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a b s t r a c t 

Irreversible Electroporation (IRE) is a promising clinical ablation therapy for the treatment of cancer, 

but issues with the generation of heat must be solved before safe and effective clinical results can be 

obtained. In the present study, we show that a metal stent will not be noticeably heated up by IRE 

pulses under typical clinical conditions. Derivation of this non-intuitive result required the application 

of Maxwell’s equations to the tissue-stent configuration. Subsequently, straightforward and arguably ac- 

curate simplifications of the electric field generated by two needles in tissue surrounding a metal stent 

have enabled the modeling of the heat generation and the transport of heat in IRE procedures. Close to 

a stent that is positioned in between two needles, temperatures in a typical run of 100 s, 1 Hz pulses, 

may remain notably lower than without the stent. This is the explanation of the experimentally observed 

low temperature rim of viable tissue around the stent, whereas all tissue was non-viable without stent, 

found in tissue model experiments. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Irreversible Electroporation (IRE) is a promising clinical abla- 

ion therapy for the treatment of cancer, in particular when tu- 

ors are located near vulnerable structures. The technique utilizes 

igh-voltage, about 90 microsecond electrical pulses that are ap- 

lied through needle electrodes that are positioned in the tumor. 

he electrical pulses have a maximum voltage in the range 10 0 0 to 

500 V and current in the range 15 to 35 A. The electrical pulses

estabilize the existing transmembrane potential over the mem- 

rane boundary of cancer cells and lead to the formation of so- 

alled ‘nano-pores’ in the cellular membrane. Due to the result- 

ng increased cell membrane permeability, the cell loses its normal 

roperties and cell death results [1–3] . Cells are killed in a targeted 

egion, without damaging the collagen and other interstitial tissue 
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onstituents. This localized treatment makes it possible to preserve 

ritical structures, like major vasculature and ductal systems [3–5] . 

his sparing of critical structures is the primary characteristic that 

istinguishes IRE from other local therapies [4] . The clinical proce- 

ure with IRE is with two or more needles within close distance 

order of 5 mm) of each other to keep the electric field localized 

nd generally requires about 100 pulses at 1 Hz. The two needles 

re usually in parallel; reference [5] gives figures of this and other 

eedle geometries. 

The underlying physics of IRE is complex and still incompletely 

nderstood. An important example is that IRE received strong sci- 

ntific and industrial marketing, arguing that tissue cell death oc- 

urs only by nanopores in the cell membranes created by short 

nd intense IRE electric pulses [ 1 , 2 ], and that the inevitable Joule

eating developing when a voltage is applied between electrodes 

laced in an electric conducting tissue can be kept sufficiently lim- 

ted [ 3 , 4 , 6 ]. Controversy then developed concerning possible ther- 

al effects of IRE. First, IRE, as currently applied in clinical proce- 
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Nomenclature 

Roman symbols 

a radius of the stent; m 

B magnetic field vector; tesla 

c heat capacity of tissue; J/(kg 0 C) 

D diameter of the needles; m 

D electric field vector inside material; coul/m 

2 

E electric field vector outside of material; V/m 

E i incident electric field component; V/m 

E r reflected electric field component; V/m 

E t transmitted electric field component; V/m 

H i incident magnetic field component; ampere-turn 

per m 

H r reflected magnetic field component; ampere-turn 

per m 

H t transmitted magnetic field component; ampere-turn 

per m 

f frequency; Hz 

G Green’s function 

H magnetic field vector inside material; ampere-turn 

per m 

J electric current density; amp/m 

2 

L typical length scale, m 

L 1 needle distance from origin, m 

q free charge density; coul/m 

3 

Q electric charge; coul 

r radial position; m 

ˆ r i unit vector in direction of vector r i , with i a positive 

integer; m 

t time; s 

T temperature; 0 C 

T 0 (x,y,z) initial temperature profile; 0 C 

V volume; m 

3 

x coordinate in x -direction; m 

y coordinate in y -direction; m 

z coordinate in z -direction; m 

z 1 needle coordinate in z -direction, being half the dis- 

tance between two needles; m 

Greek symbols 

α heat diffusivity; α = λ /( ρ c) , m 

2 /s 

�t typical duration of an electric pulse, s 

ε dielectric permittivity; ε = εr ε0 

ε0 dielectric permittivity of vacuum; farad per m, 

ε0 = 8.854. 10 −12 

εr relative permittivity; farad per m 

λ thermal conductivity; W/(m 

0 C) 

μ0 magnetic permeability of vacuum; μ0 = 4 π .10 −7 

henry/m 

ρ mass density; kg/m 

3 

τ time; second, s 

σ electrical conductivity; siemens per meter, 

1/( 
.m) = S/m 

ϕ angle between unit vectors; ˆ r 1 · ˆ r 2 = cosϕ
� voltage; V 

Acronyms 

2D two-dimensional 

3D 3-dimentional 

IRE Irreversible Electroporation 

Fo Fourier number, Fo = α t/L 2 

LHS left-hand-side 

RHS right-hand-side 
D

2 
ures, has now a proven strong Joule heating thermal part [5–13] ; 

espite that, many recent publications still ignore mentioning this 

echanism, e.g. [ 14 , 15 ]. A second example is that a metal device

etween the electrodes during IRE pulsing, e.g. a metal stent in the 

ommon bile duct during IRE palliation of a pancreas carcinoma, 

as considered a contraindication for an IRE procedure because of 

he intuitive assumption that the metal would be heated up [16] , 

hich was questioned by our group in a comment to that pub- 

ication [ 17 , 18 ]. Nevertheless, it was recently still mentioned that 

 metal stent is a contraindication for IRE [14] . Whether a metal 

tent is indeed a contraindication for therapy and needs to be re- 

oved prior to application of IRE or not is of utmost importance 

s it may withhold a patient from relevant therapy while surgical 

emoval can be associated with complications. Convincing proof of 

on-heating of the metal stent is therefore essential. This study, 

he physics part of the joint effort s between clinicians and physi- 

ists, to understand clinically relevant IRE issues, aims at deliver- 

ng this proof by a theoretical approach. The governing Maxwell 

nd bioheat equations and boundary conditions will be shown to 

llow for simplifications that yield straightforward and relatively 

asy computations. The Green’s function method to account for 

eat conduction [20] will be exploited and full profit will be taken 

f the additivity of temperature solutions of the heat equation. 

atlab TM is used as a high-level language for the actual compu- 

ations. Comsol TM computations have been used for validation of 

he simplifications applied. 

Laboratory experiments have been carried out to examine the 

evelopment of temperature fields in human-like tissue, in jelly 

hantoms and in porcine experiments, due to electric heating with 

eedles [ 12 , 13 ]. One unexpected finding was that temperatures in 

he vicinity of a stent were lower than at the same location with- 

ut a stent. The present study will explain this experimental find- 

ng and will elucidate the trends found in these experiments. 

The aims of our paper are: 

1 to model the thermal behavior of IRE procedures without and 

with a metal stent between two needles that generate an elec- 

tric field; 

2 to prove with the use of Maxwell’s equations that metal stents 

hardly increase in temperature in response to a clinical IRE 

pulse; 

3 to explain thermo-camera experiments in [ 12 , 13 ]. 

The organization of the paper is as follows. Governing equa- 

ions, boundary conditions, simplifications and approximation 

ethods are explained in Section 2 . Results and comparison with 

xperiments are presented in Section 3 . Conclusions are given in 

he final section. Two appendices provide details of some results. 

. Methods 

.1. Governing equations and temperature solution 

.1.1. Maxwell’s equations and electric heat production 

Although the governing equations are well known, they are 

ummarized below to introduce symbols and units as well as the 

onditions under which simplifications are allowed. 

