
Nadia Polikarpova
Steve Schneider (Eds.)

13th International Conference, IFM 2017
Turin, Italy, September 20–22, 2017
Proceedings

Integrated
Formal MethodsLN

CS
 1

05
10

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 10510

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Nadia Polikarpova • Steve Schneider (Eds.)

Integrated
Formal Methods
13th International Conference, IFM 2017
Turin, Italy, September 20–22, 2017
Proceedings

123

Editors
Nadia Polikarpova
Massachusetts Institute of Technology
Cambridge, MA
USA

Steve Schneider
University of Surrey
Guildford
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66844-4 ISBN 978-3-319-66845-1 (eBook)
DOI 10.1007/978-3-319-66845-1

Library of Congress Control Number: 2017952382

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-5571-173X
http://orcid.org/0000-0001-8365-6993

Preface

Applying formal methods may involve the usage of different formalisms and different
analysis techniques to validate a system, either because individual components are most
amenable to one formalism or technique, because one is interested in different prop-
erties of the system, or simply to cope with the sheer complexity of the system. The
iFM conference series seeks to further research into hybrid approaches to formal
modeling and analysis; i.e., the combination of (formal and semi-formal) methods for
system development, regarding both modeling and analysis. The conference covers all
aspects from language design through verification and analysis techniques to tools and
their integration into software engineering practice.

These proceedings document the outcome of the 13th International Conference on
Integrated Formal Methods, iFM 2017, on recent developments toward this goal. The
conference was held in Turin, Italy, on September 20–22, 2017, hosted by the
University of Turin. Previous editions of iFM were held in York, UK (1999),
Schloss Dagstuhl, Germany (2000), Turku, Finland (2002), Kent, UK (2004),
Eindhoven, The Netherlands (2005), Oxford, UK (2007), Düsseldorf, Germany (2009),
Nancy, France (2010), Pisa, Italy (2012), Turku, Finland (2013), Bertinoro, Italy
(2014), and Reykjavik, Iceland (2016).

The conference received 61 submissions from authors in 24 countries. Papers were
submitted in four categories: research papers, case study papers, regular tool papers,
and tool demonstration papers. All papers were reviewed by at least three members
of the Program Committee. After careful deliberation, the Program Committee selected
28 papers for presentation.

Among these papers, the Program Chairs, in consultation with the Program Com-
mittee, have selected winners for two awards. The contribution “Triggerless Happy:
Intermediate Verification with a First-Order Prover” by YuTing Chen and Carlo A.
Furia received the Best Paper Award. The contribution “Complexity Analysis for Java
with AProVE” by Florian Frohn and Jürgen Giesl received the Best Tool Paper Award.
Each award was accompanied by a EUR 500 prize, generously provided by Springer.

In addition to the 28 peer-reviewed papers, this volume contains contributions from
each of the three invited keynote speakers:

– Jane Hillston (University of Edinburgh, UK): “Integrating Inference with Stochastic
Process Algebra Models”

– André Platzer (Carnegie Mellon University, USA): “Logic & Proofs for
Cyber-Physical Systems with KeYmaera X”

– Martin Vechev (ETH Zurich, Switzerland): “Machine Learning for Programming”

Invited presentations are always the highlights of a conference; these contributions
are therefore gratefully acknowledged.

iFM was accompanied by a PhD Symposium, organized by the symposium chairs,
Erika Ábrahám (RWTH Aachen University, Germany) and S. Lizeth Tapia Tarifa

(University of Oslo, Norway), as well as the following satellite events, managed by the
workshop chairs, Wolfgang Ahrendt (Chalmers University of Technology, Sweden)
and Michael Lienhardt (University of Turin, Italy):

– International Workshop on Formal Methods for Industrial Critical Systems and
Automated Verification of Critical Systems (FMICS-AVoCS)

– Workshop on Architectures, Languages and Paradigms for IoT (ALP4IoT)
– Workshop on Actors and Active Objects (WAO)
– Workshop on Formal Verification of Autonomous Vehicles (FVAV)
– Second International Workshop on Pre- and Post-Deployment Verification Tech-

niques (PrePost)
– Second International Workshop on Verification and Validation of Cyber-Physical

Systems (V2CPS)

The conference would not have been possible without the enthusiasm and dedica-
tion of the iFM general chair, Ferruccio Damiani, and the support of the Computer
Science Department at the University of Turin, Italy. The EasyChair conference
management system was invaluable for conducting the peer review process and
preparing the proceedings. Conferences like iFM rely on the willingness of experts to
serve on the Program Committee; their professionalism and their helpfulness was
exemplary. Finally, we would like to thank all the authors for their submissions, their
willingness to continue improving their papers, and their presentations!

July 2017 Nadia Polikarpova
Steve Schneider

VI Preface

Organization

General Chair

Ferruccio Damiani University of Turin, Italy

Program Chairs

Nadia Polikarpova MIT, USA
Steve Schneider University of Surrey, UK

Steering Committee

Erika Ábrahám RWTH Aachen University, Germany
Elvira Albert Complutense University of Madrid, Spain
John Derrick University of Sheffield, UK
Marieke Huisman University of Twente, Netherlands
Einar Broch Johnsen University of Oslo, Norway
Dominique Mery Université de Lorraine, LORIA, France
Luigia Petre Åbo Akademi University, Finland
Steve Schneider University of Surrey, UK
Emil Sekerinski McMaster University, Canada
Marjan Sirjani University of Reykjavik, Iceland
Helen Treharne University of Surrey, UK
Heike Wehrheim University of Paderborn, Germany

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Elvira Albert Complutense University of Madrid, Spain
Oana Andrei University of Glasgow, UK
Borzoo Bonakdarpour McMaster University, Canada
Barbora Buhnova Masaryk University, Czech Republic
David Cok GrammaTech, USA
John Derrick Unversity of Sheffield, UK
Yliès Falcone Univ. Grenoble Alpes, Inria, France
Leo Freitas Newcastle University, UK
Carlo A. Furia Chalmers University of Technology, Sweden
Jan Friso Groote Eindhoven University of Technology, Netherlands
Reiner Hähnle Technical University of Darmstadt, Germany
Ian J. Hayes University of Queensland, Australia
Marieke Huisman University of Twente, Netherlands
Rajeev Joshi NASA Jet Propulsion Laboratory, USA

Laura Kovács Vienna University of Technology, Austria
Juliana Küster Filipe

Bowles
University of St. Andrews, UK

Axel Legay IRISA/Inria Rennes, France
K. Rustan M. Leino Microsoft Research, USA
Gerald Lüttgen University of Bamberg, Germany
Dominique Mery Université de Lorraine, LORIA, France
Stefan Mitsch Carnegie Mellon University, USA
Rosemary Monahan Maynooth University, Ireland
Luigia Petre Åbo Akademi University, Finland
Adrian Riesco Universidad Complutense de Madrid, Spain
Gerhard Schellhorn Universität Augsburg, Germany
Gerardo Schneider Chalmers University of Technology,

University of Gothenburg, Sweden
Emil Sekerinski McMaster University, Canada
Graeme Smith University of Queensland, Australia
Martin Steffen University of Oslo, Norway
Armando Tacchella Università di Genova, Italy
Helen Treharne University of Surrey, UK
Mark Utting University of the Sunshine Coast, Australia
Frits Vaandrager Radboud University Nijmegen, Netherlands
Heike Wehrheim University of Paderborn, Germany
Kirsten Winter University of Queensland, Australia

Additional Reviewers

Bodenmueller, Stefan
Brett, Noel
Bubel, Richard
Burton, Eden
Camilleri, John J.
Caminati, Marco B.
Colvin, Robert
Do, Quoc Huy
Doménech, Jesús J.
El-Hokayem, Antoine
Enescu, Mike
Fendrich, Sascha

Flores-Montoya, Antonio
Hallgren, Per
Isabel, Miguel
Jakse, Raphaël
Kamburjan, Eduard
Kragl, Bernhard
Modesti, Paolo
Mueller, Andreas
Nazarpour, Hosein
Neele, Thomas
Pagnin, Elena
Pfähler, Jörg

Pinisetty, Srinivas
Schlaipfer, Matthias
Siddique, Umair
Suda, Martin
Talebi, Mahmoud
Töws, Manuel
Traonouez, Louis-Marie
Travkin, Oleg
de Vink, Erik
Yang, Fei
Zanardini, Damiano
Zantema, Hans

VIII Organization

Invited Talks

Integrating Inference into Stochastic Process
Algebra Models

Jane Hillston

LFCS, School of Informatics, University of Edinburgh
jane.hillston@ed.ac.uk

Stochastic process algebras emerged in the early 1990s as a quantitative formal method.
By incorporating information about probabilities and timing into a classical process
algebra, it was possible to build models which allowed quantitative aspects of beha-
viour such as performance, reliability and availability to be evaluated in addition to
qualitative aspects such as liveness and safety. Thus it became possible to answer
questions such as the expected time until a failure in the system, or the proportion
messages that are successfully delivered within 10 seconds. The language is equipped
with a structured operational semantics giving rise to a labelled transition system that
can be interpreted as a continuous time Markov chain. This class of stochastic pro-
cesses is widely used in quantitative modelling and many efficient analysis techniques
are available. Moreover the formality and structure of the process algebra has allowed
new decompositions and approximations to be defined at the language level and
automatically applied.

However one of the drawbacks of the stochastic process algebra approach is that
the quantitative analysis of the model is dependent on the accuracy of the parameters
used to capture the timings and probabilities that influence behaviour within the sys-
tem. In some application domains this data can be obtained from monitoring or logging
software, systems specifications etc. But in others, such as systems biology, not all
aspects of behaviour are accessible to measurement and it can be very difficult to arrive
at accurate parameters for the models.

Thus in recent years we have developed a stochastic process algebra, ProPPA,
which allows parameters within the model to be left uncertain, specified by a distri-
bution rather than a concrete value. Thus a ProPPA model describes not a single model,
but a family of models, each associated with a probability that it is a good represen-
tation of the system. Moreover when evidence about the behaviour of the system is
available, the language supports inference techniques from machine learning, which
allow us to refine the uncertainty and generate a new family of models with different
probabilities. The range of possible quantitative behaviours can be derived from the
family of models together with an estimate of their likelihood.

Thus ProPPA, Probabilistic Programming Process Algebra, is a stochastic process
algebra that combines elements of the data-driven modelling approach adopted in
machine learning, with a more mechanistic modelling style from formal methods. Since

different inference techniques are suited to different model characteristics, the ProPPA
tool suite offers a modular approach with a number of different inference techniques
which can be used to refine the estimate of the parameters of the model and therefore
the possible quantitative behaviours that may be exhibited.

XII J. Hillston

Logic & Proofs for Cyber-Physical Systems
with KeYmaera X

André Platzer

Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
aplatzer@cs.cmu.edu

1 Abstract of Invited Talk

Cyber-physical systems (CPS) combine cyber aspects such as communication and
computer control with physical aspects such as movement in space, which arise fre-
quently in many safety-critical application domains, including aviation, automotive,
railway, and robotics [1, 2, 4–6, 8, 11, 16, 17, 24–28, 40, 42–44]. But how can we
ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft
will not crash into another one?

Borrowing from an invited paper at IJCAR [36] to which we refer for more detail,
this talk will highlight some of the most fascinating aspects of cyber-physical systems
and their dynamical systems models, such as hybrid systems that combine discrete
transitions and continuous evolution along differential equations. Because of the impact
that they can have on the real world, CPSs deserve proof as safety evidence.

Multi-dynamical systems understand complex systems as a combination of multiple
elementary dynamical aspects [33], which makes them natural mathematical models for
CPS, since they tame their complexity by compositionality. The family of differential
dynamic logics [28–35, 37] achieves this compositionality by providing compositional
logics, programming languages, and reasoning principles for CPS. Differential dynamic
logics, as implemented in the theorem prover KeYmaera X [7], have been instrumental
in verifying many applications, including the Airborne Collision Avoidance Sys-
tem ACAS X [9], the European Train Control System ETCS [39], automotive systems
[13, 14, 20], aircraft roundabout maneuvers [38], mobile robot navigation [18, 19], and
a surgical robot system for skull-base surgery [10].

In addition to serving as a basis for additional formal verification results in different
CPS application domains, each of those case studies are chosen to demonstrate how
characteristically new features can be verified in practice. Safety, controllability,
reactivity, and liveness properties for the double integrator dynamics interacting with
different discrete components are the basis for ETCS verification [39]. Combinations
with distributed systems and communication systems are emphasized elsewhere

This talk is based on an overview of logic and proofs for cyber-physical systems from IJCAR [36]
to which we refer for more details. The talk is augmented with more detail on the new theorem prover
KeYmaera X, which is at http://keymaeraX.org/.This material is based upon work supported
by the National Science Foundation under NSF CAREER Award CNS-1054246.

http://keymaeraX.org/

[13, 14, 20]. How safety properties of CPS with unsolvable dynamics can be verified
rigorously is showcased for aircraft with fixed ground speed [38] and for mobile
ground robot navigation with acceleration/braking [18, 19]. High precision results in
the safe handling of data structures for an unbounded number of obstacles are show-
cased in medical robotics [10]. Systems whose decisions are based on table lookups
from a machine-learned value table are studied in the context of elaborate characteri-
zations of the safe region of the high-level vertical motion of aircraft [9]. The ACAS X
results are also of interest for characterizations of last-resort safety, i.e., to restrict
intervention to when the last chance for a corrective safety action has come.

The KeYmaera X prover implements a uniform substitution calculus for differential
dynamic logic dℒ [35], which enables a prover with a very small soundness-critical
core of just about 1 700 LOC of Scala [7]. To achieve high levels of confidence, this
uniform substitution calculus has been cross-verified both in the Isabelle/HOL and in
the Coq theorem provers [3]. Verification results about CPS models transfer to CPS
implementations when generating provably correct runtime monitors with the Mod-
elPlex approach [21], which is also implemented as a proof tactic in KeYmaera X. That
approach makes it possible to rigorously develop correct CPS controllers for CPS
models with a provable link to the safety monitors in the system implementation. The
use of components for hybrid systems has been explored as well [15, 22, 23], which
make it possible to benefit from safety proofs about components and inherit safety
proofs for a compound system for free (under certain compatibility conditions). While
differential dynamic logics are already inherently compositional for each of their
composition operators, component notions add additional structuring principles for
bigger pieces and provide simple safety notions for components. In order to bootstrap
such a component approach without having to enlarge the small soundness-critical core
of KeYmaera X, the safety of the composite is proved automatically by a KeYmaera X
tactic from correctness proofs about its components [23].

More technical overviews are available in the literature [29, 33, 36, 41].

References

1. Alur, R.: Principles of Cyber-Physical Systems. MIT Press (2015)
2 Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

3. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic
logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and Proofs - 6th ACM SIGPLAN
Conference. CPP 2017, Paris, France, January 16–17, 2017, pp. 208–221. ACM (2017)

4. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and
debugging. Commun. ACM 52(11), 74–84 (2009)

5. Davoren, J.M., Nerode, A.: Logics for hybrid systems. IEEE 88(7), 985–1010 (2000)
6. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems. In: Clarke, E.

M., Henzinger, T.A., Veith, H. (eds.) Handbook of Model Checking. Springer (2017)

XIV A. Platzer

7. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An axiomatic tactical
theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNAI,
vol. 9195, pp. 527–538. Springer, Switzerland (2015)

8. Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. Computer 40(10),
32–40 (2007)

9. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A., Gardner, R., Mitsch, S., Platzer, A.: A
formally verified hybrid system for safe advisories in the next-generation airborne collision
avoidance system. STTT (2016)

10. Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe design of a
virtual fixture control algorithm for a surgical robot. In: Belta, C., Ivancic, F. (eds.) HSCC,
pp. 263–272. ACM (2013)

11. Larsen, K.G.: Verification and performance analysis for embedded systems. In: Chin, W.,
Qin, S. (eds.) Third IEEE International Symposium on Theoretical Aspects of Software
Engineering. TASE 2009, 29–31 July 2009, Tianjin, China, pp. 3–4. IEEE Computer
Society (2009)

12. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE (2012)

13. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now
formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56.
Springer, Heidelberg (2011)

14. Loos, S.M., Witmer, D., Steenkiste, P., Platzer, A.: Efficiency analysis of formally verified
adaptive cruise controllers. In: Hegyi, A., Schutter, B.D. (eds.) ITSC, pp. 1565–1570 (2013)

15. Lunel, S., Boyer, B., Talpin, J.P.: Compositional proofs in differential dynamic logic. In:
ACSD (2017)

16. Lunze, J., Lamnabhi-Lagarrigue, F. (eds.): Handbook of Hybrid Systems Control: Theory,
Tools, Applications. Cambridge University Press (2009)

17. Maler, O.: Control from computer science. Ann. Rev. Control 26(2), 175–187 (2002)
18. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous

robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.) Robotics: Science and
Systems (2013)

19. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle
avoidance and navigation of ground robots (2016). CoRR abs/1605.00604

20. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic control. In:
Lu, C. (ed.) ICCPS, pp. 171–180. IEEE (2012)

21. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-physical
system models. Form. Methods Syst. Des. 49(1), 33–74 (2016). Special issue of selected
papers from RV’14

22. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A component-based
approach to hybrid systems safety verification. In: Ábrahám, E., Huisman, M. (eds.) IFM
2016. LNCS, vol. 9681, pp. 441–456. Springer, Switzerland (2016)

23. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Change and delay
contracts for hybrid system component verification. In: Huisman, M., Rubin, J. (eds.) FASE
2017. LNCS, vol. 10202, pp. 134–151. Springer, Germany (2017)

24. Nerode, A.: Logic and control. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS,
vol. 4497, pp. 585–597. Springer, Heidelberg (2007)

25. Nerode, A., Kohn, W.: Models for hybrid systems: Automata, topologies, controllability,
observability. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Sys-
tems. LNCS, vol. 736, pp. 317–356. Springer (1992)

26. NITRD CPS Senior Steering Group: CPS vision statement. NITRD (2012)

Logic & Proofs for Cyber-Physical Systems with KeYmaera X XV

http://arxiv.org/abs/1605.00604

27. Pappas, G.J.: Wireless control networks: modeling, synthesis, robustness, security. In:
Caccamo, M., Frazzoli, E., Grosu, R. (eds.) Proceedings of the 14th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, IL, USA,
April 12–14, 2011, pp. 1–2. ACM (2011)

28. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189
(2008)

29. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer, Heidelberg (2010)

30. Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 431–445. Springer,
Heidelberg (2011)

31. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for dis-
tributed hybrid systems. Log. Meth. Comput. Sci. 8(4), 1–44 (2012). Special issue for
selected papers from CSL’10

32. Platzer, A.: The complete proof theory of hybrid systems. In: LICS 2012, pp. 541–550
(2012)

33. Platzer, A.: Logics of dynamical systems. In: LICS 2012, pp. 13–24 (2012)
34. Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1), 1:1–1:51 (2015)
35. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas. (2016)
36. Platzer, A.: Logic & proofs for cyber-physical systems. In: Olivetti, N., Tiwari, A. (eds.)

IJCAR 2016. LNAI, vol. 9706, pp. 15–21. Springer, Switzerland (2016)
37. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log. 18(3) (2017)
38. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneu-

vers: A case study. In: Cavalcanti, A., Dams, D. (eds.) FM 2009. LNCS, vol. 5850, pp. 547–
562. Springer, Heidelberg (2009)

39. Platzer, A., Quesel, J.D.: European Train Control System: A case study in formal verifica-
tion. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265.
Springer, Heidelberg (2009)

40. President’s Council of Advisors on Science and Technology: Leadership under challenge:
Information technology R&D in a competitive world. An Assessment of the Federal Net-
working and Information Technology R&D Program, August 2007

41. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and prove hybrid
systems with KeYmaera: A tutorial on safety. STTT 18(1), 67–91 (2016)

42. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
(2009)

43. Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE
Computer Society (2011)

44. Wing, J.M.: Five deep questions in computing. Commun. ACM 51(1), 58–60 (2008)

XVI A. Platzer

Machine Learning for Programming

Martin Vechev

Department of Computer Science, ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

In this talk I will discuss some of our latest research on creating probabilistic pro-
gramming tools based on machine learning. These tools leverage the massive effort
already spent by thousands of programmers and make useful predictions about new,
unseen programs, helping solve difficult and important software tasks. I will illustrate
several such probabilistic systems including statistical code synthesis and deobfusca-
tion. Two of these de-obfuscation systems (jsnice.org and apk-deguard.com) are freely
available, used daily and have more than 200,000 users from every country worldwide.
I will also present new methods for creating probabilistic models that some of our
systems are based on. These methods are more precise than neural networks and have
applications to other domains, beyond code (e.g., to modeling natural language).
Finally, I will conclude with what I believe are some of the more interesting, open
problems in this area.

Contents

Cyber-Physical Systems

An Active Learning Approach to the Falsification of Black Box
Cyber-Physical Systems . 3

Simone Silvetti, Alberto Policriti, and Luca Bortolussi

Modelling and Verification of Timed Robotic Controllers 18
Pedro Ribeiro, Alvaro Miyazawa, Wei Li, Ana Cavalcanti,
and Jon Timmis

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 34
Sven Linker

Formalising and Monitoring Traffic Rules for Autonomous Vehicles
in Isabelle/HOL . 50

Albert Rizaldi, Jonas Keinholz, Monika Huber, Jochen Feldle,
Fabian Immler, Matthias Althoff, Eric Hilgendorf, and Tobias Nipkow

Software Verification Tools

Making Whiley Boogie!. 69
Mark Utting, David J. Pearce, and Lindsay Groves

Complexity Analysis for Java with AProVE . 85
Florian Frohn and Jürgen Giesl

The VerCors Tool Set: Verification of Parallel and Concurrent Software 102
Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn

An Extension of the ABS Toolchain with a Mechanism for Type
Checking SPLs . 111

Ferruccio Damiani, Michael Lienhardt, Radu Muschevici,
and Ina Schaefer

Safety-Critical Systems

Generalised Test Tables: A Practical Specification Language
for Reactive Systems . 129

Bernhard Beckert, Suhyun Cha, Mattias Ulbrich, Birgit Vogel-Heuser,
and Alexander Weigl

http://dx.doi.org/10.1007/978-3-319-66845-1_1
http://dx.doi.org/10.1007/978-3-319-66845-1_1
http://dx.doi.org/10.1007/978-3-319-66845-1_2
http://dx.doi.org/10.1007/978-3-319-66845-1_3
http://dx.doi.org/10.1007/978-3-319-66845-1_4
http://dx.doi.org/10.1007/978-3-319-66845-1_4
http://dx.doi.org/10.1007/978-3-319-66845-1_5
http://dx.doi.org/10.1007/978-3-319-66845-1_6
http://dx.doi.org/10.1007/978-3-319-66845-1_7
http://dx.doi.org/10.1007/978-3-319-66845-1_8
http://dx.doi.org/10.1007/978-3-319-66845-1_8
http://dx.doi.org/10.1007/978-3-319-66845-1_9
http://dx.doi.org/10.1007/978-3-319-66845-1_9

Transient and Steady-State Statistical Analysis for Discrete
Event Simulators. 145

Stephen Gilmore, Daniël Reijsbergen, and Andrea Vandin

Algebraic Compilation of Safety-Critical Java Bytecode. 161
James Baxter and Ana Cavalcanti

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver . . . 177
Andrii Kovalov, Elisabeth Lobe, Andreas Gerndt, and Daniel Lüdtke

Concurrency and Distributed Systems

Analysis of Synchronisations in Stateful Active Objects 195
Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea

BTS: A Tool for Formal Component-Based Development 211
Dalay Israel de Almeida Pereira, Marcel Vinicius Medeiros Oliveira,
Madiel S. Conserva Filho, and Sarah Raquel Da Rocha Silva

Testing and Verifying Chain Repair Methods for CORFU Using Stateless
Model Checking . 227

Stavros Aronis, Scott Lystig Fritchie, and Konstantinos Sagonas

Synthesizing Coalitions for Multi-agent Games . 243
Wei Ji, Farn Wang, and Peng Wu

Program Verification Techniques

Hoare-Style Reasoning from Multiple Contracts . 263
Olaf Owe, Toktam Ramezanifarkhani, and Elahe Fazeldehkordi

A New Invariant Rule for the Analysis of Loops with Non-standard
Control Flows. 279

Dominic Steinhöfel and Nathan Wasser

Triggerless Happy: Intermediate Verification with a First-Order Prover 295
YuTing Chen and Carlo A. Furia

SEMSLICE: Exploiting Relational Verification for Automatic
Program Slicing . 312

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda,
Daniel Lentzsch, and Mattias Ulbrich

Formal Modeling

VBPMN: Automated Verification of BPMN Processes (Tool Paper) 323
Ajay Krishna, Pascal Poizat, and Gwen Salaün

XX Contents

http://dx.doi.org/10.1007/978-3-319-66845-1_10
http://dx.doi.org/10.1007/978-3-319-66845-1_10
http://dx.doi.org/10.1007/978-3-319-66845-1_11
http://dx.doi.org/10.1007/978-3-319-66845-1_12
http://dx.doi.org/10.1007/978-3-319-66845-1_13
http://dx.doi.org/10.1007/978-3-319-66845-1_14
http://dx.doi.org/10.1007/978-3-319-66845-1_15
http://dx.doi.org/10.1007/978-3-319-66845-1_15
http://dx.doi.org/10.1007/978-3-319-66845-1_16
http://dx.doi.org/10.1007/978-3-319-66845-1_17
http://dx.doi.org/10.1007/978-3-319-66845-1_18
http://dx.doi.org/10.1007/978-3-319-66845-1_18
http://dx.doi.org/10.1007/978-3-319-66845-1_19
http://dx.doi.org/10.1007/978-3-319-66845-1_20
http://dx.doi.org/10.1007/978-3-319-66845-1_20
http://dx.doi.org/10.1007/978-3-319-66845-1_21

How Well Can I Secure My System? . 332
Barbara Kordy and Wojciech Wideł

MaxUSE: A Tool for Finding Achievable Constraints and Conflicts
for Inconsistent UML Class Diagrams . 348

Hao Wu

Formal Verification of CNL Health Recommendations. 357
Fahrurrozi Rahman and Juliana Küster Filipe Bowles

Verified Software

Modular Verification of Order-Preserving Write-Back Caches. 375
Jörg Pfähler, Gidon Ernst, Stefan Bodenmüller, Gerhard Schellhorn,
and Wolfgang Reif

Formal Verification of ARP (Address Resolution Protocol)
Through SMT-Based Model Checking - A Case Study - 391

Danilo Bruschi, Andrea Di Pasquale, Silvio Ghilardi, Andrea Lanzi,
and Elena Pagani

Certified Password Quality: A Case Study Using Coq and Linux
Pluggable Authentication Modules . 407

João F. Ferreira, Saul A. Johnson, Alexandra Mendes,
and Phillip J. Brooke

Verification of STAR-Vote and Evaluation of FDR and ProVerif 422
Murat Moran and Dan S. Wallach

Author Index . 437

Contents XXI

http://dx.doi.org/10.1007/978-3-319-66845-1_22
http://dx.doi.org/10.1007/978-3-319-66845-1_23
http://dx.doi.org/10.1007/978-3-319-66845-1_23
http://dx.doi.org/10.1007/978-3-319-66845-1_24
http://dx.doi.org/10.1007/978-3-319-66845-1_25
http://dx.doi.org/10.1007/978-3-319-66845-1_26
http://dx.doi.org/10.1007/978-3-319-66845-1_26
http://dx.doi.org/10.1007/978-3-319-66845-1_27
http://dx.doi.org/10.1007/978-3-319-66845-1_27
http://dx.doi.org/10.1007/978-3-319-66845-1_28

Cyber-Physical Systems

An Active Learning Approach
to the Falsification of Black Box

Cyber-Physical Systems

Simone Silvetti1,2(B), Alberto Policriti2,3, and Luca Bortolussi4,5,6

1 Esteco SpA, Trieste, Italy
silvetti@esteco.com

2 DIMA, University of Udine, Udine, Italy
alberto.policriti@uniud.it

3 Istituto di Genomica Applicata, Udine, Italy
4 DMG, University of Trieste, Trieste, Italy

luca@dmi.units.it
5 Modelling and Simulation Group, Saarland University, Saarbrücken, Germany

6 CNR-ISTI, Pisa, Italy

Abstract. Search-based testing is widely used to find bugs in models of
complex Cyber-Physical Systems. Latest research efforts have improved
this approach by casting it as a falsification procedure of formally spec-
ified temporal properties, exploiting the robustness semantics of Signal
Temporal Logic. The scaling of this approach to highly complex engi-
neering systems requires efficient falsification procedures, which should
be applicable also to black box models. Falsification is also exacerbated
by the fact that inputs are often time-dependent functions. We tackle the
falsification of formal properties of complex black box models of Cyber-
Physical Systems, leveraging machine learning techniques from the area
of Active Learning. Tailoring these techniques to the falsification prob-
lem with time-dependent, functional inputs, we show a considerable gain
in computational effort, by reducing the number of model simulations
needed. The effectiveness of the proposed approach is discussed on a
challenging industrial-level benchmark from automotive.

Keywords: Model-based testing · Robustness · Gaussian Processes ·
Cyber-Physical Systems · Falsification

1 Introduction

Model Based Development (MBD) is a well known design framework of complex
engineered systems, concerned with reducing cost and time of the prototyping
process. Most prominently, this framework has been adopted in the industrial
fields such as automotive and aerospace where the conformity of the end prod-
uct is extremely important. The majority of systems in these areas are Cyber-
Physical Systems (CPS) [5], where physical and software components interact

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-66845-1 1

4 S. Silvetti et al.

producing complex behaviors. These systems can be described by appropriate
mathematical models which are able to mime all the system behaviors. Moreover,
it is necessary to have a suitable specification framework capable of analyzing
the output of such models.

Hybrid Systems [13] are the mathematical framework usually adopted, while
Temporal Logic [16], due to its ability to describe temporal events, is generally
used as specification framework. The high level of expressivity of Hybrid Systems,
which is the main reason for their success, is also the cause of their undecidability,
even for simple logic formulas. Subclasses of Hybrid Systems which are decidable
for specific temporal logic formulas exist and have been widely studied during
the last 15 years, as well as model checking techniques capable of verifying them
[3]. Unfortunately, the majority of CPS used nowadays in the industrial field are
much more complex than decidable hybrid systems. They are mainly described
by using block diagram tools (i.e. Simulink/Stateflow, Scade, LabVIEW, and
so on) where several switch blocks, 2/3-D look-up tables and state transitions
coexist. These CPS are generally not decidable and standard model checking
techniques are not feasible, leading to the proposal of different techniques [4].

Testing procedures with the purpose of verifying the model on specific behav-
iors have been adopted for several years. These are feasible approaches whenever
it is possible to write in advance collections of test cases which extensively cover
all the possible events leading to system failure [21]. With the increase of com-
plexity, such an a priori assumption is not viable in most of the real cases and
for this reason different techniques, such as random testing and search-based
testing, have been introduced [22]. The general idea consists in expressing the
falsification procedure as an optimization process aiming at minimizing a target
quantity which describes “how much” a given property is verified. For example,
achieving a negative value of the robustness semantics of a given Signal Tem-
poral Logic (STL) [9] formula means falsifying the system with respect to that
formula.

In this paper we study the falsification problem of black box systems (i.e.
block diagram models such as Simulink/Stateflow model or sets of ordinary
differential equations generally used in automotive or aerospace industrial fields)
which takes as input and produce as output continuous or Piecewise-Continuous
(PWC) signals. The requirements are expressed by using STL.

Solving such falsification problems in a search-based framework poses two
main challenges. Generally, the simulation of block diagram models is time con-
suming, hence it is necessary to falsify the model with as few simulations as
possible. Moreover, the models accept continuous/PWC signals as inputs and
an efficient finite dimensional parametrization is necessary to perform an opti-
mization procedure. The contribution we propose in this paper is to tackle these
challenges by a novel strategy leveraging Machine Learning techniques (Gaussian
Processes and active learning) and by using a new adaptive version of the Control
Points Parameterization approach.

The paper is organized as follows. In Sect. 2 we review the definition of
Dynamical System, Signal Temporal Logic and Gaussian Processes. In Sect. 3
we discuss the Domain Estimation Problem which is solved by using Gaussian

An Active Learning Approach to the Falsification 5

Processes. Section 4 presents the Falsification Approach and the adaptive opti-
mization strategy performed by using Gaussian Processes and adaptive func-
tion parameterization. In Sect. 5 we introduce the Probabilistic Approximation
Semantics. In Sect. 6 we briefly introduce the test cases and discuss the results.
Finally in Sect. 7 we provide the conclusions and discuss the future works.

2 Background

2.1 Dynamical System

We consider a system as a pair M = (S, sim) where S = U ×X , and U and X are
finite (or infinite) sets representing respectively the input values of the system
and the state (coinciding for us with the output). The system is equipped with
a simulator, sim, which will be considered as a black box (i.e. we can provide
any input to the system and read the generated outputs). The input set is
U = V0 × · · · × Vn × W1 × · · · × Wm where Vi are finite sets and Wi are compact
sets in R, representing respectively the discrete input events and the continuous
input signals. The dynamics of the system is described with two functions: the
state function x : T → X and the input function u : T → U which map each
time t ∈ T to a state (x(t) ∈ X) and input (u(t) ∈ U), and where T = [0, T] ⊂ R.
We call k − th input signal the uk function belonging to the input function u
and identify with {T → U} the set of function from T to U .

The dynamics of the system is encoded in the deterministic simulator sim,
which takes as input an initial state x0 ∈ X and an input signal u(t), and returns
as output a corresponding system trajectory x : T → X , with x(t0) = x0. We
denote by PathM ⊆ (T → S) the set of all possible simulations returned by sim,
described as pairs of state and input functions, for any possible different initial
state and input signal. In any practical scenario, the simulator will operate in dis-
crete time, returning a sequence of values at discrete time points t0, t1, . . . , tk, . . .,
which are then interpolated to produce a continuous output (e.g. by piecewise
linear interpolation).

2.2 Signal Temporal Logic

Signal Temporal Logic (STL, [14]) is a discrete linear time temporal logic used
to reason about the future evolution of a path in continuous time. Generally this
formalism is used to qualitatively describe the behaviors of trajectories of differ-
ential equations or stochastic models. The temporal operators we consider are
all time-bounded and this implies that time-bounded trajectories are sufficient
to assess the truth of every formula. The atomic predicates of STL are inequal-
ities on a set of real-valued variables, i.e. of the form μ(s) := [g(s) ≥ 0], where
g : S → R is a continuous function, s ∈ S and consequently μ : S → {�,⊥}.

Definition 1. A formula φ ∈ F of STL is defined by the following syntax:

φ := ⊥ |� |μ | ¬φ |φ ∨ φ |φU[T1,T2]φ, (1)

where μ are atomic predicates as defined above, and T1 < T2 < +∞.

6 S. Silvetti et al.

Modal operators “eventually” and “globally” can be defined, as customary, as
F[T1,T2]φ ≡ �U[T1,T2]φ and G[T1,T2]φ ≡ ¬F[T1,T2]¬φ. STL formulae are inter-
preted over the dynamics PathM of the model M. We will consider the quanti-
tative semantics [9] which, given a trajectory x(t), returns a real value capturing
a notion of robustness of satisfaction whose sign captures the truth value of the
formula (positive if and only if true), and whose absolute value gives a measure
on how robust is the satisfaction.

Definition 2 (Quantitative Semantics). The quantitative satisfaction func-
tion ρ : F × PathM × [0,∞) → R is defined by:

– ρ(�, s, t) = +∞
– ρ(μ, s, t) = g(s(t)) where g is such that μ(s) ≡ [g(s) ≥ 0]
– ρ(¬φ, s, t) = −ρ(φ, s, t)
– ρ(φ1 ∨ φ2, s, t) = max(ρ(φ1, s, t), ρ(φ2, s, t))
– ρ(φ1U[T1,T2]φ2, s, t) = sup

t′∈[t+T1,t+T2]

(min(ρ(φ2, s, t
′), inf

t′′∈[t,t′)
ρ(φ1, s, t

′′)))

2.3 Gaussian Processes

Gaussian Processes (GPs) are probabilistic methods used for classification or
regression purposes. More specifically, a GP is a collection of random variables
X(t) ∈ R (t ∈ T , an interval of R) of which any finite number define a multi-
variate normal distribution. A GP is uniquely defined by its mean and covari-
ance functions (called also kernels) denoted respectively with m : T → R and
k : R × R → R such that for every finite set of points (t1, t2, . . . , tn):

X ∼ GP(m, k) ⇐⇒ (X(t1),X(t2), . . . , X(tn)) ∼ N (m,K) (2)

where m = (m(t1),m(t2), . . . , m(tn)) is the vector mean and K ∈ R
n×n is the

covariance matrix, such that Kij = k(X(ti),X(tj)). From a functional point
of view, GP is a probability distribution on the set of functions X : T → R.
The choice of the covariance function is important from a modeling perspective
because it determines the type of function that will be sampled with higher
probability from a GP, see [18]. In this work we use the Neural Network kernel,
which performed better than more classical choices, like Gaussian Radial Basis
Function kernels, see [18] for further details.

GPs are successfully used to solve regression problems starting from a train-
ing set with noisy observations,

((t1, x1), (t2, x2), . . . , (tn, xn)) (3)

The goal is to find a function x : T → R such that ∀i ≤ n, xi = x(ti) + ε,
and ε ∼ N (0, σn) (a Gaussian noise is a common choice for regression with
real-valued outputs). In the GP paradigm a family of mean functions m(x;h1) :
R × H1 → R and of covariance functions k(x1, x2;h2) : R × R × H2 → R,
where h = (h1, h2) are called hyperparameters, are considered. The idea is

An Active Learning Approach to the Falsification 7

to estimate the best hyperparameters which justify as much as possible, the
observations provided in the training set. Mathematically it means to maximize
the log marginal likelihood maxh log p(x|t;h). where x = (x1, x2, . . . , xn) and
t = (t1, t2, . . . , tn) accordingly to (3). After having solved the previous optimiza-
tion problem it is possible to predict the probability distribution of a new point
as x(t∗) ∼ N (m∗, k∗), where

m∗ = (k(t, t1), . . . , k(t, tN))K−1
N x

k∗ = k(t, t)(k(t, t1), . . . , k(t, tN))K−1
N (k(t, t1), . . . , k(t, tN))T

3 Domain Estimation with Gaussian Processes

Definition 3. Consider a function f : D → R and an interval I ⊆ R. We
define the domain estimation problem as the task of identifying the set B of
points x ∈ D such that f(x) ∈ I:

B = {x ∈ D|f(x) ∈ I} ⊆ D, (4)

In practice, if B �= ∅, we will limit us to identify a subset B ⊆ B of size n.

Gaussian Processes (GP) can be efficiently used to solve this task. Similarly
to the Cross Entropy methods for optimization [19], the idea is to implement
an iterative sample strategy in order to increase the probability to sample a
point in B, as the number of iterations increases. Consider the set K(f) =
{(xi, f(xi))}i≤n representing the partial knowledge we have collected after n
iterations and the GP fK(x) ∼ GP (mK(x), σK(x)) trained on K(f). We can
easily estimate P (x ∈ B) = P (fK(x) ∈ I) by computing the probability of a
Gaussian distribution with mean mK(x) and variance σ2

K(x). This corresponds
to our uncertainty on the value of f(x) belonging to I, as captured by the GP
reconstruction of f . The previous probability can be effectively used to solve the
domain estimation problem described in Definition 3. Our approach is described
in Algorithm 1:

– During initialization (line 2), we set the iteration counter (i) and the minimum
distance (d) from the interval I. The set (B) containing the elements of (B) is
set to empty, which ensures the algorithm is run at least once. The knowledge
set K(f) is initialized with some randomized points sampled from D (line 3).

– In the iterative loop, the algorithm first checks if the number of counterex-
amples (ce) or if the maximum number of iterations (maxIter) has been
reached. In this case, the method stops returning the estimated set (B) and
the minimum distance from I that has been registered until that point. Oth-
erwise new GPs are trained by using K(f) (line 5) and a set composed by
m points (Dgrid) is generated by Latin Hypercube sampling [15], so to have
a homogeneous distribution of points in space (line 6). For each of these
points x, the probability P (x ∈ B) = P (fK(x) ∈ I) is calculated and the set
{(x, P (x ∈ B)), x ∈ Dgrid} is created. Afterwards, a candidate point xnew is

8 S. Silvetti et al.

Algorithm 1
1: procedure [B, d] = domainEstimation(maxIter, ce, m, f, I)
2: i ← 0, B ← ∅, d ← +∞
3: initialize(K(f))
4: while (|B| ≤ ce and i ≤ maxIter) do
5: fK(f) ∼ trainGaussianProcess(K(f))
6: Dgrid ← lhs(m)
7: xnew ← sample{(x, P (x ∈ B)), x ∈ Dgrid}
8: fnew ← f(xnew)
9: d ← min(d,distance(fnew, I))

10: K(f) ← K(f) ∪ {(xnew, fnew)}
11: if fnew ∈ I then
12: B = B ∪ {xnew}
13: end if
14: i ← i + 1
15: end while
16: end procedure

sampled from Dgrid proportionally to its associated probability (line 7) so to
increase the sampling of points with higher estimated probability of belonging
to B. Consequently, K(f) is upgraded and if x ∈ B then x is added to B (line
12). The procedure outputs also d, the minimum distance of the evaluated
points from the interval I calculated during the procedure.

4 The Falsification Process

A big effort during the prototyping process consists in verifying the requirements
usually expressed as safety property, such as:

∀(u, x0) ∈ {T → U} × X0, ρ(φ, (u,x), 0) > 0 (5)

meaning that for each input function and initial state x0 ∈ X0 ⊆ X , the dynamics
(PathM = (u,x)) satisfies the STL formula φ. It is possible to interpret the safety
condition (5) as a domain estimation problem associated with

B = {(u, x0) ∈ {T → U} × X0, ρ(φ, (u,x), 0) < 0} (6)

with the purpose of verifying its emptiness, which entails that (5) is satisfied.
We call B the counterexample set and its elements counterexamples.

Solving the previous domain estimation problem could be extremely difficult
because of the infinite dimensionality of the input space, which is a space of
functions. For this reason, it is mandatory to parameterize the input function by
means of an appropriate finite dimensional representation. One of the most used
parameterization—mainly for its simplicity—is the fixed control point parame-
terization (fixCP): after having fixed the times, (tk1 , . . . , t

k
nk

) the control points

An Active Learning Approach to the Falsification 9

{(tk1 , u
k
1), . . . , (t

k
nk

, uk
nk

)} are chosen as parameter of the k-th input signals. Cho-
sen an interpolation set of function with nk degrees of freedom for each k-th
input signals (Pk

nk
⊂ {T → Uk}, e.g. piecewise linear, polynomials of degree

nk, and so on (see [20])), the fixCP parameterization will associate with each
control point ck = {(tk1 , u

k
1), . . . , (t

k
nk

, uk
nk

)} the unique function Pck ∈ Pk
nk

sat-
isfying ∀i ≤ n, Pck(tki) = uk

i . Let us denote by Pn = (P1
n1

, . . . ,P |U|
n|U|), the set of

interpolating functions.
It is clear that by increasing the number of control points, we will enlarge

the set of approximant functions Pn: n ≤ m implies Pn ⊂ Pm, where n ≤ m is
intended pointwise. As piecewise linear or polynomial functions are known to be
dense in the space of continuous functions, by choosing an appropriately large
n, we can approximate any input function with arbitrary precision.

Considering an n-fixCP, which is a fixCP where n = (n1, . . . , n|U|) represents
the number of control points used for each input variables, it is possible to
introduce the domain estimation problem (6) associated with the following set:

B = {(c̄, x0) ∈ Un1
1 × · · · × Un|U|

|U| × X0, ρ(φ, (Pn(c̄), x), 0) < 0} (7)

which, differently from (6), is a finite dimensional set described by using
∑|U|

j=1 nj + |X0| variables.
By the density argument it is clear that

(6) has at least one element ⇐⇒ ∃n ∈ ω|U|, (7) has at least one element.

A possible strategy is to solve the domain estimation problem associated with
(7) by choosing the minimum n such that Pn × X0 contains a counterexample.
Applying that strategy, even in simple cases, could be cumbersome as shown in
the following example.

Toy Example. Consider a simple black box model which accepts a single piece-
wise-constant function u : [0, 1] → [0, 1] as input function and returning the
same function x = u as output. Considering the following requirement φ :=
¬(G[0,0.51] 0 < x < 0.2 ∧ G[0.55,1] 0.8 < x < 1), it is evident that it could be
falsified only in a control point parameterization having at least the point (ti, ui)
such that ti ∈ [0.51, 0.55]. Otherwise if this points does not exists it means the
output signals will assume a constant values in [0.51, 0.55] which implies that or
G[0.55,1] (0.8 < x < 1) or G[0,0.51] (0 < x < 0.2) is false meaning that φ is not
falsified. The minimum number of uniformed fixed control points necessary to
achieve it is 9, which entails a considerable computational effort.

A natural way to overcome the limitation of the fixCP consists in consider-
ing the times of the control points as variables. An n-adaptive Control Points
parameterization (n-adaCPP) consists in a function P̄ k

nk
: T nk × Unk

k → Pk
nk

,
which has twice as much parameters than the fixed version: values at control
points and times (which are constrained by ∀i < n ti ≤ ti+1). The adaptive
parameterization is preferable with respect to the fixed one because of its abil-
ity to describe functions with local high variability even with a low number of

10 S. Silvetti et al.

control points. In fact it is possible to concentrate any fraction of the available
control points in a small time region, inducing a large variation in this region,
while letting the parameterized function vary much less outside it.

4.1 Adaptive Optimization

The idea of the adaptive optimization approach consists in falsifying (5) starting
from a simple input function and increasing its expressiveness by increasing
the number of control points. Consider a model with input function u taking
values in U1 × · · · × Um and with initial state x0 taking values in a compact
set X0 ⊂ R

k. After having defined a parameterization for each of the m input
signals, Algorithm 2 works as following:

– At the first iteration a parameterization Pn0 = {P 0
1 , . . . , P 0

n} with zero control
points for each signals (n0 = (0, . . . , 0)) is considered (line 2). Zero control
points means defining input signals which are constant functions. The final
counterexample set (B) is set to empty, which ensures the optimization is run
at least once (line 3).

– In the iterative loop, the algorithm first checks if the number of counterex-
amples (ce) or if the maximum global number of iterations (mgi) has been
reached. In this case, the method stops returning the counter example set (B).
Otherwise, the falsification problem is solved by using the domain estimation
procedure domainEstimation (Algorithm 1) which returns the counterex-
ample set and the minimum value of the robustness found by using that para-
meterization (see Sect. 3 for details). The parameterization is then expanded
by picking a coordinate of the input signal (lines 6–10) and adding a new
control point (line 11), obtaining a new parameterization Pni+1

.

Algorithm 2
1: procedure [B, d] = adaptiveGPFalsification(mgi, mii, ce, m, φ)
2: n0 ← (0, . . . , 0)
3: B ← ∅, k0 ← 0, i ← 0, d0 ← +∞
4: while (|B| ≤ ce and i ≤ mgi) do
5: [B−, di+1] = domainEstimation(mii,ni, ce − |B|, m, ρ(φ, ·, t), (−∞, 0))
6: if di+1 > di then
7: ki+1 ← ki

8: else
9: ki+1 ← (ki + 1) mod n

10: end if
11: ni+1 ← ni + ek

12: i ← i + 1
13: B ← B ∪ B−

14: end while
15: end procedure

An Active Learning Approach to the Falsification 11

The general idea of this approach is to keep low the number of parameters
by starting from constant signal and gradually increasing the number of control
points of the input functions. In the adaptive control points parameterization,
adding a control point means adding two new degrees of freedom (one for the time
and one for the value of the control point). This means, on the one hand, having
more expressiveness and so more chances to falsify the system, but on the other
hand this complicates the optimization process and increases the dimension of
the search space as well as, hence, the minimum number of simulations required
to solve it. For this reason it is convenient to add control points only where it is
truly necessary.

5 Probabilistic Approximation Semantics

Gaussian Processes can be used to estimate the probability that a given input
falsifies a system as described in Sects. 3 and 4. This fact offers the possibility
to define an approximate semantics which generalizes the concept of probability
of falsification that we can infer considering the knowledge of the system we
have collected. The basic idea is to decompose an STL formula as a Boolean
combination of temporal modalities, propagating the probability of the temporal
operators, estimated by GPs, through the Boolean structure. Formally, let L0 be
the subset of STL containing only atomic propositions and temporal formulae
of the form φ1U[T1,T2]φ2, F[T1,T2]φ and G[T1,T2]φ, that cannot be equivalently
written as Boolean combinations of simpler formulae. For example FT (φ1 ∨ φ2)
is not in L0 because FT (φ1 ∨ φ2) ≡ FT φ1 ∨ FT φ2. Furthermore, let L be the
logic formed by the boolean connective closure of L0.1

For simplicity, let us denote by θ a parameter and describe the input function
by uθ and the initial state by x0θ. We write xθ to indicate the path generated by
the simulator, given as input uθ and x0θ, accordingly to Sect. 2. We want to define
an (approximate) semantics giving the probability that a path xθ satisfies a given
formula ψ ∈ L (without simulating it). The idea is to evaluate the quantitative
semantics of the atomic formulae φj ∈ L0 of ψ on a finite collection of parameters
(Θ = {θi}i≤n), then building GPs in order to estimate the probability that
the quantitative semantics of each formula φj is higher than zero on a target
parameter. This is again a Domain Estimation Problem (Sect. 3), where the
function is the robustness associated with the STL formula φj and the interval
I is (0,+∞). We propagate this probability through the Boolean structure of ψ
according to the following:

Definition 4 (Probabilistic Approximation Semantics of L). The prob-
abilistic approximation function γ : S × PathM × [0,∞) → [0, 1] is defined by:

– γ(φ, θ, t) = P (fK(φ)(θ) > 0)
– γ(¬ψ, θ, t) = 1 − γ(ψ, θ, t)

1 φ ∈ L iff ψ := φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ, with φ ∈ L0.

12 S. Silvetti et al.

– γ(ψ1 ∧ ψ2, θ, t) = γ(ψ1, θ, t) ∗ γ(ψ2, θ, t)
– γ(ψ1 ∨ ψ2, θ, t) = γ(ψ1, θ, t) + γ(ψ2, θ, t) − γ(ψ1 ∧ ψ2, θ, t)

where K(φ) = {θi, ρ(φ, θi, t)}i=1,..,n is the partial knowledge of the satisfiabil-
ity of φ ∈ L0 that we have collected performing n simulations for parameters
(θi)i=1,..,n. fK(φ) is the GP trained on K(φ), and P refers to its probability. For
simplicity we use γ(ψ, θ, t) to mean γ(ψ, (uθ, xθ), t).

In the previous definition, the probability P (fK(φ)(θ) > 0) is easily computed,
as fK(φ)(θ) is normally distributed.

Including the Probabilistic Approximation Semantics (PAS) in our falsifica-
tion procedure (Algorithm 2) is straightforward. Given the formula we have to
falsify, first we negate and decompose it in order to identify the L formula associ-
ated with it. Then we pass all the basic L0 formulas to the domainEstimation
procedure (Algorithm 1) and train a GP for each of them (instead of considering
a single function (Algorithm 1, line 5). Subsequently we calculate its probabilis-
tic approximation semantics to drive the sampling strategy (Algorithm1, line 7).
The rest of the algorithm remains the same.

Remark. Consider the STL formula φ = G[0,30](v ≤ 160 ∧ ω ≤ 4500). This
formula is not in L0, as it can be rewritten as G[0,30](v ≤ 160)∧G[0,30](ω ≤ 4500).
We could have defined the set L0 in different ways (e.g. by including also φ),
our choice corresponding to the finer decomposition of temporal formulae. Even
if this leads to an increased computational cost (more GPs have to be trained),
it also provides more flexibility and allows us to exploit the boolean structure in
more detail, as discussed in the following example.

Example. To clarify the advantages of the PAS, consider the functions
ρ(φ1, x, 0) = x2 + 1 and ρ(φ2, x, 0) = −0.2 + 0.9(1 − h(x, 0.7, 0.035) −
h(x, 0.85, 0.035)) representing the robustness associated with the formulas φ1

and φ2 at time 0 and for input parameter x, respectively. Here h(x,m, s)
is a gaussian function with mean m and standard deviation s. We compare
two approaches. In the first one, we calculate the probability of its negation
i.e. γ(¬(φ1 ∧ φ2), x, 0) = 1 − γ((φ1 ∧ φ2), x, 0) by means of a single gaussian
process. In the second one, we decompose the conjunction and calculate its
PAS γ(¬(φ1 ∧ φ2), x, 0) = 1 − γ(φ1, x, 0) ∗ γ(φ2, x, 0) by means of two separated
Gaussian Processes. Functions used by the method to drive the sample are rep-
resented in Fig. 1(a). In the first case, the signal which is smooth in [0, 0.65]
and highly variable in (0.65, 1] forces the method to sample many points near
x = 0, as the function is close to zero near this point. This requires 55.35 ± 45.10
function evaluations. On the contrary the second approach shows a rapid dis-
covery of the falsification area, i.e. 17.19 ± 7.71 evaluations, because the two
components are treated independently, and the method quickly finds the min-
ima regions of γ(φ2, x, 0), after an initial phase of homogeneous exploration. In
addition, the paraboloid γ(φ1, x, 0) is smooth and requires few evaluations for a
precise reconstruction.

An Active Learning Approach to the Falsification 13

(a) PAS example (b) Automatic Transmission Req.

Fig. 1. (a) Example on the use of the probabilistic semantics. The curve treating the
formula as a single one is the minimum of the two curves. (b) Requirements for the
Automatic Transmission example of Sect. 6.

6 Case Studies and Results

In this section we discuss a case study to illustrate our approach, taken from [20].
We will compare and discuss the performance of a prototype implementation
in Matlab of our approach with S-TaLiRo toolbox [11]. We use S-TaLiRo to
compute the robustness, and the implementation of Gaussian Process regression
provided by Rasmussen and Williams [17].

Automatic Transmission (AT). We consider a Simulink model of a Car
Automatic Gear Transmission Systems. There are two inputs: the throttle and
the brake angle dynamics describing the driving style. Modes have two contin-
uous state variables, describing vehicle (v) and engine (ω) speed. The Simulink
model is initialized with a fixed initial state (w0, v0) = (0, 0), it contains 69 blocks
(2 integrators, 3 look-up tables, Stateflow Chart, . . .). The requirements are
described by means of STL formulae as reported in Fig. 1(b). The first require-
ment (φAT

1) is a so called invariant which says that in the next 30 s the engine
and vehicle speed never reach ω̄ rpm and v̄ km/h, respectively. The second
requirement (φAT

2) says that if the engine speed is always less than ω̄ rpm, then
the vehicle speed can not exceed v̄ km/h in less than 10 s. Finally, the third
requirement (φAT

3) basically says that if within 10 s the vehicle speed is above v̄
km/h than from that point on the engine speed is always less than ω̄ rpm.

Results. We analyze the performance of our approach in terms of the mini-
mum number of simulations and computational time needed to falsify the pre-
vious test cases. We have performed 50 optimization runs for each STL formula
and compared its performance with the best statistics achieved among a Cross
Entropy (CE), Montecarlo Sampling (SA) and Uniform Random Sampling (UR)
approaches performed with the S-TaLiRo tool [4] and the GP-UCB algorithm

14 S. Silvetti et al.

Table 1. Results. All the times are expressed in seconds. Legend - nval: number of
simulations, times: time needed to falsify the property, Alg: the algorithm used as
described in Sect. 6.

Req Adaptive PAS Adaptive GP-UCB S-TaLiRo

nval times nval times nval times Alg

φAT
1 (160, 4500) 4.42 ± 0.53 2.16 ± 0.61 4.16 ± 2.40 0.55 ± 0.30 5.16 ± 4.32 0.57 ± 0.48 UR

φAT
1 (160, 4765) 6.90 ± 2.22 5.78 ± 3.88 8.7 ± 1.78 1.52 ± 0.40 39.64 ± 44.49 4.46 ± 4.99 SA

φAT
2 (75, 4500) 3.24 ± 1.98 1.57 ± 1.91 7.94 ± 3.90 1.55 ± 1.23 12.78 ± 11.27 1.46 ± 1.28 CE

φAT
2 (85, 4500) 10.14 ± 2.95 12.39 ± 6.96 23.9 ± 7.39 9.86 ± 4.54 59 ± 42 6.83 ± 4.93 SA

φAT
2 (75, 4000) 8.52 ± 2.90 9.13 ± 5.90 13.6 ± 3.48 4.12 ± 1.67 43.1 ± 39.23 4.89 ± 4.43 SA

φAT
3 (80, 4500) 5.02 ± 0.97 2.91 ± 1.20 5.44 ± 3.14 0.91 ± 0.67 10.04 ± 7.30 1.15 ± 0.84 CE

φAT
3 (90, 4500) 7.70 ± 2.36 7.07 ± 3.87 10.52 ± 1.76 2.43 ± 0.92 11 ± 9.10 1.25 ± 1.03 UR

applied to falsification as described in [2]. As the table shows, our approach
(Adaptive PAS) has good results in terms of the minimum number of evaluations
needed to falsify the systems with respect to the STL formulae, outperforming
in almost all tests the methods of the S-TaLiRo suite and the Adaptive GP-
UCB approach. This is the most representative index, as in real industrial cases
the simulations can be considerably expensive (i.e. cases of real measurements
on power bench, time and computation intensive simulations). In these cases
the total computational time is directly correlated with the number of simula-
tions and the time consumed by the optimizer to achieve its strategy becomes
marginal. Furthermore, we are testing our method with a prototype implemen-
tation which has not been optimized, in particular for what concerns the use
of Gaussian Processes. Despite this, the numerical results in terms of minimum
number of simulations are outperforming S-TaLiRo and GP-UCB approach.

Conditional Safety Properties. When we define a conditional safety prop-
erty i.e. GT (φcond → φsafe) we would like to explore cases in which the formula
is falsified but the antecedent condition holds (see [2]). This is particular rele-
vant when the formula cannot be falsified, as it reduces the search space, ignoring
regions where the formula is trivially true due to a false antecedent. Focusing
on the region where φcond holds requires a straightforward modification of the
sampling routine of the Domain Estimation Algorithm (Algorithm1, line 6–7).
Instead of performing the sampling directly on the input provided by the Latin
Hypercube Sampling Routine (Algorithm1, line 6), we previously define a set
of inputs verifying the antecedent condition (by the standard Domain Estima-
tion Algorithm using the Gaussian Processes trained on the robustness of the
antecedent condition) and then we sample from this set the candidate point
(Algorithm 1, line 7).

To verify the effectiveness of this procedure, we calculate the percentage
of sampled inputs satisfying the antecedent condition of the STL formula
G[0,30](ω ≤ 3000 → v ≤ 100), which cannot be falsified. This percentage is
43% for the GP-UCB algorithm, but increases to 87% for the modified domain
estimation algorithm.

An Active Learning Approach to the Falsification 15

7 Conclusions

In this paper we propose an adaptive strategy to find bugs in black box systems.
We search in the space of possible input functions, suitably parameterized in
order to make it finite dimensional. We use a separate parameterization for each
different input signal, and we use an adaptive approach, increasing gradually
the number of control points as the search algorithm progresses. This allows us
to solve falsification problems of increasing complexity, looking first for simple
functions and then for more and more complex ones. The falsification processes
is then cast into the Domain Estimation Problem framework, which use the
Gaussian Processes to constructs an approximate probabilistic semantics of STL
formulae, giving high probability to regions where the formula is falsified. The
advantage of using such an approach is that it leverages the Bayesian emulation
providing a natural balance between exploration and exploitation, which are the
key ingredients in a search-based falsification algorithm. In addition to a novel
use of Gaussian Processes, we also rely on a new adaptive parameterization,
treating the time of each control point as a variable, thus leading to an increase
in expressiveness and flexibility, as discussed in Sect. 4. Moreover with a slight
modification of our algorithm we efficiently manage the falsification of the condi-
tion safety properties, increasing the efficiency of the usual GP-UCB algorithm
in focussing the search on the region of points satisfying the antecedent.

Future Work. The experimental results are quite promising, particularly as far
as the number of simulations required to falsify a property is concerned, which
is lower than other approaches. The computational time of the current imple-
mentation, however, is in some cases higher then S-TaLiRo. The main problem
is in the cost of computing predictions of the function emulated with a Gaussian
Process (GP). This cost, in fact, is proportional to the number of already evalu-
ated inputs used to train the GP. To reduce this cost, we can leverage the large
literature about sparse representation techniques for GP [18]. Furthermore, with
the increase in the number of control points, we face a larger dimensional search
space, reflecting in an increased number of simulations needed to obtain an
accurate representation of the robustness for optimization, with a consequent
increase of computational time. We can partially improve on this problem, typi-
cal of naive implementations of the Bayesian approach, by refining the choice of
the covariance function and/or constraining some of its hyperparameters so as to
increment the exploration propensity of the search. In the future, we also plan to
improve the adaptive approach which is in charge of increasing the control points
of an input signal, with the goal of dropping control points that are not useful. In
the current paper, we use the GP-based sampling scheme to deal efficiently with
falsification. However, our approach can be modified to deal with the coverage
problem [10], i.e. the identification of a given number of counterexamples which
are homogeneously distributed in the falsification domain. Our idea is to modify
the sampling algorithm (Algorithm1, line 7) by adding a memory of already
visited areas, so to distribute samples homogeneously in space.

16 S. Silvetti et al.

Related Work. Different approaches have been proposed to achieve the falsi-
fication of black box models, starting from test based approaches until recently,
when search-based test approaches have become more popular. Stochastic local
search [7], probabilistic Monte Carlo [1] and mixed coverage/guided strategy
[10] approaches have been proposed and benchmark problems created [6,12].
Two software packages [4,8] implement the aforementioned techniques. Both
these software tools assume a fix parameterization of the input function, differ-
ently from us. Similarly to our approach, in [7,10] the fixed parameterization is
avoided. More specifically in [10] no parameterization has been used at all and
the input signals are modified on the fly based on the robustness of the partial
system trajectories. In [7] a uniform discretization of the input domains (both
time and values) is dynamically applied to discretize the search space. The use
of Gaussian Processes for falsification has been adopted in [2] but it is restricted
to Conditional Safety Properties.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. (TECS) 12(2s), 95 (2013)

2. Akazaki, T.: Falsification of conditional safety properties for cyber-physical sys-
tems with Gaussian process regression. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 439–446. Springer, Cham (2016). doi:10.1007/
978-3-319-46982-9 27

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theo. Comput. Sci. 138(1), 3–34 (1995)

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 21

5. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166
(2011)

6. Bardh Hoxha, H.A., Fainekos, G.: Benchmarks for temporal logic requirements for
automotive systems. In: Proceedings of ARCH, vol. 34, pp. 25–30 (2015)

7. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for
falsification of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 35

8. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9 9

10. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9 10

http://dx.doi.org/10.1007/978-3-319-46982-9_27
http://dx.doi.org/10.1007/978-3-319-46982-9_27
http://dx.doi.org/10.1007/978-3-642-19835-9_21
http://dx.doi.org/10.1007/978-3-319-24953-7_35
http://dx.doi.org/10.1007/978-3-319-24953-7_35
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-642-15297-9_9
http://dx.doi.org/10.1007/978-3-319-17524-9_10

An Active Learning Approach to the Falsification 17

11. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of auto-
motive control applications using S-TaLiRo. In: Proceeings of ACC, pp. 3567–3572.
IEEE (2012)

12. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of HSCC, pp. 253–262. ACM (2014)

13. Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: Bakker, J.W.,
Huizing, C., Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp.
447–484. Springer, Heidelberg (1992). doi:10.1007/BFb0032003

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3 12

15. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

16. Pnueli, A.: The temporal logic of programs. In: Proceedings of Foundations of
Computer Science, pp. 46–57. IEEE (1977)

17. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML)
toolbox. J. Mach. Learn. Res. 11, 3011–3015 (2010)

18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, New York (2006)

19. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.
Springer, New York (2013). doi:10.1007/978-1-4757-4321-0

20. Sankaranarayananm S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of HSCC, pp. 125–134.
ACM (2012)

21. Vinnakota, B.: Analog and Mixed-Signal Test. Prentice Hall, Upper Saddle River
(1998)

22. Zhao, Q., Krogh, B.H., Hubbard, P.: Generating test inputs for embedded control
systems. IEEE Control Syst. 23(4), 49–57 (2003)

http://dx.doi.org/10.1007/BFb0032003
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/978-1-4757-4321-0

Modelling and Verification of Timed
Robotic Controllers

Pedro Ribeiro1(B), Alvaro Miyazawa1, Wei Li2, Ana Cavalcanti1,
and Jon Timmis2

1 Department of Computer Science, University of York, York YO10 5GH, UK
pedro.ribeiro@york.ac.uk

2 Department of Electronic Engineering, University of York, York YO10 5DD, UK

Abstract. Designing robotic systems can be very challenging, yet con-
trollers are often specified using informal notations with development
driven primarily by simulations and physical experiments, without rela-
tion to abstract models of requirements. The ability to perform formal
analysis and replicate results across different robotic platforms is hin-
dered by the lack of well-defined formal notations. In this paper we
present a timed state-machine based formal notation for robotics that
is informed by current practice. We motivate our work with an exam-
ple from swarm robotics and define a compositional CSP-based discrete
timed semantics suitable for refinement. Our results support verification
and, importantly, enable rigorous connection with sound simulations and
deployments.

Keywords: Semantics · Refinement · Process algebra · CSP · Robotics

1 Introduction

Robotic systems have applications in many real-life scenarios, ranging from
household cleaning to critical search-and-rescue operations. Assessing their
expected behaviour is challenging. In spite of that, typically controller software is
developed in an ad-hoc manner, driven by simulations and physical experiments,
but without a clear relation with models of requirements and design.

Standard state-machine notations, without underlying formal semantics, are
often used [1,2] together with natural language annotations to specify more com-
plex behaviours, involving aspects such as time and probabilities. State machines
are often neither presented in an abstract way, nor do they contain precise and
sufficient information to relate the designs to the simulations and deployments. In
this scenario, the ability to faithfully replicate results, even just across different
simulators, let alone using different robotic platforms, is significantly hampered.

In this paper we present a timed semantics for RoboChart [3], a state-machine
based notation that can be characterised as a UML profile extended with time
primitives and with a formal semantics. RoboChart provides constructs for cap-
turing the architectural patterns of typical timed and reactive robotic systems.
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 18–33, 2017.
DOI: 10.1007/978-3-319-66845-1 2

Modelling and Verification of Timed Robotic Controllers 19

An abstract characterisation of a robot’s operations and events is formalised
via the notion of a robotic platform that decouples the software and hardware
platform from controllers. A controller can encapsulate multiple state-machines,
and is connected with a particular platform via the notion of a module. This
enables an abstract and precise approach to the design of robotic systems, where
high-level concepts can be mapped into low-level constructs of typical executable
simulations, for example, as we have considered in [3].

Here we propose a compositional semantics for refinement using Timed CSP
[4], enriched with deadline constructs from Circus Time [5], a discrete-time
process algebra that combines constructs of Z [6], CSP [7], and Timed CSP,
besides deadline operators. A semantics for the enriched Timed CSP is defined
in the Unifying Theories of Programming [5,8].

For RoboChart models that make a modest use of data types, we translate
the semantics to CSP using a special event tock to mark the time. This version
of CSP, called tock -CSP [7], is supported by the model checker FDR [9]. We
use it to validate the design of RoboChart and our semantics, and check timed
properties of RoboChart models. With tock -CSP, we can give a discrete-time
model for all constructs of Timed CSP and deadlines.

The encoding in tock -CSP is mechanised in RoboTool, a graphical editor for
RoboChart models. Using RoboTool and the automatically generated semantics,
we have tackled a number of examples, and present here four experiments: two
chemical detectors [10], an alpha algorithm used in swarm robotics [11], and a
transporter that works in a swarm to move an object to a goal position [1].

Our long-term objective is to use our semantics for verification by automated
theorem proving using an Isabelle encoding of Circus Time [12], and prove that
automatically generated simulations are sound, that is, refine the RoboChart
models. Translation from Timed CSP with deadlines to Circus Time is not chal-
lenging, since Circus Time is a richer language.

In Sect. 2 we motivate our work by presenting an example of a typical timed
robotic controller, as used in swarm robotics, and giving an insight into related
work. In Sect. 3, we present RoboChart. We discuss in detail the RoboChart
timed semantics in Sect. 4. In Sect. 5 we present verification results and discuss
tool support. Finally, we summarize our contributions and provide pointers for
future work in Sect. 6.

2 Modelling Robotic Controllers

We now present an example (Sect. 2.1) and related works (Sect. 2.2) to indicate
the need for a specialised timed formal language.

2.1 Motivating Example

Our goal is not to propose an entirely novel notation, but to define a language
that is akin to that currently adopted by roboticists in their informal approach.

20 P. Ribeiro et al.

Fig. 1. Transport swarm state machine [1].

We present in this section an example, taken from the domain of swarm robotics,
whose published model is representative of the current practice.

We consider an individual timed reactive controller used in robots of a swarm
for cooperatively transporting tall objects towards a locally perceived goal [1].
The robotic platform has a camera that allows it to distinguish objects and the
goal, and proximity sensors that can be used to estimate the distance to an
object and to detect other nearby robots.

In Fig. 1 we reproduce the transport swarm controller in [1]. In state S1 the
robot searches for an object and, once it sees one, it transitions to state S2. If
the object is near, then it transitions to state S3. While in states S2 and S3, if
the object is lost for a certain amount of time Ta , the robot initiates another
search for the object by transitioning to state S1. When the robot is close enough
to the object, by transitioning from state S3 to S4, it performs an alignment
procedure and checks whether the goal can be seen. The underlying idea is that
if the goal is occluded by the object, and the robot is close to the object, then it
pushes the object towards the goal. While pushing, in state S5, the robot may
lose contact with the object, in which case after a time threshold of Tc it evades
the vicinity; or it may lose sight of nearby neighbours, in which case it tries to
align itself again by transitioning to state S4. The transitions between states S7
and S1, and S6 and S1, are equally timed according to thresholds Te and Td .

We observe that the state machine in Fig. 1 is specified in natural language
and a few aspects are unclear, such as the behaviour and time spent in each
state, whether timed transitions take place immediately or need to wait until
the behaviour has completed, and thresholds related to the distances to the
object. Even when taking into account the implementation details [1], it is ulti-
mately unclear whether the controller, as presented, could be independently and
correctly implemented. In our experience, this is not an uncommon scenario
in the development of robot applications. We refer, for instance, to [13,14] for
examples of other applications modelled with similar state machines.

Modelling and Verification of Timed Robotic Controllers 21

2.2 Related Work

According to a recent survey [15], there is increasing interest in domain-specific
and model-driven approaches in robotics. We discuss below those closest to ours
in tackling aspects such as architectural design, time, and verification.

Gen
oM [16] provides a component-based approach for designing middleware-

agnostic robotic controllers. Functional aspects are captured by recording the
input and output parameters of functions together with their worst-case exe-
cution time. Implementations are provided by code fragments, for example,
using C code. Verification of schedulability via model-checking is available using
Fiacre [16], through the Timed Petri Net model-checker TINA, while deadlocks
can be checked using BIP. Gen

oM is primarily an executable language, whereas
RoboChart is a modelling language catering for different levels of abstraction.

Proof techniques, including model-checking, have also been used to identify
optimal configurations of adaptive architectures [17]. Related approaches such as
CIRCA [18] tackle the problem of meeting real-time constraints given dynamic
plan generation. Behavioural properties are not the main focus of these works.

Orccad [19] supports modelling, simulation, and programming, as well as
verification of timed behavioural properties via translation into Esterel and
Timed Argos. Unlike RoboChart, its support for graphical modelling is limited,
while the modelling constructs employed are closest to those of our semantics.

UML has been used for model-based engineering of robotic systems [20].
The profile RobotML [21] supports design modelling and automatic generation
of platform-independent code, but verification is not considered. On the other
hand, several formal models of UML state machines exist; some of them use
CSP [22,23]. However, none of these deal with time modelling.

UML has a simple notion of time. Its profile UML-MARTE [24] supports
logical, discrete and continuous time through the notion of clocks. Specification
of time budgets and deadlines, however, is focused on particular instances of
behaviour via sequence and time diagrams. It is not possible to define timed
constraints directly in terms of transitions and states as we require.

UML-RT [25], an extension to UML, includes the notion of capsules, which
encapsulate state machines. Communication between capsules is governed by
protocols. A timing protocol can raise timeouts, but it is not obvious how timed
constraints, such as deadlines, can be specified directly on state machines. In [26]
a semantics is given for a subset of UML-RT without considering time. An exten-
sion to UML-RT is considered in [27] with semantics given in CSP+T [28], an
extension of CSP that records the timing of events.

Timed automata [29] use synchronous continuous-time clocks. Temporal logic
properties can be checked using the model checker UPPAAL [30]. It is not
directly comparable to RoboChart, which provides modelling abstractions cater-
ing for robotic applications and has a semantics for refinement. It is our aim to
explore a semantics for RoboChart using UPPAAL for property verification.

22 P. Ribeiro et al.

3 RoboChart: A Formal Notation for Robotics

A system in RoboChart is characterised by a module that contains a robotic
platform, associated with one or more controllers. A controller is specified by one
or more state-machines. Our focus here is on the state machines, since that is
where we define the time properties. The untimed RoboChart semantics defined
in [31] already describes how CSP models of state machines can be composed
to define models for controllers, and how these can be composed to define a
complete module and provide a formal model of a robotic system.

A state-machine includes states and composite states with entry, during and
exit actions, junctions, and transitions, possibly guarded by expressions. The
language for actions is well defined to include assignments, operation calls, and
a primitive to raise events. In Fig. 2 we include part of the RoboChart metamodel
showing constructs related to time, whose syntax is summarized in Table 1. The
RoboChart Reference Manual [31] gives a complete description.

Table 1. Timed primitives of RoboChart.

Primitive Metamodel element Description

#C ClockReset Resets clock C.

since(C) ClockExp Time elapsed since the most recent reset of clock C.

sinceEntry(S) StateClockExp Time elapsed since state S was entered.

A <{d} TimedStatement Deadline on action A to terminate within d time units.

e <{d} Transition Deadline on event e to happen within d time units.

Wait(d) Wait Explicit time budget of d time units

We have a notion of Clock (see Fig. 2) that allows transitions to be guarded
by time expressions that define constraints relative to the occurrence of other
events via the since(C) (ClockExp in Fig. 2) and #C (ClockReset) primitives,
and relative to activation of a state via sinceEntry(S) (StateClockExp). We also
have primitives to impose a deadline d on action A (A <{d}) (TimedState-
ment), or transition trigger e (e <{d}) (Trigger), and to specify a budget d
(Wait(d)) (Wait) for an operation, where d is an Expression.

Fig. 2. Timed metamodel of RoboChart.

Modelling and Verification of Timed Robotic Controllers 23

Similarly to timed automata, expressions involving clocks are restricted to
comparing single timed primitives with constant expressions. We, however, allow
conjunctive as well as disjunctive expressions involving more than one clock.

To illustrate the RoboChart notation we consider a robot that moves at
constant speed in a square pattern while avoiding obstacles. The state machine
is shown in Fig. 3, where the annotations T0 to T6 uniquely identifying the
transitions are not actually part of RoboChart, but are included to guide the
later discussion of the semantics in Sect. 4.

Fig. 3. Example of a square trajectory state machine controller.

When the robot is started, it transitions from the initial state, denoted by
a black circle, to the state MovingForward, while resetting (#C) a clock C and
assigning 0 to the local variable segment. The local declarations are elided in
Fig. 3, but a RoboChart state machine is self-contained, in that it declares all
the variables, events, and operations that it uses. The local variable segment
records how many sides of the square have been covered so far; the robot stops
when it completes the square (segment == 4). This is achieved by sending an
event stop to the platform and transitioning to the final state: a white circle. The
event stop is given a deadline 0, indicating that it is expected that the robotic
platform is always ready to accept this event immediately.

In the composite state MovingForward, the motion is linear, unless an obstacle
is detected. Linear motion is activated by calling the operation moveForward
in the entry action with a constant value linear passed as a parameter. This
operation is annotated with a deadline of 0, since moveForward can typically be
implemented just as an assignment to a variable whose duration is regarded as
negligible. Operations may be specified by other state machines or have their
implementation provided by the robotic platform.

Before MovingForward is actually entered, its entry action executes, followed
by that of its substate Observing, enabling the collision detection capability. Once

24 P. Ribeiro et al.

a collision is detected, the event collisionDetected is raised by the robotic plat-
form: the transition from Observing to the state Collision is then triggered, but
only if there is enough time (since(C)<3) before the next turn, executing the
exit action of Observing and subsequently the avoid operation that performs the
actual collision avoidance. Here we do not specify this operation, but record its
budget of 2 time units by sequentially composing it with the timed primitive
wait(2). In RoboChart time elapses explicitly via budgets, unless a state has
been entered and no transitions are enabled, or, every enabled transition is asso-
ciated with an external event. Once the collision is resolved, a transition back
to Observing is taken. Transitions are triggered once the guard is true and the
associated event is raised, or, if there is no event associated, immediately.

The square motion pattern is achieved by limiting the linear motion to 5 time
units before switching to angular motion for 2 time units, and then switching
again to linear motion. Accordingly, we guard the transition from MovingForward
to the state Turning with the expression since(C) == 5. Upon such a transition,
the value of segment is incremented. Similarly, the angular motion is limited by
guarding the transition from Turning to MovingForward using the timed primitive
sinceEntry(Turning). Upon this transition, the clock is reset.

Fig. 4. RoboChart model of the transport swarm state machine.

In Fig. 4, we also show the RoboChart model for the transport swarm con-
troller described in Sect. 1. We assume that the robotic platform can raise events:
objectSeen, with a distance value passed as a parameter in response to seeing an
object at an estimated distance; goalSeen in response to detecting the goal; and
neighbourDetected, with a number of neighbours passed as a parameter. We also

Modelling and Verification of Timed Robotic Controllers 25

assume that the controller needs to enable the platform to receive those events,
by calling appropriate operations, such as enableObjectWatch.

Operations likely to be implemented as assignments to variables have been
annotated with zero deadlines. Overall we have the same structure as the original
specification [1], with the same number of states, but with additional substates.
This stems from interactions that are not clear in the original model, such as
the need to keep counting neighbours while in states Pushing and Scanning, and
the need to keep track of the object across multiple states.

The existing semantics of RoboChart deals with the structure (modules, con-
trollers, and parallel state machines) of models. That semantics defines the visible
behaviour of a module: the order and availability of the events of the platform.
That semantics, however, ignores all time constructs of a model: clocks, and asso-
ciated statements, waits, and deadlines. We address them in the next section.

4 Semantics

Here, we describe the semantics of RoboChart state machines (Sect. 4.1) [31].
We then focus on the semantics of each timed RoboChart construct, namely
budgets and deadlines (Sect. 4.2) and clocks (Sect. 4.3).

Before defining the semantics, we first introduce the required CSP syntax. A
communication on event e (also known as a channel), optionally parametrised by
x , is defined as e.x → P , with e?x being syntactic sugar for allowing x to range
over the type of e and introducing x in the scope of P , and with e!v being used
for a specific value v . Processes can be composed in parallel (P | [s] | Q), where
s is the set of events on which P and Q require agreement, and if s is empty this
is an interleaving (P ||| Q). An external choice P � Q offers an initial choice
between behaving as P or Q , while P �Q behaves as P but can be interrupted
by Q at any time, with the timed version P �d Q in addition also interrupting
P exactly at d time units. P ΘA Q initially behaves as P but can be interrupted
by an event in A to behave as Q . Sequential composition of P and Q is P ; Q ,
with SKIP being the unit. Hiding (P \ h) makes the events in set h internal to
P . Finally, the events in a process P [f] can be renamed according to function f .

4.1 State Machines

A state machine is given a CSP semantics as the parallel composition of a process
States, itself the parallel composition of processes that model a state, with a
process Initial , that models the transition from the initial state. In Fig. 5 we
illustrate the architecture of the CSP semantics of the example from Fig. 3. A
state is modelled by a process Entry , modelling its entry action, sequentially
composed with During , a model for its during action, that can be interrupted
by a process Transitions that models the possible outgoing transitions.

A state machine defines a sequential and hierarchical control flow. To model
this flow, there are enter , entered , exit , and exited events that model state acti-
vation and deactivation, with the associated entry and exit actions. Each event

26 P. Ribeiro et al.

Fig. 5. Semantics Architecture based on Example of Fig. 3.

takes two parameters: the state that requested the activation or deactivation to
start, and the target state of the request.

A state is modelled in a compositional way, capturing information only about
itself, irrespective of whether it is inside a state machine or another state.
In Fig. 5, the execution sequence is numbered. For example, the process mod-
elling MovingForward offers events enter?x !MF for any other state x , including
the initial state to request it to enter, followed by the process that models its
own entry action, a request on enter !MF!Obs for the child Observing to enter,
the entry action of Observing, and the acknowledgements entered !MF!Obs and
entered !x !MF. The process then offers an external choice of events that trigger
its transitions.

Following a transition event, the exit and exited events to request and
acknowledge deactivation are offered. For instance, in our example, following
a transition triggered from state MovingForward, the process offers to synchro-
nize on events exit !MF.S , where S ranges over all state identifiers except MF
itself, as a way of requiring deactivation of either Observing or Collision.

Each state transition T is modelled by a process that synchronizes on TID ,
an event that uniquely identifies the transition in the state machine. If an event
trigger e is associated with the transition, then at the outer level we rename the
complete state machine process by mapping TID to e.

Variables declared in a state machine are modelled using a process Memory
that exposes events get and set for each variable. In our example, Memory is
parametrised by s, which holds the value of the variable segment, and offers the
events getSegment and setSegment in an external choice followed by a recursion.

Memory(s) =
(
getSegment !s → Memory(s) � setSegment?y → Memory(y)
� s == 4 &T3 → Memory(s)

)

Moreover, it also models transition guards by constraining synchronization
on transition events (TID). In our example, the transition from MovingForward

Modelling and Verification of Timed Robotic Controllers 27

to the final state is guarded, so Memory captures this guard by only offering the
event T3 that uniquely identifies the transition (Fig. 3) when segment is 4.

4.2 Budgets and Deadlines

As mentioned before, RoboChart budgets can be specified as part of actions.
using the wait(d) construct. Its semantics is given by Wait t , a Timed CSP
process that terminates exactly after t units of time elapse. Deadlines specified
on actions are defined using the deadline operator A � t of Circus Time, where
the process A modelling action A must terminate within t time units.

When a deadline is imposed on a transition trigger, however, it must be
enforced only when the transition is enabled, that is, the transition’s guard is
true and the source state has been entered. In our model, we define a pair of
events deadline.TID .on and deadline.TID .off for each transition T whose trigger
has a deadline. Whenever T’s guard is true, the Memory process offers the
event deadline.TID .on, and when the guard is false, it offers deadline.TID .off .
The Memory process of our example is defined as follows.

Memory(s) =
(

... � s == 4& deadline.T3.on → Memory(s)
� ¬(s == 4)& deadline.T3.off → Memory(s)

)

In addition to the get and set events for setting and getting the value of variable
segment , and the guarded synchronization on T3, the event deadline.T3.on is
guarded by the expression corresponding to the guard on the transition identified
by T3, and the negation of this expression guards the event deadline.T3.off .

For each process that models a state where an outgoing transition has a trig-
ger with a deadline, we then compose in interleaving with the process modelling
its during action, a Dlinei process for each deadline di as defined below.

Dlinei = deadline.TID .on → ((deadline.TID .off → SKIP) � di) ;Dlinei

Dlinei initially synchronizes on deadline.TID .on, and thereafter must synchro-
nize on deadline.TID .off within di time units, followed by a recursion. The dead-
line is imposed on deadline.TID .off rather than the transition identifier TID . The
deadline can be satisfied either as a result of the transition’s guard no longer
being true, in which case the process synchronizes on deadline.TID .off , or as a
result of the process being interrupted due to some transition out of the source
state of T, modelled by a process Transitions, being triggered, possibly T itself.
Effectively an enabled deadline on a transition becomes a deadline on the exter-
nal choice between all enabled transitions out of the same state.

As an example, we show the process M for the state MovingForward.

M = enter?S !MF →
⎛
⎝moveForward ; enter !MF!Obs →

entered !MF!Obs → entered !S !MF → SKIP ;
((SKIP ||| DlineMF)�TransitionsMF)

⎞
⎠ ;M

Initially it offers events enter?S !MF, so that any other state identified by S
may request it to be entered. It then behaves as moveForward , the process

28 P. Ribeiro et al.

that models the operation moveForward, and then requests the substate Obser-
vation to enter by synchronising on enter !MF!Obs, subsequently waiting for an
acknowledgement via entered !MF!Obs and then acknowledging its own entry
through entered !S !MF. M then behaves as an interleaving (|||) between the
process modelling its during action, in this case SKIP as there is none, and
the process DlineMF that models the deadlines on triggers of every outgoing
transition of state MovingForward, while offering for any event in TransitionsMF ,
the process that models every outgoing transition from this state, to interrupt
the interleaving.

4.3 Clocks

As previously mentioned, RoboChart clocks allow conditions to be set relative
to the time elapsed since a particular clock reset. To model a reset #C on clock
C we introduce an event clockReset .C , where C is the name of the clock.

Although clocks could be explicitly modelled in the semantics, for example,
by adding variables in the Memory process for each clock, this would make the
model intractable for model-checking as the variables would have an unbounded
domain. Since we assume clocks can only be compared with constant expressions,
we adopt a model where a timed expression involving a comparison between
a constant and constructs since(C) or sinceEntry(S) is encoded by a boolean
variable together with an auxiliary CSP process synchronizing with the Memory
process. For example, a transition with unique identifier T1 guarded by the
expression x = 1 ∨ since(C)>= d is encoded in the Memory process as follows.

Memory(..., x ,wcT1) =
(

... � setWcT1?wc → Memory(..., x ,wc)
� (x = 1 ∨ wcT1)&T1 → Memory(..., x ,wcT1)

)

A boolean variable wcT1 encodes the timed condition since(C)>=d, with channel
setWcT1 used to set it true or false. Synchronizing in parallel with the Memory
process we introduce a WaitingCondition process WC T1 defined below.

WC T1 = Do(T1)�WC T1 reset
WC T1 reset = clockReset .C → setWcT1!false → WC T1 body
WC T1 body = (Do(T1)�d setWcT1!true → Do(T1))�WC T1 reset

This process ensures that while wcT1 is being updated the event T1 is not
offered. Initially it is ready to synchronise on T1 indefinitely (as defined using
the process Do(e) = e → Do(e)), but can be interrupted by the event
clockReset .C offered in the process WC T1 reset . Whether T1 is actually
enabled or not is controlled by Memory and not WC T1. So, the availabil-
ity of T1 in WC T1 indicates only that wcT1 is not being updated. If there is a
clock reset, WC T1 reset sets the value of the Memory process variable wcT1 to
false via the synchronization setWcT1!false and behaves as WC T1 body . This
ensures that, when the clock is reset, the transition cannot take place, even if
the value of the condition is not yet updated. Initially this process continuously
offers the event T1 until exactly d units elapse (�d), after which it sets wcT1

Modelling and Verification of Timed Robotic Controllers 29

to true via the synchronization setWcT1!true and then continuously offers the
event T1. At any point the process may be interrupted by WC T1 reset due
to a clockReset .C.

The complete semantics of a timed state machine is given by the parallel
composition of the process modelling the state machine, STM , the Memory
process and a Clocks process whose definition is the parallel composition of all
WaitingCondition processes as defined for each timed condition.

(((STM | [g ∪ dc] | ((Memory | [w ∪ t] | Clocks) \ w)) \ I)[f])Θ{term} SKIP

Memory and Clocks synchronise on the events in the sets w , containing all
setWc events, which are then subsequently hidden (\). They also synchronise on
the events of the set t of identifiers for transitions whose conditions are timed.
This parallel process synchronises with STM on the events from g , containing
the get and set events for reading and writing the value of state variables and
the transition identifiers, and from dc, containing the deadline and clockReset
events. This is illustrated by the lines on the top right corner of Fig. 5. The
set of identifiers for internal transitions (I) are hidden (\). Also, as explained,
we use a function f to rename transition identifiers to external events of the
platform. Finally if the state machine has a final state, the process STM can
signal termination via the event term, which interrupts the process to behave as
SKIP .

Our RoboTool presented next automatically calculates the timed semantics
of a RoboChart model just described. Instead of Timed CSP, it uses tock -CSP
for direct use of FDR. The time constructs are encoded as described in [4].

5 Tool Support and Model-Checking

To provide support for designing robotic systems using RoboChart, we have
developed RoboTool1, an Eclipse plugin that allows specifications to be
input using both graphical and textual editors, implemented using the Sir-
ius and Xtext2 frameworks. RoboTool automatically generates the semantics
of RoboChart models in CSPM, the machine readable version of CSP used by
FDR [9].

FDR includes facilities to translate untimed processes into tock -CSP. For
example, the prefixing a → P is translated into an external choice offering tock ,
the event that marks the passage of time, in addition to a: X = a → P �

tock → X . Other operators are similarly accommodated, while more intricate
concepts need to be manually specified using tock -CSP. For example, deadlines
are encoded by timelocking once a deadline expires, that is, by refusing tock .

Using the timed semantics of RoboChart we can perform a number of core
checks using FDR, namely, determinism and divergence freedom. In addition,
for a given tock -CSP process STMT modelling a state machine, and whose set

1 https://www.cs.york.ac.uk/circus/RoboCalc.
2 www.eclipse.org/sirius and www.eclipse.org/xtext.

https://www.cs.york.ac.uk/circus/RoboCalc
www.eclipse.org/sirius
www.eclipse.org/xtext

30 P. Ribeiro et al.

of externally observable events is E , we can establish that there are no time-
locks provided the following refinement is satisfied [7]. Since in our model unmet
deadlines lead to timelocks this is a useful check to identify infeasible deadlines.

RUN ({tock}) ||| CHAOS (E) �F STMT � (E ∪ {tock})

With the above we require that STMT , with every event other than those in
E and tock hidden (using the projection operator �), is a refinement (�F) in
the failures model of the process RUN ({tock}), that is always offering tock ,
in interleaving (|||) with the process CHAOS (E) that can perform any event in
the set E nondeterministically. Zeno freedom, that is, the absence of a behaviour
where an infinite sequence of events is performed in finite time, can be ascertained
by checking that STMT � (E ∪{tock}) is divergence free. Assertions to establish
all these core properties are also automatically generated by RoboTool.

Using our semantics we have considered several case studies. We have verified
core properties and also defined requirements directly in CSP and tock -CSP. A
complete account of the experiments can be found in [32].

Table 2 summarises the results of checking for divergence freedom, a particu-
larly expensive check in FDR, including state-space complexity (S/T) in terms
of number of states (S) and transitions (T) visited, compilation time (CT) and
verification time (VT). We also include the experimental results obtained with
the untimed models, defined without using tock , for comparison. Results were
obtained using FDR version 4.2.0 on a computer with 16GiB of RAM and an
Intel i5-5287U CPU. Times correspond to an average of 5 runs. For the purpose
of verification, in examples E2, E3 and E4 the types for reals and integers are
instantiated in CSPM as ranging from 0 to 1, whereas in E1 reals are instantiated
within the range from −90 to 180 due to the specification using such values.

Table 2. Verification results of checking divergence freedom with FDR.

Examples Untimed Timed

S/T CT VT S/T CT VT

E1. Chemical Detector 80/265 0.23 s 2.3 s 240/861 0.15 s 4.58 s

E2. Autonomous Chemical Detector 5/112 2.03 s 0.65 s 6/72 1.82 s 1.99 s

E3. Alpha Algorithm 52/184 0.26 s 1.28 s 12045/30918 0.66 s 1.30 s

E4. Transport Swarm 8/28 1.12 s 0.56 s 436/1085 2.49 s 0.17 s

Our results show that assertions in the failures-divergences model can typi-
cally be checked within a few seconds. Diligent application of compression func-
tions significantly reduces the time required to compile and verify the assertions.
We use diamond , which removes silent transitions from the LTS, and wbisim,
that reduces the LTS by computing the maximal weak bisimulation.

To cope with additional variables in the Memory process, typically as the
result of modelling timed conditions, we have optimized this process. Each vari-
able is captured in separate, but parallel, “cell” processes, that synchronize with

Modelling and Verification of Timed Robotic Controllers 31

an auxiliary non-parametrised process, modelling the transitions’ conditions,
such that whenever a variable is changed it introduces in scope the current
value of all variables. This yields a reduction in the number of possible states.
The efficiency gain is particularly noticeable when a state machine has sev-
eral variables, or timed conditions, which we have also optimized by generating
equivalent timed expressions only once as a Waiting Condition CSP process.

As expected, the usage of tock increases the state-space complexity of exam-
ples compared to their untimed counterparts. The exception here is E2, likely
due to wbisim that can yield better compression than diamond in some cases.
We observe that diamond is not permitted by FDR within timed processes.

6 Conclusion

RoboChart can be viewed as a UML profile extended with timed primitives
and a formal semantics. We have used constructs from Circus Time to capture
budgets and deadlines in a timed semantics for refinement and model checking.
Support for refinement is essential to our future plans to prove soundness of
automatically generated simulation and deployment code.

To optimise model checking, clocks are modelled implicitly, with timed con-
ditions modelled explicitly. Our use of clocks makes a translation into UPPAL
feasible, and of interest for further analysis. For example, we have considered
UPPAAL models of the transport swarm, including a model based on the archi-
tecture of our semantics and a simplified version. Both require additional states
and transitions when compared to RoboChart to achieve a faithful model.

A semantic model generator has been implemented in RoboTool via transla-
tion into tock -CSP [7]. We have tackled several examples and verified whether
the generated models satisfy expected system requirements, in addition to core
properties like divergence freedom and zeno freedom. Results suggest an increase
in complexity, but not necessarily in verification time, when compared to the ver-
ification of untimed models. The verifications are tractable given modest data
ty pes and diligent use of FDR’s compression functions. For realistic data types
we do not expect scalability, instead we will consider theorem proving.

We have a precise account of the timed semantics of RoboChart embedded in
RoboTool. We will capture this semantics via translation functions that generate
Circus Time models suitable for use in Isabelle/UTP [12], which supports rea-
soning about the Circus family of languages via theorem proving. Furthermore,
to account for the environment and probabilistic behaviour we will ultimately
consider richer semantics models in the context of the UTP.

Acknowledgments. This work is funded by EPSRC grant EP/M025756/1. No new
primary data was created during this study.

32 P. Ribeiro et al.

References

1. Chen, J., Gauci, M., Gross, R.: A strategy for transporting tall objects with a
swarm of miniature mobile robots. In: 2013 IEEE International Conference on
Robotics and Automation (ICRA), pp. 863–869, May 2013

2. Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in
swarm robotic systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010)

3. Li, W., Miyazawa, A., Ribeiro, P., Cavalcanti, A.L.C., Woodcock, J.C.P., Timmis,
J.: From formalised state machines to implementation of robotic controllers. In:
Chong, N.-Y., Cho, Y.-J. (eds.) DARS 2016. Springer, London (2016)

4. Schneider, S.: Concurrent and Real-time Systems: the CSP Approach. Worldwide
Series in Computer Science. Wiley, Chichester (2000)

5. Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process algebraic frame-
work for specification and validation of real-time systems. Formal Aspects Comput.
22(2), 153–191 (2010)

6. Woodcock, J.C.P., Davies, J.: Using Z-Specification, Refinement, and Proof.
Prentice-Hall, Englewood Cliffs (1996)

7. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, Heidelberg (2011)

8. Woodcock, J.: The miracle of reactive programming. In: Butterfield, A. (ed.) UTP
2008. LNCS, vol. 5713, pp. 202–217. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14521-6 12

9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

10. Hilder, J.A., Owens, N.D.L., Neal, M.J., Hickey, P.J., Cairns, S.N., Kilgour, D.P.A.,
Timmis, J., Tyrrell, A.M.: Chemical detection using the receptor density algorithm.
IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42(6), 1730–1741 (2012)

11. Dixon, C., Winfield, A.F.T., Fisher, M., Zeng, C.: Towards temporal verification
of swarm robotic systems. Robot. Auton. Syst. 60(11), 1429–1441 (2012)

12. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). doi:10.1007/978-3-319-14806-9 2

13. Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)

14. Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., Birattari, M.: Task partitioning
in a robot swarm: object retrieval as a sequence of subtasks with direct object
transfer. Artif. Life 20(3), 291–317 (2014)

15. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-
specific modeling and languages in Robotics. J. Softw. Eng. Robot. 7(1), 75–99
(2016)

16. Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., Mallet, A.: Model checking
real-time properties on the functional layer of autonomous robots. In: Ogata, K.,
Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 383–399. Springer,
Cham (2016). doi:10.1007/978-3-319-47846-3 24

17. Fleurey, F., Solberg, A.: A domain specific modeling language supporting spec-
ification, simulation and execution of dynamic adaptive systems. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04425-0 47

http://dx.doi.org/10.1007/978-3-642-14521-6_12
http://dx.doi.org/10.1007/978-3-642-14521-6_12
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-319-14806-9_2
http://dx.doi.org/10.1007/978-3-319-47846-3_24
http://dx.doi.org/10.1007/978-3-642-04425-0_47

Modelling and Verification of Timed Robotic Controllers 33

18. Musliner, D.J., Durfee, E.H., Shin, K.G.: CIRCA: a cooperative intelligent real-
time control architecture. IEEE Trans. Syst. Man Cybern. 23(6), 1561–1574 (1993)

19. Espiau, B., Kapellos, K., Jourdan, M.: Formal verification in robotics: why and
how? In: Giralt, G., Hirzinger, G. (eds.) Robotics Research, pp. 225–236. Springer,
London (1996)

20. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic software systems: from code-
driven to model-driven designs. In: International Conference on Advanced Robot-
ics, ICAR 2009, 1–8 June 2009

21. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628,
pp. 149–160. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34327-8 16

22. Rasch, H., Wehrheim, H.: Checking consistency in UML diagrams: classes and
state machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS
2003. LNCS, vol. 2884, pp. 229–243. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39958-2 16

23. Davies, J., Crichton, C.: Concurrency and refinement in the unified modeling lan-
guage. Formal Aspects Comput. 15(2–3), 118–145 (2003)

24. Selic, B., Grard, S.: Modeling and Analysis of Real-Time and Embedded Systems
with UML and MARTE: Developing Cyber-Physical Systems. Morgan Kaufmann
Publishers Inc., Burlington (2013)

25. Selic, B.: Using UML for modeling complex real-time systems. In: Mueller, F.,
Bestavros, A. (eds.) LCTES 1998. LNCS, vol. 1474, pp. 250–260. Springer, Heidel-
berg (1998). doi:10.1007/BFb0057795

26. Ramos, R., Sampaio, A., Mota, A.: A semantics for UML-RT active classes via
mapping into Circus. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS,
vol. 3535, pp. 99–114. Springer, Heidelberg (2005). doi:10.1007/11494881 7

27. Akhlaki, K.B., Tunon, M.I.C., Terriza, J.A.H., Morales, L.E.M.: A methodological
approach to the formal specification of real-time systems by transformation of
UML-RT design models. Sci. Comput. Program. 65(1), 41–56 (2007)

28. Zic, J.J.: Time-constrained buffer specifications in CSP + T and timed CSP. ACM
Trans. Program. Lang. Syst. 16(6), 1661–1674 (1994)

29. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

30. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). doi:10.1007/BFb0020949

31. Miyazawa, A., et al.: RoboChart reference manual. Technical report, University of
York (2017). http://bit.ly/2plUry4

32. RoboCalc Project: RoboChart Case Studies (2017). www.cs.york.ac.uk/circus/
RoboCalc/case-studies/

http://dx.doi.org/10.1007/978-3-642-34327-8_16
http://dx.doi.org/10.1007/978-3-540-39958-2_16
http://dx.doi.org/10.1007/978-3-540-39958-2_16
http://dx.doi.org/10.1007/BFb0057795
http://dx.doi.org/10.1007/11494881_7
http://dx.doi.org/10.1007/BFb0020949
http://bit.ly/2plUry4
www.cs.york.ac.uk/circus/RoboCalc/case-studies/
www.cs.york.ac.uk/circus/RoboCalc/case-studies/

Spatial Reasoning About Motorway Traffic
Safety with Isabelle/HOL

Sven Linker(B)

Department of Computer Science, University of Liverpool, Liverpool, UK
s.linker@liverpool.ac.uk

Abstract. Formal verification of autonomous vehicles on motorways is a
challenging problem, due to the complex interactions between dynamical
behaviours and controller choices of the vehicles. In previous work, we
showed how an abstraction of motorway traffic, with an emphasis on
spatial properties, can be beneficial. In this paper, we present a semantic
embedding of a spatio-temporal multi-modal logic, specifically defined to
reason about motorway traffic, into Isabelle/HOL. The semantic model
is an abstraction of a motorway, emphasising local spatial properties, and
parameterised by the types of sensors deployed in the vehicles. We use
the logic to define controller constraints to ensure safety, i.e., the absence
of collisions on the motorway. After proving safety with a restrictive
definition of sensors, we relax these assumptions and show how to amend
the controller constraints to still guarantee safety.

Keywords: Spatial logic · Isabelle · Interactive theorem proving ·
Motorway traffic · Verification · Safety

1 Introduction

Due to the current and ongoing interest in autonomous vehicles, proving that
such vehicles will behave correctly is of growing importance. Since vehicles are
complex, dynamical systems, proving properties about them often involves solv-
ing differential equations, where spatial elements, e.g., position and braking dis-
tance, are functions of time. However, safety is fundamentally a spatial property:
the absence of collisions, i.e., no two vehicles occupy the same space.

To overcome the complexities of proving safety properties, we proposed to
separate the dynamical behaviour from the concrete changes in space [1]. To that
end, we defined Multi-Lane Spatial Logic (MLSL), which was used to express
guards and invariants of controller automata defining a protocol for safe lane-
change manoeuvres. Under the assumption that all vehicles adhere to this pro-
tocol, we proved that collisions were avoided. Subsequently, we presented an
extension of MLSL to reason about changes in space over time, a system of

This work was supported by the EPSRC Research Programme EP/N007565/1 Sci-
ence of Sensor System Software (S4).

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 34–49, 2017.
DOI: 10.1007/978-3-319-66845-1 3

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 35

natural deduction, and formally proved a safety theorem [2,3]. This proof was
carried out manually and dependent on strong assumptions about the vehicles’
sensors.

In this paper, we define a semantic embedding of a further extension of
MLSL into the theorem prover Isabelle/HOL [4]. That is, we present the first
tool to mechanically assist reasoning with MLSL. Subsequently, we show how
the safety theorem can be proved within this embedding. Finally, we alter this
formal embedding by relaxing the assumptions on the sensors. We show that the
previously proven safety theorem does not ensure safety in this case, and how
the controller constraints can be strengthened to guarantee safety.1

Recently, many approaches to verify traffic safety have been published. A
main distinction between them is the way they abstract properties of traffic.
Loos et al. used the theorem prover KeYmaera [5] to verify safety of motorway
scenarios [6]. The underlying logic of KeYmaera is Differential Dynamic Logic
[7], where the dynamical behaviour of systems is explicitly encoded within hybrid
programs. This contrasts with our approach, where the main focus is on spatial
aspects of traffic. However, they abstract away from the way real vehicles change
lanes, i.e., vehicles may change to any lane, not only adjacent ones, in one step.
We restrict the possibilities of lane changes to exactly the adjacent lanes.

Rizaldi and Althoff presented a formal implementation of traffic rules [8].
Similar to our work, they choose Isabelle/HOL to analyse several laws from
the Vienna Convention on Road Traffic. However, they focus on whether the
behaviour of vehicles is compliant with these laws. Our formalisation does not
take legal issues into account, and concentrates only on the absence of collisions.

The distinction between dynamical behaviour and a higher-level is not unique
to our work. Kamali et al. [9] used a combination of the Belief-Desire-Intention
approach to model agents, and Timed Automata [10]. They distinguish between
the planning component of a vehicle and its underlying dynamics. The planning
component creates the new intentions of a vehicle according to its current belief
about the situation on the road, and its general desires. The underlying dynamics
then implement the plan constructed by the planning component. Both compo-
nents can be verified on their own, the planning component with the model
checker AJPF [11], and the dynamics with Uppaal [12]. Our spatial abstraction
could serve as a middle tier between their planning component and the dynamics,
by abstracting concrete values (e.g., distances) to spatial properties.

In a similar fashion, Campbell et al. used π-calculus processes to define and
reason about the communication structure of vehicle networks [13]. The lower
level dynamics are implemented as Hybrid Automata [14], and the connection
between both levels is given by connecting the messages in the higher level with
input and output messages of the automata. Our results imply that the amount
of necessary communication between vehicles depends on sensor capabilities of
each vehicle. Hence our results could inform the instantiations of their models.

1 The code of the formalisation can be found at www.github.com/svenlinker/HMLSL.
It is compatible with Isabelle2016-1.

www.github.com/svenlinker/HMLSL

36 S. Linker

The structure of our paper is as follows. Section 2 presents the semantic
embedding of MLSL into Isabelle/HOL. In Sects. 3 and 4 we discuss the proofs
for safety with different sensor capabilities. Section 5 concludes the paper.

2 Embedding MLSL into Isabelle/HOL

In this section, we present our abstraction of motorway traffic, as well as Hybrid
Multi-Lane Spatial Logic (HMLSL), an extension of Multi-Lane Spatial Logic
(MLSL), by introducing concepts from Hybrid Logic [15] and universal modali-
ties. In the majority of the paper, we will only present the formalisation within
Isabelle, but explain the relation to previous work [1–3].

Notations. Isabelle/HOL is based on type theory, hence every term t has a
specific type τ , denoted by t :: τ . The type of a function from τ to τ ′ is written
as τ ⇒ τ ′. Within Isabelle, we have to distinguish between the meta-logic and the
object logic. In the case of Isabelle/HOL, both are instantiations of Higher-Order
logic. Implication and equivalence of the meta-logic is denoted by =⇒ and ≡,
respectively. They are generally used to define terms. The object level implication
is −→, which is used within lemmas and theorems. In this paper, conjunction,
disjunction and existential quantification will generally be used within the object
logic, denoted by the operators ∧, ∨, and ∃. Finally, function application will
typically be denoted without parentheses, i.e., instead of f(t), we will write f t.

2.1 Semantic Model

The semantics of HMLSL reflects situations as depicted in Fig. 1. That is, we
consider vehicles driving on a motorway with possibly several lanes. All vehicles
are assumed to drive in one direction (to the right in the figure). The safety
envelope comprises the physical size of c as well as the distance needed for
an emergency braking. Within the model, we distinguish between two spatial
properties of vehicles. The reservation of a vehicle c is the part of the motorway
that c currently drives on, defined by the lanes c uses and its safety envelope.
Reservations may occupy space on up to two adjacent lanes, which indicates that
the vehicle is currently performing a lane-change manoeuvre, see, e.g., vehicle a
in Fig. 1. A claim, depicted by the dotted lines in the figure, is a formalisation
of setting the turn signal, i.e., it is an indicator that c wants to change its lane.
Vehicles may only hold claims while not engaged in a lane change, i.e., as long
as the reservation only contains space on a single lane. A claim of a vehicle is
always adjacent to its reservation and of the same length.

The semantic model we use is twofold. We use traffic snapshots to formalise
the current situation on the whole motorway. The motorway is of infinite length,
modelled by the real numbers, and consists of an arbitrary, but fixed number
of discrete lanes. Furthermore, we assume an infinite number of vehicles, each
of which has a position and dynamic behaviour, e.g., its velocity and current
acceleration. On top of the snapshots, views denote a finite part of the motorway

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 37

e

c

a

b

physical size

braking distance safety envelope

0

1

2

5 25

Fig. 1. Situation on a motorway at a single point in time

perceived by a vehicle. To that end, they consist of a closed real-valued interval,
and a finite discrete interval of lanes. Each view is associated with a distinct
vehicle, its owner. In Fig. 1, the traffic snapshot contains three lanes. A possible
view v of the vehicle e is depicted as a dashed rectangle, and contains the two
lower lanes. While both vehicle a and e are fully contained in v, only the safety
envelope of vehicle b is within this view. If we assume an idealised world, where
each vehicle can perceive the full safety envelope of other vehicles, i.e., both their
physical size and braking distance, then e can sense the presence of b. We call
this type of information perfect. Of course, this assumption is rather strong. If
we assume that vehicles know about their own safety envelope, but only about
the physical size and position of other vehicles, e cannot perceive b. We will refer
to this situation as regular information [1].

2.2 Preliminary Definitions

Formally, we introduce two new types, one for real-valued intervals and another
for discrete intervals. For real valued intervals, we use the type real int , which is a
tuple of two real values (x, y), with the condition x ≤ y. The discrete intervals use
a definition within the Main library of Isabelle to define a consecutive sequence
of numbers between m and n. If m > n, this will result in the empty set.

typedef real int = {r :: (real ∗ real).fst r ≤ snd r}
typedef nat int = {i.(∃(m :: nat)n.{m..n} = i)}

For both of these types, we define several auxiliary functions and predicates.
The function right (left) returns the right (left, resp.) end point of a real-valued
interval. We define a partial order on real int to denote subintervals, i.e., r ≤ s
if, and only if, left r ≥ left s and right r ≤ right s. Within Isabelle, we define this
relation and show that real int instantiates the abstract class order, i.e., we show
reflexivity, transitivity and anti-symmetry. For nat int , we prove more structure.
We define the infimum i � j of two intervals i and j by lifting set intersection to
nat int . Similarly, we can lift the subset relation on sets to nat int , to constitute
a partial order � with a least element, the empty set. Since discrete intervals are
not closed under arbitrary unions, we introduce a new predicate consec i j , to

38 S. Linker

denote that two intervals are non-empty and max(i) + 1 = min(j). We can then
define i
 j as the union of i and j. Furthermore, we need measures for both
types of intervals. For discrete intervals, the measure is its cardinality lifted from
sets, while the measure for real valued intervals is the difference between the left
and right end points, i.e., ‖r‖ ≡ right r − left r.

Furthermore, we introduce the notion of chopping an interval into two sub-
intervals. The predicate R Chop(r, s, t) is similar to the chopping operation of
Interval Temporal Logic [16]. For discrete intervals, we implemented a ternary
predicate N Chop(i, j, k), which was taken from previous work [2,3].

R Chop(r, s, t) ≡ left r = left s ∧ right s = left t ∧ right r = right t

N Chop(i, j, k) ≡ i = j
 k ∧ (j = ∅ ∨ k = ∅ ∨ consec j k)

Finally, we get a countably infinite type cars by a bijection on natural numbers.

2.3 Views

Using these definitions, we construct a type view as a record of three elements:
a real-valued interval modelling the extension along the lanes, a discrete interval
denoting the perceived set of lanes, and an identifier for the owner of the view.

record view = ext :: real int lan :: nat int own :: cars

We lift the chopping on intervals to views. For example, horizontal chopping,
i.e., dividing the extension of the view while keeping the set of visible lanes and
the owner, is defined as follows.

v=u‖w ≡ R Chop(ext v, ext u, ext w) ∧ lan v = lan u ∧ lan v = lan w

∧ own v = own u ∧ own v = own w

The functions lan , ext and own are automatically generated by Isabelle, to
refer to the respective parts of the views. The predicate v=u--w denotes vertical
chopping. Furthermore, we introduce a relation v=c>u to change the owner of
the view v to c, while keeping the spatial borders.

(v=c>u) ≡ ext v = ext u ∧ lan v = lan u ∧ own u = c

We can prove several lemmas about views and their relationships. For exam-
ple, if we can chop a view v vertically into u and w and can switch v to a view
v′ with the owner c, we can chop v′ into counterparts to u and w.

lemma v=u--w ∧ v=c>v′ −→ (∃u′ w′.u=c>u′ ∧ w=c>w′ ∧ v′ =u′--w′)

2.4 Traffic Snapshots

The formalisations of the underlying traffic situations, called traffic snapshots,
have to capture the intuitions given in Sect. 2.1, i.e., reservations, claims, posi-
tions, physical sizes, braking distances and the dynamical behaviour of vehicles.

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 39

For all of these, we use functions whose domain is the type cars. Since the defin-
itions for traffic snapshots are long, but straightforward, we mostly refrain from
providing the Isabelle code, but describe the formal concepts. Reservations and
claims are given by the functions res, clm : cars ⇒ nat int , positions, physical
sizes and braking distances are given by pos, ps, bd : cars ⇒ real . The dynamic
behaviours over time, i.e., the increases in the cars’ positions, are given by a real-
valued function for each vehicle: dyn : cars ⇒ (real ⇒ real). Traffic snapshots
are tuples ts = (pos, res, clm, dyn, ps, bd), with the following conditions:

1. res c ∩ clm c = ∅,
2. |res c| ≥ 1,
3. |res c| ≤ 2,
4. |clm c| ≤ 1,
5. |res c| + |clm c| ≤ 2,

6. clm c �= ∅ −→
∃n : res c ∪ clm c = {n, n+1},

7. ps c > 0,

8. bd c > 0.

Conditions 1–6 are the sanity conditions from previous work [2,3], that vehi-
cles have to respect to be spatially well-defined. For example, we require reser-
vations and claims to be adjacent, that vehicles have at most one claim, and
so forth. Condition 7 denotes that vehicles have to be physically present (even
though they may be arbitrarily small), while 8 ensures that a vehicle needs some
leading safe space. Subsequently, we will refer to the reservation function of a
traffic snapshot ts by res ts, and also respectively notate the other functions.

Example 1. The traffic situation ts in Fig. 1 can be formalised as follows.

pos ts a = 22 pos ts b = 7 pos ts c = 6 pos ts e = 17
res ts a = {0, 1} res ts b = {0} res ts c = {2} res ts e = {1}
clm ts a = ∅ clm ts b = ∅ clm ts c = ∅ clm ts e = {0}
bd ts a = 3 bd ts b = 6 bd ts c = 2 bd ts e = 6

As an example, we further set ps ts d = 1 and dyn ts d x = 1
2 · ad · x2 for

all vehicles d. That is, we assume that each vehicle has its own acceleration
ad. The view v indicated by the dashed rectangle is given by ext v = (13, 25),
lan v = {0, 1} and own v = e. Observe that the concrete values of the functions
are less important than the relations between them. In particular, we do not
instantiate dyn in any proofs in this paper, and use it as an abstraction of the
cars’ dynamics.

Between two traffic snapshots ts and ts′, different global and local transitions
are possible. The only type of global transition is the passing of time, i.e., ts′ is
the result of purely dynamical behaviour of vehicles, starting at ts. The passing of
x time units is denoted by ts−x→ts′, during which only the vehicles’ position
is updated according to their dynamic behaviour, with the precondition that
dyn ts c y ≥ 0 for all c and 0 ≤ y ≤ x. This ensures that cars only drive forward.
Furthermore, single vehicles can perform local transitions. A vehicle c can

1. create a new claim, residing on a lane adjacent to its current reservation,
which may only consist of a single lane, denoted by ts−c(c, n)→ts′,

40 S. Linker

2. create a new reservation, i.e., it has to currently possess a claim and mutates
this claim to a reservation, denoted by ts−r(c)→ts′,

3. withdraw its claim, i.e., remove a currently existing claim from the road,
denoted by ts−wdc(c)→ts′,

4. withdraw a reservation, i.e., if its current reservation comprises two lanes, c
shrinks its reservation to a single lane, denoted by ts−wdr(c, n)→ts′, or

5. adjust its dynamics, i.e., change the function responsible for its dynamic
behaviour to a given function f : real → real , denoted by ts−dyn(c, f)→ts′.

All of these relations can be straightforwardly defined using the notion of
traffic snapshots. For example, we define creation of a claim as follows.2

ts−c(c, n)→ts′ ≡ (pos ts′) = (pos ts) ∧ (res ts′) = (res ts)
∧ (dyn ts′) = (dyn ts) ∧ (ps ts′) = (ps ts) ∧ (bd ts′) = (bd ts)
∧ |clm ts c| = 0 ∧ |res ts c| = 1
∧ ((n + 1 ∈ res ts c) ∨ (n − 1 ∈ res ts c))
∧ (clm ts′) = (clm ts)(c := Abs nat int{n})

The definition ensures that except for the claim of c, all parts of ts are equal to
their counterparts in ts′. Furthermore, it requires that within ts, the vehicle c
may only possess a single reservation, and no claim at all. The claim on lane n
may only be created, if the reservation consists of a lane adjacent to n. Finally,
the claims in ts′ are the claims in ts, except for the newly created claim of c.

With these relations, we create two additional types of transition. Evolu-
tions consists of arbitrary sequences of time passing and dynamic adjustments.
We denote the evolution from ts to ts′ by ts ��� ts′. Within Isabelle, we use
an inductive definition to enable reasoning about evolutions. An abstract tran-
sition is an arbitrary transition sequence between ts and ts′. We denote such
sequences by ts ⇒ ts′. Similarly to evolutions, we can define abstract transitions
inductively.

Example 2. Consider again the traffic snapshot ts depicted in Fig. 1. The vehicle
b can create a claim on lane 1, since its reservation contains only the lane 0. That
is, there is a ts′, such that ts−c(b, 1)→ts′. However, there is no possibility for b
to create a claim on lane 2.

Since views are intended to be relative to their owner, we have to consider the
position of a view if the owner moves. Let v be a view with owner e. If time
passes between snapshots ts and ts′, we have to compute the difference between
the position of e in ts and ts′ and add it to the borders of the extension of v.
Within Isabelle, we define a suitable function move ts ts′ v.

2 The function Abs nat int takes a set of natural numbers as its input, and returns
an element of type nat int . It is automatically created by Isabelle as a result of the
type definition in Sect. 2.2. Subsequently, we will silently omit these functions.

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 41

2.5 Sensors

The preceding definitions are independent of the types of sensor the vehicles
possess. The sensors, however, define the information each vehicle may use to
decide, whether manoeuvres on the road can be safely performed, e.g., a lane
change manoeuvre. We parameterise our model with a function representing
the distances obtained from the sensors, i.e., a function returning the perceived
length of a vehicle c by a vehicle e at the current traffic snapshot ts.

sensors :: cars ⇒ traffic ⇒ cars ⇒ real

We require sensors to return a non-zero length for each vehicle. That is, for all
vehicles e, c and all traffic snapshots ts, we have sensors e ts c > 0. Using the
sensor definition as a parameter implies that all vehicles use the same definition
of the sensor function. In general, however, this function can be as complicated
as necessary. We then define the space used by a vehicle c as observed by e.

space ts v c ≡ (pos ts c, pos ts c + sensors (own v) ts c)

2.6 Restriction to Views

Our intention when using views together with traffic snapshots is to limit the
space a vehicle can perceive at any time, since it can only take a limited amount
of information into account. We need to restrict the perceived length of a vehicle
to the view, as well as the lanes used for claims and reservations.

We denote the perceived length of a vehicle c by the owner of a given view v
by len v ts c. Consider Fig. 1, and the indicated view v owned by the vehicle e.
For the vehicles e and a, we intend that space and len coincide on v. However, for
c, we have to ensure that len is empty, since it drives outside of v. The size of len
for b depends on the type of information we assume: with perfect information,
we want that len is not empty and describes the small part of the safety envelope
of b within in v, while with regular information, we intend that len returns an
empty interval. We therefore define the perceived length as follows.

len v ts c ≡ if (left (space ts v c)) > right (ext v))
then (right (ext v), right (ext v))
else if (right (space ts v c) < left (ext v))

then (left (ext v), left (ext v))
else (max (left (ext v)) (left (space ts v c)),

min (right (ext v)) (right (space ts v c)))

The first two cases ensure that vehicles not visible in the view v (either to the
left or to the right) will be represented by an empty interval. The last case is
defined such that len is always a sub-interval of the extension of the view.

42 S. Linker

We have proved several properties about len needed in the safety proofs. For
example, if the perceived length of a vehicle fills the extension of a given view,
then it does the same for the horizontal sub-views.

lemma len v ts c = ext v ∧ v=u‖w −→ len u ts c = ext u

lemma len v ts c = ext v ∧ v=u‖w −→ len w ts c = ext w

The restriction of the claims and reservations to a view is the intersection
with the lanes visible in the view. Within Isabelle, we use the following definition.

restrict v f c ≡ (f c) � lan v

To use this function we partially evaluate one of the functions res or clm. For
example, the restriction of reservations contains at most two lanes at any time.

lemma |restrict v (res ts) c| ≤ 2

However, most properties of restrict hold for any possible function from cars to
lanes. E.g., if a view v can be vertically chopped into sub-views u and w, the
restriction of a function f to v is the union of the restriction of f on u and w.

lemma v=u--w −→ restrict v f c = restrict u f c
 restrict w f c

2.7 Hybrid Multi-Lane Spatial Logic

The logic HMLSL is a modal extension of first-order logic. In addition to first-
order operators, HMLSL contains two spatial predicates re(c) and cl(c), which
are true, if, and only if, the current view consists of a single lane that is com-
pletely filled with the reservation of the vehicle denoted by c (or its claim, respec-
tively). To reason about views with more lanes, and different topological relations
between vehicles, we can chop views either horizontally with the binary modality
� , or vertically using �. Intuitively, φ �ψ splits the extension of a view into
two disjoint sub-views, where φ holds on the left interval and ψ on the right,
while the set of lanes and the owner is kept. For each type of spatial transition
∗(c), we use a family of modalities �∗(c). I.e., the modalities are parameterised
and this parameter will be evaluated like other variables in the formulas. Fur-
thermore, we use a single modality to refer to evolutions between snapshots, i.e.,
the passing of time and changes in the dynamical behaviour of the vehicles. The
universal modality G is defined with respect to abstract transitions, i.e., it can
be used to define invariance properties. Finally, we employ a modality @c in the
fashion of Hybrid Logic (HL) [15]. In HL, @c is used to switch to the world c,
regardless of the accessibility relation of the logic. Within MLSL, we use @c to
exchange the owner of the current view, which allows to reason about different
perspectives on parts of the motorway. The information we have at our disposal
may change for different perspectives, depending of the type of sensors in the
vehicles. For a given view v, while we evaluate the formula @c ϕ, we switch to a
view v′ with the same extension and lanes as v, but whose owner is c.

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 43

Definition 1 (Syntax of HMLSL). The syntax of formulas of the hybrid
multi-lane spatial logic is given as follows, where c, d are variables of type cars:

φ ::= ⊥ | c = d | re(c) | cl(c) | φ1 → φ2 | ∀c • φ1 | φ1 � φ2 | φ1 � φ2 | Mφ

where M ∈ {�r(c),�c(c),�wd c(c),�wd r(c),�τ,G ,@c}, and c, d are variables.

To define HMLSL within Isabelle, we follow an approach of Benzmüller and
Paulson to embed quantified multi-modal logics into HOL [17]. Essentially, we
encode formulas as functions from the set of worlds to truth values. Since our
semantic model consists of both views and traffic snapshots, we define the formu-
las of HMLSL to be functions taking both of these entities as parameters, i.e., we
translate them directly into HOL. This allows for a natural definition and nota-
tion of the operators, while still enabling us to use the automatic proof methods
of Isabelle. For brevity, we define a type synonym σ = traffic ⇒ view ⇒ bool.

Most operators combine several terms of type σ, and return a new term of
type σ. For example, negation is of type σ ⇒ σ. Conjunction and the chopping
modalities have the type σ ⇒ σ ⇒ σ, since they are just binary connectives.
The box modalities, however, also take a vehicle as a parameter, i.e., their type
is cars ⇒ σ ⇒ σ. Due to space limitations, we only provide some examples.

¬ϕ ≡ λ ts v.¬ϕ(ts)(v)
ϕ ��� ψ ≡ λ ts v.∃u w.(v=u‖w) ∧ ϕ(ts)(u) ∧ ψ(ts)(w)

���c(c) ϕ ≡ λ ts v.∀ts′ n.(ts−c(c, n)→ts′) −→ ϕ(ts′)(v)
Gϕ ≡ λ ts v.∀ts′.(ts ⇒ ts′) −→ ϕ(ts′)(move ts ts′ v)
@cϕ ≡ λ ts v.∀u.(v=c>u) −→ ϕ(ts)(u)

To avoid confusion with the object logic of Isabelle/HOL, we use bold symbols
for the operators of HMLSL. While the Boolean operators are just translations to
operators of HOL, the operators specific to HMLSL refer to the elements of the
models given in the previous section. E.g., the semantics of the chop modalities
refer to the chopping operations of Sect. 2.3. The behavioural modalities use the
transition relations of Sect. 2.4, e.g., the modality G is defined with respect to
all abstract transitions leaving the current traffic snapshot. The semantics of
atomic formulas refers to the measures of intervals and restrictions to views.

re(c) ≡ λ ts v. len v ts c = ext v ∧ restrict v (res ts) c = lan v

∧ ‖ext v‖ > 0 ∧ |lan v| = 1

These abbreviations correspond directly to the original definitions of MLSL [1,2].
Furthermore, we can define the somewhere modality as an abbreviation.

