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Although much attention has been paid since 1990 to reforming calculus courses,
precalculus textbooks have remained surprisingly traditional. Now that The
College Board’s AP* Calculus curriculum is accepted as a model for a twenty-first
century calculus course, the path is cleared for a new precalculus course to match
the AP* goals and objectives. With this edition of Precalculus: Graphical,
Numerical, Algebraic, the authors of Calculus: Graphical, Numerical, Algebraic,
the best-selling textbook in the AP* Calculus market, have designed such a pre-
calculus course. For those students continuing to a calculus course, this precalcu-
lus textbook concludes with a chapter that prepares students for the two central
themes of calculus: instantaneous rate of change and continuous accumulation.
This intuitively appealing preview of calculus is both more useful and more rea-
sonable than the traditional, unmotivated foray into the computation of limits, and
it is more in keeping with the stated goals and objectives of the AP* courses and
their emphasis on depth of knowledge.

Recognizing that precalculus is a capstone course for many students, we include
quantitative literacy topics such as probability, statistics, and the mathematics of
finance and integrate the use of data and modeling throughout the text. Our goal
is to provide students with the critical-thinking skills and mathematical know-how
needed to succeed in college or any endeavor.

Continuing in the spirit of two earlier editions, we have integrated graphing tech-
nology throughout the course, not as an additional topic but as an essential tool for
both mathematical discovery and effective problem solving. Graphing technology
enables students to study a full catalog of basic functions at the beginning of the
course, thereby giving them insights into function properties that are not seen in
many books until later chapters. By connecting the algebra of functions to the
visualization of their graphs, we are even able to introduce students to parametric
equations, piecewise-defined functions, limit notation, and an intuitive under-
standing of continuity as early as Chapter 1. However, the advances in technology
and increased familiarity with calculators have blurred some of the distinctions
between solving problems and supporting solutions that we had once assumed to
be apparent. Therefore, we are asking that some exercises be solved without cal-
culators. (See the “Technology and Exercises” section.)

Once students are comfortable with the language of functions, the text guides them
through a more traditional exploration of twelve basic functions and their alge-
braic properties, always reinforcing the connections among their algebraic, graph-
ical, and numerical representations. This book uses a consistent approach to mod-
eling, emphasizing in every chapter the use of particular types of functions to
model behavior in the real world.

This textbook has faithfully incorporated not only the teaching strategies that have
made Calculus: Graphical, Numerical, Algebraic so popular, but also some of the
strategies from the popular Prentice Hall high school algebra series, and thus has
produced a seamless pedagogical transition from prealgebra through calculus for

Foreword iii

Foreword

*AP is a registered trademark of The College Board, which was not involved in the production of, and does
not endorse, this product.
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iv Foreword

students. Although this book can certainly be appreciated on its own merits, teach-
ers who seek continuity and vertical alignment in their mathematics sequence
might consider this pedagogical approach to be an additional asset of Precalculus:
Graphical, Numerical, Algebraic.

This textbook is written to address current and emerging state curriculum stan-
dards. In addition, we embrace NCTM’s Guiding Principles for Mathematics
Curriculum and Assessment and agree that a curriculum “must be coherent,
focused on important mathematics, and well articulated across the grades.” As sta-
tistics is increasingly used in college coursework, the workplace, and everyday
life, we have added a “Statistical Literacy” section in Chapter 9 to help students
see that statistical analysis is an investigative process that turns loosely formed
ideas into scientific studies. Our three sections on data analysis and statistics are
aligned with the GAISE Report published by the American Statistical Association;
however, they are not intended as a course in statistics but rather as an introduc-
tion to set the stage for possible further study in this area of growing importance.

References
Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., and
Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics edu-
cation (GAISE) report: A pre K-12 curriculum framework. Alexandria, VA:
American Statistical Association.

National Council of Teachers of Mathematics. (2009, June). Guiding principles
for mathematics curriculum and assessment. Reston, VA: Author. Retrieved
August 13, 2009, from http://www.nctm.org/standards/content.aspx?id=23273
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Preface xvii

Our Approach

The Rule of Four—A Balanced Approach
A principal feature of this edition is the balance among the algebraic, numerical, graphical,
and verbal methods of representing problems: the rule of four. For instance, we obtain solu-
tions algebraically when that is the most appropriate technique to use, and we obtain solutions
graphically or numerically when algebra is difficult to use. We urge students to solve prob-
lems by one method and then support or confirm their solutions by using another method. We
believe that students must learn the value of each of these methods or representations and must
learn to choose the one most appropriate for solving the particular problem under considera-
tion. This approach reinforces the idea that to understand a problem fully, students need to
understand it algebraically as well as graphically and numerically.

Problem-Solving Approach
Systematic problem solving is emphasized in the examples throughout the text, using the
following variation of Polya’s problem-solving process:

• understand the problem,

• develop a mathematical model,

• solve the mathematical model and support or confirm the solutions, and

• interpret the solution.

Students are encouraged to use this process throughout the text.

Twelve Basic Functions
Twelve basic functions are emphasized throughout the book as a major theme and focus.
These functions are:

Preface

• The Identity Function

• The Squaring Function

• The Cubing Function

• The Reciprocal Function

• The Square Root Function

• The Exponential Function

• The Natural Logarithm Function

• The Sine Function

• The Cosine Function

• The Absolute Value Function

• The Greatest Integer Function

• The Logistic Function

One of the most distinctive features of this textbook is that it introduces students to the full
vocabulary of functions early in the course. Students meet the twelve basic functions graph-
ically in Chapter 1 and are able to compare and contrast them as they learn about concepts
like domain, range, symmetry, continuity, end behavior, asymptotes, extrema, and even
periodicity—concepts that are difficult to appreciate when the only examples a teacher can
refer to are polynomials. With this book, students are able to characterize functions by their
behavior within the first month of classes. (For example, thanks to graphing technology, it is
no longer necessary to understand radians before one can learn that the sine function 
is bounded, periodic, odd, and continuous, with domain and range .) Once
students have a comfortable understanding of functions in general, the rest of the course
consists of studying the various types of functions in greater depth, particularly with respect
to their algebraic properties and modeling applications.

3-1, 141- q, q2
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Applications and Real Data
The majority of the applications in the text are based on real data
from cited sources, and their presentations are self-contained; stu-
dents will not need any experience in the fields from which the appli-
cations are drawn.

As they work through the applications, students are exposed to func-
tions as mechanisms for modeling data and are motivated to learn
about how various functions can help model real-life problems. They
learn to analyze and model data, represent data graphically, interpret
from graphs, and fit curves. Additionally, the tabular representation of
data presented in this text highlights the concept that a function is a
correspondence between numerical variables. This helps students
build the connection between the numbers and graphs and recognize
the importance of a full graphical, numerical, and algebraic under-
standing of a problem. For a complete listing of applications, please
see the Applications Index on page 935.

xviii Preface

These functions are used to devel-
op the fundamental analysis skills
that are needed in calculus and
advanced mathematics courses.
Section 3.1 provides an overview
of these functions by examining
their graphs. A complete gallery
of basic functions is included in
Appendix B for easy reference.

Each basic function is revisited
later in the book with a deeper
analysis that includes investiga-
tion of the algebraic properties.

General characteristics of families
of functions are also summarized.

268 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 6  Modeling U.S. Population Using 
Exponential Regression

Use the 1900–2000 data in Table 3.9 and exponential regression to predict the U.S.
population for 2007. Compare the result with the listed value for 2007.

SOLUTION

Model
Let be the population (in millions) of the United States t years after 1900. 
Figure 3.15a shows a scatter plot of the data. Using exponential regression, we find a
model for the 1990–2000 data:

Figure 3.15b shows the scatter plot of the data with a graph of the population model
just found. You can see that the curve fits the data fairly well. The coefficient of de-
termination is , indicating a close fit and supporting the visual evidence.

Solve Graphically
To predict the 2007 U.S. population we substitute into the regression model.
Figure 3.15c reports that .

Interpret
The model predicts the U.S. population was 317.1 million in 2007. The actual popu-
lation was 301.6 million. We overestimated by 15.5 million, a 5.1% error.

Now try Exercise 43.

P(1072 = 80.5514 # 1.01289107
L 317.1

t = 107

r 2
L 0.995

P1t2 = 80.5514 # 1.01289t

P1t2

Source: World Almanac and Book of
Facts 2009.

Table 3.9 U.S. Population
(in millions)

Year Population

1900 76.2
1910 92.2
1920 106.0
1930 123.2
1940 132.2
1950 151.3
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4
2007 301.6

[–10, 120] by [0, 400]

(a)

[–10, 120] by [0, 400]

(b)

[–10, 120] by [0, 400]

(c)

X=107    Y=317.13007

Y1=80.5514*1.01289^X

FIGURE 3.15 Scatter plots and graphs for Example 6. The red “ ” depicts the data point for 2007. The blue “x” in (c) represents the model’s
prediction for 2007.

+

Domain: All reals
Range:
Continuous
No symmetry: neither even nor odd
Bounded below, but not above
No local extrema
Horizontal asymptote: 
No vertical asymptotes

If (see Figure 3.3a), then

• ƒ is an increasing function,
• and .

If (see Figure 3.3b), then

• ƒ is a decreasing function,
• and .lim

x: q

 ƒ1x2 = 0lim
x: -q

 ƒ1x2 = q

0 6 b 6 1

 lim
x: q

 ƒ1x2 = qƒ1x2 = 0 lim
x: -q

b 7 1

y = 0

10, q2

Exponential Functions ƒ1x2 � bx

y

x

f (x) = bx

b > 1

(0, 1)

(a)

(1, b)

y

x

f (x) = bx

0 < b < 1

(0, 1)

(b)

(1, b)

FIGURE 3.3 Graphs of for (a) and (b) .0 6 b 6 1b 7 1ƒ1x2 = bx

Domain: 
Range: All reals
Continuous on 
Increasing on 
No symmetry
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: 
End behavior: lim

x: q

 ln x = q

x = 0

10, q2
10, q2

10, q2
ƒ1x2 = ln x

BASIC FUNCTION The Natural Logarithmic 
Function

[–2, 6] by [–3, 3]

FIGURE 3.22

Technology and Exercises
The authors of this textbook have encouraged the use of technology, particularly graphing
calculator technology, in mathematics education for two decades. Longtime users of this
textbook are well acquainted with our approach to problem solving (pages 69–70), which
distinguishes between solving the problem and supporting or confirming the solution,
and how technology figures into each of those processes.

We have come to realize, however, that advances in technology and increased familiarity
with calculators have gradually blurred some of the distinctions between solving and sup-
porting that we had once assumed to be apparent. Textbook exercises that we had designed
for a particular pedagogical purpose are now being solved with technology in ways that
either circumvent or obscure the learning we had hoped might take place. For example,
students will find an equation of the line through two points by using linear regression, or
they will match a set of equations to their graphs by simply graphing each equation. Now
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that calculators with computer algebra have arrived on the scene, exercises meant for prac-
ticing algebraic manipulations are being solved without the benefit of the practice. We do
not want to retreat in any way from our support of modern technology, but we feel that the
time has come to provide more guidance about the intent of the various exercises in our
textbook.

Therefore, as a service to teachers and students alike, exercises in this textbook that should
be solved without calculators will be identified with gray ovals around the exercise numbers.
These will usually be exercises that demonstrate how various functions behave algebraical-
ly or how algebraic representations reflect graphical behavior and vice versa. Application prob-
lems will usually have no restrictions, in keeping with our emphasis on modeling and on bring-
ing all representations to bear when confronting real-world problems.

Incidentally, we continue to encourage the use of calculators to support answers graphi-
cally or numerically after the problems have been solved with pencil and paper. Any time
students can make those connections among the graphical, analytical, and numerical rep-
resentations, they are doing good mathematics. We just don’t want them to miss something
along the way because they brought in their calculators too soon.

As a final note, we will freely admit that different teachers use our textbook in different
ways, and some will probably override our no-calculator recommendations to fit with their
pedagogical strategies. In the end, the teachers know what is best for their students, and
we are just here to help. That’s the kind of textbook authors we strive to be.

Features
Chapter Openers include a motivating photograph and a gener-
al description of an application that can be solved with the con-
cepts learned in the chapter. The application is revisited later in
the chapter via a specific problem that is solved. These problems
enable students to explore realistic situations using graphical,
numerical, and algebraic methods. Students are also asked to
model problem situations using the functions studied in the chap-
ter. In addition, the chapter sections are listed here.

A Chapter Overview begins each chapter to give students a sense
of what they are going to learn. This overview provides a roadmap
of the chapter, as well as tells how the different topics in the chapter
are connected under one big idea. It is always helpful to remember
that mathematics isn’t modular, but interconnected, and that the
skills and concepts learned throughout the course build on one
another to help students understand more complicated processes and
relationships.

Preface xix

251

Exponential, Logistic, and
Logarithmic Functions

The loudness of a sound we hear is based on the intensity of the associ-
ated sound wave. This sound intensity is the energy per unit time of the
wave over a given area, measured in watts per square meter . The
intensity is greatest near the source and decreases as you move away,
whether the sound is rustling leaves or rock music. Because of the wide
range of audible sound intensities, they are generally converted into
decibels, which are based on logarithms. See pages 279–280.

1W/m22

3.1 Exponential and Logistic
Functions

3.2 Exponential and Logistic
Modeling

3.3 Logarithmic Functions 
and Their Graphs

3.4 Properties of Logarithmic
Functions

3.5 Equation Solving 
and Modeling

3.6 Mathematics of Finance

CHAPTER 3

Chapter Opener Problem (from page 251)

Problem: How loud is a train inside a subway tunnel?

Solution: Based on the data in Table 3.17,

So the sound intensity level inside the subway tunnel is 100 dB.

= 10 # 10 = 100

= 10 log110102

= 10 log110-2/10-122

b = 10 log1I/I02
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Similarly, the What you’ll learn about ...and why fea-
ture presents the big ideas in each section and explains
their purpose. Students should read this as they begin the
section and always review it after they have completed
the section to make sure they understand all of the key
topics that have just been studied.

Vocabulary is highlighted in
yellow for easy reference. 

Properties are boxed in green
so that they can be easily found.

Common Logarithms—Base 10
Logarithms with base 10 are called common logarithms. Because of their connection
to our base-ten number system, the metric system, and scientific notation, common log-
arithms are especially useful. We often drop the subscript of 10 for the base when using
common logarithms. The common logarithmic function is the inverse
of the exponential function . So

if and only if

Applying this relationship, we can obtain other relationships for logarithms with base 10.

10y
= x.y = log x

ƒ1x2 = 10x
log10 x = log x

Basic Properties of Common Logarithms
Let x and y be real numbers with .

• because .

• because .

• because .

• because .log x = log x10log x
= x

10y
= 10ylog 10y

= y

101
= 10log 10 = 1

100
= 1log 1 = 0

x 7 0

Each example ends with a suggestion to Now Try a related exercise. Working the sug-
gested exercise is an easy way for students to check their comprehension of the material
while reading each section, instead of waiting until the end of each section or chapter to
see if they “got it.” In the Annotated Teacher’s Edition, various examples are marked for
the teacher with the icon. Alternates are provided for these examples in the
PowerPoint Slides.

Explorations appear throughout the text and provide students
with the perfect opportunity to become active learners and to
discover mathematics on their own. This will help hone criti-
cal thinking and problem-solving skills. Some are technology-
based and others involve exploring mathematical ideas and
connections.

Margin Notes and Tips on various topics appear throughout
the text. Tips offer practical advice on using the grapher to obtain
the best, most accurate results. Margin notes include historical
information and hints about examples, and provide additional
insight to help students avoid common pitfalls and errors.

EXPLORATION 1 Test Your Statistical Savvy

Each one of the following scenarios contains at least one common misuse of

statistics. How many can you catch?

1. A researcher reported finding a high correlation between aggression in chil-
dren and gender.

2. Based on a survey of shoppers at the city’s busiest mall on two consecutive
weekday afternoons, the mayor’s staff concluded that 68% of the voters would
support his re-election.

3. A doctor recommended vanilla chewing gum to headache sufferers, noting that
he had tested it himself on 100 of his patients, 87 of whom reported feeling
better within two hours.

4. A school system studied absenteeism in its secondary schools and found a neg-
ative correlation between student GPA and student absences. They concluded
that absences cause a student’s grade to go down.

xx Preface

9.9 Statistical Literacy

EXPLORATION 1 Test Your Statistical Savvy

Each one of the following scenarios contains at least one common misuse of

statistics. How many can you catch?

1. A researcher reported finding a high correlation between aggression in chil-
dren and gender.

The Many Misuses of Statistics
Just as knowing a little bit about edible wild mushrooms can get you into trouble, so
can knowing a little about statistics. This book has not ventured too far into the realm
of inferential statistics, the methods of using statistics to draw conclusions about
real-world phenomena, because that is rightfully another course. Unfortunately, a lack
of true understanding does not stop people from misusing statistics every day to draw
conclusions, many of them totally unjustified, and then inflicting those conclusions on
you. We will therefore end this chapter with a brief “consumer’s guide” to the most
common misuses of statistics.

What you’ll learn about
• The Many Misuses of Statistics
• Correlation revisited
• The Importance of Randomness
• Surveys and Observational

Studies
• Experimental Design
• Using Randomness
• Probability Simulations

... and why
Statistical literacy is important in
today’s data-driven world.
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Preface xxi

The Looking Ahead to Calculus icon is found throughout the text next to many exam-
ples and topics to point out concepts that students will encounter again in calculus. Ideas
that foreshadow calculus, such as limits, maximum and minimum, asymptotes, and conti-
nuity, are highlighted. Early in the text, the idea of the limit, using an intuitive and con-
ceptual approach, is introduced. Some calculus notation and language is introduced in the
early chapters and used throughout the text to establish familiarity.

The Web/Real Data icon marks the examples and exercises that use real cited data.

The Chapter Review material at the end of each chapter
consists of sections dedicated to helping students review the
chapter concepts. Key Ideas are broken into parts: Properties,
Theorems, and Formulas; Procedures; and Gallery of Func-
tions. The Review Exercises represent the full range of exer-
cises covered in the chapter and give additional practice with
the ideas developed in the chapter. The exercises with red
numbers indicate problems that would make up a good chap-
ter test. Chapter Projects conclude each chapter and require
students to analyze data. They can be assigned as either indi-
vidual or group work. Each project expands upon concepts and
ideas taught in the chapter, and many projects refer to the Web
for further investigation of real data.

CHAPTER 3 Project

Analyzing a Bouncing Ball
When a ball bounces up and down on a flat surface, the maxi-
mum height of the ball decreases with each bounce. Each re-
bound is a percentage of the previous height. For most balls,
the percentage is a constant. In this project, you will use a mo-
tion detection device to collect height data for a ball bouncing
underneath a motion detector, then find a mathematical model
that describes the maximum bounce height as a function of
bounce number.

Collecting the Data
Set up the Calculator Based Laboratory (CBL™) system 
with a motion detector or a Calculator Based Ranger
(CBR™) system to collect ball bounce data using a ball
bounce program for the CBL or the Ball Bounce Application
for the CBR. See the CBL/CBR guidebook for specific setup
instruction.

Hold the ball at least 2 feet below the detector and release it
so that it bounces straight up and down beneath the detector.
These programs convert distance versus time data to height
from the ground versus time. The graph shows a plot of sam-
ple data collected with a racquetball and CBR. The data table
below shows each maximum height collected.

Explorations
1. If you collected motion data using a CBL or CBR, a plot

of height versus time should be shown on your graphing
calculator or computer screen. Trace to the maximum
height for each bounce and record your data in a table

Time (sec)

H
ei

gh
t (

ft
)

[0, 4.25] by [0, 3]

Bounce Number Maximum Height (feet)

0 2.7188
1 2.1426
2 1.6565
3 1.2640
4 0.98309
5 0.77783

CHAPTER 3 Key Ideas

Properties, Theorems, and Formulas
Exponential Growth and Decay 254
Exponential Functions 255
Exponential Functions and the Base e 257
Exponential Population Model 265
Changing Between Logarithmic and Exponential 

Form 274
Basic Properties of Logarithms 274
Basic Properties of Common Logarithms 276
Basic Properties of Natural Logarithms 277
Properties of Logarithms 283
Change-of-Base Formula for Logarithms 285
Logarithmic Functions , with 287
One-to-One Properties 292
Newton’s Law of Cooling 296
Interest Compounded Annually 304
Interest Compounded k Times per Year 304, 306
Interest Compounded Continuously 306
Future Value of an Annuity 308
Present Value of an Annuity 309

b 7 1ƒ1x2 = logb x

ƒ1x2 = bx

Procedures
Re-expression of Data 287–288
Logarithmic Re-expression of Data 298–300

Gallery of Functions

[–4, 4] by [–1, 5]

Exponential

[–4.7, 4.7] by [–0.5, 1.5]

Basic Logistic

[–2, 6] by [–3, 3]

Natural Logarithmic

ƒ1x2 = ex
ƒ1x2 =

1

1 + e-x

1ƒ1x2 = ln x

y

x
(0, 3)

(2, 6)

y

x

(3, 1)
(0, 2)

y

x

(3, 10)
(0, 5)

y = 20

y

x

(5, 22)
(0, 11)

y = 44

CHAPTER 3 Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1 and 2, compute the exact value of the function for the
given x-value without using a calculator.

1. for

2. for

In Exercises 3 and 4, determine a formula for the exponential function
whose graph is shown in the figure.

3. 4.

x = -  

3

2
ƒ1x2 = 6 # 3x

x =

1

3
ƒ1x2 = -3 # 4x

In Exercises 5–10, describe how to transform the graph of ƒ into the
graph of or . Sketch the graph by hand and sup-
port your answer with a grapher.

5. 6.

7. 8.

9. 10.

In Exercises 11 and 12, find the y-intercept and the horizontal 
asymptotes.

11. 12.

In Exercises 13 and 14, state whether the function is an exponential
growth function or an exponential decay function, and describe its end
behavior using limits.

13. 14.

In Exercises 15–18, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, symmetry,
boundedness, extrema, asymptotes, and end behavior.

15. 16.

17. 18.

In Exercises 19–22, find the exponential function that satisfies the
given conditions.

19. Initial value , increasing at a rate of 5.3% per day

20. Initial population increasing at a rate of 1.67% 
per year

= 67,000,

= 24

g1x2 =

100

4 + 2e-0.01x
ƒ1x2 =

6

1 + 3 # 0.4x

g1x2 = 314x+12 - 2ƒ1x2 = e3-x
+ 1

ƒ1x2 = 215x-32 + 1ƒ1x2 = e4-x
+ 2

ƒ1x2 =

50

5 + 2e-0.04x
ƒ1x2 =

100

5 + 3e-0.05x

ƒ1x2 = e3x-4ƒ1x2 = e2x-3

ƒ1x2 = 8-x
+ 3ƒ1x2 = -8-x

- 3

ƒ1x2 = -4-xƒ1x2 = 4-x
+ 3

h1x2 = exg1x2 = 2x

21. Initial height cm, doubling every 3 weeks

22. Initial mass g, halving once every 262 hours

In Exercises 23 and 24, find the logistic function that satisfies the
given conditions.

23. Initial value , limit to growth , passing through 
.

24. Initial height , limit to growth , passing through 
.

In Exercises 25 and 26, determine a formula for the logistic function
whose graph is shown in the figure.

25. 26.

13, 152
= 20= 6

12, 202
= 30= 12

= 117

= 18

In Exercises 27–30, evaluate the logarithmic expression without using
a calculator.

27. 28.

29. 30.

In Exercises 31–34, rewrite the equation in exponential form.

31. 32.

33. 34.

In Exercises 35–38, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and sup-
port with a grapher.

35.

36.

37.

38.

In Exercises 39–42, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, symmetry,
boundedness, extrema, asymptotes, and end behavior.

39. 40.

41. 42.

In Exercises 43–54, solve the equation.

43. 44.

45. 46. ln x = 5.41.05x
= 3

ex
= 0.2510x

= 4

ƒ1x2 =

ln x
x

ƒ1x2 = x2 ln ƒx ƒ

ƒ1x2 = x2 ln xƒ1x2 = x ln x

h1x2 = - log2 1x + 12 + 4

h1x2 = - log2 1x - 12 + 2

g1x2 = log2 14 - x2
ƒ1x2 = log2 1x + 42

y = log2 x

log 
a

b
= -3ln 

x

y
= -2

log2 x = ylog3 x = 5

ln 
1

2e7
log 23 10

log3 81log2 32
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Exercise Sets
Each exercise set begins with a Quick Review to help students
review skills needed in the exercise set, thus reminding them again
that mathematics is not modular. There are also directions that give
a section to go to for help so that students are prepared to do the
Section Exercises. Some exercises are also designed to be solved
without a calculator; the numbers of these exercises are printed
within a gray oval. Students are urged to support the answers to
these (and all) exercises graphically or numerically, but only after
they have solved them with pencil and paper. Real-world applica-
tion problems will rarely be designated with gray ovals.

QUICK REVIEW 3.5 (For help, go to Sections P.1 and 1.4.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, prove that each function in the given pair is the in-
verse of the other.

1.

2.

3.

4.

In Exercises 5 and 6, write the number in scientific notation.

5. The mean distance from Jupiter to the Sun is about
778,300,000 km.

ƒ1x2 = 3 log x2, x 7 0 and g1x2 = 10x/6

ƒ1x2 = 11/3) ln x and g1x2 = e3x

ƒ1x2 = 10x/2 and g1x2 = log x2, x 7 0

ƒ1x2 = e2x and g1x2 = ln 1x1/22

6. An atomic nucleus has a diameter of about
0.000000000000001 m.

In Exercises 7 and 8, write the number in decimal form.

7. Avogadro’s number is about .

8. The atomic mass unit is about .

In Exercises 9 and 10, use scientific notation to simplify the expres-
sion; leave your answer in scientific notation.

9.

10.
0.0000008

0.000005

1186,0002131,000,0002

1.66 * 10-27 kg

6.02 * 1023

SECTION 3.5 EXERCISES

In Exercises 1–10, find the exact solution algebraically, and check it by
substituting into the original equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, solve each equation algebraically. Obtain a numeri-
cal approximation for your solution and check it by substituting into the
original equation.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, state the domain of each function. Then match the
function with its graph. (Each graph shown has a window of 
by .

19. 20.

21. 22.

23. 24. g1x2 = ln x2ƒ1x2 = 2 ln x

g1x2 = ln x - ln 1x + 12ƒ1x2 = ln 
x

x + 1

g1x2 = log x + log 1x + 12ƒ1x2 = log 3x1x + 124
3-3.1, 3.14)

3-4.7, 4.74
3 - log 1x + 22 = 53 ln (x - 3) + 4 = 5

7 - 3e-x
= 23 + 2e-x

= 6

80e0.045x
= 24050e0.035x

= 200

0.98x
= 1.61.06x

= 4.1

log4 11 - x2 = 1log4 1x - 52 = -1

log2 x = 5log x = 4

315-x/42 = 152110-x/32 = 20

3 # 4x/2
= 962 # 5x/4

= 250

32a1

4
b x/3

= 236a1

3
b x/5

= 4

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37.

38.

In Exercises 39–44, determine by how many orders of magnitude the
quantities differ.

39. A $100 bill and a dime

40. A canary weighing 20 g and a hen weighing 2 kg

41. An earthquake rated 7 on the Richter scale and one rated 5.5

42. Lemon juice with and beer with 

43. The sound intensities of a riveter at 95 dB and ordinary conver-
sation at 65 dB

44. The sound intensities of city traffic at 70 dB and rustling leaves
at 10 dB

45. Comparing Earthquakes How many times more se-
vere was the 1978 Mexico City earthquake than the
1994 Los Angeles earthquake 

46. Comparing Earthquakes How many times more se-
vere was the 1995 Kobe, Japan, earthquake than the
1994 Los Angeles earthquake 

47. Chemical Acidity The pH of carbonated water is 3.9
and the pH of household ammonia is 11.9.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration
of carbonated water than that of ammonia?

(c) By how many orders of magnitude do the concentrations
differ?

48. Chemical Acidity Stomach acid has a pH of about 2.0,
and blood has a pH of 7.4.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration
of stomach acid than that of blood?

(c) By how many orders of magnitude do the concentrations
differ?

49. Newton’s Law of Cooling A cup of coffee has cooled
from 92°C to 50°C after 12 min in a room at 22°C. How long
will the cup take to cool to ?

50. Newton’s Law of Cooling A cake is removed from an
oven at 350°F and cools to 120°F after 20 min in a room at
65°F. How long will the cake take to cool to 90°F?

30°C

1R = 6.62?
1R = 7.22

1R = 6.62?
1R = 7.92

pH = 4.1pH = 2.3

log 1x - 22 + log 1x + 52 = 2 log 3

ln 1x - 32 + ln 1x + 42 = 3 ln 2

log x -

1

2
 log 1x + 42 = 1

1

2
 ln 1x + 32 - ln x = 0

400

1 + 95e-0.6x
= 150

500

1 + 25e0.3x
= 200

2e2x
+ 5ex

- 3 = 0
ex

+ e-x

2
= 4

2x
+ 2-x

2
= 3

2x
- 2-x

3
= 4

ln x6
= 12log x4

= 2

(a) (b)

(c) (d)

(e) (f)

In Exercises 25–38, solve each equation by the method of your choice.
Support your solution by a second method.

25.

26. ln x2
= 4

log x2
= 6

Standardized Test Questions
59. True or False The order of magnitude of a positive num-

ber is its natural logarithm. Justify your answer.

60. True or False According to Newton’s Law of Cooling,
an object will approach the temperature of the medium that
surrounds it. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

61. Multiple Choice Solve .

(A) (B) (C)

(D) (E)

62. Multiple Choice Solve ln .

(A) (B) (C)

(D) (E) No solution is possible.x = e

x = 1x = 1/ex = -1

x = -1

x = 13x = 11

x = 4x = 2x = 1

23x-1
= 32

Also included in the exercise sets are thought-provoking exercises:

• Standardized Test Questions include two true-false problems with 
justifications and four multiple-choice questions.

There are over 6000 exercises, including 680 Quick Review
Exercises. Following the Quick Review are exercises that allow
practice on the algebraic skills learned in that section. These
exercises have been carefully graded from routine to challenging.
The following types of skills are tested in each exercise set:

• Algebraic and analytic manipulation

• Connecting algebra to geometry

• Interpretation of graphs

• Graphical and numerical representations of functions

• Data analysis

xxii Preface
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Preface xxiii

Content Changes to This Edition
Mindful of the need to keep the applications of mathematics relevant to our students, we
have changed many of the examples and exercises throughout the book to include the most
current data available to us at the time of publication. We also looked carefully at the ped-
agogy of each section and added features to clarify (for students and teachers) where tech-
nology might interfere with the intended learning experience. In some cases (as with the
section on solving simultaneous linear equations), this led us to reconsider how some top-
ics were introduced. We hope that the current edition retains our commitment to graphical,
numerical, and algebraic representations, while reviving some of the algebraic emphasis
that we never intended to lose.

Chapter P
The example on scientific notation was improved to further emphasize its advantage in
mental arithmetic.

Chapter 1
The chapter opener on the consumer price index for housing was updated to include a
real-world caution against extrapolation, exemplified by the mortgage meltdown of 2008.
The section on grapher failure was updated to reflect the changing capabilities of the
technology. Limit notation was introduced a little more carefully (although still quite
informally).

• Explorations are opportunities for students to discov-
er mathematics on their own or in groups. These exer-
cises often require the use of critical thinking to
explore the ideas.

• Writing to Learn exercises give students practice at
communicating about mathematics and opportunities
to demonstrate understanding of important ideas.

• Group Activity exercises ask students to work on the
problems in groups or solve them as individual or
group projects.

• Extending the Ideas exercises go beyond what is pre-
sented in the textbook. These exercises are challeng-
ing extensions of the book’s material.

This variety of exercises provides sufficient flexibility to
emphasize the skills most needed for each student or class.

63. Multiple Choice How many times more severe was 
the 2001 earthquake in Arequipa, Peru , than the
1998 double earthquake in Takhar province, Afghanistan

(A) 2 (B) 6.1 (C) 8.1

(D) 14.2 (E) 100

64. Multiple Choice Newton’s Law of Cooling is

(A) an exponential model. (B) a linear model.

(C) a logarithmic model. (D) a logistic model.

(E) a power model.

Explorations
In Exercises 65 and 66, use the data in Table 3.26. Determine whether a
linear, logarithmic, exponential, power, or logistic regression equation
is the best model for the data. Explain your choice. Support your writ-
ing with tables and graphs as needed.

1R2 = 6.12?
1R1 = 8.12 (a) Graph ƒ for and , 0.5, 1, 2, 10. Explain the

effect of changing k.
(b) Graph ƒ for and , 0.5, 1, 2, 10. Explain the

effect of changing c.

Extending the Ideas
68. Writing to Learn Prove if for and

, then log . Explain how this result relates
to powers of ten and orders of magnitude.

69. Potential Energy The potential energy E (the energy
stored for use at a later time) between two ions in a certain
molecular structure is modeled by the function

where r is the distance separating the nuclei.

(a) Writing to Learn Graph this function in the win-
dow by , and explain which portion of
the graph does not represent this potential energy situation.

(b) Identify a viewing window that shows that portion of the
graph (with ) which represents this situation, and
find the maximum value for E.

70. In Example 8, the Newton’s Law of Cooling model was

Determine the value of k.

71. Justify the conclusion made about natural logarithmic regres-
sion on page 299.

72. Justify the conclusion made about power regression on page
299.

In Exercises 73–78, solve the equation or inequality.

73.

74.

75.

76.

77.

78. 2 log 1x + 12 - 2 log 6 6 0

2 log x - 4 log 3 7 0

ln ƒx ƒ - e2x
Ú 3

ex
6 5 + ln x 

e2x
- 8x + 1 = 0

ex
+ x = 5

T1t2 - Tm = 1T0 - Tm2e-kt
= 61.656 * 0.92770t.

r … 10

3-10, 3043-10, 104

E = -  

5.6
r

+ 10e-r/3

u - log v = nv 7 0
u 7 0u/v = 10n

c = 0.1k = 1

k = 0.1c = 1

SECTION 3.5 Equation Solving and Modeling 303

Table 3.26 Populations of Two U.S.
States (in thousands)

Year Alaska Hawaii

1900 63.6 154
1910 64.4 192
1920 55.0 256
1930 59.2 368
1940 72.5 423
1950 128.6 500
1960 226.2 633
1970 302.6 770
1980 401.9 965
1990 550.0 1108
2000 626.9 1212

Source: U.S. Census Bureau.

65. Writing to Learn Modeling Population Which
regression equation is the best model for Alaska’s population?

66. Writing to Learn Modeling Population Which
regression equation is the best model for Hawaii’s population?

67. Group Activity Normal Distribution The 
function

where c and k are positive constants, is a bell-shaped curve that
is useful in probability and statistics.

ƒ1x2 = k # e-cx2
,
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xxiv Preface

Chapter 2
The introduction of linear correlation was revised to include a caution against unwarranted
conclusions, a theme continued in the new Section 9.9, “Statistical Literacy.” A clarifica-
tion of approximate answers was added. Data problems were updated throughout.

Chapter 3
Some real-world applications were given supporting margin notes. The introduction of
logarithmic functions was improved. The section on financial mathematics was updated to
include an introduction to the Finance menu on the graphing calculator.

Chapter 4
Throughout the chapter, the pedagogical focus was clarified so that students would know
when to practice trigonometric calculations without a calculator and why. A margin note
was added to explain the display of radical fractions.

Chapter 5
Some exercises were modified so that they could be solved algebraically (when that was
the intent of the exercise). Data tables were updated throughout the chapter, including the
chapter project on the illumination of the moon, for which we used data for the year after
the book will be published . . . because it was available.

Chapter 6
Examples and exercises were altered to include mental estimation and to specify noncal-
culator solutions where trigonometric skills with the special angles could be practiced.

Chapter 7
Section 7.1 (“Solving Systems of Two Equations”) was restructured to devote a little more
attention to the algebraic means of solution in preparation for the matrix methods to follow.

Chapter 8
Examples and exercises were clarified and updated to include (for example) the new clas-
sification of planets in the solar system.

Chapter 9
An entire section, “Statistical Literacy,” has been added, expanding our introduction to
statistics to three sections. Although statistical topics are not usually part of a classical
“precalculus” course, their importance in today’s world has led many states to require
that they be part of the curriculum, so we include them in our book as a service to our
readers. Sections 9.7 and 9.8 deal with the mathematics used in descriptive statistics
and data analysis, while Section 9.9 deals more with how statistics are used (or mis-
used) in applications. Even if students read this new section on their own, it should
make them more savvy consumers.

Chapter 10
We have retained the balance of the last edition, which added an enhanced limit section to
our precalculus-level introduction to the two central problems of the calculus: the tangent
line problem and the area problem. Our intention is to “set the scene” for calculus, not to
cover the first two weeks of the course.
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Preface xxv

Technology Resources 
The following supplements are available for purchase:

MathXL® for School (optional, for purchase only—access code required),
www.MathXLforSchool.com
MathXL® for School is a powerful online homework, tutorial, and assessment program
designed specifically for Pearson Education mathematics textbooks.

With MathXL for School, students:

• Do their homework and receive immediate feedback

• Get self-paced assistance on problems through interactive learning aids (guided
solutions, step-by-step examples, video clips, animations)

• Have a large number of practice problems to choose from—helping them master a
topic

• Receive personalized study plans based on quiz and test results

MathXL® Tutorials on CD
This interactive tutorial CD-ROM provides algorithmically generated practice exercis-
es that are correlated at the chapter, section, and objective level to the exercises in the
textbook. Every practice exercise is accompanied by an example and a guided solution
designed to involve students in the solution process. Selected exercises may also
include a video clip to help students visualize concepts. The software provides helpful
feedback for incorrect answers and can generate printed summaries of students’
progress. It is available for purchase separately, using ISBN-13: 978-0-13-137636-6;
ISBN-10: 0-13-137636-5.

With MathXL for School, teachers:

• Quickly and easily create quizzes, tests, and homework assignments

• Utilize automatic grading to rapidly assess student understanding

• Prepare students for high-stakes testing

• Deliver quality instruction regardless of experience level

The new Flash-based, platform- and browser-independent MathXL Player now supports
Firefox on Windows (XP and Vista), Safari and Firefox on Macintosh, as well as Internet
Explorer. For more information, visit our Web site at www.MathXLforSchool.com, or con-
tact your Pearson sales representative.
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xxvi Preface

Additional Teacher Resources
Most of the teacher supplements and resources available for this text are available 
electronically for download at the Instructor Resource Center (IRC). Please go to
www.PearsonSchool.com/Access_Request and select “access to online instructor
resources.” You will be required to complete a one-time registration subject to verification
before being emailed access information for download materials.

The following supplements are available to qualified adopters: 

Annotated Teacher’s Edition
• Provides answers in the margins next to the corresponding problem for almost all

exercises, including sample answers for writing exercises. 

• Various examples marked with the icon indicate that alternative examples are
provided in the PowerPoint Slides.

• Provides notes written specifically for the teacher. These notes include chapter
and section objectives, suggested assignments, lesson guides, and 
teaching tips.

• ISBN-13: 978-0-13-136907-8; ISBN-10: 0-13-136907-5

Solutions Manual
Provides complete solutions to all exercises, including Quick Reviews, Exercises, Explora-
tions, and Chapter Reviews. ISBN-13: 978-0-13-137641-0; ISBN-10: 0-13-137641-1

Online Resource Manual (Download Only)
Provides Major Concepts Review, Group Activity Worksheets, Sample Chapter Tests,
Standardized Test Preparation Questions, Contest Problems.

Online Tests and Quizzes (Download Only)
Provides two parallel tests per chapter, two quizzes for every three to four sections, two
parallel midterm tests covering Chapters P–5, and two parallel end-of-year tests, covering
Chapters 6–10.

TestGen®

TestGen enables teachers to build, edit, print, and administer tests using a computerized
bank of questions developed to cover all the objectives of the text. TestGen is algorithmi-
cally based, allowing teachers to create multiple but equivalent versions of the same ques-
tion or test with the click of a button. Teachers can also modify test bank questions or add
new questions. Tests can be printed or administered online. ISBN-13: 978-0-13-137640-3;
ISBN-10: 0-13-137640-3

PowerPoint Slides
Features presentations written and designed specifically for this text, including figures,
alternate examples, definitions, and key concepts.

Web Site
Our Web site, www.awl.com/demana, provides dynamic resources for teachers and stu-
dents. Some of the resources include TI graphing calculator downloads, online quizzing,
teaching tips, study tips, Explorations, end-of-chapter projects, and more.
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Prerequisites

Large distances are measured in light years, the distance light travels in
one year. Astronomers use the speed of light, approximately 186,000
miles per second, to approximate distances between planets. See page 35
for examples.

P.1 Real Numbers 

P.2 Cartesian Coordinate
System 

P.3 Linear Equations and
Inequalities 

P.4 Lines in the Plane 

P.5 Solving Equations
Graphically, Numerically,
and Algebraically 

P.6 Complex Numbers 

P.7 Solving Inequalities Alge-
braically and Graphically 

CHAPTER P
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Chapter P Overview
Historically, algebra was used to represent problems with symbols (algebraic models)
and solve them by reducing the solution to algebraic manipulation of symbols. This
technique is still important today. Graphing calculators are used today to approach
problems by representing them with graphs (graphical models) and solve them with nu-
merical and graphical techniques of the technology.

We begin with basic properties of real numbers and introduce absolute value, dis-
tance formulas, midpoint formulas, and equations of circles. Slope of a line is used
to write standard equations for lines, and applications involving linear equations are
discussed. Equations and inequalities are solved using both algebraic and graphical
techniques.

2 CHAPTER P Prerequisites

Bibliography
For students: Great Jobs for Math 
Majors, Stephen Lambert, Ruth J. DeCotis.
Mathematical Association of America, 1998.
For teachers: Algebra in a Technological World,
Addenda Series, Grades 9–12. National Council
of Teachers of Mathematics, 1995. Why Numbers
Count—Quantitative Literacy for Tommorrow’s
America, Lynn Arthur Steen (Ed.). National
Council of Teachers of Mathematics, 1997.

P.1 Real Numbers

What you’ll learn about
• Representing Real Numbers
• Order and Interval Notation
• Basic Properties of Algebra
• Integer Exponents
• Scientific Notation

... and why
These topics are fundamental in
the study of mathematics and 
science.

Objective
Students will be able to convert between 
decimals and fractions, write inequalities, 
apply the basic properties of algebra, and work
with exponents and scientific notation.

Motivate
Ask students how real numbers can be 
classified. Have students discuss ways to 
display very large or very small numbers 
without using a lot of zeros.

Representing Real Numbers
A real number is any number that can be written as a decimal. Real numbers 
are represented by symbols such as , , e,
and .

The set of real numbers contains several important subsets:

The natural (or counting) numbers:

The whole numbers:

The integers:

The braces are used to enclose the elements, or objects, of the set. The rational
numbers are another important subset of the real numbers. A rational number is any
number that can be written as a ratio of two integers, where . We can use
set-builder notation to describe the rational numbers:

The vertical bar that follows is read “such that.”

The decimal form of a rational number either terminates like , or is
infinitely repeating like . The bar over the 36 indicates 
the block of digits that repeats. A real number is irrational if it is not rational. 
The decimal form of an irrational number is infinitely nonrepeating. For example,

and 

Real numbers are approximated with calculators by giving a few of its digits. Some-
times we can find the decimal form of rational numbers with calculators, but not very
often.

p = 3.14159265Á .23 = 1.7320508 Á

4/11 = 0.363636 Á =  0.36
7/4 = 1.75

a/b

e a

b
` a, b are integers, and b Z 0 f

b Z 0a/b

5 6
5Á , -3, -2, -1, 0, 1, 2, 3, Á 6
50, 1, 2, 3, Á 6
51, 2, 3, Á 6

p

23 168/5, 23,0.36,-8, 0, 1.75, 2.333 Á
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The real numbers and the points of a line can be matched one-to-one to form a 
real number line. We start with a horizontal line and match the real number zero with
a point O, the origin. Positive numbers are assigned to the right of the origin, and
negative numbers to the left, as shown in Figure P.2.

SECTION P.1 Real Numbers 3

1/16

55/27

1/17

N

.0625

2.037037037

.0588235294

FIGURE P.1 Calculator decimal repre-
sentations of 1/16, 55/27, and 1/17 with the
calculator set in floating decimal mode. (Ex-
ample 1)

EXAMPLE 1 Examining Decimal Forms of Rational Numbers
Determine the decimal form of 1/16, 55/27, and 1/17.

SOLUTION Figure P.1 suggests that the decimal form of 1/16 terminates and that
of 55/27 repeats in blocks of 037.

and

We cannot predict the exact decimal form of 1/17 from Figure P.1; however, we can
say that . The symbol is read “is approximately equal to.”
We can use long division (see Exercise 66) to show that

Now try Exercise 3.
1

17
= 0.0588235294117647.

L1/17 L 0.0588235294

55

27
= 2.037

1

16
= 0.0625

–5 –4 –3 –2 –1 0
Negative

real numbers
Positive

real numbers

1 2 3 4 5

O3– π

FIGURE P.2 The real number line.

Every real number corresponds to one and only one point on the real number line, and
every point on the real number line corresponds to one and only one real number. Be-
tween every pair of real numbers on the number line there are infinitely many more
real numbers.

The number associated with a point is the coordinate of the point. As long as the con-
text is clear, we will follow the standard convention of using the real number for both
the name of the point and its coordinate.

Order and Interval Notation
The set of real numbers is ordered. This means that we can use inequalities to com-
pare any two real numbers that are not equal and say that one is “less than” or “greater
than” the other.

Order of Real Numbers
Let a and b be any two real numbers.

Symbol Definition Read

is positive a is greater than b

is negative a is less than b

is positive or zero a is greater than or equal to b

is negative or zero a is less than or equal to b

The symbols , , , and are inequality symbols.…Ú67

a - ba … b

a - ba Ú b

a - ba 6 b

a - ba 7 bUnordered Systems
Not all number systems are ordered. For 
example, the complex number system, to be in-
troduced in Section P.6, has no natural 
ordering.
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Geometrically, means that a is to the right of b (equivalently b is to the left of a)
on the real number line. For example, since , 6 is to the right of 3 on the real
number line. Note also that means that , or simply a, is positive and 
means that a is negative.

We are able to compare any two real numbers because of the following important prop-
erty of the real numbers.

a 6 0a - 0a 7 0
6 7 3

a 7 b

4 CHAPTER P Prerequisites

FIGURE P.3 In graphs of inequalities,
parentheses correspond to and and
brackets to and . (Examples 2 and 3)Ú…

76

(a)

–3 –2 –1 0 1 2 3 4 5
x

–2–3 –1 0 1 2 3 4 5
x

(b)

–5 –4 –3 –2 –1 0 1 2 3
x

–0.5

(c)

–3 –2 –1 0 1 2 3 4 5
x

(d)

Opposites and Number Line

If , then a is to the left of 0 on the real
number line, and its opposite, , is to the right
of 0. Thus, .-a 7 0

-a
a 6 0

a 6 0 Q -a 7 0

Trichotomy Property
Let a and b be any two real numbers. Exactly one of the following is true:

or .a 7 ba = b,a 6 b,

Inequalities can be used to describe intervals of real numbers, as illustrated in Exam-
ple 2.

EXAMPLE 2 Interpreting Inequalities
Describe and graph the interval of real numbers for the inequality.

(a) (b)

SOLUTION

(a) The inequality describes all real numbers less than 3 (Figure P.3a).

(b) The double inequality represents all real numbers between and 4,
excluding and including 4 (Figure P.3b). Now try Exercise 5.-1

-1-1 6 x … 4

x 6 3

-1 6 x … 4x 6 3

EXAMPLE 3 Writing Inequalities
Write an interval of real numbers using an inequality and draw its graph.

(a) The real numbers between and 

(b) The real numbers greater than or equal to zero

SOLUTION

(a) (Figure P.3c)

(b) (Figure P.3d) Now try Exercise 15.x Ú 0

-4 6 x 6 -0.5

-0.5-4

As shown in Example 2, inequalities define intervals on the real number line. We often
use 32, 5 to describe the bounded interval determined by . This interval is
closed because it contains its endpoints 2 and 5. There are four types of bounded in-
tervals.

2 … x … 54

Bounded Intervals of Real Numbers
Let a and b be real numbers with .a 6 b

Interval Interval Inequality 
Notation Type Notation Graph

a, b Closed

1a, b Open

a, b Half-open

1a, b Half-open a 6 x … b4
a … x 6 b23
a 6 x 6 b2
a … x … b43

a b

a b

a b

a b

The numbers a and b are the endpoints of each interval.
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The interval of real numbers determined by the inequality can be described by
the unbounded interval 1 2. This interval is open because it does not contain its
endpoint 2.

We use the interval notation 1 2 to represent the entire set of real numbers. The
symbols (negative infinity) and (positive infinity) allow us to use interval nota-
tion for unbounded intervals and are not real numbers. There are four types of
unbounded intervals.

q- q

- q , q

- q , 2
x 6 2

SECTION P.1 Real Numbers 5

Interval Notation at 
Because is not a real number, we use

instead of to describe .
Similarly, we use instead of 
to describe x Ú -1.

3-1, q43-1, q2
x 6 23- q , 221- q , 22

- q

�ˆ

Unbounded Intervals of Real Numbers
Let a and b be real numbers.

Each of these intervals has exactly one endpoint, namely a or b.

Interval Interval Inequality 
Notation Type Notation Graph

a, Closed

1a, Open

1 , b Closed

1 , b Open x 6 b2- q

x … b4- q

x 7 a2q

x Ú a2q3
a

a

b

b

EXAMPLE 4 Converting Between Intervals and Inequalities
Convert interval notation to inequality notation or vice versa. Find the endpoints and
state whether the interval is bounded, its type, and graph the interval.

(a) (b) 1 2 (c)

SOLUTION

(a) The interval corresponds to and is bounded and half-open
(see Figure P.4a). The endpoints are and 3.

(b) The interval 1 2 corresponds to and is unbounded and open (see
Figure P.4b). The only endpoint is 

(c) The inequality corresponds to the closed, bounded interval 
(see Figure P.4c). The endpoints are and 3. Now try Exercise 29.-2

3-2, 34-2 … x … 3

-1.
x 6 -1- q , -1

-6
-6 … x 6 33-6, 32

-2 … x … 3- q , -13-6, 32

–6 –5 –4 –3 –2 –1 0 1 2 3 4
x(a)

–5 –4 –3 –2 –1 0 1 2 3 4 5
x(b)

–5 –4 –3 –2 –1 0 1 2 3 4 5
x(c)

FIGURE P.4 Graphs of the intervals of real numbers in Example 4.

Basic Properties of Algebra
Algebra involves the use of letters and other symbols to represent real numbers.
A variable is a letter or symbol 1for example, x, y, t, 2 that represents an unspecified
real number. A constant is a letter or symbol 1for example, , 2 that repre-
sents a specific real number. An algebraic expression is a combination of variables and
constants involving addition, subtraction, multiplication, division, powers, and roots.

p-2, 0, 23
u
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We state some of the properties of the arithmetic operations of addition, subtraction,
multiplication, and division, represented by the symbols (or ) and (or / ),
respectively. Addition and multiplication are the primary operations. Subtraction and
division are defined in terms of addition and multiplication.

Subtraction:

Division:

In the above definitions, is the additive inverse or opposite of b, and 1/b is the
multiplicative inverse or reciprocal of b. Perhaps surprisingly, additive inverses are
not always negative numbers. The additive inverse of 5 is the negative number 
However, the additive inverse of is the positive number 3.

The following properties hold for real numbers, variables, and algebraic expressions.

-3
-5.

-b

a

b
= aa1

b
b , b Z 0

a - b = a + 1-b2

,
#

+ , - , *

6 CHAPTER P Prerequisites

Subtraction vs. Negative
Numbers
On many calculators, there are two “ ” keys,
one for subtraction and one for negative numbers
or opposites. Be sure you know how to use both
keys correctly. Misuse can lead to incorrect re-
sults.

-

The left-hand sides of the equations for the distributive property show the factored
form of the algebraic expressions, and the right-hand sides show the expanded form.

Properties of Algebra
Let u, v, and w be real numbers, variables, or algebraic expressions.

1. Commutative property
Addition: 
Multiplication: 

2. Associative property
Addition:

Multiplication: 

3. Identity property
Addition: 
Multiplication: u # 1 = u

u + 0 = u

1uv2w = u1vw21u + v2 + w = u + 1v + w2

uv = vu
u + v = v + u

4. Inverse property
Addition: 

Multiplication: 

5. Distributive property
Multiplication over addition:

Multiplication over subtraction:

1u - v2w = uw - vw
u1v - w2 = uv - uw

1u +  v2w = uw + vw
u1v + w2 = uv + uw

u #  

1
u

= 1, u Z 0

u + 1-u2 = 0

EXAMPLE 5 Using the Distributive Property
(a) Write the expanded form of 

(b) Write the factored form of 

SOLUTION

(a)

(b) Now try Exercise 37.3y - by = 13 - b2y
1a + 22x = ax + 2x

3y - by.

1a + 22x.

Here are some properties of the additive inverse together with examples that help illus-
trate their meanings.

Properties of the Additive Inverse
Let u and v be real numbers, variables, or algebraic expressions.

Property Example

1.
2.
3.
4.
5. -17 + 92 = 1-72 + 1-92 = -16-1u + v2 = 1-u2 + 1-v2

1-125 = -51-12u = -u

1-621-72 = 6 # 7 = 421-u21-v2 = uv

1-423 = 41-32 = -14 # 32 = -121-u2v = u1-v2 = -1uv2
-1-32 = 3-1-u2 = u
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Integer Exponents
Exponential notation is used to shorten products of factors that repeat. For example,

and 12x + 1212x + 12 = 12x + 122.1-321-321-321-3) = 1-324

SECTION P.1 Real Numbers 7

Understanding Notation

Be careful!

-32
= -9

1-322 = 9

The two exponential expressions in Example 6 have the same value but have different
bases. Be sure you understand the difference.

EXAMPLE 6 Identifying the Base
(a) In , the base is 

(b) In , the base is 3. Now try Exercise 43.-35

-3.1-325

Here are the basic properties of exponents together with examples that help illustrate
their meanings.

Properties of Exponents
Let u and v be real numbers, variables, or algebraic expressions and m and n be
integers. All bases are assumed to be nonzero.

Property Example

1.

2.

3.

4.

5.

6.

7. aa

b
b7

=

a7

b7au

v
bm

=

um

vm

1x223 = x2 #3
= x61um2n = umn

12z25 = 25z5
= 32z51uv2m = umvm

y-3
=

1

y3u-n
=

1

un

80
= 1u0

= 1

x9

x4 = x9-4
= x5um

un = um-n

53 # 54
= 53+4

= 57umun
= um+n

To simplify an expression involving powers means to rewrite it so that each factor ap-
pears only once, all exponents are positive, and exponents and constants are combined
as much as possible.

Exponential Notation
Let a be a real number, variable, or algebraic expression and n a positive 
integer. Then

n factors

where n is the exponent, a is the base, and is the nth power of a, read as 
“a to the nth power.”

an

an
= a # a #

Á
# a,
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Scientific Notation
Any positive number can be written in scientific notation,

, where and m is an integer.

This notation provides a way to work with very large and very small numbers. For ex-
ample, the distance between the Earth and the Sun is about 93,000,000 miles. In scien-
tific notation,

The positive exponent 7 indicates that moving the decimal point in 9.3 to the right 7
places produces the decimal form of the number.

The mass of an oxygen molecule is about

0.000 000 000 000 000 000 000 053 gram.

In scientific notation,

The negative exponent indicates that moving the decimal point in 5.3 to the left 
23 places produces the decimal form of the number.

-23

0.000 000 000 000 000 000 000 053 g = 5.3 * 10-23 g.

93,000,000 mi = 9.3 * 107 mi.

1 … c 6 10c * 10m

8 CHAPTER P Prerequisites

Moving Factors
Be sure you understand how exponent property 4
permits us to move factors from the numerator to
the denominator and vice versa:

v-m

u-n =

un

vm

EXAMPLE 7 Simplifying Expressions Involving Powers
(a)

(b)

(c) Now try Exercise 47.a x2

2
b-3

=

1x22-3

2-3 =

x -6

2-3 =

23

x6
=

8

x6

u2v-2

u-1v3 =

u2u1

v2v3 =

u3

v5

12ab3215a2b52 = 101aa221b3b52 = 10a3b8

EXAMPLE 8 Converting to and from Scientific Notation
(a)

(b) Now try Exercises 57 and 59.0.000000349 = 3.49 * 10-7

2.375 * 108
= 237,500,000

EXAMPLE 9 Using Scientific Notation

Simplify , without using a calculator.

SOLUTION

Now try Exercise 63.

Using a Calculator
Figure P.5 shows two ways to perform the computation. In the first, the numbers are
entered in decimal form. In the second, the numbers are entered in scientific notation.
The calculator uses “9E10” to stand for .9 * 1010

 = 90,000,000,000

 = 9 * 1010

 =

13.6214.52
1.8

* 105+9-4

 
1360,000214,500,000,0002

18,000
=

13.6 * 105214.5 * 1092
1.8 * 104

1360,000214,500,000,0002
18,000
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SECTION P.1 Real Numbers 9

(360000)(4500000
000)/(18000)

N

(3.6E5)(4.5E9)/(
1.8E4)

9E10

9E10

FIGURE P.5 Be sure you understand how your calculator displays scientific notation. (Ex-
ample 9)

QUICK REVIEW P.1

In Exercises 7 and 8, evaluate the algebraic expression for the given
values of the variables.

7.

8.

In Exercises 9 and 10, list the possible remainders.

9. When the positive integer n is divided by 7

10. When the positive integer n is divided by 13

a2
+ ab + b2, a = -3, b = 2

x3
- 2x + 1, x = -2, 1.5

1. List the positive integers between and 7.

2. List the integers between and 7.

3. List all negative integers greater than 

4. List all positive integers less than 5.

In Exercises 5 and 6, use a calculator to evaluate the expression.
Round the value to two decimal places.

5. (a) (b)

6. (a) (b) 5-2
+ 2-45331-1.122 - 41-0.5234

21-5.52 - 6

7.4 - 3.8
41-3.123 - 1-4.225

-4.

-3

-3

SECTION P.1 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–4, find the decimal form for the rational number. State
whether it repeats or terminates.

1. 2. 15/99

3. 4. 5/37

In Exercises 5–10, describe and graph the interval of real numbers.

5. 6.

7. 8.

9. x is negative.

10. x is greater than or equal to 2 and less than or equal to 6.

In Exercises 11–16, use an inequality to describe the interval of real
numbers.

11. 12. 1- q , 443-1, 12

3-3, 341- q , 72
-2 … x 6 5x … 2

-13/6

-37/8

15. x is between and 2.

16. x is greater than or equal to 5.

In Exercises 17–22, use interval notation to describe the interval of real
numbers.

17. 18.

19.

20.

21. x is greater than and less than or equal to 4.

22. x is positive.

In Exercises 23–28, use words to describe the interval of real numbers.

23. 24.

25. 26.

27.

28.

1-5, 723-3, q2
x Ú -14 6 x … 9

-3

-7 6 x 6 -2x 7 -3

-1

13.

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

14.

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

–5 –4 –3 –2 –1 0 1 2 3 4 5
x
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In Exercises 29–32, convert to inequality notation. Find the endpoints
and state whether the interval is bounded or unbounded and its type.

29. 30.

31. 32.

In Exercises 33–36, use both inequality and interval notation to de-
scribe the set of numbers. State the meaning of any variables 
you use.

33. Writing to Learn Bill is at least 29 years old.

34. Writing to Learn No item at Sarah’s Variety Store costs
more than $2.00.

35. Writing to Learn The price of a gallon of gasoline
varies from $1.099 to $1.399.

36. Writing to Learn Salary raises at the State University
of California at Chico will average between 2% and 6.5%.

In Exercises 37–40, use the distributive property to write the factored
form or the expanded form of the given expression.

37. 38.

39. 40.

In Exercises 41 and 42, find the additive inverse of the number.

41. 42.

In Exercises 43 and 44, identify the base of the exponential expression.

43. 44.

45. Group Activity Discuss which algebraic property 
or properties are illustrated by the equation. Try to reach a con-
sensus.

(a) (b)

(c) (d)

(e)

46. Group Activity Discuss which algebraic property 
or properties are illustrated by the equation. Try to reach a con-
sensus.

(a) (b)

(c)

(d)

(e)

In Exercises 47–52, simplify the expression. Assume that the variables
in the denominators are nonzero.

47. 48.

49. 50. a 2
xy
b-3a 4

x2
b2

13x222y4

3y2

x4y3

x2y5

1
a

 1ab2 = a 1
a

  abb = 1 # b = b

12x + y2 - z
= 12x + y2 + 1-z2 =

2x + 1y - z2 = 2x + 1y + 1-z22
21x - y2 = 2x - 2y

1 # 1x + y2 = x + y1x + 22 1

x + 2
= 1

a1x + y2 = ax + ay

1x + 322 + 0 = 1x + 322a2b + 1-a2b2 = 0

a2b = ba213x2y = 31xy2

1-227-52

-76 - p

a3z + a3wax2
+ dx2

1y - z32ca1x2
+ b2

3-6, q21- q , 52
1-3, -121-3, 44

10 CHAPTER P Prerequisites

Table P.1 U.S. Public Schools

Source: National Center for Education Statistics, U.S. Department
of Education, as reported in The World Almanac and Book of
Facts 2009.

Category Amount (in millions)

Current expenditures 449,595
Capital outlay 57,375
Interest on school debt 14,347
Total 528,735

51. 52.

The data in Table P.1 give the expenditures in millions of dollars for
U.S. public schools for the 2005–2006 school year.

a4a3b

a2b3
b a 3b2

2a2b4
b1x -3y22-4

1y6x -42-2

In Exercises 53–56, write the amount of expenditures in dollars ob-
tained from the category in scientific notation.

53. Current expenditures

54. Capital outlay

55. Interest on school debt

56. Total

In Exercises 57 and 58, write the number in scientific notation.

57. The mean distance from Jupiter to the Sun is about
483,900,000 miles.

58. The electric charge, in coulombs, of an electron is about

In Exercises 59–62, write the number in decimal form.

59. 60. 6.73 * 10113.33 * 10-8

-0.000 000 000 000 000 000 16.

61. The distance that light travels in 1 year (one light year) is about
mi.

62. The mass of a neutron is about 

In Exercises 63 and 64, use scientific notation to simplify.

63. without using a calculator

64.

Explorations
65. Investigating Exponents For positive integers m and

n, we can use the definition to show that .

(a) Examine the equation and explain
why it is reasonable to define for .

(b) Examine the equation and ex-
plain why it is reasonable to define for .a Z 0a-m

= 1/am
aman

= am+n for n = -m

a Z 0a0
= 1

aman
= am+n for n = 0

aman
= am+n

13.7 * 10-7214.3 * 1062
2.5 * 107

11.3 * 10-7212.4 * 1082
1.3 * 109

1.6747 * 10-24 g.

5.87 * 1012
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66. Decimal Forms of Rational Numbers Here is the
third step when we divide 1 by 17. (The first two steps are not
shown, because the quotient is 0 in both cases.)

0.05

15
By convention we say that 1 is the first remainder in the long di-
vision process, 10 is the second, and 15 is the third remainder.

(a) Continue this long division process until a remainder is re-
peated, and complete the following table:

85
17�1.00

SECTION P.1 Real Numbers 11

In Exercises 69–72, solve these problems without using a calculator.

69. Multiple Choice Which of the following inequalities
corresponds to the interval ?

(A) (B)

(C) (D)

(E)

70. Multiple Choice What is the value of ?

(A) 16 (B) 8

(C) 6 (D)

(E)

71. Multiple Choice What is the base of the exponential ex-
pression ?

(A) (B) 7

(C) (D) 2

(E) 1

72. Multiple Choice Which of the following is the simpli-

fied form of , ?

(A) (B)

(C) (D)

(E)

Extending the Ideas
The magnitude of a real number is its distance from the origin.

73. List the whole numbers whose magnitudes are less than 7.

74. List the natural numbers whose magnitudes are less than 7.

75. List the integers whose magnitudes are less than 7.

x8

x4x3

x2x -4

x Z 0
x6

x2

-2

-7

-72

-16

-8

1-224
-2 … x 6 1

-2 6 x … 1-2 6 x 6 1

-2 … x … 1x … -2

3-2, 12

(b) Explain why the digits that occur in the quotient between
the pair of repeating remainders determine the infinitely re-
peating portion of the decimal representation. In this case

(c) Explain why this procedure will always determine the infi-
nitely repeating portion of a rational number whose deci-
mal representation does not terminate.

Standardized Test Questions
67. True or False The additive inverse of a real number

must be negative. Justify your answer.

68. True or False The reciprocal of a positive real number
must be less than 1. Justify your answer.

1

17
= 0.0588235294117647.

Step Quotient Remainder
1 0 1
2 0 10
3 5 15

ooo
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P.2 Cartesian Coordinate System

What you’ll learn about
• Cartesian Plane
• Absolute Value of a Real Number
• Distance Formulas
• Midpoint Formulas
• Equations of Circles
• Applications

... and why
These topics provide the founda-
tion for the material that will be
covered in this textbook.

6

4

2

–2

–6

y

–4–8 –2 O 2 4 6

P(4, 2)

Q(–6, –4)

x

FIGURE P.6 The Cartesian coordinate
plane.

y

3
2
1

–2
–3

y

x
–3 –1O 1 3 x

P(x, y)

First quadrant

Fourth quadrantThird quadrant

Second quadrant

FIGURE P.7 The four quadrants. Points on
the x- or y-axis are not in any quadrant.

EXAMPLE 1 Plotting Data on U.S. Exports to Mexico
The value in billions of dollars of U.S. exports to Mexico from 2000 to 2007 is given
in Table P.2. Plot the (year, export value) ordered pairs in a rectangular coordinate
system.

Table P.2 U.S. Exports to Mexico

SOLUTION The points are plotted in Figure P.8 on page 13.
Now try Exercise 31.

U.S. Exports
Year (billions of dollars)

2000 111.3
2001 101.3
2002 97.5
2003 97.4
2004 110.8
2005 120.4
2006 134.0
2007 136.0

Source: U.S. Census Bureau, The World Almanac and
Book of Facts 2009.

A scatter plot is a plotting of the 1x, y2 data pairs on a Cartesian plane. Figure P.8
shows a scatter plot of the data from Table P.2.

Absolute Value of a Real Number
The absolute value of a real number suggests its magnitude (size). For example, the
absolute value of 3 is 3 and the absolute value of is 5.-5

Cartesian Plane
The points in a plane correspond to ordered pairs of real numbers, just as the points
on a line can be associated with individual real numbers. This correspondence creates
the Cartesian plane, or the rectangular coordinate system in the plane.

To construct a rectangular coordinate system, or a Cartesian plane, draw a pair of per-
pendicular real number lines, one horizontal and the other vertical, with the lines inter-
secting at their respective 0-points (Figure P.6). The horizontal line is usually the x-axis
and the vertical line is usually the y-axis. The positive direction on the x-axis is to the
right, and the positive direction on the y-axis is up. Their point of intersection, O, is the
origin of the Cartesian plane.

Each point P of the plane is associated with an ordered pair (x, y) of real numbers, the
(Cartesian) coordinates of the point. The x-coordinate represents the intersection of
the x-axis with the perpendicular from P, and the y-coordinate represents the intersec-
tion of the y-axis with the perpendicular from P. Figure P.6 shows the points P and Q
with coordinates 14, 22 and , respectively. As with real numbers and a number
line, we use the ordered pair 1a, b2 for both the name of the point and its coordinates.

The coordinate axes divide the Cartesian plane into four quadrants, as shown in
Figure P.7.

1-6, -42

6965_CH0P_pp001-062.qxd  2/3/10  2:59 PM  Page 12



Distance Formulas
The distance between and 4 on the number line is 5 (see Figure P.9). This distance
may be found by subtracting the smaller number from the larger: 
If we use absolute value, the order of subtraction does not matter:
ƒ4 - 1-12 ƒ = ƒ -1 - 4 ƒ = 5.

4 - 1-12 = 5.
-1

SECTION P.2 Cartesian Coordinate System 13
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FIGURE P.8 The graph for Example 1.

EXAMPLE 2 Using the Definition of Absolute Value
Evaluate:

(a) (b)

SOLUTION

(a) Because 

(b) Because is negative, so Thus,

Now try Exercise 9.ƒp - 6 ƒ = -1p - 62 = 6 - p L 2.858.

p - 6 6 0.p L 3.14, p - 6

-4 6 0, ƒ -4 ƒ = -1-42 = 4.

ƒp - 6 ƒƒ -4 ƒ

Here is a summary of some important properties of absolute value.

Properties of Absolute Value
Let a and b be real numbers.

1. 2.

3. 4. ` a
b
` =

ƒa ƒ

ƒb ƒ

, b Z 0ƒab ƒ = ƒa ƒ ƒb ƒ

ƒ -a ƒ = ƒa ƒƒa ƒ Ú 0

–3 –2 –1 0 1 2 3 4 5

|4 – (–1)| = |–1 – 4| = 5

x

FIGURE P.9 Finding the distance between
and 4.-1

Absolute Value and Distance
If we let in the distance formula, we see
that the distance between a and 0 is . Thus, the
absolute value of a number is its distance from
zero.

ƒa ƒ

b = 0

To find the distance between two points that lie on the same horizontal or vertical line
in the Cartesian plane, we use the distance formula for points on a number line. For ex-
ample, the distance between points and on the x-axis is 
and the distance between points and on the y-axis is 

To find the distance between two points and that do not lie on the
same horizontal or vertical line, we form the right triangle determined by P, Q, and

, (Figure P.10).R1x2, y12
Q1x2, y22P1x1, y12

ƒy1 - y2 ƒ = ƒy2 - y1 ƒ .y2y1

ƒx1 - x2 ƒ = ƒx2 - x1 ƒx2x1

DEFINITION Absolute Value of a Real Number
The absolute value of a real number a is

ƒa ƒ = c a, if a 7 0

-a, if a 6 0

    0, if a = 0.

Distance Formula (Number Line)
Let a and b be real numbers. The distance between a and b is

Note that ƒa - b ƒ = ƒb - a ƒ .

ƒa - b ƒ .
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The distance from P to R is , and the distance from R to Q is By the
Pythagorean Theorem (see Figure P.11), the distance d between P and Q is

Because , we obtain the follow-
ing formula.

ƒx1 - x2 ƒ
2

= 1x1 - x222 and ƒy1 - y2 ƒ
2

= 1y1 - y222
d = 2 ƒx1 - x2 ƒ

2
+ ƒy1 - y2 ƒ

2.

ƒy1 - y2 ƒ .ƒx1 - x2 ƒ

14 CHAPTER P Prerequisites

O
x

y

y1

y2

x1 x2

d

Q(x2, y2)

R(x2, y1)
P(x1, y1)

� y1 – y2 �

� x1 – x2 �

FIGURE P.10 Forming a right triangle with hypotenuse .PQ

c
a

b

FIGURE P.11 The Pythagorean Theorem:
c2

= a2
+ b2.

EXAMPLE 3 Finding the Distance Between Two Points
Find the distance d between the points 11, 52 and 16, 22.
SOLUTION

The distance formula

Using a calculator
Now try Exercise 11.

 = 234 L 5.83

 = 225 + 9

 = 21-522 + 32

 d = 211 - 622 + 15 - 222

Midpoint Formulas
When the endpoints of a segment in a number line are known, we take the average of
their coordinates to find the midpoint of the segment.

Distance Formula (Coordinate Plane)
The distance d between points and in the coordinate plane is

d = 21x1 - x222 + 1y1 - y222.

Q1x2, y22P1x1, y12

Midpoint Formula (Number Line)
The midpoint of the line segment with endpoints a and b is

a + b

2
.
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Just as with number lines, the midpoint of a line segment in the coordinate plane is de-
termined by its endpoints. Each coordinate of the midpoint is the average of the corre-
sponding coordinates of its endpoints.

SECTION P.2 Cartesian Coordinate System 15

Midpoint

6 6

–9 –3 0 3
x

FIGURE P.12 Notice that the distance from the midpoint, , to 3 or to is 6. 
(Example 4)

-9-3

y

x
1

1

(–5, 2)

(–1, 4.5)

(3, 7)Midpoint

FIGURE P.13 (Example 5.)

EXAMPLE 4 Finding the Midpoint of a Line Segment
The midpoint of the line segment with endpoints and 3 on a number line is

See Figure P.12. Now try Exercise 23.

1-92 + 3

2
=

-6

2
= -3.

-9

EXAMPLE 5 Finding the Midpoint of a Line Segment
The midpoint of the line segment with endpoints and 13, 72 is

See Figure P.13. Now try Exercise 25.

1x, y2 = a -5 + 3

2
, 

2 + 7

2
b = 1-1, 4.52.
1-5, 22

Equations of Circles
A circle is the set of points in a plane at a fixed distance 1radius2 from a fixed point
(center). Figure P.14 shows the circle with center 1h, k2 and radius r. If 1x, y2 is any
point on the circle, the distance formula gives

Squaring both sides, we obtain the following equation for a circle.

21x - h22 + 1 y - k22 = r.

y

x

(x, y)

(h, k)

r

FIGURE P.14 The circle with center 
1h, k2 and radius r.

Midpoint Formula (Coordinate Plane)
The midpoint of the line segment with endpoints (a, b) and (c, d) is

aa + c

2
, 

b + d

2
b .

DEFINITION Standard Form Equation of a Circle
The standard form equation of a circle with center 1h, k2 and radius r is

1x - h22 + 1y - k22 = r 2.
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Applications

16 CHAPTER P Prerequisites

y

x
(1, 0)

(5, 4)(–3, 4)

a b

c

FIGURE P.15 The triangle in Example 8.

EXAMPLE 6 Finding Standard Form Equations of Circles
Find the standard form equation of the circle.

(a) Center , radius 8 (b) Center 10, 02, radius 5

SOLUTION

(a) Standard form equation

Substitute 

(b) Standard form equation

Substitute 

Now try Exercise 41.x2
+ y2

= 25

h = 0, k = 0, r = 5.1x - 022 + 1y - 022 = 52

1x - h22 + 1y - k22 = r 2

1x + 422 + 1y - 122 = 64

h = -4, k = 1, r = 8.1x - 1-4222 + 1y - 122 = 82

1x - h22 + 1y - k22 = r 2

1-4, 12

EXAMPLE 7 Using an Inequality to Express Distance
We can state that “the distance between x and is less than 9” using the inequality

or
Now try Exercise 51.

ƒx + 3 ƒ 6 9.ƒx - 1-32 ƒ 6 9

-3

The converse of the Pythagorean Theorem is true. That is, if the sum of squares of the
lengths of the two sides of a triangle equals the square of the length of the third side,
then the triangle is a right triangle.

Properties of geometric figures can sometimes be confirmed using analytic methods
such as the midpoint formulas.

EXAMPLE 8 Verifying Right Triangles
Use the converse of the Pythagorean Theorem and the distance formula to show that
the points , 11, 02, and 15, 42 determine a right triangle.

SOLUTION The three points are plotted in Figure P.15. We need to show that the
lengths of the sides of the triangle satisfy the Pythagorean relationship

Applying the distance formula we find that

The triangle is a right triangle because

Now try Exercise 39.

a2
+ b2

= 123222 + 123222 = 32 + 32 = 64 = c2.

c = 21-3 - 522 + 14 - 422 = 264.

b = 211 - 522 + 10 - 422 = 232,

a = 21-3 - 122 + 14 - 022 = 232,

a2
+ b2

= c2.

1-3, 42

EXAMPLE 9 Using the Midpoint Formula
It is a fact from geometry that the diagonals of a parallelogram bisect each other.
Prove this with a midpoint formula.
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O
x

y

A(a, b) B(a + c, b)

C(c, 0)O(0, 0)

D

FIGURE P.16 The coordinates of B must
be 1 2 in order for CB to be parallel to
OA. (Example 9)

a + c, b

SOLUTION We can position a parallelogram in the rectangular coordinate
plane as shown in Figure P.16. Applying the midpoint formula for the coordinate
plane to segments OB and AC, we find that

midpoint of segment 

midpoint of segment 

The midpoints of segments OA and AC are the same, so the diagonals of the parallel-
ogram OABC meet at their midpoints and thus bisect each other.

Now try Exercise 37.

AC = aa + c

2
, 

b + 0

2
b = aa + c

2
, 

b

2
b .

OB = a0 + a + c

2
, 

0 + b

2
b = aa + c

2
, 

b

2
b ,

QUICK REVIEW P.2

In Exercises 5 and 6, plot the points.

5.

6.

In Exercises 7–10, use a calculator to evaluate the expression.
Round your answer to two decimal places.

7. 8.

9. 10. 2117 - 322 + 1-4 - 822262
+ 82

2132
+ 172-17 + 28

2

A1-3, -52, B12, -42, C10, 52, D1-4, 02
A13, 52, B1-2, 42, C13, 02, D10, -32

In Exercises 1 and 2, plot the two numbers on a number line. Then
find the distance between them.

1. 2. , 

In Exercises 3 and 4, plot the real numbers on a number line.

3. 4. -  

5

2
, -  

1

2
, 

2

3
, 0, -1-3, 4, 2.5, 0, -1.5

-  

9

5
-  

5

3
27, 22

SECTION P.2 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, estimate the coordinates of the points.

1. 2.

In Exercises 11–18, find the distance between the points.

11. 12.

13. 14. , 11, 12
15. 10, 02, 13, 42 16. , 

17. , 15, 02 18. , 

In Exercises 19–22, find the area and perimeter of the figure deter-
mined by the points.

19.

20.

21.

22. , , 14, 62, 14, 12
In Exercises 23–28, find the midpoint of the line segment with the
given endpoints.

23. , 10.6 24.

25. , 15, 92
26. , 16, 22
27. , 

28. 15, -22, 1-1, -42
15/3, -9/421-7/3, 3/42

13, 222
1-1, 32

-5, -17-9.3

1-2, 621-2, 12
1-3, -12, 1-1, 32, 17, 32, 15, -12
1-2, -22, 1-2, 22, 12, 22, 12, -22
1-5, 32, 10, -12, 14, 42

10, -1210, -821-2, 02
12, -321-1, 22

1-4, -321-3, -12, 15, -12
-5, -17-9.3, 10.6

In Exercises 3 and 4, name the quadrants containing the points.

3. (a) 12, 42 (b) 10, 32 (c) (d)

4. (a) (b) (c) (d)

In Exercises 5–8, evaluate the expression.

5. 6.

7. 8.

In Exercises 9 and 10, rewrite the expression without using absolute
value symbols.

9. 10. ƒ 25 - 5/2 ƒƒp - 4 ƒ

-2

ƒ -2 ƒ

ƒ1-223 ƒ

2 - ƒ -2 ƒ3 + ƒ -3 ƒ

a -  

3

2
, -  

7

3
b1-1, -221-2, 02a 1

2
, 

3

2
b

1-1, -421-2, 32

2

y

x
2

A

B

C D

C 1

y

x
1

A

B

D
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In Exercises 29–34, draw a scatter plot of the data given in the table.

29. U.S. Motor Vehicle Production The total number
of motor vehicles in thousands 1y2 produced by the United
States each year from 2001 to 2007 is given in the table.
(Source: Automotive News Data Center and R. L. Polk Market-
ing Systems as reported in The World Almanac and Book of
Facts 2009.)

33. U.S. Agricultural Trade Surplus The total in bil-
lions of dollars of U.S. agricultural trade surplus from 2000 to
2007 is given in Table P.5.

18 CHAPTER P Prerequisites

x 2001 2002 2003 2004 2005 2006 2007

y 11,518 12,328 12,145 12,021 12,018 11,351 10,611

x 2001 2002 2003 2004 2005 2006 2007

y 57,705 59,587 61,562 65,654 67,892 70,992 74,647

30. World Motor Vehicle Production The total num-
ber of motor vehicles in thousands 1y2 produced in the world
each year from 2001 to 2007 is given in the table. (Source:
American Automobile Manufacturers Association as reported 
in The World Almanac and Book of Facts 2009.)

31. U.S. Imports from Mexico The total in billions of
dollars of U.S. imports from Mexico from 2000 to 2007 is
given in Table P.3.

32. U.S. Agricultural Exports The total in billions of
dollars of U.S. agricultural exports from 2000 to 2007 is given
in Table P.4.

In Exercises 35 and 36, use the graph of the investment value of a
$10,000 investment made in 1978 in Fundamental Investors™ of the
American Funds™. The value as of January is shown for a few recent
years in the graph below. (Source: Annual report of Fundamental In-
vestors for the year ending December 31, 2004.)

34. U.S. Exports to Canada The total in billions of dol-
lars of U.S. exports to Canada from 2000 to 2007 is given in
Table P.6.

Table P.3 U.S. Imports from Mexico

U.S. Imports
Year (billions of dollars)

2000 135.0
2001 131.3
2002 134.6
2003 138.1
2004 155.9
2005 170.1
2006 188.2
2007 210.7

Source: U.S. Census Bureau, The World Almanac and
Book of Facts 2009.

Table P.4 U.S. Agricultural Exports

U.S. Agricultural Exports
Year (billions of dollars)

2000 51.2
2001 53.7
2002 53.1
2003 56.0
2004 62.4
2005 62.5
2006 68.7
2007 89.2

Source: U.S. Department of Agriculture, The World
Almanac and Book of Facts 2009.

Table P.5 U.S. Agricultural Trade Surplus

U.S. Agricultural Trade Surplus
Year (billions of dollars)

2000 12.2
2001 14.3
2002 11.2
2003 10.3
2004 9.7
2005 4.8
2006 4.7
2007 12.1

Source: U.S. Department of Agriculture, The World Almanac and
Book of Facts 2009.

Table P.6 U.S. Exports to Canada

U.S. Exports
Year (billions of dollars)

2000 178.9
2001 163.4
2002 160.9
2003 169.9
2004 189.9
2005 211.9
2006 230.6
2007 248.9

Source: U.S. Census Bureau, The World Almanac 
and Book of Facts 2009.
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35. Reading from Graphs Use the graph to estimate the
value of the investment as of

(a) January 1997 and (b) January 2000.

36. Percent Increase Estimate the percent increase in the
value of the $10,000 investment from

(a) January 1996 to January 1997.

(b) January 2000 to January 2001.

(c) January 1995 to January 2004.

37. Prove that the figure determined by the points is an isosceles
triangle: 11, 32, 14, 72, 18, 42

38. Group Activity Prove that the diagonals of the figure
determined by the points bisect each other.

(a) Square , , , 

(b) Parallelogram , 10, 12, 16, 72, 14, 32
39. (a) Find the lengths of the sides of the triangle in the figure. 

1-2, -32
1-2, -6213, -121-2, 421-7, -12

47.

48.

In Exercises 49–52, write the statement using absolute value notation.

49. The distance between x and 4 is 3.

50. The distance between y and is greater than or equal to 4.

51. The distance between x and c is less than d units.

52. y is more than d units from c.

53. Determining a Line Segment with Given Mid-
point Let 14, 42 be the midpoint of the line segment deter-
mined by the points 11, 22 and 1a, b2. Determine a and b.

54. Writing to Learn Isosceles but Not Equilateral
Triangle Prove that the triangle determined by the points
13, 02, , and 15, 42 is isosceles but not equilateral.

55. Writing to Learn Equidistant Point from Ver-
tices of a Right Triangle Prove that the midpoint of
the hypotenuse of the right triangle with vertices 
10, 02, 15, 02, and 10, 72 is equidistant from the three vertices.

56. Writing to Learn Describe the set of real numbers that
satisfy 

57. Writing to Learn Describe the set of real numbers that
satisfy 

Standardized Test Questions
58. True or False If a is a real number,

then Justify your answer.

59. True or False Consider the right 
triangle ABC shown at the right. If M is the
midpoint of the segment AB, then is the
midpoint of the segment AC. Justify your an-
swer.

In Exercises 60–63, solve these problems without us-
ing a calculator.

60. Multiple Choice Which of the follow-
ing is equal to 

(A) (B)

(C) (D)

(E)

61. Multiple Choice Which of the following is the midpoint
of the line segment with endpoints and 2?

(A) 5/2 (B) 1

(C) (D)

(E) -5/2

-1-1/2

-3

21/3

2211 - 2322
23 - 11 - 23

ƒ1 - 23 ƒ?

M '

ƒa ƒ Ú 0.

ƒx + 3 ƒ Ú 5.

ƒx - 2 ƒ 6 3.

1-1, 22

-2

1x - 222 + 1y + 622 = 25

x2
+ y2

= 5

SECTION P.2 Cartesian Coordinate System 19

(b) Writing to Learn Show that the triangle is a right
triangle.

40. (a) Find the lengths of the sides of the triangle in the figure.

(b) Writing to Learn Show that the triangle is a right
triangle.

In Exercises 41–44, find the standard form equation for the circle.

41. Center 11, 22, radius 5

42. Center , radius 1

43. Center , radius 3

44. Center 10, 02, radius

In Exercises 45–48, find the center and radius of the circle.

45.

46. 1x + 422 + 1y - 222 = 121

1x - 322 + 1y - 122 = 36

23

1-1, -42
1-3, 22

y

x

(3, 6)

(3, –2)(–2, –2)

(3, 3)

(0, 0)

(–4, 4)

y

x

M

B

A M' C
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62. Multiple Choice Which of the following is the center of
the circle 

(A) (B)

(C) (D)

(E)

63. Multiple Choice Which of the following points is in the
third quadrant?

(A) (B)

(C) (D)

(E)

Explorations
64. Dividing a Line Segment into Thirds

(a) Find the coordinates of the points one-third and two-thirds
of the way from on a number line.

(b) Repeat 1a2 for and 

(c) Find the coordinates of the points one-third and two-thirds
of the way from a to b on a number line.

b = 7.a = -3

a = 2 to b = 8

1-2, -32
1-1, 2212, -12
1-1, 0210, -32

13/2, -22
1-4, 3214, -32
1-3, 4213, -42

1x - 322 + 1y + 422 = 2?
Extending the Ideas

65. Writing to Learn Equidistant Point from Ver-
tices of a Right Triangle Prove that the midpoint of
the hypotenuse of any right triangle is equidistant from the
three vertices.

66. Comparing Areas Consider the four points A10, 02,
B10, a2, C1a, a2, and D1a, 02. Let P be the midpoint of the
line segment CD and Q the point one-fourth of the way from A
to D on segment AD.

(a) Find the area of triangle BPQ.

(b) Compare the area of triangle BPQ with the area of square

ABCD.

In Exercises 67–69, let P1a, b2 be a point in the first quadrant.

67. Find the coordinates of the point Q in the fourth quadrant so
that PQ is perpendicular to the x-axis.

68. Find the coordinates of the point Q in the second quadrant so
that PQ is perpendicular to the y-axis.

69. Find the coordinates of the point Q in the third quadrant so that
the origin is the midpoint of the segment PQ.

70. Writing to Learn Prove that the distance formula for
the number line is a special case of the distance formula for
the Cartesian plane.

20 CHAPTER P Prerequisites

(d) Find the coordinates of the points one-third and two-thirds
of the way from the point 11, 22 to the point 17, 112 in the
coordinate plane.

(e) Find the coordinates of the points one-third and two-thirds
of the way from the point 1a, b2 to the point 1c, d2 in the
coordinate plane.
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SECTION P.3 Linear Equations and Inequalities 21

P.3 Linear Equations 
and Inequalities

What you’ll learn about
• Equations
• Solving Equations
• Linear Equations in One Vari-

able
• Linear Inequalities in One Vari-

able

... and why
These topics provide the foun-
dation for algebraic techniques
needed throughout this 
textbook.

Properties of Equality
Let u, v, w, and z be real numbers, variables, or algebraic expressions.

1. Reflexive

2. Symmetric If 

3. Transitive If 

4. Addition If 

5. Multiplication If u = v and w = z, then uw = vz.

u = v and w = z, then u + w = v + z.

u = v, and v = w, then u = w.

u = v, then v = u.

u = u

EXAMPLE 1 Confirming a Solution
Prove that is a solution of the equation 

SOLUTION

Now try Exercise 1.
 0 = 0

 -8 + 2 + 6 � 0

 1-223 - 1-22 + 6 � 0

x3
- x + 6 = 0.x = -2

Linear Equations in One Variable
The most basic equation in algebra is a linear equation.

The equation is linear in the variable z. The equation is not
linear in the variable u. A linear equation in one variable has exactly one solution. We
solve such an equation by transforming it into an equivalent equation whose solution is
obvious. Two or more equations are equivalent if they have the same solutions. For ex-
ample, the equations , and are all equivalent. Here are oper-
ations that produce equivalent equations.

z = 22z - 4 = 0, 2z = 4

3u2
- 12 = 02z - 4 = 0

Equations
An equation is a statement of equality between two expressions. Here are some
properties of equality that we use to solve equations algebraically.

Solving Equations
A solution of an equation in x is a value of x for which the equation is true. To solve
an equation in x means to find all values of x for which the equation is true, that is, to
find all solutions of the equation.

DEFINITION Linear Equation in x
A linear equation in x is one that can be written in the form

where a and b are real numbers with .a Z 0

ax + b = 0,
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The next two examples illustrate how to use equivalent equations to solve linear 
equations.

22 CHAPTER P Prerequisites

Operations for Equivalent Equations
An equivalent equation is obtained if one or more of the following operations
are performed.

Given Equivalent
Operation Equation Equation

1. Combine like terms, reduce 3x =

1

3
2x + x =

3

9fractions, and remove grouping 
symbols.

2. Perform the same operation on 
both sides.

(a) Add 

(b) Subtract 12x2.
(c) Multiply by a nonzero 

constant 11/32.
(d) Divide by a nonzero constant 132. x = 43x = 12

x = 43x = 12

3x = 45x = 2x + 4

x = 4x + 3 = 71-32.

EXAMPLE 2 Solving a Linear Equation
Solve Support the result with a calculator.

SOLUTION

Distributive property

Combine like terms.

Add 3, and subtract 5x.

Divide by 2.

To support our algebraic work we can use a calculator to evaluate the original equa-
tion for Figure P.17 shows that each side of the original equation is equal to
14.5 if x = 2.5.

x = 2.5.

 x = 2.5

 2x = 5

 7x - 3 = 5x + 2

 4x - 6 + 3x +  3 = 5x + 2

 212x - 32 + 31x + 12 = 5x + 2

212x - 32 + 31x + 12 = 5x + 2.

Now try Exercise 23.
FIGURE P.17 The top line stores the number 2.5 into the variable x. (Example 2)

2.5 X

2(2X–3)+3(X+1)

5X+2

2.5

14.5

14.5

If an equation involves fractions, find the least common denominator (LCD) of the
fractions and multiply both sides by the LCD. This is sometimes referred to as clearing
the equation of fractions. Example 3 illustrates.
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Linear Inequalities in One Variable
We used inequalities to describe order on the number line in Section P.1. For example,
if x is to the left of 2 on the number line, or if x is any real number less than 2, we write

. The most basic inequality in algebra is a linear inequality.x 6 2

SECTION P.3 Linear Equations and Inequalities 23

Properties of Inequalities
Let u, v, w, and z be real numbers, variables, or algebraic expressions, and c a
real number.

1. Transitive If and , then .

2. Addition If , then . 
If and , then .

3. Multiplication If and , then . 
If and , then .

The above properties are true if is replaced by . There are similar proper-
ties for and .Ú7

…6

uc 7 vcc 6 0u 6 v
uc 6 vcc 7 0u 6 v

u + w 6 v + zw 6 zu 6 v
u + w 6 v + wu 6 v

u 6 wv 6 wu 6 v

Direction of an Inequality
Multiplying (or dividing) an inequality by a 
positive number preserves the direction of 
the inequality. Multiplying (or dividing) an in-
equality by a negative number reverses the direc-
tion.

Integers and Fractions

Notice in Example 3 that 2 =

2

1
.

EXAMPLE 3 Solving a Linear Equation Involving Fractions
Solve

SOLUTION The denominators are 8, 1, and 4. The LCD of the fractions is 8. (See
Appendix A.3 if necessary.)

Multiply by the LCD 8.

Distributive property

Simplify.

Add 2.

Subtract 2y.

Divide by 3.

We leave it to you to check the solution using either paper and pencil or a calculator.
Now try Exercise 25.

 y = 6

 3y = 18

 5y = 18 + 2y

 5y - 2 = 16 + 2y

 8 #  

5y - 2

8
= 8 # 2 + 8 #  

y

4

 8a5y - 2

8
b = 8a2 +

y

4
b

 
5y - 2

8
= 2 +

y

4

5y - 2

8
= 2 +

y

4
.

To solve an inequality in x means to find all values of x for which the inequality is
true. A solution of an inequality in x is a value of x for which the inequality is true.
The set of all solutions of an inequality is the solution set of the inequality. We solve
an inequality by finding its solution set. Here is a list of properties we use to solve in-
equalities.

DEFINITION Linear Inequality in x
A linear inequality in x is one that can be written in the form

, , , or

where a and b are real numbers with .a Z 0

ax + b Ú 0,ax + b 7 0ax + b … 0ax + b 6 0
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The set of solutions of a linear inequality in one variable forms an interval of real num-
bers. Just as with linear equations, we solve a linear inequality by transforming it into
an equivalent inequality whose solutions are obvious. Two or more inequalities are
equivalent if they have the same set of solutions. The properties of inequalities listed
above describe operations that transform an inequality into an equivalent one.

24 CHAPTER P Prerequisites

EXAMPLE 4 Solving a Linear Inequality
Solve 

SOLUTION

Distributive property

Simplify.

Add 1.

Subtract 5x.

Multiply by . (The inequality reverses.)

The solution set of the inequality is the set of all real numbers greater than or equal
to In interval notation, the solution set is 

Now try Exercise 41.
3-3.5, q2.-3.5.

 x Ú -3.5

-1/2 a -  

1

2
b #

-2x Ú a -  

1

2
b # 7

 -2x … 7

 3x … 5x + 7

 3x - 1 … 5x + 6

 3x - 3 + 2 … 5x + 6

 3(x - 1) + 2 … 5x + 6

3(x - 1) + 2 … 5x + 6.

Because the solution set of a linear inequality is an interval of real numbers, we can dis-
play the solution set with a number line graph as illustrated in Example 5.

EXAMPLE 5 Solving a Linear Inequality Involving Fractions
Solve the inequality and graph its solution set.

SOLUTION The LCD of the fractions is 12.

The original inequality

Multiply by the LCD 12.

Simplify.

Subtract 3x.

Subtract 6.

The solution set is the interval Its graph is shown in Figure P.18.1-2, q2.
 x 7 -2

 x + 6 7 4

 4x + 6 7 3x + 4

 12 # a x

3
+

1

2
b 7 12 # a x

4
+

1

3
b

 
x

3
+

1

2
7

x

4
+

1

3

x

3
+

1

2
7

x

4
+

1

3

Now try Exercise 43.

–5 –4 –3 –2 –1 0 1 2 3 4 5
x

FIGURE P.18 The graph of the solution set of the inequality in Example 5.
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Sometimes two inequalities are combined in a double inequality, whose solution set is
a double inequality with x isolated as the middle term. Example 6 illustrates.

SECTION P.3 Linear Equations and Inequalities 25

–10 –8 –6 –4 –2 0 2 4 6 8
x

FIGURE P.19 The graph of the solution
set of the double inequality in Example 6.

EXAMPLE 6 Solving a Double Inequality
Solve the inequality and graph its solution set.

SOLUTION

Multiply by 3.

Subtract 5.

Divide by 2.

The solution set is the set of all real numbers greater than and less than or equal to 5.
In interval notation, the solution is set Its graph is shown in Figure P.19.

Now try Exercise 47.
1-7, 54. -7

 -7 6 x … 5

 -14 6 2x … 10

 -9 6 2x + 5 … 15

 -3 6

2x + 5

3
… 5

-3 6

2x + 5

3
… 5

QUICK REVIEW P.3

In Exercises 5–10, use the LCD to combine the fractions. Simplify
the resulting fraction.

5. 6.

7. 8.

9. 10.
x

3
+

x

4

x + 4

2
+

3x - 1

5

1
x

+

1
y

- x2 +

1
x

1

y - 1
+

3

y - 2

2
y

+

3
y

In Exercises 1 and 2, simplify the expression by combining like
terms.

1.

2.

In Exercises 3 and 4, use the distributive property to expand the prod-
ucts. Simplify the resulting expression by combining like terms.

3.

4. 512x + y - 12 + 41 y - 3x + 22 + 1

312x - y2 + 41y - x2 + x + y

4 + 2x - 3z + 5y - x + 2y - z - 2

2x + 5x + 7 + y - 3x + 4y + 2

SECTION P.3 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–4, find which values of x are solutions of the equation.

1.

(a) (b) (c)

2.

(a) (b) (c)

3.

(a) (b) (c)

4.

(a) (b) (c) x = 10x = 8x = -6

1x - 221/3
= 2

x = 2x = 0x = -2

21 - x2
+ 2 = 3

x = 1x = 0x = -1

x

2
+

1

6
=

x

3

x =

1

2
x = -  

1

2
x = -3

2x2
+ 5x = 3

In Exercises 5–10, determine whether the equation is linear in x.

5. 6.

7. 8.

9. 10.

In Exercises 11–24, solve the equation without using a calculator.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.
2

3
 x =

4

5

1

2
 x =

7

8

41y - 22 = 5y4 - 3y = 21y + 42
4 - 2x = 3x - 62x - 3 = 4x - 5

2t - 9 = 33t - 4 = 8

4x = -163x = 24

x +

1
x

= 122x + 5 = 10

x - 3 = x2x + 3 = x - 5

5 = 10/25 - 3x = 0
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21. 22.

23.

24.

In Exercises 25–28, solve the equation. Support your answer with a
calculator.

25. 26.

27. 28.
t - 1

3
+

t + 5

4
=

1

2

t + 5

8
-

t - 2

2
=

1

3

2x - 4 =

4x - 5

3

2x - 3

4
+ 5 = 3x

315z - 32 - 412z + 12 = 5z - 2

213 - 4z2 - 512z + 32 = z - 17

1

3
 x +

1

4
= 1

1

2
 x +

1

3
= 1 45. 46.

47. 48.

49. 50.

51.

52.

53.

54.

In Exercises 55–58, find the solutions of the equation or inequality dis-
played in Figure P.20.

55. 56.

57. 58. x2
- 2x … 0x2

- 2x 7 0

x2
- 2x = 0x2

- 2x 6 0

1

2
 1x + 32 + 21x - 42 6

1

3
 1x - 32

1

2
 1x - 42 - 2x … 513 - x2

3 - 4y

6
-

2y - 3

8
Ú 2 - y

2y - 3

2
+

3y - 1

5
6 y - 1

3 - x

2
+

5x - 2

3
6 -1

x - 5

4
+

3 - 2x

3
6 -2

-6 6 5t - 1 6 00 … 2z + 5 6 8

1 7

3y - 1

4
7 -14 Ú

2y - 5

3
Ú -2

26 CHAPTER P Prerequisites

–2 X

2X2+X–6
–2

0

3/2 X

2X2+X–6
1.5

0

2 X

7X+5
2

19
4X–7

1

–4 X

7X+5
–4

–23
4X–7

–23

29. Writing to Learn Write a statement about solutions of
equations suggested by the computations in the figure.

(a) (b)

30. Writing to Learn Write a statement about solutions of
equations suggested by the computations in the figure.

(a) (b)

In Exercises 31–34, find which values of x are solutions of the inequal-
ity.

31.

(a) (b) (c)

32.

(a) (b) (c)

33.

(a) (b) (c)

34.

(a) (b) (c)

In Exercises 35–42, solve the inequality, and draw a number line graph
of the solution set.

35. 36.

37. 38.

39. 40.

41.

42.

In Exercises 43–54, solve the inequality.

43. 44.
3x - 2

5
7 -1

5x + 7

4
… -3

411 - x2 + 511 + x2 7 3x - 1

215 - 3x2 + 312x - 12 … 2x + 1

-1 … 3x - 2 6 72 … x + 6 6 9

3x - 1 Ú 6x + 82x - 1 … 4x + 3

x + 3 7 5x - 4 6 2

x = 2x = 0x = -1

-3 … 1 - 2x … 3

x = 3x = 2x = 0

-1 6 4x - 1 … 11

x = 4x = 3x = 0

3x - 4 Ú 5

x = 6x = 5x = 0

2x - 3 6 7

X

Y1 = X2–2X

0
1
2
3
4
5
6

0
–1
0
3
8
15
24

Y1

FIGURE P.20 The second column gives values
of for and 6.x = 0, 1, 2, 3, 4, 5,y1 = x2

- 2x

59. Writing to Learn Explain how the second equation was
obtained from the first.

60. Writing to Learn Explain how the second equation was
obtained from the first.

61. Group Activity Determine whether the two equations
are equivalent.

(a)

(b)

62. Group Activity Determine whether the two equations
are equivalent.

(a)

(b) 2x = x - 72x + 5 = x - 7,

-2x + 2 = -73x + 2 = 5x - 7,

3x + 1 = 2x + 56x + 2 = 4x + 10,

x = 2x + 93x = 6x + 9,

x -

1

2
= x - 22x - 1 = 2x - 4,

2x - 6 = 4x + 6x - 3 = 2x + 3,
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Standardized Test Questions
63. True or False Justify your answer.

64. True or False . Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve these
problems.

65. Multiple Choice Which of the following equations is
equivalent to the equation 

(A) (B)

(C) (D)

(E)

66. Multiple Choice Which of the following inequalities is
equivalent to the inequality ?

(A) (B)

(C) (D)

(E)

67. Multiple Choice Which of the following is the solution
to the equation 

(A) (B)

(C) Only (D) Only 

(E) Only 

68. Multiple Choice Which of the following represents an
equation equivalent to the equation

that is cleared of fractions?
(A) (B)

(C) (D)

(E) 4x + 6 = 3x - 4

4x + 3 = 3x - 44x + 3 =

3

2
 x - 2

8x + 6 = 3x - 42x + 1 = x - 1

2x

3
+

1

2
=

x

4
-

1

3

x = 1

x = 0x = -1

x = 0 or x = 1x = 0 or x = -1

x1x + 12 = 0?

x 7 3

x 7 2x 7 -2

x 6 103x 6 -6

-3x 6 6

3x = 2x - 4

3x + 6 = 2x
3

2
 x +

5

2
= x + 1

3x = 2x + 43x = 2x

3x + 5 = 2x + 1?

2 …

6

3

-6 7 -2.

Explorations
69. Testing Inequalities on a Calculator

(a) The calculator we use indicates that the statement 
is true by returning the value 1 (for true) when is
entered. Try it with your calculator.

(b) The calculator we use indicates that the statement 
is false by returning the value 0 (for false) when is
entered. Try it with your calculator.

(c) Use your calculator to test which of these two numbers is
larger: 799/800, 800/801.

(d) Use your calculator to test which of these two numbers is
larger: , 

(e) If your calculator returns 0 when you enter ,
what can you conclude about the value stored in x?

2x + 1 6 4

-103/102.-102/101

2 6 1
2 6 1

2 6 3
2 6 3

SECTION P.3 Linear Equations and Inequalities 27

Extending the Ideas
70. Perimeter of a Rectangle The formula for the

perimeter P of a rectangle is

Solve this equation for W.

71. Area of a Trapezoid The formula for the area A of a
trapezoid is

Solve this equation for 

72. Volume of a Sphere
The formula for the volume V
of a sphere is

Solve this equation for r.

V =

4

3
 pr 3.

b1.

A =

1

2
 h1b1 + b22.

P = 21L + W2.

73. Celsius and Fahrenheit The formula for Celsius tem-
perature in terms of Fahrenheit temperature is

Solve the equation for F.

C =

5

9
 1F - 322.
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Slope Formula
The slope does not depend on the order of the
points. We could use and

in Example 1a. Check it out.1x2, y22 = 1-1, 22
1x1, y12 = 14, -22

P.4 Lines in the Plane

Slope of a Line
The slope of a nonvertical line is the ratio of the amount of vertical change to the
amount of horizontal change between two points. For the points and ,
the vertical change is and the horizontal change is 
is read “delta” y. See Figure P.21.

¢y¢x = x2 - x1.¢y = y2 - y1

1x2, y221x1, y12
What you’ll learn about
• Slope of a Line
• Point-Slope Form Equation of 

a Line
• Slope-Intercept Form Equation of

a Line
• Graphing Linear Equations in

Two Variables
• Parallel and Perpendicular Lines
• Applying Linear Equations in Two

Variables

... and why
Linear equations are used exten-
sively in applications involving
business and behavioral science.

0
x

y

y1

y2

x1 x2

(x2, y2)

(x1, y1)

�y = y2 – y1

�x = x2 – x1

FIGURE P.21 The slope of a nonvertical line can be found from the coordinates of any two
points of the line.

EXAMPLE 1 Finding the Slope of a Line
Find the slope of the line through the two points. Sketch a graph of the line.

(a) and (b) 11, 12 and 13, 42
SOLUTION

(a) The two points are and Thus,

(b) The two points are and Thus,

The graphs of these two lines are shown in Figure P.22.
Now try Exercise 3.

m =

y2 - y1

x2 - x1
=

4 - 1

3 - 1
=

3

2
.

1x2, y22 = 13, 42.1x1, y12 = 11, 12
m =

y2 - y1

x2 - x1
=

1-22 - 2

4 - 1-12 = -  

4

5
.

1x2, y22 = 14, -22.1x1, y12 = 1-1, 22

14, -221-1, 22

DEFINITION Slope of a Line
The slope of the nonvertical line through the points and is

If the line is vertical, then and the slope is undefined.x1 = x2

m =

¢y

¢x
=

y2 - y1

x2 - x1
.

1x2, y221x1, y12
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Figure P.23 shows a vertical line through the points 13, 22 and 13, 72. If we try to calcu-
late its slope using the slope formula , we get zero in the denomi-
nator. So, it makes sense to say that a vertical line does not have a slope, or that its slope
is undefined.

Point-Slope Form Equation of a Line
If we know the coordinates of one point on a line and the slope of the line, then we can
find an equation for that line. For example, the line in Figure P.24 passes through the
point and has slope m. If 1x, y2 is any other point on this line, the definition of
the slope yields the equation

An equation written this way is in the point-slope form.

m =

y - y1

x - x1
  or  y - y1 = m1x - x12.

1x1, y12

1y2 - y12/1x2 - x12

SECTION P.4 Lines in the Plane 29

x

y

(3, 7)

(3, 2)

FIGURE P.23 Applying the slope formula
to this vertical line gives , which is
not defined. Thus, the slope of a vertical line
is undefined.

m = 5/0

y

x

(x, y)

(x1, y1)

Slope = m

FIGURE P.24 The line through 1 2
with slope m.

x1, y1

y

x

(4, –2)

(–1, 2)

y

x

(3, 4)

(1, 1)

FIGURE P.22 The graphs of the two lines in Example 1.

EXAMPLE 2 Using the Point-Slope Form
Use the point-slope form to find an equation of the line that passes through the point

and has slope 2.

SOLUTION Substitute , and into the point-slope form,
and simplify the resulting equation.

Point-slope form

Distributive property

A common simplified form
Now try Exercise 11.

 y = 2x + 2

 y + 4 = 2x + 6

 y + 4 = 2x - 21-32
x1 = -3, y1 = -4, m = 2 y - 1-42 = 21x - 1-322

 y - y1 = m1x - x12
m = 2x1 = -3, y1 = -4

1-3, -42

Slope-Intercept Form Equation of a Line
The y-intercept of a nonvertical line is the point where the line intersects the y-axis. If
we know the y-intercept and the slope of the line, we can apply the point-slope form to
find an equation of the line.

y-Intercept
The b in is often referred to as “the
y-intercept” instead of “the y-coordinate of the 
y-intercept.”

y = mx + b

DEFINITION Point-Slope Form of an Equation of a Line
The point-slope form of an equation of a line that passes through the point1 2 and has slope m is

y - y1 = m1x - x12.
x1, y1
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Figure P.25 shows a line with slope m and y-intercept 10, b2. A point-slope form equa-
tion for this line is By rewriting this equation we obtain the form
known as the slope-intercept form.

y - b = m1x - 02.

30 CHAPTER P Prerequisites

y

x

(x, y)

(0, b)

Slope = m

FIGURE P.25 The line with slope m and
y-intercept 10, b2.

Forms of Equations of Lines
General form: A and B not both zero

Slope-intercept form:

Point-slope form:

Vertical line:

Horizontal line: y = b

x = a

y - y1 = m1x - x12
y = mx + b

Ax + By + C = 0,

EXAMPLE 3 Using the Slope-Intercept Form
Write an equation of the line with slope 3 that passes through the point using
the slope-intercept form.

SOLUTION

Slope-intercept form

when 

The slope-intercept form of the equation is Now try Exercise 21.y = 3x + 9.

 b = 9

x = -1y = 6 6 = 31-12 + b

m = 3 y = 3x + b

 y = mx + b

1-1, 62

We cannot use the phrase “the equation of a line” because each line has many different
equations. Every line has an equation that can be written in the form 

where A and B are not both zero. This form is the general form for an equation
of a line.

If , the general form can be changed to the slope-intercept form as follows:

slope y-intercept

 y = -  

A

B
 x + a -  

C

B
b

 By = -Ax - C

 Ax + By + C = 0

B Z 0

C = 0
Ax + By +

Graphing Linear Equations in Two Variables
A linear equation in x and y is one that can be written in the form

where A and B are not both zero. Rewriting this equation in the form
we see that it is the general form of an equation of a line. If ,

the line is vertical, and if , the line is horizontal.A = 0
B = 0Ax + By - C = 0

Ax + By = C,

DEFINITION Slope-Intercept Form of an Equation of a Line
The slope-intercept form of an equation of a line with slope m and y-intercept10, b2 is

y = mx + b.
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The graph of an equation in x and y consists of all pairs 1x, y2 that are solutions of the
equation. For example, 11, 22 is a solution of the equation because sub-
stituting and into the equation leads to the true statement The pairs

and 12, 4/32 are also solutions.

Because the graph of a linear equation in x and y is a straight line, we need only to find
two solutions and then connect them with a straight line to draw its graph. If a line is
neither horizontal nor vertical, then two easy points to find are its x-intercept and the
y-intercept. The x-intercept is the point 1 , 02 where the graph intersects the x-axis.
Set and solve for x to find the x-intercept. The coordinates of the y-intercept are10, 2. Set and solve for y to find the y-intercept.x = 0y'

y = 0
x'

1-2, 42 8 = 8.y = 2x = 1
2x + 3y = 8

SECTION P.4 Lines in the Plane 31

[–4, 6] by [–3, 5]

FIGURE P.27 The graph of 
The points 10, 2 1y-intercept and 13, 0
1x-intercept appear to lie on the graph and, as
pairs, are solutions of the equation, providing
visual support that the graph 
is correct. (Example 4)

2
222

2x + 3y = 6.

Viewing Window
The viewing window by in
Figure P.27 means and
-3 … y … 5.

-4 … x … 6
3-3, 543-4, 64

EXPLORATION 1 Investigating Graphs of Linear Equations

1. What do the graphs of and , have in com-
mon? How are they different?

2. Graph and in a square viewing window (see margin
note). On the calculator we use, the “decimal window” by

is square. Estimate the angle between the two lines.

3. Repeat part 2 for and with 3, 4, and 5.m = 1,y = -11/m2xy = mx

3-3.1, 3.14 3-4.7, 4.74y = -11/22xy = 2x

b Z cy = mx + c,y = mx + b

Square Viewing Window
A square viewing window on a grapher is one
in which angles appear to be true. For exam-
ple, the line will appear to make a 45°
angle with the positive x-axis. Furthermore, a
distance of 1 on the x- and y-axes will appear
to be the same. That is, if , the
distance between consecutive tick marks on
the x- and y-axes will appear to be the same.

Xscl = Yscl

y = x

WINDOW

Xmax=10

Ymin=–10

Yscl=1
Xres=1

Xmin=–10

Xscl=1

Ymax=10

FIGURE P.26 The window dimensions
for the standard window. The notation
“ by ” is used to represent
window dimensions like these.

3-10, 1043-10, 104

A graphing utility, often referred to as a grapher, computes y-values for a select set of
x-values between Xmin and Xmax and plots the corresponding 1x, y2 points.

EXAMPLE 4 Use a Graphing Utility
Draw the graph of 

SOLUTION First we solve for y.

Solve for y.

Divide by 3.

Figure P.27 shows the graph of , or equivalently, the graph of the
linear equation in the by viewing window.

Now try Exercise 27.
3-3, 543-4, 642x + 3y = 6

y = -12/32x + 2

 y = -  

2

3
 x + 2

 3y = -2x + 6

 2x + 3y = 6

2x + 3y = 6.

Parallel and Perpendicular Lines

Parallel lines and perpendicular lines were involved in Exploration 1. Using a grapher
to decide when lines are parallel or perpendicular is risky. Here is an algebraic test to
determine when two lines are parallel or perpendicular.

Graphing with a Graphing Utility

To draw a graph of an equation using a grapher:

1. Rewrite the equation in the form 1an expression in x .

2. Enter the equation into the grapher.

3. Select an appropriate viewing window (see Figure P.26).

4. Press the “graph” key.

2y =
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Parallel and Perpendicular Lines
1. Two nonvertical lines are parallel if and only if their slopes are equal.

2. Two nonvertical lines are perpendicular if and only if their slopes and
are opposite reciprocals, that is, if and only if

m1 = -  

1
m2

.

m2

m1

[–4.7, 4.7] by [–5.1, 1.1]

FIGURE P.28 The graphs of
and in this

square viewing window appear to intersect at
a right angle. (Example 6)

y = 11/42x - 7/2y = -4x + 3

EXAMPLE 5 Finding an Equation of a Parallel Line
Find an equation of the line through that is parallel to the line L with equa-
tion 

SOLUTION We find the slope of L by writing its equation in slope-intercept form.

Equation for L

Subtract 3x.

Divide by .

The slope of L is 3/2.

The line whose equation we seek has slope 3/2 and contains the point
Thus, the point-slope form equation for the line we seek is

Distributive property

Now try Exercise 41(a).
 y =

3

2
 x -

7

2

 y + 2 =

3

2
 x -

3

2

 y + 2 =

3

2
 1x - 12

1x1, y12 = 11, -22.

-2 y =

3

2
 x -

1

2

 -2y = -3x + 1

 3x - 2y = 1

3x - 2y = 1.
P11, -22

EXAMPLE 6 Finding an Equation of a Perpendicular Line
Find an equation of the line through that is perpendicular to the line L with
equation Support the result with a grapher.

SOLUTION We find the slope of L by writing its equation in slope-intercept form.

Equation for L

Subtract 4x.

The slope of L is 

The line whose equation we seek has slope and passes through the
point Thus, the point-slope form equation for the line we seek is

Distributive property

Figure P.28 shows the graphs of the two equations in a square viewing window and
suggests that the graphs are perpendicular. Now try Exercise 43(b).

 y =

1

4
 x -

7

2

 y + 3 =

1

4
 x -

2

4

 y - 1-32 =

1

4
 1x - 22

1x1, y12 = 12, -32. -1/1-42 = 1/4

-4.

 y = -4x + 3

 4x + y = 3

4x + y = 3.
P12, -32
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Applying Linear Equations 
in Two Variables
Linear equations and their graphs occur frequently in applications. Algebraic solu-
tions to these application problems often require finding an equation of a line and
solving a linear equation in one variable. Grapher techniques complement algebraic
ones.

SECTION P.4 Lines in the Plane 33

[0, 23.5] by [0, 60000]

X=12.75 Y=24500

1

(b)

FIGURE P.29 A (a) graph and (b) table 
of values for (Exam-
ple 7)

y = -2000x + 50,000.

X

Y1 = –2000X+50000

12
12.25
12.5
12.75
13
13.25
13.5

26000
25500
25000
24500
24000
23500
23000

Y1

(a)

EXAMPLE 7 Finding the Depreciation of Real Estate
Camelot Apartments purchased a $50,000 building and depreciates it $2000 per year
over a 25-year period.

(a) Write a linear equation giving the value y of the building in terms of the years x
after the purchase.

(b) In how many years will the value of the building be $24,500?

SOLUTION

(a) We need to determine the value of m and b so that , where
. We know that when , so the line has y-intercept10, 50,0002 and One year after purchase , the value of the

building is So when , Using alge-
bra, we find

when 

The value y of the building x years after its purchase is

(b) We need to find the value of x when 

Again, using algebra we find

Set 

Subtract 50,000.

The depreciated value of the building will be $24,500 exactly 12.75 years, or 12 years
9 months, after purchase by Camelot Apartments. We can support our algebraic work
both graphically and numerically. The trace coordinates in Figure P.29a show graphi-
cally that 112.75, 24,5002 is a solution of This means that

Figure P.29b is a table of values for for a few values of x.
The fourth line of the table shows numerically that when 

Now try Exercise 45.
x = 12.75.y = 24,500

y = -2000x + 50,000

y = 24,500 when x = 12.75.
y = -2000x + 50,000.

 12.75 = x

 -25,500 = -2000x

y = 24,500. 24,500 = -2000x + 50,000

y = -2000x + 50,000

y = 24,500.

y = -2000x + 50,000.

 -2000 = m

x = 1y = 48,000 48,000 = m # 1 + 50,000

 y = mx + b

y = 48,000.x = 150,000 - 2,000 = 48,000.
1x = 12b = 50,000.

x = 0y = 50,0000 … x … 25
y = mx + b

Figure P.30 on page 34 shows Americans’ income from 2002 to 2007 in trillions of dol-
lars and a corresponding scatter plot of the data. In Example 8, we model the data in
Figure P.30 with a linear equation.
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[2000, 2010] by [5, 15]

FIGURE P.30 Americans’ Personal Income.
Source: U.S. Census Bureau, The World Almanac and Book of Facts 2009. (Example 8)

Amount
Year (trillions of dollars)

2002 8.9
2003 9.2
2004 9.7
2005 10.3
2006 11.0
2007 11.7

[2000, 2010] by [5, 15]

FIGURE P.31 Linear model for Ameri-
cans’ personal income. (Example 8)

EXAMPLE 8 Finding a Linear Model for Americans’ 
Personal Income

American’s personal income in trillions of dollars is given in Figure P.30.

(a) Write a linear equation for Americans’ income y in terms of the year x using the
points 12002, 8.92 and 12003, 9.22.

(b) Use the equation in (a) to estimate Americans’ income in 2005.

(c) Use the equation in (a) to predict Americans’ income in 2010.

(d) Superimpose a graph of the linear equation in (a) on a scatter plot of the data.

SOLUTION

(a) Let The slope of the line through the two points 12002, 8.92 and12003, 9.22 is

The value of 8.9 trillion dollars in 2002 gives when 

when 

The linear equation we seek is 

(b) We need to find the value of y when 

Set .

Using the linear model we found in (a) we estimate Americans’ income in 2005
to be 9.8 trillion dollars, a little less than the actual amount 10.3 trillion.

(c) We need to find the value of y when 

Set .

Using the linear model we found in (a) we predict Americans’ income in 2010 to
be 11.3 trillion dollars.

(d) The graph and scatter plot are shown in Figure P.31.
Now try Exercise 51.

 y = 11.3

x = 2010 y = 0.3120102 - 591.7

 y = 0.3x - 591.7

x = 2010.

 y = 9.8

x = 2005 y = 0.3120052 - 591.7

  y = 0.3x - 591.7

x = 2005.

y = 0.3x - 591.7.

 b = -591.7

 b = 8.9 - 10.32120022
x = 2002y = 8.9 8.9 = 0.3120022 + b

m = 0.3 y = 0.3x + b

 y = mx + b

x = 2002.y = 8.9

m =

9.2 - 8.9

2003 - 2002
= 0.3.

y = mx + b.
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The Speed of Light
Many scientists have tried to measure the 
speed of light. For example, Galileo Galilei
(1564–1642) attempted to measure the 
speed of light without much success. 
Visit the following Web site for some 
interesting information about this topic:
http://www.what-is-the-speed-of-light.com/

Chapter Opener Problem (from page 1)

Problem: Assume that the speed of light is approximately 186,000 miles per sec-
ond. (It took a long time to arrive at this number. See the note below about the
speed of light.)

(a) If the distance from the Moon to the Earth is approximately 237,000 miles, find
the length of time required for light to travel from the Earth to the Moon.

(b) If light travels from the Earth to the Sun in 8.32 minutes, approximate the dis-
tance from the Earth to the Sun.

(c) If it takes 5 hours and 29 seconds for light to travel from the Sun to Pluto, ap-
proximate the distance from the Sun to Pluto.

Solution: We use the linear equation to
make the calculations with miles/second.

(a) Here miles, so

The length of time required for light to travel from the Earth to the Moon is
about 1.27 seconds.

(b) Here seconds, so

The distance from the Earth to the Sun is about 93 million miles.

(c) Here and , so

The distance from the Sun to Pluto is about miles.3.7 * 109

= 3,671,640,000 miles.

d = r * t = 186,000 
miles

second
* 19,740 seconds

29 minutes = 329 minutes = 19,740 secondst = 5 hours

d = r * t = 186,000 
miles

second
* 499.2 seconds = 92,851,200 miles.

t = 8.32 minutes = 499.2

t =

d

r
=

237,000 miles

186,000 miles/second
L 1.27 seconds.

d = 237,000

r = 186,000
d = r * t 1distance = rate * time2

QUICK REVIEW P.4

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, solve for x.

1.

2.

3.

4. 217x + 12 = 511 - 3x2
311 - 2x2 + 412x - 52 = 7

400 - 50x = 150

-75x + 25 = 200

In Exercises 5–8, solve for y.

5. 6.
1

3
 x +

1

4
 y = 22x - 5y = 21

7. 8.

In Exercises 9 and 10, simplify the fraction.

9. 10.
-4 - 6

-14 - 1-22
9 - 5

-2 - 1-82

x2
+ y = 3x - 2y2x + y = 17 + 21x - 2y2
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0 1

1

2

3

4
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7

8
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2 3 4 5 6
x

y

SECTION P.4 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, estimate the slope of the line.

1. 2.

25. The line 

26. The line 

In Exercises 27–30, graph the linear equation on a grapher. Choose a
viewing window that shows the line intersecting both the x- and y-axes.

27. 28.

29. 30.

In Exercises 31 and 32, the line contains the origin and the point in the
upper right corner of the grapher screen.

31. Writing to Learn Which line shown here has the
greater slope? Explain.

2100x + 12y = 3540123x + 7y = 429

2x + y = 358x + y = 49

7x - 12y = 96

2x + 5y = 12

In Exercises 3–6, find the slope of the line through the pair of points.

3. and 14, 92 4. and 

5. and 6. and 

In Exercises 7–10, find the value of x or y so that the line through the
pair of points has the given slope.

Points Slope

7. 1x, 32 and 15, 92
8. and 14, y2
9. and 14, y2

10. and 1x, 22
In Exercises 11–14, find a point-slope form equation for the line
through the point with given slope.

Point Slope Point Slope

11. 11, 42 12.

13. 14.

In Exercises 15–20, find a general form equation for the line through
the pair of points.

15. and 11, 62 16. and 

17. and 18. and 

19. and 12, 52 20. and 14, 52
In Exercises 21–26, find a slope-intercept form equation for the line.

21. The line through 10, 52 with slope 

22. The line through 11, 22 with slope 

23. The line through the points and 14, 32
24. The line through the points 14, 22 and 1-3, 12

1-4, 52
m = 1/2

m = -3

14, -121-1, 22
1-4, -221-1, -5215, -3211, -32
14, -121-3, -821-7, -22

m = 31-3, 42m = -215, -42
m = -2/31-4, 32m = 2

m = 1/21-8, -22
m = 3(-3, -5)

m = -31-2, 32
m = 2

1-4, 12215, -321-1, 321-2, -52
15, -321-2, 121-3, 52 [–10, 10] by [–15, 15]

(a)

[–10, 10] by [–10, 10]

(b)

[–20, 20] by [–35, 35]

(a)

[–5, 5] by [–20, 20]

(b)

32. Writing to Learn Which line shown here has the greater

slope? Explain.

In Exercises 33–36, find the value of x and the value of y for which 
1x, 142 and 118, y2 are points on the graph.

33. 34.

35. 36.

In Exercises 37–40, find the values for Ymin, Ymax, and Yscl that will
make the graph of the line appear in the viewing window as shown here.

3x - 2y = 143x + 4y = 26

y = -2x + 18y = 0.5x + 12

37. 38.

39. 40. y =

5

4
 xy =

2

3
 x

y = 5xy = 3x

WINDOW

Xmax=10

Ymin=

Yscl=
Xres=1

Xmin=–10

Xscl=1

Ymax=
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In Exercises 41–44, (a) find an equation for the line passing through
the point and parallel to the given line, and (b) find an equation for the
line passing through the point and perpendicular to the given line. Sup-
port your work graphically.

Point Line

41. 11, 22
42.

43. 13, 12
44. 16, 12
45. Real Estate Appreciation Bob Michaels purchased

a house 8 years ago for $42,000. This year it was appraised at
$67,500.

(a) A linear equation , represents the
value V of the house for 15 years after it was purchased.
Determine m and b.

(b) Graph the equation and trace to estimate in how many years
after purchase this house will be worth $72,500.

(c) Write and solve an equation algebraically to determine
how many years after purchase this house will be worth
$74,000.

(d) Determine how many years after purchase this house will
be worth $80,250.

46. Investment Planning Mary Ellen plans to invest
$18,000, putting part of the money x into a savings that pays 5%
annually and the rest into an account that pays 8% annually.

(a) What are the possible values of x in this situation?

(b) If Mary Ellen invests x dollars at 5%, write an equation that
describes the total interest I received from both accounts at
the end of one year.

(c) Graph and trace to estimate how much Mary Ellen
invested at 5% if she earned $1020 in total interest at the
end of the first year.

(d) Use your grapher to generate a table of values for I to find
out how much Mary Ellen should invest at 5% to earn
$1185 in total interest in one year.

47. Navigation A commercial jet airplane climbs at takeoff
with slope How far in the horizontal direction will
the airplane fly to reach an altitude of 12,000 ft above the take-
off point?

48. Grade of a Highway Interstate 70 west of Denver,
Colorado, has a section posted as a 6% grade. This means that
for a horizontal change of 100 ft there is a 6-ft vertical change.

m = 3/8.

V = mt + b, 0 … t … 15

3x - 5y = 15

2x + 3y = 12

y = -2x + 41-2, 32
y = 3x - 2

(a) Find the slope of this section of the highway.

(b) On a highway with a 6% grade what is the horizontal dis-
tance required to climb 250 ft?

(c) A sign along the highway says 6% grade for the next 
7 mi. Estimate how many feet of vertical change there 
are along those next 7 mi. (There are 5280 ft in 1 mile.)

49. Writing to Learn Building Specifications As-
phalt shingles do not meet code specifications on a roof that
has less than a 4-12 pitch. A 4-12 pitch means there are 
4 ft of vertical change in 12 ft of horizontal change. A certain
roof has slope Could asphalt shingles be used on that
roof? Explain.

50. Revisiting Example 8 Use the linear equation found
in Example 8 to estimate Americans’ income in 2004, 2006,
2007 displayed in Figure P.30.

51. Americans’ Spending Americans’ personal consump-
tion expenditures for several years from 1990 to 2007 in tril-
lions of dollars are shown in the table. (Source: U.S. Bureau of
Economic Analysis as reported in The World Almanac and
Book of Facts 2009.)

m = 3/8.

SECTION P.4 Lines in the Plane 37

6%
GRADE

6% grade

(a) Write a linear equation for Americans’ spending y in 
terms of the year x, using the points (1990, 3.8) and 
(1995, 5.0).

(b) Use the equation in (a) to estimate Americans’ expenditures
in 2006.

(c) Use the equation in (a) to predict Americans’ expenditures
in 2010.

(d) Superimpose a graph of the linear equation in (a) on a scat-
ter plot of the data.

52. U.S. Imports from Mexico The total y in billions 
of dollars of U.S. imports from Mexico for each year x from
2000 to 2007 is given in the table. (Source: U.S. Census Bu-
reau as reported in The World Almanac and Book of 
Facts 2009.)

(a) Use the pairs 12001, 131.32 and 12005, 170.12 to write a
linear equation for x and y.

(b) Superimpose the graph of the linear equation in (a) on a
scatter plot of the data.

(c) Use the equation in (a) to predict the total U.S. imports
from Mexico in 2010.

53. The midyear world population in millions for some of the years
from 1980 to 2008 is shown in Table P.7.

x 1990 1995 2000 2005 2006 2007

y 3.8 5.0 6.7 8.7 9.2 9.7

x 2000 2001 2002 2003 2004 2005 2006 2007

y 135 131.3 134.6 138.1 155.9 170.1 198.2 210.7
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(a) Let represent 1980, represent 1981, and so
forth. Draw a scatter plot of the data.

(b) Use the 1980 and 2008 data to write a linear equation for
the population y in terms of the year x. Superimpose the
graph of the linear equation on the scatter plot of the data.

(c) Use the graph in (b) to predict the midyear world popula-
tion in 2010.

54. U.S. Exports to Canada The total in billions of dol-
lars of U.S. exports to Canada from 2000 to 2009 is given in
Table P.8.

x = 1x = 0

In Exercises 57 and 58, determine a and b so that figure ABCD is a
parallelogram.

57. 58.

38 CHAPTER P Prerequisites

Table P.7 World Population

Source: U.S. Census Bureau as reported in
The Statistical Abstracts of the United States,
2009.

Year Population (millions)

1980 4453
1990 5282
1995 5691
2000 6085
2007 6628
2008 6707

y

x

D(a, 8)

C(3, 0)

B(3, 4)

A(0, 0)

y

x

D(5, a)

C(3, 0)

B(1, 2)

A(0, 0)

(a) Let represent 2000, represent 1991, and so
forth. Draw a scatter plot of the data.

(b) Use the 2000 and 2007 data to write a linear equation 
for the U.S. exports to Canada y in terms of the year x. Su-
perimpose the graph of the linear equation on the 
scatter plot in (a).

(c) Use the equation in (b) to predict the U.S. exports to
Canada in 2010.

In Exercises 55 and 56, determine a so that the line segments AB and
CD are parallel.

55. 56.

x = 1x = 0

Table P.8 U.S. Exports to Canada

Source: U.S. Census Bureau, The World Almanac
and Book of Facts 2009.

U.S. Exports
Year (billions of dollars)

2000 178.9
2001 163.4
2002 160.9
2003 169.9
2004 189.9
2005 211.9
2006 230.6
2007 248.9

59. Writing to Learn Perpendicular Lines

(a) Is it possible for two lines with positive slopes to be per-
pendicular? Explain.

(b) Is it possible for two lines with negative slopes to be per-
pendicular? Explain.

60. Group Activity Parallel and Perpendicular
Lines

(a) Assume that and a and b are not both zero. 
Show that and are parallel
lines. Explain why the restrictions on a, b, c, and d are nec-
essary.

(b) Assume that a and b are not both zero. Show that
and are perpendicular lines.

Explain why the restrictions on a and b are necessary.

Standardized Test Questions
61. True or False The slope of a vertical line is zero. Justify

your answer.

62. True or False The graph of any equation of the form
, where a and b are not both zero, is always a line.

Justify your answer.

In Exercises 63–66, you may use a graphing calculator to solve these
problems.

63. Multiple Choice Which of the following is an equation
of the line through the point with slope 4?

(A) (B)

(C) (D)

(E)

64. Multiple Choice Which of the following is an equation
of the line with slope 3 and y-intercept ?

(A) (B)

(C) (D)

(E)

65. Multiple Choice Which of the following lines is perpen-
dicular to the line ?

(A) (B)

(C) (D)

(E) y =

1

2
 x - 3

y = -  

1

2
 x + 3y = -  

1

2
 x +

1

3

y = -2x -

1

5
y = 2x + 1

y = -2x + 5

x = 3y + 2

x = 3y - 2y = -2x + 3

y = 3x - 2y = 3x + 2

-2

y + 2 = 41x - 32
x + 3 = 41y - 22x - 3 = 41y + 22
y + 3 = 41x - 22y - 3 = 41x + 22

1-2, 32

ax + by = c

bx - ay = dax + by = c

ax + by = dax + by = c
c Z d

y

x
D(4, 0)

C(a, b)B(2, 5)

A(0, 0)

y

x
D(5, 0)

B(a, b) C(8, 4)

A(0, 0)
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66. Multiple Choice Which of the following is the slope of
the line through the two points and 

(A) (B)

(C) (D)

(E)

Explorations
67. Exploring the Graph of 

Let 

(a) Draw the graph for 

(b) Draw the graph for 

(c) Draw the graph for 

(d) Use your graphs in (a), (b), (c) to conjecture what a and b
represent when Prove your conjecture.

(e) Repeat (a)–(d) for .

(f ) If , what do a and b represent?

68. Investigating Graphs of Linear Equations

(a) Graph for in the win-
dow by What do these graphs have in
common? How are they different?

(b) If , what do the graphs of and 
have in common? How are they different?

(c) Graph for in
by What do these graphs have in com-

mon? How are they different?
3-5, 54.3-8, 84

b = -3, -2, -1, 0, 1, 2, 3y = 0.3x + b

y = -mxy = mxm 7 0

3-5, 54.3-8, 84
m = -3, -2, -1, 1, 2, 3y = mx

c = -1

c = 2

c = 1.

a = 5, b = 3.

a = -2, b = -3.

a = 3, b = -2.

c = 1.

x
a

�
y
b

� c, a � 0, b � 0

-3

5

3
-  

5

3

3

5
-  

3

5

11, -42?1-2, 12 Extending the Ideas
69. Connecting Algebra and Geometry Show that if

the midpoints of consecutive sides of any quadrilateral (see
figure) are connected, the result is a parallelogram.

SECTION P.4 Lines in the Plane 39

y

x
(a, 0)

(b, c)

(d, e)

Art for Exercise 69

y

x

(3, 4)

Art for Exercise 70

O
x

y

(0, 0) (a, 0)

(b, c)

A B

70. Connecting Algebra and Geometry Consider the
semicircle of radius 5 centered at 10, 02 as shown in the figure.
Find an equation of the line tangent to the semicircle at the
point 13, 42. (Hint: A line tangent to a circle is perpendicular to
the radius at the point of tangency.)

71. Connecting Algebra and Geometry Show that in
any triangle (see figure), the line segment joining the midpoints
of two sides is parallel to the third side and is half as long.
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P.5 Solving Equations Graphically,
Numerically, and Algebraically

What you’ll learn about
• Solving Equations Graphically
• Solving Quadratic Equations
• Approximating Solutions of Equa-

tions Graphically
• Approximating Solutions of Equa-

tions Numerically with Tables
• Solving Equations by Finding In-

tersections

... and why
These basic techniques are in-
volved in using a graphing 
utility to solve equations in this
textbook.

Solving Equations Graphically
The graph of the equation 1in x and y2 can be used to solve the equation

Using the techniques of Section P.3, we can show algebraically
that is a solution of Therefore, the ordered pair 15/2, 02 is a
solution of Figure P.32 suggests that the x-intercept of the graph of the
line is the point 15/2, 02 as it should be.

One way to solve an equation graphically is to find all its x-intercepts. There are many
graphical techniques that can be used to find x-intercepts.

y = 2x - 5
y = 2x - 5.

2x - 5 = 0.x = 5/2
2x - 5 = 0 (in x).

y = 2x - 5

[–4.7, 4.7] by [–10, 5]

X=2.5 Y=0

1

FIGURE P.32 Using the TRACE feature of a grapher, we see
that 12.5, 0 is an x-intercept of the graph of and,
therefore, is a solution of the equation 2x - 5 = 0.x = 2.5

y = 2x - 52

EXAMPLE 1 Solving by Finding x-Intercepts
Solve the equation graphically.

SOLUTION

Solve Graphically
Find the x-intercepts of the graph of (Figure P.33). We use
TRACE to see that and 12, 02 are x-intercepts of this graph. Thus,
the solutions of this equation are and Answers obtained
graphically are really approximations, although in general they are very good
approximations.

Solve Algebraically
In this case, we can use factoring to find exact values.

Factor.

We can conclude that

So, and are the exact solutions of the original equation.
Now try Exercise 1.

The algebraic solution procedure used in Example 1 is a special case of the following
important property.

x = 2x = -1/2

x = -1/2 or x = 2.

2x + 1 = 0 or x - 2 = 0,

12x + 121x - 22 = 0

2x2
- 3x - 2 = 0

x = 2.x = -0.5
1-0.5, 02 y = 2x2

- 3x - 2

2x2
- 3x - 2 = 0

[–4.7, 4.7] by [–5, 5]

X=–.5 Y=0

1

FIGURE P.33 It appears that 
and 12, 02 are x-intercepts of the graph of

(Example 1)y = 2x2
- 3x - 2.

1-0.5, 02

Objective
Students will be able to solve equations involv-
ing quadratic, absolute value, and fractional ex-
pressions by finding x-intercepts or intersections
on graphs, by using algebraic techniques, or by
using numerical techniques.
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EXAMPLE 2 Solving by Extracting Square Roots
Solve algebraically.

SOLUTION

Extract square roots.

Now try Exercise 9.

The technique of Example 2 is more general than you might think because every qua-
dratic equation can be written in the form The procedure we need to ac-
complish this is completing the square.

1x + b22 = c.

x = 2 or  x = -1

2x = 4 or 2x = -2

2x - 1 = �3

12x - 122 = 9

12x - 122 = 9

We review some of the basic algebraic techniques for solving quadratic equations. One
algebraic technique that we have already used in Example 1 is factoring.

Quadratic equations of the form are fairly easy to solve as illustrated in
Example 2.

1ax + b22 = c

Solving Quadratic Equations
Linear equations and quadratic equations are two members of the family
of polynomial equations, which will be studied in more detail in Chapter 2.

(ax + b = 0)

Zero Factor Property
Let a and b be real numbers.

If ab = 0, then a = 0 or b = 0.

To solve a quadratic equation by completing the square, we simply divide both sides of
the equation by the coefficient of and then complete the square as illustrated in Ex-
ample 3.

x2

DEFINITION Quadratic Equation in x
A quadratic equation in x is one that can be written in the form

where a, b, and c are real numbers with a Z 0.

ax2
+ bx + c = 0,

Square Root Principle
If , then or t = - 2K.t = 2Kt 2

= K 7 0

Completing the Square

To solve by completing the square, add to both sides of the
equation and factor the left side of the new equation.

 ax +

b

2
b2

= c +

b2

4

x2
+ bx + ab

2
b2

= c + ab

2
b2

1b/222x2
+ bx = c

SECTION P.5 Solving Equations Graphically, Numerically, and Algebraically 41
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Quadratic Formula
The solutions of the quadratic equation , where , are
given by the quadratic formula

x =

-b � 2b2
- 4ac

2a
.

a Z 0ax2
+ bx + c = 0

42 CHAPTER P Prerequisites

EXAMPLE 3 Solving by Completing the Square
Solve by completing the square.

SOLUTION

Divide by 4.

Subtract 

Completing the square on the equation above we obtain

Factor and simplify.

Extract square roots.

Now try Exercise 13. x =

5

2
+ 22 L 3.91 or x =

5

2
- 22 L 1.09

 x =

5

2
� 22

 x -

5

2
= �22

 ax -

5

2
b2

= 2

Add a -  

5
2
b2

. x2
- 5x + a -  

5

2
b2

= -  

17

4
+ a -  

5

2
b2

a17
4
b . x2

- 5x = -

17

4

 x2
- 5x +

17

4
= 0

4x2
- 20x + 17 = 0

4x2
- 20x + 17 = 0

EXAMPLE 4 Solving Using the Quadratic Formula
Solve the equation 

SOLUTION First we subtract 5 from both sides of the equation to put it in the
form We can see that , and

Quadratic formula

Simplify.

The graph of in Figure P.34 supports that the x-intercepts are ap-
proximately and 2.63. Now try Exercise 19.-0.63

y = 3x2
- 6x - 5

x =

6 + 296

6
L 2.63 or x =

6 - 296

6
L -0.63

x =

6 � 296

6

a = 3, b = -6, c = -5x =

-1-62 � 21-622 - 41321-52
2132

x =

-b � 2b2
- 4ac

2a

c = -5.
a = 3, b = -6ax2

+ bx + c = 0: 3x2
- 6x - 5 = 0.

3x2
- 6x = 5.

The procedure of Example 3 can be applied to the general quadratic equation
to produce the following formula for its solutions (see Exercise

68).
ax2

+ bx + c = 0

[–5, 5] by [–10, 10]

FIGURE P.34 The graph of
(Example 4)y = 3x2

- 6x - 5.
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EXAMPLE 5 Solving Graphically
Solve the equation graphically.

SOLUTION Figure P.35a suggests that is the solution we seek. Fig-
ure P.35b provides numerical support that is a close approximation to
the solution because, when , which is
nearly zero. Now try Exercise 31.

x3
- x - 1 L 1.82 * 10 -7,x = 1.324718

x = 1.324718
x = 1.324718

x3
- x - 1 = 0

When solving equations graphically, we usually get approximate solutions and not ex-
act solutions. We will use the following agreement about accuracy in this book.

Agreement About Approximate Solutions
For applications, round to a value that is reasonable for the context of the
problem. For all others round to two decimal places unless directed otherwise.

With this accuracy agreement, we would report the solution found in Example 5 
as 1.32.

Approximating Solutions of Equations
Numerically with Tables
The table feature on graphing calculators provides a numerical zoom-in procedure that
we can use to find accurate solutions of equations. We illustrate this procedure in Ex-
ample 6 using the same equation of Example 5.

Approximating Solutions 
of Equations Graphically
A solution of the equation is a value of x that makes the value of

equal to zero. Example 5 illustrates a built-in procedure on graphing
calculators to find such values of x.
y = x3

- x - 1
x3

- x - 1 = 0

FIGURE P.35 The graph of 
(a) shows that 11.324718, 0) is an ap-

proximation to the x-intercept of the graph. (b)
supports this conclusion. (Example 5)

x - 1.
y = x3

-

[–4.7, 4.7] by [–3.1, 3.1]

X=1.324718   Y=0
Zero

1.324718 X

X3–X–1
1.324718

1.823355E–7

(a)

(b)

EXAMPLE 6 Solving Using Tables
Solve the equation using grapher tables.

SOLUTION From Figure P.35a, we know that the solution we seek is between
and . Figure P.36a sets the starting point of the table at
and increments the numbers in the table 1 2 by 0.1. Figure P.36b

shows that the zero of is between and .x = 1.4x = 1.3x3
- x - 1

¢Tbl = 0.1x = 1
1TblStart = 12x = 2x = 1

x3
- x - 1 = 0

Solving Quadratic Equations Algebraically
There are four basic ways to solve quadratic equations algebraically.

1. Factoring (see Example 1)

2. Extracting Square Roots (see Example 2)

3. Completing the Square (see Example 3)

4. Using the Quadratic Formula (see Example 4)

SECTION P.5 Solving Equations Graphically, Numerically, and Algebraically 43
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The next two steps in this process are shown in Figure P.37.

44 CHAPTER P Prerequisites

TABLE SETUP

ΔTbl=.1

Depend:  Auto  Ask

TblStart=1

Indpnt:    Auto  Ask

X

Y1 = X3–X–1

1
1.1
1.2
1.3
1.4
1.5
1.6

–1
–.769
–.472
–.103
.344
.875
1.496

Y1

FIGURE P.36 (a) gives the setup that produces the table in (b). (Example 6)

(a) (b)

X

Y1 = X3–X–1

1.3
1.31
1.32
1.33
1.34
1.35
1.36

–.103
–.0619
–.02
.02264
.0661
.11038
.15546

Y1 X

Y1 = X3–X–1

1.32
1.321
1.322
1.323
1.324
1.325
1.326

–.02
–.0158
–.0116
–.0073
–.0031
.0012
.00547

Y1

FIGURE P.37 In (a) and , and in (b) and 
. (Example 6)Tbl = 0.001¢

TblStart = 1.32¢Tbl = 0.01TblStart = 1.3

(b)(a)

From Figure P.37a, we can read that the zero is between and ;
from Figure P.37b, we can read that the zero is between and .
Because all such numbers round to 1.32, we can report the zero as 1.32 with our ac-
curacy agreement. Now try Exercise 37.

x = 1.325x = 1.324
x = 1.33x = 1.32

EXPLORATION 1 Finding Real Zeros of Equations

Consider the equation .

1. Use a graph to show that this equation has two real solutions, one between 0
and 1 and the other between 2 and 3.

2. Use the numerical zoom-in procedure illustrated in Example 6 to find each
zero accurate to two decimal places.

3. Use the built-in zero finder (see Example 5) to find the two solutions. Then
round them to two decimal places.

4. If you are familiar with the graphical zoom-in process, use it to find each solu-
tion accurate to two decimal places.

5. Compare the numbers obtained in parts 2, 3, and 4.

6. Support the results obtained in parts 2, 3, and 4 numerically.

7. Use the numerical zoom-in procedure illustrated in Example 6 to find each
zero accurate to six decimal places. Compare with the answer found in part 3
with the zero finder.

4x2
- 12x + 7 = 0
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SECTION P.5 Solving Equations Graphically, Numerically, and Algebraically 45

EXAMPLE 7 Solving by Finding Intersections
Solve the equation .

SOLUTION Figure P.38 suggests that the V-shaped graph of 
intersects the graph of the horizontal line twice. We can use TRACE or the in-
tersection feature of our grapher to see that the two points of intersection have coor-
dinates and This means that the original equation has two solu-
tions: and 3.5.

We can use algebra to find the exact solutions. The only two real numbers with ab-
solute value 6 are 6 itself and . So, if , then

Now try Exercise 39.

x =

7

2
= 3.5 or x = -  

5

2
= -2.5

2x - 1 = 6 or 2x - 1 = -6

ƒ 2x - 1 ƒ = 6-6

-2.5
13.5, 62.1-2.5, 62

y = 6
y = ƒ 2x - 1 ƒ

ƒ 2x - 1 ƒ = 6

[–4.7, 4.7] by [–5, 10]

X=–2.5 Y=6
Intersection

FIGURE P.38 The graphs of and
intersect at and 13.5, 62. (Example 7)1-2.5, 62y = 6

y = ƒ 2x - 1 ƒ

QUICK REVIEW P.5

In Exercises 9 and 10, combine the fractions and reduce the result-
ing fraction to lowest terms.

9.

10.
x + 1

x2
- 5x + 6

-

3x + 11

x2
- x - 6

x

2x + 1
-

2

x + 3

In Exercises 1–4, expand the product.

1. 2.

3. 4.

In Exercises 5–8, factor completely.

5. 6.

7. 8. y4
- 13y2

+ 363x3
+ x2

- 15x - 5

15x3
- 22x2

+ 8x25x2
- 20x + 4

13y - 1215y + 4212x + 1213x - 52
12x + 32213x - 422

Solving Equations by Finding Intersections
Sometimes we can rewrite an equation and solve it graphically by finding the points of
intersection of two graphs. A point 1a, b2 is a point of intersection of two graphs if it
lies on both graphs.

We illustrate this procedure with the absolute value equation in Example 7.
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SECTION P.5 EXERCISES

In Exercises 1–6, solve the equation graphically by finding x-intercepts.
Confirm by using factoring to solve the equation.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, solve the equation by extracting square roots.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, solve the equation by completing the square.