Let the dielectric permittivity of a material be given by 

 = ε r ε 0 , where ε r denotes the dimensionless relative dielectric 

ermittivity of a material and ε0 the dielectric permittivity in vac- 

um; ε0 = 8.854. 10 −12 farad/m. With E the electric field vector 

utside of material in V/m (volt/m), the electric field vector in- 

luding polarization inside material, D , in coul/m 

2 (coulomb/m 

2 ) 

s given by 

 = e E . (1) 
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The magnetic field without polarization, B , in tesla is expressed 

n the one with polarization, H , in ampere-turn per m via 

 = μ0 ( H + M ) , (2) 

here μ0 is the magnetic permeability of vacuum that amounts 

 π .10 −7 henry/m. 

Finally, let Q denote a free point charge at a point in coul 

coulomb), let q denote free charge density in coul/m 

3 and let J 

e the time rate of change of charge, which is equal to the electric 

urrent density in amp/m 

2 (ampere/m 

2 ). The Maxwell equations 

ead [20] : 

. D = q (3) 

. B = 0 (4) 

 × H = J + ∂ D /∂t (5) 

 × E = −∂ B /∂ t. (6) 

The continuity equation for charge and current is the follow- 

ng: 

. J = −∂ q/∂t. (7) 

The symbol σ denotes the specific conductivity in 

/( 
.m) = S/m (Siemens/m). Ohm’s law, J = σ E, holds for 

uasi-steady processes and is a simplification of the following 

eneral expression for the electric current, which is the essential 

eneralization of previous versions found by Maxwell [20, page 

18]: 

 = σ E + ∂ D /∂t. (8) 

For free charges, current density is given by J = σ E , which is 

hm’s law. With the equation of continuity, ∂ q/ ∂ t + ∇. J = 0 , it is

asily seen that a typical response time of free charges is given by 

= ε / σ . The derivation requires assuming ε and σ to be homo- 

eneous and substitution of q = exp(–t/ τ ) in the combination of 

 q/ ∂ t = –∇. J and ∇ .J = σ q/ ε. Let �t be a typical duration of

n electric pulse used for current clinical IRE procedures. If the re- 

ponse time τ is small with respect to �t , then electric currents 

re quasi-stationary, which implies that n 2 . ( J 1 – J 2 ) = 0, where n 2 

s the outward normal to volume numbered 2 and J 1 and J 2 are 

he current densities on both sides of the volume boundary where 

he normal is positioned. For a metal, typical values are σ ~ 10 7 

/m and ε r = 1. This means that τ ~ 10 −18 s << � t ~ 10 −4 s. 

uring a typical IRE pulse, electric currents can thus be considered 

s stationary. 

If an electric field is rapidly changing, as for example during the 

witching on and off of electric potentials, an electric field might 

e generated that may penetrate into a metal shield. In that case 

he full Maxwell equations must be considered. This will be done 

elow, in Section 2.3 , for the standard conditions of IRE. In actual 

onductors, the fields are attenuated exponentially in a character- 

stic length, which is called the skin depth. The amount of attenu- 

tion in the skin depth will be quantified for clinical conditions to 

ustify the assumption of quasi-steady in the computational results 

f Section 3 . 

If the conditions determining electric fields are quasi-steady, 

here is no need to solve for the magnetic field; in that case ∇ . J

 0. For a homogeneous electric conductivity, the last equation of a 

ivergence-free current in combination with the defining equation 

f the electric potential, �, in volt: 

 = −∇ · � (9) 
3 
ields the Laplace equation ∇. ∇ � = 0 . This is the equation of 

lectrostatics that will be employed to compute the electric field 

nder conditions prevailing in clinical IRE procedures. 

The time rate of change of mechanical energy in a volume V is 

iven by 
 

V 

J . E dV (10) 

The energy dissipation rate density of electric fields, the conver- 

ion rate of electric energy to heat per unit of volume, in W/m ³, is
ith Ohms law therefore given by σ E 

2 . This heat production leads 

o temperature changes that are computed in the way described in 

he following section. 

.1.2. IRE temperatures calculated with Green’s functions and 

odeling assumptions 

The bioheat equation for the partial derivative with respect to 

ime, t , of the temperature, T , in tissue exposed to an electric field,

, and of mass density, ρ , (kg/m 

3 ), heat capacity, c , (J/kg/ °C), elec-

ric conductivity, σ , and thermal conductivity, λ (W/m/ °C) is, e.g. 

10] 

c 
∂T 

∂t 
= σE 2 + λ∇ 

2 T . (11) 

Let T 0 (x,y,z) be the initial temperature profile. Heat diffusion 

nd the generation of heat occur, that both modify the spatial 

nitial temperature profile. Heat diffusion is here calculated by a 

reen’s function approach [19] . Initial temperature profile T 0 is 

sually taken homogeneous and equal to 37 °C, which will be taken 

s the reference temperature field from now on. 

Let the thermal diffusivity be α = λ/ ( ρc ) . The clinical IRE nee- 

les usually generate electricity over a great part of their length. 

nd effect will be ignored and the heat generation takes the form 

f a line source in that case, which makes the computational do- 

ain essentially two-dimensional. Green’s functions exist for finite 

omains, but in this study spreading of heat during 100 s at max- 

mum will be considered. The typical length scale, L , of spreading 

f heat from a source is estimated by putting the Fourier number, 

o = α t / L 2 , equal to 1. For a heat diffusivity of 1.4 � 10 −7 m 

2 /s

nd a time of 100 s, L is easily found to be approximately 4 cm. 

The IRE treatment therefore remains localized in a small spatial 

omain as compared to the dimensions of the human body. It is 

herefore safe to assume that the heat produced can diffuse freely 

ithout being affected by boundaries and to adopt Greens’ func- 

ions for an infinite body. 

For an IRE geometry of two parallel needle electrodes of infi- 

ite length in the y -direction, a Cartesian coordinate system ( x, z) 

nd time t will be employed. The needles point in the y -direction, 

he z -axis joins the centers of the needles and the x -axis is normal

o the origin that is located in between the two needles ( Fig. 1 ).

he thermal diffusion from an infinite unit line source occurring 

nstantaneously at position x ′ , z ′ and time τ is conveniently de- 

cribed by the following Green’s function [19] : 

 

(
x, z, t; x ′ , z ′ , τ

)
= 

1 

4 πα( t − τ ) 
· exp 

( 

−
(
x − x ′ 

)2 + 

(
z − z ′ 

)2 

4 α( t − τ ) 

) 

. 

(12) 

When the initial temperature is uniform and equal to T 0 , the 

emperature field is given by 

 ( x, z, t ) − T 0 = 

t 

∫ 
0 

d τ
x 2 ∫ 
x 1 

d x ′ 
z 2 ∫ 
z 1 

d z ′ 
σE 

(
x ′ , z ′ 

)2 

ρc 
G 

(
x, z, t; x ′ , z ′ , τ

)
(13) 

here the boundaries of the integral have been chosen sufficiently 

arge and of the order of L = 4 cm to make the values of either the
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Fig. 1. Coordinates without a stent. Definition of polar angle θ and radial distances 

r, r 1 and r 2 ; the spherical needles with diameter D are represented by point charges 

Q and -Q. 
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eld E or the Green’s function G negligibly small at these bound- 

ries. The heat generated at each location (x’,z’) is in (13) seen to 

ossibly contribute to the temperature increase at the arbitrarily 

hosen point (x,z) . The double spatial integral in (13) expresses the 

dditivity of the solutions of the energy Eq. (11) and simply sums 

he temperature contributions from all other places after the time 

he heat generation started ( t = 0 ). 

