Formal Methods

LNCS 10510

Nadia Polikarpova
Steve Schneider (Eds.)

Integrated
Formal Methods

13th International Conference, IFM 2017
Turin, Italy, September 20-22, 2017
Proceedings



Lecture Notes in Computer Science
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods

Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK
Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany
Annabelle Mclver, Macquarie University, Sydney, NSW, Australia
Peter Miiller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

10510



More information about this series at http://www.springer.com/series/7408


http://www.springer.com/series/7408

Nadia Polikarpova - Steve Schneider (Eds.)

Integrated
Formal Methods

13th International Conference, IFM 2017
Turin, Italy, September 20-22, 2017
Proceedings

@ Springer



Editors

Nadia Polikarpova Steve Schneider
Massachusetts Institute of Technology University of Surrey
Cambridge, MA Guildford

USA UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-66844-4 ISBN 978-3-319-66845-1 (eBook)

DOI 10.1007/978-3-319-66845-1
Library of Congress Control Number: 2017952382
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


http://orcid.org/0000-0001-5571-173X
http://orcid.org/0000-0001-8365-6993

Preface

Applying formal methods may involve the usage of different formalisms and different
analysis techniques to validate a system, either because individual components are most
amenable to one formalism or technique, because one is interested in different prop-
erties of the system, or simply to cope with the sheer complexity of the system. The
iFM conference series seeks to further research into hybrid approaches to formal
modeling and analysis; i.e., the combination of (formal and semi-formal) methods for
system development, regarding both modeling and analysis. The conference covers all
aspects from language design through verification and analysis techniques to tools and
their integration into software engineering practice.

These proceedings document the outcome of the 13th International Conference on
Integrated Formal Methods, iFM 2017, on recent developments toward this goal. The
conference was held in Turin, Italy, on September 20-22, 2017, hosted by the
University of Turin. Previous editions of iFM were held in York, UK (1999),
Schloss Dagstuhl, Germany (2000), Turku, Finland (2002), Kent, UK (2004),
Eindhoven, The Netherlands (2005), Oxford, UK (2007), Diisseldorf, Germany (2009),
Nancy, France (2010), Pisa, Italy (2012), Turku, Finland (2013), Bertinoro, Italy
(2014), and Reykjavik, Iceland (2016).

The conference received 61 submissions from authors in 24 countries. Papers were
submitted in four categories: research papers, case study papers, regular tool papers,
and tool demonstration papers. All papers were reviewed by at least three members
of the Program Committee. After careful deliberation, the Program Committee selected
28 papers for presentation.

Among these papers, the Program Chairs, in consultation with the Program Com-
mittee, have selected winners for two awards. The contribution “Triggerless Happy:
Intermediate Verification with a First-Order Prover” by YuTing Chen and Carlo A.
Furia received the Best Paper Award. The contribution “Complexity Analysis for Java
with AProVE” by Florian Frohn and Jiirgen Giesl received the Best Tool Paper Award.
Each award was accompanied by a EUR 500 prize, generously provided by Springer.

In addition to the 28 peer-reviewed papers, this volume contains contributions from
each of the three invited keynote speakers:

— Jane Hillston (University of Edinburgh, UK): “Integrating Inference with Stochastic
Process Algebra Models”

— André Platzer (Carnegie Mellon University, USA): “Logic & Proofs for
Cyber-Physical Systems with KeYmaera X”

— Martin Vechev (ETH Zurich, Switzerland): “Machine Learning for Programming”

Invited presentations are always the highlights of a conference; these contributions
are therefore gratefully acknowledged.

iFM was accompanied by a PhD Symposium, organized by the symposium chairs,
Erika Abraham (RWTH Aachen University, Germany) and S. Lizeth Tapia Tarifa
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(University of Oslo, Norway), as well as the following satellite events, managed by the
workshop chairs, Wolfgang Ahrendt (Chalmers University of Technology, Sweden)
and Michael Lienhardt (University of Turin, Italy):

— International Workshop on Formal Methods for Industrial Critical Systems and
Automated Verification of Critical Systems (FMICS-AVoCS)

— Workshop on Architectures, Languages and Paradigms for IoT (ALP4IoT)

— Workshop on Actors and Active Objects (WAO)

— Workshop on Formal Verification of Autonomous Vehicles (FVAV)

— Second International Workshop on Pre- and Post-Deployment Verification Tech-
niques (PrePost)

— Second International Workshop on Verification and Validation of Cyber-Physical
Systems (V2CPS)

The conference would not have been possible without the enthusiasm and dedica-
tion of the iFM general chair, Ferruccio Damiani, and the support of the Computer
Science Department at the University of Turin, Italy. The EasyChair conference
management system was invaluable for conducting the peer review process and
preparing the proceedings. Conferences like iFM rely on the willingness of experts to
serve on the Program Committee; their professionalism and their helpfulness was
exemplary. Finally, we would like to thank all the authors for their submissions, their
willingness to continue improving their papers, and their presentations!

July 2017 Nadia Polikarpova
Steve Schneider
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Integrating Inference into Stochastic Process
Algebra Models

Jane Hillston

LFCS, School of Informatics, University of Edinburgh
jane.hillston@ed.ac.uk

Stochastic process algebras emerged in the early 1990s as a quantitative formal method.
By incorporating information about probabilities and timing into a classical process
algebra, it was possible to build models which allowed quantitative aspects of beha-
viour such as performance, reliability and availability to be evaluated in addition to
qualitative aspects such as liveness and safety. Thus it became possible to answer
questions such as the expected time until a failure in the system, or the proportion
messages that are successfully delivered within 10 seconds. The language is equipped
with a structured operational semantics giving rise to a labelled transition system that
can be interpreted as a continuous time Markov chain. This class of stochastic pro-
cesses is widely used in quantitative modelling and many efficient analysis techniques
are available. Moreover the formality and structure of the process algebra has allowed
new decompositions and approximations to be defined at the language level and
automatically applied.

However one of the drawbacks of the stochastic process algebra approach is that
the quantitative analysis of the model is dependent on the accuracy of the parameters
used to capture the timings and probabilities that influence behaviour within the sys-
tem. In some application domains this data can be obtained from monitoring or logging
software, systems specifications etc. But in others, such as systems biology, not all
aspects of behaviour are accessible to measurement and it can be very difficult to arrive
at accurate parameters for the models.

Thus in recent years we have developed a stochastic process algebra, ProPPA,
which allows parameters within the model to be left uncertain, specified by a distri-
bution rather than a concrete value. Thus a ProPPA model describes not a single model,
but a family of models, each associated with a probability that it is a good represen-
tation of the system. Moreover when evidence about the behaviour of the system is
available, the language supports inference techniques from machine learning, which
allow us to refine the uncertainty and generate a new family of models with different
probabilities. The range of possible quantitative behaviours can be derived from the
family of models together with an estimate of their likelihood.

Thus ProPPA, Probabilistic Programming Process Algebra, is a stochastic process
algebra that combines elements of the data-driven modelling approach adopted in
machine learning, with a more mechanistic modelling style from formal methods. Since
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different inference techniques are suited to different model characteristics, the ProPPA
tool suite offers a modular approach with a number of different inference techniques
which can be used to refine the estimate of the parameters of the model and therefore
the possible quantitative behaviours that may be exhibited.



Logic & Proofs for Cyber-Physical Systems
with KeYmaera X

André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

1 Abstract of Invited Talk

Cyber-physical systems (CPS) combine cyber aspects such as communication and
computer control with physical aspects such as movement in space, which arise fre-
quently in many safety-critical application domains, including aviation, automotive,
railway, and robotics [1, 2, 4-6, 8, 11, 16, 17, 24-28, 40, 42—-44]. But how can we
ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft
will not crash into another one?

Borrowing from an invited paper at [JICAR [36] to which we refer for more detail,
this talk will highlight some of the most fascinating aspects of cyber-physical systems
and their dynamical systems models, such as hybrid systems that combine discrete
transitions and continuous evolution along differential equations. Because of the impact
that they can have on the real world, CPSs deserve proof as safety evidence.

Multi-dynamical systems understand complex systems as a combination of multiple
elementary dynamical aspects [33], which makes them natural mathematical models for
CPS, since they tame their complexity by compositionality. The family of differential
dynamic logics [28-35, 37] achieves this compositionality by providing compositional
logics, programming languages, and reasoning principles for CPS. Differential dynamic
logics, as implemented in the theorem prover KeYmaera X [7], have been instrumental
in verifying many applications, including the Airborne Collision Avoidance Sys-
tem ACAS X [9], the European Train Control System ETCS [39], automotive systems
[13, 14, 20], aircraft roundabout maneuvers [38], mobile robot navigation [18, 19], and
a surgical robot system for skull-base surgery [10].

In addition to serving as a basis for additional formal verification results in different
CPS application domains, each of those case studies are chosen to demonstrate how
characteristically new features can be verified in practice. Safety, controllability,
reactivity, and liveness properties for the double integrator dynamics interacting with
different discrete components are the basis for ETCS verification [39]. Combinations
with distributed systems and communication systems are emphasized elsewhere

This talk is based on an overview of logic and proofs for cyber-physical systems from IJCAR [36]
to which we refer for more details. The talk is augmented with more detail on the new theorem prover
KeYmaera X, which is at http://keymaeraX.org/.This material is based upon work supported
by the National Science Foundation under NSF CAREER Award CNS-1054246.
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[13, 14, 20]. How safety properties of CPS with unsolvable dynamics can be verified
rigorously is showcased for aircraft with fixed ground speed [38] and for mobile
ground robot navigation with acceleration/braking [18, 19]. High precision results in
the safe handling of data structures for an unbounded number of obstacles are show-
cased in medical robotics [10]. Systems whose decisions are based on table lookups
from a machine-learned value table are studied in the context of elaborate characteri-
zations of the safe region of the high-level vertical motion of aircraft [9]. The ACAS X
results are also of interest for characterizations of last-resort safety, i.e., to restrict
intervention to when the last chance for a corrective safety action has come.

The KeYmaera X prover implements a uniform substitution calculus for differential
dynamic logic d.% [35], which enables a prover with a very small soundness-critical
core of just about 1 700 LOC of Scala [7]. To achieve high levels of confidence, this
uniform substitution calculus has been cross-verified both in the Isabelle/HOL and in
the Coq theorem provers [3]. Verification results about CPS models transfer to CPS
implementations when generating provably correct runtime monitors with the Mod-
elPlex approach [21], which is also implemented as a proof tactic in KeYmaera X. That
approach makes it possible to rigorously develop correct CPS controllers for CPS
models with a provable link to the safety monitors in the system implementation. The
use of components for hybrid systems has been explored as well [15, 22, 23], which
make it possible to benefit from safety proofs about components and inherit safety
proofs for a compound system for free (under certain compatibility conditions). While
differential dynamic logics are already inherently compositional for each of their
composition operators, component notions add additional structuring principles for
bigger pieces and provide simple safety notions for components. In order to bootstrap
such a component approach without having to enlarge the small soundness-critical core
of KeYmaera X, the safety of the composite is proved automatically by a KeYmaera X
tactic from correctness proofs about its components [23].

More technical overviews are available in the literature [29, 33, 36, 41].
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Machine Learning for Programming

Martin Vechev

Department of Computer Science, ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

In this talk T will discuss some of our latest research on creating probabilistic pro-
gramming tools based on machine learning. These tools leverage the massive effort
already spent by thousands of programmers and make useful predictions about new,
unseen programs, helping solve difficult and important software tasks. I will illustrate
several such probabilistic systems including statistical code synthesis and deobfusca-
tion. Two of these de-obfuscation systems (jsnice.org and apk-deguard.com) are freely
available, used daily and have more than 200,000 users from every country worldwide.
I will also present new methods for creating probabilistic models that some of our
systems are based on. These methods are more precise than neural networks and have
applications to other domains, beyond code (e.g., to modeling natural language).
Finally, I will conclude with what I believe are some of the more interesting, open
problems in this area.
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Abstract. Search-based testing is widely used to find bugs in models of
complex Cyber-Physical Systems. Latest research efforts have improved
this approach by casting it as a falsification procedure of formally spec-
ified temporal properties, exploiting the robustness semantics of Signal
Temporal Logic. The scaling of this approach to highly complex engi-
neering systems requires efficient falsification procedures, which should
be applicable also to black box models. Falsification is also exacerbated
by the fact that inputs are often time-dependent functions. We tackle the
falsification of formal properties of complex black box models of Cyber-
Physical Systems, leveraging machine learning techniques from the area
of Active Learning. Tailoring these techniques to the falsification prob-
lem with time-dependent, functional inputs, we show a considerable gain
in computational effort, by reducing the number of model simulations
needed. The effectiveness of the proposed approach is discussed on a
challenging industrial-level benchmark from automotive.

Keywords: Model-based testing - Robustness - Gaussian Processes -
Cyber-Physical Systems - Falsification

1 Introduction

Model Based Development (MBD) is a well known design framework of complex
engineered systems, concerned with reducing cost and time of the prototyping
process. Most prominently, this framework has been adopted in the industrial
fields such as automotive and aerospace where the conformity of the end prod-
uct is extremely important. The majority of systems in these areas are Cyber-
Physical Systems (CPS) [5], where physical and software components interact
© Springer International Publishing AG 2017
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producing complex behaviors. These systems can be described by appropriate
mathematical models which are able to mime all the system behaviors. Moreover,
it is necessary to have a suitable specification framework capable of analyzing
the output of such models.

Hybrid Systems [13] are the mathematical framework usually adopted, while
Temporal Logic [16], due to its ability to describe temporal events, is generally
used as specification framework. The high level of expressivity of Hybrid Systems,
which is the main reason for their success, is also the cause of their undecidability,
even for simple logic formulas. Subclasses of Hybrid Systems which are decidable
for specific temporal logic formulas exist and have been widely studied during
the last 15 years, as well as model checking techniques capable of verifying them
[3]. Unfortunately, the majority of CPS used nowadays in the industrial field are
much more complex than decidable hybrid systems. They are mainly described
by using block diagram tools (i.e. Simulink/Stateflow, Scade, LabVIEW, and
so on) where several switch blocks, 2/3-D look-up tables and state transitions
coexist. These CPS are generally not decidable and standard model checking
techniques are not feasible, leading to the proposal of different techniques [4].

Testing procedures with the purpose of verifying the model on specific behav-
iors have been adopted for several years. These are feasible approaches whenever
it is possible to write in advance collections of test cases which extensively cover
all the possible events leading to system failure [21]. With the increase of com-
plexity, such an a priori assumption is not viable in most of the real cases and
for this reason different techniques, such as random testing and search-based
testing, have been introduced [22]. The general idea consists in expressing the
falsification procedure as an optimization process aiming at minimizing a target
quantity which describes “how much” a given property is verified. For example,
achieving a negative value of the robustness semantics of a given Signal Tem-
poral Logic (STL) [9] formula means falsifying the system with respect to that
formula.

In this paper we study the falsification problem of black box systems (i.e.
block diagram models such as Simulink/Stateflow model or sets of ordinary
differential equations generally used in automotive or aerospace industrial fields)
which takes as input and produce as output continuous or Piecewise-Continuous
(PWCQ) signals. The requirements are expressed by using STL.

Solving such falsification problems in a search-based framework poses two
main challenges. Generally, the simulation of block diagram models is time con-
suming, hence it is necessary to falsify the model with as few simulations as
possible. Moreover, the models accept continuous/PWC signals as inputs and
an efficient finite dimensional parametrization is necessary to perform an opti-
mization procedure. The contribution we propose in this paper is to tackle these
challenges by a novel strategy leveraging Machine Learning techniques (Gaussian
Processes and active learning) and by using a new adaptive version of the Control
Points Parameterization approach.