13. 14.

15. 16.

17.

18.

In Exercises 19–24, solve the equation using the quadratic formula.

19. 20.

21. 22.

23.

24.

In Exercises 25–28, estimate any x- and y-intercepts that are shown in
the graph.

25. 26.

x2
- 2x + 6 = 2x2

- 6x - 26

x(x + 5) = 12

x2
- 5 = 23x3x + 4 = x2

2x2
- 3x + 1 = 0x2

+ 8x - 2 = 0

3x2
- 6x - 7 = x2

+ 3x - x1x + 12 + 3

2x2
- 7x + 9 = 1x - 321x + 12 + 3x

4 - 6x = x2x2
- 7x +

5

4
= 0

x2
+ 5x - 9 = 0x2

+ 6x = 7

12x + 322 = 1692y2
- 8 = 6 - 2y2

41u + 122 = 1831x + 422 = 8

21x - 522 = 174x2
= 25

x13x + 112 = 20x13x - 72 = 6

x2
- 8x = -154x2

- 8x + 3 = 0

2x2
+ 5x - 3 = 0x2

- x - 20 = 0

35. 36.

[–5, 5] by [–5, 5] [–3, 6] by [–3, 8]

27. 28.

In Exercises 29–34, solve the equation graphically by finding 
x-intercepts.

29. 30.

31. 32.

33. 34.

In Exercises 35 and 36, the table permits you to estimate a zero of an
expression. State the expression and give the zero as accurately as can 
be read from the table.

x2
+ 2x = -2x2

+ 4 = 4x

x3
- 4x + 2 = 0x3

+ x2
+ 2x - 3 = 0

4x2
+ 20x + 23 = 0x2

+ x - 1 = 0

[–5, 5] by [–5, 5] [–3, 3] by [–3, 3]

X

Y1 = X2+2X–1

.4

.41

.42

.43

.44

.45

.46

–.04
–.0119
.0164
.0449
.0736
.1025
.1316

Y1 X

Y1 = X3–3X

–1.735
–1.734
–1.733
–1.732
–1.731
–1.73
–1.729

–.0177
–.0117
–.0057
3E–4
.0063
.01228
.01826

Y1

In Exercises 37 and 38, use tables to find the indicated number of solu-
tions of the equation accurate to two decimal places.

37. Two solutions of 

38. One solution of 

In Exercises 39–44, solve the equation graphically by finding intersec-
tions. Confirm your answer algebraically.

39. 40.

41. 42.

43. 44. ƒ x + 1 ƒ = 2x - 3ƒ 2x - 3 ƒ = x2

ƒ 3 - 5x ƒ = 4ƒ 2x + 5 ƒ = 7

ƒ x + 1 ƒ = 4ƒ t - 8 ƒ = 2

-x3
+ x + 1 = 0

x2
- x - 1 = 0

45. Interpreting Graphs The graphs in the two viewing 
windows shown here can be used to solve the equation

graphically.32x + 4 = x2
- 1

[–5, 5] by [–10, 10]

(a) (b)

[–5, 5] by [–10, 10]

(a) The viewing window in (a) illustrates the intersection
method for solving. Identify the two equations that are
graphed.

(b) The viewing window in (b) illustrates the x-intercept
method for solving. Identify the equation that is graphed.

(c) Writing to Learn How are the intersection points in
(a) related to the x-intercepts in (b)?

46. Writing to Learn Revisiting Example 6 Explain
why all real numbers x that satisfy round
to 1.32.

In Exercises 47–56, use a method of your choice to solve the equation.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56. 2x + 7 = -x2
+ 5ƒ 0.5x + 3 ƒ = x2

- 4

ƒ x + 5 ƒ = ƒ x - 3 ƒƒ x2
+ 4x - 1 ƒ = 7

x3
- 4x + 2 = 0x3

+ 4x2
- 3x - 2 = 0

x + 2 - 22x + 3 = 0ƒ 2x - 1 ƒ = 5

x2
- 3x = 12 - 31x - 22x2

+ x - 2 = 0

1.324 6 x 6  1.325
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57. Group Activity Discriminant of a Quadratic
The radicand in the quadratic formula is called the
discriminant of the quadratic polynomial be-
cause it can be used to describe the nature of its zeros.

(a) Writing to Learn If what can you
say about the zeros of the quadratic polynomial

? Explain your answer.

(b) Writing to Learn If , what can you
say about the zeros of the quadratic polynomial

? Explain your answer.

(c) Writing to Learn If what can you
say about the zeros of the quadratic polynomial

? Explain your answer.

58. Group Activity Discriminant of a Quadratic
Use the information learned in Exercise 57 to create a qua-
dratic polynomial with the following numbers of real zeros.
Support your answers graphically.

(a) Two real zeros

(b) Exactly one real zero

(c) No real zeros

59. Size of a Soccer Field Several of the World Cup ’94
soccer matches were played in Stanford University’s stadium
in Menlo Park, California. The field is 30 yd longer than it is
wide, and the area of the field is . What are the di-
mensions of this soccer field?

60. Height of a Ladder John’s paint crew knows from ex-
perience that its 18-ft ladder is particularly stable when the dis-
tance from the ground to the top of the ladder is 5 ft more than
the distance from the building to the base of the ladder as
shown in the figure. In this position, how far up the building
does the ladder reach? 

8800 yd2

ax2
+ bx + c

b2
- 4ac 6 0,

ax2
+ bx + c

b2
- 4ac = 0

ax2
+ bx + c

b2
- 4ac 7 0,

ax2
+ bx + c

b2
- 4ac

Standardized Test Questions
62. True or False If 2 is an x-intercept of the graph of

, then 2 is a solution of the equation 
. Justify your answer.

63. True or False If then x must be equal to 3.
Justify your answer.

In Exercises 64–67, you may use a graphing calculator to solve these
problems.

64. Multiple Choice Which of the following are the solu-
tions of the equation 

(A) Only (B) Only 

(C) (D)

(E) There are no solutions.

x = 0 and x = 3x = 0 and x = -3

x = -3x = 3

x1x - 32 = 0?

2x2
= 18,

ax2
+ bx + c = 0

y = ax2
+ bx + c

18 ft

x

x � 5

61. Finding the Dimensions of a Norman Window
A Norman window has the shape of a square with a semicircle
mounted on it. Find the width of the window if the total area of
the square and the semicircle is to be . 200 ft2

x

x

65. Multiple Choice Which of the following replacements
for ? make a perfect square?

(A) (B)

(C) (D)

(E)

66. Multiple Choice Which of the following are the solu-
tions of the equation ?

(A) (B)

(C) (D)

(E)

67. Multiple Choice Which of the following are the solu-
tions of the equation ?

(A) Only (B) Only 

(C) Only (D) and 

(E) There are no solutions.

Explorations
68. Deriving the Quadratic Formula Follow these

steps to use completing the square to solve 
.

(a) Subtract c from both sides of the original equation and di-
vide both sides of the resulting equation by a to obtain

x2
+

b

a
 x = -  

c

a
.

a Z 0
ax2

+ bx + c = 0,

x = -2x = 4x = 2

x = -2x = 4

ƒ x - 1 ƒ = -3

3 � 1

4

-3 � 217

4

3 � 217

2

3 � 217

4

3

4
� 217

2x2
- 3x - 1 = 0

-6

a -  

2

5
b21-522

a -  

5

2
b2

-  

5

2

x2
- 5x + ?
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(b) Add the square of one-half of the coefficient of x in (a) to
both sides and simplify to obtain

(c) Extract square roots in (b) and solve for x to obtain the
quadratic formula

Extending the Ideas
69. Finding Number of Solutions Consider the equa-

tion .

(a) Find a value of c for which this equation has four solu-
tions. (There are many such values.)

(b) Find a value of c for which this equation has three solu-
tions. (There is only one such value.)

ƒ x2
- 4 ƒ = c

x =

-b � 2b2
- 4ac

2a
.

ax +

b

2a
b2

=

b2
- 4ac

4a2 .

(c) Find a value of c for which this equation has two solu-
tions. (There are many such values.)

(d) Find a value of c for which this equation has no solutions.
(There are many such values.)

(e) Writing to Learn Are there any other possible numbers of
solutions of this equation? Explain.

70. Sums and Products of Solutions of
Suppose that .

(a) Show that the sum of the two solutions of this equation is
.

(b) Show that the product of the two solutions of this equation
is .

71. Exercise 70 Continued The equation
has two solutions and . If

and , find the two solutions.x1
# x2 = 3x1 + x2 = 5

x2x12x2
+ bx + c = 0

c/a

-1b/a2
b2

- 4ac 7 0ax2 � bx � c � 0, a � 0
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DEFINITION Addition and Subtraction of Complex Numbers
If and are two complex numbers, then

Sum:

Difference: 1a + bi2 - 1c + di2 = 1a - c2 + 1b - d 2i.
1a + bi2 + 1c + di2 = 1a + c2 + 1b + d 2i,

c + dia + bi

A real number a is the complex number , so all real numbers are also complex
numbers. If and , then becomes bi, and is an imaginary number.
For instance, 5i and are imaginary numbers.

Two complex numbers are equal if and only if their real and imaginary parts are equal.
For example,

Operations with Complex Numbers
Adding complex numbers is done by adding their real and imaginary parts separately.
Subtracting complex numbers is also done using the same parts.

x + yi = 2 + 5i if and only if x = 2 and y = 5.

-7i
a + bib Z 0a = 0

a + 0i

DEFINITION Complex Number
A complex number is any number that can be written in the form

where a and b are real numbers. The real number a is the real part, the real
number b is the imaginary part, and is the standard form.a + bi

a + bi,

SECTION P.6 Complex Numbers 49

P.6 Complex Numbers

What you’ll learn about
• Complex Numbers
• Operations with Complex Num-

bers
• Complex Conjugates and Divi-

sion
• Complex Solutions of Quadratic

Equations

... and why
The zeros of polynomials are
complex numbers.

[–5, 5] by [–3, 10]

FIGURE P.39 The graph of
has no x-intercepts.f (x) = x2

+ 1

Complex Numbers
Figure P.39 shows that the function has no real zeros, so 
has no real-number solutions. To remedy this situation, mathematicians in the 17th
century extended the definition of to include negative real numbers a. First the
number is defined as a solution of the equation and is the
imaginary unit. Then for any negative real number .

The extended system of numbers, called the complex numbers, consists of all real num-
bers and sums of real numbers and real number multiples of i. The following are all ex-
amples of complex numbers:

-6, 5i, 25, -7i, 5

2
 i +

2

3
, -2 + 3i, 5-3i, 1

3
+

4

5
 i.

2a = 2 ƒ a ƒ
# i

i2
+ 1 = 0i = 2-1

2a

x2
+ 1 = 0f(x) = x2

+ 1

Historical Note
René Descartes (1596–1650) coined the term
imaginary in a time when negative solutions to
equations were considered false. Carl Friedrich
Gauss (1777–1855) gave us the term complex
number and the symbol i for . Today prac-
tical applications of complex numbers abound.

2-1

EXAMPLE 1 Adding and Subtracting Complex Numbers

(a)

(b)
Now try Exercise 3.

12 - i2 - 18 + 3i2 = 12 - 82 + 1-1 - 32i = -6 - 4i

17 - 3i2 + 14 + 5i2 = 17 + 42 + 1-3 + 52i = 11 + 2i
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EXAMPLE 2 Multiplying Complex Numbers

Now try Exercise 9. = 13 + 13i

 = 10 + 13i - 31-12
 = 10 - 2i + 15i - 3i2

12 + 3i2 # 15 - i2 = 215 - i2 + 3i15 - i2

We can generalize Example 2 as follows:

Many graphers can perform basic calculations on complex numbers. Figure P.40 shows
how the operations of Examples 1 and 2 look on some graphers.

We compute positive integer powers of complex numbers by treating them as algebraic
expressions.

 = 1ac - bd2 + 1ad + bc2i
1a + bi21c + di2 = ac + adi + bci + bdi2

The additive identity for the complex numbers is . The additive inverse of
because

Many of the properties of real numbers also hold for complex numbers. These include:

• Commutative properties of addition and multiplication,

• Associative properties of addition and multiplication, and

• Distributive properties of multiplication over addition and subtraction.

Using these properties and the fact that , complex numbers can be multiplied
by treating them as algebraic expressions.

i2
= -1

1a + bi2 + 1-a - bi2 = 0 + 0i = 0.

a + bi is -1a + bi2 = -a - bi
0 = 0 + 0i

50 CHAPTER P Prerequisites

EXAMPLE 3 Raising a Complex Number to a Power

If , find and .

SOLUTION

Figure P.41 supports these results numerically. Now try Exercise 27.

 = -1

 = -  

1

4
+ 0i +

3

4
 1-12

 = -  

1

4
-

23

4
 i +

23

4
 i +

3

4
 i2

 z3
= z2 # z = a -  

1

2
+

23

2
 ib a1

2
+

23

2
 ib

 = -  

1

2
+

23

2
 i

 =

1

4
+

223

4
 i +

3

4
 (-1)

 =

1

4
+

23

4
 i +

23

4
 i +

3

4
 i2

z2
= a1

2
+

23

2
 ib a1

2
+

23

2
 ib

z3z2z =

1

2
+

23

2
 i

(7–3i)+(4+5i)

(2–i)–(8+3i)

(2+3i)*(5–i)

N

11+2i

–6–4i

13+13i

FIGURE P.40 Complex number opera-
tions on a grapher. (Examples 1 and 2)

(1/2+i (3)/2)2

(1/2+i
–.5+.8660254038i

–1
(3)/2)3

FIGURE P.41 The square and cube of a
complex number. (Example 3)

6965_CH0P_pp001-062.qxd  1/14/10  12:44 PM  Page 50



Example 3 demonstrates that and a solution of
. In Section 2.5, complex zeros of polynomial functions will be explored in

depth.

Complex Conjugates and Division
The product of the complex numbers and is a positive real number:

We introduce the following definition to describe this special relationship.

1a + bi2 # 1a - bi2 = a2
- 1bi22 = a2

+ b2.

a - bia + bi

x3
+ 1 = 0

1/2 + 123/22i is a cube root of -1

SECTION P.6 Complex Numbers 51

EXAMPLE 4 Dividing Complex Numbers
Write the complex number in standard form.

(a) (b)

SOLUTION Multiply the numerator and denominator by the complex conjugate of
the denominator.

(a) (b)

Now try Exercise 33.

 =

7

13
+

17

13
 i =

3

5
+

1

5
 i

 =

7 + 17i

13
 =

6

10
+

2

10
 i

 =

10 + 15i + 2i + 3i2

22
+ 32 =

6 + 2i

32
+ 12

5 + i

2 - 3i
=

5 + i

2 - 3i
#
2 + 3i

2 + 3i

2

3 - i
=

2

3 - i
#
3 + i

3 + i

5 + i

2 - 3i

2

3 - i

DEFINITION Complex Conjugate
The complex conjugate of the complex number is

z = a + bi = a - bi.

z = a + bi

The multiplicative identity for the complex numbers is . The
multiplicative inverse, or reciprocal, of is

In general, a quotient of two complex numbers, written in fraction form, can be simpli-
fied as we just simplified 1/z—by multiplying the numerator and denominator of the
fraction by the complex conjugate of the denominator.

z -1
=

1
z

=

1

a + bi
=

1

a + bi
#
a - bi

a - bi
=

a

a2
+ b2 -

b

a2
+ b2 i.

z = a + bi
1 = 1 + 0i

Complex Solutions of Quadratic Equations
Recall that the solutions of the quadratic equation , where a, b, and
c are real numbers and , are given by the quadratic formula

The radicand is the discriminant, and tells us whether the solutions are real
numbers. In particular, if , the solutions involve the square root of ab2

- 4ac 6 0
b2

- 4ac

x =

-b � 2b2
- 4ac

2a
.

a Z 0
ax2

+ bx + c = 0
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negative number and so lead to complex-number solutions. In all, there are three cases,
which we now summarize:

52 CHAPTER P Prerequisites

Discriminant of a Quadratic Equation
For a quadratic equation , where a, b, and c are real num-
bers and ,

• If , there are two distinct real solutions.

• If , there is one repeated real solution.

• If , there is a complex conjugate pair of solutions.b2
- 4ac 6 0

b2
- 4ac = 0

b2
- 4ac 7 0

a Z 0
ax2

+ bx + c = 0

EXAMPLE 5 Solving a Quadratic Equation
Solve .

SOLUTION

Solve Algebraically
Using the quadratic formula with , we obtain

So the solutions are and , a complex conjugate
pair.

Confirm Numerically
Substituting into the original equation, we obtain

By a similar computation we can confirm the second solution.
Now try Exercise 41.

= a -  

1

2
-

23

2
 ib + a -  

1

2
+

23

2
 ib + 1 = 0.

a -  

1

2
+

23

2
 ib2

+ a -  

1

2
+

23

2
 ib + 1

-1/2 + 123/22i

-1/2 - 123/22i-1/2 + 123/22i
x =

-112 � 21122 - 4112112
2112 

=

-112 � 2-3

2 

= -

1

2
�

23

2
 i.

a = b = c = 1

x2
+ x + 1 = 0

QUICK REVIEW P.6

6.

7.

8.

9.

10. 3x - 12 + 23243x - 12 - 2324
3x - 11 + 22243x - 11 - 2224
1x + 22321x - 2232
1x - 2221x + 222
12x - 121x + 32In Exercises 1–4, add or subtract, and simplify.

1. 2.

3. 4.

In Exercises 5–10, multiply and simplify.

5. 1x - 321x + 22

16z - 12 - 1z + 3212a + 4d 2 - 1a + 2d2
13y - x2 + 12x - y212x + 32 + 1-x + 62

SECTION P.6 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–8, write the sum or difference in the standard form
without using a calculator.

1. 2. 12 - 3i2 + 13 - 4i212 - 3i2 + 16 + 5i2
a + bi

3. 4.

5.

6.

7.

8. 127 + i22 - 16 - 2-812
1i2

+ 32 - 17 + i32
125 - 3i2 + 1-2 + 2-92
12 - i2 + 13 - 2-32

(2 + i) - (9i - 3)17 - 3i2 + 16 - i2
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In Exercises 9–16, write the product in standard form without using a
calculator.

9. 10.

11. 12.

13. 14.

15. 16. 12-2 + 2i216 + 5i2(-3 - 4i2(1 + 2i2
12-4 + i216 - 5i217i - 3212 + 6i2
15i - 3212i + 1211 - 4i213 - 2i2
12 - i211 + 3i212 + 3i212 - i2

In Exercises 47–50, solve the problem without using a calculator.

47. Multiple Choice Which of the following is the standard
form for the product 

(A) (B) (C)

(D) (E)

48. Multiple Choice Which of the following is the standard 

form for the quotient ?

(A)1 (B) (C) i (D) (E)

49. Multiple Choice Assume that is a solution of
, where a, b, c are real numbers. Which of

the following is also a solution of the equation?

(A) (B) (C)

(D) (E)

50. Multiple Choice Which of the following is the standard
form for the power 

(A) (B) (C) (D) (E)

Explorations
51. Group Activity The Powers of i

(a) Simplify the complex numbers by evaluating
each one. 

(b) Simplify the complex numbers by evalu-
ating each one. 

(c) Evaluate 

(d) Writing to Learn Discuss your results from (a)–(c)
with the members of your group, and write a summary
statement about the integer powers of i.

52. Writing to Learn Describe the nature of the graph of
when a, b, and c are real numbers and the

equation has nonreal complex solutions.

Extending the Ideas
53. Prove that the difference between a complex number and its

conjugate is a complex number whose real part is 0.

54. Prove that the product of a complex number and its complex
conjugate is a complex number whose imaginary part is zero.

55. Prove that the complex conjugate of a product of two complex
numbers is the product of their complex conjugates.

56. Prove that the complex conjugate of a sum of two complex
numbers is the sum of their complex conjugates.

57. Writing to Learn Explain why is a solution of
but i is not.x2

- ix + 2 = 0
- i

ax2
+ bx + c = 0

f (x) = ax2
+ bx + c

i0.

i -1, i -2, Á , i -8

i, i2, Á , i8

2 - 2i2 + 2i-2 - 2i-2 + 2i-4i

11 - i23?

1

2 - 3i
3 + 2i

-2 + 3i-2 - 3i2 + 3i

ax2
+ bx + c = 0

2 - 3i

0 - i-1/i-1

1

i

13 + 0i-5

13 - 3i4 - 9i-5 + 12i

12 + 3i212 - 3i2?

SECTION P.6 Complex Numbers 53

In Exercises 17–20, write the expression in the form bi, where b is a
real number.

17. 18.

19. 20.

In Exercises 21–24, find the real numbers x and y that make the equa-
tion true.

21. 22.

23.

24.

In Exercises 25–28, write the complex number in standard form.

25. 26.

27. 28.

In Exercises 29–32, find the product of the complex number and its
conjugate.

29. 30.

31. 32.

In Exercises 33–40, write the expression in standard form without using
a calculator.

33. 34.

35. 36.

37. 38.

39. 40.

In Exercises 41–44, solve the equation.

41. 42.

43. 44.

Standardized Test Questions
45. True or False There are no complex numbers z satisfy-

ing . Justify your answer.

46. True or False For the complex number
. Justify your answer.i, i + i2

+ i3
+ i4

= 0

z = -z

x2
+ x + 11 = 5x - 84x2

- 6x + 5 = x + 1

3x2
+ x + 2 = 0x2

+ 2x + 5 = 0

11 - 22i211 + i2
11 + 22i2

11 - i212 - i2
1 - 2i

12 - i211 + 2i2
5 + 2i

12 + i221- i2
1 + i

2 + i

3i

2 + i

2 - i

i

2 - i

1

2 + i

-1 - 22i-3 + 4i

5 - 6i2 - 3i

a23

2
+

1

2
 ib3a22

2
+

22

2
 ib4

11 - i2313 + 2i22
1x + 6i2 = 13 - i2 + 14 - 2yi2
15 - 2i2 - 7 = x - 13 + yi2

3 + yi = x - 7i2 + 3i = x + yi

2-52-3

2-252-16
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EXAMPLE 2 Solving Another Absolute Value Inequality
Solve .

SOLUTION The solution of this absolute value inequality consists of the solutions
of both of these inequalities.

Add 2.

Divide by 3. x … -1 or  x Ú

7

3

 3x … -3 or  3x Ú 7

3x - 2 … -5 or 3x - 2 Ú 5

ƒ 3x - 2 ƒ Ú 5

EXAMPLE 1 Solving an Absolute Value Inequality
Solve 

SOLUTION

Original inequality

Equivalent double inequality.

Add 4.

As an interval the solution is 

Figure P.43 shows that points on the graph of are below the points on
the graph of for values of x between and 12.

Now try Exercise 3.
-4y = 8

y = ƒ x - 4 ƒ

1-4, 122.
 -4 6 x 6 12

-8 6 x - 4 6 8

 ƒ x - 4 ƒ 6 8

ƒ x - 4 ƒ 6 8.

54 CHAPTER P Prerequisites

P.7 Solving Inequalities Algebraically
and Graphically

What you’ll learn about
• Solving Absolute Value Inequali-

ties
• Solving Quadratic Inequalities
• Approximating Solutions to In-

equalities
• Projectile Motion

... and why
These techniques are involved
in using a graphing utility to
solve inequalities in this text-
book.

(–a, a)

� u � > a � u � > a

y = � u �

y = a

� u � < a

a

–a a

(a, a)

FIGURE P.42 The solution of is represented by the portion of the number line
where the graph of is below the graph of . The solution of is represented
by the portion of the number line where the graph of is above the graph of .y = ay = ƒ u ƒ

ƒ u ƒ 7  ay = ay = ƒ u ƒ

ƒ u ƒ 6  a

Solving Absolute Value Inequalities
Let u be an algebraic expression in x and let a be a real number with 

1. If , then u is in the interval . That is,

if and only if

2. If , then u is in the interval or , that is,

if and only if or 

The inequalities and can be replaced with and , respectively. See Fig-
ure P.42.

Ú…76

u 7 a.u 6 -aƒ u ƒ 7 a

1a, q21- q , -a2ƒ u ƒ 7 a

-a 6 u 6 a.ƒ u ƒ 6 a

1-a, a2ƒ u ƒ 6 a

a Ú 0.

[–7, 15] by [–5, 10]

–4 12

FIGURE P.43 The graphs of 
and . (Example 1)y = 8

y = ƒ x - 4 ƒ

Solving Absolute Value Inequalities
The methods for solving inequalities parallel the methods for solving equations. Here
are two basic rules we apply to solve absolute value inequalities.

6965_CH0P_pp001-062.qxd  1/14/10  12:44 PM  Page 54



EXAMPLE 4 Solving Another Quadratic Inequality
Solve .

SOLUTION First we subtract 20 from both sides of the inequality to obtain
. Next, we solve the corresponding quadratic equation
.

Factor.

Solve for x.

The solutions of the corresponding quadratic equation are and . You
can check that they are also solutions of the inequality.

Figure P.46 shows that the points on the graph of are below the
x-axis for values of x between and 2.5. The solution of the original inequality is

We use square brackets because the numbers and 2.5 are also solu-
tions of the inequality. Now try Exercise 9.

In Examples 3 and 4 the corresponding quadratic equation factored. If this doesn’t hap-
pen we will need to approximate the zeros of the quadratic equation if it has any. Then
we use our accuracy agreement from Section P.5 and write the endpoints of any inter-
vals accurate to two decimal places as illustrated in Example 5.

-43-4, 2.54. -4
y = 2x2

+ 3x - 20

5/2 = 2.5-4

 x = -4  or  x =

5

2

ab = 0 Q a = 0 or b = 0x + 4 = 0  or 2x - 5 = 0

1x + 4212x - 52 = 0

2x2
+ 3x - 20 = 0

2x2
+ 3x - 20 = 0

2x2
+ 3x - 20 … 0

2x2
+ 3x … 20

EXAMPLE 3 Solving a Quadratic Inequality
Solve .

SOLUTION First we solve the corresponding equation .

Factor.

Solve for x.

The solutions of the corresponding quadratic equation are and 4, and they are not
solutions of the original inequality because is false. Figure P.45 shows that the
points on the graph of are above the x-axis for values of x to the
left of and to the right of 4.

The solution of the original inequality is 1 2 2.
Now try Exercise 11.

14, q´- q , -3

-3
y = x2

- x - 12
0 7 0

-3

 x = -3 x = 4 or

ab = 0 Q a = 0 or b = 0x - 4 = 0 or x + 3 = 0

1x - 421x + 32 = 0

x2
- x - 12 = 0

x2
- x - 12 = 0

x2
- x - 12 7 0

The solution consists of all numbers that are in either one of the two intervals
or ), which may be written as . The nota-

tion “ ” is read as “union.”

Figure P.44 shows that points on the graph of are above or on the
points on the graph of for values of x to the left of and including and to the
right of and including 7/3. Now try Exercise 7.

-1y = 5
y = ƒ 3x - 2 ƒ

h

1- q , -14 h  37/3, q237/3, q1- q , -14

[–4, 4] by [–4, 10]

–1 7
3

FIGURE P.44 The graphs of
and . (Example 2)y = 5y = ƒ 3x - 2 ƒ

Solving Quadratic Inequalities
To solve a quadratic inequality such as we begin by solving the cor-
responding quadratic equation . Then we determine the values of x
for which the graph of lies above the x-axis.y = x2

- x - 12
x2

- x - 12 = 0
x2

- x - 12 7 0

[–10, 10] by [–15, 15]

FIGURE P.45 The graph of
appears to cross the x-axis

at and . (Example 3)x = 4x = -3
y = x2

- x - 12 In Example 4, the quadratic inequality involves the symbol . In this case, the solu-
tions of the corresponding quadratic equation are also solutions of the inequality.

…

[–10, 10] by [–25, 25]

FIGURE P.46 The graph of
appears to be below the

x-axis for . (Example 4)-4 6 x 6 2.5
y = 2x2

+ 3x - 20

SECTION P.7 Solving Inequalities Algebraically and Graphically 55

Union of Two Sets
The union of two sets A and B, denoted by

is the set of all objects that belong to A or
B or both.
A ´ B,
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EXAMPLE 7 Solving a Cubic Inequality
Solve graphically.

SOLUTION We can use the graph of in Figure P.49 to show
that the solutions of the corresponding equation are approxi-
mately , and 0.62. The points on the graph of are
above the x-axis for values of x between and , and for values of x to the
right of 0.62.

The solution of the inequality is 2. We use square brackets
because the zeros of are also solutions of the inequality.

Now try Exercise 27.
y = x3

+ 2x2
- 1

3-1.62, -14 h  30.62, q

-1-1.62
y = x3

+ 2x2
- 1-1.62, -1

x3
+ 2x2

- 1 = 0
y = x3

+ 2x2
- 1

x3
+ 2x2

- 1 Ú 0

EXAMPLE 6 Showing That a Quadratic Inequality 
Has No Solution

Solve .

SOLUTION Figure P.48 shows that the graph of lies above the
x-axis for all values for x. Thus, the inequality has no solution.

Now try Exercise 25.
x2

+ 2x + 2 6 0
y = x2

+ 2x + 2

x2
+ 2x + 2 6 0

EXAMPLE 5 Solving a Quadratic Inequality Graphically
Solve graphically.

SOLUTION We can use the graph of in Figure P.47 to deter-
mine that the solutions of the equation are about 0.27 and 3.73.
Thus, the solution of the original inequality is 1 2. We use
square brackets because the zeros of the quadratic equation are solutions of the in-
equality even though we only have approximations to their values.

Now try Exercise 21.

- q , 0.274 h  33.73, q
x2

- 4x + 1 = 0
y = x2

- 4x + 1

x2
- 4x + 1 Ú 0

[–3, 7] by [–4, 6]

X=.26794919   Y=0
Zero

[–3, 7] by [–4, 6]

X=3.7320508   Y=1E–12
Zero

FIGURE P.47 This figure suggests that is zero for 
and (Example 5)x L 3.73.

x L 0.27y = x2
- 4x + 1

Figure P.48 also shows that the solution of the inequality is the set of
all real numbers or, in interval notation, 1 2. A quadratic inequality can also
have exactly one solution (see Exercise 31).

Approximating Solutions to Inequalities
To solve the inequality in Example 7 we approximate the zeros of the corresponding
graph. Then we determine the values of x for which the corresponding graph is above
or on the x-axis.

- q , q
x2

+ 2x + 2 7 0

[–5, 5] by [–2, 5]

FIGURE P.48 The values of 
are never negative. (Example 6)2x + 2

y = x2
+
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Projectile Motion
Suppose an object is launched vertically from a point feet above the ground
with an initial velocity of feet per second. The vertical position s (in feet) of
the object t seconds after it is launched is

s = -16t 2
+ v0t + s0.

v0

s0

SECTION P.7 Solving Inequalities Algebraically and Graphically 57

EXAMPLE 8 Finding Height of a Projectile
A projectile is launched straight up from ground level with an initial velocity of 288
ft/sec.

(a) When will the projectile’s height above ground be 1152 ft?

(b) When will the projectile’s height above ground be at least 1152 ft?

SOLUTION Here and . So, the projectile’s height is
.

(a) We need to determine when .

Substitute .

Add 

Divide by 16.

Factor.

Solve for .

The projectile is 1152 ft above ground twice; the first time at sec on the way
up, and the second time at sec on the way down (Figure P.50).

(b) The projectile will be at least 1152 ft above ground when . We can see
from Figure P.50 together with the algebraic work in (a) that the solution is [6, 12].
This means that the projectile is at least 1152 ft above ground for times between

sec and sec, including 6 and 12 sec.

In Exercise 32 we ask you to use algebra to solve the inequality 
. Now try Exercise 33.288t Ú 1152

s = -16t 2 
+

t = 12t = 6

s Ú 1152

t = 12
t = 6

tt = 6 or t = 12

 (t - 6)(t - 12) = 0

 t 2
- 18t + 72 = 0

16t 
2

- 288t. 16t 2
- 288t + 1152 = 0

s = 1152 1152 = -16t 2
+ 288t

 s = -16t 2
+ 288t

s = 1152

s = -16t 2
+ 288t

v0 = 288s0 = 0

[–3, 3] by [–2, 2]

X=–1.618034 Y=0
Zero

FIGURE P.49 The graph of appears to be above the x-axis between the
two negative x-intercepts and to the right of the positive x-intercept. (Example 7)

2x2
- 1y = x3

+

[0, 20] by [0, 1500]

FIGURE P.50 The graphs of
and . We know

from Example 8a that the two graphs intersect
at 16, 1152 and 112, 1152 .22

s = 1152s = -16t 2
+ 288t

Projectile Motion
The movement of an object that is propelled vertically, but then subject only to the
force of gravity, is an example of projectile motion.
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QUICK REVIEW P.7

In Exercises 7 and 8, reduce the fraction to lowest terms.

7. 8.

In Exercises 9 and 10, add the fractions and simplify.

9. 10.
2x - 1

x2
- x - 2

+

x - 3

x2
- 3x + 2

x

x - 1
+

x + 1

3x - 4

x2
+ 2x - 35

x2
- 10x + 25

z2
- 25

z2
- 5z

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–3, solve for x.

1. 2.

3.

In Exercises 4–6, factor the expression completely.

4.

5. 6. 9x2
- 16y2x3

- 4x

4x2
- 9

ƒ x + 2 ƒ = 3

5x - 2 Ú 7x + 4-7 6 2x - 3 6 7

SECTION P.7 EXERCISES

In Exercises 1–8, solve the inequality algebraically. Write the solution in
interval notation and draw its number line graph.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–16, solve the inequality. Use algebra to solve the corre-
sponding equation.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–26, solve the inequality graphically.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, solve the cubic inequality graphically.

27. 28.

29. 30.

31. Group Activity Give an example of a quadratic inequal-
ity with the indicated solution.

(a) All real numbers (b) No solution

(c) Exactly one solution (d)

(e) (f) 1- q , 04 h  34, q21- q , -12 h  14, q2
3-2, 54

4 … 2x3
+ 8x2x3

+ 2x 7 5

8x - 2x3
- 1 6 03x3

- 12x + 2 Ú 0

9x2
+ 12x + 4 Ú 0x2

- 8x + 16 6 0

x2
+ 9 … 6x4x2

+ 1 7 4x

4x2
- 12x + 7 6 09x2

+ 12x - 1 Ú 0

4x2
- 1 … 06x2

- 5x - 4 7 0

12x2
- 25x + 12 Ú 0x2

- 4x 6 1

x3
- x2

- 30x … 0x3
- x Ú 0

21 + 4x - x2
7 02 - 5x - 3x2

6 0

4x2
+ 2 6 9x2x2

+ 7x 7 15

6x2
- 13x + 6 Ú 02x2

+ 17x + 21 … 0

` x - 5

4
` … 6` x + 2

3
` Ú 3

ƒ 3 - 2x ƒ + 2 7 5ƒ 4 - 3x ƒ - 2 6 4

ƒ x + 3 ƒ … 5ƒ x - 3 ƒ 6 2

ƒ 2x - 1 ƒ 7 3.6ƒ x + 4 ƒ Ú 5

33. Projectile Motion A projectile is launched straight up
from ground level with an initial velocity of 256 ft/sec.

(a) When will the projectile’s height above ground be 768 ft?

(b) When will the projectile’s height above ground be at least
768 ft? 

(c) When will the projectile’s height above ground be less than
or equal to 768 ft?

34. Projectile Motion A projectile is launched straight up
from ground level with an initial velocity of 272 ft/sec.

(a) When will the projectile’s height above ground be 960 ft?

(b) When will the projectile’s height above ground be more
than 960 ft?

(c) When will the projectile’s height above ground be less than
or equal to 960 ft?

35. Writing to Learn Explain the role of equation solving
in the process of solving an inequality. Give an example.

36. Travel Planning Barb wants to drive to a city 105 mi
from her home in no more than 2 h. What is the lowest average
speed she must maintain on the drive?

37. Connecting Algebra and Geometry Consider the
collection of all rectangles that have length 2 in. less than twice
their width.

(a) Find the possible widths (in inches) of these rectangles if
their perimeters are less than 200 in.

(b) Find the possible widths (in inches) of these rectangles if
their areas are less than or equal to .

38. Boyle’s Law For a certain gas, , where P is
pressure and V is volume. If , what is the corre-
sponding range for P?

39. Cash-Flow Planning A company has current assets
(cash, property, inventory, and accounts receivable) of $200,000
and current liabilities (taxes, loans, and accounts payable) of
$50,000. How much can it borrow if it wants its ratio of assets
to liabilities to be no less than 2? Assume the amount borrowed
is added to both current assets and current liabilities.

20 … V … 40
P = 400/V

1200 in.2

32. Revisiting Example 8 Solve the inequality 
algebraically and compare your answer with the

result obtained in Example 10.
288t Ú 1152

-16t 2
+
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CHAPTER P Key Ideas

Properties, Theorems, and Formulas
Trichotomy Property 4
Properties of Algebra 6
Properties of Equality 21
Properties of Inequalities 23
Distance Formulas 13, 14
Midpoint Formula (Coordinate Plane) 15
Quadratic Formula 42

Equations of a Line 30
Equations of a Circle 15

Procedures
Completing the Square 41
Solving Quadratic Equations Algebraically 43
Agreement About Approximate Solutions 43

Standardized Test Questions
40. True or False The absolute value inequality ,

where a and b are real numbers, always has at least one solu-
tion. Justify your answer.

41. True or False Every real number is a solution of the ab-
solute value inequality , where a is a real number.
Justify your answer.

In Exercises 42–45, solve these problems without using a calculator.

42. Multiple Choice Which of the following is the solution
to ?

(A) (B)

(C) (D)

(E)

43. Multiple Choice Which of the following is the solution
to ?

(A) 30, 24 (B) 1
(C) 1 (D) All real numbers

(E) There is no solution.

44. Multiple Choice Which of the following is the solution
to ?

(A) 1 (B) 1
(C) 2 (D) 2
(E) There is no solution.

10, q11, q

- q , 04 ´ 31, q )2- q , 02 ´ 11, q2
x2

7 x

- q , 04 ´ 32, q2
- q , 02 ´ 12, q2

x2
- 2x + 2 Ú 0

1-1, 52
1- q , -12 ´ 15, q23-1, 54
3-1, 52x = -1 or x = 5

ƒ x - 2 ƒ 6 3

ƒ x - a ƒ Ú 0

ƒ x - a ƒ 6 b

45. Multiple Choice Which of the following is the solution
to ?

(A) 1 (B)

(C) 2 (D)

(E) There is no solution.

Explorations
46. Constructing a Box with No Top An open box is

formed by cutting squares from the corners of a regular piece
of cardboard (see figure) and folding up the flaps.

(a) What size corner squares should be cut to yield a box with
a volume of ? 

(b) What size corner squares should
be cut to yield a box with a vol-
ume more than ?

(c) What size corner squares should
be cut to yield a box with a vol-
ume of at most ?

Extending the Ideas
In Exercises 47 and 48, use a combination of algebraic and graphical
techniques to solve the inequalities.

47. 48. ƒ 2x2
+ 3x - 20 ƒ Ú 10ƒ 2x2

+ 7x - 15 ƒ 6 10

125 in.3

125 in.3

125 in.3

3-1, 1431, q

1-1, 12- q , 14
x2

… 1

12 in.

15 in.

x
x
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CHAPTER P Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1 and 2, find the endpoints and state whether the interval
is bounded or unbounded.

1. 30, 54 2. 1 2
3. Distributive Property Use the distributive property

to write the expanded form of . 

4. Distributive Property Use the distributive property
to write the factored form of .

In Exercises 5 and 6, simplify the expression. Assume that denomina-
tors are not zero.

5. 6.

In Exercises 7 and 8, write the number in scientific notation.

7. The mean distance from Pluto to the Sun is about
3,680,000,000 miles.

8. The diameter of a red blood corpuscle is about 0.000007 me-
ter.

In Exercises 9 and 10, write the number in decimal form.

9. Our solar system is about years old.

10. The mass of an electron is about g (gram).

11. The data in Table P.9 give the Fiscal 2009 final budget for some
Department of Education programs. Using scientific notation
and no calculator, write the amount in dollars for the programs.

9.1094 * 10 -28

5 * 109

13x2y32-2
1uv223
v2u3

2x3
+ 4x2

21x2
- x2

2, q

Table P.9 Fiscal 2009 Budget

Program Amount

Title 1 district grants $14.5 billion
Title 1 school improvement grants $545.6 million
IDEA (Individuals with Disabilities $11.5 billion
Education Act) state grants
Teacher Incentive Fund $97 million
Head Start $7.1 billion

Source: U.S. Departments of Education, Health and Human
Services as reported in Education Week, May 13, 2009.

(a) Title 1 district grants

(b) Title 1 school improvement grants

(c) IDEA state grants

(d) Teacher Incentive Fund

(e) Head Start

12. Decimal Form Find the decimal form for . State
whether it repeats or terminates.

-5/11

In Exercises 13 and 14, find (a) the distance between the points and
(b) the midpoint of the line segment determined by the points.

13. and 14 14. 1 and 2
In Exercises 15 and 16, show that the figure determined by the points
is the indicated type.

15. Right triangle: , 13, 112, 17, 92
16. Equilateral triangle: 10, 12, 14, 12, 

In Exercises 17 and 18, find the standard form equation for the circle.

17. Center 10, 02, radius 2

18. Center radius 4

In Exercises 19 and 20, find the center and radius of the circle.

19.

20.

21. (a) Find the length of the sides of
the triangle in the figure.

(b) Writing to Learn Show
that the triangle is a right trian-
gle.

22. Distance and Absolute Value Use absolute value
notation to write the statement that the distance between z and

is less than or equal to 1.

23. Finding a Line Segment with Given Midpoint
Let 13, 52 be the midpoint of the line segment with endpoints

and 1a, b2. Determine a and b. 

24. Finding Slope Find the slope of the line through the 

points

25. Finding Point-Slope Form Equation Find an
equation in point-slope form for the line through the point 

with slope 

26. Find an equation of the line through the points and
in the general form 

In Exercises 27–32, find an equation in slope-intercept form for the line.

27. The line through with slope 

28. The line through the points and 13, 2)

29. The line through 1 , 42 with slope 

30. The line 

31. The line through and parallel to the line

32. The line through 12, 2 and perpendicular to the line

2x + 5y = 3

-3

2x + 5y = 3

12, -32
3x - 4y = 7

m = 0-2

1-1, -42
m = 4/513, -22

Ax + By + C = 0.12, -52
1-5, 42

m = -2/3.12, -12

1-1, -22 and 14, -52.

1-1, 12

-3

x2
+ y2

= 1

(x + 5)2
+ ( y + 4)2

= 9

15, -32,

12, 1 - 2232
1-2, 12

15, -1-4, 32-5

y

x

(5, 6)

(–3, 2)

(–1, –2)
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(a) Let represent 2000, represent 2001, and so
forth. Draw a scatter plot of the data.

(b) Use the 2001 and 2006 data to write a linear equation for
the average SAT math score y in terms of the year x. Su-
perimpose the graph of the linear equation on the scatter
plot in (a).

(c) Use the equation in (b) to estimate the average SAT math
score in 2007. Compare with the actual value of 515.

(d) Use the equation in (b) to predict the average SAT math
score in 2010.

34. Consider the point 1 and Line . Write
an equation (a) for the line passing through this point and par-
allel to L, and (b) for the line passing through this point and
perpendicular to L. Support your work graphically.

In Exercises 35 and 36, assume that each graph contains the origin
and the upper right-hand corner of the viewing window.

35. Find the slope of the line in the figure.

L: 4x - 3y = 5-6, 32

x = 1x = 0

Table P.10 Average SAT Math Scores

Year SAT Math Score

2000 514
2001 514
2002 516
2003 519
2004 518
2005 520
2006 518
2007 515
2008 515

Source: The World Almanac and Book of Facts, The New York
Times, June, 2009.

[–10, 10] by [–25, 25]

36. Writing to Learn Which line has the greater slope?
Explain.

(a)

[–6, 6] by [–4, 4]

(b)

[–15, 15] by [–12, 12]

33. SAT Math Scores The SAT scores are measured on an
800-point scale. The data in Table P.10 show the average SAT
math score for several years.

In Exercises 37–52, solve the equation algebraically without using a
calculator.

37. 38.

39.

40. 41.

42. 43.

44. 45.

46. 47.

48. 49.

50. 51.

52.

53. Completing the Square Use completing the square
to solve the equation .

54. Quadratic Formula Use the quadratic formula to
solve the equation .

In Exercises 55–58, solve the equation graphically.

55. 56.

57. 58.

In Exercises 59 and 60, solve the inequality and draw a number line
graph of the solution.

59. 60.

In Exercises 61–72, solve the inequality.

61. 62.

63. 64.

65. 66.

67. 68. 4x3
- 9x + 2 7 0x3

- 9x … 3

9x2
- 12x - 1 … 02x2

- 2x - 1 7 0

4x2
+ 3x 7 10ƒ 3x + 4 ƒ Ú 2

ƒ 2x - 5 ƒ 6 7
3x - 5

4
… -1

5x + 1 Ú 2x - 4-2 6 x + 4 … 7

ƒ 2x - 1 ƒ = 4 - x2x3
- 2x2

- 2 = 0

x3
+ 2x2

- 4x - 8 = 03x3
- 19x2

- 14x = 0

3x2
+ 4x - 1 = 0

2x2
- 3x - 1 = 0

x2
- 2x + 4 = 0

x2
- 6x + 13 = 04x2

- 4x + 2 = 0

x2
= 3x-9x2

+ 12x - 4 = 0

4x2
- 20x + 25 = 0ƒ 4x + 1 ƒ = 3

x12x + 52 = 41x + 722x2
+ 8x = 0

6x2
+ 7x = 316x2

- 24x + 7 = 0

x2
- 4x - 3 = 0313x - 122 = 21

215 - 2y2 - 311 - y2 = y + 1

x - 2

3
+

x + 5

2
=

1

3
3x - 4 = 6x + 5
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69. 70.

71. 72.

In Exercises 73–80, perform the indicated operation, and write the re-
sult in the standard form without using a calculator.

73. 74.

75. 76.

77. 78.

79. 80.

81. Projectile Motion A projectile is launched straight up
from ground level with an initial velocity of 320 ft/sec.

(a) When will the projectile’s height above ground be 1538 ft?

2 + 3i

1 - 5i
2-16

i2911 + 2i2211 - 2i22
11 + i2311 + 2i213 - 2i2
15 - 7i2 - 13 - 2i213 - 2i2 + 1-2 + 5i2

a + bi

x2
- 6x + 9 6 04x2

+ 12x + 9 Ú 0

2x2
+ 3x - 35 6 0` x + 7

5
` 7 2

(b) When will the projectile’s height above ground be at most
1538 ft?

(c) When will the projectile’s height above ground be greater
than or equal to 1538 ft?

82. Navigation A commercial jet airplane climbs at takeoff
with slope . How far in the horizontal direction will
the airplane fly to reach an altitude of 20,000 ft above the
takeoff point?

83. Connecting Algebra and Geometry Consider
the collection of all rectangles that have length 1 cm more
than three times their width w.

(a) Find the possible widths (in cm) of these rectangles if
their perimeters are less than or equal to 150 cm.

(b) Find the possible widths (in cm) of these rectangles if
their areas are greater than .1500 cm2

m = 4/9
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63

Functions and Graphs

One of the central principles of economics is that the value of money is
not constant; it is a function of time. Since fortunes are made and lost by
people attempting to predict the future value of money, much attention is
paid to quantitative measures like the Consumer Price Index, a basic
measure of inflation in various sectors of the economy. See page 146
for a look at how the Consumer Price Index for housing has behaved 
over time.

1.1 Modeling and Equation
Solving

1.2 Functions and Their
Properties

1.3 Twelve Basic Functions

1.4 Building Functions 
from Functions

1.5 Parametric Relations 
and Inverses

1.6 Graphical Transformations

1.7 Modeling with Functions

CHAPTER 1
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Chapter 1 Overview
In this chapter we begin the study of functions that will continue throughout the book.
Your previous courses have introduced you to some basic functions. These functions
can be visualized using a graphing calculator, and their properties can be described us-
ing the notation and terminology that will be introduced in this chapter. A familiarity
with this terminology will serve you well in later chapters when we explore properties
of functions in greater depth.

64 CHAPTER 1 Functions and Graphs

1.1 Modeling and Equation Solving

What you’ll learn about
• Numerical Models
• Algebraic Models
• Graphical Models
• The Zero Factor Property
• Problem Solving
• Grapher Failure and Hidden

Behavior
• A Word About Proof

... and why
Numerical, algebraic, and
graphical models provide 
different methods to visualize,
analyze, and understand data.

EXAMPLE 1  Tracking the Minimum Wage
The numbers in Table 1.1 show the growth of the minimum hourly wage (MHW)
from 1955 to 2005. The table also shows the MHW adjusted to the purchasing power
of 1996 dollars (using the CPI-U, the Consumer Price Index for all Urban Con-
sumers). Answer the following questions using only the data in the table.

(a) In what five-year period did the actual MHW increase the most?

(b) In what year did a worker earning the MHW enjoy the greatest purchasing
power?

(c) A worker on minimum wage in 1980 was earning nearly twice as much as a
worker on minimum wage in 1970, and yet there was great pressure to raise the
minimum wage again. Why?

SOLUTION

(a) In the period 1975 to 1980 it increased by $1.00. Notice that the minimum wage
never goes down, so we can tell that there were no other increases of this magni-
tude even though the table does not give data from every year.

(b) In 1970.

(c) Although the MHW increased from $1.60 to $3.10 in that period, the purchasing
power actually dropped by $0.57 (in 1996 dollars). This is one way inflation can
affect the economy. Now try Exercise 11.

Source: www.infoplease.com

Table 1.1 The Minimum 
Hourly Wage

Minimum Purchasing 
Hourly Wage Power in 

Year (MHW) 1996 Dollars

1955 0.75 4.39
1960 1.00 5.30
1965 1.25 6.23
1970 1.60 6.47
1975 2.10 6.12
1980 3.10 5.90
1985 3.35 4.88
1990 3.80 4.56
1995 4.25 4.38
2000 5.15 4.69
2005 5.15 4.15

Numerical Models
Scientists and engineers have always used mathematics to model the real world and
thereby to unravel its mysteries. A mathematical model is a mathematical structure
that approximates phenomena for the purpose of studying or predicting their behavior.
Thanks to advances in computer technology, the process of devising mathematical
models is now a rich field of study itself, mathematical modeling.

We will be concerned primarily with three types of mathematical models in this book:
numerical models, algebraic models, and graphical models. Each type of model gives
insight into real-world problems, but the best insights are often gained by switching
from one kind of model to another. Developing the ability to do that will be one of the
goals of this course.

Perhaps the most basic kind of mathematical model is the numerical model, in which
numbers (or data) are analyzed to gain insights into phenomena. A numerical model
can be as simple as the major league baseball standings or as complicated as the net-
work of interrelated numbers that measure the global economy.
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Source: U.S. Justice Department.

Table 1.3 Female Percentage 
of U.S. Prison Population

Year Female

1980 3.9
1985 4.6
1990 5.7
1995 6
2000 6.7
2005 7.1

The numbers in Table 1.1 provide a numerical model for one aspect of the U.S. econ-
omy by using another numerical model, the urban Consumer Price Index (CPI-U), to
adjust the data. Working with large numerical models is standard operating procedure
in business and industry, where computers are relied upon to provide fast and accurate
data processing.

SECTION 1.1 Modeling and Equation Solving 65

EXAMPLE 2  Analyzing Prison Populations
Table 1.2 shows the growth in the number of prisoners incarcerated in state and fed-
eral prisons at year’s end for selected years between 1980 and 2005. Is the proportion
of female prisoners increasing over the years?

SOLUTION The number of female prisoners over the years is certainly increasing,
but so is the total number of prisoners, so it is difficult to discern from the data
whether the proportion of female prisoners is increasing. What we need is another
column of numbers showing the ratio of female prisoners to total prisoners.

We could compute all the ratios separately, but it is easier to do this kind of repetitive
calculation with a single command on a computer spreadsheet. You can also do this
on a graphing calculator by manipulating lists (see Exercise 19). Table 1.3 shows the
percentage of the total population each year that consists of female prisoners. With
these data to extend our numerical model, it is clear that the proportion of female
prisoners is increasing. Now try Exercise 19.

Source: U.S. Justice Department.

Table 1.2 U.S. Prison 
Population (thousands)

Year Total Male Female

1980 329 316 13
1985 502 479 23
1990 774 730 44
1995 1125 1057 68
2000 1391 1298 93
2005 1526 1418 108

Algebraic Models
An algebraic model uses formulas to relate variable quantities associated with the phe-
nomena being studied. The added power of an algebraic model over a numerical model
is that it can be used to generate numerical values of unknown quantities by relating
them to known quantities.

EXAMPLE 3  Comparing Pizzas
A pizzeria sells a rectangular by pizza for the same price as its large round
pizza diameter). If both pizzas are of the same thickness, which option gives the
most pizza for the money?

SOLUTION We need to compare the areas of the pizzas. Fortunately, geometry
has provided algebraic models that allow us to compute the areas from the given in-
formation.

For the rectangular pizza:

For the circular pizza:

The round pizza is larger and therefore gives more for the money.
Now try Exercise 21.

Area = pr 2
= pa24

2
b2

= 144p L 452.4 square inches.

Area = l * w = 18 * 24 = 432 square inches.

(24–

24–18–

The algebraic models in Example 3 come from geometry, but you have probably
encountered algebraic models from many other sources in your algebra and science
courses.
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The ability to generate numbers from formulas makes an algebraic model far more use-
ful as a predictor of behavior than a numerical model. Indeed, one optimistic goal of
scientists and mathematicians when modeling phenomena is to fit an algebraic model
to numerical data and then (even more optimistically) to analyze why it works. Not all
models can be used to make accurate predictions. For example, nobody has ever de-
vised a successful formula for predicting the ups and downs of the stock market as a
function of time, although that does not stop investors from trying.

If numerical data do behave reasonably enough to suggest that an algebraic model
might be found, it is often helpful to look at a picture first. That brings us to graphical
models.

Graphical Models
A graphical model is a visible representation of a numerical model or an algebraic
model that gives insight into the relationships between variable quantities. Learning to
interpret and use graphs is a major goal of this book.

66 CHAPTER 1 Functions and Graphs

Exploration Extensions
Suppose that after the sale, the merchandise
prices are increased by 25%. If m represents
the marked price before the sale, find an alge-
braic model for the post-sale price, including
tax.

EXPLORATION 1 Designing an Algebraic Model

A department store is having a sale in which everything is discounted 25% off

the marked price. The discount is taken at the sales counter, and then a state

sales tax of 6.5% and a local sales tax of 0.5% are added on.

1. The discount price d is related to the marked price m by the formula 
where k is a certain constant. What is k?

2. The actual sale price s is related to the discount price d by the formula
, where t is a constant related to the total sales tax. What is t?

3. Using the answers from steps 1 and 2 you can find a constant p that relates s
directly to m by the formula What is p?

4. If you only have $30, can you afford to buy a shirt marked $36.99?

5. If you have a credit card but are determined to spend no more than $100, what
is the maximum total value of your marked purchases before you present them
at the sales counter?

s = pm.

s = d + td

d = km,

EXAMPLE 4  Visualizing Galileo’s Gravity Experiments
Galileo Galilei (1564–1642) spent a good deal of time rolling balls down inclined
planes, carefully recording the distance they traveled as a function of elapsed time.
His experiments are commonly repeated in physics classes today, so it is easy to
reproduce a typical table of Galilean data.

Elapsed time (seconds) 0 1 2 3 4 5 6 7 8

Distance traveled (inches) 0 0.75 3 6.75 12 18.75 27 36.75 48

What graphical model fits the data? Can you find an algebraic model that fits?

(continued)
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This insight led Galileo to discover several basic laws of motion that would eventually
be named after Isaac Newton. While Galileo had found the algebraic model to describe
the path of the ball, it would take Newton’s calculus to explain why it worked.

SECTION 1.1 Modeling and Equation Solving 67

[–1, 18] by [–8, 56]

FIGURE 1.1 A scatter plot of the data
from a Galileo gravity experiment.
(Example 4)

SOLUTION A scatter plot of the data is shown in Figure 1.1.

Galileo’s experience with quadratic functions suggested to him that this figure was a
parabola with its vertex at the origin; he therefore modeled the effect of gravity as a
quadratic function:

Because the ordered pair 11, 0.752 must satisfy the equation, it follows that
yielding the equation

You can verify numerically that this algebraic model correctly predicts the rest of the
data points. We will have much more to say about parabolas in Chapter 2.

Now try Exercise 23.

d = 0.75t 2.

k = 0.75,

d = kt 2.

EXAMPLE 5  Fitting a Curve to Data
We showed in Example 2 that the percentage of females in the U.S. prison popula-
tion has been steadily growing over the years. Model this growth graphically and use
the graphical model to suggest an algebraic model.

SOLUTION Let t be the number of years after 1980, and let F be the percentage of
females in the prison population from year 0 to year 25. From the data in Table 1.3 we
get the corresponding data in Table 1.4:

Source: U.S. Justice Department.

Table 1.4 Percentage (F) of Females in the Prison Population
t years after 1980

t 0 5 10 15 20 25
F 3.9 4.6 5.7 6.0 6.7 7.1

A scatter plot of the data is shown in Figure 1.2.

This pattern looks linear. If we use a line as our graphical model, we can find an
algebraic model by finding the equation of the line. We will describe in Chapter 2
how a statistician would find the best line to fit the data, but we can get a pretty good
fit for now by finding the line through the points 10, 3.92 and 125, 7.12.
The slope is and the y-intercept is 3.9. Therefore, the
line has equation . You can see from Figure 1.3 that this line does
a very nice job of modeling the data.

Now try Exercises 13 and 15.

y = 0.128x + 3.9
17.1 - 3.92/125 - 02 = 0.128

[–2, 28] by [3, 8]

FIGURE 1.3 The line with equation
is a good model for the

data in Table 1.4. (Example 5)
y = 0.128x + 3.9

[–2, 28] by [3, 8]

FIGURE 1.2 A scatter plot of the data
in Table 1.4. (Example 5)
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There are other ways of graphing numerical data that are particularly useful for statisti-
cal studies. We will treat some of them in Chapter 9. The scatter plot will be our choice
of data graph for the time being, as it provides the closest connection to graphs of func-
tions in the Cartesian plane.

The Zero Factor Property
The main reason for studying algebra through the ages has been to solve equations. We
develop algebraic models for phenomena so that we can solve problems, and the solu-
tions to the problems usually come down to finding solutions of algebraic equations.

If we are fortunate enough to be solving an equation in a single variable, we might pro-
ceed as in the following example.

68 CHAPTER 1 Functions and Graphs

Exploration Extensions
What are the advantages of a linear model 
over a quadratic model for these data?

Prerequisite Chapter
In the Prerequisite chapter we defined solution of
an equation, solving an equation, x-intercept, and
graph of an equation in x and y.

EXPLORATION 2 Interpreting the Model

The parabola in Example 4 arose from a law of physics that governs falling ob-

jects, which should inspire more confidence than the linear model in Example 5.

We can repeat Galileo’s experiment many times with differently sloped ramps,

with different units of measurement, and even on different planets, and a qua-

dratic model will fit it every time. The purpose of this Exploration is to think

more deeply about the linear model in the prison example.

1. The linear model we found will not continue to predict the percentage of
female prisoners in the United States indefinitely. Why must it eventually fail?

2. Do you think that our linear model will give an accurate estimate of the per-
centage of female prisoners in the United States in 2009? Why or why not? 

3. The linear model is such a good fit that it actually calls our attention to the un-
usual jump in the percentage of female prisoners in 1990. Statisticians would
look for some unusual “confounding” factor in 1990 that might explain the
jump. What sort of factors do you think might explain it?

4. Does Table 1.1 suggest a possible factor that might influence female crime
statistics?

EXAMPLE 6  Solving an Equation Algebraically
Find all real numbers x for which .

SOLUTION We begin by changing the form of the equation to
.

We can then solve this equation algebraically by factoring:

or or

or or

Now try Exercise 31.

x = -  

2

3
x =

5

2
x = 0

3x + 2 = 02x - 5 = 0x = 0

 x12x - 5213x + 22 = 0

 x16x2
- 11x - 102 = 0

 6x3
- 11x2

- 10x = 0

6x3
- 11x2

- 10x = 0

6x3
= 11x2

+ 10x
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In Example 6, we used the important Zero Factor Property of real numbers.

SECTION 1.1 Modeling and Equation Solving 69

Solving Equations 
with Technology
Example 7 shows one method of solving an
equation with technology. Some graphers could
also solve the equation in Example 7 by finding
the intersection of the graphs of and

. Some graphers have built-in equa-
tion solvers. Each method has its advantages and
disadvantages, but we recommend the “finding
the x-intercepts” technique for now because it
most closely parallels the classical algebraic
techniques for finding roots of equations, and
makes the connection between the algebraic and
graphical models easier to follow and appreciate.

y = 10 - 4x
y = x2

The Zero Factor Property
A product of real numbers is zero if and only if at least one of the factors in the
product is zero.

It is this property that algebra students use to solve equations in which an expression is
set equal to zero. Modern problem solvers are fortunate to have an alternative way to
find such solutions.

If we graph the expression, then the x-intercepts of the graph of the expression will be
the values for which the expression equals 0.

EXAMPLE 7  Solving an Equation: Comparing Methods
Solve the equation 

SOLUTION

Solve Algebraically
The given equation is equivalent to .

This quadratic equation has irrational solutions that can be found by the quadratic
formula.

and

While the decimal answers are certainly accurate enough for all practical purposes, it
is important to note that only the expressions found by the quadratic formula give the
exact real number answers. The tidiness of exact answers is a worthy mathematical
goal. Realistically, however, exact answers are often impossible to obtain, even with
the most sophisticated mathematical tools.

Solve Graphically
We first find an equivalent equation with 0 on the right-hand side:

. We next graph the equation , as shown in
Figure 1.4.

We then use the grapher to locate the x-intercepts of the graph:

and 

Now try Exercise 35.

x L -5.741657.x L 1.7416574

y = x2
+ 4x - 10x2

+ 4x - 10 = 0

x =

-4 - 216 + 40

2
L -5.7416574

x =

-4 + 216 + 40

2
L 1.7416574

x2
+ 4x - 10 = 0

x2
= 10 - 4x.

[–8, 6] by [–20, 20]

X=–5.741657 Y=0
Zero

FIGURE 1.4 The graph of
. (Example 7)y = x2

+ 4x - 10

We used the graphing utility of the calculator to solve graphically in Example 7. Most
calculators also have solvers that would enable us to solve numerically for the same
decimal approximations without considering the graph. Some calculators have com-
puter algebra systems that will solve numerically to produce exact answers in certain
cases. In this book we will distinguish between these two technological methods and
the traditional pencil-and-paper methods used to solve algebraically.

Every method of solving an equation usually comes down to finding where an expres-
sion equals zero. If we use ƒ1x2 to denote an algebraic expression in the variable x, the
connections are as follows:
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Pólya’s Four Problem-Solving Steps

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan.

4. Look back.

The problem-solving process that we recommend you use throughout this course will
be the following version of Pólya’s four steps.

Problem Solving
George Pólya (1887–1985) is sometimes called the father of modern problem solving,
not only because he was good at it (as he certainly was) but also because he published the
most famous analysis of the problem-solving process: How to Solve It: A New Aspect of
Mathematical Method. His “four steps” are well known to most mathematicians:

70 CHAPTER 1 Functions and Graphs

Fundamental Connection
If a is a real number that solves the equation , then these three state-
ments are equivalent:
1. The number a is a root (or solution) of the equation .

2. The number a is a zero of 

3. The number a is an x-intercept of the graph of . (Sometimes the 
point 1a, 02 is referred to as an x-intercept.)

y = ƒ1x2
y = ƒ1x2.

ƒ1x2 = 0

ƒ1x2 = 0

A Problem-Solving Process

Step 1—Understand the problem.

• Read the problem as stated, several times if necessary.

• Be sure you understand the meaning of each term used.

• Restate the problem in your own words. Discuss the problem with others if
you can.

• Identify clearly the information that you need to solve the problem.

• Find the information you need from the given data.

Step 2—Develop a mathematical model of the problem.

• Draw a picture to visualize the problem situation. It usually helps.

• Introduce a variable to represent the quantity you seek. (In some cases there
may be more than one.)

• Use the statement of the problem to find an equation or inequality that relates
the variables you seek to quantities that you know.

Step 3—Solve the mathematical model and support or confirm the solution.

• Solve algebraically using traditional algebraic methods and support
graphically or support numerically using a graphing utility.

• Solve graphically or numerically using a graphing utility and confirm
algebraically using traditional algebraic methods.

• Solve graphically or numerically because there is no other way possible.
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Step 4—Interpret the solution in the problem setting.

• Translate your mathematical result into the problem setting and decide whether
the result makes sense.

[0, 940] by [0, 150]

X=440          Y=60.2

[0, 940] by [0, 150]

X=850          Y=93

(b)

FIGURE 1.5 Graphical support for the
algebraic solutions in Example 8.

(a)

It is not really necessary to show written support as part of an algebraic solution, but it
is good practice to support answers wherever possible simply to reduce the chance for
error. We will often show written support of our solutions in this book in order to high-
light the connections among the algebraic, graphical, and numerical models.

Grapher Failure and Hidden Behavior
While the graphs produced by computers and graphing calculators are wonderful tools
for understanding algebraic models and their behavior, it is important to keep in mind
that machines have limitations. Occasionally they can produce graphical models that

EXAMPLE 8  Applying the Problem-Solving Process
The engineers at an auto manufacturer pay students $0.08 per mile plus $25 per day
to road test their new vehicles.

(a) How much did the auto manufacturer pay Sally to drive 440 miles in one day?

(b) John earned $93 test-driving a new car in one day. How far did he drive?

SOLUTION

Model
A picture of a car or of Sally or John would not be helpful, so we go directly to de-
signing the model. Both John and Sally earned $25 for one day, plus $0.08 per mile.
Multiply dollars/mile by miles to get dollars.

So if p represents the pay for driving x miles in one day, our algebraic model is

Solve Algebraically
(a) To get Sally’s pay we let and solve for p:

(b) To get John’s mileage we let and solve for x:

Support Graphically
Figure 1.5a shows that the point 1440, 60.202 is on the graph of ,
supporting our answer to (a). Figure 1.5b shows that the point 1850, 932 is on the
graph of , supporting our answer to (b). (We could also have
supported our answer numerically by simply substituting in for each x and confirm-
ing the value of p.)

Interpret
Sally earned $60.20 for driving 440 miles in one day. John drove 850 miles in one
day to earn $93.00.

Now try Exercise 47.

y = 25 + 0.08x

y = 25 + 0.08x

 x = 850

 x =

68

0.08

 68 = 0.08x

 93 = 25 + 0.08x

p = 93

 = 60.20

 p = 25 + 0.0814402
x = 440

p = 25 + 0.08x.
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misrepresent the phenomena we wish to study, a problem we call grapher failure.
Sometimes the viewing window will be too large, obscuring details of the graph which
we call hidden behavior. We will give an example of each just to illustrate what can
happen, but rest assured that these difficulties rarely occur with graphical models that
arise from real-world problems.

72 CHAPTER 1 Functions and Graphs

Technology Note
One way to get the table in Figure 1.6b is to use
the “Ask” feature of your graphing calculator
and enter each x-value separately.

EXAMPLE 9  Seeing Grapher Failure

Look at the graph of in the ZDecimal window on a graphing 

calculator. Are there any x-intercepts?

SOLUTION The graph is shown in Figure 1.6a.

y = 3 -

1

2x2
- 1

[–4.7, 4.7] by [–3.1, 3.1]

X

Y1 = 3–1/   (X2–1)

.8

.9
1
1.1
1.2
1.3
1.4

ERROR
ERROR
ERROR
.81782
1.4924
1.7961
1.9794

Y1

(a) (b)

FIGURE 1.6 (a) A graph with no apparent intercepts. (b) The function 
is undefined when ƒx ƒ … 1.y = 3 - 1/2x2

- 1

The graph seems to have no x-intercepts, yet we can find some by solving the equa-
tion algebraically:

There should be x-intercepts at about What went wrong?

The answer is a simple form of grapher failure. As the table shows, the function is
undefined for the sampled x-values until at which point the graph “turns
on,” beginning with the pixel at 11.1, 0.817822 and continuing from there to the
right. Similarly, the graph coming from the left “turns off” at before it
gets to the x-axis. The x-intercepts might well appear in other windows, but for 
this particular function in this particular window, the behavior we expect to see is
not there.

Now try Exercise 49.

x = -1,

x = 1.1,

�1.054.

 x = � 210/9 L �1.054

 x2
= 10/9

 x2
- 1 = 1/9

 2x2
- 1 = 1/3

 1/2x2
- 1 = 3

 0 = 3 - 1/2x2
- 1

0 = 3 - 1/2x2
- 1
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Teacher Note
Sometimes it is impossible to show all of the de-
tails of a graph in a single window. For example,
in Example 10 the graph in Figure 1.8 reveals
minute details of the graph, but it hides the over-
all shape of the graph.

[–10, 10] by [–500, 500]

EXAMPLE 10  Not Seeing Hidden Behavior
Solve graphically: .

SOLUTION Figure 1.7a shows the graph in the standard by 
window, an inadequate choice because too much of the graph is off the screen. Our
horizontal dimensions look fine, so we adjust our vertical dimensions to 
yielding the graph in Figure 1.7b.

3-500, 5004,
3-10, 1043-10, 104

x3
- 1.1x2

- 65.4x + 229.5 = 0

[4.95, 5.15] by [–0.1, 0.1]

FIGURE 1.8 A closer look at the graph
of . 
(Example 10)

y = x3
- 1.1x2

- 65.4x + 229.5

We use the grapher to locate an x-intercept near (which we find to be ) and
then an x-intercept near 5 (which we find to be 5). The graph leads us to believe that
we have finished. However, if we zoom in closer to observe the behavior near 
the graph tells a new story (Figure 1.8).

In this graph we see that there are actually two x-intercepts near 5 (which we find to be
5 and 5.1). There are therefore three roots (or zeros) of the equation 

, and . Now try Exercise 51.x = 5.165.4x + 229.5 = 0: x = -9, x = 5
x3

- 1.1x2
-

x = 5,

-9-9

[–10, 10] by [–10, 10]

(a) (b)

FIGURE 1.7 The graph of in two viewing
windows. (Example 10)

y = x3
- 1.1x2

- 65.4x + 229.5

You might wonder if there could be still more hidden x-intercepts in Example 10! We
will learn in Chapter 2 how the Fundamental Theorem of Algebra guarantees that there
are not.

A Word About Proof
While Example 10 is still fresh in our minds, let us point out a subtle, but very impor-
tant, consideration about our solution.

We solved graphically to find two solutions, then eventually three solutions, to the
given equation. Although we did not show the steps, it is easy to confirm numerically
that the three numbers found are actually solutions by substituting them into the equa-
tion. But the problem asked us to find all solutions. While we could explore that equa-
tion graphically in a hundred more viewing windows and never find another solution,
our failure to find them would not prove that they are not out there somewhere. That is
why the Fundamental Theorem of Algebra is so important. It tells us that there can be
at most three real solutions to any cubic equation, so we know for a fact that there are
no more.

Exploration is encouraged throughout this book because it is how mathematical
progress is made. Mathematicians are never satisfied, however, until they have proved
their results. We will show you proofs in later chapters and we will ask you to produce
proofs occasionally in the exercises. That will be a time for you to set the technology
aside, get out a pencil, and show in a logical sequence of algebraic steps that something
is undeniably and universally true. This process is called deductive reasoning.
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EXAMPLE 11  Proving a Peculiar Number Fact
Prove that 6 is a factor of for every positive integer n.

SOLUTION You can explore this expression for various values of n on your calcu-
lator. Table 1.5 shows it for the first 12 values of n.

n3
- n

All of these numbers are divisible by 6, but that does not prove that they will con-
tinue to be divisible by 6 for all values of n. In fact, a table with a billion values, all
divisible by 6, would not constitute a proof. Here is a proof:

Let n be any positive integer.

• We can factor as the product of three numbers: 1 .

• The factorization shows that is always the product of three consecutive
integers.

• Every set of three consecutive integers must contain a multiple of 3.

• Since 3 divides a factor of , it follows that 3 is a factor of itself.

• Every set of three consecutive integers must contain a multiple of 2.

• Since 2 divides a factor of , it follows that 2 is a factor of itself.

• Since both 2 and 3 are factors of , we know that 6 is a factor of .

End of proof! Now try Exercise 53.

n3
- nn3

- n

n3
- nn3

- n

n3
- nn3

- n

n3
- n

n - 121n21n + 12n3
- n

QUICK REVIEW 1.1 (For help, go to Section A.2.)

SECTION 1.1 EXERCISES

In Exercises 1–10, match the numerical model to the corresponding
graphical model 1a–j2 and algebraic model 1k–t2.

1.

2.

3.

4.

5.

x 3 5 7 9 12 15

y 6 10 14 18 24 30

x 0 1 2 3 4 5

y 2 3 6 11 18 27

x 2 4 6 8 10 12

y 4 10 16 22 28 34

x 5 10 15 20 25 30

y 90 80 70 60 50 40

x 1 2 3 4 5 6

y 39 36 31 24 15 4

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

Factor the following expressions completely over the real numbers.

1.

2.

3.

4. 3x3
- 15x2

+ 18x

81y2
- 4

x2
+ 10x + 25

x2
- 16

5.

6.

7.

8.

9.

10. x4
+ x2

- 20

2x2
- 11x + 5

x2
- 3x + 4

x2
+ 3x - 4

x2
+ 2xh + h2

16h4
- 81

Table 1.5 The First 12 Values of 

n 1 2 3 4 5 6 7 8 9 10 11 12

0 6 24 60 120 210 336 504 720 990 1320 1716n3
- n

n3 � n
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6.

7.

8.

9.

10.

(k) (l)

(m) (n)

(o) (p)

(q) (r)

(s) (t)

Exercises 11–18 refer to the data in Table 1.6 below, showing the
percentage of the female and male populations in the United States
employed in the civilian work force in selected years from 1954 to
2004.

y =

x - 3

2
y = 2x + 3

y = x2
+ 2y = 2x

y = 3x - 2y = 100 - 2x

y = 2x - 3y = 1x + 121x - 12
y = 40 - x2y = x2

+ x
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x 1 2 3 4 5 6

y 5 7 9 11 13 15

x 5 7 9 11 13 15

y 1 2 3 4 5 6

x 4 8 12 14 18 24

y 20 72 156 210 342 600

x 3 4 5 6 7 8

y 8 15 24 35 48 63

x 4 7 12 19 28 39

y 1 2 3 4 5 6

[–2, 14] by [–4, 36]

(a)

[–1, 6] by [–2, 20]

(b)

[–4, 40] by [–1, 7]

(c)

[–3, 18] by [–2, 32]

(d)

[–1, 7] by [–4, 40]

(e)

[–1, 7] by [–4, 40]

(f)

[–1, 16] by [–1, 9]

(g)

[–5, 30] by [–5, 100]

(h)

[–3, 9] by [–2, 60]

(i)

[–5, 40] by [–10, 650]

( j)

Table 1.6 Employment Statistics

Year Female Male

1954 32.3 83.5
1959 35.1 82.3
1964 36.9 80.9
1969 41.1 81.1
1974 42.8 77.9
1979 47.7 76.5
1984 50.1 73.2
1989 54.9 74.5
1994 56.2 72.6
1999 58.5 74.0
2004 57.4 71.9

Source: www.bls.gov

11. (a) According to the numerical model, what has been the trend
in females joining the work force since 1954?

(b) In what 5-year interval did the percentage of women who
were employed change the most?

12. (a) According to the numerical model, what has been the trend
in males joining the work force since 1954?

(b) In what 5-year interval did the percentage of men who
were employed change the most?

13. Model the data graphically with two scatter plots on the same
graph, one showing the percentage of women employed as a
function of time and the other showing the same for men.
Measure time in years since 1954.

14. Are the male percentages falling faster than the female percent-
ages are rising, or vice versa?

15. Model the data algebraically with linear equations of the form
. Write one equation for the women’s data and

another equation for the men’s data. Use the 1954 and 1999
ordered pairs to compute the slopes.

16. If the percentages continue to follow the linear models you found
in Exercise 15, what will the employment percentages for women
and men be in the year 2009?

17. If the percentages continue to follow the linear models you
found in Exercise 15, when will the percentages of women and
men in the civilian work force be the same? What percentage
will that be?

y = mx + b
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18. Writing to Learn Explain why the percentages cannot
continue indefinitely to follow the linear models that you wrote
in Exercise 15.

19. Doing Arithmetic with Lists Enter the data from
the “Total” column of Table 1.2 of Example 2 into list in
your calculator. Enter the data from the “Female” column into
list . Check a few computations to see that the procedures in
(a) and (b) cause the calculator to divide each element of by
the corresponding entry in , multiply it by 100, and store the
resulting list of percentages in .

(a) On the home screen, enter the command:
.

(b) Go to the top of list and enter .

20. Comparing Cakes A bakery sells a by cake for
the same price as an diameter round cake. If the round cake
is twice the height of the rectangular cake, which option gives
the most cake for the money?

21. Stepping Stones A garden shop sells by square
stepping stones for the same price as round stones. If all of
the stepping stones are the same thickness, which option gives
the most rock for the money?

22. Free Fall of a Smoke Bomb At the Oshkosh, WI, air
show, Jake Trouper drops a smoke bomb to signal the official
beginning of the show. Ignoring air resistance, an object in free
fall will fall d feet in t seconds, where d and t are related by the
algebraic model .

(a) How long will it take the bomb to fall 180 feet?

(b) If the smoke bomb is in free fall for 12.5 seconds after it is
dropped, how high was the airplane when the smoke bomb
was dropped?

23. Physics Equipment A physics student obtains the fol-
lowing data involving a ball rolling down an inclined plane,
where t is the elapsed time in seconds and y is the distance
traveled in inches.

Find an algebraic model that fits the data.

24. U.S. Air Travel The number of revenue passengers en-
planed in the United States over the 14-year period from 1994
to 2007 is shown in Table 1.7.

d = 16t 2

13–

12–12–

8–

13–9–

L3 = 1001L2/L12L3

100 * L2/L1 : L3

L3

L1

L2

L2

L1

(a) Graph a scatter plot of the data. Let x be the number of
years since 1994.

(b) From 1994 to 2000 the data seem to follow a linear model.
Use the 1994 and 2000 points to find an equation of the
line and superimpose the line on the scatter plot.

(c) According to the linear model, in what year did the number
of passengers seem destined to reach 900 million?

(d) What happened to disrupt the linear model?

Exercises 25–28 refer to the graph below, which shows the minimum
salaries in major league baseball over a recent 18-year period and the
average salaries in major league baseball over the same period. Salaries
are measured in dollars and time is measured after the starting year
(year 0).
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t 0 1 2 3 4 5

y 0 1.2 4.8 10.8 19.2 30

Table 1.7 U.S. Air Travel

Passengers Passengers
Year (millions) Year (millions)

1994 528.8 2001 622.1
1995 547.8 2002 614.1
1996 581.2 2003 646.5
1997 594.7 2004 702.9
1998 612.9 2005 738.3
1999 636.0 2006 744.2
2000 666.2 2007 769.2

Source: www.airlines.org

–1

140,000

280,000

420,000

560,000

700,000

840,000

980,000

1,120,000

1,260,000

1,400,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
x

y

Source: Major League Baseball Players Association.

25. Which line is which, and how do you know?

26. After Peter Ueberroth’s resignation as baseball commissioner
in 1988 and his successor’s untimely death in 1989, the team
owners broke free of previous restrictions and began an era of
competitive spending on player salaries. Identify where the
1990 salaries appear in the graph and explain how you can 
spot them.

27. The owners attempted to halt the uncontrolled spending by
proposing a salary cap, which prompted a players’ strike in
1994. The strike caused the 1995 season to be shortened and
left many fans angry. Identify where the 1995 salaries appear in
the graph and explain how you can spot them.

28. Writing to Learn Analyze the general patterns in the
graphical model and give your thoughts about what the long-
term implications might be for

(a) the players;

(b) the team owners;

(c) the baseball fans.

In Exercises 29–38, solve the equation algebraically and confirm graph-
ically.

29.

30. 1x + 1122 = 121

v2
- 5 = 8 - 2v2
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31.

32.

33.

34.

35.

36.

37.

38.

In Exercises 39–46, solve the equation graphically by converting it to
an equivalent equation with 0 on the right-hand side and then finding
the x-intercepts.

39. 40.

41. 42.

43. 44.

45. 46.

47. Swan Auto Rental charges $32 per day plus $0.18 per mile for
an automobile rental.

(a) Elaine rented a car for one day and she drove 83 miles.
How much did she pay?

(b) Ramon paid $69.80 to rent a car for one day. How far did
he drive?

48. Connecting Graphs and Equations The curves on
the graph below are the graphs of the three curves given by

y3 = -x3
- 2x2

+ 5x + 2.

y2 = x3
+ 2x2

- x + 3

y1 = 4x + 5

x2
= ƒx ƒ1x + 12-1

= x -1
+ x

x + 1 = x3
- 2x - 52x - 3 = x3

- 5

2x + 6 = 6 - 225 - xƒ2x - 5 ƒ = 4 - ƒx - 3 ƒ

ƒ3x - 2 ƒ = 22x + 82x - 5 = 2x + 4

2x + x = 1

x + 1 - 22x + 4 = 0

x2
- 3x + 4 = 2x2

- 7x - 8

x1x + 72 = 14

x12x - 12 = 10

x12x - 52 = 12

x2
- 7x -

3

4
= 0

2x2
- 5x + 2 = 1x - 321x - 22 + 3x (b) Write an equation that can be solved to find the x-intercepts

of the graph of 

(c) Writing to Learn How does the graphical model
reflect the fact that the answers to (a) and (b) are equiva-
lent algebraically?

(d) Confirm numerically that the x-intercepts of give 
the same values when substituted into the expressions for 

and .

49. Exploring Grapher Failure Let .

(a) Explain algebraically why for all 

(b) Graph the equation in the window [0, 1] by
30, 14.

(c) Is the graph different from the graph of ?

(d) Can you explain why the grapher failed?

50. Connecting Algebra and Geometry Explain how
the algebraic equation models the
areas of the regions in the geometric figure shown below on 
the left:

1x + b22 = x2
+ 2bx + b2

y = x

y = 1x20021/200

x Ú 0.y = x

y = 1x20021/200

y2y1

y3

y3.
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15

10

5

–10

y

–5

x
–5 –4 –2 –1 31 4 5

(a) Write an equation that can be solved to find the points of 
intersection of the graphs of and y2.y1

x

x

b

b

(Ex. 50)

x

x

b
2

b
2

(Ex. 52)

51. Exploring Hidden Behavior Solving graphically,
find all real solutions to the following equations. Watch out for
hidden behavior.

(a)

(b)

52. Connecting Algebra and Geometry The geomet-
ric figure shown on the right above is a large square with a
small square missing.

(a) Find the area of the figure.

(b) What area must be added to complete the large square?

(c) Explain how the algebraic formula for completing the
square models the completing of the square in (b).

53. Proving a Theorem Prove that if n is a positive inte-
ger, then is either odd or a multiple of 4. Compare
your proof with those of your classmates.

n2
+ 2n

y = x3
+ x2

- 4.99x + 3.03

y = 10x3
+ 7.5x2

- 54.85x + 37.95
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54. Writing to Learn The graph below shows the distance
from home against time for a jogger. Using information from
the graph, write a paragraph describing the jogger’s workout.

Explorations
61. Analyzing the Market Both Ahmad and LaToya

watch the stock market throughout the year for stocks that
make significant jumps from one month to another. When they
spot one, each buys 100 shares. Ahmad’s rule is to sell the
stock if it fails to perform well for three months in a row.
LaToya’s rule is to sell in December if the stock has failed to
perform well since its purchase.

The graph below shows the monthly performance in dollars
(Jan–Dec) of a stock that both Ahmad and LaToya have been
watching.
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y

x

Time

D
is

ta
nc

e

Standardized Test Questions
55. True or False A product of real numbers is zero if and

only if every factor in the product is zero. Justify your answer.

56. True or False An algebraic model can always be used to
make accurate predictions.

In Exercises 57–60, you may use a graphing calculator to decide which
algebraic model corresponds to the given graphical or numerical model.

(A) (B)

(C) (D)

(E)

57. Multiple Choice

58. Multiple Choice

59. Multiple Choice

60. Multiple Choice

y = 28 - x

y = 4x + 3y = 12 - 3x

y = x2
+ 5y = 2x + 3

[0, 6] by [–9, 15]

[0, 9] by [0, 6]

x 1 2 3 4 5 6

y 6 9 14 21 30 41

x 0 2 4 6 8 10

y 3 7 11 15 19 23

Stock Index

Ja
n.

140

130

120

110

100

Fe
b.

M
ar.

Apr.
M

ay
Ju

ne
Ju

ly
Aug

.
Sep

t.

Oct
.
Nov

.
Dec

.

(a) Both Ahmad and LaToya bought the stock early in the
year. In which month?

(b) At approximately what price did they buy the stock?

(c) When did Ahmad sell the stock?

(d) How much did Ahmad lose on the stock?

(e) Writing to Learn Explain why LaToya’s strategy
was better than Ahmad’s for this particular stock in this
particular year.

(f) Sketch a 12-month graph of a stock’s performance that
would favor Ahmad’s strategy over LaToya’s.

62. Group Activity Creating Hidden Behavior
You can create your own graphs with hidden behavior. Work-
ing in groups of two or three, try this exploration.

(a) Graph the equation in the
window by .

(b) Confirm algebraically that this function has zeros only at
and .

(c) Graph the equation in the
window by 3-10, 1043-4, 44

y = 1x + 221x2
- 4x + 4.012

x = 2x = -2

3-10, 1043-4, 44
y = 1x + 221x2

- 4x + 42
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(d) Confirm algebraically that this function has only one zero,
at . (Use the discriminant.)

(e) Graph the equation in
the window by .

(f) Confirm algebraically that this function has three zeros.
(Use the discriminant.)

Extending the Ideas
63. The Proliferation of Cell Phones Table 1.8

shows the number of cellular phone subscribers in the United
States and their average monthly bill in the years from 1998 to
2007.

3-10, 1043-4, 44
1x + 221x2

- 4x + 3.992
x = -2

(a) Graph the scatter plots of the number of subscribers and
the average local monthly bill as functions of time, letting
time the number of years after 1990.

(b) One of the scatter plots clearly suggests a linear model in
the form . Use the points at and 
to find a linear model.

(c) Superimpose the graph of the linear model onto the scatter
plot. Does the fit appear to be good?

(d) Why does a linear model seem inappropriate for the other
scatter plot? Can you think of a function that might fit the
data better?

(e) In 1995 there were 33.8 million subscribers with an aver-
age local monthly bill of $51.00. Add these points to the
scatter plots.

(f) Writing to Learn The 1995 points do not seem to
fit the models used to represent the 1998–2004 data. Give a
possible explanation for this.

64. Group Activity (Continuation of Exercise 63) Discuss
the economic forces suggested by the two models in Exercise
63 and speculate about the future by analyzing the graphs.

t = 16t = 8y = mx + b

t =

SECTION 1.1 Modeling and Equation Solving 79

Table 1.8 Cellular Phone Subscribers

Subscribers Average Local
Year (millions) Monthly Bill ($)

1998 69.2 39.43
1999 86.0 41.24
2000 109.5 45.27
2001 128.4 47.37
2002 140.8 48.40
2003 158.7 49.91
2004 182.1 50.64
2005 207.9 49.98
2006 233.0 50.56
2007 255.4 49.79

Source: Cellular Telecommunication & Internet Association.
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1.2 Functions and Their 
Properties

In this section we will introduce the terminology that is used to describe functions
throughout this book. Feel free to skim over parts with which you are already famil-
iar, but take the time to become comfortable with concepts that might be new to you
(like continuity and symmetry). Even if it takes several days to cover this section, it
will be precalculus time well spent.

Function Definition and Notation
Mathematics and its applications abound with examples of formulas by which quantita-
tive variables are related to each other. The language and notation of functions is ideal
for that purpose. A function is actually a simple concept; if it were not, history would
have replaced it with a simpler one by now. Here is the definition.

What you’ll learn about
• Function Definition and Notation
• Domain and Range
• Continuity
• Increasing and Decreasing Func-

tions
• Boundedness
• Local and Absolute Extrema
• Symmetry
• Asymptotes
• End Behavior

... and why
Functions and graphs form the
basis for understanding the math-
ematics and applications you will
see both in your workplace and
in coursework in college.

There are many ways to look at functions. One of the most intuitively helpful is the
“machine” concept (Figure 1.9), in which values of the domain 1x2 are fed into the ma-
chine 1the function ƒ2 to produce range values 1y2. To indicate that y comes from the
function acting on x, we use Euler’s elegant function notation 1which we
read as “y equals ƒ of x” or “ the value of ƒ at x”2. Here x is the independent variable
and y is the dependent variable.

A function can also be viewed as a mapping of the elements of the domain onto the el-
ements of the range. Figure 1.10a shows a function that maps elements from the do-
main X onto elements of the range Y. Figure 1.10b shows another such mapping, but
this one is not a function, since the rule does not assign the element to a unique
element of Y.

x1

y = ƒ1x2

(a) (b)

A function

Domain

X XY Y

Range

Not a function

y2 y2

y4
y1 y1

y3 y3

x2 x2

x1 x1

x3 x3
x4

x4

FIGURE 1.10 The diagram in (a) depicts a mapping from X to Y that is a function. The dia-
gram in (b) depicts a mapping from X to Y that is not a function.

x

f

f (x)

FIGURE 1.9 A “machine” diagram for a
function.

A Bit of History
The word function in its mathematical sense is
generally attributed to Gottfried Leibniz
(1646–1716), one of the pioneers in the methods
of calculus. His attention to clarity of notation is
one of his greatest contributions to scientific
progress, which is why we still use his notation
in calculus courses today. Ironically, it was not
Leibniz but Leonhard Euler (1707–1783) who
introduced the familiar notation ƒ1x2 .

DEFINITION Function, Domain, and Range
A function from a set D to a set R is a rule that assigns to every element in D a
unique element in R. The set D of all input values is the domain of the func-
tion, and the set R of all output values is the range of the function.

6965_CH01_pp063-156.qxd  1/14/10  1:00 PM  Page 80



This uniqueness of the range value is very important to us as we study function behav-
ior. Knowing that tells us something about ƒ, and that understanding would
be contradicted if we were to discover later that . That is why you will never
see a function defined by an ambiguous formula like .ƒ1x2 = 3x � 2

ƒ122 = 4
ƒ122 = 8

SECTION 1.2 Functions and Their Properties 81

EXAMPLE 1  Defining a Function
Does the formula define y as a function of x?

SOLUTION Yes, y is a function of x. In fact, we can write the formula in function
notation: When a number x is substituted into the function, the square of
x will be the output, and there is no ambiguity about what the square of x is.

Now try Exercise 3.

ƒ1x2 = x2.

y = x2

Another useful way to look at functions is graphically. The graph of the function
is the set of all points in the domain of ƒ. We match domain val-

ues along the x-axis with their range values along the y-axis to get the ordered pairs that
yield the graph of .y = ƒ1x2

1x, ƒ1x22, xy = ƒ1x2

Vertical Line Test
A graph 1set of points 1x, y22 in the xy-plane defines y as a function of x if and
only if no vertical line intersects the graph in more than one point.

EXAMPLE 2  Seeing a Function Graphically
Of the three graphs shown in Figure 1.11, which is not the graph of a function? How
can you tell?

SOLUTION The graph in (c) is not the graph of a function. There are three points
on the graph with x-coordinate 0, so the graph does not assign a unique value to 0.
(Indeed, we can see that there are plenty of numbers between and 2 to which the
graph assigns multiple values.) The other two graphs do not have a comparable prob-
lem because no vertical line intersects either of the other graphs in more than one
point. Graphs that pass this vertical line test are the graphs of functions.

Now try Exercise 5.

-2

[–4.7, 4.7] by [–3.3, 3.3]

(a)

[–4.7, 4.7] by [–3.3, 3.3]

(b)
[–4.7, 4.7] by [–3.3, 3.3]

(c)

FIGURE 1.11 One of these is not the graph of a function. (Example 2)

Domain and Range
We will usually define functions algebraically, giving the rule explicitly in terms of the
domain variable. The rule, however, does not tell the complete story without some con-
sideration of what the domain actually is.
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For example, we can define the volume of a sphere as a function of its radius by the for-
mula

1Note that this is “V of r”—not “ ”2.
This formula is defined for all real numbers, but the volume function is not defined for
negative r-values. So, if our intention were to study the volume function, we would re-
strict the domain to be all .r Ú 0

V # rV1r2 =

4

3
 pr 3

82 CHAPTER 1 Functions and Graphs

What About Data?
When moving from a numerical model to an al-
gebraic model we will often use a function to ap-
proximate data pairs that by themselves violate
our definition. In Figure 1.12 we can see that
several pairs of data points fail the vertical line
test, and yet the linear function approximates the
data quite well.

[–1, 10] by [–1, 11]

FIGURE 1.12 The data points fail the ver-
tical line test but are nicely approximated by a
linear function. EXAMPLE 3  Finding the Domain of a Function

Find the domain of each of these functions:

(a)

(b)

(c) , where A1s2 is the area of an equilateral triangle with sides of
length s.

SOLUTION

Solve Algebraically
(a) The expression under a radical may not be negative. We set and

solve to find . The domain of ƒ is the interval 2.
(b) The expression under a radical may not be negative; therefore . Also, the

denominator of a fraction may not be zero; therefore . The domain of g is
the interval 2 with the number 5 removed, which we can write as the union
of two intervals: 2.

(c) The algebraic expression has domain all real numbers, but the behavior being
modeled restricts s from being negative. The domain of A is the interval 2.

Support Graphically
We can support our answers in (a) and (b) graphically, as the calculator should not
plot points where the function is undefined.

(a) Notice that the graph of (Figure 1.13a) shows points only for
, as expected.

(b) The graph of (Figure 1.13b) shows points only for , as
expected. Some calculators might show an unexpected line through the x-axis at

. This line, another form of grapher failure, should not be there. Ignoring
it, we see that 5, as expected, is not in the domain.

(c) The graph of (Figure 1.13c) shows the unrestricted domain of
the algebraic expression: all real numbers. The calculator has no way of know-
ing that s is the length of a side of a triangle. Now try Exercise 11.

y = 123/42s2

x = 5

x Ú 0y = 2x/1x - 52
x Ú -3

y = 2x + 3

30, q

30, 52 ´ 15, q
30, q

x Z 5
x Ú 0

3-3, qx Ú -3
x + 3 Ú 0

A1s2 = 123/42s2

g1x2 =

2x

x - 5

ƒ1x2 = 2x + 3

Note
The symbol “´” is read “union.” It means that
the elements of the two sets are combined to
form one set.

Agreement
Unless we are dealing with a model (like volume) that necessitates a restricted
domain, we will assume that the domain of a function defined by an algebraic
expression is the same as the domain of the algebraic expression, the implied
domain. For models, we will use a domain that fits the situation, the relevant
domain.
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Finding the range of a function algebraically is often much harder than finding the do-
main, although graphically the things we look for are similar: To find the domain we
look for all x-coordinates that correspond to points on the graph, and to find the range
we look for all y-coordinates that correspond to points on the graph. A good approach is
to use graphical and algebraic approaches simultaneously, as we show in Example 4.

SECTION 1.2 Functions and Their Properties 83

[–10, 10] by [–4, 4]

(a)
[–10, 10] by [–4, 4]

(b)

[–10, 10] by [–4, 4]

(c)

FIGURE 1.13 Graphical support of the algebraic solutions in Example 3. The vertical line in (b)
should be ignored because it results from grapher failure. The points in (c) with negative x-coordinates
should be ignored because the calculator does not know that x is a length (but we do).

Function Notation
A grapher typically does not use function nota-
tion. So the function is entered 
as . On some graphers you can eval-
uate ƒ at by entering on the home
screen. On the other hand, on other graphers

means .y1 * 3y1132
y1132x = 3

y1 = x2
+ 1

ƒ1x2 = x2
+ 1

EXAMPLE 4  Finding the Range of a Function

Find the range of the function 

SOLUTION

Solve Graphically

The graph of is shown in Figure 1.14.y =

2
x

ƒ1x2 =

2
x

 .

[–5, 5] by [–3, 3]

FIGURE 1.14 The graph of . Is in the range?y = 0y = 2/x

It appears that is not in the domain (as expected, because a denominator can-
not be zero). It also appears that the range consists of all real numbers except 0.

Confirm Algebraically
We confirm that 0 is not in the range by trying to solve :

(continued)

 2 = 0

 2 = 0 # x

 
2
x

= 0

2/x = 0

x = 0
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Let’s look at these cases individually.

This graph is continuous everywhere. Notice that the graph
has no breaks. This means that if we are studying the be-
havior of the function ƒ for x-values close to any particular
real number a, we can be assured that the ƒ1x2-values will
be close to ƒ1a2.

This graph is continuous everywhere except for the “hole”
at . If we are studying the behavior of this function ƒ
for x-values close to a, we cannot be assured that the ƒ1x2-
values will be close to ƒ1a2. In this case, ƒ1x2 is smaller than
ƒ1a2 for x near a. This is called a removable discontinuity
because it can be patched by redefining ƒ1a2 so as to plug
the hole.

x = a

84 CHAPTER 1 Functions and Graphs

Since the equation is never true, has no solutions, and so is not
in the range. But how do we know that all other real numbers are in the range? We let
k be any other real number and try to solve :

As you can see, there was no problem finding an x this time, so 0 is the only number
not in the range of ƒ. We write the range .

Now try Exercise 17.
1- q , 02 ´ 10, q2

 x =

2

k

 2 = k # x

 
2
x

= k

2/x = k

y = 02/x = 02 = 0

You can see that this is considerably more involved than finding a domain, but we are
hampered at this point by not having many tools with which to analyze function behav-
ior. We will revisit the problem of finding ranges in Exercise 86, after having developed
the tools that will simplify the analysis.

Continuity
One of the most important properties of the majority of functions that model real-world
behavior is that they are continuous. Graphically speaking, a function is continuous at a
point if the graph does not come apart at that point. We can illustrate the concept with a
few graphs (Figure 1.15):

y

x

Continuous at all x

y

x

Continuous at all x

y

x

Removable discontinuity

f (a)

a

y

x

Removable discontinuity

f (a)

a

y

x

Removable discontinuity

a

y

x

Jump discontinuity

a

y

x

Infinite discontinuity

a

FIGURE 1.15 Some points of discontinuity.
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This graph also has a removable discontinuity at . If
we are studying the behavior of this function ƒ for x-values
close to a, we are still not assured that the ƒ1x2-values will
be close to ƒ1a2, because in this case ƒ1a2 doesn’t even ex-
ist. It is removable because we could define ƒ1a2 in such a
way as to plug the hole and make ƒ continuous at a.

Here is a discontinuity that is not removable. It is a jump
discontinuity because there is more than just a hole at

; there is a jump in function values that makes the gap
impossible to plug with a single point 1a, ƒ1a22, no matter
how we try to redefine ƒ1a2.

This is a function with an infinite discontinuity at . It
is definitely not removable.

x = a

x = a

x = a
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y

x

Removable discontinuity

a

y

x

Jump discontinuity

a

y

x

Infinite discontinuity

a

The simple geometric concept of an unbroken graph at a point is a visual notion that is
extremely difficult to communicate accurately in the language of algebra. The key con-
cept from the pictures seems to be that we want the point 1x, ƒ1x22 to slide smoothly
onto the point 1a, ƒ1a22 without missing it from either direction. We say that ƒ1x2 ap-
proaches ƒ1a2 as a limit as x approaches a, and we write This “limit 

notation” reflects graphical behavior so naturally that we will use it throughout this
book as an efficient way to describe function behavior, beginning with this definition of
continuity. A function ƒ is continuous at if A function is 

discontinuous at if it is not continuous at x = a.x � a

 lim
x:a

ƒ1x2 = ƒ1a2.x � a

 lim
x:a

ƒ1x2 = ƒ1a2.

A Limited Use of Limits
While the notation of limits is easy to under-
stand, the algebraic definition of a limit can be 
a little intimidating and is best left to future
courses. We will have more to say about limits in
Chapter 10. For now, if you understand the state-
ment you are where you 

need to be.

lim
x:5
1x2

- 12 = 24,

EXAMPLE 5  Identifying Points of Discontinuity
Judging from the graphs, which of the following figures shows functions that are dis-
continuous at ? Are any of the discontinuities removable?

SOLUTION Figure 1.16 shows a function that is undefined at and hence not
continuous there. The discontinuity at is not removable.

The function graphed in Figure 1.17 is a quadratic polynomial whose graph is a
parabola, a graph that has no breaks because its domain includes all real numbers. It
is continuous for all x.

The function graphed in Figure 1.18 is not defined at and so cannot be contin-
uous there. The graph looks like the graph of the line , except that there is
a hole where the point 12, 42 should be. This is a removable discontinuity.

Now try Exercise 21.

y = x + 2
x = 2

x = 2
x = 2

x = 2

6965_CH01_pp063-156.qxd  1/14/10  1:00 PM  Page 85



Increasing and Decreasing Functions
Another function concept that is easy to understand graphically is the property of being
increasing, decreasing, or constant on an interval. We illustrate the concept with a few
graphs (Figure 1.19):

86 CHAPTER 1 Functions and Graphs

[–9.4, 9.4] by [–6, 6]

FIGURE 1.16 ƒ1x2 =

x + 3

x - 2

[–5, 5] by [–10, 10]

FIGURE 1.17 g1x2 = 1x + 321x - 22
[–9.4, 9.4] by [–6.2, 6.2]

FIGURE 1.18 h1x2 =

x2
- 4

x - 2

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –1 321 4 5

Increasing

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Decreasing

3

1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Constant

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

Decreasing on (–�, –2]
Constant on [–2, 2]
Increasing on [2, �)

FIGURE 1.19 Examples of increasing, decreasing, or constant on an interval.

Once again the idea is easy to communicate graphically, but how can we identify these
properties of functions algebraically? Exploration 1 will help to set the stage for the al-
gebraic definition.

EXPLORATION 1 Increasing, Decreasing, and Constant Data

1. Of the three tables of numerical data below, which would be modeled by a
function that is (a) increasing, (b) decreasing, (c) constant?

X Y1

12

12

0 12

1 12

3 12

7 12

-1

-2

X Y2

3

1

0 0

1

3

7 -12

-6

-2

-1

-2

X Y3

0

1 1

3 4

7 10

-1

-3-1

-5-2
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DEFINITION Increasing, Decreasing, and Constant Function 
on an Interval
A function ƒ is increasing on an interval if, for any two points in the interval, a
positive change in x results in a positive change in ƒ1x2.
A function ƒ is decreasing on an interval if, for any two points in the interval, a
positive change in x results in a negative change in ƒ1x2.
A function ƒ is constant on an interval if, for any two points in the interval, a
positive change in x results in a zero change in ƒ1x2.

Your analysis of the quotients in the exploration should help you to understand
the following definition.

¢Y/¢X

SECTION 1.2 Functions and Their Properties 87

2. Make a list of Y1, the change in Y1 values as you move down the list. As
you move from to , the change is . Do the
same for the values of Y2 and Y3.

3. What is true about the quotients for an increasing function? For a
decreasing function? For a constant function?

4. Where else have you seen the quotient ? Does this reinforce your an-
swers in part 3?

¢Y/¢X

¢Y/¢X

¢Y1 = b - aY1 = bY1 = a
¢

X moves X Y1
from

to 1

to 0 1

0 to 1 1

1 to 3 2

3 to 7 4

-1

-1-2

¢¢ X moves X Y2
from

to 1

to 0 1

0 to 1 1

1 to 3 2

3 to 7 4

-1

-1-2

¢¢ X moves X Y3
from

to 1

to 0 1

0 to 1 1

1 to 3 2

3 to 7 4

-1

-1-2

¢¢

List on a Calculator
Your calculator might be able to help you with
the numbers in Exploration 1. Some calculators
have a “ ” operation that will calculate the
changes as you move down a list. For example,
the command “ ” will store the
differences from L1 into L3. Note that 
(L1) is always one entry shorter than L1 itself.

¢List
¢List (L1) : L3

¢List

≤

EXAMPLE 6  Analyzing a Function for Increasing-
Decreasing Behavior

For each function, tell the intervals on which it is increasing and the intervals on
which it is decreasing.

(a) (b)

SOLUTION

Solve Graphically
(a) We see from the graph in Figure 1.20 that ƒ is decreasing on and

increasing on . (Notice that we include in both intervals. Don’t
worry that this sets up some contradiction about what happens at , because
we only talk about functions increasing or decreasing on intervals, and is not
an interval.)

(continued)

-2
-2

-23-2, q2 1- q , -24

g1x2 =

x2

x2
- 1

ƒ1x2 = 1x + 222
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Now try Exercise 33.

88 CHAPTER 1 Functions and Graphs

(b) We see from the graph in Figure 1.21 that g is increasing on , increasing
again on , decreasing on and decreasing again on .11, q230, 12,1-1, 04 1- q , -12

[–5, 5] by [–3, 5]

FIGURE 1.20 The function decreases on and increases on
. (Example 6)3-2, q2

1- q , -24ƒ1x2 = 1x + 222

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 1.21 The function increases on and ; the
function decreases on and . (Example 6)11, q230, 12

1-1, 041- q , -12g1x2 = x2/1x2
- 12

You may have noticed that we are making some assumptions about the graphs. How do
we know that they don’t turn around somewhere off the screen? We will develop some
ways to answer that question later in the book, but the most powerful methods will
await you when you study calculus.

Boundedness
The concept of boundedness is fairly simple to understand both graphically and alge-
braically. We will move directly to the algebraic definition after motivating the concept
with some typical graphs (Figure 1.22).

y

x

Not bounded above
Not bounded below

y

x

Not bounded above
Bounded below

y

x

Bounded above
Not bounded below

y

x

Bounded

FIGURE 1.22 Some examples of graphs bounded and not bounded above and below.
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We can extend the above definition to the idea of bounded on an interval by restrict-
ing the domain of consideration in each part of the definition to the interval we wish to
consider. For example, the function is bounded above on the interval

and bounded below on the interval .10, q21- q , 02 ƒ1x2 = 1/x

SECTION 1.2 Functions and Their Properties 89

EXAMPLE 7  Checking Boundedness
Identify each of these functions as bounded below, bounded above, or bounded.

(a) (b)

SOLUTION

Solve Graphically
The two graphs are shown in Figure 1.23. It appears that w is bounded below, and p
is bounded.

Confirm Graphically
We can confirm that w is bounded below by finding a lower bound, as follows:

is nonnegative.

Multiply by 3.

Subtract 4.

Thus, is a lower bound for .

We leave the verification that p is bounded as an exercise (Exercise 77).
Now try Exercise 37.

w1x2 = 3x2
- 4-4

 3x2
- 4 Ú -4

 3x2
- 4 Ú 0 - 4

 3x2
Ú 0

x2 x2
Ú 0

p1x2 =

x

1 + x2w1x2 = 3x2
- 4

[–4, 4] by [–5, 5]

(a)

[–8, 8] by [–1, 1]

(b)

FIGURE 1.23 The graphs for Example 7.
Which are bounded where?

Local and Absolute Extrema
Many graphs are characterized by peaks and valleys where they change from increasing
to decreasing and vice versa. The extreme values of the function (or local extrema) can
be characterized as either local maxima or local minima. The distinction can be easily
seen graphically. Figure 1.24 shows a graph with three local extrema: local maxima at
points P and R and a local minimum at Q.

This is another function concept that is easier to see graphically than to describe alge-
braically. Notice that a local maximum does not have to be the maximum value of a
function; it only needs to be the maximum value of the function on some tiny interval.

We have already mentioned that the best method for analyzing increasing and decreas-
ing behavior involves calculus. Not surprisingly, the same is true for local extrema. We
will generally be satisfied in this course with approximating local extrema using a
graphing calculator, although sometimes an algebraic confirmation will be possible
when we learn more about specific functions.

y

x

P

Q

R

FIGURE 1.24 The graph suggests that ƒ
has a local maximum at P, a local minimum at
Q, and a local maximum at R.

DEFINITION Lower Bound, Upper Bound, and Bounded
A function ƒ is bounded below if there is some number b that is less than or
equal to every number in the range of ƒ. Any such number b is called a lower
bound of ƒ.

A function ƒ is bounded above if there is some number B that is greater than 
or equal to every number in the range of ƒ. Any such number B is called an
upper bound of ƒ.

A function ƒ is bounded if it is bounded both above and below.
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EXAMPLE 8  Identifying Local Extrema
Decide whether has any local maxima or local minima. If
so, find each local maximum value or minimum value and the value of x at which
each occurs.

SOLUTION The graph of (Figure 1.25) suggests that there
are two local minimum values and one local maximum value. We use the graphing
calculator to approximate local minima as (which occurs at and

(which occurs at . Similarly, we identify the (approximate) local
maximum as 1.32 (which occurs at ).

Now try Exercise 41.
x L 0.46

x L 1.60)-1.77
x L -2.06)-24.06

y = x4
- 7x2

+ 6x

ƒ1x2 = x4
- 7x2

+ 6x
[–5, 5] by [–35, 15]

X=–2.056546    Y=–24.05728
Minimum

FIGURE 1.25 A graph of 
. (Example 8)7x2

+ 6x
y = x4

-

Symmetry
In the graphical sense, the word “symmetry” in mathematics carries essentially the
same meaning as it does in art: The picture (in this case, the graph) “looks the same”
when viewed in more than one way. The interesting thing about mathematical symme-
try is that it can be characterized numerically and algebraically as well. We will be
looking at three particular types of symmetry, each of which can be spotted easily from
a graph, a table of values, or an algebraic formula, once you know what to look for.
Since it is the connections among the three models (graphical, numerical, and alge-
braic) that we need to emphasize in this section, we will illustrate the various symme-
tries in all three ways, side-by-side.

Using a Grapher to Find Local
Extrema
Most modern graphers have built-in “maximum”
and “minimum” finders that identify local ex-
trema by looking for sign changes in . It is not
easy to find local extrema by zooming in on
them, as the graphs tend to flatten out and hide the
very behavior you are looking at. If you use this
method, keep narrowing the vertical window to
maintain some curve in the graph.

¢y

y

y

x
–x x

(x, y)(–x, y)

FIGURE 1.26 The graph looks the same to
the left of the y-axis as it does to the right of it.

Symmetry with respect to the y-axis
Example: 

Graphically Numerically Algebraically
For all x in the domain of ƒ,

Functions with this property (for example, 
n even) are even functions. xn,

ƒ1-x2 = ƒ1x2.

f (x) = x2

x ƒ1x2
9

4

1

1 1

2 4

3 9

-1

-2

-3

DEFINITION Local and Absolute Extrema
A local maximum of a function ƒ is a value ƒ1c2 that is greater than or equal 
to all range values of ƒ on some open interval containing c. If ƒ1c2 is greater
than or equal to all range values of ƒ, then ƒ1c2 is the maximum 1or absolute
maximum2 value of ƒ.

A local minimum of a function ƒ is a value ƒ1c2 that is less than or equal to all
range values of ƒ on some open interval containing c. If ƒ1c2 is less than or
equal to all range values of ƒ, then ƒ1c2 is the minimum (or absolute mini-
mum) value of ƒ.

Local extrema are also called relative extrema.
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Symmetry with respect to the x-axis 
Example: 

Graphically Numerically Algebraically
Graphs with this kind of symmetry are not 
functions (except the zero function), but we 
can say that is on the graph whenever 

is on the graph.1x, y2
1x, -y2

x = y2

SECTION 1.2 Functions and Their Properties 91

x y

9

4

1

1 1

4 2

9 3

-1

-2

-3

x y

1 1

2 8

3 27

-1-1

-8-2

-27-3

y

–y

y

xx

(x, y)

(x, –y)

FIGURE 1.27 The graph looks the
same above the x-axis as it does below it.

Symmetry with respect to the origin
Example: 

Graphically Numerically Algebraically
For all x in the domain of ƒ,

Functions with this property (for example, 
n odd) are odd functions.

xn,

ƒ1-x2 = -ƒ1x2.

f (x) = x3

y

–y

y

x
–x x

(x, y)

(–x, –y)

FIGURE 1.28 The graph looks the
same upside-down as it does rightside-up.

EXAMPLE 9  Checking Functions for Symmetry
Tell whether each of the following functions is odd, even, or neither.

(a) (b) (c)

SOLUTION

(a) Solve Graphically
The graphical solution is shown in Figure 1.29.

h1x2 =

x3

4 - x2g1x2 = x2
- 2x - 2ƒ1x2 = x2

- 3

[–5, 5] by [–4, 4]

FIGURE 1.29 This graph appears to be symmetric with respect to the y-axis, so we
conjecture that ƒ is an even function.

(continued)
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Asymptotes

Consider the graph of the function in Figure 1.32.

The graph appears to flatten out to the right and to the left, getting closer and closer to
the horizontal line We call this line a horizontal asymptote. Similarly, the
graph appears to flatten out as it goes off the top and bottom of the screen, getting
closer and closer to the vertical lines and We call these lines vertical
asymptotes. If we superimpose the asymptotes onto Figure 1.32 as dashed lines, you
can see that they form a kind of template that describes the limiting behavior of the
graph (Figure 1.33 on the next page).

Since asymptotes describe the behavior of the graph at its horizontal or vertical extrem-
ities, the definition of an asymptote can best be stated with limit notation. In this defin-
ition, note that means “x approaches a from the left,” while means “x
approaches a from the right.”

x : a+x : a-

x = 2.x = -2

y = -2.

ƒ1x2 =

2x2

4 - x2

92 CHAPTER 1 Functions and Graphs

Confirm Algebraically
We need to verify that

for all x in the domain of ƒ.

Since this identity is true for all x, the function ƒ is indeed even.

(b) Solve Graphically
The graphical solution is shown in Figure 1.30.

Confirm Algebraically
We need to verify that

So and .

We conclude that g is neither odd nor even.

(c) Solve Graphically
The graphical solution is shown in Figure 1.31.

Confirm Algebraically
We need to verify that

for all x in the domain of h.

Since this identity is true for all x except (which are not in the domain of h),
the function h is odd. Now try Exercise 49.

�2

 = -h1x2
 h1-x2 =

1-x23
4 - 1-x22 =

-x3

4 - x2

h1-x2 = -h1x2

g1-x2 Z -g1x2g1-x2 Z g1x2
 -g1x2 = -x2

+ 2x + 2

 g1x2 = x2
- 2x - 2

 = x2
+ 2x - 2

 g1-x2 = 1-x22 - 21-x2 - 2

g1-x2 Z g1x2 and g1-x2 Z -g1x2.

 = ƒ1x2
 ƒ1-x2 = 1-x22 - 3 = x2

- 3

ƒ1-x2 = ƒ1x2

[–5, 5] by [–4, 4]

FIGURE 1.30 This graph does not appear
to be symmetric with respect to either the y-
axis or the origin, so we conjecture that g is
neither even nor odd.

[–4.7, 4.7] by [–10, 10]

FIGURE 1.31 This graph appears to be
symmetric with respect to the origin, so we
conjecture that h is an odd function.

6

2
1

–1
–2

–6

y

3
4
5

–3
–4
–5

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.32 The graph of
has two vertical asymp-

totes and one horizontal asymptote.
ƒ1x2 = 2x2/14 - x22
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End Behavior
A horizontal asymptote gives one kind of end behavior for a function because it shows
how the function behaves as it goes off toward either “end” of the x-axis. Not all graphs
approach lines, but it is helpful to consider what does happen “out there.” We illustrate
with a few examples.

SECTION 1.2 Functions and Their Properties 93

6

2
1

–1

–6

y

3
4
5

–3
–4
–5

x
–5 –4 –3 –1 31 4 5

FIGURE 1.33 The graph of
with the asymptotes

shown as dashed lines.
ƒ1x2 = 2x2/14 - x22

[–4.7, 4.7] by [–3, 3]

FIGURE 1.34 The graph of
has vertical asymptotes

of and and a horizontal asymp-
tote of . (Example 10)y = 0

x = 2x = -1
y = x/1x2

- x - 22

EXAMPLE 10  Identifying the Asymptotes of a Graph
Identify any horizontal or vertical asymptotes of the graph of

SOLUTION The quotient is undefined at
and , which makes them likely sites for vertical asymptotes. The graph

(Figure 1.34) provides support, showing vertical asymptotes of and .

For large values of x, the numerator (a large number) is dwarfed by the denominator
(a product of two large numbers), suggesting that . This

would indicate a horizontal asymptote of The graph (Figure 1.34) provides
support, showing a horizontal asymptote of as . Similar logic suggests 

that , indicating the same horizontal asymptote 

as . Again, the graph provides support for this.
Now try Exercise 57.

x : - q

 lim
x: -q

 x/11x + 121x - 222 = -0 = 0

x : qy = 0
y = 0.

 lim
x: q

 x/11x + 121x - 222 = 0

x = 2x = -1
x = 2x = -1

x/1x2
- x - 22 = x/11x + 121x - 222

y =

x

x2
- x - 2

 .

EXAMPLE 11  Matching Functions Using End Behavior
Match the functions with the graphs in Figure 1.35 by considering end behavior. All
graphs are shown in the same viewing window.

(a) (b)

(c) (d)

(continued)

y =

3x4

x2
+ 1

y =

3x3

x2
+ 1

y =

3x2

x2
+ 1

y =

3x

x2
+ 1

DEFINITION Horizontal and Vertical Asymptotes
The line is a horizontal asymptote of the graph of a function 
if approaches a limit of b as x approaches or .

In limit notation:

or

The line is a vertical asymptote of the graph of a function if
ƒ1x2 approaches a limit of or as x approaches a from either direction.

In limit notation:

or  lim
x:a+

 ƒ1x2 = � q lim
x:a-

 ƒ1x2 = � q

- q+ q

y = ƒ1x2x = a

 lim
x: +q

 ƒ1x2 = b lim
x: -q

 ƒ1x2 = b

- q+ qƒ1x2 y = ƒ1x2y = b
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SECTION 1.2 EXERCISES

In Exercises 1–4, determine whether the formula determines y as a
function of x. If not, explain why not.

1. 2.

3. 4.

In Exercises 5–8, use the vertical line test to determine whether the
curve is the graph of a function.

x = 12 - yx = 2y2

y = x2
; 3y = 2x - 4

y

x

y

x

QUICK REVIEW 1.2 (For help, go to Sections A.3, P.3, and P.5.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, solve the equation or inequality.

1. 2.

3. 4.

In Exercises 5–10, find all values of x algebraically for which the
algebraic expression is not defined. Support your answer 
graphically.

5 - x … 0x - 10 6 0

9 - x2
= 0x2

- 16 = 0

5. 6.

7. 8.

9.

10.
x2

- 2x

x2
- 4

2x + 2

23 - x

2x2
+ 1

x2
- 1

2x - 16

x

x2
- 16

x

x - 16

For more complicated functions we are often content with knowing whether the end be-
havior is bounded or unbounded in either direction.

94 CHAPTER 1 Functions and Graphs

SOLUTION When x is very large, the denominator in each of these func-
tions is almost the same number as . If we replace in each denominator by

and then reduce the fractions, we get the simpler functions

(a) 1close to for large x2 (b)

(c) (d)

So, we look for functions that have end behavior resembling, respectively, the func-
tions

(a) (b) (c) (d) .

Graph (iv) approaches the line . Graph (iii) approaches the line . 
Graph (ii) approaches the line . Graph (i) approaches the parabola .
So, (a) matches (iv), (b) matches (iii), (c) matches (ii), and (d) matches (i).

Now try Exercise 65.

y = 3x2y = 3x
y = 3y = 0

y = 3x2y = 3xy = 3y = 0

y = 3x2.y = 3x

y = 3y = 0y =

3
x

x2
x2

+ 1x2
x2

+ 1Tips on Zooming
Zooming out is often a good way to investigate
end behavior with a graphing calculator. Here are
some useful zooming tips:

• Start with a “square” window.

• Set Xscl and Yscl to zero to avoid fuzzy axes.

• Be sure the zoom factors are both the same.
(They will be unless you change them.)

[–4.7, 4.7] by [–3.5, 3.5]

(i)

[–4.7, 4.7] by [–3.5, 3.5]

(ii)

[–4.7, 4.7] by [–3.5, 3.5]

(iii)

[–4.7, 4.7] by [–3.5, 3.5]

(iv)

FIGURE 1.35 Match the graphs with the functions in Example 11.

5. 6.
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In Exercises 25–28, state whether each labeled point identifies a local
minimum, a local maximum, or neither. Identify intervals on which the
function is decreasing and increasing.

25. 26.

y

x

y

x

7. 8.

In Exercises 9–16, find the domain of the function algebraically and
support your answer graphically.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–20, find the range of the function.

17.

18.

19. 20.

In Exercises 21–24, graph the function and tell whether or not it has a
point of discontinuity at . If there is a discontinuity, tell whether it
is removable or nonremovable.

21. 22.

23. 24. g1x2 =

x

x - 2
ƒ1x2 =

ƒx ƒ

x

h1x2 =

x3
+ x

x
g1x2 =

3
x

x = 0

g1x2 =

3 + x2

4 - x2
ƒ1x2 =

x2

1 - x2

g1x2 = 5 + 24 - x

ƒ1x2 = 10 - x2

ƒ1x2 = 2x4
- 16x2h1x2 =

24 - x

1x + 121x2
+ 12

h1x2 =

24 - x2

x - 3
g1x2 =

x

x2
- 5x

ƒ1x2 =

1
x

+

5

x - 3
ƒ1x2 =

3x - 1

1x + 321x - 12

h1x2 =

5

x - 3
ƒ1x2 = x2

+ 4

y

x

(�1, 4)

(2, 2)

(5, 5)

y

x

(1, 2)

(3, 3)

(5, 7)

y

x

(�1, 3)

(1, 5)

(3, 3)

(5, 1)

y

x(�1, 1)

(1, 6)

(3, 1)

(5, 4)

27. 28.

In Exercises 29–34, graph the function and identify intervals on which
the function is increasing, decreasing, or constant.

29.

30.

31.

32.

33.

34.

In Exercises 35–40, determine whether the function is bounded above,
bounded below, or bounded on its domain.

35. 36.

37. 38.

39. 40.

In Exercises 41–46, use a grapher to find all local maxima and minima
and the values of x where they occur. Give values rounded to two deci-
mal places.

41. 42.

43. 44.

45. 46. g1x2 = x ƒ2x + 5 ƒh1x2 = x22x + 4

ƒ1x2 = 1x + 321x - 122h1x2 = -x3
+ 2x - 3

g1x2 = x3
- 4x + 1ƒ1x2 = 4 - x + x2

y = x - x3y = 21 - x2

y = 2-xy = 2x

y = 2 - x2y = 32

ƒ1x2 = x3
- x2

- 2x

g1x2 = 3 - 1x - 122
h1x2 = 0.51x + 222 - 1

g1x2 = ƒx + 2 ƒ + ƒx - 1 ƒ - 2

ƒ1x2 = ƒx + 1 ƒ + ƒx - 1 ƒ - 3

ƒ1x2 = ƒx + 2 ƒ - 1

In Exercises 47–54, state whether the function is odd, even, or neither.
Support graphically and confirm algebraically.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–62, use a method of your choice to find all horizontal
and vertical asymptotes of the function.

55. 56.

57. 58.

59. 60.

61. 62. h1x2 =

2x - 4

x2
- 4

g1x2 =

4x - 4

x3
- 8

p1x2 =

4

x2
+ 1

ƒ1x2 =

x2
+ 2

x2
- 1

q1x2 = 1.5xg1x2 =

x + 2

3 - x

q1x2 =

x - 1
x

ƒ1x2 =

x

x - 1

h1x2 =

1
x

g1x2 = 2x3
- 3x

ƒ1x2 = x3
+ 0.04x2

+ 3ƒ1x2 = -x2
+ 0.03x + 5

g1x2 =

3

1 + x2
ƒ1x2 = 2x2

+ 2

g1x2 = x3ƒ1x2 = 2x4
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(b) Show how you can add a single point to the graph of ƒ and
get a graph that does intersect its vertical asymptote.

(c) Is the graph in (b) the graph of a function?

70. Writing to Learn Explain why a graph cannot have
more than two horizontal asymptotes.

Standardized Test Questions
71. True or False The graph of function ƒ is defined as the

set of all points 1x, ƒ1x22, where x is in the domain of ƒ. Justify
your answer.

72. True or False A relation that is symmetric with respect
to the x-axis cannot be a function. Justify your answer.

In Exercises 73–76, answer the question without using a calculator.

73. Multiple Choice Which function is continuous?

(A) Number of children enrolled in a particular school as a
function of time

(B) Outdoor temperature as a function of time

(C) Cost of U.S. postage as a function of the weight of the letter

(D) Price of a stock as a function of time

(E) Number of soft drinks sold at a ballpark as a function of
outdoor temperature

74. Multiple Choice Which function is not continuous?

(A) Your altitude as a function of time while flying from Reno
to Dallas

(B) Time of travel from Miami to Pensacola as a function of
driving speed

(C) Number of balls that can fit completely inside a particular
box as a function of the radius of the balls

(D) Area of a circle as a function of radius

(E) Weight of a particular baby as a function of time after
birth

75. Decreasing Function Which function is decreasing?

(A) Outdoor temperature as a function of time

(B) The Dow Jones Industrial Average as a function of time

(C) Air pressure in the Earth’s atmosphere as a function of alti-
tude

(D) World population since 1900 as a function of time

(E) Water pressure in the ocean as a function of depth

76. Increasing or Decreasing Which function cannot be
classified as either increasing or decreasing?

(A) Weight of a lead brick as a function of volume

(B) Strength of a radio signal as a function of distance from the
transmitter

(C) Time of travel from Buffalo to Syracuse as a function of
driving speed

(D) Area of a square as a function of side length

(E) Height of a swinging pendulum as a function of time

96 CHAPTER 1 Functions and Graphs

[–4.7, 4.7] by [–3.1, 3.1]
(a)

[–4.7, 4.7] by [–3.1, 3.1]
(b)

[–4.7, 4.7] by [–3.1, 3.1]
(c)

[–4.7, 4.7] by [–3.1, 3.1]
(d)

67. Can a Graph Cross Its Own Asymptote? The
Greek roots of the word “asymptote” mean “not meeting,”
since graphs tend to approach, but not meet, their asymptotes.
Which of the following functions have graphs that do intersect
their horizontal asymptotes?

(a)

(b)

(c)

68. Can a Graph Have Two Horizontal Asymptotes?
Although most graphs have at most one horizontal asymptote,
it is possible for a graph to have more than one. Which of the
following functions have graphs with more than one horizontal
asymptote?

(a)

(b)

(c)

69. Can a Graph Intersect Its Own Vertical

Asymptote? Graph the function 

(a) The graph of this function does not intersect its vertical 
asymptote. Explain why it does not.

ƒ1x2 =

x - ƒx ƒ

x2
+ 1.

h1x2 =

x

2x2
- 4

g1x2 =

ƒx - 1 ƒ

x2
- 4

ƒ1x2 =

ƒx3
+ 1 ƒ

8 - x3

h1x2 =

x2

x3
+ 1

g1x2 =

x

x2
+ 1

ƒ1x2 =

x

x2
- 1

In Exercises 63–66, match the function with the corresponding graph
by considering end behavior and asymptotes. All graphs are shown in
the same viewing window.

63. 64.

65. 66. y =

x3
+ 2

2x2
+ 1

y =

x + 2

2x2
+ 1

y =

x2
+ 2

2x + 1
y =

x + 2

2x + 1

6965_CH01_pp063-156.qxd  1/14/10  1:00 PM  Page 96



Explorations
77. Bounded Functions As promised in Example 7 of this

section, we will give you a chance to prove algebraically that
is bounded.

(a) Graph the function and find the smallest integer k that ap-
pears to be an upper bound.

(b) Verify that by proving the equivalent in-
equality . (Use the quadratic formula to
show that the quadratic has no real zeros.)

(c) From the graph, find the greatest integer k that appears to
be a lower bound.

(d) Verify that by proving the equivalent in-
equality .

78. Baylor School Grade Point Averages Baylor
School uses a sliding scale to convert the percentage grades on
its transcripts to grade point averages (GPAs). Table 1.9 shows
the GPA equivalents for selected grades.

kx2
- x + k 6 0

x/11 + x22 7 k

kx2
- x + k 7 0

x/11 + x22 6 k

p1x2 = x/11 + x22

(d)

(e)

80. Group Activity Sketch (freehand) a graph of a function
ƒ with domain all real numbers that satisfies all of the follow-
ing conditions:

(a) ƒ is decreasing on and decreasing on 

(b) ƒ has a nonremovable point of discontinuity at 

(c) ƒ has a horizontal asymptote at 

(d)

(e) ƒ has a vertical asymptote at 

81. Group Activity Sketch (freehand) a graph of a function
ƒ with domain all real numbers that satisfies all of the follow-
ing conditions:

(a) ƒ is continuous for all x;

(b) ƒ is an even function;

(c) ƒ is increasing on and decreasing on 

(d)

82. Group Activity Get together with your classmates in
groups of two or three. Sketch a graph of a function, but do not
show it to the other members of your group. Using the lan-
guage of functions (as in Exercises 79–81), describe your func-
tion as completely as you can. Exchange descriptions with the
others in your group and see if you can reproduce each other’s
graphs.

Extending the Ideas
83. A function that is bounded above has an infinite number of up-

per bounds, but there is always a least upper bound, i.e., an
upper bound that is less than all the others. This least upper
bound may or may not be in the range of ƒ. For each of the fol-
lowing functions, find the least upper bound and tell whether or
not it is in the range of the function.

(a)

(b)

(c)

(d)

(e)

84. Writing to Learn A continuous function ƒ has domain
all real numbers. If and , explain why ƒ
must have at least one zero in the interval . (This gener-
alizes to a property of continuous functions known as the Inter-
mediate Value Theorem.)

3-1, 14
ƒ112 = -5ƒ1-12 = 5

q1x2 =

4x

x2
+ 2x + 1

p1x2 = 2 sin 1x2
h1x2 =

1 - x

x2

g1x2 =

3x2

3 + x2

ƒ1x2 = 2 - 0.8x2

ƒ122 = 3.

32, q2;30, 24

x = 0.

ƒ102 = 0;

y = 1;

x = 0;

10, q2;1- q , 02

ƒ132 = 0.

ƒ102 = ƒ152 = 2;
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Table 1.9 Converting Grades

Grade 1x2 GPA 1y2
60 0.00
65 1.00
70 2.05
75 2.57
80 3.00
85 3.36
90 3.69
95 4.00

100 4.28

Source: Baylor School College Counselor.

(a) Considering GPA 1y2 as a function of percentage grade
1x2, is it increasing, decreasing, constant, or none of these?

(b) Make a table showing the change in GPA as you
move down the list. (See Exploration 1.)

(c) Make a table showing the change in as you move down
the list. (This is .) Considering the change in
GPA as a function of percentage grade 1x2, is it increasing,
decreasing, constant, or none of these?

(d) In general, what can you say about the shape of the graph
if y is an increasing function of x and is a decreasing
function of x?

(e) Sketch the graph of a function y of x such that y is a de-
creasing function of x and is an increasing function of
x.

79. Group Activity Sketch (freehand) a graph of a function
ƒ with domain all real numbers that satisfies all of the follow-
ing conditions:

(a) ƒ is continuous for all x;

(b) ƒ is increasing on and on 

(c) ƒ is decreasing on and on 35, q2;30, 34
33, 54;1- q , 04

¢y

¢y

1¢y2¢¢y
¢y

1¢y2
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85. Proving a Theorem Prove that the graph of every odd
function with domain all real numbers must pass through the
origin.

86. Finding the Range Graph the function 

in the window by .

(a) What is the apparent horizontal asymptote of the graph? 

(b) Based on your graph, determine the apparent range of ƒ. 

(c) Show algebraically that for all x,

thus confirming your conjecture in part (b).

-1 …

3x2
- 1

2x2
+ 1

6 1.5

3-2, 243-6, 64
f 1x2 =

3x2
- 1

2x2
+ 1

87. Looking Ahead to Calculus A key theorem in
calculus, the Extreme Value Theorem, states, if a function ƒ is
continuous on a closed interval 3a, b4 then ƒ has both a maxi-
mum value and a minimum value on the interval. For each of
the following functions, verify that the function is continuous
on the given interval and find the maximum and minimum 
values of the function and the x values at which these extrema
occur.

(a)

(b)

(c)

(d) ƒ1x2 = 2x2
+ 9, 3-4, 44

ƒ1x2 = ƒx + 1 ƒ + 2, 3-4, 14
ƒ1x2 =

1
x

 , 31, 54
ƒ1x2 = x2

- 3, 3-2, 44

98 CHAPTER 1 Functions and Graphs
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1.3 Twelve Basic Functions

What you’ll learn about
• What Graphs Can Tell Us
• Twelve Basic Functions
• Analyzing Functions Graphi-

cally

... and why
As you continue to study mathe-
matics, you will find that the
twelve basic functions presented
here will come up again and
again. By knowing their basic
properties, you will recognize
them when you see them.

What Graphs Can Tell Us
The preceding section has given us a vocabulary for talking about functions and their
properties. We have an entire book ahead of us to study these functions in depth, but
in this section we want to set the scene by just looking at the graphs of twelve “basic”
functions that are available on your graphing calculator.

You will find that function attributes such as domain, range, continuity, asymptotes,
extrema, increasingness, decreasingness, and end behavior are every bit as graphical as
they are algebraic. Moreover, the visual cues are often much easier to spot than the
algebraic ones.

In future chapters you will learn more about the algebraic properties that make these
functions behave as they do. Only then will you able to prove what is visually apparent
in these graphs.

Twelve Basic Functions

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.36

The Identity Function

Interesting fact: This is the only function that acts on every real
number by leaving it alone.

ƒ1x2 = x

5
4
3
2
1

–1

y

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.37

The Squaring Function

Interesting fact: The graph of this function, called a parabola, has
a reflection property that is useful in making flashlights and 
satellite dishes.

ƒ1x2 = x2
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3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

The Cubing Function

Interesting fact: The origin is called a “point of inflection” for this
curve because the graph changes curvature at that point.

ƒ1x2 = x3

5
4
3
2
1

–1

y

x
–1 321 4 5 6 7 8

The Square Root Function

Interesting fact: Put any positive number into your calculator. Take
the square root. Then take the square root again. Then take the
square root again, and so on. Eventually you will always get 1.

ƒ1x2 = 2x

2
1

–2
–3

3

–1

y

x
–2 –1 21 43 5 6

FIGURE 1.42

The Natural Logarithm Function

Interesting fact: This function increases very slowly. If the x-axis
and y-axis were both scaled with unit lengths of one inch, you
would have to travel more than two and a half miles along the
curve just to get a foot above the x-axis.

ƒ1x2 = ln x

4

2
1

–1
–2

–4

y

3

–3

x
–4–5–6 –3 –1 321 5 6 7

FIGURE 1.43

The Sine Function

Interesting fact: This function and the sinus cavities in your head
derive their names from a common root: the Latin word for “bay.”
This is due to a 12th-century mistake made by Robert of Chester,
who translated a word incorrectly from an Arabic manuscript.

ƒ1x2 = sin x

5
4
3
2
1

–1

y

x
–4 –3 –2 –1 321 4

FIGURE 1.41

The Exponential Function

Interesting fact: The number e is an irrational number (like ) that
shows up in a variety of applications. The symbols e and were
both brought into popular use by the great Swiss mathematician
Leonhard Euler (1707–1783).

p

p

ƒ1x2 = ex

3
2
1

–1

y

x
–5 –4 321 4 5

The Reciprocal Function

Interesting fact: This curve, called a hyperbola, also has a reflec-
tion property that is useful in satellite dishes.

ƒ1x2 =

1
x

FIGURE 1.38 FIGURE 1.39

FIGURE 1.40
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4

2

–1
–2

–4

y

3

–3

x
–7 –5–6 –3 –1 31 5 6 7

The Cosine Function

Interesting fact: The local extrema of the cosine function occur
exactly at the zeros of the sine function, and vice versa.

ƒ1x2 = cos x

5

2
1

–1
–2
–3

y

3
4

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.45

The Absolute Value Function

Interesting fact: This function has an abrupt change of direction (a
“corner”) at the origin, while our other functions are all “smooth”
on their domains.

ƒ1x2 = ƒx ƒ = abs 1x2

4

2
1

–2

–4

y

3

5

–3

–5

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.46

The Greatest Integer Function

Interesting fact: This function has a jump discontinuity at every
integer value of x. Similar-looking functions are called step 
functions.

ƒ1x2 = int 1x2

1

–

y

x
–5 –4 –3 –2 –1 321 4 5

1
2

FIGURE 1.47

The Logistic Function

Interesting fact: There are two horizontal asymptotes, the x-axis
and the line . This function provides a model for many ap-
plications in biology and business.

y = 1

ƒ1x2 =

1

1 + e-x

EXAMPLE 1  Looking for Domains

(a) Nine of the functions have domain the set of all real numbers. Which three do
not?

(b) One of the functions has domain the set of all reals except 0. Which function is
it, and why isn’t zero in its domain?

(c) Which two functions have no negative numbers in their domains? Of these two,
which one is defined at zero?

SOLUTION

(a) Imagine dragging a vertical line along the x-axis. If the function has domain the
set of all real numbers, then the line will always intersect the graph. The inter-
section might occur off screen, but the TRACE function on the calculator will
show the y-coordinate if there is one. Looking at the graphs in Figures 1.39,
1.40, and 1.42, we conjecture that there are vertical lines that do not intersect 

(continued)

FIGURE 1.44
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the curve. A TRACE at the suspected x-coordinates confirms our conjecture 
(Figure 1.48). The functions are , , and .

(b) The function , with a vertical asymptote at , is defined for all real
numbers except 0. This is explained algebraically by the fact that division by
zero is undefined.

(c) The functions and have no negative numbers in their domains.
(We already knew that about the square root function.) While 0 is in the domain 

of , we can see by tracing that it is not in the domain of . We
will see the algebraic reason for this in Chapter 3.

Now try Exercise 13.

y = ln xy = 2x

y = ln xy = 2x

x = 0y = 1/x

y = ln xy = 2xy = 1/x

[–3.7, 5.7] by [–3.1, 3.1]

(a)

[–3.7, 5.7] by [–3.1, 3.1]

(b)

X=–2 Y=

1

[–4.7, 4.7] by [–3.1, 3.1]

(c)

X=0 Y=

1

FIGURE 1.48 (a) A vertical line through
on the x-axis appears to miss the graph of

. (b) A TRACE confirms that is
not in the domain. (c) A TRACE at 
confirms that 0 is not in the domain of

. (Example 1)y = 1/x

x = 0
-2y = ln x

-2

EXAMPLE 3  Looking for Boundedness
Only three of the twelve basic functions are bounded (above and below). Which
three?

SOLUTION A function that is bounded must have a graph that lies entirely be-
tween two horizontal lines. The sine, cosine, and logistic functions have this property
(Figure 1.49). It looks like the graph of might also have this property, but
we know that the end behavior of the square root function is unbounded: 

, so it is really only bounded below. You will learn in Chapter 4 why

the sine and cosine functions are bounded. Now try Exercise 17.
2x = q lim

x: q

y = 2x

(a)

by [–4, 4]2 π ],[–2π

(b)

by [–4, 4]2 π ],[–2π
(c)

by [–0.5, 1.5][–4.7, 4.7]

FIGURE 1.49 The graphs of , , and lie entirely between two horizontal lines and are therefore
graphs of bounded functions. (Example 3)

y = 1/11 + e-x2y = cos xy = sin x

EXAMPLE 2  Looking for Continuity
Only two of twelve functions have points of discontinuity. Are these points in the do-
main of the function?

SOLUTION All of the functions have continuous, unbroken graphs except for
, and .

The graph of clearly has an infinite discontinuity at (Figure 1.39). We
saw in Example 1 that 0 is not in the domain of the function. Since is contin-
uous for every point in its domain, it is called a continuous function.

The graph of has a discontinuity at every integer value of x (Figure 1.46).
Since this function has discontinuities at points in its domain, it is not a continuous
function. Now try Exercise 15.

y = int 1x2
y = 1/x

x = 0y = 1/x

y = int 1x2y = 1/x
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Analyzing Functions Graphically
We could continue to explore the twelve basic functions as in the first four examples,
but we also want to make the point that there is no need to restrict ourselves to the basic
twelve. We can alter the basic functions slightly and see what happens to their graphs,
thereby gaining further visual insights into how functions behave.

SECTION 1.3 Twelve Basic Functions 103

EXAMPLE 4  Looking for Symmetry
Three of the twelve basic functions are even. Which are they?

SOLUTION Recall that the graph of an even function is symmetric with respect to
the y-axis. Three of the functions exhibit the required symmetry: , ,
and (Figure 1.50). Now try Exercise 19.y = ƒx ƒ

y = cos xy = x2

[–4.7, 4.7] by [–1.1, 5.1]

(a) (b)

by [–4, 4]2 π ],[–2π [–4.7, 4.7] by [–1.1, 5.1]

(c)

FIGURE 1.50 The graphs of , and are symmetric with respect to the y-axis, indicating that the functions
are even. (Example 4)

y = ƒx ƒy = x2, y = cos x

EXAMPLE 5  Analyzing a Function Graphically
Graph the function . Then answer the following questions:

(a) On what interval is the function increasing? On what interval is it decreasing?

(b) Is the function odd, even, or neither?

(c) Does the function have any extrema?

(d) How does the graph relate to the graph of the basic function ?

SOLUTION The graph is shown in Figure 1.51.

y = x2

y = 1x - 222

[–4.7, 4.7] by [–1.1, 5.1]

FIGURE 1.51 The graph of . (Example 5)y = 1x - 222
(continued)
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104 CHAPTER 1 Functions and Graphs

(a) The function is increasing if its graph is headed upward as it moves from left to
right. We see that it is increasing on the interval 2. The function is decreas-
ing if its graph is headed downward as it moves from left to right. We see that it is
decreasing on the interval 1 .

(b) The graph is not symmetric with respect to the y-axis, nor is it symmetric with re-
spect to the origin. The function is neither.

(c) Yes, we see that the function has a minimum value of 0 at . (This is easily
confirmed by the algebraic fact that for all x.2

(d) We see that the graph of is just the graph of moved two
units to the right. Now try Exercise 35.

y = x2y = 1x - 222
1x - 222 Ú 0

x = 2

- q , 24
32, q

EXPLORATION 1 Looking for Asymptotes

1. Two of the basic functions have vertical asymptotes at . Which two?

2. Form a new function by adding these functions together. Does the new func-
tion have a vertical asymptote at ?

3. Three of the basic functions have horizontal asymptotes at . Which
three?

4. Form a new function by adding these functions together. Does the new func-
tion have a horizontal asymptote at ?

5. Graph and . Does h1x2
have a vertical asymptote at ?x = 0

h1x2 = ƒ1x2 + g1x2ƒ1x2 = 1/x, g1x2 = 1/12x2
- x2,
y = 0

y = 0

x = 0

x = 0

EXAMPLE 6  Identifying a Piecewise-Defined Function
Which of the twelve basic functions has the following piecewise definition over
separate intervals of its domain?

SOLUTION You may recognize this as the definition of the absolute value 
function (Chapter P). Or, you can reason that the graph of this function must look
just like the line to the right of the y-axis, but just like the graph of the line

to the left of the y-axis. That is a perfect description of the absolute value
graph in Figure 1.45. Either way, we recognize this as a piecewise definition of

Now try Exercise 45.ƒ1x2 = ƒx ƒ .

y = -x
y = x

ƒ1x2 = e x if x Ú 0

-x if x 6 0

EXAMPLE 7  Defining a Function Piecewise
Using basic functions from this section, construct a piecewise definition for the func-
tion whose graph is shown in Figure 1.52. Is your function continuous?

SOLUTION This appears to be the graph of to the left of and the 

graph of to the right of . We can therefore define it piecewise as

The function is continuous. Now try Exercise 47.

ƒ1x2 = e x2 if x … 0

2x if x 7 0.

x = 0y = 2x

x = 0y = x2

4
3
2
1

–1
–2

y

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.52 A piecewise-defined func-
tion. (Example 7)
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You can go a long way toward understanding a function’s behavior by looking at its
graph. We will continue that theme in the exercises and then revisit it throughout the
book. However, you can’t go all the way toward understanding a function by looking at
its graph, as Example 8 shows.

SECTION 1.3 Twelve Basic Functions 105

EXAMPLE 8  Looking for a Horizontal Asymptote
Does the graph of (see Figure 1.42) have a horizontal asymptote?

SOLUTION In Figure 1.42 it certainly looks like there is a horizontal asymptote
that the graph is approaching from below. If we choose a much larger window 
(Figure 1.53), it still looks that way. In fact, we could zoom out on this function all
day long and it would always look like it is approaching some horizontal asymptote—
but it is not. We will show algebraically in Chapter 3 that the end behavior of this
function is , so its graph must eventually rise above the level of 

any horizontal line. That rules out any horizontal asymptote, even though there is no
visual evidence of that fact that we can see by looking at its graph.

Now try Exercise 55.

 lim
x: q

 ln x = q

y = ln x
[–600, 5000] by [–5, 12]

FIGURE 1.53 The graph of still
appears to have a horizontal asymptote, de-
spite the much larger window than in Figure
1.42. (Example 8)

y = ln x

EXAMPLE 9  Analyzing a Function
Give a complete analysis of the basic function .

SOLUTION

ƒ1x2 = ƒx ƒ

Now try Exercise 67.

Domain: All reals

Range: 2
Continuous

Decreasing on ; increasing on 2
Symmetric with respect to the y-axis (an even function)

Bounded below

Local minimum at 10, 02
No horizontal asymptotes

No vertical asymptotes

End behavior: and  lim
x: q

 ƒx ƒ = q lim
x: -q  

ƒx ƒ = q

30, q1- q , 04

30, q

ƒ1x2 = ƒx ƒ

FIGURE 1.54 The graph of .ƒ1x2 = ƒx ƒ

by [–1, 7][–6, 6]

BASIC FUNCTION The Absolute Value Function

QUICK REVIEW 1.3 (For help, go to Sections P.1, P.2, 3.1, and 3.3.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–10, evaluate the expression without using a calculator.

1. 2. ƒ5 - p ƒƒ -59.34 ƒ

3. 4.

5. 6.

7. 8.

9. 10. ƒ1 - p ƒ - p23 -82

23   1-1523123 323
e0ln 112
21-322ƒp - 7 ƒ
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SECTION 1.3 EXERCISES

In Exercises 1–12, each graph is a slight variation on the graph of one
of the twelve basic functions described in this section. Match the graph
to one of the twelve functions (a)–(l) and then support your answer by
checking the graph on your calculator. (All graphs are shown in the
window by .)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

(l)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, identify which of Exercises 1–12 display functions
that fit the description given.

13. The function whose domain excludes zero

14. The function whose domain consists of all nonnegative real
numbers

y = 2-  4/11 + e-x2
y = int1x + 12y = - 2x

y = -xy = -1/xy = ƒx ƒ  -  2

y = 1x -  122y = x3
+ 1y = 1x + 223

y = ex -  2y = cos x + 1y = -sin x

3-3.1, 3.143-4.7, 4.74

15. The two functions that have at least one point of discontinuity

16. The function that is not a continuous function

17. The six functions that are bounded below

18. The four functions that are bounded above

In Exercises 19–28, identify which of the twelve basic functions fit the
description given.

