

Learning Tasks in Robotics: Problems and Solutions

Nuno Lau

nunolau@ua.pt

IEETA – Institute of Electronics and Informatics Engineering of Aveiro DETI / Universidade de Aveiro

- Presentation
- Motivation
 - Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

Presentation

- Motivation
 - Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

ICAART, Feb 25, 2017

Presentation

- Aveiro, Portugal
 - Capital of Aveiro District
 - 68 km South of Oporto
 - 258 km North of Lisbon
 - Population: 78 000
 - Water channels crossing the city



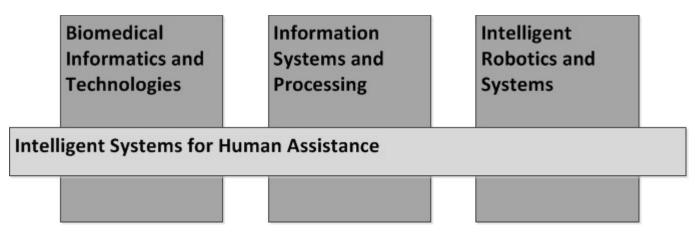
ICAART, Feb 25, 2017

Presentation

- Universidade de Aveiro
 - Founded in 1973
 - 13 000 students
 - 13 Research Units
 - 77% Excellent or V. Good
 - Domains
 - Science and Engineering,
 - Communication and Art,
 - Social Sciences,
 - Health,
 - Humanities
 - Education

- IEETA Institute of Electronics and Informatics Engineering of Aveiro
 - Mission:

Multidisciplinary research and advanced development in Electronics and Telematics



Presentation

Motivation

- Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

Programming Robots is a hard task

- No high-level programming language
- Sensors and actuators are noisy
- Robotics is moving towards increasingly unstructured environments

If only **robots could learn** how **to perform tasks** by themselves...

\Rightarrow Machine Learning in Robotics

Motivation

Table-Tennis

Robots

Mülling + Peters

We need learning and adaptation to improve robot skills!

Machine Learning in Robotics can be used for:

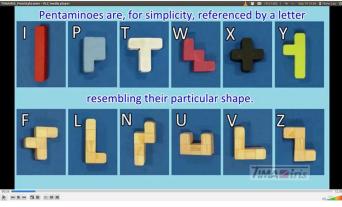
- Robot Perception
- Robot Decision
- Robot Actuation (Behaviors)
- Multi-robot Coordination
- Adapt Human-Robot Interaction

Challenges in Robot Learning

- Cost of experimentation
- Cost of failure
- Limited data
- Generalization
- Curse of dimensionality
- Real time requirements
- Changes in environment
- Changes in task specification

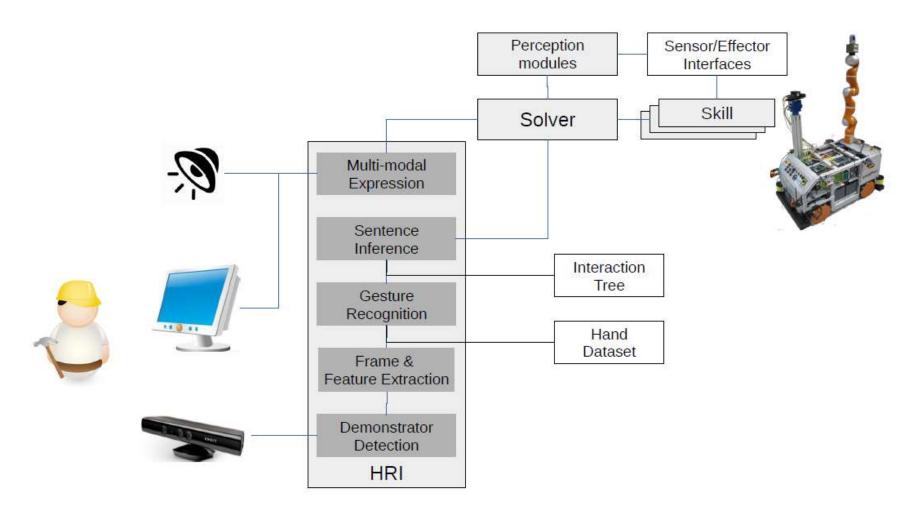
- Presentation
- Motivation
 - Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

Task: Assembling a puzzle cooperatively by a human and a robot (EuRoC Project)