The paper is organized as follows. In Sect.2 we review the definition of
Dynamical System, Signal Temporal Logic and Gaussian Processes. In Sect. 3
we discuss the Domain Estimation Problem which is solved by using Gaussian
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Processes. Section 4 presents the Falsification Approach and the adaptive opti-
mization strategy performed by using Gaussian Processes and adaptive func-
tion parameterization. In Sect.5 we introduce the Probabilistic Approximation
Semantics. In Sect. 6 we briefly introduce the test cases and discuss the results.
Finally in Sect.7 we provide the conclusions and discuss the future works.

2 Background

2.1 Dynamical System

We consider a system as a pair M = (S,sim) where S =U x X, and U and X are
finite (or infinite) sets representing respectively the input values of the system
and the state (coinciding for us with the output). The system is equipped with
a simulator, sim, which will be considered as a black box (i.e. we can provide
any input to the system and read the generated outputs). The input set is
U=Vyx- - xV,xWyx---x W, where V; are finite sets and W, are compact
sets in R, representing respectively the discrete input events and the continuous
input signals. The dynamics of the system is described with two functions: the
state function x : 7 — X and the input function u : T — U which map each
time t € 7 to astate (x(¢) € X) and input (u(t) € U), and where 7 = [0,7] C R.
We call k — th input signal the ug function belonging to the input function u
and identify with {7 — U} the set of function from 7 to U.

The dynamics of the system is encoded in the deterministic simulator sim,
which takes as input an initial state xg € X’ and an input signal u(t), and returns
as output a corresponding system trajectory x : 7 — X, with x(ty) = xo. We
denote by Path™ C (T — S) the set of all possible simulations returned by sim,
described as pairs of state and input functions, for any possible different initial
state and input signal. In any practical scenario, the simulator will operate in dis-
crete time, returning a sequence of values at discrete time points tg, t1,.. ., tk, ..
which are then interpolated to produce a continuous output (e.g. by plecevvlse
linear interpolation).

2.2 Signal Temporal Logic

Signal Temporal Logic (STL, [14]) is a discrete linear time temporal logic used
to reason about the future evolution of a path in continuous time. Generally this
formalism is used to qualitatively describe the behaviors of trajectories of differ-
ential equations or stochastic models. The temporal operators we consider are
all time-bounded and this implies that time-bounded trajectories are sufficient
to assess the truth of every formula. The atomic predicates of STL are inequal-
ities on a set of real-valued variables, i.e. of the form wu(s):=[g(s) > 0], where
g: S — R is a continuous function, s € S and consequently u: S — {T, L}.

Definition 1. A formula ¢ € F of STL is defined by the following syntax:
¢:=L|T|p|=¢|oVe|oUum, 1,9, (1)

where u are atomic predicates as defined above, and Ty < Ty < +00.
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Modal operators “eventually” and “globally” can be defined, as customary, as
F[T1,T2]¢ = —|—IJ[T1 T2]¢ and G[T1 T2]¢ = _'F[T1 T2]_|¢ STL formulae are inter-
preted over the dynamics Path™ of the model M. We will consider the quanti-
tative semantics [9] which, given a trajectory x(t), returns a real value capturing
a notion of robustness of satisfaction whose sign captures the truth value of the
formula (positive if and only if true), and whose absolute value gives a measure
on how robust is the satisfaction.

Definition 2 (Quantitative Semantics). The quantitative satisfaction func-
tion p: F x Path™ x [0,00) — R is defined by:

p(T,s,t) =400

plu, 8,t) = g(s(t)) where g is such that pu(s) = [g(s) > 0]
- p(ﬁdhs t) = —p(,s,1)

p<¢1 V g2, s, t) maX( ((bhs,t),p((f)g,&t))
p

¢1U [T1,T%] ¢2’ s t) sup (min(p(ég, S, t/) inf p(d)h 7t//))>
tEt+T) ,t+Ts) teft,t’)

2.3 Gaussian Processes

Gaussian Processes (GPs) are probabilistic methods used for classification or
regression purposes. More specifically, a GP is a collection of random variables
X(t) € R (t € T, an interval of R) of which any finite number define a multi-
variate normal distribution. A GP is uniquely defined by its mean and covari-
ance functions (called also kernels) denoted respectively with m : 7' — R and
k:R x R — R such that for every finite set of points (¢1,ta,...,t):

X ~ GP(m, k) <= (X(t1), X(t2), ..., X(tn)) ~ N(m, K) (2)

where m = (m(ty), m(t2),...,m(t,)) is the vector mean and K € R™*" is the
covariance matrix, such that K;; = k(X(¢;), X(¢;)). From a functional point
of view, GP is a probability distribution on the set of functions X : 7 — R.
The choice of the covariance function is important from a modeling perspective
because it determines the type of function that will be sampled with higher
probability from a GP, see [18]. In this work we use the Neural Network kernel,
which performed better than more classical choices, like Gaussian Radial Basis
Function kernels, see [18] for further details.

GPs are successfully used to solve regression problems starting from a train-
ing set with noisy observations,

((thzl)ﬂ(t%:r?)w'-ﬂ(tn,xn)) (3)

The goal is to find a function = : T — R such that Vi < n, z; = z(t;) + €,
and € ~ N(0,0,) (a Gaussian noise is a common choice for regression with
real-valued outputs). In the GP paradigm a family of mean functions m(z; hq) :
R x H; — R and of covariance functions k(z1,2z2;h2) : R x R x Hy — R,
where h = (hy,hs) are called hyperparameters, are considered. The idea is
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to estimate the best hyperparameters which justify as much as possible, the
observations provided in the training set. Mathematically it means to maximize
the log marginal likelihood maxy, log p(x|t; h). where x = (x1,29,...,2,) and
t = (t1,ta,...,t,) accordingly to (3). After having solved the previous optimiza-
tion problem it is possible to predict the probability distribution of a new point
as z(t*) ~ N(m*, k*), where

m* = (k(t,t1), ..., k(t,tx)) Ky

E* =kt t)(k(t,ty), ... k(t, tn)) K (k(t 1), ... k(t, ty)T

3 Domain Estimation with Gaussian Processes

Definition 3. Consider a function f : D — R and an interval I C R. We
define the domain estimation problem as the task of identifying the set B of
points x € D such that f(x) € I:

B—{zeDlf(z) eI} CD, (4)
In practice, if B # 0, we will limit us to identify a subset B C B of size n.

Gaussian Processes (GP) can be efficiently used to solve this task. Similarly
to the Cross Entropy methods for optimization [19], the idea is to implement
an iterative sample strategy in order to increase the probability to sample a
point in B, as the number of iterations increases. Consider the set K(f) =
{(xs, f(x;) ) }i<n representing the partial knowledge we have collected after n
iterations and the GP fx(z) ~ GP(mg(x),0k(x)) trained on K(f). We can
easily estimate P(z € B) = P(fx(z) € I) by computing the probability of a
Gaussian distribution with mean my (x) and variance 0% (z). This corresponds
to our uncertainty on the value of f(z) belonging to I, as captured by the GP
reconstruction of f. The previous probability can be effectively used to solve the
domain estimation problem described in Definition 3. Our approach is described
in Algorithm 1:

— During initialization (line 2), we set the iteration counter (i) and the minimum
distance (d) from the interval I. The set (B) containing the elements of (B) is
set to empty, which ensures the algorithm is run at least once. The knowledge
set K (f) is initialized with some randomized points sampled from D (line 3).

— In the iterative loop, the algorithm first checks if the number of counterex-
amples (ce) or if the maximum number of iterations (maxlter) has been
reached. In this case, the method stops returning the estimated set (B) and
the minimum distance from I that has been registered until that point. Oth-
erwise new GPs are trained by using K (f) (line 5) and a set composed by
m points (Dygriq) is generated by Latin Hypercube sampling [15], so to have
a homogeneous distribution of points in space (line 6). For each of these
points z, the probability P(x € B) = P(fx(z) € I) is calculated and the set
{(z,P(z € B)),x € Dypiq} is created. Afterwards, a candidate point e, is



8 S. Silvetti et al.

Algorithm 1

1: procedure [B,d ] = DOMAINESTIMATION (maxIter,ce,m, f,I)
2: i+ 0, B+ 0,d+« +00

3 INITIALIZE(K (f))

4 while ( |B| < ce and ¢ < maxlIter) do

5: fr(r) ~ TRAINGAUSSIANPROCESS (K (f))
6: Dyriq < LHS(m)

7 Znew — SAMPLE{(z, P(x € B)),x € Dgria}
8: fnew — f(xnew)

9: d «— min(d, DISTANCE( frew, I))
10: K(f) = K(f) U{(@new, frew)}
11: if frew € I then
12: B = BU{Znew}
13: end if
14: 1—1+1

15: end while
16: end procedure

sampled from Dg,;q proportionally to its associated probability (line 7) so to
increase the sampling of points with higher estimated probability of belonging
to B. Consequently, K (f) is upgraded and if « € B then z is added to B (line
12). The procedure outputs also d, the minimum distance of the evaluated
points from the interval I calculated during the procedure.

4 The Falsification Process

A big effort during the prototyping process consists in verifying the requirements
usually expressed as safety property, such as:

V(uaxO) € {T - Z/[} X XO; p(d)v (u7 X)VO) >0 (5)

meaning that for each input function and initial state o € Ay C X, the dynamics
(Path™ = (u, x)) satisfies the STL formula ¢. It is possible to interpret the safety
condition (5) as a domain estimation problem associated with

B ={(u,z0) € {T — U} x X, p(¢,(u,x),0) <0} (6)

with the purpose of verifying its emptiness, which entails that (5) is satisfied.
We call B the counterexample set and its elements counterexamples.

Solving the previous domain estimation problem could be extremely difficult
because of the infinite dimensionality of the input space, which is a space of
functions. For this reason, it is mandatory to parameterize the input function by
means of an appropriate finite dimensional representation. One of the most used
parameterization—mainly for its simplicity—is the fized control point parame-
terization (fixCP): after having fixed the times, (¢},..., ¢k ) the control points
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{(th, uf), ..., (th ,uk )} are chosen as parameter of the k-th input signals. Cho-
sen an interpolation set of function with ny degrees of freedom for each k-th
input signals (P’;k C {7 — Uy}, e.g. piecewise linear, polynomials of degree
ng, and so on (see [20])), the fixCP parameterization will associate with each

control point ¢, = {(t},u}),..., (tF ,uf )} the unique function P, € Pk sat-
isfying Vi < n, P, (t¥) = u¥. Let us denote by P, = (P} ,..., ,‘f"{ull), the set of

interpolating functions.

It is clear that by increasing the number of control points, we will enlarge
the set of approximant functions Pn: n < m implies P, C P, where n < m is
intended pointwise. As piecewise linear or polynomial functions are known to be
dense in the space of continuous functions, by choosing an appropriately large
n, we can approximate any input function with arbitrary precision.

Considering an n-fixCP, which is a fixCP where n = (n1, ..., nyy|) represents
the number of control points used for each input variables, it is possible to
introduce the domain estimation problem (6) associated with the following set:

B={(c.z0) €U x - x Ui x Xo, p(6, (Pa(0),2),0) <0} (7)

which, differently from (6), is a finite dimensional set described by using
Zlfil nj + |Xo| variables.
By the density argument it is clear that

(6) has at least one element <= 3n € w!“! (7) has at least one element.

A possible strategy is to solve the domain estimation problem associated with
(7) by choosing the minimum n such that P, x Xy contains a counterexample.
Applying that strategy, even in simple cases, could be cumbersome as shown in
the following example.

Toy Example. Consider a simple black box model which accepts a single piece-
wise-constant function w : [0,1] — [0,1] as input function and returning the
same function = u as output. Considering the following requirement ¢ :=
(G0,05110 < 2 < 02N Gps51)0.8 < ¢ < 1), it is evident that it could be
falsified only in a control point parameterization having at least the point (¢;, u;)
such that t; € [0.51,0.55]. Otherwise if this points does not exists it means the
output signals will assume a constant values in [0.51,0.55] which implies that or
Gio.55,1] (0.8 <z < 1) or Gy 051 (0 < 2 < 0.2) is false meaning that ¢ is not
falsified. The minimum number of uniformed fixed control points necessary to
achieve it is 9, which entails a considerable computational effort.

A natural way to overcome the limitation of the fixCP consists in consider-
ing the times of the control points as variables. An n-adaptive Control Points
parameterization (n-adaCPP) consists in a function PF : T™ x Ut — Pk |
which has twice as much parameters than the fixed version: values at control
points and times (which are constrained by Vi < nt; < t;11). The adaptive
parameterization is preferable with respect to the fixed one because of its abil-
ity to describe functions with local high variability even with a low number of
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control points. In fact it is possible to concentrate any fraction of the available
control points in a small time region, inducing a large variation in this region,
while letting the parameterized function vary much less outside it.

4.1 Adaptive Optimization

The idea of the adaptive optimization approach consists in falsifying (5) starting
from a simple input function and increasing its expressiveness by increasing
the number of control points. Consider a model with input function u taking
values in U; X --- X U, and with initial state xy taking values in a compact
set Xy C RF. After having defined a parameterization for each of the m input
signals, Algorithm 2 works as following;:

— At the first iteration a parameterization Py, = {P?, ..., P} with zero control
points for each signals (ng = (0,...,0)) is considered (line 2). Zero control
points means defining input signals which are constant functions. The final
counterexample set (B) is set to empty, which ensures the optimization is run
at least once (line 3).

— In the iterative loop, the algorithm first checks if the number of counterex-
amples (ce) or if the maximum global number of iterations (mgi) has been
reached. In this case, the method stops returning the counter example set (B).
Otherwise, the falsification problem is solved by using the domain estimation
procedure DOMAINESTIMATION (Algorithm 1) which returns the counterex-
ample set and the minimum value of the robustness found by using that para-
meterization (see Sect. 3 for details). The parameterization is then expanded
by picking a coordinate of the input signal (lines 6-10) and adding a new
control point (line 11), obtaining a new parameterization P,

i+1°

Algorithm 2

1: procedure [B,d] = ADAPTIVEGPFALSIFICATION(mgi, mii, ce, m, ¢)
2 mno < (0,...,0)

3 B« 0, ko« 0,i+ 0, dy — +00

4 while (|B| < ce and i < mgi) do

5: [B™,di+1] = DOMAINESTIMATION(mii, n,, ce — | B|, m, p(¢, -, t), (—00,0))
6: if d¢+1 > d; then

7 kiv1 — ki

8: else

9: kiv1 — (ki+1) mod n
10: end if
11: N;y1 < Ny —+ €L
12: t— 141
13: B+~ BUB™

14: end while
15: end procedure
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The general idea of this approach is to keep low the number of parameters
by starting from constant signal and gradually increasing the number of control
points of the input functions. In the adaptive control points parameterization,
adding a control point means adding two new degrees of freedom (one for the time
and one for the value of the control point). This means, on the one hand, having
more expressiveness and so more chances to falsify the system, but on the other
hand this complicates the optimization process and increases the dimension of
the search space as well as, hence, the minimum number of simulations required
to solve it. For this reason it is convenient to add control points only where it is
truly necessary.

5 Probabilistic Approximation Semantics

Gaussian Processes can be used to estimate the probability that a given input
falsifies a system as described in Sects.3 and 4. This fact offers the possibility
to define an approximate semantics which generalizes the concept of probability
of falsification that we can infer considering the knowledge of the system we
have collected. The basic idea is to decompose an STL formula as a Boolean
combination of temporal modalities, propagating the probability of the temporal
operators, estimated by GPs, through the Boolean structure. Formally, let £y be
the subset of STL containing only atomic propositions and temporal formulae
of the form ¢1Up, 1,102, Fry 1,10 and Gr, 1,19, that cannot be equivalently
written as Boolean combinations of simpler formulae. For example Fr(¢1 V ¢2)
is not in Ly because Fr(¢1 V ¢2) = Froy V Frés. Furthermore, let £ be the
logic formed by the boolean connective closure of £y.!