19. The four functions that are odd

20. The six functions that are increasing on their entire domains

21. The three functions that are decreasing on the interval 

22. The three functions with infinitely many local extrema

23. The three functions with no zeros

24. The three functions with range all real numbers

25. The four functions that do not have end behavior

26. The three functions with end behavior 

27. The four functions whose graphs look the same when turned
upside-down and flipped about the y-axis

28. The two functions whose graphs are identical except for a hori-
zontal shift

In Exercises 29–34, use your graphing calculator to produce a graph of
the function. Then determine the domain and range of the function by
looking at its graph.

29. 30.

31. 32.

33. 34.

In Exercises 35–42, graph the function. Then answer the following
questions:

(a) On what interval, if any, is the function increasing? Decreasing?

(b) Is the function odd, even, or neither?

(c) Give the function’s extrema, if any.

(d) How does the graph relate to a graph of one of the twelve basic
functions?

35. 36.

37. 38.

39. 40.

41. 42.

43. Find the horizontal asymptotes for the graph shown in Exercise
11.

44. Find the horizontal asymptotes for the graph of ƒ1x2 in
Exercise 37.

ƒ1x2 = 5 - abs 1x2s1x2 = ƒx - 2|

g1x2 = 4 cos 1x2h1x2 = ƒx ƒ -  10

q1x2 = ex
+ 2ƒ1x2 = 3/11 + e-x2

ƒ1x2 = sin 1x2 + 5r1x2 = 2x - 10

p1x2 = 1x + 322s1x2 = int 1x/22
k1x2 = 1/x + 3h1x2 = ln 1x + 62
g1x2 = ƒx - 4 ƒƒ1x2 = x2

- 5

 lim
x: -q

 ƒ1x2 = - q

 lim
x: +q

 ƒ1x2 = + q

65

1- q , 02

6965_CH01_pp063-156.qxd  1/14/10  1:00 PM  Page 106



In Exercises 45–52, sketch the graph of the piecewise-defined function.
1Try doing it without a calculator.) In each case, give any points of dis-
continuity.

45.

46.

47.

48.

49.

50.

51.

52.

53. Writing to Learn The function is one of
our twelve basic functions written in another form.

(a) Graph the function and identify which basic function it is.

(b) Explain algebraically why the two functions are equal.

54. Uncovering Hidden Behavior The function 

is not one of our twelve basic
functions written in another form.

(a) Graph the function and identify which basic function it ap-
pears to be.

(b) Verify numerically that it is not the basic function that it
appears to be.

55. Writing to Learn The function is one of
our twelve basic functions written in another form.

(a) Graph the function and identify which basic function it is.

(b) Explain how the equivalence of the two functions in (a)
shows that the natural logarithm function is not bounded
above (even though it appears to be bounded above in Fig-
ure 1.42).

56. Writing to Learn Let ƒ1x2 be the function that gives the
cost, in cents, to mail a first-class package that weighs x ounces.
In August of 2009, the cost was $1.22 for a package that
weighed up to 1 ounce, plus 17 cents for each additional ounce
or portion thereof (up to 13 ounces). (Source: United States
Postal Service.)

(a) Sketch a graph of ƒ1x2.
(b) How is this function similar to the greatest integer func-

tion? How is it different?

ƒ1x2 = ln 1ex2

g1x2 = 2x2
+ 0.0001 - 0.01

ƒ1x2 = 2x2

ƒ1x2 = c x2 if x 6 -1

ƒx ƒ if -1 … x 6 1

int 1x2 if x Ú 1

ƒ1x2 = c -3 - x if x … 0

1 if 0 6 x 6 1

x2 if x Ú 1

g1x2 = e ƒx ƒ if x 6 0

x2 if x Ú 0

ƒ1x2 = e cos x if x … 0

ex if x 7 0

w1x2 = e 1/x if x 6 0

2x if x Ú 0

h1x2 = e ƒx ƒ if x 6 0

sin x if x Ú 0

g1x2 = e x3 if x … 0

ex if x 7 0

ƒ1x2 = e x if x … 0

x2 if x 7 0

57. Analyzing a Function Set your calculator to DOT
mode and graph the greatest integer function, in
the window by . Then complete the fol-
lowing analysis.

3-3.1, 3.143-4.7, 4.74
y = int 1x2,

SECTION 1.3 Twelve Basic Functions 107

Packages

Weight Not Over Price

1 ounce $1.22
2 ounces $1.39
3 ounces $1.56
4 ounces $1.73
5 ounces $1.90
6 ounces $2.07
7 ounces $2.24
8 ounces $2.41
9 ounces $2.58

10 ounces $2.75
11 ounces $2.92
12 ounces $3.09
13 ounces $3.26

BASIC FUNCTION
The Greatest Integer Function

Domain:
Range:
Continuity:
Increasing/decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

ƒ1x2 = int x

Standardized Test Questions
58. True or False The greatest integer function has an in-

verse function. Justify your answer.

59. True or False The logistic function has two horizontal
asymptotes. Justify your answer.

In Exercises 60–63, you may use a graphing calculator to answer the
question.

60. Multiple Choice Which function has range {all real
numbers}?

(A)

(B)

(C)

(D)

(E) ƒ1x2 = 4 cos x

ƒ1x2 = int 1x - 22
ƒ1x2 = 5/11 + e-x2
ƒ1x2 = 3 - 1/x

ƒ1x2 = 4 + ln x
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61. Multiple Choice Which function is bounded both above
and below?

(A)

(B)

(C)

(D)

(E)

62. Multiple Choice Which of the following is the same as
the restricted-domain function ?

(A)

(B)

(C)

(D)

(E)

63. Multiple Choice Increasing Functions Which
function is increasing on the interval 1 2?
(A)

(B)

(C)

(D)

(E)

Explorations
64. Which Is Bigger? For positive values of x, we wish to

compare the values of the basic functions , x, and .

(a) How would you order them from least to greatest?

(b) Graph the three functions in the viewing window 30, 304
by 30, 204. Does the graph confirm your response in (a)?

(c) Now graph the three functions in the viewing window 
30, 24 by 30, 1.54.

(d) Write a careful response to the question in (a) that accounts
for all positive values of x.

65. Odds and Evens There are four odd functions and three
even functions in the gallery of twelve basic functions. After
multiplying these functions together pairwise in different com-
binations and exploring the graphs of the products, make a con-
jecture about the symmetry of:

(a) a product of two odd functions;

(b) a product of two even functions;

(c) a product of an odd function and an even function.

2xx2

ƒ1x2 = 3/11 + e-x2
ƒ1x2 = sin x

ƒ1x2 = 2x2

ƒ1x2 = int 1x2
ƒ1x2 = 23 + x

q- q ,

ƒ1x2 = e x if 0 … x 6 1

1 + x if 1 … x 6 2

ƒ1x2 = e 1 if 0 … x 6 1

2 if 1 … x 6 2

ƒ1x2 = e 0 if 0 … x 6 1

1 if 1 … x 6 2

ƒ1x2 = c 0 if x = 0

1 if 0 6 x … 1

2 if 1 6 x 6 2

ƒ1x2 = c 0 if 0 … x 6 1

1 if x = 1

2 if 1 6 x 6 2

ƒ1x2 = int 1x2, 0 … x 6 2

ƒ1x2 = 4 - ƒx ƒ

ƒ1x2 = 3 + 1/11 + e-x2
ƒ1x2 = 3ex

ƒ1x2 = 1x - 323
ƒ1x2 = x2

- 4

66. Group Activity Assign to each student in the class the
name of one of the twelve basic functions, but secretly so that
no student knows the “name” of another. (The same function
name could be given to several students, but all the functions
should be used at least once.) Let each student make a one-
sentence self-introduction to the class that reveals something
personal “about who I am that really identifies me.” The rest of
the students then write down their guess as to the function’s
identity. Hints should be subtle and cleverly anthropomorphic.
(For example, the absolute value function saying “I have a very
sharp smile” is subtle and clever, while “I am absolutely valu-
able” is not very subtle at all.)

67. Pepperoni Pizzas For a sta-
tistics project, a student counted the
number of pepperoni slices on 
pizzas of various sizes at a local
pizzeria, compiling the following
table:

108 CHAPTER 1 Functions and Graphs

[–4.7, 4.7] by [–3.1, 3.1]
(a)

[–4.7, 4.7] by [–3.1, 3.1]
(b)

Table 1.10

Type of Pizza Radius Pepperoni Count

Personal 12
Medium 27
Large 37
Extra large 488–

7–

6–

4–

(a) Explain why the pepperoni count 1P2 ought to be propor-
tional to the square of the radius 1r2.

(b) Assuming that , use the data pair 14, 122 to find
the value of k.

(c) Does the algebraic model fit the rest of the data well?

(d) Some pizza places have charts showing their kitchen staff
how much of each topping should be put on each size of
pizza. Do you think this pizzeria uses such a chart? Ex-
plain.

Extending the Ideas
68. Inverse Functions Two functions are said to be

inverses of each other if the graph of one can be obtained from
the graph of the other by reflecting it across the line . For
example, the functions with the graphs shown below are in-
verses of each other:

y = x

P = k # r 2
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(a) Two of the twelve basic functions in this section are in-
verses of each other. Which are they?

(b) Two of the twelve basic functions in this section are their
own inverses. Which are they?

(c) If you restrict the domain of one of the twelve basic func-
tions to it becomes the inverse of another one. 

Which are they?

69. Identifying a Function by Its Properties

(a) Seven of the twelve basic functions have the property that
. Which five do not?ƒ102 = 0

30, q2,

(b) Only one of the twelve basic functions has the property
that for all x and y in its domain.
Which one is it?

(c) One of the twelve basic functions has the property that
for all x and y in its domain. Which

one is it?

(d) One of the twelve basic functions has the property that
for all x and y in its domain. Which

one is it?

(e) Four of the twelve basic functions have the property that
for all x in their domains. Which four

are they?
ƒ1x2 + ƒ1-x2 = 0

ƒ1xy2 = ƒ1x2 + ƒ1y2

ƒ1x + y2 = ƒ1x2ƒ1y2

ƒ1x + y2 = ƒ1x2 + ƒ1y2

SECTION 1.3 Twelve Basic Functions 109
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1.4 Building Functions 
from Functions

Combining Functions Algebraically
Knowing how a function is “put together” is an important first step when applying the
tools of calculus. Functions have their own algebra based on the same operations we
apply to real numbers (addition, subtraction, multiplication, and division). One way to
build new functions is to apply these operations, using the following definitions.

What you’ll learn about
• Combining Functions

Algebraically
• Composition of Functions
• Relations and Implicitly Defined

Functions

... and why
Most of the functions that you will
encounter in calculus and 
in real life can be created by
combining or modifying other
functions.

DEFINITION Sum, Difference, Product, and Quotient 
of Functions
Let ƒ and g be two functions with intersecting domains. Then for all values of x
in the intersection, the algebraic combinations of ƒ and g are defined by the
following rules:

Sum:

Difference:

Product:

Quotient: , provided 

In each case, the domain of the new function consists of all numbers that
belong to both the domain of ƒ and the domain of g. As noted, the zeros of the
denominator are excluded from the domain of the quotient.

Z 0g1x2 aƒ

g
b  1x2 =

ƒ1x2
g1x2

 1ƒg21x2 = ƒ1x2g1x2
 1ƒ - g21x2 = ƒ1x2 - g1x2
 1ƒ + g21x2 = ƒ1x2 + g1x2

Euler’s function notation works so well in the above definitions that it almost obscures
what is really going on. The “ ” in the expression “ ” stands for a brand
new operation called function addition. It builds a new function, , from the given
functions ƒ and g. Like any function, is defined by what it does: It takes a
domain value x and returns a range value . Note that the “ ” sign in
“ ” does stand for the familiar operation of real number addition. So, with
the same symbol taking on different roles on either side of the equal sign, there is more
to the above definitions than first meets the eye.

Fortunately, the definitions are easy to apply.

ƒ1x2 + g1x2 +ƒ1x2 + g1x2ƒ + g
ƒ + g

1ƒ + g21x2+

EXAMPLE 1  Defining New Functions Algebraically
Let and .

Find formulas for the functions , , and gg. Give the domain of
each.

(continued)

ƒg, ƒ/gƒ + g, ƒ - g

g1x2 = 2x + 1ƒ1x2 = x2
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Composition of Functions
It is not hard to see that the function sin is built from the basic functions sin x
and , but the functions are not put together by addition, subtraction, multiplication,
or division. Instead, the two functions are combined by simply applying them in
order—first the squaring function, then the sine function. This operation for
combining functions, which has no counterpart in the algebra of real numbers, is
called function composition.

x2
1x22

SECTION 1.4 Building Functions from Functions 111

SOLUTION We first determine that ƒ has domain all real numbers and that g has
domain . These domains overlap, the intersection being the interval

. So:

with domain

with domain

with domain

with domain

with domain

Note that we could express 1gg21x2 more simply as . That would be fine, but
the simplification would not change the fact that the domain of gg is (by definition)
the interval . Under other circumstances the function would
have domain all real numbers, but under these circumstances it cannot; it is a product
of two functions with restricted domains. Now try Exercise 3.

h1x2 = x + 13-1, q2
x + 1

3-1, q2.1gg21x2 = g1x2g1x2 = 12x + 122
1-1, q2.aƒ

g
b  1x2 =

ƒ1x2
g1x2 =

x2

2x + 1

3-1, q2.1ƒg21x2 = ƒ1x2g1x2 = x22x + 1

3-1, q2.1ƒ - g21x2 = ƒ1x2 -g1x2 = x2
- 2x + 1

3-1, q2.1ƒ + g21x2 = ƒ1x2 + g1x2 = x2
+ 2x + 1

3-1, q23-1, q2

The composition g of ƒ, denoted , is defined similarly. In most cases and
are different functions. (In the language of algebra, “function composition is not

commutative.”)
ƒ � g

g � ƒg � ƒ

and
x must be in the

domain of g
g(x) must be in the

domain of f

f � g

g(x)

f(g(x))

x
g

f

FIGURE 1.55 In the composition , the function g is applied first and then ƒ. This is the
reverse of the order in which we read the symbols.

ƒ � g

DEFINITION Composition of Functions
Let ƒ and g be two functions such that the domain of ƒ intersects the range of g.
The composition ƒ of g, denoted , is defined by the rule

The domain of consists of all x-values in the domain of g that map to
g1x2-values in the domain of ƒ. (See Figure 1.55.)

ƒ � g

1ƒ � g21x) = ƒ1g1x22.
ƒ � g
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EXAMPLE 2  Composing Functions
Let and . Find and and verify numeri-
cally that the functions and are not the same.

SOLUTION

One verification that these functions are not the same is that they have different
domains: is defined only for , while is defined for all real num-
bers. We could also consider their graphs (Figure 1.56), which agree only at 
and .x = 4

x = 0
g � ƒx Ú 0ƒ � g

1g � ƒ21x2 = g1ƒ1x22 = g1ex2 = 2e x

1ƒ � g21x2 = ƒ1g1x22 = ƒ11x2 = e1x

g � ƒƒ � g
1g � ƒ21x21ƒ � g21x2g1x2 = 2xƒ1x2 = ex

[–2, 6] by [–1, 15]

FIGURE 1.56 The graphs of and are not the same. (Example 2)y = 2exy = e1x

EXPLORATION 1 Composition Calisthenics

One of the ƒ functions in column B can be composed with one of the g functions

in column C to yield each of the basic functions in column A. Can you

match the columns successfully without a graphing calculator? If you are having

trouble, try it with a graphing calculator.

ƒ � g

A B C

ƒ g

x

ln x

sin x

cos x 2 sin x cos x sina x

2
b

x + 3

2
1-  2x2

x

2
ƒ2x + 4 ƒ

ln 1e3 x2x5x3

1x - 221x + 22
2

2xƒx ƒ

x22x - 3x2

x0.6x - 3

ƒ � g

Finally, the graphs suggest a numerical verification: Find a single value of x for
which ƒ1g1x22 and g1ƒ1x22 give different values. For example, and 

. The graph helps us to make a judicious choice of x. You do not
want to check the functions at and and conclude that they are the same!

Now try Exercise 15.
x = 4x = 0

g1ƒ1122 = 2e

ƒ1g1122 = e
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EXAMPLE 3  Finding the Domain of a Composition
Let and let . Find the domains of the composite functions

(a) (b)
SOLUTION

(a) We compose the functions in the order specified:

For x to be in the domain of , we must first find , which we
can do for all real x. Then we must take the square root of the result, which we
can only do for nonnegative values of .

Therefore, the domain of consists of all real numbers for which
namely the union 

(b) Again, we compose the functions in the order specified:

For x to be in the domain of we must first be able to find ,
which we can only do for nonnegative values of x. Then we must be able to
square the result and subtract 1, which we can do for all real numbers.
Therefore, the domain of consists of the interval 

Support Graphically
We can graph the composition functions to see if the grapher respects the domain re-
strictions. The screen to the left of each graph shows the setup in the “Y ” editor.
Figure 1.57b shows the graph of , while Figure 1.57d shows the
graph of . The graphs support our algebraic work quite nicely.

Now try Exercise 17.
y = 1ƒ � g21x2 y = 1g � ƒ21x2 =

30, q2.ƒ � g

g1x2 = 2xƒ � g,

 = 12x22 - 1

 1 ƒ � g21x2 = ƒ1g1x22

1- q , -14 ´ 31, q2.x2
- 1 Ú 0,

g � ƒ

x2
- 1

ƒ1x2 = x2
- 1g � ƒ

 = 2x2
- 1

 1 g � ƒ21x2 = g1ƒ1x22

ƒ � g.g � ƒ

g1x2 = 2xƒ1x2 = x2
- 1

Caution
We might choose to express more sim-
ply as . However, you must remember that
the composition is restricted to the domain of

, or . The domain of is
all real numbers. It is a good idea to work out the
domain of a composition before you simplify the
expression for ƒ(g(x22. One way to simplify and
maintain the restriction on the domain in Exam-
ple 3 is to write , x Ú 0.1ƒ � g21x2 = x - 1

x - 130, q4g1x2 = 2x

x - 1
1ƒ � g2

\Y1=
\Y2=X2–1

\Y4=
\Y5=
\Y6=
\Y7=

(X)
Plot1 Plot2 Plot3

\Y3=Y1(Y2(X))

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

\Y1=
\Y2=X2–1

\Y4=
\Y5=
\Y6=
\Y7=

(X)
Plot1 Plot2 Plot3

\Y3=Y2(Y1(X))

(c)
[–4.7, 4.7] by [–3.1, 3.1]

(d)

FIGURE 1.57 The functions Y1 and Y2 are composed to get the graphs of and respectively.
The graphs support our conclusions about the domains of the two composite functions. (Example 3)

y = 1ƒ � g21x2,y = 1g � ƒ)1x2

In Examples 2 and 3 two functions were composed to form new functions. There are
times in calculus when we need to reverse the process. That is, we may begin with a
function h and decompose it by finding functions whose composition is h.

EXAMPLE 4  Decomposing Functions
For each function h, find functions ƒ and g such that .

(a)

(b)

(continued)

h1x2 = 2x3
+ 1

h1x2 = 1x + 122 - 31x + 12 + 4

h1x2 = ƒ1g1x22
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SOLUTION

(a) We can see that h is quadratic in . Let and let
. Then

.

(b) We can see that h is the square root of the function . Let and
let . Then

.

Now try Exercise 25.

h1x2 = ƒ1g1x22 = ƒ1x3
+ 12 = 2x3

+ 1

g1x2 = x3
+ 1

ƒ1x2 = 2xx3
+ 1

h1x2 = ƒ1g1x22 = ƒ1x + 12 = 1x + 122 - 31x + 12 + 4

g1x2 = x + 1
ƒ1x2 = x2

- 3x + 4x + 1

There is often more than one way to decompose a function. For example, an alternate

way to decompose in Example 4b is to let and let

. Then .h1x2 = ƒ1g1x22 = ƒ1x32 = 2x3
+ 1g1x2 = x3

ƒ1x2 = 2x + 1h1x2 = 2x3
+ 1

EXAMPLE 5  Modeling with Function Composition
In the medical procedure known as angioplasty, doctors insert a catheter into a heart
vein (through a large peripheral vein) and inflate a small, spherical balloon on the tip
of the catheter. Suppose the balloon is inflated at a constant rate of 44 cubic millime-
ters per second (Figure 1.58).

(a) Find the volume after t seconds.

(b) When the volume is V, what is the radius r?

(c) Write an equation that gives the radius r as a function of the time. What is the ra-
dius after 5 seconds?

SOLUTION

(a) After t seconds, the volume will be 44t.

(b) Solve Algebraically

(c) Substituting 44t for V gives or After 5 seconds, the

radius will be Now try Exercise 31.r = B3   
33 # 5
p

L 3.74 mm.

r = B3   
33t
p

.r = B3   
3 # 44t

4p

 r = A3   
3v

4p

 r 3
=

3v

4p

 
4

3
 pr 3

= v

FIGURE 1.58 (Example 5)

Relations and Implicitly Defined Functions
There are many useful curves in mathematics that fail the vertical line test and therefore
are not graphs of functions. One such curve is the circle in Figure 1.59. While y is not
related to x as a function in this instance, there is certainly some sort of relationship go-
ing on. In fact, not only does the shape of the graph show a significant geometric rela-
tionship among the points, but the ordered pairs 1x, y2 exhibit a significant algebraic
relationship as well: They consist exactly of the solutions to the equation .x2

+ y2
= 4

3

1

–1

–3

y

x
–5 –4 –3 –1 31 4 5

FIGURE 1.59 A circle of radius 2 centered
at the origin. This set of ordered pairs 1x, y2
defines a relation that is not a function, be-
cause the graph fails the vertical line test.
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Graphing Relations
Relations that are not functions are often not
easy to graph. We will study some special cases
later in the course (circles, ellipses, etc.), but
some simple-looking relations like those in
Example 6 are difficult to graph. Nor do our 
calculators help much, because the equation 
cannot be put into “Y1 ” form. Interestingly, we
do know that the graph of the relation in Exam-
ple 6, whatever it looks like, fails the vertical line
test.

= EXAMPLE 6  Verifying Pairs in a Relation
Determine which of the ordered pairs 11, 32, and 12, 12 are in the relation
defined by . Is the relation a function?

SOLUTION We simply substitute the x- and y-coordinates of the ordered pairs into
and see if we get 5.

Substitute .

11, 32: Substitute .

12, 12: Substitute 

So, and 12, 12 are in the relation, but 11, 32 is not.

Since the equation relates two different y-values 1 and 12 to the same x-value 122,
the relation cannot be a function. Now try Exercise 35.

-5

12, -52
x = 2, y = 1.1222112 + 1122 = 5

x = 1, y = 31122132 + 1322 = 12 Z 5

x = 2, y = -512221-52 + 1-522 = 512, -52:
x2y + y2

x2y + y2
= 5

12, -52,

Let us revisit the circle . While it is not a function itself, we can split it
into two equations that do define functions, as follows:

or 

The graphs of these two functions are, respectively, the upper and lower semicircles of
the circle in Figure 1.59. They are shown in Figure 1.60. Since all the ordered pairs in
either of these functions satisfy the equation , we say that the relation
given by the equation defines the two functions implicitly.

x2
+ y2

= 4

y = - 24 - x2 y = + 24 - x2

 y2
= 4 - x2

 x2
+ y2

= 4

x2
+ y2

= 4

3

1

–1
–2
–3

y

x
–5 –4 –3 –1–2 31 2 4 5

(a)

3

1

–1

2

–3

y

x
–5 –4 –3 –1 31 4 5

(b)

FIGURE 1.60 The graphs of (a) and (b) . In each case, y
is defined as a function of x. These two functions are defined implicitly by the relation

.x2
+ y2

= 4

y = - 24 - x2y = + 24 - x2

The general term for a set of ordered pairs 1x, y2 is a relation. If the relation happens to
relate a single value of y to each value of x, then the relation is also a function and its
graph will pass the vertical line test. In the case of the circle with equation 
both 10, 22 and are in the relation, so y is not a function of x.10, -22 x2

+ y2
= 4,
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EXAMPLE 7  Using Implicitly Defined Functions
Describe the graph of the relation .

SOLUTION This looks like a difficult task at first, but notice that the expression
on the left of the equal sign is a factorable trinomial. This enables us to split the rela-
tion into two implicitly defined functions as follows:

Factor.

Extract square roots.

Solve for y.

The graph consists of two parallel lines (Figure 1.61), each the graph of one of the
implicitly defined functions. Now try Exercise 37.

 y = -x + 1 or y = -x - 1

 x + y = 1 or x + y = -1

 x + y = �1

 1x + y22 = 1

 x2
+ 2xy + y2

= 1

x2
+ 2xy + y2

= 1

4

2
1

–1
–2

–4

y

3

–3

x
–5 –4 –3 –2 –1 321 4 5

FIGURE 1.61 The graph of the relation . (Example 7)x2
+ 2xy + y2

= 1

QUICK REVIEW 1.4 (For help, go to Sections P.1, 1.2, and 1.3.)

SECTION 1.4 EXERCISES

In Exercises 1–4, find formulas for the functions , and ƒg.
Give the domain of each.

1.

2. ; 

3.

4. ; g1x2 = ƒx + 3 ƒƒ1x2 = 2x + 5

ƒ1x2 = 2x; g1x2 = sin x

g1x2 = 3 - xƒ1x2 = 1x - 122
ƒ1x2 = 2x - 1; g1x2 = x2

ƒ + g, ƒ - g In Exercises 5–8, find formulas for ƒ/g and g/ƒ. Give the domain of
each.

5.

6.

7.

8. ƒ1x2 = x3; g1x2 = 23 1 - x3

ƒ1x2 = x2; g1x2 = 21 - x2

ƒ1x2 = 2x - 2; g1x2 = 2x + 4

ƒ1x2 = 2x + 3; g1x2 = x2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–10, find the domain of the function and express it in
interval notation.

1.

2. 2
3.

4. g1x2 =

3

22x - 1

ƒ1t2 = 25 - t

g1x2 = ln1x - 1

ƒ1x2 =

x - 2

x + 3

5.

6.

7.

8. 2
9.

10. g1x2 = 2

ƒ1x2 =

1

21 - x2

g1t2 = ln1 ƒ t ƒ

ƒ1t2 =

t + 5

t 2
+ 1

h1x2 = 21 - x2

ƒ1x2 = 2ln1x2
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9. and are shown below in the viewing
window 30, 54 by 30, 54. Sketch the graph of the sum

by adding the y-coordinates directly from the
graphs. Then graph the sum on your calculator and see how
close you came.

1ƒ + g21x2
g1x2 = 1/xƒ1x2 = x2 In Exercises 23–30, find ƒ1x2 and g1x2 so that the function can be de-

scribed as . (There may be more than one possible decom-
position.)

23. 24.

25. 26.

27. 28.

29. 30.

31. Weather Balloons A high-altitude
spherical weather balloon expands as it
rises due to the drop in atmospheric pres-
sure. Suppose that the radius r increases
at the rate of 0.03 inch per second and
that inches at time . Deter-
mine an equation that models the volume
V of the balloon at time t and find the vol-
ume when seconds.

32. A Snowball’s Chance Jake stores a small cache of 
4-inch-diameter snowballs in the basement freezer, unaware
that the freezer’s self-defrosting feature will cause each snow-
ball to lose about 1 cubic inch of volume every 40 days. He re-
members them a year later (call it 360 days) and goes to re-
trieve them. What is their diameter then?

33. Satellite Photography A satellite camera takes a 
rectangle-shaped picture. The smallest region that can be 
photographed is a 5-km by 7-km rectangle. As the camera
zooms out, the length l and width w of the rectangle increase at
a rate of 2 km/sec. How long does it take for the area A to be at
least 5 times its original size?

34. Computer Imaging New Age Special Effects, Inc., 
prepares computer software based on specifications prepared
by film directors. To simulate an approaching vehicle, they be-
gin with a computer image of a 5-cm by 7-cm by 3-cm box.
The program increases each dimension at a rate of 2 cm/sec.
How long does it take for the volume V of the box to be at least
5 times its initial size?

35. Which of the ordered pairs and are in
the relation given by 

36. Which of the ordered pairs 15, 12, 13, 42, and 10, 2 are in
the relation given by ?

In Exercises 37–44, find two functions defined implicitly by the given
relation.

37. 38.

39. 40.

41. 42.

43. 44.

Standardized Test Questions
45. True or False The domain of the quotient function
1ƒ/g21x2 consists of all numbers that belong to both the domain
of ƒ and the domain of g. Justify your answer.

46. True or False The domain of the product function
1ƒg21x2 consists of all numbers that belong to either the do-
main of ƒ or the domain of g. Justify your answer.

y2
= xy2

= x2

x - ƒy ƒ = 1x + ƒy ƒ = 1

3x2
- y2

= 25x2
- y2

= 25

x + y2
= 25x2

+ y2
= 25

x2
+ y2

= 25
-5

3x + 4y = 5?
13, -1211, 12, 14, -22,

t = 300

t = 0r = 48

y = 1tan x22 + 1y = cos12x2
y = esin xy = 1x - 325 + 2

y =

1

x3
- 5x + 3

y = ƒ3x - 2 ƒ

y = 1x3
+ 122y = 2x2

- 5x

y = ƒ1g1x22

SECTION 1.4 Building Functions from Functions 117

[0, 5] by [0, 5]

[–5, 5] by [–10, 25]

10. The graphs of and are shown in the
viewing window by Sketch the graph of the
difference by subtracting the y-coordinates directly
from the graphs. Then graph the difference on your calculator
and see how close you came.

1ƒ - g21x2
3-10, 254.3-5, 54

g1x2 = 4 - 3xƒ1x2 = x2

In Exercises 11–14, find and 

11.

12.

13.

14.

In Exercises 15–22, find and . State the domain of each.

15.

16.

17.

18.

19.

20.

21.

22. ƒ1x2 =

1

x + 1
; g1x2 =

1

x - 1

ƒ1x2 =

1

2x
; g1x2 =

1

3x

ƒ1x2 = x3; g1x2 = 23 1 - x3

ƒ1x2 = x2; g1x2 = 21 - x2

ƒ1x2 =

1

x - 1
; g1x2 = 2x

ƒ1x2 = x2
- 2; g1x2 = 2x + 1

ƒ1x2 = x2
- 1; g1x2 =

1

x - 1

ƒ1x2 = 3x + 2; g1x2 = x - 1

g1ƒ1x22ƒ1g1x22
ƒ1x2 =

x

x + 1
 ; g1x2 = 9 - x2

ƒ1x2 = x2
+ 4; g1x2 = 2x + 1

ƒ1x2 = x2
- 1; g1x2 = 2x - 3

ƒ1x2 = 2x-  3; g1x2 = x + 1

1g � ƒ21-22.1ƒ � g2132

6965_CH01_pp063-156.qxd  1/14/10  1:01 PM  Page 117



You may use a graphing calculator when solving Exercises 47–50.

47. Multiple Choice Suppose ƒ and g are functions with do-
main all real numbers. Which of the following statements is not
necessarily true?

(A) (B)

(C) (D)

(E)

48. Multiple Choice If and ,
what is the domain of the function ƒ/g?

(A) (B) (C)

(D) (E)

49. Multiple Choice If , then 

(A) (B) (C)

(D) (E)

50. Multiple Choice Which of the following relations de-
fines the function implicitly?

(A) (B) (C)

(D) (E)

Explorations
51. Three on a Match Match each function ƒ with a 

function g and a domain D so that with do-
main D.

1ƒ � g21x2 = x2

x = ƒy ƒx2
+ y2

= 1

y3
= x3y2

= x2y = x

y = ƒx ƒ

x4
+ 2x2

+ 2x4
+ 2x2

+ 1

x4
+ 12x2

+ 12x2
+ 2

(ƒ � ƒ2(x2 =ƒ(x2 = x2
+ 1

(4, 72 ´ (7, q2[4, q2
(4, q2(- q , 44(- q , 42

g(x2 = 24 - xƒ(x2 = x - 7

(ƒ � g2(x2 = ƒ(g(x22
(ƒ - g2(x2 = - (g - ƒ2(x2ƒ(g(x22 = g(ƒ(x22
(ƒg2(x2 = (gƒ2(x2(ƒ + g2(x2 = (g + ƒ2(x2

52. Be a g Whiz Let . Find a function g so that

(a)

(b)

(c)

(d)

(e)

Extending the Ideas
53. Identifying Identities An identity for a function oper-

ation is a function that combines with a given function ƒ to re-
turn the same function ƒ. Find the identity functions for the fol-
lowing operations:

(a) Function addition. That is, find a function g such that

(b) Function multiplication. That is, find a function g such that

(c) Function composition. That is, find a function g such that

54. Is Function Composition Associative? You al-
ready know that function composition is not commutative; that
is, But is function composition as-
sociative? That is, does 

Explain your answer.

55. Revisiting Example 6 Solve for y using
the quadratic formula and graph the pair of implicit functions.

x2y + y2
= 5

1x2?
1ƒ � 1g � h221x2 = 11ƒ � g2 � h22

1ƒ � g21x2 Z 1g � ƒ21x2.

1ƒ � g21x2 = 1g � ƒ21x2 = ƒ1x2.
1ƒg21x2 = 1gƒ21x2 = ƒ1x2.
1ƒ + g21x2 = 1g + ƒ21x2 = ƒ1x2.

g1ƒ1x22 = 9x4
+ 1

ƒ1g1x22 = 9x4
+ 1

1ƒ/g21x2 = 1

1ƒ + g21x2 = 3x2

1ƒg21x2 = x4
- 1

ƒ1x2 = x2
+ 1

118 CHAPTER 1 Functions and Graphs

ƒ g D

2 ln x 2

1- q , q2x + 1
x

a x + 1
x
b2

1- q , 242x - 2x2
- 2x + 1

32, q21

x - 1

1

(x - 1)2

10, q1x2
- 222

x Z 1x + 11x2
+ 222

x Z 022 - xex
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1.5 Parametric Relations 
and Inverses

What you’ll learn about
• Relations Defined

Parametrically
• Inverse Relations and Inverse

Functions

... and why
Some functions and graphs can
best be defined parametrically,
while some others can be best
understood as inverses of func-
tions we already know.

EXAMPLE 1  Defining a Function Parametrically
Consider the set of all ordered pairs 1x, y2 defined by the equations

where t is any real number.

(a) Find the points determined by , , , 0, 1, 2, and 3.

(b) Find an algebraic relationship between x and y. (This is often called “eliminating
the parameter.”) Is y a function of x?

(c) Graph the relation in the 1x, y2 plane.

SOLUTION

(a) Substitute each value of t into the formulas for x and y to find the point that it de-
termines parametrically:

-1-2t = -3

 y = t 2
+ 2t

 x = t + 1

t 1x, y2
3
0

0
0 1 0 11, 02
1 2 3 12, 32
2 3 8 13, 82
3 4 15 14, 152

10, -12-1-1
1-1, 02-1-2
1-2, 32-2-3

y = t 2
+ 2tx = t + 1

(b) We can find the relationship between x and y algebraically by the method of sub-
stitution. First solve for t in terms of x to obtain .

Given

Expand.

Simplify.

This is consistent with the ordered pairs we had found in the table. As t varies
over all real numbers, we will get all the ordered pairs in the relation

, which does indeed define y as a function of x.

(c) Since the parametrically defined relation consists of all ordered pairs in the 
relation , we can get the graph by simply graphing the parabola

. See Figure 1.62. Now try Exercise 5.y = x2
- 1
y = x2

- 1

y = x2
- 1

 = x2
- 1

 = x2
- 2x + 1 + 2x - 2

t = x - 1 y = 1x - 122 + 21x - 12
 y = t 2

+ 2t

t = x - 1

Relations Defined Parametrically
Another natural way to define functions or, more generally, relations, is to define
both elements of the ordered pair 1x, y2 in terms of another variable t, called a
parameter. We illustrate with an example.
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y

5

–5

x
5

t = –3 t = 1

t = –2 t = 0
t = –1

FIGURE 1.62 (Example 1)

EXAMPLE 2  Using a Graphing Calculator 
in Parametric Mode

Consider the set of all ordered pairs 1x, y2 defined by the equations

where t is any real number.

(a) Use a graphing calculator to find the points determined by
, 2, , 0, 1, 2, and 3.

(b) Use a graphing calculator to graph the relation in the 1x, y2 plane.

(c) Is y a function of x?

(d) Find an algebraic relationship between x and y.

SOLUTION

(a) When the calculator is in parametric mode, the “Y ” screen provides a 
space to enter both X and Y as functions of the parameter T (Figure 1.63a). Af-
ter entering the functions, use the table setup in Figure 1.63b to obtain the table
shown in Figure 1.63c. The table shows, for example, that when we
have and , so the ordered pair corresponding to is

.

(b) In parametric mode, the “WINDOW” screen contains the usual x-axis informa-
tion, as well as “Tmin,” “Tmax,” and “Tstep” (Figure 1.64a). To include most of
the points listed in part (a), we set , , , and

. Since , we set Tmin and Tmax to values one less than
those for Ymin and Ymax.

The value of Tstep determines how far the grapher will go from one value of t
to the next as it computes the ordered pairs. With and

the grapher will compute 60 points, which is sufficient. (The more
points, the smoother the graph. See Exploration 1.) The graph is shown in Figure
1.64b. Use TRACE to find some of the points found in (a).

(c) No, y is not a function of x. We can see this from part (a) because 2 and10, 12 have the same x-value but different y-values. Alternatively, notice that the
graph in (b) fails the vertical line test.

(d) We can use the same algebraic steps as in Example 1 to get the relation in terms
of x and y: . Now try Exercise 7.x = y2

- 1

10, -1

Tstep = 0.1,
Tmax - Tmin = 6

t = y - 1Ymax = 3
Ymin = -3Xmax = 5Xmin = -5

(3, -2)
t = -3Y1T = -2X1T = 3

T = -3

=

-1t = -3

 y = t + 1

 x = t 2
+ 2t

t 1x, y)

0 10, 12
1 13, 22
2 18, 32
3 115, 42

1-1, 02-1
10, -12-2
13, -22-3

\X1T=T2+2T
 Y1T=T+1

 Y2T=
\X3T=
 Y3T=
\X4T=

Plot1 Plot2 Plot3

\X2T=

(a)

TABLE SETUP

ΔTbl=1

Depend:  Auto  Ask

TblStart=–3

Indpnt:    Auto  Ask

(b)

T

Y1T = T+1

–3
–2
–1
0
1
2
3

3
0
–1
0
3
8
15

–2
–1
0
1
2
3
4

X1T Y1T

(c)

FIGURE 1.63 Using the table feature of a grapher set in parametric mode. (Example 2)
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Inverse Relations and Inverse Functions
What happens when we reverse the coordinates of all the ordered pairs in a relation?
We obviously get another relation, as it is another set of ordered pairs, but does it bear
any resemblance to the original relation? If the original relation happens to be a func-
tion, will the new relation also be a function?

We can get some idea of what happens by examining Examples 1 and 2. The ordered
pairs in Example 2 can be obtained by simply reversing the coordinates of the ordered
pairs in Example 1. This is because we set up Example 2 by switching the parametric
equations for x and y that we used in Example 1. We say that the relation in Example 2
is the inverse relation of the relation in Example 1.

SECTION 1.5 Parametric Relations and Inverses 121

WINDOW

Tmax=2

Xmin=–5

Xscl=1
Ymin=–3

Tmin=–4

Tstep=.1

Xmax=5

[–5, 5] by [–3, 3]

(b)

FIGURE 1.64 The graph of a parabola in
parametric mode on a graphing calculator.
(Example 2)

(a)

EXPLORATION 1 Watching your Tstep

1. Graph the parabola in Example 2 in parametric mode as described in the solu-
tion. Press TRACE and observe the values of T, X, and Y. At what value of T
does the calculator begin tracing? What point on the parabola results? (It’s off
the screen.) At what value of T does it stop tracing? What point on the
parabola results? How many points are computed as you TRACE from start to
finish?

2. Leave everything else the same and change the Tstep to 0.01. Do you get a
smoother graph? Why or why not?

3. Leave everything else the same and change the Tstep to 1. Do you get a
smoother graph? Why or why not?

4. What effect does the Tstep have on the speed of the grapher? Is this easily
explained?

5. Now change the Tstep to 2. Why does the left portion of the parabola disap-
pear? (It may help to TRACE along the curve.)

6. Change the Tstep back to 0.1 and change the Tmin to . Why does the bot-
tom side of the parabola disappear? (Again, it may help to TRACE.)

7. Make a change to the window that will cause the grapher to show the bottom
side of the parabola but not the top.

-1

Time For T
Functions defined by parametric equations are
frequently encountered in problems of motion,
where the x- and y-coordinates of a moving ob-
ject are computed as functions of time. This
makes time the parameter, which is why you al-
most always see parameters given as “t” in para-
metric equations.

DEFINITION Inverse Relation
The ordered pair 1a, b2 is in a relation if and only if the ordered pair 1b, a2 is in
the inverse relation.

We will study the connection between a relation and its inverse. We will be most inter-
ested in inverse relations that happen to be functions. Notice that the graph of the in-
verse relation in Example 2 fails the vertical line test and is therefore not the graph of a
function. Can we predict this failure by considering the graph of the original relation in
Example 1? Figure 1.65 suggests that we can.

The inverse graph in Figure 1.65b fails the vertical line test because two different 
y-values have been paired with the same x-value. This is a direct consequence of the fact
that the original relation in Figure 1.65a paired two different x-values with the same 
y-value. The inverse graph fails the vertical line test precisely because the original graph
fails the horizontal line test. This gives us a test for relations whose inverses are functions.
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3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(–1, 1) (1, 1)

(a)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 32 4 5

(–1, 1)

(1, 1)

(b)

FIGURE 1.65 The inverse relation in (b) fails the vertical line test because the original rela-
tion in (a) fails the horizontal line test.

Horizontal Line Test
The inverse of a relation is a function if and only if each horizontal line inter-
sects the graph of the original relation in at most one point.

EXAMPLE 3  Applying the Horizontal Line Test
Which of the graphs (1)–(4) in Figure 1.66 are graphs of

(a) relations that are functions?

(b) relations that have inverses that are functions?

SOLUTION

(a) Graphs (1) and (4) are graphs of functions because these graphs pass the vertical
line test. Graphs (2) and (3) are not graphs of functions because these graphs fail
the vertical line test.

(b) Graphs (1) and (2) are graphs of relations whose inverses are functions because
these graphs pass the horizontal line test. Graphs (3) and (4) fail the horizontal
line test so their inverse relations are not functions. Now try Exercise 9.

3
2
1

–1

y

x
–5 –4 –3 321 4 5

(1)

3
2
1

–1

y

x
–5 –4 –3 –2 –1 321 4 5

(2)

3

1

–1

–3

y

x
–5 –3 –2 –1 321 5

(3)

3
2
1

–1
–2
–3

y

(4)

x
–5 –4 –3 –2 32 4 5

FIGURE 1.66 (Example 3)

Caution about Function
Notation
The symbol is read “ƒ inverse” and should
never be confused with the reciprocal of ƒ. If ƒ is
a function, the symbol , can only mean ƒ
inverse. The reciprocal of ƒ must be written 
as 1/ƒ.

ƒ-1

ƒ-1

DEFINITION Inverse Function
If ƒ is a one-to-one function with domain D and range R, then the inverse func-
tion of ƒ, denoted , is the function with domain R and range D defined by

if and only if ƒ1a2 = b.ƒ-11b2 = a

ƒ-1

A function whose inverse is a function has a graph that passes both the horizontal and
vertical line tests (such as graph (1) in Example 3). Such a function is one-to-one, since
every x is paired with a unique y and every y is paired with a unique x.
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EXAMPLE 4  Finding an Inverse Function Algebraically
Find an equation for if .

SOLUTION The graph of ƒ in Figure 1.67 suggests that ƒ is one-to-one. The origi-
nal function satisfies the equation . If ƒ truly is one-to-one, the inverse
function will satisfy the equation . (Note that we just switch the x
and the y.)

If we solve this new equation for y we will have a formula for :

Multiply by .

Distributive property

Isolate the y terms.

Factor out y.

Divide by .

Multiply numerator and denominator by .

Therefore . Now try Exercise 15.ƒ-11x2 = x/11 - x2
-1 y =

x

1 - x

x - 1 y =

-x

x - 1

 y1x - 12 = -x

 xy - y = -x

 xy + x = y

y + 1 x1y + 12 = y

 x =

y

y + 1

ƒ-11x2
x = y/1y + 12ƒ-1

y = x/1x + 12
ƒ1x2 = x/1x + 12ƒ-11x2

[–4.7, 4.7] by [–5, 5]

FIGURE 1.67 The graph of
. (Example 4)ƒ1x2 = x/1x + 12

Let us candidly admit two things regarding Example 4 before moving on to a graphical
model for finding inverses. First, many functions are not one-to-one and so do not have
inverse functions. Second, the algebra involved in finding an inverse function in the
manner of Example 4 can be extremely difficult. We will actually find very few inverses
this way. As you will learn in future chapters, we will usually rely on our understanding
of how ƒ maps x to y to understand how maps y to x.

It is possible to use the graph of ƒ to produce a graph of without doing any algebra
at all, thanks to the following geometric reflection property:

ƒ-1

ƒ-1

EXAMPLE 5  Finding an Inverse Function Graphically
The graph of a function is shown in Figure 1.68. Sketch a graph of the
function . Is ƒ a one-to-one function?

SOLUTION We need not find a formula for . All we need to do is to find the
reflection of the given graph across the line . This can be done geometrically.

Imagine a mirror along the line and draw the reflection of the given graph in
the mirror (Figure 1.69).

Another way to visualize this process is to imagine the graph to be drawn on a large
pane of glass. Imagine the glass rotating around the line so that the positive 
x-axis switches places with the positive y-axis. (The back of the glass must be rotated
to the front for this to occur.) The graph of ƒ will then become the graph of .

Since the inverse of ƒ has a graph that passes the horizontal and vertical line test, ƒ is
a one-to-one function. Now try Exercise 23.

ƒ-1

y = x

y = x

y = x
ƒ-1(x)

y = ƒ-1(x)
y = ƒ(x)

4

2

–1
–2

–4

y

3

–3

x
–5 –4 –3 –2 321 4 5

FIGURE 1.68 The graph of a one-to-one
function. (Example 5)

The Inverse Reflection Principle
The points 1a, b2 and 1b, a2 in the coordinate plane are symmetric with respect
to the line . The points 1a, b2 and 1b, a2 are reflections of each other
across the line .y = x

y = x
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There is a natural connection between inverses and function composition that gives fur-
ther insight into what an inverse actually does: It “undoes” the action of the original
function. This leads to the following rule:

124 CHAPTER 1 Functions and Graphs

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 321 4 5

The graph of f.

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 321 4 5

The mirror y = x.

3
2

–2
–3

y

x
–5 –4 –3 –2 32 4 5

The reflection.

3
2
1

–2
–3

y

x
–5 –4 –3 –2 –1 32 4 5

The graph of f –1.

FIGURE 1.69 The mirror method. The graph of ƒ is reflected in an imaginary mirror along the line to produce the graph of .
(Example 5)

ƒ 
-1y = x

The Inverse Composition Rule
A function ƒ is one-to-one with inverse function g if and only if

for every x in the domain of g, and

for every x in the domain of ƒ. g1ƒ1x22 = x

 ƒ1g1x22 = x

EXAMPLE 6  Verifying Inverse Functions
Show algebraically that and are inverse functions.

SOLUTION We use the Inverse Composition Rule.

Since these equations are true for all x, the Inverse Composition Rule guarantees that
ƒ and g are inverses.

You do not have far to go to find graphical support of this algebraic verification,
since these are the functions whose graphs are shown in Example 5!

Now try Exercise 27.

 g1ƒ1x22 = g1x3
+ 12 = 23 1x3

+ 12 - 1 = 23 x3
= x

 ƒ1g1x22 = ƒ123 x - 12 = 123 x - 123 + 1 = x - 1 + 1 = x

g1x2 = 23 x - 1ƒ1x2 = x3
+ 1

Some functions are so important that we need to study their inverses even though they are
not one-to-one. A good example is the square root function, which is the “inverse” of the
square function. It is not the inverse of the entire squaring function, because the full
parabola fails the horizontal line test. Figure 1.70 shows that the function is
really the inverse of a “restricted-domain” version of defined only for x Ú 0.y = x2

y = 2x

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The graph of y � x2 (not one-to-one).

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The inverse relation of 
y � x2 (not a function).

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The graph of y � �x� (a function).

4

2
1

–1
–2

y

3

x
–5 –4 –3 –2 –1 321 4 5 6

The graph of the function 
whose inverse is y � .�x�

FIGURE 1.70 The function has no inverse function, but is the inverse function of on the restricted domain 30, q2.y = x2y = 2xy = x2
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The consideration of domains adds a refinement to the algebraic inverse-finding method
of Example 4, which we now summarize:

SECTION 1.5 Parametric Relations and Inverses 125

How to Find an Inverse Function Algebraically

Given a formula for a function ƒ, proceed as follows to find a formula for .

1. Determine that there is a function by checking that ƒ is one-to-one. State any
restrictions on the domain of ƒ. (Note that it might be necessary to impose some
to get a one-to-one version of ƒ.)

2. Switch x and y in the formula .

3. Solve for y to get the formula . State any restrictions on the domain
of .ƒ 

-1
y = ƒ 

-11x2
y = ƒ1x2

ƒ 
-1

ƒ 
-1

EXAMPLE 7  Finding an Inverse Function
Show that has an inverse function and find a rule for . State
any restrictions on the domains of ƒ and .

SOLUTION

Solve Algebraically
The graph of ƒ passes the horizontal line test, so ƒ has an inverse function 
(Figure 1.71). Note that ƒ has domain and range .

To find we write

where 

where Interchange x and y.

where Square.

where Solve for y.

Thus , with an “inherited” domain restriction of Figure 1.71
shows the two functions. Note the domain restriction of imposed on the
parabola .

Support Graphically
Use a grapher in parametric mode and compare the graphs of the two sets of para-
metric equations with Figure 1.71:

and

Now try Exercise 17.

y = ty = 2t + 3

x = 2t + 3x = t

y = x2
- 3

x Ú 0
x Ú 0.ƒ-11x2 = x2

- 3

y Ú -3, x Ú 0 y = x2
- 3

y Ú -3, x Ú 0 x2
= y + 3

y Ú -3, x Ú 0 x = 2y + 3

x Ú -3, y Ú 0 y = 2x + 3

ƒ-1

30, q23-3, q2

ƒ-1
ƒ-11x2ƒ1x2 = 2x + 3

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 1.71 The graph of
and its inverse, a restricted

version of . (Example 7)y = x2
- 3

ƒ1x2 = 2x + 3

QUICK REVIEW 1.5 (For help, go to Section P.3 and P.4.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–10, solve the equation for y.

1. 2.

3. 4.

5. 6. x =

3y - 1

y + 2
x =

y - 2

y + 3

x = y2
- 6x = y2

+ 4

x = 0.5y + 1x = 3y - 6

7. 8.

9.

10. x = 2y - 2, y Ú 2

x = 2y + 3, y Ú -3

x =

4y + 3

3y - 1
x =

2y + 1

y - 4
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11. 12.
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25. 26.

y

x

y

x

y

x

y

x

4

2
1

–1
–2

–4

y

3

–3

x
–5 –4 –3 –2 31 4 5

4

2
1

–2

–4

y

3

–3

x
–5 –4 –3 –2 –1 321 4 5

4

2
1

–1

–4

y

3

–3

x
–5 –4 –3 –2 –1 321 4 5

4

1

–1
–2

–4

y

3

–3

x
–5 –4 –3 –1 321 4 5

SECTION 1.5 EXERCISES

In Exercises 1–4, find the 1x, y2 pair for the value of the parameter.

1.

2.

3.

4.

In Exercises 5–8, complete the following. (a) Find the points deter-
mined by , , 0, 1, 2, and 3. (b) Find a direct algebraic
relationship between x and y and determine whether the parametric
equations determine y as a function of x. (c) Graph the relationship in
the xy-plane.

5. 6.

7. and 8. and 

In Exercises 9–12, the graph of a relation is shown. (a) Is the relation a
function? (b) Does the relation have an inverse that is a function?

9. 10.

y = 2t - 5x = 2ty = t - 2x = t 2

x = t + 1 and y = t 2
- 2tx = 2t and y = 3t - 1

-2, -1t = -3

x = ƒ t + 3 ƒ  and y = 1/t for t = -8

x = t 3
- 4t and y = 2t + 1 for t = 3

x = 5t - 7 and y = 17 - 3t for t = -2

x = 3t and y = t 2
+ 5 for t = 2

In Exercises 13–22, find a formula for . Give the domain of ,
including any restrictions “inherited” from ƒ.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–26, determine whether the function is one-to-one. If it
is one-to-one, sketch the graph of the inverse.

23. 24.

ƒ1x2 = 23 x - 2ƒ1x2 = 23 x + 5

ƒ1x2 = 2x3
+ 5ƒ1x2 = x3

ƒ1x2 = 2x + 2ƒ1x2 = 2x - 3

ƒ1x2 =

x + 3

x - 2
ƒ1x2 =

2x - 3

x + 1

ƒ1x2 = 2x + 5ƒ1x2 = 3x - 6

ƒ -1ƒ -11x2

In Exercises 27–32, confirm that ƒ and g are inverses by showing that
and .

27. and 

28. and 

29. and 

30. and 

31. and 

32. and 

33. Currency Conversion In May of 2002 the exchange
rate for converting U.S. dollars 1x2 to euros 1y2 was .

(a) How many euros could you get for $100 U.S.?

(b) What is the inverse function, and what conversion does it
represent?

(c) In the spring of 2002, a tourist had an elegant lunch in
Provence, France, ordering from a “fixed price” 48-euro
menu. How much was that in U.S. dollars?

34. Temperature Conversion The formula for 
converting Celsius temperature 1x2 to Kelvin temperature is

. The formula for converting Fahrenheit
temperature 1x2 to Celsius temperature is 

(a) Find a formula for . What is this formula used for?

(b) Find What is this formula used for?

35. Which pairs of basic functions (Section 1.3) are inverses of
each other?

36. Which basic functions (Section 1.3) are their own inverses?

37. Which basic function can be defined parametrically as follows?

and for 

38. Which basic function can be defined parametrically as follows?

and for - q 6 t 6 qy = 12t23x = 8t 3

- q 6 t 6 qy = 2t 6x = t 3

1k � c21x2.
c -11x2

c1x2 = 15/921x - 322.
k1x2 = x + 273.16

y = 1.08x

g1x2 =

2x + 3

x - 1
ƒ1x2 =

x + 3

x - 2

g1x2 =

1

x - 1
ƒ1x2 =

x + 1
x

g1x2 =

7
x

ƒ1x2 =

7
x

g1x2 = 23 x - 1ƒ1x2 = x3
+ 1

g1x2 = 4x - 3ƒ1x2 =

x + 3

4

g1x2 =

x + 2

3
ƒ1x2 = 3x - 2

g1ƒ1x22 = xƒ1g1x22 = x

6965_CH01_pp063-156.qxd  1/14/10  1:01 PM  Page 126



Standardized Test Questions
39. True or False If ƒ is a one-to-one function with domain

D and range R, then is a one-to-one function with domain
R and range D. Justify your answer.

40. True or False The set of points for all
real numbers t form a line with slope 2. Justify your answer.

In Exercises 41–44, answer the questions without using a calculator.

41. Multiple Choice Which ordered pair is in the inverse of
the relation given by 

(A) (B) (C) (D)

(E)

42. Multiple Choice Which ordered pair is not in the
inverse of the relation given by ?

(A) (B) 14, 12 (C) 13, 22 (D) 12, 122
(E)

43. Multiple Choice Which function is the inverse of the
function ?

(A)

(B)

(C)

(D)

(E)

44. Multiple Choice Which function is the inverse of the
function 

(A)

(B)

(C)

(D)

(E)

Explorations
45. Function Properties Inherited by Inverses

There are some properties of functions that are automatically
shared by inverse functions (when they exist) and some that are
not. Suppose that ƒ has an inverse function . Give an alge-
braic or graphical argument (not a rigorous formal proof) to
show that each of these properties of ƒ must necessarily be
shared by .

(a) ƒ is continuous.

(b) ƒ is one-to-one.

(c) ƒ is odd (graphically, symmetric with respect to the origin).

(d) ƒ is increasing.

ƒ-1

ƒ-1

g1x2 = 1 - x3

g1x2 = 23 x + 1

g1x2 = x3
- 1

g1x2 = 23 x - 1

g1x2 = 23 x - 1

ƒ1x2 = x3
+ 1?

g1x2 =

x - 2

3

g1x2 =

x - 3

2

g1x2 =

x + 2

3

g1x2 = 2 - 3x

g1x2 =

x

3
+ 2

ƒ1x2 = 3x - 2

11, -62
10, -42

xy2
- 3x = 12

11, -22
12, -121-1, 221-2, 1212, 12

x2y + 5y = 9?

1t + 1, 2t + 32
ƒ-1

46. Function Properties Not Inherited by Inverses
There are some properties of functions that are not necessarily
shared by inverse functions, even if the inverses exist. Suppose
that ƒ has an inverse function . For each of the following
properties, give an example to show that ƒ can have the prop-
erty while does not.

(a) ƒ has a graph with a horizontal asymptote.

(b) ƒ has domain all real numbers.

(c) ƒ has a graph that is bounded above.

(d) ƒ has a removable discontinuity at .

47. Scaling Algebra Grades A teacher gives a challeng-
ing algebra test to her class. The lowest score is 52, which she
decides to scale to 70. The highest score is 88, which she de-
cides to scale to 97.

(a) Using the points 152, 702 and 188, 972, find a linear equa-
tion that can be used to convert raw scores to scaled grades.

(b) Find the inverse of the function defined by this linear equa-
tion. What does the inverse function do?

48. Writing to Learn (Continuation of Exercise 47) Ex-
plain why it is important for fairness that the scaling function
used by the teacher be an increasing function. (Caution: It is
not because “everyone’s grade must go up.” What would the
scaling function in Exercise 47 do for a student who does
enough “extra credit” problems to get a raw score of 136?)

Extending the Ideas
49. Modeling a Fly Ball Parametrically A baseball

that leaves the bat at an angle of 60° from horizontal traveling
110 feet per second follows a path that can be modeled by the
following pair of parametric equations. (You might enjoy veri-
fying this if you have studied motion in physics.)

You can simulate the flight of the ball on a grapher. Set your
grapher to parametric mode and put the functions above in for
X2T and Y2T. Set and to draw a 30-foot
fence 325 feet from home plate. Set , ,

, , , , ,
, and .

(a) Now graph the function. Does the fly ball clear the fence?

(b) Change the angle to 30° and run the simulation again.
Does the ball clear the fence?

(c) What angle is optimal for hitting the ball? Does it clear the
fence when hit at that angle?

Yscl = 0Ymax = 300
Ymin = 0Xscl = 0Xmax = 350Xmin = 0Tstep = 0.1

Tmax = 6Tmin = 0
Y1T = 5TX1T = 325

y = 1101t2sin160°2 - 16t 2

x = 1101t2cos160°2

x = 5

ƒ-1

ƒ-1

SECTION 1.5 Parametric Relations and Inverses 127
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50. The Baylor GPA Scale Revisited (See Problem
78 in Section 1.2.) The function used to convert Baylor School
percentage grades to GPAs on a 4-point scale is

The function has domain [65, 100]. Anything below 65 is a
failure and automatically converts to a GPA of 0.

(a) Find the inverse function algebraically. What can the in-
verse function be used for?

(b) Does the inverse function have any domain restrictions?

(c) Verify with a graphing calculator that the function found in
(a) and the given function are really inverses.

y = a31.7

30
 (x - 65)b

1
1.7

+ 1.

51. Group Activity (Continuation of Exercise 50) The num-
ber 1.7 that appears in two places in the GPA scaling formula is
called the scaling factor 1k2. The value of k can be changed to
alter the curvature of the graph while keeping the points 165,
12 and 195, 42 fixed. It was felt that the lowest D 1652 needed
to be scaled to 1.0, while the middle A 1952 needed to be
scaled to 4.0. The faculty’s Academic Council considered sev-
eral values of k before settling on 1.7 as the number that gives
the “fairest” GPAs for the other percentage grades.

Try changing k to other values between 1 and 2. What kind of
scaling curve do you get when ? Do you agree with the
Baylor decision that gives the fairest GPAs?k = 1.7

k = 1

128 CHAPTER 1 Functions and Graphs
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SECTION 1.6 Graphical Transformations 129

In general, replacing x by shifts the graph horizontally c units. Similarly,
replacing y by shifts the graph vertically c units. If c is positive the shift is to the
right or up; if c is negative the shift is to the left or down.

y - c
x - c

Transformations
The following functions are all different:

However, a look at their graphs shows that, while no two are exactly the same, all four
have the same identical shape and size. Understanding how algebraic alterations
change the shapes, sizes, positions, and orientations of graphs is helpful for understand-
ing the connection between algebraic and graphical models of functions.

In this section we relate graphs using transformations, which are functions that map
real numbers to real numbers. By acting on the x-coordinates and y-coordinates of
points, transformations change graphs in predictable ways. Rigid transformations,
which leave the size and shape of a graph unchanged, include horizontal translations,
vertical translations, reflections, or any combination of these. Nonrigid transformations,
which generally distort the shape of a graph, include horizontal or vertical stretches and
shrinks.

Vertical and Horizontal Translations
A vertical translation of the graph of is a shift of the graph up or down in the
coordinate plane. A horizontal translation is a shift of the graph to the left or the right.
The following exploration will give you a good feel for what translations are and how
they occur.

y = ƒ1x2

y = x2
- 4x + 5

y = 1 - x2

y = 1x - 322
y = x2

What you’ll learn about
• Transformations
• Vertical and Horizontal

Translations
• Reflections Across Axes
• Vertical and Horizontal Stretches

and Shrinks
• Combining Transformations

... and why
Studying transformations will
help you to understand the rela-
tionships between graphs that
have similarities but are not the
same.

Technology Alert
In Exploration 1, the notation means
the function , evaluated at . It does not
mean multiplication.

x + 3y1

y11x + 32

EXPLORATION 1 Introducing Translations

Set your viewing window to by and your graphing mode to se-

quential as opposed to simultaneous.

1. Graph the functions

on the same screen. What effect do the , and seem to have?

2. Graph the functions

on the same screen. What effect do the , and seem to have?

3. Repeat steps 1 and 2 for the functions , , and . 
Do your observations agree with those you made after steps 1 and 2?

y1 = 2xy1 = ƒ x ƒy1 = x3

-4+3, +1, -2

 y3 = y11x + 12 = 1x + 122
 y5 = y11x - 42 = 1x - 422 y2 = y11x + 32 = 1x + 322
 y4 = y11x - 22 = 1x - 222 y1 = x2

-4+3, +1, -2

 y3 = y11x2 + 1 = x2
+ 1

 y5 = y11x2 - 4 = x2
- 4 y2 = y11x2 + 3 = x2

+ 3

 y4 = y11x2 - 2 = x2
- 2 y1 = x2

3-5, 1543-5, 54

1.6 Graphical Transformations
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Translations
Let c be a positive real number. Then the following transformations result in
translations of the graph of :
Horizontal Translations

a translation to the right by c units

a translation to the left by c units

Vertical Translations

a translation up by c units

a translation down by c units y = ƒ1x2 - c

 y = ƒ1x2 + c

 y = ƒ1x + c2
 y = ƒ1x - c2

y = ƒ1x2

This is a nice, consistent rule that unfortunately gets complicated by the fact that the c
for a vertical shift rarely shows up being subtracted from y. Instead, it usually shows up
on the other side of the equal sign being added to ƒ1x2. That leads us to the following
rule, which only appears to be different for horizontal and vertical shifts:

EXAMPLE 1  Vertical Translations
Describe how the graph of can be transformed to the graph of the given
equation.

(a) (b)
SOLUTION

(a) The equation is in the form , a translation down by 4 units. See
Figure 1.72.

(b) The equation is in the form , a translation left by 2 units. See
Figure 1.73. Now try Exercise 3.

y = ƒ1x + 22
y = ƒ1x2 - 4

y = ƒ x + 2 ƒy = ƒ x ƒ - 4

y = ƒ x ƒ

y

5

–5

x
5

FIGURE 1.72
(Example 1)

y = ƒ x ƒ - 4.

y

5

–5

x
5

FIGURE 1.73
(Example 1)

y = ƒ x + 2 ƒ .

EXAMPLE 2  Finding Equations for Translations
Each view in Figure 1.74 shows the graph of and a vertical or horizontal
translation . Write an equation for as shown in each graph.

SOLUTION

(a) (a vertical translation down by 3 units)

(b) (a horizontal translation left by 2 units)

(c) (a horizontal translation right by 3 units)
Now try Exercise 25.

y2 = 1x - 323 = y1 1x - 32
y2 = 1x + 223 = y1 1x + 22
y2 = x3

- 3 = y1 1x2 - 3

y2y2

y1 = x3

130 CHAPTER 1 Functions and Graphs
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Reflections

The following transformations result in reflections of the graph of :

Across the x-axis

Across the y-axis

Through the origin

y = -ƒ1-x2

y = ƒ1-x2

y = -ƒ1x2

y = ƒ1x2

Reflections Across Axes
Points 1x, y2 and 1 2 are reflections of each other across the x-axis. Points 1x, y2
and 1 2 are reflections of each other across the y-axis. (See Figure 1.75.) Two
points (or graphs) that are symmetric with respect to a line are reflections of each other
across that line.

-x, y
x, -y

6

2
1

–1
–2

–6

y

3
4
5

–4
–5

x
–5 –4 –3 –2 –1 321 4 5

(a)

6

2
1

–1
–2

–6

y

–3
–4
–5

x
–5 –4 –2 321 4 5

(b)

6

2
1

–1
–2

–6

y

3
4
5

–3
–4
–5

x
–5 –4 –3 –2 31 4 5

(c)

FIGURE 1.74 Translations of . (Example 2)y1 = x3

y

x

(x, y)(–x, y)

(x, –y)

FIGURE 1.75 The point 1x, y2 and its reflections across the x-and y-axes.

Figure 1.75 suggests that a reflection across the x-axis results when y is replaced by ,
and a reflection across the y-axis results when x is replaced by .-x

-y

EXAMPLE 3  Finding Equations for Reflections

Find an equation for the reflection of across each axis.

(continued)

ƒ1x2 =

5x - 9

x2
+ 3

SECTION 1.6 Graphical Transformations 131

Double Reflection
Note that a reflection through the origin is the 
result of reflections in both axes, performed in
either order.
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Now try Exercise 29.

You might expect that odd and even functions, whose graphs already possess special
symmetries, would exhibit special behavior when reflected across the axes. They do, as
shown by Example 4 and Exercises 33 and 34.

132 CHAPTER 1 Functions and Graphs

SOLUTION

Solve Algebraically

Across the x-axis: 

Across the y-axis: 

Support Graphically
The graphs in Figure 1.76 support our algebraic work.

y = ƒ1-x2 =

51-x2 - 9

1-x22 + 3
=

-5x - 9

x2
+ 3

y = -ƒ1x2 = -  

5x - 9

x2
+ 3

=

9 - 5x

x2
+ 3

[–5, 5] by [–4, 4]

(a)

[–5, 5] by [–4, 4]

(b)

FIGURE 1.76 Reflections of across (a) the x-axis and (b) the
y-axis. (Example 3)

ƒ1x2 = 15x - 92/1x2
+ 32

Graphing Absolute Value Compositions
Given the graph of ,

the graph of can be obtained by reflecting the portion of the
graph below the x-axis across the x-axis, leaving the portion above the 
x-axis unchanged;

the graph of can be obtained by replacing the portion of the
graph to the left of the y-axis by a reflection of the portion to the right of
the y-axis across the y-axis, leaving the portion to the right of the y-axis
unchanged. (The result will show even symmetry.)

y = ƒ1 ƒ x ƒ 2

y = ƒ ƒ1x2 ƒ

y = ƒ1x2

Function compositions with absolute value can be realized graphically by reflecting
portions of graphs, as you will see in the following Exploration.

EXAMPLE 4  Reflecting Even Functions
Prove that the graph of an even function remains unchanged when it is reflected
across the y-axis.

SOLUTION Note that we can get plenty of graphical support for these statements
by reflecting the graphs of various even functions, but what is called for here is
proof, which will require algebra.

Let ƒ be an even function; that is, for all x in the domain of ƒ. To reflect
the graph of across the y-axis, we make the transformation . But

for all x in the domain of ƒ, so this transformation results in .
The graph of ƒ therefore remains unchanged. Now try Exercise 33.

y = ƒ1x2ƒ1-x2 = ƒ1x2 y = ƒ1-x2y = ƒ1x2 ƒ1-x2 = ƒ1x2
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EXPLORATION 2 Compositions with Absolute Value

The graph of is shown at the right.

Match each of the graphs below with one of the

following equations and use the language of

function reflection to defend your match. Note

that two of the graphs will not be used.

1.

2.

3.

4.

(A) (B)

(C) (D)

(E) (F)

y = ƒ ƒ1 ƒ x ƒ 2 ƒ

y = - ƒ ƒ1x2 ƒ

y = ƒ1 ƒ x ƒ 2
y = ƒ ƒ1x2 ƒ

y = ƒ1x2

x

y

x

y

x

y

x

y

x

y

x

y

x

y

Vertical and Horizontal Stretches and Shrinks
We now investigate what happens when we multiply all the y-coordinates (or all the
x-coordinates) of a graph by a fixed real number.
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Stretches and Shrinks
Let c be a positive real number. Then the following transformations result in
stretches or shrinks of the graph of :
Horizontal Stretches or Shrinks

Vertical Stretches or Shrinks

e a stretch by a factor of c if c 7 1

a shrink by a factor of c if c 6 1
 y = c # ƒ1x2

e a stretch by a factor of c if c 7 1

a shrink by a factor of c if c 6 1
y = ƒa x

c
b

y = ƒ1x2
[–7, 7] by [–80, 80]

(a)

[–7, 7] by [–80, 80]

(b)

FIGURE 1.77 The graph of 
, shown with (a) a vertical stretch

and (b) a horizontal shrink. (Example 5)
x3

- 16x
y1 = ƒ1x2 =

Exploration 3 suggests that multiplication of x or y by a constant results in a horizontal
or vertical stretching or shrinking of the graph.

In general, replacing x by x/c distorts the graph horizontally by a factor of c. Similarly,
replacing y by y/c distorts the graph vertically by a factor of c. If c is greater than 1 the
distortion is a stretch; if c is less than 1 the distortion is a shrink.

As with translations, this is a nice, consistent rule that unfortunately gets complicated
by the fact that the c for a vertical stretch or shrink rarely shows up as a divisor of y. In-
stead, it usually shows up on the other side of the equal sign as a factor multiplied by
ƒ1x2. That leads us to the following rule:

134 CHAPTER 1 Functions and Graphs

EXPLORATION 3 Introducing Stretches and Shrinks

Set your viewing window to by and your graphing mode

to sequential as opposed to simultaneous.

1. Graph the functions

on the same screen. What effect do the 1.5, 2, 0.5, and 0.25 seem to have?

2. Graph the functions

on the same screen. What effect do the 1.5, 2, 0.5, and 0.25 seem to have?

 y5 = y110.25x2 = 24 - 10.25x22
 y4 = y110.5x2 = 24 - 10.5x22
 y3 = y112x2 = 24 - 12x22
 y2 = y111.5x2 = 24 - 11.5x22
y1 = 24 - x2

 y5 = 0.25y11x2 = 0.2524 - x2

 y4 = 0.5y11x2 = 0.524 - x2

 y3 = 2y11x2 = 224 - x2

 y2 = 1.5y11x2 = 1.524 - x2

y1 = 24 - x2

[-1.1, 5.1][-4.7, 4.7]

EXAMPLE 5  Finding Equations for Stretches and Shrinks
Let be the curve defined by Find equations for the fol-
lowing nonrigid transformations of :

(a) is a vertical stretch of by a factor of 3.

(b) is a horizontal shrink of by a factor of 1/2.C1C3

C1C2

C1

y1 = ƒ1x2 = x3
- 16x.C1
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EXAMPLE 6  Combining Transformations in Order
(a) The graph of undergoes the following transformations, in order. Find the

equation of the graph that results.
• a horizontal shift 2 units to the right
• a vertical stretch by a factor of 3
• a vertical translation 5 units up

(b) Apply the transformations in (a) in the opposite order and find the equation of
the graph that results.

SOLUTION

(a) Applying the transformations in order, we have

Expanding the final expression, we get the function 
(b) Applying the transformations in the opposite order, we have

Expanding the final expression, we get the function 

The second graph is ten units higher than the first graph because the vertical stretch
lengthens the vertical translation when the translation occurs first. Order often mat-
ters when stretches, shrinks, or reflections are involved.

Now try Exercise 47.

y = 3x2
- 12x + 27.

x2 Q x2
+ 5 Q 31x2

+ 52Q 311x - 222 + 52.
y = 3x2

- 12x + 17.

x2 Q 1x - 222 Q 31x - 222 Q 31x - 222 + 5.

y = x2

Combining Transformations
Transformations may be performed in succession—one after another. If the transforma-
tions include stretches, shrinks, or reflections, the order in which the transformations
are performed may make a difference. In those cases, be sure to pay particular attention
to order.

SOLUTION

Solve Algebraically
(a) Denote the equation for by Then

(b) Denote the equation for by Then

Support Graphically
The graphs in Figure 1.77 support our algebraic work. Now try Exercise 39.

 = 8x3
- 32x

 = 12x23 - 1612x2
 = ƒ12x2

y3 = ƒa x

1/2
b

y3.C3

 = 3x3
- 48x

 = 31x3
- 16x2

 y2 = 3 # ƒ1x2
y2.C2
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3

1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

y = f(x)

FIGURE 1.78 The graph of the function
in Example 7.y = ƒ1x2

3
2
1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

Vertical stretch
of factor 2

(a)

y = 2f(x)

4
3
2
1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

Horizontal translation
left 1 unit

(b)

y = 2f(x + 1)

4
3
2
1

–1
–2
–3
–4

y

x
–4 –3 –2 –1 321 4

Vertical translation
down 3 units

(c)

y = 2f(x + 1) – 3

FIGURE 1.79 Transforming the graph of in Figure 1.78 to get the graph of (Example 7)y = 2ƒ1x + 12 - 3.y = ƒ1x2

EXAMPLE 7  Transforming a Graph Geometrically
The graph of is shown in Figure 1.78. Determine the graph of the compos-
ite function by showing the effect of a sequence of transforma-
tions on the graph of 

SOLUTION

The graph of can be obtained from the graph of by
the following sequence of transformations:

(a) a vertical stretch by a factor of 2 to get (Figure 1.79a)

(b) a horizontal translation 1 unit to the left to get (Figure 1.79b)

(c) a vertical translation 3 units down to get (Figure 1.79c)

(The order of the first two transformations can be reversed without changing the final
graph.) Now try Exercise 51.

y = 2ƒ1x + 12 - 3

y = 2ƒ1x + 12
y = 2ƒ1x2

y = ƒ1x2y = 2ƒ1x + 12 - 3

y = ƒ1x2.y = 2ƒ1x + 12 - 3
y = ƒ1x2

QUICK REVIEW 1.6 (For help, go to Section A.2.)

SECTION 1.6 EXERCISES

In Exercises 1–8, describe how the graph of can be transformed
to the graph of the given equation.

1. 2.

3. 4.

5. 6.

7. 8. y = 1x + 5022 - 279y = 1x - 122 + 3

y = x2
- 100y = 1100 - x22

y = 1x - 322y = 1x + 422
y = x2

+ 5.2y = x2
- 3

y = x2 In Exercises 9–12, describe how the graph of can be trans-
formed to the graph of the given equation.

9. 10.

11. 12.

In Exercises 13–16, describe how the graph of can be trans-
formed to the graph of the given equation.

13. 14.

15. 16. y = 0.3x3y = 10.2x23
y = 12x23y = 2x3

y = x3

y = 13 - xy = 1-x

y = 1x - 5y = - 1x

y = 2x

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, write the expression as a binomial squared.

1. 2.

3. 4.

5. 6. 4x2
- 20x + 25x2

- 5x +

25

4

4x2
+ 4x + 1x2

+ 12x + 36

x2
- 6x + 9x2

+ 2x + 1

In Exercises 7–10, perform the indicated operations and simplify.

7.

8.

9.

10. 21x + 123 - 61x + 122 + 61x + 12 - 2

1x - 123 + 31x - 122 - 31x - 12
21x + 322 - 51x + 32 - 2

1x - 222 + 31x - 22 + 4
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In Exercises 17–20, describe how to transform the graph of ƒ into the
graph of g.

17. and 

18. and 

19. and 

20. and 

In Exercises 21–24, sketch the graphs of ƒ, g, and h by hand. Support
your answers with a grapher.

g1x2 = 4 ƒ x ƒƒ1x2 = ƒ 2x ƒ

g1x2 = -1x + 223ƒ1x2 = 1x - 223
g1x2 = -1x + 322ƒ1x2 = 1x - 122

g1x2 = 1x - 4ƒ1x2 = 1x + 2

In Exercises 39–42, transform the given function by (a) a vertical
stretch by a factor of 2, and (b) a horizontal shrink by a factor of 1/3.

39. 40.

41. 42.

In Exercises 43–46, describe a basic graph and a sequence of transfor-
mations that can be used to produce a graph of the given function.

43. 44.

45. 46.

In Exercises 47–50, a graph G is obtained from a graph of y by the se-
quence of transformations indicated. Write an equation whose graph is
G.

47. : a vertical stretch by a factor of 3, then a shift right 4
units. 

48. : a shift right 4 units, then a vertical stretch by a factor
of 3. 

49. : a shift left 2 units, then a vertical stretch by a factor of
2, and finally a shift down 4 units. 

50. : a shift left 2 units, then a horizontal shrink by a factor
of 1/2, and finally a shift down 4 units. 

Exercises 51–54 refer to the function ƒ whose graph is shown below.

y = ƒ x ƒ

y = ƒ x ƒ

y = x2

y = x2

y = -2 ƒ x + 4 ƒ + 1y = 13x22 - 4

y = -32x + 1y = 21x - 322 - 4

ƒ1x2 =

1

x + 2
ƒ1x2 = x2

+ x - 2

ƒ1x2 = ƒ x + 2 ƒƒ1x2 = x3
- 4x

21.

 h1x2 = -21x - 322
 g1x2 = 3x2

- 2

 ƒ1x2 = 1x + 222 22.

 h1x2 = 21x - 123
 g1x2 = 1x + 423 - 1

ƒ1x2 = x3
- 2

23.

h1x2 = - 23 x - 3

g1x2 = 223 x - 2

ƒ1x2 = 23 x + 1

In Exercises 25–28, the graph is that of a function that can be 
obtained by transforming the graph of 
Write a formula for the function ƒ.

25. 26.

27. 28.

In Exercises 29–32, find the equation of the reflection of ƒ across (a)
the x-axis and (b) the y-axis.

29.

30.

31.

32.

33. Reflecting Odd Functions Prove that the graph of an
odd function is the same when reflected across the x-axis as it
is when reflected across the y-axis.

34. Reflecting Odd Functions Prove that if an odd func-
tion is reflected about the y-axis and then reflected again about
the x-axis, the result is the original function.

Exercises 35–38 refer to the graph of shown at the top of the
next column. In each case, sketch a graph of the new function.

35.

36.

37.

38. y = ƒ  ƒ1 ƒ x ƒ 2 ƒ

y = -ƒ1 ƒ x ƒ 2
y = ƒ1|x|2
y = ƒ ƒ1x2 ƒ

y = ƒ1x2

ƒ1x2 = 3 ƒ x + 5 ƒ

ƒ1x2 = 23 8x

ƒ1x2 = 22x + 3 - 4

ƒ1x2 = x3
- 5x2

- 3x + 2

y = 2x.
y = ƒ1x2

24.

 h1x2 = ƒ 3x ƒ

 g1x2 = 3 ƒ x + 5 ƒ + 4

 ƒ1x2 = -2 ƒ x ƒ - 3

[–10, 10] by [–5, 5] [–10, 10] by [–5, 5]

[–10, 10] by [–5, 5]

3
2
1

–2
–3
–4

y

x
–2–3 –1 2 431

[–10, 10] by [–5, 5]

Vertical stretch = 2

x

y

51. Sketch the graph of 

52. Sketch the graph of 

53. Sketch the graph of 

54. Sketch the graph of 

55. Writing to Learn Graph some examples to convince
yourself that a reflection and a translation can have a different
effect when combined in one order than when combined in the
opposite order. Then explain in your own words why this can
happen.

y = 2ƒ1x - 12 + 2.

y = ƒ12x2.
y = -ƒ1x + 12 + 1.

y = 2 + 3ƒ1x + 12.
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56. Writing to Learn Graph some examples to convince
yourself that vertical stretches and shrinks do not affect a
graph’s x-intercepts. Then explain in your own words why this
is so.

57. Celsius vs. Fahrenheit The graph shows the tempera-
ture in degrees Celsius in Windsor, Ontario, for one 24-hour
period. Describe the transformations that convert this graph to one
showing degrees Fahrenheit. [Hint: F1t2 = 19/52C1t2 + 32.]

63. Multiple Choice Given a function ƒ, which of the fol-
lowing represents a vertical translation of 2 units upward, fol-
lowed by a reflection across the y-axis?

(A) (B)

(C) (D)

(E)

64. Multiple Choice Given a function ƒ, which of the fol-
lowing represents reflection across the x-axis, followed by a
horizontal shrink by a factor of 1/2?

(A) (B)

(C) (D)

(E)

Explorations
65. International Finance Table 1.11 shows the (ad-

justed closing) price of a share of stock in Dell Computer for
each month of 2008.

y = -ƒ12x2
y = -ƒ1x/22y = ƒ1-2x2
y = -ƒ1x2/2 y = -2ƒ1x2

y = ƒ1x2 - 2

y = -ƒ1x - 22y = ƒ12 - x2
y = 2 - ƒ1x2y = ƒ1-x2 + 2
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24
t

y

C(t)

24
t

y

F(t)

58. Fahrenheit vs. Celsius The graph shows the tempera-
ture in degrees Fahrenheit in Mt. Clemens, Michigan, for one
24-hour period. Describe the transformations that convert this
graph to one showing degrees Celsius. 
[Hint: F1t2 = 19/52C1t2 + 32.]

Standardized Test Questions
59. True or False The function represents a

translation to the right by 3 units of the graph of 
Justify your answer.

60. True or False The function represents a
translation down 4 units of the graph of Justify your
answer.

In Exercises 61–64, you may use a graphing calculator to answer the
question.

61. Multiple Choice Given a function ƒ, which of the fol-
lowing represents a vertical stretch by a factor of 3?

(A) (B)

(C) (D)

(E)

62. Multiple Choice Given a function ƒ, which of the follow-
ing represents a horizontal translation of 4 units to the right?

(A) (B)

(C) (D)

(E) y = 4ƒ1x2
y = ƒ1x - 42y = ƒ1x + 42
y = ƒ1x2 - 4 y = ƒ1x2 + 4

y = ƒ1x2 + 3

y = ƒ1x2/3y = 3ƒ1x2
y = ƒ1x/32y = ƒ13x2

y = ƒ1x2.
y = ƒ1x2 - 4

y = ƒ1x2.
y = ƒ1x + 32

Table 1.11 Dell Computer

Source: Yahoo! Finance.

Month Price ($)

1 20.04
2 19.90
3 19.92
4 18.63
5 23.06
6 21.88
7 24.57
8 21.73
9 16.48

10 12.20
11 11.17
12 10.24

(a) Graph price 1y2 as a func-
tion of month 1x2 as a line
graph, connecting the points
to make a continuous graph.

(b) Explain what transforma-
tion you would apply to this
graph to produce a graph
showing the price of the
stock in Japanese yen.

66. Group Activity Get with a friend and graph the function
on both your graphers. Apply a horizontal or vertical

stretch or shrink to the function on one of the graphers. Then
change the window of that grapher to make the two graphs look
the same. Can you formulate a general rule for how to find the
window?

y = x2

6965_CH01_pp063-156.qxd  1/14/10  1:01 PM  Page 138



Extending the Ideas
67. The Absolute Value Transformation Graph the

function in the viewing
window by (Put the equation in .)

(a) Study the graph and try to predict what the graph of
will look like. Then turn Y1 off and graph

Did you predict correctly?

(b) Study the original graph again and try to predict what the
graph of will look like. Then turn Y1 off and
graph Did you predict correctly?

(c) Given the graph of shown below, sketch a graph
of 

(d) Given the graph of shown below, sketch a graph
of y = g1 ƒ x ƒ 2.

y = g1x2
y = ƒ g1x2 ƒ .

y = g1x2
Y2 = Y11abs 1X22.

y = ƒ1 ƒ x ƒ 2
Y2 = abs (Y1).
y = ƒ  ƒ1x2 ƒ

Y1[-10, 10].[-5, 5]
ƒ1x2 = x4

- 5x3
+ 4x2

+ 3x + 2

68. Parametric Circles and Ellipses Set your grapher
to parametric and radian mode and your window as follows:

(a) Graph the parametric equations 
You should get a circle of radius 1.

(b) Use a transformation of the parametric function of x to
produce the graph of an ellipse that is 4 units wide and 2
units tall.

(c) Use a transformation of both parametric functions to pro-
duce a circle of radius 3.

(d) Use a transformation of both functions to produce an
ellipse that is 8 units wide and 4 units tall.

(You will learn more about ellipses in Chapter 8.)

x = cos t and y = sin t.

Ymin = -3.1, Ymax = 3.1, Yscl = 1

Xmin = -4.7, Xmax = 4.7, Xscl = 1

Tmin = 0, Tmax = 7, Tstep = 0.1

6

2
1

–1

–6

y

3
4
5

–3
–4
–5

x
–4 –3 –2 –1 321 4 5
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1.7 Modeling with Functions

Functions from Formulas
Now that you have learned more about what functions are and how they behave, we
want to return to the modeling theme of Section 1.1. In that section we stressed that
one of the goals of this course was to become adept at using numerical, algebraic, and
graphical models of the real world in order to solve problems. We now want to focus
your attention more precisely on modeling with functions.

You have already seen quite a few formulas in the course of your education. Formulas
involving two variable quantities always relate those variables implicitly, and quite
often the formulas can be solved to give one variable explicitly as a function of the other.
In this book we will use a variety of formulas to pose and solve problems algebraically,
although we will not assume prior familiarity with those formulas that we borrow from
other subject areas (like physics or economics). We will assume familiarity with certain
key formulas from mathematics.

What you’ll learn about
• Functions from Formulas
• Functions from Graphs
• Functions from Verbal

Descriptions
• Functions from Data

... and why
Using a function to model a vari-
able under observation in terms
of another variable often allows
one to make predictions in
practical situations, such as
predicting the future growth of a
business based on known data.

EXAMPLE 1  Forming Functions from Formulas
Write the area A of a circle as a function of its

(a) radius r.

(b) diameter d.

(c) circumference C.

SOLUTION

(a) The familiar area formula from geometry gives A as a function of r:

(b) This formula is not so familiar. However, we know that , so we can sub-
stitute that expression for r in the area formula:

(c) Since , we can solve for r to get Then substitute to get A:
Now try Exercise 19.A = pr 2

= p1C/12p222 = pC 2/14p22 = C 2/14p2.
r = C/12p2.C = 2pr

A = pr 2
= p1d/222 = 1p/42d2

r = d/2

A = pr 2

EXAMPLE 2  A Maximum Value Problem
A square of side x inches is cut out of each corner of an 8 in. by 15 in. piece of card-
board and the sides are folded up to form an open-topped box (Figure 1.80).

FIGURE 1.80 An open-topped box made by cutting the corners from a piece of cardboard
and folding up the sides. (Example 2)
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Functions from Graphs
When “thinking graphically” becomes a genuine part of your problem-solving strat-
egy, it is sometimes actually easier to start with the graphical model than it is to go
straight to the algebraic formula. The graph provides valuable information about the
function.

EXAMPLE 3  Protecting an Antenna
A small satellite dish is packaged with a cardboard cylinder for protection. The
parabolic dish is 24 in. in diameter and 6 in. deep, and the diameter of the cardboard
cylinder is 12 in. How tall must the cylinder be to fit in the middle of the dish and be
flush with the top of the dish? (See Figure 1.82.)

SOLUTION

Solve Algebraically
The diagram in Figure 1.82a showing the cross section of this 3-dimensional prob-
lem is also a 2-dimensional graph of a quadratic function. We can transform our
basic function with a vertical shrink so that it goes through the points 112, 62
and , thereby producing a graph of the parabola in the coordinate plane
(Figure 1.82b).

Vertical shrink

Substitute 

Solve for k.

Thus, 

(continued)

y =

1

24
 x2.

 k =

6

144
=

1

24

x = �12, y = 6. 6 = k1�1222
 y = kx2

1-12, 62 y = x2

(a) Write the volume V of the box as a function of x.

(b) Find the domain of V as a function of x. (Note that the model imposes restric-
tions on x.)

(c) Graph V as a function of x over the domain found in part (b) and use the maxi-
mum finder on your grapher to determine the maximum volume such a box can
hold.

(d) How big should the cut-out squares be in order to produce the box of maximum
volume?

SOLUTION

(a) The box will have a base with sides of width and length The
depth of the box will be x when the sides are folded up. Therefore 

(b) The formula for V is a polynomial with domain all reals. However, the depth x
must be nonnegative, as must the width of the base, Together, these two
restrictions yield a domain of [0, 4]. (The endpoints give a box with no volume,
which is as mathematically feasible as other zero concepts.)

(c) The graph is shown in Figure 1.81. The maximum finder shows that the maxi-
mum occurs at the point 15/3, 90.742. The maximum volume is about 

(d) Each square should have sides of one-and-two-thirds inches.
Now try Exercise 33.

90.74 in.3.

8 - 2x.

115 - 2x2. V = x18 - 2x215 - 2x.8 - 2x

[0, 4] by [0, 100]

(a)

[0, 4] by [0, 100]

(b)

X=1.666666   Y=90.740741
Maximum

FIGURE 1.81 The graph of the volume of
the box in Example 2.
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EXAMPLE 4  Finding the Model and Solving
Grain is leaking through a hole in a storage bin at a constant rate of 8 cubic inches
per minute. The grain forms a cone-shaped pile on the ground below. As it grows, the
height of the cone always remains equal to its radius. If the cone is one foot tall now,
how tall will it be in one hour?

SOLUTION Reading the problem carefully, we realize that the formula for the vol-
ume of the cone is needed (Figure 1.83). From memory or by looking it up, we get
the formula A careful reading also reveals that the height and the
radius are always equal, so we can get volume directly as a function of height:

When in., the volume is V = 1p/3211223 = 576p in.3.h = 12

V = 11/32ph3.

V = 11/32pr 2 h.

To find the height of the cardboard cylinder, we first find the y-coordinate of the
parabola 6 inches from the center, that is, when 

From that point to the top of the dish is Now try Exercise 35.6 - 1.5 = 4.5 in.

 y =

1

24
 1622 = 1.5

x = 6:

Although Example 3 serves nicely as a “functions from graphs” example, it is also an
example of a function that must be constructed by gathering relevant information from
a verbal description and putting it together in the right way. People who do mathemat-
ics for a living are accustomed to confronting that challenge regularly as a necessary
first step in modeling the real world. In honor of its importance, we have saved it until
last to close out this chapter in style.

Functions from Verbal Descriptions
There is no fail-safe way to form a function from a verbal description. It can be hard
work, frequently a good deal harder than the mathematics required to solve the problem
once the function has been found. The 4-step problem-solving process in Section 1.1
gives you several valuable tips, perhaps the most important of which is to read the
problem carefully. Understanding what the words say is critical if you hope to model
the situation they describe.

24

(a)

6

6

2

10

14

y

x
–14 –10 –6 –2 62 10 14

(b)

(12, 6)(–12, 6)

FIGURE 1.82 (a) A parabolic satellite dish with a protective cardboard cylinder in the mid-
dle for packaging. (b) The parabola in the coordinate plane. (Example 3)
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Constructing a Function from Data

Given a set of data points of the form 1x, y2, to construct a formula that ap-
proximates y as a function of x:

1. Make a scatter plot of the data points. The points do not need to pass the verti-
cal line test.

2. Determine from the shape of the plot whether the points seem to follow the
graph of a familiar type of function (line, parabola, cubic, sine curve, etc.).

3. Transform a basic function of that type to fit the points as closely as possible.

One hour later, the volume will have grown by 
The total volume of the pile at that point will be Finally, we use
the volume formula once again to solve for h:

Now try Exercise 37. h L 12.98 inches

 h = B3 
31576p + 4802

p

 h3
=

31576p + 4802
p

1

3
 ph3

= 576p + 480

1576p + 4802 in.3.
160 min 218 in.3/min 2 = 480 in.3.

FIGURE 1.83 A cone with equal height
and radius. (Example 4)

Functions from Data
In this course we will use the following 3-step strategy to construct functions from
data.

Step 3 might seem like a lot of work, and for earlier generations it certainly was; it re-
quired all of the tricks of Section 1.6 and then some. We, however, will gratefully use
technology to do this “curve-fitting” step for us, as shown in Example 6.
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EXAMPLE 5  Letting Units Work for You
How many rotations does a 15-in. (radius) tire make per second on a sport utility
vehicle traveling 70 mph?

SOLUTION It is the perimeter of the tire that comes in contact with the road, so
we first find the circumference of the tire:

This means that 1 rotation in. From this point we proceed by converting
“miles per hour” to “rotations per second” by a series of conversion factors that are
really factors of 1:

Now try Exercise 39.

 =

70 * 5280 * 12 rotations

60 * 60 * 30p sec
L 13.07 rotations per second

70 miles

1 hour
*

1 hour

60 min
*

1 min

60 sec
*

5280 feet

1 mile
*

12 inches

1 foot
*

1 rotation

30p inches

= 30p

C = 2pr = 2p1152 = 30p in.
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Professional statisticians would be quick to point out that this function should not be
trusted as a model for all cities, despite the fairly successful prediction for Madison.
(For example, the prediction for San Francisco, with a low of 54 and a high of 64, is
off by more than 11 degrees.) The effectiveness of a data-based model is highly de-
pendent on the number of data points and on the way they were selected. The func-
tions we construct from data in this book should be analyzed for how well they
model the data, not for how well they model the larger population from which the
data came.

In addition to lines, we can model scatter plots with several other curves by choosing
the appropriate regression option on a calculator or computer. The options to which we
will refer in this book (and the chapters in which we will study them) are shown in the
following table:

144 CHAPTER 1 Functions and Graphs

EXAMPLE 6  Curve-Fitting with Technology
Table 1.12 records the low and high daily temperatures observed on 9/9/1999 in 20
major American cities. Find a function that approximates the high temperature 1y2 as
a function of the low temperature 1x2. Use this function to predict the high tempera-
ture that day for Madison, WI, given that the low was 46.

SOLUTION The scatter plot is shown in Figure 1.84.

Table 1.12 Temperature on 9/9/99

Source: AccuWeather, Inc.

City Low High City Low High

New York, NY 70 86 Miami, FL 76 92
Los Angeles, CA 62 80 Honolulu, HI 70 85
Chicago, IL 52 72 Seattle, WA 50 70
Houston, TX 70 94 Jacksonville, FL 67 89
Philadelphia, PA 68 86 Baltimore, MD 64 88
Albuquerque, NM 61 86 St. Louis, MO 57 79
Phoenix, AZ 82 106 El Paso, TX 62 90
Atlanta, GA 64 90 Memphis, TN 60 86
Dallas, TX 65 87 Milwaukee, WI 52 68
Detroit, MI 54 76 Wilmington, DE 66 84

Notice that the points do not fall neatly along a well-known curve, but they do seem
to fall near an upwardly sloping line. We therefore choose to model the data with a
function whose graph is a line. We could fit the line by sight (as we did in Example 5
in Section 1.1), but this time we will use the calculator to find the line of “best fit,”
called the regression line. (See your grapher’s owner’s manual for how to do this.)
The regression line is found to be approximately As Figure 1.85
shows, the line fits the data as well as can be expected.

If we use this function to predict the high temperature for the day in Madison, WI,
we get (For the record, the high that day was 67.)

Now try Exercise 47, parts (a) and (b).

y = 0.971462 + 23 = 67.62.

y = 0.97x + 23.

[45, 90] by [60, 115]

FIGURE 1.84 The scatter plot of the
temperature data in Example 6.

[45, 90] by [60, 115]

FIGURE 1.85 The temperature scatter
plot with the regression line shown. 
(Example 6)
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Regression Type Equation Graph Applications

Linear 
(Chapter 2)

y = ax + b Fixed cost plus variable 
cost, linear growth, free-fall 

velocity, simple interest, linear 
depreciation, many others

Quadratic 
(Chapter 2) (requires at least 3 points)

y = ax2
+ bx + c Position during free fall, 

projectile motion, parabolic 
reflectors, area as a function 

of linear dimension, quadratic 
growth, etc.

Cubic 
(Chapter 2) (requires at least 4 points)

y = ax3
+ bx2

+ cx + d Volume as a function of linear 
dimension, cubic growth, 

miscellaneous applications 
where quadratic regression does 

not give a good fit

Quartic 
(Chapter 2) (requires at least 5 points)

y = ax4
+ bx3

+ cx2
+ dx + e Quartic growth, miscellaneous 

applications where quadratic 
and cubic regression do not 

give a good fit

Natural 
logarithmic (ln) 

(Chapter 3)
(requires x 7 0)
y = a + b ln x Logarithmic growth, decibels 

(sound), Richter scale 
(earthquakes), inverse 
exponential models

Exponential 
1b 12

(Chapter 3)
7

y = a # bx Exponential growth, 
compound interest, 
population models

Exponential 
10 b 12
(Chapter 3)

66

y = a # bx Exponential decay, 
depreciation, temperature 

loss of a cooling body, etc.

Power 
1requires x, y 02

(Chapter 2)
7

y = a # xb Inverse-square laws, 
Kepler’s Third Law

Logistic 
(Chapter 3)

y =

c

1 + a # e -bx
Logistic growth: spread 
of a rumor, population 

models

Sinusoidal 
(Chapter 4)

y = a sin 1bx + c2 + d Periodic behavior: 
harmonic motion, waves, 

circular motion, etc.
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These graphs are only examples, as they can vary in shape and orientation. (For exam-
ple, any of the curves could appear upside-down.) The grapher uses various strategies
to fit these curves to the data, most of them based on combining function composition
with linear regression. Depending on the regression type, the grapher may display a
number r called the correlation coefficient or a number or called the coefficient
of determination. In either case, a useful “rule of thumb” is that the closer the absolute
value of this number is to 1, the better the curve fits the data.

We can use this fact to help choose a regression type, as in Exploration 1.

R2r 2
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Displaying Diagnostics
If your calculator is giving regression formulas
but not displaying the values of r or or 

, you may be able to fix that. Go to the 
CATALOG menu and choose a command called
“DiagnosticOn.” Enter the command on the
home screen and see the reply “Done.” Your next
regression should display the diagnostic values.

R2
r 2

n = 3; d = 0

n = 5; d = �

n = 7; d = �

n = 9; d = �

n = 4; d = �

n = 6; d = �

n = 8; d = �

n = 10; d = 35

FIGURE 1.86 Some polygons. 
(Exploration 1)

EXPLORATION 1 Diagonals of a Regular Polygon

How many diagonals does a regular polygon have? Can the number be

expressed as a function of the number of sides? Try this Exploration.

1. Draw in all the diagonals (i.e., segments connecting nonadjacent points) in
each of the regular polygons shown and fill in the number (d) of diagonals in
the space below the figure. The values of d for the triangle and the
decagon are filled in for you.

2. Put the values of n in list L1, beginning with . (We want to avoid that
value for some of our regressions later.) Put the corresponding values of

d in list L2. Display a scatter plot of the ordered pairs.

3. The graph shows an increasing function with some curvature, but it is not clear
which kind of growth would fit it best. Try these regressions (preferably in the
given order) and record the value of or for each: linear, power, quadratic,
cubic, quartic. (Note that the curvature is not right for logarithmic, logistic, or
sinusoidal curve-fitting, so it is not worth it to try those.)

4. What kind of curve is the best fit? (It might appear at first that there is a tie,
but look more closely at the functions you get.) How good is the fit?

5. Looking back, could you have predicted the results of the cubic and quartic
regressions after seeing the result of the quadratic regression?

6. The “best-fit” curve gives the actual formula for d as a function of n. (In
Chapter 9 you will learn how to derive this formula for yourself.) Use the 
formula to find the number of diagonals of a 128-gon.

R2r 2

y = 0
n = 4

1n = 102 1n = 32

We will have more to say about curve fitting as we study the various function types in
later chapters.

Chapter Opener Problem (from page 63)

Problem: The table below shows the growth in the Consumer Price Index (CPI)
for housing for selected years between 1990 and 2007 (based on 1983 dollars).
How can we construct a function to predict the housing CPI for the years
2008–2015?
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Solution: A scatter plot of the data is shown in Figure 1.87, where x is the number
of years since 1990. A linear model would work pretty well, but the slight upward
curve of the scatter plot suggests that a quadratic model might work better. Using a
calculator to compute the quadratic regression curve, we find its equation to be

As Figure 1.88 shows, the parabola fits the data impressively well.

y = 0.089x2
+ 3.17x + 129.

Consumer Price Index (Housing)

Year Housing CPI

1990 128.5
1995 148.5
2000 169.6
2002 180.3
2003 184.8
2004 189.5
2005 195.7
2006 203.2
2007 209.6

Source: Bureau of Labor Statistics, quoted in 
The World Almanac and Book of Facts 2009.

Predicted CPI (Housing)

Year Predicted Housing CPI

2008 214.9
2009 221.4
2010 228.0
2011 234.8
2012 241.8
2013 249.0
2014 256.3
2015 263.9

[–2, 19] by [115, 225]

FIGURE 1.87 Scatter plot of the
data for the housing CPI.

[–2, 19] by [115, 225]

FIGURE 1.88 Scatter plot with the
regression curve shown.

To predict the housing CPI for 2008, use in the regression equation. Similarly,
we can predict the housing CPI for each of the years 2008–2015, as shown below:

x = 18

Even with a regression curve that fits the data as beautifully as in Figure 1.88, it is
risky to predict this far beyond the data set. Statistics like the CPI are dependent on
many volatile factors that can quickly render any mathematical model obsolete. In
fact, the mortgage model that fueled the housing growth up to 2007 proved to be
unsustainable, and when it broke down it took many well-behaved economic curves
(like this one) down with it. In light of that fact, you might enjoy comparing these
“predictions” with the actual housing CPI numbers as the years go by!
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QUICK REVIEW 1.7 (For help, go to Section P.3 and P.4.)

6. Surface Area of a Sphere Solve for

7. Surface Area of a Right Circular Cylinder
Solve for 

8. Simple Interest Solve for 

9. Compound Interest Solve for

10. Free-Fall from Height H Solve for 

t: s = H -

1

2
 gt 2

P: A = Pa1 +

r

n
bnt

t: I = Prt

h: A = 2prh + 2pr 2

r: A = 4pr 2
In Exercises 1–10, solve the given formula for the given variable.

1. Area of a Triangle Solve for 

2. Area of a Trapezoid Solve for 

3. Volume of a Right Circular Cylinder Solve
for h:

4. Volume of a Right Circular Cone Solve for h:

5. Volume of a Sphere Solve for r: V =

4

3
 pr 3

V =

1

3
 pr 2h

V = pr 2h

h: A =

1

2
 1b1 + b22h

h: A =

1

2
 bh

SECTION 1.7 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–10, write a mathematical expression for the quantity
described verbally.

1. Five more than three times a number 

2. A number x increased by 5 and then tripled

3. Seventeen percent of a number x

4. Four more than 5% of a number 

5. Area of a Rectangle The area of a rectangle whose
length is 12 more than its width 

6. Area of a Triangle The area of a triangle whose alti-
tude is 2 more than its base length 

7. Salary Increase A salary after a 4.5% increase, if the
original salary is x dollars

8. Income Loss Income after a 3% drop in the current
income of x dollars

9. Sale Price Sale price of an item marked x dollars, if 40%
is discounted from the marked price

10. Including Tax Actual cost of an item selling for x dol-
lars if the sales tax rate is 8.75%

In Exercises 11–14, choose a variable and write a mathematical expres-
sion for the quantity described verbally.

11. Total Cost The total cost is $34,500 plus $5.75 for each
item produced.

12. Total Cost The total cost is $28,000 increased by 9% plus
$19.85 for each item produced.

x

x

x

x

13. Revenue The revenue when each item sells for $3.75

14. Profit The profit consists of a franchise fee of $200,000
plus 12% of all sales.

In Exercises 15–20, write the specified quantity as a function of the
specified variable. It will help in each case to draw a picture.

15. The height of a right circular cylinder equals its diameter. 
Write the volume of the cylinder as a function of its 
radius. 

16. One leg of a right triangle is twice as long as the other. Write
the length of the hypotenuse as a function of the length of the
shorter leg.

17. The base of an isosceles triangle is half as long as the two
equal sides. Write the area of the triangle as a function of the
length of the base. 

18. A square is inscribed in a circle. Write the area of the square as
a function of the radius of the circle.

19. A sphere is contained in a cube, tangent to all six faces. Find
the surface area of the cube as a function of the radius of the
sphere.

20. An isosceles triangle has its base along the x-axis with one
base vertex at the origin and its vertex in the first quadrant on
the graph of Write the area of the triangle as a
function of the length of the base.

In Exercises 21–36, write an equation for the problem and solve the
problem.

21. One positive number is 4 times another positive number. The
sum of the two numbers is 620. Find the two numbers.

y = 6 - x2.
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22. When a number is added to its double and its triple, the sum is
714. Find the three numbers.

23. Salary Increase Mark received a 3.5% salary increase.
His salary after the raise was $36,432. What was his salary
before the raise?

24. Consumer Price Index The Consumer Price Index
for food and beverages in 2007 was 203.3 after a hefty 3.9%
increase from the previous year. What was the Consumer Price
Index for food and beverages in 2006? (Source: U.S. Bureau of
Labor Statistics)

25. Travel Time A traveler averaged 52 miles per hour on a
182-mile trip. How many hours were spent on the trip?

26. Travel Time On their 560-mile trip, the Bruins basketball
team spent two more hours on the interstate highway than they
did on local highways. They averaged 45 mph on local high-
ways and 55 mph on the interstate highways. How many hours
did they spend driving on local highways?

27. Sale Prices At a shirt sale, Jackson sees two shirts that he
likes equally well. Which is the better bargain, and why?

(a) Write an equation that models this problem.

(b) Solve the equation graphically.

32. Mixing Solutions The chemistry lab at the University
of Hardwoods keeps two acid solutions on hand. One is 20%
acid and the other is 35% acid. How much 20% acid solution
and how much 35% acid solution should be used to prepare 
25 liters of a 26% acid solution?

33. Maximum Value Problem A square of side x inches
is cut out of each corner of a 10 in. by 18 in. piece of cardboard
and the sides are folded up to form an open-topped box.

(a) Write the volume V of the box as a function of x.

(b) Find the domain of your function, taking into account the
restrictions that the model imposes in x.

(c) Use your graphing calculator to determine the dimensions
of the cut-out squares that will produce the box of maxi-
mum volume.

34. Residential Construction DDL Construction is
building a rectangular house that is 16 feet longer than it is
wide. A rain gutter is to be installed in four sections around the
136-foot perimeter of the house. What lengths should be cut
for the four sections?

35. Protecting an Antenna In Example 3, suppose the
parabolic dish has a 32-in. diameter and is 8 in. deep, and the
radius of the cardboard cylinder is 8 in. Now how tall must the
cylinder be to fit in the middle of the dish and be flush with the
top of the dish?

36. Interior Design Renée’s Decorating Service recom-
mends putting a border around the top of the four walls in a
dining room that is 3 feet longer than it is wide. Find the
dimensions of the room if the total length of the border is 54
feet.

37. Finding the Model and Solving Water is stored in
a conical tank with a faucet at the bottom. The tank has depth
24 in. and radius 9 in., and it is filled to the brim. If the 
faucet is opened to allow the water to flow at a rate of 5 cubic
inches per second, what will the depth of the water be after 
2 minutes?

38. Investment Returns Reggie invests $12,000, part at
7% annual interest and part at 8.5% annual interest. How much
is invested at each rate if Reggie’s total annual interest is $900?

39. Unit Conversion A tire of a moving bicycle has radius
16 in. If the tire is making 2 rotations per second, find the
bicycle’s speed in miles per hour.

$33

$27

40% off

25% off

28. Job Offers Ruth is weighing two job offers from the sales
departments of two competing companies. One offers a base
salary of $25,000 plus 5% of gross sales; the other offers a base
salary of $20,000 plus 7% of gross sales. What would Ruth’s
gross sales total need to be to make the second job offer more
attractive than the first?

29. Cell Phone Antennas From December 2006 to De-
cember 2007, the number of cell phone antennas in the United
States grew from 195,613 to 213,299. What was the percentage
increase in U.S. cell phone antennas in that one-year period?
(Source: CTIA, quoted in The World Almanac and Book of
Facts 2009)

30. Cell phone Antennas From December 1996 to De-
cember 1997, the number of cell phone antennas in the United
States grew from 30,045 to 51,600. What was the percentage
increase in U.S. cell phone antennas in that one-year period?
(Source: CTIA, quoted in The World Almanac and Book of
Facts 2009)

31. Mixing Solutions How much 10% solution and 
how much 45% solution should be mixed together to make 100
gallons of 25% solution?

Solution 1 Solution 2 Combined
solution

x gallons
10%

(100 � x)
gallons

45%

100 gallons
25%

�                       �
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(a) Find an equation that models the cost of producing x pairs
of shoes.

(b) Find an equation that models the revenue produced from
selling x pairs of shoes.

(c) Find how many pairs of shoes must be made and sold in
order to break even.

(d) Graph the equations in (a) and (b). What is the graphical
interpretation of the answer in (c)?

48. Employee Benefits John’s company issues employees
a contract that identifies salary and the company’s contribu-
tions to pension, health insurance premiums, and disability
insurance. The company uses the following formulas to calcu-
late these values.

150 CHAPTER 1 Functions and Graphs

Exploration
47. Manufacturing The Buster Green Shoe Company

determines that the annual cost C of making x pairs of one type
of shoe is $30 per pair plus $100,000 in fixed overhead costs.
Each pair of shoes that is manufactured is sold wholesale for
$50.

If John’s total contract with benefits is worth $48,814.20, what
is his salary?

49. Manufacturing Queen, Inc., a tennis racket manufac-
turer, determines that the annual cost C of making x rackets is
$23 per racket plus $125,000 in fixed overhead costs. It costs
the company $8 to string a racket.

(a) Find a function that models the cost of produc-
ing x unstrung rackets.

(b) Find a function that models the cost of produc-
ing x strung rackets.

y2 = s1x2
y1 = u1x2

Salary x (dollars)

Pension 12% of salary
Health insurance 3% of salary

Disability insurance 0.4% of salary

$56

$79

(c) Find a function that models the revenue gener-
ated by selling x unstrung rackets.

(d) Find a function that models the revenue gener-
ated by selling x rackets.

(e) Graph , and simultaneously in the window 
[0, 10,000] by [0, 500,000].

(f) Writing to Learn Write a report to the company
recommending how they should manufacture their rackets,
strung or unstrung. Assume that you can include the view-
ing window in (e) as a graph in the report, and use it to
support your recommendation.

y4y1, y2, y3

y4 = Rs1x2
y3 = Ru1x2

40. Investment Returns Jackie invests $25,000, part at 5.5%
annual interest and the balance at 8.3% annual interest. How much
is invested at each rate if Jackie receives a 1-year interest payment
of $1571?

Standardized Test Questions
41. True or False A correlation coefficient gives an indica-

tion of how closely a regression line or curve fits a set of data.
Justify your answer.

42. True or False Linear regression is useful for modeling
the position of an object in free fall. Justify your answer.

In Exercises 43–46, tell which type of regression is likely to give the most
accurate model for the scatter plot shown without using a calculator.

(A) Linear regression

(B) Quadratic regression

(C) Cubic regression

(D) Exponential regression

(E) Sinusoidal regression

43. Multiple Choice

44. Multiple Choice

45. Multiple Choice

46. Multiple Choice

[0, 12] by [0, 8]

[0, 12] by [0, 8]

[0, 12] by [0, 8]

[0, 12] by [0, 8]
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50. Hourly Earnings of U.S. Production Workers
The average hourly earnings of U.S. production workers for
1990–2007 are shown in Table 1.13.

(a) Make a scatter plot of the data, with the times in list L1
and the temperatures in list L2.

(b) Store in list L3. The values in L3 should now be
an exponential function 1 2 of the values in L1.

(c) Find the exponential regression equation for L3 as a func-
tion of L1. How well does it fit the data?

52. Group Activity Newton’s Law of Cooling If
you have access to laboratory equipment (such as a CBL or
CBR unit for your grapher), gather experimental data such as
in Exercise 51 from a cooling cup of coffee. Proceed as follows:

(a) First, use the temperature probe to record the temperature
of the room. It is a good idea to turn off fans and air condi-
tioners that might affect the temperature of the room dur-
ing the experiment. It should be a constant.

(b) Heat the coffee. It need not be boiling, but it should be at
least 160°. (It also need not be coffee.)

(c) Make a new list consisting of the temperature values minus
the room temperature. Make a scatter plot of this list 1y2
against the time values 1x2. It should appear to approach
the x-axis as an asymptote.

(d) Find the equation of the exponential regression curve. How
well does it fit the data?

(e) What is the equation predicted by Newton’s Law of Cool-
ing? (Substitute your initial coffee temperature and the
temperature of your room for the 190 and 72 in the equa-
tion in Exercise 51.)

(f) Group Discussion What sort of factors would af-
fect the value of b in Newton’s Law of Cooling? Discuss
your ideas with the group.

 y = a * bx
L2 - 72

Table 1.13 Average Hourly Earnings

Source: Bureau of Labor Statistics as quoted in The World Almanac
and Book of Facts 2009.

Year Average Hourly Earnings ($)

1990 10.20
1991 10.52
1992 10.77
1993 11.05
1994 11.34
1995 11.65
1996 12.04
1997 12.51
1998 13.01
1999 13.49
2000 14.02
2001 14.54
2002 14.97
2003 15.37
2004 15.69
2005 16.13
2006 16.76
2007 17.42

Table 1.14 Cooling a Cup of Coffee

Time Temp Time Temp

1 184.3 11 140.0
2 178.5 12 136.1
3 173.5 13 133.5
4 168.6 14 130.5
5 164.0 15 127.9
6 159.2 16 125.0
7 155.1 17 122.8
8 151.8 18 119.9
9 147.0 19 117.2

10 143.7 20 115.2

(a) Produce a scatter plot of the hourly earnings 1y2 as a func-
tion of years since 1990 1x2.

(b) Find the linear regression equation for the years 
1990–1998. Round the coefficients to the nearest 0.001.

(c) Find the linear regression equation for the years 
1990–2007. Round the coefficients to the nearest 0.001.

(d) Use both lines to predict the hourly earnings for the year
2010. How different are the estimates? Which do you think
is a safer prediction of the true value?

(e) Writing to Learn Use the results of parts (a)–(d) to
explain why it is risky to predict y-values for x-values that
are not very close to the data points, even when the regres-
sion plot fits the data points quite well.

Extending the Ideas
51. Newton’s Law of Cooling A 190° cup of coffee is

placed on a desk in a 72° room. According to Newton’s Law of
Cooling, the temperature T of the coffee after t minutes will be

, where b is a constant that depends
on how easily the cooling substance loses heat. The data in
Table 1.14 are from a simulated experiment of gathering
temperature readings from a cup of coffee in a 72° room at 
20 one-minute intervals:

T = 1190 - 722bt
+ 72

SECTION 1.7 Modeling with Functions 151
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CHAPTER 1 Review Exercises

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1–10, match the graph with the corresponding function
(a)–( j) from the list below. Use your knowledge of function behavior,
not your grapher.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

1.

2.

ƒ1x2 = 1 + cos xƒ1x2 = ex
- 1

ƒ1x2 = -sin xƒ1x2 = ƒ x + 2 ƒ

ƒ1x2 = ƒ x - 2 ƒƒ1x2 =

x - 1

2

ƒ1x2 = 1x + 222ƒ1x2 = 1x - 222
ƒ1x2 = x2

+ 1ƒ1x2 = x2
- 1

y

x

y

x

y

x

y

x

y

x

152 CHAPTER 1 Functions and Graphs

Reflections of Graphs Across Axes 131
Stretches and Shrinks of Graphs 134

Procedures
Root, Zero, x-intercept 70
Problem Solving 70
Agreement about Domain 82
Inverse Notation 122
Finding the Inverse of a Function 123

CHAPTER 1 Key Ideas

Properties, Theorems, and Formulas
The Zero Factor Property 69
Vertical Line Test 81
Tests for an Even Function 90
Tests for an Odd Function 91
Horizontal Line Test 122
Inverse Reflection Principle 123
Inverse Composition Rule 124
Translations of Graphs 130

3.

4.

5.
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In Exercises 11–18, find (a) the domain and (b) the range of the func-
tion.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19 and 20, graph the function, and state whether the
function is continuous at If it is discontinuous, state whether
the discontinuity is removable or nonremovable.

19. 20.

In Exercises 21–24, find all (a) vertical asymptotes and (b) horizontal
asymptotes of the graph of the function. Be sure to state your answers
as equations of lines.

21. 22.

23. 24.

In Exercises 25–28, graph the function and state the intervals on
which the function is increasing.

25. 26.

27. 28.

In Exercises 29–32, graph the function and tell whether the function is
bounded above, bounded below, or bounded.

29. 30.

31. 32.

In Exercises 33–36, use a grapher to find all (a) relative maximum
values and (b) relative minimum values of the function. Also state the
value of x at which each relative extremum occurs.

33. 34.

35. 36.

In Exercises 37–40, graph the function and state whether the function
is odd, even, or neither.

37. 38.

39. 40.

In Exercises 41–44, find a formula for 

41. 42.

43. 44. ƒ1x2 =

6

x + 4
ƒ1x2 =

2
x

ƒ1x2 = 23 x - 8ƒ1x2 = 2x + 3

ƒ-11x2.
y = x cos 1x2y =

x

ex

y = sin x - x3y = 3x2
- 4 ƒ x ƒ

y =

4x

x2
+ 4

y =

x2
+ 4

x2
- 4

y = x3
- 3xy = 1x + 122 - 7

k1x2 = 1000 +

x

1000
h1x2 = 5 - ex

g1x2 =

6x

x2
+ 1

ƒ1x2 = x +  sin x

y =

x2
- 1

x2
- 4

y =

x

1 - x2

y = 2 + ƒ x - 1 ƒy =

x3

6

y =

ƒ x ƒ

x + 1
y =

7x

2x2
+ 10

y =

3x

x - 4
y =

5

x2
- 5x

k1x2 = e2x + 3 if x 7 0

3 - x2 if x … 0
ƒ1x2 =

x2
- 3

x + 2

x = 0.

k1x2 =

1

29 - x2
ƒ1x2 =

x

x2
- 2x

k1x2 = - 24 - x2g1x2 = 3 ƒ x ƒ + 8

h1x2 = 1x - 222 + 5g1x2 = x2
+ 2x + 1

ƒ1x2 = 35x - 602g1x2 = x3

y

x

y

x

y

x

y

x

y

x

6.

7.

8.

9.

10.
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Exercises 45–52 refer to the function whose graph is given
below.

y = ƒ1x2 The oil begins draining at a constant rate of 2 cubic feet per
second. Write the depth of the oil remaining in the tank t sec-
onds later as a function of t. 

64. Draining a Cylindrical Tank A cylindrical tank
with diameter 20 feet is filled with oil to a depth of 40 feet.
The oil begins draining so that the depth of oil in the tank
decreases at a constant rate of 2 feet per hour. Write the volume
of oil remaining in the tank t hours later as a function of t.

65. U.S. Crude Oil Imports The imports of crude oil to
the United States from Canada in the years 2000–2008 (in
thousands of barrels per day) are given in Table 1.15.

Table 1.15 Crude Oil Imports from Canada

Source: Energy Information Administration, Petroleum Supply
Monthly, as reported in The World Almanac and Book of Facts 2009.

Year Barrels/day 1000

2000 1267
2001 1297
2002 1418
2003 1535
2004 1587
2005 1602
2006 1758
2007 1837
2008 1869

*

(a) Sketch a scatter plot of import numbers in the right-hand
column 1y2 as a function of years since 2000 1x2.

(b) Find the equation of the regression line and superimpose
it on the scatter plot.

(c) Based on the regression line, approximately how many
thousands of barrels of oil would the United States import
from Canada in 2015?

66. The winning times in the women’s 100-meter freestyle event
at the Summer Olympic Games since 1956 are shown in
Table 1.16.

(a) Sketch a scatter plot of the times 1y2 as a function of the
years 1x2 beyond 1900. (The values of x will run from 56
to 108.)

(b) Explain why a linear model cannot be appropriate for
these times over the long term.

154 CHAPTER 1 Functions and Graphs

4

2

–1
–2

–4

y

3

–3

x
–5 –4 –2 –1 321 4 5

45. Sketch the graph of 

46. Sketch the graph of 

47. Sketch the graph of 

48. Sketch the graph of 

49. Sketch a graph of the inverse relation.

50. Does the inverse relation define y as a function of x?

51. Sketch a graph of 

52. Define ƒ algebraically as a piecewise function. [Hint: the
pieces are translations of two of our “basic” functions.]

In Exercises 53–58, let and let 

53. Find an expression for 1 21x2 and give its domain.

54. Find an expression for 1 21x2 and give its domain.

55. Find an expression for 1ƒg21x2 and give its domain.

56. Find an expression for and give its domain.

57. Describe the end behavior of the graph of 

58. Describe the end behavior of the graph of .

In Exercises 59–64, write the specified quantity as a function of the
specified variable. Remember that drawing a picture will help.

59. Square Inscribed in a Circle A square of side s is
inscribed in a circle. Write the area of the circle as a function
of s. 

60. Circle Inscribed in a Square A circle is inscribed
in a square of side s. Write the area of the circle as a function
of s. 

61. Volume of a Cylindrical Tank A cylindrical tank
with diameter 20 feet is partially filled with oil to a depth of 
h feet. Write the volume of oil in the tank as a function of h.

62. Draining a Cylindrical Tank A cylindrical tank
with diameter 20 feet is filled with oil to a depth of 40 feet.
The oil begins draining at a constant rate of 2 cubic feet per
second. Write the volume of the oil remaining in the tank 
t seconds later as a function of t. 

63. Draining a Cylindrical Tank A cylindrical tank
with diameter 20 feet is filled with oil to a depth of 40 feet.

y = ƒ1g1x22
y = ƒ1x2.

aƒ

g
b (x)

g � ƒ

ƒ � g

g1x2 = x2
- 4.ƒ1x2 = 2x

y = ƒƒ1x2 ƒ .

y = -ƒ1x2.
y = ƒ1-x2.
y = ƒ1x - 12.
y = ƒ1x2 - 1.

Table 1.16 Women’s 100-Meter Freestyle

Source: The World Almanac and Book of Facts 2009.

Year Time Year Time

1956 62.0 1984 55.92
1960 61.2 1988 54.93
1964 59.5 1992 54.64
1968 60.0 1996 54.50
1972 58.59 2000 53.83
1976 55.65 2004 53.84
1980 54.79 2008 53.12
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(c) The points appear to be approaching a horizontal asymp-
tote of What would this mean about the times in
this Olympic event?

(d) Subtract 52 from all the times so that they will approach an
asymptote of Redo the scatter plot with the new 
y-values. Now find the exponential regression curve and
superimpose its graph on the vertically shifted scatter plot.

(e) According to the regression curve, what will be the win-
ning time in the women’s 100-meter freestyle event at the
2016 Olympics?

67. Inscribing a Cylinder Inside a Sphere A right
circular cylinder of radius r and height h is inscribed inside a
sphere of radius inches.

(a) Use the Pythagorean Theorem to write h as a function of r.

23

y = 0.

y = 52.

(a) Let x denote the x-coordinate of the point highlighted in
the figure. Write the area A of the rectangle as a function
of x.

(b) What values of x are in the domain of A?

(c) Sketch a graph of A1x2 over the domain.

(d) Use your grapher to find the maximum area that such a
rectangle can have.

y

x
x

3h

r

(b) Write the volume V of the cylinder as a function of r.

(c) What values of r are in the domain of V?

(d) Sketch a graph of V1r2 over the domain .

(e) Use your grapher to find the maximum volume that such
a cylinder can have.

68. Inscribing a Rectangle Under a Parabola
A rectangle is inscribed between the x-axis and the parabola

with one side along the x-axis, as shown in the
figure below.
y = 36 - x2

30, 234
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CHAPTER 1 Project

Modeling the Growth of a Business
In 1971, Starbucks Coffee opened its first location in Pike
Place Market—Seattle’s legendary open-air farmer’s market.
By 1987, the number of Starbucks stores had grown to 17 and
by 2005 there were 10,241 locations. The data in the table be-
low (obtained from Starbucks Coffee’s Web site, www.star-
bucks.com) summarize the growth of this company from 1987
through 2005.

EXPLORATIONS

1. Enter the data in the table into your grapher or computer.
(Let represent 1987.) Draw a scatter plot for the data.

2. Refer to page 145 in this chapter. Look at the types of
graphs displayed and the associated regression types. No-
tice that the exponential regression model with 
seems to most closely match the plotted data. Use your
grapher or computer to find an exponential regression

b 7 1

t = 0

Year Number of Locations

1987 17
1989 55
1991 116
1993 272
1995 676
1997 1412
1999 2498
2001 4709
2003 7225
2005 10,241

equation to model this data set (see your grapher’s guide-
book for instructions on how to do this).

3. Use the exponential model you just found to predict the to-
tal number of Starbucks locations for 2007 and
2008.

4. There were 15,011 Starbucks locations in 2007 and 16,680
locations in 2008. (You can verify these numbers and find
more up-to-date information in the investors’ section of
the Starbucks Web site.) Why is there such a big differ-
ence between your predicted values and the actual number
of Starbucks locations? What real-world feature of busi-
ness growth was not accounted for in the exponential
growth model?

5. You need to model the data set with an equation that takes
into account the fact that growth of a business eventually
levels out or reaches a carrying capacity. Refer to page 145
again. Notice that the logistic regression modeling graph
appears to show exponential growth at first, but eventually
levels out. Use your grapher or computer to find the logis-
tic regression equation to model this data set (see your
grapher’s guidebook for instructions on how to do this).

6. Use the logistic model you just found to predict the total
number of Starbucks locations for 2007 and 2008. How do
your predictions compare with the actual number of loca-
tions for 2007 and 2008? How many locations do you
think there will be in the year 2020?
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Polynomial, Power, 
and Rational Functions

Humidity and relative humidity are measures used by weather forecast-
ers. Humidity affects our comfort and our health. If humidity is too low,
our skin can become dry and cracked, and viruses can live longer. If 
humidity is too high, it can make warm temperatures feel even warmer,
and mold, fungi, and dust mites can live longer. See page 224 to learn
how relative humidity is modeled as a rational function.

2.1 Linear and Quadratic
Functions and Modeling

2.2 Power Functions with
Modeling

2.3 Polynomial Functions 
of Higher Degree 
with Modeling

2.4 Real Zeros of Polynomial
Functions

2.5 Complex Zeros and the
Fundamental Theorem 
of Algebra

2.6 Graphs of Rational 
Functions

2.7 Solving Equations in 
One Variable

2.8 Solving Inequalities 
in One Variable

CHAPTER 2
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Chapter 2 Overview
Chapter 1 laid a foundation of the general characteristics of functions, equations, and
graphs. In this chapter and the next two, we will explore the theory and applications of
specific families of functions. We begin this exploration by studying three interrelated
families of functions: polynomial, power, and rational functions. These three families
of functions are used in the social, behavioral, and natural sciences.

This chapter includes a thorough study of the theory of polynomial equations. We in-
vestigate algebraic methods for finding both real- and complex-number solutions of
such equations and relate these methods to the graphical behavior of polynomial and
rational functions. The chapter closes by extending these methods to inequalities in one
variable.

2.1 Linear and Quadratic 
Functions and Modeling

What you’ll learn about
• Polynomial Functions
• Linear Functions and Their

Graphs
• Average Rate of Change
• Linear Correlation and 

Modeling
• Quadratic Functions and 

Their Graphs
• Applications of Quadratic 

Functions

... and why
Many business and economic
problems are modeled by lin-
ear functions. Quadratic and
higher-degree polynomial func-
tions are used in science and
manufacturing applications.

Polynomial Functions
Polynomial functions are among the most familiar of all functions.

Polynomial functions are defined and continuous on all real numbers. It is important to
recognize whether a function is a polynomial function.

EXAMPLE 1  Identifying Polynomial Functions
Which of the following are polynomial functions? For those that are polynomial
functions, state the degree and leading coefficient. For those that are not, explain
why not.

(a) (b)

(c) (d)

SOLUTION

(a) ƒ is a polynomial function of degree 3 with leading coefficient 4.

(b) g is not a polynomial function because of the exponent .

(c) h is not a polynomial function because it cannot be simplified into polynomial
form. Notice that 

(d) k is a polynomial function of degree 4 with leading coefficient 
Now try Exercise 1.

-2.

29x4
+ 16x2

Z 3x2
+ 4x.

-4

k1x2 = 15x - 2x4h1x2 = 29x4
+ 16x2

g1x2 = 6x -4
+ 7ƒ1x2 = 4x3

- 5x -

1

2

DEFINITION Polynomial Function
Let n be a nonnegative integer and let be real numbers
with The function given by

is a polynomial function of degree n. The leading coefficient is 

The zero function is a polynomial function. It has no degree and no
leading coefficient.

ƒ(x) = 0

an.

ƒ(x) = an x
n

+ an-1xn-1
+

Á
+ a2x2

+ a1x + a0

an Z 0.
a0, a1, a2, Á , an-1, an
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Polynomial Functions of No and Low Degree
Name Form Degree

Zero function Undefined

Constant function 0

Linear function 1

Quadratic function 2ƒ1x2 = ax2
+ bx + c 1a Z 02

ƒ1x2 = ax + b 1a Z 02
ƒ1x2 = a 1a Z 02
ƒ1x2 = 0

The zero function and all constant functions are polynomial functions. Some other fa-
miliar functions are also polynomial functions, as shown below.

EXAMPLE 2  Finding an Equation of a Linear Function
Write an equation for the linear function ƒ such that and 

SOLUTION

Solve Algebraically
We seek a line through the points and The slope is

Using this slope and the coordinates of with the point-slope formula, we have

Converting to function notation gives us the desired form:

(continued)
ƒ1x2 = -x + 1

 y = -x + 1

 y - 2 = -x - 1

 y - 2 = -11x - 1-122
y - y1 = m1x - x12

(-1, 2)

m =

y2 - y1

x2 - x1
=

1-22 - 2

3 - 1-12 =

-4

4
= -1.

13, -22.1-1, 22

ƒ132 = -2.ƒ1-12 = 2

Surprising Fact
Not all lines in the Cartesian plane are graphs of
linear functions.

We study polynomial functions of degree 3 and higher in Section 2.3. For the remain-
der of this section, we turn our attention to the nature and uses of linear and quadratic
polynomial functions.

Linear Functions and Their Graphs
Linear equations and graphs of lines were reviewed in Sections P.3 and P.4, and some
of the examples in Chapter 1 involved linear functions. We now take a closer look at the
properties of linear functions.

A linear function is a polynomial function of degree 1 and so has the form

If we use m for the leading coefficient instead of a and let , then this equation
becomes the familiar slope-intercept form of a line:

Vertical lines are not graphs of functions because they fail the vertical line test, and hori-
zontal lines are graphs of constant functions. A line in the Cartesian plane is the graph of a
linear function if and only if it is a slant line, that is, neither horizontal nor vertical. We
can apply the formulas and methods of Section P.4 to problems involving linear functions.

y = mx + b

y = ƒ1x2
ƒ1x2 = ax + b, where a and b are constants and a Z 0.

SECTION 2.1 Linear and Quadratic Functions and Modeling 159
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THEOREM Constant Rate of Change
A function defined on all real numbers is a linear function if and only if it has a
constant nonzero average rate of change between any two points on its graph.

160 CHAPTER 2 Polynomial, Power, and Rational Functions

Support Graphically
We can graph and see that it includes the points and 
(Figure 2.1).

Confirm Numerically
Using we prove that and :

Now try Exercise 7.
ƒ1-12 = -1-12 + 1 = 1 + 1 = 2, and ƒ132 = -132 + 1 = -3 + 1 = -2.

ƒ132 = -2ƒ1-12 = 2ƒ1x2 = -x + 1

13, -221-1, 22y = -x + 1
3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(–1, 2)

(3, –2)

FIGURE 2.1 The graph of 
passes through and 
(Example 2)

13, -22.1-1, 22
y = -x + 1

Average Rate of Change
Another property that characterizes a linear function is its rate of change. The average
rate of change of a function between and , , is

You are asked to prove the following theorem in Exercise 85.

ƒ1b2 - ƒ1a2
b - a

.

a Z bx = bx = ay = ƒ1x2

Because the average rate of change of a linear function is constant, it is called simply
the rate of change of the linear function. The slope m in the formula 
is the rate of change of the linear function. In Exploration 1, we revisit Example 7 of
Section P.4 in light of the rate of change concept.

ƒ1x2 = mx + b

EXPLORATION 1 Modeling Depreciation with a Linear Function

Camelot Apartments bought a $50,000 building and for tax purposes are depre-

ciating it $2000 per year over a 25-yr period using straight-line depreciation.

1. What is the rate of change of the value of the building?

2. Write an equation for the value of the building as a linear function of the
time t since the building was placed in service.

3. Evaluate and 

4. Solve . v1t2 = 39,000

v1162.v102
v1t2

The rate of change of a linear function is the signed ratio of the corresponding line’s
rise over run. That is, for a linear function ,

This formula allows us to interpret the slope, or rate of change, of a linear function nu-
merically. For instance, in Exploration 1 the value of the apartment building fell from
$50,000 to $0 over a 25-yr period. In Table 2.1 we compute for the apartment
building’s value (in dollars) as a function of time (in years). Because the average rate of
change is the nonzero constant , the building’s value is a linear function
of time decreasing at a rate of $2000/yr.

-2000¢y/¢x

¢y/¢x

rate of change = slope = m =

rise
run

=

change in y

change in x
=

¢y

¢x
.

ƒ1x2 = mx + b
Rate and Ratio
All rates are ratios, whether expressed as miles
per hour, dollars per year, or even rise over run.
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Characterizing the Nature of a Linear Function
Point of View Characterization

Verbal polynomial of degree 1

Algebraic

Graphical slant line with slope m and y-intercept b

Analytical function with constant nonzero rate of change m: 
ƒ is increasing if , decreasing if ; 
initial value of the function = ƒ102 = b

m 6 0m 7 0

ƒ(x) = mx + b 1m Z 02

SECTION 2.1 Linear and Quadratic Functions and Modeling 161

Table 2.1 Rate of Change of the Value of the Apartment 
Building in Exploration 1: 

x (time) y (value)

0 50,000
1

1 48,000
1

2 46,000
1

3 44,000
1

4 42,000
-2000-2000

-2000-2000

-2000-2000

-2000-2000

¢y/¢x¢y¢x

y � �2000x � 50,000

In Exploration 1, as in other applications of linear functions, the constant term repre-
sents the value of the function for an input of 0. In general, for any function is the
initial value of ƒ. So for a linear function , the constant term b is the ini-
tial value of the function. For any polynomial function ,
the constant term is the function’s initial value. Finally, the initial value of
any function—polynomial or otherwise—is the y-intercept of its graph.

We now summarize what we have learned about linear functions.

ƒ102 = a0

ƒ1x2 = anxn
+

Á
+ a1x + a0

ƒ1x2 = mx + b
ƒ, ƒ102

Linear Correlation and Modeling
In Section 1.7 we approached modeling from several points of view. Along the way we
learned how to use a grapher to create a scatter plot, compute a regression line for a
data set, and overlay a regression line on a scatter plot. We touched on the notion of
correlation coefficient. We now go deeper into these modeling and regression concepts.

Figure 2.2 on page 162 shows five types of scatter plots. When the points of a scatter
plot are clustered along a line, we say there is a linear correlation between the quanti-
ties represented by the data. When an oval is drawn around the points in the scatter plot,
generally speaking, the narrower the oval, the stronger the linear correlation.

When the oval tilts like a line with positive slope (as in Figure 2.2a and b), the data
have a positive linear correlation. On the other hand, when it tilts like a line with neg-
ative slope (as in Figure 2.2d and e), the data have a negative linear correlation. Some
scatter plots exhibit little or no linear correlation (as in Figure 2.2c), or have nonlinear
patterns.
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Correlation informs the modeling process by giving us a measure of goodness of fit.
Good modeling practice, however, demands that we have a theoretical reason for se-
lecting a model. In business, for example, fixed cost is modeled by a constant function.
(Otherwise, the cost would not be fixed.)

In economics, a linear model is often used for the demand for a product as a function of
its price. For instance, suppose Twin Pixie, a large supermarket chain, conducts a mar-
ket analysis on its store brand of doughnut-shaped oat breakfast cereal. The chain sets
various prices for its 15-oz box at its different stores over a period of time. Then, using
these data, the Twin Pixie researchers predict the weekly sales at the entire chain of
stores for each price and obtain the data shown in Table 2.2.

Properties of the Correlation Coefficient, r
1.

2. When , there is a positive linear correlation.

3. When , there is a negative linear correlation.

4. When , there is a strong linear correlation.

5. When , there is weak or no linear correlation.r L 0

ƒ r ƒ L 1

r 6 0

r 7 0

-1 … r … 1.
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y

x
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Strong positive linear
correlation

(a)

y

x
10 20 30 40 50
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30
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y

x
10 20 30 40 50

50

40

30

20

10

Weak positive linear
correlation

Little or no linear
correlation

(b) (c)

y

x
10 20 30 40 50

50

40

30

20

10

Strong negative linear
correlation

(d)

y

x
10 20 30 40 50

50

40

30

20

10

Weak negative linear
correlation

(e)

FIGURE 2.2 Five scatter plots and the types of linear correlation they suggest.

Correlation vs. Causation
Correlation does not imply causation. Two vari-
ables can be strongly correlated, but that does
not necessarily mean that one causes the other.

A number that measures the strength and direction of the linear correlation of a data set
is the (linear) correlation coefficient, r.
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Regression Analysis
1. Enter and plot the data (scatter plot).

2. Find the regression model that fits the problem situation.

3. Superimpose the graph of the regression model on the scatter plot, and ob-
serve the fit.

4. Use the regression model to make the predictions called for in the problem.
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EXAMPLE 3  Modeling and Predicting Demand
Use the data in Table 2.2 to write a linear model for demand (in boxes sold per week)
as a function of the price per box (in dollars). Describe the strength and direction of
the linear correlation. Then use the model to predict weekly cereal sales if the price
is dropped to $2.00 or raised to $4.00 per box.

SOLUTION

Model
We enter the data and obtain the scatter plot shown in Figure 2.3a. It appears that the
data have a strong negative correlation.

We then find the linear regression model to be approximately

where x is the price per box of cereal and y the number of boxes sold.

Figure 2.3b shows the scatter plot for Table 2.2 together with a graph of the regres-
sion line. You can see that the line fits the data fairly well. The correlation coefficient
of supports this visual evidence.

Solve Graphically
Our goal is to predict the weekly sales for prices of $2.00 and $4.00 per box. Using
the value feature of the grapher, as shown in Figure 2.3c, we see that y is about
42,900 when x is 2. In a similar manner we could find that when x is 4.

Interpret
If Twin Pixie drops the price for its store brand of doughnut-shaped oat breakfast ce-
real to $2.00 per box, demand will rise to about 42,900 boxes per week. On the other
hand, if they raise the price to $4.00 per box, demand will drop to around 12,190
boxes per week. Now try Exercise 49.

We summarize for future reference the analysis used in Example 3.

y L 12,190

r L -0.98

y = -15,358.93x + 73,622.50,

[2, 4] by [10000, 40000]

(a)

[2, 4] by [10000, 40000]

(b)

[0, 5] by [–10000, 80000]

(c)

X=2 Y=42904.643

FIGURE 2.3 Scatter plot and regression
line graphs for Example 3.

Table 2.2 Weekly Sales Data Based
on Marketing Research

Price per Box Boxes Sold

$2.40 38,320
$2.60 33,710
$2.80 28,280
$3.00 26,550
$3.20 25,530
$3.40 22,170
$3.60 18,260
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vertex

axis

(a)

f(x) = ax2, a > 0

vertex

axis

(b)

f(x) = ax2, a < 0

FIGURE 2.5 The graph for (a) and (b) a 6 0.a 7 0ƒ1x2 = ax2

EXAMPLE 4  Transforming the Squaring Function
Describe how to transform the graph of into the graph of the given func-
tion. Sketch its graph by hand.

(a) (b)

SOLUTION

(a) The graph of is obtained by vertically shrinking the 
graph of by a factor of 1/2, reflecting the resulting graph across the
x-axis, and translating the reflected graph up 3 units (Figure 2.4a).

(b) The graph of is obtained by vertically stretching the 
graph of by a factor of 3 and translating the resulting graph left 2 units
and down 1 unit (Figure 2.4b). Now try Exercise 19.

ƒ1x2 = x2
h1x2 = 31x + 222 - 1

ƒ1x2 = x2
g1x2 = -11/22x2

+ 3

h1x2 = 31x + 222 - 1g1x2 = -11/22x2
+ 3

ƒ1x2 = x2
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y

(a)

5

–5

–5
x

5

y

(b)

5

–5

–5
x

5

FIGURE 2.4 The graph of 
(blue) shown with 

(a) and 
(b) (Example 4)h1x2 = 31x + 222 - 1.

g1x2 = -11/22x2
+ 3

ƒ1x2 = x2

Quadratic Functions and Their Graphs
A quadratic function is a polynomial function of degree 2. Recall from Section 1.3 that
the graph of the squaring function is a parabola. We will see that the graph of
every quadratic function is an upward- or downward-opening parabola. This is because
the graph of any quadratic function can be obtained from the graph of the squaring func-
tion by a sequence of translations, reflections, stretches, and shrinks.ƒ1x2 = x2

ƒ1x2 = x2

The graph of , is an upward-opening parabola. When , its
graph is a downward-opening parabola. Regardless of the sign of a, the y-axis is the
line of symmetry for the graph of The line of symmetry for a parabola is
its axis of symmetry, or axis for short. The point on the parabola that intersects its axis
is the vertex of the parabola. Because the graph of a quadratic function is always an up-
ward- or downward-opening parabola, its vertex is always the lowest or highest point of
the parabola. The vertex of is always the origin, as seen in Figure 2.5.ƒ1x2 = ax2

ƒ1x2 = ax2.

a 6 0ƒ1x2 = ax2, a 7 0

Expanding and comparing the resulting coefficients with the
standard quadratic form , where the powers of x are arranged in de-
scending order, we can obtain formulas for h and k.

Expand 

Distributive property

Let and c = ah2
+ k.b = -2ah = ax2

+ bx + c

 = ax2
+ 1-2ah2x + 1ah2

+ k2
1x - h23. = a1x2

- 2hx + h22 + k

ƒ1x2 = a1x - h22 + k

ax2
+ bx + c

ƒ1x2 = a1x - h22 + k
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EXAMPLE 5  Finding the Vertex and Axis of a 
Quadratic Function

Use the vertex form of a quadratic function to find the vertex and axis of the graph of
Rewrite the equation in vertex form.

SOLUTION

Solve Algebraically
The standard polynomial form of ƒ is

So , and , and the coordinates of the vertex are

The equation of the axis is , the vertex is , and the vertex form of ƒ is

Now try Exercise 27.ƒ1x2 = -31x - 122 + 1-22.
11, -22x = 1

 k = ƒ1h2 = ƒ112 = -31122 + 6112 - 5 = -2.

h = -  

b

2a
= -  

6

21-32 = 1 and

c = -5a = -3, b = 6

ƒ1x2 = -3x2
+ 6x - 5.

ƒ1x2 = 6x - 3x2
- 5.

The formula is useful for locating the vertex and axis of the parabola as-
sociated with a quadratic function. To help you remember it, notice that is part
of the quadratic formula

(Cover the radical term.) You need not remember because you can use
instead, as illustrated in Example 5.k = ƒ1h2 k = c - ah2

x =

-b � 2b2
- 4ac

2a
.

-b/12a2h = -b/12a2

Because in the last line above, and
Using these formulas, any quadratic function can

be rewritten in the form

This vertex form for a quadratic function makes it easy to identify the vertex and axis of
the graph of the function, and to sketch the graph.

ƒ1x2 = a1x - h22 + k.

ƒ1x2 = ax2
+ bx + ck = c - ah2.

h = -b/12a2b = -2ah and c = ah2
+ ky

x

y = ax2 + bx + c

, a > 0x = – b
2a

(a)

y

x

y = ax2 + bx + c

, a < 0x = – b
2a

(b)

FIGURE 2.6 The vertex is at 
which therefore also describes the axis of
symmetry. (a) When , the parabola
opens upward. (b) When , the parabola
opens downward.

a 6 0
a 7 0

x = -b/12a2,

Vertex Form of a Quadratic Function
Any quadratic function , can be written in the
vertex form

The graph of ƒ is a parabola with vertex (h, k) and axis , where
and If , the parabola opens upward, 

and if , it opens downward (Figure 2.6).a 6 0
a 7 0k = c - ah2.h = -b/12a2 x = h

ƒ1x2 = a1x - h22 + k.

ƒ(x) = ax2
+ bx + c, a Z 0

SECTION 2.1 Linear and Quadratic Functions and Modeling 165
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Characterizing the Nature of a Quadratic Function
Point of View Characterization

Verbal polynomial of degree 2

Algebraic or 

Graphical parabola with vertex and axis ; 
opens upward if , opens downward if 
initial ;

x-intercepts =

-b � 2b2
- 4ac

2a

value = y-intercept = ƒ102 = c
a 6 0;a 7 0

x = h1h, k2
ƒ1x2 = a1x - h22 + k 1a Z 02
ƒ1x2 = ax2

+ bx + c

Applications of Quadratic Functions
In economics, when demand is linear, revenue is quadratic. Example 7 illustrates this
by extending the Twin Pixie model of Example 3.

166 CHAPTER 2 Polynomial, Power, and Rational Functions

EXAMPLE 7  Predicting Maximum Revenue
Use the model from Example 3 to develop a model
for the weekly revenue generated by doughnut-shaped oat breakfast cereal sales.
Determine the maximum revenue and how to achieve it.

SOLUTION

Model
Revenue can be found by multiplying the price per box, x, by the number of boxes
sold, y. So the revenue is given by

a quadratic model.