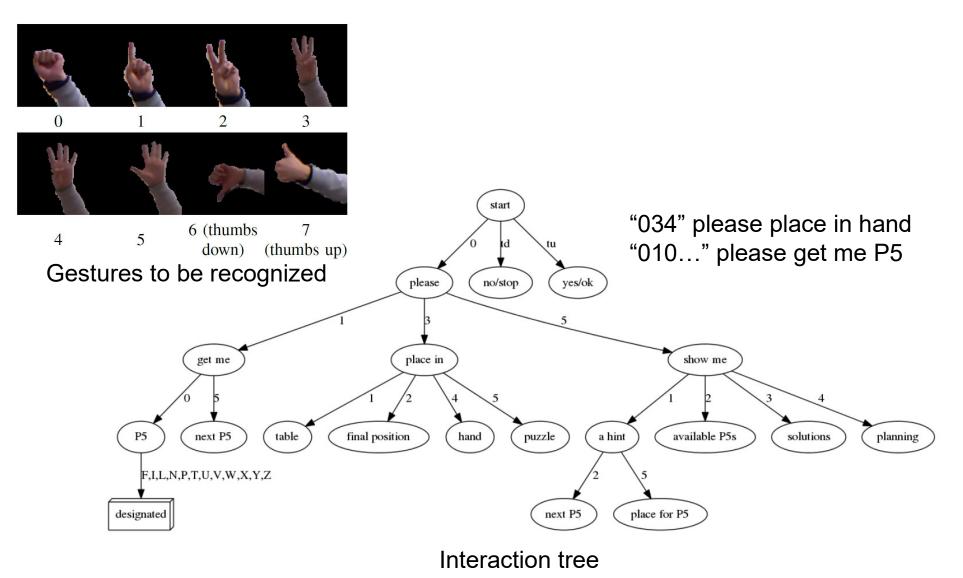


Set of 12 pentomino pieces

Task environment

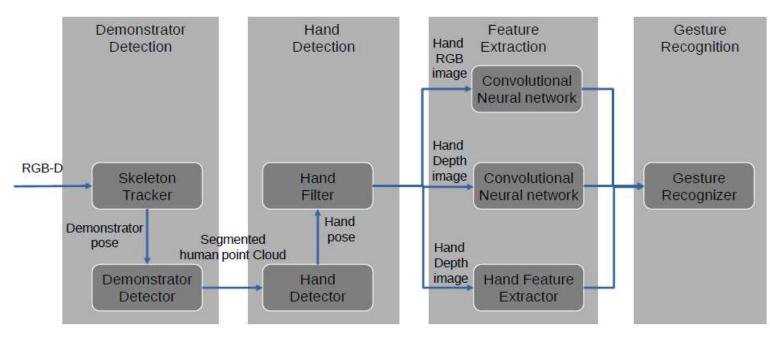


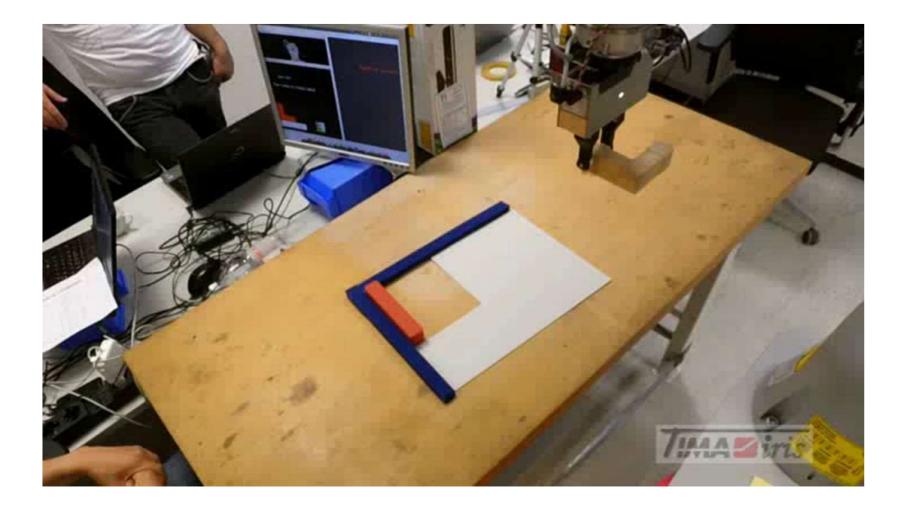
HRI architecture



ICAART, Feb 25, 2017

- Learning Task: Recognize Gestures
- Approach:
 - 1st: Use Deep Learning
 - 2nd : Mix Deep Learning with other features

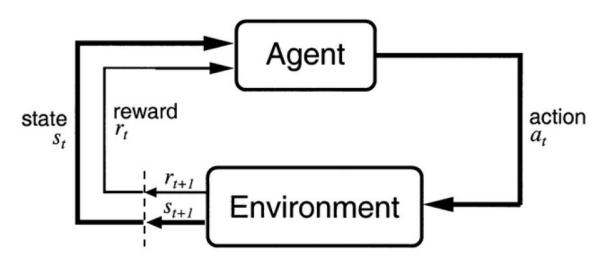




Presentation outline

- Presentation
- Motivation
 - Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

