a) x X p = mabuok, (b) r-p = Imw(b? — a?) sin Zot.



56

2.43.

2,44,

2.45.

2.46.

2.49.
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If F is the force acting on the particle of Problem 2.42, prove that rx F = 0. Explain what this
means physically.

A foree of 100 dynes i the direction of the positive x axis acts on a particle of mass 2 g for 10 minutes.
What velocity does the particle acquire assuming that it starts from rest?
Ans. 3 x 10%* em|s

Work Problem 2.44 if the force is 20 newtons and the mass is 10 kg. Ans. 1200 mjs

(a) Find the constant force needed to accelerate a mass of 40 kg from the velocity 4i—5)+ 3k
ms to 8i ++ 3j — Sk mfs in 20 seconds. (b) What 1s the magnitude of the force in (a)?
Ans. (a) Bi+ 16j — 16k newtons or (8i+ 16j— 16k ~ 10% dynes

(h) 24 newtons or 24 %105 dynes

An elevator moves from the top floor of a tall building to the ground floor without stopping.
(a) Explain why a blindfolded person in the elevator may believe that the elevator is not moving
at all. (b) Can the person tell when the motion beging or stops? Explain.

A particle of unit mass moves in a force field given in terms of time t by
F = (6t—8)i — 63 + (2083 + 3619k
Its initial position and velocity are given respectively by r, = 2i— 3k and v, = 5i+4j. Find the
(a) position and (b) velocity of the particle at # =2.
Ans. (o) 41— 883+ 77k, (b) i —236j+ 176k
The force acting on a particle of mass m is given in terms of time { by

F = acosweti+ bsinwt]j

If the particle is initially at rest at the origin, find its (a) position and (b) velocity at any later time

Ans. (a) —aﬁjfl — coswt) 1 + (et — sinwt) j. (b) -2 sinwt i + L{l — cos wt) j
e L M

mw?

WORK, POWER AND KINETIC ENERGY

2.50.

2.51.

252

2.53.

2.54.

2.55.

2.56.

2.57.

A particle is moved by a force F = 20i —30j + 15k along a straight line from point A to point B
with position vectors 2i+ 7j— 3k and b5i— 3j— 6k respectively. Find the work done.

Ans. 315
Find the kinetic energy of a particle of mass 20 moving with velocity ‘3i — 5j + 4k. Ans. 500

Due to a force field F, a particle of mass 4 moves along the space curve r = (32— 2¢)i + ¢3j — tik.
Find the work done by the field in moving the particle from the point where t =1 to the point
where t = 2. Ans. 2454

At one particular instant of time a particle of mass 10 is traveling along a space curve with velocity
given by 4i + 16k. At a later instant of time its velocity is 81 20j. Find the work done on the
particle between the two instants of time, Ans, 192

Verify Theorem 2.1, page 36 for the particle of Problem 2.52.

A particle of mass m moves under the influence of the force field given by F = alsin «t i + coswt j).
If the particle is initially at rest at the origin, prove that the work done on the particle up to time ¢
is given by (a2/mw?)(1 — cos wt).

Prove that the instantaneous power applied to the particle in Problem 2.55 is (a?/mw) sin ot.

A particle moves with velocity 5i — 3j 4 6k under the influence of a constant force F = 20i+
10j + 15k. What is the instantaneous power applied to the particle? Ans. 160



258,

/

259,

260

261,

262.

263,

264,

265,

2.66.
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CONSERVATIVE FORCE FIELDS, POTENTIAL ENERGY AND
CONSERVATION OF ENERGY

{a) Prove that the force field F = (y? — 2ryz®)i + (3 + 2wy — x22hj + (627 — 3rfyz8k is conservative,
{by Find the potential V associated with the force field in ().
Ans. (b) xp? — x2S+ 3y + 324

A particle moves in the force field of Problem 2.58 from the point (2, —1,2) to (—1,3, —2). Find the
wark done. Ans. bb

(#/ Find constants a,f,¢ so that the force field defined by
F = (x+2y+azii + (bxr — Ry — 21 + (dx + ey + 22}k
is conservative.

() What is the potential associated with the force field in (a)?
Ans., (@ n=4, b=2, e=—1 (&) V = —4r? + Fy2 — 22— 2y — 4wz + oy2

Find the work done in moving a particle from the point (1,—1,2) to (2,3, —1) in a foree field with
potential V = % — y3 + Roey — y* + 4z, Ans. 15

Determine whether the force field F = (xZy — 2% | (3ryz b wz2)j + (20%y2z + yzhk is conservative,

Aus. Not conservative

Find the work done in moving a particle in the force field F = dafi + (222 —)j + 2k along
(a) the straight line from (0, 0,0} to (2,1, 3), (b} the space curve x = 22, y = t,z = 42— ¢ from t = 0
to t =1, Is the work independent of the path? Explain. Ans. (a) 16, (b) 14.2

la) Evaluate 5 F+dr where F = (r—3y)i + (y -~ 2r)j and C s the clused curve in the xy plane
i

s =2cost, ¥ = 3sint fromt =0 to t =27. (b) Give a physical interpretation to the result in (a).
Ans. (a) 6z if C is traversed in the positive (counterclockwise! direction.

{n) Show that the force field F = —ux¥r is conservative.
{b) Write the potential energy of a particle moving in the force field of (a).

(e} If a particle at mass m moves with velocity v = de/dt in this field, show that if E iz the constant
total energy then m(dr/dt)? 4 1xr® = K. What important physical principle does this illustrate?

A particle of mass 4 moves in the force field defined by F = —200r/»%. (a) Show that the field is
conservative and find the potential energy. (b) If a particle starts at » = 1 with speed 20, what will

be its speed at » =27 Ans, (a) V = 200/r, (b) 15y2

IMPULSE, TORQUE AND ANGULAR MOMENTUM.
CONSERVATION OF MOMENTUM

267.

168,

269,

270

FALE

A particle of unit mass moves in a force field given by F = (3t2 — dt)i + (12t — 6)j + (6t — 1202)k
where t is the time. (a) Find the change in momentum of the particle from time t=1 to =2
(b) If the velocity at t =1 is 4i — 5j + 10k, what is the velocity at ¢ =27

Ans. (a) i+ 12j — 19k, (b) 5i + 7j — 9k

A particle of mass m moves along a space curve defined by r = acos ofi+ bsin wtj. Find
{a) the torque and (b) the angular momentum about the origin. Amng. (n) 0, (b) Zmabuk

A particle moves in a force field given by F = ¢(r)r. Prove that the angular momentum of the
particle about the origin is constant.

Find (a) the torque and (b) the angular momentum about the origin at the time t=2 for the
particle of Problem 2.67, assuming that at ¢t =0 it is located at the origin.

Ans. (a) — (36 + 128 + 60k), (b) — 44i + 52§ + 16k

Find the impulse developed by a force given by F = 4ti + (62— 2)j + 12k from ¢=0 to t=2.
Ans. 8i + 12j + 24tk
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2.72. What is the magnitude of the impulse developed by a mass of 200 g which changes its veloeity from

51 — 3j + Tkm/s to 2i + 3j + km/s? Ans. 1.8 x 10*dyns or 1.8 N s

STATICS OF A PARTICLE

2.73.

2.74.

2.75.

2.76.

A particle is acted upon by the forces F, = 2i+aj—3k, F,=5i+cj+bk, F, = bhi—5+7Tk
Fy =ci—6j+ak. Find the values of the constants a, b, ¢ in order that the particle will be in
equilibrium. Ans. a=T7,b=11,¢c=4

Find (a) graphically and (b) analytically the result-
ant force acting on the mass m of Fig. 2-13 where
all forces are in a plane.

Ans. (b) 19.5 dynes in a direction making an angle
85°22" with the negative x axis

The potential of a particle moving in the ry plane is
given by V = 2x2 —5xy+ 3y2+ 62— Ty. (a) Prove
that there will be one and only one point at which a
particle will remain in equilibrium and (b) find the
coordinates of this point. Ans. (b) (1, 2)

Prove that a particle which moves in a force field
of potential

V = 22 + 4y% + 2% — dzy — dyz + 212 — 4z + 8y — 4z
can remain in egquilibrium at infinitely many points
and locate these points.

Ans. All points on the plane z — 2y + =2 Fig. 2-13

STABILITY OF EQUILIBRIUM

237,

2.78.

2.79.

2.80.

A particle moves on the x axis in a force field having potential V = x2(6 — x).
(a) Find the points at equilibrium and (b) investigate their stability.
Ans. =0 is a point of stable equilibrium; r =4 is a point of unstable equilibrium

Work Problem 2.77 if (a) V = 2% — 823 — 622 4+ 242, (b) V = 24,
Ans. {(a) x = 1,2 are points of stable equilibrium; = = —1 is a point of unstable equilibrium.
(b) x = 0 is a point of stable equilibrium

Work Problem 2.77 if V = sin 2ra2.

Ang, If n = 0,%1,22,%3, ... then ¥ = i+n are points of stable equilibrium, while x = } +n
are points of unstable equilibrium.

A particle moves in a force field with potential V = x2+ y2+ 22— 8x + 16y — 42. Find the points
of stable equilibrium. Ans. (4,—8,2)

MISCELLANEOQOUS PROBLEMS

2.81.

2.83.

(a) Prove that F = (y2cosxz + 28)i + (2y sinx —4)j + (3x2% + 2)k
is a conservative force field. (b) Find the potential corresponding
to F. (¢) Find the work done in moving a particle in this field from
(0,1,-1) to (»/2,—1,2).

Ans. (@) V = y?sine + z28 —dy + 2z +¢, (b) 16+ 4=

A particle P is acted upon by 3 coplanar forces as indicated in
Fig. 2-14. Find the force needed to prevent P from moving,

Ans. 1293 N; in a direction opposite to 600 N force.

(@) Prove that F = rir is conservative and (b) find the correspond- Fig. 2-14
ing potential. Ans. (b) V= —lrT+e¢
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284,

28.

287,

2.88.

289,

290,

291

292,

2,93

294,

2.95.

256,

298,

Explain the following paradox: According to Newton’s third law a trailer pulls back on an auto-
mobile to which it is attached with as much force as the auto pulls forward on the trailer. Therefore
the auto carnot move,

Find the potential of a particle placed in a force field given by F = —xr~%r where « and n are
constants. Treat all cases.

A waterfall 150 m high has 1.25 x 10*m?* of water flowing over it per second. Assuming that the
density of water is 10® kg m 73, and that 1 horsepower is 745.7 W, find the horsepower of the waterfall.

Ans. 25 x 10° hp

The power applied to a particle by a force field is given as a function of time t by P(t) = 3¢2 — 4t + 2.
Find the work done in moving the particle from the point where ¢t =2 to the point where t = 4.

Ans. 36
Can the torque on a particle be zero without the force being zero? Explain.
Can the force on a particle be zero without the angular momentum being zero? Explain.

Under the influence of a force field F a particle of mass 2 moves along the space curve
r = 6t'i = 362] 4+ (483 — 6)k. Find (a) the work done in moving the particle from the point where
t =0 to the point where {==1, (b) the power applied to the particle at any time.

Ans. (a) 766  (b) T2¢(481% + 8t + 1)

A force field moves a particle of mass m along the space curve r = acoswti+ bsinwtj. (a) What
power is required? (b) Discuss physically the case a = b. Ans. (@) m(a?— b2)uw? sin wt cos wt

The angular momentum of a particle is given as a function of time ¢ by
22 = 6t% — (2t +1)j + (1213 — Btk
Find the torque at the time ¢t =1. Ans. 12i — 2j+ 20k

Find the constant force needed to give an object of mass 18,000 kg a speed of 16 km/h in 56 minutes
gtarting from rest. Ans. 267 x 10* N

A constant force of 100 newtons is applied for 2 minutes to a 20 kg mass which is initially at rest.
(a) What ig the speed achieved? (b) What is the distance traveled?

Ans. (a) 600 m/s, (b) 36,000 m

A particle of mass m moves on the z axis under the influence of a force of attraction toward origin 0
given by F = —(x/x?}i. If the particle starts from rest at x = a, prove that it will arrive at O in a

time given by draVma/2x.
Work Problem 2.95 if F = —(x/z9i.

A particle of mass 2 units moves in the force field F = (2% — 3tj + (¢ +2)k where ¢t is the time.
() How far does the particle move from ¢=0 to t=3 if it is initially at rest at the origin?
(b) Find the kinetic energy at times t =1 and t=3. (¢) What is the work done on the particle by
the field from t =1 to ¢t =3? (d) What is the power applied to the particle at t =17 (¢) What is the
impulse supplied to the particle at t =17

At t=0 a particle of unit mass is at rest at the origin. If it is acted upon by a force F = IODte—?ti,
find (a) the change in momentum of the particle in going from time t=1 to t =2, (b) the velocity
after a long time has elapsed. Ans. (a) 25¢-2(3 —B6e~2)i, (b) 25
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2.99.

2.100,

2.101.

2.102.

2.103.

2.104.

2.105.

2.106.

2.107.

2.108.

2.109.

2.110.

NEWTON’S LAWS OF MOTION. WORK, ENERGY AND MOMENTUM [CHAP.2

A particle of mass 3 units moves in the xy plane under the influence of a force field having potentisl
V = 623 + 12y* + 36xy — 4822 Investigate the motion of the particle if it is displaced slightly
from its equilibrium position.

[Hint. Near x =0,y =0 the potential is very nearly 36xy — 48x2 since 6x% and 12y® are negligible

A particle of unit mass moves on the x axis under the influence of a force field having potentia
V = 6z2(x — 2). (a) Show that x =1 is a position of stable equilibrium. (b) Prove that if the mas
is displaced slightly from its position of equilibrium it will oscillate about it with period equal %

4m/3.

[Hint. Let x = 1+ u and neglect terms in u of degree higher than one.]

A particle of mass m moves in a force field F = —xxi. (a¢) How much work is done in moving the
particle from r =z, to x =x,? (b) If a unit particle starts at x = x,, with speed v,, what is its speel
on reaching x = x,? Ans. (a) x(2 —=3), (b) Vi + (x/m)(a2— %)

A particle of mass 2 moves in the xy plane under the influence of a force field having potentid
V =22+ y2 The particle starts at time t =0 from rest at the point (2,1). (a) Set up the differenti
equations and conditions describing the motion. (b) Find the position at any time f. (c) Find the
velocity at any time t.

Work Problem 2.102 if V = Bay.

Does Theorem 2.7, page 36, hold relative to a non-inertial frame of reference or coordinate system'
Prove your answer,

(a) Prove that if a particle moves in the xy plane under the influence of a force field having potentia
V = 12z(3y —4x), then 2 =0, ¥y =0 is a point of stable equilibrium. (b) Discuss the relationship
of the result in (a) to Problem 2.37, page 53.

(a) Prove that a sufficient condition for the point (a,b) to be a minimum point of the function
V(x,y) is that at (a, b)

oV 9V . _ /v /e 2V \2 Ll
Eom ot War (Té}?)(ayz)_(azay) > e G >0

(b) Use (a) to investigate the points of stability of a particle moving in a force field having potentia
V = 234 3 — 32— 12y. Ans. (b) The point (1,2) is a point of stability

(i)

Suppose that a particle of unit mass moves in the force field of Problem 2.106. Find its sp
at any time.

A particle moves once around the circle r = a(cosé i+ siné j) in a force field
F = (zi—yj)/ (2 + %)

(a) Find the work done. (b) Is the force field conservative? (¢) Do your answers to (a) and |
contradict Theorem 2.4, page 357 Explain.

It is sometimes stated that elassical or Newtonian mechanics makes the assumption that space an
time are both absolute. Discuss what is meant by this statement.

tz
Fdt
.
ta — b )
Does the result (8) of Problem 2.5, page 40, hold if F is replaced by F,,? Explain.

The quantity F,, = is called the average force acting on a particle from time ¢; to
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2111, A particle of mass 2 g moves in the force field F = Sryi + (42° — 8z)j — 8yk dynes. If it has a
. speed of 4 cmys at the pomnt (—1, 2, —1), what 1s its speed at (1, —1, 1}7 Ans. Gemfs

2112, {z) Find positions of stable equilibrium of a particle moving in a force field of potential
' V = 18y2c—2r,

{b) If the particle is released at » = }, find the speed when it reaches the equilibrium position.

{e) Find the period for small oscillations about the equilibrium position.

2113, According to Einstein’s special theory of relativity the mass m of a particle moving with speed
v relative to an observer is given by m =my/y/1 — v*fe? where ¢ is the speed of light [300,000 km/(s]
and m, is the rest mass, What is the percent increase in rest mass of (2) an airplane moving at 1100
km/h, (b) a planet moving at 40,000 km/h, (c) an electron moving at half the speed of light? What
conclusions do you draw from these results?

2114, Prove that in cylindrical coordinates,
W L1V,

vV = ape‘, ¥ > ﬂqbe" + 5 &

where €,, €,,e. are unit vectors in the direction of increasing p, ¢ and z respectively,

2115. Prove that in spherical coordinates,

av_ 1V 4

v * 2V . il
¥ ars Ty 6% Yeins g °0

where e,, €5 e, are unit vectors in the direction of increasing r, 8, ¢ respectively.




Chapter 3

A force field which has constant magni-
tude and direction is called a uniform or con- ¥ = —Fok
stant force field. If the direction of this field k
is taken as the negative z direction as indi-
cated in Fig. 8-1 and the magnitude is the i
constant F's > 0, then the force field is given by

F = —Fok (1) Fig. 3-1

UNIFORM FORCE FIELDS l l ‘ l l l

e

UNIFORMLY ACCELERATED MOTION

If a particle of constant mass m moves in a uniform force field, then its acceleration
is uniform er constant. The motion is then described as wuniformly accelerated motion.
Using F = ma in (1), the acceleration of a particle of mass m moving in the uniform force
field (1) is given by

a = —E—ok (2)
m

WEIGHT AND ACCELERATION DUE TO GRAVITY

1t is found experimentally that near the earth’s
surface objects fall with a vertical acceleration
which is constant provided that air resistance is
negligible. This acceleration is denoted by g and
is called the acceleration due to gravity or the
gravitational acceleration. The approximate mag-
nitude of g is 980 cm/s? or 9.8 m/s? according as the
cgs or Sl system of units is used. This value varies
at different parts of the earth’s surface, increasing
slightly as one goes from the equator to the poles.

Assuming the surface of the earth is repre-
sented by the xy plane of Fig. 3-2, the force acting
on a particle of mass m is given by

W = -mgk (9)
This force, which is called the weight of the par-
ticle, has magnitude W = mg. Fig. 3-2

62
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Because W = mg, it follows that m = W/g. This fact has led many scientists and engi-
neers, who deal to a large extent with mechanics on the earth’s surface, to rewrite the
equations of motion with the fundamental mass quantity m replaced by the weight quantity
W. Thus, for example, Newton’s second law is rewritten as

i ey (4)
g

In this equation W and g can both vary while m = W/g is constant. One system of units used
in (4) has for unit of ¥ or W the kilogram force (kgf) while length is in meters and time s in seconds.
This unit is not part of SI. For a definition in terms of SI units see Appendix A.

ASSUMPTION OF A FLAT EARTH

Equation (3) indicates that the force acting on mass m has constant magnitude mg and
is at each point directed perpendicular to the earth’s surface represented by the zy plane.
In reality this assumption, called the assumntion of the flat earth, is not correct first because
the earth is not flat and second because the force acting on mass m actually varies with the
distance from the center of the earth, as shown in Chapter 5.

In practice the assumption of a flat earth is guite accurate for describing motions of
objects at or near the earth’s surface and will be used throughout this chapter. However,
for describing the motion of objects far from the earth’s surface the methods of Chapter 5
must be employed.

FREELY FALLING BODIES

If an object moves so that the only force acting upon it is its weight, or force due to
gravity, then the object is often called a freely falling boedy. If r iz the position vector and
m is the mass of the body, then using Newton’s second law the differential equation of
motion is seen from equation (3) to be

2 d*r
m%zg = —mgk or ar - —gk (5)

Since this equation does not involve the mass m, the motion of a freely falling body is
independent of its mass,

PROJECTILES

An object fired from a gun or dropped from a moving airplane is often called a projectile.
If air resistance is negligible, a projectile can be considered as a freely falling body so that
its motion can be found from equation (5) together with appropriate initial conditions. If air

resistance is negligible the path of a projectile is an arc of a parabola {(or a straight line
~ which can be considered a degenerate parabola). See Problem 3.6.



64 MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES [CHAP.3

POTENTIAL AND POTENTIAL ENERGY
IN A UNIFORM FORCE FIELD

The potential of the uniform force field, or potential energy of a particle in this force
field, is given by
V = Fo(z — 20 (6)

where z; is an arbitrary constant such that when z=2,, V=0. We call z=z, the reference
level.,

In particular for a constant gravitational field, o = mg and the potential energy of the
particle is
V = mg(z—z) (7)
This leads to

Theorem 3.1. The potential energy of a particle in a constant gravitational field is
found by multiplying the magnitude of its weight by the height above some prescribed
reference level, Note that the potential energy is the work done by the weicht in moving
through the distance z — z..

MOTION IN A RESISTING MEDIUM

In practice an object is acted upon not only by its weight but by other forces as well
An important class of forces are those which tend to oppose the motion of an object. Such
forces, which generally arise because of motion in some medium such as air or water, are
often called resisting, damping or dissipative forces and the corresponding medium is said
to be a resisting, damping or dissipative medium.

It is found experimentally that for low speeds the resisting force is in magnitude propor-
tional to the speed. In other cases it may be proportional to the square [or some other power
of the speed. If the resisting force is R, then the motion of a particle of mass m in an
otherwise uniform (gravitational) force field is given by

d*r
mE = mgk — R (8

If R =0 this reduces to (5).

ISOLATING THE SYSTEM

In dealing with the dvhamics or staties of a particle [or a system of particles, as we shall
see later! it is extremely important to take into account all those forces which act on the
particle [or on the system of particles|. This process is often called isolating the system.

CONSTRAINED MOTION

In suome cases a particle P must move along some specified curve or surface as, for
example, the inclined plane of Fig. 3-3 or the inner surface of a hemispherical bowl of
Fig. 3-4 below. Such a curve or surface on which the particle must move is called a
constraint and the resulting motion is called constrained motion.

Just as the particle exerts a forece on the constraint, there will by Newton’s third law
be a reaction force of the constraint on the particle. This reaction force iz often described
by giving its components N and f, normal to and parallel to the direction of motion
respectively. In most cases which arise in practice, f is the force due to friction and is
taken in a direction opposing the motion.
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Fig.3-3 Fig. 3-4

Problems involving constrained motion can be solved by using Newton’s second law
to arrive at differential equations for the motion and then solving these equations subject to

initial conditions.

FRICTION

In the constrained motion of particles, one of the
most important forces resisting motion is that due to N
friction. Referring to Fig. 3-5, let N be the magnitude f
of the normal component of the reaction of the con-
straint on the particle m. Then it is found experi-
mentally that the magnitude of the force f due to

friction is given by
f = uN (9) Fig. 3-5

where . is called the coefficient of friction. The direction of f is always opposite to the
direction of motion. The coefficient of friction, which depends on the material of both
the particle and constraint, is taken as a constant in practice.

STATICS IN A UNIFORM GRAVITATIONAL FIELD
As indicated in Chapter 2, a particle is in equilibrium under the influence of a system of
forces if and only if the net force acting on it is F =0,

Solved Problems

UNIFORM FORCE FIELDS AND UNIFORMLY ACCELERATED MOTION

31. A particle of mass m moves along a Fi
straight line under the influence of a con-
stant force of magnitude F. If its initial -~ ———«l
speed is vo, find (a) the speed, (b) the ST —;ﬂ x
velocity and (c) the distance traveled

after time ¢, Fig. 3-6



66

{a}

(b)

(¢}

MOTION IN A UNIFORM FIELD, FALLING BODIES AND PROJECTILES ([CHAP.3

Assume that the straight line along which the particle P moves is the = axis, as shown in
Fig. 3-6 above. Suppose that at time £ the particle is at a distance = from origin 0. Ifiis a

unit vector in the direction OF and v is the speed at time ¢, then the velocity is vi. By Newton's
second law we have

{i—lg(mvi) = Fi or m%% =F 4]
_F
Thu dv = “dt or fdv f——d:
m
. F
ie. ) P = Et + ¢ {2)

where ¢, is a constant of integration. To find ¢; we note the initial condition that » = v, at
t = 0 so that from (2}, ¢, = v, and

_F F
v=gtTve or v o= vt ot _ ()

From (3) the velocity at time ¢ is

vi = v0i+£ti or v = v, + E*t
m m
where v =i, vy = vyi and F = Fi,

Since v = dx/dt we have from (),

F
%=v0+-;n—t or da = (vo+§t)dt

Then on integrating, assuming ¢; to be the constant of integration, we have
F
= — V2 4
z ot + ( 2 ) ¢a
Since 2 =0 at t =0, wefind ¢, =0. Thus

2= ot (L)e )

Referring to Problem 3.1, show that the speed of the particle at any pogition z is

given by v = 9 + 2F/m)z.

Method 1.

From (8) of Problem 3.1, we have ¢ = m{v— v,)/F. Substituting into (4} and simplifying,

we find x = (m/2F‘)(v2-voj Solving for v we obtain the required result.

Method 2.
From (1) of Problem 3.1, we have
dv _ F dode _ F
G - om e L@t~ m
or since v = dux/dt,
v%=£, ie vdv = —dx
Integrating, %—2 = % + e

Since v = v, when =0, we {ind ¢; = 1’312 and hence v = v‘v§+ (BF/m)zx.

Methed 3.

Change in Kinetic energy from ¢ =0 to any time ¢
= Work done in moving particle from = = 0 to any position «

or jmy?—imyl = F(x—0). Then v= Vv'a’ + (2F/m)2.
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LINEAR MOTION OF FREELY
FALLING BODIES

33. An object of mass m is thrown vertically up-
ward from the earth’s surface with speed .
Find (a) the position at any time, (b) the time
taken to reach the highest point and (c) the
maximum height reached.

3
{a) Let the position vector of m at any time ¢ be
r=zxi+yj+zk. Assume that the object starts
at r=0 when t=0. Since the force acting on
the object is —mgk, we have by Newton's law,
dr _ _dv _
Mmooy = magy = mgk  or {1
where v is the velocity at time t. Integrating (1) once yields
v = —gtk + ¢ 4
Since the velocity at ¢t = 0 [ie. the initial velocity] is vok, we have from (2), ¢; = vk #0 thai
v = —gtk+ vk = (v,—gbk (£
dr .
or i (vy— gtk (4)
Integrating (4) yields r = (vt~ Lotk + ¢, {&)
Then since r=0 when (=10, ¢, =0. Thus the position vector is
r = (o5t~ 3960k (&)
or, eguivalently, 2=0, y=0, 2z = vt — }ut? "

{5) The highest point is reached when v = (v, — gt)k = 0, i.e. at time ¢ = v,/g.

(€} At time ¢=uwy/g the maximum height reached is, from (7), z=v3/2g.

Another method.

I we assume, as is physically evident, that the object must always be on the z axis, we may
avoid vectors by writing Newton's law equivalently as [see equation (1} above and place r = zk|

d2z/di? = —g
from which, using z=0, ‘dz/dt=v, at ¢=0, we find

2 = vyt — %gtz
as above. The answers to (§) and {c) are then obtained as before.

U, TFind the speed of the particle of Problem 3.3 in terms of its distance from origin O,
Method 1. From Problem 3.3, equations {#) and (7), we have
v = vg—gt, z = vyt — fgt?
Solving for ¢ in the first equation and substituting into the second equation, we find

_ Vo= v\ vo— v\ wl-? -
R R R«

Method 2. From equation (1) of Problem 3.3 we have, since v = vk and v = dz/dt,

dv . dv dz d
AL le. o= o—g  or o-&z‘i = g

Then on integrating, v%/2 = —gz+0,. Since v=vy at 2=0, ¢;=+/2 and thus +2 = v2— 2z,

Method 3. See Problem 3.9 for a method using the principle of conservation of energy.
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MOTION OF PROJECTILES

3.5.

3.6.

A projectile is lannched with initial speed
vo at an angle « with the horizontal. Find
(a) the position vector at any time, (b) the
time to reach the highest point, (¢) the
maximum height reached, (d) the time of
flight back to earth and (e} the range.

(a)

)

{c}

()

(e)

Let r be the position vector of the projec-
tile and v the velocity at any time ¢. Then
by Newton's law

d?r .
My = —mygk (¥3] Fig. 3-8
. &er dv _
ie., e = gk or T —gk {2
Integrati ield
ntegration yields v = —gtk £ e @

Assume the initial velocity of the projectile is in the yz plane so that the initial velocity is
vg = vgcosaj + vysinak {4)
Since v=v, at t=0, we find from {3,

v = wpecosaj + (vysina — gtk (%)

Replacing v by dr/dt in (5) and integrating, we obtain
r = (vgcosali + {(vysina)t — o)k )
or, equivalently, =0, y=(vycosalt, z = (vgsinalt — Lgt? (7)

It follows that the projectile remains in the yz plane,

At the highest point of the path the component of velocity v in the k direction ia zero. Thus
v Sin a

vgsina—gt = 0 and t = —— (%)
is the required time, 4
Using the value of t obtained in (), we find from () that
) heisht reached = . vp sina vg sin a)2 _ vy sinfa )
Maximum height reac = {vysine) 7 ) ( p = 27
The time of flight back to earth is the time when z =0, ie, when
(v sinalt — Jgt2 = t[(vpuina)—4gt] = 0
or since f ¥ 0, .
2y, sina
t = __;_.._ {10}

Note that this is twice the time in (d).

The range iz the value of y at the time given by (10), ie,
2v; sin a) _ 202 gin a cos B vi 8in 22
g B P - v

Range = {vycos a)(

Show that the path of the projectile in Problem 3.5 is a parahola.

From the second equation of (7) in Problem 3.5, we have ¢ = y/(vocosa). Substituting this

into the third equation of (7) in Problem 3.5, we find

2 = (vy sina){y/v, cosa) — dp(y/vgcosa or =z = ytana — (#/205)° secd o

which is a parabola in the yz plane.
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17. Prove that the range of the projectile of Problem 3.5 i3 a maximum when the launch-
ing angle « = 45°,

By Probiem 2.5(e) the range is (1:% sin 24)/g. This is a maximum when sin2e = 1, ie. 2a = 80°
of a = 459,

POTENTIAL AND POTENTIAL ENERGY
IN A UNIFORM FORCE FIELD

38 (@) Prove that a uniform force field is conservative, (b) find the potential correspond-
ing to this field and (¢) deduce the potential energy of a particle of mass m in a
uniform gravitational foree field.

{ay If the force field is as indicated in Fig. 3-1, then F = —Fyk. We have

i i k
VxP = dfdx dfdy 8foz = 0
0 0 ""Fu
Thus the force field is conservative.
_ _ _ _ V. &V oV _ vV _ a4V _ .
% F = —Fk =-VV = Bxi ay) azk. Then 9. 0, W 0, 7 Fy trom whick

V=Fyz+¢ If V=0 at 2=2;, then e=—Fgz, andso V = Fylz~z).

{¢) For a uniform gravitational force field, F = —mgk {see Fig. 3-2, page 62] and correspond
to F,=mg. Then by part {b) the potential or potential energy is ¥V = mg{z — z,).

39, Work Problem 3.4 using the principle of conservation of energy.

According to the principle of conservation of enmergy, we have
PE atz:=0 + KE. atz=0 = PE.atz + KE.atz

0 + mvd = mgz  +  jmu?
Then 2= vg - 2gz.

MOTION IN A RESISTING MEDIUM

310. At time {=10 a parachutist [Fig. 3-9] having
weight of magnitude myg is located at 2=0 and r"
is traveling vertically downward with speed v,.
If the force or air resistance acting on the
parachute is proportional £o the instantaneous
speed, find the (a) speed, (b) distance traveled
and (c¢) acceleration at any time ¢> 0.

{a} Assume the parachutist (considered as a particle
of mass m) is located at distance z from origin O.
If k is a unit vector in the vertically downward

direction, then the weight is mgk while the force B
of air resistance is —fBvk so that the net force =
is {mg — ik,
mg
Thus by Newton's law,
mPg = (mg — Bv)k {1} Fig.3-9

dt
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dv m dv

fe. mazmy—-ﬁv or w:dt
Integrating, -13 In (mg—Bv) = t+ ¢ (®
Since v=uy, at t=0, ¢, = —%ln (mg ~ Bvy). Then from (2),
t = %ln {mg — gy — %ln (mg—gv) = %—ln (%)
Thus ':‘Lg__—% = eftim  or ¥ = _mfy_'_ (1:0—-%) e—Bt/m {8

(5) From (8), dz/dt = mg/g + (vg—mg/@)e—Bt/m, Then by integration,

myt m m -
Tyv——ﬁ-(%—-?’)e Btim 4 Ca

Since 2 =0 at =0, ¢ = (M/BYvg—mg/8) and thus

mgt | m ..1'!’2) — g—Bt/m
{¢} From (8), the acceleration iz given by
By,
a = % = *‘*%(”0_”—;&) e—Btim = (gﬁﬁ)e—smn (5)

Show that the parachutist of Problem 3.10 approaches a limiting speed given by mg/g.

Method 1.

From equation (#) of Problem 3.10, v = mg/g + (vy— mg/MeBt/m, Then as t increases,
v approaches mg/8f so that after a short time the parachutist is traveling with speed which is
practically constant,

Method 2.

If the parachutist is to approach a limiting speed, the limiting acceleration must be zero.
Thus from equation (1) of Problem 3.10 we have mg — fv;, =0 or v, = mg/8.

A particle of mass m is traveling along the & axis such that at t =0 it is located at x =0
and has speed vo. The particle is. acted upon by a force which opposes the motion
and has magnitude proportional to the square of the instantaneous speed. Find the
(a) speed, (b) position and (¢} acceleration of the particle at any time {> 0.

(e} Suppose particle P is at & distance = from O at

t =0 and has speed v [see Fig. 3-10]. Then the F:ﬂ
force F=—#vii where # >0 is a constant of |
proportionality. By Newton’s law, x |
P
dv ., dv 8 - @
£V - gt S = £
m i Ay or pe) mdt {1) O.._T..,
Integrating, —1/v = —gitfm 4 ¢;. BSince v =1,
when ¢ =0, we have ¢ = ~1/v;. Thus Fig.3-10
1 a1 = %
v m_ ve & VT BufEm ®

which is the speed.

@ From (¢), 9= —™ _ pen fdz =

My _ . = M0 J" dt
dt Byt +m’

Bot +m .~ Py J Exmige,

=" m
z = Bln(t+ﬁvo)+c,
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313

EATE

Bince x =0 at t=0, ¢, = -—1; (ﬁ’l) Thus
=R -ﬂ- m kil = E B._”'_’E
r = Fln(ti-ﬂ%) -5 (ﬁ‘l’o) ﬂln(1+ pooy [F.)]
{c} From {a},
_dv _ d [ Mm% _ Bmvy
= @ T ‘"(puowm T T (vt +mpt #

Note that although the speed of the particle continually decresses, it never comea to rest.

Determine the (@) speed and (b) acceleration of the particle of Problem 3.12 as a
function of the distance « from Q.

Method 1. From paris {a)} and (3 of Problem 312,

- m, Brgt + m i - my,y or Bogt +m %
F=gm m : an Bugt +m m T e
Then z = 2 vo) or v = vpe—Br/im
3 n(— o
and the acceleration is given in magnitude by
a = %}’. = _% —”fm%i:— = —E‘—’z?.e_ghfm

which can also be obtained from equation ({) of Problem 3.12.

Method 2. From equation (f) of Problem 3.12 we have

dv dv dz  _ dv  _
mE = g - a - Y
dv _ ﬁ ; — =
or since v ¥ 0, ma = —gv and -;— = — Integrating, lnv = —fafm + ¢;. Since v =9,
when =0, ¢; =1Inv, Thus In(z/vg = -,G:trfm or v = vyehrim,

Suppose that in Problem 3.5 we assume that the piojectile has acting upon it a force
due to air resistance equal to —8v where g is a positive constant and v is the instan.
taneous velocity., Find (a) the velocity and (b) the position vector at any time.

{2) The equation of motion in this case is

m% = —mgk ~ B8v or dv + Bv = —mgk (¢

. Bim g
Dividing by m and multiplying by the integrating factor eI e

ebt/m, the equation can
be written as

d
E{eﬂ‘fm ‘f} = -—geﬂt!ﬂlk
. . mg

Integration yields ebtimy = - eBtimk 4+ ¢, £)
The initial velocity or velocity at ¢ =0 is

vy = wpeosaj + vosinak (£4]
Using this in (2} we find "y

¢ = wycosa) + vpsinek + —2k

B
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Thus (2) becomes on dividing by eft/m,

v = {vyeo8aj+ vysinak)eBtim — 2;f’-(l — emBi/m)k {4

(b) Replacing v by dr/dt in (4) and integrating, we find

r = —Zivgcosaj+vosinakie ttim — Ty Doomimyy 4 oo, (5)
£ B B
Since r=0 at t=0, .
¢ = %(vocosn:j + v, sina k) + -mﬁ-zg-k (6)
Using (6) in {5), we find
m
r = T“{cosaj + gin a k)(1 — e—Bt/m) — m?? (t + %e—ﬁ”m - %) k (vg)

3.15. Prove that the projectile of Problem 3.14 attains a Iimiting velocity and find its value.

Method 1.

Refer to equation (4) of Problem 3.14. As ¢ increases, ¢~ 8" approaches zere. Thus the
velocity approaches a limiting value equal to v, = —(mg/8)k.
Method 2.

If the projectile is to approach a limiting velocity its limiting acceleration must be zero. Thus

from equation (1) of Problem 314, —mgk — Av;, = 0 or vy, = —(mg/fhk.

CONSTRAINED MOTION

3.16. A particle P of mass m slides without rolling
down a frictionless inclined plane AB of angle «

[Fig. 3-11]. If it starts from rest at the top 4
of the incline, find (a) the acceleration, (b) the
velocity and (¢) the distance traveled after
time t.

{a) Since there is no frietion the orly forces acting

(4

on P are the weight W = —mgk and the re-
action force of the incline which is given by the
normal foree N.

Let e, and e; be unit vectors parallel and
perpendicular to the incline respectively. If we
denote by & the magnitude of the displatement
from the top A of the inclined plane, we have
by Newton’s second law Fig, 3-11

d? .
mﬁ{“’) = W+ N = mgsinae 1)

since the resultant equal to W + N is myg sin« e,, as indicated in Fig. 3-11. From (1) we have
d2s/dt? = g sina (2)
Thus the acceleration down the incline at any time t is a constant equal to g sina.

Since v = ds/dt is the speed, (2) can be written
dv/dt = gsine or v = {gsina)t+ e

on integrating. Using the initial condition » =0 at t=0, we have ¢; =0 so¢ that the
speed at any time ¢ i
peed at any Hme tis v = (g sina)t @)
The velocity is ve, = (g sina)te; which has magnitude (g sina)? in the direction e, downh
the incline.
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3.17.

MOTION INVOLVING FRICTION

3.18,

3.19.

{c) Since v = ds/dt, (8) can be written
dsfdt = (gsine}t or & = flgsina)t?+oc

on integrating. Using the initial condition s =0 at t=10, we find ¢, =0 so that th
required distance traveled is
s = }(g sina)t? {4

If the length AB of the incline in Problem 3.16 is I, find {a) the time r taken for the
particle to reach the bottom B of the incline and (b) the speed at B.

{a)} Since z2 =1 at B, the time 7 to reach the bottom is from equation {4) of Problem 3.16 given by

I = kg sina)? or r= V2l/(g sina).

() The speed at B is given from ($) of Problem 3.16 by v = (g sino)r = V2¢! sin a.

Work Problem 3.16 if the inclined plane has
a constant coefficient of friction ..

{a) In this case there is, in addition to the forces W
and N acting on P, a frictional force { {see Wig.
3-12] directed up the incline [in a direction oppo-
site to the motion] and with magnitude

pN = pmg cosa (#3) —mg cosa e
i.e ft = —pmyg cosa e @)
Then equation {I) of Problem 3.16 is replaced by Fig. 3-12
d%(se;) .
m—gm = W+ N+ = mgsine e — pmg cosa e (£}
or d%/dt2 = g(sine — z cos a) (4)

Thug the acceleration down the incline hag the constant magnitude g(sin« — ucosa) provided
sina > scoea of tana > x Jotherwize the frictional force is so0 great that the particle will
not move at alll.

(») Replacing d2s/di2 by dv/dt in (4) and integrating as in part (b) of Problem 3.16, we find the
speed at any time ¢ to be
v = gfsina — g cos a}t (5)
{¢) Replacing v by ds/dt in (5) and integrating as in part (¢} of Problem 3.186, we find
8 = éﬁ(sina ~ 4 cosa)i? (5)

An object slides on a surface of ice along the horizontal straight line OA [Fig. 3-13].
At a certain point in its path the speed is v, and the object then comes to rest after
traveling a distance x,. Prove that the coefficient of friction is »*/2gx..

Let x be the instantaneous distance of the

object of mass m from O and suppose that at N
time t+ =0, x =0 and dz/dt = v, kt i {

Three forces act on the object, namely (1) the of g A
weight W = mg, {2} the normal force N of the I YW= mg
ice surface on the object, and (8} the frictional
force f. Fig.3-13

By Newton's second law we have, if v is the instantaneous speed,

mP = WiN+t H

dt
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But since N = —W and the magnitude of f is f = u«N = pmg so0 that { = —umgi, (I) becomes

dv, _ dv
mggh = ~pmgi  or a = M )
Meihod 1. Write (2) as
dv dx _ dy _
de di — TH® or VgL = g £))]
Then vdy = —pgdx

Integrating, using the fact that v =v; at =0, we find
v2/2 = —pprx + vi/2 (45
Then since v = 0 when z = x; (4) becomes

—+pg:co+v§/2 =0 or s = v§/2g;r0 {5)

Method 2. From (2) we have, on integrating and using the fact that v = v, at t =0,
v = vp—ugt or dafdt = vy — ppt (&)
Integrating again, using the fact that x = 0 at ¢ =0, we find
x = ot — Jugt? (7)
From (6) we see that the object comes to rest {i.e., v =0) when
vy—pgt = 0 or t = wylug
Substituting this into (7} and noting that z = x;, we obtain the required result.

STATICS IN A UNIFORM GRAVITATIONAL FIELD
3.20. A particle of masgs m is suspended in equilibrium by two inelastic strings of lengths

a and b from pegs A and B which are distant ¢ apart. Find the tension in each string.

Fig. 3-14 Fig. 3-15

Let W denote the weight of the particle and T, and T, the respective tensions in the strings
of lengths @ and b as indicated in Fig. 8-14, These forces are also indicated in Fig. 3-15 and are

assumed to lie in the plane of unit vectors } and k. By resolving T; and T, into horizontal and
vertical components it is clear that

T, = T;sinak — Tycosaij, Ty, = Tpsingk + TycosB i

where T, and T, are the magnitudes of T, and T, respectively and where « and 8 are the respective
angles at A and B. Also we have -
W = —mgk

Since the particle is in eguilibrium if and only if the net force acting on it is zero, we have
F = T+T+W

T, sinak —~ Tycosaj+ Tysingk + Treos8j — mpk

(Tacos 8~ Ty cosa)j + (T, sina + Tysin g — mgk

= 9

|

It
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From this we must have

Tyeos 8 — Tycosa = 0, T/ sine+ Tysinfg—mg = 0
Solving simultaneously, we find
— Mgcosp T, o= THF €08 a
! sinla+ /)" 2 sin {a + @)

The angles o and 8 can be determined from the law of cosines as

_ ekt et — b2 _ gt —a
a = cos Sae , f = cos %R

From these the tensjons can be expressed in terms of a, b, ¢

MISCELLANEOUS PROBLEMS 2

3.21. An inclined plane [Fig. 3-16) makes an
angle « with the horizontal. A projectile ig
launched from the bottom A of the incline
with speed v in a direction making an
angle g with the horizontal.

(@) Prove that the range R up the incline is

given by

R - 2v2 sin (B ~ o) cos B

g cos%a Fig. 3-16

(b) Prove that the maximum range up the incline is given by

(a)

_ 7
" g(1 +sina)
and is achieved when 8 = =/4 + «/2.

le

As in Problem 3.5, equation (6), the position veetor of the projectile at any time t is
r = (vqcos @)t + {(vysin g}t — gtk (1)
or ¥ = (v cos )¢, z = (vgsin B}t — Let? {2

The equation of the incline (which iz a line in the yz plane] ia
z = ytana ®

Using equations {2) in (f} we see that the projectile’s path and the incline intersect for those
values of ¢ where
(vg sin B)t — g2 = [(vy cos B)i] tana
2uy(sin g cos a — cos # sin a) _ 2y, sin (g — )
g cosa - g cosa

ie, t =0 and t =

The value ¢ =0 gives the intersection point 4. The second value of i yields point B
which is the required point. Using this second value of ¢ in the first equation of (2), we find
that the required range B up the incline is

2v, 8in (B — a)} 21:3 sin (g —a) coa
—_—f seta =

R = yseca = (vo°°31’3){ 7 CoS - g cosla

{b) Method 1. The range R can be written by using the trigonometric identity

sind cos B = }{sin(A + B) + sin (4 - B)}

2
Ty

as R = {sin (23 — a) — sin a}

g costa
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This is a maximum when sin(2@—a) =1, ie. 28—a=%/2 or 8 =a/2+ /4,

value of this maximum is
2 2

. Yo
sina) =

R = o1 — sinfay !

o
g coss"au:{l -

Method 2.

~— gin a)

39
Vo

gil + sina)

[CHAP. 3

and the

The vequired result c¢an also be obtained by the methods of differential caleulus for

finding maxima and minima.

Two particles of masses m, and m. respectively are
connected by an inextensible string of negligible mass
which passes over a fixed frictionless pulley of negli-
gible mass as shown in Fig, 3-17. Describe the motion
by finding {a) the acceleration of the particles and
(b) the tension in the string.

Let us first isolate mass m|. There are two forces acting
on it: (1) its weight m,g = mgk, and (2} the force due to
the string which is the tension T = —~Tk., If we call a = ak
the acceleration, then by Newion’s law

muak = mgk — Tk {1)

Next we isolate mass msy. There are two forces acting
on it: (1} its weight o = mupk, and (2) the tension
T = —Tk [the tension is the same throughout the string
since the mass of the string is assumed negligible and in-
extensible]. Since the string is inextensible, the acceleration
of my is —a = —ak. Then by Newton's law

—myak = mugk — Tk (2)

From (1) and (2) we have

ma = mg— T, —mae = mup — T
Solving simultaneously, we find
oMy r o= Zmame
- my + "y v my + my

Fig. 3-17

k

Thus the particles move with constant acceleration, one particle rising and the other falling.
In this pulley system, sometimes called Afwood’s machine, the pulley can rotate. However,
since it is frictionless and has no mass [or negligible masa] the effect ia the same as if the string

passed over a smooth or frictionless peg instead of a pulley.

In case the mass of the pulley

is not negligible, rotational effects must be taken into account and are considered in Chapter 9.

A particle P of mass m rests at the top A of a
frictionless fixed sphere of radius b. The par-
ticle is displaced slightly so that it slides (with-
out rolling) down the sphere. (a} At what posi-
tion will it leave the sphere and (b) what will
its speed be at this position?

The particle will slide down a circle of radius a

which we choose to be in the 2y plane as indicated in
Fig. 3-18. The forces acting on the particle are:

(1) its weight W = —mgj, and {2} the reaction force
N of the sphere on the particle normal to the aphere.

Method 1.

(a) Let the position of the particle on the circle be
measured by angle ¢ and let r; and # be wunit
vectors. Resolving W into components in direc-
tions r, and #,, we have as in Problem. 1.43,
page 24,

Fig. 3-18
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W = (W-err, + (Wes,le,

(—mgjer)r, + (—mgj e}, = ~mgsinsr, — mg cosd &

H

Also, N = Nr,

Using Newton’s second law and the result of Problem 1.42, page 26, we have
F = ma = m{(r— rél)r, + (6 + 2;5)01]
= W+ N = (N — mgsingir, —mg cose #, {1
Thue m{r — ré2) = N — mg sine, mirs + 2re) = —mg cos s {2
While the particle iz on the circle (or sphere), we have + = b. Bubstituting this inte (2},
—mbé? = N — mg sing, b = —pgcose (&

Multiplying the second equation by 5, we see that it can be writien

- AN W
AR = —g dt(sm a)
Integrating, b62/2 = —g sing + ¢;. Now when ¢ = n/2, ¢=0 so that ¢, =g and
b#2 = 2p(1 — sin8) 4)

Substituting (4) into the first equation of (), we find
N = mg(3sing — 2) {5

Now as long as N > 0 the particle stays on the sphere; but when N = 0 the particle will
be just about to leave the sphere. Thus the required angle is given by 3sine — 2 = 0, ie,

sing = 2/8 or ¢ = sin—12/3 (6)
Putting sine¢ = § into (4), we find
# = 29/3b tg)
Then if v is the speed, we have v = b6 so that {7) yields v2 = 3bg or v =Vibg.

Method 2. By the conservation of energy, using the x axis as reference level, we have

PE.atA + KE.at A P.E.atP? + K.E.at P

I

mgh + ¢ = mgbsine + ymev?

or vt = 2pb(1 — sin &) (8)

Using the result of Problem 1.35, page 20, together with Newton’s second law, we have, since
the radius of curvature is b,

z
F = ma = (%-r.—%!,) = W+ N
= (N —mgsiné)r; — mgcossd &,
Using only the r; component, we have
¥/ = N — mg sin e (%)

From (8) and (9) we find N = mg(3 sin¢ — 2) which yields the required angle sin~1(§) as in
Method 1. The speed is then found from (§).
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Supplementary Problems

UNIFORM FORCE FIELDS AND LINEAR MOTION OF
FREELY FALLING BODIES

3.24.

3.25.

3.26.

3.27.

3.28.

3.29,

3.30,

3.31.

3,32,

3.33.

An object of mass m is dropped from a height H above the ground. Prove that if air resistance
is negligible, then it will reach the ground {(a) in a time v/2H/g and (b) with speed V2gH.

Work Problem 3.24 if the object is thrown vertically downward with an initial velocity of magni-

tude v, Ans. {a) (Vvi+ 2¢H — v)fg, (b)) VoI + 2pH

Prove that the object of Problem 3.8, page 67, returns to the earth’s surface (g) with the same
speed as the initial speed and (b) in a time which is twice that taken to reach the maximum height.

A ball which is thrown upward reaches its maximum height of 30 m and then returns to the starting
point. {a} With what speed was it thrown? (b) How long does it take to returnt

Ans. (@) 24.25 mfs, (b) 4.858

A ball which is thrown vertically upward reaches a particular height H after a time r;, on the
way up and a time r; on the way down. Prove that (a) the initial velocity with which the ball was
thrown has magnitude Agi{ry + r3) and (b) the height H = ggrlrg.

In Problem 3.28, what is the maximum height reached? Ang. Jgir, + 12)?

Two objects are dropped from the top of a cliff of height H. The second is dropped when the first
has traveled a distance D. Prove that at the instant when the first object has reached the bottom,
the second object is at a distance above it given by 2V DH — D.

An elevator starts from rest and attains a speed of 5m/fs in 2s. Find the weight of a 80 kg man in
the elevator if the elevator ia (a) moving up (b) moving down.

Ans. {a) 100 kg, (b) 60 kg

A particle of mass 3 kg moving in a straighit line decelerates uniformly from a speed of 40 m/s to 20 m/fs
in a distance of 300 m, (a)} Find the magnitude of the deceleration. (8) How much further does it
travel before it comes to rest and how much longer will this take?

Ans. {(a) 2mfs:, (b) 100m; 10s

In Problem 3.32, what is the total work done in bringing the particle to rest from the speed of 40 m/a?
Ans. 2400 newton meters {or joules)

MOTION OF PROJECTILES

3.34,

3.35.

3.36

3.37.

3.38.

A projectile is launched with & muzzle velocity of 2900 km/h at an angle of 60° with a horizontal and
lands on the same plane. Find {a) the maximum height reached, {b} the tine to reach the maximumn
height, (¢} the total time of flight, (d) the range, (¢} the speed after 1 minute of flight, (f} the speed at
at a height of 10,000 m.

Ans. (@) 24.8km, (b) TL1ls, (c) 142235, (d) 57.20 km, (¢) 1502 km/h, (f) 2421 km/h.

{a) What is the maximum range possible for a projectile fired from a cannon having muzzle velocity
1.5 kmnfs and (b) what is the height reached in this case?

Ans. {a) 228 km, (b) 57.34 km.

A cannon has its maximum range given by R, ,.. Prove that (a) the height reached in such case
is R, and (b) the time of flight is VR, /2¢.

It is desired to launch a projectile from the ground so as to hit a given point on the ground
which is at a distance less than the maximum range. Prove that there are two possible angles
for the launching, one which is less than 45° by a certain amount and the other greater than
45° by the same amount,

A projectile having horizontal range R reaches a maximum height H. Prove that it must have
been launched with {(a) an initial speed equal to g(R? + 16H%)/8H and (b) at an angle with
the horizontal given by sin—1(4H/V R+ 18H2),
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3.39. A projectile is launched at an angle « from a
cliff of height H above sea level. If it falls into
the sea at a distance D from the hase of the H
cliff, prove that its maximum height above sea

level is D2 tan?
¥
4{H + Dtana) Fig. 3-19

P

H +

MOTION IN A RESISTING MEDIUM

340, An object of weight W is thrown vertically upward- with speed v, Assuming that air resistan
is proportional to the instantaneous veloeity and that the constant of proportionality is «, prov
that (a)} the object will reach a maximum height of

Wk
;:_LV:,,,(H:@
2y x2g w

and that (b) the time taken to reach this maximum height is

w AV
- + 2
P in (1 W)

341, A man on a parachute falls from rest and acquires a limiting speed of 24 km/h. Assuming that ai
resistance is proportional to the instantaneous speed, determine how long it takes to reach the spee
of 22.5 kmfh, Ans. 1,895

342. A mass m moves along a straight line under the influence of a constant force F. Assuming
that there ig a resisting force numerically equal to «v2 where » is the instantaneous speed and x

2x F — ¢t

F —
is a constant, prove that the distance traveled in going from speed v, to v, is n 1n(———1).
2

343. A particle of mass m moves in a straight line acted upon by a constant resisting force of magni-
tude F. If it starts with a speed of v, (&) how long will it take hefore coming to rest and
{b) what distance will it travel in this time? Ans. (a) mvf/F, {b) m-vﬁ/ZP

344. Can Problem 3.43 be worked by energy considerations? Explain.

345. A locomotive of mass m travels with constant speed v, along a horizontal track. {a¢) How long
will it take for the locomotive to come to rest after the ignition is turned off, if the resistance
to the motion is given by o« + 812 where v is the instantaneous speed and o and § are constants?

(b) What is the distance traveled? Ans. (@) m!\/gﬁ tan =1 (v Bfa), (B) (m/23) In (1+ﬂv§/«}

346. A particle moves along the = axis acted upon only by a resisting force which is proportional
to the cube of the instantaneous speed. If the iritial speed is v, and after a time r the speed is
475, prave that the speed will be 1vg in time br.

347, Find the total distance traveled by the particle of Problem 3.46 in reaching the speeds (a) 4wy,
{b) 1vq. Ans. (@) §ugr, (B) vor

348. Prove that for the projectile of Problem 3.14, page 71,

Bvg sina
(a) the time to reach the highest point is 2 in (1 + 0—) ,

2 mg
myg sin 2 Bvy sina
(b) the maximum height is — 03 - %ln (1 * :'M ) .

CONSTRAINED MOTION AND FRICTION

349, An object of mass 50 kg slides from rest down & 60° incline of length 60 m starting from the top.
Neglecting friction, (a) how long will it take to reach the bottom of the incline and (b) what is the
speed with which it reaches the bottom? Ans, (a) 3.78s, (b) 31.01l mfe



3.53.

3.54.

3.55.

3.56,

MOTION IN A UNIFORM FIELD. FALLING BODIES AND PROJECTILES |[CHAP.3

Work Problem 3.49 if the coefficient of friction is 0.3, Ans. {0) 4.14 3, {b} 290.03 m/s

(¢} With what speed should an object be thrown wp a smooth incline of angle « and length I,
starting from the bottom, so as to just reach the top and (b) what js the time taken?

Ans. (a) V2gising, (b)) VZU{g sin o)

If it takes a time r for an object starting from speed v, on an icy surface to come to rest, prove
that the coefficient of friction is vy/gr.

What force is needed to move a 10 tonne truck with uniform speed up an incline of 30° if the co-
efficient of friction is 0.17 Ans. 5.87 x 104N

A mass m rests on a horizontal piece of wood. The wood is tilted upward until the mass m just
begins to slide, If the angle which the wood makes with the horizontal at that instant is «,
prove that the coeflicient of friction is x = tana,

A 200 kg mass on & 30° inclined plane ig acted upon by a force of 4800 newtons at angle 30°
with the incline, as shown in Fig. 3-20. Find the acceleration of the mass if the incline (a) ie
frictionless, (b} has coeflicient of frietion 0.2. Ans. (@) 5.5 m/s?, (b) 5.0 m/s*

400 kg
4800 N
800\ -

300

Fig. 3-20 Fig. 3-21

Work Problem 3.55 if the force of 4B00 newtons acts az shown in Fig. 3-21.
Ans. (@) 5.6 mfst, (b} 2.6 m/s®

STATICS IN A UNIFORM GRAVITATIONAL FIELD

3.57.

3.58.

3.59.

A 100 kg weight is suspended vertically .from the center of a rope as shown in "Fig. 8-22.
Determine the tension F in the rope. Ans. T = 100 kgf = 980 N

D c

100 kg

Fig. 3-22 Fig.3-23 Fig.3-24

In Fig. 3-22, AR and AC are ropes attached to the ceiling CD and wall BD at C and B respectively.
A weight W is suspended from A. If the ropes AB and AC make angles ¢, and ¢, with the
wall and ceiling respectively, find the tensiona T, and T, in the ropes.

W cos 9, W gin ¢,

Ans. Tl = cOS (91 - 02) i T2 = cos (01 - ‘2}

Find the magnitude of the force F needed to keep mass m in equilibrium on the inclined plane
of Fig. 3-24 if (a) the plane is smooth, (b) the plane has coefficient of friction ..

mg sina mgisin a — a cos a)

Ans. {a) F = cos B o8 B

» B F =
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3.60.

3.6t

3.62.

How much foree is needed to puli a train weighing 320 tonnes from rest to a speed of 25 km/h in 2(
seconds if the coefficient of friction is 0.02 and () the track is horizontal, (b) the track i1s inclined at
an angle of 10° with the borizontal and the train iz going upward? [Use sin 10° = 1737, cos 10° =
.9848.] Ans. (a) 1.74 = JO*N, (b) 7.18 x 108N

Work Problem 3.60(h) if the train is going down the incline. Ana. 3.72 x 10° N up the incline

A train of mass m is coasting down an inclined plane of angle & and coefficient of friztion g
with constant speed v,. Prove that the force needed to stop the train in a time r is given by
ngisina — g cosa) + wmuyfr.

MISCELLANEOUS PROBLEMS

3.63.

3.64.

1.65.

3.66.

3.67.

3.68,

3.69.

3.70.

371

3.72,

.73

A stone is dropped down a well and the sound of the splash is heard after time r. Assuming the
speed of sound is ¢, prove that the depth of the water level in the well is {\/c2 4+ 2ger - €)2/2y.

A projectile is launched downward from the top of an inclined plane of angle o in a direction

making an angle y with the incline. Assuming that the projectile hits the incline, prove that

21)3 sin y cos {y — o)
g cosla

{a) the range is given by R = and that (b} the maximum range down the

.1,2

incline is Rmax = E'“—;;'SE'—)‘

A cannen is located on a hill which has the shape of ar inclined plane of angle « with the horizontal.

A projectile is fired from this cannon in a direetion up the hill and making an angle g with it. Prove
2 sin 2

that in order for the projectile to hit the hill horizontally we must have g = tan—! (3———55—(‘;—/ .
- i g

Suppose that two projectiles are launched at angles a and g with the horizontal from the

same place at the same time in the same vertical plane and with the same initial speed. Prove

that during the course of the motion, the line joining the projectiles makes a constant angle

with the vertical given by 1(a + £,

Is it possible to solve equation (1), page 33, by the method of separation of variables? Explain.

When launched at angle #, with the horizontal a projectile falls a distance I’| short of its target,
while at angle 8, it falls a distance D, beyond the target. Find the angle at which the projectile
should be launched so as to hit the target.

An object was thrown vertically downward. During the tenth second of travel it fell twice as far
as during the fifth second. With what speed was it thrown? Ans. 4.9mfs

A gun of muzzle speed v, is situated at height A above a horizontal plane. Prove that the angle
at which it must be fired so as to achieve the greatest range on the plane is given by
8 = 1 cos—! gh/(vE + gh).

In Fig. 3-25, AB is a smooth table and masses m, I—”f‘—l
and m, are connected by a string over the smooth S |
peg at B. Find {a) the acceleration of mass m,
and {b) the tension in the atring.

Mg — My

Ans. {a} mg, My > M,y

Wythg

my + my

ey

) . .Fig.3-25

Work Problem 3.71 if the table AR hag coefficient of friction .

The maximum range of a projectile when fired down an inclined plane is twice the maximum
range when fired up the inclined plane. Find the angle which the incline makes with the horizontal.

Ans. sin—11/8
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374,

3.75,

3.76.

377,

3.78.

3.79.

3.80,

3.81.

382

3.83.

354

MOTION IN A UNIFORM FIELD. FALLING BODIES AND

Magszes m,; and m; are located on smooth inclined planes
of angles ay and a, respectively and are connected by
an inextensible string of negligible mass which passes
over a smooth peg at A [Fig. 3-26]. Find the accelera-
tions of the masses,

Ans. The accelerations are in magnitude equal to

my

o)

PROJECTILES |[CHAP.3

My

oy

m, sina; — My sinay

My + My g

Fig. 3-26

Work Problem 3.74 if the coefficient of friction between the masses and the incline is u.

my sina; — Py sinay — pM, cos a; — uMy COS ay

Ans,
iy + my

Prove that the least horizontal force F needed to pull
a cylinder of radius & and weight W over an obstacle
of height b [see Fig. 8-27] is given in magnitude by

Wy b(2a — b)/{a — b).

Explain mathematically why a projectile fired from
cannon A at the top of a cliff at height H above the
ground can reach a cannon B located on the ground,
while a projectile fired from cannon B with the same
muzzle velocity will not he able to reach cannon A,

In Pig. 3-28 the mass m hangs from an inextensible string OA.
It is pulled aside by a horizontal string AB so that OA makes
an angle o« with the vertical. Find the tension in each string.

Ans. Tension in ABE = mg tana; in OA = mg seca

A particle moving along the x axis is acted upon by a resisting
force which is such that the time ¢ for it to travel a distance x»
is given by t = Ax?*+ Bx+ C where A, B and C are constants,
Prove that the magnitude of the resisting force is proportional
to the eube of the instantanecus speed.

A projectile is to be launched so as to go from A to B
[which are respectively at the bases of a double inelined
plane having angles « and g as shown in Fig. 3-29] and
just barely miss a pole of height H. If the distance
between A and B is D, find the angle with the horizontal
at which the projectile should be launched.

A particle of mass m moves on a frictionless inclined
plane of angle &« and length I If the particle starts
from rest at the top of the incline, what will be its

Fig. 3-27

speed at the bottom assuming that air resistance is equal
to «v where v is the instantaneous speed and « is con-
stant?

Fig. 3-2%

Suppose that in Problem 3.23 the particle P iz given an initial speed v, at the top of the circle
{or sphere). {a) Prove that if v, = Vgb, the angle ¢ at which the particle leaves the cirele is given

by sin~1(} + 2/3gb). (b) Discuss what happens if v, > Vb

A cannon is situated at the top of a vertical ¢liff overlooking the sea at height H above sea level.
What should be the least muzzle velocity of the cannon in order that a projectile fired from it

will reach a ship at distance I? from the foot of the cliff?

In Problem 2.83, (a) how long would it take the projectile to reach the ship and (b) what is the

velocity on reaching the ship?
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3.85,

3.86.

381,

3.88.

3.8%.

380,

391

392,

3.93.

3.4,

3.95.

3.95.

A uniform chain of total length a has a portion
0 < b < a hanging over the edge of a smooth table A B
AB [see Fig. 3-30]. Prove that the time taken for
the chain to slide off the table if it starts from rest

is Velgin {a + vVa2— b2)/b, Fig. 3-30

1f the table in Problem 3.85 has coefficient of friction u, prove that the time taken is
p a + Va? — [b(l+4) — ﬂ#Fl
Trog "7 hatm-an |
ot

A weight W, hangs on one side of a smooth fixed pulley of neg-
ligible mass [see Fig. 3-831]. A man of weight W, pulls himself
up so that his acceleration relative to the fixed pulley is a.
Prove that the weight W, moves upward with acceleration given by
[g(W,~ W) — W,a|/W,,

W,
Two monkeys of equal weight are hanging from opposite ends of a
rope which passes over a smooth fixed pulley of negligible mass. W,
The first monkey starts to elimb the rope at a speed of 0.3 m/s while
the other remaina at rest relative to the rope, Describe the motion of Fig.3-31

the second monkey.
Ans. The second monkey moves up at the rate of 0.3 m/s

Prove that the particle of Problem 3.23 will land at a distance from the base of the sphere
given by (4V/290 + 19v/5)b/81.

Prove that if friction is negligible the time taken for a particle to slide down any chord of a
vertical circle starting from rest at the top of the circle is the same regardless of the chord.

Given line AB of Fig. 3-32 and point P where 4B and i o
P are in the same vertical plane.. Find a point @ on

AR such that a particle starting from point P will

reach @ in the shortest possible time.

[Hint. Use Problem 3.90.] B
Show how to work Problem 3.81 if line AB is re- Q

placed by a plane curve. Can it be done for a space A

curve? Explain, Fig. 3-32

Find the work done in moving the mass from the top of the incline of Problem 3.18 to the bottom.
Ans. mglsinag — p cos a)

The force on a particle having electrical charge ¢ and which is moving in a magnetic field of intensity
or strength B is given by F = g(v X B) where v is the instantaneous velocity. Prove that if the
particle is given an initial speed v, in a plane perpendicular to s magnetic field B of constant
strength, then it {(a) will travel with constant speed v, and (b) will travel in a circular path
of radius mvy/gB. Assume that gravitational forces are negligible.

Prove that the period, ie. the time for one complete vibration, of the particle of Problem 3.94
is independent of the speed of the particle and find its wvalue. Ang. Zem/gB

Work Problem 3.94 if B is constant and the particle is given an initial speed v, in a plane which
is not necessarily perpendicular to the magnetic field. Can we define a period in this case? Explain.
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3.97.

3.98,

3.99.

3.100.

1.161.
3.102.

3.108.

3.104.

3.105.

3.106.

3.107.
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If a particle of electrical charge ¢ and mass m moves with velocity v in an electromagnetic field
having electric intensity E and magnetic intensity B the force acting on it, called the Lorentz foree,

is given by F = (E+vxB)

Suppose that B and E are constant and in the directions of the negative y and positive z axes
respectively. Prove that if the particle starts from rest at the origin, them it will describe a
eyeloid in the 2z plane whose equation is

z = b{¢ — gine), z = Bb{1 — coxs)
where ¢ = qBt/m, b = mE/¢B2 and t is the time.

(2} An astronaut of 80 kegf on the earth takes off vertically in a space ship which achieves a speed
of 2000 km/h in 2 minutes. Assuming the acceleration to be constant, what is his apparent weight
during this time? Ans. (a) 117 kgf

In Problem 3.82, how far from the base of the sphere will the particle land?

In Fig. 3-33 weight W, is on top of weight W, which is in turn on a horizontal plane. The
coeflicient of friction between W, and W, is u, while that between W, and the plane is 4. Suppose
that a force F inclined at angle « to the horizontal is applied to weight W,. Prove that if
tota Z g, > 4y, then a necessary and sufficient condition that W, move relative to the plane
while W, not move relative to W, is that

pelW, + W. w
Wt WD) ‘2} < p s
COBo — pp Stho o cosSa — gy SINa
F
L]

Fig. 3-33

Discusa the results in Problem 3,100 if any of the conditions are not satisfied.
Give a generalization of Problem 3.100.

Describe the motion of the particle of Problem 3.97 if E and B are constants, and have the same
direction.

A bead of mass m is located on a parabolic wire with its axis
vertical and vertex directed downward as in Fig. 3-34 and
whose equation is ez = x2.  If the coefficient of friction is
#, find the highest distance above the x axis at which the
particle will be in equilibrium, Ans. Jric

Worlk Problem 38.104 if the parabola is replaced by a vertical
circle of radius & which is tangent to the x axis. Fig.3-3¢

A weight W ia suspended from 3 equal strings of length [ which are attached to the 3 vertices
of a horizontal equilateral triangle of side e. Find the tensions in the atrings.

Ans. Wi/VoP — 36

Work Problem 3.106 if there are n equal strings attached to the n vertices of a regular polygon
having n sides,
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3.108.

3.109.

3.110.

3.

112,

A rope passes over a fixed pulley A of Fig. 3-35. At one end % A
of this rope a mass M, is attached. At the other end of the
rope there ia a pulley of mass M, over which passes another
rope with masses m; and m, attached. Prove that the accel-
eration of the mass m, is given by

SmaMy — m My — My — mM, — dmm,
(ml + mz)(Ml + Mz) + 4m1m3 ¢

An autemobile of weight W with an engine having constant

inastantaneous power P, travels up an incline of angle a.

Assuming that resistance forces are r per unit weight, prove

that the maximum speed which ¢can be maintained up the
k4

Wir + sina)’

ineline is

Ap automobile of weight W moves up an incline of angle o, powered by an engine having
constant instantaneous power P, Assuming that the resistance to motion is equal to xv per wunit
weight where v is the instantaneous speed and x is a constant, prove that the maximum zpeed
which is possible on the incline is (VW2 ain2q + 4«WP — W gin a)/2cW,

A chain hangs over a smooth peg with length e on one side and length b, where 0 < b <a, on the

a+bln(ﬁ+ﬁ>

other side. Prove that the time taken for the chain to slide off is given by

2¢

Va-vB)’

Prove that a bead P which is placed anywhere on a vertical frictionless wire [see Fig. 3-36] in the

form of a cycloid
x = ble + sine), y = bl — coz#)

will reach the bottom in the aame time regardless of the starting point and find this time.

Ans. #Vb/p

Fig, 3-36



Chapter 4 The SIMPLE HARMONIC
OSCILLATOR and the
SIMPLE PENDULUM.

THE SIMPLE HARMONIC OSCILLATOR v

In Fig. 4-1(a) the mass m lies on a friction-
less horizontal table indicated by the z axis. J
It is attached to one end of a spring of negligible
mass and unstretched length ! whose other end E 0000 =
is fixed at E. i )

If m is given a displacement along the z axis (a)
[see Fig. 4-1(b)] and released, it will vibrate or
oscillate back and forth about the equilibrium
position O. I+a

To determine the equation of motion, note t 2 ~—ed
that at any instant when the spring has length
!+ x [Fig. 4-1(b)] there is a force tending tore-  E ————"0000 * L
store m to its equilibrium position. According 0 o
to Hooke's law this force, called the restoring ®)
foree, is proportional to the streich x and is
given by Fig. 4-1

FR = —2i (1)

where the subseript R stands for “restoring force’” and where « is the constant of propor-
tionality often called the spring constant, elastic constant, stiffness factor or modulus of
elasticity and i is the unit vector in the positive x direction. By Newton’s second law we have

2 3
m% = —xxi or mI4+xx = 0 (4]

This vibrating system is called a simple harmonic oscillator or linear harmonic oscillator.
This type of motion is often called simple harmonic motion.

AMPLITUDE, PERIOD AND FREQUENCY
OF SIMPLE HARMONIC MOTION

If we solve the differential equation (2) subject to the initial conditions 2 = A and
da/dt =0 at t=0, we find that

x = A coset where o = Ve/m (2
For the case where A =20, m=2 and « =8, see Problem 4.1.

Since o8 ot varies between —1 and +1, the masa oscillates between x = —A4 and = = A.
A graph of z vs. t appears in Fig. 4.2,

4]
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;
->
\

Fig. 4-2 -
The amplitude of the motion is the distance A and is the greatest distance from the
equilibrium position.

The period of the motion is the time for one complete oscillation or vibration [some-
times called a eycle] such as, for example, from x=A to z=—-A4 and then back to
r=A again. If P denotes the period, then

P 2rle = Z2uxymic {4

The frequency of the motion, denoted by f, is the number of compiete oscillations or
eycles per unit time. We have

1 e _ 1 ®
f 2P =% T %\m 6)
In the general case, the solution of (2) is _
2 = Acosel + Bsinot where o = Vx/m (6)

where A and B are determined from initial conditions. As seen in Problem 4.2, we can
write (6) in the form

= Ccoslwt—¢) where o = Vi/m (7
and where C = VA + B2 and ¢ =tan"'{B/A) (®

The amplitude in this case is ¢ while the period and frequency remain the same as in
(4) and (5}, i.e. they are unaffected by change of initial conditions. The angle ¢ is called
the phase angle or epoch chosen so that 0 =S¢ == If 4 =0, (?) reduces to (3).

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

If T is the kinetic energy, V the potential energy and E =T +V the total energy of a
simple harmonic oscillator, then we have

T = mv?, V = ket (9

and E = imvy? + dax? (20)
See Problem 4.17.

THE DAMPED HARMONIC OSCILLATOR

In practice various forces may act on a harmonic oscillator, tending to reduce the
magnitude of successive oscillations about the equilibrium position. Such forces are some-
times called damping forces. A useful approximate damping force is one which is propor-
tional to the velocity and is given by

F, = —8v = -—fvi = —,e%i %))
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where the subscript D stands for “damping force” and where g is a positive constant
called the damping coefficient. Note that F, and v are in opposite directions.

If in addition to the restoring force we assume the damping force (1), the equation

of motion of the harmonie oscillator, now called a damped harmonic oscillator, is given by

d2x d*x
@z

= —xx—,ﬁ(%fz or md?+,8%+xx = 0 (12)

on applying Newton's second law. Dividing by m and calling

Bim = 2y, /m = (18)

this equation can be written

F+2yx +oz = 0 (24)

where the dots denote, as usual, differentiation with respect to £

OVER-DAMPED, CRITICALLY DAMPED AND
UNDER-DAMPED MOTION

Three cases arise in obtaining sclutions to the differential equation (14).

Case 1, Over-damped motion, 2 > %, ie. B2 > 4dem
In this case (14) has the general solution

x = e "(Aex + Be~) a = Vvt — o? (15)

and where the arbitrary constants 4 and B can be found from the initial conditions.

where

Case 2, Critically damped motion, * = «2, ie, 82=4wm

In this case (14) has the general solution

x = e (A + Bt) (16)
where A and B are found from initial conditions.
Case 3, Under-damped or damped oscillatory motion, * < % ie. B2 <4dem
In this case (14) has the general solution
x = e (A sinAt + B cosat)
= Ce " cos (At — ¢) where X = Vol — 7 F14)

and where C = VA?+ B?, called the amplitude and ¢, called the phase angle or epock,

are determined from the initial conditions.

In Cases 1 and 2 damping is so large that no
oscillation takes place and "the mass m simply
returns gradually to the equilibrium position
# =40. This is indicated in Fig. 4-3 where we
have assumed the initial conditions 2z = %,
dzfdt = 0. Note that in the critically damped
case, mass m returns to the equilibrium position
faster than in the over-damped case.

In Case 3, damping has been reduced to such
an extent that oscillations about the equilibrium
position do take place, although the magnitude
of thege oscillations tend to decrease with time
as indicated in Fig. 4-8. The difference in times

!

ted 1t 3 g ey
Cr ¥ P

P =

Over-damped motion, 3 > ot

A

Under-damped motion, y* < ot

Fig. 4-3
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between two successive maxima [or minima] in the under-damped [or damped oscillatory]
mofion of Fig. 4-3 is called the period of the motion and is given by

2~ 2 dam

P = = = il = — (13)
A Vol = 2 Vaom -
and the frequency, which is the reciprocal of the period, is given by
f_ L2 _ VISP VanoF 19)
o P a 2x - 2 - drm

Note that if g8 =10, (18) and (19) reduce to (4) and {5) respectively. The period and
frequency corresponding to 8 =0 are sometimes called the natural period and natural
frequency respectively,

The period P given by {18) is also equal to two successive values of t for which
cos{At—g¢) =1 [or cosi{At—¢) = —1] as given in equation (17). Supposge that the values
of x corresponding to the two successive values ¢, and t,., = {. + P are r, and x,.; respec-
tively. Then

xn{"frnl —_ e--?r,)!e-—ﬂt,+l"l — evP (20)

The quantity 8 = In(xafxnsy) = P (21)

which is a constant, is called the logarithmic decrement.

FORCED VIBRATIONS

Suppose that in addition to the restoring force —«xi and damping force —gvi we impress
on the mass m a force F(t}i where

F(t) = Focosal (22)
Then the differential equation of motion is
d2x dx
Mmag = K& ‘SEE + Focosat (23)
or X+ 2yx +ofx = f coset (24)
where y=pRm, JL=um, f,=F/m (25)

The general solution of {(24) is found by adding the general solution of
Z+2yx+oix = 0 (26)

[which has already been found and is given by (15), (16) or (17)] to any particular solution of
(24). A particular solution of (24) is given by {see Problem 4.18]

fo
r = 08 (ot — ¢) (27)
\/{az - 02)2 + 4‘}!21'12 *
where tang = *zgﬂg 0=¢=n ‘ (28)

& = W

Now, as we have seen, the general solution of (26) approaches zero within a short time
and we thus call this solution the {ransient solution. After this time has elapsed, the motion
of the mass m is essentially given by (27) which is often called the steady-state solution.
The vibrations or oscillations which take place, often called forced vibrations or forced
osetllations, have a frequency which is equal fo the frequency of the impressed force but
lag behind by the phase angle ¢.
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RESONANCE

The amplitude of the steady-state oscillation (27) is given by
= o (29)
Vie? — o?)? + 4y%2
assuming y = 0, i.e. 8+ 0, sothat damping is assumed to be present. The maximum value
of o4 in this case occurs where the frequency «/2r of the impressed force is such that

assuming that y* < 3* [zee Problem 4.19]. Near this frequency very large oscillations may
occur, sometimes causing damage to the system. The phenomenon is called resonance and
the frequency «,/2x is called the frequency of resonance or resonant frequency.

The value of the maximum amplitude at the resonant frequency is

f
C’/{max == —0—_"'— (81)
2o 7
The amplitude (29) can be written in terms of «, as
fy

= (32)

Vi = o) + 47 — 1)
A graph of ¢4 vs. of is shown in Fig. 4-4. Note that the graph is symmetric around the
resonant frequency and that the resonant frequency, frequency with damping and natural
frequency (without damping) are all different. In case there is no damping, i.e. y=0 or
B8 =0, all of these frequencies are identical. In such case resonance occurs where the

frequency of the impressed force equals the natural frequency of oscillation. The general
solution for this case is

¢
x = Acoset + Bsinet + %sinmt 2]

From the last term in ($3) it is seen that the oscillations build up with time until finally
the spring breaks. See Problem 4.20,

Resonant frequency

Frequency with d

MNatural frequency
{without damping)

Fig. 4-4 Fig. 45

THE SIMPLE PENDULUM

A simple pendulum consists of a mass m [Fig. 4-5] at the end of a magsless string or rod
of length ! [which always remains straight, i.e. rigid]. If the mass m, sometimes called the
pendulum bob, is pulled asidé and released, the resulting motion will be oscillatory.

Calling ¢ the instantaneous angle which the string makes with the vertical, the
differential equation of motion is {see Problem 4.23)
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%0 g .. :
d@ = ~—7sind (34)

assuming no damping forces or other external forces are present.

For small angles [e.g. less than 5° with the vertical], sin# is very nearly equal to ¢, where
§ i3 in radians, and equation (4) becomes, to a high degree of approximation,

ae _ _g
w = ~1° (38)
This equation has the general solution
8 = Acosvg/ t+Bsm\/ it (88)
where A and B are determined from initial conditions. For example, if 4 = 6, 6=0 at
t=0, then
= @ocos\g/lt (37)
In such case, the motion of the pendulum bob is that of simple harmonic motion. The period
is given b
v P = 2n/Tg (38)
and the frequency is given by
.1 _ 1
f =5 = gVl (89)

If the angles are not necessarily small, we can show [see Problems 4.29 and 4.30]
that the peried is equal to

Fo= 4\l—lfm l—c:!;mn2
2w\/_{1+(2 (23 ) 4 (322 ke } (40)

where & = gin (6o/2). For small angles this reduces to (38).

For cases where damping and other external forces are considered, see Problems 4.25
and 4.114.

THE TWQO AND THREE DIMENSIONAL HARMONIC OSCILLATOR
Suppose a particle of mass m moves in the zy plane

¥
rnder the influence of a force field F given by
F = _lei - szj ('&1) Fy = ~uxi m
where «, and «, are positive constants.
In this case the equations of motion of m are Fa =~
given by 2 j“
x d? .

mw =R, md_g = =kl (‘&2) i *

and have solutionsg Fig. 4-6

= A,cosyx/mit + B sinve/mt, y = A,cosyr/mt+ Bysinve,/mit (43}

where A, By, A2, B: are constants to be determined from the initial conditions. The mass m
subjected to the force field (41) is often called a fwo-dimensional harmonic oscillator. The
various curves which m describes in its motion are often called Ligssajous curves or figures.

These ideas are easily extended to a three dimensional harmonic oscillator of mass m
which is subject to a force field given by

F = —« :n — Ky zk (&‘6)
where «,, x,, x, are positive constants.
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Solved Problems

SIMPLE HARMONIC MOTION AND THE
SIMPLE HARMONIC OSCILLATOR

4.1.

4.2,

A particle P of mass 2 moves along the x axis attracted toward origin O by a force
whose magnitude is numerically equal to 8x [see Fig. 4-7]. If it is initially at rest
at =20, find (a) the differential equation and initial conditions describing the
motion, (b) the position of the particle at any time,
{¢) the speed and velocity of the particle at any time,

and (d) the amplitude, period and frequency of the -2
vibration. —_—— g ——-
L . x
(a) Let r= a:idgbe the position vector of P. The acceleration o) F
of P is w(:i) = %:;i‘ The net force acting on P is :
—8zi. Then by Newton's second law, Fig. 4-7
d?e ., _ . d2x _
26_91 = —Bxi or 2&-2-+4x = 0 (£))]
which is the required differential equation of motion. The initial conditions are
x=20 dzfdt =0 at =10 (%)
{d) The general solution of {I) is
x = Acos2t + B sin2t )
When t =0, x =20 sothat A4 =20, Thus
x = 20cos2t + B ain2t {4)
Then dx/dt = —40sin2t + 28 cos 2t {5)
so that on putting ¢ =0, dz/dt =0 we find B =0. Thus () becomes
z = 20 cos2t (4]

which gives the position at any time.

(¢) From (8) dx/dt = —40 sin 2t which gives the speed at any time. The velocity is given by

dx .

Fr = —40sin2ti

(d) Amplitude = 20. Period = 2»/2 = . Frequency = 1/period = 1/».

{e¢) Show that the function A coset+ Bsinet can be written as C cos{uf—¢)
where C =1VA*+B? and ¢ =tan"*(B/A). (b) Find the amplitude, period and
frequency of the function in (a).

A B .
{a) A coswt + Bainet = VAT + Bﬁ(—w cos wt + —m—m—— smut)
° ¢ VATt B? VAT t B?
= VA2 4+ B2(cos ¢ coswl + 3in ¢ sin wi)
VAZ+ B2eos(wt—¢) = Ceoslut—¢)

where c¢os¢ = A/VATF BE and sing = B/VAZ+B?, ie. tang =B/A or ¢ =tan~1B/A,
and C = VA + BE. We generally choose that value of ¢ which lies between ¢° and 180°,

ie, 0= =o.

(5) Amplitude = maximum value = ¢ = VA2 + B2, Period = 2x/w. Frequency = /2.
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43.

4.

Work Problem 4.1 if P is initially at x = 20 but is moving (a) to the right with speed
30, (b} to the left with speed 30. Find the amplitude, period and frequency in
each case,

{a) The only difference here is that the condition du/di =0 at ¢ =0 of Problem 4.1 is replaced
by dx/dt =30 at ¢ =0. Then from {5} of Problem 4.1 we find B — 15, and (%) of
Problem 4.1 becomes

r = 20c¢o0s52¢t 4 15 sin 2¢ (1)

which gives the position of P at any time. This may be written [see Problem 4.2} as
20

( 15 . }
x = V(20?2 + (15)2 - ———cos 2t + ——————5in 2/
L Vigoe + (152 Ve TR

= 258{%cos2t + ¥sin2t} = 25 cos(2t—g)

where cosgp = % sing = 3 (2}

The angle ¢ which can be found from (2) is often called the phase angle or epoch.

Since the cosine varies between —1 and +1, the amplitude = 25. The period and fre-
quency are the same as before, iLe. period = 2-/2 =+ and frequency = 2/2r = 1/7.

{4} In this case the condition dx/dt = 0 at ¢ =0 of Problem .1 is veplaced by dx/di = —30
at t =0. Then B = —15 and the position is given by

x = 20¢c082f — 15 sin 2t

which as in part {a) can be written

x = 25{)cos?2f — & sinlf}
= 25{cosy cos2t + siny sin 2¢) = 25 cos (2t — )
where cosy = ¢, siny = -1

The amplitude, period and frequency are the same as in part (u). The only difference
is in the phase angle, The relationship between ¢ and ¢ i3 ¢ = ¢ +7. We often describe
this by saying that the two motions are 1807 ont of phase with each other.

A spring of negligible mass, suspended vertically from omne end, is stretched a
distance of 20 em when a 53 g mass is attached to the other end. The spring and mass
are placed on a horizontal frictionless table as in Fig. +.-1{a}, page 86, with the suspension
point fixed at E. The mass is pulled away a distance 20 cm beyond the equilibrium
position O and released. Find (a) the differential equation and initial conditions des-
cribing the motion, (b) the position at any time {, and {c) the amplitude. period and
frequency of the vibrations.

{e} The gravitational force on o 5 g mass {i.e. the weight of a § g mass] is 5(980) dynes = 4800 dynes,
Then since 4300 dynes stretches the spring 20 em, the spring constant is « = 4800/20 = 245
dynesfein. Thus when the spring is stretched a distance x em beyond the equilibrium position, the
restoring force is —2456xi. Then by Newton's second law we have, if r = i is the position vector

of the mass,
dt) o & _
5W = 245xi  or 8 + 49x = @ {1}
The initial conditions are xr = 20, defdft =0 at t =10 (541
{d) The general solution of (1) ig x = AcosTt + BsinTt (£.5]

Using the conditions (2} we find 4 =20, B =0 so that r = 20 cosTt.

{¢) From x = 20 cos 7t we see that: amplitude = 20 cm; period = 2#{7s; frequency = 72~
s~V or 7/2x Hz.
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A particle of mass m moves along the x axis, attracted toward a fixed peoint ¢
on it by a force proportional to the distance from O. Initially the particle is at
distance x, from O and is given a velocity v, away from O. Determine (a) the
position at any time, (b) the velocity at any time, and (c¢) the amplitude, period,
frequency, and maximum speed.