〈ϕ〉 ≡ � ��� (� ��� ϕ ��� �) ��� �
Finally, we also introduce notions for validity and satisfaction, which allow us to
state lemmas comfortably, but can also be used within proofs of these lemmas.

|= ϕ ≡ ∀ts.∀v.ϕ(ts)(v) ts, v |= ϕ ≡ ϕ(ts)(v)

44 S. Linker

We prove several lemmas to show that the definitions work as intended.
For example, somewhere distributes over disjunction, which can be proven by a
single application of the blast proof method. Furthermore for each vehicle, there
can be at most two reservations visible anywhere on the motorway. Finally, we
show how the transitions to create reservations are connected to the claims and
reservations on the road. The proof of these lemmas need manual intervention,
but mainly to guide the automatic methods.

lemma |= 〈ϕ ∨ ψ〉 ↔ 〈ϕ〉 ∨ 〈ψ〉
lemma |= ¬〈re(c)〉 ��� 〈re(c)〉 ��� 〈re(c)〉
lemma reservation : |= (���r(c) re(c)) ↔ (re(c) ∨ cl(c))

3 Safety with Perfect Information

In this section, we instantiate the sensor function of the semantic model such
that each vehicle possesses ideal and unrestricted sensors and can thus obtain
perfect information of the space visible in its view. Formally, the sensor function
consists of the sum of the physical size of a vehicle and its safety distance.

sensors e ts c ≡ ps ts c + bd ts c

Observe that the sensors do not distinguish between the owner of the view and
any other vehicle. That is, they always return the full safety envelope of a vehicle.

Safety in our model is modelled by the absence of overlapping reservations.
That is, our safety predicate can be defined as follows.

safe e ≡ ∀c.¬(c = e) → ¬〈re(c) ∧ re(e)〉
To restrict the allowed behaviour of vehicles on the road, we require them to
adhere to certain protocol specifications. Vehicles have to respect reservations
as long as they only drive on the road without changing lanes, i.e., during evo-
lutions. This is ensured by the distance controller DC .

DC ≡ G (∀c d.¬(c = d) → ¬〈re(c) ∧ re(d)〉 → ���τ ¬〈re(c) ∧ re(d)〉)
Intuitively, DC ensures that two different vehicles c and d, whose reservations
do not overlap initially, will keep their distances so that no overlap occurs, as
long as only time passes and dynamics are adjusted.

The only transition after which new reservations appear on the road is the
creation of reservations. Observe that a unsafe situation can only occur, if there
was already a claim overlapping with a reservation before the transition hap-
pened. Hence we have to forbid the creation of reservations in this case. To that
end, we define the potential collision check.

pcc c d ≡ ¬(c = d) ∧ 〈cl(d) ∧ (re(c) ∨ cl(c))〉

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 45

Finally, the lane change controller restricts the vehicles such that if a vehicle
holding a claim created a reservation, while a potential collision exists, we would
get a contradiction. Hence, such a transition cannot occur.

LC ≡ G (∀d.(∃c.pcc c d) → ���r(d) ⊥)

Observe that this formula is slightly more restrictive than necessary. The poten-
tial collision check is already satisfied, if two claims overlap, which does not
immediately lead to overlapping reservations, if only one of the vehicles changes
the claim to a reservation. That is, in a model with interleaving semantics, as we
defined in Sect. 2.4, we could reduce this check to only be satisfied, if the claim
overlaps with a reservation. However, the given formula even ensures safety, if
we allowed for synchronous creation of reservations [18].

Our safety theorem is as follows. If the initial situation is safe, and all vehicles
adhere to DC and LC, safety is an invariant along all possible transitions.

theorem safety : |= (∀e.safe e) ∧ DC ∧ LC → G (∀e.safe e)

Proof. We only present a proof sketch, since the proof itself consists of roughly
200 lines of Isar proof script. We fix an arbitrary traffic snapshot ts and view v,
and proceed by induction on transition sequences ts ⇒ ts′. The base case follows
by the assumption ∀e.safe e. The induction step consists of a case distinction
for the different transition types, where we assume that ts ⇒ ts′ holds for some
ts′ and ts′, v |= ∀e.safe e. In all cases, we prove the theorem by contradiction.

For evolutions, fix a ts′′ with ts′ ��� ts′′ and ts′′,move ts ts′′ v |= ¬∀e.safe e.
That is, there are c and e, such that ts′′,move ts′ ts′′ v |= 〈re(c)∧re(e)〉. By the
induction hypothesis and DC , we get ts′,move ts ts′ v |= ���τ ¬〈re(c) ∧ re(e)〉,
and thus ts′′,move ts ts′′ v |= ¬〈re(c) ∧ re(e)〉. This yields the contradiction.

For creations of reservations, fix d and ts′′, such that both ts−r(d)→ts′′

and ts′′,move ts ts′′ v |= ¬∀e.safe e. That is, there are c and e, such that
ts′′,move ts ts′′ v |= 〈re(c) ∧ re(e)〉. Subsequently, we have to distinguish the
cases whether d = c or d = e, or neither. In the latter case, we have that the over-
lap exists on ts′ as well and get a contradiction. The other two cases are similar,
and we only discuss the case d = e. In this case, we get that on ts′, a claim or a
reservation of e was overlapping with the reservation of c, i.e., ts′,move ts ts′ v |=
(〈re(c)∧re(e)〉∨〈re(c)∧cl(e)〉). The first case contradicts the induction hypoth-
esis. The latter case implies ts′,move ts ts′ v |= 〈re(c)∧ (re(e)∨ cl(e))〉 This is
exactly the potential collision check pcc e c. With LC , we get the contradiction.
The other cases are all proved in similar ways, by concluding that the overlap
existed on ts′, contradicting the induction hypothesis. �

The safety theorem states that our controllers ensure safety, from the perspective
of a single vehicle, since we never employ the hybrid modality @c. However, with
our assumption of perfect knowledge, we can prove the following theorem, which
shows that switching to a different owner does not impact safety.

lemma |= (∀e.safe e) → @c (∀e.safe e)

Hence, no vehicle perceives a collision, which implies that safety is an invariant
along all transitions for all vehicles.

46 S. Linker

4 Safety with Regular Information

In this section, we discuss how the proof given previously is affected, if we assume
regular sensors. That is, while a vehicle can compute its own braking distance, it
is not able to refer to the braking distance of other vehicles. However, we assume
that the sensors can identify the physical size of other vehicles.

sensors e ts c ≡ if (e = c) then ps ts c + bd ts c else ps ts c

Hence, each vehicle e has complete information about its own safety envelope
(the sum of its physical size and braking distance), but does not know anything
about the braking distance of other vehicles. Note that the sensor function is
a global parameter of HMLSL, i.e., all vehicles use the same function. With
this sensor definition, we can still proceed to prove the safety theorem given in
Sect. 3. However, since we neither refer to views with different owners in the
safety property, nor in the theorem itself, we cannot prove the invariance of
safety if we switch owners. Instead, we can prove the following lemma.

lemma ∃ts v. ts, v |= ∀e.safe e ∧ (∃c.@c ¬(∀e.safe e))

The proof consists of a straightforward, but tedious, construction of a suited
traffic snapshot ts and view v. The essential parts of ts and v are shown in
Fig. 2. Vehicle e is currently engaged in a lane change, while the vehicle c drives
behind e on one lane. The view v indicated by the dashed rectangle is owned by
e, hence e can only perceive the physical size of c, and not its full safety envelope,
denoted by the dashed lines in front of c. For e, the situation seems perfectly
safe, since the part of c visible to e is disjoint from e’s reservation. In particular,
we get ts, v |= ∀e.safe e. However, if we switch the view to be owned by c, we
get overlapping reservations, i.e., we also have ts, v |= ∃c.@c¬(∀e.safe e).

e

c

Fig. 2. Unsafe situation with regular information

We can amend our controller specification, however, to also take the perspec-
tive of other vehicles into account.

DC ′ ≡ G (∀c d.¬(c = d) → @d¬〈re (c) ∧ re(d)〉 → ���τ @d¬〈re(c) ∧ re(d)〉)
LC ′ ≡ G (∀d.(∃c.@c (pcc c d) ∨ @d (pcc c d)) → ���r(d) ⊥)

Note that within the distance controller, we still only refer to the perspective of
a single vehicle, i.e., this specification can be implemented without coordinating

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 47

with other vehicles. In the lane change controller, however, we specifically refer
to views with different owners to restrict the possible transitions of one vehicle.
For implementations, this implies that information has to be passed between
vehicles. This is in line with our previous automata based specification of the
lane change controller for regular sensors [1].

With these definitions, we can prove a slightly refined safety theorem. We not
only require that safe e is satisfied for all vehicles e, but that safe e is satisfied,
after we switch to the view owned by e. This addition is sufficient, since for each
e, the views it owns contain the maximum amount of information about e.

theorem safety : |= (∀e.@e (safe e)) ∧ DC ′ ∧ LC ′ → G (∀e.@e (safe e))

The proof of this theorem is then similar to the safety proof in Sect. 3, insofar that
we start by induction on the length of transition sequences, and then proceed
by contradiction. We need to distinguish several more cases, but these cases
themselves are proven analogously to the original proof.

5 Conclusion

We presented a semantical embedding of the spatio-temporal logic HMLSL,
specifically designed to reason about motorway traffic, into Isabelle/HOL,
and thus implemented the first computer-based assistance for reasoning with
HMLSL. Isabelle/HOL as a framework enabled us to use its highly sophisti-
cated automatic proof methods. Within this embedding, we proved the absence
of collisions, if the controllers of all vehicles adhere to a certain set of constraints.
The constraints needed for proving safety differ, if we reduce the capability of
the sensors deployed in the vehicles. Parameterising our embedding with the
types of sensors allowed us to prove general theorems and rules of MLSL, which
could subsequently be used by all instantiations of HMLSL.

Of course, our level of abstraction is high, since we focus on the spatial aspects
of the motorway. However, our safety theorems show which capabilities vehicles
have to possess, to ensure safety on a motorway. E.g., for perfect information, the
controllers only have to adhere to the constraints implied by the reservations. For
regular information, the vehicles need more capabilities, in particular, the ability
to pass information between them. Olderog et al. examined ways to link a formal
model very similar to ours (i.e., based on similar notions of traffic snapshots and
views) with concrete controller implementations [19]. They specify high-level
controllers, where MLSL formulas may be used as guards and invariants. To
link our presentation to their work, the semantics of these controllers, as well as
the linking predicates that specify the connection between the dynamics and the
high-level controllers would have to be formalised within Isabelle/HOL. Then,
proving safety amounts to proving that the controllers satisfy our requirements.
Since Olderog et al. assumed perfect information for the controllers, their general
approach has to be refined to take less idealistic information into account.

Our current proofs show safety of motorway traffic, which can be achieved,
if the vehicles do not drive at all. Hence, proving liveness properties would be

48 S. Linker

an interesting extension of our current approach. Both sensor definitions we pre-
sented are very idealistic. For example, we did not take imprecision or probabilis-
tic failures into account. However, such properties could be encoded into more
complex sensor functions, e.g., by using probability measures in Isabelle/HOL
as defined by Hölzl [20]. Since our definition of HMLSL is parametric in the
sensor definition, the main properties of the logic can be reused, and only the
new implications of the sensor definition have to be proven.

Furthermore, the embedding is designed for motorway traffic, i.e., vehicles
driving into one direction on a multi-lane highway. A natural extension would be
to take oncoming traffic into account and could be done along lines of previous
work [21]. In this case, the model would probably just need slight adjustments,
e.g., to distinguish vehicles driving in different directions. Extensions to model
urban traffic could be defined following, e.g., Hilscher and Schwammberger [22]
or Xu and Li [23]. However, the models in both of these approaches differ strongly
from the model for motorway traffic.

References

1. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for prov-
ing safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM
2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24559-6 28

2. Linker, S., Hilscher, M.: proof theory of a multi-lane spatial logic. LMCS 11 (2015)
3. Linker, S.: Proofs for traffic safety: combining diagrams and logic. Ph.D. thesis,

University of Oldenburg (2015). http://oops.uni-oldenburg.de/2337/
4. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL–A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
5. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems

(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 15

6. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed,
and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, pp. 42–56. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 6

7. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550.
IEEE (2012)

8. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous
vehicles. In: ITSC, pp. 1658–1665. IEEE (2015)

9. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification
of autonomous vehicle platooning. arXiv preprint arXiv:1602.01718 (2016)

10. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
11. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent

programming languages. ASE 19, 5–63 (2012)
12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1, 134–152

(1997)
13. Campbell, J., Tuncali, C.E., Liu, P., Pavlic, T.P., Ozguner, U., Fainekos, G.: Mod-

eling concurrency and reconfiguration in vehicular systems: a π-calculus approach.
In: CASE, pp. 523–530 IEEE (2016)

http://dx.doi.org/10.1007/978-3-642-24559-6_28
http://dx.doi.org/10.1007/978-3-642-24559-6_28
http://oops.uni-oldenburg.de/2337/
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-642-21437-0_6
http://arxiv.org/abs/1602.01718

Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL 49

14. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
15. Braüner, T.: Hybrid Logic and Its Proof-Theory. Springer, Netherlands (2010)
16. Moszkowski, B.C.: A temporal logic for multilevel reasoning about hardware. Com-

puter 18, 10–19 (1985)
17. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory.

Log. Univers. 7, 7–20 (2013)
18. Bochmann, G.V., Hilscher, M., Linker, S., Olderog, E.R.: Synthesizing and verify-

ing controllers for multi-lane traffic maneuvers. FAC 29, 583–600 (2017)
19. Olderog, E.-R., Ravn, A.P., Wisniewski, R.: Linking discrete and continuous mod-

els, applied to traffic manoeuvrers. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R.
(eds.) Provably Correct Systems. NMSSE, pp. 95–120. Springer, Cham (2017).
doi:10.1007/978-3-319-48628-4 5

20. Hölzl, J.: Markov processes in Isabelle/HOL. In: CPP 2017, pp. 100–111. ACM
(2017)

21. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on
country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming
and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39698-4 12

22. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of
autonomous urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS,
vol. 9965, pp. 274–292. Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 16

23. Xu, B., Li, Q.: A spatial logic for modeling and verification of collision-free control
of vehicles. In: ICECCS, pp. 33–42. IEEE (2016)

http://dx.doi.org/10.1007/978-3-319-48628-4_5
http://dx.doi.org/10.1007/978-3-642-39698-4_12
http://dx.doi.org/10.1007/978-3-319-46750-4_16

Formalising and Monitoring Traffic Rules
for Autonomous Vehicles in Isabelle/HOL

Albert Rizaldi1(B), Jonas Keinholz1, Monika Huber1, Jochen Feldle2,
Fabian Immler1, Matthias Althoff1, Eric Hilgendorf2, and Tobias Nipkow1

1 Institut für Informatik, Technische Universität München, Munich, Germany
rizaldi@in.tum.de

2 Forschungsstelle RobotRecht, Julius-Maximilians-Universität Würzburg,

Würzburg, Germany

Abstract. Recent accidents involving autonomous vehicles prompt
us to consider how we can engineer an autonomous vehicle which
always obeys traffic rules. This is particularly challenging because traf-
fic rules are rarely specified at the level of detail an engineer would
expect. Hence, it is nearly impossible to formally monitor behaviours of
autonomous vehicles—which are expressed in terms of position, velocity,
and acceleration—with respect to the traffic rules—which are expressed
by vague concepts such as “maintaining safe distance”. We show how
we can use the Isabelle theorem prover to do this by first codifying the
traffic rules abstractly and then subsequently concretising each atomic
proposition in a verified manner. Thanks to Isabelle’s code generation,
we can generate code which we can use to monitor the compliance of
traffic rules formally.

1 Introduction

Formalising law in a logical language is hard. Since the formalisation of the
British Nationality Act in Prolog [19], there has yet to be another major break-
through in the formalisation of law. Even formalising traffic rules for highway
scenarios, which seems straightforward on the surface, possesses many challenges.
The challenges are not so much representing natural language specifications as
logical entities—which we term “codification”—as concretely interpreting pred-
icates such as overtaking, maintaining safe distance, or maintaining enough side
clearance—which we term “concretisation”. For example, how large is a distance
in order to be categorised as safe?

We are mainly motivated to formalise traffic rules for two purposes: (1) hold-
ing autonomous vehicles legally accountable; and (2) clarifying requirements for
engineering autonomous vehicles. It is necessary that traffic rules are codified in
a logical language so that engineers have a clear and well-defined specification

A. Rizaldi—This work is partially supported by the DFG Graduiertenkolleg 1480
(PUMA), DFG NI 491/16-1, European Commission project UnCoVerCPS 643921.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 50–66, 2017.
DOI: 10.1007/978-3-319-66845-1 4

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 51

against which the autonomous vehicles will be verified. However, codifying traf-
fic rules can be done abstractly by leaving predicates such as overtaking, safe-
distance, and side clearance undefined which still makes traffic rules unclear.
Therefore, these predicates need to be concretised through legal and engineering
analyses.

Formalising traffic rules entails choosing the logical language to codify the
rules. It must be expressive enough to codify natural language yet simple enough
to have automation for checking whether the behaviours of autonomous vehicles
satisfy (obey) the formulas (traffic rules). In line with our previous works for
formalising traffic rules [17], we advocate the use of higher-order logic (HOL)
as follows: we codify the rules in linear temporal logic (LTL)—which can be
defined in HOL—by assuming each predicate found in the legal text to be an
atomic proposition. We then define these predicates concretely in higher-order
logic (HOL). In this setting, HOL provides expressiveness while LTL allows
automation.

In this paper, we focus on the German traffic rules Straßenverkehrsordnung
(StVO) especially on the paragraph about overtaking. We choose this specific
paragraph, because we think that it represents the general challenge of codifica-
tion and concretisation of formalising traffic rules. The formalisation is performed
with the help of the Isabelle theorem prover in order to achieve a higher level of
trustworthiness. Our contributions are as follows:1

• We codify a part of the German overtaking traffic rules in LTL and show that
these formalise the traffic rules faithfully (Sect. 3).

• We provide a verified checker for detecting the occurrence of an overtak-
ing from a trace of a vehicle (Sect. 4). This requires a formal model of road
network—we use lanelets [3]—and functions for detecting lane occupied by a
vehicle.

• We provide a verified checker for determining a safe distance by consider-
ing the reaction time of the vehicle (Sect. 5); this is an improvement of our
previous work [18].

• We provide a trustworthy Standard ML code for overtaking and safe distance
checkers and that for monitoring the satisfaction of a trace against LTL for-
mulas (Sect. 6).

2 Preliminaries

Notations used in this paper closely resemble Isabelle/HOL’s syntax. Function
application is always written in an uncurried form: instead of writing f x y as
in the λ-calculus, we always write f(x, y). We write t :: τ to indicate that term
t has type τ . Types used in this paper could either be a base type such as R

for real numbers, or constructed via type constructors such as α list and setα
for list of type α and set of type α, respectively. For an xs ::α list, we can (1)
obtain its n-th element by writing xs !n; (2) obtain its length by writing |xs|;
1 Our Isabelle formalisation is in https://github.com/rizaldialbert/overtaking.

https://github.com/rizaldialbert/overtaking

52 A. Rizaldi et al.

(3) drop its first n elements by writing drop(n, xs); (4) obtain the first and the
last element by writing hd(xs) and last(xs), respectively. We use {t | x. P} as the
set builder notation where t is a term, P is a predicate, and x is a free variable
in t, which occurs in P . Another frequently used type in this work is a pair; we
can obtain the first element of a pair p ::α×β by the fst operator, fst(p) ::α, and
the second element by the snd operator, snd(p) ::β. For option data type, we use
None and Some instead of Haskell’s Nothing and Maybe; but we use Haskell’s
do-notation for monadic computation. In higher-order logic, a deduction with a
single premise is written as P =⇒ Q, and if there are n premises, we write
P1 =⇒ P2 =⇒ . . . =⇒ Pn =⇒ Q. In linear temporal logic, we shall use
G(φ) to denote properties that atomic proposition φ should be true at all times.

3 Codification of Traffic Rules

The Straßenverkehrsordnung (StVO)—or German traffic rules—is the main traf-
fic code for regulating the behaviours of motorised vehicles in Germany. It covers
both the scenarios for urban and highway driving: here we focus on the para-
graph about overtaking (§ 5 StVO) on highway scenarios. The English version
of § 5(4) StVO is:

When changing the lane to the left lane during overtaking, no following
road user shall be endangered. [. . .] During overtaking, the driver has to
change from the fast lane to the right lane as soon as possible. The road
user being overtaken shall not be obstructed.

3.1 Legal Analysis

Overtaking in right-hand-traffic countries could be divided roughly into three
parts: changing to the left lane, passing the vehicle in front, and returning back
to the original lane (see Fig. 1). Whenever a vehicle changes to the left lane
to overtake another road user, the driver has to ensure that those on the fast
lane will not be endangered. If a vehicle that becomes a following vehicle might
be endangered in any way, overtaking is prohibited [5, § 5 StVO, recital 33].
However, this does not mean that any interference with the following traffic
needs to be avoided. If, by the overtaking manoeuvre, the following road user is
led to reduce its speed safely and will not collide with the overtaking vehicle [4, p.
481], [15, p. 248], the vehicle is allowed to change to the left lane. This overtaking
decision must consider the speed difference of the overtaking and the following
car.

After overtaking a slower vehicle in front, the overtaking vehicle needs to
return to the right lane. This is a special manifestation of the “drive on the
right”-rule in § 2(2) StVO [7, § 5 StVO Rn. 32]. When returning to the right
lane, other road users must not be forced to brake. The overtaking vehicle also
needs to keep a safe distance to the following traffic. However, there is no fixed
value for this distance and the decisive factor is that, in the case of an unexpected

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 53

t1 t2 t3 t4

Ego
vehicle

Other
vehicle

Fig. 1. Illustration of overtaking. The curve represents the overtaking trajectory. We
show the positions of the ego vehicle (filled rectangle) at four different time points
t1, t2, t3, and t4. The positions of the other vehicle (empty rectangle) are shown only
for t1 and t4.

emergency brake, the following vehicle must be able to stop behind the vehicle
in front. This depends on the road surface and the speed of both cars [9, § 4
StVO recital 5]. With human drivers, the response time needs to be taken into
account.

The last sentence regarding obstruction serves as a protection of the slower
vehicle being overtaken. This “no obstruction” rule has the same meaning of
keeping a safe distance to the vehicle being overtaken as in the previous para-
graphs.

3.2 LTL Formulas of Traffic Rules

In order to codify traffic rules in LTL, we need to identify relevant atomic propo-
sitions first. By using the previous legal analysis, we list required atomic propo-
sitions with their intended interpretation in Table 1; references to time points
t1, t2, t3, and t4 should be seen in conjunction with illustration in Fig. 1. The
LTL formulas of the traffic rules are:

Table 1. Atomic propositions and its intended interpretation

Atomic proposition Interpretation

overtaking Performing an overtaking manoeuvre—[t1; t4)

begin-overtaking Overtaking and starting to move to the next lane—[t1; t2)

merging Starting to merge to the original lane—t3

finish-overtaking Overtaking and returning back to the original lane—[t3; t4)

sd-rear Maintaining a safe distance to the rear vehicle on all lanes

safe-to-return Leave large enough distance for merging to the original lane

54 A. Rizaldi et al.

1. When changing the lane to the left lane during overtaking, no following road
user shall be endangered.

Φ1 := G (begin-overtaking −→ sd-rear)

As mentioned in the previous legal analysis, the word ‘endangered’ can be
concretely interpreted as maintaining a safe distance to the vehicles in the
fast lane.

2. During overtaking, the driver has to change from the fast lane to the right
lane as soon as possible.

Φ2 := G (merging ←→ safe-to-return)

The phrase ‘as soon as possible’ in this rule is interpreted as the time at which
the ego vehicle has left a large enough distance. From this formula, one can
infer that atomic proposition safe-to-return and merging must evaluate to
true at the same time; this agrees with the natural language interpretation
of the phrase ‘as soon as possible’ too.

3. The road user being overtaken shall not be obstructed.

Φ3 := G (finish-overtaking −→ sd-rear)

Here the word ‘obstructed’ is interpreted as maintaining safe distance to the
vehicle being overtaken; hence the atomic proposition sd-rear in the conclu-
sion of the implication.

3.3 Monitoring Traffic Rules

One intended application of our work is to determine whether the behaviours
of an autonomous vehicle recorded in a black box comply with (overtaking)
traffic rules or not. This black box is assumed to record not only data from the
ego vehicle but also those from other road users observed by the ego vehicle
or obtained from vehicle-to-vehicle (V2V) communication. In order to analyse
this black box formally, we model the recorded data as discrete time runs (or
paths). Each run is the evolution of a vehicle’s state consisting of continuous
data such as position, velocity, and acceleration—all comprise values in x- and
y-dimensions. We assume that the black box also contain information about the
occupancies of a vehicle; they are represented by rectangles with time-varying
width and length.

For formal analysis purposes, we need to convert these runs into traces; a
corresponding trace of a run is defined here as the evolution of the Boolean
values (truth values) over the predefined set of atomic propositions (a word
over the set of atomic propositions). This is the next challenge for formalising
traffic rules: concretely defining each atomic proposition in Table 1 in terms of
the continuous and discrete variables in the runs. Section 4 concretises the first
four atomic propositions in Table 1 and Sect. 5 concretises the last two atomic
propositions.

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 55

4 Concretising the Overtaking Predicate

In this paper, we improve our previous definition of overtaking in [17] by defin-
ing four instead of two time points; these points are labelled from t1 to t4
in Fig. 1. This is required for concretising begin-overtaking, merging, and
finish-overtaking. Overtaking starts at time point t1, which is the earliest
time to touch the lane divider; in [t0; t1) the vehicle always stays in the same
lane. It then continues until t2, at which it enters the next lane completely, and
stays in this lane until t3, at which it touches the lane divider again. Overtaking
is finished at t4 when it re-enters the original lane completely. In order to detect
and formalise such geometrical interpretations, we need a formal model of lanes
and a verified function for lane detection. At t1 in Fig. 1, for example, the lane
detection should tell us that it is in the rightmost lane and starts to touch the
lane boundary, and at t2, it is only in the leftmost lane.

4.1 Lanelets

We use lanelet [3] as a formal model of a lane in this work. A lanelet consists
of two nonempty monotone polygonal chains, each for representing the left and
right boundary.

Definition 1 (Polygonal chains). An xs :: (R2 × R
2) list is a polygonal chain

if and only if

∀ i. i + 1 < |xs| −→ snd (xs ! i) = fst (xs ! (i + 1)).

endpoints

p′
0 p′

1

p′
2 p′

3

p′
4 p′

5

p5p4

p3p2

p1p0

x

between-sety(x)

lanelet 0

lanelet 1

boundary 0

boundary 1

boundary 2
counter-clockwise test

clockwise test

lane-detection
= Lane(0)

lane-detection
= Boundaries [0]

Fig. 2. An example of two lanelets with the direction to the right. The upper and
lower polygonal chains for lanelet 1 is points-le = [(p′

0, p
′
1), (p

′
1, p

′
2), . . . , (p

′
4, p

′
5)] and

points-ri = [(p0, p1), (p1, p2), . . . , (p4, p5)], respectively. One restriction used in this for-
malisation is that the endpoints have the same value in x-dimension i. e. fst(p0) =
fst(p′

0) and fst(p5) = fst(p′
5). The grey area is the drivable area for lanelet 1. Both the

rightmost lanelet and the rightmost boundary are identified with 0, and they increase
as we move to the leftmost lanelet and boundary.

56 A. Rizaldi et al.

Definition 2 (Monotone polygonal chains w.r.t x-dimension). A
monotone polygonal chain w.r.t x-dimension is a polygonal chain whose x-
element always increases:

∀ i < |xs|. fst (fst (xs ! i)) < fst(snd (xs ! i)).

The property of being monotone for a polygonal chain ensures that for each x,
we have a unique y such that (x, y) is in the polygonal chain. Therefore, given a
polygonal chain points, we can always create a function f-of-x from the set of all
real numbers in x-dimension to the set of real numbers in y-dimension.

Definition 3 (Lanelets). A lanelet consists of two nonempty monotone polyg-
onal chains w.r.t. x-dimension, points-le and points-ri, which do not intersect and
have the same endpoints in x-dimension.

As defined in [3], there is no requirement of the relative placement between
the two polygonal chains; points-le could be positioned above points-ri (from a
bird’s-eye view) or vice-versa. If it is the former then the lanelet has the direction
to the right and to the left if it is the latter. Two polygonal chains points1 and
points2 are called non-intersecting if there does not exist any two intersecting
chains c1 ∈ set points1, c2 ∈ set points2.

Note that, with this definition, we could not model a lane which has a 90◦

turn. This is because our definition of monotone polygonal chain is fixed w.r.t.
x-dimension. Lanelets in [3] do not have this restriction, but we can circumvent
this problem by using a more general definition of monotone polygonal chains
w.r.t to line l and split a polygonal chain into a minimal number of monotone
polygonal chains [16]; each with its own coordinate system. We impose this
restriction because it eases the following definition of drivable areas and makes
the checking of intersecting polygonal chains easier.

Definition 4 (Drivable area). By using the function representation of
the left and right boundary f-of-xl and f-of-xr, and defining first-point :=
fst(hd(points-le)), last-point := fst(last(points-le)), we can define the drivable area
as follows (see Fig. 2 for graphical illustration).

setx :=
{
x

∣
∣ x. first-point ≤ x ≤ last-point

}
,

between-sety(x) :=
(
min(f-of-xl(x), f-of-xr(x)); max(f-of-xl(x), f-of-xr(x))

)
,

drivable-area :=
{
(x, y)

∣
∣ x y. x ∈ setx ∧ y ∈ between-sety(x)

}
.

4.2 Lane Detection

In order to detect the lanelet a rectangle is currently occupying, we need first
to test whether there is a lanelet in which a rectangle is located completely
inside. To achieve this, we need to test whether the four vertices of a rectangle
are located in the lanelet, and none of the four edges intersects with any lane
boundary of the lanelet. Hence, we need two primitives here: segment intersection
and point-in-lanelet test.

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 57

Segments Intersection. First, we differentiate between lines and segments. A line
in R

2 is characterised by the line equation ax+by = c; a segment is a contiguous
subset of a line.

Definition 5 (Closed Segment). A segment is a pair of points (p, q) :: R2×R
2

and the set of all points on this segment is

closed-segment (p, q) =
{
(1 − u) · p + u · q

∣
∣u :: R. 0 ≤ u ≤ 1

}
.

With this definition, we can give the correctness and completeness condition for
the function segment-intersect we wish to define as follows:

segment-intersect(s1, s2) ⇐⇒ ∃ p. p ∈ closed-segment(s1) ∧ p ∈ closed-segment(s2)

By using the definition of closed segment above, the formula on the right hand
side of the bi-implication above can be reformulated as:

∃u1 u2. 0 ≤ u1 ≤ 1∧ , 0 ≤ u2 ≤ 1 ∧ (1−u1) · s1 +u1 · s2 = (1−u2) · s1 +u2 · s2,

which is a linear arithmetic formula. Therefore, we can use decision procedures
for linear arithmetic problem to define segment-intersect. In this work, we imple-
ment a specialised instance of Fourier–Motzkin variable elimination algorithm
for this problem; readers are encouraged to consult [12] and our implementation
in Isabelle for the detailed implementation. We have proved with Isabelle theo-
rem prover that this function indeed satisfies the correctness and completeness
condition above.

Point-in-Lanelet Test. Let us consider a lanelet which has the direction to the
right and is parameterised by points-le and points-ri as its left and right boundary,
respectively, as defined in Definition 3. To check whether a point is in a lanelet, we
need to perform clockwise and counter-clockwise tests. The clockwise test (cw)
for a triple (p1, p2, p3) checks whether the sequence of points in the triple has a
clockwise orientation; the counter-clockwise (counter-cw) test does the opposite
(see Fig. 2). The point-in-lanelet test is defined by the following function.

point-in-lanelet(p) := let c1 = find-segment(points-le, p);

c2 = find-segment(points-ri, p)

in cw(p, fst(c1), snd(c1)) ∧ counter-cw(p, fst(c2), snd(c2))

The point-in-lanelet(p) first finds the two segments c1 and c2 in the left
and right polygonal chains, respectively, such that in-x-interval(c1, x) and
in-x-interval(c2, x) hold (for instance c1 = (p′

4, p
′
5) and c2 = (p4, p5) in Fig. 2).

With these two segments, we only need to perform a counter-clockwise test for
the triple (p, fst(c2), snd(c2)) and a clockwise test for the triple (p, fst(c1), snd(c1))
(see Fig. 2). This will guarantee that the point (x, y) is between the segments c1
and c2, which in turn ensures that the point is in the drivable area.

58 A. Rizaldi et al.

Theorem 1. For a right-direction lanelet defined in Definition 3 with points-le
and points-ri as its left and right boundary, respectively, we have

point-in-lanelet(p) =⇒ p ∈ drivable-area.

Previously, we have explained how to test whether a rectangle is located inside a
lanelet completely. However, this is not the only possible result of lane detection;
we define a new data type to represent all possible results of our lane detection:

datatype detection-opt = Outside | Lane (n :: N) | Boundaries (ns :: N list)

Each argument in the constructor Lane and Boundaries represents the lanelet
identifier at which it is currently located or a list of boundaries with which
a rectangle is intersecting, respectively. Figure 2 provides two examples of lane
detection. The first rectangle intersects with boundary 0 only and hence our lane
detection primitive returns Boundaries([0]). The second rectangle meanwhile is
located inside lanelet 0 and hence our lane detection primitive returns Lane(0).

The function lane-detection takes a rectangle and lane boundaries as argu-
ments and returns an element of type detection-opt. It checks first whether there
is any lanelet in which a rectangle is completely located and, if there is no such
lanelet, it tests for the intersections between the lane boundaries and rectangles.
This can be easily done by checking intersections between relevant segments in
the lane boundaries and edges in the rectangle. If there is no such lane boundary,
we conclude that the rectangle is outside of any lanelet.

4.3 Overtaking Detection

We can use the previously described lane detection function for detecting over-
taking as follows. Assuming that the vehicle is located in lane n initially, we use
the following function to detect t1 and t2:

increase-lane rects := do {(t1, r1) ← start-inc-lane(rects, n, 0);
(t2, r2) ← finish-inc-lane(r1, (n + 1), (t1 + 1));
Some ((t1, t2), r2)}

The function start-inc-lane detects t1 by continuously checking whether the occu-
pied lane is still n and stops immediately whenever the lane detection returns
the boundary n + 1. Function finish-inc-lane detects t2 by checking whether the
lane is still on the boundary n+1 and stops immediately on the first occurrence
of the lane n + 1. Notice that [t0; t2) and [t2; t4) are identical and we can there-
fore detect t3 and t4 similarly as we do for t1 and t2, respectively, with function
decrease-lane. The correctness of the function increase-lane2 is shown next.

2 We also have similar theorems for decrease-lane but they are omitted for brevity.

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 59

Theorem 2. Assuming that the initial lane is n, we have the following deduc-
tion:

increase-lane rects = Some (t1, t2, rest) =⇒ rects′ = drop(t1 + 1, rects) =⇒
∧ t1 < |rects| ∧ t1 < t2 ∧ t2 < t1 + |rects′|
∧ lane-detection (rects ! t1) = Boundaries [n + 1]
∧ ∀m. m < t1 −→ lane-detection (rects !m) = Lane (n)
∧ lane-detection (rects ! t2) = Lane (n + 1)
∧ ∀m > t1. m < t2 −→ lane-detection (rects !m) = Boundaries [n + 1]

The overtaking detection can be defined by using increase-lane and decrease-lane
as follows. The primitive looks for t1 and t2 with increase-lane first and—if we
have found this—continues to search for t3 and t4 with decrease-lane. If it cannot
find t1 and t2 initially, we can conclude that there is no occurrence of overtaking
at all. It could also be that we found t1 and t2 without the corresponding pair t3
and t4. In this case, we discard t1 and t2 and start to look for a new occurrence
of overtaking from one lane to the left of the original lane.

5 Concretising the Safe Distance Predicate

The safe distance problem has been previously explored in our previous work [18]
and, in this work, we improve it by considering nonzero reaction time. In this
problem, we are interested in the scenario where there are two vehicles involved:
ego and other vehicle which are located at s0,e and s0,o, respectively. These
positions are the frontmost part of the ego vehicle and the rearmost part of the
other vehicle, respectively. We assume that the other vehicle is located in front of
the ego vehicle initially, s0,e < s0,o, and the other vehicle performs an emergency
brake with maximum deceleration ao < 0. After 0 < δ seconds of reaction time,
the ego vehicle also performs an emergency brake with maximum deceleration
ae < 0. We can define the braking movement of the other vehicle mathematically
as follows:

so(t) :=

{
po(t) if 0 ≤ t ≤ tstop,o

po(tstop,o) if tstop,o ≤ t
(1)

where po(t) := s0,o + vot + 1
2aot

2 and tstop,o := − vo
ao

. To cater for the reaction
time delay, the braking movement of the ego vehicle defined here is slightly
different than what we have defined in our previous work [18]:

ue(t) :=

⎧
⎪⎨

⎪⎩

qe(t) if 0 ≤ t ≤ δ

p∗
e(t − δ) if δ ≤ t ≤ tstop,e + δ

p∗
e(tstop,e) if tstop,e − δ ≤ t

(2)

with qe(t) := s0,e + vet, p∗
e(t) := qe(δ) + vet + 1

2aet
2, and tstop,e := − ve

ae
. As

the definition of qe shows, we can now model that the ego vehicle maintains its

60 A. Rizaldi et al.

current speed for δ seconds before performing an emergency brake. The stop-
ping distances for both vehicles ustop,e and sstop,o are the positions where the
derivative of ue(t) and so(t), respectively, are equal to zero; we prove that these
are

ustop,e := qe(δ) − v2
e

2 · ae
and sstop,o := s0,o − v2

o

2 · ao
. (3)

The problem now is to determine a sufficient distance s0,o − s0,e such that for
T = [0;∞) the predicate no-collision-react (T) := ¬ (∃ t ∈ T. ue(t) = so(t)) is
true.

Following the methodology in our previous work [18], we analyse all possible
cases to obtain the lower bound of the distance that is still safe. There are
five possible cases as shown in Fig. 3. These five cases are obtained from case
distinction based on stopping distances ustop,e. In case 1 , the ego vehicle stops
before the initial position of the other vehicle and in case 2 it stops after the
stopping position of the other vehicle; in case 3 , 4 , and 5 , it stops in between.
Case 3 is characterised by the condition where the ego position at time δ is
already in front of the other vehicle while the fourth and the fifth is not. In case
4 , the ego vehicle stops after so(δ) i. e. the position of the other vehicle at time
t = δ, while in case 5 , the ego vehicle stops before.

As Fig. 3 shows, we can deduce that there will be no collision for case 1
because the ego vehicle stops before the starting position of the other vehicle.

Theorem 3 (Case 1). ustop,e < s0,o =⇒ no-collision-react [0;∞)

From this theorem, we can replace the definition of ustop,e with the expression
in Eq. 3 so that we obtain safe-distance0 := ve · δ − v2

e/(2 · ae) as our zeroth
safe distance expression. In cases 2 and 3 , the stopping positions of the ego
vehicle are after those of the other vehicles’. Hence, we can deduce collisions by
using the Intermediate Value Theorem (IVT). In case 4 , we cannot deduce a

t

s(t)

s0,o

so(tstop,o)

δ

so

ue — case 1

ue — case 3

ue — case 2

ue — case 4

ue — case 5

Fig. 3. Cases obtained according to relative positions of ego’s stopping distance to that
of the other vehicle.

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 61

collision or a collision freedom just by looking at the stopping distances of the
ego vehicle relative to the other vehicle; the following theorem helps to deduce
these.

Theorem 4 (Case 4). By defining

v∗
o :=

{
vo + aoδ if δ ≤ tstop,o

0 otherwise
(4)

and t∗stop,o := − v∗
o

ao
, s∗

0,o := so(δ), and s∗
0,e := qe(δ), we have

s0,o ≤ustop,e =⇒ ustop,e < sstop,o =⇒ no-collision-react [0;∞) ⇐⇒

¬
(

ao > ae ∧ v∗
o < ve ∧ s∗

0,o − s∗
0,e ≤ (v∗

o − ve)2

2 · (ao − ae)
∧ tstop,e < t∗stop,o

)
.

Note that the definition of v∗
o depends on the condition whether the reaction

time is smaller than the stopping time of the other vehicle tstop,o. When δ ≤
tstop,o, we can rearrange the deduction by first weakening the bi-implication into
implication and replacing the definition of ustop,e and sstop,o with their respective
definitions in Eq. 3, and then use de Morgan’s rule into:

s0,o ≤ ustop,e =⇒ (
ao > ae ∧ v∗

o < ve ∧ tstop,e < t∗stop,o
)

s0,o − s0,e > veδ − v2
e

2ae
+

v2
o

2ao︸ ︷︷ ︸
safe-distance1

=⇒ s0,o − s0,e >
(vo + aoδ − ve)2

2 · (ao − ae)
− voδ − 1

2
aoδ2 + veδ

︸ ︷︷ ︸
safe-distance2

=⇒ no-collision-react [0;∞).

If the first assumption in the deduction above is false, then we are in case 1
and Theorem 3 guarantees the situation to be collision free. Hence, to derive
a checker, we can safely ignore the first assumption above and put the second
assumption as a condition in an if statement. Now, we are left with two expres-
sions for safe distance, which can be chosen with the following lemma.

Lemma 1. ao > ae =⇒ safe-distance1 ≤ safe-distance2.

From this lemma, we check whether the distance is larger than safe-distance2
when ao > ae ∧ v∗

o < ve ∧ tstop,e < t∗stop,o is true. Otherwise, we check the
distance against safe-distance1 because Theorem 4 suggests that this will lead to
collision freedom.

In case 5 , we can deduce a collision freedom. To see this, we can reformulate
the problem into a safe distance problem without reaction time delay as we did in
our previous work [18] with δ is set to zero. Graphically speaking, we ignore any
behaviour that has happened to the left of δ in Fig. 3 and, in this reformulation,
case 5 becomes case 1 in zero reaction time delay setting. As the deduction
in [18] suggests, there will be no collision.

62 A. Rizaldi et al.

Theorem 5 (Case 5).

so ≤ ustop,e =⇒ ustop,e < sstop,o =⇒ ustop,o < so(δ) =⇒ no-collision-react [0; ∞)

By using Eq. 3, the premise ustop,o < so(δ) in the deduction above can be refor-
mulated so that we can obtained the third safe distance expression for δ ≤ tstop,o
as safe-distance3 := veδ−v2

e/2ae−voδ−aoδ
2/2. To summarise, we can combine

all the logical analyses above into the following checker which we have proved in
Isabelle theorem prover to be sound and complete.

checker :=
let dist = s0,o − s0,e in

if dist > safe-distance0 ∨ (δ ≤ tstop,o ∧ dist > safe-distance3) then True

elseif δ ≤ tstop,o ∧ a0 > ae ∧ v∗
o < ve ∧ tstop,e < t∗stop,o then

dist > safe-distance2 else dist > safe-distance1

We can now define the atomic proposition sd-rear and safe-to-return sim-
ply as an application of the safe distance checker. However, the analysis above
have the opposite assumption about the relative position of the ego and the other
vehicle. Therefore, we have to properly swap the values of position, velocity, and
maximum deceleration between the ego and the other vehicle. The key differ-
ence between the definition of atomic proposition sd-rear and safe-to-return
is that the former uses the checker w.r.t. the vehicle in the left lanelet, while the
latter is w.r.t. the vehicle in the right lanelet.

Since both sd-rear and safe-to-return are defined by using the notion of
safe distance, readers might think that the rule of returning to the right lane
as soon as possible (Φ2) might not be valid because the safe distance condition
might hold immediately after the change to the left lane. This would not happen
due to the assumption s0,e < s0,o in the safe distance problem explained in the
beginning of this section; our checker checks this condition implicitly3. Hence,
during the monitoring of Φ2, the values between the ego and the other vehicle are
swapped and the previous condition becomes s0,o < s0,e. After the ego vehicle
change to the left lane and is still behind the other vehicle, this condition will
be false and hence our formalisation of Φ2 excludes this scenario.

6 Monitoring Overtaking Traffic Rules

With the concrete definition of the atomic propositions in Table 1, we can define
a converter from a run to a trace for each atomic proposition. These traces are
then combined into a word over the set of all atomic propositions for monitoring
the satisfaction of the codified traffic rules in LTL. For this purpose, we need
to define the semantics we use in this work. Since runs from an autonomous
vehicles’ planners are usually finite, we use the semantics in [6]4 which interprets
LTL formulas over finite traces.
3 This can be checked in our Isabelle formalisation.
4 The semantics for LTL is pretty standard and, hence, we omit them for brevity.

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 63

−30 −20 −10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

−2

0

2

4

6

t0

t0

t0
t1 t2 t3 t4

t1 t2 t3 t4

t1 t2 t3 t4

Fig. 4. Example of overtaking scenario. The curve is the trajectory of the ego vehicle we
want to monitor. All vehicles drive to the right direction. Ego vehicle (solid rectangle)
is positioned at (0, 0) and the first vehicle (double rectangle) at (−25, 4.5) initially.
Both vehicles have initial velocity of 16.7 ms−1. The second vehicle (dashed rectangle)
is located at (19, 0) with initial velocity of 11.1 ms−1. All vehicles except the ego vehicle
drive with constant velocity. For each vehicle we show the position at time t1 = 0.8 s,
t2 = 1.8 s, t3 = 7.3 s, and t4 = 8.4 s.

As a numerical example, we consider a situation with two lanelets (Fig. 4) in
which the first vehicle (double rectangle) is positioned behind the ego vehicle in
the leftmost lane. The ego vehicle (solid rectangle) intends to overtake the second
vehicle (dashed rectangle); both are at the rightmost lane initially. Each vehicle
has the same width (2 m), length (4.8 m), reaction time (1 s), and maximum
deceleration (−8 ms−2). The run for this numerical example is produced by the
controller for autonomous vehicles found in [20].

In order to monitor this run on the code level, we need to generate the code
for the environment (lanelets). From Definition 3, we need to ensure that the two
boundaries of each lanelet are not intersecting. To achieve this, we have imple-
mented a polygonal chain intersection test according to the algorithm in [16] and
proved its correctness. The algorithm is based on a sweep-line algorithm which,
as the sweeping progresses, it checks whether each pair of chain in each boundary
are relevant or not and, if the pair is relevant, it performs an intersection check
as explained in Sect. 4.

All code required for monitoring the codified traffic rules, including the
semantics of the LTL, are generated automatically by using Isabelle’s code gen-
erator [8]. Therefore, we only have to trust the Isabelle’s code generator for the
correctness of our Standard ML’s code. However, most of the formalised func-
tions used for monitoring traffic rules require real numbers data type, and code
generation with real numbers is usually done with the help of Interval Arith-
metic [10] or Affine Arithmetic [11]. Since this is a numerical example only,
mapping real numbers to machine’s floating-point numbers is sufficient.

The results of the simulation show that all overtaking traffic rules except
the merging rule (Φ2) are satisfied. Particularly, rule Φ2 is not satisfied due
to the ‘if’ (←−) fragment. If we weaken rule Φ2 into Φ′

2 := G (merging −→
safe-to-return), the run from the controller still satisfies rule Φ′

2.

64 A. Rizaldi et al.

7 Related Work and Conclusions

The monitoring part of our work belongs to the research area called runtime ver-
ification; Küster [13] provides a complete overview of this research area. Specif-
ically, our work can be categorised as runtime monitoring. Our work does not
construct a monitor automaton [2] as in most monitoring techniques but simply
executes the semantics of LTL over finite-length traces. This is sufficient because
we wish to verify traces produced by autonomous vehicles’ planners whose dura-
tion are usually not very long. The other intended application of our work is
to perform automated offline checking of a recorded trace for compliance with
traffic rules.

In terms of the logic used for specifying properties, there is signal temporal
logic (STL) [14] which is expressive enough to specify real-time properties. This
is particularly useful for relaxing the requirement to satisfy a rule within a certain
duration of time such as in the ‘if’ part of Φ2. Another expressive logic for runtime
monitoring is metric first-order temporal logic (MFOTL) [1] which is capable of
handling relations that change over time such as safe distance. However, we stick
to logic without first-order fragment because we do not need to reason about
first-order structure for formalising the presented subset of traffic rules.

In comparison to [18], we have improved the analysis by taking the reac-
tion time into consideration. This is required because autonomous vehicles will
interact with human drivers and they clearly do not have zero reaction time. To
achieve this, we have to perform five instead of three case analyses in terms of
the relative stopping distance between the ego and the other vehicles. Addition-
ally, during our formalisation effort, we found out that we need two additional
case analyses regarding the relative duration of the stopping time and reaction
time. As a result, we obtain a general checker (safe distance expression) which
has been proved to be sound and complete in Isabelle/HOL.

In comparison to [17], we now have identified four instead of two time points
when detecting overtaking occurrences. To achieve this, we need to implement
two additional checkers for detecting the additional time points and formally
verify them in Isabelle/HOL. As a result, we are now able to specify traffic rules
which requires these two time points: safe distance during the beginning of the
overtaking manoeuvre and merging.

To conclude, we have formalised a subset of overtaking traffic rules in
Isabelle/HOL. By formalising traffic rules, we do not mean only the codification
of traffic rules in a logical language where abstract concepts such as overtak-
ing and safe distance are left unspecified: we went deeper by concretising these
abstract concepts through legal and mathematical analysis. Through these two
analyses, we obtain unambiguous, precisely defined specifications from overtak-
ing traffic rules for autonomous vehicles. Furthermore, from these formalised
traffic rules, we show how to monitor the satisfaction of a run obtained from a
planner for autonomous vehicles.

Formalising and Monitoring Traffic Rules for Autonomous Vehicles 65

References

1. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

3. Bender, P., Ziegler, J., Stiller, C.: Lanelets: efficient map representation for
autonomous driving. In: Proceedings of the IEEE Intelligent Vehicles Symposium,
Michigan, MI, USA, pp. 420–425 (2014)

4. Bundesgerichtshof: Sorgfaltspflichten beim überholen auf der autobahn, pp. 481–
482. Neue Juristische Wochenschrift: NJW (1954)

5. Burmann, M., Heß, R., Hühnermann, K., Jahnke, J., Janker, H.: Straßen-
verkehrsrecht: Kommentar, 24th edn. C.H. Beck (2016)

6. Giannakopoulo, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: Proceedings of the 16th Annual International Con-
ference on Automated Software Engineering (ASE), San Diego, CA, USA, pp.
412–416 (2001)

7. Gutt, S.: Gesamtes Verkehrsrecht, 1st edn. Nomos (2014)
8. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:

Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12251-4 9

9. Hentschel, P., König, P., Dauer, P.: Straßenverkehrsrecht: Kommentar, 43rd edn.
C.H. Beck (2015)

10. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In:
Proceedings of the ACM SIGSAM International Workshop on Programming Lan-
guages for Mechanized Mathematics Systems (PLMMS 2009), Munich, pp. 38–45
(2009)

11. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection.
In: Proceedings of the International Conference on Certified Programs and Proofs
(CPP), Mumbai, India, pp. 129–136 (2015)

12. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of
View. Texts in Theoretical Computer Science. EATCS Series, 2nd edn. Springer,
Heidelberg (2016)

13. Küster, J.C.: Runtime verification on data-carrying traces. Ph.D. thesis, The
Australian National University, October 2016

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3 12

15. Oberlandesgericht Karlsruhe: Gefährdung des Nachfolgendes beim Überholen.
Neue Zeitschrift für Verkehrsrecht (NZV), pp. 248–249 (1992)

16. Park, S.C., Shin, H.: Polygonal chain intersection. Comput. Graph. 26(2), 341–350
(2002)

17. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous
vehicles. In: Proceedings of the 18th IEEE International Conference on Intelligent
Transportation Systems, Las Palmas de Gran Canaria Canary Islands, Spain, pp.
1658–1665 (2015)

18. Rizaldi, A., Immler, F., Althoff, M.: A formally verified checker of the safe dis-
tance traffic rules for autonomous vehicles. In: Rayadurgam, S., Tkachuk, O. (eds.)
NFM 2016. LNCS, vol. 9690, pp. 175–190. Springer, Cham (2016). doi:10.1007/
978-3-319-40648-0 14

http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/978-3-319-40648-0_14
http://dx.doi.org/10.1007/978-3-319-40648-0_14

66 A. Rizaldi et al.

19. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The British Nationality Act as a logic program. Commun. ACM 29(5), 370–386
(1986)

20. Werling, M., Ziegler, J., Kammel, S., Thrun, S.: Optimal trajectory generation for
dynamic street scenarios in a frenet frame. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, Anchorage, AK, USA, pp. 987–993
(2010)

Software Verification Tools

Making Whiley Boogie!

Mark Utting1(B), David J. Pearce2, and Lindsay Groves2

1 University of the Sunshine Coast, Sippy Downs, Australia
utting@usc.edu.au

2 Victoria University of Wellington, Wellington, New Zealand
{david.pearce,lindsay}@ecs.vuw.ac.nz

Abstract. The quest to develop increasingly sophisticated verification
systems continues unabated. Tools such as Dafny, Spec#, ESC/Java,
SPARK Ada, and Whiley attempt to seamlessly integrate specification
and verification into a programming language, in a similar way to type
checking. A common integration approach is to generate verification con-
ditions that are handed off to an automated theorem prover. This pro-
vides a nice separation of concerns, and allows different theorem provers
to be used interchangeably. However, generating verification conditions
is still a difficult undertaking and the use of more “high-level” inter-
mediate verification languages has become common-place. In particular,
Boogie provides a widely used and understood intermediate verification
language. A common difficulty is the potential for an impedance mis-
match between the source language and the intermediate verification
language. In this paper, we explore the use of Boogie as an intermedi-
ate verification language for verifying programs in Whiley. This is note-
worthy because the Whiley language has (amongst other things) a rich
type system with considerable potential for an impedance mismatch. We
report that, whilst a naive translation to Boogie is unsatisfactory, a more
abstract encoding is surprisingly effective.

Keywords: Whiley · Boogie · Verifying compiler · Intermediate verifi-
cation language · Semantic translation · Impedance mismatch

1 Introduction

The idea of verifying that a program meets a given specification for all pos-
sible inputs has been studied for a long time. According to Hoare’s vision,
a verifying compiler “uses automated mathematical and logical reasoning to
check the correctness of the programs that it compiles” [15]. A variety of tools
have blossomed in this space, including ESC/Java [14], Spec# [4], Dafny [18],
Why3 [13], VeriFast [16], SPARK Ada [20], and Whiley [26,30]. Automated The-
orem Provers are integral to such tools and are responsible for discharging proof
obligations [4,7,14,16]. Various Satisfiability Modulo Theory (SMT) solvers are
typically used for this, such as Simplify [9] or Z3 [21]. These provide hand-crafted
implementations of important decision procedures, e.g. for linear arithmetic [12],

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 69–84, 2017.
DOI: 10.1007/978-3-319-66845-1 5

70 M. Utting et al.

congruence [24] and quantifier instantiation [22]. Different solvers are appropri-
ate for different tasks, so the ability to utilise multiple solvers can improve the
chances of successful verification.

Verifying compilers often target an intermediate verification language, such
as Boogie [3] or WhyML [6,13], as these provide access to a range of different
solvers. SMT-LIB [29] provides another standard readily accepted by modern
automated theorem provers, although it is often considered rather low-level [6].
One issue faced by intermediate verification languages is the potential for an
impedance mismatch [26]. This arises when constructs in the source language
cannot be easily translated into those of the intermediate verification language.
In this paper, we explore Boogie as an intermediate verification language for the
Whiley verifying compiler. A particular concern is the potential for an impedance
mismatch arising from Whiley’s expressive type system which, amongst other
things, supports union, intersection and negation types [25]. The obvious trans-
lation between Whiley and Boogie is rather unsatisfactory, but with care, a
suitable encoding can be found that works surprisingly well.

The contributions of this paper include:

– a novel translation from Whiley programs to Boogie. Whilst in many cases
this is straightforward, there are a number of challenges to overcome arising
from the impedance mismatch between Whiley and Boogie.

– the results of an empirical comparison between Boogie/Z3 and the native
Whiley verifier. The results indicate that using Boogie to verify Whiley pro-
grams (via our translation) is competitive with the native Whiley verifier.

2 Background

We begin with a brief overview of Whiley and a more comprehensive discussion
of Boogie.

2.1 Whiley

The Whiley programming language has been developed to enable compile-time
verification of programs and, furthermore, to make this accessible to everyday
programmers [26,30]. The Whiley Compiler (WyC) attempts to ensure that all
functions in a program meet their specifications. When this succeeds, we know
that: (1) all function postconditions are met (assuming their preconditions held
on entry); (2) all invocations meet their respective function’s precondition; (3)
runtime errors such as divide-by-zero, out-of-bounds accesses and null-pointer
dereferences cannot occur. Notwithstanding, such programs may still loop indef-
initely and/or exhaust available resources (e.g. RAM).

Figure 1 provides an interesting example which illustrates many of the salient
features of Whiley:

– Preconditions are given by requires clauses and postconditions by
ensures clauses. Multiple clauses are simply conjoined together. We found

Making Whiley Boogie! 71

Fig. 1. Implementation of indexOf() in Whiley, returning the least index in items
which matches item, or null if no match exists.

that allowing multiple requires and/or ensures clauses can help read-
ability, and note that JML [8], Spec# [4] and Dafny [18] also permit this.

– Loop Invariants are given by where clauses. Figure 1 illustrates an induc-
tive loop invariant covering indices from zero to i (exclusive).

– Type Invariants can be included with type declarations, as illustrated by
type nat. This is the declared type of variable i, meaning no loop invariant
of the form i >= 0 is necessary. We consider good use of type invariants as
critical to improving the readability of function specifications.

– Flow Typing & Unions. An unusual feature of Whiley is the use of a
flow typing system [25] coupled with union types. This is illustrated by the
return type “int|null” and the use of a type test in the postcondition.
Specifically, in the predicate “x is T ==> e” it follows that x has type T
within the expression e.

2.2 Boogie

Boogie [3] is an intermediate verification language developed by Microsoft
Research as part of the Spec# project [4]. Boogie is intended as a back-end
for other programming language and verification systems [19] and has found use
in various tools, such as Dafny [18], VCC [7], and others (e.g. [5]). Boogie is both
a specification language (which shares some similarity with Dijkstra’s language
of guarded commands [11]) and a tool for checking that Boogie “programs” are
correct.

The original Boogie language was “somewhat like a high-level assembly lan-
guage in that the control-flow is unstructured but the notions of statically-scoped

72 M. Utting et al.

locals and procedural abstraction are retained” [3]. However, later versions sup-
port structured if and while statements to improve readability. Nevertheless,
a non-deterministic goto statement is retained for encoding arbitrary control-
flow, which permits multiple target labels with non-deterministic choice. Boogie
provides various primitive types including bool, int and map types, which can
be used to model arrays and records. Concepts such as a “program heap” can
also be modelled using a map from references to values.

Boogie supports function and procedure declarations which have an
important distinction. In general, functions are pure and intended to model
fundamental operators in the source language. In contrast, procedures are
potentially impure and are intended to model methods in the source language. A
procedure can be given a specification composed of requires and ensures
clauses, and also a modifies clause indicating non-local state that can be mod-
ified. Most importantly, a procedure can be given an implementation, and
the tool will attempt to ensure this implementation meets the given specification.
The requires and ensures for procedures demarcate proof obligations, for
which Boogie emits verification conditions in first-order logic, to be discharged
by Z3. In addition, the implementation of a procedure may include assert
and assume statements. The former lead to proof obligations, whilst the latter
give properties which the underlying theorem prover can exploit.

Figure 2 provides an example encoding of the indexOf() function in Boo-
gie. At first glance, it is perhaps surprising how close to an actual programming
language Boogie has become. Various features of the language are demonstrated

Fig. 2. Simple Boogie program encoding an implementation of the indexOf() func-
tion, making extensive use of the structured syntax provided in later versions of Boogie

Making Whiley Boogie! 73

Fig. 3. Unstructured encoding of the example from Fig. 2—the pre/postconditions are
omitted as they are unchanged from above, and likewise for len().

with this example. Firstly, an array length operator is encoded using an uninter-
preted function len(), and accompanying axiom. Secondly, the input array is
modelled using the map [int]int, the meaning of which is somewhat subtle,
in that it is not describing an array as in a programming language. Rather, it
is a total mapping from arbitrary integers to arbitrary integers. For example,
xs[-1] identifies a valid element of the map despite -1 not normally being a
valid array index. We can refine this to something closer to an array through
additional constraints, as shown in the next section.

Whilst the structured form of Boogie is preferred, where possible, it is also
useful to consider the unstructured form, which we use for a few Whiley con-
structs such as switch (Sect. 3.2). Figure 3 provides an unstructured encoding of
the indexOf() function from Fig. 2. In this version, the while loop is decom-
posed using a non-deterministic goto statement. Likewise, the loop condition
and invariant are explicitly assumed (lines 8, 9, 12) and asserted (lines 15, 16),
rather than being done implicitly by the tool (as in Fig. 2). The havoc state-
ment“assigns an arbitrary value to each indicated variable” [3], so is used here
to indicate that variable i contains an arbitrary integer value at this point.

74 M. Utting et al.

3 Modeling Whiley in Boogie

Our goal is to model as much of the Whiley language as possible in Boogie, so
that we can utilise Boogie for the verification of Whiley programs, hopefully lead-
ing to better overall results compared with Whiley’s native (and relatively adhoc)
verifier. The key challenge here is the impedance mismatch between Whiley and
Boogie. Despite their obvious similarities, there remain some significant differ-
ences:

– Types. Whiley has a relatively rich (structural) type system which includes:
union, intersection and negation types.

– Flow Typing. Whiley’s support for flow typing is also problematic, as a
given variable may have different types at different program points [25].

– Definedness. Unlike many other tools (e.g. Dafny), Whiley implicitly
assumes that specification elements (e.g. pre-/postconditions and invariants)
are well defined.

To understand the definedness issue, consider a precondition that contains
an array reference, like “requires a[i] == 0”. In a language like Dafny, one
would additionally need to specify “i >= 0 && i < |a|” to avoid the verifier
reporting an out-of-bounds error. Such preconditions are implicit in Whiley, so
must be extracted and made explicit in a translation to Boogie.

We now present the main contribution of this paper, namely a mechanism for
translating Whiley programs into Boogie. These are implemented in our trans-
lator program, called Wy2B.1 Whilst, in some cases, this process is straightfor-
ward, there are a number of subtle issues to be addressed, such as the represen-
tation of Whiley types in Boogie.

3.1 Types

Finding an appropriate representation of Whiley types is a challenge. We begin
by considering the straightforward (i.e. naive) translation of Whiley types into
Boogie, and highlight why this fails. Then, we present a new and more sophisti-
cated approach, which we refer to as the set-based translation.

Naive Translation of Types. The simple and obvious translation of Whiley types
into Boogie is a direct translation to the built-in types of Boogie. Here, an int
in Whiley is translated into a Boogie int, whilst a Whiley array (e.g. int[])
translates to a Boogie map (e.g. [int]int, with appropriate constraints). Simi-
larly, records in Whiley can be translated using Boogie’s map type. However, this
approach immediately encounters some serious impedance mismatch problems.
For example, the type “int|null” cannot be represented in Boogie because
there is no corresponding Boogie type. In addition, a Whiley type test such as
“x is int” cannot be translated. To resolve these issues requires an altogether
different approach.
1 Source code and test programs are viewable at https://github.com/utting/

WhileyCompiler/tree/wyboogie and are based on Whiley release 0.4.0.

https://github.com/utting/WhileyCompiler/tree/wyboogie
https://github.com/utting/WhileyCompiler/tree/wyboogie

Making Whiley Boogie! 75

Set-Based Translation of Types. Our second approach to modeling Whiley types
and data values uses a set-based approach. That is, we model all Whiley values
as members of a single set, called WVal (short for Whiley Value), and model the
various Whiley types as being subsets of this universal set. We also define several
helper types for Whiley record labels and higher-order function/method names:

1 type WVal; // The set of ALL Whiley values.
2

3 type WField; // field names for records and objects.
4 type WFuncName; // names of functions
5 type WMethodName; // names of methods

For each distinct Whiley type T, we define a subset predicate isT() that is
true for values in T, an extraction function toT() that maps a WVal value to a
Boogie type, and an injection function fromT() which does the reverse mapping.
We axiomatize these two functions to define a partial bijection between T and
the subset of WVal that satisfies isT().

For example, the functions for the Whiley int type of unbounded integers
(recall “int” is also the Boogie name for integers) are as follows. We also add
Boogie axioms to ensure that the WVal subsets that correspond to each basic
Whiley type (int, bool, array, etc.) are mutually disjoint.

1 function isInt(WVal) returns (bool);
2 function toInt(WVal) returns (int);
3 function fromInt(int) returns (WVal);
4

5 axiom (forall i:int :: isInt(fromInt(i)));
6 axiom (forall i:int :: toInt(fromInt(i)) == i);
7 axiom (forall v:WVal :: isInt(v) ==> fromInt(toInt(v)) == v);

The set-based approach has several advantages. Firstly, it is easy
to define a Whiley user-defined subtype SubT by defining a predicate
isSubT(v) = (isT(v)∧ ...). Secondly, the Whiley union, intersection and nega-
tion types simply map to disjunction, conjunction and negation of these type
predicates. Thirdly, Boogie sees all Whiley values as WVal objects, so can prove
equality of two of those objects only if they are constructed using the same
fromT injection function from values that are equal. This is a weak notion
of equality, which can be strengthened by adding type-specific axioms where
needed, as we shall now demonstrate for arrays.

Whiley arrays are fixed length, whereas Boogie maps are total. To represent
Whiley arrays, we model them using a Boogie map [int]WVal from integers
to WVal objects, plus the explicit length of the array, but we encode these two
values as a single WVal value, using Boogie equality axioms, as follows. We
provide an extraction function for each of these components (toArray() and
arraylen(), respectively), and an injection function that takes both compo-
nents and constructs the corresponding fixed length array in WVal.

76 M. Utting et al.

1 function toArray(WVal) returns ([int]WVal);
2 function arraylen(WVal) returns (int);
3 function fromArray([int]WVal,int) returns (WVal);
4

5 axiom (forall s:[int]WVal, len:int :: 0 <= len
6 ==> isArray(fromArray(s,len)));
7 axiom (forall s:[int]WVal, len:int :: 0 <= len
8 ==> arraylen(fromArray(s,len)) == len);
9 axiom (forall v:WVal :: isArray(v)

10 ==> fromArray(toArray(v), arraylen(v)) == v);
11 axiom (forall v:WVal :: isArray(v)
12 ==> 0 <= arraylen(v));

We also provide a convenience function for updating one element of an array,
by using Boogie’s a[i := v] map update function, which returns a with index
i updated to be v with the necessary conversion functions.

1 function arrayupdate(a:WVal, i:WVal, v:WVal) returns (WVal) {
2 fromArray(toArray(a)[toInt(i) := v], arraylen(a)) }

Whiley records are also modeled using Boogie maps, with all unknown fields
mapping to a special undef field value. To create records dynamically, we
start from the empty record (no fields) called empty record, and update the
required fields with their values. Whiley objects are similar to records, but have
an extensible set of field names, so that “subtypes” can have more fields than
“supertypes” (note that Whiley uses structural subtyping, so it is not necessary
to declare subtype relationships explicitly).

1 // Record literals use empty record[f1 := v1][f2 := v2] etc.
2 const unique empty__record : [WField]WVal;
3 const unique undef__field:WVal;
4 axiom (forall f:WField :: empty__record[f] == undef__field);

Overall, this “types-as-subsets” approach has avoided the impedance mis-
match of the naive translation and made it easy to map the rich value and type
system of Whiley into Boogie. One minor practical issue, however, was that
our first version of the translator tended to produce deeply nested unreadable
sequences of redundant extraction and injection functions; this was because all
subexpressions were converted to WVal results. For example, x := 2*x+1 was
translated to:

1 x := fromInt(toInt(fromInt(toInt(fromInt(2)) * toInt(x)))
2 + toInt(fromInt(1)))

We solved this problem by tracking the Boogie type of each subexpression and
inserting these coercion functions lazily, only where needed, giving a more concise
and readable translation:

Making Whiley Boogie! 77

1 x := fromInt(2 * toInt(x) + 3)

3.2 Control Flow

Translating most Whiley declarations and statements into Boogie is straightfor-
ward (see the similarities between Figs. 1 and 2). Here, we describe the interesting
cases that illustrate impedance mismatches between Whiley and Boogie.

The first issue is that Whiley function bodies are defined by code (with
restrictions to ensure no external side-effects are possible), whereas Boogie func-
tions are either uninterpreted or have a single expression as their body. To over-
come this, we translate each Whiley function f(i) → (o) : body (where i and o
are vectors of variables, possibly empty) into four Boogie definitions:2

1. A pure function “f pre(i) returns (bool)” with an expression body that
is the Whiley precondition of f, including any type invariants on the input
parameters i. This is useful for generating proof obligations for calls to f;

2. A pure function “f(i) returns (o)”, which is called whenever a Whiley
expression calls f, with an axiom “∀i, o : WVal :: f(i) == o ∧ f pre(i)
=⇒ post” (where post is the Whiley postcondition of f).

3. A procedure specification “f impl(i) returns (o)” with precondition
f pre(i) and a postcondition of post;

4. A procedure implementation of “f impl(i) returns (o)”, which contains the
translated body code of the Whiley function f.

This approach causes Boogie to generate proof obligations to ensure that body
satisfies the procedure specification. A call to f(i) within a Whiley expression is
translated to a Boogie function call to f(i), which has the desired precondition
and postcondition properties, but none of the extra properties of code. This is
acceptable, since Boogie supports only modular verification, which means that
calls to a function or procedure must be verified using its specification, not its
implementation.

We translate Whiley methods (procedures) in the same way, but omit step
2 (the pure function), because Whiley methods typically have side effects. How-
ever, a complication is that expressions in executable Whiley code can call meth-
ods as well as functions, whereas Boogie only allows methods (procedures) to be
called via a “call” statement, and not from within expressions. We currently
translate simple method calls (those that appear at the outermost level of the
right-hand-side of an assignment) into call statements, and throw a translation
error for method calls within expressions. Extending the translator to handle
these will require doing a pre-pass of all expressions to pull those methods calls
out into separate call statements, and even this will not handle some scenarios
of side-effect method calls within short-circuit boolean operators.

2 Note that Boogie always separates procedure specifications and implementations,
which are our definitions (3) and (4).

78 M. Utting et al.

Another aspect of the impedance mismatch is that, unlike Whiley, Boogie has
no do-while statement. We initially translated “do: code while c” as “code;
while(c) {code}” in Boogie. But this did not handle break and continue
statements within code. Next we tried translating do-while into a single while
loop with a boolean flag to force a first iteration. However, this gave the wrong
semantics for loop invariants—in a Whiley do-while loop the invariant need not
be true before the first iteration of code (this makes some proofs easier). We
now translate do-while statements into code; while(c){code}, but generate
explicit labels for blocks in order to implement break/continue statements
using gotos.

The Whiley switch statement posed similar challenges, since Boogie has
no switch statement. Rather than translating this to a sequence of if-else state-
ments, we translate it to a non-deterministic goto to all the available cases.
Thus, we can use labels and goto statements to implement the Whiley seman-
tics of break/continue statements (in Whiley, break exits the whole switch
statement, while continue falls through to the following case).3

Other minor impedance mismatches that we encountered were:

– Function overloading is supported in Whiley, but not in Boogie. So we mangle
the names of any overloaded functions.

– Function/procedure inputs are treated as mutable local variables in Whiley,
but not in Boogie. To overcome this, for any input that is mutated, the
translator generates a local variable that contains a copy of the input value.

– Boogie does not provide lambda expressions for functions (only for maps), so
the translator has to convert Whiley lambda expressions to named functions
(not yet implemented). This is adequate for simple lambda expressions, but
not for lambda expressions that capture local variables.

– Boogie requires all local variables to be declared at the start of a procedure
body, which makes it harder to generate temporary variables during transla-
tion of expressions.

– Typing versus proof. The Whiley compiler uses typing algorithms to dis-
tinguish bytes from integers (which are unbounded), and gives the bitwise
operators different semantics on those two types. This proved hard to do
in Boogie when we treated bytes as a subrange of integers and overloaded
the bitwise operators, so we had to generate separate operators for byte and
integer values, and axiomatise them differently.

4 Generating Verification Conditions

After translating a Whiley program into Boogie, we use the Boogie tool to gener-
ate and check proof obligations to ensure the usual correctness condition for each
procedure: pre =⇒ wp(body, post) [3]. In addition to the inherent proof

3 Our translator does not yet implement the translation of continue statements within
switch statements, because it is rarely needed, but there are no technical obstacles
to doing this.

Making Whiley Boogie! 79

obligations, we generate several kinds of Whiley-specific proof obligations by
inserting assert statements in the generated Boogie code. Boogie then attempts
to prove each of these assert statements.

The additional proof obligations we generate include any explicit assert state-
ments included in the Whiley program, plus assertions to check three Whiley
runtime correctness conditions that Boogie does not check automatically:

1. function calls satisfy their preconditions (Boogie functions are total, but
Whiley functions have requires conditions, so we generate an assertion before
any expression that calls a function, to check that its precondition is satisfied);

2. array indexes are in bounds; and
3. the divisor is non-zero in division and modulo expressions.

Since these assertions may be generated from subexpressions that are deeply
nested inside complex predicates, we need to carefully define the assumptions
that are available for each proof obligation. This is achieved via a recursive
descent into each predicate and expression, collecting the context assump-
tions using the following window-inference rules [27]. A premise of the form
assert(A =⇒ P) means that this assertion is inserted into the generated Boo-
gie program as a proof obligation.

A � check(P)
A,P � check(Q)

A � check(P ∧ Q)

A � check(P)
A,¬P � check(Q)

A � check(P ∨ Q)

A, x : int; a ≤ x;x ≤ b � check(P)

A � check(∀x : a . . . b ::P)

assert(A =⇒ d �= 0)
A � check(e)
A � check(d)

A � check(e/d)

assert(A =⇒ f pre(a))
A � check(a)

A � check(f(a))

assert(A =⇒ 0 ≤ i
∧ i < arraylen(a))
A � check(a)
A � check(i)

A � check(a[i])

The conjunction and disjunction rules are not symmetric—they assume the
left-hand predicate while checking the right-hand predicate, but not vice versa.
This is done to reflect the execution semantics of Whiley expressions, which is
to execute subexpressions left-to-right.

5 Experimental Results

In this section, we discuss the effectiveness of the Wy2B translator as an alter-
native verification path, in terms of what Whiley language features can be trans-
lated, the limitations and challenges of the approach, and what percentage of
valid Whiley programs can be verified using the Wy2B+Boogie+Z3 toolchain
(using Boogie v2.3.0.61016 and Z3 v4.4.0, with no custom triggers on axioms).

Figure 4 shows statistics comparing how the native Whiley verifier (the y-
axis) and the new Wy2B+Boogie+Z3 verifier (the x-axis) handle the nearly
500 valid test case programs in the Whiley distribution, which are intended to
methodically test all Whiley language features. Each of these short test pro-
grams (ranging from 3 to 100 lines of Whiley code, with an average length of 18

80 M. Utting et al.

lines) typically contains multiple function and method definitions, and each defi-
nition can generate several proof obligations. We classify the results according to
whether the verifier: (i) fully verifies all the proof obligations for that program
(Fully); (ii) fails to verify one or more of the proof obligations (Partial); (iii)
generates proof obligations that cause Boogie errors (Errors)—this may be due
to accidental use of reserved words, or Whiley constructs that are too complex
for Boogie; (iv) the test program uses Whiley features that are not yet able to
be translated to Boogie by our Wy2B translator (NotImpl).

All of these test programs are intended to be verifiable, but some have not
yet been verified by either prover because they use language features that are
not yet fully supported in the verifiers. For example, neither prover fully mod-
els the semantics of bitwise operators, lambda expressions, or heap allocation
and the address-of operator yet. Instead, these features are modelled as unin-
terpreted functions, which means that general properties of those operators are
sometimes provable, but assertions that depend upon the specific semantics of
those operators are not yet provable.

W
hi
le
y
V
er
ifi
er

Wy2B+Boogie+Z3
NotImpl Errors Partial Fully Total Total%

Partial 5 7 22 54 88 17.8%
Fully 38 13 9 345 405 82.2%
Total 43 20 31 399 493
Total% 8.7% 4.1% 6.3% 80.9% 100.0%

Fig. 4. Comparison of Whiley Verifier results (y-axis) with Boogie+Z3 results (x-axis).

Overall, the Whiley verifier can fully verify 82.2% of the programs, while
the Wy2B+Boogie tools can fully verify only 80.9%. Part of the reason for this
difference is that there are several language constructs such as lambda expres-
sions, multiple return values and calling methods (with side-effects) from within
non-specification expressions, that are not yet implemented in the Wy2B trans-
lator (8.7% of programs). So there are opportunities for improvement in the
Wy2B+Boogie path.

Considering a detailed breakdown of results, the largest result category is
that there are 345 programs (70%) that can be fully verified with both verifiers.
There are also 54 programs (11%) that can be fully verified with Wy2B+Boogie
but only partially with the Whiley verifier, and 9 programs (1.8%) that can be
fully verified with the Whiley verifier, but Boogie fails to fully verify. These nine
cases are as follows:

Complex Valid 5.whiley: Boogie fails to instantiate axioms to prove a sub-
type condition.

ConstrainedList Valid 14.whiley: Boogie fails to prove a typing condition
containing (∃ i : int | 0 ≤ i < |xs| • xs[i] > 0), after the assignment
“xs[0]=1”.

Making Whiley Boogie! 81

DoWhile Valid 6.whiley: Boogie cannot reestablish an invariant in a do-
while loop.

DoWhile Valid 8.whiley: similar problem, but with a break inside the loop.
FunctionRef Valid 9.whiley: cannot establish a result type for an indirect

function call of a function inside a record, inside the heap.
MessageSend Valid 2.whiley: cannot establish result type of a heap refer-

ence.
MessageSend Valid 5.whiley: ibid.
RecursiveType Valid 19.whiley: complex recursive subtypes. 10 s timeout.
RecursiveType Valid 20.whiley: ibid.

The Wy2B+Boogie toolchain takes 502 s to translate and verify the 493 test
programs (9040 lines of Whiley code) on a MacBook Pro (Intel Core i5-4258U
2.4 GHz). This is approximately one second per program, which is acceptable
performance for real-world usage. We run Boogie with a timeout of 10 s, but
only three programs failed to verify due to timeouts.

6 Related Work

ESC/Modula-3 was one of the earliest tools to use an intermediate verification
language [10]. This was based on Dijkstra’s language of guarded-commands [11]
and, in many ways, is Boogie’s predecessor. Such a language typically includes
assignment, assume and assert statements and non-deterministic choice. It is
notable that the guarded-command language used in ESC/Modula-3 lacked type
information and used a similar encoding of types as ours, although Modula-3 has
a simpler type system than Whiley. For example, a predicate isT was defined
for each type to determine whether a given variable was in the type T. A similar
approach was also taken in Leino’s Ecstatic tool, where the subtyping relation
was encoded using a subtype() predicate [17].

The ESC/Java tool followed ESC/Modula-3 in using guarded commands,
but employed a multi-stage process allowing “high-level” guarded command pro-
grams to be desugared into a lower-level form [14]. Spec# followed this lineage
of tools and the language of guarded commands used previously was reused in
Boogie [4]. Boogie was described as an “effective intermediate language for verifi-
cation condition generation of object-oriented programs because it lacks the com-
plexities of a full-featured object-oriented programming language” [3]. In essence,
Boogie was a version of the guarded command language from ESC/Java which
also supported a textual syntax, type checking, and a static analysis for infer-
ring loop invariants. Other important innovations include the ability to specify
triggers to help guide quantifier instantiation, and the use of a trace semantics
to formalise the meaning of Boogie.

In addition to Boogie, the other main intermediate verification language in
use is WhyML [6,13]. This is part of the Why3 verification platform which specif-
ically exploits external theorem provers. WhyML is a first-order language with
polymorphic types, pattern matching, inductive predicates, records and type

82 M. Utting et al.

invariants. It has also been used in the verification of C, Java and Ada pro-
grams (amongst others). Like Boogie, WhyML provides structured statements
(e.g. while and if statements). In addition, a standard library is included which
provides support for different theories (e.g. integer and real arithmetic, sets and
maps).

Research on intermediate verification languages has often encountered
impedance mismatch. Ameri and Furia present a translation from Boogie to
WhyML which, although largely successful, did expose some important mis-
matches between them [1]. The structured nature of WhyML presented some
problems in handling Boogie’s unstructured branching, and aspects of Boogie’s
polymorphic maps and bitvectors were problematic. They showed that Why3
could verify 83% of the translated programs with the same outcome as Boogie.

Segal and Chalin [28] attempted a systematic comparison of two intermediate
verification languages: Boogie and Pilar. They stated that it is “not trivial to
define a common intermediate language that can still support the syntax and
semantics of many source languages”. Their research method was to develop
translations from Ruby into both Boogie and Pilar, and then compare. Various
aspects of Ruby proved challenging for Boogie, including its dynamically-typed
nature and arrays. Their solution bears similarity to ours, as they defined an
abstract Boogie type as the root of all Ruby values.

Müller et al. [23] argue that existing systems (e.g. Boogie, Why3) do not
support separation logics and related permission-based logics. They identify
that such systems have a “higher-order nature” than typical software verifica-
tion problems, and make extensive use of recursive predicates (which Boogie/Z3
does not support well). They developed an alternative intermediate verification
language designed specifically for this. Finally, Arlt et al. [2] presented a transla-
tion from SOOT’s intermediate bytecode language (Jimple) to Boogie, with an
aim of identifying unreachable code. They found many aspects of the transla-
tion straightforward. For example, Java’s instanceof operator was modelled
using an uninterpreted function. However, some aspects of impedance mismatch
were present and they had difficulty with monitor bytecodes, exceptions, certain
chains of if-else statements and finally blocks.

7 Conclusion

Using Boogie as an intermediate verification language eases the development
of a verifying compiler, particularly as it handles verification condition gener-
ation, and offers high-level structures such as while loops and procedures with
specifications. However, as with any intermediate language, there is potential
for an impedance mismatch when Boogie structures do not exactly match the
source language (e.g. the Whiley do-while loop). Fortunately, this impedance
mismatch can be circumvented by translating to lower-level Boogie statements,
such as labels and gotos. Boogie provides a good level of flexibility to define the
“background theory” of a source language, such as its type system, its object
structure, and support for heaps. This background theory is at a similar level

Making Whiley Boogie! 83

of abstraction in Boogie as it would be in SMT-LIB so, whilst Boogie offers no
major advantages in this area, it also has no disadvantages.

Our work shows that the encoding one chooses when translating source lan-
guage types and values into Boogie has a major impact on the effectiveness of
the resulting system. It would be beneficial to have a repository of knowledge
about different ways of encoding various language constructs. Some alterna-
tives (particularly for various heap encoding techniques and procedure fram-
ing axioms) are discussed in the published Boogie papers, but there is no cen-
tral repository of techniques or publications comparing encoding techniques. A
major benefit of Boogie is, of course, its easy access to Z3. We have shown that
Wy2B+Boogie+Z3 is competitive with the native Whiley verifier in terms of
the percentage of programs that it can verify automatically. Finally, interesting
future work would be to explore translating Boogie’s counter-example models
back into Whiley-like notation to improve error reporting. Other priorities are
to add support for a few remaining Whiley language features to our Wy2B
translator, and to continue to improve the Whiley verifier.

References

1. Ameri, M., Furia, C.A.: Why just Boogie? In: Ábrahám, E., Huisman, M. (eds.)
IFM 2016. LNCS, vol. 9681, pp. 79–95. Springer, Cham (2016). doi:10.1007/
978-3-319-33693-0 6

2. Arlt, S., Rümmer, P., Schäf, M.: Joogie: from Java through Jimple to Boogie. In:
Proceedings of SOAP (2013)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

4. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. CACM 54(6), 81–91 (2011)

5. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a
verifier for GPU kernels. In: Proceedings of the OOPSLA, pp. 113–132. ACM
Press (2012)

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: Workshop on Intermediate Verification Languages (2011)

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 23–42. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 2

8. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol.
3362, pp. 108–128. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30569-9 6

9. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. JACM 52(3), 365–473 (2005)

10. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
SRC Research Report 159, Compaq Systems Research Center (1998)

11. Dijkstra, E.W.: Guarded commands, nondeterminancy and formal derivation of
programs. CACM 18, 453–457 (1975)

http://dx.doi.org/10.1007/978-3-319-33693-0_6
http://dx.doi.org/10.1007/978-3-319-33693-0_6
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-540-30569-9_6

84 M. Utting et al.

12. Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). doi:10.1007/11817963 11

13. Filliâtre, J., Paskevich, A.: Why3 – where programs meet provers. In: Proceedings
of ESOP, pp. 125–128 (2013)

14. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proceedings of PLDI, pp. 234–245 (2002)

15. Hoare, C.: The verifying compiler: a grand challenge for computing research. JACM
50(1), 63–69 (2003)

16. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

17. Leino, K.R.M.: Ecstatic: an object-oriented programming language with an
axiomatic semantics. In: Workshop on Foundations of Object-Oriented Languages
(FOOL 4) (1997)

18. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

19. Leino, K.R.M.: Program proving using intermediate verification languages (IVLs)
like Boogie and Why3. In: Proceedings of HILT, pp. 25–26 (2012)

20. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

21. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

22. Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73595-3 13

23. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

24. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
JACM 27, 356–364 (1980)

25. Pearce, D.J.: Sound and complete flow typing with unions, intersections and nega-
tions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol.
7737, pp. 335–354. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 21

26. Pearce, D.J., Groves, L.: Designing a verifying compiler: lessons learned from devel-
oping Whiley. Sci. Comput. Program. 113, 191–220 (2015)

27. Robison, P.J., Staples, J.: Formalizing a hierarchical structure of prac-
tical mathematical reasoning. J. Logic Comput. 3(1), 47–61 (1993).
http://dx.doi.org/10.1093/logcom/3.1.47

28. Segal, L., Chalin, P.: A comparison of intermediate verification languages: Boo-
gie and Sireum/Pilar. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 130–145. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27705-4 11

29. The SMT-LIB standard: Version 2.0
30. The Whiley programming language. http://whiley.org

http://dx.doi.org/10.1007/11817963_11
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1093/logcom/3.1.47
http://dx.doi.org/10.1007/978-3-642-27705-4_11
http://dx.doi.org/10.1007/978-3-642-27705-4_11
http://whiley.org

Complexity Analysis for Java with AProVE

Florian Frohn and Jürgen Giesl(B)

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
florian.frohn@cs.rwth-aachen.de, giesl@informatik.rwth-aachen.de

Abstract. While AProVE is one of the most powerful tools for termi-
nation analysis of Java since many years, we now extend our approach
in order to analyze the complexity of Java programs as well. Based on
a symbolic execution of the program, we develop a novel transformation
of (possibly heap-manipulating) Java programs to integer transition sys-
tems (ITSs). This allows us to use existing complexity analyzers for ITSs
to infer runtime bounds for Java programs. We demonstrate the power
of our implementation on an established standard benchmark set.

1 Introduction

Our verifier AProVE [14] is one of the leading tools for termination analysis of
languages like Java, C, Haskell, Prolog, and term rewrite systems, as witnessed
by its success at the annual Termination Competition and the termination cat-
egory of the SV-COMP competition.1 However, in many cases one is not only
interested in termination, but in estimating the runtime of a program. Thus,
automated complexity analysis has become an increasingly important subject
and there exist several tools which analyze the complexity of programs in differ-
ent languages and formalisms, e.g., [1,3,4,8,10–12,15,17,18,21,23].2

In this paper, we adapt our previous approach for termination analysis of
Java [5,6,22] in order to infer complexity bounds. In particular, the contribu-
tions of the current paper and their implementation in AProVE are crucial in
our joint project CAGE [9,24] with Draper Inc. and the University of Innsbruck.
In this project, AProVE is used interactively to analyze the complexity of large
Java programs in order to detect vulnerabilities. To the best of our knowledge,
COSTA [1] is currently the only other tool which analyzes the complexity of (pos-
sibly heap manipulating) Java programs fully automatically. However, COSTA’s
notion of “size” for data structures significantly differs from ours and hence our
technique can prove bounds for many programs where COSTA is bound to fail.
See Sect. 6 for a more detailed comparison with related work.

In Sect. 2, we explain the notion of complexity that we analyze for Java and
recall symbolic execution graphs (SE graphs) [5,6,22], which represent all possi-
ble executions of the analyzed Java program. Up to now, AProVE automatically

Support by DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).
1 See http://www.termination-portal.org/wiki/Termination Competition and http://

sv-comp.sosy-lab.org.
2 The work on worst-case execution time (WCET) for real-time systems [25] is largely

orthogonal to the inference of symbolic loop bounds.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 85–101, 2017.
DOI: 10.1007/978-3-319-66845-1 6

http://www.termination-portal.org/wiki/Termination_Competition
http://sv-comp.sosy-lab.org
http://sv-comp.sosy-lab.org

86 F. Frohn and J. Giesl

transformed these SE graphs into term rewrite systems with built-in integers to
analyze termination. However, this transformation is not complexity preserving
for programs with non-tree shaped objects and moreover, existing techniques for
termination analysis of term rewriting with built-in integers have not yet been
adapted to complexity analysis. Therefore, in Sect. 3 we present a novel3 transfor-
mation of SE graphs to integer transition systems (ITSs), a simple representation
of integer programs suitable for complexity analysis. These ITSs are then ana-
lyzed by standard complexity analysis tools for integer programs like CoFloCo
[12] and KoAT [8]. In our implementation in AProVE, we coupled our approach
with these two tools to obtain an automatic technique which infers upper com-
plexity bounds for Java programs. So in our approach, we model a Java program
in several different ways (as Java (Bytecode), SE graphs, and ITSs), where the
reason for the new modeling of Java programs by ITSs is their suitability for
complexity analysis. Section 4 explains how to avoid the analysis of called aux-
iliary methods by providing summaries. This allows us to use AProVE in an
interactive way and it is crucial to scale our approach to large programs within
the CAGE project. In Sect. 5, we show how our transformation to ITSs also han-
dles Java programs which manipulate the heap. Finally, in Sect. 6 we evaluate
the power of our implementation in AProVE by experiments with an established
standard benchmark set and compare AProVE’s performance with COSTA.

2 Complexity of Java and Symbolic Execution Graphs

Example 1 (Variant of SortCount from the Termination Problem Data Base
(TPDB)4). To illustrate our approach, consider the following program. The
method sort sorts a list l of natural numbers. To this end, it enumerates
0, . . . ,max(l) and adds each number to the result list r if it is contained in
l. Its runtime complexity is in O(length(l) · max(l)). In this paper, we show
how AProVE infers similar complexity bounds automatically.

1 class List{
2 private int val; private List next;
3 static boolean mem(int n,
4 List l){...}
5
6 static int max(List l) {
7 int m = 0;
8 while (l != null) {
9 if (l.val > m) {

10 m = l.val;
11 }
12 l = l.next;
13 }
14 return m;
15 }

16 static List sort(List l) {
17 int n = 0;
18 List r = null;
19 while (max(l) >= n) {
20 if (mem(n, l)) {
21 List rNew = new List ();
22 rNew.next = r;
23 rNew.val = n;
24 r = rNew;
25 }
26 n++;
27 }
28 return r;
29 } ... }

3 We presented a preliminary extended abstract with our “size” definition at the 15th
Int. Workshop on Termination, an informal workshop without formal reviewing or
published proceedings, cf. http://cl-informatik.uibk.ac.at/events/wst-2016.

4 The TPDB is the collection of examples used for the annual Termination Competi-
tion, available from http://termination-portal.org/wiki/TPDB.

http://cl-informatik.uibk.ac.at/events/wst-2016
http://termination-portal.org/wiki/TPDB

Complexity Analysis for Java with AProVE 87

We restrict ourselves to Java programs without arrays, exceptions, static
fields, floating point numbers, class initializers, recursion, reflection, and multi-
threading to ease the presentation. However, our implementation supports full
Java except for floating point numbers, reflection, multi-threading, and recur-
sion (which is currently only supported for termination analysis). Moreover, we
abstract from the different types of integers in Java and consider unbounded
integers instead, i.e., we do not handle problems related to overflows.

Symbolic execution is a well-known technique in program verification and
transformation [19]. We recapitulate the notion of SE graphs used in AProVE
and refer to [5,6,22] for details on their automated construction. First, the Java
program is compiled to Java Bytecode (JBC) by any standard compiler.

Example 2 (Java Bytecode for the Method max from Example 1).

1 iconst_0 //load 0 to opstack
2 istore_1 //store 0 to var 1 (m)
3 aload_0 //load l to opstack
4 ifnull 16 //jump if l is null
5 aload_0 //load l to opstack
6 getfield val//load l.val to opstack
7 iload_1 //load m to opstack
8 if_icmple 12// jump if l.val <= m
9 aload_0 //load l to opstack

10 getfield val //load l.val to opstack
11 istore_1 //store l.val into m
12 aload_0 //load l to opstack
13 getfield next//load l.next to opstack
14 astore_0 //store l.next into l
15 goto 3
16 iload_1 //load m to opstack
17 ireturn // return m

The SE graph is a finite graph that represents all executions of a JBC pro-
gram. Its nodes are abstract states which differ from concrete program states
by also allowing “symbolic” (unknown) values for integers and references (i.e.,
addresses in the heap). In the following, �, f etc. denote sequences, |�| is the
length of �, and �|j is the jth element of �, where �’s first element has index 0.

Definition 3 (Abstract State). Let Ref be the set of all symbolic references,
let Int be the set of all symbolic integers,5 and let Sym = Ref�Int be the set of
all symbolic variables. We write o, õ, . . . for elements of Ref, i, ĩ, . . . for elements
of Int, and x, x̃, . . . for arbitrary symbolic variables from Sym. An abstract state
has the form s = (pp, �, op, h, p) ∈ State, where pp ∈ N is the program position,
i.e., the index of the next instruction to evaluate. The sequences �, op ∈ Sym∗

represent the symbolic variables stored in the local (program) variables resp. the
entries of the operand stack. Here, �|j is the value of the jth local variable,
for all 0 ≤ j < |�|.6 Similarly, op|0 is the top entry of the operand stack. The
partial function h : Ref � Object maps symbolic references to abstract objects
(i.e., h(o) expresses information about the object at address o in the heap). An
abstract object is either null or a pair (cl, vl) of a class name cl and a function
vl : Fields(cl) → Sym that maps all fields of cl to symbolic variables. The last
component of s is a set of predicates p. Predicates specify heap shapes and are
of the form o! (“o may point to a non-tree shaped object”), o =? õ (“o and õ may
alias”), or o �� õ (“o and õ may share”). We write o

f−→h x if h(o) = (cl, vl),
5 As we do not regard floats, JBC represents all primitive Java types as integers.
6 For the sake of simplicity, we assume that all states are well typed throughout this

paper, i.e., local variables of type int always store symbolic integers, etc.

88 F. Frohn and J. Giesl

3 |l:o1, m: i1 |ε2 |l:o1 | i1

1 |l:o1 |ε 4 |l:o1, m: i1 |
null

17 |l:o1, m: i1 | i1
o1:null

3 |l:o2, m: i1 |ε

4 |l:o1, m: i1 |o1o1

4 |l:o1, m: i1 |o1
o1:List(value: i2, next:o2)

12 |l:o1, m: i1 |ε
o1:List(value: i2, next:o2)

12 |l:o1, m: i2 |ε
o1:List(value: i2, next:o2)

8 |l:o1, m: i1 | i1, i2
o1:List(value: i2, next:o2)

i1 = 0

i1 ≤ i2

i1 > i2

CB

A

D

E

F

G

H

I

J

K

L

Fig. 1. SE graph for max

f ∈ Fields(cl), and vl(f) = x, where we omit f if it is irrelevant. For a state
s = (pp, �, op, h, p), we define Ref(s) = {o ∈ Ref | 0 ≤ j < |�|, �|j →∗

h o} ∪ {o ∈
Ref | 0 ≤ j < |op|, op|j →∗

h o}, where →∗
h is the reflexive–transitive closure of

→h. Int(s) and Sym(s) are defined analogously.

Intuitively, an abstract state (pp, �, op, h, p) can be seen as a collection of
invariants. For example, if �|0, �|1 /∈ Dom(h) (i.e., we have no concrete informa-
tion about the objects at �|0 and �|1), then the absence of the predicate �|0 �� �|1
in p means that the first two local variables do not share at program position
pp, i.e., there is no path from �|0 to �|1 or vice versa, and �|0 and �|1 do not have
a common successor. Let T (V) resp. F(V) be the set of all arithmetic terms
resp. quantifier-free formulas over the set of variables V (where we only consider
integer arithmetic). The edges s

ϕ−→ s̃ of an SE graph are directed and labeled
with formulas ϕ ∈ F(Int) which restrict the control flow.

Figure 1 shows an SE graph for max. The first line “pp | � | op” of a state
in Fig. 1 describes its first three components, where “l : o1, m : i1” means that
� is (o1, i1), l is the 0th local variable, and m is the first local variable. In the
next lines of a state, we show information about the heap, i.e., key-value pairs
“o : . . .” for each o ∈ Dom(h), and the predicates in p.

In State A, o1 points to a (tree-shaped and hence acyclic) List or null, as l
is of type List and o1 /∈ Dom(h). To express that o1 may also point to non-tree
shaped Lists, one would need the predicate o1!. Evaluating “iconst 0” at the
program position 1 pushes the constant 0 to the operand stack, resulting in State
B. This is indicated by a (solid) evaluation edge from A to B, labeled with the
condition i1 = 0 which is required to perform this evaluation step. Afterwards,
i1 is stored in the local variable m which yields State C. Evaluating “aload 0” in
Line 3 pushes o1 to the operand stack in State D. The next instruction “ifnull
16” jumps to Instruction 16 if the top operand stack entry is null. The dashed
refinement edges connecting D with J (where o1 is null) and E (where o1
points to a List) correspond to a case analysis. Evaluating J results in K after
two more evaluation steps (we abbreviate several evaluation edges by dotted
edges). Finally, evaluating “ireturn” in Line 17 results in the end state L. In
State E, the next four evaluation steps push l.value (i2) and m (i1) to the
operand stack in order to compare them afterwards. In F , another case analysis

Complexity Analysis for Java with AProVE 89

is required. If l.value ≤ m, the next instruction is 12 (State G). Otherwise,
the instructions 9 – 11 update m to l.value (i.e., m stores i2 in State H) before
reaching Instruction 12. Note that when evaluating F , the case analysis is not
modeled by refining F , as conditions like i2 ≤ i1 cannot be expressed in States.
Instead, the edges connecting F with G and H are labeled with the corresponding
conditions. The only difference between G and H is that we have m = l.value
in H, whereas m and l.value can be arbitrary in G. Hence, G is more general
than H (denoted H � G) and thus there is a (thick) generalization edge from
H to G.

See [2] for a formal definition of when a state s̃ = (pp, �, op, h̃, p̃) is “more
general” than s = (pp, �, op, h, p). Essentially, s and s̃ have to be at the same
position pp and in both s and s̃, the same symbolic variables must be used for
the local variables and the operand stack. We also require that all information
on the heap of s̃ holds for s as well (i.e., we must have Ref(s̃) ⊆ Ref(s), and
h(o) = h̃(o) for all o ∈ Dom(h̃)). In addition, concrete sharing (e.g., o1 →h o3 and
o2 →h o3) and abstract sharing (as expressed by predicates like (o1 �� o2) ∈ p)
in s must be permitted in s̃ (e.g., by the predicate (o1 �� o2) ∈ p̃) and, similarly,
concrete and abstract non-tree shapes in s must be permitted in s̃, too. To
weaken the requirement that s and s̃ must use the same symbolic variables,
we also allow to rename the symbolic variables of the abstract state s̃. So we
also have s � s̃ if there is a renaming function μ : Sym → Sym such that
s � μ(s̃) (where we lift μ to abstract states in the obvious way). Then we say
that μ witnesses s � s̃. However, we only allow renaming functions μ where
μ(o1) = μ(o2) implies (o1 =? o2) ∈ p̃ for all o1, o2 ∈ Ref(s̃) with o1 	= o2.
So symbolic references o1, o2 ∈ Ref(s̃) may only be unified by μ if aliasing
is explicitly allowed by a corresponding predicate o1 =? o2 in s̃. In contrast,
μ(i1) = μ(i2) is possible for any i1, i2 ∈ Int(s̃) (since different symbolic integers
could represent the same number). If no renaming is required, then the witness
of s � s̃ is the identity.

Example 4 (Generalizing
States). In Fig. 1, the witness
for H � G is μ = {i1
→ i2}
(i.e., μ(i1) = i2 and μ(x) =
x for x ∈ {o1, o2, i2}).

To see the effect of predicates, consider the states M and N on the side,
where N � M . Here, the predicate o1! is needed in M , as o1 is cyclic and hence
non-tree shaped in N since o1’s field next points to o1 itself. Thus, N � M is
witnessed by μ = {o2
→ o1}. This witness function is valid, as we have o1 =? o2
in M .

... | . . . |o1
o1:List(value: i1, next:o2)

o1!, o1 =? o2

... | . . . |o1
o1:List(value: i1, next:o1)

M N

In Fig. 1, I results from G by setting l to l.next (Instructions 12 – 14)
and going back to Step 3 (“goto 3” in Line 15). We draw a generalization edge
from I to C, as I is a variable-renamed version of C, i.e., I � C with witness
{o1
→ o2}.

To see the connection between JBC and SE graphs, we now define which
concrete JBC states are represented by an abstract state.

90 F. Frohn and J. Giesl

Definition 5 (Concrete State). A concrete state (c, τ) is a pair of an abstract
state c = (pp, �, op, h, ∅) ∈ State with Ref(c) ⊆ Dom(h) and a valuation
τ : Int(c) → Z. We say that (c, τ) is represented by a state s ∈ State if c � s.

So the heap of a concrete state has to be completely specified (Ref(c) ⊆
Dom(h)) and hence predicates are not needed for c. The additional component
τ determines the values of symbolic integers. For example, (J, {i1
→ n}) is a
concrete state for all n ∈ Z. Since � is transitive, s � s̃ always guarantees that
all concrete states represented by a state s are also represented by the state s̃.

As shown in [5,6,22], for any JBC program P one can automatically construct
an SE graph G such that every JBC execution sequence can be embedded into
G. This means that if (c, τ)

jbc−→P (c̃, τ̃) is a JBC execution step for two concrete
states and c � s holds for some state s in G, then G has a non-empty path
from s to a state s̃ with c̃ � s̃. Hence, the paths in G are at least as long
as the corresponding JBC sequences and therefore, SE graphs are a suitable
representation for inferring upper bounds on the runtime complexity of JBC
programs.

The complexity of a JBC program is a function from its inputs to its runtime.
Our goal is to infer a representation of this function which is intuitive and as
precise as possible. To this end, we over-approximate the complexity by a func-
tion on integers in closed form. As the inputs of a Java program can be arbitrary
objects, we need a suitable mapping from objects to integers to achieve such a
representation. Hence, we now define how we measure the size of objects.

Definition 6 (Size ‖ · ‖). For a concrete state (c, τ) with heap h and o ∈
Ref(c), let intSum(o) = 1 +

∑
f∈Fields(cl),vl(f)=i∈Int |τ(i)| if h(o) = (cl, vl) and

intSum(o) = 0 if h(o) = null. We define ‖o‖(c,τ)=
∑

o→∗
hõ intSum(õ).

So the size ‖o‖(c,τ) of the object at the address o in (c, τ) is the number of
all reachable objects õ plus the absolute values of all integers in their fields. If
the same symbolic integer i is in several fields of õ, then |τ(i)| is added several
times.

In our opinion, this is the notion of “size” that is most suitable for measuring
the runtime complexity of programs. The addend “1” in the definition of intSum
covers features like the length of lists (i.e., an acyclic list is always greater than
any of its proper sub-lists) or the number of nodes of trees. But in contrast
to measures like “path length”, we also take the elements of data structures
into account (i.e., ‖ · ‖ is similar to “term size”, see e.g., [13]). Since the second
addend of intSum measures integer elements of data structures, we can analyze
the complexity of algorithms like sort from Example 1 whose runtime (also)
depends on the numbers that are stored in a list. Moreover in contrast to “path
length”, our notion of size is also suitable for cyclic objects. For example, consider

Complexity Analysis for Java with AProVE 91

a concrete state (N, τ) for State N of Example 4. Here, we have ‖o1‖(N,τ) =
intSum(o1) = 1 + |τ(i1)|, i.e., the size of such a cyclic list is finite.7

Now we can define the notion of complexity that we analyze. The derivation
height dhP(c, τ) of a concrete state is the length of the longest JBC execution
sequence in the program P that starts in (c, τ). This corresponds to the usual
definition of “derivation height” for other programming languages, cf. [16]. A
complexity bound for an abstract state s is an arithmetic term bP(s) over the
variables V(s) = {xo | o ∈ Ref(s)}∪Int(s). Here, the variable xo represents the
size of the object at the symbolic reference o. Then for any valuation σ of V(s),
σ(bP(s)) should be greater or equal to the length of the longest JBC execution
sequence starting with a concrete state (c, τ) that is represented by s, where
the values of all i ∈ Int(c) and the sizes of all o ∈ Ref(c) correspond to the
valuation σ. In the following, ω > n holds for all n ∈ N and for any M ⊆ N∪{ω},
supM is the least upper bound of M , where sup ∅ = 0.

Definition 7 (Derivation Height, Complexity Bound). Let P be a JBC
program. For every concrete state (c0, σ0) of P, we define its derivation height as

dhP(c0, σ0) = sup{n | ∃(c1, σ1), . . . , (cn, σn) : (c0, σ0)
jbc−→P . . .

jbc−→P (cn, σn)}.
Let s ∈ State. A term bP(s) ∈ T (V(s)) ∪ {ω} is a complexity bound for s

in P if for all valuations σ : V(s) → Z we have σ(bP(s)) ≥ dhP(c, τ) for any
concrete state (c, τ) where some function μ witnesses c � s, σ(xo) = ‖μ(o)‖(c,τ)

for all o ∈ Ref(s), and σ(i) = τ(μ(i)) for all i ∈ Int(s).

So if s is an abstract state that represents all possible concrete states at the
start of a Java method in a program P, then a complexity bound bP(s) describes
an upper bound for the runtime complexity of the Java method.

Example 8 (Runtime Complexity of max). For any state c � A where o1 is
a list of length n, we get dhP(c, τ) ≤ 13 · n + 6 ≤ 13 · ‖o1‖(c,τ) + 6 for all
valuations τ . Hence, bP(A) = 13 · xo1 + 6 is a complexity bound for A, which
means that 13 · ‖l‖ + 6 is an upper bound for the runtime complexity of max(l)
from Example 2.

3 From SE Graphs to ITSs

Now we introduce a new complexity-preserving transformation from SE graphs
to integer transition systems. This allows us to use existing tools for complexity
analysis of integer programs to infer bounds on the runtime of JBC programs.

7 With this notion of size, the transformation from objects to terms that we used
for termination analysis in [22] is unsound for complexity analysis, as it duplicates
objects that can be reached by different fields: Consider a binary “tree” of n nodes
where the left and right child of each inner node are the same. The size ‖ · ‖ of this
object is linear in n, but the resulting transformed term would be exponential in n.
This problem is avoided by our new transformation to integers instead of terms in
Sect. 3.

92 F. Frohn and J. Giesl

Definition 9 (Integer Transition System). Let V be a set of variables and
let V ′ = {x′ | x ∈ V} be the corresponding post-variables. An ITS I is a directed
graph (L,R) where L is the set of nodes (or locations) and R is the set of edges
(or transitions). A transition (s, ϕ,w, s̃) ∈ R consists of a source location s ∈ L,
a condition ϕ ∈ F(V∪V ′), a weight w ∈ T (V), and a target location s̃ ∈ L. Any
valuation σ : V → Z induces a post-valuation σ′ : V ′ → Z with σ′(x′) = σ(x) for
all x ∈ V. The transition relation →I of an ITS I operates on configurations
(s, σ), where s ∈ L and σ is a valuation. For any s, s̃ ∈ L and any valuations
σ, σ̃ : V → Z, we have (s, σ) m−→I (s̃, σ̃) if there exists a transition (s, ϕ,w, s̃) ∈ R
such that σ(w) = m and σ ∪ (σ̃)′ satisfies ϕ (i.e., ϕ is satisfied if all x ∈ V are
instantiated by σ and all x′ ∈ V ′ are instantiated according to σ̃).

For any location s, a term bI(s) ∈ T (V) ∪ {ω} is a complexity bound for s
in I if for all valuations σ : V → Z we have σ(bI(s)) ≥

∑
1≤j≤n mj whenever

(s, σ) m1−−→I . . .
mn−−→I (s̃, σ̃) holds for some (s̃, σ̃).

Example 10 (ITS). Consider the ITS I on the right where each
edge (s, ϕ,w, s̃) is labeled with “w : ϕ”. It corresponds to a loop
where a counter x is decremented (transition from P to O) as
long as it is positive (transition from O to P). Due to the weight
x of the transition from P to O, bI(O) = (x+1)·x

2 is a complexity
bound for O.

O P

0 : x > 0

x : x′ = x − 1

So given an initial state s, a complexity bound bI(s) is an upper bound
for the runtime complexity of I. For instance, the complexity bound bI(O) in
Example 10 means that the runtime complexity of the ITS I is quadratic in x.
We will now show how to automatically translate the SE graph of a Java program
P into a corresponding ITS I such that any complexity bound bI(s) for I is also
a complexity bound bP(s) for P. We first consider programs that do not modify
the heap and handle heap-manipulating programs in Sect. 5.

Let G be an SE graph with the states State and the edges Edge. To trans-
form SE graphs to ITSs, we fix V =

⋃
s∈State V(s) and L = State. Essentially,

we define (s, νs,s̃(ϕ)∧ψs ∧ρ, w, s̃) ∈ R iff s
ϕ−→ s̃ ∈ Edge where w = 0 if s

ϕ−→ s̃

is a refinement or generalization edge and w = 1 if s
ϕ−→ s̃ is an evaluation edge.

The substitution νs,s̃ is defined as νs,s̃(x) = x′ for x ∈ V(s̃) \ V(s) and
νs,s̃(x) = x for x ∈ V(s). Then νs,s̃(ϕ) is a condition on the values of the
symbolic integers that must be satisfied in order to use the transition from s
to s̃. For example, if the evaluated instruction is iadd (i.e., adding the two top
elements of the operand stack), the operand stack of s starts with “i1, i2”, and
the operand stack of s̃ has the fresh symbolic integer “i3” on top, then the
edge s → s̃ in the SE graph is labeled with i3 = i1 + i2 and the corresponding
transition in the ITS has the condition i′3 = i1 + i2. Thus, in the location s̃, the
value of i3 must be the sum of the values that i1 and i2 had in s.

While the semantics of arithmetic operations is captured by ϕ, the formula
ψs expresses conditions on the variables xo that represent the sizes ‖o‖ of the

Complexity Analysis for Java with AProVE 93

objects in s. We define ψs to be the following formula, where h is the heap of s:
∧

o∈Ref(s)∩Dom(h)
h(o)=null

xo = 0 ∧
∧

o∈Ref(s)∩Dom(h)
h(o) 	=null

xo ≥ 1 ∧
∧

o∈Ref(s)\Dom(h)

xo ≥ 0

While this encoding might seem rather coarse, we achieve precision by defin-
ing a suitable formula ρ which encodes the relation between the values of the
variables x ∈ V(s) and the post-variables x′ (i.e., the values of the variables in
s̃). The definition of ρ is straightforward for evaluation edges that do not modify
the heap, because here the values of the symbolic variables do not change.

Definition 11 (Encoding Evaluation Edges). Let e = s
ϕ−→ s̃ ∈ Edge be

an evaluation edge with s = (pp, �, op, h, p) such that the instruction at program
position pp is neither putfield nor new. Then the edge e is translated into the
ITS transition tr(e) = (s, νs,s̃(ϕ) ∧ ψs ∧

∧
x∈V(s)∩V(s̃) x′ = x, 1, s̃).

Example 12 (Encoding Evaluation Edges). For Fig. 1, we have tr(C → D) =
(C, xo1 ≥ 0 ∧ x′

o1
= xo1 ∧ i′1 = i1, 1, D) and tr(F i2≤i1−−−→ G) = (F, i2 ≤ i1 ∧

xo1 ≥ 1 ∧xo2 ≥ 0 ∧ ρ, 1, G) where ρ is x′
o1

= xo1 ∧ x′
o2

= xo2 ∧ i′1 = i1 ∧ i′2 = i2.

When transforming refinement edges to ITS transitions, we encode our knowl-
edge about the object at the reference o that is “refined”. We exploit that, by
construction of ‖ · ‖, the size of any õ with o →∗ õ is bounded by the size of o.

Definition 13 (Encoding Refinement Edges). Let e = s → s̃ ∈ Edge be a
refinement edge with s = (pp, �, op, h, p), s̃ = (pp, �, op, h̃, p̃), and let o ∈
Ref(s) be the symbolic reference of the object that was refined. Then tr(e) =
(s, νs,s̃(ψs̃) ∧ ρ, 0, s̃) where ρ is

∧
x∈V(s) x′ = x if h̃(o) = null. Otherwise, ρ is

∧

x∈V(s)

x′ = x ∧
∧

õ∈Ref(s̃), o→h̃õ

xo >
(—)

x′
õ ∧

∧

i∈Int(s̃), o→h̃i

xo > i′ > −xo.

Here, “>
(—)

” is “≥” if o! ∈ p and “>” if o! /∈ p.

Note that we can encode the knowledge from the more specialized state s̃
(i.e., we use ψs̃ instead of ψs), as the transition just has to be applicable in the
case represented by s̃. The sizes of o’s successor references õ are strictly smaller
than ‖o‖ if o is guaranteed to be acyclic (i.e., if o! /∈ p), since in this case, õ
reaches less objects than o. Otherwise, there might be a path from õ to o and
hence we might have ‖õ‖ = ‖o‖. For symbolic integers i ∈ Int reachable from
o, we know that ‖o‖ > |i| holds due to the definition of ‖ · ‖. In Definition 13 we
express this without using absolute values explicitly, since they are not supported
by current complexity tools for ITSs.

Example 14 (Encoding Refinement Edges). For Fig. 1, we have tr(D → J) =
(D,xo1 = 0 ∧ x′

o1
= xo1 ∧ i′1 = i1, 0, J). Transforming D → E yields (D, xo1 ≥

1 ∧ x′
o2

≥ 0 ∧ ρ, 0, E) where ρ is x′
o1

= xo1 ∧ i′1 = i1 ∧ xo1 > x′
o2

∧ xo1 >
i′2 > −xo1 .

94 F. Frohn and J. Giesl

Fig. 2. ITS for the SE graph of Fig. 1

For generalization edges s → s̃ where μ witnesses s � s̃, the renaming μ
describes how the names of the symbolic variables in s and s̃ are related.

Definition 15 (Encoding Generalization Edges). Let e = s → s̃ ∈ Edge
be a generalization edge and let μ witness s � s̃. We extend μ to {xo | o ∈ Ref(s̃)}
by defining μ(xo) = xμ(o). Then tr(e) = (s, ψs ∧

∧
x∈V(s̃) x′ = μ(x), 0, s̃).

Example 16 (Encoding Generalization Edges). The witness of H � G is {i1
→
i2}. Hence, we get tr(H → G) = (H, xo1 ≥ 1 ∧ xo2 ≥ 0 ∧ x′

o1
= xo1 ∧ x′

o2
=

xo2 ∧ i′1 = i2 ∧ i′2 = i2, 0, G). Similarly, the witness of I � C is {o1
→ o2}.
Hence, we get tr(I → C) = (I, xo2 ≥ 0 ∧ x′

o1
= xo2 ∧ i′1 = i1, 0, C).

Example 17 (ITS for max). Figure 2 shows the ITS I obtained from the SE
graph in Fig. 1 after simplifying it via chaining, i.e., subsequent transitions
(s1, ϕ1, w1, s2), (s2, ϕ2, w2, s3) are combined to a single transition that corre-
sponds to first applying (s1, ϕ1, w1, s2) and then (s2, ϕ2, w2, s3). In our imple-
mentation, we only chain such transitions if s2 has exactly one incoming and
one outgoing transition. Further chaining changes the original control flow of the
program which was disadvantageous in our experiments. Again, each transition
(s, ϕ,w, s̃) is labeled with “w : ϕ” in Fig. 2. State-of-the-art complexity analysis
tools like CoFloCo [12] and KoAT [8] can easily infer a complexity bound bI(A)
which is linear in xo1 . In Theorem24 we will show that complexity bounds bI(A)
for the obtained ITS I are also upper bounds bP(A) on the complexity of the
original Java program P.

Slight modifications of our transformation tr from the SE graph to ITSs allow
us to analyze different notions of complexity. For space complexity, we can simply
change the weight of all evaluation edges to 0 except those that correspond to
new instructions (i.e., in this way we infer an upper bound on the auxiliary heap
space required by the method when ignoring any deallocation of memory by the
garbage collector). Our technique can also easily analyze the size of a function’s
result. To this end, all transitions get weight 0 except evaluation edges that
correspond to ireturn or areturn (returning an integer or a reference). Their
weight is simply the top entry of the operand stack. Applying this transformation
to Fig. 1 yields an ITS I ′ like Fig. 2, but the edge from D to L has weight i1 and
all other edges have weight 0. Then complexity tools can infer an upper bound
like bI′(A) = |xo1 |. This proves that the result of max is bounded by ‖l‖.

Complexity Analysis for Java with AProVE 95

4 Summarizing Method Calls

In [5], we extended abstract states to represent the call stack. In this way, our
implementation can analyze programs with method invocations like Example 1
fully automatically. As an alternative, we now introduce the possibility to use
summaries, which is crucial for a modular incremental (possibly interactive)
analysis of large programs. Summaries approximate the effect of method calls.
Thus, AProVE can now use information about called methods without having
to analyze them. Currently, such summaries have to be provided by the user
as JSON files, but they can contain information obtained by previous runs of
AProVE.

Example 18 (Summarizing max). A possible summary for max looks as follows.
1 "class": "List",
2 "methods ": [{
3 "name": "max",
4 "descriptor ": "(LList;)I",
5 "static": true ,
6 "complexity ": {
7 "upperTime ": "13 * arg0 + 6",
8 "upperSpace ": "0"
9 },

10 "upperSize ": [{
11 "pos": "ret",
12 "bound": "arg0"
13 }],
14 "lowerSize ": [{
15 "pos": "ret",
16 "bound": "0"
17 }]
18 }]

So for a given class, each summarized method is identified by its name and
descriptor.8 Upper bounds for the method’s time and auxiliary heap space com-
plexity can be provided as polynomials over arg0, . . . , argn for static methods
resp. this, arg0, . . . , argn for non-static methods, where argi refers to the size
of the method’s ith argument if it is an object resp. the value of the ith argument if
it is an integer. Similarly, one can provide bounds (upperSize and lowerSize)
on the size of the method’s result (ret).

Our summaries are not yet expressive enough to describe heap shapes (we
will improve them in future work). So for simplicity we assume that one only
summarizes methods which do not manipulate the heap. Moreover, the summary
for max is only correct if its argument is acyclic (otherwise, max fails to terminate).
For soundness, one has to ensure that the pre-conditions of the summary are
invariants of the respective class (e.g., that List only implements acyclic lists).

Figure 3 shows the SE graph for sort. Here, we assume a summary for mem
where upperTime is “10 * arg1 + 4”, i.e., computing mem(n,l) takes at most
10 · ‖l‖ + 4 steps. For readability of Fig. 3, instead of program positions we
described the respective JBC instructions and omitted the case n > max(l)

(indicated by the edge S
i1>i2−−−→ . . .) and the case where mem returns false. The

summarization edge Q → R is labeled with the size condition xo1 ≥ i2 ≥ 0
restricting the size of max’s result i2 and the weight 13 ·xo1 +6 which correspond
to the summary from Example 18. Such summarization edges are only permitted
for methods whose summary contains a finite upper runtime bound (< ω). The
8 The descriptor specifies the argument types and return type of a method (“LList;”

stands for the argument type List and “I” stands for the result type int), see
docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.3.3.

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.3.3

96 F. Frohn and J. Giesl

Fig. 3. SE graph for sort

(omitted) summarization edge for mem is labeled with the weight 10 ·xo1 +4. The
SE graph clearly reflects the quadratic complexity of sort: in each iteration, i4
is set to i1 + 1 (on the path from W to X) and afterwards i4 is renamed back
to i1 (on the generalization edge X → Q), i.e., i1 is incremented. The program
terminates as soon as the value of i1 exceeds i2, where i2 is bounded by ‖o1‖. As
‖o1‖ never changes and i1 is initialized to 0, the loop cannot be executed more
than ‖o1‖ times. Since the complexity of each iteration is linear in ‖o1‖ due to
the weights of max and member, the complexity of sort is quadratic. To show how
we infer this quadratic bound for sort automatically, it remains to explain how
we transform summarization edges and evaluation edges with new and putfield
to ITS transitions. Encoding summarization edges is straightforward.

Definition 19 (Encoding Summarization Edges). Let e = s → s̃ ∈ Edge
be a summarization edge with size condition ϕ and weight w. It is transformed
into the ITS transition tr(e) = (s, νs,s̃(ϕ) ∧ ψs ∧

∧
x∈V(s)∩V(s̃) x′ = x, w, s̃).

Example 20 (Encoding Summarization Edges). We have tr(Q → R) = (Q, xo1 ≥
i′2 ≥ 0 ∧ xo1 ≥ 0 ∧ xo2 ≥ 0 ∧ x′

o1
= xo1 ∧ x′

o2
= xo2 ∧ i′1 = i1, 13 · xo1 + 6, R).

5 Encoding Heap Modifications

Now we show how to encode the only instructions that modify the heap as ITS
transitions. To encode the instruction new, we simply add the constraint x′

o = 1
for the newly created object o.

Example 21 (Encoding new). For the (omitted) successor T ′ of T in Fig. 3 we
have tr(T → T ′) = (T, xo1 ≥ 0 ∧ xo2 ≥ 0 ∧ x′

o1
= xo1 ∧ x′

o2
= xo2 ∧ x′

o3
= 1 ∧ i′1 =

i1, 1, T ′).

The only instruction that changes the size of objects is putfield. Note that
putfield also changes the size of all predecessors õ of the object affected by the
write access. However, our size measure ‖ · ‖ was defined in such a way that we
can easily provide lower and upper bounds for the affected variables xõ.

Complexity Analysis for Java with AProVE 97

Definition 22 (Encoding putfield for Object Fields). Let e = s → s̃ ∈
Edge be an evaluation edge with s = (pp, �, op, h, p), let õf and o be the two
top entries of op, and let putfield f be the instruction at program position pp
(i.e., õf ∈ Ref is written to the field f of h(o)). Moreover, let o

f−→h of (i.e., of
is the former value of h(o)’s field f) and PotPred = {õ ∈ Ref(s̃) | õ � o} where
õ � o iff õ →∗

h o or õ →∗
h ô and (ô �� o) ∈ p for some ô ∈ Ref.9 Then tr(e) =

(s, ψs ∧
∧

x∈V(s̃)\{xõ|õ∈PotPred} x′ = x ∧
∧

õ∈PotPred xõ+xõf
≥ x′

õ ≥ xõ−xof
, 1, s̃).

So the size of all potential predecessors õ of o (captured by �) may change, but
by definition of ‖ · ‖, the new size of õ is between ‖õ‖ − ‖of‖ and ‖õ‖ + ‖õf‖.

If an integer ĩf is written to a field by putfield, then we need to take the
signs of ĩf and of the previous value if of the field into account, since integers
contribute to ‖ · ‖ with their absolute value. To avoid case analyses, we infer
integer invariants using standard techniques which often allow us to determine
the signs of integers statically. Moreover, for simplicity we just encode the upper
bound and use xõ + ĩf ≥ x′

õ ≥ 0 if ĩf is non-negative resp. xõ − ĩf ≥ x′
õ ≥ 0 if ĩf is

negative, since 0 is a trivial lower bound for ‖õ‖. Hence, our encoding yields just
one rule if the sign of ĩf can be determined statically and two rules, otherwise.

Example 23 (Encoding putfield). We have tr(U → V) = (U, xo1 ≥ 0 ∧ xo2 ≥
0 ∧ xo3 ≥ 1 ∧ xo4 = 0 ∧ ρ, 1, V) where ρ is x′

o1
= xo1 ∧ x′

o2
= xo2 ∧ i′1 =

i1 ∧ i′3 = i3 ∧ xo3 + xo2 ≥ x′
o3

≥ xo3 − xo4 .