Reinforcement Learning



Goal: Determine the policy that maximizes Return

$$R_t = \sum_{k=0}^{+\infty} \gamma^k r_{k+t+1}$$

Three main RL classes of methods

Value Function based methods

- No policy representation
- Policy obtained by evaluating the value function directly

Policy Search methods

- No value function
- Optimization of a parametrized policy directly on policy-space

Actor-Critic methods

- Value function (critic)
- Explicit Policy representation (actor)

Batch RL is a sub-class of Value Function based methods

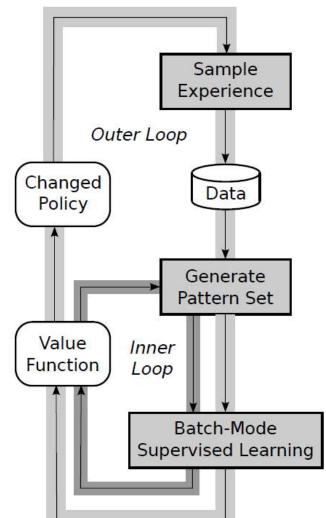
ICAART, Feb 25, 2017

 Batch RL estimates value functions by processing a set of interactions

Batch Reinforcement Learning

- The value function is updated synchronously
- Application of function approximators
- Collected experience is not discarded
- Data efficient
- Fitted Q iteration:

$$\bar{Q}_i = r_i + \gamma \max_b \hat{Q}(s_{i+1}, b)$$



ICAART, Feb 25, 2017

22

Q-Batch update rule

• Still:

- Q-Learning is transition based
- Not considering trajectories
- Many inner-loops for reward propagation
- In Batch RL all data is available

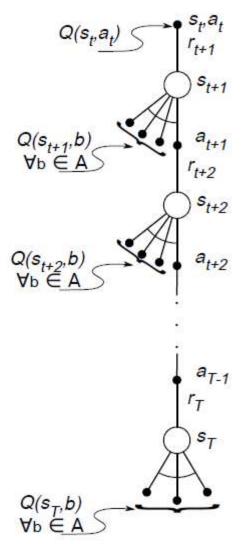
\Rightarrow Q-Batch update rule

• Find largest n-step return

$$\bar{Q}(s_{i,j}, a_{i,j}) = \max_{k} R_{i,j}^{(k)}$$

$$= \max_{k} \left(\sum_{l=0}^{k-1} (\gamma^{l} r_{i,j+1+l}) + \gamma^{k} \max_{b \in A} \hat{Q}(s_{i,j+k}, b) \right)$$

João Cunha, et al.. Batch Reinforcement Learning for Robotic Soccer Using the Q-Batch Update-Rule. Journal of Intelligent & Robotic Systems, vol. 80, no. 3, p. 385-399, December 2015



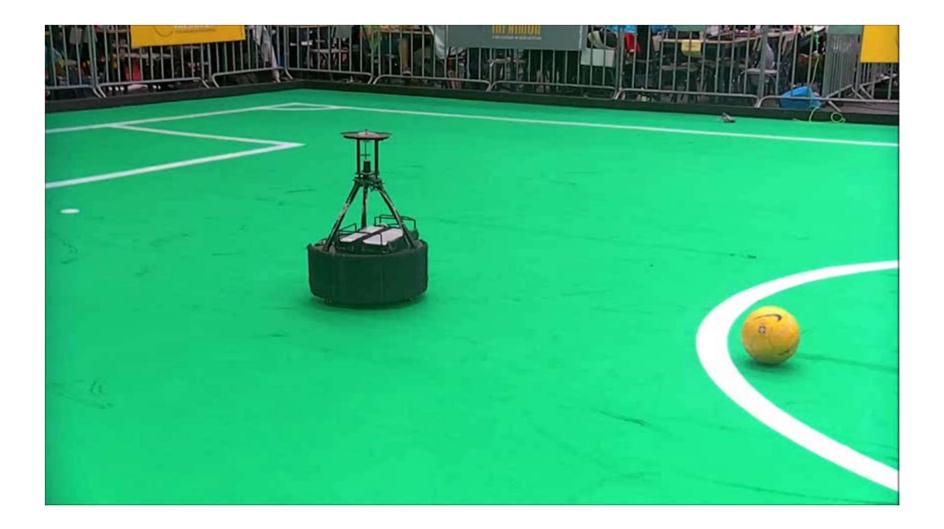
Results on Simulated Inverted Pendulum

Deterministic	best policy	interaction time first suitable policy (in minutes)	number of suitable policies
Q-learning	0.41 ± 0.01	7.05 ± 1.07	$\textbf{352.0} \pm \textbf{32.3}$
Watkins-Q(1)	0.40 ± 0.01	17.65 ± 15.58	306.0 ± 74.5
Q-Batch	$\textbf{0.40} \pm \textbf{0.01}$	10.67 \pm 6.64	$\textbf{359.3} \pm \textbf{22.1}$