(&) The force of attraction toward O is —xxi where x ia a y
positive constant of proportionality. Then by Newton™s
second law, F=—uzi
I vk _ o ; —F
gt = el oor x+o- = {H
Solving (1), we find =
- z
x = AcosVximt 4+ Bsainve/mt £ o m
We also have the initial conditions Fig. 4-8
x=xp defdt=v, at t=20 £4]
From x =z, at t =0 we find, vsing (£), that A =z, Thus
z = mgeosVu/mt + Bsinye/mt . {4)
so that defdt = —zx5Ve/m ain Va/mt + BVxfm cos Ve/mt {5
From dx/fdt=v, at ¢ =0 we find, using (5), that B = vyym/x. Thus (§) becomes
x = fgcos Ve/mt + vy Vm/e sin Ve/mt {6)
Using Problem 4.2, thia can be written
x = Va:g + mvﬁfx cos (Ve/mit — ¢} (N
where ¢ = tan—! {vg/zy} Vm/e {8

(b)) The velocity is, using (6} or (7),
v = i—ii = (—xy Vaim sin Vidmt + vy cos V/m 6 i
= —Valm Va2 + mvl/x sin (Valmt — ¢} i
=~V +zdm sin (Vafmt - ¢) | ®

{¢) The amplitude is given from (?) by v’zg + mvﬁ{x.
From (7), the period is P = 2nf+/k/m. The frequency is f = 1/P = (2= 4/mk) L.
From (9}, the speed iz a maximum when sin {y/x/m ¢ — ¢} = =1; this speed is v'vg-!-xxg/m.

An object of masgs 20 kg moves with simple harmonic motion on the » axis. Initially
(t=0) it is located at the distance 4 meters away from the origin z =10, and has
velocity 15 m/s and acceleration 100 m/s? directed toward z = 0. Find (a) the position
at any time, (b) the amplitude, period and frequency of the oscillations, and (c) the foree
on the object when ¢ = #/10 s.

{a) If z denotes the position of the object at time t, then the initial conditions are

x =4, dx/dt = =15, d¥x/de2 = —100 at t=90 (1)

Now for simple harmonic motion,
x = Acoswt + Bsinwt {2)
Differentiating, we find defdt = =—Awsinot + Bw coswt ®
BEx/dt = —Aw®copwt — Ba? sinwt 4
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41

48,

49,

Using conditions (I} in (2), (8) and (4), we find 4= A, —15 = By, -100 = —4.% Solving
simultaneously, we find A =4, w=5 B =-—8 30 that

x = dcoadt — 3sinbt %)
which can be written

z = §cos(bi—q) where cos¢ = ¢, sing = —§ ()
(6) From (6) we see that: amplitude =5wm, period = 2#/5s, frequency == 5/2» Huz.

(¢) Magnitude of acceleration = dZx/dtz = —100 cos5¢ 4+ 76 sin 5f = 76 mfs* at ¢ = ={10.
Force on object = (mass)(acceleration} = (20 kg) {756 m{s?} = 1500 newtons.

An object of 100 N weight suspended from the end of a
vertical spring of negligible mass stretches it 0.16 m.
{z) Determine the position of the object at any time if
initially it is pulled down 0,05 m and then released.
(b} Find the amplitude, period and frequency of the
motion. (Use ¢ = 10 m/s?).

{¢} Let D and E [Fig. 4-9] represent the position of the
end of the spring before and after the object is put on
the spring. Position E is the equilibrium position of
the object.

Choose a coordinate system as shown in Fig. 4.9
so that the positive z axis is downward with origin at
the equilibrium position.

By Hooke’s law, since 100 N stretches the spring

0.16 m, 200 N stretches it 0.32 m, then 200(0.16 + /032, """ __y _____
N stretches it (0.16 4 z)m. Thus when the ohject is at [ |

position F, there i3 an upward force acting on it of
magnitude 20000.16 + 2)/0.32 and a downward force

due to its weight, of magnitude 100. By Newton’s second Fig.4-9
law we thus have
d@z 25
11909 ‘;—?:k = 100k — 200(0.16 + 2)/0.32 k or gz + & =0
Solving, t z = A cos %_—}— B sin % 44
Now at £ = 0,2 = oo and djd = 0; thus 4 = o= B =0 and
z =L cosll )
20 2
(&) From (2): amplitude = 0.05 m, period = 4?‘“5, frequency =4in
™

Work Problem 4.7 if initially the object is pulled down 0.08 m (instead of 0.05 m) and then
given an initial velocity of 0.6 m/s downward.

In this case the solution (7} of Problem 4.7 still holds but the initial conditions are: at t =10,
z = (.08 and dz{dt = 0.6. From thess we find

A = 0.08 and B = (.24, go that z = 0.08 cos 5¢/2 + 0.24 sin 56/2 = 0.253 cos (gt - 1.249)

Thus amplitude = 0.258 m, period = 4x/5s, frequency = /4= Hz. Note that the period and
frequency are unaffected by changing the initial conditions.

A particle travels with uniform angular speed «» around a circle of radius 5. Prove
that its projection on a diameter oscillates with simple harmonic motion of period
2x/e about the center,

Choose the circle in the zy plane with center at the origin O as in Fig. 4-10 below. Let @ be
the projection of particle P on diameter AB chosen along the » axis.
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If the particle is initially at B, then in time ¢ we will

have BOFP = ¢ = wt. Then the position of P at time ¢ is

r = bceoswti 4+ bsinet] (1)
The projection @ of P on the x axis is at distance
¥ i = & = bceosut i)

from € at any time f. From (2) we see that the projection
oscillates with simple harmonic mation of period 2#/v about
the center O,

DAMPED HARMONIC OSCILLATOR

[CHAP. 4

Fig. 4-10

Suppose that in Problem 4.1 the particle P has also a damping force whose magnitude
is numerically equal to 8 times the instantaneous speed. Find (a) the position and
(b) the velocity of the particle at any time. (c) INustrate graphically the position of

the particle as a function of time ¢.

{¢) In this case the net force acting on P is [see

Fig. 4-117 —8«i — S%i. Then by Newton’s sec-

Y

— i - s%‘{-i

xf ——--

ond law,
dx. o . odr,
2dt2‘ = 8 Sdtl 5
dix dx _
or bl + 43 + 4 = 0

This has the solution [see Appendix, page 352, Problem C.14}

x = e A + Bt)

When
the position at any time ¢.

(b} The velocity is given by

v = %i = —B0te—24

{¢) The graph of x vs. ¢ is shown in Fig, 4-12, It is
seen that the motion is non-oscillatory. The par-

t=0, =20 and dz/df = (; thus A =20, B = 40,

x

P
Fig. 4-11

and x = 20e-2t1{1+ 2¢) gives

ticle approaches O slowly but never reaches it.
This is an example where the motion is eritically
damped.

Fig. 4-12

A particle of mass 5 g moves along the « axis under the influence of two forces: (i) a
forece of attraction to origin @ which in dynes is numerically equal to 40 times the in-
stantaneous distance from O, and (ii) a damping foree proportional to the instantaneous

speed such that when the speed is 10 em/s the damping force is 200 dynes.

Assuming

that the particle starts from rest at a distance 20 em from O, (a) set up the differential
equation and conditions describing the motion, (5) find the position of the particle at any
time, (c) determine the amplitude, period and frequency of the damped oscillations, and

(d) graph the motion,

{a) Let the position vector of the particle P be denoted by
r = 21 as indicated in Fig. 4-13. Then the force of attrac-
tion (directed toward Q) is

—40zi 1)

The magnitude of the damping force f is proportional to
the speed, so that f = g dx/dt where g8 is constant. Then
since f = 200 when dx/dt =10, we have g = 20 and
f=20dx/dt. To get f, note that when dz/dt>0 and
a > 0 the particle is on the positive 2 axis and moving to

¥

e re—
—20(dz/dt)i

i —
—40xi

xi -

P
Fig. 4-13
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the right, Thus the resistance force must be directed toward the left. This can only be accom-
! plished if dz
f = —20 ?t-i {2)
This same form for f is easily shown to be correct if = >0, da/dt <0, x <0, de/dt >0,
x <0, defdt <0 [see Problem 4.45].

Hence by Newton’s second law we have

dix, o dz. .
53‘t—2l = 20 il 40w ()
d*x di _
or JEtdg T8 = 0 {4)

Since the particle starts from rest at 20 em from (), we have

x =20, dx/dt =0 at t =0 (&
where we have assumed that the particle starts on the positive side of the x axis [we could
just as well asgsume that the particle starts on the negative side, in which case x = —20].

(b) = = et is a solution of (4) if
a®+4a+8 =0 or a = M—4=V16-83) = —2x
Then the general sclution is
¥ = e 2{A cos 2t + B sin 2{) (6)
Since x =20 at t =0, we find from (6} that A = 20, i.e,
x = e 2420 cos 2t + B sin 2t) (7
Thus by differentiation,
de/dt = (e~2)(—40 sin 2¢ + 2B coa 2¢) + (—2¢~20)(20 cos 2t + B sin 2¢) (8)
Since dx/dt =0 at t=10, we have from (8, B = 20. Thus from (7) we obtain
x == 20e~2{cos 2t + 8in2t) = 202 ¢ 2t cos (2t ~ #/4) (%)

using Problem 4.2.

i¢) From (%): amplitude 20vZ e 2 em, period = 27/2 = = s, frequency = lf» Hz

(d) The graph is shown in Fig. 4-14, Note that the amplitudes of the oscillation decrease toward
zero as { increases.

20vZ em |-— Period = 75 AI

) SN

*

Fig.4-14

. 412. Find the logarithmic decrement in Problem 4-11.
Method 1. The maxima {or minima) of x occur where dx/dt = 0. From (2 of Problem 4.11,

dxfdt = —80e-%gin2¢t = ¢

i when ¢ =0,7/2,7 37/2,2r,62/2,..... The maxima occur when {=20,+2r,...; the minima
occur when €= 7/2,3#/2,6¢/2,.... The ratio of two successive maxima is e~ 2(0)/e—2(7} or
e~ M e~ 22N ete,, Le. €%, Then the logarithmic decrement is § = In (e2%) = 24,
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Method 2.

From (9) of Problem 4.11, the difference between two successive values of ¢, denoted by ¢,
and t,,,, for which cos(2t—=/4) =1 (or —1) is =, which is the period. Then
Xy 20‘/‘2‘8“2ll

= e = el and 8 = Infeyfegq) = 2
Tn+ 20/2 e~ Ztns1 e ’

Method 3. From (13), (18) and (21}, pages 88 and 89, we have
6:7P2<£>( drm ./
2m m) Vium — g2

Then since m =5, g =20, x =40 [Problem 4.11, equation {3)], § = 2.

Determine the natural period and frequency of the particle of Problem 4.11.

The natural period is the period when there is no damping. In such case the motion is
given by removing the term involving dx/dt in equation (3) or {4) of Problem 4.1I. Thus

di/dt? + 8% = 0 or x = Acos2/2t + Bsin2y2¢
Then naiural period = 27/24/2 s = =/4/2 s; natural frequency = 1/2{» Hz.

For what range of values of the damping constant in Problem 4.11 will the motion
be (a) overdamped, (b) underdamped or damped osciilatory, (e¢) critically damped?

Denoting the damping comstant by 8, equation (2) of Problem 4.11 is replaced by

2. . _pde. : &= , A dx -
5':“2 = ﬁdtl 4024 or dt2+ dt+8 = 0

Then the motion is;

(¢} Overdamped if (8/5)% > 32, i.e. £ > 20v/2.

{(b) Underdamped if (3/6)2 < 32, ie. B < 20v2,
[Note that this is the case for Problem 4.11 where 8 = 20.]

(¢) Critically damped if (8/5)2 = 32, ie. § = 20V/2.

Solve Problem 4.7 taking into account an external damping force given numerically
in newtons by fv where v is the instantaneous speed in mjs and {(a) § = 10, (b) § = 50,
(c) B = 62.5.

The equation of motion is
100 d2z d2z g dz 25

To o7 K=100Kk — 200(0.16+2)/0.32k- ﬁ oo Gmticatgr = O

(@) If 8 = 10, then d¥z{dt? + 4 dzjdt + 26/4 2 = 0. The solution is
z=¢ " (Acosdi2t+ Bein3f2t)

1
Using the conditions z = 0.05, dz/dt = 0 at ¢ =0, we find A = 55, B = ¢ s0 that

_l_ul 3 )___~=t i_. 0‘)
z =ge (4cos—t+ sin—t e~ ¢os 23 53° 8

The motion is damped oscillatory with period 2#/4.8 = 5#f12 1.
® If B = 50, then d2zjde® -+ sdzjdt + 25{42z = 0. The solution is
z = e~ (4 4 By

Solving subject to the initial conditions gives 4 = ‘:!lf)‘ B :—é; then z = ~i—e'“ L (%— —+ %)
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The motion is eritically danmped since any decrease in § would produce oscillatory motion.

?dz;‘dt + 24—52 = 0. The solution is

z = Ae~84* 4 Be~#

{e) If B = 62.5 then dtzfde® 4

. . . . 1 _ 1. o e 1
Sclving subject to initial conditions gives 4 = i B=-— 50° then z = i5¢ 50° )

The motion is overdamped.

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

416. (@) Prove that the force F= -xxi acting on a simple harmonic oscillator is con-
servative. (b) Find the potential energy of a simple harmonie oscillator.

i i k
{a) We have VXF = |8z afdy daz| = 0 so that F is conservative,
—rx 0 0

(b) The potential or potential energy i3 given by V where F = -VV or

. _ v,  av. 8V
—xxi = —(T:E|+~a;)+azk)

Then V/ax = «x, 3V/dy =0, dV/de =D from whick V= fex?{¢c. Lssuming V=0 cor-
responding to =0, we find ¢e=0 g0 that V = B,

4.17. Express in symbols the principle of conservation of energy for a simple harmonic
oscillator,
By Problem 4.16(b), we have

Kinetic energy + Potential energy =  Total energy
or gmo? + Fxe? = E
which can also be written, since v =dz/dt, as Im(de/dt)? + Jxa? = E.
Another method. The differential equation for the motion of a simple harmonic oscillator is
mdiefdt2 = —xx

Since dx/dt = v, this can also be written as

dy dv d. .
m‘a-.t' = —xX oT m?z d—: = —kKk¥, 1.¢. m‘ug—;- = KX

Integration yields jme2?+ ixzﬁ =E.

FORCED VIBRATIONS AND RESONANCE
418, Derive the steady-state solution (27) corresponding to the differential equation (24)
on page 89, .

The differential equation is - .
eq x+ 2yx + i = fycosal {1}

Consider a particular solution having the form
x = ¢ cosat + oy Binat {£)
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where ¢, and ¢, are to be determined. Substituting (2) into (1}, we find

{—atec; + 2vacy + wley) cosal + (—aley — 2yac; + wity) sinal = fycosatl
from which —ale; + 2yac, + wley = fo, —o¥¢, — 2yae, + wle; = 0 @)
or (a2 —we; — 2yacy = —fg,  2yac; + (af —wey = O (4)

Solving these simultaneously, we find

PR fo (02 — az) _ 2f0 Yo {5)
' 7 @St dyiat 2 T (@ T Ayt

Thus (2} becomes
Joi{w? — o) cosat + 2yoa sin at)

z = @ =P T i @

Now by Problem 4.2, page 92,

(wr—a?} cosat + 2yasinat = V{u?—a2)? + 47%* cos {at — ¢} {"N

where tang = 2vaffaZ—w?), 0 =2 ¢ = 7. Using (?) in (6), we find as required
fo

xr = cos (at — ¢)

Via? — o2 + dy2a?

Prove (a) that the amplitude in Problem 4.18 is a maximum where the resonant fre-
quency is determined from « = 1/uf—2y% and (b) that the value of this maximum
amplitude is f /(2y}/w® — ¥%).
Method 1. The amplitude in Probiem 4.18 is
fo/ Vi — o)? + 4y2a2 15}
It is a maximum when the denominator lor the square of the denominater] is a minimum. To
find this minimum, write
(a2 — W22 4+ dv2a? = at — 2(w? — 2y2)a? + o
= ot — 2(u? — 2y2)a? + (wf — 2yD2 + wt — (@2 — 222
= [af — (02— 2yD)]2 + 4y2(e? — ¥?)

This is a minimum where the first term on the last line is zere, i.e. when aof = w? — 242, and the
value is then 4y%w? —y?), Thus the value of the maximum amplitude is given from {I) by

fo/ @Vt — ¥ih

Method 2. The function U = {a? — u?}? + 4y%Za? has a minimum or maximum when
%!i = 2(a?—u%2a + 8y« = 0 or afa2 — w2+ 2y = 0
£

ie. a=0, a=Ve?—2y where vy < 1e?.  Now
QW fda? = 1242 — 40? + 8y2

For o=0, UMa?=—4(2—2v) <0 For o= Vu?—2y% dtU/da? = 8{o®>—2y2 > 0. Thus
o = Vo~ 2y? gives the minimum value,

(a) Obtain the solution {33), page 90, for the case where there is no damping and the
impressed frequency is equal to the natural frequency of the oscillation. (b} Give a
physical interpretation.

{a) The case to be considered is obtained by putting vy =0 or =0 and a =« in equations
{2%) or (24}, page 8% We thus must solve the equation

¥ 4wt = focoswt Lo
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To find the general solution of this equation we add the general solution of
Z4+e2e = 0 '
to a particular solution of (I).
Now the general solution of {2) is

*r = Acoset + Bainwt

To find a particular sclution of {#) it would do no good to assume a particular solution of the fo

x = ¢ coswl + £ sinwt

since when we substitute (4) [which is identical in form to ()] into the left side of (1), we wo
get zero. We must therefore modify the form of the assumed particular solution (4). As =
in Appendix C, the assumed particular sclution has the form

r = tey coswl + ¢, sinwl)
To see that this yields the required particular solution, let us differentiate (5} to obtain

# = f—wey sinwt + wey coswl) + (¢) coswt + ¢, sin wt)

.

£ = t— vl cozwt — Wl sinwt) + 2(— we, sinwt + wey cog wl)

Substituting {5), () and (7} into (Z), we find after simplifying

— 2uwep sin wt + 2wty coswt = foeos et

from which ¢, =0 and ¢ = fp/2u. Thus the re- x <
quired particular sclution (5} is 2 = {fy/2w)t sin wt. -
The general solution of (1) i3 therefore -

x = Acosof + Biginet + (fp/2u)t gsinut  (8) Py
{6) The constants A and B in {8) are determined

from the initial conditions. Unlike the case with

damping, the terms involving A and B do not become

small with time. However, the last term involving ¢ “

increases with time to such an extent that the spring -

will finally break. A graph of the last term shown N

in Fig. 4-15 indicates how the oscillations build up ~o

in magnituade. Fig. 4-15

A vertical spring has a stiffness factor equal to 48 N per m. At ¢ = 0 a force give
newtons by F(¢) = 51 sin 44, { 20 is applied to a 30 N weight which hangs in equilib:
at the end of the spring. Neglecting damping, find the position of the weight at any
time £.

Using the method of Problem 4.7, we have by Newton’s second law,

\
39d% _ 48 + 51sin 4t
10 de=
2
or . % 167 — 17 sia 4t
di
Solving,

z = Acosdt + Bsindt — 17/8 cos 4t

When t=0, z=0 and dz/dt=0; then A =0, B =17/32 and

£ o= 1732 sin 4t — 17/81 cos 4¢
As § gets larger the term — 17/8 ¢ cos 4 increases numerically without bound, and physically the

will ultimately break. The example illustrates the phenomenon of resonance. Note that the 1
frequency of the spring (4/2= = 2/n) equals the frequency of the impressed force.,
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4,22, Work Problem 4.21 if F(¢} =120 cos 6t,£= 0.
In this case the equation (1) of Problem 4.21 becomes
dz/dez + 162 = 40 cos 6L

and the initial conditions are
z=0, dzfdt =0 at t=0

The general solution of (1) is
z = Acosd4t + Bgindt — 2cos 6t

Using conditions (2) in (8), we find 4 =2, B = 0, and

z = 2(coadt —coabt) = 2{cos(bi—1t) — cos (bt + £)}

= 4sinisin

[CHAP. 4

(1
()

&)

The graph of z vs. ¢ is shown by the heavy curve of Fig. 4-18. The dashed curves are the curves
z = +4sin ¢ obtained by placing sin 5¢ = +1. If we consider that 4 ain ¢ is the amplitude of sin 5,
we see that the amplitude varies sinusoidally. The phenomenon is khown as amplitude modulation and

is of practical importance in communications and electronics.

THE SIMPLE PENDULUM

4.23. Determine the motion of a simple pendulum of length ! and mass m assuming small

vibrations and no resisting forces,

Let the position of m at any time be determined by s,
the arclength measured from the equilibrium position O
[see Fig. 4-17]. Let ¢ be the angle made by the pendulum
string with the vertical.

If T is a unit tangent vector to the circular path of
the pendulum bob m, then by Newton’s second law

a2
md—t:'l' = —mgsineT )
or, since & = I¢,
ot
@ = ~Seine (#)

For small vibrations we can replace sin ¢ by # so that
to a high degree of accuracy equation (2) can be replaced by

s g _
dts+-lo—0 {2)

which has solution

8 = AcosVgilt + Bainvg/lt

Fig. 4-17

Taking as initial conditions 8 =14, de/dt =0 at t =0, we find 4 =9, B=0 and so

# = s coaVplit

From this we see that the period of the pendulum is 2=v/l/g.
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424,

4.25.

Show how to obtain the equation (2) for the pendulum of Problem 4.23 by using
the principle of conservation of energy.

We see from Fig. 417 that OA = O0C—~ AC =]—1cos¢ = {1 —coss). Then by the conserva-
tion of energy [taking the reference level for the potential energy as a horizontal plane through
the lowest point O] we have

Potential energy at B + Kinetic energy at B = Totalenergy = F = constant
mgl(l — cos8) + dm(ds/dt)? = E (#3)

Since 8 = ¢, this becomes
mglil — cos8) + dmi¥de/dt) = E 2

Differentiating both sides of (2} with respect to ¢, we find
mglsing e + mi2é = 0 or ¥+ ig/hsine = 0

in agreement with equation (2) of Problem 4.23.

Work Problem 4.23 if a damping force proportional to the instantaneous velocity is
taken into account.
In this case the equation of motion (1) of Problem 4.23 is replaced by
dis ds

mm'f = vmysina’l'—ﬁg’!‘ or 5 T —g sing —

Blw
&8

Using s =l¢ and replacing sing by ¢ for small vibrations, this becomes

d _Bde g, _
dt2+;‘-&?+?9—0

Three cases arise:
Case 1. B3/dm? < g/l
& = e BUIM[A cogut + B sinwt) where « = Vg/l — p%/4m?

This is the case of damped osgcillations or underdamped motion.
2 2=
Cage 2. p2ldm? = g/l o = e—8UIn(A + Ba)

This iz the case of eritically damped motion.

Case 8. B24Am?2 > g/l
§ = e~ BtZm{fert £ Be—At} where » = v p2/dm? — g/l

This is the case of overdamped motion,

In each case the constants A and B can be determined from the initial conditions. In Case 1
there are continually decreasing oscillations. In Cases 2 and 3 the pendulum bob gradually returns
to the equilibrium position without osecillation.

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR

4.26,

Find the potential energy for (a) the two dimensional and (h) the three dimensional
harmonic oscillator.

{a) In this case the force is given by
F = —uzi — xoy

Since ¥V X F =0, the force field is conservative, Thus a potential does exist, i.e. there exists
a function V such that F = —VV. We thug have
— mpigl — e = — - Y. _v. W
F = —xzi— sy = vV = axi g ) 2
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from which 0V/ox = xjx, aV/0y = oy, ¢V/82 =0  or
V = it + A
choosing the arbitrary additive constant to be zero. This is the required potential energy.
(b) In this case we have F = —uxxi —xoyi —x32zk  which is also conservative since VXF =10,
We then find as in part (e), oViexr = xpx, dV/dy = woy, aV/3z = k42 from which the required

potential energy is
= i@ + Legy? + Lugal

4.27. A particle moves in the 2y plane in a force field given by F = —xxi — «¢yj. Prove that
in general it will move in an elliptical path.

If the particle has mass m, its equation of motion is

dr e
mw = F = wXi kY] (1)
. s &2 . .
or, since r = zi+ ¥j, m:i;cl + mdtg = —xxi — xyi
&2z _ dgy -
Then Moy = TkE, i ¢4}
These equations have solutions given respectively by
2 = Ajcosva/mi + A,sinvVu/mit, ¥ = B cosVe/mt + BysinVu/mt &4

Let us suppose that at ¢ =0 the particle is located at the point whose position vector is
r=ai+bdj and moving with veloecity dr/dt = vi + v,j. Using these conditions, we find 4, =g,

B, =b, A;=vVm/k, By, = vyym/c and so
x = acoswt + ¢sginot, y = beoswut + dsinet (4)
where ¢ = v, yVm/s, d = vyVm/x. Solving for sinut and coswt in (4§} we find, if ad # be,

_ dz-—ey . _ ay—bx
cog wt = ad —be' gin wt = ad — be

Squaring and adding, using the fact that cos2ef+ sinfet =1, we find
{dx —cy)2 + {ay — bx)2 = {ed — be)?
or (52 + d2)x? — 2(ed + ab)xy + (22 4 2)y?2 = (ad — be)2 {5

Now the equation
Az 4+ Bay +Cyt = D where 4 >0, C>0,D>0

is an ellipse if B2—4AC < 0, a parabela if B2~4AC =0, and a hyperbols if B2—44AC > 0.
To determine what {5} is, we see that A =5 +d2, B =—-2(ed+ab), C=a?+¢? s0 that

Bt — 4AC = d(cd+ab)? — 42+ d2) a2+ ¢?) = —dlad—be)? < 0

provided ad » be. Thus in general the path is an ellipse, and if 4 = C it is a circle, If ad = be
the ellipae reduces to the straight line ay = bax.

MISCELLANEOUS PROBLEMS

4.28, A cylinder having axis vertical floats in a liquid of density «. It is pushed down
slightly and released. Find the perlod of the oscillation if the cylinder has weight W
and cross sectional area A.
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4.29.

Let RS, the equilibrium position of the cylinder, be distant
z from the liguid surface PQ at any time ¢. By Archimedes’
principfe, the buoyant furce on the eylinder is (Az) ey, Then by
Newton's second law,

W dz
-a- T = —Azog
@z, yido
or EEz— + W zr = 0
Solving,
2 = epeosVgrdofW it + cysm Vgid oWt
and the period of the oacillation is 2z W g3 o Fig. 4-18

Show that if the assumption of small vibrations is not made, then the period of a
simple pendulum is

where k = sin (80/2)

41,_3_1’”2___@___
gvo /1 —Kk¥sinty

The equation of motion for a simple pendulum if small vibrations are not assumed is
[equation (84), page 91]

d?e .
q = —% 3in g in
Let ds¢/dt = u. Then -
@ _ duw _ dude _  du
de2 T dt de dt ~ T de
and {I) becomes i
" ﬁ = - % sin # {2)
Integrating (2} we obtain
w2 _ g
5 = TJeose + ¢ (€1]
Now when e =48, u=0 so that ¢ = —(g/l) cos#;,. Thus (3) can be written
u? = (2g/l)(cosé — cos8y) or de/dt = =V(2p/li(cond — cos 8y {4

If we restrict ourselves to that part of the motion where the bob goea from ¢ =9; t0 ¢ =0,
which represents a time equal to one fourth of the period, then we must use the minus sign in {(§)
s0 that it becomes

defdt = —/(2g/D{cos ¢ — cos 8g)

Separating the variables and integrating, we have

{ l J‘ de

ft = - _ —_—

20 ) eose — cos 9,

Since ¢ =0 at ¢ =4, and t=Pf4 at 9 =0, where P iz the periad,

,
P = 4JJ_J‘°_____‘E___ (6)
2¢ Jy +eoss — coss,

Making use of the trigonometric identity cos# = 2 sin?*4/2) —1, with a similar one replacing
# by 8,, (5) ean be written

[ % ds
P = 2 1f~ (6
g j; V8in2(9,/2) — sin(e/2)

Now let 8in (#/2) = sin (8,/2) sin ¢ (4]

L3
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4.30.

4.21.

THE SIMPLE HARMONIC OSCILLATOR AND THE SIMPLE PENDULUM (CHAP. 4

Then taking the differential of both sides,
4 cos(#/2)de = s5in{94/2) cos ¢ d¢

or calling k = sin (#,/2}),
& o 2 sin (#,/2) cos ¢ do

v1-—Kk2sinZg

Also from (7) we see that when # =0, ¢ = 0; and when ¢ = ¢, ¢ = 5/2. Hence () becomes,
as required,

de =

o ]
P = ﬂfij — g )
), ik,

Note that if we have small vibrations, i.e. if k is equal to zerc yery nearly, then the period (8}

becomes
[ Ti2 i
P = 4\f—f do = 2#‘\’— )
g/, g

The integral in {8) is called an elliptic integral and cannot be evaluated exactly in terms of
elementary functions. The equation of motion of the pendulum can be solved for s in terms
of efliptic functions which are generalizations of the trigenometric functions.

as we have already seen.

Show that period given in Problem 4.29 can be written as

P = 2n\/%{1 +(%)2k2+(,1,—:%>2k*+(—21~—:%g>2k°+ }

The biromial theorem states that if |z} < 1, then

(1+2? = 1+ pzx + p‘g.l”xz + p(pg‘lzjtpl_z)xs FEN
If p= -1, this can be written
1 13 13:5
-172 = - = 179 e 3
(1+2x) 1~ 3o+ g2l — oo ad +

Letting =z = —k?sin®¢ and integrating from 0 to »/2, we find

w2 d¢
o= 4/l f =
/o o V1—EKsinZg

w2
= 4v‘-'/gf {1 + -;-kzsin%s + %—;Zak“ sinte + "‘}dqb
0

_ 1\2 1.3\, . /1-3:5\ .
= 2:'\}%{14‘(5) k-+(é-_4> k“ﬂ-(zu’l‘s)k + o

where we have made use of the integration formula

i 135 2n—1} »
T2 — -
J; sinfrg dp = T 46 - (Zn) 3

The term by term integration is possible since |[k| < 1.

A bead of mass m is constrained to move on a frictionless wire in the shape of a
cycloid [Fig. 4-19 below] whose parametric equations are
x = alp —sing), ¥y = a{l — cosd) 6]

which lies in a vertical plane. If the bead starts from rest at point O, (a) find the
speed at the bottom of the path and (b) show that the bead performs oscillations
with period equivalent to that of a simple pendulum of length 4a.
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432. A particle of mass m is placed on the inside

{a) Let P be the position of the bead at any time o

and let s be the arclength along the cycloid meas- ®
ured from point O. *
_ By the conservation of energy, measuring P 2a
potential energy relative to line AE through the m
minimum point of the cycloid, we have Al Tt T B
PE atP + KE. atP = PE.at0 4+ K.E. at @
W
mg(2a — y) + Im{ds/dt)? = mg2a)+ 0 (D) Fig. 4-19
Thus v = (de/dD)? = 2gy or v = ds/dt = 2y *

At the lowest point ¥ = 2a the speed is v = V2¢(20) = 2V ga.

(4) From part {a), (ds/dt)2 = 2gy. But
{da/dt2 = (dx/dt)® + (dy/dt)? = a¥(l ~ cos¢)2¢? + a? sin?e ¢? = Ze2(1 — cos ¢)g?
Then 2a%(1 — cos¢)¢? = 2ga{l — cos g} oF @2 =g/a. Thus
de/dt = Vgla and ¢ = Voglat+¢ “)
When ¢ =0, t=0; when ¢ =2y, ¢t = P/2 where P iz the period. Hence from the second

equation of (4),
P = 4an/alg = 2¢V4alg

and the period is the same as that of a simple pendulum of length I = 4a.
For some interesting applications see Problems 4.86-4.88,

of a smooth paraboleid of revolution having
equation ¢z = x?+ y? at a point P which is at
height H above the horizontal [assumed as the
xy plane]. Assuming that the particle starts
from rest, (a) find the speed with which it
reaches the vertex O, (b) find the time - taken,
and (¢) find the period for small vibrations.

It is convenient to choose the point P in the yz
plane 3o that z = 0 and ¢z = 2. By the principle

of conservation of energy we have if @ is any point
on the path PQO, Fig. 4-20

PE . atP + KE. atP PE.atQ + KE.atQ
mgH + 3m(0)? myz + Jm(ds/dt)?

where s is the arclength along OFQ measured from Q. Thus

]

(ds/dt)2 = 2g(H —z) )
or de/dt = —20(H — 2} (%)

using the negative sign since # is decreasing with ¢.

(a) Putting z = 0, we see that the speed is V2pH at the vertex.
(b)) We have, sincex =0 and cz =192,

ds?'_ da:2 d2 dzs d_lx ﬁg—lﬂ_ é_!ii!z
(EE) = &?)+(Eg)+(&'£) (dt tala) = Uta dt)

Thus (1) can be written (1 + 4y2/e2)dy/dt)2 = 2g(H — y*/¢). Then

dy _VeH — 2 Ve + 433
F o= Vg —— or -V2gedt = ———dy
a V& T ag Vel — 5
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Integrating, using the fact that : = H and thus ¥y = VeH at t =0 while at ¢t = T, ¥=10

we have
' Ve o L VAT a7

‘/‘ —VEgrdt = Jﬂ e Yy or r = d
¥
b Veit yeH — 4 2ge VeH — yt

Letting o = \NH cos 8. the integral can be written

_ S~ T 1 f2 - -
r = —— J Ve2 ot deH coste de = L j Vet + 4cH — 4cH sinZ 6 dé

V2ge Vage 4

and this can be written
s = -“ r V1~ k2 sin2 e ds (5
0

where k= VaHHe+4H) < 1 {4)

The integral in (3} is an elfiptic infcgral and eannot be evaluated in terms of elementary
functions. It can, however, he evaluated in terms of sevies [see Problem 4.119].

{¢} The particle oscillates back and forth on the inside of the paraboloid with period given by

e
P o= 4 = 41/5274”] Vi = sm?e dé 5
*a

For small vibrations the value of & given by {{) can be assumed so small s0o as to be zero
for practical purposes. Hence (5} hecomes

P = 2V/{c+ 4H)/2g

The length of the equivalent simple pendulum is & = {(c+ 4H).

Supplementary Problems

SIMPLE HARMONIC MOTION AND THE SIMPLE HARMONIC OSCILLATOR

4,33,

4.34.

4.35.

4.36.

1.37.

A particle of mass 12 g moves along the x axis attracted toward the point O on it by a foree in dynes
which is numerically equal 10 60 times its instantaneous distanee x ¢m from (). IT the particle start=
from rest at x = 10, find the (@) amplitude, {b) peried and (c) frequency of the motion.

Ans. (@) 10em, ) 2a{+'3s, (¢) +v5/2= Hz

{a) If the particle of Problem 4.33 starts at » = 10 with a speed toward @ of 20 cm/see, determine
its amplitude, period and freguency. (b) Determine when the particle reaches ¢ for the first time.
Ang. (a} Amplitude = 645 em, period = Zaf4/5 s, lrequency = 52 = Hz: (b)) 0.33 =

A particle moves on the x axis attracted toward the origin O on it with a force proportional
to its instantaneous distance from O, If it starts from rest at x = 5em and reaches » = 2.5 cem
for the first time after 25, find (@) the position at any time { after it starts, (b) the speed at x == 0,
{c) the amplitude, period and frequency of the vibeation, (4} the maximum acceleration, (e} the
maximum speed,

Ang. falx = 5 cos (nfj6': (B) Bwff emfs; (e} Sem, 125, 112 Hzy {d) 52236 cmfs*; (¢} =/ crofs

If a particle moves with simple harmonic motion along the x axis, prove that (a) the acceleration
is numerically greatest st the ends of the path, (4} the velocity is numerically greatest in the
middle of the path, (¢} the acceleration is zero in the middle of the path, (d) the velocity is zero
at the ends of the path,

A particle moves with simple harmonic motion in a straight line. Its maximum speed is 6 1nfs and
its maximum aceceleration is 24 mfs. Find the period and frequency of the motion.

Ans. =j2s, 2{n Hz
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438. A particle moves with simple harmonic motion. If its acceleration at distanee I} from the
equilibrium position is A, prove that the period of the motion is 2.V D/A.
439, A particle moving with simple hannome motion has speeds of 3 em/s and 4 cm/s at distances 8 cm and
6 cm respectively from the equilibrium positisn.  Find the period of the motion. Ans. dms
{40. An 8 kg weight placed on a vertical spring stretches it 20 cem. The weight is then pulled down
a distance of 40 cm and released. (a) Find the amplitude, period and frequency of the oscillations.
{b} What is the position and speed at any time? )
Ans. {(a) 40 c1n, 207 s, 72+ Hz
() x == 40 cus Tt e, ¢ = — 280 sin T vinfs
441 A mass of 200 g placed at the lower end of & vertical spring stretches it 20 em. When it is in equilibrium
the mass is hit and due to this goes up a distance of 8§ em before coming down again. Find (g) the
magnitude of the velocity imparted to the mass when it is hit and () the period of the motion.
the motion. Ans. {a) 56 em/s, (b) Ln[7 s
i 442. A 5 kg mass at the end of a spring moves with simple harmonic motion along a horizontal straight
; line with period 3 s and amplitude 2 meters. (o) Deteninine the spring constant.  (b) What is the
: maximurn force exeried on the spring?
Ans. {2} 1140 dynes/em or 1.14 newtons/meter
{b)y 2.28 » 10% dynes or 2.28 newtons
443. When a mass M hanging from the lower end of a vertical spring is set into motion, it oscillates

with period P. Prove that the period when mass m is added is PvV1 4+ m/M.

THE DAMPED HARMONIC OSCILLATOR

444,

1.86.

4.46.

447,

{448

4.49,

4.50,

451

452.

(@) Solve the equation d2x/diZ + 2dx/dt + 52 = 0 subject to the conditions x =5, dz/dt = —3
at ¢t = 0 and (b) give a physical interpretation of the results.

Ans. (a) £ = e~ t{5 cos 2t + sin 2f)

Verify that the damping force given by equation (2} of Problem 4.11 is correct regardless of the
position and velocity of the particle.

A 1.5 kg weight hung on a vertical spring stretches it (.4 m. The weight is then pulied down 1 m and
released. ({a) ¥ind the position of the weight at any time if a dainping force numerically equal to 15
times the instantancous speed is acting.  (b) Is the motion oseillatory damped, overdamped or eriticaliy
damped? (Use g = 10 m{fs?). Ans. (@) x = e~ (5t + 1), (b) eritically damped

Work Problem 4.46 if the damping force is numerically 18.76 times the instantaneous speed.
Ans. {a) x = é(&e"”*' — e 1%y (b)) overdamped

In Problem 4.46, suppose that the damping force is numerically 7.5 times the instantaneous speed.
{a) Prove that the motion is damped oscillatory. (b) Find the amplitude, pericd and frequency of
the oscillations, (¢} Find the logarithmic decrement.

Ans. (b) Amplitude = 72__.‘3""‘"111. period = 4w{5+/3 5, frequency = 5+/3/4d= Hz; (¢} 2rf+/3
3

Prove that the logarithmic decrement is the time reguired for the maximum amplitude during
an oscillation to reduce to 1/e of this value.

The natural frequency of a mass vibrating on a spring iz 20 Hz, while its frequeney with damping
ts 16 Hz. Find the logarithmic decrement. Ans. {3/4)2n

Prove that the difference in times corresponding to the successive maximum displacements of a
damped harmonic oscillator with eguation given by (12) of page 88 is constant and egual to

drm/y dem — g2,

Is the difference in times between auccessive minimum displacements of a damped harmonie
oscillator the same as in Problem 4.517 Justify your answer,
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FORCED VIBRATIONS AND RESONANCE

4.33.

41.54.

4.55.

4,56,

4,57,

4.58,

The position of a particle moving along the x axis iz determined by the equation d2x/di® + 4dx/dt +
8r = 20 cos 2¢. If the particle starts from rest at = =0, find (a) 2 as a funection of ¢, (b) the
amplitude, period and freguency of the oscillation after a long time has elapsed.

Anz. (a) 2 = cos 2t + 2 5in 2f — e~ 2t{cos 2£ + 3 sin 2¢)
(6) Amplitude = v/§, period = =, frequency = 1/#

(a) Give a physical interpretation to Problem 4.53 involving a mass at the end of a vertical spring.
(b) What is the natural frequency of such a vibrating spring? (¢) What is the frequency of the
impressed force? Ans. (B o/w, (&) It

The weight on a vertical spring undergoes forced vibrations according to the equation
d2x/di2 + 4x = 8 sinwt where x is the displacement from the equilibrium position and « > 0 is &
constant. If at ¢+ =0, =0 and dxfdt =0, find (a) x as a function of ¢, () the period of
the external force for which resonance oeceurs,

Ans. (@) x = (Bsinol —dusin28/{4— o) H 0+2; x=sin2t—2tconlt if w=2
() « =2 or period = r

A vertical spring having constant 272 N/m has & 16 kg weight suspended from it. An external force
given as a function of time ¢ by F(¢} = 240 sin 41, ¢ = 0 is applied. A damping force given numerically
in newtons by 32 v, where » is the instantaneous speed of the object in m{s, is assumed to act. Initially
the weight is at rest at the equilibrium position. (a) Determine the position of the weight at any time.
(b} Indicate the transient and steady-state solutions, giving physical interpretations of each. (s) Find
the arnplitude, period and frequency of the steady-state solution. (Useg = 10 m/s?.)

Ans, (@) # = 3¢ (Beosdt + sind) + 3 sin4t — 24 cos ¢
13 13 13

{b) Transient, 1—333—'{8 cos 4 + sin 4¢);  Steady state, % sin & — f_; cos 4f

(¢) Amplitude = 3 [ 2 m, period = n/2 s, frequency = 2/» Hz

A spring is stretched 5em by & force of 50 dynes. A mass of 10g is placed on the lower end of the
spring. After equilibrium has heen reached, the upper end of the spring is moved up and down so that
the external force acting on the mass is given by F(f} = 20 cos of, ¢ = 0. (¢} Find the position of the
mass at any time, measured from its equilibrium position. (b) Find the value of w for which resonance
oCCurs. Ans. (a) 2 = 2(cos wt — cos (1 —w2), (b)) w=1

A periodic external force acts on a 6 kg mass suspended from the lower end of a vertical spring
having constant 150 newtons/meter. The damping force is proportional to the instantaneons speed
of the mass and is 80 newtons when the speed is 2 meters/sec. Find the frequency at which
TeSONAnce QCCurs, Ans. 5f6n Hz

THE SIMPLE PENDULUM

4.59,

4.60.

4.61.

Find the length of a simple pendulum whose period is 1 second. Such a pendulum which registers
seconds is called a gseconds pendulum. Ans. 99.3 cm

Will a pendulum which registers seconds at one location lose or gain time when it is moved to
another location where the acceleration due to gravity is greater? Explain.

Ans. Gain time

A simple pendulum whose length is 2 meters has its bob drawn to one side until the string makes
an angle of 30° with the vertical. The bob is then released. (a} What iz the speed of the bob as
it passes through its lowest point? (b} What is the angular speed at the lowest point? (¢) What
is the maximum acceleration and where does it oceur?

Ans. {a) 2.93 mfz, (b) 1.46 rad/s, {¢} 2 m/s?
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162

4.63.

164,

4.6

1.66.

Prove that the tension in the string of a vertical simple pendulum of length ! and mass m is given
by mg cos ¢ where ¢ is the instantaneous angle made by the string with the vertical.

A seconds pendulum which gives correct time at a certain location is taken to another location
where it is found to lose T seconds per day. Determine the gravitational acceleration at the second
location, Ans. g(l — T/86,400)2 where g is the gravitational acceleration at the first location

What is the length of a seconds pendulum on the surface of the moon where the acceleration due
to gravity is approximately 1/6 that on the earth? Ans. 165 em

A simple pendulum of length ! and mass m hangs vertically from a fixed point &, The bob is given
an initial horizontal velocity of magnitude v, Prove that the arc through which the bob swings
in one period haz a length given by 4l cos~1(1 —vi/2¢])

Find the minimum value of v, in Problem 4.65 in order that the bob will make a complete
vertical eirele with center at O. Ang. 2y pl

THE TWO AND THREE DIMENSIONAL HARMONIC OSCILLATOR

4.67.

468,

169,

1.70.

1.

472

A particle of mass 2 moves in the zy plane attracted to the origin with a force given by
F=—18zi—50yj. At ¢ =0 the particle is placed at the point (3,4) and given a velocity
of magnitude 10 in a direction perpendicular to the x axis. (¢) Find the position and velocity of
the particle at any time. {(b) What curve does the particle describe?

Ans. (@) v =3 cos 3 i+ [ cosbt+ 2 sin5t]j, v = ~@ sin 3¢ i+ [10 cos 5t — 20 ain 54
Find the total energy of the particle of Problem 4.67. Ans. BBl

A two dimensional harmonie oscillator of mass 2 has potential energy given by V = 8(x2+ 4¢2).
If the position wector and wvelocity of the oscillator at time ¢ =10 are given respectively by
to=2i—j and v, =d4i+8j, {e) find its position and velocity at any time ¢ > 0 and () deter-
mine the period of the motion.
Ans, {0) r = (2 cos4t+sin4di+4 (sin 82 —couBt)), v = (4 cosdt — B sin 4¢)i 4 (8 cos 8¢ + 8 sin Bt}

{b) n/B

Work Problem 4.69 if V = 8{z2+ 2y2). Ia there a period defined for the motion in this case?
Explain.

A particle of mass m moves in a 3 dimensional force field whose potential is given by
V = dxl(x? + 4y + 162%). (a) Prove that if the particle is placed at an arbitrary point in space
other than the origin, then it will return to the point after some period of time. Determine this
time, (b) Is the velocity on returning to the starting point the same ag the initial velocity? Explain.

SBuppose that in Problem 4.71 the potential is V = fx(»?+ 292+ 52%). Will the particle return
to the starting point? Explain.

MISCELLANEOUS PROBLEMS

1.

404

475

A vertical spring of constant « having natural length [ is supperted at a fixed point A. A mass m
is placed at the lower end of the spring, lifted to a height & below A and dropped. Prove that

the lowest point reached will be at a distance below A given by I+ mg/c + Vm2g2/2 -+ 2mgh/c.
Work Problem 4.73 if damping proportional to the instantaneous velocity is taken into account.

Given the equation m¥ + Bz +x& = 0 for damped oscillations of a harmonic oscillator. Prove that
if E = jmz?+4cx?, then E = —pgx. Thus show that if there is damping the total emergy B
decreases with time, What happens to the energy lost? Explain.
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4.78,

4.79.

4.80.

482

4.83.

4.84.

4.85.

4,86,

THE SIMPLE HARMONIC GSCILLATOR AND THE SIMPLE PENDULUM [CHAP. 4

{a) Prove that Aycos{ut — ) + Agcosluwt—¢y) = A cos{wt— ¢}
Aysing; + Adgsin ¢.2)
Aycosgy + Azcosgs/’

where A = VAZ+ AZ+24,A,cos(p,—¢y). ¢ = tan*‘(

(b} Use (a) to demonstrate that the sum of two simple harmonic meotions of the same frequency
and in the same straight line is simple harmonic of the same frequency.

Give a vector interpretation to the results of Problem 4.76,

Discuss Problem 4.76 in case the frequencies of the two simple harmonic motions are not equal
Is the resultant motion simple harmonic? Justify your answer.

A particle oscillates in a plane so that its distances r and y from two mutually perpendicular
axes are given as functions of time ¢t by

x = A coslwt+ g, ¥ = Bcos(wt+ ¢}

{a) Prove that the particle moves in an ellipse inscribed in the rectangle defined by 2z = =4,
¥ = =B. (b} Prove that the period of the particle in the elliptical path is 2z/w.

Suppose that the particle of Problem 4.79 moves so that
2 = Acos{wt+g)), y = Bcoslut+et+ gy

where ¢ is assumed to be a positive constant which is assumed to be much smaller than w. Prove
that the particie oscillates in slowly rotating ellipses inscribed in the rectangle =z = *A, y = =B,

Illustrate Problem 4.80 by graphing the motion of a particle which moves in the path
2 = 3 cos (2t nfd}, ¥ = 4 cos(2.4%)

In Fig. 4-21 a mass m which is on a frictionless

table is connected to fixed points 4 and B by

two springs of equal natural length, of negli- LI ot
gible mass and spring constants «; and x; re- ——f'GU'O’O'\— ”
spectively. The mass m is displaced horizontally A B
and then released, Prove that the period of

oscillation is given by P = 2rvm/(x; + x5). Fig. 4-21

A spring having constant x and negligible mass has
one end fixed at point A on an inclined plane of
angle a and a mass m at the other end, as indicated m
in Fig. 4-22. If the mass m iz pulled down a distance
rp below the equilibrium position and released, find

the displacement from the equilibrium position at any i
time if (a) the incline is frictionless, (&) the incline
has coefficient of friction u. Fig. 4-22

A particle moves with simple harmonic motion along the x axis. At times &, 2¢{, and 3¢, it is

. . e ty
located at * = a, b and ¢ respectively. Prove that the period of oscillation is cos—T(a+0)/2b"
A seconds pendulum giving the correct time at one location is taken to another location where
it loses 5 minutes per day. By how much must the pendulum rod be lengthened or shortened in
order to give the correct time?

A vertical pendulum having a bob of mass m is sus-
pended from the fixed point . As it oscillates, the
string winds up on the constraint curves ODA [or OC]
as indicated in Fig. 4-23, Prove that if curve ABC iz a
eycloid, then the period of osecillation will be the same
regardless of the amplitude of the oscillations. The pen-
dutum in this case is called a eycloidal pendulum. The
curves ODA and OC are constructed to be evoluies of
the cycloid. [Hint. Use Problem 4.31.) Fig. 4-28
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4.87.

188,

4389

1.92.

193,

494,

4%

4.6,

4197

498,

4,99,

4.100,

4,191,

4162,

A bead slides down a frictionless wire located in a vertical plane. 1t is desired to find the
shape of the wire so that regardless of where the bead is ptaced on the wire it will slide under
the influence of gravity to the bottom of the wire in the same time. This is often ealled the
tawlochrone problem. Prove that the wire must have the shape of a cycloid.

iHint. Use Problem 4.31,]

Prove that the curves 004 and OC of Problem 4.86 are cycloids having the same shape as the
cycloid ABC.

A gimple pendulum of length ! has its peint of support moving back and forth on a horizontal line
so that its distance from a fixed point on the line is A4 sinwt, t 2 0. Find the position of the
pendulum bob at any time ¢ assuming that it is at rest at the equilibrium position at 7 = 0.

Work Problem 4.8 if the point of support moves verticaily instead of horizontally and if at
t = 0 the red of the pendulum makes an angle ¢, with the vertical.

A particle of mass m moves in a plane under the influence of forces of attraction toward fixed
points which are directly proportienal to its instantaneous distance from these points. Prove
that in general the particle will describe an ellipse.

A vertical elastic spring of negligible weight and having its upper end fixed, carries a weight
W at its lower end, The weight is lifted so that the tension in the spring is zere, and then it is
released, Prove that the tension in the spring will not exceed 2W.

A vertical spring having constant « has a pan on top of it with
a weight W on it [see Fig, 4-24]. Determine the largest fre-
quency with which the spring can vibrate so that the weight
will remain in the pan,

A spring has a natural lengih of 50 ¢m and a force of 100 dynes
is required to stretch it 25 em. Find the work done in stretching
the sprisg from 75 em to 100 em, assuming that the elastie Timit
is not exceeded so that the spring characteristics do not change,

Anz. 3750 ergs

A varticle moves in the xy plane so that its position is given by
¥ = A coswf, ¥y= B cog2wl. Prove that it describes an arc of a
parabola. Fig. 4.24

A particle moves in the xy plane so that its position is given by 2 = A cos{ut+ ¢y,
¥ = B cos {uyt + ¢5). Prove that the particle describes a closed curve or not, according as wfw, is
rational or not. In which cases is the motion periodic?

The position of a particle moving in the wxy plane is described by the equations d%x/di? = -:43;,
dyfdi? = —4x. At time # = 0 the particle is at rest at the point (6,3). Find (a) its position
and {b) its velocity at any later time f.

Find the periad of a simple pendulum of length 1 meter if the maximum angle which the rod
makes with the vertical is (a) 30°, (b 603°, {e) B0°,

A simple pendulum of length 0.9 m is suspended vertically from a fixed pomt.  A¢ £ = 0 the bob is
given o horizontal velocity of 2.4 mfs. Find (a) the maxitmuun angle which the pendulumn rod makes
with the vertical, () the peciod of the oscillations.

Ans, (a) 477 387, (5)1.98 s

Prove that the time averages over a peried of the potential energy and kinetic energy of_ a
simple harmonie oscillator are equal to 2724%/P? where A is the amplitude and P is the pericd
of the motion.

A eylinder of radius 3 m with its axis vertical oscillates vertically in water of density 10%kgm=?
with a period of 5 seconds. How much does it weigh? Ans. 1.2 x T0*N

A particle moves in the xy plane in a force field whose potential is given by V =2+ ay+ y2.
If the particle is initially at the point (3,4} and is given a velocity of magnitude 10 in a direction
parallel to the positive x axis, {a) find the position at any time and (b) determine the period of
the motion if one exists.
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4.103,

4.104.

4.105,

4,108,

4.107.

4.108,

4.109.

4.110.

£.111.

4.112.

4113

4.114.
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In Problem 4.96 suppose thai w,/w; is irrational and that at ¢ =0 the particle is at the
particular point (x4, ) inside the rectangle defined by 2z = *4, y = =B. Prove that the point
{*a, ¥g) will never be reached again but that in the course of its motion the particle will come
arbitrarily close to the point.

A particle oscillates on a wvertical frictionless cycloid with its vertex downward. Prove that the
projection of the particle on a vertical axis oscillates with simple harmonic motion.

A mass of 5 kg at the lower end of a vertical spring which has an elastic constant equal to
20 newtons/meter oscillates with a period of 10 seconds. Find (o) the damping constant, (b) the
natural period and {c) the logarithmic decrement. Ans. (a) 19 N sfm, (b) 314 s

A mass of 100 g is supported in equilibrium by two identieal

springs of negligible mass having elastic constant equal to A B
50 dynes/rmn. In the equilibrium position shewn in Fig. 4-25 a¢® 30”

the springs make an angle of 20° with the horizontal and are

100 cm in length. If the mass is pulled down a distance of

2 ¢m and released, find the period of the resulting oscillation. c

A thin hollow cireular cylinder of inner radius 10 em is fixed
so that its axis is horizontal. A particle is placed on the inner
frictionless surface of the cylinder so that ita vertical distance

ahove the lowest point of the inner surface is 2em. Find 100 gm
(o) the time for the particle to reach the lowest point and
(h) the period of the oscillations which take place. ' Fig. 4-25

A cubical box of side a and weight W vibrates vertically in water of density o. Prove that the

period of vibration is (2= /a) W
/ og?

A spring vibrates so that its equation of motion is
md2z/dt2 + 2 = F(l)
If =0, de/dt =0 at t =10, find x as a function of time &.

i
Ans, x = 7__;: j‘; F{u) sin Va/m {t —u) du

Work Problem 4.109 if damping proportional to dx/dt is taken into aceount.

A spring vibrates so that its equation of motion is
md2x/dt2 + xx = Bcoswt + 2 cosdut

If 2=0, #= vy at £=0, (a) find » at any time ¢ and (b) determine for what values of w
resonance will oceur,

A vertical spring having elastic constant « carries a mass m at its lower end. At ¢=10 the
spring is in equilibrium and its upper end is suddenly made to move vertically so that its distance
from the original point of support is given by 4 sinet, ¢ Z 0. Find (a) the position of the mass m
at any time and (b) the values of » for which resonance occurs.

{(a) Solve d¥z/dt2 + x = ¢tgint + cost where =0, dx/dt =0 at £=10, and (b} give a physical
interpretation.

Discuss the motion of a simple pendulum for the case where damping and external forces are
present.
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4115,

4,116,

4117,

4.118.

4118

Find the period of small vertical ocacillations of a cylinder of radius o and height b floating
with its axis horizontal in water of density o.

A wvertical spring having elastic constant 2 newtons per meter has a 30 g weight suspended from it.
A force in newtons which is given as a function of time ¢ by F{{) = 6 cos* £, ¢ = 0 is applied. Assuming
that the weight, initially at the equilibriunt position, is given an upward veloeity of ¢ m/s and that
damping is negligible, determine the (@) position and () velocity of the weight at any time.

In Problem 4.5, can the answer for o =2 be deduced from the answer for o = 2 by taking
the limit as « - 2?7 Justify your answer.

An oscillator has a restoring force acting on it whose magnitude is —xr — ez where ¢ is small
compared with x, Prove that the displacement of the oscillator [in this case often called an
anharmonic oscillator) from the equilibrium position is given approximately by

z = Acos(@t—¢.}+‘—46—‘3{0052(«:3—@—3}
L3

where 4 and ¢ are determined from the initial conditions.

Prove that if the oscillationa in Problem 4.32 are not necessarily small, then the period is given by

¢ + 4H 1\? 1+3\* 4 1-3-5)2::6
= — — = 2 — i e —_ e s
P 2 29 {1 (2) K (2-4) 3 (2~4-s 5




Chapter 5 CENTRAL FORCES
and PLANETARY MOTION

CENTRAL FORCES

Suppese that a force acting on a particle of
mass m is such that [see Fig. 5-1]:

() it is always directed from m toward or
away from a fixed point O,

(b) its magnitude depends only on the distance
¢ from O.

Then we call the force a centrel force or central
foree field with @ as the center of force. In sym-
hols F is a central force if and only if

= ftryr, = f(ryx/r (1) . Pig.5-1
where n = r/r i3 a unit vector in the direction of r. _

The central force is one of attraction toward O or repulsion from O accordmg as
f(ry <0 or f(r) > 0 respectively.

SOME IMPORTANT PROPERTIES OF CENTRAL FORCE FIELDS
If a particle moves in a central force field, then the following properties are valid.

1. The path or orbit of the particle must be a plane curve, i.e. the particle moves in
a plane. This plane is often taken to be the xy plane. See Problem 5.1.

2. The angular momentum of the particle is conserved, i.e. i3 constant. See Problem 5.2.

3. The particle moves in such a way that the position vector or radius vector drawn
from O to the particle sweeps out equal areas in equal times. In other words, the
time rate of change in area is constant. This is sometimes called the law of areas.
See Problem 5.6.

EQUATIONS OF MOTION FOR A PARTICLE
IN A CENTRAL FIELD

By Property 1, the motion of a particle in a cen-
tral force field takes place in a plane. Choosing this "
plane as the xy plane and the coordinates of the par- r
ticle as polar coordinates (r, 9), the equations of mo-
tion are found to be {see Problem 5.3 ¥

m(7 — r8?) = f(r) (2)
m(ré + 2r9) = 0 2)

where dots denote differentiations with respect to Fig. 5-2
time {.

(r,8)

116
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-

r?4 = constant = & (4)
This is relaied to Properties 2 and 3 above.

From equation (8) we find

IMPORTANT EQUATIONS DEDUCED FROM
THE EQUATIONS OF MOTION

The following equations deduced from the fundamental eguations (2) and (%) often
prove to be usefunl.

1. I R i

P T om )
' d2u 1
2. g te = - m_h@ﬂu“) (6)
where u = 1/r.
dir dr TN
5 det ~ (da) T ThE ”

POTENTIAL ENERGY OF A PARTICLE IN A CENTRAL FIELD

A central force field is a conservative field, hence it can be derived from a potential.
This potential which depends only on r is, apart from an arbitrary additive constani_:,

given by
ve) = - f finar ®

This is aiso the potential energy of a particle in the central force field. The arbitrary
additive constant can be obtained by assuming, for example, V=0 at r=0 or V-0
a8 1> o,

CONSERVATION OF ENERGY

By usmg (8) and the fact that in polar coordinates the kinetic energy of a particle is
{;m(rz+r2€2) the equation for conservation of energy can be written

m(r? + 7%‘2) + Viry = (8]

or ym(F2 + 7282 ~ f fydr = E (10)

where E is the total energy and is constant. Using (), equation (I0) can also be written as
mh? [/ dr\? _

L) +7) - S e = B (1)

and also as -2—< ) j firydr = E {12)

In terms of % = 1/r, we can also write equation (9) ag

(@_)2 W o AE=V)

dé = ok (19)

DETERMINATION OF THE ORBIT FROM THE CENTRAL FORCE

If the central force field is prescribed, ie. if f(r) is given, it is possible to determine
the orbit or path of the particle, This orbit can be obtained in the ferm

r = r(8) {14)

.

™~
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i.e. r as a function of 4, or in the form
r=1r{t), & =8 (15)
which are parametric equations in terms of the time parameter ¢.

To determine the orbit in the form (14) it is convenient to employ equatlons (8), (")
or (11). To obtain equations in the form (15), it is sometimes convenient to use (12) together
with (4) or to use equations (4) and (5).

DETERMINATION OF THE CENTRAL FORCE FROM THE ORBIT

Conversely if we know the orbit or path of the particle, then we can find the correspond-
ing central force. If the orbit is given by + = »(#) or u = %(¢) where u = 1/r, the central
force can be found from

fy = mELEL - (4N ) (16)
or flw) = —mh2u2{%%+ u} - {17

which are obtained from equations (6) and (?) on page 117. The law of force can also be
obtained from other equations, as for example equations (9)-(13).

It is important to note that given an orbit there may be infinitely many force fields for
which the orbit is possible. However, if a central force field exists it is unique, i.e, it is
the only one. o

CONIC SECTIONS, ELLIPSE, PARABOLA AND HYPERBOLA

Consider a fixed point O and a fixed line AB distant D from O, as shown in Fig. 5-3.
Suppose that a point P in the plane of O and AB moves so that the ratio of its distance
from peint O to its distance from line AB is always equal to the positive constant e,

Then the curve described by P ig given in ~e ¥ A

polar coordinates (r,#) by AN
» ~y@ |~ Directrix
7 = T¥eccoss (28) » \\P d |u

See Problem 5.16. Focus N\

The point O is called a focus, the line AB is N ®
called a directriz and the ratio « is called the /
eccentricity, The curve is often called a conic S
section since it can be obtained by intersecting ' e
a plane and a cone at different angles. Three ,// D
poasible types of curves exist, dependlng on the ///’ B
value of the eccentricity. . - Fig.5-3

1. Ellipse: <1 {See Fig. 5-4 below.]

If C is the center of the ellipse and CV = CU = a is the length of the semi-major

axis, then the equation of the ellipse can be written as
a(l — &)

1+ecosd (29)

r

Note that the major azis is the line joining the vertices V and U of the eilipse and has
length 2a.
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W v A
If b is the length of the semi-minor axis [ ~e }
[CW or CS in Fig. 5-4] and ¢ ig the distance b ol Do :
CO from center to focus, then we have the e % ! .
important result U\ o ¢ 0 /" |E
t
e = Va2 — b = e (20) t
A circle can be considered as a special case _ s_// F:
of an ellipse with eccentricity equal to zero. - Fig. 5-4
¥
2. Parabola: =1 [See Fig. 5-5.] ™
The equation of the parabola is
P Fad
— » .
T % {Tcosé (1 s ,
0 v
We can consider a parabola to be a
limiting case of the ellipse {(79) where «— 1,
which means that a¢- « [ie the major
axis becomes infinite] in such a way that /
o{l —¢) = p, Fig.5-5
3. Hyperbola: > 1 [See Fig, 5-6.] ¥
The hyperbola consists of two branches
as indicated in Fig. 5-6. The branch on the
left is the important one for our purposes.
The hyperbola is asymptotic to the dashed
lines of Fig. 5-6 which are called its asymp-
totes. The intersection C of the asymptotes NG
is called the center. The distance CV =a }c‘
from the center C to vertex V is callied the 0N
semi-major axis [the major axis being the
distance between vertices V and I by anal-
ogy with the ellipse]. The equation of the
hyperbola can be written as
a(;* - 1)
T I+ c¢cosd (22) Fig.5-6

Various other alternative definitions for conic sections may be given. For example, an
ellipse can be defined as the locus or path of all points the sum of whose distances from two
fixed points is a constant. Similarly, a hyperbola can be defined ag the locus of all points
the difference of whose distances from two fixed points is a constant. In both these cases
the two fixed points are the foci and the constant is equal in magnitude to the length of
the major axis.

SOME DEFINITIONS IN ASTRONOMY
A solar system is composed of a star [such as our sun] and objects called planets which

" revolve around it. The star is an object which emits its own light, while the planets do

not emit light but can reflect it. In addition there may be objects revolving about the
planets. These are called safellites.

Ta our solar system, for example, the moon is a satellite of the earth which in turn i-s a
panet revolving about our sun. In addition there are artificiel or man-made satellites

¢ which can revolve about the planets or their moons.
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The path of a planet or satellite is called its orbit. The largest and smallest distances
of a planet from the sun about which it revolves are called the aphelion and perthelion
respectively. The largest and smallest distances of a satellite around a planet about which
it revolves are called the apogee and perigee respectively,

The time for one complete revolution of a body in an orbit is called its period. This is
sometimes called a sidereal period to distinguish it from other periods such as the period
of earth’s motion about its axis, ete,

KEPLER'S LAWS OF PLANETARY MOTION

Before Newton had enunciated his famous laws Planet
of motion, Kepler, uging voluminous data accumu- ,-
lated by Tycho Brahe formulated his three laws . (A

un

concerning the motion of planets around the sun
[see Fig. 5-7.

1. Every planet moves in an orbit which is an
ellipse with the sun at one focus. Fig.5-7

2. The radius vector drawn from the sun to any planet sweeps out equal areas in
equal times {the law of areas, as on page 116).

3. The squares of the periods of revolution of the planets are proportional to the cubes
of the semi-major axes of their orbits.

NEWTON'S UNIVERSAL LAW OF GRAVITATION

By using Kepler’s first law and equations {16) or (17), Newton was able to deduce his
famous law of gravitation between the sun and planets, which he postulated as valid for any
objects in the universe {see Problem 5.21].

Newton’s Law of Gravitation. Any two particles of mass m, and m. respectively and
distance » apart are attracted toward each other with a force

F = - G’*":;mz r (23)

where G is a universal constant called the gravitational constant.

By using Newton’s law of gravitation we can, conversely, deduce Kepler's laws [see
Problems 5.13 and 5.23). The value of G is shown in the table on page 342.

ATTRACTION OF SPHERES AND OTHER OBJECTS

By using Newton’s law of gravitation, the forces of attraction between large objects
such as spheres can be determined. To do this, we use the fact that each large object is
composed of particles. We then apply the law of gravitation to find the forces between
particles and sum over these forces, usually by methods of integration, to find the resultant
force of atiraction. An important application of thig is given in the fellowing

Theorem 5.1. Two solid or hollow uniform spheres of masses m; and m. respectively
which do not intersect are attracted to each other as if they were particles of the same
mass situated at their respective geometric centers. '

Since the potential corresponding to

am
F = - T{m ) o] (2-‘)
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is v = &Gm?jm” (25)
it is also possible to find the attraction between objects by first finding the potential and

then using F = — g V. See Problems 5.26-5.33.

MOTION IN AN INVERSE SQUARE FORCE FIELD

As we have seen, the planets revolve in elliptical orbits about the sun which is at one
focus of the ellipse. In a similar manner, satellites (natural or man-made) may revolve around
planets in eiliptical orbits, However, the motion of an object in an inverse square field of
attraction need not always be elliptical but may be parabolic or hyperbolic. In such eases
the object, such az a comet or nmeteorite, would enter the golar system and then leave but
never return again.

The following simple condition in terms of the total energy F determines the path of
an object.

(i} if E < 0 the path is an ellipse
fii} if E = ( the path is a parabola
(iii) if F > 0 the path is a hyperbola
Other conditions in terms of the speed of the object are also available, See Problem 5.37.

In this chapter we assume the sun to be fixed and the planets do not affect each other.
Similarly in the motion of saiellites around a planet such as the earth, for example, we
assume the planet fixed and that the sun and all other planets have no effect,

Although such assumption is correct as a first approximation, the influence of other
planets may have to be taken into account for more accurate purposes. The problems of
dealing with the motions of two, three, etc., objects under their mutual attractions are often
called the two body problem, three body problem, ete.

Solvéd Problems

CENTRAL FORCES AND IMPORTANT PROPERTIES

51. Prove that if a particle moves in a central force field, then its path must be a plane
curve,

Let F = fir)r, be the central force field. Then

rxF = Hrijrxre = 0 (1)
since r, is a unit vector in the direction of the pesition vector r. Since F = mdv/dt, this can he
written

rxdv/dt = 0 (£)
d -
or I rxv) = 0 (£1]
Integrating, we find rxv = h {4}

where h is a constant vector. Multiplying both sides of () by r+,
rh = 0 (5)
using the fact that r+(rxv)=(rxrj*v =0. Thus r is perpendicular to the constant vector h,

and so the motion takes place in & plane, We shall assume that this plane is taken to be the
xy plane whose origin is at the center of force.
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Prove that for a particle moving in a central force field the angular momentum is
conserved.

From equation (4) of Problem 5.1, we have
rxv = h
where h is a constant vector. Then multiplying by mass m,
m(rXv) = mh )

Since the left side of (#) is the angular momentum, it follows that the angular momentum is
congerved, i.e, is always constant in magnitude and direction.

EQUATIONS OF MOTION FOR A PARTICLE IN A CENTRAL FIELD

503’

504‘

Write the equations of motion for a particle in a central field.

By Problem 5.1 the motion of the particle takes place in a plane. Choose this plane to be
the zy plane and the coordinates describing the position of the particle at any time t to be
polar coordinates (r,8). Using Problem 1.49, page 27, we have

{mass){aceeleration) = net force
mi(r — ré%r, + (8 + 2768} = flrin (8]
Thus the required equations of motion are given by
m(¥ — r6%) = f(r) (e)
m(rd +278) = 0 ®

Show that 728 = h, a constant.

Method 1. Equation (2) of Problem 5.3 can be written

. se M e e, m,i oo
mird + 2re) = r('&"20+2‘?‘r3) = S @i (r2e) = 0
d Fah
Thus It(r ) = 0 and so 2 = n 0

where & is & constant.

Method 2. By Problem 1.49, page 27, the velocity in polar coordinates is

v = ’;‘l‘l + r501

Then from equation (4} of Problem 5.1
h = rxXv = #rXr) + ré(r X8} = 12k (2)

since rxXr; =0 and rx# =k where k iz the unit vector in a direction perpendicular to the
plane of motion [the xy plane], i.e. in the direction rx v. Using h=hk in (2), we see that
ri = A,

Prove that 12 = 24 where A is the time rate
at which area is swept out by the position
vector r.

Suppose that in time At the particle moves from
M to N [see Fig. 5-8]. The area aA swept out by the
posgition vector in this time is approximately half the

area of a parallelogram with sides » and Ar or (see
Problem 1.18, page 15]

AA = }|rx 4r
Dividing by At and letting At~ 0,
. rf _ 1

. 1 A
ad _ _l
Ate0 Al ulTo 2 x X at
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5.6.

L8

ie, A= e xv] = 4}1'25
using the result in Problem 5.4. Thus »% = 2.5, a3 required. The vector quantity

A = Ak = Hexv) = ;{rza)k

is often called the areal velocity.

Prove that for a particle moving in a central force field the areal velocity is constant.
By Problem 5.4, 726 = h = a constant. Then the areal velocity is

A= &rzék = 4hk = {h, a constant vector

The result is often stated as follows: If s particle moves in a central force field with O as
center, then the radius vector drawn from O to the particle sweeps out equal areas in equal
times, This result is sometimes called the law of areas.

Show by means of the substitution r = 1/u that the differential equation for the
path of the particle in 2 central field is

d*u _ F(1/w)
gt T T
From Problem 5.4 or equation (8} of Problem 5.3, we havé '

v2%6 = h or & = h/r? = hu? (1
Substituting inte equation {2) of Problem 5.3, we find I
m(¥ — %) = f(r) (®)

Now if r = 1/u, we have

s o_ & _drde _ hdr _ _,du ‘
TS T T ma - Ad - ta @

"—d_f..-i..flﬁ—jd__d__“ig—_zzﬂ
A dt( "da) = s "do)da = M “)

From this we see that {2) ecan be written
m{—hu® d?u/de? — R2ud) = f{1/u) 5
; &Pu = . f(t/fw) :

or, a3 required, g T = it i {8

.

POTENTIAL ENERGY AND CONSERVATION OF ENERGY
FOR CENTRAL FORCE FIELDS

58.

{(a) Prove that a central force field is conservative and (b} find the corresponding
potential energy of a particle in this field.

Method 1.
If we can find the potential or potential energy, then we will have also incidentally proved
that the field is conservative. Now if the potential V exists, it muat be such that

Fedr = —dV (93]
where F = f(r)r; is the central force. We have
Fedr = firir,+dr = f(r)i-dr = f(r)dr
since r ¢+ dr = rdr.

Since we can determine V such that
—dV = fir)dr
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5.10.

511,
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for example, v = — ff(r) dr (2
it follows that the fleld is conservative and that (2) represents the potential or potential energy.

Method 2.
We can show that ¥ X F =0 directly, but this method is tedious although straightforward,

Write the conservation of energy for a particle of mass m in a central force field.
Method 1. The velocity of a particle expressed in polar coordinates is [Problem 1.49, page 27)
v = 11 + roe, so that v o= yey = ¥4 422
Then the principle of conservation of energy can be expressed as
m»? + V = FE or é-m(;-f—i—r?é?) - j flrydr = E

where E is a constant.

Method 2. The equations of motion for a particle in a central field are, by Problem 5.3,

m(¥ — 6% = fir) {0
mi{rg + 2ré) = 0 &)
Muitiply equation (I} by 7, equation (2} by ré and add to obtain
mF¥ + ¥286 + rrét) = flrpr £}
. . . . d
This e¢an be written &m a‘%(r’«' + r3%) = T ‘f HGE (4}

Then integrating both sides, we obtain
Jm(r? + 252 — f frydr = E {5)

Show that the differential equation describing the motion of a particle in a central
field can be written as

mRl(G) el - e = E

From Problem 5.9 we have by the conservation of energy,

) 3m(r2 + r26%) — f fthdr = E 4]
p o= 4 _ drde _ dr,
We alse have Y= oGt T dedt deo {£)

Substituting (2) into (1), we find

2 - 2
w[(ﬁ%) +#]52—J feydr = B or 1;%53[(%) +r2]—ff(r)dr = K

since & = h/rd

(@) If u=1/r, prove that vt = 7* + r%® = h2{(du/dé)* +u?).
(b) Use (a) to prove that the conservation of energy equation becomes
{dei/de)® + v* = 2(F — V)/mh?
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{¢) From equations {7} and (3} of Problem 5.7 we have 4= hu?, r = ~hdu/ds. Thus
= P24 % = Rdw/de)? + (L/uhu?)? = R2{(du/de)? + u?}

{6} From the conservation of energy [Problem 5.9] and part (a),

jmv? = m(#2+4rél) = E—-V or (du/dey? + u® = 2(E — VY/mh?

DETERMINATION OF ORBIT FROM CENTRAL FORCE,
OR CENTRAL FORCE FROM ORBIT 7L

512, Show that the position of the particle as a function of time f can be determined
from the equations

t = _f (G2 dr, t = }%f r2de

where Giry = — + -j frydr —

mz-rz
Placing & = h/+? in the equation for conservation of energy of Problem 5.9,

ymird + h2/r?) ~ j firndr = E

o o 2E 2 o
or 2 = ;+m‘f;‘(r)dr ol fo}

Then assuming the positive square root, we have

dr/dt = V&)

and s¢ separating the variables and integrating, we find

f (G(I} 1% dr

The second equation follows by writing 8 = h/»? as dt = r2ds/h and integrating.

513. Show that if the law of central force is defined by
firy = —K/r%, K>0
i.e. an inverse square law of attraction, then the path of the particle is a conic.

Method 1.

In this case f(1/u) = ~Ku?. Substituting into the differential equation of motion in Problem 5.7,
we find
diuldet + u = Kimh? o)

This equation haz the general solution

u = Acose + Bsine + K/mh? ®
or using Problem 4.2, page 92,
u = K/mht + Ccosi(d—¢) ®
' : 9
Lo r Eimhz + C cos (8 — @)

It is always possible to choose the axes so that ¢ =0, in which case we have

1 .
¥ = EK/mh® + Ccose )
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This has the general form of the conic {see Problem 5.16)

- » = 1
T = T+ ccoss _ 1/p F (/p)coss ®
Then comparing (5) and (6} we see that
1/p = Kimhe, efp = C t4)
p = mhi/K, e = mhiC/K {8}

or

Method 2. Since fir) = —K/r?, we have

Vv = -—f firvdr = —Klr + ¢ "
where ¢; is a constant. If we assume that V>0 as r—> =, then ¢, =0 and s0
V = —K/r {10
Using Problem 5.10, page 124, we find
mh3 [ fdr\? - K
B[] - ok
from which dr = *r @+&— 1 . {12)
de - mh?  mhi

By separating varisbles and integrating [see Problem 5.66] we find the solution (5) where C is
expressed in terms of the energy E.

(@)

Obtain the constant C of Problem 5.13 in terms of the. total energy E and (b) thus

show that the conic is an ellipse, parabola or hyperbola according as E <0, E=0,
E > respectively.

Method 1.
{a) The potential energy is

®

v = —f fir)dr = f(Kfrs)dr = =Kir = —Ku 3]

where we use u = 1/r and choosge the constant of integration so that lim V = 0. Now from
equation (5} of Problem b5.13, re

u = 1r = Kimht + Ccosé (2
Thus from Problem 5.11(b} together with (1), we have
2
(Csinc)3+<£§+0coso) = %+%($+Cmo)
_ R | 2E - Kz | 2K
o C =t o C = \jautnes @

assuming C > 0.

Using the value of C in part (a), the eguation of the conic becomes

_ 1 _ K ’ 2Emh2
“_r—m{l-l- 1+K,cose}

Comparing this with (§) of Problem 5.16, we see that the eccentricity is

_ 2Emh*
« = 1+ j 7o) (8)

From this we see that the conic is an ellipse if £ < 0 [but greater than —K*/2mh?}, a parabola
if E=0 and a hyperbola if E >0, since in such cases ¢<1, e=1 and ¢>1 respectively.

Method 2. The value of € can alao be obtained as in the second method of Problem 5.13.
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515. Under the influence of a central force at point O, a particle moves in a circular orbit
which passes through O. Find the law of force.

Method 1. ¥
In polar coordinates the equation of a cirele of radius ¢
passing through Q is [see Fig. 5-8] P
r = 2acosd r
Then since # = 1/v = (sec 8)/2a, we have - s
du _ secptany 0 H Za
de 2a
4 _ (seco)(sece) + (sec # tan o){tan s}
de? 2a S
sec 9 + secd tan? e ot
2
* Fig. 55
Thus by Problem 5.7,
o sec? ¢ + gec o tan? s 1 secd
= —mizyef{ TY = — 2
f(1/w) mh2y (dsﬁ + u) mhu ( 32 )
mh2u® mhul
= - 2 2 —_ . a
Ba {sec?# + sec o (tanZ¢ + 1)} e 2 secd @
= —8mhla2y’
2q2
or 1 = -
Thus the force is one of attraction varying inversely as the fifth power of the distance from O.

Method 2, Using » = 2acosé in equation {16}, page 118, we have

_ mh? | e 2 o ain g} —

fry = s { 2a cos @ 2acoso( 2¢ sin ) 2a cosa}
— _ damk® _ 8aPmh?
T rteose 1S

CONIC SECTIONS. ELLIPSE, PARABOLA AND HYPERBOLA
8.16. Derive equation (18), page 118, for a conic section,
Referring to Fig. 5-3, page 118, by definition of a conic section we have for any point P on it,
rid = « or d = rie (D

Corresponding to the particular point @, we have

p/D = « or p = D f

But D = d+ rcoss = :—'+rcose = %(1+ecoso) *
Then from {2) and (8), we have on eliminating D,

p = r(1 + ccosd) or r = ﬁ%‘; . 14)

The equation is a circle if ¢ =0, an ellipse if 0 < ¢<1, a parabola if ¢=1 and a hyperbola
if e>1,

517. Derive equation (19), page 118, for an ellipse.

Referring te Fig., 5-4, page 118, we see that when ¢=0, »r=0V and when ¢ =7,
y = OU. Thus using equation (4) of Problem 5.15,
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5.19,

5.20.
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OV = pll+e), oU = plil—a
But since 2« is the length of the major axis,
oV + 00U = 2a or /1 4+ €} + pfil — &)
from which P = all — &)

Thus the equation of the eilipse is
a(l — 2}

T T T¥eccose

Prove that in Fig. 5-4, page 119, (a) OV =a(l —¢), () OU =a{l+).

{a) From Preblem 5.17, equation () and the first equation of (1),

.. P _ ail — &2
oV = 1+« 7 1+

all — )

{6} From Problem 5.17, equation (3) and the second equation of (I},

— e F
ov = 2 = “(11_:) = all+e

[CHAP, 5

{1

(2)
8

)

(0

@

Prove that ¢ = a« where ¢ is the distance from the center to the focus of the ellipse.

@ is the length of the semi-major axis and ¢ is the eccentricity.

From Fig. 5-4, page 119, we have ¢ = €O = CV -0V = g—a(l —¢) = de.
An analogous resuit holds for the hyperbola [see Problem B5.73{¢c}), page 139).

If @ and ¢ are as in Problem 5.19 and b is the length of the semi-minor axis, prove

that (a) ¢=va*—-b? (b) b=ayl-é
(g} From Fig. 5-4, page 119, and the definition of an ellipse, we have

_ OV _CV-CO0 _a—c¢
“VE T~ T VE T VE

or VE

€

)

Also since the eccentricity is the distance from O to W divided by the distance from W

to the directrix AB [which is equal to CE], we have

OW/CE = ¢

or, using (1) and the result of Problem 5.19,

OW = ¢CE = lCV+VE) = eatla—c)e = eata—ce

Then (OW) = (OC)2 + (CW)? or a2 = b2+ ¢2, Pe. ¢ =Val- b2

(b) From Problem 5.19 and part {a), o2 = b2+ a22 or b= aVl — &2,

KEPLER'S LAWS OF PLANETARY MOTION AND
NEWTON’S UNIVERSAL LAW OF GRAVITATION

5.21. Prove that if a planet is to revolve around the sun in an elliptical path with the sun
at a focus {Kepler’s first law], then the central force necessary varies inversely as

the square of the distance of the planet from the sun.

If the path is an ellipse with the sun at a focus, then calling r the diatance from the sun,

we have by Problem b.16,
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222

5.23.

5,24

5.25.

_ P I S S
T = [T ccoss or v = o= p+pcos& (1)

where ¢ << 1. Then the central force is given as in Problem 5.7 by
fliwy = —mhtu{dufde? + u) = —mh2ulfp (2}
on substituting the value of = in (7}, From {2) we have on replacing « by 1/r,

firy = —mhe/prt = —Kfr2 ()

Discuss the connection of Newton's universal law of gravitation with Problem 5.21.

Historically, Newton arrived at the inverse square law of forece for planets by using Kepler's
first Jaw and the method of Problem 5.21. He was then led to the idea that perbaps all objects
of the universe were attracted {o each other with a force which was inversely proportional fo the
square of the distance r between them and directly proportional to the product of their masses,
This led to the fundamental postulate

GMm
F o= - =37 6
where G is the universal gravitational constant. Eguivalently, the law of force {3) of Problem 5.21
is the same as (I) where
K = GMm (2)

Prove Kepler's third law: The squares of the periods of the various planets are
proportional to the cubes of their corresponding semi-major axes.

If @ and & are the lengths of the semt-major and semi-minor axes, then the area of the
ellipse is rab. Since the areal velocity has magnitude A/2 [Problem 5.6], the time taken to sweep
over area wab, i.e. the period, is

_ wab _  2rad
po= hig h ()

Now by Problem 5.17 equation {2}, Problem 5.20(4}, and Problein 5.13 equation (8), we have
b = avl — &, r = a(l—¢) = mh¥/K (2)
Then from (I} and {2) we find
P = 2xmliig3’2fK1/2 or P! = da¥me¥/K

Thus the squares of the periods are proportional to the cubes of the semi-major axes,

Prove that GM = gR?, e

On the earth's surface, i.e. + = B where B is the radius, the force of attraction of the earth
on an object of mass m is equal to the weight mg of the object. Thus if M is the mass of the

earth,
GMm/R? = myg or GM = gR2

Calculate the mass of the earth.

From Problem 5.24, GM = gR® or M = gR>/G. Taking the radius of the earth as
6.38 x 10fm, g = 9.80mfs? and & = 6.67 x 1011 8] units, we find M = 598 x 10% kg.

ATTRACTION OF OBJECTS

5.26.

Find the force of attraction of a thin uniform rod of length 2e¢ on a particle of
mass m placed at a distance b from itz midpoint.
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Choose the x axis along the rod and the y axis
perpendicular to the rod and passing through its
center (0, as shown in Fig, 5-10. Let ¢ be the mass
per unit length of the rod. The foree of attraction
dF between an element of mass o dx of the rod and
m is, by Newton’s universal law of gravitation,

—da
dF = Gm.: (:: {sing i— coséj)
_ Gmoxdx i Gmobdx
= EeomEnel T (g2 bhez! - Fig.5-10

since from Fig. 5-10, sine¢ = x/\Vx?+ b2, cos ¢ = b/y22 + b2, Then the total force of attraction is

_ . (" Gmex dx _Gmobde
F = i __, @b =13 (:c2+ {#2 + b2y
_ _Gmobdx Y de
= 0 -2 f @ peEa < —2Gmob j =2+ 65373
¢
Let x = btane in this integral. Then when x =0, §=0; and when x=g¢a, ¢ =tan—!{a/d).
Thus the integral becomes
tan—1 (asb)
. b secls do 2Gmea
F = ~2Gmob J‘ e = — e
) o (b2 aee? g)3/2 bVal b2

Since the mass of the rod is M = Zae, this can also be written as
_ _GMm
Wrrs

Thus we see that the force of attraction is __directed from wm to the center of the red
and of magnitude 2Gmoe/bV a2 + b2 or GMm/b/a2 + b2,

F =

A mass m lies on the perpendicular through the center of a uniform thin circular
plate of radius ¢ and at distance & from the center. Find the force of attraction
between the plate and the mass m.

Method 1.

Let m be a unit vector drawn from point P where m
is located to the center O of the plate. Subdivide the
circular plate inte cireular rings fsuch as ABC in
Fig. 5-11] of radius r and thickness dr. If ¢ is the mass
per unit arem, then the mass of the ring is o(Zxrdr).
Since all points of the ring are at the same distance
V7?2 + b2 from P, the force of attraction of the ring on
m will be

_ GelZardrim

dF 2+ b2 cos¢n
o 2y dr mb

= G Fen » @
where we have used the fact that due to symmetry the
resultant force of attraction is in the direction n. By
integrating over all rings from =10 to r=ga, we
find that the total attraction is Fig. 511
F = 2rGombn f o rdr ()

(re+ b0t

To evaluate the integral, let 72+ 3 =u? so that ¢dr=udu. Then pince ¥ =b when »r=20
and « = \fm when r = a, the result is




2,28,

CHAP. 5} CENTRAL FORCES AND PLANETARY MOTION 131

¥ 27 Gomb J'"’W"d“ 2:G (1 b )
= amb n —~5— = 2rGomnmn|1l-—
T b ua va.’-!—b’

If we let « be the value of ¢ when r = a, this can be written
F = 2:Gomn{l — cosa) (4]
Thus the force is directed from m to the center @ of the plate and has magnitude 2rGomt(l — ¢05 o).

Method 2.