The following theorem states that our transformation is sound for complexity
analysis. For the proof, we refer to [2].

Theorem 24 (Soundness Theorem). Let P be a JBC program and I be
the ITS which results from the SE graph for P. Then for all s ∈ State, any
complexity bound bI(s) for s in I is also a complexity bound for s in P.

For the initial state of the ITS resulting from the SE graph in Fig. 3, CoFloCo
and KoAT infer complexity bounds in O(x2

o1
). By Theorem 24, this proves that

the runtime of sort(l) is quadratic in ‖l‖.

6 Experiments and Conclusion

Building upon AProVE’s symbolic execution, we presented a new complexity-
preserving transformation from heap-manipulating Java programs with user-
defined data structures to integer transition systems. Furthermore, we explained
how we achieve modularity using summaries. In contrast to AProVE’s termina-
tion analysis which transforms Java to term rewrite systems with built-in inte-
gers, our new transformation allows us to apply powerful off-the-shelf solvers for

9 While s may have the predicate ô �� o, it cannot contain ô =? o, as our symbolic
execution rules require that if a field of o is written by putfield, then predicates
of the form ô =? o first have to be removed by refinement steps, cf. [5]. Similarly,
o ∈ Dom(h) is enforced by refinements before symbolically evaluating putfield.

98 F. Frohn and J. Giesl

integer programs like CoFloCo [12] and KoAT [8]. In our implementation, we run
CoFloCo and KoAT in parallel to obtain complexity bounds that are as small as
possible.

Clearly, our translation is also sound for termination analysis. In fact, AProVE
was not able to prove termination of Example 1 so far. Coupling our translation
with dedicated termination analysis tools for ITSs like T2 [7] is subject of future
work.

Related approaches are presented in [1,3,4,10,15,17,18]. [3] analyzes the
complexity of a Java-like language, but in contrast to our technique, it requires
user-provided loop invariants. [17] analyzes ML, i.e., the considered input lan-
guage differs significantly from ours. [15] regards C programs, but requires user-
provided “quantitative functions over data structures” (which are similar to our
optional summaries, cf. Sect. 4) and hence cannot analyze programs with data
structures fully automatically. The approach in [10] also relies on user annota-
tions to handle resource bounds that depend on the contents of the heap. The
tool [4] analyzes Jinja [20], which is similar (but not equal) to a restricted subset
of Java. Therefore, transforming Java to Jinja is non-trivial and no suitable tool
to accomplish such a transformation is available.10 Similarly, [18] analyzes the
complexity of a language related to Java (RAJA), but a (possibly automated)
transformation from full Java to RAJA is not straightforward.

Hence, we compare our implementation with COSTA [1], the only other tool
for fully automated complexity analysis of Java we are aware of. Like our tech-
nique, COSTA transforms Java to an integer-based formalism (called cost rela-
tions). However, COSTA uses path length to measure the size of objects, i.e., lists
are measured by length, trees by height, etc. Thus, COSTA fails for programs
like Example 1 where one has to reason both about data structures and their ele-
ments, as sort’s runtime is not bounded by the length of the input list. So both
COSTA and AProVE estimate how the number of executed instructions depends
on the size of the program input. But as the tools use different size measures, the
semantics of their results are incomparable. Thus, our experimental evaluation
is just meant to give a rough impression of the capabilities of the tools.

Table 1. Results on the TPDB

O(1) O(n) O(n2) O(n3) O(n>3) ?

31 102 15 1 5 58

To assess the power of our app-
roach, we ran AProVE on all 300
non-recursive examples from the
category “Java Bytecode” of the
Termination Problem Data Base
(TPDB), a well-established bench-
mark for automated termination analysis used at the annual Termination
Competition, cf. Footnote 4. (So we did not include the 286 examples from
the category “Java Bytecode Recursive”.) We omitted 80 examples from two
sub-collections of the TPDB which mainly consist of non-terminating examples
as well as 8 further examples where AProVE proves non-termination and conse-
quently fails to infer an upper bound. The remaining 212 examples contain 131

10 Java2Jinja (http://pp.ipd.kit.edu/projects/quis-custodiet/Java2Jinja) generates
JinjaThreads-code, which is a superset of Jinja and cannot be handled by [4].

http://pp.ipd.kit.edu/projects/quis-custodiet/Java2Jinja

Complexity Analysis for Java with AProVE 99

heap-manipulating and 81 numeric programs. AProVE finds runtime bounds for
78 heap-manipulating and 76 numeric examples, i.e., for 154 (73%) of all 212
examples, cf. Table 1. Here, n is the sum of the sizes of all object arguments and
of the absolute values of all integer arguments. On average, AProVE needs 7.2 s
to prove an upper bound and the median of the runtime is 4.6 s.

Unfortunately, we cannot compare AProVE with COSTA on the TPDB
directly. The reason is that the TPDB examples simulate numeric inputs by
the lengths of the strings in the argument of the entry point main(String[]
args) of the program. As COSTA abstracts arrays to their length, it loses all
information about the elements of args and hence fails for almost all TPDB
examples.

Table 2. Comparison with COSTA

O(1) O(logn) O(n) O(n · logn) O(n2) O(n3) O(n>3) ?

AProVE 28 0 102 0 13 2 4 62

COSTA 10 4 45 3 5 0 1 143

So we adapted the 212
examples11 of the TPDB
such that they do not rely
on main’s argument to sim-
ulate numeric inputs any-
more. Instead, now a new
entry point method with a suitable number of integer arguments is analyzed
directly. However, this adaption is not always equivalent, as main’s argument
array can be arbitrarily long (and hence can be used to simulate arbitrarily
many numeric inputs), whereas the arity of the new entry point method is fixed.
Thus, AProVE’s results on these modified examples differ from the results on the
TPDB in some cases. Table 2 compares both tools on these examples. AProVE
succeeds in 149 cases, whereas COSTA proves an upper bound in 68 cases and
infers a smaller bound than AProVE in 4 cases. Besides our novel size abstraction,
further reasons why AProVE often yields better results are its precise symbolic
execution and the use of more powerful back end tools (CoFloCo and KoAT)
instead of COSTA’s back end PUBS. On the other hand, COSTA can infer log-
arithmic bounds, which are not supported by AProVE. If instead of CoFloCo
and KoAT we use COSTA’s back end PUBS to analyze the ITSs generated by
AProVE, then this modified version of AProVE still succeeds in 101 cases.

For more details on our experiments (including a selection of typical heap-
manipulating programs where AProVE succeeds, but COSTA fails), the examples
used to compare with COSTA, a web interface to access our implementation, and
to download a virtual machine image of AProVE, we refer to [2].

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comp. Sci. 413(1), 142–159 (2012)

2. AProVE. https://aprove-developers.github.io/jbc-complexity/
3. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods

Comput. Sci. 7(2) (2011)

11 We could not adapt Julia 10 Iterative/RSA as its sources are missing.

https://aprove-developers.github.io/jbc-complexity/

100 F. Frohn and J. Giesl

4. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean complexity tool. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 407–423. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49674-9 24

5. Brockschmidt, M., Otto, C., Essen, C., Giesl, J.: Termination graphs for Java
Bytecode. In: Siegler, S., Wasser, N. (eds.) Verification, Induction, Termination
Analysis. LNCS, vol. 6463, pp. 17–37. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17172-7 2

6. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 105–122. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 13

7. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 387–393. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 22

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM TOPLAS 38(4), 13:1–13:50 (2016)

9. Complexity Analysis-Based Guaranteed Execution. http://www.draper.com/
news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks

10. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the PLDI 2015, pp. 467–478 (2015)

11. Debray, S., Lin, N.-W.: Cost analysis of logic programs. ACM TOPLAS 15(5),
826–875 (1993)

12. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 15

13. Genaim, S., Codish, M., Gallagher, J., Lagoon, V.: Combining norms to prove
termination. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 126–138.
Springer, Heidelberg (2002). doi:10.1007/3-540-47813-2 9

14. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reasoning 58(1), 3–31 (2017)

15. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: Proceedings of the POPL
2009, pp. 127–139 (2009)

16. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989). doi:10.1007/3-540-51081-8 107

17. Hoffmann, J., Das, A., Weng, S.-C.: Towards automatic resource bound analysis
for OCaml. In: Proceedings of the POPL 2017, pp. 359–373 (2017)

18. Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space
analysis. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
593–613. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6 32

19. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on symbolic execu-
tion and deduction. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM
2013. LNCS, vol. 8137, pp. 289–304. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40561-7 20

20. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM TOPLAS 28(4), 619–695 (2006)

21. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of
term rewriting by dependency pairs. J. Autom. Reasoning 51(1), 27–56 (2013)

http://dx.doi.org/10.1007/978-3-662-49674-9_24
http://dx.doi.org/10.1007/978-3-642-17172-7_2
http://dx.doi.org/10.1007/978-3-642-17172-7_2
http://dx.doi.org/10.1007/978-3-642-31424-7_13
http://dx.doi.org/10.1007/978-3-642-31424-7_13
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks
http://www.draper.com/news/draper-s-cage-could-spot-code-vulnerable-denial-service-attacks
http://dx.doi.org/10.1007/978-3-319-12736-1_15
http://dx.doi.org/10.1007/3-540-47813-2_9
http://dx.doi.org/10.1007/3-540-51081-8_107
http://dx.doi.org/10.1007/978-3-642-37036-6_32
http://dx.doi.org/10.1007/978-3-642-40561-7_20
http://dx.doi.org/10.1007/978-3-642-40561-7_20

Complexity Analysis for Java with AProVE 101

22. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analy-
sis of Java Bytecode by term rewriting. In: Proceedings of the RTA 2010, LIPIcs
6, pp. 259–276 (2010)

23. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of impera-
tive programs using difference constraints. J. Autom. Reasoning 59(1), 3–45 (2017)

24. Space/Time Analysis for Cybersecurity (STAC). http://www.darpa.mil/program/
space-time-analysis-for-cybersecurity

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM TECS 7(3), 36:1–36:53 (2008)

http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity

The VerCors Tool Set: Verification of Parallel
and Concurrent Software

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn(B)

University of Twente, Enschede, The Netherlands
{s.c.c.blom,s.darabi,m.huisman,w.h.m.oortwijn}@utwente.nl

Abstract. This paper reports on the VerCors tool set for verifying par-
allel and concurrent software. Its main characteristics are (i) that it can
verify programs under different concurrency models, written in high-
level programming languages, such as for example in Java, OpenCL and
OpenMP; and (ii) that it can reason not only about race freedom and
memory safety, but also about functional correctness. VerCors builds on
top of existing verification technology, notably the Viper framework, by
transforming the verification problem of programs written in a high-level
programming language into a verification problem in the intermediate
language of Viper. This paper presents three examples that illustrate
how VerCors support verifying functional correctness of three different
concurrency features: heterogeneous concurrency, kernels using barriers
and atomic operations, and compiler directives for parallelisation.

1 Introduction

In a parallel or concurrent program, multiple program threads proceed in paral-
lel while they access and write to a globally shared memory. Such programs are
notoriously error-prone, because the set of possible program behaviours is expo-
nential in the programs’ size, containing all possible interleavings of the atomic
steps of the individual threads. As a consequence, for developers it is easy to
overlook a problem that occurs in only a few of these behaviours. Moreover, sys-
tematically testing all possible program behaviours is unfeasible for most concur-
rent programs. Nonetheless, parallel and concurrent programming is nowadays
ubiquitous due to increased performance demands as well as the vast increase
in availability of multi-core hardware. Tools and techniques are therefore needed
that support the developers of such software to increase its reliability.

This paper discusses recent developments of the VerCors tool set, which aims
to support developers in writing reliable concurrent software. VerCors allows
practical mechanised verification under different concurrency models; notably
heterogeneous concurrency (e.g. Java programs) and homogeneous concurrency
(e.g. GPU kernels). Multiple widely-used languages with parallelism and con-
currency features are targeted, such as Java, OpenCL, and OpenMP for C. It
allows reasoning about data race freedom, memory safety, and functional proper-
ties of (possibly non-terminating) concurrent programs. Moreover, it can handle
advanced language features such as compiler directives and atomic operations.
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 102–110, 2017.
DOI: 10.1007/978-3-319-66845-1 7

The VerCors Tool Set: Verification of Parallel and Concurrent Software 103

An earlier paper on the VerCors tool set has appeared in Formal Methods
2014 [5], where we showed how VerCors is used to prove data race freedom and
basic functional correctness of concurrent Java [2] and OpenCL [6] programs.
This paper extends on [5] and illustrates more advanced verification features
of VerCors. First, we demonstrate our model-based approach to functional ver-
ification of concurrent Java programs, where an abstract model captures all
concurrent behaviours of a program w.r.t. a set of shared variables [7,16]. We
then use program logic-based verification to show the correspondence between
the program and its abstraction, while algorithmic verification is used to rea-
son about the abstract model. We also illustrate how VerCors is used to verify
OpenCL kernels (OpenCL programs that run on GPUs) that use barriers and
atomics for synchronisation [1]. Finally, programs with homogeneous threading
are often constructed by developing a sequential program and adding suitable
compiler directives, as is done in OpenMP. VerCors provides support to prove
correctness of such compiler directives, i.e. ensuring that they will not change the
functional behaviour of a program [4,10]. We also illustrate this by an example.

The VerCors tool set supports static verification in a design-by-contract fash-
ion: programmers annotate their code and VerCors transforms verification of
this annotated program into a verification problem in the intermediate verifica-
tion language Silver [14]. The Viper verification technology (that works on Silver
programs) is then used to verify the Silver specification with respect to its imple-
mentation. If this succeeds, we can conclude that the original program satisfies
its annotations. Thus, the focus of VerCors is not so much on developing new ver-
ification technology, but rather on making existing verification technology usable
for realistic programming languages and advanced language features. The spec-
ification language builds on permission-based separation logic (PBSL) [2,8], an
extension of Hoare logic that explicitly considers where an object is stored in
memory, which enables thread-modular verification of concurrent programs.

Section 2 provides a quick description of the tool architecture, focusing on its
extendability. Section 3 discusses several examples to illustrate advanced features
supported by VerCors. Section 4 concludes with a discussion of related and future
work, and gives information about how to try VerCors yourself.

2 The VerCors Architecture

Our main goal is to make existing program verification technology usable for
high-level programming languages and advanced language features. This is
reflected in the design of VerCors, which is implemented as a collection of com-
piler transformations and uses the existing Viper technology as back-end [14],
see Fig. 1. Viper supports the intermediate verification language Silver, which
allows reasoning about programs with persistent mutable state, annotated with
separation logic-style specifications. The compiler transformations are used to
transform different high-level language/concurrency features into Silver code.
The Viper technology provides two styles of reasoning: verification condition
generation (via Boogie), and symbolic execution. The symbolic execution engine

104 S. Blom et al.

Z3

VerCors
Tool

Silicon

Silver
Viper

Transformations

OpenCL

OpenMP

PVL

Java

Fig. 1. The architecture of the VerCors tool set.

is the most powerful and provides support for e.g. quantified permissions, which
we heavily rely upon. In earlier versions of VerCors, Chalice [13] was used as the
main back-end, but its functionality is subsumed by Viper.

VerCors takes as input a program in a high-level programming language,
annotated with JML-style specifications, and transforms this into verifica-
tion problems encoded in Silver. The current input languages are Java, PVL,
OpenCL, and OpenMP for C; it supports reasoning about the main concurrency-
related features of these languages. The support for OpenCL covers only the
verification of kernels, including barrier synchronisation and atomic operations,
but not host code (which would mostly require engineering). PVL is a Java-like
procedural toy language used for quick prototyping of new verification features.
Notably, it has support for kernels and hostcode. VerCors also supports a sub-
stantial subset of OpenMP, essentially characterising deterministic parallel pro-
gramming. The annotation language of VerCors is the same across all supported
languages.

VerCors can easily be extended with new parallel or concurrent pointer
languages, by providing a parser that transforms input programs and their
specifications into the intermediate language of VerCors. All further program
transformations are defined over the intermediate language of VerCors, thereby
automatically providing verification support for the features of the extended
language.

3 Verification Highlights

This section discusses three verification examples to illustrate the most inter-
esting features supported by VerCors. For clarity of presentation the example
annotations are somewhat simplified; the full, verifiable programs are available
at http://www.utwente.nl/vercors. Also a detailed list of case studies and ver-
ified example programs is available, together with statistics about performance
and required amounts of specification code relative to program code.

Model-Based Verification. In the context of heterogeneous threading, verifi-
cation of functional properties is a major challenge and requires suitable abstrac-
tions. Our model-based verification technique captures the behaviour of a shared
memory concurrent program by means of a process algebra term with data [7,16].
All accesses to the relevant shared memory locations are abstracted by actions.
The process algebra term specifies the legal sequences of actions that are allowed
to occur, and the program logic is used to verify that the process algebra term is

http://www.utwente.nl/vercors

The VerCors Tool Set: Verification of Parallel and Concurrent Software 105

indeed a correct program abstraction. Functional properties about the program
can then be verified by reasoning algorithmically on the process algebra term.

We illustrate this on the parallel GCD challenge from the VerifyThis 2015
program verification competition [11]. The standard sequential Euclidean algo-
rithm is described as a function gcd which, given two positive integers a and b,
gcd(a, a) = a, gcd(a, b) = gcd(a − b, a) if a > b, and gcd(a, b) = gcd(a, b − a) if
b > a. The parallel version we consider uses two concurrent threads: one thread
to repeatedly decrease a when a > b, and one thread to repeatedly decrease the
value of b when b > a. This process continues until a and b converge to gcd(a, b).

1 int x, y;
2

3 guard y > 0 ∧ x > y; effect x = old(x) − old(y); action decrX();
4 guard x > 0 ∧ y > x; effect y = old(y) − old(x); action decrY();
5 guard x = y; action done();
6

7 requires x > 0 ∧ y > 0;
8 ensures x = y ∧ y = gcd(old(x), old(y));
9 process pargcd() := tx() ‖ ty();

10

11 process tx() := decrX() · tx() + done();
12 process ty() := decrY() · ty() + done();

Fig. 2. The process algebraic description of the gcd algorithm.

To prove that the parallel algorithm computes gcd(a, b) we first model gcd
as a process algebra term, named pargcd, by using two actions, named decrX
and decrY. The decrX action corresponds to the assignment x := x − y in the
program code, and decrY corresponds to y := y−x. Action behaviour is defined
in terms of guard and effect clauses, which logically describe the (guarded, con-
ditional) effects of an action on the shared memory. A third action done indicates
termination of the process term. Figure 2 shows the abstract model.

We use existing process-algebraic reasoning techniques to analyse the process
pargcd: by giving any two positive integers as input, their gcd has been found
when the action done has been performed. This is currently done by translating
the analysis into an SMT problem, by encoding it into Silver. Finally, we prove
the connection between pargcd and the concrete program code, presented in
Fig. 3. In future work we plan to analyse the processes via the mCRL2 toolset.

The calcgcd function creates a new model named m via the invocation on
line 4. The model m is split along the parallel composition tx() ‖ ty() on line 5
to match the forking of the two program threads T0 and T1 (where the body of
thread T1 is omitted for brevity). The thread T0 requires that part of the model
that executes the process term tx(); the thread T1 requires the term ty(). The
connection between program execution and process execution is made via action

106 S. Blom et al.

1 requires x > 0 ∧ y > 0;
2 ensures \result = gcd(a, b);
3 int calcgcd(int a, int b) {
4 model m := pargcd() with [x := a, y := b];
5 split m into (1

2
, tx()) and (1

2
, ty());

6 invariant inv(m.x
1

↪−→p v ∗ m.y
1

↪−→p w ∗ v > 0 ∗ w > 0) {
7 requires Proc(m, 1

2
, tx()); ensures Proc(m, 1

2
, ε);

8 par T0() {
9 bool run := true;

10 loop-invariant run ? Proc(m, 1
2
, tx()) : Proc(m, 1

2
, ε);

11 while (run) {
12 atomic (inv) {
13 if (m.x > m.y) action decrX() { m.x := m.x − m.y; };
14 if (m.x = m.y) action done() { run := false; };

15 } } }
16 requires Proc(m, 1

2
, ty()); ensures Proc(m, 1

2
, ε);

17 and par T1 { · · · }
18 }
19 merge (m, 1

2
, ε) and (m, 1

2
, ε); finish m;

20 return m.x;

21 }

Fig. 3. The annotated implementation of the parallel GCD algorithm.

annotations in the code. To this end, the actions decrX, decrY, and done are
linked to concrete statements in the language via action blocks. Correctness of
the connection is shown by applying the rules of our extended separation logic.

GPU Kernels and Atomics. VerCors supports verifying race freedom and
functional correctness of GPU kernels that use atomic operations and barri-
ers [1,6]. In a GPU kernel, threads are organised in workgroups, which consist
of multiple threads. Threads within a workgroup can synchronise by means of
a barrier; threads in different workgroups can only synchronise using atomic
operations.

The VerCors tool set supports a kernel-specific version of PBSL; kernels are
specified with the permissions available for them, in addition to their functional
behaviour contract. The available permissions are distributed over the different
workgroups, which in turn are specified with a permission distribution for its
threads. We verify that these permission distributions are correct, meaning that
kernels and workgroups do not distribute more permissions than are available.
When threads within a workgroup synchronise on a barrier, they may redistrib-
ute permissions and exchange knowledge about their thread-local state.

We illustrate this approach on a kernel that calculates the sum of the elements
of an array. The PVL encoding of this kernel is shown in Fig. 4 (the clause
context P abbreviates requires P ; ensures P). This example shows how race

The VerCors Tool Set: Verification of Parallel and Concurrent Software 107

1 invariant A �= null ∧ m > 0 ∧ n > 0;
2 context Perm(result,write) ∗ (\forall int i; 0 ≤ i < m ∗ n; Perm(A[i], read);
3 requires result = 0;
4 int calculate-sum(int m, int n, int[m∗n] A) {
5 invariant outer(Perm(result,write)) {
6 par kernel(int gid ∈ [0, . . . , m))
7 context (\forall int i; 0 ≤ i < n; Perm(A[gid∗n+i], read); {
8 int[1] temp := new int[1] { 0 };
9 invariant inner(\array(temp, 1) ∗ Perm(temp[0],write)) {

10 par workgroup(int tid ∈ [0, . . . , n))
11 requires Perm(A[gid∗n+tid], read);
12 ensures tid = 0 ⇒ (\forall int i; 0 ≤ i < n; Perm(A[gid∗n+i], read)); {
13 atomic(inner) { temp[0] := temp[0] + ar[gid∗n +tid]; }
14 barrier (workgroup) {
15 requires Perm(A[gid∗n+tid], read);
16 ensures tid = 0 ⇒ (\forall int i; 0 ≤ i < n; Perm(A[gid∗n+i], read)); }
17 if (tid = 0) {
18 int tmp; atomic(inner) { tmp := temp[0]; }
19 atomic(outer) { result := result + tmp; }
20 } · · · }

Fig. 4. Summing up the elements of the input array A.

freedom of kernels with barriers and atomics is verified, the interested reader
can see the functional specification in [1]. The program uses two nested parallel
blocks: the outer par-block resembles kernel execution, and the inner par-block
resembles workgroup execution. First, each workgroup atomically adds the values
in its part of the input array A to a local memory buffer temp. After writing to
temp, each thread enters a barrier. After leaving the barrier, the first thread of
each workgroup adds the local sum (stored in temp) to the global result. Each
parallel block has a contract, denoting the requirements and the contributions of
the workgroups and threads, respectively. In particular, each workgroup requires
permission to read its share of A and each thread in a workgroup requires read
permission to one entry of A. In the barrier, the read permission of each thread
is transferred to the first thread in the workgroup.

To make the algorithm correct, addition to the shared intermediate result
must be performed atomically (on line 20). In PVL this is expressed by putting
the addition in an atomic block. Reasoning about atomic operations is an adap-
tation of the classical verification technique for atomic operations [15,19]. The
specification language supports kernel and group invariants, which capture the
behaviour of the atomic operations accessing the shared locations.

Deterministic Parallelism. Parallel programs are commonly written by using
compiler directives, like done in OpenMP [17]. Compiler directives indicate code
that may be executed in parallel, so that the compiler can generate parallelised

108 S. Blom et al.

1 given seq〈seq〈int〉〉 data;
2 invariant m > 0 ∧ n > 0 ∧ p > 0 ∧ \matrix(M, m, n) ∧ \array(H, p);
3 context (\forall int i ∈ [0..m), j ∈ [0..n); Perm(M [i][j], read));
4 context (\forall int i ∈ [0..m), j ∈ [0..n); M [i][j] = data[i][j] ∧ 0 ≤ M [i][j] < p);
5 context (\forall int i ∈ [0..p); Perm(H[i],write));
6 ensures (\forall int k ∈ [0..p); H[k] = (\count int i ∈ [0..m), j ∈ [0..n); data[i][j] = k));
7 void histogram(int m, int n, int[m][n] M, int p, int[p] H) {
8 for (int k := 0; k < p; k++) context Perm(H[k],write); ensures H[k] = 0;
9 { H[k] := 0; }

10 for (int i := 0; i < m; i++)
11 requires (\forall int k ∈ [0..p); Reducible(H[k], +));
12 context Perm(M [i][j], read) ∗ 0 ≤ M [i][j] < p ∗ M [i][j] = data[i][j];
13 ensures (\forall int k ∈ [0..p); Contribution(H[k], data[i][j] = k ? 1 : 0)); {
14 for (int j := 0; j < n; j++) { H[M [i][j]] += 1; } } }

Fig. 5. The implementation of the histogram example, written in C.

code. VerCors provides support to prove that these compiler directives do not
change the meaning of the program, meaning that functional correctness of the
original program implies functional correctness of the parallelised program.

We illustrate this by means of a histogram example, see Fig. 5, which outputs
an array H such that H[k] contains the number of occurrences of the integer
k in the input matrix M . We use VerCors to show that the for-loops can be
parallelised without changing the functional program behaviour. We do this by
specifying an iteration contract [4], which denotes the pre- and postcondition for
each iteration of the loop. The iteration contract of the first loop expresses that
each iteration k requires writing permission for H[k] and sets H[k] to zero. From
the iteration contract we can derive that each loop iteration is independent, and
thus that the loop can be parallelised without changing its functional behaviour.
In a similar way, also for the second loop the iteration contract is used to cap-
ture independence of the iterations. The specification language provides extra
annotations to deal with several typical scenarios; in this case, the Reducible and
Contributes predicates are used to denote the reduction pattern.

4 Conclusion and Related Work

This paper gives a concise overview of the most interesting features of the Ver-
Cors toolset for verifying concurrent software. For more verification examples,
statistical information, an indication of supported features, and for trying out
the verification technology yourself, we refer to http://utwente.nl/vercors.

The VerCors tool set is currently used for teaching, as part of an advanced
Master-level course on program verification. In addition, we also have several
students working individually on interesting verification case studies, for example
verifying the correctness of a parallel prefix sum implementation. Having non-
developers of VerCors use the tool has been very useful to improve the maturity
of the tool, to understand how people use the tool, and to see which features

http://utwente.nl/vercors

The VerCors Tool Set: Verification of Parallel and Concurrent Software 109

could be improved further. We are working on the development of a regression
test suite, containing examples that should and that should not verify, which is
automatically evaluated whenever the tool is updated. One particular challenge
that we encountered is that we depend on the Viper framework, which is also still
under development. Therefore, sometimes bug fixes for VerCors depend on Viper
updates, and good communication with the group behind Viper is essential.

There exist several other tools for the verification of concurrent software, such
as VeriFast [12] (for concurrent C and Java programs), VCC [9] (for C programs),
Chalice [13] (for a concurrent toy language, not maintained anymore), Cave [18]
(proving memory safety and linearizability), and GPUVerify [3] (automatic data
race detection of GPU Kernels). The main distinguishing feature of the VerCors
tool set is that it generalises the verification of concurrent software to a language-
independent setting, where new front-ends can be added easily.

There are many directions we plan to explore to further increase usability of
VerCors. We are currently investigating how our model-based verification tech-
nique can be used to reason about distributed software, focusing in particular
on message passing. To improve scalability of the verification process we plan to
experiment with different techniques for annotation generation and to generate
meaningful error messages. Ultimately, our goal is to support complete program-
ming languages, not just subsets. Since this is a large engineering effort, we hope
to reuse existing verification technology as much as possible.

Acknowledgements. The work in this paper is partially supported by the ERC grant
258405 for the VerCors project, by the EU FP7 STREP 287767 project CARP, and by
the NWO TOP 612.001.403 project VerDi.

References

1. Amighi, A., Darabi, S., Blom, S., Huisman, M.: Specification and verification
of atomic operations in GPGPU programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 69–83. Springer, Cham (2015). doi:10.1007/
978-3-319-22969-0 5

2. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs. LMCS 11(1) (2015)

3. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: OOPSLA, pp. 113–132. ACM (2012)

4. Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In: Egyed,
A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 202–217. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 14

5. Blom, S., Huisman, M.: The VerCors Tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). doi:10.1007/978-3-319-06410-9 9

6. Blom, S., Huisman, M., Mihelčić, M.: Specification and Verification of GPGPU
programs. Sci. Comput. Program. 95, 376–388 (2014)

7. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification of
functional behaviour of concurrent programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Cham (2015). doi:10.1007/
978-3-319-22969-0 6

http://dx.doi.org/10.1007/978-3-319-22969-0_5
http://dx.doi.org/10.1007/978-3-319-22969-0_5
http://dx.doi.org/10.1007/978-3-662-46675-9_14
http://dx.doi.org/10.1007/978-3-319-06410-9_9
http://dx.doi.org/10.1007/978-3-319-22969-0_6
http://dx.doi.org/10.1007/978-3-319-22969-0_6

110 S. Blom et al.

8. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270 (2005)

9. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 23–42. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 2

10. Darabi, S., Blom, S.C.C., Huisman, M.: A verification technique for deterministic
parallel programs. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS,
vol. 10227, pp. 247–264. Springer, Cham (2017). doi:10.1007/978-3-319-57288-8 17

11. Huisman, M., Klebanov, V., Monahan, R., Tautschnig, M.: VerifyThis 2015: a
program verification competition. Int. J. Softw. Tools Technol. Transfer (2016)

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

13. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with chal-
ice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol.
5705, pp. 195–222. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03829-7 7

14. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

15. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007)

16. Oortwijn, W., Blom, S., Gurov, D., Huisman, M., Zaharieva-Stojanovski, M.: An
abstraction technique for describing concurrent program behaviour. In: VSTTE
(2017, to appear)

17. OpenMP Architecture Review Board, OpenMP API Specification for Parallel Pro-
gramming. http://openmp.org/wp/. Accessed 18 Oct 2016

18. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14295-6 40

19. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: MFPS.
ENTCS, vol. 276, pp. 335–351 (2011)

http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-319-57288-8_17
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-03829-7_7
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://openmp.org/wp/
http://dx.doi.org/10.1007/978-3-642-14295-6_40

An Extension of the ABS Toolchain
with a Mechanism for Type Checking SPLs

Ferruccio Damiani1(B), Michael Lienhardt1, Radu Muschevici2,
and Ina Schaefer3

1 University of Torino, Torino, Italy
{ferruccio.damiani,michael.lienhardt}@unito.it

2 Technische Universität Darmstadt, Darmstadt, Germany
radu@cs.tu-darmstadt.de

3 Technische Universität Braunschweig, Braunschweig, Germany
i.schaefer@tu-braunschweig.de

Abstract. A Software Product Line (SPL) is a set of similar programs,
called variants, with a common code base and well documented variabil-
ity. Because the number of variants in an SPL can be large, checking
them efficiently (e.g., to ensure that they are all well-typed) is a chal-
lenging problem. Delta-Oriented Programming (DOP) is a flexible app-
roach to implement SPLs. The Abstract Behavioral Specification (ABS)
modeling language and toolchain supports delta-oriented SPLs. In this
paper we present an extension of the ABS toolchain with a mechanism
for checking that all the variants of an SPL can be generated and are
well-typed ABS programs. Currently we have implemented only part of
this mechanism: our implementation (integrated in version 1.4.2 of the
ABS toolchain and released in April 2017) checks whether all variants
can be generated, however it does not check, in particular, whether the
bodies of the methods are well-typed. Empirical evaluation shows that
the current implementation allows for efficient partial type checking of
existing ABS SPLs.

1 Introduction

Recent fundamental changes of deployment platforms (cloud, multi-core)
together with the emergence of cyber-physical systems and the internet of things
imply that modern software must support variability [22] and emphasize the need
for modeling languages capturing system diversity.

The Abstract Behavioral Specification (ABS) [7] modeling language and tool-
chain has been designed to fill the gap between structural high-level modeling

This work has been partially supported by: EU Horizon 2020 project
HyVar (www.hyvar-project.eu), GA No. 644298; ICT COST Action IC1402
ARVI (www.cost-arvi.eu); Ateneo/CSP D16D15000360005 project RunVar
(runvar-project.di.unito.it); LOEWE initiative to increase research excellence in the
state of Hesse, Germany as part of the LOEWE Schwerpunkt CompuGene.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 111–126, 2017.
DOI: 10.1007/978-3-319-66845-1 8

http://www.hyvar-project.eu
http://www.cost-arvi.eu
http://runvar-project.di.unito.it

112 F. Damiani et al.

languages (e.g., UML) and implementation-close formalisms (including program-
ming languages such as C/C++, C#, or Java). It facilitates the precise modelling
of the behaviour of highly configurable distributed systems, and has been suc-
cessfully used in industry [1,17,19].

Figure 1 illustrates the different languages comprised in ABS. The basis, Core
ABS, is a strongly typed, abstract, object-oriented, concurrent, fully executable
modeling language. The other three languages support the implementation of
delta-oriented Software Product Lines (SPLs) of Core ABS programs.

eloRegaugnaL

sledomlaruoivahebesabsefiicepSSBAeroC

Micro Textual Variability Language Feature (μTVL) Feature models

Delta Modelling Language (DML) Modifications to base behavioural models

Product Line Configuration Language (CL) Links features and delta modules,
configures deltas with attributes

Fig. 1. Language definitions in ABS

An SPL is a set of similar programs, called variants, with a common code
base and well documented variability [8]. Delta-Oriented Programming (DOP [2,
Sect. 6.6.1] and [5,21]) is a flexible and modular approach to implement SPLs.
A delta-oriented SPL comprises a feature model, an artifact base, and configura-
tion knowledge. The feature model provides an abstract description of variants in
terms of features: each feature represents an abstract description of functionality
and each variant is identified by a set of features, called a product. The artifact
base provides language dependent artifacts that are used to build the variants:
it consists of a base program (written in the same language in which variants are
written) and of a set of delta modules (deltas for short), which are containers of
modifications to a program—for Core ABS programs, a delta can add, remove
or modify classes, interfaces, fields and methods. Configuration knowledge con-
nects the feature model with the artifact base by associating with each delta
an activation condition over the features and specifying an application order-
ing between deltas. Once a user selects a product, the corresponding variant is
derived by applying the deltas with a satisfied activation condition to the base
program according to the application ordering. To avoid over-specification the
application ordering can be partial—this opens the issue of ensuring unambigu-
ity of the product line, i.e., for each product, any total ordering of the activated
deltas that respects the partial ordering must generate the same variant.

With respect to the languages in Fig. 1: Core ABS is for writing base pro-
grams; μTVL is for feature models; DML is for deltas; and CL is for configuration
knowledge.

As the number of variants in an SPL can be large, checking them efficiently
(e.g., to ensure that they are all well-typed) is a challenging problem. Until
the release of version 1.4.2 in April 2017, the ABS toolchain1 did not officially
1 ABS language & tools: http://abs-models.org/.

http://abs-models.org/

An Extension of the ABS Toolchain with a Mechanism 113

provide any dedicated support for checking that an SPL is unambiguous (cf. the
discussion above) and for type checking an SPL (i.e., to ensure that all its variants
are generable2 and well-typed).3 In order to type check an SPL developers had to
generate all its variants and type check each of them in isolation using the Core
ABS type checker. Evaluation of ABS against industrial requirements [13,16]
repeatedly identified lack of tool support for SPL unambiguity checking and
SPL type checking as a major usability issue.

In this paper we present an extension of the ABS toolchain with an SPL
unambiguity and type checking mechanism (SPL checking mechanism, for short).
This mechanism is an adaptation to ABS of an approach formalized for Imper-
ative Featherweight Delta Java (IFΔJ) [5,12], a minimal core calculus for
delta-oriented SPLs where variants are written in IFJ [5], an imperative version
of FJ [18]. Currently we have implemented only part of the checking mecha-
nism: our implementation checks whether the SPL is unambiguous and whether
all variants can be generated, however it does not check, in particular, whether
the bodies of the methods are well-typed.

Empirical evaluation shows that the extended toolchain allows for efficient
partial checking of existing ABS product lines, providing a significant perfor-
mance increase with respect to generating and fully type checking each variant
in isolation using the Core ABS type checker. This result raises our confidence
that the (currently under development) implementation of the full SPL checking
mechanism will remain similarly performant.

The paper is organized as follows. In Sect. 2 we provide an overview of ABS
and recall its minimal fragment FDABS [9]. In Sect. 3 we illustrate the SPL
checking mechanism by means of FDABS. In Sect. 4 we present the implemen-
tation of part of the SPL checking mechanism for the complete ABS language
and its integration in the ABS toolchain. In Sect. 5 we show how the extended
ABS toolchain is applied to check two SPLs developed in two different industrial
modeling scenarios. In Sect. 6 we discuss related work and conclude in Sect. 7.

2 FDABS: A Minimal Language for Core ABS
and Deltas

In this section we provide an overview of ABS product lines and of the Feath-
erweight Delta ABS (FDABS) [9] language, the minimal fragment of ABS
used in Sect. 3 to illustrate the SPL checking mechanism.

2 The generation of a variant fails whenever the application of an activated delta fails.
The application of a DML delta to a Core ABS program fails, e.g., if the delta tries
to add a class that is already present in the program, or tries to remove or modify
a class that is not present in the program.

3 The development of the SPL checking mechanism described in this paper started in
2015 and a prototypical version has been made available since June 2015.

114 F. Damiani et al.

We illustrate ABS product lines by means of a version of the Expression Prod-
uct Line (EPL) benchmark [20] (see also [5]) defined by the following grammar
which describes a language of numerical expressions:

Exp ::= Lit | Add Lit ::= <non−negative−integers> Add ::= Exp ”+” Exp

Each variant of the EPL contains an interface Exp that represents an expression
equipped with a subset of the following operations: eval, which returns the value
of the expression as an integer; and toString, which returns the expression as
a String.

EPL

Flit Fadd Feval Fprint

Fig. 2. EPL feature
model

Figure 2 shows the feature model of the EPL
depicted as a feature diagram. The EPL has four prod-
ucts, described by four features: the mandatory fea-
tures Flit and Feval correspond to the presence of lit-
eral expression (i.e., numbers) and the eval method,
respectively; the optional features Fadd and Fprint pro-
vide the Add class (for sum expression) and the toString

method, respectively.

// Feature model (written in μTVL)
productline EPL;
features Flit , Fadd, Feval , Fprint ;
root EPL { group allof {
Flit , opt Fadd, Feval , opt Fprint }}

// Configuration knowledge (written in CL)
delta Dadd when Fadd;
delta Dlit NOprint when !Fprint ;
delta Dadd NOprint after Dadd

when Fadd && !Fprint;

1 // Base program (written in the FABS
2 // subset of Core ABS)
3 interface Exp {
4 Int eval () ;
5 String toString () ;
6 }
7 class Lit implements Exp {
8 Int val ;
9 Exp set(Int x) {

10 this . val=x; return this ;
11 }
12 Int eval () { return this . val ; }
13 String toString () {
14 return this . val . toString () ;
15 }
16 }

17 // Deltas (written in the FDML subset of DML)
18 delta Dadd;
19 adds class Add implements Exp {
20 Exp a; Exp b;
21 Exp set(Exp a, Exp b) {this .a=a; this .b=b; return this ;}
22 Int eval () { return this .a. eval () + this .b. eval () ; }
23 String toString () {
24 return this .a. toString () + ”+” + this.b.toString() ; }
25 }
26
27 delta Dlit NOprint ;
28 modifies interface Exp { removes toString; }
29 modifies class Lit { removes toString ; }
30
31 delta Dadd NOprint;
32 modifies class Add { removes toString; }

Fig. 3. ABS code for the EPL: feature model (top left, cf. the graphical representation
in Fig. 2); configuration knowledge (top right); and artifact base (bottom)

Figure 3 illustrates the ABS code implementing the EPL. Configuration
knowledge (Fig. 3, top right) lists the names of the deltas and specifies when
and how each delta must be applied to generate a given variant: the when clause
declares the activation condition of a delta, while the after clauses specify the
application ordering between deltas (cf. the description of DOP in Sect. 1). The
artifact base comprises the base program and three deltas. The base program
(Fig. 3, bottom left) declares the interface Exp and the class Lit (for literals)—
note that both Exp and Lit declare the toString method. The delta Dadd (acti-
vated when feature Fadd is selected) adds the Add class for sum expression, with

An Extension of the ABS Toolchain with a Mechanism 115

the methods eval and toString. The delta Dlit NOprint (activated when feature
Fprint is not selected) removes the toString method from the Exp interface and
Lit class, while the delta Dadd NOprint removes it from the Add class.

The abstract syntax of FDABS is given in Fig. 4. An FDABS product line L,
see Fig. 4 (top left), consists of: a feature model M, configuration knowledge K,
a base program P , and a (possibly empty) set Δ of deltas—following Igarashi
et al. [18], X denotes a finite (possibly empty) sequence of syntactic elements of
kind X, and the empty sequence is denoted by ∅. In FDABS there is no syntax
for feature models and configuration knowledge.

L ::= M K P Δ Δ ::= delta d; IO CO

IO ::= adds ID | removes I; | modifies I [extends I] { HO }
HO ::= adds HD; | removes m;

CO ::= adds CD | removes C; | modifies C [implements I] { AO }
AO ::= adds FD | removes f; | adds MD | removes m; | modifies MD

P ::= ID CD ID ::= interface I [extends I] { HD; }
CD ::= class C [implements I] { AD }
HD ::= I m(I x)

AD ::= FD | MD
FD ::= I f;
MD ::= HD { s return e; }

Fig. 4. Syntax of FDABS (top left), FDML (top right) and FABS (bottom)

The language for base programs, Featherweight Core ABS (FABS), is
given in Fig. 4 (bottom). The non-terminal P represents programs, ID interface
declarations, CD class declarations, HD method headers, AD attribute decla-
rations, FD field declarations, MD method declarations, e expressions, and s
statements. To save space, we do not specify expression and statement syntax.

The language for deltas, Featherweight DML (FDML), is given in Fig. 4
(top right). A delta Δ comprises a name d and a set of operations IO on interfaces
and operations CO on classes. These operations can add or remove interfaces
and classes, or modify their content by adding or removing attributes. Moreover,
these operations can also change the set of interfaces implemented by a class or
extended by an interface by means of an optional implements or extends clause
in the modifies operation, respectively. Finally, it is also possible to modify the
body of a method with the modifies operation, where the new method may call
the original implementation of the method using the keyword original.

3 The Checking Mechanism for FDABS Product Lines

SPL analysis approaches can be classified into three main categories [25]: product-
based analyses work only on generated variants (or models of variants); family-
based analyses work on the artifact base, without generating any variant or
model of variant, by exploiting feature model and configuration knowledge to
derive results about all variants; feature-based analyses work on the reusable
artifacts in the artifact base (base program and deltas in DOP) in isolation,
without using feature model and configuration knowledge, to derive results on
all variants.

116 F. Damiani et al.

In this section we outline how the SPL unambiguity and type checking mech-
anism formalized for IFΔJ by Bettini et al. [5,12], can be reformulated for FABS.
The type checking mechanism comprises three steps: (i) a feature-based analysis
step that extracts suitable constraints from the base program and the deltas;
(ii) a family-based step that builds a data structure, called the product family
generation trie (PFGT) of the SPL, that is exploited (in the next step) to opti-
mize generation and check of the constraints; and (iii) a product-based step that
uses the constraints extracted in the first step to generate and check, for each
product of the SPL, constraints that are satisfiable if and only if the associated
variant is well-typed.

3.1 Unambiguity Checking

In the formalization of DOP by Bettini et al. [5,12] the application ordering is
specified by providing a totally ordered partition of the set of the deltas, which
is interpreted as defining the partial ordering such that: two deltas in the same
set are not comparable, and two deltas in different sets are ordered according
to the partition ordering. Bettini et al. [5] pointed out that, if the application
ordering is specified (as described above) by a totally ordered partition of the
deltas, then unambiguity of the SPL is implied by a stronger condition, called
strong unambiguity, which states that: (i) if a delta in a set of the partition
adds or removes a class/interface then no other delta in the same set adds,
removes or modifies the same class/interface; and (ii) the modifications of the
same class/interface in different deltas in a same set are disjoint (i.e., there is
at most one delta operation for each field, method, implements clause, method
header, and extends clause). They also pointed out that strong unambiguity
can be efficiently checked by only analyzing the delta signature table (DST) of
a product line, which is a table that has an entry for each delta declared in
the artifact base: it associates with each delta name a data structure, called
delta signature, containing the information provided by the delta deprived of the
bodies of its methods.

The ABS toolchain uses the after clauses (cf. Sect. 2) to compute a totally
ordered partition of the set of deltas, that we call the canonical partition, which
in turn defines the application ordering as described above—we call it the canon-
ical application ordering. Therefore, we can directly exploit the result on strong
unambiguity [5]. The canonical partition is computed by: building the after
graph (i.e., a direct graph where the nodes are the names D of the deltas, and
there is an edge from D1 to D2 iff there is a clause D2 afterD1); checking
whether the after graph is acyclic; computing for each delta the length l of the
longest path from a source node in the after graph; and putting in the same
set all the deltas that have the same l.

An Extension of the ABS Toolchain with a Mechanism 117

3.2 Type Checking Step (i): Extracting Constraints

class(C) class C must be defined
interface(I) interface I must be defined
subtype(C, I) C must implement (directly or not) I

subtype(I, I′) I must extend (directly or not) I′

field(C, f, I) C must have field f of type I

meth(C, m, I → I′) C must have method m of type I → I′

meth(I, m, I → I′) I must have method m of type I → I′

Fig. 5. Constraints for expressions and state-
ments

The constraints extracted from
a FABS program, called pro-
gram constraints, encode its
typing requirements. Figure 5
lists the constraints extracted
from method bodies (i.e., from
expressions and statements).
These constraints are associated
with the corresponding method
and class via with clauses. Consider, for instance, the base program in Fig. 3.
The method set (line 9) of class Lit has return type Exp. It updates the field val

with the variable x of type Int, and returns this. Therefore in class Lit the body
of method set requires that field val must exist and be of type Int, and class Lit

must implement (either directly or indirectly) interface Exp. This requirement is
encoded by the constraint:

Lit with {set with {field(Lit, val, Int), subtype(Lit, Exp)}}
Program constraints can be straightforwardly checked against the signature of
the corresponding program, which is a data structure containing the information
provided by the program deprived of the bodies of its methods.

The constraints extracted from a delta, called delta constraints, contain delta
operations on program constraints. Consider the deltas in Fig. 3. The delta Dadd

in line 18 adds the Add class. This is encoded by the constraint:

adds(Add with C) (1)

where C are the constraints extracted from the body of the class Add. They also
contain the following constraint:

toString with {meth(Exp, toString, ∅ → String)} (2)

stating that body of method toString requires that method toString of type
∅ → String must be defined in interface Exp. The delta Dadd NOprint in line 27
removes the method toString from the class Add, this is encoded by the con-
straint:

modifies(Add with {removes(toString)}) (3)

The abstraction of a program consists of its signature and constraints. The
delta abstraction table (DAT) maps each delta name to a data structure
that contains the signature and the constraints of the delta. For each prod-
uct, the abstraction of the corresponding variant (recall that a variant is a
FABS program) can be straightforwardly generated from the abstraction of the
base program and the DAT: the signature of the variant is generated by apply-
ing the signatures of the activated deltas to the signature of the base program;
and the constraints of the variant are generated by applying the constraints
of the activated deltas to the constraints of the base program. Therefore, each

118 F. Damiani et al.

variant can be type checked, without being generated, by generating and check-
ing its abstraction (i.e., by checking its constraints against its signature). For
instance, consider the product {Flit, Fadd} of the EPL (in Fig. 3): the deltas
Dadd, Dlit NOprint and Dadd NOprint are activated and the constraints extracted
from them are applied to the constraints extracted from the base program.
Because, e.g., the constraint (3) is applied after the constraint (1), the con-
straint (2) is removed from the programs constraints generated for the variant.
The resulting constraints are thus validated against the signature of that variant,
in which neither Exp nor Lit have the method toString.

3.3 Type Checking Step (ii): Building the PFGT

Given a strongly unambiguous SPL (cf. Sect. 3.1), any total ordering of the
deltas that is compatible with the canonical application ordering can be used
to generate the variants. Each of these total orderings determines a set S that
contains, for each product, the ordered sequence of the deltas activated by the
product (note that different total orderings may generate the same set). The
trie [15] for S, called the product family generation trie (PFGT), is a tree, where
each edge is labeled by a delta, that represents all sequences in S by factoring
out the common prefixes—the structure of the trie for a set of sequences S is
uniquely determined by S. Moreover, each node of the PFGT that corresponds
to a sequence in S is labeled by the associated product (by construction, these
nodes include all the leaves).

The ABS toolchain generates the variants by applying the activated deltas
according to a total ordering, that we call the topological application ordering,
which is a topological sorting of the direct graph describing the canonical appli-
cation ordering (this graph contains at least all the edges of the after graph, cf.
Sect. 3.1). Our implementation of the SPL type checking mechanism (illustrated
in Sect. 4) builds the PFGT for (the set S of sequences of deltas determined by)
the topological application ordering.

3.4 Type Checking Step (iii): Checking All Variants

All the variant program abstractions can be efficiently generated and checked
by traversing the PFGT in depth-first order and marking each node N with a
program abstraction [12].

– The root node is marked with the abstraction of the base program.
– Each non-root node is marked with the program abstraction obtained by

applying the abstraction of the delta that labels the edge between N and it
parent to the program abstraction that marks N ’s parent.

– If N represents a product, the program abstraction generated for marking N
is checked, thus establishing whether the associated variant is well-typed.

– If the generation of the program abstraction for N fails (i.e., the applica-
tion of the delta abstraction that labels the edge entering N to the program
abstraction marking N ’s parent fails), then the subtree with N as root is
pruned, and an error message informs that the variants associated with the
products in the subtree cannot be generated.

An Extension of the ABS Toolchain with a Mechanism 119

4 Integration into the ABS Toolchain

Until the release of version 1.4.2 in April 2017, the ABS toolchain was structured
as a pipeline of three components:

1. The Parser component takes in input an ABS SPL (i.e., a set of files written
in the different languages listed in Fig. 1) and produces the Extended Abstract
Syntax Tree (E-AST) representing the artifact base—it also checks whether
the after graph is acyclic and, if so, it computes the topological application
ordering (cf. the explanation in last paragraph of Sect. 3.3).

2. The Rewriter component generates the variant corresponding to a given prod-
uct: it applies the activated deltas to the base program to produce the Core
AST (C-AST) of the variant.

3. The Semantic Analysis and Backend component supports analyzing the C-
AST by using the different tools developed for the Core ABS language [6].
The first of the analysis to be performed is type checking.

In order to check that all variants can be generated and are well-typed Core
ABS programs, the user had to generate all the variants and type check each
of them in isolation using the Core ABS type checker. Moreover, there was no
support for checking the unambiguity of the SPL.

Currently we have implemented part of the SPL checking mechanism illus-
trated in Sect. 3. Our implementation is available as a novel component in ver-
sion 1.4.2 of the ABS toolchain. The novel component, called the SPL Checking
component, is inserted into the pipeline between the Parser and the Rewriter
components. We stress that, unlike in Sect. 3, the implementation is based not
merely on FDABS, but on the complete ABS language.

4.1 An Overview of the Novel Component

The SPL Checking component performs the following steps:

1. A feature-based step that computes the signature of the base program and
the DST (i.e., the signature of each delta)—cf. Sect. 3.2. Some errors in the
artifact base can already be detected and reported during this step.

2. A step that, by using only the DST and the canonical partition, checks
whether the SPL is strongly unambiguous—cf. Sect. 3.1.

3. A family-based step that (by using only configuration knowledge) builds the
PFGT for the topological application ordering—cf. Sect. 3.3.

4. A product-based step that (by using only the signature of the base program,
the DST and the PFGT) efficiently generates all the variant signatures (thus
checking whether all the variants can be generated)—cf. Sect. 3.4.

It is worth observing that the signature of a variant contains enough information
to check whether, e.g.: each interface occurring in some implements or extends
clause, or in some method header or fields declaration is declared in the vari-
ant; the extends relation is acyclic; each interface has no (defined or inherited)

120 F. Damiani et al.

incompatible method headers; each class implements the methods of the inter-
faces listed in its implements clause—we are currently working on extending
step 4 above to perform these checks.

Moreover, we are also working on fully implementing the SPL type checking
mechanism, i.e., on replacing steps 1 and 4 above by:

1′ A feature-based step that computes the abstraction of the base program and
the DAT (i.e., the abstraction of each delta)—cf. Sect. 3.2. Some errors in the
artifact base can already be detected and reported during this step.

4′ A product-based step that (by using only the abstraction of the base program,
the DAT, and the PFGT) efficiently generates and checks all the variant
abstractions (thus checking whether all the variants can be generated and are
well-typed)—cf. Sect. 3.4.

4.2 On Building the PFGT

The PFGT, which caches and keeps track of common delta application sequences,
is used to improve the efficiency of generating variant signatures (cf. Sect. 3.4).
In order to build the PFGT we need to enumerate all the products of the SPL
(cf. Sect. 3.3). μTVL supports feature attributes (Booleans and integers) as a
way of permitting more fine-grained product specifications. An established app-
roach [4] to determine all the products of a feature model with Boolean and inte-
ger attributes is to express it as a constraint satisfaction problem (CSP) over
Boolean or integer variables. The solutions to the CSP are all the attributed
products, i.e., all the attributed feature combinations allowed by the attributed
feature model. The ABS toolchain4 uses an off-the-shelf CSP library5 for this
task.

Even though ABS support feature attributes, we omit these when enumer-
ating all solutions to the attributed feature model in order to build the PFGT,
as they are irrelevant for type checking variants. This is due to the fact that, for
each product with attributes, the set of the activated deltas is determined by the
selected features alone, i.e., it is not possible to specify the activation of a delta
based on the values of feature attributes. Feature attributes only influence the
configuration to the extent of assigning concrete values to variables in the ABS
source code—this is achieved by passing feature attributes as attributes to the
activated deltas. The delta abstraction is built by abstracting away from these.
The correct use of attributes can be checked separately, for each delta (together
with its after clause and when clause) in isolation. A convenient side-effect
of abstracting away attributes is that it may significantly reduce the number
of products—consider, for example that the introduction of a single, unbound
integer attribute multiplies the number of products by up to 232.

4 ABS toolchain available at https://github.com/abstools/abstools.
5 Choco Solver: http://www.choco-solver.org/.

https://github.com/abstools/abstools
http://www.choco-solver.org/

An Extension of the ABS Toolchain with a Mechanism 121

5 Case Studies and Evaluation

We tested the SPL Checking component on two industrial SPLs implemented in
ABS.

The first case study is provided by the Fredhopper Access Server (FAS), a
distributed web-based software system for Internet search and merchandising,
developed by Fredhopper B.V. (now ATTRAQT). In particular, we considered
the Replication System, a subsystem for ensuring data consistency across the
FAS deployment. This system has been described in more detail previously [26].
The version we tested includes a feature model with 8 features and 5 integer
feature attributes. These are implemented with a core ABS program and 8 deltas,
totaling about 2000 lines of ABS code. The feature model has 16 products when
feature attributes are omitted. If feature attributes are considered, the number
of products is 5500.

The second case study is provided by the FormbaR project [19], an ongoing
effort to build a comprehensive model of railway operations for Deutsche Bahn
AG. The current version of this ABS model includes a feature model with 5
features, a core program and 5 deltas, totaling about 3300 lines of code. The
feature model is comparatively simple and only has 5 products; each product has
one feature and the associated variant is generated by applying a single delta
to the base program. The source code is available from the FormbaR project
website.6

5.1 Error Reporting

If the ABS compiler (absc) detects a product line declaration in a given ABS
source project, it automatically performs the SPL unambiguity checking and the
SPL partial type checking. These checks capture two kinds of errors, respectively
(cf. Sect. 4.1). First, in case SPL unambiguity cannot be ruled out, an error
similar to the following is reported:

replication.abs:1419:0:The product line RS is potentially ambiguous:

Deltas JCD and CD both target class RS.RSMain, method

getSchedules, but their application order is undefined.

productline RS;

^

Second, in case the generation of the signature of a variant fails, an error
message, such as the following, points to the problem.

replication.abs:1396:4:Field iterator could not be found. When

applying delta JCD on top of CD >> JD >> RD >> core, while

building product {RS,Client,JSched}.

removes Int iterator;

---^

6 FormbaR project: http://formbar.raillab.de/.

http://formbar.raillab.de/

122 F. Damiani et al.

5.2 Performance

We measured the performance of the SPL unambiguity and partial type checking
mechanism implementation and compared it against the performance of gener-
ating and fully type checking all variants of the respective SPL in sequence.
The results of the experiments are summarized in Fig. 6—we used a 2013 laptop
machine (Intel core i7 CPU at 2 GHz, 16 GB RAM). We found that SPL partial
checking had little noticeable impact on the performance of the ABS compiler.
For the FAS Replication System SPL it took just 0.643 s, of which 0.61 s were
spent computing all solutions to the constraint satisfaction problem (i.e., to
enumerate all the products), and 0.033 s were spent checking unambiguity and
generating the signatures of all the 16 variants.

By comparison, generating a single variant of the FAS Replication System
SPL took on average slightly over 5 s (we timed only the process of transforming
the E-AST by applying deltas and subsequently type checking the C-AST). For
all 16 different products obtainable by disregarding attributes, this process took
82 s. Before implementation of the SPL Checking component, no tool infrastruc-
ture existed to automatically type check the entire product line. Moreover no
option to exclude feature attributes from variant generation was provided. It
would have required the developer to manually build and subsequently check all
5500 products, which takes around 8 h.

FAS Replication System FormbaR

Solve CSP 0.610 0.540

Check unambiguity & build variant PSTs 0.033 0.026

SPL partial checking (total) 0.643 0.566

Build one variant (avg.) 5.130 0.020

Build variants 82.080 0.100
Solve CSP & build variants (total) 82.690 0.640

Fig. 6. Case studies: performance (numbers in seconds)

For the FormbaR SPL, currently a quite simple product line, where each
product has a single feature and only one delta is applied to generate the associ-
ated variant, it took 0.1 s to generate all 5 variants. If we include the time to solve
the CSP, then the whole process took 0.64 s. This is slightly less efficient than
employing the SPL partial checking mechanism, which took 0.566 s (including
the time to solve the CSP).

5.3 Discussion

According to the numbers above the SPL partial checking mechanism exhibits
a significant performance advantage (with respect to generating all variants and
fully type checking each of them in isolation) for all but very simple SPLs. Our

An Extension of the ABS Toolchain with a Mechanism 123

evaluation also shows that the most performance-critical task of SPL partial
checking is solving the CSP in order to enumerate all products. For a product
line with hundreds or thousands of products, this task could potentially take too
long to be practical. We plan to approach this problem from two angles. First, we
see potential for optimization of the CSP, and will consider the alternative of SAT
(which has shown promising performance according to related studies [14,24]),
as this has not been a focus of our attention so far. Second, we will explore
solving simplified CSPs corresponding to partially configured feature modes in
case of too large solution spaces.

6 Related Work

SPL implementation approaches can be classified into three main categories [22]:
annotative approaches expressing negative variability; compositional approaches
expressing positive variability; and transformational approaches expressing both
positive and negative variability.

DOP is a transformational approach. Notably, it is an extension of Feature-
Oriented Programming (FOP, see [2, Sect. 6.1] and [3]), a compositional app-
roach, where deltas are associated one-to-one with features and have limited
expressive power: they can add and modify program elements, however, they
cannot remove them. In annotative approaches all variants are included within
the same model (often called a 150% model). A prominent example of SPL
annotative implementation mechanism is represented by C preprocessor direc-
tives (#define FEATURE and #ifdef FEATURE).

We refer to [25] for a survey on SPL analyses (cf. the brief discussion at the
beginning of Sect. 3). Here we discuss a type checking mechanism for FOP SPLs
that has been implemented for the AHEAD Tool Suite [24], and a type checking
mechanism for delta-oriented SPLs that we have recently proposed [10].

The AHEAD Tool Suite [3] supports FOP SPLs of Java programs. Thaker
et al. [24] illustrates the implementation of a family-based approach for type
checking AHEAD SPLs. The approach comprises: (i) a family-feature-based step
that computes for each class a stub (which contains a stub declaration for each
field or method declaration that could appear in that class) and compiles each
feature module in the context of all stubs; and (ii) a family-based step that
infers a set of constraints that are combined with the feature model to generate a
formula whose satisfiability implies that all variants can be successfully generated
and compiled. The first step requires that all the field and method declarations
that could appear in a class C in some variant must be “type compatible”, e.g.,
for each field name f all declarations of field with name f that may appear in C in
some variant must have the same type. The type checking approach presented in
Sect. 3 do not suffer of this limitation. However, it involves an explicit iteration
over the set of products, which becomes an issue when the number of products is
huge (a product line with n features can have up to 2n products). The approach
by Thaker et al. [24] does not require an explicit iteration over the set of products,
however it requires to check the validity of a propositional formula (which is a

124 F. Damiani et al.

co-NP-complete problem). Thaker et al. [14,24] report that the performance of
using SAT solvers to verify the propositional formulas (a SAT solver can be
used to check whether a propositional formula is valid by checking whether its
negation is unsatisfiable) for four non-trivial product lines was encouraging and
that, for the largest product line, applying the approach was even faster than
generating and compiling a single product. The empirical evaluation (cf. Sect. 5)
of our partial implementation for ABS (cf. Sect. 4) of the feature-product-family
approach for delta-oriented SPLs originally formalized for IFΔJ [5,12] (that is
reformulated for FDABS in Sect. 3) exhibits a similar performance increase with
respect to generating and checking each variant in isolation.

Delaware et al. [14] provide a formal foundation for the approach imple-
mented by Thaker et al. [24]. They formalize a feature-family-based type check-
ing approach for the Lightweight Feature Java (LFJ) calculus, which mod-
els FOP for the Lightweight Java (LJ) [23] calculus. The approach, which
does not suffer of the “type compatible” limitation of the approach by Thaker
et al. [24], comprises: (i) a feature-based step that uses a constraint-based type
system for LFJ to analyze each feature module in isolation and infer a set of con-
straints for each feature module; and (ii) a family-based step where the feature
model and the previously inferred constraints are used to generate a formula
whose satisfiability implies that all variants are well-typed.

Recently, Damiani and Lienhardt [10] proposed a feature-family-based type
checking approach that provides an extension to DOP of the two steps of the
approach by Delaware et al. [14] together with a preliminary step, called partial
typing, which provides early detection of some errors by analyzing each delta
with respect to the class, field and method declarations occurring in the whole
artifact base.7 The approach has been designed to take advantage of automati-
cally checkable DOP guidelines that make an SPL more comprehensible and type
checking more efficient (see also [11]). Both the approach and the guidelines are
formalized by means of IFΔJ.

7 Conclusion

We presented an extension of the ABS toolchain with an SPL unambiguity and
type checking mechanism. Currently we have implemented only part of this
mechanism (cf. Sect. 4.1). Our implementation is integrated in version 1.4.2 of
the ABS toolchain, released in April 2017. We are currently working on fully
implementing the SPL type checking mechanism and improving the efficiency of
enumerating all the product of the SPL. Our evaluation, that used two indus-
trial case studies, showed significant performance and usability advantages over
an entirely product-based type checking approach that involves building all SPL

7 Partial typing guarantees that variants that can be generated and have their inner
dependencies satisfied are well-typed, thus providing early detection of some errors—
however, because it does not use feature model and configuration knowledge, it
cannot guarantee that each variant can be generated and do not contain references
to classes, fields or methods that are not defined in the variant.

An Extension of the ABS Toolchain with a Mechanism 125

variants. We found that 95% of the performance cost of the implemented SPL
checking comes from solving the CSP necessary to enumerate all products. The
actual unambiguity and partial type checking implementation is very efficient
and takes only few milliseconds. This result raises our confidence that an imple-
mentation of the full SPL checking mechanism will remain similarly performant.
We also plan to extend the SPL Checking component of the ABS toolchain by
implementing the feature-family type checking mechanism and the automatically
checkable DOP guidelines that we have recently proposed [10,11] (see Sect. 6).
Our goal is to tame complexity of SPL type checking by tool support for DOP
guidelines enforcement and orchestration of different type checking approaches.

Acknowledgments. We thank Eduard Kamburjan for help with the FormbaR case
study, and the anonymous reviewers for comments and suggestions.

References

1. Albert, E., de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia, S.L.T.,
Wong, P.Y.H.: Formal modeling and analysis of resource management for cloud
architectures: an industrial case study using real-time ABS. SOCA 8(4), 323–339
(2014)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013)

3. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. 30, 355–371 (2004)

4. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005). doi:10.1007/11431855 34

5. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-oriented
software product lines. Acta Informatica 50(2), 77–122 (2013)

6. Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of executable software models.
In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 1–25. Springer, Cham (2014). doi:10.1007/
978-3-319-07317-0 1

7. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS
abstract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21455-4 13

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

9. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M.: A unified and formal
programming model for deltas and traits. In: Huisman, M., Rubin, J. (eds.) FASE
2017. LNCS, vol. 10202, pp. 424–441. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54494-5 25

10. Damiani, F., Lienhardt, M.: On type checking delta-oriented product lines. In:
Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 47–62. Springer,
Cham (2016). doi:10.1007/978-3-319-33693-0 4

http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/978-3-319-07317-0_1
http://dx.doi.org/10.1007/978-3-319-07317-0_1
http://dx.doi.org/10.1007/978-3-642-21455-4_13
http://dx.doi.org/10.1007/978-3-642-21455-4_13
http://dx.doi.org/10.1007/978-3-662-54494-5_25
http://dx.doi.org/10.1007/978-3-662-54494-5_25
http://dx.doi.org/10.1007/978-3-319-33693-0_4

126 F. Damiani et al.

11. Damiani, F., Lienhardt, M.: Refactoring delta-oriented product lines to enforce
guidelines for efficient type-checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9953, pp. 579–596. Springer, Cham (2016). doi:10.1007/
978-3-319-47169-3 45

12. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented
software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 193–207. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 15

13. de Boer, F., Clarke, D., Helvensteijn, M., Muschevici, R., Proença, J., Schaefer, I.:
Final Report on Feature Selection and Integration, March 2011. Deliverable 2.2b
of project FP7-231620 (HATS). http://www.hats-project.eu

14. Delaware, B., Cook, W.R., Batory, D.: Fitting the pieces together: a machine-
checked model of safe composition. In: Proceedings of ESEC/FSE 2009. ACM
(2009). doi:10.1145/1595696.1595733

15. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
16. Hähnle, R.: The abstract behavioral specification language: a tutorial introduc-

tion. In: Giachino, E., Hähnle, R., Boer, F.S., Bonsangue, M.M. (eds.) FMCO
2012. LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40615-7 1

17. Helvensteijn, M., Muschevici, R., Wong, P.Y.H.: Delta modeling in practice: a
Fredhopper case study. In: Proceedings of VAMOS 2012, pp. 139–148. ACM (2012).
doi:10.1145/2110147.2110163

18. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

19. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham
(2017). doi:10.1007/978-3-319-53946-1 4

20. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating support for features in
advanced modularization technologies. In: Black, A.P. (ed.) ECOOP 2005. LNCS,
vol. 3586, pp. 169–194. Springer, Heidelberg (2005). doi:10.1007/11531142 8

21. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 6

22. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. Int. J. Softw. Tools Technol. Transf. 14(5), 477–495 (2012)

23. Strnǐsa, R., Sewell, P., Parkinson, M.: The Java module system: core design and
semantic definition. In: Proceedings of OOPSLA 2007, pp. 499–514. ACM (2007)

24. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines.
In: Proceedings of GPCE 2007, pp. 95–104. ACM (2007). doi:10.1145/1289971.
1289989

25. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47 (2014)

26. Wong, P.Y., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.: The
ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. J. Softw. Tools Technol. Transf. 14, 567–588 (2012)

http://dx.doi.org/10.1007/978-3-319-47169-3_45
http://dx.doi.org/10.1007/978-3-319-47169-3_45
http://dx.doi.org/10.1007/978-3-642-34026-0_15
http://www.hats-project.eu
http://dx.doi.org/10.1145/1595696.1595733
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1007/978-3-642-40615-7_1
http://dx.doi.org/10.1145/2110147.2110163
http://dx.doi.org/10.1007/978-3-319-53946-1_4
http://dx.doi.org/10.1007/11531142_8
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1145/1289971.1289989
http://dx.doi.org/10.1145/1289971.1289989

Safety-Critical Systems

Generalised Test Tables: A Practical
Specification Language for Reactive Systems

Bernhard Beckert1, Suhyun Cha2, Mattias Ulbrich1, Birgit Vogel-Heuser2,
and Alexander Weigl1(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert,ulbrich,weigl}@kit.edu

2 Technical University of Munich, Munich, Germany
suhyun.cha@tum.de, vogel-heuser@ais.mw.tum.de

Abstract. In industrial practice today, correctness of software is rarely
verified using formal techniques. One reason is the lack of specification
languages for this application area that are both comprehensible and
sufficiently expressive. We present the concepts and logical foundations
of generalised test tables – a specification language for reactive systems
accessible for practitioners. Generalised test tables extend the concept of
test tables, which are already frequently used in quality management of
reactive systems. The main idea is to allow more general table entries,
thus enabling a table to capture not just a single test case but a family
of similar behavioural cases. The semantics of generalised test tables is
based on a two-party game over infinite words.

We show how generalised test tables can be encoded into verification
conditions for state-of-the-art model checkers. And we demonstrate the
applicability of the language by an example in which a function block
in a programmable logic controller as used in automation industry is
specified and verified.

1 Introduction

Complex industrial control software often drives safety-critical systems, like
automated production plants or control units embedded into devices in automo-
tive systems. Such controllers have in common that they are reactive systems,
i.e., that they periodically read sensor stimuli and cyclically execute the same
piece of code to produce actuator signals.

Usually, in practice, the correctness of implementations of reactive systems is
not verified using formal techniques. What is used instead in industrial practice
today is testing, where individual test cases are used to check the reactive system
under test [11]. Main reasons why formal methods are not popular are: (a) It is
difficult to adequately formulate the desired temporal properties. (b) There is

Research supported by the DFG (German Research Foundation) in Priority Pro-
gramme SPP1593: Design for Future – Managed Software Evolution (VO 937/28-2,
BE 2334/7-2, and UL 433/1-2).

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 129–144, 2017.
DOI: 10.1007/978-3-319-66845-1 9

130 B. Beckert et al.

a lack in specification languages for reactive systems that are both sufficiently
expressive and comprehensible for practitioners.

Test cases are commonly written in the form of test tables, in which each
row contains the input stimuli for one cycle and the expected response of the
reactive system. Thus, the whole table captures the intended behaviour of the
system (the sequence of actuator signals) for one particular sequence of input
signals.

In this paper, we present a novel specification language called generalised test
tables (gtts) which lifts the principle of test tables to an expressive means for
temporal specification of reactive systems. With a gtt one can describe an entire
family of test cases with a single table.

The specification language comprised of gtts is designed to preserve the intu-
itiveness and comprehensibility of (non-generalised) concrete test tables – in
particular for system design engineers who are experts in test case specification
but are not familiar with formal temporal specification. To this avail, the gener-
alisations are defined as conceptional extensions of notation already present in
concrete test tables. The features that go beyond the concrete case are chosen
such that essential characteristics of concrete test tables are preserved. More-
over, concrete test tables are a special case of gtts. We argue that, thus, gtts are
still intuitive for an engineer. The characteristics of concrete test tables that we
deem essential and that are preserved in gtts are:

1. Every signal/actuator cycle corresponds to one row in the test table.
2. Rows in the test table are traversed sequentially (no jumping around).
3. Every row formalises a local implication of the form: “If the signal values

adhere to the input constraint, then the actuator signals adhere to the output
constraint.”

The main features of generalised test tables that go beyond concrete tables are
(a) generalisations of notational elements known from concrete tables and (b)
concepts adopted from other well-known table formalisms like spreadsheets.

The main contributions of this paper are: (1) the concept of gtts as a practi-
cal specification language for reactive systems (Sect. 3); (2) a formal semantics
for gtts (Sect. 4), defined by means of a semi-deterministic input/output game;
(3) a sound encoding for gtts into Büchi automata, together with optimisations
(Sect. 5), which has been implemented (4) an extended example in which a real-
istic min/max function block, which is a typical example for the software driving
automated production systems, is specified and verified using a gtt (Sect. 6).

2 The Basis: Concrete Test Tables

Concrete test tables – of which generalised test tables are an extension – describe
a single test case for a reactive system. The rows of a concrete test table corre-
spond to the successive steps performed by the system under test. The columns
correspond to the system’s variables. These are partitioned into input variables
and output variables. In addition, there is a special column named duration.

Generalised Test Tables: A Practical Specification Language 131

Fig. 1. Example for a concrete
test table.

The reactive systems we consider are exe-
cuted cyclically, where each cycle is one step
in the test. Cycles consume a fixed period of
time, the cycle time. In each cycle, the con-
crete input values contained in the table row
corresponding to that step are the stimuli for
the system; and the system is expected to react
with the output values contained in the same
row. If the observed system response is differ-
ent from the expectation for one or more of the rows in the test table, then
the system violates the test case. The value of duration determines how long
the system is to remain in the step, i.e., how often the row is to be repeated.
duration is given as a number of cycles (it can also be given as a time con-
straint, which is transformed into cycles by division with the system’s specific
cycle time). A table row with a duration of n is equivalent to repeating that
same row n times with a duration of 1.

Example 1. Figure 1 shows an example for a simple concrete test table. The
table has three input variables A,B,C and three output variables X,Y,Z, and
describes a test case of 10 cycles (as the durations of the three rows add up to 10).
In this example, all variables are of type integer; whereas in general, other types,
such as Boolean variables, are also possible.

There is no restriction on the types of variables and their values that can be
used in the tables. In the following, we use variables of type Boolean and integer;
and the example in Sect. 6 uses bounded bit vector types.

3 The Concept of Generalised Test Tables

Generalising a test table and its specified test case is done by substituting con-
crete values in the table’s cells by constraint expressions. Intuitively, a system
satisfies a generalised test table if it responds to input values that adhere to the
input constraints with output values that adhere to the output constraints. This
generalises the meaning of concrete test cases were the constraints are unique
values. Thus, a generalised test table specifies a – possibly infinite – set of con-
crete test tables. A detailed explanation of the semantics of generalised test table
is given in Sect. 4.

In the following, we explain three generalisation concepts: (1) abstraction
using constraint expressions (which is the basis of generalisation), (2) using ref-
erences to other cells in constraint expressions, and (3) using generalisation in
the duration columns of tables.

Abstraction using constraints. Instead of concrete values, we allow cells to contain
constraints such as “X > 0”, “X + 1 = 4”, or “X > 3 ∧ X < 10.” Besides the
name of the variable that the cell corresponds to (e.g., X), the expressions can
be built using all operators of the appropriate type (+, ∗ etc.), constant values
(0, 1, 2, . . .), and predicates such as =, >,≥ etc. In addition, logical operators
(∧,∨ etc.) can be used to combine several atomic constraints.

132 B. Beckert et al.

Fig. 2. Constraint abbreviations (X is the
name of the variable that the cell corre-
sponds to; n, m are arbitrary expressions
of type integer).

For convenience, we allow abbrevi-
ations (see Fig. 2): In the column for
variable X, the constraint “X < n”
can be written as “<n” and “X = n”
simply as “n”. We allow interval con-
straints [n,m], which stand for “X ≥
n ∧ X ≤ m.” And “–” is the constraint
satisfied by all values (“don’t care”).

References to other cells. A reactive
system’s behaviour depends both on
the current and the previous input
stimuli. Therefore, the expected values in the cells of a generalised test table
are not independent of each other. We may want to specify that, e.g., for the
value of input A being n, the value of output X is n + 1. For that purpose, we
introduce two additional syntactical concepts to be used in constraints: global
variables and references to other cells.

Global variables, denoted by lower-case letters, can be used in all constraints
in any place where an expression of the corresponding type is expected. The
value of a variable v is globally the same in all cells, in which v occurs. Thus,
we can write p in a cell with input A (short for A = p) and p + 1 in a cell with
output X (short for X = p + 1) to express that the value of output X is equal
to p + 1 for the input A being of value p. Besides being the same in all cells, the
value of a global variable is only restricted by the constraints, in which it occurs.
Thus, for example, X = p is equivalent to “don’t care” if p does not occur in
any other cell.

In addition to global variables, we allow references to other cells using the
form “X[−n]”, where X is a variable name and n ≥ 0 is a concrete number.
X[−n] refers to the cell in the X-row n cycles before the current one. For refer-
ences to other cells in the current cycle, we just write “X” as an abbreviation
for “X[−0]”, which refers the value of column X on the same row.

Thus, we can write “A + 1” in an X-cell to express that the output X is by
one greater than the input A. To express that the value of Y increases by one
in each cycle, we write Y [−1] + 1 in each Y -cell except for the first one.

References to other cycles are always relative to the current cycle – they are
not given w.r.t. the start or end of the table. Absolute references to particular
cells can be expressed using global variables. References to future cycles (both
relative and absolute) could also be added – at least for static analysis – but are
not covered in this paper.

Generalised Test Tables: A Practical Specification Language 133

Fig. 3. Example for a generalised test
table with a global variable p.

Generalisation in the duration column.
The duration variable defines the
number of cycles for which a row is
repeated. As a further generalisation
concept, we allow the concrete values
in the duration column to be replaced
by constraints. However, in contrast to
the columns for input and output vari-
ables, we only allow the duration col-
umn to contain constraints describing
intervals; and they must not refer to other cells. Thus, constraints of the form
“[n,m]” and “≥n” are the only possibilities. We use “∗” as a special “don’t care”
symbol for the duration column; it is equivalent to “≥0”.

Example 2. Figure 3 shows an example of a simple generalised test table, incor-
porating the generalisation concepts described above. Note that the concrete
table depicted in Fig. 1 is one of the possible instances of the generalised test
table given in Fig. 3, achieved by instantiating the global variable p with the
value 3.

The first row expresses a cycle, which is executed once. It provides three
concrete input values for the sensor inputs A,B,C, and expects the outputs
X,Y to both be equal to 0, whereas the output value for Z can be of arbitrary
value.

The input values for the second row are applied repeatedly for strictly more
than five scan cycles (there is no upper bound). The input A is a “don’t care”
value, i.e., it can potentially be different for each cycle. The input values for B
and C may also be arbitrary; however, they are bound to be equal to the global
variable p. Hence, the values of B and C are the same in each of the cycles of
the second table row. The output value of X is required to be identical to 2 ∗ p,
i.e., twice the value of the input values for B,C. Moreover, Y is also required to
be equal to 2 ∗ p, enforced by the reference to the X-cell. Finally, the value of
output Z is equal to the one of the first row, as it is ensured by the back-reference
Z[−1], requiring the value in each cycle to be the same as that of the previous
one.

For the third row – which does not correspond to the third cycle, but at
least to the eighth cycle, as the second row is repeated at least six times – the
inputs for A,C are arbitrary and B is equal to p + 1. The output value for X
is an arbitrary one between 0 and p inclusively. The output Y contains a back
reference to Y from the previous cycle. Thus, in the first cycle of the third row,
Y is greater than 2 ∗ p (as Y = 2 ∗ p from the second row’s last cycle). The
value of Y must then increase in each further cycle. The value of Z must be
more than half the value for Y in order to satisfy the constraint 2 ∗ Z > Y . The
third row may be repeated arbitrarily often, as indicated by the symbol ∗ in
column duration. Note that no real system is able to fulfil the last row for an
arbitrarily large number of steps, since the enforcement of strict monotonicity
in Y must lead to an integer overflow at some point.

134 B. Beckert et al.

This paper introduces and describes the formal foundations of gtts and shows
their principal suitability for formal specification and automatic verification. In a
companion paper [12], the presentation focuses more on the adequacy and usabil-
ity of the approach for engineers. A thorough empirical study which analyses the
accessibility of the individual features by field engineers remains as future work.

4 Semantics of Generalised Test Tables

A gtt is a sequence of rows. Each row corresponds to three constraints: one for the
input variables, one for the output variables, and one for duration of that row.
Which part of a constraint is written in exactly which column is only relevant
as long as abbreviations and syntactic sugar is used. For example, writing Y in
the X-column of a table is expanded to X = Y , so the column is relevant. But
it is irrelevant in which column we write a constraint like X = Y , that is not
further expanded. This gives rise to the following definition, which basically just
fixes notation:

Definition 1 (Generalized Test Table as Sequence of Constraints). Let
T be a generalised test table with m rows; let InVarT and OutVarT be the set of
input variables resp. the set of output variables of T ; and let GVarT be the set
of global variables occurring in T . Then T is identified with the sequence

(φ1, ψ1, τ1) · · · (φm, ψm, τm),

where φi is the conjunction of all constraints contained in cells in row i that
correspond to input variables, ψi is the conjunction of all constraints contained in
cells in row i that correspond to output variables, and τi is the interval contained
in the duration column at row i.

The reactive systems whose behaviour is being specified by test tables can
be formalised as functions from sequences of inputs to sequences of outputs.
The possible inputs are elements of I = I1 × · · · × Ik where the Ir are the
value spaces of the input variables. And the possible outputs are elements of
O = O1 × · · · × Ol where the Os are the value spaces of the output variables.

Definition 2 (Reactive system). A reactive system is a history-deterministic
function p : Iω → Oω. That is, i1↓n = i2↓n implies p(i1)↓n = p(i2)↓n for all n,
where x↓n denotes the finite initial sub-sequence of x of length n.

In the following, we often identify a reactive system p with the set of its possible
traces, i.e., p ⊆ (I × O)ω.

4.1 Unrolled Instances of Generalised Test Tables

The rows of gtts have a duration and may be repeated more than once. In a
first step towards defining the semantics of gtts, we eliminate the indeterminism
w.r.t. the repetition of rows and define the set of unrolled instances of a gtt by
making the repetitions explicit. At the same time, we also instantiate the global
variables contained in gtts with all their possible values.

Generalised Test Tables: A Practical Specification Language 135

Definition 3 (Unrolled Instances). Let G = (φ1, ψ1, τ1) · · · (φm, ψm, τm) be
a gtt without global variables. The set D1(G) of unrolled instances of G consists
of all gtts

(φ1, ψ1, 1)T1 · · · (φm, ψm, 1)Tm

such that Ti is in the interval τi (1 ≤ i ≤ m).1

In the unrolled instances, the duration constraint is redundant (as it is
always 1); in the following, we therefore write (φi, ψi) instead of (φi, ψi, 1).

Global variables are not considered in unrolled instances, as their semantics
is defined via universal quantification: A system has to conform to the test table
for all their instances (see Definition 5).

In general, the set of unrolled instances for a generalised test table is infinite.
This does not pose a problem as the notion of unrolled instances is only used as
a theoretical concept for defining the semantics of gtts.

4.2 Evaluation of Expressions

The evaluation of constraints that appear in unrolled instances of gtts is straight
forward. Note that they do not contain global variables anymore as these have
been instantiated during unrolling.

Definition 4. Let v ∈ (I × O)∗ be a partial trace of length n ≥ 1. And let
v↓n = (i, o) be the last element of the trace. Then, the valuation function �e�v,
which assigns a value to every expression or formula e, is inductively defined by:

�e ◦ f�v = �e�v ◦ �f�v for ◦ ∈ {+,−,≤,∧,∨, . . .}
�X�v = i(X) if X ∈ InVar
�X�v = o(X) if X ∈ OutVar

�X[−k]�v = �X�v↓(n−k) if k < n

�X[−k]�v = �X�v↓1 if k ≥ n

4.3 Two-Party Game for Defining Test Conformance

The intuition behind the following definitions is the following: A reactive system
p conforms to a gtt G if every trace t ∈ p conforms to G, where a trace conforms
to G if one of the following conditions holds: (a) the input/output pairs of t
satisfy all rows of at least one unrolled instance of G, or (b) t fails to satisfy the
input constraints of all unrolled instance of G. In the former case, the trace is
covered by the specification described by G, in the latter case, the input sequence
triggers an application scenario which is not covered by the specification.

Formally, we define the semantics of a gtt G by means of a game played
between a challenger (that chooses the inputs) and the reactive system p under
test (that chooses the outputs). The challenger can be identified with the envi-
ronment of the system. The game is played operating on a set S of unrolled
1 We use the notation (φ, ψ, τ)n do denote that the row (φ, ψ, τ) is repeated n times.

136 B. Beckert et al.

Fig. 4. Game between challenger and system w.r.t. a gtt T

instances of G from which in every round inconsistent and conflicting instances
are removed.

The player removing the last consistent instance from S loses the game. In
addition, the system can win by successfully reaching the end of one of the
non-eliminated table instances.

Figure 4 shows the game’s rules in algorithmic form. During the course of a
game, S holds the set of unrolled instances of G which have not been eliminated,
v holds the so far observed partial trace up to and including the current move,
and k counts the iterations. Initially the set S = D1(G) contains all unrolled
instances of the gtt T (Line 2). In each round, the challenger chooses input values
(Line 6), and the program under test computes its output from its internal state
and the input values (Line 7). The functions which choose the input/output
values depending on the observed partial trace are called strategies. Since reactive
programs are deterministic, there is only one strategy for the program, which is
encoded in its implementation. The challenger is not confined in its choices; there
are many possible strategies for the challenger. Whenever S becomes empty, i.e.,
no unrolled instance of G satisfies the partial trace, the respective player loses the
game: If this is caused by the input constraint φk being violated, the challenger
loses and the system wins (Line 12). If S becomes empty because the output

Generalised Test Tables: A Practical Specification Language 137

constraint ψk is violated, the system loses and the challenger wins (Line 17).
If S contains a consistent unrolled instance which has been fully traversed (its
length is the current iteration counter), then the partial trace v is a witness for
the system conforming to the gtt. The system wins (Line 21).

A single game has three possible outcomes: Either (a) the challenger wins, or
(b) the system wins, or (c) neither party wins (draw). In the case of a draw, the
game is infinite, while a game where one player wins ends after a finite number
of iterations.

A strategy for one party is called a winning strategy if it wins every possible
game regardless of the other party’s strategy. The definition of conformance to
a gtt can now be defined based on who wins the games:

Definition 5 (Conformance). The reactive system P : Iω → Oω strictly
conforms to the gtt T iff its strategy is a winning strategy for the game shown
in Fig. 4 for all instantiations of global variables, i.e., it is winning w.r.t. σ(T)
for all instantiations σ that replaces each global variable occurring in T by an
element of its value space.2 The reactive system P weakly conforms to T iff its
strategy never loses.

Fig. 5. Gtt illustrat-
ing the difference
between strict and
weak conformance

The difference between weak and strict conformance is
that of whether the analysis of a system w.r.t. a test table
successfully finishes after finitely many steps or whether
the system is under consideration for infinitely many steps.
For example, consider the very simple gtt shown in Fig. 5.
Intuitively, it requires that – independently of the input –
the output must eventually be 2 after an arbitrary number
of cycles with output 1. The reactive system that always
returns 1 (and never 2) does not have this property. Corre-
spondingly, it does not strictly conform to the table (it does not have a winning
strategy). But it weakly conforms (it never loses either). This corresponds to the
fact that by inspecting finite partial traces, one cannot decide whether or not
this system violates the test table.

Any analysis that only considers partial traces (like run time monitoring or
testing) can, in general, only test weak conformance. A static analysis, however,
is able to analyse a reactive system w.r.t. strict conformance.

The definition of conformance (Definition 5) can be lifted to the case of non-
deterministic reactive systems by requiring that all possible strategies of P must
be winning strategies.

This semantics definition seems unnecessarily complicated, but an attempt to
define it on the program traces is bound to fail as the implication of a violated
constraint is different depending on whether it occurs on the input or on the
output values: A gtt with constraint false on the input side is trivially satisfied,
while false on the output side makes it unsatisfiable. Yet, both describe the same
set of traces: the empty set.
2 In fact, the global variables are replaced by constants representing values. We assume

that every value can be represented by a constant.

138 B. Beckert et al.

5 Transforming Generalised Test Tables into Automata

In this section, we describe the construction of a Büchi automaton that logically
encodes conformance to a gtt. In order to ease the presentation of this construc-
tion, we assume a normalised form of test tables which allow only a restricted
form of duration constraints:

Definition 6 (Normalised gtt). A gtt G = (φ1, ψ1, τ1) · · · (φm, ψm, τm) is
normalised if τi = [1, 1], τi = [0, 1], or τi = [0,∞] (1 ≤ i ≤ m).

The syntactical restriction of normalised tables does not pose a limitation on
the expressiveness of gtts due to the following observation:

Proposition 1. For every gtt T there is a semantically equivalent normalised
gtt T0.

The construction of such a normalised table T0 for T is canonical: Every row
with a finite duration interval τ = [a, b] is unrolled into b rows with the first
a repetitions having duration [1, 1] and the remainder having duration [0, 1].
If τ = [a,∞], then the row is repeated a times with duration [1, 1] and once
with duration [0,∞]. Note that if T has m rows and the largest number in the
duration constraints is n, then the normalised table has at most m · n rows.

Due to the intervals in the duration constraints, it is not automatically clear
to which row a system cycle has to conform, and which the successor row of
each row is (as intermediate rows may have zero duration). The set of possible
successor rows succ(k) for row k in a normalised gtt can be represented as

succ(k) = {k + 1} (1)
∪ (if k < m ∧ 0 ∈ τk+1 then succ(k + 1) else ∅) (2)
∪ (if τk = [0,∞] then {k} else ∅), (3)

succ(0) = {1} ∪ (if 0 ∈ τ1 then succ(1) else ∅).

In a normalised table, tha normalised gtt can be representede next row is always
a possible successor row (1), but rows may be leapt over (2), or repeated (3).
succ(0) is the set of rows in which the table may begin. Figure 6 illustrates the
row successor relation (right) for a normalised gtt (left).

Alphabet. The Büchi automata will accept ω-traces in (I × O)ω produced by a
reactive system (Definition 2). The alphabet of the automata is defined over the

Fig. 6. A normalised table and the successor relation on its rows.

Generalised Test Tables: A Practical Specification Language 139

domains of input and output variables of the reactive system. In the following,
we use Boolean formulas to describe subsets of the alphabet.

States. A gtt G = (φ1, ψ1, τ1) · · · (φm, ψm, τm) with m rows results in an automa-
ton with 2m+2 states. The states are characterised by vectors (s1, . . . , sm+1, fail)
of Boolean variables, one for each row in G (s1 to sm), one indicating termina-
tion sm+1, and one indicating failure (fail). Intuitively, sk is true in a state iff
the table is in a situation where the test table may have been executed by the
trace up to the k-th row. The initial state (s01, . . . , s

0
m+1, fail

0) is defined by

s0k = true iff k ∈ succ(0) and fail0 = false. (4)

State transition. Given a state (s1, . . . , sm+1, fail), its successor state
(s′

1, . . . , s
′
m+1, fail

′) is deterministically computed according to these equiva-
lences:

m∧

k=1

(
s′

k ↔
m∨

i=1

(si ∧ k ∈ succ(i) ∧ φi ∧ ψi)
)

(5)

s′
m+1 ↔ (

sm+1 ∨
n∨

i=1

(si ∧ m+1 ∈ succ(i) ∧ φi ∧ ψi)
)

(6)

fail ′ ↔
(
fail ∨ (m∨

i=1

(si ∧ φi ∧ ¬ψi) ∧
m+1∧

i=1

¬s′
i

))
(7)

The equivalences in (5) encode that the k-th row is active in the next step
(variable s′

k) if there is an active row i preceding k such that both its input
constraint φi and output constraint ψi are satisfied. The same applies to the
virtual row m+1 behind the table in (6). Here, additionally, once true, the vari-
able sm+1 never falls back to false again. The fail flag indicating a specification
violation is defined in (7). It is triggered whenever there is one active row i such
that its input constraint φi is satisfied while the output constraint ψi is violated
and there is no active row in the next step. Note that the equivalences above
ensure the state transition system is always deterministic.

The acceptance condition remains to be described. By definition, a Büchi
automaton accepts an infinite word if one state from the set of final states is tra-
versed infinitely often. We construct two different such accepting sets of states:
condition AWC for weak conformance and AC for strict conformance (the fol-
lowing formulas are identified with the set of states that satisfy them):

AWC := ¬fail AC :=
(m∧

i=1

¬si ∧ ¬fail
) ∨ sm+1

For weak conformance, the automaton accepts any trace that never have set
the flag fail to true. For strict conformance, the automaton accepts a trace if it
reaches a state in which sm+1 (the flag for finishing a table) is true or there is
no active row anymore without failing (i.e., the challenger has lost).

140 B. Beckert et al.

The automata. Based on the above constructions, we can now define two Büchi
automata. They share the state space, initial states (4), and transition function
(5)–(7). The automaton AWC for weak conformance uses AWC as set of final
states, the one for strict conformance uses AC .

Proposition 2. Let T be a normalised gtt (Definition 6).
A reactive system P weakly conforms to T iff all traces of p are accepted

by AWC (T), i.e., P ⊆ L(AWC (T)).
A reactive system P strictly conforms to T iff all traces of p are accepted

by AC(T), i.e., P ⊆ L(AC(T)).

Extension for back references. The automata construction described above does
not cover gtts with back-references of the form v[−k].

To handle back reference, the state space needs to be enriched by additional
variables. For any input or output variable v for which a back-reference v[−k]
occurs in a table, the state variables v1, . . . , vk are added. Moreover, the following
equivalencies are added to the state transition:

v′
1 = v ∧

k∧

i=2

v′
i = vi−1

The expression v[−c] then refers to the variable vc for any constant c ∈ {1, ..., k}.
The same construction is applied for each global variable (as global variables have
the same value in all states).

Verifying system conformance. We provide two tools: the backend geteta for con-
formance verification of software for automated production systems, and stvs a
graphical frontend for the creation of gtts and the inspection of counter exam-
ples. The implementation of geteta takes a gtt (encoded in XML), and a reactive
system in Structured Text (ST), a textual programming language for automated
production systems within the IEC standard 61131-3, and translate both to SMV
file format. For the translation of ST source code, we use symbolic execution to
compute the state relation of one system cycle into single static assignment form.
For verification, we combine the model of the reactive system and the automaton
representing the gtt into a product automaton, in which the inputs are chosen
non-deterministically by the model checker. Links and further information are
available on the companion website3.

6 Experiment

We demonstrate the suitability of gtts for the specification and verification using
a realistic example from the domain of automated production systems.

System under test. We consider an example system whose purpose is to watch
over the input values and to raise a warning if they repeatedly exceed the previ-
ously learned range of allowed values. Such diagnosis functionality is common in
3 Companion page: https://formal.iti.kit.edu/ifm17/.

https://formal.iti.kit.edu/ifm17/

Generalised Test Tables: A Practical Specification Language 141

Fig. 7. Two gtts for the specification of the MinMaxWarning’s behaviour

safety-critical applications. More precisely, the system under test is the function
block MinMaxWarning written in ST. A function block declares its input, output
and local variables. In the case of MinMaxWarning, the input variables mode,
learn, I and the output variables Q, W are declared. MinMaxWarning learns the
typical input values and warns the caller for subsequent outliers.

MinMaxWarning operates in two modes, Active and Learn, as selected by
the caller via mode. During the learning phase, the function block learns the
minimum and maximum values of the input values (I), if the learn flag is
activated. When switched into the active phase, the function block checks that
the input value (I) stays within the previously learned interval. The output value
Q is equal to I if I is within the learned interval; otherwise, the nearest value
from the interval is returned. If the input value keeps being out of range for
a specified number of cycles, then the function block raises an alarm via the
variable W. The alarm is reset after a certain cool down time if the input value
falls back into the learned interval. An unlearned function block always signals
a warning.

Test tables. The required functionality is partially described by the two gtts
shown in Fig. 7. These tables have two global integer variables p, q. As p should
represent the minimum input value, resp. q the maximum, we specify the con-
straint p ≤ q in the model checker. The waiting time before an alarm is raised
is fixed to ten cycles, and the cool-down time to five cycles.

The first gtt (Fig. 7a) specifies a behaviour without warning. In the beginning,
it is checked that the unlearned system returns the default constants (Q = 0 and
W = true; Row 1). This phase can be interrupted for switching into the learning
mode (Rows 2 and 3). During learning, the system learns the minimum p and
the maximum q input values. Subsequently, the system response is only allowed
to be within this range. In Row 4, we test the non-warning case, in which only
inputs between p and q are supplied. Rows 5 and 6 test for input values outside
the range, and ensure that no warning is risen too early.

The second gtt (Fig. 7b) targets the case where warnings need to be given.
We use the same initialisation, but require a warning due to a too high input
(Rows 3 and 4). Rows 5 and 6 specify the cool-down within five cycles.

142 B. Beckert et al.

Verification. The verification system geteta that uses the construction from
Sect. 5 and version 1.1.1 of the model-checker nuXmv [4], needs 0.53 CPU sec-
onds for proving weak conformance of the first gtt and 0.63 CPU seconds for the
second (median, n = 6). With the same setup, the verification of strict confor-
mance takes 1.35 and 1.39 CPU seconds. Proving strict conformance requires an
additional fairness condition to avoid infinite stuttering on the non-deterministic
input variables. The experiments were run on a 3.20 GHz system with Intel
Core i5-6500 and 16 GB RAM. The companion website provides the experiment
files.

7 Related Work

A Parnas table is a tabular representation of a relation. Lorge et al. [10] use them
in addition to first order logic for the specification of procedure contracts. In the
Software Cost Reduction approach (SCR) [7], a collection of Parnas tables is
used to specify a system’s behaviour as a finite automaton. We follow a different
approach with gtts: A system behaviour is specified as a sequence of admissible
reactions to stimuli in the rows of a single table. Automata in SCR are deter-
ministic while gtts are allowed to have non-deterministic transitions. Gtts allow
the direct access to past values via back references or global variables; SCR
requires an encoding of these values into the state. Both specification methods
use tables as specification representation because of its accessibility for system
engineers [7].

As an addition to the classical temporal specification languages CTL and
LTL, Moszkowski [9], presents Interval Temporal Logic (ITL), which is ω-regular.
ITL contains the chop-operator (r1; r2) which – similar to our concept of rows –
describes that there exists a point in time t s. t. until t the formula r1 holds
in all states and from t formula r2 holds in all the following states. Obviously,
we can encode a gtt T into an ITL by forming a disjunction of the generated
normalised gtt of T (Definition 6). In general, the encoding results into an expo-
nential blow-up. Armonie et al. [1] present ForSpec Temporal Logic (FTL) as
an extension to LTL with logical and arithmetical operations and description of
regular events. These regular events describes a finite regular language, similar
to ITL and gtt. Additionally, FTL allows the composition with temporal con-
nectives (a composition of gtts is possible on the automata level). Ljungkrantz
et al. [8] propose ST-LTL, which enriches LTL with the arithmetical operators
of Structured Text, syntactical abbreviations for specifying the rising or falling
edges of variables, and access to previous variable value. To lower the obstacle for
using formal specification in the development of critical software, like automated
production systems, Dwyer et al. [6], Campos and Machado [3], and Bitsch [2]
provide collections of specification patterns. The idea of specification patterns is
that they cover the typical cases that arise from safety engineering. Additionally,
their usage is simplified due to documentation and categorisations.

Generalised Test Tables: A Practical Specification Language 143

8 Conclusion

Gtts are a novel formal specification method for behavioural specifications of
reactive systems. Their syntax is aligned with the concrete test tables and spread-
sheet applications used in industry to ease the use of formal methods for software
or mechanical engineers.

We have shown that it is possible to specify realistic software blocks from
industry using gtts and verified them. Besides for verification at design time, gtts
can also be used to generate checker code that monitors systems at runtime [5].

The concept of gtts is an important step towards the integration of formal
methods into engineering automated production systems. Future work includes
a user study on the accessibility of the features and an extension of the notation
allowing the specification of software change during evolution.

References

1. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A.,
Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec
temporal logic: a new temporal property-specification language. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg
(2002). doi:10.1007/3-540-46002-0 21

2. Bitsch, F.: Safety patterns—the key to formal specification of safety requirements.
In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187, pp. 176–189. Springer,
Heidelberg (2001). doi:10.1007/3-540-45416-0 18

3. Campos, J.C., Machado, J.: Pattern-based analysis of automated production sys-
tems. IFAC Proc. Vol. 42(4), 972–977 (2009)

4. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham
(2014). doi:10.1007/978-3-319-08867-9 22

5. Cha, S., Ulewicz, S., Vogel-Heuser, B., Weigl, A., Ulbrich, M., Beckert, B.: Gener-
ation of monitoring functions in production automation using test specifications.
In: 15th IEEE International Conference on Industrial Informatics, INDIN 2017,
Emden, Germany. IEEE, 24–26 July 2017 (to appear)

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No. 99CB37002), pp. 411–420, May 1999

7. Heitmeyer, C.L., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing
requirements specifications: the SCR toolset at the age of ten. Int. J. Comput.
Syst. Sci. Eng. 20(1), 19–35 (2005)

8. Ljungkrantz, O., Åkesson, K., Fabian, M., Yuan, C.: A formal specification lan-
guage for PLC-based control logic. In: 2010 8th IEEE International Conference on
Industrial Informatics, pp. 1067–1072, July 2010

9. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18(2), 10–19 (1985)

10. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Softw. Eng. 20(12), 948–976 (1994)

http://dx.doi.org/10.1007/3-540-46002-0_21
http://dx.doi.org/10.1007/3-540-45416-0_18
http://dx.doi.org/10.1007/978-3-319-08867-9_22

144 B. Beckert et al.

11. Rösch, S.: Model-based testing of fault scenarios in production automation. Ph.D.
thesis, Technische Universität München, München (2016)

12. Weigl, A., Wiebe, F., Ulbrich, M., Ulewicz, S., Cha, S., Kirsten, M., Beckert,
B., Vogel-Heuser, B.: Generalized test tables: a powerful and intuitive specification
language for reactive systems. In: 15th IEEE International Conference on Industrial
Informatics, INDIN 2017, Emden, Germany. IEEE, 24–26 July 2017 (to appear)

Transient and Steady-State Statistical Analysis
for Discrete Event Simulators

Stephen Gilmore1, Daniël Reijsbergen1, and Andrea Vandin2(B)

1 University of Edinburgh, Edinburgh, Scotland
2 IMT School for Advanced Studies, Lucca, Italy

andrea.vandin@imtlucca.it

Abstract. We extend the model checking tool MultiVeStA with statis-
tical model checking of steady-state properties. Since MultiVeStA acts as
a front-end for simulation tools, it confers this ability onto any tool with
which it is integrated. The underlying simulation models are treated as
black-box systems. We will use an approach based on batch means using
the ASAP3 algorithm. We motivate the work using two case studies: a
biochemical model written in the Bio-PEPA language and an application
from transport logistics.

Keywords: Statistical model checking · Steady-state · Batch means ·
MultiVeStA

1 Introduction

Statistical model-checking (SMC) [26,38] is a verification technique which is
used for checking logical properties of formal models of large-scale systems.
Based on analysis by simulation, statistical model-checking offers advantages
over explicit-state model-checking because the absence of a formal representa-
tion of the reachable state-space of the system means that the approach scales
better in supporting more detailed models of more complex systems, albeit at
the cost of qualifying results with a statistical confidence. The SMC approach
is well-suited to investigating transient (meaning, time-dependent) properties of
systems.

Our focus is on black-box systems, which are those for which no knowledge
of the internal state or transition structure is assumed. For these systems, con-
clusions about the satisfaction of formal system properties can only be based
on observation traces, which in our case are obtained using system simulation.
In this paper we extend an existing statistical model checker for black-box sys-
tems, MultiVeStA [31], by adding the ability to check steady-state (meaning,
time-independent) properties of systems. The application of steady-state model
checking to black-box systems is novel and is the main contribution of this paper.

Previous applications of SMC for black-box systems [11,32,37] have consid-
ered only transient properties. Conversely, existing SMC procedures for steady-
state properties are only applicable to Markov chain models and the associated
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 145–160, 2017.
DOI: 10.1007/978-3-319-66845-1 10

146 S. Gilmore et al.

logics such as CSL [7] and UTSL [37], and are hence not sufficiently generic for
black-box systems.

In particular, the current leading SMC model-checking techniques for steady-
state analysis are the approach based on regeneration cycles which is imple-
mented in the MRMC model-checker [23], and the approach based on perfect
simulation which is found in [18].

These are not applicable in the context of black-box systems for the following
reasons.

– The use of regeneration cycles requires that the state space has a pre-identified
bottom strongly connected component (BSCC) structure – i.e., state space
regions for which the probability of travelling from one region to another is
0 – and assumes that the system has a known regeneration state, which is
not true for black-box systems, thereby making this approach inapplicable
for our setting.

– The perfect simulation algorithm of [18] will exhibit either a time complexity
which is linear in the state space size, or requires envelope computation which
means that it is prohibitively expensive for use with black-box systems [12].

In this paper, we use the method of batch means [3,17]. Typical challenges fac-
ing the batch means method include the warm-up period, independence of the
batches, and getting ‘stuck’ in a BSCC when more than one exists. To ameliorate
these, we use an approach based on the ASAP3 [34] algorithm, which prescribes
that we continue sampling until the batch means pass two statistical tests, one
for normality and one for the absence of correlation between the means. To avoid
the (rare) multiple-BSCC problem, one could further extend the algorithm with
the method of independent replications [2].

The MultiVeStA tool which we extend here is a parametric simulation
analyser which functions as a front-end for multiple discrete-event simulators by
interactively asking them to produce observation traces which are then analysed.
The logical query language underlying MultiVeStA, called MultiQuaTEx, allows
the specification of expressions which map functions of state variables onto real
numbers, thereby defining stochastic processes. In combination with a stop-
ping criterion for individual runs, this defines a property specification language
that generalises (the transient fragments of) other languages such as the logics
PCTL [22] and CSL [6,7] for Markov chains, and UTSL [37] for general discrete-
event systems (see discussion in [1]). However, MultiQuaTEx and UTSL cur-
rently both omit steady-state properties, which do not involve the value of a
random variable at a (possibly random) stopping time, but rather its long-run
average.

The parametric multi-simulator approach of MultiVeStA is validated using
two case studies. The first is a model of local intracellular signalling reactions in
the cAMP/PKA/MAPK pathway in neurons as studied in [15,27]. This model
is introduced in Sect. 4.1 to facilitate explanation of the core concepts of Mul-
tiVeStA in the following sections. The second case study concerns a model for
the performance analysis of a public transportation network in Edinburgh [29],
parameterised using real-world GPS data. It is introduced in Sect. 5.

Transient and Steady-State Statistical Analysis for DESs 147

Information on how to replicate the experiments of this paper are available
online at http://sysma.imtlucca.it/tools/multivesta/batchMeans.

2 Batch Means Method

The type of property that we are interested in is the steady-state value of a
random variable F . To evaluate this property, we ask the simulator to generate
a simulation run (F (t))t≥0 such that F (t) represents the value of F when the
simulated time is t. Then we define the steady-state mean πF as

πF = lim
T→∞

1
T

∫ T

0

F (t)dt.

Using batch means, πF is estimated for a large value of T rather than for the
limit. Let B and b be positive integers (two parameters). A confidence interval for
this value is then constructed by dividing the time interval [0, T] into B batches
of equal time length. We discard the first b batches to remove initialisation bias,
and assume that the means of the remaining batches are normally distributed.
The challenge is to find a T large enough (but minimal) for the assumptions of
normality and lack of initialisation bias to be approximately valid.

We solve this using an approach based on the ASAP3 procedure [34]: we draw
a moderately large number of events (4096 by default) and record the obtained
simulated time T1. We then draw B (default value: 256) batches of time length
T1 and discard the first b (default value: 4) batches. We then perform a test for
normality on the remaining batches — we use the Anderson-Darling test, offered
by the SSJ library [24,25]. If the test fails to reject the null hypothesis that the
batch means are drawn from the normal distribution, we compute the correlation
between subsequent batch means and determine whether this is smaller than
a threshold value given in [34]. If so, we construct a confidence interval that
corrects for this correlation. If not, we iteratively repeat the experiment for
Ti = 2Ti−1 until both conditions are met. When both conditions are met, we
continue sampling (increasing the time length of the batches) until the confidence
interval width is smaller than δ, yielding a Chow-Robbins confidence interval that
is asymptotically valid [21].

A pseudocode representation of such algorithm appears in Algorithm 1. In
particular, Algorithm 2 details how the size of batches is initially computed,
i.e., how the parameter T1 mentioned above is calculated. Instead, Algorithm 3
details how the statistical quality of the batches is computed.

If the limit does not exist, then the confidence interval is expected to asymp-
totically widen, meaning that the procedure will not terminate. If the limit is
not unique in the sense that different runs of the same procedure will yield dif-
ferent limits, owing to, for example, the existence of more than a single BSCC,
then the method of independent replications [2] is to be preferred. We would like
to stress again that the multiple-BSCC setting is rare in practice, and that the
batch means is much faster than independent replications because the b warm-up
batches only need to be drawn once rather than for every sample. In a general

http://sysma.imtlucca.it/tools/multivesta/batchMeans

148 S. Gilmore et al.

Algorithm 1. Batch means algorithm
Require: B even (default: 256), variable of interest x
1: T ← determineInitialBatchDuration()

2: μ ← (μ1, . . . , μB)
3: for i ∈ {1, . . . , B} do
4: μi ← drawBatch(x, T)
5: end for
6: (a, ρ, d) ← performGoodnessOfFitTests(μ)
7: while a > a∗ and ρ > ρ∗ and d > δ do
8: for i ∈ {1, . . . , B/2} do
9: μi ← (μ2i + μ2i+1)/2

10: end for
11: T ← 2T
12: for i ∈ {B/2 + 1, . . . , B} do
13: μi ← drawBatch(x, T)
14: end for
15: (a, ρ, d) ← performGoodnessOfFitTests(μ)
16: end while
17: return confidence interval based on μ, compensating for correlation

Algorithm 2. determineInitialBatchDuration()
Require: initial event number X (default: 4096)
1: T ← 0
2: k ← X
3: while T = 0 do
4: for i ∈ {1, . . . , k} do
5: simulator.takeStep()

6: end for
7: T = simulator.getTime()

8: k ← 2k
9: end while

10: return T

approach, the two methods can be integrated by starting with the method of
independent replications, and switching to the method of batch means if the
samples are judged to be sufficiently similar by a normality test.

Although our implementation allows experienced users to override the default
parameters, it is not necessary for novice users to do so. There is typically no
need to adjust the parameters B, b, and the initial number of events, because
these only determine the number of initial runs; if this is chosen too low, the
algorithm is designed to draw more samples. For the confidence level of the
normality test, it is sufficient to choose a default value of 95% or 99%. (The
confidence level for this test does not provide a strict bound anyway because
it is conducted several times. In the early stages of the simulation, when the
means are typically very unlike the normal distribution and strongly correlated,
the test’s p-value and therefore the probability of stopping prematurely tends

Transient and Steady-State Statistical Analysis for DESs 149

Algorithm 3. performGoodnessOfFitTests()
Require: batch means μ,
1: μ′ ← (μb+1, . . . , μB)
2: a ← PerformNormalityTest(μ′)
3: ρ ← PerformTestForAutocorrelation(μ′)
4: d ← ComputeConfidenceIntervalWidth(μ′)
5: return (a, ρ, d);

to be far below the threshold.) The only parameters that in all cases need to
be set by the user are the confidence interval final width δ and confidence level
α, which need to be set for most SMC procedures. Note that it is important to
avoid choosing δ too low, because making it y times smaller will require roughly
y2 times as many samples.

3 MultiVeStA

This section introduces MultiVeStA [31], a Java framework for statistical model
checking that can be easily integrated with existing discrete event simulators.
MultiVeStA has been successfully applied to many scenarios, including: (by
external users) contract-oriented middlewares [8], opportunistic network pro-
tocols [5], online planning [10], (by MultiVeStA’s developers) software product
lines [35,36], crowd-steering [28], public transportation systems [13,20], volun-
teer clouds [30], and swarm robotics [9].

MultiVeStA has a distributed architecture, making it possible for users to dis-
tribute simulations across a network of compute-servers. An in-depth discussion
of MultiVeStA’s architecture and of MultiQuaTEx is provided in [28,31].

The tool extends VeStA [1,33] and PVeStA [4], as discussed in [31]. More
information on MultiVeStA and on the currently integrated simulators is avail-
able at http://sysma.imtlucca.it/tools/multivesta/.

3.1 Simulator Integration

MultiVeStA adopts a distinctive black-box approach: it does not require systems
to be specified in a given system specification language, but rather it makes
it possible to directly analyse models written for simulators which have been
integrated with MultiVeStA. In particular, MultiVeStA interacts with underlying
simulators by triggering basic actions such as:

– reset: reset the simulator to its “initial state”, and update the seed used for
pseudo-random sampling, necessary before performing a (new) simulation;

– next: perform one step of simulation; and
– eval: evaluate an observation in the current simulation state.

This is obtained by instantiating MultiVeStA’s Java interface which contains
three corresponding methods. As a consequence, MultiVeStA natively supports

http://sysma.imtlucca.it/tools/multivesta/

150 S. Gilmore et al.

1 public class SimulatorState extends NewState{
2
3 // Reference to the simulator
4 private Simulator simulator;
5
6 /* @param params Parameters provided to MultiVeStA */
7 public SimulatorState(ParametersForState params) {
8 super(params);
9 // Name of the (file with the) model to be analyzed

10 params.getModel ();
11 // Optional string with simulator -specific parameters .
12 params.getOtherParameters ();
13 // Optional evaluator of model -specific observations see [31]
14 params.getStateEvaluator();
15 // Read the model and initialize the simulator ...
16 }
17
18 /* @param randomSeed The new seed for random generation */
19 public void setSimulatorForNewSimulation (int randomSeed) {
20 simulator.reset(randomSeed);
21 }
22
23 public void performOneStepOfSimulation () {
24 simulator.performOneStep ();
25 }
26
27 /* @param obs a string representing the observation to be evaluated
28 * @return the value of the evaluated observation */
29 public double rval(String obs) {
30 simulator.eval(obs);
31 }
32 }

Listing 1. A skeleton of the adaptor between MultiVeStA and a simulator.

Java-based simulators. However, it has been also integrated with C-based sim-
ulators using the Java Native Interface (JNI) or Python-based simulators using
the py4j libraries.

Similar in spirit to MultiVeStA is (the independently proposed) Plasma-
lab [11], a framework for SMC. The main difference lies in the property specifi-
cation languages which are used (see [31]): temporal logics to estimate probabil-
ities by Plasma-Lab, and MultiQuaTEx by MultiVeStA (Sect. 4.2). Plasma-lab
offers further statistical analysis techniques including sequential hypothesis test-
ing for transient properties, but crucially it does not support steady-state model
checking, which is the main contribution of this paper.

After adding the MultiVeStA library to the classpath of the simulator, one
has to extend the class NewState in order to provide the three functionalities
above. Listing 1 provides a skeleton of such class. Essentially, this is an adap-
tor between MultiVeStA and the simulator, which just propagates the requests
received from MultiVeStA to the simulator, and returns the obtained results.
We note that the class stores a reference to the simulator (Line 4), in the form
of an object of a class in the simulator’s namespace.

The class constructor (Lines 7–16) should perform only actions that have to
be done once (and not for individual simulation runs). For example, it might read
the model from a file. The parameters provided by the user to MultiVeStA are
collected in the object params, containing the name of the model to be analysed,

Transient and Steady-State Statistical Analysis for DESs 151

simulator-specific parameters, and a model-specific state evaluator (see [31] for
more details on the latter).

The method setSimulatorForNewSimulation (Lines 19–21) is invoked by
MultiVeStA to reset the simulator for a new simulation, providing also the new
random seed. During a simulation, the method performOneStepOfSimulation
(Lines 23–25) is invoked by MultiVeStA to perform a simulation step.

The method rval (Lines 29–31) is invoked by MultiVeStA to evaluate obser-
vations of the current state of a simulation run. Typically, the method delegates
the evaluation of the observations to the simulator, if possible, or deals only
with observations common to all possible models that can be defined for the
simulator (e.g., the current simulation time or the molecule count of a given
chemical species in biological simulators), and invokes the state evaluator which
is provided for any model-specific observations.

The state evaluator is not necessary if we know in advance all observations
that can be computed for any model definable for the simulator, or if the eval-
uation of an observation can be delegated to the simulator. We have found in
practice that the delegation of the evaluation to the simulator is often possible,
and is the preferred option.

4 Analysis of a Biochemical Pathway Using MultiVeStA

In this section we show how transient and steady-state analysis of a well-known
biological model from the literature can be performed using MultiVeStA.

4.1 Example 1: The cAMP/PKA/MAPK Biochemical Pathway

As our first example in this paper we consider a biochemical reaction pathway
expressed in Bio-PEPA [16], a process-algebra-based framework for the modelling
and the analysis (including stochastic simulation) of biochemical networks. The
Bio-PEPA software [14] supports a range of both continuous and discrete simu-
lators including accelerated stochastic simulation methods. MultiVeStA interop-
erates with the Direct Method implementation of the Gillespie stochastic simu-
lation algorithm provided by the Bio-PEPA Eclipse Plugin as discussed in [20].
The particular Bio-PEPA model considered is the cAMP/PKA/MAPK pathway
modelled as in [27], analysed with Bio-PEPA in [15]. A schematic presentation
of the pathway is given in Fig. 1, taken from [15].

Three sub-networks can be identified in the pathway, highlighted in boxes
with different colours. Each sub-network regards the activation of three mole-
cules, namely AC (adenylate cyclase), PKA (protein kinase A) and MAPK
(mitogen-activated protein kinase). We refer to [15] for a detailed presentation
of the model. Here, we will show how MultiVeStA can be used to study the
dynamics in terms of activation and deactivation of the enzyme AC, both as a
function of time, and at steady state.

152 S. Gilmore et al.

Fig. 1. Schematic representation of the cAMP/PKA/MAPK pathway (from [15]).

4.2 Transient Analysis with MultiVeStA

MultiVeStA offers a powerful and flexible property specification language, Mul-
tiQuaTEx [31], which allows the modeller to express transient properties to be
verified. Intuitively, a MultiQuaTEx query specifies a random variable (repre-
senting, e.g., the number of active AC molecules at a certain point in time during
a simulation).

The expected value of a MultiQuaTEx query is estimated as the mean x
of n samples (taken from n simulations), with n large enough (but minimal) to
guarantee that we can construct a (1 − α) · 100% confidence interval around x
of width at most δ, for given α and δ. This means that, with a probability of at
least 1−α, the actual expected value belongs to the random interval [x− δ

2 , x+ δ
2].

A MultiQuaTEx query might actually specify many random variables. An
ensemble of simulation results computed by MultiVeStA can be reused multi-
ple times to study each of the random variables in turn. Listing 2 depicts a
MultiQuaTEx query for the cAMP/PKA/MAPK pathway.

We now overview MultiQuaTEx using the expression in Listing 2, defined for
the above mentioned cAMP/PKA/MAPK pathway model. It studies the evolu-
tion over time of the fraction of active instances of adenylate cyclase (AC active)
over the total quantity of adenylate cyclase (AC active + AC inactive). A Mul-
tiQuaTEx query consists of a list of MultiQuaTEx operators, used in an eval
parametric clause to specify the properties to be estimated.

Transient and Steady-State Statistical Analysis for DESs 153

1 fractionAtTime (t , act , i nac t) =
2 i f {s . rval (” time ”) >= t}
3 then s . rval (act) / (s . rval (act) + s . rval (i nac t))
4 else # fract ionAtTime (t , act , i nac t)
5 f i ;
6
7 eval parametric (E [f ract ionAtTime (t , ” AC active ” , ”AC inact ive ”)] , 1.0 ,10.0 ,700.0) ;

Listing 2. A transient MultiQuaTEx query

Lines 1–5 define one MultiQuaTEx operator, fractionAtTime, with three
parameters: t, act and inact. It is evaluated (in every simulation) as the fraction
act/(act + inact) at time point t.

Line 7 instantiates fractionAtTime, specifying the properties to be evalu-
ated: the (expected value of the) fraction of active AC from time point 1 to time
point 700, with step 10. Many MultiQuaTEx operators can appear in an eval
parametric clause, which is just syntactic sugar expanded into a list of eval
E[·]. There will be 70 of these in the case of Listing 2, all evaluated using the
same simulations.

A MultiQuaTEx operator consists of the following ingredients:

1. real-valued observations on the current simulation state (s.rval);
2. arithmetic expressions (Line 3);
3. conditional statements;
4. a one-step next operator which triggers the execution of a simulation step

(the # symbol of Line 4);
5. recursion, used in Line 4 to evaluate the operator in the next simulation step.

This is general enough to express PCTL and CSL properties, as discussed in [1],
however users must restrict themselves to queries that can be evaluated for each
simulation in a finite number of simulation steps.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Fig. 2. Estimation of the transient MultiQuaTEx query from Listing 2.

Figure 2 depicts the estimation computed by MultiVeStA of the transient
MultiQuaTEx query from Listing 2 for α = 0.05 and δ = 0.01 (meaning a 95%
confidence interval of width at most 0.01). The analysis required 480 simula-
tions, with a runtime of about 1000 s (without distributing the simulations) on

154 S. Gilmore et al.

a 2.6 GHz Intel Core i5 machine with 4 GB of RAM. A similar analysis has
been performed in [15], studying how the fraction of active instances of AC
(and of two additional molecules PKA and MAPK) changes over time. This has
been done by running an arbitrary number of simulations with time horizon set
to 700 s, and required a modification of the Bio-PEPA model to represent the
fraction of active molecules directly within the model. Here, instead, we follow a
separation-of-concerns approach, leaving the model unchanged and delegating to
MultiQuaTEx the definition of the measures of interest. In addition, MultiVeStA
gives a statistical assurance on the obtained measures.

4.3 Steady-State Analysis in MultiVeStA

The extension of MultiVeStA with steady-state capabilities required us to extend
MultiQuaTEx correspondingly. Listing 3 provides a steady-state MultiQuaTEx
query. It is similar to that in Listing 2, but it studies the fraction of active AC
at steady state rather than at given time points.

1 fractionAtTime(act ,inact) =
2 s.rval(act)/(s.rval(act)+s.rval(inact));
3
4 eval batchMeans(E[fractionAtTime (" AC_active"," AC_inactive ")]) ;

Listing 3. A steady-state MultiQuaTEx query

The query is composed of two parts:

1. A list of MultiQuaTEx operators, where, differently from the transient case,
the one-step next operator (#) is not allowed; and

2. the eval batchMeans clause, similar to the eval parametric one, which lists
the properties to be estimated at steady state.

Intuitively, a steady-state MultiQuaTEx query defines a number of state
observations. In order to estimate the value of each observation at steady state,
we integrated within MultiVeStA the batch means methods described in Sect. 2.
Intuitively, as depicted in Algorithm1, we do not perform n independent simu-
lations as in the transient case, but only a single long simulation, divided in n
batches of equal time length, each of which gives a sample.

The time horizon is automatically chosen to be large enough (but minimal), to
guarantee that we can construct an (1−α)·100% confidence interval [x− δ

2 , x+ δ
2]

for the value at steady state of the property of interest, where x is the mean of
the batch samples.

Figure 3 depicts the novel architecture of MultiVeStA. We see that Multi-
VeStA consists of two main macro-functionalities, transient analysis and steady-
state one. Each functionality allows to parse and analyse the corresponding fam-
ily of MultiQuaTEx queries. Both analysis interact with integrated simulators
by using the adaptor interface discussed in Sect. 3.1. For easiness of presentation,
the figure ignores the distributed architecture supporting the transient analysis.

Transient and Steady-State Statistical Analysis for DESs 155

Fig. 3. The novel architecture of MultiVeStA

Figure 2 shows that the fraction of active adenylate cyclase (seems to) stabi-
lize to about 0.855 after 300 s of simulated time. We can now confirm that this
actually holds at steady state. Indeed, Listing 3 is estimated as 0.855 using the
same confidence interval used for the transient case (α = 0.05 and δ = 0.01).
This has been done by performing a simulation with time horizon of 14066 s.
Notably, the steady-state analysis took only about 20 s, compared to the 1000 s
required by the transient one. The transient analysis is slower even in the case
where we attempt to reduce the computation time of the simulation by setting
300 as the simulation stop-time in Listing 2, obtaining a runtime analysis of
about 486 s.