Stochastic	best policy	interaction time first suitable policy (in minutes)	number of suitable policies
Q-learning	1.03 ± 0.18	20.51 ± 35.48	67.3 ± 81.4
Watkins-Q(1)	1.12 ± 0.20	67.22 ± 50.03	74.0 ± 118.4
Q-Batch	$\textbf{0.89} \pm \textbf{0.02}$	$\textbf{17.83} \pm \textbf{16.48}$	$\textbf{228.8} \pm \textbf{58.8}$

Q-Batch update rule

Q-Batch update rule



Presentation outline

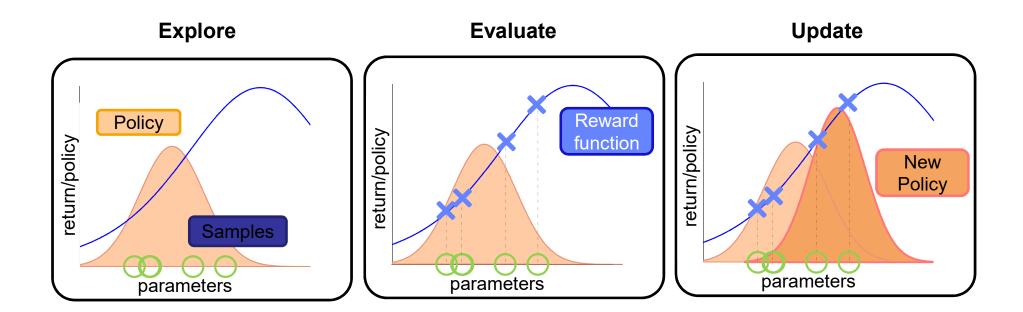
Presentation

Motivation

- Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

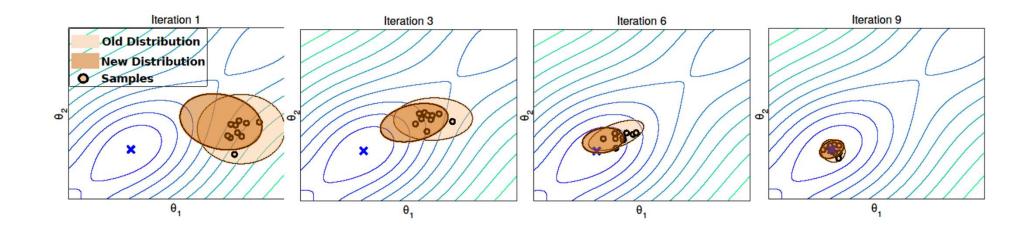
Stochastic Search

- Use Search-Distribution: $\pi(oldsymbol{w}) = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$
- Objective: Find search distribution $\pi(w)$ that maximizes $J_{\pi} = \int \pi(w) R(w) dw$



Stochastic Search

- Use Search-Distribution: $\pi(oldsymbol{w}) = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$
- Objective: Find search distribution $\pi(w)$ that maximizes $J_{\pi} = \int \pi(w) R(w) dw$



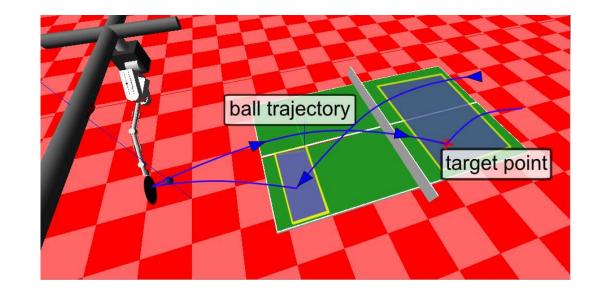
Contextual Stochastic Search

Goal: Adapt parameters w to different situations

- Different ball trajectories
- Different target locations

Introduce context vector \boldsymbol{s}

- Continuous valued vector
- Characterizes environment and objectives of agent



Learn contextual search policy $\pi(m{w}|m{s})$

Abdolmaleki, et. al, *Model-Based Relative Entropy Stochastic Search*, NIPS 2015 Kupcsik, et. al, *Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills*, *Artificial Intelligence*, 2015