The method of double integration can also be used. In such caze the element of area at A ia
rdrde where ¢ is the angle measured from a line [taken as the x axis] in the plane of the
cireular plate and passing through the center . Then we have as in equation (1),

_ Golrdr ds)ymb
daF = —57 b R

and by integrating over the circular plate

2 a
_rdrde 2erdr _
F = Gombn f f Rer bt Gemb nJ::o EApE T 2pGomn (1 — cos o)

A uniform plate has its boundary con-
gisting of two concentric half circles of
inner and outer radii ¢ and b respec-
tively, as shown in Fig. 5-12. Find the
force of attraction of the plate on a
mass m located at the center O.

It is convenient to use polar coordinates
{(r,9). The element of area of the plate {shaded
in Fig. §-12} is dA = rdrds, and the mass is
ordrds, Then the force of attraction between
dA and O is Fig.5-12

IF Glor f: doym

{coge i+ sing j)

Thus the total force of atiraction is

” b
F = j G(l-%ﬁd”—m(cosai+sinoi}

T
= Gmln(!'-)f {cosei+sinefde = 2Gamln(£)j
e/ vo=g a

Bince M = o({rb?— 4va?®), we have o =2M/r(b*—a?) and the force can be written

_ _4GMm b
F = r(bz—a,ﬁ)l“(a)j

The method of single integration can also be used by dividing the region between r =a and
= b into circular rings as in Problem 5.27.

Find the force of attraction of a thin spherical shell of radius a on a particle P of
mags m at a distance r > e from its center,

Let O be the center of the sphere. Subdivide the sﬁrfa.ce of the sphere into circular elements
such as ABCDA of Fig. 5-13 below by using paralle! planes perpendicular to OP.

The area of the surface element ABCDA as seen from Fig. 5-13 is
2r{¢ sin #)a ds) = 2ra? sine ds

since the radius is asine [so that the perimeter is 2x{a sin¢)] and the thickness iz ads. Then
if o is the masa per unit area, the masa of ABCDA iz 27420 sin ¢ ds.
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5.31.

5.32.
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Since all points of ABCDA are at the same dis-
tance w = AP from P, the force of attraction of
the element ABCDA on m is

Gi27e20 sin 8 da)m
w2

dF

cos ¢ n )]

where we have used the fact that from symmetry the
net force will be in the direction of the unit vector n
from P toward . Now from Fig. 5-13,

PE _PO—-EQ _ r—acosd @)
AP~ AP - w

Cos ¢ =

Using (2) in {!) together with the fact that by the
cosine law

w? = a4+ y? — 2av cos e (647
we find
dF = G(2rate sin e de)mir — a cos &}
_, (a2 + r? — 2ar cos §)%2
Fig. 5-13
Then the total force is
i »
_ 2 (r — a cos #) sin ¢
F 27Galomn J;zo (a% T 72 = Zar cos 672 dg )
We can evaluate the integral by using the variable w given by (8) in place of ¢. When
6=0, w?=a’?—2ar+r2=(r—a)? so that w=r—a if r>a. Also when =g, w?=
a?+ 2er ++2 = (r+a)® so that w = r+ a. In addition, we have
Zwdw = 2arsingde
_ 0 = r o qfEETEIwty w? — a? 4 ¢2
r—acose = r —a Sar or
Then (4) becomes
? p - rGaomn J’"” l+r2_a2)dw _  4rGaZemn
- r? ) w? re

r-a

Work Problem 529 if r <a.

In this case the force is also given by (4) of Problem 5.29. However, in evaluating the
integral we note that orn making the substitution (8} of Problem 5.29 that ¢ = 0 yields w2 = (g ~#)2
or w=a—7r if r < a. Then the result (4) of Problem 5.29 becomes

a+r 5 _ .2
F o= wGaamnI (1_awar)d‘w - 0

P

a—r

Thus there will he no force of attraction of a spherical shell on any mass placed inside. This
means that in such case a particle will be in equilibrium inside of the shell.

Prove that the force of attraction in Problem 5.29 is the same as if all the mass of
the spherical shell were concentrated at its center.

The mass of the shell is M = 4ra%s. Thus the force ia F = (GMm/r2n, which proves the
required result.

(z) Find the force of attraction of a solid uniform sphere on a mass m placed outside
of it and (b) prove that the force is the same as if all the mass were concentrated
at its center.

(@) We can subdivide the solid sphere inte thin concentric spherical shells. If p ia the distance
of any of these shells from the center and dp is the thickneas, then by Problem 5.29 the
force of attraction of this shell on the mass m is
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=2
dF = 9_‘.’.{_‘&::2 doym )
where ¢ is the mass per unil volume. Then the total force obtained by integrating from
ro—0 te r- o is
Glzatyom n

r2

4rGom n ['“ )
——a— | #tdp

F v

(2)

h

(b Since the mass of the sphere is M = dza%, (2) can he written as F = (GMm/r?)n, which
shows that the force of attraction is the same as if all the mass were concentrated at
the center,

We can also use triple integration to obtain this resuit [see Problem 5.130}.

3.33. Derive the result of Problems 5.29 and 5.30 by first inding the potential due to the
mass distribution.

The potential 1" due to the element ABCDA s

_ Gi2-a’s sin @ dé)m - _ 7i2ras sin ¢ de}m
1

dV =

Va2 + 12 — Zar cos 8

Then the total potential is

- .
Vo = ~2xGalom f sin ¢ dé
Jo Va2~ Zar cos s

= - 2———”6,‘“” tVie + 0 — Via -n?)

2
If > a this yields Vo= - 42Gdlem - GMm
r r
If r<u it yields V = —drGaom
Then if r > a the force is
F = -VV = —v(-@—"'ﬂ) = M
r r2
and if r < a the foree is
F = —VV = —V(—4zGagm) = 0

in agreement with Problems 529 and 5.30.

MISCELLANEOUS PROBLEMS

534. An object is projected vertically upward from the earth’s surface with init
apeed vo. Neglecting air resistance, (a) find the speed at a distance H above ¢
earth’s surface and (b) the smallest velocity of projection needed in order that t
object never return,

(e} Let r denote the radial distance of the object at time ¢
from the center of the earth, which we assume is fixed
|see Fig. 5-14]. If M is the mass of the earth and R is
its radius, then by Newton's universal law of gravitation
and Problem 5.29, the force between m and M is

_GMm

F POy (1

where r, is a unit vector directed radially outward from
the earth’s center in the direction of motion of the object.

If v is the speed at time ¢, we have by Newton’s sec-
ond law, Fig.5-14



134

5.35.

we have

Now since r=1rr;, ¥

CENTRAL FORCES AND PLANETARY MOTION {CHAP.5
dv _  GMm dv _ _GM @
m dt rn = —_.'Q ry or dt - 2
This can be written as
ﬂ dl = "g.’{ v.d_v. = _@. (3}
dr dt = % or dr
Then by integrating, we find v¥2 = GM/r + ¢, 4]

Since the object starts from the earth’s surface with speed v,, we have v = v, when r=~R
so that ¢, = 03/2 — GM/E. Then (4) becomes

¥ = 2GM(11:—%) + ¢ (5)

Thus when the object is at height H above the earth’s surface, ie. r = R.+ H,

vt = 2GM( 1 —l>+1ﬁ = 2GMH

R+H R C 7 RR+H)
. 0 = s __ 2GMH
ie., = " T R(E+ B
Using Problem 5.24, this can be written
RH :
Vo= A% ReA ©
(&) As H = =, the limiting speed (¢) becomes
V2 — 2GM/R or Vol — 2gR N
. . H _ . s e aur .
since ;}l.'.n., T2V 1. The minimum initial speed occurs where (7) is zero or where
vy = V2GM/R = +2gR ®

This minimum speed is called the escape speed and the corresponding velocity is called the
escape velocity from the earth’s surface.

Show that the magnitude of the escape velocity of an object from the earth’s surface
is about 11 km/s.

From equation (§) of Problem 5.34, v, = +/2gR. Taking g = .80 m/s? and R = 6.38 x 10*m,

we find v, = 11.2 kmjs

Prove, by using vector methods primarily, that the path of a planet around the sun
is an ellipse with the sun at one focus.

Since the force F between the planet and sun is

_ dv _ _GMm
F = mg = 7z T £y
& - -9 ®
Also, by Problem 5.1, equation (4), we have
rxv = h L]

_dr _ 40 dr
dt dt  de v

= _ dr[ dr _ dl'1
h = rxy = ﬂ1X(rE+Er1> = rzrlxﬁ 4

Thus from (3),
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From {2), d
dv GM r
-Exh = —WrIXh = —GM!‘IX(I'IXT;)

5.37.

5.38,

drl drl d]'l
—GM (rl . _ti?)rl — ) = GM_dT
using equation (4} abeve and equation (7), page b.

But since h is a constant vector, % Xh = -gz(v X h) so that

d _ dry
a—t(vxh) = GM 3t
Integrating, vxh = GMr, +¢
from which
r{vxh) = GMr+r, +r¢c = GMr + rryrc = GMr + recose

where ¢ is an arbitrary constant vector having magnitude ¢, and ¢ is the angle between ¢ and r;.
Since re{vXh)=(rXv)J+h=h+h =h? [see Problem 1.72{a), page 27|,

W2 = GMr + rccose
and so r = h® = h2/GM
T GM 4+ ecosd T 1+ {¢/GM)cose

which is the equation of a conic. Since the only conic which is a closed curve ia an ellipse, the
required result is proved.

Prove that the speed v of a particle moving in an elliptical path in an inverse square
field is given b
e s o= Kz

where a is the semi-major axis.
By (8) of Problem 5.13, (4) of Problem 5.14 and ($) of Problem 6.17, we have

_ mkr _ _ 2Emh2
P = T = all—&) = G(_ J 7€) ) ()
from which E = —K/2a £
Thus by the conservation of energy we have, using V = —K/»,
§mv9 = E—-V = —% + %
K/2 1
2 = =f{=2=Z
or v m (r o) @
‘We can similarly show that for a hyperbola,
_E(2.1
v (; * a) “

while for a parabola [which eorresponda to letting a — = in either (2) or {4)],

v = 2K/mr

An artificial (man-made) satellite revolves about the earth at height H above the
surface. Determine the (a) orbital speed and (b} orbital period so that a man in the
satellite will be in a state of weightlessness,

(a) Assume that the earth is spherical and has radius R. Weightlessness will result when the
centrifugal force [equal and opposite to the centripetal force, i.e. the force due to the cen-
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5.40.
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tripetal acceleration] acting on the man due to rotation of the satellite just balances his
attraction to the earth. Then if vy is the orbital speed,

mvy GMm oR%m

_ = X BT He
REvH = ®R+HE =~ ®miHp 7 V= gygVESH9

If H is small compared with &, this is VRg approximateiy.

(&) Orbital speed distance traveled in one revolution
feal sp time for one revolution, or pericd

1

Thus v, =

2z R+ Hy _ /R + H R+H
P = s~ = 2r —
v v B g

If H is small compared with R, this is 2-VR/y approximately.

2r(E + H)
P

Then from part {a)

Calculate the (a) orbital speed and (b} period in Problem 5.38 assuming that the
height H above the earth’s surface is small compared with the earth’s radius.

Taking the earth’s radius as 6380 ki and g = 9.80mjs% we fnd {#) v, = VERg = 7.92 kmis
and (b) P = 2=/ Rlg == 1.42h = 85 minutes, approximately.

Find the force of attraction of a solid sphere of radius ¢ on a particle of mass m at
a distance b < a from its center.
By Froblem 5.20 the force of attraction of any spherical

shell containing m in its interior Isuch as the spherical shell
shown dashed in Fig. 5-15! is zero,

Thus the force of attraction on m is the force due to a
sphere of radius & < @ with center at Q. If o is the mass
per unit volume, the force of attraction is

Gli=b3oem/b2 = (InGom)b

Thus the force varies as the distance b from the mass to the
center, Fig.5-15

Supplementary Problems

CENTRAL FORCES AND EQUATIONS OF MOTION

5.41,

5.42.

343,

Indicate which of the following central force fields are attractive toward origin O and which
are repulsive from O. (a) F=—47r; (b F=Kr/Vr. K>0; (¢) F=r{r—1r/(r2+1)
{d) F = sinzrr,.

Ans. {(a) attractive: (b) repulsive; (&) attractive if 0 < v < 1, repulsive if r > 1; (d) repulsive for
2n < r<Zn+1l, attractive for 2n+1 < r <2n+2 where n=19,1,82,3....

Prove that in rectangular coordinates the magnitude of the aresal velocity is %{xﬁ — ).

Give an example of a force field directed toward a fixed point which is not a central force field.
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544. Derive equation (7}, page 117.
545, If a particle moves in a circular orbit under the influence of a central force at its center, prove that
its speed around the orbit must be constant.
546. A particle of mass m moves in a force field defined by F = —Kur;/#3. If it starts on the positive
r axis at distance ¢ away from the origin and moves with speed v, in direction making angle
o with the positive » axis, prove that the differential equation for the radial! position r of the
rticle at any ti ti
particle at any time ¢ ig & (K — ma%-g sin a)
a2 mrs
547, {a) Show that the differential equation for the orbit in Problem 5.46 is given in terms of u = 1/r by
d?u - _ K
o + {l—yw = 0 where y = ma%ﬁ s
(6) Solve the differential equation in (¢} and interpret physically.
548, A particle is to move under the influence of a central force field so that its orbital speed is

always constant and equal to v, Determine all possible orbits.

POTENTIAL ENERCGY AND CONSERVATION OF ENERGY

3.49.

3.4,

5.31.

5.52.

253,

5.54,

9,95,

Find the potential energy or potential corresponding to the central force fields defined by
() F = —Kr/rs, () F={(afr2+8/r"r;, () F=Krr,, {(d F=r,/Vr, (&) F=gingrrp.
Ans. (@) —K/2r2, (b) ofr + 8/2¢2, (e) Kr2, (d) 2V7, (&) (coswr)im

iai Find the potential energy for a particle which moves in the force field F = —Kr; /2, (b} How
much work is dore by the force field in (&) in moving the particle from a point on the circle
+ = a > Q to another point on the ecircle r = b > 07 Does the work depend on the pata? Explain.

Ans. {a) —K/r, (b)Y K{a— b)Yabd
Work Problem 5.50 for the force field F = —Kr,/r. Ans. (a) ~KInr, (5} —K In(a/b)

A particle of mass m moves in a central force field defined by F = —Kr /3. {a) Write an equation
for the conservation of energy. (b} Prove that if E is the total energy supplied to the particle,

then its speed is given by v = VE/mr?+ 2E/m.

A particle moves in a central force field defined by F = —K+2r;. Ii starts from rest at a point
ot the cirele r = a. (a) Prove that when it reaches the cirele r = b its speed will be

V2K (a3 — b3)/3m and that (&) the speed will be independent of the path,

A particle of mass m moves in a central force field F = Kr,/r» where K and n are constants.
It starts from rest at + = a and arrives at r = ¢ with finite speed v, {2} Prove that we must

have n <1 and K > 0. (&) Prove that v,.= V2Ka!'~%/min—1)., {¢} Discuss the physical sig-
nificance of the resulis in (a).

By differentiating both sides of ecuation {/8), page 117, obtain equation (8).

DETERMINATION OF ORBIT FROM CENTRAL FORCE OR
CENTRAL FORCE FROM ORBIT

5.36.

8.57.

A particle of mass m moves in a central force fleld given in magnitude by f(r) = —Kr where
K is a positive constant. If the particle starts at r = q, ¢ =0 with a apeed v, in a direction
perpendicular to the r axis, determine its orbit. What type of curve is described?

{a} Work Problem 5.56 if the speed is v, in a direction making angle « with the peositive x axis.
{b) Discuss the cages a=10, a=x and give the physical significance.
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538 A particle moving in a central force field located at r = Q0 describes the spiral r = e¢~9% Prove
that the magnitude of the force is inversely proportional to #3,

5.39. Find the central force necessary to make s particle

describe the lemniscate 72 = a2 cos 26 [see Fig. 5-16]. ¥
Ansg. A force proportional to v=7. ot = af conle

5.60. Obtain the orbit for the particle of Problem 5.46 and
describe physically.

5.61.  Prove that the orbits *r = ¢~® and r = 1/¢ are both
possible for the case of an inverse cube field of force.
Explain physically how this is possible, Fig.5-16

5.62. (a} Show that if the law of foree is given by
Axy Br,
rteos or F= 12 cosd g
then a particle can move in the circular orbit r = 2a cose. (b) What can you conclude about

the uniqueress of foreces when the orbit is specified? (¢) Answer part (b)) when the forces are
central forces.

F =

563. (a) What central force at the origin O is needed to make a particle move around O with 2 apeed
which is inversely proportional to the distance from 0. (&) What types of orbits are possible in
such case? Ans. {a) Inverse cube forece.

5.64. Discuss the motion of a particle moving in & central force field given by F = {a/r?+ g/r3)r,.
5.65. Prove that there is no central force which will enable a particle to move in a straight line,

5.66. Complete the integration of equation (72) of Problem 5.13, page 126 and thus arrive at equation
(5) of the same problem. [Hint. Let r = 1/u}

5.67. Suppose that the orbit of a particle moving in a central force field is given by ¢ = #(r). Prove
. mhz{20 + re’ -+ 129"} . .
that the law of force is — o) where primes denote differentiations with
respect to r.

5.68. {a) Use Problem 5.67 to show that if ¢ = 1/r, the cent;al force is one of attraction and varies
inversely as 3. (b) Graph the orbit in (&) and explain physically.

CONIC SECTIONS. ELLIPSE, PARABOLA AND HYPERBOLA

12 . . . .
T T cons’ Graph the conie, finding (a) the foci, {b) the vertices,

(¢) the length of the major axis, (d) the length of the minor axis, (¢) the distance from the center
to the directrix.

5.69. The equetion of a conic is »r =

24

570. Work Problem 5.69 for the conic r = ———,
3+bHcose

5.71. Show that the equation of a parabola can be written as r = p pec? (¢/2).

572. Find an equation for an ellipse which has one focus at the origin, its center at the point (—4,0),
and its major axia of length 10. Ans. r = 9/(5 + 4 cos )
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5.73.

LT,

275,

5.76.

3.

In Fig. 5-17, SR or TN is calied the minor axis of
the hyperbola and its length is generally dencted
by 2b. The length of the major aexis VU is 2a,
while the distance between the foci O and O is 2¢
[i.e. the distance from the center € to a focus O
or O ie CJ.

{a) Prove that ¢2 = a2+ b2,

(b) Prove that b = ay/e2 — 1 where ¢ is the eccen-
tricity.

{t) Prove that ¢ = a¢e. Compare with results for
the ellipse. Fig. 5-17

Derive equation (22), page 119, for a hyperbola.

In rectangular coordinates the equations for an ellipse and hyperbola in standard form are given by
x? oyt £y
.‘1?4' § = 1 and :2'—6—2' =1
respectively, where a and b are the lengths of the semi-major and semi-minor axes. Graph these
equations, lecating vertices, foct and directrices, and explain the relation of these equations to
equations {79), page 118, and (22), page 119,

Using the alternative definitions for an ellipse and hyperbola given on pages 118-119, obtain the
equations {79 and (22).

Prove that the angle between the asymptotes of a hyperbola is 2 cos—1(1/e).

KEPLER’S LAWS AND NEWTON’S LAW OF GRAVITATION

378

5.79,

5.80.

581,

582,

3.83.

584

Assuming that the planet Mars has a period about the sun equal to 687 earth days approximately,
find the mean distance of Mars from the sun, Take the distance of the earth from the sun as
150 mullion km. Ans. 225 million kmn

Work Problem 5.78 for {a) Jupiter and (b} Venus which have periods of 4333 earth days and
225 earth days respectively. Ans. {a) 778 million kim, () 108 million kmm

Suppose that a small spherical planet has a radius of 10 km and a mean density of 5 gfcms.

{e) What would be the acceleration due to pravity at its surface? (b) What would a man weigh
on this planet if he weighed 80 kgf on earth?

If the acceleration due to gravity on the surface of a spherically shaped planet P is pp while its
mean density and radins are given by ¢p and Rp respectively, prove that gp = $7GRpop where G
is the universal gravitational constant.

If L, M, T represent the dimensions of length, mass and time, find the dimensions of the universai
gravitational constant. Ans, L3M-1T-2

Calculate the mass of the sun using the fact that the earth is approximately 1B0 X 108 kilometers
from it and makes one complete revolution about it in approximately 365 days. Ans. 2x1030 kg

Calculate the force between the sun and the earth if the distance between the earth and the sun is
taken as 150 X 10% kilometers and the masses of the earth and sun are 6 X 102 kg and-2 X 10 kg
respectively. Anz. 1,16 x 10H newtons

ATTRACTION OF OBJECTS

5.85.

5.86.

Find the force of attraction of a thin uniform rod of length a on a mass m outside the rod but on
the same line as the rod and distance b from an end. Ans. GMm/bla+ b)

In Problem 5.85 determine where the mass of the rod should be concentrated so as to give the

same force of attraction. Ang. At a point in the rod a distance b{a+ b) — b from the end
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5.88.

5.89.

5.90,

5.91.

5.94.

5.95.

5.96.

5.97.
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Find the force of attraction of an infinitely long thin uniform rod on a mass m at distance &
from it, Ans. Magnitude is 2Gme/b :

A uniform wire is in the form of an arc of a circle of radius & and central angle ¢. Prove that
the force of attraction of the wire on a mass m placed at the center of the circle i3 given in

magnitude by
2GMm sin {¢/2) or 2Goem sin {y/2)

by b
where M is the mass of the wire and ¢ is the mass per unit length. Discuss the cases ¢ = #/2
and ¢ = & .

In Fig. 5-18, AE is a thin rod of length 2a and m

is a mass located at peint C a distance b from the c
rod. Prove that the force of attraction of the rod m
on m has magnitude /n
B
gﬂ?’l’ sin 4(a+ B) D / \
i
b
in a direction making an angle with the rod \\\ b \
given by S L \G’
. . ~— E _-~"
tan---u{ smatsing) A E.--"\p
S ‘ [L 2a !
Discuss the case o= g8 and compare with Prob-
lem 5.26. Fig. 5-18

By comparing Problem 589 with Problem 5.88, prove that the rod of Problem 5.89 can be
replaced by a wire in the form of circular are DEG [shown dashed in Fig. 5-18] which has its
center at ' and is tangent to the rod at E. Prove that the direction of the attraction is toward
the midpoint of this are.

A hemisphere of mass M and radius ¢ has a particle of mass m located at its center. Find the
force of attraction if (&) the hemisphere is a thin shell, (b) the hemisphere is solid.
Ang. {a) GMm/2a2, (b} 36 Mm/2a2

Work Problem 5.91 if the hemisphere is a shell having outer radiuva & and inner radius b.

Deduce from Kepletr’s laws that if the force of attraction between sun and planets is given in
magnitude by ym/r?, then y must be independent of the particular planet.

A cone has height H and radius a. Prove that the force of attraction on a particle of mass m

GGMﬁ(l_ H )
Va®+ H?

placed at its vertex has magnitude ~aZ
Find the force of attraction between two non-intersecting spheres.

A particle of mass m is placed outside of a uniform solid hemisphere of radius ¢ at a distance a
on a line perpendicular to the base through its center. Prove that the foree of attraction is

given in magnitude by GMm(y2 — 1)/a.

Work {a) Problem 5.26, (b) Problem 5.27, and (¢) Problem 5.94 by first finding the potential.

MISCELLANEOUS PROBLEMS

5.98.

A particle is projected vertically upward from the earth’s surface with initial speed v,
(a) Prove that the maximum height H reached above the earth's surface is H = 1:§Rl(2gR - 1.%}.

(b) Discuss the significance of the case where 3 = 2¢FR.
(¢} Prove that if H is small, then it is equal to v}/2g very nearly.
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3.9%.

5100,

210t

5102,

5.103.

104,

5.105.

§.106."

S.107.

3108

5.109,

5.116.

5.111.

5112,

{a} Prove that the time taken to reach the maximum height of Probiem 5.98 is

R+H| [H  R+H 5_1’R~H_)‘i
2g E g \R¥H/|

{4} Prove that if H is very small compared with R, then the time in (a) is very nearly V2H/g,

{a) Prove that if an object is dropped to the earth's surface from a height H, then if air
resistance is negligible it will hit the earth with a speed v = V2gRH/R + H) where R is
the radius of the earth. B

(b} Caleulate the specd in part o) For the cases wheve B oo Loo ki aned A - 10060 kin respoctively.
Take the radius of the corth as 6380 k.

Find the time taken for the object of Problem 5.100 to reach the earth’s surface in each of
the two cases,

What must be the law of force if the speed of a particle in a central force field is to be
proportional to »—» where n is a constant?

What velocity must a space ship have in order to keep it in an orbit around the earth at a
distance of {«) 200 ko, () 2000 ki above the cartics surfuee?

An objeet is thrown upward from the earth’s surface with velocity v, Assuming that it returns
to earth and that air resistance is negligible, find its velocity on returning.

{¢) What ig the work done by a space ship of mass m in moving from a distance a above the
earth’s surface to a distance 57

(&) Does the work depend on the path? Explain. Ans, {a) GmM{a — b)/ab

{a) Prove that it iz possible for a particle to move in a ecircle of radius @ in any central force
field whose law of force is f(r).

{b) Suppose the particle of part (o) is dispiaced alightly from its circular orbit. Prove that
it will return to the orbit, i.e. the motion is sfable, if

afia) &+ 3fa} > 0
but is unstable otherwise.

{c) Tllustrate the result in (b) by considering f{r) = 1l/r* and deciding for which values of n
stability can occur, Ans, (¢) For n <3 there is stability,

If the moon were suddenly stopped in its orbit, how long wonld it take to fall to the earth
assuming that the earth remained at rest? Ans. About 4 days 18 hours

If the earth were suddenly stopped in its orhit, how long would it take for it to fall into the sun?
Ans. About 65 days

Work Problem 534, page 133, by using energy methods.

Find the velocity of escape for an object on the surface of the moon., Use the fact that the
acceleration due to gravity on the moon’s surface is approximately 1/6 that on the earth and
that the radius of the moon is approximately 1/4 of the earth’s radius. Ana. 2.29 km/s

An object is dropped through a hole bored through the center of the earth. Assuming that the
resistance to motion is negligible, show that the speed of the particle as it passes through the
center of the earth is slightly less than 8 km/s.

[Hint. Use Problem 5.40, page 135.]

In Problem 5.111 show that the time taken for the object to return is about 85 minutes.
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5.113.

5,114
5115
5.116.
5.117.

5.118.

5.119.

5.126,

5121

5.122.

5.123.

5.124.

5.125.

5.126.

5,127,

5.128.
5.129.
5.130.

5.131,

5.132.

5.133,

CENTRAL FORCES AND PLANETARY MOTION (CHAP. 5

Work Problems 5.111 and 5.112 if the hole is straight but dees not pass through the center of
the earth.

Discuss the relationship hetween the resuits of Problems 5111 and 5,112 and that of Problem 5.39,
How would you explain the fact that the earth has an atmosphere while the moon has none?
Prove Theorem 5.1, page 120.

Discuss Theorem 5.1 if the spheres intersect.

Explain how you could uwse the result of Problem 5.27 to find the force of attraction of a solid
sphere on a particle.

Find the force of attraction between a uniform circular ring of outer radius ¢ and inner radius b
and a mass m located on its axis at a distance b from its center.

Two space ships move about the earth on the same elliptical path of eccentricity «. If they are
separated by a small distance D) at perigee, prove that at apogee they will be separated by the
distance D{1 — ¢}/(1 + ¢).

{(z) Explain how you could calculate the velocity of escape from a planet. (b) Use your method to
calculate the velocity of escape from Mars. Ans. {b) 5 km{s

Work Problem 5.121 for {a) Jupiter, (&) Venua. Ans. {a) about 81 km/s, (b) about 10 km/s

Three infinitely long thin uniform rods having the same mass per unit length lie in the same plane
and form a triangle. Prove that force of attraction on a particle will be zero if and only if the
particle iz located at the intersection of the medians of the triangle,

Find the force of attraction between a uniform rod of length a and a sphere of radina b if they
do not intersect and the line of the rod passes through the center.

Work Problem 5.124 if the rod is situated so that a line drawn from the center perpendicular to the
line of the rod bisects the rod.

A satellite of radius ¢ revolves in a circular orbit about a planet of radius b with period P.
If the shortest distance between their surfaces is ¢, prove that the mamss of the planet is
dn¥a + b+ )/GP2,

Given that the moon is approximately 386,000 km from the earth and makes one complete revolution
about. the earth in 27{ days approximately, find the mass of the earth.

Ang, 6 x 102t kg

Discuss the relationship of Problem 5.128 with Kepler's third law.

Prove that the only central force field F whose divergence is zero is an inverse square force fleld,
Work Problem 5.82, page 132, by using triple integration,

A uniform solid right circular cylinder has radius ¢ and height H. A particle of mass m is placed

on the extended axis of the eylinder so that it is at a distance D from one end. Prove that the
force of attraction is directed along the axis and given in magnitude by

2GMm
a’H

{H + Va2 +D? — Va2 + (D+ HY?)}

Suppose that the cylinder of Problem 5,181 has a given volume. Prove that the force of attraction
when the particle is at the center of one end of the cylinder is a maximum when o/H = }9— V1T

Work {(a) Problem 5.26 and () Problem 5.27 assuming an inverse cube law of attraction.
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5134,

5.135.

5.136.

5.137.

&.138.

5.139.

5.140.

5.141.

5.142.

5.143.

2144,

5.145.

5,146,

Do the results of Problems 529 and 530 apply if there is an inverse cube law of attraction?
Explain.

What would be the velocity of escape from the small planet of Problem 5.807

A spherical shell of inner radius « and outer radius & has constant density ¢. Prove that the
gravitational potential V{r) at distance r from the center is given by

27e(b? — a?) r<a
Viry = 270(b2 — 4o%) ~ d7oa¥/Br a <r < b
lfiﬂ'a{b“ —a%)/3r r>b

If FEinstein's theory of relafivity is taken into aeccount, the differential egquation for the orbit
of a planet becomes

u

de?
where y = 8K/me?, ¢ being the speed of light. (a) Prove that if axes are suitably chosen, then
the position r of the planet can be determined approximately from

mhi{K
= ————— = 1 — vK/mht
r 1 + ecosae where  a vH/m

{5y Use {a) to show that a planet actually moves in an elliptical path but that this ellipse slowly
rotates in space, the rate of angular rotation being Z2ryX/mk®. (¢} Show that in the case of

+u = u?

K
miE T

" Mercury this rotation amounts to 43 seconds of arc per century. This was actually observed, thus

offering experimental proof of the validity of the theory of relativity.

Find the position of a planet in its orbit around the sun as a function of time ¢ measured from
where it is furthest from the sun.

At apogee of 300 kmn from the earth’s surface, two space ships in the same elliptical path are 150 nt
apart. How far apart will they be at perigee 250 km assuming that they drift without altering thei
path in any way?

A particle of mass m is located on a perpendicular line through the center of a rectangular plate

of sides 2a and 24 at a distance D from this center. Prove that the force of attraction of the plats
on the particle is given in magnitude by

GMm . _1( ab )
ab " \\fla? + Db+ DY

Find the force of attraction of a uniform infinite plate of negligible thickness and density
on a particle at distance D from it. Ang. 2zeGm

Points where = =0 are called apsides [singular, apsis]. {(a} Prove that apsides for a centr:
force field with potential V{r) and total energy X are roots of the equation V{r)+ mh2/2:2 =1
(b} Find the apsides corresponding to an inverse square field of force, showing that there ar
two, one or none according as the orbit is an ellipse, hyperbola or parabola,

A particle moving in a central force field travels in a path which is the cycloid » = a{(l —cosé
Find the law of force. Ane. Inverse fourth power of r.

Set up equations for the motion of a particle in a central force field if it takes place in a mediu
where the resistance is roportional to the instantaneous speed of the particle.

A satellite has its largest and smallest orbital speeds given by v,,, and vy, respectively. Pro
Vnax —

that the eccentricity of the orbit in which the satellite moves is equal to _max _ mia
Pmex T Pain

Prove that if the satellite of Froblem 5.145 has & period equal to r, then it moves in an elliptic
path having majqr axis whose length is -23;\?1:,““ Vol -



Chapter 6 MOVING
" COORDINATE SYSTEMS

NON-INERTIAL COORDINATE SYSTEMS

In preceding chapters the coordinate systems used to describe the motions of particles
were assumed to be inertial [see page 33]. In many instances of practical impoertance,
however, this assumption is not warranted. For example, a coordinate system fixed in
the earth is not an inertial system since the earth itself is rotating in space, Consequently
if we use this coordinate system to describe the motion of a particle relative to the earth
we obtain results which may be in error. We are led therefore to consider the motion of
particles relative to moving coordinate systems.

ROTATING COORDINATE SYSTEMS

In Fig, 6-1 let XY Z deno'e an inertial coordinate
system with origin € which we shall consider fixed
in space. Let the coordinate system xyz having the
same origin O be rotating with respect to the XYZ
syatem.

Consider a vector A which is changing with
time. To an observer fixed relative to the xyz system
the time rate of change of A = Aii+ A3+ Ak is
found to be

dA 44, dA, ., dA,
At T @it gty O

where subscript M indicates the derivative in the
moving (ryz) system.

However, the time rate of change of A relative
to the fixed XYZ system symbolized by the subscript

F' is found to be [see Problem 6.1] Fig. 6-1
dA _ dA
Qe = ath oA ®

where o is called the angular velocity of the xyz system with respect to the X¥Z system.

DERIVATIVE OPERATORS

Let D, and D,, represent time derivative operators in the fixed and moving systems.
Then we can write the operator equivalence

D,e= D, + ax (3

This result is useful in relating higher order time derivatives in the fixed and moving
systems. See Problem 6.6.
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YELOCITY IN A MOVING SYSTEM
If, in particular, vector A is the position vector r of a particle, then (2) gives

ol = & 4 ek (4)
or Dr = Dy + axr (5}
Let us write
v, = dr/dt|. = D = velocity of particle P relative to fixed system
Vo = dr/dt|, = D,r = velocity of particle P relative to moving system
Ve = @XTr = velocity of moving system relative to fixed system,

Then (4) or {5) can be written
@ %) Vop = Vo T Vyp (6)

ACCELERATION IN A MOVING SYSTEM

If D} = d¥di*), and D} = d*/dt?|, are second derivative operators with respect to ¢
in the fixed and moving systems, then application of (3) yields [see Problem 6.6]

Divr = Dir + (Dyw) Xt + 20 xDyr + o X (wxXr) 7)
Let us write
a,, = di/dt*|r
a,, = dir/dt*
8y, = (D) Xr + 20X D, xr + «X{oxr)
= acceleration of moving system relative to fixed system

D%r = acceleration of particle P relative to fixed system

ly = DZir = acceleration of particle P relative to moving system

Then (7) can be written
App = By T Ayp (8

CORIOLIS AND CENTRIPETAL ACCELERATION

The last two terms on the right of (7) are called the Coriolis acceleration and centripetal
arcceleration respectively, ie.,

Coriolis acceleration = 2uxX Dy = 2exv, (9)
Centripetal acceleration = w X (e xX1) (1)
The second term on the right of (7) is sometimes called the linear acceleration, ie.,
Linear acceleration = (D, w) Xr = (% ) Xr (11)
i M

and D, e is called the angular acceleration. For many cases of practical importance [e.g. in
the rotation of the earth] v is constant and D, =0.

The quantity —a X (e X r) is often called the centrifugal aceceleration.

MOTION OF A PARTICLE RELATIVE TO THE EARTH

Newton’s second law is strictly applicable only to inertial systems, However, by using
(7) we obtain a result valid for non-inertial systems. This has the form

me'l‘ = F — m(DMu) X~ 2mle X DMI‘) ~ Mo X (0 X r} (12)
where F is the resultant of all forces acting on the particle as seen by the observer in the
fixed or inertial system.
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In practice we are interested in expressing the equations of motion in terms of quantities
as determined by an observer fixed on the earth [or other moving system]. In such case
we may omit the subscript M and write (12) as

2
mgt_: = F — meXr} - Zmle xv) — m|o X (s Xr)| {1%)
For the case of the earth rotating with constant angular « about its axis, @« =0 and
(13) becomes &r
Moy = F — 2m{a Xv) — m[a X (o x1)] (14)

CORIOLIS AND CENTRIPETAL FORCE
Referring to equations (13) or (14) we often use the following terminology

Coriolis force = 2mla X 1) = 2nle X v)
Centripetal force = m[a X (o X 1))

Centrifugal force = —m[s X (@ X r)]

MOVING COORDINATE SYSTEMS IN GENERAL

In the above results we assumed that the coordi-
nate systems xyz and XYZ [see Fig. 6-1] have com-
mon origin 0. In case they do not have a common
origin, results are easily obtained from those already
considered.

Suppose that R is the position vector of origin @
relative to origin O {see Fig. 6-2]. Then if R and
R denote the velocity and acceleration of @ relative
to O, equations (5) and (7) are replaced respectively
by

Dx = 1.2+DMr+er
- dr . b4
= R + '&'{ + aXr (10)
Fig, §-2
and Dix = R+ Dir + (Dyo)Xr + 20X Dyr + o X (wXx1)
. 2
= R+%§+5Xr+2«XV+«X(uXr) (16)
Similarly equation (74) is replaced by
2 .
mﬁ—tz- = F — 2m{eXv) — mfe X {a Xr)] — mR (m

THE FOUCAULT PENDULUM

Consider a simple pendulum censisting of a long string and heavy bob suspended
vertically from a frictionless support. Suppose that the bob is displaced from its equilibrium
position and is free to rotate in any vertical plane. Then due to the rotafion of the earth,
the plane in which the pendulum swings will gradually precess about a vertical axis. In the
northern hemisphere this precession is in the clockwise direction if we look down at the
earth’s surface. In the southern hemisphere the precession would be in the counterclock-
wige direction.

Such a pendulum used for detecting the earth’s rotation was first employed by Foucault
in 1851 and is called Foucault's pendulum.
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Solved Problems

ROTATING COORDINATE SYSTEMS

6L

An observer stationed at a point which is fixed relative to an ryz coordinate system
with origin O [see Fig. 6-1, page 144] observes a vector A = A;i+ 4:j+A4sk and
dAq, dAz. dA;

calculates its time derivative to be P + = dt k. Later, he finds that he

and his coordinate system are actually rotatmg' w:th respect to an XYZ coordinate
system taken as fixed in space and having origin also at 0. He asks, “What would
be the time derivative of A for an observer who is fixed relative to the XYZ coordi-
nate system?"

1t dtl d‘? ln denote respectively the time derivatives of A relative to the
fixed and moving systems, show that there exists a vector quantity « such that
dA
. Gt . t |y + aX A

To the fixed observer the unit vectors i,j,k actually change with time. Hence such an
observer would compute the time derivative as

dA _  d4Ay d4, | dd, di dk

G mtt it gkt Agt A’dt t AT 1
. dA _ dA di dj dk
Lé, dtler = driw T Avg toAag T Asg (2

Since 1 ia & unit vector, di/dt is perpendicular to i and must therefore lie in the plane
of j and k. Then

difdt = af + agk (9
Similarly, difdt = agk + a4l 5
di/dt = asi + ag} (E3]

From i+j =0, differentiation yields i- g—+ T j ={. But v‘-i-j- =a, from {4} and di =
d¢ dt at
from (3). Thus &, = —ap.

Similarly from ik =0, 1+ 4 ‘rk~o and ay = oz from jok=0, 3P+ Hk=0

and ag = —ay, Then dt
difdt = oy + agk, dijdt = agk ~ a;d, dk/dt = —asi — ag)
It follows that
di df dk _ . .
A'dt + A’dt + A’-cﬁ' = (—agdy;—apdgli + (oA, — agdg)i + (apd; + aydadk (&

which can be written as
i b k
ay  —ag
Ay A, Ay

Then if we choose oy = oy, —ag = uwg, @ = w3 this determinant becomes

H j k
W Wy @ = woXA
A‘l Ag A' [

where o = o + wgj + wak.
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From (2) and {6) we find, as reguired,

da
dt

dA
= - + X A
F dt |u -

The vector quantity = is the angular velocity of the moving system relative to the fixed system,

% Let D, and D,, be symbolic time derivative operators in the fixed and moving systems
respectively. Demonstrate the operator equivalence

DF = DM + v X
. dA _ T
By definition DA = i = derivative in fixed system
F
dA L .
DuyA = T = derivative in moving system
M .
Then from Problem 6.1, v
DA = DyA + v XA = {(Dy + «x)A

which shows the equivalence of the operators Dp = Dy + o X

6)3./ Prove that the angular acceleration is the same in both XYZ and xyz coordinate

gystems.
Let A= » in Problem 6.1. Then
da de de
-— = —_ = = adng
dt Iy dbfy T 2" at |,y

Since dw/dt iz the angular acceleration, the required statement is proved.

TELOCITY AND ACCELERATION IN MOVING SYSTEMS
A" Determine the wvelocity of a moving particle as seen by the two observers in

Problem 6.1.
Replacing A by the position vector r of the particle, we have
L 3
dy _ dr
ar , = Gely + o« Xr n

If r is expressed in terms of the unit vectors i,j,k of the moving coordinate szystem, then the
velocity of the particle relative to this system is, on dropping the subscript M,

- dr  _  dx. d. dz
: T = gt EFEx (2) *
and the velocity of the particle relative to the fixed system is from (i)
dr _ dr
-JE . — dt + s xr (u’)

The velocity () is sometimes called the true velocity, while (2) i the apparent velocity.

w An zyz coordinate system is rotating with respect to an XYZ coordinate system
having the same origin and assumed to be fixed in space [i.e. it is an inertial system)].
The f‘!igular velocity of the xyz system relative to the XYZ system is given by
w = 2tj .~ i+ (2t +4)k where t is the time. The position vector of a particle at
time ¢ ag o 0served in the zyz system is given by r = (£?+1)i ~ 6¢j + 4°%k. Find
(@) the appane“t velocity and (b) the true velocity at time t=1.
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{ay The apparent velocity at any time ¢ is
dridt = 2ti — 6j + 12¢%
At time ¢ = 1 thisis 2i — 6j + 12k.

{#) The true velocity at any time ¢ is
de/dt + X1 = (2ti— 6§+ 12t%K) + [2ti — 2 + (28 + Dk) ¥ [(£2+ L} — 6§ + 415K
At time ¢t = 1 thisis

i i k[
2i —8j + 12k + 1 2 -1 & = 34i - 2j + 2k
. 64l

86, Determine the acceleration of a moving particle as seen by the two observers in
Problem 6.1.

The acceleration of the particle as seen by the observer in the fixed XVZ system is
DFr = DptDpr). Using the operator equivalence established in Problem 6.2, we have

DpiDer) = Dp(Dyr + o <1}
= (Dp+ ox WDy + wxr
= DyliDyr+exr) + o % (Dyr + & X1}
Dir + Dyle X 1) + 0¥ Dyr + o X (X 1)
or since Dylexrt = (Dye) Xr + o x (Dyr),
Dl = Dlr + (Dye)Xr + 2 X (Dyr) + o X («X1) n
if r is the position vector expressed in terms of i,j, k of the moving coordinate system, then
the acceleration of the particle relative to this system is, on dropping the subscript M,
d2p d2x a2y, i+ diz

. e = @'t gl *ogek @
The acceleration of the particle relative to the fixed system is given from {f) as
d2r _ & dr
d_tfp = dt2+dtxr+2u (dt>+w><(wxr) ()

The acceleration ($) is sometimes called the frue acceleration, while (2) is the epparent acceleration.

87 Find (@) the apparent acceleration and (b) the true acceleration of the particle in

Problem 8.5,
{g) The apparent acceleration at any time ¢ is
. &r _ d fdr _ g o . 2 _
i dt(d’t) = 3 (2ti—6j +1268k) = 2Zi + 24k

At time (=1 thisis 2i + 24k.

{(3) The true acceleration at any time ¢ is

dir dr |, de
ar t X+ 3 St ex{exr

At time ¢ =1 this equals
2i + 24k + (4i—2j + 12k} X (2i — 6j + 12k)
+ {2i — 2j + 2k) % {2i — 6} + 4k)
+ (2i —j+ 6k) x {(2i—j+ 6k) X (2i — 6j -+ 4k)}
= 2i + 24k + (48f — 24j — 20k) + (4i — 4j — 8k) + (—14i+ 212§ + 40k)
= 40i + 184§ + 36k
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CORIOLIS AND CENTRIPETAL ACCELERATION

6.8,

[

Referring to Problem 6.5, find (a) the Coriolis acceleration, (b} the centripetal
acceleration and (c) their magnitudes at time ¢t =1,

{¢} From Problem 6.5 we have,

Coriolis acceleration = 2w X dr/dt = (4i—2j + 12k) X (2i — 6 + 12k)
48t — 24j — 20k

{t) From Problem 6.5 we have,

Centripetal acceleration

Y

o X (e Xr) = (2i—j+ 6k) X (32i + 4§ — 10k)
~14i + 212j + 40k

i

{¢} From parts (a) and {b) we have

Magnitude of Coriolis acceleration = (48 + (—24)2 + (—=20)2 = 4+/205

Magnitude of centripetal acceleration V(—14)2 + (212)2 + (40)2 = 2¢/11,685

MOTION OF A PARTICLE RELATIVE TO THE EARTH

6.9,

6.10.

(a) Express Newton’s second law for the motion of a particle relative to an XYZ
coordinate system fixed in space {inertial system). (b) Use (@) to find an equation of
motion for the particle relative to an ryz system having the same origin as the XYZ
system but rotating with respect to it,

(a} If m is the mass of the particle (assumed constant}, d2r/dt? [ itz acceleration in the fixed
system and F the resultant of all forces acting on the particle as viewed in the fixed system,
then Newton’s second law states that

m d—zz
att

F=F (H

(b) Using subscript M to denote quantities as viewed in the moving system, we have from
Problem 8.6,

o
diZiF ~ did

. dr
M+¢Xr+2oXa|M+ @ X (wXT) {2)

Substituting this into (1), we find the required equation
&r . d
m-&?|M = F—m(oxr)—Zm(.x—d—:lu)-—m[»x(.xr)] €4}

We can drop the subseript M provided it is clear that all quantities except F are as
determined by an observer in the moving system. The quantity F, it must be emphasized, ig the
resultant force as observed in the fixed or inertial system. If we do remove the subscript M
and write dr/dt = v, then {§) can be written

mg-z; = F—m(;Xr}—iZm(uxv}—m[aX(-Xr)] {4

Calculate the angular speed of the earth about its axis.
Since the earth makes one revolution [2r radians] about its axis in approximately 24 hours =
86,400 s, the angular speed is
2
86,400

The actual time for one revolution is closer to 86,164 s and the angular speed 7.29 x 10~* rad/s.

= 7.27xX10-% rad/s

X —
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MOVING COORDINATE SYSTEMS IN GENERAL
6.1, Work Problem 6.4 if the originas of the XYZ

6.12.

6.13.

s]ri.

and zyz systems do not eoincide.

Iet B be the position vector of origin @ of the
zyz system relative to origin O of the fixed (or inertial}
XYZ system [see Fig. 6-3]. The velocity of the par-
ticle P relative to the moving system is, as before,

d d d dz
3§M=3§=*-+”;+dt o

Now the position vector of P relative to O is
p=R+r and thue the velocity of P as viewed in the
XYZ system is

dRi , dr

o _ 4 dr
dt(a+r}lp dtir | dtiF

dt

dr
~ R+ a + e«xr (%)
using equation {$) of Problem 8.4. Note that i% is the
velocity of @ with respect to 0. If R=0 this re-
duces to the result of Problem 6.4. Fig.6-2

Work Problem 6.6 if the origins of the XYZ and zyz systems do not coincide.
Referring to Fig. 6-3, the acceleration of the particle P relative to the moving system is,

as before, » 2 &y .
= o7 = Zi+

a‘f,‘f!u = gz = Iz a2l T gk o

Since the poaition vector of P relative to O i3 p =R +r, the acceleration of P as viewed in the
XYZ gystem is

L kol = & e
dit {p ag B+ 1) lr = deir T delr
s &r | de dr
= n+-a—t§+az><r+2oxd + »X{sXr) )

uging equation (#) of Problem 6.6, Note that R is the acceleration of Q with respect to 0. If
R =40 this reduces to the result of Prablem 6.6.

Work Problem 6.9 if the origins of the XYZ and xyz systems do not coincide.

(a8} The position vector of the particle relative to the fixed (X¥Z) aystem is p. Then th
required equation of motion is

@i _ 1
s le F {
(d) Uaing the result (2) of Problem 6.12 in (), we obtain

&r
mae

whete F is the force acting on m as viewed in the inertial system and where v = T,

= F — mR — m(eX1) — 2m{eXv) — mfe X (X ¢

Find the equation of motion of a particle relative to an observer on the eartt
asurface.
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We assume the earth to be a sphere with center
at O [Fig. 6-4] rotating about the Z axis with
angular velocity » = wK. We also use the fact that
the effect of the earth’s rotation around the sun is
negligible, so that the XY Z systern can be taken as
an inertial system.

Then we can use equation (2) of Problem 6.12.

For the case of the earth, we have
“« =0 (1)
R = «X{(eXR) (2)
GMm
F = - ) ] ()

the first equation arising from the fact that the ro-
tation of the earth about its axis proceeds with con-
stant angular velocity, the second arising from the
fact that the aceeleration of origin € relative to O
is the centripetal acceleration, and the third arising
from Newton's law of gravitation. Using these in

{2} of Problem 6.12 yields the required equation, Fig. 6-4
% = —-G%lp—ax(axn)—2(u><v)—ox(.xr) (4)

assuming that other forces acting on m [such as air resistance, etc.] are neglected.

We can define
aM

8§ = — "5 eX(eXR) _ %)

as the acceleration due to gravity, so that (4} becomes
r
Fr i £ — 2ZexXv) — eX(aXr) (6}

Near the earth’s surface the last term in (6) can be neglected, so that to a high degree of
approximation,

% = g — 2{eXxXv) *

In practice we choose g as constant in magnitude although it varies alightly over the earth’s
surface. If other external forces act, we must add them to the right side of equations (6) or (7).

Show that if the particle of Problem 6.14 moves near the earth’s surface, then the
equations of motion are given by

¥ = 2w0c08A¥
¥ = ~2wcosr 2 + osiniz)
? = —g + 2esin)r y

where the angle A is the colatitude [see Fig. 6-4] and 90° — A is the latitude,

From Fig. 6-4 we have
K

i

(K+ivi + (K+j)j + (K-kk
{(—sin2)i + 0j + (cosx)k = —sinri + cosrk

i

and so o = oK = —¢sinii+ wcosr k
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6.16.

Then aXv = wX{zi+yj+ik

i i k
= —wsink 0 wcosh
B g
= (~wcosA ¥)i + (weosh & + wsinh 2§ — (wsini ¥k
Thus from equation (7) of Problem 6.14 we have

@ _
dez ¢
= —gk + ZucosAyi — 2(wcosNE + wsinhI}j + 2usinayk

— 2(w X W)

Equating corresponding coefficients of i,j,k on both sides of thizs equation, we find, as reguired,

I = Zucoshy n
¥ = —20cosh &+ wsink ) )
¥ = —g 4+ Zosinhy ()

An object of mass m initially at rest is dropped to the earth’s surface from a height
which is small compared with the earth’s radius. Assuming that the angular speed
of the earth about its axis is a constant «, prove that after time f the object is
deflected east of the vertical by the amount 3.g¢*sin i

Method 1.

We assume that the object is located on the z axis st 2 =0, y =0, 2 = h Isee Fig. 6-4]. From
equations (7} and (2) of Problem 6.15 we have on integrating,

.

z = 2ucosdy + ¢ 1} = —2wcoshx+ wsinhz) + ey

Sinceat t=0, =0, y=0, x=0, y=0, z=h wehave ¢, =0, ¢, = 2usinx k. Thus

x = 2wcoshy, ¥ = —2vcoshz+wsinhz) + 2usinih [¥)]

Then (3} of Problem 6.156 becomes

Z = —g+ 2usinhy = —g — du?sinifcosrx + sini (z— k)]
But since the terms on the right involving «% are very smali compared with —g we can neglect them
and write 7 = —p, Integration yields z = —pg¢+¢;. Since z=0 at =0, we have ¢, =0 or
z = —gt (73]
Uzing equation (£) and the first equation of () in equation (2} of Problem 6.15 we find

¥ = {(—2ocosA){2wcosh gy} + (—2w gin M{—gl}
= —4u2cos?hy + 2uwsink gt
Then neglecting the firat term, we have § = 2w sinh gf.  Integrating,
¥ = wgsinrat? + o
Since y=0 at t =0, we have ¢, =0 and § = ugsind (2. Integrating again,
¥ = jegsink £+ e
Then since y =0 at ¢ =0, ¢; =0 so that, as required.
¥ = }egsini A (3

Method 2.
Integrating equations (1), (2) and (3) of Problem 8.16, we have

€ = Z2wcosry + ¢
¥ = —2ocosrxz+wsiniz} + o
Z = —gt+ 2usinhy + ¢
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6.18.
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Using the fact that at £=0, a—=y=z=0 and z=0; y=0, z=~h, we have ¢, =90,
¢; = 2wh sind, ¢3= 0. Thus

It

24 cOB N Y
—2(w cosh x + wsinkz} + 2uh sinr
= —gt + 2wsiniy

e e s
1l

Integrating these we find, using the above conditions,
4

% = 2mcos?\f ydu (4)
[
¢ ¢
¥y = Z2uhtsinh — 2wcos?\f xduy — 20 sin?\f zdu 5
¢ 0
t
= h— Jgt? + 2wsin}\f y du : {6)
o

Since the unknowns are under the integral sign. these equations are called infegral equations.
We shall use a method called the method of successive approximations or method of iteration to
obtain a solution to any desired accuracy. The method consists of using a first guess for =, v,z
under the integral signs in (4}, {5) and (6) to obtain a beétier guess. As a first guess we can try
=10 yw=0 2=0 under the integral signs. Then we find as a second guess

x = 0, ¥ = Zahtsink, z = h—Lgt?
Substituting these in (4}, (5) and (6} and neglecting terms involving 2, we find the third guess
*r =0, ¥ = 2uhtsink — 2osina(ht— 383 = foptd sinn, z = h— Lot?
Tsing these in {4), (5) and (6} and again neglecting terms involving 2, we find the fourth guess
xr =0 ¥ = fogtisini, z = h— gt
Since this fourth guess is tdentical with the third guess, these results are accurate up to terms

involving o?, and no further guesses need be taken. It is thus seen that the deflection is
¥ = fogt® sinh, as required.

Referring to Problem 6.16, show that an object dropped from height k above the
earth’s surface hits the earth at a point east of the vertical at a distance

foh 8in A/ 2R/g.

From (2) of Problem 6,16 we have on integrating, 7 = —}g?+¢. Bince z=h at t =0, ¢ = k
and z =h—4gt2. Then at z=10, h = }gt? or &= y2h/g. Substituting this value of ¢ into (8}
of Problem 6.16, we find the required distance.

FOUCAULT PENDULUM

Derive an equation of motion for a simple
pendulum, taking into account the earth’s
rotation about its axis.

Choose the xyz coordinate system of Fig, 6-5,
Suppose that the origin O is the equilibrium position
of the bob B, A is the point of suspension and the
length of string AB is I. If the tension in the string
is T, ther we have

T = (T-ili + (T+jYi + (T-k}k

= Tcosoi+ Teosfj+ Teosyk

—T(%)i - T(%)i + T(E‘T’:’)k (1)

Since the net force acting on B is T + mg, the equa-
tion of motion of B is given by [sece Problem 6.14]

mg—tz; = T + mg — ZmieXv) — meX{wxXr) () Fig. 6-5

N
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¥ we neglect the last term in (2), put g = —gk and use (1), then (£) can be written in componeni

form as .
mzx = —T(z/l) + 2mui con) (s
m¥ = —T(y/) — Zme(® cosh + Z sin \) 4
mz = TU—2)/l — mg + 2muy sin A 8

619. By assuming that the bob of the simple pendulum in Problem 6.18 undergoes small
oscillations about the equilibrium position so that its motion can be assumed to take
place in a horizontal plane, simplify the equations of motion.

Making the assumption that the motion of the bob takes place in a horizontal plane amounts

to assuming that ¥ and z are zero, For amall vibrationa (I — z)/[ ia very nearly equal to one.
Then equation {5) of Problem 6.18 yields

0 = T — mg + Zmoy sini
or T = mg — 2muy sin X {2)
Substituting (1) into equations (8} and {4} of Problem 618 and simplifying, we obtain
¥ = —9—;+—2‘°—z¥—fm+2mﬁcos?\ (2)
vo= -0y 2WERX _ 9k cosa (®)

These differential equations are non-linear because of the presence of the terms involving ay
and yy. However, these terms are negligible compared with the others since », x and y are
small. Upon neglecting them we obtain the linear differential equations

¥ = —gxfl + 20 cos) _ 4
¥ = —gy/l — 2oz cos (]

6.20. Solve the equations of motion of the pendulum obtained in Problem 6.19, assuming
suitable initial conditions.

Suppose that initially the bob is in the yz plane and is given a displacement from the z axis
of magnitude A > 0, after which it is released. Then the initial conditions are

2=0, =0 y=A, y=0 at t=10 (N

To find the solution of equations (4} and (5) of Problem 819, it is convenient to place

K2 = g/l, a = wcosk 2)
g0 that they become 2 = —Kx + 2ay 9
V = —K¥ — %% @

It is also convenient to use complex numbers. Multiplying equation (4} by i and adding to (),
we find
F4+iy = —Kz+it) + Zely—iz) = —Ke+iy) — Ziald + i)

Then calling u = z + iy, this can be written
% o= —Kbu—2iah or W+ 2+ Kiu = 0 (5
If © = Cevt where C and y are constants, this becomes
¥2 4 2iay + K2 = 0
#0 that y = (~%iax V—4d—4K2)/2 = —ia*iVaZ+ K2 (6)
Now since of = «? cos?x is small compared to K? = g/l, we can write
y = —iaxiK t4]
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Then solutions of the equation are (allowing for complex coefficients)
(€ + iCyle—Wa-Kdt  gad  (Cg+iC,)e—ita+Kor
and the general solution is
u = {C +iCle He-Kdt 1 {Cf+iC)e o+t (8)

where C,, Cy, C;, €, are assumed real. Using Euler's formulas

e = cos# + ising, ¢°¥ = cos¢g — isine {9)
and the fact that « = x+ iy, {(8) can be written
2+ iy = (O] +iC{cos{a — K} — 1 gin(a — KM} + (Cy +iC ) {cos (o + K)t — i gin {a -+ K)#}
Equating real and imaginary parts, we find
x = Cicosla—K¥t + Cysinfa— K)t + Cgcosla+ K)t + C, sin{a+ Kt (16}
y = —C,sinfo— K} + C,cosla— KM — Cysinia+ KM + C, cosla+ Kt {11)

Using the initial condition x =0 at ¢=0, we find from (r¢) that C,+C; =90 or
Cy = —C,;. Similarly, using £ =0 at ¢t =0, we find from (I0} that

K-« g/l — wcos
o= alfs) = ol
! \K +a : g/t + wcosh

Now since w cosr is small compared with Vg/l, we have, to a high degree of approximation,
C.g = Cz‘

Thus equations (10) and {f1) become
z = Cycos(a— K}t + Cypsin{fa— Kt — C, cosla+ K}t + C,sinia+ K}t (#4:4]

y = —Csinfa—-K)t + Cycosla—K)t + C,sinle + K}t + C; cos{a+ Kt {1

Using the initial condition 3§ =0, (1$) yields ¢, = 0. Similarly using y= A at t=0, we
find C, = 4A. Thus (12} and (18} become

z = 44 sinfa— K)it + 1A sin{a+ K)t
¥ = 4Acos(a— K} + 1A cosla+ KM
or 2 = A cosKt sinat
14
¥ = A cosK¢ cosaf
i.e., *x = A cosVp/lt sin{wcosrt) 5)
15
¥ = A cosyg/lt coslwcosht)

Give a physical interpretation to the solution (15) of Problem 6.20.

In vector form, (15) can be writien

r = zi+ vy = Acosvglitn
where n = jsin{wcosrl + jcos(wcos it

is a unit vector.

The period of cos Vg/lt [namely, 27V 1/g] is very small compared with the period of n [namely,
2r/{w cos 1)), Tt follows that m is a very slowly turning vector. Thus physically the penduium
ogcillates in a plane through the z axiz which is slowly rotating (or preceszing) sbout the z axis.

Now at ¢ =0, n=3j and the bob ia at y = A. After a time ¢ = 2r/(4w cos)), for example,
n= éﬁ i+ é\ff j 8o that the rotation of the plane is proceeding in the clockwise direction as
viewed from above the earth’s surface in the northern hemisphere [where cosh > 0). In the
southern hemisphere the rotation of the plane is counterclockwise.

The rotation of the plane was observed by Foucault in 1851 and served to provide laboratory
evidence of the rotation of the earth about its axis.
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MISCELLANEOUS PROBLEMS

§.22,

6.23.

The vertical rod AB of Fig. 6-6 iz rotating with
constant angular velocity . A light inextensible
string of length ! has one end attached at point O
of the rod while the other end P of the string has a
mass m attached. Find (e) the tension in the string
and (b) the angle which string OP makes with the
vertical when equilibrium conditiors prevail.

Choose unit vectors i and k perpendicular and parallel
respectively to the rod and rotating with it. The unit vector
j can be chosen perpendicular to the plane of § and k. Let

r = laginedi — leosok
be the position vector of m with respect 1o O,

Three forces act on particle m

ity The weight, mg = —mmgk

ig. 6-6
(i) The centrifugal force, Fie. 6
—mieX (wX P} = —mifuk] X {{uk] X [fsinei—1cose ki)
= ~m{lek) X (o sing j)} = mwlsinei

{(iii) The tension, T = —Tginei + Tcose k

When the particle is in equilibrium, the resultant of all these forces is zero. Then

—mgk + moilsinei — Tsindi + Teosek = 0
ie., (mwtl ging — Tsingli + (Tcose —mpk = 0
or mitlaing — Tsing = 0 )
Teose —mg = 0 {£)

Solving (1) and (2) simultancousty, we find {8) T = mo?l, (b} & = coa~! {g/utl)

Since the string OP with masa m at P describe the surface of a cone the aystem is sometimes
called a conical pendilum.

A rod AOB [Fig. 6-7] rotates in a vertical plane [the yz plane] about a horizontal
axis through O perpendicular to this plane [the 2 axis] with constant angular
velocity ». Assuming no frictional forces, determine the motion of a particle P of
mass m which is constrained to move along the rod. An equivalent problem exists
when the rod AOB is replaced by a thin hollow tube ingide which the particle can move.

H B
NejA v
P
T 5
K o "
®
9 ¥
i
A
Fig. 6-7

At time ¢ let r be the position vector of the particle and & the angle made by the rod with
the y axis. Choose unit vectors j and k in the y and z directions respectively and unit vector
i=jxk Let r; be a unit vector in the direction r and #, a unit vector in the direction of
increaging 4.



158

6.24.

6.25.
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There are three forces acting on P;

(i) The weight, mg = —mgk = ~mg siné *, —my cos s #,

{it) The centrifugal force,

—mfe X (aX1)] = —mfeiX {wiXrr))

—mifoh(wh * 7r,) — vyl s oi)]

~m[0 —o?re,)] = malre

(iii) The reaction force N = N#, of the rod which is perpendicular to the rod since there are
no frictional or resistance forces.

Then by Newton’s second law,

1

2
mos = —mgk + mater; + NO
& . s
or Mmopg¥ = “myeinsr, — myg coz ¢ #; + mePrr; + N,

= (mw?r — mg sin &)r; + (N - mg con o)l

It follows that N = mg cos¢ and

dir/di? = o — gsine n
Since & = o, a constant, we have & = ot if we agsume # =0 at ¢=10. Then (1) becomes
d2r/dt?2 — o?r = —gsinwt (2
If we assume that at ¢ =0, r = ry, dr/dt = v, we find
= (D 208 To_ Y0 g Yoot 4 &g
r = +2m 4@2) ent | (2 2”+402 e + 2«'gasmmlb "
or in terms of hyperbolic functions,
- bl g\, g
r = rycoshet + (: - -2—02-7) sinh wt + E;gsinut {4)

(¢) Show that under suitable conditions the particle of Problem 6.23 can oscillate
along the rod with simple harmonic motion and find these conditions. (b) What
happens to the particle if the conditions of (a¢) are not satisfied?

(a} The particle will oacillate with simple harmonic motion along the rod if and only if », =0
and v, = /2w, In this case, r = (¢/2+% sinwt. Thus the amplitede and period of the simple
harmonic motion in such case are given by ¢/2.2 and 2r/w reapectively.

(b If v, = (g/20)—wr, then r = rpe—o 4+ (g/2u?) sinwt and the motion is approximately simple
harmonic after some time, Otherwise the mass will ultimately fly off the rod if it is finite.

A projectile located at colatitude x is fired with velocity ve in a southward direction
at an angle « with the horizontal. (a) Find the position of the projectile after time {.
{b) Prove that after time ¢ the projectile is deflected toward the east of the original
vertical plane of motion by the amount

tog 8in A 88 — ovecos{a—A) L2

{a) We use the equations of Problem 6.15. Assuming the projectile starts at the origin, we have
=0, y=0, 2=0 at t =10 (1)

Almo, the initial velocity is vy = vycosai + vysinak so that

x=vycosa, ¥=0, Z=1vy8ina at £=0 2
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Integrating equations (1), (2) and () of Problem 6.15, we obtain on using conditions (9,

z = Z2wcoshy + vpgosa ()
¥ —2{w cos A % + w sih X z) (4)
Z = —gt+ 2usinhy + vysina %)

Instead of attempting to solve these equations directly we shall use the method of iteration
ot successive approximations as in Method 2 of Problem 6.16. Thus by integrating and using
conditions ()}, we find

4
x = %cosxf ydu + (vg cosalt (6}
o
t [
¥ = —&acos)\f zdu — 2usinhf zdu {7
0 )
t
z = {yysina)t — 3912 + 20 sinkf ydu - {8}
0

As a firat guess we use 2 =0, y =0, z =0 under the integral signs. Then (8), (7} and (&
become, neglecting terms involving w?,

x = {vycosall (%)
z = {vgsinall — 4gt? (11

To obtain a better guess we now use (9), (i0) and (17) under the integral signs in (6), (?) and
{8), thus arriving st

2 = (vgcosal - (12)
¥ = —wvgceosla— A + Jugtd sin A un
z = (vpsina}t — Lgt? (14

where we have again neglected terms involving w2, Purther guesses again produce equations
(12), (13) and (I}), so that these equations are accurate up to terms involving o2

From equation (f8) we see that the projectile is deflected toward the east of the zz plane
by the amount Jugtdsin — avgcos(e— A} t3 If v, =0 this agrees with Problem 6.16.

Prove that when the projectile of Problem 6.25 returns to the horizontal, it will be at
the distance

o¥ 8in?

357 (8 cosacosr + sinasina)

to the west of that point where it would have landed assuming no axial rotation
of the earth.

The projectile will return to the horizontal when z =10, ie.,

(voginalt — Jgt2 = 0 or t = (2v, sinaly

Using this value of ¢ in equation (18) of Problem 6.25, we find the required result.
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Supplementary Problems

ROTATING COORDINATE SYSTEMS. VELOCITY AND ACCELERATION

52

6.33.
v

An ryz coordinate system moves with angular velocity o = 2i—3j+ 6k relative to a fixed or
inertial XYZ coordinate system having the same origin. If a vector relative to the xyz system
is given as a function of time # by A = sginti — costj + e tk, find (a) dA/dt relative to
the fixed system, (b) dA/dt relative to the moving system.
Ans. laY Bcost —3e N + Bsin? - 2e 1 + (3sint —2cost— e Yk

by costi + sintj— ¢ 'k

Find d?A/d? for the vector A of Problem 6.27 relative to (a} the fixed system and (b) the moving
system.
Ans. {a) (Bcost — 45 sint + 16e 1 + {40 cost — 6 sint — 1le79)j
+ (10 sint — 23 cost + 16e 1)k
(b) —sinti 4+ costj+ e 'k

An xyz coordinate system is rotating with angular velocity o = Bi—4j— 10k relative to a fixed
XYZ coordinate system having the same origin. Find the velocity of a particle fixed in the xyz
system at the point 13, 1, --2} as seen by an observer fixed in the XYZ system.

Ang, 181 — 205+ 17k

hscuss the physical interpretation of replacing » by —w in (a} Problem 6.4, page 148, and
(d) Problem 6.6, page 149.

Explain from a physical point of view why you would expect the resuit of Problem 6.3, page 148,
to be correct.

An ryz coordinate system rotates with angular velocity o == costi+ siné j+ k with respect to 2
fixed XYZ coordinate system having the same origin. If the pogition vector of a particle is given
by r = sinti—costj+ th, find (a) the apparent velocity and (b) the true velocity at any
time {. Ans. (o} costi + sinéj + k (b) (tsint + 2cost)i + (2sint — fcosd)j

Determine (@) the apparent acceleration and (b) the true acceleration of the particle of
Problem 86.32.

Ans. (q) —sint i+ costj by (22 cosf — Bsind)i + (Beost + 2isind)j + {1 — HHk

CORI0OLIS AND CENTRIPETAL ACCELERATIONS AND FORCES

6.34.

6.35.
6.36.

6.37.

6.38.

6.39.

6.40.

6.41,

A ball is thrown horizontally in the northern hemisphere. {a) Would the path of the ball,
if the Coriolis foree is taken into account, be to the right or o the left of the path when it is not
taken into account as viewed by the person throwing the ball? (b) What would be your answer
to (a) if the ball were thrown in the southern hemisphere? Ans. {a) to the right, (b) to the left

What would be your answer to Problem 6.34 if the ball were thrown at the north or south poles?

Explain why water running out of a vertical drain will swirl counterclockwise in the northern
hemisphere and c¢lockwise in the southern hetnisphere. What happens at the equator?

Prove that the centrifugal force acting on s particle of mass m on the earth’s surface is a
vector (a) directed away from the earth and perpendicular to the angular velocity vector « and
16y of magnitude mw?R sin x where » is the colatitude.

In Problem 6.37, whére would the centrifugal force be (@) a maximum, (¥ a minimum?
Ans. {a) at the equator, (b) at the north and south poles.

Find the centrifugal force acting on a train of mass 100,000 kg at (a) the equator (b} colatitude 30°,
Ans. {a) 343 N, (b 1TLBN

{a) A river of width D fows northward with a speed v, at colatitude A, Prove that the left bank
of the river will be higher than the right bank by an amount equal to

(2001 08 M) g2 + 4lv? cos?r) 12
where « is the angular speed of the earth about its axis.

(b) Prove that the result in part {a) is for all practical purposes equal to (2Dwvy cos M)y,

If the river of Problem 6.40 is 2 km wide and flows at a speed of 5 km/h at colatitude 45°, how much
higher will the left bank be than the right bank? Ans. 2.8 em
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6.42.

§.43,

An automebile rounds a curve whose radius of curvature is p. If the coefficient of frietion is g,
prove that the greatest speed with which it can travel so as not to slip on the road is Vipg-

Determine whether the automobile of Proldem 6.42 will slip if the speed is 100 kmth, « = .05 and
(a} p = 150 m, {b) p = 15 m. Discuss the results physically.

MOTION OF A PARTICLE RELATIVE TO THE EARTH

644

6.45.

.46

6.47.

6.48.

649.

6.30.

6.52.

An object is dropped at the equator from a height of 400 meters. If air resistance is neglected,
how far will the point where it hits the earth’s surface be from the point vertically below the
initial position? Ans. 178 em toward the east

Work Problem 6.44 if the object is dropped ({a} at colatitude 60” and (b} at the north pole.
Ans. {a) 15.2 cm toward the east

An object is thrown vertically upward at colatitude x» with speed v, Prove that when it
returns it will be at a distance westward from its starting point equal to (dwv} sin 2)/3g2.

An object at the equator 15 thrown vertically upward with a speed of 100 km/h. How far from its
inital position will it land? Ans. 2.17 em

With what speed must the object of Problem 6.47 be thrown in order that it return to a point
«m the earth which i3 6 m from its original position?y Ans. 651.6 km/h

An object is thrown downward with initial speed v,. Prove that after time { the abject is
deflected east of the vertical by the amount

wvg sin X ¢+ Leg sina &

Prove that if the object of Problem 6.49 is thrown downward from height A above the earth’s
surface, then it will hit the earth at a point east of the vertical at a distance

Q ;;'; X (VT T 2gh — vyt w2 + 2gh + 2v)

Suppose that the mass m of a conical penrdulum of length ! moves in a horizontal circle of
radius a. Prove that (a) the speed is a\/}fv‘ 2—4a2 and (b) the tension in the string is

myglfyie—al,

It an object is dropped to the earth’s surface prove that its path is a semicubical parabola,

THE FOUCAULT PENDULUM

6.53.

6.54.

6.55.

Explain physically why the plane of oscillation of a Foucault pendulum should rotate clockwise
when viewed from above the earth’s surface in the northern hemisphere but counterclockwise in
the southern hemisphere,

How long would it take the plane of oscillation of a Foucault pendulum to make one complete
revolution if the pendulum is located at {(a) the north pole, (b} colatitude 45°, {(¢) colatitude 85°?

Ans. (2) 23.84 b, (b) 33.86h, (¢) 92.50 h

Explain physically why a Foucault pendulum situated at the equator would not detect the
rotation of the earth about its axis. Is this physical result supported mathematically? Explain.

MOVING COORDINATE SYSTEMS IN GENERAL

?6’.

" An xzyz coordinate system rotates about the z axis with angular velocity o = costi-+ sint]

relative to a fixed X¥Z coordinate system where ¢ is the time. The origin of the ayz system
has position vector R = ¢i—j+ 2k " with respect to the XYZ system. If the position vector of
a particle is given by r = (8¢ + 1)i — 2tj + bk relative to the moving system, find the (a) apparent
velocity and (4) true velocity at any time.

Determine (¢} the apparent acceleration and (b} the true acceleration of the particle in
Problem 6.56.

Work (a) Problem 6.5, page 148, and (b) Problem 6.7, page 149, if the position vector of the
ayz system relative to the origin of the fixed X¥Z system is B = % — 2tj + bk
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MISCELLANEOUS PROBLEMS

6,39,

6.60.

6.61.

6.62,

6.63.

6.64,

6.65.

6.66,

6.67.

6.68.

5.69,

6.70.

6.71.

6.72.

6.73.

Prove that due to the rotation of the earth about its axis the apparent weight of an object of

mass m at colatitude X is my(g — «*R sin22)2 + (u2R sinA cos 3} where R iz the radius of
the earth.

Prove that the angle g which the apparent vertical at colatitude A makes with the true wvertical
. 2R sin A cos A
is given by t SR SRnesA
s B y tan g g — w2R sin?a
Explain physically why the true vertical and apparent vertical would coincide at the eguator
and also the north and south poles.

A stone is twirled in a vertical circle by a string of length 3 m, Prove that it must have a speed of al
least 11 m/s at the bottom of its path in order to complete the cirele.

A car C [Fig. 6-8) is to go completely around the vertical
circular loop of radius ¢ without leaving the track.
Assuming the track is frietionless, determine the height
H at which it must start. ‘IV

A particle of mass m is constrained to move on a friction- H a
less vertical circle of radius @ which rotates about a fixed
diameter with constant angular speed ». Prove that the
particle will make small oscillations about its equilibrium
position with a frequency given by 2raw/Va2ut — g2

Diseuss what happens in Problem 6.64 if o = Vg/a. Fig. 6-8

A hollow cylindrical tube AOB of length 2a [Fig. 6.9]

rotates with constant angular speed « about a vertical @
axis through the center &. A particle is initially at rest

in the tube at a distance b from 0. Assuming no frie-

tional forces, find (a} the position and (b} the speed of

the particle at any time.

(a) How long will it take the particle of Problem 6.66 to [ : - D
come out of the tube and (b} what will be its speed as

ot m) Fig. 6-9
b

it leaves? Ans. {a) 1 In (
(g

Find the force on the particle of Problem 6.66 at any position in the tube.

A mass, attached to a string which is suspended from a fixed point, moves in a horizontal eircle
having center wvertically below the fixed point with a speed of 20 revolutions per minute,
Find the distance of the center of the circle below the fixed point. Ans. 2.23 meters

A particle on a frictionless horizontal plane at colatitude ) is given an initial speed v, in a
northward direction. Prove that it describes a circle of radius vy/(2w0 cos)\) with period »/(w cosi).

The pendulum bob of a conical pendulum describes s horizontal circle of radius 4. If the length
of the pendulum is !, prove that the period is given by 4s3V/I? — a?/g.

A particle constrained to move on a circular wire of radius o and coefficient p is given an initial
velocity v, Assuming no other forces act, how long will it take for the particle to come to rest?

(a) Prove that if the earth were to rotate at an angular speed given by V2¢/R where R is its
radius and g the acceleration due to gravity, them the weight of a particle of mass m would be
the same at all latitudes. (b) What is the numerical value of this angular speed?

Ang. (b) 1.7T4 X 10-2 rad/s
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6.74.

6.75.

6.76.

6.77.

6.78.

6.79.

680,

5.81.

.52,

6.83.

6.84.

6.85.

.87,

A cylindrical tank containing wafter rotates about ita axis with constant angular speed o
so that no water spills out. Prove that the shape of the water surface is a paraboloid of revolution.

Werk {a) Problem 6.16 and (b) Problem 6.17, accurate to terms involving o2

Prove that due to the earth’s rotation about its axis, winds in the northern hemisphere traveling
from a high pressure area to a low pressure area are rotated in a counterclockwise sense when
viewed above the earth’s surface. What happens to winds in the southern hemisphere?

{a} Prove that in the northern hemisphers winds from the north,
east, south and west are deflected respectively toward the weast,
north, east and south as indicated in Fig. 6-10. (b) Use this to
explain the origin of cyclones.

Find the condition on the angular speed so that a particle will
describe a horizontal circle inside of a frictionless vertical cone
of angle a.

Work Problem 6.78 for a hemisphere. Fig. 6-10

The period of a simple pendulum is given by £. Prove that its period when it is suspended from
the ceiling of a train moving with speed v, around a circular track of radius p iz given by

4
PVog Vi + o252
Work Problem 8.25 accurate to terms involving 2.

A thin hollow cylindrical tube Q4 inclined at angle a with the
horizontal rotates about the vertical with constant angular speed o
[see Fig. 6-11]. If a particle constrained to move in this tube is
initially at rest at a distance & from the intersection O of the tube
and the vertical axis of rotation, prove that ita distance » from O
at any time t is r = g cosh (ut sine) — (g eos aH2.

Work Problem 6.82 if the rod has coefficient of friction u.

Prove that the particle of Problem 6.82 is in stable equilibrium
between the distatices from O given by

gsine{l—utana and g sina 1+pt,ana)
wk tana+ o w? tan e — g

agsuming tana < 1/g, Fig. 6-11

A train having a maximum speed equal to v, is to round a curve with radius of curvature p. Prove
that if there is to be no lateral thrust on the outer track, then this track should be at a

height above the inner track given by ev}/v/ vl + p2p? where e is the distance between tracks.

A projectile is fired at colatitude A with velocity v, directed toward the west and at angle o with
the horizontal. Prove that if terms involving ? are neglected, then the time taken to reach
the maximum height is

Vo 8in a 2,95 gin X 8in o cos &

¢ o2
Compare with the case where o = 0, ie. that the earth does not rotate about its axis.

In Problem 6.86, prove that the maximum height reached is
visin?a  20%)sin ) sin?a cosa

2g 92
Compare with the case where o =0.
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6.88.

6.89.

6.90,

6.91.

6.92.

6.93.

6.94,

6.95.
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Prove that the range of the projectile of Froblem 6.86 is

v gin 2a wvd sin « sin » (8 sinZa — )
g + 8g2

Thus show that if terms involving «»? and higher are neglected, the range will be larger, smaller
ot the same as the case where o = 0, according as a > 60°, « << 60° or « = 60° respectively.

If a projectile is fired with initial velocity v,i + v,i + vk from the origin of a coordinate system
fixed relative to the earth’s surface at colatitude A, prove that its position at any later time ¢
will be given by

x = it + wvztz cos A
¥ = vt — wt¥v; cosh + v3sind) + Jogtd sink
z = vyt — gt? + avytsink

neglecting terms involving w2,
Work Problem 6.89 so as to include terms involving w? bui exclude terms involving o2

An object of mass m initially at rest is dropped from height A to the earth's surface at colatitude A,
Assuming that air resistance proportional to the instantaneous speed of the object is taken into
account as well as the rotation of the earth about its axis, prove that after time ¢ the object is
deflected east of the vertical by the amount

E&’% [lg — 21821 — e~Bt) + p3hte~Bt — gyt + Lgp2te

neglecting terms eof order »? and higher,
Work Problem 6.91, obtaining accuracy up to and including terms of order 2.

A frictionless inclined plane of length { and angle « located at colatitude X is so situated that
a particle placed on it would slide under the influence of gravity from north to south. If the
particle starts from rest at the top, prove that it will reach the bottom in a time given by

a7 + 2wl sin X cos a
g sina 3¢

and that its speed at the bottom is

Veglsing — #ul sina cosa sin

neglecting terms of order 2.

(2) Prove that by the time the particle of Problem 6.93 reaches the bottom it will have undergone
a deflection of magnitude

2l 21

3 ¢ sine

cos (a+ M)
to the east or west respectively according as cos{a+ ) is greater than or less than zero.

(b) Discuss the case where cos{a-+r)=0. (¢} Use the result of (a) to arrive at the result
of Problem 6.17.

Work Problems 6.93 and 6.94 if the inclined plane has coefficient of friction ..




Chapter 7 " SYSTEMS
of PARTICLES

DISCRETE AND CONTINUOUS SYSTEMS

Up to now we have dealt mainly with the motion of an object which could be considered
as a particle or point mass. In many practical cases the objects with which we are concerned
can more realistically be considered as collections or systems of particles. Such systems
are called discrete or continuous according as the particles can be considered as geparated
from each other or not.

For many practical purposes a discrete system having a very large but finite number
of particles can be considered as a continuous system. Conversely a continuous system can
be considered as a discrete system consisting of a large but finite number of particles.

DENSITY

For continuous systems of particles occupying a region of apace it is often convenient to
define a mass per unit volume which is called the volume density or briefly density.
Mathematically, if aM is the total mass of a volume Ar of particles, then the density can
be defined as

)

The density is a function of position and can vary from point to point. When the density
is a constant, the system ig said to be of uniform density or simply uniform.

¢ = lim
Lt =D AT

When the continuous system of particles occupy a surface, we can similarly define a
surface density or mass per unit area. Similarly when the particles occupy a line {or curve]j
we can define a mass per unit length or linear density.

RIGID AND ELASTIC BODIES

In practice, forces applied to systems of particles will change the distances betweéen
individual particles. Such systems are often called deformable or elastic bodies. In some
cases, however, deformations may be so slight that they may for most practical purposes
be considered non-existent. It is thus convenient to define a mathematical model in which
the distance between any two specified particles of a system remains the same regardiess
of applied forces. Such a system is called a rigid body. The mechanics of rigid bodies is
considered in Chapters 9 and 10,

DEGREES OF FREEDOM

The number of coordinates required to specify the position of a system of one or more
particles is called the number of degrees of freedom of the system.

Example 1.

A particle moving freely in space requires 3 coordinates, e.g. (r,v,7), to specify its position. Thus
the mumber of degrees of freedom is 3. ’

-

- A
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Example 2,
A gystem consisting of N particles moving freely in space requires 3N coordinates to specify its
position. Thus the number of degrees of freedom is 3N.

A rigid bedy which can move freely in space has 6 degrees of freedom, i.e. 6 coordinates
are required to specify the position. See Problem 7.2.

CENTER OF MASS

Iet ryrs,...,ry be the position veetors of a system of N particles of masses
my, My, ..., my respectively [see Fig. 7-1].

The center of mass or centroid of the system of particles is defined as that point C
having position vector

- Mk + Mk + - -+ + WNTN 1 X
— = — LY,
¥ mi+me+ -+ mpy M,z, st @

N
where M = 3 m, is the total mass of the system. We sometimes use 2, or simply 3
»

p=1 .

N
in place of Y, .

=1

Fig.7-1 Fig.7-2

For continuous systems of particles occupying a region ® of space in which the
volume density is o, the center of mass can be written

f erdr
R

P o= (8)
f odr
. )
where the integral is taken over the entire region R [see Fig. 7-2]). If we write
F=2&i+@i+2k r = xi+yj+ak
then (2) and (3) can equivalently be written as

s Z mva - _ E mu'yp : - z mvzlf 4
J;ondf Loydr j:xo-zd'r
a]’]d €T = —M—-—, ¥ = T’ z2 = T (5)
where the total mass is given by either

or M = J:Rard'r (7)
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'The integrals in (8), (5) or (7) can be single, double or triple integrals, depending on
which may be preferable.

In practice it is fairly simple to go from discrete to continuous systems by merely
replacing summations by integrations. Consequently we will present all theorems for
discrete systems,

CENTER OF GRAVITY .

If a system of particles ig in a uniform gravitational field, the center of mass is some-
times called the center of gravity.

MOMENTUM OF A SYSTEM OF PARTICLES
If v, =dr./dt = r, is the velocity of m,, the total momentum of the system is defined as

N N
P = 2 My Vo = 2 my i‘u (8)
vl »=1

We can show [see Problem 7.3] that
df

pzM\'r:ME,E:Mé 9

where ¥ = di/dt is the velocity of the center of mass.

Thig is expressed in the following

Theorem 7.1, The total momentum of a system of particles can be found by multiplying
the total mass M of the system by the velocity v of the center of mass.

MOTION OF THE CENTER OF MASS

Suppose that the internal forces between any two particles of the system obey Newton’s
third law, Then if F is the resultant external force acting on the system, we have {sce
Problem 7.4

° ] dp _ &% v

= MG = MY

F i

(10)
This is expressed in

Theorem 7.2. The center of mass of a system of particles moves as if the total mass
and resultant external force were applied at this point.

CONSERVATION OF MOMENTUM
Putting F =0 in (10}, we find that

N
p = ¥mv, = constant (11

r=1

Thus we have

Theorem 7.3. If the resultant external force acting on a system of particles is zero,
then the total momentum remains congtant, i.e. is conserved. In such cage the center of mass
is either at rest or in motion with constant velocity.

This theorem is often called the principle of conservation of momentum. It is a generaliza-
tion of Theorem 2-8, page 37.
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ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES
The quantity N

e = > mnxv) (12)
¥=1

is called the total angular momentum jor moment of momentum] of the system of particles
about origin O.

THE TOTAL EXTERNAL TORQUE ACTING ON A SYSTEM

If F, is the external force acting on particle v, then r. X F, is cailed the moment of the
force F. or torque about 0. The sum

N
A = I nxF (19)
v=1

is called the total external torque about the origin.

RELATION BETWEEN ANGULAR MOMENTUM AND
TOTAL EXTERNAL TORQUE

If we assume that the internal forces between any two particles are always directed
along the line joining the particles [i.e. they are central forces], then we can show as in
Problem 7.12 that an
Thus we have

Theorem 74. The total external torque on a system of particles is equal to the time
rate of change of the angular momentum of the system, provided the internal forces
between particles are central forces.

CONSERVATION OF ANGULAR MOMENTUM
Putting A =0 in (14), we find that

N
g = Smirnxv) = constant (15
¥=1
Thus we have

Theorem 7.5. If the resultant external torque acting on a system of particles is zero,
then the total angular momentum remains constant, i.e. is conserved.

This theorem is often cailed the principle of conservation of angular momentum. It is the
generalization of Theorem 2.9, page 37.