The method of time partitioning is applied [19, page 167], 

hich introduces a time t p that satisfies t p < 0.025 L 2 / α, with

ength L equal to the smallest characteristic length of the problem 

t hand [19, page 176]. The Green’s function (13) in the limit for 

t – τ ) to zero, i.e. for τ in the range (t-t p , t] with t p very small,

ecomes a product of two delta functions: δ(x – x’). δ(z – z’) . As a 

onsequence, 

 ( x, z, t ) − T 0 = 

σ t p E ( x, z ) 
2 

ρc 
+ 

t− t p 

∫ 
0 

d τ
x 2 ∫ 
x 1 

d x ′ 
z 2 ∫ 
z 1 

d z ′ 
σE 

(
x ′ , z ′ 

)2 

ρc 

×G 

(
x, z, t; x ′ , z ′ , τ

)
. (14) 

Physically, Eq. (14) means that the contribution to the temper- 

ture rise on location (x,z) from the electric pulse from another 

lace, x’ , takes at least t p s to diffuse towards the location (x,z) .

he electric pulses from all places with a nonzero electric field dur- 

ng time interval [0, t p ) contribute via the integral on the RHS of

q. (14) to the temperature rise at time t at location (x,z) . 

Both the number of mesh points in the integration and the 

ime t p have been varied for typical electric fields generated by 

wo needles (diameter, D, 1 mm) and a heat diffusivity, α, of 1.4 

10 −7 m 

2 /s. A first estimate based on the criterion t p < 0.025 

 

2 / α, with L = 0.1 D, yields a t p of about 1 ms. A comparison

s made with results obtained without time partitioning and in all 

ases a value of t p of 0.3 ms gave excellent agreement. In compu- 

ations below, an electric field will be considered that is constant 

nd nonzero during 0.1 ms and zero afterwards. Such very short 

lectric pulses with a duration �t , of 0.1 ms, are typical for cur- 

ent clinical IRE procedures At times exceeding the pulse duration 

f 0.1 ms the temperature increase at location (x,z) is well approx- 

mated by 0.0 0 01 σ E(x,z,t = 0.1 ms) 2 /( ρ c) in that case. 

Eq. (14) makes it clear that electric field histories must be 

omputed, at first for quasi-steady conditions. This is done in 

ection 2.2 . 

.2. IRE electric field distribution in tissue with and without a stent 

It is quite convenient and straightforward to predict the electric 

eld produced between electrodes in IRE applications by means 

f local charges and mirror-charges to satisfy the boundary con- 

itions. The case without a stent is treated first. 
4 
.2.1. Without stent 

The electric field vector distribution in tissue, E( r, θ ) , at point 

 ( r, θ ) , defined at radial coordinate r and angle θ with the hori- 

ontal z-axis ( Fig. 1 ), caused by 2 electric point charges, + Q at the

eft and − − Q at the right, both at distance z 1 from the origin, is 

iven by 

 ( r, θ ) = 

Q 

4 πε 0 

[
ˆ r 1 

r 2 
1 

− ˆ r 2 

r 2 
2 

]
(15) 

here ˆ r 1 , ̂  r 2 are the unit vectors in the directions between P and 

Q and P and −Q respectively ( Fig. 1 ). The temperature increase 

istribution relates to the energy dissipation rate density, in W/m 

3 , 

hat is given by the product of the electrical conductivity, σ , and 

he electric field squared: 

E ( r, θ ) 
2 = 

σQ 

2 

( 4 πε 0 ) 
2 

[
ˆ r 1 

r 2 
1 

− ˆ r 2 

r 2 
2 

]2 

= σ
(

Q 

4 πε 0 

)2 

·
[

1 

r 4 
1 

+ 

1 

r 4 
2 

− 2 

ˆ r 1 · ˆ r 2 

r 2 
1 
r 2 

2 

]
. (16) 

The vector product ˆ r 1 · ˆ r 2 = cosϕ , with ϕ the angle between ˆ r 1 
nd ˆ r 2 . Simple expressions for this angle and for the volumetric 

eat production rate, P ( r, θ ) = σE ( r, θ ) 2 , are derived in Appendix 

 . This heat production will be needed to compute temperature 

istories. 

Factor Q/ ( 4 πε 0 ) follows from the voltage potential, �, at arbi- 

rary point P . For the above configuration of two point charges it 

s given by 

( r, θ ) = 

Q 

4 πε 0 

[ 
1 

r 1 
− 1 

r 2 

] 
, (17) 

xpressing that −∇� = E . Ways to determine Q/ ( 4 πε 0 ) when a 

iven voltage V is put over the two electrodes will be presented for 

he 2D case in Section 2.2.2 . Note that the needles in the present

ection have a 3D, spherical, shape. Because of the external charge 

f the other needle the voltage at the surface of a needle is in- 

omogeneous, whereas it should be constant as the electric field 

nside a conductor is zero. This can be solved by image charges in 

 way presented in Section 2.2.2 for the 2D case. 

.2.2. With stent 

When a hypothetical stent would be a metal wire mesh with a 

pherical shape and radius a it could be placed in between point 

harges Q and −Q on the z-axis ( Fig. 2 ). There are two image 

harges needed inside the metal to keep the potential of the stent 

ero, see e.g. the classic text on electrodynamics by Jackson [20] , 
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Fig. 3. Coordinates with a cylindrical stent. Definition of image line charge sources 

at the origin and at distance a 2 /z 1 (z1/2 is the distance of charge -Q to the origin) 

from the center and distances r and r 4 from the selected point P. The circle around 

the center indicates a cylindrical stent that has radius a. The potential of the stent 

surface is homogeneous with value zero. 

S

a

s

o

L

E

p

σ[

o

A

c

i  

d

�

F

l  

z

w

z  

z  

o

�

 

(

Fig. 4. Electric field strength, in unit MV/m, created in between stent and nee- 

dles along the axis through the center (y = 0). Needle diameter D = 2 mm; needle 

distance 12.5 mm, a = 2.5 mm, V 0 = 1500 V. The analytical solution is given by 

Eq. (21) . 

s  

g  

p

w

w

t

d

p

t

a

o

W

m

C

t

o

i

c

fi

t

c

t

t

p

a

fi  

s

f

x

a

s

−
�

w

o

[

o

C  

d  

o

t

ection 2.5, Fig. 6.6. These image charges are valued −aQ /z 1 and 
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ee Fig. 2 . 

For the case depicted in Fig. 2 the electric field is composed 

f four contributions that can be added because the governing 

aplace equation, �� = 0, is linear in the potential: 

 ( r, θ ) = 

Q 

4 πε 0 

[
ˆ r 1 

r 2 
1 

− ˆ r 2 

r 2 
2 

− a 

z 1 
· ˆ r 3 

r 2 
3 

+ 

a 

z 1 
· ˆ r 4 

r 2 
3 

]
. (18) 

For all points P outside of the spherical metal stent, the heat 

roduction is given by 

E ( r, θ ) 
2 = 

σQ 2 

( 4 πε 0 ) 
2 

[
ˆ r 1 

r 2 
1 

− ˆ r 2 

r 2 
2 

− a 
z 1 

· ˆ r 3 

r 2 
3 

+ 

a 
z 1 

· ˆ r 4 

r 2 
3 

]2 

= 

σQ 2 

( 4 πε 0 ) 
2 

1 

r 4 
1 

+ 

1 

r 4 
2 

− 2 ̂ r 1 ·ˆ r 2 
r 2 
1 

r 2 
2 

+ 

(
a 

z 1 

)2 
{

1 

r 4 
3 

+ 

1 

r 4 
4 

− 2 ̂ r 3 ·ˆ r 4 
r 2 
3 

r 2 
4 

− 2 ̂ r 1 ·ˆ r 3 
r 2 
1 

r 2 
3 

− 2 ̂ r 1 ·ˆ r 4 
r 2 
1 

r 2 
4 

− 2 ̂ r 2 ·ˆ r 3 
r 2 
2 

r 2 
3 

− 2 ̂ r 2 ·ˆ r 4 
r 2 
2 

r 2 
4 

}]. 

(19) 

Simple expressions for the RHS of the above equation are 

btained with the aid of expressions such as (A3) derived in 

ppendix A . 