Finally, we remark that when using the Bio-PEPA tools alone it is not pos-
sible to perform any form of steady-state analysis, thus our integration of Mul-
tiVeStA with support for batch means provides analysis capabilities which are
not provided by the Bio-PEPA Eclipse Plugin.

5 Example 2: Edinburgh Bus Simulator

Recently, many approaches have been provided to analyse models of public trans-
portation systems parameterised using real-world GPS data (e.g., [19]). In this
section we use MultiVeStA to study a model of a public city bus service in
Edinburgh [29], obtained from GPS data. We consider the problem of guar-
anteeing a quality-of-service constraint required by the legislator. The recently
submitted paper [29] presents a model of a bus service in Edinburgh, parame-
terised using real-world data. The model is used to evaluate the performance
of bus networks. The software is particularly focussed on so-called frequent ser-
vices, which means that more than six buses are scheduled to depart per hour.
In this case, passengers are not expected to base their decision of when to arrive
at a stop on an explicit timetable. Instead, performance is expressed in terms of
the regularity of the headways, i.e., the inter-departure times at stops.

156 S. Gilmore et al.

The parametric model allows for the analysis of the impact on headway
regularity of different strategies, such as real-time headway control. The headway
regularity measures are studied in steady state. One example is the Buses-Per-
Hour (BPH) metric, which at any time point t is 0 if six or more buses arrived at
a given location (e.g., a bus stop or the end of a journey stage) in the previous
hour and 1 otherwise. Scottish government regulations stipulate that the steady-
state BPH value should be at most 5%; meaning that a regulator arriving at the
given location in steady state should observe six bus departures in the next
hour with a probability of over 95%. The counting behaviour of the regulator is
represented in the simulation by a forgetful observer automaton which behaves
as described in Fig. 4.

Fig. 4. Observers counting departures should note the times of departures and forget
departures which are more than one hour old.

The BPH metric is expressed within MultiQuaTEx as displayed in Listing 4,
where H 8 is a state observation evaluated within the bus simulator as the num-
ber of buses which arrived in the previous hour at the end of stage 8.

1 BPH8() = i f {s.rval("H_8") < 6}
2 then 1
3 else 0
4 f i ;
5
6 eval batchMeans(E[BPH8()]);

Listing 4. The MultiQuaTEx query for the BPH after stage/patch 8.

One question that is of interest to planners is how many buses need to be
assigned to the route to meet the government regulations. An overview of the
performance of a specific bus service in Edinburgh (namely the Airlink service)
for different numbers of buses assigned to the route can be found in Table 1.

Each row of Table 1 contains estimates of the BPH metric at the end of a
specific stage of the route roughly corresponding to the end of patch 8 in Fig. 5.
This location is immediately after a busy junction in the city centre and the value
of the BPH metric here is higher than at most other points along the route. The
BPH metric expresses a penalty and so a higher value of the BPH metric signifies
worse performance. The requirement for the frequent services such as the Airlink
is that the width of the confidence interval around the satisfaction of the BPH
requirement should be at most 0.05 — we see from the table that at least 9 buses
are required to meet this criterion.

Transient and Steady-State Statistical Analysis for DESs 157

Table 1. Analysis of the performance of the Airlink service in Edinburgh for different
numbers of buses assigned to the route.

#buses C.I. # iterations runtime (s)

8 [0.5095, 0.5100] 4 306.2

9 [0.0110, 0.0119] 3 193.5

We display the BPH at the end of a specific stage — corresponding to a
so-called patch — of the route. An example of a patch structure for the Airlink
route is displayed in Fig. 5.

Fig. 5. One possible stage structure along the Airlink route in Edinburgh.

The default number of buses servicing the Airlink route is 11, and the value
of the BPH metric is very low in this setting because, with so many buses serving
the route, it is very unlikely that there will be fewer than six buses arriving in
any given hour. From the table we see that government regulations would still
be met if two buses were removed from the route: 11 buses are used, but 9 would
be sufficient. Our analysis thus suggests that the bus company which operates
this service could cut fuel costs and reduce atmospheric emissions of pollutants
while continuing to satisfy the relevant performance requirements imposed in
legislation.

6 Conclusions

In this paper we have extended a statistical model-checker with computational
methods for the calculation of steady-state properties of dynamic systems viewed
as black-box systems which offer no access to their internal structure or logic.
The challenges of this setting are that we have only the perspective of an external
observer, and can only express properties over the model outputs. The benefits
of this approach are that the method is applicable to a wide range of simulators,
across a wide range of modelling formalisms. In this paper we computed steady-
state metrics of a model in a biochemical reaction simulator and a transportation
system in a custom discrete-event simulator.

158 S. Gilmore et al.

Working across formalisms in this way means that the MultiVeStA tool pro-
vides a transferrable statistical model-checking service which modellers can apply
to their own preferred modelling formalism, allowing them to continue working
with the modelling languages where they have accumulated experience, or which
are best suited to the problem which is under study. In the future, we plan to
further enrich the family of analysis techniques offered by MultiVeStA, and to
apply the tool to further domains.

The provision of a query language such as MultiQuaTEx also supports the
transferability of the MultiVeStA service to other formalisms in a way in which
a specialised logic would not. Based on functions, conditional statements, and
arithmetic expressions, MultiQuaTEx resembles a programming language more
than a logic, making understanding and expressing properties easier for a practi-
tioner because of the more accessible syntax which is used. In the future we plan
to develop an editor for MultiQuaTEx, offering also the possibility of selecting
among a set of predefined queries.

Acknowledgments. This work has been supported by the EU project QUANTICOL,
600708. The authors thank Bill Johnston and Philip Lock of Lothian Buses for provid-
ing access to the data and for their helpful feedback on parts of this research project,
and Jane Hillston for her helpful comments.

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. In: QAPL 2005. ENTCS, vol. 153(2), pp. 213–239.
Elsevier (2006)

2. Alexopoulos, C., Goldsman, D.: To batch or not to batch? ACM Trans. Model.
Comput. Simul. 14(1), 76–114 (2004)

3. Alexopoulos, C., Seila, A.F.: Implementing the batch means method in simulation
experiments. In: Proceedings of the 28th Conference on Winter Simulation, WSC
1996, pp. 214–221. IEEE Computer Society, Washington, DC (1996)

4. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22944-2 28

5. Arora, S., Rathor, A., Rao, M.V.P.: Statistical model checking of opportunistic
network protocols. In: Proceedings of AINTEC 2015, pp. 62–68. ACM (2015)

6. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Logic (TOCL) 1(1), 162–170 (2000)

7. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

8. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol.
9539, pp. 86–104. Springer, Cham (2016). doi:10.1007/978-3-319-28934-2 5

9. Belzner, L., Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service component
ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specifica-
tion, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54624-2 10

http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-319-28934-2_5
http://dx.doi.org/10.1007/978-3-642-54624-2_10

Transient and Steady-State Statistical Analysis for DESs 159

10. Belzner, L., Hennicker, R., Wirsing, M.: OnPlan: a framework for simulation-based
online planning. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539,
pp. 1–30. Springer, Cham (2016). doi:10.1007/978-3-319-28934-2 1

11. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distrib-
utable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40196-1 12

12. Bušić, A., Gaujal, B., Vincent, J.-M.: Perfect simulation and non-monotone
Markovian systems. In: Valuetools 2008. ICST (2008)

13. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). doi:10.1007/978-3-319-47166-2 46

14. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-
PEPA tool suite. In: QEST 2009, pp. 309–310 (2009)

15. Ciocchetta, F., Duguid, A., Guerriero, M.L.: A compartmental model of the cAM-
P/PKA/MAPK pathway in Bio-PEPA. In: Ciobanu, G. (ed.) MeCBIC 2009.
EPTCS, vol. 11, pp. 71–90 (2009)

16. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. TCS 410(33–34), 3065–3084 (2009)

17. Conway, R.W.: Some tactical problems in digital simulation. Manage. Sci. 10(1),
47–61 (1963)

18. Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-04761-9 11

19. Gast, N., Massonnet, G., Reijsbergen, D., Tribastone, M.: Probabilistic forecasts
of bike-sharing systems for journey planning. In: CIKM 2015, pp. 703–712 (2015)

20. Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantita-
tive evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.)
IFM 2014. LNCS, vol. 8739, pp. 71–86. Springer, Cham (2014). doi:10.1007/
978-3-319-10181-1 5

21. Glynn, P.W., Whitt, W.: The asymptotic validity of sequential stopping rules for
stochastic simulations. Ann. Appl. Probab. 2, 180–198 (1992)

22. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

23. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

24. L’Ecuyer, P.: SSJ: Stochastic simulation in Java, software library (2016). http://
simul.iro.umontreal.ca/ssj/

25. L’Ecuyer, P., Meliani, L., Vaucher, J.: SSJ: a framework for stochastic simula-
tion in Java. In: Yücesan, E., Chen, C.-H., Snowdon, J.L., Charnes, J.M. (eds.)
Proceedings of the 2002 Winter Simulation Conference, pp. 234–242. IEEE Press
(2002)

26. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

27. Neves, S.R., Tsokas, P., Sarkar, A., Grace, E.A., Rangamani, P., Taubenfeld, S.M.,
Alberini, C.M., Schaff, J.C., Blitzer, R.D., Moraru, I.I., Iyengar, R.: Cell shape
and negative links in regulatory motifs together control spatial information flow in
signaling networks. Cell 133(4), 666–680 (2008)

http://dx.doi.org/10.1007/978-3-319-28934-2_1
http://dx.doi.org/10.1007/978-3-642-40196-1_12
http://dx.doi.org/10.1007/978-3-319-47166-2_46
http://dx.doi.org/10.1007/978-3-642-04761-9_11
http://dx.doi.org/10.1007/978-3-319-10181-1_5
http://dx.doi.org/10.1007/978-3-319-10181-1_5
http://simul.iro.umontreal.ca/ssj/
http://simul.iro.umontreal.ca/ssj/
http://dx.doi.org/10.1007/978-3-642-16612-9_11

160 S. Gilmore et al.

28. Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex
systems modeled through a chemical metaphor. In: HPCS 2014, pp. 416–423. IEEE
(2014)

29. Reijsbergen, D., Gilmore, S.: An automated methodology for analysing urban
transportation systems using model checking (2016). https://danielreijsbergen.
files.wordpress.com/2016/10/bus modelling1.pdf

30. Sebastio, S., Amoretti, M., Lluch Lafuente, A.: A computational field framework
for collaborative task execution in volunteer clouds. In: SEAMS 2014, pp. 105–114.
ACM (2014)

31. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: Valuetools 2013, pp. 310–315. ACM (2013)

32. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9 16

33. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: a statistical model-checker and ana-
lyzer for probabilistic systems. In: QEST 2005, pp. 251–252 (2005)

34. Steiger, N.M., Lada, E.K., Wilson, J.R., Joines, J.A., Alexopoulos, C., Goldsman,
D.: ASAP3: a batch means procedure for steady-state simulation analysis. ACM
Trans. Model. Comput. Simul. 15(1), 39–73 (2005)

35. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
SPLC 2015, pp. 11–15. ACM (2015)

36. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model check-
ing for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9952, pp. 114–133. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2 8

37. Younes, H.L.S.: Probabilistic verification for “Black-Box” systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 253–265. Springer,
Heidelberg (2005). doi:10.1007/11513988 25

38. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 17

https://danielreijsbergen.files.wordpress.com/2016/10/bus_modelling1.pdf
https://danielreijsbergen.files.wordpress.com/2016/10/bus_modelling1.pdf
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/978-3-319-47166-2_8
http://dx.doi.org/10.1007/11513988_25
http://dx.doi.org/10.1007/3-540-45657-0_17

Algebraic Compilation of Safety-Critical
Java Bytecode

James Baxter(B) and Ana Cavalcanti

Department of Computer Science, University of York, York, UK
jeb531@york.ac.uk

Abstract. Safety-Critical Java (SCJ) is a version of Java that facilitates
the development of certifiable programs, and requires a specialised virtual
machine (SCJVM). In spite of the nature of the applications for which
SCJ is designed, none of the SCJVMs are verified. In this paper, we
contribute a formal specification of a bytecode interpreter for SCJ and
an algebraic compilation strategy from Java bytecode to C. For the target
C code, we adopt the compilation approach for icecap, the only SCJVM
that is open source and up-to-date with the SCJ standard. Our work
enables either prototyping of a verified compiler, or full verification of
icecap or any other SCJVM.

1 Introduction

Java is widely used and there is interest in using it for programming safety-
critical real-time systems. This has led to the creation of a variant of Java called
Safety-Critical Java (SCJ) [16]. It is being developed by the Open Group under
the Java Community Process as Java Specification Request 302. SCJ replaces
Java’s garbage collector with a system of scoped memory areas to allow deter-
mination of when objects are deallocated. It also introduces preemptive priority
scheduling of event handlers to ensure predictable scheduling.

Due to these new mechanisms, SCJ requires a specialised virtual machine,
although, since the syntax of Java is not modified, a standard Java compiler
can be used to generate bytecode. There exist some SCJ virtual machines
(SCJVMs) [1,22,27]; they all allow for code to be compiled ahead-of-time to
a native language, usually C, since SCJ targets embedded systems with low
resources. As far as we know, the icecap HVM [27] is the only publicly-available
SCJVM that is up-to-date with the SCJ specification; it outputs production-
quality code.

Neither icecap nor any of the other SCJVMs has been formally verified. In [3],
we present a formal account of the services of an SCJVM. Here, we focus on the
execution of Java bytecode and its compilation to native C code. We formalise
the requirements for an SCJVM bytecode interpreter and a compilation strategy,
using the algebraic approach [25] to verify compilation from bytecode to C, with
icecap as a source of requirements for our specification. We use C as our target,
following the scheme used by icecap that aims for portable native code that can

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 161–176, 2017.
DOI: 10.1007/978-3-319-66845-1 11

162 J. Baxter and A. Cavalcanti

be easily integrated into existing systems. The decision to use bytecode rather
than SCJ itself as our source ensures that we can rely on existing Java compilers
and work ensuring their correctness. Our focus here is not the development of
an SCJVM or compiler, but a technique that can be used to develop and verify
an ahead-of-time compiling SCJVM implementation.

We use algebraic compilation, in which the semantics of the source and target
languages are defined using the same specification language, and a compilation
strategy is a procedure to apply compilation rules: refinement laws that address
the program constructs independently. Implementing the rules using a rewrite
engine can produce a prototype verified compiler. Algebraic compilation has been
studied for imperative [25] and object-oriented languages [9], and for hardware
compilation [21]. Here we use it, for the first time, to compile a low-level language,
Java bytecode, to a high-level language, C. While Java bytecode has some high-
level features, particularly its notion of objects, we view it as low-level since it
is unstructured, with control flow managed using a program counter.

In summary, our main contributions here are

– a formal model of an SCJVM interpreter,
– a set of provably correct compilation rules for transforming this model, and
– a specification of a strategy for applying these rules to transform Java byte-

code in the interpreter to a shallow embedding of C code.

All Circus models are mechanically checked by the CZT infrastructure, and some
domain checks using Z/Eves are available. In doing this we also provide insights
into the application of algebraic compilation to compile low-level source lan-
guages, and SCJ programs in particular, to high-level targets. While there is
existing work on compiling Java to C [23,27,30], none of these works include
verification of such a compilation.

In Sect. 2 we present SCJ and the Circus language that we use for refinement.
Section 3 is an overview of our approach, whose main components are detailed in
the subsequent sections: Section 4 describes our SCJVM model; Sect. 5 discusses
the shallow embedding of C in Circus; and Sect. 6 describes our compilation
strategy. Section 7 discusses some of our design decisions. We conclude in Sect. 8,
where we discuss related and future work.

2 Preliminaries

We present SCJ in Sect. 2.1 and Circus in Sect. 2.2.

2.1 Safety-Critical Java

An SCJ program is structured as a sequence of missions. An instance of a class
implementing an interface called Safelet defines the starting point of an SCJ
program, via an initialisation method, and the definition of a mission sequencer
that determines the sequence of missions of the program.

Algebraic Compilation of Safety-Critical Java Bytecode 163

Each mission consists of a collection of schedulable objects, which include
asynchronous event handlers that can be released aperiodically, in response to a
release request, or periodically, at set intervals of time. Each of these schedulable
objects is executed on a separate thread. These threads continue executing until
the mission is signalled to terminate by one of its own schedulable objects.

Scheduling follows a preemptive priority policy. The threads eligible to run
are placed into queues, with one queue for each priority. The thread at the front of
the highest priority non-empty queue runs. A priority ceiling emulation system,
whereby a thread’s priority is raised when it takes a lock, avoids deadlock when
it is interrupted by a thread of higher priority.

SCJ replaces the Java garbage collector with a system of memory areas.
Different kinds of area are cleared at different times: the immortal memory is
never cleared; the mission memory is cleared between missions; a per-release
memory is local to an event handler and is cleared after each of its releases; and
a private memory can be created and entered as needed.

SCJ uses an API that includes components that provide real-time clocks,
support for raw memory accesses, and a lightweight input/output system. Some
of the classes from the standard Java API are removed or restricted to ensure
the classes required by SCJ are small enough for embedded systems.

2.2 Circus

We formalise the bytecode interpreter and our compilation strategy in Circus [20].
It is a refinement notation that combines the process-based style of CSP [24]
with the data-based style of the Z notation [31]. It also includes programming
constructs from Dijkstra’s guarded command language [8]. Circus is appropriate
for our work because it is a notation for refinement, which is a key part of
the algebraic approach to verifying compilation, and it permits reasoning about
parallelism. It also combines data and reactive behaviour, which enables us to
pass from a bytecode program represented as data in an interpreter to a C
program with the same control flow as the bytecode program.

Circus specifications define processes: basic or composed from other processes
using CSP operators, such as parallel composition, sequence, and internal and
external choice. Each process may have an internal state defined using Z and
communicates with its environment via channels like a CSP process.

To illustrate the structure of a Circus model, we present in Fig. 1 a sketch of
a simplified model for an SCJVM interpreter. Typically, a specification begins
with type and channel declarations. The types are declared as in Z. Channels
carry data of the type specified in their declaration. In our example, there are
declarations for channels getInstruction and getInstructionRet , used to obtain
the instruction for each address, provided externally in this simplified model.

The state of a process is defined by a Z schema; in the case of the Interpreter
process, by the schema InterpreterState. The components of the state initially
have arbitrary values; specific initial values can be defined through Z schemas,
such as InterpreterInit , which specifies that the frameStack component is empty.

164 J. Baxter and A. Cavalcanti

channel getInstruction : ProgramAddress
channel getInstructionRet : Bytecode

...
process Interpreter =̂ begin

InterpreterState
frameStack : seqStackFrame
pc : ProgramAddress
currentClass : Class

frameStack �= ∅ ⇒
currentClass =

(last frameStack).frameClass

state InterpreterState

InterpreterInit

InterpreterState ′

frameStack ′ = ∅

...

Loop =̂
(frameStack �= ∅) HandleInstruction

(frameStack = ∅) StartInterpreter;
Loop

• InterpreterInit ; Loop

end

Fig. 1. A sketch of a simple interpreter process

The Loop action is defined using a CSP guarded choice that offers differ-
ent actions depending on whether frameStack is empty. Loop then repeats via
a sequential composition with a recursive call. The main action of a process
specifies its behaviour at the end, after a spot. The main action of Interpreter
initialises the state using InterpreterInit and then calls Loop.

For a full description of Circus, we refer to [20]. For a substantial example,
we refer to [2], where we present our specification of the SCJVM services.

3 Our Approach to Algebraic Compilation

In the algebraic approach to compilation the source and target language seman-
tics are embedded in the same specification language and compilation is proved
correct by establishing a refinement. A series of compilation rules are applied
according to a strategy to refine a source program into a representation of the
target machine containing the instructions of the target code.

Here, we adapt the approach to deal with a low-level source language. Our
approach can be viewed as the usual approach applied in reverse, starting with
an interpreter containing the bytecode source program, and proving that it is
refined by an embedding of the C code, as shown in Fig. 2. The core services of
an SCJVM must be available for both the source and target codes.

For a low-level language, a deep embedding is the natural method for rep-
resenting its semantics, since it is defined in terms of how it is processed by
a (virtual) machine. For the C code we must choose whether to use a shallow
embedding, representing C constructs by corresponding Circus constructs, or a
deep embedding, creating a Circus model that interprets the C code.

We use a shallow embedding, since it allows existing algebraic laws for Circus
to be used directly for manipulation of the C code and proof of the compilation
rules. A deep embedding would require representing the syntax of C separately
in Circus and rules for transforming the C code would have to be proved.

The shallow embedding approach is much easier to extend or adapt. If a
larger subset of bytecodes needs to be considered or the target C code needs

Algebraic Compilation of Safety-Critical Java Bytecode 165

Specification Language (Circus)Core

Execution

Environment

Bytecode

C Code

SCJVM

Services

SCJVM

Services

�
Refinement

Strategy

(Compilation)

Fig. 2. Our algebraic approach

to be modified, in the worst case, we need more or different Circus compilation
rules. There will be no need to extend the Circus model defining the C semantics.

In the next few sections, we describe Fig. 2 in more detail. A complete formal
account of the components in Fig. 2 can be found in [2].

4 SCJVM and Interpreter Model

Our Circus model of the SCJVM has six components, each defined by a single
Circus process. The first three components are the SCJVM services: the memory
manager, the scheduler and the real-time clock. They support the execution of
an SCJ program by the core execution environment and are unaffected by the
compilation strategy, ensuring the memory management and scheduling models
of SCJ are preserved by the compilation strategy.

The remaining components form the core execution environment (CEE),
which manages the execution of an SCJ program. It is defined by a parallel
composition of three Circus processes as shown below. Note that the parallelism
here represents composition of requirements, not a requirement for a parallel
implementation. In an implementation, such as icecap, these processes would be
different parts of the program, which may be made up of C files or Java classes.

processCEE (bc, cs, sid , initOrder) =̂
ObjMan(cs) ‖ Interpreter(bc, cs) ‖ Launcher(sid , initOrder)

CEE uses global constants that characterise a particular program: bc, record-
ing the bytecode instructions, cs, recording information about the classes in
the program, sid , recording the identifier of the Safelet class, and initOrder ,
a sequence of class identifiers indicating in which order the classes should be
initialised. (For simplicity here, and in what follows, we write ‖ to indicate a
parallel composition, but omit the definition of the synchronisation sets.)

ObjMan manages the cooperation between the SCJ program and the SCJVM
memory manager, including the representation of objects. The SCJVM memory
manager is agnostic as to the structure of objects.

Interpreter and Launcher define the control flow and semantics of the SCJ
program. The interpreter is for a representative subset of Java bytecode that

166 J. Baxter and A. Cavalcanti

covers stack manipulation, arithmetic, local variable manipulation, field manip-
ulation, object creation, method invocation and return, and branching. This
covers the main concepts of Java bytecode. A full list of the instructions can be
found in [2]. We do not include instructions for different types as that would
add duplication to the model while yielding no additional verification power. We
also do not include exception handling as SCJ programs can be statically ver-
ified to prove that exceptions are not thrown [11,17]. Furthermore, reliance on
exceptions to handle errors has been discouraged by an empirical study due to
the potential for errors in exception handling [26]. Errors caused in the SCJVM
by an incorrect input program are represented by abortion.

The Interpreter interacts closely with the Launcher , which defines the flow of
mission execution. The Launcher begins by creating an instance of the Safelet
class and then executes programmer supplied methods using Interpreter .

We describe Interpreter in more detail, since it is a central target of the
compilation. A simplified version of it is sketched in Sect. 2.2. In the full model
the Interpreter is defined as the parallel composition of Thr processes.

process Interpreter(bc, cs) =̂
�
t : TID \ {idle} • Thr(bc, cs, t)

There is one process Thr(bc, cs, t) for each thread identifier t in the set TID , of
thread identifiers, except the identifier of the idle thread. Each Thr process
represents an interpreter for a separate thread, with thread switches coor-
dinated by communication between threads. The state of each Thr process
is defined by the InterpreterState schema in Fig. 1. The control flow of the
main action of Thr is shown in Fig. 3. It consists of state initialisation as
described by InterpreterInit , followed by a choice of two actions, MainThread
and NotStarted , with MainThread representing the control flow for the main
thread, and NotStarted for all other threads. The different behaviours are not
described as separate processes because they are similar.

Init

MainThread Running

Blocked

Blocked

NotStarted Blocked Running

Fig. 3. The overall control flow of Thr

MainThread offers a choice of executing a method in response to a signal
from the Launcher or switching to another thread. When it executes a method,
MainThread creates a new Java stack frame (on frameStack) for the method and
behaves as Running . It repeatedly handles bytecode instructions and polls the

Algebraic Compilation of Safety-Critical Java Bytecode 167

scheduler until frameStack is empty. Polling occurs inbetween bytecode instruc-
tions. (This assumption does not necessarily rule out compiler implementations
that do not preserve atomicity, as discussed in Sect. 7.)

When a mission is initialised, the Launcher communicates with ObjMan to
set up the memory areas for the mission’s schedulable objects, and with the
scheduler to start their associated threads. This causes the scheduler to signal
that the threads are starting. With that, the instances of Thr associated with
the started threads, which behave as the NotStarted action, create a new stack
frame and behave as Blocked , each waiting for a request to switch to its thread.

After all the threads are started, the Launcher signals the scheduler to sus-
pend the main thread, following which the scheduler signals the Interpreter
to switch to a new thread. This causes the Thr process for the main thread to
behave as Blocked and the Thr process for the new thread to behave as Running .

The compilation strategy refines the CEE process. Basically it transforms
the Thr processes, with little change to the other processes. A complete model
of the CEE, including the definition of Thr , can be found in [2].

5 Shallow Embedding of C in Circus

In our approach, compilation generates a C program represented by a Circus
process. The particular definition of this process depends on the Java bytecode
program, as defined by our constants bc and cs, that it implements. So, we
refer to the Circus process as CProgbc,cs , but note that it does not include any
reference to these constants, since this is the process that represents the compiled
program. For all values of bc and cs, CProgbc,cs has the structure defined below.

processCProgbc,cs =̂
�
t : TID \ {idle} • CThrbc,cs(t)

The parallelism of C threads is represented by a Circus parallelism, like the
parallelism of Java threads in the Interpreter . In CProgbc,cs there is a process
CThrbc,cs for each identifier t in the set TID , except for the idle thread identifier.

The CThrbc,cs process has a similar structure to the Thr process presented
in the previous section, except that the Running action is replaced with an
ExecuteMethod action that executes the C function corresponding to a given
method identifier. Within the body of CThrbc,cs , each function of the generated
C code is represented by a Circus action of the same name. The constructs within
the C function are represented using Circus constructs.

The constructs we allow within a C function are conditionals, while loops,
assignment statements, and function calls. These are comparable with those
allowed in MISRA-C [18] and present in the code generated by icecap. These
constructs can be represented by the corresponding constructs in Circus.

As each function in the C code is a Circus action, function calls are rep-
resented as references to those actions. Function arguments in C are passed
by value, although those values may be pointers to other values. Accordingly,
since our SCJVM model represents pointers explicitly, we represent function

168 J. Baxter and A. Cavalcanti

arguments using value parameters of the Circus action. Local variables of the
function are represented using Circus variable blocks.

If a function has a return value, it is represented with a result parameter of
the Circus action, with an assignment to that parameter at the end of the action
representing return statements. It is not necessary to cater for return statements
in the middle of a function as we have control over the structure of the functions.
We follow guidelines for safety-critical uses of C variants, such as MISRA-C [18],
and use a single return statement at the end of a function. A function with
both a return value and arguments has its value parameters (representing the
arguments) followed by the result parameter (representing the return value).

6 Compilation Strategy

Our compilation strategy refines the CEE (bc, cs, sid) process defined in Sect. 4
to obtain a process that includes a representation of C code as described in
Sect. 5. The overall theorem for the strategy is as follows.

Theorem 1 (Compilation Strategy). Given bc, cs, sid and initOrder , there
are processes StructMancs and CProgbc,cs such that,

CEE (bc, cs, sid , initOrder)
� StructMancs ‖ CProgbc,cs ‖ Launcher(sid , initOrder).

StructMancs manages objects represented by C structs that incorporate the
class information from cs, refining the process ObjMan, which handles abstract
objects. StructMancs has Z schemas representing struct types for objects of each
class. These schemas contain the identifier classid of the object’s class, so that
polymorphic method calls can be made by choice over the object’s class. There
are also components for each of the fields of the object.

The schema types for each type of object are combined into a single free
type ObjStruct . StructMancs contains a map from memory addresses managed
by the SCJVM to the ObjStruct type, representing the C structs in memory, and
provides access to the individual values in that map.

CProgbc,cs refines the Interpreter , with the Thr processes refined into the
CThrbc,cs processes described in the previous section. This means that the
threads from SCJ are mapped onto threads in C, since we do not dictate a
particular thread switch mechanism in either the source or target models.

In order to apply the compilation strategy, the bc and cs inputs must con-
form to a few restrictions. The most important of these are the restrictions on
the structure of control flow: each loop must have only a single exit and con-
ditionals must have a single common end point for all branches. Recursion is
also not allowed, directly or indirectly, since method calls cannot be handled
unless control flow constructs and method calls in the called method have been
introduced first. Finally, the program must be a valid program that could run
in the interpreter described in Sect. 4.

Algebraic Compilation of Safety-Critical Java Bytecode 169

The compilation strategy is split into three stages, each with a theorem
describing it, for which the strategy acts as a proof. The proof of Theorem 1
is obtained by an application of the theorems for each stage. All the theorems
and their proofs, with a full description of the stages, can be found in [2].

Each stage of the compilation strategy handles a different part of the state
of the Interpreter : the pc, the frameStack , and objects. They operate over each
of the Thr processes, managed by the SCJVM services.

The first stage introduces the control constructs of the C code. This removes
the use of pc to determine the control flow of the program. The choice over pc
values is replaced with a choice over method identifiers pointing to sequences of
operations representing method bodies.

In the second stage, the information contained on the frameStack , which is
the local variable array and operand stack for each method, is introduced in
the C code. This is done by introducing variables and parameters to represent
each method’s local variables and operand stack slots. A data refinement is then
used to transform each operation over the frameStack to operate on the new
variables. The frameStack is then eliminated from the state.

In the final stage, the class information from cs is used to create a repre-
sentation of C structs. This means that ObjMan, which has a very abstract
representation of objects, is transformed into StructMan. The process for each
thread is then made to access the structs for the objects in a more concrete way
that represents the way struct fields are accessed in C code.

This yields final method actions of a form similar to that of the example
shown below, which is taken from the handleAsyncEvent() method of a simple
SCJ event handler class named InputHandler.

InputHandler HandleAsyncEvent =̂
val var0 • var var1, stack0, stack1 : Word •
stack0 := var0 ; Poll ; getObject !stack0 −→ getObjectRet?struct
−→ stack0 := (castInputHandler struct).input ; . . .

The method is compiled to the action InputHandler HandleAsyncEvent , with
the implicit this parameter represented as a value parameter var0. The local
variable (var1) and stack slots (stack0 and stack1) are represented as Circus
variables. The operations of the C code are composed in sequence, with an
action named Poll that polls for thread switches between each operation. Stack
operations are represented as assignments. For instance, stack0 := var0 arises
from the compilation to load a local variable onto the stack. Access to objects
is performed by communicating with StructMancs to obtain the struct for the
object, casting it to the correct type, and accessing the required value. Above,
we obtain the value of the input field from an InputHandler object. The com-
munication with StructMancs is performed via the getObject channel and the
function castInputHandler is used to map the ObjectStruct returned from the
communication to a type representing an InputHandler object.

We illustrate our approach by giving further details about the first and most
challenging stage of the strategy, elimination of program counter. The theorem

170 J. Baxter and A. Cavalcanti

Algorithm 1. Elimination of Program Counter
1: ExpandBytecode
2: IntroduceSequentialComposition
3: while ¬ AllMethodsSeparated do
4: IntroduceLoopsAndConditionals
5: SeparateCompleteMethods
6: ResolveMethodCalls
7: end while
8: RefineMainActions
9: RemovePCFromState

describing this stage is shown below, where ThrCF is the result of transforming
Thr to eliminate pc as indicated above and detailed in the sequel.

Theorem 2. Thr(bc, cs, t) � ThrCFbc,cs(cs, t)

The strategy for this stage is defined by Algorithm 1. Each of its steps is defined
by its own algorithm, which details how the compilation rules are applied. The
correctness of Algorithm 1 (and the other algorithms in the strategy) relies on
the correctness proofs for the compilation rules, which are Circus laws. The
algorithm forms the basis of a proof for Theorem 2 since it provides a strategy
to apply the rules to refine Thr(bc, cs, t) into ThrCFbc,cs(cs, t). All that then
need be proved is that the algorithm does indeed yield Circus code of the correct
form.

Algorithm 1 begins, on line 1, by expanding the semantics of each bytecode
instruction (using a copy rule). Afterwards, sequential composition is introduced
between bytecode instructions on line 2. Dependencies between methods must be
considered in order to introduce the remaining control constructs, since method
calls are handled by placing the method invocation bytecode in sequence with a
call to a Circus action containing the body of the method being invoked. We say
a method call for which this transformation has been done is resolved. Resolution
is necessary to introduce a reference to the method action representing the C
function for the method at the appropriate place in the control flow, after the
value of pc has been set to the method’s entry point by the invocation instruction.

The action containing the body of the method can only be created after
loops and conditionals have been introduced and the method’s body has been
sequenced together into a single block of instructions. However, loops and con-
ditionals can only be introduced when all the method calls in their bodies have
been resolved (since method calls break up the body of a loop or conditional). For
this reason, we perform loop and conditional introduction and method resolution
iteratively, until all methods have had their control flow constructs introduced
and their bodies copied into separate Circus actions. This occurs in the loop
beginning at line 3 of Algorithm 1.

Within the loop (lines 4 to 6), loops and conditionals are first introduced to
methods that have already had method calls resolved, on line 4. Methods that
are in a form in which their control flow is described using C constructs are then

Algebraic Compilation of Safety-Critical Java Bytecode 171

copied into separate actions, on line 5. Calls to the separated methods are then
resolved, introducing references to the newly created method actions, on line 6.

After all the methods have been copied into separate actions, the MainThread
and NotStarted actions are refined to replace the choice over pc with a choice
over method identifiers, on line 8. Finally, a data refinement is used to eliminate
the pc from the state, on line 9.

In our example, the InputHandler HandleAsyncEvent action is created in
this stage as shown below. The control flow, mainly sequential composition, has
been introduced, but the instructions are in the form of data operations over the
frameStack . A call to the InputStream Read method action can be seen here.
InputHandler HandleAsyncEvent =̂ HandleAloadEPC (0) ; Poll ;

HandleGetfieldEPC (15) ; Poll ; HandleInvokevirtualEPC (33);
Poll ; InputStream Read ; Poll ; HandleAstoreEPC (1) ; · · ·

The algorithms for all stages of the strategy can be found in [2]. For illus-
tration, we describe the IntroduceSequentialComposition procedure, ref-
erenced on line 2 of Algorithm 1. It begins with construction of a control flow
graph for the program, which is then examined for nodes with a single outgoing
edge leading to a node with a single incoming edge. Such nodes represent points
at which simple sequential composition occurs, rather than more complex control
flows such as loops and conditionals that are introduced later in the strategy. At
these nodes, the compilation rule given by Rule 1 is applied.

Rule 1 (Sequence introduction). If i �= j and

{frameStack �= ∅} ; A = {frameStack �= ∅} ; A ; {frameStack �= ∅}

then,

µX •
if frameStack = ∅ −→ Skip
� frameStack �= ∅ −→

if · · ·
� pc = i−→

A ; pc := j
� pc = j −→ B
· · ·
fi ; Poll ; X

fi

�A

µX •
if frameStack = ∅ −→ Skip
� frameStack �= ∅ −→

if · · ·
� pc = i −→

A ; pc := j ; Poll ; B
� pc = j −→ B
· · ·
fi ; Poll ; X

fi

This rule, like many of the compilation rules, acts upon Circus actions of a
generalised form. Where dots (· · ·) are shown on the left hand side the rule, it
indicates that any syntactically valid Circus at that point may match the rule,
but remains unaffected by the rule, as indicated by corresponding dots on the
right hand side of the rule. The left hand side of this rule is in the form of the
Running action, with a loop that continues until frameStack is empty and a

172 J. Baxter and A. Cavalcanti

choice over the value of pc to select the instruction to execute. The rule unrolls
the loop, sequencing the instructions at pc = i with the instructions executed
after them at pc = j . An occurrence of Poll is placed inbetween to permit
thread switches. The preconditions for the application of this rule are that i and
j not be the same (since that would be a loop), and that the instructions at
pc = i preserve the nonemptiness of the frameStack (to fulfil the loop condition
of Running).

We note that the pc assignment that causes the sequential composition
remains in the code after the application of this rule. It is removed in the data
refinement on line 9 of Algorithm 1, since removing it as part of the rule would
complicate the preconditions.

The other compilation rules have a similar form to Rule 1 but introduce other
constructs such as loops, conditionals, and method calls. An account of all the
laws used in the strategy can be found in [2].

7 Discussion

Our work is the first on verified compilation from Java bytecode to C. Our results
may be of value in the compilation of standard Java programs, but they are spe-
cific to SCJ. Although SCJ uses the same bytecode instructions as standard
Java, SCJ does not have dynamic class loading, which substantially changes
the semantics of the bytecode instructions. The class initialisers must also be
executed at the start of the program and the program execution must be coordi-
nated according to the SCJ mission paradigm, both performed by the Launcher
in our model. Finally, the instructions must rely on the SCJVM services, so,
for example, the new instruction must communicate with the SCJVM memory
manager to ensure SCJ’s memory model is followed.

We have also considered the introduction of control flow constructs to the
compiled C code. This differs from previous work, which translates branch
instructions in the bytecode using goto statements in the C code. Avoiding
the use of goto statements permits more optimisation by the C compiler, makes
the control flow of the code more readable, and brings the code in line with the
restrictions of MISRA C. This has been one of the most challenging parts of our
work, since we require a strategy for identifying the control flow constructs of
the Java bytecode. In our strategy, we handle branches in the Java bytecode by
analysing the structure of the control flow graph for each method. Unconditional
jumps are handled in the same way as sequential composition, while conditional
branches are handled by introducing C conditionals. Where the jump introduces
a loop, we instead introduce looping constructs corresponding to C while loops.

We have also had to consider the difficulties raised by the features of Java
when compiling bytecode. Chief among these is the issue of how inheritance
and dynamic dispatch are handled. The class where a method is defined must
be identified when it is invoked, since a method’s bytecode instructions require
constant pool information about the class in order to be executed correctly. Since
SCJ requires that all classes be available before program execution, the possible

Algebraic Compilation of Safety-Critical Java Bytecode 173

classes for a particular method call can be determined statically. When there is
a unique class (as will always be the case for invokestatic and invokespecial
instructions), we can replace the method call with a reference to the correct
method in the ResolveMethodCalls algorithm (line 6 of Algorithm 1). If
there is no unique class then we must determine the set of all possible classes
where it can be defined. In ResolveMethodCalls, we compute this set and
replace the method call with a choice over the class identifier of the object, the
branches of the choice corresponding to the possible methods.

In our strategy we do not handle recursion. This is not a strong restriction,
since it is in line with the constraints imposed by MISRA C. Detecting recursion
in object-oriented programs is complicated by dynamic dispatch, since mutual
recursion may or may not arise depending on dynamic dispatch. However, the
fact that SCJ does not allow dynamic class loading means that all the classes
are available during compilation, which means dynamic dispatch is constrained
by the classes available, making detection of potential recursion feasible.

SCJ also presents several issues of its own in terms of memory management
and scheduling. These are handled by the SCJVM services part of our model
However, there are many places where a program must interact directly with
the SCJ infrastructure, such as entering memory areas or registering an event
handler with its mission. To handle such interactions correctly we handle the
calls to methods that cause these interactions in a special way, allowing them to
interact with the Launcher and the SCJVM services.

In ResolveMethodCalls, we replace the calls to these special methods by
communications with other components of the SCJVM. Since the Launcher and
the SCJVM services remain unchanged throughout the strategy, these commu-
nications become calls to C functions in the SCJVM infrastructure. A similar
system could be applied to handle native method calls, though we view that as
future work since it is not a central part of the considerations for an SCJVM.
Native methods would be represented via a shallow embedding in Circus, in
the same way as the output of the compilation, but would be present before
compilation with special handling given to calls to them in the interpreter.

The real-time requirements on SCJ scheduling also impose predictability, so
that the bytecode instructions processed by the interpreter must appear to be
atomic. This is specified in our model by only permitting thread switches inbe-
tween bytecode instructions. This atomicity requirement is preserved throughout
our strategy, and the behaviour of polling for thread switches remains inbetween
the C code corresponding to each bytecode instruction.

However, an implementation is only required to have the same sequence
of externally visible events as our C code model. This means that the thread
switches will appear the same in a non-atomic implementation for most byte-
code instructions. The bytecode instructions which have effects visible outside
the Interpreter , which are the new instruction, the field access instructions, and
instructions that invoke the special methods mentioned above, interact with
shared memory and so do have an atomicity requirement. We can only verify
an implementation that ensures such operations are not interrupted, usually by
employing synchronisation. This is, of course, the case for icecap.

174 J. Baxter and A. Cavalcanti

Our work can be used to verify an SCJVM that uses ahead-of-time compiling,
or as a specification to create such an implementation. Since the compiled C code
only uses core features of C and is compatible with MISRA C, it can be compiled
by most C compilers. So, existing work on verification of C compilers, such as
that of CompCert [13,14], can be used to ensure correct execution of the SCJ
program. Since SCJ does not modify the syntax of Java, existing Java compilers
can be used to produce the bytecode handled by the strategy.

8 Conclusions

We have described our approach to algebraic compilation of SCJ bytecode. Com-
piler verification can be complex and, for some languages, compiler updates are
common. So, it can be easier to verify properties of the compiler output. In the
case of an SCJ compiler, however, SCJ is a controlled language and the core of
Java bytecode it uses is fairly stable, as is the only fully compliant SCJVM. In
addition, the algebraic approach allows for a modular compilation strategy com-
posed of individual compilation rules. Thus, extending or handling any changes
to SCJ would require only changing or adding some compilation rules. The parts
of the strategy not directly involved with any changes may be left unchanged.

This compilation strategy is the final component needed to create SCJ pro-
grams with assurance of correct execution. Other work that contributes to this
goal produces correct SCJ programs from Circus specifications [5,6], and verifies
Java [9,12,15,28,29] and C [4,13,14] compilers. Together, these can ensure a
complete chain of verification from SCJ programs to executable code.

The mapping from bytecode to C code used in icecap can be used as a
basis for the construction of other compilers. A sound implementation can also
be obtained by a mechanisation of the strategy via tactics of refinement in a
rewriting engine such as Isabelle [19] or Maude [7].

The next stage of our work will be the formalisation and mechanisation of
correctness proofs for our strategy. The strategy must also be evaluated by apply-
ing it to some examples of SCJ programs to ensure it can handle a wide range
of SCJ programs. Further work in the future could include the extension of the
strategy to cover more Java bytecode instructions or additional transformations
such as code optimisations. Our work will eventually allow the formal verification
of a complete SCJVM implementation, an effort that has started in [10].

Acknowledgements. The authors gratefully acknowledge useful feedback from
Augusto Sampaio on the application of the algebraic approach. We also thank Andy
Wellings for his advice on SCJ and Leo Freitas for his help with the use of Z/EVES
and understanding of icecap. This work is supported by EPSRC studentship 1511661
and EPSRC grant EP/H017461/1.

Algebraic Compilation of Safety-Critical Java Bytecode 175

References

1. Armbruster, A., Baker, J., Cunei, A., et al.: A real-time Java virtual machine with
applications in avionics. ACM Trans. Embed. Comput. Syst. 7(1), 5:1–5:49 (2007)

2. Baxter, J.: An Approach to verification of Safety-Critical Java Virtual Machines
with Ahead-of-time compilation. Technical report, University of York (2017).
www-users.cs.york.ac.uk/˜jeb531/2017report.pdf

3. Baxter, J., Cavalcanti, A., Wellings, A., Freitas, L.: Safety-critical Java virtual
machine services. In: JTRES 2015, pp. 7:1–7:10. ACM (2015)

4. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006). doi:10.1007/11813040_31

5. Cavalcanti, A., Wellings, A., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical Java
in circus. In: JTRES 2011, pp. 20–29. ACM (2011)

6. Cavalcanti, A., Zeyda, F., Wellings, A., Woodcock, J., Wei, K.: Safety-critical Java
programs from Circus models. Real-Time Syst. 49(5), 614–667 (2013)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theoret. Comput.
Sci. 285(2), 187–243 (2002)

8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

9. Duran, A.: An Algebraic Approach to the Design of Compilers for Object-Oriented
Languages. Ph.D. thesis, Universidade Federal de Pernambuco (2005)

10. Freitas, L., Baxter, J., Cavalcanti, A., Wellings, A.: Modelling and verifying a
priority scheduler for an SCJ runtime environment. In: Ábrahám, E., Huisman, M.
(eds.) IFM 2016. LNCS, vol. 9681, pp. 63–78. Springer, Cham (2016). doi:10.1007/
978-3-319-33693-0_5

11. Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive testing of safety
critical java. In: JTRES 2010, pp. 164–174. ACM (2010)

12. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

13. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

14. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

15. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11957-6_23

16. Locke, D., et al.: Safety-Critical Java Technology Specification. https://jcp.org/
aboutJava/communityprocess/edr/jsr302/index2.html

17. Marriott, C.: Checking Memory Safety of Level 1 Safety-Critical Java Programs
using Static-Analysis without Annotations. Ph.D. thesis, University of York (2014)

18. Motor Industry Software Reliability Association Guidelines: Guidelines for Use of
the C Language in Critical Systems (2012)

19. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

20. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for circus. Formal
Aspects Comput. 21(1–2), 3–32 (2009)

21. Perna, J.: A verified compiler for Handel-C. Ph.D. thesis, University of York (2010)

http://www-users.cs.york.ac.uk/~{}jeb531/2017report.pdf
http://dx.doi.org/10.1007/11813040_31
http://dx.doi.org/10.1007/978-3-319-33693-0_5
http://dx.doi.org/10.1007/978-3-319-33693-0_5
http://dx.doi.org/10.1007/978-3-642-11957-6_23
http://dx.doi.org/10.1007/978-3-642-11957-6_23
https://jcp.org/aboutJava/communityprocess/edr/jsr302/index2.html
https://jcp.org/aboutJava/communityprocess/edr/jsr302/index2.html

176 J. Baxter and A. Cavalcanti

22. Pizlo, F., Ziarek, L., Vitek, J.: Real time Java on resource-constrained platforms
with Fiji VM. In: JTRES 2009, pp. 110–119. ACM (2009)

23. Proebsting, T.A., Townsend, G., Bridges, P., et al.: Toba: Java for applications
a way ahead of time (wat) compiler. In: Proceedings of the 3rd Conference on
Object-Oriented Technologies and Systems (1997)

24. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2011)

25. Sampaio, A.: An Algebraic Approach to Compiler Design. World Scientific,
Singapore (1997)

26. Sawadpong, P., Allen, E.B., Williams, B.J.: Exception handling defects: an empir-
ical study. In: HASE 2012, pp. 90–97. IEEE (2012)

27. Søndergaard, H., Korsholm, S.E., Ravn, A.P.: Safety-critical Java for low-end
embedded platforms. In: JTRES 2012, pp. 44–53. ACM (2012)

28. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine. Springer,
Berlin (2001)

29. Strecker, M.: Formal verification of a Java compiler in isabelle. In: Voronkov, A.
(ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 63–77. Springer, Heidelberg (2002).
doi:10.1007/3-540-45620-1_5

30. Varma, A., Bhattacharyya, S.S.: Java-through-C compilation: an enabling technol-
ogy for Java in embedded systems. In: Proceedings of the Conference on Design,
Automation and Test in Europe, vol. 3, p. 30161. IEEE Computer Society (2004)

31. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall Inc., Upper Saddle River (1996)

http://dx.doi.org/10.1007/3-540-45620-1_5

Task-Node Mapping in an Arbitrary Computer
Network Using SMT Solver

Andrii Kovalov(B), Elisabeth Lobe, Andreas Gerndt, and Daniel Lüdtke

German Aerospace Center (DLR), Simulation and Software Technology,
Cologne, Germany

{andrii.kovalov,elisabeth.lobe,andreas.gerndt,daniel.luedtke}@dlr.de

Abstract. The problem of mapping (assigning) application tasks to
processing nodes in a distributed computer system for spacecraft is
investigated in this paper. The network architecture is developed in the
project ‘Scalable On-Board Computing for Space Avionics’ (ScOSA) at
the German Aerospace Center (DLR). In ScOSA system the process-
ing nodes are connected to a network with an arbitrary topology. The
applications are structured as directed graphs of periodic and aperiodic
tasks that exchange messages. In this paper a formal definition of the
mapping problem is given. We demonstrate several ways to formulate it
as a satisfiability modulo theories (SMT) problem and then use Z3, a
state-of-the-art SMT solver, to produce the mapping. The approach is
evaluated on a mapping problem for an optical navigation application as
well as on a set of randomly generated task graphs.

1 Introduction

In this paper we investigate the generation of optimal task-node mappings for a
distributed system structured as a collection of communicating tasks which run
on a computer network with an arbitrary topology. Our work is motivated by
the existing project ‘Scalable On-Board Computing for Space Avionics’ (ScOSA)
at the German Aerospace Center (DLR), however the proposed approach is
not specific to this project and can be used for task-node mapping in various
contexts.

1.1 ScOSA System Overview

The conventional way to design on-board computers for spacecraft is to have
independent dedicated computers for various subsystems (payload, communi-
cation, attitude control, etc.) including the redundant counterparts for fault-
tolerance. This conventional approach does not scale well under the increasing
demands on the on-board data processing capabilities.

The project ScOSA at DLR aims at developing a scalable on-board computer
system [15]. Most importantly, in a ScOSA system all computers are connected
to a network that provides the computing power to all the on-board applications.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 177–191, 2017.
DOI: 10.1007/978-3-319-66845-1 12

178 A. Kovalov et al.

Fig. 1. Example task graph (left) and network (right)

The applications for ScOSA are organized as directed graphs of tasks that
send messages. An example of a task graph and a network structure is shown in
Fig. 1.

In this example the first tasks (A and B) run periodically with certain peri-
ods. When they are finished, they send messages to the next tasks, which are
triggered by these incoming messages, and so on. The tasks start either when
they receive all messages that are not optional, or when they receive a final
message, which triggers a task to start immediately. Every task is assigned to
a particular processing node in the network. The messages can either be passed
locally or sent over the network if the destination task is located on another
node.

One of the important concepts in ScOSA is reconfiguration. There are special
nodes (‘Master’ and ‘Observers’) that constantly monitor the state of the other
nodes. If a failure is detected, a reconfiguration command is broadcast to the
network, and the tasks are reassigned to the healthy nodes.

It was decided that ScOSA does not employ adaptive reconfiguration at run-
time [15]. Instead, in order to achieve a higher degree of deterministic behav-
ior, all possible configurations with their respective activation events have to
be determined before launch of the spacecraft or during updates uploaded by
ground control. In case of a failure, ground control needs to be able to understand
and reproduce the behavior of the system, including the conducted reconfigura-
tions, in order to resume normal operation of the spacecraft. As there could be
many combinations of consecutive node failures, there is a need to automatically
generate a large number of task-node mappings.

1.2 Mapping and Subsequent Model Checking

Our goal is to have a two-stage process shown in Fig. 2 where we first generate
a mapping and then verify that this mapping cannot lead the system into an
undesirable state. In this paper we only discuss the mapping problem; model
checking will be the next step in our work.

Our approach is to formulate the mapping problem as a satisfiability mod-
ulo theories (SMT) problem, and then use a state-of-the-art optimizing SMT
solver to solve it. We chose this approach instead of using heuristics (such as
greedy algorithms) because of two reasons. First of all, it guarantees the optimal
solution, and for our purposes we would prefer the best solution to a fast but
suboptimal one. Secondly, we can later introduce some bounded model checking

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 179

into the SMT-based mapping, for example to check that the first few runs of the
task graph do not block the network. In the subsequent model checking step,
we are planning to analyze more complex properties on a more detailed system
model.

Fig. 2. Our proposed approach to generate and verify the mapping (in this paper only
the mapping generation is discussed, model checking is future work).

The rest of the paper is structured as follows. Section 2 gives an overview of
the existing work in task-node mapping, especially with the use of SMT solvers.
In Sect. 3 we give a formal definition of our task-node mapping problem, which
we then formulate as an SMT problem in Sect. 4. The approach is evaluated in
Sects. 5 and 6 concludes the paper.

2 Related Work

The problem of mapping application tasks to hardware processing nodes is an
important practical problem and has been studied for decades. Several formula-
tions of it have been shown to be NP-complete [1,10], so it is usually solved by
applying heuristics. A good overview of mapping algorithms is given in [9]. One
of the widely used heuristics is a greedy heuristic. Lee and Aggarwal [11] show
an approach where the initial mapping is produced with a greedy algorithm,
and then improved with a series of pairwise exchanges. Other greedy algorithms
are shown in [5,8]. The latter presents a hierarchical algorithm which treats the
hardware as a tree and for each level of this tree divides the tasks into groups
according to the communication patterns among them. Another algorithm [6]
partitions the hardware graph based on the coordinates of the hardware nodes,
which is practical for multiprocessor systems that have a grid or torus topology.

Genetic algorithms can also be used to search for an optimal mapping. In
[12] a two-step genetic algorithm is shown that first maps the tasks to a set
of node types using an average communication time, and then maps the tasks
to the specific nodes considering the actual communication time between them.
Another genetic algorithm [20] solves a slightly different problem, where not all
the tasks are mapped to the nodes, but the ones that give the most value to the
system.

180 A. Kovalov et al.

The task-node mapping problem can also be addressed with the exhaustive
search tools such as integer linear programming (ILP) or satisfiability modulo
theories (SMT) solvers. In [1,17] an ILP-based approach is shown where the
task-node mapping problem is first formulated as an integer linear program and
then relaxed to a linear program (LP) which can be solved in polynomial time.
The solution to the LP problem maps a subset of tasks to the nodes, and the
exhaustive enumeration is used to map the remaining tasks (which is exponential
in the number of nodes). Another work [21] uses an ILP approach to solve the
problem of mapping and scheduling together, focusing on the network contention
(competition of different messages for a physical link).

There are some SMT-based approaches to the task mapping problem [18,19].
In [19] the use of symmetries is explored to reduce search space. In [18] the
problem is divided into the master problem of producing a mapping, and sub-
problems for scheduling. In order to explore the whole search space and find the
optimal solution, the previously found solutions are learned and excluded. An
improvement of this approach in [13,14] integrates the analysis of the current
partial mapping into the SAT solving process itself.

A somewhat similar approach is described in [2] where first, the mapping
problem is solved with answer set programming, then the solution is refined for
better schedulability (e.g. load balancing), and then the schedule is produced
with an SMT solver.

A slightly different application model is taken in [4] where tasks are not
strictly mapped to nodes, but can be executed on different nodes according to
an SMT-generated schedule.

3 Formal Definition of the Problem

This section gives the formal definition of the task-node mapping problem.

3.1 Period Estimation for Event-Triggered Tasks

For our formal definition we treat all the tasks as periodic. However, a ScOSA
application can consist of both periodic and aperiodic tasks, therefore we first
need to estimate the periods of the event-triggered tasks. The periods of the
time-triggered tasks are known. Then, if a task runs with period p, it sends an
output message with period p. We assume the receiving task gets this message
with period p and therefore runs with the same period.

If a task waits for multiple messages, it only can start when all the necessary
messages have arrived. In this case its period is defined by the longest period of all
the incoming messages. With this simple approach we can propagate the period
information to all the tasks as illustrated in Fig. 3. This period propagation only
works for task graphs that are either acyclic or all the backward messages are
optional and do not affect the task periods. In real applications the task graphs
can contain cycles, and the period estimation becomes more complex, especially
with the use of final messages. Then, the task periods can be measured directly

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 181

Fig. 3. Estimated periods of all the tasks in a task graph

on the actual running system or in a simulation, but this is out of scope of this
paper.

3.2 Formulation of the Mapping Problem

Our formal definition of the problem is close to the one given in [10], but we
also consider task utilization. The task graph is a directed graph (not necessarily
connected) TG = (T,ET), where T is a set of tasks, and ET ⊆ T × T is a set of
edges representing message passing between the tasks.

Every task t has its worst case execution time wcett, its period pt and the
size of its output message mt:

∀t ∈ T : wcett > 0, pt > 0,mt ≥ 0.

The utilization of the task t is then defined as u(t) = wcett/pt. Utilization of
the task is the fraction of its period when it is executing (the worst case time is
chosen because we are targeting real-time systems).

Every task t that has outgoing edges in the task graph produces messages of
size mt greater than zero. We can say that all the other tasks (without outgoing
edges) produce messages of zero size:

∀t ∈ T :

{
mt > 0, ∃t′ ∈ T : (t, t′) ∈ ET

mt = 0, otherwise.

The traffic tt between two tasks t and t′ is then defined as

tt(t, t′) =

{
0, (t, t′) �∈ ET

mt/pt, otherwise

and shows how much data task t is sending to task t′ per time unit.
The communication network is represented as a graph HN = (N,E) where

N is a set of nodes and E ⊆ {{n1, n2} : n1, n2 ∈ N,n1 �= n2} is a set of network
links. Every edge e ∈ E has a bandwidth be > 0 which defines how much data
this link can transfer in one time unit. In reality the actual bandwidth of a link
depends on the number and size of the messages that are transferred via that
link. For few large messages, a link usually shows higher bandwidth than for
many small messages due to the overhead from packet headers.

182 A. Kovalov et al.

Not all tasks can be executed on all nodes. For every task there is a subset
of nodes that can execute it. We define this with a function of available nodes
an : T → 2N . For a task t, an(t) ⊆ N is a set of nodes that can execute t.

Next we consider routing. Every router in the network has a routing table
that specifies the output ports for all possible destination nodes. For example,
the network in Fig. 1 has no link between Node 2 and Node 3. One way to route
messages from 2 to 3 would be via Node 4. In this case the routing table of the
router in Node 2 would contain an entry saying that all messages for Node 3
should be sent to Node 4. We assume that the routing is consistent and is given
as input. Formally, routing is defined as R ∈ {0, 1}(N×N)×E , with

Rn,n′,e =

{
1, if the data sent from node n to node n′ passes edge e

0, otherwise.

If a message is sent from node n to node n′ that have a direct link between them,
then Rn,n′,e = 1 if and only if e = {n, n′}.

Our aim is to find a mapping function m : T → N , where for a task t,
m(t) ∈ an(t) is a node on which the task is running.

We consider two additional constraints on this mapping function: on the
network bandwidth and on the node load. Mappings should be avoided where
the amount of traffic transferred on a link exceeds its bandwidth. Mappings
where too many tasks are mapped to a single node should also be excluded.

For the bandwidth constraint we first define traffic between two nodes n and
n′ as

nn(n, n′) =
∑

t,t′∈T
m(t)=n
m(t′)=n′

tt(t, t′).

The amount of traffic that passes through an edge e is

traffic(e) =
∑

n,n′∈N

Rn,n′,e · nn(n, n′).

The constraint on the edge bandwidth is then written as

∀e ∈ E : traffic(e) ≤ be.

The load on a node n is defined as

load(n) =
∑
t∈T

m(t)=n

u(t).

The constraint on the node load is then formulated as

∀n ∈ N : load(n) ≤ L

where L is the node load limit, which is some constant less than 1. This constant
should allow for context switching and other overhead on the node that is not

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 183

directly related to task execution. The constraint on node load might be more
restrictive depending on the actual scheduling policy on the node (particularly,
on preemption), but in our model we assume that if the mapping satisfies this
constraint, the tasks are schedulable on the node.

In order to have a quality measure for a mapping, we use two objectives.
The first objective is to minimize the total amount of traffic in the network
totalTraffic with

totalTraffic =
∑
e∈E

traffic(e).

The second objective is to minimize the maximal load among all the nodes
maxLoad with

maxLoad = max
n∈N

(load(n)).

This objective aims to distribute the load evenly across all nodes.
There are of course other possible objectives for the mapping generation. For

example, the fastest execution of the whole task graph. This would make the
system respond to the external changes quicker. We could also have application-
specific objectives, such as dedicate more resources for critical tasks.

4 SMT Formulation

To produce an optimal mapping with respect to the chosen objective, we use a
state-of-the-art SMT solver Z3 [16], which has built-in optimization functionality
[3]. This means the solver produces not just any satisfying assignment but an
assignment that maximizes or minimizes a given objective function.

In this section we show how we formulated the problem of finding a task-
node mapping as an SMT problem. In some cases we developed alternative ways
of modeling particular aspects of the problem. We compare the performance of
alternative approaches in Sect. 5.

4.1 Task-Node Mapping Variables

First of all, we need to create variables that define the mapping of tasks to
nodes, which will be assigned as a solution to the mapping problem. We tried
two alternative approaches - using boolean variables and integer variables.

Boolean Mapping Variables. With this approach we create |T |×|N | boolean
variables TN tn, where if this variable is true then task t is mapped to node n
and false otherwise.

In order to make sure that a task is mapped to exactly one node, we include
the following assertion for every t ∈ T :

∨
n∈N

⎛
⎝TN tn ∧

∧
n′∈N\{n}

¬TN tn′

⎞
⎠ .

184 A. Kovalov et al.

Additionally, we need to constrain the available nodes for every task t with
the following assertion: ∨

n∈an(t)

TN tn.

Integer Mapping Variables. Another approach is to create one integer vari-
able TN t for every task t that is equal to index i of the mapped node m(t). For
every TN t the constraints are defined with following assertions:

(TN t ≥ 1) ∧ (TN t ≤ |N |),∨
ni∈an(t)

(TN t = i).

In the rest of the section, we will use boolean mapping variables. The corre-
sponding expressions for integer mapping variables are easy to formulate.

4.2 Link Bandwidth Constraints

To formulate the link bandwidth constraints, we first convert the task-task traffic
into node-node traffic. The amount of traffic between the tasks is known and
given as input, but the actual traffic at the links depends on the mapping.

|N | × |N | variables NNtrafficnn′ represent the amount of traffic from node n
to node n′:

NNtrafficnn′ =

{
0, n = n′∑

t∈T

∑
t′∈T ite(TN tn ∧ TN t′n′ , tt(t, t′), 0), n �= n′,

where TN tn is a boolean mapping variable, tt(t, t′) is the amount of traffic from
task t to task t′, and ite() is an ‘if-then-else’ function, which returns the second
or the third argument depending on whether the first argument is true or false.

The link traffic for every link e ∈ E is represented with variable Ltraffice,
which is the sum of all node-node traffic amounts, where the route between the
nodes passes e. This amount should not exceed the bandwidth of the link:

Ltraffice =
∑

(n,n′)∈N×N
Rn,n′,e=1

NNtrafficnn′ ,

Ltraffice ≤ be.

As mentioned, the real bandwidth decreases with the increase of the number
of messages that are passed via the link. For applications with many small mes-
sages, this can be modeled by counting the number of messages contributing to
the link traffic, and then decreasing the bound depending on this number.

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 185

4.3 Node Load Constraints

We represent the load on the nodes with |N | variables NodeLoadn that are
defined for every node n as follows:

NodeLoadn =
∑
t∈T

ite(TN tn, u(t), 0),

NodeLoadn ≤ L,

where L is a constant defining the limit on the node load. It is also possible
to assign individual load limits to different nodes to model nodes with different
performance.

4.4 Objective Functions

The two objectives that we consider are the minimization of the total network
traffic and the minimization of the highest node load (load balancing). The first
objective function can be formulated as follows∑

e∈E

Ltraffice.

For the second objective we need to minimize the highest node load among all
the nodes. We first define the function max(x, y), and then use it to get the
highest load among all nodes

max(x, y) = ite(x > y, x, y)

The highest node load is defined as follows and can then be minimized

maxNodeLoad
= max(NodeLoad1,max(NodeLoad2, . . .max(NodeLoadm−1,NodeLoadm) . . .))

4.5 Variable Types

Another practical question of SMT formulation is what type of variables to use
for numerical values, as Z3 supports both real and integer variables. In our model
we have numeric values for traffic amounts and task utilization values. Our first
approach is to encode everything with real variables with their actual values.

Another approach would be to round all the values and encode them as
integers. However, for the task utilization it is not practical because the values
are between 0 and 1. Instead of just rounding, we multiply the real values by a
factor such as 100 or 1000, and then round them. Depending on the factor, we
might lose precision and, presumably, the performance might be different. We
evaluate both approaches, and discuss the results in the following section.

186 A. Kovalov et al.

5 Evaluation

In this section we compare the task-node mapping performance with different
variations of the SMT formulation, show the application of our mapping app-
roach to an existing optical navigation system, and estimate the scalability of
the approach. All the described experiments were performed with an off-the-shelf
laptop with 16 GB RAM and a quad-core 2.6 GHz processor using Z3 version
4.5.0 on generated SMT-LIB files (without explicitly specified logic).

5.1 Performance Comparison of Different SMT Formulations

In order to understand how the runtime of Z3 depends on the SMT formulation,
we took several random task graphs and solved them with all the SMT formu-
lations discussed in the previous section for both our objective functions using
the four-node network from Fig. 1. We took three task graphs with 10 tasks and
three task graphs with 15 tasks, all of which were satisfiable. In each of these
two groups there was one instance with a low load on the network (total task
utilization of around 25% of the maximum load; total traffic in the task graph
around 25% of the total bandwidth summed over all links), one with medium
load (task utilization and total traffic of around 50%), and one with high load
(task utilization and total traffic of around 75%). The running times are shown
in Table 1. The rows show different SMT formulations, and the columns show
different mapping problem instances. The SMT formulations differ in the type
of mapping variables (see Subsect. 4.1) and the type of numerical variables (see
Sect. 4.5).

Table 1. Mapping time in seconds of different SMT encodings for instances with
different numbers of tasks (10 tasks and 15 tasks) and different loads on the network
(L - low load, M - medium load, H - high load, around 25, 50, 75 % of maximum load
respectively). # - incorrect mapping, * - suboptimal mapping.

Mapping

variables

Numeric

variables

Traffic minimization Node load minimization

10 tasks 15 tasks 10 tasks 15 tasks

L M H L M H L M H L M H

Boolean Int(*100) 0.1 2.6 0.7 (#)0.2 (#)0.5 0.9 (*) 6.8 2.8 2.9 2.9 10.2 (*) 17.1

Int(*1000) 0.2 1.4 0.7 0.3 3.5 1.2 10.7 4.8 3.4 17.8 25.3 91.5

Int(*10000) 0.2 0.3 1.0 0.5 23.6 1.4 10.9 4.5 4.4 38.8 67.9 109.9

Real 1.0 0.3 1.6 0.5 29.6 1.9 12.8 7.3 5.3 39.5 92.0 200.5

Integer Int(*100) 0.2 1.1 0.8 (#)1.2 (#)2.1 1.1 (*) 7.2 3.5 3.7 3.6 11.3 (*) 25.4

Int(*1000) 0.9 1.4 1.0 1.9 11.2 1.6 12.4 5.2 4.6 21.6 35.7 (*)156.9

Int(*10000) 1.1 0.3 1.3 2.4 10.2 2.0 15.7 5.1 5.4 50.1 110.4 224.5

Real 0.2 0.3 1.8 2.6 21.1 2.4 18.8 8.8 7.0 58.7 116.8 367.7

We can draw several rather straightforward conclusions from the measure-
ments in Table 1. First of all, it is better to use boolean variables rather than

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 187

integer variables to represent the mapping itself. For almost all cases the map-
ping with boolean mapping variables ran faster than with integers.

Secondly, the mapping runs faster if the numerical values are modeled as
integers rather than reals, and the runtime depends on the precision of the integer
representation. For example, if real values are multiplied by 100 and rounded, the
mapping runs quicker, however due to rounding errors the produced mapping
might be incorrect (violating initial constraints) or not optimal. As shown in
Table 1, this was observed in several cases for multiplication by 100 and once for
multiplication by 1000.

Thirdly, the level of load on the network created by the task graph does not
seem to be a critical factor influencing the mapping time. For the load balancing
objective, among the instances with 15 tasks, the hardest one seems to be the
instance with high load, whereas for instances of size 10, the low-load instance
took the most time to solve. Moreover, for the traffic minimization objective,
the mid-load instance appears to be the hardest among the instances of size 15.

The mapping for the traffic minimization objective is significantly faster than
for the load balancing objective, on average about 30 times faster. This is prob-
ably caused by the way the load balancing objective was specified. The nested
max() function results in many if-then-else statements, whereas the traffic objec-
tive is a simple sum.

5.2 Task-Node Mapping for the ATON Application

We evaluated our task-node mapping approach with the existing application
‘Autonomous Terrain-based Optical Navigation’ (ATON) [7], which is expected
to run on the ScOSA platform in the future. ATON is a navigation system,
currently developed at DLR. It is designed to provide a navigation solution
for a precise landing on the Moon or other celestial bodies. It consists of the
following sensors: an inertial measurement unit (IMU), two cameras, a laser
altimeter and an (emulated) star tracker. The system was recently tested on an
unmanned aerial vehicle (UAV) in a closed-loop scenario. The ATON software
consists of several modules for absolute (crater navigation) and relative (feature
tracking) navigation. The navigation filter combines the results of the sensors
and software modules and provides a position, velocity and attitude estimation.
The task graph for this application is shown in Fig. 4. We estimated the periods
for non-sensor tasks using the approach described in Subsect. 3.1.

The majority of the data is sent from Camera tasks to Undistortion tasks
(camera images with high frequency), and from Undistortion to Crater navi-
gation (undistorted images with lower frequency). The Crater navigation tasks
receive more inputs than they are able to process. In practice, this means that
when a Crater navigation task finishes, it starts processing the latest received
image immediately, thus creating a full load on a node. To model this, we trig-
ger the Crater navigation tasks on every fourth incoming message because the
execution time of Crater navigation is slightly less than the time of arrival of
four incoming messages.

188 A. Kovalov et al.

Fig. 4. Autonomous Terrain-based Optical Navigation (ATON) application task graph.
Dashed lines show optional messages that are not required to start a task.

The mapping for the ATON task graph and our four-node example network
from Fig. 1 is shown in Fig. 5. We calculated mappings for the two objectives
discussed above: traffic minimization and load balancing. They took 0.4 and
1.8 s respectively. The load balancing is not an appropriate objective in this case
because the Crater navigation tasks use all the capacity of their nodes, so the
maximal node load, which is minimized, will always be the same. The traffic
minimization, on the other hand, shows good results: the tasks with the most
communication are colocated (Camera and Undistortion tasks).

Fig. 5. ATON mapping to a four-node network with two different objectives. The width
of lines between the nodes corresponds to the amount of exchanged data. The gray lines
show that there is no data transfer between the nodes.

5.3 Remarks on Scalability

In order to evaluate the scalability of our approach, we generated a number
of random task graphs of different sizes. We generated 10 task graphs for each
problem size (5, 10, 15, 20 tasks) and took the average mapping time, excluding
few instances that were unsatisfiable (in which case the solving ran under a
second). The graph of average mapping times is shown in Fig. 6. There is a

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 189

Fig. 6. Mapping time for different number of tasks with different objectives.

significant variation of solving time even for the same problem size. For example,
the time for load balancing with 15 tasks ranges from 1.4 s to 8.7 min.

It is clear that the scalability of this approach is limited because the search
space and the runtime grow exponentially with the number of tasks. For t tasks
and n nodes there are nt possible mappings, so even for rather simple cases with
4 nodes and 20 tasks we have to search within a large state space. Considering
that some instances are mapped significantly faster than others, our best guess
is that this approach can be practical for some instances of up to 30–50 tasks.

This is of course true for any exact optimization solution. When the problem
instance is too large for an exact method, the only solution is to use approximate
approaches such as search heuristics or genetic algorithms.

6 Conclusions and Future Work

We have demonstrated an application of SMT solving to produce a task-node
mapping between tasks that run periodically in a distributed system, and the
available processing nodes that are connected to a network with an arbitrary
topology.

We formally defined the task-node mapping problem originating from our
project ScOSA, showed how to translate this problem into an SMT problem,
and solved it with the state-of-the-art SMT solver Z3.

In order to evaluate our approach, we used it to map the tasks of an existing
application in a reasonable time. Additionally, we evaluated the scalability of
the approach by running it on generated problem instances of different sizes.

As a result, the SMT-based approach proved to be suitable for the topology-
aware mapping problem and practical for many problem sizes, which we suppose
to have in ScOSA.

Our practical recommendations on SMT modeling to achieve some speedup
are as follows. First, it appears to be better to use boolean encoding of an integer
index variable rather than straightforward integer encoding. Second, it is advan-
tageous to round numerical values to integers (however, with lower precision
there is a risk of getting incorrect or suboptimal mapping).

190 A. Kovalov et al.

A number of questions, however, remain for the future work. First of all,
we need to compare our approach to the other approaches listed in Sect. 2.
Secondly, we need to evaluate how accurately our model with periodic tasks
reflects the actual system containing both time-triggered and event-triggered
tasks. Additionally, it would be interesting to investigate if the solving time
depends on the topology of the task and network graphs.

In the future, the task-node mapping will be extended with model checking
to support the systems engineering for future ScOSA systems. For the mapping
we consider a rather simple model of the system and the network. In the subse-
quent model checking, we are planning to analyze more complicated properties
on a more precise system model such as message delivery times considering the
routers’ behavior and the routing protocol, time bounds on failure detection,
absence of ‘reconfiguration races’ where different reconfigurations are triggered
simultaneously, time bounds on the reconfigurations, application-specific prop-
erties.

Our long-term goal is to create a tool where the user inputs the network
structure, the task graphs, requirements and constraints, and gets a collection
of optimal mappings that satisfy the requirements, if such mappings exist.

References

1. Baruah, S.: Task partitioning upon heterogeneous multiprocessor platforms. In:
Proceedings of the 10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, RTAS 2004, pp. 536–543 (2004)

2. Biewer, A., Andres, B., Gladigau, J., Schaub, T., Haubelt, C.: A symbolic system
synthesis approach for hard real-time systems based on coordinated SMT-solving.
In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp.
357–362 (2015)

3. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

4. Cheng, Z., Zhang, H., Tan, Y., Lim, Y.: SMT-based scheduling for multiprocessor
real-time systems. In: 2016 IEEE/ACIS 15th International Conference on Com-
puter and Information Science (ICIS), pp. 1–7 (2016)

5. Cruz, E.H.M., Diener, M., Pilla, L.L., Navaux, P.O.A.: An efficient algorithm for
communication-based task mapping. In: 2015 23rd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing, pp. 207–214 (2015)

6. Deveci, M., Rajamanickam, S., Leung, V.J., Pedretti, K., Olivier, S.L., Bunde,
D.P., Çatalyürek, U.V., Devine, K.: Exploiting geometric partitioning in task map-
ping for parallel computers. In: 2014 IEEE 28th International Parallel and Distrib-
uted Processing Symposium, pp. 27–36 (2014)

7. Franz, T., Lüdtke, D., Maibaum, O., Gerndt, A.: Model-based software engineer-
ing for an optical navigation system for spacecraft. In: Deutscher Luft-und Raum-
fahrtkongress. Braunschweig, Germany, September 2016

8. Glantz, R., Meyerhenke, H., Noe, A.: Algorithms for mapping parallel processes
onto grid and torus architectures. In: Proceedings of the 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing,
PDP 2015, pp. 236–243. IEEE Computer Society, Washington, DC (2015)

http://dx.doi.org/10.1007/978-3-662-46681-0_14

Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver 191

9. Hoefler, T., Jeannot, E., Mercier, G.: An overview of process mapping techniques
and algorithms in high-performance computing. In: Jeannot, E., Zilinskas, J. (eds.)
High Performance Computing on Complex Environments, pp. 75–94. Wiley (2014)

10. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel
architectures. In: Proceedings of the International Conference on Supercomputing,
ICS 2011, pp. 75–84. ACM, New York (2011)

11. Lee, S.Y., Aggarwal, J.K.: A mapping strategy for parallel processing. IEEE Trans.
Comput. C–36(4), 433–442 (1987)

12. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a
network on chip architecture. In: Proceedings of the Euromicro Symposium on
Digital System Design, pp. 180–187 (2003)

13. Liu, W., Gu, Z., Xu, J., Wu, X., Ye, Y.: Satisfiability modulo graph theory for task
mapping and scheduling on multiprocessor systems. IEEE Trans. Parallel Distrib.
Syst. 22(8), 1382–1389 (2011)

14. Liu, W., Yuan, M., He, X., Gu, Z., Liu, X.: Efficient SAT-based mapping and
scheduling of homogeneous synchronous dataflow graphs for throughput optimiza-
tion. In: 2008 Real-Time Systems Symposium, pp. 492–504 (2008)

15. Lüdtke, D., Westerdorff, K., Stohlmann, K., Börner, A., Maibaum, O., Peng, T.,
Weps, B., Fey, G., Gerndt, A.: OBC-NG: towards a reconfigurable on-board com-
puting architecture for spacecraft. In: 2014 IEEE Aerospace Conference, pp. 1–13
(2014)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

17. Potts, C.: Analysis of a linear programming heuristic for scheduling unrelated
parallel machines. Discrete Appl. Math. 10(2), 155–164 (1985)

18. Satish, N., Ravindran, K., Keutzer, K.: A decomposition-based constraint opti-
mization approach for statically scheduling task graphs with communication delays
to multiprocessors. In: 2007 Design, Automation Test in Europe Conference Exhi-
bition, pp. 1–6 (2007)

19. Tendulkar, P., Poplavko, P., Maler, O.: Symmetry breaking for multi-criteria map-
ping and scheduling on multicores. In: Braberman, V., Fribourg, L. (eds.) FOR-
MATS 2013. LNCS, vol. 8053, pp. 228–242. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40229-6 16

20. Wang, L., Li, Z., Song, M., Ren, S.: A genetic algorithm based approach to max-
imizing real-time system value under resource constraints. In: 2012 IEEE 31st
International Performance Computing and Communications Conference (IPCCC),
pp. 285–294 (2012)

21. Yang, L., Liu, W., Jiang, W., Li, M., Yi, J., Sha, E.H.M.: Application mapping
and scheduling for network-on-chip-based multiprocessor system-on-chip with fine-
grain communication optimization. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 24(10), 3027–3040 (2016)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-40229-6_16
http://dx.doi.org/10.1007/978-3-642-40229-6_16

Concurrency and Distributed Systems

Analysis of Synchronisations in Stateful
Active Objects

Ludovic Henrio1, Cosimo Laneve2,3, and Vincenzo Mastandrea1,3(B)

1 Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
ludovic.henrio@cnrs.fr, mastandr@i3s.unice.fr

2 University of Bologna, Bologna, Italy
cosimo.laneve@unibo.it

3 INRIA-Focus, Sophia Antipolis, France

Abstract. This paper presents a static analysis technique based on
effects and behavioural types for deriving synchronisation patterns of
stateful active objects and verifying the absence of deadlocks in this con-
text. This is challenging because active objects use futures to refer to
results of pending asynchronous invocations and because these futures
can be stored in object fields, passed as method parameters, or returned
by invocations. Our effect system traces the access to object fields, thus
allowing us to compute behavioural types that express synchronisation
patterns in a precise way. The behavioural types are thereafter analysed
by a solver that discovers potential deadlocks.

1 Introduction

Active objects are a programming model that unifies the models of actors and
objects. In this model, method invocations are asynchronous: an object that
invokes a method does not release the control and is free to continue processing –
the invocation is “not blocking”. The returned value of an invocation is bound
to a pointer, called future, which is used by the caller to access the value. The
access to a future triggers a synchronisation [4,12,16].

Active objects are gaining prominence because they provide a high-level mul-
titasking paradigm easier to program than explicit threads. For this reason, they
are a pervasive Symbian OS idiom [15] and have been adopted in several lan-
guages and libraries, such as Akka [18], an actor library for Java and Scala [10],
or in ABS [12], and in ProActive [4]. In active object languages, futures are first
class values; therefore they can be sent as arguments of method invocations,
returned by methods, or stored in object fields. In this context, the analysis of
synchronisation patterns is challenging because the context where synchronisa-
tion, i.e. future access, occurs can be different from the context where the future
is created. For example, the synchronisation of a future stored in a field happens
when the value stored in the field is necessary; at this point, the execution of the
corresponding method must finish before the value of the future can be accessed.

This work was partially funded by the ANR project ANR-11-LABX-0031-01.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 195–210, 2017.
DOI: 10.1007/978-3-319-66845-1 13

196 L. Henrio et al.

This paper presents a static analysis technique for finding synchronisation
patterns and detecting deadlocks in stateful active objects. Our analysis is
expressed on an active model called gASP that features implicit synchronisa-
tion on futures (called wait-by-necessity) and does not require any specific type
for futures. With wait-by-necessity, the execution is only blocked when a value
to be returned by a method is needed to evaluate a term. This programming
abstraction allows the programmer not to worry about placing synchronisation
points: the synchronisation will always occur as late as possible. The strengths
of this analysis are: the precise management of object states and their update,
the tracking of futures passed by method invocations or stored in fields, and
the support for infinite states. This paper extends previous works [6,8] with the
handling of stateful objects by tracing the effects of methods on fields, including
the storage of futures inside object fields.

To illustrate synchronisation in active objects, consider the example below.

1 Int n
2 addToStore(Int x){
3 count = n + 1;
4 n = this.store(x,count);
5 return count }
6 store(Int x, Int y){
7 /* storing x */ return y }

8 //MAIN
9 { Store = new Act(0);

10 x = Store.addToStore (1);
11 x = x + 1; // needed to

avoid conflicts
12 k = Store.addToStore (4) }

This program creates an active object, calls the addToStore method asyn-
chronously twice. To prevent non-deterministic results, and to ensure the order
of execution of requests, we synchronise on the result of the first invocation (Line
11) before triggering the second one. Synchronisation is expressed by any oper-
ation accessing the method result, a specific synchronisation operation is not
necessary in gASP even if it could be added. The addToStore method triggers
an invocation to the store method and counts the number of stored elements.
Our analysis is able to detect that a deadlock is possible if the second invocation
to addToStore is executed before the method store. The analysis reveals by a
circular dependency where the single thread of the active object is waiting for
the value of n inside addToStore, the effect analysis reveals that n contains the
result of the store method, and thus store must be executed to resolve the
dependency. The analysis also discovers that if Line 11 is omitted then the two
concurrent addToStore requests lead to a non-deterministic object state (one of
the states being undesired).

The typing technique is based on an effect system that traces the accesses
to fields (e.g. read and write access to n in the example), and a behavioural
system that discovers the synchronisation patterns of active objects. The effect
type records if a field is read or write, and which parameters are used by each
method. It is used to identify conflicting field accesses, e.g. one invocation read-
ing a field and a parallel one writing a new future in the same field. The effect
type records the usage of parameters because they correspond to synchronisa-
tions that create a dependency between tasks. Also we mark an accessed future as
“already synchronised” to avoid synchronising it multiple times. Because futures
are implicit and pervasive we use a novel technique where “everything is a

Analysis of Synchronisations in Stateful Active Objects 197

future”, this enables precise tracking of futures and prevent multiple synchro-
nisation of the same future hold by several variables. The analysis detects and
excludes program with non-deterministic effects. It could be extended to non-
deterministic programs by associating multiple values to each variable, merging
the different environments when non-determinacy is detected. This is not studied
here, it would make the analysis less precise and the formalisation more complex.

The behavioural types define the synchronisation patterns. They are
expressed in a modelling language that is an extension of lams [7,13], which
are conjunctions and disjunctions of object dependencies and method invoca-
tions. Like in [6], to deal with method returning futures, we use a place-holder
that represents the object that will access a future . Actually, our types extend
those of [6] with so-called delegations that represent side-effects of methods on
argument fields. If a method stores a future f in the field of an argument, then
the next access to the field should occur after the end of the method (to pre-
vent read/write conflicts) and should be bound to the future. As the future f is
generally not known when typing, we create a delegation which represents this
future. We introduce the notation method �object .field name for delegations.

The analysis of the behavioural type is performed by the solver defined in [6],
which detects circularities in the graph of dependencies, highlighting potential
deadlocks caused by erroneous synchronisation patterns. The behavioural type
system specifies a set of pairwise dependencies between futures, some of them
being delegations; the analysis unfolds this set of dependencies to find the poten-
tial circularities in the program execution. We prove that our analysis finds all
the potential deadlocks of a program.

Section 2 presents gASP. Section 3 describes our type system and Sect. 4
presents our analysis technique. Section 5 provides related work and a conclu-
sion. Due to space limitation, this paper only contains the crucial points of the
formalisation; technical details and proofs can be found in [11].

2 The Active Object Model gASP

Syntax. The language gASP has types T that may be either Int or a class Act.
Extending this work to several classes is not problematic. We use x, y, k, · · ·
to range over variable names. The notation T x denotes any finite sequence of
variable declarations T x, separated by commas. A gASP program is a sequence
of variable declarations T x (fields) and method definitions T m(T y) { s }, plus a
main body { s′ }. The syntax of gASP body is defined by the following grammar:

s ::= skip | x = z | if e { s } else { s } | s ; s | return v statements
z ::= e | v.m(v) | new Act(v) expressions with side effects
e ::= v | v ⊕ v expressions
v ::= x | null | integer-values atoms

Expressions with side effects include asynchronous method calls v.m(v), where
v is the invoked object and v are the arguments of the invocation. Operations

198 L. Henrio et al.

taking place on different active objects occur in parallel, while operations in the
same active object are sequential. Terms z also include new Act(v) that creates
a new active object whose fields contain the values v. A (pure) expression e may
be a simple term v or an arithmetic or relational expression; the symbol ⊕ range
over standard arithmetic and relational operators. Without loss of generality, we
assume that fields and local variables have distinct names.

Semantics. The semantics of gASP uses two sets of names: active object names,
ranged over by α, β, . . . , and future names, ranged over by f , g,

The runtime syntax of gASP is:

cn ::= f(w) | f(⊥) | α(a, p, q) | cn cn configurations
w ::= α | f | v values and names

p, q ::= {� | s} processes
a, � ::= x �→ w memories

Configurations, denoted cn, are non empty sets of active objects and futures.
Active objects α(a, p, q) contain a name α, a memory a recording fields, a running
process p, and the set of processes waiting to be scheduled q. The element f(·)
represents a future which may be an actual value (called future value) or ⊥ if
the future has not yet been computed. A name, either active object or future,
is fresh in a configuration if it does not occur in the configuration. Memories
a and � (where � stores local variables) map variables into values or names.
The following auxiliary functions are used: dom(�) returns the domain of �;
fields(Act) is the list of fields of Act; �[x �→ v] is the standard map update;
a + � merges the mappings a and �, it is undefined if a(x) �= �(x) for some x.
We use the following notation: (a + �)[x �→ w] = a′ + �′ implies a′ = a[x �→ w],
if x ∈ dom(a), or �′ = �[x �→ w], otherwise. The evaluation of an expression,
denoted [[e]]a+�, returns the value of e by computing the expression, retrieving
the values stored in a + �; [[e]]a+� returns the tuple of values of e. Finally, if m
is defined by T m(T x) { s } then: bind(α, m, w, f) = p where p is a process in
the following shape { [destiny �→ f, this �→ α, x �→ w] | s }, where the special
variable destiny records the name of the future currently computed.

The operational semantics of gASP is defined by a transition relation between
configurations. Figure 1 shows the essential rules of the semantics, all the rules
can be found in [6,11]. Rule Update replaces the future reference by its value,
it can be triggered at any time when a future value is known. The new value
may be also a future. Rule Serve schedules a new process to be executed, which
is taken from the set q of waiting processes. Rule Assign stores a value or a
name into a local variable or a field (cf. definition of a + �). The evaluation
of [[e]]a+� may require synchronisations: if e is an arithmetic expression, the
operands must be evaluated to integers, and, if an operand is a future, the
rule can only be applied after this future has been evaluated and updated. The
if statement is omitted here but the evaluation of the condition must result
in a boolean which may trigger a synchronisation. Note that this semantics
ensures the strong encapsulation of objects: an active object can only assign its

Analysis of Synchronisations in Stateful Active Objects 199

w is not a variable

[[w]]� = w

x ∈ dom(�)

[[x]]� = �(x)

[[v]]� = k [[v
′
]]� = k

′

k, k
′
values k

′′
= k ⊕ k

′

[[v ⊕ v
′
]]� = k

′′
Serve
α(a, ∅, q ∪ {p}) → α(a, p, q)

Update
(a + �)(x) = f

(a + �)[x �→ w] = a
′
+ �

′

α(a, {� | s}, q) f(w)
→ α(a

′
, {�

′ | s}, q) f(w)

Assign
[[e]]a+� = w

(a + �)[x �→ w] = a
′
+ �

′

α(a, {� | x = e ; s}, q)
→ α(a

′
, {�

′ | s}, q)

Return
[[v]]a+� = w �(destiny) = f

α(a, {� | return v}, q) f(⊥)
→ α(a, ∅, q) f(w)

New
[[v]]a+� = w β fresh y = fields

α(a, {� | x = new Act(v) ; s}, q)
→ α(a, {� | x = β ; s}, q) β([y �→ w], ∅, ∅)

Invk
[[v]]a+� = β [[v]]a+� = w β
= α

f fresh bind(β, m, w, f) = p
′

α(a, {� | x = v.m(v) ; s}, q) β(a
′
, p, q′)

→ α(a, {� | x=f;s}, q) β(a
′
, p, q′ ∪ {p

′}) f(⊥)

Fig. 1. Evaluation function and semantics of gASP (excerpt) - full version in [11].

own fields. The initial configuration of a gASP program with main body {s} is:
main([x �→ 0], { [destiny �→ fmain , this �→ main] | s }, ∅) where main is a
special active object, x = fields, and fmain is a future name. As usual, →∗ is the
reflexive and transitive closure of →.

Analysed Programs. In order to simplify the technical details, we will consider
gASP programs that verify the following restrictions:

(i) object fields and method returned values are of type Int (at runtime they
can be either futures or integer values);

(ii) the futures created in a method must be either returned or synchronised or
stored in a field of a parameter (or this).

Constraint (i) can be checked by a standard type checker, and (ii) can be
verified by a simple static analyser. In particular, (ii) prevents computations run-
ning in parallel without any means to synchronise on them. Technically, admit-
ting futures that are never synchronised requires to collect the corresponding
behaviours and add them to any possible continuation, like in [8].

Deadlocks. In gASP, when computing an expression, if one of the elements of
the expression is a future then the current active object waits until the future
has been updated. If the waiting relation is circular then no progress is possible.
In this case all the active objects in the circular dependency are deadlocked. We
formalise the notion of deadlock below. Let contexts C[] be the following terms

C[] ::= x = [] ⊕ v ; s | x = v ⊕ [] ; s | if [] { s′ } else { s′′ } ; s
| if [] ⊕ v { s′ } else { s′′ } ; s | if v ⊕ [] { s′ } else { s′′ } ; s

As usual, C[e] is the context where the hole [] of C[] is replaced by e.
Let f ∈ destinies(q) if there is {�|s} ∈ q such that �(destiny) = f .

200 L. Henrio et al.

Definition 1 (Deadlocked configuration). Let cn be a configuration con-
taining α0(a0, p0, q0), · · · , αn−1(an−1, pn−1, qn−1). If, for every 0 ≤ i < n,

1. pi = {�i | C[v]} where [[v]]ai+�i = fi and
2. fi ∈ destinies(pi+1, qi+1), where + is computed modulo n

then cn is deadlocked.
A program is deadlock-free if all reachable configurations are deadlock free.

Queue with Non Deterministic Effects. Since gASP is stateful, it is possi-
ble to store futures in object fields and to pass them around during invocations.
Therefore, computing the value of a field is difficult and, sometimes, not possi-
ble because of the nondeterminism caused by the concurrent behaviours. To be
precise enough, we restrict the analysis to programs where method invocations
only create request queues with deterministic effects.

Definition 2. An active object α(a, p, q) has a queue with deterministic effects
if when a process in q write on a field all the other process in the queue do not
perform neither read nor writes on the same field.

A configuration cn has deterministic effects if every active object of this con-
figuration has a queue with deterministic effects. A gASP program has determin-
istic effects if any reachable configuration has deterministic effects.

Example. The execution of the program shown in the introduction reaches
the following configuration after the first execution of the addToStore method
(future f), at the point where either the method store (future g) or addToStore
(future h) can be served: main

(
[n �→ 0], ∅, ∅

)
f(1) g(⊥) h(⊥) α

(
[n �→

g], ∅, {body-of-store}, {body-of-addToStore})
.

From this point, if α serves the invocation of addToStore we reach a dead-
lock because the execution of addToStore needs to know the value of the field n
(to execute Line 4) but the method store can only be served after the termina-
tion of the current method. If store is served first, then when the execution of
addToStore occurs, the future stored in the field n is already computed therefore
the expression n + 1 can be solved and the program terminates.

3 Behavioural Type System

In this section we define a type system that associates abstract descriptions,
called behavioural types to gASPprograms. This association is done by record-
ing several information: (1) effects on object fields to enforce consistency of
read/write operations between methods invoked in parallel on the same active
object; (2) dependencies between active objects and between futures and active
objects to enforce consistency of synchronisation patterns. The analysis is per-
formed following the program structure and verifying that the types of methods
match previously declared types. From the explicit type system presented below,

Analysis of Synchronisations in Stateful Active Objects 201

an inference system can be defined in a standard way. Note that it is not possible
to infer at static time which variables contain a future. Consequently, we con-
sider all stored values as futures and some of corresponding values will be already
synchronised when created. It is therefore important to distinguish future names
that are identifiers and future types that are values corresponding to futures; the
environment will map future identifiers to future types.

Analysed Properties. The goal of the type system is to verify the deadlock
freedom of gASP programs. Since gASP is stateful, deadlocks might be caused by
accesses to futures stored in object fields. Therefore, the type system must also
compute the effects of statements on active object fields (and expose them in
types of methods so that the analysis is compositional). It is worth noticing that
in gASP, because of concurrency, the computations are non-deterministic and the
effects on fields may be indeterminate. Our type system also verifies whether the
analysed program might exhibit such a non-deterministic behaviour.

Types. Types are either basic types, future types or behavioural types. They
are defined as follows:

b ::= � | α[x:f] basic type
f ::= b | λX.m(f, g,X, Γ,E) | f �g.x future type
κ ::= � | α | X synchronisers
L ::= 0 | (κ, α) | fκ | L + L | L� L behavioural type

Basic types b are used for values or parameters; they may be either primitive
type, i.e. integer, � or an object type α[a :f]. Future types f include basic types,
invocation results, and delegations. The invocation result λX.m(f, g,X, Γ,E) rep-
resents the value computed by a method invocation, where f, g are the arguments
of the invocation (f is the future of the called object), X, called handle, is a place-
holder for the object that will synchronise with the invocation, the environment
Γ and the effects E record the state changes performed by the method, they
are discussed in the following. The delegation f �g.x represents a method side
effect, namely the value that is written by the method corresponding to f in the
field x of the argument g. In the type system we also use “check-marked” future
types, noted f�, to represent a future value that has been already synchronised.
We use f [�] to range over both future types and “check-marked” future types.

Behavioural types include 0, the empty dependency, and (κ, α) that means: if
κ is instantiated by an object β, then β will need α to be available in order to pro-
ceed its execution. Behavioural types also include synchronisation commitments
fκ, whose meaning depends on the value of κ: f� means that the invocation
related to f is potentially running in parallel; fα means that the active object α
is waiting for the result of the invocation corresponding to f ; fX represents the
return of a future f , where the handle X will be replaced with the name of the
object that will synchronise on the result of f . The types L� L′ is the behaviour
of two statements of types L and L′ running in parallel; L+L′ is the behaviour of
two statements (of types L and L′) running in sequence (regardless of the order).

202 L. Henrio et al.

We will shorten L1 � · · · � Ln into �i∈{1..n} Li and L1+ · · ·+Ln into
∑

i∈{1..n} Li.
The operations “�” and “+” on behavioural types are associative, commutative
with 0 being the identity. The operator “�” has precedence over “+”.

Environments. Environments, noted Γ , Γ ′, · · · , are maps from variables to
future names (x �→ f), from future names to future types, check-marked or not
(f �→ f [�]), and from method names to their signatures.

The image of an environment Γ is noted im(Γ); the restriction of Γ to a set
S of names is noted Γ |S ; the difference operation the difference operation Γ \ x
defined as Γ |dom(Γ)\x. The following functions on Γ are also used:

– names(Γ) = dom(Γ) ∪ {α | α[x : f][�] ∈ im(Γ)};
– obj(f) (resp. int(f ′)) is a subset of f such that for each f ′ ∈ obj(f) (resp.

f ′ ∈ int(f)) we have Γ (f ′) = α[· · ·] (resp. Γ (f ′) �= α[· · ·]) for some α;
– Fut(Γ) is the set of future names in dom(Γ); aFut(Γ) and sFut(Γ) are the

subset of Fut(Γ) that contain future names f such that Γ (f) is respectively
not-check-marked or check-marked;

– unsync(Γ) = �f∈aFut(Γ) f� is the parallel behaviour of the method invoca-
tions which are not-yet-synchronised;

– Γ [f�] returns the environment Γ [f �→ f�] when Γ (f) is either f or f�;

– Γ (f.x) =
{

g if Γ (f) = α[· · · , x :g, · · ·]
undefined otherwise

– Γ [f.x �→ g] returns the environment such that Γ (f.x) = g, assuming that
f ∈ dom(Γ) and x ∈ fields(Act); Γ [f.x �→ g] is defined like Γ elsewhere;

– Γ1 =unsync Γ2 whenever Γ1(f) = Γ2(f) for every f in aFut(Γ1) ∪ aFut(Γ2).

Effects. Effects are functions, noted E, A, · · · , that map future names to a set of
field names labelled either with r (read) or with w (write). For example, consider
m a method with effect E, and f one of its arguments, E(f) = {xw, yr} means
that m writes on the field x of the object that is the value of f and reads on the
field y. Let h range over {r, w}; if xh ∈ E(f), we use the notation E(f.x) = h.
With an abuse of notation, we also write x ∈ E(f) if E(f) = {xh1

1 , · · · , xhn
n }

and x ∈ {x1, · · · , xn} (therefore x /∈ E(f) also when E(f) is undefined). In the
example in the introduction, the method addToStore has the effect [g �→ [nw]
where g represents the current object (this). The set {r, w} with the ordering
r < w is a lattice, therefore we use the operation
 for least-upper bound.
We also use few auxiliary operations that are shown in Fig. 2: update operation
with upper bound(1); effects of unsynchronised methods(2); compatibility(3); effect
instantiation taking into account effect compatibility(4). We extend the definition
of the operation
 and # from effects to sets of effects iterating them for all the
element of the sets pairwise.

Analysis of Synchronisations in Stateful Active Objects 203

E[f.x �→�
h](f.x) =

⎪⎨
⎪⎩

h � h′ if E(f.x) = h′

h if x /∈ E(f) and x ∈ fields(Act)

undefined otherwise

(1)

Effects(Γ) =
⊔

{E | Γ (f) = λX.m(g, X, Γm, E)} (2∗)

x
h
y

h′
=

{
true if x
= y or (x = y and h′ = r = h)

false otherwise
(3)

instanceof(E, σ)(f) =

⎧⎨ ⊔
g∈σ−1(f)

E(g) if ∀f1, f2 ∈σ−1(f).f1
=f2 ⇒ E(f1)#E(f2)

undefined otherwise
(4∗∗)

Fig. 2. Auxiliary functions for effects - full version in [11]. (*We notice that Γ (f) is
not check-marked, **The usage of instanceof is illustrated in the description of T-
Method-Sign).

Judgements. The judgements used in the type system are:

– � m : (f, g, Γm,X)→(E,A) instantiates the method signature of m, where f, g,
X are the formal parameters, Γm is the part of environment accessible from the
method parameters which are objects: Γm = (Γ |f∪obj(g)), where Γ is the
environment at invocation point. E,A are the environments storing the effects
of m: E stores the effects that happen before m is synchronised, A stores the
effects of the methods invoked by m and not synchronised in its body;

– Γ,E � x : f 	 E′ for typing values and variables with future names, where
E′ is the update of E

– Γ � f :f for typing future names with future types;
– Γ,E ⊕�S e : L 	 Γ ′, E′ for typing synchronisations, where S is the set of

arguments of the current method, L is the behavioural type, and Γ ′ and E′

are the updates of Γ and E respectively;
– Γ,E,A �S z :f, L 	 Γ ′, E′, A′ for typing expressions with side effects z;
– Γ,E,A �S s :L 	 Γ ′, E′, A′ for typing statements s.

Type System. We assume that every environment Γ is such that Γ (�) = �
�

and Γ (this) = α[· · ·], where α is the active object running the current method.
The typing rules are shown in Fig. 3 and the most rellevant ones are discussed.

Rule (T-Field) models the reading of a field (of the this actor). The precon-
ditions verify that the access is compatible with the effects of not yet synchro-
nised invocations in Γ and those in A (that will not be synchronised). We notice
that there is no compatibility check with effects in E and E is updated with the
new access (performing the upper bound with the old value). Rule (T-Method-
Sign) instantiates a method signature according to the invocation parameters.
In particular, the rule also covers the case when two parameters have the same
value thanks to the instanceof function. In the signature, each parameter has a
fresh name, but upon invocation, new conflicts might be created by the fact that
two different parameters are actually the same object. In this case, we prevent the
instantiation of the invocation if a conflict might occur. For example, if the sig-
nature of a method m is such that Γ (m) = (f, f ′,X, Γ ′) → ([f �→ {xr}, f ′ �→ {xw}]

204 L. Henrio et al.

Fig. 3. Typing rules -full version in [11].

or Γ (m) = (f, f ′,X, Γ ′) → ([f �→ {xw}, f ′ �→ {xw}], the type system is not able
to instantiate the method invocation λX.m(g, g,X, Γ ′′, Em) because of potential
conflicts: two operations of write on the same object appeared due to the aliasing
created between parameters.

In gASP, synchronisations are due to the evaluation of expressions e that are
not variables. We use the notation ⊕� for these judgments. Overall, we parse
the expression and the leaves have two cases: either the future is synchronised
(check-marked) or not. In this last case, there are three sub-cases, according to
the future corresponds to an invocation – rule (T-Sync-Invk) –, or to a field –

Analysis of Synchronisations in Stateful Active Objects 205

rule (T-Sync-Field) –, or to a method’s argument – rule (T-Sync-Param).
We discuss (T-Sync-Invk), the other ones are similar. In this case, the future
f bound to x is synchronised – henceforth its result is check-marked in the
environment. Correspondingly, the futures that are synchronised by f , namely
those that are recorded in the effect Em, are synchronised as well. Finally, the
rule records in the environment the updates of arguments’ fields. Technically
this is done using the delegation future type. The behavioural type collects the
futures of methods that are running in parallel and f , which is annotated with the
synchronising actor name α. This type will allow us to compute the dependencies
of the parallel methods during the analysis.

In the example of the introduction, Line 11 triggers a synchronisation with
the first execution of addToStore. As a consequence of the application of the
rules (T-Expression) and (T-Sync-Invk), n now points to a not-yet-known
future of the form f � g.n; this future will be mapped during analysis to the
first invocation to store.

The rule (T-Invk) creates a new future g corresponding to the invocation
and stores it in Γ , after having computed the instance of the method signature.
The last premise verifies the compatibility between the effects of the invoked
method and those of the other running methods (the current one and the not-
yet synchronised ones). The behavioural type collects futures of methods that
are running in parallel, including g, which is created by the rule. The future g is
not annotated with any actor name because invocation does not introduce any
dependency. The substitution on second line replaces synchronised futures by �

to prevent additional synchronisations on these futures.
The behavioural type of statements is a sum of types that are parallel com-

position of synchronisation dependencies and unsynchronised behaviours. The
rules are almost standard. We discuss the rule for returning a future – rule (T-
Return-Fut). In this case, the returned value is an unsynchronised future f ,
therefore the synchronisation of f is bound to the synchronisation of the method
under analysis. For this reason, the behavioural type is fX , where X is the place-
holder for the active object synchronising the method currently analysed. The
rest of the behavioural type collects the unsynchronised behaviour.

In (T-Method), the premises verify the consistency of the typing of m in the
environment with the typing of its body. In particular, the asynchronous effects
of m must be the sum of the asynchronous ones in its body, i.e. A′, plus the
effects of the invocations that have not been synchronised. We notice that the
behavioural type of the method has arguments that are structureless: object are
removed and replaced by their flattened version, where the fields are removed
and the corresponding values are lifted as arguments, this operation is fulfilled
by the function flat . We also notice that the behavioural type of the body s is
extended with a dependency (X,α). This dependency will be instantiated by the
synchronising object when it is known. The behavioural type of a method has the
shape (Γ � Γ ′ � L). The environment Γ defines fresh names created in the body
of the method, it maps future names to either future results λX.m(g,X, Γ ′′, E)
or delegations f � g.x or object types α[a :f]. The environment Γ ′ records the

206 L. Henrio et al.

updates to the arguments f performed by the method, and L is the behavioural
type of the body of the method. To make the rule TR-Method easier to read we
let Γ and Γ ′ contain more information than we require in the behavioural type
analysis, this is the reason why will be used a simplified form of this environment.
Instead of Γ will be used Θ which does not define a mapping between future
names and object types and future results do not present information about
effects (λX.m(g,X, Γ ′′)), and Γ ′ will be renamed as Φ.

Finally, a behavioural type program is a pair
(L, Θ � L

)
, where L maps method

names m to method behaviours (w,X) → (ν κ)(Θ′ � Φ � L′), w,X are the formal
parameters of m, Θ′, Φ and L are the same as above. The last two elements,
namely Θ and L, are the environment and the type of the main body.

The fact that Γ � {Int x,M}{s} implies that any configuration reached
evaluating the program has deterministic effects.

Example. The behavioural type of the program of Sect. 1 is of the form:
(L, Θ � f� + fmain + f ′

�) where:

Θ = [f �→ λX.addToStore(g, �,X, [g �→ α[n :�]�], [g �→ [nw]]), g′ �→ f �g.n,
f ′ �→ λX.addToStore(g, �,X, [g �→ α[n :g′]�], [g �→ [nw]])].

We observe that the behavioural type of the main function performs two
invocations of addToStore. The first invocation is performed on the object α
where the field n stores a value (g �→ α[n :�]�), indeed at that point n = 0. The
second invocation is performed on the same object but n stores the value written
by the first invocation: in Θ we have the delegation g′ �→ f � g.n and in the
second method invocation the object field n maps to g′. We can also notice that
the first invocation has been synchronized, indeed the presence of the delegation
in the environment indicates that the rule (T-Synch-Invk) has been applied.
Both invocations of the addToStore method write on the field n of the object g,
and the effect of both invocations is [g �→ [nw]].

As stated above, L stores the behavioural type for each method of the pro-
gram, then we have an entry for addToStore and store.
L(addToStore) = (β, this, g, f,X) → (ν f ′)(Θadd � Φadd � Ladd) where
Ladd = (gα + f ′

� + f ′
X)�(X,β) Φadd = [this �→ β[n :f ′]]

Θadd = [f ′ �→ λX.store(this, f, �,X, [this �→ β[n :g]�], ∅)]
The behavioural type shows that the method addToStore performs three

main actions. The first action is the possible synchronization, expressed by gα,
where g is one of the parameters. The second action is the invocation of the
method store corresponding to future f ′. The third action returns the result of
the invocation of store; expressed by the term f ′

X stating that the f ′ is returned.
Concerning store we have: L(store) = (γ, this , f, g,X) → (∅ � ∅ � (X, γ)).

4 Behavioural Type Soundness and Analysis

The type system defined in Sect. 3 can be extended to configurations, see [11]: the
judgment we use is Γ � cn :K where K is a parallel composition of Θ � L, one for

Analysis of Synchronisations in Stateful Active Objects 207

Fig. 4. Behavioural type reduction rules

each configuration element. The soundness of the type system is demonstrated
by a subject reduction theorem expressing that if a runtime configuration cn
is well typed and cn → cn ′ then cn ′ is well typed as well. While the theorem
is almost standard, we cannot guarantee type-preservation, instead we exhibit
a relation between the type of cn and the type of cn′. Informally, this relation
connects (i) the presence of a deadlock in a configuration with the presence of
circularity in a type and (ii) the presence of a circularity in the evaluation of K′

with the circularities of the evaluation of K.
The evaluation of a behavioural types is defined by a transition relation

between types Θ � L that follows the rules in Fig. 4 and includes a specific rule
for delegation types. We use type contexts:

C[] ::= [] | L� C[] | C[]� L | L + C[] | C[] + L

Overall, BT-fun and BT-field indicate that the behavioural type seman-
tics is simply the unfolding of function invocations and the evaluation of del-
egations. More precisely, rule BT-fun replaces a future with the the body
of the corresponding invocation. The environment Θ is augmented with the
names defined in this body. Note that Θ′′ is well-defined because dom(Θ) ∩
dom(Θ′[κ′

/κ][flat(f,Γ)/w]) = ∅ and (flat(f, Γ) ∪ w) ∩ κ′ = ∅. The behav-
ioural type L′ is defined by a classical substitution. The substitution [flat(f,Γ)/w]
replaces active object and future names in w. This substitution can generate
terms of the form �α, those terms can safely be replaced by 0. Rule BT-field
computes futures f bound to delegations f ′ �g.x, i.e. when the invocation cor-
responding to f ′ has updated the field x of the argument g; it retrieves the
instance of Φ in the method of f ′ and infers h, the future written in the accessed
field.

Definition 3. Let L ≡d L′ whenever L and L′ are equal up-to commutativity and
associativity of “�” and “+”, identity of 0 for � and +, and distributivity of �

over +, namely L�(L′ + L′′) = L� L′ + L� L′′.
The behavioural type L has a circularity if there are α1, · · · , αn and C[] such

that L ≡d C[(α1, α2)� · · · �(αn, α1)].
A type Θ � L has a circularity if Θ � L →∗ Θ′ � L′ and L′ has a circularity.

Below we write Γ � cn : Θ � L to say that the configuration cn has type Θ � L
in the environment Γ . This judgment requires an extension of the type system

208 L. Henrio et al.

in Fig. 3 to configurations (see [11]). The main properties of the type system and
its extension to configurations are stated below.

Theorem 1. Let P be a gASP program and suppose that Γ � P : (L, Θ � L), then:

1. Γ � cn : Θ � L where cn is the initial configuration;
2. if cn →∗ cn’ then there are Γ ′, Θ′ and L′ such that Γ ′ � cn’ : Θ′ � L′ and if

Θ′ � L′ has a circularity then also Θ � L has a circularity.
3. if Θ � L has no circularity then P is deadlock-free.

Our technique reduces the problem of detecting deadlocks in a gASP program
to that of detecting circularities in a behavioural type. It is worth to notice that
these types have models that are infinite states because of recursion and creation
of new names. Notwithstanding this fact, the problem of absence of circularities
in a behavioural type is decidable. The solver uses a fixpoint technique that is
defined in [7,13], which has been adapted to the types of this paper in [6].

Example. We show how a circularity appears when we apply the reduction rule
on the illustrative example. The behavioural type of the example was shown in
Sect. 3, we start from the behavioral type of the main function and describe the
main reduction steps.

We focus on the third term (f ′
�) that refers to the second method invocation

of addToStore. The rule BT-Fun replaces the behavioural type of method invo-
cation f ′

� with the body of addToStore properly instantiated. Here the method
invocation related to f ′ is Θ(f ′) = λX.addToStore(· · ·), we take the behavioural
type Ladd, build the substitution [h/f ′][�/X][α,g,g′,�/β,this,g,f] that instantiates
the parameters adequately, and obtain the behaviour: (g′

α + h� + hX)�(�, α),
additionally Θ′ = Θ + Θ′

add where Θ′
add is obtained from Θadd applying the

same substitution. Finally we can apply BT-Fun and obtain the reduction
Θ � (f� + fmain + f ′

�) → Θ′ � (f� + fmain + (g′
α + h� + hX)�(�, α)).

We then focus on the term g′
α that refers to the synchronization of the field

n during the execution of the second invocation of addToStore. The type asso-
ciated to g′ (Θ′(g′) = f � g.n) denotes that, when typing, we don’t know
the method invocation related to the future stored in n, we only know that
the method invocation related to f has stored a future inside n. To solve this
delegation and then discover the name of the future stored in the that field
we apply the rule Bt-Field and obtain: Θ′ � (· · · + (g′

α + h� + hX)�(�, α)) →
Θ′ � (· · ·+(h′

α+h�+hX)�(�, α)). This reduction only replaces g′
α with h′

α where
h′ = Φ′

add(g.n) and Φ′
add corresponds to the instantiation of Φadd accordingly to

the invocation related to f : Θ(f) = λX.addToStore(g, �,X, [g �→ α[n : �]�]])
with the substitution [h/f ′][α,g,�,�/β,this,g,f].

Now we focus on the term h′
α and, as in the first step, we can apply the

rule BT-Fun we replace h′
α with the behavioral type of store opportunely

instantiated and obtain: Θ′ � (· · ·+(h′
α+h�+hX)�(�, α)) → Θ′ � (· · ·+((α, α)+

h� + hX)�(�, α)) as the behavioural type of store is reduced to a pair.
The circularity (α, α) highlights a potential deadlock in our program. Indeed

the method store is called on α and then the result of this invocation is awaited

Analysis of Synchronisations in Stateful Active Objects 209

in the method addToStore in α, as no further order is ensured on the execution
of these requests, this circularity indeed reveals a potential deadlock.

5 Concluding Remarks

This article defines a technique for analysing deadlocks of stateful active objects
that is based on behavioural type systems. The technique also takes into account
stateful objects that store futures in their fields. This required us to analyse
synchronisation patterns where the future synchronisation occurs in a different
context from the asynchronous invocation that created the future. The behav-
ioural types that are obtained by the type system are analysed by a solver that
detects circularities and identifies potential deadlocks.

To deal with implicit futures, we use a novel paradigm in our analyses, that
consider “every element as a future”. This also allows us to deal with aliasing
and with the fact that the future updates are performed on place at any time.

Related Work. Up-to our knowledge, the first paper proposing effect systems
for analysing data races of concurrent systems dates back to the late 80’s [14].
In fact, our approach of annotating the types to express further intentional
properties of the semantics of the program is very similar to that of Lucassen
and Gifford. The first application of a type and effect system to deadlock analysis
is [3]. In that case programmers must specify a partial order among the locks
and the type checker verifies that threads acquire locks in the descending order.
In our case, no order is predefined and the absence of circularities in the process
synchronisations is obtained in a post-typing phase. In [5], the authors generate
a finite graph of program points by integrating an effect and point-to analysis for
computing aliases with an analysis returning (an over-approximation of) points
that may run in parallel. In the model presented in [5], future are passed (by-
value) between methods only as parameters or return values, the possibility of
storing future in object field is treated as a possible extension and not formalized.
Furthermore this aspect is not considered combined to the possibility of having
infinite recursion. However, [5] analyses finite abstraction of the computational
models of the language. In our case, the behavioural type model associated to
the program handles unbounded states.

Model checking is often used to verify stateful distributed systems. In par-
ticular, [17] uses the characteristics of actor languages to limit, by partial order
reduction, the model to check. [1] provides an parametrised model of an active
object application that is abstracted into a finite model afterwards. Contrarily
to us, these results are restricted to a finite abstraction of the state of the sys-
tem. Two articles [2,9] translate active objects into Petri-nets and model-check
the generated net; these approaches cannot verify infinite systems because they
would lead to an infinite Petri-net or an infinite set of colours for the tokens.

We refer the interested reader to [8] (Sect. 8) for a further comparison of
alternative analysis techniques.

210 L. Henrio et al.

References

1. Ameur-Boulifa, R., Henrio, L., Kulankhina, O., Madelaine, E., Savu, A.: Behav-
ioural semantics for asynchronous components. J. Logical Algebr. Methods Pro-
gram. 89, 1–40 (2017)

2. Boer, F.S., Bravetti, M., Grabe, I., Lee, M., Steffen, M., Zavattaro, G.: A petri
net based analysis of deadlocks for active objects and futures. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 110–127. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35861-6 7

3. Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: Proceedings of the OOPSLA 2002 (2002)

4. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous sequential processes. Inf.
Comput. 207(4), 459–495 (2009)

5. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based dead-
lock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/-
FORTE 2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38592-6 19

6. Giachino, E., Henrio, L., Laneve, C., Mastandrea, V.: Actors may synchronize,
safely! In: Proceedings of PPDP 2016. ACM (2016)

7. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6 6

8. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core ABS. Softw. Syst. Model. 15(4), 1013–1048 (2016)

9. Gkolfi, A., Din, C.C., Johnsen, E.B., Steffen, M., Yu, I.C.: Translating active
objects into colored petri nets for communication analysis. In: Proceedings of the
FSEN 2017. LNCS. Springer (2017)

10. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)

11. Henrio, L., Laneve, C., Mastandrea, V.: Analysis of synchronisation patterns
in stateful active objects. Research report, I3S; Inria - Sophia antipolis (2017).
https://hal.archives-ouvertes.fr/hal-01542595

12. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

13. Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks. Inf.
Comput. 252, 48–70 (2017)

14. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of
POPL 1988, pp. 47–57. ACM Press (1988)

15. Morris, B.: The Symbian OS Architecture Sourcebook: Design and Evolution of a
Mobile Phone OS. Wiley, Hoboken (2007)

16. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theoret. Comput. Sci. 364(3), 338–356 (2006)

17. Sirjani, M.: Rebeca: theory, applications, and tools. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 102–126.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74792-5 5

18. Wyatt, D.: Akka Concurrency. Artima (2013)

http://dx.doi.org/10.1007/978-3-642-35861-6_7
http://dx.doi.org/10.1007/978-3-642-38592-6_19
http://dx.doi.org/10.1007/978-3-642-38592-6_19
http://dx.doi.org/10.1007/978-3-662-44584-6_6
https://hal.archives-ouvertes.fr/hal-01542595
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-540-74792-5_5

BTS: A Tool for Formal Component-Based
Development

Dalay Israel de Almeida Pereira(B), Marcel Vinicius Medeiros Oliveira,
Madiel S. Conserva Filho, and Sarah Raquel Da Rocha Silva

Universidade Federal do Rio Grande do Norte, Natal, Brazil
{dalayalmeida,madiel}@ppgsc.ufrn.br, marcel@dimap.ufrn.br,

sarahraquelrs@gmail.com

Abstract. In previous work we have presented a CSP based approach
for developing component-based asynchronous systems, BRIC, which
guarantees deadlock freedom by construction. It uses CSP to specify the
constraints and interactions between the components to allow a formal
verification of the composition’s behaviour. Following this work, we also
proposed an efficient approach for ensuring livelock analysis by construc-
tion. In this work we present a tool that automates the verification of
component composition by automatically generating and checking the
side conditions imposed by both approaches. The tool also includes a
support to BRICK, an optimisation of BRIC, that enriches the com-
ponents with metadata containing additional useful information, which
considerably reduces the costs of the composition verifications.

Keywords: Component-based systems · CSP · Compositional analysis ·
Deadlock verification · Livelock verification

1 Introduction

The use of increasingly complex applications is demanding a greater invest-
ment of resources in software development processes. Component-based System
Development (CBSD) [15] has emerged as a promising approach for mastering
this complexity. In this paradigm, the system is divided into independent pieces
of software (components) that can interact and communicate with each other,
yielding a more complex system. A component is a composition unity with con-
tractually specified interfaces and with explicit context dependencies.

Although CBSD has improved the final quality of systems and the organi-
sation of the development process, it usually lacks formalisation. This is still a
major source of problems specially for reliable systems. In order to improve reli-
ability, formal methods arise as an interesting development approach for critical
systems helping to solve some of the problems in the development cycle.

CSP [14] is a formal notation used to model concurrent and reactive appli-
cations where processes interact with each other exchanging messages. The use
of CSP allows us to identify problems such as deadlock and livelock. CSP has a
set of tools that facilitate its use like the refinement model-checker FDR4 [21].
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 211–226, 2017.
DOI: 10.1007/978-3-319-66845-1 14

212 D.I. de Almeida Pereira et al.

In [20], Ramos presented an approach, BRIC, for the trustful and systematic
development of component-based systems for CSP models, considering a grey-
box style of composition [9]. In BRIC, component compositions are achieved
using four predefined rules that impose restrictions on the basic components.
Once the restrictions are satisfied, deadlock freedom is ensured by construction.
Ramos also provided an extension of BRIC, BRICK, that inserts metadata
inside the components as a way to decrease the number and the complexity of
the verifications when composing the components.

BRICK has proved to be efficient in the verification of deadlock freedom [17].
The absence of livelock, however, is trivially ensured, since the basic components
are, by definition, livelock-free, and no operator that may introduce such a behav-
iour can be used. In [11], we considered black-box compositions in BRICK, a
component notion that seems to be better aligned to CBSD, where the internal
services of components are hidden from its environment: we presented a tech-
nique for constructing livelock-free BRICK systems using local analysis.

The use of BRICK demands considerable effort for specifying components
and their compositions to ensure the correctness of the whole specification. This
can make its practical application too complex and cumbersome. This paper
presents BTS (BRICK Tool Support), a tool that provides a simpler way to cre-
ate and compose BRICK components. More importantly, it provides a complete
and automated analysis of components and compositions, making the develop-
ment process safer and much more efficient, reducing development costs.

In Sect. 2, we introduce CSP. BRICK is described in Sect. 3. Section 4
presents BTS . Its evaluation is described in Sect. 5. Finally, we draw our con-
clusions and discuss about related and future work in Sect. 6.

2 CSP

CSP [14] is one of the most well established formalisms for describing and
analysing concurrent systems. It is used to model applications where indepen-
dent components (processes) interact with each other and with the outer world
exchanging messages (events).

In CSP, the basic processes are STOP and SKIP . The former represents a
deadlocked process, the latter simply terminates successfully. Given an event a
in the interface of a process P , the prefixing a → P is initially able to perform
a, after which it will behave like P . Strictly speaking, the semantics of CSP
does not differentiate inputs from outputs. However, the prefixing operator can
also be used to denote directional communication. The process c!v → P sends
the value v via channel c and behaves as P afterwards. On the other hand, the
process c?x → P receives a value on channel c and assigns it to the implicitly
declared variable x , which can be used in the subsequent behaviour P .

CSP also provides notations to describe different paths of behaviour. The
external choice P � Q initially offers the initial events of both processes, P and
Q . The environment makes the choice of synchronisation. It can be thought as
buttons being offered to a client (a user) that will decide which one to press.

BTS: A Tool for Formal Component-Based Development 213

datatype EV = up | down
datatype LF = thinks | eats
channel fk1, fk2,

pfk1, pfk2 : EV
channel life : LF

Fork =
(fk1.up → fk1.down → Fork)
� (fk2.up → fk2.down → Fork)

Phil =
life.thinks → pfk1.up →
pfk2.up → life.eats →
pfk1.down → pfk2.down → Phil

Fig. 1. The CSP Specification of the Dining Philosophers

The internal choice P � Q is completely out of the environment’s control. This
is a non-deterministic choice, since the system will internally decide its behav-
iour: it will be ready to perform the initial events from just one of the processes.

Two processes can be composed in Interleave. In P ||| Q , the processes P
and Q execute concurrently, but they do not synchronise on any event. It is also
possible to compose two processes in parallel synchronising in a specific set of
event cs. In P [| cs |]Q , the processes P and Q are executed concurrently and
synchronise on the events in cs; any other events are executed independently.

Throughout this paper, we use a classical concurrency example, the dining
philosophers [22]. In this example, a group of philosophers is seated at a round
table to eat. Each pair of philosophers has a fork between them. Each philosopher
must pick up two forks before eating and puts them back down afterwards. The
CSP specification of this example is presented in Fig. 1.

The process Fork offers an external choice between the events fk1.up and
fk2.up, where fk1 and fk2 are channels of type EV . This process ensures that
two philosophers cannot hold the same fork simultaneously. The process Phil
represents the life cycle of a philosopher: before eating, the philosopher thinks
and then he picks up the forks. After eating he puts the forks back down.

The process P \ cs behaves like the process P but hides the set of events cs
from the environment. Finally, the renaming P [[a ← b]] behaves like P , but the
occurrences of the event a are replaced by occurrences of the event b.

There are many well-established semantic models of CSP, one of them is the
traces model (T). In this model, the set traces(P) contains all possible sequences
of events in which P can engage.

Using FDR4 [21], we may automatically verify interesting properties of the
processes. For instance, the assertion assert P : [deadlock free] can be used in
FDR4 to verify if the process P is deadlock-free. Using other assertions, we may
also check for livelock freedom, determinism and process refinement.

3 BRIC
BRIC [20] is a method for trustful and systematic development of component
based systems. It describes components as contracts and imposes restrictions
to component compositions in order to guarantee the safety of the final results.