For simplicity, let us denote by 8 a parameter and describe the input function
by ug and the initial state by xge. We write xg to indicate the path generated by
the simulator, given as input ug and x4, accordingly to Sect. 2. We want to define
an (approximate) semantics giving the probability that a path x4 satisfies a given
formula ¢ € £ (without simulating it). The idea is to evaluate the quantitative
semantics of the atomic formulae ¢; € Lo of 1 on a finite collection of parameters
(© = {6;}i<n), then building GPs in order to estimate the probability that
the quantitative semantics of each formula ¢; is higher than zero on a target
parameter. This is again a Domain Estimation Problem (Sect.3), where the
function is the robustness associated with the STL formula ¢; and the interval
I is (0, 400). We propagate this probability through the Boolean structure of ¢
according to the following;:

Definition 4 (Probabilistic Approximation Semantics of £). The prob-
abilistic approzimation function v : S x Path™ x [0,00) — [0,1] is defined by:

= 7(8,0,t) = P(fr(s)(0) > 0)
- W(ﬂ/%@vt) =1- 7(¢797t)

'oeLiffy =Y VYA, with ¢ € Lo.
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= (W1 A2, 0,t) = (Y1, 0,1) x y(¢2,0,1)
- ’7(¢1 V ¢2797t) = ’.Y(’@[Jlaeat) +’7(¢2707t) - ’7(’@[}1 A¢2797t)

where K(¢) = {0, p(¢,60:,t)}i=1,..n is the partial knowledge of the satisfiabil-
ity of ¢ € Ly that we have collected performing n simulations for parameters
(0i)i=1,..n- fK(¢) is the GP trained on K(¢), and P refers to its probability. For
simplicity we use v(1,0,t) to mean y(¢, (ug, zg),t).

In the previous definition, the probability P(fx4)(f) > 0) is easily computed,
as fr(¢)(0) is normally distributed.

Including the Probabilistic Approximation Semantics (PAS) in our falsifica-
tion procedure (Algorithm 2) is straightforward. Given the formula we have to
falsify, first we negate and decompose it in order to identify the £ formula associ-
ated with it. Then we pass all the basic £y formulas to the DOMAINESTIMATION
procedure (Algorithm 1) and train a GP for each of them (instead of considering
a single function (Algorithm 1, line 5). Subsequently we calculate its probabilis-
tic approximation semantics to drive the sampling strategy (Algorithm 1, line 7).
The rest of the algorithm remains the same.

Remark. Consider the STL formula ¢ = Gig30j(v < 160 A w < 4500). This
formula is not in Lo, as it can be rewritten as Gg 30) (v < 160)AGg 30 (w < 4500).
We could have defined the set £y in different ways (e.g. by including also ¢),
our choice corresponding to the finer decomposition of temporal formulae. Even
if this leads to an increased computational cost (more GPs have to be trained),
it also provides more flexibility and allows us to exploit the boolean structure in
more detail, as discussed in the following example.

Example. To clarify the advantages of the PAS, consider the functions
p(d1,2,0) = 22 4+ 1 and p(¢o,2,0) = —0.2 + 0.9(1 — h(z,0.7,0.035) —
h(x,0.85,0.035)) representing the robustness associated with the formulas ¢,
and ¢y at time 0 and for input parameter x, respectively. Here h(x,m,s)
is a gaussian function with mean m and standard deviation s. We compare
two approaches. In the first one, we calculate the probability of its negation
ie. Y(=(g1 A ¢2),x,0) = 1 — v((¢1 A ¢2),2,0) by means of a single gaussian
process. In the second one, we decompose the conjunction and calculate its
PAS v(=(¢1 A ¢2),2,0) = 1 — (b1, z,0) * v(¢2, x,0) by means of two separated
Gaussian Processes. Functions used by the method to drive the sample are rep-
resented in Fig.1(a). In the first case, the signal which is smooth in [0, 0.65]
and highly variable in (0.65, 1] forces the method to sample many points near
x = 0, as the function is close to zero near this point. This requires 55.35 4+ 45.10
function evaluations. On the contrary the second approach shows a rapid dis-
covery of the falsification area, i.e. 17.19 + 7.71 evaluations, because the two
components are treated independently, and the method quickly finds the min-
ima regions of y(¢2,x,0), after an initial phase of homogeneous exploration. In
addition, the paraboloid v(¢1, z,0) is smooth and requires few evaluations for a
precise reconstruction.
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—p($,,x,0)
- == pl¢,:%,0) |

STL Formulae
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| ' ¢35 (3,0) = Goa0)(w < @) = Go,10(v < ?)
¢§T(5,Q) = FIO,IO]('U > ’l_)) - G[0,30](“J < LD)

o 0.2 0.4 0.6 0.8 1

(a) PAS example (b) Automatic Transmission Req.

Fig. 1. (a) Example on the use of the probabilistic semantics. The curve treating the
formula as a single one is the minimum of the two curves. (b) Requirements for the
Automatic Transmission example of Sect. 6.

6 Case Studies and Results

In this section we discuss a case study to illustrate our approach, taken from [20].
We will compare and discuss the performance of a prototype implementation
in Matlab of our approach with S-TaLiRo toolbox [11]. We use S-TaLiRo to
compute the robustness, and the implementation of Gaussian Process regression
provided by Rasmussen and Williams [17].

Automatic Transmission (AT). We consider a Simulink model of a Car
Automatic Gear Transmission Systems. There are two inputs: the throttle and
the brake angle dynamics describing the driving style. Modes have two contin-
uous state variables, describing vehicle (v) and engine (w) speed. The Simulink
model is initialized with a fixed initial state (wg, vo) = (0, 0), it contains 69 blocks
(2 integrators, 3 look-up tables, Stateflow Chart, ...). The requirements are
described by means of STL formulae as reported in Fig. 1(b). The first require-
ment (¢f17) is a so called invariant which says that in the next 30s the engine
and vehicle speed never reach @ rpm and ¥ km/h, respectively. The second
requirement (¢5'7) says that if the engine speed is always less than @ rpm, then
the vehicle speed can not exceed ¥ km/h in less than 10s. Finally, the third
requirement (¢4'7) basically says that if within 10s the vehicle speed is above v
km/h than from that point on the engine speed is always less than @ rpm.

Results. We analyze the performance of our approach in terms of the mini-
mum number of simulations and computational time needed to falsify the pre-
vious test cases. We have performed 50 optimization runs for each STL formula
and compared its performance with the best statistics achieved among a Cross
Entropy (CE), Montecarlo Sampling (SA) and Uniform Random Sampling (UR)
approaches performed with the S-TaLiRo tool [4] and the GP-UCB algorithm
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Table 1. Results. All the times are expressed in seconds. Legend - nval: number of
simulations, times: time needed to falsify the property, Alg: the algorithm used as
described in Sect. 6.

Req Adaptive PAS Adaptive GP-UCB S-TaLiRo

nval times nval times nval times Alg
d)fT(160,4500) 4.42 + 0.53 2.16 + 0.61 4.16 + 2.40 0.55 4+ 0.30 | 5.16 £+ 4.32 0.57 + 0.48 | UR
¢fT(160,4765) 6.90 £ 2.22 5.78 £+ 3.88 8.7+ 1.78 1.52 4 0.40 | 39.64 £+ 44.49 | 4.46 + 4.99 | SA
¢‘24T(75,4500) 3.24 +1.98 1.57 £1.91 7.94 4+ 3.90 1.55+1.23 | 12.78 £ 11.27 | 1.46 + 1.28 | CE
¢‘24T(85,4500) 10.14 +2.95 | 12.39 + 6.96 | 23.9 £ 7.39 9.86 4+ 4.54 | 59 + 42 6.83 +4.93 | SA
¢‘24T(75,4000) 8.52 £ 2.90 9.13 £ 5.90 13.6 £+ 3.48 4.12 +£1.67 | 43.1 £+ 39.23 4.89 +4.43 | SA
d){?T(SO, 4500) |5.024+0.97 | 2.91+1.20 |5.44+3.14 |0.91+£0.67|10.04 £7.30 |1.15+0.84 | CE
¢?T(90,4500) 7.70 £ 2.36 7.07 £+ 3.87 10.52 +1.76 | 2.43 £ 0.92 | 11 + 9.10 1.25 + 1.03 | UR

applied to falsification as described in [2]. As the table shows, our approach
(Adaptive PAS) has good results in terms of the minimum number of evaluations
needed to falsify the systems with respect to the STL formulae, outperforming
in almost all tests the methods of the S-TaLiRo suite and the Adaptive GP-
UCB approach. This is the most representative index, as in real industrial cases
the simulations can be considerably expensive (i.e. cases of real measurements
on power bench, time and computation intensive simulations). In these cases
the total computational time is directly correlated with the number of simula-
tions and the time consumed by the optimizer to achieve its strategy becomes
marginal. Furthermore, we are testing our method with a prototype implemen-
tation which has not been optimized, in particular for what concerns the use
of Gaussian Processes. Despite this, the numerical results in terms of minimum
number of simulations are outperforming S-Tal.iRo and GP-UCB approach.

Conditional Safety Properties. When we define a conditional safety prop-
erty i.e. Gr(Pcond — @safe) We would like to explore cases in which the formula
is falsified but the antecedent condition holds (see [2]). This is particular rele-
vant when the formula cannot be falsified, as it reduces the search space, ignoring
regions where the formula is trivially true due to a false antecedent. Focusing
on the region where ¢.,,q holds requires a straightforward modification of the
sampling routine of the Domain Estimation Algorithm (Algorithm 1, line 6-7).
Instead of performing the sampling directly on the input provided by the Latin
Hypercube Sampling Routine (Algorithm 1, line 6), we previously define a set
of inputs verifying the antecedent condition (by the standard Domain Estima-
tion Algorithm using the Gaussian Processes trained on the robustness of the
antecedent condition) and then we sample from this set the candidate point
(Algorithm 1, line 7).

To verify the effectiveness of this procedure, we calculate the percentage
of sampled inputs satisfying the antecedent condition of the STL formula
Gio,309 (w < 3000 — v < 100), which cannot be falsified. This percentage is
43% for the GP-UCB algorithm, but increases to 87% for the modified domain
estimation algorithm.
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7 Conclusions

In this paper we propose an adaptive strategy to find bugs in black box systems.
We search in the space of possible input functions, suitably parameterized in
order to make it finite dimensional. We use a separate parameterization for each
different input signal, and we use an adaptive approach, increasing gradually
the number of control points as the search algorithm progresses. This allows us
to solve falsification problems of increasing complexity, looking first for simple
functions and then for more and more complex ones. The falsification processes
is then cast into the Domain Estimation Problem framework, which use the
Gaussian Processes to constructs an approximate probabilistic semantics of STL
formulae, giving high probability to regions where the formula is falsified. The
advantage of using such an approach is that it leverages the Bayesian emulation
providing a natural balance between exploration and exploitation, which are the
key ingredients in a search-based falsification algorithm. In addition to a novel
use of Gaussian Processes, we also rely on a new adaptive parameterization,
treating the time of each control point as a variable, thus leading to an increase
in expressiveness and flexibility, as discussed in Sect.4. Moreover with a slight
modification of our algorithm we efficiently manage the falsification of the condi-
tion safety properties, increasing the efficiency of the usual GP-UCB algorithm
in focussing the search on the region of points satisfying the antecedent.

Future Work. The experimental results are quite promising, particularly as far
as the number of simulations required to falsify a property is concerned, which
is lower than other approaches. The computational time of the current imple-
mentation, however, is in some cases higher then S-TalLiRo. The main problem
is in the cost of computing predictions of the function emulated with a Gaussian
Process (GP). This cost, in fact, is proportional to the number of already evalu-
ated inputs used to train the GP. To reduce this cost, we can leverage the large
literature about sparse representation techniques for GP [18]. Furthermore, with
the increase in the number of control points, we face a larger dimensional search
space, reflecting in an increased number of simulations needed to obtain an
accurate representation of the robustness for optimization, with a consequent
increase of computational time. We can partially improve on this problem, typi-
cal of naive implementations of the Bayesian approach, by refining the choice of
the covariance function and/or constraining some of its hyperparameters so as to
increment the exploration propensity of the search. In the future, we also plan to
improve the adaptive approach which is in charge of increasing the control points
of an input signal, with the goal of dropping control points that are not useful. In
the current paper, we use the GP-based sampling scheme to deal efficiently with
falsification. However, our approach can be modified to deal with the coverage
problem [10], i.e. the identification of a given number of counterexamples which
are homogeneously distributed in the falsification domain. Our idea is to modify
the sampling algorithm (Algorithm 1, line 7) by adding a memory of already
visited areas, so to distribute samples homogeneously in space.
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Related Work. Different approaches have been proposed to achieve the falsi-
fication of black box models, starting from test based approaches until recently,
when search-based test approaches have become more popular. Stochastic local
search [7], probabilistic Monte Carlo [1] and mixed coverage/guided strategy
[10] approaches have been proposed and benchmark problems created [6,12].
Two software packages [4,8] implement the aforementioned techniques. Both
these software tools assume a fix parameterization of the input function, differ-
ently from us. Similarly to our approach, in [7,10] the fixed parameterization is
avoided. More specifically in [10] no parameterization has been used at all and
the input signals are modified on the fly based on the robustness of the partial
system trajectories. In [7] a uniform discretization of the input domains (both
time and values) is dynamically applied to discretize the search space. The use
of Gaussian Processes for falsification has been adopted in [2] but it is restricted
to Conditional Safety Properties.
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Abstract. Designing robotic systems can be very challenging, yet con-
trollers are often specified using informal notations with development
driven primarily by simulations and physical experiments, without rela-
tion to abstract models of requirements. The ability to perform formal
analysis and replicate results across different robotic platforms is hin-
dered by the lack of well-defined formal notations. In this paper we
present a timed state-machine based formal notation for robotics that
is informed by current practice. We motivate our work with an exam-
ple from swarm robotics and define a compositional CSP-based discrete
timed semantics suitable for refinement. Our results support verification
and, importantly, enable rigorous connection with sound simulations and
deployments.

Keywords: Semantics - Refinement - Process algebra - CSP - Robotics

1 Introduction

Robotic systems have applications in many real-life scenarios, ranging from
household cleaning to critical search-and-rescue operations. Assessing their
expected behaviour is challenging. In spite of that, typically controller software is
developed in an ad-hoc manner, driven by simulations and physical experiments,
but without a clear relation with models of requirements and design.

Standard state-machine notations, without underlying formal semantics, are
often used [1,2] together with natural language annotations to specify more com-
plex behaviours, involving aspects such as time and probabilities. State machines
are often neither presented in an abstract way, nor do they contain precise and
sufficient information to relate the designs to the simulations and deployments. In
this scenario, the ability to faithfully replicate results, even just across different
simulators, let alone using different robotic platforms, is significantly hampered.

In this paper we present a timed semantics for RoboChart [3], a state-machine
based notation that can be characterised as a UML profile extended with time
primitives and with a formal semantics. RoboChart provides constructs for cap-
turing the architectural patterns of typical timed and reactive robotic systems.

© Springer International Publishing AG 2017
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An abstract characterisation of a robot’s operations and events is formalised
via the notion of a robotic platform that decouples the software and hardware
platform from controllers. A controller can encapsulate multiple state-machines,
and is connected with a particular platform via the notion of a module. This
enables an abstract and precise approach to the design of robotic systems, where
high-level concepts can be mapped into low-level constructs of typical executable
simulations, for example, as we have considered in [3].

Here we propose a compositional semantics for refinement using Timed CSP
[4], enriched with deadline constructs from Circus Time [5], a discrete-time
process algebra that combines constructs of Z [6], CSP [7], and Timed CSP,
besides deadline operators. A semantics for the enriched Timed CSP is defined
in the Unifying Theories of Programming [5,8].