R1x2 = x # y = -15,358.93x2
+ 73,622.50x,

y = -15,358.93x + 73,622.50

[–4.7, 4.7] by [–3.1, 3.1]

X=–2 Y=–1

FIGURE 2.7 The graphs of 
and appear 

to be identical. The vertex is 
highlighted. (Example 6)

1-2, -12
y = 31x + 222 - 112x + 11

ƒ1x2 = 3x2
+

EXAMPLE 6  Using Algebra to Describe the Graph of a 
Quadratic Function

Use completing the square to describe the graph of 
Support your answer graphically.

SOLUTION

Solve Algebraically

Factor 3 from the x-terms.

Prepare to complete the square.

Complete the square.

Distribute the 3.

The graph of ƒ is an upward-opening parabola with vertex , axis of symme-
try . (The x-intercepts are , or about )

Support Graphically
The graph in Figure 2.7 supports these results. Now try Exercise 33.

We now summarize what we know about quadratic functions.

-2.577 and -1.423.x = -2 � 13/3x = -2
1-2, -12

 = 31x + 222 - 1

 = 31x2
+ 4x + 42 - 3142 + 11

 = 31x2
+ 4x + 1222 - 12222 + 11

 = 31x2
+ 4x + 12 - 122 + 11

 = 31x2
+ 4x2 + 11

ƒ1x2 = 3x2
+ 12x + 11

ƒ1x2 = 3x2
+ 12x + 11.
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These formulas disregard air resistance, and the two values given for g are valid at sea
level. We apply these formulas in Example 8, and will use them from time to time
throughout the rest of the book.

The data in Table 2.3 were collected in Boone, North Carolina (about 1 km above sea
level), using a Calculator-Based Ranger™ (CBR™) and a 15-cm rubber air-filled ball.
The CBR™ was placed on the floor face up. The ball was thrown upward above the
CBR™, and it landed directly on the face of the device.

SECTION 2.1 Linear and Quadratic Functions and Modeling 167

EXAMPLE 8  Modeling Vertical Free-Fall Motion
Use the data in Table 2.3 to write models for the height and vertical velocity of the
rubber ball. Then use these models to predict the maximum height of the ball and its
vertical velocity when it hits the face of the CBR™.

SOLUTION

Model
First we make a scatter plot of the data, as shown in Figure 2.9a. Using quadratic re-
gression, we find the model for the height of the ball to be about

with , indicating an excellent fit.

Our free-fall theory says the leading coefficient of is , giving us a value
for , which is a bit less than the theoretical value of We
also obtain So the model for vertical velocity becomes

(continued)
v1t2 = -gt + v0 L -9.352t + 3.758.

v0 L 3.758 m/sec.
9.8 m/sec2.g L 9.352 m/sec2

-g/2-4.676

R2
L 0.999

s1t2 = -4.676t 2
+ 3.758t + 1.045,

Solve Graphically
In Figure 2.8, we find a maximum of about 88,227 occurs when x is about 2.40.

Interpret
To maximize revenue, Twin Pixie should set the price for its store brand of dough-
nut-shaped oat breakfast cereal at $2.40 per box. Based on the model, this will yield
a weekly revenue of about $88,227. Now try Exercise 55.

Recall that the average rate of change of a linear function is constant. In Exercise 78
you will see that the average rate of change of a quadratic function is not constant.

In calculus you will study not only average rate of change but also instantaneous rate 
of change. Such instantaneous rates include velocity and acceleration, which we now
begin to investigate.

Since the time of Galileo Galilei (1564–1642) and Isaac Newton (1642–1727), the 
vertical motion of a body in free fall has been well understood. The vertical velocity
and vertical position (height) of a free-falling body (as functions of time) are classical
applications of linear and quadratic functions.

Table 2.3 Rubber Ball Data 
from CBR™

Time (sec) Height (m)

0.0000 1.03754
0.1080 1.40205
0.2150 1.63806
0.3225 1.77412
0.4300 1.80392
0.5375 1.71522
0.6450 1.50942
0.7525 1.21410
0.8600 0.83173

Vertical Free-Fall Motion
The height s and vertical velocity v of an object in free fall are given by

where t is time (in seconds), is the acceleration
due to gravity, is the initial vertical velocity of the object, and is its initial
height.

s0v0

g L 32 ft/sec2
L 9.8 m/sec2

s1t2 = -  

1

2
 gt 2

+ v0t + s0 and v1t2 = -gt + v0,

[0, 5] by [–10000, 100000]

X=2.3967298 Y=88226.727
Maximum

FIGURE 2.8 The revenue model for
Example 7.
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[0, 1.2] by [–0.5, 2.0]

(a)

[0, 1.2] by [–0.5, 2.0]

(b)

X=.40183958 Y=1.8000558
Maximum

[0, 1.2] by [–0.5, 2.0]

(c)

X=1.0222877   Y=0
Zero

FIGURE 2.9 Scatter plot and graph of height versus time for Example 8.

Reminder
Recall from Section 1.7 that is the coeffi-
cient of determination, which measures good-
ness of fit.

R2

Solve Graphically and Numerically
The maximum height is the maximum value of which occurs at the vertex 
of its graph. We can see from Figure 2.9b that the vertex has coordinates of about

.

In Figure 2.9c, to determine when the ball hits the face of the CBR™, we calculate
the positive-valued zero of the height function, which is We turn to our
linear model to compute the vertical velocity at impact:

Interpret
The maximum height the ball achieved was about 1.80 m above the face of the
CBR™. The ball’s downward rate is about 5.80 m/sec when it hits the CBR™.

The curve in Figure 2.9b appears to fit the data extremely well, and 
You may have noticed, however, that Table 2.3 contains the ordered pair 
0.4300, 1.80392 and that , which is the maximum shown in 

Figure 2.9b. So, even though our model is theoretically based and an excellent fit to
the data, it is not a perfect model. Despite its imperfections, the model provides accu-
rate and reliable predictions about the CBR™ experiment. Now try Exercise 63.

1.80392 7 1.80021
R2

L 0.999.

v11.0222 = -9.35211.0222 + 3.758 L -5.80 m/sec

t L 1.022.

1.800210.402,

s1t2,

QUICK REVIEW 2.1 (For help, go to Sections A.2. and P.4)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–2, write an equation in slope-intercept form for a line
with the given slope m and y-intercept b.

1. 2.

In Exercises 3–4, write an equation for the line containing the given
points. Graph the line and points.

3. and 4. and 1-2, -3211, 5213, 121-2, 42

m = -1.8, b = -2m = 8, b = 3.6

In Exercises 5–8, expand the expression.

5. 6.

7. 8.

In Exercises 9–10, factor the trinomial.

9. 10. 3x2
+ 12x + 122x2

- 4x + 2

-31x + 72231x - 622
1x - 4221x + 322
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SECTION 2.1 EXERCISES

In Exercises 1–6, determine which are polynomial functions. For those
that are, state the degree and leading coefficient. For those that are not,
explain why not.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, write an equation for the linear function ƒ satisfying
the given conditions. Graph 

7.

8.

9.

10.

11.

12.

In Exercises 13–18, match a graph to the function. Explain your choice.

ƒ1-42 = 0 and ƒ102 = 2

ƒ102 = 3 and ƒ132 = 0

ƒ112 = 2 and ƒ152 = 7

ƒ1-42 = 6 and ƒ1-12 = 2

ƒ1-32 = 5 and ƒ162 = -2

ƒ1-52 = -1 and ƒ122 = 4

y = ƒ1x2.
k1x2 = 4x - 5x2h1x2 = 23 27x3

+ 8x6

ƒ1x2 = 13ƒ1x2 = 2x5
-

1

2
 x + 9

ƒ1x2 = -9 + 2xƒ1x2 = 3x -5
+ 17

In Exercises 23–26, find the vertex and axis of the graph of the
function.

23. 24.

25. 26.

In Exercises 27–32, find the vertex and axis of the graph of the func-
tion. Rewrite the equation for the function in vertex form.

27. 28.

29. 30.

31. 32.

In Exercises 33–38, use completing the square to describe the graph of
each function. Support your answers graphically.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, write an equation for the parabola shown, using the
fact that one of the given points is the vertex.

39.

g1x2 = 5x2
- 25x + 12ƒ1x2 = 2x2

+ 6x + 7

h1x2 = 8 + 2x - x2ƒ1x2 = 10 - 16x - x2

g1x2 = x2
- 6x + 12ƒ1x2 = x2

- 4x + 6

h1x2 = -2x2
- 7x - 4g1x2 = 5x2

+ 4 - 6x

ƒ1x2 = 6 - 2x + 4x2ƒ1x2 = 8x - x2
+ 3

ƒ1x2 = -2x2
+ 7x - 3ƒ1x2 = 3x2

+ 5x - 4

g1x2 = 21x - 1322 + 4ƒ1x2 = 51x - 122 - 7

g1x2 = -31x + 222 - 1ƒ1x2 = 31x - 122 + 5

(e) (f)

(a) (b)

(c) (d)

13. 14.

15. 16.

17. 18.

In Exercises 19–22, describe how to transform the graph of 
into the graph of the given function. Sketch each graph by hand.

19. 20.

21. 22. h1x2 = -3x2
+ 2g1x2 =

1

2
 1x + 222 - 3

h1x2 =

1

4
 x2

- 1g1x2 = 1x - 322 - 2

ƒ1x2 = x2

ƒ1x2 = 12 - 21x + 122ƒ1x2 = 21x - 122 - 3

ƒ1x2 = 12 - 21x - 122ƒ1x2 = 4 - 31x - 122
ƒ1x2 = 31x + 222 - 7ƒ1x2 = 21x + 122 - 3

[–5, 5] by [–15, 15]

(–1, –3)

(1, 5)

40.

42.41.

[–5, 5] by [–15, 15]

(4, –7)

(1, 11)

[–5, 5] by [–15, 15]

(2, –13)

(–1, 5)

[–5, 5] by [–15, 15]

(2, –7)

(0, 5)

In Exercises 43 and 44, write an equation for the quadratic function
whose graph contains the given vertex and point.

43. Vertex , point 

44. Vertex , point 

In Exercises 45–48, describe the strength and direction of the linear
correlation.

45. 46.

1-4, -2721-2, -52
10, 5211, 32

y

x

50

40

30

20

10

10 20 30 40 50

y

x

50

40

30

20

10

10 20 30 40 50
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47. 48. 53. Table 2.6 shows the average hourly compensation of U.S. pro-
duction workers for several years. Let x be the number of years
since 1970, so that stands for 1975, and so forth.x = 5
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y

x

50

40

30

20

10

10 20 30 40 50

y

x

50

40

30

20

10

10 20 30 40 50

49. Comparing Age and Weight A group of male chil-
dren were weighed. Their ages and weights are recorded in
Table 2.4.

Table 2.4 Children’s Age and Weight

Age (months) Weight (pounds)

18 23
20 25
24 24
26 32
27 33
29 29
34 35
39 39
42 44

Table 2.5 U.S. Life Expectancy

(a) Draw a scatter plot of these data.

(b) Writing to Learn Describe the strength and direc-
tion of the correlation between age and weight.

50. Life Expectancy Table 2.5 shows the average number
of additional years a U.S. citizen is expected to live for various
ages.

Age Remaining Life
(years) Expectancy (years)

10 68.5
20 58.8
30 49.3
40 39.9
50 30.9
60 22.5
70 15.1

Source: United States Life Tables, 2004. National Vital
Statistics Reports, December, 2007.

Table 2.6 Production Worker Earnings
Year Hourly Compensation (dollars)

1975 4.73
1985 8.74
1995 11.65
2005 16.13

Source: U.S. Bureau of Labor Statistics as reported in The
World Almanac and Book of Facts 2009.

(a) Draw a scatter plot of these data.

(b) Writing to Learn Describe the strength and direc-
tion of the correlation between age and life expectancy.

51. Straight-Line Depreciation Mai Lee bought a com-
puter for her home office and depreciated it over 5 years using
the straight-line method. If its initial value was $2350, what is
its value 3 years later?

52. Costly Doll Making Patrick’s doll-making business has
weekly fixed costs of $350. If the cost for materials is $4.70 per
doll and his total weekly costs average $500, about how many
dolls does Patrick make each week?

(a) Writing to Learn Find the linear regression model
for the data. What does the slope in the regression model
represent?

(b) Use the linear regression model to predict the production
worker average hourly compensation in the year 2015.

54. Finding Maximum Area Among all the rectangles
whose perimeters are 100 ft, find the dimensions of the one
with maximum area.

55. Determining Revenue The per unit price p (in dol-
lars) of a popular toy when x units (in thousands) are produced
is modeled by the function

The revenue (in thousands of dollars) is the product of the price
per unit and the number of units (in thousands) produced. That is,

(a) State the dimensions of a viewing window that shows 
a graph of the revenue model for producing 0 to 100,000
units.

(b) How many units should be produced if the total revenue is
to be $1,000,000?

56. Finding the Dimensions of a Painting A large
painting in the style of Rubens is 3 ft longer than it is wide. If the
wooden frame is 12 in. wide, the area of the picture and frame
is 208 ft2, find the dimensions of the painting.

57. Using Algebra in Landscape Design Julie Stone
designed a rectangular patio that is 25 ft by 40 ft. This patio is
surrounded by a terraced strip of uniform width planted with
small trees and shrubs. If the area A of this terraced strip is

, find the width x of the strip.504 ft2

revenue = xp = x112 - 0.025x2.

price = p = 12 - 0.025x.
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58. Management Planning The Welcome Home apart-
ment rental company has 1600 units available, of which 800 are
currently rented at $300 per month. A market survey indicates
that each $5 decrease in monthly rent will result in 20 new leases.

(a) Determine a function that models the total rental in-
come realized by Welcome Home, where x is the number of
$5 decreases in monthly rent.

(b) Find a graph of for rent levels between $175 and
$300 (that is, that clearly shows a maximum
for .

(c) What rent will yield Welcome Home the maximum
monthly income?

59. Group Activity Beverage Business The Sweet
Drip Beverage Co. sells cans of soda pop in machines. It finds
that sales average 26,000 cans per month when the cans sell for
50¢ each. For each nickel increase in the price, the sales per
month drop by 1000 cans.

(a) Determine a function that models the total revenue
realized by Sweet Drip, where x is the number of $0.05
increases in the price of a can.

(b) Find a graph of that clearly shows a maximum for 

(c) How much should Sweet Drip charge per can to realize the
maximum revenue? What is the maximum revenue?

60. Group Activity Sales Manager Planning Jack
was named District Manager of the Month at the Athens Wire
Co. due to his hiring study. It shows that each of the 30 sales-
persons he supervises average $50,000 in sales each month,
and that for each additional salesperson he would hire, the av-
erage sales would decrease $1000 per month. Jack concluded
his study by suggesting a number of salespersons that he
should hire to maximize sales. What was that number?

61. Free-Fall Motion As a promotion for the Houston Astros
downtown ballpark, a competition is held to see who can throw a
baseball the highest from the front row of the upper deck of seats,
83 ft above field level. The winner throws the ball with an initial
vertical velocity of 92 ft/sec and it lands on the infield grass.

(a) Find the maximum height of the baseball.

(b) How much time is the ball in the air?

(c) Determine its vertical velocity when it hits the ground.

62. Baseball Throwing Machine The Sandusky Little
League uses a baseball throwing machine to help train 10-year-
old players to catch high pop-ups. It throws the baseball straight
up with an initial velocity of 48 ft/sec from a height of 3.5 ft.

(a) Find an equation that models the height of the ball t sec-
onds after it is thrown.

(b) What is the maximum height the baseball will reach? How
many seconds will it take to reach that height?

R1x2.R1x2

R1x2

R1x2
0 … x … 25)

R1x2

R1x2

(b) What is the maximum height above ground level that the
aerial bomb will reach? How many seconds will it take to
reach that height?

64. Landscape Engineering In
her first project after being employed
by Land Scapes International, Becky
designs a decorative water fountain that
will shoot water to a maximum height
of 48 ft. What should be the initial ve-
locity of each drop of water to achieve
this maximum height? (Hint: Use a
grapher and a guess-and-check strategy.)

65. Patent Applications Using quadratic regression on the
data in Table 2.7, predict the year when the number of patent
applications reached 450,000. Let stand for 1980, 
for 1990, and so forth.

x = 10x = 0
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Table 2.7 U.S. Patent Applications

Year Applications (thousands)

1980 113.0
1990 176.7
1995 228.8
1998 261.4
1999 289.5
2000 315.8
2001 346.6
2002 357.5
2003 367.0

Source: U.S. Census Bureau, Statistical Abstract of 
the United States, 2004–2005 (124th ed., 
Washington, D.C., 2004).

66. Highway Engineering Interstate 70 west of Denver,
Colorado, has a section posted as a 6% grade. This means that
for a horizontal change of 100 ft there is a 6-ft vertical change.

6%
GRADE

6% grade

63. Fireworks Planning At the Bakersville Fourth of July
celebration, fireworks are shot by remote control into the air
from a pit that is 10 ft below the earth’s surface.

(a) Find an equation that models the height of an aerial bomb
t seconds after it is shot upward with an initial velocity of
80 ft/sec. Graph the equation.

(a) Find the slope of this section of the highway.

(b) On a highway with a 6% grade what is the horizontal dis-
tance required to climb 250 ft?

(c) A sign along the highway says 6% grade for the next 7 mi.
Estimate how many feet of vertical change there are along
those 7 mi. (There are 5280 ft in 1 mile.)
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Table 2.8 Children’s Ages and Weights

Age (months) Weight (pounds)

19 22
21 23
24 25
27 28
29 31
31 28
34 32
38 34
43 39

(a) Draw a scatter plot of the data.

(b) Find the linear regression model.

(c) Interpret the slope of the linear regression equation.

(d) Superimpose the regression line on the scatter plot.

(e) Use the regression model to predict the weight of a 
30-month-old girl.

68. Table 2.9 shows the median U.S. income of women (in 2007
dollars) for selected years. Let x be the number of years since
1940.

Source: U.S. Census Bureau as reported in The World
Almanac and Book of Facts 2009.

Table 2.9 Median Income of Women
in the United States (in 2007 dollars)

Year Median Income ($)

1950 7,165
1960 7,726
1970 10,660
1980 11,787
1990 15,486
2000 19,340
2007 20,922

(a) Find the linear regression model for the data.

(b) Use it to predict the median U.S. female income in 2015.

BASIC FUNCTION
The Identity Function

Domain:
Range:
Continuity:
Increasing-decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

ƒ1x2 = x

BASIC FUNCTION
The Squaring Function

Domain:
Range:
Continuity:
Increasing-decreasing behavior:
Symmetry:
Boundedness:
Local extrema:
Horizontal asymptotes:
Vertical asymptotes:
End behavior:

ƒ1x2 = x2

70. Analyzing a Function

Standardized Test Questions
71. True or False The initial value of 

is 0. Justify your answer.

72. True or False The graph of the function 
has no x-intercepts. Justify your answer.

In Exercises 73–76, you may use a graphing calculator to solve the
problem.

In Exercises 73 and 74, , 

73. Multiple Choice What is the value of m?

(A) 3 (B) (C) (D) 1/3 (E)

74. Multiple Choice What is the value of b?

(A) 4 (B) 11/3 (C) 7/3 (D) 1 (E)

In Exercises 75 and 76, let 

75. Multiple Choice What is the axis of symmetry of the
graph of ƒ?

(A) (B) (C)

(D) (E)

76. Multiple Choice What is the vertex of ƒ?

(A) (B) (C)

(D) (E)

Explorations
77. Writing to Learn Identifying Graphs of 

Linear Functions

(a) Which of the lines graphed on the next page are graphs of
linear functions? Explain.

(b) Which of the lines graphed on the next page are graphs of
functions? Explain.

(c) Which of the lines graphed on the next page are not graphs
of functions? Explain.

1-3, -521-3, 52
13, -5213, 5210, 02

y = 0y = -5

y = 5x = -3x = 3

ƒ1x2 = 21x + 322 - 5.

-1/3

-1/3-1-3

ƒ1-22 = 3, and ƒ142 = 1.ƒ1x2 = mx + b

x + 1
ƒ1x2 = x2

-

ƒ1x2 = 3x2
+ 2x - 3

67. A group of female children were weighed. Their ages and
weights are recorded in Table 2.8.

In Exercises 69–70, complete the analysis for the given Basic Function.

69. Analyzing a Function
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Extending the Ideas
79. Minimizing Sums of Squares The linear regression

line is often called the least-square lines because it minimizes
the sum of the squares of the residuals, the differences be-
tween actual y values and predicted y values:

where are the given data
pairs and is the re-
gression equation, as shown in
the figure.

Use these definitions to explain
why the regression line obtained
from reversing the ordered pairs in
Table 2.2 is not the inverse of the
function obtained in Example 3.

80. Median-Median Line Read about the median-median
line by going to the Internet, your grapher owner’s manual, or a
library. Then use the following data set to complete this problem.

(a) Draw a scatter plot of the data.

(b) Find the linear regression equation and graph it.

(c) Find the median-median line equation and graph it.

(d) Writing to Learn For these data, which of the two
lines appears to be the line of better fit? Why?

81. Suppose for the equation 

(a) Prove that the sum of the two solutions of this equation is

(b) Prove that the product of the two solutions of this equation
is 

82. Connecting Algebra and Geometry Prove that
the axis of the graph of is

, where a and b are real numbers.

83. Connecting Algebra and Geometry Identify the
vertex of the graph of , where a and b
are any real numbers.

84. Connecting Algebra and Geometry Prove that if
and are real numbers and are zeros of the quadratic func-

tion , then the axis of the graph of

85. Prove the Constant Rate of Change Theorem, which is stated
on page 160.

ƒ is x = 1x1 + x22/2.
ƒ1x2 = ax2

+ bx + c
x2x1

ƒ1x2 = 1x - a21x - b2
x = 1a + b2/2

ƒ1x2 = 1x - a21x - b2
c/a.

-b/a.

ax2
+ bx + c = 0.b2

- 4ac 7 0

512, 82, 13, 62, 15, 92, 16, 82, 18, 112, 110, 132, 112, 142, 115, 426

y = ax + b
1x i, yi2

residual = yi - 1axi + b2,

3
2

–1
–2
–3

y

x
–5 –4 –3 –2 –1 21 4 5

(i)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –1 321 4 5

(ii)

3
2
1

–3

y

x
–5 –4 –3 –2 –1 321 4 5

(iii)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(iv)

3
2
1

–1

–3

y

x
–5 –4 –3 –2 –1 321 5

(v)

3
2
1

–1
–2
–3

y

x
–5 –4 –3 –2 –1 321 4 5

(vi)

78. Average Rate of Change Let 
and 

(a) Compute the average rate of change of ƒ from to

(b) Compute the average rate of change of ƒ from to

(c) Compute the average rate of change of ƒ from to

(d) Compute the average rate of change of g from to

(e) Compute the average rate of change of g from to

(f) Compute the average rate of change of g from to

(g) Compute the average rate of change of h from to

(h) Compute the average rate of change of k from to

(i) Compute the average rate of change of l from to
x = c.

x = a

x = c.
x = a

x = c.
x = a

x = c.
x = a

x = 4.
x = 1

x = 3.
x = 1

x = c.
x = a

x = 5.
x = 2

x = 3.
x = 1

l1x2 = x3.k1x2 = mx + b,h1x2 = 7x - 3,3x + 2,
g1x2 =ƒ1x2 = x2,

y

x
10 20 30 40 50

50

40

30

20

10

(xi, yi)

yi � (axi � b)

y � ax � b
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2.2 Power Functions 
with Modeling

What you’ll learn about
• Power Functions and Variation
• Monomial Functions and Their

Graphs
• Graphs of Power Functions
• Modeling with Power Functions

... and why
Power functions specify the pro-
portional relationships of geom-
etry, chemistry, and physics.

In general, if varies as a constant power of x, then y is a power function of x.
Many of the most common formulas from geometry and science are power functions.

y = ƒ1x2

Name Formula Power Constant of Variation

Circumference 1
Area of a circle 2
Force of gravity k
Boyle’s Law k-1V = k /P

-2F = k /d2
pA = pr 2

2pC = 2pr

EXAMPLE 1  Writing a Power Function Formula
From empirical evidence and the laws of physics it has been found that the period of
time T for the full swing of a pendulum varies as the square root of the pendulum’s
length l, provided that the swing is small relative to the length of the pendulum.
Express this relationship as a power function.

SOLUTION Because it does not state otherwise, the variation is direct. So the
power is positive. The wording tells us that T is a function of l. Using k as the con-
stant of variation gives us

Now try Exercise 17. T1l2 = k1l = k # l 1/2.

Power Functions and Variation
Five of the basic functions introduced in Section 1.3 were power functions. Power
functions are an important family of functions in their own right and are important
building blocks for other functions.

DEFINITION Power Function
Any function that can be written in the form

, where k and a are nonzero constants,

is a power function. The constant a is the power, and k is the constant of
variation, or constant of proportion. We say varies as the power of x,
or is proportional to the power of x.athƒ1x2 athƒ1x2

ƒ1x2 = k # xa

These four power functions involve relationships that can be expressed in the language
of variation and proportion:

• The circumference of a circle varies directly as its radius.

• The area enclosed by a circle is directly proportional to the square of its radius.

• The force of gravity acting on an object is inversely proportional to the square of the
distance from the object to the center of the Earth.

• Boyle’s Law states that the volume of an enclosed gas (at a constant temperature)
varies inversely as the applied pressure.

The power function formulas with positive powers are statements of direct variation,
and power function formulas with negative powers are statements of inverse variation.
Unless the word inversely is included in a variation statement, the variation is assumed
to be direct, as in Example 1.
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Section 1.3 introduced five basic power functions:

and

Example 2 describes two other power functions: the cube root function and the inverse-
square function.

x1/2
= 1xx, x2, x3, x -1

=

1
x

,

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

FIGURE 2.10 The graphs of 
(a) and 
(b) (Example 2)g1x2 = 1/x2

= x -2.
ƒ1x2 = 23 x = x1/3

EXAMPLE 2  Analyzing Power Functions
State the power and constant of variation for the function, graph it, and analyze it.

(a) (b)

SOLUTION

(a) Because , its power is 1/3, and its constant of vari-
ation is 1. The graph of ƒ is shown in Figure 2.10a.

Domain: All reals
Range: All reals
Continuous
Increasing for all x
Symmetric with respect to the origin (an odd function)
Not bounded above or below
No local extrema
No asymptotes
End behavior: and 

Interesting fact: The cube root function is the inverse of the cubing
function.

(b) Because , its power is , and its constant of
variation is 1. The graph of g is shown in Figure 2.10b.

Domain: 
Range: 
Continuous on its domain; discontinuous at 
Increasing on ; decreasing on 
Symmetric with respect to the y-axis (an even function)
Bounded below, but not above
No local extrema

Horizontal asymptote: ; vertical asymptote: 
End behavior: and

Interesting fact: is the basis of scientific inverse-square laws, for
example, the inverse-square gravitational principle mentioned above.

So is sometimes called the inverse-square function, but it is not the
inverse of the squaring function but rather its multiplicative inverse.

Now try Exercise 27.

Monomial Functions and Their Graphs
A single-term polynomial function is a monomial function.

g1x2 = 1/x2

F = k/d2
g1x2 = 1/x2

 lim
x: q

11/x22 = 0 lim
x: -q

11/x22 = 0
x = 0y = 0

10, q21- q , 02 x = 0
10, q21- q , 02h10, q2

-2g1x2 = 1/x2
= x -2

= 1 # x -2

ƒ1x2 = 23 x

 lim
x: q

 23 x = q lim
x: -q

 23 x = - q

ƒ1x2 = 23 x = x1/3
= 1 # x1/3

g1x2 =

1

x2ƒ1x2 = 23 x

DEFINITION Monomial Function
Any function that can be written as

where k is a constant and n is a positive integer, is a monomial function.

ƒ1x2 = k or ƒ1x2 = k # xn,

SECTION 2.2 Power Functions with Modeling 175
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EXPLORATION 1 Comparing Graphs of Monomial Functions

Graph the triplets of functions in the stated windows and explain how the

graphs are alike and how they are different. Consider the relevant aspects of

analysis from Example 2. Which ordered pairs do all three graphs have in

common?

1. , and in the window by
, then by , and finally by .

2. , and in the window by
, then by , and finally by .3-50, 40043-15, 1543-5, 2543-5, 543-0.5, 1.54 3-1.5, 1.54h1x2 = x6ƒ1x2 = x2, g1x2 = x4

3-200, 20043-20, 2043-15, 1543-5, 543-1.5, 1.54 3-2.35, 2.354h1x2 = x5ƒ1x2 = x, g1x2 = x3

From Exploration 1 we see that

is an even function if n is even and an odd function if n is odd.

Because of this symmetry, it is enough to know the first quadrant behavior of 
Figure 2.11 shows the graphs of for in the first quadrant
near the origin.

The following conclusions about the basic function can be drawn from your
investigations in Exploration 1.

ƒ1x2 = x3

n =  1, 2, Á , 6ƒ1x2 = xn
ƒ1x2 = xn.

ƒ1x2 = xn

[0, 1] by [0, 1]

(1, 1)

(0, 0)

x

x2

x3

x4

x5

x6

FIGURE 2.11 The graphs of 
, for n = 1, 2, Á , 6.0 … x … 1

ƒ1x2 = xn,

So the zero function and constant functions are monomial functions, but the more typi-
cal monomial function is a power function with a positive integer power, which is the
degree of the monomial. For example, the basic functions , and are typical
monomial functions. It is important to understand the graphs of monomial functions
because every polynomial function is either a monomial function or a sum of monomial
functions.

In Exploration 1, we take a close look at six basic monomial functions. They have the
form for We group them by even and odd powers.n = 1, 2, Á , 6.xn

x3x, x2

176 CHAPTER 2 Polynomial, Power, and Rational Functions

[–4.7, 4.7] by [–3.1, 3.1]

BASIC FUNCTION The Cubing Function

Domain: All reals
Range: All reals
Continuous
Increasing for all x
Symmetric with respect to the origin (an odd function)
Not bounded above or below
No local extrema
No horizontal asymptotes
No vertical asymptotes
End behavior: and lim

x: q  

x3
= q lim

x: -q

x3
= - q

ƒ1x2 = x3

FIGURE 2.12 The graph of ƒ1x2 = x3.
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[–2, 2] by [–16, 16]

(a)
[–2, 2] by [–16, 16]

(b)

FIGURE 2.13 The graphs of (a) with basic monomial , and 
(b) with basic monomial (Example 3)g1x2 = x4.ƒ1x2 = -12/32x4

g1x2 = x3ƒ1x2 = 2x3

EXAMPLE 3  Graphing Monomial Functions
Describe how to obtain the graph of the given function from the graph of 
with the same power n. Sketch the graph by hand and support your answer with a
grapher.

(a) (b)

SOLUTION

(a) We obtain the graph of by vertically stretching the graph of 
by a factor of 2. Both are odd functions (Figure 2.13a).

(b) We obtain the graph of by vertically shrinking the graph of 
by a factor of 2/3 and then reflecting it across the x-axis. Both are

even functions (Figure 2.13b). Now try Exercise 31.

We ask you to explore the graphical behavior of power functions of the form and
, where n is a positive integer, in Exercise 65.x1/n

x -n

g1x2 = x4
ƒ1x2 = -12/32x4

g1x2 = x3
ƒ1x2 = 2x3

ƒ1x2 = -  

2

3
 x4ƒ1x2 = 2x3

g1x2 = xn

Graphs of Power Functions
The graphs in Figure 2.14 represent the four shapes that are possible for general power
functions of the form for In every case, the graph of ƒ contains

. Those with positive powers also pass through . Those with negative expo-
nents are asymptotic to both axes.

When , the graph lies in Quadrant I, but when , the graph is in Quadrant IV.

In general, for any power function , one of three following things happens
when 

• ƒ is undefined for , as is the case for and 

• ƒ is an even function, so ƒ is symmetric about the y-axis, as is the case for
and 

• ƒ is an odd function, so ƒ is symmetric about the origin, as is the case for
and 

Predicting the general shape of the graph of a power function is a two-step process as
illustrated in Example 4.

ƒ1x2 = x7/3.ƒ1x2 = x -1

ƒ1x2 = x2/3.ƒ1x2 = x -2

ƒ1x2 = xp.ƒ1x2 = x1/2x 6 0

x 6 0.
ƒ1x2 = k # xa

k 6 0k 7 0

10, 0211, k2 x Ú 0.ƒ1x2 = kxa0 1 32

(a)

x

y

(1, k)

a < 0 a > 1 a = 1

0 < a < 1

0

1 32

(b)

x

y

(1, k)

a < 0 a > 1 a = 1

0 < a < 1

FIGURE 2.14 The graphs of
for (a) , (b) k 6 0.k 7 0x Ú 0.ƒ1x2 = k # xa
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The following information about the basic function follows from the inves-
tigation in Exercise 65.

ƒ1x2 = 1x

EXAMPLE 4  Graphing Power Functions 
State the values of the constants k and a. Describe the portion of the curve that lies
in Quadrant I or IV. Determine whether ƒ is even, odd, or undefined for 
Describe the rest of the curve if any. Graph the function to see whether it matches
the description.

(a) (b) (c)

SOLUTION

(a) Because is positive and the power is negative, the graph passes
through and is asymptotic to both axes. The graph is decreasing in the
first quadrant. The function ƒ is odd because

So its graph is symmetric about the origin. The graph in Figure 2.15a supports
all aspects of the description.

(b) Because is negative and the power , the graph contains
and passes through In the fourth quadrant, it is decreasing. The

function ƒ is undefined for because

and the square root function is undefined for So the graph of ƒ has no
points in Quadrants II or III. The graph in Figure 2.15b matches the description.

(c) Because is negative and , the graph contains (0, 0) and
passes through In the fourth quadrant, it is decreasing. The function ƒ
is even because

So the graph of ƒ is symmetric about the y-axis. The graph in Figure 2.15c fits
the description. Now try Exercise 43.

 = -125 x22 = -x0.4
= ƒ1x2.

ƒ1-x2 = -1-x20.4
= -1-x22/5

= -125 -x22 = -1- 25 x22
11, -12. 0 6 a 6 1k = -1

x 6 0.

ƒ1x2 = -0.4x1.5
= -  

2

5
 x3/2

= -  

2

5
 11x23,

x 6 0
11, -0.42.10, 02 a = 1.5 7 1k = -0.4

ƒ1-x2 = 21-x2-3
=

2

1-x23 = -

2

x3 = -2x -3
= -ƒ1x2.

11, 22 a = -3k = 2

ƒ1x2 = -x0.4ƒ1x2 = -0.4x1.5ƒ1x2 = 2x -3

x 6 0.

ƒ1x2 = k # xa

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–4.7, 4.7] by [–3.1, 3.1]

(c)

FIGURE 2.15 The graphs of (a) , (b) , and (c) (Example 4)ƒ1x2 = -x0.4.ƒ1x2 = -0.4x1.5ƒ1x2 = 2x-3

6965_CH02_pp157-250.qxd  1/14/10  1:13 PM  Page 178



Modeling with Power Functions
Noted astronomer Johannes Kepler (1571–1630) developed three laws of planetary 
motion that are used to this day. Kepler’s Third Law states that the square of the period
of orbit T (the time required for one full revolution around the Sun) for each planet is
proportional to the cube of its average distance a from the Sun. Table 2.10 gives the rel-
evant data for the six planets that were known in Kepler’s time. The distances are given
in millions of kilometers, or gigameters (Gm).

EXAMPLE 5  Modeling Planetary Data with a Power Function
Use the data in Table 2.10 to obtain a power function model for orbital period as a
function of average distance from the Sun. Then use the model to predict the orbital
period for Neptune, which is 4497 Gm from the Sun on average.

SOLUTION

Model
First we make a scatter plot of the data, as shown in Figure 2.17a on page 180. Using
power regression, we find the model for the orbital period to be about

Figure 2.17b shows the scatter plot for Table 2.10 together with a graph of the power
regression model just found. You can see that the curve fits the data quite well. The
coefficient of determination is , indicating an amazingly close fit
and supporting the visual evidence.

(continued)

r 2
L 0.999999912

T1a2 L 0.20a1.5
= 0.20a3/2

= 0.202a3.

Table 2.10 Average Distances and Orbital Periods
for the Six Innermost Planets

[–4.7, 4.7] by [–3.1, 3.1]

BASIC FUNCTION The Square Root Function

Domain: 
Range: 
Continuous on 
Increasing on 
No symmetry
Bounded below but not above
Local minimum at 
No horizontal asymptotes
No vertical asymptotes
End behavior: lim

x: q

 1x = q

x = 0

30, q2
30, q2

30, q2
30, q2

ƒ1x2 = 1x

FIGURE 2.16 The graph of ƒ1x2 = 1x.

Source: Shupe, Dorr, Payne, Hunsiker, et al., National Geographic Atlas of
the World (rev. 6th ed.). Washington, DC: National Geographic Society,
1992, plate 116.

Planet
Average Distance Period of 
from Sun (Gm) Orbit (days)

Mercury 57.9 88
Venus 108.2 225
Earth 149.6 365.2
Mars 227.9 687
Jupiter 778.3 4332
Saturn 1427 10,760

A Bit of History
Example 5 shows the predictive power of a well-
founded model. Exercise 67 asks you to find
Kepler’s elegant form of the equation, ,
which he reported in The Harmony of the World
in 1619.

T2
= a3

SECTION 2.2 Power Functions with Modeling 179
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[–100, 1500] by [–1000, 12000]

(a)

[–100, 1500] by [–1000, 12000]

(b)

[0, 5000] by [–10000, 65000]

Y1=0.2X^1.5

X=4497 Y=60313.472

(c)

FIGURE 2.17 Scatter plot and graphs for Example 5.

EXAMPLE 6  Modeling Free-Fall Speed Versus Distance
Use the data in Table 2.11 to obtain a power function model for speed p versus dis-
tance traveled d. Then use the model to predict the speed of the ball at impact given
that impact occurs when .d L 1.80 m

Solve Numerically
To predict the orbit period for Neptune we substitute its average distance from the
Sun in the power regression model:

Interpret
It takes Neptune about 60,313 days to orbit the Sun, or about 165 years, which is the
value given in the National Geographic Atlas of the World.

Figure 2.17c reports this result and gives some indication of the relative distances in-
volved. Neptune is much farther from the Sun than the six innermost planets and es-
pecially the four closest to the Sun—Mercury, Venus, Earth, and Mars.

Now try Exercise 55.

In Example 6, we return to free-fall motion, with a new twist. The data in the table
come from the same CBR™ experiment referenced in Example 8 of Section 2.1. This
time we are looking at the downward distance (in meters) the ball has traveled since
reaching its peak height and its downward speed (in meters per second). It can be
shown (see Exercise 68) that free-fall speed is proportional to a power of the distance
traveled.

T144972 L 0.21449721.5
L 60,313

Table 2.11 Rubber Ball Data 
from CBR™ Experiment

Distance (m) Speed (m/s)

0.00000 0.00000
0.04298 0.82372
0.16119 1.71163
0.35148 2.45860
0.59394 3.05209
0.89187 3.74200
1.25557 4.49558
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SOLUTION

Model
Figure 2.18a is a scatter plot of the data. Using power regression, we find the model
for speed p versus distance d to be about

(See margin notes.) Figure 2.18b shows the scatter plot for Table 2.11 together with a
graph of the power regression equation just found. You can see that the curve fits the
data nicely. The coefficient of determination is , indicating a close fit
and supporting the visual evidence.

Solve Numerically
To predict the speed at impact, we substitute into the obtained power re-
gression model:

See Figure 2.18c.

Interpret
The speed at impact is about 5.4 m/sec. This is slightly less than the value ob-
tained in Example 8 of Section 2.1, using a different modeling process for the
same experiment. Now try Exercise 57.

p11.802 L 5.4

d L 1.80

r 2
L 0.99770

p1d2 L 4.03d0.5
= 4.03d1/2

= 4.031d.

Why p?
We use p for speed to distinguish it from
velocity v. Recall that speed is the 
absolute value of velocity.

A Word of Warning
The regression routine traditionally used to com-
pute power function models involves taking log-
arithms of the data, and therefore, all of the data
must be strictly positive numbers. So we must
leave out to compute the power regression
equation.

10, 02

[–0.2, 2] by [–1, 6]

(a)

[–0.2, 2] by [–1, 6]

(b)

[–0.2, 2] by [–1, 6]

Y1=4.03X^(1/2)

X=1.8 Y=5.4068124

(c)

FIGURE 2.18 Scatter plot and graphs for Example 6.

QUICK REVIEW 2.2 (For help, go to Section A.1.)

In Exercises 7–10, write the following expressions in the form 
using a single rational number for the power a.

7. 8.

9. 10.
4x

232x3A3   
5

x4

23 8x529x3

k # xaExercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, write the following expressions using only posi-
tive integer powers.

1. 2.

3. 4.

5. 6. m -1.5q -4/5

x -7d -2

p5/2x2/3
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SECTION 2.2 EXERCISES

In Exercises 1–10, determine whether the function is a power function,
given that c, g, k, and represent constants. For those that are power
functions, state the power and constant of variation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, determine whether the function is a monomial
function, given that l and represent constants. For those that are
monomial functions state the degree and leading coefficient. For those
that are not, explain why not.

11. 12.

13. 14.

15. 16.

In Exercises 17–22, write the statement as a power function equation.
Use k for the constant of variation if one is not given.

17. The area A of an equilateral triangle varies directly as the
square of the length s of its sides.

18. The volume V of a circular cylinder with fixed height is pro-
portional to the square of its radius r.

19. The current I in an electrical circuit is inversely proportional to
the resistance R, with constant of variation V.

20. Charles’s Law states the volume V of an enclosed ideal gas at a
constant pressure varies directly as the absolute temperature T.

21. The energy E produced in a nuclear reaction is proportional to
the mass m, with the constant of variation being , the square
of the speed of light.

22. The speed p of a free-falling object that has been dropped from
rest varies as the square root of the distance traveled d, with a
constant of variation 

In Exercises 23–26, write a sentence that expresses the relationship in
the formula, using the language of variation or proportion.

23. , where w and m are the weight and mass of an object
and g is the constant acceleration due to gravity.

24. , where C and D are the circumference and diameter
of a circle and is the usual mathematical constant.

25. , where n is the refractive index of a medium, v is the
velocity of light in the medium, and c is the constant velocity
of light in free space.

26. , where d is the distance traveled by a free-falling
object dropped from rest, p is the speed of the object, and g is
the constant acceleration due to gravity.

d = p2/12g2

n = c/v

p

C = pD

w = mg

k = 12g.

c2

A = lwS = 4pr 2

y = -2 # 5xy = -6x7

ƒ1x2 = 3x -5ƒ1x2 = -4

p

F1a) = m # aI =

k

d2

V =

4

3
 pr 3d =

1

2
 gt 2

KE(v) =

1

2
 kv5E(m) = mc2

ƒ1x2 = 13ƒ1x2 = 3 # 2x

ƒ1x2 = 9x5/3ƒ1x2 = -  

1

2
 x5

p

In Exercises 27–30, state the power and constant of variation for the
function, graph it, and analyze it in the manner of Example 2 of this
section.

27. 28.

29. 30.

In Exercises 31–36, describe how to obtain the graph of the given
monomial function from the graph of with the same power
n. State whether ƒ is even or odd. Sketch the graph by hand and support
your answer with a grapher.

31. 32.

33. 34.

35. 36.

In Exercises 37–42, match the equation to one of the curves labeled in
the figure.

ƒ1x2 =

1

8
 x7ƒ1x2 =

1

4
 x8

ƒ1x2 = -2x6ƒ1x2 = -1.5x5

ƒ1x2 = 5x3ƒ1x2 =

2

3
 x4

g1x2 = xn

ƒ1x2 = -2x -3ƒ1x2 =

1

2
24 x

ƒ1x2 = -3x3ƒ1x2 = 2x4

y

x

a

h

b

g

c

d

f

e

37. 38.

39. 40.

41. 42.

In Exercises 43–48, state the values of the constants k and a for the
function Before using a grapher, describe the portion of
the curve that lies in Quadrant I or IV. Determine whether ƒ is even,
odd, or undefined for Describe the rest of the curve if any.
Graph the function to see whether it matches the description.

43. 44.

45. 46.

47. 48. ƒ1x2 = -x -4ƒ1x2 =

1

2
 x -3

ƒ1x2 =

2

5
 x5/2ƒ1x2 = -2x4/3

ƒ1x2 = -4x2/3ƒ1x2 = 3x1/4

x 6 0.

ƒ1x2 = k # xa.

ƒ1x2 = 1.7x2/3ƒ1x2 = -2x -2

ƒ1x2 = -x5/3ƒ1x2 = 2x1/4

ƒ1x2 =

1

2
 x -5ƒ1x2 = -  

2

3
 x4
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In Exercises 49 and 50, data are given for y as a power function of x.
Write an equation for the power function, and state its power and
constant of variation.

49.

50.

51. Boyle’s Law The volume of an enclosed gas (at a con-
stant temperature) varies inversely as the pressure. If the pres-
sure of a 3.46-L sample of neon gas at a temperature of 302 K
is 0.926 atm, what would the volume be at a pressure of 1.452
atm if the temperature does not change?

52. Charles’s Law The volume of an enclosed gas (at a con-
stant pressure) varies directly as the absolute temperature. If
the pressure of a 3.46-L sample of neon gas at a temperature of
302 K is 0.926 atm, what would the volume be at a temperature
of 338 K if the pressure does not change?

53. Diamond Refraction Diamonds have the extremely
high refraction index of on average over the range of
visible light. Use the formula from Exercise 25 and the fact
that to determine the speed of light
through a diamond.

54. Windmill Power The power P (in watts) produced by a
windmill is proportional to the cube of the wind speed v (in
mph). If a wind of 10 mph generates 15 watts of power, how
much power is generated by winds of 20, 40, and 80 mph?
Make a table and explain the pattern.

55. Keeping Warm For mammals and other warm-blooded
animals to stay warm requires quite a bit of energy. Tempera-
ture loss is related to surface area, which is related to body
weight, and temperature gain is related to circulation, which is
related to pulse rate. In the final analysis, scientists have con-
cluded that the pulse rate r of mammals is a power function of
their body weight w.

(a) Draw a scatter plot of the data in Table 2.12.

(b) Find the power regression model.

(c) Superimpose the regression curve on the scatter plot.

c L 3.00 * 108 m/sec

n = 2.42

(d) Use the regression model to predict the pulse rate for a
450-kg horse. Is the result close to the 38 beats/min re-
ported by A. J. Clark in 1927?

56. Even and Odd Functions If n is an integer, ,
prove that is an odd function if n is odd and is an
even function if n is even.

57. Light Intensity Velma and Reggie gathered the data in
Table 2.13 using a 100-watt light bulb and a Calculator-Based
Laboratory™ (CBL™) with a light-intensity probe.

(a) Draw a scatter plot of the data in Table 2.13

(b) Find the power regression model. Is the power close to the
theoretical value of 

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the light intensity at
distances of 1.7 m and 3.4 m.

a = -2?

ƒ1x2 = xn
n Ú 1
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x 1 4 9 16 25

y -10-8-6-4-2

x 2 4 6 8 10

y 2 0.5 0.222... 0.125 0.08

Source: A. J. Clark, Comparative Physiology of the Heart.
New York: Macmillan, 1927.

Table 2.12 Weight and Pulse Rate 
of Selected Mammals

Mammal Body Weight (kg)
Pulse Rate 
(beats/min)

Rat 0.2 420
Guinea pig 0.3 300
Rabbit 2 205
Small dog 5 120
Large dog 30 85
Sheep 50 70
Human 70 72

Table 2.13 Light-Intensity Data 
for a 100-W Light Bulb

Distance Intensity 
(m) ( )

1.0 7.95
1.5 3.53
2.0 2.01
2.5 1.27
3.0 0.90

W/m2

Standardized Test Questions
58. True or False The function is even. Justify

your answer.

59. True or False The graph is symmetric
about the y-axis. Justify your answer.

In Exercises 60–63, solve the problem without using a calculator.

60. Multiple Choice Let What is the value
of ƒ(4)?

(A) 1 (B) (C) (D) (E) 4

61. Multiple Choice Let Which of the fol-
lowing statements is true?

(A) (B) (C)

(D) (E) is undefined.

62. Multiple Choice Let Which of the follow-
ing statements is true?

(A) ƒ is an odd function.

(B) ƒ is an even function.

(C) ƒ is neither an even nor an odd function.

(D) The graph ƒ is symmetric with respect to the x-axis.

(E) The graph ƒ is symmetric with respect to the origin.

ƒ1x2 = x2/3.

ƒ102ƒ132 = 3

ƒ112 = 1ƒ1-12 = -3ƒ102 = 0

ƒ1x2 = -3x -1/3.

1

212
212-1

ƒ1x2 = 2x -1/2.

ƒ1x2 = x1/3

ƒ1x2 = x -2/3
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63. Multiple Choice Which of the following is the domain
of the function 

(A) All reals (B) (C)

(D) (E)

Explorations
64. Group Activity Rational Powers Working in a

group of three students, investigate the behavior of power func-
tions of the form , where m and n are positive
with no factors in common. Have one group member investi-
gate each of the following cases:

• n is even

• n is odd and m is even

• n is odd and m is odd

For each case, decide whether ƒ is even, ƒ is odd, or ƒ is unde-
fined for Solve graphically and confirm algebraically in
a way to convince the rest of your group and your entire class.

65. Comparing the Graphs of Power Functions
Graph the functions in the stated windows and explain how the
graphs are alike and how they are different. Consider the rele-
vant aspects of analysis from Example 2. Which ordered pairs
do all four graphs have in common?

(a) in
the windows by , by , and 
by 

(b) , and in
the windows by , by , and 
by 

Extending the Ideas
66. Writing to Learn Irrational Powers A negative

number to an irrational power is undefined. Analyze the graphs
of , and Prepare a
sketch of all six graphs on one set of axes, labeling each of the
curves. Write an explanation for why each graph is positioned
and shaped as it is.

-x -p.ƒ1x2 = xp, x1/p, x -p, -xp, -x1/p

3-2, 24.
3-3, 3430, 2430, 3430, 1430, 14

k1x2 = x1/5ƒ1x2 = x1/2, g1x2 = x1/3, h1x2 = x1/4

3-2, 24.
3-2, 2430, 3430, 3430, 5430, 14

ƒ1x2 = x -1, g1x2 = x -2, h1x2 = x -3, and k1x2 = x -4

x 6 0.

ƒ1x2 = k # xm/n

1- q ,02 h  10,q21- q ,02
10,q230,q2

ƒ1x2 = x3/2?
67. Planetary Motion Revisited Convert the time and

distance units in Table 2.10 to the Earth-based units of years
and astronomical units using

Use this “re-expressed” data to obtain a power function model.
Show algebraically that this model closely approximates
Kepler’s equation 

68. Free Fall Revisited The speed p of an object is the 
absolute value of its velocity v. The distance traveled d by an
object dropped from an initial height with a current height s
is given by

until it hits the ground. Use this information and the free-fall
motion formulas from Section 2.1 to prove that

Do the results of Example 6 approximate this last formula?

69. Prove that is even if and only if ƒ(x) is even and
that is odd if and only if ƒ(x) is odd.

70. Use the results in Exercise 69 to prove that is even
if and only if is even and that is odd if
and only if is odd.

71. Joint Variation If a variable z varies as the product of
the variables x and y, we say z varies jointly as x and y, and we
write , where k is the constant of variation. Write a
sentence that expresses the relationship in each of the follow-
ing formulas, using the language of joint variation.

(a) , where F and a are the force and acceleration
acting on an object of mass m.

(b) , where KE and v are the kinetic energy
and velocity of an object of mass m.

(c) , where F is the force of gravity acting
on objects of masses and with a distance r between
their centers and G is the universal gravitational constant.

m2m1

F = G # m1
# m2/r 2

KE = 11/22m # v2

F = m # a

z = k # x # y

ƒ1x2 = xa
g1x2 = x -aƒ1x2 = xa

g1x2 = x -a

g1x2 = 1/ƒ1x2
g1x2 = 1/ƒ1x2

d =

1

2
 gt 2, p = gt, and therefore p = 12gd.

d = s0 - s

s0

T2
= a3.

1 yr = 365.2 days and 1 AU = 149.6 Gm.
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SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 185

2.3 Polynomial Functions of
Higher Degree with Modeling

What you’ll learn about
• Graphs of Polynomial Functions
• End Behavior of Polynomial

Functions
• Zeros of Polynomial Functions
• Intermediate Value Theorem
• Modeling

... and why
These topics are important in
modeling and can be used to
provide approximations to
more complicated functions, 
as you will see if you study 
calculus.

EXAMPLE 1  Graphing Transformations of Monomial 
Functions

Describe how to transform the graph of an appropriate monomial function
into the graph of the given function. Sketch the transformed graph 

by hand and support your answer with a grapher. Compute the location of the 
y-intercept as a check on the transformed graph.

(a) (b)

SOLUTION

(a) You can obtain the graph of by shifting the graph of 
one unit to the left, as shown in Figure 2.19a. The y-intercept of 

the graph of g is , which appears to agree with the 
transformed graph.

(b) You can obtain the graph of by shifting the graph of 
two units to the right and five units up, as shown in Figure 2.19b. 

The y-intercept of the graph of h is ,
which appears to agree with the transformed graph.

Now try Exercise 1.

h102 = -10 - 224 + 5 = -16 + 5 = -11
ƒ1x2 = -x4

h1x2 = -1x - 224 + 5

g102 = 410 + 123 = 4
ƒ1x2 = 4x3

g1x2 = 41x + 123
h1x2 = -1x - 224 + 5g1x2 = 41x + 123

ƒ1x2 = anxn

In Example 1 we use the fact from Section 2.1 that the constant term of a polynomial
function p is both the initial value of the function and the y-intercept of the graph
to provide a quick and easy check of the transformed graphs.

p102 a0

y

(a)

10
8
6
4

–4
–6
–8

–10

–5 –4 –3 –2
x

54321

y

(b)

10
8
6
4
2

–4
–2

–6
–8

–10

–5 –4 –3 –2

–12
–14

x
5432

FIGURE 2.19 (a) The graphs of
and 

(b) The graphs of 
and (Example 1)ƒ1x2 = -x4.

h1x2 = -1x - 224 + 5
ƒ1x2 = 4x3.g1x2 = 41x + 1)3

Graphs of Polynomial Functions
As we saw in Section 2.1, a polynomial function of degree 0 is a constant function
and graphs as a horizontal line. A polynomial function of degree 1 is a linear func-
tion; its graph is a slant line. A polynomial function of degree 2 is a quadratic func-
tion; its graph is a parabola.

We now consider polynomial functions of higher degree. These include cubic functions
(polynomials of degree 3) and quartic functions (polynomials of degree 4). Recall that
a polynomial function of degree n can be written in the form

Here are some important definitions associated with polynomial functions and this
equation.

p1x2 = anxn
+ an-1xn-1

+
Á

+ a2x2
+ a1x + a0, an Z 0.

DEFINITION The Vocabulary of Polynomials

• Each monomial in this sum— —is a term of the poly-
nomial.

• A polynomial function written in this way, with terms in descending degree,
is written in standard form.

• The constants , are the coefficients of the polynomial.

• The term is the leading term, and is the constant term.a0anxn

an-1, Á , a0an

anxn, an-1xn-1, Á , a0
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Example 2 shows what can happen when simple monomial functions are combined to
obtain polynomial functions. The resulting polynomials are not mere translations of
monomials.

186 CHAPTER 2 Polynomial, Power, and Rational Functions

EXAMPLE 2  Graphing Combinations of Monomial Functions
Graph the polynomial function, locate its extrema and zeros, and explain how it is 
related to the monomials from which it is built.

(a) (b)

SOLUTION

(a) The graph of is shown in Figure 2.20a. The function ƒ is in-
creasing on , with no extrema. The function factors as

and has one zero at 

The general shape of the graph is much like the graph of its leading term , 
but near the origin ƒ behaves much like its other term x, as shown in Figure 2.20b.
The function ƒ is odd, just like its two building block monomials.

(b) The graph of is shown in Figure 2.21a. The function g has a 
local maximum of about 0.38 at and a local minimum of about 

at The function factors as and has
zeros located at , and 

The general shape of the graph is much like the graph of its leading term , but
near the origin g behaves much like its other term , as shown in Figure 2.21b.
The function g is odd, just like its two building block monomials.

Now try Exercise 7.

-x
x3

x = 1.x = -1, x = 0
g1x2 = x1x + 121x - 12x L 0.58.-0.38

x L -0.58
g1x2 = x3

- x

x3

x = 0.ƒ1x2 = x1x2
+ 12(- q , q2ƒ1x2 = x3

+ x

g1x2 = x3
- xƒ1x2 = x3

+ x[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

FIGURE 2.20 The graph of
(a) by itself and (b) with

(Example 2a)y = x.
ƒ1x2 = x3

+ x

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

FIGURE 2.21 The graph of (a) by itself and (b) with (Example 2b)y = -x.g1x2 = x3
- x

We have now seen a few examples of graphs of polynomial functions, but are these typ-
ical? What do graphs of polynomials look like in general?

To begin our answer, let’s first recall that every polynomial function is defined and con-
tinuous for all real numbers. Not only are graphs of polynomials unbroken without jumps
or holes, but they are smooth, unbroken lines or curves, with no sharp corners or cusps.
Typical graphs of cubic and quartic functions are shown in Figures 2.22 and 2.23.

Imagine horizontal lines passing through the graphs in Figures 2.22 and 2.23, acting as
x-axes. Each intersection would be an x-intercept that would correspond to a zero of the
function. From this mental experiment, we see that cubic functions have at most three
zeros and quartic functions have at most four zeros. Focusing on the high and low
points in Figures 2.22 and 2.23, we see that cubic functions have at most two local ex-
trema and quartic functions have at most three local extrema. These observations gen-
eralize in the following way:
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End Behavior of Polynomial Functions
An important characteristic of polynomial functions is their end behavior. As we shall
see, the end behavior of a polynomial is closely related to the end behavior of its lead-
ing term. Exploration 1 examines the end behavior of monomial functions, which are
potential leading terms for polynomial functions.

Technology Note
For a cubic, when you change the horizontal
window by a factor of k, it usually is a good idea
to change the vertical window by a factor of 
Similar statements can be made about polynomi-
als of other degrees.

k3.

THEOREM Local Extrema and Zeros of Polynomial Functions
A polynomial function of degree n has at most local extrema and at most
n zeros.

n - 1

SECTION 2.3 Polynomial Functions of Higher Degree with Modeling 187

(a)

a3 > 0

(b)

a3 < 0

FIGURE 2.22 Graphs of four typical cubic functions: (a) two with positive and (b) two with
negative leading coefficients.

(a)

a4 > 0

(b)

a4 < 0

FIGURE 2.23 Graphs of four typical quartic functions: (a) two with positive and (b) two
with negative leading coefficients.

EXPLORATION 1 Investigating the End Behavior of

Graph each function in the window by Describe the end

behavior using and 

1. (a) (b)

(c) (d)

2. (a) (b)

(c) (d)

3. (a) (b)

(c) (d) ƒ1x2 = 2.5x3ƒ1x2 = 3x4

ƒ1x2 = -2x2ƒ1x2 = -0.3x5

ƒ1x2 = -0.5x2ƒ1x2 = 2x6

ƒ1x2 = 0.6x4ƒ1x2 = -3x4

ƒ1x2 = -0.5x7ƒ1x2 = x5

ƒ1x2 = -x3ƒ1x2 = 2x3

lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2
3-15, 154.3-5, 54

ƒ1x2 � an x
n

Describe the patterns you observe. In particular, how do the values of the coef-

ficient and the degree n affect the end behavior of ?ƒ1x2 = an x
nan
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Example 3 illustrates the link between the end behavior of a polynomial 
and its leading term anxn.Á

+ a1x + a0

ƒ1x2 = anxn +

188 CHAPTER 2 Polynomial, Power, and Rational Functions

[–7, 7] by [–25, 25]

(a)

[–14, 14] by [–200, 200]

(b)

[–56, 56] by [–12800, 12800]

(c)

FIGURE 2.24 As the viewing window 
gets larger, the graphs of 

and look more and
more alike. (Example 3)

g1x2 = x34x2
- 5x - 3

ƒ1x2 = x3
-

EXAMPLE 3  Comparing the Graphs of a Polynomial 
and Its Leading Term

Superimpose the graphs of and in succes-
sively larger viewing windows, a process called zoom out. Continue zooming out
until the graphs look nearly identical.

SOLUTION

Figure 2.24 shows three views of the graphs of and 
in progressively larger viewing windows. As the dimensions of the win-

dow increase, it gets harder to tell them apart. Moreover,

and

Now try Exercise 13.

Example 3 illustrates something that is true for all polynomials: In sufficiently large
viewing windows, the graph of a polynomial and the graph of its leading term appear
to be identical. Said another way, the leading term dominates the behavior of the poly-
nomial as Based on this fact and what we have seen in Exploration 1, there
are four possible end behavior patterns for a polynomial function. The power and coef-
ficient of the leading term tell us which one of the four patterns occurs.

ƒ x ƒ : q .

lim
x: -q

 ƒ1x2 = lim
x: -q  

g1x2 = - q .lim
x: q

 ƒ1x2 = lim
x: q

 g1x2 = q

g1x2 = x3
ƒ1x2 = x3

- 4x2
- 5x - 3

g1x2 = x3ƒ1x2 = x3
- 4x2

- 5x - 3

Leading Term Test for Polynomial End Behavior

For any polynomial function , the limits

and are determined by the degree n of the polynomial and its leading 

coefficient :an

lim
x: -q

 ƒ1x2
 lim
x: q

 ƒ1x2ƒ1x2 = an x
n

+
Á

+ a1x + a0

y

x
an > 0
n odd

an < 0
n odd

an > 0
n even

an < 0
n even

lim f(x) = �
x→�

lim f(x) = –�
x→–�

y

x

lim f(x) = –�
x→�

lim f(x) = �
x→–�

y

x

lim f(x) = �
x→�

lim f(x) = �
x→–�

y

x

lim f(x) = –�
x→–�

lim f(x) = –�
x→�
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From Example 5, we see that if a polynomial function ƒ is presented in factored form,
each factor corresponds to a zero , and if k is a real number, is an
x-intercept of the graph of 

When a factor is repeated, as in , we say the polynomial
function has a repeated zero. The function ƒ has two repeated zeros. Because the factor

occurs three times, 2 is a zero of multiplicity 3. Similarly, is a zero of multi-
plicity 2. The following definition generalizes this concept.

-1x - 2

ƒ1x2 = 1x - 2231x + 122
y = ƒ1x2. 1k, 02x = k1x - k2
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EXAMPLE 4  Applying Polynomial Theory
Graph the polynomial in a window showing its extrema and zeros and its end behav-
ior. Describe the end behavior using limits.

(a)

(b)

SOLUTION

(a) The graph of is shown in Figure 2.25a. The
function ƒ has 2 extrema and 3 zeros, the maximum number possible for a
cubic. and 

(b) The graph of is shown in Figure 2.25b.
The function g has 3 extrema and 4 zeros, the maximum number possible for a
quartic. and Now try Exercise 19.

Zeros of Polynomial Functions
Recall that finding the real number zeros of a function ƒ is equivalent to finding the
x-intercepts of the graph of or the solutions to the equation 
Example 5 illustrates that factoring a polynomial function makes solving these three
related problems an easy matter.

ƒ1x2 = 0.y = ƒ1x2

lim
x: -q

 g1x2 = q . lim
x: q

 g1x2 = q

g1x2 = 2x4
+ 2x3

- 22x2
- 18x + 35

lim
x: -q

 ƒ1x2 = - q . lim
x: q

 ƒ1x2 = q

ƒ1x2 = x3
+ 2x2

- 11x - 12

g1x2 = 2x4
+ 2x3

- 22x2
- 18x + 35

ƒ1x2 = x3
+ 2x2

- 11x - 12

[–5, 5] by [–25, 25]

(a)

[–5, 5] by [–50, 50]

(b)

FIGURE 2.25 (a) 
, (b) 
(Example 4)18x + 35.

g1x2 = 2x4
+ 2x3

- 22x2
-11x - 12

ƒ1x2 = x3
+ 2x2

-

[–5, 5] by [–15, 15]

(–2, 0) (0, 0) (3, 0)

FIGURE 2.26 The graph of
showing the three 

x-intercepts. (Example 5)
y = x3

- x2
- 6x,

EXAMPLE 5  Finding the Zeros of a Polynomial Function
Find the zeros of 

SOLUTION

Solve Algebraically
We solve the related equation by factoring:

Remove common factor x.

Factor quadratic.

Zero factor property

So the zeros of ƒ are 0, 3, and 

Support Graphically
Use the features of your calculator to approximate the zeros of ƒ. Figure 2.26 shows
that there are three values. Based on our algebraic solution we can be sure that these
values are exact. Now try Exercise 33.

-2.

 x = 0, x = 3, or x = -2

 x = 0, x - 3 = 0, or x + 2 = 0

 x1x - 3)1x + 22 = 0

 x1x2
- x - 62 = 0

x3
- x2

- 6x = 0

ƒ1x2 = 0

ƒ1x2 = x3
- x2

- 6x.

DEFINITION Multiplicity of a Zero of a Polynomial Function
If ƒ is a polynomial function and is a factor of ƒ but is
not, then c is a zero of multiplicity m of ƒ.

1x - c2m+11x - c2m

6965_CH02_pp157-250.qxd  1/14/10  1:13 PM  Page 189



THEOREM Intermediate Value Theorem
If a and b are real numbers with and if ƒ is continuous on the interval 

, then ƒ takes on every value between and . In other words, if 
is between and , then for some number c in .
In particular, if and have opposite signs (i.e., one is negative and the
other is positive), then for some number c in (Figure 2.29).3a, b4ƒ1c2 = 0

ƒ1b2ƒ1a2 3a, b4y0 = ƒ1c2ƒ1b2ƒ1a2 y0ƒ1b2ƒ1a23a, b4 a 6 b

A zero of multiplicity is a repeated zero. Notice in Figure 2.27 that the graph
of ƒ just kisses the x-axis without crossing it at , but that the graph of ƒ crosses
the x-axis at . This too can be generalized.12, 02 1-1, 02m Ú 2
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EXAMPLE 7  Using the Intermediate Value Theorem
Explain why a polynomial function of odd degree has at least one real zero.

SOLUTION Let ƒ be a polynomial function of odd degree. Because ƒ is odd, the
leading term test tells us that So there exist real numbers

a and b with and such that ƒ(a) and ƒ(b) have opposite signs. Because every
polynomial function is defined and continuous for all real numbers, ƒ is continuous
on the interval . Therefore, by the Intermediate Value Theorem, for
some number c in , and thus c is a real zero of ƒ. Now try Exercise 61.

In practice, the Intermediate Value Theorem is used in combination with our other
mathematical knowledge and technological know-how.

3a, b4 ƒ1c2 = 03a, b4
a 6 b

lim
x: q

ƒ1x2 = - lim
x: -q

ƒ1x2.

EXAMPLE 6  Sketching the Graph of a Factored Polynomial
State the degree and list the zeros of the function State
the multiplicity of each zero and whether the graph crosses the x-axis at the corre-
sponding x-intercept. Then sketch the graph of ƒ by hand.

SOLUTION The degree of ƒ is 5 and the zeros are and The graph
crosses the x-axis at because the multiplicity 3 is odd. The graph does not
cross the because the multiplicity 2 is even. Notice that values of ƒ
are positive for , positive for , and negative for 
Figure 2.28 shows a sketch of the graph of ƒ. Now try Exercise 39.

Intermediate Value Theorem
The Intermediate Value Theorem tells us that a sign change implies a real zero.

x 6 -2.-2 6 x 6 1x 7 1
x-axis at x = 1

x = -2
x = 1.x = -2

ƒ1x2 = 1x + 2231x - 122.

[–4, 4] by [–10, 10]

FIGURE 2.27 The graph of
showing the 

x-intercepts.
ƒ1x2 = 1x - 2231x + 122,

Zeros of Odd and Even Multiplicity
If a polynomial function ƒ has a real zero c of odd multiplicity, then the graph
of ƒ crosses the x-axis at and the value of ƒ changes sign at 
If a polynomial function ƒ has a real zero c of even multiplicity, then the graph of ƒ
does not cross the x-axis at and the value of ƒ does not change sign at x = c.1c, 02

x = c.1c, 02

In Example 5 none of the zeros were repeated. Because a nonrepeated zero has multi-
plicity 1, and 1 is odd, the graph of a polynomial function crosses the x-axis and has a
sign change at every nonrepeated zero (Figure 2.26). Knowing where a graph crosses the
x-axis and where it doesn’t is important in curve sketching and in solving inequalities.y

10

6
4
2

–4
–2

–6
–8

–10

–5 –4 –3 –2 –1
x

54321

FIGURE 2.28 A sketch of the graph of
showing the 

x-intercepts.
ƒ1x2 = 1x + 2231x - 122

y

f (a)

f (b)

y0 � 0

c

a

b
x

FIGURE 2.29 If and 
ƒ is continuous on , then there is a zero

between a and b.x = c
3a, b4

ƒ1a2 6 0 6 ƒ1b2
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EXAMPLE 9  Designing a Box
Dixie Packaging Company has contracted to make boxes with a volume of approxi-
mately Squares are to be cut from the corners of a 20-in. by 25-in. piece of
cardboard, and the flaps folded up to make an open box. (See Figure 2.31.) What size
squares should be cut from the cardboard?

SOLUTION

Model
We know that the volume .
So let

Solve Numerically and Graphically
For a volume of 484, we solve the equation Because
the width of the cardboard is 20 in., We use the table in Figure 2.32
to get a sense of the volume values to set the window for the graph in Figure 2.33.
The cubic volume function intersects the constant volume of 484 at and

(continued)
x L 6.87.

x L 1.22

0 … x … 10.
x125 - 2x2120 - 2x2 = 484.

 V = x125 - 2x2120 - 2x2
 20 - 2x = width of the box

 25 - 2x = length of the box

x = edge of cut-out square (height of box)

V = height * length * width

484 in.3.

EXAMPLE 8  Zooming to Uncover Hidden Behavior
Find all of the real zeros of 

SOLUTION

Solve Graphically
Because ƒ is of degree 4, there are at most four zeros. The graph in Figure 2.30a sug-
gests a single zero (multiplicity 1) around and a triple zero (multiplicity 3)
around Closer inspection around in Figure 2.30b reveals three separate
zeros. Using the grapher, we find the four zeros to be , ,
and (See the margin note.) Now try Exercise 75.x L -3.10.

x = 0.50x L 1.37, x L 1.13
x = 1x = 1.

x = -3

ƒ1x2 = x4
+ 0.1x3

- 6.5x2
+ 7.9x - 2.4.

Exact vs. Approximate
In Example 8, note that is an exact
answer; the others are approximate. Use by-hand
substitution to confirm that is an exact
real zero.

x = 1/2

x = 0.50

[–5, 5] by [–50, 50]

(a) (b)

[0, 2] by [–0.5, 0.5]

FIGURE 2.30 Two views of (Example 8)ƒ1x2 = x4
+ 0.1x3

- 6.5x2
+ 7.9x - 2.4.

x

x

25

20

FIGURE 2.31

X

Y1 = X(20–2X)(25–...

1
2
3
4
5
6
7

414
672
798
816
750
624
462

Y1

FIGURE 2.32 A table to get a feel for the
volume values in Example 9.

[0, 10] by [0, 1000]

FIGURE 2.33
and (Example 9)y2 = 484.

120 - 2x2y1 = x125 - 2x2

Modeling
In the problem-solving process presented in Section 1.1, step 2 is to develop a mathe-
matical model of the problem. When the model being developed is a polynomial func-
tion of higher degree, the algebraic and geometric thinking required can be rather in-
volved. In solving Example 9 you may find it helpful to make a physical model out of
paper or cardboard.
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Generally we want a reason beyond “it fits well” to choose a model for genuine data.
However, when no theoretical basis exists for picking a model, a balance between
goodness of fit and simplicity of model is sought. For polynomials, we try to pick a
model with the lowest possible degree that has a reasonably good fit.

EXPLORATION 2 Interpolating Points with a Polynomial
1. Use cubic regression to fit a curve through the four points given in the

table.

2. Use quartic regression to fit a curve through the five points given in the
table.

How good is the fit in each case? Why?

x 1 3 8

y 2 0.5 1.25-0.2

-2

x 3 4 5 6 8

y 8 3-1-4-2

192 CHAPTER 2 Polynomial, Power, and Rational Functions

QUICK REVIEW 2.3 (For help, go to Sections A.2. and P.5.)

In Exercises 7–10, solve the equation mentally.

7.

8.

9.

10. 1x + 6)21x + 4)41x - 5)3
= 0

1x + 6231x + 321x - 1.52 = 0

x1x + 221x - 52 = 0

x1x - 12 = 0

Interpret
Squares with lengths of approximately 1.22 in. or 6.87 in. should be cut from the
cardboard to produce a box with a volume of Now try Exercise 67.

Just as any two points in the Cartesian plane with different x-values and different 
y-values determine a unique slant line and its related linear function, any three non-
collinear points with different x-values determine a quadratic function. In general,

points positioned with sufficient generality determine a polynomial function of
degree n. The process of fitting a polynomial of degree n to points is
polynomial interpolation. Exploration 2 involves two polynomial interpolation
problems.

(n + 1)
(n + 1)

484 in.3.

Exercise numbers with a gray background indicate problems 
that the authors have designed to be solved without a calculator.

In Exercises 1–6, factor the polynomial into linear factors.

1. 2.

3. 4.

5. 6. 6x3
- 22x2

+ 12x3x3
- 5x2

+ 2x

6x2
- 5x + 13x2

- 11x + 6

x2
- 11x + 28x2

- x - 12
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SECTION 2.3 EXERCISES

In Exercises 1–6, describe how to transform the graph of an appropriate
monomial function into the graph of the given polynomial
function. Sketch the transformed graph by hand and support your an-
swer with a grapher. Compute the location of the y-intercept as a check
on the transformed graph.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, graph the polynomial function, locate its extrema
and zeros, and explain how it is related to the monomials from which it
is built.

7. 8.

In Exercises 9–12, match the polynomial function with its graph. Ex-
plain your choice. Do not use a graphing calculator.

g1x2 = 2x4
- 5x2ƒ1x2 = -x4

+ 2x

g1x2 = 31x - 124 - 2g1x2 = -21x + 224 - 3

g1x2 =

2

3
1x - 323 + 1g1x2 = -  

1

2
1x + 123 + 2

g1x2 = -1x + 523g1x2 = 21x - 323

ƒ1x2 = xn
20.

21.

22.

23.

24.

In Exercises 25–28, describe the end behavior of the polynomial func-
tion using and 

25.

26.

27.

28.

In Exercises 29–32, match the polynomial function with its graph.
Approximate all of the real zeros of the function.

ƒ1x2 = x3
- x4

+ 3x2
- 2x + 7

ƒ1x2 = 7x2
- x3

+ 3x - 4

ƒ1x2 = -x3
+ 7x2

- 4x + 3

ƒ1x2 = 3x4
- 5x2

+ 3

lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2
ƒ1x2 = -3x4

- 5x3
+ 15x2

- 5x + 19

ƒ1x2 = 2x4
- 5x3

- 17x2
+ 14x + 41

ƒ1x2 = (2x + 121x - 423
ƒ1x2 = 1x - 2221x + 121x - 32
ƒ1x2 = x3

- 2x2
- 41x + 42

[–5, 6] by [–200, 400]

(a)

[–5, 6] by [–200, 400]

(b)

[–5, 6] by [–200, 400]

(c)

[–5, 6] by [–200, 400]

(d)

9.

10.

11.

12.

In Exercises 13–16, graph the function pairs in the same series of view-
ing windows. Zoom out until the two graphs look nearly identical and
state your final viewing window.

13. and 

14. and 

15. and 

16. and 

In Exercises 17–24, graph the function in a viewing window that shows
all of its extrema and x-intercepts. Describe the end behavior using
limits.

17.

18.

19. ƒ1x2 = -x3
+ 4x2

+ 31x - 70

ƒ1x2 = 12x - 3214 - x21x + 12
ƒ1x2 = 1x - 121x + 221x + 32

g1x2 = 3x3ƒ1x2 = 3x3
- 12x + 17

g1x2 = 2x3ƒ1x2 = 2x3
+ 3x2

- 6x - 15

g1x2 = x3ƒ1x2 = x3
+ 2x2

- x + 5

g1x2 = x3ƒ1x2 = x3
- 4x2

- 5x - 3

ƒ1x2 = -x5
+ 3x4

+ 16x3
- 2x2

- 95x - 44

ƒ1x2 = x5
- 8x4

+ 9x3
+ 58x2

- 164x + 69

ƒ1x2 = -9x3
+ 27x2

+ 54x - 73

ƒ1x2 = 7x3
- 21x2

- 91x + 104

[–4, 4] by [–200, 200]

(a)

[–4, 4] by [–200, 200]

(b)

[–2, 2] by [–10, 50]

(c)

[–4, 4] by [–50, 50]

(d)

29.

30.

31.

32.

In Exercises 33–38, find the zeros of the function algebraically.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, state the degree and list the zeros of the polynomial
function. State the multiplicity of each zero and whether the graph
crosses the x-axis at the corresponding x-intercept. Then sketch the
graph of the polynomial function by hand.

39.

40.

41.

42. ƒ1x2 = 71x - 3221x + 524
ƒ1x2 = 1x - 1)31x + 222
ƒ1x2 = -x31x - 22
ƒ1x2 = x1x - 322

ƒ1x2 = 5x3
- 5x2

- 10xƒ1x2 = 3x3
- x2

- 2x

ƒ1x2 = x3
- 25xƒ1x2 = 9x2

- 3x - 2

ƒ1x2 = 3x2
+ 4x - 4ƒ1x2 = x2

+ 2x - 8

ƒ1x2 = 4x4
- 8x3

- 19x2
+ 23x - 6

ƒ1x2 = 44x4
- 65x3

+ x2
+ 17x + 3

ƒ1x2 = 35x3
- 134x2

+ 93x - 18

ƒ1x2 = 20x3
+ 8x2

- 83x + 55
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In Exercises 43–48, graph the function in a viewing window that shows
all of its x-intercepts and approximate all of its zeros.

43.

44.

45.

46.

47.

48.

In Exercises 49–52, find the zeros of the function algebraically or
graphically.

49.

50.

51.

52.

In Exercises 53–56, using only algebra, find a cubic function with the
given zeros. Support by graphing your answer.

53. 3, , 6

54. , 3, 

55. 56.

57. Use cubic regression to fit a curve through the four points
given in the table.

58. Use cubic regression to fit a curve through the four points
given in the table.

59. Use quartic regression to fit a curve through the five points given
in the table.

60. Use quartic regression to fit a curve through the five points given
in the table.

In Exercises 61–62, explain why the function has at least one real zero.

61. Writing to Learn

62. Writing to Learn

63. Stopping Distance A state highway patrol safety divi-
sion collected the data on stopping distances in Table 2.14 in
the next column.

(a) Draw a scatter plot of the data.

(b) Find the quadratic regression model.

ƒ1x2 = x9
- x + 50

ƒ1x2 = x7
+ x + 100

1, 1 + 12, 1 - 1213, - 13, 4

-5-2

-4

ƒ1x2 = x3
- 4x2

- 44x + 96

ƒ1x2 = x3
- 7x2

- 49x + 55

ƒ1x2 = x3
+ 2x2

- 109x - 110

ƒ1x2 = x3
- 36x

ƒ1x2 = 2x5
- 11x4

+ 4x3
+ 47x2

- 42x - 8

ƒ1x2 = x4
+ 3x3

- 9x2
+ 2x + 3

ƒ1x2 = -x4
- 3x3

+ 7x2
+ 2x + 8

ƒ1x2 = x3
+ 2x2

- 4x - 7

ƒ1x2 = -x3
+ 3x2

+ 7x - 2

ƒ1x2 = 2x3
+ 3x2

- 7x - 6

64. Analyzing Profit Economists for Smith Brothers, Inc.,
find the company profit P by using the formula ,
where R is the total revenue generated by the business and C is
the total cost of operating the business.

(a) Using data from past years, the economists determined that
models total revenue, and 

models the total cost of doing
business, where x is the number of customers patronizing
the business. How many customers must Smith Bros. have
to be profitable each year?

(b) How many customers must there be for Smith Bros. to real-
ize an annual profit of $60,000?

65. Circulation of Blood
Research conducted at a na-
tional health research project
shows that the speed at which a
blood cell travels in an artery
depends on its distance from
the center of the artery. The
function 
models the velocity (in cen-
timeters per second) of a cell
that is r centimeters from the
center of an artery.

v = 1.19 - 1.87r 2

C1x2 = 12,225 + 0.00135x3
R1x2 = 0.0125x2

+ 412x

P = R - C

194 CHAPTER 2 Polynomial, Power, and Rational Functions

x 1 3

y 22 25 12 -5

-1-3

x 1 4 7

y 2 5 9 26

-2

x 3 4 5 6 8

y 8 3-11-4-7

x 0 4 5 7 13

y 8 3-12-19-21

Table 2.14 Highway Safety Division

Speed (mph) Stopping Distance (ft)

10 15.1
20 39.9
30 75.2
40 120.5
50 175.9

r

(a) Find a graph of v that reflects values of v appropriate for
this problem. Record the viewing-window dimensions.

(b) If a blood cell is traveling at 0.975 cm/sec, estimate the
distance the blood cell is from the center of the artery.

66. Volume of a Box Dixie Packaging Co. has contracted to
manufacture a box with no top that is to be made by removing
squares of width x from the corners of a 15-in. by 60-in. piece
of cardboard.

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the stopping distance
for a vehicle traveling at 25 mph.

(e) Use the regression model to predict the speed of a car if the
stopping distance is 300 ft.
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(a) Show that the volume of the box is modeled by 

(b) Determine x so that the volume of the box is at least 450 in.3
x160 - 2x2115 - 2x2.

V1x2 = 74. Multiple Choice
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60 in.

15 in.

x
x

67. Volume of a Box Squares of width x are removed from
a 10-cm by 25-cm piece of cardboard, and the resulting edges
are folded up to form a box with no top. Determine all values
of x so that the volume of the resulting box is at most 

68. Volume of a Box The function 
represents the volume of a box that has been made by re-

moving squares of width x from each corner of a rectangular
sheet of material and then folding up the sides. What values are
possible for x?

Standardized Test Questions
69. True or False The graph of 

crosses the x-axis between and Justify your an-
swer.

70. True or False If the graph of is ob-
tained by translating the graph of to the right, then a
must be positive. Justify your answer.

In Exercises 71–74, solve the problem without using a calculator.

71. Multiple Choice What is the y-intercept of the graph of

(A) 7 (B) 5 (C) 3 (D) 2 (E) 1

72. Multiple Choice What is the multiplicity of the zero
in 

(A) 1 (B) 2 (C) 3 (D) 5 (E) 7

In Exercises 73 and 74, which of the specified functions might have the
given graph?

73. Multiple Choice

ƒ1x2 = 1x - 2221x + 2231x +  327?x = 2

ƒ1x2 = 21x - 123 + 5?

ƒ1x2 = x2
g1x2 = 1x + a22

x = 2.x = 1
ƒ1x2 = x3

- x2
- 2

4x3
V = 2666x - 210x2

+

175 cm3.

y

–2
x

2

(A)

(B)

(C)

(D)

(E) ƒ1x2 = -x1x + 221x - 222
ƒ1x2 = -x1x + 2221x - 22
ƒ1x2 = -x21x + 221x - 22
ƒ1x2 = -x1x + 221x - 22
ƒ1x2 = -x1x + 2212 - x2

y

–2
x

2

(A)

(B)

(C)

(D)

(E)

Explorations
In Exercises 75 and 76, two views of the function are given.

75. Writing to Learn Describe why each view of the function

by itself, may be considered inadequate.

ƒ1x2 = x5
- 10x4

+ 2x3
+ 64x2

- 3x - 55,

ƒ1x2 = x21x + 221x - 222
ƒ1x2 =  x1x + 221x - 222
ƒ1x2 = x21x + 221x - 22
ƒ1x2 = x1x + 22212 - x2
ƒ1x2 = x1x + 2221x - 22

[–5, 10] by [–7500, 7500]

(a)

[–3, 4] by [–250, 100]

(b)

[–6, 4] by [–2000, 2000]

(a)

[0.5, 1.5] by [–1, 1]

(b)

76. Writing to Learn Describe why each view of the function

by itself, may be considered inadequate.

ƒ1x2 = 10x4
+ 19x3

- 121x2
+ 143x - 51,

In Exercises 77–80, the function has hidden behavior when viewed in
the window by . Describe what behavior is hidden,
and state the dimensions of a viewing window that reveals the hidden
behavior.

77.

78.

79.

80. ƒ1x2 = 33x3
- 100x2

+ 101x - 40

ƒ1x2 = 11x3
- 10x2

+ 3x + 5

ƒ1x2 = 0.51x3
- 8x2

+ 12.99x - 5.942
ƒ1x2 = 10x3

- 40x2
+ 50x - 20

3-10, 1043-10, 104
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Extending the Ideas
81. Graph the left side of the equation

Then explain why there are no real numbers a, b, and c that
make the equation true. (Hint: Use your knowledge of 
and transformations.)

82. Graph the left side of the equation

Then explain why there are no real numbers a, b, and c that
make the equation true.

83. Looking Ahead to Calculus The figure shows a
graph of both and the line L
defined by y = 51x - 22 + 7.

ƒ1x2 = -x3
+ 2x2

+ 9x - 11

x4
+ 3x3

- 2x - 3 = a1x - b24 + c.

y = x3

31x3
- x2 = a1x - b23 + c.

(c) Consider the special case and Show both the
graph of ƒ and the line from part b in the window 
by .

85. Derive an Algebraic Model of a Problem
Show that the distance x in the figure is a solution of the equa-
tion and find the
value of D by following these steps.

x4
- 16x3

+ 500x2
- 8000x + 32,000 = 0

3-30, 304
3-5, 54

a = 3.n = 3
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[0, 5] by [–10, 15]

(2, 7)

(a) Confirm that the point is a point of intersection of
the two graphs.

(b) Zoom in at point Q to develop a visual understanding that
is a linear approximation for 

near 

(c) Recall that a line is tangent to a circle at a point P if it in-
tersects the circle only at point P. View the two graphs in
the window by , and explain why that
definition of tangent line is not valid for the graph of ƒ.

84. Looking Ahead to Calculus Consider the function
where n is an odd integer.

(a) Suppose that a is a positive number. Show that the slope of
the line through the points and , 
is 

(b) Let Find an equation of the line through
point , with the slope an-1.ƒ1x0221x0

x0 = a1/1n-12.
an-1.

ƒ1-a22Q1-aP1a, ƒ1a22
ƒ1x2 = xn

3-25, 2543-5, 54

x = 2.
y = ƒ1x2y = 51x - 22 + 7

Q12, 72

30

8
20

D
D – u u

x

y

(a) Use the similar triangles in the diagram and the properties
of proportions learned in geometry to show that

(b) Show that 

(c) Show that Then substitute for y, and sim-
plify to obtain the desired degree 4 equation in x.

(d) Find the distance D.

86. Group Learning Activity Consider functions of the
form where b is a nonzero real
number.

(a) Discuss as a group how the value of b affects the graph of
the function.

(b) After completing (a), have each member of the group
(individually) predict what the graphs of 

and will look
like.

(c) Compare your predictions with each other. Confirm
whether they are correct.

g1x2 = x3
- 15x2

+ x + 115x2
+ x + 1

ƒ1x2 = x3
+

ƒ1x2 = x3
+ bx2

+ x + 1

y2
- x2

= 500.

y =

8x

x - 8
.

8
x

=

y - 8

y
.
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The function in the division algorithm is the dividend, and is the divisor. If
, we say divides evenly into .

The summary statement (1) is sometimes written in fraction form as follows:

(2)

For instance, to summarize the polynomial division example above we could write

3x3
+ 5x2

+ 8x + 7

3x + 2
= x2

+ x + 2 +

3

3x + 2
.

ƒ1x2
d1x2 = q1x2 +

r1x2
d1x2

ƒ1x2d1x2r1x2 = 0
d1x2ƒ1x2
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2.4 Real Zeros of Polynomial 
Functions

What you’ll learn about
• Long Division and the Division

Algorithm
• Remainder and Factor Theorems
• Synthetic Division
• Rational Zeros Theorem
• Upper and Lower Bounds

... and why
These topics help identify and
locate the real zeros of polyno-
mial functions.

Long Division and the Division Algorithm
We have seen that factoring a polynomial reveals its zeros and much about its graph.
Polynomial division gives us new and better ways to factor polynomials. First we 
observe that the division of polynomials closely resembles the division of integers:

Quotient

Dividend
Multiply: 
Subtract
Multiply: 
Subtract
Multiply: 
Remainder

Division, whether integer or polynomial, involves a dividend divided by a divisor to ob-
tain a quotient and a remainder. We can check and summarize our result with an equa-
tion of the form

For instance, to check or summarize the long divisions shown above we could write

The division algorithm contains such a summary polynomial equation, but with the div-
idend written on the left side of the equation.

32 * 112 + 3 = 3587  13x + 221x2
+ x + 22 + 3 = 3x3

+ 5x2
+ 8x + 7.

1Divisor21Quotient2 + Remainder = Dividend.

;33
2 # 13x + 22;6x + 464

;6x + 767
1x # 13x + 22;3x2

+ 2x32
;3x2

+ 8x + 7387
1x2 # 13x + 22;3x3

+ 2x232
;3x + 2�3x3

+ 5x2
+ 8x + 732�3587

;1x2
+ 1x + 2112

EXAMPLE 1  Using Polynomial Long Division
Use long division to find the quotient and remainder when is divided
by Write a summary statement in both polynomial and fraction form.

(continued)

2x2
+ x + 1.

2x4
- x3

- 2

Division Algorithm for Polynomials
Let and be polynomials with the degree of ƒ greater than or equal to
the degree of d, and Then there are unique polynomials and ,
called the quotient and remainder, such that

r1x2q1x2d1x2 Z 0.
d1x2ƒ1x2

(1)

where either or the degree of r is less than the degree of d.r1x2 = 0

ƒ1x2 = d1x2 # q1x2 + r1x2,
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THEOREM Remainder Theorem
If a polynomial is divided by , then the remainder is r = ƒ1k2.x - kƒ1x2

Example 2 shows a clever use of the Remainder Theorem that gives information about
the factors, zeros, and x-intercepts.

198 CHAPTER 2 Polynomial, Power, and Rational Functions

EXAMPLE 2  Using the Remainder Theorem
Find the remainder when is divided by

(a) (b) (c)

SOLUTION

Solve Numerically (by hand)
(a) We can find the remainder without doing long division! Using the Remainder

Theorem with we find that

r = ƒ122 = 31222 + 7122 - 20 = 12 + 14 - 20 = 6.

k = 2

x + 4.x + 1x - 2

ƒ1x2 = 3x2
+ 7x - 20

SOLUTION

Solve Algebraically

Quotient

Remainder

The division algorithm yields the polynomial form

Using equation 2, we obtain the fraction form

Support Graphically
Figure 2.34 supports the polynomial form of the summary statement.

Now try Exercise 1.

Remainder and Factor Theorems
An important special case of the division algorithm occurs when the divisor is of the
form , where k is a real number. Because the degree of is 1,
the remainder is a real number. We obtain the following simplified summary statement
for the division algorithm:

(3)

We use this special case of the division algorithm throughout the rest of the section.

Using equation (3), we evaluate the polynomial at :

So , which is the remainder. This reasoning yields the following theorem.ƒ1k2 = r

ƒ1k2 = 1k - k2q1k2 + r = 0 # q1k2 + r = 0 + r = r

x = kƒ1x2

ƒ1x2 = 1x - k2q1x2 + r

d1x2 = x - kd1x2 = x - k

2x4
- x3

- 2

2x2
+ x + 1

= x2
- x +

x - 2

2x2
+ x + 1

.

2x4
- x3

- 2 = 12x2
+ x + 121x2

- x2 + 1x - 22.

;x - 2
-2x3

- x2
- x

-2x3
- x2

+ 0x - 2
2x4

+ x3
+ x2

2x2
+ x + 1�2x4

- x3
+ 0x2

+ 0x - 2

;x2
- x

[–2, 2] by [–5, 15]

FIGURE 2.34 The graphs of
and

are a perfect match. (Example 1)
y2 = 12x2

+ x + 121x2
- x2 + 1x - 2)

y1 = 2x4
- x3

- 2
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Fundamental Connections for Polynomial Functions
For a polynomial function ƒ and a real number k, the following statements are
equivalent:

1. is a solution (or root) of the equation 

2. k is a zero of the function ƒ.

3. k is an x-intercept of the graph of 

4. is a factor of .ƒ1x2x - k

y = ƒ1x2.
ƒ1x2 = 0.x = k

Applying the ideas of the Factor Theorem to Example 2, we can factor 
by dividing it by the known factor .

So, In this case, there really is no need
to use long division or fancy theorems; traditional factoring methods can do the job.
However, for polynomials of degree 3 and higher, these sophisticated methods can be
quite helpful in solving equations and finding factors, zeros, and x-intercepts. Indeed,
the Factor Theorem ties in nicely with earlier connections we have made in the follow-
ing way.

ƒ1x2 = 3x2
+ 7x - 20 = 1x + 4213x - 52.

0
-5x - 20

-5x - 20
3x2

+ 12x

x + 4�3x2
+ 7x - 20

3x - 5

x + 47x - 20
ƒ1x2 = 3x2

+

SECTION 2.4 Real Zeros of Polynomial Functions 199

(b)

(c)

Interpret
Because the remainder in part (c) is 0, divides evenly into 

So, is a factor of , is a solution of 
, and is an x-intercept of the graph of We know all

of this without ever dividing, factoring, or graphing!

Support Numerically (using a grapher)
We can find the remainders of several division problems at once using the table fea-
ture of a grapher (Figure 2.35). Now try Exercise 13.

Our interpretation of Example 2c leads us to the following theorem.

y = 3x2
+ 7x - 20.-420 = 0

3x2
+ 7x --4ƒ1x2 = 3x2

+ 7x - 20x + 420.
ƒ1x2 = 3x2

+ 7x -x + 4

r = ƒ1-42 = 31-422 + 71-42 - 20 = 48 - 28 - 20 = 0.

r = ƒ1-12 = 31-122 + 71-1) - 20 = 3 - 7 - 20 = -24.X

Y1 = 3X^2+7X–20

–4
–3
–2
–1
0
1
2

0
–14
–22
–24
–20
–10
6

Y1

FIGURE 2.35 Table for
showing the remain-

ders obtained when is divided by ,
for .k = -4, -3, Á , 1, 2

x - kƒ1x2
ƒ1x2 = 3x2

+ 7x - 20

THEOREM Factor Theorem
A polynomial function has a factor if and only if ƒ1k2 = 0.x - kƒ1x2

Proof of the Factor Theorem
If has a factor , there is a polynomial

such that

By the uniqueness condition of the division algo-
rithm, is the quotient and 0 is the remain-
der, and by the Remainder Theorem, 

Conversely, if , the remainder
divides evenly into , and

is a factor of .ƒ1x2x - k
ƒ1x2r = 0, x - k

ƒ1k2 = 0

ƒ1k2 = 0.
g1x2

ƒ1x2 = 1x - k2g1x2 = 1x - k2g1x2 + 0.

g1x2
x - kƒ1x2

Synthetic Division
We continue with the important special case of polynomial division with the divisor

. The Remainder Theorem gave us a way to find remainders in this case without
long division. We now learn a method for finding both quotients and remainders for di-
vision by without long division. This shortcut method for the division of a poly-
nomial by a linear divisor is synthetic division.

We illustrate the evolution of this method below, progressing from long division
through two intermediate stages to synthetic division.

x - k
x - k

x - k
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Moving from stage to stage, focus on the coefficients and their relative positions. Mov-
ing from stage 1 to stage 2, we suppress the variable x and the powers of x, and then
from stage 2 to stage 3, we eliminate unneeded duplications and collapse vertically.
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Stage 1 
Long Division

0
4x - 12

4x - 12
3x2

- 9x

3x2
- 5x - 12

2x3
- 6x2

x - 3�2x3
- 3x2

- 5x - 12

2x2
+ 3x + 4

Stage 2 
Variables Suppressed

0
4 -12

4 -12
3 -9

3 -5 -12
2 -6

-3�2 -3 -5 -12

2 3 4

Stage 3 
Collapsed Vertically

Dividend

Quotient, remainder2 3 4 0
-6 -9 -12

-3 2 -3 -5 -12

Finally, from stage 3 to stage 4, we change the sign of the number representing the divi-
sor and the signs of the numbers on the second line of our division scheme. These sign
changes yield two advantages:

• The number standing for the divisor is now k, its zero.

• Changing the signs in the second line allows us to add rather than subtract.

Stage 4 
Synthetic Division

Zero of divisor Dividend

Quotient, remainder

With stage 4 we have achieved our goal of synthetic division, a highly streamlined ver-
sion of dividing a polynomial by . How does this “bare bones” division work?
Example 3 explains the steps.

x - k

2 3 4 0
6 9 12

3  2 -3 -5 -12:

x - k

EXAMPLE 3  Using Synthetic Division
Divide by using synthetic division and write a sum-
mary statement in fraction form.

SOLUTION

Set Up
The zero of the divisor is 3, which we put in the divisor position. Because 
the dividend is in standard form, we write its coefficients in order in the dividend 
position, making sure to use a zero as a placeholder for any missing term. We leave
space for the line for products and draw a horizontal line below the space. (See 
below.)

Calculate
• Because the leading coefficient of the dividend must be the leading coefficient of

the quotient, copy the 2 into the first quotient position.

Zero of Divisor Dividend

Line for products
2

• Multiply the zero of the divisor (3) by the most recently determined coefficient of
the quotient (2). Write the product above the line and one column to the right.

 3  2 -3 -5 -12

x - 3

x - 32x3
- 3x2

- 5x - 12
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• Add the next coefficient of the dividend to the product just found and record the
sum below the line in the same column.

• Repeat the “multiply” and “add” steps until the last row is completed.

Zero of Divisor Dividend

Line for products

Line for sums Remainder2 3 4 0

6 9 12

 3  2 -3 -5 -12

Quotient

Interpret
The numbers in the last line are the coefficients of the quotient polynomial and the
remainder. The quotient must be a quadratic function. (Why?) So the quotient is

and the remainder is 0. We conclude that

Now try Exercise 7.

Rational Zeros Theorem
Real zeros of polynomial functions are either rational zeros—zeros that are rational
numbers—or irrational zeros—zeros that are irrational numbers. For example,

has the rational zeros and 3/2, and

has the irrational zeros and 

The Rational Zeros Theorem tells us how to make a list of all potential rational zeros
for a polynomial function with integer coefficients.

12.- 12

ƒ1x2 = x2
- 2 = 1x + 1221x - 122

-3/2

ƒ1x2 = 4x2
- 9 = 12x + 3212x - 32

2x3
- 3x2

- 5x - 12

x - 3
= 2x2

+ 3x + 4, x Z 3.

2x2
+ 3x + 4

('')''*

THEOREM Rational Zeros Theorem
Suppose ƒ is a polynomial function of degree of the form

with every coefficient an integer and If is a rational zero of ƒ,
where p and q have no common integer factors other than , then

• p is an integer factor of the constant coefficient , and

• q is an integer factor of the leading coefficient an.

a0

�1
x = p/qa0 Z 0.

ƒ1x2 = anxn
+ an-1xn-1

+
Á

+ a0,

n Ú 1

EXAMPLE 4  Finding the Rational Zeros
Find the rational zeros of 

SOLUTION Because the leading and constant coefficients are both 1, according
to the Rational Zeros Theorem, the only potential rational zeros of ƒ are 1 and 
We check to see whether they are in fact zeros of ƒ:

So ƒ has no rational zeros. Figure 2.36 shows that the graph of ƒ has three x-intercepts.
Therefore, ƒ has three real zeros. All three must be irrational numbers.

Now try Exercise 33.

ƒ1-12 = 1-123 - 31-122 + 1 = -3 Z 0

ƒ112 = 1123 - 31122 + 1 = -1 Z 0

-1.

ƒ1x2 = x3
- 3x2

+ 1.

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 2.36 The function
has three real zeros.

(Example 4)
ƒ1x2 = x3

- 3x2
+ 1
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In Example 4 the Rational Zeros Theorem gave us only two candidates for rational 
zeros, neither of which “checked out.” Often this theorem suggests many candidates, as
we see in Example 5. In such a case, we use technology and a variety of algebraic
methods to locate the rational zeros.
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EXAMPLE 5  Finding the Rational Zeros
Find the rational zeros of 

SOLUTION Because the leading coefficient is 3 and constant coefficient is , the
Rational Zeros Theorem yields several potential rational zeros of ƒ. We take an orga-
nized approach to our solution.

Potential Rational Zeros:

Figure 2.37 suggests that, among our candidates, 1, , and possibly or 
are the most likely to be rational zeros. We use synthetic division because it tells us
whether a number is a zero and, if so, how to factor the polynomial. To see whether 
1 is a zero of ƒ, we synthetically divide by :

Zero of Divisor Dividend

Remainder3 7 2 0
3 7 2

 1  3 4 -5 -2

x - 1ƒ1x2

-2/3-1/3-2

Factors of -2

Factors of 3
 : 

�1, �2

�1, �3
 : �1, �2, �

1

3
, �

2

3

-2

ƒ1x2 = 3x3
+ 4x2

- 5x - 2.

Quotient

Because the remainder is 0, is a factor of and 1 is a zero of ƒ. By the divi-
sion algorithm and factoring, we conclude

Therefore, the rational zeros of ƒ are 1, , and Now try Exercise 35.

Upper and Lower Bounds
We narrow our search for real zeros by using a test that identifies upper and lower
bounds for real zeros. A number k is an upper bound for the real zeros of ƒ if is
never zero when x is greater than k. On the other hand, a number k is a lower bound for
the real zeros of ƒ if is never zero when x is less than k. So if c is a lower bound
and d is an upper bound for the real zeros of a function ƒ, all of the real zeros of ƒ must
lie in the interval . Figure 2.38 illustrates this situation.3c, d4

ƒ1x2
ƒ1x2

-2.-1/3

 = 1x - 1213x + 121x + 22
 = 1x - 1213x2

+ 7x + 22
ƒ1x2 = 3x3

+ 4x2
- 5x - 2

ƒ1x2x - 1

('')''*

Upper and Lower Bound Tests for Real Zeros
Let ƒ be a polynomial function of degree with a positive leading coeffi-
cient. Suppose is divided by using synthetic division.

• If and every number in the last line is nonnegative (positive or zero),
then k is an upper bound for the real zeros of ƒ.

• If and the numbers in the last line are alternately nonnegative and 
nonpositive, then k is a lower bound for the real zeros of ƒ.

k … 0

k Ú 0

x - kƒ1x2 n Ú 1

[–4.7, 4.7] by [–10, 10]

FIGURE 2.37 The function
has three real

zeros. (Example 5)
ƒ1x2 = 3x3

+ 4x2
- 5x - 2

y

x
c

y � f (x)

d

FIGURE 2.38 c is a lower bound and d is
an upper bound for the real zeros of ƒ.
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EXAMPLE 7  Finding the Real Zeros of a Polynomial Function
Find all of the real zeros of 

SOLUTION From Example 6 we know that all of the real zeros of ƒ must lie in the
closed interval . So in Figure 2.39 we set our Xmin and Xmax accordingly.

Next we use the Rational Zeros Theorem.

Potential Rational Zeros:

We compare the x-intercepts of the graph in Figure 2.39 and our list of candidates,
and decide 4 and are the only potential rational zeros worth pursuing.

From this first synthetic division we conclude

and we now divide the cubic factor by 

(continued)

2 0 -4 0

 -1 0 2

-1/2 2 1 -4 -2

x + 1/2:2x3
+ x2

- 4x - 2

 = 1x - 4212x3
+ x2

- 4x - 22
ƒ1x2 = 2x4

- 7x3
- 8x2

+ 14x + 8

 2 1 -4 -2 0
8 4 -16 -8

 4  2 -7 -8 14 8

-1/2

Factors of 8

Factors of 2
 : 

�1, �2, �4, �8

�1, �2
 : �1, �2, �4, �8, �

1

2

3-2, 54
ƒ1x2 = 2x4

- 7x3
- 8x2

+ 14x + 8.

EXAMPLE 6  Establishing Bounds for Real Zeros
Prove that all of the real zeros of must lie in
the interval .

SOLUTION We must prove that 5 is an upper bound and is a lower bound on
the real zeros of ƒ. The function ƒ has a positive leading coefficient, so we employ
the upper and lower bound tests, and use synthetic division:

10 15 35 245
2 3 7 49 253 Last line

2 14 8

22 28
2 14 36 Last line

Because the last line in the first division scheme consists of all positive numbers, 5 is
an upper bound. Because the last line in the second division consists of numbers of
alternating signs, is a lower bound. All of the real zeros of ƒ must therefore lie in
the closed interval Now try Exercise 37.3-2, 54.-2

-14-11
-28-4

-8-7-2

 5  2 -7 -8  14   8

-2

3-2, 54 ƒ1x2 = 2x4
- 7x3

- 8x2
+ 14x + 8

[–2, 5] by [–50, 50]

FIGURE 2.39
has all of its real zeros in

(Example 7)3-2, 54.
8x2

+ 14x + 8
ƒ1x2 = 2x4

- 7x3
-
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A polynomial function cannot have more real zeros than its degree, but it can have
fewer. When a polynomial has fewer real zeros than its degree, the upper and lower
bound tests help us know that we have found them all, as illustrated by Example 8.
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This second synthetic division allows us to complete the factoring of ƒ(x).

The zeros of ƒ are the rational numbers 4 and and the irrational numbers 
and Now try Exercise 49.12.

- 12-1/2

 = 1x - 4212x + 121x + 1221x - 122
 = 21x - 42ax +

1

2
b1x2

- 22
 = 1x - 42ax +

1

2
b12x2

- 42
ƒ1x2 = 1x - 4212x3

+ x2
- 4x - 22

EXAMPLE 8  Finding the Real Zeros of a Polynomial Function
Prove that all of the real zeros of lie in the interval 

, and find them.

SOLUTION We first prove that 1 is an upper bound and 0 is a lower bound for the
real zeros of ƒ. The function ƒ has a positive leading coefficient, so we use synthetic
division and the upper and lower bound tests:

Last line

Last line

Because the last line in the first division scheme consists of all nonnegative numbers,
1 is an upper bound. Because the last line in the second division consists of numbers
that are alternately nonnegative and nonpositive, 0 is a lower bound. All of the real
zeros of ƒ must therefore lie in the closed interval . So in Figure 2.40 we set our
Xmin and Xmax accordingly.

Next we use the Rational Zeros Theorem.

Potential Rational Zeros:

We compare the x-intercepts of the graph in Figure 2.40 and our list of candidates, and
decide ƒ has no rational zeros. From Figure 2.40 we see that ƒ changes sign on the 
interval Thus by the Intermediate Value Theorem, ƒ must have a real zero on
this interval. Because it is not rational, we conclude that it is irrational. Figure 2.41
shows that this lone real zero of ƒ is approximately 0.95. Now try Exercise 55.

30.8, 14.

�1, �2, �3, �6, �
1

2
, �

3

2
, �

1

5
, �

2

5
, �

3

5
, �

6

5
, �

1

10
, �

3

10

Factors of -6

Factors of 10
 : 

�1, �2, �3, �6

�1, �2, �5, �10
 :

30, 14

10 0 0 -3 1 -6
  0 0 0 0 0

 0  10 0 0 -3 1 -6

10 10  10 7 8 2
 10 10 10    7 8

 1  10 0 0 -3 1 -6

30, 14 ƒ1x2 = 10x5
- 3x2

+ x - 6

[0, 1] by [–8, 4]

FIGURE 2.40
(Example 8)

y = 10x5
- 3x2

+ x - 6.

[0, 1] by [–8, 4]

X=.95054589   Y=0
Zero

FIGURE 2.41 An approximation for the 
irrational zero of 
(Example 8)

ƒ1x2 = 10x5
- 3x2

+ x - 6.
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QUICK REVIEW 2.4 (For help, go to Sections A.2. and A.3.)

SECTION 2.4 EXERCISES

In Exercises 1–6, divide by , and write a summary statement
in polynomial form and fraction form.

1.

2.

3.

4.

5.

6.

In Exercises 7–12, divide using synthetic division, and write a summary
statement in fraction form.

7.

8.

9.

10.

11.

12.

In Exercises 13–18, use the Remainder Theorem to find the remainder
when ƒ(x) is divided by .

13.

14.

15.

16.

17.

18. ƒ1x2 = x5
- 2x4

+ 3x2
- 20x + 3; k = -1

ƒ1x2 = 2x3
- 3x2

+ 4x - 7; k = 2

ƒ1x2 = x3
- 3x + 4; k = -2

ƒ1x2 = x3
- x2

+ 2x - 1; k = -3

ƒ1x2 = x4
- 5; k = 1

ƒ1x2 = 2x2
- 3x + 1; k = 2

x - k

x8
- 1

x + 2

5x4
- 3x + 1

4 - x

3x4
+ x3

- 4x2
+ 9x - 3

x + 5

9x3
+ 7x2

- 3x

x - 10

2x4
- 5x3

+ 7x2
- 3x + 1

x - 3

x3
- 5x2

+ 3x - 2

x + 1

ƒ1x2 = x4
- 3x3

+ 6x2
- 3x + 5; d1x2 = x2

+ 1

ƒ1x2 = x4
- 2x3

+ 3x2
- 4x + 6; d1x2 = x2

+ 2x - 1

ƒ1x2 = 4x3
- 8x2

+ 2x - 1; d1x2 = 2x + 1

ƒ1x2 = x3
+ 4x2

+ 7x - 9; d1x2 = x + 3

ƒ1x2 = x3
- 1; d1x2 = x + 1

ƒ1x2 = x2
- 2x + 3; d1x2 = x - 1

d1x2ƒ1x2 In Exercises 19–24, use the Factor Theorem to determine whether the
first polynomial is a factor of the second polynomial.

19.

20.

21.

22.

23.

24.

In Exercises 25 and 26, use the graph to guess possible linear factors of
. Then completely factor with the aid of synthetic division.

25.

26. ƒ1x2 = 5x3
- 12x2

- 23x + 42

ƒ1x2 = 5x3
- 7x2

- 49x + 51

ƒ1x2ƒ1x2
x + 1; 2x10

- x9
+ x8

+ x7
+ 2x6

- 3

x + 2; 4x3
+ 9x2

- 3x - 10

x - 2; x3
- 3x - 2

x - 2; x3
+ 3x - 4

x - 3; x3
- x2

- x - 15

x - 1; x3
- x2

+ x - 1

[–5, 5] by [–75, 100]

[–5, 5] by [–75, 75]

In Exercises 5–10, factor the polynomial into linear factors.

5. 6.

7. 8.

9. 10. x4
+ x3

- 9x2
- 9xx3

+ 2x2
- x - 2

15x3
- 22x2

+ 8x4x2
+ 8x - 60

6x2
- 54x3

- 4x

Exercise numbers with a gray background indicate problems 
that the authors have designed to be solved without a calculator.

In Exercises 1–4, rewrite the expression as a polynomial in standard
form.

1. 2.

3. 4.
6x4

- 2x3
+ 7x2

3x2

x4
- 3x2

+ 7x5

x2

2x3
- 5x2

- 6x

2x

x3
- 4x2

+ 7x

x
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In Exercises 27–30, find the polynomial function with leading coeffi-
cient 2 that has the given degree and zeros.

27. Degree 3, with , 1, and 4 as zeros

28. Degree 3, with , 3, and as zeros

29. Degree 3, with 2, , and as zeros

30. Degree 4, with , , 0, and as zeros

In Exercises 31 and 32, using only algebraic methods, find the cubic
function with the given table of values. Check with a grapher.

31.

32.

In Exercises 33–36, use the Rational Zeros Theorem to write a list of
all potential rational zeros. Then determine which ones, if any, are 
zeros.

33.

34.

35.

36.

In Exercises 37–40, use synthetic division to prove that the number k is
an upper bound for the real zeros of the function ƒ.

37.

38.

39.

40.

In Exercises 41–44, use synthetic division to prove that the number k is
a lower bound for the real zeros of the function ƒ.

41.

42.

43.

44.

In Exercises 45–48, use the upper and lower bound tests to decide
whether there could be real zeros for the function outside the window
shown. If so, check for additional zeros.

45. ƒ1x2 = 6x4
- 11x3

- 7x2
+ 8x - 34

k = -4; ƒ1x2 = 3x3
- x2

- 5x - 3

k = 0; ƒ1x2 = x3
- 4x2

+ 7x - 2

k = -3; ƒ1x2 = x3
+ 2x2

+ 2x + 5

k = -1; ƒ1x2 = 3x3
- 4x2

+ x + 3

k = 3; ƒ1x2 = 4x4
- 6x3

- 7x2
+ 9x + 2

k = 2; ƒ1x2 = x4
- x3

+ x2
+ x - 12

k = 5; ƒ1x2 = 2x3
- 5x2

- 5x - 1

k = 3; ƒ1x2 = 2x3
- 4x2

+ x - 2

ƒ1x2 = 6x4
- x3

- 6x2
- x - 12

ƒ1x2 = 2x3
- x2

- 9x + 9

ƒ1x2 = 3x3
- 7x2

+ 6x - 14

ƒ1x2 = 6x3
- 5x - 1

5
2-1-3

3
2

1
2

-5-1

-2

46.

47.

48. ƒ1x2 = 2x5
- 5x4

- 141x3
+ 216x2

- 91x + 25

ƒ1x2 = x5
- 4x4

- 129x3
+ 396x2

- 8x + 3

ƒ1x2 = x5
- x4

+ 21x2
+ 19x - 3

206 CHAPTER 2 Polynomial, Power, and Rational Functions

x 1 5

0 24 0 0ƒ1x2
-1-2

x 0 3 5

0 180 0 0ƒ1x2
-4

[–5, 5] by [–200, 1000]

[–5, 5] by [–1000, 1000]

[–5, 5] by [–1000, 1000]

[–5, 5] by [–1000, 1000]

In Exercises 49–56, find all of the real zeros of the function, finding exact
values whenever possible. Identify each zero as rational or irrational.

49.

50.

51.

52.

53.

54.

55.

56.

57. Setting Production Schedules The Sunspot Small
Appliance Co. determines that the supply function for their
EverCurl hair dryer is and that its de-
mand function is , where p is the price.
Determine the price for which the supply equals the demand

D1p2 = 80 - 0.02p2
S1p2 = 6 + 0.001p3

ƒ1x2 = 3x4
- 2x3

+ 3x2
+ x - 2

ƒ1x2 = 2x4
- 7x3

- 2x2
- 7x - 4

ƒ1x2 = x4
- x3

- 7x2
+ 5x + 10

ƒ1x2 = x4
- 3x3

- 6x2
+ 6x + 8

ƒ1x2 = x3
- 6x2

+ 7x + 4

ƒ1x2 = x3
+ x2

- 8x - 6

ƒ1x2 = x3
+ 3x2

- 3x - 9

ƒ1x2 = 2x3
- 3x2

- 4x + 6
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and the number of hair dryers corresponding to this equilib-
rium price.

58. Setting Production Schedules The Pentkon Cam-
era Co. determines that the supply and demand functions for their
35 mm–70 mm zoom lens are 
and , where p is the price. Deter-
mine the price for which the supply equals the demand and 
the number of zoom lenses corresponding to this equilibrium
price.

59. Find the remainder when is divided by 

60. Find the remainder when is divided by 

61. Let 

(a) Use the upper and lower bound tests to prove that all of the
real zeros of ƒ lie on the interval , .

(b) Find all of the rational zeros of ƒ.

(c) Factor using the rational zero(s) found in (b).

(d) Approximate all of the irrational zeros of ƒ.

(e) Use synthetic division and the irrational zero(s) found in
(d) to continue the factorization of begun in (c).

62. Lewis’s distance D from a motion detector is given by the data
in Table 2.15.

ƒ1x2

ƒ1x2

443-5

ƒ1x2 = x4
+ 2x3

- 11x2
- 13x + 38.

x - 1.-17x63

x + 1.x40
- 3

0.0004p3D1p2 = 1500 -

S1p2 = 200 - p + 0.000007p4

(A) is a factor of . (B) is a factor of .

(C) is a zero of . (D) 3 is an x-intercept of .

(E) The remainder when is divided by is zero.

66. Multiple Choice Let 
Which of the following is not a possible rational root of ƒ?

(A) (B) (C) 1 (D) 1/2 (E) 2/3

67. Multiple Choice Let 
Which of the following statements is not true?

(A) The remainder when is divided by 

(B) The remainder when is divided by is .

(C) The remainder when is divided by is 

(D) is not a factor of .

(E) is not evenly divisible by 

68. Multiple Choice Let 
Which of the following statements is not true?

(A) The remainder when is divided by is 7.

(B) The remainder when is divided by is 7.

(C) (D)

(E) ƒ does not have a real root.

Explorations
69. Archimedes’ Principle A spherical buoy has a radius

of 1 m and a density one-fourth that of seawater. By Archimedes’
Principle, the weight of the displaced water will equal the
weight of the buoy.

• Let the depth to which the buoy sinks.

• Let the density of seawater.

• Let the radius of the circle formed where buoy, air, and
water meet. See the figure below.

r =

d =

x =

ƒ102 = 5ƒ122 = 7

x - 2ƒ1x2
x2

+ 1ƒ1x2
ƒ1x2 = 1x2

+ 121x - 22 + 7.

x + 2.ƒ1x2
ƒ1x2x + 2

-3.x2
+ x - 1ƒ1x2

-3x - 2ƒ1x2
x + 2 is -3.ƒ1x2

ƒ1x2 = 1x + 221x2
+ x - 12 - 3.

-1-3

ƒ1x2 = 2x3
+ 7x2

+ 2x - 3.

x - 3ƒ1x2
ƒ1x2ƒ1x2x = 3

ƒ1x2x - 3ƒ1x2x + 3

SECTION 2.4 Real Zeros of Polynomial Functions 207

Table 2.15 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 1.00 4.5 0.99
0.5 1.46 5.0 0.84
1.0 1.99 5.5 1.28
1.5 2.57 6.0 1.87
2.0 3.02 6.5 2.58
2.5 3.34 7.0 3.23
3.0 2.91 7.5 3.78
3.5 2.31 8.0 4.40
4.0 1.57

(a) Find a cubic regression model, and graph it together with a
scatter plot of the data.

(b) Use the cubic regression model to estimate how far Lewis
is from the motion detector initially.

(c) Use the cubic regression model to estimate when Lewis
changes direction. How far from the motion detector is he
when he changes direction?

Standardized Test Questions
63. True or False The polynomial function has a factor

if and only if Justify your answer.

64. True or False If ,
then the remainder when is divided by is 3. Justify
your answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice Let ƒ be a polynomial function with
Which of the following statements is not true?ƒ132 = 0.

x - 1ƒ1x2
ƒ1x2 = 1x - 1212x2

- x + 12 + 3

ƒ122 = 0.x + 2
ƒ1x2

1
1 � x

x

r

Notice in the figure that and
recall from geometry that the volume of submerged spherical 

cap is V =

px

6
# 13r 2

+ x22.

r 2
= 1 - 11 - x22 = 2x - x2,
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(a) Verify that the volume of the buoy is .

(b) Use your result from (a) to establish the weight of the buoy
as .

(c) Prove the weight of the displaced water is

(d) Approximate the depth to which the buoy will sink.

70. Archimedes’ Principle Using the scenario of 
Exercise 69, find the depth to which the buoy will sink if its
density is one-fifth that of seawater.

71. Biological Research Stephanie, a biologist who does
research for the poultry industry, models the population P of wild
turkeys, t days after being left to reproduce, with the function

(a) Graph the function for appropriate values of t.

(b) Find what the maximum turkey population is and when it
occurs.

(c) Assuming that this model continues to be accurate, when
will this turkey population become extinct?

(d) Writing to Learn Create a scenario that could
explain the growth exhibited by this turkey population.

72. Architectural Engineering Dave, an engineer at the
Trumbauer Group, Inc., an architectural firm, completes struc-
tural specifications for a 172-ft-long steel beam, anchored at
one end to a piling 20 ft above the ground. He knows that when
a 200-lb object is placed d feet from the anchored end, the
beam bends s feet where

(a) What is the independent variable in this polynomial
function?

(b) What are the dimensions of a viewing window that shows 
a graph for the values that make sense in this problem 
situation?

(c) How far is the 200-lb object from the anchored end if the
vertical deflection is 1.25 ft?

s = 13 * 10-72d21550 - d2.

y = P1t2
P1t2 = -0.00001t 3

+ 0.002t 2
+ 1.5t + 100.

pd # x13r 2
+ x22/6.

pd/3

4p/3 If is a polynomial of degree n, then

• The number of positive real zeros of ƒ is equal to the number
of variations in sign of , or that number less some even
number.

• The number of negative real zeros of ƒ is equal to the number
of variations in sign of , or that number less some even
number.

Use Descartes’ Rule of Signs to determine the possible num-
bers of positive and negative real zeros of the function.

(a) ƒ1x2 = x3
+ x2

- x + 1

ƒ1-x2

ƒ1x2
ƒ1x2 = anxn

+
Á

+ a0

208 CHAPTER 2 Polynomial, Power, and Rational Functions

20 ft

172 ft

d

s

73. A classic theorem, Descartes’ Rule of Signs, tells us about the
number of positive and negative real zeros of a polynomial
function, by looking at the polynomial’s variations in sign. 
A variation in sign occurs when consecutive coefficients 
(in standard form) have opposite signs.

[–5, 5] by [–30, 30]

(b) ƒ1x2 = x3
+ x2

+ x + 1

(c)

(d)

Extending the Ideas
74. Writing to Learn Graph each side of the Example 3

summary equation:

How are these functions related? Include a discussion of the
domain and continuity of each function.

75. Writing to Learn Explain how to carry out the follow-
ing division using synthetic division. Work through the steps
with complete explanations. Interpret and check your result.

76. Writing to Learn The figure shows a graph of
Explain how to

use a grapher to justify the statement.

 L 1x + 3.1021x - 0.521x - 1.1321x - 1.372
 ƒ1x2 = x4

+ 0.1x3
- 6.5x2

+ 7.9x - 2.4

ƒ1x2 = x4
+ 0.1x3

- 6.5x2
+ 7.9x - 2.4.

4x3
- 5x2

+ 3x + 1

2x - 1

 g1x2 = 2x2
+ 3x + 4,  x Z 3

ƒ1x2 =

2x3
- 3x2

- 5x - 12

x - 3
 and

g1x2 = 5x4
+ x2

- 3x - 2

ƒ1x2 = 2x3
+ x - 3
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77. (a) Writing to Learn Write a paragraph that describes
how the zeros of are re-
lated to the zeros of In what
ways does this example illustrate how the Rational Zeros
Theorem can be applied to find the zeros of a polynomial
with rational number coefficients?

(b) Find the rational zeros of 

(c) Find the rational zeros of ƒ1x2 = x3
-

5

2
 x2

-

37

12
 x +

5

2
.

ƒ1x2 = x3
-

7

6
 x2

-

20

3
 x +

7

2
.

g1x2 = x3
+ 3x2

+ 6x - 9.
ƒ1x2 = 11/32x3

+ x2
+ 2x - 3

78. Use the Rational Zeros Theorem to prove is irrational.

79. Group Activity Work in groups of three. Graph

(a) Use grapher methods to find approximate real number 
zeros.

(b) Identify a list of four linear factors whose product could be
called an approximate factorization of .

(c) Discuss what graphical and numerical methods you could
use to show that the factorization from part (b) is reasonable.

ƒ1x2

ƒ1x2 = x4
+ x3

- 8x2
- 2x + 7.

12

SECTION 2.4 Real Zeros of Polynomial Functions 209
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What you’ll learn about
• Two Major Theorems
• Complex Conjugate Zeros
• Factoring with Real Number

Coefficients

... and why
These topics provide the com-
plete story about the zeros and
factors of polynomials with real
number coefficients.

Two Major Theorems
In Section 2.3 we learned that a polynomial function of degree n has at most n real
zeros. Figure 2.42 shows that the polynomial function of
degree 2 has no real zeros. (Why?) A little arithmetic, however, shows that the com-
plex number is a zero of ƒ:

The quadratic formula shows that are the two zeros of ƒ and can be used to
find the complex zeros for any polynomial function of degree 2. In this section we will
learn about complex zeros of polynomial functions of higher degree and how to use
these zeros to factor polynomial expressions.

-1 � 2i

= 0

= 0 + 0i

= 1-3 -  4i2 + 1-2 + 4i2 + 5

ƒ1-1 + 2i2 = 1-1 + 2i22 + 21-1 + 2i2 + 5

-1 + 2i

ƒ1x2 = x2
+ 2x + 5

2.5 Complex Zeros and the 
Fundamental Theorem 
of Algebra

[–9.4, 9.4] by [–2, 10]

FIGURE 2.42 The graph of 
has no x-intercepts, so ƒ has no real 

zeros.
2x + 5

ƒ(x) = x2
+

THEOREM Fundamental Theorem of Algebra
A polynomial function of degree n has n complex zeros (real and nonreal).
Some of these zeros may be repeated.

THEOREM Linear Factorization Theorem
If is a polynomial function of degree then has precisely n linear
factors and

where a is the leading coefficient of and are the complex zeros
of . The are not necessarily distinct numbers; some may be repeated.z iƒ1x2 z1, z2, Á , znƒ1x2

ƒ1x2 = a1x - z121x - z22Á 1x - zn2
ƒ1x2n 7 0,ƒ1x2

The Factor Theorem extends to the complex zeros of a polynomial function. Thus, k is
a complex zero of a polynomial if and only if is a factor of the polynomial, even
if k is not a real number. We combine this fact with the Fundamental Theorem of
Algebra to obtain the following theorem.

x - k

The Fundamental Theorem of Algebra and the Linear Factorization Theorem are
existence theorems. They tell us of the existence of zeros and linear factors, but not how
to find them.

One connection is lost going from real zeros to complex zeros. If k is a nonreal com-
plex zero of a polynomial function , then k is not an x-intercept of the graph of ƒ.
The other connections hold whether k is real or nonreal:

ƒ1x2
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Fundamental Polynomial Connections in the Complex Case
The following statements about a polynomial function ƒ are equivalent if k is a
complex number:

1. is a solution (or root) of the equation 

2. k is a zero of the function ƒ.

3. is a factor of .ƒ1x2x - k

ƒ1x2 = 0.x = k

EXAMPLE 1  Exploring Fundamental Polynomial Connections
Write the polynomial function in standard form, and identify the zeros of the function
and the x-intercepts of its graph.

(a)

(b)

(c)

SOLUTION

(a) The quadratic function has two zeros:
and Because the zeros are not real, the graph of ƒ has no 

x-intercepts.

(b) The cubic function

has three zeros: Of the three, only is an
x-intercept.

(c) The quartic function

has four zeros: , , , and There are only three distinct
zeros. The real zero is a repeated zero of multiplicity two. Due to this
even multiplicity, the graph of ƒ touches but does not cross the x-axis at ,
the only x-intercept.

Figure 2.43 supports our conclusions regarding x-intercepts.
Now try Exercise 1.

x = 3
x = 3

x = - i.x = ix = 3x = 3

= x4
- 6x3

+ 10x2
- 6x + 9

= 1x2
- 6x + 921x2

+ 12
 ƒ1x2 = 1x - 321x - 321x - i21x + i2

x = 5x = 5, x = 12i, and x = - 12i.

= x3
- 5x2

+ 2x - 10

= 1x - 521x2
+ 22

ƒ1x2 = 1x - 521x - 12i21x + 12i2

x = -2i.x = 2i
ƒ1x2 = 1x - 2i21x + 2i2 = x2

+ 4

ƒ1x2 = 1x - 321x - 321x - i21x + i2
ƒ1x2 = 1x - 521x - 12i21x + 12i2
ƒ1x2 = 1x - 2i21x + 2i2

[–4, 6] by [–25, 25]

(b)

[–4, 6] by [–10, 30]

(c)

[–5, 5] by [–15, 15]

(a)

FIGURE 2.43 The graphs of (a) 
, (b) ,

and (c) 
(Example 1)

y = x4
- 6x3

+ 10x2
- 6x + 9.

y = x3
- 5x2

+ 2x - 10y = x2
+ 4

Complex Conjugate Zeros
In Section P.6 we saw that, for quadratic equations with real coeffi-
cients, if the discriminant is negative, the solutions are a conjugate pair of com-
plex numbers. This relationship generalizes to polynomial functions of higher degree in
the following way:

b2
- 4ac

ax2
+ bx + c = 0

THEOREM Complex Conjugate Zeros
Suppose that is a polynomial function with real coefficients. If a and b are
real numbers with and is a zero of , then its complex conju-
gate is also a zero of .ƒ1x2a - bi

ƒ1x2a + bib Z 0
ƒ1x2

SECTION 2.5 Complex Zeros and the Fundamental Theorem of Algebra 211
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EXPLORATION 1 What Can Happen if the Coefficients Are Not Real?
1. Use substitution to verify that and are zeros of 

Are the conjugates of 2i and also zeros of ?

2. Use substitution to verify that and are zeros of 
Are the conjugates of i and also zeros of ?

3. What conclusions can you draw from parts 1 and 2? Do your results contradict
the theorem about complex conjugate zeros?

g1x21 - ix + 11 + i2. g1x2 = x2
-x = 1 - ix = i

ƒ1x2- iix + 2.
ƒ1x2 = x2

-x = - ix = 2i

EXAMPLE 2  Finding a Polynomial from Given Zeros
Write a polynomial function of minimum degree in standard form with real coeffi-
cients whose zeros include and 

SOLUTION Because and 4 are real zeros, and must be factors.
Because the coefficients are real and is a zero, must also be a zero.
Therefore, and must both be factors of . Thus,

is a polynomial of the type we seek. Any nonzero real number multiple of will
also be such a polynomial. Now try Exercise 7.

ƒ1x2
= x4

- 5x3
- 3x2

+ 43x - 60

= 1x2
- x - 1221x2

- 4x + 52
ƒ1x2 = 1x + 321x - 423x - 12 - i243x - 12 + i24

ƒ1x2x - 12 + i2x - 12 - i2 2 + i2 - i
x - 4x + 3-3

2 - i.-3, 4,

EXAMPLE 3  Finding a Polynomial from Given Zeros
Write a polynomial function of minimum degree in standard form with real coeffi-
cients whose zeros include 

SOLUTION Because the coefficients are real and is a zero, must
also be a zero. Therefore, are both factors of .
Likewise, because is a zero, must be a zero. It follows that 
and are both factors of . Therefore,

is a polynomial of the type we seek. Any nonzero real number multiple of will
also be such a polynomial. Now try Exercise 13.

ƒ1x2
= x5

- 5x4
+ 15x3

- 25x2
+ 24x - 10

= 1x3
- 3x2

+ 7x - 521x2
- 2x + 22

= 1x - 121x2
- 2x + 521x2

- 2x + 22
ƒ1x2 = 1x - 123x - 11 + 2i243x - 11 - 2i243x - 11 + i243x - 11 - i24

ƒ1x2x - 11 + i2 x - 11 - i21 + i1 - i
ƒ1x2x - 11 + 2i2 and x - 11 - 2i2 1 - 2i1 + 2i

x = 1, x = 1 + 2i, x = 1 - i.

EXAMPLE 4  Factoring a Polynomial with Complex Zeros
Find all zeros of , and write in its
linear factorization.

SOLUTION Figure 2.44 suggests that the real zeros of ƒ are , and
x = 4.

x = -2, x = 1

ƒ1x2ƒ1x2 = x5
- 3x4

- 5x3
+ 5x2

- 6x + 8
[–4.7, 4.7] by [–125, 125]

FIGURE 2.44
has three real zeros.

(Example 4)
5x2

- 6x + 8
ƒ1x2 = x5

- 3x4
- 5x3 

+
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Synthetic division can be used with complex number divisors in the same way it is used
with real number divisors.

Using synthetic division we can verify these zeros and show that is a factor
of ƒ. So are also zeros. Therefore,

Now try Exercise 29.
= 1x + 221x - 121x - 421x - i21x + i).

= 1x + 221x - 121x - 421x2
+ 12

ƒ1x2 = x5
- 3x4

- 5x3
+ 5x2

- 6x + 8

x = i and x = - i
x2

+ 1

EXAMPLE 5  Finding Complex Zeros
The complex number is a zero of 
Find the remaining zeros of , and write it in its linear factorization.

SOLUTION We use synthetic division to show that :

4 0 17 14 65

Thus is a zero of . The conjugate must also be a zero. We use
synthetic division on the quotient found above to find the remaining quadratic factor:

4 8 13 0

Finally, we use the quadratic formula to find the two zeros of :

Thus the four zeros of are , and 
Because the leading coefficient of is 4, we obtain

If we wish to remove fractions in the factors, we can distribute the 4 to get

Now try Exercise 33.

Factoring with Real Number Coefficients
Let be a polynomial function with real coefficients. The Linear Factorization 
Theorem tells us that can be factored into the form

ƒ1x2 = a1x - z121x - z22Á 1x - zn2,
ƒ1x2ƒ1x2

ƒ1x2 = 3x - 11 - 2i243x - 11 + 2i2432x - 1-2 + 3i2432x - 1-2 - 3i24.

ƒ1x2 = 43x - 11 - 2i243x - 11 + 2i24 Cx - A -1 +
3
2 i B D Cx - A -1 -

3
2 i B D .

ƒ1x2 -1 - 13/22i.1 - 2i, 1 + 2i, -1 + 13/22iƒ1x2
= -1�

3

2
 i

=

-8 � 12i

8

=

-8 � 1-144

8

x =

-8 � 164 - 208

8

4x2
+ 8x + 13

4 + 8i   8 + 16i   13 + 26i

4   4 - 8i   5 - 16i   -13 - 26i1 + 2i

1 + 2iƒ1x21 - 2i

4  4 - 8i  5 - 16i  -13 - 26i  0

4 - 8i  -12 - 16i  -27 - 26i  -65

1 - 2i

ƒ11 - 2i2 = 0

ƒ1x2 ƒ1x2 = 4x4
+ 17x2

+ 14x + 65.z = 1 - 2i
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where are complex numbers. Recall, however, that nonreal complex zeros occur in
conjugate pairs. The product of and is

So the quadratic expression , whose coefficients are real num-
bers, is a factor of . Such a quadratic expression with real coefficients but no real
zeros is irreducible over the reals. In other words, if we require that the factors of a
polynomial have real coefficients, the factorization can be accomplished with linear
factors and irreducible quadratic factors.

ƒ1x2 x2
- 2ax + 1a2

+ b22
= x2

- 2ax + 1a2
+ b22.

3x - 1a + bi243x - 1a - bi24 = x2
- 1a - bi2x - 1a + bi2x + 1a + bi21a - bi2

x - 1a - bi2x - 1a + bi2z i

214 CHAPTER 2 Polynomial, Power, and Rational Functions

Factors of a Polynomial with Real Coefficients
Every polynomial function with real coefficients can be written as a product of
linear factors and irreducible quadratic factors, each with real coefficients.

EXAMPLE 6  Factoring a Polynomial
Write as a product of linear and irre-
ducible quadratic factors, each with real coefficients.

SOLUTION The Rational Zeros Theorem provides the candidates for the rational
zeros of ƒ. The graph of ƒ in Figure 2.45 suggests which candidates to try first. Using
synthetic division, we find that is a zero. Thus,

Because the zeros of are complex, any further factorization would introduce
nonreal complex coefficients. We have taken the factorization of ƒ as far as possible,
subject to the condition that each factor has real coefficients.

Now try Exercise 37.

x2
+ 4

= 13x - 221x - 1221x + 1221x2
+ 42

= 13x - 221x2
- 221x2

+ 42
= ax -

2

3
b1321x4

+ 2x2
- 82

ƒ1x2 = ax -

2

3
b13x4

+ 6x2
- 242

x = 2/3

ƒ1x2 = 3x5
- 2x4

+ 6x3
- 4x2

- 24x + 16

[–3, 3] by [–20, 50]

FIGURE 2.45
has three real zeros.

(Example 6)
4x2

- 24x + 16
ƒ1x2 = 3x5

- 2x4
+ 6x3 

-

We have seen that if a polynomial function has real coefficients, then its nonreal com-
plex zeros occur in conjugate pairs. Because a polynomial of odd degree has an odd
number of zeros, it must have at least one zero that is real. This confirms Example 7 of
Section 2.3 in light of complex numbers.

The function in Example 6 fits the con-
ditions of this theorem, so we know immediately that we are on the right track in
searching for at least one real zero.

ƒ1x2 = 3x5
- 2x4

+ 6x3
- 4x2

- 24x + 16

Polynomial Function of Odd Degree
Every polynomial function of odd degree with real coefficients has at least one
real zero.
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QUICK REVIEW 2.5 (For help, go to Sections P.5, P.6, and 2.4.)

In Exercises 5 and 6, factor the quadratic expression.Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, perform the indicated operation, and write the 
result in the form 

1.

2.

3. 4.
2 + 3i

1 - 5i
11 + 2i213 - 2i2
15 - 7i2 - 13 - 2i2
13 - 2i2 + 1-2 + 5i2

a + bi.

5. 6. 6x2
- 13x - 52x2

- x - 3

In Exercises 7 and 8, solve the quadratic equation.

7. 8.

In Exercises 9 and 10, list all potential rational zeros.

9.

10. 4x5
- 7x2

+ x3
+ 13x - 3

3x4
- 5x3

+ 3x2
- 7x + 2

2x2
+ 3x + 7 = 0x2

- 5x + 11 = 0

SECTION 2.5 EXERCISES

In Exercises 1–4, write the polynomial in standard form, and identify
the zeros of the function and the x-intercepts of its graph.

1.

2.

3.

4.

In Exercises 5–12, write a polynomial function of minimum degree in
standard form with real coefficients whose zeros include those listed.

5. i and 6. and 

7. 1, 3i, and 8. and 

9. 2, 3, and i 10. and 

11. 5 and 12. and 

In Exercises 13–16, write a polynomial function of minimum degree in
standard form with real coefficients whose zeros and their multiplicities
include those listed.

13. 1 (multiplicity 2), (multiplicity 3)

14. (multiplicity 3), 3 (multiplicity 1)

15. 2 (multiplicity 2), (multiplicity 1)

16. (multiplicity 2), (multiplicity 1)

In Exercises 17–20, match the polynomial function graph to the given
zeros and multiplicities.

-2 - i-1

3 + i

-1

-2

1 + 2i-23 + 2i

1 - i-1, 2,

1 + i-4, 1 - i,-3i

1 + 2i1 - 2i- i

ƒ1x2 = x(x - 121x - 1 - i21x - 1 + i2
ƒ1x2 = 1x - 121x - 121x + 2i21x - 2i2
ƒ1x2 = 1x + 221x - 13i21x + 13i2
ƒ1x2 = 1x - 3i21x + 3i2

17. (multiplicity 2), 2 (multiplicity 3)

18. (multiplicity 3), 2 (multiplicity 2)

19. (multiplicity 4), 3 (multiplicity 3)

20. (multiplicity 3), 3 (multiplicity 4)

In Exercises 21–26, state how many complex and real zeros the 
function has.

21.

22.

23.

24.

25.

26.

In Exercises 27–32, find all of the zeros and write a linear factorization
of the function.

27.

28.

29.

30.

31.

32.

In Exercises 33–36, using the given zero, find all of the zeros and write
a linear factorization of .

33. is a zero of .

34. 4i is a zero of 

35. is a zero of 

36. is a zero of 

In Exercises 37–42, write the function as a product of linear and 
irreducible quadratic factors all with real coefficients.

37.

38.

39.

40. ƒ1x2 = 3x3
- 2x2

+ x - 2

ƒ1x2 = 2x3
- x2

+ 2x - 3

ƒ1x2 = x3
- x2

+ x - 6

ƒ1x2 = x3
- x2

- x - 2

ƒ1x2 = x4
- 2x3

+ 5x2
+ 10x - 50.1 + 3i

ƒ1x2 = x4
- 6x3

+ 11x2
+ 12x - 26.3 - 2i

ƒ1x2 = x4
+ 13x2

- 48.

ƒ1x2 = x4
- 2x3

- x2
+ 6x - 61 + i

ƒ1x2
ƒ1x2 = 20x4

- 148x3
+ 269x2

- 106x - 195

ƒ1x2 = 6x4
- 7x3

- x2
+ 67x - 105

ƒ1x2 = 3x4
+ 8x3

+ 6x2
+ 3x - 2

ƒ1x2 = x4
+ x3

+ 5x2
- x - 6

ƒ1x2 = x3
- 10x2

+ 44x - 69

ƒ1x2 = x3
+ 4x - 5

ƒ1x2 = x5
- 2x2

- 3x + 6

ƒ1x2 = x4
- 5x3

+ x2
- 3x + 6

ƒ1x2 = x4
- 2x2

+ 3x - 4

ƒ1x2 = x3
- x + 3

ƒ1x2 = x3
- 3x2

+ x + 1

ƒ1x2 = x2
- 2x + 7

-1

-1

-3

-3

[–5, 5] by [–150, 150]

(a)

[–5, 5] by [–150, 150]

(b)

[–5, 5] by [–150, 150]

(c)

[–5, 5] by [–150, 150]

(d)
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41.

42.

In Exercises 43 and 44, use Archimedes’ Principle, which states that
when a sphere of radius r with density is placed in a liquid of density

, it will sink to a depth h where

Find an approximate value for h if:

43. and 

44. and 

In Exercises 45–48, answer yes or no. If yes, include an example. If no,
give a reason.

45. Writing to Learn Is it possible to find a polynomial of
degree 3 with real number coefficients that has as its only
real zero?

46. Writing to Learn Is it possible to find a polynomial of
degree 3 with real coefficients that has 2i as its only nonreal
zero?

47. Writing to Learn Is it possible to find a polynomial
of degree 4 with real coefficients that has zeros

, and 

48. Writing to Learn Is it possible to find a polynomial
of degree 4 with real coefficients that has zeros 

and 

In Exercises 49 and 50, find the unique polynomial with real coeffi-
cients that meets these conditions.

49. Degree 4; zeros at , and 

50. Degree 4; zeros at and 

51. Sally’s distance D from a motion detector is given by the data
in Table 2.16.

(a) Find a cubic regression model, and graph it together with a
scatter plot of the data.

(b) Describe Sally’s motion.

(c) Use the cubic regression model to estimate when Sally
changes direction. How far is she from the motion detector
when she changes direction?

x = 1 + i; ƒ102 = 20x = 1 - 2i

x = 2 - i; ƒ102 = 30x = 3, x = -1

1 - i?
1 + 3iƒ1x2

1 - i?-3, 1 + 2i
ƒ1x2

-2

dS = 45 lb/ft3.r = 5 ft

dS = 20 lb/ft3.r = 5 ft

p

3
 13rh2

- h32dL =

4

3
 pr 3dS.

dL = 62.5 lb/ft3
dS

ƒ1x2 = x4
- 2x3

+ x2
- 8x - 12

ƒ1x2 = x4
+ 3x3

- 3x2
+ 3x - 4 52. Jacob’s distance D from a motion detector is given by the data

in Table 2.17.

(a) Find a quadratic regression model, and graph it together
with a scatter plot of the data.

(b) Describe Jacob’s motion.

(c) Use the quadratic regression model to estimate when Jacob
changes direction. How far is he from the motion detector
when he changes direction?
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Table 2.16 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 3.36 4.5 3.59
0.5 2.61 5.0 4.15
1.0 1.86 5.5 3.99
1.5 1.27 6.0 3.37
2.0 0.91 6.5 2.58
2.5 1.14 7.0 1.93
3.0 1.69 7.5 1.25
3.5 2.37 8.0 0.67
4.0 3.01

Table 2.17 Motion Detector Data

t (sec) D (m) t (sec) D (m)

0.0 4.59 4.5 1.70
0.5 3.92 5.0 2.25
1.0 3.14 5.5 2.84
1.5 2.41 6.0 3.39
2.0 1.73 6.5 4.02
2.5 1.21 7.0 4.54
3.0 0.90 7.5 5.04
3.5 0.99 8.0 5.59
4.0 1.31

Standardized Test Questions
53. True or False There is at least one polynomial with real

coefficients with as its only nonreal zero. Justify your 
answer.

54. True or False A polynomial of degree 3 with real coeffi-
cients must have two nonreal zeros. Justify your answer.

In Exercises 55–58, you may use a graphing calculator to solve the
problem.

55. Multiple Choice Let z be a nonreal complex number
and its complex conjugate. Which of the following is not a
real number?

(A) (B) (C) (D) (E) 

56. Multiple Choice Which of the following cannot be the
number of real zeros of a polynomial of degree 5 with real co-
efficients?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

57. Multiple Choice Which of the following cannot be the
number of nonreal zeros of a polynomial of degree 5 with real
coefficients?

(A) 0 (B) 2 (C) 3 (D) 4

(E) None of the above

58. Multiple Choice Assume that is a zero of the
polynomial ƒ with real coefficients. Which of the following
statements is not true?

(A) is a factor of .

(B) is a factor of .

(C) is a factor of .

(D) is a zero of ƒ.

(E) The number of nonreal complex zeros of ƒ could be 1.

1 - 2i

ƒ1x2x - 11 - 2i2
ƒ1x2x2

- 2x + 5

ƒ1x2x - 11 + 2i2

1 + 2i

z21z z 221z + z 22z zz + z

z

1 - 2i
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Explorations
59. Group Activity The Powers of 1 i

(a) Selected powers of are displayed in Table 2.18. Find
a pattern in the data, and use it to extend the table to power
7, 8, 9, and 10.

(b) Compute , , , and 
using the fact that 

(c) Compare your results from parts (a) and (b) and reconcile,
if needed.

11 + i26 = -8i.
11 + i21011 + i2911 + i2811 + i27

1 + i

�

60. Group Activity The Square Roots of i
Let a and b be real numbers such that 

(a) Expand the left-hand side of the given equation.

(b) Think of the right-hand side of the equation as , and
separate the real and imaginary parts of the equation to ob-
tain two equations.

(c) Solve for a and b.

(d) Check your answer by substituting them in the original
equation.

(e) What are the two square roots of i?

61. Verify that the complex number i is a zero of the polynomial

62. Verify that the complex number i is a zero of the polyno-
mial 

Extending the Ideas
In Exercises 63 and 64, verify that is a factor of . Then find

so that 

63.

64.

65. Find the three cube roots of 8 by solving 

66. Find the three cube roots of by solving x3
= -64.-64

x3
= 8.

g1x2 = x - 1 - i; ƒ1x2 = x3
- 11 + i2x2

+ x - 1 - i

g1x2 = x - i; ƒ1x2 = x3
+ 13 - i2x2

- 4ix - 1

f = g # h.h1x2
ƒ1x2g1x2

ƒ1x2 = x3
- 12 - i2x2

+ 12 - 2i2x - 4.
-2

ƒ1x2 = x3
- ix2

+ 2ix + 2.

0 + 1i

1a + bi22 = i.

SECTION 2.5 Complex Zeros and the Fundamental Theorem of Algebra 217

Table 2.18 Powers of 1 i

Power Real Part Imaginary Part

0 1 0
1 1 1
2 0 2
3 2
4 0
5
6 0 -8

-4-4
-4
-2

�
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The domain of a rational function is the set of all real numbers except the zeros of its
denominator. Every rational function is continuous on its domain.