A similar approach is followed for the case of two infinitely long 

ylindrical needle electrodes and an infinitely long cylindrical stent 

n between these two needles. The integral of Eq. (17) in the y -

irection yields the 2D- equivalent of (17) in the form 

( r, θ ) = 

Q 

4 πε 0 
[ ln ( r 1 ) − ln ( r 2 ) ] . (20) 

However, because of the 3D spherical shape of the stent of 

ig. 2 the image charges in the stent cannot be integrated. The so- 

ution for the 2D case of Fig. 3 , with a single charge −Q on the

-axis at point z = z 1 , is the following potential: 

�( z, x, z 1 ) /V = ln ( r 4 ) − ln ( r 2 ) + 

[ ln ( | 1 − z 1 /a | ) − ln ( | 1 − a/ z 1 | ) ] ln ( r ) , (21) 

here V = 

Q 
4 πε 0 

, r = ( z 2 + x 2 ) ½, r 4 = (( z − a 2 /z 1 ) 
2 + x 2 ) ½, r 2 = (( z −

 1 ) 
2 + x 2 ) ½. The potential for the case of two charges, − Q at point

 = z 1 and Q at point z = − z 1 , that has zero value at the surface

f the stent is given by 

( z, x ) = �( z, x, z 1 ) + �( z, x, −z 1 ) . (22) 

The last term on the RHS of (21) is a source term at the origin

0,0) needed to make the value of the potential at surface of the 
5 
tent equal to zero. The second term on the RHS of (21), − ln ( r 2 ) ,

ives the needle at z = z 1 the desired potential, V 0 , if V is appro-

riately chosen: 

V = V 0 / 
[
ln 

(
z 1 − D 

2 
− a 2 /z 1 

)
− ln 

(
D 
2 

)
− s 

]
ith s = 

[
ln 

(∣∣1 − z 1 
a 

∣∣) − ln 

(∣∣1 − a 
z 1 

∣∣)] In 

(
z 1 − D 

2 

)
/ ln ( a ) 

(23) 

here D is the needle diameter. With this choice, the voltage at 

he needle has the desired value at only one point on the nee- 

le surface, namely at the point facing the other needle. At other 

oints on the surface the voltage will be slightly off because of 

he presence of the other needle. This can be compensated with 

n image charge in the needle in a way described below. Because 

f symmetry two image charges are needed, for each needle one. 

ith these two image charges, the voltage at a needle surface is 

ade inhomogeneous by the image charge at the other needle. 

onsequently, new image charges are needed to make the poten- 

ial homogeneous despite the image charge, etc. An infinite array 

f image charges is thus created if two needles are in proxim- 

ty. In practice, needle distance is that large that only one image 

harge suffices to get an accurate representation of the electric 

eld in between two needles, as will be shown below. Alterna- 

ively, the shape of the needle corresponding to one image charge 

an be taken not to be circular but given by the equipotential plane 

hrough the point facing the other needle. This shape will be close 

o being spherical with deviations negligible for all practical pur- 

oses, while the boundary conditions are now satisfied at the stent 

nd at both needles. 

The strength of the image source of the needle in the stent, the 

rst term on the RHS of (21), ln ( r 4 ) , is also V whereas in the above

pherical case the strength of the images source was reduced by a 

actor a/ z 1 , Eq. (18) . 

The potential �( z, x ) is anti-symmetrical with respect to the 

,z -plane given by points where y = 0 since one needle has volt- 

ge V 0 while the other has voltage −V 0 ,. The potential at the stent 

urface is constant and this constant must be zero since �( a, 0 ) = 

�( −a, 0 ) . This means that the potential is given by 

( z, x ) /V = ln ( r 4 ) − ln ( r 2 ) − ln ( r 3 ) ∓ ln ( r 1 ) , (24) 

ith V given by Eq. (23) with s = 0. The monopoles at the 

rigin, corresponding to the last term on the RHS of (21), 

 ln ( | 1 − z 1 /a | ) − ln ( | 1 − a/ z 1 | ) ] ln (r) , are compensating one an- 

ther. 

The analytical solution of (21) is compared with the solution of 

omsol TM in Fig. 4 for a distance of only 4 mm between a nee-

le with a diameter of D = 2 mm and a stent with a diameter

f 5 mm. A good agreement is found, considering the fact that 

he Comsol solution is clearly asymmetrical and with some scat- 
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Fig. 5. Contour lines of the electric potential computed in Comsol TM for two needles and a stent in between. The unit at the equipotential lines is V; the unit on each axis 

is m. 
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er. The default settings of Comsol have been used as detailed in 

ppendix B . A finer grid would probably result in reduced scat- 

er and better agreement with the analytical that exactly satisfies 

he boundary condition at the stent. The electric potential field as 

omputed with Comsol TM for this case is shown in Fig. 5 . More 

umerical results with Comsol TM are given in Appendix B . 

The boundary condition at the needles is not exactly satis- 

ed by the choice V of (23) because of the thickness of the 

eedles in this case, as discussed above directly under (23). 

his was further investigated by reflecting the monopoles at z = 

a 2 / z 1 into the needles. Similar to the solution (21), this yields 

 monopole with reduced strength at the center of the needle, 

here z = z 1 , corresponding the last term on the RHS of (21),

 ln ( | 1 − z 1 /a | ) − ln ( | 1 − a/ z 1 | ) ] ln (r) , and a monopole at z = z 1 −
 D/ 2 ) 2 / ( z 1 − a 2 / z 1 ) . Because of the asymmetry, the monopole cor- 

esponding to the last term of the RHS of (21) is contributing and 

as a counterpart in the center of the needle at z = -z 1 . With these

eflection monopoles, the voltage at the needle surface is homoge- 

eous to within 1 % for the case of Fig. 4 . 

The electric field near the stent is hardly affected by these re- 

ection monopoles, whereas that near the needle is only slightly 

odified. The mean difference in the electric field at the points 

hown in Fig. 4 , because of the reflection monopoles, is 4 %. How- 

ver, for the much more realistic geometry of a needle diameter 

f 1 mm, a stent diameter of 5 mm and a z 1 -value of 15 mm, the

ean difference is only 0.5 %. The latter geometry will be used in 

he remainder of this study and since the points near the stent will 

e shown to be of main interest, the computations for the electric 

otential will be made without the reflection monopoles, i.e. with 

q. (24) . The resulting inaccuracy is less than 0.5 % anywhere. 

.3. Heat production in a stent 

During a pulse of arbitrary duration �t , a quasi-steady situa- 

ion occurs with electric current flowing through the tissue. The 

n and off switching of this current creates electromagnetic waves 

f various frequencies which may partly penetrate metals in the 
6 
o-called skin depth. When a metal stent is positioned in between 

wo pulsed electrodes, heat can therefore in principle be gener- 

ted both in the tissue inside the stent and in the material of the 

tent itself. The heat generation will be quantified in this section, 

rst for quasi-steady currents inside a fully metal stent, then for 

n and off switched currents in the stent itself and lastly for the 

issue inside an open-structured stent. 

.3.1. Heat production in tissue inside a fully metal stent: 

uasi-steady currents 

In Section 2.1 it was concluded that during typical IRE pulses, 

lectric currents can be considered as stationary. This situation is 

onsidered below. 

In electrostatics, the electric field can be derived from a poten- 

ial, i.e. E = –∇�. At an interface between arbitrary volumes 1 and 

, n 2 × ( E 1 – E 2 ) = 0 (Jackson [20] , pg. 146) and n 2 . ( D 1 – D 2 ) = q ,

here q is a localized charge distribution that comprises both real 

harges and macroscopic excess charges (Jackson, [20] , pg. 148). 

he boundary conditions at an interface between volumes 1 and 

 that do not contain charges, satisfying ∇. εE = 0 , then read: the

ormal component n 2 . ε E is continuous and the components par- 

llel to the interface, n 2 × E , are also continuous. 