For RoboChart models that make a modest use of data types, we translate
the semantics to CSP using a special event tock to mark the time. This version
of CSP, called tock-CSP [7], is supported by the model checker FDR [9]. We
use it to validate the design of RoboChart and our semantics, and check timed
properties of RoboChart models. With tock-CSP, we can give a discrete-time
model for all constructs of Timed CSP and deadlines.

The encoding in tock-CSP is mechanised in RoboTool, a graphical editor for
RoboChart models. Using RoboTool and the automatically generated semantics,
we have tackled a number of examples, and present here four experiments: two
chemical detectors [10], an alpha algorithm used in swarm robotics [11], and a
transporter that works in a swarm to move an object to a goal position [1].

Our long-term objective is to use our semantics for verification by automated
theorem proving using an Isabelle encoding of Circus Time [12], and prove that
automatically generated simulations are sound, that is, refine the RoboChart
models. Translation from Timed CSP with deadlines to Circus Time is not chal-
lenging, since Circus Time is a richer language.

In Sect. 2 we motivate our work by presenting an example of a typical timed
robotic controller, as used in swarm robotics, and giving an insight into related
work. In Sect.3, we present RoboChart. We discuss in detail the RoboChart
timed semantics in Sect. 4. In Sect. 5 we present verification results and discuss
tool support. Finally, we summarize our contributions and provide pointers for
future work in Sect. 6.

2 Modelling Robotic Controllers

We now present an example (Sect.2.1) and related works (Sect. 2.2) to indicate
the need for a specialised timed formal language.
2.1 DMotivating Example

Our goal is not to propose an entirely novel notation, but to define a language
that is akin to that currently adopted by roboticists in their informal approach.



20 P. Ribeiro et al.

almost
contact

S52. Move to
Object

S$3. Close In
on Object

54. Scan
and Align

<2 neighbour
for>T,

lost object

for>T,

lost object
for>T,

S85. Push
Object

S1. Search
lost contact
for > T,

Fig. 1. Transport swarm state machine [1].

We present in this section an example, taken from the domain of swarm robotics,
whose published model is representative of the current practice.

We consider an individual timed reactive controller used in robots of a swarm
for cooperatively transporting tall objects towards a locally perceived goal [1].
The robotic platform has a camera that allows it to distinguish objects and the
goal, and proximity sensors that can be used to estimate the distance to an
object and to detect other nearby robots.

In Fig. 1 we reproduce the transport swarm controller in [1]. In state S1 the
robot searches for an object and, once it sees one, it transitions to state S2. If
the object is near, then it transitions to state S3. While in states S2 and S3, if
the object is lost for a certain amount of time T,, the robot initiates another
search for the object by transitioning to state S1. When the robot is close enough
to the object, by transitioning from state S3 to 54, it performs an alignment
procedure and checks whether the goal can be seen. The underlying idea is that
if the goal is occluded by the object, and the robot is close to the object, then it
pushes the object towards the goal. While pushing, in state S5, the robot may
lose contact with the object, in which case after a time threshold of T. it evades
the vicinity; or it may lose sight of nearby neighbours, in which case it tries to
align itself again by transitioning to state S4. The transitions between states S7
and S1, and S6 and S1, are equally timed according to thresholds T, and T.

We observe that the state machine in Fig.1 is specified in natural language
and a few aspects are unclear, such as the behaviour and time spent in each
state, whether timed transitions take place immediately or need to wait until
the behaviour has completed, and thresholds related to the distances to the
object. Even when taking into account the implementation details [1], it is ulti-
mately unclear whether the controller, as presented, could be independently and
correctly implemented. In our experience, this is not an uncommon scenario
in the development of robot applications. We refer, for instance, to [13,14] for
examples of other applications modelled with similar state machines.
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2.2 Related Work

According to a recent survey [15], there is increasing interest in domain-specific
and model-driven approaches in robotics. We discuss below those closest to ours
in tackling aspects such as architectural design, time, and verification.

Ge",M [16] provides a component-based approach for designing middleware-
agnostic robotic controllers. Functional aspects are captured by recording the
input and output parameters of functions together with their worst-case exe-
cution time. Implementations are provided by code fragments, for example,
using C code. Verification of schedulability via model-checking is available using
Fiacre [16], through the Timed Petri Net model-checker TINA, while deadlocks
can be checked using BIP. G*",M is primarily an executable language, whereas
RoboChart is a modelling language catering for different levels of abstraction.

Proof techniques, including model-checking, have also been used to identify
optimal configurations of adaptive architectures [17]. Related approaches such as
CIRCA [18] tackle the problem of meeting real-time constraints given dynamic
plan generation. Behavioural properties are not the main focus of these works.

ORccAD [19] supports modelling, simulation, and programming, as well as
verification of timed behavioural properties via translation into ESTEREL and
Timed Argos. Unlike RoboChart, its support for graphical modelling is limited,
while the modelling constructs employed are closest to those of our semantics.

UML has been used for model-based engineering of robotic systems [20].
The profile RobotML [21] supports design modelling and automatic generation
of platform-independent code, but verification is not considered. On the other
hand, several formal models of UML state machines exist; some of them use
CSP [22,23]. However, none of these deal with time modelling.

UML has a simple notion of time. Its profile UML-MARTE [24] supports
logical, discrete and continuous time through the notion of clocks. Specification
of time budgets and deadlines, however, is focused on particular instances of
behaviour via sequence and time diagrams. It is not possible to define timed
constraints directly in terms of transitions and states as we require.

UML-RT [25], an extension to UML, includes the notion of capsules, which
encapsulate state machines. Communication between capsules is governed by
protocols. A timing protocol can raise timeouts, but it is not obvious how timed
constraints, such as deadlines, can be specified directly on state machines. In [26]
a semantics is given for a subset of UML-RT without considering time. An exten-
sion to UML-RT is considered in [27] with semantics given in CSP+T [28], an
extension of CSP that records the timing of events.

Timed automata [29] use synchronous continuous-time clocks. Temporal logic
properties can be checked using the model checker UPPAAL [30]. It is not
directly comparable to RoboChart, which provides modelling abstractions cater-
ing for robotic applications and has a semantics for refinement. It is our aim to
explore a semantics for RoboChart using UPPAAL for property verification.
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3 RoboChart: A Formal Notation for Robotics

A system in RoboChart is characterised by a module that contains a robotic
platform, associated with one or more controllers. A controller is specified by one
or more state-machines. Our focus here is on the state machines, since that is
where we define the time properties. The untimed RoboChart semantics defined
in [31] already describes how CSP models of state machines can be composed
to define models for controllers, and how these can be composed to define a
complete module and provide a formal model of a robotic system.

A state-machine includes states and composite states with entry, during and
exit actions, junctions, and transitions, possibly guarded by expressions. The
language for actions is well defined to include assignments, operation calls, and
a primitive to raise events. In Fig. 2 we include part of the RoboChart metamodel
showing constructs related to time, whose syntax is summarized in Table 1. The
RoboChart Reference Manual [31] gives a complete description.

Table 1. Timed primitives of RoboChart.

Primitive Metamodel element | Description

#C ClockReset Resets clock C.

since(C) ClockExp Time elapsed since the most recent reset of clock C.
sinceEntry(S) | StateClockExp Time elapsed since state S was entered.

A <{d} TimedStatement Deadline on action A to terminate within d time units.
e <{d} Transition Deadline on event e to happen within d time units.
Wait(d) Wait Explicit time budget of d time units

We have a notion of Clock (see Fig. 2) that allows transitions to be guarded
by time expressions that define constraints relative to the occurrence of other
events via the since(C) (ClockExp in Fig.2) and #C (ClockReset) primitives,
and relative to activation of a state via sinceEntry(S) (StateClockExp). We also
have primitives to impose a deadline d on action A (A <{d}) (TimedState-
ment), or transition trigger e (e <{d}) (Trigger), and to specify a budget d
(Wait(d)) (Wait) for an operation, where d is an Expression.

% %] Statement

[0..1]deadline
[ [ ClockExp l [ [ StateClockExp ] [D TimedStatement] [ H wait l [ [ ClockReset
l ) L l . L a '[0..1]durjatl!on
[ Clock ] { 7] state ] [O..l]deadlineA[ [ Transition ] j [ Trigger ]
( " J ) X 7o J*

Fig. 2. Timed metamodel of RoboChart.
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Similarly to timed automata, expressions involving clocks are restricted to
comparing single timed primitives with constant expressions. We, however, allow
conjunctive as well as disjunctive expressions involving more than one clock.

To illustrate the RoboChart notation we consider a robot that moves at
constant speed in a square pattern while avoiding obstacles. The state machine
is shown in Fig.3, where the annotations TO to T6 uniquely identifying the
transitions are not actually part of RoboChart, but are included to guide the
later discussion of the semantics in Sect. 4.

&g Movement

MovingForward [sinceEntry(Turning)==2]/#C Turning

entry moveForward(linear)<{0} entry send stop <{0};
turn(angular)

Observing 0 [since(C)==5]/segment=segment+1

entry enableCollisionDetection()
exit disableCollisionDetection()

/#C; segment = 0
collisionDetected [since(C)<3] 0
Collision stop <{0}[segment==4]
entry avoid(); wait (2) ®

Fig. 3. Example of a square trajectory state machine controller.

When the robot is started, it transitions from the initial state, denoted by
a black circle, to the state MovingForward, while resetting (#C) a clock C and
assigning 0 to the local variable segment. The local declarations are elided in
Fig. 3, but a RoboChart state machine is self-contained, in that it declares all
the variables, events, and operations that it uses. The local variable segment
records how many sides of the square have been covered so far; the robot stops
when it completes the square (segment == 4). This is achieved by sending an
event stop to the platform and transitioning to the final state: a white circle. The
event stop is given a deadline 0, indicating that it is expected that the robotic
platform is always ready to accept this event immediately.

In the composite state MovingForward, the motion is linear, unless an obstacle
is detected. Linear motion is activated by calling the operation moveForward
in the entry action with a constant value linear passed as a parameter. This
operation is annotated with a deadline of 0, since moveForward can typically be
implemented just as an assignment to a variable whose duration is regarded as
negligible. Operations may be specified by other state machines or have their
implementation provided by the robotic platform.

Before MovingForward is actually entered, its entry action executes, followed
by that of its substate Observing, enabling the collision detection capability. Once
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a collision is detected, the event collisionDetected is raised by the robotic plat-
form: the transition from Observing to the state Collision is then triggered, but
only if there is enough time (since(C)<3) before the next turn, executing the
exit action of Observing and subsequently the avoid operation that performs the
actual collision avoidance. Here we do not specify this operation, but record its
budget of 2 time units by sequentially composing it with the timed primitive
wait(2). In RoboChart time elapses explicitly via budgets, unless a state has
been entered and no transitions are enabled, or, every enabled transition is asso-
ciated with an external event. Once the collision is resolved, a transition back
to Observing is taken. Transitions are triggered once the guard is true and the
associated event is raised, or, if there is no event associated, immediately.

The square motion pattern is achieved by limiting the linear motion to 5 time
units before switching to angular motion for 2 time units, and then switching
again to linear motion. Accordingly, we guard the transition from MovingForward
to the state Turning with the expression since(C) == 5. Upon such a transition,
the value of segment is incremented. Similarly, the angular motion is limited by
guarding the transition from Turning to MovingForward using the timed primitive
sinceEntry(Turning). Upon this transition, the clock is reset.

d Pusher

Searching objectSeen?distance #T MovingToObject ClosingInOnObject
o entry enableObjectWatch() <{0} during moveToObject() during closeInOnObject()

during searchObject(
o ect) [since(T)>=TH_Ta] [distance<close]
Watch
[since(T)>=TH_Ta] o o Watch

[sinceEntry(MovingAround)>=TH_Td] .

[sinceEntry(Evading)>=TH_Te]

objectSeen?distance #T

Evading MovingAround
— - [distance==0]
entry (disableObjectWatch(); entry (disableObjectWatch();
disableNeighbourDetection()) <{0} disableNeighbourDetection()) <{0} [goalSeen]
during evade() during moveAroundObject()
. ) [not goalSeen]
[distance>0/\since(C)>=TH_Tc]
Pushing Scanning
during pushObject() entry goalSeen = false; inding(); Detection()) <{0}
during scanAndAlign()
exit disableGoalFinding() <{0}
[newN>0V/nei i = newN
Watch ‘ [ i 0]/#N; nei = newN
[ i 1/#N; nei = newN o Watch }
® TNV T ——
neighbourDetected?newN neighbourDetectedZnewN .
objectSeen?newD . objectSeen?newD
[newD>0/\distance==0]/#C; distance = newD [newD>0/\distance==0]/#C; distance = newD
| [newD==0Vdistance!=0]/distance = newD [newD==0\/di 1=0]/di e = newD
[neighbours==0/\since(N)>=TH_Tb] goalSeen/goalSeen = true

Fig. 4. RoboChart model of the transport swarm state machine.

In Fig. 4, we also show the RoboChart model for the transport swarm con-
troller described in Sect. 1. We assume that the robotic platform can raise events:
objectSeen, with a distance value passed as a parameter in response to seeing an
object at an estimated distance; goalSeen in response to detecting the goal; and
neighbourDetected, with a number of neighbours passed as a parameter. We also
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assume that the controller needs to enable the platform to receive those events,
by calling appropriate operations, such as enableObjectWatch.

Operations likely to be implemented as assignments to variables have been
annotated with zero deadlines. Overall we have the same structure as the original
specification [1], with the same number of states, but with additional substates.
This stems from interactions that are not clear in the original model, such as
the need to keep counting neighbours while in states Pushing and Scanning, and
the need to keep track of the object across multiple states.

The existing semantics of RoboChart deals with the structure (modules, con-
trollers, and parallel state machines) of models. That semantics defines the visible
behaviour of a module: the order and availability of the events of the platform.
That semantics, however, ignores all time constructs of a model: clocks, and asso-
ciated statements, waits, and deadlines. We address them in the next section.

4 Semantics

Here, we describe the semantics of RoboChart state machines (Sect.4.1) [31].
We then focus on the semantics of each timed RoboChart construct, namely
budgets and deadlines (Sect. 4.2) and clocks (Sect. 4.3).

Before defining the semantics, we first introduce the required CSP syntax. A
communication on event e (also known as a channel), optionally parametrised by
z, is defined as e.x — P, with e?x being syntactic sugar for allowing z to range
over the type of e and introducing x in the scope of P, and with e!lv being used
for a specific value v. Processes can be composed in parallel (P | [s] | @), where
s is the set of events on which P and @ require agreement, and if s is empty this
is an interleaving (P ||| @). An external choice P O ) offers an initial choice
between behaving as P or @, while P A @) behaves as P but can be interrupted
by @ at any time, with the timed version P A4 @ in addition also interrupting
P exactly at d time units. P @4 @ initially behaves as P but can be interrupted
by an event in A to behave as (). Sequential composition of P and @ is P; @Q,
with SKIP being the unit. Hiding (P \ h) makes the events in set A internal to
P. Finally, the events in a process P[f] can be renamed according to function f.

4.1 State Machines

A state machine is given a CSP semantics as the parallel composition of a process
States, itself the parallel composition of processes that model a state, with a
process Initial, that models the transition from the initial state. In Fig.5 we
illustrate the architecture of the CSP semantics of the example from Fig.3. A
state is modelled by a process FEntry, modelling its entry action, sequentially
composed with During, a model for its during action, that can be interrupted
by a process Transitions that models the possible outgoing transitions.

A state machine defines a sequential and hierarchical control flow. To model
this flow, there are enter, entered, exit, and exited events that model state acti-
vation and deactivation, with the associated entry and exit actions. Each event
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Initial Movement (State machine)
Y'Y r—clockReset!"C"p|

enter?s!MF| |entered!x!MF

MovingForward r—enter?Turn!MF» Turning

[€—setWc.false— Clocks
Tip

A4 !u
- - 3
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Fig. 5. Semantics Architecture based on Example of Fig. 3.

takes two parameters: the state that requested the activation or deactivation to
start, and the target state of the request.