218 CHAPTER 2 Polynomial, Power, and Rational Functions

2.6 Graphs of Rational Functions

Rational Functions
Rational functions are ratios (or quotients) of polynomial functions.What you’ll learn about

• Rational Functions
• Transformations of the 

Reciprocal Function
• Limits and Asymptotes
• Analyzing Graphs of Rational

Functions
• Exploring Relative Humidity

... and why
Rational functions are used in cal-
culus and in scientific applica-
tions such as inverse proportions.

DEFINITION Rational Functions
Let ƒ and g be polynomial functions with Then the function given by

is a rational function.

r1x2 =

ƒ1x2
g1x2

g1x2 Z 0.

EXAMPLE 1  Finding the Domain of a Rational Function
Find the domain of ƒ and use limits to describe its behavior at value(s) of x not in its
domain.

SOLUTION The domain of ƒ is all real numbers The graph in Figure 2.46
strongly suggests that ƒ has a vertical asymptote at As x approaches 2 from
the left, the values of ƒ decrease without bound. As x approaches 2 from the right,
the values of ƒ increase without bound. Using the notation introduced in Section 1.2
on page 92 we write

and

The tables in Figure 2.47 support this visual evidence numerically.
Now try Exercise 1.

 lim  
x:2 +

ƒ1x2 = q .lim  
x:2- 

ƒ1x2 = - q

x = 2.
x Z 2.

ƒ1x2 =

1

x - 2

[–4.7, 4.7] by [–5, 5]

FIGURE 2.46 The graph of
(Example 1)ƒ1x2 = 1/1x - 22.

X

Y1 = 1/(X–2)

2
2.01
2.02
2.03
2.04
2.05
2.06

ERROR
100
50
33.333
25
20
16.667

Y1

(a)

X

Y1 = 1/(X–2)

2
1.99
1.98
1.97
1.96
1.95
1.94

ERROR
–100
–50
–33.33
–25
–20
–16.67

Y1

(b)

FIGURE 2.47 Table of values for for values of x (a) to the right of 2,
and (b) to the left of 2. (Example 1)

ƒ1x2 = 1/1x - 22

In Chapter 1 we defined horizontal and vertical asymptotes of the graph of a function
The line is a horizontal asymptote of the graph of ƒ if

or lim
x: q

ƒ1x2 = b. lim
x: -q  

ƒ1x2 = b

y = by = ƒ1x2.
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The line is a vertical asymptote of the graph of ƒ if

or .

We can see from Figure 2.46 that , so the line

is a horizontal asymptote of the graph of Because
and the line is a vertical asymptote of

Transformations of the Reciprocal Function
One of the simplest rational functions is the reciprocal function

which is one of the basic functions introduced in Chapter 1. It can be used to generate
many other rational functions.

Here is what we know about the reciprocal function.

ƒ1x2 =

1
x

,

ƒ1x2 = 1/1x - 22.
x = 2lim

x:2+  
ƒ1x2 = q ,lim

x:2-  
ƒ1x2 = - q

ƒ1x2 = 1/(x - 2).y = 0

 lim 1
x: -q

/1x - 22 =  lim
x: q

1/1x - 22 = 0

lim 
x:a+ 

ƒ1x2 = � q lim
x:a-  

ƒ1x2 = � q

x = a

SECTION 2.6 Graphs of Rational Functions 219

Domain: 

Range: 

Continuity: All 

Decreasing on and 

Symmetric with respect to origin (an odd function)

Unbounded

No local extrema

Horizontal asymptote: 

Vertical asymptote: 

End behavior:  lim
x: -q

ƒ1x2 =  lim
x: q

ƒ1x2 = 0

x = 0

y = 0

10, q21- q , 02
x Z 0

1- q , 02 ´ 10, q2
1- q , 02 ´ 10, q2

ƒ1x2 =

1
x

BASIC FUNCTION The Reciprocal Function

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 2.48 The graph of ƒ1x2 = 1/x.

EXPLORATION 1 Comparing Graphs of Rational Functions
1. Sketch the graph and find an equation for the function g whose graph is 

obtained from the reciprocal function by a translation of 2 units to
the right.

2. Sketch the graph and find an equation for the function h whose graph is 
obtained from the reciprocal function by a translation of 5 units to
the right, followed by a reflection across the x-axis.

3. Sketch the graph and find an equation for the function k whose graph is 
obtained from the reciprocal function by a translation of 4 units to
the left, followed by a vertical stretch by a factor of 3, and finally a translation
2 units down.

ƒ1x2 = 1/x

ƒ1x2 = 1/x

ƒ1x2 = 1/x
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The graph of any nonzero rational function of the form

can be obtained through transformations of the graph of the reciprocal function. If the
degree of the numerator is greater than or equal to the degree of the denominator, we
can use polynomial division to rewrite the rational function.

g1x2 =

ax + b

cx + d
, c Z 0

220 CHAPTER 2 Polynomial, Power, and Rational Functions

EXAMPLE 2  Transforming the Reciprocal Function
Describe how the graph of the given function can be obtained by transforming the graph
of the reciprocal function Identify the horizontal and vertical asymptotes
and use limits to describe the corresponding behavior. Sketch the graph of the function.

(a) (b)

SOLUTION

(a)

The graph of g is the graph of the reciprocal function shifted left 3 units and then
stretched vertically by a factor of 2. So the lines and are vertical and 
horizontal asymptotes, respectively. Using limits we have 

and The graph is shown in Figure 2.49a.

(b) We begin with polynomial division:

3

So, 

Thus the graph of h is the graph of the reciprocal function translated 2 units to the
right, followed by a reflection across the x-axis, and then translated 3 units up. (Note
that the reflection must be executed before the vertical translation.) So the lines

and are vertical and horizontal asymptotes, respectively. Using
limits we have and

The graph is shown in Figure 2.49b. Now try Exercise 5.

 lim
x:2-

 g1x2 = q .lim
x: q

h1x2 = lim
x: -q

h1x2 = 3, lim
x:2+ 

g1x2 = - q ,
y = 3x = 2

h1x2 =

3x - 7

x - 2
= 3 -

1

x - 2
= -ƒ1x - 22 + 3.

-1

 3x - 6 
x - 2�3x - 7 

lim
x: -3- 

g1x2 = - q .lim
x: -3+ 

g1x2 = q ,

lim
x: q

g1x2 = lim
x: - q

g1x2 = 0,
y = 0x = -3

g1x2 =

2

x + 3
= 2a 1

x + 3
b = 2ƒ1x + 32

h1x2 =

3x - 7

x - 2
g1x2 =

2

x + 3

ƒ1x2 = 1/x.

Limits and Asymptotes
In Example 2 we found asymptotes by translating the known asymptotes of the recipro-
cal function. In Example 3, we use graphing and algebra to find an asymptote.

y

(a)

10
8
6
4
2

–4
–2

–6
–8

–10

–10–8 –2
x

42–6 –4

y

(b)

10
8
6
4
2

–4
–2

–6
–8

–10

–4 –2
x

4 6 8 10

FIGURE 2.49 The graphs of 
(a) and 
(b) ,
with asymptotes shown in red.

h1x2 = 13x - 72/1x - 22
g1x2 = 2/1x + 32

EXAMPLE 3  Finding Asymptotes
Find the horizontal and vertical asymptotes of Use limits
to describe the corresponding behavior of ƒ.

SOLUTION

Solve Graphically
The graph of ƒ in Figure 2.50 suggests that

and that there are no vertical asymptotes. The horizontal asymptote is y = 1.

lim
x: q

ƒ1x2 = lim
x: -q

ƒ1x2 = 1

ƒ1x2 = 1x2
+ 22/1x2

+ 12.
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Example 3 shows the connection between the end behavior of a rational function and
its horizontal asymptote. We now generalize this relationship and summarize other fea-
tures of the graph of a rational function:
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Solve Algebraically
Because the denominator , the domain of ƒ is all real numbers. So there
are no vertical asymptotes. Using polynomial long division, we find that

When the value of is large, the denominator is a large positive number,
and is a small positive number, getting closer to zero as increases.
Therefore,

so is indeed a horizontal asymptote. Now try Exercise 19.y = 1

 lim
x: q

ƒ1x2 =  lim
x: -q

ƒ1x2 = 1,

ƒ x ƒ1/1x2
+ 12 x2

+ 1ƒ x ƒ

ƒ1x2 =

x2
+ 2

x2
+ 1

= 1 +

1

x2
+ 1

.

x2
+ 1 7 0

[–5, 5] by [–1, 3]

FIGURE 2.50 The graph of
with its horizontal

asymptote y = 1.
ƒ1x2 = 1x2

+ 22/1x2
+ 12

It is a good idea to find all of the asymptotes and intercepts when graphing a rational
function. If the end behavior asymptote of a rational function is a slant line, we call it a
slant asymptote, as illustrated in Example 4.

Graph of a Rational Function
The graph of has the following
characteristics:
1. End behavior asymptote:

If the end behavior asymptote is the horizontal asymptote 

If , the end behavior asymptote is the horizontal asymptote 

If , the end behavior asymptote is the quotient polynomial function
where There is no horizontal asymptote.

2. Vertical asymptotes: These occur at the real zeros of the denominator, 
provided that the zeros are not also zeros of the numerator of equal or greater
multiplicity.

3. x-intercepts: These occur at the real zeros of the numerator, which are not
also zeros of the denominator.

4. y-intercept: This is the value of if defined.ƒ102,

ƒ1x2 = g1x2q1x2 + r1x2.y = q1x2,n 7 m

y = an/bm.n = m

y = 0.n 6 m,

y = ƒ1x2/g1x2 = 1anxn
 +

Á 2/1bmx m
 +

Á 2

EXAMPLE 4  Graphing a Rational Function
Find the asymptotes and intercepts of the function and graph
the function.

SOLUTION The degree of the numerator is greater than the degree of the denomi-
nator, so the end behavior asymptote is the quotient polynomial. Using polynomial
long division, we obtain

So the quotient polynomial is , a slant asymptote. Factoring the denominator,

(continued)
x2

- 9 = 1x - 321x + 32,
q1x2 = x

ƒ1x2 =

x3

x2
- 9

= x +

9x

x2
- 9

.

ƒ1x2 = x3/1x2
- 92
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[–9.4, 9.4] by [–15, 15]

(a)

[–9.4, 9.4] by [–15, 15]

(b)

FIGURE 2.51 The graph of 
(a) by itself and 

(b) with its asymptotes. (Example 4)
ƒ1x2 = x3/1x2

- 92

EXAMPLE 5  Analyzing the Graph of a Rational Function
Find the intercepts and asymptotes, use limits to describe the behavior at the vertical
asymptotes, and analyze and draw the graph of the rational function

SOLUTION The numerator is zero when , so the x-intercept is 1. Because
, the y-intercept is 1/6. The denominator factors as

so there are vertical asymptotes at and From the comment preceding
this example we know that the horizontal asymptote is Figure 2.52 supports
this information and allows us to conclude that

, and .

Domain: 
Range: All reals
Continuity: All 
Decreasing on and 
Not symmetric
Unbounded
No local extrema
Horizontal asymptotes: 
Vertical asymptotes: 
End behavior: Now try Exercise 39.

The degrees of the numerator and denominator of the rational function in Example 6
are equal. Thus, we know that the graph of the function has the quotient of the
leading coefficients, as its end behavior asymptote.

y = 2,

lim
x: - q

ƒ1x2 = lim
x: q

ƒ1x2 = 0
x = -2, x = 3

y = 0

13, q21-2, 32,1- q , -22,x Z -2, 3

1- q , -22 ´ 1-2, 32 ´ 13, q2
lim

x:3 +

ƒ1x2 = qlim 
x: -2- 

ƒ1x2 = - q , lim 
x: -2 +

ƒ1x2 = q , lim
x:3- 

ƒ1x2 = - q

y = 0.
x = 3.x = -2

x2
- x - 6 = 1x - 321x + 22,

ƒ102 = 1/6
x = 1

ƒ1x2 =

x - 1

x2
- x - 6

.

[–4.7, 4.7] by [–4, 4]

FIGURE 2.52 The graph of

(Example 5)
ƒ1x2 = 1x - 12/1x2

- x - 62.

EXAMPLE 6  Analyzing the Graph of a Rational Function
Find the intercepts, analyze, and draw the graph of the rational function

SOLUTION The numerator factors as

2x2
- 2 = 21x2

- 12 = 21x + 121x - 12,

ƒ1x2 =

2x2
- 2

x2
- 4

.

shows that the zeros of the denominator are and Consequently, 
and are the vertical asymptotes of ƒ. The only zero of the numerator is 0, so

, and thus we see that the point (0, 0) is the only x-intercept and the y-intercept
of the graph of ƒ.

The graph of ƒ in Figure 2.51a passes through (0, 0) and suggests the vertical 
asymptotes and and the slant asymptote Figure 2.51b
shows the graph of ƒ with its asymptotes overlaid. Now try Exercise 29.

Analyzing Graphs of Rational Functions
Because the degree of the numerator of the rational function in Example 5 is less than
the degree of the denominator, we know that the graph of the function has as a
horizontal asymptote.

y = 0

y = q1x2 = x.x = -3x = 3

ƒ102 = 0
x = -3

x = 3x = -3.x = 3
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In Examples 7 and 8 we will investigate the rational function

The degree of the numerator of ƒ exceeds the degree of the denominator by 2. Thus,
there is no horizontal asymptote. We will see that the end behavior asymptote is a poly-
nomial of degree 2.

ƒ1x2 =

x3
- 3x2

+ 3x + 1

x - 1
.

SECTION 2.6 Graphs of Rational Functions 223

so the x-intercepts are and 1. The y-intercept is The denominator
factors as

so the vertical asymptotes are and From the comment preceding this
example we know that is the horizontal asymptote. Figure 2.53 supports this
information and allows us to conclude that

Domain: 
Range: 
Continuity: All 
Increasing on and ; decreasing on [0, 2) and 
Symmetric with respect to the y-axis (an even function)
Unbounded
Local maximum of 1/2 at 
Horizontal asymptotes: 
Vertical asymptotes: 
End behavior: Now try Exercise 41.lim

x: -q

ƒ1x2 = lim
x: q

 ƒ1x2 = 2
x = -2, x = 2

y = 2
x = 0

12, q21-2, 041- q , -22
x Z -2, 2

1- q , 1/24 ´ 12, q2
1- q , -22 ´ 1-2, 22 ´ 12, q2

lim
x: -2-

ƒ1x2 = q , lim
x: -2 +

ƒ1x2 = - q , lim
x:2-

ƒ1x2 = - q , lim
x:2 +

ƒ1x2 = q .

y = 2
x = 2.x = -2

x2
- 4 = 1x + 221x - 22,

ƒ102 = 1/2.-1

[–4.7, 4.7] by [–8, 8]

FIGURE 2.53 The graph of 
It can be shown

that ƒ takes on no value between 1/2, the 
y-intercept, and 2, the horizontal asymptote.
(Example 6)

ƒ1x2 = 12x2
- 22/1x2

- 42.

EXAMPLE 7  Finding an End Behavior Asymptote
Find the end behavior asymptote of

and graph it together with ƒ in two windows:

(a) one showing the details around the vertical asymptote of ƒ,

(b) one showing a graph of ƒ that resembles its end behavior asymptote.

SOLUTION The graph of ƒ has a vertical asymptote at Divide 
by to show that

The end behavior asymptote of ƒ is 

(a) The graph of ƒ in Figure 2.54 shows the details around the vertical asymptote.
We have also overlaid the graph of its end behavior asymptote as a dashed line.

(b) If we draw the graph of and its end 
behavior asymptote in a large enough viewing window, the two
graphs will appear to be identical (Figure 2.55). Now try Exercise 47.

y = x2
- 2x + 1

ƒ1x2 = 1x3
- 3x2

+ 3x + 12/1x - 12

y = x2
- 2x + 1.

ƒ1x2 =

x3
- 3x2

+ 3x + 1

x - 1
= x2

- 2x + 1 +

2

x - 1
.

x - 13x + 1
x3

- 3x2 
+x = 1.

ƒ1x2 =

x3
- 3x2

+ 3x + 1

x - 1

[–4.7, 4.7] by [–8, 8]

FIGURE 2.54 The graph of 
as

a solid black line and its end behavior 
asymptote as a dashed
blue line. (Examples 7 and 8)

y = x2
- 2x + 1

ƒ1x2 = 1x3
- 3x2

+ 3x + 12/1x - 12

[–40, 40] by [–500, 500]

FIGURE 2.55 The graphs of
and

its end behavior asymptote 
appear to be identical. (Example 7)

y = x2
- 2x + 1

ƒ1x2 = 1x3
- 3x2

+ 3x + 12/1x - 12
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EXAMPLE 8  Analyzing the Graph of a Rational Function
Find the intercepts, analyze, and draw the graph of the rational function

SOLUTION ƒ has only one x-intercept and we can use the graph of ƒ in Figure 2.54
to show that it is about The y-intercept is The vertical asymptote
is as we have seen. We know that the graph of ƒ does not have a horizontal 
asymptote, and from Example 7 we know that the end behavior asymptote is

We can also use Figure 2.54 to show that ƒ has a local minimum
of 3 at Figure 2.54 supports this information and allows us to conclude that

and

Domain: All 
Range: All reals
Continuity: All 
Decreasing on and increasing on 
Not symmetric
Unbounded
Local minimum of 3 at 
No horizontal asymptotes; end behavior asymptote: 
Vertical asymptote: 
End behavior: Now try Exercise 55.

Exploring Relative Humidity
The phrase relative humidity is familiar from everyday weather reports. Relative 
humidity is the ratio of constant vapor pressure to saturated vapor pressure. So, relative
humidity is inversely proportional to saturated vapor pressure.

 lim
x: -q

ƒ1x2 =  lim
x: q

ƒ1x2 = q

x = 1
y = x2

- 2x + 1
x = 2

32, q211, 24;1- q , 12x Z 1

x Z 1

 lim
x:1+  

ƒ1x2 = q . lim
x:1- 

ƒ1x2 = - q

x = 2.
y = x2

- 2x + 1.

x = 1
ƒ102 = -1.-0.26.

ƒ1x2 =

x3
- 3x2

+ 3x + 1

x - 1
.

Chapter Opener Problem (from page 157)

Problem: Determine the relative humidity values that correspond to the 
saturated vapor pressures of 12, 24, 36, 48, and 60 millibars, at a constant vapor
pressure of 12 millibars. (In practice, saturated vapor pressure increases as the
temperature increases.)

Solution: Relative humidity (RH) is found by dividing constant vapor pres-
sure (CVP) by saturated vapor pressure (SVP). So, for example, for SVP 24
millibars and CVP 12 millibars, RH 12/24 1/2 0.5 50%. See the
table below, which is based on CVP 12 millibars with increasing temperature.=

=====

=

SVP (millibars) RH (%)

12 100
24 50
36
48 25
60 20

33.3
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QUICK REVIEW 2.6 (For help, go to Section 2.4.)

SECTION 2.6 EXERCISES

In Exercises 1–4, find the domain of the function ƒ. Use limits to 
describe the behavior of ƒ at value(s) of x not in its domain.

1. 2.

3. 4.

In Exercises 5–10, describe how the graph of the given function can be
obtained by transforming the graph of the reciprocal function 
Identify the horizontal and vertical asymptotes and use limits to describe
the corresponding behavior. Sketch the graph of the function.

5. 6.

7. 8.

9. 10.

In Exercises 11–14, evaluate the limit based on the graph of ƒ shown.

11. 12.

13. 14. lim
x: -q

 ƒ1x2lim
x: q

ƒ1x2
lim

x:3+  
ƒ1x2lim

x:3-  
ƒ1x2

ƒ1x2 =

4 - 3x

x - 5
ƒ1x2 =

5 - 2x

x + 4

ƒ1x2 =

3x - 2

x - 1
ƒ1x2 =

2x - 1

x + 3

ƒ1x2 = -  

2

x + 5
ƒ1x2 =

1

x - 3

g1x2 = 1/x.

ƒ1x2 =

2

x2
- 1

ƒ1x2 =

-1

x2
- 4

ƒ1x2 =

-3

x - 1
ƒ1x2 =

1

x + 3

In Exercises 15–18, evaluate the limit based on the graph of ƒ shown.

15. 16.

17. 18.

In Exercises 19–22, find the horizontal and vertical asymptotes of .
Use limits to describe the corresponding behavior.

19. 20.

21. 22.

In Exercises 23–30, find the asymptotes and intercepts of the function,
and graph the function.

23. 24.

25. 26.

27. 28.

29. 30. g1x2 =

x2
- 3x - 7

x + 3
ƒ1x2 =

x2
- 2x + 3

x + 2

g1x2 =

-3x2
+ x + 12

x2
- 4

ƒ1x2 =

2x2
+ x - 2

x2
- 1

h1x2 =

3

x3
- 4x

h1x2 =

2

x3
- x

g1x2 =

x + 2

x2
+ 2x - 3

g1x2 =

x - 2

x2
- 2x - 3

ƒ1x2 =

x - 3

x2
+ 3x

ƒ1x2 =

2x + 1

x2
- x

ƒ1x2 =

3x2

x2
+ 1

ƒ1x2 =

2x2
- 1

x2
+ 3

ƒ1x2
lim

x: q

 ƒ1x2lim
x: -q

 ƒ1x2
lim

x: - 3-

 ƒ1x2lim
x: - 3+

 ƒ1x2

[–5.8, 13] by [–3, 3]

[–9.8, 9] by [–5, 15]

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, use factoring to find the real zeros of the function.

1. 2.

3. 4.

5. 6. h1x2 = x2
+ 1h1x2 = x3

- 1

g1x2 = x2
- 1g1x2 = x2

- 4

ƒ1x2 = 3x2
- 2x - 8ƒ1x2 = 2x2

+ 5x - 3

In Exercises 7–10, find the quotient and remainder when is 
divided by .

7.

8.

9.

10. ƒ1x2 = 5x - 1, d1x2 = 2x

ƒ1x2 = 3x - 5, d1x2 = x

ƒ1x2 = 4x + 3, d1x2 = 2x - 1

ƒ1x2 = 2x + 1, d1x2 = x - 3

d1x2
ƒ1x2

SECTION 2.6 Graphs of Rational Functions 225
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In Exercises 31–36, match the rational function with its graph. Identify
the viewing window and the scale used on each axis.

31. 32.

33. 34.

35. 36.

In Exercises 37–44, find the intercepts and asymptotes, use limits to
describe the behavior at the vertical asymptotes, and analyze and draw
the graph of the given rational function.

37. 38.

39. 40.

41. 42.

43. 44.

In Exercises 45–50, find the end behavior asymptote of the given 
rational function ƒ and graph it together with ƒ in two windows:

(a) One showing the details around the vertical asymptote(s) of ƒ.
(b) One showing a graph of ƒ that resembles its end behavior 

asymptote.

45. 46.

47. 48.

49. 50. ƒ1x2 =

x5
+ 1

x2
+ 1

ƒ1x2 =

x4
- 2x + 1

x - 2

ƒ1x2 =

x3
+ 1

x - 1
ƒ1x2 =

x3
- x2

+ 1

x + 2

ƒ1x2 =

2x2
+ 2x - 3

x + 3
ƒ1x2 =

x2
- 2x + 3

x - 5

k1x2 =

x2
- x - 2

x - 3
h1x2 =

x2
+ 2x - 3

x + 2

g1x2 =

x2
- x - 2

x2
- 2x - 8

ƒ1x2 =

x2
+ x - 2

x2
- 9

k1x2 =

x + 1

x2
- 3x - 10

h1x2 =

x - 1

x2
- x - 12

g1x2 =

2

x2
+ 4x + 3

ƒ1x2 =

2

2x2
- x - 3

ƒ1x2 = 3 -

2

x - 1
ƒ1x2 = -1 +

1

4 - x

ƒ1x2 = 1 +

1

x + 3
ƒ1x2 = 2 +

3

x - 1

ƒ1x2 = -  

1

x + 3
ƒ1x2 =

1

x - 4

In Exercises 51–56, find the intercepts, analyze, and graph the given 
rational function.

51. 52.

53. 54.

55. 56.

In Exercises 57–62, find the intercepts, vertical asymptotes, and end be-
havior asymptote, and graph the function together with its end behavior
asymptote.

57. 58.

59. 60.

61. 62.

Standardized Test Questions
63. True or False A rational function must have a vertical

asymptote. Justify your answer.

64. True or False is a rational function.

Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice Let What values of x

have to be excluded from the domain of ƒ?

(A) Only 0 (B) Only 3 (C) Only 

(D) Only 0, 3 (E) Only 0, 

66. Multiple Choice Let Which of the trans-

formations of produce the graph of g?

(A) Translate the graph of ƒ left 3 units.

(B) Translate the graph of ƒ right 3 units.

(C) Translate the graph of ƒ down 3 units.

(D) Translate the graph of ƒ up 3 units.

(E) Vertically stretch the graph of ƒ by a factor of 2.

67. Multiple Choice Let Which of the 

following statements is true about the graph of ƒ?

(A) There is no vertical asymptote.

(B) There is a horizontal asymptote but no vertical asymptote.

(C) There is a slant asymptote but no vertical asymptote.

(D) There is a vertical asymptote and a slant asymptote.

(E) There is a vertical and horizontal asymptote.

ƒ1x2 =

x2

x + 5
.

ƒ1x2 =

2
x

g1x2 =

2

x + 3
.

-3

-3

ƒ1x2 =

-2

x2
+ 3x

.

ƒ1x2 =

x2
- x

2x2
+ 4

k1x2 =

3x3
+ x - 4

x3
+ 1

h1x2 =

2x3
- 3x + 2

x3
- 1

g1x2 =

x5
+ 1

x - 1
ƒ1x2 =

x5
- 1

x + 2

k1x2 =

2x5
+ x2

- x + 1

x2
- 1

h1x2 =

x4
+ 1

x + 1

g1x2 =

2x3
- 2x2

- x + 5

x - 2
ƒ1x2 =

x3
- 2x2

+ x - 1

2x - 1

k1x2 =

x3
- 2

x + 2
h1x2 =

x3
- 1

x - 2

g1x2 =

4x2
+ 2x

x2
- 4x + 8

ƒ1x2 =

3x2
- 2x + 4

x2
- 4x + 5
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(a) (b)

(c) (d)

(e) (f)
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68. Multiple Choice What is the degree of the end behavior

asymptote of 

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Explorations
69. Group Activity Work in groups of two. Compare the

functions and 

(a) Are the domains equal?

(b) Does ƒ have a vertical asymptote? Explain.

(c) Explain why the graphs appear to be identical.

(d) Are the functions identical?

70. Group Activity Explain why the functions are identical
or not. Include the graphs and a comparison of the functions’
asymptotes, intercepts, and domain.

(a) and 

(b) and 

(c) and 

(d) and 

71. Boyle’s Law This ideal gas law states that the volume of
an enclosed gas at a fixed temperature varies inversely as the
pressure.

(a) Writing to Learn Explain why Boyle’s Law yields
both a rational function model and a power function
model.

(b) Which power functions are also rational functions?

(c) If the pressure of a 2.59-L sample of nitrogen gas at a tem-
perature of 291 K is 0.866 atm, what would the volume be
at a pressure of 0.532 atm if the temperature does not
change?

72. Light Intensity Aileen and Malachy gathered the data
in Table 2.19 using a 75-watt lightbulb and a Calculator-Based
Laboratory™ (CBL™) with a light-intensity probe.

g1x2 =

1

x + 2
ƒ1x2 =

x - 1

x2
+ x - 2

g1x2 =

1

x - 1
ƒ1x2 =

x2
- 1

x3
- x2

- x + 1

g1x2 = x - 1ƒ1x2 =

x2
- 1

x + 1

g1x2 = x + 2ƒ1x2 =

x2
+ x - 2

x - 1

g1x2 = x + 3.ƒ1x2 =

x2
- 9

x - 3

ƒ1x2 =

x8
+ 1

x4
+ 1

?

(a) Draw a scatter plot of the data in Table 2.19.

(b) Find an equation for the data assuming it has the form
for some constant k. Explain your method for

choosing k.

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression model to predict the light intensity at
distances of 2.2 m and 4.4 m.

ƒ1x2 = k/x2

SECTION 2.6 Graphs of Rational Functions 227

Table 2.19 Light-Intensity
Data for a 75-W Lightbulb

Distance (m) Intensity
( )

1.0 6.09
1.5 2.51
2.0 1.56
2.5 1.08
3.0 0.74

W/m2

Extending the Ideas
In Exercises 73–76, graph the function. Express the function as a 
piecewise-defined function without absolute value, and use the result 
to confirm the graph’s asymptotes and intercepts algebraically.

73. 74.

75. 76.

77. Describe how the graph of a nonzero rational function

can be obtained from the graph of (Hint: Use long 
division.)

78. Writing to Learn Let and
Does Support your

answer by making a comparative analysis of all of the features
of ƒ and g, including asymptotes, intercepts, and domain.

f = g?g1x2 = 1x3
+ x2

- x2/1x3
- x2.
ƒ1x2 = 1 + 1/1x - 1/x2

y = 1/x.

ƒ1x2 =

ax + b

cx + d
, c Z 0

ƒ1x2 =

2 - 2x

ƒ x ƒ + 1
ƒ1x2 =

5 - 3x

ƒ x ƒ + 4

h1x2 =

3x + 5

ƒ x ƒ + 3
h1x2 =

2x - 3

ƒ x ƒ + 2
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When the fractions in Example 2 are cleared, we obtain a quadratic equation.

228 CHAPTER 2 Polynomial, Power, and Rational Functions

2.7 Solving Equations in 
One Variable

What you’ll learn about
• Solving Rational Equations
• Extraneous Solutions
• Applications

... and why
Applications involving rational
functions as models often require
that an equation involving the
model be solved.

EXAMPLE 1  Solving by Clearing Fractions

Solve 

SOLUTION

Solve Algebraically
The LCD is x.

Multiply by x.

Subtract 4x.

Factor.

or Zero factor property

or

Confirm Numerically

For , and for 

Each value is a solution of the original equation. Now try Exercise 1.

x = 3, x +

3
x

= 3 +

3

3
= 4.x = 1, x +

3
x

= 1 +

3

1
= 4

x = 3x = 1

x - 3 = 0x - 1 = 0

1x - 121x - 32 = 0

x2
- 4x + 3 = 0

x2
+ 3 = 4x

x +

3
x

= 4

x +

3
x

= 4.

Solving Rational Equations
Equations involving rational expressions or fractions (see Appendix A.3) are rational
equations. Every rational equation can be written in the form

If and are polynomial functions with no common factors, then the zeros of
are the solutions of the equation.

Usually it is not necessary to put a rational equation in the form of / . To solve
an equation involving fractional expressions we begin by finding the LCD (least com-
mon denominator) of all the terms of the equation. Then we clear the equation of frac-
tions by multiplying each side of the equation by the LCD. Sometimes the LCD con-
tains variables.

When we multiply or divide an equation by an expression containing variables, the re-
sulting equation may have solutions that are not solutions of the original equation.
These are extraneous solutions. For this reason we must check each solution of the re-
sulting equation in the original equation.

g1x2ƒ1x2
ƒ1x2 g1x2ƒ1x2

ƒ1x2
g1x2 = 0.
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Extraneous Solutions
We will find extraneous solutions in Examples 3 and 4.
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EXAMPLE 2  Solving a Rational Equation

Solve 

SOLUTION

Solve Algebraically The LCD is 

Multiply by x 4.

Distributive property

Quadratic formula

Simplify.

Simplify.

Support Graphically
The graph in Figure 2.56 suggests that the function has two 
zeros. We can use the graph to find that the zeros are about 0.268 and 3.732, agreeing
with the values found algebraically. Now try Exercise 7.

y = x + 1/1x - 42

x L 0.268, 3.732
x = 2 ; 13

x =

4 � 213
2

x =

4 � 21-422 - 4112112
2112

x2
- 4x + 1 = 0

-x1x - 42 +

x - 4
x - 4

= 0

x +

1
x - 4

= 0

x - 4.

x +

1

x - 4
= 0.

[–5, 8] by [–5, 10]

FIGURE 2.56 The graph of 
(Example 2)y = x + 1/1x - 42.

EXAMPLE 3 Eliminating Extraneous Solutions
Solve the equation

SOLUTION

Solve Algebraically
The denominator of the right-hand side, , factors into 
So the least common denominator (LCD) of the equation is , and we
multiply both sides of the equation by this LCD:

Distributive property

Distributive property

Factor.

or

Confirm Numerically
We replace x by in the original equation:

(continued)

2
3

-

2
7

� 8
21

21-1/22
1-1/22 - 1

+

1

1-1/22 - 3
� 2

1-1/222 - 41-1/22 + 3

-1/2

x = 3x = -  

1

2

12x + 121x - 32 = 0

2x2
- 5x - 3 = 0

2x1x - 32 + 1x - 12 = 2

1x - 121x - 32a 2x

x - 1
+

1

x - 3
b = 1x - 121x - 32a 2

x2
- 4x + 3

b

1x - 121x - 321x - 121x - 32.x2
- 4x + 3

2x

x - 1
+

1

x - 3
=

2

x2
- 4x + 3

.
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The equation is true, so is a valid solution. The original equation is not 
defined for , so is an extraneous solution.

Support Graphically
The graph of

in Figure 2.57 suggests that is an x-intercept and is not.

Interpret
Only is a solution. Now try Exercise 13.

We will see that Example 4 has no solutions.

x = -1/2

x = 3x = -1/2

ƒ1x2 =

2x

x - 1
+

1
x - 3

-

2

x2
- 4x + 3

x = 3x = 3
x = -1/2

[–4.7, 4.7] by [–10, 10]

FIGURE 2.57 The graph of 
,

with the missing point at 3, 3.5 emphasized.
(Example 3)

21
2x/1x - 12 + 1/1x - 32 - 2/1x2

- 4x + 32
ƒ1x2 =

EXAMPLE 4  Eliminating Extraneous Solutions
Solve

SOLUTION The LCD is 

Multiply by x(x 2).

Expand.

Simplify.

Factor.

or

Substituting or into the original equation results in division by zero.
So both of these numbers are extraneous solutions and the original equation has no
solution. Now try Exercise 17.

x = -2x = 0

x = -2x = 0

x1x + 22 = 0

x2
+ 2x = 0

x2
- x - 6 + 3x + 6 = 0

+1x - 321x + 22 + 3x + 6 = 0

x - 3
x

+

3
x + 2

+

6

x2
+ 2x

= 0

x1x + 22.
x - 3

x
+

3
x + 2

+

6

x2
+ 2x

= 0.

EXAMPLE 5  Calculating Acid Mixtures
How much pure acid must be added to 50 mL of a 35% acid solution to produce a
mixture that is 75% acid? (See Figure 2.58.)

SOLUTION

Model

Word statement:

of pure acid in 35% solution

of acid added

of pure acid in resulting mixture

of the resulting mixture

concentration of acid

Solve Graphically

Equation to be solved
x + 17.5

x + 50
= 0.75

x + 17.5

x + 50
=

x + 50 = mL

x + 17.5 = mL

x = mL

0.35 * 50 or 17.5 = mL

mL of pure acid

mL of mixture
= concentration of acid

Pure acid

50 mL of a 35%
acid solution

FIGURE 2.58 Mixing solutions.
(Example 5)
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0

0.2

0.4

0.6

0.8

1.0

40 80
mL of acid

Intersection:  x = 80; y = .75

Acid Mixture

C
on

ce
nt

ra
tio

n

120 160
x

y

FIGURE 2.59 The graphs of 
and

(Example 5)g1x2 = 0.75.
ƒ1x2 = 1x + 17.52/1x + 502

Figure 2.59 shows graphs of and The
point of intersection is (80, 0.75).

Interpret
We need to add 80 mL of pure acid to the 35% acid solution to make a solution that
is 75% acid. Now try Exercise 31.

g1x2 = 0.75.ƒ1x2 = 1x + 17.52/1x + 502

EXAMPLE 6  Finding a Minimum Perimeter
Find the dimensions of the rectangle with minimum perimeter if its area is 200 square
meters. Find this least perimeter.

SOLUTION

Model
Draw the diagram in Figure 2.60.

Word statement: Perimeter length width

x width in meters

length in meters

Function to be minimized: 

Solve Graphically
The graph of P in Figure 2.61 shows a minimum of approximately 56.57, occurring
when 

Interpret
A width of about 14.14 m produces the minimum perimeter of about 56.57 m. Because
200/14.14 14.14, the dimensions of the rectangle with minimum perimeter are 14.14 m
by 14.14 m, a square. Now try Exercise 35.

L

x L 14.14.

P1x2 = 2x + 2a200
x
b = 2x +

400
x

200
x

=

area

width
=

=

+ 2 *= 2 *

x

200
x

200
x

A = 200 = x ba

FIGURE 2.60 A rectangle with area (Example 6)200 m2.

[0, 50] by [0, 150]

X=14.142136 Y=56.568542
Minimum

FIGURE 2.61 A graph of 
(Example 6)P1x2 = 2x + 400/x.

2r

h

FIGURE 2.62 A tomato juice
can. (Example 7)

EXAMPLE 7  Designing a Juice Can
Stewart Cannery packages tomato juice in 2-liter cylindrical cans. Find the radius and
height of the cans if the cans have a surface area of (See Figure 2.62.)

SOLUTION

Model

surface area of can in 

radius of can in centimeters

height of can in centimeters

Using volume (V ) and surface area (S) formulas and the fact that 1 ,
we conclude that

and

(continued)

S = 2pr 2
+ 2prh = 1000.V = pr 2h = 2000

L = 1000 cm3

h =

r =

cm2S =

1000 cm2.

[0, 20] by [0, 4000]

(a)

X=9.6549296  Y=1000
Intersection

FIGURE 2.63 (Example 7)
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So

Substitute 

Equation to be solved

Solve Graphically
Figure 2.63 shows the graphs of and One point
of intersection occurs when r is approximately 9.65. A second point of intersection oc-
curs when r is approximately 4.62.

Because the corresponding values for h are

and 

Interpret
With a surface area of , the cans either have a radius of 4.62 cm and a
height of 29.83 cm or have a radius of 9.65 cm and a height of 6.83 cm.

Now try Exercise 37.

1000 cm2

h =

2000

p19.654 Á 22 L 6.83.h =

2000

p14.619 Á 22 L 29.83

h = 2000/1pr 22,

g1x2 = 1000.ƒ1x2 = 2pr 2
+ 4000/r

2pr 2
+

4000
r

= 1000

h = 2000/1pr 
22.2pr 2

+ 2pra2000

pr 2 b = 1000

2pr 2
+ 2prh = 1000

QUICK REVIEW 2.7 (For help, go to Sections A.3. and P.5.)

SECTION 2.7 EXERCISES

In Exercises 1–6, solve the equation algebraically. Support your answer
numerically and identify any extraneous solutions.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, solve the equation algebraically and graphically.
Check for extraneous solutions.

7. 8.

9. 10.

11. 12. 2 -

3

x + 4
=

12

x2
+ 4x

2 -

1

x + 1
=

1

x2
+ x

x +

6
x

= -7x +

12
x

= 7

x + 2 =

15
x

x +

10
x

= 7

3

x - 1
+

2
x

= 8x +

4x

x - 3
=

12

x - 3

1
x

-

2

x - 3
= 4x + 5 =

14
x

x + 2 =

15
x

x - 2

3
+

x + 5

3
=

1

3

In Exercises 13–18, solve the equation algebraically. Check for extrane-
ous solutions. Support your answer graphically.

13.

14.

15.

16.

17.

18.
x + 3

x
-

2

x + 3
=

6

x2
+ 3x

3

x + 2
+

6

x2
+ 2x

=

3 - x

x

x + 2
x

-

4

x - 1
+

2

x2
- x

= 0

x - 3
x

-

3

x + 1
+

3

x2
+ x

= 0

4x

x + 4
+

3

x - 1
=

15

x2
+ 3x - 4

3x

x + 5
+

1

x - 2
=

7

x2
+ 3x - 10

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the missing numerator or denominator.

1. 2.

In Exercises 3–6, find the LCD and rewrite the expression as a 
single fraction reduced to lowest terms.

3. 4.
3

x - 1
-

1
x

5

12
+

7

18
-

5

6

x - 1

x + 1
=

x2
- 1

?

2x

x - 3
=

?

x2
+ x - 12

5.

6.

In Exercises 7–10, use the quadratic formula to find the zeros of the
quadratic polynomials.

7. 8.

9. 10. x2
- 3x - 93x2

+ 2x - 2

2x2
- 5x - 12x2

- 3x - 1

x + 1

x2
- 5x + 6

-

3x + 11

x2
- x - 6

x

2x + 1
-

2

x - 3
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In Exercises 19–22, two possible solutions to the equation 
are listed. Use the given graph of to decide which, if any, are
extraneous.

19.

20.

21.

22.

In Exercises 23–30, solve the equation.

23.

24.

25.
x2

- 2x + 1

x + 5
= 0

x2
- 6x + 5

x2
- 2

= 3

2

x - 1
+ x = 5

x = 0 or x = 3

x = -2 or x = 2

x = -2 or x = 3

x = -5 or x = -2

y = ƒ1x2
ƒ1x2 = 0 26.

27.

28.

29.

30.

31. Acid Mixture Suppose that x mL of pure acid are added
to 125 mL of a 60% acid solution. How many mL of pure acid
must be added to obtain a solution of 83% acid?

(a) Explain why the concentration of the new mixture is

(b) Suppose the viewing window in the figure is used to find a
solution to the problem. What is the equation of the hori-
zontal line?

(c) Writing to Learn Write and solve an equation that
answers the question of this problem. Explain your answer.

32. Acid Mixture Suppose that x mL of pure acid are added
to 100 mL of a 35% acid solution.

(a) Express the concentration of the new mixture as a
function of x.

(b) Use a graph to determine how much pure acid should be
added to the 35% solution to produce a new solution that is
75% acid.

(c) Solve (b) algebraically.

33. Breaking Even Mid Town Sports Apparel, Inc., has
found that it needs to sell golf hats for $2.75 each in order to be
competitive. It costs $2.12 to produce each hat, and it has
weekly overhead costs of $3000.

(a) Let x be the number of hats produced each week. Express
the average cost (including overhead costs) of producing
one hat as a function of x.

(b) Solve algebraically to find the number of golf hats that
must be sold each week to make a profit. Support your an-
swer graphically.

(c) Writing to Learn How many golf hats must be sold
to make a profit of $1000 in 1 week? Explain your answer.

C1x2

C1x2 =

x + 0.611252
x + 125

 .

C1x2

x2
-

3
x

= 7

x2
+

5
x

= 8

3x

x + 1
+

5

x - 2
=

15

x2
- x - 2

4x

x + 4
+

5

x - 1
=

15

x2
+ 3x - 4

3x

x + 2
+

2

x - 1
=

5

x2
+ x - 2
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[–10, 8.8] by [–5, 5]

[–4.7, 4.7] by [–5, 5]

[–4.7, 4.7] by [–10, 10]

[–4.7, 4.7] by [–5, 5]

0

0.2

0.4

0.6

0.8

1.0

50 100
mL of acid

Acid Mixture

C
on

ce
nt

ra
tio

n

200150 250
x

y
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34. Bear Population The number of bears at any time t
(in years) in a federal game reserve is given by

(a) Find the population of bears when the value of t is 10, 40,
and 100.

(b) Does the graph of the bear population have a horizontal 
asymptote? If so, what is it? If not, why not?

(c) Writing to Learn According to this model, what is
the largest the bear population can become? Explain your
answer.

35. Minimizing Perimeter Consider all rectangles with
an area of . Let x be the length of one side of such a 
rectangle.

(a) Express the perimeter P as a function of x.

(b) Find the dimensions of the rectangle that has the least
perimeter. What is the least perimeter?

36. Group Activity Page Design Hendrix Publishing
Co. wants to design a page that has a 0.75-in. left border, a 
1.5-in. top border, and borders on the right and bottom of 1-in.
They are to surround of print material. Let x be the
width of the print material.

(a) Express the area of the page as a function of x.

(b) Find the dimensions of the page that has the least area.
What is the least area?

37. Industrial Design Drake Cannery will pack peaches in
0.5-L cylindrical cans. Let x be the radius of the can in cm.

(a) Express the surface area S of the can as a function of x.

(b) Find the radius and height of the can if the surface area is

38. Group Activity Designing a Swimming Pool
Thompson Recreation, Inc., wants to build a rectangular swim-
ming pool with the top of the pool having surface area .
The pool is required to have a walk of uniform width 2 ft sur-
rounding it. Let x be the length of one side of the pool.

(a) Express the area of the plot of land needed for the pool and
surrounding sidewalk as a function of x.

(b) Find the dimensions of the plot of land that has the least
area. What is the least area?

1000 ft2

900 cm2.

40 in.2

182 ft2

P1t2 =

500 + 250t

10 + 0.5t
.

39. Resistors The total electrical resistance R of two resistors
connected in parallel with resistances and is given by

One resistor has a resistance of 2.3 ohms. Let x be the resis-
tance of the second resistor.

1

R
=

1

R1
+

1

R2
.

R2R1
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Table 2.20 Expectation for Remaining Life

Age (years) Remaining Years

70 15.1
80 9.1
90 5.0

100 2.6

Source: National Vital Statistics Reports, Vol. 56, No. 9, 
December 2007.

(a) Express the total resistance R as a function of x.

(b) Find the resistance of the second resistor if the total resis-
tance of the pair is 1.7 ohms.

40. Designing Rectangles Consider all rectangles with an
area of . Let x be the length of one side of such a rectangle.

(a) Express the perimeter P as a function of x.

(b) Find the dimensions of a rectangle whose perimeter is 70 m.

41. Swimming Pool Drainage Drains A and B are used
to empty a swimming pool. Drain A alone can empty the pool
in 4.75 h. Let t be the time it takes for drain B alone to empty
the pool.

(a) Express as a function of t the part D of the drainage that
can be done in 1 h with both drains open at the same time.

(b) Find graphically the time it takes for drain B alone to empty
the pool if both drains, when open at the same time, can
empty the pool in 2.6 h. Confirm algebraically.

42. Time-Rate Problem Josh rode his bike 17 mi from his
home to Columbus, and then traveled 53 mi by car from
Columbus to Dayton. Assume that the average rate of the car
was 43 mph faster than the average rate of the bike.

(a) Express the total time required to complete the 70-mi trip
(bike and car) as a function of the rate x of the bike.

(b) Find graphically the rate of the bike if the total time of the
trip was 1 h 40 min. Confirm algebraically.

43. Late Expectations Table 2.20 shows the average num-
ber of remaining years to be lived by U.S. residents surviving
to particular ages.

(a) Draw a scatter plot of these data together with the model

where a is a person’s age and E is the expected years re-
maining in the person’s life.

(b) Use the model to predict how much longer the average
U.S. 74-year-old will live.

E1a2 =

170

a - 58
,

200 m2
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44. Number of Wineries The number of wineries for several
years is given in Table 2.21. Let represent 1970, rep-
resent 1971, and so forth. A model for these data is given by

(a) Graph the model together with a scatter plot of the data.

(b) Use the model to estimate the number of wineries in 2015.

Standardized Test Questions
45. True or False An extraneous solution of a rational equa-

tion is also a solution of the equation. Justify your answer.

46. True or False The equation has no 
solution. Justify your answer.

In Exercises 47–50, solve the problem without using a calculator.

47. Multiple Choice Which of the following are the solu-

tions of the equation 

(A) or 

(B) or 

(C) Only 

(D) Only 

(E) There are no solutions.

48. Multiple Choice Which of the following are the 

solutions of the equation 

(A) or 

(B) or 

(C) or 

(D) Only 

(E) There are no solutions.

x = -3

x = 4x = -3

x = 0x = -3

x = 4x = -2

1 -

3
x

=

6

x2
+ 2x

?

x = 3

x = -2

x = 3x = -1

x = 3x = -2

x -

3x

x + 2
=

6

x + 2
 ?

1/1x2
- 42 = 0

y = 3000 -

39,500

x + 9

x = 1x = 0
49. Multiple Choice Which of the following are the solutions

of the equation 

(A) or 

(B) or 

(C) Only 

(D) Only 

(E) There are no solutions.

50. Multiple Choice Ten liters of a 20% acid solution are
mixed with 30 liters of a 30% acid solution. Which of the fol-
lowing is the percent of acid in the final mixture?

(A) 21% (B) 22.5% (C) 25% (D) 27.5% (E) 28%

Explorations
51. Revisit Example 4 Consider the following equation,

which we solved in Example 4.

Let 

(a) Combine the fractions in but do not reduce to lowest
terms.

(b) What is the domain of ƒ?

(c) Write ƒ as a piecewise-defined function.

(d) Writing to Learn Graph ƒ and explain how the
graph supports your answers in (b) and (c).

Extending the Ideas
In Exercises 52–55, solve for x.

ƒ1x2
ƒ1x2 =

x - 3
x

+

3

x + 2
+

6

x2
+ 2x

.

x - 3
x

+

3

x + 2
+

6

x2
+ 2x

= 0

x = -5

x = 3

x = 5x = -2

x = 3x = -5

x

x + 2
+

2

x - 5
=

14

x2
- 3x - 10

 ?
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Table 2.21 Number of Wineries

Year Number

1980 912
1985 1375
1990 1625
1995 1813

Source: American Vintners Association as reported
in USA TODAY on June 28, 2002.

52. 53.

54. 55. y = 1 +

1

1 +

1

1 - x

y = 1 +

1

1 +

1
x

y = 1 -

1

1 - x
y = 1 +

1

1 + x
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2.8 Solving Inequalities 
in One Variable

What you’ll learn about
• Polynomial Inequalities
• Rational Inequalities
• Other Inequalities
• Applications

... and why
Designing containers as well as
other types of applications often
require that an inequality be
solved.

Polynomial Inequalities
A polynomial inequality takes the form , , , or

, where is a polynomial. There is a fundamental connection between
inequalities and the positive or negative sign of the corresponding expression :

• To solve is to find the values of x that make positive.

• To solve is to find the values of x that make negative.

If the expression is a product, we can determine its sign by determining the sign
of each of its factors. Example 1 illustrates that a polynomial function changes sign
only at its real zeros of odd multiplicity.

ƒ1x2
ƒ1x2ƒ1x2 6 0

ƒ1x2ƒ1x2 7 0

ƒ1x2ƒ1x2ƒ1x2 Z 0
ƒ1x2 … 0ƒ1x2 6 0ƒ1x2 Ú 0ƒ1x2 7 0

[–4, 6] by [–100, 200]

FIGURE 2.64 The graph of
.

(Example 1)
ƒ1x2 = 1x + 321x2

+ 121x - 422

EXAMPLE 1  Finding Where a Polynomial Is Zero, 
Positive, or Negative

Let Determine the real number values of x that
cause to be (a) zero, (b) positive, (c) negative.

SOLUTION We begin by verbalizing our analysis of the problem:

(a) The real zeros of are (with multiplicity 1) and 4 (with multiplicity 2).
So is zero if or 

(b) The factor is positive for all real numbers x. The factor is 
positive for all real numbers x except , which makes 
The factor is positive if and only if . So is positive if

and 

(c) By process of elimination, is negative if .

This verbal reasoning process is aided by the following sign chart, which shows the
x-axis as a number line with the real zeros displayed as the locations of potential sign
change and the factors displayed with their sign value in the corresponding interval:

x 6 -3ƒ1x2
x Z 4.x 7 -3

ƒ1x2x 7 -3x + 3
1x - 422 = 0.x = 4
1x - 422x2

+ 1

x = 4.x = -3ƒ1x2 -3ƒ1x2

ƒ1x2ƒ1x2 = 1x + 321x2
+ 121x - 422.

Figure 2.64 supports our findings because the graph of ƒ is above the x-axis for x in
or , is on the x-axis for or , and is below the x-axis for

x in Now try Exercise 1.1- q , -32. x = 4x = -314, q21-3, 42

Negative Positive Positive
x

4-3

1+21+21+221+21+21-221-21+21-22

Our work in Example 1 allows us to report the solutions of four polynomial inequalities:

• The solution of is 

• The solution of is 

• The solution of is 

• The solution of is 

Example 1 illustrates some important general characteristics of polynomial functions and
polynomial inequalities. The polynomial function in
Example 1 and Figure 2.64—

• changes sign at its real zero of odd multiplicity ;1x = -32
ƒ1x2 = 1x + 321x2

+ 121x - 422
1- q , -34 ´ 546.1x + 321x2

+ 121x - 422 … 0

1- q , -32.1x + 321x2
+ 121x - 422 6 0

3-3, q2.1x + 321x2
+ 121x - 422 Ú 0

1-3, 42 ´ 14, q2.1x + 321x2
+ 121x - 4)2

7 0
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SECTION 2.8 Solving Inequalities in One Variable 237

• touches the x-axis but does not change sign at its real zero of even multiplicity
;

• has no x-intercepts or sign changes at its nonreal complex zeros associated with the
irreducible quadratic factor 

This is consistent with what we learned about the relationships between zeros and
graphs of polynomial functions in Sections 2.3–2.5. The real zeros and their multiplic-
ity together with the end behavior of a polynomial function give us sufficient informa-
tion about the polynomial to sketch its graph well enough to obtain a correct sign chart,
as shown in Figure 2.65.

1x2
+ 12.

1x = 42

x
–3 4Negative due to

end behavior
Positive due to
multiplicity of

zeros

Positive due to
end behavior

Odd multiplicity:
Sign change

Even multiplicity:
No sign change

FIGURE 2.65 The sign chart and graph of overlaid.ƒ1x2 = 1x + 321x2
+ 121x - 422

So far in this section all of the polynomials have been presented in factored form and
all of the inequalities have had zero on one of the sides. Examples 2 and 3 show us how
to solve polynomial inequalities when they are not given in such a convenient form.

EXAMPLE 2  Solving a Polynomial Inequality Analytically
Solve analytically.

SOLUTION Let The Rational Zeros Theorem
yields several possible rational zeros of ƒ for factoring purposes:

A table or graph of ƒ can suggest which of these candidates to try. In this case, 
is a rational zero of ƒ, as the following synthetic division shows:

4 2 24

8 4

2 1 0

(continued)

-6

-24

-10-7

x = 4

�1, �2, �3, �4, �6, �8, �12, �24, �
1

2
, �

3

2

ƒ1x2 = 2x3
- 7x2

- 10x + 24.

2x3
- 7x2

- 10x + 24 7 0

Worth Trying
You may wish to make a table or graph for the
function ƒ in Example 2 to support the analytical
approach used.

EXPLORATION 1 Sketching a Graph of a Polynomial 
from Its Sign Chart

Use your knowledge of end behavior and multiplicity of real zeros to create a

sign chart and sketch the graph of the function. Check your sign chart using the

factor method of Example 1. Then check your sketch using a grapher.

1.

2.

3. ƒ1x2 = 31x - 2221x + 4231-x2
- 22

ƒ1x2 = -1x + 2241x + 1212x2
+ x + 12

ƒ1x2 = 21x - 2231x + 322
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When a polynomial function has no sign changes, the solutions of the associated in-
equalities can look a bit unusual, as illustrated in Example 4.

The synthetic division lets us start the factoring process, which can then be com-
pleted using basic factoring methods:

So the zeros of ƒ are 4, 3/2, and . They are all real and all of multiplicity 1, so
each will yield a sign change in . Because the degree of ƒ is odd and its leading
coefficient is positive, the end behavior of ƒ is given by

and

Our analysis yields the following sign chart:

lim
x: -q

 ƒ1x2 = - q .lim
x: q

 ƒ1x2 = q

ƒ1x2-2

 = (x - 4212x - 321x + 22
 = 1x - 4212x2

+ x - 62
 ƒ1x2 = 2x3

- 7x2
- 10x + 24

Sign Sign Sign
change change change

Negative due to Positive Negative Positive due to
x

end behavior
3/2 4

end behavior
-2

The solution of is 
Now try Exercise 11.

1-2, 3/22 ´ 14, q2.2x3
- 7x2

- 10x + 24 7 0

EXAMPLE 3  Solving a Polynomial Inequality Graphically
Solve graphically.

SOLUTION First we rewrite the inequality as . Then
we let and find the real zeros of ƒ graphically as shown
in Figure 2.66. The three real zeros are approximately 0.32, 1.46, and 4.21. The solu-
tion consists of the x-values for which the graph is on or below the x-axis. So the 
solution of is approximately 

The end points of these intervals are accurate to two decimal places. We use square
brackets because the zeros of the polynomial are solutions of the inequality even
though we only have approximations of their values. Now try Exercise 13.

1- q , 0.324 ´ 31.46, 4.214.x3
- 6x2

… 2 - 8x

ƒ1x2 = x3
- 6x2

+ 8x - 2
x3

- 6x2
+ 8x - 2 … 0

x3
- 6x2

… 2 - 8x

[–2, 5] by [–8, 8]

Zero
X=.32486913 Y=0

FIGURE 2.66 The graph of
, with one of

three real zeros highlighted. (Example 3)
ƒ1x2 = x3

- 6x2
+ 8x - 2

EXAMPLE 4  Solving a Polynomial Inequality with 
Unusual Answers

(a) The inequalities associated with the strictly positive polynomial function
have unusual solution sets. We use Figure 2.67a as

a guide to solving the inequalities:

• The solution of is , all real numbers.

• The solution of is also .

• The solution set of is empty. We say an inequality of
this sort has no solution.

• The solution set of is also empty, so the inequality
has no solution.

1x2
+ 7212x2

+ 12 … 0

1x2
+ 7212x2

+ 12 6 0

1- q , q21x2
+ 7212x2

+ 12 Ú 0

1- q , q21x2
+ 7212x2

+ 12 7 0

ƒ1x2 = (x2
+ 7212x2

+ 12

238 CHAPTER 2 Polynomial, Power, and Rational Functions
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SECTION 2.8 Solving Inequalities in One Variable 239

Rational Inequalities
A polynomial function is positive, negative, or zero for all real numbers x, but
a rational function can be positive, negative, zero, or undefined. In particular, 
a rational function is undefined at the zeros of its denominator. Thus when solving 
rational inequalities we modify the kind of sign chart used in Example 1 to include the
real zeros of both the numerator and the denominator as locations of potential 
sign change.

r1x2p1x2

[–4.7, 4.7] by [–20, 100]

(a)

[–4.7, 4.7] by [–20, 100]

(b)

FIGURE 2.67 The graphs of 
(a) and 
(b) 
(Example 4)

g1x2 = 1x2
- 3x + 3212x + 522.

ƒ1x2 = 1x2
+ 7212x2

+ 12

(b) The inequalities associated with the nonnegative polynomial function 
also have unusual solution sets. We use Figure 2.67b

as a guide to solving the inequalities:

• The solution of is ,
all real numbers except , the lone real zero of g.

• The solution of is , all real numbers.

• The inequality has no solution.

• The solution of is the single number
Now try Exercise 21.x = -5/2.

1x2
- 3x + 3212x + 522 … 0

1x2
- 3x + 3212x + 522 6 0

1- q , q21x2
- 3x + 3212x + 522 Ú 0

x = -5/2
1- q , -5/22 ´ 1-5/2, q21x2

- 3x + 3212x + 522 7 0

1x2
- 3x + 3212x + 522

g1x2 =

EXAMPLE 5  Creating a Sign Chart for a Rational Function
Let Determine the real number values of x that
cause to be (a) zero, (b) undefined. Then make a sign chart to determine the real
number values of x that cause to be (c) positive, (d) negative.

SOLUTION

(a) The real zeros of are the real zeros of the numerator So is zero
if 

(b) is undefined when the denominator So is unde-
fined if or 

These findings lead to the following sign chart, with three points of potential sign
change:

x = 1.x = -3
r1x21x + 321x - 12 = 0.r1x2

x = -1/2.
r1x22x + 1.r1x2

r1x2r1x2r1x2 = 12x + 12/11x + 321x - 122.

Analyzing the factors of the numerator and denominator yields:

(c) So is positive if or , and the solution of
is 

(d) Similarly, is negative if , and the solution of
is .

Figure 2.68 supports our findings because the graph of r is above the x-axis for x in
and is below the x-axis for x in 

Now try Exercise 25.
1- q , -32 ´ 1-1/2, 12.1-3, -1/22 ´ 11, q2

1- q , -32 ´ 1-1/2, 1212x + 12/11x + 321x - 122 6 0
x 6 -3 or -1/2 6 x 6 1r1x2

1-3, -1/22 ´ 11, q2.12x + 12/11x + 321x - 122 7 0
x 7 1-3 6 x 6 -1/2r1x2

Potential Potential Potential
sign change sign change sign change

1
x

-1/2-3

und. 0 und.

Negative Positive Negative 1 Positive
x

-1/2-3

1+2
1+21+2

1+2
1+21-2

1-2
1+21-2

1-2
1-21-2

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 2.68 The graph of

(Example 5)
r1x2 = 12x + 12/11x + 321x - 122.
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Other Inequalities
The sign chart method can be adapted to solve other types of inequalities, and we can
support our solutions graphically as needed or desired.

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 2.69 The graph of
(Example 7)ƒ1x2 = 1x - 321x + 1.

[–7, 7] by [–8, 2]

FIGURE 2.70 The graph of
(Example 8)ƒ1x2 = 1x - 32/ ƒx + 3 ƒ .

EXAMPLE 6  Solving a Rational Inequality 
by Combining Fractions

Solve 

SOLUTION We combine the two fractions on the left-hand side of the inequality
using the least common denominator 

Original inequality

Use LCD to rewrite fractions.

Add fractions. 

Distributive property

Simplify.

Divide both sides by 4.

This inequality matches Example 5d. The solution is .
Now try Exercise 49.

1- q , -32 ´ 1-1/2, 12
 

2x + 1

1x + 321x - 12 6 0

 
8x + 4

1x + 321x - 12 6 0

 
5x - 5 + 3x + 9

1x + 321x - 12 6 0

 
51x - 12 + 31x + 32
1x + 321x - 12 6 0

 
51x - 12

1x + 321x - 12 +

31x + 32
1x + 321x - 12 6 0

 
5

x + 3
+

3

x - 1
6 0

1x + 321x - 12:

5

x + 3
+

3

x - 1
6 0.

EXAMPLE 7  Solving an Inequality Involving a Radical
Solve 

SOLUTION Let Because of the factor , 
is undefined if The zeros of ƒ are 3 and These findings, along with a
sign analysis of the two factors, lead to the following sign chart:

-1.x 6 -1.
ƒ1x21x + 1ƒ1x2 = 1x - 321x + 1.

1x - 321x + 1 Ú 0.

The solution of is The graph of ƒ in 
Figure 2.69 supports this solution. Now try Exercise 43.

5-16 ´ 33, q2.1x - 321x + 1 Ú 0

0 0

Undefined Negative
3

Positive
x

-1

1+21+21-21+2

EXAMPLE 8  Solving an Inequality Involving Absolute Value

Solve 

SOLUTION Let Because is in the denominator,
is undefined if The only zero of ƒ is 2. These findings, along with a

sign analysis of the two factors, lead to the following sign chart:
x = -3.ƒ1x2 ƒx + 3 ƒƒ1x2 = 1x - 22/ ƒx + 3 ƒ .

x - 2

ƒx + 3 ƒ

… 0.

The solution of is . The graph of ƒ in
Figure 2.70 supports this solution. Now try Exercise 53.

1- q , -32 ´ 1-3, 241x - 22/ ƒx + 3 ƒ … 0

und. 0

Negative Negative
2

Positive
x

-3

1+2
ƒ + ƒ

1-2
ƒ + ƒ

1-2
ƒ - ƒ
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Applications

[0, 10] by [0, 1000]

Intersection
X=1.658749 Y=600

FIGURE 2.71 The graphs of
and 

(Example 9)
y2 = 600.y1 = x125 - 2x2120 - 2x2

[0, 20] by [0, 3000]

FIGURE 2.72 The graphs of
and (Exam-

ple 10)
y2 = 1000.y1 = 2px2

+ 4000/x

EXAMPLE 9  Designing a Box—Revisited
Dixie Packaging Company has contracted with another firm to design boxes with a vol-
ume of at least 600 . Squares are still to be cut from the corners of a 20-in. by 25-in.
piece of cardboard, with the flaps folded up to make an open box. What size squares
should be cut from the cardboard? (See Example 9 of Section 2.3 and Figure 2.31.)

SOLUTION

Model
Recall that the volume V of the box is given by

where x represents both the side length of the removed squares and the height of the
box. To obtain a volume of at least , we solve the inequality

Solve Graphically
Because the width of the cardboard is 20 in., , and we set our window
accordingly. In Figure 2.71, we find the values of x for which the cubic function is on
or above the horizontal line. The solution is the interval .

Interpret
Squares with side lengths between 1.66 in. and 6.16 in., inclusive, should be cut from
the cardboard to produce a box with a volume of at least .

Now try Exercise 59.
600 in.3

31.66, 6.164
0 … x … 10

x125 - 2x2120 - 2x2 Ú 600.

600 in.3

V1x2 = x125 - 2x2120 - 2x2,

in.3

EXAMPLE 10  Designing a Juice Can—Revisited
Stewart Cannery will package tomato juice in 2-liter cylindrical cans.
Find the radius and height of the cans if the cans have a surface area that is less than

. (See Example 7 of Section 2.7 and Figure 2.63.)

SOLUTION

Model
Recall that the surface area S is given by

The inequality to be solved is

Solve Graphically
Figure 2.72 shows the graphs of and 
Using grapher methods we find that the two curves intersect at approximately

and (We carry all the extra decimal places for greater 
accuracy in a computation below.) So the surface area is less than if

The volume of a cylindrical can is and Using substitution we
see that To find the values for h we build a double inequality for

(continued)

2000/1pr 22.
h = 2000/1pr 22. V = 2000.V = pr 2h

4.62 6 r 6 9.65.

1000 cm3
r L 9.654. Ár L 4.619 Á

y2 = 1000.y1 = S1r2 = 2pr 2
+ 4000/r

2pr 2
+

4000
r

6 1000.

S1r2 = 2pr 2
+

4000
r

.

1000 cm2

12000 cm32
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Original inequality

Multiply by .

Multiply by 2000.

Use the extra decimal places now.

Compute.

Interpret
The surface area of the can will be less than if its radius is between 4.62 cm
and 9.65 cm and its height is between 6.83 cm and 29.83 cm. For any particular can,
h must equal Now try Exercise 61.2000/1pr 22.

1000 cm3

 29.83 7 h  7 6.83

 
2000

p14.619 Á 22 7 h  7

2000

p19.654 Á 22

 
2000

p # 4.622 7

2000

pr 2  7

2000

p # 9.652

0 6 a 6 b Q 1
a

7

1
b

. 
1

p # 4.622 7

1

pr 2  7

1

p # 9.652

p p # 4.622
6 pr 2   

6 p # 9.652

0 6 a 6 b Q a2
6 b2. 4.622

6 r 2  
6 9.652

 4.62 6 r  6 9.65

QUICK REVIEW 2.8 (For help, go to Sections A.2, A.3, and 2.3.)

  

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, use limits to state the end behavior of the function.

1.

2.

3.

4.  g1x2 =

2x2
- 3x + 1

x + 1

 g1x2 =

x3
- 2x2

+ 1

x - 2

ƒ1x2 = -3x4
- 3x3

+ x2
- 1

ƒ1x2 = 2x3
+ 3x2

- 2x + 1

In Exercises 5–8, combine the fractions and reduce your answer to
lowest terms.

5. 6.

7. 8.

In Exercises 9 and 10, (a) list all the possible rational zeros of the
polynomial and (b) factor the polynomial completely.

9. 10. 3x3
- x2

- 10x + 82x3
+ x2

- 4x - 3

x

x - 1
+

x + 1

3x - 4

x

2x + 1
-

2

x - 3

x2
-

3
x

x2
+

5
x

SECTION 2.8 EXERCISES

In Exercises 1–6, determine the x values that cause the polynomial
function to be (a) zero, (b) positive, and (c) negative.

1.

2.

3.

4.

5.

6.

In Exercises 7–12, complete the factoring if needed, and solve the poly-
nomial inequality using a sign chart. Support graphically.

7.

8.

9. 1x + 121x2
- 3x + 22 6 0

12x + 121x - 2213x - 42 … 0

1x + 121x - 322 7 0

ƒ1x2 = 1x + 22314x2
+ 121x - 924

ƒ1x2 = 12x2
+ 521x - 8221x + 123

ƒ1x2 = 15x + 321x2
+ 621x - 12

ƒ1x2 = 1x + 721x + 421x - 6)2

ƒ1x2 = 1x - 7213x + 121x + 42
ƒ1x2 = 1x + 221x + 121x - 52

10.

11.

12.

In Exercises 13–20, solve the polynomial inequality graphically.

13.

14.

15.

16.

17.

18.

19.

20. 3x4
- 5x3

- 12x2
+ 12x + 16 Ú 0

2x4
- 3x3

- 6x2
+ 5x + 6 6 0

-x3
- 3x2

- 9x + 4 6 0

3x3
- 2x2

- x + 6 Ú 0

x3
- 4x2

- x + 4 … 0

2x3
- 5x2

- x + 6 7 0

2x3
- 5x2

+ 3x 6 0

x3
- x2

- 2x Ú 0

x3
- 4x2

+ x + 6 … 0

2x3
- 3x2

- 11x + 6 Ú 0

12x - 721x2
- 4x + 42 7 0
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In Exercises 21–24, solve the following inequalities for the given func-
tion .

(a) (b) (c) (d)

21.

22.

23.

24.

In Exercises 25–32, determine the real values of x that cause the func-
tion to be (a) zero, (b) undefined, (c) positive, and (d) negative.

25.

26.

27. 28.

29.

30.

31.

32.

In Exercises 33–44, solve the inequality using a sign chart. Support
graphically.

ƒ1x2 =

3x - 1

1x + 321x - 5

ƒ1x2 =

12x + 521x - 3

1x - 422

ƒ1x2 =

x - 1

1x - 421x + 2

ƒ1x2 =

1x + 5

12x + 121x - 12

ƒ1x2 = x2 
ƒ2x + 9 ƒƒ1x2 = x1x + 3

ƒ1x2 =

12x - 721x + 12
1x + 52

ƒ1x2 =

x - 1

112x + 321x - 422

ƒ1x2 = 1x2
+ 4213 - 2x22

ƒ1x2 = 12x2
- 2x + 5213x - 422

ƒ1x2 = 1x2
+ 121-2 - 3x22

ƒ1x2 = 1x2
+ 4212x2

+ 32
ƒ1x2 … 0ƒ1x2 6 0ƒ1x2 Ú 0ƒ1x2 7 0

ƒ1x2

51. 52.

53. 54.
x21x - 423
1x + 1

6 0
1x - 52 ƒx - 2 ƒ

12x - 3
Ú 0

13x + 522 ƒx - 2 ƒ 6 01x + 32 ƒx - 1 ƒ Ú 0

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44. 13x - 4212x + 1 Ú 012x - 121x + 4 6 0

x - 3

ƒx + 2 ƒ

6 0x ƒx - 2 ƒ 7 0

x3
- 4x

x2
+ 2

… 0
x3

- x

x2
+ 1

Ú 0

x2
+ 3x - 10

x2
- 6x + 9

6 0
x2

+ x - 12

x2
- 4x + 4

7 0

x2
- 4

x2
+ 4

7 0
x2

- 1

x2
+ 1

… 0

x + 2

x2
- 9

6 0
x - 1

x2
- 4

6 0

In Exercises 45–54, solve the inequality.

45. 46.

47. 48.

49. 50.
1

x + 2
-

2

x - 1
7 0

1

x + 1
+

1

x - 3
… 0

x2
+

4
x

Ú 0x2
-

2
x

7 0

1x - 524
x1x + 32 Ú 0

x31x - 22
1x + 322 6 0

(a)

4 in.
4 in.

sector

x

h

r

(b)

61. Design a Juice Can Flannery Cannery packs peaches 
in 0.5-L cylindrical cans.

(a) Express the surface area S of the can as a function of the 
radius x (in cm).

(b) Find the dimensions of the can if the surface is less than 
900 .

(c) Find the least possible surface area of the can.

cm2

55. Writing to Learn Write a paragraph that explains two
ways to solve the inequality .

56. Company Wages Pederson Electric charges $25 per ser-
vice call plus $18 per hour for repair work. How long did an
electrician work if the charge was less than $100? Assume the
electrician rounds the time to the nearest quarter hour.

57. Connecting Algebra and Geometry Consider the
collection of all rectangles that have lengths 2 in. less than twice
their widths. Find the possible widths (in inches) of these rectan-
gles if their perimeters are less than 200 in.

58. Planning for Profit The Grovenor Candy Co. finds
that the cost of making a certain candy bar is $0.13 per bar.
Fixed costs amount to $2000 per week. If each bar sells for
$0.35, find the minimum number of candy bars that will earn
the company a profit.

59. Designing a Cardboard Box
Picaro’s Packaging Plant wishes to design
boxes with a volume of not more than
100 . Squares are to be cut from the
corners of a 12-in. by 15-in. piece of card-
board (see figure), with the flaps folded
up to make an open box. What size squares
should be cut from the cardboard?

60. Cone Problem Beginning with a circular piece of paper
with a 4-inch radius, as shown in (a), cut out a sector with an
arc of length x. Join the two radial edges of the remaining por-
tion of the paper to form a cone with radius r and height h, as
shown in (b). What length of arc will produce a cone with a
volume greater than 21 ?in.3

in.3

31x - 12 + 2 … 5x + 6

12 in.

15 in.

x
x

Design Engineering

0

1000

2000

3000

5 10
Radius

Su
rf

ac
e 

ar
ea

15
x

S
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62. Resistors The total electrical resistance R of two resistors
connected in parallel with resistances and is given by

One resistor has a resistance of 2.3 ohms. Let x be the resis-
tance of the second resistor.

(a) Express the total resistance R as a function of x.

(b) Find the resistance in the second resistor if the total resis-
tance of the pair is at least 1.7 ohms.

63. The Growing of America Table 2.22 shows the
midyear (July 1) U.S. population estimates in millions of per-
sons for the years 2001 through 2008. Let x be the number of
years since July 1, 2000.

1

R
=

1

R1
+

1

R2
.

R2R1
66. True or False The graph 

changes sign at . Justify your answer.

In Exercises 67–70, solve the problem without using a calculator.

67. Multiple Choice Which of the following is the solution
to 

(A) (B) (C)

(D) (E)

68. Multiple Choice Which of the following is the solution to

(A) (B) All (C) All 

(D) All real numbers (E) There are no solutions.

69. Multiple Choice Which of the following is the solution to

(A) (B) (C)

(D) (E) There are no solutions.

70. Multiple Choice Which of the following is the solution
to 

(A) (B) (C)

(D) (E) There are no solutions.

Explorations
In Exercises 71 and 72, find the vertical asymptotes and intercepts of
the rational function. Then use a sign chart and a table of values to
sketch the function by hand. Support your result using a grapher. 
(Hint: You may need to graph the function in more than one window 
to see different parts of the overall graph.)

71. 72.

Extending the Ideas
73. Group Activity Looking Ahead to Calculus

Let .

(a) Assume x is in the interval defined by . Give
a convincing argument that .

(b) Writing to Learn Explain how (a) is modeled by
the figure below.

(c) Show how the algebra used in (a) can be modified to show
that if , then . How
would the figure below change to reflect these inequalities?

ƒƒ1x2 - 4 ƒ 6 0.03ƒx - 3 ƒ 6 0.01

ƒƒ1x2 - 4 ƒ 6 1
ƒx - 3 ƒ 6 1/3

ƒ1x2 = 3x - 5

g1x2 =

1x - 324
x2

+ 4x
ƒ1x2 =

1x - 121x + 222
1x - 321x + 12

30, 14
3-1, 145165-1, 16

1x2
- 122 … 0?

1- q , 02 ´ 10, 32
1- q , 04 ´ 10, 321- q , 341- q , 32

x2

x - 3
6 0?

x Z 2x Z -21-2, q2

1

1x + 222 Ú 0?

1- q , 02 ´ 11, q21- q , 12
10, 1211, q210, q2

x2
6 x?

x = -2

r1x2 =

2x - 1

1x + 221x - 12

Table 2.23 Median Sales Price of a New House

Year Price (dollars)

2003 195,000
2004 221,000
2005 240,900
2006 246,500
2007 247,900
2008 232,100

Source: U.S. Census Bureau, www.census.gov (June 2009)

(a) Find the linear regression model for the U.S. population in
millions since the middle of 2000.

(b) Use the model to predict when the U.S. population will
reach 315 million.

64. Single-Family House Cost
The midyear median sales prices of
new, privately owned one-family
houses sold in the United States 
are given for selected years in
Table 2.23. Let x be the number 
of years since July 1, 2000.

(a) Find the quadratic regression model for the data.

(b) Use the model to predict when the median cost of a new
home returned to $200,000.

Table 2.22 U.S. Population (in millions)

Year Population

2001 285.0
2002 287.7
2003 290.2
2004 292.9
2005 295.6
2006 298.4
2007 301.3
2008 304.1

Source: U.S. Census Bureau, www.census.gov (June 2009).
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7

3
2
1

–1
–2

y

4
5
6

x
–2–3 –1 2 5431

f(x) = 3x – 5

Standardized Test Questions
65. True or False The graph of 

changes sign at . Justify your answer.x = 0
ƒ1x2 = x41x + 3221x - 123
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74. Writing to Learn Boolean Operators The Test
menu of many graphers contains inequality symbols that can
be used to construct inequality statements, as shown in (a). An
answer of 1 indicates the statement is true, and 0 indicates the
statement is false. In (b), the graph of is
shown using Dot mode and the window by

. Experiment with the Test menu, and then write a
paragraph explaining how to interpret the graph in(b).
3-3.1, 3.14

3-4.7, 4.74
Y1 = 1x2

- 4 Ú 02

3≥2

7≥7

4≥9

N

1

1

0

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

In Exercises 75 and 76, use the properties of inequality from Chapter P
to prove the statement.

75. If , then .

76. If , then .
1
a

7

1

b
0 6 a 6 b

a2
6 b20 6 a 6 b

CHAPTER 2 Key Ideas

Properties, Theorems, and Formulas
Properties of the Correlation Coefficient, r 162
Vertex Form of a Quadratic Function 165
Vertical Free-Fall Motion 167
Local Extrema and Zeros of Polynomial 

Functions 187
Leading Term Test for Polynomial End Behavior 188
Zeros of Odd and Even Multiplicity 190
Intermediate Value Theorem 190
Division Algorithm for Polynomials 197
Remainder Theorem 198
Factor Theorem 199
Fundamental Connections for Polynomial 

Functions 199

Gallery of Functions

Rational Zeros Theorem 201
Upper and Lower Bound Test for Real Zeros 202
Fundamental Theorem of Algebra 210
Linear Factorization Theorem 210
Fundamental Polynomial Connections in the Complex 

Case 211
Complex Conjugate Zeros Theorem 211
Factors of a Polynomial with Real Coefficients 214
Polynomial Function of Odd Degree 214
Graph of a Rational Function 221

Procedures
Regression Analysis 163
Polynomial Long Division 197
Synthetic Division Example 3 200–201
Solving Inequalities Using Sign Charts 236, 237

[–4.7, 4.7] by [–1, 5]

Squaring

[–4.7, 4.7] by [–3.1, 3.1]

Cubing

[–4.7, 4.7] by [–3.1, 3.1]

Reciprocal

[–4.7, 4.7] by [–3.1, 3.1]

Identity

ƒ1x2 = x ƒ1x2 = x2 ƒ1x2 = x3 ƒ1x2 = 1/x = x -1

[–4.7, 4.7] by [–3.1, 3.1]

Square Root 

[–4.7, 4.7] by [–3.1, 3.1]

Cube Root

[–4.7, 4.7] by [–3.1, 3.1]

Inverse-Square

ƒ1x2 = 1x = x1/2 ƒ1x2 = 23 x = x1/3 ƒ1x2 = 1/x2
= x -2
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[–4, 8] by [–4, 10]

(3, –2)

(5, 0)

[–10, 5] by [–8, 8]

(–4, 5)

(0, –3)
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CHAPTER 2 Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1 and 2, write an equation for the linear function ƒ satis-
fying the given conditions. Graph .

1. and 

2. and 

In Exercises 3 and 4, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and
support your answer with a grapher.

3.

4.

In Exercises 5–8, find the vertex and axis of the graph of the function.
Support your answer graphically.

5.

6.

7.

8.

In Exercises 9 and 10, write an equation for the quadratic function
whose graph contains the given vertex and point.

9. Vertex , point 

10. Vertex , point 

In Exercises 11 and 12, write an equation for the quadratic function
with graph shown, given one of the labeled points is the vertex of the
parabola.

11. 12.

13, -221-1, 12
11, 221-2, -32

g1x2 = 3x2
- 6x + 2

ƒ1x2 = -2x2
- 16x - 31

g1x2 = 41x - 522 - 7

ƒ1x2 = -21x + 322 + 5

g1x2 = -1x + 322 + 1

h1x2 = 31x - 222 + 4

ƒ1x2 = x2

ƒ112 = -2ƒ1-32 = 6

ƒ142 = -9ƒ1-32 = -2

y = ƒ1x2

In Exercises 13–16, graph the function in a viewing window that
shows all of its extrema and x-intercepts.

13. 14.

15. 16.

In Exercises 17 and 18, write the statement as a power function equa-
tion. Let k be the constant of variation.

17. The surface area S of a sphere varies directly as the square of
the radius r.

18. The force of gravity F acting on an object is inversely propor-
tional to the square of the distance d from the object to the
center of the earth.

ƒ1x2 = x3
- x2

- 20x - 2ƒ1x2 = x3
+ x2

+ x + 5

ƒ1x2 = -8x2
+ 16x - 19ƒ1x2 = x2

+ 3x - 40

In Exercises 19 and 20, write a sentence that expresses the 
relationship in the formula, using the language of variation or 
proportion.

19. , where F is the force it takes to stretch a spring x units
from its unstressed length and k is the spring’s force constant.

20. , where A and r are the area and radius of a circle
and is the usual mathematical constant.

In Exercises 21–24, state the values of the constants k and a for the
function . Describe the portion of the curve that lies in
Quadrant I or IV. Determine whether ƒ is even, odd, or undefined for

. Describe the rest of the curve if any. Graph the function to see
whether it matches the description.

21. 22.

23. 24.

In Exercises 25–28, divide by , and write a summary state-
ment in polynomial form.

25.

26.

27.

28.

In Exercises 29 and 30, use the Remainder Theorem to find the re-
mainder when is divided by . Check by using synthetic di-
vision.

29.

30.

In Exercises 31 and 32, use the Factor Theorem to determine whether
the first polynomial is a factor of the second polynomial.

31.

32.

In Exercises 33 and 34, use synthetic division to prove that the num-
ber k is an upper bound for the real zeros of the function ƒ.

33.

34.

In Exercises 35 and 36, use synthetic division to prove that the num-
ber k is a lower bound for the real zeros of the function ƒ.

35.

36.

In Exercises 37 and 38, use the Rational Zeros Theorem to write a list
of all potential rational zeros. Then determine which ones, if any, are
zeros.

37.

38. ƒ1x2 = 6x3
- 20x2

+ 11x + 7

ƒ1x2 = 2x4
- x3

- 4x2
- x - 6

k = -3; ƒ1x2 = 2x3
+ 6x2

+ x - 6

k = -3; ƒ1x2 = 4x4
+ 4x3

- 15x2
- 17x - 2

k = 4; ƒ1x2 = 4x4
- 16x3

+ 8x2
+ 16x - 12

k = 5; ƒ1x2 = x3
- 5x2

+ 3x + 4

x + 3; x3
+ 2x2

- 4x - 2

x - 2; x3
- 4x2

+ 8x - 8

ƒ1x2 = -x2
+ 4x - 5; k = 3

ƒ1x2 = 3x3
- 2x2

+ x - 5; k = -2

x - kƒ1x2

ƒ1x2 = 3x4
- 5x3

- 2x2
+ 3x - 6; d1x2 = 3x + 1

ƒ1x2 = 2x4
- 3x3

+ 9x2
- 14x + 7; d1x2 = x2

+ 4

ƒ1x2 = x4
+ 3x3

+ x2
- 3x + 3; d1x2 = x + 2

ƒ1x2 = 2x3
- 7x2

+ 4x - 5; d1x2 = x - 3

d1x2ƒ1x2
ƒ1x2 = 12/32x -4ƒ1x2 = -2x -3

ƒ1x2 = -2x3/4ƒ1x2 = 4x1/3

x 6 0

ƒ1x2 = k # xa

p

A = p # r 2

F = kx
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In Exercises 49–52, find all of the real zeros of the function, finding
exact values whenever possible. Identify each zero as rational or irra-
tional. State the number of nonreal complex zeros.

49.

50.

51.

52.

In Exercises 53–56, find all of the zeros and write a linear factoriza-
tion of the function.

53.

54.

55.

56. , given that is
a zero.

In Exercises 57–60, write the function as a product of linear and irre-
ducible quadratic factors all with real coefficients.

57. ƒ1x2 = x3
- x2

- x - 2

1 + 2iƒ1x2 = x4
- 8x3

+ 27x2
- 50x + 50

ƒ1x2 = 6x4
+ 11x3

- 16x2
- 11x + 10

ƒ1x2 = 5x3
- 24x2

+ x + 12

ƒ1x2 = 2x3
- 9x2

+ 2x + 30

 k(x2 = x4
- x3

- 14x2
+ 24x + 5

 h1x2 = x3
- 2x2

- 8x + 5

 k(t2 = t 4
- 7t 2

+ 12

 ƒ1x2 = x4
- 10x3

+ 23x2

(a) (b)

(c) (d)

58.

59.

60. ƒ1x2 = 3x4
- 7x3

- 3x2
+ 17x + 10

ƒ1x2 = 2x4
- 9x3

+ 23x2
- 31x + 15

ƒ1x2 = 9x3
- 3x2

- 13x - 1

In Exercises 39–42, perform the indicated operation, and write the re-
sult in the form .

39. 40.

41. 42.

In Exercises 43 and 44, solve the equation.

43. 44.

In Exercises 45–48, match the polynomial function with its graph. Ex-
plain your choice.

45. 46.

47. 48. ƒ1x2 = 1x - 225ƒ1x2 = 1x - 224
ƒ1x2 = 1x - 223ƒ1x2 = 1x - 222

x2
- 2x + 4 = 0x2

- 6x + 13 = 0

2-16i29

11 + 2i2211 - 2i2211 + i23
a + bi

In Exercises 61–66, write a polynomial function with real coefficients
whose zeros and their multiplicities include those listed.

61. Degree 3; zeros: 

62. Degree 2; only real zero

63. Degree 4; zeros: 3, , 1/3, 

64. Degree 3; zeros: 

65. Degree 4; zeros: (multiplicity 2), 4(multiplicity 2)-2

1 + i, 2

-1/2-2

-3

15, - 15, 3

66. Degree 3; zeros: 2 - i, -1, and ƒ122 = 6

In Exercises 67 and 68, describe how the graph of the given function
can be obtained by transforming the graph of the reciprocal function

. Identify the horizontal and vertical asymptotes.

67.

68.

In Exercises 69–72, find the asymptotes and intercepts of the function,
and graph it.

69. 70.

71. 72.

In Exercises 73–74, find the intercepts, analyze, and graph the given
rational function.

73.

74. ƒ1x2 =

-x4
+ x2

+ 1

x - 1

ƒ1x2 =

x3
+ x2

- 2x + 5

x + 2

g1x2 =

x2
- 3x - 7

x + 3
ƒ1x2 =

x2
- 4x + 5

x + 3

ƒ1x2 =

2x2
+ 7

x2
+ x - 6

ƒ1x2 =

x2
+ x + 1

x2
- 1

ƒ1x2 =

3x + 5

x + 2

ƒ1x2 =

-x + 7

x - 5

ƒ1x2 = 1/x

In Exercises 75–82, solve the equation or inequality algebraically, and
support graphically.

75.

76.

77.

78.

79.

80.

81.

82.
1x - 12 ƒx - 4 ƒ

1x + 3
7 0

12x - 122 ƒx + 3 ƒ … 0

x2
- 7

x2
- x - 6

6 1

x + 3

x2
- 4

Ú 0

3x4
+ x3

- 36x2
+ 36x + 16 Ú 0

2x3
+ 3x2

- 17x - 30 6 0

x

x + 2
+

5

x - 3
=

25

x2
- x - 6

2x +

12
x

= 11
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(c) What is the greatest amount of vertical deflection s, and
where does it occur? 

(d) Writing to Learn Give a possible scenario explain-
ing why the solution to part (c) does not occur at the
halfway point.

84. Launching a Rock Larry uses a slingshot to launch a
rock straight up from a point 6 ft above level ground with an
initial velocity of 170 ft/sec.

(a) Find an equation that models the height of the rock 
t seconds after it is launched and graph the equation.
(See Example 8 in Section 2.1.)

(b) What is the maximum height of the rock? When will it
reach that height?

(c) When will the rock hit the ground?

85. Volume of a Box Villareal Paper Co. has contracted to
manufacture a box with no top that is to be made by removing
squares of width x from the corners of a 30-in. by 70-in. piece
of cardboard.

(a) Find an equation that models the volume of the box.

(b) Determine x so that the box has a volume of 5800 .

86. Architectural Engineering DeShanna, an engi-
neer at J. P. Cook, Inc., completes structural specifications for 
a 255-ft-long steel beam anchored between two pilings 50 ft
above ground, as shown in the figure. She knows that when a
250-lb object is placed d feet from the west piling, the beam
bends s feet where

(a) Graph the function s.

(b) What are the dimensions of a viewing window that shows
a graph for the values that make sense in this problem 
situation?

s = 18.5 * 10-72d21255 - d2.

in.3

d
s

West East

87. Storage Container A liquid storage container on a
truck is in the shape of a cylinder with hemispheres on each
end as shown in the figure. The cylinder and hemispheres
have the same radius. The total length of the container is 
140 ft.

(a) Determine the volume V of the container as a function of

the radius x.

(b) Graph the function .

(c) What is the radius of the container with the largest possi-
ble volume? What is the volume?

y = V1x2

88. Pell Grants The maximum loan permitted under the
federal student-aid program is given in Table 2.24 for several
years. Let represent 1990, represent 1991, and
so forth.

x = 1x = 0

140

x

x

x

Table 2.24 Maximum Pell Grant

Year Amount (dollars)

1990 2300
1991 2400
1992 2400
1993 2300
1994 2300
1995 2340
1996 2470
1997 2700
1998 3000
1999 3125
2000 3300
2001 3750
2002 4000

Source: U.S. Education Department, as reported in
The Chronicle of Higher Education, February 15,
2002.

248 CHAPTER 2 Polynomial, Power, and Rational Functions

[–5, 5] by [–50, 50]

83. Writing to Learn Determine whether

has a zero outside the viewing window. Explain. (See graph.)

ƒ1x2 = x5
- 10x4

- 3x3
+ 28x2

+ 20x - 2

(a) Find a quadratic regression model for the Pell Grant
amounts, and graph it together with a scatter plot of the
data.

(b) Find a quartic regression model for the Pell Grant
amounts, and graph it together with a scatter plot of the
data.

(c) Use each regression equation to predict the amount of a
Pell Grant in 2006.

(d) Writing to Learn Determine the end behavior of
the two regression models. What does the end behavior
say about future Pell Grant amounts?
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89. National Institutes of Health Spending Table
2.25 shows the spending at the National Institutes of Health
for several years. Let represent 1990, represent
1991, and so forth.

x = 1x = 0

(a) Find the number of deer when t is 15, 70, and 100.

(b) Find the horizontal asymptote of the graph of .

(c) According to the model, what is the largest possible deer
population?

92. Resistors The total electrical resistance R of two resis-
tors connected in parallel with resistances and is given
by

The total resistance is 1.2 ohms. Let .

(a) Express the second resistance as a function of x.

(b) Find if x1 is 3 ohms.

93. Acid Mixture Suppose that x ounces of distilled water
are added to 50 oz of pure acid.

(a) Express the concentration of the new mixture as a
function of x.

(b) Use a graph to determine how much distilled water
should be added to the pure acid to produce a new solu-
tion that is less than 60% acid.

(c) Solve (b) algebraically.

94. Industrial Design Johnson Cannery will pack peaches
in 1-L cylindrical cans. Let x be the radius of the base of the
can in centimeters.

(a) Express the surface area S of the can as a function of x.

(b) Find the radius and height of the can if the surface area is
900 .

(c) What dimensions are possible for the can if the surface
area is to be less than 900 ?

95. Industrial Design Gilman Construction is hired to
build a rectangular tank with a square base and no top. The
tank is to hold 1000 of water. Let x be a length of the base.

(a) Express the outside surface area S of the tank as a func-
tion of x.

(b) Find the length, width, and height of the tank if the out-
side surface area is 600 .

(c) What dimensions are possible for the tank if the outside
surface area is to be less than 600 ?ft2

ft2

ft3

cm2

cm2

C1x2

R2

R2

x = R1

1

R
=

1

R1
+

1

R2
.

R2R1

y = P1t2

Table 2.25 Spending at the National
Institutes of Health

Year Amount (billions)

1993 10.3
1994 11.0
1995 11.3
1996 11.9
1997 12.7
1998 13.6
1999 15.6
2000 17.9
2001 20.5
2002 23.6

Source: National Institutes of Health, as reported in 
The Chronicle of Higher Education, November 26, 1999,
and February 15, 2002.

(a) Find a linear regression model, and graph it together with
a scatter plot of the data.

(b) Find a quadratic regression model, and graph it together
with a scatter plot of the data.

(c) Use the linear and quadratic regression models to estimate
when the amount of spending will exceed $30 billion.

90. Breaking Even Midtown Sporting Goods has deter-
mined that it needs to sell its soccer shinguards for $5.25 a
pair in order to be competitive. It costs $4.32 to produce each
pair of shinguards, and the weekly overhead cost is $4000.

(a) Express the average cost that includes the overhead of
producing one shinguard as a function of the number x of
shinguards produced each week.

(b) Solve algebraically to find the number of shinguards that
must be sold each week to make $8000 in profit. Support
your work graphically.

91. Deer Population The number of deer P at any time
t (in years) in a federal game reserve is given by

P1t2 =

800 + 640t

20 + 0.8t
.

6965_CH02_pp157-250.qxd  1/14/10  1:14 PM  Page 249



CHAPTER 2 Project
Modeling the Height of a Bouncing Ball
When a ball is bouncing up and down on a flat surface, its
height with respect to time can be modeled using a quadratic
function. One form of a quadratic function is the vertex form:

In this equation, y represents the height of the ball and x rep-
resents the elapsed time. For this project, you will use a mo-
tion detection device to collect distance and time data for a
bouncing ball, then find a mathematical model that describes
the position of the ball with respect to time.

The table shows sample data collected using a Calculator
Based Ranger (CBR™).

y = a1x - h22 + k

Explorations
1. If you collected motion data using a CBL™ or CBR™, a

plot of height versus time or distance versus time should 
be shown on your grapher or computer screen. Either plot
will work for this project. If you do not have access to a
CBL or CBR, enter the data from the table provided into
your grapher or computer. Create a scatter plot for the data.

2. Find values for a, h, and k so that the equation
fits one of the bounces contained in

the data plot. Approximate the vertex from your
data plot and solve for the value of a algebraically.

3. Change the values of a, h, and k in the model found
above and observe how the graph of the function is af-
fected on your grapher or computer. Generalize how each
of these changes affects the graph.

4. Expand the equation you found in #2 above so that it is in
the standard quadratic form: .

5. Use your grapher or computer to select the data from 
the bounce you modeled above and then use quadratic
regression to find a model for this data set. (See your
grapher’s guidebook for instructions on how to do this.)
How does this model compare with the standard qua-
dratic form found in #4?

6. Complete the square to transform the regression model to
the vertex form of a quadratic, and compare it to the orig-
inal vertex model found in #2. (Round the values of a, b,
and c to the nearest 0.001 before completing the square if
desired.)

y = ax2
+ bx + c

1h, k2y = a1x - h22 + k

Total Height Total Height
Elapsed Time of the Ball Elapsed Time of the Ball

(sec) (m) (sec) (m)

0.688 0 1.118 0.828
0.731 0.155 1.161 0.811
0.774 0.309 1.204 0.776
0.817 0.441 1.247 0.721
0.860 0.553 1.290 0.650
0.903 0.643 1.333 0.563
0.946 0.716 1.376 0.452
0.989 0.773 1.419 0.322
1.032 0.809 1.462 0.169
1.075 0.828

250 CHAPTER 2 Polynomial, Power, and Rational Functions

6965_CH02_pp157-250.qxd  1/22/10  2:20 PM  Page 250



251

Exponential, Logistic, and
Logarithmic Functions

The loudness of a sound we hear is based on the intensity of the associ-
ated sound wave. This sound intensity is the energy per unit time of the
wave over a given area, measured in watts per square meter . The
intensity is greatest near the source and decreases as you move away,
whether the sound is rustling leaves or rock music. Because of the wide
range of audible sound intensities, they are generally converted into
decibels, which are based on logarithms. See page 280.

1W/m22

3.1 Exponential and Logistic
Functions

3.2 Exponential and Logistic
Modeling

3.3 Logarithmic Functions 
and Their Graphs

3.4 Properties of Logarithmic
Functions

3.5 Equation Solving 
and Modeling

3.6 Mathematics of Finance

CHAPTER 3
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Chapter 3 Overview
In this chapter, we study three interrelated families of functions: exponential, logistic,
and logarithmic functions. Polynomial functions, rational functions, and power func-
tions with rational exponents are algebraic functions— functions obtained by adding,
subtracting, multiplying, and dividing constants and an independent variable, and rais-
ing expressions to integer powers and extracting roots. In this chapter and the next one,
we explore transcendental functions, which go beyond, or transcend, these algebraic
operations.

Just like their algebraic cousins, exponential, logistic, and logarithmic functions have
wide application. Exponential functions model growth and decay over time, such as
unrestricted population growth and the decay of radioactive substances. Logistic func-
tions model restricted population growth, certain chemical reactions, and the spread of
rumors and diseases. Logarithmic functions are the basis of the Richter scale of earth-
quake intensity, the pH acidity scale, and the decibel measurement of sound.

The chapter closes with a study of the mathematics of finance, an application of expo-
nential and logarithmic functions often used when making investments.

252 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

3.1 Exponential and Logistic 
Functions

Exponential Functions and Their Graphs
The functions and each involve a base raised to a power, but the
roles are reversed:

• For , the base is the variable x, and the exponent is the constant 2; ƒ is a
familiar monomial and power function.

• For , the base is the constant 2, and the exponent is the variable x; g is an
exponential function. See Figure 3.1.

g1x2 = 2x

ƒ1x2 = x2

g1x2 = 2xƒ1x2 = x2

What you’ll learn about
• Exponential Functions and Their

Graphs
• The Natural Base e
• Logistic Functions and Their

Graphs
• Population Models

... and why
Exponential and logistic functions
model many growth patterns, in-
cluding the growth of human and
animal populations.

x
1–1–2–3–4 2 3 4

y

5
10
15
20

FIGURE 3.1 Sketch of .g1x2 = 2x

Exponential functions are defined and continuous for all real numbers. It is important
to recognize whether a function is an exponential function.

EXAMPLE 1  Identifying Exponential Functions
(a) is an exponential function, with an initial value of 1 and base of 3.

(b) is not an exponential function because the base x is a variable and
the exponent is a constant; g is a power function.

(c) is an exponential function, with an initial value of and base
of 1.5.

-2h1x2 = -2 # 1.5x

g1x2 = 6x -4

ƒ1x2 = 3x

DEFINITION Exponential Functions
Let a and b be real number constants. An exponential function in x is a func-
tion that can be written in the form

where a is nonzero, b is positive, and . The constant a is the initial value
of ƒ (the value at ), and b is the base.x = 0

b Z 1

ƒ1x2 = a # bx,
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One way to evaluate an exponential function, when the inputs are rational numbers, is
to use the properties of exponents.

SECTION 3.1 Exponential and Logistic Functions 253

(d) is an exponential function, with an initial value of 7 and base of 

because .

(e) is not an exponential function because the exponent is a con-
stant; q is a constant function. Now try Exercise 1.

pq1x2 = 5 # 6p
2-x

= 12-12x = 11/22x1/2

k1x2 = 7 # 2-x

EXAMPLE 2  Computing Exponential Function Values 
for Rational Number Inputs

For ,

(a)

(b)

(c)

(d)

(e)

Now try Exercise 7.

ƒa -  

3

2
b = 2-3/2

=

1

23/2 =

1

223
=

1

18
= 0.35355 Á

ƒa1

2
b = 21/2

= 12 = 1.4142 Á

ƒ1-32 = 2-3
=

1

23 =

1

8
= 0.125

ƒ102 = 20
= 1

ƒ142 = 24
= 2 # 2 # 2 # 2 = 16

ƒ1x2 = 2x

There is no way to use properties of exponents to express an exponential function’s
value for irrational inputs. For example, if , , but what does 

mean? Using properties of exponents, . So we can
find meaning for by using successively closer rational approximations to as
shown in Table 3.1.

p2p
23

= 2 # 2 # 2, 23.1
= 231/10

=

102231

2pƒ1p2 = 2pƒ1x2 = 2x

Table 3.1 Values of for Rational Numbers x
Approaching 

x 3 3.1 3.14 3.141 3.1415 3.14159
8 8.5. . . 8.81. . . 8.821. . . 8.8244. . . 8.82496. . .2x

P � 3.14159265. . .
ƒ1x2 = 2x

We can conclude that , which could be found directly using a
grapher. The methods of calculus permit a more rigorous definition of exponential
functions than we give here, a definition that allows for both rational and irrational
inputs.

The way exponential functions change makes them useful in applications. This pattern
of change can best be observed in tabular form.

ƒ1p2 = 2p L 8.82

6965_CH03_pp251-318.qxd  1/14/10  1:10 PM  Page 253



254 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 3  Finding an Exponential Function 
from Its Table of Values

Determine formulas for the exponential functions g and h whose values are given in
Table 3.2.

Table 3.2 Values for Two Exponential Functions

x

128

32

1

2 36 1/2

*

1

4
* 3

212

*

1

4
* 3

840

*

1

4
* 3

4/3-1

*

1

4
* 3

4/9-2

h1x2g1x2

→
→

→
→

→
→

→
→

SOLUTION Because g is exponential, . Because , the 
initial value a is 4. Because , the base b is 3. So,

Because h is exponential, . Because , the initial value a is 8.
Because , the base b is . So,

Figure 3.2 shows the graphs of these functions pass through the points whose coordi-
nates are given in Table 3.2. Now try Exercise 11.

h1x2 = 8 # a1

4
bx

.

1/4h112 = 8 # b1
= 2

h102 = 8h1x2 = a # bx

g1x2 = 4 # 3x.

g112 = 4 # b1
= 12

g102 = 4g1x2 = a # bx

Observe the patterns in the and columns of Table 3.2. The values in-
crease by a factor of 3 and the values decrease by a factor of 1/4, as we add 1 to x
moving from one row of the table to the next. In each case, the change factor is the base
of the exponential function. This pattern generalizes to all exponential functions as il-
lustrated in Table 3.3.

In Table 3.3, as x increases by 1, the function value is multiplied by the base b. This re-
lationship leads to the following recursive formula.

h1x2 g1x2h1x2g1x2Table 3.3 Values for a General 
Exponential Function ƒ1x2 � a # bx

x

0 a

1 ab

2
* b

ab2

* b

* b
ab -1

-1
* bab -2

-2

a # bx

→
→

→
→

[–2.5, 2.5] by [–10, 50]

(a)

(–2, 4/9) (–1, 4/3)
(0, 4)

(1, 12)

(2, 36)

[–2.5, 2.5] by [–25, 150]

(b)

(–2, 128)

(–1, 32)

(0, 8)

(1, 2) (2, 1/2)

FIGURE 3.2 Graphs of (a) 
and (b) . (Example 3)h1x2 = 8 # (1/42x

g1x2 = 4 # 3x

Exponential Growth and Decay
For any exponential function and any real number x,

If and , the function f is increasing and is an exponential growth
function. The base b is its growth factor.

If and , f is decreasing and is an exponential decay function. The
base b is its decay factor.

b 6 1a 7 0

b 7 1a 7 0

ƒ1x + 1) = b # ƒ1x2.
ƒ1x2 = a # bx
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In Example 3, g is an exponential growth function, and h is an exponential decay func-
tion. As x increases by 1, grows by a factor of 3, and 
decays by a factor of . Whenever the initial value is positive, the base of an expo-
nential function, like the slope of a linear function, tells us whether the function is in-
creasing or decreasing and by how much.

So far, we have focused most of our attention on the algebraic and numerical aspects of
exponential functions. We now turn our attention to the graphs of these functions.

1/4
h1x2 = 8 # (1/42xg1x2 = 4 # 3x

SECTION 3.1 Exponential and Logistic Functions 255

EXPLORATION 1 Graphs of Exponential Functions
1. Graph each function in the viewing window by .

(a) (b) (c) (d)

• Which point is common to all four graphs?

• Analyze the functions for domain, range, continuity, increasing or decreas-
ing behavior, symmetry, boundedness, extrema, asymptotes, and end 
behavior.

2. Graph each function in the viewing window by .

(a) (b)

(c) (d)

• Which point is common to all four graphs?

• Analyze the functions for domain, range, continuity, increasing or decreasing
behavior, symmetry, boundedness, extrema, asymptotes, and end behavior.

y4 = a1

5
b x

y3 = a1

4
b x

y2 = a1

3
b x

y1 = a1

2
b x

3-1, 643-2, 24

y4 = 5xy3 = 4xy2 = 3xy1 = 2x

3-1, 643-2, 24

We summarize what we have learned about exponential functions with an initial value
of 1.

Domain: All reals
Range:
Continuous
No symmetry: neither even nor odd
Bounded below, but not above
No local extrema
Horizontal asymptote: 
No vertical asymptotes

If (see Figure 3.3a), then

• ƒ is an increasing function,
• and .

If (see Figure 3.3b), then

• ƒ is a decreasing function,
• and .lim

x: q

 ƒ1x2 = 0lim
x: -q

 ƒ1x2 = q

0 6 b 6 1

 lim
x: q

 ƒ1x2 = qƒ1x2 = 0 lim
x: -q

b 7 1

y = 0

10, q2

Exponential Functions ƒ1x2 � bx

y

x

f (x) = bx

b > 1

(0, 1)

(a)

(1, b)

y

x

f (x) = bx

0 < b < 1

(0, 1)

(b)

(1, b)

FIGURE 3.3 Graphs of for (a) and (b) .0 6 b 6 1b 7 1ƒ1x2 = bx
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The translations, reflections, stretches, and shrinks studied in Section 1.5, together with
our knowledge of the graphs of basic exponential functions, allow us to predict the
graphs of the functions in Example 4.

256 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 4  Transforming Exponential Functions
Describe how to transform the graph of into the graph of the given func-
tion. Sketch the graphs by hand and support your answer with a grapher.

(a) (b) (c)

SOLUTION

(a) The graph of is obtained by translating the graph of by
1 unit to the right (Figure 3.4a).

(b) We can obtain the graph of by reflecting the graph of 
across the y-axis (Figure 3.4b). Because , we can also
think of h as an exponential function with an initial value of 1 and a base of .

(c) We can obtain the graph of by vertically stretching the graph of
by a factor of 3 (Figure 3.4c). Now try Exercise 15.ƒ1x2 = 2x

k1x2 = 3 # 2x

1/2
2-x

= 12-12x = 11/22x
ƒ1x2 = 2xh1x2 = 2-x

ƒ1x2 = 2xg1x2 = 2x-1

k1x2 = 3 # 2xh1x2 = 2-xg1x2 = 2x-1

ƒ1x2 = 2x

[–4, 4] by [–2, 8]

(a)

[–4, 4] by [–2, 8]

(b)

[–4, 4] by [–2, 8]

(c)

FIGURE 3.4 The graph of shown with (a) , (b) , and (c) . (Example 4)k1x2 = 3 # 2xh1x2 = 2-xg1x2 = 2x-1ƒ1x2 = 2x

The Natural Base e
The function is one of the basic functions introduced in Section 1.3, and is
an exponential growth function.

ƒ1x2 = ex

Domain: All reals
Range: 
Continuous
Increasing for all x
No symmetry
Bounded below, but not above
No local extrema
Horizontal asymptote: 
No vertical asymptotes
End behavior: and  lim

x: q

 ex
= q lim

x: -q

 ex
= 0

y = 0

10, q2
ƒ1x2 = ex

BASIC FUNCTION The Exponential Function

[–4, 4] by [–1, 5]

FIGURE 3.5 The graph of .ƒ1x2 = ex

Because is increasing, it is an exponential growth function, so . But
what is e, and what makes this exponential function the exponential function?

e 7 1ƒ1x2 = ex
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The letter e is the initial of the last name of Leonhard Euler (1707–1783), who intro-
duced the notation. Because has special calculus properties that simplify
many calculations, e is the natural base of exponential functions for calculus purposes,
and is considered the natural exponential function.ƒ1x2 = ex

ƒ1x2 = ex

SECTION 3.1 Exponential and Logistic Functions 257

DEFINITION The Natural Base e

e = lim
x: q

a1 +

1
x
bx

THEOREM Exponential Functions and the Base e
Any exponential function can be rewritten as

for an appropriately chosen real number constant k.

If and is an exponential growth function. (See 
Figure 3.6a.)

If and is an exponential decay function. (See 
Figure 3.6b.)

k 6 0, ƒ1x2 = a # ekxa 7 0

k 7 0, ƒ1x2 = a # ekxa 7 0

ƒ1x2 = a # ekx,

ƒ1x2 = a # bx

We cannot compute the irrational number e directly, but using this definition we can
obtain successively closer approximations to e, as shown in Table 3.4. Continuing the
process in Table 3.4 with a sufficiently accurate computer can show that

.e L 2.718281828459

Table 3.4 Approximations Approaching the Natural Base e

x 1 10 100 1000 10,000 100,000
2 2.5. . . 2.70. . . 2.716. . . 2.7181. . . 2.71826. . .11 + 1/x2x

We are usually more interested in the exponential function and variations of
this function than in the irrational number e. In fact, any exponential function can be
expressed in terms of the natural base e.

ƒ1x2 = ex

y

x

f (x) = ekx

k > 0

(0, 1)

(a)

(1, ek)

y

x

(0, 1)

(b)

(1, ek)

f (x) = ekx

k < 0

FIGURE 3.6 Graphs of for 
(a) and (b) .k 6 0k 7 0

ƒ1x2 = ekx

In Section 3.3 we will develop some mathematics so that, for any positive number
, we can easily find the value of k such that . In the meantime, we can

use graphical and numerical methods to approximate k, as you will discover in Explo-
ration 2.

ekx
= bxb Z 1

EXPLORATION 2 Choosing k so that 

1. Graph in the viewing window by .

2. One at a time, overlay the graphs of for , and
0.8. For which of these values of k does the graph of g most closely match the
graph of ƒ?

3. Using tables, find the 3-decimal-place value of k for which the values of g
most closely approximate the values of ƒ.

k = 0.4, 0.5, 0.6, 0.7g1x2 = ekx

3-2, 843-4, 44ƒ1x2 = 2x

ekx � 2x
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Logistic Functions and Their Graphs
Exponential growth is unrestricted. An exponential growth function increases at an
ever-increasing rate and is not bounded above. In many growth situations, however,
there is a limit to the possible growth. A plant can only grow so tall. The number of
goldfish in an aquarium is limited by the size of the aquarium. In such situations the
growth often begins in an exponential manner, but the growth eventually slows and the
graph levels out. The associated growth function is bounded both below and above by
horizontal asymptotes.

258 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 5  Transforming Exponential Functions
Describe how to transform the graph of into the graph of the given func-
tion. Sketch the graphs by hand and support your answer with a grapher.

(a) (b) (c)

SOLUTION

(a) The graph of is obtained by horizontally shrinking the graph of
by a factor of 2 (Figure 3.7a).

(b) We can obtain the graph of by reflecting the graph of 
across the y-axis (Figure 3.7b).

(c) We can obtain the graph of by vertically stretching the graph of
by a factor of 3 (Figure 3.7c). Now try Exercise 21.ƒ1x2 = ex

k1x2 = 3ex

ƒ1x2 = exh1x2 = e-x

ƒ1x2 = ex
g1x2 = e2x

k1x2 = 3exh1x2 = e-xg1x2 = e2x

ƒ1x2 = ex

[–4, 4] by [–2, 8]

(a)

[–4, 4] by [–2, 8]

(b)

[–4, 4] by [–2, 8]

(c)

FIGURE 3.7 The graph of 

shown with (a) , (b) ,
and (c) . (Example 5)k1x2 = 3ex

h1x2 = e-xg1x2 = e2x

ƒ1x2 = ex

If or , these formulas yield logistic decay functions. Unless otherwise
stated, all logistic functions in this book will be logistic growth functions.

By setting , we obtain the logistic function

This function, though related to the exponential function cannot be obtained from 
by translations, reflections, and horizontal and vertical stretches and shrinks. So we
give the logistic function a formal introduction:

exex,

ƒ1x2 =

1

1 + e-x.

a = c = k = 1

k 6 0b 7 1

Aliases for Logistic Growth
Logistic growth is also known as restricted, inhib-
ited, or constrained exponential growth.

DEFINITION Logistic Growth Functions
Let a, b, c, and k be positive constants, with . A logistic growth function
in x is a function that can be written in the form

or 

where the constant c is the limit to growth.

ƒ1x2 =

c

1 + a # e-kxƒ1x2 =

c

1 + a # bx

b 6 1
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All logistic growth functions have graphs much like the basic logistic function. Their
end behavior is always described by the equations

and 

where c is the limit to growth (see Exercise 73). All logistic functions are bounded by
their horizontal asymptotes, and , and have a range of . Although
every logistic function is symmetric about the point of its graph with y- coordinate ,
this point of symmetry is usually not the y-intercept, as we can see in Example 6.

c/2
10, c2y = cy = 0

 lim
x: q

 ƒ1x2 = c, lim
x: -q

 ƒ1x2 = 0
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Domain: All reals
Range: 
Continuous
Increasing for all x
Symmetric about , but neither even nor odd
Bounded below and above
No local extrema
Horizontal asymptotes: and 
No vertical asymptotes
End behavior: and lim

x: q

 ƒ1x2 = 1lim
x: -q

 ƒ1x2 = 0

y = 1y = 0

10, 1/22

10, 12

ƒ1x2 =

1

1 + e-x

BASIC FUNCTION The Logistic Function

[–4.7, 4.7] by [–0.5, 1.5]

FIGURE 3.8 The graph of
.ƒ1x2 = 1/11 + e-x2

EXAMPLE 6  Graphing Logistic Growth Functions
Graph the function. Find the y-intercept and the horizontal asymptotes.

(a) (b)

SOLUTION

(a) The graph of is shown in Figure 3.9a. The y-intercept is

Because the limit to growth is 8, the horizontal asymptotes are and .

(b) The graph of is shown in Figure 3.9b. The y-intercept is

Because the limit to growth is 20, the horizontal asymptotes are and 
Now try Exercise 41.

y = 20.y = 0

g102 =

20

1 + 2e-3 #0 =

20

1 + 2
= 20/3 L 6.67.

g1x2 = 20/11 + 2e-3x2
y = 8y = 0

ƒ102 =

8

1 + 3 # 0.70 =

8

1 + 3
= 2.

ƒ1x2 = 8/11 + 3 # 0.7x2

g1x2 =

20

1 + 2e-3xƒ1x2 =

8

1 + 3 # 0.7x
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Population Models
Exponential and logistic functions have many applications. One area where both types
of functions are used is in modeling population. Between 1990 and 2000, both Phoenix
and San Antonio passed the 1 million mark. With its Silicon Valley industries, San
Jose, California, appears to be the next U.S. city destined to surpass 1 million residents.
When a city’s population is growing rapidly, as in the case of San Jose, exponential
growth is a reasonable model.

260 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

[–10, 20] by [–2, 10]

(a)

[–2, 4] by [–5, 25]

(b)

FIGURE 3.9 The graphs of (a) and (b) . (Example 6)g1x2 = 20/(1 + 2e-3x2ƒ1x2 = 8/(1 + 3 # 0.7x2

A Note on Population Data
When the U.S. Census Bureau reports a popula-
tion estimate for a given year, it generally repre-
sents the population at the middle of the year, or
July 1. We will assume this to be the case when
interpreting our results to population problems
unless otherwise noted.

EXAMPLE 7  Modeling San Jose’s Population
Using the data in Table 3.5 and assuming the growth is exponential, when will the
population of San Jose, California, surpass 1 million persons?

SOLUTION

Model Let be the population of San Jose t years after July 1, 2000. (See margin 
note.) Because P is exponential, , where is the initial (2000) popula-
tion of 898,759. From Table 3.5 we see that . So,

and .

Solve Graphically Figure 3.10 shows that this population model intersects
when the independent variable is about 16.73.

Interpret Because 16.73 yr after mid-2000 is in the first half of 2017, according to
this model the population of San Jose will surpass the 1 million mark in early 2017.

Now try Exercise 51.

y = 1,000,000

P1t2 = 898,759 # 1.0064t

b = B7 
939,899

898,759
L 1.0064

P172 = 898759b7
= 939899

P0P1t2 = P0
# bt

P1t2

[–10, 30] by [800 000, 1 100  000]

Intersection
X=16.731494  Y=1000000

FIGURE 3.10 A population model
for San Jose, California. (Example 7)

Source: U.S. Census Bureau.

Table 3.5 The Population of 
San Jose, California

Year Population

2000 898,759
2007 939,899
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While San Jose’s population is soaring, in other major cities, such as Dallas, the popu-
lation growth is slowing. The once sprawling Dallas is now constrained by its neigh-
boring cities. A logistic function is often an appropriate model for restricted growth,
such as the growth that Dallas is experiencing.
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EXAMPLE 8  Modeling Dallas’s Population
Based on recent census data, a logistic model for the population of Dallas, t years af-
ter 1900, is as follows:

According to this model, when was the population 1 million?

SOLUTION Figure 3.11 shows that the population model intersects 
when the independent variable is about 84.51. Because 84.51 yr after mid-1900 is at
the beginning of 1985, if Dallas’s population has followed this logistic model, its
population was 1 million then. Now try Exercise 55.

y = 1,000,000

P1t2 =

1,301,642

1 + 21.602e-0.05054t

[0, 120] by [�500 000, 1 500 000]

Intersection
X=84.513263 Y=1000000

FIGURE 3.11 A population model for
Dallas, Texas. (Example 8)

QUICK REVIEW 3.1 (For help, go to Sections A.1 and P.1.)

SECTION 3.1 EXERCISES

In Exercises 1–6, which of the following are exponential functions? For
those that are exponential functions, state the initial value and the base.
For those that are not, explain why not.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, compute the exact value of the function for the given
x-value without using a calculator.

7. for

8. for

9. for

10. ƒ1x2 = 8 # 4x for x = -3/2

x = 1/3ƒ1x2 = -2 # 3x

x = -2ƒ1x2 = 6 # 3x

x = 0ƒ1x2 = 3 # 5x

y = x1.3

y = x2x

y = 42

y = 5x

y = 3x

y = x8

In Exercises 11 and 12, determine a formula for the exponential func-
tion whose values are given in Table 3.6.

11.

12. g1x2
ƒ1x2

Table 3.6 Values for Two 
Exponential Functions

x

6 108
3 36

0 12
1 4
2 4/33/8

3/4
3/2

-1
-2

g1x2ƒ1x2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression without using a calculator.

1. 2.

3. 4. 45/2272/3

A3 
125

8
23 -216

In Exercises 5–8, rewrite the expression using a single positive ex-
ponent.

5. 6.

7. 8.

In Exercises 9–10, use a calculator to evaluate the expression.

9. 10. 24 92.352125 -5.37824

1b -32-51a-223
1342-212-324
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In Exercises 13 and 14, determine a formula for the exponential func-
tion whose graph is shown in the figure.

13. 14. g1x2ƒ1x2
In Exercises 31–34, state whether the function is an exponential growth
function or exponential decay function, and describe its end behavior
using limits.

31.

32.

33.

34.

In Exercises 35–38, solve the inequality graphically.

35.

36.

37.

38.

Group Activity In Exercises 39 and 40, use the properties of 
exponents to prove that two of the given three exponential functions are
identical. Support graphically.

39. (a)

(b)

(c)

40. (a)

(b)

(c)

In Exercises 41–44, use a grapher to graph the function. Find the 
y-intercept and the horizontal asymptotes.

41. 42.

43. 44.

In Exercises 45–50, graph the function and analyze it for domain,
range, continuity, increasing or decreasing behavior, symmetry, bound-
edness, extrema, asymptotes, and end behavior.

45. 46.

47. 48.

49. 50.

51. Population Growth Using the midyear data in 
Table 3.7 and assuming the growth is exponential, when did 
the population of Austin surpass 800,000 persons?

ƒ1x2 =

6
1 + 2 # e-xƒ1x2 =

5

1 + 4 # e-2x

ƒ1x2 = 5 # e-xƒ1x2 = 4 # e3x

ƒ1x2 = 4 # 0.5xƒ1x2 = 3 # 2x

g1x2 =

9

1 + 2e-xƒ1x2 =

16

1 + 3e-2x

ƒ1x2 =

18

1 + 5 # 0.2xƒ1x2 =

12

1 + 2 # 0.8x

y3 = 23x-1

y2 = 2123x-22
y1 = 43x-2

y3 = 9x+2

y2 = 32x
+ 4

y1 = 32x+4

a1

3
bx

6 a1

2
b x

a1

4
bx

7 a1

3
b x

6-x
7 8-x

9x
6 4x

ƒ1x2 = 0.75-x

ƒ1x2 = 0.5x

ƒ1x2 = a1
e
bx

ƒ1x2 = 3-2x
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y

x
(0, 3)

(2, 6)y = f(x)

y

x

y = g(x)

b1, 2ea
(0, 2)

In Exercises 15–24, describe how to transform the graph of ƒ into the
graph of g. Sketch the graphs by hand and support your answer with a
grapher.

15. , 

16. , 

17. , 

18. , 

19. , 

20. , 

21. , 

22. , 

23. , 

24. , 

In Exercises 25–30, (a) match the given function with its graph. 
(b) Writing to Learn Explain how to make the choice without 
using a grapher.

25.

26.

27.

28.

29.

30. y = 1.5x
- 2

y = 3-x
- 2

y = -0.5x

y = -2x

y = 2-x

y = 3x

g1x2 = 3e2x
- 1ƒ1x2 = ex

g1x2 = 2e3-3xƒ1x2 = ex

g1x2 = -e-3xƒ1x2 = ex

g1x2 = e-2xƒ1x2 = ex

g1x2 = 2 # 0.63xƒ1x2 = 0.6x

g1x2 = 3 # 0.5x
+ 4ƒ1x2 = 0.5x

g1x2 = 25-xƒ1x2 = 2x

g1x2 = 4-xƒ1x2 = 4x

g1x2 = 3x+4ƒ1x2 = 3x

g1x2 = 2x-3ƒ1x2 = 2x

(a) (b)

(c) (d)

(e) (f)
Source: World Almanac and Book of Facts 2005.

Table 3.7 Populations of Two Major
U.S. Cities

City 1990 Population 2000 Population

Austin, Texas 465,622 656,562
Columbus, Ohio 632,910 711,265
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52. Population Growth Using the data in Table 3.7 and
assuming the growth is exponential, when would the popula-
tion of Columbus surpass 800,000 persons?

53. Population Growth Using the data in Table 3.7 and
assuming the growth is exponential, when were the populations
of Austin and Columbus equal?

54. Population Growth Using the data in Table 3.7 and
assuming the growth is exponential, which city—Austin or
Columbus—would reach a population of 1 million first, and in
what year?

55. Population Growth Using 20th-century U.S. census
data, the population of Ohio can be modeled by

where P is the population in millions and t is the number of
years since April 1, 1900. Based on this model, when was the
population of Ohio 10 million?

56. Population Growth Using 20th-century U.S. census
data, the population of New York state can be modeled by

where P is the population in millions and t is the number of
years since 1800. Based on this model,

(a) What was the population of New York in 1850?

(b) What will New York state’s population be in 2015?

(c) What is New York’s maximum sustainable population
(limit to growth)?

57. Bacteria Growth The number B of bacteria in a petri
dish culture after t hours is given by

(a) What was the initial number of bacteria present?

(b) How many bacteria are present after 6 hours?

58. Carbon Dating The amount C in grams of carbon-14 
present in a certain substance after t years is given by

(a) What was the initial amount of carbon-14 present?

(b) How much is left after 10,400 years? When will the
amount left be 10 g?

Standardized Test Questions
59. True or False Every exponential function is strictly in-

creasing. Justify your answer.

60. True or False Every logistic growth function has two
horizontal asymptotes. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

61. Multiple Choice Which of the following functions is 
exponential?

(A) (B)

(C) (D)

(E) ƒ1x2 = 8x

ƒ1x2 = 23 xƒ1x2 = x2/3

ƒ1x2 = x3ƒ1x2 = a2

C = 20e-0.0001216t.

B = 100e0.693t.

P1t2 =

19.875

1 + 57.993e-0.035005t
,

P1t2 =

12.79

1 + 2.402e-0.0309x
,

62. Multiple Choice What point do all functions of the form
have in common?

(A) (B) (C)

(D) (E)

63. Multiple Choice The growth factor for is

(A) 3. (B) 4. (C) 12.

(D) 64. (E) 81.

64. Multiple Choice For , which of the following is
true?

(A) (B) (C)

(D) (E)

Explorations
65. Graph each function and analyze it for domain, range, increas-

ing or decreasing behavior, boundedness, extrema, asymptotes,
and end behavior.

(a) (b)

66. Use the properties of exponents to solve each equation. Sup-
port graphically.

(a) (b)

(c) (d)

Extending the Ideas
67. Writing to Learn Table 3.8 gives function values for

and Also, three different graphs are
shown.

y = g1x2.y = ƒ1x2

9x
= 3x+18x/2

= 4x+1

3x
= 272x

= 42

g1x2 =

e-x

x
ƒ1x2 = x # ex

0.17x
7 0.32x9-x

7 8-x

11/62x 7 (1/22x7x
7 5x3x

7 4x

x 7 0

ƒ1x2 = 4 # 3x

1-1, -1210, 02
10, 1211, 0211, 12

ƒ1x2 = bx1b 7 02
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Table 3.8 Data for Two Functions

x

1.0 5.50 7.40
1.5 5.35 6.97
2.0 5.25 6.44
2.5 5.17 5.76
3.0 5.13 4.90
3.5 5.09 3.82
4.0 5.06 2.44
4.5 5.05 0.71

g1x2ƒ1x2

y

y1

y2

y3
x

(a) Which curve of those shown in the graph most closely 
resembles the graph of ? Explain your choice.

(b) Which curve most closely resembles the graph of 
Explain your choice.

y = g1x2?
y = ƒ1x2

6965_CH03_pp251-318.qxd  1/14/10  1:10 PM  Page 263



68. Writing to Learn Let . Explain why the
graph of can be obtained by applying one transfor-
mation to the graph of for an appropriate value of c.
What is c?

Exercises 69–72 refer to the expression . For exam-
ple, if , , and , the expression is ,
an exponential function.

69. If , state conditions on a and c under which the expres-
sion is a quadratic power function.ƒ1a, b, c2

b = x

ƒ12, 3, x2 = 2 # 3xc = xb = 3a = 2
ƒ1a, b, c2 = a # bc

y = cx
ƒ1ax + b2

ƒ1x2 = 2x

264 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

70. If , state conditions on a and c under which the expres-
sion ƒ(a, b, c) is a decreasing linear function.

71. If , state conditions on a and b under which the expres-
sion ƒ(a, b, c) is an increasing exponential function.

72. If , state conditions on a and b under which the expres-
sion ƒ(a, b, c) is a decreasing exponential function.

73. Prove that and ,

for constants a, b, and c, with , , and .c 7 00 6 b 6 1a 7 0

 lim
x: q

 
c

1 + a # bx = c lim
x: -q

 
c

1 + a # bx = 0

c = x

c = x

b = x
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3.2 Exponential and Logistic 
Modeling

What you’ll learn about
• Constant Percentage Rate and

Exponential Functions
• Exponential Growth and Decay

Models
• Using Regression to Model 

Population
• Other Logistic Models

... and why
Exponential functions model
many types of unrestricted
growth; logistic functions model
restricted growth, including the
spread of disease and the
spread of rumors.

Time in Years Population

0 initial population

1

2

3

t P1t2 = P011 + r2t
oo

P132 = P122 # 11 + r2 = P011 + r23
P122 = P112 # 11 + r2 = P011 + r22
P112 = P0 + P0r = P011 + r2
P102 = P0 =

So, in this case, the population is an exponential function of time.

Exponential Population Model
If a population P is changing at a constant percentage rate r each year, then

where is the initial population, r is expressed as a decimal, and t is time in
years.

P0

P1t2 = P0(1 + r2t,

If , then is an exponential growth function, and its growth factor is the base
of the exponential function, .

On the other hand, if , the base is an exponential decay func-
tion, and is the decay factor for the population.1 + r

1 + r 6 1, P1t2r 6 0

1 + r
P1t2r 7 0

EXAMPLE 1  Finding Growth and Decay Rates
Tell whether the population model is an exponential growth function or exponential
decay function, and find the constant percentage rate of growth or decay.

(a) San Jose:

(b) Detroit:

SOLUTION

(a) Because , . So, P is an exponential growth func-
tion with a growth rate of 0.64%.

(b) Because , . So, P is an exponential decay
function with a decay rate of 1.42%. Now try Exercise 1.

r = -0.0142 6 01 + r = 0.9858

r = 0.0064 7 01 + r = 1.0064

P1t2 = 1,203,368 # 0.9858t

P1t2 = 898,759 # 1.0064t

Constant Percentage Rate and Exponential
Functions
Suppose that a population is changing at a constant percentage rate r, where r is the
percent rate of change expressed in decimal form. Then the population follows the
pattern shown.
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EXAMPLE 2  Finding an Exponential Function
Determine the exponential function with initial value , increasing at a rate of
8% per year.

SOLUTION Because and , the function is 

or . We could write this as , where
x represents time. Now try Exercise 7.

ƒ1x2 = 12 # 1.08xP1t2 = 12 # 1.08t0.082t12(1 +

P1t2 =r = 8% = 0.08P0 = 12

= 12

Exponential Growth and Decay Models
Exponential growth and decay models are used for populations of animals, bacteria,
and even radioactive atoms. Exponential growth and decay apply to any situation where
the growth is proportional to the current size of the quantity of interest. Such situations
are frequently encountered in biology, chemistry, business, and the social sciences.

Exponential growth models can be developed in terms of the time it takes a quantity to
double. On the flip side, exponential decay models can be developed in terms of the
time it takes for a quantity to be halved. Examples 3 through 5 use these strategies.

EXAMPLE 3  Modeling Bacteria Growth
Suppose a culture of 100 bacteria is put into a petri dish and the culture doubles
every hour. Predict when the number of bacteria will be 350,000.

SOLUTION

Model

Total bacteria after 1 hr

Total bacteria after 2 hr

Total bacteria after 3 hr

Total bacteria after t hr

So the function represents the bacteria population t hr after it is
placed in the petri dish.

Solve Graphically Figure 3.12 shows that the population function intersects
when .

Interpret The population of the bacteria in the petri dish will be 350,000 in about 
11 hr and 46 min. Now try Exercise 15.

t L 11.77y = 350,000

P1t2 = 100 # 2t

 P1t2 = 100 # 2t

 o

 800 = 100 # 23

 400 = 100 # 22

 200 = 100 # 2450,000

300,000

150,000

P(t)

t
–5 151050

Time

Bacteriology Research

Intersection:
t = 11.773139; P = 350,000

Po
pu

la
tio

n

FIGURE 3.12 Rapid growth of a bacteria
population. (Example 3)

Exponential decay functions model the amount of a radioactive substance present in a
sample. The number of atoms of a specific element that change from a radioactive state
to a nonradioactive state is a fixed fraction per unit time. The process is called
radioactive decay, and the time it takes for half of a sample to change its state is the
half-life of the radioactive substance.

EXAMPLE 4  Modeling Radioactive Decay
Suppose the half-life of a certain radioactive substance is 20 days and there are 5 g
(grams) present initially. Find the time when there will be 1 g of the substance re-
maining.
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SOLUTION

Model If t is the time in days, the number of half-lives will be .

Grams after 20 days

Grams after days

Grams after t days

Thus the function models the mass in grams of the radioactive sub-
stance at time t.

Solve Graphically Figure 3.13 shows that the graph of intersects
when .

Interpret There will be 1 g of the radioactive substance left after approximately
46.44 days, or about 46 days, 11 hr. Now try Exercise 33.

t L 46.44y = 1
ƒ1t2 = 5 # 0.5t/20

ƒ1t2 = 5 # 0.5t/20

 ƒ1t2 = 5a1

2
b t/20

 o

21202 = 40 
5

4
= 5a1

2
b40/20

 
5

2
= 5a1

2
b20/20

t/20

x
–20 604020 80

Time

Radioactive Decay

Intersection:
x = 46.438562, y = 1

M
as

s

12

y

FIGURE 3.13 Radioactive decay. 
(Example 4)

Scientists have established that atmospheric pressure at sea level is , and
the pressure is reduced by half for each 3.6 mi above sea level. For example, the pres-
sure 3.6 mi above sea level is . This rule for atmospheric
pressure holds for altitudes up to 50 mi above sea level. Though the context is differ-
ent, the mathematics of atmospheric pressure closely resembles the mathematics of 
radioactive decay.

11/22114.72 = 7.35 lb/in.2

14.7 lb/in.2

EXAMPLE 5  Determining Altitude from Atmospheric Pressure
Find the altitude above sea level at which the atmospheric pressure is .

SOLUTION

Model

Pressure at 3.6 mi

Pressure at 

Pressure at h mi

So models the atmospheric pressure P (in pounds per square
inch) as a function of the height h (in miles above sea level). We must find the value
of h that satisfies the equation

Solve Graphically Figure 3.14 shows that the graph of inter-
sects when .

Interpret The atmospheric pressure is at an altitude of approximately 
6.76 mi above sea level. Now try Exercise 41.

4 lb/in.2
h L 6.76y = 4

P(h2 = 14.7 # 0.5h/3.6

14.7 # 0.5h/3.6
= 4.

P(h2 = 14.7 # 0.5h/3.6

 P(h2 = 14.7 # 0.5h/3.6

 o

213.62 = 7.2 mi 3.675 = 14.7 # 0.57.2/3.6

 7.35 = 14.7 # 0.53.6/3.6

4 lb/in.2

[0, 20] by [–4, 15]

Intersection
X=6.7598793 Y=4

FIGURE 3.14 A model for atmospheric
pressure. (Example 5)

Using Regression to Model Population
So far, our models have been given to us or developed algebraically. We now use expo-
nential and logistic regression to build models from population data.

Due to the post–World War II baby boom and other factors, exponential growth is not a
perfect model for the U.S. population. It does, however, provide a means to make ap-
proximate predictions, as illustrated in Example 6.
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Exponential growth is unrestricted, but population growth often is not. For many popu-
lations, the growth begins exponentially, but eventually slows and approaches a limit to
growth called the maximum sustainable population.

In Section 3.1 we modeled Dallas’s population with a logistic function. We now use 
logistic regression to do the same for the populations of Florida and Pennsylvania. As
the data in Table 3.10 suggest, Florida had rapid growth in the second half of the 20th
century, whereas Pennsylvania appears to be approaching its maximum sustainable
population.

268 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 6  Modeling U.S. Population Using 
Exponential Regression

Use the 1900–2000 data in Table 3.9 and exponential regression to predict the U.S.
population for 2007. Compare the result with the listed value for 2007.

SOLUTION

Model
Let be the population (in millions) of the United States t years after 1900. 
Figure 3.15a shows a scatter plot of the data. Using exponential regression, we find a
model for the 1990–2000 data:

Figure 3.15b shows the scatter plot of the data with a graph of the population model
just found. You can see that the curve fits the data fairly well. The coefficient of de-
termination is , indicating a close fit and supporting the visual evidence.

Solve Graphically
To predict the 2007 U.S. population we substitute into the regression model.
Figure 3.15c reports that .

Interpret
The model predicts the U.S. population was 317.1 million in 2007. The actual popu-
lation was 301.6 million. We overestimated by 15.5 million, a 5.1% error.

Now try Exercise 43.

P(1072 = 80.5514 # 1.01289107
L 317.1

t = 107

r 2
L 0.995

P1t2 = 80.5514 # 1.01289t

P1t2

Source: World Almanac and Book of
Facts 2009.

Table 3.9 U.S. Population
(in millions)

Year Population

1900 76.2
1910 92.2
1920 106.0
1930 123.2
1940 132.2
1950 151.3
1960 179.3
1970 203.3
1980 226.5
1990 248.7
2000 281.4
2007 301.6

[–10, 120] by [0, 400]

(a)

[–10, 120] by [0, 400]

(b)

[–10, 120] by [0, 400]

(c)

X=107    Y=317.13007

Y1=80.5514*1.01289^X

FIGURE 3.15 Scatter plots and graphs for Example 6. The red “ ” depicts the data point for 2007. The blue “x” in (c) represents the model’s
prediction for 2007.

+
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Source: U.S. Census Bureau.

Table 3.10 Populations of Two
U.S. States (in millions)

Year Florida Pennsylvania

1900 0.5 6.3
1910 0.8 7.7
1920 1.0 8.7
1930 1.5 9.6
1940 1.9 9.9
1950 2.8 10.5
1960 5.0 11.3
1970 6.8 11.8
1980 9.7 11.9
1990 12.9 11.9
2000 16.0 12.3

EXAMPLE 7  Modeling Two States’ Populations Using 
Logistic Regression

Use the data in Table 3.10 and logistic regression to predict the maximum sustainable
populations for Florida and Pennsylvania. Graph the logistic models and interpret
their significance.

SOLUTION Let and be the populations (in millions) of Florida and
Pennsylvania, respectively, t years after 1800. Figure 3.16a shows a scatter plot of
the data for both states; the data for Florida is shown in black, and for Pennsylvania,
in red. Using logistic regression, we obtain the models for the two states:

and

Figure 3.16b shows the scatter plots of the data with graphs of the two population
models. You can see that the curves fit the data fairly well. From the numerators of
the models we see that

and

So the maximum sustainable population for Florida is about 28.0 million, and for
Pennsylvania is about 12.6 million.

Figure 3.16c shows a three-century span for the two states. Pennsylvania had rapid
growth in the 19th century and first half of the 20th century, and is now approaching
its limit to growth. Florida, on the other hand, is currently experiencing extremely
rapid growth but should be approaching its maximum sustainable population by the
end of the 21st century. Now try Exercise 50.

lim
t: q

 P1t2 = 12.579.lim
t: q

 F1t2 = 28.021

P1t2 =

12.579

1 + 29.0003e-0.034315tF1t2 =

28.021

1 + 9018.63e-0.047015t

P1t2F1t2

[90, 210] by [–5, 20]

(a)

[90, 210] by [–5, 20]

(b)

[–10, 300] by [–5, 30]

(c)

FIGURE 3.16 Scatter plots and graphs for Example 7.
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Other Logistic Models
In Example 3, the bacteria cannot continue to grow exponentially forever because they
cannot grow beyond the confines of the petri dish. In Example 7, though Florida’s pop-
ulation is booming now, it will eventually level off, just as Pennsylvania’s has done.
Sunflowers and many other plants grow to a natural height following a logistic pattern.
Chemical acid-base titration curves are logistic. Yeast cultures grow logistically. Conta-
gious diseases and even rumors spread according to logistic models.

270 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 8  Modeling a Rumor
Watauga High School has 1200 students. Bob, Carol, Ted, and Alice start a rumor,
which spreads logistically so that models the number
of students who have heard the rumor by the end of Day t.

(a) How many students have heard the rumor by the end of Day 0?

(b) How long does it take for 1000 students to hear the rumor?

SOLUTION

(a) So, 30 students have heard the rumor

by the end of Day 0.

(b) We need to solve .

Figure 3.17 shows that the graph of intersects
when . So toward the end of Day 6 the rumor has reached the ears

of 1000 students. Now try Exercise 45.
t L 5.86y = 1000

S1t2 = 1200/(1 + 39 # e-0.9t2
1200

1 + 39e-0.9t = 1000

S102 =

1200

1 + 39 # e-0.9 #0 =

1200

1 + 39
= 30.

S1t2 = 1200/11 + 39 # e-0.9t2

[0, 10] by [–400, 1400]

Intersection
X=5.8588884   Y=1000

FIGURE 3.17 The spread of a rumor. (Ex-
ample 8)

QUICK REVIEW 3.2 (For help, go to Section P.5.)

SECTION 3.2 EXERCISES

In Exercises 1–6, tell whether the function is an exponential growth
function or exponential decay function, and find the constant percent-
age rate of growth or decay.

1. 2. P1t2 = 4.3 # 1.018tP1t2 = 3.5 # 1.09t

3. 4.

5. 6. g1t2 = 43 # 0.05tg1t2 = 247 # 2t

ƒ1x2 = 5607 # 0.9968xƒ1x2 = 78,963 # 0.968x

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, convert the percent to decimal form or the dec-
imal into a percent.

1. 15%

2. 0.04

3. Show how to increase 23 by 7% using a single 
multiplication.

4. Show how to decrease 52 by 4% using a single 
multiplication.

In Exercises 5 and 6, solve the equation algebraically.

5.

6.

In Exercises 7–10, solve the equation numerically.

7.

8.

9.

10. 127b7
= 56

672b4
= 91

93b5
= 521

782b6
= 838

243 # b3
= 9

40 # b2
= 160
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In Exercises 7–18, determine the exponential function that satisfies the
given conditions.

7. Initial , increasing at a rate of 17% per year

8. , increasing at a rate of 2.3% per day

9. , decreasing at a rate of 50% per month

10. , decreasing at a rate of 0.59% per week

11. , decreasing at a rate of 2.6% 
per year

12. , increasing at a rate of 1.7% 
per year

13. , growing at a rate of 5.2% per week

14. , decreasing at a rate of 4.6% per day

15. , doubling every 3 days

16. , doubling every 7.5 hours

17. , halving once every 6 years

18. , halving once every 32 hours

In Exercises 19 and 20, determine a formula for the exponential func-
tion whose values are given in Table 3.11.

19. 20. g1x2ƒ1x2

Initial mass = 17 g

Initial mass = 592 g

Initial population = 250

Initial mass = 0.6 g

Initial mass = 15 g

Initial height = 18 cm

Initial population = 502,000

Initial population = 28,900

Initial value = 5

Initial value = 16

Initial value = 52

value = 5

In Exercises 27 and 28, determine a formula for the logistic function
whose graph is shown in the figure.

27. 28.

SECTION 3.2 Exponential and Logistic Modeling 271

Table 3.11 Values for Two Exponential Functions

x

1.472
1.84

0 2.3
1 2.875
2 3.59375 -3.7123

-4.64
-5.8
-7.25-1
-9.0625-2

g1x2ƒ1x2

y

x

(0, 4) (5, 8.05)
(0, 3)

y

x

(4, 1.49)

In Exercises 21 and 22, determine a formula for the exponential func-
tion whose graph is shown in the figure.

21. 22.

In Exercises 23–26, find the logistic function that satisfies the given
conditions.

23. , , passing through
.

24. , , passing through
.

25. , maximum sustainable population
, passing through .

26. , , passing through
.13, 152

limit to growth = 30Initial height = 5

15, 322=  128
Initial population = 16

11, 242
limit to growth = 60Initial value = 12

11, 202
limit to growth = 40Initial value = 10

y

x

y = 20

(0, 5)
(2, 10)

y

x

y = 60

(0, 15) (8, 30)

29. Exponential Growth The 2000 population of 
Jacksonville, Florida, was 736,000 and was increasing at the
rate of 1.49% each year. At that rate, when will the population
be 1 million?

30. Exponential Growth The 2000 population of Las 
Vegas, Nevada, was 478,000 and is increasing at the rate of
6.28% each year. At that rate, when will the population be 
1 million?

31. Exponential Growth The population of Smallville in
the year 1890 was 6250. Assume the population increased at a
rate of 2.75% per year.

(a) Estimate the population in 1915 and 1940.

(b) Predict when the population reached 50,000.

32. Exponential Growth The population of River City in
the year 1910 was 4200. Assume the population increased at a
rate of 2.25% per year.

(a) Estimate the population in 1930 and 1945.

(b) Predict when the population reached 20,000.

33. Radioactive Decay The half-life of a certain radioac-
tive substance is 14 days. There are 6.6 g present initially.

(a) Express the amount of substance remaining as a function
of time t.

(b) When will there be less than 1 g remaining?

34. Radioactive Decay The half-life of a certain radioac-
tive substance is 65 days. There are 3.5 g present initially.

(a) Express the amount of substance remaining as a function
of time t.

(b) When will there be less than 1 g remaining?

35. Writing to Learn Without using formulas or graphs,
compare and contrast exponential functions and linear 
functions.

36. Writing to Learn Without using formulas or graphs,
compare and contrast exponential functions and logistic 
functions.
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37. Writing to Learn Using the population model that is
graphed in the figure, explain why the time it takes the 
population to double (doubling time) is independent of the
population size.

45. Spread of Flu The number of students infected with flu at
Springfield High School after t days is modeled by the function

(a) What was the initial number of infected students?

(b) When will the number of infected students be 200?

(c) The school will close when 300 of the 800-student body
are infected. When will the school close?

46. Population of Deer The population of deer after t
years in Cedar State Park is modeled by the function

(a) What was the initial population of deer? 

(b) When will the number of deer be 600?

(c) What is the maximum number of deer possible in the 
park?

47. Population Growth Using all of the data in Table 3.9,
compute a logistic regression model, and use it to predict the
U.S. population in 2010.

48. Population Growth Using the data in Table 3.13, con-
firm the model used in Example 8 of Section 3.1.

P1t2 =

1001

1 + 90e-0.2t
.

P1t2 =

800

1 + 49e-0.2t
.

272 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

y

x
1 2

300,000
250,000
200,000
150,000
100,000
50,000

3 4 5 6 7 8 9 10

Po
pu

la
tio

n

Time

38. Writing to Learn Explain why the half-life of a ra-
dioactive substance is independent of the initial amount of the
substance that is present.

39. Bacteria Growth The number B of bacteria in a petri
dish culture after t hours is given by

When will the number of bacteria be 200? Estimate the dou-
bling time of the bacteria.

40. Radiocarbon Dating The amount C in grams of 
carbon-14 present in a certain substance after t years is given
by

Estimate the half-life of carbon-14.

41. Atmospheric Pressure Determine the atmospheric
pressure outside an aircraft flying at 52,800 ft (10 mi above 
sea level).

42. Atmospheric Pressure Find the altitude above sea
level at which the atmospheric pressure is .

43. Population Modeling Use the 1950–2000 data in
Table 3.12 and exponential regression to predict Los Angeles’s
population for 2007. Compare the result with the listed value
for 2007. [Hint: Let 1900 be ]

44. Population Modeling Use the 1950–2000 data in
Table 3.12 and exponential regression to predict Phoenix’s
population for 2007. Compare the result with the listed value
for 2007. Repeat these steps using 1960–2000 data to create
the model. [Hint: Let 1900 be ]t = 0.

t = 0.

2.5 lb/in.2

C = 20e-0.0001216t.

B = 100e0.693t.