KINETIC ENERGY OF A SYSTEM OF PARTICLES
The total kinetic energy of a system of particles is defined as

T = l%mﬂz = lzntmi-g (16)
- 2v=1 n - 2:-r=1 o

WORK

If ¥, is the force {external and internal) acting on particle v, then the total work done
in moving the system of particles from one state [symbolized by 1] to another [symbolized

by 2} is N R
Wi = j:f‘.,-dr., b ¥4}

=1
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As in the case of a single particle, we can prove the following

Theorem 786. The total work done in moving a system of particles from one state
where the kinetic energy is T: to another where the kinetic energy is T, is

W]z = Tz - Tl (18)

POTENTIAL ENERGY. CONSERVATION OF ENERGY

When all forces, external and internal, are conservative, we can define a total potential
energy V of the system. In such case we can prove the following

Theorem 77. If T and V are respectively the total kinetic energy and total potential
energy of a system of particies, then

T +V = constant (19)

This is the principle of conservation of energy for systems of particles.

MOTION RELATIVE TO THE CENTER OF MASS

It iz often useful to describe the motion of a system of particles about [or relative to]
the center of mass., The following theorems are of fundamental importance. In all cases
primes denote quantities relative to the center of mass.

Theorem 7.8. The total linear momentum of a system of particles about the center
of mass is zero. In symbols,

N
Smv, = Somi = 0 (20)
=1

Theorem 7.9. The total angular momentum of a system of particles about any point O
equals the angular momentum of the total mass assumed to be located at the center of mass

plus the angular momentum about the center of mass, In symbols,
N

0 = FXMV + 2 mr,xv) (21)
=1
Theorem 7.10. The total kinetic energy of a system of particles aboui any point O
equals the kinetic energy of translation of the center of mass [assuming the total mass
located there] plus the kinetic energy of motion about the center of mass. In symbols,

T = ; M + L ): (22)

Theorem 7.11. The total external torque about the center of mass equals the time rate

of change in angular momentum about the center of mass, i.e. equation (14) helds not
only for inertial coordinate systems but also for coordinate systems moving with the
center of mass. In symbeols, i

A=

If motion is described relative to points other than the center of "'mass, the results
in the above theorems become more complicated.

(28)

IMPULSE
If F is the total external force acting on a system of particles, then
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-£ " Fat (25)

1

is called the total linear impulse or briefly total impulse. As in the case of one particle,
we can prove

Theorem 7.12, The total linear impulse is equal te the change in linear momentum.

Similarly if A is the total external torque applied to a system of particles about origin O,
then

t

Adt ) (25)

fy
is calted the total angular impulse. We can then prove

-

Theorem 7.J3. The total angular impulse is equal to the change in angular momentum.

CONSTRAINTS. HOLONOMIC AND NON-HOLONOMIC CONSTRAINTS

Often in practice the motion of a particle or system of particles is restricted in some
way. For example, in rigid bodies [considered in Chapters 9 and 10] the motion must be such
that the distance between any two particular particles of the rigid body is always the same.
As another example, the motion of particles may be restricted to curves or surfaces.

The limitations on the motion are often called constraints. If the constraint condltlon
can be expressed as an equation

oy, s, ..., x5, ) = 0 (26')

connecting the position vectors of the particles and the time, then the constraint is called
holonomic, If it cannot be so expressed it is called non-holonomic.

VIRTUAL DISPLACEMENTS

Consider two possible configurations of a system of particles at a particular instant
which are consistent with the forces and constraints. To go from one configuration to
the other, we need only give the vth particle a displacement 8r, from the old to the new
position. We call 8r, a virtual displacement to distinguish it from a true displacement
[denoted by dr.,j which occurs in a time interval where forces and constraints could be
changing. The symbol 3 has the usual properties of the differential d; for example,
8(sind) = cos g 56.

STATICS OF A SYSTEM OF PARTICLES.
PRINCIPLE OF VIRTUAL WORK

In order for a system of particles to be in equilibrium, the resultant force acting on each
particle must be zero, i.e. F, =0. It thus follows that F,-8r,=0 where F,-$8r, is called
the virtual work. By adding these we then have

N
2F 8t = 0 (27)
p=}
If constraints are present, then we can write
F, = F* + F© ' (28)
where F{® and F{© are respectively the actual force and constraint force acting on the »th

particle. By assuming that the virtual work of the constraint forces is zero [which i3 true
for rigid bodies and for motion on curves and surfaces without friction], we arrive at
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Theorem 7.I4. A system of particles is in equilibrium if and only if the total virtual
work of the actual forces is zero, i.e. if

N
2 F:a} * 81'» = 0 (29)
v=1

This is often called the principle of virtual work.

EQUILIBRIUM IN CONSERVATIVE FIELDS.
STABILITY OF EQUILIBRIUM

The results for equilibrium of a particle in a conservative force field [see page 38]
can be generalized to systems of particles. The following theorems summarize the bagic
results.

Theorem 7.15. 1f V is the total potential of a system of particles depending on

coordinates ¢, q,, ..., then the system will be in equilibrium if
av Vv
— =0, — =10, ... 1
3, 3, 0 (81)
Bince the virtual work done on the gystem is
oV av
8V = ESQ‘] + -5&;8112 + .-

(81) is equivalent to the principle of virtual work.

Theorem 7.16. A system of particles will be in stable equilibrium if the potential V
is a minimum.

In case V depends on only one coordinate, say q,, sufficient conditions are

i‘[_o *Vv
aq, f}qsa

Other cases of equilibrium where the potential is not a minitnum are called unstable.

>0

D’ALEMBERT’S PRINCIPLE

Although Theorem 7.14 as stated applies to the statics of a system of particles, it can be
restated so as to give an analogous theorem for dynamies. To do thls we note that according
to Newton’s second law of motion,

Fp = bp or Fp _ﬁp == 0 (30)

where p, is the momentum of the vth particle. The second equation amounts to saying
that a moving system of particles can be considered to be in equilibrium under a force
F, - p., i.e. the actual force together with the added force —p. which is often called the
reversed effective force on particle v. By using the principle of virtual work we can then
arrive at .

Theorem 7.17. A system of particles moves in such a way that the total virtual work
N
SFO—p)sr, = 0 (22)
=}

With this theorem, which is often called D’Alembert’s principle, we can consider dynamics
as & special case of statics.
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Solved Problems
DEGREES OF FREEDOM

7.1. Determine the number of degrees of freedom in each of the following cases:
(a) a particle moving on a given space curve; (b) five particles moving freely in a
plane; (¢) five particles moving freely in space; (d) two particles connected by a
rigid rod moving freely in a plane.

(¢} The curve can be described by the parametric equations = = z(s), ¥ = y{e), 2 = z(2) where

8 is the pavameter. Then the position of a particle on the curve is determined by specifying
one coordinate, and hence there is one degree of freedom.

(b) Each particle requires two coordinates to specify its position in the plane. Thus §.2 = 10
coordinates are needed to specify the positions of all 5 particles, i.e. the system has 10 degrees
of freedom.

{¢) Since each particle requires three coordinates to specify its position, the system has 5+3 = 1§
degrees of freedom,
{(d}) Method 1.

The coordinates of the two particles can be expressed by (x,,%,) and (x, y), i.e. a total
of 4 coordinates. However, since the distance between these points iz a constant a [the length
of the rigid rod], we have (x;— ;)% + (y; — ¥2)2 = a? so that one of the coordinates can be
expressed in terms of the others. Thus there are 4 —1 =3 degrees of freedom,

Method 2.

The motion is completely specified if we give the two coordinates of the center of mass
and the angle made by the rod with some specified direction. Thus there are 2+ 1 =3 degrees
of freedom.

7.2. Find the number of degrees of freedom for a rigid body which (a) can move freely
in three dimensional space, (b} has one point fixed but can move in space about
this point.

(&) Method 1.

If 3 non-collinear points of a rigid body are fixed in space, then the rigid body is also fixed
in space. Let these points have coordinates (x,, ¥y, %), (€, s, 23), (®5, 3, 25) Tespectively, a total
of 9. Since the body is rigid we muat have the relations

(2 — %)% + (y,— )2 + (2, — 25)® = comstant, {x, — 2302 + (yo— ¥p)? + (2p— £33 = constant,
(wa— %)% + (w3 —w)? + (23— 2,2 = constant

hence 3 coordinates can be expressed in terms of the remaining 6. Thus 6 independent
coordinates are needed to describe the motion, i.e. there are 6 degrees of freedom.

Method 2.

To fix one point of the rigid body requires 3 coordinates. An axis through this point
is fixed if we specify 2 ratios of the direction cosines of this axis. A rotation about the axis
can then be described by 1 angular coordinate. The total number of coordinates required,
i.e. the number of degrees of freedom, is 3+2+1=6.

(b The motion is completely specified if we know the coordinates of two points, say (zy ¥y, %))
and (zy, ¥2, 75}, where the fixed point is taken at the origin of a coordinate system. But since
the body is rigid we must have

2t + 43 + 23 = constant, a:§+ ¥i+4 22 = constant, (z;, — 202+ (4, — ¥2)2 + (2, — 2,)2 = constant

from which 8 coordinates can be found in terms of the remaining 3. Thus there are 3 degrees
of freedom,

CENTER OF MASS AND MOMENTUM OF A SYSTEM OF PARTICLES

7.3. Prove Theorem 7.1, page 167: The total momentum of a system of particles can be
found by multiplying the total mass M of the system by the velocity ¥ of the center
of mass,



CHAP. 7] SYSTEMS OF PARTICLES 178

4.

75.

7.6.

73.

Zmr,
The center of mass iz by definition, # = ”

Then the total momentum is p = 2 m,v, = Lm b, = Mdidt = M%.

Prove Theorem 7.2, page 167: The center of mass of a system of particles moves
ag if the total mass and resultant external force were applied at this point.

Let F, be the resultant external force acting on particle » while f,, is the internal force on
particle » due to particle A, We shall assume that f,, =0, ie. particle » does not exert any
force on itgelf,

By Newton’s second law the total force on particle » iz

_ dn, a2
Fv + ?rvl = _d_f - '&?f(mv r,) {1)

where the second term on the left represents the resultant internal force on particle » due to all
other particles.

Summing over » in equation (1), we find
o2
2 F, + 2 2 f, = ae {2 "y 1‘,,} £
v ¥ooA Fy

Now according to Newton’s third law of action and reaction, [, = —1f,, so that the double
summation on the left of (2} is zero. If we then write

1
F = gl’, and P = Egm,,r, *
(2) becomes F = M % “4)

Since F is the total external force on all particles applied at the center of mass B, the required
result iz proved. )

A system of particles consists of a 3 gram mass located at (1,0,-1), 2 5 gram mass
at (—2,1,3) and a 2 gram mass at (3, —1,1). Find the coordinates of the center of mass.

The position vectors of the particles are given respectively by
nn=t—k r=-2+j+3, r =3i~j+k
Then the center of maas is given by

_ M-+ S(2+irsk)F2@i-j+k) _ 1. 8, 7
= 31642 = it ig) t gk

Thus the coordinates of the center of mass are (—, %, §).

Prove that if the total momentum of a aystem is constant, i.e. is conserved, then the
center of mass is either at rest or in motion with constant velocity.

The total momentum of the system is given by

. d d [Xm,r, b
p = Em,v,, = Em"rv = R'Ezmvrw = M&_t_{ Mv v} - ME

Then if p is conatant, so alse {8 dE/dt, the velocity of the centar of mass,

Explain why the ejection of gases at high velocity from the rear of a rocket will move
the rocket forward,

Since the gas particles move backward with high velocity and since the center of mass doea
not move, the rocket must move forward. For applications involving rocket motion, see Chapter B.
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7.8,

7.9’

SYSTEMS OF PARTICLES [CHAP. 7

Find the centroid of a solid region ® as in Fig. 7-3. %

Consider the volume element ar, of the solid. The
mass of this volume element is
AM, = o,Ar, = ¢,Arx, Ay, Az,

where ¢, is the density [mass per unit volume] and
ax,, Ay, Az, are the dimensions of the volume element.
Then the centroid iz given approximately by

Sr,aM, 2r,9,87, 31,0, Ax, Ay, A7,
py aM, - ) o, AT, - p) o, A%, Ay, Az,
where the summation is taken over all volume elements :
. Fig.7-3
of the solid.

Taking the limit as the number of volume eclements becomes infinite in such a way that
Ar, = 0 or Ax,— 0, &y, — 0, Az, ~ 0, we obtain for the centroid of the solid:

f rdM J- redr J:rf rodedydz
R R R

f = ——— = =

f dM f ods j:ff odx dydz
® R A

where the integration is to be performed over ®, as indicated.

Writing r = i+ yi+ 2k, # = 2i + §j + 2k, this can also be written in component form as

e ([fas S o
= f{fadxdydz’ vo= f{fadxdydz’ . f{f,dxdydz

Find the centroid of the region bounded by the plane x+y+2z=a and the planes
x=0, y=0, z=0,

The region, which is a tetrahedren, iz indicated in Pig. 7-4. To find the centroid, we use
the results of Problem 7.8.

In forming the sum over all volume elements of the region, it is advisable to proceed in an
orderly fashion. One possibility is to add first all terms corresponding to volume elements
contained in a column such as PQ in the figure. This amounts to keeping x, and y, fixed and
adding over all z,. Next keep x, fixed but sum over all y,. This amounts to adding all columns,
such as PQ, contained in a slab RS, and consequently amounts to summing over all cubes contained
in such a slab, Finally, vary #,. This amounts to addition of all slabs such as RS.

In performing the integration over R, we use these
same ideas. Thus keeping x and ¥ constant, integrate
from z = 0 [base of column PQ]to z=a—x—y [top
of colamn P@Q]. Next keep x constant and integrate
with respect to y. This amounts to addition of columns
having bases in the xy plane [z = 0] located anywhere
from R [where y = 0] to S [where x+y =a or y=
a -~ %], and the integration ig from y =0 toy =a—=.
Finally, we add all slabs parallel to the ¥z plane, which
amounts to integration from x=0 to x=a. We
thus obtain

a—x G—I—W
J« f J. o (214 yi+ 2k) dz dy dx
_ =0 *y=0

2

z=0

L ——
j“ f f odzdy de Fig. 7-4
z=0 Vy=0 vz=0

Since o is constant in this case, it may be cancelled. The denominator without ¢ is evaluated
to be a%/6, and the numerator without o is (e4/24)(i-+j+k). Thus the center of mass is
F=(a/){i-+tj+ k) or 2=ald, §=afd, Z=ald

o
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110, Find the centroid of a semi-circular region of radius a.

Method 1. Using rectangular coordinates.

Choose the region asg in Fig. 7-5. The equation of the circle C iz 22+ y2 =a? or y = Va2 — 22
since ¥ = 0.

If ¢ is the mass per unit area, assumed constant, then the coordinates of the centroid

are given by
a ,,u'cs_xa
f rodd xdy dx J- f xdy de
r=-—-ga

4 = R _ X = 0

J' cdA f dy dx f J"’“' dy de

R R r= —g
dA ff v dy dz f f G dy dz
; f ve o _ 2aM3 _ 4a
= = 2 - 3
f e dA f dy dx J' J'“"‘ = T
‘R 3__0 =

Note that we can write £ = 0 immediately, since by symmetry the centroid is on the y axis.
The denominator for ¥ can be evaluated without integrating by noting that it represents the
semi-circular area which is ira2

¥ ¥
c r=a
de
cdAd =
§ ordrds x
-
Fig. 7-5 Fig. 7-6

Method 2. Using polar coordinates.

The equation of the circle is r = a [see Fig. 7-6]. As before, we see by symmetry that the
centroid must lie on the y axis, so that 2 =0. Since y=rging and dA =rdrds in polar
coordinates, we can write

f vedd f f {rsind)rdrde
® _ 233 _ 4a

=1

= = 5 =
f v dA J‘ f rdrde na*/2 3r
R =0 r=0

711. Find the center of mass of a uniform solid hemisphere of radius a.

By symmetry the center of mass lies on the
z axis [see Fig, 7-7]. Subdivide the hemisphere
jnto solid circular plates of radius », such as
ABCDEA. 1If the center G of such a ring is at
distance z from the center O of the hemisphere,
2+ 22 = a®. Then if dz is the thickness of the
plate, the volume of each ring is

srids = w{at—z2) dz
and the mass is mof{a2— 22 dr. Thus we have

fa wozia? — 28 dz

5 = z=0 = ga

- 3
f re(a? — 22} dz Fig. 7-7

=0
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ANGULAR MOMENTUM AND TORQUE

712

Prove Theorem 7.4, page 168: The total external torque on a system of particles is
equal to the time rate of change of angular momentum of the system, provided that
the internal forces between particles are central forces.

As in equation (1) of Problem 7.4, we have

dp, d
Fv + ? ka - dt - a_t(mv vv) (1)
Multiplying both sides of (1) by r, X, we have
r,xF, + S x fh = nx %(mv v,) 2
A
Si r Xg-(m v} = E—{m(r X v {n
mee v dt ¥t - dt ity .
(2) becomes r,xF, + ,\E T, xXky = % {m,(r, Xv,}} (4)
Summing over » in (4), we find
Sr,xF, + 33r,xt, = & {2 m,(x, X vv)} 5
v ¥ A dt v
Now the double sum in {5) is composed of terms such as
nXby + noxi, (€)
which becomes on writing f,, = —f,, according to Newton's third law,
r, X fm’\ — X ka = (l’v =1 X [vk (7)

Then since we suppose that the forces are central, i.e. f,, has the same direction as r, —r,, it follows
that (7} is zero and also that the double sum in (5} iz zero. Thus equation (5) becomes

4 e
? r.xF, = d—t{g my(r, X V,)} or A = <

where A = S, xF,, 0 = Zmir, xv,).
» ¥

WORK, KINETIC ENERGY AND POTENTIAL ENERGY

713.

Prove Theorem 7.6, page 169: The total work done in moving a system of particles
from one state to another with kinetic energies Ty and T: respectively is T.— T..

The equation of motion of the »th particle in the aystem is

— d -
F. = F, + § th = a?(mv r,) &)
Taking the dot product of both sides with i',,, we have
Tr'i'v = Fv'l.'v + gf“‘i', = ;v'%(mv;v) )
. . d . 1 4d -« » 1 d
Since gt = 5o lm(ren)) = 5 im, v3)
(2) ean be written L d
Foot, = Foiy + ook, = 5 2lmv) )
A

Summing over » in equation (2), we find

- » - 1 d
E?v.rr = Erv'rv + Ezka'rv = 3 _(Emv”§> (‘)
v v > N 2 di\ %
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T.14.

Integrating both sides of (4) with respect to ¢ from t =1, to ¢ =t we find

fy ty . ~ly .
Wa = 3 f Feha = 3 fUReha+ 33 hha
v t; v Y ¥ 7,

= 1 “d 2
= 2?1] dt(m,t,,)dt

Using the fact that T,d? = dr, and the symbois 1 and 2 for the states at times ¢, and t,
respectively, this can be written

2 2 2
le = E‘f Tv'drv = Ef Fv.drv + EEI :m\'dry = T2 - Tl (5}
'] 1 ¥ 1 oA 1
where T, and T, are the total kinetic energies at f, and t, respectively. Since

2
Wy = Z f Fy-dr, (6)
i

is the total work done (by external and internal forces} in moving the aystem from one state to
another, the required result follows.

It should be noted that the double sum in (5) indicating work done by the internal forces,
cannot be reduced to zero either by using Newton’s third law or the assumption of central forces.
This is in contradistinction to the double sums in Problems 7.4 and 7.12 which can be reduced to zero.

Suppose that the internal forces of a gystem of particles are conservative and are
derived from a potential

V.\v ('riw) = V,,)\ (rvh)

where 7u = ra = V(o — 42 + (hh— %)% + (22— 2,)* i3 the distance between par-
ticles A and v of the system.

{a) Prove that 2 Efu-drp = —% E Ean. where f,, is the internal force on
v A ¥ A
particle v due to particle A

2
{(b) Evaluate the double sum 3, > f f..*dr, of Problem 7.13.
3 A 1

{0} The force acting on particle » ia
av,, av,, av,,

dax,, oY, - az,

‘w«

k = - gradv th = — V,, V,\,, {I)

The force acting on particle X is

aVa\v R av.\v aVlv
f,, = L 'a_yk-j - -"Kh = —grad, V), = -V,Vi = -f, 2
The work done by these forces in producing the displacements dr, and dr, of particles » and A
respectively is

fdr, + fyodn, = —{a:’TTd:c, + %%dy, + %dz,, + a;;’;'dxh + %%dy,\ + a;;:"dz;}
= =dV,,
Then the total work done by the internal forces is
I3t = —333aV, ®

the factor § on the right being introduced because otherwise the terms in the summation
would enter twice.
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{b) By integrating {3) of part (a), we have

2 2
2 E f f,.\v.drv = _ E 2 f dVLv = V:il\l] _ V;Int) (“)
oA 1 [T N 1

B2 |

where V{!"" and V{®" denote the total internal potentials

233w (®)
[ 3

at times t; and &, respectively.

7.15. Prove that if both the external and internal forces for a system of particles are
congervative, then the principle of conservation of energy is valid.

If the external forces are conservative, then we have
F, = —VV, )
2 2
from which p f F,-dr, = -3 f v, = V:em _ -V;ext) @
L | 1

v
where V" and V™" denote the total external potential
at times £, and ¢; respectively.
Using (2) and equation (4} of Problem 7.14(}) in equation (5) of Problem 7.13, we find
Ty — T = V™ — et 4 yiino _ o =y, — v, (8)
where v, = yEO 4 oy and v, = vE© 4y %

- are the respective total potential energies [external and internal] at times ¢, and t,, We thus find
from (3),
Hn+VvV, = T, +V, or T+ V = constant {5)

which is the principle of conservation of energy.

MOTION RELATIVE TO THE CENTER OF MASS
7.16. Let r/ and v, be respectively the position vector and velocity of particle v relative to
the center of mass. Prove that (@) X m.r, = 0, (b) X m,v, = 0.

{a) Let r, be the position vector of particle » relative to O
and B the position vector of the center of mass C relative
to 0. Then from the definition of the center of mass,

1
F = H;m,r, {1)

where M = 3 m,. From Fig. 7-8 we have
L

r, = r,+¢t (2)

Then substituting (2) into ()}, we find
1 , 1
F = H?m,(rv+r) = ygmprv + F
from which Imr, = 0 )
[

(b) Differentiating both sides of (#) with respect to ¢, we have 3 m,v, = 0.
»
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7.17. Prove Theorem 7.9, page 169: The total angular momentum of a system of particles

7.18.

about any peint O equals the angular momentum of the total mass assumed to be
located at the center of mass plus the angular momentum about the center of mass.

Let r, be the position vector of particle » relative to O, B the position vector of the center of
mass C relative to O and r; the position vector of particle » relative to €. Then

T, = r,+# (1)
Differentiating with respect to ¢, we find . -

v, =%, =14+t =v,+¥ . (2)
where V is the velocity of the center of mass relative to 0, v, is the velocity of particle » relative to
0, and v, is the velocity of particle » relative to C.

The total angular momentum of the aystem about O is
' 0 = Sm@,xv,) = ?‘, m{(r, + F) X (v, +¥)}

v

I

Zmr,xv) + Sm(r XV + ZmExXv) + gm,(rxv) ()

Now by Problem 7.18, : .
' - SmrxV) = {E mvri} x¥ = 0
v v

Em"(px‘f;) = EX {2 m,,v:} = 0 | L ‘
" TmExXT) = {Em,}(rﬁ) = M({EXY)
L » v
Then () becomes, as required,
: ' : 0 = gm,(r’vxﬁ} + M(FX ¥

Prove Theorem 7.10, page 169: The total kinetic energy of a sfstem of particles
about any point O equals the kinetic energy of the center of mass [assuming the
total mass located there] plus the kinetic energy of motion about the center of mass.

The kinetic energy relative to O [see Fig. 7-8] is

T = lzm,,v: = 12%(;,'}‘) S oY)
2% 2 - . .
Using equation (2) of Problem 7.16 we find o
' f, = P+E, = F+v
Thus (I} can be written
T o= JSm{F+v)-F+v)
1 4

since Zm,v, = ¢ by Problem 7.16.
»
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IMPULSE
1.19. Prove Theorem 7.12: The total linear impulse is equal to the change in linear

momentum,
The total external force by equation (4) of Problem 7.4 ia

d2¢ av
F = Ma—ﬁ = ME
Then the total linear impuise is
ty 1 d?
Fdt = f Madt = M‘Fz - ml = P:e — P

t; t
where p; = M¥, and p;, = MV, represent the total momenta at times ¢, and £, respectively.

CONSTRAINTS. HOLONOMIC AND NON-HOLONOMIC CONSTRAINTS
720. In each of the following cases staie whether the constraint is holonomic or non-

holonomic and give a reason for your answer: (a) a bead moving on a circular wire;
{b} a particle sliding down an inclined plane under the influence of gravity; (c} a
particle sliding down a sphere from a point near the top under the influence of gravity.

(e} The constraint is holonomic since the bead, which can be congidered a particle, is constrained
to move on the circular wire,

(b} The constraint ia holonomic since the particle is constrained to move along a surface which is
in this case a plane,

{¢) The constraint is non-holonomic since the particle after reaching a certain Jocation on the
sphere will leave the sphere.

Another way of seeing this is to note that if r is the position vector of the particle
relative to the center of the sphere as origin and a is the radius of the sphere, then the
particle moves 80 that r2 = 4?, This is a non-holonomic constraint sinee it is not of the
form (26), page 170. An example of a holonomic constraint would be 12 = a?

'STATICS. PRINCIPLE OF VIRTUAL WORK. STABILITY

7._9‘ -

7.22.

Prove the principle of virtual work, Theorem 7.14, page 171,

For equilibrivm, the net resultant force F, on each particle must be zero, so that

Z¥,c0m = 0 (1

But since F, = F"' + F” where F{* and F{ are the actual and constraint forces acting on the
rth particle, (I} can be written

;FE’)‘&'» 1 gl’iﬂ'“" = 0 {£)

If we assume that the virtual work of the constraint forces is zero, the second sum on the left of

{2) is zero, so that we have
? Fi®.or, = 0 )

which is the principle of virtual work.

Two particles of masses m, and m: are located on a frictionless double incline and
connected by an inextengible massless string passing over a smooth peg [see Fig. 7-9
below]. Use the principle of virtual work to show that for equilibrium we must have
sin & mg
Bin a, T omy

where «, and a, are the anglea of the incline.
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7.23.

Method 1.

Let r; and r, be the respective position vectors
of masses m,; and m, relative to O,

The actual forces {due to gravity) acting on
m, and my are reapectively

Fo = mg, F® = mg (1)

According to the principle of wirtual work,
SF®esr, = 0

or F @by +F 2 8r, = 0 (2 Fig.7-9

where §r, and 3r, are the virtual displacements of m, and m; down the incline. Using (1) in (#),
mgrde, + mogedr, = 0 {2

or mg 8ry 8ina; + m.g 47, 8ina; = 0 4}

Then since the string is inextensible, ie. & +8r, =0 or &r, = —5», {4} becomes
(g sin a; — Moy sinap)ér, = 0
But since 8r; is arbitrary, we must have mp sina, — myg sina, = 0, e,

sin e, my

= 5

sin a, m
Method 2.

When it is not clear which forces are constraint forces doing no work, we can take into account
all forces and then apply the principle of virtua! work. Thus, for example, taking into account
the reaction forces R; and R, due to the inclines on the particles and the tension forces T, and T,,
the principle of virtual work becomes

(mg+ T +R)*6r + (mg+Ty+Ry)3r, = 0 #)

Now since the inclinea are assumed smooth {80 that
the reaction forces are perpendicular to the in-
clines] we have

Ry<3r) = 0, Ry-3ry =0 64

Also, since there is no friction at the peg, the ten-
sions T, and ¥, have the same magnitude. Thus
we have, uaing the fact that 5r; and 3r, are directed
down the corresponding inclines and the fact that
31’3 = ‘”5‘!‘1,
T’ * 31‘. + T2 * 3[’2 - _Tl &r; — Ts 872
= (Ty=Ty¥ery = 0 (8)

since T, = Ty. Then using {?) and (8), (§) becomes

mug-dr, + mogrdr, = O
as obtained in (7).

Use Theorem 7.15, page 171, to solve Problem 7.22.

Let the string have length [ and suppose that the lengths of string OA and OB on the inclines
|[Fig. 7-9) are = and !—x respectively. The total potential energy using a horizontal plane
through O as reference level is

V = —mgzsina — myg{l — ) &8in ay
Then for equilibrium we wmust have
v . + . = 0 sina; My
3 —m,g sina Myg sina, = or sina, - m

It should be noted that V is not a minimum in this case so that the equilibrium is not stable
as is also evident physically.
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D’ALEMBERT'S PRINCIPLE

{CHAP.7

7.24. Use D’Alembert’s principle to describe the motion of the masses in Problem 7.22.

We introduce the reversed effective forces m,T; and m,T, in equation (3) of Problem 7.22 t
obtain
(Mg — my ) < 8r; + (mgg — mgr)o8r, = 0 wm

This can be written . -
(myg sina; —~ myr)8r, + (meg sinay — myry)ér, = 0 &

Now since the string is inextensible so that »,+r, = constant, we have
dry+8r, =0, T, +7F =0
or 8ry = —3r, ¥y =—r;. Thus (2) becomes, after dividing by &r, = 0,

g sinag — ml;"l —~ My 8inay — MY, = O
e Mg sina; — Mepy 8inay
or r =
m; + my

Thus particle 1 goes down or up the incline with constant acceleration according as
mg sine; > myg sinay or myg 8ina; < Mmey sina, Tespectively. Particle 2 in these cagses goes
up or down respectively with the same constant acceleration.

We can also use a method analogous to the second method of Problem 7.22,

MISCELLANEOUS PROBLEMS

7.25. Two particles having masses m; and m: move ™ c
' 30 that their relative velocity is v and the veloc- ™y
ity of their centerof massisv. If M =m,+m;
r

is the total mass and . = muma/{my + mz) is the
reduced mass of the system, prove that the total Ty
kinetic energy is iM@® + duv?,

Let ry, v, and ¢ be the position vectors with re-

spect to O of mass m;, mass m, and the center of o
mass  respectively. Fig. 7-1%
From the definition of the center of mass, we have
mr, + mor, . My + Mty
= — and P ——
m + Mmy my + Ty
or u.sing v, = i‘l' ¥y = ;'s, V= i, .
My 4 mvs = (my + MV #3]
If the velocity of m, relative to my is v, then
d v .- _
v = E(rl_rﬁ) = e =V TV
80 that V-V, = ¥ (2)

Solving (1) and (£) simeltanecusly, we find

- Mma¥ _ = my
vy = V+m, v, = ¥ mH_1+m2
Then the total kinetic energy is
: 1 1
T = Emﬂf + émg\rg

_ L e ™Y N1 (-_#_&)*
. Eml(v+m1+m,) g™V m; + My

= 1 2 2 1 ™M o _ Loy 1o
= 2(m,+m,)‘l> +2"_"'1_|_1\_”2 3 3 #Y
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1.26.

727

7.28.

Find the centroid of a uniform semiecircular v
wire of radius a.

By symmetry [see Fig. 7-12] the centroid of
the wire must be on the ¥ axis,sothat £=0. Ifo
is the mass per unit length of the wire, then if de C
repregsents an element of are, we have de = ads ade
s0 that o

d (e sin 6)(a d# de
J;yas J:asm {a de)

T ]
f e ds f ade x
f

o

ol

= 22 _ 2 Fig. 7-12

i T

Suppose that # systems of particles be given having centroids at #,#s, ...,F, and
total masses M\, M,, ..., M. respectively. Prove that the centreid of all the systems

is at
Mye + Moks + -+ + Main
M{¥ M+ - + M,
Let system 1 be composed of masses my,, m;q, ... located at r,,,ry,, ... respectively. Similarly
let system 2 be composed of masses #ty, Mgy, ... located at rap, ry, ... . Then by definition,
£ myry Mty + ccr My Myl e
! My + Mgy + -0 M,
s = Mumm F Mggkap + o-- MgyTyy F Mgl - -
‘2 mzl -+ ﬂ'm + v N Mz
; Mg Tuy + Moty + =+ S Wgyty, + Mgy + 00
3 =

My + Mg + <00 M,

But the centroid for all systems is located at
(mygegy +mpprg + 00 ) + (g ey + Migglon + <)+ e+ (Myryy + Mgt + 0 0)
(m“-!-m12+ "‘) + (m21+m$g+ N "} + e 4 (mn1+m“2+ "')
Mlil + M2i2 L R + Mnfn
M1+M2+ b +M”

) 4 =

Find the centroid of a solid of constant density
consisting of a cylinder of radius ¢ and height H
surmounted by a hemisphere of radius a [see
Fig. 7-13}.

Let # be the distance of the centroid of the solid from the
base. The centroid of the hemisphere of radius a is at dis-
tance fe¢ + H from the base of the solid, and itsa mass is
M, = %rade {see Problem 7.11].

The centroid of the cylinder of radius a and height H
is at distance LH from the base of the s0lid and its mass
is My = ma2Ho.

Then by Problem 7.27,

(fra®o)(fe + H) + (ra2Ho)(3H)
$rate + zalHs
3a? + BaH + 6H?
8a + 12H

Base of solid

Fig. 7-13
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7.29.

7.30,

SYSTEMS OF PARTICLES [CHAP. 7T

A circular hole of radius a/2 is cut out of a circular region of radius a, as shown
in Fig. 7-14. Find the centroid of the shaded region thus obtained.

¥ ¥

7o’ —1zate
N T

£a g.a

Fig. 7-14 Fig. 7-15

By symmetry the centroid is located on the r axis, so that # =0,

We can replace the circular region of radius ¢ by the mass M, = ra?s concentrated at its
eentroid z, = a [Fig. 7-15]. Similarly, we can replace the cireular hole of radivs 4/2 by the
negative mass M, = —ira’s concentrated at its centroid x; = §e. Then the centroid is located
on the z axis at

Mz, + Moz, (ra2e)(a) + (—}rate}(Fa)

* = Ml + Mz = rale — %1’!’1120' =

o on
a

A uniform rod PQ [see Fig. 7-16] of mass m and length L has its end P resting
against a smooth vertical wall AB while its other end @ ig attached by means of an
inextensible string OQ of length [ to the fixed point O on the wall. Assuming that
the plane of P, € and O is vertical and perpendicular to the wall, show that

equilibrium occurs if e
2.2 2_n
V4L -1 . sing = 4Lz — |
n3 L3
A

There js only one actual force, i.e. the weight mg of the
rod. Other forces acting are the force of the wall on the
rod and the tension in the string. However, these are con-
straint forces and can do no work. This can be seen aince
if P were to slide down the wall no work would be done,
because the wall is frictionless and thus the force due to
the wall on the rod is perpendicular to the wall. Also if @
were to drop, it could only move perpendicular to the
string at Q.

gina =

Let r be the position vector of the center of mass C
{in this case also the center of gravity] relative to 3. Also
let i and j be unit vectors in the horizontal and vertical
directions respectively so that r = zi+ y}.

From Fig. 7-16,

oP + PQ 1)
oC + CQ 2

o
0oq

1l

Then from (I}, on taking the dot product with i,
oQ-i = OP-i+ PQ-i

Since OP+i = 0, this reduces to
oQ-i = PQ-i

or Isina = Lsing 4]
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3.

Similarly on taking the dot product of both sides of {2) with j,
0Q:j = OC-j + €CQ-j
or leosa = y + 4L cosp
Now a virtual displacement of the center of mass C is given by
ir = dxi + Sy
fince mg is the only actual force, the principie of virtual work becomes
mg*sr = 0
Using t5%, this becomes mgéy = 0 or Sy = 0
Now from 18 and 14), we have
leosada = Lcosp $g
—Iiginede = 8y — 4L sinp g

185

4)

&)

(®)
n

since I and L are constants and since 5 has the same properties as the differential operator d.

Since Sy = 0 from (7), these equations hecome

lcosada = Lrcospsp
isinata = }Lsinpsf
From (8) and (#), we have on division,
stna _ 1sing
o8 o 2cos fi
Now from (8), sinf = (I/L)sina
so that cos B = V1 — (/L2 sinZa
Thus equation {1#) can be written
sin o 1 ! sin o

V1 = sin?a 2 VIZ - B sinta
Dividing by sina« and squaring both sides, we find
_ VI =B
sina = _*-hf_a—
JiTTE
LV3

and from (1) sinf =

as required.

A uniform solid consists of a cylinder of radius .a
and height H on a hemisphere of radius a, ag indi-
cated in Fig. 7-17. Prove that the solid is in stable
equilibrium on a horizontal plane if and only if
a/H > /2.
By Problem 7.28 the centroid C is at a distance CB
from the center B of the hemisphere given by
H - 3a? + BaH + 8II _ 6HE — 3a
8a + 12H 8a + 12H
Then the distance of the centreoid € above the plane is
CP = CD + DP = (CPBecoss + BGQ
6H?Z — 3a?
8a + 12H

cozd + a

Q P

Fig. 717

®
5]

(16)

{11)

(12)

(15

(14)

{18)
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so that the potential energy {or potential) is

_ 6H2 — 3a?
vV = Mﬂ(—*—-—*sa TioE cose + u)

_— v 3a2 — 6HN . _
Equilibrium occurs where 3 = 0 or My (_—Ba-i- 12H) sing = ¢, ie. #=10.
Then the equilibrium will be stable if

a2V 30 — GH2 3a% — 6H?
Lol 28 — Mis = —_— >
382 [=q My ( 8a + 12H) €080 o _ Mg (Sa + 12H) 0

ie. 3a2—6H2>0 or o/H > V2.

A uniform chain has its ends suspended A
from two fixed points at the same hori-

zontal level. Find an equation for the

curve in which it hangs.

Let A and B [Fig. 7-18] be the fixed pointa.
An element of the chain of length A¢ is in equilib-
rivm under the tensions of magnitude T and
T + AT due to the rest of the chain and also
the weight og As of the element of chain. Now
from Fig. 7-18 if the directions of the vectors
corresponding to T and T + AT make angles
of ¢ and & + A¢ with the z axis respectively,
we have as the condition for equilibrium [neg-

lecting terms of order (A¢)? and higher], Fig. 7-18
(PT+aT)cos(p+as)i + (T+AT) sin(e+48) — (Feossi+ Tsinej) — ogjas = 0
or (T+aT)cos(o+28) = Tcone n
(T+aT)sin(e+4860) ~ Tsing = ogds #)

Equation (I} shows that the horizontal component T cosé must be a constant, which we shall take
as T, which corresponds to the tension at the lowest point of the chain, where # = 0. Thus

Teose = T, 4]
From (2) we find on dividing by as,
(T+AT) sin{e+a8) — Tsing _ ag
Al Y @
Taking the limit of both sides of {4) as As =+ 0, we find
%(T sing) = ay% 6)
Using {8) to eliminate T, (§) becomes
d T el
7 Totane) = oo ()]
T
or ds _ Lsects = bsec?s (k4]
de oF
where b = Ty/ag. Now % = co88, % = gine (.

Thus from (7} and (&),

ff_: = %% = {coso}{b sects) = |Deece @
%% = %% = {sin#)(d sec?s} = Dsecstans 19
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Integrating (9) and (10) with respect to ¢, we find
T

¥

fl

bln{sece + tane) + ¢ (a1

bsece + ¢ {12}

Let us assume that at the lowest point of the chain, ie.at ¢ =0, x=0 and y =25 Then
from (11) and (12} we find ¢, =0, ¢; =0. Thus

2 = bln(secs + tang) {(1%)

¥y = bsecs ) (14)
From (18) we have secd + tane = e/t {15)
But gsec?y — tan2g = (secs + tanel{gece —tang) = 1 {16}
Then dividing (16} by (15), we find

gecs — tang = e~T/b 17

Adding (15) to {I7) and using (74), we find
¥y = g{eﬂb+e*="°] = b cosh% {18}
This curve is called & catenary [from the Latlin, meaning chain).

Supplementary Problems

DEGREES OF FREEDOM

743,

T34,

7.35.

Determine the number of degrees of freedom in each of the following cases: {a) a particle moving
on a plane curve; (b} two particles moving on a space curve and having constant distance between
them; (¢) three particles moving in space so that the distance between sany two of them is
always constant. Ans. (e) 1, (B) 1, {¢) 6

Find the nurﬁber of degrees of freedom for a rigid body which (a) moves parallel to & fixed
piane, (b} has two points fixed but can otherwise move freely. Ans. (@) 3, (b)Y 1

Find the number of degrees of freedom for a system consisting of & thin rigid rod which can
move freely in space and a particle which is constrained to move on the rod. Ans. 4

CENTER OF MASS AND MOMENTUM OF A SYSTEM OF PARTICLES

1.36.

1.37.

7.38.

739,

A quadrilateral ABCD has masses 1, 2, 3 and 4 units located at itz vertices A(—1,-2,2),
B(3,2,~-1), C{1,—2,4) and D}{3,1,2). Find the coordinates of the center of mass. Ans. (2,0,2)

A system consists of two particles of masses m; and m, Prove that the center of mass of the
system divides the line joining m, to m, into two segments whose lengths are in the ratio my to m,.

A bomb dropped from an sirplane explodes in midair. Prove that if air resistance is neglected,
then the center of mass describes a parabola,

Three particles of masses 2,1, 3 respectively have position vectors r, = Bti — 22} 4 (3¢ — 2)k,
vy = (2—3i+ (1251 + (458t —39k, 1y = (—DVi+ (12+2)j — 5%k where ¢ ia the time,
Find {(a) the wvelocity of the center of mass at time ¢ =1 and (b) the total linear momentum
of the aystem at ¢ =1 Ans. (a) 8i—2j—k, (b) 18i—12j—6k
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.40,

41,

7.42,

7.43.

7.45.

747
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Three equal masses are Jocated at the vertices of a triangle. Prove that the center of mass is
located at the intersection of the medians of the triangle.

A uniform plate has the shape of the region bounded by the parabola
# = x2 and the line ¥ = H in the xy plane. Find the center of mass.
Ans. =0, g = gH

Find the center of mass of a uniform right circular cone of radius «
and height H.

Awng. That point on the axis at distance H from the vertex.

The shaded region of Fig. 7-19 is a solid spherical cap of height H
cut off from a uniform solid sphere of radius a. (¢} Prove that the
centroid of the cap is located at a distance (daff — H?)/(12a — 4H} from
the base 4B. (b) Discuss the casas H =0, H=a and H = 2c. Fig. 7-19

Find the center of mass of a uniform plate bounded by
¥ = sinx and the » axis. Ans, £ = ¢/2, 4 = /8

Find the center of mass of a rod of length I whose den-
3ity is proportional to the distance from one end O.
Ang. &l from end O

Find the centroid of a uniform solid bounded by the
planes 4xr+2yt+tz2 =8, =0, y=0, 2z=0.
Ans. F = Jali+ 2j 4 4k)

A uniform solid is bounded by the paraboloid of revolu-
tion %+ y? = ez and the plane z = H [see Fig. 7-20].
Find the centroid. Ans. =0, =0, 2= $H Fig. 7-20

ANGULAR MOMENTUM AND TORQUE

7.48.

7.49.

1.50.

7.51,

1.52.

7.53.

7.54.

Three particles of masses 2,3 and 5 move under the influence of a force field so that their
position vectors relative to a fixed coordinate system are given respectively by r; = 2# — 38j + %k,
rp, = {($+1}i+3t)— 4k and ry = 31— tj + {2t — 1)k where ¢ ig the time. Find (a2} the total
angular momentum of the system and (b) the total external torque applied to the system, taken
with respect to the origin.
Ans. {ay (31 —12¢H + (62— 104 — 12)5 + (21 + 547k

(b) —12i + (12¢ — 100§ + 10tk

Work Problem 7.48 if the total anpular momentum and torque are taken with respect to the
center of mass.

Verify that in (a) Problem 7.48 and (b) Problem 7.49 the total external torque is equal to the
time rate of change in angular momentum.

in Problem 7.48 find {a} the total angular momentum and (b} the total external torque taken
about a point whose pogition vector is given by r = ti —2tj + 3k. Does the total external torque
equal the time rate of change in angular momentum in this case? Explain.

Verify Theorem 7.9, page 169, for the system of particles of Problem 7.48.

State and prove a theorem analogous to that of Theorem 7.9, page 169, for the total external
torque applied to a system.

Is the angular momentum conserved in Problem 7.387 Explain.
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WORK, ENERGY AND [IMPULSE

135,

§

157,

158,

1.58.

7.60.

161,

Find the total work done by the force field of Problem 7.48 in moving the particles from their
positions at time ¢ =1 to their positions at time t= 2. Ans. 42

Is the work of Problem 7.55 the same as that dome on the center of mass assuming all mass
%o be conecentrated there? Explain.

Find the total kinetic energy of the particles in Problem 7.48 at times (a) t=1 and (b) t = 2.
Discuss the connection between your results and the result of Problem 7.55.

Ans. (a) 275, (b) 30.5

Find the total linear momentum of the system of particles in Problem 7.48 at times (@) { =1 and
(bt =2, Ang. (a) 17i+ 45+ 14k, &) 271+ 4j + 18k

Find the total impulse applied to the system of Problem 7.48 from ¢ =1 to ¢ =2 and discuss
the connection of your result with Problem 7.58. Ans, 10 + 4k

Prove Theorem 7.13, page 170.

Verify Theorem 7.13, page 170, for the systemy of particles in Problem 7.48.

CONSTRAINTS, STATICS, VIRTUAL WORK, STABILITY AND D'ALEMBERTS PRINCIPLE

762

163

164,

1.65.

7.66.

7468

In each case state whether the constraint is holonomic or non-holonomic and give a reason for
vour answer: {a) a particle constrained to move under gravity on the inside of a vertical paraboloid
of revolution whose vertex is downward; (b} a particle sliding onh an ellipsoid under the influence
of gravity, (¢} a sphere rolling and possibly sliding down an inclined plane; (d) a sphere rolling
down an inclined plane parallel to a fixed vertical plane. (¢} a particle sliding under gravity on
the outside of an inverted vertical cone,

Ane, {(a) holonomic, (b} non-holonemic, ic} non-holonomic, (o} holonomie, {e) holonomic

A lever ABC [Fig, 7-21] has weights W, and W,
at distances ¢, and a, from the fixed support B. W, Wy
Using the principle of virtual work, prove that a I I B | l
necessary and sufficient condition for equilibrium is C
“’] a, = Wgaz- A ! A i

[ a % |

Work Problem 7.63 if one or more additional weights
are placed on the lever, Fig.7-21

An inextensible string of negligible mass hanging
over a smooth peg at B [see Fig. 7-22] connects one mass
m, on a frictionless inclined plane of angle « to another
mass ;. Using D’Alembert’s principle, prove that
the masses will be in equilibrium if my = m; sin e

"y

™,

Work Problem 7.65 if the incline has coefficient of fric-
tion . Ans. my = my(sina — p cosa) Fig. 7-22

A ladder AB of mass m has its ends on a smooth wall and floor
lsee Fig. 7-23]. The foot of the ladder is tied by an inextensible
rope of negligible mass to the base C of the wall so that the
ladder makes an angle o with the floor. Using the principle
of virtual work, find the magnitude of the tension in the rope.

Ans. img cote

Work (a) Problem 7.63 and (b) Problem 7.66 by using the po- B
tential energy method. Prove that the equilibrium in each case :
is unstable. Fig. 7-23
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7.69.

7.70,

.75

T.72.
7.73.
7.94.
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A thin uniform rod of length ! haa its two ends constrained to move on
the circumference of a smooth vertical circle of rading a [see Fig. 7-24].
Determine conditiona for equilibrium,

Is the equilibrium of the rod of Problem 7.69 stable or not? Explain,

A 30lid hemisphere of radius a is located on a perfectly rough inclined

plane of angle a.

(a) Prove that it iz in stable equilibrium if o < sin—!(8/8).

{b) Are there any other values of « for which equilibrium can occur?
Which of these, if any, yield atable equilibrium? Fig.7-24

Use D'Alembert’s principle to obtain the equations of motion of massea m, and my of Problem 7.65.
Work Atwood's machine problem [see Problem 7.22, page 180] by using D’Alembert's principle.

Use D’Alembert’s principle to determine the equations of motion of a simple pendulum.

MISCELLANEOUS PROBLEMS

135.

7.76.

.97,

7.78.

7.79.

.80,

7.8

7.82.

7.83.

7.84.

7.85.

Prove that the center of mass of a uniform circular arc of radius « and central angle a iz
located on the axis of symmetry at a distance from the center equal to (4 sin a)/a.

Discuas the cases (¢} a = »/2 and (8} «a = = in Problem 7.75.

A circle of radius o is removed from a uniform circular plate
of radius b > a, ag indicated in Fig. 7-2b, If the distance be-
tween their centers A and B is D, find the center of mass.

Ans, The point at distance a2D/{}2 — a?) helow B.

Work Problem 7.77 if the circles are replaced by spheres,
Ans, The point at distance a2D/(b? — &%) below B.

Prove that the center of mass does not depend on the origin
of the coordinate system used,

Prove that the center of mass of a uniform thin hemispherical
shell of radius a is located at a distance {a from the center. Fig.7-25

Let the angular momentum of the moon about the earth be A. Find the angular momentum of a
system consisting of only the earth and the moon about the center of mass. Assume the masses
of the earth and moon to be given by M, and M, respectively. Ans. M A/M, + M)

Does Theorem 7.13, page 170, apply in case the angular momentum is taken ghout an arbitrary
point? Explain.

In Fig. 7-26, AD, BD and CD are uniform thin rods
of equal length a and equal weight w: They are
pmoothly hinged at D and haveends A,Band Cona
smooth horizontal plane. To prevent the motion
of ends A, B and C, we use an inextensible string
ABC of negligible mass which is in the form of an
equilateral triangle. If a weight W is suspended
from D so that the rods make equal angles a with
the horizontal plane, prove that the magnitude of
the tension in the string is %\/§ (W + 3w) cot a

Work Problem 7.83 if the weight W is removed
from D and suspended from the center of one of
the rods. Fig.7-26

Derive an expreseion for (a) the total angular momentum and (b) the total torque of a system about
an arbitrary point.
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7.87.

7.88.

7.89.

7.90.

7.92.

7.93.

7.94,

7.95,

7.96.

Prove that the torque about any point P is equal te the time rate of
change in angular momentum about P if and only if (s) P is fixed in
space, (&) P coineides with the center of mass or {¢} P is moving with
a veloeity whiech is in the same direction as the center of mass.

Find the centroid of a solid of constant density consisting of a right
circular cone of radius ¢ and height H surmounted by a hemisphere of
radius a [see Fig. 7-27].

Ans. At height $(e® + H2)/(2a + H) above 0.

0
the hemisphere, Ans. At height §{a® + 2H?)/(a + H) above O, Fig. 7-:27

Work Problem 7.87 if the density of the cone is twice the density of

A hemisphere of radius e is cut out of a uniform solid cube of side b > 2a (see Fig. 7-28]. Find
the center of mass of the remaining solid.

Fig.7-28 Fig. 7-29 Fig. 7.30

A uniform chain of 45 kg wt is suspended from two fixed supports 15 meters apart. If the sag
in the middle is 20 em, find the tension at the supports. Ansg. 450 kg wt

A chain of length [ and constant density o is suspended from two fixed pointz at the same
horizontal level. If the sag of the chain at the middle is at a distance D below the horizontal
line through the fixed points, prove that the tension at the lowest point of the chain is
o(L2 — 4D%/8D.

Three particles of masses m,, m,, m; are located at the vertices of a triangle opposite sides having
lengths @, ag, a5 respectively. Prove that the center of mass lies at the intersection of the dngle
bisectors of the triangle if and only if my/a, = myfa; = myla,.

Masses m; and m, are on a frictionless cirenlar cylinder connected by am inextensible string of
negligible mass {see Fig. 7-29]. (a)} Using the principle of virtual work, prove that the system
is in equilibrium i m; sina; = my sin g, (b) Is the equilibrivm stable? Explain.

Work Problem 7.93 if friction is taken into account.

Derive an expression for the total kinetic energy of a system of particles relative to a point
which may be moving in space, Under what conditions is the expression mathematically
simplified? Discuss the physical significance of the simplification.

Find the center of mass of a uniform plate shown shaded in Fig. 7-30 which is bounded by the
hypocycloid x2/8 4 /8 = 42/8 and the lines = =0, y =90. [Hini. Parametric equations for the
hypoeycloid are z = acosde, y = ¢ ainde.) Ans, # = § = 266a/31bx
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1.97.

798,

7.99.

7.100,

7.101.

T.102.

7.103.

7.104,

7.106.

7.107.

7.108.
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Let mt; mey,m, be the masses of three particles and vy, vy3,v,; be their relative velocities,
{a) Prove that the total kinetic ererpy of the system about the center of mass is

] ,m.;v%z + m2m31)§3 -+ mlmsvlga

nty + Mo+ My
(b} Generalize the result in {al.

A chain of wvariable density s suspended from two fixed peints on the same horizontal level
Prove that if the density of the chain varies as the horizontal distance from a vertical line
through its center, then the shape of the chain will be a parabola.

Discuss the relationship of Problem 7.98 with the shape of a suspension bridge.

A solid consists of 2 umiform right ecircular cone of vertex angle a on a uniform hemisphere of
the same density, as indicated in Fig. 7-831. Prove that the solid can be in stable equilibrium on
a horizontal piane { and only if & > 60°,

Fig.1-31 ' Fig.7-32

A uniform solid [see Fig. 7-32| consists of a hemisphere of radius ¢ surmounted by a cube of
side b symmetrically placed about the center of the hemisphere. Find the condition on a and b

for stable equilibrivm. Ans, afb > 4\;’21#

Find the centrou! of the area bounded by the cycloid
z = a{e — sin 9), ¥y = af{l —coa g
and the x axis. Ans. (re, 5a/6)

Prove that if the component of the torque ahout point P in any direction is zero, then the
component of angular momentum about P in that direction is conserved if (a) P is a fixed point,
(8) P coincidez with the center of mass or (¢ P is 2 point moving in the same direction as
the center of mass,

In Problem 7.103, is the angular momentum conserved only if (a), (b} or (¢) occurs? Explain,

Prove that the virtual work due to a force is equal to the sum of the virtual works which cor-
respond to all components of the force.

Prove that it is impossible for one sphere to be in stable equilibrium on a fixed sphere which is
perfectly rough [i.e. with coefficient of friction u =1]. Is it possible for equilibrium to oceur
at all? Explain.

A uniform solid having the shape of the paraboloid of revolution ¢z = 22+ y2, ¢> 0 resta on
the zy plane, assumed horizontal, Prove that if the height of the paraboloid is H, then the
eqguilibrium is stable if and only if H < ic.

Work Problem 7.107 if the xy plane is inclined at an angle o with the horizontal.
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108,

7110,

T1L

1112

In Fig. 7-33, AC and BC are frictionless wires in a vertical plane making angles of 60° and 30°
respectively with the horizontal. Two beads of masses 3 gm and 6 gm are located on the wires,
conhected by a thin rod of negligible mass. Prove that the system will be in equilibrium

when the rod makes an angle with the horizontal given by tan—!1 (%vr:'f-}‘

A B
6 gm

3 gm

30°

Fig.7-33

Prove each of the following theorems due to Pappus.

{a) If a closed curve € in a plane is revolved about an axis in the plane which does not interseet
it, then the volume generated is equal to the area bounded by ¢ multiplied by the distance
traveled by the centroid of the area.

161 If an arc of a plane curve (closed or not) is revolved about an axis in the plane which does
not intersect it, then the nrea of the surface generated is equal to the length of the arc
multiplied by the distance traveled by the centroid of the are.

Use Pappus’ theorems to find (a) the centroid of a semicircular plate, (b) the centroid of a semi-
circular wire, {(c¢) the centroid of a plate in the form of a right triangle, (d) the volume of a cylinder.

Find the (a) surface area and (b) volume of the doughnut shaped region obtained by revolving
a circle of radius « about a line in its plane at a distance & > a from ita center.

Ans. (a) 4dn%ab, (b) 2r2a2b



Chapter 8 APPLICATIONS to
VIBRATING SYSTEMS,
ROCKETS and COLLISIONS

VIBRATING SYSTEMS OF PARTICLES

If two or more particles are connected by springs [or interact with each other in some
equivalent manner], then the particles will vibrate or oscillate with respeet to each other.

As seen in Chapter 4, a vibrating or oscillating particle such as the simple harmeoenic
oscillator or bob of a simple pendulum, has a single frequency of vibration. In the case
of systems of particles, there is generally more than one frequency of vibration, Such
frequencies are called normal frequencies. The motions of the particles in these cages are
often called multiply-periodic vibrations.

A mode of vibration [i.e. a particular way in which vibration occurs, due to particular
initial conditions for example] in which only one of the normal frequencies is present is called
a normal mode of vibration or simply a normal mode. See Problems 8.1-8.3,

PROBLEMS INVOLVING CHANGING MASS, ROCKETS

Thus far we have restricted ourselves to motions of particles having constant mass.
An important class of problems involves changing mass. An example is that of a rocket

which moves forward by expelling particles of a fuel mixture backward., See Problems
8.4 and 8.5.

COLLISIONS OF PARTICLES

During the course of their motions two or more particles may collide with each other,
Problems which consider the motions of such particles are called collistion or impact
problems.

In practice we think of colliding objects, such as spheres, as having elasticity. The
time during which such objects are in contact is composed of a compression time during
which slight deformation may take place, and restitution time during which the shape is
restored. We assume that the spheres are smooth so that forces exerted are along the
common normal to the spheres through the point of contact [and passing through their
centers).

A eollision can be direct or oblique. In a dirveet eollision the direction of motion of both
spheres is along the common normal at the point of contact both before and after collision.
A collision which i3 not direct is called oblique.

Fundamental in collision problems is the following principle called Newton's eollision
rule which iz based on experimental evidence. We shall take it as a postulate.

Newton’s collision rule. Let v, and v/, be the relative velocities of the spheres
along the common normal before and after impact. Then

r, —

Vie = 7€V,

194
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The quantity ¢, called the coefficient of restitution, depends on the materials of which the
objects are made and is generally taken as a constant hetween 0 and 1. If ¢=0 the
collision is called perfectly inelastic or briefly inelastic. If «=1 the collision is called
perfectly elastic or briefly elastic.

In the case of perfectly elastic collisions the total kinetic energy before and after impact
is the same.

CONTINUOUS SYSTEMS OF PARTICLES

For some problems the number of particles per unit length, area or volume ig so large
that for all practical purposes the system can be considered as continuous. Examples are a

vibrating violin string, a vibrating drumhead or membrane, or a sphere rolling down an
inclined plane.

The basic laws of Chapter 7 hold for such continuous systems of particles. In applying

them, however, it is necessary to use integration in place of summation over the number
of particles and the concept of density.

THE VIBRATING STRING

Let us consider an elastic string such as a violin or piano string which is tightly
stretched between the fixed points =0 and x =1 of the x axis [see Fig. 8-1]. I the
string is given some initial displacement {such as, for example, by plucking it] and is then
released, it will vibrate or oscillate about the equilibrium position.

Y Y
Yiz.t)
z l£ ¢ z2=1] z=0 = -
Fig. 8-1 Fig. 8-2

If we let Y(z, t} denote the displacement of any point r of the string from the equilibrium
position at time ¢ [see Fig. 8-2], then the equation governing the vibrations is given by the
partial differential equation

a*Y _ L&Y

W= Y | 1)
where if T is the (constant) tension throughout the string and o is the (constant) density
[mass per unit length of string),

2= T/e (2)
The equatjon (I) holds in case the vibrations are assumed so small that the slope 9Y/ox
at any point of the string is much less than one,

BOUNDARY-VALUE PROBLEMS

The problem of solving an equation such as (I) subject to various conditions, called
boundary conditions, is often called a boundary-value problem. An important method
for solving such problems makes use of Fourier series.
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FOURIER SERIES

Under certain conditions {usually satisfied in practice and outlined below] a funetion
f(z), defined in the interval y < 2 < y+2l and having period 2! outside of this interval,
has the series expansion

flx} = L Y (an cos 2L + b, ein M) %
2 =1 I t
where the coefficients in the series, called Fourier coefficients, are given by
¥4+ 2l
an = %f fix) cosﬁ%rﬁdx (£
v+ 2
b, = %f f(x) sin n—}-ﬁ dz {5)
¥

Such a series is called the Fourier series of f(x). For many problems y=10 or —l

ODD AND EVEN FUNCTIONS

If y = -I, certain simplifications can occur in the coefficients (4} and (5) as indicated
below:

1. If f(—=2) = f(z),
l

In such case f(x} is called an even function and the Fourier series corresponding to
f(r) has only cosine terms.

1
@ = 2 J; f@) cos 2 dz,  ba=0 )

0o

If f{-x)=—-f(x), '
_ - 2 i REZ
an = 0, ba = TJ; f(x) sin ; dx N
In such case f(x) is called an odd function and the Fourier series corresponding to f(x)
has only sine terms,

If f(x) is neither even nor odd its Fourier series will contain both sine and cosine terms,

Examples of even functions are x4, 8z%+ 422 -5, cos x, e+ ¢~* and the function shown
graphically in Fig. 8.3, Examples of odd functions are z3%, 22~ 52*+ 4, sinx, e~ ¢ * and
the function shown graphically in Fig. 8-4.

Examples of functions which are neither even nor odd are z'+a* x - cosz and the
function shown graphically in Fig. 8-5.

€] Iz flx)
3 ;
o - --g- _ -E-
. 743:,4 /S [, [TV [,
Fig.8-3 Fig. 8-4 Fig.8-5

If a function is defined in the “half period” =0 to z=1! and is specified as odd,
then the function is known throughout the interval —! <z <1 and so the series which
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containg only sine terms ecan be found. This series is often called the half range Fourier
sine series. Similarly, a function defined from x =0 to x =1 which is specified as even
has a series expansion called the kalf range Fourier cosine series.

CONVERGENCE OF FOURIER SERIES

Let us assume the following conditions on f(2):

1. f(x) is defined in y <z < y+ 2L f= 1z, + 0)

2. f(x} and its derivative f'(z) are piece- flz, -~ 0)
wise continuous in y <z <y+2L [A
function is said to be piecewise contin-
wous in an interval if the interval can
be divided into a finite number of sub-
intervals in each of which the function Y ] z r+ 2
is continuous and bounded, i.e. there
is a constant B >0 such that
~B < f(x) < B. An example of such a il +0)
function is indicated in Fig. 8-6.} Fig.8-6

3. At each point of discontinuity, for example, z: [or x:] in Fig. 8-6, f(x) has finite limits
from the right and left denoted respectively by f(x,+0) and f(z(—0) [or f(z:+0),
fle2— 0)).

4. f(x) has period 21, i.e. f(x+ 2 = f(x).

These conditions if satisfied are sufficient to guarantee the validity of equation (8)
li.e. the sertes on the right side of (8) actually converges to f(x)] at each point where f(z)
is continuous. At each point where f(z) is discontinuous, (3) is still valid if f(z) is replaced
by 3if(z + 0) + f(x — 0)}, i.e. the mean value of the right and left hand limits.

The conditions described above are known as Dirichlet conditions,

Solved Problems

VIBRATING SYSTEMS OF PARTICLES
81. Two equal masses m are connected by

. . . i) m
aprings having equal spring constant «, ’ - Q O |
as shown in Fig. 8-7, g0 that the masses !

are free to slide on a frictionless table

AB. The walls at A and B to which the Fig.8-7
ends of the springs are attached are fixed. c D
Set up the differential equations of ',_._”.li 'r__fii
motion of the masses. ! [
Let x;i and x5 [Fig. 8-8] denote the dis- _—._..____’m o Q Q ]
placements of the masses from their equilibrium A P Q B

positions C and D at any time ¢t. Fig.8-8
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Consider the forces acting on the firgt mass at P. There will be a force due to the spring on
the right given by x(x,i— #,i) = {2y —2,}}, and a force due to the spring on the left given by
—xz(i. Thus the net force acting on the first mass at P is

K(xg - x])i —_ lei

In the same way the net force acting on the second mass &t @ is

x(.‘t; _xg)i - A:xzi
Then by Newton's second law we have
a2 .
magled) = alzp-z)i — cagd
d2
ma‘;ﬁ(”zi) = xfz) —2y)i — wagi
or mi, = xlz,—2x) n
mr, = iz, —22,) (2)

82. Find ({(a) the normal frequencies and (b) the normal modes of vibration for the
system in Problem 8.1.

{a) Let z,=A;cosal, x+= Aycoswt in equations (1} and (2) of Problem 81. Then we find,
after simplifying,

2k —meA, —xdy, = 0 &
—xA; + (2r—mu?}d, = 0 (%)
Now if A; and A, are not both 2ero, we must have -
2k — mu? —x
= 0 8
—x 2k — mu?
or (2x — mu2)(20 —mu®) — a2 = 0 or M2t~ dema? + 322 = 0
diem = V16x2m? — 12«2m2
Solving for «?, we find o2 = z giving
2m
w2 = «/m and & = Sx/m Py
Then the normal {or natural) frequencies of the system are given by
=1 = = L%
f - 2x m and }‘ - 2r m (5)

The normal frequencies are also called characteristic frequencies and the determinant ()
is called the characteriatic determinant or secular determinant.

(d) To find the normal mode corresponding to o = Ve/m, let o = x/m in equations (1} and (#).
Then we find
Ay = Ay

In this case the normal mode of vibration corresponda to the motion of the masses in the same
direction [i.e. both to the right and both to the left] as indicated in Fig. 8-9.

ey — —

Normal mode corresponding to o = Ve/m Normal mode corresponding to « = V8x/m

Fig. 8-9 Fig. 8-10

Similarly to find the normal mode corresponding to « = \/_3;%, let w? = 3x/m in equationa
(1) end (2). Then we find
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8.3.

In this case the normal mode of vibration corresponds to the motion of the masses in epposite

directions [i.e. when one moves to the right the other moves to the left, and vice versa] as
indicated in Fig. 8-10 abave,

In working this problem we could also just as well have assumed, =z, = B; sinof,
2y = Bysinwl or m = A coswt+ B, sinet, 2z, = Ajcoset + Bysinut  or m; = Celef,
Xy — Czei“".

Suppose that in Problem 8.1 the first mass iz held at its equilibrium position while
the second mass is given a displacement of magnitude « >0 to the right of its

equilibrium position. The masses are then released. Find the position of each mass
at any later time.

Writing «; = Va/m and wy = V3x/m, the general motion of both masses is described by

X, = Cl cons w i + Cz sin wil + Cs COSwgt + C4 sin Uzt (1)
g = Djcoset + Dgsinet + Dgcosagt + Dy sinwyt (2)

where the coefficients are all constants. Substituting these into equation (I} or eguation (2) of
Problem 8.1 [both give the same results], we find on equating corresponding coefficients of cos !,
sin wyt, €08 wyt, 8in wgt respectively,

Dy=Cy, Dy=0Cy Dy=-C3 Dy=-0C
Thus equations {I) and {2} can be written
2, = Cieosult + Chpsinugt + €y coswgt + C, 8in wat ()
£y = Cyco8ut + Cosinwt — Cycoswpt — Cy sinwgt {4)
We now determine C,, Cy, Ca, Cy subject to the initial conditions
2 =0, xg=a, #,=0, £, =0 at t=0 )

From these conditions we find respectively
Cl + Cs = 0, Cl - Cs = &, Cgh)l + C,‘ﬁﬂz = 0, Cz@] - C4(nl2 =9

From these we find Ci=4%e, Cp=0, C3=~3a,C,=0 (6)
Thus equations ($) and (4} give the required equations
x, = Jlalcos vt — cos wyt) N
2y = jalcoswit + cos wyt) (8)

where o = Vi/m, wy; = V3x/ni.

Note that in the motion described by (?) and (8), both normal frequencies are present. These
equations show that the general motion is a superposgition of the normal modes. This is sometimes
called the superposition principle.

CHANGING MASS. ROCKETS

84.

Derive an equation for the motion of a
rocket moving in a straight line. l

Let m be the total mass of the rocket at OI i _CB m_

v+vy v+av

time £ At a later time ¢+ Af suppose that —aAm m + Am
the mass is m + Am due to expulsion of a mass

—am of gas through the back of the rocket.

Note that —am is actually a positive quantity Fig.8-11

gince am is assumed negative,

Let v and v + Av be the velocities of the rocket at times ¢ and ¢+ At relative to an inertial
systemn with origin at 0. The velocity of the mass of gas ejected from the back of the rocket relative
to O is v+ vy + Av where v, is the velocity of the gas relative to the rocket.
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Since the change in momentum of the system is equal to the impulse, we have
Total momentum at ! + Af — total momentum at £ = impulse
{(m +Am)v+av) + (—am)v+ vy} — mv = Fat

where F is the net external force acting on the rocket.

Equation (f) can be written as
v Am av

mEE—qu-i—E?am = F

Then taking the limit as at - 0, we find

Wl iy
dat 0 dte
Writing v = vi, vp = —vyi, F = Fi, this becomes
dv dm.
m a + vy Et" = F

[CHAP. 8

13

2)

(H

85. Find the velocity of the rockei of Probiem 8.4 assuming that gag is ejected at a
constant rate and at constant velocity with respect to it and that it moves vertically

upward in a constant gravitational field.

If the gas is ejected at constant rate « > 0, then m = my— of where m; is the mass of the
rocket at t = 0. Since F= —mpi {or F = —~myg)} and dm/dt = —a, equation {2) of Problem 8.4

can be written

{mg — at) % — avg = ~—{my—atllg or % = —-g + E.%
Integrating, we find v = —gt — vyln {my—at) + ¢,
If v=0 at ¢ =0, ie. if the rocket starts from rest, then
0 = 00— vlnm + ¢ or ¢; = wglnmy
Thus (2) becomes v = —gt+ vyln <—ln:°—>
my — at

which is the speed at any time, The velocity is v = vi.

{1)

(2

Note that we must have mg—at > 0, otherwise there will be no gas expelled from the rocket,

in which case the rocket will be out of fuel.

COLLISIONS OF PARTICLES

86. Two masses m, and . traveling in the same straight line collide. Find the velocities

of the particles after collision in terms of the velocities before collision.

Assume that the straight line is taken to be
the x axis and that the velocities of the particles
before and after collisions are v,,v, and vi,v;
respectively.

By Newton’s collision rule, page 194,

’

vi— v = elvo—v)) {1} Fig. 8-12

By the principle of conservation of momentum,

Iy

Total momentum after collision total momentum before collision

4 4 o
myvy + mevy = myv, + mgv,

(2)
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8.7,

8.8

89.

Solving (1) and (2) simultaneously,
{my; — ema)v; + mo(l + €)v,

i = my + moy (8)
v, = my(l + vy + (my — emy)v, )
L my + my

Discuss Problem 8.6 for the case of (a) a perfectly inelastic collision, (b) a perfectly
elastic collision.

{a) Here we put « =0 in (2) and (4) of Problem 8.6 to obtain
m, v, + MoV,
my + my

Thus after collision the two particles move with the same velocity, i.e. they move as if they
were stuck together as a single particle.

ntyvy + My
ml + My

’

o '
¥, =

» V2:

(b) Here we put « =1 in () and (4) of Problem 8.6 to obtain

, _ (my—mg)vy + 2mgvy . 2myv + (me—mydv,
V1= m1+m~g ' V2 = m1+‘m2

These velocities are not the same.

Show that for a perfectly elastic coilision of the particles of Problem 8.6 the total
kinetic energy before collision equals the total kinetic energy after collision.

Using the result of Problem 8.7(b), we have

Total kinetic energy afier collision = -émlviz + %mgv;,z
1 (my ~ molv; + 2mgv,] 2 1 2myv, + (my - my vy 2
= ‘2‘”‘1{ m); + my } +§m2{ my + my }
1 2

1
= émlvf + 3 Mz

= total kinetic energy before collision

Two spheres of masses m; and m: respectively, collide obliquely. Find their velocities
after impact in terms of their velocities before impact.

Let v, v, and v}, v be the velocities of the
spheres before and after impact respectively, as
indicated in Fig, 8-13. Choose a coordinate system
so that the xy plane is the plane of v, and v,, and
30 that at the instant of impaect the ¥ axis paases
through the centers €, and Cy of the spheres,

By the conservation of momentum, we have

myvy -+ mave = nyvy + mavy (1) Fig. 513
From Fig. 8-13 we see that
v; = vlcono, t —sine, §) ®
vy = wg{coz 8, i — sin &, §) )
vi = vi{eoad, i~ ging, j) )
v = g(coB ¢y i — Bin ¢, §) £

Substituting equations (2)-(5) in" ()} and equating coefficients of i and j, we have
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MUy coBd; + Myvs 088 = MU| COS @, + Mals ¢OS @y

myv, sing; + Mmyvg sing, = myv) sing, + mev} sin ¢y
By Newton's collizion rule, we have

Relative velocity after impact along x axis
=  —e{relative velocity before impact along x axis})
or vith — varl = —elvyri—wyed)
which on using equations (2)-(5) becomes
vicosg, — Vzcosg, = —e(v, 088, — vy COS 8y

Furthermore, since the tangential velocities before and after impaet are equal,

v = v+

va'd = vac
or : vy eing, = v]sing,
vy 8in @, = v, sin¢g

Equation (7} is automatically satisfied by using equations (72) and (i%).
From equations (6) and (9) we find
(my — moelv; cos 8, + Myl + €)vy cos éy

vy cosg; = pep———
, my(l + e)vy con sy + (my— mye)vy cos &y
V3 COB gy = iy

Then using (12) and (18) we find

vi = vileosp i—sing, j)
(my — mae}v; cos gy 1 + my(l +e)vycons, i .
= — vy 8iné; §
m + my
vy = whlcosgyi— sing,j)
m{l+ vy cond; i + (mg—myedvycondy i .
— — vysindy ]
ml + my

CONTINUOUS SYSTEMS OF PARTICLES
8.10. Derive the partial differential equation (1), page 195, for the transverse vibrations

of a vibrating string.

Y Tzt )
Mz + Ax)

aY

Fig. 8-14

{CHAP. 8

(8)
7

&

{9

(10
(an
(12)
{13)

Let us consider the motion of an element of the string of length As, greatly magnified in

Fig. 8-14. .

The forces acting on the element due to the remainder of the string are given by the tensions,
as shown in Fig. 8-14, of magnitude T(x) and T(x + Ax) at the ends x and x + Ax of the element.
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8.1L

8.12‘

The net horizontal force in direction i acting on the element ig
[Tz + sz} cogolx + Ax) — T(x) cos #(x)]i 83!
The net vertical force in direction j acting on the element is
[T(x + ax) sin ¢(x + ax} — T(x) sin #(x)]j )

If we assume that the horizontal motion in direction i is negligible, the net force (I} is zeru.
Using the fact that the scceleration of the element is 32Y/3t? approximately and that its masa is
o Ag where ¢ is the mass per upit length, we have from (2) and Newton’s second law,

#Y .

cds—zi = [T(x + Az} sin ¢(x + Ax) — T(z) sin o(x)]} ¢4]
or, dividing by Axj,
-] Y _ Tlx+ ax) sinéle + Ax) — T(x) sin #(x) )
Ar a2 Ax
. 1 4+ (8Y 232y T(z+ax) sins(z +4az) — T(2) sin #(z)
° 4 ax/ atz Az
Taking the limit as Ax - 0, this becomes
vty _ a
a4|1 + (-a:-) i E;{T sin ¢} 5
tan ¢ aY/ox
Since sihg = =
V1 + tan2s V1 + (3Y fax)2
equation (5) can be written
Nt ("a_z) ™ {\/1 + (37 /ax)? @

To simplify this equation we make the assumption that vibrations are small ao that the slope #Y/dz
is small in absolute value compared with 1. Then we can neglect (3¥/9x)2 compared with 1 and

(6) becomes 2Y _ 8 . oy o
T T am\ ez
If we further assume that the tension T is constant througphout the string and that ¢ is also
constant, (7) becomes #r _33}_’. @
st axt

where ¢ = T/e. Unless otherwise specified, when we deal with the vibrating string we shall
refer to equation (8).

Derive the equation of Problem 8.10 if the string is horizontal and gravity is taken
into account.

In this case we must add to the right hand side of equation (#) of Problem 8.10 the force

on the element due to gravity
—mg = -—ovlsgj

The effect of this iz to replace equation (§) of Problem 8.10 by

BY | LY

e - Tt

FOURIER SERIES

Graph each of the following functions.

83 0<z<«<hb .
(@) fzx) = {_3 B<z<0 Period = 10
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Hzx)
w—  Period —#
———— -———— ——— - N —_—— PR
3
L] T I T T . 1 Y T T T T T €
-5 -2 -15 ~- 10 —5 o] 1 5 19 15 0 23
—— ey — - —— _I* —— - -—— i — ——
Fig. 8-15 -

Since the period is 10, that portion of the graph in -5 < x < b (indicated heavy i
Fig. B-15 above) is extended periodically vutside this range (indicated dashed). Note that f{
is not defined at x = 0,5,~5,10,—10, 158, —15, ete. These valuea are the discontinuities of fix

ginr 0=z=q
b fix) = Period = 2=
()ﬂ) { 0 7L < 2 ert

f(=)
=== Parlod ——
- -
\\ ,’ \\ ’/ - \\\ !I
N k. h, — 2 P -l x
~br —2r - to r i 8r 4r
Fig.8-18

Refer to Fig. 8-16 above. Note that f{x) is defined for all x and is continuous everywhere.

H !
8.13. Prove f sin%ﬁd:ﬁ = f cos ¥ gy = 0 if k=123, ..

—~1 —t I
. krx I krz - _1i i _ -~
fl sdex = T cesTT L kvcoakr + P cos{—ksry = 0
? R 2 Y S . _
f_‘ cos——rdx = i . = gy un ke — Esm(-—kr) = 0
i
m . n 0 mw=n
8.14. Prove (o) f cos xcosn;x dx = f sin7Z gin ;x dr =
- l I m=n
(» J- si n;x dr = 0

where m and n can assume any of the values 1,2,8, ....

(e} From trigonometry: cosd coaB = §{cos (A ~B}+cos(A+B)}, ainAsinB = 4{cos (A ~ B} —
cos (A + B)}.

Then, if 7 n, by Problem 8.13,

t
J’" con mlra: o™ 4r = 1 (m n)ﬂ: + cos(m+n)wx dx = 6
- i 2J., !
Similarly if m % n,

¢

.om .

j ain 7L sin2TZ gy
- H i

] -

f {cos{m‘ ez —coam}dz = ¢
t
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If m =mn, we have

i
f cos—”&;—zcosgzjda: f (1 + cosznfz)dz = 1
_l -

f sm_ml..gmﬂwzdz f (1 —coaguﬂ:)dx = 1
-1 t ! -t i

Note that if m =n = 0 these integrals are equal to 2! and 0 respectively.

i

| -

]

LT

(b) We have sinA cosB = }{sin(4 — B) + sin (A + B}}. Then by Problem 8.18, if m v n,

{
f ain ™% o oa BTE 4, - 2f { {m — n)ra:+sin(m+ln}rz}dx =
-

{ i

If m=mn, ! P Ny 1 (" 2nrz
f gin 2" 09 22 g2 = = f sin dx = ¢
R ] zJ_, %7

The results of parts (¢) and (b} remain valid even when the limits of integration ~I,1 are
replaced by ¥,y + 2{ respectively,

815. If © P
fle) = A+ E(a;.cos—-—-b ba sin—5— 1 )

noe]

prove that by making suitable assumptions concerning term by term integration of
infinite series, that for n=1,2,3, ...,

@ an = —%f f@) cos™TE dz, (b) bu = l_f f@)sin™ 2 dz, () A =2
—t

{a) Multiplying
flm) = A+ ¥ G.cos-n-z—+ b, sin 2% {1
n=1 1 !

by cos ——';“ and integrating from —! to !, using Problem 8.14, we have

f ) cosm:'zda: = AJJI cos —— dz 2)
- -
o
+ 21 {a..f cos =~ cos—-dz + b, f cosmsmmdz}
na -1

Gl if ms0

[

| et

_r f(z)cosmwdz if m=1,2,8,...

Thus QG

(by Multiplying (I by sin@ and integrating from —I to [, using Problem 8.14, we have

i
f_“ f(z)ain”";”dx = Aflsingdx )

L] L
*3 a,‘f sin ™% cos 2 dz + b f sin " sin 2 da
=] -t 4 i -1 1 1

= byl
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L
Thus b, = }f 1@ sin™Ede it m=1,28,...
—i

{¢) Integration of (r) from —! to I, using Problem 8.132, gives

i
f fleyde = 241 or A = -;—If fx) dz
-1 -

Patting m = 0 in the result of part (a), we find a; = % f flrydz and so A = %
-1

The above results also hold when the infegration limits —I,! are replaced by v,y + 2L

Note that in all parts above we have assumed interchange of summation and integration,
Even when this agssumption is not warranted, the coefficients o, and b, a3 obtained above are
called Fourier coefficienta corresponding to f(x), and the corresponding series with these values
of a,, and b, is called the Fouriecr series corresponding to f(x). An important problem in this
case is to investigate conditions under which this series actually converges to f(x). Sufficient
conditions for this convergence are the Dirichlet conditions given on page 197.

8.16. (¢) Find the Fourier coefficients corresponding to the function

{0 -5<x <0

fzy = Period = 10

3 0<x<h
{b) Write the corresponding Fourier series.

(¢) How should f(x) be defined at x = -5, x =0 and z =5 in order that the Fourier
series will converge to f(x) for -6 =z £5?

The graph of f{x) is shown in Pig. 8-17 below.

f(-r)
Poriod
I — -
3
t
T = T ™ =Y T x
-13 ~10 -5 B 1) s
Fig. 8-17

(@) Period = 2! = 10 and ! = 5. Choose the interval vy to y + 21 as —5 to 5, so that y = —5. Then

v+ 2
Gy = %f f(z)cos’f’;—”dx = %f f(@)cos%
- 1 i = 8 (P eoanme
= s{f (Olcos da:+_£ {8) cos da:} = 5fcos—g-dz

(]
_g,s.mrz’
B A T haan 3

= 0 it ne0

a

Ifn=0 e, = a = chosgf—z— = gfdz = 3.
1 (v mrx
b, = 7 f flz) sm— dx = g f F(x) sin——
¥

R | mrx uu _ 8 5 . nex

= (0] sin —= dz + (3) sin-—= dx = = sin— dx
5 5J, 5

= 3 ( _5__ m-z 8 _  3{1 — cosnr)
5 nr o nr
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{b) The corresponding Fourier series is

a a0
2 s (4, cos X 4 b, sinﬂ—”'E)
2 n=1 i H

- 31 ~ cosnr) . nrw
+ n§1 S sin—g

[ =T ER T =]

6f . 7z¢ 1 . 372 1 . bsx
+r(sm5 +33m 5 +55m H + )

{¢) Since f{r) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all

points of continuity and to flz+0) ; f@=0) 4 points of discontinuity., At x = —B,0 and B,

which are points of discontinuity, the series converges to {3+ 0)/2 =3/2 aa seen from
the graph. If we redefine f(x) as follows,

3/2 z=—6
0 —S<2<0
fley = 3/2 z=10 Period = 10
3 0<z<B
3/2 z=5

then the series will converge to f(x) for —b = x =B,

! .
8.17. If f(x) i3 even, show that (a¢) a. = %j; f(x) cosﬁ%—x-dx, (d) b.=0.

_ 1t nex _ 1 o nry 1 (7 nax
{a} a, = fJ:t fix) COS'T de = l‘[l Hx) cosde + TJ; flx) coa—i-—da:

Letting = = —u,

0 ! _ !
%J:[ fl@) cos 2 dx = 11 fo f=u) cos( ";’“) du %f Fu) cos 2% du

gince by definition of an even function f{~u) = f(u). Then

t t 1
@, = lf fu) cos ™™ gy + 1 f f2) cos P2 dy = 2 f2) cos ™= du
A l tJ 1 . rJ, I

: 0 t

®) by = %f fz) sin T dn = %f flo) sin 2% a4 %_f @ sn 22 de ()
-t -t 0

If we make the transformation x = —u in the firat integral on the right of (I), we obtain
] t _ :
% J Fx} sin 1%55 dx = % f fl—u) sin ( ";m) du = -— % f F—w) ain %" du
— 1t . MY _ 1t nrx
= =3 f(u) sin T du = - 7 f{x) sinT dx (2}
0 [

where we have used the fact that for an even function f(—u) = f(u) and in the last atep that
the dummy variable of integration % ¢an be replaced by any other symbol, in particular x, Thus
from (1}, using (2), we have

It
=

I I
b, = *%f flo) sin 22 dz + %f f(a) 3in 222 da
1] 1]

8.18. Expand f(x) =2, 0 <2z <2, in a half range (o) sine series, (b) cosine series.

(2) Extend the definition of the given function to that of the odd function of pericd 4 shown in
Fig. B-18 below. This iz sometimes called the odd extension of f(z). Then 2I=4,{=2,
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AL
7/ /7 s
/ 7/ yd
7 // 7
T —t- T 0 1 i 4 T x
- //—4 -2 // 2 . $
e e /7
/ / Ve 7/
7 /7 / /
Fig. 8-18
Thus a, =90 and
2 (! . 2 (* .
b, = EJ; flx) sm”—}‘zdx = EJ; xsm% dx
- _ nExy o arx 2 - jcosnr
= (x) cos 3 { n2 2sm 2 . Py
Then fl}} = g =4 cosnr smﬂ—;E
S VO J Y N | Y
= Z\eing 3 8ing 3 8in—g

{4) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 8-19 below.
Thig is the even extension of f(x). Then 21 =4, 1 =2,

fix)
~ ~ A\
N VAN 7N\
7 \ 7/ AN \\ 7/ N
N 7 N /7
N N
T T ™ T ¥ T z
-8 -4 -3 o 2 4 [
Fig. 8-19
Thus &,=0,
2 J’" nee 2 2 nex
a, = = flx)cos——de = —f x cos—— dx
b 4 A i 2 o 2

- {(z)(“smm) (1)( %)}2

= ﬁ(cosmr—l) if nwo

2
It n=0, ¢ = f zdz = 2.
o

o
ez
+ "g —,r,(cosmr 1} con——=
k-3
2

It
oy

Then f(x) 2

_ - T 1 3o 1 bz s
= .1 ( 085 + gaeos 5 + pgees—— + )

It should be noted that the given function f{x) ==, 0 < x < 2, is represented equally well
by the two different series in (a) and (d).
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SOLUTIONS OF VIBRATING STRING PROBLEMS

819. Find the transverse displacement of a vibrating string of length I with fixed endpoints
if the string is initially given a displacement f(x) from its equilibrium position and
then released.

Let the transverse displacement of any point x of the string at time f be Y{x,¢). Since the
ends 2 =10 and « =1 of the string are fixed, we must have Y(0,£) =0 and Y{,t) = 0. BSince
the initial displacement is f{x), we have Yix, 0) = f(x); and since the initial velocity is zero, we
have Y, {x,0) =0 where ¥, denotes the partial derivative with respect to {&. We must thus solve
the boundary-value problem

2y a2Y
= @
Y(0,0)=0, Y, =0, Y{(x0)=flz}, Yi{x,0=0 @

Assume s sclution to () of the form Y = XT where X depends only on z and T depends
only on ¢{. Then subsatituting into (1), using X'’ to denote d2X/dx? and T to denote d2T/dt?, we have

Xr" = 2X'T
X*F _ T!I’
or X = ar “

Since one side depends only on z and the other side depends on t while » and ¢ are independent,
the only way in which (2) can be valid is if each side is a constant, which we shall take as

—x2, Thus X "
X 2T _
or X' 4325 =0, T4 )2 =0
These equations have solutions
X = Aycoshz + B sinig, T = A,coshet + Bysiniet
Thus a solution is given by
¥Yi(x,) = XT = (A, cosxx + Byainiz){d, cosret + B, sin ret) (73]

From the first condition in (2), we have

A{d, cosdhet + Bysinref) = 0

so that 4, = 0 [since if the second factor is zero then the solution is identically zero, which we
do not want]. Thus
Y(x,t) = B,sinxe (A; coshet + B, sin het)

= ginAx (b cos et 1+ @ gin et} (&)
on writing BjdA; = b, BB, = a.