ICAART, Feb 25, 2017

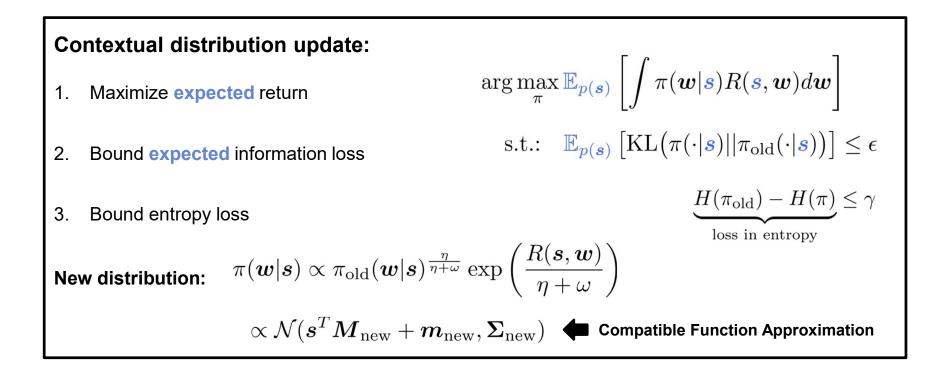
Adaptation of Skills

Contextual distribution:

$$\pi(\boldsymbol{w}|\boldsymbol{s}) = \mathcal{N}(\boldsymbol{s}^T \boldsymbol{M} + \boldsymbol{m}, \boldsymbol{\Sigma})$$

Compatible Function Approximation:

$$R(\boldsymbol{s}, \boldsymbol{w}) \approx \boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w} + \boldsymbol{s}^T \boldsymbol{B} \boldsymbol{w} + \boldsymbol{a}^T \boldsymbol{w} + a_0$$



ICAART, Feb 25, 2017

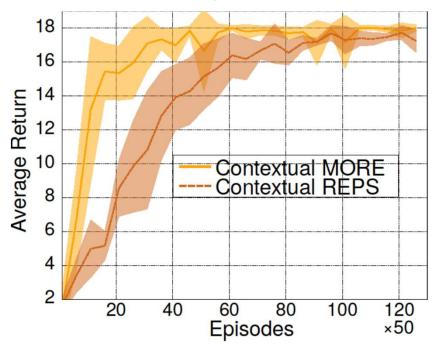
Adaptation of Skills: Table Tennis

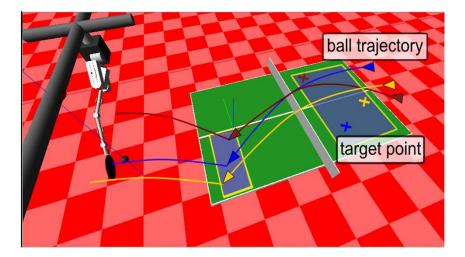
Contextual Stochastic Search:

Context: Initial ball velocity

Reward:

- Hit ball
- Ball impacts at target position





Skills Improvement:

- Hot-start with imitation
- Continuous-valued decision making
- Low number of samples
- Adaptation

Skill Improvement: Controlled Kick

Task

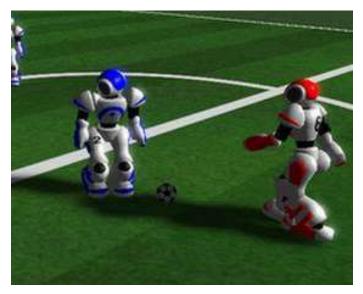
- Develop a kick with controlled kicking distance
- From 10 different positions in the soccer field (with distances ranging from 3m to 12m), kick the ball so that it stops in the center of the field

Classical approach

• Optimize for each distance

Contextual approach

- Optimize for all distances in a single process
- Use all data to improve performance
- Generalize for unknown contexts



Abbas Abdolmaleki et al. Learning a Humanoid Kick With Controlled Distance. RoboCup 2016: Robot World Cup XX, Springer, July 2016

ICAART, Feb 25, 2017

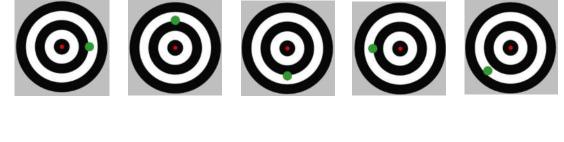
Presentation outline

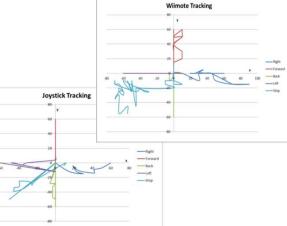
- Motivation
 - Challenges for Robotics Learning
- Q-Batch update rule
- Multi-context optimization
- User profiles and Adapted interfaces
- Multiagent Learning
- Robot motion planning
- Conclusion