Source: World Almanac and Book of Facts
2002, 2009.

Table 3.12 Populations of Two
U.S. Cities (in thousands)

Year Los Angeles Phoenix

1950 1970 107
1960 2479 439
1970 2812 584
1980 2969 790
1990 3485 983
2000 3695 1321
2007 3834 1552

Table 3.13 Population of Dallas, Texas

Year Population

1950 434,462
1960 679,684
1970 844,401
1980 904,599
1990 1,006,877
2000 1,188,589

Source: U.S. Census Bureau.

Source: U.S. Census Bureau.

Table 3.14 Populations of Two 
U.S. States (in millions)

Year Arizona New York

1900 0.1 7.3
1910 0.2 9.1
1920 0.3 10.3
1930 0.4 12.6
1940 0.5 13.5
1950 0.7 14.8
1960 1.3 16.8
1970 1.8 18.2
1980 2.7 17.6
1990 3.7 18.0
2000 5.1 19.0

49. Population Growth Using the data in Table 3.14, con-
firm the model used in Exercise 56 of Section 3.1.
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50. Population Growth Using the data in Table 3.14,
compute a logistic regression model for Arizona’s population
for t years since 1800. Based on your model and the New York
population model from Exercise 56 of Section 3.1, will the
population of Arizona ever surpass that of New York? If so,
when?

Standardized Test Questions
51. True or False Exponential population growth is 

constrained with a maximum sustainable population. Justify
your answer.

52. True or False If the constant percentage rate of an expo-
nential function is negative, then the base of the function is
negative. Justify your answer.

In Exercises 53–56, you may use a graphing calculator to solve the
problem.

53. Multiple Choice What is the constant percentage growth
rate of ?

(A) 49% (B) 23% (C) 4.9% (D) 2.3% (E) 1.23%

54. Multiple Choice What is the constant percentage decay
rate of ?

(A) 22.7% (B) 16.6% (C) 8.34%

(D) 2.27% (E) 0.834%

55. Multiple Choice A single-cell amoeba doubles every 4
days. About how long will it take one amoeba to produce a
population of 1000?

(A) 10 days (B) 20 days (C) 30 days

(D) 40 days (E) 50 days

56. Multiple Choice A rumor spreads logistically so that
models the number of persons

who have heard the rumor by the end of t days. Based on this
model, which of the following is true?

(A) After 0 days, 16 people have heard the rumor.

(B) After 2 days, 439 people have heard the rumor.

(C) After 4 days, 590 people have heard the rumor.

(D) After 6 days, 612 people have heard the rumor.

(E) After 8 days, 769 people have heard the rumor.

Explorations
57. Population Growth (a) Use the 1900–1990 data in

Table 3.9 and logistic regression to predict the U.S. population
for 2000.

(b) Writing to Learn Compare the prediction with the
value listed in the table for 2000.

S1t2 = 789/(1 + 16 # e-0.8t2

P1t2 = 22.7 # 0.834t

P1t2 = 1.23 # 1.049t

(c) Noting the results of Example 6, which model— 
exponential or logistic—makes the better prediction in 
this case?

58. Population Growth Use all of the data in Tables 3.9
and 3.15.

(a) Based on exponential growth models, will Mexico’s popu-
lation surpass that of the United States, and if so, when?

(b) Based on logistic growth models, will Mexico’s population
surpass that of the United States, and if so, when?

(c) What are the maximum sustainable populations for the two
countries?

(d) Writing to Learn Which model—exponential or 
logistic—is more valid in this case? Justify your choice. 
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Sources: 1992 Statesman’s Yearbook and
World Almanac and Book of Facts 2002.

Table 3.15 Population of Mexico 
(in millions)

Year Population

1900 13.6
1950 25.8
1960 34.9
1970 48.2
1980 66.8
1990 88.1
2001 101.9
2025 130.2
2050 154.0

Extending the Ideas
59. The hyperbolic sine function is defined by

. Prove that sinh is an odd function.

60. The hyperbolic cosine function is defined by 
. Prove that cosh is an even function.

61. The hyperbolic tangent function is defined by 
.

(a) Prove that .
(b) Prove that tanh is an odd function.
(c) Prove that is a logistic function.ƒ1x2 = 1 + tanh1x2

tanh1x2 = sinh1x2/cosh1x2
1ex

- e-x2/1ex
+ e-x2

tanh1x2 =

1ex
+ e-x2/2

cosh1x2 =

sinh1x2 = 1ex
- e-x)/2
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3.3 Logarithmic Functions 
and Their Graphs

What you’ll learn about
• Inverses of Exponential Functions
• Common Logarithms—Base 10
• Natural Logarithms—Base e
• Graphs of Logarithmic Functions
• Measuring Sound Using Decibels

... and why
Logarithmic functions are used in
many applications, including the
measurement of the relative inten-
sity of sounds.

y

x

y = bx

b > 1

(a)

y

x

y = bx

0 < b < 1

(b)

FIGURE 3.18 Exponential functions are either (a) increasing or (b) decreasing.y

x

y = bx

y = logb x

y = x

FIGURE 3.19 Because logarithmic func-
tions are inverses of exponential functions, we
can obtain the graph of a logarithmic function
by the mirror or rotational methods discussed
in Section 1.4.

A Bit of History
Logarithmic functions were developed around
1594 as computational tools by Scottish mathe-
matician John Napier (1550–1617). He origi-
nally called them “artificial numbers,” but
changed the name to logarithms, which means
“reckoning numbers.”

Generally 
In practice, logarithmic bases are almost always
greater than 1.

b>1

An immediate and useful consequence of this definition is the link between an expo-
nential equation and its logarithmic counterpart.

Changing Between Logarithmic and Exponential Form
If and , then

if and only if by
= x.y = logb1x2

0 6 b Z 1x 7 0

Basic Properties of Logarithms
For , , and any real number y,

• because .

• because .

• because .

• because .logb x = logb xb logb x
= x

by
= bylogb by

= y

b1
= blogb b = 1

b0
= 1logb 1 = 0

x 7 00 6 b Z 1

This linking statement says that a logarithm is an exponent. Because logarithms are 
exponents, we can evaluate simple logarithmic expressions using our understanding of
exponents.

EXAMPLE 1  Evaluating Logarithms

(a) because .

(b) because .

(c) because .

(d) because .

(e) because . Now try Exercise 1.71
= 7log7 7 = 1

40
= 1log4 1 = 0

5-2
=

1

52 =

1

25
log5 

1

25
= -2

31/2
= 13log3 13 = 1/2

23
= 8log2 8 = 3

We can generalize the relationships observed in Example 1.

Inverses of Exponential Functions
In Section 1.4 we learned that, if a function passes the horizontal line test, then the inverse of
the function is also a function. Figure 3.18 shows that an exponential function 
would pass the horizontal line test. So it has an inverse that is a function. This inverse is
the logarithmic function with base b, denoted , or more simply as That
is, if with and , then . See Figure 3.19.ƒ 

-11x2 = logb xb Z 1b 7 0ƒ1x2 = bx
logb x.logb1x2
ƒ1x2 = bx
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These properties give us efficient ways to evaluate simple logarithms and some expo-
nential expressions. The first two parts of Example 2 are the same as the first two parts
of Example 1.
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EXAMPLE 2  Evaluating Logarithmic and Exponential 
Expressions

(a) .

(b) .

(c) . Now try Exercise 5.6log611
= 11

log3 13 = log3 31/2
= 1/2

log2 8 = log2 23
= 3

Logarithmic functions are inverses of exponential functions. So the inputs and outputs
are switched. Table 3.16 illustrates this relationship for and f -11x2 = log2 x.ƒ1x2 = 2x

Table 3.16 An Exponential Function and Its Inverse

x x

0 1 1 0
1 2 2 1
2 4 4 2
3 8 8 3

-11/21/2-1
-21/41/4-2
-31/81/8-3

f -11x2 = log2 xƒ1x2 = 2x

This relationship can be used to produce both tables and graphs for logarithmic func-
tions, as you will discover in Exploration 1.

EXPLORATION 1 Comparing Exponential and Logarithmic 
Functions

1. Set your grapher to Parametric mode and Simultaneous graphing mode.

Set X1T T and Y1T 2^T.

Set X2T 2^T and Y2T T.

Creating Tables. Set and . Use the Table feature of
your grapher to obtain the decimal form of both parts of Table 3.16. Be sure to
scroll to the right to see X2T and Y2T.

Drawing Graphs. Set , , and . Set the 
window to by . Use the Graph feature to obtain the simultane-

ous graphs of and . Use the Trace feature to explore
the numerical relationships within the graphs.

2. Graphing in Function mode. Graph in the same window. Then use the
“draw inverse” command to draw the graph of .y = log2 x

y = 2x

f -11x2 = log2 xƒ1x2 = 2x
3-4, 443-6, 64 1x, y2Tstep = 0.5Tmax = 6Tmin = -6

¢Tbl = 1TblStart = -3

==

==

Common Logarithms—Base 10
Logarithms with base 10 are called common logarithms. Because of their connection
to our base-ten number system, the metric system, and scientific notation, common log-
arithms are especially useful. We often drop the subscript of 10 for the base when using
common logarithms. The common logarithmic function is the inverse
of the exponential function . So

if and only if

Applying this relationship, we can obtain other relationships for logarithms with base 10.

10y
= x.y = log x

ƒ1x2 = 10x
log10 x = log x
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Using the definition of common logarithm or these basic properties, we can evaluate
expressions involving a base of 10.

276 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Basic Properties of Common Logarithms
Let x and y be real numbers with .

• because .

• because .

• because .

• because .log x = log x10log x
= x

10y
= 10ylog 10y

= y

101
= 10log 10 = 1

100
= 1log 1 = 0

x 7 0

Some Words of Warning
In Figure 3.20, notice we used “10^Ans” instead
of “10^1.537819095” to check This
is because graphers generally store more digits
than they display and so we can obtain a more
accurate check. Even so, because is
an irrational number, a grapher cannot produce
its exact value, so checks like those shown in
Figure 3.20 may not always work out so 
perfectly.

log 134.52

log 134.52.

Common logarithms can be evaluated by using the key on a calculator, as illus-
trated in Example 4.

LOG

EXAMPLE 3  Evaluating Logarithmic and Exponential 
Expressions—Base 10

(a) because .

(b) .

(c) .

(d) . Now try Exercise 7.10log 6
= 6

log 
1

1000
= log 

1

103 = log 10-3
= -3

log 25 10 = log 101/5
=

1

5

102
= 100log 100 = log10 100 = 2

log(34.5)

10^Ans

log(0.43)

10^Ans
.43

1.537819095

34.5

–.3665315444

FIGURE 3.20 Doing and checking com-
mon logarithmic computations. (Example 4)

EXAMPLE 4  Evaluating Common Logarithms 
with a Calculator

Use a calculator to evaluate the logarithmic expression if it is defined, and check
your result by evaluating the corresponding exponential expression.

(a) because .

(b) because .

See Figure 3.20.

(c) is undefined because there is no real number y such that . 
A grapher will yield either an error message or a complex-number answer for
entries such as . We shall restrict the domain of logarithmic functions
to the set of positive real numbers and ignore such complex-number answers.

Now try Exercise 25.

log 1-32
10y

= -3log 1-32

10-0.366Á
= 0.43log 0.43 = -0.366 Á

101.537Á
= 34.5log 34.5 = 1.537 Á

Changing from logarithmic form to exponential form sometimes is enough to solve an
equation involving logarithmic functions.

EXAMPLE 5  Solving Simple Logarithmic Equations
Solve each equation by changing it to exponential form.

(a) (b)

SOLUTION

(a) Changing to exponential form, .

(b) Changing to exponential form, . Now try Exercise 33.x = 25
= 32

x = 103
= 1000

log2 x = 5log x = 3
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Natural Logarithms—Base e
Because of their special calculus properties, logarithms with the natural base e are used
in many situations. Logarithms with base e are natural logarithms. We often use the
special abbreviation “ln” (without a subscript) to denote a natural logarithm. Thus, the
natural logarithmic function . It is the inverse of the exponential function

. So

if and only if

Applying this relationship, we can obtain other fundamental relationships for loga-
rithms with the natural base e.

ey
= x.y = ln x

ƒ1x2 = ex
loge x = ln x
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Basic Properties of Natural Logarithms
Let x and y be real numbers with .

• ln because .

• ln because .

• ln because .

• because ln .x = ln xeln x
= x

ey
= eyey

= y

e1
= ee = 1

e0
= 11 = 0

x 7 0

Reading a Natural Log
The expression ln x is pronounced “el en of ex.”
The “l” is for logarithm, and the “n” is for 
natural.

Using the definition of natural logarithm or these basic properties, we can evaluate ex-
pressions involving the natural base e.

EXAMPLE 6  Evaluating Logarithmic and Exponential 
Expressions—Base e

(a) ln because .

(b) ln .

(c) . Now try Exercise 13.eln 4
= 4

e5
= loge e

5
= 5

e1/2
= 2e2e = loge 2e = 1/2

Natural logarithms can be evaluated by using the key on a calculator, as illus-
trated in Example 7.

LN

EXAMPLE 7  Evaluating Natural Logarithms 
with a Calculator

Use a calculator to evaluate the logarithmic expression, if it is defined, and check
your result by evaluating the corresponding exponential expression.

(a) ln because .

(b) ln because .

See Figure 3.21.

(c) ln is undefined because there is no real number y such that . 
A grapher will yield either an error message or a complex-number answer for
entries such as ln . We will continue to restrict the domain of logarithmic
functions to the set of positive real numbers and ignore such complex-number
answers. Now try Exercise 29.

1-52
ey

= -51-52
e-0.733Á

= 0.480.48 = -0.733 Á

e3.157Á
= 23.523.5 = 3.157 Á

ln(23.5)

e^Ans

ln(0.48)

e^Ans
.48

3.157000421

23.5

–.7339691751

FIGURE 3.21 Doing and checking natural
logarithmic computations. (Example 7)

Graphs of Logarithmic Functions
The natural logarithmic function is one of the basic functions introduced in
Section 1.3. We now list its properties.

ƒ1x2 = ln x
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Any logarithmic function with has the same domain, range, conti-
nuity, increasing behavior, lack of symmetry, and other general behavior as .
It is rare that we are interested in logarithmic functions with .
So, the graph and behavior of are typical of logarithmic functions.

We now consider the graphs of the common and natural logarithmic functions and their
geometric transformations. To understand the graphs of and , we can
compare each to the graph of its inverse, and , respectively. Figure
3.23a shows that the graphs of and are reflections of each other across
the line . Similarly, Figure 3.23b shows that the graphs of and 
are reflections of each other across this same line.

y = 10xy = log xy = x
y = exy = ln x

y = exy = 10x
y = ln xy = log x

ƒ1x2 = ln x
0 6 b 6 1g1x2 = logb x
ƒ1x2 = ln x

b 7 1g1x2 = logb x
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Domain: 
Range: All reals
Continuous on 
Increasing on 
No symmetry
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: 
End behavior: lim

x: q

 ln x = q

x = 0

10, q2
10, q2

10, q2
ƒ1x2 = ln x

BASIC FUNCTION The Natural Logarithmic 
Function

[–2, 6] by [–3, 3]

FIGURE 3.22

y

x

(a)

y = ex

y = x

y = ln x
1 4

1

4

y

x

(b)

y = x

y = log x
1 4

1

4

y = 10x

FIGURE 3.23 Two pairs of inverse functions.

[–1, 5] by [–2, 2]

y = log x

y = ln x

FIGURE 3.24 The graphs of the common
and natural logarithmic functions.

From Figure 3.24 we can see that the graphs of and have much in
common. Figure 3.24 also shows how they differ.

The geometric transformations studied in Section 1.5, together with our knowledge of
the graphs of and , allow us to predict the graphs of the functions in
Example 8.

y = log xy = ln x

y = ln xy = log x
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EXAMPLE 8  Transforming Logarithmic Graphs
Describe how to transform the graph of or into the graph of the
given function.

(a) (b)

(c) (d)

SOLUTION

(a) The graph of is obtained by translating the graph of
2 units to the left. See Figure 3.25a.

(b) . So we obtain the graph of 
from the graph of by applying, in order, a reflection across

the y-axis followed by a translation 3 units to the right. See Figure 3.25b.
y = ln xln 13 - x2 h1x2 =h1x2 = ln 13 - x2 = ln 3-1x - 324

y = ln 1x2 g1x2 = ln 1x + 22

h1x2 = 1 + log xg1x2 = 3 log x

h1x2 = ln 13 - x2g1x2 = ln 1x + 22
y = log xy = ln x

[–3, 6] by [–3, 3]

(a)

[–3, 6] by [–3, 3]

(b)

[–3, 6] by [–3, 3]

(c)

[–3, 6] by [–3, 3]

(d)

FIGURE 3.25 Transforming to obtain (a) and
(b) ; and to obtain (c) and
(d) . (Example 8)h1x2 = 1 + log x

g1x2 = 3 log xy = log xh1x2 = ln 13 - x2
g1x2 = ln 1x + 22y = ln x

(c) The graph of is obtained by vertically stretching the graph of
by a factor of 3. See Figure 3.25c.

(d) We can obtain the graph of from the graph of 
by a translation 1 unit up. See Figure 3.25d. Now try Exercise 41.

ƒ1x2 = log xh1x2 = 1 + log x

ƒ1x2 = log x
g1x2 = 3 log x
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DEFINITION Decibels
The level of sound intensity in decibels (dB) is

where (beta) is the number of decibels, I is the sound intensity in , and
is the threshold of human hearing (the quietest audible sound

intensity).
I0 = 10-12 W/m2

W/m2b

b = 10 log1I/I02,

Bel Is for Bell
The original unit for sound intensity level was
the bel (B), which proved to be inconveniently
large. So the decibel, one-tenth of a bel, has re-
placed it. The bel was named in honor of 
Scottish-born American Alexander Graham Bell
(1847–1922), inventor of the telephone.

Source: Adapted from R. W. Reading, Exploring Physics:
Concepts and Applications. Belmont, CA: Wadsworth, 1984.

Table 3.17 Approximate Intensities
of Selected Sounds

Intensity
Sound

Hearing threshold
Soft whisper at 5 m
City traffic
Subway train
Pain threshold
Jet at takeoff 103

100
10-2
10-5
10-11
10-12

1W/m22

Chapter Opener Problem (from page 251)

Problem: How loud is a train inside a subway tunnel?

Solution: Based on the data in Table 3.17,

So the sound intensity level inside the subway tunnel is 100 dB.

 = 10 # 10 = 100

 = 10 log110102
 = 10 log110-2/10-122

 b = 10 log1I/I02

QUICK REVIEW 3.3 (For help, go to Sections P.1 and A.1.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, evaluate the expression without using a calculator.

1. 2.

3. 4.

5. 6.
913

278

811

228

10

2

40

5

10-35-2

In Exercises 7–10, rewrite as a base raised to a rational number 
exponent.

7. 8.

9. 10.
1

23 e2

1

1e

23 1025

Measuring Sound Using Decibels
Table 3.17 lists assorted sounds. Notice that a jet at takeoff is 100 trillion times as loud
as a soft whisper. Because the range of audible sound intensities is so great, common
logarithms (powers of 10) are used to compare how loud sounds are.

Sound Intensity
Sound intensity is the energy per unit time of a
sound wave over a given area, and is measured in
watts per square meter .1W/m22
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SECTION 3.3 EXERCISES

In Exercises 1–18, evaluate the logarithmic expression without using a
calculator.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, evaluate the expression without using a calculator.

19. 20.

21. 22.

23. 24.

In Exercises 25–32, use a calculator to evaluate the logarithmic expres-
sion if it is defined, and check your result by evaluating the correspond-
ing exponential expression.

25. 26.

27. 28.

29. ln 4.05 30.

31. 32.

In Exercises 33–36, solve the equation by changing it to exponential
form.

33. 34.

35. 36.

In Exercises 37–40, match the function with its graph.

37. 38.

39. 40. ƒ1x2 = - ln 14 - x2ƒ1x2 = - ln 1x - 32
ƒ1x2 = log 1x + 12ƒ1x2 = log 11 - x2

log x = -3log x = -1

log x = 4log x = 2

ln 1-3.32ln 1-0.492
ln 0.733

log 1-5.142log 1-142
log 0.908log 9.43

eln11/52eln 6

10log1410log 10.52
5log5 87log7 3

ln 
1

2e7
ln 24 e

ln 1ln 
1
e

ln e-4ln e3

log 
1

11000
log 23 10

log 10-4log 100,000

log 10,000log 103

log6 
1

25 36
log5 23 25

log3 81log2 32

log6 1log4 4

In Exercises 41–46, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and sup-
port your sketch with a grapher.

41. 42.

43. 44.

45. 46.

In Exercises 47–52, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and sup-
port with a grapher.

47.

48.

49.

50.

51.

52.

In Exercises 53–58, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, boundedness, 
extrema, symmetry, asymptotes, and end behavior.

53. 54.

55. 56.

57. 58.

59. Sound Intensity Use the data in Table 3.17 to compute
the sound intensity in decibels for (a) a soft whisper, (b) city
traffic, and (c) a jet at takeoff.

60. Light Absorption The Beer-
Lambert Law of Absorption applied to
Lake Erie states that the light intensity
I (in lumens), at a depth of x feet, sat-
isfies the equation

Find the intensity of the light at a
depth of 30 ft.

61. Population Growth Using the data in Table 3.18,
compute a logarithmic regression model, and use it to predict
when the population of San Antonio will be 1,500,000.

log 
I

12
= -0.00235x.

ƒ1x2 = 5 ln 12 - x2 - 3ƒ1x2 = 3 log 1x2 - 1

ƒ1x2 = - log 1x + 22ƒ1x2 = - ln 1x - 12
ƒ1x2 = ln 1x + 12ƒ1x2 = log 1x - 22

ƒ1x2 = -3 log 11 - x2 + 1

ƒ1x2 = 2 log 13 - x2 - 1

ƒ1x2 = -3 log 1-x2
ƒ1x2 = -2 log 1-x2
ƒ1x2 = log 1x - 32
ƒ1x2 = -1 + log 1x2

y = log x

ƒ1x2 = ln 15 - x2ƒ1x2 = ln 12 - x2
ƒ1x2 = ln 1-x2 - 2ƒ1x2 = ln 1-x2 + 3

ƒ1x2 = ln 1x2 + 2ƒ1x2 = ln 1x + 32

y = ln x

(a) (b)

(c) (d)

Source: World Alamanac and Book of
Facts 2005.

Table 3.18 Population of
San Antonio

Year Population

1970 654,153
1980 785,940
1990 935,933
2000 1,151,305
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62. Population Decay Using the data in Table 3.19, com-
pute a logarithmic regression model, and use it to predict when
the population of Milwaukee will be 500,000.

(C) It is continuous on its domain.

(D) It is unbounded.

(E) It has a vertical asymptote.

68. Multiple Choice Which of the following is the inverse
of ?

(A) (B)

(C) (D)

(E)

Explorations
69. Writing to Learn Parametric Graphing In the

manner of Exploration 1, make tables and graphs for
and its inverse . Write a compara-

tive analysis of the two functions regarding domain, range, in-
tercepts, and asymptotes.

70. Writing to Learn Parametric Graphing In the
manner of Exploration 1, make tables and graphs for

and its inverse . Write a compara-
tive analysis of the two functions regarding domain, range, in-
tercepts, and asymptotes.

71. Group Activity Parametric Graphing In the
manner of Exploration 1, find the number such that the
graphs of and its inverse have ex-
actly one point of intersection. What is the one point that is in
common to the two graphs?

72. Writing to Learn Explain why zero is not in the do-
main of the logarithmic functions and

.

Extending the Ideas
73. Describe how to transform the graph of into the

graph of .

74. Describe how to transform the graph of into the
graph of .g1x2 = log0.1 x

ƒ1x2 = log x

g1x2 = log1/e x
ƒ1x2 = ln x

g1x2 = log5 x
ƒ1x2 = log3 x

ƒ-11x2 = logb xƒ1x2 = bx
b 7 1

ƒ-11x2 = log5 xƒ1x2 = 5x

ƒ-11x2 = log3 xƒ1x2 = 3x

f -11x2 = 0.5 log3 1x2
f -11x2 = 3 log2 1x2f -11x2 = 2 log3 1x2
f -11x2 = log2 1x/32f -11x2 = log3 1x/22

ƒ1x2 = 2 # 3x

282 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Source: World Alamanac and Book of
Facts 2005.

Table 3.19 Population of 
Milwaukee

Year Population

1970 717,372
1980 636,297
1990 628,088
2000 596,974

Standardized Test Questions
63. True or False A logarithmic function is the inverse of an

exponential function. Justify your answer.

64. True or False Common logarithms are logarithms with
base 10. Justify your answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice What is the approximate value of the
common log of 2?

(A) 0.10523 (B) 0.20000

(C) 0.30103 (D) 0.69315

(E) 3.32193

66. Multiple Choice Which statement is false?

(A) (B)

(C) (D)

(E)

67. Multiple Choice Which statement is false about
?

(A) It is increasing on its domain.

(B) It is symmetric about the origin.

ƒ1x2 = ln x

log 5 = log 10 - log 2

log 5 6 log 10log 5 7 log 2

log 5 = 1 - log 2log 5 = 2.5 log 2
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3.4 Properties of Logarithmic
Functions

What you’ll learn about
• Properties of Logarithms
• Change of Base
• Graphs of Logarithmic 

Functions with Base b
• Re-expressing Data

... and why
The applications of logarithms
are based on their many spe-
cial properties, so learn them
well.

Properties of Logarithms
Logarithms have special algebraic traits that historically made them indispensable for
calculations and that still make them valuable in many areas of application and mod-
eling. In Section 3.3 we learned about the inverse relationship between exponents and
logarithms and how to apply some basic properties of logarithms. We now delve
deeper into the nature of logarithms to prepare for equation solving and modeling.

Properties of Exponents
Let b, x, and y be real numbers with .

1.

2.

3. 1bx2y = bxy

bx

by = bx-y

bx # by
= bx+y

b 7 0

The properties of exponents in the margin are the basis for these three properties of log-
arithms. For instance, the first exponent property listed in the margin is used to verify
the product rule.

EXAMPLE 1  Proving the Product Rule for Logarithms
Prove .

SOLUTION Let and . The corresponding exponential state-
ments are and . Therefore,

First property of exponents

Change to logarithmic form.

Use the definitions of x and y.

Now try Exercise 37.

 = logb R + logb S

 logb 1RS2 = x + y

 = bx+y

 RS = bx # by

by
= Sbx

= R
y = logb Sx = logb R

logb (RS2 = logb R + logb S

EXPLORATION 1 Exploring the Arithmetic of Logarithms

Use the 5-decimal-place approximations shown in Figure 3.26 to support the

properties of logarithms numerically.

1. Product

2. Quotient

3. Power

(continued)

log 23
= 3 log 2

log a8

2
b = log 8 - log 2

log 12 # 42 = log 2 + log 4

log(2)

log(4)

log(8)

.30103

.60206

.90309

FIGURE 3.26 An arithmetic pattern of
logarithms. (Exploration 1)

Properties of Logarithms
Let b, R, and S be positive real numbers with , and c any real number.

• Product rule:

• Quotient rule:

• Power rule: logb Rc
= c logb R

logb 
R

S
= logb R - logb S

logb 1RS2 = logb R + logb S

b Z 1
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When we solve equations algebraically that involve logarithms, we often have to
rewrite expressions using properties of logarithms. Sometimes we need to expand as far
as possible, and other times we condense as much as possible. The next three examples
illustrate how properties of logarithms can be used to change the form of expressions
involving logarithms.

284 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Now evaluate the common logs of other positive integers using the information

given in Figure 3.26 and without using your calculator.

4. Use the fact that to evaluate log 5.

5. Use the fact that 16, 32, and 64 are powers of 2 to evaluate log 16, log 32, and
log 64.

6. Evaluate log 25, log 40, and log 50.

List all of the positive integers less than 100 whose common logs can be evalu-

ated knowing only log 2 and the properties of logarithms and without using a

calculator.

5 = 10/2

EXAMPLE 2  Expanding the Logarithm of a Product
Assuming x and y are positive, use properties of logarithms to write as a
sum of logarithms or multiples of logarithms.

SOLUTION Product rule

Power rule

Now try Exercise 1.

 =  3 log 2 + log x + 4 log y

8 = 23 =  log 23
+ log x + log y4

 log 18xy42 = log 8 +  log x + log y4

log 18xy42

EXAMPLE 3  Expanding the Logarithm of a Quotient
Assuming x is positive, use properties of logarithms to write ln as a
sum or difference of logarithms or multiples of logarithms.

SOLUTION

Quotient rule

Power rule

Now try Exercise 9.

 =

1

2
 ln 1x2

+ 52 - ln x

 = ln 1x2
+ 521/2

- ln x

 ln 
2x2

+ 5
x

= ln 
1x2

+ 521/2

x

12x2
+ 5/x2

EXAMPLE 4  Condensing a Logarithmic Expression
Assuming x and y are positive, write ln as a single logarithm.

SOLUTION Power rule

Quotient rule

Now try Exercise 13.

 = ln 
x3

y2

 = ln 
x5

x2 y2

 = ln x5
- ln 1x2y22

 ln x5
- 2 ln 1xy2 = ln x5

- ln 1xy22
ln 1xy2x5

- 2
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As we have seen, logarithms have some surprising properties. It is easy to overgeneral-
ize and fall into misconceptions about logarithms. Exploration 2 should help you dis-
cern what is true and false about logarithmic relationships.

SECTION 3.4 Properties of Logarithmic Functions 285

EXPLORATION 2 Discovering Relationships and Nonrelationships

Of the eight relationships suggested here, four are true and four are false (using

values of x within the domains of both sides of the equations). Thinking about

the properties of logarithms, make a prediction about the truth of each state-

ment. Then test each with some specific numerical values for x. Finally, com-

pare the graphs of the two sides of the equation.

1. 2.

3. 4.

5. 6.

7. 8.

Which four are true, and which four are false?

log ƒ4x ƒ = log 4 + log ƒx ƒlog5 x2
= 1log5 x21log5 x2

log4 x3
= 3 log4 xlog 

x

4
=

log x

log 4

ln 
x

5
= ln x - ln 5log2 15x2 = log2 5 + log2 x

log3 17x2 = 7 log3 xln 1x + 22 = ln x + ln 2

Change of Base
When working with a logarithmic expression with an undesirable base, it is possible to
change the expression into a quotient of logarithms with a different base. For example,

it is hard to evaluate because 7 is not a simple power of 4 and there is no
key on a calculator or grapher.

We can work around this problem with some algebraic trickery. First let .
Then

Switch to exponential form.

Apply ln.

Power rule

Divide by ln 4.

Using a grapher (Figure 3.27), we see that

We generalize this useful trickery as the change-of-base formula:

log4 7 =

ln 7

ln 4
= 1.4036 Á

 y =

ln 7

ln 4

 yln 4 = ln 7

 ln 4 y
= ln 7

 4y
= 7

y = log4 7

log4log4 7

ln(7)/ln(4)

4^Ans
1.403677461

7

FIGURE 3.27 Evaluating and checking
.log4 7

Change-of-Base Formula for Logarithms
For positive real numbers a, b, and x with and ,

logb x =

loga x

loga b
 .

b Z 1a Z 1
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Calculators and graphers generally have two logarithm keys— and —which
correspond to the bases 10 and e, respectively. So we often use the change-of-base for-
mula in one of the following two forms:

or

These two forms are useful in evaluating logarithms and graphing logarithmic functions.

logb x =

ln x

ln b
logb x =

log x

log b

LNLOG

286 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 5  Evaluating Logarithms by Changing the Base

(a)

(b)

(c) Now try Exercise 23.log1/2 2 =

ln 2

ln 11/22 =

ln 2

ln 1 - ln 2
=

ln 2

- ln 2
= -1

log6 10 =

log 10

log 6
=

1

log 6
= 1.285 Á L 1.29

log3 16 =

ln 16

ln 3
= 2.523 Á L 2.52

Graphs of Logarithmic Functions with Base b
Using the change-of-base formula we can rewrite any logarithmic function

as

Therefore, every logarithmic function is a constant multiple of the natural logarithmic
function . If the base is , the graph of is a vertical
stretch or shrink of the graph of by the factor . If , a re-
flection across the x-axis is required as well.

0 6 b 6 11/ln bƒ1x2 = ln x
g1x2 = logb xb 7 1ƒ1x2 = ln x

g1x2 =

ln x

ln b
=

1

ln b
 ln x.

g1x2 = logb x

EXAMPLE 6  Graphing Logarithmic Functions
Describe how to transform the graph of into the graph of the given func-
tion. Sketch the graph by hand and support your answer with a grapher.

(a) (b)
SOLUTION

(a) Because , its graph is obtained by vertically shrinking
the graph of by a factor of . See Figure 3.28a.

(b) . We can obtain 

the graph of h from the graph of by applying, in either order, a re-
flection across the x-axis and a vertical shrink by a factor of . See
Figure 3.28b. Now try Exercise 39.

1/ln 4 L 0.72
ƒ1x2 = ln x

h1x2 = log1/4 x =

ln x

ln 1/4
=

ln x

ln 1 - ln 4
=

ln x

- ln 4
= -  

1

ln 4
 ln x

1/ln 5 L 0.62ƒ1x2 = ln x
g1x2 = log5 x = ln x/ ln 5

h1x2 = log1/4 xg1x2 = log5 x

ƒ1x2 = ln x

[–3, 6] by [–3, 3]

(a)

[–3, 6] by [–3, 3]

(b)

FIGURE 3.28 Transforming 
to obtain (a) x and 
(b) . (Example 6)h1x2 = log1/4 x

g1x2 = log5

ƒ1x2 = ln x

We can generalize Example 6b in the following way: If , then and

So when given a function like , with a base between 0 and 1, we can im-
mediately rewrite it as . Because we can so readily change the base of
logarithms with bases between 0 and 1, such logarithms are rarely encountered or used.
Instead, we work with logarithms that have bases , which behave much like nat-
ural and common logarithms, as we now summarize.

b 7 1

h1x2 = - log4 x
h1x2 = log1/4 x

log1/b x = - logb x.

0 6 1/b 6 1b 7 1
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Re-expressing Data
When seeking a model for a set of data, it is often helpful to transform the data by ap-
plying a function to one or both of the variables in the data set. We did this already
when we treated the years 1900–2000 as 0–100. Such a transformation of a data set is a
re-expression of the data.

Recall from Section 2.2 that Kepler’s Third Law states that the square of the orbit 
period T for each planet is proportional to the cube of its average distance a from the
Sun. If we re-express the Kepler planetary data in Table 2.10 using Earth-based units,
the constant of proportion becomes 1 and the “is proportional to” in Kepler’s Third
Law becomes “equals.” We can do this by dividing the “average distance” column by
149.6 Gm/AU and the “period of orbit” column by 365.2 days/yr. The re-expressed
data are shown in Table 3.20.
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Domain: 
Range: All reals
Continuous
Increasing on its domain
No symmetry: neither even nor odd
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptote: 
End behavior: lim

x: q

 logb x = q

x = 0

10, q2

FIGURE 3.29 .ƒ1x2 = logb x, b 7 1

y

x

(b, 1)

(1, 0)

Logarithmic Functions , with b>1ƒ1x2 � logb x

Astronomically Speaking
An astronomical unit (AU) is the average dis-
tance between the Earth and the Sun, about
149.6 million kilometers (149.6 Gm).

[–1, 10] by [–5, 30]

(a)

[–100, 1500] by [–1000, 12 000]

(b)

FIGURE 3.30 Scatter plots of the plane-
tary data from (a) Table 3.20 and
(b) Table 2.10.

Source: Re-expression of data from: Shupe, et al., National Geographic Atlas
of the World (rev. 6th ed.). Washington, DC: National Geographic Society,
1992, plate 116.

Table 3.20 Average Distances and Orbit Periods
for the Six Innermost Planets

Planet Average Distance from Period of Orbit (yr)
Sun (AU)

Mercury 0.3870 0.2410
Venus 0.7233 0.6161
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.86
Saturn 9.539 29.46

Notice that the pattern in the scatter plot of these re-expressed data, shown in Figure
3.30a, is essentially the same as the pattern in the plot of the original data, shown in Figure
3.30b. What we have done is to make the numerical values of the data more convenient
and to guarantee that our plot contains the ordered pair (1, 1) for Earth, which could 
potentially simplify our model. What we have not done and still wish to do is to clarify
the relationship between the variables a (distance from the Sun) and T (orbit period).
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Logarithms can be used to re-express data and help us clarify relationships and uncover
hidden patterns. For the planetary data, if we plot pairs instead of 
pairs, the pattern is much clearer. In Example 7, we carry out this re-expression of the
data and then use an algebraic tour de force to obtain Kepler’s Third Law.

1a, T21ln a, ln T2

288 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 7  Establishing Kepler’s Third Law Using 
Logarithmic Re-expression

Re-express the data pairs in Table 3.20 as pairs. Find a linear re-
gression model for the pairs. Rewrite the linear regression in terms of 
a and T, and rewrite the equation in a form with no logs or fractional exponents.

SOLUTION

Model
We use grapher list operations to obtain the pairs (see Figure 3.31a). We
make a scatter plot of the re-expressed data in Figure 3.31b. The pairs 
appear to lie along a straight line.

1ln a, ln T21ln a, ln T2

1ln a, ln T2 1ln a, ln T21a, T2

L2 L3

L4 = ln (L2)

.241

.6161
1
1.881
11.86
29.46
– – – – – –

–.9493
–.3239
0
.42068
1.6492
2.2554
– – – – – –

–1.423
–.4843
0
.6318
2.4732
3.383
– – – – – –

L4

(a)

[–2, 3] by [–3, 5]

(b)

[–2, 3] by [–3, 5]

(c)

FIGURE 3.31 Scatter plot and graphs for Example 7.

We let and . Then using linear regression, we obtain the following
model:

Figure 3.31c shows the scatter plot for the pairs together with a
graph of . You can see that the line fits the re-expressed data remarkably well.

Remodel
Returning to the original variables a and T, we obtain:

Divide by ln a.

Change of base

Switch to exponential form.

Square both sides.

Interpret
This is Kepler’s Third Law! Now try Exercise 65.

 T2
= a3

 T = a3/2

 loga T =

3

2

 
ln T

ln a
= 1.5

y = 1.5x ln T = 1.5 # ln a

y = 1.5x
1x, y2 = 1ln a, ln T2

y = 1.49950x + 0.00070 L 1.5x.

x = ln ay = ln T
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QUICK REVIEW 3.4 (For help, go to Sections A.1 and 3.3.)

SECTION 3.4 EXERCISES

In Exercises 1–12, assuming x and y are positive, use properties of log-
arithms to write the expression as a sum or difference of logarithms or
multiples of logarithms.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–22, assuming x, y, and z are positive, use properties of
logarithms to write the expression as a single logarithm.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

In Exercises 23–28, use the change-of-base formula and your calculator
to evaluate the logarithm.

23. 24.

25. 26.

27. 28. log0.2 29log0.5 12

log12 259log8 175

log5 19log2 7

3 ln 1x3y2 + 2 ln 1yz22
4 log 1xy2 - 3 log 1yz2
4 log y - log z

2 ln x + 3 ln y

1

5
 log z

1

3
 log x

ln x - ln y

ln y - ln 3

log x + log 5

log x + log y

ln 
23 x

23 y
log B4   

x

y

log 1000x4ln 
x2

y3

log xy3log x3y2

log2 x -2log2 y5

log 
2
y

log 
3
x

ln 9yln 8x

In Exercises 29–32, write the expression using only natural logarithms.

29. 30.

31.

32.

In Exercises 33–36, write the expression using only common 
logarithms.

33. 34.

35.

36.

37. Prove the quotient rule of logarithms.

38. Prove the power rule of logarithms.

In Exercises 39–42, describe how to transform the graph of
into the graph of the given function. Sketch the graph by

hand and support with a grapher.

39. 40.

41. 42.

In Exercises 43–46, match the function with its graph. Identify the win-
dow dimensions, Xscl, and Yscl of the graph.

43. 44.

45. 46. ƒ1x2 = log0.7 13 - x2ƒ1x2 = log0.5 1x - 22
ƒ1x2 = log6 1x - 32ƒ1x2 = log4 12 - x2

ƒ1x2 = log1/5 xƒ1x2 = log1/3 x

ƒ1x2 = log7 xƒ1x2 = log4 x

g1x2 =  ln x

log1/3 1x - y2
log1/2 1x + y2

log4 xlog2 x

log5 1c - d2
log2 1a + b2

log7 xlog3 x

(a) (b)

(c) (d)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression without using a calculator.

1.

2.

3.

4. log 10-3

ln e-2

ln e3

log 102

In Exercises 5–10, simplify the expression.

5. 6.

7. 8.

9. 10.
1x -2y32-2

1x3y-22-3

1u2v-421/2

127u6v-621/3

1x -8y1223/41x6y-221/2

u-3v7

u-2v2

x5 y-2

x2 y-4
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In Exercises 47–50, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, asymptotes, and
end behavior.

47. 48.

49. 50.

51. Sound Intensity Compute the sound intensity level in
decibels for each sound listed in Table 3.21.

ƒ1x2 = ln 1x32ƒ1x2 = log 1x22
ƒ1x2 = log1/3 19x2ƒ1x2 = log2 18x2
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Standardized Test Questions
57. True or False The logarithm of the product of two posi-

tive numbers is the sum of the logarithms of the numbers. Jus-
tify your answer.

58. True or False The logarithm of a positive number is
positive. Justify your answer.

In Exercises 59–62, solve the problem without using a calculator.

59. Multiple Choice

(A) (B)

(C) (D)

(E)

60. Multiple Choice

(A) (B)

(C) (D)

(E)

61. Multiple Choice

(A) (B)

(C) (D)

(E)

62. Multiple Choice

(A) (B)

(C) (D)

(E)

Explorations
63. (a) Compute the power regression model for the following

data.

-2 log2 ƒ  x ƒ

0.5 log2 x-0.5 log2 x

2 log2 x-2 log2 x

log1/2 x2
=

ln x2 # ln x3

3 ln x2x ln 5

2 ln x35 ln x

ln x5
=

1log 642/9
2 log9 321ln 642/1ln 92
1log3 8225 log3 2

log9 64 =

2 log 6

log 3 #  log 44 log 3

log 3 + log 43 log 4

log 12 =

Sources: J. J. Dwyer, College Physics. Belmont, CA:
Wadsworth, 1984; and E. Connally et al., Functions
Modeling Change. New York: Wiley, 2000.

Table 3.21 Approximate Intensities
for Selected Sounds

Intensity 
Sound

(a) Hearing threshold
(b) Rustling leaves
(c) Conversation
(d) School cafeteria
(e) Jack hammer
(f ) Pain threshold 1

10-2
10-4
10-6
10-11
10-12

1Watts/m22

52. Earthquake Intensity The Richter scale magnitude
R of an earthquake is based on the features of the associated
seismic wave and is measured by

where a is the amplitude in (micrometers), T is the period
in seconds, and B accounts for the weakening of the seismic
wave due to the distance from the epicenter. Compute the
earthquake magnitude R for each set of values.

(a) , , and 

(b) , , and 

53. Light Intensity in Lake Erie The relationship be-
tween intensity I of light (in lumens) at a depth of x feet in
Lake Erie is given by

What is the intensity at a depth of 40 ft?

54. Light Intensity in Lake Superior The relation-
ship between intensity I of light (in lumens) at a depth of x feet
in Lake Superior is given by

What is the intensity at a depth of 10 ft?

55. Writing to Learn Use the change-of-base formula to
explain how we know that the graph of can be
obtained by applying a transformation to the graph of

.

56. Writing to Learn Use the change-of-base formula to
explain how the graph of can be obtained by
applying transformations to the graph of .g1x2 = log x

ƒ1x2 = log0.8 x

g1x2 = ln x

ƒ1x2 = log3 x

log 
I

12
= -0.0125x.

log 
I

12
= -0.00235x.

B = 3.5T = 4a = 300

B = 4.25T = 2a = 250

mm

R = log 1a/T2 + B,

x 4 6.5 8.5 10

y 2816 31,908 122,019 275,000

x 2 3 4.8 7.7

y 7.48 7.14 6.81 6.41

(b) Predict the y-value associated with using the
power regression model.

(c) Re-express the data in terms of their natural logarithms and
make a scatter plot of .

(d) Compute the linear regression model 
for .

(e) Confirm that is the power regression model
found in (a).

64. (a) Compute the power regression model for the following
data.

y = eb # xa

1ln x, ln y2
1ln y2 = a1ln x2 + b

1ln x, ln y2

x = 7.1

(b) Predict the y-value associated with using the
power regression model.

(c) Re-express the data in terms of their natural logarithms and
make a scatter plot of .1ln x, ln y2

x = 9.2
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(d) Compute the linear regression model 
for .

(e) Confirm that is the power regression model
found in (a).

65. Keeping Warm—Revisited Recall 
from Exercise 55 of Section 2.2 that scien-
tists have found the pulse rate r of mam-
mals to be a power function of their body
weight w.

(a) Re-express the data in Table 3.22 in
terms of their common logarithms and
make a scatter plot of .

(b) Compute the linear regression model
for .

(c) Superimpose the regression curve on the scatter plot.

(d) Use the regression equation to predict the pulse rate for a
450-kg horse. Is the result close to the 38 beats/min re-
ported by A. J. Clark in 1927?

(e) Writing to Learn Why can we use either common
or natural logarithms to re-express data that fit a power re-
gression model?

1log w, log r21log r2 = a1log w2 + b

1log w, log r2

y = eb # xa

1ln x, ln y2
1ln y2 = a1ln x2 + b
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66. Let and . Then, for example, 
and . List all of the positive integers less
than 100 whose common logs can be written as expressions in-
volving a or b or both. (Hint: See Exploration 1 on page 283.)

Extending the Ideas
67. Solve .

68. Solve . 

69. Group Activity Work in groups of three. Have each
group member graph and compare the domains for one pair of
functions.

(a) and 

(b) and 

(c)

Writing to Learn After discussing your findings, write
a brief group report that includes your overall conclusions and
insights.

70. Prove the change-of-base formula for logarithms.

71. Prove that is a constant function with re-
stricted domain by finding the exact value of the constant

expressed as a common logarithm.

72. Graph , and analyze it for domain, range,
continuity, increasing or decreasing behavior, symmetry, 
asymptotes, end behavior, and invertibility.

ƒ1x2 = ln 1ln 1x22
log x/ ln x

ƒ1x2 = log x/ln x

ƒ1x2 = log 1x + 322 and g1x2 = 2 log 1x + 32
g1x2 = ln 

x + 5

x - 5
ƒ1x2 = ln 1x + 52 - ln 1x - 52

g1x2 = ln x21x - 32ƒ1x2 = 2 ln x + ln 1x - 32

1.2x
… log1.2 x

ln x 7 23 x

log 15 = 1 - a + b
log 6 = a + bb = log 3a = log 2

Source: A. J. Clark, Comparative Physiology of the Heart. 
New York: Macmillan, 1927.

Table 3.22 Weight and Pulse Rate of
Selected Mammals

Pulse Rate 
Mammal Body Weight (kg) (beats/min)

Rat 0.2 420
Guinea pig 0.3 300
Rabbit 2 205
Small dog 5 120
Large dog 30 85
Sheep 50 70
Human 70 72
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Example 1 shows how the one-to-oneness of exponential functions can be used. Exam-
ples 3 and 4 use the one-to-one property of logarithms.

292 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

3.5 Equation Solving and Modeling

Solving Exponential Equations
Some logarithmic equations can be solved by changing to exponential form, as we saw
in Example 5 of Section 3.3. For other equations, the properties of exponents or the
properties of logarithms are used. A property of both exponential and logarithmic func-
tions that is often helpful for solving equations is that they are one-to-one functions.

What you’ll learn about
• Solving Exponential Equations
• Solving Logarithmic Equations
• Orders of Magnitude and Loga-

rithmic Models
• Newton’s Law of Cooling
• Logarithmic Re-expression

... and why
The Richter scale, pH, and 
Newton’s Law of Cooling are
among the most important uses 
of logarithmic and exponential
functions.

One-to-One Properties
For any exponential function ,

• If .

For any logarithmic function ,

• If , then .u = vlogb u = logb v

ƒ1x2 = logb x

bu
= bv, then u = v

ƒ1x2 = bx

EXAMPLE 1  Solving an Exponential Equation Algebraically
Solve .

SOLUTION

Divide by 20.

One-to-one property

Multiply by 3. Now try Exercise 1. x = 6

 
x

3
= 2

1
4

= a1
2
b2

 a1

2
bx/3

= a1

2
b2

 a1

2
bx/3

=

1

4

 20a1

2
bx/3

= 5

2011/22x/3
= 5

The equation in Example 2 involves a difference of two exponential functions, which
makes it difficult to solve algebraically. So we start with a graphical approach.

EXAMPLE 2  Solving an Exponential Equation
Solve .

SOLUTION

Solve Graphically Figure 3.32 shows that the graphs of and
intersect when .

Confirm Algebraically The algebraic approach involves some ingenuity. If we mul-
tiply each side of the original equation by and rearrange the terms, we can obtain
a quadratic equation in :

Multiply by 2 .

Subtract 10 .ex 1ex22 - 101ex2 - 1 = 0

ex e2x
- e0

= 10ex

 
ex

- e-x

2 = 5

ex
2ex

x L 2.31y = 5
y = 1ex

- e-x2/2

1ex
- e-x2/2 = 5

[–4, 4] by [–10, 10]

Intersection
X=2.3124383  Y=5

FIGURE 3.32 and
. (Example 2)y = 5

y = 1ex
- e-x2/2
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Solving Logarithmic Equations
When logarithmic equations are solved algebraically, it is important to keep track of the
domain of each expression in the equation as it is being solved. A particular algebraic
method may introduce extraneous solutions, or worse yet, lose some valid solutions, as
illustrated in Example 3.

SECTION 3.5 Equation Solving and Modeling 293

A Cinch?
You may recognize the left-hand side of the
equation in Example 2 as the hyperbolic sine
function that was introduced in Exercise 59 of
Section 3.2. This function is often used in calcu-
lus. We write . “Sinh” 
is pronounced as if spelled “cinch.”

sinh1x2 = 1ex
- e-x2/2

If we let , this equation becomes , and the quadratic for-
mula gives

Because is always positive, we reject the possibility that has the negative value
. Therefore,

Convert to logarithmic form.

Approximate with a grapher.
Now try Exercise 31.

 x = 2.312 Á L 2.31

 x = ln 15 + 1262
 ex

= 5 + 126

5 - 126
exex

w = ex
=

10 � 1104

2
= 5 � 126.

w2
- 10w - 1 = 0w = ex

EXAMPLE 3  Solving a Logarithmic Equation
Solve .

SOLUTION

Method 1 Use the one-to-one property of logarithms.

One-to-one property

or

Method 2 Change the equation from logarithmic to exponential form.

Change to exponential form.

or

Method 3 (Incorrect) Use the power rule of logarithms.

Power rule, incorrectly applied

Divide by 2.

Change to exponential form.

Support Graphically
Figure 3.33 shows that the graphs of and intersect when

. From the symmetry of the graphs due to ƒ being an even function, we can
see that is also a solution.

Interpret
Methods 1 and 2 are correct. Method 3 fails because the domain of is all
nonzero real numbers, but the domain of log x is only the positive real numbers. The
correct solution includes both 10 and because both of these x-values make the
original equation true. Now try Exercise 25.

-10

log x2

x = 10
x = -10

y = 2ƒ1x2 = log x2

 x = 10

 log x = 1

 2 log x = 2

 log x2
= 2

x = -10 x = 10

102
= 100 x2

= 100

 x2
= 102

 log x2
= 2

x = -10 x = 10

102
= 100 x2

= 100

 x2
= 102

y = log 10y log x2
= log 102

 log x2
= 2

log x2
= 2

[–15, 15] by [–3, 3]

Intersection
X=210   Y=2

FIGURE 3.33 Graphs of 
and . (Example 3)y = 2

ƒ1x2 = log x2
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Method 3 above violates an easily overlooked condition of the power rule 
, namely, that the rule holds if R is positive. In the expression , x plays the

role of R, and x can be , which is not positive. Because algebraic manipulation of a
logarithmic equation can produce expressions with different domains, a graphical solu-
tion is often less prone to error.

-10
log x2loga R

log
b
 Rc

= c

294 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

[–2, 5] by [–3, 3]

Zero
X=2   Y=0

FIGURE 3.34 The zero of
is

. (Example 4)x = 2
ƒ1x2 = ln 13x - 22 + ln 1x - 12 - 2 ln x

log(5.79*10^10)

log(5.9*10^12)
10.76267856

12.77085201

FIGURE 3.35 Pluto is two orders of mag-
nitude farther from the Sun than Mercury.

EXAMPLE 4  Solving a Logarithmic Equation
Solve .

SOLUTION To use the x-intercept method, we rewrite the equation as

and graph

as shown in Figure 3.34. The x-intercept is , which is the solution to the equa-
tion. Now try Exercise 35.

x = 2

ƒ1x2 = ln 13x - 22 + ln 1x - 12 - 2 ln x,

ln (3x - 2) + ln (x - 1) - 2 ln x = 0,

ln 13x - 22 + ln 1x - 12 = 2 ln x

Orders of Magnitude and Logarithmic Models
When comparing quantities, their sizes sometimes span a wide range. This is why sci-
entific notation was developed.

For instance, the planet Mercury is 57.9 billion meters from the Sun; whereas Pluto is
5900 billion meters from the Sun, roughly 100 times farther! In scientific notation,
Mercury is from the Sun, and Pluto is from the Sun.
Pluto’s distance is 2 powers of ten greater than Mercury’s distance. From Figure 3.35,
we see that the difference in the common logs of these two distances is about 2. The
common logarithm of a positive quantity is its order of magnitude. So we say, Pluto’s
distance from the Sun is 2 orders of magnitude greater than Mercury’s.

Orders of magnitude can be used to compare any like quantities:

• A kilometer is 3 orders of magnitude longer than a meter.

• A dollar is 2 orders of magnitude greater than a penny.

• A horse weighing 400 kg is 4 orders of magnitude heavier than a mouse weighing 
40 g.

• New York City with 8 million people is 6 orders of magnitude bigger than Earmuff
Junction with a population of 8.

5.9 * 1012 m5.79 * 1010 m

EXPLORATION 1 Comparing Scientific Notation and Common 
Logarithms

1. Using a calculator compute , , 
.

2. What is the pattern in the integer parts of these numbers?

3. What is the pattern of their decimal parts?

4. How many orders of magnitude greater is than ?4 # 104 # 1010

log 14 # 10102 log 14 # 1032, Á ,log 14 # 1022log 14 # 102

Orders of magnitude have many applications. For a sound or noise, the bel, mentioned
in Section 3.3, measures the order of magnitude of its intensity compared to the thresh-
old of hearing. For instance, a sound of 3 bels or 30 dB (decibels) has a sound intensity
3 orders of magnitude above the threshold of hearing.
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Orders of magnitude are also used to compare the severity of earthquakes and the acid-
ity of chemical solutions. We now turn our attention to these two applications.

As mentioned in Exercise 52 of Section 3.4, the Richter scale magnitude R of an earth-
quake is

,

where a is the amplitude in micrometers of the vertical ground motion at the 
receiving station, T is the period of the associated seismic wave in seconds, and B
accounts for the weakening of the seismic wave with increasing distance from the epi-
center of the earthquake.

1mm2
R = log 

a

T
+ B

SECTION 3.5 Equation Solving and Modeling 295

EXAMPLE 5  Comparing Earthquake Intensities
How many times more severe was the 2001 earthquake in Gujarat, India 
than the 1999 earthquake in Athens, Greece ?

SOLUTION

Model
The severity of an earthquake is measured by the associated amplitude. Let be the
amplitude for the Gujarat earthquake and be the amplitude for the Athens earth-
quake. Then

Solve Algebraically We seek the ratio of severities :

Quotient rule

Interpret
A Richter scale difference of 2 corresponds to an amplitude ratio of 2 powers of 10,
or . So the Gujarat quake was 100 times as severe as the Athens quake.

Now try Exercise 45.
102

= 100

 
a1

a2
= 102

= 100

 log 
a1

a2
= 2

B - B = 0 log 
a1

T
- log 

a2

T
= 7.9 - 5.9

 a log 
a1

T
+ Bb - a log 

a2

T
+ Bb = R1 - R2

a1/a2

 R2 = log 
a2

T
+ B = 5.9

 R1 = log 
a1

T
+ B = 7.9

a2

a1

1R2 = 5.92 1R1 = 7.92

In chemistry, the acidity of a water-based solution is measured by the concentration of
hydrogen ions in the solution (in moles per liter). The hydrogen-ion concentration is
written . Because such concentrations usually involve negative powers of ten,
negative orders of magnitude are used to compare acidity levels. The measure of acid-
ity used is pH, the opposite of the common log of the hydrogen-ion concentration:

More acidic solutions have higher hydrogen-ion concentrations and lower pH values.

pH = - log 3H+4

3H+4
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Newton’s Law of Cooling
An object that has been heated will cool to the temperature of the medium in which it is
placed, such as the surrounding air or water. The temperature T of the object at time t
can be modeled by

for an appropriate value of k, where

the temperature of the surrounding medium,

initial temperature of the object.

This model assumes that the surrounding medium, although taking heat from the ob-
ject, essentially maintains a constant temperature. In honor of English mathemati-
cian and physicist Isaac Newton (1643–1727), this model is called Newton’s Law
of Cooling.

T0 =

Tm =

T1t2 = Tm + 1t0 - Tm2e-kt

296 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 6  Comparing Chemical Acidity
Some especially sour vinegar has a pH of 2.4, and a box of Leg and Sickle baking
soda has a pH of 8.4.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration of the vinegar than
that of the baking soda?

(c) By how many orders of magnitude do the concentrations differ?

SOLUTION

(a) Vinegar:

moles per liter

Baking soda:

moles per liter

(b)

(c) The hydrogen-ion concentration of the vinegar is 6 orders of magnitude greater
than that of the Leg and Sickle baking soda, exactly the difference in their pH
values. Now try Exercise 47.

 
3H+4 of vinegar

3H+4 of baking soda
=

10-2.4

10-8.4 = 101-2.42-1-8.42
= 106

 3H+4 = 10-8.4
L 3.98 * 10-9

 log 3H+4 = -8.4

- log 3H+4 = 8.4

 3H+4 = 10-2.4
L 3.98 * 10-3

 log 3H+4 = -2.4

 - log 3H+4 = 2.4

EXAMPLE 7  Applying Newton’s Law of Cooling
A hard-boiled egg at temperature 96°C is placed in 16°C water to cool. Four minutes
later the temperature of the egg is 45°C. Use Newton’s Law of Cooling to determine
when the egg will be 20°C.

SOLUTION

Model Because and , and

T1t2 = Tm + 1T0 - Tm2e-kt
= 16 + 80e-kt.

T0 - Tm = 80Tm = 16T0 = 96
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We can rewrite Newton’s Law of Cooling in the following form:

We use this form of Newton’s Law of Cooling when modeling temperature using data
gathered from an actual experiment. Because the difference is an exponential
function of time t, we can use exponential regression on versus t to obtain a
model, as illustrated in Example 8.

T - Tm

T - Tm

T1t) - Tm = 1T0 - Tm2e-kt

SECTION 3.5 Equation Solving and Modeling 297

–ln(29/80)/4      K
.2536827012

–ln(1/20)/K
11.80897341

FIGURE 3.36 Storing and using the con-
stant k.

To find the value of k we use the fact that when .

Subtract 16, then divide by 80.

Change to logarithmic form.

Divide by .

We save this k-value because it is part of our model. (See Figure 3.36.)

Solve Algebraically To find t when , we solve the equation:

Subtract 16, then divide by 80.

Change to logarithmic form.

See Figure 3.36.

Interpret The temperature of the egg will be 20°C after about 11.81 min (11 min 
49 sec). Now try Exercise 49.

 t = -  

ln14/802
k

L 11.81

 ln 
4

80
= -kt

 
4

80
= e-kt

 20 = 16 + 80e-kt

T = 20°C

 k = 0.253 Á

-4 k = -  

ln129/802
4

 ln 
29

80
= -4k

 
29

80
= e-4k

 45 = 16 + 80e-4k

t = 4T = 45

Table 3.23 Temperature Data
from a CBL™ Experiment

Time t Temp T

2 64.8 60.3
5 49.0 44.5

10 31.4 26.9
15 22.0 17.5
20 16.5 12.0
25 14.2 9.7
30 12.0 7.5

T -  Tm

EXAMPLE 8  Modeling with Newton’s Law of Cooling
In an experiment, a temperature probe connected to a Calculator-Based-LaboratoryTM

device was removed from a cup of hot coffee and placed in a glass of cold water. The
first two columns of Table 3.23 show the resulting data for time t (in seconds since
the probe was placed in the water) and temperature T (in °C). In the third column, the
temperature data have been re-expressed by subtracting the temperature of the water,
which was 4.5°C.

(a) Estimate the temperature of the coffee.

(b) Estimate the time when the temperature probe reading was 40°C.

SOLUTION

Model Figure 3.37a shows a scatter plot of the re-expressed temperature data. Using
exponential regression, we obtain the following model:

Figure 3.37b shows the graph of this model with the scatter plot of the data. You can
see that the curve fits the data fairly well.

(continued)

T1t) - 4.5 = 61.656 * 0.92770t
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Logarithmic Re-expression
In Example 7 of Section 3.4 we learned that data pairs (x, y) that fit a power model have
a linear relationship when re-expressed as (ln x, ln y) pairs. We now illustrate that data
pairs (x, y) that fit a logarithmic or exponential regression model can also be linearized
through logarithmic re-expression.

298 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

[0, 35] by [0, 70]

(a)

FIGURE 3.37 Scatter plot and graphs for Example 8.

[0, 35] by [0, 70]

(b)

[0, 35] by [0, 70]

(c)

Intersection
X=7.3559073  Y=35.5

(a) Solve Algebraically From the model we see that . So

(b) Solve Graphically Figure 3.37c shows that the graph of 
intersects when .

Interpret The temperature of the coffee was roughly 66.2°C, and the probe reading
was 40°C about 7.4 sec after it was placed in the water. Now try Exercise 51.

t L 7.36y = 40 - 4.5 = 35.561.656 * 0.92770t
T1t2 - 4.5 =

T0 L 61.656 + Tm = 61.656 + 4.5 L 66.16

T0 - Tm L 61.656

When we examine a scatter plot of data pairs (x, y), we can ask whether one of these four
regression models could be the best choice. If the data plot appears to be linear, a linear
regression may be the best choice. But when it is visually evident that the data plot is not
linear, the best choice may be a natural logarithmic, exponential, or power regression.

Knowing the shapes of logarithmic, exponential, and power function graphs helps us
choose an appropriate model. In addition, it is often helpful to re-express the (x, y) data
pairs as (ln x, y), (x, ln y), or (ln x, ln y) and create scatter plots of the re-expressed data.
If any of the scatter plots appear to be linear, then we have a likely choice for an appro-
priate model. See page 299.

The three regression models can be justified algebraically. We give the justification for
exponential regression, and leave the other two justifications as exercises.

Change to exponential form.

Use the laws of exponents.

Let and .d = eac = eb y = c # dx

 y = eb # 1ea2x
 y = eax # eb

 y = eax+b

 ln y = ax + b
 v = ax + b

Regression Models Related by Logarithmic Re-expression
• Linear regression:

• Natural logarithmic regression:

• Exponential Regression:

• Power regression: y = a # xb

y = a # bx

y = a + b ln x

y = ax + b
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Example 9 illustrates how knowledge about the shapes of logarithmic, exponential, and
power function graphs is used in combination with logarithmic re-expression to choose
a curve of best fit.

SECTION 3.5 Equation Solving and Modeling 299

Three Types of Logarithmic Re-expression
1. Natural Logarithmic Regression Re-expressed: 1x, y2: 1ln x, y2

2. Exponential Regression Re-expressed: 1x, y2: 1x, ln y2

3. Power Regression Re-expressed: 1x, y2: 1ln x, ln y2

[0, 7] by [0, 30]

(x, y) data

(a)

[0, 2] by [0, 30]

Conclusion:

y = a ln x + b is the logarithmic
regression model for the
(x, y) data.

(b)

(ln x, y) = (u, y) data with
linear regression model

y = au + b

[0, 7] by [0, 75]

(x, y) data

(a)

[0, 7] by [0, 5]

(b)

(x, ln y) = (x, v) data with
linear regression model

v = ax + b

Conclusion:

y = c(d x), where c = eb

and d = ea, is the exponential
regression model for the
(x, y) data.

[0, 7] by [0, 50]

(x, y) data

(a)

[0, 2] by [–5, 5]

(b)

(ln x, ln y) = (u, v) data with
linear regression model

v = au + b

Conclusion:

y = c(xa), where c = eb,
is the power regression
model for the (x, y) data.
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x 1 2 3 4 5 6

y 2 5 10 17 26 38

[0, 7] by [0, 40]

FIGURE 3.38 A scatter plot of the origi-
nal data of Example 9.

[0, 7] by [0, 40]

FIGURE 3.40 A power regression model
fits the data of Example 9.

EXAMPLE 9  Selecting a Regression Model
Decide whether these data can be best modeled by logarithmic, exponential, or
power regression. Find the appropriate regression model.

SOLUTION The shape of the data plot in Figure 3.38 suggests that the data could
be modeled by an exponential or power function, but not a logarithmic function.

Figure 3.39a shows the x, ln y plot, and Figure 3.39b shows the ln x, ln y plot. Of
these two plots, the ln x, ln y plot appears to be more linear, so we find the power
regression model for the original data.

21 2121

Figure 3.40 shows the scatter plot of the original x, y data with the graph of the
power regression model superimposed.

Now try Exercise 55.

y = 1.7910x1.6472
21

[0, 7] by [0, 4]

(x, ln y)

(a)

FIGURE 3.39 Two logarithmic re-expressions of the data of Example 9.

[0, 2] by [0, 4]

(ln x, ln y)

(b)

QUICK REVIEW 3.5 (For help, go to Sections P.1 and 1.4.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, prove that each function in the given pair is the in-
verse of the other.

1.

2.

3.

4.

In Exercises 5 and 6, write the number in scientific notation.

5. The mean distance from Jupiter to the Sun is about
778,300,000 km.

ƒ1x2 = 3 log x2, x 7 0 and g1x2 = 10x/6

ƒ1x2 = 11/3) ln x and g1x2 = e3x

ƒ1x2 = 10x/2 and g1x2 = log x2, x 7 0

ƒ1x2 = e2x and g1x2 = ln 1x1/22

6. An atomic nucleus has a diameter of about
0.000000000000001 m.

In Exercises 7 and 8, write the number in decimal form.

7. Avogadro’s number is about .

8. The atomic mass unit is about .

In Exercises 9 and 10, use scientific notation to simplify the expres-
sion; leave your answer in scientific notation.

9.

10.
0.0000008

0.000005

1186,0002131,000,0002

1.66 * 10-27 kg

6.02 * 1023
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SECTION 3.5 EXERCISES

In Exercises 1–10, find the exact solution algebraically, and check it by
substituting into the original equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, solve each equation algebraically. Obtain a numeri-
cal approximation for your solution and check it by substituting into the
original equation.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, state the domain of each function. Then match the
function with its graph. (Each graph shown has a window of 
by .

19. 20.

21. 22.

23. 24. g1x2 = ln x2ƒ1x2 = 2 ln x

g1x2 = ln x - ln 1x + 12ƒ1x2 = ln 
x

x + 1

g1x2 = log x + log 1x + 12ƒ1x2 = log 3x1x + 124
3-3.1, 3.14)

3-4.7, 4.74
3 - log 1x + 22 = 53 ln (x - 3) + 4 = 5

7 - 3e-x
= 23 + 2e-x

= 6

80e0.045x
= 24050e0.035x

= 200

0.98x
= 1.61.06x

= 4.1

log4 11 - x2 = 1log4 1x - 52 = -1

log2 x = 5log x = 4

315-x/42 = 152110-x/32 = 20

3 # 4x/2
= 962 # 5x/4

= 250

32a1

4
b x/3

= 236a 1

3
b x/5

= 4

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37.

38.

In Exercises 39–44, determine by how many orders of magnitude the
quantities differ.

39. A $100 bill and a dime

40. A canary weighing 20 g and a hen weighing 2 kg

41. An earthquake rated 7 on the Richter scale and one rated 5.5

42. Lemon juice with and beer with 

43. The sound intensities of a riveter at 95 dB and ordinary conver-
sation at 65 dB

44. The sound intensities of city traffic at 70 dB and rustling leaves
at 10 dB

45. Comparing Earthquakes How many times more se-
vere was the 1978 Mexico City earthquake than the
1994 Los Angeles earthquake 

46. Comparing Earthquakes How many times more se-
vere was the 1995 Kobe, Japan, earthquake than the
1994 Los Angeles earthquake 

47. Chemical Acidity The pH of carbonated water is 3.9
and the pH of household ammonia is 11.9.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration
of carbonated water than that of ammonia?

(c) By how many orders of magnitude do the concentrations
differ?

48. Chemical Acidity Stomach acid has a pH of about 2.0,
and blood has a pH of 7.4.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentration
of stomach acid than that of blood?

(c) By how many orders of magnitude do the concentrations
differ?

49. Newton’s Law of Cooling A cup of coffee has cooled
from 92°C to 50°C after 12 min in a room at 22°C. How long
will the cup take to cool to ?

50. Newton’s Law of Cooling A cake is removed from an
oven at 350°F and cools to 120°F after 20 min in a room at
65°F. How long will the cake take to cool to 90°F?

30°C

1R = 6.62?
1R = 7.22

1R = 6.62?
1R = 7.92

pH = 4.1pH = 2.3

log 1x - 22 + log 1x + 52 = 2 log 3

ln 1x - 32 + ln 1x + 42 = 3 ln 2

log x -

1

2
 log 1x + 42 = 1

1

2
 ln 1x + 32 - ln x = 0

400

1 + 95e-0.6x
= 150

500

1 + 25e0.3x
= 200

2e2x
+ 5ex

- 3 = 0
ex

+ e-x

2
= 4

2x
+ 2-x

2
= 3

2x
- 2-x

3
= 4

ln x6
= 12log x4

= 2

(a) (b)

(c) (d)

(e) (f)

In Exercises 25–38, solve each equation by the method of your choice.
Support your solution by a second method.

25.

26. ln x2
= 4

log x2
= 6
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51. Newton’s Law of Cooling Experiment A ther-
mometer is removed from a cup of coffee and placed in water
with a temperature of 10°C. The data in Table 3.24 were
collected over the next 30 sec.

1Tm2

54. Writing to Learn Which regression model would you
use for the data in Exercise 53? Discuss various options, and
explain why you chose the model you did. Support your writ-
ing with tables and graphs as needed.

Writing to Learn In Exercises 55–58, tables of (x, y) data pairs
are given. Determine whether a linear, logarithmic, exponential, or
power regression equation is the best model for the data. Explain your
choice. Support your writing with tables and graphs as needed.

55.

56.

57.

58.
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Table 3.24 Experimental Data

Time t Temp T

2 80.47 70.47
5 69.39 59.39

10 49.66 39.66
15 35.26 25.26
20 28.15 18.15
25 23.56 13.56
30 20.62 10.62

T - Tm

Table 3.25 Experimental Data

Time t Temp T

2 74.68 74.68
5 61.99 61.99

10 34.89 34.89
15 21.95 21.95
20 15.36 15.36
25 11.89 11.89
30 10.02 10.02

T - Tm

10

12

8

6

4

2

0D
D

D
*/

10
00

 p
op

ul
at

io
n/

da
y

Year

Nationwide Consumption of Penicillin

1976 1983 1990 1991 1992

*Defined Daily Dose
Source: Science, vol. 264, April 15, 1994, American
Association for the Advancement of Science.

(a) Draw a scatter plot of the data .

(b) Find an exponential regression equation for the 
data. Superimpose its graph on the scatter plot.

(c) Estimate the thermometer reading when it was removed
from the coffee.

52. Newton’s Law of Cooling Experiment A ther-
mometer was removed from a cup of hot chocolate and placed
in a saline solution with temperature . The data in
Table 3.25 were collected over the next 30 sec.

(a) Draw a scatter plot of the data .

(b) Find an exponential regression equation for the 
data. Superimpose its graph on the scatter plot.

(c) Estimate the thermometer reading when it was removed
from the hot chocolate.

T - Tm

T - Tm

Tm = 0°C

T - Tm

T - Tm

53. Penicillin Use The use of penicillin became so wide-
spread in the 1980s in Hungary that it became practically use-
less against common sinus and ear infections. Now the use of
more effective antibiotics has caused a decline in penicillin re-
sistance. The bar graph shows the use of penicillin in Hungary
for selected years.

(a) From the bar graph we read the data pairs to be approxi-
mately 
using for 1976, for 1983, and so on. Complete
a scatter plot for these data.

(b) Writing to Learn Discuss whether the bar graph
shown or the scatter plot that you completed best repre-
sents the data and why.

t = 8t = 1
11, 112, 18, 62, 115, 4.82, 116, 42, and 117, 2.52,

x 1 2 3 4

y 3 4.4 5.2 5.8

x 1 2 3 4

y 6 18 54 162

x 1 2 3 4

y 3 6 12 24

x 1 2 3 4

y 5 7 9 11

Standardized Test Questions
59. True or False The order of magnitude of a positive num-

ber is its natural logarithm. Justify your answer.

60. True or False According to Newton’s Law of Cooling,
an object will approach the temperature of the medium that
surrounds it. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

61. Multiple Choice Solve .

(A) (B) (C)

(D) (E)

62. Multiple Choice Solve ln .

(A) (B) (C)

(D) (E) No solution is possible.x = e

x = 1x = 1/ex = -1

x = -1

x = 13x = 11

x = 4x = 2x = 1

23x-1
= 32
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63. Multiple Choice How many times more severe was 
the 2001 earthquake in Arequipa, Peru , than the
1998 double earthquake in Takhar province, Afghanistan

(A) 2 (B) 6.1 (C) 8.1

(D) 14.2 (E) 100

64. Multiple Choice Newton’s Law of Cooling is

(A) an exponential model. (B) a linear model.

(C) a logarithmic model. (D) a logistic model.

(E) a power model.

Explorations
In Exercises 65 and 66, use the data in Table 3.26. Determine whether a
linear, logarithmic, exponential, power, or logistic regression equation
is the best model for the data. Explain your choice. Support your writ-
ing with tables and graphs as needed.

1R2 = 6.12?
1R1 = 8.12 (a) Graph ƒ for and , 0.5, 1, 2, 10. Explain the

effect of changing k.
(b) Graph ƒ for and , 0.5, 1, 2, 10. Explain the

effect of changing c.

Extending the Ideas
68. Writing to Learn Prove if for and

, then log . Explain how this result relates
to powers of ten and orders of magnitude.

69. Potential Energy The potential energy E (the energy
stored for use at a later time) between two ions in a certain
molecular structure is modeled by the function

where r is the distance separating the nuclei.

(a) Writing to Learn Graph this function in the win-
dow by , and explain which portion of
the graph does not represent this potential energy situation.

(b) Identify a viewing window that shows that portion of the
graph (with ) which represents this situation, and
find the maximum value for E.

70. In Example 8, the Newton’s Law of Cooling model was

Determine the value of k.

71. Justify the conclusion made about natural logarithmic regres-
sion on page 299.

72. Justify the conclusion made about power regression on page
299.

In Exercises 73–78, solve the equation or inequality.

73.

74.

75.

76.

77.

78. 2 log 1x + 12 - 2 log 6 6 0

2 log x - 4 log 3 7 0

ln ƒx ƒ - e2x
Ú 3

ex
6 5 + ln x 

e2x
- 8x + 1 = 0

ex
+ x = 5

T1t2 - Tm = 1T0 - Tm2e-kt
= 61.656 * 0.92770t.

r … 10

3-10, 3043-10, 104

E = -  

5.6
r

+ 10e-r/3

u - log v = nv 7 0
u 7 0u/v = 10n

c = 0.1k = 1

k = 0.1c = 1
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Table 3.26 Populations of Two U.S.
States (in thousands)

Year Alaska Hawaii

1900 63.6 154
1910 64.4 192
1920 55.0 256
1930 59.2 368
1940 72.5 423
1950 128.6 500
1960 226.2 633
1970 302.6 770
1980 401.9 965
1990 550.0 1108
2000 626.9 1212

Source: U.S. Census Bureau.

65. Writing to Learn Modeling Population Which
regression equation is the best model for Alaska’s population?

66. Writing to Learn Modeling Population Which
regression equation is the best model for Hawaii’s population?

67. Group Activity Normal Distribution The 
function

where c and k are positive constants, is a bell-shaped curve that
is useful in probability and statistics.

ƒ1x2 = k # e-cx2
,

6965_CH03_pp251-318.qxd  1/14/10  1:11 PM  Page 303



Notice that this is the constant percentage growth pattern studied in Section 3.2, and so
the value of an investment is an exponential function of time. We call interest computed
in this way compound interest because the interest becomes part of the investment, so
that interest is earned on the interest itself.

304 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

Table 3.27 Interest Computed Annually

Time in Years Amount in the Account

0 principal
1

2

3

n A = An = P11 + r2n
oo

A3 = A2
# 11 + r2 = P11 + r23

A2 = A1
# 11 + r2 = P11 + r22

A1 = P + P # r = P(1 + r)
A0 = P =

Interest Compounded Annually
If a principal P is invested at a fixed annual interest rate r, calculated at the end
of each year, then the value of the investment after n years is

where r is expressed as a decimal.

A = P11 + r2n,

3.6 Mathematics of Finance

Interest Compounded Annually
In business, as the saying goes, “time is money.” We must pay interest for the use of
property or money over time. When we borrow money, we pay interest, and when we
loan money, we receive interest. When we invest in a savings account, we are actually
lending money to the bank.

Suppose a principal of P dollars is invested in an account bearing an interest rate r
expressed in decimal form and calculated at the end of each year. If An represents the
total amount in the account at the end of n years, then the value of the investment fol-
lows the growth pattern shown in Table 3.27.

What you’ll learn about
• Interest Compounded Annually
• Interest Compounded k Times per

Year
• Interest Compounded 

Continuously
• Annual Percentage Yield
• Annuities—Future Value
• Loans and Mortgages—Present

Value

... and why
The mathematics of finance is the
science of letting your money
work for you—valuable 
information indeed!

EXAMPLE 1  Compounding Annually
Suppose Quan Li invests $500 at 7% interest compounded annually. Find the value
of her investment 10 years later.

SOLUTION Letting , , and ,

Rounding to the nearest cent, we see that the
value of Quan Li’s investment after 10 years is $983.58. Now try Exercise 1.
A = 50011 + 0.07210

= 983.575 Á .

n = 10r = 0.07P = 500

Interest Compounded k Times per Year
Suppose a principal P is invested at an annual interest rate r compounded k times a year
for t years. Then r/k is the interest rate per compounding period, and kt is the number of
compounding periods. The amount A in the account after t years is

A = Pa1 +

r

k
bkt

.
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The problems in Examples 1 and 2 required that we calculate A. Examples 3 and 4 il-
lustrate situations that require us to determine the values of other variables in the com-
pound interest formula.

SECTION 3.6 Mathematics of Finance 305

[0, 25] by [–1000, 4000]

Intersection
X=19.983002  Y=3000

FIGURE 3.41 Graph for Example 3.

EXAMPLE 2  Compounding Monthly
Suppose Roberto invests $500 at 9% annual interest compounded monthly, that is,
compounded 12 times a year. Find the value of his investment 5 years later.

SOLUTION Letting , , , and ,

So the value of Roberto’s investment after 5 years is $782.84.
Now try Exercise 5.

A = 500a1 +

0.09

12
b12152

= 782.840. Á

t = 5k = 12r = 0.09P = 500

EXAMPLE 3  Finding the Time Period of an Investment
Judy has $500 to invest at 9% annual interest compounded monthly. How long will it
take for her investment to grow to $3000?

SOLUTION

Model Let , , , and in the equation

and solve for t.

Solve Graphically For

we let

and

and then find the point of intersection of the graphs. Figure 3.41 shows that this oc-
curs at .

Confirm Algebraically

Divide by 500.

Apply ln to each side.

Power rule

Divide by 12 ln 1.0075.

Calculate.

Interpret So it will take Judy 20 years for the value of the investment to reach (and
slightly exceed) $3000. Now try Exercise 21.

 = 19.983 Á

 t =

ln 6

12 ln 1.0075

 ln 6 = 12t ln 11.00752
 ln 6 = ln 11.007512t2

 6 = 1.007512t

 3000 = 50011 + 0.09/12212t

t L 19.98

y = 3000,ƒ1t2 = 500a1 +

0.09

12
b12t

3000 = 500a1 +

0.09

12
b12t

,

A = Pa1 +

r

k
bkt

,

A = 3000k = 12r = 0.09P = 500
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Interest Compounded Continuously
In Exploration 1, $1000 is invested for 1 year at a 10% interest rate. We investigate the
value of the investment at the end of 1 year as the number of compounding periods k in-
creases. In other words, we determine the “limiting” value of the expression

as k assumes larger and larger integer values.100011 + 0.1/k2k

306 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

[0, 0.15] by [–500, 1500]

Intersection
X=.06991877  Y=1000

FIGURE 3.42 Graph for Example 4.

EXPLORATION 1 Increasing the Number of Compounding 
Periods Boundlessly

Let .

1. Complete a table of values of A for 100. What pattern do you
observe?

2. Figure 3.43 shows the graphs of the function and
the horizontal line . Interpret the meanings of these graphs.y = 1000e0.1

A1k2 = 100011 + 0.1/k2k
k = 10, 20, Á ,

A = 1000a1 +

0.1

k
bk

[0, 50] by [1100, 1107]

FIGURE 3.43 Graph for Exploration 1.

Compound Interest—Value of an Investment
Suppose a principal P is invested at a fixed annual interest rate r. The value of
the investment after t years is

• when interest compounds k times per year,

• when interest compounds continuously.A = Pert

A = Pa1 +

r

k
bkt

EXAMPLE 4  Finding an Interest Rate
Stephen has $500 to invest. What annual interest rate compounded quarterly (four
times per year) is required to double his money in 10 years?

SOLUTION

Model Letting , , , and yields the equation

that we solve for r.

Solve Graphically Figure 3.42 shows that and in-
tersect at , or .

Interpret Stephen’s investment of $500 will double in 10 years at an annual interest
rate of 6.99% compounded quarterly. Now try Exercise 25.

r = 6.99%r L 0.0699
y = 1000ƒ1r2 = 50011 + r/4240

1000 = 500a1 +

r

4
b41102

A = 1000t = 10k = 4P = 500

Recall from Section 3.1 that . Therefore, for a fixed interest rate

r, if we let ,

We do not know enough about limits yet, but with some calculus, it can be proved 
that . So is the formula used when interest is

compounded continuously. In nearly any situation, one of the following two formulas
can be used to compute compound interest:

A = Pert lim
k: q

 P11 + r/k2kt
= Pert

 lim
k: q

 a1 +

r

k
bk/r

= e.

x = k/r

e =  lim
x: q

 11 + 1/x2x
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Annual Percentage Yield
With so many different interest rates and methods of compounding it is sometimes dif-
ficult for a consumer to compare two different options. For example, would you prefer
an investment earning 8.75% annual interest compounded quarterly or one earning
8.7% compounded monthly?

A common basis for comparing investments is the annual percentage yield (APY)—
the percentage rate that, compounded annually, would yield the same return as the
given interest rate with the given compounding period.

SECTION 3.6 Mathematics of Finance 307

X

Y1 = 100e^(0.08X)

1
2
3
4
5
6
7

108.33
117.35
127.12
137.71
149.18
161.61
175.07

Y1

FIGURE 3.44 Table of values for 
Example 5.

EXAMPLE 5  Compounding Continuously
Suppose LaTasha invests $100 at 8% annual interest compounded continuously. Find
the value of her investment at the end of each of the years .

SOLUTION Substituting into the formula for continuous compounding, we ob-
tain . Figure 3.44 shows the values of for

. For example, the value of her investment is $149.18 at the end of 
5 years, and $175.07 at the end of 7 years. Now try Exercise 9.
x = 1, 2, Á , 7

y1 = A1x2 = 100e0.08xA1t2 = 100e0.08t

1, 2, Á , 7

EXAMPLE 6  Computing Annual Percentage Yield (APY)
Ursula invests $2000 with Crab Key Bank at 5.15% annual interest compounded
quarterly. What is the equivalent APY?

SOLUTION Let the equivalent APY. The value of the investment at the end of
1 year using this rate is . Thus, we have

Divide by 2000.

Subtract 1.

Calculate.

The annual percentage yield is 5.25%. In other words, Ursula’s $2000 invested at
5.15% compounded quarterly for 1 year earns the same interest and yields the same
value as $2000 invested elsewhere paying 5.25% interest once at the end of the year.

Now try Exercise 41.

 L 0.0525

 x = a1 +

0.0515

4
b4

- 1

 11 + x2 = a1 +

0.0515

4
b4

 200011 + x2 = 2000a1 +

0.0515

4
b4

A = 200011 + x2x =

Example 6 shows that the APY does not depend on the principal P because both sides
of the equation were divided by . So we can assume that when com-
paring investments.

P = 1P = 2000

EXAMPLE 7  Comparing Annual Percentage Yields (APYs)
Which investment is more attractive, one that pays 8.75% compounded quarterly or
another that pays 8.7% compounded monthly?

(continued)
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Annuities—Future Value
So far, in all of the investment situations we have considered, the investor has made a
single lump-sum deposit. But suppose an investor makes regular deposits monthly,
quarterly, or yearly—the same amount each time. This is an annuity situation.

An annuity is a sequence of equal periodic payments. The annuity is ordinary if de-
posits are made at the end of each period at the same time the interest is posted in the
account. Figure 3.45 represents this situation graphically. We will consider only ordi-
nary annuities in this textbook.

Let’s consider an example. Suppose Sarah makes $500 payments at the end of each
quarter into a retirement account that pays 8% interest compounded quarterly. How
much will be in Sarah’s account at the end of the first year? Notice the pattern.

End of Quarter 1:

End of Quarter 2:

End of Quarter 3:

End of the year:

Thus the total value of the investment returned from an annuity consists of all the peri-
odic payments together with all the interest. This value is called the future value of the
annuity because it is typically calculated when projecting into the future.

$500 + $50011.022 + $50011.0222 + $50011.0223 L $2060.80

$500 + $50011.022 + $50011.0222 = $1530.20

$500 + $50011.022 = $1010

$500 = $500

308 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

0Time

Payment

1 2 3 ... n

RRRR

FIGURE 3.45 Payments into an ordinary
annuity.

Future Value of an Annuity
The future value FV of an annuity consisting of n equal periodic payments of R
dollars at an interest rate i per compounding period (payment interval) is

FV = R 

11 + i2n - 1

i
.

SOLUTION

Let

the APY for the 8.75% rate,

the APY for the 8.7% rate.

The 8.7% rate compounded monthly is more attractive because its APY is 9.055%
compared with 9.041% for the 8.75% rate compounded quarterly.

Now try Exercise 45.

 L 0.09055 L 0.09041

 r2 = a1 +

0.087

12
b12

- 1 r1 = a1 +

0.0875

4
b4

- 1

 1 + r2 = a1 +

0.087

12
b12

 1 + r1 = a1 +

0.0875

4
b4

r2 =

r1 =
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Loans and Mortgages—Present Value
An annuity is a sequence of equal period payments. The net amount of money put into an
annuity is its present value. The net amount returned from the annuity is its future value.
The periodic and equal payments on a loan or mortgage actually constitute an annuity.

How does the bank determine what the periodic payments should be? It considers what
would happen to the present value of an investment with interest compounding over the
term of the loan and compares the result to the future value of the loan repayment annuity.

We illustrate this reasoning by assuming that a bank lends you a present value
at 6% to purchase a house with the expectation that you will make a

mortgage payment each month (at the monthly interest rate of ).

• The future value of an investment at 6% compounded monthly for n months is

• The future value of an annuity of R dollars (the loan payments) is

To find R, we would solve the equation

In general, the monthly payments of R dollars for a loan of PV dollars must satisfy the
equation

Dividing both sides by leads to the following formula for the present value of
an annuity.

11 + i2n
PV11 + i2n = R 

11 + i2n - 1

i
.

50,00011 + 0.0052n = R 

11 + 0.0052n - 1

0.005
.

R 

11 + i2n - 1

i
= R 

11 + 0.0052n - 1

0.005
.

PV11 + i2n = 50,00011 + 0.0052n.

0.06/12 = 0.005
PV = $50,000

Present Value of an Annuity
The present value PV of an annuity consisting of n equal payments of R dollars
earning an interest rate i per period (payment interval) is

PV = R 

1 - 11 + i2-n

i
 .

EXAMPLE 8  Calculating the Value of an Annuity
At the end of each quarter year, Emily makes a $500 payment into the Lanaghan Mu-
tual Fund. If her investments earn 7.88% annual interest compounded quarterly, what
will be the value of Emily’s annuity in 20 years?

SOLUTION . Then,

So the value of Emily’s annuity in 20 years will be $95,483.39.
Now try Exercise 13.

 FV = 95,483.389 Á

 FV = 500 #
11 + 0.0788/4280

- 1

0.0788/4

 FV = R 

11 + i2n - 1

i

Let R = 500, i = 0.0788/4, n = 20142 = 80
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The annual interest rate charged on consumer loans is the annual percentage rate
(APR). The APY for the lender is higher than the APR. See Exercise 58.

310 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

EXAMPLE 9  Calculating Loan Payments
Carlos purchases a pickup truck for $18,500. What are the monthly payments for a 
4-year loan with a $2000 down payment if the annual interest rate (APR) is 2.9%?

SOLUTION

Model The down payment is $2000, so the amount borrowed is $16,500. Since
, and the monthly payment is the solution to

Solve Algebraically

Interpret Carlos will have to pay $364.49 per month for 47 months, and slightly less
the last month. Now try Exercise 19.

 = 364.487 Á

 R =

16,50010.029/122
1 - 11 + 0.029/122-48

 R c1 - a1 +

0.029

12
b-41122 d = 16,500a0.029

12
b

16,500 = R 

1 - 11 + 0.029/122-41122
0.029/12

 .

i = 0.029/12APR = 2.9%

QUICK REVIEW 3.6

6. 28 is what percent of 80?

7. 48 is 32% of what number?

8. 176.4 is 84% of what number?

9. How much does Jane have at the end of 1 year if she invests
$300 at 5% simple interest?

10. How much does Reggie have at the end of 1 year if he 
invests $500 at 4.5% simple interest?

SECTION 3.6 EXERCISES

In Exercises 1–4, find the amount A accumulated after investing a prin-
cipal P for t years at an interest rate r compounded annually.

1.

2.

3.

4. , r = 9.5%, t = 12P = $15,500

P = $12,000, r = 7.5%, t = 7

P = $3200, r = 8%, t = 4

P = $1500, r = 7%, t = 6

In Exercises 5–8, find the amount A accumulated after investing a prin-
cipal P for t years at an interest rate r compounded k times per year.

5. , , 

6. , , , 

7. , , , 

8. , , , k = 12t = 25r = 4.5%P = $25,300

k = 12t = 20r = 3.8%P = $40,500

k = 4t = 10r = 5%P = $3500

t = 5, k = 4r = 7%P = $1500

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

1. Find 3.5% of 200.

2. Find 2.5% of 150.

3. What is one-fourth of 7.25%?

4. What is one-twelfth of 6.5%?

5. 78 is what percent of 120?
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In Exercises 9–12, find the amount A accumulated after investing a
principal P for t years at interest rate r compounded continuously.

9. , , 

10. , , 

11. , , 

12. , , 

In Exercises 13–15, find the future value FV accumulated in an annuity
after investing periodic payments R for t years at an annual interest rate r,
with payments made and interest credited k times per year.

13. , , , 

14. , , , 

15. , , , 

16. , , , 

In Exercises 17 and 18, find the present value PV of a loan with an an-
nual interest rate r and periodic payments R for a term of t years, with
payments made and interest charged 12 times per year.

17. , , 

18. , , 

In Exercises 19 and 20, find the periodic payment R of a loan with pre-
sent value PV and an annual interest rate r for a term of t years, with
payments made and interest charged 12 times per year.

19. , , 

20. , , 

21. Finding Time If John invests $2300 in a savings account
with a 9% interest rate compounded quarterly, how long will it
take until John’s account has a balance of $4150?

22. Finding Time If Joelle invests $8000 into a retirement
account with a 9% interest rate compounded monthly, how
long will it take until this single payment has grown in her ac-
count to $16,000?

23. Trust Officer Megan is the trust officer for an estate. If
she invests $15,000 into an account that carries an interest rate
of 8% compounded monthly, how long will it be until the ac-
count has a value of $45,000 for Megan’s client?

24. Chief Financial Officer Willis is the financial officer
of a private university with the responsibility for managing an
endowment. If he invests $1.5 million at an interest rate of 8%
compounded quarterly, how long will it be until the account ex-
ceeds $3.75 million?

25. Finding the Interest Rate What interest rate com-
pounded daily (365 days/year) is required for a $22,000 invest-
ment to grow to $36,500 in 5 years?

26. Finding the Interest Rate What interest rate com-
pounded monthly is required for an $8500 investment to triple
in 5 years?

27. Pension Officer Jack is an actuary working for a corpo-
rate pension fund. He needs to have $14.6 million grow to 
$22 million in 6 years. What interest rate compounded annu-
ally does he need for this investment?

28. Bank President The president of a bank has $18 million
in his bank’s investment portfolio that he wants to grow to 
$25 million in 8 years. What interest rate compounded annu-
ally does he need for this investment?

t = 15r = 7.2%PV = $154,000

t = 6r = 5.4%PV = $18,000

t = 30R = $1856.82r = 6.5%

t = 5R = $815.37r = 4.7%

k = 12t = 25r = 6.5%R = $610

k = 12t = 10r = 5.25%R = $450

k = 4t = 12r = 6%R = $300

k = 4t = 6r = 7%R = $500

t = 25r = 4.4%P = $8,875

t = 10r = 3.7%P = $21,000

t = 8r = 6.2%P = $3350

t = 6r = 5.4%P = $1250

29. Doubling Your Money Determine how much time is
required for an investment to double in value if interest is
earned at the rate of 5.75% compounded quarterly.

30. Tripling Your Money Determine how much time is
required for an investment to triple in value if interest is earned
at the rate of 6.25% compounded monthly.

In Exercises 31–34, complete the table about continuous compounding.

SECTION 3.6 Mathematics of Finance 311

Initial Time Amount in
Investment APR to Double 15 Years

31. $12,500 9% ? ?
32. $32,500 8% ? ?
33. $  9,500 ? 4 years ?
34. $16,800 ? 6 years ?

Compounding Time

APR Periods to Double

35. 4% Quarterly ?
36. 8% Quarterly ?
37. 7% Annually ?
38. 7% Quarterly ?
39. 7% Monthly ?
40. 7% Continuously ?

In Exercises 35–40, complete the table about doubling time of an 
investment.

In Exercises 41–44, find the annual percentage yield (APY) for the 
investment.

41. $3000 at 6% compounded quarterly

42. $8000 at 5.75% compounded daily

43. P dollars at 6.3% compounded continuously

44. P dollars at 4.7% compounded monthly

45. Comparing Investments Which investment is more
attractive, 5% compounded monthly or 5.1% compounded
quarterly?

46. Comparing Investments Which investment is more
attractive, % compounded annually or 5% compounded con-
tinuously?

In Exercises 47–50, payments are made and interest is credited at the
end of each month.

47. An IRA Account Amy contributes $50 per month into the
Lincoln National Bond Fund that earns 7.26% annual interest.
What is the value of Amy’s investment after 25 years?

48. An IRA Account Andrew contributes $50 per month
into the Hoffbrau Fund that earns 15.5% annual interest. What
is the value of his investment after 20 years?

49. An Investment Annuity Jolinda contributes to the
Celebrity Retirement Fund that earns 12.4% annual interest.
What should her monthly payments be if she wants to accumu-
late $250,000 in 20 years?

50. An Investment Annuity Diego contributes to a Com-
mercial National money market account that earns 4.5% annual
interest. What should his monthly payments be if he wants to
accumulate $120,000 in 30 years?

5 
1
8
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51. Car Loan Payment What is Kim’s monthly payment
for a 4-year $9000 car loan with an APR of 7.95% from Cen-
tury Bank?

52. Car Loan Payment What is Ericka’s monthly payment
for a 3-year $4500 car loan with an APR of 10.25% from
County Savings Bank?

53. House Mortgage Payment Gendo obtains a 30-year
$86,000 house loan with an APR of 8.75% from National City
Bank. What is her monthly payment?

54. House Mortgage Payment Roberta obtains a 
25-year $100,000 house loan with an APR of 9.25% from 
NBD Bank. What is her monthly payment?

55. Mortgage Payment Planning An $86,000 mort-
gage for 30 years at 12% APR requires monthly payments of
$884.61. Suppose you decided to make monthly payments of
$1050.00.

(a) When would the mort-
gage be completely paid?

(b) How much do you save
with the greater payments
compared with the origi-
nal plan?

56. Mortgage Payment
Planning Suppose you
make payments of $884.61 for the $86,000 mortgage in Exer-
cise 53 for 10 years and then make payments of $1050 until the
loan is paid.

(a) When will the mortgage be completely paid under these
circumstances?

(b) How much do you save with the greater payments com-
pared with the original plan?

57. Writing to Learn Explain why computing the APY for
an investment does not depend on the actual amount being in-
vested. Give a formula for the APY on a $1 investment at an-
nual rate r compounded k times a year. How do you extend the
result to a $1000 investment?

58. Writing to Learn Give reasons why banks might not
announce their APY on a loan they would make to you at a
given APR. What is the bank’s APY on a loan that they make 
at 4.5% APR?

59. Group Activity Work in groups of three or four. Con-
sider population growth of humans or other animals, bacterial
growth, radioactive decay, and compounded interest. Explain
how these problem situations are similar and how they are dif-
ferent. Give examples to support your point of view.

60. Simple Interest Versus Compounding Annually
Steve purchases a $1000 certificate of deposit and will earn 6%
each year. The interest will be mailed to him, so he will not
earn interest on his interest.

(a) Writing to Learn Explain why after t years, the total
amount of interest he receives from his investment plus the
original $1000 is given by

(b) Steve invests another $1000 at 6% compounded annually.
Make a table that compares the value of the two invest-
ments for , 10 years.t = 1, 2, Á

ƒ1t2 = 100011 + 0.06t2.

Standardized Test Questions
61. True or False If $100 is invested at 5% annual interest

for 1 year, there is no limit to the final value of the investment
if it is compounded sufficiently often. Justify your answer.

62. True or False The total interest paid on a 15-year mort-
gage is less than half of the total interest paid on a 30-year mort-
gage with the same loan amount and APR. Justify your answer.

In Exercises 63–66, you may use a graphing calculator to solve the
problem.

63. Multiple Choice What is the total value after 6 years of
an initial investment of $2250 that earns 7% interest com-
pounded quarterly?

(A) $3376.64 (B) $3412.00 (C) $3424.41

(D) $3472.16 (E) $3472.27

64. Multiple Choice The annual percentage yield of an 
account paying 6% compounded monthly is

(A) 6.03%. (B) 6.12%. (C) 6.17%.

(D) 6.20%. (E) 6.24%.

65. Multiple Choice Mary Jo deposits $300 each month 
into her retirement account that pays 4.5% APR (0.375% per
month). Use the formula to find the
value of her annuity after 20 years.

(A) $71,625.00 (B) $72,000.00 (C) $72,375.20

(D) $73,453.62 (E) $116,437.31

66. Multiple Choice To finance their home, Mr. and Mrs.
Dass have agreed to a $120,000 mortgage loan at 7.25% APR.
Use the formula to determine their
monthly payments if the loan has a term of 15 years.

(A) $1095.44 (B) $1145.44 (C) $1195.44

(D) $1245.44 (E) $1295.44

Explorations
67. Loan Payoff Use the information about Carlos’s truck

loan in Example 9 to make a spreadsheet of the payment
schedule. The first few lines of the spreadsheet should look like
the following table:

PV = R11 - 11 + i2-n2/i

FV = R111 + i2n - 12/i

312 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

To create the spreadsheet successfully, however, you need to
use formulas for many of the cells, as shown in boldface type
in the following sample:

Month No. Payment Interest Principal Balance

0 $16,500.00
1 $364.49 $39.88 $324.61 $16,175.39
2 $364.49 $39.09 $325.40 $15,849.99

Month
No. Payment Interest Principal Balance

0 $16,500.00
$364.49
$364.49 � E3 � D4� B4 � C4� round1E3*2.9%/12,22� A3 � 1

� E2 � D3� B3 � C3� round1E2*2.9%/12,22� A2 � 1

Continue the spreadsheet using copy-and-paste techniques, and
determine the amount of the 48th and final payment so that the
final balance is $0.00.
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68. Writing to Learn Loan Payoff Which of the fol-
lowing graphs is an accurate graph of the loan balance as a
function of time, based on Carlos’s truck loan in Example 9
and Exercise 67? Explain your choice based on increasing or
decreasing behavior and other analytical characteristics. Would
you expect the graph of loan balance versus time for a 30-year
mortgage loan at twice the interest rate to have the same shape
or a different shape as the one for the truck loan? Explain.

Extending the Ideas
69. The function

describes the future value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

70. The function

describes the present value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

ƒ1x2 = 200  

1 - 11 + 0.08/122-x

0.08/12

ƒ1x2 = 100 

11 + 0.08/122x - 1

0.08/12

CHAPTER 3 Key Ideas 313

[0, 48] by [0, 20 000]

(a)

[0, 48] by [0, 20 000]

(b)

[0, 48] by [0, 20 000]

(c)

CHAPTER 3 Key Ideas

Properties, Theorems, and Formulas
Exponential Growth and Decay 254
Exponential Functions 255
Exponential Functions and the Base e 257
Exponential Population Model 265
Changing Between Logarithmic and Exponential 

Form 274
Basic Properties of Logarithms 274
Basic Properties of Common Logarithms 276
Basic Properties of Natural Logarithms 277
Properties of Logarithms 283
Change-of-Base Formula for Logarithms 285
Logarithmic Functions , with 287
One-to-One Properties 292
Newton’s Law of Cooling 296
Interest Compounded Annually 304
Interest Compounded k Times per Year 304, 306
Interest Compounded Continuously 306
Future Value of an Annuity 308
Present Value of an Annuity 309

b 7 1ƒ1x2 = logb x

ƒ1x2 = bx

Procedures
Re-expression of Data 287–288
Logarithmic Re-expression of Data 298–300

Gallery of Functions

[–4, 4] by [–1, 5]

Exponential

[–4.7, 4.7] by [–0.5, 1.5]

Basic Logistic

[–2, 6] by [–3, 3]

Natural Logarithmic

ƒ1x2 = ex
ƒ1x2 =

1

1 + e-x

1ƒ1x2 = ln x
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y

x
(0, 3)

(2, 6)

y

x

(3, 1)
(0, 2)

y

x

(3, 10)
(0, 5)

y = 20

y

x

(5, 22)
(0, 11)

y = 44

CHAPTER 3 Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1 and 2, compute the exact value of the function for the
given x-value without using a calculator.

1. for

2. for

In Exercises 3 and 4, determine a formula for the exponential function
whose graph is shown in the figure.

3. 4.

x = -  

3

2
ƒ1x2 = 6 # 3x

x =

1

3
ƒ1x2 = -3 # 4x

In Exercises 5–10, describe how to transform the graph of ƒ into the
graph of or . Sketch the graph by hand and sup-
port your answer with a grapher.

5. 6.

7. 8.

9. 10.

In Exercises 11 and 12, find the y-intercept and the horizontal 
asymptotes.

11. 12.

In Exercises 13 and 14, state whether the function is an exponential
growth function or an exponential decay function, and describe its end
behavior using limits.

13. 14.

In Exercises 15–18, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, symmetry,
boundedness, extrema, asymptotes, and end behavior.

15. 16.

17. 18.

In Exercises 19–22, find the exponential function that satisfies the
given conditions.

19. Initial value , increasing at a rate of 5.3% per day

20. Initial population increasing at a rate of 1.67% 
per year

= 67,000,

= 24

g1x2 =

100

4 + 2e-0.01x
ƒ1x2 =

6

1 + 3 # 0.4x

g1x2 = 314x+12 - 2ƒ1x2 = e3-x
+ 1

ƒ1x2 = 215x-32 + 1ƒ1x2 = e4-x
+ 2

ƒ1x2 =

50

5 + 2e-0.04x
ƒ1x2 =

100

5 + 3e-0.05x

ƒ1x2 = e3x-4ƒ1x2 = e2x-3

ƒ1x2 = 8-x
+ 3ƒ1x2 = -8-x

- 3

ƒ1x2 = -4-xƒ1x2 = 4-x
+ 3

h1x2 = exg1x2 = 2x

21. Initial height cm, doubling every 3 weeks

22. Initial mass g, halving once every 262 hours

In Exercises 23 and 24, find the logistic function that satisfies the
given conditions.

23. Initial value , limit to growth , passing through 
.

24. Initial height , limit to growth , passing through 
.

In Exercises 25 and 26, determine a formula for the logistic function
whose graph is shown in the figure.

25. 26.

13, 152
= 20= 6

12, 202
= 30= 12

= 117

= 18

In Exercises 27–30, evaluate the logarithmic expression without using
a calculator.

27. 28.

29. 30.

In Exercises 31–34, rewrite the equation in exponential form.

31. 32.

33. 34.

In Exercises 35–38, describe how to transform the graph of 
into the graph of the given function. Sketch the graph by hand and sup-
port with a grapher.

35.

36.

37.

38.

In Exercises 39–42, graph the function, and analyze it for domain,
range, continuity, increasing or decreasing behavior, symmetry,
boundedness, extrema, asymptotes, and end behavior.

39. 40.

41. 42.

In Exercises 43–54, solve the equation.

43. 44.

45. 46. ln x = 5.41.05x
= 3

ex
= 0.2510x

= 4

ƒ1x2 =

ln x
x

ƒ1x2 = x2 ln ƒx ƒ

ƒ1x2 = x2 ln xƒ1x2 = x ln x

h1x2 = - log2 1x + 12 + 4

h1x2 = - log2 1x - 12 + 2

g1x2 = log2 14 - x2
ƒ1x2 = log2 1x + 42

y = log2 x

log 
a

b
= -3ln 

x

y
= -2

log2 x = ylog3 x = 5

ln 
1

2e7
log 23 10

log3 81log2 32
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68. Present Value Find the present value PV of a loan with
an annual interest rate and periodic payments

for a term of years, with payments made
and interest charged 26 times per year.

In Exercises 69 and 70, determine the value of k so that the graph of ƒ
passes through the given point.

69. 70.

In Exercises 71 and 72, use the data in Table 3.28.

ƒ1x2 = 20e-kx, 11, 302ƒ1x2 = 20e-kx, 13, 502

t = 15R = $953
r = 7.25%

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–4.7, 4.7] by [–3.1, 3.1]

(c)

[–4.7, 4.7] by [–3.1, 3.1]

(d)

71. Modeling Population Find an exponential regression
model for Georgia’s population, and use it to predict the pop-
ulation in 2005.

72. Modeling Population Find a logistic regression
model for Illinois’s population, and use it to predict the popu-
lation in 2010.

73. Drug Absorption A drug is administered intra-
venously for pain. The function ,
where , gives the amount of the drug in the body
after t hours.

(a) What was the initial number of units of drug ad-
ministered?

(b) How much is present after 2 hr?

(c) Draw the graph of ƒ.

74. Population Decrease The population of Metroville
is 123,000 and is decreasing by 2.4% each year.

(a) Write a function that models the population as a function
of time t.

(b) Predict when the population will be 90,000.

75. Population Decrease The population of Preston is
89,000 and is decreasing by 1.8% each year.

(a) Write a function that models the population as a function
of time t.

(b) Predict when the population will be 50,000.

1t = 02
0 … t … 4

ƒ1t2 = 90 - 52 ln 11 + t2

Table 3.28 Populations of Two U.S.
States (in millions)

Year Georgia Illinois

1900 2.2 4.8
1910 2.6 5.6
1920 2.9 6.5
1930 2.9 7.6
1940 3.1 7.9
1950 3.4 8.7
1960 3.9 10.1
1970 4.6 11.1
1980 5.5 11.4
1990 6.5 11.4
2000 8.2 12.4

Source: U.S. Census Bureau as reported in the World
Almanac and Book of Facts 2005.

47. 48.

49. 50.

51. 52.

53.

54.

In Exercises 55 and 56, write the expression using only natural 
logarithms.

55. 56.

In Exercises 57 and 58, write the expression using only common 
logarithms.

57. 58.

In Exercises 59–62, match the function with its graph. All graphs are
drawn in the window by .3-3.1, 3.143-4.7, 4.74

log1/2 14x32log5 x

log1/6 16x22log2 x

ln 13x + 42 - ln 12x + 12 = 5

log 1x + 22 + log 1x - 12 = 4

50

4 + e2x
= 11

3x
- 3-x

2
= 5

2 log3 x - 3 = 43 log2 x + 1 = 7

3x-3
= 5log x = -7

59. 60.

61. 62.

63. Compound Interest Find the amount A accumulated
after investing a principal for 3 years at an interest
rate of 4.6% compounded annually.

64. Compound Interest Find the amount A accumulated
after investing a principal for 17 years at an inter-
est rate 6.2% compounded quarterly.

65. Compound Interest Find the amount A accumulated
after investing a principal P for t years at interest rate r com-
pounded continuously.

66. Future Value Find the future value FV accumulated in
an annuity after investing periodic payments R for t years at
an annual interest rate r, with payments made and interest
credited k times per year.

67. Present Value Find the present value PV of a loan with
an annual interest rate and periodic payments

for a term of years, with payments made and
interest charged 12 times per year.

t = 5R = $550
r = 5.5%

P = $4800

P = $450

ƒ1x2 = 5-xƒ1x2 = log5 1-x2
ƒ1x2 = log0.5 xƒ1x2 = log5 x

CHAPTER 3 Review Exercises 315
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(c) By how many orders of magnitude do the concentrations
differ?

83. Annuity Finding Time If Joenita invests $1500 into
a retirement account with an 8% interest rate compounded
quarterly, how long will it take this single payment to grow to
$3750?

84. Annuity Finding Time If Juan invests $12,500 into 
a retirement account with a 9% interest rate compounded con-
tinuously, how long will it take this single payment to triple in
value?

85. Monthly Payments The time t in months that it takes
to pay off a $60,000 loan at 9% annual interest with monthly
payments of x dollars is given by

Estimate the length (term) of the $60,000 loan if the monthly
payments are $700.

86. Monthly Payments Using the equation in Exercise 85,
estimate the length (term) of the $60,000 loan if the monthly
payments are $500.

87. Finding APY Find the annual percentage yield for 
an investment with an interest rate of 8.25% compounded
monthly.

88. Finding APY Find the annual percentage yield that can
be used to advertise an account that pays interest at 7.20%
compounded continuously.

89. Light Absorption The Beer-Lambert Law of 
Absorption applied to Lake Superior states that the light in-
tensity I (in lumens) at a depth of x feet satisfies the equation

Find the light intensity at a depth of 25 ft.

90. For what values of b is a vertical stretch of A
vertical shrink of 

91. For what values of b is a vertical stretch of ?
A vertical shrink of ?

92. If , prove that is a
linear function. Find its slope and y-intercept.

93. Spread of Flu The number of students infected with 
flu after t days at Springfield High School is modeled by the
function

(a) What was the initial number of infected students?

(b) When will 800 students be infected?

(c) The school will close when 400 of the 1600 student body
are infected. When would the school close?

94. Population of Deer The population P of deer after 
t years in Briggs State Park is modeled by the function

P1t2 =

1200

1 + 99e-0.4t
.

P1t2 =

1600

1 + 99e-0.4t
.

g1x2 = ln ƒ1x2ƒ1x2 = abx, a 7 0, b 7 0

y = log x
y = log xlogb x

y = ln x?
y = ln x?logb x

log 
I

12
= -0.0125x.

t L 133.83 ln a x

x - 450
b .

76. Spread of Flu The number P of students infected with
flu at Northridge High School t days after exposure is mod-
eled by

(a) What was the initial number of students infected
with the flu?

(b) How many students were infected after 3 days?

(c) When will 100 students be infected?

(d) What would be the maximum number of students 
infected?

77. Rabbit Population The number of rabbits in Elkgrove
doubles every month. There are 20 rabbits present initially.

(a) Express the number of rabbits as a function of the time t.

(b) How many rabbits were present after 1 year? after 5 years?

(c) When will there be 10,000 rabbits?

78. Guppy Population The number of guppies in Susan’s
aquarium doubles every day. There are four guppies initially.

(a) Express the number of guppies as a function of time t.

(b) How many guppies were present after 4 days? after 
1 week?

(c) When will there be 2000 guppies?

79. Radioactive Decay The half-life of a certain radio-
active substance is 1.5 sec. The initial amount of substance is

grams.

(a) Express the amount of substance S remaining as a func-
tion of time t.

(b) How much of the substance is left after 1.5 sec? after 
3 sec?

(c) Determine if there was 1 g left after 1 min.

80. Radioactive Decay The half-life of a certain radio-
active substance is 2.5 sec. The initial amount of substance is

grams.

(a) Express the amount of substance S remaining as a func-
tion of time t.

(b) How much of the substance is left after 2.5 sec? after 
7.5 sec?

(c) Determine if there was 1 g left after 1 min.

81. Richter Scale Afghanistan suffered two major earth-
quakes in 1998. The one on February 4 had a Richter magni-
tude of 6.1, causing about 2300 deaths, and the one on 
May 30 measured 6.9 on the Richter scale, killing about
4700 people. How many times more powerful was the dead-
lier quake?

82. Chemical Acidity The pH of seawater is 7.6, and the
pH of milk of magnesia is 10.5.

(a) What are their hydrogen-ion concentrations?

(b) How many times greater is the hydrogen-ion concentra-
tion of the seawater than that of milk of magnesia?

S0

S0

S0

S0

1t = 02
P1t2 =

300

1 + e4- t
.
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98. The function

describes the present value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

99. Simple Interest Versus Compounding 
Continuously Grace purchases a $1000 certificate of
deposit that will earn 5% each year. The interest will be
mailed to her, so she will not earn interest on her interest.

(a) Show that after t years, the total amount of interest she re-
ceives from her investment plus the original $1000 is
given by

(b) Grace invests another $1000 at 5% compounded continu-
ously. Make a table that compares the values of the two
investments for years.t = 1, 2, Á , 10

ƒ1t2 = 100011 + 0.05t2.

g1x2 = 200 

1 - 11 + 0.11/42-x

0.11/4

(a) What was the inital population of deer?

(b) When will there be 1000 deer?

(c) What is the maximum number of deer planned for the
park?

95. Newton’s Law of Cooling A cup of coffee cooled
from 96°C to 65°C after 8 min in a room at 20°C. When will
it cool to 25°C?

96. Newton’s Law of Cooling A cake is removed from
an oven at 220°F and cools to 150°F after 35 min in a room at
75°F. When will it cool to 95°F?

97. The function

describes the future value of a certain annuity.

(a) What is the annual interest rate?

(b) How many payments per year are there?

(c) What is the amount of each payment?

ƒ1x2 = 100 

11 + 0.09/42x - 1

0.09/4
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318 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions

CHAPTER 3 Project

Analyzing a Bouncing Ball
When a ball bounces up and down on a flat surface, the maxi-
mum height of the ball decreases with each bounce. Each re-
bound is a percentage of the previous height. For most balls,
the percentage is a constant. In this project, you will use a mo-
tion detection device to collect height data for a ball bouncing
underneath the detector, then find a mathematical model that
describes the maximum bounce height as a function of bounce
number.

Collecting the Data
Set up the Calculator Based Laboratory (CBL™) system 
with a motion detector or a Calculator Based Ranger
(CBR™) system to collect ball bounce data using a ball
bounce program for the CBL or the Ball Bounce Application
for the CBR. See the CBL or CBR guidebook for specific
setup instruction.

Hold the ball at least 2 feet below the detector and release it
so that it bounces straight up and down beneath the detector.
These programs convert distance versus time data to height
from the ground versus time. The graph shows a plot of sam-
ple data collected with a racquetball and CBR. The data table
below shows each maximum height collected.

Explorations
1. If you collected motion data using a CBL or CBR, a plot

of height versus time should be shown on your graphing
calculator or computer screen. Trace to the maximum
height for each bounce, and record your data in a table.
Then use other lists in your grapher to enter these data. 
If you do not have access to a CBL or CBR, enter the
data given in the table into your grapher.

2. Bounce height 1 is what percentage of bounce height 0?
Calculate the percentage return for each bounce. The
numbers should be fairly constant.

3. Create a scatter plot for maximum height versus bounce
number.

4. For bounce 1, the height is predicted by multiplying
bounce height 0, or H, by the percentage P. The second
height is predicted by multiplying this height HP by P,
which gives the . Explain why is the appro-
priate model for these data, where x is the bounce number.

5. Enter this equation into your grapher, using your values
for H and P. How does the model fit your data?

6. Use the statistical features of the grapher to find the 
exponential regression for these data. Compare it to the
equation that you used as a model.

7. How would your data and equation change if you used a
different type of ball?

8. What factors would change the H-value, and what factors
affect the P-value?

9. Rewrite your equation using base e instead of using P as
the base for the exponential equation.

10. What do you predict the graph of ln (bounce height) ver-
sus bounce number to look like?

11. Plot ln (bounce height) versus bounce number. Calculate
the linear regression and use the concept of logarithmic
re-expression to explain how the slope and y-intercept are
related to P and H.

y = HPxHP2

Time (sec)

H
ei

gh
t (

ft
)

[0, 4.25] by [0, 3]

Bounce Number Maximum Height (feet)

0 2.7188
1 2.1426
2 1.6565
3 1.2640
4 0.98309
5 0.77783
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Trigonometric Functions

When the motion of an object causes air molecules to vibrate, we hear a
sound. We measure sound according to its pitch and loudness, which are
attributes associated with the frequency and amplitude of sound waves.
As we shall see, it is the branch of mathematics called trigonometry that
enables us to analyze waves of all kinds; indeed, that is only one applica-
tion of this powerful analytical tool. See page 393 for an application of
trigonometry to sound waves.

4.1 Angles and Their Measures

4.2 Trigonometric Functions 
of Acute Angles

4.3 Trigonometry Extended: 
The Circular Functions

4.4 Graphs of Sine and 
Cosine: Sinusoids

4.5 Graphs of Tangent, 
Cotangent, Secant, 
and Cosecant

4.6 Graphs of Composite
Trigonometric Functions

4.7 Inverse Trigonometric
Functions

4.8 Solving Problems with
Trigonometry

CHAPTER 4
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Chapter 4 Overview
The trigonometric functions arose from the consideration of ratios within right trian-
gles, the ultimate computational tool for engineers in the ancient world. As the great
mysteries of civilization progressed from a flat Earth to a world of circles and spheres,
trigonometry was soon seen to be the secret to understanding circular phenomena as
well. Then circular motion led to harmonic motion and waves, and suddenly trigonom-
etry was the indispensable tool for understanding everything from electrical current to
modern telecommunications.

The advent of calculus made the trigonometric functions more important than ever. It
turns out that every kind of periodic (recurring) behavior can be modeled to any degree
of accuracy by simply combining sine functions. The modeling aspect of trigonometric
functions is another focus of our study.

320 CHAPTER 4 Trigonometric Functions

Hipparchus of Nicaea 
(190–120 B.C.E.)
Hipparchus of Nicaea, the “father of trigonome-
try,” compiled the first trigonometric tables to
simplify the study of astronomy more than 
2000 years ago. Today, that same mathematics
enables us to store sound waves digitally on a
compact disc. Hipparchus wrote during the
second century B.C.E,, but he was not the first
mathematician to “do” trigonometry. Greek
mathematicians like Hippocrates of Chois
(470–410 B.C.E.) and Eratosthenes of Cyrene
(276–194 B.C.E.) had paved the way for using
triangle ratios in astronomy, and those same
triangle ratios had been used by Egyptian and
Babylonian engineers at least 4000 years earlier.
The term “trigonometry” itself emerged in the
16th century, although it derives from ancient
Greek roots: “tri” (three), “gonos” (side), and
“metros” (measure).

4.1 Angles and Their Measures

The Problem of Angular Measure
The input variable in a trigonometric function is an angle measure; the output is a real
number. Believe it or not, this poses an immediate problem for us if we choose to
measure our angles in degrees (as most of us did in our geometry courses).

The problem is that degree units have no mathematical relationship whatsoever to 
linear units. There are 360 degrees in a circle of radius 1. What relationship does the
360 have to the 1? In what sense is it 360 times as big? Answering these questions isn’t
possible, because a “degree” is another unit altogether.

Consider the diagrams in Figure 4.1. The ratio of s to h in the right triangle in Figure
4.1a is independent of the size of the triangle. (You may recall this fact about similar
triangles from geometry.) This valuable insight enabled early engineers to compute tri-
angle ratios on a small scale before applying them to much larger projects. That was
(and still is) trigonometry in its most basic form. For astronomers tracking celestial mo-
tion, however, the extended diagram in Figure 4.1b was more interesting. In this picture,
s is half a chord in a circle of radius h, and is a central angle of the circle intercepting
a circular arc of length a. If were 40 degrees, we might call a a “40-degree arc” be-
cause of its direct association with the central angle , but notice that a also has a length
that can be measured in the same units as the other lengths in the picture. Over time it
became natural to think of the angle being determined by the arc rather than the arc be-
ing determined by the angle, and that led to radian measure.

Degrees and Radians
A degree, represented by the symbol °, is a unit of angular measure equal to 1/180th of
a straight angle. In the DMS (degree-minute-second) system of angular measure, each
degree is subdivided into 60 minutes (denoted by ) and each minute is subdivided into
60 seconds (denoted by ). (Notice that Sumerian influence again.)

Example 1 illustrates how to convert from degrees in decimal form to DMS and vice
versa.

–

¿

u

u

u

What you’ll learn about
• The Problem of Angular Measure
• Degrees and Radians
• Circular Arc Length
• Angular and Linear Motion

... and why
Angles are the domain elements
of the trigonometric functions.

Why 360°?
The idea of dividing a circle into 360 equal pieces
dates back to the sexagesimal (60-based) count-
ing system of the ancient Sumerians. The appeal
of 60 was that it was evenly divisible by so many
numbers (2, 3, 4, 5, 6, 10, 12, 15, 20, and 30).
Early astronomical calculations wedded the sexa-
gesimal system to circles, and the rest is history.
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In navigation, the course or bearing of an object is sometimes given as the angle of the
line of travel measured clockwise from due north. For example, the line of travel in
Figure 4.2 has the bearing of 155°.

In this book we use degrees to measure angles in their familiar geometric contexts, es-
pecially when applying trigonometry to real-world problems in surveying, construc-
tion, and navigation, where degrees are still the accepted units of measure. When we
shift our attention to the trigonometric functions, however, we will measure angles in
radians so that domain and range values can be measured on comparable scales.

SECTION 4.1 Angles and Their Measures 321

Calculator Conversions
Your calculator probably has built-in functional-
ity to convert degrees to DMS. Consult your
owner’s manual. Meanwhile, you should try
some conversions the “long way” to get a better
feel for how DMS works.

θ
s

h

(a)

FIGURE 4.1 The pictures that motivated
trigonometry.

θ
s

h a

(b)

Gloucester

Path
of boat

155°

FIGURE 4.2 The course of a fishing boat
bearing 155° out of Gloucester.

EXPLORATION 1 Constructing a 1-Radian Angle

Carefully draw a large circle on a piece of paper, either by tracing around a circu-

lar object or by using a compass. Identify the center of the circle (O) and draw a

radius horizontally from O toward the right, intersecting the circle at point A. Then

cut a piece of thread or string the same size as the radius. Place one end of the

string at A and bend it around the circle counterclockwise, marking the point B on

the circle where the other end of the string ends up. Draw the radius from O to B.

The measure of angle AOB is one radian.

1. What is the circumference of the circle, in terms of its radius r?

2. How many radians must there be in a complete circle?

3. If we cut a piece of thread 3 times as big as the radius, would it extend halfway
around the circle? Why or why not?

4. How many radians are in a straight angle?

EXAMPLE 1  Working with DMS Measure
(a) Convert to DMS.

(b) Convert to degrees.

SOLUTION

(a) We need to convert the fractional part to minutes and seconds. First we convert
0.425° to minutes:

Then we convert 0.5 minute to seconds:

Putting it all together, we find that .

(b) Each minute is 1/60th of a degree, and each second is 1/3600th of a degree.
Therefore,

Now try Exercises 3 and 5.

42°24¿36– = 42° + a24

60
b° + a 36

3600
b° = 42.41°.

37.425° = 37°25¿30–

0.5¿ a60–

1¿

b = 30–

0.425°a60¿

1°
b = 25.5¿

42°24¿36–

37.425°

a
a

1 radian

FIGURE 4.3 In a circle, a central angle of
1 radian intercepts an arc of length one radius.

DEFINITION Radian
A central angle of a circle has measure 1 radian if it intercepts an arc with the
same length as the radius. (See Figure 4.3.)
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With practice, you can perform these conversions in your head. The key is to think of a
straight angle equaling radians as readily as you think of it equaling 180 degrees.

Circular Arc Length
Since a central angle of 1 radian always intercepts an arc of one radius in length, it fol-
lows that a central angle of radians in a circle of radius r intercepts an arc of length .
This gives us a convenient formula for measuring arc length.

uru

p

322 CHAPTER 4 Trigonometric Functions

EXAMPLE 2  Working with Radian Measure
(a) How many radians are in 90 degrees?

(b) How many degrees are in radians?

(c) Find the length of an arc intercepted by a central angle of 1/2 radian in a circle
of radius 5 inches.

(d) Find the radian measure of a central angle that intercepts an arc of length s in a
circle of radius r.

SOLUTION

(a) Since radians and 180° both measure a straight angle, we can use the conver-
sion factor to convert degrees to radians:

(b) In this case, we use the conversion factor to convert ra-
dians to degrees:

(c) A central angle of 1 radian intercepts an arc of length 1 radius, which is 5 inches.
Therefore, a central angle of 1/2 radian intercepts an arc of length 1/2 radius,
which is 2.5 inches.

(d) We can solve this problem with ratios:

Now try Exercises 11 and 19. x =

s

r

 xr = s

 
x radians

s units
=

1 radian

r units

ap
3

 radiansb a 180°

p radians
b =

180°

3
= 60°

1180°2/1p radians2 = 1

90°ap radians

180°
b =

90p

180
 radians =

p

2
 radians

1p radians2/1180°2 = 1
p

p/3

Degree-Radian Conversion

To convert radians to degrees, multiply by 

To convert degrees to radians, multiply by 
p radians

180°
.

180°

p radians
.

Arc Length Formula (Radian Measure)
If is a central angle in a circle of radius r, and if is measured in radians, then
the length s of the intercepted arc is given by

s = ru.

uu
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Arc Length Formula (Degree Measure)
If is a central angle in a circle of radius r, and if is measured in degrees,
then the length s of the intercepted arc is given by

s =

pru

180
.

uu

A somewhat less simple formula (which incorporates the degree-radian conversion for-
mula) applies when is measured in degrees.u

EXAMPLE 3  Perimeter of a Pizza Slice
Find the perimeter of a 60° slice of a large (7-in. radius) pizza.

SOLUTION The perimeter (Figure 4.4) is 7 in. in. in., where s is the arc
length of the pizza’s curved edge. By the arc length formula:

The perimeter is approximately 21.3 in. Now try Exercise 35.

s =

p1721602
180

=

7p

3
L 7.3

+ s+ 7

Does a Radian Have Units?
The formula implies an interesting fact
about radians: As long as s and r are measured in
the same units, the radian is unit-neutral. For ex-
ample, if inches and radians, then

inches (not 10 “inch-radians”). This un-
usual situation arises from the fact that the defin-
ition of the radian is tied to the length of the ra-
dius, units and all.

s = 10
u = 2r = 5

s = ru

s in.7 in.

7 in.

FIGURE 4.4 A 60° slice of a large pizza.
(Example 3)

EXAMPLE 4  Designing a Running Track
The running lanes at the Emery Sears track at Bluffton College are 1 meter wide. The
inside radius of lane 1 is 33 meters, and the inside radius of lane 2 is 34 meters. How
much longer is lane 2 than lane 1 around one turn? (See Figure 4.5.)

SOLUTION We think this solution through in radians. Each lane is a semicircle
with central angle and length . The difference in their lengths,
therefore, is . Lane 2 is about 3.14 meters longer than lane 1.

Now try Exercise 37.
34p - 33p = p

s = r u = rpu = p

Lane 2

Lane 1

33 m

34 m

FIGURE 4.5 Two lanes of the track de-
scribed in Example 4.

Angular and Linear Motion
In applications it is sometimes necessary to connect angular speed (measured in units
like revolutions per minute) to linear speed (measured in units like miles per hour). The
connection is usually provided by one of the arc length formulas or by a conversion fac-
tor that equates “1 radian” of angular measure to “1 radius” of arc length.

EXAMPLE 5  Using Angular Speed
Albert Juarez’s truck has wheels 36 inches in diameter. If the wheels are rotating at
630 rpm (revolutions per minute), find the truck’s speed in miles per hour.

SOLUTION We convert revolutions per minute to miles per hour by a series of

unit conversion factors. Note that the conversion factor works for this exam-
ple because the radius is 18 in.

Now try Exercise 45.L  67.47 
mi

hr

630 rev

1 min
*

60 min

1 hr
*

2p radians

1 rev
*

18 in.

1 radian
*

1 ft

12 in.
*

1 mi

5280 ft

18 in.

1 radian

6965_CH04_pp319-402.qxd  1/14/10  1:49 PM  Page 323



A nautical mile mile (naut mi) is the length of 1 minute of arc along Earth’s equator.
Figure 4.6 shows, though not to scale, a central angle AOB of Earth that measures 1/60
of a degree. It intercepts an arc 1 naut mi long.

The arc length formula allows us to convert between nautical miles and statute miles
(stat mi), the familiar “land mile” of 5280 feet.

324 CHAPTER 4 Trigonometric Functions

Nautical
mile

B
A

O

FIGURE 4.6 Although Earth is not a perfect sphere, its diameter is, on average, 
7912.18 statute miles. A nautical mile is of Earth’s circumference at the equator.1¿

Distance Conversions

1 nautical mile L 1.15 statute miles

1 statute mile L 0.87 nautical mile

EXAMPLE 6  Converting to Nautical Miles
Megan McCarty, a pilot for Western Airlines, frequently pilots flights from Boston to
San Francisco, a distance of 2698 stat mi. Captain McCarty’s calculations of flight
time are based on nautical miles. How many nautical miles is it from Boston to San
Francisco?

SOLUTION The radius of the Earth at the equator is approximately 3956 stat mi.
Convert 1 minute to radians:

Now we can apply the formula :

The distance from Boston to San Francisco is

Now try Exercise 51.

2698 stat mi =

2698 # 10,800

3956p
L 2345 naut mi.

 L 0.87 naut mi

 1 stat mi = a10,800

3956p
b  naut mi

 L 1.15 stat mi

 1 naut mi = 139562a p

10,800
b  stat mi

s = ru

1¿ = a 1

60
b° *

p rad

180°
=

p

10,800
 radians
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QUICK REVIEW 4.1 (For help, go to Section 1.7.)

5.

(a)

(b)

6.

(a)

(b)

In Exercises 7–10, convert from miles per hour to feet per second or
from feet per second to miles per hour.

7. 60 mph 8. 45 mph

9. 8.8 ft/sec 10. 132 ft/sec

v = 1.3 rad/secr = 6.2 ft

v = 3.0 rad/secr = 8.7 m

v = rv

u = 9.7 radr = 4.1 km

u = 4.8 radr = 9.9 ft

s = r u

SECTION 4.1 EXERCISES

In Exercises 1–4, convert from DMS to decimal form.

1. 2.

3. 4.

In Exercises 5–8, convert from decimal form to degrees, minutes, 
seconds (DMS).

5. 21.2° 6. 49.7°

7. 118.32° 8. 99.37°

In Exercises 9–16, convert from DMS to radians.

9. 60° 10. 90°

11. 120° 12. 150°

13. 71.72° 14. 11.83°

15. 16.

In Exercises 17–24, convert from radians to degrees.

17. 18.

19. 20.

21. 22.

23. 2 24. 1.3

In Exercises 25–32, use the appropriate arc length formula to find the
missing information.

s r

25. ? 2 in. 25 rad

26. ? 1 cm 70 rad

27. 1.5 ft ? rad

28. 2.5 cm ? rad

29. 3 m 1 m ?

30. 4 in. 7 in. ?

31. 40 cm ? 20°

32. ? 5 ft 18°

p/3

p/4

u

13p/207p/9

3p/5p/10

p/4p/6

75°30¿61°24¿

48°30¿36–118°44¿15–

35°24¿23°12¿

In Exercises 33 and 34, a central angle intercepts arcs and on
two concentric circles with radii and , respectively. Find the miss-
ing information.

33. ? 11 cm 9 cm 44 cm ?

34. ? 8 km 36 km ? 72 km

35. To the nearest inch, find the perimeter of a 10-degree sector cut
from a circular disc of radius 11 inches.

36. A 100-degree arc of a circle has a length of 7 cm. To the near-
est centimeter, what is the radius of the circle?

37. It takes ten identical pieces to form a circular track for a pair 
of toy racing cars. If the inside arc of each piece is 3.4 inches
shorter than the outside arc, what is the width of the track? 

38. The concentric circles on an archery target are 6 inches apart.
The inner circle (red) has a perimeter of 37.7 inches. What is
the perimeter of the next-largest (yellow) circle?

Exercises 39–42 refer to the 16 compass bearings shown. North corre-
sponds to an angle of 0°, and other angles are measured clockwise 
from north.

s2r2s1r1u

r2r1

s2s1u

N

S

W

NW NE

SW

WSW

WNW ENE

NNW NNE

SSW SSE

ESE

SE

E

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the circumference of the circle with the
given radius r. State the correct unit.

1. 2.

In Exercises 3 and 4, find the radius of the circle with the given 
circumference C.

3. 4.

In Exercises 5 and 6, evaluate the expression for the given values of
the variables. State the correct unit.

C = 8 ftC = 12 m

r = 4.6 mr = 2.5 in.
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39. Compass Reading Find the angle in degrees that 
describes the compass bearing.

(a) NE (northeast)

(b) NNE (north-northeast)

(c) WSW (west-southwest)

40. Compass Reading Find the angle in degrees that de-
scribes the compass bearing.

(a) SSW (south-southwest)

(b) WNW (west-northwest)

(c) NNW (north-northwest)

41. Compass Reading Which compass direction is closest
to a bearing of 121°?

42. Compass Reading Which compass direction is closest
to a bearing of 219°?

43. Navigation Two Coast Guard patrol boats leave Cape
May at the same time. One travels with a bearing of and
the other with a bearing of . If they travel at the same
speed, approximately how far apart will they be when they are
25 statute miles from Cape May?

52°12¿

42°30¿

45. Bicycle Racing Cathy Nguyen races on a bicycle with
13-inch-radius wheels. When she is traveling at a speed of 
44 ft/sec, how many revolutions per minute are her wheels 
making?

46. Tire Sizing The numbers in the “tire type” column in 
Exercise 44 give the size of the tire in the P-metric system.
Each number is of the form , where W is the width of
the tire in millimeters, R/100 is the ratio of the sidewall (S) of
the tire to its width W, and D is the diameter (in inches) of the
wheel without the tire.

(a) Show that millimeters inches.

(b) The tire diameter is . Derive a formula for the tire
diameter that involves only the variables D, W, and R.

(c) Use the formula in part (b) to verify the tire diameters in
Exercise 44. Then find the tire diameter for the 2009
Honda Ridgeline, which comes with 245/65–17 tires.

47. Tool Design A radial arm saw has a circular cutting blade
with a diameter of 10 inches. It spins at 2000 rpm. If there are
12 cutting teeth per inch on the cutting blade, how many teeth
cross the cutting surface each second?

D + 2S

= WR/2540S = WR/100

W/R-D
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Table 4.1 Tire Sizes for Three Vehicles

Vehicle Tire Type Tire Diameter

Ford Taurus 215/60–17 27.2 inches
Dodge Charger RT 225/60–18 28.6 inches
Mercury Mariner 235/70–16 29.0 inches

Source: Tirerack.com

Cape May

52°12´

42°30´

44. Automobile Design Table 4.1 shows the size specifica-
tions for the tires that come as standard equipment on three dif-
ferent 2009 American vehicles.

(a) Find the speed of each vehicle in mph when the wheels are
turning at 800 revolutions per minute.

(b) Compared to the Mercury Mariner, how many more revo-
lutions must the tire of the Ford Taurus make in order to
travel a mile?

(c) Writing to Learn It is unwise (and in some cases 
illegal) to equip a vehicle with wheels of a larger diameter
than those for which it was designed. If a 2009 Ford Taurus
were equipped with 29-inch tires, how would it affect the

    Tire diameter

odometer (which measures mileage) and speedometer
readings?

48. Navigation Sketch a diagram of a ship on the given
course.

(a) 35° (b) 128° (c) 310°

49. Navigation The captain of the tourist boat Julia out 
of Oak Harbor follows a 38° course for 2 miles and then
changes to a 47° course for the next 4 miles. Draw a sketch 
of this trip.

50. Navigation Points A and B are 257 nautical miles apart.
How far apart are A and B in statute miles?

51. Navigation Points C and D are 895 statute miles apart.
How far apart are C and D in nautical miles?
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52. Designing a Sports Complex Example 4 describes
how lanes 1 and 2 compare in length around one turn of a
track. Find the differences in the lengths of these lanes around
one turn of the same track.

(a) Lanes 5 and 6 (b) Lanes 1 and 6

53. Mechanical Engineering A simple pulley with the
given radius r used to lift heavy objects is positioned 10 feet
above ground level. Given that the pulley rotates , determine
the height to which the object is lifted.

(a) (b) r = 2 ft, u = 180°r = 4 in., u = 720°

u°

58. True or False The radian measure of all three angles in
a triangle can be integers. Justify your answer.

You may use a graphing calculator when answering these questions.

59. Multiple Choice What is the radian measure of an angle
of x degrees?

(A) (B)

(C) (D)

(E)

60. Multiple Choice If the perimeter of a sector is 4 times
its radius, then the radian measure of the central angle of the
sector is

(A) 2. (B) 4.

(C) . (D) .

(E) impossible to determine without knowing the radius.

61. Multiple Choice A bicycle with 26-inch-diameter
wheels is traveling at 10 miles per hour. To the nearest whole
number, how many revolutions does each wheel make per
minute?

(A) 54 (B) 129

(C) 259 (D) 406

(E) 646

62. Multiple Choice A central angle in a circle of radius r
has a measure of radians. If the same central angle were
drawn in a circle of radius 2r, its radian measure would be

(A) (B) .

(C) . (D) .

(E) .

Explorations
Table 4.2 shows the latitude-longitude locations of several U.S. cities.
Latitude is measured from the equator. Longitude is measured from the
Greenwich meridian that passes north-south through London.

2ru

2uu

u

2r

u

2
.

u

4/p2/p

180/xp

180x/ppx/180

x/180px
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d

r

54. Foucault Pendulum In 1851 the French physicist Jean
Foucault used a pendulum to demonstrate the Earth’s rotation.
There are now over 30 Foucault pendulum displays in the
United States. The Foucault pendulum at the Smithsonian In-
stitution in Washington, DC, consists of a large brass ball sus-
pended by a thin 52-foot cable. If the ball swings through an
angle of 1°, how far does it travel?

55. Group Activity Air Conditioning Belt The belt
on an automobile air conditioner connects metal wheels with
radii and . The angular speed of the larger
wheel is 120 rpm.

(a) What is the angular speed of the larger wheel in radians 
per second?

(b) What is the linear speed of the belt in centimeters per 
second?

(c) What is the angular speed of the smaller wheel in radians
per second?

56. Group Activity Ship’s Propeller The propellers
of the Amazon Paradise have a radius of 1.2 m. At full throttle
the propellers turn at 135 rpm.

(a) What is the angular speed of a propeller blade in radians
per second?

(b) What is the linear speed of the tip of the propeller blade in
meters per second?

(c) What is the linear speed (in meters per second) of a point
on a blade halfway between the center of the propeller and
the tip of the blade?

Standardized Test Questions
57. True or False If horse A is twice as far as horse B from

the center of a merry-go-round, then horse A travels twice as
fast as horse B. Justify your answer.

R = 7 cmr = 4 cm

Table 4.2 Latitude and Longitude Locations 
of U.S. Cities

City Latitude Longitude

Atlanta
Chicago
Detroit
Los Angeles
Miami
Minneapolis
New Orleans
New York
San Diego
San Francisco
Seattle 122°20¿47°36¿

122°25¿37°47¿

117°09¿32°43¿

74°0¿40°43¿

90°05¿29°57¿

93°16¿44°59¿

80°12¿25°46¿

118°15¿34°03¿

83°03¿42°20¿

87°39¿41°51¿

84°23¿33°45¿

Source: U.S. Department of the Interior, as reported in The World
Almanac and Book of Facts 2009.
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In Exercises 63–66, find the difference in longitude between the given
cities.

63. Atlanta and San Francisco

64. New York and San Diego

65. Minneapolis and Chicago

66. Miami and Seattle

In Exercises 67–70, assume that the two cities have the same longitude
(that is, assume that one is directly north of the other), and find the dis-
tance between them in nautical miles.

67. San Diego and Los Angeles

68. Seattle and San Francisco

69. New Orleans and Minneapolis

70. Detroit and Atlanta

71. Group Activity Area of a Sector A sector of a
circle (shaded in the figure) is a region
bounded by a central angle of a circle and its
intercepted arc. Use the fact that the 
areas of sectors are proportional to their cen-
tral angles to prove that

where r is the radius and is in radians.u

A =

1

2
 r 2u

Extending the Ideas
72. Area of a Sector Use the formula to 

determine the area of the sector with given radius r and central
angle .

(a)

(b)

73. Navigation Control tower A is 60 miles east of control
tower B. At a certain time an airplane is on bearings of 340°
from tower A and 37° from tower B. Use a drawing to model
the exact location of the airplane.

74. Bicycle Racing Ben Scheltz’s bike wheels are 28 inches
in diameter, and for high gear the pedal sprocket is 9 inches in
diameter and the wheel sprocket is 3 inches in diameter. Find
the angular speed in radians per second of the wheel and of
both sprockets when Ben reaches his peak racing speed of 
66 ft/sec in high gear.

r = 1.6 km, u = 3.7

r = 5.9 ft, u = p/5

u

A = 11/22r 2u
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r

r
θ

28 in.
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The six ratios of side lengths in a right triangle are the six trigonometric functions (of-
ten abbreviated as trig functions) of the acute angle . We will define them here with
reference to the right as labeled in Figure 4.8. The abbreviations opp, adj, and
hyp refer to the lengths of the side opposite , the side adjacent to , and the hy-
potenuse, respectively.

uu

¢ABC
u
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DEFINITION Trigonometric Functions
Let be an acute angle in the right (Figure 4.8). Then

 cotangent 1u2 = cot u =

adj

opp
 tangent 1u2 = tan u =

opp

adj

 secant 1u2 = sec u =

hyp

adj
 cosine 1u2 = cos u =

adj

hyp

 cosecant 1u2 = csc u =

hyp

opp
 sine 1u2 = sin u =

opp

hyp

¢ABCu

A

B

C
θ
Hypotenuse

Adjacent

O
pp

os
ite

FIGURE 4.8 The triangle referenced in
our definition of the trigonometric functions.

4.2 Trigonometric Functions 
of Acute Angles

What you’ll learn about
• Right Triangle Trigonometry
• Two Famous Triangles
• Evaluating Trigonometric 

Functions with a Calculator
• Applications of Right Triangle

Trigonometry

... and why
The many applications of right 
triangle trigonometry gave the
subject its name.

4

2
1

5

3

–1

y

x
–2 –1 21 43 5 6

θ

FIGURE 4.7 An acute angle in standard position, with one ray along the positive
x-axis and the other extending into the first quadrant.

u

Right Triangle Trigonometry
Recall that geometric figures are similar if they have the same shape even though
they may have different sizes. Having the same shape means that the angles of one
are congruent to the angles of the other and their corresponding sides are propor-
tional. Similarity is the basis for many applications, including scale drawings, maps,
and right triangle trigonometry, which is the topic of this section.

Two triangles are similar if the angles of one are congruent to the angles of the other.
For two right triangles we need only know that an acute angle of one is equal to an
acute angle of the other for the triangles to be similar. Thus a single acute angle of a
right triangle determines six distinct ratios of side lengths. Each ratio can be consid-
ered a function of as takes on values from 0° to 90° or from 0 radians to radi-
ans. We wish to study these functions of acute angles more closely.

To bring the power of coordinate geometry into the picture, we will often put our acute
angles in standard position in the xy-plane, with the vertex at the origin, one ray along
the positive x-axis, and the other ray extending into the first quadrant. (See Figure 4.7.)

p/2uu

u
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Two Famous Triangles
Evaluating trigonometric functions of particular angles used to require trig tables or
slide rules; now it requires only a calculator. However, the side ratios for some angles
that appear in right triangles can be found geometrically. Every student of trigonometry
should be able to find these special ratios without a calculator.

330 CHAPTER 4 Trigonometric Functions

EXPLORATION 1 Exploring Trigonometric Functions

There are twice as many trigonometric functions as there are triangle sides that

define them, so we can already explore some ways in which the trigonometric

functions relate to each other. Doing this Exploration will help you learn which

ratios are which.

1. Each of the six trig functions can be paired to another that is its reciprocal.
Find the three pairs of reciprocals.

2. Which trig function can be written as the quotient ?

3. Which trig function can be written as the quotient ?

4. What is the (simplified) product of all six trig functions multiplied together?

5. Which two trig functions must be less than 1 for any acute angle ? Hint:
What is always the longest side of a right triangle?4 3u

csc u/cot u

sin u/cos u

1

1

45°

2

FIGURE 4.9 An isosceles right triangle.
(Example 1)

EXAMPLE 1  Evaluating Trigonometric Functions of 45°
Find the values of all six trigonometric functions for an angle of 45°.

SOLUTION A 45° angle occurs in an isosceles right triangle, with angles 
45°– – (see Figure 4.9).

Since the size of the triangle does not matter, we set the length of the two equal legs
to 1. The hypotenuse, by the Pythagorean Theorem, is . Applying the
definitions, we have

Now try Exercise 1.

 cot 45° =

adj

opp
=

1

1
= 1 tan 45° =

opp

adj
=

1

1
= 1

 sec 45° =

hyp

adj
=

12

1
 cos 45° =

adj

hyp
=

1

12
  or  

12

2

 csc 45° =

hyp

opp
=

12

1
 sin 45° =

opp

hyp
=

1

12
  or  

12

2

11 + 1 = 12

90°45°

Whenever two sides of a right triangle are known, the third side can be found using the
Pythagorean Theorem. All six trigonometric functions of either acute angle can then be
found. We illustrate this in Example 2 with another well-known triangle.

EXAMPLE 2  Evaluating Trigonometric Functions of 30°
Find the values of all six trigonometric functions for an angle of 30°.