Using the second condition of (2) in (5), we see that sinxl =0 or X =nzr where
n=123,.... Thus A = arfl and the solution s0 far is

Yz, ) = sin L?c ( b cos m;ct + azin ﬂ——“;ct) ()

By differentiating with respect to ¢, thia becomes

Y (z,t) = sain 3—‘-‘—;5 ( - M;’b sin n—”:—t m-lca cos E?—t)
so that the fourth condition in (2) gives
Y (x,0) = sin ’L’;"‘ ("’:"“) = 0
from which @ = 0. Thus (6) becomes
Y, ) = b sin 5% cop 2 7)
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To satisfy the third condition of (2} we use the fact that solutions of (7} multiplied by constants
as well as sums of solutions are also solutions [the superposition theorem or prineiple for linear
differential equations]. Thus we arrive at the solution

Ye,) = 3 b, sin’E cos’-‘fiﬁf )

Using the third condition of (2) in (&) we must have

Y0 = fl@) = I b, sinZE (9
=
But this is simply the expansgion of f(x) in s Fourier sine series and the coefficients are piven by
t
b, = -2—f f(z) sin 22X g
4 R {
Thus the solution is given by
- i
Yiz,t) = 21 {%—f #lx) sin ﬂiﬂdx} sin%ﬁcos M'Td {16)
n= o

The method of solution assuming Y = XT is often called the method of separation of variables.

8.20. A string with fixed ends is picked up at its ¥
center a distance H from the equilibrium

position and released, Find the displace- H

ment at any position at any time, ! : z
From Fig. 8-20 we see that the initial displace- | S ¢
ment of the string is given by Fig. 8-20
2Hx/1 0z =2
Y0 = =) 2H(I~2)l U2Sz sl
Now i
b, = %—f Hzx) sin% de
¢

] o]

2 t
f %uinmdz + %(I—z) sinﬁ?‘-da:}

{ 0 ! ! /2

8H sin (nx/2)
a? n?

on using integration by parts to evaluate the integrals. Using this in equation (70} of Problem 8.19,
we find

Yiz,t) 8H i gin (nrf2) . mrz _wmwet

gin —— cos
2 ax1 nt 5 H

]

%‘{%sin?ms-’% - %sin%Tzcos—*——s?t + slgsin—s-%icosi?—t - }

821. Find the normal frequencies and normal modes for the vibrating sfring in
Problem 8.20.

The normal mode corresponding to the lowest normal frequency is given by the first term in
the solution of Problem 8.20, i.e.,
8H Tx ref

3 sinT cos -

The frequency is given by f; where
2!‘f 1 =

e = 2 X
T oo hH =g = o
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Since the cosine varies between —1 and +1, the mode is such that the string oscillates as in
Fig. 8-21 from the heavy curve to the dashed curve and back again.

Y Y

Fig. 8-21 Fig.8-22

The next higher frequency is given by the mode corresponding to the next term in the
series which, except for sign, is 8H ez Spet
gt S0 T cos T
In this case the frequency is given by

afy = T o py o= 2= 2T

The mode is indicated in Fig. 822,

The higher normal frequencies are given by

= 5 JT - 1,,1'
fs - ﬁ ;" f‘r = 97 ;;

The amplitudes of modes corresponding to the even frequencies

- 2 7 = 5.42
f2 = 3 e’ £ T 2ANer

are zero, so that these frequencies are not present. In a general displacement, however, they
would be present.

Becauze of the fact that ail higher normal frequencies are integer multiples of the lowest
normal frequency, often called the fundamental frequency, the vibrating string emits a musical
nofe. The higher frequencies are sometimes called overtonea.

Find the transverse displacement of a vibrating string of length ! with fixed end-
points if the string is initiaily in the equilibrium position and is given a wvelocity
distribution defined by g(x).

In this case we must solve the boundary-value problem

oY _ L 2F
P = %2 {2)
Yoo,o=0 YLO=0 Y0=0 Y0 =g (£)

The method of separation of variables and application of the first two conditions of (2) yields,

as in Problem 8.19, ¢ £
¥z, ) = gin % (b cos m;c + a sin n__n;c )

However, in this case if we apply the third condition of (£) we find b =0, =0 that

Y9 = asin™Z i ""l"‘

To satisfy the fourth condition we first note that the superposition principle applies, a0 that we

arrive at the solution o _— ot
Yie, ) = Ex ey 8in =7 sin rx )
"=
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From this we have by differentiation with respect to ¢,

= 9%
Y(z,) = 3 _L:a,, ain% cos 278t
n=1 I
= nred
or ' Y0 = g& = I 7" %
u=1
Then by the method of Fourier series we see that
Hred, 2 t . Rk - i ! . nwd
i = IJ; glx) sin =~ dx or a, = wwo , glz) 31anx (4)
Thus the required solution is, on using (4) in (1),
- 2 ' . M . Mxx . nwet
Yz, &) = n§l {MCJ; gz} sin —— da:} sm-T 8in = (5}

823, Find the transverse displacement of a vibrating string of length ! with fixed end-
points if the string initially has a displacement from the equilibrium position given
by f(x) and velocity distribution given by ¢(z).

The solution to the given problem is the sum of the solutions to the Problems 8.19 and B.22.
Thus the required sclution is

© H k!
Yz, t) = “21 {‘—? f Fix) sinﬁ?i dxi’ sin l’%’_”. cos m;ct
= [ .

w H .]
+ 2 {“‘"“” J. giz) sin 1}!‘1’ dz j> sin ﬂ;ﬁ sin m;ct
¢

MISCELLANEOUS PROBLEMS

8.24. A particle is dropped vertically on to a fixed horizontal plane. If it hits the plane
with velocity v, show that it will rebound with velocity —ev.
The solution to thia problem can be obtained from the results of Problem 8.6 by letting m,

become infinite and v, =0 while v, =v [where subscripte 1 and 2 refer to the particle and
plane respectively]. Then the respective velocities after impact are given by

lim vi; = _____{(milmg) — v —ev
m,l-]l‘o L= miglq 1+ (m,/mg) ¢

" . . (mml+ v .
miw 2 mpe L (mymy

Thus the velocity of the particle after impact is —ev. The velocity of the plane of course
remains zero.

8.25. Suppose that the particle of Problem 8.24 is dropped from rest at a height H above
the plane. Prove that the total theoretical distance traveled by the particle before
coming to rest is given by H{(1+ &)/(1 —¢é).

Let v be the apeed of the particle just before it hita the plane. Then by the conservation of
energy, {mv:+0=0+mgH or v*=2¢gH. Thus by Problem 824 the particle rebounds with

speed ev and reaches a height («)?/2g = &£H. It then travels back to the plane through the
distance «2H. Thus on the first rebound it travels through the distance 2¢&H.

By similar reasoning we find that on the second, third, ... rebounds it travels through the
distance 24AH, 24H, ... . Then the total theoretical distance traveled before coming to rest is
H+28H + 26H + 28H + - = H+20H(1+2+a+ ) = H+ o0 = H(:—f—g)

using the result 1++r+r2+e34+ .. =1/(1—7 it [H <L

-
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8.26.

827,

Two particles having masses » and M
are traveling on the r axis (assumed

frictionless) with velocities vi and Vii ["&]_..-v,i |i|._..V,l
respectively. Suppose that they collide 0 _'|
and that after the collision (impact) their ~ ¥ — ‘

velocities are v.i and V. respectively.
Prove that the velocities of the center of

mass before and after collision are equal. Fig.8.23
By the conservation of momentam, B
Total momentum before impact = total momentum after impact
mei + MV i = meji + MV,
or my, + MV, = my, + MV,

Let x and X be the respective coordinates of the particles. Then the center of mass is given
by F = (mx+ MX)/{m 1+ M).

The velocity of the center of mass before impact is
F1 = (mw,+ MV Mim + M)

The velocity of the center of mass after impact is 1'!'2 = (mvy + MVy)/(m+ M). Thus 3‘1 = ?:'2.

A particle of mass m slides down a frictionless incline of angle o, mass M and
length L which is on a horizontal frictionless plane {see Fig. 8-24]. If the particle
starts initially from rest at the top of the incline, prove that the time for the particle
2L{M + m sint a)

(M + m)g sin a

to reach the bottom is given by

Choose & fixed vertical zy coordinate
system as represented in Fig. 8-24. Let R be ¥
the position vector of the center of mass C
of the incline, A the (constant} vector from
C to the top of the incline, and s the position
vector of the particle relative to the top of
the incline. Then the position vector of par-
ticle m with respect to the fixed coordinate
system is R+ A+s. Since the only force

acting on the particle is the weight mg of the i L
particle, we have by Newton’s second law x
applied to the particle, o
dz —
ma}'z'm""""S} = mg {1)
2R | d%
or E T ¢ (2 _ Fig. 8-24

Writing R=Xi+ Y} g=~-g) and s =ass;., where s, is a unit vector down the incline in the
direction of s, (2) becomes

aX
Te it dt3 sy = —gi
Multiplying by s, +, this becomes
X d%s
e it gEsics = st

a@xX
or *ﬁﬂ(’&a‘f‘%-:— = gsina (E)]
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Since the net horizontal force acting on the system consisting of the particle and ineline is zero, the
total momentum in the horizontal direction before and after the particle starts sliding is zero. Then

dR
Mﬁoi+m%(a+a+s)-i = 0
This ¢an be written as
dX ds -
(M+m)-d—t—m§c03a = 0 {4)

Differentiating (4) with respect to ¢ and solving for d2X/di2, we find

@2X _ mcosq dis

@ S Mtman %)
Substituting into (&) yielda
d?%  _ {M + m)y sin « _ (M+Am)gsine ®
df =~ M+ m—mcosia M+ msinta

Integrating (&) subject to the conditions 8 =0, ds/dt =0 at ¢ =0, we find

1 {(M +m)g gina 2
T 2\ M L meinta

which, when s = L, yields the required time.

8.28. Solve the vibrating string Problem 8.19 if gravity is taken inte account.

The boundary-value problem is

Y a2y
e = Y @
Y(0,=0, Y(L0)=0, Y(x0) =fx), Y,(x0=0 ®

Because of the term —g the method of separation of variables does not work in this case. In
order to remove this term, we let

Y, 8) = Z(x,t) + p{x) L)
in the equation and conditions. Thus we find

7z Iz

BT Pt e @
Z0, 0 +4(0) = 0. ZLO+ ¢l = 0, Z(x,0) + ¢z} = fla), Zdx,0) = 0 (5
The equation (4) and conditiona (5) become similar to problems already discussed if we choose ¢
such that
ey —g =0, ¢(0) =0, ¢{l) =0 ()
In this case (4} and (5) become
a2z 82
e = T ' . @
Z(0,t) = 0, Z(LY) =0, Z(x,0) = flx}—plx), Zf2,0) =0 (8)

Now from (6) we find ¢ = gfe2 or y(x) = pa?/2et+ ez + ey and aitce ¢ =10, ¢ =0,
we obtain e, = 0, ¢, = ~gi/2¢2. Thus

vy = et
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The solution to equation {?) with conditions (8) is, as in Problem 8.19,

® !
Z(z, t) = §1 {% f [£lx} —¢(2)] sin”—:”— dz} sin n—;—z cos "”T“
n= ]
and thus
® t
Y(z,t) = §l {% [f(x} - —'2:,:(:1:*—!::):! sin%dx} sin-"'%"c cos ”’E—ct + %(x’—la:)
"= o

829, Assume that a continuous string, which is fixed at its endpoints and vibrates
transversely, is replaced by N particles of mass m at equal distances from each other.
Determine the equations of motion of the particles.

We assume that the particlea are con-
nected to each other by taut, elastic strings
having constant tension T [see Fig. 8-25]. 'y
We also assume that the horizontal distances
between particles [i.e. in the direction of the
unit vector i] are equal to ¢ and that the Y,—
transverse displacement [i.e. in the direction ]1 4[
of the unit vector j] of particle » iz ¥,. We e
particle in direction i or -~i. Fig. 8-25

1 Y, Yu+ 1

assume that there is no displacement of any

Let us izcolate the rth particle. The forces acting on this particle are those due to the {» —1lst
and (» + 1)st particles. We have
Y,—-Y,_
—-F ( L4 v 1) j
1

__T(Yv - Yv+1>‘i
a

Then by Newton’s second law the total transverse force acting on particle » is

Transverse force due to (v — 1)st particle

Transverse force due to (» + 1)st particle

&Y, Y=Y, . Y, =~ ¥4y
w = r (P - (B,
a2y’
or bids dt; = %(Y.._; ~2¥,+ ¥,
i ¥, = L(v,, -2, 47 1)
-€, v m( v—1 v v+l) (

To take into account the fact that the endpoints are fixed, we assume two particles cor-
responding to » =0 and r=N+1 for which ¥, =0, ¥y,.; = 0. Then on putting »=1 and
» = N in equation (I), we find

e - T
¥y = Zevi+vy), ¥y = ¥y -2¥ ®

8.30. Obtain the secular determinant condition for the normal frequencies of the aystem
of particles in Problem 8.29,

Let ¥, = A, cotwt in equations (7) and (2) of Problem 8.29. Then after simplifying we find

_Av—l + (2—maw"/T)A, - Av-l-l = 0 r = 2; ---sN_l (1)
@ —matT)A; — Ay = 0, —Ay_;+ @—maT)Ay = 0 ®
Putting 2 — mat/T = o )

these equations can bhe written

O.Al _A’ = 0, ~A1+0A3—A3 = 0, “eay _'AN-nl'i'cAN =90
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Then if we wish solutions such that A, # 0, we must require that the Nth order determinant
of the coefficients be zero, i.e.,

e -1 0 0 0 ... 0 0 0
-1 ¢ ~1 0 0 6 0 o
sy = [0 Loe m1o0 o0 0 0| _
6 0 0o o 0 “1 ¢ -1
6 o0 0 0 0 0 -1 e

The normal frequencies are obtained by solving this equation for the N values of 2.

Although we have used Y, = A, coswt, we could just as well have assumed ¥, = B, sinat
or Y, =A,cos0l+ B, sinwut or Y, = Cewt, The secular determinant would have come out to be
the same [compare the remarks at the end of Problem 8.2(b)].

831. Prove that the normal frequencies in Problem 8.30 are given by

2T ( ar )
2 = 2 ({1 — —_ = .
w? a cosN+1, a=1, ..., N
By expanding the determinant Ay of Problem 8.30 in terms of the elements in the first row,
we have
Ay = cAy-) — An-g : (n
A.lSO, ﬂl = ¢, A2 = ¢z —1 (2]

Putting N =2 in (Z), we see that equations (2) are formally satisfied if we take Ay = 1. Thus
conditions consistent with (1) and (2) are

Ay = 1, Ay = ¢ (J)

To solve the difference equation (1), assume that Ay = pN where p is a constant to be
determined. Substituting this inta (7}, we find on dividing by p¥-2,

+ el —
pPP—ep+l1l =10 or p=%—-—4-
If we call ¢ = 2 coss, then
P = coséd t iging = et
Thus solutions of the difference equation are
(€N = aN& =  cogNg + 1sin N¢ and (e~ = e-Ni# = cogNs — iain Ny

Since constants multiplying these solutions and sums of solutions are also solutions [as in
the case of linear differential equations), we see that the general solution is

Ay = G cosNg + H sinNe¢ (4)

Now from equations (8) we have Ay =1, A; =2c0os# s0o that G =1, H=-cots. Thus

ginNocose  sin(N-+1)e

Ay = coaNe + - = -
gin ¢ ain e

&)

This i3 equal to zero when sin(N+1)4=0 or ¢ =ax/(N+1), e=1,...,N. Thus using (3)
of Problem 8.30, we find

I YA
2 = ma(l cosN+1) (9)
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8.32,

Solve for A, in Problem 8.30 and thus find the transverse displacement Y, of particle v

From equations (1) and (2) of Problem 8.30 we have [on using the normal frequencies (8) of
Problem 8.31 and the superscript « to indicate that the A’s depend on ],

ar (a)

~A% + 24 cos Ny AN =0 3]
together with the end conditions
AP =0, A% =0 @

The equation (I) subject to conditions (2) can be solved in a manner exactly like that of Problem 8.31,
and we find

&
N+1
where C, are arbitrary constants, In a similar manner if we had assumed Y, = B, ginut [zee
remarks at the end of Problem 8.30] we would have obtained

Al™ = C,sin

arT

fa)y :
B, Dy sin NT1

Thus solutions are given by

C, 8in ¢o8 wt and D, sin 8in wt

fug g L{
N+1 N+1
and since sums of solutions are also solutions, we have

Y, = t+ D,
21 gin ——— N + 3 (Cy cosut + sin wt)

The constants C, and D, are determined from initial eonditions.

The analogy with the continuous vibrating string is easily seen,

Supplementary Problems

VIBRATING SYSTEMS OF PARTICLES

8.33.

8.34.

8.35,

8.36

8.317.

Find the normal frequencies of the vibrations in Problem 8.1, page 187, if the sf)ring constants
and masses are all different.

Two equal masses m on a horizontal frictionless

table as shown in Fig. 8-26 are connected by equal

springs. The end of one spring is fixed at 4

and the masses are set into motion. {a) Set up the iid x m
equations of motion of the system. (d) Find the A
normal frequencies of vibration. (¢) Describe the
normal modeg of vibration.

_ Fig. 8-26
Ans. (b) £, = ‘/E ‘/_“\];

Work Problem $.34 if the spring constants and masses are different,

Two equal masses m are attached to the ends of a2 spring of constant « which is on a horizontal
frictionless table. If the masses are pulled apart and then released, prove that they will vibrate

with respect to each other with period 24V m/2x.

Work Problem 8.36 jf the masses are different and equal to M, and M; respectively.

Ang. 20V g/x where u= M M /M, +M,)
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8.38. In Fig. 8-27 equal masses m lying on a horizontal

m
frictionless table are connected to each other and to "
fixed points 4 and B by means of elastic strings of
constant tension T and length I. If the displacemenis ¥ Y,
from the equilibrium position AB of the masses are 1 !
Y, and ¥, respectively, show that the equations of < R
A

motion are given by

¥, = wy,-2v), ¥, = «¥,-2Yy Fig.8-27
where x = 8T/mi. -
. A
8.39. Prove that the natural freguencies of the vibration in Problem 8.38 are given
respectively by X1
1 3T 1 97
I L — 4T m.
2 Vo M T\ !
and describe the modes of vibration. 2
",
8.40. Find the normal frequencies and normal modes of vibration for the system of 2
particles of masses m, and m, connected by springs as indicated in Fig. 8.-28, Fig.8-28

CHANGING MASS. ROCKETS
8.41. (a¢) Prove that the total distance traveled by the rocket of Problem 8.5 in time ¢ is given by

my — at my — at
= v"{t+( oa )]n( omo )} - %gtz

{(8) What is the maximum height which the rocket can reach and how long will it take to
achieve this maximum height?

8.42. Suppose that a rocket which starts from rest falls in a constant gravitational field. At the
instant it starts to fall it ejects gas at the constant rate a in the direction of the gravitational
field and at speed v, with respect to the rocket. Find its speed after any time t.

_ M Y
Ans. gt voln(mﬂ_at/
8.43. How far does the rocket of Problem 8.42 travel in time #7

l 5 _ fty — at My — at
Ans. 2gt vo{t+< - )]n( g

8.44. Describe how Problem 8.42 can be useful in making a “soft landing” on a planet or satellite?

8.45. Discuss the motion of a two-stage rocket, ie. one in which one part falls off and the other
rocket takes over.

COLLISKONS OF PARTICLES

8.46. A gun fires a bullet of mass m with horizontal velocity v into a block of wood of mass M which
vesis on a horizontal frictionless plane. If the bullet becomes embedded in the wood, (a) determine
the subsequent velocity of the system and (¥) find the loss in kinetic energy.

Ans. (@) mv/(M +m} (b)) mMo/2(M + m)
8.47. Work Problem 8.46 if the block is moving away from the gun with velocity V.

848. A ball which is dropped from a height H onto a floor rebounds to a height k < H. Determine
the coefficient of restitution. Ans, VRI/H

8.49. A mass m; traveling with speed v on a horizontal plane hits another mass m,; which iz at rest.
If the coefficient of restitution is ¢, prove that there is a loss of Kkinetic enerpy equal to
myma(l — )02/ 2(m, + my).
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830. A billiard ball strikes another billiard bail obliquely at an angle of 45° with their line of

51

842,

853,

centers at the time of impact. If the coefficient of restitution is 1/2, find the angle at which
the first ball will “bounce off”. Ans. tan—!(8/6)

Let the masses of two colliding particles be m,,m, and their respective velocities before impact
be v, vy If the coefficient of restitution is ¢, prove that the loss in kinetic energy as a result

of the collision is + — L2ty —y.)2(1 — )
§ $ 2oy +my 2 ’

Prove that the momentum which is transferred from the first particle of Problem 8.51 to the second
8~ (14 vy — vy)
18 - ¥ g e}V Val.

A ball is dropped from a height b above a horizontal plane on to an inclined plane of angle o which
is resting on the horizontal plane. Prove that if the coefficient of restitution is ¢, then the ball will
next hit the incline at a point which iz at a distance de(l + ¢}k sina  below the original point
of impact.

FOURIER SERIES, ODD AND EVEN FUNCTIONS, FOURIER SINE AND COSINE SERIES

8.54,

8.55.

8.56.

8.57.

8.58.

Graph each of the following functions and find their corresponding Fourier series using properties
of even and odd functions wherever applicable.

8 0<ax<2
= i = < 1

{a) fix) 8 2<z<d Period 4 {¢) f(x) =4dx, 0 < x <10, Period 10

—x ~—4=EzZ=0 . 2x 0=2x<3 )
(b fix)} = - 0=z=4 Period 8 (dy flx) = 0 <2< Period 6

16 2 (1 —cosng) . nrx _ 40 31 . e
Ans. (a2} " ngl e sinT— () 20 - ngl S 8in =g
{1 cosmr} oL Blcosngy —1) nax _ S eosnr . Nmy
) 2 - 2 €87y (d) 2 g { n2g2 cos7g P

In each part of Problem 8.54, tell where the discontinuities of f(z) are located and to what value
the series converges at these discontinuities.

Ang. f{a) z=0,x2,%4,..., 0 (¢} w=0,x10,%20,...; 20
(b} no discontinuities {(dy « = =3, 29, =x15,...; 8

2—x 0<x<4

r—6 d<z<B in & Fourier series of period 8.

Expand filx) = {

16 1 %ew L b,
Ans. -2 {cos4 +32cos 4 +52cosT+ }

() Expand f(x) =cosx, 0 < x <, in a Fourier sine series.
{by How should f{x) be defined at * =0 and z = so that the series will converge to f(z} for

0= =7

Ans. (@) 8 S n sin Znx

T2 A1 b fi=fmn=0

{(a) Expand in a Fourier series flx) = cosx, 0 <z <7 if the period is =; and (b) compare with
the result of Problem 8.57, explaining the similarities and differences if any.

Ans. Answer is the same as in Problem 8.57.
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8.59.
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F 0<x <4
Expand f(z) ==

-z 4<z<8 in & series of (a) sines, () cosines.

nr nex 2 cosnr/2 —coane — 1 nre
Ans, (a) ,s 2 2:=m'| 5 sm—-§— (b) 2 ( — )cos—;-

THE VIBRATING STRING

8.60,

8.61.

8.62.

8.63.

8.64.

(¢) Solve the boundary-value problem

#Y _ »Y
w-—lm <<y, t>0

Y.(0,t) =0, Y(rt)=h Y0 =0 Y0 =0
(8) Give a physical interpretation of the problem in (a).
B
Ans. Yz, t) = - n§1 oy — 7 50 (n— %)= sin (2n — 1)¢

Solve the boundary-value problem
Yo = Y,— ¢ 0z <, t >0
Yo =0, Yir,t) =0, Yiz0) = pafr—2), VY, (z,00 =0
and interpret physically.

4 2ux+g) 3 1

Ans. Yz, t) - =
n=

3 sin (2n — 1)x cos (2r — 1}t — Lgelr—x)

% = 4%% which satisfies the conditions Y(0,¢ = 0,
Y, t) =0, Y(x,0) =01 sinx+ 001 sindx, ¥ {2,00) =0 for 0 <2 < x>0 (b) Interpret physi-
cally the boundary conditions in {#) and the solution.

Ans. {(¢) Yiz, t) = 0.1 sin = cos 2t + 0.01 sin 42 cos 8¢

(@) Find a solution of the equation

2 %
(a) Solve the boundary-value problem % = 9‘;71; subject to the conditions Y0, =0,

Y2,8) =0, ¥(x,0) = 0.06x(2 —x), Y, (x,0) =0, where 0<x<2,t>0 (b} Interpret physically.

@r=Drx 3{21:.-2— Lt

A @ Yo =5 3 gty

Solve Problem 8.63 with the boundary conditions for Y{x,0) and Y¥,(x,0) inferchanged, i.e.
Yz, 00 =0, Y, (=, 0) = 0. 05:1:(2 — ), and give a physical interpretation,

Ans. Yz, t) = 3 m 7 sin (2n—z Daz o 3(21.;11«:

MISCELLANEOUS PROBLEMS

8.65.

8.66.

8.67.

A spherical raindrop falling in a conktant gravitational field grows by absorption of moisture from
its surroundings at a rate which is proportional to the instantanecus surface area. Assuming
that it starts with radius zero, determine its acceleration. Ans. Lo

A cannon of mass M rests on a horizontal plane having coefficient of friction p. It fires a
proJectile of mass m with muzzle velocity v, in a direction making angle a with the horizental
Determine how far back the cannon will move due to the recoil.

A ball is thrown with speed v, onto a smooth horizontal plane in a direction making angle « with
the plane. If ¢ is the coefficient of restitution, prove that the velocity of the ball after the impact

is given by v;/1— (1 —)sinta in a direction making angle tan~1(c tana) with the horisontal.
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868,

4.69.

.70,

811,

812

8.33.

4.

475,

5.76.

8.77.

8.78.

8.79.

.50,

88

Prove that the total theoretical time taken for the particle of Problem 867 to come to rest is
VEH/g {1+ /{1 — o).

Prove that while the particle of Problem 8.27, page 213, moves from the top to the bottom of the
in¢line, the incline moves a distance (mL cos o}/ (M + m).

Prove that the loss of kinetic energy of the spheres of Problem 8.9 ia }a(v; cos o, — v; cos #)%(1 — €?)
where y Is the reduced mass m;my/{m, + m,).

Prove that the acceleration of a double incline of mass M [Fig. 8-29] which is on a smooth
{m, sin a; cos a; — My 8in ay coY azly
M + my sin2a; + m, sin2 oy

table is given by

If A is the acceleration of the incline in Problem 8.71, prove that the accelerations of the masses
m{A cosay + 7 8in ay) + melAd cos ap — & sinay)

relative to the incline are given numerically by

my + Ma *
m
my T2 .
m
Xy ag
Fig. 8-29 Fig. 8-30

A mass m slides down an inclined plane of the same mass which is on a horizontal plane with
coefficient of friction z. Prove that the inclined plane moves to the right with acceleration equal
to {1 — 3u)/(8 ~ u). See Fig. 8-30,

A gun of mass M is located on an incline of angle « which in turn is on a smooth horizental plane.
The gun fires a bullet of mass m horizontally away from the incline with speed v,. Find the
recoil speed of the gun. Ang. (mv cosa)/M up the incline

How far up the plane will the gun of Problem 8.74 move before it comes to rest if the incline is
(o) frictionless, (b) has coefficient of friction %

A weight W is dropped from a height H above the plate AB of
Fig. 8-31 which is supported by a spring of constant «. Find the A B
speed with which the weight rebounds.

A ball is thrown with speed v, at angle « with a horizontal plane.
If it rebounds successively from the horizontal plane, determine
its location after n bounces. Assume that the coefficient of reatitution
is ¢« and that air resistance is negligible, Fig.8-31

Work Problem 8.77 if the horizontal plane is replaced by an inclined plane of angle 8 and the
ball is {a} thrown downward, (&) thrown upward,

Obtain the equation {1}, page 195, for the vibrating string by congidering the equations of motion
for the N particles of Problem 8.29, page 215, and letting N - =,

Prove that as N = = the normsl frequencies as given in Problem 8.31, page 218, approach those
for the continuous vibrating atring.

B

Prove that for 0 = x = =,

2
@ az—-x) = I.— (cos2a: cosdxr , cosbx + )

6 T Tz tw
§(sinz sin8x . sinby | )
T

Tt

h

(b) x{z—w)
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B.8Z.

843,

8.84.

8.85.

8.86,

8.87.

B.88,

8.89.

8.90.

8.91.

8.92.

8.93.

B.94.

£.95.

8.96.

APPLICATIONS TO VIBRATING SYSTEMS, ROCKETS AND COLLISIONS [CHAP.§

Use Problem 8.8t to show that

1 _ & (~n1 a2 2 (=i _ 4B
o) n§] R ® ngl n? TS © ngl (2n—1) ~ 327

Prove that Y = flx+ ¢t} + g{x —ct) is a soluticn of the equation
a*y . 82Y
22 - «fr
a2 ax?
and discuss the connection of this solution with the problem of the vibrating string.

t 2
(¢} Prove that the total potential energy of a vibrating string is V = %f (%’) dz,
o

] gm o 2
(b} Thus show that V = at § n? | a, cos nret + b, sin nret .
4 .2 [ !

t 2
{a) Prove that the total kinetic energy of the vibrating string is K.E. = -&cf (ﬂ’) dr.

at

2.2 2

{6) Thus show that KE. = “4; = nt (a,, cosmrTCt — b, gin “'Td’) .
n=1

(¢} Can the kinetic energy be infinite? Explain.

. . . . =T 3 2 2
Prove that the total energy of a vibrating string is E = T 3 aa® + bD).

n=1

Find the potential energy, kinetic energy and total energy for the string of (a) Problem 8.20,
page 210, () Problem B.28, page 214.

If damping proportional to the instantaneous transverse velocity is taken into account in the

: . : : . N ) 4 Y 2y
problem of the vibrating string, prove that its equation of motion is T3 + B b 2

Prove that the frequencies of vibration for the damped string of Problem 8.88 are given by

Vnlr2e2/i2— 824, n = 1,2,8,....

Solve the problem of the damped vibrating string if the string is fixed at the endpoints 2 = ¢ and
x =1 and the string is (a) given an initial shape f{x} and then released, (» in the equilibrium
position and given an initial velocity distribution gi{x), (¢} given an initial shape f{x) and velocity
distribution g{x).

Work the problem of the damped vibrating string if gravitation is taken into sccount.

Work (a) Problem 8.84{a), (b} Problem 8.86{a), (¢} Problem B8.86, {d) Problem 8.88 for the
case where the string is replaced by N particles as in Problem 8.28, page 216.

In Fig. 8-32 the double pendulum system is free to vibrate in 8 vertical 7z
plane. Find the normal frequencies and normal modes assuming small
vibrations,

Work Problem 8.93 if there i3 an additional mass m, suspended from m, by
a string of length I,.

Generalize the motion of (a) Problem 8.1, (b) Problem 8.34 to N equal
particles and springs.

In’ Problem B8.85 investigate the limiting case as N - «. Discuss the
physical significance of the results, Fig. 8-32
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847,

598,

B1s0.

ol

R.102.

8108

AL

105,

B.106.

- 107,

Solve the boundary-value problem
oty Yy

¥ = 023;,‘;- + o sinwt

Yo, t) =0, Y6 =0, Y@0 = flz), Y (=0 =0

and give a physical interpretation.
Work Problem 8.97 if the condition ¥ {x,0) =0 is replaced by Y, (x, 0} = g{x).

Work Problem 8.97 if the partial differential equation is replaced by
Yy 2 92Y

T ) + a sinwt

Yy
Ty
and interpret physically.

Set up the differential equations and initial conditions for the motion of a rocket in an inverse
square gravitational field. Do you believe these equations can be solved? Explain.

Two bodies [such as the sun and earth or earth and moon] of masses m; and m, move relative
to each other under their mutual inverse square attraction according to the universal law of
gravitation, If r; and r, are their position vectors relative to a fixed coordinate system, and
r=r, —r,; prove that their equations of motion are given by

. Gmy(r, — rp) . Gmy(rs — 1)
= e =

This is called the problem of two bodics,

In Problem #.101 choose a mew urigin at the center of mass of the two bodies, i.e. such that
m ) + myry = 0, Thus show that if we let r be the position vector of m; relative to m,;, then

. Giny + ma)ry " Gimy + myhr,
hEoT g s s
. . G{m; + my)r
or, on subtracting, r = — —

Thus show that the motion of m; relative to m, is exactly the same as if the body of mass m, were
fixed and its mass increased to my, + my.

Using Problem 8.102, obtain the orbit of mass m, relative to m, and compare with the results of
Chapter 5. Are Kepler’s first and second laws modified in any way? Explain.

If P is the period of revelution of m, about m, and o is the semi-major axis of the elliptical path of
m, about m,, prove that

P2 . dx2
at — Gimy+my)

Compare this resuit with Kepler's third law: In the case of the earth [or other planei] and sun,
does this modified Kepler law have much effect? Explain.

Set up equations for deseribing the motion of 3 bodies under a wmuiual inverse square law of
attraction.

Transform the equations obtained in Problem 8.105 so that the positions of the bodies are described
relative to their center of mass. Do you believe these equations can be solved exactly?

Work Problems 8.105 and 8.106 for N hodies.



Chapter 9 PLANE MOTION
of RIGID BODIES

RIGID BODIES

A systern of particles in which the distance between any two particles does not change
regardless of the forces acting is called a rigid body. Since a rigid body is a special case
of a system of particles, all theorems developed in Chapter 7 are also valid for rigid bodies.

TRANSLATIONS AND ROTATIONS

A displacement of a rigid body is a change from one position to another. If during
a displacement all points of the body on some line remain fixed, the displacement is called
a rotation about the line. If during a displacement all points of the rigid body move in
lines parallel to each other the displacement is called a translation. '

=

EULER’'S THEOREM, INSTANTANEOUS AXIS OF ROTATION

The following theorem, called Euler's theorem, is fundamental in the motion of rigid
bodies.

Theorem 9.I. A rotation of a rigid body about a fixed point of the body is equivalent
to a rotation about a line which passes through the point,

The line referred to is called the instantaneous axis of rotation.

Rotations can be considered as finite or infinitesimal. Finite rotations cannot be
represented by vectors since the commutative law fails. However, infinitesimal rotations
can be represented by vectors.

GENERAL MOTION OF A RIGID BODY. CHASLE’S THEOREM

In the general motion of a rigid body, no point of the body may be fixed, In such case
the following thecrem, called Chasle’s theorem, is fundamental.

Theorem 9.2. The general motion of a rigid body can be considered as a translation
plus a rotation about a suitable point which is often taken to be the center of mass.

PLANE MOTION OF A RIGID BODY

The motion of a rigid body is simplified considerably when all poinis move paralle]
to a given fixed plane. In such case two types of motion, called plane motion, are possible.

1. Rotiation about a fixed axis. In this case the rigid body rotates about a fixed axis
perpendicular to the fixed plane. The system has only one degree of freedom [see Chap-
ter 7, page 165] and thus only one coordinate is required for describing the motion.

00 A
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2 General! plane motion. In this case the motion can be considered as a translation
parallel to the given fixed plane plus a rotation about a suitable axis perpendicular to
the plane. This axis is often chosen so as to pass through the center of mass. The num-
ber of degrees of freedem for such motion is 3: two coordinates being used to describe
the translation and one to describe the rotation.

The axis referred to is the insfanianeous axts and the point where the instantaneous
axis intersects the fixed plane is called the instantancous center of rotation [see page 229).

We shall consider thege two types of plane motion in this chapter. The motion of a
tigid body in three dimensional space is more complicated and will be considered in
Chapter 10.

MOMENT OF INERTIA

A geometric quantity which is of great importance in discussing the motion of rigid
bodies is called the moment of inertia.

The moment of inertia of a particle of mass m about a line or axis AB is defined as
I = mr : (1)

where r is the distance from the mass to the line.

The moment of inertia of a system of particles, with
masses My, M, . . ., My about the line or axis AB is defined as

N
I = Ymr? = mez+ mp2 + - + mgrs (2)
¥=1

where 71, 7o, . . ., rn are their respective distances from AB,

The moment of tnertia of o continuous distribution of
mass, such as the solid rigid body ® of Fig. 9-1, is given by

I = j;:r’dm @

where r is the distance of the element of mass dm from AB.

RADIUS OF GYRATION

N
Let I = 3 m,r? be the moment of inertia of a system of particles about AB, and
N

p=]

M = 3 m, be the total mass of the system. Then the quantity K such that

v=1

] 2™
> me
it called the radius of gyration of the system about AB,
- For continuous mass distributions {4} is replaced by
, J; 7 dm
B =5 = ®

H‘F
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THEOREMS ON MOMENTS OF INERTIA

1. Theorem 9.3: Parallel Axis Theorem. Let I be the moment of inertia of a system
about axis AR and let I be the moment of inertia of the system about an axis parallel to
AR and passing through the center of mass of the system. Then if b is the distance between
the axes and M is the total mass of the system, we have

[ =1, +Mb (8)

2. Theorem 9.4: Perpendicular Axes Theorem. Consider a mass distribution in the
ry plane of an xyz coordinate system. Let I., I, and /. denote the moments of inertia about
the ¥, ¥ and z axes respectively. Then

Iz = I,\:+Iy {7}

SPECIAL MOMENTS OF INERTIA

The following table shows the moments of inertia of various rigid bodies which arise in
practice. In all cases it is assumed that the body has uniform[[i.e. constant] density.)

Rigid Body Moment of Inertia
1. Solid Circular Cylinder S
- of radius @ and mass M ' Maz

about axis of cylinder.

2. Hollow Circular Cylinder
of radius @ and mass M
about axis of cylinder.
Wall thickness is negligible.

3. Solid Sphere
of radius ¢ and mass M
about a diameter.

4, Hollow Sphere
of radius ¢ and mass M 4 ' )
about a diameter. P Ma
Sphere thickness is negligible.

5. Rectangular Plate
of sides ¢ and & and ol
mass M about an axis R PeM(a® + b%)
perpendicular to the plate
through the center of mass.

6. Thin Rod b
of length ¢ and mass M W
about an axis perpendicular s Ma?

to the rod through the
center of mass.

COUPLES

A set of two equal and parallel forces which act in T
opposite directions but do not have the same line of action
{see Fig. 9-2] is called a couple. Such a couple has a turning
effect, and the moment or torque of the couple is given
by r x F,

The following theorem is important. Fig. 9-2
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Theorem 9.5, Any system of forces which acts on a rigid body can be equivalently
replaced by a single force which acts at some specified point together with a suitable couple.

KINETIC ENERGY AND ANGULAR MOMENTUM ABOUT A FIXED AXIS

Suppose a rigid body is rotating about a fixed axis with
angular velocity » which has the direction of the axis AB
[see Fig. 9-3]. Then the kinetic energy of rotation is
given by

T = 3l (&)

i where I is the moment of inertia of the rigid body about
the axis.

Similarly the angular momentum is given by
Q= lo {9

| MOTION OF A RIGID BODY ABOUT A FIXED AXIS

Two important methods for treating the motion of a rigid body about a fixed axis are
given by the following theorems.

Theorem 9.6: Principle of Angular Momentum. 1f A is the torque or the moment of
all external forces about the axis and 0 = le is the angular momentum, then l
A= 20y = L = I (10)
where a i8 the angular acceleration.

Theorem 9.7. Principle of Conservation of Energy. 1If the forces acting on the rigid
body are conservative so that the rigid body has a potential energy V, then

T+V = $12+V = E = constant (10

WORK AND POWER

Congider a rigid body R capable of rotating in a
plane about an axis O perpendicular to the plane, as
indicated in Fig. 9-4. If A is the magnitude of the torque
applied to the body under the influence of force F at
point A, the work done in rotating the body through
angle d¢ is

dW = ads . (12)
and the instantaneous power developed is
_ daw. _
P = g - Aw (18)
where « i3 the angular speed. Fig.9:4
We have the following 1.

Theorem 9.8. The total work done in rotating a rigid body from an angle ¢, where
the angular speed is «, to angle 4, where the angular speed is o, is the difference in the
kinetic energy of rotation at », and »,. In symbols,

§hae = - W 4)

1
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IMPULSE. CONSERVATION OF ANGULAR MOMENTUM
The time integral of the torque

ty

g = Adt (15)

4
is called the angular tmpulze from time ¢, to ¢,

We have the following theorems,

Theorem %9. The angular impulse is equal to the change in angular momentum. In
symbols "
f Adt = 0, - Q, (16)

f

Theorem 9.10: Conservation of Angular Momentum. If the net torque applied to a

rigid body is zero, then the angular momentum is constant, i.e. is conserved.

THE COMPOUND PENDULUM

Let ® [Fig. 9-5] be a rigid body which is free to oscillate
in a vertical plane about a fixed horizontal axis through O
under the influence of gravity, We call such a rigid body a
compound pendulum.

Let C be the center of mass and suppose that the angle
between OC and the vertical OA is 4. Then if [, is the
moment of inertia of ® about the horizontal axis through O,
M is the mass of the rigid body and e js the distance OC,
we have for the equation of motion,

a+@’sme = 0 ”n
For small oscillations the period of vibration is -
P = 2n/Ti/Mga ; (18)
The length of the equivalent simple pendulum is '
I = IVMa (19)

The following theorem is of interest.

= Theorem 9.11. The period of vibration of a compound pendclum is a minimum when
the distance OC = a is equal to the radius of gyration of the body about the horlzontal
axis through the center of mass.

GENERAL PLANE MOTION OF A RIGID BODY

The general plane motion of a rigid body can be considered as a translation parallel to
the plane plus a rotation about a suitable axis perpendicular to the plane. Two important
methods for treating general plane motion of a rigid body are given by the following
theorems.

Theorem 9.12: Principle of Linear Momentum. If r is the position vector of the center
of mass of a rigid body relative to an origin O, then

%(ME) = Mr = F {20)

where M is the total mass, assumed constant, and F is the net external force acting on
the body.
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Theorem 9.13: Principle of Angular Momentum. If I_is the moment of inertia of the
rigid body about the center of mass, e is the angular veloclty and A, is the torque or
total moment of the external forces about the center of mass, then

A, = Fe = I @1)

Theorem 9.14: Principle of Conservation of Energy. If the external forees are conser-
vative so that the potential energy of the rigid body is V, then

T+V = imrt+ 3 ?+V = E = constant (22)

Note that {mr? = ime® is the kinetic energy of tramslation and 3 «* is the kinetic
energy of rofation of the rigid body about the center of maas.

INSTANTANEOQOUS CENTER.
SPACE AND BODY CENTRODES

Suppose a rigid body ® moves parallel to a given
fixed plane, say the xy plane of Fig. 9-6. Consider
an z’y’ plane parallel to the zy plane and rigidly
attached to the body.

As the body moves there will be at any time ¢
a point of the moving «’y’ plane which is instan-
taneously at rest relative to the fixed zy plane.
This point, which may or may not be in the body,
is called the instantaneous center. The line perpen-
dicular to the plane and passing through the instan-
taneous center is called the instentaneous axis. Fig. 9-6

As the body moves, the instantaneous center also moves. The locus or path of the
instantaneous center relative to the fixed plane is called the space locus or space centrode.
The locus relative to the moving plane is called the body locus or body centrode. The motion
of the rigid body can be described as 2 rolting of the body centrode on the space centrode.

The instantaneous center can be thought of as that point about which there ias rotation

without {ranslation. In a pure translation of a rigid body the instantaneous center is
at infinity.

STATICS OF A RIGID BODY

The statics or equilibrium of a rigid body is the special case where there is no motion.
The following theorem is fundamental.

Theorem 9.15. A necessary and sufficient condition for a rigid body to be in equilibrium
is that

F=0 A=0 (28)
where F is the net external force acting on the body and A is the net external torque.

PRINCIPLE OF VIRTUAL WORK AND ID’ALEMBERT'S PRINCIPLE

Since a rigid body is but a special case of a system of particles, the principle of virtual
work and D’Alembert’s principle [see page 171} apply te rigid bodies as well.



230 PLANE MOTION OF RIGID BODIES [CHAP. 9 |CH

PRINCIPLE OF MINIMUM POTENTIAL ENERGY. STABILITY
At a position of equilibrium the net external foree is zero, so that if the forces are

conservative and V is the potential energy,
F=-gyV =290 (24)¢
. 1% v oV
or in components, yriia 0, @ =90, Fyali 0 (25)

In such case V is either a minimum or it is not a minimum. If it is a minimum the
equilibrium is said to be stable and a slight change of the configuration will restore the
body to its original position. If it is not a minimum the body is said to be in unstable
equilibrium and a slight change of the configuration will move the body away from its
original position. We have the following theorem.

Theorem 9.16. A necessary and sufficient condition for a rigid body to be in stable
equilibrium is that its potential energy be a minimum.

Solved Problems

RIGID BODIES

9.¥ A rigid body in the form of a triangle ABC
/ [Fig. 9-7] is moved in a plane to position
DEF, ie. the vertices A, B and C are car-

ried to D, E and F respectively. Show that

' 1 "~ the motion can be considered as a transla-
L/ tion plus a rotation about a suitable point.

Choose a point G on triangle ABC which cor-
responds to the point H on triangle DEF. Perform
the translation in the direction GH so that triangle
ABC is carried to A'B'C'. Using H as center of
rotation perform the rotation of triangle A'B'C’
through the angle ¢ as indicated so that A’'B'C’ is
carried to DEF. Thus the motion has been accom-
plished by a translation plus a rotation. Fig.9-7

9.2, Give an example to show that finite rotations cannot be represented by vectors.

Let A, represent a rotation of a body [such as the rectangular parallelepiped of Fig. 9-8(a}]
about the x axis while A, representa a rotation about the y axis. We assume that such rotaticns
take place in a positive or counterclockwise sense according to the right hand rule.

{(a)

Fig. %8



CHAP, 9 PLANE MOTION OF RIGID BODIES 231

Fig. 9-9 i

In Fig. 9-8(a) we start with the parallelepiped in the indicated position and perform the rotation
A, about the x axis as indicated in Fig. 9-8(b) and then the rotation about the y axis as indi-
cated in Fig. 9-8(¢). Thus Fig. 9-8(¢) is the result of the rotation A, + 4, on Fig. 9-8(q).

In Fig. $-9{a} we start with the parallelepiped in the same position as in Fig. 9-8(a), but this
time. we first perform the rotation 4, about the y axis as indicated in Fig. 9-9(b) and then the
rotation A, about the z axis as indicated in Fig., 9-%(¢). Thus Fig. 9-9(¢) is the result of the
rotation A, + A, on Fig. 9-%(a).

Since the position of the parallelepiped of Fig. 9-8(c} is not the same as that of Fig. 9-9(c),
we conclude that the operation A;+ A, is not the same as A, + A;. Thus the commutative
law is not satisfied, so that A; and A, cannot possibly be represented by vectors.

MOMENTS OF INERTIA

/u./

»

94,

Two particles of masses m; and m. respectively are connected by a rigid massless
rod of length a and move freely in a plane, Show that the moment of inertia of the
system about an axis perpendicular to the plane and passing through the center of
masg is p0o? where the reduced mass
p = mum/(m + ma),

Let r, be the distance of mass m| from the
center of mass C. Then & — r; is the distance

of mass m, from C. Since C is the center
of mass,

myr; = myla—ry) from which r, =

Thus the moment of inertia about an axis through C is

2 2
2 Myl ma _ myms _
wmyr] + male —r)2 = m, (m) + my (ml Tmy) C m ¥ a2 = pa®

Find the moment of inertia of a solid circular cylinder of radius a, height k and

mass M about the axis of the ¢ylinder: ’
Method 1, using single integration.

Subdivide the cylinder, a cross section of which appears
in Fig. 9-11, inte concentric rings one of which is the ele-

ment shown shaded. The volume of this element is
{Area)(thickness) = (2erdr)h) = Zarhdr /- ~>\
and the element of mass is dm = 2rerh dr. _ ¢ *
The moment of inertia of dm is & J
r2dm = Zrordhdr
where ¢ is the density, and thus the total moment of inertia is

1}
I = f rordhdr = Jwzohet (¥3] Fig. 9-11
r={
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Then since the mass is

e
M = f Sworh dr eralh if
r=0

o
=

we find I = 4Ma? Ldm = ghr drdg

Method 2, using double integration.

Using polar coordinates (r, ¢), we see from Fig. 9-12 that
the moment of inertia of the element of mass dm distant
+ from the axis is

ridm = rihrdrde = chridrde _ 0

since Ar dr d¢ is the volume element and o is the mass per
unit volume (density). Then the total moment of inertis is

2w )
I = f f ehr3drds = loohat {1
g=pvr=y
The mass of the cylinder is given by Fig. 9-12
o a
M = f f chrdrds = aradh #)
=0 v r=0

which can alse be found directly by noting that the volume of the cylinder is =a?k. Dividing
equation (1) by (2), we find #/M = a2 or I = 1MeZ

Find the radius of gyration, K, of the cylinder of Problem 9.4.
Since K2 = I/M = }a2, K = a/y/2 = Jav/2.

Find the (¢) moment of inertia and (b) radius of gyration of a rectangular plate

with gides ¢ and b about a side,

Method 1, using single integration.

{a}) The element of mass shaded in Fig. 9-13 is ob dx, and its moment of inertia about the y axis is
{eb de)x? = gbx?dz. Thus the total moment of inertia is

a
1 = f obatds = fobad

=0

Since the total mass of the plate it M = abo, we have I/'M = Ja2 or I = jMa2.

(b) K* = I/M = §a® or K =a/\/3 = javs.

v ¥
dr |
_l_ . —l_ . : T dm = o dy dx
l . l .
a e ~__|
Fig.9-13 Fig. 9-14

Method 2, using double integration.

Assume the plate has unit thickness. If dm = cdydz is an element of mass jsee Fig. 9-14],
the moment of inertia of dm about the side which is chogen to be on the ¥ axis is 22 dm = ox? dy d.
Then the total moment of inertia is

1=

r=p

The total mass of the plate is M = abo. Then, as in Method 1, we find I = {Ma? and K = }aV3,

b
f extdyde = }oba?

v=i
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87. Find the moment of inertia of a right circular cone of height 2 and radius a
about its axis.

Method 1, using single integration.

The moment of inertia of the circular cylindrical
disc one quarter of which is represented by PQER in
Fig. 9-15 is, hy Problem 9.4,

%(:rr?adz)(rﬂ) = dgoridz

since this dise has volume »r2dz and radius r.

: h—2z _r _ h—z
From Fig. 915, G T g rr=a i )

Then the total moment of inertia about the z axis is

1= g,wj::o {a(h;z)}idz = frateh

Also,
h _ 2
v R - e
h
=0
Thus I = FMa2 z

Method 2, using triple integration.

Subdivide the cone, one gquarter of which is
shown in Fig. 9-16, into elements of mass dm as indi- h—z
cated in the figure.

In eylindrical coordinates (r,#,z) the element of
mass dm of the eylinder is dm = erdrdesdz where
o is the density.

dm = er dr de dz

The moment of inertia of dm about the z axis is
ridm = or¥drdedsz

Asin Methed 1, ®=2 =2 or 2= & u)
h a a

Then the total moment of inertia about the z axis iz Fig.8-16

P a kia—rka
1= ertdrdsde =  zatoh
e=0Vr=0ve=o

The total maas of the cone is

2 a hia—r}/r
M = f f f erdrdedz = jJvdathe
=0 YVr=0 Y=g

which can be obtained directly by noting that the volume of the cone is g:m*k.
Thus [ = I%M’aﬁ‘.

98, Find the radius of gyration K of the cone of Problem 9.7,
T Kt =I/M = 30 and K = aVF = favE0.

THEOREMS ON MOMENTS OF INERTIA
99. Prove the parallel axis theorem [Theorem 9.3, page 226].

. Let OQ be any axis snd ACP a parallel sxis through the centroid C and distant b from 0Q.

In Fig. 9-17 below, OQ has been chosen as the z axis so that AP is perpendicular to the zy plane
at P.
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If b, is a unit vector in the direction OP, Q

then the vector OP is given by 4 A

b = bh, (1

where b is constant and is the distance between
axes,

Let r, and r, be the position vectors of
mass m, relative to O and C respectively. If &
is the position vector of C relative to O then
we have

B

[CHAP. 9

Ro=tE )

The total moment of inertia of all masses b = bb,

m, about axis 0§ is *

x
N
I = ;} my(r, - by)? [£4) Fig. 9-17
The total moment of inertia of all masses »t, about axis ACP is
N
Io = »gn mr, « b, 2
Then vsing (2) we find
N N
I = 21 myr, b)) = 21 my(r, by + Fehy)?
y= =

N N N
p§1 m,(r,+b)? + 2 .2: mr,b)E b)) + gl m(E+by)2

N N
I. + 2b(2 m,,r;)-b, + 82 El m, = Ic 4+ Mb?
r=

v=1

M=

N
since B+b;, = b, X m, = M and m,r, = 0 [Problem 7.16, page 178].
r=1

r=1

The result is eusily extended to continuous mass systems by using integration in place of

summation.

Use the parallel axis theorem {o find the moment of inertia

of a solid circular cylinder about a line on the surface of

the cylinder and parailel to the axis of the cylinder.
Suppose the crosy section of the cylinder is represented as in

Fig. 9-18. Then the axis is represented by C, while the line on the
surface of the cylinder is represented by A.

If a is the radius of the cylinder, then by Problem 9.4 and the
parallel axis theorem we have

Iy = Ic + Ma? = §Ma? + Mo = jMa® Fig.9-18

Prove the perpendicular axes theorem [Theorem
9.4, page 226].

Let the position vector of the particle with mass m,
in the xy plane be

)

S

r, = &ityi
[see Fig. 9-19]. The moment of inertia of m, about the
z axia is mr,[%

Then the total moment of inertia of all particles
about the z axia is Fig. 9-19
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N N
I, = vgl mvlrvlz = §1 mv(”f"'ﬁ)
N N
= Sma+ Imi = L+l

PLANE MOTION OF RIGID BODIES

where I, and I, are the total moments of inertia about the z axiz and y axis respectively.

The result is easily extended to continuous systems.

9.12. Find the moment of inertia of a rectangular plate with sides ¢ and b about an axis
perpendicular to the plate and passing through a vertex.

H

Choose the rectangular plate [see Fig. 9-20] in the
xy plane with sides on the x and y axes. Choose the
2 axis perpendicular to the plate at a vertex.

From Problem 9.6 we have for the moments of
inertia about the x and y axes,

I, = }Mb2, I, = }Maz

Then by the perpendicular axes theorem the moment
of inertia about the z axis is

I, = I +1, = yM(+a2)
= }Miat+b%)

COUPLES

9.13. Prove that a force acting at a point of a rigid body can be equivalently replaced
by a single force acting at some specified point together with a suitable couple.

9.4,

Let the force be F, acting at point P; ag in
Fig. 9-21. If Q is any specified point, it is seen that
the effect of F, alone is the same if we apply two
forces f; and —i; at Q.

In particular if we choose f, = ~F;, e if f;
has the same magnitude as F, but iz opposite in
direction, we see that the effect of F; alone is the
same as the effect of the couple formed by F; and

f; = —F; [which has moment r; X F,] together with the
force —f =F,.

Fig. 920

Py

Prove Theorem 9.5, page 227: Any system of forces which acts on a rigid body can
be equivalently replaced by a single force which acts at some specified point together

with a suitable couple,

By Problem 9.13 we can replace the force F,
at P, by the force F, at @ plus a couple of moment
r, X F,. Then the system of forces ¥,,F,, ..., Fy at
points P, P,,...,Py can be combined into forces
F,Fy, ..., Fy at @ having resultant

F=F,+F+ -+ +Fy
together with couples having moments
Ty XFI, rgxrg, ey I'NXFN

which may be added to yield a single couple, Thus
the system of forces can be equivalently replaced by
the single force F acting at Q together with & couple,

Fig.9-22
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KINETIC ENERGY AND ANGULAR MOMENTUM
9.15. If a rigid body rotates about a fixed axis with

L

9.16.

angular velocity e, prove that the kinetic energy
of rotation is T = 11,2 where I is the moment of
inertia about the axis.

Choose the axis as AR in Fig. 9-23, A particle P of
mass m, will rotate about the axis with angular speed w.
Then it will describe a circle PQRSP with linear speed
v, = wr, where r, is its distance from axis AB. Thus its
kinetic energy of rotation about AR is %m,vﬁ = %m,wzrﬁ,
and the total kinetic energy of all particles is

N N
T = 3 ime?ri = -}(2 m,rf,)wz
r=1 r=1
= -&f@g
N
where T = 3 m,r? isthe moment of inertiz about AB.
p=1

The result could also be proved by using integration in
place of summation. Fig.9-23

Prove that the angular momentum of the rigid body of Problem 9.15 is 0 = Ja.

The angular momentum of particle P about axis AB is wm,+;e. Then the total angular
momentum of all particles about axis AR is
N N

0 = Zmde = (Fmi)e = I

r=1 =1
N
where I = X m,r? is the moment of inertia about AB.
r=1

The result could also be proved by using integration in place of summation.

MOTION OF A RIGID BODY ABOUT A FIXED AXIS

9/.171
{-

Prove the principle of angular momentum for a rigid body rotating about a fixed
axis [Theorem 9.6, page 227].
By Problem 7.12, page 176, since a rigid body is a special case of a system of particles,

A = dfi/dt where A is the torque or moment of all external forces about the axis and & ia the
total angular momentum about the axis.
du

Since 3 = Ie by Problem 9.16, A = g}-(h) = IE = Ja.

Prove the principle of conservation of energy for a rigid body rotating about a
fixed axis [Theorem 9.7, page 227] provided the forces acting are consgervative.

The principle of conservation of energy applies to any system of particles in which the forces
acting are conservative. Hente in particular it applies to the apecial case of a rigid bedy rotating
about a fixed axis. If T and V are the total kinetic energy and the potential energy, we thus have

T+V = constant = F

Using the result of Problem 9.15, this can be written }o*+ V = E.
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WORK, POWER AND IMPULSE

919. Prove equation (12), page 227, for the work done in rotating a rigid body about a
) fixed axis.

Refer to Fig. 9-4, page 227, Let the angular velocity of the body be & = wk where k is a
unit vector in the direction of the axis of rotation. The work dome by F is

dW = F-+dr = F'%dt = Fryvdlt = Fe(aX1)dt
= {(rxFlradt = Avedt = Auwdt = Ads

where in the last two steps we use A = Ak, w = ok and « = de/dt.

9/20 Prove equation (18), page 227, for the power developed.
From Problem 9.19 and the fact that de/dt = o,
{ P = dW/idt = Ade/dt = Ao

9?/ Prove Theorem 9.8, page 227.

We have A = Ida/dt so that A = Idw/dt. Then from Problem 9.19 and the fact that
d¢ = w di, we have

11 Gy
Work done = f;} Ads = f Iﬁudt = lode = 1§ — o}

Iy w1
922. Prove Theorem 9.9, page 228:. The angular impulse is equal to the change in

angular momentum.
13 ty a0
Adt = f By = 0, -0,
t t

s

/ 9.234/ Prove Theorem 9.10, page 229, on the conservation of angular momentum if the net
g torque is zero.

From Problem 9.22, if A = ¢ then 3, =@,

i THE COMPOUND PENDULUM L4
924. Obtain the equation of motion (17), page 228, for

a :yund' pendulam.
Metiiod 1.

Suppose that the vertical plane of vibration of the
pendulum iz chosen as the xzy plane [Fig. 9-24] where
the z axis through origin O is the horizontal axis of
suspension.

Lat point C have the position vector a relative to O,
Since the body is rigid, |a] = @ is constant and is the
distance from O to C.

The only external force acting on the body is its
weight Mg = —Mygj acting vertically downward. Thus
we have

A = total external torque about z axis
= aXMg = —axXMgj = aMpsinek (2) Fig. 9-24
where k 18 a unit vector in the positive z direction [out of the plane of the paper toward the reader],
Alsg, the instantaneous angular velocity ie

= - 0 _ _
¢« = —~ok = dtk = =tk ®

80 that if I, is the moment of inertia about the z axis
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@ = angular momentum about z axis = e = -—Ioﬁk

Substituting from (1) and {2) inte A = df¥/dt,

aMgsinek = L(~Iik) or 7+ M ns = 0 (1
dt Iy
Method 2.
The force Mg = —Mgj is conservative, so that the potential energy V is such that
_ 8V, V. &V o mgs eV v _ &V _
vV = Tt Tyl T e k = —Mygi or rrial E My, FY 0
from which V = Mgy + ¢ = —Mgacose + ¢ {4}

since ¥ = —a cosd. This could be seen directly since y = —a cos¢ is the height of C below the
x axis taken as the reference level.

By Problem 9.15, the kinetic energy of rotation is Ligw? = y.ﬁz. Then the principle of
congervation of energy gives

T+V = {;.'052 — Mpacoss = constant = F [£3)
Differentiating equation (5) with reapect to ¢,
1053 + Mga gingé = 0
or, since 4 is not identically zero, [,8 + Mgasing = 0 as reguired, '

9.25. Show that for small vibrations the pendulum of Problem 9.24 has period
v  P=2x/Mgall,.

For small vibrations we can make the approximation sin# = ¢ %0 that the equation of motion
becomes

¥+ Mga @
Iy

Then, as in Problem 4.23, page 102, we find that the period is P = 2+ 1,/Mga.

=0 ]

9.26. Show that the length [ of a simple pendulum equivalent to the compound pendulum
f of Problem 9.24 is [ = I./Ma.

The equation of motion corresponding to a simple pendulum of length ! suspended vertically
from O is [see Problem 4.23, equation (2), page 102]

3‘+%sino = 0 )

Comparing this equation with (7} of Problem 9.25, we see that [ = Jo/Mae.

GENERAL PLANE MOTION OF A RIGID BODY

9.27. Prove the principle of linear momentum, Theorem 9.12, page 228, for the general
4 plane motion of a rigid body. '

This follows at once from the corresponding theorem for systeme of particles [Theorem 7-1,
page 187, since rigid bodies are special cases.

9.28. Prove the principle of angular momentum, Theorem 9.13, page 229, for general
\L plane motion of a rigid body.

This follows at once from the corresponding theorem for systems of particles [Theorem 7-4,
page 168), since rigid bodies are special cases.
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2.29. A solid cylinder of radius a and

» mass M rolls without slipping down

an inclined plane of angle «. Show

that the acceleration is constant and
equal to 2g 5in a.

/~'Suppose that initially the cylinder has

oint O in contact with the plane and that
after time ¢ the cylinder has rotated
through angle ¢ [see Fig. 9-26].

The forces acting on the eylinder at
time ¢ are: {i) the weight Mg acting verti-
cally downward at the center of mass C;
{ii} the reaction R of the inclined plane act-
ing perpendicular to the plane; (iii) the
frictional force f acting upward along the
incline, Fig. 9-25

Choose the plane in which motion takes place as the zy plane, where the x axis is taken as
positive down the incline and the origin is-at Q.

If r is the position of the center of mass at time ¢, then by the principle of linear momentum,
MY = Mg+ R+ 1 n
But g=gsinai—gcosaj, R=Rj, [ =-—fi. Hence (1) can be written
MY = (Mgsina— i + (R — Mg cosa)j (2)
The total external torque about the horizontal axis through the center of mass js
A = o0xMg+ 0<xR+ CBX{ = CBX{ = (—aj) X(—fi) = —aofk "
The total angular momentum about the horizontal axis through the center of mass is
R = lcw = Ie(—8k) = —Icbk (4}
where [ is the moment of inertia of the cylinder about this axis.
Substituting (8} and (4} inte A = df¥/dt, we find —afk = —I 6k or I;8 = ¢f.
Using r = =i+ yj in {2), we obtain
Mi = Mgsina — f, MY = R — Mpcosa (5

Now if there is no slipping, * = a# or @ = z/a. Similarly, since the eylinder remainz on the
incline, ¥ = 0; hence from (5), R = Mg cosa.

Using ¢ =x/a in I-¢ = of, we have f=Ic%/a%. From Problem 9.4, I, = {Ma2 Then
substituting f = JM ¥ into the first equation of (5), we obtain # = 3g sina as required.

that in Problem 9.29 the coefficient of friction must be at least } tanea.
The coefficient of friction is p = f/R.

From Problem 9.29 we have f=4M %= My sine and R = My cose. Thus in order that
slipping will not occur, x must be at least f/R = } tana.

930. Pro

93l () ka’P%ﬁem 9.29 if the coefficient of friction between the cylinder and inclined
platie is » and (b) discuss the motion for different values of .
/

{¢) In equation {5) of Problem 9.29, substitute f = xR = aMyp coscz and obtain

-

x = g(sine — acosa)

Note that in this case the center of mass of the cylinder moves in the same manner as
a particle sliding down an inclined plane. However, the cylinder may slip as well as roll.
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. . . a?f atuMyg cosa
The acceleration due to rolling is 2 = — = —————— = .
g 7o % Mat Bpp cot

The acceleration due to slippingis % ~ 8 = g(sina — 34 cosa).

(¥) 1f (sina — 3ucoaa) >0, ie. s < }tana, then slipping will occur. If (sina — 34 coBa) = 0,

ie. g Z }tana, then rolling but no slipping will occur, These results are consistent with
those of Problem 9.30.

9.32. Prove the principle of conservation of energy [Theorem 9.14, page 229).

This follows from the corresponding theorem for systems of particles, Theorem 7-7, page 169,
The total kinetic energy T is the sum of the kinetic energy of translation of the center of mass
Vp‘rus the kinetic energy of rotation about the center of mass, ie.,

T = ymr + Hcw?

~

If V is the potential energy, then the principle of conservation of energy states that if E
is a constant,

T+V = pm2+ o2 +V = E

9.33. Work Problem 9.29 by using the principle of conservation of energy.

£ The potential energy is composed of the potential energy due to the external forces [in this
case gravity] and the potential energy due to internal forces [which is a constant and can be
omitted]. Taking the reference level as the base of the plane and assuming that the height of
[ }h'e center of mass above this plane initially and at any time t to be H and & respectively, we have

/ M2 + e + Mgh = MgH
or, using H—h=zsine and 2=22+p2=2? since y =0,
IMz? + Lo = Mpx sine

Substituting » = § = #/a and I = iMa2, we find #? = gz sina. Differentiating with respect to
t, we obtain

2e% = g2 sina  or % = jpsine

INSTANTANEQUS CENTER. SPACE AND BODY CENTRODES

934, Find the position vector of the instantaneous center for a rigid body moving
parallel to a given fixed plane.

@
Choose the XY plane of Fig. 9-26 as the fixed 4 _

plane and the zy plane as the plane attached to
and moving with the rigid body ®. Let point P of
the xy plane [which may or may not be in the .
rigid body] have position vectors R and r relative ¥

to the XY and xy planes respectively, If v and
v, are the respective velocities of P and A relative r ®
to the XY system,

v=v, + eXr = vy + «X{(BR—R,) () R 4
where R4 is the position vector of A relative to O.

R
If P iz to be the instantaneous center, then v =0 A
80 that 0 X
» X (B_ Rﬁ) = —¥4 {2)
Multiplying both sides of (2) by e X and using (?), Fig. 9-26
page 5,
oo (R—Ry)) — (R—Rylw e} = —uXv,

Then since » ig perpendicular to R — K,, this becomes

- X Vu

(R—Ry)o? = eXvy or R =R, t+

@
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A cylinder moves along a horizontal plane. Find the (¢) space centrode, (b) body

centrode. Discuss the case where slipping may occur.

{a) The general motion is one where both rolling Y
and slipping may occur. Suppose the cylinder
is moving to the right with velocity v, [the
velocity of its center of mass] and is rotating
about A with angular velocity e.

SBince o = —wk and v, = v,i, we have
w X vy = —wts] so that (3) of Problem 934
becomes .
. (wva)j Va,
R = R, — =z - R}

In component form,

Xi+Yi = X,4i+ aj — (vy/u)j or

Fig. 9-27

Y = a—vu/e

Thus the instantaneous center is located vertically above the point of contact of the eylinder

with the ground and at height a — v,/w above it.

Then the space centrode is a line parallel to the horizontal and at distance a— v /w
above it. If there is no slipping, then v, = 6w and the space centrode ig the X axis while
the instantaneous center is the point of contact of the cylinder with the X axis.

(4} The body centrode is given by |r| = vyfw, or a circle of radius vy/e. In case of no slipping,
vp = ¢ and the body centrode is the circumference of the cylinder.

Solve Problem 9.29 by using the instantaneous center. '

By Problem 9.35, if there iz no alipping then
the point of contact P of the cylinder with the
plane is the instantaneous center. The motion of
P is parallel to the motion of the center of mass,
so that we can use the result of Problem 7.86(¢),
page 191,

The moment of inertia of the cylinder about
P is, by the parallel axis theorem, }Mo?+ Ma? =
gMa?. The torque about the horizontal axis through
P is Mga sina. Thus

%(gmzé) = Mga siné

o = gg—s@:ine!
3a

Since x = ap, the acceleration iz % = §y sin o.

STATICS OF A RIGID BODY

9.37,

A ladder of length ! and weight W, has one end
against a vertical wall which is-frictionless and
the other end on the ground assumed horizontal.
The ladder makes an angle « with the ground.
Prove that a man of weight W, will be able to
climb the ladder without having it slip if the
coefficient of friction u bhetween the ladder and
Wm + &Wl

W cot a.

Let the ladder be represented by AB in Fig. 9-29 and
choose an ry coordinate system as indicated,

the ground is at least

Fig. 9-28

Fig. 9-29



242

PLANE MOTIGN OF RIGID BODIES [CHAT.Y

The most dangerous situation in which the ladder would slip occurs when the man is at the
top of the ladder. Hence we would require that the ladder be in equilibrium in such case.

The forces acting on the ladder are: (i) the reaction R, = R,i of the wall: (ii) the weight
W, = —W,i of the man; (iii} the weight W, = —W,j of the ladder concentrated at ¢, the center of
gravity;, (iv) the reaction R; = R,j of the ground; (v} the friction force f = —fi.

For equilibrium we reqguire that

F = o, A=0 {1)
where F is the total external force on the ladder and A the total external torque taken about a
suitable axis which we shall take as the horizontal axis through A perpendicular to the xy plane
We have
F =R +W,+W+R+f = (By— i+ (—-W,,—W,+R)j = 0

if Ri—f=0 and ~-W,—-W+R, =20 @

Also, A

O)XR, + (0) X W, + (AC) X W, + {AB)X R, + (AB)x{

0y X (Biiy + (0) x (—~W,j) + (-&l cose i — ‘th sin o §) X (—W )
+ (lcosai —Isineg j) X (Ryf) + (Tcosai—Isinaj)xX{—fi)

—34Wicosak + IRyecos0 k — If sinak = 0

if —4Wicosa + Bycose — fsina = 0 £.4]

Solving simultaneously equations (2) and {(3), we find
f =R = (WetiW)cota and R, = W, + W,

Then the minimum coefficient of friction necessary to prevent slipping of the ladder is
o _ Wat W,

= E = ——“-——Wm+wl cot

MISCELLANEOUS PROBLEMS

9.38.

/

hoose unit vectors i and j in the plane of rotation
s shown in Fig. 9-30.

Two masses m, and m: are connected by an inextensible string of negligible mass
which passes over a frictionless pulley of mass M, radius ¢ and radius of gyration K
which can rotate about a horizontal axis through C perpendicular to the pulley.
Dlscuss ‘the motion.

If we represent the acceleration of mass nt; by A4j,
then the acceleration of mass m, is —Aj.

Choose the tensions T, and T, in the string as shown
in the figure. By Newton’s second law,

mAj = T, + mg = —Tj+ mpj n

—mpAj = Ty + meg = —Tyj + mygj ®
Thus mAd = mg—T, mAd = Ty — myg (£.4)
or Ty = mylg — A), Ty = mylg + A) 4 -
The net external torque about the axis through € is Fig. 9-30
A = (—a) X (Tyf) + (@) X (—Thi) = aF,— Tk %)
The total angular momentum ahout ¢ is
0 = Jcw = Ik = Itk ]

Since A = dfl/dt, we find from (5) and {6),
a(T, — Ty

Icé = MK} ]

fl
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If there is no slipping about the pulley, we alse have
A = ag 8}
Using (§) in (), r'—-T = “—foA 1)
a
Uﬂing (5) in (9}, A4 = {my — wmy)g (10)

m, -+ mg + Mk2/a®

Thus the masses move with constant acceleration given in magnitude by (10). Note that if M =0,
the resuit (10) reduces to that of Problem 3.22, page 76.

?g. Tind the moment of ineriia of a s=olid sphere about a diameter.

Let O be the center of the sphere and AOB be the

diameler about which the moment of inertia is taken

¥ |Fig. 9-31]. Divide the sphere into discs such az QRSTQ
perpendicutar to AOB and having center on AQB at P.

Take the radius of the sphere equal to ¢, OP =2,
SP = v and the thickness of the disc equal to dz. Then
by Problem 9.4 the moment of inertia of the dize about
AORB is

3Hrrladz)r? = Jroridz ()]

From triangle OSP, »% = a?— 22. Subatituting into (1),
the total moment of inertia is

Fig. 9-31
I = f 3rala? —222dz = %waa‘ (2) :

F=-—-a

The mass of the sphere is -

M = f rol — A dz = Lrade @
= —a
which could also be seen by noting that the volume of the sphere is 3ra?,

From (2) and (#) we have I/M = §a? or I = §Ma®

9.40. A cube of edge s and mass M is suspended vertically from one of its edges. (a) Show

v at the period for small vibrations is P =2 {/2V&/8g. (b) What is the length of
the equivalent simple pendulum?

(a) Since the diagonal of a square of side 2 has length Va2t s = /2,

0
the distance OC from axis O to the center of mass is Jav2.
8

The moment of inertia I of a cube about an edge is the same as .
that of a aquare plate about a side. Thus by Problem 9.6,
I=3M(s®+ 8% = §Mel.

Then the period for small vibrations is, by Problem 9.25,

P = 2 \[}Me2/[My(3sV2)] = 20 VZVal3g
{&) The length of the equivalent simple pendulum is, by Problem 9.286,
U= §Me/(M(3sV2)] = 3VZs Fig.9-32

9.41. Prove Theorem 9.11, page 228: The period of small vibrations of a compound
+ pendulum is a minimum when the distance OC = a is equal to the radius of gyration
of the body about a horizontal axis through the center of mass.

If I is the moment of inertia about the center of msasa axis and [, is the moment of inertia
about the axig of suspension, then by the parallel! axis theorem we have
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I, = Ig+ Ma2

Then the square of the period for small vibrations is given by

_ iy g4p2/ e _ arr/Ke )
P = e = T(m”) = T(T*“

where Kg = [+/M iz the square of the radius of gyration about the center of mass axis.
Setting the dervivative of P2 with respect to ¢ equal to zero, we find

2
d _ 42/ K¢ )_
o = g( S+1) =0

from which @ = K.. This can be shown to give the minimum value since d2(P2)/da? < 0. Thus
the theorem is proved.

The theorem is alsc true even if the vibrations are not assumed small. See Problem 9.147.

9.42. A sphere of radius ¢ and mass m rests on top of a fixed rough sphere of radius b.
The first sphere is slightly displaced so that it rolis without slipping down the second
y( sphere. Where will the first sphere leave the second sphere?

: Let the xy plane be chosen so as to pass
through the centers of the two spheres, with the
nter of the fixed sphere as origin O [see Fig.
£-33). Let the position of the center of mass C of
the first sphere be measured by angle ¢, and aup-
pose that the position vector of this center of
mass C with respect to O is r. Let r, and &, be

unit vectors as indiceted in Fig, 9.33.

Resolving the weight = —mgj into com-
ponents in directions r, and #,, we have [compare
Problem 1.43, page 24)

W = (W . rl)l‘l + (W * .1}“
—mpjrrdr + {(—mgje 939
= —mgsmér, — mgcoss ¥,

i

The reaction force N and frictional force f
are N =Nr,, f=78,, Usging Theorem 9.12,
page 228, together with the result of Problem 1.49, Fig.9-33
page 26, we have

F = ma = m[(¥— e, + (r§ + 276},
= W+ N+ {
_ = (N — mygsinér, + {f — mg cos 6)¢,
from which m(¥~r82) = N — mgaine, m{rs + 2ré) = f — mgcose (1)
Since r=a-+ b [the distance of C from O], these equations become
~mia+ byt = N — mgasine, mie+b)F = f — mgcoss

We now apply Theorem 9.13, page 229. The total external torque of all forces about the
center of mass C is [since W and N pass through C|,

A = (~ar}xt = (—ar)X{f8) = -—afk
Also, the angular acceleration of the first sphere about C is
ds ... -
a = —ggletek = —(s+¢k

Since there is only rolling and no alipping it follows that arc AP equals arc BP, or by = ay.
Then ¢ =»/2—¢ and ¢ = (b/a)(r/2— ), so that

— i " — - _u ___b'" —_— G+ b LA
x = (¢ + ¢k = ( & ae)k = (___a )ak
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Since the moment of inertia of the first sphere about the horizontal axis of rotation through €
is I = gma?, we have by Theorem 9.13,

A =la, ~afk = gmz(%b)@‘k or  f = —gmlatb)s

Using this value of f in the second equation of (1), we find

w _ ___bg
¢ = W‘?(a 5 cog @ ®
Multiplying both sides by 4 and integrating, we find after using the fact that =10 at £t=0 or
&= ﬂ';zt
. 10’ .
2 — -
F Tat?h) {1 — gin ) (%

Using (#) in the first of equations (1), we find N = 4mg(17 sin ¢ — 10}, Then the first sphere
leaves the second sphere where N =0, ie. where ¢ = sin—!10/17.

Supplementary Problems

RIGID BODIES

9.43.

Show that the motion of region ® of Pig. 9-34 can
be tarried into vegion R’ by means of g tranglation
plus a rotation about a suitable point.

9.44. /g‘fﬁ/ﬁé'lﬁlem 9.1, page 230, by first applying a

9435,

1 nslation of the point A of triangle ABC.

If A, A, A, represent rotations of a rigid body about
the x, ¥ and z axes respectively, im it true that the
associative law applies, ie i3 A, + (A, +4,) =
A, +A4,)+ A,? Justify your answer. Fig. 9-34

MOMENTS OF INERTIA

9.46.

9.47.

948, -

9.49.

9.52,

Three particles of masses 3,6 and 2 are located at the points (—1,0,1), (2,—1,3) and (~2,2,1)
respectively, Find (a) the moment of inertia and (b) the radius of gyration about the » axis.
Ans. 71

Pind the moment of inertia of the system of particles in Problem 9.46 about {(a) the y axis,
(%) the z axis. Ans. (a) 81, (b) 44

Find the moment of inertiz of a uniform rod of length ! zbout an axis perpendicular to it and
passing through (o) the center of mass, (b) an end, {¢) a point at distance I/4 from an end.

Ans. (0) [LME, (b} LMB, (e} M

Find the {a} moment of inertia and () radius of gyration of a square of side a about a diagonal,

Ans. (a) f-Ma2, (b) a3
. . . y Lt 5 “0.%
Find the moment of inertia of a cube of edge o about an edge. Ans. §Ma® *f 'c-i"

Find the moment of inertia of a rectangular plate of sides a and b about a diagonal
Ang. %Ma%*/(az-i- %)

Find the moment of inertia of a uniform parallelogram of sides a and b and included angle «
about an axis perpendicular to it and passing through its center. Ang, I15}!4(::,2-!- 52) sin?a
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9.53.

9.54.

955. A _s6lid of constant density is formed from a cylinder of radius a
nd height % and a hemisphere of radius ¢ as shown in Fig. 9-35.

9.56.

9.57.

958,

9.59.

PLANE MOTION OF RIGID BODIES [CHAP. 9

Find the moment of inertia of a cube of side ¢ about a diagonal.

Find the moment of inertia of a cylinder of radius o and height A
about an axis parallel to the axis of the cylinder and distant & from
its center. Ans. IM(a* + 252

Find its moment of inertia about a wvertical axis through their
centers. Ans. M(2a3+ 1ba?h)/(10a + 15h)

Work Problem 9.55 if the cylinder is replaced by a cone of radius e
and height A.

Find the moment of inertia of the uniform solid region bounded
by the paraboloid ¢z = 2%+ 32 and the plane z =54 about the
z axis. Ans. LMch Fig. 9-35

How might you define the moment of inertia of a solid about (@) a peint, (b) a plane? Is there
any physical significance to these results? Explain.

Use your definitions in Problem 9.58 to find the moment of inertia of a cube of side a about
{a) a vertex and {b) a face. Ans. (a} Ma?, (b) }Ma?

KINETIC ENERGY AND ANGULAR MOMENTUM

9.60,

9.61.

9.65.

9.66.

9.67.

A uniferm rod of length 0.6 m and mass 3 kg rotates with angular speed 10 radians per second about an
axis perpendicuiar to it and passing through its center. Find the kinetic energy of rotation.

Ans. 4.54d

Work Problem 9.60 if the axis of rotation is perpendicular to the rod and passes through an end.
Ans, 187

A hollow eylindrieal disk of radius @ and mass M rolls along a horizontal plane with speed v.

' Find the total kinetic energy. Ans. Mv?

Work Problem 9.62 for a solid cylindrical disk of radivs a. Ans. $Mv?

A flywheel having radius of gyration 2 meters and mass 10 kilograms rotates at angular
speed of 5 radians/sec about an axis perpendicular to it through its center. Find the kinetic
energy of rotation, Ansz. 1000 joules

Find the angular momentum of {a) the rod of Problem 9.60 (b) the flywheel of Problem 9.64.
Ans. {a} 0.9 kg m?s, (h) 200 kg m3s

Prove the result of (a) Problem 9.15, page 236, (b) Problem 9.16, page 238, by using integration
in place of summation.

Derive a “parallel axis theorem” for (e} kinetic energy and {(b) angular momentum and explain
the physical significance.

MOTION OF A RIGID BODY. THE COMPOUND PENDULUM.
WORK, POWER AND IMPULSE

9.68.

L

9.69.

9,70

A ebnstant force of magnitude Fy is applied tangentially to a flywheel which can rotate about a
fixed axis perpendicular to it and passing through its center. If the flywheel has radius ¢, radius
of gyration K and mass M, prove that the angular acceleration is given by Fya/MK2

How long will it be before the flywheel of Problem 9.6§ reaches an angular speed «, if it starts
from rest? Ans. MKZ,/Fya

Assuming that the flywheel of Problem 9.68 starts from rest, find (a) the total work done,
(b) the total power developed and (¢} the total impulse applied in getting the angular speed
up to . Ang. () MK, (b) Foow, (¢) MKla,
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$.71.

3.72.

573,

9.74.

9.75.

9.76.

4.7,

9.78.

9.79.

9.80.

Work (a) Problem 9.68, (b) Problem 9.69 and (¢) Problem 9.70 if F; = 10 newtons, « = 1 meter,
K = 0.5 meter, M = 20 kilograms and w, = 20 radians/s.

dnrs. (a) 2 rad{s®; (b) 10s; {c} 250 joules, 200 joulesfs, 100 N s

Find the period of small vibrations for a simple pendutum assuming that the string supporting
the bob is replaced by a uniform rod of length { and mass M while the bob has mass m.

Ans. 2n 4 f 2M + 3m)l
S(M + 2m)g

Discuss the cases (a) M =0 and (&) m =0 in Problem 9.72.

A rectangular plate having edges of lengths ¢ and b respectively hangs vertically from the edge
of length ¢. (a) Find the period for small oscillations and (b) the length of the equivalent simple

pendulum, Ans. {a} 2zv2b/3g, (b) }b

A uniform solid sphere of radius o and mass M is suspended vertically downward from a peint
on its surface. (a) Find the period for small oscillations in a plane and (b) the length of the

equivalent simple pendulum. Ans. () 2=V Ta/bg, (b) Te/b

A yo-yo consists of a eylinder of mass 80 g around which a string of length 60 em is wound. If the
end of the string is kept fixed and the yo-yo is allowed to fall vertically starting from rest, find its
speed when it reaches the end of the string. Ans. 280 crnfs

Find the tension in the string of Problem 92.74.
Ans. 19,600 dynes

A hollow cylindrical disk of mass M moving with constant speed vy
comes to an incline of angle o. Prove that if there is no slipping
it will rise a distance v%f(g sin a} up the incline,

If the hollow disk of Problem 9.78 is replaced by a solid disk, how
high will it rise up the incline? Ans, 31;2'}/{49 sin a)

In Fig. 9-36 the pulley, assumed frictionless, has radius 0.2 meter
and its radius of gyration is 0.1 meter. What is the acceleration of
the 5 kg mass? Ans. 2.48 mjs? Fig. 9-36

INSTANTANEOUS CENTER. SPACE AND BODY CENTRODES

9.81.

9.82,

9.83,

9.84,

A ladder of length ! moves so that one end is on a vertical wall and the other on a horizontal
floor. Find (e) the space centrode and (b} the body centrode.
Ans. (¢) A circle having radius [ and center at point & where the floor and wail meet,

{b) A circle with the ladder as diameter

A long rod AB moves so that it remains in contact with A
the top of a post of height k while its foot 8 moves on a
horizontal line CD [Fig. 9-37}. Assuming the motion
1o be in one plane, find the locus of instantaneous centers.

What is the (a) body centrode and (b) space centrode
in Problem 9.827 b

Work Problems 9.82 and 9.83 if the post is replaced
by a fixed cylinder of radius a. Fig.9-37

STATICS OF A RIGID BODY

9.85.

A uniform ladder of weight W and length ! has its top against a smooth wall and its foot on a
floor having coefficient of friction x. {a) Find the smallest angle « which the ladder can make
with the horizontal and still be in equilibrium. (b} Can equilibrium occur if u« =07 Explain.
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9.86.

9.87.

9.88.

9.89.

9.90.
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Work Problem 2.85 if the wall has coefficient of friction g,.

In Fig. 9-38, AR is a uniform bar of length [ and weight W supported at C. It carries weights W,
at A and W, at D so that AC=a and CD = b Where must a weight W; be placed on AC
s0 that the system will be in equilibrium?

C D___
A A 1) B 4. FaN A B

Fig. 9-38 ) Fig. 9-39

)
]
9]
]

A uniform triangular thin plate hangs from a fixed point O by strings OA, OB and OC of
lengths «, b and ¢ respectively. Prove that the tensions T, T, and T, in the strings are such that
T]f‘a = Tz/b = Tafc.

A uniform plank AB of length I and weight W is supported

at points € and D distant ¢ from A and b from B respec- o

tively [Fig. 9-33]. Determine the reaction forces at C and D ?\ /\
a

respectively.

In Fig. 940, OA and OB are uniform rods having the same
density and comnected at O so that AOFR is a right angle.
The gystem is supported at O so that AOB is in a vertical
plane. Find the angles a and g for which equilibrium occurs.

Ans. o =tan~1{a/b), f = /2 —tan"1{afb) : Fig. 9-40

MISCELLANEQUS PROBLEMS

991,

9.92.

9.93.

9.94.

9.95.

9.96.

9.97.

5.98.

9.99,

A circular cylinder has radius « and height k, Prove that the moment of inertia about an axis
perpendicular to the axis of the cylinder and passing through the centroid is ;LM(h? + 342).