A state is modelled in a compositional way, capturing information only about
itself, irrespective of whether it is inside a state machine or another state.
In Fig. 5, the execution sequence is numbered. For example, the process mod-
elling MovingForward offers events enter?z!MF for any other state z, including
the initial state to request it to enter, followed by the process that models its
own entry action, a request on enter!MF!Obs for the child Observing to enter,
the entry action of Observing, and the acknowledgements entered!MF!Obs and
entered!z!MF. The process then offers an external choice of events that trigger
its transitions.

Following a transition event, the exit and exited events to request and
acknowledge deactivation are offered. For instance, in our example, following
a transition triggered from state MovingForward, the process offers to synchro-
nize on events exit!MF.S, where S ranges over all state identifiers except MF
itself, as a way of requiring deactivation of either Observing or Collision.

Each state transition T is modelled by a process that synchronizes on Tpp,
an event that uniquely identifies the transition in the state machine. If an event
trigger e is associated with the transition, then at the outer level we rename the
complete state machine process by mapping 7Tjp to e.

Variables declared in a state machine are modelled using a process Memory
that exposes events get and set for each variable. In our example, Memory is
parametrised by s, which holds the value of the variable segment, and offers the
events getSegment and setSegment in an external choice followed by a recursion.

[ getSegmentls — Memory(s) O setSegment?y — Memory(y)
Memory(s) = <D s ==4& T3 — Memory(s)

Moreover, it also models transition guards by constraining synchronization
on transition events (7;p). In our example, the transition from MovingForward
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to the final state is guarded, so Memory captures this guard by only offering the
event T3 that uniquely identifies the transition (Fig.3) when segment is 4.

4.2 Budgets and Deadlines

As mentioned before, RoboChart budgets can be specified as part of actions.
using the wait(d) construct. Its semantics is given by Wait ¢, a Timed CSP
process that terminates exactly after ¢ units of time elapse. Deadlines specified
on actions are defined using the deadline operator A » t of Circus Time, where
the process A modelling action A must terminate within ¢ time units.

When a deadline is imposed on a transition trigger, however, it must be
enforced only when the transition is enabled, that is, the transition’s guard is
true and the source state has been entered. In our model, we define a pair of
events deadline. Tip.on and deadline. Trp.off for each transition T whose trigger
has a deadline. Whenever T’s guard is true, the Memory process offers the
event deadline.Tip.on, and when the guard is false, it offers deadline. Tip.off.
The Memory process of our example is defined as follows.

M ()= (= O s == 4 & deadline. T3.on — Memory(s)
emoryis) =\ o —(s == 4) & deadline. T3.off — Memory(s)

In addition to the get and set events for setting and getting the value of variable
segment, and the guarded synchronization on T3, the event deadline.T3.on is
guarded by the expression corresponding to the guard on the transition identified
by T3, and the negation of this expression guards the event deadline.T3.off .

For each process that models a state where an outgoing transition has a trig-
ger with a deadline, we then compose in interleaving with the process modelling
its during action, a Dline; process for each deadline d; as defined below.

Dline; = deadline. Trp.on — ((deadline. Trp.off — SKIP) » d;) ; Dline;

Dline; initially synchronizes on deadline.Tip.on, and thereafter must synchro-
nize on deadline. Tip.off within d; time units, followed by a recursion. The dead-
line is imposed on deadline. Trp.off rather than the transition identifier T;p. The
deadline can be satisfied either as a result of the transition’s guard no longer
being true, in which case the process synchronizes on deadline. Tip.off, or as a
result of the process being interrupted due to some transition out of the source
state of T, modelled by a process Transitions, being triggered, possibly T itself.
Effectively an enabled deadline on a transition becomes a deadline on the exter-
nal choice between all enabled transitions out of the same state.
As an example, we show the process M for the state MovingForward.

moveForward ; enter!MF!Obs —
M = enter?SIMF — | entered!MF!Obs — entered! SIMF — SKIP; | ; M
((SKIP ||| Dlinepp) A Transitionsar)

Initially it offers events enter?S!MF, so that any other state identified by S
may request it to be entered. It then behaves as moveForward, the process
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that models the operation moveForward, and then requests the substate Obser-
vation to enter by synchronising on enter!MF!Obs, subsequently waiting for an
acknowledgement via entered!MF!Obs and then acknowledging its own entry
through entered!SIMF. M then behaves as an interleaving (|||) between the
process modelling its during action, in this case SKIP as there is none, and
the process Dlineyr that models the deadlines on triggers of every outgoing
transition of state MovingForward, while offering for any event in Transitionsy g,
the process that models every outgoing transition from this state, to interrupt
the interleaving.

4.3 Clocks

As previously mentioned, RoboChart clocks allow conditions to be set relative
to the time elapsed since a particular clock reset. To model a reset #C on clock
C we introduce an event clockReset.C, where C' is the name of the clock.
Although clocks could be explicitly modelled in the semantics, for example,
by adding variables in the Memory process for each clock, this would make the
model intractable for model-checking as the variables would have an unbounded
domain. Since we assume clocks can only be compared with constant expressions,
we adopt a model where a timed expression involving a comparison between
a constant and constructs since(C) or sinceEntry(S) is encoded by a boolean
variable together with an auxiliary CSP process synchronizing with the Memory
process. For example, a transition with unique identifier T1 guarded by the
expression x = 1 V since(C)>= d is encoded in the Memory process as follows.

... O setWepy ?we — Memory(..., z, we) )

Memory(..., z, wern) = (D (r =1V wer1) & T1 — Memory(...,z, wery)

A boolean variable wer; encodes the timed condition since(C)>=d, with channel
setWepy used to set it true or false. Synchronizing in parallel with the Memory
process we introduce a WaitingCondition process WC_T1 defined below.

WC_T1= Do(T1) A WC_T1_reset
WC_T1_reset = clockReset.C — setWerpy!false — WC_T1_body
WC_T1 body = (Do(T1) Ay setWepyltrue — Do(T1)) A WC_T1_reset

This process ensures that while wepy is being updated the event T'1 is not
offered. Initially it is ready to synchronise on T'1 indefinitely (as defined using
the process Do(e) = e — Do(e)), but can be interrupted by the event
clockReset.C offered in the process WC_T1_reset. Whether T1 is actually
enabled or not is controlled by Memory and not WC_T1. So, the availabil-
ity of T'1 in WC_T'1 indicates only that wcy; is not being updated. If there is a
clock reset, WC_T1_reset sets the value of the Memory process variable wcpy to
false via the synchronization setWerq!false and behaves as WC_T1_body. This
ensures that, when the clock is reset, the transition cannot take place, even if
the value of the condition is not yet updated. Initially this process continuously
offers the event T'1 until exactly d units elapse (Ag4), after which it sets wepg
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to true via the synchronization setWery!true and then continuously offers the
event T'1. At any point the process may be interrupted by WC_T1_reset due
to a clockReset.C.

The complete semantics of a timed state machine is given by the parallel
composition of the process modelling the state machine, STM, the Memory
process and a Clocks process whose definition is the parallel composition of all
WaitingCondition processes as defined for each timed condition.

((STM | [g U dc] | (Memory | [w U ] | Clocks) \ w)) \ D)[f]) O trermy SKIP

Memory and Clocks synchronise on the events in the sets w, containing all
setWe events, which are then subsequently hidden (\). They also synchronise on
the events of the set ¢ of identifiers for transitions whose conditions are timed.
This parallel process synchronises with STM on the events from ¢, containing
the get and set events for reading and writing the value of state variables and
the transition identifiers, and from dc, containing the deadline and clockReset
events. This is illustrated by the lines on the top right corner of Fig.5. The
set of identifiers for internal transitions (I) are hidden (\). Also, as explained,
we use a function f to rename transition identifiers to external events of the
platform. Finally if the state machine has a final state, the process STM can
signal termination via the event term, which interrupts the process to behave as
SKIP.

Our RoboTool presented next automatically calculates the timed semantics
of a RoboChart model just described. Instead of Timed CSP, it uses tock-CSP
for direct use of FDR. The time constructs are encoded as described in [4].

5 Tool Support and Model-Checking

To provide support for designing robotic systems using RoboChart, we have
developed RoboTool!, an Eclipse plugin that allows specifications to be
input using both graphical and textual editors, implemented using the Sir-
ius and Xtext? frameworks. RoboTool automatically generates the semantics
of RoboChart models in CSPy, the machine readable version of CSP used by
FDR [9].

FDR includes facilities to translate untimed processes into tock-CSP. For
example, the prefixing ¢ — P is translated into an external choice offering tock,
the event that marks the passage of time, in addition to a: X = a — P O
tock — X. Other operators are similarly accommodated, while more intricate
concepts need to be manually specified using tock-CSP. For example, deadlines
are encoded by timelocking once a deadline expires, that is, by refusing tock.

Using the timed semantics of RoboChart we can perform a number of core
checks using FDR, namely, determinism and divergence freedom. In addition,
for a given tock-CSP process STMp modelling a state machine, and whose set

! https://www.cs.york.ac.uk/circus/RoboCalc.
2 www.eclipse.org/sirius and www.eclipse.org/xtext.
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of externally observable events is E, we can establish that there are no time-
locks provided the following refinement is satisfied [7]. Since in our model unmet
deadlines lead to timelocks this is a useful check to identify infeasible deadlines.

RUN ({tock}) ||| CHAOS(E) Ty STMz | (E U {tock})

With the above we require that STMy, with every event other than those in
E and tock hidden (using the projection operator [), is a refinement (Cg) in
the failures model of the process RUN ({tock}), that is always offering tock,
in interleaving (|||) with the process CHAOS(FE) that can perform any event in
the set F nondeterministically. Zeno freedom, that is, the absence of a behaviour
where an infinite sequence of events is performed in finite time, can be ascertained
by checking that STMr | (EU{tock}) is divergence free. Assertions to establish
all these core properties are also automatically generated by RoboTool.

Using our semantics we have considered several case studies. We have verified
core properties and also defined requirements directly in CSP and tock-CSP. A
complete account of the experiments can be found in [32].

Table 2 summarises the results of checking for divergence freedom, a particu-
larly expensive check in FDR, including state-space complexity (S/T) in terms
of number of states (5) and transitions (7') visited, compilation time (Cr) and
verification time (V7). We also include the experimental results obtained with
the untimed models, defined without using tock, for comparison. Results were
obtained using FDR version 4.2.0 on a computer with 16GiB of RAM and an
Intel i5-5287U CPU. Times correspond to an average of 5 runs. For the purpose
of verification, in examples E2, E3 and E4 the types for reals and integers are
instantiated in CSPy as ranging from 0 to 1, whereas in E'1 reals are instantiated
within the range from —90 to 180 due to the specification using such values.

Table 2. Verification results of checking divergence freedom with FDR.

Examples Untimed Timed

S/T Cr |Vp |S/T Cr |Vrpr
E1. Chemical Detector 80/265|0.23s | 2.3s | 240/861 0.15s | 4.58s
E2. Autonomous Chemical Detector | 5/112 |2.03s|0.65s | 6/72 1.82s|1.99s
E3. Alpha Algorithm 52/184 | 0.26s | 1.28s | 12045/30918 | 0.66s | 1.30s
E4. Transport Swarm 8/28 1.12s | 0.56 s | 436/1085 2.49s|0.17s

Our results show that assertions in the failures-divergences model can typi-
cally be checked within a few seconds. Diligent application of compression func-
tions significantly reduces the time required to compile and verify the assertions.
We use diamond, which removes silent transitions from the LTS, and wbisim,
that reduces the LTS by computing the maximal weak bisimulation.

To cope with additional variables in the Memory process, typically as the
result of modelling timed conditions, we have optimized this process. Each vari-
able is captured in separate, but parallel, “cell” processes, that synchronize with
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an auxiliary non-parametrised process, modelling the transitions’ conditions,
such that whenever a variable is changed it introduces in scope the current
value of all variables. This yields a reduction in the number of possible states.
The efficiency gain is particularly noticeable when a state machine has sev-
eral variables, or timed conditions, which we have also optimized by generating
equivalent timed expressions only once as a Waiting Condition CSP process.
As expected, the usage of tock increases the state-space complexity of exam-
ples compared to their untimed counterparts. The exception here is E2, likely
due to wbisim that can yield better compression than diamond in some cases.
We observe that diamond is not permitted by FDR within timed processes.

6 Conclusion

RoboChart can be viewed as a UML profile extended with timed primitives
and a formal semantics. We have used constructs from Circus Time to capture
budgets and deadlines in a timed semantics for refinement and model checking.
Support for refinement is essential to our future plans to prove soundness of
automatically generated simulation and deployment code.

To optimise model checking, clocks are modelled implicitly, with timed con-
ditions modelled explicitly. Our use of clocks makes a translation into UPPAL
feasible, and of interest for further analysis. For example, we have considered
UPPAAL models of the transport swarm, including a model based on the archi-
tecture of our semantics and a simplified version. Both require additional states
and transitions when compared to RoboChart to achieve a faithful model.

A semantic model generator has been implemented in RoboTool via transla-
tion into tock-CSP [7]. We have tackled several examples and verified whether
the generated models satisfy expected system requirements, in addition to core
properties like divergence freedom and zeno freedom. Results suggest an increase
in complexity, but not necessarily in verification time, when compared to the ver-
ification of untimed models. The verifications are tractable given modest data
ty pes and diligent use of FDR’s compression functions. For realistic data types
we do not expect scalability, instead we will consider theorem proving.

We have a precise account of the timed semantics of RoboChart embedded in
RoboTool. We will capture this semantics via translation functions that generate
Circus Time models suitable for use in Isabelle/UTP [12], which supports rea-
soning about the Circus family of languages via theorem proving. Furthermore,
to account for the environment and probabilistic behaviour we will ultimately
consider richer semantics models in the context of the UTP.
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Abstract. Formal verification of autonomous vehicles on motorways is a
challenging problem, due to the complex interactions between dynamical
behaviours and controller choices of the vehicles. In previous work, we
showed how an abstraction of motorway traffic, with an emphasis on
spatial properties, can be beneficial. In this paper, we present a semantic
embedding of a spatio-temporal multi-modal logic, specifically defined to
reason about motorway traffic, into Isabelle/HOL. The semantic model
is an abstraction of a motorway, emphasising local spatial properties, and
parameterised by the types of sensors deployed in the vehicles. We use
the logic to define controller constraints to ensure safety, i.e., the absence
of collisions on the motorway. After proving safety with a restrictive
definition of sensors, we relax these assumptions and show how to amend
the controller constraints to still guarantee safety.

Keywords: Spatial logic - Isabelle - Interactive theorem proving -
Motorway traffic + Verification - Safety

1 Introduction

Due to the current and ongoing interest in autonomous vehicles, proving that
such vehicles will behave correctly is of growing importance. Since vehicles are
complex, dynamical systems, proving properties about them often involves solv-
ing differential equations, where spatial elements, e.g., position and braking dis-
tance, are functions of time. However, safety is fundamentally a spatial property:
the absence of collisions, i.e., no two vehicles occupy the same space.

To overcome the complexities of proving safety properties, we proposed to
separate the dynamical behaviour from the concrete changes in space [1]. To that
end, we defined Multi-Lane Spatial Logic (MLSL), which was used to express
guards and invariants of controller automata defining a protocol for safe lane-
change manoeuvres. Under the assumption that all vehicles adhere to this pro-
tocol, we proved that collisions were avoided. Subsequently, we presented an
extension of MLSL to reason about changes in space over time, a system of
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natural deduction, and formally proved a safety theorem [2,3]. This proof was
carried out manually and dependent on strong assumptions about the vehicles’
sensors.