The equations are similar for stationary electric currents in two 

edia with homogeneous conductivities, σ 1 and σ 2 : ∇. σ i E i = 0 

 i = 1 or 2), n 2 �σ 1 E 1 = n 2 � σ 2 E 2 and parallel components

 2 × E must be continuous as well. Solutions from electrostatics 

old for stationary currents provided conductivity, σ , replaces elec- 

ric permittivity, ε. 

The equations in magnetostatics are also similar for volumes 

ith homogeneous permeability, μ. The magnetic field, H , is deriv- 

ble from a scalar potential then: H = –∇� and magnetic induc- 

ion, B , is given by B = μ H . Since 

 2 · ( B 1 − B 2 ) = 0 (25) 

nd, provided there are no currents, n 2 × ( H 1 – H 2 ) = 0 [20, pg.

90], solutions from magnetostatics also hold for stationary cur- 

ents provided conductivity, σ , replaces permeability, μ. 
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Fig. 6. Free after Fig. 3.14 of Sengupta and Liepa [23] . Points with y < 0, to the left 

of the x-axis drawn, are in human tissue. Those with y > 0 are inside a stent. 
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The latter similarity allows transferring the magnetostatics so- 

ution given by Jackson ([20], paragraph 5.12, pg. 199) for a spher- 

cal shell in a uniform field to that of a spherical shell with con- 

uctivity σ in a uniform electric field as created by two parallel 

at plate electrodes. The reduction of the electric current inside 

he cavity in the shell is significant if the conductivity exceeds 10 3 

/m (Jackson, [20] , pg. 201). More importantly, also the currents 

nd heat production inside the shell itself can be computed. For 

tent radius a = 2.5 mm and stent thickness b = 0.5 mm, it is eas-

ly shown that the maximum heat production density in the shell 

tself is less than 1 ‰ of the heat production density in the uniform

eld imposed. This means that for all practical purposes the heat 

eneration inside each shell during an electromagnetic pulse, so for 

uasi-steady currents, is negligible as compared to that outside the 

hell. 

For points P inside a fully metal stent in these conditions we 

hus have no heat generation: 

E ( r, θ ) 
2 = 0 (26) 

.3.2. Heat production in the metal of a stent: on and off switched 

urrents 

Consider a tissue-metal interface, the x,z plane at y = 0, per- 

endicularly irradiated by an electromagnetic (EM) wave of radial 

requency ω ( Fig. 6 ). During the switching off and on of currents, 

lectromagnetic waves penetrate the solid material of the stent in 

he so-called skin depth. This penetration is quantified below. 

The incident, the reflected and the transmitted EM-fields are 

haracterized by E i , H i ( E oscillating in the x-direction, H in the

irection normal to the plane of x and y directions), E r , H r and

 t , H t , respectively. Using the notation that σ1 , σ2 are the electric 

onductances of the tissue and the metal ( σ1 = 0.1-2 [21] versus 

2 = 10 6 S/m, the latter for nitinol [22] , an alloy of Nikkel and Ti-

anium, often used for metal stents), μ0 , μ1 , μ2 the magnetic per- 

eability of vacuum ( μ0 = 4 π10 −7 Henry/m), and of tissue and 

etal, both about 1, ε 0 , ε 1 , ε 2 the dielectric permittivity of vac- 

um ( ε 0 = 8 . 854 · 10 −12 farad/m), and of tissue and metal, about 

0 farad/m and several thousand farad/m, respectively. Maxwell’s 

quations then give ( e.g . Sengupta and Liepa, [23] pages 95, 96), 

ith j 2 = −1 and omitting everywhere the factor exp( jωt ) , 

 i = x E i e 
−γ1 y E r = x E r e 

γ1 y E t = x E t e 
−γ2 y (27) 

 i = y 
E i e 

−γ1 y 

η1 

H r = −y 
E r e 

γ1 y 

η1 

H t = y 
E t e 

−γ2 y 

η2 

(28) 

1 = 

√ 

j ω μ0 μ1 ( σ1 + j ω ε 0 ε 1 ) ≈
√ 

jω μ0 μ1 σ1 (29) 
7 
2 = 

√ 

j ω μ0 μ2 ( σ2 + j ω ε 0 ε 2 ) ≈
√ 

jω μ0 μ2 σ2 (30) 

1 = 

√ 

jω μ0 μ1 

σ1 + jω ε 0 ε 1 
≈

√ 

jω μ0 μ1 

σ1 

η2 = 

√ 

jω μ0 μ2 

σ2 + jω ε 0 ε 2 
≈

√ 

jω μ0 μ2 

σ2 

(31) 

The exceedingly small value of ε 0 causes that ω ε 0 ε r1 , 2 � σ1 , 2 

or tissue and nitinol for all radial frequencies relevant to a 

.1 ms IRE pulse, based on Fourier analysis of the pulse shape 

nd on the amplitude. For example, requiring that ω ε 0 ε 1 � σ1 

mplies that frequencies have to be much smaller than about 

 . 1 / ( 8 . 85 × 10 −12 × 80 × 2 π) ≈ 2 . 2 × 10 7 Hz, well obeyed by a 

.1 ms pulse, i.e., frequencies < ∼2 . 5 · 10 5 Hz. For nitinol this is a 

actor of about 10 7 larger ( σ2 = 10 6 S/m versus σ1 ≈ 0 . 1 S/m), or 
 2 . 5 × 10 12 , thus much smaller than about 2 . 2 × 10 14 Hz! 

At the boundary (at y = 0), just inside the metal, continuity 

f the tangential components of E and H require boundary condi- 

ions 

 i + E r = E t H i + H r = H t (32) 

r, from Eqs. 27 –31 , 

E i 
η1 

− E r 

η1 

= 

E t 

η2 

, (33) 

hich give straightforwardly the following expression for E t / E i 
Sengupta and Liepa [23] , Eq. 3.252) 

E t 

E i 
= 

2 η2 

η1 + η2 

≈
2 

√ 

μ2 

σ2 √ 

μ1 

σ1 
+ 

√ 

μ2 

σ2 

≈ 2 

√ 

σ1 μ2 

σ2 μ1 

= 2 

√ 

σ1 

σ2 

≈

( 0 . 6 − 2 . 8 ) · 10 

−3 . (34) 

Thus, the transmitted electric field into the nitinol metal is at 

ost a few parts per 10 0 0 of the incident field. 

A 0.1 ms IRE pulse, for convenience considered having a top- 

at shape, has a frequency spectrum from straightforward Fourier 

nalysis of 

 ( ω ) = E i ·
2 · sin 

(
ω · 5 · 10 

−4 
)

ω 

· e jωt V / m . (35) 

The temperature increase at the end of the IRE pulse with elec- 

ric field E t , at t = �t , just inside the metal at the tissue-metal in-

erface with metal mass density ρ2 , heat capacity c 2 and electrical 

onductivity σ2 , then becomes 

T = 

∞ 

∫ 
0 

dω 

σ2 E 
2 
t ( ω ) �t 

ρ2 c 2 
. (36) 

This equation will be utilized in Section 3.3 . 

.3.3. Electric field shielding by an open structure metal stent 

The considerations of Section 2.3.1 were for fully closed metal 

tents. In addition, the electric field of open structured stent needs 

o be considered since it not necessarily needs to be zero inside 

he stent. The induced heating of the inside cavity of an open 

tructured stent is therefore considered below. 