Prove that the effect of a force on a rigid body is not changed by shifting the force along ita line
of action.

A cylinder of radius o and radius of gyration K rolls without slipping down an inclined plane of
angle a and length I, starting from rest at the top of the incline. Prove that when it reaches the

bottom of the incline is speed will be V(2gla? sin &)/{e? + K2) .

A cylinder resting on top of a fixed cylinder is given a slight displacement so that it rolls without
slipping. Determine where it leaves the fixed cylinder.

Ans. 8 = sin—14/7 where ¢ is measured as in Fig. 9-33, page 244,
Work Problem ¢.42 if the sphere is given an initial speed v,.
Work Problem 9.94 if the cylinder is given an initial speed v,.

A sphere of tadius « and radius of gyration K about a diameter rolls without slipping down
an incline of angle «. Prove that it descends with constant acceleration given by (ga? sin a)/(a? + K2).

Work Problem 9.97 if the sphere is (o) solid, (b) hollow and of negligible thickness.
Ans, {(a) 2g sina, (b) 3g sing

A hollow sphere has inner radius ¢ and outer radiua b. Prove that if M is its mass, then the
moment of inertia about an axis through its center ia

.y a4+aab+asbz+abs+b4)
3 a? + ab + b2

Discuss the cases 6 =0 and a =05,
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9.100.

8161

9102

4703,

9.104,

9.105.

$.106,
$.107,

8108

4308,

s114.

LATIN

Wooden plates, all having the same rectangular
shape are stacked one above the other as indicated
in Fig. 9-41. (a} If the length of each plate is
2a, prove that equilibrium conditions will prevail
if the (n + 1)th plate extends a maximum distance
of e/n beyond the nth plate where »n =1,2,8,....
() What is the maximum horizontal distance
which can be reached if more and more plates
are added? ! ]

Work Problem 9.100 if the plates are stacked on
a sphere of radius R instead of on a flat surface
as assumed in that problem.

Fig. 941

A cylinder of radius o rolls on the inner surface of & eylinder of radius 2a. Prove that the period
of amall oscillations is 2»V8a/2y.

A ladder of length ! and negligible weight rests with one end against a wall having coefficient of
friction p; and the other end against & floor having coefficient of friction gy It makes an angle a
with the floor, (a¢) How far up the ladder can a man climb before the ladder slips? (&) What is
the condition that the ladder not slip at all regardless of where the man is located?

Ans, (o} pol(uy + tan al/(ugpe + 1), (b} tana > 1y

Work Problem 9,103 if the weight of the ladder is not
negligible. B

A ladder AB of length I [Fig. 9-42] has one end A4 on an
incline of angle « and the other end B on a vertical wall,
The ladder is at rest and makes an angle g with the incline,
If the wall iz smooth and the incline has coefficient of
friction p, find the smallest value of x4 so that a man of

weight W, will be able to climb the ladder without having it & A
slip. Check your anawer by obtaining the result of Problem

9.37, page 241, as a special case, il
Work Problem 9.105 if the wall has coefficient of friction u,. Fig. $-42

A uniform rod 4B with point A fixed rotates about a vertical axis so that it makes a constant
angle o with the vertical [Fig. 9-43]. If the length of the rod is I, prove that the angular
speed needed to do thiz is « = V(8g sec a)/2L.

Fig. 9-43 Fig. 9-44 Fig. 9-45

A circular cylinder of mass m and radius e is suspended from the ceiling by a wire as shown in
Fig. 9-44. The cylinder is given an angular twist 8, and is then released, If the torque is assumed
proportional to the angle through which the cylinder is turned and the constant of proportionality

is A, prove that the cylinder will undergo simple harmonic motion with period Zran/m/2x,
Find the period in Problem 9.108 if the cylinder is replaced by a sphere of radins a.
Ansg. 2ray/2m/BA

Work {(a) Problem 9.108 and (b) Problem 9.109 if damping proportionsl to the instantanecous
angmar velocity is present. Discuss physically,

A uniform beam AB of length ! and weight W [Fig. 9-45] is supported by ropes AC and BD of R
lengths @ and b respectively making angles a« and g with the ceiling CD to which the ropes
are fixed. If equilibrium conditions prevail, find the tensions in the ropes.
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9.112.

9.113.

9.114,

9.115,

9.116,

8.117.

9.118.

9.119.

9,120,

9.121.

9.122.

5123,

9.124.

9125,
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In Fig. 9-46 the mass m is attached to a rope which is wound around
a fixed pulley of mass M and radius of gyration K which can rotate
freely about 0. If the mass is released from rest, find {(a) the angular
speed of the pulley after time ¢ and (&) the tension in the rope.

Prove that the acceleration of the mass m in Problem 9.112 is
gaifia? + K%,

Describe how Problem 9.112 can be used to determine the radius of
gyration of a pulley. Fig. 9-46

A uniform rod AR [Fig. 9-47] of length ! and weight W having its
ends on a frictionless wall OA and floor OB respectively, slides starting
from rest when its foot B is at a distance d from 0. Prove that the A
other end A will leave the wall when the foot B is at a distance from ¢

given by 3v5E +4d%

A cylinder of mess 5 kg rotates about a fixed horizontal axis through

its center and perpendicular to it., A rope wound arcund it ecarries B
a mags of 10 kg, Assuming that the mass starts from rest, find s 0

speed after 5 seconds. Ans. 39.2 m/s Fig. 9-47

What must be the length of a rod suspended from one end so that it will be a seconds pendulum
on making small vibrations in a plane? Ans. 149 m

A solid sphere and a hollow sphere of the same radius both start from rest at the top of an
inclined plane of argle a and rell without slipping down the incline. Which one gets to the
bottom first? Explain. Ans, The solid sphere

A compound pendulum of mass M and radius of gyration K about a horizontsl axis is displaced
so that it makes an angle 8, with the vertical and is then released. Prove that if the center of
mass is at distance a from the axis, then the reaction force on the axis is given by

Kz—bi_g? V(K2 + 2a2] cos e — a2 cos 8g)2 + (K2 sin 6)?

A rectangular parallelepiped of sides a, b, and ¢ is suspended vertically from the side of length 4.
Find the period of small oscillations,

Find the least coefficient of friction needed to prevent the sliding of a circular hoop down an
incline of angle «. Ang. % tana

Find the period of small vibrations of & rod of length ! suspended vertically about s point }l
from one end.

A pulley system consists of two solid disks of radius r; and r,
respectively rigidly attached to each other and capable of rotating
freely about a fixed horizontal axis through the center 0. A weight
W is suspended from a string wound arcund the smaller disk as shown
in Fig. 9-48. If the radius of gyration of the pulley system iz X
and its weight is w, find (a) the angular acceleration with which the
weight descends and (b} the tension in the string.

Ans. (a) Wor {Wrl+ wK?), (b) WwK2(Wri + wK?2)

A solid sphere of radius & rolls on the inside of a smooth hollow
sphere of radius a. Prove that the period for small oscillations is

given by 2xVT{a — b)/By .

A thin circular solid plate of radiug a is suapended vertically from a
horizontal axis passing through a chord AR [see Fig. 9-49). If it
makes small oscillations about this axis, prove that the frequency
of such oscillations is greatest when AR is at distance a/2 from
the center. Fig. 9-4%
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9.126,

9.127.

5.128.

9.129.

9.130.

%.131.

9.132.

9.133.

5134,

9.135.

9,136,

9.137.

5.138,

9.139,

A uniform rod of length 51 is suspended vertically from a string of length 2{ which has its other

end fixed. Prove that the normal frequencies for small oscillations in a plane are 21—7‘\’% and
1 /3¢

= \7T’ and describe the normal modes.

A uniform rod of mass m and length ! is suspended from one of its ends. What is the minimum
speed with which the other end should be hit so that it will describe a complete vertical circle?

(a) If the bob of a simple pendulum is a uniform solid sphere of radius a rather than a point
mass, prove that the period for small oscillations is 22vI/g + 2a2/6pl.

{(#) For what value of ! is the period in {(a) a minimum?

A sphere of radius a and mass M rolls along a horizonta] plane with constant speed v, It comesz
to an incline of angle «. Assuming that it rolls without alipping, how far up the incline will it
travel? Ans. 10vi/(7g sin o)

Prove that the doughnut shaped solid or torus of Fig. 9-50 has
a moment of inertia about its axis given by }M(3¢?+ 442).

A cylinder of mass m and radius s rolls without slipping down
a 45° inclined plane of mass M which ia on a horizontal friction-
less table. Prove that while the rolling takes place the incling
will move with an acceleration given by mg/(3M + 2m).

Work Problem 9.131 if the incline is of angle a.
Ans. (mg sin 22)/(3M + 2m — m cos 2a)

Find the ({a) tension in the rope and (b) accelera- 200 kg
tion of the system shown in Fig. 9-51 if the radius 1
of gyration of the pulley is 0.6 m and its mass FEY
is 20 kg.

Compare the result of Problem $.133 with that
obtained assuming the pulley to have negligible mazaes.
100 kg
Frove that if the net external torque about an axis
ia zero, then it is also zero about any other axis. Fig. 9-51

A solid cylindrical disk of radius @ has a circular hole of radius b whose center is at distance ¢
from the center of the disk, If the disk rolls down an inclined plane of angle «, find its acceleration.
{See Fig. §-52.)

Fig.9-52 Fig. 9-53

Find the moment of ineriia of the region bounded by the lemniscate r? = at con2s [see Fig. 9-53)
about the z axis. Ans. Ma2(%r — B)/48

Find the largest angle of an inclined plane down which a solid cyhnder will roll without slipping
it the coefficient of frietion is u

Work Problem 9.138 for a solid sphere.
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9.140. Discuss the motion of a hollow cylinder of inner radius a and outer radius & as it rolls down an
inclined plane of angle a.

9141, A table top of negligible weight has the form of an equilateral triangle ABC of side 8. The legs
of the table are perpendicular to the table top at the vertices. A heavy weight W is placed on
the table top at a point which is distant « from side BC and & from side AC. Find that part
of the weight supported by the legs at A, B and  respectively.

2Wa 2Wh (1 _2a+ 2b>

/3 eV3’ VK

Ans.

9.142. Discuss the motion of the disk of Problem $.136 down the inclined plane if the coefficient of
friction is p. '

9.143. A hill has a cross section in the form of a cycloid
x = a{# +sineg}, ¥ = a(l —cos#)

as indicated in Fig. 9-54. A solid sphere of !

radius b starting from rest at the top of the hill 2a

is given a slight displacement so that it rolls

without slipping down the hill. Find the speed z
of its center when it reaches the bottom of the hill,

Ana. V10g(2a — 8)/7 Fig. 9-54

Lt
.t

9144, Work Problem 3.108, page 85, if the masses and moments of inertia of the pulleys are taken
into account,

9.145. Work Problem 9.38, page 242, if friction is taken into account.

9.146. A uniform rod of length ! is placed upright on a table and then allowed to fall. Assuming that its
point of contact with the table does not move, prove that its angular velocity at the instant when

it makes an angle # with the vertical is given in magnitude by V3g(l — cos §)/21.

9.147. Prove Theorem 9.11, page 228, for the case where the vibrations are not necessarily emall,
Compare Problem 9.41, page 243.

9148 A solid hemisphere of radius ¢ rests with its convex wsurface on & horizontal table. If it is
displaced slightly, prove that it will undergo oscillations with period equal to that of a gimple
pendulum of equivalent length 4a/3.

9.14%. A solid cylinder of radius ¢ and height & is suspended from axis AB
as indicated in Fig. 9-55. Find the peried of small oscillations about A B
this axis.

9.150. Prove that a solid sphere will roll without slipping down an inclined
plane of angle « if the coefficient of friction is at least % tan a.

9.151. Find the least coefficient of friction for an inclined plane of angle o
in order that a solid cylinder will roll down it without slipping.

Ams. tana
&

e
-
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Chapter 10 SPACE MOTION
of RIGID BODIES

GENERAL MOTION OF RIGID BODIES IN SPACE

In Chapter 9 we specialized the motion of rigid bodies to one of translation of the
center of mass plus rotation ahout an axis through the center of mass and perpendicular
to a fired plane. In thiz chapter we treat the general motion of a rigid body in space.
Such general motion is composed of a translation of a fixed point of the body [usually the
center of mass] plus rotation about an axis through the fixed point which is not necessarily
restricted in direction.

DEGREES OF FREEDOM

The number of degrees of freedom [see page 165] for the general motion of a rigid body
in space is 6, i.e. 6 coordinates are needed to specify the motion. We usually choose 3 of
these to be the coordinates of a point in the body [usually the center of mass] and the
remaining 3 to be angles [for example, the Euler angles, page 257] which describe the
rotation of the rigid body about the peint.

If a rigid body is constrained in any way, as for example by keeping one point fixed,
the number of degrees of freedom is of course reduced accordingly.

PURE ROTATION OF RIGID BODIES

Since the general motion of a rigid body can also be expressed in terms of translation
of a fixed point of the rigid body plus rotation of the rigid body about an axis through the
point, it is natural for us to consider first the case of pure rotation and later to add the
affects of translation. To do this we shall first assume that one point of the rigid body
is fixed in space. The effects of transiation are relatively easy to handle and can be obtained
by using the result (10), page 167,

VELOCITY AND ANGULAR VELOCITY OF
A RIGID BODY WITH ONE POINT FIXED

Suppose that point O of the rigid body ® of Fig. 10-1
is fixed. Then at a given instant of time the body
will be rotating with angular velocity « about the in-
stantaneous axis through O. A particle P of the body
having position vector r, with reapect to O will have
an instantaneous veloecity v, given by

vv=l.'v=~xrv (I)
See Problem 10.2. _ Fig. 1041

263
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ANGULAR MOMENTUM

The angular momentum of a rigid body with one point fixed about the instantaneous
axis through the fixed point is given by

80 = ImmXw) = 2 m{nX(exn) ®

where m, is the mass of the vth particle and where the summation is taken over all
particles of R.

MOMENTS OF INERTIA. PRODUCTS OF INERTIA
Let us choose a fixed zyz coordinate system having origin O and let us write
0=0i+0i+0k e=aitejtek (3)
= nitpj+ak

Then equation (2) can be written in component form as [see Problem 10.8].

a = I“w,'i' I”u"f'fum‘

o, =10, + 1o+, | )
Q, = Lo, +10,+10,
where L: = Sm+2), Inw= Im(2+a)), Iu= 3 mlz+9) (&)
‘ Iy = —Smay = Le|
Ie = ~Smypzn = Iy (6)
le = ~Ymza, = I

The quantities I.c, Iy, I:; are called the moments of inertia about the 2, y and z axes respec-
tively. The quantities I, I, ... are called products of inertia. For continuous mass
distributions these can be computed by using integration.

Note that the products of inertia in (6) have been defined with an associated minus
sign. As a consequence minus signs are avoided in (4).

MOMENT OF INERTIA MATRIX OR TENSOR

The nine quantities I;z, Iy, .. ., [« can be written in an array often called a matriz or

tensgor given by o1
== =y )

Le Iy In ™
le Iy I
and each quantity is called an element of the matrix or tensor. The diagonal consisting
of the elements I.. [, I is called the principal or main diagonal. Since
Iy=lpn, Ju=1Is Ie=Iy (8)

it is seen that the elements have symmetry about the main diagonal. For this reason (?)
ia often referred to as a symmeiric matrix or tensor.

KINETIC ENERGY OF ROTATION
The kinetic energy of rotation is given by
T = i(fum: + fnu: + I“mz + mam’e' + 2Iﬂ.,», + 21"0’0')
= jo-0 ®
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PRINCIPAL AXES OF INERTIA

A set of 3 mutually perpendicular axes having origin O which are fired in the body
and rotating with it and which are such that the products of inertia about them are zero,
are called prineipal axes of inertia or briefly principel exes of the body.

An important property of a principal axis [which can also be taken as a definition]
is that if a rigid body rotates about it the direction of the angular momentum is the same
as that of the angular velocity. Thus

g =l (10)
where I is a scalar. From this we find [see Problem 10.6] that

([u“'l)m“i'fﬂm"['l’”m‘ =0
Lo +,—Do,+ 10 =0 | (11)

o W

I“wz‘i'fuoi' + (I“‘—‘I)wx =0

In order that (11) have solutions other than the trivial one w, =0, o, =0, o, =0, we
require that
I re = I I Ty I E-

H
o

(12)

This leads to a cubic equation in I having 8 real roots I, I:Is. These are called the
rincipal moments of tnertia. The directions of the principal axes can be found from (11},

as shown in Problem 10.6 by finding the ratio o, o e,

An axis of symmetry of a rigid body will always be a principal axis.

ANGULAR MOMENTUM AND KINETIC ENERGY ABOUT
THE PRINCIPAL AXES

If we call v, w, 0, and 9, 0,, ¢, the magnitudes of the angular velocities and angular
momenta about the principal axes respectively, then

Q,= Il"’v Q,= Iz‘”v Q= Is"s (18)

The kinetic energy of rotation about the principal axes is given by

T = -}(Ilaf + Izasg + Iswg (1#)
which can be written in vector form as [compare equation (9))
T = ju-03 (16)

THE ELLIPSOID OF INERTIA
Let n be a unit vector in the dirvection of . Then

e = ohh = ofcoSci+cosfj+coayk) (216)

where cosa, c0s 8, cosy are the direction cosines of » or n with respect to the x, ¥y and 2
axes. Then the kinetic energy of rotation is given by

T = L a”
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where I = I, costa + I cos*f + I cos?y
+ 21  cosacosf + 2, cosBcosy + 2, cosacosy (18)

By defining a vector
p = VT (19)

where p=pi+pj+pk (18) becomes
I.p2+ fm,pg + I p2+ 2prmpv + mesz +21 pp, =1 (20)

In the coordinates g,p,.p, equation (20) represents an ellipsoid which is called the
ellipsoid of inertia or the momental ellipsoid.

If the coordinate axes are rotated to coincide with the principal axes of the ellipsoid,
the equation becomes
Tpt+1pl+ 152 = 1 (21)

where p, p,, p, Tepresent the coordinates of the new axes.

EULER’'S EQUATIONS OF MOTION

It is convenient to describe the motion of a rigid body relative fo a set of coordinate
axes coinciding with the prineipal axes which are fixed in the body and thus rotate as the
body rotates. If A, A, A, and «,, v, o, represent the respective components of the external
torque and angular velocity along the principal axes, the equations of motion are given by

115)1 + (Is _"'2)"'2“’3 = A
Ly + (I, — I)uge, = A, (22)
I, + (!2_“11)”1“’2 = A

These are often calied Euler’s equations.

FORCE FREE MOTION.
THE INVARIABLE LINE AND PLANE

Suppose that a rigid body is rotating about a o
fixed point O and that there are no forces acting
on the body [except of course the reaction at the
fixed point]. Then the total external torque is
zero. Thus the angulary momentum vector O is
constant and so has a fixed direction in space as
indicated in PFig, 10-2, The line indicating this
direction iz called the invariable line.

Since the kinetic energy iz constant [see

Problem 10.34], we have from {15) Invarisble line —o

»'{} = constant (29) Fig. 10-2

This means that the projection of » on © is constant, so that the terminal point of «
describes a plane. This plane is called the invariable plane.

Ags the rigid bedy rotates, an observer fixed relative to the body coordinate axes would
see a rotation or precession of the angular velocity vector « about the angular momentum
veetor £,
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POINSOT'S CONSTRUCTION. POLHODE. HERPOLHODE.
SPACE AND BODY CONES

As noted by Poinsot, the above ideas can
be geometrically interpreted as a rolling
without slipping of the ellipsoid of inertia
corresponding to the rigid body on the
invariable plane., The curve described on the
invariable plane by the point of contact with
the ellipsoid is called the herpolhode [see
Fig. 10-8). The corresponding curve on the
ellipsoid is called the polhode,

To an cohserver fixed in space it would
appear that the vector «» traces out a cone
which is called the space cone. To an
observer fixed on the rigid body it would
appear that e also traces out a cone which is
called the body cone. The motion can then
be equivalently described as a rolling without
slipping of one cone on the other. See
Problem 10.19. Fig.10-3

SYMMETRIC RIGID BODIES. ROTATION OF THE EARTH

Simplifications occur in the case of a symmefric rigid body. In such case at least
two principal moments of inertia, say I and 7., are equal and the ellipsoid of inertia
is an ellipsoid of revolution. We can then show [see Problem 10.17] that the angular
veloeity vector o precesses about the angular momentum vector @ with frequency given by

_ 1|lha—-h
f =z

where the constant A is the component of the angular velocity in the direction of the
axis of symmetry.

In the case of the earth, which can be assumed to be an ellipsoid of revolution flattened
slightly at the poles, this leads to a predicted precession period of about 300 days. In
practice, however, the period is found to be about 480 days. The difference is explained as
due to the fact that the earth is not perfectly rigid.

A (24)

THE EULER ANGLES z

In order to deseribe the rotation of a rigid
body about a point we use 3 angular coordinates
called E'uler angles. These coordinates denoted
by ¢, 8, ¢ are indicated in Fig. 10-4. In this
figure the 2yz coordinate system can be rotated
into the 2’y’z’ system by successive rotations
through the angles 4 and then 4 and then g
jsee Problem 10.20]. The line OA is sometimes
called the line of nodes.

In practice the 2’,%’, 2" axes are chosen as
the principal axes or body axe¢s of the rigid
body while the z, ¥y and z axes or space oxes
are fixed in space. Fig. 10-4
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ANGULAR VELOCITY AND KINETIC ENERGY
IN TERMS OF EULER ANGLES

In terms of the Euler angles the components o, «,, u, of the angular velocity along the
', ¥ and 2’ axes are given by

oy = o = ¢ésingsing + §siny
vy = @, = $ 8inf cosy — é sin ] {26)
vy, = o, = $cosd + ¢

The kinetic energy of rotation is then given by
T = (1,02 + Lol + 1) _ {26)
where [, I, Is are the principal moments of inertia. '

MOTION OF A SPINNING TOP

An interesting example of rigid body motion
occurs when a symmetrical rigid bedy having one
point on the symmetry axis fixed in space is set
spinning in a gravitational field. One such example
is that of a child’s top as shown in Fig, 10-5, where
point O is assumed as the fixed point.

For a discuassion of the various kinds of motion 2
which can occur, see Problems 10.25-10.32 and 10.36. Fig. 10-5

GYROSCOPES

Suppose a circular disk having its axis mounted in gimbals [see Fig. 10-6] is given a
spin of angular velocity . If the outer gimbal is turned through an angle, the spin axis
of the disk will tend to point in the same direction as previously [see Fig. 10-7]. This
assumes of course that friction at the gimbal bearings is negligible.

In general the direction of the spin axis remains fixed even when the outer gimbal,
which is attached to some object, moves freely in space. Because of this property the
mechanism, which is called a gyroscope, finds many applications in cases where maintaining
direction Jor following some specified course] is important, as for example in navigation
and guidance or control of ships, airplanes, submarines, missiles, satellitez or other moving
vehicles,

A gyroscope is another example of a symmetric spinning rigid body with one point on
the symmetry axis jusually the center of mass] taken as fixed.

Fig.10-6
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Solved Problems

GENERAL MOTION OF RIGID BODIES IN SPACE

10.1. Find the number of degrees of freedom for a rigid body which (¢} can move freely
in space, (b) has one point fixed, (c¢) has two points fixed.
(#) 6 [see Problem 7.2(e), page 172)
(8) 8 [see Problem 7.2(b), page 172]

(¢) If two points are fixed, then the rigid bhody rotates about the axis joining the two fixed
points. Then the number of degrees of freedom is I, such as for example the angle of rotation
of the rigid body about this axis.

10.2. A rigid body undergoes a rotation of angular velocity « about a fixed point Q. Prove
that the velocity v of any particle of the body having position vector r relative to O
is given by v=aXr,

This follows at once from Problem 6.1, page 147, on noting that the velocity relative to the
moving system ia dr/dt|y = dr/dt|, = 0.

—

ANGULAR MOMENTUM. KINETIC ENERGY.
MOMENTS AND PRODUCTS OF INERTIA

103. Derive the equations (4), page 254, for the components of angular momenfum in terms
of the moments and products of inertia given by equations (5) and (6), page 254.
The total angular momentum is given by

N N
@ = 3 mmxv) = I minXeXn)

where we have used Problem 10.2 applied to the »th particle,
Now by equation (7}, page 5, we have
r,X{exXr,) = er,*r) — rle-z)
= (wd + uj + o k)@ + ¥l + 2D

— (=i + ¥ + 2k oz, + gl T w2y)
{“x(vg + 2'?,) - Wyl Y, = “'xxvzv}i

+ {%(“’E + zﬁ) — W ¥l — “z?fyzv}i

+ {@z(f?i + Va) — Wy, — "'yyvzv}k

1l

Then multiplying by m,, summing over » and equating the coefficients of i, j and k to 2, 2, and T,
reapectively, we find as required

N N N
e, = {'21 m,.(vf + 3%)} w, + {“' vzl vav} oy + {_ vgl Mﬂv} L
= I + Itﬂ‘“l! + I-“o‘
N N d
g, = {-— ’gl m,z,y,} w, + {ygl m,(x3 + é)} wy + {— vzﬂ m-vﬂuzv} oy

= I + Lo, + Lo,

8 = {-— 3 m..zv} v + {~ él mw.} o + {él m»(w§+v§)} o

v=1
= L, + Ivz"’n + Ipo,

For continuous mass distributions of density ¢, we can obtain the aame results by starting with

2 = j;c(rxv)df = J;o{rx(.xﬂ}d-r
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104. If a rigid body with one point fixed rotates with angular velocity o and has angular
momentum £, prove that the kinetic energy is given by T =3}=-0.

Tr = %Empt’% = %zmv(;v‘iv)
.}Em,{(er,}'(er,)} = ‘&Emv{"[rvx("xrw)]}
#.-Em,r,x(.xr,) = -&o'ﬂ "

I

N
where we have used the abbreviation = in place of El.
e

105. Prove that the kinetic energy in Problem 10.4 can be written
/ T = ‘5(";:"’3 + Iy’ms + Iu""f + 2!1,0:@” + 21,20,:@: + ZIyz‘”ywz)
From Problem 10.4, we have
T = ‘&"'0 = i(m,i+w,j+uak)-(9xi+ﬂ,j+ﬂzk)
= i‘("znx + wylldy, + wil,)

= i{”x(lxx"’x + Ia:y“’y + Ia::"’z)
+ my(fwux + Iwn, + I”wz)
+ wyll 0, + Inw,‘f‘ Ty} )

= MIewf + Iyold + Lk 4 20000, + 2000, + 2lpuem))

using the fact that I, = I L,=1, [.=1,.

PRINCIPAL MOMENTS OF INERTIA AND PRINCIPAL AXES

l(yu Derive €guations (11), page 255, for the prineipal moments of inertia and the
iong of the principal axes.

Using 9 = la 1}

together with equations (#) and (4), page 254, we have

Fppy + Iywy + T, = Tu,
Fprwy + Ty + Ty, = Tuy

|
5

Iy + Iyoy + Ine, =

or g = Dug + Ly + Iy =
Pgog + Ly —Dag + Loy = 0 {£)
Izz"’x""')z"’y"' Joz— Doy = 0

The principal moments of inertia are found by setting the determinant of the coefficients of
Wy 0y 0y in {2} equal to zero, ie,

Ie—1 I I
A T

This is a cubic equation in I leading to three values I,,I;,1; which are the principal moments
of inertia, By putting I =1, in (2) we obtain ratios for o,:w,:w, which yields the direction of »
or the direction of the principal axis corresponding to I,. Similarly, by substituting I, and I
we find the directions of the corresponding principal axes.
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_19.7_5 Find the (a2) moments of inertia and (b) products of inertia of a uniform square

plate of length a about the x, ¥ and z axes chosen as shown in Fig. 10-8. e

(@) The moment of inertia of an element dz dy of the plate v
about the x axis if the density ia o ia ey dx dy. Then the -

moment of inertia of the entire plate about the = axis is
f f' otdedy = oot = §Ma2 (1)
v=0
ginee the mass of the plate i3 M = ca®

Similarly, the moment of inertiz of the plate about
the y axis is

- J';j"’ wtdedy = joot = {Mad (9)

y=0

as is also evident by symmetry. Fig. 10-§

The moment of inertia of dxz dy about the z axis is o(x? + y2) dx dy, and 80 the moment of
inertia of the entire plate about the z axis is

J‘a f olxt +y¥)dedy = {Me? + jMa? = {iMa? e

=0 Yy=0

This also follows from the perpendicular axes theorem [see page 226}

{?) The product of inertia of the element dz dy of the plate about the & and y axea is oxy dxdy,
and so the product of inertia of the entire plate about these axes is

] L]
Ly = I, = —f f owydzdy = —}oat = —iMad ®)
=0 Y y=0

The product of inertia of the element dx dy of the plate about the # and z axes is the
product of odxdy by the distances to the yz and xy planes, which are x and 0 respectively.
Thus we must have . =4

I, = I, =0, and similarly I, =L,=0 (%)

10.8. Find the (a) principal moments of inertia and (b) the directions of the principal
™= axes for the plate of Prgblem 10.7.

i) By /Pféblem 10.6 and the results {1)-(5) of Problem 10.7, we obtain

Mz —1  —}Ma® 0
—jMa2  jMa? — I 0 = 0 )]
0 o Mot — I
or (Mot — DNjMad = I) — (—}Mat)(~}Mad)|[§Ma2 =1} = 0O

which can be written
(2 — $Ma2l + ;%W]{;Mnﬁ -n =0

Setting the first factor equal to zero and using the quadratic formula to solve for I, we
find for the three roots of {1),

= peMa?, 1, = fyMa?, I = §Ma? )
which are the principal moments of inertia.

() To find the direction of the principal axis corresponding to 7,, we let I =1, = lleaﬂ in
the equations

(§Ma? — Do, — JMare, + O, 0
~}Mats, + (}Ma?—Da, + Cuw, = © s
Ouw; + 0oy + (JMat~DNe, = ©
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The first two equations yield w, =, while the third gives «, =0. Thus the direction
of the principal axis is the same as the direction of the angular velocity vector

o = gditaftek = agite) = eit+th

Then the principal axis corresponding to I, is in the direction i+ j.
Similarly, by letting [ =1I, = HMa? in ($) we find
wy = ~wy, w; = 0 80 that the direction of the correspond-
ing principal axis is e =wid—w i =wdi~) or I—j
If we let I=1i;=g§Ma® in (8) we find o, =0,
w, =0 while o, is arbitrary. This gives @ = w,k which
shows that the third principal axis is in the direction k.
The directions of the principal axes are indicated by
i+j, i—j and k in Pig. 10-9. Note that these are
mutually perpendicular and that i+ j and i —j have the
directions of the diagonals of the aquare plate which are
lines of symmetry.
The principal moments of inertia can also be deter-
mined by recognizing the lines of symmetry. Fig.10-9

If 1
10.9./ Find the principal moments of inertia at the center of a uniform rectangular plate
of sides a and b.
L/‘/'I‘he principal axes lie along the directions of symmetry and thus must be along the « axis,

3 axis and z axis [the last of which is perpendicular to the xy plane] as in Fig. 10-10.
By Problems 9.6, 9.9 and 9.11 the principal moments of inertia are found to be I, = ‘115‘"'12’
Iy = JeMb2, Iy = LMo+ b2),
H]

- b

/ Fig. 10-10 Fig. 10-11

=

10,10. Find the principal moments of inertia at the center of the ellipsoid

—r xz yz z!
= One eighth of the ellipsoid is indicated in Fig. 10-11. The moment of inertia of the volume

element dr of mass ¢dr about the z axis or *“3” axis is (xf+ y?)eodr, and the total moment of
inertia about the z axis is

a o¥1 ~ 2 sat V11— aa? + P ieh)
Iy = Sf f f @2+ yodzdy de
z=0 “y=0 =0
Integration with respect to z gives
o bVt — z¥ra?
Sac f f (w2 + y2) V1 — (x2/a2 + y2/0?) dy dx
=0 “Vy=d

To perform this integration let z — eX, y = bY Jqhere X and Y sre new variables. Then the
integral can be written

1 ¥i-x?
Soabe f f (a2X2 + b2Y?2) V1 — (X2 + Y?) d¥ dX

X=0 “'Y=0
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Introducing polar coordinates R, ¢ in this XY plane, this becomes

I w12
Saabcf J‘ (a2R? cos? @ + B2R? sin20)y1 — B? R dR de
=  Z2poabe(a + b2 J VI —RIdR = freabela® + b2)
R=0

where we use the substitution 1 — R2 = /2 in evaluating the last integral.

Since the volume of the ellipsoid is a-rabc the mass is M —'% oube and hence [f; = }M(a? + 7).
By symmetry we find I, = LM(B2 + ¢?), I, = {M{a® + c?).

10.11. Suppose that the ellipsoid of Problem 10.10 is an oblate sphersid such that ¢ =5
while ¢ differs slightly from & or b. Prove that to a high degree of approximation,
(fa—fl)f)r] =1 - ¢/fa.

. N Iy~Iy g2 e2  (a—ca+a)
From Problem 1010, if a = b then T = FTE prRnT R
only slightly from a then a+c¢ =~ 2¢ and a?+ ¢2 = 2¢2 Thus, approximately,

(Is— ILYT = (a—~¢)(2a)/2642 = 1 — ¢fa

But if ¢ differs

10.12. Work Problem 10.11 for the case of the earth assumed to be an oblate spheroid.

Since the polar diameter or distance between north and south poles is very nearly 12,710 km
while the equatorial diameter is very nearly 12,754 km, then taking the polar axis as the “3” axis
we have 2¢ = 12,710, 2a = 12,754 or ¢ = 8355, a = 6377.

Thus by Problem 10.11, (I; — I,}/I, = I — 6355/6377 = .00345

ELLIPSOID OF INERTIA

10.13. Suppose that the moments and products of inertia of a rigid body ® with respect
to an zyz coordinate system intersecting at origin O are I, Iy, I, Loy, Iz, Iy respec-
y. Prove that the moment of inertia of R about an axis making angles 4,8,y

with the z, ¥ and z axes respectively is given by

I = Igcosta + Iycos’B + I costy
+ 2I,c08ac088 + 2l cosacosy + 21, co8Bcosy

A unit vector in the direction of the axis is given

by
n = cosai+ coaBj+ cosvk

Then if m, has position vector r,, its moment of inertia
about the axis 04 is m,D? where D, = [r, X n|. But

i b k

pXn = xy v Zy

cosa cosf cosy

= (y,cosy — 2, cos i :w/ o )
+ (2, cos « — x, cos v} \ * T
+ (%, co8 8 — ¥y, cosak Fig. 10-12
and [r, %02 = (g, cosy —z,cos8)? + (z,co8a —x, cosy)? + (x, cos § — ¥, cos a)?

il

w2+ 22 costa + (xX+ 28 cost B + (22 +y2) costy
— 2x,y,co8acos f — 2x,2,co8aco8y — 2y,2, coBfl cOSY



264 SPACE MOTION OF RIGID BODIES [CHAP. 10

Thus the total moment of inertia of all masses m, is

I = 3 mD}
{E m,(yp + zﬁ)} cos?a + {2 m{zfﬂﬁ)} cos? g + {2‘. m, () + yi’}} cos?y

+ 2 {— 3 m,x,y,,} cosacos B + 2 {-— p m,,x,,z,,} cos a cos Yy

+ 2 {— ) m,y,zu} cos B cosy

= I costa + I cos28 + I, cosy

+ 2I,,cosacos B + 2]  cosacosy + 21, cosBeosy

10.14, Find an equation for the ellipsoid of inertia corresponding to the square plate of

/ Problem 10.7.

¢ have from Problem 10.7,
I, = §Ma?, I, = }Mat, I,, = §Ma?, I, = ~JMa?, I, =0, I, =0

Then the equation of the ellipsoid of inertia is by equation (20}, page 256,
IMa2? + AMatl + FMa2e? — YMapp, = 1

or pi + pﬁ + 2p§ — gp_tpy = 3/Ma?

EULER’S EQUATIONS OF MOTION

10.15. Find a relationship between the time rate of change of angular momentum of a rigid
body relative to axes fixed in space and in the body respectively.

If the rigid body axes are chosen as principal axes having directions of the unit vectors
¢;, ¢; and e; respectively, then the angular momentum becomes

0 = loe, + Twge, + Tyuse,

Now by Problem 6.1, page 147, if 5 and b refer to space (fixed) and body (moving) axes
regpectively, then

| _ 4o
dt s = ah+u><0

= Lége, + DLbee, + Ihge
+ ("’lel + walo + "’303) X {Ilu,el + Izwzeg + 13&303)

= (L + Uy —Ieges)e; + {fawg + (1) — I)owgle,

/J + {0y -+ Iy — Iwgwy Yey

-~
10.16. Derive-Euler's equations of motion (22), page 256.

i// /13}' the principle of angular momentum, we have
_d0
A = e |s (1}

where A iz the total external torque. Writing
A = Ao, + Aoty -+ Agey @)

where A;, Ag, Ay are the components of the external torgue along the principal axes and making
use of (1) and Problem 10.15, we find

I;&l + (13 - Iz)uzus = Al
Igl:}z + (1’1 - Ia)wawl = Az (8}
Idg + Uy — I)ogwg = Ag
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FORCE FREE MOTION OF A RIGID BODY., ROTATION OF THE EARTH

10.17. A rigid body which is symmetric about an axis has one point fixed on this axis.
Disgg_ss--'the rotational motion of the hody, assuming that there are no forces acting
Vothér than the reaction force at the fixed point.

Choose the axis of symmetry coincident with one of the principal axes, say the one having
direction e;. Then [, =1, and Euler’s equations become

Liy+ (3= Dy = 0 (n
Tég + (I —Iglosey = 0 (£)
Is(:ls =0 (’)
From (3), w; = constant = A so that (1) and (2) become after dividing by I,
. =1
w1+(’, ‘)sz = 0 )
1
. II — !3
iy + < T Aﬂl = ¢ (5)
1
Differentiating (5} with respect to £ and using (4), we find
.- Iy —IN\2
u2+(311 ‘) A%, = 0 ®
or Gy K2y = 0 (v4]
I,—17
where P —s-—ﬁ—l!A (8)
I .
Solving (7), we find wys = Beoset + Csin«é

1f we choose the time scale so that w, =0 when =249, then
wp = Csinxt (#

Then from (5} we have w = C cosxt {10

Thus the angular velocity is
B = o + waly + wyls
= Ccosnte, + Csincte, + deg (11

From this it follows that the angular velocity is
constant in magnitude equal to o = |a] = V(2 + A2
and precesses around the “3” axis with frequency
. _ 113 =1 l!
2 2=l
as indicated in Fig. 10-13.

Note that the vector w describes a cone about the
“3" axis. However, this motion iz relative to the

body principal axes which are in turn rotating in
space with angular velocity a. Fig. 10-13

!

A {18)

10.18. Caleulate the precession frequency of Problem 10.17 in the case of the earth rotating
about its axis.

Since the earth rotates about its axis once in a day, we have o3 = A = 27 radians/day. Then
the precessional frequency is from Problems 10.12 and 10.17,

_ 1 /-4 _L_g) _ 1 _ .
f = -2;(—11—->A = 3 (1 2 A = 2r(.00328}(2u-} = .00328 radians/day

The period of precession is thus P = 1/f = 305 days. The actual obgerved period is about 430 days
and is explained as due to the non-rigidity of the earth,
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THE INVARIABLE LINE AND PLANE.
POLHODE, HERPOLHODE, SPACE AND BODY CONES

19.19. Describe the rotation of the earth about its axis in terms of the space and bedy cones,
From blem 10.17 the angular velocity » and angular momentum £ are given respectively by
o = o + wey + wge; = Cleossi e + sinxt ey} + Adey
0 = lue, + Twe, + fjuges = 1,C (cosnt e, + sinat ey) + Tgdeg

Let « be the angle between o3 = wye; — Aey; and 3. Then

-yt 0 = |03| Inl cosa = A v Ifcz + I§A2 cos3a — I3A2
IA
and 0B = —_——————— (1)

VECT + RA?

Similarly, let 2 be the angle between w; and w. Then

e = log| @] cos 8 = AVCE+ A2 cos 8 = A2
and co8ff = A o ()
V2 + A? ‘._;9:__#1
From (1) and (2) we see that ' j,qj.&
e
sine = ——— ., sihg = L (£
\)‘IfC" + I2A? VO + A2
_IC _C
Thus tana — m, tan g = a {4)
taha _ ﬁ
or tang I, (%)

Now for the earth or any oblate spheroid [flattened at the poles] we have I, < I; It follows
that o < 8.

The situation can be described geometrically by Fig. 10-14. The cone with axis in the direction
Q is fixed in space and is called the space cone. The cone with axis a3 = wye; is considered as
fixed in the earth and is called the body cone. The body cone rolls on the space cone so that the
element in common is the angular velocity vector w. Now
€ € €3
pyXe = 0 0 A = —ANCsinxte + ALC cosxte,
i Ii€cosxt I6Csinxt IA

Thus
Q:(uygXa)

(I,C cos«t e, + I,C sinxt ey + IyAey)

(—ALC sinxt ¢, + AILC coaxt e,)
=0

It follows from Problem 1.21(b), page 16, that {}, wgand »
lig in one plane,

An observer fixed in space would see the vector w
tracing out the space cone [see Fig. 10-14]. An observer
fixed in the body would see the vector » tracing out the body
cone,

In the case of the earth the space cone is inside the
body cone due to the fact that I, < ;. For the case of a
prolate spheroid the reverse situation is true, ie, I, > J; and
the space cone is outside the body cone [see Problem 10.121]. Fig. 10-14
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THE EULER ANGLES

10.20, Show by using three separate figures how the xyz coordinate system of Fig, 10-4,
page 257, is rotated into the x'y’z’ coordinate system by successive rotations through
the Euler angles ¢, ¢ and ¢. :

. to Fi . zorZ ﬁﬁ;
Refer to Figures 10-15, 10-16 and 1£-17. Fig.
1 indicates a rotation through angle ¢ of the x and y o
xes into an X and Y axis respectively while keeping ..
the same z or Z axis.

i

In Fig. 10-16 a rotation about the X axis through

angle ¢ is indicated so that the Y and Z axes of ¥
Fig. 10-15 are carried into the ¥’ and 2’ axes of " ' 4
Fig. 10-16 respectively. C ke K[ J
R ¥

In Fig. 10-17 a rotation about the Z’' or #' axis R | 1
through angle ¢ is indicated so that the X' and 1 axes ?q :
are carried into the x’ and y' axes respectively. p X

In the figures we have indicated unit vectors on the
x, ¢,z axes; X,Y,Z axes; X', Y, Z' axes and x',y', 2
axes by i,jk; LLK; V.V, K' and {,§,Kk respectively, Fig. 10-18

Z : Z

Fig. 10-16 Fig. 10-17

10.21. Find the relationships between the unit vectors (¢) i,j,k and L J,K of Fig. 10-15,
M LYK and I'J,K’ of Fig. 10-16, (¢) I''¥, K’ and ¥,§,k’ of Fig. 10-17.

{ay From F‘i__g. 19-15,
G'DI + {i0F + (i*KK = cosgel —singJ

G+DE + (-3 + §-KK
kBl + k-3F + kKK

]

sing Il + cosgJ
K

Il

{b) From Fig. 10-16,

1 = (I + 3.1 + I*K)K =T
J = F-rw + 33y +JKK = cogel — gine K’
K = (K-I''lI' + (K-J) + (KKK = sin¢J + cose K

fey From Fig. 10-17,
U = (I + @) + @Kk cosy i — siny j'
¥o= (FO P+ RK = sing i+ cosy §
K = (K- + K- + K-k = k

il

¥
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10.22. Express the unit vectors i, j, k in terms of ¥,j, k"
From Problem 10.21,

i = cosgl —sgingJ, } = singl + cos¢g ¥, k = K
1 =T, J = coseF —sineK, K = zinéel + cose K
I = cos¢i —singj, ¥ = singi + cosypj, K =k
Then i = cospl —singl = cosgpl — singcoss I + sing sine K’

= cospcosg i’ — cosgsing §
— singcosgsing i’ — sing cosscosy jb + sing sine k'

= (cos¢ cosy — sin ¢ cos & siny i’
+ {(—~cos¢ sinyg — sing coss cosy)j’ + sing sine k'
j = singl + cospJ = singl' + cospcossJ — coapsinsd K’

= singeosy i’ — sing sinyg §
+ cospcosgsing i’ + cospcosecose §J — cospsine k'

= (sing¢ cosy + cosg cosd sinygi’
+ (—sing siny + cosgp cosd cosylf’ — cosg sine b’

k = sineY + cos¢ K" = sinesingi’ + sinscoayj + cose k'

10.23. Derive equations (25), page 258,
o = gkt + oo + o K = gk 4+ ' 4 K

I

ésingsing V' + $sindcoay i + $eosok’
+ dcosy i’ — dsing § + ¢k
($ sing sinyg + & cos g}’
+ (¢ sin# cos¢ — ¢ sin )i’ + (¢ cos e + Pk’

Then since o = wpoi’ +w,§ + o K,

¢ ain g sinyg + ?H:osw

Wy = wp =
ay = wy = ¢sinecony — gainy
oy = Wy = pecose + ¢

10.24. {a) Write the kinetic energy of rotation of a rigid body with respect to the principal
axes in terms of the Euler angles. (b} What does the result in (a) become if fy = I1,?

(gy Using Problem 10.23, the required kinetic energy is seen to be
T Yot + Ipog + T

il

3I,(¢ 8in g siny + & cos ¢)?
+ 31o(d 8in 6 cosy — ¢ 8iny)? + Lls(d coss + )2

&) It I, = I, the result can be written
LT = 3L(#%sin®e + 8% + }g(é coss + 42

s -

i
MOTION OF SPINNING TOPS AND GYROSCOPES

10.25. Set up equations for the motion of a spinning top having fixed point O [see Fig. 10-18).

I
I

T—

{CHAP. 10
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Let xyz represent an inertial or fixed set
of axes having origin (. Let x'y'z’ represent
principal axes of the top having the same
origin. Choose the orientation of the «'y’
plane so that Oz, Oz' and Oy’ are coplanar.
Then the x’ axis is in the xy plane. The
line ON in the x’y’ plane making an angle ¢
with the =’ axis is assumed to be attached
to the top.

The angular velocity corresponding to
the rotation of the a'y’2’ axes with respect to
the xyz axes is

- = wyey + wg®n + LgBsy (1)

In obtaining the angular momentum we must
use the faect that in addition to the com-
ponent oy due to rotation of the z’'y'+' system
there is also the component s = se; = Je,
since the top iz spinning about the z’ axis.
Then the angular momentum is Fig. 10-18

0 = Ilw,e, + !2«)202 + Ia{@s‘i")ea {8)

Now if we let subsecripts f and & denote the fixed system and body system respectively, we have
by Problem 6.1, page 147,

g} _ 4o e £y
Tl = _J?Ia+'xa 1 7))
v—"[ ) T [FEIPS
Using (1) and (2} in (3), we find :
dﬂ - - . ‘I!E,J' Ll
gty = Wt Ua— Iogey + Tugsle
+ {f!(‘»)g + (Il - Ia)iﬂl(da - Ia(!}ls}ez {-‘)
+ {Ia(;!s +;’) + (12—]1)01(03}03
The total torque about O is
A = (leg) X (mg) = (log) X (—myk) (&)
Since k = (kree; + (koegdey + (krogles = coB(w/2—8)e; + conp ey
= gind e, +cosd e
the torque is A = -—mglle;xk) = mglainse ()]
. ak : —
Then using A = s with I, = I;, we find from (4) and (8],
Loy + (I3 — Iwgeg + Tyupe = mplsine
Ly + (1) — Iuyey — Iyne = 0 @

I

Iids+3) = 0

10.26. xi)/l;eas equations (7) of Problem 10.25 in terms of the Euler angles ¢ and ¢ of

ig. 10-18,

The components w;, g w; can be obtained from Problem 10.23 by formally letting ¢ =0.
We find

{ u;]=0‘, wy = daing, u3=56030 @

Then equations {?) of Problem 10,26 become
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1,7+ (I;—1)¢tsing cose + Iygs sine = mplsine

I,(%sine + 96 cosg) + (I, — 1,83 cosd — Ipe = 0 2)
I{¢ cose — gogine+28) = 0

The quantities ¢, & and # are often known as the magnitudes of the angular velocity of precession,
of nutation and of spin respectively.

10.27. Prove that the equations (2) of Problem 10.26 can be written as
(@ 1§ — Lg*sinfcost + LAdsing = mglsing
(b) Li($sing + 230 cosn) — A6 = 0
where A is a constant.
From the third equation in {7} of Problem 10.25,

ay -8 = A or 8 = A — wy {1)
Then substitution into the first and second of equations (7) yields

Idy = Hegag + Tpepd = mglsing {2)

Hog + Huwwy — IgwyA = 0 *

Using the results (1} of Problem 10.26, we find that equations (2} and (#) reduce to the required
equations.

10.28. {a) Find the condition for steady precession of a top.

{b) Show that two precessional frequencies are possible.

Since ¢ is constant so that # = 0, we have from Problem 10.27%(a),

(I¢o2cosg — LA + mylysing = 0
or Liptcoss — IAs + mgl = 0
R 134 = VI2AL — dmgll, cos s
from which s = 1AZVE kel I
21, cos ¢

Thus there are two frequencies provided that
1342 > 4mgll, cos e4]
If IZA2 = 4mgll coso only one frequency is possible.

If A is very large, e.g. if the spin of the top is very great, then there are two frequencies,
one large and one small, given by

IANT cose), wmglilA {8)
10.29. Prove that
(@) 41,82 + $*sin?8) + 3,4° + mglcos§ = constant = K
(b) I¢sin?é + IbAcosé = constant = K

and give a physical interpretation of each result.

(¢) Multiply equations (?) of Problem 10.25 by w,, w; and w3+ s respectively, and add to obtain

II({A}I;)]. + 0}2;12) + 13(03 + s)(l:ls + 5) = ‘mp‘f Sil’l [ ;
which can be written as‘
’ d d
t a (3wt + <) + Hgloy+ 82} = g¢ (el cos 8)

Integrating and using wy-+8 = A as well as the results o, =4 and oy = ¢ sins, we find

§1462 + @2 sin%9) + JIAT + mglcose = E @)
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where E is constant. The result is equivalent to the principle of conservation of energy,
since the kinetic energy is

T = (62 + % sinZe) + }1pA2 (£
while the potential energy is V = mglcose 4]

and T+ V =F is the total energy.

Multiplying the result of Problem 10.27(b) by sing,

Ii$sin2e + 2,46 sino cos s — I;Afsine = 0
which can be written
%(1,«5 sin2¢ + I;A cos8) = 0
Integrating, I 1&- gin2s + I;A cos¢ = constant = K {5)

To interpret this result physically, we note that the vertical component of the angular
momentum is I;¢ sin? 8 4 1,4 coss [see Problem 10.123), and this must be constant since the
torque due to the weight of the top has zero component in the vertical direetion.

10.36. Let 2 = cos#h. Prove that:

(@)

(b)

(a}

= fa— Bu)(l—u?) - (y—du)? = flu)
where o= 2(E — AN/, B =2mgl/ly, vy =K/, $ =LA/

t = fﬂ + constant

Vi

From Problem 10.29,
H\(62 + ¢% sinZ0) + 31342 + mglcose = E (n
. Lipsinte + Jydcose = K @
. K —I3d con e
From (2), $ = Tiamis *

Substituting this into {J),
. (K — I;A cos8)?

g g & "R 2 =
e? + 37, sine + 31542 + mglcose E

Letting # = cozs¢ so that % = —sined and sin2¢ == 1 — u?, this becomes

a2 (K — I,Au)?
-t 21,(1 —ud)

+ mgly = E — }I,A

K — 2 2mglu(l — u2 -
Thus w2+ ﬂ) + il — ) 21— uf) (B — 41,49
I i !
which can be written as
v W = (a~pu)l—ud) — (y—su)? = f(u) %)
where a = (2E — 1, A2/, B=2mghl, vy=K/!, &=I0LA/l 5

Note that with this notation (8) can be written
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(b) From the result of (a) we have, since it > 0,

. du _ _ du
u-—dt—\ff(u) or dt-—-——m

Integrating, f \/}T b4
)

The integral ¢an be evaluated in terms of elliptic functions which are periodic.

10.31. (e} Prove that § =0 at those values of u for which

fu) = (a—pu)l—w?) — (y—8u)* = 0
(b} Prove that the equation in () has three real roots u:,us, us but that in general
not all the angles corresponding to these are real.
(¢) From Problem 10.30{a), 22 = flu) = (a— pul(l —u?) — (y — &u)? 162]

Since # = —sing &, it follows that =0 where =0 or flu)=0. Thus §=0 at the
roots of the equation

Fuw) = {fa—Bul—ud) — (y—su) = 0 (2}
{4) Equation {I) can be written as
iy = Bud — (824 w2 + 2y —Blu+a— ¥2 #)

Since g > 0, it follows that
H=) = =, fl—w) = —o
iy = ~(y—982, fi-H = —{y+8?
Thus there is a change of sign from
— to + as u goes from 1 to =, and

consequently there must be a root, say H(w)
uy, between 1 and « as indicated in
Fig. 10-19.

Now we know that in order for
the motion of the top to take place we
must have flu) =422 0. Also, since

0=¢=n/2, we must have 0 S u =1. . TN "
It thus follows that there must be two -1 |/ “tv“l
roots u; and u, between 0 and 1, as

indicated in the figure.

It follows that in general there are
two corresponding angles ¢, and 8, guch
that cos ¢y = u;, co8 8y = u;. In special
cases it could happen that u, = u, or
ty = Uy = 1. Fig'. 10.19

10.32. Give a physical interpretation of the results found in Problem 10.31.

_The fact that there are two reots w; and u, corresponding to ¢; and §, respectively, shows
that the motion of the top is such that its axis always makes an angle # with the vertica] which
lies between 8, and #,. This motion, which is a bobbing up and down of the axis between the
limits 8, and #,, is called nutation and takes place at the same time as the precessional motion
of the axis of the top about the vertical and the spinning of the top about its axis. Because
the motion can be expressed in terms of elliptic functions [see Problem 10.104]), we can show
that it is periodic.

In general the tip of the axis of the top will describe one of various types of curves such as

indicated in Figs. 10-20, 10-21 and 10-22. The type of curve will depend on the root of the
equation [see equation (6) of Problem 10.80]

g = =8 -

T—w - )
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If this root given by y/é is greater than u,, the curve of Fig. 10-20 occurs. If it is the sam
ug, the curve of Fig. 10-21 obtaing. If it is between 2, and u, the curve of Fig. 10-22 occurs. O
cases can arise if the root is the same as u, or is less than u, {see Problems 10.124].

vi& > Uy yi8 = Uy w8 <y
Fig. 10-20 Fig.1¢-21 Fig. 16-22

Aside from the pgemeral motion which is made up of nutation and precession, there ai
various special cases which can arise. One of these is the case of steady precession with n
nutation [see Problem 10.28l. In this case u; = uy; so that ¢, = ¢; or ¢ = constant. Anaothe
case is the “sleeping top” which cecurs where u; = u; =1 and the axis of the spirning top alway
remains vertical [see Problem 10.36].

MISCELLANEOUS PROBLEMS
16.33. If T is the total kinetic energy of rotation of a rigid body with one peint fixed,
prove thw-fdt=o‘A where all quantities refer to the body prineipal axes.

tiplving both sides of the Euler equations () of Problem 1016 by o, vy wy respectively
adding, we obtain

Fanay + Tgagdy + Fyugty = wydy ¥ wghy + wshg (1}
. . . T
But Ty + Ipugly + Tawgdy = }2‘- %{Ilw% + ood + faug} = %‘t— ()
and wyhy T owghs ¥ gy = (:.n_el + woky + 0303) . (Ale, + Agey + Ageq)
= a+d &3]
Thus {1} becomes dT/dt = - A

{4)

10.34. {o) Prove that if there are no forces acting on a rigid body with one point fixed,

then the total kinetic energy of rotation is constant. (b) Thus prove thal «-Q =
2T = constant,

{ 'JS’ince there are no forces, A = 0, Then by Problem 10.33, dT/dt =0 or T = constani,
(b} ?ince 0 = Logey + Fpuge, + Towgey and e = wie; 4 w8 + waty,

o fl = 1ol + Tl + Tl = 2T = constant
10.35. Findfthe'bfécéssion frequency of Problem 10.17 in terms of the kinetic energy and
) mlar momentum of the rigid bedy.
The kinetic energy is

T o= el + fwd + Igd) = Jwl+ Nef v Ll = 33,07 + 1A%
go that 1,0 + 142 = 2T e
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The angular momentum is
0

110101 + 1'2@202 + 130303 - Ilwle, + 11w2e2 + !3&)303

I,Clcos «t &, + sin «t e,) + ;A e,

so that @ = [B] = VIEC2+ 134 or

ner + 1242 = o2 2
Solving () and (2) simultaneously, we find
= —_—— = .
C=1m=-n YT LG @)

Then from Problem 10.17, equation (72), the precession frequency is

1 (92 - 2TI)d, — I

f = ol A &

10.36. Find the condition for a “sleeping top”.

For a “sleeping top” we must have # =0 and & = 0, since the axis must remain vertical
and no nutation can take place. Then from Problem 10.29,

Isd = K, 1,42 = 2(E —mgl)

Also, from Problem 10.30 we have o = 2mgl/l;, 8 = 2mglf,, v = A/, § = I,A/I,. Thus o= §8
and y=3§, and so
flw) = (a— Bl —u?) — (y—du)2 = 2l —)1—ud) —yHl—2)? = (1 —wlafl +u) — y2)

It follows that f(u) = 0 has & double root at u =1, while the third root is given by

b id - n’gAz 1
a0 T 2mgll, T
Then the top will “sleep” if this root is greater than or at most equal to 1, so that ~

Az = dmgll /B

Of course, even though this condition may apply at the beginning, energy will in practice
be diminished due to friction at the support s¢ that after some time we will have A% < 4mngH§.
In such case precession combined with nutation will be introduced. Further loss of energy will
ultimately cause the top to fall down.

//
10.37. Find the torque needed to rotate a rectangular plate of sides ¢ and b [see Fig. 10-23]
about a diagonal with constant angular velocity e.

-
By Problem 10.9 the principal moments of inertia of the
plate at the center O are given by T
I, = AMa2, Iy = pMbY,  Ig = 1.M{a+ b?) ) o i ¢
We have (0*i)i + (w*})j : —1—
- = L - .
= ey b, #) | S
Va2 4 32 Va2 + b2 Fig. 10-23
Thus 0 = —__ wa = _—wb vy = 0 @)

NPy 2 Nrral
Substituting (1) and (3) into Euler's equations
Ty + (I3 — Ipwgws
Indy + (I = IgJwgwy
Iy + (Tg—Idoyoy = Ay

Ay

Ag
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M(b2 — ajabe?
12(a? + b2)

A

wefind A =0, A, =0, Ay = Thus the required torque about O is

M({b2 — a2jabu?
12(a? + b2)

Note that if the rectangular plate is a square, ie. if a=25, then A =0,

k )

Supplementary Problems

GENERAL MOTION OF RIGID BODIES IN SPACE

10.38. Find the number of degrees of freedom of («¢) a sphere free to roll on a plane, (b) an ellipscid
free to rotate gbout a fixed point, (¢} an airplane moving in space.

Ans. {(a) 3, (b 3, {¢) 6

§0.39. In Fig. 10-24 a displacement of a tetrahedron in
space is indicated, Show directly that the dis-
placement can be accomplished by a translation
plus a rotation about a suitable axis, thus
illustrating Chasle’s theorem [page 224] for
space,

1040, Give an illustration similar to that of Problem
10.39 involving a rigid body whose surfaces are
not plane surfaces,

1041, Derive the result of Problem 10.2, page 259, (@) )
‘without using Problem 6.1, page 147. Fig.10-24

ANGULAR MOMENTUM. KINETIC ENERGY. MOMENTS AND PRODUCTE OF INERTIA

10.42. A rigid body consists of 3 particles of masses 2,1,4 located at (1,—1,1), {2,0,2), (—1,1,0) respee-
tively. Find the angular momentum of the body if it is rotated about the origin with angular
velocity o = 3i—2j + 4k. Ane. —6j+ 42k

10.43. Determine the (a) moments of inertia about the x, y and z axes and (b} the products of inertis
" for the rigid body of Problem 10.42
Ane, (@) 1,,=12,1,=16, I, =16; 3 I,, =6, 1, =2 1,=—8

What is the kinetic energy of rotation for the system of Problem 10.42? Ans, 180

\z

10.45. Find the (a) moments of inertia and ({(b) products of inertin of a uniform rectangular plat
ABCD of sides AB=a and AD = b taken about axes AB,AD and the line perpendicular t
the plate at B,
Ans, (a) I, = MV, [, = jMa?, I,, = fM(a? + b?)
b Iy=—3IMab, 1 ,=0,1,=0
calling axes through AB and AD the x and y axes respectively.

10.46. Find the (g} moments of inertia and (b) products of inertia of a cube of side a taken about =z,¥,
— /lﬁ'coinciding with three intersecting edges of the cube.
Ans. (@) T, =T,=1,=§Me?, (&) I,=1,=1I,=—{Me?

1047, Find the {(a) angular momentum and (b) kinetic energy of rotation of the cube of Problem 10.
T sbout the_point._of intersection O of the three edges if the cube haa an angular velocil
//é’ﬂ: 5j — 8k about O. Ans. (a) Ma%(10i 1+ 43j — 45k), (b) 186Ma2/12
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1048. Find the {(a) moments of inertia and (b} products of inertia of the uniform solid sphere
- 2ty 422 = a? in the first octant, e in the region 220, yZ 0, 22 0.

Ang. (&) Iy, =1, = [, = §Ma?, (b) 1, =1, =1, = —2Ma%/bx

PRINCIPAL MOMENTS OF INERTIA. PRINCIPAL AXES. ELLIPSOID OF INERTIA

10.49. Prove that the principal moments of inertia for a system consisting of two particles of masses
1 and my connected by a massless rigid rod of length [ are I, = [, = mym,Bf(m, + my), I, =0.

10.30. Find the {a)} principal moments of inertia and (b) directions of the principal axes for the system
of Problem 10.42.

Ans. (o) I, =18, I, =183—V78, I, = 18+ T3
b) i+k, HI+VI3)i—j+k, H1l—-vT8Yi—j+k,
1851, Determine the {a) principal moments of inertia and

{b) directions of the principal axes for right triangle ABC
of Fig, 10-25 about point C.

10.52. Find the principal moments of inertia at the center of a
parallelogram of sides a and b and acute angle «.

1653, Firid the (a} principal moments of inertia and (5) direc-
ions of the principal axes for the cube of Problem 10.46. Fig. 10-25
Ans. (o) 1) =1, = HMe?, I} = }Ma?
(b) Axis associated with J; is in the direction of the diagonal from the origin. Axes

associated with I, and I, have any mutuailly perpendicular directions in a plane perpen-
dicular to this diagonal.

1354, Find the principal moments of inertia of a uniform cylinder of radius z and height A.
Ans. Il = 12 = ﬁ.‘ld(3a2+ ha), Ig = -&Mﬂs

10.55. Obtain the principal moments of inertia and Jdirections of principal axes for a rectangle of
sides a and b by using Problem 10.45 and eguations {11), page 265. Compare with Problem 10.9,
page 262,

16.56. Find the lengths of the axes of the ellipsoid of inertia corresponding to the rectangle of
Problem 10.55. Ans, 4V3/Me?, 4/3/Mb2, 4/3/M(a? + b2)

10.57. Find the lengths of the axes of the ellipsoid of inertia corresponding t{o the cube oi Problem 10.46,
Ans. 4V8/11Ma?, 4V2/11Ma?, 2v6/Ma?

10.58. Prove that the 2llipsoid of inertia for a regular tetrahedron is a aphere and Jeterminz its radius.

1059, If I, I, I, are the principal moments of inertia, prove that
I s L+, L L+, I L+

1060, Under what conditions do any or all of the equality signs hold in Problem 10.59%

1061, Prove that if a rigid body is a solid of revolution about a line L, then L is a principal axis
corresponding to any part of L.

10.62. Suppose that a rigid body ia symmetrical about a plane P. Prove that if L is a line perpendicular
to P at point O, then [ is a principal axis corresponding to point O.

BULER'S EQUATIONS OF MOTION

1063. A rigid body having one point O fixed and no external torque about O, has two equal principal
axes of inertia. Prove that it must rotate with angular velocity of constant magnitude,
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10.64. Write Euler’s equations for the case of plane motion of a rigid body and discuss their physical
gignificance.

160.65. Solve the problem of a compound pendulum by using Euler's equations,

10.66, Deseribe how Euler’s equations can be used ‘o discuss the motion of a solid eylinder rolling down
an inclined plane.

10.67. Write Euler's equations in case the axes are not principal axes.

FORCE FREE MOTION. INVARIABLE LINE AND PLANE,
POLHODE, HERPOLHODE, SPACE AND BOOY CONES

1068. If two principal moments of inertin corresponding to the fixed point sbout which a rigid body

totates are equal, prove that {¢) Poinsot's ellipsoid is an ellipsoid of revolution, (b) the polhode
is a circle and (¢} the herpolhode iz & circle.

1069 Discuss the {(a) invariable line and plane, (b) pclhode and herpothode and {¢) space and body

cones for the case of 2 rigid body which moves parallel to a given plane, i.e. plane motion of a
rigid hody.

1070, (¢) How would you define the instantaneous axis of rotation for space motion of a rigid body?

{d) What is the relationship between the instantaneous axis of rotation and the space and body
cones?

10.71. Prove that relative to its center of mass the axiz about which fthe earth spins in a day wiil
rotate about an axis inclined at 28.5° with respect to it in 25,780 years.

THE EULER ANGLES

10.72. Using the notation of Problem 10.20, page 267, find. (e} LY, K in terms of Lj k; () I J K in
terms of LI, XK; (¢) i",J, k" in terms of I, J ,K'.

Ans. {a) 1 = cosgpit+singj J = —singi+cosgj K =Lk
M I' =1 J = coseJ+sine K, K = ~3insF +coss K
(&) ¥ = coay VL aing ¥, J = —singI"+coaypJ, k' = K

10.73. Prove the results wy = dcosg + ¢ Biné sing
wy = 5sin¢-—$sinocos¢-
wy = 9; 4 ¢ cos 4.

1074. It I, =1I,=1, prove that the ltinetic energy of rotation of a rigid body veferred to principal
axes is T = },(¢%+ 92+ 32+ 24y cos 6).

MOTION OF SPINNING TOPS AND GYROSCOPES

19.75. A top having radius of gyration about its axis equal to 6 em is spun about its axis. The spinn!ng
point is fixed and the center of gravity is on the axis at a distance 3 em from this fixed point.
If it is observed that the top precesses about the vertical at 20 revolutions per minute, find the
angular apeed of the top about its axis. Ang. 19.5 radjs

10.76. A uniform solid right circular cone of radius o and height h is spun &o t!mat ita vertex is fixed
and its axis is inclined at a constant angle o with the vertical, If the axis precesses about the
vertical with period P, determine the angulay speed of the cone about ita axis.

1077. Work Problem 10.76 if the cone is surmounted by a uniform solid hemisphere of radius a and the
same density.

10.78. Explain physically why the spin axis of the gyroscope of Figures 106 and 10-7, page 288,
should maintain ita direction.
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10.79. Explain how a gyroscope can be used to enable a ship, airplane, submarine or missile to follow
some specified course of motion,

MISCELLANEOUS PROBLEMS

10.80. A uniform solid cube of side @ and mass M has its edges lying on the positive x, y and z axes
of a coordinate system with vertex at the origin Q. If it rotates about the z axis with constant
angular velocity », find the angular momentum, Ans. —LMa?o{3i + 3i — 8k)

10.81. Find the moment of inertia of a uniform selid cone of radius a, height & and mass M about
{a) the base, (b) the vertex. Ans. {(a) {Ma?, (b) FZM2h? +a?)

10.82. Find the principal moments of inertia at the center of a uniform elliptical plate having semi-major
axis ¢ and semi-minor axis b. Ans. I, = IMb2, I, = {Ma?, I, = JM(a? + 57

10.83. A top has the form of a solid cireular disk of radius o and mass M
with a thin rod of mass m and length [ attached to its center
[see Fig. 10-26), Find the angular velocity with which the top
should be spun so as to “sleep”. Assume that the base point O
is fixed.

10.84. Work Problem 10.83 for a cone of radius e, height A and mass M.

10.85. Work Problem 10.83 for a cone of radius a, height A and mass M

surmounted by a hemisphere of radins o and mass m, Fig.10-26

1086. A coin of radius & is set spinning about a wvertical axis with
angular velocity » [see Fig. 10-27]. Prove that the motion is stable (___)"
if w® > dg/ae.

10.87. Suppose that the coin of Problem 10.86 is spun with angular speed
g about a diameter which is inclined at an angle o« with the vertical
and which is fixed at poin{ 0. Assuming there iz no nutation,
find the angular apeed with which the coin precesses about the
vertical.

0

10.88. Discuss how gyroscopes can be used to control the motions of a ship
on a stormy ses. Fig.10-27

10.89. The vertex of a uniform solid cone of radius «, height A and masa M is fixed at point O of a
horizontal plane. Prove that if the cone rolls on the plane with angular velocity » about an axis

. N L. 3Mh2(a2 - Gh2)ud

perpendicular to the plane through O, then the kinetic energy of rotation is T a0 R

10.90. Explain how the principal axes of a rigid body can be found if the direction of one of the
principal axes is known.

10.91. A uniform solid cone has the radius of ita base equal to twice
its altitude. Prove that the ellipsoid of inertia corresponding
to its vertex is a sphere, 1>

10.92. Explain how 2 gyroscope can be used as a compass, often
called a gyrocompass, AQ\30<

10.93. A dumbdbell consists of two equal masses M attached to a c

rod ABC of length ! and negligible mass [see Fig. 10-28]. \M
The aystem rotates about a vertical axis DCE with constant
angular velocity « such that the rod makes a constant B
angle ¢; with the vertical. Prove that the angular momentum D

0 of the system describes a cone of angle #/2 —#; about »
and has magnitude LM, ain ¢,, Fig. 10-28
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10.94.

10.95.

10.95.

18.97.

18.98.

10.98,

16.100.

w181,

10.102,

10.103.

18,104,

10105,

~ A‘\-J

{a} Prove that the magnitude of the torque needed to keep the system of Problem 10.93 in motion
is JM{%.? sin 26, (b) What is the direction of the torgue?

Work (a) Problem 10.93 and (b) Problem 10,94 if the rod ACB has mass .

A thin solid uniform circular plate of radius ¢ has its center
attached to the top of a thin fixed vertical rod OA [see
Fig. 10-29]. It is spun with constant angular speed o, about
an axis which is inclined at angle a with the normal OB to
the plate. (a) Prove that the angular velocity vector «
precesses about the normal O8 with period 2r/(wy cosa)
(5} Prove that the axis OF describes a space cone with period

2x/(0pV1 + 8 cos®al.

In Problem 10.96 find the angle through which the plate
turns during the time it takes OB to describe the space cone.

Find the principal moments of inertia of a uniform solid cone
of radius ¢, height & and mass M taken about the {(a) vertex,
(b} center of mass,

Ans. (@) Iy =1, = ZM(a® + 4R?), I, = S Ma®
(®) Iy = I, = §M(A2 + 4a?), Iy = 3 Ma? Fig. 10-29

A compound pendulum of mass M oscillates about a horizontal axis which makes angles o, 8,7
with reapect to the principal axes of inertia. If the principal moments of inertia are I, I3, Iy
respectively and the distance from the center of mass to the axis of rotation is I, prove that for

small oscillations the period is 2rVMgl/T where F=MZ+ [, costa+I;cos?p+I;cosy,

Find the period of small oscillations of a uniform solid
cone which rotates about a horizontal axis attached to g
the vertex of the cone.

An elliptical plate [see Fig. 10-30] having semi-major )
and semi-minor axes of lengths ¢ and b respectively is o

rotated with constant angular speed o, about an axis [
making a constant angie o with the major axis. Find
the torque required to produce this motion.

Work Problem 10,101 if the elliptical plate is replaced
by an ellipsoid. Fig. 10-30

Given Euler’s equations of motion for a rigid body having zero external torque about a fixed
point O, i.e.,

Il‘:’l + (Ia"!g)@gws = 0, 12(:)2"' (11_13)&}301 = 0, Is(:)s“l“ (Ig"'!l)w]_ﬂz =0

prove that 16} + Ik + Lo? constant = 2T

il

and ' 13 + B} + Iw} = constant = H?

Prove from Problem 10.103 that o), u; and oy satisfy a differential equation of the form
dylde = /(1 — 22)(1 — ¥2x2), and thus show that the angular velocity can he expressed in terms
of elliptic functions.

Find the moment of inertia of a uniform solid cone of rading a, height A and mass M sbout a
line which lies in its surface. Ans. %Ma’(a?+ 642 /(a2 + %)

The moments and products of inertia of a rigid hody about the z,y and z axes are I =3,
I,=10/3, I, =8/3, I, =4/8, I., = —4/3, I, = 0. Find (a) the principal moments of inertia and
(b} the directions of the principal axea.
Ans. (d) 1123, 12=2, Is=4

(b) e, =i—2]—2k, e = —-20+j—2k, ¢ = -2i-2j+k
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10.107. A cone having semi-vertical angle « rolls with constant angular speed » on a horizontal plane with

16.108.

i0.109,

10.110.

10.111.

10.112,

10.113.

10.114.

10.115.

10.116.

10117,

161138

14119,

16.120.

its vertex fixed at a point O, Prove that the axis of the cone rotates about the vertical axis
through O with angular speed « tana.

A horizontal plane rotates about a vertical axis with constant angular velocity w. A uniform
solid sphere of radiuz o is placed on this plane. Prove that the center describes a circle with
angular velocity given in magnitude by 2.

Work Problem 10.108 if the sphere iz not necessarily of constant density.
Ans, oK2/(K2+ al) where K is the radius of gyration about a diameter

Show how to find the relative maximum and minimum distances from the origin to the ellipacid
¢ =Ax2+ By + Cz2+ Day+ Ey2+ Fxz = 1.

[Hint. Maximize or minimize the function ¥ = x®+ 32+ 22 subject to the condition ¢ =1,
To do this use the method of Lagrange multipliers, i.e. consider the function G = ¥ + A¢ where
A is the {(constant) Lagrange multiplier and set #G/éx, G/ay, 8G/dz equal to zera)

Explain the relationship of Problem 10.110 to the method of page 255 for obtaining principal
moments of inertia and directions of principal axes.

{a} Find the relative maximum and minimum distances from the origin to the ellipsoid
922 + 10y% + 822 + dey — dxz = 8.
{b) Discuss the connection of the results of (a) with those of Problem 10,106,

Find the moment of inertia of the system of particles of Problem 10.42 about a line through the
point {2,—1,3) in the direction 3i--2j4 4k.

Prove that the motion of the “sleeping top” of Problem 10.36 is stable if A2 = 4mgll/E.
Find the moment of imertia of the lemniscate +2 = a2 cos2¢ about the z axis. Ane. iMa?

A plane rigid bedy (lamina} has an xy and x'y’ coordinate system with common origin O such
that the angle hetween the » and 2’ axes is « [gee Fig. 10-31]. Prove that

{2} Ipop = Iy cos?a — 2 sinacosa + Iy, sinta
() Ipp = Igsin?e + 21, gina cosa + Iy, sinta
" ¥ z

Fig.10-31

Use Problem 1016 to prove that
_ Ipg + Lpy = Ina+ 1y
and give a physical interpretation.

Refercing to Probler 10.116, find an expression for I, in terms of I, 1., 1, and a.
Use the results of Problems 10.116 and 10.118 to prove that for a plane region having moments

and produets of inertia defined by I, I, I,, corresponding to a particular xy coordinate system,
the prineipal axes are obtained by a rotation of these axe. through an angle « given by

Ctan 2o = I/, — L),

Frove that the fengths of the principal axes in Problem 10.116 are given by

o+ 1) = VLT U~ 1,2
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10.121.

10.122.

10.123.

10.124.

10.125,

19.126.

10.127.

10.128.

Discuss Problem 10.19, page 266, if I, > I,.

Find the moment of inertia of a uniform semicircular wire of mass M and radius a about its
center. Ans. 2M{z — 2)al/x

Prove that the expression on the left side of equation (4§) in Problem 10.29 is the wvertical
component of the angular momentum,

Diseuss Problem 10.32 if the root of equation (I) is (a)} equal to u;, (b) less than u,.

A rigid body consists of 3 particles of masses m,, m, and m;. The distance between m, and my;

my and mg;, mz and m, are li,, by and I;; respectively. Prove that the moment of inertia of the

system about an axis perpendicular to the plane of the particles through their center of mass is

given by

mymyliy + momgliy + mgmlf,
iy + My + My

Derive a “parallel axis theorem” for products of imertia and illustrate by means of an example.

Prove that the principal moments of inertia of a triangle of sides a,b,¢ and mass M about the
center of mass are given by

L= 1, = %(aHbﬁ+czxz\/a4+b4+o4~a2b2-b2e=—csa2), I, = -3“%(5;2+62+o=)

A c¢oin of radius 1.5 cm rolls without slipping on a horizontal table such that the plane of the
coin makes an angle of 60° with the table. If the center of the coin moves at & speed of 3 m/s, prove
that the coin moves in a circular path and find its radius, Ans. 2.5 m



Chapter 11

LAGRANGE’'S
EQUATIONS

GENERAL METHODS OF MECHANICS

Up to now we have dealt primarily with the formulation of problems in mechanics by
Newton’s laws of motion. It is possible to give treatments of mechanics from rather
general viewpoints, in particular those due to Lagrange and Hamilton,

Although such treatments reduce to Newton’s laws, they are characterized not only
by the relative ease with which many problems can be formulated and solved but by their
relationship in both theory and application to such advanced fields as quantum mechanlcs,
statistical mechanics, celestial mechanics and electrodynamics.

GENERALIZED COORDINATES

Suppose that a particle or a system of N particles moves subject to possible constraints,
as for example a particle moving along a cireular wire or a rigid body moving along an
inclined plane. Then there will be a minimum number of independent coordinates needed
to specify the motion, These coordinates denoted by

qu G2 ..., qn (1)
are called generalized coordinates and can be distances, angles or quantities relating to

them, The number n of generalized coordinates is the number of degrees of freedom
[see page 165).

Many sets of generalized coordinates may be possible in a given problem, but a

atrategic choice can simplify the analysis considerably.

NOTATION

In the following the subscript « will range from 1 to n, the number of degrees of
freedom, while the subscript v will range from 1 to N, the number of particles in the
system.

TRANSFORMATION EQUATIONS

Iet »,=ai+wj+2k be the position vector of the +th particle with respect to an
zyz coordinate system. The relationships of the generalized coordinates (1) to the position
coordinates are given by the fransformation equations

e = zlg9u g2 ...y Iar t)
¥ = YL Q2 ..., G B) @)
2 = 2(d1, Q2 ..., gn, b)
where ¢ denoctes the time. In vector form, (2) can be written
= 0{q, 92 ..., G b) ®
The functions in (2) or (3) are supposed to be continuous and to have continuous derivatives.

282
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CLASSIFICATION OF MECHANICAL SYSTEMS

Mechanical systems can be classified according as they are scleronomic or rheonomie,
holonomic or mon-holonomie, and conservative or non-conservative as defined below.

SCLERONOMIC AND RHEONOMIC SYSTEMS

In many mechanical systems of importance the time { does not enter explicitly in the
equations (2) or (3). Such systems are sometimes called scleronomic. In others, as for

example those involving moving constraints, the time ¢ does enter explicitly. Such systems
are called rheonomie. . L

HOLONOMIC AND NON-HOLONOMIC SYSTEMS

Let ¢1, g2, ..., ¢= denote the generalized coordinates describing a system and let ¢
denote the time. If all the constraints of the system can be expressed as equations having
the form ¢(q1, 92, . - ., @a, 1) = 0 or their equivalent, then the system is said to be holornomic;
otherwise the system is said to be non-holonomic. Compare page 170.

CONSERVATIVE AND NON-CONSERVATIVE SYSTEMS

If all forces acting on a system of particles are derivable from a potential function
[or potential energy] V, then the system is called conservative, otherwise it is non-con-
servative.

KINETIC ENERGY. GENERALIZED VELOCITIES
The total kinetic energy of the system is
T E mv (4)
(S |

The kinetic energy can be written as a quadmtw form in the generalized velocities Q..
If the system is scleronomic [i.e. independent of time ¢ explicitly], then the quadratic form
has only terms of the form @.sd«gs. If it is rheonemic, linear terms in ¢, are also present.

GENERALIZED FORCES

If W is the total work done on a system of particles by forces F, acting on the »th
particle, then

aw = 21 @a dGa %
where P = % Fp- _3_!1 (8)
] 9Ga

is called the generalized force associated with the generalized coordinate g.. See
Problem 11.6. :

LAGRANGE’S EQUATIONS
The generalized force can be related to the kinetic emergy by the equations [see

Problem 11.10) i /a7 r
sy _ o _
‘fﬁ (m) ol o e (7)
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If the system is conservative so that the forces are derivable from a potential or potential
energy V, we can write (7) as

d /oLy oL
7))~ = O ®
where L=T-V &)

is called the Lagrangian function of the system, or simply the Lagrangion.

The equations (7} or (8) are called Lagrange’s equations and are valid for holonomic
systems which may be scleronomic or rheonomic,

If some of the forces in a system are conservative so as to be derivable from a potential
V’ while other forces such as friction, etc., are non-conservative, we can write Lagrange's

equations as

d ( oL ) al ,

=] — — = &y 10

dt aqa BQa ( )
where L =TV’ and &. are the generalized forces associated with the non-conservative
forces in the system.

GENERALIZED MOMENTA
We define oT

Pa =

3 11
35 | (11)
to be the generalized momentum associated with the generalized coordinate ¢.. We often
call p. the momentum conjugate to q., or the conjugate momentum.

If the system is conservative with potential energy depending only on the generatized
coordinates, then (11) can be written in terms of the Lagrangian L=T -V as

oL

Da 2Ga {12
LAGRANGE’S EQUATIONS FOR NON-HOLONOMIC SYSTEMS
Suppose that there are m equations of constraint having the form
Y Aedga + Adt = 0, X Budg. + Bdt = 0, ... (18)
[« 4 [ ]
or equivalently SAsge + A = 0, 2Bala +B =0, ... (14)
o [

We must of course have m < n where n is the number of coordinates ¢a.

The equations (13) or (14) may or may not be integrable so as to obtain a relationship
involving the ¢.’s. If they are not integrable the constraints are non-holonomic or non-
integrable; otherwise they are holonomic or integrable.

In either case Lagrange’s equations can be replaced by

%(“3"&1—") - % = Py + )tlAu + A&Ba + - (15)
o [ ]
where the m parameters Ay, s, ... are called Lagrange multipliers [see Problem 11.18].
If the forces are conservative, (15) can be written in terms of the Lagrangian
L=T-V as
d /oL oL
=) — 5 = « + o 16
dt( ) - s = MAe+ B+ (16)
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It should be emphasized that the above results are applicable to holonomic (as well as
non-holonomie) systems sinee a constraint condition of the form

$lgn g2 ..., qn E) = 0 {17)
can by differentiation be written as
9 3 4 -
> o daa + 5 dt 0 (18)

which has the form (13).

LAGRANGE'S EQUATIONS WITH IMPULSIVE FORCES
Suppose that the forces F, acting on a system are such that

im ( F.dt = 4 (19)

T=0

where r represents a time interval. Then we call F, impulsive forces and 9, are called
impulses.

If we let the subseripts 1 and 2 denote respectively quantities before and after appli-
cation of the impulsive forces, Lagrange’s equations become [see Problem 11.23]

(%") - (%) = Fe (20)
where Fo = T3 (21)

If we call F. the generalized impulse, (20) can be written
Generalized impuise = change in generalized momentum (22)

which is a generalization of Theorem 2.6, page 36.

Solved Problems

GENERALIZED COORDINATES AND TRANSFORMATION EQUATIONS

1LL. Give a set of generalized coordinates needed to completely specify the motion of
each of the following: (¢) a particle constrained to move on an ellipse, (b) a circular
cylinder rolling down an inclined plane, (¢} the two masses in a double pendulum
[Fig. 11-3] constrained to move in a plane.

(@) Let the ellipse be chosen in the zy plane of Fig. 11-1, The particle of mass m moving on the
ellipse has coordinates (x, ¥). However, since we have the transformation equations r = a cos s,
¥ = b sin 8, we can specify the motion completely by use of the generalized coordinate s.

y x/\

i
Z

Fig. 11-1 Fig-11-2
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{(b) The position of the cylinder {Fig. 11-2 above] on the inclined plane can be completely specified
by giving the distance # traveled by the center of mass and the angle & of rotation turned
through by the cylinder about its axis.

If there is no slipping, « i3 related to ¢ so that only one generalized coordinate [either = or #]
is needed. If there iz slipping, two generalized coordinates » and & are needed.

() Two coordinates ¢, and 6, completely specify the positions of masses nt, and m, [see Fig. 11-3
above] and can be considered as the required generalized coordinates.

11.2. Write the transformation equations for the system in Problem 11.1{e).

Choose an xy coordinate system as shown in Fig. 11-8. Let (x,, ¥,) and {x,, ¥;) be the rectangular
coordinates of n; and m, respectively. Then from Fig. 11-3 we see that
z, = liecoss tn = ljaineé

2y = lcose; + Lcons, g = Lising, + lyuineg,

which are the required transformation equations.

/ L
. al'p 6rv
11.3. Pro - = .
. ve that 36a 92
We have r, = r,(qys qs -+, Gus £} Then
. _ om, ar, . ar,
S vl + + 37, o+ 5t Iy
o, o, :
Thus % e 6]

We can look upon this result as a “cancellation of the dots”.

104, Prove that i‘—(-‘i"—") =

dt \3qa 39a
We have from (1) of Problem 11.3,
o= %éi+—-—+%&,+% $)]
r 2
Then ?‘:—;i' = a:::;yq, Gt t a::;;.. & + aaq:;t @
i) - wmG)wE G w36
= %&,+---+J:'—;%a,+% 0)

Since r, is assumed to have continuous second order partial derivatives, the order of ciiffer-
entiation does not matter. Thus from (2) and {#) the required result follows.

The result can be interpreted as an interchange of order of the operators, ie,,
d/0y _ 3 (4
dt\dg,/ ~ dq,\dt

CLASSIFICATION OF MECHANICAL SYSTEMS

11.5. Classify each of the following according as they are (i) scleronomic or rheonomie,
(ii) holonomic or non-holonomic and (iii) conservative or non-conservative.

(@) A sphere rolling down from the top of a fixed sphere.
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(b} A cylinder rolling without slipping down a rough inclined plane of angle o.

(¢) A particle sliding down the inner surface, with coefficient of friction p, of a
paraboloid of revolution having its axis vertical and vertex downward.

(d) A particle moving on a very long frictionless wire which rotates with constant
angular speed about a horizontal axis,

{a) scleronomic [equations do not involve time ¢ explicitly)
non-holonomic [since rolling sphere leaves the fixed sphere at some point]
conservative [gravitational force acting is derivable from a potential]

{b) scleronomic
holonomic [equation of constraint is that of a line or plane}
conservative

{c¢} scleronomic
helonomic
non-conservative [since force due to friction iz not derivable from a potential]

(@) rheonomic [constraint involves time t explicitly]
holonomic fequation of constraint is that of a line which involves ¢ explicitly]
conservative

WORK, KINETIC ENERGY AND GENERALIZED FORCES

11.6.

1L.7.

11.8,

Derive equations (5) and (6), page 283, for the work done on a system of particles.