In this paper, we define a semantic embedding of a further extension of
MLSL into the theorem prover Isabelle/HOL [4]. That is, we present the first
tool to mechanically assist reasoning with MLSL. Subsequently, we show how
the safety theorem can be proved within this embedding. Finally, we alter this
formal embedding by relaxing the assumptions on the sensors. We show that the
previously proven safety theorem does not ensure safety in this case, and how
the controller constraints can be strengthened to guarantee safety.!

Recently, many approaches to verify traffic safety have been published. A
main distinction between them is the way they abstract properties of traffic.
Loos et al. used the theorem prover KeYmaera [5] to verify safety of motorway
scenarios [6]. The underlying logic of KeYmaera is Differential Dynamic Logic
[7], where the dynamical behaviour of systems is explicitly encoded within hybrid
programs. This contrasts with our approach, where the main focus is on spatial
aspects of traffic. However, they abstract away from the way real vehicles change
lanes, i.e., vehicles may change to any lane, not only adjacent ones, in one step.
We restrict the possibilities of lane changes to exactly the adjacent lanes.

Rizaldi and Althoff presented a formal implementation of traffic rules [8].
Similar to our work, they choose Isabelle/HOL to analyse several laws from
the Vienna Convention on Road Traffic. However, they focus on whether the
behaviour of vehicles is compliant with these laws. Our formalisation does not
take legal issues into account, and concentrates only on the absence of collisions.

The distinction between dynamical behaviour and a higher-level is not unique
to our work. Kamali et al. [9] used a combination of the Belief-Desire-Intention
approach to model agents, and Timed Automata [10]. They distinguish between
the planning component of a vehicle and its underlying dynamics. The planning
component creates the new intentions of a vehicle according to its current belief
about the situation on the road, and its general desires. The underlying dynamics
then implement the plan constructed by the planning component. Both compo-
nents can be verified on their own, the planning component with the model
checker AJPF [11], and the dynamics with Uppaal [12]. Our spatial abstraction
could serve as a middle tier between their planning component and the dynamics,
by abstracting concrete values (e.g., distances) to spatial properties.

In a similar fashion, Campbell et al. used m-calculus processes to define and
reason about the communication structure of vehicle networks [13]. The lower
level dynamics are implemented as Hybrid Automata [14], and the connection
between both levels is given by connecting the messages in the higher level with
input and output messages of the automata. Our results imply that the amount
of necessary communication between vehicles depends on sensor capabilities of
each vehicle. Hence our results could inform the instantiations of their models.

! The code of the formalisation can be found at www.github.com/svenlinker/HMLSL.
It is compatible with Isabelle2016-1.
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The structure of our paper is as follows. Section2 presents the semantic
embedding of MLSL into Isabelle/HOL. In Sects. 3 and 4 we discuss the proofs
for safety with different sensor capabilities. Section 5 concludes the paper.

2 Embedding MLSL into Isabelle/HOL

In this section, we present our abstraction of motorway traffic, as well as Hybrid
Multi-Lane Spatial Logic (HMLSL), an extension of Multi-Lane Spatial Logic
(MLSL), by introducing concepts from Hybrid Logic [15] and universal modali-
ties. In the majority of the paper, we will only present the formalisation within
Isabelle, but explain the relation to previous work [1-3].

Notations. Isabelle/HOL is based on type theory, hence every term ¢ has a
specific type 7, denoted by ¢ :: 7. The type of a function from 7 to 7/ is written
as 7 = 7’. Within Isabelle, we have to distinguish between the meta-logic and the
object logic. In the case of Isabelle/HOL, both are instantiations of Higher-Order
logic. Implication and equivalence of the meta-logic is denoted by = and =,
respectively. They are generally used to define terms. The object level implication
is —, which is used within lemmas and theorems. In this paper, conjunction,
disjunction and existential quantification will generally be used within the object
logic, denoted by the operators A, V, and 3. Finally, function application will
typically be denoted without parentheses, i.e., instead of f(t), we will write f ¢.

2.1 Semantic Model

The semantics of HMLSL reflects situations as depicted in Fig.1. That is, we
consider vehicles driving on a motorway with possibly several lanes. All vehicles
are assumed to drive in one direction (to the right in the figure). The safety
envelope comprises the physical size of ¢ as well as the distance needed for
an emergency braking. Within the model, we distinguish between two spatial
properties of vehicles. The reservation of a vehicle c is the part of the motorway
that ¢ currently drives on, defined by the lanes ¢ uses and its safety envelope.
Reservations may occupy space on up to two adjacent lanes, which indicates that
the vehicle is currently performing a lane-change manoeuvre, see, e.g., vehicle a
in Fig. 1. A claim, depicted by the dotted lines in the figure, is a formalisation
of setting the turn signal, i.e., it is an indicator that ¢ wants to change its lane.
Vehicles may only hold claims while not engaged in a lane change, i.e., as long
as the reservation only contains space on a single lane. A claim of a vehicle is
always adjacent to its reservation and of the same length.

The semantic model we use is twofold. We use traffic snapshots to formalise
the current situation on the whole motorway. The motorway is of infinite length,
modelled by the real numbers, and consists of an arbitrary, but fixed number
of discrete lanes. Furthermore, we assume an infinite number of vehicles, each
of which has a position and dynamic behaviour, e.g., its velocity and current
acceleration. On top of the snapshots, views denote a finite part of the motorway



Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 37

2 E braking distance safety envelope
| | ! ]
I 1 I 1

1 physical size e g a
— :
0 b
5 25

Fig. 1. Situation on a motorway at a single point in time

perceived by a vehicle. To that end, they consist of a closed real-valued interval,
and a finite discrete interval of lanes. Each view is associated with a distinct
vehicle, its owner. In Fig. 1, the traffic snapshot contains three lanes. A possible
view v of the vehicle e is depicted as a dashed rectangle, and contains the two
lower lanes. While both vehicle a and e are fully contained in v, only the safety
envelope of vehicle b is within this view. If we assume an idealised world, where
each vehicle can perceive the full safety envelope of other vehicles, i.e., both their
physical size and braking distance, then e can sense the presence of b. We call
this type of information perfect. Of course, this assumption is rather strong. If
we assume that vehicles know about their own safety envelope, but only about
the physical size and position of other vehicles, e cannot perceive b. We will refer
to this situation as regular information [1].

2.2 Preliminary Definitions

Formally, we introduce two new types, one for real-valued intervals and another
for discrete intervals. For real valued intervals, we use the type real_int, which is a
tuple of two real values (x, y), with the condition x < y. The discrete intervals use
a definition within the Main library of Isabelle to define a consecutive sequence
of numbers between m and n. If m > n, this will result in the empty set.

typedef real_int = {r :: (real x real).fst r < snd r}
typedef nat_int = {i.(3(m :: nat)n.{m..n} =)}

For both of these types, we define several auxiliary functions and predicates.
The function right (left) returns the right (left, resp.) end point of a real-valued
interval. We define a partial order on real_int to denote subintervals, i.e., r < s
if, and only if, left r > left s and right r < right s. Within Isabelle, we define this
relation and show that real_int instantiates the abstract class order, i.e., we show
reflexivity, transitivity and anti-symmetry. For nat_int, we prove more structure.
We define the infimum i M j of two intervals ¢ and j by lifting set intersection to
nat_int. Similarly, we can lift the subset relation on sets to nat_int, to constitute
a partial order C with a least element, the empty set. Since discrete intervals are
not closed under arbitrary unions, we introduce a new predicate consec i j, to
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denote that two intervals are non-empty and max(i) + 1 = min(j). We can then
define 7 U j as the union of ¢ and j. Furthermore, we need measures for both
types of intervals. For discrete intervals, the measure is its cardinality lifted from
sets, while the measure for real valued intervals is the difference between the left
and right end points, i.e., ||r|| = right r — left r.

Furthermore, we introduce the notion of chopping an interval into two sub-
intervals. The predicate R_Chop(r, s, t) is similar to the chopping operation of
Interval Temporal Logic [16]. For discrete intervals, we implemented a ternary
predicate N_Chop(i, j, k), which was taken from previous work [2,3].

R_Chop(r, s,t) = left r = left s A right s = left t A right r = right t
N_Chop(i,j,k)=i=jUkN(J=0VEk=0V consec j k)

Finally, we get a countably infinite type cars by a bijection on natural numbers.

2.3 Views

Using these definitions, we construct a type view as a record of three elements:
a real-valued interval modelling the extension along the lanes, a discrete interval
denoting the perceived set of lanes, and an identifier for the owner of the view.

record view = ext :: real_int lan :: nat_int own :: cars

We lift the chopping on intervals to views. For example, horizontal chopping,
i.e., dividing the extension of the view while keeping the set of visible lanes and
the owner, is defined as follows.

v=u|lw = R_Chop(extv, ext u, ext w) A lanv = lanu A lanv = lan w

A ownv = ownu/\ ownv = own w

The functions lan, ext and own are automatically generated by Isabelle, to
refer to the respective parts of the views. The predicate v =u--w denotes vertical
chopping. Furthermore, we introduce a relation v=c>wu to change the owner of
the view v to ¢, while keeping the spatial borders.

(v=c>u) = extv=extuNlanv =lanu A ownu = ¢

We can prove several lemmas about views and their relationships. For exam-
ple, if we can chop a view v vertically into u and w and can switch v to a view
v’ with the owner ¢, we can chop v’ into counterparts to u and w.

lemma v=u-wAv=c>v — (Fu wu=c>u' Nw=c>w' Nv'=u"-w")

2.4 Traffic Snapshots

The formalisations of the underlying traffic situations, called traffic snapshots,
have to capture the intuitions given in Sect. 2.1, i.e., reservations, claims, posi-
tions, physical sizes, braking distances and the dynamical behaviour of vehicles.
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For all of these, we use functions whose domain is the type cars. Since the defin-
itions for traffic snapshots are long, but straightforward, we mostly refrain from
providing the Isabelle code, but describe the formal concepts. Reservations and
claims are given by the functions res,clm: cars = nat_int, positions, physical
sizes and braking distances are given by pos, ps, bd: cars = real. The dynamic
behaviours over time, i.e., the increases in the cars’ positions, are given by a real-
valued function for each vehicle: dyn: cars = (real = real). Traffic snapshots
are tuples ts = (pos, res, clm, dyn, ps, bd), with the following conditions:

1. res cNelm ¢ =0, 6. clmc#£ () —

2. |res ¢| > 1, In:res cUclm ¢ = {n,n+1},
3. |res ¢ <2,

4. |elm ¢| <1, 7. psc>0,

5. |res ¢| + |clm | < 2, 8. bd ¢> 0.

Conditions 1-6 are the sanity conditions from previous work [2,3], that vehi-
cles have to respect to be spatially well-defined. For example, we require reser-
vations and claims to be adjacent, that vehicles have at most one claim, and
so forth. Condition 7 denotes that vehicles have to be physically present (even
though they may be arbitrarily small), while 8 ensures that a vehicle needs some
leading safe space. Subsequently, we will refer to the reservation function of a
traffic snapshot ts by rests, and also respectively notate the other functions.

Ezample 1. The traffic situation ¢s in Fig.1 can be formalised as follows.

pos ts a = 22 postsb="T postsc=26 pos ts e =17
restsa=40,1} restsb={0} restsc={2} restse={1}
cdmtsa=10 cdmitsb=10 cdmtsc=10 cm ts e = {0}
bd ts a =3 bd ts b =06 bd ts c=2 bd ts e =6

As an example, we further set ps ts d = 1 and dyn ts d x = % -aq - 22 for
all vehicles d. That is, we assume that each vehicle has its own acceleration
agq. The view v indicated by the dashed rectangle is given by ext v = (13,25),
lan v =1{0,1} and own v = e. Observe that the concrete values of the functions
are less important than the relations between them. In particular, we do not
instantiate dyn in any proofs in this paper, and use it as an abstraction of the

cars’ dynamics.

Between two traffic snapshots ts and ts’, different global and local transitions
are possible. The only type of global transition is the passing of time, i.e., ts’ is
the result of purely dynamical behaviour of vehicles, starting at ¢ts. The passing of
z time units is denoted by ts—z —ts’, during which only the vehicles’ position
is updated according to their dynamic behaviour, with the precondition that
dyn ts cy > 0 for all c and 0 < y < z. This ensures that cars only drive forward.
Furthermore, single vehicles can perform local transitions. A vehicle ¢ can

1. create a new claim, residing on a lane adjacent to its current reservation,
which may only consist of a single lane, denoted by ts—c(c,n) —ts’,
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2. create a new reservation, i.e., it has to currently possess a claim and mutates
this claim to a reservation, denoted by ts—r(c) —ts/,

3. withdraw its claim, i.e., remove a currently existing claim from the road,
denoted by ts—wdc(c) —ts’,

4. withdraw a reservation, i.e., if its current reservation comprises two lanes, ¢
shrinks its reservation to a single lane, denoted by ts—wdr(c,n)—ts’, or

5. adjust its dynamics, i.e., change the function responsible for its dynamic
behaviour to a given function f: real — real, denoted by ts—dyn(c, f) —ts’.

All of these relations can be straightforwardly defined using the notion of
traffic snapshots. For example, we define creation of a claim as follows.?

ts—c(c,n) —ts' = (pos ts') = (pos ts) A (res ts') = (res ts)
A (dyn ts') = (dyn ts) A (ps ts') = (ps ts) A (bd ts") = (bd ts)
Alcdm ts ¢l =0A|rests | =1
A((n+1€erestsc)V(n—1¢€restsc))
A (clm ts") = (clm ts)(c := Abs_nat_int{n})

The definition ensures that except for the claim of ¢, all parts of ts are equal to
their counterparts in ts’. Furthermore, it requires that within t¢s, the vehicle ¢
may only possess a single reservation, and no claim at all. The claim on lane n
may only be created, if the reservation consists of a lane adjacent to n. Finally,
the claims in ts’ are the claims in ts, except for the newly created claim of c.

With these relations, we create two additional types of transition. Evolu-
tions consists of arbitrary sequences of time passing and dynamic adjustments.
We denote the evolution from ts to ts’ by ts ~» ts’. Within Isabelle, we use
an inductive definition to enable reasoning about evolutions. An abstract tran-
sition is an arbitrary transition sequence between ts and ts’. We denote such
sequences by ts = ts’. Similarly to evolutions, we can define abstract transitions
inductively.

Ezample 2. Consider again the traffic snapshot ts depicted in Fig. 1. The vehicle
b can create a claim on lane 1, since its reservation contains only the lane 0. That
is, there is a ts’, such that ts—c(b, 1) —ts’. However, there is no possibility for b
to create a claim on lane 2.

Since views are intended to be relative to their owner, we have to consider the
position of a view if the owner moves. Let v be a view with owner e. If time
passes between snapshots ts and ts’, we have to compute the difference between
the position of e in ts and ts’ and add it to the borders of the extension of v.
Within Isabelle, we define a suitable function move ts ts’ v.

2 The function Abs_nat_int takes a set of natural numbers as its input, and returns
an element of type nat_int. It is automatically created by Isabelle as a result of the
type definition in Sect. 2.2. Subsequently, we will silently omit these functions.
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2.5 Sensors

The preceding definitions are independent of the types of sensor the vehicles
possess. The sensors, however, define the information each vehicle may use to
decide, whether manoeuvres on the road can be safely performed, e.g., a lane
change manoeuvre. We parameterise our model with a function representing
the distances obtained from the sensors, i.e., a function returning the perceived
length of a vehicle ¢ by a vehicle e at the current traffic snapshot ts.

sensors :: cars = traffic = cars = real

We require sensors to return a non-zero length for each vehicle. That is, for all
vehicles e, ¢ and all traffic snapshots ts, we have sensors e ts ¢ > 0. Using the
sensor definition as a parameter implies that all vehicles use the same definition
of the sensor function. In general, however, this function can be as complicated
as necessary. We then define the space used by a vehicle ¢ as observed by e.

space ts v ¢ = (pos ts ¢, pos ts ¢+ sensors (ownv) ts c)

2.6 Restriction to Views

Our intention when using views together with traffic snapshots is to limit the
space a vehicle can perceive at any time, since it can only take a limited amount
of information into account. We need to restrict the perceived length of a vehicle
to the view, as well as the lanes used for claims and reservations.