214 D.I. de Almeida Pereira et al.

BRIC provides four composition rules (two binary rules and two unary rules),
each one with specific well defined conditions for valid applications. In what
follows, the definition of BRIC component contracts is presented in Sect. 3.1
and the instatiation of such contracts is presented in Sect. 3.2. The Sect. 3.3
presents the composition rules and, finally, we present an extension to BRIC,
called BRICK, in Sect. 3.4.

3.1 Component Contract

A component contract in BRIC is defined by a behaviour B (described in CSP),
a set of channels C, a set of data types I, and a total function R : C → I from
channels to their types. The behaviour of the contract must be an I/O process,
a restricted form of CSP processes P , in which:

– whenever an event c.x is in the alphabet of P (αP), c is either an input or
an output channel of P ;

– P has infinite traces (but finite state space);
– P is divergence free;
– P is input deterministic, that is, after every trace of P , if a set of input events

of P may be offered to the environment, they may not be refused by P after
the same trace;

– P is strongly output decisive, that is, all choices (if any) among output events
on a given channel in P are internal.

Due to space restrictions, we refrain from presenting all formal definitions and
proofs, which can be found elsewhere [20].

In our example, we define two contracts to represent forks and philosophers:

CtrFork = 〈Fork , {fk1 → EV , fk2 → EV }, {EV }, {fk1, fk2}〉
CtrPhil = 〈Phil , {lf → LF , pfk1 → EV , pfk2 → EV }, {LF ,EV },

{lf , pfk1, pfk2}〉

3.2 Component Instantiation

Usually, a component is defined once and reused multiple times, and in different
contexts. In this work, we represent these contexts as sets of channels. Since
channels represent interaction points of the component, and each channel is
used to communicate with a single component in the environment, replacing
these channels makes the contract interact with another environment.

For illustration purposes, we develop a dining table with 2 philosophers and
2 forks. The contracts of the philosophers CtrPhil1 and CtrPhil2 instantiate the
channels pfk1, pfk2 and life with communications on channels pfk and lf . Sim-
ilarly, the contracts of the forks CtrFork1 and CtrFork2 instantiate the channels
fk1 and fk2 with communications on channels fk . In order to distinguish actions
from each philosopher on each fork, there are two integers on the type of channels

BTS: A Tool for Formal Component-Based Development 215

fk and pfk standing for the fork and for the philosopher. The type of channel lf
is the philosopher’s identifier. For example, the contracts CtrFork1 and CtrPhil1

are defined as follows:

CtrFork1 =
〈
Fork [[fk1 ← fk .1.1, fk2 ← fk .1.2]],

{fk .1.1 → EV , fk .1.2 → EV }, {EV }, {fk .1.1, fk .1.2}

〉

CtrPhil1 =

〈Phil1[[life ← lf .1, pfk1 ← pfk .1.1, pfk2 ← pfk .2.1}]],
{lf .1 → LF , pfk .1.1 → EV , pfk .2.1 → EV }, {LF ,EV },
{lf .1, pfk .1.1, pfk .2.1}〉

〉

3.3 Composition Rules

The composition rules ensure, by construction, deadlock-free compositions in
BRIC [20]: interleave, communication, feedback and reflexive.

The Interleave composition Ctr1 [|||]Ctr2 aggregates two independent compo-
nents with disjoint alphabets. After composition, these components do not com-
municate with each other. In our example, philosophers and forks can be inter-
leaved separately: Forks = CtrFork1 [|||]CtrFork2 and Phils = CtrPhil1 [|||]CtrPhil2 .
These compositions are valid because the contracts have disjoint alphabets.

The communication composition Ctr1[ic ↔ oc]Ctr2 is based on the tradi-
tional way to compose two components (Ctr1 and Ctr2), using two channels (ic
and oc), one from each component. In order to attach the channels, their proto-
cols must have been defined. A protocol is an I/O process that inputs on a single
unique communication channel and outputs on another single unique communi-
cation channel. Using these protocols, we can verify the compatibility between
two contracts, ensuring that the outputs of each process are always accepted by
the other process: no information generated (an output) by a process is leaked,
but accepted by its peer in the communication.

In our example, we are able to compose the contracts Forks and Phils using
the communication composition: PComm = Forks[fk .1.1 ↔ pfk .1.1]Phils.

BRIC unary compositions enable the construction of systems with cyclic
topologies, assembling two channels of the same component. As a result, due to
the existence of possible cycles, new conditions are required to preserve deadlock
freedom. The unary compositions rules are feedback and reflexive.

The feedback composition Ctr [ic ↪→ oc] is the simpler unary composition,
in which two channels (ic and oc) of the same component are assembled, but
do not introduce a new cycle [20]. However, in order to attach two channels
of the same component using feedback, these channels must be independent. A
channel ch1 is independent (or decoupled) of a channel ch2 in a process when any
communication of ch2 does not interfere with the order of events communicated
by ch1. It means that they are independently offered to the environment.

The contract PComm contains all forks and philosophers. The channels fk .2.2
and pfk .1.2, however, are independent in PComm because they occur in the
interleaved sub-components Forks and Phils, respectively. We may, therefore,

216 D.I. de Almeida Pereira et al.

Fig. 2. Structure of the dining philosophers

connect these channels using Feedback: PFeed1 = PComm[pfk .1.2 ↪→ fk .2.2].
The channels fk .2.1 and pfk .2.1 are also independent in PFeed1. Intuitively, their
connection do not introduce a cycle; we may, therefore, connect these channels
using the Feedback composition: PFeed2 = PFeed1[pfk .2.1 ↪→ fk .2.1].

The reflexive composition Ctr [ic ¯↪→ oc] deals with more complex systems that
indeed present cycles of dependencies in the topology of the system structure.
This rule connects dependent channels ic and oc, which may introduce undesir-
able cycles of dependencies among the communication of events in the system.
In order to verify the compatibility between distinct channels of the same com-
ponent, this rule does not compare the communication between two protocols
but the communication between events of the same process (the behaviour of
the component), which tends to be more costly when compared to the previous
composition rules. So, although the feedback composition is more demanding,
requiring the composing channels to be decoupled, its verification tends to be
less costly than the reflexive composition, which makes a global verification.

We conclude our example using the reflexive composition to connect the chan-
nels fk .1.2 and pfk .2.2: PSystem = PFeed2[fk .1.2 ¯↪→ pfk .2.2]. This connection
could not be achieved using feedback because the two channels are not indepen-
dent in PFeed2. Intuitively, their connection introduces a cycle that causes the
dependence between these channels. A representation of the complete example
is presented on Fig. 2.

3.4 Component Metadata

BRICK enriches components with metadata in a way to decrease the number
of verifications made when composing them, since some properties of the new
components can be predicted (using their parents) and maintained on the meta-
data. There are four types of metadata that can be inserted in a component
contract: protocols, dual-protocols, context processes and decoupled channels. A
dual-protocol DP , related to a channel ch, is a deadlock-free protocol such that,
given a protocol P related to the same channel ch, inputs(P) = outputs(DP),
outputs(P) = inputs(DP), traces(DP) = traces(P). Context Processes are a
metadata information that represents all the possible communications between
a protocol P and another process compatible with it, which allows us to restrict
proofs concerning communication via a specific protocol.

BTS: A Tool for Formal Component-Based Development 217

Fig. 3. The architecture of BTS

In a contract, one can define a protocol, a dual protocol and a context
process for each channel. So, this information is stored as three different relations
between channels and protocols, dual-protocols and context processes, respec-
tively. The decoupled channels are stored by a symmetric binary relation on the
set of channels of the contract. In this case, a relation between two channels
means that these channels are decoupled inside the contract.

The metadata is recalculated in every composition from the composing com-
ponents in a way the user will never have to describe them again. The use of
metadata decreases the number and the complexity of verifications, since the
user is giving more information about the components. Instead of checking com-
patibility among protocols in a process P, we check this on protocols within the
metadata. Furthermore, instead of verifying the independence between channels
in a process, we verify it directly on relations between channels within the meta-
data. In this way, we perform lightweight verifications as demonstrated in [17].

In [19], we presented a list of CSP assertions that mechanise the side condi-
tions of the composition rules. Using these assertions, we can verify the correct-
ness of the compositions. We also described which of these assertions may be
verified using SMT solvers at a cost close to zero. Finally, we also described the
assertions that can be discarded when using metadata. Based on these results,
we developed a tool that assists development using the BRICK approach. The
tool, which we describe in the following section, provides an interface for defin-
ing and composing component contracts, and more importantly, it automatically
verifies the correctness of the components contracts and their compositions.

4 BRICK Tool Support

The practical use of BRICK tends to be exhaustive and too complex to be
handled manually. In order to make it applicable, we developed BTS1, a tool
that assists the systematic and trustful BRICK development of component-
based systems. The tool automatically generates most of the CSP specification
1 Available at: https://goo.gl/yZEvHp.

https://goo.gl/yZEvHp

218 D.I. de Almeida Pereira et al.

Fig. 4. The home screen of the BTS tool

and verifies the whole specification in order to guarantee deadlock and livelock
freedom based on the BRICK theory.

BTS achieves these automatic verifications by communicating with FDR (for
refinement, deadlock-freedom and livelock-freedom assertions) and the SMT
solver CVC4 [4] (for predicates on set theory). Regarding FDR, BTS is able
to interact with FDR2 and FDR4 [21]. This is because, although FDR4 has
come with some interesting improvements like concurrent verifications, in our
experience, for small systems FDR2 tended to be faster than FDR4, as pre-
sented and explained in Sect. 5. Furthermore, by maintaining the possibility of
using FDR2 we were able to compare their efficiency for our approach.

The SMT solvers VeriT [7] and Z3 [16] were also considered to achieve the
verifications of the predicates on set theory. However, these verifications required
the tool to support set theory. CVC4 accepts SMT-LIBv2 (satisfiability modulo
theories Library version 2) [5] as input language, a standard already used in other
tools (like CRefine [13] and Rodin [10], for instance). Although this standard has
no native support to the set theory, CVC4 contains such an extension to this
SMT language, making it possible to make the verifications we required.

Developed in Java, BTS runs on Windows and Linux and its architecture is
composed by five main modules: a user interface (GUI); a controller that inter-
mediates the interaction between the GUI and the other modules; a logic model
that specifies and coordinates the basic structures; a livelock verification mod-
ule; and a deadlock verification module. The latter is divided into a specification
creation module and modules that communicate with the external tools (FDR2,
FDR4, and CVC4). The architecture of BTS is presented in Fig. 3.

Using BTS , the user follows a sequence of steps to specify a system. The
home screen (Fig. 4) shows four lists to which we may add elements. They con-
tain types, channels, contracts and instances of the specification. The user must

BTS: A Tool for Formal Component-Based Development 219

first define the types of information used in the system and then, he can define
channels, which may contain one or more types. A component contract defini-
tion contains some of these channels and types previously defined. The contract
instantiation requires a contract and a new set of channels.

In the home screen, a user can also choose how the tool handles verifications.
In order to guarantee deadlock-freedom, BTS verifies automatically components
and compositions using one of the following tools or combination of tools: FDR2
only, FDR4 only, FDR2 with CVC4, or FDR4 with CVC4. In order to make ver-
ifications in FDR, the tool generates the CSP script containing all the assertions
(as presented in [19]), sends it to FDR, processes the results and presents them
to the user in a simpler manner. Using CVC4, BTS generates SMT scripts for
some of these verifications and sends them to this solver rather than using FDR.
The benefits of using the SMT solver are presented in the Sect. 5.

Fig. 5. Contract definition screen

In type creation, the user must specify its name and its definition. In BTS ,
only four types can be used: integer, boolean, interval of integers or datatype (a
specific set of atomic constants like, for instance, EV and LF in our example).
The channel definition requires a name and the types of the communication
values. After defining types and channels, the user is ready to define contracts.

The contract definition first requires its name and its CSP behaviour. The
contract channels can be chosen from the list of channels. It is also possible to
define them as input or output and to define the communication channels (speci-
fying events from the channels). The contract screen also allows the definition of

220 D.I. de Almeida Pereira et al.

metadata information (protocols, dual protocols, context processes and decou-
pled channels) by double-clicking on a cell of the table as presented in Fig. 5,
which contains, in our example, the contract of one of the philosophers.

The specification of the contract’s behaviour, protocols, dual protocols, and
context processes are done using CSP processes. The decoupled channels are
defined by just pairing the channels from the list of the existing channels. All
metadata is verified immediately after their definition. All these verifications
require internal interactions with the external tools.

Channels with undefined protocol or dual-protocol cannot be used in com-
positions. However, the absence of a context process and decoupled channels for
a channel will not prevent compositions on this channel. In this case, verifica-
tions will simply be more costly because BTS will be using the BRIC approach
rather than the more efficient BRICK approach. Nevertheless, this change is
completely internal and transparent to the user. The behavior definition screen
and the decoupled channels screen are presented in Fig. 6.

Fig. 6. Behavior and decoupled channels definition screens, respectively

The last step of a contract definition is the verification that its behaviour is
an I/O process. This is achieved by internally communicating with the external
tools; users only need to press a button. Internally, BTS automatically gener-
ates the scripts that contains the required specification and assertions, interacts
with the external tools retrieving the verification results and, in case of def-
inition errors, displays the verification results (possibly with errors and their
details). Figure 7 presents the sequence diagram that describes the verification
of a contract using FDR4 and CVC4 at the same time.

In our example, using BTS , we defined a contract that describes the behav-
iour of a philosopher and a contract that describes the behaviour of a fork.
Each of these contracts were then instantiated twice (forks FK01 and FK02
and philosophers PH 01 and PH 02) as presented in Fig. 4. The contract instan-
tiation screen allows us to rename every channel and to define the name of the
new instance. BTS automatically verifies the validity of the new contracts.

Two instances can be composed using BTS . For that, users simply select the
contracts to be composed, the channels on which they will communicate (except
for Interleaving), the rule of composition and the type of verification (deadlock,
livelock or both). Our tool automatically verifies the specification and displays

BTS: A Tool for Formal Component-Based Development 221

the results to the end user. The result of a successful composition adds the
newly created component to the list of components instances and removes the
composing contracts from this list. Errors are detailed to the user.

In our example, we composed the two philosophers using the interleave com-
position. Similarly, we achieved the composition of the two forks. These com-
positions resulted in two different components, one for the forks and one for
the philosophers. The composition of these components was achieved using the
communication composition (composing the channels fk .1.1 from a fork and
pfk .1.1 from a philosopher) resulting in a single component. For this reason, all
remaining compositions were unary compositions. We used feedback composi-
tions attaching channels pfk .1.2 with fk .2.2, and fk .2.1 with pfk .2.1. The last
composition was a reflexive composition because the last two channels, fk .1.2
and pfk .2.2, were no longer independent as explained in the last section.

Fig. 7. Sequence diagram of a contract verification in BTS

The livelock analysis is not performed using FDR or CVC4. Instead, we
have implemented an independent module in BTS that automates our livelock
technique for BRIC as presented in [11], which proved to be more efficient than
FDR4. The basic principle of this strategy is to use the minimum sequences that
lead the behaviour of the contracts back to its initial state as a way to find the
possibility of livelock performing a local analysis. Considering only these finite
sequences that represent infinite behaviours, we are able to preserve the absence
of livelock when BRIC components are being composed.

The use of metadata in BTS alleviates the verification of some of the side
conditions during contract definition. Furthermore, some of these side conditions
are verified during the contract definition and are not repeated. BTS also recal-
culates the new component metadata based on the metadata of the composing
components. In our approach, composing components can only be instantiations
of previously defined components contracts. The metadata of different contract
instances do not need to be verified because, as discussed in [20], this verification
needs only to be made once on the original component contract metadata.

222 D.I. de Almeida Pereira et al.

5 Evaluation

The evaluation of BTS was based on a classical case study: the dining philoso-
phers described in [20]. In this case study, the tool was capable of creating and
verifying the CSP scripts correctly. Using BTS , the definition of types, channels,
interfaces, contracts and instances were achieved using BTS ’s user interface. We
compared the verification time using the different tools and their combinations,
using an AMD Phenom(tm) II X4 B97 Processor 3.20 GHz, with 16Gb RAM,
running Ubuntu 14.10. All results are presented in Table 1 and Fig. 8.

Table 1. Time effort in the dining philosophers BTS (ms))

FDR2 FDR4 FDR2 + CVC4 FDR4 + CVC4

2 Phils 1686.33 3297.33 850.00 1872.00

3 Phils 6423.66 7918.33 1361.33 3064.33

4 Phils 413792.33 215915.33 2629.00 5138.33

5 Phils - - 15883.66 14018.33

6 Phils - - 203064.33 115086.00

Fig. 8. Comparison between the different tools used in our case study

In examples with less philosophers, FDR2 performs better than FDR4, even
when we use CVC4 together with these tools. The reason of this difference resides

BTS: A Tool for Formal Component-Based Development 223

on the fact that FDR4 makes a type check of the entire CSP specification before
any other verification, while FDR2 only checks the processes used inside the
assertions. However, as we can see on the diagrams of the Fig. 8, as we add
more philosophers to the case study, FDR4 tends to perform better, since the
time spent on type checking is no more relevant. We can also observe that, using
CVC4 together with FDR, we decrease even more the time spent in verifications.

As we can see in the diagrams, the verifications present an exponential
growth, which indicates scalability issues. The work presented in [17], which
also made a similar study and identified, as expected, the reflexive composition
as the bottleneck, presents an approach that allows these verifications to be car-
ried out in linear time. The adaptation of BTS in order to include the theories
presented in [17] is in our near future research agenda.

Fig. 9. Number of assertion and specification lines created by BTS in our case study

In our case study, the tool generated hundreds of CSP specification and asser-
tion lines (see Fig. 9). For example, for six philosophers, the tool automatically
created 388 assertion lines and more than 2044 specification lines, which con-
tains both the specification the user inserted directly and the specification the
tool automatically created. These numbers clearly demonstrate the amount of
exhaustive work that BTS automatises, which would be made manually other-
wise. In order to present the verification results to the user, BTS also analyses
the FDR and CVC4 outputs and presents them, hiding specification details.

6 Conclusion

In this work we presented a tool that automates the systematic construction
of trustworthy component-based systems, which makes use of CSP, SMT, FDR
and CVC4 to generate the formal specifications of the system and verify them
automatically. Using BTS, one can avoid specifying a system using the BRICK
approach manually. Furthermore, the tool also verifies the system automatically
in a transparent manner, which makes the development process more efficient.

224 D.I. de Almeida Pereira et al.

The tool was evaluated by a classical case study, in which BTS successfully
generated and verified all the specifications and assertions in a transparent man-
ner to the user. Besides, we also verified the BTS ’s scalability by adding more
components to the system and comparing the time spent in verification.

BTS is the first tool that automates the BRICK approach. A few number
of tools, however, have been created to automate formal approaches for speci-
fying component based models. Some of the existing tools are [6,23,25], which
use existing approaches ([1,8,12], respectively) for creating and verifying com-
ponent based developments. The advantage of BRICK’s is the use of CSP whose
expressiveness allows us to describe a larger number of systems when compared
to other approaches. The use of protocols in BRICK is another advantage since
it alleviate the costs of verification. These protocols are not used in [1,8,12]. Fur-
thermore, [1,12] are applied only to embedded and distributed systems and [8]
does not present efforts to allow the reuse of components. BRICK is not limited
to embedded or distributed systems, and the use of protocols and the reuse of
components are some of its advantages.

The work presented in [17] presents an optimisation to BRICK that makes
use of behavioral patterns to reduce even more the composition verification costs.
The introduction of this approach to BTS is in our research agenda. We also
intend to evaluate BTS with two more case studies: the Ring Buffer [18], which
was used to evaluate the initial versions of the tool [24], and the leadership elec-
tion protocol [2], an algorithm used in B&O networks of audio and video systems,
in which products inside the network are able to define a leader (usually the most
stable product) in order to assist the dynamic global system configuration.

Finally, we aim at completely hiding the CSP notation from the user. This
will be achieved with the development of a new user interface for BTS using
graphical notations like Reo [3] to define component behaviours and integration,
which would be internally translated into CSP.

References

1. Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H̊akansson, J., Möller, A.,
Pettersson, P., Tivoli, M.: The save approach to component-based development of
vehicular systems. J. Syst. Softw. 80(5), 655–667 (2007)

2. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: an industrial sos application of compositional deadlock
verification. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
31–45. Springer, Cham (2014). doi:10.1007/978-3-319-06200-6 3

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Struct. Comput. Sci. 14(03), 329–366 (2004)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

5. Barrett, C., Stump, A., Tinelli, C.: The smt-lib standard: Version 2.0 (2010). www.
SMT-LIB.org

http://dx.doi.org/10.1007/978-3-319-06200-6_3
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
www.SMT-LIB.org

BTS: A Tool for Formal Component-Based Development 225

6. Beneš, N., Brim, L., Černá, I., Sochor, J., Vařeková, P., Zimmerová, B., et al.: The
coin tool: modelling and verification of interactions in component-based systems.
Electronic Notes in Theoretical Computer Science, pp. 221–225 (2008)

7. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol.
5663, pp. 151–156. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 12

8. Brim, L., Černá, I., Vařeková, P., Zimmerova, B.: Component-interaction automata
as a verification-oriented component-based system specification. ACM SIGSOFT
Softw. Eng. Not. 31, 4 (2005)

9. Bruin, H.: A grey-box approach to component composition. In: Czarnecki, K.,
Eisenecker, U.W. (eds.) GCSE 1999. LNCS, vol. 1799, pp. 195–209. Springer,
Heidelberg (2000). doi:10.1007/3-540-40048-6 15

10. Butler, M., Hallerstede, S.: The rodin formal modelling tool. In: BCS-FACS Christ-
mas 2007 Meeting-Formal Methods In Industry, London (2007)

11. Filho, M.S.C., Oliveira, M.V.M., Sampaio, A., Cavalcanti, A.: Local livelock
analysis of component-based models. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 279–295. Springer, Cham (2016). doi:10.1007/
978-3-319-47846-3 18

12. Object Management Group. The Common Object Request Broker (CORBA):
Architecture and Specification. Object Management Group (1995)

13. Gurgel, A.C., Castro, C.G., Oliveira, M.V.M.: Tool support for the circus refine-
ment calculus. ABZ 8, 349–349 (2008)

14. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

15. McIlroy, M.D., Buxton, J.M., Naur, P., Randell, B.: Mass-produced software com-
ponents. In: Proceedings of the 1st International Conference on Software Engineer-
ing, Garmisch Pattenkirchen, Germany. sn (1968)

16. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

17. Oliveira, M.V.M., Antonino, P.R.G., Ramos, R.T., Sampaio, A.C.A., Mota, A.C.,
Roscoe, A.W.: Rigorous development of component-based systems using compo-
nent metadata and patterns. Formal Aspects Comput., 1–68 (2016)

18. Oliveira, M.V.M., Sampaio, A.C.A., Antonino, P.R.G., Oliveira, J.D., Filho, M.C.,
Bryans, J.: Compositional analysis and design of CML models. Technical Report
D24.4, COMPASS Deliverable (2014)

19. Oliveira, M.V.M., Sampaio, A.C.A., Antonino, P.R.G., Ramos, R.T., Cavancalti,
A.L.C., Woodcock, J.C.P.: Compositional Analysis and Design of CML Models.
Technical Report D24.1, COMPASS Deliverable (2013)

20. Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy com-
ponent systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 140–156. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 10

21. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

22. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency,
vol. 1. Prentice Hall, Englewood Cliffs (1998)

http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/3-540-40048-6_15
http://dx.doi.org/10.1007/978-3-319-47846-3_18
http://dx.doi.org/10.1007/978-3-319-47846-3_18
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-05089-3_10
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13

226 D.I. de Almeida Pereira et al.

23. Sentilles, S., Pettersson, A., Nystrom, D., Nolte, T., Pettersson, P., Crnkovic, I.:
Save-ide-a tool for design, analysis and implementation of component-based embed-
ded systems. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 607–610. IEEE Computer Society (2009)

24. Silva, S.R.R.: Bts: uma ferramenta de suporte ao desenvolvimento sistemático de
sistemas confiáveis baseados em componentes. Master’s thesis, Universidade Fed-
eral do Rio Grande do Norte (2013)

25. Sy, O., Bastide, R., Palanque, P., Le, D., Navarre, D.: Petshop: a case tool for the
petri net based specification and prototyping of corba systems. In: Petri Nets 2000,
p. 78 (2000)

Testing and Verifying Chain Repair Methods
for CORFU Using Stateless Model Checking

Stavros Aronis1(B), Scott Lystig Fritchie2, and Konstantinos Sagonas1

1 Department of Information Technology, Uppsala University, Uppsala, Sweden
{stavros.aronis,kostis}@it.uu.se

2 VMware, Cambridge, MA, USA
sfritchie@vmware.com

Abstract. CORFU is a distributed shared log that is designed to be scalable
and reliable in the presence of failures and asynchrony. Internally, CORFU is
fully replicated for fault tolerance, without sharding data or sacrificing strong
consistency. In this case study, we present themodeling approacheswe followed to
test and verify, using Concuerror, the correctness of repair methods for the Chain
Replication protocol suitable for CORFU. In the first two methods we tried, Con-
cuerror located bugs quite fast. In contrast, the tool did not manage to find bugs
in the third method, but the time this took also motivated an improvement in the
tool that reduces the number of traces explored. Besides more details about all the
above, we present experiences and lessons learned from applying stateless model
checking for verifying complex protocols suitable for distributed programming.

1 Introduction

This work began, as is often the case, around a whiteboard where a group of engi-
neers were discussing distributed protocols used in cloud systems. Diagrams for two
particular protocols were drawn, one for Chain Replication (Sect. 2.1) and one for
CORFU (Sect. 2.3), a recently proposed variant of Chain Replication. Both protocols
have been studied in research papers, but at the heart of the whiteboard discussion were
protocol extensions to repair data after a replica crash; an area of less scientific scrutiny,
but of obvious importance to implementors.

The discussion started with one particular replica repair method, known to work
well when used in the original Chain Replication [16]. CORFU [13] is similar, but not
identical to Chain Replication, therefore warranting an investigation about whether the
differences are significant enough to cause that particular method to break in some
cases. The verdict of the whiteboard discussion was that, indeed, there exists an execu-
tion scenario that violates safety in CORFU, and this same scenario could not manifest
when repairing replicas in a system using the original Chain Replication algorithm. A
different method was therefore proposed, which would not suffer from that particular
weakness. Was this method correct however? No such verdict could be reached at the
whiteboard discussion, as is again often the case.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 227–242, 2017.
DOI: 10.1007/978-3-319-66845-1 15

228 S. Aronis et al.

A stateless model checking tool like Concuerror (Sect. 3) should, at least in
principle, also be able to find the bug that was discovered at the whiteboard discus-
sion for the first method, and was therefore tried by one of the engineers. After creating
executable models of CORFU and the replica repair extension (Sect. 4), the bug was
indeed found by the tool. A model for the second repair method was therefore created
and tested. After a few iterations, the tool managed to find a scenario that showed that
this method was also erroneous. The engineer shared this (un)fortunate discovery on
Twitter1 catching the attention of Concuerror’s developers, who were intrigued by the
tweet and contacted him for more information about that particular use of their tool and
for his experiences.

A fruitful collaboration began. At the engineer’s end, several variations of repair
techniques were devised and modeled, with new flaws in them found quickly by the
tool. Eventually, a technique emerged that appeared to be safe. At the other end, the
developers of Concuerror used this case study as inspiration to design and implement an
improvement to the partial order reduction techniques that the tool employs (Sect. 5.1)
and to also evaluate how effective a particular search space bounding technique was for
finding bugs.

In this paper, we retell the story, starting with an overview of Chain Replication
and CORFU (Sect. 2), including the ideas related to chain repair, followed by a brief
overview of stateless model checking and Concuerror (Sect. 3). In the same section,
we also briefly describe the main ideas behind the partial order reduction and bound-
ing techniques that Concuerror uses to make testing and verification more effective.
We then describe the initially used model, starting from the correctness properties that
should hold and explaining in detail the various parts of the model that are related
to them (Sect. 4). The chain repair methods are then described together with perfor-
mance results that show the time and effort involved to find bugs in these methods or
verify their correctness. The paper continues by describing and justifying refinements
that were applied to the model, as well as an improvement that was implemented in
Concuerror to increase its effectiveness (Sect. 5). All these enabled Concuerror to ver-
ify the correctness of the final repair method. The paper ends by reviewing related
work (Sect. 6) and offering some final remarks (Sect. 7).

2 Chain Replication

Chain Replication [16] is a variation of leader/follower replication that supports lin-
earizable single objects. In this section, we first describe the basic Chain Replication
algorithm, including how repair of a failed server can be performed after the server
restarts. Then, we describe a variation of the algorithm, which is used by the CORFU dis-
tributed log [13], and finally explain how porting the same repair technique to CORFU

can lead to problems (e.g., linearizability violations).

1 @slfritchie: “I was all ready to have a celebratory “New algorithm works!” tweet. Then
the DPOR model execution w/Concuerror found an invalid case. Ouch.” (https://twitter.com/
slfritchie/status/745863131407220737).

https://twitter.com/slfritchie/status/745863131407220737
https://twitter.com/slfritchie/status/745863131407220737

Testing and Verifying Chain Repair Methods for CORFU 229

2.1 Basic Algorithm

In Chain Replication’s leader/follower protocol, all replica servers are arranged in an
ordered list of head, middle, and tail servers. The head server is the leader; all other
servers are followers. Clients send update operations to the head server.

If the head server rejects an update operation, it sends an error back to the client. If
the operation is accepted, the head server does not reply, but sends state update requests
down the chain. Each follower server (if any) records the update requests to their respec-
tive local data stores and then forwards the requests downstream, in the same order they
were received. After an update has been stored by the last server in the chain, the tail
server sends a successful acknowledgment (ack) to the client. Thus, for a single update
to a chain of length three, four messages are required: client → head, head → middle,
middle → tail, and tail → client.

Clients send read-only operations to the tail server, which is also the linearization
point for all replicas. If the tail server stores a value, then all other servers upstream in
the chain must already store that value or a newer one.

Note that a chain of length one is a single server that acts in both head and tail roles.

2.2 Chain Repair

The Chain Replication paper [16] is clear about what is required to shorten a chain
when a server crashes or is otherwise stopped. It also discusses how to reintroduce a
crashed server back into the chain, but omits details that an implementor must be aware
of to maintain Chain Replication’s linearizable consistency guarantee.

A naı̈ve repair method might take the following steps:

1. stop all surviving servers in the chain, e.g., [Sa
head, S

b
tail],

2. copy Sb
tail’s update history to the server under repair S

c
repair, then

3. restart all servers with a chain configuration of [Sa
head, S

b
middle, S

c
tail].

This offline repair method is easy, but sacrifices cluster availability. Online repair is
desirable, but we also wish to preserve Chain Replication’s property of linearizable
reads by sending only one query to a chain member.

The Chain Replication repair technique used by HibariDB [7] starts a repair with a
transition from chain [Sa

head, S
b
tail] ⇒ [Sa

head, S
b
tail, S

c
repair], where S

c is the crashed
server. Read queries ignore the server under repair; they are sent to the tail server as
usual. Updates are sent to the head server and propagate down the entire chain; replies
are sent by Sc

repair. While this intermediate chain configuration is in place, a separate
process aynchronously copies missing data from Sb

tail to Sc
repair. When all missing

history items have been copied to the server under repair, all servers in the chain enter
read-only mode. A flush command is sent by the head to force all pending writes down
the chain to the tail. When the corresponding ack from the tail is received by the head,
then we know that all update log histories must be equal: Sa

head = Sb
tail = Sc

repair.
Finally, the chain transitions to [Sa

head, S
b
middle, S

c
tail], and then read-only mode is

canceled.

230 S. Aronis et al.

2.3 Chain Replication in CORFU

The design of the CORFU system [13] uses Chain Replication with three changes,
related to what we described so far. First, the responsibility for implementing repli-
cation is moved to the client. CORFU servers do not communicate with each other, so
it is impossible for them to implement the original Chain Replication protocol. Instead,
the replication logic is embedded in the client. Thus, for a single update to a CORFU

chain of length three, six messages are involved, in three pairs between each of client
↔ head, client ↔ middle, and client ↔ tail.

The second change is that CORFU’s servers implement write-once semantics.
Clients may not replace or overwrite a previously written value.

Third, CORFU builds upon standard Chain Replication by identifying each chain
configuration by an epoch number. All clients and servers are aware of the epoch num-
ber, and all client operations include the epoch number. If a client operation contains
a different epoch number, the operation is rejected by the server. A server temporarily
stops service if it receives a newer epoch number from a client. When any participant
detects a change of epoch, it can retrieve the new configuration from a dedicated cluster
layout configuration service.

2.4 Chain Repair Techniques for CORFU

Since CORFU’s servers do not communicate directly with each other as HibariDB’s
servers do, the “read-only mode + sync flush down the chain” technique used by
HibariDB cannot be directly applied to CORFU. Consider a scenario where a chain is
undergoing repair during epoch #5 and there exist two clients, Cw and Cr. We are inter-
ested in the value of some piece of data, which starts with an old value (i.e., not written,
since each key can only be written once). ClientCw is writing a new value to the cluster.
This scenario is illustrated in Fig. 1.

epoch #5 Sahead Sbtail Screpair
value=new value=old value=old

or
value=new

epoch #6 Sahead Sbmiddle Sctail
value=new value=new value=old

or
value=new

Fig. 1. An epoch & chain configuration change while a new value is written to the chain.

While epoch #5 is in effect, reads are sent to server Sb, which is in the tail role.
All read operations during epoch #5 will return either the old or new value. If a client
can read the new value, then all later reads will also read the new value. However,
client Cw should also write to Sc, which is beyond the current tail. This operation can
unfortunately be delayed by the network.

Testing and Verifying Chain Repair Methods for CORFU 231

The repairer is not influenced by the new value, and can therefore change the cluster
configuration to epoch #6. A race condition becomes possible. In epoch #6, Sc will
receive read queries because it has the tail role. Now our writing and reading clients
can race: if Cw is too slow to complete the write—disregarding even that it also has a
wrong epoch number—then Cr can read the old value from the new tail cluster. Back
during epoch #5, it was possible to read the new value. If we can now read the old value
in epoch #6, then it looks like the value has gone “backwards in time”. Such time travel
violates the linearizability property. It is exactly this race condition that was discovered
at the whiteboard discussion in the story of the introduction.

HibariDB’s repair technique works because the head server knows about all pending
writes: the head sends its flush message down the chain, and a final ack sent by the tail
is eventually received by the head. HibariDB also stops new writes during the transition
process. When the flush’s ack is received by the head, all servers have the same update
log history.

In contrast, CORFU has no central coordinator like HibariDB’s head server. Can
we use a variation of this HibariDB’s repair technique without also introducing direct
server ↔ server communication? Does a variation exist that does not require tracking
the state of all writing clients to orchestrate their behavior?

Let us briefly overview a particular testing and verification technique and tool that
we can employ to answer these questions.

3 Stateless Model Checking, Erlang, Concuerror
and Bounding

The problem of verification and testing of distributed systems and their algorithms is
difficult, since one must consider all the different ways in which the involved entities
can interact. Model checking techniques can explore the state space of a program that
implements such an algorithm systematically, verifying that each reachable state satis-
fies some given properties. However, applying model checking to programs of realistic
size is problematic, as it entails capturing, encoding and storing a large number of states.

Stateless model checking [10], also known as systematic concurrency testing, avoids
this obstacle by exploring the state space of a program without explicitly storing inter-
mediate global states. A special run-time scheduler drives program execution, record-
ing operations that can be affected by the interaction between involved entities. State
capturing is not needed, because if all such operations are executed in the same order
from the initial state, then any previously encountered state can be reached again. Thus
the effort of testing and verification can focus only on those operations. Stateless model
checking has been successfully implemented in tools such as VeriSoft [11], CHESS [14]
and Concuerror [12]. The last tool is specific to programs written in Erlang.

Erlang is an industrially relevant programming language based on the actor model
of concurrency [2]. In Erlang, actors are realized by language-level processes imple-
mented by the runtime system instead of being directly mapped to operating system
threads. Each Erlang process has its own private memory area (stack, heap and mail-
box) and communicates with other processes via asynchronous message passing with
copying semantics. Processes then consume messages using selective receive, i.e., they

232 S. Aronis et al.

can select which message to pick from their mailbox using pattern matching. The use of
message passing for inter-process communication, rather than shared memory, makes
distribution transparent. It also makes Erlang suitable for modeling distributed systems.
Erlang has all the ingredients needed for concurrency via message passing and most of
the ingredients (e.g., reads and writes to data stored in shared ETS tables, etc.) needed
for concurrent programming using shared memory.

The tool we will employ, Concuerror [4], is a stateless model checking tool for
finding errors in Erlang programs or verifying their absence2. Given a program and a
test to run, Concuerror uses a dynamic exploration algorithm to systematically explore
the execution of the test under conceptually all process interleaving. To achieve this, the
tool performs a code rewrite that inserts instrumentation at code points where processes
can yield control back to the scheduler during their execution. The instrumentation
that Concuerror uses is selective (i.e., it takes place only at points that involve process
actions that inspect or update some concurrency-related primitive that accesses VM-
level data structures that are shared by processes) and allows Concuerror to control the
scheduling when the program is run, without having to modify the Erlang VM in any
way. Concuerror supports the complete Erlang language and can instrument and test
programs of any size, automatically including any libraries they use.

Since the number of global states that can be reached due to different scheduling
decisions in stateless model checking can be exponential in the number of execution
steps, systematic concurrency testing algorithms use techniques such as partial order
reduction (POR) and bounding to reduce the size of the search space.

Partial Order Reduction. POR techniques define equivalence classes among traces,
based on the happens-before relation between the operations that occur in them [9].
POR algorithms aim to explore just one trace in each such equivalence class. Reversing
the order of execution for a pair of racing operations that exists in an explored trace is
a simple way to obtain a trace that belongs to a different equivalence class. Dynamic
POR techniques start by executing an arbitrary scheduling and then explore additional
traces, justified by the existence of races between actually executed operations. The
exploration continues ‘by need’, trying to examine a minimal number of traces. Several
DPOR algorithms have been proposed, including the Optimal-DPOR algorithm [1], a
provably optimal DPOR algorithm that Concuerror is using.

Bounding. Even when using POR techniques, the exploration needs to examine a lot
of complex interleaving of processes, as a direct result of reversing every possible pair
of racing instructions. Bounding techniques try to limit the complexity of the explored
traces in order to expose bugs that are “shallower”. In order to do that, they impose
constraints on how processes can be scheduled. Exploration begins with a budget which
is expended whenever such a scheduling constraint is violated.

Preemption bounding [15] limits the number of times the scheduler can preempt
(i.e., interrupt) a process in order to run other processes. The justification is that com-
mon patterns of concurrency bugs require few scheduling constraints and these in turn

2 More information about Concuerror is at http://parapluu.github.io/Concuerror.

http://parapluu.github.io/Concuerror

Testing and Verifying Chain Repair Methods for CORFU 233

can be related to few preemptions [3,18]. Delay bounding [6] is another bounding tech-
nique that forces the scheduler to always schedule the first non-blocked process out of
a total order of all processes. The bound here is the number of times this order can
be violated. Concuerror employs exploration tree bounding, a bounding technique that
restricts the number of times a DPOR algorithm can consider schedulings different
from the “first” one. In implementations of stateless model checking with DPOR, the
first scheduling that is explored is usually the same as the one chosen under preemption
bounding: a round-robin scheduling, in which processes execute without preemptions
until they block. Exploration tree bounding limits the number of times exploration can
‘diverge’ from that first scheduling, and essentially combines the benefits of Optimal-
DPOR (i.e., never even start to explore a trace if one that belongs to the same equiva-
lence class has been already explored) with some of the benefits of delay bounding.

Having described our platform we now move on to the description of our models.

4 Modeling CORFU

In this section, we describe our modeling approach for verifying the correctness of
methods for chain repair suitable for CORFU. We first list the correctness properties
that we are interested in. We continue by describing how we model a number of servers
and clients of CORFU using Erlang, followed by how we model each of the chain repair
methods we want to test/verify. Finally, we give a short initial evaluation of the mod-
eling. This section gives a faithful account of the engineer’s initial effort, before the
developers of Concuerror were involved.

4.1 Correctness Properties

We are interested to verify that CORFU servers and clients do not suffer from scenarios
such as the one described earlier as “a value traveling backwards in time during a chain
repair”. More formally, we want the following correctness properties to hold.

Immutability: Once a value has been written in a key, no other value can be writ-
ten to it.

Linearizability: If a read operation sees a written value for some particular key, sub-
sequent read operations for that key must also see the same value.

4.2 Initial Model

A high-level view of the CORFU system that is modeled is the following: A number of
stable servers (one or two suffice) will undergo a chain repair procedure to have a single
additional server added to their chain. Concurrently, two other clients will try to write
two different values to the same key, while a third client will try to read the key twice.

We make some assumptions about the state prior to running a repair simulation. At
some earlier time, all servers were connected in the cluster’s single chain. Then one
server crashed, causing the chain to be shortened. The procedure to shorten the chain
is well-understood and known to be safe, so it is excluded from the model. We also

234 S. Aronis et al.

use only a single key/value pair in the store, corresponding to a single address in the
CORFU log, as the aforementioned correctness properties impose constraints on just a
single key (i.e., log address) in the CORFU system. We assume that none of the servers
in the chain had a value for the key before the crash. After the crash, we assume that the
crashed server restarts with an empty local data store. The repairing process, as well as
writer and reader clients are all assumed to be concurrent and freely interleaved; strict
ordering of operations exists only within a particular client, e.g., between the two read
operations performed by the reader or between the steps of the repairing process.

This model, which in the rest of the paper we refer to as the Initial Model, is suf-
ficient to reveal bugs in two of the chain repair methods we tested. Refinements of the
initial model will be described later (Sect. 5.2), when we present the effort that went
into the verification of the third repair method.

Servers and Clients in the Model. All servers and clients of the CORFU system are mod-
eled as Erlang processes. These processes exchange messages corresponding to requests
sent by clients to the servers and the respective server replies, as well as notifications
to a central coordinator. All processes are running concurrently, allowing all possible
interleaving between events to occur. As mentioned, Concuerror’s scheduler can switch
between processes at every point where instrumentation is added, and this ability can
mimic the effect of network delays at any point in our model and the resulting message
reordering. We are not interested in lost messages.

The types of processes used in the model are the following:

1. Central coordinator. This is the top process of the model and is responsible for
spawning and setting up every other process (servers and clients), monitoring when
all the clients are done and collecting their results, using assertions to check the cor-
rectness properties, and doing final cleanups (i.e., shutting down the servers). It is
used as a modeling convenience; no such coordinator exists in a CORFU system.

2. CORFU log servers. These processes mimic the protocol and behavior specified by
the servers in the CORFU system. There may be two or three of these processes: one
for the server under repair, and the rest representing the healthy chain.

3. The layout server process. This process offers the cluster layout configuration ser-
vice mentioned earlier. A “layout” data structure normally determines the chain
order for each segment of the CORFU distributed log. In our model we assume that
the layout contains only a single chain, and that reads and writes are to a single key;
other aspects of the full CORFU system’s layout structure are out of scope. Each
layout change moves the system to a new epoch.

4. CORFU reading client. This is a process that attempts to read data twice. It must
never experience “time travel” behavior by witnessing a written value followed by a
not written value (i.e., linearizability violation). Also, it should never witness two
different written values (i.e., immutability violation).

5. CORFU writing clients. We have two writer client processes in the model, each
attempting to write a value different from that of the other and report back to the
coordinator. At most one such client is permitted to succeed.

6. The data repair process. This process executes all steps required for copying data
to the server under repair and lengthening the chain afterwards. The steps required
were described in general in Sect. 2.4, and are described in more detail below.

Testing and Verifying Chain Repair Methods for CORFU 235

Coordinator’s Details. The model includes an initialization and shutting down phase
in which the coordinator sets up the servers and waits for all clients to complete their
execution before shutting down the servers. Shutting down the servers is not strictly
necessary, since Concuerror is always able to reset the state of the system before starting
new schedulings, but we include it since a “cleanup phase” is common in testing.

When the clients are done, they send a message back to the coordinator, including
information about the results of their operations. Specifically for the writers, the coor-
dinator uses these results to determine whether more than one write was successful,
violating the immutability property from the writers’ point of view. The coordinator
also inspects whether the log is left at a consistent state, with either no value written to
the key, or a singular value being written consistently to a prefix of the chain.

CORFU Log and Layout Servers’ Details. Servers never initiate any communication
and only respond to requests by clients. As explained earlier, log servers know the
current epoch and will notify clients that are trying to communicate using a wrong
epoch number. Log servers support read and write operations for keys as well as epoch
(and layout) update operations, while the layout server supports layout read and update
operations.

CORFU Clients’ Details. Clients communicate with log servers directly to read or write
data. Write operations are sent to every server in the chain, while read requests are sent
to the tail server only. We assume that clients begin with knowledge of the healthy chain
of servers. If a client request is answered with the information that their epoch is wrong,
they communicate with the layout server to get an update and use this information
consistently to continue their operation.

Valid replies to a write request are ok, meaning that the write was successful, or
written, which denotes that the key already had a value. Valid replies to a read request
are not written, which denotes that no value exists, or {ok,Val} where Val is the value
read. A client request may also be left incomplete, signaled by a starved reply: too
many concurrent layout changes have interrupted the request. In our model, the retry
limit is higher than the number of layout changes performed by the repairing process.

Repair Process’ Details. The data repair process executes the following steps: First, it
changes the layout to include the crashed server in some place in the chain, depending
on the repair method, without changing the head or tail servers. At that stage, read
operations are still sent to the tail server, ignoring the server under repair, even in cases
where it will eventually be in the tail position. On the other hand, write operations must
succeed in all servers (including the server under repair) to be considered successful.

Second, the data repair process copies data from the tail server to the server under
repair. In the model, the repair process needs to copy a single key’s worth of data. We
know the identity of server of the data source (tail), the destination (repair), and the one
data key that we need to sync; all are hard-coded into the repair process. The outcome of
any race between the repairer and the regular writer processes is checked for correctness
at the end of model execution by the coordinator.

Third and last, after a successful second phase, the layout is once more changed to
include the repaired server in its final place in the chain.

236 S. Aronis et al.

We will test three repair methods, differing in where the recovered server is placed
in the chain: the head, the tail or an intermediate position. In the last case, we will test
a configuration with two initially healthy servers, in which the position of the repaired
server will be just between them, as well as a configuration with only one healthy server,
which we will have to “logically split in two” to make space for the server under repair.

4.3 Method 1: Add Repaired Server at End of Chain

Repair using the “end of chain” method is starting from a [Sa
head, S

b
tail] layout, tran-

sitioning to a [Sa
head, S

b
tail, S

c
repair] layout, doing the value copying from Sb and

then changing layout again to shift Sb to a middle role and Sc to the new tail:
[Sa

head, S
b
middle, S

c
tail].

This method is vulnerable to the race condition described in detail in Sect. 2.4. If
we find the same bug in our model, we have some confidence that Concuerror is indeed
a suitable tool to investigate correctness of methods for chain repair.

4.4 Method 2: Add Repaired Server at Start of Chain

This second repair technique is a variation of the first. Instead of putting the server
under repair at the end of the chain, we put it at the beginning. The chain’s configura-
tion during the middle epoch looks like this: [Sc

repair, S
a
head, S

b
tail]. A write operation

during repair in this chain configuration must be sent to Sc and then propagate down the
chain to the other servers. Reads are always served by the tail Sb and the repair value is
also copied from there. A writer trying to communicate with server Sa after repair has
started will be notified that this is no longer the head and will have to ask for a layout
update.

4.5 Method 3: Add Repaired Server in the Middle

In the final technique, the server under repair is placed in the middle of the chain. Our
intuition suggests that this should be a safe thing to do. The original Chain Replication
protocol has no direct contact between a client and a server in the middle of the chain.
There should be no opportunity for a reader client to witness a consistency violation.

For CORFU’s variant of Chain Replication, the client does interact with middle
servers: the client cannot act upon the effect of a write unless the update is success-
ful at all servers in the chain, applied serially in the chain’s order.

This method uses three epochs of chain configuration: (i) epoch #1: [Sa
head, S

b
tail],

(ii) epoch #2: [Sa
head, S

c
repair, S

b
tail], and (iii) epoch #3: [Sa

head, S
c
middle, S

b
tail].

There is only one small problem with this method. What if the healthy chain is of
length one? How can we insert the repaired server into the middle of a too-short chain?
The proposed solution is to split the single server of the healthy chain into two logical
servers: a logical head and a logical tail. The data stores of the two logical roles have
different implementations.

For the logical tail role, the data store remains the same as CORFU’s normal disk-
based store. The differences are applicable only in the context of the head role’s store.

Testing and Verifying Chain Repair Methods for CORFU 237

Table 1. Runs of the methods using bounded and unbounded exploration.

Method Bounded exploration Unbounded exploration

Bug? Traces Time Bug? Traces Time

1 (Tail) Yes 638 57 s Yes 3 542 431 144 h

2 (Head) Yes 65 7 s Yes 389 26 s

3 (Middle) No 1257 68 s No >30 000 000 >750 h

The logical head role’s store is split into a conceptual RAM-based and a disk-based
store. If a key is unwritten, the value of an update operation is first written to the RAM-
based half of the store. Later, if and when the update reaches the logical tail role, the
value is written to the disk-based half of the store and the key is deleted from the RAM
store. If the repair process is interrupted for any reason, the RAM store is discarded,
and the next epoch change will fall back to a chain containing only the healthy server.

4.6 An Evaluation of the Repair Methods on the Initial Model

Let us see where we are so far. Table 1 shows the experimental results of running each of
the three methods on the initial model using a standard desktop and the current version
of Concuerror. We run Concuerror in two modes: (i) using exploration tree bounding
(we used a bound of at most 4) in order to check for bugs, and (ii) without bounding
the exploration, i.e., using the tool for verification. We explain our findings below.

Method 1: Add Repaired Server at End of Chain. When this model is executed, Con-
cuerror finds the linearization violation described earlier. The reader process sees the
value written by a writer in the tail of epoch #2, but after the repair process is com-
pleted, and moves the servers to epoch #3 (without copying that value) the reader’s
second read runs ahead of the writer and finds a non-written entry in the added server,
since the writer has not yet also written there. The bug is found quite fast (in under
a minute) when using bounded exploration. In contrast, without a bound, many more
traces are explored before the bug is found and the hunt lasts for several days.

Method 2: Add Repaired Server at Start of Chain. Concuerror finds a case analogous
to the problem of Method 1, where trouble happens immediately after an epoch change.
Two different bugs are detected, depending on whether bounding is used or not.

In bounded exploration, the buggy trace, which is found very fast, involves a process
scheduling that permits both writer processes to write different values to Sa and Sc:
one during epoch #1 and the other immediately after the transition to epoch #2. Thus,
Concuerror finds that the log history invariant outlined in Sect. 2.1 is violated. Recall
that CORFU’s server implements a write-once store. CORFU’s write-once enforcement
means that nobody can overwrite or replace the conflicting value that is now in the
middle of the chain at Sa. Similarly, the bad value written at Sc cannot be altered.

In unbounded exploration the bug found is different. One of the writers starts a write,
but is interrupted, so the write never reaches the tail server. Then the repair process

238 S. Aronis et al.

starts, notifying the servers in the chain about the new head. The writer finds out about
the new head and starts the write again from the top of the chain. The server under repair
is not initialized and reports that the writer knows a newer layout, so it repeatedly denies
its requests until the writer starves. The remaining clients finish with the new server
unwritten at the head and a value committed at the second position (by the writer’s first
attempt). At this state, any subsequent writer can immediately move the system to a
bad state (succeeding with a different value on the new head, and failing at the second
server since a value is already there).

This scenario is arguably fixable if the layout server notifies the repaired server (that
is to become the new head) before the other servers in the chain. However, this fix is
still vulnerable to the repaired server accepting a value to its unwritten entry, which the
repairer will not see at the tail, just as before.

Method 3: Add Repaired Server in the Middle. For the third method, we used the model
of transition from 1-to-2 servers. Concuerror’s bounded exploration did not find any
trace that violates either Chain Replication’s invariants or CORFU’s invariants. This
result is encouraging, but full verification was not achieved: unbounded exploration ran
for many days without exhausting the search space.

Let us summarize the results of our evaluation so far: (1) Concuerror was able to
detect problems in buggy methods fairly quickly. (2) In the first method, bounding was
crucial for finding the bug in reasonable time. (3) The third method could not be verified.

5 Optimization and Refinements

Since full verification of the third method was not possible with the initial model, we
describe the actions we took to increase the effectiveness of our approach: an opti-
mization of the tool and two refinements of the model. Both were direct results of our
investigation of the traces explored by Concuerror.

5.1 Optimization: Avoid Reordering the Delivery of Unrelated Messages

One of the design choices of Erlang’s message passing mechanism, namely the fact that
at the point when a process receives a message the contents of its mailbox are checked
in the order of their arrival, can lead to a very simple race scenario: If multiple messages
can match a receive statement, the message placed first in the mailbox will be the one
selected. If the order of delivery is different, receive will pick a different message.

To be sound, Concuerror detects such races and explores all possible orders of deliv-
ery for such messages. However, Concuerror’s original implementation had not been
optimized to detect cases where a receive statement is written in a way such that
only particular messages can be received, regardless of the delivery of other messages.
Instead, the tool treated any two messages that were delivered to the same process as
“possibly racing”.

In our model, once a client process C has executed its code, it has to notify the
coordinator process with a {done,C,. . .} message. Even though the coordinator is
written in a way such that each such message can only be received by one particular

Testing and Verifying Chain Repair Methods for CORFU 239

receive statement (using a particular C value), Concuerror originally explored all
possible orders of delivering such messages. This introduces a multiplicative factor in
the number of traces that need to be explored, which is factorial in the number of clients.

To avoid this unnecessary exploration, we extended Concuerror with the ability to
take into account the receive patterns used when a message is received when deter-
mining which other messages are racing with that message’s delivery. As a trivial exam-
ple of the usefulness of the extension, we note that the extended version of Concuerror
will not try different delivery interleavings for messages that are never retrieved from a
process’ mailbox. The technical aspects of the implementation are beyond the scope of
this paper, but its benefits will become evident in the final evaluation.

5.2 Two Refinements of the Model

Conditional Read. In the initial model, the reader issues two read requests, with the
intent to detect values that change or disappear. Either bug observation is possible only
if the first read operation sees a value written (from either writer). There exist, however,
cases where the first read is either observing the location as not yet written, or is starved
altogether. Issuing another read request in such cases cannot expose any bugs and only
results in exploring unnecessary traces when interleaving this second read request.

In order to avoid such unnecessary exploration, we have refined the reader client so
that it only attempts a second read operation if such an operation can actually reveal
bugs: namely only if the first read operation sees some written value.

Convert Layout Server to an ETS Table. A second refinement of the model is to simplify
the modeling of the communication with the layout server. The reader and writer clients
communicate with the layout server just to read epoch and layout information, and in the
initial model this communication is implemented with messages. Concuerror, even with
the optimization described in Sect. 5.1, must explore both orderings in which requests
from different clients arrive to the layout server; the server’s receive patterns should
be able to handle any client’s request.

To avoid reorderings of requests that are layout read operations, and therefore com-
mutable, we changed the modeling of the layout server to instead use a shared mem-
ory location in the Erlang Term Storage area for the layout information. Concuerror’s
knowledge of operations that conflict with each other is precise enough to not treat read
operations to such a location as racing. Therefore it does not need to reverse them and
explore “the other” trace. There will of course still be races involving the layout server:
the repairing process has to write to the same shared memory location when changing
epochs, introducing races with any read requests.

5.3 Evaluation of the Effect of the Optimization and Refinements

Recall that the only two cases where Concuerror did not complete in reasonable time
was when bounding was not used. More specifically, Concuerror took a lot of time to
find a bug in Method 1 and could not verify the correctness of Method 3.

For Method 3, applying the optimization and the two refinements above is sufficient.
With these changes, Concuerror can verify that the new model has no bugs in 48 h,

240 S. Aronis et al.

after exploring 3 931 413 traces. We did not evaluate the effect of each change on its
own, since the required time is significantly larger (e.g., not using the optimization of
Sect. 5.1 with four clients sending done messages back to the supervisor, conceptually
leads to the exploration of 4! = 24 times as many traces).

Table 2. Evaluation of improvements applied on Method 1, without bounding.

Optimization (Sect. 5.1) Refinements (Sect. 5.2) Traces Time

Cond. read ETS layout

✗ ✗ ✗ 3 542 431 144 h

✓ ✗ ✗ 151 923 5 h 30m

✗ ✓ ✗ 3 787 6m20 s

✓ ✓ ✗ 212 19 s

✗ ✗ ✓ 1 059 043 29 h 40m

✓ ✗ ✓ 47 148 1 h 05m

✗ ✓ ✓ 5 239 5m20 s

✓ ✓ ✓ 289 18 s

For Method 1, we show more detailed results in Table 2. The message delivery
order optimization reduces the time to the first bug to 5 h 30m (151 923 traces) and
the reader refinement even more so: a bug is found in 6m20 s (3 787 traces). When
used together, these improvements can find a bug in the method in just 19 s (only 212
traces are explored). The layout server refinement is not so effective on its own and
its application slightly increases the number of traces when combined with the reader
refinement. With all three changes, the traces are shorter (no back and forth communi-
cation with an extra server) and thus the bug is found slightly faster (in 18 instead of
19 s) even though slightly more traces (289) are explored.

6 Related Work

An approach similar to ours has been described in the presentation of the P# lan-
guage [5], which is suitable for designing asynchronous systems modeled as state
machines. This modeling is very appealing for systems such as CORFU and indeed
the chain replication algorithm has been included in the evaluation of the language.
However, the bug-finding capabilities of the P# runtime are based on either depth-first
systematic testing (without POR or our improvements for message passing), or random
testing (which cannot be used for verification). Moreover the focus of the evaluation of
chain replication is not on chain repair methods.

A different approach, used in the verification of distributed databases (including
ones based on chain replication), has been to write a rigorous formal specification of
the system and then use techniques such as temporal logic [8] or proof assistants [17]
to complete the verification, possibly extracting an executable implementation from the

Testing and Verifying Chain Repair Methods for CORFU 241

specification. In contrast, our technique is using a simple, directly executable simula-
tion of the system and all safety properties are described as plain, non-sophisticated
assertions.

7 Concluding Remarks

We have described our experiences from using stateless model checking to test the
correctness of three repair methods for the Chain Replication algorithm used in CORFU.
Using a fairly straightforward model written in Erlang, we were able to find bugs in the
first two repair methods using Concuerror, some more quickly detectable after applying
a simple bounding technique. In an attempt to verify the correctness of the third repair
method, we also designed and implemented an optimization for Concuerror, based on a
particular pattern found in Erlang programs, and two techniques for refining the model.
These changes allowed us to verify the correctness of the third chain repair method in
reasonable time.

Acknowledgments. This work was supported in part by the Swedish Research Council and car-
ried out within the Linnaeus centre of excellence UPMARC, Uppsala Programming for Multicore
Architectures Research Center.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction.
In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2014, pp. 373–384. ACM, New York (2014). doi:10.1145/2535838.
2535845

2. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
3. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized scheduler with

probabilistic guarantees of finding bugs. In: Proceedings of ASPLOS, ASPLOS XV, pp.
167–178. ACM, New York (2010). doi:10.1145/1736020.1736040

4. Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for detecting concurrency errors
in Erlang programs. In: Sixth IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST 2013), pp. 154–163. IEEE Computer Society (2013)

5. Deligiannis, P., Donaldson, A.F., Ketema, J., Lal, A., Thomson, P.: Asynchronous program-
ming, analysis and testing with state machines. In: Proceedings of the 36th PLDI, PLDI
2015, pp. 154–164 (2015). doi:10.1145/2737924.2737996

6. Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. In: Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2011, pp. 411–422. ACM, New York (2011)

7. Fritchie, S.L.: Chain replication in theory and in practice. In: Proceedings of the 9th ACM
SIGPLAN Workshop on Erlang, Erlang 2010, pp. 33–44. ACM, New York (2010). doi:10.
1145/1863509.1863515

8. Geambasu, R., Birrell, A., MacCormick, J.: Experiences with formal specification of fault-
tolerant file systems. In: IEEE International Conference on Dependable Systems and Net-
works With FTCS and DCC, DSN 2008, pp. 96–101. IEEE (2008)

9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems: An App-
roach to the State-Explosion Problem. Springer-Verlag New York Inc., Secaucus (1996)

http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1145/1736020.1736040
http://dx.doi.org/10.1145/2737924.2737996
http://dx.doi.org/10.1145/1863509.1863515
http://dx.doi.org/10.1145/1863509.1863515

242 S. Aronis et al.

10. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Proceed-
ings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1997, pp. 174–186. ACM, New York (1997). doi:10.1145/263699.263717

11. Godefroid, P.: Software model checking: the VeriSoft approach. Form. Methods Syst. Des.
26(2), 77–101 (2005). doi:10.1007/s10703-005-1489-x

12. Gotovos, A., Christakis, M., Sagonas, K.: Test-driven development of concurrent programs
using Concuerror. In: Proceedings of the 10th ACM SIGPLANWorkshop on Erlang, Erlang
2011, pp. 51–61. ACM, New York (2011). doi:10.1145/2034654.2034664

13. Malkhi, D., Balakrishnan, M., Davis, J.D., Prabhakaran, V., Wobber, T.: From Paxos to
CORFU: a flash-speed shared log. SIGOPS Oper. Syst. Rev. 46(1), 47–51 (2012). doi:10.
1145/2146382.2146391

14. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing heisenbugs in concurrent programs. In: Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI 2008, pp. 267–280. USENIX
Association, Berkeley (2008)

15. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidel-
berg (2005). doi:10.1007/978-3-540-31980-1 7

16. van Renesse, R., Schneider, F.B.: Chain replication for supporting high throughput and avail-
ability. In: Proceedings of the 6th Conference on Symposium on Operating Systems Design
& Implementation, OSDI 2004, pp. 91–104. USENIX, Berkeley (2004)

17. Schiper, N., Rahli, V., van Renesse, R., Bickford, M., Constable, R.L.: Developing correctly
replicated databases using formal tools. In: 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 395–406. IEEE (2014)

18. Thomson, P., Donaldson, A.F., Betts, A.: Concurrency testing using controlled schedulers:
an empirical study. ACM Trans. Parallel Comput. 2(4), 23:1–23:37 (2016). doi:10.1145/
2858651

http://dx.doi.org/10.1145/263699.263717
http://dx.doi.org/10.1007/s10703-005-1489-x
http://dx.doi.org/10.1145/2034654.2034664
http://dx.doi.org/10.1145/2146382.2146391
http://dx.doi.org/10.1145/2146382.2146391
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://dx.doi.org/10.1145/2858651
http://dx.doi.org/10.1145/2858651

Synthesizing Coalitions for Multi-agent Games

Wei Ji1,2, Farn Wang3, and Peng Wu1,2(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{jiwei,wp}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Deptartment of Electrical Engineering, National Taiwan University,
Taipei, Taiwan

farn@ntu.edu.tw

Abstract. We present Temporal Cooperation Logic with Coalition Vari-
ables (TCLX), for the synthesis of coalitions of unknown sizes to achieve
temporal objectives in multi-agent games. TCLX extends Temporal
Cooperation Logic (TCL) by allowing existentially quantified variables
for agent sets and operators for set relations. Even though TCLX is
shown more expressive than TCL and incomparable with AMC, GL,
and ATL∗ in expressiveness, the verification complexities of TCLX are
still maintained as those of TCL, i.e., EXPTIME-complete for model-
checking and 2-EXPTIME-complete for satisfiability checking. We then
extend the on-the-fly model-checking algorithm of TCL for implementing
a TCLX model-checker. Our implementation is experimented with three
benchmark models in the context of network security, software develop-
ment, and marketing promotion. The experiment results show the broad
applicability and promises of TCLX in synthesizing coalitions for multi-
agent systems.

1 Introduction

Over the last decade, significant progress has been observed in game theory and
temporal logics for modelling and verifying multi-agent systems. The model-
checking technology can thus be employed to verify whether a multi-agent sys-
tem model satisfies specification properties expressed in temporal logics, such
as alternating-time temporal logic (ATL), ATL∗, alternating μ-calculus (AMC),
game logic (GL) [1], strategy logic (SL) [4,14–16], basic strategy interaction
logic (BSIL) [19], and temporal cooperation logic (TCL) [6]. These game tem-
poral logics can express the cooperation of known agents in a coalition to
achieve a goal. For example, an NBA coach can put down the TCL specifica-
tion 〈Bryant, Jeremy〉((〈+Durant〉�¬foul)∧(〈+Boozer〉�♦rebounds)) for a game
plan to win a game. This formula specifies that Kobe Bryant and Jeremy Lin

This work is partially supported by the National Key Basic Research Program of
China under Grant No. 2014CB340701, and the National Key Research and Devel-
opment Program of China under Grant No. 2017YFB0801900.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 243–259, 2017.
DOI: 10.1007/978-3-319-66845-1 16

244 W. Ji et al.

are both on the court with the following two options: (1) Kevin Durant is also
on the court so that fouls will never be made; and (2) Carlos Boozer is also on
the court so that many rebounds can be obtained.

However, the above temporal logics require the explicit specification of agents
in a coalition and lack the flexibility for solving the new business challenges
shown below.

• An NBA coach needs to assemble a team with diverse skills and good health
conditions from a roster of players to maximize the opportunity of winning
a game. But there are too many combinations that seem viable. The coach
need efficient decision support.

• Facing an outbreak of Dengue fever, a disease-control agency need appropriate
its limited budget to certain stations and villages so that the disease can be
best contained. However the decision is not easy since many factors, including
the distribution of the reported cases, the facilities in the stations, the traffics
among the villages, and the profile of the populations, need be considered.

As can be seen from the above examples, in a more general setting, support
is really needed in synthesizing an appropriate coalition, together with strategies
for agents in the coalition, to achieve their goals. In this work, we propose Tem-
poral Cooperation Logic with Coalition Variables (TCLX) to support such a need.
TCLX is an extension of TCL, which is in turn an extension of ATL. For exam-
ple, let X,Y,Z denote variables of agent sets. The TCLX formula 〈X〉(Bryant ∈
X ∧ |X| ≤ 2 ∧ 〈+Y 〉(|Y | ≤ 3 ∧ �¬foul) ∧ 〈+Z〉(|Z| ≤ 3 ∧ �♦rebounds)) spec-
ifies that the coach prefers two coalitions, X ∪ Y and X ∪ Z, in a game with
the following constraints: (1) both coalitions need Kobe Bryant and may share
another player; (2) the coalition X ∪ Y always guarantees no foul; and (3) the
coalition X ∪ Z always guarantees getting rebounds infinitely often. Given a
game graph that models the playbooks of the coach and the opponent team, the
skills and the health conditions of the players, a model-checker can thus support
synthesizing the appropriate values of X,Y , and Z for the coach’s goal.

The theoretical contributions of this work are as follows:

• TCLX is more expressive than TCL, and incomparable with AMC, GL, and
ATL∗ in expressiveness.

• The satisfiability and model-checking problems of TCLX are 2-EXPTIME-
complete and EXPTIME-complete, respectively, the same as those of TCL.

Thus, TCLX gains additional expressiveness over TCL without sacrificing the
worst-case complexity of verification. We endeavoured to implement a TCLX
model-checker and experiment with 15 TCLX properties against three game
models. The model checking experiments show further promise of TCLX for
real-world applications.

Related Work. Module checking has been proposed to verify whether an open
system satisfies a specification property expressed in a temporal or strategic
logic [7,8,11]. ATL, ATL∗, AMC, and GL were presented with strategy quantifier
〈〈A〉〉, where A is a finite set of agents [1]. A very expressive extension to ATL∗ was

Synthesizing Coalitions for Multi-agent Games 245

introduced with other players’ strategies and memory constraints [2]. The model-
checking problem of this extension has been shown to be decidable. Expres-
sive constraints on strategies in concurrent games were proposed by extending
μ-calculus with decision modalities [17]. The decidability of satisfiability prob-
lems in this direction was reported with new context constraints, e.g., bounding
the number of moves by agents [12].

SL was introduced, allowing for the first-order quantification over strategies
[4]. The decision procedure is however non-elementary. Fragments of SL were
identified with 2-EXPTIME model-checking algorithms [14–16]. BSIL, a frag-
ment of SL, was identified with only PSPACE model-checking complexity [19].
It can express certain useful properties that ATL∗, AMC, and GL cannot. BSIL
was also extended to TCL, which is strictly more expressive than BSIL [6].
The model-checking problem of TCL is however EXPTIME-complete. A coali-
tion structure generation problem of a multi-agent system focuses on partitions
of agents that can fulfill a combinatorial optimization objective [18], while the
TCLX framework aims to synthesize dynamic coalitions fulfilling a temporal
cooperation objective.

The rest of this paper is organized as follows. Section 2 presents the system
model for TCLX, i.e., concurrent game graphs, while Sect. 3 defines the syn-
tax and semantics of TCLX. Section 4 discusses the expressiveness of TCLX.
Sections 5 and 6 respectively establish the complexity of the TCLX satisfiability
and model-checking problem. Then, we present our implementation of the TCLX
model-checker and report our experiments in Sect. 7. The paper is concluded in
Sect. 8 with future work.

2 System Model

2.1 Motivating Example

Consider a vendor that intends to promote sales of her new product via a social
network shown in Fig. 1a. A node represents a village. A single individual can
be regarded as a village with only one inhabitant. Other than the vendor, there
are three more individuals Ana, Bob, and Cindy, and five villages v1, . . . , v5.
Inside each node, we label the size of the population of the corresponding village
below its name.

Suppose Ana, Bob, and Cindy are celebrities (or people with special power
in spreading incoming messages). The neighboring villages of a celebrity can
be regarded as the fan communities of the celebrity. The fans can easily follow
their favorite celebrities’ suggestions. The label on an arrow in Fig. 1a represents
the action that the destination node receives a message from the correspond-
ing source node. A celebrity can receive messages from the vendor or another
celebrity, and can simultaneously send out messages to some of her/his fan com-
munities. The vendor would need to decide which (and how many) celebrities she
should hire so that the new product information can reach the maximum number
of fans under budgetary and regulatory constraints, e.g., the maximum number

246 W. Ji et al.

Fig. 1. A multi-agent game

of celebrities that she can hire. We aim to design a framework to technically
support such a need in the general setting of social networks.

SIR model [10] is the most popular model in social network computing. Each
individual can be in one of the three modes: S (susceptible), I (infected), or R
(recovered). A village may own an internal mechanism so that its inhabitants
may distribute over various modes at a moment. Thus, we can build a finite
behavior model of the dynamics of marketing promotion upon a social network.
Herein, we use counter-abstraction [5] to model the villages. For each village, we
only record the respective number of inhabitants in mode S, I, and R, as shown
in Fig. 1b.

Then, Fig. 1c shows such a finite behavior model, a concurrent game graph.
It defines the behavioral structure among the states, represented by the ovals.
The arrows in Fig. 1c represent state transitions labeled with move vectors mod-
elling concurrent message spreading. We use a word like “xyz” to denote the
simultaneous actions by an agent. Let ‘-’ denote “no move” and ‘*’ denote “any
move”. The move labels for communities v1,. . . ,v5 are omitted in the move
vectors because these communities always make no move. For example, on the
arrow from state q1 to q4, the move vector [---, de-, ****, kl] indicates that in this
transition, no action is made by the vendor (and the inhabitants in communities
v1,. . . ,v5), only actions d, e are by Ana respectively to v1 and v2, any action

Synthesizing Coalitions for Multi-agent Games 247

can be by Bob, and only actions k, l are by Cindy respectively to v4 and v5. It
can be seen that such a game graph can flexibly and conveniently model various
interaction scenarios in many application domains.

2.2 Concurrent Game Graphs

Let d denote a vector of dimension m and d [a] denote its a-th element for
a ∈ [1,m]. Let AP be a set of atomic propositions. A concurrent game graph of
m agents (indexed 1, . . . , m, respectively) is defined as a tuple G = 〈Q, r, λ,Σ, δ〉,
where

• Q is the set of states, with r ∈ Q the initial state (or root) of G;
• λ : Q → 2AP is a proposition labeling function;
• Σ = S1×. . .×Sm is a set of move vectors, where Sa is a set of moves available

to agent a ∈ [1,m].
• δ : Q×Σ → Q is a transition function such that δ(q,d) is the successor state

reached from state q ∈ Q on move vector d ∈ Σ.

For the convenience of presentation and proof, δ is assumed total, i.e., defined
for all states and move vectors. In practice, when a move vector is not admitted,
we may introduce an artificial failure state as the destination state or add a
self-loop transition for the move vector. Let EG = {(q, δ(q,d)) | q ∈ Q,d ∈ Σ}
be the set of labeled transitions.

An infinite path ρ = q0q1 · · · is a play in G if for every k ∈ N, (qk, qk+1) ∈ EG .
A play prefix is a play of finite length. The length of a play prefix π = q0 · · · qk,
denoted |π|, is defined as k + 1. A play can be viewed as an infinite play prefix
with length ∞. Given a play or a play prefix ρ = q0q1 · · · and 0 ≤ j < |π|, let
ρ(j) = qj . For a play prefix π, let last(π) denote the last state in π, i.e., π(|π|−1).
Given a play (prefix) ρ and 0 ≤ h < k < |π|, let ρ[h, k] denote ρ(h) · · · ρ(k). If ρ
is a play, then ρ[h,∞) denotes the infinite tail ρ(h)ρ(h + 1) · · · .

A strategy for an agent a is a function from Q∗ to Sa. A coalition α is
a partial mapping from [1,m] to strategies. Let defined(α) def= {a|1 ≤ a ≤
m,α(a) is defined}. An agent a is in a coalition α if a ∈ defined(α). A play ρ is
compatible with a coalition α if for every k ∈ N, there exists a d ∈ Σ such that
δ(ρ(k),d) = ρ(k + 1) and for every a ∈ defined(α), α(a)(ρ[0, k]) = d [a].

3 TCLX

TCLX extends the strategy interaction quantification of TCL with coalition vari-
ables in the declaration of strategies.

Syntax. A TCLX formula φ is constructed with the following three syntax rules:
φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈X〉ψ
ψ ::= η | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | 〈−X〉ψ1 | 〈+X〉ψ1 | © ψ1 | ηUψ1 | ηWψ1

η ::= φ | c ∈ X1 | |X1| ∼ c | |X1| ∼ |X2| | X1 ⊆ X2

| η1 ∨ η2 | η1 ∧ η2 | 〈−X〉η1 | © η1 | η1Uη2 | η1Wη2
where X,X1, and X2 are coalition variables that range over sets of agent indices,

248 W. Ji et al.

c is an integer constant, and ∼ is one of ≤, <,=, �=, >, and ≥. Standard short-
hands like Boolean conjunction, implication, and always modality (�) can be
adopted as follows.

true ≡ p ∨ (¬p) ♦φ1 ≡ trueUφ1 φ1∧φ2 ≡ ¬((¬φ1)∨(¬φ2))
false ≡ ¬true �φ1 ≡ φ1Wfalse φ1 ⇒ φ2 ≡ (¬φ1) ∨ φ2

〈A〉ψ ≡ 〈X〉(ψ ∧ |X| = |A| ∧ ∧
a∈A a ∈ X)

〈+A〉ψ ≡ 〈+X〉(ψ ∧ |X| = |A| ∧ ∧
a∈A a ∈ X)

〈−A〉ψ ≡ 〈−X〉(ψ ∧ |X| = |A| ∧ ∧
a∈A a ∈ X)

Formula φ, ψ, and η are respectively called state formulas, tree formulas, and
path formulas. Given a formula like 〈X〉ψ (respectively, 〈+X〉ψ or 〈−X〉ψ), ψ is
called the scope of X. Intuitively,

• 〈X〉 is a coalition binder (CB) that cancels bindings of strategies to all agents,
finds a set A of agents for X, and declares a new set of strategies bound to
the agents in A to enforce the scope of X.

• 〈+X〉 is a coalition interacter (CI) that finds a set A of agents for X, and
declares a new set of strategies bound to the agents in A to enforce the scope
of X. Any strategy binding inherited from the ancestor scopes that conflicts
with the new strategy bindings are overridden.

• 〈−X〉 is a coalition releaser (CR) that finds a set A of agents for X and
cancels their inherited strategy bindings from the ancestor scopes, if any.

If there are two declarations with the same variable names, the inner one
overrides the outer one in the inner scope. For example, in the formula
〈X〉 © (p ∧ 〈+X〉(|X| < 3 ∧ qUw)), the X in |X| < 3 refers to the one
declared in CI 〈+X〉. In practice, we can use the positions of the coalition
variables in a TCLX formula to tell one from another. For example, the for-
mula 〈X〉((〈+Y 〉�p) ∧ 〈+Y 〉(♦q ∧ 〈X〉 © ¬p)) can be equivalently rewritten as
〈X1〉((〈+X2〉�p) ∧ 〈+X3〉(♦q ∧ 〈X4〉 © ¬p)) in TCLX. For the convenience of
presentation, we assume that no two coalition variables are the same in a TCLX
formula without loss of generality.

As in TCL [6], we do not allow universal CIs and CRs in the syntax of
TCLX as the respective duals of existential CIs and CRs, because such duals
result in a too succinct fragment of the strategy logic with non-elementary model-
checking complexity. In general, the model-checking complexity is exponential to
the number of alternations between existential and universal quantifications. As
a consequence, negations in front of existential CIs and CRs are also not allowed
since universal CIs and CRs can be encoded as the negations of existential CIs
and CRs.

Semantics. Due to the design of TCLX, strategy bindings can only effectively
happen when either a non-trivial CB or a non-trivial CI is interpreted. As the
introduction of additional strategies through a non-trivial CI is governed by a
positive Boolean combination, all strategy selections can be performed concur-
rently. This leads us to the concept of coalition schemes. Let Var(φ) be the set
of coalition variables in a TCLX formula φ. For a set of m agents, a coalition
scheme σ of φ is a mapping from Var(φ) to subsets of [1,m]. Let σ(φ) be the

Synthesizing Coalitions for Multi-agent Games 249

TCL formula identical to φ except that every X ∈ Var(φ) is replaced by σ(X).
The existence of a coalition scheme refers to all the strategies introduced by
the CBs or CIs in a TCLX formula, but only the strategies introduced by the
respective CB and the CIs in its scope are relevant. Note that it suffices to intro-
duce new strategies at the points where eventualities become true for the first
time, because the validity of a TCLX state formula cannot depend on that of
the left-hand side of an until (U) or a weak until (W) after the first time it has
been satisfied. Therefore, the strategies do not really depend on the positions in
a play in which they are invoked, and hence we can guess them up-front.

The semantics of TCLX also follows the assumption of ATL/ATL∗, i.e., the
number of agents (concurrency size) in a game graph must be fixed. Let α1α2

denote the update of partial function α1 with partial function α2, i.e., if agent
a is defined in α2, α1α2(a) = α2(a); else if a is defined in α1, α1α2(a) = α1(a);
otherwise, a is undefined in α1α2. Let [X �→ A] denote a partial function that
only maps X to A.

We say that a concurrent game graph G = 〈Q, r, λ,Σ, δ〉 satisfies a TCLX
formula φ at a state q ∈ Q with a coalition scheme σ and a coalition α, denoted
G, q |=α

σ φ, where σ is used to evaluate the coalition variables, and α directs
the moves of the present coalition. Formally, G, q |=α

σ φ is true iff the following
inductive constraints hold.

• G, q |=α
σ p iff p ∈ λ(q).

• G, q |=α
σ ¬φ1 iff G, q |=α

σ φ1 is false.
• G, q |=α

σ φ1 ∨ φ2 iff G, q |=α
σ φ1 or G, q |=α

σ φ2.
• G, q |=α

σ 〈X〉ψ iff there exists a coalition β such that for all plays ρ from q com-
patible with β, ψ is satisfied by ρ with coalition scheme [X �→ defined(β)],
denoted ρ |=β

[X �→defined(β)] ψ.

Given a tree or path formula ψ, a play ρ, and a coalition scheme σ and a coalition
α, ρ |=α

σ ψ iff the following inductive constraints hold.

• ρ |=α
σ φ iff G, ρ(0) |=α

σ φ.
• ρ |=α

σ ψ1 ∨ ψ2 iff ρ |=α
σ ψ1 or ρ |=α

σ ψ2.
• ρ |=α

σ ψ1 ∧ ψ2 iff ρ |=α
σ ψ1 and ρ |=α

σ ψ2.
• ρ |=α

σ
© ψ1 iff ρ[1,∞) |=α

σ ψ1.
• ρ |=α

σ ηUψ1 if there exists a k ∈ N such that ρ[k,∞) |=α
σ ψ1 and for all

j ∈ [0, k − 1], ρ[j,∞) |=α
σ η.

• ρ |=α
σ ηWψ1 iff ρ |=α

σ ηUψ1 or for all k ∈ N, ρ[k,∞) |=α
σ η.

• ρ |=α
σ 〈−X〉ψ1 iff there exists a set A ⊆ [1,m] and a coalition β identical

to α except that for all a ∈ A, β(a) is undefined, such that for all plays ρ′

compatible with β starting at ρ(0), ρ′ |=β
σ[X �→A] ψ1.

• ρ |=α
σ 〈+X〉ψ1 iff there exists a coalition β such that for all plays ρ′ compat-

ible with αβ starting at ρ(0), ρ′ |=αβ
σ[X �→defined(β)] ψ1.

• ρ |=α
σ c ∈ X1 iff c ∈ σ(X1).

• ρ |=α
σ |X1| ∼ c iff |σ(X1)| ∼ c.

• ρ |=α
σ |X1| ∼ |X2| iff |σ(X1)| ∼ |σ(X2)|.

• ρ |=α
σ X1 ⊆ X2 iff σ(X1) ⊆ σ(X2).

250 W. Ji et al.

Then, a concurrent game graph G = 〈Q, r, λ,Σ, δ〉 satisfies a TCLX formula φ,
denoted G |= φ, iff G, r |=[]

[] φ, where [] is the empty function undefined on
everything.

4 Expressiveness of TCLX

Note that we follow the tradition of ATL [1] and use game graphs of fixed
concurrency sizes to establish our expressiveness result. Formulas φ1 and φ2

respectively of two languages are equivalent if for every game graph G and every
state q of G, q satisfies φ1 if and only if q satisfies φ2. A formula φ is not expressible
in L if there is no formula in L equivalent to φ. A language L1 is as expressive
as another language L2 if for every formula φ2 ∈ L2, there is a formula φ1 ∈ L1

equivalent to φ2. L1 is more expressive than L2 if L1 is as expressive as L2 while
L2 is not as expressive as L1.

We show in this section that TCLX is more expressive than TCL, and incom-
parable with AMC, GL, and ATL∗. Intuitively, a formula like 〈X〉ψ (respectively,
〈+X〉ψ or 〈−X〉ψ) is true if and only if there is a set A of agent indices such that
〈A〉ψ (respectively 〈+A〉ψ or 〈−A〉ψ) is true according to the TCL semantics. In
fact, TCL can be viewed as a subclass of TCLX. For example, the TCL formula
〈1〉♦((〈+2〉 © p) ∧ 〈2, 3〉�q) is equivalent to 〈X〉(1 ∈ X ∧ |X| = 1 ∧ ♦((〈+Y 〉(2 ∈
Y ∧ |Y | = 1∧ ©p))∧ 〈Z〉(2 ∈ Z ∧ 3 ∈ Z ∧ |Z| = 2∧�q))). With such translation,
it is clear that every TCL formula can be reduced in linear time to an equivalent
TCLX formula, and Lemma 1 can be established.

Lemma 1. TCLX is at least as expressive as TCL. ��
Let cmax(φ) be the greatest integer constant used in formula φ. Let cmax(φ) =

0 if no integer constant exists in φ. For example, cmax(〈X〉(3 ∈ X ∧ 〈+Y 〉(|Y | <
6 ∧ �p))) = 6.

Lemma 2. The TCLX formula ξ : 〈X〉(|X| ≤ 1∧©p) is not expressible in TCL.

Proof. For every TCL formula φ, we build two game graphs G1, G2 in Fig. 2 that
φ cannot distinguish, while ξ can. In this figure, an edge label [∗, . . . , ∗, a, b] means
all the move vectors, of which the last two elements are a and b in sequence, can
trigger the labelled transition. Note that an agent index constant in a TCL
formula can only occur in an agent index set A in a quantifier like 〈A〉, 〈+A〉 or
〈−A〉. The game graphs G1, G2 are both for cmax(φ) + 1 agents. It is apparent
that G1 does not satisfy ξ, while G2 does.

Let K be the set of agent index constants used in φ. Note that cmax(φ) +
1 �∈ K. According to the semantics of TCL, there must be a path subformula ψ of
φ, a coalition scheme σ, and a subset V ⊆ Var(φ) with the following constraints.

• ψ is in the scope of the variables in V ;
• Exactly one of G1, r, σ |= ψ and G2, r, σ |= ψ is true. (Note that in TCL,

G1, r, σ |= ψ means ψ is true along every play compatible with σ from r in
G1.)

Synthesizing Coalitions for Multi-agent Games 251

Fig. 2. Game graphs for the expressiveness of TCLX

However, cmax(φ) + 1 �∈ ⋃
X∈V σ(X) and agent cmax(φ) + 1 is not involved in

the strategies of agents in
⋃

X∈V σ(X) to enforce ψ. Without the cooperation
by agent cmax(φ) + 1, ψ cannot distinguish G1 and G2 at r with σ since all the
trace sets of agents 1, . . . , cmax(φ) are the same {{p}∅∗, ∅∗}. The lemma is thus
proven. ��

We close this section by remarking on the incomparability of TCLX with
AMC, GL, and ATL∗ in expressiveness. The argument pretty much follows the
related lemmas in [6,19] that show 〈1〉((〈+2〉♦p) ∧ 〈+2〉♦q) is inexpressible in
AMC, GL, and ATL∗ while some formulas respectively in AMC, GL, and ATL∗

are inexpressible in TCL.

5 Satisfiability of TCLX

The key observation is that if two agents in a game graph G always agree to, or
not to, enforce path properties with respect to every coalition, we can reduce G to
a G′, in which the two agents behave as one agent and every other agent behaves
the same as in G. For example, if agents 2 and 3 are such coalition partners in
G, and are not constants used in a TCLX formula φ, we can construct a G′ with
agents 2 and 3 replaced with a new agent (2, 3) such that for every pair of moves
e and f issued by agents 2 and 3, respectively, in a transition in G, agent (2, 3)
issues move (e, f) in the corresponding transition in G′. Then we can show that
G satisfies φ if and only if G′ satisfies φ.

This observation sheds light on the finite structure of coalition schemes in
satisfying a TCLX formula φ. The finite structure is indeed the intersection
relation among all the values assigned to the coalition variables. Given a coalition
scheme σ of φ, a group of agent indices greater than cmax(φ) that agree in
enforcing path obligations according to σ can be identified as a subset of Var(φ).

Example 1. For the TCLX formula φ = 〈X〉(1 ∈ X ∧ ♦((〈+Y 〉�p) ∧ 〈+Z〉♦q)),
suppose we have a game graph G of five agents and a coalition scheme σ such

252 W. Ji et al.

that σ(X) = {1, 2, 3, 4}, σ(Y) = {2, 3}, and σ(Z) = {2, 3}. As can be seen, both
1 and 4 are in σ(X), both 2 and 3 are in σ(X), σ(Y), and σ(Z), while 5 is in
none of σ(X), σ(Y), and σ(Z). Thus, agents 1 and 4 are identified with {X},
agents 2 and 3 are identified with {X,Y,Z}, while agent 5 is identified with the
empty set. This matches our observation that agents 1 and 4 can be merged to
one agent in σ, and so can agents 2 and 3. ��

The reduction by merging agents can be repeated until there are no more than
2|Var(φ)| agents. However, we only merge those agents with indices greater than
cmax(φ). This is because if we also merge agents with indices no greater than
cmax(φ), we would have to reduce φ by lowering some agent index constants
in φ. Such reduction can be messy and does not affect the complexity of the
satisfiability problem.

Suppose G is a game graph of m agents and there are agent indices a, b such
that cmax(φ) < a < b ≤ m and for every X ∈ Var(φ), a ∈ σ(X) if and only if
b ∈ σ(X). Let merge([e1, . . . , em], a, b) = [f1, . . . , fm−1] with fa = (ea, eb) and
the following restrictions.

• For every i ∈ [1, a − 1] ∪ [a + 1, b − 1], ei = fi.
• For every i ∈ [b + 1,m], ei = fi−1.

Then, we define merge(G, a, b) = 〈m − 1,Q, r, λ,Σ′, δ′〉 and coalition
merge(σ, a, b) out of G and σ as follows.

• Σ′ = {merge([e1, . . . , em], a, b) | [e1, . . . , em] ∈ Σ}.
• δ(q, [e1, . . . , em]) = δ′(q,merge([e1, . . . , em], a, b)) for any q ∈ Q and

[e1, . . . , em] ∈ Σ.
• merge(σ, a, b)(X) = (σ(X)∩ [1, b− 1])∪{c− 1 | c ∈ σ(X)∩ [b+1,m]} for any

X ∈ Var(φ).

The following lemma shows the sufficiency and necessity for the satisfaction
of φ by merge(G, a, b).

Lemma 3. Assume a TCLX formula φ, a game graph G, agent indices a, b, and
a coalition scheme σ such that cmax(φ) < a < b and for every coalition variable
X ∈ Var(φ), a ∈ σ(X) if and only if b ∈ σ(X). Then, G |= σ(φ) if and only if
merge(G, a, b) |= φ.

Proof. In the “only if” direction, given a strategy-pruned tree T of G as an
evidence for the satisfaction of σ(φ) in TCL, we can construct a strategy-pruned
tree, isomorphic to T , of merge(G, a, b) as an evidence for the satisfaction of
merge(σ, a, b)(φ) in TCL. The construction is obvious from the definitions of
merge(G, a, b) and merge(σ, a, b). The “if” direction can be proved in a similar
way. ��

Lemma 3 leads to the following lemma for the finite models of TCLX
formulas.

Lemma 4. Given a satisfiable TCLX formula φ, there is a game graph with no
more than 2|Var(φ)| + cmax(φ) agents satisfying φ.

Synthesizing Coalitions for Multi-agent Games 253

Proof. Suppose that we have a game graph G of m > 2|Var(φ)| + cmax(φ) agents
and a coalition scheme σ such that G |= σ(φ). Then, there must be two agent
indices a, b > cmax(φ) such that for every coalition variable X of φ, a ∈ σ(X) if
and only if b ∈ σ(X). According to Lemma 3, we can reduce G to a game graph
of m−1 agents that also satisfies φ. By repeating this reduction step, eventually
we can obtain a game graph of no more than 2|Var(φ)| + cmax(φ) agents that
satisfies φ. ��

Then, we can establish the main theorem of this section in the following.

Theorem 1. The satisfiability problem of TCLX is 2-EXPTIME-complete.

Proof. This problem is 2-EXPTIME-hard since every TCL formula can be
straightforwardly reduced to a TCLX formula in linear time and the TCL satis-
fiability problem is 2-EXPTIME-complete.

Given a satisfiable TCLX formula φ, Lemma 4 indicates that there is a game
graph G of no more than 2|Var(φ)| +cmax(φ) agents satisfying φ. Then, there must
be a satisfying coalition scheme σ of G for φ such that G |= σ(φ) in the TCL
semantics. This implies that we can enumerate all the values of coalition schemes
to search for σ as an evidence for the satisfaction of φ by G. The value of one
coalition variable is a subset of at most 2|Var(φ)| + cmax(φ) agent indices. Thus,
the total enumeration is of size 2|Var(φ)|(2|Var(φ)|+cmax(φ)) and of doubly exponential
complexity. This means that we can break the satisfiability problem of φ to
doubly exponentially many instances of the TCL satisfiability problem. Since the
TCL satisfiability problem is 2-EXPTIME-complete, the satisfiability problem
of TCLX can also be answered in 2-EXPTIME. Thus, the TCLX satisfiability
problem is 2-EXPTIME-complete. ��

6 TCLX Model-Checking

TCLX model-checking problem is EXPTIME-hard since TCLX can be viewed
as a super-class of TCL, of which the model-checking problem is EXPTIME-
complete.

If a TCLX formula φ is satisfied by a game graph G of m agents, then there
must be a coalition scheme σ such that G |= σ(φ) in the TCL semantics. This
implies that we can build an EXPTIME algorithm for model-checking φ by repet-
itively calling an EXPTIME TCL model-checking algorithm as a subroutine, as
shown in Algorithm 1, for each value of σ. The correctness of the algorithm is
straightforward according to the TCLX semantics. Thus we do not provide the
proof in this paper.

Altogether the number of valuations of all the coalition variables at the for-
loop in Algorithm 1 is (2m)|Var(φ)| = 2m|Var(φ)|. Thus, model-checking a TCLX
formula φ can be done in EXPTIME if we call an EXPTIME algorithm for the
model-checking of the TCL formula σ(φ). This observation leads to the following
theorem.

Theorem 2. The model-checking problem of TCLX is EXPTIME-complete. ��

254 W. Ji et al.

Algorithm 1. modelCheck(G, φ)
for every subset A1, . . . , An of [1, m] for variable X1, . . . , Xn in Var(φ) respectively do

Construct σ such that for every i ∈ [1, m], σ(Xi) = Ai.
if G |= σ(φ) /* by calling the TCL model-checking algorithm in [6] */ then return true
end if

end for
return false

7 Implementation and Experiments

We implemented a TCLX model-checker by extending the on-the-fly model-
checking algorithm in [6]. In evaluating a state formula 〈X〉ψ, a tree formula
〈+X〉ψ, or 〈−X〉ψ, we replace the evaluation procedure in the TCL model-
checking algorithm by a loop that for every value A of X, uses this procedure to
evaluate ψ. Three game models are built in our experiments: a network security
system, a software development project, and the marketing promotion model
described in Sect. 2.1. Each model is checked against five TCLX properties of
various syntax structures by our TCLX model-checker.

Network Security. Figure 3 defines a typical network attack and defense game
model with three attackers (agents 1, 2, 3) and one administrator (agent 4). This
is inspired from the network security game presented in [13]. The administrator
manages a Web server with an HTTP service and an FTP service to support
Web pages and data access. On the contrary, agent 1 can perform an HTTP
attack (h) to deface the website, or to launch other attacks through implanted
viruses; agent 2 can perform an FTP attack (f) to steal the confidential data on
the server through implanted sniffer programs; while agent 3 is the attacker that
can plant viruses or sniffer programs (p) into the hacked server. Apparently, the
attackers need to form a coalition to attack the server.

Fig. 3. Network security game graph

The administrator may perform well to repair the hacked server successfully,
or fail to do so. These two kinds of responses to the attacks are abstracted as

Synthesizing Coalitions for Multi-agent Games 255

the moves g and b of the administrator, respectively. The self-loop transitions
due to the unadmitted move vectors are omitted in Fig. 3, as well as in Fig. 4.

TCLX properties (1)–(5) in Table 1 are designed to verify the robustness of
the Web server under the maintenance of the administrator. We reuse the name
of a state as its atomic proposition label. Propositions ServerOK , SiteDefaced ,
SeverDown, DataStolen, and VirusAffected indicate that the server runs nor-
mally, the website is defaced, the server is broken down, the confidential data is
stolen, and that a virus is implanted, respectively. The website is fine (SiteOK)
unless it is defaced or the server is down.

Property (1) queries for exactly one agent that the administrator may fail to
stop from defacing the website or breaking down the server. Agent 1 is a solution
agent that can achieve this objective alone. Property (2) queries for at most two
agents that the administrator may fail to stop from stealing the confidential data.
Agents 2 and 3 can form a solution coalition to achieve this objective. Property
(4) queries for exactly one agent that can steal the confidential data totally on
its own, with keeping the server running normally, while property (5) queries for
a coalition of agents that can steal the confidential data without agent 3. Both
properties are false. This highlights the significance of a coalition with agent 3.
Property (3) is designed for state VirusAffected , at which a virus is implanted.
It means to check whether the administrator may recover the affected server
back to normal. At state VirusAffected , the administrator can perform well on
his responsibility.

Table 1. TCLX Properties used for the three game models

〈4〉〈+X〉(|X| == 1 ∧ ♦(SiteDefaced ∨ SeverDown)) (1)

〈4〉〈+X〉(|X| ≤ 2 ∧ ♦DataStolen) (2)

〈∅〉�(VirusAffected → 〈4〉♦ServerOK) (3)

〈X〉(|X| == 1 ∧ (SiteOK U (SiteOK ∧ DataStolen))) (4)

〈X〉(3 	∈ X ∧ ♦DataStolen) (5)

〈5〉 © (〈X〉♦Success) ∨ 〈5〉 © ♦Failure (6)

〈∅〉�(Imp01 → 〈X〉(X ⊆ {1, 2} ∧ 〈+Y 〉(Y ⊆ {3, 4} ∧ ♦Success))) (7)

〈3, 4〉 © (〈X〉♦Success) (8)

〈∅〉�
(
(Testing11 ∨ Testing01 ∨ Testing10 ∨ Testing00) →
〈X〉(|X| == 1 ∧ (3 ∈ X ∨ 4 ∈ X) ∧ ©(Success ∨ Failure))

)
(9)

〈X〉(|X| < 5 ∧ ♦Success) (10)

〈X〉(|X| < 4 ∧ ♦q7) (11)

〈X〉(|X| < 3 ∧ ♦q5 ∧ 〈−Y 〉 © (|Y | == 1 ∧ q2)) (12)

〈X〉(|X| == 1 ∧ 〈+Y 〉({2, 3} ⊆ Y ∧ ♦q4)) (13)

〈X〉(|X| == 1 ∧ ♦(〈+Y 〉 © (|Y | == 1 ∧ q6))) (14)

〈X〉(|X| < 2 ∧ ©(〈+Y 〉 © (|Y | == 1 ∧ 〈+Z〉 © (|Z| == 1 ∧ q6)))) (15)

256 W. Ji et al.

Software Development. Software development is teamwork. A software
project team needs to cooperate closely to release a software product in time. In
Fig. 4, we model as a concurrent game a typical software development process
of a project team with 5 engineers. Agents 1 and 2 are responsible for software
design and implementation; agents 3 and 4 are testing engineers; while agent 5 is
the project manager in charge of requirement analysis and software design. We
abuse the move g (respectively, d) to denote that an agent delivers an excellent
(respectively, poor) performance of his duty.

The perfect work-flow in the game goes through states Requirement , Design1,
Imp11, Testing11, and Success in sequence, when all the agents act responsibly.
Otherwise, the project may fail to release (ReleaseFailed) due to a poor require-
ment analysis (via state Design0), a poor design (via state Imp01 or Imp00), a
poor implementation (via state Testing01, Testing10, or Testing00), or a poor
test. The project fails (Failure) if it reaches ReleaseFailed or is blocked before
release. In these circumstances, the team may rely on the design, implementa-
tion, or testing engineers (whichever applicable) to save the project from failing.
For example, at state Testing01, a good test by agents 3 and 4 can help agents 1
and 2 to fix bugs in a poor implementation, and to deliver a nice implementation
for testing at state Testing11. However, a poor requirement analysis will lead the
project towards failure inevitably via state Design0.

Fig. 4. Software development game graph

TCLX properties (6)–(10) in Table 1 are designed to verify the performance
of the whole team. At state Requirement , property (6) means that the project
manager (i.e., agent 5) can lead to a next state where a coalition of team mem-
bers can enforce the success of the project, or to a next state where the project
is destined to fail. The team itself is the maximum coalition for the success of
the project. At state Imp01, property (7) queries for a coalition with only design,
implementation and testing engineers that can remedy a poor design and lead the
project towards success. Agents 1, 2, 3, and 4 constitute the maximum coalition

Synthesizing Coalitions for Multi-agent Games 257

for this objective. Note that state Imp01 implies that the project manager has
fully and precisely analyzed the requirements of the project. At state Require-
ment , property (8) means that the testing engineers can lead to a next state
where a coalition of team members can enforce the success of the project, while
property (10) queries for a coalition with some but not all engineers that can
cooperate together to ensure the success of the project, irrespective of the per-
formance of the rest engineers. At any of states Testing11, Testing01, Testing10,
or Testing00, property (9) queries for a testing engineer who can solely deter-
mine the success or failure of the project. These three properties are false with
respect to the corresponding states. This confirms the importance of teamwork
for a software development project.

Marketing Promotion. We also verify the motivating example shown in
Sect. 2.1 with TCLX properties (11)–(15) in Table 1. These properties relate
the coverage of the vender’s new product message with the celebrities that can
help spread it. For instance, only Bob (i.e., agent 3) receives the message at state
q2, then forwards it to his fans at state q5. At state q4 (respectively, q7), Ana
(i.e., agent 2) and Cindy (respectively, Bob) receive the message, as well as their
fans; while at state q6, Ana, Bob, and Bob’s fans receive the message, but not
Ana’s fans.

Property (11) queries for a coalition of at most three agents that can spread
the message toward state q7. Property (12) queries for a coalition of at most
two agents that can spread the message toward state q5, and can do so to a
next state q2 by removing exactly one agent from the coalition. Property (13)
queries for a coalition with Ana and Bob that can spread the message toward
state q4. Property (14) queries for an agent that can eventually form a coalition
with another agent to spread the message to a next state q6; while Property
(15) queries for an agent that can form a coalition incrementally in two steps
to reach this state. The solution coalitions to these properties indicate the key
celebrities and communities for marketing promotion, which is of great interest
to the vender of the new product.

Table 2 presents the verification results for the 15 TCLX properties. All the
experiments are conducted on a Ubuntu 11.04 machine with a Core i7 CPU and
8 GB memory. The top five, middle five, and bottom five rows of the table data
are respectively for the network security system model, the software develop-
ment project model, and the marketing promotion model. For each game model,
column |G| shows, from top to bottom, the number of its agents, the number of
its states, and the number of its transitions. For example, the first game model
has 4 agents, 8 states, and 15 transitions. Column space shows the size of the
solution space for each property. For a game model with m agents, the size of
the solution space for a TCLX property with n coalition variables is 2mn. Col-
umn result reports the model checking result of each property, while column
solution presents the solution to each property (if applicable) yielded by our
model-checker. Column time shows the average time usage in seconds for veri-
fying each property. All the TCLX properties are verified 5 times for statistical
accuracy.

258 W. Ji et al.

Table 2. Experiment results (time in seconds)

property |G| space result solution time

(1) 4 16 true X = {1} 0.76

(2) 8 16 true X = {2, 3} 0.31

(3) 15 1 true no coalition variable 0.08

(4) 16 false no solution 0.73

(5) 16 false 0.25

(6) 5 32 true X = {1, 2, 3, 4, 5} 0.57

(7) 13 1024 true X = {1, 2}, Y = {3, 4} 5.68

(8) 23 32 false no solution 0.29

(9) 32 false 1.12

(10) 32 false 0.53

(11) 9 512 true X = {1, 2, 3} 0.68

(12) 8 262144 true X = {1, 3}, Y = {3} 32.12

(13) 18 262144 true X = {1}, Y = {2, 3, 4} 93.13

(14) 262144 true X = {1}, Y = {3} 56.69

(15) 134217728 true X = {1}, Y = {2}, Z = {3} 6772

The above model checking results and solutions match with the expectations.
These experiment results demonstrate the diverse requirements on coalitions that
can be expressed with TCLX on top of their temporal cooperation objectives.
Coalitions can be static (one-shot) or dynamic in the sense that coalitions are
formed along the behavioral evolution of agents. Both sorts of coalitions fit in the
logic framework of TCLX, while the TCLX model checker can manage to synthe-
size satisfying coalition schemes (if any) in an on-the-fly manner. The exponential
growth on the time usages in Table 2 is mainly caused by the increasing number
of the coalition variables in the TCLX formulas, due to the enumeration nature
of the implementation. Future effort will be devoted to improve the TCLX model
checker by exploiting the high efficiency of symbolic verification techniques [3,9].

8 Conclusion

We have investigated the influences of using coalition variables in TCL for more
expressiveness from the perspectives of both theory and implementation. Coali-
tion variables are interpreted over the subsets of the agents in a concurrent
game, and characterize the existence of agent coalitions for achieving the under-
lying TCL properties. Our experiments show a good potential of the approach
in real-world applications. Integration of coalition and strategy representation,
reasoning, and synthesis would be interesting for future work. It would be also
interesting to see whether more expressiveness can be added without sacrificing
verification efficiency.

Synthesizing Coalitions for Multi-agent Games 259

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Brihaye, T., Costa, A., Laroussinie, F., Markey, N.: ATL with strategy contexts
and bounded memory. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol.
5407, pp. 92–106. Springer, Heidelberg (2009). doi:10.1007/978-3-540-92687-0 7

3. Bulling, N., Jamroga, W.: Alternating epistemic µ-calculus. In: IJCAI, pp. 109–114
(2011)

4. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208,
677–693 (2010)

5. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: new techniques for
symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME
1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999). doi:10.1007/
3-540-48153-2 12

6. Huang, C.-H., Schewe, S., Wang, F.: Model-checking iterated games. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 154–168. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36742-7 11

7. Jamroga, W., Murano, A.: On module checking and strategies. In: AAMAS, pp.
701–708 (2014)

8. Jamroga, W., Murano, A.: Module checking of strategic ability. In: AAMAS, pp.
227–235 (2015)

9. Jones, A.V., Knapik, M., Penczek, W., Lomuscio, A.: Group synthesis for para-
metric temporal-epistemic logic. In: AAMAS, pp. 1107–1114 (2012)

10. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of
epidemics. Proc. R. Soc. A Math. Phys. Eng. Sci. 115(772), 700 (1927)

11. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Inf. Comput. 164(2),
322–344 (2001)

12. Laroussinie, F., Markey, N.: Satisfiability of ATL with strategy contexts. In: GAN-
DALF, EPTCS, vol. 119, pp. 208–223 (2013)

13. Lye, K.W., Wing, M.J.: Game strategies in network security. Int. J. Inf. Secur.
4(1), 71–86 (2005)

14. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes Atl* decidable? A
decidable fragment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 193–208. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32940-1 15

15. Mogavero, F., Murano, A., Sauro, L.: On the boundary of behavioral strategies.
In: LICS, pp. 263–272 (2013)

16. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: FSTTCS,
pp. 133–144 (2010)

17. Pinchinat, S.: A generic constructive solution for concurrent games with expressive
constraints on strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura,
Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75596-8 19

18. Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure
generation: a survey. Artif. Intell. 229, 139–174 (2015)

19. Wang, F., Schewe, S., Huang, C.H.: An extension of ATL with strategy interaction.
ACM Trans. Program. Lang. Syst. (TOPLAS) 37(3), 9 (2015)

http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/3-540-48153-2_12
http://dx.doi.org/10.1007/3-540-48153-2_12
http://dx.doi.org/10.1007/978-3-642-36742-7_11
http://dx.doi.org/10.1007/978-3-642-32940-1_15
http://dx.doi.org/10.1007/978-3-642-32940-1_15
http://dx.doi.org/10.1007/978-3-540-75596-8_19

Program Verification Techniques

Hoare-Style Reasoning from Multiple Contracts

Olaf Owe(B), Toktam Ramezanifarkhani(B), and Elahe Fazeldehkordi(B)

Department of Informatics, University of Oslo, Oslo, Norway
{olaf,toktamr,elahefa}@ifi.uio.no

Abstract. Modern software is often developed with advanced mecha-
nisms for code reuse. A software module may build on other software
modules or libraries where the source code is not available. And even if
the source code is known, the binding mechanism may be such that the
binding of methods is not known at verification time, and thus the under-
lying reused code cannot be determined. For example, in delta- oriented
programming the binding of methods depends on the ordering of deltas
in each product, making modular reasoning non-trivial. Similar problems
occur with traits and subclassing. Reasoning inside a module must then
be based on partial knowledge of the methods, typically given by con-
tracts in the form of pairs of pre- and post-conditions, and one may not
derive new properties by re-verification of the (unavailable) source code.

In the setting of Hoare logic, this gives some challenges to general rules
for adaptation that goes beyond traditional systems for Hoare logic. We
develop a novel way of reasoning from multiple contracts, which makes
the traditional adaptation rules superfluous. The problem we address
does not depend on the choice of programming language. We there-
fore focus on general rules rather than statement-specific rules. We show
soundness and completeness for the suggested rules.

Keywords: Hoare logic · Multiple contracts · Contract-based verifica-
tion · Contract-based specification · Adaptation · Unavailable source
code · Soundness · Completeness

1 Introduction

We consider an open world program development environment where a program
may depend on program parts that are not yet known or available. For instance,
in software product lines based on delta-oriented programming [25] the binding
of methods depends on the ordering of deltas, which may differ from product to
product. In a method definition in a delta, the special notation original binds to
the previous version of the same method in the delta closest in the delta-ordering
of the product. Thus for a given delta the binding of method calls is not known,
and reasoning about the delta must be based on the contracts about methods

This work is supported by the Norwegian NRC projects IoTSec: Security of IoT and
DiversIoT.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 263–278, 2017.
DOI: 10.1007/978-3-319-66845-1 17

264 O. Owe et al.

of underlying modules. Similar complications are caused by traits [12,27]. And
for class-based programs with inheritance and late binding, the binding of calls
(including self calls) may not be known at verification time. In these settings, it
is important to be able to reason about the program in a modular fashion, based
on contracts representing partial knowledge of methods for which the binding is
not known.

Contract-based specification is well known from the work on design by con-
tract by Meyer [18] and has been adopted in several languages and frameworks,
including Eiffel [19] and SPEC# [3]. In this paper we will focus on contract-
based verification, i.e., reasoning from contracts rather than reasoning about
verifying contracts. We assume that a given program part (such as a method) is
specified by a set of contracts, and consider a Hoare style reasoning framework.
A contract may give partial knowledge of a program part, and we assume that a
given program part may have several contracts, possibly accumulated over time
as more knowledge becomes available.

A Hoare triple {P} s {Q} characterizes the effect of a program (part) s by
means of a precondition P and a postcondition Q, where both P and Q may
refer to program variables as well as additional non-program variables, so-called
logical variables [15]. The intuitive meaning of this triple is that if the program
s is executed from a state (“the prestate”) where P holds and the execution
terminates, then Q will hold in the final state (“the poststate”). The pair (P, Q)
is called a contract for s.

Example 1. For instance, the contract (x < 0, x < 0) expresses that if the pro-
gram variable x is negative in the prestate, it will also be negative in the post-
state (if any), and the contract (x > 0, x > 0) similarly restricts the final value
of x when positive in the prestate. The contract (x = 0, x = 0) characterizes
the final value of x when its starting value is 0. All three contracts are exam-
ples of invariants. Using a logical variable y′, the combination of the contracts
(x < 0 ∧ y = y′, y = y′) and (x ≥ 0 ∧ y = y′, y = y′ + x) gives full information
about the final value of the program variable y.

The combination of all five example contracts above should imply the two
following contracts (of which the latter is an invariant):

(y = y′, x < 0 ∧ y = y′ ∨ x ≥ 0 ∧ y = y′ + x) (1)

(x = 0 ∧ y = y′, x = 0 ∧ y = y′) (2)

Traditionally, Hoare logics are used to deal with one contract per program. An
occurrence of s may have a program environment which needs some adjustment
or adaptation of the contract. The simplest way of adjustment is provided by
the well-known Rule of Consequence:

(consequence)

P′ ⇒ P {P} s {Q} Q ⇒ Q′
{P′} s {Q′}

Hoare-Style Reasoning from Multiple Contracts 265

However, this rule is not suitable when s is used in a context where the assertions
talk about more variables than the contract of s, nor when the precondition of
the contract is not satisfied. For instance, from the contracts given above, we
may not derive contract 1 nor 2 by the consequence rule alone. Moreover, if
we use the conjunction rule on the contracts (x > 0, x > 0), (x < 0, x < 0), and
(x = 0, x = 0), we get false in the precondition. If we use the disjunction rule, we
get true in the postcondition. Neither gives any information, so we need better
ways to combine the information in several contracts.

Adaptation rules give more freedom in the reasoning, by allowing different
preconditions and postconditions for different reuses (i.e., occurrences) of s. For
instance, we may try to prove the example above, or we may try to find a precon-
dition P such that {P} s{x = x′ ∧ y = y′ + x} is satisfied for s as in the example.
The original adaptation rule suggested by Hoare [16] can be formulated as

(adaptation)

{P} s {Q}
{∃z . (P ∧ ∀w . (Q → R))} s {R}

where w is the list of program variables that may be changed by s and z is list of
logical variables in (P, Q) but not in R. As shown in [20], this adaptation rule
is sound and relatively complete, although the precondition is not the weakest
possible formulation. As discussed in [1], the precondition may be weakened to
∀w′(∀z . P ⇒ Qw

w′) ⇒ Rw
w′), where Qw

w′ denotes Q with all free occurrences of
w replaced by w′ (given that the lists w and w′ have the same length). In this
precondition, z are the logical variables in P and/or Q.

However, we are still not able to handle multiple contracts, and for the exam-
ple above, we may still not derive contract 1 nor 2. Special adaptation rules con-
sidering the case of multiple contracts have been suggested, and will be discussed
in the next section.

The contribution of this paper is to reconsider Hoare-style reasoning support-
ing reasoning from contracts when the program text is not available or known,
allowing multiple contracts. Traditionally, completeness of Hoare logics assume
that all parts of the program text are available, and thus may be used to re-verify
different contracts when needed. We suggest a new approach for adaptation. We
first introduce a rule called the normalization rule, which is simpler then the adap-
tation rule. We then introduce a generalized version of the rule, called the gener-
alized normalization rule, for dealing with multiple contracts. The combination of
the generalized normalization rule and the consequence rule forms a complete set
of general reasoning rules. We prove soundness and completeness of these rules,
and show that the (most expressive) adaptation rule and its generalization to
multiple contracts, as well as other general rules, can be derived easily.

2 Reasoning About Multiple Contracts

In order to use a contract in program reasoning, one needs to know an overap-
proximation of the set of program variables that may be changed by the program,

266 O. Owe et al.

called the var set. This may be part of a contract. However, when considering
delta-oriented programming, or object-oriented inheritance, a redefined method
may involve variables that were not known when the original contract was for-
mulated. This makes it impossible to restrict the var set for contracts that are
intended to be reused/inherited. In this case an underestimation of the set of
read-only variables can be valuable [8]. Instead of letting the contract specify
the var set, one may overapproximate the set of program variables that may
change for each call. As different choices of programming languages may require
different kinds of specification of var sets, we will not impose a fixed way of
specifying var sets, but assume that a var set w and a set of read-only variables
v can be determined statically for each occurrence of a program/call specified
by a contract.

Thus, for each occurrence of a program we let w denote the (finite) set of
program variables that may be changed by a program s, and v denote the com-
plementary set of program variables that may not be changed by s. In addition
to the program variables, a contract may talk about logical variables, which are
here denoted by the symbol z or by primed versions of the program variables.

Consider the case that several contracts may be assumed (or have been
proved) for a given program, or method body, s. This can be expressed by a
set of triples {Pi} s {Qi} for 1 ≤ i ≤ N. How can we make use of this knowledge?
The following adaptation rule expresses how to exploit the knowledge of several
such triples. For any assertion R the rule allows us to derive a precondition of s
with exactly R as the postcondition:

(generalized adaptation)

{Pi} s {Qi} for 1 ≤ i ≤ N
{∀w′ . (

∧

i
∀zi . (Pi ⇒ Qi

w
w′)) ⇒ Rw

w′} s {R}

where w′ are fresh logical variables, zi the logical variables in (pi, qi), and w vari-
ables that may be updated by the method. A similar rule for right-constructive
reasoning was suggested in [29].

Example 2. Given the Hoare triples

{x ≥ 0} s {x ≥ 0} and {x ≤ 0} s {x ≤ 0}
How can we combine this knowledge in one Hoare triple? The generalized adap-
tation rule gives {∀x′ . (x≥0 ⇒ x′ ≥0) ∧ (x≤0 ⇒ x′ ≤0) ⇒ Rx

x′} s {R}. Taking
R as (x′ ≥ 0 ⇒ x ≥ 0) ∧ (x′ ≤ 0 ⇒ x ≤ 0), the precondition becomes

∀x′. ((x≥0 ⇒ x′ ≥0) ∧ (x ≤ 0 ⇒ x′ ≤ 0)) ⇒ ((x′ ≥ 0 ⇒ x′ ≥ 0) ∧ (x′ ≤ 0 ⇒ x′ ≤ 0))

which is implied by x = x′. By the consequence rule we may then derive

{x = x′} s {(x′ ≥ 0 ⇒ x ≥ 0) ∧ (x′ ≤ 0 ⇒ x ≤ 0)}
Thus, the generalized adaptation rule is able to handle this example, as well

as contracts 1 and 2. However, it has some drawbacks. The rule is quite compli-
cated. In particular, the precondition of the conclusion has non-trivial nesting

Hoare-Style Reasoning from Multiple Contracts 267

of implications and quantifiers. The quantifier on each zi is essentially an exis-
tential quantification (when lifted out of the implicant). In addition the rule is
specialized to the setting of left-constructive reasoning (for a given postcondition
R), and the usage of logical variables in R leads to rather complicated reasoning.
A typical case appears when showing that the precondition of a given contract
(for a given program) implies the precondition generated by left-constructive
rules; in this situation the generalized adaptation rule leads to reasoning with
existential quantifiers that can be non-trivial (for humans as well as automated
tools).

2.1 Semantics

The validity of a Hoare triple {P} s {Q} is denoted |={P} s {Q} and is defined
as follows:

|={P} s {Q} ≡ ∀z, v, w′, w′′ . (v, w′[[s]]w′′) ∧ Pw
w′ ⇒ Qw

w′′

where [[s]] is the input/output relation defined by the program s, and where z
is the list of logical variables occurring in P and/or Q, v is the list of program
variables that may not change in s, w is the list of program variables that may
change in s, and w′ and w′′ are lists of logical variables distinct from z (of same
length and types as w).

The logical variables w′ denote the prestate values of variables that may
change in s and w′′ that of the poststate. The semantical meaning of a program
s is here formalized as an input/output relation, which for a given state (i.e.,
values of v and w) gives the possible output states, restricted to variables that
may change (w). Thus, v, w′[[s]]w′′ expresses that if s starts in the prestate v, w′,
then v,w′′ is the poststate for some terminating execution of s. If no output
states exists the program does not terminate normally. (Non-deterministic non-
termination is then not captured, but since we deal with partial correctness,
this can be ignored.) We assume a fixed interpretation of data types and related
functions.

2.2 Normalization Rules

For z, v, w,w′, w′′ as above, the definition of validity gives that |={P} s {Q} is
the same as

∀z, v, w′, w′′ . (v, w′[[s]]w′′) ∧ (w=w′)ww′ ⇒ (Pw
w′ ⇒ Q)ww′′

since Pw
w′ has no free w and since (w = w′)w

w′ is equivalent to true. This can be
reformulated as

(v, w′[[s]]w′′) ∧ (u = u′)ww′ ⇒ (∀z . Pu
u′ ⇒ Q)ww′′ (3)

for all v, w′, w′′, where u is a sublist of w that includes all program variables
occurring in P, and u′ is the corresponding sublist of w′. Then Pw

w′ is the same as

268 O. Owe et al.

Pu
u′ . By the definition of validity, Eq. 3 is the same as |={u = u′}s{∀z . Pu

u′ ⇒ Q}.
Thus we have proved

|={P} s {Q} ⇔ |={u = u′} s {∀z . Pu
u′ ⇒ Q}

for u′ not occurring in P nor Q. And thereby, we have proved the validity of the
rule

(normalization)

{P} s {Q}
{u = u′} s {∀z . Pu

u′ ⇒ Q}
where z is the list of logical variables in (P,Q), u is a list of program variables
including those in P, and u′ is fresh (i.e., does not occur in P nor Q), and where
the double line means that the rule can be used both ways, which is the case
here since the validity of the premise is equivalent to that of the conclusion.
We may choose u as exactly the program variables in P (in order to get simple
preconditions), or as w (in order to easily compare different normalized triples).
When no variable in w occur in P, the precondition u = u′ may be replaced by
true, and Pu

u′ reduces to P.
This rule is useful since the precondition is incorporated in the postcondition,

and thus we can compare two Hoare triples by simply comparing their normalized
postconditions (choosing u as w so that the preconditions are the same). The
rule basically expresses the strongest postcondition of a program s. Since the
rule may be used backwards, we implicitly have the rule

(backward normalization)

{u = u′} s {∀z . Pu
u′ ⇒ Q}

{P} s {Q}

where u is a list of program variables including those in P, u′ is fresh (i.e., not
occurring in P or Q) and z is a list of logical variables. In this rule, there is no
restriction on z, apart from being a list of logical variables disjoint from u′.

The Generalized Normalization Rule. When dealing with a number of contracts
for the same program, we propose the following generalization of the normal-
ization rule, which combines the information in a set of contracts for a given
program s into one normalized triple:

(generalized normalization)

{Pi} s {Qi} for each i ∈ I

{u = u′} s {∧

i∈I
∀zi . Pi

u
u′ ⇒ Qi}

where u includes the program variables in any Pi.
Since the rule is two-way, there is no information loss in applying the rule.

When the rule is used forwards, knowledge from multiple contracts is combined,
and when used backwards, the individual contracts can be recreated.

Hoare-Style Reasoning from Multiple Contracts 269

Proof of Soundness. By the same argumentation as above, the validity of each
premise i can be expressed as

(v, w′[[s]]w′)′ ∧ (u = u′)ww′ ⇒ (∀zi . Pi
u
u′ ⇒ Qi)

w
w′′

with v,w′, w′′ universally quantified, and thus we have

(v,w′[[s]]w′′) ∧ (u = u′)ww′ ⇒
∧

i∈I
(∀zi . Pi

u
u′ ⇒ Qi)

w
w′′

(for all v, w′, w′′), which is equivalent to the validity of the conclusion. Thus the
validity of the premises for all i is equivalent to the validity of the conclusion.
�

Note that the rule may be used backwards, and thereby possibly obtaining
triples that were not known before, for instance after reorganizing the postcon-
dition (as illustrated below).

(backward generalized normalization)

{u = u′} s {∧

i∈I
∀zi . Pi

u
u′ ⇒ Qi}

{Pi} s {Qi} for each i ∈ I

Example 2 reconsidered. Reconsider the two triples

{x ≥ 0} s {x ≥ 0} and {x ≤ 0} s {x ≤ 0}.

The generalized normalization rule gives the triple:

{x = x′} s {(x′ ≥ 0 ⇒ x ≥ 0) ∧ (x′ ≤ 0 ⇒ x ≤ 0)}
which is a more direct and explicit result than the one obtained above by the gen-
eralized adaptation rule. Furthermore, the postcondition can be reformulated as

(x′ ≥0 ⇒ x≥0) ∧ (x′ ≤0 ⇒ x≤0) ∧ (x′ =0 ⇒ x=0)

Backward generalized normalization gives the new triple {x = 0} s{x = 0}. This
derivation was clearly simpler than with generalized adaptation.

The Generalized Consequence Rule. By combining the generalized normalization
rule with the consequence rule, we obtain a generalized consequence rule

(generalized consequence)

{Pi} s {Qi} for each i ∈ I
(
∧

i∈I
∀zi . Pi

u
u′ ⇒ Qi) ⇒ (∀z . Pu

u′ ⇒ Q)

{P} s {Q}
(where the free variables in the second premise are implicitly universally quanti-
fied). This rule may be used for adaption of known contracts to a specific context.
As opposed to all the adaptation rules mentioned above, this rule is agnostic to

270 O. Owe et al.

whether the verification strategy is left-constructive, right-constructive, or top-
down (using the terminology of [7]). The generalized normalization rule can
directly be used for bottom-up verification.

Example 1 reconsidered. We investigate if we can derive the proposed contracts 1
and 2 assuming x and y are the only program variables. The given contracts are

(x < 0, x < 0)
(x > 0, x > 0)
(x = 0, x = 0)
(x < 0 ∧ y = y′, y = y′)
(x ≥ 0 ∧ y = y′, y = y′ + x)

According to the generalized consequence rule, we need to show that each of

x < 0 ∧ y = y′ ∨ x ≥ 0 ∧ y = y′ + x

(from contract 1) and

∀z . x′ = 0 ∧ y′ = z ⇒ x = 0 ∧ y = z

(from contract 2) follows from the conjunction (x′ < 0 ⇒ x < 0) ∧ (x′ > 0 ⇒
x > 0) ∧ (x′ = 0 ⇒ x = 0) ∧ (∀z . x′ < 0 ∧ y′ = z ⇒ y = z) ∧ (∀z . x′ ≥
0∧y′ = z ⇒ y = z+x) (reflecting the five given contracts). Note that the logical
variable y′ appearing in in the contracts becomes quantified according to the
second premise of the generalized consequence rule. We rename this quantified
variable to z, to adhere to the naming convention of the rule. For the case of
contract 1, the implication follows by considering the cases x′ < 0 and x′ ≥ 0.
For the case of contract 2, the implication follows by lifting the quantifier on z
in the implicand to the outermost level, and instantiating the last quantified z
in the implicant (from the fifth contract) to that z.