SOLUTION A 30° angle occurs in a triangle, which can be con-
structed from an equilateral triangle by constructing an altitude to
any side. Since size does not matter, start with an equilateral triangle with sides 
2 units long. The altitude splits it into two congruent triangles, each
with hypotenuse 2 and smaller leg 1. By the Pythagorean Theorem, the longer leg
has length . (See Figure 4.10.)222

- 12
= 13

30°-60°-90°

160°-60°-60°230°�60°�90°

Function Reminder
Both sin and sin represent a function of
the variable . Neither notation implies multi-
plication by . The notation sin is just
like the notation , while the notation 
sin is a widely accepted shorthand. The
same note applies to all six trigonometric
functions.

u

ƒ1x2
1u2u

u

1u2u
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Example 3 illustrates that knowing one trigonometric ratio in a right triangle is suffi-
cient for finding all the others.

SECTION 4.2 Trigonometric Functions of Acute Angles 331

2

1

1

30° 60°

3

FIGURE 4.10 An altitude to any side of
an equilateral triangle creates two congruent
30°–60°–90° triangles. If each side of the
equilateral triangle has length 2, then the two
30°–60°–90° triangles have sides of length 2,
1, and . (Example 2)13

6
5

θ
x

FIGURE 4.11 How to create an acute an-
gle such that sin . (Example 3)u = 5/6u

EXPLORATION 2 Evaluating Trigonometric Functions of 60°

1. Find the values of all six trigonometric functions for an angle of 60°. Note that
most of the preliminary work has been done in Example 2.

2. Compare the six function values for 60° with the six function values for 30°.
What do you notice?

3. We will eventually learn a rule that relates trigonometric functions of any angle
with trigonometric functions of the complementary angle. (Recall from geome-
try that 30° and 60° are complementary because they add up to 90°.) Based on
this exploration, can you predict what that rule will be? Hint: The “co” in co-
sine, cotangent, and cosecant actually comes from “complement.”43

We apply the definitions of the trigonometric functions to get:

Now try Exercise 3.

 cot 30° =

adj

opp
=

13

1
 tan 30° =

opp

adj
=

1

13
  or  

13

3

 sec 30° =

hyp

adj
=

2

13
  or  

213

3
 cos 30° =

adj

hyp
=

13

2

 csc 30° =

hyp

opp
=

2

1
= 2 sin 30° =

opp

hyp
=

1

2

EXAMPLE 3  Using One Trigonometric Ratio to Find Them All
Let be an acute angle such that sin . Evaluate the other five trigonometric
functions of .

SOLUTION Sketch a triangle showing an acute angle . Label the opposite side 5
and the hypotenuse 6. (See Figure 4.11.) Since sin , this must be our angle!
Now we need the other side of the triangle (labeled x in the figure).

From the Pythagorean Theorem it follows that , so 
Applying the definitions,

Now try Exercise 9.

 cot u =

adj

opp
=

111

5
 tan u =

opp

adj
=

5

111
  or  

5111

11

 sec u =

hyp

adj
=

6

111
  or  

6111

11
 cos u =

adj

hyp
=

111

6

 csc u =

hyp

opp
=

6

5
= 1.2 sin u =

opp

hyp
=

5

6

111.
x = 136 - 25 =x2

+ 52
= 62

u = 5/6
u

u

u = 5/6u

Evaluating Trigonometric Functions 
with a Calculator
Using a calculator for the evaluation step enables you to concentrate all your problem-
solving skills on the modeling step, which is where the real trigonometry occurs. The
danger is that your calculator will try to evaluate what you ask it to evaluate, even if
you ask it to evaluate the wrong thing. If you make a mistake, you might be lucky and

A Word About Radical Fractions

There was a time when was considered

“simpler” than because it was easier to 

approximate, but today they are just equivalent
expressions for the same irrational number. With
technology, either form leads easily to an ap-
proximation of 1.508. We leave the answers in
exact form here because we want you to practice
problems of this type without a calculator.

5

111

5111

11

6965_CH04_pp319-402.qxd  1/14/10  1:50 PM  Page 331



see an error message. In most cases you will unfortunately see an answer that you will
assume is correct but is actually wrong. We list the most common calculator errors as-
sociated with evaluating trigonometric functions.

Common Calculator Errors When Evaluating
Trig Functions

1. Using the Calculator in the Wrong Angle Mode (Degrees/Radians)
This error is so common that everyone encounters it once in a while. You just hope 
to recognize it when it occurs. For example, suppose we are doing a problem in
which we need to evaluate the sine of 10 degrees. Our calculator shows us this screen
(Figure 4.12):

332 CHAPTER 4 Trigonometric Functions

sin(10)
–.5440211109

FIGURE 4.12 Wrong mode for finding sin .110°2
(tan(30))–1

1.732050808

FIGURE 4.13 Finding cot .130°2

sin(30)

sin(30+2

sin(30)+2

.5

.5299192642

2.5

FIGURE 4.15 A correct and incorrect
way to find sin 130°2 + 2.

tan–1(30)
88.09084757

FIGURE 4.14 This is not cot .130°2

Why is the answer negative? Our first instinct should be to check the mode. Sure
enough, it is in radian mode. Changing to degrees, we get ,
which is a reasonable answer. (That still leaves open the question of why the sine
of 10 radians is negative, but that is a topic for the next section.) We will revisit the
mode problem later when we look at trigonometric graphs.

2. Using the Inverse Trig Keys to Evaluate cot, sec, and csc There are
no buttons on most calculators for cotangent, secant, and cosecant. The reason is
because they can be easily evaluated by finding reciprocals of tangent, cosine, and
sine, respectively. For example, Figure 4.13 shows the correct way to evaluate the
cotangent of 30 degrees.

There is also a key on the calculator for “ ”—but this is not the cotangent
function! Remember that an exponent of on a function is never used to denote 
a reciprocal; it is always used to denote the inverse function. We will study the in-
verse trigonometric functions in a later section, but meanwhile you can see that it is
a bad way to evaluate cot (Figure 4.14).

3. Using Function Shorthand That the Calculator Does Not Recognize
This error is less dangerous because it usually results in an error message. We will
often abbreviate powers of trig functions, writing (for example) “ ”
instead of the more cumbersome “ .” The calculator does
not recognize the shorthand notation and interprets it as a syntax error.

4. Not Closing Parentheses This general algebraic error is easy to make on
calculators that automatically open a parenthesis pair whenever you type a function
key. Check your calculator by pressing the SIN key. If the screen displays “sin (”
instead of just “sin” then you have such a calculator. The danger arises because the
calculator will automatically close the parenthesis pair at the end of a command if
you have forgotten to do so. That is fine if you want the parenthesis at the end of
the command, but it is bad if you want it somewhere else. For example, if you want
“sin ” and you type “sin ”, you will get away with it. But if you want “sin

” and you type “sin ”, you will not (Figure 4.15).130 + 21302 + 2
1301302

1sin 1u223 - 1cos 1u223 sin3 u - cos3 u

1302

-1
TAN-1

sin 1102 = 0.1736481777
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It is usually impossible to find an “exact” answer on a calculator, especially when
evaluating trigonometric functions. The actual values are usually irrational numbers
with nonterminating, nonrepeating decimal expansions. However, you can find some
exact answers if you know what you are looking for, as in Example 4.
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cos(30)

Ans2
.8660254038

.75

FIGURE 4.16 (Example 4)
b

a

37°

8

FIGURE 4.17 (Example 5)

EXAMPLE 4  Getting an “Exact Answer” on a Calculator
Find the exact value of cos 30° on a calculator.

SOLUTION As you see in Figure 4.16, the calculator gives the answer
0.8660254038. However, if we recognize 30° as one of our special angles (see Exam-
ple 2 in this section), we might recall that the exact answer can be written in terms of
a square root. We square our answer and get 0.75, which suggests that the exact value
of cos 30° is . Now try Exercise 25.13/4 = 13/2

Applications of Right Triangle Trigonometry
A triangle has six “parts,” three angles and three sides, but you do not need to know
all six parts to determine a triangle up to congruence. In fact, three parts are usually
sufficient. The trigonometric functions take this observation a step further by giving
us the means for actually finding the rest of the parts once we have enough parts to
establish congruence. Using some of the parts of a triangle to solve for all the others
is solving a triangle.

We will learn about solving general triangles in Sections 5.5 and 5.6, but we can al-
ready do some right triangle solving just by using the trigonometric ratios.

EXAMPLE 5  Solving a Right Triangle
A right triangle with a hypotenuse of 8 includes a 37° angle (Figure 4.17). Find the
measures of the other two angles and the lengths of the other two sides.

SOLUTION Since it is a right triangle, one of the other angles is 90°. That leaves
for the third angle.

Referring to the labels in Figure 4.17, we have

Now try Exercise 55. b L 6.39 a L 4.81

 b = 8 cos 37° a = 8 sin 37°

 cos 37° =

b

8
 sin 37° =

a

8

180° - 90° - 37° = 53°

The real-world applications of triangle solving are many, reflecting the frequency with
which one encounters triangular shapes in everyday life.
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EXAMPLE 6  Finding the Height of a Building
From a point 340 feet away from the base of the Peachtree Center Plaza in Atlanta,
Georgia, the angle of elevation to the top of the building is 65°. (See Figure 4.18.)
Find the height h of the building.

A Word About Rounding 
Answers
Notice in Example 6 that we rounded the answer
to the nearest integer. In applied problems it is il-
logical to give answers with more decimal places
of accuracy than can be guaranteed for the input
values. An answer of 729.132 feet implies razor-
sharp accuracy, whereas the reported height of
the building (340 feet) implies a much less pre-
cise measurement. (So does the angle of 65°.) 
Indeed, an engineer following specific rounding
criteria based on “significant digits” would prob-
ably report the answer to Example 6 as 730 feet.
We will not get too picky about rounding, but we
will try to be sensible.

h

340 ft

65°

FIGURE 4.18 (Example 6)

SOLUTION We need a ratio that will relate an angle to its opposite and adjacent
sides. The tangent function is the appropriate choice.

Now try Exercise 61. h L 729 feet

 h = 340 tan 65°

 tan 65° =

h

340

QUICK REVIEW 4.2 (For help, go to Sections P.2 and 1.7.)

In Exercises 5 and 6, convert units.

5. 8.4 ft to inches

6. 940 ft to miles

In Exercises 7–10, solve the equation. State the correct unit.

7. 8.

9. 10.
5.9

b
=

8.66 cm

6.15 cm

2.4 in.

31.6 in.
=

a

13.3

1.72 =

23.9 ft

b
0.388 =

a

20.4 km

x

5

5

x

12

8

x

10
8

x4

2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, use the Pythagorean Theorem to solve for x.

1. 2.

3. 4.
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SECTION 4.2 EXERCISES

In Exercises 1–8, find the values of all six trigonometric functions of
the angle .

1. 2.

u
27.

28.

In Exercises 29–40, evaluate using a calculator. Be sure the calculator
is in the correct mode. Give answers correct to three decimal places.

29. sin 74° 30. tan 8°

31. 32.

33. 34.

35. sec 49° 36. csc 19°

37. cot 0.89 38. sec 1.24

39. 40.

In Exercises 41–48, find the acute angle that satisfies the given equa-
tion. Give in both degrees and radians. You should do these problems
without a calculator.

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–54, solve for the variable shown.

49. 50.

cos u =

13

2
tan u =

13

3

cot u = 1sec u = 2

cos u =

12

2
cot u =

1

13

sin u =

13

2
sin u =

1

2

u

u

csc a p
10
bcot ap

8
b

sin a p
15
btan a p

12
b

tan 23°42¿cos 19°23¿

tan ap
3
b

csc ap
3
b

5 4

3
θ

8

7

θ

113

5

12

13θ
8

15

17

θ

7

11

θ
6

8

θ

8

11

θ 9

13
θ

3. 4.

5. 6.

7. 8.

15

34°

x

23
39°

z

32

57°
y 14

43°

x

6

35°

y
50 66° x

a

b

c

C

B

A

α

β

51. 52.

53. 54.

55. 56.

57. 58. a = 5; b = 59°b = 55°; a = 15.58

a = 41°; c = 10a = 20°; a = 12.3

In Exercises 55–58, solve the right for all of its unknown parts.¢ABC

In Exercises 9–18, assume that is an acute angle in a right triangle
satisfying the given conditions. Evaluate the remaining trigonometric
functions.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, evaluate without using a calculator.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, evaluate using a calculator. Give an exact value,
not an approximate answer. (See Example 4.)

25. 26. sin 60°sec 45°

csc ap
3
bcos ap

4
b

sec ap
3
bcot ap

6
b

tan ap
4
bsin ap

3
b

sec u =

17

5
csc u =

23

9

csc u =

12

5
cot u =

11

3

tan u =

12

13
tan u =

5

9

cos u =

5

8
cos u =

5

11

sin u =

2

3
sin u =

3

7

u
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59. Writing to Learn What is sin ? Explain your 

answer in terms of right triangles in which gets smaller and
smaller.

60. Writing to Learn What is cos ? Explain your 

answer in terms of right triangles in which gets smaller and
smaller.

61. Height A guy wire from the top of the transmission tower at
WJBC forms a 75° angle with the ground at a 55-foot distance
from the base of the tower. How tall is the tower?

u

ulim
u:0

u

ulim
u:0

66. Group Activity Garden Design Allen’s garden is
in the shape of a quarter-circle with radius 10 ft. He wishes to
plant his garden in four parallel strips, as shown in the diagram
on the left below, so that the four arcs along the circular edge
of the garden are all of equal length. After measuring four
equal arcs, he carefully measures the widths of the four strips
and records his data in the table shown at the right below.

336 CHAPTER 4 Trigonometric Functions

55 ft

75°

5 ft120 ft
8°

5 ft

12 ft54°

Strip Width

A 3.827 ft
B 3.344 ft
C 2.068 ft
D 0.761 ft

62. Height Kirsten places her surveyor’s telescope on the top
of a tripod 5 feet above the ground. She measures an 8° eleva-
tion above the horizontal to the top of a tree that is 120 feet
away. How tall is the tree?

63. Group Activity Area For locations between 20° and
60° north latitude a solar collector panel should be mounted so
that its angle with the horizontal is 20 greater than the local lati-
tude. Consequently, the solar panel mounted on the roof of
Solar Energy, Inc., in Atlanta (latitude 34°) forms a 54° angle
with the horizontal. The bottom edge of the 12-ft-long panel is
resting on the roof, and the high edge is 5 ft above the roof.
What is the total area of this rectangular collector panel?

64. Height The Chrysler Building in New York City was the
tallest building in the world at the time it was built. It casts a
shadow approximately 130 feet long on the street when the
Sun’s rays form an 82.9° angle with the Earth. How tall is the
building?

65. Distance DaShanda’s team of surveyors had to find the
distance AC across the lake at Montgomery County Park. 
Field assistants positioned themselves at points A and C while
DaShanda set up an angle-measuring instrument at point B,
100 feet from C in a perpendicular direction. DaShanda measured

as . What is the distance AC?75°12¿42–∠ABC

A

C 100 ft B

A B C D

Alicia sees Allen’s data and realizes that he could have saved
himself some work by figuring out the strip widths by trigonom-
etry. By checking his data with a calculator she is able to correct
two measurement errors he has made. Find Allen’s two errors
and correct them.

Standardized Test Questions
67. True or False If is an angle in any triangle, then tan 

is the length of the side opposite divided by the length of the
side adjacent to . Justify your answer.

68. True or False If A and B are angles of a triangle such
that , then . Justify your answer.

You should answer these questions without using a calculator.

69. Multiple Choice Which of the following expressions
does not represent a real number?

(A) sin 30° (B) tan 45° (C) cos 90°

(D) csc 90° (E) sec 90°

cos A 7 cos BA 7 B

u

u

uu
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70. Multiple Choice If is the smallest angle in a 3–4–5
right triangle, then sin 

(A) . (B) . (C) .

(D) . (E) .

71. Multiple Choice If a nonhorizontal line has slope sin ,
it will be perpendicular to a line with slope

(A) cos . (B) . (C) csc .

(D) . (E) .

72. Multiple Choice Which of the following trigonometric
ratios could not be ?

(A) tan (B) cos (C) cot 

(D) sec (E) csc 

73. Trig Tables Before calculators became common class-
room tools, students used trig tables to find trigonometric ra-
tios. Below is a simplified trig table for angles between 40° and
50°. Without using a calculator, can you determine which col-
umn gives sine values, which gives cosine values, and which
gives tangent values?

uu

uuu

p

-sin u-csc u

u-cos uu

u

5

3

5

4

4

5

3

4

3

5

u =
u Explorations

75. Mirrors In the figure, a light ray shining from point A to
point P on the mirror will bounce to point B in such a way that
the angle of incidence will equal the angle of reflection .
This is the law of reflection derived from physical experiments.
Both angles are measured from the normal line, which is per-
pendicular to the mirror at the point of reflection P. If A is 2 m
farther from the mirror than is B, and if and ,
what is the length PB?

AP = 5 ma = 30°

ba
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Trig Tables for Sine, Cosine, and Tangent

Angle ? ? ?

40° 0.8391 0.6428 0.7660
42° 0.9004 0.6691 0.7431
44° 0.9657 0.6947 0.7193
46° 1.0355 0.7193 0.6947
48° 1.1106 0.7431 0.6691
50° 1.1917 0.7660 0.6428

Trig Tables for Cotangent, Secant, and Cosecant

Angle ? ? ?

30° 1.1547 1.7321 2.0000
32° 1.1792 1.6003 1.8871
34° 1.2062 1.4826 1.7883
36° 1.2361 1.3764 1.7013
38° 1.2690 1.2799 1.6243
40° 1.3054 1.1918 1.5557

P

B

A

α
βNormal

M
ir

ro
r

30 in.

15 in.
10 in.

B

A

C D

�

a

b

c

θ

a

b

c
θ

76. Pool On the pool table shown in the figure, where along the
portion CD of the railing should you direct ball A so that it will
bounce off CD and strike ball B? Assume that A obeys the law
of reflection relative to rail CD.

Extending the Ideas
77. Using the labeling of the triangle below, prove that if is an

acute angle in any right triangle, .1sin u22 + 1cos u22 = 1
u

78. Using the labeling of the triangle below, prove that the area of
the triangle is equal to . [Hint: Start by drawing
the altitude to side b and finding its length.]

11/22 ab sin u

74. Trig Tables Below is a simplified trig table for angles be-
tween 30° and 40°. Without using a calculator, can you deter-
mine which column gives cotangent values, which gives secant
values, and which gives cosecant values?
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338 CHAPTER 4 Trigonometric Functions

4.3 Trigonometry Extended: 
The Circular Functions

What you’ll learn about
• Trigonometric Functions of Any

Angle
• Trigonometric Functions of Real

Numbers
• Periodic Functions
• The 16-Point Unit Circle

... and why
Extending trigonometric functions
beyond triangle ratios opens up
a new world of applications.

α
Initial side

Terminal side

FIGURE 4.19 An angle with positive measure .a

y

x

A positive angle
(counterclockwise)

(a)

α

FIGURE 4.20 Two angles in standard position. In (a) the counterclockwise 
rotation generates an angle with positive measure . In (b) the clockwise rotation
generates an angle with negative measure .b

a

y

x

A negative angle
(clockwise)

(b)

β

Two angles in this expanded angle-measurement system can have the same initial side
and the same terminal side, yet have different measures. We call such angles
coterminal angles. (See Figure 4.21 on the next page.) For example, angles of 90°,
450°, and are all coterminal, as are angles of radians, and 
radians. In fact, angles are coterminal whenever they differ by an integer multiple of
360 degrees or by an integer multiple of radians.2p

-99pp radians, 3p-270°

Trigonometric Functions of Any Angle
We now extend the definitions of the six basic trigonometric functions beyond trian-
gles so that we do not have to restrict our attention to acute angles, or even to positive
angles.

In geometry we think of an angle as a union of two rays with a common vertex.
Trigonometry takes a more dynamic view by thinking of an angle in terms of a rotating
ray. The beginning position of the ray, the initial side, is rotated about its endpoint,
called the vertex. The final position is called the terminal side. The measure of an angle
is a number that describes the amount of rotation from the initial side to the terminal
side of the angle. Positive angles are generated by counterclockwise rotations and
negative angles are generated by clockwise rotations. Figure 4.19 shows an angle of
measure , where is a positive number.aa

To bring the power of coordinate geometry into the picture (literally), we usually place
an angle in standard position in the Cartesian plane, with the vertex of the angle at 
the origin and its initial side lying along the positive x-axis. Figure 4.20 shows two 
angles in standard position, one with positive measure and the other with negative
measure .b

a
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Extending the definitions of the six basic trigonometric functions so that they can apply to
any angle is surprisingly easy, but first you need to see how our current definitions relate
to the coordinates in the Cartesian plane. We start in the first quadrant (see Figure
4.23), where the angles are all acute. Work through Exploration 1 before moving on.

1x, y2
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y

x

Positive and negative
coterminal angles

(a)

α

β

FIGURE 4.21 Coterminal angles. In (a) a
positive angle and a negative angle are coter-
minal, while in (b) both coterminal angles are
positive.

y

x

Two positive
coterminal angles

(b)

α

β

EXAMPLE 1  Finding Coterminal Angles
Find and draw a positive angle and a negative angle that are coterminal with the
given angle.

(a) (b) (c) radians

SOLUTION There are infinitely many possible solutions; we will show two for
each angle.

(a) Add 

Subtract 

Figure 4.22 shows these two angles, which are coterminal with the 30° angle.

360°:  30° - 360° = -330°

360°:  30° + 360° = 390°

2p

3
-150°30°

(b) Add 

Subtract 

We leave it to you to draw the coterminal angles.

(c) Add 

Subtract 

Again, we leave it to you to draw the coterminal angles.
Now try Exercise 1.

2p:  
2p

3
- 2p =

2p

3
-

6p

3
= -  

4p

3

2p:  
2p

3
+ 2p =

2p

3
 +

6p

3
=

8p

3

720°:  -150° - 720° = -870°

360°:  -150° + 360° = 210°

y

x

(a)

30°

390°

FIGURE 4.22 Two angles coterminal with 30°. (Example 1a)

y

x

(b)

30°

–330°

y

x

Quadrant IQuadrant II

Quadrant IVQuadrant III

FIGURE 4.23 The four quadrants of the
Cartesian plane. Both x and y are positive 
in QI (Quadrant I). Quadrants, like Super
Bowls, are invariably designated by Roman
numerals.

EXPLORATION 1 Investigating First Quadrant Trigonometry

Let be any point in the first quadrant (QI), and let r be the distance from

P to the origin. (See Figure 4.24.)

1. Use the acute angle definition of the sine function (Section 4.2) to prove that
.

2. Express cos in terms of x and r.

3. Express tan in terms of x and y.

4. Express the remaining three basic trigonometric functions in terms of x, y, 
and r.

u

u

sin u = y/r

P1x, y2

If you have successfully completed Exploration 1, you should have no trouble verifying
the solution to Example 2, which we show without the details.
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Now we have an easy way to extend the trigonometric functions to any angle: Use the
same definitions in terms of x, y, and r—whether or not x and y are positive. Compare
Example 3 to Example 2.

340 CHAPTER 4 Trigonometric Functions

y

xθ

r

y

x

P(x, y)

FIGURE 4.24 A point in Quad-
rant I determines an acute angle . The num-
ber r denotes the distance from P to the origin.
(Exploration 1)

u

P1x, y2

EXAMPLE 2  Evaluating Trig Functions Determined 
by a Point in QI

Let be the acute angle in standard position whose terminal side contains the point
. Find the six trigonometric functions of .

SOLUTION The distance from to the origin is .

So

Now try Exercise 5. cot u =

5

3
 tan u =

3

5

 sec u =

134

5
 cos u =

5

134
  or  

5134

34

 csc u =

134

3
 sin u =

3

134
  or  

3134

34

13415, 32
u15, 32u

EXAMPLE 3  Evaluating Trig Functions Determined 
by a Point Not in QI

Let be any angle in standard position whose terminal side contains the point .
Find the six trigonometric functions of .

SOLUTION The distance from to the origin is .

So

Now try Exercise 11. cot u =

-5

3
 tan u =

3

-5
= -0.6

 sec u =

134

-5
 cos u =

-5

134
  or  

-5134

34

 csc u =

134

3
 sin u =

3

134
  or  

3134

34

1341-5, 32
u

1-5, 32u

Notice in Example 3 that is any angle in standard position whose terminal side con-
tains the point . There are infinitely many coterminal angles that could play the
role of , some of them positive and some of them negative. The values of the six
trigonometric functions would be the same for all of them.

We are now ready to state the formal definition.

u

1-5, 32
u

y

x
θ

P(x, y)

r

x

y

FIGURE 4.25 Defining the six trig 
functions of .u

DEFINITION Trigonometric Functions of any Angle
Let be any angle in standard position and let be any point on the 
terminal side of the angle (except the origin). Let r denote the distance from

to the origin, i.e., let . (See Figure 4.25.) Then

 cot u =

x

y
 1y Z 02 tan u =

y

x
 1x Z 02

 sec u =

r

x
 1x Z 02 cos u =

x

r

 csc u =

r

y
 1y Z 02 sin u =

y

r

r = 2x2
+ y2P1x, y2

P1x, y2u
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Examples 2 and 3 both began with a point rather than an angle . Indeed, the
point gave us so much information about the trigonometric ratios that we were able to
compute them all without ever finding . So what do we do if we start with an angle 
in standard position and we want to evaluate the trigonometric functions? We try to find
a point on its terminal side. We illustrate this process with Example 4.1x, y2

uu

uP1x, y2
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y

x

45°

315°

P(1, –1)2

FIGURE 4.26 An angle of 315° in stan-
dard position determines a 45°–45°–90°
reference triangle. (Example 4)

EXAMPLE 4  Evaluating the Trig Functions of 315°
Find the six trigonometric functions of 315°.

SOLUTION First we draw an angle of 315° in standard position. Without declar-
ing a scale, pick a point P on the terminal side and connect it to the x-axis with a per-
pendicular segment. Notice that the triangle formed (called a reference triangle) is a

triangle. If we arbitrarily choose the horizontal and vertical sides of the
reference triangle to be of length 1, then P has coordinates . (See Figure 4.26.)

We can now use the definitions with , and .

Now try Exercise 25.

 cot 315° =

1

-1
= -1 tan 315° =

-1

1
 = -1

 sec 315° =

12

1
= 12 cos 315° =

1

12
  or  

12

2

 csc 315° =

12

-1
= - 12 sin 315° =

-1

12
  or  -  

12

2

r = 12x = 1, y = -1

11, -1245°–45°–90°

The happy fact that the reference triangle in Example 4 was a triangle en-
abled us to label a point P on the terminal side of the angle and then to find the
trigonometric function values. We would also be able to find P if the given angle were
to produce a reference triangle.30°–60°–90°

315°
45°–45°–90°

EXAMPLE 5  Evaluating More Trig Functions
Find the following without a calculator:

(a)

(b)

(c)

(continued)

sec 1-3p/42
tan 15p/32
sin 1-210°2

Evaluating Trig Functions of a Nonquadrantal Angle 

1. Draw the angle in standard position, being careful to place the terminal side in
the correct quadrant.

2. Without declaring a scale on either axis, label a point P (other than the origin) on
the terminal side of .

3. Draw a perpendicular segment from P to the x-axis, determining the reference
triangle. If this triangle is one of the triangles whose ratios you know, label the
sides accordingly. If it is not, then you will need to use your calculator.

4. Use the sides of the triangle to determine the coordinates of point P, making them
positive or negative according to the signs of x and y in that particular quadrant.

5. Use the coordinates of point P and the definitions to determine the six trig 
functions.

u

u

U
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Angles whose terminal sides lie along one of the coordinate axes are called quadrantal
angles, and although they do not produce reference triangles at all, it is easy to pick a
point P along one of the axes.

342 CHAPTER 4 Trigonometric Functions

4
3π–

y

x

(a)

FIGURE 4.29 (Example 5c)

y

x

(b)

2

1

1

P(–1, –1)

SOLUTION

(a) An angle of in standard position determines a reference tri-
angle in the second quadrant (Figure 4.27). We label the sides accordingly, then
use the lengths of the sides to determine the point . (Note that the x-
coordinate is negative in the second quadrant.) The hypotenuse is . There-
fore sin .

(b) An angle of radians in standard position determines a refer-
ence triangle in the fourth quadrant (Figure 4.28). We label the sides accord-
ingly, then use the lengths of the sides to determine the point . (Note
that the y-coordinate is negative in the fourth quadrant.) The hypotenuse is .
Therefore tan .15p/32 = y/x = - 13/1 = - 13

r = 2
P11, - 132

30°–60°–90°5p/3

1-210°2 = y/r = 1/2
r = 2

P1- 13, 12
30°–60°–90°-210°

y

x

–270°

P(0, 1)

FIGURE 4.30 (Example 6a)

EXAMPLE 6  Evaluating Trig Functions of Quadrantal 
Angles

Find each of the following, if it exists. If the value is undefined, write “undefined.”

(a)

(b)

(c)

SOLUTION

(a) In standard position, the terminal side of an angle of lies along the posi-
tive y-axis (Figure 4.30). A convenient point P along the positive y-axis is the
point for which , namely . Therefore

sin 1-270°2 =

y

r
=

1

1
= 1.

10, 12r = 1

-270°

sec 
11p

2

tan 3p

sin 1-270°2

(c) An angle of radians in standard position determines a refer-
ence triangle in the third quadrant. (See Figure 4.29.) We label the sides accord-
ingly, then use the lengths of the sides to determine the point . (Note
that both coordinates are negative in the third quadrant.) The hypotenuse is

. Therefore sec .
Now try Exercise 29.

1-3p/42 = r/x = 12/-1 = - 12r = 12

P1-1, -12
45°–45°–90°-3p/4

y

x

(a)

3
5π

FIGURE 4.28 (Example 5b)

(b)

3

P 1, – ba 3

1

2

y

x

y

x

(a)

–210°

FIGURE 4.27 (Example 5a)

(b)

60°
30°

1
2

P – , 1ba 3

3

y

x
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y

x

3 π

P(–1, 0)

FIGURE 4.31 (Example 6b)

Why Not Use a Calculator?
You might wonder why we would go through this
procedure to produce values that could be found
so easily with a calculator. The answer is to under-
stand how trigonometry works in the coordinate
plane. Ironically, technology has made these com-
putational exercises more important than ever,
since calculators have eliminated the need for the
repetitive evaluations that once gave students their
initial insights into the basic trig functions.

y

x

P(0, –1)

2
11π

FIGURE 4.32 (Example 6c)

7
3

y

x

(a)

FIGURE 4.33 (Example 7a)

y

x

(b)

7
3

P – , 3ba 40

40

EXAMPLE 7  Using One Trig Ratio to Find the Others
Find cos and tan by using the given information to construct a reference triangle.

(a) and tan 

(b) and sin 

(c) cot is undefined and sec is negative

SOLUTION

(a) Since sin is positive, the terminal side is either in QI or in QII. The added fact
that tan is negative means that the terminal side is in QII. We draw a reference
triangle in QII with and (Figure 4.33); then we use the Pythagorean

Theorem to find that . (Note that x is negative in QII.)

We then use the definitions to get

(b) Since sec is positive, the terminal side is either in QI or in QIV. The added fact
that sin is positive means that the terminal side is in QI. We draw a reference
triangle in QI with and (Figure 4.34 on the next page); then we 

use the Pythagorean Theorem to find that . (Note that y is
positive in QI.)

We then use the definitions to get

(We could also have found cos directly as the reciprocal of sec .)

(c) Since cot is undefined, we conclude that and that is a quadrantal angle
on the x-axis. The added fact that sec is negative means that the terminal side
is along the negative x-axis. We choose the point on the terminal side
and use the definitions to get

Now try Exercise 43.

cos u = -1 and tan u =

0

-1
= 0.

1-1, 02u

uy = 0u

uu

cos u =

1

3
 and tan u =

18

1
.

y = 232
- 12

= 18

x = 1r = 3
u

u

cos u =

- 140

7
 and tan u =

3

- 140
 or 

-3110

20
.

x = -1272
- 32

= - 140

y = 3r = 7
u

u

uu

u 7 0sec u = 3

u 6 0sin u =

3

7

uu

(b) In standard position, the terminal side of an angle of lies along the negative
x-axis. (See Figure 4.31.) A convenient point P along the negative x-axis is the
point for which , namely . Therefore

(c) In standard position, the terminal side of an angle of lies along the nega-
tive y-axis. (See Figure 4.32.) A convenient point P along the negative y-axis is
the point for which , namely . Therefore

Now try Exercise 41.

sec 
11p

2
=

r

x
=

1

0
.

10, -12r = 1

11p/2

tan 3p =

y

x
=

0

-1
= 0.

1-1, 02r = 1

3p

Another good exercise is to use information from one trigonometric ratio to produce
the other five. We do not need to know the angle , although we do need a hint as to the
location of its terminal side so that we can sketch a reference triangle in the correct
quadrant (or place a quadrantal angle on the correct side of the origin). Example 7 illus-
trates how this is done.

u
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Trigonometric Functions of Real Numbers
Now that we have extended the six basic trigonometric functions to apply to any angle,
we are ready to appreciate them as functions of real numbers and to study their behav-
ior. First, for reasons discussed in the first section of this chapter, we must agree to
measure in radian mode so that the real number units of the input will match the real
number units of the output.

When considering the trigonometric functions as functions of real numbers, the angles
will be measured in radians.

u

344 CHAPTER 4 Trigonometric Functions

Why Not Degrees?
One could actually develop a consistent theory 
of trigonometric functions based on a rescaled 
x-axis with “degrees.” For example, your graph-
ing calculator will probably produce reasonable-
looking graphs in degree mode. Calculus, how-
ever, uses rules that depend on radian measure
for all trigonometric functions, so it is prudent
for precalculus students to become accustomed
to that now.

DEFINITION Unit Circle
The unit circle is a circle of radius 1 centered at the origin (Figure 4.35).

y

x

1

FIGURE 4.35 The unit circle.

y

x

(a)

t

t

t > 0P(x, y)

(1, 0)

1

FIGURE 4.36 How the number line is wrapped onto the unit circle. Note
that each number t (positive or negative) is “wrapped” to a point P that lies on
the terminal side of an angle of t radians in standard position.

y

x

(b)

t

t

t < 0

1

P(x, y)

(1, 0)

The unit circle provides an ideal connection between triangle trigonometry and the
trigonometric functions. Because arc length along the unit circle corresponds exactly to
radian measure, we can use the circle itself as a sort of “number line” for the input val-
ues of our functions. This involves the wrapping function, which associates points on
the number line with points on the circle.

Figure 4.36 shows how the wrapping function works. The real line is placed tangent to
the unit circle at the point , the point from which we measure angles in standard
position. When the line is wrapped around the unit circle in both the positive (counter-
clockwise) and negative (clockwise) directions, each point t on the real line will fall on
a point of the circle that lies on the terminal side of an angle of t radians in standard po-
sition. Using the coordinates of this point, we can find the six trigonometric ratios
for the angle t just as we did in Example 7—except even more easily, since .r = 1

1x, y2

11, 02

DEFINITION Trigonometric Functions of Real Numbers
Let t be any real number, and let be the point corresponding to t when
the number line is wrapped onto the unit circle as described above. Then

Therefore, the number t on the number line always wraps onto the point 
cos t, sin t on the unit circle (Figure 4.37).21

 cot t =

x

y
 1y Z 02 tan t =

y

x
 1x Z 02

 sec t =

1
x

 1x Z 02 cos t = x

 csc t =

1
y

 1y Z 02 sin t = y

P1x, y2

3

1

y

x

(a)

FIGURE 4.34 (Example 7b)

y

x

(b)

3

1

P 1, ba 8

8
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Although it is still helpful to draw reference triangles inside the unit circle to see the ra-
tios geometrically, this latest round of definitions does not invoke triangles at all. The
real number t determines a point on the unit circle, and the coordinates of the
point determine the six trigonometric ratios. For this reason, the trigonometric func-
tions when applied to real numbers are usually called the circular functions.

1x, y2
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DEFINITION Periodic Function
A function is periodic if there is a positive number c such that

for all values of t in the domain of ƒ. The smallest such num-
ber c is called the period of the function.
ƒ1t + c2 = ƒ1t2y = ƒ1t2

EXPLORATION 2 Exploring the Unit Circle

This works well as a group exploration. Get together in groups of two or three

and explain to each other why these statements are true. Base your explanations

on the unit circle (Figure 4.37). Remember that wraps the same distance as t,

but in the opposite direction.

1. For any t, the value of cos t lies between and 1 inclusive.

2. For any t, the value of sin t lies between and 1 inclusive.

3. The values of cos t and cos are always equal to each other. (Recall that
this is the check for an even function.)

4. The values of sin t and sin are always opposites of each other. (Recall
that this is the check for an odd function.)

5. The values of sin t and sin are always equal to each other. In fact,
that is true of all six trig functions on their domains, and for the same reason.

6. The values of sin t and sin are always opposites of each other. The
same is true of cos t and cos .

7. The values of tan t and tan are always equal to each other (unless they
are both undefined).

8. The sum always equals 1.

9. (Challenge) Can you discover a similar relationship that is not mentioned in
our list of eight? There are some to be found.

1cos t22 + 1sin t22
1t + p2
1t + p21t + p2
1t + 2p2
1- t2
1- t2

-1

-1

- t

Periodic Functions
Statements 5 and 7 in Exploration 2 reveal an important property of the circular func-
tions that we need to define for future reference.

Exploration 2 suggests that the sine and cosine functions have period and that the
tangent function has period . We use this periodicity later to model predictably repet-
itive behavior in the real world, but meanwhile we can also use it to solve little noncal-
culator training problems like in some of the previous examples in this section.

p

2p

EXAMPLE 8  Using Periodicity
Find each of the following numbers without a calculator.

(a) (b)

(c)

(continued)

tan ap
4

- 99,999pb
cos 1288.45p2 - cos 1280.45p2sin a57,801p

2
b

y

x

t

tP(cos t, sin t)

FIGURE 4.37 The real number t al-
ways wraps onto the point on
the unit circle.

1cos t, sin t2
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We take a closer look at the properties of the six circular functions in the next two 
sections.

The 16-Point Unit Circle
At this point you should be able to use reference triangles and quadrantal angles to
evaluate trigonometric functions for all integer multiples of 30° or 45° (equivalently,

radians or radians). All of these special values wrap to the 16 special points
shown on the unit circle below. Study this diagram until you are confident that you can
find the coordinates of these points easily, but avoid using it as a reference when doing
problems.

p/4p/6

346 CHAPTER 4 Trigonometric Functions

SOLUTION

(a)

Notice that is just a large multiple of , so and 
wrap to the same point on the unit circle, namely .

(b)

Notice that and wrap to the same point on the unit
circle, so the cosine of one is the same as the cosine of the other.

(c) Since the period of the tangent function is rather than is a large
multiple of the period of the tangent function. Therefore,

Now try Exercise 49.

tan ap
4

- 99,999pb = tan ap
4
b = 1.

2p, 99,999pp

1280.45p + 8p2280.45p

cos 1280.45p + 8p2 - cos 1280.45p2 = 0

cos 1288.45p2 - cos 1280.45p2 =

10, 12 11p/22 + 28,900p2p/22p28,900p

= sin ap
2
b = 1

sin a57,801p

2
b = sin ap

2
+

57,800p

2
b = sin ap

2
+ 28,900pb

y

x

π
2

π
3

π
4

π
6

6
11π

3
2π

4
3π

6
5π

6
7π

4
5π

3
4π

2
3π 3

5π 4
7π

π 2 π

30°

45°
60°

90°

120°
135°

150°

180°

210°

225°
240°

270°

300°
315°

330°

360°
00°

(0, 1)

(0, –1)

(1, 0)(–1, 0)

2
, 3 b1

2
a–

2
, – 3 b1

2
a–

2
, – 3 b1

2
a

2
, 3 b1

2
a

2
,3 b1

2
a

2
,3 b1

2
a–

2
, –3 b1

2
a–

2
, –3 b1

2
a

2
,2

2
2 ba

2
,2

2
2 ba–

2
, –2

2
2 ba–

2
, –2

2
2 ba
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QUICK REVIEW 4.3 (For help, go to Section 4.1.)

17. 18.

19. 20.

In Exercises 21–24, choose the point on the terminal side of .

21.

(a) (b) (c)

22.

(a) (b) (c)

23.

(a) (b) (c)

24.

(a) (b) (c)

In Exercises 25–36, evaluate without using a calculator by using ratios
in a reference triangle.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–42, find (a) sin , (b) cos , and (c) tan for the given
quadrantal angle. If the value is undefined, write “undefined.”

37. 38.

39. 40.

41. 42. -4p-  

7p

2

11p

2
7p

-270°-450°

uuu

cot 
19p

6
sin 

11p

3

cos 
17p

4
cos 

23p

6

cot 
13p

4
tan -  

15p

4

cos 
7p

3
sin 

13p

6

csc 
3p

4
sec 
p

3

tan 300°cos 120°

1- 13, 1211, - 1321-1, -12
u = -60°

1- 13, 121-1, 1321- 13, -12
u =

7p

6

1- 13, 121-1, 1321-1, 12
u =

2p

3

113, 1211, 13212, 22
u = 45°

u

tan 
4p

5
cos 

7p

8

tan 192°cos 143°

y

x
θP(–1, 2)

y

x
θ

P(4, –3)

y

x
θ

P(–1, –1)

y

x
θ

P(3, –5)

In Exercises 7–12, point P is on the terminal side of angle . Evaluate
the six trigonometric functions for . If the function is undefined, write
“undefined.”

7. 8.

9. 10.

11. 12.

In Exercises 13–16, state the sign of (a) sin t, (b) cos t, and
(c) tan t for values of t in the interval given.

13. 14.

15. 16.

In Exercises 17–20, determine the sign of the given value
without the use of a calculator.

1+  or -2
a3p

2
, 2pbap, 

3p

2
b

ap
2

, pba0, 
p

2
b

1+  or -2
P122, -222P15, -22
P1-3, 02P10, 52
P1-4, -62P13, 42

u

u

5. 6.

7. 8.

In Exercises 9 and 10, use a right triangle to find the other five
trigonometric functions of the acute angle .

9. 10. cos u =

15

17
sin u =

5

13

u

sec 
p

3
csc 
p

4

cot 
p

4
tan 
p

6
Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, give the value of the angle in degrees.

1. 2.

3. 4.

In Exercises 5–8, use special triangles to evaluate:

u =

16p

3
u =

25p

4

u = -  

5p

6
u = -  

p

6

u

SECTION 4.3 EXERCISES

In Exercises 1 and 2, identify the one angle that is not coterminal with
all the others.

1. 150°, 510°, , 

2.

In Exercises 3–6, evaluate the six trigonometric functions of the angle .

3. 4.

u

5p

3
, -  

5p

3
, 

11p

3
, -  

7p

3
, 

365p

3

450°, 870°-210°

5. 6.
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In Exercises 43–48, evaluate without using a calculator.

43. Find sin and tan if cos and cot .

44. Find cos and cot if sin and tan .

45. Find tan and sec if sin and cos .

46. Find sin and cos if cot and sec .

47. Find sec and csc if cot and cos .

48. Find csc and cot if tan and sin .

In Exercises 49–52, evaluate by using the period of the function.

49.

50.

51.

52.

53. Group Activity Use a calculator to evaluate the expres-
sions in Exercises 49–52. Does your calculator give the correct
answers? Many calculators miss all four. Give a brief explana-
tion of what probably goes wrong.

54. Writing to Learn Give a convincing argument that the
period of sin t is . That is, show that there is no smaller posi-
tive real number p such that sin for all real
numbers t.

55. Refracted Light Light is
refracted (bent) as it passes through
glass. In the figure, is the angle of
incidence and is the angle of re-
fraction. The index of refraction is a
constant that satisfies the equation

If and for a cer-
tain piece of flint glass, find the index
of refraction.

56. Refracted Light A certain piece of crown glass has an
index of refraction of 1.52. If a light ray enters the glass at an
angle , what is sin ?

57. Damped Harmonic Motion A weight
suspended from a spring is set into motion. Its
displacement d from equilibrium is modeled by
the equation

where d is the displacement in inches and t is 
the time in seconds. Find the displacement at the
given time. Use radian mode.

(a)

(b) t = 3

t = 0

d = 0.4e-0.2t cos 4t,

u2u1 = 42°

u2 = 36°u1 = 83°

sin u1 = m sin u2.

m

u2

u1

1t + p2 = sin t
2p

tan a3p - 70,000p

2
b

cos a5,555,555p

2
b

tan 11,234,567p2 - tan 17,654,321p2
sin ap

6
+ 49,000pb

u 7 0u = -  

4

3
uu

u 6 0u = -  

4

3
uu

u 6 0u =

3

7
uu

u 7 0u = -  

2

5
uu

u 6 0u =

1

4
uu

u 7 0u =

2

3
uu

58. Swinging Pendulum The Columbus Museum
of Science and Industry exhibits a Foucault pendulum
32 ft long that swings back and forth on a cable once
in approximately 6 sec. The angle (in radians) be-
tween the cable and an imaginary vertical line is mod-
eled by the equation

Find the measure of angle when and .

59. Too Close for Comfort An F-15 aircraft flying at an
altitude of 8000 ft passes directly over a group of vacationers
hiking at 7400 ft. If is the angle of elevation from the hikers
to the F-15, find the distance d from the group to the jet for the
given angle.

(a) (b) (c)

60. Manufacturing Swimwear Get Wet, Inc., manufac-
tures swimwear, a seasonal product. The monthly sales x (in
thousands) for Get Wet swimsuits are modeled by the equation

where represents January, February, and so on. 
Estimate the number of Get Wet swimsuits sold in January,
April, June, October, and December. For which two of these
months are sales the same? Explain why this might be so.

Standardized Test Questions
61. True or False If is an angle of a triangle such that cos

, then is obtuse. Justify your answer.

62. True or False If is an angle in standard position deter-
mined by the point , then . Justify your
answer.

You should answer these questions without using a calculator.

sin u = -0.618, -62
u

uu 6 0
u

t = 2t = 1

x = 72.4 + 61.7 sin 
pt

6
,

u = 140°u = 90°u = 45°

u

t = 2.5t = 0u

u = 0.25 cos t.

u

348 CHAPTER 4 Trigonometric Functions

Glass

�1

�2

θ

63. Multiple Choice If , then sin1-u2 + csc u =sin u = 0.4

(A) (B) 0. (C) 0.15. (D) 0.65. (E) 2.1.

64. Multiple Choice If , then 

(A) (B) (C) 0.4. (D) 0.6. (E) 3.54.

65. Multiple Choice The range of the function
is

(A) {1}. (B) . (C) .

(D) . (E) .

66. Multiple Choice If and tan , then

sin 

(A) . (B) . (C) . (D) . (E) .

Explorations
In Exercises 67–70, find the value of the unique real number between
0 and that satisfies the two given conditions.

67. and tan .

68. and sin .u 6 0cos u =

13

2

u 6 0sin u =

1

2

2p
u

12

13

5

12

5

13
-  

5

12
-  

12

13

u =

u 7 0cos u = -  

5

13

30, q230, 24
30, 143-1, 14

ƒ1t2 = 1sin t22 + 1cos t22
-0.4.-0.6.

cos 1u + p2 =cos u = 0.4

-0.15.

d
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69. and sin .

70. and tan .

Exercises 71–74 refer to the unit circle in this figure. Point P is on the
terminal side of an angle t and point Q is on the terminal side of an an-
gle .t + p/2

u 7 0sin u = -  

12

2

u 6 0tan u = -1 Extending the Ideas
77. Approximation and Error Analysis Use your

grapher to complete the table to show that (in radi-
ans) when is small. Physicists often use the approximation

for small values of . For what values of is the
magnitude of the error in approximating sin by less than
1% of sin ? That is, solve the relation

Hint: Extend the table to include a column for values of

ƒsin u - u ƒ

ƒsin u ƒ

.4
3

ƒsin u - u ƒ 6 0.01 ƒsin u ƒ .

u

uu

uusin u L u
ƒu ƒ

sin u L u

SECTION 4.3 Trigonometry Extended: The Circular Functions 349

y

x
(1, 0)

t
t

πt + 
2

P(a, b)

Q(–b, a)

71. Using Geometry in Trigonometry Drop perpen-
diculars from points P and Q to the x-axis to form two right tri-
angles. Explain how the right triangles are related.

72. Using Geometry in Trigonometry If the coordi-
nates of point P are , explain why the coordinates of
point Q are .

73. Explain why sin .

74. Explain why cos .

75. Writing to Learn In the figure for Exercises 71–74, t is
an angle with radian measure . Draw a similar
figure for an angle with radian measure and use
it to explain why .

76. Writing to Learn Use the accompanying figure to ex-
plain each of the following.

sin 1t + p/22 = cos t
p/2 6 t 6 p

0 6 t 6 p/2

a t +

p

2
b = -sin t

a t +

p

2
b = cos t

1-b, a2
1a, b2

sin sin 

0.03
0.02
0.01
0
0.01
0.02
0.03

-

-

-

u - uuu

cos 

0.3 0.955...
0.2 0.980...
0.1 0.995...
0 1
0.1 0.995...
0.2 0.980...
0.3 0.955...

-

-

-

cos u - a1 -

u2

2
+

u4

24
b1 -

u2

2
+

u4

24
uu

sin 

0.3 0.295...
0.2 0.198...
0.1 0.099...
0 0
0.1 0.099...
0.2 0.198...
0.3 0.295...

--

--

--

sin u - au -

u3

6
bu -

u3

6
uu

y

x
(1, 0)

t
t

P(a, b)Q(–a, b)
– tπ

(a) (b) cos 1p - t2 = -cos tsin 1p - t2 = sin t 

78. Proving a Theorem If t is any real number, prove that
.

Taylor Polynomials Radian measure allows the
trigonometric functions to be approximated by simple polyno-
mial functions. For example, in Exercises 79 and 80, sine and
cosine are approximated by Taylor polynomials, named after
the English mathematician Brook Taylor (1685–1731). Com-
plete each table showing a Taylor polynomial in the third col-
umn. Describe the patterns in the table.

79.

1 + 1tan t22 = 1sec t22

80.
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We can add to this list that x is periodic, with period . We can also add un-
derstanding of where the sine function comes from: By definition, sin t is the y-coordi-
nate of the point P on the unit circle to which the real number t gets wrapped (or, equiv-
alently, the point P on the unit circle determined by an angle of t radians in standard
position). In fact, now we can see where the wavy graph comes from. Try Exploration 1.

2py = sin

350 CHAPTER 4 Trigonometric Functions

4.4 Graphs of Sine and Cosine: 
Sinusoids

The Basic Waves Revisited
In the first three sections of this chapter you saw how the trigonometric functions are
rooted in the geometry of triangles and circles. It is these connections with geometry
that give trigonometric functions their mathematical power and make them widely 
applicable in many fields.

The unit circle in Section 4.3 was the key to defining the trigonometric functions as
functions of real numbers. This makes them available for the same kind of analysis as
the other functions introduced in Chapter 1. (Indeed, two of our “Twelve Basic Func-
tions” are trigonometric.) We now take a closer look at the algebraic, graphical, and 
numerical properties of the trigonometric functions, beginning with sine and cosine.

Recall that we can learn quite a bit about the sine function by looking at its graph. Here
is a summary of sine facts:

What you’ll learn about
• The Basic Waves Revisited
• Sinusoids and Transformations
• Modeling Periodic Behavior with

Sinusoids

... and why
Sine and cosine gain added sig-
nificance when used to model
waves and periodic behavior

Domain: All reals
Range: 
Continuous
Alternately increasing and decreasing in periodic waves
Symmetric with respect to the origin (odd)
Bounded
Absolute maximum of 1
Absolute minimum of 
No horizontal asymptotes
No vertical asymptotes
End behavior: sin x and sin x do not exist. (The function values continually 

oscillate between and 1 and approach no limit.)-1

lim
x: q

lim
x: -q

-1

3-1, 14
ƒ1x2 = sin x

BASIC FUNCTION The Sine Function

by [–4, 4]2 π ],[–2π

FIGURE 4.37A

EXPLORATION 1 Graphing sin t as a Function of t

Set your grapher to radian mode, parametric, and “simultaneous” graphing

modes.

Set Tmin 0, Tmax 6.3, Tstep .

Set the window to by .

Set and . This will graph the unit circle. Set

and . This will graph sin as a function of T.1T2Y2T = sin 1T2X2T = T

Y1T = sin 1T2X1T = cos 1T2
3-2.5, 2.543-1.2, 6.341x, y2

= p/24==
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Domain: All reals
Range: 
Continuous
Alternately increasing and decreasing in periodic waves
Symmetric with respect to the y-axis (even)
Bounded
Absolute maximum of 1
Absolute minimum of 
No horizontal asymptotes
No vertical asymptotes
End behavior: and do not exist. (The function values

continually oscillate between and 1 and approach no limit.)-1

lim
x: q

 cos xlim
x: -q

 cos x

-1

3-1, 14
ƒ1x2 = cos x

BASIC FUNCTION The Cosine Function

Now start the graph and watch the point go counterclockwise around the unit

circle as t goes from 0 to in the positive direction. You will simultaneously

see the y-coordinate of the point being graphed as a function of t along the hori-

zontal t-axis. You can clear the drawing and watch the graph as many times as

you need to in order to answer the following questions.

1. Where is the point on the unit circle when the wave is at its highest?

2. Where is the point on the unit circle when the wave is at its lowest?

3. Why do both graphs cross the x-axis at the same time?

4. Double the value of Tmax and change the window to by .
If your grapher can change “style” to show a moving point, choose that style
for the unit circle graph. Run the graph and watch how the sine curve tracks
the y-coordinate of the point as it moves around the unit circle.

5. Explain from what you have seen why the period of the sine function is .

6. Challenge: Can you modify the grapher settings to show dynamically how the
cosine function tracks the x-coordinate as the point moves around the unit circle?

2p

3-5, 543-2.4, 12.64

2p

by [–4, 4]2 π ],[–2π

FIGURE 4.38A

[–1.2, 6.3] by [–2.5, 2.5]

(a)

FIGURE 4.38 The graph of tracks the y-coordinate of the point determined by t as
it moves around the unit circle.

y = sin t

[�2.4, 12.6] by [�5, 5]

(b)

Although a static picture does not do the dynamic simulation justice, Figure 4.38 shows
the final screens for the two graphs in Exploration 1.

As with the sine function, we can add the observation that it is periodic, with period .2p
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Sinusoids and Transformations
A comparison of the graphs of and suggests that either one can be
obtained from the other by a horizontal translation (Section 1.5). In fact, we will prove
later in this section that cos . Each graph is an example of a
sinusoid. In general, any transformation of a sine function (or the graph of such a func-
tion) is a sinusoid.

x = sin 1x + p/22
y = cos xy = sin x

352 CHAPTER 4 Trigonometric Functions

DEFINITION Sinusoid
A function is a sinusoid if it can be written in the form

where a, b, c, and d are constants and neither a nor b is 0.

ƒ1x2 = a sin 1bx + c2 + d

DEFINITION Amplitude of a Sinusoid
The amplitude of the sinusoid sin is . Similarly, the
amplitude of is .

Graphically, the amplitude is half the height of the wave.

ƒa ƒƒ1x2 = a cos 1bx + c2 + d
ƒa ƒ1bx + c2 + dƒ1x2 = a

by [–4, 4]2 π ],[–2π

FIGURE 4.39 Sinusoids (in this case, 
cosine curves) of different amplitudes. 
(Example 1)

Since cosine functions are themselves translations of sine functions, any transformation
of a cosine function is also a sinusoid by the above definition.

There is a special vocabulary used to describe some of our usual graphical transforma-
tions when we apply them to sinusoids. Horizontal stretches and shrinks affect the
period and the frequency, vertical stretches and shrinks affect the amplitude, and hori-
zontal translations bring about phase shifts. All of these terms are associated with
waves, and waves are quite naturally associated with sinusoids.

You learned in Section 1.5 that the graph of when is a horizontal
shrink of the graph of by a factor of . That is exactly what happens with
sinusoids, but we can add the observation that the period shrinks by the same factor.
When , the effect on both the graph and the period is a horizontal stretch by a
factor of , plus a reflection across the y-axis if .b 6 01/ ƒb ƒ

ƒb ƒ 6 1

1/ ƒb ƒy = ƒ1x2 ƒb ƒ 7 1y = ƒ1bx2

EXAMPLE 1  Vertical Stretch or Shrink and Amplitude
Find the amplitude of each function and use the language of transformations to 
describe how the graphs are related.

(a) (b) (c)

SOLUTION

Solve Algebraically The amplitudes are (a) 1, (b) 1/2, and (c) .

The graph of is a vertical shrink of the graph of by a factor of 1/2.

The graph of is a vertical stretch of the graph of by a factor of 3, and a reflec-
tion across the x-axis, performed in either order. (We do not call this a vertical stretch
by a factor of , nor do we say that the amplitude is .)

Support Graphically The graphs of the three functions are shown in Figure 4.39.
You should be able to tell which is which quite easily by checking the amplitudes.

Now try Exercise 1.

-3-3

y1y3

y1y2

ƒ -3 ƒ = 3

y3 = -3 cos xy2 =

1

2
 cos x y1 = cos x 
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In some applications, the frequency of a sinusoid is an important consideration. The
frequency is simply the reciprocal of the period.

SECTION 4.4 Graphs of Sine and Cosine: Sinusoids 353

Period of a Sinusoid
The period of the sinusoid sin is . Similarly, the
period of cos is .

Graphically, the period is the length of one full cycle of the wave.

2p/ ƒb ƒ1bx + c2 + dƒ1x2 = a
2p/ ƒb ƒ1bx + c2 + dƒ1x2 = a

by [–4, 4]3 π ],[–3π

FIGURE 4.40 Sinusoids (in this case, sine
curves) of different amplitudes and periods.
(Example 2)

Frequency of a Sinusoid
The frequency of the sinusoid is . Similarly,

the frequency of is .

Graphically, the frequency is the number of complete cycles the wave com-
pletes in a unit interval.

ƒb ƒ /2pƒ1x2 = a cos 1bx + c2 + d
ƒb ƒ /2pƒ1x2 = a sin 1bx + c2 + d

EXAMPLE 2  Horizontal Stretch or Shrink and Period
Find the period of each function and use the language of transformations to describe
how the graphs are related.

(a) (b) (c)

SOLUTION

Solve Algebraically The periods are (a) , (b) , and (c)
.

The graph of is a horizontal stretch of the graph of by a factor of 3, a vertical
stretch by a factor of 2, and a reflection across the x-axis, performed in any order.

The graph of is a horizontal shrink of the graph of by a factor of 1/2, a vertical
stretch by a factor of 3, and a reflection across the y-axis, performed in any order.
(Note that we do not call this a horizontal shrink by a factor of , nor do we say
that the period is .)

Support Graphically The graphs of the three functions are shown in Figure 4.40.
You should be able to tell which is which quite easily by checking the periods or the
amplitudes. Now try Exercise 9.

-p

-1/2

y1y3

y1y2

2p/ ƒ -2 ƒ = p

2p/11/32 = 6p2p

y3 = 3 sin 1-2x2y2 = -2 sin a x

3
by1 = sin x 

by [–4, 4]3 π ],[–3π

FIGURE 4.41 The graph of the function
. It has frequency ,

so it completes 1 full cycle per interval of
length . (Example 3)3p

1/13p2ƒ1x2 = 4 sin 12x/32

EXAMPLE 3  Finding the Frequency of a Sinusoid
Find the frequency of the function and interpret its meaning
graphically.

Sketch the graph in the window .

SOLUTION The frequency is . This is the reciprocal of the
period, which is . The graphical interpretation is that the graph completes 1 full
cycle per interval of length . (That, of course, is what having a period of is all
about.) The graph is shown in Figure 4.41. Now try Exercise 17.

3p3p
3p

12/32 , 2p = 1/13p2
3-3p, 3p4 by 3-4, 44

ƒ1x2 = 4 sin 12x/32

Recall from Section 1.5 that the graph of is a translation of the graph of
by c units to the left when . That is exactly what happens with sinu-

soids, but using terminology with its roots in electrical engineering, we say that the
wave undergoes a phase shift of .-c

c 7 0y = ƒ1x2 y = ƒ1x + c2
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One note of caution applies when combining these transformations. A horizontal
stretch or shrink affects the variable along the horizontal axis, so it also affects the
phase shift. Consider the transformation in Example 5.

354 CHAPTER 4 Trigonometric Functions

EXAMPLE 4  Getting One Sinusoid from Another 
by a Phase Shift

(a) Write the cosine function as a phase shift of the sine function.

(b) Write the sine function as a phase shift of the cosine function.

SOLUTION

(a) The function has a maximum at , while the function
has a maximum at . Therefore, we need to shift the sine curve

units to the left to get the cosine curve:

(b) It follows from the work in (a) that we need to shift the cosine curve units to
the right to get the sine curve:

You can support with your grapher that these statements are true. Incidentally,
there are many other translations that would have worked just as well. Adding
any integral multiple of to the phase shift would result in the same graph.

Now try Exercise 41.
2p

sin x = cos 1x - p/22
p/2

cos x = sin 1x + p/22
p/2

x = 0y = cos x
x = p/2y = sin x

Graphs of Sinusoids
The graphs of and 
(where and ) have the following characteristics:

When compared to the graphs of and respectively,
they also have the following characteristics:

a phase shift of h; a vertical translation of k.

y = a cos bx,y = a sin bx

 frequency =

ƒb ƒ

2p
.

 period =

2p

ƒb ƒ

;

 amplitude = ƒa ƒ ;

b Z 0a Z 0
y = a cos 1b1x - h22 + ky = a sin 1b1x - h22 + k

EXAMPLE 5  Combining a Phase Shift with a Period Change
Construct a sinusoid with period and amplitude 6 that goes through .

SOLUTION To find the coefficient of x, we set and solve to find that
. We arbitrarily choose . (Either will satisfy the specified conditions.)

For amplitude 6, we have . Again, we arbitrarily choose the positive value.
The graph of has the required amplitude and period, but it does not
go through the point . It does, however, go through the point , so all that
is needed is a phase shift of to finish our function. Replacing x by , we get

Notice that we did not get the function sin . That function would
represent a phase shift of , but only by 2/10, not 2. Parentheses are im-
portant when combining phase shifts with horizontal stretches and shrinks.

Now try Exercise 59.

y = sin 110x2 110x - 22y = 6

y = 6 sin 1101x - 222 = 6 sin 110x - 202.
x - 2+2

10, 0212, 02y = 6 sin 110x2ƒa ƒ = 6

b = 10b = �10
2p/ ƒb ƒ = p/5

12, 02p/5
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Modeling Periodic Behavior with Sinusoids
Example 6 was intended as more than just a review of the graphical transformations.
Constructing a sinusoid with specific properties is often the key step in modeling
physical situations that exhibit periodic behavior over time. The procedure we fol-
lowed in Example 6 can be summarized as follows:

SECTION 4.4 Graphs of Sine and Cosine: Sinusoids 355

30
25
20
15
10

y

–5
x

32

FIGURE 4.42 A sinusoid with specifica-
tions. (Example 6)

[–5, 65] by [–5, 30]

FIGURE 4.43 The graph of the function
. (Example 8)y = -10 cos 11p/322x2 + 15

EXAMPLE 6  Constructing a Sinusoid by Transformations
Construct a sinusoid that rises from a minimum value of at to
a maximum value of at . (See Figure 4.42.)

SOLUTION

Solve Algebraically The amplitude of this sinusoid is half the height of the graph:
. So . The period is 64 (since a full period goes from mini-

mum to maximum and back down to the minimum). So set . Solving, we
get .

We need a sinusoid that takes on its minimum value at . We could shift the
graph of sine or cosine horizontally, but it is easier to take the cosine curve (which
assumes its maximum value at ) and turn it upside down. This reflection can be
obtained by letting rather than 10.

So far we have:

(Since cos is an even function)

Finally, we note that this function ranges from a minimum of to a maximum of
10. We shift the graph vertically by 15 to obtain a function that ranges from a mini-
mum of 5 to a maximum of 25, as required. Thus

Support Graphically We support our answer graphically by graphing the function
(Figure 4.43). Now try Exercise 69.

y = -10 cos a p
32

 xb + 15.

-10

 = -10 cos a p
32

 xb
 y = -10 cos a�

p

32
 xb

a = -10
x = 0

x = 0

ƒb ƒ = p/32
2p/ ƒb ƒ = 64

ƒa ƒ = 10125 - 52/2 = 10

x = 32y = 25
x = 0y = 5y = ƒ1x2

Constructing a Sinusoidal Model Using Time

1. Determine the maximum value M and minimum value m. The amplitude A of the

sinusoid will be , and the vertical shift will be .

2. Determine the period p, the time interval of a single cycle of the periodic func-

tion. The horizontal shrink (or stretch) will be .

3. Choose an appropriate sinusoid based on behavior at some given time T. For 
example, at time T:

attains a maximum value;

attains a minimum value;

is halfway between a minimum and a maximum
value;

is halfway between a maximum and a mini-
mum value.
 ƒ1t2 = -A sin 1B1t - T22 + C

ƒ1t2 = A sin 1B1t - T22 + C

ƒ1t2 = -A cos 1B1t - T22 + C

ƒ1t2 = A cos 1B1t - T22 + C

B =

2p
p

C =

M + m

2
A =

M - m

2
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We will see more applications of this kind when we look at simple harmonic motion in
Section 4.8.
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[0, 24] by [2, 2.8]

FIGURE 4.44 The Galveston tide graph.
(Example 7)

We apply the procedure in Example 7 to model the ebb and flow of a tide.

EXAMPLE 7  Calculating the Ebb and Flow of Tides
One particular July 4th in Galveston, TX, high tide occurred at 9:36 A.M. At that time
the water at the end of the 61st Street Pier was 2.7 meters deep. Low tide occurred at
3:48 P.M., at which time the water was only 2.1 meters deep. Assume that the depth
of the water is a sinusoidal function of time with a period of half a lunar day (about
12 hours 24 minutes).

(a) At what time on the 4th of July did the first low tide occur?

(b) What was the approximate depth of the water at 6:00 A.M. and at 3:00 P.M.
that day?

(c) What was the first time on July 4th when the water was 2.4 meters deep?

SOLUTION

Model We want to model the depth D as a sinusoidal function of time t. The depth
varies from a maximum of 2.7 meters to a minimum of 2.1 meters, so the amplitude 

, and the vertical shift will be . The period

is 12 hours 24 minutes, which converts to 12.4 hours, so .

We need a sinusoid that assumes its maximum value at 9:36 A.M. (which converts to
9.6 hours after midnight, a convenient time 0). We choose the cosine model. Thus,

Solve Graphically The graph over the 24-hour period of July 4th is shown in 
Figure 4.44.

We now use the graph to answer the questions posed.

(a) The first low tide corresponds to the first local minimum on the graph. We find
graphically that this occurs at . This translates to A.M.

(b) The depth at 6:00 A.M. is meters. The depth at 3:00 P.M. is
meters.

(c) The first time the water is 2.4 meters deep corresponds to the leftmost intersec-
tion of the sinusoid with the line . We use the grapher to find that

. This translates to A.M., which we write as
12:18 A.M. Now try Exercise 75.

0 + 10.321602 = 00:18t = 0.3
y = 2.4

D112 + 32 = D1152 L 2.12
D162 L 2.32

3 + 10.421602 = 3:24t = 3.4

D1t2 = 0.3 cos a p
6.2

 1t - 9.62b + 2.4.

B =

2p

12.4
=

p

6.2

C =

2.7 + 2.1

2
= 2.4A =

2.7 - 2.1

2
= 0.3

QUICK REVIEW 4.4 (For help, go to Sections 1.6, 4.1, and 4.2.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–3, state the sign (positive or negative) of the function
in each quadrant.

1. sin x 2. cos x

3. tan x

In Exercises 4–6, give the radian measure of the angle.

4. 135° 5. 6. 450°-150°

 

In Exercises 7–10, find a transformation that will transform the
graph of to the graph of .

7.

8.

9.

10. y1 = x3 and  y2 = x3
- 2

y1 = ln x and  y2 = 0.5 ln x 

y1 = ex and  y2 = e-x

y1 = 1x and y2 = 31x

y2y1
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SECTION 4.4 EXERCISES

In Exercises 1–6, find the amplitude of the function and use the lan-
guage of transformations to describe how the graph of the function is
related to the graph of .

1. 2.

3. 4.

5. 6.

In Exercises 7–12, find the period of the function and use the language
of transformations to describe how the graph of the function is related
to the graph of .

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find the amplitude, period, and frequency of the
function and use this information (not your calculator) to sketch a
graph of the function in the window by .

13. 14.

15. 16.

In Exercises 17–22, graph one period of the function. Use your under-
standing of transformations, not your graphing calculators. Be sure to
show the scale on both axes.

17. 18.

19. 20.

21. 22.

In Exercises 23–28, graph three periods of the function. Use your un-
derstanding of transformations, not your graphing calculators. Be sure
to show the scale on both axes.

23. 24.

25. 26.

27. 28.

In Exercises 29–34, specify the period and amplitude of each function.
Then give the viewing window in which the graph is shown. Use your
understanding of transformations, not your graphing calculators.

29. 30. y = 2 cos 3xy = 1.5 sin 2x

y = 8 cos 5xy = 4 sin 
x

4

y = 20 sin 4xy = 0.5 cos 3x

y = 3 cos 
x

2
y = 5 sin 2x

y = 4 cos xy = -0.5 sin x

y = -2 cos xy = 3 cos x

y = 2.5 sin xy = 2 sin x

y = -4 sin 
2x

3
y = -  

3

2
 sin 2x

y = 2 cos 
x

3
y = 3 sin 

x

2

3-4, 443-3p, 3p4

y =

1

4
 cos 

2x

3
y = 3 cos 2x

y = cos 1-0.4x2y = cos 1-7x2
y = cos x/5y = cos 3x

y = cos x

y = -2.34 sin xy = 0.73 sin x

y = -  

7

4
 sin xy = -4 sin x

y =

2

3
 sin xy = 2 sin x

y = sin x

31. 32. y = 5 sin 
x

2
y = -3 cos 2x

In Exercises 35–40, identify the maximum and minimum values and
the zeros of the function in the interval . Use your under-
standing of transformations, not your graphing calculators.

35. 36.

37. 38.

39. 40.

41. Write the function as a phase shift of .

42. Write the function as a phase shift of .

In Exercises 43–48, describe the transformations required to obtain the
graph of the given function from a basic trigonometric graph.

43. 44.

45. 46.

47. 48.

In Exercises 49–52, describe the transformations required to obtain the
graph of from the graph of .

49. and 

50. and 

51. and 

52. and 

In Exercises 53–56, select the pair of functions that have identical
graphs.

53. (a) (b)

(c) y = cos ax +

p

2
b

y = sin ax +

p

2
by = cos x

y2 = 2 sin 
px

3
y1 = 3 sin 

2px

3

y2 = 2 cos 2pxy1 = 2 cos px

y2 = cos ax +

p

4
by1 = 2 cos ax +

p

3
b

y2 =

5

3
 cos 2xy1 = cos 2x

y1y2

y = -2 sin 
px

4
y = 3 cos 

2px

3

y =

3

4
 sin 

x

5
y = -  

2

3
 cos 

x

3

y = 1.5 cos 4xy = 0.5 sin 3x

y = sin xy = -cos x

y = sin xy = -sin x

y = -2 sin xy = -cos 2x

y =

1

2
 sin xy = cos 2x

y = 3 cos 
x

2
y = 2 sin x

3-2p, 2p4

33. 34. y = 3 cos pxy = -4 sin 
p

3
 x
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54. (a) (b)

(c)

55. (a) (b)

(c)

56. (a) (b)

(c)

In Exercises 57–60, construct a sinusoid with the given amplitude and
period that goes through the given point.

57. Amplitude 3, period , point 

58. Amplitude 2, period , point 

59. Amplitude 1.5, period , point 

60. Amplitude 3.2, period , point 

In Exercises 61–68, state the amplitude and period of the sinusoid, and
(relative to the basic function) the phase shift and vertical translation.

61.

62.

63.

64.

65.

66.

67.

68.

In Exercises 69 and 70, find values a, b, h, and k so that the graph of
the function is the curve shown.

69. 70.

y = a sin 1b1x + h22 + k

y =

2
3

 cos a x - 3

4
b + 1

y =

7

3
 sin ax +

5

2
b - 1

y = 4 cos 3px - 2

y = 2 cos 2px + 1

y = 3 cos 1x + 32 - 2

y = 5 cos a3x -

p

6
b + 0.5

y = -3.5 sin a2x -

p

2
b - 1

y = -2 sin ax -

p

4
b + 1

15, 02p/7

11, 02p/6

10, 023p

10, 02p

y = cos a2x -

p

4
b

y = cos a2x -

p

2
by = sin a2x +

p

4
b

y = cos ax -

p

2
b

y = -cos 1x - p2y = sin ax +

p

2
b

y = cos x

y = cos ax -

p

2
by = sin x

72. Motion of a Buoy A signal
buoy in the Chesapeake Bay bobs up
and down with the height h of its
transmitter (in feet) above sea level
modeled by sin . During
a small squall its height varies from 
1 ft to 9 ft and there are 3.5 sec from
one 9-ft height to the next. What are
the values of the constants a and b?

73. Ferris Wheel A Ferris wheel 50 ft in diameter makes one
revolution every 40 sec. If the center of the wheel is 30 ft above
the ground, how long after reaching the low point is a rider 
50 ft above the ground?

74. Tsunami Wave An earthquake occurred at 9:40 A.M. on
Nov. 1, 1755, at Lisbon, Portugal, and started a tsunami (often
called a tidal wave) in the ocean. It produced waves that traveled
more than 540 ft/sec (370 mph) and reached a height of 60 ft.
If the period of the waves was 30 min or 1800 sec, estimate the
length L between the crests.

bt + 5h = a

358 CHAPTER 4 Trigonometric Functions

[0, 6.28] by [–4, 4] [–0.5, 5.78] by [–4, 4]

71. Points of Intersection Graph and
cos x for x in the interval .

(a) How many points of intersection do there appear to be?

(b) Find the coordinates of each point of intersection.

3-1, 84y = 1.3-x
y = 1.3-x

75. Ebb and Flow On a particular Labor Day, the high tide
in Southern California occurs at 7:12 A.M. At that time you
measure the water at the end of the Santa Monica Pier to be 
11 ft deep. At 1:24 P.M. it is low tide, and you measure the water
to be only 7 ft deep. Assume the depth of the water is a sinu-
soidal function of time with a period of 1/2 a lunar day, which
is about 12 hr 24 min.

(a) At what time on that Labor Day does the first low tide 
occur?

(b) What was the approximate depth of the water at 4:00 A.M.
and at 9:00 P.M.?

(c) What is the first time on that Labor Day that the water is 
9 ft deep?

76. Blood Pressure The function

models the blood pressure (in millimeters of mercury) for a
person who has a (high) blood pressure of 150/90; t represents
seconds.

(a) What is the period of this function?

(b) How many heartbeats are there each minute?

(c) Graph this function to model a 10-sec time interval.

77. Bouncing Block A block mounted on a spring is set
into motion directly above a motion detector, which registers
the distance to the block at intervals of 0.1 second. When the

P = 120 + 30 sin 2pt

h

L

Sea level

Building
on shore
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block is released, it is 7.2 cm above the motion detector. The
table below shows the data collected by the motion detector
during the first two seconds, with distance d measured in 
centimeters:

(a) Make a scatter plot of d as a function of t and estimate the
maximum d visually. Use this number and the given mini-
mum (7.2) to compute the amplitude of the block’s motion.

(b) Estimate the period of the block’s motion visually from the
scatter plot.

(c) Model the motion of the block as a sinusoidal function .

(d) Graph your function with the scatter plot to support your
model graphically.

d1t2

Model the temperature T as a sinusoidal function of time, using
20 as the minimum value and 68 as the maximum value. Sup-
port your answer graphically by graphing your function with a
scatter plot.

Standardized Test Questions
81. True or False The graph of has half the 

period of the graph of . Justify your answer.

82. True or False Every sinusoid can be written as
for some real numbers A, B, and C. 

Justify your answer.

You may use a graphing calculator when answering these questions.

83. Multiple Choice A sinusoid with amplitude 4 has a min-
imum value of 5. Its maximum value is

(A) 7. (B) 9. (C) 11.

(D) 13. (E) 15.

84. Multiple Choice The graph of is a sinusoid
with period 45 passing through the point (6, 0). Which of the
following can be determined from the given information?

I. II. III.

(A) I only (B) II only

(C) I and III only (D) II and III only

(E) I, II, and III only

85. Multiple Choice The period of the function
is

(A) . (B) . (C) .

(D) . (E) .

86. Multiple Choice The number of solutions to the equa-
tion sin in the interval is

(A) 1000. (B) 2000. (C) 4000.

(D) 6000. (E) 8000.

Explorations
87. Approximating Cosine

(a) Draw a scatter plot for the 17 special angles x,
where .

(b) Find a quartic regression for the data.

(c) Compare the approximation to the cosine function given
by the quartic regression with the Taylor polynomial 
approximations given in Exercise 80 of Section 4.3.

88. Approximating Sine

(a) Draw a scatter plot for the 17 special angles x,
where .

(b) Find a cubic regression for the data.

(c) Compare the approximation to the sine function given by
the cubic regression with the Taylor polynomial approxi-
mations given in Exercise 79 of Section 4.3.

-p … x … p

1x, sin x2

-p … x … p

1x, cos x2

30, 2p412000x2 = 3/7

420/p210/p

p/210p/420p/840

ƒ1x2 = 210 sin 1420x + 8402

ƒ1962ƒ162ƒ102

y = ƒ1x2

y = A cos 1Bx + C2
y = sin 4x

y = sin 2x
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(a) If the turntable is 25.4 cm in diameter, find the amplitude
of the arrow’s motion.

(b) Find the period of the arrow’s motion by analyzing the data.

(c) Model the motion of the arrow as a sinusoidal function .

(d) Graph your function with a scatter plot to support your
model graphically.

79. Temperature Data The normal monthly Fahrenheit
temperatures in Albuquerque, NM, are shown in the table 
below (month 1 Jan, month 2 Feb, etc.):==

d1t2

78. LP Turntable A suction-cup-tipped arrow is secured
vertically to the outer edge of a turntable designed for playing
LP phonograph records (ask your parents). A motion detector
is situated 60 cm away. The turntable is switched on and a mo-
tion detector measures the distance to the arrow as it revolves
around the turntable. The table below shows the distance d as a
function of time during the first 4 seconds.

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
d 9.2 13.9 18.8 21.4 20.0 15.6 10.5 7.4 8.1 12.1

t 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
d 17.3 20.8 20.8 17.2 12.0 8.1 7.5 10.5 15.6 19.9

t 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
d 63.5 71.6 79.8 84.7 84.7 79.8 71.6 63.5 60.0 63.5

t 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
d 71.6 79.8 84.7 84.7 79.8 71.6 63.5 60.0 63.5 71.6

Model the temperature T as a sinusoidal function of time, using
36 as the minimum value and 79 as the maximum value. Sup-
port your answer graphically by graphing your function with a
scatter plot.

80. Temperature Data The normal monthly Fahrenheit
temperatures in Helena, MT, are shown in the table below
(month 1 Jan, month 2 Feb, etc.):==

Month 1 2 3 4 5 6 7 8 9 10 11 12
Temp 36 41 48 56 65 75 79 76 69 57 44 36

Source: National Climatic Data Center, as reported in The World 
Almanac and Book of Facts 2009.

Month 1 2 3 4 5 6 7 8 9 10 11 12
Temp 20 26 35 44 53 61 68 67 56 45 31 21

Source: National Climatic Data Center, as reported in The World
Almanac and Book of Facts 2009.
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89. Visualizing a Musical Note A piano tuner strikes a
tuning fork for the note middle C and creates a sound wave that
can be modeled by

where t is the time in seconds.

(a) What is the period p of this function?

(b) What is the frequency of this note?

(c) Graph the function.

90. Writing to Learn In a certain video game a cursor
bounces back and forth horizontally across the screen at a 
constant rate. Its distance d from the center of the screen varies
with time t and hence can be described as a function of t. 
Explain why this horizontal distance d from the center of the
screen does not vary according to an equation 
where t represents seconds. You may find it helpful to include 
a graph in your explanation.

91. Group Activity Using only integer values of a and b be-
tween 1 and 9 inclusive, look at graphs of functions of the form

for various values of a and b. (A group can look at more graphs
at a time than one person can.)

(a) Some values of a and b result in the graph of .
Find a general rule for such values of a and b.

(b) Some values of a and b result in the graph of .
Find a general rule for such values of a and b.

(c) Can you guess which values of a and b will result in the
graph of for an arbitrary integer k?

92. Group Activity Using only integer values of a and b be-
tween 1 and 9 inclusive, look at graphs of functions of the form

for various values of a and b. (A group can look at more graphs
at a time than one person can.)

(a) Some values of a and b result in the graph of .
Find a general rule for such values of a and b.

(b) Some values of a and b result in the graph of .
Find a general rule for such values of a and b.

(c) Can you guess which values of a and b will result in the
graph of for an arbitrary integer k?y = cos kx

y = cos 2x

y = cos x

y = cos 1ax2 cos 1bx2 + sin 1ax2 sin 1bx2

y = sin kx

y = sin 2x

y = sin x

y = sin 1ax2 cos 1bx2 - cos 1ax2 sin 1bx2

d = a sin bt,

ƒ = 1/p

y = 1.5 sin 524pt,

Extending the Ideas
In Exercises 93–96, the graphs of the sine and cosine functions are
waveforms like the figure below. By correctly labeling the coordinates
of points A, B, and C, you will get the graph of the function given.

360 CHAPTER 4 Trigonometric Functions

x
A C

B

93. Find B and C.

94. and Find B and C.

95. and Find B and C.

96. , and A is the first x-intercept on the right
of the y-axis. Find A, B, and C.

97. The Ultimate Sinusoidal Equation It is an inter-
esting fact that any sinusoid can be written in the form

where both a and b are positive numbers.

(a) Explain why you can assume b is positive. Hint: Replace
b by and simplify.

(b) Use one of the horizontal translation identities to prove that
the equation

has the same graph as

for a correctly chosen value of H. Explain how to choose H.

(c) Give a unit circle argument for the identity 
. Support your unit circle argument graphically.

(d) Use the identity from (c) to prove that

has the same graph as

for a correctly chosen value of H. Explain how to choose H.

(e) Combine your results from (a)–(d) to prove that any sinu-
soid can be represented by the equation

where a and b are both positive.

y = a sin 3b1x - H24 + k

y = a sin 3b1x - H24 + k, a 7 0

y = -a sin 3b1x - h24 + k, a 7 0,

-sin u
sin 1u + p2 =

y = a sin 3b1x - H24 + k

y = a cos 3b1x - h24 + k

4-B
3

y = a sin 3b1x - H24 + k,

y = 3 sin 12x - p2
A = a p

12
, 0b .y = 2 sin a3x -

p

4
b

A = ap
4

, 0b .y = 4.5 sin ax -

p

4
b

y = 3 cos 2x and A = a -  

p

4
, 0b .
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The Tangent Function
The graph of the tangent function is shown below. As with the sine and cosine graphs,
this graph tells us quite a bit about the function’s properties. Here is a summary of
tangent facts:

What you’ll learn about
• The Tangent Function
• The Cotangent Function
• The Secant Function
• The Cosecant Function

... and why
This will give us functions for the
remaining trigonometric ratios.

4.5 Graphs of Tangent, Cotangent,
Secant, and Cosecant

Domain: All reals except odd multiples of 
Range: All reals
Continuous (i.e., continuous on its domain)
Increasing on each interval in its domain
Symmetric with respect to the origin (odd)
Not bounded above or below
No local extrema
No horizontal asymptotes
Vertical asymptotes: for all odd integers k
End behavior: tan x and tan x do not exist. (The function values

continually oscillate between and and approach no limit.)q- q

 lim
x: q

 lim
x: -q

x = k # 1p/22

p/2
ƒ1x2 = tan x

FIGURE 4.44A

by [–4, 4]3 π /2]/2, [–3π

THE TANGENT FUNCTION

We now analyze why the graph of behaves the way it does. It follows
from the definitions of the trigonometric functions (Section 4.2) that

.

Unlike the sinusoids, the tangent function has a denominator that might be zero, which
makes the function undefined. Not only does this actually happen, but it happens an in-
finite number of times: at all the values of x for which . That is why the tan-
gent function has vertical asymptotes at those values (Figure 4.45). The zeros of the
tangent function are the same as the zeros of the sine function: all the integer multiples
of (Figure 4.46).

Because sin x and cos x are both periodic with period , you might expect the period
of the tangent function to be also. The graph shows, however, that it is .

The constants a, b, h, and k influence the behavior of in
much the same way that they do for the graph of . The con-
stant a yields a vertical stretch or shrink, b affects the period, h causes a horizontal
translation, and k causes a vertical translation. The terms amplitude and phase shift,
however, are not used, as they apply only to sinusoids.

y = a sin 1b1x - h22 + k
y = a tan 1b1x - h22 + k

p2p
2p

p

cos x = 0

tan x =

sin x
cos x

ƒ1x2 = tan x

3
2

–3

y

x
–2 π π

FIGURE 4.45 The tangent function has
asymptotes at the zeros of cosine.

3
2
1

–3

y

x
–2 π π

FIGURE 4.46 The tangent function has
zeros at the zeros of sine.
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362 CHAPTER 4 Trigonometric Functions

The other three trigonometric functions (cotangent, secant, and cosecant) are recipro-
cals of tangent, cosine, and sine, respectively. (This is the reason that you probably do
not have buttons for them on your calculators.) As functions they are certainly interest-
ing, but as basic functions they are unnecessary—we can do our trigonometric model-
ing and equation solving with the other three. Nonetheless, we give each of them a brief
section of its own in this book.

The Cotangent Function
The cotangent function is the reciprocal of the tangent function. Thus,

The graph of will have asymptotes at the zeros of the sine function (Figure 4.48)
and zeros at the zeros of the cosine function (Figure 4.49).

y = cot x

cot x =

cos x

sin x
.

EXAMPLE 1  Graphing a Tangent Function
Describe the graph of the function in terms of a basic trigonometric
function. Locate the vertical asymptotes and graph four periods of the function.

SOLUTION The effect of the 2 is a horizontal shrink of the graph of by a
factor of 1/2, while the effect of the is a reflection across the x-axis. Since the ver-
tical asymptotes of are all odd multiples of the shrink factor causes the
vertical asymptotes of to be all odd multiples of (Figure 4.47a). The
reflection across the x-axis (Figure 4.47b) does not change the asymptotes.

Since the period of the function is , the period of the function 
is (thanks again to the shrink factor) Thus, any window of horizontal length 
will show four periods of the graph. Figure 4.47b uses the window by

Now try Exercise 5.3-4, 44. 3-p, p4 2pp/2.
y = -  tan 2xpy = tan x

p/4y = tan 2x
p/2,y = tan x

-1
y = tan x

y = - tan 2x

(a)

by [–4, 4]π ],[–π

(b)

by [–4, 4]π ],[–π

FIGURE 4.47 The graph of (a) 
is reflected across the x-axis to produce the 
graph of (b) . (Example 1)y = - tan 2x

y = tan 2x

3
2
1

–3

y

x
–2 π

FIGURE 4.48 The cotangent has 
asymptotes at the zeros of the sine function.

3
2

–3

y

x
2 π–2 π

FIGURE 4.49 The cotangent has 
zeros at the zeros of the cosine function.

EXAMPLE 2  Graphing a Cotangent Function
Describe the graph of in terms of a basic trigonometric func-
tion. Locate the vertical asymptotes and graph two periods.

SOLUTION The graph is obtained from the graph of by effecting a hori-
zontal stretch by a factor of 2, a vertical stretch by a factor of 3, and a vertical trans-
lation up 1 unit. The horizontal stretch makes the period of the function (twice
the period of ), and the asymptotes are at the even multiples of . Figure
4.50 shows two periods of the graph of ƒ. Now try Exercise 9.

py = cot x
2p

y = cot x

ƒ1x2 = 3 cot 1x/22 + 1
Cotangent on the Calculator
If your calculator does not have a “cotan” button,
you can use the fact that cotangent and tangent are
reciprocals. For example, the function in Exam-
ple 2 can be entered in a calculator as 

or as .
Remember that it cannot be entered as 

. (The exponent in that posi-
tion represents a function inverse, not a reciprocal.)

-13 tan-1 1x/22 + 1
y =

y = 31tan1x/222-1
+ 13/tan 1x/22 + 1

y =
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The Secant Function
Important characteristics of the secant function can be inferred from the fact that it is
the reciprocal of the cosine function.

Whenever cos , its reciprocal sec x is also 1. The graph of the secant function has
asymptotes at the zeros of the cosine function. The period of the secant function is ,
the same as its reciprocal, the cosine function.

The graph of is shown with the graph of in Figure 4.51. A local
maximum of corresponds to a local minimum of , while a local
minimum of corresponds to a local maximum of .y = sec xy = cos x

y = sec xy = cos x
y = cos xy = sec x

2p
x = 1

SECTION 4.5 Graphs of Tangent, Cotangent, Secant, and Cosecant 363

by [–10, 10]2 π ],[–2π

FIGURE 4.50 Two periods of 
. (Example 2)ƒ1x2 = 3 cot 1x/22 + 1

[–6.5, 6.5] by [–3, 3]

FIGURE 4.52 The graphs of 
and . (Exploration 1)y = -2 cos x

y = sec x

3
2

–1
–2
–3

y

x
2 π–2 π π

FIGURE 4.51 Characteristics of the 
secant function are inferred from the fact that
it is the reciprocal of the cosine function.

EXAMPLE 3  Solving a Trigonometric Equation Algebraically
Find the value of x between and that solves 

SOLUTION We construct a reference triangle in the third quadrant that has the ap-
propriate ratio, hyp/adj, equal to . This is most easily accomplished by choosing
an x-coordinate of and a hypotenuse of 2 (Figure 4.53a). We recognize this as a
30°–60°–90° triangle that determines an angle of 240°, which converts to radi-
ans (Figure 4.53b).

Therefore the answer is 

Now try Exercise 29.

4p/3.

4p/3
-1

-2

sec x = -2.3p/2p

(a)

–1

2

y

x
240°

(b)

y

x

FIGURE 4.53 A reference triangle in the third quadrant (a) with deter-
mines an angle (b) of 240 degrees, which converts to radians. (Example 3)4p/3

hyp/adj = -2

EXPLORATION 1 Proving a Graphical Hunch

Figure 4.52 shows that the graphs of and never seem to

intersect.

If we stretch the reflected cosine graph vertically by a large enough number,

will it continue to miss the secant graph? Or is there a large enough (positive)

value of k so that the graph of does intersect the graph of

?

1. Try a few other values of k in your calculator. Do the graphs intersect?

2. Your exploration should lead you to conjecture that the graphs of 
and will never intersect for any positive value of k. Verify this 
conjecture by proving algebraically that the equation

has no real solutions when k is a positive number.

-k cos x = sec x

y = -k cos x
y = sec x

y = -k cos x

y = sec x

y = -2 cos xy = sec x
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364 CHAPTER 4 Trigonometric Functions

The Cosecant Function
Important characteristics of the cosecant function can be inferred from the fact that it is
the reciprocal of the sine function.

Whenever sin , its reciprocal csc x is also 1. The graph of the cosecant function
has asymptotes at the zeros of the sine function. The period of the cosecant function is

the same as its reciprocal, the sine function.

The graph of is shown with the graph of in Figure 4.54. A local
maximum of corresponds to a local minimum of , while a local
minimum of corresponds to a local maximum of .y = csc xy = sin x

y = csc xy = sin x
y = sin xy = csc x

2p,

x = 1

3
2
1

–3

y

x
–2 π

FIGURE 4.54 Characteristics of the cosecant function are inferred from the fact that it is the
reciprocal of the sine function.

EXAMPLE 4  Solving a Trigonometric Equation Graphically
Find the smallest positive number x such that 

SOLUTION There is no algebraic attack that looks hopeful, so we solve this equa-
tion graphically. The intersection point of the graphs of and that
has the smallest positive x-coordinate is shown in Figure 4.55. We use the grapher to
determine that 

Now try Exercise 39.

To close this section, we summarize the properties of the six basic trigonometric func-
tions in tabular form. The “n” that appears in several places should be understood as
taking on all possible integer values: .0, �1, �2, �3, Á

x L 1.068.

y = csc xy = x2

x2
= csc x.Are Cosecant Curves Parabolas?

Figure 4.55 shows a parabola intersecting 
one of the infinite number of U-shaped 
curves that make up the graph of the cosecant
function. In fact, the parabola intersects all
of those curves that lie above the x-axis, 
since the parabola must spread out to cover
the entire domain of , which is all 
real numbers! The cosecant curves do not 
keep spreading out, as they are hemmed in 
by asymptotes. That means that the 
U-shaped curves in the cosecant function 
are not parabolas.

y = x2

[–6.5, 6.5] by [–3, 3]

FIGURE 4.55 A graphical solution of a trigonometric equation. (Example 3)

Summary: Basic Trigonometric Functions

Function Period Domain Range Asymptotes Zeros Even/Odd

sin x All reals None Odd

cos x All reals None Even

tan x All reals Odd
cot x All reals Odd
sec x None Even

csc x None Oddx = np1- q , -1] ´ 31, q2x Z np2p

x = p/2 + np1- q , -1] ´ 31, q2x Z p/2 + np2p
p/2 + npx = npx Z npp

npx = p/2 + npx Z p/2 + npp

p/2 + np3-1, 142p

np3-1, 142p
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SECTION 4.5 Graphs of Tangent, Cotangent, Secant, and Cosecant 365

QUICK REVIEW 4.5 (For help, go to Sections 1.2, 2.6, and 4.3.)

SECTION 4.5 EXERCISES

In Exercises 1–4, identify the graph of each function. Use your under-
standing of transformations, not your graphing calculator.

1. Graphs of one period of csc x and 2 csc x are shown.

2. Graphs of two periods of 0.5 tan x and 5 tan x are shown.

10

4
2

y

6
8

x
π–π

y1
y2

10

4
2

–4

–10

y

6
8

–6
–8

x
π–π

y1

y2

10

4
2

–10

y

6
8

x
π–π

y1

y2

10

4

–10

y

6
8

–8

x
π–π

y1

y2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, state the period of the function.

1. 2.

3. 4.

In Exercises 5–8, find the zeros and vertical asymptotes of 
the function.

5. 6. y =

x + 5

x - 1
y =

x - 3

x + 4

y = cos 
1

2
 xy = sin 

1

3
 x

y = sin 3xy = cos 2x

7. 8.

In Exercises 9 and 10, tell whether the function is odd, even, or 
neither.

9. 10. y =

1
x

y = x2
+ 4

y =

x + 2

x1x - 32y =

x + 1

1x - 221x + 22

3. Graphs of csc x and 3 csc 2x are shown.

4. Graphs of cot x and are shown.

In Exercises 5–12, describe the graph of the function in terms of a basic
trigonometric function. Locate the vertical asymptotes and graph two
periods of the function.

5. 6.

7. 8.

9. 10.

11. 12. y = 3 sec 4xy = csc 1x/22
y = 3 tan 1x/22y = 2 cot 2x

y = csc 2xy = sec 3x

y = -cot 3xy = tan 2x

cot 1x - 0.52 + 3
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366 CHAPTER 4 Trigonometric Functions

39.

40.

41. Writing to Learn The figure shows a unit circle and 
an angle t whose terminal side is in Quadrant III.

(a) If the coordinates of point are explain why the
coordinates of point on the circle and the terminal side
of angle 

(b) Explain why 

(c) Find , and show that tan .

(d) Explain why the period of the tangent function is .

(e) Explain why the period of the cotangent function is .

42. Writing to Learn Explain why it is correct to say
is the slope of the terminal side of angle x in stan-

dard position. P is on the unit circle.

43. Periodic Functions Let ƒ be a periodic function with
period p. That is, p is the smallest positive number such that

for any value of x in the domain of ƒ. Show that the reciprocal
is periodic with period p.

44. Identities Use the unit circle to give a convincing argu-
ment for the identity.

(a)

(b)

(c) Use (a) and (b) to show that Explain
why this is not enough to conclude that the period of 
tangent is .p

tan 1t + p2 = tan t.

cos 1t + p2 = -cos t

sin 1t + p2 = -sin t

1/ƒ

ƒ1x + p2 = ƒ1x2

y = tan x

p

p

t = tan1t - p2tan 1t - p2
tan t =

b

a
.

t - p are 1-a, -b2.
P1

1a, b2,P2

0 … x … 2ptan x = 0.3,

0 … x … 2pcsc x = 2,

[?, ?] by [–10, 10]

(a)

[?, ?] by [–10, 10]

(b)

[?, ?] by [–10, 10]

(c)

[?, ?] by [–10, 10]

(d)

y

x
πt –

t

x2 + y2 = 1
P1(–a, –b)

P2(a, b)

y

xx

x

P(cos x, sin x)

In Exercises 13–16, match the trigonometric function with its graph.
Then give the Xmin and Xmax values for the viewing window in which
the graph is shown. Use your understanding of transformations, not
your graphing calculator.

13. 14.

15. 16.

In Exercises 17–20, analyze each function for domain, range, continuity,
increasing or decreasing behavior, symmetry, boundedness, extrema, 
asymptotes, and end behavior.

17. 18.

19. 20.

In Exercises 21–28, describe the transformations required to obtain the
graph of the given function from a basic trigonometric graph.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–34, solve for x in the given interval. You should be able
to find these numbers without a calculator, using reference triangles in
the proper quadrants.

29.

30.

31.

32.

33.

34.

In Exercises 35–40, use a calculator to solve for x in the given interval.

35. ,

36.

37.

38. p … x …

3p

2
csc x = -1.5,

3p

2
… x … 2pcot x = -0.6,

0 … x …

p

2
sec x = 2.4,

0 … x …

p

2
tan x = 1.3

-p … x … -p/2cot x = 1,

2p … x … 5p/2csc x = 1,

p … x … 3p/2sec x = - 12,

p/2 … x … pcot x = - 13,

p/2 … x … pcsc x = 2,

0 … x … p/2sec x = 2,

y = 2 tan px - 2y = - tan 
p

2
 x + 2

y = -2 sec 
1

2
 xy = -3 cot 

1

2
 x

y = 2 tan xy = 3 csc x

y = - tan xy = 3 tan x

ƒ1x2 = tan 1x/22ƒ1x2 = csc x

ƒ1x2 = sec xƒ1x2 = cot x

y = -csc xy = sec 2x

y = cot xy = -2 tan x
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45. Lighthouse Coverage The Bolivar Lighthouse is 
located on a small island 350 ft from the shore of the mainland
as shown in the figure.

(a) Express the distance d as a function of the angle x.

(b) If x is 1.55 rad, what is d?

46. Hot-Air Balloon A hot-air balloon over Albuquerque,
New Mexico, is being blown due east from point P and travel-
ing at a constant height of 800 ft. The angle y is formed by the
ground and the line of vision from P to the balloon. This angle
changes as the balloon travels.

(a) Express the horizontal distance x as a function of the angle
y.

(b) When the angle is rad, what is its horizontal distance
from 

(c) An angle of rad is equivalent to how many degrees?

In Exercises 47–50, find approximate solutions for the equation in the
interval 

47. 48.

49. 50.

Standardized Test Questions
51. True or False The function is increasing

on the interval . Justify your answer.

52. True or False If is an asymptote of the secant
function, then cot . Justify your answer.

You should answer these questions without using a calculator.

53. Multiple Choice The graph of can be ob-
tained by a horizontal shift of the graph of 

(A) tan x. (B) cot x. (C) sec x.

(D) tan x. (E) csc x.

--

y =

y = cot x

a = 0
x = a

1- q , q2
ƒ1x2 = tan x

4 cos x = tan xsec x = 5 cos x

sec x = cot x tan x = csc x

-p 6 x 6 p.

p/20

P?
p/20

54. Multiple Choice The graph of never inter-
sects the graph of 

(A) x. (B) . (C) csc x.

(D) cos x. (E) sin x.

55. Multiple Choice If what is the range of the func-
tion ?

(A) (B)

(C) (D) 

(E)

56. Multiple Choice The graph of has the same
set of asymptotes as the graph of 

(A) sin x. (B) tan x. (C) cot x.

(D) sec x. (E) csc 2x.

Explorations
In Exercises 57 and 58, graph both ƒ and g in the by 
viewing window. Estimate values in the interval for which

57.

58. and 

59. Writing to Learn Graph the function on
the interval . Explain why it is correct to say that ƒ is
increasing on the interval , but it is not correct to say that
ƒ is increasing on the interval .

60. Writing to Learn Graph functions and

simultaneously in the viewing window by .
Discuss whether you think functions ƒ and g are equivalent.

61. Write csc x as a horizontal translation of sec x.

62. Write cot x as the reflection about the x-axis of a horizontal
translation of tan x.

Extending the Ideas
63. Group Activity Television Coverage A televi-

sion camera is on a platform 30 m from the point on High
Street where the Worthington Memorial Day Parade will pass.
Express the distance d from the camera to a particular parade
float as a function of the angle x, and graph the function over
the interval -p/2 6 x 6 p/2.

3-10, 10430, p4
g1x2 =

1

x - 1p/22

ƒ1x2 = -sec x

1-p, p2
10, p2

1-p, p2
ƒ1x2 = -cot x

g1x2 = csc xƒ1x2 = - tan x

ƒ1x2 = 5 sin x and g1x2 = cot x

ƒ 7 g.
3-p, p4

3-10, 1043-p, p4

y =
y = csc x

1- q , -1/k4 ´ 31/k, q2
1- q , -k4 ´ 3k, q21- q , -k2 ´ 1k, q2
1-k, k23-k, k4

y = k csc x
k Z 0,

x2

y =
y = sec x

d
x

350 ft

P

800 ft

Wind
blowing
due east

y

x

H
ig

h 
St

re
et

Float

Camera

30 m

d

x
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368 CHAPTER 4 Trigonometric Functions

64. What’s in a Name? The word sine comes from the
Latin word sinus, which means “bay” or “cove.” It entered the
language through a mistake (variously attributed to Gerardo of
Cremona or Robert of Chester) in translating the Arabic word
“jiba” (chord) as if it were “jaib” (bay). This was due to the
fact that the Arabs abbreviated their technical terms, much as
we do today. Imagine someone unfamiliar with the technical
term “cosecant” trying to reconstruct the English word that is
abbreviated by “csc.” It might well enter their language as their
word for “cascade.”

The names for the other trigonometric functions can all be 
explained.

(a) Cosine means “sine of the complement.” Explain why this
is a logical name for cosine.

(b) In the figure below, BC is perpendicular to OC, which is a
radius of the unit circle. By a familiar geometry theorem,
BC is tangent to the circle. OB is part of a secant that inter-
sects the unit circle at A. It lies along the terminal side of
an angle of t radians in standard position. Write the coordi-
nates of A as functions of t.

(c) Use similar triangles to find length BC as a trig function of t.

(d) Use similar triangles to find length OB as a trig function of t.

(e) Use the results from parts (a), (c), and (d) to explain where
the names “tangent, cotangent, secant,” and “cosecant”
came from.

65. Capillary Action A film of liquid 
in a thin (capillary) tube has surface tension

(gamma) given by

g =

1

2
 hrgr sec f,

g

where h is the height of the liquid in the tube, (rho) is the
density of the liquid, is the acceleration due to
gravity, r is the radius of the tube, and (phi) is the angle of
contact between the tube and the liquid’s surface. Whole blood
has a surface tension of 0.058 N/m (newton per meter) and a
density of 1050 . Suppose that blood rises to a height of
1.5 m in a capillary blood vessel of radius . What
is the contact angle between the capillary vessel and the blood
surface? 

66. Advanced Curve Fitting A researcher has reason to
believe that the data in the table below can best be described by
an algebraic model involving the secant function:

Unfortunately, her calculator will do only sine regression. She
realizes that the following two facts will help her:

and

(a) Use these two facts to show that

(b) Store the x-values in the table in L1 in your calculator and
the y-values in L2. Store the reciprocals of the y-values in
L3. Then do a sine regression for L3 as a function of
L1 . Write the regression equation.

(c) Use the regression equation in (b) to determine the values
of a and b.

(d) Write the secant model: Does the curve fit
the scatter plot?1L1, L22

y = a sec 1bx2

1x2
11/y2

1
y

=

1
a

 sin abx +

p

2
b .

cos 1bx2 = sin abx +

p

2
b

1
y

=

1

a sec 1bx2 =

1
a

 cos 1bx2

y = a sec1bx2

31N = 11kg # m2/sec24
4.7 * 10 -6 m

kg/m3

f

g = 9.8 m/sec2
r

y

x

1

t

A

B

CO D x 1 2 3 4

y 5.0703 5.2912 5.6975 6.3622

x 5 6 7 8

y 7.4359 9.2541 12.716 21.255
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4.6 Graphs of Composite 
Trigonometric Functions

What you’ll learn about
• Combining Trigonometric 

and Algebraic Functions
• Sums and Differences of 

Sinusoids
• Damped Oscillation

... and why
Function composition extends
our ability to model periodic
phenomena like heartbeats 
and sound waves.

Combining Trigonometric and Algebraic 
Functions
A theme of this text has been “families of functions.” We have studied polynomial
functions, exponential functions, logarithmic functions, and rational functions (to
name a few), and in this chapter we have studied trigonometric functions. Now we
consider adding, multiplying, or composing trigonometric functions with functions
from these other families.

The notable property that distinguishes the trigonometric function from others we have
studied is periodicity. Example 1 shows that when a trigonometric function is com-
bined with a polynomial, the resulting function may or may not be periodic.

Exponent Notation
Example 3 introduces a shorthand notation for
powers of trigonometric functions: can
be written as . (Caution: This shorthand
notation will probably not be recognized by your
calculator.)

sinn u
1sin u2n

EXAMPLE 1  Combining the Sine Function with 
Graph each of the following functions for , adjusting the vertical
window as needed. Which of the functions appear to be periodic?

(a)

(b)

(c)

(d)

SOLUTION We show the graphs and their windows in Figure 4.56 on the next
page. Only the graph of exhibits periodic behavior in the interval

. (You can widen the window to see further graphical evidence that
this is indeed the only periodic function among the four.) Now try Exercise 5.
-2p … x … 2p

y = 1sin x22
y = sin 1x22
y = 1sin x22
y = x2 sin x

y = sin x + x2

-2p … x … 2p

x2

EXAMPLE 2  Verifying Periodicity Algebraically
Verify algebraically that is periodic and determine its period graphi-
cally.

SOLUTION We use the fact that the period of the basic sine function is that is,
for all x. It follows that

By periodicity of sine

So is also periodic, with some period that divides . The graph in Figure 4.56c
on the next page shows that the period is actually . Now try Exercise 9.p

2pƒ1x2
 = ƒ1x2
 = 1sin 1x222

 ƒ1x + 2p) = 1sin 1x + 2p222
sin 1x + 2p2 = sin 1x2 2p;

ƒ1x2 = 1sin x22
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Comparing the graphs of and over a single period (Figure 4.58),
we see that the two functions have the same zeros and extreme points, but otherwise the
graph of is closer to the x-axis than the graph of This is
because whenever y is between and 1. In fact, higher odd powers of sin x
yield graphs that are “sucked in” more and more, but always with the same zeros and
extreme points.

The absolute value of a periodic function is also a periodic function. We consider two
such functions in Example 4.

-1ƒy3
ƒ 6 ƒy ƒ

y = sin x.y = sin3 x

y = sin xy = sin3 x

370 CHAPTER 4 Trigonometric Functions

[–2�, 2�] by [–10, 20]

(a)

[–2�, 2�] by [–25, 25]

(b)

[–2�, 2�] by [–1.5, 1.5]

(c)

[–2�, 2�] by [–1.5, 1.5]

(d)

FIGURE 4.56 The graphs of the four
functions in Example 1. Only graph (c) 
exhibits periodic behavior over the interval

.-2p … x … 2p

EXAMPLE 3  Composing and 
Prove algebraically that is periodic and find the period graphically.
State the domain and range and sketch a graph showing two periods.

SOLUTION To prove that is periodic, we show that 
for all x.

Changing notation

By periodicity of sine

Changing notation

Thus is periodic with a period that divides . Graphing the function over the
interval (Figure 4.57), we see that the period must be .

Since both functions being composed have domain , the domain of ƒ is
also . Since cubing all numbers in the interval gives all numbers
in the interval , the range is (as supported by the graph).

Now try Exercise 13.
3-1, 143-1, 14 3-1, 141- q , q2 1- q , q2

2p… 2p-2p … x
2pƒ1x2

 = ƒ1x2
 = sin31x2
 = 1sin 1x223
 = 1sin 1x + 2p223

 ƒ1x + 2p2 = sin3 1x + 2p2
ƒ1x2 ƒ1x + 2p) =ƒ1x2 = sin3 x

ƒ1x2 = sin3 x

y = x3y = sin x

EXAMPLE 4  Analyzing Nonnegative Periodic Functions
Find the domain, range, and period of each of the following functions. Sketch a
graph showing four periods.

(a)

(b)

SOLUTION

(a) Whenever tan x is defined, so is Therefore, the domain of ƒ is the same as
the domain of the tangent function, that is, all real numbers except ,

. Because and the range of tan x is
the range of ƒ is . The period of ƒ, like that of is 

The graph of is shown in Figure 4.59.

(b) Whenever sin x is defined, so is Therefore, the domain of g is the same as the
domain of the sine function, that is, all real numbers. Because 
and the range of sin x is the range of g is 

The period of g is only half the period of , for reasons that are apparent
from viewing the graph. The negative sections of the sine curve below the x-axis are
reflected above the x-axis, where they become repetitions of the positive sections.
The graph of is shown in Figure 4.60 on the next page.

Now try Exercise 15.
y = g1x2

y = sin x

30, 14.3-1, 14 g1x2 = ƒsin x ƒ Ú 0
ƒsin x ƒ .

y = ƒ1x2 p.y = tan x,30, q21- q , q2, ƒ1x2 = ƒ tan x ƒ Ú 0n = 0, �1, Á

p/2 + np
ƒ tan x ƒ .

g1x2 = ƒsin x ƒ

ƒ1x2 = ƒ tan x ƒ
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When a sinusoid is added to a (nonconstant) linear function, the result is not periodic.
The graph repeats its shape at regular intervals, but the function takes on different val-
ues over those intervals. The graph will show a curve oscillating between two parallel
lines, as in Example 5.

SECTION 4.6 Graphs of Composite Trigonometric Functions 371

[0, 2∏] by [�1.5, 1.5]

FIGURE 4.58 The graph suggests
that .ƒsin3 x ƒ … ƒsin x ƒ

by [–1.5, 1.5]2 π ],[–2π

FIGURE 4.57 The graph of
. (Example 3)ƒ1x2 = sin3 x

by [–1.5, 5]2 π ],[–2π

FIGURE 4.59 has the
same period as . (Example 4a)y = tan x

ƒ1x2 = ƒ tan x ƒ

by [–1, 3]2 π ],[–2π

FIGURE 4.60 has half
the period of . (Example 4b)y = sin x

g1x2 = ƒsin x ƒ

by [–4, 4]2 π ],[–2π

FIGURE 4.61 The graph of
oscillates between the

lines and . 
Although the wave repeats its shape, it is
not periodic. (Example 5)

y = 0.5x -  1y = 0.5x + 1
ƒ1x2 = 0.5x + sin x

EXAMPLE 5  Adding a Sinusoid to a Linear Function
The graph of oscillates between two parallel lines (Figure
4.61). What are the equations of the two lines?

SOLUTION As sin x oscillates between and 1, oscillates between
and . Therefore, the two lines are and .

Graphing the two lines and in the same window provides graphical support. 
Of course, the graph should resemble Figure 4.61 if your lines are correct.

Now try Exercise 19.

ƒ1x2 y = 0.5x + 1y = 0.5x - 10.5x + 10.5x - 1
ƒ1x2-1

ƒ1x2 = 0.5x + sin x

Sums and Differences of Sinusoids
Section 4.4 introduced you to sinusoids, functions that can be written in the form

and therefore have the shape of a sine curve.

Sinusoids model a variety of physical and social phenomena—such as sound waves, volt-
age in alternating electrical current, the velocity of air flow during the human respiratory
cycle, and many others. Sometimes these phenomena interact in an additive fashion. For
example, if models the sound of one tuning fork and models the sound of a second
tuning fork, then models the sound when they are both struck simultaneously. So
we are interested in whether the sums and differences of sinusoids are again sinusoids.

y1 + y2

y2y1

y = a sin 1b1x - h22 + k

EXPLORATION 1 Investigating Sinusoids

Graph these functions, one at a time, in the viewing window by

. Which ones appear to be sinusoids?

What relationship between the sine and cosine functions ensures that their sum

or difference will again be a sinusoid? Check your guess on a graphing calculator

by constructing your own examples.

y = 3 cos 2x + 2 sin 7xy = cos a7x - 2

5
b + sin a7x

5
b

y = 2 sin 15x + 12 - 5 cos 5xy = 2 sin 3x - 4 cos 2x

y = 2 sin x - 3 cos xy = 3 sin x + 2 cos x

3-6, 64
3-2p, 2p4
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The rule turns out to be fairly simple: Sums and differences of sinusoids with the same
period are again sinusoids. We state this rule more explicitly as follows.

372 CHAPTER 4 Trigonometric Functions

Sums That Are Sinusoid Functions
If and , then

is a sinusoid with period 2p/ ƒb ƒ .

y1 + y2 = a1 sin 1b1x - h122 + a2 cos 1b1x - h222
y2 = a2 cos 1b1x - h222y1 = a1 sin 1b1x - h122

For the sum to be a sinusoid, the two sinusoids being added together must have the
same period, and the sum has the same period as both of them. Also, although the rule
is stated in terms of a sine function being added to a cosine function, the fact that every
cosine function is a translation of a sine function (and vice versa) makes the rule
equally applicable to the sum of two sine functions or the sum of two cosine functions.
If they have the same period, their sum is a sinusoid.

EXAMPLE 6  Identifying a Sinusoid
Determine whether each of the following functions is or is not a sinusoid.

(a)

(b)

(c)

(d)

SOLUTION

(a) Yes, since both functions in the sum have period .

(b) No, since cos 5x has period and sin 3x has period .

(c) No, since 2 cos 3x has period and 3 cos 2x has period .

(d) Yes, since all three functions in the sum have period . (The first two sum
to a sinusoid with the same period as the third, so adding the third function still
yields a sinusoid.) Now try Exercise 25.

14p/3

p2p/3

2p/32p/5

2p

ƒ1x2 = a cosa3x

7
b - b cosa3x

7
b + c sina3x

7
b

ƒ1x2 = 2 cos 3x - 3 cos 2x

ƒ1x2 = cos 5x + sin 3x

ƒ1x2 = 5 cos x + 3 sin x

EXAMPLE 7  Expressing the Sum of Sinusoids as a Sinusoid
Let . From the discussion above, you should conclude that

is a sinusoid.

(a) Find the period of ƒ.

(b) Estimate the amplitude and phase shift graphically (to the nearest hundredth).

(c) Give a sinusoid that approximates .

SOLUTION

(a) The period of ƒ is the same as the period of sin x and cos x, namely .

Solve Graphically
(b) We will learn an algebraic way to find the amplitude and phase shift in the next

chapter, but for now we will find this information graphically. Figure 4.62 sug-
gests that ƒ is indeed a sinusoid. That is, for some a and b,

2 sin x + 5 cos x = a sin 1x - h2.

2p

ƒ1x2a sin 1b1x - h22

ƒ1x2ƒ1x2 = 2 sin x + 5 cos x

by [–10, 10]2 π ],[–2π

–1.19

5.39

FIGURE 4.62 The sum of two sinusoids:
. (Example 7)ƒ1x2 = 2 sin x + 5 cos x
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The sum of two sinusoids with different periods, while not a sinusoid, will often be a
periodic function. Finding the period of a sum of periodic functions can be tricky. Here
is a useful fact to keep in mind. If ƒ is periodic, and if for all x in the
domain of ƒ, then the period of ƒ divides s exactly. In other words, s is either the period
or a multiple of the period.

ƒ1x + s2 = ƒ1x2

SECTION 4.6 Graphs of Composite Trigonometric Functions 373

The maximum value, rounded to the nearest hundredth, is 5.39, so the amplitude of 
ƒ is about 5.39. The x-intercept closest to , rounded to the nearest hundredth, 
is , so the phase shift of the sine function is about . We conclude that

(c) We support our answer graphically by showing that the graphs of 
and are virtually identical (Figure 4.63).

Now try Exercise 29.
y = 5.39 sin 1x + 1.192cos x

y = 2 sin x + 5

ƒ1x2 = a sin 1x + h2 L 5.39 sin 1x + 1.192.
-1.19-1.19

x = 0

by [–6, 6]2 π ],[–2π

FIGURE 4.63 The graphs of
and

appear to be 
identical. (Example 7)
y = 5.39 sin 1x + 1.192
y = 2 sin x + 5 cos x

EXAMPLE 8  Showing a Function Is Periodic 
but Not a Sinusoid

Show that is periodic but not a sinusoid. Graph one period.

SOLUTION Since sin 2x and cos 3x have different periods, the sum is not a sinu-
soid. Next we show that is a candidate for the period of ƒ, that is,

for all x.

This means either that is the period of ƒ or that the period is an exact divisor of
. Figure 4.64 suggests that the period is not smaller than , so it must be .

The graph shows that indeed ƒ is not a sinusoid. Now try Exercise 35.

2p2p2p
2p

 = ƒ1x2
 = sin 2x + cos 3x

 = sin 12x + 4p2 + cos 13x + 6p2
 ƒ1x + 2p2 = sin 121x + 2p22 + cos 131x + 2p22

ƒ1x + 2p2 = ƒ1x2 2p

ƒ1x2 = sin 2x + cos 3x

by [–2, 2]2 π ][0,

FIGURE 4.64 One period of
. (Example 8)ƒ1x2 = sin 2x + cos 3x

[–2�, 2�] by [–40, 40]

FIGURE 4.65 The graph of
shows damped

oscillation.
y = 1x2

+ 52 cos 6x

Damped Oscillation
Because the values of and cos bt oscillate between and 1, something interesting
happens when either of these functions is multiplied by another function. For example,
consider the function , graphed in Figure 4.65. The (blue) graph
of the function oscillates between the (red) graphs of and .
The “squeezing” effect that can be seen near the origin is called damping.

y = -1x2
+ 52y = x2

+ 5
y = 1x2

+ 52 cos 6x

-1sin bt

Damped Oscillation
The graph of cos bx (or oscillates between the
graphs of and . When this reduces the amplitude of the
wave, it is called damped oscillation. The factor is called the damping
factor.

ƒ1x2y = -ƒ1x2y = ƒ1x2 y = ƒ1x2 sin bx2y = ƒ1x2
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EXAMPLE 9  Identifying Damped Oscillation
For each of the following functions, determine if the graph shows damped oscilla-
tion. If it does, identify the damping factor and tell where the damping occurs.

(a)

(b)

(c)

SOLUTION The graphs are shown in Figure 4.66.

(a) This is damped oscillation. The damping factor is and the damping occurs as
.

(b) This wave has a constant amplitude of 3. No damping occurs.

(c) This is damped oscillation. The damping factor is . The damping occurs as
. Now try Exercise 43.x : 0

-2x

x : q

2-x

ƒ1x2 = -2x cos 2x

ƒ1x2 = 3 cos 2x

ƒ1x2 = 2-x sin 4x

[–�, �] by [–5, 5]

(a)

[–�, �] by [–5, 5]

(b)

[–2�, 2�] by [–12, 12]

(c)

FIGURE 4.66 The graphs of functions
(a), (b), and (c) in Example 9. The wave in
graph (b) does not exhibit damped oscillation.

EXAMPLE 10  A Damped Oscillating Spring
Dr. Sanchez’s physics class collected data for an air table glider that oscillates 
between two springs. The class determined from the data that the equation

modeled the displacement y of the spring from its original position as a function of
time t.

(a) Identify the damping factor and tell where the damping occurs.

(b) Approximately how long does it take for the spring to be damped so that

SOLUTION The graph is shown in Figure 4.67.

-0.1 … y … 0.1?

y = 0.22e-0.065t cos 2.4t

0.25

–0.25

y

t

Time

D
is

pl
ac

em
en

t

25

Dr. Sanchez’s Lab

FIGURE 4.67 Damped oscillation in the physics lab. (Example 10)

(a) The damping factor is . The damping occurs as 

(b) We want to find how soon the curve falls entirely be-
tween the lines and . By zooming in on the region indicated in
Figure 4.68a and using grapher methods, we find that it takes approximately
11.86 seconds until the graph of lies entirely between

and (Figure 4.68b). Now try Exercise 71.y = 0.1y = -0.1
y = 0.22e-0.065t cos 2.4t

y = 0.1y = -0.1
y = 0.22e-0.065t cos 2.4t

t : q .0.22e-0.065t
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[8, 25] by [–0.15, 0.15]

(a)

Y=–0.1

Y=0.1

Zoom in here
[11, 12.4] by [–0.11, –0.09]

(b)

X=11.85897   Y=–.1
Intersection

FIGURE 4.68 The damped oscillation in Example 10 eventually gets to be less
than 0.1 in either direction.

QUICK REVIEW 4.6 (For help, go to Sections 1.2 and 1.4.)

SECTION 4.6 EXERCISES

In Exercises 1–8, graph the function for , adjusting the
vertical window as needed. State whether or not the function appears to
be periodic.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–12, verify algebraically that the function is periodic and
determine its period graphically. Sketch a graph showing two periods.

9. 10.

11. 12.

In Exercises 13–18, state the domain and range of the function and
sketch a graph showing four periods.

13. 14.

15. 16.

17. 18.

The graph of each function in Exercises 19–22 oscillates between two
parallel lines, as in Example 5. Find the equations of the two lines and
graph the lines and the function in the same viewing window.

19. 20.

21. 22. y = 1 + x + cos 3xy = 2 - 0.3x + cos x

y = 1 - 0.5x + cos 2xy = 2x + cos x

y = -sin2 xy = - tan2 x

y = cos ƒx ƒy = ƒcot x ƒ

y = ƒcos x ƒy = cos2 x

ƒ1x2 = ƒcos3 x ƒƒ1x2 = 2cos2 x

ƒ1x2 = cos3 xƒ1x2 = cos2 x

ƒ1x2 = 12 cos x - 422ƒ1x2 = 1sin x + 123
ƒ1x2 = x2 cos xƒ1x2 = x cos x

ƒ1x2 = x2
- 2 cos xƒ1x2 = x2

+ 2 sin x

ƒ1x2 = 11.5 cos x22ƒ1x2 = 1sin x22

-2p … x … 2p In Exercises 23–28, determine whether is a sinusoid.

23.

24.

25.

26.

27.

28.

In Exercises 29–34, find a, b, and h so that .

29.

30.

31.

32.

33.

34.

In Exercises 35–38, the function is periodic but not a sinusoid. Find the
period graphically and sketch a graph showing one period.

35.

36.

37.

38. y = sin 2x + sin 5x

y = cos 3x - 4 sin 2x

y = 2 sin 2x + cos 3x

y = 2 cos x + cos 3x

ƒ1x2 = 3 sin 2x - cos 2x

ƒ1x2 = 2 cos x + sin x

ƒ1x2 = cos 2px + 3 sin 2px

ƒ1x2 = sin px - 2 cos px

ƒ1x2 = cos 3x + 2 sin 3x

ƒ1x2 = 2 sin 2x - 3 cos 2x

ƒ1x2 L a sin 1b1x - h22
ƒ1x2 = p sin 3x - 4p sin 2x

ƒ1x2 = 3 sin 2x - 5 cos x

ƒ1x2 = 2 sin x - tan x

ƒ1x2 = 2 cos px + sin px

ƒ1x2 = 4 cos x + 2 sin x

ƒ1x2 = sin x - 3 cos x

ƒ1x2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, state the domain and range of the function.

1. 2.

3. 4.

5. 6. ƒ1x2 = ƒx + 2 ƒ + 1ƒ1x2 = ƒx ƒ - 2

ƒ1x2 = 1xƒ1x2 = 1x - 1

ƒ1x2 = -2 cos 3xƒ1x2 = 3 sin 2x

In Exercises 7 and 8, describe the end behavior of the function, that
is, the behavior as .

7. 8.

In Exercises 9 and 10, form the compositions and . State
the domain of each function.

9. and 

10. and g1x2 = cos xƒ1x2 = x2

g1x2 = 1xƒ1x2 = x2
- 4

g � fƒ � g

ƒ1x2 = -0.215-0.1x2ƒ1x2 = 5e-2x

ƒx ƒ : q
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In Exercises 39–42, match the function with its graph.

376 CHAPTER 4 Trigonometric Functions

67. 68.

69. 70.

71. Oscillating Spring The oscillations of a spring subject
to friction are modeled by the equation 

(a) Graph y and its two damping curves in the same viewing
window for .

(b) Approximately how long does it take for the spring to be
damped so that ?

72. Predicting Economic Growth
The business manager of a small manu-
facturing company finds that she can
model the company’s annual growth as
roughly exponential, but with cyclical
fluctuations. She uses the function

to 
estimate sales (in millions of dollars), 
t years after 2005.

(a) What are the company’s sales in 2005?

(b) What is the approximate annual growth rate?

(c) What does the model predict for sales in 2013?

(d) How many years are in each economic cycle for this com-
pany?

73. Writing to Learn Example 3 shows that the function
is periodic. Explain whether you think that 

is periodic and why.

74. Writing to Learn Example 4 shows that is
periodic. Write a convincing argument that is not a
periodic function.

In Exercises 75 and 76, select the one correct inequality, (a) or (b).
Give a convincing argument.

75. (a) for all x.

(b) for all x.

76. (a) for all x.

(b) for all x.

In Exercises 77–80, match the function with its graph. In each case
state the viewing window.

- ƒx ƒ … x sin x … ƒx ƒ

-x … x sin x … x

x - sin x … x + sin x

x - 1 … x + sin x … x + 1

y = tan ƒx ƒ

y = ƒ tan x ƒ

y = sin x3y = sin3 x

S1t2 = 7511.042t + 4 sin 1pt/32

-0.2 … y … 0.2

0 … t … 12

y = 0.43e-0.55t cos 1.8t.

ƒ1x2 = 1cos xƒ1x2 = 2 ƒsin x ƒ

ƒ1x2 = sin ƒx ƒƒ1x2 = 1sin x

(a)

by [–6, 6]2 π ],[–2π

(b)

by [–6, 6]2 π ],[–2π

(c)

by [–6, 6]2 π ],[–2π

(d)

by [–6, 6]2 π ],[–2π

39.

40.

41.

42.

In Exercises 43–48, tell whether the function exhibits damped oscilla-
tion. If so, identify the damping factor and tell whether the damping 
occurs as or as .

43. 44.

45. 46.

47. 48.

In Exercises 49–52, graph both ƒ and plus or minus its damping factor
in the same viewing window. Describe the behavior of the function ƒ
for . What is the end behavior of ƒ?

49. 50.

51. 52.

In Exercises 53–56, find the period and graph the function over two 
periods.

53.

54.

55.

56.

In Exercises 57–62, graph ƒ over the interval . Determine
whether the function is periodic and, if it is, state the period.

57. 58.

59. 60.

61. 62.

In Exercises 63–70, find the domain and range of the function.

63. 64.

65. 66. ƒ1x2 = -2x + ƒ3 sin x ƒƒ1x2 = ƒx ƒ + cos x

ƒ1x2 = 2 - x + sin xƒ1x2 = 2x + cos x

ƒ1x2 = 3 - x + sin 3xƒ1x2 =

1

2
 x + cos 2x

ƒ1x2 = x + sin 2xƒ1x2 = x - cos x

ƒ1x2 = 3x + 4 sin 2xƒ1x2 = ` sin 
1

2
 x ` + 2

3-4p, 4p4
y = 3 cos 12x - 12 - 4 sin 13x - 22
y = 2 sin 13x + 12 - cos 15x - 12
y = 4 cos 2x - 2 cos 13x - 12
y = sin 3x + 2 cos 2x

ƒ1x2 = e-x cos 3xƒ1x2 = x -1 sin 3x

ƒ1x2 = 2-x sin 4xƒ1x2 = 1.2-x cos 2x

x 7 0

ƒ1x2 = a2

3
bx

 sina2x

3
bƒ1x2 = x3 sin 5x

ƒ1x2 = p2 cos pxƒ1x2 = 15 cos 1.2x

ƒ1x2 = x sin 4xƒ1x2 = e-x sin 3x

x : qx : 0

y = sin x - 4 sin 2x

y = 3 cos 2x + cos 3x

y = 2 sin 5x - 3 cos 2x

y = 2 cos x - 3 sin 2x

(a) (b)

(c) (d)

77.

78. y = cos x - sin 2x - cos 3x + sin 4x - cos 5x

y = cos x - sin 2x - cos 3x + sin 4x
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79.

80.

Standardized Test Questions
81. True or False The function is periodic.

Justify your answer.

82. True or False The sum of two sinusoids is a sinusoid.
Justify your answer.

You may use a graphing calculator when answering these questions.

83. Multiple Choice What is the period of the function
?

(A) (B) (C)

(D) (E) None; the function is not periodic.

84. Multiple Choice The function is

(A) discontinuous. (B) bounded. (C) even.

(D) one-to-one. (E) periodic.

85. Multiple Choice The function is

(A) discontinuous. (B) bounded. (C) even.

(D) odd. (E) periodic.

86. Multiple Choice Which of the following functions is not
a sinusoid?

(A) (B)

(C) (D)

(E)

Explorations
87. Group Activity Inaccurate or Misleading

Graphs

(a) Set and . Move the cursor along
the x-axis. What is the distance between one pixel and the
next (to the nearest hundredth)?

(b) What is the period of ? Consider that the
period is the length of one full cycle of the graph. Approxi-
mately how many cycles should there be between two ad-
jacent pixels? Can your grapher produce an accurate graph
of this function between 0 and ?2p

ƒ1x2 = sin 250x

Xmax = 2pXmin = 0

sin 13x + 32 + cos 13x + 22
3 sin 13x2 + 2 cos 12x23 sin 12x2 + 2 cos 12x2
3 sin 12x22 cos 12x2

ƒ1x2 = x + sin x

ƒ1x2 = x sin x

3p

2ppp/2

ƒ1x2 = ƒsin x ƒ

ƒ1x2 = sin ƒx ƒ

y = sin x - cos x - cos 2x - cos 3x

y = sin x + cos x - cos 2x - sin 3x
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88. Group Activity Length of Days The graph shows
the number of hours of daylight in Boston as a function of the
day of the year, from September 21, 1983, to December 15,
1984. Key points are labeled and other critical information is
provided. Write a formula for the sinusoidal function and
check it by graphing.

0

8

10

12

14

16

100 200
Day of the year

Mean day
length

12 hr 11 min

Summer solstice
maximum of 15 hr 17 min

June 22, 1984

Autumnal equinoxVernal
equinox

March 20
(day 80)

Winter solstice
minimum of 9 hr 5 min

December 22, 1983

H
ou

rs
 o

f 
da

yl
ig

ht

300
x

y

Extending the Ideas
In Exercises 89–96, first try to predict what the graph will look like
(without too much effort, that is, just for fun). Then graph the function
in one or more viewing windows to determine the main features of the
graph, and draw a summary sketch. Where applicable, name the period,
amplitude, domain, range, asymptotes, and zeros.

89. 90.

91. 92.

93. 94.

95. 96. g1x2 = x2 sin 
1
x

ƒ1x2 = x sin 
1
x

g1x2 =

sin x

x2
ƒ1x2 =

sin x
x

g1x2 = sin px + 24 - x2ƒ1x2 = 1x sin x

g1x2 = etan xƒ1x2 = cos ex
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4.7 Inverse Trigonometric 
Functions

Inverse Sine Function
You learned in Section 1.4 that each function has an inverse relation, and that this in-
verse relation is a function only if the original function is one-to-one. The six basic
trigonometric functions, being periodic, fail the horizontal line test for one-to-oneness
rather spectacularly. However, you also learned in Section 1.4 that some functions are
important enough that we want to study their inverse behavior despite the fact that
they are not one-to-one. We do this by restricting the domain of the original function
to an interval on which it is one-to-one, then finding the inverse of the restricted func-
tion. (We did this when defining the square root function, which is the inverse of the
function restricted to a nonnegative domain.)

If you restrict the domain of to the interval , as shown in Figure
4.69a, the restricted function is one-to-one. The inverse sine function is
the inverse of this restricted portion of the sine function (Figure 4.69b).

y = sin-1 x
3-p/2, p/24y = sin x

y = x2

What you’ll learn about
• Inverse Sine Function
• Inverse Cosine and Tangent 

Functions
• Composing Trigonometric 

and Inverse Trigonometric 
Functions

• Applications of Inverse 
Trigonometric Functions

... and why
Inverse trig functions can be used
to solve trigonometric equations.

[–2, 2] by [–1.2, 1.2]

(a)

�
2– �

2

1

–1
[–1.5, 1.5] by [–1.7, 1.7]

(b)

�
2–

�
2

1–1

FIGURE 4.69 The (a) restriction of is one-to-one and (b) has an inverse,
.y = sin-1 x

y = sin x

By the usual inverse relationship, the statements

and

are equivalent for y-values in the restricted domain and x-values in .
This means that can be thought of as the angle between and whose
sine is x. Since angles and directed arcs on the unit circle have the same measure, the
angle is also called the arcsine of x.sin -1 x

p/2-p/2sin-1 x
3-1, 143-p/2, p/24

x = sin yy = sin-1 x

It helps to think of the range of as being along the right-hand side of the
unit circle, which is traced out as angles range from (Figure 4.70).-p/2 to p/2

y = sin-1 x

y

x

π–
2

π
2

FIGURE 4.70 The values of 
will always be found on the right-hand side of
the unit circle, between and .p/2-p/2

y = sin-1 x

Inverse Sine Function (Arcsine Function)
The unique angle y in the interval such that is the
inverse sine (or arcsine) of x, denoted or arcsin x.

The domain of is and the range is .3-p/2, p/243-1, 14y = sin-1 x

sin -1 x
sin  y = x3-p/2, p/24
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SECTION 4.7 Inverse Trigonometric Functions 379

EXAMPLE 1  Evaluating without a Calculator
Find the exact value of each expression without a calculator.

(a) (b) (c)

(d) (e)

SOLUTION

(a) Find the point on the right half of the unit circle whose y-coordinate is and
draw a reference triangle (Figure 4.71). We recognize this as one of our special
ratios, and the angle in the interval whose sine is is . 
Therefore

(b) Find the point on the right half of the unit circle whose y-coordinate is 
and draw a reference triangle (Figure 4.72). We recognize this as one of our spe-
cial ratios, and the angle in the interval whose sine is is

. Therefore

(c) does not exist, because the domain of is and .

(d) Draw an angle of in standard position and mark its y-coordinate on the y-axis
(Figure 4.73). The angle in the interval whose sine is this number is

. Therefore

(e) Draw an angle of in standard position (notice that this angle is not in the
interval ) and mark its y-coordinate on the y-axis. (See Figure 4.74
on the next page.) The angle in the interval whose sine is this num-
ber is . Therefore

Now try Exercise 1.sin-1 asin a5p

6
b b =

p

6
.

p - 5p/6 = p/6
3-p/2, p/243-p/2, p/245p/6

sin-1 asin ap
9
b b =

p

9
.

p/9
3-p/2, p/24p/9

p/2 7 13-1, 14sin-1sin-1 1p/22
sin-1 a -  

13

2
b = -  

p

3
.

-p/3
- 13/23-p/2, p/2]

- 13/2

sin-1 a1

2
b =

p

6
.

p/61/23-p/2, p/24
1/2

sin-1 asin a5p

6
b bsin-1 asin ap

9
b b

sin-1 ap
2
bsin-1 a -  

13

2
bsin-1 a1

2
b

sin-1 xy

x

1
2

FIGURE 4.71 . (Exam-
ple 1a)

sin-1 11/22 = p/6

y

x

2
– 3

FIGURE 4.72
(Example 1b)

sin-1 1- 13/22 = -p/3.

y

x
sin π

9

FIGURE 4.73 .
(Example 1d)

sin-1 1sin 1p/922 = p/9

EXAMPLE 2  Evaluating with a Calculator
Use a calculator in radian mode to evaluate these inverse sine values:

(a) (b)
SOLUTION

(a)

(b)

Although this is a calculator answer, we can use it to get an exact answer if we are
alert enough to expect a multiple of . Divide the answer by :

Therefore, we conclude that .

You should also try to work Example 2b without a calculator. It is possible!
Now try Exercise 19.

sin-1 1sin 13.49p22 = -0.49p

Ans/p = -0.49

pp

sin-1 1sin 13.49p22 = -1.5393804 Á L -1.539

sin-1 1-0.812 = -0.9441521 Á L -0.944

sin-1 1sin 13.49p22sin-1 1-0.812

sin-1 x
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Inverse Cosine and Tangent Functions
If you restrict the domain of to the interval , as shown in Figure 4.75a,
the restricted function is one-to-one. The inverse cosine function is the
inverse of this restricted portion of the cosine function (Figure 4.75b).

y = cos-1 x
30, p4y = cos x

380 CHAPTER 4 Trigonometric Functions

y

x

sin
6
π5

FIGURE 4.74 .
(Example 1e)

sin-1 1sin 15p/622 = p/6

[–1, 4] by [–1.4, 1.4]

(a)

�

–1

1

[–2, 2] by [–1, 3.5]

(b)

�

–1 1

FIGURE 4.75 The (a) restriction of is one-to-one and (b) has an inverse,
.y = cos-1 x

y = cos x
What about the Inverse 
Composition Rule?
Does Example 1e violate the Inverse Composition
Rule of Section 1.4? That rule guarantees that

for every x in the domain of ƒ.
Keep in mind, however, that the domain of f
might need to be restricted in order for to 
exist. That is certainly the case with the sine
function. So Example 1e does not violate the 
Inverse Composition Rule, because that rule 
does not apply at . It lies outside the
(restricted) domain of sine.

x = 5p/6

ƒ 
-1

ƒ 
-11ƒ1x22 = x By the usual inverse relationship, the statements

are equivalent for y-values in the restricted domain and x-values in . This 
means that can be thought of as the angle between 0 and whose cosine is x.
The angle is also the arccosine of x.cos-1 x

pcos-1 x
3-1, 1430, p4

y = cos-1 x and x = cos y

It helps to think of the range of as being along the top half of the unit 
circle, which is traced out as angles range from 0 to (Figure 4.76).

If you restrict the domain of to the interval , as shown in 
Figure 4.77a, the restricted function is one-to-one. The inverse tangent function

is the inverse of this restricted portion of the tangent function 
(Figure 4.77b).
y = tan-1 x

1-p/2, p/22y = tan x

p

y = cos-1 x

y

x
0∏

FIGURE 4.76 The values of 
will always be found on the top half of the
unit circle, between 0 and .p

y = cos-1 x

[–3, 3] by [–2, 2]

(a)

�
2– �

2

[–4, 4] by [–2.8, 2.8]

(b)

�
2–

�
2

FIGURE 4.77 The (a) restriction of is one-to-one and (b) has an inverse,
.y = tan-1 x

y = tan x

Inverse Cosine Function (Arccosine Function)
The unique angle y in the interval such that is the inverse 
cosine (or arccosine) of x, denoted or arccos x.

The domain of is and the range is .30, p43-1, 14y = cos-1 x

cos�1 x
cos y = x30, p4
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By the usual inverse relationship, the statements

are equivalent for y-values in the restricted domain and x-values in
. This means that can be thought of as the angle between and

whose tangent is x. The angle is also the arctangent of x.tan-1 xp/2
-p/2tan-1 x1- q , q2

1-p/2, p/22
y = tan-1 x and x = tan y

SECTION 4.7 Inverse Trigonometric Functions 381

y

x

π–
2

π
2

FIGURE 4.78 The values of 
will always be found on the right-hand side of
the unit circle, between (but not including)

and .p/2-p/2

y = tan-1 x

y

x

2
– 2

FIGURE 4.79 .
(Example 3a)

cos-11- 12/22 = 3p/4

It helps to think of the range of as being along the right-hand side of the
unit circle (minus the top and bottom points), which is traced out as angles range from

to (noninclusive) (Figure 4.78).p/2-p/2

y = tan-1 x

EXAMPLE 3  Evaluating Inverse Trig Functions 
without a Calculator

Find the exact value of the expression without a calculator.

(a)

(b)

(c)

SOLUTION

(a) Find the point on the top half of the unit circle whose x-coordinate is 
and draw a reference triangle (Figure 4.79). We recognize this as one of our spe-
cial ratios, and the angle in the interval whose cosine is is .
Therefore

(b) Find the point on the right side of the unit circle whose y-coordinate is times
its x-coordinate and draw a reference triangle (Figure 4.80). We recognize this as
one of our special ratios, and the angle in the interval whose tan-
gent is is . Therefore

(c) Draw an angle of in standard position notice that this angle is not in the
interval and mark its x-coordinate on the x-axis (Figure 4.81). The angle
in the interval whose cosine is this number is 1.1. Therefore

Now try Exercises 5 and 7.

cos-1 1cos 1-1.122 = 1.1.

30, p430, p42 1-1.1

tan-1 13 =

p

3
.

p/313
1-p/2, p/22

13

cos-1 a -  

12

2
b =

3p

4
.

3p/4- 12/230, p4
- 12/2

cos-1 1cos 1-1.122
tan-1 13

cos-1 a -  

12

2
b

Inverse Tangent Function (Arctangent Function)
The unique angle y in the interval such that is the
inverse tangent (or arctangent) of x, denoted or arctan x.
The domain of is and the range is .1-p/2, p/221- q , q2y = tan-1 x

tan�1 x
tan y = x1-p/2, p/22
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y

x
2
3

1
2

FIGURE 4.80
(Example 3b)

tan-1 13 = p/3.

y

x
cos (–1.1)

FIGURE 4.81 .
(Example 3c)

cos-1 1cos 1-1.122 = 1.1

EXAMPLE 4  Describing End Behavior
Describe the end behavior of the function .

SOLUTION We can get this information most easily by considering the graph of
, remembering how it relates to the restricted graph of . (See

Figure 4.82.)
y = tan xy = tan-1 x

y = tan-1 x

[–3, 3] by [–2, 2]

(a)

�
2– �

2

[–4, 4] by [–2.8, 2.8]

(b)

�
2–

�
2

FIGURE 4.82 The graphs of (a) (restricted) and (b) . The vertical as-
ymptotes of are reflected to become the horizontal asymptotes of . 
(Example 4)

y = tan-1 xy = tan x
y = tan-1 xy = tan x

When we reflect the graph of about the line to get the graph of
, the vertical asymptotes become horizontal asymptotes
. We can state the end behavior accordingly:

Now try Exercise 21.

lim
x: -q

 tan-1 x = -  

p

2
 and lim

x: +q

 tan-1 x =

p

2
.

y = �p/2
x = �p/2y = tan-1 x

y = xy = tan x

Composing Trigonometric and Inverse
Trigonometric Functions
We have already seen the need for caution when applying the Inverse Composition
Rule to the trigonometric functions and their inverses (Examples 1e and 3c). The fol-
lowing equations are always true whenever they are defined:

sin 1sin-11x22 = x  cos (cos-11x22 = x  tan 1tan-11x22 = x

What about Arccot, Arcsec, 
and Arccsc?
Because we already have inverse functions for
their reciprocals, we do not really need inverse
functions for cot, sec, and csc for computational
purposes. Moreover, the decision of how to
choose the range of arcsec and arccsc is not as
straightforward as with the other functions. See
Exercises 63, 71, and 72.
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On the other hand, the following equations are true only for x-values in the “restricted”
domains of sin, cos, and tan:

An even more interesting phenomenon occurs when we compose inverse trigonometric
functions of one kind with trigonometric functions of another kind, as in .
Surprisingly, these trigonometric compositions reduce to algebraic functions that in-
volve no trigonometry at all! This curious situation has profound implications in calcu-
lus, where it is sometimes useful to decompose nontrigonometric functions into
trigonometric components that seem to come out of nowhere. Try Exploration 1.

sin 1tan-1x2
sin-1 1sin 1x22 = x cos-1 1cos1x22 = x tan-1 1tan 1x22 = x

SECTION 4.7 Inverse Trigonometric Functions 383

EXPLORATION 1 Finding Inverse Trig Functions of Trig Functions

In the right triangle shown to the right, the angle is 

measured in radians.

1. Find tan .

2. Find .

3. Find the hypotenuse of the triangle as a function of x.

4. Find as a ratio involving no trig functions.

5. Find as a ratio involving no trig functions.

6. If , then is a negative angle in the fourth quadrant (Figure 4.83).
Verify that your answers to parts (4) and (5) are still valid in this case.

tan-1 xx 6 0

sec 1tan-11x22
sin 1tan-11x22

tan-1 x

u

u

1

x

θ
y

xθ

(1, x)

FIGURE 4.83 If , then 
is an angle in the fourth quadrant. (Explo-
ration 1)

u = tan-1 xx 6 0

EXAMPLE 5  Composing Trig Functions with Arcsine
Compose each of the six basic trig functions with and reduce the composite
function to an algebraic expression involving no trig functions.

SOLUTION This time we begin with the triangle shown in Figure 4.84, in which
. (This triangle could appear in the fourth quadrant if x were negative, but

the trig ratios would be the same.)

The remaining side of the triangle (which is ) can be found by the Pythagorean
Theorem. If we denote the unknown side by s, we have

Note the ambiguous sign, which requires a further look. Since is always in
Quadrant I or IV, the horizontal side of the triangle can only be positive.

Therefore, we can actually write s unambiguously as , giving us the triangle
in Figure 4.85.

21 - x2

sin-1 x

 s = � 21 - x2

 s2
= 1 - x2

 s2
+ x2

= 1

cos u

u = sin-1 x

sin-1 x

1
x

θ

FIGURE 4.84 A triangle in which
. (Example 5)u = sin-1 x

1
x

θ

1 – x2

FIGURE 4.85 If , then . Note that will 
be positive because can only be in Quadrant I or IV. (Example 5)sin-1 x

cos ucos u = 21 - x2u = sin-1 x

(continued)
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Applications of Inverse 
Trigonometric Functions
When an application involves an angle as a dependent variable, as in , then to
solve for x, it is natural to use an inverse trigonometric function and find x = ƒ-11u2.u = ƒ1x2

384 CHAPTER 4 Trigonometric Functions

We can now read all the required ratios straight from the triangle:

Now try Exercise 47.

cot 1sin-11x22 =

21 - x2

x
tan 1sin-11x22 =

x

21 - x2

sec 1sin-11x22 =

1

21 - x2
cos 1sin-11x22 = 21 - x2

csc 1sin-11x22 =

1
x

sin 1sin-11x22 = x

EXAMPLE 6  Calculating a Viewing Angle
The bottom of a 20-foot replay screen at Dodger Stadium is 45 feet above the play-
ing field. As you move away from the wall, the angle formed by the screen at your
eye changes. There is a distance from the wall at which the angle is the greatest.
What is that distance?