We denote the perceived length of a vehicle ¢ by the owner of a given view v
by len v ts c. Consider Fig. 1, and the indicated view v owned by the vehicle e.
For the vehicles e and a, we intend that space and len coincide on v. However, for
¢, we have to ensure that len is empty, since it drives outside of v. The size of len
for b depends on the type of information we assume: with perfect information,
we want that len is not empty and describes the small part of the safety envelope
of b within in v, while with regular information, we intend that len returns an
empty interval. We therefore define the perceived length as follows.

len v ts ¢ = if (left (space ts v ¢)) > right (extv))
then (right (extv), right (extv))
else if (right (space ts v ¢) < left (extv))
then (left (extv),left (extv))
else (max (left (extv)) (left (space ts v c)),
min (right (extv)) (right (space ts v c)))

The first two cases ensure that vehicles not visible in the view v (either to the
left or to the right) will be represented by an empty interval. The last case is
defined such that len is always a sub-interval of the extension of the view.
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We have proved several properties about len needed in the safety proofs. For
example, if the perceived length of a vehicle fills the extension of a given view,
then it does the same for the horizontal sub-views.

lemma len v ts c = extv Av=ul||w — len u ts c = extu

lemma len v ts ¢ = extv Av=ul|lw — len w ts ¢ = extw

The restriction of the claims and reservations to a view is the intersection
with the lanes visible in the view. Within Isabelle, we use the following definition.

restrict v f ¢ = (f ¢)Mlanv

To use this function we partially evaluate one of the functions res or clm. For
example, the restriction of reservations contains at most two lanes at any time.

lemma |restrict v (res ts) c| < 2

However, most properties of restrict hold for any possible function from cars to
lanes. E.g., if a view v can be vertically chopped into sub-views uw and w, the
restriction of a function f to v is the union of the restriction of f on u and w.

lemma v=wu--w — restrict v f ¢ = restrict u f c¢U restrict w f ¢

2.7 Hybrid Multi-Lane Spatial Logic

The logic HMLSL is a modal extension of first-order logic. In addition to first-
order operators, HMLSL contains two spatial predicates re(c) and cl(c), which
are true, if, and only if, the current view consists of a single lane that is com-
pletely filled with the reservation of the vehicle denoted by ¢ (or its claim, respec-
tively). To reason about views with more lanes, and different topological relations
between vehicles, we can chop views either horizontally with the binary modality
~, or vertically using . Intuitively, ¢ ~ splits the extension of a view into
two disjoint sub-views, where ¢ holds on the left interval and 1 on the right,
while the set of lanes and the owner is kept. For each type of spatial transition
*(c), we use a family of modalities Ox(c). Le., the modalities are parameterised
and this parameter will be evaluated like other variables in the formulas. Fur-
thermore, we use a single modality to refer to evolutions between snapshots, i.e.,
the passing of time and changes in the dynamical behaviour of the vehicles. The
universal modality G is defined with respect to abstract transitions, i.e., it can
be used to define invariance properties. Finally, we employ a modality @Qc in the
fashion of Hybrid Logic (HL) [15]. In HL, @c is used to switch to the world ¢,
regardless of the accessibility relation of the logic. Within MLSL, we use Qc to
exchange the owner of the current view, which allows to reason about different
perspectives on parts of the motorway. The information we have at our disposal
may change for different perspectives, depending of the type of sensors in the
vehicles. For a given view v, while we evaluate the formula @Qc ¢, we switch to a
view v’ with the same extension and lanes as v, but whose owner is c.
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Definition 1 (Syntax of HMLSL). The syntax of formulas of the hybrid
multi-lane spatial logic is given as follows, where c,d are variables of type cars:

pu=L|c=d]|re(c)|cl(c) |1 — ¢2 |Vcodr |1 ~do|d1~ o | Mo
where M € {Or(c),0c(c),Owd c(c), Owd r(c), 07, G, Qc}, and ¢, d are variables.

To define HMLSL within Isabelle, we follow an approach of Benzmiiller and
Paulson to embed quantified multi-modal logics into HOL [17]. Essentially, we
encode formulas as functions from the set of worlds to truth values. Since our
semantic model consists of both views and traffic snapshots, we define the formu-
las of HMLSL to be functions taking both of these entities as parameters, i.e., we
translate them directly into HOL. This allows for a natural definition and nota-
tion of the operators, while still enabling us to use the automatic proof methods
of Isabelle. For brevity, we define a type synonym o = traffic = view = bool.

Most operators combine several terms of type o, and return a new term of
type o. For example, negation is of type ¢ = ¢. Conjunction and the chopping
modalities have the type ¢ = o = o, since they are just binary connectives.
The box modalities, however, also take a vehicle as a parameter, i.e., their type
is cars = 0 = 0. Due to space limitations, we only provide some examples.

i = A ts v.op(ts)(v)
e~y =AtsvIuw.(v=ullw) A p(ts)(u) Ap(ts)(w)
Oc(e) o = A ts v.Vts' n.(ts—c(c,n) —ts’) — o(ts')(v)
Gy =\ tsv.Vts'.(ts = ts') — (ts')(move ts ts' v)
Qcp = A ts v.Vu.(v=c>u) — @(ts)(u)
To avoid confusion with the object logic of Isabelle/HOL, we use bold symbols
for the operators of HMLSL. While the Boolean operators are just translations to
operators of HOL, the operators specific to HMLSL refer to the elements of the
models given in the previous section. E.g., the semantics of the chop modalities
refer to the chopping operations of Sect. 2.3. The behavioural modalities use the
transition relations of Sect. 2.4, e.g., the modality G is defined with respect to

all abstract transitions leaving the current traffic snapshot. The semantics of
atomic formulas refers to the measures of intervals and restrictions to views.

re(c) = A ts v. len v ts ¢ = ext v A restrict v (res ts) ¢ = lanwv
Allext vl > 0A |lanv| =1

These abbreviations correspond directly to the original definitions of MLSL [1,2].
Furthermore, we can define the somewhere modality as an abbreviation.

(P)=T~A(TeewT)~T

Finally, we also introduce notions for validity and satisfaction, which allow us to
state lemmas comfortably, but can also be used within proofs of these lemmas.

E ¢ = Vts.Vu.p(ts)(v) ts,v E ¢ = p(ts)(v)
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We prove several lemmas to show that the definitions work as intended.
For example, somewhere distributes over disjunction, which can be proven by a
single application of the blast proof method. Furthermore for each vehicle, there
can be at most two reservations visible anywhere on the motorway. Finally, we
show how the transitions to create reservations are connected to the claims and
reservations on the road. The proof of these lemmas need manual intervention,
but mainly to guide the automatic methods.

lemma = (o V) « (p) V (V)
lemma | —(re(c)) ~ (re(c)) « (re(c))

lemma reservation : |= (Or(c) re(c)) < (re(c) V cl(c))

3 Safety with Perfect Information

In this section, we instantiate the sensor function of the semantic model such
that each vehicle possesses ideal and unrestricted sensors and can thus obtain
perfect information of the space visible in its view. Formally, the sensor function
consists of the sum of the physical size of a vehicle and its safety distance.

sensors e ts c = ps ts c+ bd ts ¢

Observe that the sensors do not distinguish between the owner of the view and
any other vehicle. That is, they always return the full safety envelope of a vehicle.

Safety in our model is modelled by the absence of overlapping reservations.
That is, our safety predicate can be defined as follows.

safe e =Ve.n(c = e) — —(re(c) A re(e))

To restrict the allowed behaviour of vehicles on the road, we require them to
adhere to certain protocol specifications. Vehicles have to respect reservations
as long as they only drive on the road without changing lanes, i.e., during evo-
lutions. This is ensured by the distance controller DC.

DC =G (Ve d.—(c=d) — —(re(c) Are(d)) — Or = (re(c) A re(d)))

Intuitively, DC ensures that two different vehicles ¢ and d, whose reservations
do not overlap initially, will keep their distances so that no overlap occurs, as
long as only time passes and dynamics are adjusted.

The only transition after which new reservations appear on the road is the
creation of reservations. Observe that a unsafe situation can only occur, if there
was already a claim overlapping with a reservation before the transition hap-
pened. Hence we have to forbid the creation of reservations in this case. To that
end, we define the potential collision check.

pee ¢ d = (e =d) A {cl(d) A (re(c) V cl(c)))
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Finally, the lane change controller restricts the vehicles such that if a vehicle
holding a claim created a reservation, while a potential collision exists, we would
get a contradiction. Hence, such a transition cannot occur.

LC = G (Vd.(Fe.pec ¢ d) — Or(d) L)

Observe that this formula is slightly more restrictive than necessary. The poten-
tial collision check is already satisfied, if two claims overlap, which does not
immediately lead to overlapping reservations, if only one of the vehicles changes
the claim to a reservation. That is, in a model with interleaving semantics, as we
defined in Sect. 2.4, we could reduce this check to only be satisfied, if the claim
overlaps with a reservation. However, the given formula even ensures safety, if
we allowed for synchronous creation of reservations [18].

Our safety theorem is as follows. If the initial situation is safe, and all vehicles
adhere to DC and LC, safety is an invariant along all possible transitions.

theorem safety : = (Ve.safe ¢) A DC AN LC — G (Ve.safe e)

Proof. We only present a proof sketch, since the proof itself consists of roughly
200 lines of Isar proof script. We fix an arbitrary traffic snapshot ts and view v,
and proceed by induction on transition sequences ts = ts’. The base case follows
by the assumption Ve.safe e. The induction step consists of a case distinction
for the different transition types, where we assume that ts = ts’ holds for some
ts' and ts’,v | Ve.safe e. In all cases, we prove the theorem by contradiction.
For evolutions, fix a ts” with ts’ ~ ts” and ts”, move ts ts” v = —Ve.safe e.
That is, there are ¢ and e, such that ts”, move ts’ ts" v = (re(c) Are(e)). By the
induction hypothesis and DC, we get ts', move ts ts’ v = Or =(re(c) A re(e)),
and thus ts”, move ts ts” v = —(re(c) A re(e)). This yields the contradiction.
For creations of reservations, fix d and ts”, such that both ts—r(d) —ts”
and ts”’, move ts ts” v | —Ve.safe e. That is, there are ¢ and e, such that
ts” move ts ts" v = (re(c) A re(e)). Subsequently, we have to distinguish the
cases whether d = c or d = e, or neither. In the latter case, we have that the over-
lap exists on ts’ as well and get a contradiction. The other two cases are similar,
and we only discuss the case d = e. In this case, we get that on ts’, a claim or a
reservation of e was overlapping with the reservation of ¢, i.e., ts’, move ts ts’ v |=
({re(c)Are(e)) Vv (re(c)Acl(e))). The first case contradicts the induction hypoth-
esis. The latter case implies ts’, move ts ts’ v |= (re(c) A (re(e) V cl(e))) This is
exactly the potential collision check pcc e ¢. With LC, we get the contradiction.
The other cases are all proved in similar ways, by concluding that the overlap
existed on ts’, contradicting the induction hypothesis. a

The safety theorem states that our controllers ensure safety, from the perspective
of a single vehicle, since we never employ the hybrid modality @c. However, with
our assumption of perfect knowledge, we can prove the following theorem, which
shows that switching to a different owner does not impact safety.

lemma [ (Ve.safe e) — Qc (Ve.safe e)

Hence, no vehicle perceives a collision, which implies that safety is an invariant
along all transitions for all vehicles.
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4 Safety with Regular Information

In this section, we discuss how the proof given previously is affected, if we assume
regular sensors. That is, while a vehicle can compute its own braking distance, it
is not able to refer to the braking distance of other vehicles. However, we assume
that the sensors can identify the physical size of other vehicles.

sensors e ts ¢ =if (e =c) then ps ts ¢+ bd ts c else ps ts ¢

Hence, each vehicle e has complete information about its own safety envelope
(the sum of its physical size and braking distance), but does not know anything
about the braking distance of other vehicles. Note that the sensor function is
a global parameter of HMLSL, i.e., all vehicles use the same function. With
this sensor definition, we can still proceed to prove the safety theorem given in
Sect. 3. However, since we neither refer to views with different owners in the
safety property, nor in the theorem itself, we cannot prove the invariance of
safety if we switch owners. Instead, we can prove the following lemma.

lemma 3ts v. ts,v = Ve.safe e A (Jc.@Qc —(Ve.safe e))

The proof consists of a straightforward, but tedious, construction of a suited
traffic snapshot ts and view v. The essential parts of ts and v are shown in
Fig. 2. Vehicle e is currently engaged in a lane change, while the vehicle ¢ drives
behind e on one lane. The view v indicated by the dashed rectangle is owned by
e, hence e can only perceive the physical size of ¢, and not its full safety envelope,
denoted by the dashed lines in front of c. For e, the situation seems perfectly
safe, since the part of ¢ visible to e is disjoint from e’s reservation. In particular,
we get ts,v = Ve.safe e. However, if we switch the view to be owned by ¢, we
get overlapping reservations, i.e., we also have ts,v = Je.Qc—(Ve.safe e).

<
A
c >
7

p

Fig. 2. Unsafe situation with regular information

We can amend our controller specification, however, to also take the perspec-
tive of other vehicles into account.

DC' = G (Ve d~(c = d) — @Qd—{re(c) Are(d)) — Or @d—(re(c) A re(d)))
LC' = G (Vd.(3e.Qc (pee ¢ d) V @Qd (pee ¢ d)) — Or(d) L)

Note that within the distance controller, we still only refer to the perspective of
a single vehicle, i.e., this specification can be implemented without coordinating
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with other vehicles. In the lane change controller, however, we specifically refer
to views with different owners to restrict the possible transitions of one vehicle.
For implementations, this implies that information has to be passed between
vehicles. This is in line with our previous automata based specification of the
lane change controller for regular sensors [1].

With these definitions, we can prove a slightly refined safety theorem. We not
only require that safe e is satisfied for all vehicles e, but that safe e is satisfied,
after we switch to the view owned by e. This addition is sufficient, since for each
e, the views it owns contain the maximum amount of information about e.

theorem safety : = (Ve.@e (safe €)) A DC' A LC" — G (Ve.Qe (safe ¢))

The proof of this theorem is then similar to the safety proof in Sect. 3, insofar that
we start by induction on the length of transition sequences, and then proceed
by contradiction. We need to distinguish several more cases, but these cases
themselves are proven analogously to the original proof.

5 Conclusion

We presented a semantical embedding of the spatio-temporal logic HMLSL,
specifically designed to reason about motorway traffic, into Isabelle/HOL,
and thus implemented the first computer-based assistance for reasoning with
HMLSL. Isabelle/HOL as a framework enabled us to use its highly sophisti-
cated automatic proof methods. Within this embedding, we proved the absence
of collisions, if the controllers of all vehicles adhere to a certain set of constraints.
The constraints needed for proving safety differ, if we reduce the capability of
the sensors deployed in the vehicles. Parameterising our embedding with the
types of sensors allowed us to prove general theorems and rules of MLSL, which
could subsequently be used by all instantiations of HMLSL.