Casey [24] analyzed the electromagnetic shielding of a metal 

ire mesh. For convenience, we use the geometry of a 2- 

imensional metal wire mesh screen of wire diameter of 2 r w 

= 

 . 2 mm , mesh width 2 mm and a metal electrical conductance of 

= 10 6 S/m, the value for nitinol often used for metal stents [22] . 

he solution of the screening efficacy (named SE, in dB), defined as 

E = -20 log 10 ( transmission ), is given for a finite electric conduct- 

ng metal in Casey’s Fig. 6 as a function of the parameter 2 R s / Z 0 ,

ith [24] 
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Fig. 7. Definition of numbers of points where temperature histories have been com- 

puted that will be shown and discussed here. The z-coordinates of points 1, 2, 3, 4 

and 5 (thick circles) are respectively 14.5, 11.3, 7.5, 3.75 and 0 mm while they all 

have the same zero x-coordinate. The points on the stent surface (squares) have co- 

ordinates (z = 2.5, x = 0), (z = 2.42, x = 0.625), (z = 2.16, x = 1.25), (z = 1.65, x = 1.875) and 

(z = 0, x = 2.5) in mm. The 9 closed diamonds on the x-axis have x-coordinates 0, 

0.65, 1.25, 1.875, 2.5, 2.75, 3.0, 3.25, 3.5 mm. Distance between centers of needle 

and stent, z 1 = 15 mm; stent radius is 2.5 mm; needle diameter, D, is 1 mm. 
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Fig. 8. Temperature increase histories at various distances from the origin ( Fig. 7 ) 

without stent. Conductivity σ is a function of the number of pulses, Eq. (40) ; length 

z 1 = 15 mm; stent radius is 2.5 mm, 1500 V/cm; D = 1 mm; pulse duration = 0.1 

ms; frequency f is 1 Hz. 
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 s = 

a s 

π · r 2 w 

· σ2 

= 0 . 063
, Z 0 

√ 

μ0 

ε 0 
= 377
, 

2 R s 

Z 0 
≈ 3 . 4 · 10 

−4 

(37) 

or a s = 2 mm mesh separation, r w 

= 0 . 1 mm radius of the wires,

nd σ2 = 10 6 S/m. Thus, from Casey’s Fig. 6 , SE ≈ 70 dB, or from

E ≈ 70 = − 20 · log 10 ( transmission ) gives 

ransmission ≈ 10 

−3 . 5 ≈ 3 . 2 · 10 

−4 , (38) 

ven smaller than the amplitude ratio E t /E i of a full nitinol metal 

tent, Eq. (35) . Note that the amplitude of the electric field at the 

nside of a full metal stent is less than E t because of the damp-

ng by the exponential containing distance y in Eq. (27) . In other 

ords, nitinol metal stents reduce the incoming electric field by a 

actor of about a few times 10 −4 and thus act as an effective Fara-

ay cage. The inside of a hollow stent consisting of a wire mesh is 

herefore without noticeable heat production. 

. Results 

.1. Electric fields in tissue between two infinitely long electrodes 

Typical electric field spatial distributions are shown in 

ig. 4 and yield an E i at the stent position of about E i ≈ 0 . 4 · 10 6 

/m for 2 mm diameter electrodes, 1.25 cm inter-electrode dis- 

ance and 3 kV power between the electrodes. For 1 mm electrode 

iameters, 3 cm distance and 3 kV, we find E i ≈ 0 . 15 · 10 6 V/m. 

hus, according to Eqs. (34) , (38) the electric field transmitted to 

he nitinol metal surface, E t , can vary between about 

 t ≈ 50 − 1 , 100 V / m . (39) 

Further details about the electric field are provided by Fig.’s 4 

nd 5 and the figures in Appendix B . 

.2. IRE temperature field histories with and without a metal stent 

Fig. 7 shows the labelling of points where temperatures will be 

onsidered. The dashed line centred at the origin represents the 

etal stent with radius a = 2 . 5 mm; computations both with and

ithout the stent will be performed and discussed in this section. 

he stent is filled with similar tissue as the environment. 
8 
The bioheat Eq. (11) is linear in �T so �T -responses to mul- 

iple pulses can be added as presented previously [10] . The com- 

utations are performed with the electrical conductivity depending 

n the number of IRE pulses, and hence on time, in the way found 

n [25] and applied to temperature calculations in [10] . First, we 

se that the electric conductance of the medium before the elec- 

ric pulse, σ0 S/m, increases during each IRE pulse, as shown by 

vorra et al. [25] , approximately according to 

n / σ0 ≈ 1 . 29 

√ 

0 . 36 

√ 

n + 1 (40) 

here n denotes the nth pulse. Then, we use that the first pulse, at 

 = 0 , yields �T 1 ( r, t = �t ≈ 0 ) = �T 0 ( r, 0 ) σ1 / σ0 with �T 0 ( r, 0 ) =
0 E (r) 2 �t/ρc, σ0 the electric conductance before the electric pulse 

f duration �t , and σ1 the conductivity at the end of the first 

ulse. Just after the second pulse, say 1 s later, the first pulse 

educes to �T 1 ( r, 1 ) σ1 / σ0 . The second pulse gives �T 2 ( r, 0 ) ≡
T 0 ( r, 0 ) σ2 / σ0 , thus proportional to the response of the first 

ulse at t = 0 . Two pulses, at t = 1 s, thus cause �T ( r, 1 ) =
T 0 ( r, 0 ) σ2 / σ0 + �T 1 ( r, 1 ) σ1 / σ0 , i.e., including the two responses 

o the first pulse at the two pulse events. Similarly, three pulses, 

t t = 2 s, give �T ( r, 2 ) = �T 0 ( r, 0 ) σ3 / σ0 + �T 1 ( r, 1 ) σ2 / σ0 +
T 2 ( r, 2 ) σ1 / σ0 . Writing this as �T ( r, 2 ) = 

3 −1 ∑ 

n =0 

�T n ( r, n ) σ3 −n / σ0 ,

ives with (14) after N consecutive pulses, frequency f, at time 

 = ( N − 1 ) f −1 s: 

T 
(
r, ( N − 1 ) f −1 

)
= 

N−1 ∑ 

n =0 

�T n ( r, n ) ·
(

1 . 29 

√ 

0 . 36 

√ 

( N − n ) + 1 

)
(41) 

The accumulated temperature increase computed with (41) at 

he locations shown in Fig. 7 is shown in Fig. 8 and subsequent 

gures in this section. The heat diffusivity is α = 1.4 � 10 −7 m 

2 /s 

nd the thermal conductivity is initially λ = 0 . 547 W/(m. °C). Close 

o a needle the electric potential changes rapidly over small dis- 

ances and the electric field is strong. At point 1 the temperature 

hange after 100 pulses is therefore exceeding 120 °C, see Fig. 8 . It

s the only location of the 5 shown where already after one sin- 

le pulse the temperature change is notable. Halfway the two nee- 

les, at point 5, the electric field and hence the dissipation rate 

nd temperature rise are smallest after 100 pulses. This is the sit- 

ation where a stent is absent ( Fig. 8 ). 

The effect of the stent with a diameter five times as big as that 

f the needle is shown in Fig. 9 that zooms in at the points 2-

, see Fig. 7 . The LHS of Fig. 9 contains the same data as shown

n Fig. 8 . With a stent, the RHS, the origin (point 5) only starts

arming up after about 10 s since no electric field is generated 
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Fig. 9. Temperature increase histories at locations 2 – 5 without stent (left) and with stent (right). Legend is the same as in Fig. 8 . Conductivity σ is a function of the 

number of pulses, Eq. (40) , and other data are the same as in Fig. 8 . 

Fig. 10. Temperature profiles after one pulse (lowest line) and at times 5, 10, 15, 

…, 100 s, after respectively 5, 10, 15, and …, 100 pulses at 1 Hz. The line at x = 2.5 

mm is to guide the eye and indicates where the stent edge would be if the stent 

were present. Locations correspond to the diamonds of Fig. 7 . 
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Fig. 11. As Fig. 10 but with stent present. The profile after one pulse is barely no- 

table near x = 3.5 mm. 