- Users of Intelligent Wheelchairs have very different skills
- command interface provided for each user should be adapted to his/her capabilities
 - User profiling provides relevant information
 - automatically generate command language adapted to the user for driving the IW

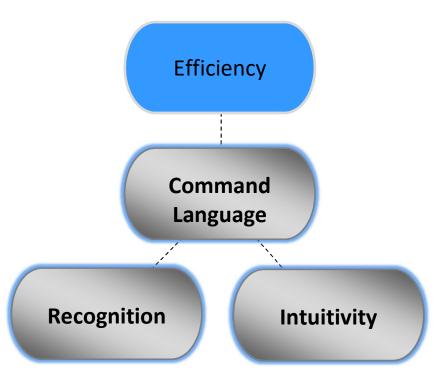
User profiles and Adapted interfaces

- User Profiling Experiments
 - 11 cerebral palsy users
 - Level IV (27.3%) and V (72.7%) GMFM
 - Voice Inputs
 - "Go", "Front", "Forward", "Back", "Right", "Left", "Turn", "Spin" and "Stop"
 - Joystick and the Head Movements





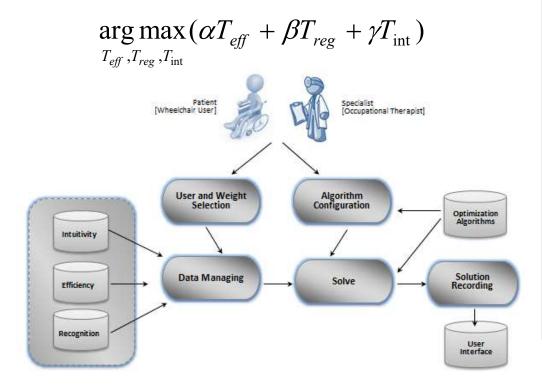
Command Language



User profiles and Adapted interfaces

Command Language

Maximizes the function composed by the total time efficiency, total recognition and intuitiveness



(w rec, w time, w intu) = weights; evaluation $\leftarrow 0$ for ncom = 1 to NC do recVal \leftarrow 1; timeVal \leftarrow 0; intuVal \leftarrow 1 for nseq = 1 to NS do $inpDev \leftarrow inputDevice(solution[ncom][nseq])$ $inp \leftarrow input(newSolution[ncom][nseq])$ if inpDev = NULL then break else $recVal \leftarrow recVal * rec[inpDev][inp]$ timeVal \leftarrow timeVal + time[inpDev][inp] $intuVal \leftarrow intuVal * intu[ncom][inpDev][inp]$ endif endfor evalComm \leftarrow w rec* recVal + w time*1/(timeVal+1) + w intu*intuVal evaluation \leftarrow evaluation + evalComm endfor return evaluation

ICAART, Feb 25, 2017

Command Language Advisor

			Command Language for Patients						
	Patient	Evaluation	Forward	Left	Right	Back	Stop		
	P1	1.50	wiimote	ionatiols	joystick	ionatiols	joystick		
	Specialist	4.53	joystick	joystick joystick	joystick	joystick joystick	joystick		
	IDAS	4.57	JOYSIICK	JOYSUCK	JOYSHCK	JOYSHCK	JOYSHCK		
Data Analysis System	P2 Specialist	4.18	joystick	joystick	joystick	joystick	voice ("stop")		
	IDAS	4.85	joystick	joystick	joystick	joystick	voice ("go")		
	P3	4.05	Joysuca	Joysuck	Joysuca	Joysuck	voice (Bo)		
Input Device	Specialist	3.33	voice ("forward")	wiimote	wiimote	joystick	voice ("stop")		
Advisor	IDAS	4.51	wiimote	wiimote	wiimote	wiimote	voice ("go")		
Auvisoi	P4	4.51							
	Specialist	4.50	voice ("forward")	joystick	joystick	joystick	voice ("stop")		
	IDAS	4.60	joystick	joystick	joystick	joystick	voice ("stop")		
	P5	1.0000							
Control Advisor	Specialist	4.14	voice ("front")	wiimote	wiimote	joystick	voice ("stop")		
Control Advisor	IDAS	4.40	wiimote	wiimote	voice ("turn")	joystick	voice ("stop")		
	P6	5632221							
	Specialist	4.13	wiimote	joystick	joystick	joystick	joystick		
Command	IDAS	4.38	wiimote	wiimote	wiimote	wiimote	wiimote		
	P 7								
Language	Specialist	4.49	voice ("front")	joystick	joystick	joystick	voice ("stop")		
Advisor	IDAS	4.60	joystick	joystick	joystick	voice ("back")	voice ("stop")		
	P8			5	· · · · 1	in state			
	Specialist	3.51	wiimote	joystick	joystick	joystick	joystick		
	IDAS P9	4.20	winnote	wimote	wiimote	wiimote	wiimote		
Mean of DAS evolution higher than mean of	Specialist	3.70	voice ("forward")	wiimote	wiimote	joystick	voice ("stop")		
Mean of DAS evaluation higher than mean of		4.75	joystick	joystick	joystick	joystick	joystick		
evaluation of the command language	IDAS P10	4.75	Joysuca	Joystick	Joysuca	Joysuca	Joysuca		
•••	Specialist	4.11	voice ("forward")	voice ("left")	voice ("right")	voice ("tum")	voice ("stop")		
recommended by specialist (p value = 0.002)	IDAS	4.80	joystick	joystick	voice ("turn")	joystick	voice ("go")		
· · · · · · · · · · · · · · · · · · ·	P11								
	Specialist	4.29	joystick	wiimote	wiimote	joystick	joystick		
	IDAS	4.30	wiimote	wiimote	wiimote	wiimote	wiimote		