3 Derivation of General Reasoning Rules

We now consider the reasoning system formed by the generalized normalization
rule and the consequence rule. We illustrate that by these two rules we may
quite easily derive common general reasoning rules. We derive below the common
rules considered in the classical survey of Apt [1], namely the invariance axiom,
substitution rules I and II, conjunction rule, invariance rule, and the elimination
rule. According to [1] these rules ensure completeness. We also add some other
relevant rules.

3.1 Derivation of Three Instantiation Rules

Assume the triple {P} s {Q} is given. We may derive {u = u′} s {∀z . Pu
u′ ⇒ Q}

by the normalization rule. By the consequence rule, we obtain
{u = u′} s {(Pu

u′)ze ⇒ Qz
e} where e is any expression list, possibly referring to

Hoare-Style Reasoning from Multiple Contracts 271

program variables. The two substitutions may be merged since u, u′, and z are
disjoint. In the case that Q does not refer to z, we get {Pz

e} s {Q} by the nor-
malization rule used backwards (which eliminates the substitution on u). And in
the case that the expression list e does not refer to program variables that may
be changed by s (i.e., w), the substitution on z commutes with the substitution
on u, and we get {u = u′} s {(Pz

e)
u
u′ ⇒ Qz

e}, which is equivalent to {Pz
e} s {Qz

e}
by the normalization rule used backwards.

Thus we have derived the three rules below (letting z denote the logical
variables in (P, Q)):

For any expression list e, including program variables and logical variables,
we have

(normalized substitution)

{P} s {Q}
{u = u′} s {Pu, z

u′,e ⇒ Qz
e}

where the substitutions on u and z are simultaneous.
For an expression list t without program variables, we have

(substitution I)

{P} s {Q}
{Pz

t
} s {Qz

t
}

Note that program variables v, not modified by s, may occur in t.
For the case that z does not occur in Q, we have

(substitution II)

{P} s {Q}
{Pz

e} s {Q}

with e as above (no restrictions).

3.2 Deriving the Elimination Rule

The Elimination Rule states that logical variables in the precondition, not occur-
ring in the postcondition, may be bound by an existential quantifier in the pre-
condition:

(elimination)

{P} s {Q}
{∃z . P} s {Q}

where z are logical variables not occurring in the postcondition Q.
We derive this rule from the normalization rule. The premise is equivalent to

{u = u′} s {∀z, z′ . Pu
u′ ⇒ Q} where z′ is the list of logical variables occurring in

Q. We may simplify this normalized triple to {u = u′} s {∀z′ . (∃z . Pu
u′) ⇒ Q},

which again is the same as {∃z . P} s {Q}, using the normalization rule back-
wards. Thus we have proved Rule of Elimination, using only the normalization
rule.

272 O. Owe et al.

3.3 Deriving the Invariance Axiom and Rule

The so-called Invariance Rule states that one may strengthen both a pre- and
postcondition by a predicate R that does not refer to the program variables w:

(invariance)

{P} s {Q}
{P ∧ R} s {Q ∧ R}

Let R be without occurrences of the program variables w. We may prove the
invariance rule by observing that the premise is (by the normalization rule)
equivalent to {u = u′} s {∀z . Pu

u′ ⇒ Q} and that the conclusion is equivalent to
{u = u′} s {∀z, z′ . Pu

u′ ∧ R ⇒ Q ∧ R} where z′ are the additional logical variables
of R. By Rule of Consequence, it suffices to prove that the former postcondition
implies the latter, which is trivial.

Next, we derive the Invariance Axiom

{P} s {P}
for P without occurrences of w. Normalization gives {true} s {P ⇒ P} since Pu

u′
reduces to P because P is without occurrences of w and therefore also u, and
since in this case the precondition u = u′ may be replaced by true. The rest is
trivial, assuming the axiom {true} s {true}.

Furthermore, we can derive the Trivial Axiom

{true} s {true}
from any contract (p, q). By consequence we derive {false} s {true} from {p}s{q},
and by normalization we obtain {true} s {false ⇒ true} since false does not refer
to any program variables. Then {true} s {true} follows by consequence.

3.4 Deriving the Improved Adaptation Rule

The improved adaptation rule is given by

(improved adaptation)

{P} s {Q}
{∀w′ . (∀z . P ⇒ Qw

w′) ⇒ Rw
w′} s {R}

Derivation: The premise is equivalent to {w = w′} s {∀z . Pw
w′ ⇒ Q}. The con-

clusion is equivalent to {w = w′} s {(∀w′′ . (∀z . Pw
w′ ⇒ Qw

w′′) ⇒ Rw
w′′) ⇒ R}.

By first order logic, the latter postcondition can be reformulated as
∃w′′ . (∀z . Pw

w′ ⇒ Qw
w′′) ⇒ Rw

w′′) ⇒ R, and it can then be derived from
((∀z . Pw

w′ ⇒ Q) ⇒ R) ⇒ R, since in general (∃w′′ . A) follows from A (where
A here is ((∀z . Pw

w′ ⇒ Qw
w′′) ⇒ Rw

w′′) ⇒ R). By the consequence rule, this con-
dition follows from ∀z . Pw

w′ ⇒ Q, which is the normalized postcondition estab-
lished from the premise. Since the preconditions (w = w′) are the same, we have
thus derived the conclusion of the adaptation rule from {P} s {Q}.

Hoare-Style Reasoning from Multiple Contracts 273

3.5 Deriving the Generalized Adaptation Rule

For the situation where a number of Hoare triples are known for a program s, we
may derive the following adaptation rule, generalized to multiple specifications:

(generalized adaptation)

{Pi} s {Qi} for all i
{∀w′ . (

∧

i
∀zi . Pi ⇒ Qi

w
w′) ⇒ Rw

w′} s {R}

Given the premise {Pi} s {Qi} for all i, the generalized normalization rule gives
{w = w′} s {∧

i
∀zi . Pi

w
w′ ⇒ Qi}.

Using this result, the derived improved adaptation rule (of Sect. 3.4) gives
{∀w′′ . (w = w′ ⇒ ∧

i
∀zi . (Pi

w
w′ ⇒ Qi

w
w′′)) ⇒ Rw

w′′} s {R}.

Using w = w′, we may replace Pi
w
w′ by Pi and then eliminate w = w′ by Rule

Substitution II (of Sect. 3.1), replacing w′ by w. The desired conclusion follows
by renaming the quantified variable w′′ to w′.

3.6 Deriving the Conjunction Rule

The Conjunction Rule is given by

(conjunction)

{Pi} s {Qi} for all i
{∧

i
Pi} s {∧

i
Qi}

As above, the premise gives (by generalized normalization):
{w = w′} s {∧

i
∀zi . Pi

w
w′ ⇒ Qi} which implies {w = w′} s {∀z . (

∧

i
Pi

w
w′) ⇒ ∧

i
Qi}

where z is the list of all logical variables, considering all premises. By backward
normalization we obtain the desired conclusion.

4 Completeness

We show that the combination of the generalized normalization rule and rule
of consequence is relatively complete. Since we only look at general rules, we
do not define a specific programming language. Assume that a set of contracts
(Pi, Qi) is given for s. If the program text of s is not known, we may not re-
verify s to obtain other contracts upon need. Therefore completeness needs to
entail that if |={Pi} s {Qi} (for all i) implies |={P} s {Q}, we should be able
to prove {P} s {Q} from {Pi} s {Qi}, using only generalized normalization and
rule of consequence.

Theorem 1 (Completeness). Consider a given non-empty set of contracts
(Pi, Qi) for a statement s. If validity of the contracts implies validity of
{P} s {Q}, then {P} s {Q} can be proved by generalized normalization and con-
sequence, assuming {Pi} s {Qi} for each i.

274 O. Owe et al.

Proof. Since the generalized normalization rule can be used both ways, reasoning
from several contracts can be reduced to reasoning from one contract. And sim-
ilarly since the normalization rule can be used both ways, it suffices to consider
normalized triples.

It therefore remains to show that if |={w = w′} s {R} implies
|={w = w′} s {R′}, then we may prove {w = w′} s {R′} given a proof of
{w = w′} s {R}, where R is

∧

i
(∀z . Pi

w
w′ ⇒ Qi) and R′ is ∀z . P′w

w′ ⇒ Q′. It suf-

fices to show R ⇒ R′ since then we can use the consequence rule to obtain
the desired result. By the definition of validity given in Sect. 2.1, we have that
∀v,w′, w′′ . (v, w′[[s]]w′′) ⇒ Rw

w′′ implies ∀v,w′, w′′ . (v, w′[[s]]w′′) ⇒ R′w
w′′ .

Consider v, w′, w′′ such that v,w′[[s]]w′′. We then have that Rw
w′′ implies R′w

w′′ ,
thus ∀v,w′, w′′ . Rw

w′′ ⇒ R′w
w′′ . We may rename w′′ to w. It follows that

R implies R′, and thus {w = w′} s {R′} follows by rule of consequence from
{w = w′} s {R}, which holds by assumption.
�

The theorem may be extended to empty contract sets when adding
{true} s {true} as an axiom. Note that the completeness proof is not depend-
ing on a particular programming language, since we only talk about a given
(unavailable) program s. We have assumed that the assertion language includes
first order logic, but it may not contain the semantic (meta-)relation [[s]].

For a given programming language and reasoning system that is sound and
relatively complete in the sense of Cook [6] when allowing re-verification of pro-
grams, we obtain a sound and relatively complete system for reasoning from sets
of contracts without re-verification, when adding the generalized normalization
rule (and rule of consequence if not already in the system).

5 Related Work

The use of multiple contracts has profound effect on the success of modern
software engineering methods supporting various forms of code reuse. Contract-
based verification is known though several reasoning frameworks, including proof
replay [4], proof reuse [14,24], and proof transformations [26]. Our focus is
on contract-based verification, without considering a specific programming lan-
guage. We therefore focus on general reasoning rules for an arbitrary program.
A number of works have considered the problem of adaptation in Hoare-style
reasoning and the related soundness and completeness issues. The basic adapta-
tion rules have been discussed in the introduction, and a number of general rules
have been discussed in Sect. 3. We refer to Apt and Olderog [1,20] for further
overview.

In [23] Pierik and deBoer consider the problem of adaptation for object-
oriented programs, based on a closed world assumption. In contrast, the current
work is based on an open word assumption, supporting modular reasoning. For
object-oriented systems, a behavioral specification of the methods of an interface
has the dual role of a contract, on one hand stating implementation requirements

Hoare-Style Reasoning from Multiple Contracts 275

to any class implementing the interface, and on the other hand stating properties
that classes using objects of the interface may rely on. A well-known problem
here is that a behavioral specification of a method of an interface cannot be
based on the fields of an implementation as they are not visible in the interface.
A possible solution is to use an abstraction of the state, for instance expressed
by means of the communication history as in [7], giving rise to completeness [9].

In [5] Bijlsma et al. consider contract-based verification of methods, and for-
mulate a rule similar to the improved adaptation rule (Sect. 3.4). They show that
the rule is maximally strong, assuming a single contract. They use the exam-
ple contract (z ≤ x ≤ z + 1, y = z ∨ y = z + 1) to show difficulties with logical
variables. Two instantiations of this contract are needed in order to derive the
contract (x = 0, y = 0). In our case this is possible due to the universal quantifier
on z in the postcondition of the normalization rule.

A different form of adaptation, based on functional abstraction, is given in
[21] and studied in [7]. Functional abstraction assumes that the underlying pro-
gramming language is deterministic. A deterministic program s is equivalent
to if ts then w := fs(v, w) else abort fi for some termination condition ts
and some effect function fs, i.e., a function from the input state to the out-
put state (restricted to w). Then adaptation reduces to {ts ⇒ Rw

fs(v,w)} s {R}
where ts and fs are symbols, and where the precondition is the weakest possible.
Given {P} s {Q} we have ts ∧ P ⇒ Qw

fs(v,w), which provides axiomatic knowl-
edge of the symbols fs and ts. For instance, the contract above gives the axiom
ts ∧ z ≤ x ≤ z + 1 ⇒ (fs(x, y) = z ∨ fs(x, y) = z + 1). And functional adapta-
tion with postcondition y = 0 gives {ts ⇒ fs(x, y) = 0} s {y = 0}, which may be
reduced to {x = 0} s {y = 0}, using the axiom and the consequence rule. This
approach trivially extends to the case of multiple contracts, letting each contract
generate an axiom. However, the approach does not deal with non-deterministic
programs.

Reasoning from multiple contracts has been discussed in the setting of mod-
ular and incremental reasoning about class inheritance, for the approach of lazy
behavioral subtyping [10,11]. Here the set of contracts for a method will in
general increase when moving down in the class hierarchy, which makes it nec-
essary to deal with sets of contracts. A notion of entailment and an entailment
relation (�) were introduced, letting {..., (pi, qi), ...} � (p, q) be defined as
(
∧

i
∀zi . Pi

w
w′ ⇒ Qi) ⇒ (∀z . Pw

w′ ⇒ Q) (using our notation). Thus entailment is

conceptually similar to the generalized consequence rule. However, the work in
[10,11] did not focus on Hoare logic rules, and completeness and soundness of
entailment were not discussed.

Our normalization rule is basically expressing the strongest postcondition of
a given program, a notion which is well-known in Hoare-style reasoning. Triples
expressing the strongest postcondition for preconditions of the form w = w′,
known as most general formulas, have been used in completeness proofs for
specific programming languages [1]. A general rule similar to the normalization
rule (called Hoare-SAT) is given by Zwiers et al. in [29]. In contrast to our
rule, the conclusion is not expressed as a Hoare triple, but rather as a sat-

276 O. Owe et al.

specification relating programs and predicates in a complementary formalism.
Furthermore, sat-specifications are able to deal with multiple specifications.
Adaptation can then be made by switching from Hoare logic to sat-specifications
and back. However, the given Strong SP adaptation rule is more complex than
our generalized normalization rule since it deals with an arbitrary R, and is
similar to the generalized adaptation rule (except from being right-constructive).

Apart from the rules in [10,11,29], there seems to be limited results on Hoare-
style reasoning from multiple contracts about the same program (or method).
And these rules have rather complex conditions i.e., the precondition is compli-
cated in the rule for left-constructive verification strategy, and the postcondition
is complicated in the rule for right-constructive verification. These rules are awk-
ward to use with other strategies – in this case the sat-relations would be more
flexible. However, the usage of sat-relations involves switching between several
formal program reasoning systems (Hoare logic and the sat system). The gen-
eralized normalization rule suggested here is simpler then the ones mentioned
and more universally applicable, and it allows adaptation without leaving the
setting of Hoare logic.

The reasoning problem considered here is specific to contracts based on pre-
and postconditions. As we have seen, there is some flexibility in formulating
a pre- and postcondition pair without changing the semantics of the contract.
However, the rule of consequence is not insensitive to this flexibility since this
rule is based on separate comparison of preconditions and postconditions. Fur-
thermore, the addition of several contracts is not straight forward. In the setting
of relational calculus, a contract is basically expressed by a single input/out-
put relation (apart from restrictions of variable sets), and thus the sensitivity
to different formulations of pre/postcondition pairs is not an issue. Implication
between input/output relations corresponds to semantical entailment. In fact the
rule for reasoning about entailment of multiple contracts used in lazy behavioral
subtyping [10], was derived from relational calculus. And also the sat system of
[29] is similar to relational calculus. The general rules for relational calculus of
programs is simpler than for Hoare logic. Framing of sets of program variables
is possible [22]. On the other hand, the notions of pre- and postconditions are
useful for specification, and the notions of data invariants, class invariants and
loop invariants are expressed more naturally in Hoare logic, and Hoare logic is
in general well understood.

The present approach is limited to partial correctness. The normailzation rule
is problematic in a total correctness setting, unless a special symbol expressing
termination is added (as in [21]). Calculi for contracts based on refinements
[2,13,17,28], allow reasoning about contracts without mentioning a program,
and allow combination of multiple contracts. Furthermore, this setting can deal
with both total and partial correctness. Our work is however dedicated to the
setting of Hoare-style logics.

Hoare-Style Reasoning from Multiple Contracts 277

6 Conclusions

The present study is triggered by recent work in software engineering methodol-
ogy, such as software product lines, program evolution, as well as new modularity
mechanisms and techniques for dealing with object-orientation and inheritance.
The needs of these approaches motivate renewed focus on general reasoning
rules, in particular with the added complexity of multiple contracts about the
same program. We have not seen a discussion for Hoare Logic on completeness
of contract-based verification for the case of multiple contracts. And in this case
the importance of simplicity is a concern in itself, since the rules tend to become
complex.

We consider partial correctness reasoning and suggest a novel set of general
rules, based on generalized normalization (and rule of consequence), and prove
soundness and completeness. Normalization is clearly simpler than traditional
adaptation and other comparable rules. The generalized normalization rule has
only one quantifier, which is a universal quantifier, and no nested implications.
The methodology given by comparing normalized postconditions gives a simple
and efficient approach to reasoning from sets of contracts, which is also suitable
for automatic verification.

Acknowledgment. The authors are indebted to the reviewers for their valuable com-
ments.

References

1. Apt, K.R.: Ten years of Hoare’s logic: a survey - part I. ACM Trans. Program.
Lang. Syst. 3(4), 431–483 (1981)

2. Back, R.-J., Butler, M.: Exploring summation and product operators in the refine-
ment calculus. In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 128–158.
Springer, Heidelberg (1995). doi:10.1007/3-540-60117-1 8

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30569-9 3

4. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-oriented Software:
The KeY Approach. Springer, Heidelberg (2007)

5. Bijlsma, A., Matthews, P.A., Wiltink, J.G.: A sharp proof rule for procedures in
WP semantics. Acta Inform. 26(5), 409–419 (1989)

6. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM J. Comput. 7(1), 70–90 (1978)

7. Dahl, O.-J.: Verifiable Programming. International Series in Computer Science.
Prentice Hall, Englewood Cliffs (1992)

8. Damiani, F., Dovland, J., Johnsen, E.B., Owe, O., Schaefer, I., Yu, I.C.: A transfor-
mational proof system for delta-oriented programming. In: Proceedings of the 16th
International Software Product Line Conference, vol. 2 (SPLC 2012), pp. 53–60.
ACM (2012)

http://dx.doi.org/10.1007/3-540-60117-1_8
http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1007/978-3-540-30569-9_3

278 O. Owe et al.

9. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebr. Methods Program. 83(5–6),
360–383 (2014)

10. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. J.
Log. Algebr. Program. 79(7), 578–607 (2010)

11. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning with lazy
behavioral subtyping for multiple inheritance. Sci. Comput. Program. 76(10), 915–
941 (2011)

12. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

13. Groves, L.: Refinement and the Z schema calculus. Electron. Notes Theor. Comput.
Sci. 70(3), 70–93 (2002). REFINE 2002 (The BCS FACS Refinement Workshop)

14. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract
method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 300–
314. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 21

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

16. Hoare, C.A.R.: Procedures and parameters: an axiomatic approach. In: Engeler,
E. (ed.) Symposium on Semantics of Algorithmic Languages. LNM, vol. 188, pp.
102–116. Springer, Heidelberg (1971). doi:10.1007/BFb0059696

17. Mahony, B.P.: The least conjunctive refinement and promotion in the refinement
calculus. Formal Aspects Comput. 11(1), 75–105 (1999)

18. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
19. Meyer, B.: Eiffel: The Language. Prentice Hall, Englewood Cliffs (1992)
20. Olderog, E.-R.: On the notion of expressiveness and the rule of adaptation. Theoret.

Comput. Sci. 24(3), 337–347 (1983)
21. Owe, O.: Notes on partial correctness. Research Report 26, Department of Infor-

matics, University of Oslo (1977)
22. Owe, O.: On practical application of relational calculus. Research Report, Depart-

ment of Informatics, University of Oslo (1992)
23. Pierik, C., de Boer, F.S.: Modularity and the rule of adaptation. In: Rattray, C.,

Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 394–408.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27815-3 31

24. Reif, W., Stenzel, K.: Reuse of proofs in software verification. Sadhana 21(2),
229–244 (1996)

25. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 6

26. Schairer, A., Hutter, D.: Proof transformations for evolutionary formal software
development. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol.
2422, pp. 441–456. Springer, Heidelberg (2002). doi:10.1007/3-540-45719-4 30

27. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45070-2 12

28. Ward, N.: Adding specification constructors to the refinement calculus. In: Wood-
cock, J.C.P., Larsen, P.G. (eds.) FME 1993. LNCS, vol. 670, pp. 652–670. Springer,
Heidelberg (1993). doi:10.1007/BFb0024672

29. Zwiers, J., Hannemann, U., Lakhneche, Y., Stomp, F., de Roever, W.-P.: Modu-
lar completeness: integrating the reuse of specified software in top-down program
development. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051,
pp. 595–608. Springer, Heidelberg (1996). doi:10.1007/3-540-60973-3 109

http://dx.doi.org/10.1007/978-3-642-38574-2_21
http://dx.doi.org/10.1007/BFb0059696
http://dx.doi.org/10.1007/978-3-540-27815-3_31
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/3-540-45719-4_30
http://dx.doi.org/10.1007/978-3-540-45070-2_12
http://dx.doi.org/10.1007/BFb0024672
http://dx.doi.org/10.1007/3-540-60973-3_109

A New Invariant Rule for the Analysis of Loops
with Non-standard Control Flows

Dominic Steinhöfel(B) and Nathan Wasser

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
steinhoefel@cs.tu-darmstadt.de, nate@sharpmind.de

Abstract. Invariants are a standard concept for reasoning about
unbounded loops since Floyd-Hoare logic in the late 1960s. For real-world
languages like Java, loop invariant rules tend to become extremely com-
plex. The main reason is non-standard control flow induced by return,
throw, break, and continue statements, possibly combined and nested
inside inner loops and try blocks. We propose the concept of a loop scope
which gives rise to a new approach for the design of invariant rules. This
permits “sandboxed” deduction-based symbolic execution of loop bodies
which in turn allows a modular analysis even of complex loops. Based on
the new concept we designed a loop invariant rule for Java that has full
language coverage and implemented it in the program verification sys-
tem KeY. Its main advantages are (1) much increased comprehensibility,
which made it considerably easier to argue for its soundness, (2) simpler
and easier to understand proof obligations, (3) a substantially decreased
number of symbolic execution steps and sizes of resulting proofs in a
representative set of experiments. We also show that the new rule, in
combination with fully automatic symbolic state merging, realizes even
greater proof size reduction and helps to address the state explosion
problem of symbolic execution.

1 Introduction

In the past decades, deductive software verification [9] techniques evolved from
theoretical approaches reasoning about simple while languages [13] to systems
such as Spec# [2], Frama-C [7], OpenJML [6] and KeY [1] which are capable of
proving complex properties about programs in industrial programming languages
such as C, C# and Java [11,16]. Naturally, the complexity of the languages is
reflected in the complexity of the verification, raising the question: How can we
adequately handle language complexity, while restraining the negative impact of
overly complex verification procedures on comprehensibility and performance?

Prominent deductive verification techniques comprise verification condition
generation and Symbolic Execution (SE). The scope of this work is the latter.
As opposed to concrete execution, SE [8] treats inputs to a program as abstract
symbols as long as they are not assigned a concrete value; thus, programs can
be analyzed for all possible input values. Whenever the execution depends on
the concrete value of a symbolic variable, it makes a case distinction, following
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 279–294, 2017.
DOI: 10.1007/978-3-319-66845-1 18

280 D. Steinhöfel and N. Wasser

each possible branch independently. The outcome of SE is a Symbolic Execution
Tree (SET). We distinguish two types of SE approaches: (1) Lightweight SE has
its applications in bug finding or, for instance, concolic testing [14]. Programs
are instrumented by replacing data types with symbolic representations or by
the addition of function calls to the SE engine, which is in turn backed by an
external SMT solver. Lightweight SE has been employed in the analysis of whole
software libraries [4]. Example systems include KLEE [4] and Java PathFinder
[17]. (2) Heavyweight SE can be used to prove complex functional properties
about programs which are executed by a symbolic interpreter. A strong focus is
put on modularity : e.g., single methods may be thoroughly analyzed indepen-
dently from the concrete code of others. To achieve this, the analysis depends
on specifications such as method contracts and loop invariants. Heavyweight SE
systems can rely on an external solver, or be integrated with an internal theo-
rem proving engine. Due to high computation time and the effort required for
creating specifications, they do not scale to complete libraries, and are instead
employed to assert strong guarantees about critical routines [11] or to build pow-
erful tools like symbolic debuggers [12]. Example systems encompass KeY [1],
VeriFast [21] and KIV [20]. In this paper, we consider heavyweight SE.

Heavyweight SE is strongly affected by both the performance and comprehen-
sibility aspects phrased in the question at the beginning: The number of branches
in an SET grows exponentially in the number of static branching points in the
analyzed program, which is referred to as the path explosion problem in liter-
ature [5]. Additionally, proving the validity of complex properties may require
interaction with the prover, for which it is essential that the proof is transparent
and understandable to the user.

For reasoning about unbounded loops, invariants are standard since Hoare
logic [13] and play a central role in heavyweight SE systems. This paper pushes
forward a new kind of loop invariant rule tackling the aforementioned problems
by integrating a novel program abstraction, which we refer to as loop scopes,
and an automatic predicate abstraction-based state merging technique exploit-
ing existing specification elements for infering predicates while maintaining pre-
cision.

Standard loop invariant rules require certain contorted maneuvers to deal
with abnormal control flow induced, e.g., by breaks and exceptional behavior;
these measures include non-trivial code transformation or a regime based on a
multitude of artificial flags. Our approach avoids this by realizing a “sandbox-
ing” technique: Loop bodies are encapsulated inside loop scopes, the semantics
of which allow for a graceful and modular handling of nested loops and complex,
irregular control flow. The loop bodies themselves do not have to be changed.
Our implementation and evaluation for the heavyweight SE system KeY demon-
strates that the loop scope invariant rule contributes to significantly shorter
SETs that are moreover better understandable for a human observer. The inte-
gration of state merging helps to reduce proof sizes even further.

The idea of loop scopes appeared first in [22] and is not yet published. Our
additional contributions are (1) a definition of the semantics of loop scopes and

A New Invariant Rule for the Analysis of Loops 281

an outline of a soundness proof for the invariant rule (Sect. 3), (2) the imple-
mentation and experimental evaluation of the rule (Sect. 4), and (3) a predicate
abstraction-based approach for merging SE states arising from the execution of
loops with non-standard control flow (Sect. 5).

2 Program Logic for Symbolic Execution

One convenient approach to concisely describe heavyweight SE is the formaliza-
tion of SE steps as rules in a formal calculus. For expressing our concepts, we
chose Java Dynamic Logic (JavaDL) [1], a program logic for Java (the main con-
cepts of which can be straightforwardly extended to other sequential languages
like C#). JavaDL is an extension of first-order logic for formulating assertions
about program behavior; programs and formulas are integrated within the same
language. To this end, JavaDL contains modalities for expressing partial and
total correctness, where the latter also includes proving that the program ter-
minates. For simplicity, we restrict ourselves to the former in this paper: [p]ϕ
expresses that if the program p terminates, then the formula ϕ holds.

The JavaDL calculus is a sequent calculus in which, as usual, rules consist
of one conclusion and at least one premise, and are applied bottom-up. The
SE rules of the calculus operate on the first active statement stmt in a modal-
ity [π stmt ω]. The nonactive prefix π consists of sequences of opening braces,
beginnings “try {” of try-catch-finally blocks, or special constructs like
the loop scopes introduced in this paper. The postfix ω denotes the “rest” of the
program; in particular, it contains closing braces corresponding to the opening
braces in π.

Example 1. Consider the following modality, where the active statement i=0;
is wrapped in a labeled try-finally block, and the nonactive prefix π and the
“rest” ω are the indicated parts of the program:

[l:{try {
︸ ︷︷ ︸

π

i = 0;
︸ ︷︷ ︸

stmt

j = 0;} finally {k = 0;}}
︸ ︷︷ ︸

ω

]

The sequent i < 0 � [π i = 0; ω](i .= 0), embedding this modality, intuitively
expresses “when started in a state where i is negative, ‘π i=0; ω’ either does
not terminate, or terminates in a state where i is zero (since Java is determin-
istic)”. The SE rule applicable to the sequent, assignment, transforms the active
statement into a state-changing update. Below, we show the definition of this
rule on the right and its application on the sequent on the left (Γ and Δ are
placeholders for sets of formulas):

i < 0 � {i := 0}[π ω](i .= 0)
i < 0 � [π i = 0; ω](i .= 0)

⎡

⎣

assignment

Γ � {x := expr}[π ω]ϕ,Δ

Γ � [π x= expr; ω]ϕ,Δ

⎤

⎦

The above example employed another syntactical category of JavaDL called
updates, which denote state changes. Elementary updates x := t syntactically
represent the states where the program variable x attains the value of the term t.

282 D. Steinhöfel and N. Wasser

Updates can be combined to parallel updates x := t1 ||y := t2, and can be applied
to terms and formulas, where we write {U}ϕ for applying the update U to the
formula ϕ. Semantically, ϕ is then evaluated in the state represented by U . For
a full account of JavaDL, we refer the reader to [1].

3 The Loop Invariant Rules

In the verification of sequential programs, and also in SE, the treatment of loops
is one of the most crucial issues. Loops with a fixed upper bound on the number
of iterations can be handled by unwinding. Whenever this bound is not known a
priori, often loop invariant rules are employed. The “classic” loop invariant rule
has the following shape [1,8], where Inv is a supplied loop invariant:

loopInvariant

Γ � {U} Inv ,Δ (initially valid)
Γ � {U} {Uhavoc}((Inv ∧ se .= TRUE) → [body]Inv),Δ (preserved)
Γ � {U} {Uhavoc}((Inv ∧ se .= FALSE) → [π ω]ϕ),Δ (use case)

Γ � {U} [π while(se) body ω]ϕ,Δ

Loop invariant rules are based on an inductive argument: We have to prove that
the invariant is initially valid and to show that it is preserved by an arbitrary
iteration. Afterward, we may assume it for the execution of the remaining pro-
gram [π ω] (use case). Since preserved and use case are to be proven in symbolic
states where an arbitrary number of loop iterations has already been executed,
potentially invalidating all information in the context, the context has to be
masked. To this end, an “anonymizing” update Uhavoc is added, which overwrites
all variables/heap locations that are modified in the loop body with fresh sym-
bols. In the context of simplistic programming languages, where only side-effect
free expressions se are allowed for loop guards and there is no way of abruptly
escaping the loop, this rule is already sufficient. For a language like Java, we
need to take into account that loop guards might be complex expressions with
side effects and exceptional behavior, and the execution might escape the loop
in consequence of returns, continues, breaks, or thrown exceptions.

In the basic invariant rule loopInvariant, the loop body is executed out-
side its context [π ω]. Consequently, information about how to handle break,
continue and return statements is no longer present, and a direct extension
of the rule that takes abrupt termination into account has to apply suitable pro-
gram transformations to the loop body adding an encoding of this information.
A fundamentally different approach based on four additional labeled modalities is
discussed in detail in [22]; it requires five branches and is inherently incomplete.
The approach implemented in the KeY system and described in [1] wraps the loop
body in a labeled try-catch statement; breaks, returns and continues are
transformed into labeled breaks before which corresponding flags are set that
describe the respective nature of the loop termination. Thrown exceptions are
caught in the catch block and assigned to a new variable which makes the excep-
tion available in the post condition of the preserved branch. An example for this

A New Invariant Rule for the Analysis of Loops 283

transformation is given later in Example 3. The resulting invariant rule has the
following form (the loop guard is executed twice in the preserved and use case
branches since it may have side effects):

loopInvTransform
Γ � {U} Inv , Δ (initially valid)

Γ � {U} {Uhavoc}((Inv ∧ [b=nse]b
.
= TRUE) → [b=nse; body
∧

]Înv), Δ (preserved)
Γ � {U} {Uhavoc}((Inv ∧ [b=nse]b

.
= FALSE) → [π b=nse; ω]ϕ), Δ (use case)

Γ � {U} [π while(nse) { body } ω]ϕ, Δ

Here, b=nse; body
∧

is the result of the mentioned program transformation, where
Boolean flags brk and rtrn indicate that the loop has been left by a break or
return statement, and the exception variable exc stores a thrown exception.
The post condition ̂Inv of the preserved case has the following shape:

(exc � .= null → [π throw exc; ω]ϕ)
∧ (brk .= TRUE → [π ω]ϕ)
∧ (rtrn .= TRUE → [π return result; ω]ϕ)
∧ (normal → Inv)

where normal is equivalent to brk
.= FALSE ∧ rtrn

.= FALSE ∧ exc
.= null .

The special variable result is assigned the returned values in the transformed
loop body. This approach has several drawbacks:

Exceptions in guards. While loopInvTransform allows the loop guard nse to
have side effects, it may not terminate abruptly. Relaxing this restriction
introduces additional complexity.

Multiple reasons for loop termination. In practice, there might be multi-
ple reasons for abrupt loop termination. For instance, while attempting to
return an expression including a division by zero, an exception will be thrown
which ultimately causes the loop termination. In Java, the “return attempt”
as a reason for the loop termination will be completely forgotten; when using
the above invariant rule, however, two of the conjuncts in ̂Inv apply.

Understandability. Due to the applied program transformation, the generated
proof sequents are harder to understand for a human user, and also harder
to describe in theory. Furthermore, the preserved case may also include the
necessity to show the post condition ϕ. This may be considered as counter-
intuitive since it is, theoretically, in the responsibility of the use case.

Repeated evaluation of loop guard. The loop guard has to be evaluated
four times according to the rule. This may constitute a performance problem
in the verification process, since the guard might be a complex expression
including, for instance, method calls and array accesses.

Moreover, program transformation of Java code is generally an intricate and
error-prone task. Subsequently, we introduce a new syntactical entity called loop
scope. Loop scopes constitute a program abstraction which “sandboxes” loop
bodies, thus facilitating a modular analysis of loops requiring very little program
transformation. This new concept gives rise to a new kind of loop invariant rule.

284 D. Steinhöfel and N. Wasser

Our proposed invariant rule is based on (indexed) loop scopes [22]. Definition 1
establishes loop scope statements as an extension to Java. We loosen the usual
restriction that the label of a continue statement has to directly refer to a
loop to allow for pushing leading loop labels inside loop scopes.

Definition 1 (Loop Scope Statements). Let x be a program variable of type
boolean, and p be a Java program. A loop scope statement is a Java statement
of the form �x p �. We call x the index variable of the loop scope and p its
body. Inside p, we allow labeled continue statements referring to arbitrary
Java blocks.

Definition 2 provides a scoping notion for continues in loop scopes, which
is needed for defining the semantics in Definition 3.

Definition 2 (Scope of Loop Scope Statements). Let p be the body of a
loop scope statement lst. A continue statement inside p is in the scope of lst
iff it occurs on the top level, i.e., not nested inside a loop or loop scope in p. A
labeled continue statement continue l is in the scope of lst iff the label l (1)
is declared inside p and (2) refers to a top-level block in p.

Definition 3 (Semantics of Loop Scope Statements). Let lst be a loop
scope statement with index x and body p. lst is exited by throw and (labeled)
continue and break statements that are not caught by an inner catch or loop
(scope) statement, or if there is no remaining statement to execute. Its semantics
coincides with the semantics of p, except that upon exiting the loop scope, x is
updated to (1) false if the exit point is a labeled or unlabeled continue state-
ment in the scope of lst, and to (2) true for all other exit points. Furthermore,
exiting the loop scope with x == false also leads to exiting the whole program.

Example 2. Consider the program

try { �x l:{ y+=2; continue l; f(); } � } finally {y = 0; }
Following Definition 3, it is semantically equivalent to “y+=2; x=false;”,
since y+=2; does not exit the loop scope and the continue statement is in
its scope.

We use the semantics of loop scopes (i.e., x is false, or FALSE in JavaDL,
iff the loop continues with another iteration) to distinguish the preserved and
the use case part in the second branch of our rule loopScopeInvariant (Fig. 1, next
page), which subsumes the respective branches of loopInvTransform. The rule can
be extended to a version for total correctness by reasoning about a well-founded
relation [1]. Here, x is a fresh program variable, Uhavoc an anonymizing update,
and n ≥ 0 is the number of labels in front of the loop. The program transforma-
tion performed by the rule is minimal. We merely (1) transform the while to
an if, (2) push any labels inside, (3) add a trailing continue after the loop
body, and (4) wrap the resulting if statement in a loop scope. Appending the
continue statement ensures that the active statement of all final states arising

A New Invariant Rule for the Analysis of Loops 285

Fig. 1. The loop scope invariant rule

after the execution of body is either a (labeled) break or continue, or a throw
or return statement. The typical case where the loop scope has an empty body
is the one that never entered the if statement, which corresponds to the case of
regular loop termination due to an unsatisfied loop guard – the classic “use case”
(the only other case is a labeled break referring to a label pointing to the loop).
The following theorem states the validity of the rule loopScopeInvariant.

Theorem 1. The rule loopScopeInvariant is sound, i.e., if the “initially valid”
and “preserved & use case” premises are valid, then also the conclusion is valid.

Proof Sketch. The proof follows the usual inductive argument: The invariant has
to hold upon entering the loop (ensured by the validity of the “initially valid”
case) and after an arbitrary loop iteration. The latter is asserted by the semantics
of the loop scope along with the addition of the continue statement and the
post condition conjunct x

.= FALSE → Inv : Since the second premise of the
rule is valid, we know that whenever the loop is resuming with another iteration
(and x

.= FALSE), the invariant is preserved. Furthermore, for the cases that
the loop is exited, it holds that x

.= TRUE and thus that the conclusion ϕ of
x

.= TRUE → ϕ, the post condition of the method, is true. Therefore, we can
conclude the validity of the rule’s conclusion.

Example 3. Figure 2 depicts a synthetic example of a while loop with
non-standard control flow taken from [1], as well as the “preserved”
branch for the invariant rule loopInvTransform and the “preserved &
used” branch for loopScopeInvariant, applied on the sequent Γ �
{U} [while (x>=0) {...}],Δ. Not only is the outcome for loopScopeInvariant
already shorter and easier to read, but it also subsumes the “use case” branch
of loopInvTransform which is not contained in Fig. 2. Also, the context π ω
can constitute a Java program of arbitrary length. Since it occurs inside
the additional modalities of the post condition in the “preserves” branch of
loopInvTransform, this can significantly blow up the resulting sequent and there-
fore render the sequent even harder to understand. We additionally emphasize
that loopScopeInvariant is easier to realize in systems like Hoare logic that do
not allow more than one modality, which is required by loopInvTransform.

286 D. Steinhöfel and N. Wasser

Fig. 2. While loop with non-standard control flow and resulting sequents after an
application of loopInvTransform and loopScopeInvariant on it.

Of course, we need to treat loop scope statements in a sound manner accord-
ing to their semantics (Definition 3). There are eight cases which we have to
consider; those are distinguished by the currently active statement inside the
loop scope, which can be: (1) empty, (2) an unlabeled continue, (3) a labeled
continue, (4) an unlabeled break, (5) a labeled break, (6) a return for a
void method, (7) a return for a non-void method, or (8) a throw statement.
Figure 3 shows those new calculus rules. We discuss the most interesting cases;
for a full account as well as for the additionally relevant, already existing rules,
see [19].

The rules labeledBreakIndexedLoopScope and labeledContinueIndexedLoop-
Scope address the cases where a labeled break or continue reaches the loop
scope. This only ever happens if the label is not addressing the current loop (or,
for that matter, any block or inner loop inside the current loop): Otherwise, the
already existing calculus rules of KeY will eventually transform the labeled to an
unlabeled statement. If one of the two rules is applicable, the loop is definitely
exited (and thus, the loop scope removed and x set to true), and the labeled
break or continue statement is left for further processing outside this loop
scope.

A New Invariant Rule for the Analysis of Loops 287

Fig. 3. Calculus rules for loop scope removal

Due to the loop scope semantics (Definition 3), an unlabeled active
continue statement has to trigger a leaving of the loop scope (removing the
execution context π ω) and the setting of the index variable to false. This is
realized by the rule continueIndexedLoopScope, which distinguishes it from all
the others that keep the context and set the index to true. It is applied either
when the additional continue statement added after the loop body is reached,
i.e. in the case of normal control flow, or in the case of an (unlabeled, or labeled
and referring to the current loop) continue statement within the loop body.

4 Evaluation

We implemented the loop scope invariant rule for KeY, a deductive program
verification system for JavaDL based on heavyweight symbolic execution. Its
calculus rules for the SE of Java programs cover most sequential Java features,
such as inheritance, dynamic dispatch, reference types, recursive methods, excep-
tions, and strings (we refer the reader to [1] for a full account). Prior to that,
the system was based on the loop invariant rule loopInvTransform (see Sect. 3).
In the remainder of this section, we refer to the previous rule implemented in
KeY as the “old” rule and to our implementation of the loop scope invariant
rule as the “new” rule. Our experimental evaluation is based upon a sample of
54 Java programs (containing loops) of varying size which are shipped with KeY
as examples. Each of these examples can be solved fully automatically by KeY.
For the evaluation, we created two proof versions: One with the old, and one
with the new rule. We then compared the numbers of proof nodes and SE steps
for each example. Table 1 depicts the results for 44 of the examples. Negative
numbers indicate a better performance of the new rule. We left out some small
examples for space reasons; the complete table and the KeY proof files can be
found on our web page key-project.org/papers/loopscopes.

Figure 4 contains box plots for the percentage difference of the numbers of
proof nodes and SE steps between the old and the new rule. The bars in the

http://key-project.org/papers/loopscopes

288 D. Steinhöfel and N. Wasser

−100−50050100150200250300

(a) Proof nodes (including outliers)

−30−25−20−15−10−50510

(b) Proof nodes (without outliers)

−70−60−50−40−30−20−100

(c) Symbolic execution steps

Fig. 4. Box plots visualizing the percentage difference in the number of proof nodes/SE
steps between the old and the new rule.

middle of the box represent the median, the box itself the midspread (the middle
50%), and the whiskers point to the last items that are still within 1.5 of the
inter quartile range of the lower/upper quartile. The examples which are not
covered by the whiskers, the outliers, are signified as points.

Overall, we saved between 3% and 63% of SE steps, the median is 27. Of all
examples, 50% are in the range of 17% and 32% of saved steps. This is mostly
due to the overhead of the fourfold evaluation of loop guards in the old rule.
Considering the total number of saved proof steps, the situation is more complex.
While for 50% of all examples, the number of proof steps can be reduced by 7% to
16% when using the new rule, we have seven outliers, and in total four examples
where the number of nodes is higher in the proof with the new rule.

Of those, the “coincidence count” example with an increase of 258.88% is
most surprising. The reason is not the SE, since even in this example we saved
27.14% of SE steps. We discovered that the increased number of proof nodes
is due to disadvantageous decisions of KeY’s strategies: From situations in the
compared proofs where the sequents were equal up to renaming of constants
and ordering of formulas, the strategies made significantly worse decisions in
the proof with the new rule. We made similar observations for the remaining
three negative examples as well as for the positive outlier “jml-information-
flow”. Exemplarily for “coincidence count” and “jml-information-flow”, we were
able to underpin the assumption that the extreme loss/gain in performance
is due to (fixable) disadvantageous strategy decisions by pruning the longer
proofs at the interesting positions, performing a few simple steps manually and
starting the strategies again. The resulting proof size savings fit the expectations.
We reported those examples to the KeY team as benchmarks for tuning the
strategies.

Some of the positive outliers are more interesting: In the “lcp” example,
the loop condition is extremely complex, which is why the new rule performs
much better. The “ArrayList.remove.0” example contains two nested loops. The
application of an invariant rule to the inner loop is superfluous, since the spe-
cific method contract constituting the proof goal already facilitates closing the
proof without considering the inner loop. Still, the strategies choose to apply an

A New Invariant Rule for the Analysis of Loops 289

Table 1. 44 out of 54 experimental results (including all negative results), ordered by
the percentage of proof nodes saved. The outliers are discussed in Sect. 4.

invariant rule. While in the case of the new rule, this is not very costly and the
proof can be closed without any further branching, the proof with the old rule
spends a lot of proof steps for the use case of the inner loop.

290 D. Steinhöfel and N. Wasser

5 Exploiting Invariants: Integration of State Merging

As mentioned in the introduction, one of the main bottlenecks of symbolic execu-
tion is the path explosion problem [5]. In [18], a general lattice-based framework
for merging states in SE is proposed and implemented for KeY. SE states shar-
ing the same program counter (the same remaining program to execute) can
be merged together using one of the state merging techniques conforming with
the framework. The most common techniques are if-then-else merging, where the
precise values of differing program variables in the merged states are remembered
and distinguished by the respective path conditions, and predicate abstraction.

/∗@ public normal behavior
@ requires arr != null ;
@ ensures \result ==−1 | |
@ arr [\result] == elem;
@∗/

public int partiallyUnrolledFindBrk(
int [] arr , int elem) {

int i = −1, res = −1;
/∗@ loop invariant
@ (\forall int k; k <= i && k >= 0;
@ arr [k] != elem) &&
@ i >= −1 && i <= arr . length &&
@ (res ==−1 | | arr [res] == elem);
@ decreases arr . length − i + 1;
@∗/

while (++i < arr . length) {
i f (i + 3 < arr . length) {

i f (arr [i] == elem) {
res = i ; break;

} else if (arr [i + 1] == elem) {
res = i + 1; break;

} else if (arr [i + 2] == elem) {
res = i + 2; break;

} else if (arr [i + 3] == elem) {
res = i + 3; break;

} else {
i += 3; continue;

}
}

i f (arr [i] == elem)
res = i ; break;

}

return res ;
}

Listing 1. Find method using break
statements to escape the loop

/∗@ public normal behavior
@ requires arr != null ;
@ ensures \result ==−1 | |
@ arr [\result] == elem;
@∗/

public int partiallyUnrolledFindRtrn(
int [] arr , int elem) {

int i = −1;
/∗@ loop invariant
@ (\forall int k; k <= i && k >= 0;
@ arr [k] != elem) &&
@ i >= −1 && i <= arr . length ;
@
@ decreases arr . length − i + 1;
@∗/

while (++i < arr . length) {
i f (i + 3 < arr . length) {

i f (arr [i] == elem) {
return i ;

} else if (arr [i + 1] == elem) {
return i + 1;

} else if (arr [i + 2] == elem) {
return i + 2;

} else if (arr [i + 3] == elem) {
return i + 3;

} else {
i += 3; continue;

}
}

i f (arr [i] == elem)
return i ;

}

return −1;
}

Listing 2. Find method using return
statements to directly return the result

The easiest (and automatic) state merging technique is the if-then-else
method, which though only partially improves the situation, since at the end,
if-then-else expressions will be split up again. Conversely, predicate abstrac-
tion is a strong technique, which though requires the user to supply abstraction
predicates by JML annotations; the automatic generation of those predicates is,

A New Invariant Rule for the Analysis of Loops 291

similar to loop invariant inference, a difficult task, and not yet implemented for
KeY. However, when merging states resulting from the execution of loops with
abrupt termination (and not arbitrary states, e.g., resulting from a split after an
if statement), we can automatically exploit the loop invariant as well as the post
condition for the method to generate suitable abstraction predicates that can
be employed for predicate abstraction. Based on [18], we implemented this app-
roach for KeY (available at key-project.org/papers/loopscopes). When applying
our loop invariant rule, the appropriate merge points and inferred abstraction
predicates are registered and taken into account by the automatic strategies.
Once all execution paths until a merge point are explored, they are merged
based on this information. We describe how to infer the predicates along an
example.

Listings 1 and 2 contain similar, “partially unrolled” methods for finding an
element in an integer array. The methods are fully specified in JML and can be
proven by KeY. As long as possible, they search the next three array positions
for the sought-after element. In Listing 1, the control flow breaks out of the loop
once that the element is found; in Listing 2, the element is directly returned. SE
produces proof goals for each break/return statement, which can be merged.

In Listing 1, the states after each break only differ in the value of the
variable res, since i is not needed anymore after the loop and is removed.
For each state, the part of the invariant talking about res has to hold:
res == -1 || arr[res] == elem. From this formula, we create a unary
abstraction predicate Pbreak (v) ≡ v

.= −1 ∨ arr[v] .= elem. KeY is able to show
in a background proof that this predicate holds for res in each state and uses it
to abstract away from the concrete values in the merged state. Thus, we save 194
proof nodes (6.3%) and 23 symbolic execution steps (11.6%). Compared to using
the old invariant rule, we save 21.0%/45.8% of proof nodes/symbolic execution
steps.

For Listing 2, we can do something similar based on the post condition of
the method. The states after the return statements differ in the returned value.
We generate an abstraction predicate from the post condition of the method by
substituting the JML expression \result by the parameter of the predicate:
Preturn(v) ≡ v

.= −1 ∨ arr[v] .= elem. The obvious equivalence of Pbreak and
Preturn is due to fact that (almost) the method’s whole behavior is realized in
the loop. KeY proves this property true for each returned value in the return
states and merges the states based on the abstraction predicate. We obtain a
reduction of 164 proof nodes (6.2%) and 20 symbolic execution steps (10.0%);
and 10.5%/31.7% compared to the old invariant rule.

6 Related Work

It is natural to compare our work with other heavyweight SE systems like Veri-
Fast and KIV. For VeriFast, an SE system for C, we unfortunately could not find
any work formally explaining the handling of irregular control flow in loops; the
most formal paper we encountered [21] is based on a reduced language without

http://www.key-project.org/papers/loopscopes

292 D. Steinhöfel and N. Wasser

throws, breaks and continues. KIV is a deductive verification system which
has been extended by an SE calculus covering Java Card in a PhD thesis by
Stenzel [20]. Their calculus is also a variant of Dynamic Logic. Its most significant
difference to JavaDL is the flattening (sequential decomposition) of statements.
This implies that the system cannot use inactive prefixes, but instead includes
mode information in a store shared by multiple modalities, and multiple artificial
statements dealing with method returns and abrupt termination. Interestingly,
their loop invariant rule bears a strong resemblance to the one proposed by us.
Where we decide whether to prove the invariant or the “use case” based on the
loop scope index, they decide based on the evaluation of the loop guard and on
the mode information. But there are some relevant aspects which distinguish
this work from ours: (1) The rule in KIV requires substantially more program
transformation due to the flattening. Moreover, we can directly treat continue
statements, whereas they are transformed to labeled breaks in KIV. One of their
arguments is that continues are problematic for loop unwinding; however, as
discussed in [22], loop scopes can also be employed in that context, making
the transformation superfluous. (2) In [20], the rule circumvents the need for
anonymization by dropping the preconditions Γ , which makes it necessary to
also encode information about the initial state in the invariant, thus bloating it
more than necessary. (3) After an abrupt termination, KIV has to process all
subsequent modalities until an appropriate “catcher” statement appears. Our
approach simply exits the loop scope, which emphasizes the advantages of the
“sandboxing” technique. (4) Our work is, to the best of our knowledge, the only
one comparing the performance of a “classic” invariant rule to one of this style,
and the only one integrating an invariant rule with symbolic state merging.
Current versions of KIV can no longer parse Java programs, hence it was not
possible to practically examine the implemented rule.

A lot of work on the verification of sequential programs is based on Verifica-
tion Condition Generation (VCG). ESC/Java(2) [10] and its successor Open-
JML [6] generate verification conditions for annotated Java programs. The
Frama-C plugins Jessie and Krakatoa [15] translate annotated C and Java pro-
grams into the Why [3] language. Boogie [2] generates verification conditions for
Spec#. In these approaches, the verification works via a translation to an inter-
mediate language. The way loops are commonly translated (“loop framing”, [2])
is structurally similar to our approach: The invariant is asserted initially, accessed
locations are anonymized and the invariant is assumed for the anonymized state;
finally, the invariant is asserted after executing the loop body. The handling of
abnormal control flow depends on the translation into the intermediate lan-
guage; usually, this remains rather underspecified in the literature. According to
a personal communication with David R. Cok, exceptions in OpenJML result
in gotos to basic blocks for catch statements or exceptional exit from the
procedure; breaks and continues likewise branch to dedicated blocks. Gener-
ally, verification conditions consist of one huge implication per method, includ-
ing one conjunct for each program block ending in a goto. While probably
being beneficial for the performance of VCG approaches, this impedes the trace-

A New Invariant Rule for the Analysis of Loops 293

ability of problems. Conversely, Symbolic Execution (SE) produces many small
proof obligations. Our approach targets a middle course. It is based on SE,
but reduces the number of proof goals through abstraction-based state merging,
while increasing understandability by using a loop invariant rule with a sim-
ple semantics. Additionally, we require very little program transformation. The
translation into an intermediate language may mitigate language complexity;
however, it can require compromises concerning soundness [10] and, in any case,
is a non-trivial and error-prone task [15] which is difficult to prove sound.

7 Future Work and Conclusion

We have introduced the concept of a loop scope for the deduction-based symbolic
execution of loops in industrial sequential programming languages. Building on
this, we have presented a loop invariant rule which we implemented for the
program verification system KeY. Our rule is sound, efficient, and produces
understandable proof obligations. We integrated the new rule with a novel,
fully automatic abstraction-based state merging technique based on abstrac-
tion predicates inferred from existing loop invariants and method post condi-
tions. The performance improvement is beneficial for automatic proof attempts,
where thresholds on time or number of proof steps may otherwise lead to early
termination.

The loop scope invariant rule is scheduled to replace the existing rule in KeY
in the next public release. We are planning to also release our state merging
approach to the public after having performed a more extensive case study.

References

1. Ahrendt, W., Beckert, B. (eds.): Deductive Software Verification - The KeY Book.
LNCS, vol. 10001. Springer, Cham (2016). doi:10.1007/978-3-319-49812-6

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

3. Bobot, F., Filliâtre, J.C., et al.: Why3: Shepherd your herd of provers. In: Boogie
2011: First International Workshop on IVL, pp. 53–64 (2011)

4. Cadar, C., Dunbar, D., et al.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: 8th USENIX Conference
on OSDI, pp. 209–224. USENIX Association, Berkeley (2008)

5. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

6. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Proceedings of the 1st Workshop on FIDE, pp. 79–92 (2014)

7. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33826-7 16

http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16

294 D. Steinhöfel and N. Wasser

8. Dannenberg, R., Ernst, G.: Formal program verification using symbolic execution.
IEEE Trans. Softw. Eng. SE–8(1), 43–52 (1982)

9. Filliâtre, J.C.: Deductive software verification. Int. J. Softw. Tools Technol. Transf.
(STTT) 13(5), 397–403 (2011)

10. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. SIGPLAN Not. 36(3), 193–205 (2001)

11. Gouw, S., Rot, J., Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 16

12. Hentschel, M., Hähnle, R., Bubel, R.: Visualizing unbounded symbolic execution.
In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 82–98. Springer,
Cham (2014). doi:10.1007/978-3-319-09099-3 7

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

14. Jaffar, J., Murali, V., et al.: Boosting concolic testing via interpolation. In: Pro-
ceedings of 9th Joint Meeting on FSE, pp. 48–58. USA. ACM, New York (2013)

15. Marché, C., Paulin-Mohring, C., et al.: The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. J. Logic Algebr. Program. 58(1–
2), 89–106 (2004)

16. Pariente, D., Ledinot, E.: Formal verification of industrial C code using Frama-C:
a case study. In: Proceedings of the 1st International Conference on FoVeOOS, p.
205 (2010)

17. Păsăreanu, C.S., Visser, W.: Verification of Java programs using symbolic execution
and invariant generation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol.
2989, pp. 164–181. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24732-6 13

18. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 57–73. Springer, Cham (2016). doi:10.1007/978-3-319-47846-3 5

19. Steinhöfel, D., Wasser, N.: A new invariant rule for the analysis of loops with non-
standard control flows. Technical report, TU Darmstadt (2017). http://tinyurl.
com/loop-scopes-tr

20. Stenzel, K.: Verification of Java card programs. Ph.D. thesis, University of Augs-
burg, Germany (2005)

21. Vogels, F., Jacobs, B., et al.: Featherweight VeriFast. LMCS 11(3), 1–57 (2015)
22. Wasser, N.: Automatic generation of specifications using verification tools. Ph.D.

thesis, Technische Universität Darmstadt, Darmstadt, January 2016

http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/978-3-319-09099-3_7
http://dx.doi.org/10.1007/978-3-540-24732-6_13
http://dx.doi.org/10.1007/978-3-319-47846-3_5
http://tinyurl.com/loop-scopes-tr
http://tinyurl.com/loop-scopes-tr

Triggerless Happy
Intermediate Verification with a First-Order Prover

YuTing Chen(B) and Carlo A. Furia

Chalmers University of Technology, Gothenburg, Sweden
yutingc@chalmers.se

http://bugcounting.net

Abstract. SMT solvers have become de rigueur in deductive verifi-
cation to automatically prove the validity of verification conditions.
While these solvers provide an effective support for theories—such as
arithmetic—that feature strongly in program verification, they tend to
be more limited in dealing with first-order quantification, for which they
have to rely on special annotations—known as triggers—to guide the
instantiation of quantifiers. Writing effective triggers is necessary to
achieve satisfactory performance with SMT solvers, but remains a tricky
endeavor—beyond the purview of non-highly trained experts.

In this paper, we experiment with the idea of using first-order provers
instead of SMT solvers to prove the validity of verification conditions.
First-order provers offer a native support for unrestricted quantification,
but have been traditionally limited in theory reasoning. By leveraging
some recent extensions to narrow this gap in the Vampire first-order
prover, we describe a first-order encoding of verification conditions of pro-
grams written in the Boogie intermediate verification language. Experi-
ments with a prototype implementation on a variety of Boogie programs
suggest that first-order provers can help achieve more flexible and robust
performance in program verification, while avoiding the pitfalls of having
to manually guide instantiations by means of triggers.

1 The Trouble with Triggers

Deductive verification reduces the problem of assessing the correctness of a pro-
gram to checking the validity of logic formulas known as verification conditions
(VCs). VCs normally include both first-order quantification and theory-specific
fragments: quantifiers naturally express specification properties of the program
under verification—such as its heap-based memory model, or an inductive def-
inition of “sortedness”; logic theories, on the other hand, are needed to reason
efficiently about basic data types—most notably, integers. Having both kinds of
logic in the same formulas aggravates the already challenging problem of auto-
mated reasoning.

SMT solvers are the tools of choice to check the validity of VCs, and in this
role they are part of nearly every verification toolchain. Such solvers expressly
target combinations of decidable logic theories (the “T” in SMT is for “theory”) on

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 295–311, 2017.
DOI: 10.1007/978-3-319-66845-1_19

296 Y. Chen and C.A. Furia

which they achieve a high degree of automation; in contrast, they tend to struggle
with handling the complex usages of quantification that are often necessary
for expressing VCs but render logic undecidable. The practical solution that
has been adopted in most SMT solvers is to use triggers [7]—heuristics that
guide the instantiation of quantifiers. Triggers are specific to the axioms that
define the predicates used in a formal specification; as such, they are additional
annotations that must be provided for verification. Writing triggers that achieve
good, predictable performance remains a highly specialized skill—a bit of a black
art that only few researchers are fluent in.1

In contrast to SMT solvers, first-order theorem provers support, as the name
suggests, first-order quantification natively and without particular restrictions.
First-order provers have not been often used in program verification for a num-
ber of reasons, including the more spectacular performance improvements of
SAT/SMT solvers, and the lack of out-of-the-box support for theory-specific
reasoning. More recently, however, these limitations have started to mollify, and
the best first-order provers have become flexible tools with some effective sup-
port for arithmetic and other commonly used theories. Encouraged by these
improvements, in this paper we probe the feasibility of using first-order provers
in lieu of SMT solvers to check the validity of VCs for the deductive verification
of programs.

To make our contributions applicable to the verification of a variety of pro-
gramming languages, we target the popular intermediate verification language
Boogie—which we outline in the motivating examples of Sect. 2. Boogie is both
a language and a tool: Boogie the language combines an expressive typed logic
and a simple imperative procedural programming language, and Boogie the tool
generates VCs from Boogie programs in a form suitable for SMT solvers; the
Boogie language also includes syntax for triggers, which are passed on to the
back-end solver to help handle quantifications.

We developed a technique and a tool called blt (Boogie less triggers), which
inputs Boogie programs and generates VCs in a subset of the TPTP (Thousands
of Problems for Theorem Provers) format [23] that is suitable for first-order
provers. In Sect. 3 we describe the salient features of the first-order encoding,
and the key challenges we addressed to produce VCs that are tractable. To this
extent, we specifically took advantage of some recent features of TPTP supported
by the Vampire prover [12,13] to encode imperative code effectively. Based on
experiments involving 126 Boogie programs, in Sect. 4 we demonstrate how blt
can achieve better stability and flexibility in a variety of situations that depend
on triggers when analyzed using the SMT solver Z3 (Boogie’s default back-end
solver).

The main advantage of using a first-order prover is that complex quantifi-
cations are handled by the prover without requiring trigger annotations—thus
helping increase the degree of automation, and reduce the expertise required to
use verification technology proficiently. In Sect. 6 we discuss some outstanding

1 Section 5 outlines the relatively few works that deal with trigger selection explicitly.

Triggerless Happy 297

challenges of improving the flexibility of deductive verification that we intend to
address to extend the present paper’s work in this direction.

In the paper, “Boogie” refers to the behavior of the Boogie tool with its
standard back-end Z3, whereas “blt” refers to the behavior of the blt tool,
which also inputs Boogie programs but feeds VCs to the Vampire first-order
prover. To simplify the presentation, we often attribute to Boogie qualities that
more properly belong to Boogie used in combination with Z3—namely, the effect
of triggers.

Tool availability. The tool blt and the examples used in the paper are available
as open source at: https://emptylambda.github.io/BLT/.

2 Motivating Examples

This section discusses examples of programs where the outcome of verification
using Boogie (with Z3 as back-end solver) crucially depends on triggers; blt,
which generates VCs for the Vampire first-order prover, is not affected by trig-
gers, and thus behaves in a more predictable and robust way on such examples.
Section 4 discusses a more extensive experimental evaluation.

Matching triggers. Boogie dispatches VCs to an SMT solver, which may need
help to decide how to instantiate universally quantified variables while searching
for a proof. A trigger (also called matching pattern) is a directive to the SMT
solver on how to instantiate quantifiers to create new terms based on the terms
that are already in the proof space. A trigger 〈f(x)〉, associated with a universally
quantified variable x, instructs the SMT solver to instantiate x with the value E

whenever the ground term f(E) is in the proof state. Picking suitable triggers
is not trivial, as it risks introducing problems in opposite directions: triggers
that are too permissive generate otiose terms that may slow down a proof, or
even set off an infinite loop of term generation; triggers that are too specific miss
terms that are necessary for a proof, and thus ultimately reduce the level of proof
automation. To make things even more complicated, SMT solvers introduce their
own default triggers when no user-supplied triggers are available, which renders
the whole business of understanding and selecting triggers a mighty tricky one.

Linked lists. In the example of Fig. 1a, inspired by one of Boogie’s online exam-
ples2, next is a map from nodes of type ref to their successors in a chain of
linked nodes—a straightforward model of a heap-allocated linked list. Function
dist defines that the distance between two nodes from and to is the number of
hops following next from one node to the other. Procedure length computes such
distance with a simple loop that starts from a given node head and follows next

until it reaches a nil node—indicating the end of the list. If the list is acyclic—an
assumption we encode with the invariant head�=cur (declared as free, and thus
assumed without checking it)—length satisfies its specification that it returns

2 http://www.rise4fun.com/Boogie/5I.

https://emptylambda.github.io/BLT/
http://www.rise4fun.com/Boogie/5I

298 Y. Chen and C.A. Furia

Fig. 1. (a): trigger 〈dist(from, to)〉 in the axiomatic definition of function dist is
required to prove that the loop invariant in procedure length holds initially. (b):
axiomatic definitions of sortedness and of hashing are ineffective in proofs even if they
are semantically sufficient to verify procedure ah.

the value dist(head,nil). Still, without trigger 〈dist(from, to)〉, Boogie fails
to verify the procedure; precisely, it cannot prove that the loop invariant holds
initially—that is, that 0 = dist(head, head)—even if this is a mere application
of the base case in dist’s axiomatic definition.

For a successful correctness proof, Boogie requires either that the axiom defin-
ing dist be split into two axioms—one for the base case and one for the inductive
case—or that the trigger 〈dist(from, to)〉 be added to dist’s definition. Even
this simple example indicates that predicting the behavior of quantifier instan-
tiation, and the need for triggers, imposes an additional burden to users, and
renders the verification process less robust. In contrast, blt verifies the very
same example without any user-provided suggestions about how to instantiate
quantifiers, and without depending on the axioms being in a specific form.

Hash functions and sortedness. Using quantified formulas with SMT solvers
often leads to brittle behavior: changes to a formula that do not affect its seman-
tics may make it significantly less effective in proofs. Take the example of Fig. 1b,
where map a models an unbounded integer array whose elements are sorted in
strictly increasing order. Function hash has the property that the hash of an
integer x is greater than any integer smaller than x. By combining these two
properties, it should be possible to verify procedure ah, which inputs a nonneg-
ative integer k and returns the hash of a[k+ 1]—which has to be greater than
a[k]. Boogie, however, fails verification of ah’s postcondition.

In an attempt to help the SMT solver, we may try to add triggers to the
axioms in the example. However, we cannot add triggers to the axiom about
hash: in order to be sufficiently discriminating [2,7], a trigger must mention all

Triggerless Happy 299

quantified variables (x and y in this case), cannot use theory-specific interpreted
symbols (such as 〈x > y〉), because matching does not know about function
symbols interpreted by some theory, and cannot mention variables by themselves
(such as 〈x, y〉), because a variable by itself would match any ground term.
Since y only appears by itself or in arithmetic predicates, no valid user-provided
trigger involving y can be written. What about adding triggers to the axiom that
declares a sorted? Here the only sensible trigger is a[i], which however results
in a matching loop: an infinite chain of instantiations that quickly saturate the
proof space.

As observed elsewhere [17,18] and part of the folklore, an equivalent definition
of sortedness that works much better with SMT solvers uses two quantified
variables:

∀ i, j : int • 0 ≤ i ∧ i < j =⇒ a[i] < a[j] (1)
Boogie can verify ah if we use the definition of sortedness in (1) instead of the
one in Fig. 1b. Somewhat surprisingly, Boogie can also verify ah if we use the
same definition as in Fig. 1b but we add it as a precondition to ah rather than
as an axiom. In contrast, blt easily verifies any of these semantically equiva-
lent variants: while first-order theorem provers are not immune from generating
infinite fruitless instantiations, their behavior does not incur the brittleness that
derives from depending on suitable triggers—that are neither too permissive nor
too constraining.

3 Encoding Boogie in TPTP

In order to use first-order provers to verify Boogie programs, we define a
semantic-preserving translation T of the Boogie language into TPTP—the stan-
dard input format of first-order theorem provers.

As a result of continuous evolution, TPTP has become a sizable language
that aggregates several different logic fragments, going well beyond classic first-
order predicate calculus. We loosely use the name TPTP to refer to the specific
subset targeted by our translation, which mainly consists of a monomorphic
many-sorted first-order logic, augmented with the so-called FOOL fragment: a
first-class Boolean sort and polymorphic arrays. Our translation is informed by
the recent support for FOOL [13] added to the Vampire automated theorem
prover, so that we can use it in our experiments as an effective back-end to
verify Boogie programs.

Boogie combines a typed logic and a simple imperative programming lan-
guage; Sect. 3.1 discusses the translation of the former, and Sect. 3.2 the trans-
lation of the latter. We outline the essential features of Boogie and TPTP as we
describe the translation T .

3.1 Declarative Constructs

Types. Boogie’s primitive types include int (mathematical integers) and bool

(Booleans), which naturally translate to TPTP’s integer type $int and Boolean

300 Y. Chen and C.A. Furia

type $o. Vampire reasons about terms of type $int using an incomplete first-
order axiomatization of Presburger arithmetic, sufficient to handle common
usages in program analysis.

A Boogie user-defined type declaration type t introduces an uninterpreted
type t, expressed in TPTP by a type entity t of type $tType, which represents
the type of all primitive uninterpreted types.

A Boogie map type [t1,...,tn] u corresponds to a mapping t1×· · ·×tn → u,
which translates to a curried array type T (t1) → · · · → T (tn) → T (u) in TPTP:

T
(
[t1, . . . , tn] u

)
=

{
$array(T (tn),T (u)) n = 1
T

(
[t1]([t2, . . . ,tn]u)

)
n > 1

We currently do not support other Boogie types—notably, reals, bitvectors,
and polymorphic types and type constructors.

Declarations. TPTP declarations are expressions of the form �(I,K,D), where
� denotes a specific subset of TPTP, I is an identifier of the declaration, K is
the kind of declaration (type, axiom, or conjecture), and D is the actual decla-
ration. Here we simply write tptp for � and omit the identifier I—which is not
used anyway. Then, a constant declaration const c : t in Boogie translates to
the TPTP declaration tptp(type, c :T (t)). An axiom axiom ax in Boogie trans-
lates to a TPTP axiom tptp(axiom,T (ax)). Section 3.2 describes other kinds of
declarations, used to translate imperative constructs.

Functions. Mathematical functions are part of both Boogie and TPTP; thus
the translation is straightforward: function declarations translate to function
declarations

T
(
function f(a1 : t1, . . . , an : tn) returns (u)

)

= tptp(type, f :(T (t1) ◦ · · · ◦ T (tn)) �→ T (u)) (2)

and function definitions are axiomatized.

Expressions. Boolean connectives translate one-to-one from Boogie to TPTP.
The integer operators + and − translate to built-in binary functions $sum and
$difference; similarly, integer comparison uses built-in functions such as $less

and $greatereq, with obvious meaning. The equality and non-equality symbols
have the same meaning in Boogie and in TPTP: x = y iff x and y have the same
type and the same value.

Boogie map expressions translate to nested applications of TPTP’s $select

and $store, which behave according to the axiomatization of FOOL [13]:

T
(
m[e1, . . . ,en]

)
=

{
$select(T (m),T (en)) n = 1
T

(
(m[e1])[e2, . . . ,en]

)
n > 1

T
(
m[e1, . . . ,en:= e]

)
=

{
$store(T (m),T (en),T (e)) n = 1
T

(
m[e1:= (m[e1])[e2, . . . ,en:=e]

)
n > 1

where m is an entity of type [t1,...,tn] u.

Triggerless Happy 301

Quantifiers. Quantified logic variables must have identifiers starting with an
uppercase letter in TPTP, and thus T may rename logic variables. As we repeat-
edly mentioned, triggers (associated with quantifiers) have no use in TPTP and
thus the translation drops them.

3.2 Imperative Constructs

Variables. Program variables encode state, which is modified by computations.
In the logic representation, a Boogie program variable var v : t translates to
the TPTP declaration tptp(type, v :T (t)), which corresponds to a free logic
variable of given type. Indeed, constants and program variables have the same
TPTP representation, with VCs encoding the effects of computations in a purely
declarative way.

Procedures. Boogie’s imperative constructs define procedures, each consisting
of a signature, a specification, and an implementation, as shown in Fig. 2a. Each
procedure determines a set of VCs that encode the correctness of the procedures’s
implementation against its specification.

Figure 2b shows the TPTP translation T (p) of p, which consists of three
parts:

1. The input/output arguments of p, which are encoded as if they were global
program variables; since each procedure is translated independent of the oth-
ers, there is no risk of interference.

2. The precondition of p (requires R), which is encoded as an axiom.
3. The actual VCs of p, which are encoded as a TPTP conjecture expressing

that the implementation B determines a sequence of states that end in a state
satisfying p’s postcondition (ensures E).
In the rest of this section, we define the predicate transformer τ(S, Q), which
behaves like a weakest precondition calculation [11] of predicate Q through
Boogie statement S.

If a theorem prover can prove the conjecture from the given axioms, the imple-
mentation of p is (partially) correct against its specification.3 Figure 3b shows
the complete translation of the example in Fig. 1b, including functions, axioms,
arrays, and assignments.

Sequential composition. The encoding of statements is naturally composi-
tional:

τ(S ; T, Q) = τ(S, τ(T, Q))

Assignments. The encoding of assignments uses the let-in construct:

τ
(
v := e, Q

)
= $let(T (v) � T (e),Q)

3 The typechecker establishes the correctness of a procedure’s modifies clause, so that
the prover can just rely on it. This is possible because Boogie’s variables cannot be
aliased.

302 Y. Chen and C.A. Furia

Fig. 2. General structure for the translation of a Boogie procedure.

which roughly corresponds to introducing a fresh variable v’, defining its value
according to T (e), and replacing every free occurrence of T (v) in Q by v’.

The encoding of nondeterministic assignments (“havoc”) uses the derived
scheme τ(havoc v, Q) = τ(v := v’, Q), where v’ is a locally fresh variable—
introduced by the translation—of the same type as v without other constraints
on its value.

Passive statements. The encoding of assertions and assumptions follows the
standard weakest precondition rules:

τ
(
assert b, Q

)
= T (b) ∧ Q

τ
(
assume b, Q

)
= T (b) =⇒ Q

Procedure calls. A call call r := p(e1,. . .,en) to procedure p in Fig. 2a desug-
ars the call using standard modular verification semantics, where the callee’s
effects within the caller are limited to what the callee’s specification declares:

τ
(
call r := p(e1, . . . ,en), Q

)

= τ
(
assert R(e1, . . . ,en); havoc r, M; assume E(e1, . . . ,en,r), Q

)

Loops. Encoding a loop τ
(
while (b) invariant J { L }, Q

)
involves three log-

ically conjoined conditions:

1. Initiation checks that the invariant holds upon entering the loop: T (J).
2. Consecution checks that the invariant is maintained by the loop:

τ(havoc θ(L); assume b ∧ J; L,T (J)) where θ(L) are the targets of the loop
body—variables that may be modified by L; these are just the variables that
appear as targets of assignments, as arguments of havoc statements, or in the
modifies clauses of procedures called in L.

3. Closing checks that the invariant establishes Q (the loop’s postcondition):
τ(havoc θ(L); assume ¬b ∧ J, Q).

The tool blt generates a TPTP conjecture for each of these conditions, which
are proved independently; thus, in case of failed verification, we know which VC

Triggerless Happy 303

Fig. 3. Excerpts of blt’s TPTP encoding of the examples in Fig. 1.

failed verification. Figure 3a shows the VC corresponding to closing of procedure
length’s loop from Fig. 1a.

Abrupt termination. Statements such as goto and return make imperative
code less structured, and complicate the encoding of VCs. We currently do not
support goto and break, whereas we handle return statements: for every simple
path π on the control-flow graph of the procedure p being translated that goes
from p’s entry to a return statement, we generate the additional VC τ(π̃,T (E))—
where E is p’s postcondition and π̃ is the sequence of statements on π, suitably
modified to account for conditional branches and loops. For brevity we omit the
uninteresting details.

Conditionals. TPTP includes the conditional expression
$ite(b, then, else)—which evaluates to then if b evaluates to true, and to
else otherwise. Using $ite and first-order Booleans, we could encode the VC
for a Boogie conditional statement as:

τ
(
if (b) then { Th } else { El }, Q

)
= $ite(T (b),τ(Th, Q),τ(El, Q)) (3)

As noted elsewhere [16], (3) tends to be inefficient because it duplicates formula
Q, so that the generated VC is worst-case exponential in the size of the input
program.

Instead of following [9,16]’s approach, based on passivization, we leverage
another feature of FOOL, namely tuples, to build a VC whose size does not blow
up. A code block is purely active if every statement it contains is an assignment
or a conditional whose branches are purely active. Given a purely active code

304 Y. Chen and C.A. Furia

block B, lhs(B) denotes the variables assigned to anywhere in B. Given a purely
active conditional statement, we encode it using TPTP tuples and conditional
expressions as:

τ
(
if (b) then { Th } else { El }, Q

)
=

$let([lhs(Th)] ⊕ [lhs(El)] � $ite(T (b),τ(Th, [lhs(Th)]),τ(El, [lhs(El)])),Q) (4)

Operator ⊕ denotes a kind of tuple concatenation where variables that appear
in both tuples only appear once in the concatenation; for example [x,y,z] ⊕
[x,w,z] = [x,y,z,w]. In the right-hand side of (4), τ applies to the assignments
in the then and else branches of the conditional and, recursively, to nested con-
ditionals. Expressions of the form τ(B, [lhs(B)]) indicate the formal application of
the predicate transformer τ on a tuple of variables instead of a proper predicate;4
the semantics of let-in with tuples is such that every variable that is not explic-
itly assigned a value in the let part stays the same: $let([x1, . . . ,xn] � [],e)
is equivalent to $let([x1, . . . ,xn] � [x1, . . . ,xn],e).

Finally, let us outline how to transform any conditional into purely active
code. Since structured imperative Boogie code can be desugared into assign-
ments (including the nondeterministic assignment havoc), passive statements,
and conditionals, we only need to explain how to handle passive statements.
The idea is to introduce a fresh Boolean variable α for every passive statement
assume b: set α to true before the conditional; replace assume b by α := b; and
add assume alpha after the conditional. Since α is fresh, it can be tested after the
conditional in any order; since it is initialized to true it does not interfere with
the other branch (where the assumption or assertion does not appear). The same
approach works for assert passive statements. Overall, this encoding generates
VCs of size linear in the size of the input program.

4 Implementation and Experiments

Implementation. We implemented the translation described in Sect. 3 as a
command-line tool blt. blt is written in Haskell and reuses parts of Boogaloo’s
front-end [21] to parse and typecheck Boogie code. The translation is imple-
mented as the composition of a collection of functions, each taking care of the
encoding of one Boogie language features; this facilitates extensions and modifi-
cations in response to language and translation changes.

blt inputs a Boogie file, generates its VCs in TPTP, feeds them to Vampire,
and reports back the overall outcome. An option is available to choose between
the tuple-based (4) and the duplication-based (3) encoding of conditionals; some
experiments, which we describe later, compared the performance of these two
encodings.

4 Since τ is applied recursively as usual, consecutive assignments to the same variable
translate to nested let-ins (see sequential composition and assignments rules).

Triggerless Happy 305

4.1 Experimental Subjects

The experiments target Boogie programs in groups demonstrating different traits
of the TPTP encoding of VCs and of blt:

Group E consists of examples selected to demonstrate the impact of using
triggers, and thus blt’s capability of handling quantifiers without triggers.

Group A is a selection of algorithmic problems (such as searching and sorting),
which demonstrates to what extent blt measures up to Boogie on problems
in the latter’s natural domain.

Group T is a selection of programs from Boogie’s test suite,5 which demonstrate
blt’s applicability to a variety of features of the Boogie language.

Group S consists of few Boogie programs with a fixed structure and increasingly
larger size, used to assess blt’s scalability and the efficiency of its generated
VCs.

We wrote the programs in group E based on examples in the Boogie tutor-
ial and in papers discussing trigger design [2,17,18,22]. We took the programs
in group A from our previous work [10], with small changes to fit blt’s cur-
rently supported Boogie features. We retained in group T all test programs that
only use language features currently fully supported by blt, and do not target
options or features of the Boogie tool—such as assertion inference or special type
encoding—other than vanilla deductive modular verification. We constructed the
programs in group S by repeating conditional assignments according to differ-
ent, repetitive patterns (for example as a sequence of conditional increments to
the same variable); the resulting programs allow us to empirically evaluate the
size of the VCs generated by blt, and to what extent Vampire can handle them
efficiently. Table 1 shows some statistics about the size of the programs in each
group, as well as that of the VCs generated by Boogie in SMT-LIB6 and by blt
in TPTP. blt’s repository (https://emptylambda.github.io/BLT/) includes all
Boogie programs used in the experiments.

4.2 Experimental Setup

All the experiments ran on a Ubuntu 14.04 LTS GNU/Linux box with Intel
8-core i7-4790 CPU at 3.6GHz and 16 GB of RAM, with the following tools:
Boogie 2.3.0.61016, Z3 4.3.2, and Vampire 4.0.

Each experiment targets one Boogie program and runs four verification
attempts: (i) Boogie runs on b (�t); (ii) Boogie runs on b with all prover anno-
tations (in particular, triggers) removed (�0); (iii) blt runs7 on b, encoding
5 https://github.com/boogie-org/boogie/tree/master/Test.
6 The size of the SMT-LIB encoding gives an idea of the size of the generated VCs, but

in the experiments we used Boogie in its default mode where it feeds VCs directly
through Z3’s API.

7 Remember that blt always ignores triggers and other prover annotations in the
Boogie input.

https://emptylambda.github.io/BLT/
https://github.com/boogie-org/boogie/tree/master/Test

306 Y. Chen and C.A. Furia

Table 1. Data for the Boogie programs used in the experiments and their translation to
TPTP: for each group, how many Boogie programs (#) the group includes, how many
verification conditions (VCs) the programs determine in total (in blt’s encoding);
the minimum m, mean μ, maximum M , and total Σ length of the programs in non-
comment non-blank lines of code (Boogie (loc)); the minimum m, mean μ, maximum
M , and total Σ size in kbytes of the SMT-LIB encoding of the VCs built by Boogie
(SMT-LIB), of the TPTP encoding of the VCs built by blt using tuples (TPTP t.)
and using duplication (tptp d.).

Boogie (loc) SMT-LIB (kbytes) TPTP t. (kbytes) TPTP d. (kbytes)

group # VCs m μ M Σ m μ M Σ m μ M Σ m μ M Σ

E 9 19 13 20 49 181 2 3 7 26 1 2 8 15 1 2 8 16

A 10 42 17 44 152 439 3 14 80 144 2 17 102 166 2 17 104 172

T 56 279 6 29 137 1614 1 8 93 423 0 3 44 140 0 2 33 136

S 51 51 6 295 5122 15039 1 31 647 1574 0 68 1832 3493 0 28·103 7·105 14·105

conditionals using tuples (�); (iv) blt runs on b, encoding conditionals using
duplication (�d). We always used Boogie with the /noinfer option, which dis-
ables inference of loop invariants; since blt does not have any inference capabil-
ities, this ensures that we are only comparing their performance of VC genera-
tion and checking. We used different timeouts per verification condition in each
group—E: 30 s; A: 180 s; T : 30 s; S: 300 s—while capping the memory to the
available free RAM; blt may use up to 30 s to generate VCs in each problem,
although this time is measurable only in group S’s scalability experiments.

Except to specify timeouts and the input format, we always ran Vampire with
default options; in particular, we did not experiment with its numerous proof
search strategies: while users familiar with Vampire’s internals may be able to
tweak them to get better performance in some examples, we want to focus on
assessing the predictability of behavior when we use the first-order prover as a
black box—in contrast to through lower-level annotations and directives.

4.3 Experimental Results

Table 2 shows the number of successful verification attempts in each case, as
well as statistics on the wall-clock running time. The most direct comparison is
between �0 and �, which shows how blt compares to Boogie without the help
of triggers.

The experiments in group E highlight five cases where Boogie’s effective-
ness crucially depends on triggers; thus, blt outperforms Boogie since it can
prove all 19 VCs independent of triggers or other quirks of the encoding. The
experiments in group A indicate that there remains a considerable effectiveness
gap between Boogie and blt when it comes to algorithmic reasoning, which is
mainly due to first-order provers’ still limited capabilities of reasoning about
arithmetic and other theories that feature strongly in program correctness; the
gap of performance (that is, running time) is instead mainly due to the fact that
Vampire continues a proof attempt until reaching the given timeout, whereas

Triggerless Happy 307

Table 2. A summary of the experimental comparison between Boogie and blt: for
each group, how many verification conditions (VCs) are to be proved; the number of
VCs verified by Boogie with user-defined triggers (�t) and without triggers or other
prover-specific annotations (�0), and its the minimum m, mean μ, maximum M , and
total Σ verification time (without triggers); the number of VCs verified by blt, and
the minimum m, mean μ, maximum M , and its total Σ verification time of the VCs
with tuple-based encoding (�) and with duplication-based encoding (�d).

group VCs Boogie (with Z3) blt t. (with Vampire) blt d. (with Vampire)

�t �0 m μ M Σ � m μ M Σ �d μ Σ

E 19 16 14 0.7 0.7 0.7 6.2 19 0.0 0.1 0.2 0.6 16 0.1 0.6

A 42 42 42 0.7 0.7 0.7 6.9 26 0.2 290.5 540.6 2904.7 24 258.1 2581.2

T 279 137 137 0.7 0.7 0.7 37.6 108 0.0 13.9 301.3 776.0 105 13.3 746.2

S 51 51 51 0.7 0.7 1.3 34.8 37 0.0 105.8 300.7 5393.8 48 20.7 1053.8

Z3 normally terminates quickly. The experiments in group T indicate that blt
provides a reasonably good coverage of the Boogie language, but is sometimes
imperfect in reasoning about some features. Note that several of the programs
in T are supposed to fail verification, and we observed that blt’s behavior is
consistent on these—that is, it does not produce spurious proofs.8

Scalability. Let us look more closely into the experiments in group S, which
assess the scalability of blt, and compare its two encodings—tuple-based (4)
and duplication-based (3)—of conditionals. Boogie scales effortlessly on these
examples, so we focus on blt’s performance.

First, note that the two encodings yield similar performance in the program
groups other than S, which do not include long sequences of conditional state-
ments. More precisely, group S includes four families of programs; programs in
each family have identical structure and different size, determined by a size para-
meter that grows linearly. Family Sv performs simple assignments on a growing
number of variables; family Sa performs a growing number of assignments on a
fixed number of variables; families Si and Sn perform conditional assignments
following different patterns—sequential and nested conditionals.

blt scales as well as Boogie when we increase the number of variables or
assignments (Sv and Sa): the verification time with both tools is essentially
insensitive to input size and under one second per input program. In con-
trast, blt’s performance degrades significantly when we increase the number
of conditionals, so that group S’s numbers in Table 2 are dominated by the
experiments in Si and Sn. Figure 4 illustrates the different behavior of the two
encodings in Si (the results in Sn are qualitatively similar). As expected (Fig. 4,
left), the tuple-based encoding scales with the input program size, whereas the

8 While the total number of VCs verified by Boogie in group T (137) is the same
with (�t) and without (�0) prover-specific annotations, the two sets are different:
13 VCs verify without annotations but do not verify with annotations because they
correspond to tests that should fail with the annotations; another 13 VCs verify with
annotations but not without them.

308 Y. Chen and C.A. Furia

0 10 20

103

106

109

n

V
C
si
ze

(b
yt
es
)

tuples

dupl.

0 5 10 15
10−2

100

102

n

ve
ri
fic

at
io
n
tim

e
(s
ec
on

ds
)

tuples

dupl.

Fig. 4. Scalability of blt on the programs of group Si. Left: how the size of the VCs
grows with the input size parameter n, in the tuple-based encoding (4) and in the
duplication-based encoding (3). Right: how the verification time of the TPTP VCs
grows with the input size parameter n, again in each encoding.

duplication-based encoding blows up exponentially—and in fact the largest
example in this group can only be generated with the tuple-based encoding
within 30 s. The verification time (Fig. 4, right) shows a somewhat more unex-
pected picture: Vampire can digest very large input files, and is generally faster
on the wasteful duplication-based encoding; in contrast, reasoning about tuples
requires much memory and is quite slow in these conditions. Extrapolating the
trends in Fig. 4, it seems that the verification time of tuple-based VCs may even-
tually reach a plateau—even though is currently too large in absolute value to
be practical.

We plan to experiment with different encodings of conditional statements
to investigate ways of assuaging the current scalability limitations of blt. It is
however encouraging that blt’s performance on the smaller, yet more logically
complex, examples in the other groups is often satisfactory.

5 Related Work

Triggers were first proposed by Greg Nelson in his influential PhD work [20]. Sim-
plify [7] was the first SMT solver implementing those ideas; today, most widely
used SMT solvers—including Z3 [6] and CVC4 [3]—support trigger annotations
and include trigger-selection heuristics for when the input does not include such
annotations.

As we repeatedly argued in this paper, triggers are indispensable as they
increase the flexibility of SMT solvers—especially for program proving—but
also introduce an additional annotation burden, and reduce the predictability
and stability of provers. A key challenge in developing program provers based on
SMT solvers is designing suitable triggers, but few publications deal explicitly
with the problem of trigger selection—which thus remains a skill prohibitively

Triggerless Happy 309

difficult to master. Among these works, Spec# generates special triggers to sup-
port list comprehensions in specifications [17]; the Dafny verifier includes flexible
strategies to generate triggers that avoid matching loops while also supporting
calculations of ground facts from recursive definitions [2]; recently, Dafny has
been extended with a mechanism that helps users design triggers in their veri-
fied programs [18]. The behavior of triggers has also been analyzed in the context
of the VCC [5] and Why3 [8] verifiers.

First-order theorem provers approach the problem of checking validity using
techniques, such as saturation, quite different from those of SMT solvers. As a
result, they fully support complex usage of quantifiers, but they tend to struggle
dealing with theories that are not practical to axiomatize—which has restricted
their usage for program verification, where theory reasoning is indispensable for
dealing with basic types. The results of the present paper rely on recent devel-
opments of the Vampire theorem prover [15], which have significantly extended
the support for theory reasoning with a first-class Boolean sort and polymorphic
arrays [13].

Others have used the Boogie language as input to tools other than the Boogie
verifier, to extend the capabilities of verifiers using Boogie as intermediate rep-
resentation. HOL-Boogie [4] uses a higher-order interactive prover to discharge
Boogie’s verification conditions; Boogaloo [21] and Symbooglix [19] support the
symbolic execution of Boogie programs; Boogie2Why [1] translates Boogie into
Why3, to take advantage of the latter’s multi-prover support.

6 Discussion and Future Work

The experimental results detailed in Sect. 4 show the feasibility of using a first-
order prover for program verification. The gap between blt and Boogie is still
conspicuous—both in applicability and in performance—but we must also bear in
mind that most programs used in the experimental evaluation have been written
expressly to demonstrate Boogie’s capabilities, and thus it is unsurprising that
Boogie works best on them. In Sect. 2, however, we have highlighted situations
where Boogie’s behavior becomes brittle and dependent on low-level annotations
such as triggers; it is in these cases that a different approach, such as the one
pursued by blt, can have an edge—if not yet in overall performance at least in
predictability and usability at a higher level.

blt remains quite limited in scalability and theory reasoning compared to
approaches using SMT solvers. Progress in both areas depends on improvements
to the Boogie-to-TPTP encoding, as well as to the back-end prover Vampire.
Only recently has Vampire been extended with support [13,14] for some of the
TPTP features that the encoding described in Sect. 3 depends on; hence, blt
will immediately benefit from improvements in this area—in particular in the
memory-efficiency of rules for tuple reasoning. As future work, we plan to fine-
tune the TPTP encoding for performance; the experiments of Sect. 4 suggest
focusing on finding a scalable encoding of conditionals. There is also room for

310 Y. Chen and C.A. Furia

improving the encoding based on static analysis of the source Boogie code—a
technique that is used in different modules of the Boogie tool but not in any way
by the current blt prototype. Finally, we will extend the TPTP encoding to
cover the features of the Boogie language currently unsupported—most notably,
type polymorphism and gotos.

This paper’s research fits into a broader effort of integrating different verifi-
cation techniques and tools to complement each other’s shortcoming. Our results
suggest that it is feasible to rely on first-order provers to discharge verification
conditions in cases where the more commonly used SMT solvers are limited by
incompleteness and exhibit brittle behavior, so as to make verification ultimately
more flexible and with a higher degree of automation.

Acknowledgments. We thank Evgenii Kotelnikov for helping us understand the lat-
est features of Vampire’s support for FOOL.

References

1. Ameri, M., Furia, C.A.: Why just Boogie? Translating between intermediate ver-
ification. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp.
79–95. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0_6

2. Amin, N., Leino, K.R.M., Rompf, T.: Computing with an SMT solver. In: Seidl,
M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 20–35. Springer, Cham
(2014). doi:10.1007/978-3-319-09099-3_2

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1_14

4. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie — an interactive prover for the
boogie program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs
2008. LNCS, vol. 5170, pp. 150–166. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71067-7_15

5. Böhme, S., Moskal, M.: Heaps and data structures: a challenge for auto-
mated provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 177–191. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6_15

6. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3_24

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52, 365–473 (2005)

8. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In: SMT.
EPiC Series, pp. 22–31. EasyChair (2012)

9. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: POPL, pp. 193–205. ACM (2001)

10. Furia, C.A., Meyer, B., Velder, S.: Loop invariants: analysis, classification, and
examples. ACM Comp. Sur. 46(3) (2014)

11. Gries, D.: The Science of Programming. Springer, New York (1981)

http://dx.doi.org/10.1007/978-3-319-33693-0_6
http://dx.doi.org/10.1007/978-3-319-09099-3_2
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-540-71067-7_15
http://dx.doi.org/10.1007/978-3-540-71067-7_15
http://dx.doi.org/10.1007/978-3-642-22438-6_15
http://dx.doi.org/10.1007/978-3-642-22438-6_15
http://dx.doi.org/10.1007/978-3-540-78800-3_24

Triggerless Happy 311

12. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form
with rank-1 polymorphism. In: PAAR at IJCAR. CEUR Workshop Proceedings,
vol. 1635, pp. 41–55. CEUR-WS.org (2016)

13. Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The Vampire and the FOOL.
In: SIGPLAN CPP, pp. 37–48. ACM (2016)

14. Kotelnikov, E., Kovács, L., Suda, M., Voronkov, A.: A clausal normal form trans-
lation for FOOL. In: GCAI. EPiC, vol. 41, pp. 53–71. EasyChair (2016)

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_1

16. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

17. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT solvers. In: SAC, pp. 615–622. ACM (2009)

18. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). doi:10.1007/978-3-319-41528-4_20

19. Liew, D., Cadar, C., Donaldson, A.F.: Symbooglix: a symbolic execution engine
for Boogie programs. In: ICST, pp. 45–56. IEEE Computer Society (2016)

20. Nelson, C.G.: Techniques for program verification. Ph.D. thesis, Xerox PARC
(1981). CSL-81-10

21. Polikarpova, N., Furia, C.A., West, S.: To run what no one has run before: exe-
cuting an intermediate verification language. In: Legay, A., Bensalem, S. (eds.)
RV 2013. LNCS, vol. 8174, pp. 251–268. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40787-1_15

22. Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.)
LPAR 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28717-6_28

23. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-319-41528-4_20
http://dx.doi.org/10.1007/978-3-642-40787-1_15
http://dx.doi.org/10.1007/978-3-642-40787-1_15
http://dx.doi.org/10.1007/978-3-642-28717-6_28
http://dx.doi.org/10.1007/978-3-642-28717-6_28

SemSlice: Exploiting Relational Verification
for Automatic Program Slicing

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda(B),
Daniel Lentzsch, and Mattias Ulbrich

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,bormer,herda,ulbrich}@kit.edu, stephan.gocht@student.kit.edu,

d.lentzsch@web.de

Abstract. We present SemSlice, a tool which automatically produces
very precise slices for C routines. Slicing is the process of removing state-
ments from a program such that defined aspects of its behavior are
retained. For producing precise slices, i.e., slices that are close to the
minimal number of statements, the program’s semantics must be consid-
ered. SemSlice is based on automatic relational regression verification,
which SemSlice uses to select valid slices from a set of candidate slices.
We present several approaches for producing candidates for precise slices.
Evaluation shows that regression verification (based on coupling invari-
ant inference) is a powerful tool for semantics-aware slicing: precise slices
for typical slicing challenges can be found automatically and fast.

1 Introduction

Program Slicing. Program slicing [18] removes statements from a program in
order to reduce its size and complexity while retaining some specified aspects of
its behavior. Slicing techniques (or similar data dependency analyses) are used
to optimize the result of compilers. Slicing is also a powerful tool for challenges
in software engineering such as code comprehension, debugging, and fault local-
ization, where the user is involved [3]. A recent study [6] shows that slicing can
improve programming skills in novice learners.

The Idea Behind SemSlice. Traditional slicing techniques use an over
approximation of dependencies in a program and thus produce imprecise, non-
minimal slices. SemSlice goes beyond purely syntactical dependency analysis
and takes the semantics of statements and expressions into account. It can thus
produce much more precise slices than related approaches. SemSlice is fully
automatic and does not require auxiliary annotations (like loop invariants etc.).
SemSlice finds slices by applying regression verification [7], an approach for
proving relational properties of programs, to check whether generated slice can-
didates are valid slices, i.e., are equivalent to the original program with respect
to the specified slicing criterion. Thus, the process has two steps: (1) The tool
generates a slice candidate, i.e., a sub-program of the original program that is not
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 312–319, 2017.
DOI: 10.1007/978-3-319-66845-1 20

SemSlice: Exploiting Relational Verification 313

necessarily a valid slice for the given criterion. (2) The tool uses the existing but
customized automatic relational verification engine to check whether the can-
didate is equivalent to the original program with respect to the criterion. This
process is repeated and combined with syntactical slicing to iteratively refine
obtained slices.

Handling Loops. Precise slices are particularly difficult to obtain for pro-
grams with loops. SemSlice provides a higher degree of automation compared
to existing semantics-aware slicing frameworks [1,11] which are based on inferred
or user-provided functional loop invariants. In the context of slicing, functional
loop invariants have disadvantages: In order to prove that at the location of the
slicing criterion the relevant program variables have the same value, strong loop
invariants are needed (they have to fix unique values for the variables). Moreover,
a loop invariant for the original program needs not be a valid invariant for the
sliced program; a different second invariant may be needed. SemSlice does not
employ functional invariants but operates on relational coupling loop invariants
which formalize the difference between two program variants and thus escape
this dilemma.

Contribution. SemSlice demonstrates the feasibility of using relational ver-
ification to compute precise slices. The advantage of this approach is that the
candidate generation engine does not need to care about the correctness of the
candidates – that is handled by the relational verifier. In addition to the three
heuristics for generating candidates described and evaluated in this paper, Sem-
Slice can easily be extended with others. Thus, SemSlice provides a platform
for relational verification based slicing for the software slicing community.

Structure of This Paper. The remainder of this paper is structured as fol-
lows. Section 2 introduces the concepts of program slicing and relational verifi-
cation. The implementation of SemSlice is described in Sect. 3. The different
approaches to generate slice candidates are introduced in Sect. 4. The paper is
completed by a short evaluation in Sect. 5, a report on related tools in Sect. 6
and a conclusion in Sect. 7.

2 Background

2.1 Static Backward Slicing

SemSlice performs a variant of static backward slicing (as introduced by
Weiser [18]), in which the slicing criterion—the specification of the behavioral
aspects that must be retained—comprises a set of program variables and a loca-
tion within the program. Statements which have no effect (a) on the value of
the specified program variables at the specified point and (b) on how often the
point is reached may be removed.

314 B. Beckert et al.

1 int f(int h, int N){
2 int i = 0;
3 int x = 0;
4 while(i < N) {
5 if(i < N - 1)
6 x = h;
7 else
8 x = 42;
9 i++;

10 }
11 return x;
12 }

1 int f(int h, int N){
2 int i = 0;
3 int x = 0;
4 while(i < N) {
5 if(i < N - 1)
6 skip;
7 else
8 x = 42;
9 i++;

10 }
11 return x;
12 }

1 int f(int h, int N){
2 int i = 0;
3 int x = 0;
4 while(i < N) {
5 if(i < N - 1)
6 skip;
7 else
8 skip;
9 i++;

10 }
11 return x;
12 }

(a) (b) (c)

Fig. 1. (a) Original program, (b) Slice with respect to variable x at line 8, (c) Incorrect
slice candidate

Formally, a slice candidate is a variant of the original program where zero
or more statements have been replaced with the side-effect-free skip statement.
A slice candidate is considered a valid slice if, given the same input to the slice
candidate and original program, the following two conditions hold:

1. During execution of the slice candidate and the original program, respectively,
the location specified in the slicing criterion is reached for the same number
of times.

2. When the location is reached for the ith time in the original program and for
the ith time in the slice (i ≥ 1), each variable specified in the slicing criterion
has the same value in the original program’s state and in the slice’s state.

Figure 1 shows an example of static backward slicing. The goal is to slice
the C routine in Fig. 1a with respect to a slicing criterion, which requires the
value of x at the return statement in line 11 to be preserved. A valid slice for
this criterion is shown in Fig. 1b: The assignment in line 6 has been taken from
the program. Instead of removing it, we have replaced it by a synthetic skip
statement without effects to keep the program structure similar to the input
program. This line has no effect on the value of x after the loop as x is always
set to 42 in the last loop iteration. To show that this program is a slice of the
original, an over approximating syntactical analysis (ignorant of the meaning of
statements) is insufficient. A semantic analysis is required to determine that the
last loop iteration always executes the else-branch. The slicing procedure needs
to reason about loops and path conditions.

2.2 Relational Program Verification

Relational verification is an approach to prove specified relations between two
given programs (or variants of the same program) to be valid. The tool that
SemSlice relies on for relational verification is the automatic regression verifi-
cation tool LLRêve [12], which takes two programs as input. If it terminates,
the tool has either proved that the programs behave equivalently or it comes up
with a counterexample input showing that the programs’ semantics are different.

SemSlice: Exploiting Relational Verification 315

LLRêve operates on a generalized version of product programs [2] in which
two programs are combined into one in order to be able to reason simultane-
ously about corresponding loops in the programs. Thus, the program behavior
needs not be fully encoded into functional loop invariants, but only the relation
between the two behaviors. Relying on relational coupling invariants allows the
verification engine to automatically infer the needed abstractions (loop invari-
ants and function summaries) in more cases than if functional abstractions are
used. As an example, for proving that the candidate shown in Fig. 1b is a correct
slice with respect to the given slicing criterion, our approach has inferred the
following coupling invariant:

((N1 − N2 + i2 − i1 = 0) ∧ (N1 − i1 ≥ 1))
∨((N1 − N2 + i2 − i1 = 0) ∧ (x1 = x2))

Since our analysis considers two programs, the variable names occuring in
the coupling invariant are annotated with 1 or 2 depending on which program
they belong to. Note that the coupling invariant states that the value of x is the
same in both programs (at the location specified by the slicing criterion).

3 Implementation

SemSlice1 combines the slicing candidate generation with the existing tools
clang, LLRêve, and Eldarica. Its workflow is shown in Fig. 2. We implemented
the candidate generation component and adapted LLRêve for checking slices
candidates. The other components are used “of the shelf”. A user-friendly web
interface for SemSlice can be accessed at formal.iti.kit.edu/slicing.

Clang and LLVM. Clang2 is a front end of the LLVM compiler infrastructure
[14] and is used to compile C code into the LLVM intermediate representa-
tion (IR). The slicing process operates on the IR, and the resulting slice is also
returned in IR. While a reverse transformation into C is possible in principle,
it is currently not supported by the LLVM framework and adding this feature
would require a significant effort. Building on top of LLVM reduces language
complexity and allows us to use the API of LLVM which provides methods to
modify the IR (e.g., to remove statements) and standard code analyses (like loop
detection).

Candidate Generation. A duplicate of the original program is modified by
removing statements to generate a slice candidate. The choice which statements
are removed depends on the chosen candidate selection method (see Sect. 4). The
process can be iterated; then the results of previously checked slice candidates
are taken into consideration for generating new ones.
1 The SemSlice source code is available at github.com/mattulbrich/llreve/tree/

slicing.
2 http://clang.llvm.org.

http://formal.iti.kit.edu/slicing
https://github.com/mattulbrich/llreve/tree/slicing
https://github.com/mattulbrich/llreve/tree/slicing
http://clang.llvm.org

316 B. Beckert et al.

Candidate
Generation

clang
.llvm.llvm

.llvm.llvm

.smt.smt

LLRêve Eldarica
.llvm.llvm

.c.c

feedback

Fig. 2. SemSlice Architecture for finding a valid slice

LLRêve and Eldarica. SemSlice encodes the slicing criterion as a relational
specification between the slice candidate and the original program in first order
logic. From this input, LLRêve generates an SMT formula, more precisely a set
of constrained horn clauses, in which the coupling invariants become uninter-
preted predicate symbols to be inferred by the solver. Eldarica [10], a state-
of-the-art SMT solver, checks the formula for satisfiability, i.e., for existence of
sufficiently strong relational invariants. If the formula is satisfiable, a valid slice
has been found. It may be refined further or taken as the final result. Other-
wise, Eldarica may provide a counterexample, i.e., an input under which the
criterion is evaluated differently in the slice candidate and the original program.

Implementation Aspects. LLRêve can only check relational specifications
in the final states of the two programs. A slicing criterion, however, may refer
to any point within the program. We have adapted the clause construction in
LLRêve to allow for relational conditions to be checked within functions.

Since a valid slice requires by definition that the criterion’s statement is
reached equally often in program and slice, SemSlice enforces that all loops
are iterated equally often by encoding this requirement into the proof obligation.
This requirement is a little too strict: for a loop not containing the criterion, there
might be a correct slice which iterates the loop less often, but cannot be validated
with our technique. This requirement enforces the mutual termination property
(i.e. the slice terminates iff the original program also terminates) of the original
program and the slice candidate. If it were to be relaxed than our approach
would be able to validate more candidates, however, the mutual termination
property would have to be shown through other means.

4 Slice Candidate Generation

SemSlice provides three methods for candidate generation. They differ in time
requirements, number of generated candidates, and precision.

The naive brute forcing (BF) approach generates all possible slice candidates.
It is complete in the sense that it finds the smallest slice that can be validated

SemSlice: Exploiting Relational Verification 317

with relational verification. Section 5 shows that it runs surprisingly fast on small
programs, but due to the exponential number of slice candidates it does not scale.

Single statement elimination (SSE) successively removes statements from the
program. If removing a statement yields an invalid slice, SSE reverts and tries
removing another statement. This results in a quadratic number of LLRêve
invocations. Thus, it scales better than brute forcing, but cannot remove groups
of statements that cannot be removed individually like x:=x+50; x:=x-50.

Counterexample guided slicing (CGS) works in the opposite direction: It suc-
cessively adds statements to a candidate until it can be proved valid. In case of
an invalid slice candidate, CGS uses the counterexample provided by Eldarica
to choose which statements are to be added in the next iteration. In each itera-
tion the slice candidates grow by at least one statement such that termination
is guaranteed. On the considered examples, CGS terminates very fast after only
a few iterations, but with potentially reduced precision compared to the other
methods.

5 Evaluation

Table 1 shows an evaluation of SemSlice using a collection3 of small but intri-
cate examples (e.g., the example of Fig. 1 or a routine in which the same value
is first added and then subtracted) that each focus on a particular challenge
for semantics-aware slicing. Some are taken from slicing literature [1,4,8,11,17]
while others were crafted by ourselves. The second column indicates the source
of each example, the third the number of LLVM-IR statements in the program.
For each candidate generation method from Sect. 2.1, the table lists the number
of statements in the smallest slice found by SemSlice, the (wall) time needed by

Table 1. Evaluation

Original BF SSE CGS

Example Source #stmts time (s) #stmts #calls time (s) #stmts #calls time (s) #stmts #calls

count occurrence error self 50 13 42 11

count occurrence result self 50 16 44 13

dead code after ssa [17] 4 <1 2 4 <1 2 4 <1 2 1

dead code unused variable self 3 <1 2 2 <1 2 3 <1 2 1

identity not modifying [8] 8 <1 3 3 <1 7 5 <1 6 1

identity plus minus 50 [1] 5 <1 2 4 <1 5 4 <1 5 1

iflow cyclic [17] 18 62 14 2197 <1 16 6 <1 17 1

iflow dynfamic override self 15 23 8 1298 <1 11 8 <1 12 1

iflow endofloop (Fig. 1) self 19 118 15 4065 <1 16 7 <1 18 2

intermediate self 13 4 11 129 <1 12 5 <1 12 2

requires path sensitivity [11] 20 647 16 26894 <1 17 10 <1 18 3

single pass removal self 13 <1 3 7 <1 6 11 <1 8 1

unchanged over itteration self 20 29 9 932 1 15 14 <1 20 2

unreachable code nested self 10 <1 2 1 <1 9 1 <1 4 1

whole loop removable self 20 15 8 469 <1 17 5 <1 17 2

3 The benchmarks are available at github.com/ mattulbrich/llreve/tree/slicing/
slicing/testdata/benchmarks.

https://github.com/mattulbrich/llreve/tree/slicing/slicing/testdata/benchmarks
https://github.com/mattulbrich/llreve/tree/slicing/slicing/testdata/benchmarks

318 B. Beckert et al.

the tool, and the number of calls to the SMT solver. The experiments were con-
ducted on a machine with an Intel Core I5-6600K CPU and 16GB RAM. The
exponential brute forcing approach works satisfactorily fast on functions with
up to 20 statements, and while it requires more time than the other approaches,
it computes more precise slices.

Modern coding conventions [15, p. 34] suggest that functions should comprise
at most some 20 lines of code, and our approach is capable to deal with challenges
of that size. What hinders us slicing real-world programs is that SemSlice can-
not yet deal with bit-operations, complicated heap structures, and deep calling
hierarchies.

6 Related Work

Static slicing is an active research area, other semantic approaches have been
published using abstract interpretation [9,16] or term rewriting [8,13]. In this
section we focus on approaches with accessible tools.

GamaSlicer [5] features a graphical user interface and is designed for slic-
ing Java programs annotated with JML. It provides multiple slicing algorithms,
the most sophisticated one is assertion based slicing [1], which uses the spec-
ification as slicing criterion. A valid slice is obtained by removing statements
from the original program such that the original specification still holds. Unlike
SemSlice, this tool requires functional loop invariants from the user.

Tracer is a tool that runs in command line and computes slices for C programs
based on path sensitive backward slicing [11]. It uses symbolic execution to find
and remove unfeasible paths in a program and thereby increase precision com-
pared to syntactic slicing. To cope with path explosion of the symbolic execution
tree, parts of the tree are reused. This approach scales very well, but unfeasible
data dependencies over multiple iterations of a loop like those in Fig. 1a cannot
be detected.

7 Conclusion

We presented SemSlice, a fully automatic tool to compute slices using semantic
information. The approach uses relational verification to show that a slice can-
didate is equivalent to the original program with respect to a slicing criterion.
Three different approaches to compute slice candidates were introduced.

The presented approach works well on small, but intricate programs. To be
able to treat larger programs with SemSlice, we will in future work combine the
regression verification engine with other better scaling, but less precise regression
verification tools.

As our approach builds on top of a relational verification engine that infers
relational coupling invariants, functional loop invariants need not be specified.
Our evaluation shows powerful and highly precise program slicing can be imple-
mented by relying on relational verification. That indicates that relational veri-
fication is indeed a very useful basis for building formal program analysis tools.

SemSlice: Exploiting Relational Verification 319

References

1. Barros, J.B., Da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based slicing and
slice graphs. Formal Aspects Comput. 24(2), 217–248 (2012)

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 17

3. Binkley, D., Harman, M.: A survey of empirical results on program slicing. Adv.
Comput. 62, 105–178 (2004)

4. Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. Inf. Softw.
Technol. 40(11), 595–607 (1998)

5. da Cruz, D., Henriques, P.R., Pinto, J.S.: Gamaslicer: an online laboratory for pro-
gram verification and analysis. In: Proceedings of the Tenth Workshop on Language
Descriptions, Tools and Applications. p. 3. ACM (2010)

6. Eranki, K.L., Moudgalya, K.M.: Program slicing technique: a novel approach to
improve programming skills in novice learners. In: Proceedings of the Conference
on Information Technology Education. pp. 160–165. ACM (2016)

7. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Proceedings of the International Conference on Auto-
mated Software Engineering, ASE 2014, pp. 349–360. ACM (2014)

8. Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings
of the Symposium on Principles of Programming Languages, pp. 379–392. ACM
(1995)

9. Halder, R., Cortesi, A.: Abstract program slicing on dependence condition graphs.
Sci. Comput. Program. 78(9), 1240–1263 (2013)

10. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32759-9 21

11. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward slicing.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 231–247. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33125-1 17

12. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 149–165.
Springer, Cham (2016). doi:10.1007/978-3-319-48869-1 12

13. Komondoor, R.: Precise slicing in imperative programs via term-rewriting and
abstract interpretation. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 259–282. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 15

14. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
and transformation. In: International Symposium on Code Generation and Opti-
mization, CGO 2004, pp. 75–86. IEEE (2004)

15. Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship, 1st edn.
Prentice Hall PTR, Upper Saddle River, NJ (2008)

16. Mastroeni, I., Nikolić, -D.: Abstract program slicing: from theory towards an imple-
mentation. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 452–
467. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16901-4 30

17. Ward, M.: Properties of slicing definitions. In: Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 23–32.
IEEE (2009)

18. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering. pp. 439–449. IEEE Press (1981)

http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1007/978-3-642-32759-9_21
http://dx.doi.org/10.1007/978-3-642-32759-9_21
http://dx.doi.org/10.1007/978-3-642-33125-1_17
http://dx.doi.org/10.1007/978-3-319-48869-1_12
http://dx.doi.org/10.1007/978-3-642-38856-9_15
http://dx.doi.org/10.1007/978-3-642-16901-4_30

Formal Modeling

VBPMN: Automated Verification of BPMN
Processes (Tool Paper)

Ajay Krishna1, Pascal Poizat2,3, and Gwen Salaün1(B)

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France
Gwen.Salaun@inria.fr

2 Université Paris Lumières, Univ Paris Nanterre, Nanterre, France
3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR7606, Paris, France

Abstract. Business process modeling is an important concern in enter-
prise. Formal analysis techniques are crucial to detect semantic issues in
the corresponding models, or to help with their refactoring and evolution.
However, business process development frameworks often fall short when
it comes to go beyond simulation or syntactic checking of the models.
In this paper, we present our VBPMN verification framework. It features
several techniques for the automatic analysis of business processes mod-
eled using BPMN, the de facto standard for business process modeling.
As such, it supports a more robust development of business processes.

Keywords: Business processes · BPMN · Verification · Evolution ·
Tool · Process algebra · LNT · Labelled transition system · Model trans-
formation

1 Introduction

Mastering business processes has become a central concern in companies and
organizations. The modeling of these processes is the first step in order to
refine, optimize, or make them evolve while reducing costs and increasing
incomes. BPMN is a workflow-based notation that has been published as an
ISO standard [9,11], and thus is used widely for business process modeling. Sev-
eral frameworks have been developed in order to support the development of
BPMN processes. They mostly provide modeling, simulation, or execution fea-
tures. However, but for syntactic checking, these frameworks do not provide any
advanced, i.e., behavioral semantics-related, support for analyzing the process
models.

In this paper, we present a verification framework, VBPMN, that is freely
available for download [1]. It enables one to verify several properties of inter-
est on BPMN processes. VBPMN relies on an intermediate process meta-model
called PIF (Process Intermediate Format). This pivot meta-model, and its XML
representation, open the way to the use of different process modeling notations
as front-end. They also enable us to develop back-end connections to the input
languages of several verification tools, and as a consequence to several kinds of
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 323–331, 2017.
DOI: 10.1007/978-3-319-66845-1 21

324 A. Krishna et al.

verification. For now, we have focused on BPMN as a front-end, and on connec-
tion to the CADP verification toolbox [7] using one of the input languages it
supports, LNT [3], and the SVL verification scripting language [6]. It is worth
emphasizing that other modeling notations can be connected to PIF, e.g., Event-
driven Process Chains (EPC) or UML activity diagrams, since they share an
important subset of concepts and associated semantics. Complementary back-
ends are already under development, concretely, a transformation from PIF to
the input language of an SMT solver to support data-flows and data constraints
in processes, and a transformation from PIF to Maude to support the quantita-
tive analysis of timed processes.

Figure 1 gives an overview of VBPMN. It comes with a Web application that
takes as input BPMN-2.0-compliant business processes. The processes are first
transformed into PIF. Then, from the PIF descriptions, models in LNT and
model-specific verification scripts in SVL are generated. In the end, CADP is
used to check either for functional properties of a given business process or for
the correctness of the evolution of a business process into another one. This later
kind of verification being supported by VBPMN is particularly helpful in order
to improve a process wrt. certain optimization criterion.

PIF

PIF

business process v 1.0

pr
oc

es
s

de
si

gn

business process v 2.0

pr
oc

es
s

ev
ol

ut
io

n PIF

B
P

M
N

 to
 P

IF
m

od
el

 to
 m

od
el

 tr
an

sf
or

m
at

io
n

B
P

M
N

 to
 P

IF
m

od
el

 to
 m

od
el

 tr
an

sf
or

m
at

io
n

BPMN front-end

VBPMN Framework
Web App User Interface

VBPMN FrameworkBPMN Designer
Activity, Bonita BPM, ...

CADP back-end

CADP
property

tools

SVL

SVL

LNT

LNT

LNT

sc
rip

t
ge

ne
ra

to
r

P
IF

 to
 L

N
T

m
od

el
 to

 te
xt

 tr
an

sf
or

m
at

io
n

P
IF

 to
 L

N
T

m
od

el
 to

 te
xt

 tr
an

sf
or

m
at

io
n

CADP
equivalence

checking
tools

equivalence checking
formal proof

testing

PIF
model

Y back-end
model to text transformation

from PIF to Y input languages

X front-end
model to model transformation

from X to PIF

X
model

Y
model

Y
script

VBPMN architecture

BPMN, UML activity diagrams, EPC, ...

VBPMN / evolution checking and model comparison

Fig. 1. Overview of VBPMN.

VBPMN: Automated Verification of BPMN Processes 325

The rest of this paper is organized as follows. Section 2 introduces the models
and languages supported by VBPMN. Section 3 gives an overview of the VBPMN
Web application. In Sect. 4, we focus on the CADP back-end, on the properties
it allows one to check, and we present experimental results. Section 5 concludes
the presentation and sketches some perspectives for our work.

2 Models and Languages

VBPMN relies on an intermediate format, PIF. It allows one to support several
modeling languages, e.g., BPMN, and to target several verification tools, e.g.,
the CADP toolbox using LNT and LTS formal descriptions. We present here the
main models and languages currently supported in the framework.

BPMN. BPMN is an ISO/IEC standard since 2013 [9,11]. It is a workflow-
based graphical notation (and an XML-based language) for modeling busi-
ness processes whose development is supported by many designers and execu-
tion frameworks, e.g., Activiti, Bonita BPM, or jBPM. In our work, we focus
on the behavioral subset of BPMN which consists of start/end events, tasks,
and gateways (exclusive, inclusive, and parallel). We support looping behaviors
and unbalanced workflows, that is, gateways without an exact correspondence
between split and merge gateways. We only require that BPMN processes are
syntactically correct, which is enforced by the aforementioned BPMN designers.

PIF. PIF stands for Process Intermediate Format. We use it as a pivot meta-
model and language in order to make our approach generic and extensible. PIF
is based on the common constructs one finds in a workflow-based modeling lan-
guage. The interest of such a pivot language is that several modeling languages
can be used as input, e.g., BPMN (that is supported by now), UML, or Event-
driven Process Chains. Moreover, several verification techniques and tools can be
connected to it as a back-end, e.g., to deal with behavioral properties of models,
or with extensions of such properties to time and data-related aspects.

LNT and LTS. We have focused so far on purely behavioral properties. Verifi-
cation operates on Labelled Transition Systems (LTSs). This low-level model is
especially convenient because there are many verification tools accepting this for-
mat as input, in particular in the model checking area. A translational semantics
from PIF to LTSs was obtained indirectly using a model transformation from PIF
to the LNT process algebra. LNT [3] is expressive enough to encode the expres-
siveness of the PIF constructs and LNT operational semantics maps to LTSs.
Further, LNT is the input formalism of the CADP toolbox [7], which provides
various kinds of analysis we reuse for formally analyzing the PIF descriptions
resulting from our BPMN to PIF model transformation.

Transformations. VBPMN works thanks to several model transformations, as
depicted in the generic architecture on the bottom of Fig. 1. We first use a
model-to-model transformation in order to transform BPMN processes into PIF
models. Then, we use a model-to-text transformation for generating from PIF

326 A. Krishna et al.

models corresponding LNT specifications as well as CADP verification scripts
in the SVL language [6]. These scripts automate the verification selected in the
VBPMN Web interface (see Sect. 3 below for more details). Note that when one
of the verification steps described in the SVL scripts fails, one gets a witness
(i.e., a counter-example) that is presented back in the Web interface so that the
designer can use it to modify the erroneous process model.

3 Web Application

Business processes are usually designed by business analysts that may not be
familiar with formal verification techniques and tools. Our goal is to enable one to
take benefit from formal verification without having to deal with a steep learning
curve. The VBPMN Web Application has been developed in this direction. It
hides the underlying transformation and verification process, it provides the
users with simple interaction mechanisms, and it generates analysis results that
are easily relatable to the input process model(s). There are numerous tools
supporting the modeling of business processes. Extending a specific one, e.g. the
Eclipse BPMN designer, would limit the community that could use VBPMN.
Therefore, we have decided to architecture it as a Web application.

Technology stack. The VBPMN Web application is hosted on a Tomcat appli-
cation server. Its responsive UI invokes a RESTful API to trigger the transfor-
mation from BPMN to PIF and the verification of the process models. The use
of such an API makes the platform more extensible – other people could build
custom UIs using them. Internally, the API is built using the Jersey JAX-RS
implementation. The model-to-model transformation from BPMN to PIF is real-
ized at the XML level (both BPMN and PIF have XML representations) using
a combination of JAXB and of the Woodstox Streaming XML API (StAX),
which implements a pull parsing technique and offers better performance for
large XML models. The model-to-text transformation from PIF to LNT and
SVL is achieved using a Python script that can also be used independently from
the Web application as a command-line interface tool.

User interface. One can choose either to verify some property or to check
process evolution correctness. In the first case (Fig. 2, left), one has to upload
the BPMN process model and specify the temporal logic formula for the property.
In the later case (Fig. 2, right), one has to upload two BPMN processes, specify
the evolution relation, and optionally give tasks to hide or to rename in the
comparison (see [12] for the formal definition of the evolution relations). As a
result one can visualize the LTS models that have been generated for the BPMN
processes. Further, in case the verification fails, i.e., either the property does not
yield or the evolution is not correct, one gets a counter-example model.

VBPMN: Automated Verification of BPMN Processes 327

formula
"task5 will not be done"

input process model (one)
BPMN

result
formula does not yield

counter example
task1 . task2 . task5 is a run

input process models (two)

evolution relation (try #1)
conservative

result (try #1)
evolution is not correct

result (try #2)
evolution is correct

counter example (try #1)
model2 has four more runs

evolution relation (try #2)
inclusive + hiding task4 + renaming

input LTS option
see the LTSs for the BPMN models

Fig. 2. VBPMN Web application in use.

4 CADP Back-End

The CADP back-end addresses business process verification using available
model-checking and equivalence checking techniques in the CADP toolbox. This
is achieved by transforming PIF models into LNT process algebraic descriptions,
and by generating specific SVL verification scripts from UI inputs.

From PIF to LNT and SVL. The principle of the PIF to LNT transfor-
mation is to encode into LNT processes all the BPMN elements involved in a
process model behavioral semantics, that is, all nodes (initial/end events, tasks,
and gateways) and all sequences flows between nodes. This gives us a set of
LNT processes that are then composed in parallel and synchronized accordingly
to the BPMN execution semantics. For instance, after execution of a node, the
corresponding LNT process synchronizes with the process encoding the outgo-
ing sequence flow, which then synchronizes with the process encoding the node
appearing at the end of this flow, and so on. More details on this encoding can
be found in [12], which however applied only to balanced process workflows, i.e.,
workflows where every split gateway of some kind (exclusive, parallel, inclusive)
has a corresponding merge gateway of the same kind. This limitation is no longer
present in VBPMN that now supports also unbalanced process workflows. This
has been achieved by implementing in LNT a scheduler that runs in parallel with
all other processes, keeps track of active flows, and interacts with some specific

328 A. Krishna et al.

node processes, e.g., those for inclusive merge gateways, in order to indicate
them whether they have to expect synchronization with more processes or not.

Verification using CADP. The operational semantics of the LNT process
algebra enables us to generate LTSs corresponding to the BPMN process model
given in the VBPMN UI. These LTSs may then be analyzed using CADP. VBPMN
currently provides two kinds of formal analysis: functional verification using
model checking and process comparison using equivalence checking. As far as
functional verification is concerned, one can for example use reachability analysis
to search, e.g., for deadlock or livelock states. Another option is to use the CADP
model checker for verifying the satisfaction of safety and liveness properties.
In these cases, since the properties depend on the input process, they have to
be provided in the UI by the analyst, who can reuse well-known patterns for
properties such as those presented in [4].

Process evolution takes as input two process models, an evolution relation
and possibly additional parameters for the relation. Several evolution relations
are proposed. Conservative evolution ensures that the observational behavior is
strictly preserved. Inclusive evolution ensures that a subset of a process behavior
is preserved in a new version of it. Selective evolution (that is compatible with
both conservative and inclusive evolution) allows one to focus on a subset of
the process tasks. It is also possible to have VBPMN work up-to a renaming
relation over tasks. If the two input process models do not fullfil the constraints
of the chosen evolution relation, a counter-example that indicates the source of
the violation is returned by VBPMN in the UI. This helps the process analyst in
understanding the impact of evolution and supports the refinement into a correct
evolved version of a process model. All the evolution relations are checked using
the CADP equivalence checker and SVL scripts for hiding and renaming.