Of course, our level of abstraction is high, since we focus on the spatial aspects
of the motorway. However, our safety theorems show which capabilities vehicles
have to possess, to ensure safety on a motorway. E.g., for perfect information, the
controllers only have to adhere to the constraints implied by the reservations. For
regular information, the vehicles need more capabilities, in particular, the ability
to pass information between them. Olderog et al. examined ways to link a formal
model very similar to ours (i.e., based on similar notions of traffic snapshots and
views) with concrete controller implementations [19]. They specify high-level
controllers, where MLSL formulas may be used as guards and invariants. To
link our presentation to their work, the semantics of these controllers, as well as
the linking predicates that specify the connection between the dynamics and the
high-level controllers would have to be formalised within Isabelle/HOL. Then,
proving safety amounts to proving that the controllers satisfy our requirements.
Since Olderog et al. assumed perfect information for the controllers, their general
approach has to be refined to take less idealistic information into account.

Our current proofs show safety of motorway traffic, which can be achieved,
if the vehicles do not drive at all. Hence, proving liveness properties would be
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an interesting extension of our current approach. Both sensor definitions we pre-
sented are very idealistic. For example, we did not take imprecision or probabilis-
tic failures into account. However, such properties could be encoded into more
complex sensor functions, e.g., by using probability measures in Isabelle/HOL
as defined by Holzl [20]. Since our definition of HMLSL is parametric in the
sensor definition, the main properties of the logic can be reused, and only the
new implications of the sensor definition have to be proven.

Furthermore, the embedding is designed for motorway traffic, i.e., vehicles
driving into one direction on a multi-lane highway. A natural extension would be
to take oncoming traffic into account and could be done along lines of previous
work [21]. In this case, the model would probably just need slight adjustments,
e.g., to distinguish vehicles driving in different directions. Extensions to model
urban traffic could be defined following, e.g., Hilscher and Schwammberger [22]
or Xu and Li [23]. However, the models in both of these approaches differ strongly
from the model for motorway traffic.
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Abstract. Recent accidents involving autonomous vehicles prompt
us to consider how we can engineer an autonomous vehicle which
always obeys traffic rules. This is particularly challenging because traf-
fic rules are rarely specified at the level of detail an engineer would
expect. Hence, it is nearly impossible to formally monitor behaviours of
autonomous vehicles—which are expressed in terms of position, velocity,
and acceleration—with respect to the traffic rules—which are expressed
by vague concepts such as “maintaining safe distance”. We show how
we can use the Isabelle theorem prover to do this by first codifying the
traffic rules abstractly and then subsequently concretising each atomic
proposition in a verified manner. Thanks to Isabelle’s code generation,
we can generate code which we can use to monitor the compliance of
traffic rules formally.

1 Introduction

Formalising law in a logical language is hard. Since the formalisation of the
British Nationality Act in PROLOG [19], there has yet to be another major break-
through in the formalisation of law. Even formalising traffic rules for highway
scenarios, which seems straightforward on the surface, possesses many challenges.
The challenges are not so much representing natural language specifications as
logical entities—which we term “codification”—as concretely interpreting pred-
icates such as overtaking, maintaining safe distance, or maintaining enough side
clearance—which we term “concretisation”. For example, how large is a distance
in order to be categorised as safe?

We are mainly motivated to formalise traffic rules for two purposes: (1) hold-
ing autonomous vehicles legally accountable; and (2) clarifying requirements for
engineering autonomous vehicles. It is necessary that traffic rules are codified in
a logical language so that engineers have a clear and well-defined specification
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against which the autonomous vehicles will be verified. However, codifying traf-
fic rules can be done abstractly by leaving predicates such as overtaking, safe-
distance, and side clearance undefined which still makes traffic rules unclear.
Therefore, these predicates need to be concretised through legal and engineering
analyses.

Formalising traffic rules entails choosing the logical language to codify the
rules. It must be expressive enough to codify natural language yet simple enough
to have automation for checking whether the behaviours of autonomous vehicles
satisfy (obey) the formulas (traffic rules). In line with our previous works for
formalising traffic rules [17], we advocate the use of higher-order logic (HOL)
as follows: we codify the rules in linear temporal logic (LTL)—which can be
defined in HOL—Dby assuming each predicate found in the legal text to be an
atomic proposition. We then define these predicates concretely in higher-order
logic (HOL). In this setting, HOL provides expressiveness while LTL allows
automation.

In this paper, we focus on the German traffic rules Straflenverkehrsordnung
(StVO) especially on the paragraph about overtaking. We choose this specific
paragraph, because we think that it represents the general challenge of codifica-
tion and concretisation of formalising traffic rules. The formalisation is performed
with the help of the Isabelle theorem prover in order to achieve a higher level of
trustworthiness. Our contributions are as follows:!

e We codify a part of the German overtaking traffic rules in LTL and show that
these formalise the traffic rules faithfully (Sect.3).

e We provide a verified checker for detecting the occurrence of an overtak-
ing from a trace of a vehicle (Sect.4). This requires a formal model of road
network—we use lanelets [3]—and functions for detecting lane occupied by a
vehicle.

e We provide a verified checker for determining a safe distance by consider-
ing the reaction time of the vehicle (Sect.5); this is an improvement of our
previous work [18].

e We provide a trustworthy Standard ML code for overtaking and safe distance
checkers and that for monitoring the satisfaction of a trace against LTL for-
mulas (Sect. 6).

2 Preliminaries

Notations used in this paper closely resemble Isabelle/HOL’s syntax. Function
application is always written in an uncurried form: instead of writing f = y as
in the A-calculus, we always write f(x,y). We write ¢::7 to indicate that term
t has type 7. Types used in this paper could either be a base type such as R
for real numbers, or constructed via type constructors such as « /list and seta
for list of type a and set of type «, respectively. For an zs:: « list, we can (1)
obtain its n-th element by writing zs!n; (2) obtain its length by writing |xs|;

! Our Isabelle formalisation is in https://github.com /rizaldialbert /overtaking.
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(3) drop its first n elements by writing drop(n, xzs); (4) obtain the first and the
last element by writing hd(zs) and last(zs), respectively. We use {t | . P} as the
set builder notation where ¢ is a term, P is a predicate, and x is a free variable
in ¢, which occurs in P. Another frequently used type in this work is a pair; we
can obtain the first element of a pair p:: a x 8 by the fst operator, fst(p) :: o, and
the second element by the snd operator, snd(p) :: 8. For option data type, we use
None and Some instead of Haskell’s Nothing and Maybe; but we use Haskell’s
do-notation for monadic computation. In higher-order logic, a deduction with a
single premise is written as P = (@), and if there are n premises, we write
P = P, = ... = P, = Q. In linear temporal logic, we shall use
G(¢) to denote properties that atomic proposition ¢ should be true at all times.

3 Codification of Traffic Rules

The Strafenverkehrsordnung (StVO)—or German traffic rules—is the main traf-
fic code for regulating the behaviours of motorised vehicles in Germany. It covers
both the scenarios for urban and highway driving: here we focus on the para-
graph about overtaking (§5 StVO) on highway scenarios. The English version
of §5(4) StVO is:

When changing the lane to the left lane during overtaking, no following
road user shall be endangered. [...] During overtaking, the driver has to
change from the fast lane to the right lane as soon as possible. The road
user being overtaken shall not be obstructed.

3.1 Legal Analysis

Overtaking in right-hand-traffic countries could be divided roughly into three
parts: changing to the left lane, passing the vehicle in front, and returning back
to the original lane (see Fig.1). Whenever a vehicle changes to the left lane
to overtake another road user, the driver has to ensure that those on the fast
lane will not be endangered. If a vehicle that becomes a following vehicle might
be endangered in any way, overtaking is prohibited [5, §5 StVO, recital 33].
However, this does not mean that any interference with the following traffic
needs to be avoided. If, by the overtaking manoeuvre, the following road user is
led to reduce its speed safely and will not collide with the overtaking vehicle [4, p.
481], [15, p. 248], the vehicle is allowed to change to the left lane. This overtaking
decision must consider the speed difference of the overtaking and the following
car.

After overtaking a slower vehicle in front, the overtaking vehicle needs to
return to the right lane. This is a special manifestation of the “drive on the
right”-rule in §2(2) StVO [7, §5 StVO Rn. 32]. When returning to the right
lane, other road users must not be forced to brake. The overtaking vehicle also
needs to keep a safe distance to the following traffic. However, there is no fixed
value for this distance and the decisive factor is that, in the case of an unexpected
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Fig. 1. Illustration of overtaking. The curve represents the overtaking trajectory. We
show the positions of the ego vehicle (filled rectangle) at four different time points
t1,t2,t3, and t4. The positions of the other vehicle (empty rectangle) are shown only
for t1 and t4.

emergency brake, the following vehicle must be able to stop behind the vehicle
in front. This depends on the road surface and the speed of both cars [9, §4
StVO recital 5]. With human drivers, the response time needs to be taken into
account.

The last sentence regarding obstruction serves as a protection of the slower
vehicle being overtaken. This “no obstruction” rule has the same meaning of
keeping a safe distance to the vehicle being overtaken as in the previous para-
graphs.

3.2 LTL Formulas of Traffic Rules

In order to codify traffic rules in LTL, we need to identify relevant atomic propo-
sitions first. By using the previous legal analysis, we list required atomic propo-
sitions with their intended interpretation in Table 1; references to time points
t1,t2,t3, and t4 should be seen in conjunction with illustration in Fig.1. The
LTL formulas of the traffic rules are:

Table 1. Atomic propositions and its intended interpretation

Atomic proposition | Interpretation

overtaking Performing an overtaking manoeuvre—It1;t4)

begin-overtaking | Overtaking and starting to move to the next lane—(t1;t2)

merging Starting to merge to the original lane—t3

finish-overtaking | Overtaking and returning back to the original lane—(ts;t4)

sd-rear Maintaining a safe distance to the rear vehicle on all lanes

safe-to-return Leave large enough distance for merging to the original lane
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1. When changing the lane to the left lane during overtaking, no following road
user shall be endangered.

&y = ’G (begin-overtaking — sd—rear)‘

As mentioned in the previous legal analysis, the word ‘endangered’ can be
concretely interpreted as maintaining a safe distance to the vehicles in the
fast lane.

2. During overtaking, the driver has to change from the fast lane to the right
lane as soon as possible.

Dy = ’G (merging «— safe—to—return)‘

The phrase ‘as soon as possible’ in this rule is interpreted as the time at which
the ego vehicle has left a large enough distance. From this formula, one can
infer that atomic proposition safe-to-return and merging must evaluate to
true at the same time; this agrees with the natural language interpretation
of the phrase ‘as soon as possible’ too.

3. The road user being overtaken shall not be obstructed.

b3 = ’G (finish-overtaking — sd—rear)‘

Here the word ‘obstructed’ is interpreted as maintaining safe distance to the
vehicle being overtaken; hence the atomic proposition sd-rear in the conclu-
sion of the implication.

3.3 Monitoring Traffic Rules

One intended application of our work is to determine whether the behaviours
of an autonomous vehicle recorded in a black box comply with (overtaking)
traffic rules or not. This black box is assumed to record not only data from the
ego vehicle but also those from other road users observed by the ego vehicle
or obtained from vehicle-to-vehicle (V2V) communication. In order to analyse
this black box formally, we model the recorded data as discrete time runs (or
paths). Each run is the evolution of a vehicle’s state consisting of continuous
data such as position, velocity, and acceleration—all comprise values in z- and
y-dimensions. We assume that the black box also contain information about the
occupancies of a vehicle; they are represented by rectangles with time-varying
width and length.

For formal analysis purposes, we need to convert these runs into traces; a
corresponding trace of a run is defined here as the evolution of the Boolean
values (truth values) over the predefined set of atomic propositions (a word
over the set of atomic propositions). This is the next challenge for formalising
traffic rules: concretely defining each atomic proposition in Table1 in terms of
the continuous and discrete variables in the runs. Section4 concretises the first
four atomic propositions in Table1 and Sect.5 concretises the last two atomic
propositions.
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4 Concretising the Overtaking Predicate

In this paper, we improve our previous definition of overtaking in [17] by defin-
ing four instead of two time points; these points are labelled from ¢; to ¢4
in Fig.1. This is required for concretising begin-overtaking, merging, and
finish-overtaking. Overtaking starts at time point t;, which is the earliest
time to touch the lane divider; in [tg;¢1) the vehicle always stays in the same
lane. It then continues until ¢5, at which it enters the next lane completely, and
stays in this lane until ¢3, at which it touches the lane divider again. Overtaking
is finished at t4 when it re-enters the original lane completely. In order to detect
and formalise such geometrical interpretations, we need a formal model of lanes
and a verified function for lane detection. At t; in Fig. 1, for example, the lane
detection should tell us that it is in the rightmost lane and starts to touch the
lane boundary, and at ¢, it is only in the leftmost lane.

4.1 Lanelets

We use lanelet [3] as a formal model of a lane in this work. A lanelet consists
of two nonempty monotone polygonal chains, each for representing the left and
right boundary.

Definition 1 (Polygonal chains). An zs:: (R? x R?) list is a polygonal chain
if and only if

Vi.i+1<|zs] — snd (xsli) = fst (xs!(i+1)).

between-sety(x)
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Fig.2. An example of two lanelets with the direction to the right. The upper and
lower polygonal chains for lanelet 1 is points-le = [(py, p1), (P1,P2);- - -, (P4, p5)] and
points-ri = [(po,p1), (p1,D2), - - -, (P4, Ps)], respectively. One restriction used in this for-
malisation is that the endpoints have the same value in z-dimension i.e. fst(po) =
fst(py) and fst(ps) = fst(ps). The grey area is the drivable area for lanelet 1. Both the
rightmost lanelet and the rightmost boundary are identified with 0, and they increase
as we move to the leftmost lanelet and boundary.
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Definition 2 (Monotone polygonal chains w.r.t z-dimension). A
monotone polygonal chain w.r.t x-dimension is a polygonal chain whose x-
element always increases:

Vi< |xs|. fst(fst(xsli)) < fst(snd(xs!i)).

The property of being monotone for a polygonal chain ensures that for each x,
we have a unique y such that (z,y) is in the polygonal chain. Therefore, given a
polygonal chain points, we can always create a function f~of-x from the set of all
real numbers in z-dimension to the set of real numbers in y-dimension.

Definition 3 (Lanelets). A lanelet consists of two nonempty monotone polyg-
onal chains w.r.t. x-dimension, points-le and points-ri, which do not intersect and
have the same endpoints in x-dimension.

As defined in [3], there is no requirement of the relative placement between
the two polygonal chains; points-le could be positioned above points-ri (from a
bird’s-eye view) or vice-versa. If it is the former then the lanelet has the direction
to the right and to the left if it is the latter. Two polygonal chains points, and
points, are called non-intersecting if there does not exist any two intersecting
chains c; € set points,, ca € set points,.

Note that, with this definition, we could not model a lane which has a 90°
turn. This is because our definition of monotone polygonal chain is fixed w.r.t.
z-dimension. Lanelets in [3] do not have this restriction, but we can circumvent
this problem by using a more general definition of monotone polygonal chains
w.r.t to line [ and split a polygonal chain into a minimal number of monotone
polygonal chains [16]; each with its own coordinate system. We impose this
restriction because it eases the following definition of drivable areas and makes
the checking of intersecting polygonal chains easier.

Definition 4 (Drivable area). By using the function representation of
the left and right boundary f-of-x; and f-of-x., and defining first-point :=
fst(hd(points-le)), last-point := fst(last(points-le)), we can define the drivable area
as follows (see Fig. 2 for graphical illustration).

setx = {x ’ x. first-point < x < /ast—point}7
between-sety(z) := (min(fof-x (), f-of-x,(x)); max(f-of-x(z), Fof-x.(z))),
drivable-area := {(x,y) | xy. € setx A y € between-sety(z)}.

4.2 Lane Detection

In order to detect the lanelet a rectangle is currently occupying, we need first
to test whether there is a lanelet in which a rectangle is located completely
inside. To achieve this, we need to test whether the four vertices of a rectangle
are located in the lanelet, and none of the four edges intersects with any lane
boundary of the lanelet. Hence, we need two primitives here: segment intersection
and 