Brígida Mónica Faria, el al. A Methodology for Creating an Adapted Command Language for Driving an Intelligent Wheelchair. Journal of Intelligent & Robotic Systems, vol. 80, no. 3, December 2015 **ICAART, Feb 25, 2017**

Presentation outline

- Presentation
- Motivation
 - Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

- Learning Coordination among several agents
- Multiagent reward based learning challenges
 - Non static environment
 - Complexity exponential to number of agents
- Double Deep Q Networks used for multiagent paradigm

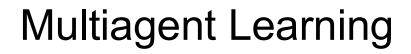
- Learning Coordination among several agents
- Multiagent reward based learning challenges
 - Non static environment
 - Complexity exponential to number of agents
- Double Deep Q Networks used for multiagent paradigm
 - ⇒ Multiagent Double Deep Q-Networks

Joint-Action Multiagent Double DQN

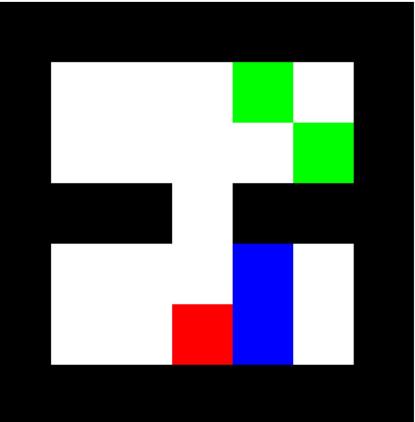
```
Input: Learning rate \eta, mini-batch size k, discount factor \gamma, network update period \tau,
     replay memory \mathcal{D} with capacity N, action-value function Q with random weights
     θ
 1: for iteration = 1, M do
         for agent p = 1, P do
 2:
             Sample state s_{1,p}
 3:
         end for
 4:
        Compute \phi_1
 5:
        for step t = 1, T do
 6:
             for agent p = 1, P do
 7:
                 Select random action a_{t,p} with probability \epsilon, otherwise best action
 8:
                 a_{t,p} = \max_a Q^*(\phi(s_t), a; \theta)
                 Execute a_{t,p}
 9:
                 Observe image s_{t+1,p} and reward r_t
10:
             end for
11:
             Compute \phi_{t+1}
12:
             Store transition (\phi_t, a_{t,1}, \dots, a_{t,p}, r_t, \phi_{t+1}) in \mathcal{D}
13:
             Sample random mini-batch of k transitions (\phi_i, a_{j,1}, ..., a_{j,b}, r_t, \phi_{j+1})
14:
             from \mathcal{D}
             for transition i = 1, k do
15:
                 Update \theta \leftarrow \theta + \eta \nabla_{\theta_i} L_i(\theta_i)
16:
             end for
17:
             Update network weights \theta_{target} \leftarrow \theta every \tau time-steps
18:
         end for
19:
20: end for
```