Experiments. We used a Mac OS laptop running on a 2.3 GHz Intel Core i7
processor with 16 GB of memory. We carried out experiments on many exam-
ples taken from the literature or hand-crafted, and we present in Table 1 some of
these results. For each process, the table gives the number of tasks (T), flows (F),
gateways (exclusive, parallel, and inclusive, respectively), and two booleans indi-
cating the presence of loops (L) and unbalanced workflow structure (U). The
table finally presents the size of the generated LTS in terms of states and transi-
tions (before and after minimization modulo branching equivalence [13]) as well
as the computation time for obtaining the LTS model. We recall that one can
use this LTS for analysis purposes using model checking available for instance
in the CADP toolbox. All the examples presented in the table are compiled into
LTS within a few seconds. The main factor of state space increase is the presence
in the input process of parallel or inclusive gateways. Those gateways exhibit a
high degree of parallelism and the enumeration of all possible executions result in
larger LTSs. As far as the computation time is concerned, the number of parallel
and inclusive gateways is again the main factor of explosion as shown in the last
example of the table, which consists of several nested gateways. The presence
of loops can also increase the size of the resulting LTS and of the computation
time because this may induce additional executions to be explored.

VBPMN: Automated Verification of BPMN Processes 329

Table 1. Experimental results.

Process description Constructs LTS (states/transitions) Gen.

time

T F L U Raw Min.

Booking sys. 6 11 2 0 0
√ × 29/29 8/9 6 s

Retry sys. 2 8 3 0 0
√ √

21/21 5/6 6 s

Leave man. 6 13 3 0 0
√ √

36/36 9/11 6 s

Acc. open. (1) 15 29 5 2 2 × × 469/1,002 24/34 6 s

Acc. open. (2) 16 33 5 2 2
√ × 479/1,013 26/37 7 s

Software dev. 6 19 7 0 0
√ √

40/42 12/16 6 s

Publishing sys. 12 31 7 2 2
√ √

3,038/9,785 32/63 7 s

Incident sys. 7 16 5 0 0 × √
39/41 11/13 6 s

Travel org. 6 14 0 0 4 × √
4,546/6,155 51/77 9 s

Lunch pay. 6 24 8 0 0
√ √

54/59 11/16 6 s

Hand-craft. (1) 20 38 0 8 0 × × 577,756/3,388,390 334/1,174 26 s

Hand-craft. (2) 20 43 0 6 6 × × 4,488,843/26,533,828 347/1,450 224 s

5 Concluding Remarks

In this paper, we have presented VBPMN, our tool for the analysis of business
processes. VBPMN has a particular focus on BPMN since it is a standard, but
it may indeed support as input any workflow-based language that can be trans-
formed into the PIF meta-model and language. PIF is used as an intermediate
between workflow notations and back-end formal frameworks, i.e., formal mod-
els, equipped with associated verification techniques and tools. We have here
focused on a transformation from PIF to LTS, which is, in practice, achieved via
a transformation to the LNT process algebra and reusing the LTS semantics of
LNT. These LTSs can then be analyzed using model and equivalence checking
techniques thanks to the CADP toolbox. The overall analysis process provided
by VBPMN is fully automated and freely available for download [1].

Related work. To the best of our knowledge, the existing industrial develop-
ment frameworks for BPMN, such as Activiti or Bonita BPM, do not provide
formal techniques for verifying business processes. If we broaden the scope, we
can compare to LoLA, ProM, and VerChor.

LoLA can be used to check whether a Petri net satisfies some property, using
reduction techniques and state space explicit exploration. It has been applied in
various application domains and more specifically to the verification of the BPEL
orchestration language, of Web service choreographies, and of business process
models, see, e.g., [5]. In comparison to LoLA-based works, VBPMN proposes
specific analysis techniques for the verification of business process evolution.

ProM [2] is a platform for the development of state-of-the-art process mining
techniques and tools. Process mining can be used to extract knowledge, e.g.,
under the form of process models, from execution logs. It can also be used to
monitor processes and detect deviations. VBPMN does not address mining from

330 A. Krishna et al.

logs, and assumes models are given. The techniques we propose for evolution
checking are somehow complementary to ProM where evolution can be tackled
from a deviation point of view. BPMNDiffViz [10] combines process mining and
the concept of edit distance for providing a similarity measure between two
processes. On the contrary, VBPMN has a more qualitative vision of evolution
using bi-simulations and pre-orders. The extension to quantitative evolution is
definitely an interesting perspective for VBPMN.

The VerChor platform [8] aims at analyzing choreographies possibly
described using BPMN choreography diagrams. An intermediate format and a
transformation to LNT was used there too. However, the focus is complementary:
process diagrams and the verification of properties and of evolution in VBPMN,
versus choreography diagrams and the verification of choreography-specific prop-
erties (synchronizability and realizability) in VerChor. Further, VBPMN supports
unbalanced workflows, while VerChor does not.

Future work. Our main perspective is to go beyond control-flow and behavioral
analysis of BPMN, and to take into account data-flow and quantitative aspects.
We are studying extensibility features for the PIF meta-model and language.
Further, we are developing new back-ends from PIF to SMT solvers for data-
flow aspects, and to statistical model-checkers for quantitative aspects.

References

1. VBPMN Framework. https://pascalpoizat.github.io/vbpmn/
2. Bose, R.P.J.C., Verbeek, E.H.M.W., Aalst, W.M.P.: Discovering hierarchical

process models using ProM. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol.
107, pp. 33–48. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29749-6 3

3. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McKinty, C.,
Powazny, V., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS
Translator, Version 6.1. INRIA/VASY (2014)

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM (1999)

5. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on
demand: instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011)

6. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE 2001. IIFIP, vol. 69, pp.
377–392. Springer, Boston, MA (2002). doi:10.1007/0-306-47003-9 24

7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

8. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: VerChor: a framework for the design
and verification of choreographies. IEEE Trans. Serv. Compu. 9(4), 647–660 (2016)

9. ISO/IEC: International Standard 19510, Information technology - Business Process
Model and Notation (2013)

10. Ivanov, S., Kalenkova, A.A., van der Aalst, W.M.P: BPMNDiffViz: a tool
for BPMN models comparison. In: Proceedings of BPMN 2015 Demo Session,
CEUR Workshop Proceedings, BPMN 2015, vol. 1418, pp. 35–39 (2015). http://
CEUR-WS.org

https://pascalpoizat.github.io/vbpmn/
http://dx.doi.org/10.1007/978-3-642-29749-6_3
http://dx.doi.org/10.1007/0-306-47003-9_24
http://CEUR-WS.org
http://CEUR-WS.org

VBPMN: Automated Verification of BPMN Processes 331

11. OMG: Business Process Model and Notation (BPMN) - Version 2.0, January 2011
12. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In:

Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 36–53.
Springer, Cham (2017). doi:10.1007/978-3-319-57666-4 4

13. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

http://dx.doi.org/10.1007/978-3-319-57666-4_4

How Well Can I Secure My System?

Barbara Kordy and Wojciech Wide�l(B)

INSA Rennes, IRISA, Rennes, France
{barbara.kordy,wojciech.widel}@irisa.fr

Abstract. Securing a system, being it a computer network, a physical
infrastructure or an organization, is a very challenging task. In prac-
tice, it is always constrained by available resources, e.g., budget, time,
or man-power. An attack–defense tree is a security model allowing to
reason about different strategies that an attacker may use to attack a
system and potential countermeasures that a defender could apply to
defend against such attacks. This work integrates the modeling power
of attack–defense trees with the strengths of integer linear programming
techniques. We develop a framework that, given the overall budget allo-
cated for the system’s protection, suggests which countermeasures should
be implemented to secure the system in the best way possible. We lay
down formal foundations for our framework and implement a proof of
concept tool automating the solving of relevant optimization problems.

1 Introduction

The only system that is guaranteed to be fully secure is the empty system which
does not provide any functionality. Any other system offering an actual service
will always be vulnerable to attacks. These attacks may target the system’s
availability (e.g., denial of service attacks), its integrity (e.g., corruption of data
leading to inaccurate or inconsistent results), or the confidentiality of the users’
private information (e.g., stealing credentials necessary for authentication). To
achieve their malicious goals, attackers, who might be external to the system or
insiders, have a plethora of methods to choose from, including digital means, such
as hacking, physical attacks, for instance, breaking in and stealing, as well as very
powerful social engineering techniques relying on psychological manipulation. All
these aspects must be taken into account while securing a system or a company.
In addition, perfect security would require the system’s owners to have unlimited
resources, in terms of financial means and time, but in practice, this is never the
case. This is where the risk analysis comes into play.

The crucial challenge in every risk assessment methodology is to exhaustively
describe the attack scenarios corresponding to the most feared threats, in order
to determine the most likely ones, and deploy relevant countermeasures, in such
a way that the residual risks are acceptable. Attack–defense trees have been
introduced in [6] as a formal solution to address this challenge and to support
practical risk assessment methodologies.

An attack–defense tree (ADTree) is a graph-based model representing how
an attacker may compromise a system and how a defender may protect it against
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 332–347, 2017.
DOI: 10.1007/978-3-319-66845-1 22

How Well Can I Secure My System? 333

potential attacks. ADTrees enhance the industrially recognized formalism of
attack trees [8,10], by explicitly integrating the countermeasures and the coun-
terattacks against these countermeasures to the model. Methods for quantitative
analysis of ADTrees, e.g., [1,7], allow the modeler to analyze and quantify the
effect of deploying a countermeasure, and to evaluate its consequences.

Several aspects can be taken into account while choosing the countermea-
sures to be implemented. One can be interested in minimizing the number of
undefended attacks, minimizing the impact that the system would suffer from
in a case of an attack, maximizing the minimal necessary investment of the
attacker, etc. It turns out that all these problems might be modeled as integer
linear programming problems [3].

The objective of this work is to develop a framework allowing a security
expert to select the most pertinent set of countermeasures, in order to secure
the analyzed system in the best way possible. This framework combines the mod-
eling features of ADTrees with the potential of integer optimization techniques.
Knowledge about possible attack strategies and the corresponding countermea-
sures is extracted from an attack–defense tree. This information is then used
by integer optimization algorithms to select the most appropriate set of coun-
termeasures. Our selection procedure is guided by practical constraints, such as
the cost of individual actions of the attacker and the defender, the impact of an
attack to the system, and the overall defense budget available.

Contribution. The main scientific novelty of this work is the development of
the defense semantics for ADTrees, capturing possible strategies of a reason-
able attacker and listing corresponding defender’s strategies allowing to secure
the analyzed system. The practical contribution is the formulation of security-
relevant optimization problems in terms of integer programming and the imple-
mentation of a prototype tool to solve them. Our tool takes an ADTree as input
and uses a free integer programming solver lp solve [2] to output the optimal
set of countermeasures to be implemented, according to a given optimization
function.

Related work. The stimulus triggering the framework developed in this paper
has been the work of Laura Albert McLay, an operations researcher working on
cybersecurity problems. McLay investigates optimization techniques to distrib-
ute security budget amongst possible countermeasures and makes use of maximal
coverage models to prioritize mitigations [12]. The major difference between our
approach and the one of McLay is the way in which the link between poten-
tial attacks and the corresponding sets of countermeasures is tackled. In [12],
this link is given as input to the problem. In our approach, this information is
extracted from an ADTree in the form of its defense semantics. We propose an
extraction algorithm which contributes to the development of formal foundations
for ADTrees and, as such, is the main scientific contribution of this paper.

Optimization techniques have also been applied to attack–defense trees to
address the problem of multi-objective evaluation of security using the concept

334 B. Kordy and W. Wide�l

of Pareto efficient solutions [1,11]. The goal of [11] is to identify optimal counter-
measures that maximize the security performance, minimize the attack impact
and minimize the defense cost. However, contrary to our approach, attack–
defense trees used in [11] do not allow to model attacker’s actions that would
disable a countermeasure of the defender, which results in a less complex but
also much less expressive model. The authors of [1] use Pareto frontier to devise
a technique that optimizes several parameters, e.g., cost and probability, at once.
ADTrees considered in [1] are similar to the ones used in our paper. However,
this work does not consider coverage problems, as we do in the current work.

2 Security Modeling with Attack–defense Trees

We start by explaining the ADTree formalism and presenting the assumptions
about the attacker and the defender considered in this work. Then, we introduce
a formal semantics which allows us to take advantage of integer programming
techniques to reason about attack–defense scenarios modeled with ADTrees.

2.1 Attack–defense Trees

Attack–defense trees (ADTrees) [6] are rooted trees with labeled nodes sup-
porting representation and quantitative analysis of security scenarios involving
two competing (sets of) actors – the attacker (denoted by A) and the defender
(denoted by D). Labels of the nodes of an ADTree depict goals of the actors. One
of the actors is trying to achieve a particular goal represented by the root node
of the ADTree and the other actor is trying to hamper them from doing so.1 The
goal of a node in an ADTree can be refined into sub-goals, either in a disjunctive
way (denoted by OR) or in a conjunctive way (denoted by AND). The meaning
of an ADTree is based on the notion of goal achievement. A goal represented
by a disjunctively refined node is achieved if at least one of the sub-goals rep-
resented by its children is achieved. To achieve a goal of a conjunctively refined
node, sub-goals of all of its children must be achieved. The goals represented by
the labels of the non–refined nodes are called basic actions. They represent the
actual actions that the attacker and the defender will perform to achieve their
goals. In order to forbid an actor from achieving their goal, the other actor may
apply a countermeasure (denoted by C). In the ADTree formalism, the nodes
representing countermeasures can be disjunctively or conjunctively refined and
they can again be countered. At most one countermeasure per node is allowed,
thus different ways of countering the same goal are represented using a single
countermeasure which is disjunctively refined. The goal of a countered node is
achieved if the node’s refinement (or the corresponding basic action in the case of
a non-refined but countered node) is achieved and the goal of the countermeasure
attached to the node is not achieved by the other actor.

1 In [6], the root actor is called the proponent and the other actor is the opponent.

How Well Can I Secure My System? 335

get Bob’s password

hacking

get the file with
hashed passwords

encrypt disk
with DiskCryptor

use password

eavesdrop to learn Bob’s
DiskCryptor password

security training

use key file

steal the disk holding
DiskCryptor key file

ophcrack
attack

use very strong
password

guessing

Fig. 1. ADTree for getting a password (Color figure online)

An illustrative toy
ADTree is given in
Fig. 1 and explained in
Example 1. The follow-
ing graphical conven-
tions are used: nodes
of the attacker are
depicted using red cir-
cles and those of the
defender using green
rectangles; conjunctively
refined nodes are marked
by an arc connecting
their children; nodes are
connected to their coun-
termeasures with the
help of dotted edges.

Example 1. In the sce-
nario represented with
the ADTree from Fig. 1,
Eve (the attacker) wants
to get the password
for Bob’s Windows
account. Eve can either
perform a hacking-based
attack or try to guess
the password, perhaps by executing a brute-force search. To successfully per-
form the hacking attack, Eve needs to get the file with the hashed passwords
stored in the memory of Bob’s computer and then retrieve Bob’s password from
this file with the help of ophcrack [9] – a Windows password cracker for inversing
hashes using rainbow tables. To prevent the theft of the password file, Bob (the
defender) can encrypt the disk of his laptop using encryption software DiskCryp-
tor [4]. DiskCryptor can be set up to work with a password or with a key file. In
the first case, Bob needs to enter his DiskCryptor password before being redi-
rected to the Windows login page. In the second case, Bob needs to boot from
an external disk (e.g., CD or DVD) holding the correct key file. To overcome
the disk encryption, Eve could eavesdrop on Bob entering his DiskCryptor pass-
word or steal the disk with the key file, respectively. Bob could follow a security
training where he would learn that one should never enter his passwords while
observed. Finally, to make the ophcrack attack impossible, Bob should use a very
strong password which does not fall into the specification of available ophcrack
tables.

Formally, an ADTree is defined using rooted, finite, labeled trees. We recall
that a tree is an acyclic, connected graph having neither loops, i.e., edges starting

336 B. Kordy and W. Wide�l

and ending at the same node, nor multiple edges between two different nodes.
A tree is finite if the set of its nodes is finite, and it is said to be rooted if one
of its nodes is designated to be the root.

Definition 1. An ADTree T is a tuple T = (V,E,L, λ, type, ref), where

– (V,E) is a rooted, finite tree,
– L is a set of labels representing the attacker’s and the defender’s goals,
– λ : V → L is a function that assigns labels to the nodes,
– type: V → {A, D} is a function assigning actors to the nodes, in such a way

that every node has at most one child of the other type,
– ref : V → {OR, AND, N} describes a refinement of the node: we use OR for dis-

junctively and AND for conjunctively refined nodes, and N for the non-refined
nodes, i.e., nodes holding basic actions.

While labels of the refined nodes are important when creating an ADTree,
they are not necessary for its analysis. For instance, if we assume that none of
Bob’s countermeasures was implemented in the scenario from Example 1, Eve
would achieve her main goal by either getting the file with hashed passwords and
running ophcrack or by guessing the password. This situation can be represented
as ORA

(
ANDA(hash, ophcrack), guess

)
2. The actors’ strategies can thus be fully

expressed by the labels of the non-refined nodes combined using refinement oper-
ators of the corresponding refined nodes. This observation leads us to propose a
term-based notation for ADTrees, which is especially useful in the case of large
trees, where the graphical representation is neither convenient nor effective.

Let us denote by B
A and B

D the sets of labels representing basic actions of
the attacker and the defender, respectively. We assume that B

A ∩ B
D = ∅, and

we set B = B
A ∪ B

D. Let bS ∈ B
S, for S ∈ {A, D}. ADTrees can be seen as terms

generated by the following grammar.

T : : T A | T D

T A : : bA | ORA(T A, . . . , T A) | ANDA(T A, . . . , T A) | CA(T A, T D)

T D : : bD | ORD(T D, . . . , T D) | ANDD(T D, . . . , T D) | CD(T D, T A)

If the root of an ADTree has type A, then the tree is said to be of the attacker’s
type. Otherwise it is said to be of the defender’s type. Terms of the form T A (resp.
T D) represent trees of the attacker’s (resp. defender’s) type. The tree in Fig. 1 is
of the attacker’s type and it is represented with term (1).

T = ORA
(
ANDA

(
CA(hash, T ′), CA(ophcrack, strong)

)
, guess

)
, (1)

where T ′ is the following term representing the tree of the defender’s type rooted
in the ‘encrypt disk with DiskCryptor ’ node

T ′ = ORD
(
CD

(
password, CA(eavesdrop, sec-train)

)
, CD(key-file, steal-kf)

)
.

2 Here, as well as in the rest of the paper, we shorten the labels for better readability.

How Well Can I Secure My System? 337

For the rest of this paper, we do a couple of assumptions. We identify ADTrees
with the corresponding terms. To ease the presentation, we assume that the
root actor (i.e., the proponent) is the attacker. Furthermore, we consider only
ADTrees where all basic actions are independent. This implies that there are no
multiple occurrences of the same label in a tree. Finally, it is assumed that both
actors always succeed when executing their basic actions.

2.2 Formal Semantics

In order to formulate optimization problems related to attack–defense scenarios
represented with ADTrees, we first need to extract potential attack and defense
strategies from the ADTree, i.e., define the semantics of ADTrees. These strate-
gies describe sets of actions allowing the attacker to achieve the root goal and
the defender to make such an attack impossible or inefficient.

Let T be an ADTree. A homogenous subtree of T is a maximal subtree of T ,
such that all of its nodes are of the same type (A or D). Node designated to be
the root of a homogenous subtree H of T is the one whose distance from the
root of T is minimal among all nodes of H. Obviously, every ADTree can be
partitioned in a unique way into homogenous subtrees: it suffices to remove all
dotted edges connecting the nodes of the attacker with those of the defender.
Since all of the nodes of a homogenous subtree are of the same type, homogenous
subtrees do not use any C operators. We thus talk about homogenous subtrees
of the attacker or of the defender.

Definition 2. Let H be a homogenous subtree of the attacker (resp. defender).
A minimal, wrt the inclusion, set of basic actions of the attacker (resp. defender)
achieving the root goal of H is called an attack vector (resp. defense vector) in H.

Example 2. The homogenous subtrees in our running example are

H0 = ORA(ANDA(hash, ophcrack), guess) H1 = strong

H3 = eavesdrop H2 = ORD(password, key-file)
H4 = steal-kf H5 = sec-train.

The left column gathers homogenous subtrees of the attacker and the right one
of the defender. The attack vectors in the subtree H0 are {hash, ophcrack} and
{guess}. The defense vectors in H2 are {password} and {key-file}.

Definition 3. Let T be an ADTree.

– A set D ⊆ B
D is called a defense strategy in T , if D = ∅ or if it is a union of

defense vectors from some of the homogenous subtrees of T .
– A set A ⊆ B

A is called an attack strategy in T , if there exists a defense
strategy D in T , such that, with all of the countermeasures from D being
employed, A is a minimal set of actions achieving the root goal of T . Such D
is called a witness for attack strategy A.3

3 To avoid confusion, attack/defense strategies in an ADTree are denoted using capital
letters and attack/defense vectors in its homogenous subtrees using lower case letters.

338 B. Kordy and W. Wide�l

Example 3. The attack strategies in the tree T from Fig. 1 are

{guess}, {hash, ophcrack}, {hash, ophcrack, eavesdrop},

{hash, ophcrack, steal-kf}, {hash, ophcrack, eavesdrop, steal-kf}.

For instance, {hash, ophcrack, eavesdrop} is an attack strategy because it rep-
resents a valid attack when the witness defense strategy {password} is imple-
mented. Likewise, {hash, ophcrack, eavesdrop, steal-kf} is an attack strategy
because the execution of all of these actions is a valid attack in the presence of
the witness defense strategy {password, key-file}.

In contrast, the set X = {hash, ophcrack, guess} is not an attack strategy in
T , because it is not minimal. Indeed, for any defense strategy possible (including
the empty strategy), hash and ophcrack can be removed from X and the root
goal is still achieved with guess.

The reasoning in Example 3 shows that the attack strategies model a reasonable
behavior of the attacker who, to achieve their goal, will not execute more actions
than strictly necessary. In other words, every attack strategy in an ADTree T
contains at most one attack vector from every homogenous subtree of T .

The set of all attack strategies in an ADTree T , that we denote by AS(T),
can be obtained in a bottom–up manner using the rules given in Fig. 2, where⊗n

i=1 Xi = {⋃n
i=1 xi | xi ∈ Xi}. It is important to notice that, in the case

of the nodes of the form ORD(T D
1 , . . . , T D

k), the union is taken over all subsets
I ⊆ {1, . . . , k}, including I = ∅.

AS(bA) = {{bA}}, AS(bD) = {∅},

AS(ORA(T A
1 , . . . , T

A
k)) =

k⋃

i=1

AS(T A
i), AS(ORD(T D

1 , . . . , T
D
k)) =

⋃

I⊆{1,...,k}

⊗

i∈I

AS(T D
i),

AS(ANDA(T A
1 , . . . , T

A
k)) =

k⊗

i=1

AS(T A
i), AS(ANDD(T 1, . . . , T k)) =

k⋃

i=1

AS(T D
i),

AS(CA(T1, T2)) = AS(T1) ⊗ AS(T2), AS(CD(T1, T2)) = AS(T1) ∪ AS(T2).

Fig. 2. Rules for creation of attack strategies in an ADTree

Lemma 1. Let T be an ADTree and A be an attack strategy in T . In addition,
let H be a homogenous subtree of the attacker in T , with BH being the set of all
basic actions in H. Then the set A∩BH is either empty, or else it is exactly one
attack vector in H.

Proof. Let DA be a witness for A, cf. Definition 3, and assume that the set
A ∩ BH is not empty. Since A is a minimal strategy wrt DA, the basic actions
from A ∩ BH achieve the root of H, with the root of H being either the root

How Well Can I Secure My System? 339

of T , or else a countermeasure attached to one of the nodes achieved by DA in
T . From the minimality of A it also follows that if an action was removed from
A ∩ BH , then the root of H would no longer be achieved. Thus, A ∩ BH is an
attack vector in H. �	

The goal of the framework developed in this paper is to suggest to the
defender an optimal way of securing a system. To do so, we need to link possi-
ble attack strategies describing how to attack the system with the correspond-
ing defense strategies allowing to protect it. Unfortunately, previously proposed
semantics for ADTrees do not achieve this, because they take the view of one
actor only into account, as illustrated in Example 4.

Example 4. Consider the tree T = CA
(
b, ANDD(b1, b2)

)
. There exist two (minimal)

ways for the attacker to ensure that they achieve their goal: they need to execute
action b and at the same time prevent the defender from executing either b1 or
b2. Using the multiset semantics [6], this is modeled by the pairs ({|b|}, {|b1|}) and
({|b|}, {|b2|}). However, this interpretation does not give a recipe for a reasonable
defender to counter the attack, which is executing both b1 and b2.

To make use of integer programming, we thus need to develop a new semantics
for ADTrees, called defense semantics for ADTrees, expressing how the defender
may prohibit a reasonable attacker from achieving their goal.

Definition 4. The defense semantics of an ADTree T , denoted by [[T]]D, is the
set of all pairs (A,D), where A is an attack strategy in T and D is a minimal
(with respect to inclusion) defense strategy in T , such that executing all actions
from D makes it impossible for the attacker to achieve the goal represented by
the root of T while realizing only the actions from A.

In order to develop an algorithm constructing the defense semantics of an
ADTree T , we first define the notion of countering attack and defense vectors.

Definition 5. Let T be an ADTree, and HA (resp. HD) be a homogenous subtree
of T of the attacker’s (resp. of the defender’s) type. In addition, let a be an attack
vector in HA (resp. d be a defense vector in HD).

We say that a set S ⊆ B
D (resp. S ⊆ B

A) counters the attack vector a (resp.
the defense vector d), if executing all actions from S makes it impossible for the
attacker (resp. for the defender) to achieve the goal represented by the root of
HA (resp. HD) while executing only the actions from a (resp. from d).

In other words, S counters an attack vector a if, in the presence of the coun-
termeasures from S, it is not sufficient to execute only the actions from a to
achieve the root goal of the corresponding homogenous subtree. For instance,
the attack strategy {hash, ophcrack, steal-kf} in the tree T from Fig. 1 coun-
ters the defense vector {key-file}. Likewise, the defense vector {password}
counters the attack vector{hash, ophcrack}.

Algorithm 1, where H0 denotes the homogenous subtree of the attacker con-
taining the root of an ADTree T , gives an algorithmic way of creating the defense

340 B. Kordy and W. Wide�l

semantics of T . In the corresponding lines, we indicate the steps the complexity
of which is exponential wrt the number of nodes. Note however, that, for a given
tree, these worst case scenario estimations will never hold for all of the lines at
the same time, cf. Table 1 depicting a couple of empirical results.

Theorem 1. Given ADTree T , Algorithm 1 generates the semantics [[T]]D.

To prove Theorem 1, we need the following lemma which shows the unique-
ness of the attack vector a′ in line 14 of Algorithm 1.

Lemma 2. Let T be an ADTree and (A,D) ∈ [[T]]D. For every defense vector
d ⊆ D, there exists at most one attack vector a ⊆ A countering d.

Proof. Let (A,D) ∈ [[T]]D and let d ⊆ D be a defense vector. By contraposition,
suppose that there exist two distinct attack vectors a1 and a2 in A that counter
d. Denote by Nd the set of nodes achieved by d, and by Hd the homogenous
subtree containing Nd. By Lemma 1, a1 and a2 are attack vectors from distinct
homogenous subtrees of T , say, H1 and H2, respectively. For i ∈ {1, 2}, denote by
ni the node of Nd, to which the root of Hi is attached. Let n ∈ Nd be the lowest
common ancestor of n1 and n2, i.e., the node that lies on the paths connecting
n1 and n2 with the root of Hd, the distance of which from the root of Hd is
maximal.

Let DA be a witness for A. By definition of witness, neither A \a1 nor A \a2

achieves the root goal of T in the presence of the actions from DA. Minimality
of A wrt DA implies that each of the nodes n1, n2, and n is achieved by DA and
that n is neither n1 nor n2. Furthermore it follows that n is an OR node. However,
this means that achieving both n1 and n2 is not necessary for achieving n, which
contradicts d being a defense vector in Hd. �	
Proof of Theorem 1. Let Alg(T) be the set constructed by Algorithm 1. We prove
that Alg(T) = [[T]]D.

First, let (A,D) ∈ [[T]]D. By Definition 4 and Lemmas 1 and 2, the sets A
and D can be represented as

A = a0 ∪ a1 ∪ . . . ∪ am ∪ A′, D = d0 ∪ d1 ∪ . . . ∪ dm, (2)

where a0 is an attack vector in H0, and for all i ∈ {0, . . . , m − 1}, di is a defense
vector that counters ai, and ai+1 is the unique attack vector in A countering di.
Furthermore, defense vector dm counters am and executing any of the attack vec-
tors from A′ has no impact on the defense vectors from D, and vice versa.

Let i ∈ {1, . . . , m}. By lines 8–15, during the i-th execution of the while
loop, the pair (ai, d0 ∪ . . . ∪ di−1) is added to the NewCandidates set, with the
latter becoming the Candidates set in line 19. When the algorithm enters the
while loop for the (m + 1)-th time and the aforementioned pair is considered in
line 8, the defense vector dm is identified in line 9 and the set D is added to the
set MinDef. Then, the pair (A,D) is added to Alg(T) in line 21.

Now, let (A,D) ∈ Alg(T). Let a0 ⊆ A be the attack vector from line 5.
Observe that the set D was built upon the pair (a0, ∅) by repeatedly identifying

How Well Can I Secure My System? 341

Algorithm 1. Defense semantics for ADTrees
Input: ADTree T
Output: defense semantics [[T]]D
1: Construct the set AS(T) using the rules from Fig. 2 O(2n)
2: [[T]]D ← ∅
3: for A ∈ AS(T) do O(2n)
4: MinDef ← ∅
5: Candidates ← {(a0, ∅) | a0 ⊆ A is an attack vector in H0}
6: while Candidates �= ∅ do
7: NewCandidates ← ∅
8: for (a,D) ∈ Candidates do
9: Counter ← {d | d counters a} O(2n)

10: for defense vector d ∈ Counter do O(2n)
11: if d is not countered by A then
12: MinDef ← MinDef ∪ {D ∪ d}
13: else
14: let a′ be the unique attack vector in A that counters d
15: NewCandidates ← NewCandidates ∪ {(a′, D ∪ d)}
16: end if
17: end for
18: end for
19: Candidates ← NewCandidates
20: end while
21: [[T]]D ← [[T]]D ∪ {(A,D) | D ∈ MinDef }
22: end for
23: return [[T]]D

a defense vector di countering the first element of the pair and an attack vector
ai+1 ⊆ A (if any) countering di, and then replacing the previous pair in the set
of candidates as described in line 19. Hence, the sets A and D can be partitioned
as in decomposition (2), and so (A,D) ∈ [[T]]D. �	
Example 5. The defense semantics of our running tree T from Fig. 1 is

[[T]]D ={({hash, ophcrack}, {strong}),
({hash, ophcrack}, {password}),
({hash, ophcrack}, {key-file}),
({hash, ophcrack, eavesdrop}, {strong}),
({hash, ophcrack, eavesdrop}, {key-file}),
({hash, ophcrack, eavesdrop}, {password, sec-train}),
({hash, ophcrack, steal-kf}, {strong}),
({hash, ophcrack, steal-kf}, {password}),
({hash, ophcrack, steal-kf, eavesdrop}, {strong}),
({hash, ophcrack, steal-kf, eavesdrop}, {password, sec-train})}.

342 B. Kordy and W. Wide�l

3 Security-Oriented Optimization Problems

We integrate the information captured by the defense semantics defined in the
previous section with the integer linear programming. Linear programming is a
standard approach to compute the best outcome, by optimizing a linear objec-
tive function subject to linear equality and linear inequality constraints. In our
framework, the inequalities model the dependencies between attack strategies
and defense strategies expressed by the defense semantics, the constraints related
to the available budget, as well as cost and impact of individual actions of the
attacker and the defender. Provided that the defender’s budget is limited, they
might not be able to implement all countermeasures at will. Our framework
supports them in tackling the following types of the optimization problems

– maximal coverage – minimize the number of attack strategies that remain
uncountered;

– minimal impact – minimize the impact of uncountered attack strategies;
– maximal investment – maximize the necessary investment of the attacker.

3.1 Mathematical Modeling

We start by fixing the notation that we employ in this section to model the
optimization problems. Given an ADTree T , and its defense semantics [[T]]D, let

– B
D = {bD1, . . . , bDp} be the set of basic actions of the defender present in T ,

– A1, . . . , An be the distinct attack strategies that appear in [[T]]D,
– D1, . . . , Dm be the distinct defense strategies that appear in [[T]]D.

Furthermore, for i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, and k ∈ {1, . . . , p}, we set

Pij =

{
1, if (Ai,Dj) ∈ [[T]]D
0, otherwise

ykj =

{
1, if bDk ∈ Dj

0, otherwise.

For a basic action bS of any of the actors S ∈ {A, D}, we assume the cost of
executing the action to be a non-negative real number cost(bS). Finally, the
overall budget available to the defender is denoted by B.

To model the different scenarios that may happen depending on which actions
are and which are not executed, the following Boolean variables are defined

– xk = 1, for k = 1, . . . , p, if and only if the defender executes the action bDk,
– fj = 1, for j = 1, . . . ,m, if and only if the defender does not execute at least

one of the basic actions from the defense strategy Dj ,
– zi = 1, for i = 1, . . . , n, if and only if the attack strategy Ai achieves the root

node of T , in the presence of currently deployed countermeasures.

How Well Can I Secure My System? 343

Optimization goal: minimize

n∑

i=1

zi (3)

Subject to:

p∑

k=1

cost(bDk)xk ≤ B (4)

fj ≥
∑p

k=1 ykj(1 − xk)

p
, 1 ≤ j ≤ m (5)

fj ≤
p∑

k=1

ykj(1 − xk), 1 ≤ j ≤ m (6)

zi ≥ 1 +
m∑

j=1

Pij(fj − 1), 1 ≤ i ≤ n (7)

zi ≤
∑m

j=1 Pijfj∑m
j=1 Pij

, 1 ≤ i ≤ n (8)

xk ∈ {0, 1}, 1 ≤ k ≤ p, fj ∈ {0, 1}, 1 ≤ j ≤ m, zi ∈ {0, 1}, 1 ≤ i ≤ n.

Fig. 3. Coverage problem modeled in terms of integer programming.

Coverage problem. We first focus on the problem of covering as many attack
strategies as possible, provided the value of the defense budget B.

Figure 3 gives the specification of the corresponding integer linear program-
ming problem.

Inequality (4) ensures that the defender’s investment cannot exceed their
budget. The next two lines model the meaning of the variable fj : inequalities (5)
ensure that if the defender does not execute some of the actions from Dj , then
fj = 1; inequality (6) ensures that if fj = 1, then the defender does not execute
some action from Dj . Next, we model the meaning of zi: inequalities (7) ensure
that if the defender does not execute some action in any of the sets countering
Ai (i.e., fj = 1 for every j, such that Pij = 1), then zi = 1; and inequalities (8)
ensure that if the defender executes all the actions from at least one of the sets
Dj countering the attack strategy Ai (i.e., there exists j, such that Pij = 1 and
fj = 0), then zi = 0.

Remark 1. We notice that the number of elements in the set Dj can be expressed
as |Dj | =

∑p
k=1 ykj . Thus, the defender executes all of the actions from Dj , iff
p∑

k=1

ykj =
p∑

k=1

xkykj which means
p∑

k=1

(1 − xk)ykj = 0. (9)

In consequence, if there exists j for which equality (9) holds and Pij = 1, then
the attacker cannot succeed by the attack strategy Ai. Conversely, if for all j
with Pij = 1, equality (9) does not hold, then the attacker can succeed with Ai.
This explains the form of inequalities (5) and (6).

Observe that when the inequalities from Fig. 3 are expressed in a matrix form,
say M x̂ ≤ ĉ, where x̂ = (x1, . . . , xp, f1, . . . , fm, z1 . . . , zn) and ĉ is a vector of

344 B. Kordy and W. Wide�l

Table 1. Running time of the tool on randomly generated trees.

Size Time in sec

T AS(T) [[T]]D M AS(T) [[T]]D from [[T]]D to M Solving

28 8191 53248 16409 × 8217 129.36 3.67 8.8 1152.22

80 3955 57508 7951 × 3997 0.02 4.1 4.5 0.58

80 3 99 81 × 76 >10800 0.01 <0.01 0.01

100 25 32 67 × 107 <0.01 0.06 <0.01 >3600

500 23 71 65 × 166 0.01 0.26 <0.01 0.01

constants, then the size of M is (2m + 2n + 1)×(p + m + n). For the completeness
of presentation of results, sizes of corresponding matrices are included in Table 1.

Below, we investigate other optimization problems that fall into our setting.

Impact problem. Here it is assumed that every attack strategy A has assigned a
value Imp(A) of it’s impact when executed. The value of Imp(A) could be esti-
mated by the security experts or expressed as the sum of impacts of basic actions
composing the attack strategy A. The goal is to select the countermeasures to
be implemented in such a way that the impact of uncountered attack strategies
is minimal. The optimization goal from line (3) in Fig. 3 is replaced with

Optimization goal: minimize I

and the list of inequalities from Fig. 3 is extended with additional constraints

I ≥ zi Imp(Ai), 1 ≤ i ≤ n, (10)

ensuring that I is the maximum of the impacts of uncountered attack strategies.

Attacker’s investment problem. We may use a similar technique to maximize the
minimal necessary investment of the attacker in achieving their goal. In this case
the optimization goal is replaced with

Optimization goal: maximize C

with respect to the same conditions as previously, extended with

C ≤ zi Cost(Ai), 1 ≤ i ≤ n, (11)

where Cost(Ai) is equal to the investment of the attacker they need to make in
order to perform all basic actions from Ai, i.e. Cost(Ai) =

∑
bA∈Ai

cost(bA).

Remark 2. The mathematical framework described in this section is generic and,
as such, can be used to address not only problems relating to budget, impact,
and monetary cost, but also to any other optimization problem expressed with
the help of a linear function over the Boolean variables that we have defined in
Sect. 3.1, subject to linear constraints. This is illustrated in Sect. 3.3, where we
look for the optimal usage of available time.

How Well Can I Secure My System? 345

3.2 Implementation

To validate the framework developed in this paper, we have implemented a proof
of concept tool. It is programmed in Python and uses a free integer linear pro-
gramming solver lp solve [2]. Given an ADTree T , specified as in Definition 1,
and the input values for the defense budget and cost, our prototype follows
Algorithm 1 to construct the defense semantics [[T]]D, and extracts the speci-
fication of the optimization problem of interest, as described in Sect. 3.1. The
optimization problem is then solved using lp solve and the optimal solution, i.e.,
the optimal value of the objective function together with the corresponding set
of the defender’s actions that need to be performed, is given as output.

We have tested the prototype on a computer running Intel Core i7–5600U
CPU at 2.60 GHz dual core with 16 GB of RAM. ADTrees for the tests have
been generated randomly to cover various possible cases.

The budget B has been set to be half of the sum of the costs of all basic
actions of the defender.

Table 1 presents a sample of the obtained results. It compares the time spend
on generation of the set AS(T), generation of [[T]]D, translation of the defense
semantics into an integer programming problem specified by a matrix M , and
solving the problem. In general, the most time-consuming of these steps are
generation of AS(T) and solving of the obtained optimization problem, since
in the worst case they are both exponential in the number of nodes of T . In
particular, the time necessary to generate AS(T) depends exponentially on the
maximum number of children of the ORD nodes in T , cf. Fig. 2.

3.3 Countermeasure Optimization on the Running Example

We now illustrate the optimal countermeasure selection on our running scenario
from Example 1. Here, the budget B represents the available time resources.

We suppose that the goal of Bob (the defender) is to learn how to secure
his computer against the attacks depicted in the tree from Fig. 1. Bob is a busy
person, so he can devote 50 min only to his learning process. He wants to know
how he should spend this time in the most efficient way, i.e., so that he is able
to minimize the number of unprevented attacks. To set up a password which
is resistant to the ophcrack attack, Bob needs to understand how the rainbow
table analysis works – this would take him 60 min. To be able to use DiskCryptor,
20 min are necessary to learn how to use it with a password and 30 min to master
how to handle a key file. Finally, Bob can also follow the security training offered
by his company, which lasts 25 min.

We have input these data to our tool and obtained a matrix of size 17 × 12.
The tool solves the problem instantaneously and suggests that Bob should
follow the security training and learn how to use DiskCryptor with a pass-
word, i.e., the optimal set of countermeasures is {password, sec-train} and
it prevents all four attack strategies listed in Example 5. However, if the

346 B. Kordy and W. Wide�l

duration of the security training was 45 min, then the optimal set of coun-
termeasures would be {password, key-file} which prevents three out of four
attack strategies, namely {hash, ophcrack}, {hash, ophcrack, eavesdrop}, and
{hash, ophcrack, steal-kf}.

4 Conclusion

The goal of the work presented in this paper has been to provide a framework
to assist industry practitioners using ADTrees in performing their risk assess-
ment evaluations. To achieve this, the security model of ADTrees is fused with
optimization techniques. We rely on the expressive power of ADTrees to link
potential attack and defense strategies and profit from the strengths of integer
programming to select the most optimal sets of countermeasures. From a formal
perspective, we introduce a novel defense semantics for ADTrees and thus con-
tribute to the developments of mathematical foundations for this security model.
To validate the usefulness of the proposed approach, we have implemented a
proof of concept tool automating the computation of the defense semantics and
the selection of the most appropriate set of countermeasures to be deployed.

As a next step, we will extend our framework to the probabilistic case, taking
the probability with which actions are executed into account. We would also like
to improve the worst case running time of our tool, by exploiting the possibility of
using approximation algorithms. Finally, we plan to integrate this framework to
ADTool, free software assisting creation and quantitative analysis of ADTrees [5].

References

1. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7 6

2. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve: Open source (Mixed-Integer)
Linear Programming system (2005). http://lpsolve.sourceforge.net/5.5/ version
5.5.2.5, Accessed Sep 2016

3. Chvátal, V.: Linear Programming. W.H Freeman, San Francisco (1983)
4. DiskCryptor: (2014). https://diskcryptor.net/ Accessed 17 March 2017
5. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,

R.: Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). doi:10.1007/978-3-319-43425-4 10

6. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55–87 (2014). doi:10.1093/logcom/exs029

7. Kordy, B., Pouly, M., Schweitzer, P.: Probabilistic reasoning with graphical security
models. Inf. Sci. 342, 111–131 (2016). doi:10.1016/j.ins.2016.01.010

8. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). doi:10.
1007/11734727 17

9. Ophcrack: (2016). http://ophcrack.sourceforge.net/ Accessed 17 March 2017

http://dx.doi.org/10.1007/978-3-662-46666-7_6
http://lpsolve.sourceforge.net/5.5/
https://diskcryptor.net/
http://dx.doi.org/10.1007/978-3-319-43425-4_10
http://dx.doi.org/10.1093/logcom/exs029
http://dx.doi.org/10.1016/j.ins.2016.01.010
http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11734727_17
http://ophcrack.sourceforge.net/

How Well Can I Secure My System? 347

10. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999)

11. Shameli-Sendi, A., Louafi, H., He, W., Cheriet, M.: Dynamic optimal countermea-
sure selection for intrusion response system. IEEE J. TDSC 99, 10–14 (2016).
doi:10.1109/TDSC.2016.2615622

12. Zheng, K., McLay, L.A., Luedtke, J.R.: A budgeted maximum multiple coverage
model for cybersecurity planning and management (2017, under submission)

http://dx.doi.org/10.1109/TDSC.2016.2615622

MaxUSE: A Tool for Finding Achievable
Constraints and Conflicts for Inconsistent

UML Class Diagrams

Hao Wu(B)

Department of Computer Science, National University of Ireland, Maynooth,
Maynooth, Republic of Ireland

haowu@cs.nuim.ie

Abstract. In the context of Model Driven Engineering (MDE), the
structure of a system is typically described by using a UML class diagram
annotated with a set of Object Constraint Language (OCL) constraints.
These constraints specify rules that are not expressible by using struc-
tural features. These constraints can be conflicting, resulting in inconsis-
tencies. When this happens, the existing tools terminate and provide no
information about which constraints are achievable and which ones cause
conflicts. In this paper, we present MaxUSE, a tool for finding achiev-
able OCL constraints and conflicts for inconsistent UML class diagrams.
MaxUSE integrates the USE modeling tool with a satisfiability mod-
ulo theories (SMT) solver. It finds a set of achievable constraints based
on their rankings by casting to a weighted MaxSMT problem and at the
same time locates constraint conflicts. We use an example to demonstrate
MaxUSE’s usage scenarios and discuss its usefulness to the community.

1 Introduction

Model-Driven Engineering (MDE) plays a significant role in modern software
development by exploiting different abstract models. Among them, Unified Mod-
eling Language (UML) is a common modeling language for modeling a system
at an abstract level. It uses structure and behaviour diagrams to depict static
and dynamic aspects of a system. For example, using class diagrams to model
relationships between different entities and state machines to capture possible
transitions from one state to another. On other hand, Object Constraint Lan-
guage (OCL), a declarative language, is used to describe necessary rules that can
not be expressed by UML diagrams. These rules impose additional constraints
over different structural features to eliminate undesirable scenarios. Verifying
consistency of a UML model therefore becomes a task of finding an instance
that conforms to not only structural constraints but also OCL constraints.

Recently, a number of tools and approaches have been proposed to verify
the consistency of a UML class diagram by employing formal verification tech-
niques [1–4]. However, when a UML class diagram is inconsistent these tools
typically have no knowledge about the constraints that cause conflicts. Know-
ing information about which constraints cause conflicts is very helpful for users
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 348–356, 2017.
DOI: 10.1007/978-3-319-66845-1 23

MaxUSE: A Tool for Finding Achievable Constraints and Conflicts 349

to understand and fix their class diagrams. In practice, users may also wish to
know how many constraints can be achieved in the current diagram, and use this
information for further refining their class diagrams. For example, a user may be
interested in fixing the minimum number of constraints that cause conflicts. In
other scenarios, users may treat individual constraints differently based on their
own domain-specific knowledge and look for an instance that satisfies the most
important OCL constraints.

In this paper, we present MaxUSE, an automated tool for finding the set
of achievable constraints based on user’s rankings and constraint conflicts for
inconsistent UML class diagrams. MaxUSE extends USE, an existing modeling
tool, by integrating an SMT solver as its back-end reasoning engine. It finds
the maximum total rank by solving a weighted MaxSMT problem and iden-
tify constraint conflicts by solving the set cover problem. Detailed theories and
algorithms have been addressed in [5]. Here, we describe the integration of a
modeling tool with an SMT solver (Sect. 2) and demonstrate MaxUSE’s usage
scenarios (Sect. 3) by illustrating it with an example.

2 Overall Architecture

MaxUSE is built on top of the USE modeling tool. It exploits USE’s front-end
to read in a UML class diagram annotated OCL constraints and generates SMT
assertions that can be solved by an SMT solver. The overall architecture of
MaxUSE, as shown in Fig. 1, consists of three layers: USE, Uran and Solver.

USE. USE is an open-source modeling tool that allows users to construct UML
class diagrams in its own specification [6]. It also supports constraints written
in OCL. USE provides a set of commands that enable users to construct object
diagrams (instances) and check whether an object diagram (instance) conforms
to its class diagram’s structural and OCL constraints. To support ranked con-
straints, we change USE’s front-end by modifying its grammars, UML and OCL
metamodels (abstract syntax trees). We then implement two visitors that tra-
verse and store each model feature, such as an association and a class invariant,
into a temporal memory location that can be used by Uran.

Uran. Uran is an open-source project that aims to provide users with an engine
for constructing and evaluating SMT2 assertions through well-defined APIs1.
The purpose of Uran is to decouple assertion generation functionalities from
modules that are designed for other purposes. This design allows users to freely
modify and upgrade assertion generation to accommodate specific purposes with-
out affecting other modules. Further, Uran directly interacts with an SMT solver
via different APIs. Currently, Uran is able to communicate with the Z3 SMT
solver. MaxUSE uses Uran API’s to translate model features extracted from
a USE specification to a set of predicates, functions and objects. It then out-
puts a set of well-formed SMT2 assertions associated with corresponding ranks.

1 Available at: https://github.com/classicwuhao/uran.

https://github.com/classicwuhao/uran

350 H. Wu

Fig. 1. The architecture of MaxUSE integrates with three layers: USE, Uran and
Solver.

In other words, it formalises a UML class diagram with ranked OCL constraints
into a weighted MaxSMT problem.

Solver. In order to solve this weighted MaxSMT problem, we implement a
wrapper that iteratively calls the Z3 SMT solver until we find the optimal value.
To reduce the number of calls to the solver, this wrapper uses a binary-search
based algorithm to find the optimal value. Once an optimal values is found, we
enumerate all possible ways of achieving this value by blocking all previous suc-
cessful assignments until no more assignments can be found. Each assignment
found by the solver is a weighted MaxSMT solution. Finally, we map each solu-
tion back to a corresponding model feature and generate a report. To find all
constraint conflicts, we formalise the set of weighted MaxSMT solutions into the
set cover problem and solve it using the algorithm described in [5]. Therefore,
MaxUSE uses an SMT solver for computing both sets of achievable constraints
and conflicts for inconsistent UML class diagrams.

3 Usage Scenarios

In this section, we illustrate three usage scenarios of using MaxUSE. The three
scenarios discussed in this Section are based on the example shown in Fig. 2. This
example uses a UML class diagram to represent a real world example of students
in a university choosing multiple modules to study. This class diagram is enriched
with 8 OCL constraints specified as class invariants (inv1 to inv8) under three

MaxUSE: A Tool for Finding Achievable Constraints and Conflicts 351

classes. For example, each student must have a unique id number (inv4) and
can only choose modules that are in their year (inv5). In this example, we use
numbers 1 to 6 to distinguish a student’s year, and students that are in year 6
are considered as research students. Thus, a university has some non-research
and research students (inv6). All invariants except for inv8 are ranked by using
an integer value.

In this example, 7 (inv1–inv7) out of 8 class invariants are ranked. We con-
sider a ranked class invariant as a soft constraint. This means that it might be
switched off during the search for the maximum total rank. For example, inv4
is a soft constraint and is ranked as 5. On the other hand, if an invariant is
not ranked, then it is a hard constraint that must not be ignored during the
search. For example, inv8 in Fig. 2 must hold, no matter what. Therefore, this
allows users to rank OCL constraints in a UML class diagram in 3 different ways:
(1) not ranked at all (hard constraints only) (2) totally ranked (soft constraints
only) (3) partially ranked (a mixture of soft and hard constraints).

Fig. 2. A UML class diagram annotated with ranked OCL constraints. The ranks are
highlighted in the shaded area.

352 H. Wu

3.1 Verifying Consistency

If the set of OCL constraints is not ranked at all, then this means that every
single constraint must hold. In this scenario, MaxUSE translates a UML class
diagram with its OCL constraints to a set of SMT assertions. A UML class
diagram is consistent iff generated SMT assertions are satisfiable. MaxUSE uses
the Z3 SMT solver to determine the satisfiability of these assertions. In our
example, MaxUSE is unable to find an instance that satisfy all 8 OCL constraints
in Fig. 2, assuming that all constraints are hard constraints. This is due to 2
conflicts (sets): (inv1, inv2) and (inv5, inv6, inv7, inv8). In other words, removal
of any elements in a conflict (set) makes the remaining elements achievable. For
example, inv5, inv7 and inv8 are achievable if inv6 is removed from the class
diagram.

3.2 Finding Achievable Constraints

In many practical situations, users may treat individual constraints differently.
For example, a university may consider a registration procedure where students
choosing some modules (inv7) is more important than choosing modules in their
corresponding year (inv5). We thus allow users to freely rank individual con-
straints to distinguish their importance. In this scenario, MaxUSE calculates a
total rank from the set of soft constraints and computes a maximum achievable
rank by solving a weighted MaxSMT problem.

In Fig. 2, 7 ranked class invariants result in a total rank of 33. Since this
UML class diagram is inconsistent, MaxUSE maximises this total rank up to 25.
In fact, MaxUSE finds a total of two solutions that can achieve this value. These
two solutions are listed in Table 1.

Table 1. Two solutions that can achieve a maximum rank of 25. Each solution contains
a set of 5 achievable invariants out of 7 soft constraints. The invariants that cannot be
met are marked with 0 in the “Rank” column. “NA” indicates that a corresponding
class invariant is a hard constraint.

Solution 1 Solution 2

Invariant Rank Invariant Rank

inv1 0 inv1 0

inv2 3 inv2 3

inv3 4 inv3 4

inv4 5 inv4 5

inv5 6 inv5 0

inv6 0 inv6 6

inv7 7 inv7 7

inv8 NA inv8 NA

MaxUSE: A Tool for Finding Achievable Constraints and Conflicts 353

MaxUSE finds a maximum of 5 achievable invariants out of 7 soft constraints
in Fig. 2. Note that MaxUSE always first verifies the consistency of a UML class
diagram. If the UML class diagram is consistent, then MaxUSE terminates since
every constraint is achievable. In other words, MaxUSE finds the set of achievable
(ranked) constraints only when a UML class diagram is not consistent.

3.3 Finding Constraint Conflicts

To find all conflicts among OCL constraints, MaxUSE first treats each constraint
equally, then casts it to a MaxSMT problem2 and solves it by using the Z3
SMT solver. Here, the returned solutions to MaxSMT is a set, namely they
are MaxSMT solutions. Each MaxSMT solution in this set represents a way
of achieving a maximum number of constraints. MaxUSE formalises this set of
solutions into the set cover problem and solves it by using the algorithm in [5].
This algorithm is inspired by the work on using the set cover problem to model
conflicts among SAT formulas [7]. Finally, MaxUSE interprets each solution to
the set cover problem as a conflict.

For the class invariants in Fig. 2, MaxUSE finds a total of 8 possible ways
of achieving a maximum number of 6 class invariants (shown in Table 2) and 2
conflicts: (inv1, inv2) and (inv5, inv6, inv7, inv8).

Table 2. A total of 8 MaxSMT solutions. Each one of them represents a way of
achieving a maximum 6 number of class invariants shown in Fig. 2. We use a ✓ to
indicate an invariant is achievable and a ✗ to denote an invariant that cannot be met.

Inv1 Inv2 Inv3 Inv4 Inv5 Inv6 Inv7 Inv8

(1) ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓

(2) ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

(3) ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

(4) ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗

(5) ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

(6) ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓

(7) ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓

(8) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

The first conflict is quite obvious and it is caused by the invariants inv1
and inv2 defined for the age attribute. However, the second conflict is not easy
to identify. This conflict is caused by the invariants that there must exist some
research and non-research students (inv6) choosing some modules (inv7) in their
corresponding year (inv5). However, there are modules that are only available
for non-research students (inv8: between year 1 and 5).
2 Note that since the rank for each constraint is equal, this means that a weighted

MaxSMT can be treated as a MaxSMT problem.

354 H. Wu

4 Usefulness

By integrating an SMT solver into a modeling environment, users are now able
to use MaxUSE to tackle ranked OCL constraints in a UML class diagram. More
importantly, when a UML class diagram is not consistent users no longer need
to spend time on working out which constraints are achievable and which ones
cause the conflicts. They can easily use MaxUSE to find out this information.
In practice, this is a very effective and efficient way for further refining class
diagrams. Further, our evaluation results in [5] suggest that MaxUSE scales rea-
sonably well and the quality of computed constraint conflicts is high. Therefore,
we believe that users from the software verification and Model Driven Engineer-
ing community can benefit from its capabilities.

5 Availability

MaxUSE is a free and open-source project hosted on GitHub under the GNU
public license:

https://github.com/classicwuhao/maxuse

The repository is accompanied with detailed instructions and examples that
show how to build and use MaxUSE. The implementation of MaxUSE consists
of approximately Java 7000 lines of code. Currently, MaxUSE is command based
and easy to install using the provided build script. In addition, the benchmark
that we used for evaluating MaxUSE is also available in the repository.

6 Related Work

Even though a number of tools or approaches leverage the power of constraint
solvers and theorem provers for verifying/reasoning UML models, they do not
support ranked constrains and conflict finding [1–4,8–16]. To the best of our
knowledge, MaxUSE is the first automated tool that supports finding achievable
constraints (based on rankings) and conflicts for UML class diagrams.

The USE modeling tool takes a similar apporach to UML2Alloy. It integates
with a relational model finder for verifying UML class diagrams [1,17]. However,
the encodings used in the model finder are limited to boolean formulas, and
thus they are not suitable for tackling numeric constraints. In particular, numeric
ranks are defined for each OCL constraint. UML to CSP verifies EMF models by
casting it to a Constraint Satisfaction Problem (CSP) [15,18–20]. However, they
only allow users to check weak and strong satisfiability by generating a different
number of instances for every class. The HOL-OCL tool encodes OCL into the
Higher-order Logic (HOL) and uses Isabelle to reason about UML class diagrams
[13]. Since Isabelle is an interactive theorem prover, the level of automation is
quite limited and the feedback can be difficult to interpret by software engineers.

https://github.com/classicwuhao/maxuse

MaxUSE: A Tool for Finding Achievable Constraints and Conflicts 355

7 Conclusion

In this paper, we demonstrate how MaxUSE integrates an SMT solver into a
modeling environment. This integration allows users to leverage efficient SMT
solving to reason over ranked constraints defined in a UML class diagram. In
addition, MaxUSE can significantly reduce the amount of effort in investigat-
ing inconsistencies in UML class diagrams by automatically finding the set of
achievable OCL constraints and conflicts. In the future, we plan to build a plug-
in for MaxUSE to allow us to exploit multiple SMT solvers for reasoning over a
considerably large number of OCL constraints.

References

1. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models
by integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21952-8 21

2. Wille, R., Soeken, M., Drechsler, R.: Debugging of inconsistent UML/OCL models.
In: 2012 DATE, pp. 1078–1083 (2012)

3. Wu, H., Monahan, R., Power, J.F.: Exploiting attributed type graphs to generate
metamodel instances using an SMT solver. In: 7th TASE. Birmingham, UK (2013)

4. Dania, C., Clavel, M.: Ocl2msfol: A mapping to many-sorted first-order logic for
efficiently checking the satisfiability of OCL constraints. In: 19th MoDELS, pp.
65–75. ACM (2016)

5. Wu, H.: Finding achievable features and contraint conflicts for inconsistent meta-
models. In: 13th ECMFA (2017, to appear)

6. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007)

7. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)

8. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: FLoC @ 3rd Federated Logic Conferences,
Denmark (2002)

9. Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of UML class
diagrams with constrained generalization sets. In: Akehurst, D.H., Vogel, R., Paige,
R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 17–31. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72901-3 2

10. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL data types for SAT-
based verification of UML/OCL models. In: Gogolla, M., Wolff, B. (eds.) TAP
2011. LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21768-5 12

11. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: 15th MoDELS, pp. 432–448 (2012)

12. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. ECEASST 24, 13 (2009)

13. Brucker, A.D., Wolff, B.: HOL-OCL: A formal proof environment for uml/ocl.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 97–100.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78743-3 8

http://dx.doi.org/10.1007/978-3-642-21952-8_21
http://dx.doi.org/10.1007/978-3-642-21952-8_21
http://dx.doi.org/10.1007/978-3-540-72901-3_2
http://dx.doi.org/10.1007/978-3-642-21768-5_12
http://dx.doi.org/10.1007/978-3-642-21768-5_12
http://dx.doi.org/10.1007/978-3-540-78743-3_8

356 H. Wu

14. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75209-7 30

15. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach. Springer, Berlin, Heidelberg (2007)

16. Wu, H.: Generating metamodel instances satisfying coverage criteria via SMT solv-
ing. In: The 4th MODELSWARD, pp. 40–51 (2016)

17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

18. González Pérez, C.A., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A tool
for the lightweight verification of EMF models. In: SEMF: Rigorous and Agile
Approaches, Zurich, Suisse (2012)

19. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE STV&V Workshop, pp. 73–80. IEEE Computer
Society, Berlin, Germany (2008)

20. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-540-75209-7_30
http://dx.doi.org/10.1007/978-3-540-71209-1_49

Formal Verification of CNL Health
Recommendations

Fahrurrozi Rahman and Juliana Küster Filipe Bowles(B)

School of Computer Science, North Haugh, St Andrews KY16 9SX, UK
{fr27,jkfb}@st-andrews.ac.uk

Abstract. Clinical texts, such as therapy algorithms, are often
described in natural language and may include hidden inconsistencies,
gaps and potential deadlocks. In this paper, we propose an approach to
identify such problems with formal verification. From each sentence in
the therapy algorithm we automatically generate a parse tree and derive
case frames. From the case frames we construct a state-based represen-
tation (in our case a timed automaton) and use a model checker (here
UPPAAL) to verify the model. Throughout the paper we use an example
of the algorithm for blood glucose lowering therapy in adults with type
2 diabetes to illustrate our approach.

Keywords: Formal verification · Controlled natural language · Timed
automata · Health recommendations

1 Introduction

Understanding system requirements in software development is important
because requirements constitute the foundation for the next phases. There are
many ways to specify system requirements, but the most common way is to
express them in natural language (NL). Undoubtedly, NL is the easiest way
for stakeholders to communicate and understand the requirements of a system.
However, the possible ambiguity of NL may lead to various interpretations of
requirements, making it also difficult to find (among others) requirement incon-
sistencies, incompleteness or underspecification. Research on how to find defects
in requirements captured in NL is needed as early as possible in the develop-
ment process. The ability to eliminate defects early can reduce the cost of a
later correction or rework, and reduce time spent in implementation and test-
ing phases. Furthermore, our increasing reliance on software systems across a
wide range of application domains including critical systems puts further pres-
sure on the development of high quality and dependable software systems. The
use of formal verification techniques to automatically identify inconsistencies or
incomplete requirements is thus natural but not common at the level of NL
requirements.

This research is partially supported by EPSRC grant EP/M014290/1.

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 357–371, 2017.
DOI: 10.1007/978-3-319-66845-1 24

358 F. Rahman and J.K.F. Bowles

Recent work by Carvalho [1] shows the use of natural language processing
(NLP) and formal methods to automatically generate test cases from written
software requirements. By contrast, our present focus is on the use of NLP in
a different setting, namely for capturing healthcare recommendations. Clinical
texts share the difficulties encountered in software requirements, since these are
often ungrammatical, use telegraphic phrases with limited context and often lack
complete sentence structure [2]. In addition, the common use of acronyms and
abbreviations in clinical texts introduces further ambiguity.

In this paper, we explore the use of formal methods for the validation and ver-
ification of clinical texts when used to describe therapy algorithms. Inspired by
the approach done by Carvalho et al. [1] for software requirements, we explore
more complex cases of controlled natural language (CNL) as used in therapy
algorithms. From each sentence in the therapy algorithm we automatically gen-
erate a parse tree and derive case frames. From the case frames we automatically
construct a state-based representation, in our case a timed automaton [3], and
use the model checker UPPAAL [4] to verify the model. We write queries in
UPPAAL’s logic, a subset of TCTL, on the one side to evaluate the approach,
and on the other side to check properties of clinical interest. The choice of timed
automata and UPPAAL is motivated by the fact that clinical texts sometimes
make reference to timed and periodic events, and we want the added flexibility
of probabilistic extensions available in the wide range of tools that are available
in the UPPAAL family.

Our approach makes it possible to detect gaps and case omissions, helps to
further clarify treatment steps, and in the long term could be useful for patients
that want to understand the therapy underlying their disease and the options
they may have. Similarly for clinicians and health care providers. Throughout
the paper, we use the algorithm for blood glucose lowering therapy in adults
with type 2 diabetes from the National Institute for Health and Care Excellence
(NICE) to illustrate our approach. NICE1 provides guidance and advice in the
UK to improve health and social care, and publishes clinical pathways for the
treatment of chronic conditions including diabetes, hypertension, cancer, and so
on. This work is part of a more general aim to integrate formal techniques, such
as model checkers and constraint solvers, to detect and resolve inconsistencies in
health recommendations and clinical guidelines. This paper adds a NLP dimen-
sion to our previous work on detecting inconsistencies in treatments for patients
with multimorbidities [5], and the use of theorem provers and constraint solvers
to detecting inconsistencies in requirements and scenarios of execution [6,7].

This paper is structured as follows: we describe existing related work in
Sect. 2, and the problem we are addressing with our proposed framework in
Sect. 3. Section 4 presents the controlled natural language used to capture the
sentences in a therapy algorithm, and Sect. 5 describes how case frames are
generated. From the generated case frames we can further construct a timed
automaton and use UPPAAL to verify it as described in Sect. 6. We conclude
the paper with some discussion on future work in Sect. 7.

1 More details on NICE available at www.nice.org.uk.

http://www.nice.org.uk

Formal Verification of CNL Health Recommendations 359

2 Background and Related Work

When describing related work, we focus on work closer to our own and hence
current uses of NLP in healthcare on the one hand, and links between NLP and
formal verification on the other hand.

Advances in natural language processing (NLP) have been sought with appli-
cations in many fields, and in particular have also found increased interest in
healthcare applications in recent years. Within healthcare there are two broad
areas where the use of NLP has been explored, namely in processing free text
occurrences in electronic health records (EHRs) and pathology reports. For
instance, it is the free text in EHRs for mental health patients that contains
key information on the evolution of the patient’s symptoms and medications,
and pathology reports are still to date essentially text-based. The general bene-
fits of NLP in healthcare are clear. Demner-Fushman [8] reports the adaptation
of principal NLP strategies to develop clinical decision support (CDS) systems
that may help in decision making—e.g. monitoring of clinical events, process-
ing radiology/pathology text-based reports, or processing a mixture of clinical
notes — for health care providers as well as the public. Through the use of CDS
systems, clinicians can enter patient data to get advice concerning recommenda-
tions or assessments from the knowledge base. Incorporating accessible electronic
health records (EHRs) in the system makes it possible to automatically gener-
ate reminders or alerts when some conditions are met. However, EHRs are often
recorded as free narrative text created by clinicians and care providers which
adds considerable challenges to introducing automated tools and techniques for
creating usable and useful CDS systems.

The information contained in textual form in EHRs and examination reports
can in some cases enable new research and links between diseases to be detected.
For example, a study by Shah et al. [9] showed how applying text mining to 16
million EHRs led to the understanding that the use of Proton Pump Inhibitors
(PPI) may increase the risk of Myocardial Infarction (MI). Although their finding
still needs additional investigations, it has demonstrated how data mining can be
used to identify drug safety signals by learning on multiple clinical data sources.

The mining system in [9] was built based on previous work [10] which had
shown that relationships between adverse drug reactions and (as a consequence
of) drug-drug interactions were detectable with high accuracy using a large cor-
pus. Usually patients with multiple long term conditions are subject to multiple
treatments and there is a risk of undetected adverse reactions to combinations
of prescribed medications for different conditions. As an example, in Scotland,
over half of all people with chronic conditions have comorbidities, and a recent
survey indicated that medicines are implicated in 5–17% of hospital admissions,
of which half are considered preventable [11].

Imler et al. [12] conducted a study to improve the (cost) effectiveness of col-
orectal cancer (CRC) screening and surveillance. Their aim was to create and
test a system at various institutions and identify the necessary components for
producing high quality guideline surveillance recommendations through the use
of NLP. From 42,569 documents, 750 documents were randomly selected and

360 F. Rahman and J.K.F. Bowles

split into training and test sets with ratio 1:2. From the 750 documents, five
annotators would select 300 random documents each and then each document
was annotated by two annotators. The annotating process would identify 19 fea-
tures consisting of the category of colonoscopy (e.g. adenocarcinoma, advanced
adenoma (AA), etc.), the location, and the counts of adenomas. From this more
detailed analysis of the individual pathological findings and a variety of textual
input, the accuracy of detecting CRC was 99.6%, of AA was 95%, of conven-
tional adenoma was 94.6%, of advanced sessile serrated polyp (SSP) was 99.8%
and of nonadvanced SSP was 99.2%.

In software engineering, Carvalho [1] has shown how to combine NLP and
formal methods to automatically generate test cases from the written software
requirements. The work proposes a framework to process and transform the
requirement texts into a formalism called data flow reactive system (DFRS),
which then is used to generate the test cases. In the DFRS the inputs and out-
puts of the system are modelled as signals, e.g. input signals from the sensors
and output signals from the actuators. The system can also have timers to model
time-based behaviour. As the input for the framework, the requirements are given
in a controlled natural language (CNL) called SysReq-CNL, a subset of natural
language tailored for generating unambiguous requirements. Every sentence is
then parsed and structures called case frames are constructed from its parse tree
following the case grammar theory [13]. In the case grammar theory, every sen-
tence is analysed in terms of the thematic roles by each word or group of words,
e.g. agent, patient, instrument, etc. For example, the thematic roles for “the
cat drinks milk” are {the cat/Agent}, {drinks/Action}, and {milk/Patient}.
Inside a case frame, the verb acts as the head of the frame and have several
other thematic roles filled by the rest of the sentence elements. In Carvalho’s
approach, these case frames are transformed into the DFRS formalism and then
translated into different target formal methods for verification to generate can-
didates for test cases. For example, the process algebra CSP [14] was used as
the basis for generating test cases in [1]. Once the CSP specifications have been
generated, the model checker FDR [15] can check the traces from the refinement
property which then serve as test scenarios. In earlier work, DFRS had been
transformed into other formalisms such as software cost reduction (SCR) [16],
internal model representation (IMR) [17], and coloured Petri nets [18]. Indepen-
dently of the formal approach used, the intention was always to generate test
cases automatically.

Motivated to detect problems at an early stage of software development, Dia-
mantopoulos [19] created a mechanism to automatically map requirements to
formal representation through the use of ontologies and semantic role labelling.
Comparatively to [1], their approach does not restrict the requirements to be
written in a controlled language. From requirement sentences, several ontology
concepts are inferred (i.e. project, requirement, actor, action, object, and prop-
erty) using a model that has been trained from annotated software requirements.
These ontology concepts can be used to trace the connection and relationship
between them, and guide the translation of specifications to source code.

Formal Verification of CNL Health Recommendations 361

3 The Problem Domain and Framework

In this paper, we propose a framework to automatically generate logic-based
statements from clinical texts—in this case a therapy algorithm— written in
a controlled natural language, and enable formal verification of the algorithm.
As an example of a therapy algorithm, we take a sample from the algorithm
for blood glucose lowering therapy in adults with type 2 diabetes from NICE2.
Figure 1 shows a portion of the discussed algorithm. We note that HbA1c refers
to glycated haemoglobin which can be used to determine the average blood sugar
levels of a person over a period of weeks/months, and is a common measure for
diabetes. A normal value is below 42 mmol/mol.

Fig. 1. A snippet of the blood glucose lowering therapy algorithm from NICE

To motivate our work, we want to check whether the therapy algorithm has
inconsistencies (for example in the advised medications) and whether some cases
(patient allergies or further long term conditions) are not considered and may
leave a patient with no treatment options at all (or an option that may cause
adverse drug reactions). In the future, we may also want to see if one therapy
algorithm has conflicts with another algorithm for treating a different disease.
Multimorbidity is increasing in the world, and hence a real concern in healthcare.

Our research is different from what we have discussed before because we do
not deal with numerous patient records and clinical texts. Instead we currently
only process a specific text related to handling a particular disease. Our approach
also differs from [1] because we do not generate output in terms of steps for
testing. We identify and verify discrepancies that may inherently be hidden inside
therapy algorithms, and identify treatment options for patients with different
circumstances.

To process the sentences in the therapy algorithm, we create a controlled
natural language to standardise the structure of the sentences. Comparatively
2 Full details are available at https://goo.gl/YDDtQY.

https://goo.gl/YDDtQY

362 F. Rahman and J.K.F. Bowles

to [1], the sentence structure in a therapy algorithm is more complex because
the value change is not always clearly visible (for instance consider dual therapy
with metformin and pioglitazone) or the value changes in percentage (for instance,
aim for an HbA1c level of 53 mmol/mol (7.0%)). Another difference is that the
agent and the patient of the action are not explicitly stated. Here, we always
assume that the agent is a doctor, or more generally a healthcare provider, and
the patient is the patient under treatment. Furthermore, the conditions that
need to be considered before giving a treatment may be nested and described in
narrative form. The rules that we created are discussed in Sect. 4.

Our proposed framework is shown as a pipeline in Fig. 2 where the area inside
the dashed border box indicates the system we have built. In our framework, light
arrows show the automated steps whereas dark arrows imply manual processes.
For example, we currently rewrite the therapy in CNL format and the logical
queries for the model manually.

Fig. 2. The framework pipeline.

Before the therapy algorithm is processed, it is rewritten in CNL to con-
form with the grammar explained in the next section. Once all sentences are in
agreement with the grammar, the Syntactic Analysis module will generate the
parse trees with the help of an external library (indicated by the toolbox icon).
The Semantic Analysis module will then construct the case frames by traversing
the parse trees following some pre-defined rules explained in Sect. 5. The last
two modules in the system deal with the UPPAAL model (a timed automaton).
From the case frames, the Model Generation module generates the UPPAAL
model as an XML file as discussed further in Sect. 6.1. Finally, the UPPAAL
model is verified against queries specified in the temporal logic TCTL using the
UPPAAL model checker (cf. Sect. 6.2).

Formal Verification of CNL Health Recommendations 363

4 Controlled Natural Language for Therapy Algorithms

In a therapy algorithm, we consider that every sentence has the following form:

number if conditions, the doctor shall: actions

The number in the beginning of every sentence is needed so we know its order
when we generate the model automatically, as steps within a therapy algorithm
follow a particular order. For example in Fig. 1, a first intensification can only
happen after the patient has received a first treatment. Some considerations
that we take when we transform all sentences into the standardised form are as
follows: for every sentence, we add the doctor as the agent of the actions. In
addition to explicitly showing who is responsible for a therapy, it is also needed to
reduce the ambiguity from the missing information of who is responsible versus
who receives the therapy.

Furthermore, if there is a list of choices (conditions or possible therapies), we
transform it into

{choice1, choice2, · · · choicen}.
For example, the conditions in “if triple therapy is not effective, not tolerated,

or contraindicated” and the advice “consider therapy with a DPP-4i, pioglitazone,
or an SU” will be written as “if triple therapy is {not effective, not tolerated,
contraindicated}” and “consider therapy with {a DPP-4i, pioglitazone, an SU}”
respectively. This normalisation will ease us when we build the case frame from
the parse tree.

Since our grammar is controlled and the lexicons are domain dependent (it is
a medical therapy), we have specified in advance the vocabularies and their part-
of-speech (POS) tags. Most of our lexical categories follow those by Carvalho [1]
with some additional categories to simplify the parsing of the sentences and the
case frame generation, such as LBrace, RBrace, LPar, RPar, and Percent. In
addition to the lexical rules, we also follow Carvalho’s [1] context free grammar
(CFG) rules for our grammar with some modifications.

The start symbol of our grammar is Advice which is rewritten as

Number ConditionalClause Comma ActionClause

This means that the advice is in the form of actions guarded by conditions.
Since we introduced a new rule to deal with a list of choices, we do not have
the conjunctions of disjunctions anymore in our ConditionalClause as is visible
by the absence of Or in our lexical rules. Our final grammar rules can be seen
inside the Grammar rule box below.

After defining the lexical and grammar rules, the original sentences taken
from the therapy algorithm are rewritten manually so they conform to the rules
(as indicated by the black arrow in Fig. 2). For example, the original sentence
after the first intensification for people who can take metformin in Fig. 1 is
written as “2 if HbA1c level rises to 58 mmol/mol (7.5%), the doctor shall: consider
dual therapy with {metformin and a DPP-4i, metformin and pioglitazone, metformin
and an SU, metformin and an SGLT-2i}, support to aim for an HbA1c level of 53
mmol/mol (7.0%)”.

364 F. Rahman and J.K.F. Bowles

To parse the sentences, we use an external library in Python called
modgrammar3 for building parsers using CFG definitions. In modgrammar, the
rules are defined as Python classes making it possible to process the parse tree
in terms of the underlying tree data structures. As the lexical rule is already
predefined, we do not need to build a separate POS tagger to classify the tag for
every word in the sentences because we can define the lexical rule in a similar
manner as we defined the grammar rules.

Grammar rule

◦ Advice → Number? ConditionalClause Comma ActionClause
◦ ConditionalClause → Conj Condition
◦ Condition → NounPhrase VerbPhraseCondition
◦ ActionClause → NounPhrase VerbPhraseAction
◦ VerbPhraseAction → Shall Colon [VerbAction ToInfClause | VerbComple-

ment | ChoiceAction ConditionalClause? sep=Comma]+
◦ ChoiceAction → LBrace PrepComplement [Comma VerbComplement]+

RBrace
◦ VerbPhraseCondition → VerbCondition Not? VerbComplement
◦ ToInfClause → To VBase VerbComplement
◦ VerbComplement → VariableState | ChoiceComplement | PrepComplement
◦ PrepComplement → [VariableState? Prep] VariableState | ChoiceComple-

ment
◦ ChoiceComplement → LBrace VariableState [Comma VariableState]+

RBrace
◦ PrepositionalPhrase → Prep NounPhrase
◦ VariableState → AdjPhrase | NounPhrase
◦ NounPhrase → [Det? Adj* Noun PrepositionalPhrase*]+ [And Noun-

Phrase+]*
◦ VerbAction → VBase
◦ AdjPhrase → [Adv?] Adj | VPart
◦ VerbCondition → VPre3 | VToBePre3
◦ Noun → Number | NSing | NPlur | Nmass

5 Case Frame Generation

After generating the parse tree, we construct automatically the case frames by
traversing the parse tree. We follow eight thematic roles defined by Carvalho [1]
with two additional roles: one for handling the nested condition in our sentences
(CACT) and another one to mark the sequence of the sentence (NUM). The
NUM role is useful in our case because the therapies are given in a sequence
and we need to keep track of the order of their occurrence. For example, a value
of 1 for NUM means the case frame is from the first sentence of the therapy,
meanwhile 1.1 means the first alternative treatment for that first therapy. Apart
from the NUM role, the thematic roles can be grouped into action statements
and conditional clause. Here is a brief summary of each thematic role.
3 https://bitbucket.org/modgrammar/modgrammar.

https://bitbucket.org/modgrammar/modgrammar

Formal Verification of CNL Health Recommendations 365

– Action statement thematic roles
1. Action (ACT): the action to be performed if the conditions are met. It

is taken from the VBase or the ToInfClause inside VerbPhraseAction.
Here, we only allow consider, review, offer, support, and aim for this
category.

2. Agent (AGT): the actor of the action. It is taken from the NounPhrase
node found inside ActionClause. There is only one agent, i.e. the doctor.

3. Patient (PAT): the entity affected by the action. It is taken from the
VariableState node found inside VerbComplement.

4. To Value (TOV): the value given to the patient. It is taken from the
VariableState inside PrepositionalComplement or ChoiceComplement.

5. Nested Condition Action (CACT): the additional condition for the action.
For every ACT found, a list of CACT is created whose value could be
empty, i.e. an empty list. It is taken from the ConditionalClause found
inside VerbPhraseAction.

– Conditional clause thematic roles
1. Condition Action (CAC): the action for the condition. The values are

taken from all VerbCondition inside ConditionalClause.
2. Condition Patient (CPT): the entity related to the condition. Because in

the therapy algorithm there is only one entity related to the condition(s),
its value is taken from the NounPhrase found in ConditionalClause.

3. Condition To Value (CTV): the new value of the condition patient. It
is taken from the VariableState in VerbComplement or ChoiceComple-
ment, or from the Noun in PrepComplement.

4. Condition Modifier (CMD): the modifier for the condition. The value is
taken from the first Noun in PrepComplement if there are more than
one.

Figure 3 shows an example of a case frame for the case when taking the first
treatment in Fig. 1. The sentence is rewritten as “1 if HbA1c level rises to 48
mmol/mol (6.5%) on lifestyle interventions, the doctor shall: offer standard-release
metformin, support to aim for an HbA1c level of 48 mmol/mol (6.5%).”

Fig. 3. Example of a case frame

366 F. Rahman and J.K.F. Bowles

6 Model Generation and Verification

In this paper, we generate state-based models automatically from an origi-
nal description given in CNL, and verify the models with the model checker
UPPAAL [4]. We first describe how models are generated.

6.1 Model Generation

UPPAAL is an integrated tool environment for modelling, validation and ver-
ification of real-time systems modelled as networks of timed automata. Timed
automata (TA) [3] add the notion of time to standard automata (based on a
finite set of states and labelled transitions between them) through a set of vari-
ables called clocks. Clocks are special variables which can be inspected or reset
but not assigned a value. A time unit represents a second, minute or month,
depending on what is a sensible unit for the model (note that there is no time
in our therapy algorithm snippet). A constraint can be placed on locations (the
term used for states in a TA) to denote a location invariant (to indicate for
instance how long the automaton can remain in the location) and on transitions
where it acts as a guard.

In UPPAAL we can create several instances of processes with the same behav-
iour. The behaviour is captured in a so-called template (a TA), and one or more
instances of that template can be declared for runtime verification. In our exam-
ple of a therapy algorithm for diabetes we need a template for the behaviour
captured in the algorithm for treating diabetes, and an additional template to
simulate a random change of the value of HbA1c in the blood.

The process of generating the diabetes automaton is done automatically by
traversing the case frames for each sentence following the sequence number in
the NUM role. This is shown as the Model Generation module in Fig. 2. We
identified all variables from CPT and PAT roles and their values from the CTV
and TOV respectively. If the value contains a number, the type of the variable
is int, otherwise it is bool. For example, finding HbA1c can have value of 48,
53, and 58 made it an int variable. To model how HbA1c can change its value,
we created a simple template that always increments the value of HbA1c. We
assume 40 ≤ HbA1c ≤ 60.

The locations are built sequentially from the first sentence to the last. When-
ever the verb rises is found in CAC role, its CTV value is used as the upper
limit for the current location’s invariant and as the lower limit for the transi-
tion’s guard to the next location. Updates in transitions are done by setting the
boolean variable from PAT to true.

Figure 4 shows the model generated automatically. In this model, we only
show the therapy path where standard-release metformin is tolerated, the first
intensification and the second intensification. The locations have a location
invariant on the value of HbA1c to indicate that if HbA1c rises above a cer-
tain value (for instance above 48 in the location Normal) then the location must
be left and a treatment given. The different transitions between intensifications
show the different options available and are dependant on the first treatment

Formal Verification of CNL Health Recommendations 367

Fig. 4. Generated model for adults with type 2 diabetes that tolerate metformin

received (the taken medications are captured by a boolean variable with the
same name and value true). The first alternative path where modified-release
metformin is used will create a mirror of locations and transitions which only
differs on the guard for the first transition. The full model is omitted here.

When investigating the generated model, we noticed that there is no transi-
tion that takes the system (in this case a potential patient) back to the initial
state Normal. As it may be more realistic to assume that other factors (such as
changing life style habits and diet) can have an effect and recovery is possible,
we want to refine the model to take this into account. This means that the model
should cover a situation where the patient’s condition turns back to normal after
a time under treatment. On the other side, this may not be a very frequent out-
come and ideally we would like to quantify the likelihood of such a recovery to
happen as opposed to a deterioration of the condition as given in the model of
Fig. 4. This can be done with Probabilistic Timed Automata [20] which extend
TA with probabilistic transitions. How to quantify such transitions is outside the
scope of the present paper but should be informed by analysis of large datasets
of records for patients with diabetes.

We modified the model generation process to create some branch points after
a treatment is taken. A branch is created whenever we find the verb aim denoting
the situation when the doctor tries to stabilise the HbA1c level after giving a
treatment. At present, we give a value of 20 and 80 as the weight to go back to
a normal state and to the next (deteriorated) state respectively. Figure 5 shows
the graphical model with branch points. To keep the model more readable, we
currently only show going back to a normal state, but further possible transition
branches include returning to any other previous treatment state with different
weights.

We note that the actual model generation is done by generating an xml file
which can then be visualised in the tool as in Fig. 5 (after minor adjustments to
take into account visual placement of the elements). The xml file contains all the
information of locations, location invariants, transitions and variables, but can
also given directly on the command line to the model checker for verification.

368 F. Rahman and J.K.F. Bowles

Fig. 5. Model with Branch Points

6.2 Model Verification

We have verified our model against some properties as shown in Table 1. The
properties selected are used primarily to evaluate the approach. UPPAAL takes
properties written in a restricted form of the temporal logic TCTL. The prop-
erties were verified against the model in Fig. 5 after an initial analysis of the
original model and its refinement to include recovery. The property

A[] !diab.SecondIntensification1 && !diab.SecondIntensification2

illustrates the situation where a second intensification of the therapy has been
reached (the property itself only holds iff second intensification is never reached,
and the fact that it is not satisfied will result in a trace that shows a sec-
ond intensification of the therapy being reached). Another similar property, A[]
!deadlock, is not satisfied because the model at present and as generated from
the therapy algorithm contains no further steps after second intensification and
hence deadlocks at that point. This suggests that further discussions with clini-
cians are required to understand available options from that point and what is
realistic.

From the model in Fig. 5, we can also see that there is a possibility of never
reaching a first intensification shown by verifying the formulae:

E<> !diab.FirstIntensification1 && !diab.FirstIntensification2

The same is also true for second intensification. Again, these situations became
possible because we added a scenario where the patient’s condition improves after

Formal Verification of CNL Health Recommendations 369

Table 1. Verification result

UPPAAL queries Verification result Remark

A[] !deadlock Not satisfied There is a path that
leads to a deadlock

E<> !diab.FirstIntensification1

&& !diab.FirstIntensification2

Satisfied There exists a path
where first
intensification is never
reached

E<> !diab.SecondIntensification1

&& !diab.SecondIntensification2

Satisfied There exists a path
where second
intensification is never
reached

A[] !diab.SecondIntensification1

&& !diab.SecondIntensification2

Not satisfied There is a path that
reaches a second
intensification

diab.FirstIntensification2 -->

diab.SecondIntensification2

Not satisfied There is a path in
which a second
intensification will
never be reached from
a first intensification

getting some treatment. The last property (which uses temporal implication)

diab.FirstIntensification2 --> diab.SecondIntensification2

also shows the possibility of never evolving to a second intensification after reach-
ing the first intensification.

7 Conclusion

We have presented an approach to analyse therapy algorithms published by
NICE automatically. Therapy algorithms contain instructions which we treat as
CNL statements and from which we ultimately build a state-based representa-
tion, in our case a timed automaton, that can be analysed by a model checker
such as UPPAAL. A particular problem that we wanted to investigate was how
to detect inconsistencies and gaps in the treatment options. In particular, it was
noted that the algorithm did not consider a possible recovery in the different
treatment stages that a patient with type 2 diabetes may go through nor what
happens after a second intensification (which creates a deadlock eventually).

In future work, and in collaboration with a general practitioner (GP), we will
analyse EHRs for patients with diabetes in Scotland, in order to detect cases or
treatments that are not currently captured in the guidelines, and extend the
algorithm accordingly. More broadly, we also want to see if one algorithm may
have conflicts with another from a different disease (cf. [5]).

370 F. Rahman and J.K.F. Bowles

Our long term goal is to build a framework of therapy models which can: (1)
be used as a reference to give advice to clinicians and patients based on their
current situation and future treatment options, and (2) compare the therapy
algorithm with actual practice. For the latter, note that adding real data from
EHRs will enable us to obtain models for current practice and allow us to con-
trast these with NICE guidelines and recommendations. In particular, the choice
of timed automata and UPPAAL allows us to add further therapy algorithms as
different templates which can then be composed together and verified directly.
In addition, our models can be easily extended to incorporate probabilities on
branched transitions to reflect real data from EHRs. Another possible direction
to guarantee the scalability of our approach, consists of exploring links to con-
straint solvers such as Z3 (for cases of bounded model checking). We have used
constraint solvers considerably in our work, including our recent work in [5,7].

References

1. Carvalho, G.H.P.D.: NAT2TEST: Generating Test Cases from Natural Language
Requirements based on CSP. Ph.D. thesis (2016)

2. Townsend, H.: Natural language processing and clinical outcomes: the promise and
progress of NLP for improved care. J. AHIMA 84(2), 44–45 (2013)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–
235 (1994)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

5. Kovalov, A., Bowles, J.K.F.: Avoiding medication conflicts for patients with mul-
timorbidities. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 376–390. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0 24

6. Bowles, J., Bordbar, B., Alwanain, M.: Weaving true-concurrent aspects using
constraint solvers. In: Application of Concurrency to System Design (ACSD 2016).
IEEE Computer Society Press, June 2016

7. Bowles, J.K.F., Caminati, M.B.: Mind the gap: addressing behavioural inconsisten-
cies with formal methods. In: 23rd Asia-Pacific Software Engineering Conference
(APSEC). IEEE Computer Society (2016)

8. Demner-Fushman, D., Chapman, W.W., McDonald, C.J.: What can natural lan-
guage processing do for clinical decision support? J. Biomed. Inform. 42(5), 760–
772 (2009)

9. Shah, N.H., LePendu, P., Bauer-Mehren, A., Ghebremariam, Y.T., Iyer, S.V., Mar-
cus, J., Nead, K.T., Cooke, J.P., Leeper, N.J.: Proton pump inhibitor usage and the
risk of myocardial infarction in the general population. PLoSONE 10(6), e0124653
(2015). 10.1371/journal.pone.0124653

10. LePendu, P., Iyer, S.V., Bauer-Mehren, A., Harpaz, R., Mortensen, J., Podchiyska,
T., Ferris, T.A., Shah, N.H.: Pharmacovigilance using clinical notes. Clin. Phar-
macol. Ther. 93, 547–555 (2013). 10.1038/clpt.2013.47

11. Polypharmacy Guidance (2nd Edition). Scottish Government Model of Care
Polypharmacy Working Group (2015)

12. Imler, T.D., Morea, J., Kahi, C., Cardwell, J., Johnson, C.S., Xu, H., Imperi-
ale, T.F.: Multi-center colonoscopy quality measurement utilizing natural language
processing. Am. J. Gastroenterol. 110(4), 543–552 (2015). 10.1038/ajg.2015.51

http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-319-33693-0_24
https://doi.org/10.1371/journal.pone.0124653
https://doi.org/10.1038/clpt.2013.47
https://doi.org/10.1038/ajg.2015.51

Formal Verification of CNL Health Recommendations 371

13. Fillmore, C.J.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in
Linguistic Theory. Holt, Rinehart and Winston, London (1968)

14. Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8), 666–
677 (1978). doi:10.1145/359576.359585

15. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

16. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Black-
burn, M.: NAT2TESTSCR: test case generation from natural language require-
ments based on SCR specifications. Sci. Comput. Program. 95(Part3), 275–297
(2014). https://doi.org/10.1016/j.scico.2014.06.007

17. Carvalho, G., Barros, F., Lapschies, F., Schulze, U., Peleska, J.: Model-based test-
ing from controlled natural language requirements. In: Artho, C., Öveczky, P. (eds.)
Formal Techniques for Safety-Critical Systems. CCIS, vol. 419, pp. 19–35. Springer,
Cham (2013). doi:10.1007/978-3-319-05416-2 3

18. Silva, B.C.F., Carvalho, G., Sampaio, A.: Test case generation from natural lan-
guage requirements using CPN simulation. In: Cornélio, M., Roscoe, B. (eds.)
SBMF 2015. LNCS, vol. 9526, pp. 178–193. Springer, Cham (2016). doi:10.1007/
978-3-319-29473-5 11

19. Diamantopoulos, T., Roth, M., Symeonidis, A., Klein, E.: Software requirements as
an application domain for natural language processing. Lang. Resour. Eval. 51(2),
495–524 (2017)

20. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)

http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1016/j.scico.2014.06.007
http://dx.doi.org/10.1007/978-3-319-05416-2_3
http://dx.doi.org/10.1007/978-3-319-29473-5_11
http://dx.doi.org/10.1007/978-3-319-29473-5_11

Verified Software

Modular Verification of Order-Preserving
Write-Back Caches

Jörg Pfähler(B), Gidon Ernst, Stefan Bodenmüller, Gerhard Schellhorn,
and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{pfaehler,ernst,bodenmueller,schellhorn,reif}@isse.de

Abstract. File systems not only have to be functionally correct, they
also have to be crash-safe: a power cut while an operation is running must
be guaranteed to lead to a consistent state after restart that loses as lit-
tle information as possible. Specification and verification of crash-safety
is particularly difficult for non-redundant write-back caches. This paper
defines a novel crash-safety criterion that facilitates specification and
verification of order-preserving caches. A power cut is basically observa-
tionally equivalent to a retraction of a few of the last executed opera-
tions. The approach is modular: It gives simple proof obligations for each
individual component and for each refinement in the development. The
theory is supported by our interactive theorem prover KIV and proof
obligations for crash-safety have been verified for the Flashix flash file
system.

Keywords: Write-back caching · Crash-safe refinement · Flash file sys-
tems

1 Introduction

To be reliable, file systems have to be both functionally correct and crash-safe.
Functional correctness is typically expressed in terms of a high-level specification
of its operations, as given for example by the established POSIX standard [1].
Crash-safety is harder to prove, since it not only has to consider the states before
and after operations. Instead, a power cut that interrupts an operation in any
intermediate state must lead to a consistent state after reboot, where as little
information as possible has been lost.

We develop Flashix [18], a file system for flash memory that is verified with
the interactive theorem prover KIV [8] to be both functionally correct with
respect to POSIX and crash-safe. Flashix is strongly modular: it is hierarchically
composed of encapsulated components, which are formalized as data types [7,12]
extended by a specification of the effect of a power cut and subsequent recovery.

Supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von Flash-
Dateisystemen” (grants RE828/13-1 and RE828/13-2).

c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 375–390, 2017.
DOI: 10.1007/978-3-319-66845-1 25

376 J. Pfähler et al.

Verifying crash-safety is critically affected by caching mechanisms employed
by the implementation, as data structures in main memory are lost upon a
power cut. Caches can be classified into write-through and write-back caches.
The former can be reconstructed from persistent memory and are therefore fully
redundant. Crash-safety is expressible by stating that the recovery operation
restores the state from before the power cut. Losing a write-through cache due
to a power cut is invisible to its clients (components that use the cache).

Write-back caches, on the other hand, lead to actual loss of data in the event
of a power cut. The crash-safety of their clients then depends heavily on the
exact nature of the data lost. Therefore the specification of the crash-safety of
the cache needs to be propagated upwards through the component hierarchy.

Flashix is a log-structured file system. The log component appends log entries
by using a write-back cache. It defers writes until the size of a page or sector is
reached. This cache is order-preserving, i.e. the write operations to the storage
device are in the same order as the writes to the cache. In our experience (Sect. 2
and [9]) if crash-safety is expressed as a state-based property, i.e. as a relation
between the state before and after the power cut, it needs to be expressed on
every level of abstraction, which complicates verification significantly.

The contribution of this paper is threefold. We propose a new correctness
criterion for order-preserving caches called quasi sequentially crash consistent1.
A storage system satisfies this criterion if a power cut takes the system’s state
backwards in time by retracting several system operations in order and by re-
executing the earliest retracted operation. Secondly, we embed this operations-
based property into the semantics of components (Sect. 3). This allows us to
propagate it over component hierarchies implicitly via refinement (Sect. 4). The
notion of refinement defined allows for substitution (Sect. 5). Section 6 shows that
in practice considering the initial and final state of an operation’s execution is
sufficient for the verification of crash-safety. Finally, we implemented support
for the proof obligations of the theory in our interactive theorem prover KIV [8]
and applied it to the Flashix file system. All models, proofs and the executable
code are available online.2

2 Motivation

Fig. 1. Refinement

The formal development of a software system usually
starts with a specification of its desired behavior and
properties, e.g. POSIX in the case of a file system. The
implementation then comprises a hierarchy of components,
stacked as indicated by Fig. 1, i.e., each implementation
refines (dotted lines) a specification Speci. It is a client
of () an abstraction of one or more subcomponents
Speci−1. Either Speci−1 is refined further or serves as a specification for exter-
nal components, e.g. the interface to flash hardware in the context of Flashix.
1 The classification of Bornholt et al. [3] defines sequential crash consistency.
2 http://www.isse.de/flashix.

http://www.isse.de/flashix

Modular Verification of Order-Preserving Write-Back Caches 377

Fig. 3. Explicit Specification

Fig. 4. Alternative Re-Execution

Fig. 5. Implicit Specification

Refinement guarantees that the final implementation has the properties of the
top-level specification.

In [10] we have integrated the verification of crash-safety into this scheme:
In addition to regular operations, each model is equipped with a specification of
resets, which consist of the effect of crashes and their subsequent recovery, spec-
ified as a predicate over two states. We first illustrate this type of state-based
specification with the Flashix write buffer [9] and then highlight a crucial prob-
lem with this approach and propose a different, operations-based specification.

Fig. 2. Write buffer [9]

The write buffer is visualized in Fig. 2. It alle-
viates the limitation that flash blocks can only be
written sequentially and in page-sized chunks. The
component keeps a page-sized buffer in RAM and
writes it to flash as soon as the page-size is reached.
A transactional log or journal uses the write buffer
to record file system changes.

Explicit Reset Specification. Figure 3 depicts a first, natural abstraction of the
write buffer that merges the cache and the contents of the flash block into one
dynamically-sized array of bytes block . The append operation extends the con-
tents of the abstract block by new data stored in buf . Since flash memory is
inherently unreliable [20], the specification accounts for short writes that fail to
persist the whole buf up to its size # buf and write just the subrange from 0 to n
(n excluded) instead.3 The specification is a program that cannot be interrupted
by a power cut in an intermediate state, signified by the keyword atomic.

The effect of losing the cache is captured by the crash predicate. It restricts
a transition from state s to s′ of the system. In the case of the write buffer
a prefix block ′ of block rounded down to the previous page boundary is taken,

3 Note that the POSIX specification [1] explicitly permits such short writes to surface
at the system interface.

378 J. Pfähler et al.

where block ↓ PAGE SIZE = block [0...(# block) ↓ PAGE SIZE] for n ↓ PAGE SIZE =
n − (n mod PAGE SIZE).

The problem with the approach is that the data lost by the reset of the
cache component Speci−1 (in Fig. 1) must be propagated explicitly to the levels of
abstraction given by its direct client Speci, and then to its client’s client, until the
top-level specification. This is particularly problematic if the hierarchy is deep
or, as is the case in Flashix, higher levels of abstraction can not naturally express
the property. Therefore, we split the specification of a reset into 1. a retraction
transition followed by a re-execution transition and 2. a crash transition.

Implicit Reset Specifications. Figure 4 shows an example with write operations
W1 to W4. The operations and how far they filled the block is denoted by the
start/end position of the arrows. Page boundaries are depicted as dotted lines.
A power failure in the explicit approach (i.e., what effectively happens) removes
the hatched part at the end of the block up to the last dotted line.

The effect can be explained alternatively by first reversing the effect of the
last two operations W3 and W4 and subsequently re-executing the W3 operation
(denoted by W3’) on the same inputs, choosing the error path that writes only
n = (# buf) ↓ PAGE SIZE bytes. This alternative specification requires to define
synchronized states that are resilient against crashes, i.e., a retraction is not
allowed in such a state: Fig. 5 shows how these can be captured in the write
buffer by a synchronized predicate over the state, where page-aligned(block)
holds iff # block mod PAGE SIZE = 0. Clearly, the alternative trace that executes
W1, W2 and W3’ is possible by the specification of the append operation. In a
synchronized state there is no additional effect of a crash that must be modeled
explicitly, i.e., the crash predicate of the implicit specification of Fig. 5 is just
identity. In states outside of the domain of the crash predicate a crash can not
occur.

By making the crash predicate partial, we mark the states of interest in which
we want to consider crash transitions. Here, we use just the synchronized states,
while in the general theory it is also possible to use a superset. We have to ensure
that retracting operations and re-executing one operation actually targets a state
in the domain of the (now partial) crash predicate. Informally, this is guaranteed
when it can be proved that operations fall into two classes: retractable operations
like W4, where a crash has the same effect before and after the operation, and
completable operations like W3, which have an execution that leads to a state
in the domain of the crash predicate.

Fig. 6. Introducing Implicit
Specifications

We use both the implicit as well as the
explicit specification as shown by Fig. 6. First, we
abstract the write buffer implementation to the
explicit specification with a normal refinement step
(Theorem 1, Sect. 4). Then we introduce the
implicit specification in a separate refinement step
(Theorem 2, Sect. 4). In the semantics we define
next, the retraction transition is then implic-
itly propagated upwards through the remaining

Modular Verification of Order-Preserving Write-Back Caches 379

Fig. 7. Constructing a reset transition sn+1 sn+2.

refinement hierarchy automatically (Theorem 3, Sect. 5). Therefore only the (now
trivial) crash predicate needs to be expressed on each layer of abstraction.

3 Components with Power Cuts

Systems considered in this work are hierarchically composed of encapsulated
components, which are formally presented in terms of data types [7,12] extended
by a specification of the effect of a power cut and subsequent recovery.

Definition 1 (Component). A component C = (S, In,Out , Init ,Sync,Crash,
(Opi)i∈I) consists of a set of states S, inputs In and outputs Out, initial states
Init, synchronized states Sync with Init ⊆ Sync ⊆ S, a relation Crash ⊆ S×Sync
with Sync ⊆ dom(Crash) describing the effect of a crash including its subsequent
recovery,4 and regular operations Opi ⊆ In × S × S × (Out � {�}). The value �

signifies that the operation was interrupted by a power cut.

Operations are defined by programs that modify the state and compute an
output from an input. Implementation programs may call operations of another
(sub-)component as detailed in Sect. 5. A small-step semantics of the programs
is given in [10]. Here, we abstract program runs to a relation Opi between initial
and final states. The crash and synchronized relation are given syntactically by
the crash and synchronized predicate in Figs. 3 and 5.

A complete program run starting in state s with input in, finishing in state s′

with output out is written s
Opi(in,out)−−−−−−−−→ s′, which is equivalent to (in, s, s′, out) ∈

Opi, using the induced relation Opi(in, out) ⊆ S × S as a label. Abbreviation
(s, s′) ∈ Opi(in) holds if there is any out �= � such that (s, s′) ∈ Opi(in, out).

An incomplete run where the computation is interrupted by a power cut in an
intermediate state s′ (and the operation does not return a result) results in tuple

(in, s, s′,�) ∈ Opi, written as s
Opi(in,�)−−−−−−→ s′, again using Opi(in,�) ⊆ S ×S as a

label. It is reasonable to assume that a crash can happen in initial as well as final
4 In the actual models recovery is a separate operation that runs directly after a crash

and tries to restore the state. To keep the presentation brief, we combine the crash
and recovery into one transition here.

380 J. Pfähler et al.

states, i.e., we assume IdS ⊆ Opi(in,�) for the identity relation resp. Opi(in) ⊆
Opi(in,�). Interrupted steps in a run are followed by steps s′ reset−−−→ s′′ (detailed
below), that model the effect of a power cut and its subsequent recovery.

The semantics of components is a set of runs, which are finite or infinite
sequences of labeled transitions of these three kinds, which generalizes data

types as used in Z [22] that have regular transitions s
Opi(in,out)−−−−−−−−→ s′ only.

Definition 2 (Runs). A run of the component C is given by a sequence of
labeled state transitions s0

l0−→ s1
l1−→ · · · that starts in an initial state with

s0 ∈ Init and consist of fragments for each (non-interrupted) state sn:

sn
Opin

(inn,outn)−−−−−−−−−−→ sn+1 or sn
Opin

(inn,�)−−−−−−−−→ sn+1
reset−−−→ sn+2,

where sn+1
reset−−−→ sn+2 picks an earlier state sk from this run, optionally re-

executes the corresponding k-th operation partially (� output), and applies the
residual effect of crash & recovery, i.e., there is k with k ≤ n + 1 and s′

k+1 s.t.:

– sk′ �∈ Sync for all k′ with k < k′ ≤ n + 1,

– sk
Opik

(in,�)−−−−−−−→ s′
k+1 and k < n + 1 or sk = s′

k+1,

– (s′
k+1, sn+2) ∈ Crash

Figure 7 depicts how a transition sn+1
reset−−−→ sn+2 (arrow) is constructed by

these three constituents (arrows).
We point out some aspects of Definition 2: Re-execution is optional and only

permitted when at least one operation had been retracted by the jump (k �=
n + 1). The state sn+2 will be synchronized as Crash ⊆ S × Sync, implying that
another crash does not go back further in the history. State s′

k+1 must fall into
the domain of Crash. This corresponds to the intuition that a power cut can be
observed in or needs to be considered in states in dom(Crash). Expressing the
Crash-predicate on a selected subset of states is easier for the given component
and its clients as we have motivated with Fig. 5. Retracting operations implies
the existence of a different run without a jump that ends in the same state sn+2:

s0 → · · · → sk
Opik

(ink,�)−−−−−−−−→ sk′+1
Crash−−−−→ sn+2. (1)

A component where all states are synchronized (Sync = S) neither retracts
nor re-executes operations. This view is used for the lowest level of specification,
where the distinction between volatile and persistent memory is explicit, and
the effect of a power cut is expressed as just forgetting data in volatile memory.

4 Crash-Safe Refinement

The observable behavior of a run is the sequence of its labels. Refinement is
defined based on preserving observable behavior:

Modular Verification of Order-Preserving Write-Back Caches 381

Definition 3 (Refinement). A component C refines a component A, written
A 	 C, iff they have the same input and output set and the same index set of
operations and for each run cs0

l0−→ cs1
l1−→ · · · of C there is a matching run

as0
l0−→ as1

l1−→ · · · of A with the same labels.

With these definitions it is now possible to express the correctness and crash-
safety criterion we propose for file systems.

Definition 4 (Quasi Sequential Crash Consistency). A file system is quasi
sequentially crash consistent, iff it refines the POSIX component given in [11] aug-
mented with synchronized states reached by successful calls to fsync or sync. The
crash predicate discards open file handles and deletes orphaned files [10].

Since our POSIX specification is a component as by Definition 1 its reset is
allowed to retract operations, however, never across a successful call to fsync or
sync. “Quasi” signifies that one re-execution is allowed, which is not allowed in
Bornholt’s definition of sequential crash consistency [3]. The Flashix file system
is developed via incremental refinement of the POSIX component.

In general, a refinement step can change data representation as well as change
the view of a crash, since only the observable behavior must be preserved. The
generality of having both changes in abstraction is only needed for a uniform def-
inition of refinement. In practice, refinements either change data representation,
or the specification of a crash individually—several refinement steps can be com-
bined transitively if needed. The following two subsections therefore consider the
two types of refinement separately. Like in data refinement, refinement is typi-
cally proved using forward simulations. New proof obligations result from steps

sn
Opj(in,�)−−−−−−→ sn+1

reset−−−→ sn+2, therefore the proofs focus on these transitions.

4.1 Data Refinement and Propagation of Jumps

The proof obligations for changing data representation are just slightly more
complex than data refinement. We denote with R1 o

9R2 the composition of two
relations R1 and R2 and with D�R and R�D the domain resp. range restriction
of the binary relation R to the set D.

Theorem 1 (Data Refinement by Forward Simulation). A refinement
A 	 C is implied by a forward simulation R ⊆ AS × CS satisfying (for all
i ∈ I, in ∈ In, out ∈ Out)

1. CInit ⊆ AInit o
9R (initialization)

2. R o
9COpi(in, out) ⊆ AOpi(in, out) o

9R (correctness)
3. ASync o

9R ⊆ CSync (synchronization)
4. R o

9COpi(in,�) o
9CCrash ⊆ AOpi(in,�) o

9ACrash o
9R (crash)

The synchronization condition states that fewer states of component A are syn-
chronized and the crash condition abstracts the remaining effect of a power cut.

382 J. Pfähler et al.

Fig. 8. Retractable before Crash Fig. 9. D-Completable before Crash

Proof (of Theorem 1). The proof composes commuting diagrams as usual, start-
ing with two related initial states given by 1. For regular transitions, proof oblig-
ation 2. gives the relevant commuting diagram. A history jump of component C
is mapped to a history jump over the same number of operations in A. Condition
3. ensures that each unsynchronized state retracted by C can be retracted by A
as well. Condition 4. commutes either the interrupted operation (when the jump
is empty) or the re-execution jointly with the subsequent crash and recovery.
�

4.2 Crash Refinement and Introduction of Jumps

Incrementally introducing history jumps is the second kind of refinement. It
assumes that the data structures and operations are the same on both levels.
The basic idea is to move parts of a power cut from a Crash transition to the jump

transition by looking at the history fragment sn
Opi(in,out)−−−−−−−−→ sn+1

Crash−−−−→ sn+2 of
the component before a crash transition and construct a different explanation
of how the component ended up in sn+2. This construction yields an alternative
intermediate state s′

n+1 from a set D ⊆ dom(Crash), allowing us to simplify the
crash transition to the relation D � Crash as in Fig. 5 for D = page-aligned .

Definition 5 (Retractable before Crash). A transition s0 −→ s1 is
retractable before Crash, iff every state s2 with (s1, s2) ∈ Crash, also satisfies
(s0, s2)∈Crash.

If an execution step is retractable before Crash, it did not have any immediate
permanent effect and we can ignore that it ever took place directly before a
crash happened. Figure 8 depicts this alternative execution in bold. This does
not mean that the execution will never have a permanent effect. Any of the
subsequent operations may very well persist the data of previous operations. In
the example, the transition W4 in Fig. 4 is retractable before the crash of Fig. 3
that sets the state to block ↓PAGE SIZE.

Definition 6 (D-Completable before Crash). A transition s0
Op(in,out)−−−−−−−→ s1

with out ∈ Out � {�} of an operation Op is called D-completable before Crash
for some set D ⊆ dom(Crash), iff for every state s2 with (s1, s2) ∈ Crash there

is an execution s0
Op(in,�)−−−−−−→ s′

1 with s′
1 ∈ D and (s′

1, s2) ∈ Crash.

Modular Verification of Order-Preserving Write-Back Caches 383

If a transition is D-completable before Crash it is possible to construct an alter-
native partial execution that ended in a D-state without any difference after
a crash. Figure 9 also depicts this alternative execution in bold. Transition W3
in Fig. 4 for example is page-aligned -completable before the crash of Fig. 3 to
block ↓PAGE SIZE and the depicted re-execution W3’ is the alternative.

Definition 7 (D-Retractable before Crash). An operation Op is D-
retractable before Crash for some set D ⊆ dom(Crash), iff every transition of
Op is either retractable or D-completable before Crash, or equivalently:

Op(in) o
9Crash ⊆ (IdS ∪ (Op(in,�) � D)) o

9Crash for all in ∈ In

This lifts Definitions 5 and 6 to the level of one operation. For example, append
of the write buffer is page-aligned -retractable before block ↓PAGE SIZE, since one
can either retract the operation if it did not cross a page boundary or execute
it in such a way that it writes up to the last page boundary.

The following theorem can be used to abstract an explicit crash specification
as part of C to an implicit crash specification by A.

Theorem 2 (Implicit to Explicit Refinement). The refinement A 	 C for

C = (S, Init , In,Out , CSync, CCrash, (Opi)i∈I) and
A = (S, Init , In,Out , ASync, ACrash, (Opi)i∈I)

with atomic operations Opi for all i ∈ I follows from

1. dom(ACrash) � CCrash ⊆ ACrash
2. ASync ⊆ CSync
3. Opi is dom(ACrash)-retractable before CCrash for all i ∈ I

We usually apply Theorem2 with crash predicates that satisfy the (stronger)
condition dom(ACrash) ⊂ dom(CCrash) to strengthen the crash transition, i.e.,
a crash can happen in fewer states of component A than of component C and is
therefore simpler to express. This is compensated by farther jumps on the history
of A in comparison to those of C as by 2. A has less synchronized states. These
jumps are then easily propagated upwards over abstractions with Theorem1.

Proof (of Theorem 2). We choose the run of C as the run of A and focus on
the transitions of a power cut. Figure 10 depicts the situation before the power
cut (omitting input and output labels), starting in a state s0 where both C
and A are synchronized. Such a state exists because at least in the initial state
and after every power cut both components are synchronized. The three parts
of the power cut transition of C are depicted in the figure starting in state
sn and ending in sn+1. We construct a matching transition of A, depicted by
arrows in the figure. All operations that C retracts are also retracted by A
(history jump from sn to sk). However, the history jump transition might be
farther still (history jump from sk to sl). The idea is to determine a state

384 J. Pfähler et al.

Fig. 10. From implicit to the explicit reset specification

s′
l+1 ∈ dom(ACrash) of component A with the properties shown in the

figure: there is an additional second jump backwards to sl and a re-execution

that yields s′
l+1. The construction considers the run s0 ��� sk

Opi or stutter−−−−−−−−−→
s′
k+1

CCrash−−−−−→ sn+1 of C implied by (1) of Sect. 3 that yields s′
k+1.

The existence of A’s history jump and re-execution is proven by induction
over k. If the sequence is empty (k = 0 and the transition stutters), then there
is only a transition s0

CCrash−−−−−→ sn+1 starting from state s0 with s0 ∈ ASync. By
proof obligation 1., s0

ACrash−−−−−→ sn+1 is the matching run of A: the additional his-
tory jump and re-execution transitions stutter. Otherwise, Opi is dom(ACrash)-

retractable before CCrash and therefore the transition sk
Opi−−→ s′

k+1 is either:

– Retractable before CCrash and therefore s0 ��� sk
CCrash−−−−−→ sn+1 is also a

valid run. The induction hypothesis gives a matching run of A and a history
jump over m operations for this sequence. The history jump for the original
sequence then is over m+1 operations and we take the re-execution from the
induction hypothesis which ends in the state sn+1.

– dom(ACrash)-completable before CCrash and sk
Opi−−→ s′′

k+1
CCrash−−−−−→ sn+1

holds for some state s′′
k+1 ∈ dom(ACrash). We choose s′

l+1 = s′′
k+1 and by

proof obligation 1., s0 ��� sk
Opi−−→ s′

l+1
ACrash−−−−−→ sn+1 is a re-execution of A

with s′
l+1 ∈ dom(ACrash) and the history jump stutters.
�

5 Component Hierarchies and Substitution

This section defines components M(A) that use a subcomponent A (see Fig. 1),
underlying several limitations to confine communication between M and A to the
interface. Hierarchies allow us to split off a part M of the entire implementation
and verify it based on a (possibly very abstract) component A. A can then be
refined separately, without jeopardizing the correctness and crash-safety of M .
This facilitates modular and incremental development of a large system.

Modular Verification of Order-Preserving Write-Back Caches 385

Intuitively, M has volatile state only and the entire persisted state resides in
its subcomponent A. Combined states of M(A) are written ms⊕as.

Definition 8 (Hierarchies). The component M(A) = (MS × AS , In,Out ,
MInit × AInit ,MS × ASync,MCrash × ACrash, (MOpi)i∈I) combines the state
space of M and of its subcomponent A. The state of A is hidden from M (infor-
mation hiding) and the interaction with A is accomplished via synchronous calls
to A’s operations in the programs MOpi of M and observation of their inputs
and outputs. The crash on the M part of the state must be arbitrary, i.e.,
MCrash = MS × MS, and M(A) is synchronized if and only if A is.

Refinement is compatible with hierarchical composition, i.e., correctness and
crash-safety of a component is preserved by substitution of its subcomponents.

Theorem 3 (Substitution). If CSync = CS and A 	 C, then M(A) 	 M(C).

The condition CSync = CS states that every C state is synchronized, i.e.,
there are no backward jumps and no re-execution in C and likewise in the com-
bined M(C). The Theorem is applicable in practice, because we can substitute
implementation machines, which are always synchronized, bottom-up.

Proof (of Theorem 3). Given a fixed, arbitrary run of M(C) we derive a matching
run of M(A) with the same labels to satisfy Definition 3 in several steps: From
each M(C)-transition, we extract the fine-grained steps of C corresponding to
the calls of its operations. Concatenating these gives a run of C, which can be
mapped to one of A as a whole by the assumption A 	 C. Finally, the A run
can be integrated back with M . The reset transitions reduces to two helper
lemmas. Specifically, if C is an implementation component, then Lemma 1 maps
the M(C) crash to the C one.

Lemma 1. If ms⊕cs reset−−−→ ms ′⊕cs ′, then cs reset−−−→ cs ′ holds for all ms, ms ′

The converse (Lemma 2) lifts the matching A reset from as to as ′ back into the
context.

Lemma 2. If as reset−−−→ as ′, then ms⊕as reset−−−→ ms ′⊕as ′ holds for all ms, ms ′.

Lemma 1 is trivial: the M(C) reset transition has no back-jumps and is thus
equivalent to (cs, cs ′) ∈ CCrash by the restrictions of component composition
of Definition 8. Note that in general, compositions M(C) retract operations at
a coarser granularity than C can do on its own, i.e., a reset of M(C) cannot be
explained with the help of a C-reset in the presence of back-jumps.

Lemma 2 guarantees that the back-jump induced by the reset transition of the
abstract A is permitted by the semantics of M(A). The proof can be followed
alongside Fig. 11 to establish arrows from the given arrows . The first
line shows the big-step semantics of M(A) and the second line extracts the
small-step semantics of the one operation MOpi (ms0 ⊕as0 = msk ⊕ask and
msm⊕asm = msk+1⊕ask+1). The history jump of A targets a state as l in the

386 J. Pfähler et al.

Fig. 11. Mapping a reset transition of a subcomponent A to one of M(A).

middle of a previously execution operation MOpi. The reset of M(A) retracts
to the state msk ⊕ ask right before this call and then reaches the combined
intermediate state ms l ⊕ as l by partial re-execution of the MOpi potentially
including a partial AOpj from the A reset. In the resulting state ms ′

l⊕as ′
l, the A

crash is known and the M crash admits any desired successor anyway.
�

6 Crash-neutrality

The proof obligations 4 of Theorem1 consider intermediate states. In this section
we adapt the criterion of Crash-neutrality from our previous work [10], allowing
us to consider initial and final states of operations only. This reduces the difficulty
and size of proofs by enabling standard techniques from sequential verification.

Informally, Crash-neutrality asserts that for any intermediate state a comple-
tion exists that does not modify the persistent memory any further. A component
is Crash-neutral if all its operations are.

Definition 9 (Crash-Neutrality). An operation Op is Crash-neutral if every

partial execution s
Op(in,�)−−−−−−→ s′ with s′ ∈ dom(Crash), has a completion that

terminates in a state s′′ with the following property: for every state s0 with
(s′, s0) ∈ Crash then (s′′, s0) ∈ Crash holds, too.

A useful shorthand to proving Crash-neutrality of M(C) is given by the
following lemmata. Its basic insight is that an operation is Crash-neutral if every
small step of its program is Crash-neutral. Since all steps of M are either calls
to C or just in-memory, it remains to ensure that C is Crash-neutral:

Lemma 3 (Crash-Neutrality of M(C)). If C is Crash-neutral and all oper-
ation of M terminate, then M(C) is Crash-neutral.
�

Modular Verification of Order-Preserving Write-Back Caches 387

Lemma 4 (Crash-Neutrality of atomic C). If every operation of C is
atomic, then Crash-neutrality of C can be characterized by

Crash ⊆ COpi(in) o
9Crash for all i ∈ I and in ∈ In
�

The append operation of the write buffer (see Fig. 3) is Crash-neutral, we
simply choose n = 0 as the number of bytes written. With Crash-neutrality
Theorem 1 can be reformulated such that only reasoning about initial and final
states is necessary.

Theorem 4 (Crash-Neutral Data Refinement by Forward Simulation).
A refinement A 	 C for a CCrash-neutral component C is implied by a forward
simulation R ⊆ AS × CS satisfying 1.–3. of Theorem1 and

4′. R o
9CCrash ⊆ ACrash o

9R (crash)

Proof. We consider the transition sequence cs
Opi(in,�)−−−−−−→ cs ′ reset−−−→ cs ′′. If the

history jump transition (and therefore the re-execute) stutter, we complete the
operation Opi(in,�) by CCrash-neutrality and are still able to crash to cs ′′

afterwards. If we have a history jump, we complete the re-execution transition
by CCrash-neutrality and are able to crash to cs ′′ afterwards. All relevant tran-
sitions for a forward simulation are explained by complete executions and we can
use proof obligation 2 of Theorem1 to find the matching abstract transition.
�

7 Related Work

We focus on techniques for the verification of crash behavior, comparison of
Flashix to related efforts can be found in [9,11,18] and Lali’s summary [14].

Bornholt et al. [3] define crash consistency models for file systems, based
on operations that produce (potentially many) update events. A crash is then
expressed by taking a prefix of the update events. The difference between their
definition of sequential crash consistency [3, Definition 5] and quasi sequential
crash consistency (Definition 4) is that we allow a re-execution that might pro-
duce different events and not just (a reordering of) a prefix, and we allow an
additional effect of the crash afterwards. Update events have the same drawback
as the explicit specification provided in Sect. 2. Their notion of crash consistency
also omits orphaned files. Follow-up work [19] integrates crash-safety with simu-
lation conditions similar to the ones we have given previously in [10]. This paper
clarifies the adequacy of the simulation conditions wrt. a component semantics,
which is not discussed in [19]. In particular, hierarchical composition of compo-
nents has subtle effects of how exactly a crash and recovery must be organized
that substitution is possible (Theorem 3).

Write-back caches where a crash affects multiple operations is discussed in
[2,5,19], too. The abstract model of [2] keeps an explicit history back to the
most recent flush as a list of higher-order state transformers. It is proved that
the implementation of sync correlates to reducing the history to produce a

388 J. Pfähler et al.

current state. Chen’s thesis [5] discusses a specification methodology of write-
back caches that are not order-preserving. It is based on explicitly rewriting
histories, although he lacks modular conditions as in Theorem2.

In this paper as well as in [19] the intermediate steps of operations are
summarized at the semantic level (as Op(in,�) resp. f(s, x, sync = false)).
Ntzik et al. [16] as well as Chen et al. [4,6] have developed Hoare-style proof
rules that establish a user-provided invariant called “crash condition” over the
intermediate states of a program that serves as the precondition of recovery. The
latter work has produced the FSCQ file system that is verified with Coq. Maric
and Sprenger [15] model crashes by exceptions that are triggered nondetermin-
istically in the write operations of the hardware model to verify a redundant
storage system. We have addressed this issue by a fine-grained semantics of pro-
grams in [10] which computes the crash condition symbolically.

Re-execution of operations underlies the “recoverability” criterion of Koski-
nen and Yang [13] at the level of entire programs. Their approach can be recast
in our notation such that Op(in,�) o

9Crash establishes the precondition of the
program, which can then be re-run to recover the intermediate state without
runtime errors. Here, the purpose of re-execution is different: We use it as a
specification mechanism to reach certain intermediate states.

8 Conclusion

In this paper we have defined an approach that facilitates the integration of
order-preserving write-back caches into the hierarchical development of file sys-
tems. It is possible to verify functional correctness and quasi sequential crash con-
sistency modularity. This enables modular, large-scale verification, which would
otherwise be unrealistic to perform and hard to maintain.

We have reinterpreted the behavior of a crash in terms of the system’s opera-
tions, so that at each level of abstraction a backward jump (induced by a crash)
does not need to be expressed as part of the state. This allowed us to propa-
gate the reset specification implicitly upwards through a refinement hierarchy.
Obviously, it is necessary to capture the effect semantically to do this.

We implemented support for component specifications of Definition 1 and
generate the proof obligations in our interactive theorem prover KIV [8]. We
mechanized the verification of the Flashix file system, which provides quasi
sequential crash consistency. Previously, we performed a verification of write-
back caching for the two components above the write buffer, where the sequence
of operations is mostly part of the state. The second component then flushed
the write-back cache at the end of its operations, which we can avoid now. With
the theory of this paper, the verification of the write buffer itself requires just
little extra effort, due to the switch from the implicit to the explicit reset specifi-
cation. However, the specifications (not the implementations) of all components
above the write buffer greatly benefited in terms of verification effort. For the
two abstractions directly above the write buffer we report a decrease of 40%
resp. 17% of user interactions in the proofs (from 500 to 300 and from 1270 to

Modular Verification of Order-Preserving Write-Back Caches 389

1050). Flashix is now significantly faster and more space efficient, due to fewer
flushes.

The theory in this paper should be applicable to other file systems and achieve
similar results, since all journaling and log-structured file systems [17,21] feature
comparable write-back caches.

In future work, we plan to extend the theory to non-order-preserving caches
by allowing commutations of operations.