Fig. 12. Time histories of the temperature increase at the locations used in Fig. 11 , 

indicated by diamonds in Fig. 7 ; the origin is starred, the top location with x- 

coordinate 3.5 mm has an open circle. Same conditions as in Fig. 11 . 
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nside the stent. Heat must diffuse from outside the stent to the 

nside. The typical diffusion time, t, is easily estimated by putting 

he Fourier number, Fo = α t 2 /(2a) 2, equal to 1, with α the heat 

iffusivity 1.4 � 10 −7 m 

2 /s and a the radius of the stent, 2.5 mm;

he result is 10 s indeed. Our experimental finding [12, page 4] that 

imilar maximum temperatures were reached in no-stent-IRE as in 

tent-IRE concerned a location at a stent with a diameter of 5 mm 

nd a time delay of 10 to 20 s. This agrees with the above finding

nd the Fourier criterion estimation. 

Points 3 and 4 correspond to the lines of crosses and circles and 

xhibit a faster temperature rise than without a stent, see Fig. 9 . 

he electric field at these points is increased by the introduction 

f the stent because the field line through points 3 and 4 stands 

erpendicular to both stent and needle and is considerably shorter 

ith stent than without stent. This explains the faster rise in tem- 

erature with stent at these places. 

The points indicated by diamonds on the x-axis in Fig. 7 ex- 

ibit temperature histories shown in Fig. 10 . Point 5 at the origin 

as the highest increase in temperature after 100 pulses at 1 Hz. 

he farther away from the origin, the weaker the electric field and 

he smaller the temperature increase are, but differences remain 

ithin 1 0 C after 100 s. 

This is drastically changed by the introduction of a stent, see 

ig. 11 . At times until about 40 s, 40 pulses, temperature differ- 

nces generated outside the stent exceed those at the inside, see 

.g the line at 15 s. At later times, the origin inside the stent ex-

eriences the highest temperature increase because of diffusion of 

eat from the two sides that face a needle; at one side point 4 in
9 
ig. 7 is located, for example. The change of trend at about 40 s is

ore clearly shown in Fig. 12 . Initially, the origin does not rise in

emperature, but this changes after about 10 s for thermal diffu- 

ion reasons discussed above, Fig. 9 B. At times exceeding 60 s, on 

he contrary, the temperature at the origin is clearly highest of all 

or a reason that is discussed below. 

The explanation for the above change of trend at about 40 s is 

he fact that more heat is generated at the sides of the stent facing 

he needles than at the top of the stent. This is further examined 

y studying the history of the temperature profile at the circum- 

erence of the stent, see Fig. 13 . At 35 s and 55 s the temperature

ncrease at x = 0 , which is near point 4 in Fig. 7 , is clearly seen to

e higher with stent (figure on the right) than without (left fig- 
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Fig. 13. Temperature profiles at the circumference of the stent, the locations indicated by squares in Fig. 7 . Profiles are drawn at subsequent times with stent (figure on the 

right) and without stent (left figure). 

Fig. 14. Computational mesh applied for 2D computations in Comsol TM . The unit on both axes is m. 
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re). The surplus of heat generated near point 4 diffuses away to 

he inside of the stent, which reduces the difference in tempera- 

ure between with and without stent at later times at x = 0 . At the

op of the stent, the point where x = 2.5 mm and that is farthest

way from the needles, the heat generation with stent is clearly 

ess than that without stent, always. The electric field lines must 

tand perpendicular to the stent surface, which creates long field 

ines to the needles at this point of the stent. Consequently, the 

lectric field and the energy dissipation rate are smaller on top of 

he stent than at the sides of the stent that are facing the needles.

he stent creates cold spots on the sides of the stent that are far-

hest away from the needles by lengthening the electric field lines 

here. 
10 
In addition, the stent acts as a heat sink. The heat sink action 

s the fact that the energy dissipated near the stent during a pulse 

iffuses away during the time in between two pulses to the vol- 

me inside the stent. The heat sink action of the stent and the cre- 

tion of cold spots at the sides not facing the needles are precisely 

he reason why a viable rim around the stent has been observed 

n pig experiments [13] . The temperature spot II in this reference 

13] has the lowest temperatures measured and corresponds to the 

ocation (z = 0, x = 2.5) where the lowest temperatures are computed 

 Fig. 13 ). Although in the experiment the gel was shaped as a slab

ith limited thickness, whereas in the computations the fluid out- 

ide the stent is unlimited, the mechanisms of heat sink action and 

iffusion of heat are the same. 
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Fig. 15. The norm of the electric field corresponding to Fig. 5 . The unit at the color bar is V/m; the unit on each axis is m. 

Fig. 16. Contour lines of the electric potential computed in Comsol TM for two isolated needles. The unit at the equipotential lines is V; the unit on each axis is m. 
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.3. Temperature calculation in the metal at a tissue-metal junction 

Using the electric fields generated by a short �t = 0 . 1 ms IRE 

ulse, we estimate the temperature effects in a metal block with 

he electrothermal physical properties of nitinol to represent the 

tent and applying that temperature rise �T (ω) = σ2 E 
2 
t (ω)�t/ρc
11 
or a short (0.1 ms) electric field pulse of strength E t (ω) , Eq. (27) .

e have to integrate this equation over all frequencies and their 

ourier amplitudes, Eq. (36) . We used average values for density 

 6 . 7 · 10 3 kg/m 

3 ) and heat capacity ( 0 . 5 · 10 3 J/kg/ 0 C) found for Ni

nd Ti, because we could not find these data for nitinol. By using 

he maximum E-field of 1,100 V/m, i.e. the maximum field at the 
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nside metal boundary, Eq. (28) , we estimate the maximum tem- 

erature effect here as 

T = 
∞ ∫ 
0 

d ω 
σ2 E 

2 
t ( ω ) �t 

ρ2 c 2 
= σ2 E 

2 
t ( 0 ) �t 

ρ2 c 2 

∞ ∫ 
0 

d ω 
E 2 t ( ω ) 

E 2 
t ( 0 ) 

= 
10 6 ·

(
1 . 1 ·10 3 

)2 
·10 −4 (

6 . 7 ·10 3 
)
·
(

0 . 5 ·10 3 
) ∞ ∫ 

0 

d ω ·
4 ·sin 2 

(
ω·5 ·10 −5 

)
ω 2 

= 
4 ·10 6 ·( 1 . 2 ) ·10 6 ·10 −4 ·

(
5 ·10 −5 

)
(

6 . 7 ·10 3 
)
·
(

0 . 5 ·10 3 
) ∞ ∫ 

0 

d 
(
ω · 5 · 10 −5 

) sin 2 
(
ω·5 ·10 −5 

)
(
ω·5 ·10 −5 

)2 
= 7 . 2 · 10 −3 · π

2 
≈ 10 −2 °C. 

(42) 

Thus, even for a 1 cm electrode distance and 3 kV, the tem- 

erature effect of a 0.1 ms IRE pulse in a block of metal with a

osition-independent maximal electric field is negligible. For the 

.5 cm electrode distance, the maximum temperature increase is 

bout 0.0016 0 C. In other words, the electric field calculated at the 

osition of a 5 mm diameter metal stent, caused by an IRE pulse of 

.1 ms, 3 kV and 1 – 1.5 cm electrode distance, does not noticeably 

eat up a metal block with the electrothermal physical properties 

f nitinol. Thus, 100 such IRE pulses will not significantly influence 

he temperature distribution inside the stent either. 

. Conclusions 

We have shown that a metal stent will not be noticeably heated 

p by pulses applied in clinical irreversible electroporation, a coun- 

erintuitive result that required application of Maxwell’s equations 

o the tissue-stent configuration. The Faraday cage functions well, 

nd heating of the stent is merely by conduction from the ambi- 

nt tissue, as high-frequency heat production close to the stent by 

ourier frequencies and their amplitudes of the pulse shape is very 

mall. This conclusion is of major significance because (i) it shows 

hat it is safe to apply IRE therapy in the presence of a metal stent,

nd (ii) it prevents stent removal and thus also surgical complica- 

ions. 