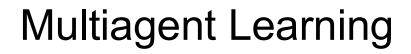

Independent Learners Multiagent Double DQN

```
Input: Learning rate \eta, mini-batch size k, discount factor \gamma, network update period \tau,
    replay memory \mathcal{D} with capacity N, action-value function Q with random weights
    θ
 1: for iteration = 1, M do
        for agent p = 1, P do
 2:
             Sample state s_{1,p} and compute \phi_{1,p}
 3:
        end for
 4:
        for step t = 1, T do
 5:
            for agent p = 1, P do
 6:
                 Select random action a_{t,p} with probability \epsilon, otherwise best action
 7:
                a_{t,p} = \max_a Q^*(\phi(s_t), a; \theta)
                Execute a_{t,p}
 8:
                Observe image s_{t+1,p} and reward r_t
 9:
                Compute \phi_{t+1,p}
10:
                Store transition (\phi_{t,p}, a_{t,p}, r_t, \phi_{t+1,p}) in \mathcal{D}
11:
             end for
12:
             Sample random mini-batch of k transitions (\phi_{j,b}, a_{j,b}, r_t, \phi_{j+1,b}) from
13:
             \mathcal{D}
             for transition i = 1, k do
14:
                 Update \theta \leftarrow \theta + \eta \nabla_{\theta_i} L_i(\theta_i)
15:
             end for
16:
             Update network weights \theta_{target} \leftarrow \theta every \tau time-steps
17:
        end for
18:
19: end for
```

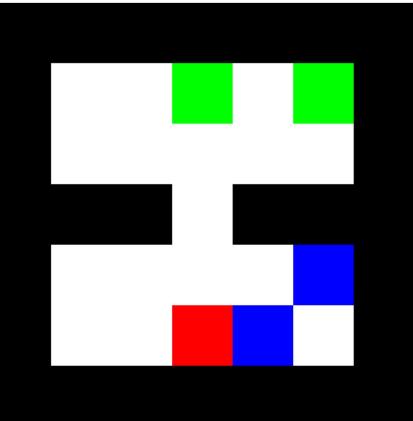


- Foraging task: 2 agents; 2 berries
- 10k iterations

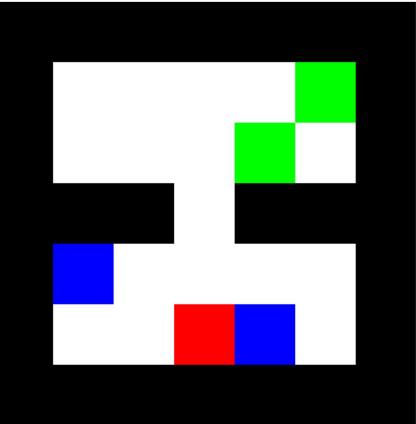




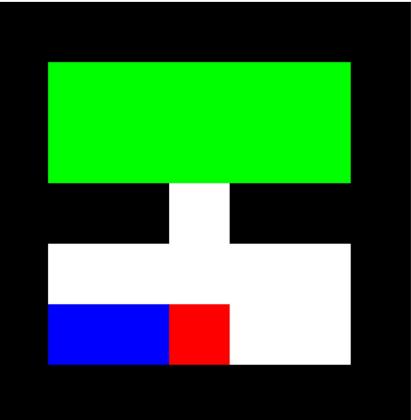
- Foraging task: 2 agents; 2 berries
- 100k iterations



- Foraging task: 2 agents; 2 berries
- 200k iterations



- Foraging task: 2 agents; 10 berries
- Transfer Learning



Formation specification

Save formation	Auto Move	<mark>8</mark> है Symmetry	X Delete	ReverseY 5	÷	₩ Train	Replace	°*° Inser ≫
	©© Cre	ate New Fo	rmation					
	Choose a tra	ining method	:					
	DelaunayTr	iangulation				-		
				OK	Ca	ncel		
5) • ²							

Presentation outline

- Presentation
- Motivation
 - Robotics Learning Problems
- Some solutions
 - Gesture recognition
 - Q-Batch update rule
 - Multi-context optimization
 - User profiles and Adapted interfaces
 - Multiagent Learning
- Conclusion

Conclusion

- Broad range of learning techniques applied to different areas of Robotics:
 - Perception
 - Behavior development
 - Value based
 - Contextual policy search
 - Adapting Human-Robot Interfaces
 - Coordination of Robot teams
- Learning can be applied to Robotics, but:
 - Data should be used as efficiently as possible
 - Take advantage of data structure
 - Combine different approaches, if needed
 - Use simulation in the first learning steps

I thank all people that contributed to these results, namely **Abbas Abdolmaleki**, **Brígida Mónica Faria**, **David Simões**, **João Cunha** and **Gi Hyun Lim** and also all people from **CAMBADA**, **EuRoC** and **FC Portugal** projects

Thank you for your attention. Questions?

Learning Tasks in Robotics: Problems and Solutions

Nuno Lau (nunolau@ua.pt)

IEETA – Institute of Electronics and Informatics Engineering of Aveiro DETI / Universidade de Aveiro

ICAART, Feb 25, 2017