Suppose that a system undergoes increments dg;,d¢,, ...,d¢, of the generalized coordinates.
Then the sth particle undergoes a displacement
nodr,

d —_—
r a=1 an:

]

dgy

v

Thus the total work done is

N N n ar, n
dW = gl Fy‘dl‘v = 2 {E Fv'_} dq, = ag b, dgy

y=1 |a=1 qq 1
N ar,
where ¢, = S F,-* ?
v=1 aqa

We call @, the generalized force agsociated with the generalized coordinate q,.

Prove that &, = 3W/a¢..

We have dW = 2%%. Also, by Problem 118, dW = S &.dg,. Then
L 4

If the dg, are independent, all coefficients of dg, must be zero, so that #, = 3W/ig,.

Let F, be the net external force acting on the »th particle of a system. Prove that
d . Br.. . aiv - . il'_.._
at {; M Ty E'q';} ? Ny Xy 3¢ = z F. e
By Newton’s second law applied to the sth particle, we have
m,¥, = F, o
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- Or,
mv r" * aq
o

ar, .
./ T

ar,

" .

d

Now by Problem 11.4, T

(

LLd ar.l’
Thus LN v
o

Hence from (2) we have, since m, is constant,
d - ar&l’ »
= |l T, E m,r,

Summing both sides with respect to » over all particles, we have

at
d L .o,
dt{?”‘*"’ EE;} Smig, = 3

o,
0a

F,

[CHAP. 11

)

L]

)

or,
3y

Let T be the kinetic energy of a system of particles. Prove that

oT

9Ga

ar

3qa

T

. (&)

. or,
(a) 2 My I aqa E

= zmvi'v’
¥

{a) The kinetic energy is = %?m,.i'v *%,. Th

. an,
Fm5

(b} We have by the “cancellation of the dots” [Problem 11.3, page 286],

aT
5
qy

* ai’v
zmvrv * a_q‘:

LAGRANGE’S EQUATIONS

11.10. Prove that

/

oT

i(é‘_’f)
E\dfa/ ~ 3¢a

From Problem 11.8,
d . o, . or,
EEmien) - 3meg = 3m

From Problems 11.9(a) and 11.9(}),

Then substituting (£) and (3) in (1), we find

4 (oY _aT
dt\ 3g,
Pa

2q,

s

T

e

The gquantity

is called the generalized momentum or conjugaie momentum associated
nate q4.

where ®a=3 F,

us

L h
2 ", r,* aqv

*

ory
i

ar,
99

ity

)

*

)

)
with the generalized coordi-
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11.11. Suppose that the forces acting on a system of particles are derivable from a potential
function V, i.e. suppose that the system is conservative. Prove that if L=T~V is
the Lagrangian function, then

d ( oL ) oL
- - 9
dt \ 3 3Ga
If the forces are derivable from a potential V, then [see Problem 11.7|,
o = W - av
« gy a‘?a
Since the potential, or potential energy is a function of only the ¢’s {and possibly the time ],
% = Loy = 2L
aqy 3qa 3qq

Then from Problem 11,10,
L(LY-E L, )
de aq.d 3y My aqa

11.12, {a) Set up the Lagrangian for a simple pendulum and
{b} obtain an equation describing its motion.

{¢) Choose as generalized coordinate the angle # made by string
OB of the pendulum and the vertical OA [see Fig. 11-4].
If I is the length of OB, then the kinetic energy is

= dme? = ym(§)? = jmi2 ™
where m is the mass of the bob.

The potential energy of masa m [taking as reference
level a horizontal plane through the lowest point A)] is given

by
V = mg(0A —0C) = mg(l—1cosé)
= mgl{l — cos #) )
Thus the Lagrangian is
L = T-V = imﬂi* — mgl(l — coa 9) "
. o d foL\ _ oL _
{b) Lagrange’s equation is p; t( ) % 0 {4)
aL . 3 .
From (8, % = —mgl 8in g, ﬁ— = mltg 5
Substituting these in (4), we find
mi¥ + mglsine = 0 or 6+ Zsing = 0 0

!
which is the required equation of motion [compare Problem 4.23, page 102),

11,13. A masa M: hangs at one end of a string which passes over a fixed frictionless non-
rotating pulley [see Fig. 11-5 below]. At the other end of this string there is a
non-rotating pulley of mass M, over which there is a string carrying masses »t: and ma.
(2) Set up the Lagrangian of the system. (b) Find the acceleration of mass M.

Let X, and X, be the distances of masses M; and M, respectively below the center of the fixed
pulley. Let x, and x, be the distances of masses m; and m, respectively below the center of the
movable pulley M,.

Since the atrings are fixed in length,

X, +X; = constant = ¢, % + 2, = constant = b
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Then by differentiating with respect to time ¢,
il+‘i2 =0 or X.g = _il
and Zihag =0 or @y = =

Thus we have
Velocity of M, = X,
Velocity of My = X, = —X,

X, + 2,

Velocity of m; = a‘%(xl “+ 21)

Velocity of my = EdE(X1+=I=2) = ’En‘*;a = }21“‘;1

Then the total kinetic energy of the system is Fig. 115
T = X4 LI+ X 4202 + fmyX — 22 )

The total potential energy of the aystemm measured from a horizontal plane through the center
of the fixed pulley as reference is

V = —MygX — MyX, — mg(X, + ;) — myg(X; +25)
= —MgpX, — Mypla—X|) — mp(X,+ 2} ~ meg(X, +b—2z,) @
Then the Lagrangian is
L = T7-V
= ML+ M 4 Y (K, + 2t + fmg(X, - 2y
+ MigX, + Mypic—X,) + nt,0(X, + 2y} + mpg(X, +b— xy) {9

Lagrange’s equations corresponding to X, and x, are

d /aL L d /aL aL

il )3 =0 Sil=)—3-=0 4
From (2) we have

a-aj% = My — My + myg + myy = (M —My+m+myg

g—' = MX, + MyX, + myX, +2) + moX,—2) = (My+My+m+m)X, + (m,—mgz,
1

L oz omg—mg = m—my

S, T M9 My = (mi—myg

aL . . " - - _ - -

3;';: = mX +e) - mAX, —x)) = (my—m)X, + (my +my)ay

Thus equations (4) become

(My+ Ma+my+mdX, + (my—mp) %, = (M, — My+m, +mgg
(ml“”‘z)il + (my+my) ;1 = {(m;— myg

Solving simultaneously, we find

e (M — My)(my + my) + dmymy

1 (M, + Mp)m, + my) + dmymy ¥
o~ 2My(my — my)
¥y

(M, + Mp)(m; + my) + dmymg ¥

Then the downward acceleration of mass M, is constant and equal to

:f _ _i - (Mg —Mi)(mr_ -+ '”lg) - 4'1'31:1”1.2
r = 1 = UM, + My + mg) + dmymg
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11.34. Use Lagrange’s equations to set up the differential equation of the vibrating masses
of Problem 8.1, page 197.

Refer to Figs, 8-7 and 8-8 of page 197. The kinetic energy of the aystem is
T = jmi} + ymat 0

Since the stretches of springs AP, PQ and QB of Fig. 8.8 are numerically equal to %,, =,

: . - and
%a Tespectively, the potential energy of the system is
Vo= der o+ Jeleg — 20?4 el ()
Thus the Lagrangian is
L = T~V = imid+ dme} — Jux? — Loy — )2 — Juad "
Lagrange's equations are -
d gaLN_3L _ 4L\ L _
dt (5;:) 3z, % & (3;,2 3z, ¢ @
Then since &L _ —xxy + x(xy—2,) = xfxg— 22)), _1_9_{3_ = m¥,
8z, 9%y
aL 3L .
3:;:; = —x{zyg— 2} — kxy = x{zy — 2%y), g:-; = may
equations (4) become m¥, = clzy—2x), m¥E, = x(z,— 2wy &

agreeing with those obtained in Problem 8.1, page 197.

l),.fi5. Use Lagrange’s equations to find the differential equation for a compounéd pendulum
which oscillates in a vertical plane about a fixed horizontal axis.
Let the plane of oscillation be represented by the 2y plane

of Fig. 11-6, where O is its intersection with the axis of rota- ¥
tion and C ia the center of mass.

Suppose that the mass of the pendulum is M, its moment
of inertia about the axis of rotation iz I, = MK®* [K = radius
of gyration], and distance OC = h.

If # is the instantaneous angle which OC makes with the
vertical axis through O, then the kinetic energy is T = }Jo6? =
3MK?5%, The potentisl energy relative to a horizontal plane
through O is V = —Mgkh cos . Then the Lagrangian iz

L = T—-V = JME%+ Mghcose
Since aL/d¢ = —Mph sing and 3L/36 = MK2s, Lagrange's

tion i
equation is d oL\ oL _ \
dat (33 do

MK2% + Mghsine = 0 or 6+ %—’;sino = ¢

ie.,

Compare Problem 9.24, page 237. Fig. 11-6

~

11.16. A particle of mass m moves in a conservative force field. Find (e) the Lagrangian
" function, {b) the equations of motion in cylindrical coordinates (p, ,2) [see Problem
1.147, page 32].

(6) The total kinetic energy T = 4m[32+4 o232 4+ 2], The potential energy V = Vi{p,¢,2). Then
the Lagrangian function is

L=T-V = ymp+e+2) = Vi 4,9
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{b) Lagrange's equations are

DL L e Lmiy— (et -2 = AU 1 4
Ei(a;) % 0, ie dt{mp) (mp¢ ™ 0 or mip—pd?) %
daLN_ L _ o o d e oV & iagy = 3V
a(a‘;) % = 0, e dt(mp?¢.)+ % ¢ or mdt(p ¢) = o

d/LN L _ o i doe 3V go W

El_t( E) % = 0, e dt(m)+ = 0 or mz = 7"

11.17. Work Problem 11.16 if the particle moves in the zy plane and if the potential
4 depends only on the distance from the origin.

In this case V depends only on p and z = 0. Then Lagrange’s equations in part (b) of Problem
11.16 become av

. . d .
— ) = - —_ a2 =
m(P g } 3p » dat (P @) 0

These are the equations for motion in a central foree field obtained in Problem 5.3, page 122.

LAGRANGE’S EQUATIONS FOR NON-HOLONOMIC SYSTEMS

11.18. Derive Lagrange’s equations (15}, page 284, for non-holonomic constraints. b
Assume that there are m constraint conditions of the form

SA,dg, + Adt = 0, SBydg, + Bdt =0, ... ITH)
o L3

where m < n, the number of coordinates ¢,.

As in Problem 11.10, page 288, we have

— d oT oT _ . .ai
Yo F d‘(sé«) . T 2™, @

If 8r, are virtual displacements which satisfy the instantaneous constraints jobtained by consider-
ing that time ¢ is a constant]|, then

ar,
§r, = — & 4
2 3g, Ha ®
Now the virtual! work done is
-y (13 31’
W = 2 myx, - &r, = 2 2 "m, T, ‘?,_f' 8qe = 2 Y.dq, 4
¥ v o T o

Now since the virtual work can be written in terms of the generalized forces &, as
W = § Py 80y (5)
we have by subtraction of () and {5),

? (Ya - q’a} Sqa = 0 (‘)

Since the &g, are not all independent, we cannot conclude that ¥, =4, which would lead to
Lagrange’s equations as obtained in Problem 11.10.

From (1), since ¢ is conatant for instantaneous contraints, we have the m eguations

?Aeaqa =0, ?Bﬂaqg =0, ... (F4]

Muiltiplying these by the m Lagrange multipliers Ay, Ay, ... and adding, we have
S (ALt rByt -8 = 0 (%)
o
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Subtraction of (§) and (8) yields
E(Yu_cba‘_ht"lu"'hzﬂa_"‘)squ =0 ®
@

Now because of equations (7) we can solve for m of the quantities 8g, [say 3qy,...,3¢,] in terms

of the remaining 39, {88Y 8¢m+y1, -..:9Gs). Thus in {9) we can consider 3qy,...,3¢, a8 dependent
and §¢y,41, - .5 3¢, a5 independent.

Let us arbitrarily set the coefficients of the dependent variables equal to zero, ie.,
Vo— @g—MAg —MBg—+-+ =0, a=12 .. .,m (10)

Then there will be left in the sum (%) only the independent quantities $¢, and since these are ar-
bitrary it follows that their coefficients will be zero. Thus

Yo— b, —MA,— 0By — v =0, a=m+l,...,n n
Equations (2), (I0) and (11) thus lead to

d /3T ar _ _
EE(&T};) E = d, + Ma, + B, + a=12,...,n {18)

as required. These equations together with (1) lead to n +m equations in n +m unknowns,

Derive equations (16), page 284, for conservative non-holonomic systems,
From Problem 11.18,
d /8T T _
d:(q)_ﬁ‘ ®, + MA, + 2B, + ee)

Then if the forces are derivable from a potential, &, = —3V/dq, where V does not depend on
&a. Thus (1) can be written

d /3L 8L, _
dt( )—a% = MAg + MB, + @

where L=7T-V.

A particle of mass m moves under the influence
of gravity on the inner surface of the paraboloid
of revolution z%+y®=az which is assumed
frictionless [see Fig. 11-7]. Obtain the equations
of motion.

By Problem 11.16, the Lagrangian in cylindrical co-
ordinates is given by

= %m(",z + p2$2 +32) — mgz )]
8ince x2 + y? = p2, the constraint condition is p> —az = 0

that
80 tha 208p—adz = 0 (53]

Ifweeall ¢, =p, ¢ =&, ¢a =z and compare (£) with
the equations (7} of Problem 11.18, we see that Fig. 117

Al = 2p, Ag = 0, As - - (8)

sinece only one constraint is given. Lagrange's equations {see Problem 11.19] can thus be written

d /oLy oL _ ~
dt(aq)—a% = aA,  e=1,23

d (oL _ oL _ d oL\ _ oL d /oL\ _aL _ _
ie., dt( ) % = 2w dt(a¢.) 3= dt( ) = —ha

Using (1), these become
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m(p—=pd?) = Zap 0]
d -
moz{p?e) = 0 (5
mzZ = —mg — e (@)

‘We also have the constraint condition

20p—az = 0 )

The four equations (4), (5}, (6) and (?) enable us to find the four unknowns p, 4,2, 1,.

11.21. (a)

()

()
(@)

(5}

Prove that the particle of Problem 11.20 will describe a horizontal circle in the
plane z=~A provided that it is given an angular velocity whose magnitude is

o = Veg/a,
Prove that if the particle is displaced alightly from thiz circular path it will
undergo oscillations about the path with frequency given by (1/7)y/2¢/a.

Discuss the stability of the particle in the circular path.

The radius of the circle obtained as the intersection of the plane z = & with the paraboloid
2=gz i
T po = VaR 0)
Letting z = h in equation () of Problem 11.20, we find
Then using (1) and (2) in equation {4) of Problem 11.20 and calling ¢ =w, we find m(—pg?} =
2{—mg/alpg or «?=2g/e from which .
Po T W « = Vigla )
The period and frequency of the particle in this circular path are given respectivey by
1 2
P, = 2«1’% and f = F. f (4)
From equation (5) of Problem 11.20, we find
o*é = constant = A &
Assuming that the particle starts with angular apeed w, we find 4 = ahw 80 that
$ = aholp? ®

Since the vibration taukes place very nearly in the plane z =54, we find by letting z2=h
in equation (6) of Problem 11.20 that

Using (6) and (7} in equation (4) of Problem 11.20, we find
v — athiifpd = —2pgp/a {8

Now if the path departs slightly from the circle, then p will depart slightly from p,. Thus we
are led to make the transformation

P = Py + u (’)
in (8), where u is small compared with py. Then (8) becomes
[T Gsha’wz _ 'gg 10
Rl o S a PeT ¥ (10)
But to a high degree of approximation,
1 = 1 = l (1 + LA = ‘!'- (1 - i’f)
wotur = RO A\ e = AN
by the binomial theorem, where we have neglected terms involving 2,43, .... Using the

values of p, and « given by (I) and (8) respectively, (10) becomes
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i+ (8gfayu = 0 8)
whose solution is u# = « cosVBpfat + ¢ sinv8glat. Thus
p = pp+ U = Vah 4+ ¢ coznVBglat + e sin VBg/iat

It follows that if the particle is displaced slightly from the circular path of radius p, = Vahk,
it will undergeo oscillations about the path with frequency

1 (8 _ o1 [
2r e = a @
or period P, = rr‘\’ éig o))

It is interesting that the period of oscillation in the circular path given by (4) is twice
the period of oscillation about the circular path given by (7).

(¢) Since the particle tends to return to the circular path when it is displaced slightly frem it,
the motion is one of stability.

11.22. Discuss the physical significance of the Lagrange multipliers Ay, A2, ... in Problem
11.18.

In case there are no constraints the equations of motion are by Problem 11.10,
dtd ag, Gy «

In case there are constraints the equations are by Problem 11.18,

d /3Ty _ aT
dt( )_a_q';' = by + MAg + AB -

It follows that the terms XA, + 3B, + -+ correspond to the generalized forces associated with
constraints.

Physically, the Lagrange multipliers are associated with the constraint forces acting on the
system. Thus when we determine the Lagrange multipliers we are essentially taking into account
the effect of the constraint forces without actually finding these forces explicitly,

LAGRANGE’S EQUATIONS WITH IMPULSIVE FORCES
11.23. Derive the equations (20), page 285.

For the case where forces are finite we have by Problem 11.10,

d s/aT aT
-2 = 9 1
dt(aqu) ¥ * @
or,
where ® = X2F, '-a-v- (6]
¥ Gox

Integrating both sides of () with respect to ¢t from ¢t =0 to t =17,

oT T T J"
dt — L a = b, dE 5
‘£ dt(a'hl) 3 0 *

L]

8o that (%)‘" - (%)mo - f %dt = § {( : l?,dt) -g-%} )

Taking the limit as = = 0, we have

arT
lim {3 ) ~ (3T ~ lm J‘ Ty - {(ﬁm f F dt)
T=0 8n /1=y 8¢/t T0 T

u....v_}
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aT aT ar,
or 22 - /& = oy
(a%)s (3%)1 ?J, 3a Fe
. . {7 8T . 3T . : T
using 3:_13 \ Edt =90 mncen is finite, and ,h_'f}, \ F.dt = 4,

A square ABCD formed by four rods of length
2! and masg m hinged at their ends, rests on a ¥
horizontal frictionless table. An impulse of
magnitude 7 is applied to the vertex A in the
direction AD. Find the equations of motion.

After the square is struck, its shape will in gen-
eral be a rhombus [Fig. 11-8].

Suppose that at any time ¢ the angles made by
gides AD (or BC) and AB (or CD) with the » axis
are ¢, and 4, respectively, while the coordinates of
the center M are (z,¥%). Thus z,y, 8, ¢; are the gen-
eralized coordinates.

From Pig. 11-8 we see that the position vectors
of the centers E,F,G,H of the rods are given re-
spectively by

rg = (z—lcosg}i+ (¥ — Isine)j

rp = (x+ [eosei+ (¢ —~ I singy)f o
(x+Lleose)i+ (y+ Laine)j

|

¥g
g

The velocities of E, F, G and H at any time are given by

vg = Tg = (x+ lsine, 8))i+ (¥ — ! condy )]
Yp — i'p' = (3.: — Isin 8y éz)i + (é —lcos # s.z)j
Yo = EG - (2.‘ = 1 sin L] 51)i + (1:\‘ + l cos L2 él)j

¥y = I..'H = (a‘: + 1 ain .23 52)i + (]} +1 coa &, ég)i

= (x— leose)i + (¥ + I sin a,)j ) Fig.11-8

The kinetic energy of a rod such as AP is the same as the kinetic energy of a particle of
mass m located at its center of mass F plus the kinetic energy of rotation about an axia through
E perpendicular to the xy plane. Since the angular velocity has magnitude é, and the moment of

inertia of a rod of length 2/

about its center of mass is I,p = jmi%, the total energy of rod AB is

Tas = dmeg + Hapbd

Similarly, the total kinetic energies of rods BC, CD and AD are

TBC = émi-f- + &1305%, TCD = &ml.‘é + %Icnag, TAD = imi-?; + élﬁpsf

Thus the total kinetic energy ia [using the fact that [ = I 5 = Iz = Iop = §mi?]

v i

= Tap+ Tge + Tep + Tap

Amirg +xF + XG4 ¥R + 162+ 69

= Jm(azt 4+ 497 + 28 4 2080) + JmIksE + 62)
= 2m(a2 + 42 + mIE + 62)

li

Let us assume that initially the rhombus is a square at reat with its sides parallel to the
coordinate axes and its center located at the origin. Then we have

x=0,y=0. 91=7/2;’g=0, é=0!1}=01 éI=ov;2=0

If we use the notation { ), and { ), to denote quantities before and after the impulse is applied, we

have

(%),

(%),

(4m3), = 0 (-”—T) = (4mp)y, = 0
ay 1

It
I
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(dmz)y, = 4mz

e
-]
AR
—
(-]
i

%)
(aff 2

]

(dmy)y = dmy

il

_—
1y
w0

n

@mi2y), = Imbs, ( i':“-)
¥y /g

Then = }‘x or 4m;% = T“_

T

(z), (%)

(), Gi)y=r o =
(t‘)T

)

$mig, Fa

1

R
"]

I
T
o |
S5
e
L]

]

3
'_O

=

]

335,
T _.<§_7,'.
(352>2 352)1

= Fo, oF gmi%, = F,
where for simplicity we have now removed the subseript ( ).
To ﬁnd Tg) ?,r ?sl, T@z we hote that
or
F = 24,2
« 29, e
where 4, are the impulgive forces. We thus have

ar, al‘B al'c al'D
Fo = Sargpt Jarogy t I 5 + It 51
_ or, arg ore arp
fv—JA—a;"FJB ay"‘Jc ay'{'JD 3y
ar, drg are irp
Foo = Jatge, * Inryy, + Jovgp, T Int
aI.'A al's al'c 6TD
Fo, = Jagp, ¥ Io g5, ¥ I 5, F In° 3,

Now from Fig. 11-8 we find the position vectors of A,B,(,D given by

ry = (. —lecose, — lcomepi +.{y —Isine, + !sin e
g = (@ —lcoso, + Lecossy)i+ (y — lsing; — Isiney)j
Fo = (2 +lcose, + lcoser)i+ (y-+Isine, — lsineyi

rp = {2+ Lcons, — Lcosa)l + (y + I sinay + I sinay)j

Since the impulsive force at A is injtially in the direction of the positive y axis, we have

Ga = i
Thus equations (6)-(#) yield

F: =0 Fy, =3 Fo = —Jlcoss, Fo, = Jlcozs,

Then equations (1}-{4) become

amx = 0, dmy = 9, %mlﬂél = — gl cos 8y, %mpig = glcose,

§m32§2 = g’mizég
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(2)

)]

4

®

®

)

*)

®

(10}

(11

(212

11.25. Prove that the kinetic energy developed immediately after application of the impulsive

forces in Problem 11.24 is T = $*/2m.
From equations (12} of Problem 11.24, we have

b= 39 39
y"“mr wmlv

x =0 il=
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Substituting these values in the kinetic energy obtained in Problem 11.24, we find

T = am T B {cos? 8, + cos? 8,5} I}

But immediately after application of the impulsive forces, ¢, = /2 and ¢, = 0 approximately,
Thus {I) becomes T = §%/2m.

MISCELLANEOUS PROBLEMS

11.26. In Fig. 11-9, AB is a straight frictionless wire
fixed at point A on a vertical axis GA such that
AB rotates about OA with constant angular
velocity e. A bead of mass m is constrained to
move on the wire. (#} Set up the Lagrangian.
(b) Write Lagrange’s equations. (¢) Determine
the motion at any time,.
{a} Let r be the distance of the bead from point A of

the wire at time f. The rectangular coordinates
of the bead are then given by

* = ¥ sinacoswt
¥ = rsina sinet
2 = h—recosa

where it is assumed that at ¢ =0 the wire is in
the xz plane and that the distance from O to 4 is h. : Fig.11-9

The kinetic energy of the bead is
T = Jmx?+y2+ )
= §m{(7 sin & cos ot — wr sin a sin wt)?
+ (* sin & sin wt + oF 5in « cos w82 + (— cos )%}
= &m(;‘z + w22 gin o)

The potential energy, taking the xzy plane as reference level, is V = mgz = mp(h — + cos o).
Then the Lagrangian is '

L =T~V = imrt+ o2 sin2a) — mg(h — r cosa)

() We have .
L _ motr ginZa + myg cosa, g& = mr
o ar
' .. 4 oLy JL
and Lagrange's equation is ; ( a;) o = 0 or
m7¥ — (mu?rginta + mgcosa) = 0O
ie., ¥ — (@sine)r = gcosa (3}

{¢) The general solution of equation (f) with the right hand side replaced by zero is

cle(a) sin o)t 4 ¢4e— (0 sln o)t
X . e
Since the right hand side of (I) is a constant, a particular solution is _w-fsiT:' Thus the
general solution of (1) is : .
= - _geosa
r = cls(ustna)i + ppe—(esinar — T airle 2)

This result can also be written in terma of hyperbolic functions as

g cosa (8)

*r = o3 cosh (-‘J gin a}t + ¢, sinh {w 8in a}f — m
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11.27. Suppose that in Problem 11.26 the bead starts from rest at 4. How long will it take
to reach the end B of the wire assuming that the length of the wire is I?

Since the bead starts from rest at ¢ =0, we have r =0, =0 at £=0, Then from equa-
tion (2) of Problem 11.26,
¢ cos e

- and e;—¢; = 0
w® gin? o 1 2

¢1+Gg =

Thus ¢ = ¢ = 298 % . end (£} of Problem 11.26 becomes

2w? sin? o
geosa {w gin ade —f{wsin adty - ﬂ)_si
— é +e N
r 20?2 gin? o { } w? gin? a )
Peosa h inalt —1
or r T sin? a{ cosh {w sin a) } ()

which can alse be obtained from equation (3) of Problem 11.26. When r =1, (2) yields

2 gin?
cosh{w siney = 1+ L? sin® @
geosa
so that the required time is
2 qind
t ; cosh‘1<1 + M%—£> .
@ SIN o g cog*a

|l

1 lw? sin? Lo? sin? &\
wsinaln{(l * gcos’a) + J(I + gcosza) — 1

11.28. A double pendulum [see Problem 11.1(¢) and Fig. 11-3, page 285] vibrates in a
vertical plane. (¢) Write the Lagrangian of the system. (b) Obtain equations for

the motion.

(¢) The transformation equations given in Problem 11.2, page 286,

x; = ljeose, ¥ = lysing
xp = lcose, +1,co88, e = I sing, + [ sing,
yield él = _1151 sin L] él = 1151 oS &4
xp = —L#; sin gy — L#, gin 9, ¥ = 115‘ cos 8, + 1,8, cos ey

The kinetic energy of the system is
T Im(2t+ D) + dmylEE + 4D
= Jm 362 + Imy(B6% + 56} + 21,1,8,8; coa (9, — 6)]

The potential energy of the system [taking as reference level a plane at distance I; + 1,
below the point of suspension of Fig, 11-3] {a

vV = mlg[ll + Ig - ll cos 011 + ng’[ll + 12 - (!1 cos #; + 12 cos 92)]
Then the Lagrangian is
L = T-V
= dmBd} + Imoli5] + 062 + 241,848, cos () — 8] )
—maglly + & — I consy) — mog{ly + by ~ (I coa sy + L cos 8y)]

{b) The Lagrange equations associated with ¢, and ¢, are

d 7oL\ _ ol _ d oLy _ oL _
w(@) m =% () wm =0 @
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From {1} we find

oL/d8, = —mglLié,6, sin (6, —6;) — mygl, sin e, — mygl, sing
aL/38, = ml6, + myl%6, + myllr8, cos (8, — 8,)

3L/30; = mylly8,8, sin (6;— ;) — mogl, sin e,

aL/38y = mylify + molild, cos (8, — 0,)

Thus equations (2} become
o kg 2 (1] .. - - - .
mlff ey + mgliey + mplyly 8, cos (8, — 83) — mollo0,(0, — 9;) sin {8, — &)
= _‘mgtllgélég gin (9‘ - 02} - migl, sin gy — mggh gin ey
and m,llf, & + myl L, 8, cos (s, —85) — mylilsd (8, — 8,) sin (6, — 8y)
= mzlilealég sin (31 - 92} - m2012 sin 02

which reduce respectively to

(my+m) 8] + malyly ¥, cos (9, — ¢g) + moli 63 sin (8, —8)) = —(m, +my)gl, sine; (D
and mals 6, + molyly 8y cos (8, — 8) — mol lof? sin (0, ~89) = —wmggly sin g, (4}

11.29. Write the equations of Problem 11.28 for the cage my=mz=m and Li=L=1

Letting m; = m,, I) = I; in equations ($) and {4) of Problem 11.28 and simplifying, they
can be written

2U8; + Loy cos (¢, — 6) + 163 sin (8, — #)) = ~—2¢ sins, 1)

18 cos (8, — o)) + L0, — lé*sin(e,—8y) = —gsing, )

11.30. Obtain the equations of Problem 11.29 for the case where the oscillations are assumed
to be small.

Using the approximations sine = ¢, cosd =1 and neglecting terms involving 6%, the equa-
tions (I) and {£) of Problem 11.29 become

206, + 1o, = -2p,
18, + 16,

—iés

11.31. Find the (¢) normal frequencies and (b) normal modes corresponding to the small
oscillations of the double pendulum.

(@) Let #, = A ;cosut, 8 = Aycosut [or Aje'w, Agelet] in the equations of Problem 11,30,
Then they can be written
)]
0 ]

In order for A; and A, to be different from zero, we must have the determinant of the coefficients
equal to zero, ie.,

it

2(g — )A, — LA,
LA, + (g~ LA,

I

2(g — Loty =2
—la? g — lot

or 2ot 4lge? +2¢2 = 0. Solving, we find

o o Moz ViEEA—sEg =2
- 2p - i
. @+V@e ,  2-V2y
or ME T e T T

{#)
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Thus the normal frequencies are given by

1 [<2+\fz“)a 2-v2)g
f;=%=g—""—l and fg=£='2!; —1 (¢5)

(b} Substituting «* = «!=(2+V2)g/l in equations (1) of Part (a) yields
A, = —Vi4, ' %)
This corresponds to the normal mode in which the bobs are moving in epposite directions.
Substituting «f = &2= (2—V2)g/l in equations (1) of Part (a) yields
A, = V24, )
This corresponds to the normal mode in which the bobs are moving in the same directions.

11.32. (a) Set up the Lagrangian for the motion of a symmetrical top [see Problem 10.25,
page 268] and (b) obtain the equations of motion.

{2} The kinetic energy in terms of the Euler angles [see Problem 10.24, page 268] is
T = Lo+ Il +1yd) = Lg% sine + 6%) + LIg(3 con e + $)2 th
The potential energy is YV = mglcose &

as seen from Fig. 10-18, page 269, since distance GC ={ and the height of the center of
mass C above the zy plane is therefore lcosé. Thus

L = T-V = i-h(;b’sinzs-l-;’) + ys(;cose-i-:b)* — mglcone )
) aL/de = I,32aind coss + Iy(p cosé + 2)—a sin 8} + mylsine
aLfas = L6
alfdp = O
aLjeg = I.¢sin2s + 13(5 cos 6 + ¢) cas ¢
aLfoy = 0
3LIoy = Iy coso + §

Then Lagrange’s equations are

daL\_dL _ o dgoL\_ 3L _ o oL\ _3L _ o
dt(aa 3 -~ dt(a.;) e — dt(a‘;) d

or 1,6 — llé" sine cose + Iy(d coso + ¢)¢ sine — mglaing = 0 {4
% [I,& sin?e + Iy(¢ coso + i;) cosg] = 0 (5)

d . . _
EEUS(" cosd+¢) = 0 {®

11.33. Use the results of Problem 11.32 to obtain agreement with the equation of
(a) Problem 10.29(b), page 270, and (b) Problem 10.27(a), page 270.

(¢} From equations (5) and (6) of Problem 11.32 we obtain on integrating,

Iésin?e + Is{é cos s +¢)cosd = constant = K #3]
deose + ¢ = A ®
Using (2) in (1), we find 1,4 sin?e + [Acose = K

(b} Using (2) in equation (4) of Problem 11.32, we find
1,§ - Ig%eine cose + I,Adsine = mglsine
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11.34. Derive Euler’s equations of motion for a rigid body by use of Lagrange’s equations.

1135, A bead slides without friction on a frictionless

The kinetic energy in terms of the Euler angles is [see Problem 10.24, page 268)

T = Mo+ Lo+ Iah)
= 4l,(¢sinesinyg + é cosy)2 + 4&!2(93 sing cosy — @ sin¢)2 + if:;(r#: cos 8 + ¢)2
Then aTioy = Il(é sin @ siny + é cos ¢)(;§- 5in ¢ cosy — 8 sin )
+ Iai sin # cos¢ — 6 siny)(—¢ sing sin g — 8 cos ¢)
= Loy + Tdogi—w) = (I — ey
3T/o¢ = Lipcose+¢) = Iy

Then by Problem 11.10, pare 288, Lagrange’s equation corresponding to ¢ is

agory T _
dt a,}) o9 ¢
or Ly + (I~ Ly = @, 4]

This is Euler's third equation of (22), page 258, The quantity 4, represents the general-
ized force corresponding to a rotation ¢ about an axis and physically represents the component
Ag of the torque about this axis [see Problem 11.102},

The remaining equations .
Ly + Uy~ Idugws = &y (2

fgt:’z + (!1 - Ia}b)ab’l = Ag (’)

can be obtained from symmetry considerations by permutation of the indices. They are not directly
obtained by using the Lagrange eguations corresponding to ¢ and ¢ but ean indirectly be deduced
from them [see Problem 11.79].

wire in the shape of a cycloid [Fig. 11-10]
with eqguations

x = a(f —sind), ¥y = el +cosh

where 0= ¢ =2x. Find (@) the Lagrangian
funetion, (b) the equation of motion.

{a}) Kinetic energy = T

dm(z2 + %)

Jma2{[(1 — cos 8)8]2 + [—sin 0 8]7}

ma2(l — cos #)a?

Potential energy = V = mgy = mga(l + cos 6}
Then
Lagrangian = L = T =V = ma?(l — cos #)¢? — mga(l + cos )

(&) % (6_[;__) oL 0, e :T[Zmaz(l — <08 8)8] — [ma® sin ¢ 9% + mga sine] = 0

) o
or i[(l—cma)é}—gsinsi"— F ging = 0
dit 2a
which can be written (1 ~cos80)¥ + }sine 2 — Lsine = 0

11.36. (a) Show that the equation of motion obtained in part (b) of Problem 11.35 can be

ri
written du g

GE Tag® = 0 where u=cos(6/2)
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and thus (b} show that the bead oscillates with period 2x\/4a/g.
(a) If u = cos(9/2), then

die . . 2w . o .
T —1 sin (8/2)s, R ~3 sin (6/2) 8 — } cos (#/2)8?
% g . _ .
Thus e + a;u = 0 is the same as
—~1 sin(8/2)8 — 1 cos {8/2)8% + ﬁcos(eﬂ) =0
which can be written as
- . 02 _ _g_ =
& + 1 cot(s/2)8 3 cot {8/2) 0 {1
. _ cos(#/2) _ 2sin(e/2) cos(8/2) _ _sing
Since cot(e/2) = sin (8/2) 2 sinZ (/2) T 1 -cos#

it follows that equation {1} iz the same as that obtained in Probiem 11.35(b).

{4} The solution of the equation is
u = cos(9/2) = ¢ cosVdalgt + ¢ sinViefgt

from which we see that cos(#/2) returns to its original value after a time 25/ d4a/g which
is the required period. Note that this period is the same as that of a simple pendvium with
length 1 = 4a.

An application of this is the eycloidal pendulum. See Problem 4.86, page 112.

Obtain equations for the rolling sphere of Problem 9.42, page 244 by use of Lagrange’s
equations.
Refer to Fig. 9-33 in which ¢ and ¢ represent generalized coordinates. Since the sphere of
radius CP =g rolls without slipping on the sphere of radius OP = b, we have
bde/dt = adg/dt or be = ay
which shows that if ¢ =0 when ¢ =0, then
bg = ay {1
Thus ¢ and ¢ [and therefore dp and d¢ or §¢ and &y are not independent.
The kinetic energy of the rolling sphere is
T dmia + b)2p? + 4l
Fmia+ b8 + HFmad)(s +)
using the fact that [ = 2ma? is the moment of inertia of the aphere about a horizontal axi
through its center of mass.

The potential energy of the rolling sphere [taking the horizontal plane through O as referenc
level] is

i

Il

V = mgla+bd) cosg
Thus the Lagrangian is

L = T~-V = &m(a-!—b)zéﬂ + %ma2($+;&)2 — mgla + by coag {z

We use Lagrange’s equations (16}, page 284, for non-holonomic systems. From (I} we have
bEp—ady = 0 (s
so that if we call ¢, = ¢ and g, = ¢ and compare with equation {7) of Problem 11.18, page 2O
we find A,=b Ay=-—a ¢

Thus equations (16), page 284, become

d /oL L _ .
dt (3;) - E; - ?tlb (‘

4 oL\ _ oL _ _
w(o) = e ‘
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Substitution of (2) into {5) and (§) yields

mia+52¢ + gma(s+y) — mgla+d)sing = Nb t4}
Fma(34+%) = —Ma @)
Substituting ¢ = (b/a)e [from (I)] into (7) and {(8), we find
ma+ b2 ¢ + gma(l +b/a) g — mgla+ by sing = Ad )]
gmat(l + b/a) = ~ne {10)
Now from (10) we have M = —gmia+b) Fy

and using this in (9) it becomes after simplifying and solving for 3,

e

5 .
Ta +b) 2 #

This ia the same equation as that of (£) in Problem 9.42, page 244, with ¢ = /2 —¢. To find the
required angle at which the sphere falls off, see Problem 11.104.

(a) Solve the equations of motion obtained in Problem 11.24, page 296, and (b) inter-
pret physically,

()

G

From the firat of equations (1) in Problem 11.24 we have

x* = constant = 0 4}
since 2 =0 at t=0. Similarly, from the second of equations (12) we have
9
v = ot (®

since y=0 at t=0.

From the third of equations (7£) we find on separating the variables,

3
seco, do; = —5,%&
. . s 6\ _ 84t
or on integrating, In cot (4 - E) = Bonl + ¢
T _4Yy 3,4t/Bml
ie, tan (4 3 ) = ey

Thus since ¢, =#/2 at ¢t =0, we have ¢3=0. This means that for all time we must
have &, = #/2.

From the fourth of equations (12) in Problem 11,24 we have similarly,

sec §; do; = %dt
or on integrating, In oot(% - 12?) = % + ¢y
ie., tan (i - i; ) = ¢, 08t
Now when t =0, 0, =0 s0 that ¢, =1. Then
tan (% - 12!) = e o gy = T ptan-i(eSSuny

Equations (1) and (£} show that the center moves aleng the y axis with constant apeed g/4m.
The rods AD and BC are always parallel to the y axis while roda AR and CD slowly rotate until
finally [¢ = =] the rhombus collapses, ao that all four rods will be on the y axis.
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Supplementary Problems

GENERALIZED COORDINATES AND TRANSFORMATION EQUATIONS

11.39. Give a set of generalized coordinates needed to completely specify the motion of each of the follow-
ing: (o) a bead constrained to move on a circular wire; (b) a particle constrained to move on a
sphere; {¢) a compound pendulum (see page 228]; (d} an Atwood's machine [see Problem 3.22,
page 76]; (e} a circular disk rolling oh a horizontal plane; (f) a cone rolling on a horizontal plane,

11.40. Write transformation equationa for the motion of a triple pendulum in terms of a suitable set of
generalized coordinates. -

1141. A particle moves on the upper surface of a frictionless paraboloid of revolution whose eguation
is 224+ y* = ¢z. Write transformation equations for the motion of the particle in terms of = suit-
able set of generalized coordinates.

11.42. Write transformation equations for the motion of a particle constrained to move on a sphere.

CLASSIFICATION OF MECHANICAL SYSTEMS
11.43. Classify each of the following according as they are (i} scleronomic or rheonomie, (ii) holonomic
or non-holonomic, and (iii) conservative or non-conservative:

{e) & horizontal cylinder of radius a rolling inside a perfectly rough hollow horizontal cylinder of
radiug b > a;

{b) a eylinder rolling [and possibly sliding] down an inclined plane of angle «;

{¢} a sphere rolling down another sphere which is rolling with uniform speed along a horizontal
plane;

{d) a particle constrained to move along a line under the influence of a2 force which is inversely
proportional to the square of its distance from a fixed point and a damping force proportional
to the square of the instantaneous speed.

Ans. (a) scleronomie, holonomie, conservative

(b} seleronomic, non-holonomic, conservative
(¢} rheonomic, non-holonomie, conservative
{d) scleronomic, holonomiec, non-conservative

WORK, KINETIC ENERGY AND GENERALIZED FORCES

lljl-i. Prove that if the transformation equations are given by r, = r.{(¢;.92 ..., ¢,}» Le. do not involve
the time ¢ explicitly, then the kinetic energy can be written as
a

n
T = a§13§1 Gap q.'a &3
where a,g are functions of the g,.
11.45. Discuss Problem 11.44 in case the transformation equations depend explicitly on the time ¢

1146, If Fixx, Ay Az) = a® Flz, ¢, 2) where X is a paremeter, then F ia said to be a homogeneous function
of order n. Determine which (if any) of the following functions are homogeneous, giving the order
in each case:

(@) 2+ 92+ 22+ xy + yz + 22 {e) «*tan—1(y/z)
(8) 82 — 2y + 4z () 4sinzy
(€} 2ye + 2oy + 22z + 2z ) +y+aMa?+y®+2?)

(d)y (z+yt+ae

Ans. (a) homogeneous of order 2, (b} homogeneous of order 1, (¢) non-homogeneous, (d) homo-
geneous of order zero, (¢) homogeneous or order 3, (f) non-homogeneous, (g) homogeneous of
order —1.

1147, It F(z,y,#) is homogeneous of order n {see Problem 11.46], prove that
aF BF 31"'

z—+ + z 32 = nif

This is called Euler’s theorem on homogmm functions.
[Hint, Differentiate both sides of the identity F(wr, iy, az) = )s"F(a: ¥, 2} with Tespect to A and
then place X = 1.]

1148, Generalize the result of Problem 11.47.
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Prove that if the {ransformation equations do not depend explicitly on time ¢, and T is the kinetic
energy, then

- aT * aT - aT —
hag T Heg, T g, < PT

Can you prove this directly without the use of Euler’s theorem on homogeneous functions [Problem
11.47]?

LAGRANGE'S EQUATIONS

11.50.
11,51
11.52.
11.53.
11.54.
11.55,

11.56.

11.57.

1158,

11.59.

{e) Set.up the Lagrangian for a one dimensional harmonic oscillator and {b) write Lagrange's
equations, Ang. (@) L = -&méz— dxx? (bYy m ¥+ xxr=0

{¢) Set up the Lagrangian for a particle of mass m falling freely in a uniform gravitational field
and (b) write Lagrange’s equations.

Work Problem 11.51 in case the gravitational force field varies inversely as the square of the dis-
tance from s fixed point O assuming that the particle moves in a straight line threugh O.

Use Lagrange’s equations to describe the motion of a particle of mass # down a frictionless in-
clined plane of angle a.

Use Lagrange’s equations to describe the motion of a projectile launched with speed v, at angle
a with the horizontal.

Use Lagrange's equations to solve the problem of the (a) two-dimensional and (b)) three-
dimensional harmonie oscillator.

A particle of mass m is connected to a fixed point P on a horizontal plane by a string of length
{. The plane rotates with constant angular speed » about a vertical axis through a point O of the
plane, where OP = a. {a) Set up the Lagrangian of the system. (b} Write the equations of motion
of the particle.

The rectangular coordinates {x, y, z) defining the position of a particle of mass m moving in a foree
field having potential V are given in terms of spherical coordinates (+, #, ¢} by the transformation
equations . . .

z = raingcosd, Y = rsingsing, z = rcosg

Use Lagrange's equations to set up the aquations of motion.

Ang. m[;'. — rg? — rd? cos? 2] = _v
ar
d - - av
= 242 gi = ..
ml:dt(r%} + rig sm¢cos¢:| 20 P
m—d—(rzi sin?g) = — W
dtv ) = ﬁ¢,

Work Problem 11.56 if the particle does not necessarily move in a straight line through O.

Work Problem 4.23, page 102, by use of Lagrange's equations.

LAGRANGE'S EQUATIONS FOR NON-HOLONOMIC SYSTEMS

11.60,

11.61.

1162,

(e} Work Problem 11.20, page 293, if the paraboloid is replaced by the cone x2+ y2 = 222
{b) What modification must be made to Problem 11.21, page 294, in this case?

Use the method of Lagrange’s equations for non-holonomic systems to solve the problem of a
particle of mass m sliding down a frictionless inclined plane of angle «.

Work Problem 3.74, page 82 by using the method of Lagrange's equations for non-holonomic
systems.

LAGRANGE'S EQUATIONS WITH IMPULSIVE FORCES

11.63.

A upiform rod of length I and mass M is at rest on a horizontal frictionless table. An impulse of
magnitude 4 is applied to one end 4 of the rod and perpendicular to it. Prove that (a) the
velocity given to end A is 4.9/M, (b) the velocity of the center of mass is 4/M and (¢) the rod
rotates about the center of mass with angular velocity of magnitude 6 /M1,
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11.64.

11.65.

1166,

11.67.

11.68.

In Fig. 11-11, AR and BC represent two uniform rods
having the same length [ and mass M smoothly hinged
at B and at rest on a horizontal frictionless plane,
An impulse iz applied at C normal to BC in the di- A B C
rection indicated in Fig. 11-11 so that the initial -
velocity of point € is v, Find (a) the initial vel-
ocities of points A and B and (b) the magnitudes of
the initial angular velocities of AR and BC about
their centers of mass. Fig. 11-11

Ans. (@) vof7, ~ ZulT; (b} 3uy/TL, — GupfTl

Prove that the total kinetic energy developed by the system of Problem 11.64 after the impulse
is §Mvj.

A square of side 2 and mass M, formed from 4 uniform rods which are smoothly hinged at their
edges, rests on a horizontal frictionless plane. An impulse is applied at a vertex in a direction
of the diagonal through the vertex so that the vertex is given a velocity of mapnitude v, Prove
that the rods move about their centers of mass with angular speed 3v,/4c.

{a) It g is the magnitude of the impulse applied to the vertex in Problem 11.66, prove that the
kinetic energy developed by the rods is given by 5.92/4M. () What is this kinetic energy in terms of
v4? {c) Does the direction of the impulse make any difference? Explain.

In Problem 11,24, page 286, suppose that the impulse is applied at the center of one of the rods in
a direction which is perpendicular to the rod. Prove that the kinetic energy developed is §2/8m.

MISCELLANEOUS PROBLEMS

11.69.

"1@

N
—

"

11.71.}

..

IL.73.

1L.74.

11,75,

11.78.

A particle of mass m moves on the inside of a smooth hollow hemisphere of radius a having its
vertex on a horizontal plane. With what horizontal speed must it be projected so that it will
remain in a horizontal circle at height k above the vertex?

A particle of mass m is constrained to move inside a ¥
thin hollow frictionless tube [see Fig. 11-12] which is
rotating with constant angular velocity « in a hor- -

izontal zy plane about & fixed vertical axis through . \
0. Usaing Lagrange’a equations, describe the motion.

Work Problem 11.70 if the zy plane is vertical. m -

A particle of mass m moves in a central force fleld
having potential V(r) where r is the distance from
the force center. Using spherical coordinates, {(a)
set up the Lagrangian and (b) determine the equa-
tions of motion. Can you deduce from these equa-
tions that the motion takes place in a plane {compare
Problem 5.1, page 121]? Fig. 11-12

A particle moves on a frictionless horizontal wire of radius &, acted upon by a resisting force which
is proportional to the instantaneous speed. If the particle i3z given an initial apeed v, find the
position of the particle at any time &.

Ans. & = (myp/x}(1 — e~ xt/m%) where # is the angle which a radius drawn to m makes with a fixed
radius such that # =0 at ¢ =10, and x is the constant of proportionality.
Work Problem 11.73 if the resisting force is proportional to the aquare of the instantanecus speed.
+ xvgt
Ans. ¢ ="mm ( m—-o—)
X0 m

A spherieal pendulum is fixed at point O but is otherwise free to move in any direction. Write
equations for ita motion.

Work Problem 9.20, page 239, by use of Lagrange’s equations,
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1177,

11.78.

11.79.

11.86,

11.81.

11.82,

11.83.

11.84,

11.85.

11.86,

11.87.

11.88,

11.89.

LAGRANGE'S EQUATIONS {CHAF. 11

Work Problem 11.20 if the paraboleid of revolution is replaced by the elliptic paraboloid
az = bx2+ cy? where a, b, ¢ are positive constants.

Prove that the generalized force corresponding to the angle of rotation about an axia physically
represents the component of the torque about thia axia.

{2} Obtain Lagrange’s equations corresponding to 8 and ¢ in Problem 11.34, page 302, and show
that these are not the same as equations (2) and (8) of that problem. (b) Show how to obtain
equations (2) and (3} of Problem 11.34 from the Lagrange eguations of ().

Two cireular disks, of radius of gyrations K,, K; and masses my,m, /LA
respectively, are suspended vertically on a wire of negligible mass [see
Fig. 11-13]. They are set into motion by twisting one or both of the
disks in their planes and then releasing. Let ¢, and ¢; be the angles
made with some specified direction,

(a) Prove that the kinetic energy is .
T = pKE 4 mpCa? C

{#) Prove that the potential energy is
vV = i‘["l’f + ry(0, — 6,39

where r, and r, are torgion constants, i.e. the torques required to
rotate the disks through one radian.

{¢) Set up Lagrange's equations for the motion, Fig. 11-13

Solve the vibrating system of Problem 11.80, finding {a) the normal frequencies and (4) the normal
modes of vibration,

Generalize the resalts of Problem 11.80 and 11.81 to 3 or more disks.
(a) Prove that if m; = m, and !, » I, in the double pendulum of Problym 11.28, then the normal

frequencies for small oscillations are given by /2¢ where

(my +mp)(l + 1) = Vimy +my{m (L, — 1) + myldy + 1)
2%‘2‘”‘1 7

(b} Digcusg the normal modes corresponding to the frequencies in (e}.

o =

Examine the special cagse I, = [,, m; » ms; in Problem 11.83,

Use Lagrange'as equationa to describe the motion of a sphere of radius a rolling on the inner surface
of a smooth hollow hemisphere of radius b > g.

A particle on the ingide surface of a frictionless paraboloid of revolution ez = z24 32 at a height
H, ahove the vertex iz given a horizontal velocity v,, Find the value of v, in order that the particle
oscillate between the planes z=H, and 2z = H, Ans. vy = V2gH, '

Find the period of the ose¢illation in Problem 11.88,

A aphere of radius a is given an initial velocity vy, up a frictionless inclined plane of angle « in a
direction which is not along the line of greatest slope. Prove that its center describes a parabola.

A bead of mass m is constrained to move on a frictionless horizosnital cireular wive of radius a
which is rotating at constant angular speed « about a fixed vertical axis passing through a point
on the wire. Prove that relative to the wire the bead oacillates like a simple pendulum.

Fod Maeut ) - V4 s
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11.90.

11.81.

11.92,

11.93.

11.94,

11.95.

11.56,

11.87.

11.98.

11.95.

If a particle of mass m and charge ¢ moves with velocity v in an electric field E and magnetic
field B, the force acting on it ia given by

F=¢E+vxB

In terms of a scalar potential & and a vector potential A the fields can be expressed by the relations
E=-Vd—3A/t, B = VxA

Prove that the Lagrangian defining the motion of such a particle is
L = «}mv’-&e{l\'v} — ed

Work Problem 10.86, page 278, by use of Lagrange’s equations.

A uniform rod of length { and mass M has its ends constrained to move on the circumference of a
smooth vertical circular wire of radins ¢ > I/2 which rotates about a vertical diameter with con-
stant angular speed . Obtain equations for the motion of the rod,

Suppose that the potential V depends on ¢, az well as g,. Prove that the quantity

T+ V- 342
aq,

L

is a constant.

Use Lagrange's equations to set up and solve the two body problem as discussed in Chapter §
|@ee for example page 121.} }

Find the acceleration of the § gm mass in the pulley system of Z
Fig. 11-14. Ans, T1g/822

A circuiar cylinder of radius & having radins of gyration K
with respect to its center, moves down an inclined plane of
angle ». If the coefficient of friction is », use Lagrange’s
equations to prove that the eylinder will roll without slipping

K2
if &< Wtaﬂ a. Discuss the cases where s does not
satiafy this inequsality,

Use Lagrange’s equations to solve Problem 8.27, page 213.

Describe the motion of the vods of Problem 11,64 at sny time
t after the impulse has been applied.

In Fig. 11-16, AR represents e frictionless horizontal plane
having a small opening st O. A siring of length ! which
paases through O has at its endz a particle P of mass m and
a particle @ of equal mass which hangs freely. The particle
P is given an initial velocity of magnitude v, at right angles
to string OF when the length OP =a. Let » be the in-
stantaneous distance OF while # is the angle between OFP and
some fixed line through 0.

(a) Set up the Lagrangian of the system.
{(b) Write a differential equation for the motion of P in terms of r.
(¢) Find the speed of P at any position.

Ans. (@) L = }mi2r%+r26% + mg(l~r) X
() ¥ = a2t — g
@ # = \/2&1.% + 2g{a —¥) — 2a’;r?,/r

11106, Work Problem 11.99 if the massea of particies P and Q are m, and m; reapectively.

T .o
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11161, Prove that if v, = Vag the particle P of Problem 11.99 remains in stable equilibrium in the circle
r =g and that if it is slightly displaced irom this equilibrium position it oscillates about this

position with simple harmonic motion of period 2m/2a/3g.

11.102. Prove that the quantity &, in Problem 11.34, page 302, physically represents the component A
of the torqgue.

11.103. Describe the motion of the system of {(a) Problem 11.63 and (&) Problem 11.66 at any time { after
the impulse has heen applied. !

11.104. Show how to find the angle at which the sphere of Problem 11.3¢, page 303, falls off.

11.105. {a) Set up the Lagrangian for the triple pendulum of Fig. 11-16.
H) Find the equations of motion.

11.106. Obtain the normal frequencies and normal modes for the triple pendulum of Problem 11.105 assuming
small osciilations.

11107, Work Problems 11.105 and 11.106 for the case where the masses and lengths are unequal.

sy

DOOU

Fig.11-16 Fig. 11-17

11.108. A vertical spring {Fig. 11-17) has constant « and mass M. If a mass m is placed on the spring and
set into motion, use Lagrange’s equations to prove that the system will move with simple harmonic

motion of period 27/ (M + 8m)/8x.



Chapter 12 HAMILTONIAN
THEORY

HAMILTONIAN METHODS

In Chapter 11 we investigated a formulation of mechanics due to Lagrange, In this
chapter we investigate a formulation due to Hamilton known collectively as Hamiltonian
methods or Hamiltonian theory. Although such theory can be used to gsolve specific prob-
lems in mechanics, it develops that it is more useful in supplying fundamental postulates
in such fields as quantum mechanics, statistical mechanics and celestial mechanics.

THE HAMILTONIAN

Just as the Lagrengian function, or briefly the Lagrangian, is fundamental to Chapter
11, so the Hamiltonian function, or briefly the Hamiltonian, is fundamental to this chapter.

The Hamiltonian, symbolized by H, is defined in terms of the Lagrangian L as

L

H = zpa&u - L (1)

a=1
and must be expressed as a function of the generalized coordinates ¢. and generalized
moments pa. To accomplish this the generalized velocities ¢, must be eliminated from (1)
by using Lagrange’s equations [see Problem 12.3, for example]. In such case the function
H can be written
H(plr PO EV /S PR/ t) (2)

or briefly H(p., 4=, t), and is also called the Hamiltonian of the system.

HAMILTON’S EQUATIONS

In terms of the Hamiltonian, the equations of motion of the system can be written in
the symmetrical form

5 = A

w - aqu

.o ®)
[ a

These are called Hamilton’s canonical equations, or briefly Hamillon’s equations. The
equations serve to indicate that the p. and ¢. play similar roles in a general formulation
of mechanical principles.

THE HAMILTONIAN FOR CONSERVATIVE SYSTEMS

If a system is conservative, the Hamiltonian H can be interpreted as the total energy
(kinetic and potential) of the system, i.e,

H=T+V (4)

Often this provides an easy way for setting up the Hamiltonian of a system.

311
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IGNORABLE OR CYCLIC COORDINATES

A coordinate g, which dees not appear explicitly in the Lagrangian is called an ignorable
or eyclic coordinate. In such case
. aL
e = 22 9 5
P ™ (%)
so that p. is a constant, often called a constant of the motion.

In such case we also have dH/dq. = 0.

PHASE SPACE

The Hamiltonian formulation provides an obvicus symmetry between the p. and 4.
which we call momentum and position coordinates respectively. It is often useful to imagine
a space of 2n dimensions in which a representative point is indicated by the 2n coordinates

(pl, caes Py Gy 0, Q’n) ‘ (6)

Such a space is called a 2n dimensional phase space or a pg phase space.

Whenever we know the state of a mechanical system at time ¢, i.e. we know all position
and momentum coordinates, then this corresponds to a particular point in phase space.
Conversely, a point in phase space specifies the state of the mechanical system. While the
mechanical system moves in the physical 3 dimensional space, the representative point
describes some path in the phase space in accordance with equations {3).

LIOUVILLE’S THEOREM

Let us consider a very large collection of conservative mechanical systems having the
same Hamiltonian. In such case the Hamiltonian is the total energy and is constant, ie.,

H(pli ey pn; QI; LELILE | q») = constant = E (?’)

which can be represented by a surface in phase space.

Let us suppose that the total energies of all
these systems lie between E; and E:. Then the
paths of all these systems in phase space will lie
between the two surfaces H=FE, and H=E;
as indicated schematically in Fig. 12-1.

Since the systems have different initial condi-
tions, they will move along different paths in the
phase space. Let us imagine that the initial points
are contained in region ®. of Fig. 12-1 and that
after time { these points occupy region R.. For
example, the representative point corresponding to
one particular system moves from point 4 fto
peint B. From the choice of R, and R it is clear
that the number of representative points in them e
are the same. What is not so obvious is the follow- Fig.12-1
ing theorem called Liouville’s theorem.

Theorem 12.1: Liouville’s Theorem. The 2n dimensiona! volumes of R: and R are the
same, or if we define the number of points per unit volume as the density then the density
is constant.
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We can think of the points of ‘R; as particles of an incompresgible fluid which move from &,
toRqin time ¢,

THE CALCULUS OF VARIATIONS

A problem which often arises in mathematics is that of finding a curve y = Y(x) joining
the points where x =a and x =b such that the integral

§ Pavy)as | @

where ¥ = dy/dz, is a maximum or minimum, also called an extremum or exireme value,
The curve itself is often called an extremal. It can be shown [see Problem 12.6] that a
necessary condition for (8) to have an extremum is

() _oF
dz\o) "
which is often called Fuler’s equation. This and similar problems are considered in a
branch of mathematics called the caleulus of variations,

= 0 | 9)

HAMILTON’S PRINCIPLE

The obvious similarity of (9) to Lagrange's equations leads one to consider the problem
of determining the extremals of

[
L{gy ..y Gn G+ ooy Ony B)dE (10)

]
f
or briefly, J. Ldt
fy

where L =T -V is the Lagrangian of a system.

We can show that a necessary condition for an extremal is
d (aL> _ oL

dt\3¢./ ~ g

dt \ 3qs =0 (17)

which are precisely Lagrange's equations. The result led Hamilton to formulate a general
variational principle known as

Hamilton’s Principle. A conservative mechanical system moves from time ¢ to time
!z in such a way that .
: |

Ldt (12)

L
gometimes called the action integral, has an extreme value,

Because the extreme value of (12) is often & minimum, the principle is sometimes referred
to ag Hamilton's principle of least action.

The fact that the integral (12) is an extremum is often symbolized by stating that
ts
s Ldt = 0 (18)

LY
where 8 is the variation symbol.
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CANONICAL OR CONTACT TRANSFORMATIONS

The ease in solution of many problems in mechanies often hinges on the particular
generalized coordinates used. Consequently it is desirable to examine transformations
from one set of position and momentum coordinates to another. For example if we call
q« and Po the old position and momentum coordinates while Q. and P, are the new position
and momentum coordinates, the transformation is

Pﬂ = Pﬂ(pl;..-»pm Qi ..y Qay t)) QO& = Q&(pls'--’pﬂr G ..y Gn, t) (1'&)

denoted briefly by
Pn = Pcr (’Pm ch, t)y Qﬂ = Qﬂ(pﬂ; Qa, t) (15)

We restrict ourselves to transformations called canonical or contact transformations for
which there exists a function .4/ called the Hamiitonian in the new coordinates such that

. -—_i‘j__{ . =aﬂ
P, = 20, Qu 3P,

In such case we often refer to Q. and P. ag canonical coordinates.

(16)

The Lagrangians in the old and new coordinates are L(p., o t) and £ (Pa, Qa,t) Te-
spectively, They are related to the Hamiltonians H{p., ¢« t) and $(P,, Qa t) by the

equations . .
H = 2pfe—L 4 = XPuQa—L an

where the summations extend from « = 1 to n.

CONDITION THAT A TRANSFORMATION BE CANONICAL
The following theorem is of interest.

Theorem 12.2. 'The transformation
Po = P, (Par» oy t); Qu = Qa(pcu Qa, t) (18)

is canonical if > padge — X PadQo (29)

is an exact differential.

GENERATING FUNCTIONS
By Hamilton’s principle the canonical transformation (14) or (15} must satisfy the con-
£

1Y s
ditions that f Ldt and £ dt are both extrema, i.e. we must simultaneously have
1

i

iy “
5§ Lat = 0 and of cdt = 0 (20)
1y [

These will be satisfied if there is a function G such that

946 _ o _
& = L-< (21)

See Problem 12.11. We call G a generating function.

By assuming that ¢ is a function, which we shall denote by of, of the old position co-
ordinates ¢, and the new momentum coordinates P, as well as the time ¢, i.e.,
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G = f(ga Pay t) (22)
we can prove that {see Problem 12.13]
— 9 def @f_
Pa = éa" Qa BPO; q.g{ + H (23)
P = _M A = aﬂ
where Po = —o5 Q= op- (24)

Similar results hold if the generating function is a function of other coordinates [see
Problem 12.12].

THE HAMILTON-JACOBI EQUATION

If we can find a canonical transformation leading to 4( = 0, then we see from (24) that
P, and Q. will be constants [i.e., Po and Q. will be ignorable coordinates]. Thus by means of
the transformation we are able to find p, and q. and thereby determine the motion of the
system. The procedure hinges on finding the right generating function. From the third
equation of (23) we see by putting % = 0 that this generating function must satisfy the
partial differential equation 5o

5 t Houtaty = 0 (25)
or ‘;‘f + H("e’,q,,, t) = 0 26)

This is called the Hamilton-Jacobi equation.

SOLUTION OF THE HAMILTON-JACOBI EQUATION

To accomplish our aims we need to find a suitable solution of the Hamilton-Jacobi
equation. Now gince this equation contains a total of n+1 independent variables, i.e.

d1, gz, ..., s and ¢, one such solution called the complete solution, will involve n+1 con-
stants. Omitting an arbitrary additive constant and denoting the remaining n constants by
B, Bz, . . ., Ba [none of which is additive] this solution can be written
@I = @r(qllqgl v ey @ny 191-;32. 0-0118m t) (27)
When this golution is obtained we can then determine the old momentum coordinates by
ocf
y = — 28
Pe = 504 (28)
Also, if we identify the new momentum coordinates P, with the constants 8., then
o
Q, = gg—z = ¥, (29)
where y,, a=1,...,n are constants.

Using these we can then find ¢ as functions of 8, y, and ¢, which gives the motion of
the system.

CASE WHERE HAMILTONIAN IS INDEPENDENT OF TIME

In obtaining the complete solution of the Hamilton-Jacobi equation, it is often useful to
agsume a solution of the form
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o = Si(qr) + Salgs) + -+ + Snlgn) + F(2) (20)

where each function on the right depends on only one variable [see Problems 12.15 and
12.16]. This method, often called the method of separation of variables, is especially useful
when the Hamiltonian does not depend explicitly on time. We then find that F(i) = -FEt,
and if the time independent part of <f is denoted by

S = Si(q) + Selgz) + -+ + Sulqa) - (31)
the Hamilton-Jacobi equation (26) reduces to
S _
H(Z 0.) = E (22)

where F is a constant representing the total energy of the system.

The equation (82) can also be obtained directly by assuming a generating function S
which is independent of time. In such case equations (23) and (24) are replaced by

. o8 _ 88 _ _
Pa = 2 Q« = Py H=H=E (29)
- - —a‘ﬂ . _ a‘_ﬂ
where P, = 30, Qe = 3P, (34)

PHASE INTEGRALS. ACTION AND ANGLE VARIABLES

Hamiltonian methods are useful in the investigation of mechanical systems which are
periodic. In such case the projections of the motion of the representative point in phase
space on any Pag¢. plane will be closed curves C.. The line integral

Ja = £¢ Padqa (95)

ia called a phase integral or action variable,
We can show [see Problems 12,17 and 12.18] that

S=8q, ..., Ju, ..., Jn) (36)
= 98 _ o3
where Pa = 2ms Q. = o ($7)
It is customary to denote the new coordinates Q. by w. so that equations (£7) are re-
placed by
{3 aqﬂr L3 aJ«
Thus Hamilton’s equations become [see equations (33) and (84)]
ST SRS Y|
Ju - wﬁa We = 6J¢ (39)

where 9 = E' in this case depends only on the constants J.. Then from the second equa-
tion in (89},

Wa = f at + Ca (40)

where f. and ¢. are constants. We call w. angle variables. The frequencies_fa. are given by
= A '

Lo = FYA (41)

See Problems 12.19 and 12.20.
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Solved Problems

THE HAMILTONIAN AND HAMILTON'S EQUATIONS

AC If the Hamiltonian H = 3 paGe — L, where the summation extends from
a=1 to n, is expressed as a function of the coordinates ¢, and momenta p., prove
Hamilton’s equations, . _oH o oH

pa - aqal qﬁ' &‘p&

regardless of whether H () does not or (b) does contain the variable time ¢ explicitly.
(a) H docs not contain € explicitly.
Tuking the differential of H = 3 p,q, — L, we have
- - aL 8[: L
dH = Epﬂdqﬂ + EQadpa - E_d‘h - szQn 1
gy g,
Then using the fact that », = 4L/3q, and 5, = dL/3q,, this reduces to
dH = 2&& dpu - Ei’a dQG (’)

But since H ia expressed as a function of p. and ¢,, we have
. wiH oH
dH = 3 e dp, + p a_q“' dg, (2
Comparing (2) and (£) we have, as required,
- — EE hd — aH

Ja = = T aq.

Pa’ Pa g,

(b} H does contain ¢t explicitly. .
In this case equations (1), (2) and (3} of part {«) are replaced by the eguations

. . aL oL . oL
dd = Epud%r + quudpa - E“dqa - E—dq.. - E-t-dt (4)
¥ Oy
» - aL
aH = Eqadpc - Epadq‘: - "a_c'dt (€]
_ aH aH oH
df = E;;,:dpu + Ega:dqa + 37 9t ®
Then comparing {5) and (8), we have
. _ OH » _ _OH oH _ _3L
da = Ep Pa = E, T T

12.2. If the Hamiltonian H is independent of ¢ explicitly, prove that it is (a) a constant and
is (b) equal to the total energy of the system.

{a) From equation {£) of Problem 12.1 we have
H = Siebe — Zhala = 0
Thus H is a constant, say K.
{3) By Euler’s theorem on homogeneous functions [see Problem 11.47, page 805},

« 3T
i) = T
2Rl =
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where T is the kinetic energy. Then since p, = dL/3q, = aT/3q, jassuming the potential V
does not depend on §,), we have Ep,d, = 2T. Thus as required,

H = Zp,4,—- L = 2T~ (T~V) = T+V = E

lﬁ. A particle moves in the zy plane under the influence of a central force depending only
on its distance from the origin. (2) Set up the Hamiltonian for the system. (b) Write
Hamilton’s equations of motion.

(2} Assume that the particle is located by its polar coordinatea (r,¢) and that the potential due to
the central force is V(r). Bince the kinetic energy of the particle is T = f}m(;ﬂ + ¥24%), the
Lagrangian is

L = T —V = Jm72+s2%) — Vi) 5]
We hate p, = aL/3r = mf, Ps = dL/36 = mr24 {2)
so that F = pim, ¢ = pymr? *

Then the Hamiltonian is given by

H = 3 pada— L = pi+ peb — (Jm02+1%9) — Vi)
Pr

( (m.,.g) - {& (_ + '2',,‘2,.4) - V(")} 4)

pE pﬂ

= gt apei + VO

Note that this is the total energy expressed in terms of coordinates and momenta.

{b) Hamilton’s equations are 4o = 3H/opy, Pa = —0H/iga
Thus r = 3Hlép, = p/m, i = 9H/3py = po/mrt ®
P, = —0H/3r = pyfmed — Vi), py = —~3H/de = 0 (®)

Note that the equations (5) are equivalent'to the corresponding equations (8).

PHASE SPACE AND LIOUVILLE’'S THEOREM
12.4. Prove Liouville’s theorem for the case of one degree of freedom.

We can think of the mechanical system as P
being described in terms of the motion of rep-
resentative points through an element of vol-
ume in phase gpace. In the case of & mechanical Ble, p + dp) Clo + dg, p+dp)
system with one degree of freedom, we have a
two dimensional {p, ¢) phase space and the vol-
ume element reduces to an area element dpdg
[Fig. 12-2).

Let p=5(p,q,t) be the density of rep-
resentative points, ie, the number of repre-
sentative points per unit area as obtained by Alg.p) Dig+dg. p)
an appropriate limiting procedure. Since the
speed with whmh representative points enter
through AB is ¢, the number of representative q
points which enter through AR per unit time is

pqdp (1 Fig.12-2
The number of representative points which leave through CD ia

{o& + :—q(p&} dq} dp )

[
I
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12.5.

Thus the number which remain in the element is (¥) minus (2), or
a -
—53(.0:1) dp dq (£

Similarly the number of representative points which enter through AD and leave through BC are
reapectively

» . [ -
epdg and {pp * (ep) dp } dg
Thus the number which remain in the element is
d .
3 (ep) dp dq 4

The increase in representative points is thas [adding () and (4)]

3ed) erpp)
—{———aq + }d dg

Since thia is equal to g%dp dq, we must have

do ) , ep)| _
&6+{6q + dp} =0

or ap 3_qf+ apv+ 3,‘p+ apv = 0 (5)

at T %3 T 39T Pop T 3P
Now by Hamilton’s equations p — —dH/3q, ¢ = aH/3p so that
ap _ _ H 34 _ #H

ap apag’ 8¢  3qop

Thus since we suppose that the Hamiltonian has continuoua second order derivatives, it follows
that ap/op = ~3¢/aq. Using this in (5), it becomes

ap ap. ?.E’ _
6t+ +8pp = 0 (8)

But this can be written do/dt = 0 "
which shows that the density in phase apace ia constant and thus proves Liouville’s theorem.

Prove Liouville’s theorem in the general case.

In the general case the clement of volume in phase space is
dV = dgy -+ dgadpy - dp,

In exactly the same manner as in Problem 12.4 the increase of representative points in dV is found

to be

2Hod L2 aop L2

_ (qu) 4 ees (Pqn) + (Ppl) 4 e {Ppn) dV
3¢y aqy ap, a?n

and since thiz is equal to a': dV, we must have

Body) dpdn) | ¥Hopy) (o)

dooee g L TR0 4 L T -
at Toq, T8g, | ap, ap,
92 < a(an) s a(P;’u)

or at + ¢§; gy + aml Lo o

This can be written as

3 (Baos )+ 3 o(ea )
+ + +=2} = o 1
2t 2 Lot T apPe) + 2 050t o, 0



320 HAMILTONIAN THEORY [CHAP. 12

Now by Hamilton's equations p, = —3H/dq,, 4, = 0H/#p, s0 that

w,  #H 3, _ °H
We PGy’ Py 09, 0Dy
Hence 9p/ap, = —34./9q, and {I) becomes
o5 (s Lm0 o @
at a=1 gy ¢ pa
ie., dofdt = 0 _ 6]

or p = constant.
Note that we have used the fact that if p = p(q;, ..., ¢n. 71, ... g, ) then

;‘g_”(é‘o_%_@;%)iﬂ_"(_@;' o s 3
dt — ¢§; #q, dt +ap¢ dt + a .,21 aq,,q“"'apap“ + at

CALCULUS OF VARIATIONS AND HAMILTON'’S PRINCIPLE

.3
12.6. Prove that a necessary condition for I = f F(x,y,y")dx tobe an extremum [maxi-

s . a (aF ar “
mum or minimum ——=}—-—— = 0
nimum] is P ay’) P 0
Suppose that the curve which makes I an extremum is given by
y = Yz, ea=Zx=b : (1
Then ¥y = Y@+ el = Y + oy {*)

where ¢ ia independent of x, is a neighboring curve through » =a and z =% if we choose
pla) = w(d) = 0 )

The value of I for this neighboring curve is
b

Iy = f Fl, Y+ Y +ey') de _ (4)
a

This is an extremum for « = 0. A neceasary condition that this be so is that g]__ — ¢. But by
differentiation under the integral sign, assuming this is valid, we find « ¢

»
= oF aF =
=0 f( °+ay'”)dz =0

al F
o \OW

de

which can be written on integrating by parts as

b
aF aF
j. Eﬂdz + ayp‘!

b b
d { 3F
. ) "a(ry')‘*‘”

-]

- S {5-a@te - o

where we have uzed (#). Since 5 is arbitrary, we must have

QE_!_(.B_E =0 w A(E)-E o,
oy dxe\oy' /) ~ dx \ 3y’ ay

which is called Euler’s or Lagrange's equation, The result is easily extended to the integral

b
_f Fe, yo ¥t Y2 V5 « o) Yo ¥ad d
a4

and leads to the Euler's or Lagrange’s equations
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12.7.

12.8.

d /[ oF oF
E<__;)-_ = 0 «a=1,2,....n

By using a Taylor series expansion we find from (4) that
o
I — 10) = « f (%n + %n’)dx + higher order terms in &, ¢, ete.
L 3
The coefficient of ¢ in (5) is often called the variation of the integral and is denoted by

b
s f Fiz, v, v) do
&

b
The fact that f Flz,y,¥')dx is an extremum is thus indicated by
a
sf Fa,yy)de = 0
n

Discuss the relationship of Hamilton’s principle with Problem 12.86.

821

(8

By identifying the function F(z,¥,¥’} with the Lagrangian L(t,q,q) where #,y and y’ are re-

placed by t, q,§ respectively, we see that a necessary condition for the action integral
L]
L dt

f
to be an extremum [maximum or minimum] is given by

4 ab)_eg = 0
dat \ ag aq

n

2

Since we have already seen that (2) describea the motion of a particle, it follows that such motion

can also be achieved by requiring that (1) be an extremum, which is Hamilton’s principle.
For aystems involving n degrees of freedom we conaider the integral (I) where
L = L(t; dun &l’ 9, éz» e Pps éa)
which lead to the Lagrange equations

Fi 4 oL aL - —
G(3) - =0 embim

A particle slides from rest at one point on a
frictionless wire in a vertical plane to another o

point under the influence of gravity. Find the
total time taken. $

Let the shape of the wire be indicated by curve
C in Fig. 12-3 and suppose that the atarting and fin-

ishing points are taken to be the origin and the point c
Alxy, yo) respectively.

Let P{x,y) denote any position of the particle

Pz, y)
m

which we assume has mass m. From the principle Ay, o}

of conservation of energy, if we choose the horizontal v
line through A as reference level, we have Fig.12.3

Potential energy at O + kinetic energy at O =  potential energy at P + Kkinetic energy at P

or mgyo + 0 =  mglyy—y) + m(de/dt)?
where ds/dt is the instantaneous speed of the particle at time t. Then

ds/dit = =v2gy

n

If we measure the arc length s from the origin, then & increases as the particle moves. Thus ds/dt

is positive, so that ds/dt = /2gy or dt = da/v/2gy.
The total time taken to go from y =0 to y =y, is
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-r'—‘det =f”°i’—

v=0 V2gy
But (ds)? = (dx)2 + (dy)}? or de = V1 4+ y*ds. Thus the required time is
Vi+y?

T

dx )

=Vl

12.9. If the particle of Problem 12.8 is to travel from point O to point A in the least pos-
gible time, show that the differential equation of the curve C defining the shape of
the wire is 1+ v +2yy” = 0.

A necessary condition for the time » given by equation (2) of Problem 12.8 to be a minimum

is that 4 /aF oF

ACIEE R @
where F = (1+yzy—ie @®
Now Ffdy = (A +yD-Viyy-1e, oFfey = —}(1+yHzy-s

Substituting these in (1), performing the indicated differentiation with respect to » and simplifying,
we obtain the required differential equation.

The problem of finding the shape of the wire is often called the brachistochrone problem,

12.10. (@) Solve the differential equation in Problem 12.9 and thus (b) show that the required
curve is a eyelotid.

(a) Since z is missing in the differential equation, let %' = & s0 that

oo du_dudy _ du, _ du
4 dr = dy dx dyy dy
Then the differential equation becomes
du 2udu |, dy
2 au _ ay ..
14w +2yudy 0 or 1+?&2+U 0
Integration yields
In{(l+4*) + Iny = Ind or A+ut)y = b
where b i3 a constant. Thus
_ P dy ~— b — v
=y = = =
dx ¥

since the slope must be positive. Separating the variables and integrating, we find

x = f‘\’r-g—;dy—l-c

Letting y = b sin2¢, this can be written

l,bsin’& .
= 2 T .2 I +
E 3 f b cos? 8 8in & cos ¢ de e

2bf gin2ede + ¢ = bf(l—coa%)da + ¢ = b2 —ein2) + ¢

Thus the parametric equations of the required curve are
z = }b{2s —sin26) + ¢, y = bsin?e = {¥(1 — cos2¢)
Since the curve must pass through the point x =0,y =0, we have ¢ =10, Then letting
¢ = 20, a = }b 1#)]
the required parametric eguations are
2z = alp ~sing), ¥ = a(l —cosg) _ (2)
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(b} The equations (2) are parametric equations of a cycloid [see Fig, 12-4]. The constant ¢ must
be determined so that the curve passes through point 4. The cycleid ia the path taken by a
fixed point on a circle as it rolla along a given line [see Problem 12.89],

¥
Fig.12-4

CANONICAL TRANSFORMATIONS AND GENERATING FUNCTIONS
12.11. Prove that a transformation is canonical if there exists a function G such that

12.12.

dg/dt = L — ..
fy s
The integrals Ldt and f L dt  must simultaneously be extrema so that their varia-
tions are zero, i, i f .
2
8 Ldt = 0 and af LdE = 0
ty

L}

g
Thus by subtraction, & f (L—.Ydt = 0

f
Thiz can be accomplished if there exists a function ¢ such that
L — £ = dgldt

since in such case ] ft‘ i—fdt = §{glty) —gity)} = 0
L]

The function ¢ is called a generating function.

Suppose that the generating function is a function T of the old and new position co-
ordinates ¢. and Q. respectively as well as the time ¢, i.e. T = T(qa, Qs t). Prove that
T aT aoT . i} . e
Pes g Pes gy A= GrH where  Pos -G Qo= 3p
By Problem 12.11,
dT

E = L—-r = Epc‘&a_H_ {Epaéd-ﬂ}
= qu&a_zpaéa+ﬂ_H

or 4T = Zpyda — SFP.dQ, + (4 —H)dt )
But if T = T(q, Qat), then
ar = E%dqﬁ + 2‘% aqQ, + g—‘:-dt (2)

Comparing () and (2), we have as required
_ T aT aT

Pa_aqc’ Pct=_‘é'é:, J{-sz
. . ag . a4
The equations P, = _36:' Q. = E

follow from the fact that _g{ is the Hamiltonian in the coordinates P,, Q. so that Hamilton’s equa-
tions hold as in Problem 12.1.
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12.13. Let of be a generating function dependent only on ¢, Ps,t. Prove that

12.14.

_ _ 9 _ s _ 84 5 _ 84
Pa = 3500 Qu=p,, HA=7pg+H where Po=-—75", Q=5

From Problem 12,12, equation (I}, we have
a7 = Epaan - EPGan + (J{"'H)dt

= EpudQG - d{EPuQ¢} + EQadPa + (.ﬂ_H)dt

or (T+3PQ) = Srudse + 2QudPy + (H-H)dt 8
i~eov d@f = Epadmu + EQadPa + (ﬂ_mdt (’)
where o = T+ 2P.Q, (£4)
But since of is a function of gq,, P,, ¢,

der=2 dq..+2 dP+a"‘“’rdt *
Comparing (2) and (4),

_ 9cf _ oS _ i

Pa = o Qu—m, H =t H

The results f.’a = —%, éa = g%

follow as in Problem 12.12, since 4/ is the Hamiltonian,

Prove that the transformation P = §{p®+¢%, Q = tan~1(¢/p) is canonical.
Method 1.

Let the Hamiltonians in the coordinates p,q and P,Q be respectively Hip,q) and ¢{(P,Q} =0
that Hip,q} = 4{(P, Q). Since p,q are canonical coordinates,

. _ _8H . _ oH

PT 7% YT % @
But p = a”P+"”Q ¢ = Wp+ R @)
aP ' éQ
ﬂ = a;ﬂ. Q i‘i{ gg E = ﬂ G_P + ﬁ a_Q ®
ag ~ @P ag 0Q d9g* ap aP op 0Q ap
From the given transformation equations we have
ap - P g~ =F @ W PP

Also, differentiating the transformation equations with respect to P and Q respectively, we find
— .9 dq = i'_ — _ 2

ap -
PG+ g 1 (paQ qao)/p“q,)
Solving simultaneously, we find

w _ _p 4 _ __4q¢ . _, % _
P~ m+ g’ oP 2+eE 30 g, aQ P (4)

0

]
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Then equationa (1) and (£) become

.« _ P o'— . s _ __g__o .
p = —-—-pz+q,P @, a p,+qu+pQ 5
oH' _ d o A oH _ M q 24 -
g > TP TE+gE @ . PP TP+ aQ
Thus from equations (1), (5) and {¢) we have

., a4l 2.4l

b - = gt P VI

Fral T T 1% T i e e

9 P = A _ g ¥4

F+al TR T Pop T g a0

Solving these simultaneously we find

L 65{ -_3,_4{
P——w, = 3P (N

which show that P and Q are canonical and that the transformation is therefore canonical.

Method 2,
By Theorem 12,2, page 314, the transformation is canonical if

2?(: dg, — EPaon: 8
is an exact differential. In this case {) becomes

pdg — PdQ = pu—§w+q=>(__*_zﬂﬁpg;gf)

= {{pdg+ qdp} = diirg

an exact differential. Thus the transformation is canonical,

THE HAMILTON-JACOBI EQUATION

12.15. (a) Write the Hamiltonian for the one dimensional harmonic oscillator of mass m
(b) Write the corresponding Hamilton-Jacobi equation. {¢) Use the Hamilton-Jacob
method to obtain the motion of the osciliator.

() Method 1,

Let g be the position coordinate of the harmonic oscillator, sp that ¢ ia its velocity. Sinc
the kinetic energy is T = }m:}’ and the potential energy is V = }x¢?, the Lagrangian is

L =T-V = jm@®— Jeq? (1
The momentum is p = sLidg = mq (£
so that ¢ = pim @

Then the Hamiltonian is
H = Epaéu"l‘ = Pa_(i’”'aa_‘i“qa}
0¥m + Leg? {:

[l

Method 2.
By Problem 12.2, since the Hamiltonian is the same a8 the total energy for conservatin

synstems,
H = }mgt + jeqt = Jmip/mpP + feg® = §p°/m + fug?
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() Using p = d-f/3q and the Hamiltonian of part (a), the Hamilton-Jacobi equation iz [see equa-
tion (£6), page 816)

& 1 faS\? _
W"‘Eﬂf.(a) + it = 0 ®)
(¢} Assume a solution to (5) of the form
d = Silg) + 8xe) "
1 /45,\? _ 85
Then (5) becomes ™ (d_q) + 3cg? = — *

Setting each side equal to the constant 8, we find

1 /d8\2 ds
wla) i =8 =

whosge solutions, omitting constants of integration, are

5, = f VEmE-pade, S, = —pt ®
g0 that {¢} becomes o = f V‘zm(p — ;‘,xqz) dg — pt {9
Let us identify g with the new momentum cocrdinate P. Then we have for the new position
coordinate,
-
@ = & = 3% f Vam(B— §xg?) dg — At
_ Vam f dg .
But since the new coordinate @ is a constant v,
vem J" dg —t o= v
2 VB — }ngt
or on integrating, Vmic gin—1 (¢/e/28) = t+ v
Then solving for g, g = 28/ sin Ve/imit+v) {10

which is the required solution. The constants 8 and y can be found from the initial conditions.

It is of interest to note that the quantity 8 is physically equal to the total energy E of the
system [see Problem 12.92(a)]. The result (9) with g = E illustrates equation (31} on page 316.

12.16. Use Hamilton-Jacobi méthods to solve Kepler’'s problem for a particle in an inverse
square central force field.

The Hamiltonian is H = -l (,,3 + ﬁ) - K ”
Then since p, = 8of/3r, py = dcf/0e, the Hamilton-Jacobi equation is
SIENLE) VLN

_6?+2m{(6r +§(W r 0 @)

Let & = Si(n) + Sale) + S4(0) ®
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1 Lo 1 dss)z K _ dS,
Then (2) becomes 2m {(?) + ﬂ( P -5 = 5
Setting both sides equal to the constant g,, we find
dSy/dt = —p, (4)

R COREIC I S
Integration of ({) yields, apart from a constant of integration,
S = —pst
Multiply both sides of (5) by 2ms2 and write it in the form

ds 2 ds 2
(@) = »fomsn e 2E—(S2V]

Then since one side depends only on ¢ while the other side depends only on », it follows that each
side is a constant. Thusz

ds;/dﬂ = 8 or & = o8 {6}
dS,\2
das.
or cTrl = VZmgy + 2mK/r — pi/r? (n

on taking the positive square root. Then

s, = f VZmB, + 2mK/r — B dr @)

Thus of = f V2mBs + 2mE/r — Birt dr + B8 — Byt ®

Identifying 8, and 8; with the new momenta P, and P, respectively, we have

df )
Q = FTN = a_,e:f V2mg, + 2mKfr — Birtdr + 9 = ¥
_
Q = E = Ef Vemg, + 2mK!f—ﬂ§Ir2dr -t = ¥y
since @, and @, are constants, say y; and y,. On performing the differentiations with respect to
B2 and 8y, we find
dr
{ e = 0-y (10)
r2y/2mBy + 2mE/r — p2fr?

m dr

f Vemg; + 2mK/r — pirt

= t+ 7y an

The integral in (10) can be evaluated by using the substitution » = 1/u, and after integrating we
find as the equation of the orbit,

2tmK
.= £l s

1 — V1 + 28,82/mK2 con (0 + #/2 — 7y)

The constant 8; can be identified with the energy E [see Problem 12.92(b)], thus illustrating equation
{21), page 316, If E = ;< 0, the orbit is an ellipse; if E =8, =0, it is a parabola; and if
E = fiy > 0, it iz a hyperbolz. This agrees with the results of Chapter b.