Major trends of temperature field histories found in thermal 

amera experiments [ 12 , 13 ] have been explained with straightfor- 

ard simplifications of the electric field generated by two needles 

n tissue surrounding a stent and by subsequent modeling of the 

eat generation and transport of heat with the bio-heat equation. 

lose to the needles, gradients in the electric field and hence en- 

rgy dissipation rate and temperature rise are highest. However, 

uring the time with zero electric field after each pulse this heat 

ostly diffuses away, by conduction, to other places. At the sides 

f a stent, positioned in between two needles, that are not facing 

he needles, temperatures in a typical run of 100 s remain lower as 

ompared to the situation without stent. This creation of cold spots 

n combination with the action of a stent as a heat sink explains 

he low temperature rim around the stent found experimentally in 

ig experiments [ 12 , 13 ]. 
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ppendix A 

xpression of the heat production by two point-charges 

Angle ϕ is defined as the angle between ˆ r 1 and ˆ r 2 ( Fig. 1 ). 

ith the cosine rule for ϕ, i.e., cosϕ = [ r 2 
1 

+ r 2 
2 

− ( 2 z 1 ) 
2 
] / ( 2 r 1 r 2 ) ,

nd with the cosine rules of position angle θ ( Fig. 1 ) and of com-

lementary angle ( π − θ ) , and with cosθ = −cos ( π − θ ) , the fol-

owing equation is derived: 

osθ = 

z 2 1 + r 2 − r 1 
2 

2 z r 
= −cos ( π − θ ) = − z 2 1 + r 2 − r 2 

2 

2 z r 
. (A1) 
1 1 

12 
With some algebra (A1) directly yields ( r 2 
1 

+ r 2 
2 
) = 2( z 1 

2 + r 2 ) . 

o, for angle ϕ

os ϕ = 

[
2( z 1 

2 + r 2 ) − ( 2 z 1 ) 
2 
]
/ ( 2 r 1 r 2 ) = 

[
r 2 − z 1 

2 
]
/ ( r 1 r 2 ) (A2) 

nd energy dissipation rate can be expresses as follows: 

E ( r, θ ) 
2 = 

σQ 

2 

( 4 πε 0 ) 
2 

[
ˆ r 1 

r 2 
1 

− ˆ r 2 

r 2 
2 

]2 

= σ
(

Q 

4 πε 0 

)2 

·
[ 

1 

r 4 
1 

+ 

1 

r 4 
2 

−
2 
(
r 2 − z 1 

2 
)

r 3 
1 

r 3 
2 

] 

. 

(A3) 

Eq. (A3) expresses the volumetric heat production at P ( r, θ ) 

aused by 2 electric point charges + Q and −Q , at distances −z 1 
nd z 1 from the origin ( Fig. 1 ), at arbitrary location ( r, θ ) in polar

oordinates. 

ppendix B 

omputation settings in Comsol TM 

This appendix summarizes the governing equations, initial and 

oundary conditions used for the finite element computations with 

omsol Multiphysics TM 5.2.1.152 and gives typical results and val- 

es of physical constants used. Fig. 14 shows the geometry of three 

ylinders with parallel axis perpendicular to the plane as well as 

he mesh applied. 

The specific electric conductivity, σ , and the relative permittiv- 

ty, εr , are material properties. Their values are 0.1 S/m and 80, 

espectively, for the fluid (representing human body tissue) that 

ccupies the entire region outside of the needles. In the computa- 

ions presented in this paper the interior of the stent, represented 

y the cylinder at the centre of Fig. 14 , was also filled with this

uid. In other computations the stent was taken to be solid steel 

ith σ = 4,032.10 6 S/m and εr = 1 and with a mass density, ρ , of 

850 kg/m 

3 , a heat capacity, c , of 475 J/(kg. 0 C) and a heat conduc-

ivity coefficient, λ, of 44,5 W/(m. 0 C). This is the material that the 

tent and the needles are typically made of. The mass density of 

he fluid is 10 0 0 kg/m 

3 , while its c = 4100 J/(kg. 0 C) and λ = 0,5908

/(m. 0 C). For the computation of the electric field the interior of 

he stent is inessential as the boundary condition on the stent is 

hat the tangential component of the electric field is zero, i.e. that 

he stent surface has a constant electric potential, �. This value 

s zero in the computations with Comsol TM . The imposed voltages 

t the surfaces of the needles, where also the boundary condition 

f a constant potential had to be satisfied, were in most computa- 

ions taken to be + 1500 V and -1500 V. The electric field at the

uter boundary of the computation domain in Fig. 14 satisfies the 

oundary condition that the normal component of the electric field 

s zero. Since in the analytical solution this condition is only sat- 

sfied at infinity, a comparison with predictions of Comsol TM can 

nly be made for the central region at relatively large distance 

rom the outer boundaries. For this reason, the comparison with 

he analytical solution is only applied to the area in between the 

eedles and the stent ( Fig. 4 ). The results below will show that 

he electric field there is only marginally affected by the bound- 

ry condition at the outer boundary of the computational domain. 

oubling the domain gave changes in the electric field in between 

he needles and the stent that were far less than the scatter in the 

omputed points of Fig. 4 . 

There are no remnant displacements of currents and therefore 

he total electric field including polarization D , is given by D = ε0 

 r E , with ε 0 , the permittivity in vacuum, equal to 8.854 10 −12 

arad/m and E the electric field vector without polarization. There 

re no externally generated currents and the electric current J , 

herefore satisfies the following equation: 

 = σE + ∂ D /∂ t. (B1) 
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In quasi-steady conditions the following equations hold 

 = σE (B2) 

. J = 0 (B3) 

The applicability of quasi-steady conditions to the conditions 

hat determine the electric field is proven in the main text, in 

ections 2.1.1 , 2.3.2 and 3.3 . Because the conditions are quasi- 

teady, there was no need to solve for the magnetic field. 

For a homogeneous electric conductivity, the last equation of a 

ivergence-free current in combination with the defining equation 

f the electric potential, � : 

 = −∇� (B4) 

ield the Laplace equation for the potential �: 

. ∇ � = 0 . (B5) 

The electromagnetic heat source, σE 2 , which is energy dissipa- 

ion rate density in W/m ³, couples the electric field to the energy 

quation: 

c ∂ T /∂ t + σ cu . ∇ T = σE 2 + ∇ λ. ∇ T (B6) 

The fluid velocity, u , is zero in all cases of this study and λ is

aken to be homogeneous. The initial temperature condition pre- 

cribes a constant temperature everywhere. At the outer boundary 

f the computation domain, the temperature gradient is assumed 

o have a zero-component normal to the boundary. This implies 

hat there are no energy losses from the computational domain. 

his boundary condition is of course only relevant for the compu- 

ation of the temperature by Comsol TM and such computations are 

ot presented in this paper. 

Computations have been performed in Comsol TM with 7128 de- 

rees of freedom. A computation time of 5 s and a virtual memory 

f 1.71 GB sufficed to solve for the electric field and the tempera- 

ure field simultaneously during 0.1 ms. Computations of temper- 

ture histories, not shown in this paper, were obtained with the 

id of a variable-order, variable-step-size backward Euler time dif- 

erentiation with order varying between 1 and 2 and with 0.001 

raction of the initial step for the backward Euler computation. The 

bsolute tolerance was 0.001 and the variables, the electric poten- 

ial and the temperature, were scaled. During the physical time 0.1 

s the electric potential remained as shown in Fig. 5 . 

Fig. 5 shows that the boundary conditions of the electric field 

re satisfied. Fig. 15 gives the corresponding electric field. 

For comparison with Fig. 5 , Fig. 16 gives the electric potential 

n the absence of a stent. 
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