References

1. The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2013 edn. The
IEEE and The Open Group (2013)

2. Amani, S., Murray, T.: Specifying a realistic file system. In: Proceedings of Work-
shop on Models for Formal Analysis of Real Systems. Electronic Proceedings in
Theoretical Computer Science, vol. 196, pp. 1–9. Open Publishing Association
(2015)

3. Bornholt, J., Kaufmann, A., Li, J., Krishnamurthy, A., Torlak, E., Wang, X.:
Specifying and checking file system crash-consistency models. In: Proceedings of
ASPLOS, pp. 83–98. ACM (2016)

4. Chajed, T., Chen, H., Chlipala, A., Kaashoek, M.F., Zeldovich, N., Ziegler, D.:
Certifying a file system using crash hoare logic: correctness in the presence of
crashes. Commun. ACM 60(4), 75–84 (2017)

5. Chen, H.: Certifying a crash-safe file system. Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA, United States (2016)

6. Chen, H., Ziegler, D., Chlipala, A., Zeldovich, N., Kaashoek, M.F.: Using crash
hoare logic for certifying the FSCQ file system. In: Proceedings of the Symposium
on Operating Systems Principles (SOSP). ACM (2015)

7. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge University Press, Cambridge (1998)

8. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV-overview
and verifythis competition. Softw. Tools Technol. Transf. (STTT) 17(6), 677–694
(2015)

9. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Inside a verified flash file sys-
tem: transactions and garbage collection. In: Gurfinkel, A., Seshia, S.A. (eds.)
VSTTE 2015. LNCS, vol. 9593, pp. 73–93. Springer, Cham (2016). doi:10.1007/
978-3-319-29613-5 5

10. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular, crash-safe refinement for
ASMs with submachines. Sci. Comput. Program. (SCP) 131, 3–21 (2016)

11. Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J., Reif, W.: Verification
of a virtual filesystem switch. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE
2013. LNCS, vol. 8164, pp. 242–261. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54108-7 13

12. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In:
Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196.
Springer, Heidelberg (1986). doi:10.1007/3-540-16442-1 14

13. Koskinen, E., Yang, J.: Reducing crash recoverability to reachability. In: Proceed-
ings of Principles of Programming Languages (POPL), pp. 97–108. ACM (2016)

14. Lali, M.I.: File system formalization: revisited. Int. J. Adv. Comput. Sci. 3(12),
602–606 (2013)

http://dx.doi.org/10.1007/978-3-319-29613-5_5
http://dx.doi.org/10.1007/978-3-319-29613-5_5
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://dx.doi.org/10.1007/978-3-642-54108-7_13
http://dx.doi.org/10.1007/3-540-16442-1_14

390 J. Pfähler et al.

15. Marić, O., Sprenger, C.: Verification of a transactional memory manager under
hardware failures and restarts. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 449–464. Springer, Cham (2014). doi:10.1007/
978-3-319-06410-9 31

16. Ntzik, G., da Rocha Pinto, P., Gardner, P.: Fault-tolerant resource reasoning. In:
Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 169–188. Springer,
Cham (2015). doi:10.1007/978-3-319-26529-2 10

17. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-
structured file system. ACM Trans. Comput. Syst. (TOCS) 10(1), 26–52 (1992)

18. Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., Reif, W.: Development of
a verified flash file system. ABZ 2014. LNCS, vol. 8477, pp. 9–24. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43652-3 2

19. Sigurbjarnarson, H., Bornholt, J., Torlak, E., Wang, X.: Push-button verification
of file systems via crash refinement. In: Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association (2016)

20. Tseng, H-W., Grupp, L., Swanson, S.: Understanding the impact of power loss on
flash memory. In: Proceedings of the Design Automation Conference (DAC), pp.
35–40. ACM (2011)

21. Tweedie, S.C.: Journaling the Linux ext2fs filesystem. In: The Fourth Annual Linux
Expo (1998)

22. Woodcock, J., Davies, J.: Using Z: Specification, Proof and Refinement. Prentice
Hall, Upper Saddle River (1996)

http://dx.doi.org/10.1007/978-3-319-06410-9_31
http://dx.doi.org/10.1007/978-3-319-06410-9_31
http://dx.doi.org/10.1007/978-3-319-26529-2_10
http://dx.doi.org/10.1007/978-3-662-43652-3_2

Formal Verification of ARP (Address Resolution
Protocol) Through SMT-Based Model Checking

- A Case Study -

Danilo Bruschi1, Andrea Di Pasquale1, Silvio Ghilardi2, Andrea Lanzi1,
and Elena Pagani1(B)

1 Università degli Studi di Milano, via Comelico 39, 20135 Milano, Italy
{danilo.bruschi,andrea.lanzi,elena.pagani}@unimi.it, spikey.it@gmail.com

2 Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy
silvio.ghilardi@unimi.it

Abstract. Internet protocols are intrinsically complex to understand
and validate, due both to the potentially unbounded number of entities
involved, and to the complexity of interactions amongst them. Yet, their
safety is indispensable to guarantee the proper behavior of a number of
critical applications.

In this work, we apply formal methods to verify the safety of the Address
Resolution Protocol (ARP), a standard protocol of the TCP/IP stack
i.e. the communication protocols used by any Internet Host, and we are
able to formally prove that the ARP protocol, as defined by the standard
Request for Comments, exhibits various vulnerabilities which have been
exploited since many years and still are the main ingredient of many attack
vectors. As a complementary result we also show the feasibility of formal
verification methods when applied to real network protocols.

Keywords: ARP · Man-in-the-Middle attack · Denial-of-Service
attack · Formal verification · Model evaluation · Satisfiability Modulo
Theories

1 Introduction

Core of this work is the Address Resolution Protocol (ARP), a standard protocol
of the TCP/IP stack i.e. the set of communication protocols used by any Internet
Host. More precisely, we apply a formal method to verify the safety property of
ARP, where by safety we mean that no “bad things” happen during any protocol
execution [18]. As far as we know, this is the first time that a formal method
is successfully applied to the analysis of ARP. The work has been conducted by
using the Model Checker Modulo Theories (MCMT) tool [15], which is a fully
declarative and deductive symbolic model checker for safety properties of infinite
state systems.

The ARP protocol plays a very critical role in the transmission phase of
Internet messages as it converts the network (IP) address of a host into its
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 391–406, 2017.
DOI: 10.1007/978-3-319-66845-1 26

392 D. Bruschi et al.

corresponding hardware (MAC or Ethernet) address, which is the address we
need to specify for communicating directly with a host. We briefly recall that IP
addresses identify hosts in Internet and they are used “only” to route messages
across the Internet. By contrast, MAC addresses identify hosts inside a Local
Area Network (LAN) where they are physically connected. When a message has
to be delivered to a host h, both its network and hardware addresses have to
be known. Contrarily to network addresses which are usually publicly available
(in particular in their symbolic form www.yyy.zzz), hardware addresses are not.
Thus, ARP has been introduced for translating network addresses into hard-
ware addresses. The protocol has been initially defined by Request for Comment
(RFC) 826 [19], and subsequently redefined by RFC 3927 [11] and RFC 5227
[10], which have tried to settle some problems arising in the original formulation.

As many protocols of the TCP/IP stack, during the last twenty years ARP
has been subverted in order to perform various forms of computer attacks
[4,6,20]. The most prominent attack performed via ARP is the Man-in-the-
Middle attack (MitM), in which an attacker can impersonate a victim’s host
and intercept/modify all the traffic directed to the victim’s host. ARP hosts can
also be victim of a Denial-of-Service attack (DoS). In this case, a malicious host
m can continuously induce a victim host v to dismiss its current network address
and to select a new one. While v does not own a stable address, it is not able to
communicate.

In this paper, by using Satisfiability Modulo Theories (SMT), we will formally
prove that the ARP protocol – as specified by the RFC documents – lacks safety
properties, more precisely there exist protocol executions in which a MitM attack
can be successfully perpetrated against some host. The same turns out to be true
for a DoS attack.

2 Preliminaries on Formal Verification

The considered family of protocols belongs to the infinite-state reactive para-
meterized systems: although the behavior of a single host can be described by
a finite state automaton, the number of components which constitute a system
(i.e. a LAN), and whose behavior is determined by messages received by other
system’s components, is potentially infinite.

Various techniques have been introduced in the literature to handle safety
verification for such parameterized systems (see [1–3,5,8,9], to name but a few
entries). We chose the declarative approach of the array-based systems [12,14,16],
because it offers a great flexibility and relies (at deductive engine level) on the
mature technology offered by state-of-the-art SMT-solvers, which is gaining rele-
vance. In array-based systems (see [13,15] for tool implementations), the state is
represented by both global variables, and by array variables such that each array
corresponds to a component of the state of the hosts, and the k-th element of an
array a contains the value of component a for the host k. This representation is
very natural, and eases the modeling process. A system is specified via a pair of
formulæ ι(p) and τ(p, p′), and a safety problem via a further formula υ(p), where

Formal Verification of ARP Protocols 393

p is the set of parameters and array-ids, ι(p) is the state of possible initial states
of the system, τ(p, p′) :=

∨n
i=1 τi(p, p′) symbolizes the possible state transitions

of the system – according to the considered algorithm – modifying p into p′, and
υ(p) is the set Bad of states verifying the unsafe condition. Each transition τi ∈ τ
is composed by a guard and a set of updates: if the current values of parameters
and arrays satisfy the guard, then the transition may fire and the updates are
applied. More guards may be verified at the same instant; in this case, one of
the corresponding transitions fires nondeterministically. A safety model checking
problem is the problem of checking whether the formula

(�)n ι(p
0
) ∧ τ(p

0
, p

1
) ∧ · · · ∧ τ(p

n
, p

n+1
) ∧ υ(p

n+1
)

is satisfiable for some n, that is, whether a state in Bad can be reached from
an initial state by applying the possible transitions. In order to verify whether
a protocol is safe with respect to Bad, the tool we use in this work adopts a
backward reachability policy. The search starts from Bad and, using the state
transitions, for any element of Bad computes the pre-image, i.e. the set of states
which can lead to Bad. For any set of obtained pre-images the same procedure
is repeatedly applied, until one of the following two events occurs: either (i) a
fixed point is reached (not intersecting initial states), meaning that the pre-image
computation cannot reach other states different from the current ones, or (ii) an
initial state is reached. In the former case, no formulæ of type (�)n describing
the reachability of Bad can be satisfied and the system is safe with respect to
the property described by Bad. In the latter case, some formula of type (�)n is
satisfiable and the system is unsafe.

We used the Model Checker Modulo Theories (MCMT) tool [15]. MCMT is
a fully declarative and deductive symbolic model checker for safety properties
of infinite state systems whose state variables include arrays. Sets of states and
transitions of a system are described by quantified first-order formulae of special
kinds. The tool exploits decision procedures (as implemented in state of the art
SMT solvers) to cope with satisfiability problems involving various datatypes like
arrays, integers, Booleans, etc. Checks for safety and fix-points are performed
by solving SMT problems (due to the special shape of the formulæ used to
describe sets of states and transitions, such checks can be effectively discharged).
Besides standard SMT techniques, efficient heuristics for quantifier instantiation,
specifically tailored to model checking, are the heart of the system. Termination
of the backward search is guaranteed only under specific assumptions, but it
commonly arises in practice (for a full account of the underlying theoretical
framework, the reader is referred to [16]). MCMT guarantees the safety of a
protocol for any number N of system components.

The process of converting an algorithm into a MCMT model is performed
manually: it requires deep comprehension of the algorithm, which must be broken
down into its fundamental mechanisms and all possible cases, that are then
translated into model transitions.

394 D. Bruschi et al.

3 Address Resolution Protocol (ARP)

The main task of ARP is to enable a host h of a local network to discover,
given the (32-bits) IP address of a host k (usually a well known data), the
corresponding (48-bits) MAC address associated to k.1 For efficiency reasons
any host h maintains in a private data structure, known as ARP cache, all
mappings 〈MAC, IP〉 it has so far discovered. Whenever h has to get in touch
with host k, it will first look for k’s MAC address in its own ARP cache. In case
of failure it will initiate the ARP protocol, and it will proceed in the following
way: h sends to all hosts in the LAN an ARP request message, asking for the
MAC address of the owner of the address IPk. Once k receives such a message
it sends an ARP reply message, unicast to h, providing its own MAC address
MACk. Once h receives the ARP reply it updates its own cache with the entry
〈MACk, IPk〉. Similarly, k updates its own cache with the mapping 〈MACh, IPh〉
provided by the ARP request from h. The same action is performed by other
hosts already knowing h, so as to maintain their information updated. These
operations are more precisely described in the following Algorithm 1. RFC 826
requires that ARP messages have a predefined format. The Ethernet header
includes, among others, both the source and destination MAC address, eth src
and eth dest respectively. The ARP message payload includes among others:
the opcode identifying whether the message is a Request or a Reply, the source
hardware (sha) and network (spa) addresses, and the target hardware (tha)
and network (tpa) addresses, where target is the host destination of the ARP
message.

3.1 ARP Formal Verification

In our verification, we assume that either (i) all hosts are honest, or (ii) one
malicious host pm exists, trying to perform a MitM attack against a victim pv.
Case (ii) is able to capture all the behaviors possible in real LANs. Indeed, real
attackers focus on a specific victim, usually chosen after a preliminary analysis
of the target LAN aiming at individuating the most vulnerable device in it. On
the other hand, in case safety against MitM should be proved, any number of
both attackers and victims should be checked. By contrast, we want to verify
unsafety; hence, finding counterexamples with just one attacker is sufficient.

Honest hosts send Requests when they need to know the identity of a message
destination; they manage ARP messages according to Algorithm 1. pm may send
either Requests or Replies at any time, containing fake information; it may also
send unicast Requests to a specific host, not processed by other hosts. According
to RFC 826 [19], we do not model cache entry expiration: at any time a host
may generate a request even if the target information is already in its cache, as if
its cache has expired in the past. We model the processing of one ARP message
at a time. We take both the MAC address and the IP address of a host px to be

1 We briefly recall that the MAC address of any device is hardwired into the device
by its manufacturer, and is not publicly available.

Formal Verification of ARP Protocols 395

Algorithm 1. Classical ARP (RFC 826 [19])
1: RequestGeneration()
2: when MAC address for some target IP needed do
3: new ARP pkt: ARP pkt.opcode ← Request; ARP pkt.spa ← myIP;
4: ARP pkt.sha ← myMAC; ARP pkt.tpa ← targetIP; ARP pkt.tha ← ⊥;
5: broadcast ARP pkt;
6: end do
7:
8: PacketReception()
9: when ARP pkt received do

10: Merge flag ← false;
11: if ARP pkt.spa �= 0.0.0.0 ∧ ARP pkt.spa ε ARP cache then
12: corresponding ARP cache.sha ← ARP pkt.sha;
13: Merge flag ← true;
14: end if
15: if ARP pkt.tpa = myIP then
16: if ARP pkt.spa �= 0.0.0.0 ∧ not Merge flag then
17: ARP cache ← ARP cache ∪ 〈 ARP pkt.spa, ARP pkt.sha 〉;
18: end if
19: if ARP pkt.opcode = Request then
20: new ARP pkt’: ARP pkt’.opcode ← Reply; ARP pkt’.spa ← myIP; ARP pkt’.sha ←

myMAC;
21: ARP pkt’.tpa ← ARP pkt.spa; ARP pkt’.tha ← ARP pkt.sha;
22: send ARP pkt to ARP pkt.tha;
23: end if
24: end if

25: end do

equal to x. For the sake of space, in this section we just discuss the modeling of
the unsafe case; the safe model is equal to the unsafe one without the transitions
describing the pm’s behavior.2 In the following, let N be the number of hosts.

In our models, the following global variables are used: ϕ indicates the cur-
rent step of the computation, I counts the number of processes having processed
the message in the current step; sh, sp and tp correspond to the sha, spa and
tpa message fields respectively. The state of each process px is represented by
the following array variables: sm[x] indicates whether px must send a message;
cu[x] indicates whether px has processed the received message and possibly has
updated its own cache. Both sm[x] and cu[x] are boolean variables. A MitM
attack succeeds when in the ARP cache of some host h �= pv the entry corre-
sponding to pv does not contain pv’s MAC address; such a situation is modeled
by introducing the variables CM [x] and CP [x] which contain respectively the
MAC address and IP address of pv as contained in px ARP cache. For the sake
of conciseness, in the transitions below we do not display the variables whose
value stays unchanged.

The initial state satisfies:

ι1 := ϕ = 0 ∧ I = 0 ∧ sh = 0 ∧ sp = 0 ∧ tp = 0 ∧
(∀x. sm[x] = 0 ∧ cu[x] = 0 ∧ CM [x] = 0 ∧ CP [x] = 0) (1)

that is, no message is around, no process has executed the current step, all caches
do not contain any information about pv, and no process has a message to send.
2 Both source codes and results of all the models described in this work are available

at http://homes.di.unimi.it/∼pagae/ARPmodel/index.html.

http://homes.di.unimi.it/~pagae/ARPmodel/index.html

396 D. Bruschi et al.

The unsafe state capturing MitM attacks is described by the following formula:

υM := ∃z. CM [z] = m ∧ CP [z] = v (2)

that is, a process z exists whose cache entry for pv was poisoned with the value
of pm.

The first three transitions model the RequestGeneration() procedure in
Algorithm 1: we non-deterministically choose both the sender and the target of
the new message. This is written as:

τ1 := ϕ = 0 ∧ ∃x, y. x �= y ∧ ϕ′ = 1 ∧ I ′ = 1 ∧ sm′[x] = 1 ∧ cu′[x] = 1 ∧ tp′ = y

The sender parameters in the message are set in the next two transitions; in the
former the host behaves honestly, in the latter the sender is pm and generates a
poisoned Request:

τ2 := ϕ = 1 ∧ ∃x. sm[x] = 1 ∧ ϕ′ = 2 ∧ sp′ = x ∧ sh′ = x

τ3 := ϕ = 1 ∧ ∃x. sm[x] = 1 ∧ x = m ∧ ϕ′ = 2 ∧ sp′ = v ∧ sh′ = m

If the source IP is different from that of pv, a transition allows all processes to
fire – one at a time – without changes to the cache entry concerning the victim:

τ4 := ϕ = 2 ∧ sp �= v ∧ I < N ∧ ∃x. cu[x] = 0 ∧ ϕ′ = 2 ∧ I ′ = I + 1 ∧ cu′[x] = 1

The same actions are performed (τ6) when sp = v but the host is not the target
(x �= tp) and it has nothing in its cache about pv (CP [x] = 0). Otherwise, two
cases must be considered. First, the receiving process is not the target but it has
information about pv in its cache, so it updates the cache entry:

τ5 := ϕ = 2 ∧ sp = v ∧ I < N ∧ ∃x. cu[x] = 0 ∧ CP [x] > 0 ∧ x �= tp ∧
ϕ′ = 2 ∧ I ′ = I + 1 ∧ cu′[x] = 1 ∧ CP ′[x] = sp ∧ CM ′[x] = sh

Transitions τ4-τ6 model lines 10–14 of Algorithm1. By contrast, if the host is
the target (lines 15–18 of Algorithm 1), it must also generate a Reply, which is
recorded by appropriately setting its sm[x]:

τ7 := ϕ = 2 ∧ sp = v ∧ I < N ∧ ∃x. cu[x] = 0 ∧ x = tp ∧ ϕ′ = 2 ∧
I ′ = I + 1 ∧ sm′[x] = 1 ∧ cu′[x] = 1 ∧ CP ′[x] = sp ∧ CM ′[x] = sh

When all hosts processed the Request, the Reply is sent (lines 19–23 of
Algorithm 1). Two transitions describe this event: either the target generates
a honest Reply (τ8) or, if the target is pm, it may generate a poisoned Reply.
We report here just the latter; the former can be easily derived:

τ9 := ϕ = 2 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ sm[x] = 1 ∧ x = m ∧
ϕ′ = 3 ∧ I ′ = 0 ∧ tp′ = sp ∧ sp′ = v ∧ sh′ = m

Formal Verification of ARP Protocols 397

Table 1. Results for the formal verification of ARP (RFC 826)

MitM

Outcome Time (s) Max. depth # nodes SMT calls # literals

No malicious Safe 0.222 2 3 249 7

Broadcast pm Unsafe 0.211 5 12 395 10

Unicast pm Unsafe 0.150 5 12 457 10

According to [19], Replies are sent unicast (line 22 of Algorithm1); hence, the
message is processed just by the target (lines 15–18 of Algorithm 1), and after-
wards a re-initialization – leaving caches unchanged – is performed before repeat-
ing all over again:

τ10 := ϕ = 3 ∧ ∃x. x = tp ∧ ϕ′ = 4 ∧ CP ′[x] = sp ∧ CM ′[x] = sh

τ11 := ϕ = 4 ∧ ϕ′ = 0 ∧ I ′ = 0 ∧ tp′ = 0 ∧ sp′ = 0 ∧ sh′ = 0 ∧
(∀x. sm′[x] = 0 ∧ cu′[x] = 0)

Verification results. Table 1 shows the results obtained by running the described
models on an Intel Core i7 running Linux Ubuntu 14.04 64 bits. We report the
running time, the depth of the status tree, the number of tree nodes explored,
the number of calls to the SMT solver, and the maximum number of literals in
the constraint describing a node.

4 Link-Local Addresses

RFC 3927 [11] adds new functionalities to ARP for enabling the protocol to
work in local networks where hosts may automatically configure their own
network address interface, without human intervention. Address configuration
is performed by randomly choosing an IP address in the range 169.254.1.0–
169.254.254.255 and then verifying that the chosen address is not already in use
by some other host.

Algorithm 2 describes RFC 3927. All messages – both Requests and Replies –
are broadcast. A host h wishing to adopt a certain IP address ip probes it by
broadcasting a Request with spa = 0.0.0.0 – which is an invalid address so as
to avoid polluting caches if ip is already in use by another host – and tpa = ip.
If h receives an ARP message with either spa = ip, or null spa and tpa = ip, it
deduces that another host is using or probing ip and selects a different address.
Otherwise, h announces that it will use ip by broadcasting a Request with both
spa and tpa equal to ip, so as to overwrite previous ARP cache entries related
to ip. From now on, for any received packet, h compares ip against the spa
contained in the packet; if the two are equals, the address conflict detection
(ACD) procedure is executed.3 According to ACD, a host may try to defend its
3 It is worth to notice that the lack of this check allowed the MitM attack in RFC 826

against the victim itself.

398 D. Bruschi et al.

Algorithm 2. Dynamic configuration of Link-Local addresses (RFC 3927 [11])
1: Select()
2: when network interface becomes active do
3: myIP ← rand(seed(MAC, previous IP), 169.254.1.0, 169.254.254.255); Probing();
4: end do
5:
6: Probing()
7: new ARP pkt: ARP pkt.opcode ← Request; ARP pkt.spa ← 0.0.0.0;
8: ARP pkt.sha ← myMAC; ARP pkt.tpa ← myIP; ARP pkt.tha ← 0;
9: timer ← rand(0, PROBE WAIT); count ← 0;

10: repeat
11: when timeout do
12: broadcast ARP pkt; count++;
13: if count < PROBE NUM then
14: timer ← rand(PROBE MIN, PROBE MAX);
15: end if
16: end do
17: until count < PROBE NUM;
18: timer ← ANNOUNCE WAIT;
19: when (ARP pkt received s.t. (ARP pkt.spa = myIP) ∨ (ARP pkt.opcode = Request ∧

ARP pkt.spa = 0.0.0.0 ∧ ARP pkt.tpa = myIP ∧ ARP pkt.sha �= myMAC) do
20: give myIP up; LimitConflicts(); //failure!
21: end do
22: when timeout do
23: conflict num ← 0; Announce(ANNOUNCE NUM); //success!
24: end do
25:
26: Announce(limit)
27: count ← 0;
28: new ARP pkt: ARP pkt.opcode ← Request; ARP pkt.spa ← myIP;
29: ARP pkt.sha ← myMAC; ARP pkt.tpa ← myIP; ARP pkt.tha ← 0;
30: repeat
31: broadcast ARP pkt; count++; wait(ANNOUNCE INTERVAL);
32: until count < limit;
33: ConflictDetection();
34:
35: ConflictDetection()
36: while true do
37: when ARP pkt received do
38: if ARP pkt.spa = myIP ∧ ARP pkt.sha �= myMAC then
39: ACD(); //conflict!
40: else
41: ARP.PacketReception(ARP pkt); //processing according to RFC 826
42: end if
43: end do
44: end while
45:
46: LimitConflicts()
47: conflict num ++;
48: if conflict num ≥ MAX CONFLICTS then
49: timer ← RATE LIMIT INTERVAL;
50: else
51: timer ← 0;
52: end if
53: when timeout do
54: Select();
55: end do
56:
57: ACD()
58: if want to defend ∧ current time - start defend > DEFEND INTERVAL then
59: start defend ← current time; Announce(1);
60: else
61: give myIP up; start defend ← 0; LimitConflicts();

62: end if

Formal Verification of ARP Protocols 399

address at most once by sending a new Announce. If another conflict is detected,
the host dismisses its own network address and selects a new one. In case of no
conflict, the original ARP (Algorithm1) is executed.

4.1 Verification of ARP as in RFC 3927

In order to analyze this protocol, three models have been developed:

M1: Probe and Announcement messages have been added to the ARP model,
but not the address conflict detection mechanism

M2: the ACD mechanism has been modeled, with address give up in case of a
detected conflict

M3: the ACD mechanism has been modeled, by introducing the defense proce-
dure above mentioned in case a conflict is detected. When a second conflict
is detected, the host – who already defended – dismisses the used address.

For all the three models the safety with respect to MitM attacks has been ana-
lyzed; for M2 and M3 we also investigated the safety property with respect to
DoS attacks. No cache expiration is considered.

For the sake of space, we describe here just the more complex model, i.e. M3,
and we focus on the new features introduced with respect to the ARP model
as described in Sect. 3.1. This new model includes an additional global variable
GA whose value indicates the type of message considered: Probe (1), Announce
(2), Request (3), or unsolicited Reply (4) – not corresponding to any Request
– from pm. Additional local variables are: st[x] which indicates the state of a
host, that is, if it has to send the Probe (0), or the Announce (1), or its IP
address is configured and it may send Requests (2). pm may send any message
independently of its own state. The variable cd[x] indicates whether this is the
first time that the host has detected a conflict and must thus defend. The variable
gu[x] indicates how many times a host gives up its current address. The new
initial state is defined as:

ι2 := ι1 ∧ GA = 0 ∧ (∀x. gu[x] = 0 ∧ cd[x] = 0 ∧ st[x] ≥ 0 ∧ st[x] ≤ 2)

where ι1 is defined in Eq. (1). This formula provides the maximum generality
as it does not force any initial state to the network hosts. The unsafe state for
MitM, υM , is defined as in Eq. (2).

DoS attacks can be modeled by an host that dismisses its address an indef-
inite number of times. Yet, this is actually a liveness property that cannot be
verified with the adopted technique. Hence, we shall re-write it as a weaker safety
property, whose negation is:

υD := ∃z. gu[z] ≥ threshold (3)

for some finite value of threshold. This is weaker than a DoS attack, as it says
that a host dismisses its address a finite number of times. We discuss this aspect
in more detail at the end of this section, when analyzing the verification results.

400 D. Bruschi et al.

A description of the model now follows. In the first six transitions, we describe
the event to be reproduced, amongst either generation of Probe, Announce or
Request issued by a host,4 or generation of an Announce, Request or unsolicited
Reply from pm. For the sake of space, we report here just the more complex
case, that is, the generation of a Request:

τ3 := ϕ = 0 ∧ ∃x. st[x] = 2 ∧ ϕ′ = 1 ∧ I ′ = 1 ∧ GA′ = 3 ∧ sm′[x] = 1 ∧
cu′[x] = 1 ∧ sh′ = x ∧ sp′ = x

τ7 := ϕ = 1 ∧ ∃x, y. x �= y ∧ sm[x] = 1 ∧ ϕ′ = 2 ∧ I ′ = 1 ∧ sm′[x] = 0 ∧
cu′[x] = 1 ∧ tp′ = y ∧ sp′ = x ∧ sh′ = x

The former transition selects the source while the latter selects the target. All
other cases are modeled in one step, as just the source identifier must be indicated
in the message, and lead to transitions guarded by ϕ = 2. Similarly for pm’s
messages, where always sp′ = v ∧ sh′ = m.

Subsequently, there are eight transitions modeling the processing of the mes-
sage generated by one of the first six transitions. The following cases are mod-
eled as in the case of ARP (Sect. 3.1): (τ8) Request processing when sp �= v; (τ9)
sp = v and the host is not the target but can update the cache; (τ10) sp = v
and the host is not the target and cannot update the cache; (τ11) sp = v and
the host is the target (but not the victim) that generates a Reply. Other four
cases involve the victim in case the message is poisoned: pv is the target of the
message and detects the conflict; if this is the first conflict then it defends its
address (τ13), otherwise it discards the address (τ12). Or, pv detects the conflict
but it is not the target. We analyze in more detail these latter cases, as they are
more complex since two messages have to be modeled: both the target Reply
and the victim defense.

The two messages cause different cache updates: if the target is different from
pv, its reply does not change the cache entries concerning the victim. Hence, they
can be processed in whatever order, and we decided to model the processing of
the Reply first. In case pv renounces, the following transition applies:

τ15 := ϕ = 2 ∧ I < N ∧ sp = v ∧ ∃x. cu[x] = 0 ∧ x �= tp ∧ x = v ∧ cd[x] > 0
∧I ′ = I + 1 ∧ sm′[x] = 3 ∧ cu′[x] = 1 ∧ gu′[x] = gu[x] + 1 ∧ cd′[x] = 0

The value of sm[x] is not changed afterwards and allows to remember – once
all hosts have processed the Reply – that the victim has changed its address;
cd′[x] is reset because the victim is dismissing its current address, and it has
not observed any conflict on the new address it is going to adopt. By contrast,
in case pv defends (cd[x] = 0), the transition τ14 is applied; such a transition is
conceptually equal to τ15 apart for the assignments sm′[x] = 5 and cd′[x] = 1.

As for ARP, once all hosts processed the Request, the Reply is sent in broad-
cast, and consequently processed by all hosts. Four transitions (τ23-τ26) replicate
for the Reply the same cases as for the Request modeled by transitions τ8-τ11
4 Also pm, who may nondeterministically behave honestly.

Formal Verification of ARP Protocols 401

above described. Transitions τ27-τ28 describe the cases in which pv observes a
poisoned Reply – generated by the malicious – and it either renounces or defends.

In the case pv is the target of the Request and defends, no Reply is generated
and the system goes to the defense modeling (fired by sm′[x] = 4). The defense
is modeled by the following transitions:

τ18 := ϕ = 2 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ sm[x] = 4 ∧ ϕ′ = 4 ∧ I ′ = 1 ∧ sm′[x] = 0
∧cu′[x] = 1 ∧ tp′ = v ∧ sp′ = v ∧ sh′ = v ∧ (∀y.y �= x ∧ cu′[y] = 0)

τ19 := ϕ = 4 ∧ I < N ∧ ∃x. cu[x] = 0 ∧ CP [x] > 0 ∧ I ′ = I + 1 ∧
cu′[x] = 1 ∧ CM ′[x] = sh ∧ CP ′[x] = sp

The former describes the generation of the Announce after all hosts processed
the Request. The latter describes the processing of the Announce on behalf of
the receiving hosts having information for pv. A transition τ20 describes the case
of a host receiving an Announce but not having a cache entry for pv, and thus
skipping any processing. When all hosts processed the Announce, the system
can restart:

τ31 := ϕ = 4 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ (∀y.sm[y] = 0) ∧ ϕ′ = 0 ∧ I ′ = 0 ∧
GA′ = 0 ∧ sm′[x] = 0 ∧ cu′[x] = 0 ∧ tp′ = 0 ∧ sp′ = 0 ∧ sh′ = 0

The untouched variables are the cache, the state, the record of giveups and
defenses occurred so far. A similar re-initialization is performed every time noth-
ing harmful occurred. Transitions similar to τ18-τ20 above apply when the target
is different from pv and all hosts already processed the Reply, and are fired by
guards containing sm[x] = 5.

By contrast, if pv renounces, this is modeled by a transition like this (triggered
after all hosts processed a possible Reply):

τ29 := ϕ = 3 ∧ I ≥ N ∧ ∃x. cu[x] = 1 ∧ sm[x] = 3 ∧ ϕ′ = 0 ∧ I ′ = 0 ∧
GA′ = 0 ∧ sm′[x] = 0 ∧ cu′[x] = 0 ∧ sp′ = 0 ∧ sh′ = 0 ∧ tp′ = 0 ∧
(∀y. CM ′[y] = 0 ∧ CP ′[y] = 0)

which records that no host has information concerning the new address pv is
going to adopt.

Verification results. The first three lines in Table 2 show the outcome (Safe or
Unsafe) obtained by running the described models for RFC 3927, and the running
time; for DoS attack, a threshold = 5 was used. If no malicious host exists, the
protocol is safe with respect to the MitM attack. By contrast, one malicious host
sending either broadcast or unicast messages is able to pollute other processes
caches. The three models reveal the impact of the different mechanisms adopted
for ACD.

In M1, no ACD mechanism is implemented, that is, hosts do not check the
spa field in incoming ARP messages. Hosts never dismiss their address and the

402 D. Bruschi et al.

Table 2. Results of the verification of RFC 3927 (M1, M2, M3) and RFC 5227 (M4)

MitM DoS

no pm bcast pm ucast pm no pm bcast pm ucast pm

M1 [S] 0.392 s [U] 0.260 s [U] 0.379 s – – –

M2 [S] 0.268 s [U] 0.439 s [U] 0.311 s [S] 0.330 s [U] 44.85 s [U] 104.93 s

M3 [S] 0.380 s [U] 0.417 s [U] 0.409 s [S] 0.419 s [U] 843.2 s [U] 1716.8 s

M4 [S] 0.306 s [U] 0.401 s [U] 0.415 s – – –

DoS attack cannot occur. By contrast, MitM may happen, and a counterexample
provided by the prover – with pm sending broadcast messages – consists in the
following sequence of events: pm generates an Announce with sp = v, sh = m
and tp = v. Any host h receiving it (the victim included) updates its cache
with CM [h] ← m and CP [h] ← v. When pm sends unicast messages, the MitM
attack is achieved with pm sending a poisoned Request to a target that records
the fake information in its own cache.

In M2, the protocol is proved unsafe with respect to MitM, and the following
counterexample is supplied by the prover for pm sending broadcast messages: pm

generates a poisoned Request to a random target h �= pv, containing sp = v and
sh = m; the target records in its cache CM [h] ← m and CP [h] ← v. It is worth
notice that the models do not capture the temporal duration of the attack, that
is, the unsafe outcome of the model for MitM in M2 lasts for the time needed by
pv to configure a new IP address. Afterwards, entries still existing in some caches
and coupling the MAC of pm with the dismissed IP of pv are refreshed as soon
as pv sends its own first Announce with its new address, and starts using it. By
contrast, with ARP [19] the attack may last indefinitely. Similarly, if pm sends
unicast messages, the unsafe sequence of events is the same as for M1 above, the
victim is unaware of the problem and never raises a conflict detection event.

In M2, the verification of the possibility of a DoS attack has been conducted
with different values of threshold (see Eq. (3)). With threshold 20 and no con-
straints on the number of hosts, a sequence of 78 events is produced as counterex-
ample, which clearly shows loops (Fig. 1): pm sends an unsolicited (broadcast)
poisoned Reply to a random target; pv receives it and gives up. Afterwards, pv

takes another address but pm sends a poisoned Announce with tp = v, sp = v,
sh = m; pv (which owns the target IP address) detects the conflicts and gives
up again. The existence of loops shows that a sequence of events exists such that
the host may indefinitely dismiss its address, thus implying that the DoS attack
holds. With threshold = 20, running times were of 434.9 s. and 1171.6 s. for the
broadcast and unicast case respectively.

In M3, MitM may arise and the counterexample supplied by the prover,
when pm generates broadcast messages, is the following: pm generates a poi-
soned base Request to a random target h, with sh = m and sp = v; the target
receives such a Request and sets in its cache CM [h] ← m and CP [h] ← v. The
cache poisoning lasts until the victim defends by announcing its new IP address.

Formal Verification of ARP Protocols 403

Fig. 1. M2 - Event loop in the verification of DoS attack for RFC 3927.

The unsafe sequence of events for pm sending unicast messages is the same as
for M1 and M2 above, and the same considerations apply. The verification of the
DoS possibility is harder than before, due to the fact that a renounce may occur
just after a previous conflict detection which the host coped with by defending.
Hence, the sequences of events are longer and the prover has to explore a larger
tree of possible sequences of events with more nodes of higher depth. Yet, with
no constraints on the number of processes, we were able to achieve an unsafe
outcome for υD with threshold = 5; the prover supplied a sequence of events of
length 49 involving a loop (Fig. 2). As for M2, the loop implicitly shows that the
DoS attack may verify.

Fig. 2. M3 - Event loop in the verification of DoS attack for RFC 3927.

The highest computation complexity is reached by the M3 model verifying
DoS, with pm generating unicast messages: the maximum depth of the status
tree is 49, the number of explored tree nodes is 8180, and 1355491 calls to the
SMT solver are performed; the longest formula involves 26 literals. For the sake
of space, all the results are reported in our website for interested readers.

5 Extended ARP: Address Conflict Detection

In order to deal with misconfigurations, RFC 826 [19] was further updated by
RFC 5227 [10] which, with respect to RFC 3927, introduced a more aggres-
sive Address Conflict Detection (ACD) mechanism. For the sake of brevity, in
this section we just describe the differences with the latter, taking as reference
Algorithm 2. According to RFC 5227, in the Select() procedure an address is
assigned to a host in one out of three ways, namely: a static address is config-
ured by a network administrator, or a dynamic address is supplied by either a

404 D. Bruschi et al.

DHCP server or the Link-Local mechanism. Then, the Probing() procedure is
run every time an interface is configured or booted. In RFC 5227, in case of
conflict detection a host may (i) cease to use its IP address, or (ii) defend its
address once, or (iii) defend its address indefinitely. In cases (i)-(ii), the behavior
is exactly as in RFC 3927. Case (iii) is adopted e.g. when the host is a server
needing to maintain its well-known stable address, and is not included in RFC
3927. In this case, the Announce procedure is called with limit = 1, and then
the host continues using its IP address ignoring further conflicts. The ACD()
procedure is modified accordingly, while the other procedures are equal in the
two standards.

As a consequence of the above, cases (i)−(ii) are modeled by the M2 and
M3 described in Sect. 4.1, while case (iii) is modeled by an additional model M4
obtained from M3 by modifying the transitions where the victim dismisses its
IP address so that the victim just fires without performing further actions.

Verification results. The last line of Table 2 reports the results obtained by run-
ning M4. The DoS attack cannot occur as hosts never dismiss their IP addresses.
The sequence of events describing a MitM attack is the same whether pm sends
broadcast or unicast messages: pm sends a poisoned Request to a target that pol-
lutes its cache by recording the fake information. In the former case, the victim
detects the conflict the first time and sends an Announce. Afterwards, it ignores
the conflicts, and the malicious host may continue sending poisoned messages
while the victim does not take any action.

6 Conclusions

In this paper, the modeling and formal verification of the three standard proto-
cols for address resolution in Internet is described. The relevance of our work lies
in two main achievements: first, under a practical point of view, our experiments
formally show the weaknesses of currently adopted technologies with respect to
security aspects, thus providing formal foundation to well known phenomena dis-
covered and exploited by the underground community since many years. Second,
the work highlights the maturity of existing formal approaches and tools in ver-
ifying the safety and correctness of real distributed systems. These approaches
have been so far validated with several problems, included other network pro-
tocols (e.g. [7,17]). Yet, to the best of our knowledge, this is the first time that
these techniques are applied to the analysis of ARP, with excellent results: the
verification was possible for all deployed models, for any number N of system
components, and within acceptable computation time.

In the future, we plan to apply these techniques to the verification of algo-
rithms proposed in the literature but not yet standardized aiming at securing
ARP – thus contributing to the development of safer networks – as well as pos-
sibly to other Internet protocols.

Formal Verification of ARP Protocols 405

References

1. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model check-
ing without transducers (on efficient verification of parameterized systems). In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 56

2. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 28

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28644-8 3

4. Alqahtani, A.H., Iftikhar, M.: TCP/IP attacks, defenses and security tools. Int. J.
Sci. Mod. Eng. (IJISME) 1(10) (2013)

5. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005). doi:10.1007/11562948 35

6. Bellovin, S.M.: Security problems in the TCP/IP protocol suite. ACM SIGCOMM
Comput. Commun. Rev. 19(2), 32–48 (1989)

7. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

8. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

9. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-27813-9 29

10. Cheshire, S.: IPv4 Address Conflict Detection. RFC 5227, July 2008
11. Cheshire, S., Aboba, B., Guttman, E.: Dynamic Configuration of IPv4 Link-Local

Addresses. RFC 3927, May 2005
12. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Invariants for finite

instances and beyond. In: Proceedings of FMCAD (2013)
13. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-

based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 55

14. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model checking of
array-based systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 6

15. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14203-1 3

16. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: termination and invariant synthesis. J. Log. Methods Comput. Sci. 6(4)
(2010)

17. Islam, S.M.S., Sqalli, M.S., Khan, S.: Modeling and formal verification of DHCP
using SPIN. Int. J. Comput. Sci. Appl. 3(6), 145–159 (2006)

http://dx.doi.org/10.1007/978-3-540-71209-1_56
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-540-28644-8_3
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.1007/978-3-540-27813-9_29
http://dx.doi.org/10.1007/978-3-642-31424-7_55
http://dx.doi.org/10.1007/978-3-540-71070-7_6
http://dx.doi.org/10.1007/978-3-540-71070-7_6
http://dx.doi.org/10.1007/978-3-642-14203-1_3

406 D. Bruschi et al.

18. Alford, M.W., Ansart, J.P., Hommel, G., Lamport, L., Liskov, B., Mullery, G.P.,
Schneider, F.B.: Formal foundation for specification and verification. In: Paul, M.,
et al. (eds.) Distributed Systems. LNCS, vol. 190, pp. 203–285. Springer, Heidelberg
(1985). doi:10.1007/3-540-15216-4 15

19. Plummer, D.C.: An Ethernet Address Resolution Protocol - or - Converting Net-
work Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet
Hardware. RFC 826, November 1982

20. Wagner, R.: Address Resolution Protocol Spoofing and Man-in-the-Middle
Attacks. The SANS Institute, Reston (2001)

http://dx.doi.org/10.1007/3-540-15216-4_15

Certified Password Quality

A Case Study Using Coq and Linux Pluggable
Authentication Modules

João F. Ferreira1,2(B), Saul A. Johnson1, Alexandra Mendes1,
and Phillip J. Brooke1

1 School of Computing, Teesside University, Middlesbrough TS1 3BX, UK
joao@joaoff.com, {Saul.Johnson,A.Mendes}@tees.ac.uk, pjb@scm.tees.ac.uk

2 HASLab/INESC TEC, Universidade do Minho, 4704-553 Braga, Portugal

Abstract. We propose the use of modern proof assistants to specify,
implement, and verify password quality checkers. We use the proof assis-
tant Coq, focusing on Linux PAM, a widely-used implementation of plug-
gable authentication modules for Linux. We show how password quality
policies can be expressed in Coq and how to use Coq’s code extraction
features to automatically encode these policies as PAM modules that can
readily be used by any Linux system.

We implemented the default password quality policy shared by two
widely-used PAM modules: pam cracklib and pam pwquality. We then
compared our implementation with the original modules by running them
against a random sample of 100,000 leaked passwords obtained from a
publicly available database. In doing this, we demonstrated a potentially
serious bug in the original modules. The bug was reported to the main-
tainers of Linux PAM and is now fixed.

Keywords: Password quality · Password policy · Verification · Secu-
rity · Authentication · Coq · Proof assistant · Theorem prover · Linux ·
PAM

1 Introduction

Password quality is essential to keeping any password-protected system secure.
If a password is easy to guess and an attacker gains authenticated access as
a result, any security measures deployed to restrict access by unauthenticated
users become irrelevant. From the perspective of the system, the attacker is
indistinguishable from the legitimate user.

Without an enforced password quality policy, passwords created by users
tend to be weak [11]. A password quality policy may mandate, for example,
that all user passwords contain a mixture of upper case, lower case, and numeric
characters in order to maximise the search space that a brute-force algorithm
would need to examine in order to correctly guess a user’s password. It is critical
that the software that enforces these policies (the password quality checker) is
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 407–421, 2017.
DOI: 10.1007/978-3-319-66845-1 27

408 J.F. Ferreira et al.

Fig. 1. An overview of the process of creating a verified PAM module.

both correct and configurable to keep up with the large body of ongoing research
into password policy best-practises [7,28,32].

The importance of password quality checkers makes them an ideal candidate
for formal verification. Using recent advances in code generation from theorem
provers, it is now possible to transform high-level verified functional implemen-
tations into certified code that can be used in place of unverified procedural
code to perform password quality checking. We therefore propose the use of
modern proof assistants to formally verify password quality checkers. To demon-
strate this, we use the Coq proof assistant [3] to specify, implement, and verify
password quality checkers. We focus on Linux PAM [25,26], a widely-used imple-
mentation of pluggable authentication modules (PAM) for Linux. We show how
we can define password quality policies in Coq and automatically encode them
as Linux PAM modules that can readily be used. We document the process of
extracting verified password quality assessment functions from a verified Gal-
lina code base (Coq’s specification language) into Haskell [19] and calling them
via the Haskell foreign function interface (FFI) [13] from a driver written in
C. Figure 1 provides an overview of this process. We implemented several PAM
modules that perform password quality checking using verified code. In partic-
ular, we implemented a module identical to the default behaviour shared by
two widely-used PAM modules designed to act as password quality checkers on
Linux systems: pam cracklib and pam pwquality. In doing this, we demonstrated
a potentially serious bug in the original PAM modules. The bug was reported
to Linux PAM’s maintainers and is now fixed.

In Sect. 2, we discuss password quality checking software, focusing on Linux
PAM. Section 3 is about the use of Coq to specify, implement, and verify pass-
word quality checkers. We evaluate our work in Sect. 4 by comparing our imple-
mentation with pam cracklib and pam pwquality. We also demonstrate that the
flexibility of our approach allows users to create verified password policies quickly
and easily. After presenting related work in Sect. 5, we conclude the paper in
Sect. 6.

Certified Password Quality 409

2 Password Quality Checking Software

Password quality checking refers to techniques used to ensure that users do not
create passwords that are vulnerable to brute-force attacks or guessing by a
party with access to basic information about the user. For example, a user may
be unable to create a password that is identical to their user name or email
address, or that is too short. A range of other issues relate to passwords such
as memorability, storage of passwords on systems, and other means to obtain
passwords (such as snooping). We do not address these further in this work.

Password quality checking software often requires that an administrator pro-
vide a password quality policy which specifies the minimum characteristics of an
acceptable password. A significant body of research is emerging that challenges
conventional wisdom about what constitutes a secure password [28,32].

Linux PAM. We focus on Linux PAM [25,26], a widely-deployed open-source
application that pulls together multiple authentication-related modules into one
high-level API, allowing application developers to create programs that rely
on various authentication services independently of the underlying implementa-
tions. Two well-known PAM modules that are used to indicate password quality
are pam cracklib and pam pwquality. Both modules are written in C, use the
same backend, and define the same default password quality policy (see Fig. 2).
Figure 3 shows the type of code used in these modules to check whether a pass-
word is palindromic. Figure 3a shows a pure function named palindrome that
returns 1 if the password given is a palindrome and 0 otherwise; Fig. 3b shows how
the top-level function password check uses palindrome to check if the new password
is a palindrome (msg and are used for error control and internationalisation purposes
respectively).

Since these modules are enabled by default in many popular Linux distributions,
they are widely deployed. For example, in Red Hat Enterprise Linux 7 and in CentOS
7, the pam pwquality PAM module replaced pam cracklib, which was used up to version
6 as a default module for password quality checking [17]. It is estimated that CentOS is

Passwords must:
– Not be identical to the previous password, if any.
– Not be palindromic.
– Not be a rotated version of the old password, if any.
– Not contain case changes only in relation to the previous password, if any.
– Have a Levenshtein distance of 5 or greater from the previous password, if any (difok=5).
– Be at least 9 characters long (minlen=9), however:
• Passwords may be 1 character shorter if they contain at least 1 lower case letter (lcredit=1).
• Passwords may be 1 character shorter if they contain at least 1 upper case letter (ucredit=1).
• Passwords may be 1 character shorter if they contain at least 1 digit character (dcredit=1).
• Passwords may be 1 character shorter if they contain at least 1 other character (ocredit=1).
• This shortening of minimum length will stack, making for a minimum length of 9 - 4 = 5 for

passwords containing all 4 classes.
• Effective minimum length is, then M = m − c where M is the effective minimum length, m is

the configured minimum length and c is the number of character classes present in the string.

Fig. 2. Default policy implemented by pam cracklib and pam pwquality.

410 J.F. Ferreira et al.

static int palindrome(const char *new)
{

int i, j;
i = strlen(new);

for (j = 0;j < i;j++)
if (new[i - j - 1] != new[j])

return 0;

return 1;
}

(a) The palindrome function checks
whether the argument string is palin-
dromic.

static const char *password_check(
pam_handle_t *pamh,
struct cracklib_options *opt,
const char *old, const char *new,
const char *user)

{
[...]
newmono = str_lower(strdup(new));
[...]

if (!msg && palindrome(newmono))
msg = _("is a palindrome");

[...]
}

(b) The password_check function calls the
function palindrome to check whether the
proposed new password is palindromic.

Fig. 3. Two functions from pam cracklib.c, one pure with only the new password
accepted as a parameter, and one which drives the password checking process.

one of the most popular Linux distributions for web servers and is installed on millions
of these worldwide1.

3 Verified Password Quality in Coq

We now describe how we use Coq to specify, implement, and verify password checkers.
We implement checkers as pure functional programs and demonstrate Coq’s flexibility
by showing different ways to specify them: often, we consider the functional programs
to be functional (executable) specifications, but we can also specify checkers by theorem
or by property (i.e. axiomatically). We conclude this section by describing how verified
functional implementations can be extracted as Haskell code and linked with PAM
modules that can be readily used.

3.1 Types and Password Checkers

In our model, we consider passwords to be Coq strings:

Definition Password := string.

Password checkers can be seen as functions from strings to booleans (e.g. the function
palindrome in Fig. 3a is such a function). However, we want password checkers to take
into consideration more elements, such as the previous password or the user’s name
(see the signature of password check in Fig. 3b).

In our model, we consider the user’s previous password and we encode this infor-
mation in the type PasswordTransition:

Inductive PasswordTransition : Set :=
PwdTransition : (option Password) -> Password -> PasswordTransition.

1 See, for example, https://w3techs.com/technologies/details/os-linux/all/all, and
http://www.computerworld.com/article/2468596/network-software/the-most-
popular-linux-for-web-servers-is----.html.

https://w3techs.com/technologies/details/os-linux/all/all
http://www.computerworld.com/article/2468596/network-software/the-most-popular-linux-for-web-servers-is----.html
http://www.computerworld.com/article/2468596/network-software/the-most-popular-linux-for-web-servers-is----.html

Certified Password Quality 411

An element of the type PasswordTransition represents an old password being changed
into a new password. The old password is optional: if a user changes their password,
the previous password is available as it must be entered to proceed; if an administrator
changes the password of a user, that information is unlikely to be available. With
these types defined, a password checker can be described as a function that takes a
PasswordTransition and either succeeds or returns some error message. We define the
type of a password checker as:

Definition CheckerResult := option ErrorMsg.

For example, a password checker that prevents passwords from being palindromes can
be defined as:

Definition not_palindrome (pt : PasswordTransition) : CheckerResult :=
if palindrome (new_pwd pt) then

BADPWD: "The new password is a palindrome."
else

GOODPWD.

This defines a new password checker named not palindrome whose behaviour is quite
simple: if the new password (new pwd pt) is a palindrome, then it should be rejected
(with a specific error message). This checker depends on the function palindrome,
which is discussed in the next subsection.

The reserved keywords BADPWD and GOODPWD are defined as symbolic abbreviations
denoting the appropriate elements of type CheckerResult:

Notation GOODPWD := None.
Notation "BADPWD: msg" := (Some msg).

The palindrome checker uses only the new password and not the old password. This is
not the general case: e.g., the old password is required when we do not want the new
password to be a prefix of the old password (or vice-versa):

Definition prefix_old_pwd (pt : PasswordTransition) : CheckerResult :=
NEEDS old_pwd FROM pt

if (prefix (old_pwd pt) (new_pwd pt)) ||
(prefix (new_pwd pt) (old_pwd pt))

then
BADPWD: "The new password is a prefix of the

old password (or vice-versa)"
else

GOODPWD.

This password checker returns an error if the old password (old pwd pt) is a prefix
of the new password (new pwd pt) or vice-versa. The checker depends on the function
prefix, which is discussed in the next subsection. The body of this checker is prefixed
by a new construct expressing that the old password is required to define the checker:
NEEDS old pwd FROM pt. The definition of NEEDS means that if the old password is
undefined (e.g. if the administrator is changing the password of a normal user), then
the check is disabled. Further, the function old pwd is being exposed to the checker as
a local function. This provides a safer way to access the old password, because using
old pwd pt without prefixing it with the NEEDS construct will result in a type error
(caught at compilation time). In other words, the function old pwd is only available in

412 J.F. Ferreira et al.

contexts where the old password is defined, thus avoiding conditional boilerplate code
that checks whether the old password is defined.

3.2 Specification, Implementation, and Proofs

An advantage of defining password checkers in a proof engineering environment such
as Coq is that we can prove properties about implementations. For example, if we want
to prove that prefix old pwd is skipped when the old password is undefined, we can
state and prove a lemma as follows:

Lemma prefix_old_pwd_undefined: forall (pt: PasswordTransition),
old_pwd_is_undefined(pt) = true -> prefix_old_pwd(pt) = GOODPWD.

Proof.
intros. unfold old_pwd_is_undefined in H.
(* Case analysis *)

destruct pt. destruct o.
(* Case 1 (trivial): old password is defined *)

- congruence.
(* Case 2: old password is undefined *)

- unfold prefix_old_pwd. simpl. auto.
Qed.

The lemma simply states that if the old password is undefined2, then the checker
prefix old pwd is disabled (i.e. it accepts all passwords). The proof is by case analysis
and is made simple by using tactics such as congruence, simpl, and auto.

In the context of our work, the most important aspect to verify is func-
tional correctness. We have seen above that password checkers are functions from
PasswordTransition to CheckerResult that normally depend on inner pure functions.
For example, the checker not palindrome depends on palindrome and prefix old pwd

depends on prefix. In general, when defining password checkers, we are interested in
proving that the inner pure functions are correct. In the remainder of this section,
we discuss different approaches to specify password checkers. The point of showing
different specification approaches is to demonstrate that writers of verified password
checkers can use their preferred style of specification (e.g. functional programmers will
probably prefer to write functional executable specifications).

Functional (executable) Specifications. As we are using a high-level functional
programming language to encode password checkers, we can give direct implementa-
tions of constructive or executable specifications [30,31]. E.g., the following definition
of palindrome acts both as specification and implementation:

Definition palindrome (s : string) : bool :=
s ==_s (string_reverse s).

This definition is an implementation (i.e. it can be executed), but it also describes
the notion of palindrome: an arbitrary string s is a palindrome if and only if s is the
same as its reverse. Most programmers would be satisfied with this specification, but
because we are in a proof engineering environment, we can prove further properties;

2 old pwd is undefined(pt) is defined to return true when the old password is unde-
fined and false otherwise.

Certified Password Quality 413

an example is the following lemma stating that the function that reverses a string is
involutive.

Lemma string_reverse_involutive : forall (s : string),
string_reverse (string_reverse s) = s.

Proof.
induction s as [| c s’].
(* Base case *)

- simpl. reflexivity.
(* Inductive step *)

- simpl. rewrite (string_reverse_unit (string_reverse s’) c).
rewrite IHs’. auto.

Qed.

The proof is by induction and uses the lemma string reverse unit, which states that
for all strings s and characters c, we have:

string reverse(string append(s, c)) = string append(c, string reverse(s))

Specification by Theorem. A proof assistant like Coq also allows us to specify
functions by capturing their specifications as theorems. E.g., the function prefix, used
in the password checker prefix old pwd, can be specified as:

Theorem prefix_correct : forall s1 s2 : string,
prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1.

This theorem states that a string s1 is a prefix of a string s2 if and only if s1 is the
substring of length length s1 starting at position 0 of s2 (i.e., for k = length s1,
the string composed by the k leftmost characters of s2 is s1). This is proved in Coq’s
standard library.

Specification by Property. Strong specifications usually demand a greater prov-
ing effort: proofs are normally more complex and it is often the case that deeper
knowledge of the proof assistant is required.

In some cases, it may be easier or desirable to prove properties that do not fully
specify the implementation, but nevertheless increase our confidence in its correctness.
For example, suppose that we define the Hamming distance [14,15] between two strings
of equal length as follows:

Fixpoint hamming_distance (a b : string) : option nat :=
match a, b with

| EmptyString, EmptyString => Some 0
| String ca a’, String cb b’ =>

match hamming_distance a’ b’ with
| None => None
| Some n => Some ((nat_of_bool (negb (ca ==_a cb))) + n)

end
| _, _ => None

end.

414 J.F. Ferreira et al.

Instead of fully specifying this function, we increase our confidence in this implemen-
tation by proving properties the Hamming distance satisfies. For example:

Lemma hamming_distance_undefined_for_different_lengths : forall (a b : string),
length a <> length b <-> hamming_distance a b = None.

Lemma hamming_distance_defined_for_same_length : forall (a b : string),
length a = length b -> hamming_distance a b <> None.

Lemma hamming_distance_zero_for_identical : forall (s: string),
hamming_distance s s = Some 0.

3.3 Password Policies and Code Extraction

Our framework mimics the behaviour of the PAM modules pam cracklib and
pam pwquality in that password quality policies are lists of password checkers executed
successively. E.g., the policy shown in Fig. 2 is defined as follows:

Definition pwd_quality_policy :=
[diff_from_old_pwd ; not_palindrome ; not_rotated ;

not_case_changes_only ; levenshtein_distance_gt 5 ;
credits_length_check 8].

This list, together with all its contents, is extracted into Haskell code by using Coq’s
code extraction mechanism [24]. Finally, the extracted Haskell code is linked with a C
driver to create a PAM module that calls the Haskell code via Haskell’s foreign function
interface (FFI) [13]. In short, the C code calls each password checker with a password
transition and reports the result to the user.

4 Evaluation

In this section, we evaluate our work by comparing the newly implemented verified
PAM module to the original in terms of behaviour, performance, and compiled exe-
cutable size. We describe the bug discovered in the original module, and demonstrate
that the flexibility of our approach allows users to create verified password policies
quickly and easily.

4.1 Experimental Setup

Using Vagrant, a virtual machine running Ubuntu 16.04 “Xenial” 64-bit with Coq v8.6
and the Glasgow Haskell Compiler v7.10.3 installed was created to provide a consistent
testing environment [23]. An unmodified instance of this machine was used for every
test run.

A random sample of 100,000 passwords was obtained from a publicly available
database of ten million leaked passwords [5] using a Python script. An instance of the
test machine was then configured to use each module in turn as the password quality
checker for its native passwd executable, which handles user password changes. A set
of shell scripts was created to run each password through this executable one at a time
and record the results, which consist of feedback from the active PAM module about

Certified Password Quality 415

the strength of the submitted password. As the script terminates passwd after the first
password entry, no actual password change was performed as the password must be
entered twice (for confirmation) in order to effect one. Importantly, the passwords were
checked on their own merit and not in the context of a password change; that is, the
old password in use before the attempted password change was not taken into account
during password quality checking. As a result of this, any password quality checks that
compare the new password to the old password in any way were not in effect. This raw
data was passed through a Python script which consolidated it into a CSV file ready
for further analysis using spreadsheet software.

The behaviour of the verified module was then compared to the original module. All
dictionary checks were disabled in the original module (and omitted from the verified
module) prior to testing. All source code was maintained under source control on
GitHub [22].

4.2 Experiment 1: Comparison with PAM Modules pam cracklib
and pam pwdquality

The verified PAM module was first configured and built to implement the default
policy shared by both pam cracklib and its successor pam pwquality (shown in Fig. 2
and encoded as shown in Sect. 3.3).

As expected, the verified module behaved identically to the original, accepting
56574 of the passwords in the database (that is, deeming them secure enough) with
absolute consistency between them (i.e. the same passwords were accepted or rejected).

Aside from the behaviour of the module itself and whether or not it is written
using verified code, there are other factors that may be considered when deciding on
the most suitable module to use on any one system. For example, performance and
executable size. In order to compare the performance of the verified module to the
original module, each run of passwd during the experiment was timed and averaged to
calculate an average checking time per password (Table 1).

Table 1. Average execution time for each test run.

Module Description Avg. time

pam cracklib nodict Original C implementation of pam cracklib
with dictionary check disabled

0.00926278 s

pam basic pwd policy Verified module built with the default
pam cracklib default policy enabled
(without dictionary check)

0.011845369 s

The average checking time for the verified module is around 1.28 times that of
the unverified C module in all cases, but this difference is not as drastic as had been
anticipated, considering that many algorithms in use within the verified module are
not nearly as efficient as those in the original (compare the inefficient — yet easier
to reason about — definition of palindrome shown in Sect. 3.2 to the implementation
shown in Fig. 3a).

With regard to executable size, it is unsurprising that the compiled verified module
is significantly larger than the original module (Table 2). The verified module is linked

416 J.F. Ferreira et al.

against several dependencies from both the Haskell and C standard libraries. The
authors recognise, however, that on non-critical storage-constrained systems, it may be
inconvenient to use an executable around 9 times the size of its unverified counterpart
when its behaviour is expected to be identical.

Table 2. File size comparison between the original and verified modules.

File name Description File size

pam cracklib nodict.so Original C implementation of pam cracklib
with dictionary check disabled

22384 bytes

pam basic pwd policy.so Verified module built with the default
pam cracklib default policy enabled
(without dictionary check)

189688 bytes

4.3 Experiment 2: Increasing Password Entropy

Research into password complexity [16] has shown that it may become almost ubiqui-
tously mandatory for users to create longer passwords that contain a good mixture of
uppercase and lowercase letters, numbers, and symbols. It would not be unreasonable,
then, for a system administrator to enforce a policy mandating that no passwords have
more than two characters of the same class (i.e. type) in a row in an effort to boost
entropy (see Table 3 for examples).

Table 3. Example of the status of different hypothetical passwords under the proposed
policy.

Password Accepted Reason

1234Password No More than one number in a row, more than
one lowercase letter in a row

1Ll4m4!Gg Yes No more than one number, uppercase letter,
lowercase letter or symbol in a row

correcthorsebatterystaple No More than one lowercase letter in a row

Ab4kUs#! No More than one symbol in a row

In order to accomplish this using pam cracklib, the maxclassrepeat option must be
set to 1. After configuring the original pam cracklib and the verified module in this way
(using the policy from Fig. 2 with the additional constraint that no two consecutive
characters may be of the same class), the test was run again over the same password
database. In this case, the modules did not perform identically.

While the verified module predictably accepted only a tiny minority (371) of pass-
words, the original module exhibited exactly the same behaviour as before and accepted

Certified Password Quality 417

56574 passwords. This result demonstrated the effects of a bug in pam cracklib, specif-
ically a check done inside pam cracklib.c on line 411:

if (opt->max class repeat > 1 && sameclass > opt->max_class_repeat) {
return 1;

}

Rather than checking if the option max class repeat is set to a number greater than
zero, the check is done against 1 instead (see highlighted code). This has the conse-
quence of disabling the check entirely, which contradicts the documentation for the
option and any intuition on the part of the system administrator.

This issue was raised on the Linux PAM GitHub repository [18], along with a pull
request containing the fix. A project maintainer reviewed it to their satisfaction and
merged the fix into the official repository, to be distributed in future releases. After the
fix had been applied, the pam cracklib module was compiled and tested again against
the password database, this time functioning consistently with the verified module.

4.4 Experiment 3: A Simple Policy

To demonstrate the flexibility of our approach, we show that it is possible to quickly and
easily compile a password quality checker PAM module drawing on specific research
findings. Kelly et al. [21] suggest that the use of the basic16 password policy (16
alphabetic characters) creates passwords that are more resilient against brute-force
attacks than policies such as comprehensive8 which allows for shorter (length 8), but
more complex passwords containing a mixture of cases, numbers, and symbols.

The verified module was quickly reconfigured, rebuilt, and reinstalled with this
new, very simple policy in place. In code, we simply alter the list of password quality
checkers to apply only a length check and nothing more, before extracting the Coq
code to Haskell and rebuilding the C driver:

Definition pwd_quality_policy := [
plain_length_check 16

].

The policy makes use of the plain length check function that evaluates a password
on length alone:

Definition plain_length_check (len : nat) (pt : PasswordTransition)
: CheckerResult := if length (new_pwd pt) >=? len then GOODPWD

else BADPWD: "The new password is too short.".

The accompanying plc correct lemma and proof certify that this function behaves
correctly:

Lemma plc_correct: forall (len : nat) (pt : PasswordTransition),
plain_length_check len pt = GOODPWD

<-> is_true (length (new_pwd pt) >=? len).
Proof. repeat (split; unfold plain_length_check;

destruct (length (new_pwd pt) >=? len); crush). Qed.

In this case, because the function is very simple, the implementation is as complex as
its specification. However, in general, this is not the case (see, for instance, the exam-
ples in Sect. 3). The proof is based on the definition of the function and a case analysis

418 J.F. Ferreira et al.

on the length of the new password. It also depends on the crush tactic from [10]. On
running this newly-configured checker over the password database, 970 passwords were
accepted while the rest were shorter than 16 characters in length and therefore rejected.
Interestingly, the original pam cracklib and pam pwquality libraries can not be config-
ured in this way without making changes at the source code level and recompiling, as
various checks (palindrome being one example) cannot be disabled through configura-
tion alone. While our approach also requires recompilation of the verified module, the
scope of the required source code changes (modification of one list) is so small that it
arguably amounts to little more than a configuration change. In this way, our approach
is demonstrably more flexible than that taken by the original modules.

5 Related Work

To the best of our knowledge, this is the first effort in creating verified password
quality checkers. The closest related work on provably improving the reliability of
authentication systems is the body of work on verification of authentication protocols.
For example, the work presented in [12,27] uses CSP and PVS to analyse and verify
authentication properties. A very popular automatic cryptographic protocol verifier is
ProVerif [4]. Uses of ProVerif include the verification of a user authentication protocol
named oPass [29] and security properties of mutual-authentication and key-exchange
protocols [6].

The work presented in this paper has been motivated by recent advances that
make practical the verification of system security components [1]. In particular, we
were inspired by approaches that are based on extracting (or generating) code directly
from proof assistants. An example is FSCQ [8,9], the first file system with a machine-
checkable proof (using Coq). Similarly to what we do, a Haskell implementation is
extracted using Coq’s extraction feature. Two additional examples are the implemen-
tation of a conference management system [20] and of a distributed social media plat-
form [2], where code generation was also used to extract correct Scala implementations
from Isabelle specifications.

6 Conclusion

Through this work, we have used the proof assistant Coq to create verified password
quality checkers in the form of PAM modules with at least as much functionality
(aside from dictionary checks) as pam cracklib and pam pwquality which are already
widely deployed. We identified a potentially serious bug and we demonstrated that our
framework can be used to easily create new certified password quality policies.

Despite the successes, limitations remain. While we use a code extraction approach
that substantially reduces the size of the unverified code base, it does not eliminate
it entirely. Some low-level unverified C code must still be written in order to call the
extracted code in a useful context. Importantly, while the Gallina code is verified, the
authors are not aware of any correctness proof of Coq’s code extraction mechanism.
Executable size is also greatly increased in the verified modules by almost an order
of magnitude, which may place serious limitations on its use by storage-constrained
systems.

The collection of proofs for the verified checkers is being constantly improved as
part of an ongoing verification effort as we investigate potential future work in this

Certified Password Quality 419

area (see [22]). In particular, we aim at making most proofs as simple and automatic
as possible. Nevertheless, as we demonstrated, the framework allows the creation of new
policies that are completely verified. This work focuses on the specific and important
area of verified password checking and we believe that it lays a foundation for further
research in this area.

Future Work. A domain-specific language (DSL) is in development as a direct succes-
sor to this research which will allow Linux system administrators to quickly and easily
express their ideal password quality policy and produce a verified password quality
checker PAM module in one compilation step. We anticipate that this will offer a great
deal of flexibility beyond the simple configuration options offered by existing password
quality checking PAM modules.

In continuing this work, we hope to substantially reduce the size of the unverified
C driver by stripping out functionality that is not absolutely necessary or that has
been made redundant by our verification efforts. We also plan to verify other aspects
of the PAM modules such as configuration option parsing as well as extend the func-
tionality of the verified password quality checking code to include dictionary checks.
An examination of the feasibility of adding Unicode support is also planned.

References

1. Appel, A.W.: Modular verification for computer security. In: IEEE 29th Computer
Security Foundations Symposium (CSF), pp. 1–8 (2016)

2. Bauereiß, T., Gritti, A.P., Popescu, A., Raimondi, F.: CoSMeDis: a distributed
social media platform with formally verified confidentiality guarantees. In: Security
and Privacy (SP) (2017)

3. Bertot, Y., Castéran, P.: Interactive theorem proving and program development
- Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media, Heidelberg (2013)

4. Blanchet, B., et al.: An efficient cryptographic protocol verifier based on prolog
rules. In: CSFW, vol. 1, pp. 82–96 (2001)

5. Burnett, M.: Today i am releasing ten million passwords (2015). https://xato.net/
today-i-am-releasing-ten-million-passwords-b6278bbe7495. Accessed 26 Apr 2017

6. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006). doi:10.1007/
11681878 20

7. National Cyber Security Centre: Password Guidance: Simplifying Your Approach
(2016). https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-
approach. Accessed 26 Apr 2017

8. Chajed, T., Chen, H., Chlipala, A., Kaashoek, M.F., Zeldovich, N., Ziegler, D.:
Certifying a file system using crash Hoare logic: correctness in the presence of
crashes. Commun. ACM 60(4), 75–84 (2017)

9. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash Hoare logic for certifying the FSCQ file system. In: Proceedings of the
25th Symposium on Operating Systems Principles, pp. 18–37. ACM (2015)

10. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

11. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: an empirical analy-
sis. In: INFOCOM, pp. 1–9, IEEE (2010)

https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495
http://dx.doi.org/10.1007/11681878_20
http://dx.doi.org/10.1007/11681878_20
https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach
https://www.ncsc.gov.uk/guidance/password-guidance-simplifying-your-approach

420 J.F. Ferreira et al.

12. Dutertre, B., Schneider, S.: Using a PVS embedding of CSP to verify authentication
protocols. In: Gunter, E.L., Felty, A. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp.
121–136. Springer, Heidelberg (1997). doi:10.1007/BFb0028390

13. Finne, S., Henderson, I.F., Kowalczyk, M., Leijen, D., Marlow, S., Meijer, E., Jones,
S.P., Wallace, M.: The Haskell 98 Foreign Function Interface 1.0 An Addendum to
the Haskell 98 Report (2002)

14. Hamming, R.W.: Coding and Theory. Prentice-Hall, Englewood Cliffs (1980)
15. Hamming, R.W.: Error detecting and error correcting codes. Bell Labs Tech. J.

29(2), 147–160 (1950)
16. Inglesant, P.G., Sasse, M.A.: The true cost of unusable password policies: password

use in the wild. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM (2010)

17. Jahoda, M., Krátký, R., Prpič, M., Čapek, T., Wadeley, S., Ruseva, Y., Svoboda,
M.: Red Hat Enterprise Linux 7 Security Guide (2017). https://access.redhat.
com/documentation/en-US/Red Hat Enterprise Linux/7/html/Security Guide/
index.html. Accessed 24 Apr 2017

18. Johnson, S.: Behavior of maxclassrepeat=1 inconsistent with docs (2017). https://
github.com/linux-pam/linux-pam/issues/16. Accessed 31 Mar 2017

19. Jones, S.P.: Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, Cambridge (2003)

20. Kanav, S., Lammich, P., Popescu, A.: A conference management system with ver-
ified document confidentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 167–183. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 11

21. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): mea-
suring password strength by simulating password-cracking algorithms. In: Security
and Privacy (SP), pp. 523–537. IEEE (2012)

22. Software Reliability Lab. Verified PAM Cracklib (2017). https://github.com/
sr-lab/verified-pam-cracklib. Accessed 05 Apr 2017

23. Software Reliability Lab. Verified PAM Environment (2017). https://github.com/
sr-lab/verified-pam-environment. Accessed 30 Mar 2017

24. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-69407-6 39

25. Morgan, A.G., Kukuk, T.: The Linux-PAM Module Writers’ Guide (2010)
26. Samar, V.: Unified login with pluggable authentication modules (PAM). In: Pro-

ceedings of the 3rd ACM Conference on Computer and Communications Security,
pp. 1–10 (1996)

27. Schneider, S.: Verifying authentication protocols in CSP. IEEE Trans. Softw. Eng.
24(9), 741–758 (1998)

28. Shay, R., Komanduri, S., Durity, A.L., Huh, P.S., Mazurek, M.L., Segreti, S.M., Ur,
B., Bauer, L., Christin, N., Cranor, L.F.: Designing password policies for strength
and usability. ACM Trans. Inf. Syst. Secur. (TIS-SEC) 18(4) (2016). Article no.
13

29. Sun, H.-M., Chen, Y.-H., Lin, Y.-H.: oPass: a user authentication protocol resistant
to password stealing and password reuse attacks. IEEE Trans. Inf. Forensics Secur.
7(2), 651–663 (2012)

30. Thompson, S.: Functional programming: executable specifications and program
transformations. ACM SIGSOFT Softw. Eng. Notes 14(3), 287–290 (1989)

http://dx.doi.org/10.1007/BFb0028390
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://github.com/linux-pam/linux-pam/issues/16
https://github.com/linux-pam/linux-pam/issues/16
http://dx.doi.org/10.1007/978-3-319-08867-9_11
https://github.com/sr-lab/verified-pam-cracklib
https://github.com/sr-lab/verified-pam-cracklib
https://github.com/sr-lab/verified-pam-environment
https://github.com/sr-lab/verified-pam-environment
http://dx.doi.org/10.1007/978-3-540-69407-6_39

Certified Password Quality 421

31. Visser, J., Oliveira, J.N.F., Barbosa, L.S., Ferreira, J.F., Mendes, A.: CAMILA
revival: VDM meets Haskell. In: 1st Overture Workshop. University of Newcastle
TR Series (2005)

32. Zhang-Kennedy, L., Chiasson, S., van Oorschot, P.: Revisiting password rules: facil-
itating human management of passwords. In: APWG Symposium on Electronic
Crime Research (eCrime), pp. 1–10. IEEE (2016)

Verification of STAR-Vote and Evaluation
of FDR and ProVerif

Murat Moran(B) and Dan S. Wallach

Computer Science Department, William Marsh Rice University,
6100 Main St., Houston, TX 77005, USA

muratmoran@gmail.com, dwallach@gmail.com

https://www.cs.rice.edu

Abstract. We present the first automated privacy analysis of STAR-
Vote, a real world voting system design with sophisticated “end-to-end”
cryptography, using FDR and ProVerif. We also evaluate the effective-
ness of these tools. Despite the complexity of the voting system, we were
able to verify that our abstracted formal model of STAR-Vote provides
ballot-secrecy using both formal approaches. Notably, ProVerif is radi-
cally faster than FDR, making it more suitable for rapid iteration and
refinement of the formal model.

Keywords: Security protocols · Formal methods · Privacy · E-voting ·
STAR-Vote · FDR · ProVerif

1 Introduction

Security systems employ protocols to ensure their desired goals over a hostile
network such as that the communication between agents is authenticated and/or
the information that needs to be confidential is indeed confidential. They also
aim to provide integrity, key distribution, non-repudiation, and other such prop-
erties. However, they are always a target for some malicious activity. Moreover,
as the complexity of security-critical systems has grown, rigorous verification and
secure implementation gains importance. In our case, cryptographic voting sys-
tems have multiple actors exchanging messages, to achieve a variety of important
goals, requiring a careful system analysis to ensure there isn’t a subtle problem.
Formal methods has been shown to be a well suited methodology for analysis
of cryptographic protocols, including famous results such as Lowe’s attack [19]
on the Needham-Schroeder public-key protocol (NSPK) [23]. Since then, formal
methodologies have been applied in the analysis of a variety of cryptographic
protocols, and also for electronic voting systems, using automated tools includ-
ing FDR [21,22], ProVerif [2,13,24], Active Knowledge in Security Protocols
(AKISS) [7], AVISPA [1], TA4SL [6] and Scyther [10].

Formal methods and their tools differ in their approaches to reasoning (e.g.,
BAN logic, theorem proving, or attack construction). However, all require the
user to hold a deep understanding of how these tools work in order to reason
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 422–436, 2017.
DOI: 10.1007/978-3-319-66845-1 28

Verification of STAR-Vote and Evaluation of FDR and ProVerif 423

about a system and its specification. Even to an experienced user, these tools
raise a variety of challenges. Every tool differs in its expressiveness: the capabil-
ity of a formal language while modeling protocols to capture their specifications.
For example, some tools may not support automation of complex cryptographic
primitives such as homomorphic encryption, as used by many voting schemes.
Secondly, all model checking tools suffer from the general problem of state space
explosion. Unlike toy security protocols, with only a few messages exchanged,
analyzing complex security protocols can require computation exponential in
the size of the protocol, exhausting finite computational resources, much less
the patience of the user. Furthermore, some verifiers will cap the number of
simultaneous adversaries or concurrent runs of the protocol, reducing the com-
putational complexity but also possibly missing real-world vulnerabilities. Lastly,
usability of the tools is very crucial. Some tools might merely say that a protocol
is “correct” without offering a proof. Others might offer a counter-example to
demonstrate a vulnerability, but that counter-example might require significant
human effort to consider whether it applies or not to the “real” protocol.

In this article, we investigate the challenges in engineering automated analysis
of complex security protocols, and evaluate FDR and ProVerif protocol verifiers
through modeling and analysis of the STAR-Vote [4] voting system with respect
to ballot-secrecy requirement. We have chosen these two verifiers as these tools
are mature, widely accepted, and have been previously used for analysis of com-
parable systems.

STAR-Vote Overview. STAR-Vote [4] is a DRE-style electronic voting system,
using human-readable paper and encrypted electronic records. STAR-Vote sup-
ports homomorphic tallying of votes and non-interactive zero knowledge (NIZK)
proofs that ballots are well-formed. Voters have a receipt to verify their votes
are counted-as-cast by visiting a block-chain “public bulletin board” structure.
Similarly, voters can challenge machines to prove that any given encrypted vote
is an accurate record of their intent [3], but challenged votes are not counted in
the tally. STAR-Vote was designed around the requirements of Travis County
(Austin), Texas by a collaboration between academics and the county elec-
tions staff. A variety of different cryptographic primitives are specified, including
homomorphic encryption, NIZK proofs, and hash chains. STAR-Vote includes a
controller operated by poll workers, multiple voting terminals operated by vot-
ers, and a ballot box which queries these machines before it will accept any given
printed ballot. STAR-Vote is a perfect example of a complex security protocol,
and it’s valuable to apply formal modeling tools to understand its correctness.

From the voter’s perspective, all of this complexity is hidden. Figure 1 shows
a schematic diagram of the STAR-Vote system. An eligible voter goes to a polling
station, authenticates to the election official and gets a 1D barcode encoding the
voter’s precinct and ballot style. This might involve an online database in cases
where voters can go to multiple voting centers. STAR-Vote maintains an airgap
between the voter registration database and the voting system, with the only
data that crosses the boundary being the short barcode. The voter then presents
the barcode to a poll worker at the controller machine, who scans it to learn the

424 M. Moran and D.S. Wallach

Controller Voting terminalsRegistration

Voter

Ballot box

Fig. 1. A schematic diagram of STAR-Vote

voter’s correct precinct and ballot style, and then prints a 5-digit unique code
(also called a pin or token). The voter then carries this code to any open voting
terminal and is presented with their proper ballot. When complete, the terminal
prints a human-readable summary of the voter’s choices, which the voter is to
deposit in a ballot box, along with a receipt, which the voter can take home.
This receipt corresponds to a hash of the ciphertext of the voter’s selections
which should also later appear on the web bulletin board (hereafter, “wbb”).
The ballot box will refuse to accept anything other than a valid ballot, based on
random ballot IDs printed on the ballot and verified with the networked voting
machines, thus preventing some ballot stuffing attacks. A voter who recognizes a
mistake on the printed ballot can also choose to “spoil” that ballot by taking it to
the controller rather than depositing it. Needless to say, modeling the paper and
electronic flow of messages in STAR-Vote is a complex task. Figure 2 illustrates
a simplified STAR-Vote voting procedure capturing cryptographic message flow
on the network. We will discuss the meanings of the relevant messages in the
protocol as they arise in our analysis, but even to a quick glance, STAR-Vote is
sufficiently complicated that we would expect to find challenges in its verification.

General Modeling Assumptions. In symbolic model checking, it is assumed that
cryptographic primitives work perfectly. Hence, the system attacks that may be
caused by cryptographic algorithms are not covered in our modeling. We treat
cryptographic primitives as symbolic operations with the appropriate algebraic
properties, such as; public key encryption: Epk(m) and digital signatures: Ssk(m).
Hence, an asymmetrically encrypted message can only be retrieved with the
corresponding secret key. We abstract away some of the properties or components
of the voting system that are analyzed due to either state explosion constraints
or other limitations of our model checking tools. Our models consist of a limited
number of agents. We could modify the model with an increased number of
voters, candidates, voting terminals and precincts, but each would require a lot
more space in the state base. Specifically for our STAR-Vote models in this paper;
the homomorphic tallying of encrypted votes is abstracted away, which ensures
that no single vote is decrypted, thus preserving privacy. ProVerif and FDR
are both incapable of verifying homomorphic encryption. Hence, we consider an
election scheme where all encrypted votes are published on the bulletin board
after the election closed, decrypted individually and counted publicly in order to
preserve anonymity of encrypted votes. Additionally, the voter verification and
election integrity parts of the system are omitted as we focus solely on voter

Verification of STAR-Vote and Evaluation of FDR and ProVerif 425

pkC , skC

Controller

id, C
Voter

pkT , pkC , zp0, zi0

Terminal

pkC , zp0, zi0

Ballot Box

pkC , skT

WBB

token
token

check token

v

choose bcid, bid, r1, r2, r3
cbcid = penc(bcid, r1, pkC)
cbid = penc(bid, r2, pkT)
cv = penc(v, r3, pkT)
p = (pkC , r3, v, cv)

zpi = hash(cv, p, zpi−1)
zii = hash(cbcid, cv, p, cbid, zii−1)

mid, t, bst, cbcid, cbid, cv, zpi, zii

v, bid, bcid, zpi

spoil - audit

v, bid, bcid

bcid

check bcid

cv, p, zpi

Homomorphic tallying

Fig. 2. A Simplified STAR-Vote voting procedure, where pkC is controller’s and pkT is
trustee’s public key, bid and bcid are the ballot and ballot cast identifiers respectively,
r, zp0, and zi0 are random seeds, mid is voting terminal id. Additionally, penc models
an encryption function and hash models a hashing function.

privacy, for instance; spoil-audit and hash-chain mechanisms, which do not leak
privacy sensitive information.

2 STAR-Vote in Communicating Sequential Processes
and FDR

The STAR-Vote Communicating Sequential Processes (CSP) model is explained
in the followings1.

1 The complete machine readable CSP model is provided at https://muratmoran.com/
publications/.

https://muratmoran.com/publications/
https://muratmoran.com/publications/

426 M. Moran and D.S. Wallach

2.1 STAR-Vote CSP Model

Our STAR-Vote CSP model consists of five processes running in parallel: a
controller process that controls the internal network, a voter process, a ballot
marking device (voting terminal) process, an electronic ballot box process that
can scan barcodes and sends scanned ballot cast ids to the controller, and a
wbb process. Each CSP process has been modeled in a way that they all behave
honestly and follow the process flow. As an example, the honest voter process
behavior is modeled as the following:

Voter(id) =̂

�
c∈C

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

choose.id.c →
scomm.id.Term.c →

�
bid:=Bids
bcid:=Bcids
h:=Hashchains

⎛

⎜

⎜

⎝

scomm.Term.id?(c, bid, bcid) →
comm.Term.id?h →
scomm.id.Box.Term.(c, bid, bcid) →
closeElection → STOP

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where id is the voter identity; c is the candidate; Term is the voting terminal;
Box is the ballot box process; bid is the ballot identifier; bcid is the ballot cast
identifier, and h is a hash chain of encrypted votes.

When defining processes and messages as in the voter process above, we need
two different kinds of channel types; secret scomm and public comm channels
in order to maintain the secrecy of security-sensitive information. The STAR-
Vote voting system model is then described by the parallel composition of the
processes that synchronize on common events as the following:

System =̂ V oters ‖ Box ‖ Controller ‖ Terminal ‖ Wbb

While modeling STAR-Vote, we encountered several difficulties due to the
nature of FDR. Although, the aim here is to obtain a model that reflects real
system behavior, we have to make a few simplifications to make the automated
analysis possible with FDR model checker. In the voter process, for instance,
we assume that the voter chooses the candidate that she would like to vote for
before the election begins as FDR does not support revocation. This allows us
to eliminate false positive attacks. In terms of randomness in choosing nonce-
like terms, such as ballot ids and ballot cast ids, randomness is modeled as the
non-deterministic choice of terms over a pre-determined set of terms. Lastly, in
the original system, encrypted votes are submitted and publicized on the wbb
along with non-interactive zero-knowledge proofs, which ensures that ballots are
well-formed. However, in our model all ciphertexts and ballot forms are assumed
to be well-formed as FDR does not support zero-knowledge proofs.

Intruder Model. In our analysis, we employed an active Dolev-Yao
intruder [14] model in CSP, as adapted to voting systems in Moran and
Heather [21]. The intruder model supports active intruder behavior: interacting

Verification of STAR-Vote and Evaluation of FDR and ProVerif 427

with the protocol participants, overhearing communication channels, intercept-
ing and spoofing any messages that the intruder has learned or generated from
its prior knowledge. In this model, intruder processes have a set of deductions
rules in order to compose and decompose messages, and a set Ucomms, as below,
defining the unreliable channels on which the intruder can act. For instance, the
following rules enable intruders to have access to any channels from and to the
voter v1, where the set comms is the union of all communication channels.

Ucomms =
⋃

({q.q′.f | q.q′.f ← comms, q ← {v1}, q ′ ← agents},
{q.q′.f | q.q′.f ← comms, q ← agents, q′ ← {v1}})

The system that will be analyzed is the parallel composition of the renamed
voting system model System, which enables the messages flowing on unreliable
channel to be taken or eavesdropped, and the intruder model Intruder. The
resulting composition System ‖ Intruder synchronizes on their common events.
In the following section, we will define several sets like Ucomms for different
intruder capabilities.

2.2 Analysis with FDR

In this section, we present the first automated analysis of STAR-Vote under an
active Dolev-Yao intruder model and the anonymity specification given in [22].
Accordingly, the following trace equivalence should hold in order to verify that
the voting system model System provides voter anonymity.

System1 \ {| scomm |} ≡T System2 \ {| scomm |},

where the processes System1 and System2 model two different system behavior:
in the first v1 votes for c1 and v2 for c2, and in the second the voters vote other
way around. Hence, the intruder with the available public information along
with its prior knowledge cannot distinguish these two cases, then we say that
the voting system does not leak any information that may link a voter to her
cast vote. Here, what information is available to the intruder is defined by a set
Ucomms, and also by masking or hiding the information that the intruder is not
supposed to access.

There are numerous kinds of threat scenarios that we can model in this CSP
framework by modifying Ucomms. Here, we present three of those cases, denoted
as DY1, DY2 and DY3.

DY1: the intruder can observe only the public channels (comm), and not the
channels that should be kept confidential, such as; the channels on which crucial
ballot information and voters’ choice of candidate are transmitted. Hence, we
exclude such information from Ucomms set.

Ucomms = comms \ (comBallots ∪ commCandidates)

428 M. Moran and D.S. Wallach

DY2 (only 1 honest voter): the intruder can act as the Dolev-Yao intruder on
all the channels except the voter v1’s communication channels—there exists only
one honest voter and the rest is dishonest.

Ucomms = comms \ ⋃

({q.q′.f | q.q′.f ← comms, q ← {v1}, q ′ ← A},
{q.q′.f | q.q′.f ← comms, q ← A, q′ ← {v1}})

DY3 (only 1 dishonest voter): the intruder can act maliciously only on the
channels of the voter v3, who is collaborating with the intruder, and observe
other public channels—there exist only 1 dishonest and at least 2 honest voters.

Ucomms =
⋃

({q.q′.f | q.q′.f ← comms, q ← {v3}, q ′ ← A},
{q.q′.f | q.q′.f ← comms, q ← A, q′ ← {v3}})

Our analysis found that STAR-Vote provides anonymity under active
intruder models: DY1 and DY3, and produced privacy attacks against the sys-
tem under DY2, all of which were as expected. (Why? Because when there’s
only one honest voter, the other voters can collude to know the subtotals of
their own votes, and then infer the votes of the remaining honest voter.) To give
an idea about overall verification times for FDR, Table 1 illustrates the verifi-
cation times of the automated analysis of STAR-Vote under different intruder
capabilities using an average laptop with Intel R© CoreTM i5 CPU 2.40 GHz, and
8 GB RAM. The longest run took just under three minutes. This is tolerable,
but is far from ideal in terms of the engineering cycle time of evolving the model.

Table 1. The FDR verification times for STAR-Vote model under different Dolev-Yao
capabilities

DY1 DY2 DY3

Refine States Time Refine States Time Refine States Time

� 128, 101 21 s X 26 2min 50 s � 95, 917 1 min 39 s

We also extended the model with ballot counting mechanism in the wbb
process and measured FDR verification times using the same settings as before.
As illustrated in Table 2, FDR verifies the model for DY1 and DY3 cases, but not
DY2 as FDR crashes once 8 GB allocated memory runs out in 45 min. However,
we were able to verify the extended model using a better server with 128 GB
RAM in 2 h. Furthermore, when extending STAR-Vote CSP model by includ-
ing a hash-chain mechanism, which is used in the original system for integrity
purposes, even the server with 128 GB crashes before producing a result. Hence,
automated verification of the STAR-Vote CSP model extended with more com-
ponents (e.g., pins, hash-chain, and thresholded mechanisms) seems unrealistic.

Verification of STAR-Vote and Evaluation of FDR and ProVerif 429

Table 2. The FDR verification times for extended STAR-Vote model with count-
ing mechanism under different Dolev-Yao capabilities. “‘−”’ means that FDR crashes
before producing a result.

DY1 DY2 DY3

Refine States Time Refine States Time Refine States Time

� 1, 201, 525 23 min 1 s − − − � 95, 917 1min 51 s

3 STAR-Vote in the Applied Pi Calculus and ProVerif

We briefly explain our STAR-Vote applied pi model in the followings2.

3.1 STAR-Vote Model in Applied Pi

Similar to the CSP approach, we modeled the STAR-Vote voting system in the
applied pi calculus by means of processes that intercommunicate, allowing veri-
fication by ProVerif. As with FDR, this process necessarily involves abstracting
away some of the details. Initially, we modeled a set of cryptographic primitives
Σ that are used in STAR-Vote, and it can be defined as the following;

Σ = {ok, pk, hash, sign, dec, penc, zkp, checksign, checkzkp}
Function ok is a constant; pk, hash and checkzkp are unary functions; sign and
dec are binary functions; penc, zkp and checksign are ternary. Accordingly, we
have the following equations:

dec(penc(m, r, pk(sk)), sk) = m (E1)
checksign(sign(sk,m),m, pk(sk)) = ok (E2)
checkzkp(zkp(pk(sk), r,m, penc(m, r, pk(sk)))) = ok (E3)

Equation E1 enables plaintext m to be extracted using the corresponding
secret key sk, where r is a random seed. E2 allows digital signatures to be
verified with an appropriate public key pk(sk). E3 allows non-interactive zero
knowledge proof p to be verified.

For the model, we employ two channel types: public and private. The follow-
ing process V (c, b, v) models a simplified voter process behavior of STAR-Vote in
the applied pi calculus, where v is the candidate of choice, c is a private channel
between the voter and voting terminal, and b is a private channel between the
voter and the ballot box:

V (c, b, v) ::= c̄〈v〉. voter enters her vote

c(v′, bid, bcid, zpi). receives ballot summary and receipt (zpi)

if v = v′ checks if her chosen candidate is on the ballot

then b̄〈(v, bid, bcid)〉. and casts her ballot

2 The actual applied pi model is provided at https://muratmoran.com/publications/
for brevity.

https://muratmoran.com/publications/

430 M. Moran and D.S. Wallach

Likewise, the rest of the processes that comprise the STAR-Vote model (i.e.,
voting terminal (T), ballot box (B), controller (C) and web bulletin board (W)
processes) are defined in terms of the grammar and equational theory above.
The STAR-Vote pi calculus model Star(ska, skc, v) is then described as the
composition of these processes, and initialized with public-private key pairs
(pka, ska) and (pkc, skc) for election authority and controller respectively. The
system then generates fresh seeds zp0 and zi0, and establishes private channels
between trusted participants before the election as the following.

Star(ska, skc, v) ::= let pka = pk(ska) in let pkc = pk(skc) in
ν zp0.ν zi0.
ν chV T .ν chV B .ν chBC .
ν chT C.ν chTW .ν chCW .
(
V (chV T , chV B , v)|
T (chV T , chTC , chTW , pka, pkc, skc, zp0, zi0)|
B(chV B , chBC , pkc, zi0)|
C(chBC , chTC , chCW , pkc, skc)|
W (chCW , chTW , ska, pkc)
)

where ν is the name restriction (i.e., it creates new names).
Due to the limitations in ProVerif, we abstract away homomorphic encryp-

tion mechanism in STAR-Vote model. Using synchronization points in the model
ensures that the intruder does not gain any information that can link encrypted
votes with the plaintext equivalence. That is, the wbb waits until all the votes
are decrypted, and then publishes all the plaintext votes. Is this simplification
reasonable? Certainly they leave out security-critical aspects of the STAR-Vote
design like the homomorphic tallying. If an actual election were conducted this
way, a voter could use their receipt to prove to a third-party how they voted,
and thus enable bribery or coercion of their vote. Nonetheless, the use of syn-
chronization points presents a reasonable simulation of the constraints that an
adversary might face with regard to attacking voter privacy, at least under the
assumption that voters choose not to share their receipts. In a real election, a
voter must be unable to compromise their privacy, even if they want to.

Intruder Model. Unlike the CSP approach, ProVerif does not need a sepa-
rate implementation of an intruder model. ProVerif instead provides a standard
Dolev-Yao intruder model, having access to all the public channels, and spe-
cial functions to perform a number of malicious actions in order to violate voter
privacy. That is, he can use anything available in the context. By specifying a pri-
vate channel as public we can increase intruder’s capabilities. Similarly, corrupt
system participants such as voters and voting terminals can be modeled easily
by either giving away their cryptographic keys or by publishing their private
communication channels to the intruder.

Verification of STAR-Vote and Evaluation of FDR and ProVerif 431

3.2 Analysis with ProVerif

Vote-privacy (ballot-secrecy) is defined informally as “no party receives infor-
mation which would allow them to distinguish one situation from another one
in which two voters swap their votes”[13]. Formally, it is defined as:

Definition 1. A voting protocol respects vote-privacy if

S[VA{a/v}|VB{b/v}] ≈l S[VA{b/v}|VB{a/v}]

for all possible votes a and b.

Recently, Blanchet and Smyth [5] have proposed an approach, based on bar-
rier synchronization, to fully automate verification of this definition. It is imple-
mented in the latest version of ProVerif, and supports automated verification
of observational equivalence. Barrier synchronization ensures that ballot-secrecy
holds by swapping outputs of both sides of the observational equivalence. In
order to do that, a compiler first annotates barriers with data to be swapped
and channels for sending and receiving data; the compiler then translates the
biprocesses with annotated barriers into biprocesses without barriers.

We have used these barriers in our model for instance when describing the
wbb process, which receives an individual encrypted vote and decrypts it. Hence,
a synchronization point in between these two events is needed so that the order
of the communication does not leak any information related to that particular
vote. Definition 1 is reflected to ProVerif using a choice operator as:

Star(ska, skc, choice[a, b]) |Star(ska, skc, choice[b, a])

where ska and skc are authority’s and controller’s secret credentials, respectively,
which are fed into the system, and a and b are candidate names.

Having described an abstract model of STAR-Vote, we were able to verify
that our model satisfies the ballot-secrecy property using the ProVerif protocol
verifier. With the same setting as in the CSP approach (the same laptop with
8 GB RAM), ProVerif takes around 1.45 s in total to verify our pi calculus model
of this complex voting system protocol. ProVerif is also able to find possible
attacks when, for instance, there exists a corrupt voting terminal and a ballot
box by using the compromised information from these entities either by revealing
corresponding secret keys or by making private channels public.

Extending the model in ProVerif is straightforward. We have also managed
to verify two extended versions of this model: first one is extended with pins or
tokens, which are given to voters by the controller for authorization purposes
and then scanned to a voting terminal, and this version is verified in 9.8 s; the
second one is extended with hash-chain mechanism, which requires two honest
voter processes and other system participants processes extended for two voters.
ProVerif verifies this extended model in 2.10 min using the same laptop.

432 M. Moran and D.S. Wallach

4 Evaluation of the Tools: FDR and ProVerif

In this paper, having analyzed STAR-Vote voting system mechanically with FDR
and ProVerif, we now share our experience with these two tools in this section
with respect to expressiveness, usability and efficiency. The tools provide differ-
ent approaches to protocol verification and make verification of complex secu-
rity protocols easier than hand-proofs, but they may also suffer from the similar
problems such as state explosion. We discuss some of the issues we encountered
during our analysis in the following categories.

4.1 Expressiveness

We came across several inadequacy of the tools in expressing some of the system
components, which needed to be abstracted away. For example, neither FDR
nor ProVerif can verify homomorphic tallying. FDR furthermore cannot verify
non-interactive zero knowledge proofs unlike ProVerif. Similarly, a typical voting
system requirement, coercion-resistance, can be defined in CSP [15], but FDR
does not support its mechanical verification. ProVerif can verify this property
but we did not make it a focus of our verification efforts.

FDR is very expressive in its support for many different kinds of channels:
public or private, blocked or spoofed, all of which can be defined in terms of
functions and sets. ProVerif only supports public and private channels. In prac-
tice, this expressivity is necessary in FDR, which does not provide an adversary
model, while ProVerif provides a Dolev-Yao adversary that does everything we
need.

4.2 Usability

We found modeling and expressing protocol participants more straightforward
with ProVerif than FDR. FDR frequently complains when the network of proto-
cols is too complex to bring together. However they both guide the user well in
finding bugs in the specification. FDR offers a sophisticated user interface, the
ProBE CSP animator, which enables checking if processes behave as intended.

In terms of producing and interpreting counter-examples during the analysis,
ProVerif sometimes produces a trace that leads to the attack when the verifica-
tion does not hold; other times, ProVerif only says that a query does not hold,
and terminates. Moreover, when ProVerif does return a counter-example trace,
the task for the user to interpret the trace and locate why the attack occurs
is often very difficult; we saw some traces that were 3–4 pages long. This also
makes it difficult for a ProVerif user to distinguish whether a trace corresponds
to a legitimate attack, since ProVerif can sometimes return false-positives; this
might seem terrible, but it’s essential to how ProVerif gains its runtime perfor-
mance. On the other hand, FDR always produces a counter-example when there
should be one, and tracing back the attack is smooth and straightforward.

In some cases ProVerif verified our model when it should not have, due to
some minor, unrecognized bugs in our model, for instance; a type mismatching

Verification of STAR-Vote and Evaluation of FDR and ProVerif 433

of functions or creating new names earlier in the model. Hence, it was not sim-
ple to find such bugs during modeling and verification, which may deceive an
inexperienced user into analyzing incorrect model.

Lastly, consider the case of modeling a new voting system, starting from our
existing STAR-Vote models in both FDR and ProVerif. How hard might it be
to derive a new voting system model from our existing one? Code reuse would
certainly be a valuable feature. We note that the ProVerif pi calculus model for
STAR-Vote is around 100 lines of code while the CSP model is around 500 lines
of code. This additional complexity in CSP comes largely from having to specify
sets that are used to describe system participants and the intruder’s behavior.
ProVerif wins for having a generic intruder that we don’t need to specify.

4.3 Efficiency

Verification times vary in FDR depending on the number of participants and
whether the verification holds—results generated by FDR is not generic, and
dependent of the number of concurrent participants in the protocols unlike
ProVerif. We saw runtimes as fast 21 s, and we saw crashes which occurred after
17 h, and to even run that long we had to move to a much larger computer with
128 GB RAM. Needless to say, this can make for a frustrating user experience.

Table 1 displays verification times for FDR for scenarios with 2 or 3 voters,
and Table 2 illustrates verification times for a model extended with pins. When
we add an extra tallying mechanism in the model, the DY1 case increases from
21 s to 23 min with 10 times more states than before, and in the case of DY2
with tallying, FDR crashes after 45 min, on a laptop with 8 GB RAM, due to
lack of memory. We verified this extended version with a bigger server with
128 GB. Additionally, when we extended the model further with hash chain
mechanism FDR crashes even with the larger server after 17 h. Generally, the
more ability given to intruder, the longer FDR takes to verify. We note that, to
make verification more efficient, FDR3 and FDR4 offer multi-core parallelism
features. Unfortunately, they don’t support testing observational equivalence of
complex models where the left hand side of the equivalence requires more than
10 million states.

We found that ProVerif operates very quickly with models of similar complex-
ity to those we used in FDR. Verification took generally less than two seconds to
complete, allowing us to rapidly iterate on our models. We verified two extended
versions of the model with pins and hash-chain mechanism in 9.8 s and 2.10 min
respectively.

In terms of man-hours, ProVerif can produce false-positive attacks due to its
over-approximation [8]. Hence, dealing with such false positives takes enormous
amount of man-hours and effort. However, FDR does not produce such false
positives unless an intruder’s power is adjusted improperly, but the user-defined
intruder model requires careful attention, which is error-prone and takes a lot of
time to integrate.

434 M. Moran and D.S. Wallach

5 Related Work

To date, there have been a few attempts to compare automated security protocol
verifiers in the literature. C. Meadows [20] compares the approaches followed in
the tools NRL and FDR with the analysis of NSPK, and concludes that two
tools are complementary. Hussain and Seret [16] presents a qualitative compar-
ison between AVISPA and Hermes in terms of their complexity, ease to use and
the conceptional differences between approaches (the comparison is not based on
experiments). It is stated that Hermes is more suited for simple protocols, on the
other hand, AVISPA is better for complex protocols where you would need scala-
bility, flexibility, and precision. Cas J.F. Cremers et al. [11] first discuss the types
of behavior restriction of the models used by the tools; Casper/FDR, ProVerif,
Scyther and AVISPA back-end tools. Then, a performance comparison is made
considering an analysis of secrecy and authentication properties. This is the only
work that compares our chosen tools ProVerif and Casper/FDR3. However, the
properties that we are dealing with in this paper is not considered since ProVerif
was not able to check observational equivalence properties then. Dalal et al. [12]
compare ProVerif and Scyther tools considering six different security protocols.
The definitions of the models presented in the paper are not language specific,
but pseudocode. Lafourcade et al. [18] analyze a number of protocols dealing
with algebraic properties like Exclusive-Or and Diffie-Hellman and compare the
results from different tools: OFMC, CL-Atse and XOR-ProVerif or DH-ProVerif
in terms of efficiency. The properties that were checked are secrecy, authenti-
cation and also non-repudiation for one e-auction protocol. Cortier et al. [9]
proposed a semi-automatic proof of vote privacy using type-based verification
and the tool rF�, in which security properties and cryptographic functions are
modeled in terms of refinement types. More recently, Lafourcade and Puys [17]
focus on performance analysis of a number of tools including a ProVerif exten-
sion and analysis of 21 cryptographic protocols dealing with Exclusive-Or (xor)
and exponentiation properties like Diffie-Hellman (DH). In the analysis, secrecy
and authentication properties are considered. The tools have been evaluated in
terms of execution time and memory consumption. It is stated that there is not
a clear winner, but more recent tools tend to perform better.

6 Conclusion

In this paper, we have presented the first automated privacy verification of the
STAR-Vote voting system along with an evaluation of two protocol verifiers:
FDR and ProVerif. We verified that our STAR-Vote CSP and pi calculus models
provide ballot-privacy, validating our previously informal design and providing
further trustworthiness.

Throughout our analysis we had a chance to evaluate these two security
protocol verifiers with respect to their expressiveness, usability, and efficiency. In
3 Casper is a compiler that translates protocol description into the CSP language,

which is then used by FDR.

Verification of STAR-Vote and Evaluation of FDR and ProVerif 435

terms of expressiveness, both tools need further research to pursue in automation
of cryptographic primitives. Regarding usability, FDR offers more with its inbuilt
tools to make sure the model behaves as expected, user interface and counter-
examples, which are easy to interpret and trace back to what causes the failure.
On the other hand, modeling with ProVerif is more straightforward and requires
quite less effort than FDR does. About efficiency, ProVerif is very efficient and
quite flexible in modeling and analyzing such complex systems despite the false-
positives, which require a special attention. FDR with lazy spy intruder model
is neither efficient nor scalable when analyzing such complex systems.

Overall, formal verification helps us understand how complex security proto-
cols work and facilitate their analysis. However, it is still expensive in the sense
that it requires a deep understanding of verification tools, experience and a huge
amount of human effort.

Our future work will concentrate on improving the protocol verifiers ProVerif
and FDR by finding techniques that allow us to automatically reason about other
desired properties of e-voting systems such as election verifiability. Moreover,
correctness of the intruder models of these two tools will be considered as a
further research question. Lastly, a formal specification of system mechanisms
that were abstracted away in this paper such as spoil-audit and risk-limiting
audit for verifiability purposes can be pursued as future work.

Acknowledgments. This work was carried out under the NSF-funded Voting Sys-
tems Architectures for Security and Usability project. The principal author is also
partly funded by TUBITAK. We would like to thank Ben Smyth, Olivier Pereira, and
Thomas Gibson-Robinson for their helpful technical discussions.

References

1. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). doi:10.1007/
11513988 27

2. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF (2008)

3. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/ACCU-
RATE Electronic Voting Technology Workshop (EVT 2006), Vancouver, B.C.,
Canada, June 2006

4. Benaloh, J., Byrne, M., Kortum, P.T., McBurnett, N., Pereira, O., Stark, P.B.,
Wallach, D.S.: STAR-Vote: a secure, transparent, auditable, and reliable voting
system. CoRR, abs/1211.1904 (2012)

5. Blanchet, B., Smyth, B.: Automated reasoning for equivalences in the applied pi
calculus with barriers. In: CSF (2016)

6. Boichut, Y., Heam, P.C., Kouchnarenko, O., Oehl, F.: Improvements on the Genet
and Klay technique to automatically verify security protocols. In: Workshop on
Automated Verification of Infinite States Systems (2004)

7. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence prop-
erties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 108–127. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2 6

http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/978-3-642-28869-2_6

436 M. Moran and D.S. Wallach

8. Chothia, T., Smyth, B., Staite, C.: Automatically checking commitment proto-
cols in ProVerif without false attacks. In: Focardi, R., Myers, A. (eds.) POST
2015. LNCS, vol. 9036, pp. 137–155. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46666-7 8

9. Cortier, V., Eigner, F., Kremer, S., Maffei, M., Wiedling, C.: Type-based veri-
fication of electronic voting protocols. In: Focardi, R., Myers, A. (eds.) POST
2015. LNCS, vol. 9036, pp. 303–323. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46666-7 16

10. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 38

11. Cremers, C.J.F., Lafourcade, P., Nadeau, P.: Comparing state spaces in automatic
security protocol analysis. In: Formal to Practical Security - Papers Issued from
the 2005–2008 French-Japanese Collaboration (2009)

12. Dalal, N., Shah, J., Hisaria, K., Jinwala, D.: A comparative analysis of tools for
verification of security protocols. IJCNS 3(10), 779–787 (2010)

13. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

14. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

15. Heather, J., Schneider, S.: A formal framework for modelling coercion resistance
and receipt freeness. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 217–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 19

16. Hussain, M., Seret, D.: A comparative study of security protocols validation tools:
hermes vs. avispa. In: 2006 8th International Conference Advanced Communication
Technology, vol. 1, pp. 303–308, 6 pages, February 2006

17. Lafourcade, P., Puys, M.: Performance evaluations of cryptographic protocols ver-
ification tools dealing with algebraic properties. In: Foundations and Practice of
Security (FPS 2015), Clermont-Ferrand, France, October 2015

18. Lafourcade, P., Terrade, V., Vigier, S.: Comparison of cryptographic verification
tools dealing with algebraic properties. In: Degano, P., Guttman, J.D. (eds.) FAST
2009. LNCS, vol. 5983, pp. 173–185. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12459-4 13

19. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

20. Meadows, C.A.: Analyzing the needham-schroeder public key protocol: a compar-
ison of two approaches. In: Bertino, E., Kurth, H., Martella, G., Montolivo, E.
(eds.) ESORICS 1996. LNCS, vol. 1146, pp. 351–364. Springer, Heidelberg (1996).
doi:10.1007/3-540-61770-1 46

21. Moran, M., Heather, J.: Automated analysis of voting systems with dolev-yao
intruder model. In: AVOCS 2013, September 2013

22. Moran, M., Heather, J., Schneider, S.: Verifying anonymity in voting systems using
CSP. Formal Aspects Comput., 1–36 (2012)

23. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), December 1978

24. Smyth, B.: Formal verification of cryptographic protocols with automated reason-
ing. Ph.D. thesis, School of Computer Science, University of Birmingham (2011)

http://dx.doi.org/10.1007/978-3-662-46666-7_8
http://dx.doi.org/10.1007/978-3-662-46666-7_8
http://dx.doi.org/10.1007/978-3-662-46666-7_16
http://dx.doi.org/10.1007/978-3-662-46666-7_16
http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://dx.doi.org/10.1007/978-3-642-32759-9_19
http://dx.doi.org/10.1007/978-3-642-12459-4_13
http://dx.doi.org/10.1007/978-3-642-12459-4_13
http://dx.doi.org/10.1007/3-540-61770-1_46

Author Index

Althoff, Matthias 50
Aronis, Stavros 227

Baxter, James 161
Beckert, Bernhard 129, 312
Blom, Stefan 102
Bodenmüller, Stefan 375
Bormer, Thorsten 312
Bortolussi, Luca 3
Bowles, Juliana Küster Filipe 357
Brooke, Phillip J. 407
Bruschi, Danilo 391

Cavalcanti, Ana 18, 161
Cha, Suhyun 129
Chen, YuTing 295
Conserva Filho, Madiel S. 211

Da Rocha Silva, Sarah Raquel 211
Damiani, Ferruccio 111
Darabi, Saeed 102
de Almeida Pereira, Dalay Israel 211
Di Pasquale, Andrea 391

Ernst, Gidon 375

Fazeldehkordi, Elahe 263
Feldle, Jochen 50
Ferreira, João F. 407
Fritchie, Scott Lystig 227
Frohn, Florian 85
Furia, Carlo A. 295

Gerndt, Andreas 177
Ghilardi, Silvio 391
Giesl, Jürgen 85
Gilmore, Stephen 145
Gocht, Stephan 312
Groves, Lindsay 69

Henrio, Ludovic 195
Herda, Mihai 312
Hilgendorf, Eric 50

Huber, Monika 50
Huisman, Marieke 102

Immler, Fabian 50

Ji, Wei 243
Johnson, Saul A. 407

Keinholz, Jonas 50
Kordy, Barbara 332
Kovalov, Andrii 177
Krishna, Ajay 323

Laneve, Cosimo 195
Lanzi, Andrea 391
Lentzsch, Daniel 312
Li, Wei 18
Lienhardt, Michael 111
Linker, Sven 34
Lobe, Elisabeth 177
Lüdtke, Daniel 177

Mastandrea, Vincenzo 195
Mendes, Alexandra 407
Miyazawa, Alvaro 18
Moran, Murat 422
Muschevici, Radu 111

Nipkow, Tobias 50

Oliveira, Marcel Vinicius Medeiros 211
Oortwijn, Wytse 102
Owe, Olaf 263

Pagani, Elena 391
Pearce, David J. 69
Pfähler, Jörg 375
Poizat, Pascal 323
Policriti, Alberto 3

Rahman, Fahrurrozi 357
Ramezanifarkhani, Toktam 263
Reif, Wolfgang 375

Reijsbergen, Daniël 145
Ribeiro, Pedro 18
Rizaldi, Albert 50

Sagonas, Konstantinos 227
Salaün, Gwen 323
Schaefer, Ina 111
Schellhorn, Gerhard 375
Silvetti, Simone 3
Steinhöfel, Dominic 279

Timmis, Jon 18

Ulbrich, Mattias 129, 312
Utting, Mark 69

Vandin, Andrea 145
Vogel-Heuser, Birgit 129

Wallach, Dan S. 422
Wang, Farn 243
Wasser, Nathan 279
Weigl, Alexander 129
Wideł, Wojciech 332
Wu, Hao 348
Wu, Peng 243

438 Author Index

	Preface
	Organization
	Invited Talks
	Integrating Inference into Stochastic Process Algebra Models
	Logic & Proofs for Cyber-Physical Systems with KeYmaera X
	Machine Learning for Programming
	Contents
	Cyber-Physical Systems
	An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems
	1 Introduction
	2 Background
	2.1 Dynamical System
	2.2 Signal Temporal Logic
	2.3 Gaussian Processes

	3 Domain Estimation with Gaussian Processes
	4 The Falsification Process
	4.1 Adaptive Optimization

	5 Probabilistic Approximation Semantics
	6 Case Studies and Results
	7 Conclusions
	References

	Modelling and Verification of Timed Robotic Controllers
	1 Introduction
	2 Modelling Robotic Controllers
	2.1 Motivating Example
	2.2 Related Work

	3 RoboChart: A Formal Notation for Robotics
	4 Semantics
	4.1 State Machines
	4.2 Budgets and Deadlines
	4.3 Clocks

	5 Tool Support and Model-Checking
	6 Conclusion
	References

	Spatial Reasoning About Motorway Traffic Safety with Isabelle/HOL
	1 Introduction
	2 Embedding MLSL into Isabelle/HOL
	2.1 Semantic Model
	2.2 Preliminary Definitions
	2.3 Views
	2.4 Traffic Snapshots
	2.5 Sensors
	2.6 Restriction to Views
	2.7 Hybrid Multi-Lane Spatial Logic

	3 Safety with Perfect Information
	4 Safety with Regular Information
	5 Conclusion
	References

	Formalising and Monitoring Traffic Rules for Autonomous Vehicles in Isabelle/HOL
	1 Introduction
	2 Preliminaries
	3 Codification of Traffic Rules
	3.1 Legal Analysis
	3.2 LTL Formulas of Traffic Rules
	3.3 Monitoring Traffic Rules

	4 Concretising the Overtaking Predicate
	4.1 Lanelets
	4.2 Lane Detection
	4.3 Overtaking Detection

	5 Concretising the Safe Distance Predicate
	6 Monitoring Overtaking Traffic Rules
	7 Related Work and Conclusions
	References

	Software Verification Tools
	Making Whiley Boogie!
	1 Introduction
	2 Background
	2.1 Whiley
	2.2 Boogie

	3 Modeling Whiley in Boogie
	3.1 Types
	3.2 Control Flow

	4 Generating Verification Conditions
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Complexity Analysis for Java with AProVE
	1 Introduction
	2 Complexity of Java and Symbolic Execution Graphs
	3 From SE Graphs to ITSs
	4 Summarizing Method Calls
	5 Encoding Heap Modifications
	6 Experiments and Conclusion
	References

	The VerCors Tool Set: Verification of Parallel and Concurrent Software
	1 Introduction
	2 The VerCors Architecture
	3 Verification Highlights
	4 Conclusion and Related Work
	References

	An Extension of the ABS Toolchain with a Mechanism for Type Checking SPLs
	1 Introduction
	2 FDABS: A Minimal Language for Core ABS and Deltas
	3 The Checking Mechanism for FDABS Product Lines
	3.1 Unambiguity Checking
	3.2 Type Checking Step (i): Extracting Constraints
	3.3 Type Checking Step (ii): Building the PFGT
	3.4 Type Checking Step (iii): Checking All Variants

	4 Integration into the ABS Toolchain
	4.1 An Overview of the Novel Component
	4.2 On Building the PFGT

	5 Case Studies and Evaluation
	5.1 Error Reporting
	5.2 Performance
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	Safety-Critical Systems
	Generalised Test Tables: A Practical Specification Language for Reactive Systems
	1 Introduction
	2 The Basis: Concrete Test Tables
	3 The Concept of Generalised Test Tables
	4 Semantics of Generalised Test Tables
	4.1 Unrolled Instances of Generalised Test Tables
	4.2 Evaluation of Expressions
	4.3 Two-Party Game for Defining Test Conformance

	5 Transforming Generalised Test Tables into Automata
	6 Experiment
	7 Related Work
	8 Conclusion
	References

	Transient and Steady-State Statistical Analysis for Discrete Event Simulators
	1 Introduction
	2 Batch Means Method
	3 MultiVeStA
	3.1 Simulator Integration

	4 Analysis of a Biochemical Pathway Using MultiVeStA
	4.1 Example 1: The cAMP/PKA/MAPK Biochemical Pathway
	4.2 Transient Analysis with MultiVeStA
	4.3 Steady-State Analysis in MultiVeStA

	5 Example 2: Edinburgh Bus Simulator
	6 Conclusions
	References

	Algebraic Compilation of Safety-Critical Java Bytecode
	1 Introduction
	2 Preliminaries
	2.1 Safety-Critical Java
	2.2 Circus

	3 Our Approach to Algebraic Compilation
	4 SCJVM and Interpreter Model
	5 Shallow Embedding of C in Circus
	6 Compilation Strategy
	7 Discussion
	8 Conclusions
	References

	Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver
	1 Introduction
	1.1 ScOSA System Overview
	1.2 Mapping and Subsequent Model Checking

	2 Related Work
	3 Formal Definition of the Problem
	3.1 Period Estimation for Event-Triggered Tasks
	3.2 Formulation of the Mapping Problem

	4 SMT Formulation
	4.1 Task-Node Mapping Variables
	4.2 Link Bandwidth Constraints
	4.3 Node Load Constraints
	4.4 Objective Functions
	4.5 Variable Types

	5 Evaluation
	5.1 Performance Comparison of Different SMT Formulations
	5.2 Task-Node Mapping for the ATON Application
	5.3 Remarks on Scalability

	6 Conclusions and Future Work
	References

	Concurrency and Distributed Systems
	Analysis of Synchronisations in Stateful Active Objects
	1 Introduction
	2 The Active Object Model gASP
	3 Behavioural Type System
	4 Behavioural Type Soundness and Analysis
	5 Concluding Remarks
	References

	BTS: A Tool for Formal Component-Based Development
	1 Introduction
	2 CSP
	3 BRIC
	3.1 Component Contract
	3.2 Component Instantiation
	3.3 Composition Rules
	3.4 Component Metadata

	4 BRICK Tool Support
	5 Evaluation
	6 Conclusion
	References

	Testing and Verifying Chain Repair Methods for CORFU Using Stateless Model Checking
	1 Introduction
	2 Chain Replication
	2.1 Basic Algorithm
	2.2 Chain Repair
	2.3 Chain Replication in CORFU
	2.4 Chain Repair Techniques for CORFU

	3 Stateless Model Checking, Erlang, Concuerror and Bounding
	4 Modeling CORFU
	4.1 Correctness Properties
	4.2 Initial Model
	4.3 Method 1: Add Repaired Server at End of Chain
	4.4 Method 2: Add Repaired Server at Start of Chain
	4.5 Method 3: Add Repaired Server in the Middle
	4.6 An Evaluation of the Repair Methods on the Initial Model

	5 Optimization and Refinements
	5.1 Optimization: Avoid Reordering the Delivery of Unrelated Messages
	5.2 Two Refinements of the Model
	5.3 Evaluation of the Effect of the Optimization and Refinements

	6 Related Work
	7 Concluding Remarks
	References

	Synthesizing Coalitions for Multi-agent Games
	1 Introduction
	2 System Model
	2.1 Motivating Example
	2.2 Concurrent Game Graphs

	3 TCLX
	4 Expressiveness of TCLX
	5 Satisfiability of TCLX
	6 TCLX Model-Checking
	7 Implementation and Experiments
	8 Conclusion
	References

	Program Verification Techniques
	Hoare-Style Reasoning from Multiple Contracts
	1 Introduction
	2 Reasoning About Multiple Contracts
	2.1 Semantics
	2.2 Normalization Rules

	3 Derivation of General Reasoning Rules
	3.1 Derivation of Three Instantiation Rules
	3.2 Deriving the Elimination Rule
	3.3 Deriving the Invariance Axiom and Rule
	3.4 Deriving the Improved Adaptation Rule
	3.5 Deriving the Generalized Adaptation Rule
	3.6 Deriving the Conjunction Rule

	4 Completeness
	5 Related Work
	6 Conclusions
	References

	A New Invariant Rule for the Analysis of Loops with Non-standard Control Flows
	1 Introduction
	2 Program Logic for Symbolic Execution
	3 The Loop Invariant Rules
	4 Evaluation
	5 Exploiting Invariants: Integration of State Merging
	6 Related Work
	7 Future Work and Conclusion
	References

	Triggerless Happy
	1 The Trouble with Triggers
	2 Motivating Examples
	3 Encoding Boogie in TPTP
	3.1 Declarative Constructs
	3.2 Imperative Constructs

	4 Implementation and Experiments
	4.1 Experimental Subjects
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Related Work
	6 Discussion and Future Work
	References

	SemSlice: Exploiting Relational Verification for Automatic Program Slicing
	1 Introduction
	2 Background
	2.1 Static Backward Slicing
	2.2 Relational Program Verification

	3 Implementation
	4 Slice Candidate Generation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Formal Modeling
	VBPMN: Automated Verification of BPMN Processes (Tool Paper)
	1 Introduction
	2 Models and Languages
	3 Web Application
	4 CADP Back-End
	5 Concluding Remarks
	References

	How Well Can I Secure My System?
	1 Introduction
	2 Security Modeling with Attack--defense Trees
	2.1 Attack--defense Trees
	2.2 Formal Semantics

	3 Security-Oriented Optimization Problems
	3.1 Mathematical Modeling
	3.2 Implementation
	3.3 Countermeasure Optimization on the Running Example

	4 Conclusion
	References

	MaxUSE: A Tool for Finding Achievable Constraints and Conflicts for Inconsistent UML Class Diagrams
	1 Introduction
	2 Overall Architecture
	3 Usage Scenarios
	3.1 Verifying Consistency
	3.2 Finding Achievable Constraints
	3.3 Finding Constraint Conflicts

	4 Usefulness
	5 Availability
	6 Related Work
	7 Conclusion
	References

	Formal Verification of CNL Health Recommendations
	1 Introduction
	2 Background and Related Work
	3 The Problem Domain and Framework
	4 Controlled Natural Language for Therapy Algorithms
	5 Case Frame Generation
	6 Model Generation and Verification
	6.1 Model Generation
	6.2 Model Verification

	7 Conclusion
	References

	Verified Software
	Modular Verification of Order-Preserving Write-Back Caches
	1 Introduction
	2 Motivation
	3 Components with Power Cuts
	4 Crash-Safe Refinement
	4.1 Data Refinement and Propagation of Jumps
	4.2 Crash Refinement and Introduction of Jumps

	5 Component Hierarchies and Substitution
	6 Crash-neutrality
	7 Related Work
	8 Conclusion
	References

	Formal Verification of ARP (Address Resolution Protocol) Through SMT-Based Model Checking - A Case Study -
	1 Introduction
	2 Preliminaries on Formal Verification
	3 Address Resolution Protocol (ARP)
	3.1 ARP Formal Verification

	4 Link-Local Addresses
	4.1 Verification of ARP as in RFC 3927

	5 Extended ARP: Address Conflict Detection
	6 Conclusions
	References

	Certified Password Quality
	1 Introduction
	2 Password Quality Checking Software
	3 Verified Password Quality in Coq
	3.1 Types and Password Checkers
	3.2 Specification, Implementation, and Proofs
	3.3 Password Policies and Code Extraction

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experiment 1: Comparison with PAM Modules pam_cracklib and pam_pwdquality
	4.3 Experiment 2: Increasing Password Entropy
	4.4 Experiment 3: A Simple Policy

	5 Related Work
	6 Conclusion
	References

	Verification of STAR-Vote and Evaluation of FDR and ProVerif
	1 Introduction
	2 STAR-Vote in Communicating Sequential Processes and FDR
	2.1 STAR-Vote CSP Model
	2.2 Analysis with FDR

	3 STAR-Vote in the Applied Pi Calculus and ProVerif
	3.1 STAR-Vote Model in Applied Pi
	3.2 Analysis with ProVerif

	4 Evaluation of the Tools: FDR and ProVerif
	4.1 Expressiveness
	4.2 Usability
	4.3 Efficiency

	5 Related Work
	6 Conclusion
	References

	Author Index