The equation (11) when integrated yields the position as a function of time.
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PHASE INTEGRALS AND ANGLE VARIABLES
12.17. Let of be a complete solution of the Hamilton-Jacobi equation containing the » constants

Bi, ..., B0 Let Jo = f Pudqs. Prove that the J. are functions of the 8, only.

We have F = Sugn By . Bad + o+ Sulgp Bry - B — Bt F}
where the constant g, = E, the total energy. Now
aaf dS,
= —— = —_— £
Par g, dyq ®
dS,
Thus Jo = § Padgy, = § cl_qf dg, )]

But in this integration ¢, is integrated out, so that the only quantities remaining are the con-
stants 8,, ..., f8,. Thus we have the = equations

Ju = a:(asl»-vnﬂu} e=1,...,n (4)

Using () we can solve for 8y,..., 8, in terms of J,,...,J, and expresa (f) in terms of the J,.

12.18. (a) Suppose that the new position and momentum coordinates are taken to be w,. and
Ja respectively. Prove that if .4 is the new Hamiltonian,

Jo = —0/0wa, the = 3.9(/3)a
(b) Deduce from (a) that .
Ja = constant and Wa = fab + Ca
where f« and ¢, are constants and o = 3.9/8/a.

(¢} By Hamilton's equations for the canonical coordinates Q,, P,, .
P, = -2 4i10Q, Q. = adl/oP, n

Then since the new position and momentum coordinates are taken as @, = w, and P, =J,,
these equations become

Jo = —agifow, g = o.9(/d, (#)

(%) Since ¢{ = E, the new Hamiltonian dependa only on the J, and not on the w,. Thus from (2)
we have

Jo =0, w, = constant = f, (3]
where /£, = d.4{/8J,. From (3) we find, as required,

Jo = constant, w, = f.t+ ¢, (4}
The quantities J, are called action variables while the corresponding integrals

f?ad% = Ja (5}

where the integration is performed over a complete cycle of the coordinate g, are called
phase integrals, The quantities w, are called angle variables.

12.19, (@) Let Aw. denote the change in w. corresponding to a complete cycle m the particu-
lar coordinate g.. Prove that

Awe = 1 ifa=7r
T o it awr
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(b) Give a physical interpretation to the result in (a).

- Wy _ :f 2 [ a8 _ d /a8
@ wo = §ota = (@) = §a3 (5w
3 a8 aJ, fl if a=7r
s Ps-de, = 5 0= .
al, Y 3q, af, 10 if avr

where we have used the fact that w, = 35/3J, [see Problems 12.17 and 12.18] and have as-
sumed that the order of differentiation and integration is immaterial.

(b) From (a) it follows that w, changes by one when ¢, goes through a complete cycle but that
there is no change when any other ¢ goes through a complete cycle, It follows that ¢, is a
periodic function of w, of period one. Physically this means that the f_ in equation (4) of
Problem 12.18 are frequencies.

12.20. Determine the frequency of the harmonic oscillator of Problem 12.15.

A complete cycle of the coordinate g [see equation (10), Problem 12.15] consists in the motion
from ¢ = —V28/x to ¢ = +V28/x and back to ¢ = —28/x. Then the action variable is

¥28/x ¥2p/x
7= $ede = 2f  VEmG-pide = of  VEmE-pea dg
- 287 o
= Z2rfvmic
.4 a "

12.21. Determine the frequency of the Kepler problem [see Problem 12.18].

A complete cyele of the coordinate r consists in the motion from r = r,, t0 74, 81d back te

* = Foine Where r and 7., are the minimum and maximum values of r given by the zeros
of the quadratic equation [see equation (10), Problem 12.16)

2mfy + 2mKpr — pifrt = 0 n

We then have from equations (6} and {7) of Problem 12.15,

Jo = § Peds = _4’-%& = ‘%S’—zds = £2"ﬁgda = 2z8, @
J, = § p dr = §%fej-dr = f%dr = 2 e Vemgs + 2mK/r — g2/r* dr
T Tmin

= 2emK/N—2mBs — 2vp, ®

From (2} and {8) we have on elimination of g,,
Jo+J, = 2emKN~2mg, Y

Since g3 = E, (4) yields
N

Then the frequencies are
g, = IA _ gt p o= A | artmiE
¢T3, T (J,+IP’ 4 at, (Je+ TP
Since these two frequencies are the same, i.e. there is only one frequency, we say that the
system is degenerate,
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MISCELLANEOUS PROBLEMS

12£22. A particle of mass m moves in a force field of potential V. Write (a) the Hamiltonian
and (b) Hamilton’s equations in spherical coordinates (r, ¢, ¢).

v {2) The kinetic energy in spherical coordinates is
T = Imis? + 122 + 12 sin? 9 $9) @
Then the Lagrangian is
L=T—V = Jm(+ 7%+ r2sin20 42 — Vir,0,4) @
We have R . . . . .
p, = 3L/ar = mr, py = dLf3¢ = mrle, py = oLfdp = mrlginte ¢ £4]
o & s _ _Po . Py
and r=o 8= 5. 6= —mers 4

The Hamiltonian is given by
H = Epu &a - L
= pr o+ Ped + pyd — Am(F + 1282 + #2 5in? 6 ¢%) + Vir,4,¢)
P . P} A

= om T Tmn? T Trrtunis T V6 &)

where we have used the results of equations {4).

We can also obtain (5) directly by using the fact that for conservative systemsz the
Hamiltonian is the total energy, ie. H=T+ V.

{5) Hamilton’s equations are g, = Lz Py = —2H  Tpen trom part (a),
9Py gy
s _OH _p o _OH _ P o _oH _ _ P
T oap, T m’ = pg w7 dpy  mrlain?e
s - 0H _ P P oV
Pe = a = wmr®  mrginZe or
s _ _OH _ Pecoss gy
Pe = 3% ~ mrZginde e
. . _9H _ oV
Pe = T3 T T op

12.23. A particle of mass m moves in a force field whose potential in spherical coordinates
is V = —(K coat)/r’. Write the Hamilton-Jacobi equation describing its motion.

By Problem 12.22 the Hamiltonian is

2 2
~ 1 Ps Py _ Kcose
H = 2m("3+fs+rasin%) = 0
- S def S . . . .
Writing p, = ar Pe= et Py = ET»" the required Hamilton-Jacobi equation is
acf 1 AV WA 1 af \2 Kcosoe _
ot Yem\\or) T7\3e/ Tramta\3s z -0 ®

12.24. {¢) Find a complete solution of the Hamilton-Jacobi equation of Problem 12.23 and
(b) indicate how the motion of the particle can be determined.

(0) Letting of = Si(r)}+ 5u(6) + Ss(¢) — Et in equation (2) of Problem 12.23, it can be written
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1 /dS)\2 | 1 /dSs\* 1 ﬁ)’ Kcose _
m (‘dT»’) * Zmre (F) + Zme smie ( /) e —E @
Multiplying equation (1) by 2ms? and rearranging terms,
ds,\2 dS;\3 1 /dS,\2
rz(?) — 2mEy = -— (?‘—) = inis (-I; + ZmK con s

Since the left side depends only on r while the right side depends on ¢ and ¢, it follows that
each side must be a constant which we shail call 8,. Thus

FERY _
r’(?r-) — 2mE~ = g8, "
t d8,\3
and —(%) -'i:,‘(?:' + 2mK cose = )]

Multiplying eguation (#) by sin®# and rearranging terms,
(ﬁ)s = 2mK sin? s - in?e — ainse f‘& : %)
a2 = sin? ¢ cos B,y #in 8in’ de

8ince the left side dependa only on ¢ while the right side depends only on ¢ each side must be a
constant which we can call 8,, However, since

b _ B ®

=

Pa = E - “
we can write g, = p:. This is a consequence of the fact that ¢ is a cyclic or ignorable co-
ordinate, Then (4) becomes
2

. . . dS,\*2
2mK aint¢ cos ¢ — B, sin?s — ain?e (—E) = pa )
By solving equations (2), {6) and (5), we obtain

S, = f VEmETBiRar, s, = [ VIRt~ pEade = Bids, Sy = pev

where we have chosen the positive square roots and omitted arbitrary additive constants. The
complete solution is

o = fw/2mE+ﬂ1fr3dr+ fVMma—pgm% — B dé + pyp — Et

{b} The required equations of motion are found by writing

i) 3ef o

aﬂl = Yi1» ﬁ=72v ESYS

and then solving these to obtain the coordinates r, 9,4 as functions of time using initial condi-
tions to evaluate the arbitrary constantas,

l',’&ﬁ. If the functions F and G depend on the position coordinates ¢., momenta p. and time
~/ t, the Poisson bracket of F and G is defined as

7.6 = z(aFaG arﬁ)

E 0qa 9Qa Dy

Prove that (a) [F,G) = =[G, F], (b) [F1+F: G) = [F,G] +[F,G), (¢) [F,q] =
6F/6‘10r, (d) [F, 139] = _aFfaq'-.

- OF G _ 8F G\ _ _ _a,eiﬁ:_ﬁifi) = -
@ [F’ G] - ? (31:‘« 0Gy” Oy 0Py - ] (31-"¢ g 09y 9Py [G’F]

This shows that the Poisson bracket does not obey the commutative law of algebra.
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Fy + F3) aF, + F,

(a""l 3G oF, aG) E("’F:aG 31"'386)

Py 3G, g, O, 0Py 8¢, 3 0Py
(F1. G] + [Fa 6]

It

This showa that the Poisson bracket obeys the dig¢tributive law of algebra.
-3 (i %, _ oF a&) _ 9F
Py s 3y Py 8p,

since dqfaq, =1 for a«a=r and 0 for a~ #, while 3q/op, =0 for all «. Since r is ar-
bitrary, the required result follows,

{¢) [F * qr]

@ (¥, #r] P Ma 390 9P

since dp,/ag, =0 for all a, while 3pJip, =1 for a=7r and 0 for «> r. Since r is ar-
bitrary, the required result follows.

E(aF P, aFapr) - _9F

lgl&\ If H is the Hamiltonian, prove that if f is any function depending on position, momenta

and time, then | % g_{ .
o = Lar+ 3 (Lon+ 2L an) )
E # = de3 (i) o
But by Hamilton’s equations, e = %, o = —% )

Then (£) can be written

i _ o (iﬁ-.ﬂtﬂ =
e~ ot + § 3y Py IPa ¥ a + [H'ﬂ

Supplementary Problems

THE HAMILTONIAN AND HAMILTON'S EQUATIONS

12484, A particle of manss » moves in & force field of potential V. (¢) Write the Hamiltonian and (b} Ham-
N ilton’s equations in rectangular coordinates (z,y, z).
Ane. (8) H = (pp+pi+pd2m + Viz,v,2)
(%) 2 =p/m, § =p/m, &= pSm, p, = =iV/oz, p, = —aV/3y, P, = —6V/se

13.28. Use Hamilton’s equations to obtain the motion of a particle of mass m down a frictionleas inclined
plane of angle a.

12.29. Work the problem of small oscillations of a simple pendulum by using Hamilton’s equations.

1230, Use Hamilton's equations to obtain the motion of a projectile launched with speed v, at angle «
with the horixontal.
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12.31. Using Hamilton's equations, work the problem of the harmonie oscillator in (a) one dimension,
(¥) two dimensiona, (¢) three dimensions.

12.32. Work Problem 3.27, page T8 by uding Hamilton’s equation,

PHASE SPACE AND LIQUVILLE'S THEOREM

12.33. Explain why the path of a phase point in phase space which represents the motion of a system of
particles can never croas itself.

12.34. Carry out the details in the proof of Liouville’s theorem for the case of two degrees of freedom.

CALCULUS OF YARIATIONS AND HAMILTON'S PRINCIPLE

12.35. Use the methods of the calculus of variations to find that curve connecting two fixed points in a
plane which has the shortest length,

12.36. Prove that if the function F in the integral f Fiz,y,¢")dz is independent of z, then the integral
is an extremum if F—y'F . =¢ where ¢ is : constant.

12.37. Use the result of Problem 12.36 to solve (a) Problem 129, page 322, (b} Problem 12.35.

1238. It is desired to revolve the curve of Fig. 12-5 hav- v
ing endpoints fixed at Pix,,¥,) and Q(xy, ¥s} about
the z axis so that the area I of the murface of
revolution is a minimum.

{a) Show that I=2rfz’yv'1+v'3dc.

I
(b) Obtain the differential equation of the curve.
(¢) Prove that the required curve is a catenary.
Ans. (8) wy'" =1+ ()2

12.39. Two identical circular wires in contact sre placed
in a soap solution and then meparated so as to
form a sosp film. Explain why the shape of the
soap film surface is related to the result of Prob-
lem 12.38, Fig.12-8

1240. Use Hamilton’s principle to find the motion of a simple pendulum.
1241. Work the problem of a projectile by using Hamilton’s principle.

12.42. Use Hamilton’s principle to find the motion of a solid cylinder rolling down an inclined plane of
angle a.

CANONICAL TRANSFORMATIONS AND GENERATING FUNCTIONS
1243, Prove that the trgnsformation Q =p, P = —¢ is canonical,

1244, Prove that the transformation @ = gtanp, P = In sinp is canonical,

1245. (a) Prove that the Hamiltonian for a harmonic oscillator can be written in the form H = {p/m+
§oa®

{d) Prove that the transformataon g = 1’2P!\!m sinQ, p = .\’m cos @ is canonical.
{¢) Express the Hamiltonian of part (a) in terms of P and Q and show that Q is cyclic.
{d) Obtain the solution of the harmonic oscillator by using the above results,



12.46.

12.47.

12.48.

12.49.

12.58,

1251,

HAMILTONIAN THEORY [CHAP. 12

Prove that the generating function giving rise to the canonical transformation in Problem 12.45(b)
is §=3vVeng®eotQ,

Prove that the result of two or more successive canonical tranaformations is also canonical.

Let 1{ be a generating function dependent only on Q., p,,t. Prove that
ou U ru

P"‘:_E‘:’ Q’a:—m. ,_9{=-51-+H

Let ¥ be a generating function dependent only on the old and new momenta p, and P, respectively
and the time t. Prove that
o) av v

% =~ Q=35 H=Ft+H

Prove that the generating function U of Froblem 12.48 is related to the generating function T of
Problem 1212by U = T — 2 Py Qa-

Prove that the generating function T of Problem 12.49 is related to the generating function T
Problem 1212 by U = T+ ZPy Qs — = Py G-

THE HAMILTON-JACOBI EQUATION

12.52.

12.53.

12.54.
1255,

12.56.

Use the Hamilton-Jacobi method to determine the motion of a particle falling vertically in a uniform
gravitational field.

(a) Set up the Hamilton-Jacobi equation for the motion of a particle sliding down a frictionless
inclined plane of angle o. {b) Solve the Hamilton-Jacobi equation in {a) and thus determine the
motion of the particle,

Work the problem of a projectile launched with speed v, at angle a with the horizontal by using
Hamilton-Jacobi methods.

Use Hamilton-Jacobi methods te describe the motion and find the freguencies of a harmonic oscil-
lator in (a) 2 dimensions, (&) 3 dimensions,

Use Hamilten-Jacobi methods to arrive at the generating function of Problem 12.46.

PHASE INTEGRALS AND ANGLE YARIABLES

12,51,

12.58,

12,59,

12.60.

1261

Use the method of phase inteprals and angle variables to find the frequency of a simple pendulum

of length [, assuming that oscillations are smalt. Ans, 21—# %

Find the frequencies of (a) a 2 dimensional harmonic oscillator, (b) a 8 dimensional harmonic
oscillator.

Obtain the frequency of small oscillations of a compound pendulum by using phase integrals.

Two equal masses m connected by equal
springs to fixed walls at 4 and B are free
to slide in a line on a frictionleas plane 4B
[zee Fig. 12-6]. Using phase integrals deter-
mine the frequencies of the normal modes.

Discuss Problem 12.57 if oseillations are not
assumed small. Fig.12.8

MISCELLANEOUS PROBLEMS

1

A particle of mass m moves in a force field having potential Vip, ¢,2) where p, ¢,z are cylindrical
coordinates. Give (o) the Hamiltonian and (b) Hamilton's equations for the particle,

Ane. (o) H = 03+ pi/o* +p2)2m + V(p,9,2)
(9) b= pJm, ¢ =py/mr2, :=p,im, p,=pyimpd—aV/dp, py=—0V/d¢, py=—dV/iz
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12.63.

12.64.

12.65.

12.66.

12.67.

12.68,
12.69,
12.70.

12,71,

12,72,

12.73.

12,74,

12.75.

A particle of mass m which moves in a plane relative to a fixed set of axes has a Hamiltonian
given by the total energy. Find the Hamiltonian relative to a set of axea which rotates at constant
angular velocity » relative to the fixed axes.

Set up the Hamiltonian for a double pendulum. Use Hamilton-Jacobi methods to determine the
normal frequencies for the case of small vibrations,

. "

13
Prove that a necessary condition for [ = f P(t,z, z,x)dt to be an extremum is that
t
OF _ d (F\, &(F\ _
oz dt \ gx a2\ ax

Can you generalize this result?
Work Problem 3.22, page 76, by Hamiltonian methods.

A particle of mass m moves on the inside of a frictionless vertical cone having equation 22+ y? =
z2 tanta. (a}) Write the Hamiltonian and (b) Hamilton’s equations using cylindrical coordinates.

2 ot 2
sin‘ a
PosinZe | Pe

Ang, H = +
ng, (@) om Ts? mgp cot «
. 2
" P, 3in . P
) b = F— o P = _m:S — mg cota

Use the results of Problem 12.67 to prove that there will be a stable orbit in any horizontal plane
z=h >0, and find the frequency in this orbit.

Prove that the produet of a position coordinate and its canonically conjugate momenturmn must
have the dimension of action or energy multiplied by time, i.e. ML2T-1,

Perform the integration of equation (79) of Problem 12,16 and compare with the solution of the
Kepler problem in Chapter 5.

Verify the integration result ($) of Problem 12.21,
Prove that Euler’s equation (9), page 313, can be written as

. O 3y azF 2F  F
¥ oy'2 v Yoy  oex oy

A man can travel by boat with speed v, and can walk
with speed v, Referring to Fig. 12-7, prove that in
order to travel from point 4 on one gide of a river
bank to a point B on the other side in the least time
he must land his boat at point P where angles ¢, and
oy are guch that .

sin &, v,

sin ¢, vy

Discuss the relationship of this result to the refrac-
tion of light in the theory of optics.

Prove that if a particle moves under no external
forces, ie. it iz a free particle, then the principle of
least action becomes one of least time. Ddiscuss the
relationship of this result to Problem 12.73. Fig.12-7

Derive the condition for reflection of Hght in optical theory by using the principle of least time.‘\
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12.76. 1t is desired to find the shape of & curve lying in a plane and having fixed endpointa such that its

immoment of inertia about an axis perpendicular to the plane and pasaing through a fixed origin is a
minimum.

{z) Using polar coordinates {(r,#), show that the problem is equivalent to minimizing the integral
Ty
I = f 21 + r{de/dr)? dr
fwrl

where the fixed endpoints of the wire are {r;, ¢,}, (rs ).
{b) Write Euler’s equation, thus obtaining the differential eguation of the curve.
(6) Solve the differential equation obtained in (b) and thus find the equation of the curve.

Ansg. {¢}) r® = ¢, sec {38 — ¢;) where ¢, and c, are determined so that the curve passes through
the fixed points.

12.77. Use the Hamilton-Jacobi method to set up the equations of motion of a spherical pendulum.
12.78. Use Hamilton-Jacobi methods to solve Problems 11.20, page 293, and 11.21, page 294.

12.79. It [F, G} is the Poisson bracket [see Problems 12.26 and 12.26], prove that
{0) [F1FyG] = F([FG] + FyfF, G

® &ra = [Z.6]+[r¥]
d
© gFa = (46|« [rg]

12, o, Prove that (G) [Qw QB] =0, {b) [pm pB] = 0' (c) [pm qﬂ] = 3&3

1 ifa=g
where 8,5 = is called the Kronecker delta.

0 ifawp

1281, Evaluate [H.t] where H is the Hamiltonian and t is the time. Are H and ¢ canonically conjugate
variables? Explain.
12.82. Prove Jacobt's identity for Poisson brackets
[Fu [Fo. Fol] + [Fo [Fy, Fy]] + [Fy, (Fu, Fal] = 0

1283, Illustrate Liouville’s theorem by using the one dimensional harmonic oscillator.

1284. {a} Is the Lagrangian of a dynamical system unique? Explain.
{b) Discuss the unigueness of the generalized momenta and Hamiltonian of a syatem.

12.85. (a) Set up the Hamiltonian for a string consisting of N particles [see Problem 8.28, page 215]
{b) Use Hamilton-Jacobi methods to find the normal modes and frequencies.

12.86. Prove that the Poisson bracket is invariant under a canonical tranasformation.

1287. Prove that Liouville’s theorem is equivalent to the result ap/at = [p, H].

L] n
1288, (o} Lot Qy = I 6yuqu Py = 2 byp, where a,, and b,, are given constants and
um] w=1
a=12...,m Prove that the transformation is canonfcal if and onmly if &, =4,/a
where A is the determinant,

@y G2 ... Byp
Gz @22 C2n
Qpt Bpg ... Ggp

and a,, is the cofactor of the element a,, in thia determinant,
{b) Prove that the conditions in (g) are equivalent to the condition P, @, = = Py a

1289, Prove that the path taken by a fixed point on a circle as it rolls along a given line is a cyeloid.
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12.90.

12.91.

12,92

12.93.

12.94,

12.95.

12,96,

12.97.

12.98.

12.99.

12,100

{a} Express as an integral the total potential energy of a uniform chain whose ende are suspended
from two fixed points. (b) Using the fact that for equilibrium the total potential energy is a mini-
mum, use the caleulus of variations to show that the eguation of the curve in which the chain
hangs is & catenary as in Problem 7.32, page 186. [Hint. Find the minimum of the integral subject
to the constraint condition that the total length of the chain is a given constant.]

Use the methods of the calculus of variations to find the closed plane curve which encloses the
largest area,

Prove that the constants (g} g in Problem 12.15 and (&) g; in Problem 12.18 can be identified with
the total energy.

If the theory of relativity is taken into account in the motion of a particle of mass m in a force
field of potential V, the Hamiltonian is given by

H = vVpPel+mid + V
where ¢ is the apeed of light. Obtain the equations of motion for thia particle.
Use Hamiltonian methoda to solve the problem of a particle moving in an inverae cube force field.

Use spherical coordinates to solve Kepler’s problem.

Suppose that m of the n coordinates q;, ¢5, .. ., ¢, are cyclic [say the first m, fe. ¢;,q5 ..., ¢n]. Fet

"
R = El ¢edu — L where ¢, = dL/og,
o=
- d4/aRY _ R
Prove that for a=m+1,...,n dt(iﬁ) = .

The function ® is called Routh’s function or the Routhian. By using it a problem involving n
degrees of freedom iz reduced to one invelving n — m degrees of freedom.

Using the properties 3L = %sy + gﬁéay’, 3y) = 3y

of the variational symbol 3 [see Problem 12.6] and assuming that the operator & can be brought
under the integral sign, show how Lagrange’s equations can be derived from Hamilton’s prineiple.

Let P = Pip,q), @ = Q{p,q). Suppose that the Hamiltonian expressed in terms of p,q and P, Q
are given by H = H(p,q) and _§f = 4{(P. Q) respectively. Prove that if

§ = 3H/ap, p = —eHloq
then & = agqap, P = —04i/5Q
provided that the Jacobian determinant [or briefly Jacobian]

3P, oPfép oPfaq
3, q) 3Qop 3Qleq

Discuss the connection of the results with Hamiltonian theory.

(¢} Set up the Hamiltonian for s solid eylinder rolling down an inclined plane of angle o
(b) Write Hamilton's equations and deduce the motion of the cylinder from them.
{¢) Use Hamilton-Jacobi metheds to obtain the motion of the eylinder and compare with part (b).

Work Problem 7.22, page 180, by Hamilton-Jacobi methods.
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12.161.

12.192.

12.108,

12164,

12.165.
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Write (8) the Hamiltonian and (b) Hamilton's equationa for a particle of charge ¢ and mass m
moving in an electromagnetic field {see Problem 11.90, page 309},

Ane. () H = —2—:;@—«\)=+e¢

® v = %(p-dﬁ}. P = —eVe + eV(A-v)

(2) Obtain the Hamilton-Jacobi equation for the motion of the particle in Problem 12.101. (b) Use
the result to write equations for the motion of & charged particle in an electromagnetic field.

(a) Write the Hamiltonian for a eymmetrical top and thus obtain the equations of motion. (&) Com-
pare the results obtained in {a) with those of Chapter 10.

Prove Theorem 12.2, page 314,

An atom consiasts of an electron of charge —e moving in a central force field F about a nucleua of
charge Ze such that Zeotr

F=—2£I

r

where r is the position vector of the electron relative to the nucleus and Z is the atomic number.
In Bohr's quantum theory of the atom the phase integrals are integer multiples of Planck’s con-

stant A, ie.,
f?rdf = ﬂlh, fp,d& = nzk

Using these equations, prove that there will be only a discrete set of energies given by

E. = - Z2mZe
L Wk

where n=n,+n,=1,2,8,4,... is called the ordital quantum number.



Appendix A

Units and Dimensions

UNITS

Standardized lengths, times and masges in terms of which other lengths, times and masses
are measured are called units. For example, a distance can be measured in terms of a standard
meter. A time interval can be measured in terms of seconds, hours or days. A mass can be measured
in terms of kilograms. Many different types of units are possible. However, it is conventional
to use nowadays the International System of Units (SI) which is one of the metric systems.

In the table on page 340, units of various quantities in the SI system are given.

In the table on page 341, conversion factors among units of the various metric systems are
given.

DIMENSIONS

The dimensions of all mechanical quantities may be expressed in terms of the funda-
mental dimensions of length L, mass M, and time T. In the second column of the table on
page 340, the dimensions of various physical quantities are listed.

339
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UNITS AND DIMENSIONS

UNITS AND DIMENSIONS

[APPENDIX A

Physical Quantity Dimension | Name and Symbol Definition of CGS Systern
of the SI Unit the 81 Unit
£ Length L meter (m) m em
=
g Mass kilogram (kg) kg g
S
= Time T second (s} 8 s
Veloeity Ly- meter per /s cm/s
second
Acceleration LT-* meter per mje? cm/fst
second squarcd
Force MLT-* newton (N) kgmeg=* =Jm™! gem s~ =dyn
Momentum{Impulsel MLT ! newton second kgms—! =Ns gems—! =dyns
Energy, Work MEL:T ¢ joule (J) kgm?*3~t =Nm gemis—* = erg
= dyn ¢m
3 Power ML -3 watt (W) kgms—*=Jsg"?! gemis— =ergs !
g
2 Volume Ls cubic meter m?* em?®
1]
e - .
7 | Density ME-3 kl[ogram per kg m—* gcm ™~
= cubic meter
Angle — radian {rad} rad rad
Angular velocity -1 radian per second rad s 1 rad st
Angular m2 radian per rad s —t rad s —?
acceleration second aquared
Torque or MET -2 newton meter kgm®*~* = Nm gem®s~*® = erg e
momentum of force
Angular ML -1 newton meter kgm*s—! gem?2s—?
morentim per second
Momentum of ML Kilogram meter kg m* gcm?
inertia squared
Pressure MEL-1T—2 pascal (Pa) kgm~"t = goem~lsT? = erg
Nm-t=Jm"* em~? = dyn cm ~*
Frequency - hertz (Hz) st g~
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Length

Area

Volume

Mass

Speed

Density

Force

Energy

Power

Pressure

Angle

UNITS AND DIMENSIONS

CONVERSION FACTORS

1 kilometer {lkm) = 1000 m

! centimeter {cm} =10"*m

1 millimeter (mm) =10"*m

1 micron or micrometer (pm) = 10~*m

1 nanometer {nmj} =10"%m

1 angstrom (A = 10-1*m
1 picometer (pm) - = 10"'t*m
! aere = 102 m?

1 barn (b) = 10 -6 m?
1 liter {1) = 102 m?

lg = 10-% kg
1 tonne {t) =10% kg

1 km/h = 0.2778 mfs
lemfs = 10-*m/s

1 gfem? = 107 kgfm?

1 dyne {dyn) =10-*N

1 kilogram force (kgf) = $.807 N

1 erg =HW-7J

1 kilowatt hour (kWh) = 3.6 x 108 J
1 electrouvolt (eV) = L602Z x 10-1*J
1 ealorie (cal) = 4.186 J
lergs—? =10"W

I horsepower (hp) = T45.7TW

1 kilowatt (kW) = 10*W

1 dyn om—* = 10-1Pa

1 atmosphere (atm) = 1.013 x 10% Pa
1 bar {bar) 10 Pa

|

10
1 rad

(=/180)rad = 0.017453 rad
57.296°

341
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Astronomical Data

THE SUN
Mass 2.0 x 102 kg
Radius 6.96 x 10°km

Mean density

1.42 x 107 kg/m*

Mean surface gravitational
acceleration

273 m/s"

Eacape velocity
at surface

820 km/s

Period of rotation
about axis

25,38 days or 2.187 x 10%s

Universal gravitational
constant &

8.673 x 10~ m?/kg-s?

THE MOON

Mean distance from earth

3.84 x 10*km

Period of rotation

27.3days or 2.36 x 10*s

about earth
Equatorial radius 1738 km
Mass 7.38 x 10%* kg

Mean density

3.34 x 107 kg/m*

Mean surface gravitational
acceleration

1.62 m/a*

Escape velocity

2,38 km/s

Period of rotation

27.3daysor 296 x 10's

about axis
Orbital speed 1.02 kmafs
Orbital eccentricity 085

342
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ASTRONCMICAL DATA
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Appendix C

Solutions of Special
Differential Equations

DIFFERENTIAL EQUATIONS

An equation which has derivatives or differentials of an unknown function is called a
differential equation. The order of the differential equation is the order of the highest
derivative or differential which is present. A solution of a differential equation is any
relationship between the variables which reduces the differential equation to an identity.

Example 1.
The equation :—: = 2y 1is a differential equation of first order, or order 1. A molution of this equation

is ¢ = ¢¢22 where ¢ is any constant, since on substituting thia inte the given differential equation we have
the identity
2ee2* = el

Example 2.
The equation a?dx + y®dy = 0 is a differential equation of fivst order. A solution ia #3/3 4+ y¥/d = ¢
where ¢ is any constant, since taking the differential of the solution we have

dix¥3 +y4/4) = 0 or uldr+ yidy = 0

Example 3.
aty

The equation i 3% + 2y = 4r s a differential equation of mecond order. A solution is

¥ =co + 12 4+ 2 -+ § sinece

%— Sg—z + 2y = (e1e% 4 dege®) — B{ejet + 2ege? 4 2) + 2(eger 40,635 + 22+ 8) = du

In the above examples we have used = as independent variable and y as dependent
variable. However, it is clear that any other symbols could just as well have been used.
Thus, for instance, the differential equation of Example 8 could be

2
¢x _ gdr L o = 4

di? dit
with independent variable ¢ and dependent variable x and golution = = ¢ + c26% + 2¢ + 3.

The above equations are often called ordinary differential equations to distinguish them

PY _ LY

from partial differential equations such as e e involving two or more independent

variables.

ARBITRARY CONSTANTS. GENERAL AND PARTICULAR SOLUTIONS

In the above examples the constants ¢, ¢;, ¢2 can take on any values and are called
arbitrary constants. In practice an nth order differential equation will have a solution
involving exactly n independent arbitrary constants. Such a solution ia called the general
solution. All special cases of the general solution obtained by giving the constants special
values are then called particular solutions. For instance in Example 3 above if we let
e1=6, ¢z =—3 in the general solution y = ¢ie* + c2¢®* +22+3, we obtain the particular
solution y = Be* — 3e* +2x+ 3.
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Particular solutions are often found from certain conditions imposed on the problem
and sometimes called boundary or initial conditions. In Example 8 for instance, if we wish
to satisfy the conditions y =5 when 2 =0 and y’ =dy/dv =1 when z =20, we obtain
e1=5, ¢ =—38.

A problem in which we are required to solve a differential equation subject to given
conditions is often called a boundary-value problem.

SOLUTIONS TO SOME SPECIAL FIRST ORDER EQUATIONS

The following list shows some important methods for finding general solutions of first
order differential equations.

1. Separation of Variables
If a first order equation can be written as

F(z)dz + Gdy = 0 (1)

then the variables are said to be separable and the general solution obtained by direct
integration is

J' Pz)dz + f Gw)dy = ¢ @)

2. Linear Equations
A first order equation is called linear if it has the form

Wy Py = Q@) @

Multiplying both sides by &/ ** this can be written
d Pdr,  _ Pdz
2 d7 = Qe
Then integrating, the general solution is

ye-r”’ = erf”'dx + ¢

or ¥y = e*’f“‘f Qe-f”:d:c + cefre (4)
The factor ef "% is often called an integrating factor.

3. Exact Equation

The equation
Mde + Ndy = 0 %

where M and N are functions of ;x and y is called an exact differential equation if
Mdz + N dy can be expressed as an exact differential dU/ of a function U(z,¥). In such
cage the solution ig given by Uiz, ¥)=ec.

A necessary and sufficient condition that (5} be exact is

oM _ N

'W = oz (6)
In some cases an equation is not exact but can be made exact by first multiplying

through by a suitably chosen function called an integrating factor as in the case of the
linear equation.
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4. Homogeneous Equation
If an equation has the form

% - () 0

it is called a homogeneous equation and can be solved by the transformation y = vx.
Using this, (7) becomes

dv de _ dv
v+ zags = Flv) or z = Fo)-v 8
in which the variables have been separated. Then the general solution is
dr _ dv _
J‘? = m + ¢ where v = yfz (9)

Occasionally other transformations, which may or may not be evident from the form
of a given differential equation, serve to obtain the general solution.

SOLUTIONS OF HIGHER ORDER EQUATIONS

The following list shows certain equations of order higher than one which can often
be solved.

1. g—g— = F(x). In this case the equation can be integrated n times to obtain

y = f -*-J‘F‘(m)dx" + ¢+ o + cox® 4+ - + Car"?
2. BV _ p(p WY h is missing and if ke the substitution dy/dz =
o » @y /- 1n this case y is missing and if we make the substitution dy/dz = v
we find that the equation becomes
v _
& =
a first order equation. If this can be solved we replace v by dy/fdzx, obtaining another
first order equation which then needs to be solved.

F(z,v)

3. % = F(y, %) Here z is missing and if we make the substitution dy/dz=wv,

noting also that

@y _ dv _ dvdy _ v
de2 ~ dx — dydx — Cdy’
the given equation can be written as a first order equation
1)-43‘1 = F(y,v)

d
which then needs to be solved. y

LINEAR DIFFERENTIAL EQUATIONS OF ORDER HIGHER THAN ONE

We shall consider solutions of linear second order differential equations. The results
can easily be extended to linear higher order equations.

A linear second order equation has the form

%’; + P(:c)% + Q@)y = R(») (20)
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If y, is the general solution of the equation
d
L+ P@Z+ Qmy = 0 (11)
[obtained by replacing the right hand side of (10) by zero] and if y, iz any particular solution
of (10), then the general selution of (10) is
¥y =y +y, (12)

The equation (11) is often called the complementary equatwn and its general solution is
called the complementary solution.

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

The complementary solution is easily obtained when P(2) and Q(x) are constants A and
B respectively. In such case equation (1) can be written

d*y dy -
dxz+Adx+By_0 (1%)
If we assume as solution y = e¢** where « is constant in (1), we find that « must satisfy
the equation
o + Aa+ B = 0

This equation has two roots, and the following cases arise.

1. Roots are real and distinet, say o »«,

In this case solutions are em* and e=*. It also follows that c,e* and ¢,e™* are solu-
tions and that the sum c¢e™* + ce** is the general solution.

2. Roots are real and equal, say o = a,.
In this case we find that solutions are e%* and ze”® and the general solution is
¢ ent + ¢ xe®i®,
1 2
3. Roots are complex.

If A and B are real, these compiex roots are conjugate, i.e. ¢ +bi and ¢—bi. Insuch
case solutions are e©@*b® = ¢ g% = ¢o* (cog b + ¢ sin bx) and e©~**(cos ba — i 8in bz).
The general solution can be written e°*(c, cos bx + ¢, 8in bz).

PARTICULAR SOLUTIONS
To find the general solution of
dy ay -
7zt T A ds + By = R(2) (14)
we must find a particular solution of this equation and add it to the general solution of {13)
already obtained above. Two important methods serve to accomplish this.

1. Method of Undetermined Coefficients.
This method can only be used for special functions R{x) such as polynomials and the
exponential or trigonometric functions having the form e*, cospx, sinpx where p

is a constant, together with sums and products of such functions. See Problems C.17
and C.18.

2. Method of Variation of Parameters.
In this method we first write the complementary solution in terms of the constants
¢, and ¢, We then replace ¢, and ¢, by functions f, () and f, (%) so chosen as to satisfy
the given equation. The methed is illustrated in Problem C.19.



348 SOLUTIONS OF SPECIAL DIFFERENTIAL EQUATIONS [APPENDIX C

Solved Problems

DIFFERENTIAL EQUATIONS. ARBITRARY CONSTANTS.
GENERAL AND PARTICULAR SOLUTIONS

C.1. (a) Prove that y =ce™*+ 2 — 1 is the general solution of the differential equation

dy -
d—x—x-i-y = 0

(b) Find the particular sclution such that ¥y =3 when = 0.

{0) If y=ce=t+ 2 —1, then dyfdx = —ce~*+ 1 and so
dyfde —x+y = (—ee *+1)—x+(ce *+x—1) =
Thus y =ce~*+x—1 is a solution; and since it has a number of arbitrary constants
{namely one} equal to the order of the differential equation, it is the general solution.

() Since ¥y=3 when 2=0, we have from y=ce 4+ x—~1, 3=¢—1 or e¢=4, Thus
¥ =4¢~ % + x — 1 is the required particular solution,

C2. (a) Prove that x =ce' + c,e”% 4+ gint is the general solution of
d’x dx

e * 2

(b) Find the particular solution such that x =2, da/dt =—8 at £ =10,

— 3x =2costf — 43int

(0) From = = e1ef + ¢p¢~3t + gint we have
d%x

‘;—: = ot — 8cye™ ¥ + cosi, Fr i cet + Bee—3 — gint
Then % + 2% — 82 = (¢et + Ocge3 — gint) + 2(cyet — 3ee~¥ + coat)

— 3{e et + cqe 3 + ain t)
= 2coat — 4sint

Thus # = ¢y e* + 036~3 + gin ¢ is a solution; and sihce it has two arbitrary constanta while the
differential aquation is of order two, it is the general solution.

(&) From part (2), letting ¢ = 0 in the expressions for z and dx/dt, we have
2'—'81“'03 Gl+cg=2
—8 = ¢, —8e;+1 or ¢~ 3¢, = —4
Selving, we find ¢; = 1/2, ¢, = 3/2. Then the required particular solution is
x = }et + fem3 4 gint

SEPARATION OF VARIABLES
C.3. {(a) Find the general solution of (2+xy*)dz + (y +2%y)dy = 0.
(b) Find the particular solution such that ¥y =2 when z=1.
{a) Write the equation as =z(1+y2dz + y(1+2%)dy = 0. Dividing by (1+23)(1+4%+0 to

separate the variables, we find

xdz | ydy _
T+ T = 0 e)

142
Then we have on integrating,
1+:v’ + f1+v’ - oA

or il::u[l+a“')+n}lﬂ(l-l-v’) = o
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CA.

This can be written 4 In {(1+2)(1+ 3%} =¢; or
(1+23(i+y) = ¢ (£)
which is the required genersl solution.

(b) Sinece y =2 when x = 1, we have on subatitution in (#), ¢, = 10; thus the required particular
solution ia
(1+2n(1+y?) = 10 or 2242+t = 9

Solve dR =R#2 if R=1 when ¢t=1.

dat
Separating the variables, we have % = t2dt. Integrating both sides,
1 _ 8
R gte

Substituting t =1, R =1 wefind ¢ = —4/3. Thus

s _
- 3 or R =

o

1
R

LINEAR EQUATION

C.5.

C.6.

Solve t%"+2.’cy = x'+2 if y=2 when 2=0.

This is a linear equation of the form (), page 345, with P = 2z, @ = #¥ +», An integrating

factor is ¢ ¥ = Multiplying the given equation by this factor, we find
e‘z:—: + 2xyer? = (2% + x)e*

which can be written Ed'z'(v &) = (@ + )t

Integrating, yet = f (P+xetde + o

or, making the substitution v = ! in the integral,

yet = iz’e’i +e
Thus y = fat+ ce—+?
Since y =2 when =0, wefind ¢ =2. Thus

y = 22+ 2e—=2

Check: It y = }a? + 2072, then dy/de = x—4we=**, Thus

%4-2:;3 = g — dze~? 4 20(Jx?+ 2677 = P+ x

Solve %= 8U+1if U=0 when t=0,

Writing the equation in the form

qU _
E-SU = 1 (1)
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we gee that it is linear with integrating factor e-r i o e—%, Multiplying (1) by e~%, it can be
written as

%(Ue-st) = e—M
Integrating, we have Uem3 = —Je-M + ¢
Since U =0 when ¢ =0, we obtain ¢ = 4. Thus
Ue=3t = ~fe-3t+ 4 or U = jledt—1 {£)

Another method, The equation can also be solved by the method of separation of variables. Thus
we have aU

w1 - #
Inteprating, {In@BU+1) = ¢+ e

Since U=0 when {=0, wefind ¢=0 sothat }Im(3U+1)=¢ Thus U=} —1).

EXACT EQUATIONS

CO7¢

Solve (32 + y cosx)dz + (sinz — 4y dy = 0.

Comparing with Mdxr+ Ndy=0, we have M =3x2+ ycosx, N =sinx— 4y Then
aM/oy = cosx = dN/dz and so the equation is exact. Two methods of solution are available.

Method 1.

Since the equation ia exact, the left side must be an exact differential of a function U. By
grouping terms, we find that the equation can be written

Sxtdy + (Wcosz dx + sinxdy) — dtdy = 0
i.e., d{z®) + diy sinz) + d(—yt) = ¢ or diz¢ +ysina—y¥) = 0
Integration then gives the required solution, 2% + yinz — 4yt = .

Method 2.
The given equation ean be written as
(322 + ycoax)dx + (sinz — 4yS)dy = dU = %dx + %dﬂ'
Then we must have
LA W e
() 3= = 3%+ ycoso ® 3y © s 4y

Integrating (1) with respect to x, keeping y constant, we have
U = 29 + yeinx + F(y)
Then substituting this into (£), we find
ging + F'(y) = sinz — 4° or Fily) = —4y®

where F'{y} = dF/dy. Integrating, omitting the constant of integration, we have F(y) =—y* so
that
U = o + yeinz — ¢4

Then the given differential equation can be written
dU = dz® +yeinz—yY) = 0

and so the solution is 23 + yasinz —yi=c.
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HOMOGENEOUS EQUATIONS
C8. Solve g;“ = e'f=+g—.

Let y = vz. Then the equation can be written

dv dy
r— =

_— = 2
v+zdz et + v or & ev

Separating the variables, L. = e~ vdv. Integrating, Ina = —e—v+¢. Thus the genersl solution is
Inz 4+ e~vz =g, d

SOLUTIONS OF HIGHER ORDER EQUATIONS

C9. Solve %ﬁl = 1+ cost where U=2, dU/dt=3 at ¢t =0,

Integrating once,
dUjidt = ¢+ gint + ¢

Then since dU/dt =3 at ¢t =0, we find ¢, =38. Thus
dU/dt = ¢t + gint + 8

Integrating again, U = 4 — cost + 8L + ¢y

Nowsince U=2 at t =0, we find ¢; = 8. The required solution is
U = 3§ ~cost+ 3t +8

C.10. Solve zy” + 2y = 2 where ¥ = dy/dx, ¥ = d*ylda?.

Since y is missi g, let 3’ = dy/dx = v, Then the equation can be written

dy - v 2 _
) z5+2v = g2 or {2y dx+x° = gz

This is a linear equation in v with integrating factor e"' @04z _ 2inz — Jnst= 43 Multiplying
(2) by «2, it can be written as

%(s’-v) = of
Then by integration, x%v = st/d+ ¢, or
v = dyldz = &4 + ¢;/at

Integrating again, y = 23/12—¢)/z + ¢5.

C.1L. Solve yy” + (¥')* =0 where y’ = dy/dz, y’ = d*y/d22.
Since x is missing, let ¢’ = dy/de = v. Then
v o Gv _ dv dy _ de
VI T & T @ 7
and the given equation can be written
yv%+v’ = 0 or v(v:—:-}-o) = 0

so that Y v=10 or (¢:) y%-}-v = ¢

From (7), ¥ =0 or y=¢;. From (), ‘i—”+g! =0 Le. mvtlnyg = ¢ or In(vy)=¢ 0
that vy = ¢y and v
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v = dyldx = oy or ydy = egdx
Integrating, w2 = ezt ey or ¥ = Ax+ R

Thus solutions are y =¢; and y2 = Az + B. Since the first is a special case of the second, the
required general solution can be written y2 = Az + B.

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

C.12,

C.13.

C.14.

Clls.

C .16.

Solve % 43: By = 0.

Letting ¥ = e*® in the equation, we obtain
(a2 — 4o — Blexr = ( or ol~4a—5 = 0

Thus (xa—58){++1) =0 and « = 5,—1. Then solutions are ¢ and ¢—< and the general solution is
¥ = 0,655 + e,

d2y
Solve Tt +10d + 25y = 0.

Letting y = e°2, we find a?+ 10a+25=0, Le, (a+BMa+B)=0, or o= —b ~b. Since
the root is repeated, solutions are ¢—52 and ze—52, Then the general solution is y = ¢,¢=5% + ¢gpe—%.

dx dx
Solve ae T 4dt + 4 = 0,
Letting 2= e, we find a®+da+4=0 or «=—2,—2. Then the general solution is
@ = ge” 1 4 gpte 3= e~ (e 4 cot).

&y -
Solve T +2dx+5y = 0.

Letting y = ¢**, we find a?+ 2¢+5=0 or a=—12i Then solutions are el-1+¥zr=
e tellr = g=7{con2x +i8in22) and el=1-202 = g—xe=%e = o—Z(cog 2x — { yin 2x}. The general
solution is y = e~ *(¢; con 2z + o, sin 2x).

Solve d*y/dx® + o'y =

Letting ¥ = ¢2f, we find o + 2 =0 or a = * fu, Then solations are ¢/ = cosux + ¢ sinwz
and e~z = coswx — i sin oz, The genersl solution is thus y = ¢, cos vz + ¢y ginwz.

METHOD OF UNDETERMINED COEFFICIENTS

60170

d
Solve %—4%—@ = 2 + 2,

By Problem C.12 the complementary solution, i.e. the general solution, of

Py _ L, -
? 4da: by = 0

in Vo = ¢ 65 4+ g0 % 1)

Since the right side of the given eguation contains a polynomial of the second degree (i.e. 2%)
and an exponential (2¢3*), we are led to the trial particular solution
= Az + Bx+ C + Ded ®)
where A, B, C,D are constants to be determined. '
Substituting (2) for ¥ in the given equation and simplifying, we find
(24 — 4B —5C) + (—8A ~ 6B)x — BAx3 — 8De¥* = a2 + 2%

Since this must be an identity, we must have
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24 —4B—-5KC = 0, ~8A —~-BB =9, -54A =1, -8D = 2
Solving, we find A =—1, B=2 C=-4 D=-1. Then from (9),

= ~l,2 4+ 8, _ £ 1
¥p = 5%+ g% — 155 — o€

Thus the required general solution of the given equation is

which can be checked by direct substitution.

C.18. Solve % + 10% + 26y = 20cos2zx.

The complementary solution [by Problem C.13] is
Yo = ee78 + gpxe—b ($3]
Since the right side has the term cos 2x, we are led to the trial solution
¥p = Acos2c + Bsin2x 2
Substitution into the given equation yields, after aimplifying,
(214 + 20B) coe 22 + (21B —20A)sin22 = 20 cos2x
Equating coefficientas of like terms, we have 214+ 20B =20, 21B — 204 = 0. Solving, we find

A ‘-'%—i%, B =%% so that the particular solution is
¥ = %—i% cos2x + %%({ sin 2z
and the general solution of the given equation iz
¥ = ¥t wp = 0@ 4 pgpmei 4 %cos% + %‘;sin&c

METHOD OF VARIATION OF PARAMETERS
C.19. Solve d*y/de®*+y = tanw,
The complementary szolution is as in Problem C.16 with o = 1:
Ye = ¢y co8x + gpsin £4]
We now assume that the solution to the given equation haa the form
¥ = fieoszx + frsinx (2)

where f; and f; are suitable functions of 2. From {2) we have, using primes to denote differentiation
with respect to x,

dyfde = —f,gine + fycomx + fjcosx + feinz ®
Before finding d2y/dx? let us observe that since there are two functions f; and f; to be determined

and only one relation to be satisfled [nameiy that the given differential equation must be satisfied]
we are free to impose one relation between f; and f,. We choose the relation

fieosz + fosine = 0 )
so as to simplify (#) which then becomes
dy/de = —fisinz + fycosx {5
Another differentiation then leads to
d2yldet = —ficosz — fysine — fieing + fycosw (8)

From (2) and (6) we see that the given differential equation can be written
diyfdz® +y = —fjsine + ficosx = tanx (7}

Thus —fisinz + ficosxz = tanz (5

From (4) and (8) we find f{ = —sin?a/eon®, f; =sinxz. Thus
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in® 1 -
i = _fam_zdx o - flocox,  _ —f(secx—cosz)dw
cos x cos x
= =—Inigecx + tanx) + sinzx + ¢
L = fsinxdx = =—¢o8x + &

Substituting in (£) we find the required general solution,
¥ = ¢ coax + eysinx — cosxIn(gecx 4 tan x)

Supplementary Problems

DIFFERENTIAL EQUATIONS. ARBITRARY CONSTANTS.
GENERAL AND PARTICULAR SOLUTIONS

C.28. Check whether each differential equation has the indicated general solution.

Fx _ ,d = ¢ = ¢
{a) a8 2dt+m-—t, 2 = (6 + ecpt)et + ¢+ 2
®) c‘%+v=aa; B—3U = ¢

C2l. (a) Show that z = ¢~ *c; ain¢ + ¢; cost) is a general solution of

a2z az -
ﬁ+2§+22 = 0

(3} Determine the particular solution such that z = —~2 and dz/dt =5 at ¢ =0.
Ans, () z=e¢¢(8aint — 2 coni)

SOLUTIONS TO SPECIAL FIRST ORDER EQUATIONS
C2. Solve dy/de = —2xy if y=4 when 2= 0. Ans, y = 4e—*2

£.8. Solve %=-—1:§ Ang, Vi—t2—i-22 =¢

C2.  Solve 3.‘!!_ 2y = = if y(i)=5. Ang. y=68z2—z

dx
C2. BSolve (z+2y)dx+ (22-6y)dy=0 if y=1 when 2=2, Ane. 224+ 4xy—By2 =T
C26. Solve % = %+g Ans, Inz+ (zfy) = ¢
C27. Bolve (ye=—e Yide + (xe~v+ef)dy = 0. Ans. yeT—xe"V = ¢

C28. Solve (x+ay)de+ (xy+¢)dy = 0. Ans. (2 + 1)y + 1) = cextv

€29, Show that the differential equation (4y — 22)dx + xdy = 0 has an integrating factor which de-
pends on only one variable and thuse solve the equation. Ans. xty—Jat=¢

SOLUTIONS OF HIGHER ORDER EQUATIONS
CH. Bolve AAUMdB=t+ et if U=8, dU/Mt=2 at t=0. Ans, U=4§t8 4ot +38¢+2

d
C3l. Solve zg—S&g: «t. Ans, y=—}jab+out+ o,



APPENDIX C] SOLUTIONS OF SPECIAL DIFFERENTIAL EQUATIONS 355

&U au =

CJ32. Bolve U-—;7 ar + 2(dt) = 0 Ana. Ut =¢jt+ey
C33. Solve |1+(% I d’y) Ans. (z— A+ (y—B) = 1

e dz dx? - 4 =
LINEAR HIGHER ORDER DIFFERENTIAL EQUATIONS
CH. Solve :% __2dy 8y = 0. Ans, ¥ = ¢y + cge— 2
¢ Sove T2+ 4804 4u = 0 if US1,dU/dt=0 st t=0.  Aws. U= (1+20e B
C.38. Solve % + 4% 4+ 6z = 0. Ans, z = e~ 2(¢;cost + ¢, 8int)
C.37. Solve fg + 2by = 0 if y(0) =10, y'(0) = 25. Ang, ¥y = 10 (cos%z + singm)
C38. Solve ¥ _ 49, — Ang. y = eZt(¢,0V8r + g0~ VB 1)

. d:cz da: . . 1 e
C39. Solve 4y’ — 20y + 26y = 0. Ans. (cq+ oqx)eds/d

d - - -
C.40. Solve % + 3d—g + 2y = 31 Ang. y = ¢1e7F + cge~ % + Je3s
RU | dU

Cdl, Solve e + a3t 2U = 6t — 10 coa2t + 6.

Ars. U = eje 2 +cpet — 3t — 4+ L 2in 2t — § con2t

Cd2. Bolve y” + y = secx by use of the method of variation of parameters.
Ang, y = ¢;sinx + ¢y conz + g aing — cosz In sec

Cd3. Solve {(a) Problem C.40 and (d) Problem C.41 by variation of parameters.

C.44. Solve each of the following equations by any method.
{a) y* — by + 6y = 60 sin 4% (&) v' + 4y = csc 2z
by ¥+ 20 — 3y = xe~* (@) " + 8y + 26y = 26« 4 33 + 1Be~=
Ans. (8} ¥ = ¢1e2* + cge92 4 2 cosdx — sindx
() y = cre® + cpe™37 — lue™?

(¢) ¥ = ¢; 0082z + ¢, 8in 2% — Jx cos 2o — } sin 2« In (cae 22)
{d) ¥y = e t{e;co8Bx + cysindz)+x+1+e7F
Cd5. Solve "+ 4y’ + 4y = ¢t Ans. y = (¢ + epz)e~% 4 JaZe—2

C.46. Solve simultaneocusly: dx/dt+y = e, z — dy/dt = L
Ans, x = ¢;cost —cp8int + Jet + £,
¥ = ¢y 8int+epcost+ fet — 1

CAT. Solve y”" +y = 4cost if y(0) =2, ¢'(0) = —1. Is the method of undetermined coefficienta ap
plicable? Explain, Ans. y = 2cost — pint + 2¢gint

C.48. Show how to solve linear equations of order higher than two by finding the general solutions o
{a) ¥y — 6y” + 11y’ — 6y = 86z, ®) yr + 29"+ y = 22,
Ans. (0) ¥ = ¢pe% + €ge% + £4e3% — 82 — 11
(b} v = o coax + ¢paina + wlegconx + ¢y 8inx) + 23— 4



Appendix D

Index of Special Symbols
and Notations

The following list shows special symbols and notations used in this book together with

the number of the page on which they first appear.

All bold faced letters denote vectors.

Cases where a symbol has more than one meaning will be clear frem the context.

G e WW

Dg, Dy
®p, €, €3
E

E

|

!v.\

!

F}a)’li;’(c)
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Symbols

length of semi-major axis of ellipse or hyperbola, 38, 118, 119
Fourier cosine coefficients, 196

acceleration, 7

acceleration of particle P, relative to particle P,, 7

area, 122

vector potential of electromagnetic field, 309

areal velocity, 122

amplitude of steady state oscillation, 90

maximum amplitude of steady state oscillation, $0

length of semi-minor axis of ellipse or hyperbola, 38, 118, 119
Fourier sine coefficienta, 196

magnetic intensity, 83

unit binormal, 7

speed of light, b4

curve, 6

time derivative operator in fixed and moving systema, 144
unit vectors, 72

total energy, 36

electric intensity, 84

force due to friction, 65

internal force on particle » due to particle », 173
frequency, 89

frequencies, 316

force, 33

force of particle 1 on particle 2, 33

average force, 60

damping force, 87

impulsive foreces, 285

actual and constraint forces acting on particle », 170
genersalized impulse, 286

force (external and internal) acting on particle » of a system of particles, 168

oEr
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INDEX OF SPECIAL SYMBOLS AND NOTATIONS

acceleration due to gravity, 62
gravitational constant, 120

generating function, 314

FPlanck's constant, 338

Hamiltonian, 311

Hamiltonian under a canonical transformation, 314
unit vector in direction of positive x axis, 3
moment of inertia, 225

moment of inertia about axis through center of mass, 226
moments of inertia about =, ¥,z axes, 254
products of inertia, 254

principal moments of inertia, 256

impulses, 285

angular impulse, 228

unit vector in direction of poasitive ¥ axis, 3
phase integral or action variable, 316

unit vector in direction of positive z axis, 8
radius of gyration, 226

tength, 90

Lagrangian, 284

Lagrangian under a canonical transformation, 314
mass, 33

rest mass, &4

total mass of a system of particles, 166
number of degreey of freedom, 282

orbital quantum number, 338

normal component of reaction force, 65
numtber of particles in a system, 166

unit normal, 7

generalized or conjugate momenta, 284
momentum, 33

period, 89

new generalized momenta under a canonical tranaformation, 314

power, 34
electrical charge, 84
generalized coordinates, 282

new generalized coordinates under & canonical transformation, 314

spherical coordinate, 32

position vector or radius vector, 4
position vector of center of mass, 166
unit vector in radial direction, 25
position vector of particle » relative to center of mass, 169
radiuz of curvature, 8

range, 75

maximum range, 75

reaisting force, 64

resultant of forces, 47

rigid body, 228

Routh’s function or Routhian, 337

arc length, 7

spin angular velocity, 269

generating function, 316

generating function depending on old position coordinates and new momenta, 314

357
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time, 6

kinetic energy, 36

tension, T4

unit tangent vector, 7

generating function depending on old and new position coordinates, 323

generating function depending on new coordinates and old momenta, 334
Yym limiting speed, 70

Vpaxs oin~ Maximum and minimum orbital speeds, 143

v velocity, 7

¥  velocity of center of mass, 167

Veyrp,  velocity of particle P, relative to particle Py, 7
v, velocity of particle » relative to center of mass, 169

V12, v{s relative velocities of particles along common normal before and after impact, 194

potential or potential energy, 35

generating function depending on old and new momenta, 334

angle variables, 316

work, 34

weight, 62

complementary solution, 347

particular solution, 347

transverse displacement of vibrating string, 196

eylindrical coordinate, 32

atomic number, 338

B I R

NeEs s aa

Greek Symbols

angle made by vector with positive 2 direction, 24
index of summation, 282

angular acceleration, 29

angle made by vector with positive y direction, 24
damping econatant, 88

ratio of speed of particle to apeed of light, i.e. v/e, 54
angle made by vector with positive 2 direction, 24
logarithmic decrement, 89

variation symbol, 313

Kronecker delta, 336

determinant, 336

coefficient of restitution, 195

eccentricity, 118

eylindrical coordinate, 32

Euler angle, 257

polar coordinate, 26

spherical coordinate, 32

#, unit vector perpendicular to radial direction, 26
curvature, 8

G O~ W W R R &

]
-1

B " B D oM oM

x spring constant, 86
X  colatitude, 152
ApAg g ... Lagrange multipliers, 280, 284
Ay, Ay, Ay components of torque along principal axes, 256
A torque or moment, 36
A, torque or moment about center of mass, 229
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coefficient of friction, 65
reduced mass, 182

index of summation, 166
cylindrical coordinate, 32
density in phase space, 318
denaity, 114

torsion, 31

radius of torsion, 31
time, 81

volume, 166

Euler angle, 257

phase angle or epoch, 88
apherical coordinate, 32
scalar potential, 309

% B 8 4 4 4 9 9 v T

B

L

generalized force, 283
angular speed, 8

wy wg,wg  components of angular velocity along principal axes, 256
« angular velocity, 144
25, 2,0, componentz of angular momentum along «,y, z axes, 254
Q3,9 components of angular momentum along principal axes, 265
8  angular momentum, 37

Al

AE

A+B
AXB

A+ (BXC)
AX(BXC)
Alu)
Alz,4,2)
#()
#lx, ¥, 2}

- e

v

Ve = gradg
V:A = diva
VXA =curlA
fr)

[F,6)

Notations

magnitude of A, 4

magnitude of distance from A4 to B, 11
dot or scalar product of A and B, 4
crosa or vector product of A and B, §
sealar triple product, §

vector triple product, b

vector function of u, 6

vector function of z,¥,2, 8

scalar function of %, 6

scalar funetion of z,y,2, 8

time derivatives of A, i.e. dA/dt, d2A/di2, 8

indefinite integral of A{u), 6

definite integral of Au), 6

integral along curve C, 9

integral around a closed path, ¢

del operator, 8

gradient of ¢, 8

divergence of A, 8

curl of A, 9

rmagnitude of central force, 116
Poizson bracket of F' and G, 3381






INDEX

Ahsolute motion, 34, 60
Acceleration, 1, 7, 17-20
along a space curve, 8, 20
angular, 8, 145, 148
apparent, 149
centrifugal, 146
centripetal, 8, 20, 21, 160
Coriolis, 145, 150
due to gravity, 62
in eylindrical coordinates, 32
in moving coordinate systems,
145, 146, 148, 149
in polar coordinates, 26
in spherical coordinates, 32
instantaneous, 7
linear, 145
normal, 7, 8, 19, 20
relative, 7, 18, 19
tangential, 7, 8, 19, 20
true, 149
uniform, 62, 65, 66
Action and reaction, 33
Action integral, 313
Action variables, 316, 328
Actual force, 170
Ajr resistance, 63, 69-72
Amplitude, 86, 87
modulation, 102
of damped oscillatory motion, 88
of steady-state oacillation, 50
Angle variables, 316, 328, 829
Angular acceleration, 8, 146, 148
Angular impulse, 170, 228, 237
Angular momentum, 37, 45-47
about principal axes, 255
conservation of, 37, 45-47, 168, 228, 257
of a rigid body, 227, 236, 254, 259, 260
of a system of particles, 168, 169, 176, 179
of the earth about itg axis, 150
principle of, 227, 229, 236, 238
relationship to torque, 37, 46,
168, 169, 176
Angular speed, 8 (see also Angular velocity)
Angular velocity, 144, 148
in terms of Euler angles, 258
of rigid body, 2563
Anharmonic oscillator, 115
Aphelion, 120
Apogee, 120
Approximations, method of succenssive, 154, 159
Apsides, 143
Arbitrary constants, 344, 348

861

Arc length, 7
Areal velocity, 122, 123
Area, of parallelogram, 15

of triangle, 81
Areas, law of, 116, 123
Associative law, 3, 10

for rotations, 245
Astronomical data, 842, 343
Astronomy, definitions in, 119, 120
Agymptotes, 119
Attraction, 120, 121, 129-133, 136
Atwood's machine, 76, 305
Axioms, 1

Binomial theorem, 106

Binormal, 7, 8

Bob, of simple pendulum, 90

Body axes, 267

Body centrode or locus, 229, 240, 241
Body cone, 257, 266

Bohr's quantum theory, 338
Boundary value problems, 195, 345
Bound vectors, 9, 10
Brachistochrone problem, 322

Calculus of variations, 313, 320-333
connection with Hamilton's principle, 521
Canonical coordinates, 314
Canonical equations, Hamilton’s, 311
Canonical transformations, 314, 328-325
condition for, 314
Celestial mechanics, 811
Center, of ellipse, 118
of force, 116
of gravity, 167
of hyperbola, 119
Center of mass, 166, 172-175, 183-186
motion of, 167
motion of system relative to, 169, 178, 179
Central field, 116 (s¢e also Central force)
equations of motion for particle in,
118, 122, 128
potential energy of particle in,
117, 123-126
Central force, 116, 121, 122, 168, 318
{see alro Central field)
determination of, from orbit, 118, 125-127
Centrifugal acceleration, 146
force, 146
Centripetal acceleration, 8, 20, 21, 150
forece, 146, 150
Centrode, apace and body, 226, 240, 241
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Centroid (see Center of mass) Curvature, 8, 20

Cgs system, 33, 62, 339, 340 radius of, 8, 20
Chain, hanging, 186, 187 Cycle, 87
sliding, 82

Cyelic coordinates, 312
Cycloid, 84, 85, 106, 107, 302, 322, 323
Cycloidal pendulum, 112, 308
Cyciones, 163
Cylinder, vibrations of, 104, 105
Cylindrical coordinates, 32
acceleration jn, 32
gradient in, 61

Characteristic determinant, 198
frequencies, 108

Chasle’s theorem, 224, 275

Cireular motion, 8, 20, 21, 95, 96

Cleck, 2

Coefficient of friction, 65

Colatitude, 162

Collinear vectors, 23 Lagrange’s equations in, 291, 292
Collisions of particles, 194, 195, 200-202 velocity and acceleration in, 32
Comet, 121 o
Commutative law, for dot and cross D'Alembert’s principle, 171, 182, 229
products, 3, 5, 10, 13, 14 Damped harmenic osciilator, 87, 88, 96-99
for Poisson brackets, 331 Damped oscillatory wmotion, 88, 98
for rotations, 230, 231 Damping coefficient, 88
Complementary equation and solution, 347 Damping 'fOI'CE'S, 64, 87
Components, of a vector, 4 Deceleration, 29 . .
Compound pendulum, 228, 237, 238, 279, 291 Decrement, logarithmic, 89, 97, 98
Compression time, 194 Definite integrals, 6
Conical pendulum, 1567 Definitions, 1 )
Conic section, 118, 127, 128 Deformable bodies, 165
Conjugate momentum, 284, 288 Degrees of_ freedom, 165, 172, 224, 225, 253, 282
Conservation, of angular momentum, - of a rigid body, 172, 263, 269
37, 45-47, 168, 228, 237 Det, 3
of energy, 36, 43-45, 124, Density, 165
169, 227, 229, 236, 240 in phase space, 312
of momentum, 87, 167, 173 Derivatives, in moving coordinate systems,
Consgervative force fields, 35, 43-45, 283, 144, 145, 147, 148
286, 287 notation for time, 8
eondition for, 36, 60, 51 of vectors, 6, 16, 17
Constant of the motion, 312 Determinant, characteristic, 198
Constrained motion, 64, 65, 72, 7% Jacobian, 337
Constraint force, 170 secular, 198, 215
Constraints, 170, 180 : Dextral system, 4 )
holonomie and non-holonomie, 170, 180, Diagonal, main or principal, 264
283, 284, 286, 287 Difference equation, 216
reaction due to, 64, 65 Difference of vectors, 2
Contact transformations (see Canonical Differential and derivative operators, 8, 144, 148
transformations) Differential equations, 344-356
Continuous functions, piecewise, 197 partial, 195, 344
Continuous syatems of particles, 165, 195 Differential, exact, 51, 52
Conversion factors, table of, 341 gfmﬂ?&logf,_& 31133:1 340
Coordinate systems, 3, 4 Dli::::iz:: '25'0“'
inertial, 34, 89 vion, o4
moving, 144-164 cosines,

Directrix, 118

Dirichlet conditions, 197, 206, 207
Discontinuities, 197, 204, 207
Diacrete system of particles, 165

non-inertial, 144
Coplanar vectors, condition for, 16
Coriolis acceleration, 145, 150

force, 146 Displacement, 2, 224
Cosines, direction, 24 true, 170
law of, 27 virtual, 170
Couples, 226, 227, 236 Dissipative forces, 64
Critically damped motion, 88, 96, 98, 99 Distance, 2
Cross products, 6, 1215 between two points, 11
determinant expression for, 14, 15 Distributive law, 3
distributive law, 5, 14 for Poisson brackets, 332
failure of commutative law for, 5, 13, 14 Divergence, 8, 21, 22
Curl, 8, 9, 21, 22 of curl, 9, 29

of gradient, 9, 29 Dot preducts, 4, 5, 12, 13



Dot products (cont.)
commutative law for, §
distributive law for, 5, 12
Double pendulum, 285, 286, 299-301
Drumhead; vibrating, 195
Dumbbell, 278
Dynamics, 1
Dyne, 33

Earth, flat, 63
motion of particle relative to, 145
rotation of, 150, 257, 265
Eccentricity, 118
Einstein’s laws of relativity, 34, 61
Elastic bodies, 165
Elastic collisions, perfectly, 195, 201
Elastic constant, 86
Elasticity, 194
moduius of, 86
Elastic string, vibrations of
{see Vibrating string)
Electrical charge, 83, 84
Electromagnetic field, 84, 309
Hamiltonian for particle in, 338
Lagrangian for particle in, 309
Ellipse, 38, 104, 118, 119, 121, 127, 128
Ellipsoid of inertia, 255, 256, 263, 264
Elliptic functions, 106, 272, 279
integrals, 106, 108
Energy, conservation of, 36, 43-45, 124, 169,
227, 229, 236, 240 ’
kinetic, (see Kinetic energy)
of simple harmenic oscitlator, 87, 99
potential {see Potential energy)
total, 36
English systems, 63, 339
Epoch, 87, 88, 93
Equality of vectors, 2
Equilibrant, 47
Equilibrium, 37, 171

in a uniform gravitational field, 65, 66, 74, 76

of a particle, 37, 38, 47, 48
of a rigid body, 229, 241, 242
of a system of particles, 170, 180, 181
position, B6
stable, 38, 48, 49, 80, 141, 171, 230
Escape speed or velocity, 134
Euclidean geometry, 1, 2
Euler angles, 253, 257, 267, 268, 301
angular velocity in terms of, 258
Euler's equations of motion, 258, 264
from Lagrange's equations, 302
Euler’s or Lagrange's equations, 313, 320
Euler’s theorem, 224
on homogeneous functions, 305, 306, 317
Even extension of a function, 208
Even functions, 196
Event, 2
Evolute, 112
Exact differential, 51, 52
Exact differential equation, 345, 350
Extremal, 313
Extremum or extreme value, 313

INDEX

Field, scalar or vector, B
Flat earth, 63 (see also Earth)
Focus, 118
Force, 33
axiomatic definition of, 33, 49
centrifugal and centripetal, 145, 146, 1560
constraint, 170
damping, 64, 87
generalized, 283
units of, 33, 339, 340
Forced vibrations, 89, 99-102
resonance and, 90, 100, 101
Force felds, conservative (see Conservative
force fields)
non-conservative, 37, 47
uniform, 62, 65, 66
Foucault pendulum, 146, 154-156
Fourier coeflicients, 196, 206
Fourier series, 195-197, 203-208
convergence of, 197
half range, 197, 207, 208
Fourier coefficients for, 196, 206
solution of vibrating string by
{zee Vibrating string)
Fps system, 33, 62, 339, 340
Frames of reference, Newtonian, 33, 34
Freely falling bodies, 63, 67
Free vectors, 9, 10
Frenet-Serret formulas, 31
Frequencies, characteriatic, 198
Frequency, fundamental, 211
natural, 89, 98
obtained by Hamiltonian methods, 316, 329
of precession, 257, 265, 270, 273, 274
of resonance, 90
of simple harmonie motion, 86, 87
Friction, 68
coefficient of, 66
motion involving, 73
Fas gystem, 68, 339, 840
Function, scalar and vector, 8
Fundamental frequency, 211

Generalized coordinates, 282, 286, 288
forces, 283
impulae, 285
momenta, 284, 288
velocities, 283
General solution of differential equation,
344, 348
Generating funetions, 314, 315, 323-325
Geometry, Euclidean, 1, 2
Gimbal, of a gyroscope, 268
Gradient, 8, 21, 22
curl of, 9, 29
in eylindricel and spherical coordinates, 61
Gram, 33
Gravitation, universai law of (see Universal
law of gravitation)
Gravitational constant, universal, 120
Gravitational potential, 120, 121, 133, 143
Gravitational system of units, 63, 339

363
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Gravity, 62

center of, 167

vibrating string under, 214, 215
Gyration, radius of, 226
Gyrocompass, 278
Gyroscopes, 258, 268-273

Half range Fourier sine and cosine series
197, 207, 208

Hamiltonian, 311, 317, 318, 330

for conservative systems, 311

for particle in electromagnetic field, 338
Hamilton-Jacobi equation, 815, 325-327, 330, 301

for Kepler's problem, 326, 327

for one dimensional harmonic oscillator,

325, 326

solution of, 315, 316
Hamilton’s equations, 311, 317, 318
Hamilton's principle, 313, 320-323
Harmonie oscillator, damped, 87, 88, 96-99

simple, 86-90, $2-102

two and three dimensional, 91, 103, 104
Herpolhode, 257, 266
Holonomie, 170, 180, 283, 284, 286, 287
Homogeneous equation, 346, 351
Homogeneous functions, 305

Euler’s theorem on, 305, 306, 317
Hooke’s law, 86
Hyperbola, 104, 119, 121, 127, 128
Hyperbolic functions, 54

Ignorable coordinates, 312, 315
Impact, 184
Impulse, 36, 46-47, 169, 170, 180
angular, 170, 228, 237
generalized, 285
relation to momentum, 36
Impulsive forces, 285, 295-298
Inclined plane, 64, 65, 72
motion of particle down, 72, 73
motion of sphere down, 239, 240
projectile motion on, 75, 76, 81
Incompressible Auid, 313
Indefinite integrals of vectors, 6
Independence of path, 9
condition for, 50, 61
Inelastic collisions, perfectly, 195, 201
Inertial frames of reference, 33, 34, 39
classical principle of relativity for, 39
Inertial aystem, 34, 39
Initial point, of a vector, 2
Instability, 38
Instantaneous, scceleration, 7
axis of rotation, 224, 225, 229
center of rotation, 226, 229, 240, 241
power, 34 (see also Power)
velocity, 7
Integral equations, 154
Integrala of vectors, 6, 16, 17
line (eee Line integrals)
Integrating factor, 345, 351
Internsl forces, 177, 178
Invariable line and plane, 256, 267, 266

INDEX

Invariant, 34
Isclation, of a system, 64
{teration, method of, 154, 159

Jacobian determinant, 337

Kepler's laws, 120, 128, 129, 223
deduction of from Newton's universal
law of gravitation, 125, 126, 12¢
Kilogram, 38
weight, 63
Kinematics, 1
Kinetic energy, 34, 35, 41-43
about principal axes, 255
in terms of Euler angles, 258, 268
in terms of generalized velocities, 283, 287, 288
of a rigid body, 227, 236, 259, 260
of a system of particles, 168, 169, 179, 182
of rotation, 229
of translation, 229
relationship to wotk, 35, 41, 169
relativistic, 56
Kronecker delta, 336

Lagrange multipliers, 280, 284, 292, 295
Legrange’s equations, 282-310, 320
and calculus of variations (z¢e Caleulus
of variations)
for conservative systems, 284, 288-292
for non-conservative systems, 284
for non-holonomic systems, 284, 285,
292-295, 303
with impulsive forees, 286, 295-298
Lagrangian function, 284, 311
for particle in electromagnetic field, 309
Latitude, 152
Laws, 1
Lemniscate, 138
Length, 2
Light, speed of, 34, b4
Limiting speed or velocity, 70, 72
Line, 1
of action of a vector, 10
Jinear equations, 345-347, 349, 350, 352
Linear harmonic oscillator, 86 {see alzo
Harmonie oscillator)
Linear impulse (ses Impulse)
Linear momentum {see Momentum)
Line integrals, 9, 22, 23
evaluation of, 22, 23
independence of path of, 9, 23
Liouville's theorem, 312
proof of, 318-320
Lisgajous curves or figures, 81
Logarithmic decrement, 88, 97, 98
Lorentz force, 84

Magnetic field, 83
Mazin diagonal, of moment of inertia
matrix, 254
Mazjor axis, of ellipse, 118
of hyperbola, 138



Mass, 2, 33

axiomatic definition of, 4%

center of (sce Center of mass)

changing, 194

of the earth, 129

reduced, 182, 231

rest, 54, 61

units of, 33
Mathematical models, 1
Matrix, moment of inertia, 254
Matter, 1, 2
Mechanics, 1

relativistic, 84
Membrane, vibrating, 195
Meteorite, 121
Metric system, 339
Minor axis, of ellipse, 119

of hyperbola, 139
Mks system, 33, 62, 339, 340
Mode of vibration, normal, 184
Models, mathematical, 1
Modulation, amplitude, 102
Modulus of elasticity, 86
Moment, of couple, 226

of force, 36

of momentum, 37 (see also Angular momentum)

Momental ellipsoid, 256
Moments of inertia, 225, 231-233, 254, 259,
260, 263, 2684

matrix, 264
principal {sce Principal moments of inertia)
special, 226
theorems on, 225, 233-235

Momentum, 33, 167
angular (see Angualar momentum}
conjugate, 284, 288
conservation of, 37, 167, 173
generalized, 284, 288
moment of, 37 (see also Angqlar momentum)
of a system of particles, 167, 169, 172, 173
principle of, 238

Momentum coordinates, 312

Moon, 119, 342

Multiply-periodic vibrations, 194

Muasical note, 211

Natural frequency and period, 89, 98
Newton, 83
Newtonian frames of reference, 34
Newton's ¢ollision rule, 194, 202
laws of motion, 33-41
universal law of gravitation (see
Universal law of gravitation)
Nodes, line of, 257
Non-holonomie, 170, 180, 283, 284, 286, 287
Non-inertial systems, 144, 145
Normal frequencies, 194, 198
for a double pendulum, 300, 501, 308
for a vibrating string, 210, 211
for a vibrating system of particles, 215, 216
Normal modes of vibration, 194, 198, 199
for a vibrating string, 210, 211
Normal, principal, 7, 8, 20

INDEX

Normal (cont.)

to a surface, 24
Null vector, 3
Nutation, 270, 272

Oblique collisions, 194
0dd extension, of a {unction, 207
Odd functions, 196
QOperators, derivative, 144
Optics, 335
Orbit, 116, 120
determination of from central force,
117, 118, 125-127
weightlessness in, 135, 136
Order of a differential equation, 344
Oscillations, forced, 89 (see also
Forced vibrations)
QOsciligtor, anharmonie, 115
harmonie {see Harmonic oscillator)
Overdamped motion, 88, 98, 99
Overtones, 211

Pappus, thearems of, 193
Parabola, 63, 104, 119, 121, 127, 128

as curve of motion of projectile, 68
Paraboloid of revolution, 107, 108
Parachutist, motion of, 69, 70
Parallel axis theorem, 226, 233, 234
Parallelepiped, volume of, 5, 15, 16
Paralielogram, area of, 5§, 15
Parallelogram law, 2
Partial differential equation, 195, 344

of vibrating string (see Vibrating string)
Particles, 2

equilibrium of, 37, 38

systems of, 165-193

vibrations of, 184, 197-199
Particular solutions, 344, 345, 347, 848
Path, independence of, 9, 50, 51
Pendulum, bob, 90

compound, 228, 237, 238, 279, 291

conieal, 167

eyeloidal, 112, 303

double, 285, 286, 299-301

Foucault, 146, 154-156

seconds, 110

simple (aee Simple pendulum)
Perigee, 120
Perihelion, 120
Period, 53

natural, 89

of damped motion, 89

of harmonic oscillator, 87

of motion in a magnétic field, 83

of simple harmonic motion, 86, §7

of simple pendulum, 91, 105, 106

orbital, 135, 136

sidereal, 120
Perpendicolar axes theorem, 226, 234, 235
Phase, angle, 87, 88, 93

integrals, 316, 328, 329

out of, 93

space, 312, 318-320

36
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Piano string, vibrations of, 195
(s¢e aleo Vibrating string)
Piecewise continuous functions, 197
Planck’s constant, 338
Planets, 119, 343
Poinsot’s construction, 2567
Point, 1, 2
Poisson bracket, 331, 332
Polar coordinates, 25, 26
gradient in, b4
velocity and acceleration in, 26
Polhode, 257, 266
Position, 2
coordinates, 312
vector, 4
Potential, 35 (sce alse Potential energy)
relation to stability, 38
scalar, 35, 309
vector, 309
Potential energy, 36, 36, 43-45
{see also Potential)
in a central force field, 117, 123-125
in a uniform force field, 64, 69
of a system of purticles, 169, 176-178
principle of minimum, 230
relation of to work, 35, 44
Pound, 33
weight, 63
Poundal, 33
Power, 34, 41-43, 227, 237
relation to work, 42
Precession, 166, 266, 270, 272
frequency of, 257, 265, 270, 273, 274
Principal axes of inertia, 265, 260-263
Principal diagonal, 254
Principal moments of inertia, 266, 260-263
method of Lagrange multipliers for, 280
Principal normal, unit, 7, 8, 20
Products of inertia, 264, 269, 260
Products of vectors, by a acalar, 3
¢ross (see Cross products)
dot {see Dot products)
Projectiles, 62, 63
maximum height of, 68
motion of, 68, 69, 71, 72
on &n inclined plane, 75, 76, B1
range of (see Range of projectile)
time of flight, 68
Pulley, 76, 289, 290

Quantum mechanies, 811
Quantum number, orbital, 328
Quantum theory, 338

Radius, of curvature, 8, 20
of gyration, 225
of torsion, 31

Radius vector, 4

Range of projectile, 68
maximum, 69
on inclined plane, 75, 76
on rotating earth, 164

Reaction, 83

INDEX

Reaction (cont.)
due to constraints, 64, 66
Rectangular coordinate systems, 3, 4
right handed, 4
Reduced mass, 182, 231
Reference level, 64
Relative acceleration, 7, 18, 19
velocity, 7
Relativistic mechanics, 34
Relativity, classical principle of, 34, 3%
Einstein’s laws of, 34, 61
theory of 54, 5b, 61, 143, 337
Representative point, 312
Resistance, air, 63, 69-72
Resisting forces, 64
Resisting medium, motion in, 64, 69-72
Resonance, 90, 100, 101
Restitution, coefficient of, 195
Restitution time, 194
Rest mass, 54, 61
Restoring force, 86
Resuttant of vectors, 2
Rheonomic, 283, 286, 287
Right handed system, 4
Rigid bodies, 165, 170, 224, 230, 231, 236
equilibrium of, 229, 241, 242
force free motion of, 256, 257, 265
general motion of, 224, 253, 259
motion of, about a fixed axis, 236
plane motion of, 224-252
symmetric, 267
Rockets, 173, 194, 199, 200
motien of, 199, 200
Rotating coordinate systems, 144, 147, 148
Rotation, 224, 253
associative and commutative laws for, 230,
231, 245
finite, 230, 231
of the earth, 150, 257, 265
pure, 253
Routh’s function or Routhian, 387

Satellites, 119
Scalar function, 8
Secalar potential, 35

for electromagnetic field, 309
Scalar product {see Dot product)
Scalar triple produet, §
Scalars, 2
Scleronomic, 283, 286, 287
8econds pendulum, 110
Secular determinant, 198, 215
Semi-major and minor axes, 118, 119, 128

Separation of variables, 210, 316, 345, 347, 348

Sidereal period, 120
Simple closed curve, 9
Simple harmonic motion, 86
(see also Simple harmonic oscillater)
amplitude, period and frequency of, 86, 87
Simple harmonic oscillator, 86-90, 92-102
amplitude, period and frequency of, 86, 87
damped, 87, 88
energy of, 87, 99
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Trephe ‘ETIOTHE OBCILETOT \conk.) Top (cont.)
forced vibrations of, 89, 99-102 steady precession of, 270
resonance and, 90, 100, 101 Torque, 36, 45-47, 168, 176
Lagrange's equations for, 306 of a couple, 226
Simple pendulum, 86, 87, 90, 91, 102, 103 relation to angular momentum, 37, 46, 168,
length of equivalent, 228 169, 176
Sines, law of, 27 Torsion, 31
Sliding vector, 9, 10 constant of, 308
Slug, 63 radius of, 31
Solar system, 119 Transformation equations, 282, 285, 286
Selution of differential equation, 344 canonical, 314, 323-325
Space, 1, 2 Transient solution, 89
Space axes, 267 Translation, 224, 253
Space centrode or locus, 229, 240, 241 Transverse vibration of a string
Space cone, 257, 266 {eee Vibrating string)
Special relativity (see Relativity) Triple products, &, 15, 16
Speed, 7 (¢ce also Velocity) scalar, §
angular, 8 vector, §
escape, 134 Two and three body problems, 121, 223
of light, 34

orbital, 135, 136
Sphere, particle sliding down, 76, 77, 82
sphere rolling down, 244, 308, 304
Spherical coordinates, 32
gradient in, 61
Lagrange's equations in, 306
. \_ve]omty and acceleration in, 32 Units, 2, 339-341
pin, 270, 272 .
Spring constant, 86 Unit vectors, 3

. . . rectangular, 3, 4
Spring, vibrations of, 86, 93-95 Universal law of gravitation, 120, 128, 129

Underdamped motion, 88, 98
Undetermined coefficients, method of, 347,
352, 353
Uniform acceleration, 62, 65, 66
force field, 62, €5, 66
Uniformly accelerated motion, 62, 65, 66

Stability of equilibrivm, 38, 48, 49, 60, 141, deduction from Kepler's laws, 128, 129
171, 230 Unstabl ilibrium, 171, 230

Stable point, 38 stable equi P
Star, 119
Staties, 1, 37, 38, 47 Variation of an integral, 321

in a uniform gravitational field, 65, 86, 74, 75 Variation of parameters, method of, 347, 353, 354

of a particle, 37, 38, 47, 48 Variation symbol, 313, 337

of a rigid body, 229, 241, 242 Variations, calculus of

of a system of particles, 170, 180, 181 (see Calculus of variations)
Statistical mechanies, 311 Vector algebra, laws of, 3, 10-12
Steady-state solution, 89 Vector field, 8
Btiffness factor, 86 Vector function, 8
Sum of vectors, 2 Vector potential, 309

obtained graphically and analytically, 12, 48 Vector product (see Cross product)
Sun, 119, 342 Vector triple produet,
Superposition prineciple, 199 Vectors, 1, 2
Surface, normal to, 24 algebra of, 2, 3
Symmetric matrix or tensor, 254 bound, 9, 10
Systems of particles, 165-193 components of, 4

definition of, 2

Tangent vector, unit, 7, 8, 19 free, 9, 10

magnitude of, 11, 13
sliding, 9, 10
Velocity, 1, 6, 7, 17-19
angular {see Angular velocity)
apparent, 148

Tautechrone problem, 113
Tension, 74, 76

Tensor, moment of inertia, 254
Terminal point, of a vector, 2

Theorems, 1 areal, 122, 123
Time. 1, 2 escape, 134
principle of least, 335 generalized, 283
Top, 258, 268-273, 274 in cylindrical coordinates, 32
Lagrange's equations for motion of, 301, 302 in moving cordinate systems, 145, 148, 149
motion of, 258, 268.273 in polar coordinates, 26
sleeping, 274 in spherical coordinates, 32
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Veloeity (cont.)
instantanecus, 7
limiting, 70, 72
of a rigid bedy, 253, 259
relative, 7
true, 148
VYertices, of ellipse, 118
of hyperbola, 119
Vibrating string, 195, 202, 203, 209-212
considered as a system of particles, 215.217
under gravity, 214, 216
Vibrating systems of particles, 194, 197-199
Vibrations, of a cylinder, 104, 105
forced (gzee Forced vibrations)
Violin string, vibrations of, 195
{gce alzo Vibrating string)
Virtual displacements, 170
Virtual work, Lagrange’s equations and, 262

Virtual work, principle of, 170, 229

Weight, 62
apparent, 162

Weightlessness, 135, 136

Work, 34, 41-43, 168, 189, 176-178, 237
generalized forces and, 283, 287, 288
in rotation of a rigid body, 227
relationship of to kinetic energy, 168, 169,

176, 177

relationship of to potential energy, 44
virtual (gee Virtual work)

x direction, 4
y direction, 4

# direction, 4
Zero vector, 2
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