SOLUTION

Model
The angle subtended by the screen is represented in Figure 4.86 by , and

. Since , it follows that . Similarly,
. Thus,

Solve Graphically
Figure 4.87 shows a graph of that reflects degree mode. The question about dis-
tance for maximum viewing angle can be answered by finding the x-coordinate of the
maximum point of this graph. Using grapher methods we see that this maximum 
occurs when .

Therefore the maximum angle subtended by the replay screen occurs about 54 feet
from the wall.

Now try Exercise 55.

x L 54 feet

u

u = tan-1 
65
x

- tan-1 
45
x

 .

u2 = tan-1145/x2 u1 = tan-1165/x2tan u1 = 65/xu = u1 - u2

u

x

θ

θ

20

45
1 θ2

FIGURE 4.86 The diagram for the sta-
dium screen. (Example 6)

15
10
5

–2

y

x
100 200 300 400

Distance (feet)

Replay Screen Viewing Angle
(Dodger Stadium)

A
ng

le
 (

de
gr

ee
s)

FIGURE 4.87 Viewing angle as a func-
tion of distance x from the wall. (Example 6)

u

QUICK REVIEW 4.7 (For help, go to Section 4.3.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, state the sign (positive or negative) of the sine, 
cosine, and tangent in the quadrant.

1. Quadrant I 2. Quadrant II

3. Quadrant III 4. Quadrant IV

In Exercises 5–10, find the exact value.

5. 6.

7. 8.

9. 10. cos 1-p/32sin 1-p/62
sin 12p/32cos 12p/32
tan 1p/42sin 1p/62
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SECTION 4.7 EXERCISES

In Exercises 1–12, find the exact value.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, use a calculator to find the approximate value. 
Express your answer in degrees.

13. 14. arcsin 0.67

15. 16.

In Exercises 17–20, use a calculator to find the approximate value. 
Express your result in radians.

17. 18.

19. 20.

In Exercises 21 and 22, describe the end behavior of the function.

21. 22.

In Exercises 23–32, find the exact value without a calculator.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–36, analyze each function for domain, range, 
continuity, increasing or decreasing behavior, symmetry, boundedness,
extrema, asymptotes, and end behavior.

33.

34.

35.

36. (See graph in Exercise 67.)

In Exercises 37–40, use transformations to describe how the graph of
the function is related to a basic inverse trigonometric graph. State the
domain and range.

37. 38.

39. 40.

In Exercises 41–46, find the solution to the equation without a calculator.

41. 42.

43. 44.

45. 46. sin-1 1sin x2 = p/10cos 1cos-1 x2 = 1/3

tan x = -12 sin x = 1

cos-1 1cos x2 = 1sin 1sin-1 x2 = 1

g1x2 = 3 arccos 1x/22h1x2 = 5 tan-1 1x/22
g1x2 = 3 cos-1 12x2ƒ1x2 = sin-1 12x2

ƒ1x2 = cot-1 x

ƒ1x2 = tan-1 x

ƒ1x2 = cos-1 x

ƒ1x2 = sin-1 x

tan-1 1cos p2cos 1tan-1 132
arccos 1tan 1p/422arcsin 1cos 1p/322
sin 1tan-1 1-122cos 12 sin-1 11/222
cos-1 1cos 17p/422sin-1 1cos 1p/422
sin 1tan-1 12cos 1sin-1 11/222

y = 1tan-1 x22y = tan-1 1x22

cos-1 1-0.8532sin-1 1-0.462
tan-1 122.82tan-1 12.372

cos-1 1-0.232tan-1 1-12.52
sin-1 10.3622

sin-1 1cos-1 0

tan-1 1- 132sin-1 a -  

1

12
b

cos-1 a -  

13

2
btan-1 1-12

tan-1 1cos-1 a 1

2
b

cos-1 1tan-1 0

sin-1 a -  

1

2
bsin-1 a13

2
b

In Exercises 47–52, find an algebraic expression equivalent to the given
expression. (Hint: Form a right triangle as done in Example 5.)

47. 48.

49. 50.

51. 52.

53. Group Activity Viewing Angle You are standing
in an art museum viewing a picture. The bottom of the picture
is 2 ft above your eye level, and the picture is 12 ft tall. Angle 
is formed by the lines of vision to the bottom and to the top of
the picture.

u

sin 1arccos 3x2cos 1arctan 2x2
cot 1arccos x2tan 1arcsin x2
cos 1tan-1 x2sin 1tan-1 x2

Picture

x

θ

12

2

(a) Show that .

(b) Graph in the by viewing window using
degree mode. Use your grapher to show that the maximum
value of occurs approximately 5.3 ft from the picture.

(c) How far (to the nearest foot) are you standing from the
wall if ?

54. Group Activity Analysis of a Lighthouse
A rotating beacon L stands 3 m across the harbor from the
nearest point P along a straight shoreline. As the light rotates,
it forms an angle as shown in the figure, and illuminates a
point Q on the same shoreline as P.

u

u = 35°

u

30, 55430, 254u

u = tan-1 a14
x
b - tan-1 a 2

x
b

P

Q

L

3

x

�

(a) Show that 

(b) Graph in the viewing window by 
using degree mode. What do negative values of x represent
in the problem? What does a positive angle represent? 
A negative angle?

(c) Find when .x = 15u

3-90, 9043-20, 204u

u = tan-1 a x

3
b .
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55. Rising Hot-Air Balloon The hot-air balloon festival
held each year in Phoenix, Arizona, is a popular event for 
photographers. Jo Silver, an award-winning photographer at the
event, watches a balloon rising from ground level from a 
point 500 ft away on level ground.
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61. Multiple Choice

(A) x (B) (C)

(D) (E)

62. Multiple Choice The range of the function
is

(A) . (B) . (C) .

(D) . (E) .

Explorations
63. Writing to Learn Using the format demonstrated in this

section for the inverse sine, cosine, and tangent functions, give
a careful definition of the inverse cotangent function. Hint:
The range of .

64. Writing to Learn Use an appropriately labeled triangle
to explain why . For what values of 
x is the left-hand side of this equation defined?

65. Graph each of the following functions and interpret the graph
to find the domain, range, and period of each function. Which
of the three functions has points of discontinuity? Are the dis-
continuities removable or nonremovable?

(a)

(b)

(c)

Extending the Ideas
66. Practicing for Calculus Express each of the follow-

ing functions as an algebraic expression involving no trig 
functions.

(a) (b)

(c) (d)

(e)

67. Arccotangent on the Calculator Most graphing
calculators do not have a button for the inverse cotangent. The
graph is shown below. Find an expression that you can put into
your calculator to produce a graph of y = cot-1 x.

tan 1sec-1 x22
-csc2 1cot-1 x2sin 1cos-1 1x2
sec2 1tan-1 x2cos 1sin-1 2x2

y = tan-1 1tan x2
y = cos-1 1cos x2
y = sin-1 1sin x2

sin-1 x + cos-1 x = p/2

4y = cot-1 x is 10, p2
3

3-p/2, p/2430, p4
3-1, 141-1, 121- q , q2

ƒ1x2 = arcsin x

sin x

1cos x2221 - x2

21 + x2csc x

sec 1tan-1 x2 =

500 ft

s

�

(a) Write as a function of the height s of the balloon.

(b) Is the change in greater as s changes from 10 ft to 20 ft,
or as s changes from 200 ft to 210 ft? Explain.

(c) Writing to Learn In the
graph of this relationship shown
here, do you think that the x-axis
represents the height s and the 
y-axis angle , or does the x-axis
represent angle and the y-axis
height s? Explain.

56. Find the domain and range of each of the following functions.

(a)

(b)

(c)

(d)

(e)

Standardized Test Questions
57. True or False for all real numbers x.

Justify your answer.

58. True or False The graph of has two hori-
zontal asymptotes. Justify your answer.

You should answer these questions without using a calculator.

59. Multiple Choice

(A) (B) (C)

(D) (E)

60. Multiple Choice

(A) (B) (C) 0

(D) (E) 2pp

-p-2p

sin-1 1sin p2 =

5p

6

2p

3

-  

p

6
-  

p

3
-  

7p

6

cos-1a -  

13

2
b  =

y = arctan x

sin 1sin-1 x2 = x

q1x2 = cos-1 1sin x2
k1x2 = sin 1cos-1 x2
h1x2 = sin-1 1sin x2
g1x2 = sin-1 1x2 + cos-1 1x2
ƒ1x2 = sin 1sin-1 x2

u

u

u

u

[0, 1500] by [–5, 80]

[–3, 3] by [–1, 4]

�
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68. Advanced Decomposition Decompose each of the
following algebraic functions by writing it as a trig function of
an arctrig function.

(a) (b) (c)

69. Use elementary transformations and the arctangent function to
construct a function with domain all real numbers that has hori-
zontal asymptotes at and .

70. Avoiding Ambiguities When choosing the right trian-
gle in Example 5, we used a hypotenuse of 1. It is sometimes
necessary to use a variable quantity for the hypotenuse, in
which case it is a good idea to use rather than x, just in case
x is negative. (All of our definitions of the trig functions have
involved triangles in which the hypotenuse is assumed to be
positive.)

(a) If we use the triangle below to represent ,
explain why side s must be positive regardless of the sign
of x.

(b) Use the triangle in part (a) to find .

(c) Using an appropriate triangle, find .sin 1cos-1 11/x22
tan 1sin-1 11/x22

u = sin-1 11/x2

x2

y = 42y = 24

x

21 - x2

x

21 + x2
21 - x2
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(a) The graph on the left has one horizontal asymptote. What
is it?

(b) The graph on the right has two horizontal asymptotes.
What are they?

(c) Which of these graphs is also the graph of ?

(d) Which of these graphs is increasing on both connected 
intervals?

72. Defining Arccosecant The range of the cosecant
function is , which must become the 
domain of the arccosecant function. The graph of 
must therefore be the union of two unbroken curves. Two pos-
sible graphs with the correct domain are shown below.

y = arccsc x
1- q , -14 ´ 31, q2

y = cos-1 11/x2

x
x2

θ
s

3

1

–2

y

x
–1

x

3

1

–2

y

–1(1, 0) (1, 0)

(−1, π)

(−1, π)

4

1

–2

y

x
–1 1

4

1

–2

y

x
–1 1

(1, π/2)(1, π/2)

(−1, −π/2)

(−1, 3π/2)

(a) The graph on the left has one horizontal asymptote. What
is it?

(b) The graph on the right has two horizontal asymptotes.
What are they?

(c) Which of these graphs is also the graph of ?

(d) Which of these graphs is decreasing on both connected in-
tervals?

y = sin-1 11/x271. Defining Arcsecant The range of the secant function is
, which must become the domain of the

arcsecant function. The graph of must therefore
be the union of two unbroken curves. Two possible graphs with
the correct domain are shown below.

y = arcsec x
1- q , -14 ´ 31, q2
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388 CHAPTER 4 Trigonometric Functions

4.8 Solving Problems 
with Trigonometry

What you’ll learn about
• More Right Triangle Problems
• Simple Harmonic Motion

... and why
These problems illustrate some
of the better-known applications
of trigonometry.

Li
ne

of
sig

ht

Angle of
elevation

Li
ne

of
sig

ht

B

A
Angle of
depression

(a) (b)

FIGURE 4.88 (a) Angle of elevation at Mount Rushmore. (b) Angle of depression at the
Grand Canyon.

EXAMPLE 1  Using Angle of Depression
The angle of depression of a buoy from the top of the Barnegat Bay lighthouse 
130 feet above the surface of the water is . Find the distance x from the base of the
lighthouse to the buoy.

SOLUTION Figure 4.89 models the situation.

In the diagram, because the angle of elevation from the buoy equals the 
angle of depression from the lighthouse. We solve algebraically using the tangent
function:

Interpreting We find that the buoy is about 1237 feet from the base of the lighthouse.
Now try Exercise 3.

 x =

130

tan 6°
L 1236.9

 tan u = tan 6° =

130
x

u = 6°

6°

6°

130

�x

FIGURE 4.89 A big lighthouse and a 
little buoy. (Example 1)

More Right Triangle Problems
We close this first of two trigonometry chapters by revisiting some of the applica-
tions of Section 4.2 (right triangle trigonometry) and Section 4.4 (sinusoids).

An angle of elevation is the angle through which the eye moves up from horizontal
to look at something above, and an angle of depression is the angle through which
the eye moves down from horizontal to look at something below. For two observers at
different elevations looking at each other, the angle of elevation for one equals the an-
gle of depression for the other. The concepts are illustrated in Figure 4.88 as they
might apply to observers at Mount Rushmore or the Grand Canyon.

6965_CH04_pp319-402.qxd  1/14/10  1:50 PM  Page 388
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22° 46°

x d

100 ft

22°
46°

FIGURE 4.90 A car approaches Altgelt
Hall. (Example 2)

10 ft

FIGURE 4.91 A large, helium-filled 
penguin. (Example 3)

x

h

40° 48°
10

FIGURE 4.92 (Example 3)

EXAMPLE 2  Making Indirect Measurements
From the top of the 100-ft-tall Altgelt Hall a man observes a car moving toward the
building. If the angle of depression of the car changes from to during the pe-
riod of observation, how far does the car travel?

SOLUTION

Solve Algebraically Figure 4.90 models the situation. Notice that we have labeled
the acute angles at the car’s two positions as and (because the angle of 
elevation from the car equals the angle of depression from the building). Denote the
distance the car moves as x. Denote its distance from the building at the second 
observation as d.

From the smaller right triangle we conclude:

From the larger right triangle we conclude:

Interpreting our answer, we find that the car travels about 151 feet.
Now try Exercise 7.

 x L 150.9

 x =

100

tan 22°
-

100

tan 46°

 x =

100

tan 22°
- d

 x + d =

100

tan 22°

 tan 22° =

100

x + d

 d =

100

tan 46°

 tan 46° =

100

d

46°22°

46°22°

EXAMPLE 3  Finding Height Above Ground
A large, helium-filled penguin is moored at the beginning of a parade route awaiting
the start of the parade. Two cables attached to the underside of the penguin make an-
gles of and with the ground and are in the same plane as a perpendicular line
from the penguin to the ground. (See Figure 4.91.) If the cables are attached to the
ground 10 feet from each other, how high above the ground is the penguin?

SOLUTION We can simplify the drawing to the two right triangles in Figure 4.92
that share the common side h.

Model
By the definition of the tangent function,

Solve Algebraically
Solving for h,

(continued)

h = x tan 48° and h = 1x + 102 tan 40°.

h

x
= tan 48° and h

x + 10
= tan 40°.

40°48°
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390 CHAPTER 4 Trigonometric Functions

Set these two expressions for h equal to each other and solve the equation for x:

Both equal h.

Isolate x terms.

Factor out x.

We retain the full display for x because we are not finished yet; we need to solve for h:

The penguin is approximately 34 feet above ground level.
Now try Exercise 15.

h = x tan 48° = 130.904597232 tan 48° L 34.32

 x =

10 tan 40°

tan 48° - tan 40°
L 30.90459723

 x1tan 48° - tan 40°2 = 10 tan 40°

 x tan 48° - x tan 40° = 10 tan 40°

 x tan 48° = x tan 40° + 10 tan 40°

 x tan 48° = 1x + 102 tan 40°

EXAMPLE 4  Using Trigonometry in Navigation
A U.S. Coast Guard patrol boat leaves Port Cleveland and averages 35 knots
(nautical mph) traveling for 2 hours on a course of and then 3 hours on a course
of What is the boat’s bearing and distance from Port Cleveland?

SOLUTION Figure 4.93 models the situation.

Solve Algebraically In the diagram, line AB is a transversal that cuts a pair of paral-
lel lines. Thus, because they are alternate interior angles. Angle , as the
supplement of a angle, is . Consequently, and AC is the 
hypotenuse of right .

Use to determine distances AB and BC.

Solve the right triangle for AC and .

Pythagorean Theorem

Interpreting We find that the boat’s bearing from Port Cleveland is , or ap-
proximately . They are about 126 nautical miles out.

Now try Exercise 17.
109.3°

53° + u

 u L 56.3°

 u = tan-1 a105

70
b

 AC L 126.2

 AC = 2702
+ 1052

u

 BC = 135 knots213 hours2 = 105 nautical miles

 AB = 135 knots212 hours2 = 70 nautical miles

distance = rate * time

^ ABC
∠ABC = 90°37°143°

ab = 53°

143°.
53°

North53°
143°

αβ
θ

A

B

C

FIGURE 4.93 Path of travel for a Coast
Guard boat that corners well at 35 knots. 
(Example 4)

Initial (t � 0)
position

�a a �d
d

0

Piston

a
�t

FIGURE 4.94 A piston operated by a
wheel rotating at a constant rate demonstrates
simple harmonic motion.

Simple Harmonic Motion
Because of their periodic nature, the sine and cosine functions are helpful in describing
the motion of objects that oscillate, vibrate, or rotate. For example, the linkage in
Figure 4.94 converts the rotary motion of a motor to the back-and-forth motion needed
for some machines. When the wheel rotates, the piston moves back and forth.

If the wheel rotates at a constant rate radians per second, the back-and-forth motion
of the piston is an example of simple harmonic motion and can be modeled by an equa-
tion of the form

where a is the radius of the wheel and d is the directed distance of the piston from its
center of oscillation.

d = a cos vt, v 7 0,

v
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For the sake of simplicity, we will define simple harmonic motion in terms of a point
moving along a number line.

SECTION 4.8 Solving Problems with Trigonometry 391

Frequency and Period
Notice that harmonic motion is sinusoidal, with
amplitude and period . The frequency is
the reciprocal of the period.

2p/vƒa ƒ

EXPLORATION 1 Watching Harmonic Motion

You can watch harmonic motion on your graphing calculator. Set your grapher

to parametric mode and set and . Set ,

, , , , ,

, , .

If your calculator allows you to change style to graph a moving ball, choose

that style. When you graph the function, you will see the ball moving along the

x-axis between and 1 in simple harmonic motion. If your grapher does not

have the moving ball option, wait for the grapher to finish graphing, then press

TRACE and keep your finger pressed on the right arrow key to see the tracer

move in simple harmonic motion.

1. For each value of T, the parametrization gives the point 
What well-known curve should this parametrization produce?

2. Why does the point seem to go back and forth on the x-axis when it should be
following the curve identified in part (1)? [Hint: Check that viewing window
again!]

3. Why does the point slow down at the extremes and speed up in the middle?
[Hint: Remember that the grapher is really following the curve identified in
part (1).]

4. How can you tell that this point moves in simple harmonic motion?

1cos 1T2, sin 1T22.

-1

Yscl = 0Ymax = 100Ymin = -100

Xscl = 1Xmax = 1.5Xmin = -1.5Tstep = 0.2Tmax = 25

Tmin = 0Y1T = sin 1T2X1T = cos 1T2

EXAMPLE 5  Calculating Harmonic Motion
In a mechanical linkage like the one shown in Figure 4.94, a wheel with an 8-cm ra-
dius turns with an angular velocity of .

(a) What is the frequency of the piston?

(b) What is the distance from the starting position exactly 3.45 seconds 
after starting?

SOLUTION Imagine the wheel to be centered at the origin and let be a
point on its perimeter (Figure 4.95). As the wheel rotates and P goes around, the mo-
tion of the piston follows the path of the x-coordinate of P along the x-axis. The an-
gle determined by P at any time t is , so its x-coordinate is 8 cos . Therefore,
the sinusoid models the motion of the piston.

(continued)

d = 8 cos 8pt
8pt8pt

P1x, y2
1t = 02

8p radians/sec

y

x

8

P

t8 cos 8π

t8π

FIGURE 4.95 Modeling the path of a 
piston by a sinusoid. (Example 5)

Simple Harmonic Motion
A point moving on a number line is in simple harmonic motion if its directed
distance d from the origin is given by either

where a and are real numbers and . The motion has frequency ,
which is the number of oscillations per unit of time.

v/2pv 7 0v

d = a sin vt or d = a cos vt,
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[0, 1] by [–10, 10]

FIGURE 4.96 A sinusoid with frequency
4 models the motion of the piston in 
Example 5.

(a) The frequency of is , or 4. The piston makes four complete
back-and-forth strokes per second. The graph of d as a function of t is shown in
Figure 4.96. The four cycles of the sinusoidal graph in the interval model
the four cycles of the motor or the four strokes of the piston. Note that the sinu-
soid has a period of , the reciprocal of the frequency.

(b) We must find the distance between the positions at and .

The initial position at is

The position at is

The distance between the two positions is approximately .

Interpreting our answer, we conclude that the piston is approximately 5.53 cm from
its starting position after 3.45 seconds. Now try Exercise 27.

8 - 2.47 = 5.53

d13.452 = 8 cos 18p # 3.452 L 2.47.

t = 3.45

d102 = 8.

t = 0

t = 3.45t = 0

1/4

30, 14
8p/2pd = 8 cos 8pt

EXAMPLE 6  Calculating Harmonic Motion
A mass oscillating up and down on the bottom of a spring (assuming perfect elastic-
ity and no friction or air resistance) can be modeled as harmonic motion. If the
weight is displaced a maximum of 5 cm, find the modeling equation if it takes 
2 seconds to complete one cycle. (See Figure 4.97.)

5 cm

0 cm

�5 cm

5 cm

0 cm

�5 cm

FIGURE 4.97 The mass and spring in Example 6.

SOLUTION We have our choice between the two equations or
. Assuming that the spring is at the origin of the coordinate system

when , we choose the equation .

Because the maximum displacement is 5 cm, we conclude that the amplitude .

Because it takes 2 seconds to complete one cycle, we conclude that the period is 2
and the frequency is . Therefore,

Putting it all together, our modeling equation is .

Now try Exercise 29.

d = 5 sin pt

 v = p.

 
v

2p
=

1

2
 ,

1/2

a = 5

d = a sin vtt = 0
d = a cos vt

d = a sin vt
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Chapter Opener Problem (from page 319)

Problem: If we know that the musical note A above middle C has a pitch of 
440 Hertz, how can we model the sound produced by it at 80 decibels?

Solution: Sound is modeled by simple harmonic motion, with frequency 
perceived as pitch and measured in cycles per second, and amplitude perceived as
loudness and measured in decibels. So for the musical note A with a pitch of 
440 hertz, we have and therefore .

If this note is played at a loudness of 80 decibels, we have . Using the 
simple harmonic motion model , we have

d = 80 sin 880pt.

d = a sin vt
ƒa ƒ = 80

v = 2p440 = 880pfrequency = v/2p = 440

QUICK REVIEW 4.8 (For help, go to Sections 4.1, 4.2, and 4.3.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, find the lengths a, b, and c.

1. 2.

3. 4.

15

31°

c

b

2568°a

b

28

44° 28°
a

c

b

21

48° 31°
a

c

b

SECTION 4.8 EXERCISES

In Exercises 1–43, solve the problem using your knowledge of geometry
and the techniques of this section. Sketch a figure if one is not provided.

1. Finding a Cathedral
Height The angle of eleva-
tion of the top of the Ulm
Cathedral from a point 300 ft
away from the base of its
steeple on level ground is .
Find the height of the cathe-
dral.

60°

2. Finding a Monument Height From a point 100 ft
from its base, the angle of elevation of the top of the Arch of
Septimus Severus, in Rome, Italy, is . How tall is
this monument?

3. Finding a Distance The angle of depression from the
top of the Smoketown Lighthouse 120 ft above the surface of
the water to a buoy is . How far is the buoy from the 
lighthouse?

10°

34°13¿12–

300 ft

60°

h
10°

120 ft

In Exercises 5 and 6, find the complement and supplement of 
the angle.

5. 6.

In Exercises 7 and 8, state the bearing that describes the direction.

7. NE (northeast)

8. SSW (south-southwest)

In Exercises 9 and 10, state the amplitude and period of the 
sinusoid.

9.

10. 4 cos 41x + 22
-3 sin 21x - 12

73°32°
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4. Finding a Baseball Stadium Dimension The top
row of the red seats behind home plate at Cincinnati’s 
Riverfront Stadium is 90 ft above the level of the playing field.
The angle of depression to the base of the left field wall is .
How far is the base of the left field wall from a point on level
ground directly below the top row?

5. Finding a Guy-Wire Length A guy wire connects the
top of an antenna to a point on level ground 5 ft from the base of
the antenna. The angle of elevation formed by this wire is .
What are the length of the wire and the height of the antenna?

80°

14°

394 CHAPTER 4 Trigonometric Functions

11. Antenna Height A guy wire attached to the top of the
KSAM radio antenna is anchored at a point on the ground 10 m
from the antenna’s base. If the wire makes an angle of with55°

5 ft

80°

6. Finding a Length A wire stretches from the top of a
vertical pole to a point on level ground 16 ft from the base of
the pole. If the wire makes an angle of with the ground,
find the height of the pole and the length of the wire.

7. Height of Eiffel Tower The angle of elevation of the
top of the TV antenna mounted on top of the Eiffel Tower in
Paris is measured to be at a point 185 ft from the
base of the tower. How tall is the tower plus TV antenna?

8. Finding the Height of Tallest Chimney The
world’s tallest smokestack at the International Nickel Co., 
Sudbury, Ontario, casts a shadow that is approximately 1580 ft
long when the Sun’s angle of elevation (measured from the hori-
zon) is . How tall is the smokestack?38°

80°1¿12–

62°

Sun

Smokestack

Shadow � 1580 ft

38°

38°

9. Cloud Height To measure the height of a cloud, you
place a bright searchlight directly below the cloud and shine
the beam straight up. From a point 100 ft away from the
searchlight, you measure the angle of elevation of the cloud to
be . How high is the cloud?

10. Ramping Up A ramp leading to a freeway overpass is
470 ft long and rises 32 ft. What is the average angle of incli-
nation of the ramp to the nearest tenth of a degree?

83°12¿

L

P

35°

4.25 mi

Q

14. Recreational Hiking While hiking on a level path to-
ward Colorado’s front range, Otis Evans determines that the
angle of elevation to the top of Long’s Peak is . Moving
1000 ft closer to the mountain, Otis determines the angle of 
elevation to be . How much higher is the top of Long’s Peak
than Otis’s elevation?

15. Civil Engineering The angle of elevation from an ob-
server to the bottom edge of the Delaware River drawbridge
observation deck located 200 ft from the observer is . The
angle of elevation from the observer to the top of the observa-
tion deck is . What is the height of the observation deck?40°

30°

35°

30°

200 ft

40°
30°

16. Traveling Car From the top of a 100-ft building a man
observes a car moving toward him. If the angle of depression
of the car changes from to during the period of obser-
vation, how far does the car travel?

33°15°

33°
100 ft

15°

level ground, how high is the KSAM antenna?

12. Building Height To determine the height of the
Louisiana-Pacific (LP) Tower, the tallest building in Conroe,
Texas, a surveyor stands at a point on the ground, level with the
base of the LP building. He measures the point to be 125 ft
from the building’s base and the angle of elevation to the top of
the building to be . Find the height of the building.

13. Navigation The Paz Verde, a whalewatch boat, is located
at point P, and L is the nearest point on the Baja California
shore. Point Q is located 4.25 mi down the shoreline from 
L and Determine the distance that the Paz Verde is
from the shore if .∠PQL = 35°

PL � LQ.

29°48¿
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17. Navigation The Coast Guard
cutter Angelica travels at 30 knots
from its home port of Corpus Christi
on a course of for 2 hr and then
changes to a course of for 2 hr.
Find the distance and the bearing
from the Corpus Christi port to the
boat.

18. Navigation The Cerrito Lindo travels at a speed of 
40 knots from Fort Lauderdale on a course of for 2 hr and
then changes to a course of for 4 hr. Determine the dis-
tance and the bearing from Fort Lauderdale to the boat.

19. Land Measure The angle of depression is from a
point 7256 ft above sea level on the north rim of the Grand
Canyon level to a point 6159 ft above sea level on the south rim.
How wide is the canyon at that point?

20. Ranger Fire Watch A ranger spots a fire from a 
73-ft tower in Yellowstone National Park. She measures the 
angle of depression to be . How far is the fire from the
tower?

21. Civil Engineering The bearing of the line of sight to
the east end of the Royal Gorge footbridge from a point 325 ft
due north of the west end of the footbridge across the Royal
Gorge is . What is the length l of the bridge?117°

1°20¿

19°

155°
65°

185°
95°

SECTION 4.8 Solving Problems with Trigonometry 395

23. Architectural Design A barn roof is constructed as
shown in the figure. What is the height of the vertical center
span?

Corpus
Christi

95°

185°

117°

325 ft

l

22. Space Flight The angle of elevation of a space shuttle
from Cape Canaveral is when the shuttle is directly over a
ship 12 mi downrange. What is the altitude of the shuttle when
it is directly over the ship?

17°

12

h

17°

73 ft
15°15°

550 ft

110°

100°

24. Recreational Flying A hot-air balloon over Park City,
Utah, is 760 ft above the ground. The angle of depression from
the balloon to an observer is . Assuming the ground is rel-
atively flat, how far is the observer from a point on the ground
directly under the balloon?

25. Navigation A shoreline runs north-south, and a boat is
due east of the shoreline. The bearings of the boat from two
points on the shore are and . Assume the two points
are 550 ft apart. How far is the boat from the shore? 

100°110°

5.25°

26. Navigation Milwaukee, Wisconsin, is directly west of
Grand Haven, Michigan, on opposite sides of Lake Michigan.
On a foggy night, a law enforcement boat leaves from 
Milwaukee on a course of at the same time that a small
smuggling craft steers a course of from Grand Haven. 
The law enforcement boat averages 23 knots and collides with
the smuggling craft. What was the smuggling boat’s average
speed?

27. Mechanical Design Refer to Figure 4.94. The wheel in
a piston linkage like the one shown in the figure has a radius of
6 in. It turns with an angular velocity of . The ini-
tial position is the same as that shown in Figure 4.94.

(a) What is the frequency of the piston?

(b) What equation models the motion of the piston?

(c) What is the distance from the initial position 2.85 sec after
starting?

28. Mechanical Design Suppose the wheel in a piston link-
age like the one shown in Figure 4.94 has a radius of 18 cm
and turns with an angular velocity of .

(a) What is the frequency of the piston?

(b) What equation models the motion of the piston?

(c) How many cycles does the piston make in 1 min?

p rad/sec

16p rad/sec

195°
105°
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29. Vibrating Spring A mass on a spring
oscillates back and forth and completes one
cycle in 0.5 sec. Its maximum displacement
is 3 cm. Write an equation that models this
motion.

30. Tuning Fork A point on the tip of a
tuning fork vibrates in harmonic motion 
described by the equation . Find

for a tuning fork that has a frequency of 
528 vibrations per second.

31. Ferris Wheel Motion The Ferris wheel shown in this
figure makes one complete turn every 20 sec. A rider’s height,
h, above the ground can be modeled by the equation

, where h and k are given in feet and t is
given in seconds.
h = a sin vt + k

v

d = 14 sin vt

396 CHAPTER 4 Trigonometric Functions

(e) Use your sinusoidal model to predict dates in the year
when the mean temperature in Charleston will be . 
(Assume that represents January 1.)t = 0

70°

0 cm

d cm

8 ft

25 ft

(a) What is the value of a?

(b) What is the value of k?

(c) What is the value of ?

32. Ferris Wheel Motion Jacob and Emily ride a Ferris
wheel at a carnival in Billings, Montana. The wheel has a 16-m
diameter and turns at 3 rpm with its lowest point 1 m above the
ground. Assume that Jacob and Emily’s height h above the
ground is a sinusoidal function of time t (in seconds), where

represents the lowest point of the wheel.

(a) Write an equation for h.

(b) Draw a graph of h for .

(c) Use h to estimate Jacob and Emily’s height above the
ground at .

33. Monthly Temperatures in Charleston The
monthly normal mean temperatures for the last 30 years in
Charleston, SC, are shown in Table 4.3. A scatter plot 
suggests that the mean monthly temperatures follow a sinu-
soidal curve over time. Assume that the sinusoid has 
equation .

(a) Given that the period is 12 months, find b.

(b) Assuming that the high and low temperatures in the table
determine the range of the sinusoid, find a and k.

(c) Find a value of h that will put the minimum at and
the maximum at .

(d) Superimpose a graph of your sinusoid on a scatter plot of
the data. How good is the fit?

t = 7
t = 1

y = a sin 1b 1t - h22 + k

t = 4 and t = 10

0 … t … 30

t = 0

v

0 1

10

20

30

40

50

60

70

80

90

2 3 4 5
Time (months)

Te
m

pe
ra

tu
re

6 7 8 9 10 11 12
x

y

Table 4.3 Temperature Data for Charleston, SC

Month Temperature

1 48
2 51
3 58
4 64
5 72
6 78
7 82
8 81
9 76

10 66
11 58
12 51

Source: National Climatic Data Center, as reported in the World Almanac
and Book of Facts 2009.

34. Writing to Learn For the Ferris wheel in Exercise 31,
which equation correctly models the height of a rider who be-
gins the ride at the bottom of the wheel when ?

(a)

(b)

(c)

(d) h = 25 sin apt

10
+

3p

2
b + 33

h = 25 sin 
pt

10
+ 33

h = 25 sin 
pt

10
+ 8

h = 25 sin 
pt

10

t = 0
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Explain your thought process, and use of a graphing utility in choosing
the correct modeling equation.

35. Monthly Sales Owing to startup costs and seasonal vari-
ations, Gina found that the monthly profit in her bagel shop
during the first year followed an up-and-down pattern that
could be modeled by , where P was 
measured in hundreds of dollars and t was measured in months
after January 1.

(a) In what month did the shop first begin to make money?

(b) In what month did the shop enjoy its greatest profit in that
first year?

36. Weight Loss Courtney tried several different diets over a
two-year period in an attempt to lose weight. She found that
her weight W followed a fluctuating curve that could be mod-
eled by the function ,
where t was measured in months after January 1 of the first
year and W was measured in pounds.

(a) What was Courtney’s weight at the start and at the end of
two years?

(b) What was her maximum weight during the two-year period?

(c) What was her minimum weight during the two-year period?

Standardized Test Questions
37. True or False Higher frequency sound waves have

shorter periods. Justify your answer.

38. True or False A car traveling at 30 miles per hour is
traveling faster than a ship traveling at 30 knots. Justify your
answer.

You may use a graphing calculator when answering these questions.

39. Multiple Choice To get a rough idea of the height of a
building, John paces off 50 feet from the base of the building,
then measures the angle of elevation from the ground to the top
of the building at that point to be . About how tall is the
building?

(A) 31 feet (B) 42 feet (C) 59 feet

(D) 80 feet (E) 417 feet

40. Multiple Choice A boat leaves harbor and travels at 
20 knots on a bearing of . After two hours, it changes
course to a bearing of and continues at the same speed 
for another hour.

After the entire 3-hour trip, how far is it from the harbor?

(A) 50 nautical miles (B) 53 nautical miles

(C) 57 nautical miles (D) 60 nautical miles

(E) 67 nautical miles

41. Multiple Choice At high tide at 8:15 P.M., the water
level on the side of a pier is 9 feet from the top. At low tide 
6 hours and 12 minutes later, the water level is 13 feet from the
top. At which of the following times in that interval is the wa-
ter level 10 feet from the top of the pier?

(A) 9:15 P.M. (B) 9:48 P.M. (C) 9:52 P.M.

(D) 10:19 P.M. (E) 11:21 P.M.

150°
90°

58°

W = 220 - 1.5t + 9.81 sin 1pt/42

P = 2t - 7 sin 1pt/32

SECTION 4.8 Solving Problems with Trigonometry 397

42. Multiple Choice The loudness of a musical tone is 
determined by which characteristic of its sound wave?

(A) Amplitude (B) Frequency (C) Period

(D) Phase shift (E) Pitch

Explorations
43. Group Activity The data for displacement versus time

on a tuning fork, shown in Table 4.4, were collected using a
CBL and a microphone.

Table 4.4 Tuning Fork Data

Time Displacement Time Displacement

0.00091 0.00362 0.217
0.00108 0.200 0.00379 0.480
0.00125 0.480 0.00398 0.681
0.00144 0.693 0.00416 0.810
0.00162 0.816 0.00435 0.827
0.00180 0.844 0.00453 0.749
0.00198 0.771 0.00471 0.581
0.00216 0.603 0.00489 0.346
0.00234 0.368 0.00507 0.077
0.00253 0.099 0.00525
0.00271 0.00543
0.00289 0.00562
0.00307 0.00579
0.00325 0.00598
0.00344 -0.041

-0.035-0.248
-0.248-0.348
-0.354-0.309
-0.320-0.141
-0.164

-0.080

(a) Graph a scatter plot of the data in the by
viewing window.

(b) Select the equation that appears to be the best fit of these
data.

i.

ii.

iii.

(c) What is the approximate frequency of the tuning fork?

44. Writing to Learn Human sleep-awake cycles at three
different ages are described by the accompanying graphs. The
portions of the graphs above the horizontal lines represent
times awake, and the portions below represent times asleep.

y = 0.6 sin 12440x - 2.12 + 0.15

y = 0.6 sin 11210x - 22 + 0.25

y = 0.6 sin 12464x - 2.842 + 0.25

3-0.5, 14
30, 0.00624

6 P.M. 12 6 A.M.

Newborn

12 6 P.M.

6 P.M. 12 6 A.M.

Four years

12 6 P.M.

6 P.M. 12 6 A.M.

Adult

12 6 P.M.
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(a) What is the period of the sleep-awake cycle of a newborn?
of a four-year-old? of an adult?

(b) Which of these three sleep-awake cycles is the closest to
being modeled by a function ?

Using Trigonometry in Geometry In a
regular polygon all sides have equal length and all 
angles have equal measure. In Exercises 45 and 46, 
consider the regular seven-sided polygon whose sides
are 5 cm.

45. Find the length of the apothem, the segment from the center of
the seven-sided polygon to the midpoint of a side.

46. Find the radius of the circumscribed circle of the regular seven-
sided polygon.

47. A rhombus is a quadrilateral with all
sides equal in length. Recall that a
rhombus is also a parallelogram. 
Find length AC and length BD in the 
rhombus shown here.

y = a sin bx

398 CHAPTER 4 Trigonometric Functions

51. Group Activity A musical note like that produced with
a tuning fork or pitch meter is a pressure wave. Typically, fre-
quency is measured in hertz ( ).
Table 4.5 gives frequency (in Hz) of several musical notes. The
time-vs.-pressure tuning fork data in Table 4.6 was collected
using a CBL and a microphone.

1 Hz = 1 cycle per second

5 cm

a

r

18 in.
C

A

D

B

42°

Extending the Ideas
48. A roof has two sections, one with a elevation and the other

with a elevation, as shown in the figure.

(a) Find the height BE.

(b) Find the height CD.

(c) Find the length , and double it to find the length
of the roofline.

AE + ED

20°
50°

CA

D

E

B
20 ft 45 ft

50° 50°

20° 20°

49. Steep Trucking The percentage grade of a road is its
slope expressed as a percentage. A tractor-trailer rig passes a
sign that reads, “6% grade next 7 miles.” What is the average
angle of inclination of the road?

50. Television Coverage Many satellites travel in
geosynchronous orbits, which means that the satellite stays
over the same point on the Earth. A satellite that broadcasts ca-
ble television is in geosynchronous orbit 100 mi above the
Earth. Assume that the Earth is a sphere with radius 4000 mi,
and find the arc length of coverage area for the cable television
satellite on the Earth’s surface.

Table 4.5 Tuning Fork Data

Note Frequency (Hz)

C 262
C

�
or D � 277

D 294
D

�
or E� 311

E 330
F 349
F

�
or G� 370

G 392
G

�
or A� 415

A 440
A

�
or B� 466

B 494
C (next octave) 524

Table 4.6 Tuning Fork Data

Time (sec) Pressure Time (sec) Pressure

0.0002368 1.29021 0.0049024
0.0005664 1.50851 0.0051520 0.09235
0.0008256 1.51971 0.0054112 1.44694
0.0010752 1.51411 0.0056608 1.51411
0.0013344 1.47493 0.0059200 1.51971
0.0015840 0.45619 0.0061696 1.51411
0.0018432 0.0064288 1.43015
0.0020928 0.0066784 0.19871
0.0023520 0.0069408
0.0026016 0.0071904
0.0028640 1.36858 0.0074496
0.0031136 1.50851 0.0076992 0.23229
0.0033728 1.51971 0.0079584 1.46933
0.0036224 1.51411 0.0082080 1.51411
0.0038816 1.45813 0.0084672 1.51971
0.0041312 0.32185 0.0087168 1.50851
0.0043904 0.0089792 1.36298
0.0046400 -1.51971

-0.97676

-0.97116
-1.51412-0.04758
-1.06072-1.15588

-1.51412
-0.89280

-1.06632

(a) Graph a scatter plot of the data.

(b) Determine a, b, and h so that the equation
is a model for the data.

(c) Determine the frequency of the sinusoid in part (b), and
use Table 4.5 to identify the musical note produced by the
tuning fork.

(d) Identify the musical note produced by the tuning fork used
in Exercise 43.

y = a sin 1b1t - h22
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CHAPTER 4 Key Ideas

Properties, Theorems, and Formulas
Arc Length 322, 323
Right Triangle Trigonometric Ratios 329
Trigonometric Functions of Real Numbers 344
Inverse Sine Function 378
Inverse Cosine Function 380

Inverse Tangent Function 381
Special Angles 330, 331, 346
Sinusoids 352

Procedures
Angle Measure Conversion 322

Gallery of Functions

f(x) � sin x
by [–4, 4]2 π ],[–2π

f(x) � cos x
by [–4, 4]2 π ],[–2π [�3∏/2, 3∏/2] by [–4, 4]

f(x) � tan x

f(x) � cot x
by [–4, 4]2 π ],[–2π by [–4, 4]2 π ],[–2π

f(x) � sec x
by [–4, 4]2 π ],[–2π

f(x) � csc x

[–1.5, 1.5] by [–1.7, 1.7]

�
2–

�
2

1–1

f(x) � sin�1 x
[–2, 2] by [–1, 3.5]

�

–1 1

f(x) � cos�1 x
[–4, 4] by [–2.8, 2.8]

�
2–

�
2

f(x) � tan�1 x

CHAPTER 4 Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–8, determine the quadrant of the terminal side of the
angle in standard position. Convert degree measures to radians and 
radian measures to degrees.

1. 2.

3. 4. -45°-135°

3p

4

5p

2

5. 6.

7. 8.

In Exercises 9 and 10, determine the angle measure in both degrees
and radians. Draw the angle in standard position if its terminal side is
obtained as described.

9. A three-quarters counterclockwise rotation

10. Two and one-half counterclockwise rotations

7p

10

p

12

112°78°
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CA

B

a

b

c

α

β

CA

B

α

β
5 cm

12 cm

39. 40.

41. 42.

43. 44.

In Exercises 45–48, x is an angle in standard position with
. Determine the quadrant of x.

45. and

46. and csc x 7 0cos x 6 0

 tan x 7 0sin x 6 0

0 … x … 2p

a = 2.5, b = 7.3b = 5, c = 7

a = 28°, c = 8b = 48°, a = 7

b = 8, c = 10a = 35°, c = 15

In Exercises 11–16, the point is on the terminal side of an angle in
standard position. Give the smallest positive angle measure in both de-
grees and radians.

11. 12.

13. 14.

15. 16.

In Exercises 17–28, evaluate the expression exactly without a calculator.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, evaluate exactly all six trigonometric functions of
the angle. Use reference triangles and not your calculator.

29. 30.

31. 32.

33. Find all six trigonometric functions of in .^ ABCa

420°-135°

19p

4
-  

p

6

tan 360°cot 1-90°2
sec 180°csc 270°

tan a -  

2p

3
bsec a -  

p

3
b

csc 
2p

3
sin 

5p

6

sec 1-135°2tan 1-135°2
cos 330°sin 30°

12, 4216, -122
1-3, -321-1, 132
1-1, 12113, 12

34. Use a right triangle to determine the values of all trigonomet-
ric functions of , where .

35. Use a right triangle to determine the values of all trigonomet-
ric functions of , where .

36. Use a calculator in degree mode to solve if
.

37. Use a calculator in radian mode to solve if
.

38. Use a calculator in radian mode to solve if
.

In Exercises 39–44, solve the right .^ ABC

0 … x … 2p
 sin x = 0.218

p … x … 3p/2
tan x = 1.35

0° … u … 90°
 cos u = 3/7

 tan u = 15/8u

 cos u = 5/7u

47. and

48. and

In Exercises 49–52, point P is on the terminal side of angle . Evalu-
ate the six trigonometric functions for .

49. 50.

51. 52.

In Exercises 53–60, use transformations to describe how the graph of
the function is related to a basic trigonometric graph. Graph two periods.

53. 54.

55.

56.

57. 58.

59. 60.

In Exercises 61–66, state the amplitude, period, phase shift, domain,
and range for the sinusoid.

61. 62.

63.

64.

65. 66.

In Exercises 67 and 68, graph the function. Then estimate the values
of a, b, and h so that .

67.

68.

In Exercises 69–72, use a calculator to evaluate the expression. 
Express your answer in both degrees and radians.

69. 70.

71. 72.

In Exercises 73–76, use transformations to describe how the graph of
the function is related to a basic inverse trigonometric graph. State the
domain and range.

73. 74.

75. 76.

In Exercises 77–82, find the exact value of x without using a calculator.

77.

78.

79. ,

80.

81.

82.

In Exercises 83 and 84, describe the end behavior of the function.

83. 84.
3

5
e-x/12 sin 12x - 32sin x

x2

cot x = - 13, 0 … x … p

csc x = -1, 0 … x … 2p

sec x = 2, p … x … 2p

0 … x … ptan x = -1

cos x = 13/2, 0 … x … p

sin x = 0.5, p/2 … x … p

y = cos-1 12x + 12 - 3y = sin-1 13x - 12 + 2

y = tan-1 2xy = sin-1 3x

sin-1 a13

2
btan-1 1

cos-1 10.4792sin-1 10.7662

ƒ1x2 = 3 cos 2x - 2 sin 2x

ƒ1x2 = 2 sin x - 4 cos x

ƒ1x2 L a sin 1b1x - h22
g1x2 = -2 cos 13x + 12y = 4 cos 12x - 12

g1x2 = -2 sin 13x - p/32
ƒ1x2 = 1.5 sin 12x - p/42

g1x2 = 3 cos 4xƒ1x2 = 2 sin 3x

y = csc pxy = -2 sec 
x

2

y = -2 cot 3xy = tan 2x

y = -2 - 3 sin 1x - p2
y = -cos 1x + p/2) + 4

y = 3 + 2 cos xy = sin 1x + p2

14, 921-5, -32
112, 721-3, 62
u

u

 csc x 7 0sec x 6 0

 sin x 7 0tan x 6 0
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52ft

18ftGround level

Tunnel

First hill of
The Beast

P Q

22°
4 mi

L

102. Storing Hay A 75-ft-long conveyor is used at the 
Lovelady Farm to put hay bales up for winter storage. The
conveyor is tilted to an angle of elevation of .

(a) To what height can the hay be moved?

(b) If the conveyor is repositioned to an angle of , to what
height can the hay be moved?

103. Swinging Pendulum In the Hardy Boys Adventure
While the Clock Ticked, the pendulum of the grandfather
clock at the Purdy place is 44 in. long and swings through an
arc of . Find the length of the arc that the pendulum
traces.

104. Finding Area A windshield wiper on a vintage 1994
Plymouth Acclaim is 20 in. long and has a blade 16 in. long. If
the wiper sweeps through an angle of , how large an area
does the wiper blade clean? (See Exercise 71 in Section 4.1.)

105. Modeling Mean Temperature The average daily
air temperature for Fairbanks, Alaska, from 1971 to
2000, can be modeled by the equation

where x is time in days with representing January 1.
On what days do you expect the average temperature to be

?

Source: National Climatic Data Center, as reported in the World Almanac 
and Book of Facts 2009.

106. Taming The Beast The Beast is a featured roller
coaster at the King Island’s amusement park just north of
Cincinnati. On its first and biggest hill, The Beast drops from
a height of 52 ft above the ground along a sinusoidal path to a
depth 18 ft underground as it enters a frightening tunnel. The
mathematical model for this part of track is

where x is the horizontal distance from the top of the hill and
is the vertical position relative to ground level (both in

feet). What is the horizontal distance from the top of the hill
to the point where the track reaches ground level?

h1x2

h1x2 = 35 cos a x

35
b + 17, 0 … x … 110,

32°F

x = 1

T1x2 = 37.3 sin c 2p

365
 1x - 1142 d + 26,

1°F2

110°

6°

27°

22°

99. Navigation An airplane is flying due east between two
signal towers. One tower is due north of the other. The bear-
ing from the plane to the north tower is , and to the south
tower is . Use a drawing to show the exact location of the
plane.

100. Finding Distance The bearings of two points on the
shore from a boat are and . Assume the two points
are 855 ft apart. How far is the boat from the nearest point on
shore if the shore is straight and runs north-south?

101. Height of Tree Dr. Thom Lawson standing on flat
ground 62 ft from the base of a Douglas fir measures the an-
gle of elevation to the top of the tree as . What is the
height of the tree?

72°24¿

123°115°

128°
23°

In Exercises 85–88, evaluate the expression without a calculator.

85. 86.

87. 88.

In Exercises 89–92, determine whether the function is periodic. State
the period (if applicable), the domain, and the range.

89. 90.

91. 92.

93. Arc Length Find the length of the arc intercepted by a
central angle of rad in a circle with radius 2.

94. Algebraic Expression Find an algebraic expression
equivalent to .

95. Height of Building The angle of elevation of the top
of a building from a point 100 m away from the building on
level ground is . Find the height of the building.

96. Height of Tree A tree casts a shadow 51 ft long when
the angle of elevation of the Sun (measured with the horizon)
is . How tall is the tree?

97. Traveling Car From the top of a 150-ft building Flora
observes a car moving toward her. If the angle of depression
of the car changes from to during the observation,
how far does the car travel?

98. Finding Distance A lighthouse L stands 4 mi from the
closest point P along a straight shore (see figure). Find the
distance from P to a point Q along the shore if ∠PLQ = 22°.

42°18°

25°

78°

 tan 1cos-1 x2
2p/3

g1x2 = 2 cos 2x + 3 sin 5xƒ1x2 = 2x + tan x

g1x2 = sin ƒ x ƒƒ1x2 = ƒ sec x ƒ

cos-1 1cos(-p/7)2tan 1sin-1 3/52
cos-1 1cos p/32tan 1tan-1 12
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CHAPTER 4 Project

Modeling the Motion of a Pendulum

As a simple pendulum swings back and forth, its displace-
ment can be modeled using a standard sinusoidal equation of
the form

where y represents the pendulum’s distance from a fixed point
and x represents total elapsed time. In this project, you will
use a motion detection device to collect distance and time data
for a swinging pendulum, then find a mathematical model that
describes the pendulum’s motion.

Collecting the Data
To start, construct a simple pendulum by fastening about 
1 meter of string to the end of a ball. Set up the Calculator
Based Laboratory (CBL) system with a motion detector or a
Calculator Based Ranger (CBR) system to collect time and
distance readings for between 2 and 4 seconds (enough time
to capture at least one complete swing of the pendulum). 
See the CBL/CBR guidebook for specific setup instructions.
Start the pendulum swinging in front of the detector, then 
activate the system. The data table below shows a sample set
of data collected as a pendulum swung back and forth in front
of a CBR.

Explorations
1. If you collected motion data using a CBL or CBR, a plot

of distance versus time should be shown on your graph-
ing calculator or computer screen. If you don’t have ac-
cess to a CBL/CBR, enter the data in the sample table
into your graphing calculator/computer. Create a scatter
plot for the data.

2. Find values for a, b, h, and k so that the equation 
cos fits the distance versus time data
plot. Refer to the information box on page 355 in this
chapter to review sinusoidal graph characteristics.

3. What are the physical meanings of the constants a and k
in the modeling equation cos ?
[Hint: What distances do a and k measure?]

4. Which, if any, of the values of a, b, h, and/or k would
change if you used the equation sin

to model the data set?
5. Use your calculator or computer to find a sinusoidal re-

gression equation to model this data set (see your 
grapher’s guidebook for instructions on how to do this).
If your calculator/computer uses a different sinusoidal
form, compare it to the modeling equation you found 
earlier, cos .1b1x - h22 + ky = a

1b1x - h22 + k
y = a

1b1x - h22 + ky = a

1b1x - h22 + k
y = a

y = a cos 1b1x - h22 + k

Total Elapsed Distance from the CBR 
Time (seconds) (meters)

0 0.665
0.1 0.756
0.2 0.855
0.3 0.903
0.4 0.927
0.5 0.931
0.6 0.897
0.7 0.837
0.8 0.753
0.9 0.663
1.0 0.582
1.1 0.525
1.2 0.509
1.3 0.495
1.4 0.521
1.5 0.575
1.6 0.653
1.7 0.741
1.8 0.825
1.9 0.888
2.0 0.921
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Analytic Trigonometry

It is no surprise that naturalists seeking to estimate wildlife populations
must have an understanding of geometry (a word that literally means
“earth measurement”). You will learn in this chapter that trigonometry,
with its many connections to triangles and circles, enables us to extend
the problem-solving tools of geometry significantly. On page 447 we will
apply a result called Heron’s Formula (which we prove trigonometrically)
to estimate the local density of a deer population.

5.1 Fundamental Identities

5.2 Proving Trigonometric
Identities

5.3 Sum and Difference 
Identities

5.4 Multiple-Angle Identities

5.5 The Law of Sines

5.6 The Law of Cosines

CHAPTER 5
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5.1 Fundamental Identities

Identities
As you probably realize by now, the symbol “ ” means several different things in
mathematics.

1. means equality of real numbers. It is a true sentence.

2. signifies equivalent expressions. It is a true sentence.

3. is an open sentence, because it can be true or false, depending on
whether x is a solution to the equation.

4. is an identity. It is a true sentence (very much like (2)
above), but with the important qualification that x must be in the domain of both
expressions. If either side of the equality is undefined, the sentence is meaningless.
Substituting into both sides of the equation in (3) gives a sentence that is math-
ematically false i.e., , whereas substituting into both sides of the iden-
tity in (4) gives a sentence that is meaningless.

Statements like “ ” are trigonometric identities
because they are true for all values of the variable for which both sides of the equation are
defined. The set of all such values is called the domain of validity of the identity. We will
spend much of this chapter exploring trigonometric identities, their proofs, their implica-
tions, and their applications.

Basic Trigonometric Identities
Some trigonometric identities follow directly from the definitions of the six basic
trigonometric functions. These basic identities consist of the reciprocal identities and
the quotient identities.

tan u = sin u/cos u” and “csc u = 1/sin u

-124 = 71-1

1x2
- 12/1x + 12 = x - 1

x2
+ 3 = 7

21x - 32 = 2x - 6

1 + 1 = 2

=
What you’ll learn about
• Identities
• Basic Trigonometric Identities
• Pythagorean Identities
• Cofunction Identities
• Odd-Even Identities
• Simplifying Trigonometric 

Expressions
• Solving Trigonometric Equations

... and why
Identities are important when 

working with trigonometric 
functions in calculus.

Chapter 5 Overview
Although the title of this chapter suggests that we are now moving into the analytic
phase of our study of trigonometric functions, the truth is that we have been in that phase
for several sections already. Once the transition is made from triangle ratios to functions
and their graphs, one is on analytic soil. But our primary applications of trigonometry so
far have been computational; we have not made full use of the properties of the functions
to study the connections among the trigonometric functions themselves. In this chapter
we will shift our emphasis more toward theory and proof, exploring where the properties
of these special functions lead us, often with no immediate concern for real-world rele-
vance at all. We hope in the process to give you an appreciation for the rich and intricate
tapestry of interlocking patterns that can be woven from the six basic trigonometric
functions—patterns that will take on even greater beauty later on when you can view
them through the lens of calculus.

Basic Trigonometric Identities
Reciprocal Identities

Quotient Identities

cot u =

cos u

sin u
tan u =

sin u

cos u

tan u =

1

cot u
cos u =

1

sec u
sin u =

1

csc u

cot u =

1

tan u
sec u =

1

cos u
csc u =

1

sin u
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Pythagorean Identities
Exploration 2 in Section 4.3 introduced you to the fact that, for any real number t, the
numbers and always sum to 1. This is clearly true for the quadrantal
angles that wrap to the points and and it is true for any other t
because cos t and sin t are the (signed) lengths of legs of a reference triangle with 
hypotenuse 1 (Figure 5.1). No matter what quadrant the triangle lies in, the Pythagorean
Theorem guarantees the following identity: 

If we divide each term of the identity by , we get an identity that involves tan-
gent and secant:

If we divide each term of the identity by , we get an identity that involves cotan-
gent and cosecant:

These three identities are called the Pythagorean identities, which we restate using the
shorthand notation for powers of trigonometric functions.

 1cot t22 + 1 = 1csc t22

1cos t22
1sin t22 +

1sin t22
1sin t22 =

1

1sin t22

1sin t22
 1 + 1tan t22 = 1sec t22

1cos t22
1cos t22 +

1sin t22
1cos t22 =

1

1cos t22

1cos t22
1cos t22 + 1sin t22 = 1.

10, �12,1�1, 021sin t221cos t22

EXPLORATION 1 Making a Point About Domain of Validity

1. is in the domain of validity of exactly three of the basic identities.
Which three?

2. For exactly two of the basic identities, one side of the equation is defined at
and the other side is not. Which two?

3. For exactly three of the basic identities, both sides of the equation are unde-
fined at Which three?u = 0.

u = 0

u = 0

y

x
cos t

sin t

(cos t, sin t)

(1, 0)

FIGURE 5.1 By the Pythagorean 
Theorem, 1cos t22 + 1sin t22 = 1.

Pythagorean Identities

 cot2 u + 1 = csc2 u

 1 + tan2 u = sec2 u

 cos2 u + sin2 u = 1

EXAMPLE 1  Using Identities
Find and if tan and 

SOLUTION We could solve this problem by the reference triangle techniques of
Section 4.3 (see Example 7 in that section), but we will show an alternate solution
here using only identities.

First, we note that , so 
Since , we have 
But , so cos u = 1/126.cos u 7 0

cos u = 1/sec u = 1/� 126.sec u = � 126
sec u = � 126.sec2 u = 1 + tan2 u = 1 + 52

= 26

cos u 7 0.u = 5cos usin u
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If you find yourself preferring the reference triangle method, that’s fine. Remember
that combining the power of geometry and algebra to solve problems is one of the
themes of this book, and the instinct to do so will serve you well in calculus.

Cofunction Identities
If C is the right angle in right , then angles A and B are complements. Notice
what happens if we use the usual triangle ratios to define the six trigonometric func-
tions of angles A and B (Figure 5.2).

Angle A:

Angle B:

Do you see what happens? In every case, the value of a function at A is the same as the
value of its cofunction at B. This always happens with complementary angles; in fact, it is
this phenomenon that gives a “co” function its name. The “co” stands for “complement.”

csc B =

r

x
cot B =

y

x
cos B =

y

r

sec B =

r

y
tan B =

x

y
sin B =

x

r

csc A =

r

y
cot A =

x

y
cos A =

x

r

sec A =

r

x
tan A =

y

x
sin A =

y

r

¢ABC

406 CHAPTER 5 Analytic Trigonometry

Finally,

Therefore, and Now try Exercise 1.cos u =

1

126
.sin u =

5

126

 sin u = 5 cos u = 5a 1

126
b =

5

126

 
sin u

cos u
= 5

 tan u = 5

Although our argument on behalf of these equations was based on acute angles in a tri-
angle, these equations are genuine identities, valid for all real numbers for which both
sides of the equation are defined. We could extend our acute-angle argument to produce
a general proof, but it will be easier to wait and use the identities of Section 5.3. We
will revisit this particular set of fundamental identities in that section.

Odd-Even Identities
We have seen that every basic trigonometric function is either odd or even. Either way,
the usual function relationship leads to another fundamental identity.

B

y
r

CA x

FIGURE 5.2 Angles A and B are 
complements in right ¢ABC.

Cofunction Identities

csc ap
2

- ub = sec usec ap
2

- ub = csc u

cot ap
2

- ub = tan utan ap
2

- ub = cot u

cos ap
2

- ub = sin usin ap
2

- ub = cos u
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Simplifying Trigonometric Expressions
In calculus it is often necessary to deal with expressions that involve trigonometric
functions. Some of those expressions start out looking fairly complicated, but it is often
possible to use identities along with algebraic techniques (e.g., factoring or combining
fractions over a common denominator) to simplify the expressions before dealing with
them. In some cases the simplifications can be dramatic.

SECTION 5.1 Fundamental Identities 407

Odd-Even Identities

csc 1-x2 = -csc x    sec 1-x2 = sec x     cot 1-x2 = -cot x

sin 1-x2 = -sin x      cos 1-x2 = cos x    tan 1-x2 = - tan x

EXAMPLE 2  Using More Identities
If , find 

SOLUTION This problem can best be solved using identities.

Sine is odd.

Cofunction identity
Now try Exercise 7.= -0.34

= -cos u

sin au -

p

2
b = -sin ap

2
- ub

sin 1u - p/22.cos u = 0.34

EXAMPLE 3  Simplifying by Factoring and Using Identities
Simplify the expression 

SOLUTION

Solve Algebraically

Pythagorean identity

Support Graphically
We recognize the graph of (Figure 5.3a) as the same as the
graph of (Figure 5.3b). Now try Exercise 13.y = sin x

y = sin3 x + sin x cos2 x 

= sin x

= sin x 112
sin3 x + sin x cos2 x = sin x 1sin2 x + cos2 x2

sin3 x + sin x cos2 x.

EXAMPLE 4  Simplifying by Expanding and Using Identities
Simplify the expression 

SOLUTION

Solve Algebraically

Pythagorean identity

(continued)

= sec2 x

=

1

cos2 x

tan x =

sin x
cos x

=

sin2 x

cos2 x
#

1

sin2 x

=

tan2 x

sin2 x

1a + b21a - b2 = a2
- b2

1sec x + 121sec x - 12
sin2 x

=

sec2 x - 1

sin2 x

31sec x + 121sec x - 124/sin2 x.
(a)

by [–4, 4]2 π ],[–2π

(b)

by [–4, 4]2 π ],[–2π

FIGURE 5.3 Graphical support of the
identity 
(Example 3)

sin3 x + sin x cos2 x = sin x.
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We will use these same simplifying techniques to prove trigonometric identities in 
Section 5.2.

Solving Trigonometric Equations
The equation-solving capabilities of calculators have made it possible to solve trigono-
metric equations without understanding much trigonometry. This is fine, to the extent
that solving equations is our goal. However, since understanding trigonometry is also a
goal, we will occasionally pause in our development of identities to solve some trigono-
metric equations with paper and pencil, just to get some practice in using the identities.

408 CHAPTER 5 Analytic Trigonometry

Support Graphically

The graphs of and appear to be identical, as

expected (Figure 5.4).
Now try Exercise 25.

y = sec2 xy =

1sec x + 121sec x - 12
sin2 x

(a)

by [–2, 4]2 π ],[–2π

(b)

by [–2, 4]2 π ],[–2π

FIGURE 5.4 Graphical support of the 
identity 

(Example 4)sec2 x.
1sec x - 12/sin2 x =1sec x + 12

EXAMPLE 5  Simplifying by Combining Fractions 
and Using Identities

Simplify the expression 

SOLUTION

Rewrite using common 
denominator.

Pythagorean identity

(We leave it to you to provide the graphical support.) Now try Exercise 37.

= sec x

=

1
cos x

=

1 - sin x

11 - sin x21cos x2

=

cos2 x - sin x + sin2 x

11 - sin x21cos x2

=

1cos x21cos x2 - 1sin x211 - sin x2
11 - sin x21cos x2

=

cos x

1 - sin x
#
cos x
cos x

-

sin x
cos x

#
1 - sin x

1 - sin x

cos x

1 - sin x
-

sin x
cos x

cos x

1 - sin x
-

sin x
cos x

.

EXAMPLE 6  Solving a Trigonometric Equation
Find all values of x in the interval that solve 

SOLUTION

Multiply both sides by sin x.

Pythagorean identity

cos x = 0  or  sin x = 0

1cos x21-sin2 x2 = 0

1cos x21cos2 x - 12 = 0

cos3 x - cos x = 0

 cos3 x = cos x

 
cos3 x

sin x
=

cos x

sin x

 
cos3 x

sin x
= cot x

cos3 x/sin x = cot x.30, 2p2
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We reject the possibility that because it would make both sides of the orig-
inal equation undefined.

The values in the interval that solve cos (and therefore 
are and Now try Exercise 51.3p/2.p/2cot x2 cos3 x/sin x =x = 030, 2p2

sin x = 0

EXAMPLE 7  Solving a Trigonometric Equation by Factoring
Find all solutions to the trigonometric equation 

SOLUTION Let The equation can be solved by factoring:

So, in the original equation, or Figure 5.5 shows that the 
solutions in the interval are , , and 3p/2.5p/6p/62p230,

sin x = -1.sin x = 1/2

 y =

1

2
  or  y = -1

 2y - 1 = 0  or  y + 1 = 0

 12y - 121y + 12 = 0

 2y2
+ y - 1 = 0

 2y2
+ y = 1

2y2
+ y = 1y = sin x.

2 sin2 x + sin x = 1.

y

x

(a)

1
2

y

x

(b)

–1

FIGURE 5.5 (a) sin has two solutions in 0, : and 
(b) has one solution in 0, : (Example 7)3p/2.22p3sin x = -1

5p/6.p/622p3x = 1/2

To get all real solutions, we simply add integer multiples of the period, , of the 
periodic function sin x:

Now try Exercise 57.

1n = 0, �1, �2, Á 2
x =

p

6
+ 2np or x =

5p

6
+ 2np or x =

3p

2
+ 2np

2p

You might try solving the equation in Example 7 on your grapher for the sake of com-
parison. Finding all real solutions still requires an understanding of periodicity, and
finding exact solutions requires the savvy to divide your calculator answers by It is
likely that anyone who knows that much trigonometry will actually find the algebraic
solution to be easier!

p.

y

x
0.7

FIGURE 5.6 There are two points on the
unit circle with x-coordinate 0.7. (Example 8)
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SECTION 5.1 EXERCISES

In Exercises 1–4, evaluate without using a calculator. Use the
Pythagorean identities rather than reference triangles. (See Example 1.)

1. Find and if and 

2. Find and if and 

3. Find and if and 

4. Find and if and 

In Exercises 5–8, use identities to find the value of the expression.

5. If , find 

6. If , find 

7. If , find 

8. If , find 

In Exercises 9–16, use basic identities to simplify the expression.

9. tan x cos x 10. cot x tan x

11. sec 12. cot u sin u

13. 14.

15. 16.
sin2 u + tan2 u + cos2 u

sec u
cos x - cos3 x

1 - cos2 u

sin u

1 + tan2 x

csc2 x

y sin 1p/2 - y2

tan (u - p/2).cot 1-u2 = 7.89

cos 1-u2.sin 1u - p/22 = 0.73

cot u.tan 1p/2 - u2 = -5.32

cos 1p/2 - u2.sin u = 0.45

tan u 6 0.cos u = 0.8tan usin u

sin u 6 0.sec u = 4cot utan u

cos u 7 0.tan u = 3csc usec u

sin u 7 0.tan u = 3/4cos usin u

In Exercises 17–22, simplify the expression to either 1 or 

17. sin x csc 

18. sec cos 

19. cot cot 

20. cot tan 

21.

22.

In Exercises 23–26, simplify the expression to either a constant or a 
basic trigonometric function. Support your result graphically.

23.

24.

25.

26.
sec2 u - tan2 u

cos2 v + sin2 v

1sec2 x + csc2 x2 - 1tan2 x + cot2 x2

1 + tan x

1 + cot x

tan 1p/2 - x2 csc x

csc2 x

sec2 1-x2 - tan2 x

sin2 1-x2 + cos2 1-x2
1-x21-x2
1p/2 - x21-x2
1-x21-x2

1-x2
-1.

QUICK REVIEW 5.1 (For help, go to Sections A.2, A.3, and 4.7.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, evaluate the expression.

1.

2.

3.

4. sin-1 a -  

5

13
b

cos-1 a -  

4

5
b

cos-1 a 3

5
b

sin-1 a 12

13
b

In Exercises 5–8, factor the expression into a product of linear 
factors.

5. 6.

7. 8.

In Exercises 9–12, simplify the expression.

9. 10.

11. 12.
x

x - y
-

y

x + y

x + y

11/x2 + 11/y2

a

x
+

b

y

1
x

-

2
y

2v2
- 5v - 32x2

- 3xy - 2y2

4u2
+ 4u + 1a2

- 2ab + b2

EXAMPLE 8  Solving a Trig Equation with a Calculator
Find all solutions to the equation , using a calculator where needed.

SOLUTION Figure 5.6 shows that there are two points on the unit circle with an 
x-coordinate of 0.7. We do not recognize this value as one of our special triangle 
ratios, but we can use a graphing calculator to find the smallest positive and negative
values for which by intersecting the graphs of and 
(Figure 5.7).

The two values are predictably opposites of each other: Using the period
of cosine (which is ), we get the complete solution set: 

Now try Exercise 63.�1, �2, �3, Á 6. 5�0.7954 + 2np|n = 0,2p
t L �0.7954.

y = 0.7y = cos xcos x = 0.7

cos t = 0.7
4

2

–1
–2

–4

y

3

–3

x
–5 –3 –1 31 5

y = 0.7

y = cos x

FIGURE 5.7 Intersecting the graphs of
and gives two solutions to

the equation (Example 8)cos t = 0.7.
y = 0.7y = cos x
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In Exercises 27–32, use the basic identities to change the expression 
to one involving only sines and cosines. Then simplify to a basic
trigonometric function.

27.

28.

29. sin x cos x tan x sec x csc x

30.

31.

32.

In Exercises 33–38, combine the fractions and simplify to a multiple of
a power of a basic trigonometric function e.g., 

33. 34.

35. 36.

37. 38.

In Exercises 39–46, write each expression in factored form as an 
algebraic expression of a single trigonometric function 
e.g., .

39. 40.

41.

42. 43.

44.

45.

46.

In Exercises 47–50, write each expression as an algebraic expression of
a single trigonometric function e.g., 

47. 48.

49. 50.

In Exercises 51–56, find all solutions to the equation in the interval
You do not need a calculator.

51.

52.

53.

54.

55.

56.

In Exercises 57–62, find all solutions to the equation. You do not need a
calculator.

57.

58. 2 sin2 x + 3 sin x + 1 = 0

4 cos2 x - 4 cos x + 1 = 0

2 sin2 x = 1

tan2 x = 3

sin x tan2 x = sin x

tan x sin2 x = tan x

12 tan x cos x - tan x = 0

2 cos x sin x - cos x = 0

30, 2p2.

tan2 x

sec x + 1

sin2 x

1 + cos x

tan2 a - 1

1 + tan a

1 - sin2 x

1 + sin x

2 sin x + 32.1
sec2 x - sec x + tan2 x

4 tan2 x -

4

cot x
+ sin x csc x

sin2 x +

2

csc x
+ 1

cos x - 2 sin2 x + 1sin x - cos2 x - 1

1 - 2 sin x + 11 - cos2 x2
1 - 2 sin x + sin2 xcos2 x + 2 cos x + 1

12 sin x + 321sin x - 1221

sin x

1 - cos x
+

1 - cos x

sin x

sec x

sin x
-

sin x

cos x

1

sec x - 1
-

1

sec x + 1

sin x

cot2 x
-

sin x

cos2 x

1

1 - sin x
+

1

1 + sin x

1

sin2 x
+

sec2 x

tan2 x

3 tan2 x2.1

sec2 x csc x

sec2 x + csc2 x

tan x

csc2 x
+

tan x

sec2 x

1sec y - tan y21sec y + tan y2
sec y

sin u - tan u cos u + cos 1p/2 - u2
1sin x21tan x + cot x2

59. 60.

61. 62.

In Exercises 63–68, find all solutions to the trigonometric equation, 
using a calculator where needed.

63. 64.

65. 66.

67. 68.

In Exercises 69–74, make the suggested trigonometric substitution, and
then use Pythagorean identities to write the resulting function as a mul-
tiple of a basic trigonometric function.

69.

70.

71.

72.

73.

74.

Standardized Test Questions
75. True or False If , then 

Justify your answer.

76. True or False The domain of validity for the identity
is the set of all real numbers. Justify your

answer.

You should answer these questions without using a calculator.

77. Multiple Choice Which of the following could not be
set equal to sin x as an identity?

(A) (B)

(C) (D) tan x sec x

(E)

78. Multiple Choice Exactly four of the six basic trigono-
metric functions are 

(A) odd. (B) even.

(C) periodic. (D) continuous.

(E) bounded.

79. Multiple Choice A simpler expression for
is

(A) (B) 

(C) (D) 

(E)
80. Multiple Choice How many numbers between 0 and 

solve the equation 

(A) None (B) One

(C) Two (D) Three

(E) Four

3 cos2 x + cos x = 2?
2p

sec2 u.

cot2 u.tan2 u.

cos2 u.sin2 u.

1sec u + 121sec u - 12

-sin 1-x2
21 - cos2 x

cos ax -

p

2
bcos ap

2
- xb

sin u = tan u cos u

csc x = 34.sec 1x - p/22 = 34

x = 10 sec u2x2
- 100,

x = 9 tan u2x2
+ 81,

x = 6 sin u236 - x2,

x = 3 sec u2x2
- 9,

x = tan u2x2
+ 1,

x = cos u21 - x2,

sin2 x = 0.4cos2 x = 0.4

tan x = 5sin x = 0.30

cos x = 0.75cos x = 0.37

2 sin2 x + 3 sin x = 2cos 1sin x2 = 1

3 sin t = 2 cos2 tsin2 u - 2 sin u = 0

SECTION 5.1 Fundamental Identities 411
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Explorations
81. Write all six basic trigonometric functions entirely in terms of

sin x.

82. Write all six basic trigonometric functions entirely in terms of
cos x.

83. Writing to Learn Graph the functions and
in the standard trigonometric viewing window.

Describe the apparent relationship between these two graphs
and verify it with a trigonometric identity.

84. Writing to Learn Graph the functions and
in the standard trigonometric

viewing window. Describe the apparent relationship between
these two graphs and verify it with a trigonometric identity.

85. Orbit of the Moon Because
its orbit is elliptical, the distance 
from the Moon to the Earth in miles 
(measured from the center of the
Moon to the center of the Earth)
varies periodically. On Friday, 
January 23, 2009, the Moon was at 
its apogee (farthest from the Earth).
The distance of the Moon from the
Earth each Friday from January 23 
to March 27 is recorded in Table 5.1.

y = tan2 x
y = sec2 x

y = -cos2 x
y = sin2 x

(a) Draw a scatter plot of the data, using “day” as x and 
“distance” as y.

(b) Use your calculator to do a sine regression of y on x. Find
the equation of the best-fit sine curve and superimpose its
graph on the scatter plot.

(c) What is the approximate number of days from apogee to
apogee? Interpret this number in terms of the orbit of the
moon.

(d) Approximately how far is the Moon from the Earth at
perigee (closest distance)?

(e) Since the data begin at apogee, perhaps a cosine curve
would be a more appropriate model. Use the sine curve in
part (b) and a cofunction identity to write a cosine curve
that fits the data.

86. Group Activity Divide your class into six groups, each
assigned to one of the basic trigonometric functions. With your
group, construct a list of five different expressions that can be
simplified to your assigned function. When you have finished,
exchange lists with your “cofunction” group to check one an-
other for accuracy.

Extending the Ideas
87. Prove that 

88. Find all values of k that result in having
an infinite solution set.

89. Use the cofunction identities and odd-even identities to prove
that 
Hint: 

90. Use the cofunction identities and odd-even identities to prove
that 
Hint: 

91. Use the identity in Exercise 89 to prove that in any 

92. Use the identities in Exercises 89 and 90 to find an identity for
simplifying tan .1p - x2
sin 1A + B2 = sin C.

¢ABC,

cos 1p - x2 = cos 1p/2 - 1x - p/222.43
cos 1p - x2 = -cos x.

sin 1p - x2 = sin 1p/2 - 1x - p/222.43
sin 1p - x2 = sin x.

sin2 x + 1 = k sin x

sin4 u - cos4 u = sin2 u - cos2 u.

412 CHAPTER 5 Analytic Trigonometry

Table 5.1 Distance from Earth to Moon

Date Day Distance

Jan 23 0 251,966
Jan 30 7 238,344
Feb 6 14 225,784
Feb 13 21 240,385
Feb 20 28 251,807
Feb 27 35 236,315
Mar 6 42 226,101
Mar 13 49 242,390
Mar 20 56 251,333
Mar 27 63 234,347

Source: The World Almanac and Book of Facts 2009.
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Proving Identities
Trigonometric identity proofs follow General Strategies I. We are told that two expres-
sions are equal, and the object is to prove that they are equal. We do this by changing

SECTION 5.2 Proving Trigonometric Identities 413

5.2 Proving Trigonometric
Identities

A Proof Strategy
We now arrive at the best opportunity in the precalculus curriculum for you to try
your hand at constructing analytic proofs: trigonometric identities. Some are easy and
some can be quite challenging, but in every case the identity itself frames your work
with a beginning and an ending. The proof consists of filling in what lies between.

The strategy for proving an identity is very different from the strategy for solving an
equation, most notably in the very first step. Usually the first step in solving an equa-
tion is to write down the equation. If you do this with an identity, however, you will
have a beginning and an ending—with no proof in between! With an identity, you begin
by writing down one function and end by writing down the other. Example 1 will illus-
trate what we mean.

What you’ll learn about
• A Proof Strategy
• Proving Identities
• Disproving Non-Identities
• Identities in Calculus

... and why
Proving identities gives you 
excellent insights into the way
mathematical proofs are con-
structed.

EXAMPLE 1  Proving an Algebraic Identity

Prove the algebraic identity 

SOLUTION We prove this identity by showing a sequence of expressions, each
one easily seen to be equivalent to its preceding expression:

Factoring difference
of squares

Algebraic manipulation

Reducing fractions

Algebraic manipulation

Notice that the first thing we wrote down was the expression on the left-hand side
(LHS), and the last thing we wrote down was the expression on the right-hand side
(RHS). The proof would have been just as legitimate going from RHS to LHS, but it
is more natural to move from the more complicated side to the less complicated side.
Incidentally, the margin notes on the right, called “floaters,” are included here for in-
structional purposes and are not really part of the proof. A good proof should consist
of steps for which a knowledgeable reader could readily supply the floaters.

Now try Exercise 1.

These, then, are our first general strategies for proving an identity:

= 2
= x + 1 - x + 1

= 1x + 12112 - 1x - 12112
= 1x + 12a x - 1

x - 1
b - 1x - 12a x + 1

x + 1
b

x2
- 1

x - 1
-

x2
- 1

x + 1
=

1x + 121x - 12
x - 1

-

1x + 121x - 12
x + 1

x2
- 1

x - 1
-

x2
- 1

x + 1
= 2.

General Strategies I

1. The proof begins with the expression on one side of the identity.

2. The proof ends with the expression on the other side.

3. The proof in between consists of showing a sequence of expressions, each one
easily seen to be equivalent to its preceding expression.
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one expression into the other by a series of intermediate steps that follow the important
rule that every intermediate step yields an expression that is equivalent to the first.

The changes at every step are accomplished by algebraic manipulations or identities,
but the manipulations or identities should be sufficiently obvious as to require no addi-
tional justification. Since “obvious” is often in the eye of the beholder, it is usually
safer to err on the side of including too many steps than too few.

By working through several examples, we try to give you a sense for what is appropri-
ate as we illustrate some of the algebraic tools that you have at your disposal.

414 CHAPTER 5 Analytic Trigonometry

EXAMPLE 2  Proving an Identity
Prove the identity: 

SOLUTION We begin by deciding whether to start with the expression on the right
or the left. It is usually best to start with the more complicated expression, as it is eas-
ier to proceed from the complex toward the simple than to go in the other direction.
The expression on the left is slightly more complicated because it involves two terms.

(Remember that the “floaters” are not really part of the proof.)
Now try Exercise 13.

= sec x csc x

=

1
cos x

#
1

sin x

=

1

cos x # sin x

=

sin2 x + cos2 x

cos x # sin x

=

sin x
cos x

#
sin x

sin x
+

cos x

sin x
#
cos x
cos x

tan x + cot x =

sin x
cos x

+

cos x

sin x

tan x + cot x = sec x csc x.

Basic identities

Setting up common
denominator

Pythagorean identity

(A step you could 
choose to omit)

Basic identities

The preceding example illustrates three general strategies that are often useful in prov-
ing trigonometric identities.

General Strategies II

1. Begin with the more complicated expression and work toward the less compli-
cated expression.

2. If no other move suggests itself, convert the entire expression to one involving
sines and cosines.

3. Combine fractions by combining them over a common denominator.

EXAMPLE 3  Identifying and Proving an Identity
Match the function

with one of the following. Then confirm the match with a proof.

(i) 2 cot x csc x (ii) 
1

sec x

ƒ1x2 =

1

sec x - 1
+

1

sec x + 1
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The next example illustrates how the algebraic identity 
can be used to set up a Pythagorean substitution.

1a + b21a - b2 = a2
- b2

SECTION 5.2 Proving Trigonometric Identities 415

SOLUTION Figures 5.8a, b, and c show the graphs of the functions 
, and , respectively. The graphs in (a) and (c) show that

is not equal to the expression in (ii). From the graphs in (a) and (b), it appears
that is equal to the expression in (i). To confirm, we begin with the expression
for .

Common denominator

Pythagorean identity

Basic identities

Now try Exercise 55.= 2 cot x csc x

=

2 cos x

sin x
#

1

sin x

=

2
cos x

#
cos2 x

sin2 x

=

2 sec x

tan2 x

=

sec x + 1 + sec x - 1

sec2 x - 1

=

sec x + 1

1sec x - 121sec x + 12 +

sec x - 1

1sec x - 121sec x + 12

1

sec x - 1
+

1

sec x + 1

ƒ1x2ƒ1x2ƒ1x2 y = 1/sec xy = 2 cot x csc x
y =  ƒ1x2,

(a)

by [–4, 4]2 π ],[–2π

f �x� � �
sec x

1
� 1
� � �

sec x
1

� 1
�

(b)

by [–4, 4]2 π ],[–2π
y = 2 cot cscx x

(c)

by [–4, 4]2 π ],[–2π

�
se

1
c x
�y =

FIGURE 5.8 A grapher can be useful for
identifying possible identities. (Example 3)

EXAMPLE 4  Setting up a Difference of Squares
Prove the identity: 

SOLUTION The left-hand expression is slightly more complicated, as we can han-
dle extra terms in a numerator more easily than in a denominator. So we begin with
the left.

Setting up a difference of squares

Pythagorean identity

Now try Exercise 39.

Notice that we kept in factored form in the hope that we could eventu-
ally eliminate the factor cos t and be left with the numerator we need. It is always a good
idea to keep an eye on the “target” expression toward which your proof is aimed.

1cos t211 + sin t2

=

1 + sin t

cos t

=

1cos t211 + sin t2
cos2 t

=

1cos t211 + sin t2
1 - sin2 t

cos t

1 - sin t
=

cos t

1 - sin t
#
1 + sin t

1 + sin t

cos t/11 - sin t2 = 11 + sin t2/cos t.

General Strategies III

1. Use the algebraic identity to set up applications 
of the Pythagorean identities.

2. Always be mindful of the “target” expression, and favor manipulations that 
bring you closer to your goal.

1a + b21a - b2 = a2
- b2
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In more complicated identities (as in word ladders) it is sometimes helpful to see if both
sides can be manipulated toward a common intermediate expression. The proof can
then be reconstructed in a single path.

416 CHAPTER 5 Analytic Trigonometry

EXAMPLE 5  Working from Both Sides
Prove the identity: 

SOLUTION Both sides are fairly complicated, but the left-hand side looks as
though it needs more work. We start on the left.

Pythagorean identity

Factor

At this point it is not clear how we can get from this expression to the one on the
right-hand side of our identity. However, we now have reason to believe that the
right-hand side must simplify to csc , so we try simplifying the right-hand side.

Basic identities

Distribute the product.

Now we can reconstruct the proof by going through csc as an intermediate step.

Intermediate step

Now try Exercise 41.

Disproving Non-Identities
Obviously, not every equation involving trigonometric expressions is an identity. How
can we spot a non-identity before embarking on a futile attempt at a proof? Try the fol-
lowing exploration.

= 1cot u21sec u - tan u2
= a cos u

sin u
b a 1

cos u
-

sin u
cos u

b
=

1

sin u
- 1

= csc u - 1

=

1csc u + 121csc u - 12
csc u + 1

cot2 u

1 + csc u
=

csc2 u - 1

1 + csc u

u - 1

= csc u - 1

=

1

sin u
- 1

1cot u21sec u - tan u2 = a cos u

sin u
b a 1

cos u
-

sin u
cos u

b
u - 1

= csc u - 1

=

1csc u + 121csc u - 12
csc u + 1

cot2 u

1 + csc u
=

csc2 u - 1

1 + csc u

cot2 u/11 + csc u2 = (cot u21sec u - tan u).

EXPLORATION 1 Confirming a Non-Identity

Prove or disprove that this is an identity: 
1. Graph and in the same window. Interpret the graphs to

make a conclusion about whether or not the equation is an identity.

2. With the help of the graph, find a value of x for which 

3. Does the existence of the x-value in part (2) prove that the equation is not an
identity?

cos 2x Z 2 cos x.

y = 2 cos xy = cos 2x
cos 2x =  2 cos x.
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Exploration 1 suggests that we can use graphers to help confirm a non-identity, since
we only have to produce a single value of x for which the two compared expressions are
defined but unequal. On the other hand, we cannot use graphers to prove that an equa-
tion is an identity, since, for example, the graphers can never prove that two irrational
numbers are equal. Also, graphers cannot show behavior over infinite domains.

Identities in Calculus
In most calculus problems where identities play a role, the object is to make a compli-
cated expression simpler for the sake of computational ease. Occasionally it is actually
necessary to make a simple expression more complicated for the sake of computational
ease. Each of the following identities ( just a sampling of many) represents a useful sub-
stitution in calculus wherein the expression on the right is simpler to deal with (even
though it does not look that way). We prove one of these identities in Example 6 and
leave the rest for the exercises or for future sections.

1.

2.

3.

4.

5.

6. sin2 x cos5 x = 1sin2 x - 2 sin4 x + sin6 x21cos x2
sin5 x = 11 - 2 cos2 x + cos4 x21sin x2
cos2 x =

1

2
+

1

2
 cos 2x

sin2 x =

1

2
-

1

2
 cos 2x

sec4 x = (1 + tan2 x21sec2 x2
cos3 x = (1 - sin2 x21cos x2

SECTION 5.2 Proving Trigonometric Identities 417

4. Graph and in the same window. Interpret the
graphs to make a conclusion about whether or not is
an identity.

5. Do the graphs in part (4) prove that is an identity?
Explain your answer.

cos 2x = cos2 x - sin2 x

cos 2x = cos2 x - sin2 x
y = cos2 x - sin2 xy = cos 2x

EXAMPLE 6  Proving an Identity Useful in Calculus
Prove the following identity:

SOLUTION We begin with the expression on the left.

Now try Exercise 51.

 = 1sin2 x - 2 sin4 x + sin6 x21cos x2
 = 1sin2 x211 - 2 sin2 x + sin4 x21cos x2
 = 1sin2 x211 - sin2 x22 1cos x2
 = 1sin2 x21cos2 x22 1cos x2

 sin2 x cos5 x = sin2 x cos4 x cos x

sin2 x cos5 x = 1sin2 x - 2 sin4 x + sin6 x21cos x2.
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418 CHAPTER 5 Analytic Trigonometry

QUICK REVIEW 5.2 (For help, go to Section 5.1.)

SECTION 5.2 EXERCISES

In Exercises 1–4, prove the algebraic identity by starting with the LHS
expression and supplying a sequence of equivalent expressions that
ends with the RHS expression.

1.

2.

3.

4.

In Exercises 5–10, tell whether or not is an identity.

5.

6.

7.

8.

9.

10.

In Exercises 11–51, prove the identity.

11.

12.

13.

14.

15.

16.

17.

18.

19. 11 - sin b211 + csc b2 = 1 - sin b + csc b - sin b csc b

sec2 u - 1

sin u
=

sin u

1 - sin2 u

cos2 x - 1

cos x
= - tan x sin x

tan x + sec x =

cos x

1 - sin x

11 - cos u211 + cos u2
cos2 u

= tan2 u

1cos x - sin x22 = 1 - 2 sin x cos x

11 - tan x22 = sec2 x - 2 tan x

1sin x21cot x + cos x tan x2 = cos x + sin2 x

1cos x21tan x + sin x cot x2 = sin x + cos2 x

ƒ1x2 =

sin 2x

2

ƒ1x2 = 1sin3 x211 + cot2 x2
ƒ1x2 = cos 1x - p/22
ƒ1x2 = cos x # cot x

ƒ1x2 =

tan x

sec x

ƒ1x2 =

sin2 x + cos2 x

csc x

ƒ1x2 = sin x

1x - 121x + 22 - 1x + 121x - 22 = 2x

x2
- 4

x - 2
-

x2
- 9

x + 3
= 5

1
x

-

1

2
=

2 - x

2x

x3
- x2

x
- 1x - 121x + 12 = 1 - x

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
sin A cos B + cos A sin B

cos A cos B - sin A sin B
=

tan A + tan B

1 - tan A tan B

sin t

1 - cos t
+

1 + cos t

sin t
=

211 + cos t2
sin t

1 + cos x

1 - cos x
=

sec x + 1

sec x - 1

sin x - cos x

sin x + cos x
=

2 sin2 x - 1

1 + 2 sin x cos x

sin t

1 + cos t
+

1 + cos t

sin t
= 2 csc t

tan x

sec x - 1
=

sec x + 1

tan x

1 - cos u

sin u
=

sin u

1 + cos u

1x sin a + y cos a22 + (x cos a - y sin a22 = x2
+ y2

tan4 t + tan2 t = sec4 t - sec2 t

cos4 x - sin4 x = cos2 x - sin2 x

tan2 u - sin2 u = tan2 u sin2 u

cot2 x - cos2 x = cos2 x cot2 x

cot v - 1

cot v + 1
=

1 - tan v

1 + tan v

tan2 x

sec x + 1
=

1 - cos x

cos x

sec x + 1

tan x
=

sin x

1 - cos x

cos b

1 + sin b
=

1 - sin b

cos b

1

tan b
+ tan b = sec b csc b

1 + tan2 x

sin2 x + cos2 x
= sec2 x

sin2 a - cos2 a = 1 - 2 cos2 a

1cos t - sin t22 + 1cos t + sin t22 = 2

1

1 - cos x
+

1

1 + cos x
= 2 csc2 x

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, write the expression in terms of sines and cosines
only. Express your answer as a single fraction.

1. csc x sec x 2.

3. 4.

5. 6.
sec a

cos a
-

sin a

sec a cos2 a

sin x

csc x
+

cos x

sec x

sin u cot u - cos u tan ucos x csc x + sin x sec x

tan x + cot x+

In Exercises 7–12, determine whether or not the equation is an
identity. If not, find a single value of x for which the two expres-
sions are not equal.

7. 8.

9. 10.

11. 12. ln x2
= 2 ln xln 

1
x

= - ln x

2sec2 x - 1 = tan x21 - cos2 x = sin x

23 x3
= x2x2

= x
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41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

In Exercises 52–57, match the function with an equivalent expression
from the following list. Then confirm the match with a proof. (The
matching is not one-to-one.)

(a) (b) (c) 

(d) (e) 

52. 53.

54. 55.

56. 57.

Standardized Test Questions
58. True or False The equation is an identity.

Justify your answer.

59. True or False The equation is an identity.
Justify your answer.

You should answer these questions without using a calculator.

60. Multiple Choice If is an identity with 
domain of validity D, which of the following must be true?

I. For any x in D, is defined.

II. For any x in is defined.

III. For any x in D, 

(A) None

(B) I and II only

(C) I and III only

(D) III only

(E) I, II, and III

61. Multiple Choice Which of these is an efficient first step

in proving the identity 
sin x

1 - cos x
=

1 + cos x

sin x
 ?

ƒ1x2 = g1x2.
D, g1x2

ƒ1x2
ƒ1x2 = g1x2

11x22 = x

2x2
= x

1

sec x - tan x

1

tan x + cot x

1

1 + sin x
+

1

1 - sin x
sec2 x + csc2 x

11 + sec x211 - cos x21 + sin x

cos x

sin x cos xtan x sin x

2 sec2 xsec x + tan xsec2 x csc2 x

sin5 x = 11 - 2 cos2 x + cos4 x21sin x2
sec4 x = 11 + tan2 x21sec2 x2
cos3 x = (1 - sin2 x21cos x2

1 - 3 cos x - 4 cos2 x

sin2 x
=

1 - 4 cos x

1 - cos x

2 tan x

1 - tan2 x
+

1

2 cos2 x - 1
=

cos x + sin x

cos x - sin x

cos x

1 + sin x
+

cos x

1 - sin x
= 2 sec x

tan x

1 - cot x
+

cot x

1 - tan x
= 1 + sec x csc x

sin3 x cos3 x = 1sin3 x - sin5 x21cos x2
cos5 x = 11 - 2 sin2 x + sin4 x21cos x2
sin5 x cos2 x = 1cos2 x - 2 cos4 x + cos6 x21sin x2
sin2 x cos3 x = 1sin2 x - sin4 x21cos x2

(A)

(B)

(C)

(D)

(E)

62. Multiple Choice Which of the following could be an 
intermediate expression in a proof of the identity

(A)

(B)

(C)

(D)

(E)

63. Multiple Choice If is an identity and

which of the following must be false?

(A) 

(B) 

(C) 

(D) 

(E) 

Explorations
In Exercises 64–69, identify a simple function that has the same graph.
Then confirm your choice with a proof.

64. sin x cot x

65. cos x tan x

66.

67.

68.

69.

70. Writing to Learn Let be any number that is in the 
domain of all six trig functions. Explain why the natural 
logarithms of all six basic trig functions of sum to 0.

71. If A and B are complementary angles, prove that

72. Group Activity If your class contains 2n students, write
the two expressions from n different identities on separate

sin2A + sin2 B = 1.

u

u

1sec2 x211 - sin2 x2
sin x

tan x

csc x

sin x
-

cot x csc x

sec x

sin x

csc x
+

cos x

sec x

ƒ1x2g1x2 7 0

ƒ1x2 - g1x2 = 0

k = 1

ƒ1x2 = 0

g1x2 Z 0

ƒ1x2
g1x2 = k,

ƒ1x2 = g1x2
cos u - cot u

cos u

1 + sin u

sin u + 1

cos u

tan u + csc u

sin u + cos u

tan u + sec u =

cos u

1 - sin u
?

sin x

1 - cos x
=

sin x

1 - cos x
#
1 + cos x

1 + cos x

sin x

1 - cos x
=

sin x

1 - cos x
#
1 - cos x

1 - cos x

sin x

1 - cos x
=

sin x

1 - cos x
#
csc x

csc x

sin x

1 - cos x
=

sin x

sin2 x + cos2 x - cos x

sin x

1 - cos x
=

cosap
2

- xb
1 - cos x

SECTION 5.2 Proving Trigonometric Identities 419
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pieces of paper. (If your class contains an odd number of stu-
dents, invite your teacher to join you for this activity.) You can
use the identities from Exercises 11–51 in this section or from
other textbooks, but be sure to write them all in the variable x.
Mix up the slips of paper and give one to each student in your
class. Then see how long it takes you as a class, without look-
ing at the book, to pair yourselves off as identities. (This activ-
ity takes on an added degree of difficulty if you try it without
calculators.)

Extending the Ideas
In Exercises 73–78, confirm the identity.

73.

74.

75.

76.

77. ln 

78. ln ƒsec u + tan u ƒ + ln ƒsec u - tan u ƒ = 0

ƒ tan x ƒ = ln ƒsin x ƒ - ln ƒcos x ƒ

cos6 x - sin6 x = 1cos2 x - sin2 x211 - cos2 x sin2 x2
sin6 x + cos6 x = 1 - 3 sin2 x cos2 x

A
1 + cos t

1 - cos t
=

1 + cos t

ƒsin t ƒ

A
1 - sin t

1 + sin t
=

1 - sin t

ƒcos t ƒ

79. Writing to Learn Let 

(a) Use graphs and tables to decide whether 

(b) Find a value for h so that the graph of in
appears to be a sinusoid. Give a

convincing argument that is a sinusoid.

80. Hyperbolic Functions The hyperbolic trigonometric
functions are defined as follows:

Confirm the identity.

(a)

(b) 

(c) 

81. Writing to Learn Write a paragraph to explain why

appears to be an identity when the two sides are graphed in a
decimal window. Give a convincing argument that it is not an
identity.

cos x = cos x + sin 110px2

coth2 x - 1 = csch2 x

1 - tanh2 x = sech2 x

cosh2 x - sinh2 x = 1

coth x =

1

tanh x
sech x =

1

cosh x
csch x =

1

sinh x

sinh x =

ex
- e-x

2
  cosh x =

ex
+ e-x

2
  tanh x =

sinh x

cosh x

y3

3-2p, 2p4 by 3-h, h4
y3 = y1 - y2

y1 = y2.

sin x4/0.001 and y2 = cos x.
y1 = 3sin 1x + 0.0012 -

420 CHAPTER 5 Analytic Trigonometry
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We could also show easily that

As you might expect, there are formulas for , , and ,
but Exploration 1 shows that they are not the ones our instincts would suggest. In a sense,
that makes them all the more interesting. We will derive them all, beginning with the for-
mula for 

Figure 5.9a on the next page shows angles u and v in standard position on the unit cir-
cle, determining points A and B with coordinates cos u, sin u and cos v, sin v , re-
spectively. Figure 5.9b shows the triangle ABO rotated so that the angle is
in standard position. The angle determines point C with coordinates 

The chord opposite angle has the same length in both circles, even though the coordi-
natization of the endpoints is different. Use the distance formula to find the length in
each case, and set the formulas equal to each other:

Square both sides to eliminate the radical and expand the binomials to get

cos u cos v + sin u sin v = cos u
2 - 2 cos u cos v - 2 sin u sin v = 2 - 2 cos u

= 1cos2 u + sin2 u2 + 1 - 2 cos u

1cos2 u + sin2 u2 + 1cos2 v + sin2 v2 - 2 cos u cos v - 2 sin u sin v

= cos2 u - 2 cos u + 1 + sin2 u

cos2 u - 2 cos u cos v + cos2 v + sin2 u - 2 sin u sin v + sin2 v

21cos v - cos u22 + 1sin v - sin u22 = 21cos u - 122 + 1sin u - 022
 AB = CD

u

1cos u, sin u2.u

u = u - v
2121

cos 1u - v2.

tan 1u �  v2cos 1u �  v2sin 1u �  v2
cos 1u - v) Z  cos 1u2 - cos 1v2  and  sin 1u - v2 Z sin 1u2 - sin 1v2.
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5.3 Sum and Difference Identities

Cosine of a Difference
There is a powerful instinct in all of us to believe that all functions obey the 
following law of additivity:

In fact, very few do. If there were a hall of fame for algebraic blunders, the following
would probably be the first two inductees:

So, before we derive the true sum formulas for sine and cosine, let us clear the air with
the following exploration.

1u + v = 1u + 1v

1u + v22 = u2
+ v2

ƒ1u + v2 = ƒ1u) + ƒ1v2

What you’ll learn about
• Cosine of a Difference
• Cosine of a Sum
• Sine of a Difference or Sum
• Tangent of a Difference or 

Sum
• Verifying a Sinusoid 

Algebraically

... and why
These identities provide clear 
examples of how different the 
algebra of functions can be 
from the algebra of real 
numbers.

EXPLORATION 1 Getting Past the Obvious but Incorrect Formulas

1. Let 
Find Find 
Does 

2. Let and 
Find Find 
Does 

3. Find your own values of u and v that will confirm that
tan 1u + v2 Z tan 1u2 + tan 1v2.

cos 1u + v2 = cos 1u2 + cos 1v2?cos 1u2 + cos 1v2.cos 1u + v2.v = 2p.u = 0

sin 1u + v2 = sin 1u2 + sin 1v2?sin 1u2 + sin 1v2.sin 1u + v2.u = p and v = p/2.
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Finally, since , we can write

 cos 1u - v2 = cos u cos v + sin u sin v.

u = u - v

422 CHAPTER 5 Analytic Trigonometry

EXAMPLE 1  Using the Cosine-of-a-Difference Identity
Find the exact value of cos 15 without using a calculator.

SOLUTION The trick is to write as ; then we can use our
knowledge of the special angles.

Cosine difference identity

Now try Exercise 5.

Cosine of a Sum
Now that we have the formula for the cosine of a difference, we can get the formula for
the cosine of a sum almost for free by using the odd-even identities.

Cosine difference identity

Odd-even identities

We can combine the sum and difference formulas for cosine as follows:

= cos u cos v - sin u sin v

= cos u cos v + sin u 1-sin v2
= cos u cos 1-v2 + sin u sin 1-v2

cos 1u + v2 = cos 1u - 1-v22

 =

16 + 12

4

 = a12

2
b a13

2
b + a12

2
b a1

2
b

 = cos 45° cos 30° + sin 45° sin 30°

 cos 15° = cos 145° - 30°2
cos 145° - 30°2cos 15°

°

Cosine of a Sum or Difference

(Note the sign switch in either case.)

cos 1u �  v2 = cos u cos v < sin u sin v

We pointed out in Section 5.1 that the cofunction identities would be easier to prove
with the results of Section 5.3. Here is what we mean.

y

x

(b)

θ

C(cos , sin )θ θ

D(1, 0)O

y

x

(a)

A(cos u, sin u)

B(cos v, sin v) v

u

O�

FIGURE 5.9 Angles u and v are in standard
position in (a), while angle is in
standard position in (b). The chords shown in
the two circles are equal in length.

u = u - v

EXAMPLE 2  Confirming Cofunction Identities
Prove the identities (a) and

(b)

SOLUTION

(a) Cosine sum identity

(b)
by previous proof

Now try Exercise 41.= cos x

= cos 10 + x2
sin u = cos 11p/22 - u2sin ap

2
- xb = cos ap

2
- ap

2
- xb b

= sin x

= 0 # cos x + 1 # sin x

cos ap
2

- xb = cos ap
2
b  cos x + sin ap

2
b  sin x

sin 11p/22 - x2 = cos x.

cos 11p/22 - x2 = sin x
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Sine of a Difference or Sum
We can use the cofunction identities in Example 2 to get the formula for the sine of a
sum from the formula for the cosine of a difference.

Cofunction identity

A little algebra

Cosine difference identity

Cofunction identities

Then we can use the odd-even identities to get the formula for the sine of a difference
from the formula for the sine of a sum.

A little algebra

Sine sum identity

Odd-even identities

We can combine the sum and difference formulas for sine as follows:

= sin u cos v - cos u sin v

= sin u cos v + cos u 1-sin v2
= sin u cos 1-v2 + cos u sin 1-v2

sin 1u - v2 = sin 1u + 1-v22

= sin u cos v + cos u sin v

= cos ap
2

- ub  cos v + sin ap
2

- ub  sin v

= cos a ap
2

- ub - vb
sin 1u + v2 = cos ap

2
- 1u + v2b
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Sine of a Sum or Difference

(Note that the sign does not switch in either case.)

sin 1u �  v2 = sin u cos v �  cos u sin v

EXAMPLE 3  Using the Sum/Difference Formulas
Write each of the following expressions as the sine or cosine of an angle.

(a)

(b)

(c)

SOLUTION The key in each case is recognizing which formula applies. (Indeed,
the real purpose of such exercises is to help you remember the formulas.)

(a) Recognizing sine of sum formula

(b) Recognizing cosine of difference formula

(c) Recognizing opposite of cos sum formula

Applying formula

Now try Exercise 19.= -cos 3x

= -cos1x + 2x)

= -1cos x cos 2x - sin x sin 2x2
sin x sin 2x - cos x cos 2x

= cos 
p

12

= cos ap
3

-

p

4
b

cos 
p

3
 cos 
p

4
+ sin 

p

3
 sin 
p

4

= sin 35°

= sin 122° + 13°2
sin 22° cos 13° + cos 22° sin 13°

sin x sin 2x - cos x cos 2x

cos 
p

3
 cos 
p

4
+ sin 

p

3
 sin 
p

4

sin 22° cos 13° + cos 22° sin 13°
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If one of the angles in a sum or difference is a quadrantal angle (that is, a multiple of
90 or of radians), then the sum-difference identities yield single-termed expres-
sions. Since the effect is to reduce the complexity, the resulting identity is called a 
reduction formula.

p/2°

424 CHAPTER 5 Analytic Trigonometry

EXAMPLE 4  Proving Reduction Formulas
Prove the reduction formulas:

(a)

(b)

SOLUTION

(a)

(b)

Now try Exercise 23.

Tangent of a Difference or Sum
We can derive a formula for tan directly from the corresponding formulas for
sine and cosine, as follows:

There is also a formula for that is written entirely in terms of tangent 
functions:

We will leave the proof of the all-tangent formula to the exercises.

tan 1u � v2 =

tan u � tan v

1 � tan u tan v

tan 1u �  v2
tan 1u � v2 =

sin 1u � v2
cos 1u � v2 =

sin u cos v � cos u sin v

cos u cos v � sin u sin v

1u �  v2

= sin x

= cos x #  0 - sin x #  1-12
cos ax +

3p

2
b = cos x cos 

3p

2
- sin x sin 

3p

2

= -sin x

= sin x #  1-12 + cos x #  0

sin 1x + p2 = sin x cos p + cos x sin p

cos ax +

3p

2
b = sin x

sin1x + p2 = -sin x

EXAMPLE 5  Proving a Tangent Reduction Formula
Prove the reduction formula: 

SOLUTION We can’t use the all-tangent formula (Do you see why?), so we con-
vert to sines and cosines.

Now try Exercise 39.

Verifying a Sinusoid Algebraically
Example 7 of Section 4.6 asked us to verify that the function 
is a sinusoid. We solved graphically, concluding that ƒ1x2 L 5.39 sin 1x + 1.192.

ƒ1x2 = 2 sin x + 5 cos x

 = -cot u

 =

sin u # 0 - cos u # 1-12
cos u # 0 + sin u # 1-12

 =

sin u cos 13p/22 - cos u sin 13p/22
cos u cos 13p/22 + sin u sin 13p/22

 tan au -

3p

2
b =

sin 1u - 13p/222
cos 1u - 13p/222

tan 1u - 13p/222 = -cot u.

6965_CH05_pp403-454.qxd  1/14/10  1:52 PM  Page 424



We now have a way of solving this kind of problem algebraically, with exact values for
the amplitude and phase shift. Example 6 illustrates the technique.

SECTION 5.3 Sum and Difference Identities 425

EXAMPLE 6  Expressing a Sum of Sinusoids as a Sinusoid
Express as a sinusoid in the form 

SOLUTION Since a , we have

Comparing coefficients, we see that and that and 

We can solve for a as follows:

Pythogorean identity

If we choose a to be positive, then and We can iden-
tify an acute angle c with those specifications as either 

, which are equal. So, an exact sinusoid for ƒ is

Now try Exercise 43.
= 129 sin 1x + cos-1 12/12922 or 129 sin 1x + sin-1 15/12922
= a sin 1bx + c2

ƒ1x2 = 2 sin x + 5 cos x

15/1292 cos-1 12/1292 or sin-1
sin c = 5/129.cos c = 2/129

a = � 129

a2
= 29

a21cos2 c + sin2 c2 = 29

a2 cos2 c + a2 sin2 c = 29

1a cos c22 + 1a sin c22 = 22
+ 52

a sin c = 5.a cos c = 2b = 1

= 1a cos c2 sin bx + 1a sin c2 cos bx.

2 sin x + 5 cos x = a 1sin bx cos c + cos bx sin c2
sin 1bx + c2 = a 1sin bx cos c + cos bx sin c2

ƒ1x2 = a sin 1bx + c2.ƒ1x2 = 2 sin x + 5 cos x

QUICK REVIEW 5.3 (For help, go to Sections 4.2 and 5.1.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–6, express the angle as a sum or difference of special
angles (multiples of , , , or Answers are not unique.

1. 2.

3. 4.

5. 6. 7p/125p/12

p/12165°

75°15°

p/4).p/645°30°

SECTION 5.3 EXERCISES

In Exercises 1–10, use a sum or difference identity to find an exact
value.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. sin 
-p

12
cos 

7p

12

tan 
11p

12
tan 

5p

12

sin 
7p

12
cos 
p

12

cos 75°sin 75°

tan 15°sin 15°

In Exercises 11–22, write the expression as the sine, cosine, or tangent
of an angle.

11.

12.

13.

14.

15.
tan 19° + tan 47°

1 - tan 19° tan 47°

sin 
p

3
 cos 
p

7
- sin 

p

7
 cos 
p

3

sin 
p

5
 cos 
p

2
+ sin 

p

2
 cos 
p

5

cos 94° cos 18° + sin 94° sin 18°

sin 42° cos 17° - cos 42° sin 17°

In Exercises 7–10, tell whether or not the identity
holds for the function ƒ.

7. 8.

9. 10. ƒ1x2 = x + 10ƒ1x2 = 32x

ƒ1x2 = exƒ1x2 = ln x

ƒ1x + y2 = ƒ1x2 + ƒ1y2
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16.

17.

18.

19.

20.

21. 22.

In Exercises 23–30, prove the identity.

23. 24.

25.

26.

27.

28.

29.

30.

In Exercises 31–34, match each graph with a pair of the following
equations. Use your knowledge of identities and transformations, not
your grapher.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

31. 32.

y = sin 2x cos 5 - cos 2x sin 5

y = cos 3 cos 2x + sin 3 sin 2x

y = sin 1x + 12
y = cos x cos 3 + sin x sin 3

y = sin (2x - 52
y = cos 1x - 32
y = sin x cos 1 + cos x sin 1

y = cos 13 - 2x2

cos au +

p

2
b = -sin u

tan au +

p

4
b =

1 + tan u

1 - tan u

cos ax -

p

4
b =

12

2
 1cos x + sin x2

sin ax +

p

6
b =

13

2
 sin x +

1

2
 cos x

cos c ap
2

- xb - y d = sin 1x + y2

cos ax -

p

2
b = sin x

tan ax -

p

2
b = -cot xsin ax -

p

2
b = -cos x

tan 3a - tan 2b

1 + tan 3a tan 2b

tan 2y + tan 3x

1 - tan 2y tan 3x

cos 7y cos 3y - sin 7y sin 3y

sin 3x cos x - cos 3x sin x

cos x cos 
p

7
 - sin x sin 

p

7

cos 
p

7
 cos x + sin 

p

7
 sin x

tan 1p/52 - tan 1p/32
1 + tan 1p/52 tan 1p/32

In Exercises 35 and 36, use sum or difference identities (and not your
grapher) to solve the equation exactly.

35.

36.

In Exercises 37–42, prove the reduction formula.

37. 38.

39. 40.

41. 42.

In Exercises 43–46, express the function as a sinusoid in the form

43. 44.

45. 46.

In Exercises 47–55, prove the identity.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Standardized Test Questions
56. True or False If A and B are supplementary angles, then

Justify your answer.

57. True or False If , then A and B are
supplementary angles. Justify your answer.

You should answer these questions without using a calculator.

58. Multiple Choice If , then

(A) 0. (B) 1.

(C) (D)

(E)

59. Multiple Choice The function 
has amplitude

(A) 1. (B) 1.5. (C) 2. (D) 3. (E) 6.

cos x sin 2x
y = sin x cos 2x +

cos A cos B + sin A sin B.

cos B + cos A.cos A + cos B.

cos 1A + B2 =
cos A cos B = sin A sin B

cos A + cos B = 0

cos A + cos B = 0.

sin 1x + y2
sin 1x - y2 =

1tan x + tan y2
1tan x - tan y2

tan 5u tan 3u =

tan2 4u - tan2 u

1 - tan2 4u tan2 u

tan 1x + y2 tan 1x - y2 =

tan2 x - tan2 y

1 - tan2 x tan2 y

sin 4x + sin 2x = 2 sin 3x cos x

cos 3x + cos x = 2 cos 2x cos x

sin 3u = 3 cos2 u sin u - sin3 u

cos 3x = cos3 x - 3 sin2 x cos x

cos 1x - y2 + cos 1x + y2 = 2 cos x cos y

sin 1x - y2 + sin 1x + y2 = 2 sin x cos y

y = 3 cos 2x - 2 sin 2xy = cos 3x + 2 sin 3x

y = 5 sin x - 12 cos xy = 3 sin x + 4 cos x

y = a sin 1bx + c2.

cos ax +

p

2
b = -sin xcsc ap

2
- ub = sec u

sec ap
2

- ub = csc ucot ap
2

- ub = tan u

tan ap
2

- ub = cot usin ap
2

- ub = cos u

cos 3x cos x = sin 3x sin x

sin 2x cos x = cos 2x sin x
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by [–1, 1]2 π ],[–2π by [–1, 1]2 π ],[–2π

by [–1, 1]2 π ],[–2π by [–1, 1]2 π ],[–2π

33. 34.
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60. Multiple Choice

(A) (B)

(C) (D)

(E)

61. Multiple Choice A function with the property

is

(A) (B)

(C) (D)

(E)

Explorations
62. Prove the identity 

63. Prove the identity 

64. Writing to Learn Explain why the identity in 
Exercise 62 cannot be used to prove the reduction formula

Then prove the reduction formula.

65. Writing to Learn Explain why the identity in Exercise 63
cannot be used to prove the reduction formula 

Then prove the reduction formula.

66. An Identity for Calculus Prove the following iden-
tity, which is used in calculus to prove an important differentia-
tion formula.

67. An Identity for Calculus Prove the following iden-
tity, which is used in calculus to prove another important dif-
ferentiation formula.

68. Group Activity Place 24 points evenly spaced around
the unit circle, starting with the point . Using only your
knowledge of the special angles and the sum and difference
identities, work with your group to find the exact coordinates
of all 24 points.

Extending the Ideas
In Exercises 69–72, assume that A, B, and C are the three angles of
some Note, then, that Prove the following
identities.

69.

70. cos C = sin A sin B - cos A cos B

sin 1A + B2 = sin C

A + B + C = p.21¢ABC.

11, 02

cos 1x + h2 - cos x

h
= cos x a cos h - 1

h
b - sin x 

sin h

h

sin 1x + h2 - sin x

h
= sin x a cos h - 1

h
b + cos x 

sin h

h

-cot x.
tan 1x - 3p/22 =

tan 1x + p/22 = -cot x.

tan 1u - v2 =

tan u - tan v

1 + tan u tan v
.

tan 1u + v2 =

tan u + tan v

1 - tan u tan v
.

ƒ1x2 = -1.

ƒ1x2 = ex.ƒ1x2 = sec x.

ƒ1x2 = tan x.ƒ1x2 = sin x.

ƒ11 + 22 =

ƒ112 + ƒ122
1 - ƒ112ƒ122

16 + 12

4
.

16 - 12

4
.

13 + 12

4
.

13

4
.

1

4
.

sin 15° = 71.

72.

73. Writing to Learn The figure shows graphs of
and in one viewing

window. Discuss the question, “How many solutions are there
to the equation in the interval

?” Give an algebraic argument that answers the
question more convincingly than the graph does. Then support
your argument with an appropriate graph.

3-2p, 2p4
cos 5x cos 4x = -sin 5x sin 4x

y2 = -sin 5x sin 4xy1 = cos 5x cos 4x

cos A sin B sin C = -1
cos A cos B cos C - sin A sin B cos C - sin A cos B sin C -

tan A + tan B + tan C = tan A tan B tan C
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74. Harmonic Motion Alternating electric current, an os-
cillating spring, or any other harmonic oscillator can be mod-
eled by the equation

where T is the time for one period and is the phase constant.
Show that this motion can also be modeled by the following
sum of cosine and sine, each with zero phase constant:

where and 

75. Magnetic Fields A magnetic 
field B can sometimes be modeled as 
the sum of an incident and a reflective
field as

where and

Show that B = 2 

E0

c
 cos vt cos 

vx

c
.

Bref =

E0

c
 cos avt +

vx

c
b .

Bin =

E0

c
 cos avt -

vx

c
b ,

B = Bin + Bref,

a2 = -a sin d.a1 = a cos d

a1 cos a2p

T
b t + a2 sin a 2p

T
b  t,

d

x = a cos a2p

T
 t + db ,
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There are three identities for cos 2u. This is not unusual; indeed, there are plenty of
other identities one could supply for sin 2u as well, such as We
list the three identities for cos 2u because they are all useful in various contexts and
therefore worth memorizing.

2 sin u sin 1p/2 - u2.

428 CHAPTER 5 Analytic Trigonometry

5.4 Multiple-Angle Identities

Double-Angle Identities
The formulas that result from letting in the angle sum identities are called the
double-angle identities. We will state them all and prove one, leaving the rest of the
proofs as exercises. (See Exercises 1–4.)

u = vWhat you’ll learn about
• Double-Angle Identities
• Power-Reducing Identities
• Half-Angle Identities
• Solving Trigonometric Equations

... and why
These identities are useful in cal-
culus courses.

Double-Angle Identities

 tan 2 u =

2 tan u

1 - tan2 u

 cos 2 u = c cos2 u - sin2 u

2 cos2 u - 1

1 - 2 sin2 u

 sin 2 u = 2 sin u cos u

Power-Reducing Identities

 tan2 u =

1 - cos 2u

1 + cos 2u

 cos2 u =

1 + cos 2u

2

 sin2 u =

1 - cos 2u

2

EXAMPLE 1  Proving a Double-Angle Identity
Prove the identity: 

SOLUTION

Sine of a sum 

Now try Exercise 1. = 2 sin u cos u

1v = u2 = sin u cos u + cos u sin u

 sin 2 u = sin 1u + u2

sin 2u = 2 sin u cos u.

Power-Reducing Identities
One immediate use for two of the three formulas for cos 2u is to derive the power-
reducing identities. Some simple-looking functions like would be quite 
difficult to handle in certain calculus contexts were it not for the existence of these
identities.

y = sin2 u

We will also leave the proofs of these identities as exercises. (See Exercises 37 and 38.)
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Half-Angle Identities
The power-reducing identities can be used to extend our stock of “special” angles
whose trigonometric ratios can be found without a calculator. As usual, we are not sug-
gesting that this algebraic procedure is any more practical than using a calculator, but
we are suggesting that this sort of exercise helps you to understand how the functions
behave. In Exploration 1, for example, we use a power-reducing formula to find the 
exact values of and without a calculator.sin 19p/82sin 1p/82

SECTION 5.4 Multiple-Angle Identities 429

EXAMPLE 2  Proving an Identity
Prove the identity: 

SOLUTION

Pythagorean identity

Double-angle identity

Now try Exercise 15.

 = cos 2u

 = 1 # 1cos2 u - sin2 u2
 cos4 u - sin4 u = 1cos2 u + sin2 u21cos2 u - sin2 u2

cos4 u - sin4 u = cos 2u.

EXAMPLE 3  Reducing a Power of 4
Rewrite in terms of trigonometric functions with no power greater than 1.

SOLUTION

Power-reducing identity

Power-reducing identity

Now try Exercise 39. =

1

8
 13 + 4 cos 2x + cos 4x2

 =

1

4
+

1

2
 cos 2x +

1

8
+

1

8
 cos 4x

 =

1

4
+

1

2
 cos 2x +

1

4
 a1 + cos 4x

2
b

 = a1 + 2 cos 2x + cos2 2x

4
b

 = a1 + cos 2x

2
b2

 cos4 x = 1cos2 x22
cos4 x

EXPLORATION 1 Finding the Sine of Half an Angle

Recall the power-reducing formula 

1. Use the power-reducing formula to show that 

2. Solve for Do you take the positive or negative square root? Why?

3. Use the power-reducing formula to show that 

4. Solve for Do you take the positive or negative square root? Why?sin 19p/82.
sin2 19p/82 = 12 - 122/4.

sin 1p/82.
sin2 1p/82 = 12 - 122/4.

sin2 u = 11 - cos 2u2/2.

A little alteration of the power-reducing identities results in the half-angle identities,
which can be used directly to find trigonometric functions of u/2 in terms of trigono-
metric functions of u. As Exploration 1 suggests, there is an unavoidable ambiguity of
sign involved with the square root that must be resolved in particular cases by checking
the quadrant in which u/2 lies.
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Solving Trigonometric Equations
New identities always provide new tools for solving trigonometric equations alge-
braically. Under the right conditions, they even lead to exact solutions. We assert again
that we are not presenting these algebraic solutions for their practical value (as the cal-
culator solutions are certainly sufficient for most applications and unquestionably
much quicker to obtain), but rather as ways to observe the behavior of the trigonometric
functions and their interwoven tapestry of identities.

430 CHAPTER 5 Analytic Trigonometry

Did We Miss Two Signs?
You might have noticed that all of the half-angle
identities have unresolved signs except for the
last two. The fact that we can omit them on the
last two identities for is a fortunate con-
sequence of two facts: (1) sin u and 
always have the same sign (easily observed from
the graphs of the two functions in Figure 5.10),
and (2) is never negative.1 � cos u

tan 1u/22
tan u/2

�

� Half-Angle Identities

cos 
u

2
= � B

1 + cos u

2

sin 
u

2
= � B

1 - cos u

2

tan 
u

2
= f

� B
1 - cos u

1 + cos u

1 - cos u

sin u

sin u

1 + cos u

4

2

–2

–4

y

x
– π 2 π

FIGURE 5.10 The functions sin u and tan always have the same sign.1u/22

by [–2, 2]2 π ][0,

FIGURE 5.11 The function
for The

scale on the x-axis shows intervals of length
This graph supports the solution found

algebraically in Example 4.
p/6.

0 … x … 2p.y = sin 2x - cos x

EXAMPLE 4  Using a Double-Angle Identity
Solve algebraically in the interval 

SOLUTION

or

or

The two solutions of are and The two solutions of
are and Therefore, the solutions of are

We can support this result graphically by verifying the four x-intercepts of the func-
tion in the interval (Figure 5.11).

Now try Exercise 23.
30, 2p2y = sin 2x - cos x

p

6
,  
p

2
,  

5p

6
,  

3p

2
.

sin 2x = cos xx = 5p/6.x = p/6sin x = 1/2
x = 3p/2.x = p/2cos x = 0

sin x =

1

2
cos x = 0

2 sin x - 1 = 0cos x = 0

 cos x 12 sin x - 12 = 0

 2 s in x cos x - cos x = 0

 2 s in x cos x = cos x

 sin 2 x = cos x

30, 2p2: sin 2x = cos x.
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EXAMPLE 5  Using Half-Angle Identities
Solve 

SOLUTION The graph of in Figure 5.12 suggests that
this function is periodic with period and that the equation 
has three solutions in .30, 2p2 sin2 x = 2 sin2 1x/222p

y = sin2x - 2sin2 1x/22
sin2 x = 2 sin2 1x/22.

QUICK REVIEW 5.4 (For help, go to Section 5.1.)

1 2

3

2

33

2

Solve Algebraically

Half-angle identity

Convert to all cosines.

or

or or 0

The rest of the solutions are obtained by periodicity:

Now try Exercise 43.

x = 2np,  x =

p

2
+ 2np,  x =

3p

2
+ 2np,  n = 0, �1, �2, Á

3p

2
 x =

p

2

 cos x = 1 cos x = 0

 cos x 11 - cos x2 = 0

 cos x - cos2 x = 0

 1 - cos2 x = 1 - cos x

 sin2 x = 2 a1 - cos x

2
b

 sin2 x = 2 sin2 
x

2

by [–2, 1]2 π ],[–2π

FIGURE 5.12 The graph of suggests that 
has three solutions in . (Example 5)30, 2p2

sin2 x = 2 sin2 1x/22y = sin2 x - 2 sin2 1x/22

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–8, find the general solution of the equation.

1. 2.

3. 4.

5. 6.

7. 12 sin x - 1212 cos x + 12 = 0

sin x -  cos x = 0sin x + cos x = 0

1sin x211 + cos x2 = 01cos x211 - sin x2 = 0

tan x + 1 = 0tan x - 1 = 0

8. 1sin x + 1212 cos x - 122 = 0

9. Find the area of the
trapezoid.

10. Find the height of the
isosceles triangle.
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41.

42.

In Exercises 43–46, use the half-angle identities to find all solutions in
the interval . Then find the general solution.

43. 44.

45. 46.

Standardized Test Questions
47. True or False The product of two functions with period

has period Justify your answer.

48. True or False The function is a sinusoid.
Justify your answer.

You should answer these questions without using a calculator.

49. Multiple Choice If and , then

(A) (B) (C)

(D) (E)

50. Multiple Choice

(A) (B) (C) 

(D) (E)

51. Multiple Choice How many numbers between 0 and 
satisfy the equation 

(A) None (B) One (C) Two (D) Three (E) Four

52. Multiple Choice The period of the function
is

(A) (B) (C) (D) (E)

Explorations
53. Connecting Trigonometry and Geometry In a

regular polygon all sides are the same length and all angles are
equal in measure.

(a) If the perpendicular distance
from the center of the polygon
with n sides to the midpoint of 
a side is R, and if the length of
the side of the polygon is x,
show that

where is the central angle subtended by one side.

(b) If the length of one side of a regular 11-sided polygon is
approximately 5.87 and R is a whole number, what is the
value of R?

u = 2p/n

x = 2R tan 
u

2

4p.2p.p.
p

2
.

p

4
.

sin2 x - cos2 x

sin 2x = cos x?
2p

B
2 - 12

2
.B

2 - 12

2
.

16 - 12

4
.

13

4
.

12

4
.

sin 22.5° =

ƒ122 g1x2 + g122 ƒ1x2.2 ƒ1x2 g1x2.
ƒ1x) g1x2.ƒ12) ƒ1x2.2 ƒ1x2.

ƒ12x2 =

g1x2 = cos xƒ1x2 = sin x

ƒ1x2 = cos2 x

2p.2p

sin2 a x

2
b = cos x - 1tan a x

2
b =

1 - cos x

1 + cos x

sin2 x = cos2 a x

2
bcos2 x = sin2 a x

2
b

30, 2p2

sin5 x = a1

8
 sin xb13 - 4 cos 2x + cos 4x2

sin3 2x = a1

2
 sin 2xb11 - cos 4x2

θ

x

Regular polygon
with n sides

R

x
2

θ
2

SECTION 5.4 EXERCISES

In Exercises 1–4, use the appropriate sum or difference identity to
prove the double-angle identity.

1. 2.

3. 4.

In Exercises 5–10, find all solutions to the equation in the interval .

5. 6.

7. 8.

9. 10.

In Exercises 11–14, write the expression as one involving only 
and 

11. 12.

13. 14.

In Exercises 15–22, prove the identity.

15. 16.

17. 18.

19.

20.

21.

22.

In Exercises 23–30, solve algebraically for exact solutions in the inter-
val . Use your grapher only to support your algebraic work.

23. 24.

25. 26.

27. 28.

In Exercises 29 and 30, use a graphing calculator to find all exact solutions
in the interval . Hint: All solutions are rational multiples of 

29. 30.

In Exercises 31–36, use half-angle identities to find an exact value
without a calculator.

31. 32.

33. 34.

35. 36.

37. Prove the power-reducing identities:

(a) (b)

38. (a) Use the identities in Exercise 37 to prove the power-

reducing identity 

(b) Writing to Learn Explain why the identity in part (a)

does not imply that 

In Exercises 39–42, use the power-reducing identities to prove the identity.

39.

40. cos3 x = a 1

2
 cos xb11 + cos 2x2

sin4 x =

1

8
 13 - 4 cos 2x + cos 4x2

tan u = B
1 - cos 2u

1 + cos 2u
.

tan2 u =

1 - cos 2u

1 + cos 2u
.

cos2 u =

1 + cos 2u

2
sin2 u =

1 - cos 2u

2

cos 1p/82tan 17p/122
sin 15p/122cos 75°

tan 195°sin 15°

sin 3x + cos 2x = 0sin 2x - cos 3x = 0

p.4330, p2
cos 2x + cos 4x = 0sin 2x + sin 4x = 0

sin x + sin 3x = 0cos x + cos 3x = 0

cos 2x + sin x = 0cos 2x + cos x = 0

30, 2p2
sin 4x = 14 sin x cos x212 cos2 x - 12
cos 4x = 1 - 8 sin2 x cos2 x

sin 3x = 1sin x213 - 4 sin2 x2
sin 3x = 1sin x214 cos2 x - 12

2 cot 2x = cot x - tan x2 csc 2x = csc2 x tan x

cos 6x = 2 cos2 3x - 1sin 4x = 2 sin 2x cos 2x

sin 3u + cos 2usin 2u + cos 3u

sin 2u + cos 2usin 2u + cos u

cos u.
sin u

2 cos2 x + cos x = cos 2xsin 2x - tan x = 0

cos 2x = cos xcos 2x = sin x

sin 2x = sin xsin 2x = 2 sin x

30, 2p2
tan 2u =

2 tan u

1 - tan2 u
cos 2u = 1 - 2 sin2 u

cos 2u = 2 cos2 u - 1cos 2u = cos2 u - sin2 u
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54. Connecting Trigonometry and Geometry
A rhombus is a quadrilateral with equal
sides. The diagonals of a rhombus bisect 
the angles of the rhombus and are 
perpendicular bisectors of each other. 
Let length of AC, and 

length of BD.

(a) Show that and 

(b) Show that 

55. Group Activity Maximizing Volume The ends of
a 10-foot-long water trough are
isosceles trapezoids as shown in the
figure. Find the value of that maxi-
mizes the volume of the trough and
the maximum volume.

56. Group Activity Tunnel Problem A rectangular
tunnel is cut through a mountain to make a road. The upper
vertices of the rectangle are on the circle , as 
illustrated in the figure.

x2
+ y2

= 400

u

sin u =

d1d2

2x2
.

sin 
u

2
=

d1

2x
.cos 

u

2
=

d2

2x

d2 =

∠ABC = u, d1 =

is an identity but

is not an identity.

63. Hawaiian Sunset Table 5.2 gives the time of day for
sunset in Honolulu, HI, on the first day of each month of 2009.

The second column gives the date as the day of the year, and the
fourth column gives the time as the number of minutes past 18:30.

(a) Enter the numbers in column 2 (day) into list L1 and the
numbers in column 4 (minutes past 18:30) into list L2.
Make a scatter plot with x-coordinates from L1 and 
y-coordinates from L2.

(b) Using sine regression, find the regression curve through
the points and store its equation in Y1. Superimpose the
graph of the curve on the scatter plot. Is it a good fit?

(c) Make a new column showing the residuals (the difference
between the actual y-value at each point and the y-value
predicted by the regression curve) and store them in list L3.
Your calculator might have a list called RESID among the
NAMES in the LIST menu, in which case the command
RESID L3 will perform this operation. You could also
enter L2 Y1(L1) L3.

(d) Make a scatter plot with x-coordinates from L1 and 
y-coordinates from L3. Find the sine regression curve
through these points and superimpose it on the scatter plot.

(e) Writing to Learn Interpret what the two regressions
seem to indicate about the periodic behavior of sunset as a
function of time. This is not an unusual phenomenon in as-
tronomical data, and it kept astronomers baffled for cen-
turies.

:-

:

A
1 - cos 2x

2
= sin x

SECTION 5.4 Multiple-Angle Identities 433

A x D

xx

B x C

θθ1 ft 1 ft

1 ft

x 2 � y 2 � 400

(x, y)

�

(a) Show that the cross-sectional area of the end of the tunnel
is 400 

(b) Find the dimensions of the rectangular end of the tunnel
that maximizes its cross-sectional area.

Extending the Ideas
In Exercises 57–61, prove the double-angle formulas.

57. 58.

59. 60.

61.

62. Writing to Learn Explain why

A
1 - cos 2x

2
= ƒsin x ƒ

sec 2u =

sec2 u csc2 u

csc2 u - sec2 u

sec 2u =

sec2 u

2 - sec2 u
sec 2u =

csc2 u

csc2 u - 2

cot 2u =

cot2 u - 1

2 cot u
csc 2u =

1

2
 csc u sec u

sin 2u.

Source: www.timeanddate.com

Table 5.2 Sunset in Honolulu, 2009

Date Day Time 18:30

Jan 1 1 18:01
Feb 1 32 18:22
Mar 1 60 18:36 6
Apr 1 91 18:46 16
May 1 121 18:57 27
Jun 1 152 19:10 40
Jul 1 182 19:17 47
Aug 1 213 19:10 40
Sep 1 244 18:47 17
Oct 1 274 18:19
Nov 1 305 17:55
Dec 1 335 17:48 -42

-35
-11

-8
-29

+
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The derivation of the Law of Sines refers to the two triangles in Figure 5.13, in each of
which we have drawn an altitude to side c. Right triangle trigonometry applied to either
of the triangles in Figure 5.13 tells us that

In the acute triangle on the top,

while in the obtuse triangle on the bottom,

But , so in either case

Solving for h in both equations yields The equation
is equivalent to

If we were to draw an altitude to side a and repeat the same steps as above, we would
reach the conclusion that

Putting the results together,

sin A
a

=

sin B

b
=

sin C
c

.

sin B

b
=

sin C
c

.

sin A
a

=

sin B

b
.

b sin A = a sin B
h = b sin A = a sin B.

sin B =

h

a
.

sin 1p - B2 = sin B

sin 1p - B2 =

h

a
.

sin B =

h

a
,

sin A =

h

b
.

434 CHAPTER 5 Analytic Trigonometry

5.5 The Law of Sines

Deriving the Law of Sines
Recall from geometry that a triangle has six parts (three sides (S), three angles (A)),
but that its size and shape can be completely determined by fixing only three of those
parts, provided they are the right three. These threesomes that determine triangle con-
gruence are known by their acronyms: AAS, ASA, SAS, and SSS. The other two
acronyms represent matchups that don’t quite work: AAA determines similarity only,
while SSA does not even determine similarity.

With trigonometry we can find the other parts of the triangle once congruence is estab-
lished. The tools we need are the Law of Sines and the Law of Cosines, the subjects of
our last two trigonometric sections.

The Law of Sines states that the ratio of the sine of an angle to the length of its oppo-
site side is the same for all three angles of any triangle.

What you’ll learn about
• Deriving the Law of Sines
• Solving Triangles (AAS, ASA)
• The Ambiguous Case (SSA)
• Applications

... and why
The Law of Sines is a powerful 
extension of the triangle 
congruence theorems of 
Euclidean geometry.

Law of Sines

In any with angles A, B, and C opposite sides a, b, and c, respectively,
the following equation is true:

sin A
a

=

sin B

b
=

sin C
c

.

¢ABC

A Bc

b a
h

C

A Bc

b
a h

C

FIGURE 5.13 The Law of Sines.
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Solving Triangles (AAS, ASA)
Two angles and a side of a triangle, in any order, determine the size and shape of a trian-
gle completely. Of course, two angles of a triangle determine the third, so we really get
one of the missing three parts for free. We solve for the remaining two parts (the un-
known sides) with the Law of Sines.

SECTION 5.5 The Law of Sines 435

EXAMPLE 1  Solving a Triangle Given Two Angles and a Side
Solve given that and (See Figure 5.14.)

SOLUTION First, we note that 

We then apply the Law of Sines:

and

The six parts of the triangle are:

Now try Exercise 1.

The Ambiguous Case (SSA)
While two angles and a side of a triangle are always sufficient to determine its size and
shape, the same cannot be said for two sides and an angle. Perhaps unexpectedly, it de-
pends on where that angle is. If the angle is included between the two sides (the SAS case),
then the triangle is uniquely determined up to congruence. If the angle is opposite one of
the sides (the SSA case), then there might be one, two, or zero triangles determined.

Solving a triangle in the SAS case involves the Law of Cosines and will be handled in
the next section. Solving a triangle in the SSA case is done with the Law of Sines, but
with an eye toward the possibilities, as seen in the following Exploration.

c L 13.536∠C = 96°
b L 10.115∠B = 48°
 a = 8∠A = 36°

c L 13.536b L 10.115

c =

8 sin 96°

sin 36°
b =

8 sin 48°

sin 36°

sin 36°

8
=

sin 96°
c

sin 36°

8
=

sin 48°

b

sin A
a

=

sin C
c

sin A
a

=

sin B

b

∠C = 180° - 36° - 48° = 96°.

a = 8.∠A = 36°, ∠B = 48°,¢ABC

A Bc

b

C

48°

8

36°

FIGURE 5.14 A triangle determined by
AAS. (Example 1)

EXPLORATION 1 Determining the Number of Triangles

We wish to construct given angle A, side AB, and side BC.

1. Suppose is obtuse and that side AB is as shown in Figure 5.15. To complete
the triangle, side BC must determine a point on the dotted horizontal line (which
extends infinitely to the left). Explain from the picture why a unique triangle

is determined if BC , but no triangle is determined if AB.

2. Suppose is acute and that side AB is as shown in Figure 5.16. To complete
the triangle, side BC must determine a point on the dotted horizontal line (which
extends infinitely to the right). Explain from the picture why a unique triangle

is determined if , but no triangle is determined if 

3. Suppose is acute and that side AB is as shown in Figure 5.17. If
, then we can form a triangle as shown. Find a second point C

on the dotted horizontal line that gives a side BC of the same length, but deter-
mines a different triangle. (This is the “ambiguous case.”)

4. Explain why sin C is the same in both triangles in the ambiguous case. (This is
why the Law of Sines is also ambiguous in this case.)

5. Explain from Figure 5.17 why a unique triangle is determined if BC Ú AB.

AB 7 BC 7 h
∠A

BC 6 h.BC = h¢ABC

∠A

BC …7 AB¢ABC

∠A

¢ABC

A

B

FIGURE 5.15 The diagram for 
part 1. (Exploration 1)

A
h

B

FIGURE 5.16 The diagram for 
part 2. (Exploration 1)

A

C

h

B

FIGURE 5.17 The diagram for 
parts 3–5. (Exploration 1)
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Now that we know what can happen, let us try the algebra.

436 CHAPTER 5 Analytic Trigonometry

EXAMPLE 2  Solving a Triangle Given Two Sides and an Angle
Solve given that , , and (See Figure 5.18.)

SOLUTION By drawing a reasonable sketch (Figure 5.18), we can assure our-
selves that this is not the ambiguous case. (In fact, this is the case described in step 5
of Exploration 1.)

Begin by solving for the acute angle B, using the Law of Sines:

Law of Sines

Round to match accuracy of given angle.

Then, find the obtuse angle C by subtraction:

Finally, find side c:

The six parts of the triangle are:

Now try Exercise 9.c L 11.9∠C = 131.4°

b = 6∠B = 22.3°

a = 7∠A = 26.3°

c L 11.9

c =

7 sin 131.4°

sin 26.3°

sin 26.3°

7
=

sin 131.4°
c

sin A
a

=

sin C
c

= 131.4°
C = 180° - 26.3° - 22.3°

B = 22.3°

B = sin-1 a6 sin 26.3°

7
b

sin B =

6 sin 26.3°

7

sin 26.3°

7
=

sin B

6

sin A
a

=

sin B

b
.

∠A = 26.3°.b = 6a = 7¢ABC

A

C

c B
26.3°
6 7

FIGURE 5.18 A triangle determined
by SSA. (Example 2)

EXAMPLE 3  Handling the Ambiguous Case
Solve given that , , and 

SOLUTION By drawing a reasonable sketch (Figure 5.19), we see that two trian-
gles are possible with the given information. We keep this in mind as we proceed.

We begin by using the Law of Sines to find angle B.

Law of Sines

Round to match accuracy of given angle.B = 35.7°

B = sin-1 a7 sin 30°

6
b

sin B =

7 sin 30°

6

sin 30°

6
=

sin B

7

sin A
a

=

sin B

b

∠A = 30°.b = 7a = 6¢ABC

A

C

c B

30°

(a)

67

A

C

c B

30°

(b)

6

7

FIGURE 5.19 Two triangles determined
by the same SSA values. (Example 3)
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Notice that the calculator gave us one value for B, not two. That is because we used
the function , which cannot give two output values for the same input value. 
Indeed, the function will never give an obtuse angle, which is why we chose 
to start with the acute angle in Example 2. In this case, the calculator has found the
angle B shown in Figure 5.19a.

Find the obtuse angle C by subtraction:

Finally, find side c:

So, under the assumption that angle B is acute (see Figure 5.19a), the six parts of the
triangle are:

If angle B is obtuse, then we can see from Figure 5.19b that it has measure

By subtraction, the acute angle We then re-
compute c:

Substitute 5.7° for 114.3° in earlier computation.

So, under the assumption that angle B is obtuse (see Figure 5.19b), the six parts of
the triangle are:

Now try Exercise 19.

Applications
Many problems involving angles and distances can be solved by superimposing a tri-
angle onto the situation and solving the triangle.

c L 1.2∠C = 5.7°

b = 7∠B = 144.3°

a = 6∠A = 30.0°

c =

6 sin 5.7°

sin 30°
L 1.2

C = 180° - 30.0° - 144.3° = 5.7°.

180° - 35.7° = 144.3°.

c L 10.9∠C = 114.3°

b = 7∠B = 35.7°

a = 6∠A = 30.0°

c L 10.9

c =

6 sin 114.3°

sin 30°

sin 30.0°

6
=

sin 114.3°
c

sin A

a
=

sin C
c

C = 180° - 30.0° - 35.7° = 114.3°

sin-1
sin-1

EXAMPLE 4  Locating a Fire
Forest Ranger Chris Johnson at ranger station A sights a fire in the direction 32 east
of north. Ranger Rick Thorpe at ranger station B, 10 miles due east of A, sights the
same fire on a line 48 west of north. Find the distance from each ranger station to
the fire.

SOLUTION Let C represent the location of the fire. A sketch (Figure 5.20) shows
the superimposed triangle, ABC, in which angles A and B and their included side
(AB) are known. This is a setup for the Law of Sines.

(continued)

¢

°

°

A B

C

b
h

a

N

10 mi

N

48°
32°

FIGURE 5.20 Determining the 
location of a fire. (Example 4)
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438 CHAPTER 5 Analytic Trigonometry

Note that and By subtraction,
we find that 

and Law of Sines

The fire is about 6.8 miles from ranger station A and about 8.6 miles from ranger sta-
tion B. Now try Exercise 45.

b L 6.8a L 8.6

b =

10 sin 42°

sin 80°
a =

10 sin 58°

sin 80°

sin 42°

b
=

sin 80°

10

sin 58°
a

=

sin 80°

10

sin B

b
=

sin C
c

sin A
a

=

sin C
c

∠C = 180° - 58° - 42° = 80°.
∠B = 90° - 48° = 42°.∠A = 90° - 32° = 58°

EXAMPLE 5 Finding the Height of a Pole
A road slopes above the horizontal, and a vertical telephone pole stands beside
the road. The angle of elevation of the Sun is , and the pole casts a 14.5-foot
shadow downhill along the road. Find the height of the telephone pole.

SOLUTION This is an interesting variation on a typical application of right triangle
trigonometry. The slope of the road eliminates the convenient right angle, but we can
still solve the problem by solving a triangle.

Figure 5.21 shows the superimposed triangle, A little preliminary geometry
is required to find the measure of angles A and C. Due to the slope of the road, angle
A is less than the angle of elevation of the Sun and angle B is more than a
right angle. That is,

Therefore,

Law of Sines

Round to match accuracy of input.

The pole is approximately 24.3 feet high. Now try Exercise 39.

a L 24.3

a =

14.5 sin 52°

sin 28°

sin 52°
a

=

sin 28°

14.5

sin A
a

=

sin C
c

∠C = 180° - 52° - 100° = 28°

∠B = 90° + 10° = 100°

∠A = 62° - 10° = 52°

10°10°

¢ABC.

62°
10°

A
B

c

ab

C 62°

10°

FIGURE 5.21 A telephone pole on 
a slope. (Example 5)

QUICK REVIEW 5.5 (For help, go to Sections 4.2 and 4.7.)

In Exercises 7–10, solve for the angle x.

7. ,

8. ,

9. ,

10. sin x = -0.7,  270° 6 x 6 360°

180° 6 x 6 270°sin x = -0.7

90° 6 x 6 180°sin x = 0.3

0° 6 x 6 90°sin x = 0.3

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, solve the equation for the given variable.

1. a 2. b 3. c 4. d

In Exercises 5 and 6, evaluate the expression.

5. 6.
9 sin 121°

sin 14°

7 sin 48°

sin 23°

a/b = c/d
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In Exercises 5–8, solve the triangle.

5.

6.

7.

8.

In Exercises 9–12, solve the triangle.

9.

10.

11.

12.

In Exercises 13–18, state whether the given measurements determine
zero, one, or two triangles.

13.

14.

15.

16.

17.

18.

In Exercises 19–22, two triangles can be formed using the given meas-
urements. Solve both triangles.

19.

20.

21.

22.

23. Determine the values of b that will produce the given number
of triangles if and 

(a) Two triangles (b) One triangle (c) Zero triangles

24. Determine the values of c that will produce the given number
of triangles if and 

(a) Two triangles (b) One triangle (c) Zero triangles

In Exercises 25 and 26, decide whether the triangle can be solved using
the Law of Sines. If so, solve it. If not, explain why not.

C = 53°.b = 12

B = 42°.a = 10

B = 57°,  a = 11,  b = 10

C = 68°,  a = 19,  c = 18

B = 38°,  b = 21,  c = 25

A = 64°,  a = 16,  b = 17

B = 88°,  b = 14,  c = 62

C = 30°,  a = 18,  c = 9

A = 73°,  a = 24,  b = 28

C = 36°,  a = 17,  c = 16

B = 82°,  b = 17,  c = 15

A = 36°,  a = 2,  b = 7

C = 103°,  b = 46,  c = 61

B = 70°,  b = 14,  c = 9

A = 49°,  a = 32,  b = 28

A = 32°,  a = 17,  b = 11

B = 16°,  C = 103°,  c = 12

A = 33°,  B = 70°,  b = 7

A = 50°,  B = 62°,  a = 4

A = 40°,  B = 30°,  b = 10

In Exercises 27–36, respond in one of the following ways:

(a) State, “Cannot be solved with the Law of Sines.”

(b) State, “No triangle is formed.”

(c) Solve the triangle.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37. Surveying a Canyon Two markers A and B on the
same side of a canyon rim are 56 ft apart. A third marker C, 
located across the rim, is positioned so that 
and ∠ABC = 53°.

∠BAC = 72°

C = 65°,  a = 19,  b = 22

B = 31°,  a = 8,  c = 11

A = 54°,  a = 13,  b = 15

C = 75°,  b = 49,  c = 48

A = 19°,  b = 22,  B = 47°

B = 42°,  c = 18,  C = 39°

C = 115°,  b = 12,  c = 7

A = 136°,  a = 15,  b = 28

B = 47°,  a = 8,  b = 21

A = 61°,  a = 8,  b = 21
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In Exercises 1–4, solve the triangle.

1. 2.

25.

A

C

c

a

B
60° 45°

3.7

A

C

b

aB
15° 120°

17

AC b

c

B

35° 100°

22

A

C

a

cB
40° 81°

92

3. 4.

A C

a

B

56°
23

(a)

19

A b C

a

B

56°

(b)

19

AC b

c

B

119° 29°

(a)

81

AC 89

c

B

119°

(b)

81

26.

A

B
C

56 ft

(a) Find the distance between C and A.

(b) Find the distance between the two canyon rims. (Assume
they are parallel.)

38. Weather Forecasting
Two meteorologists are 25 mi 
apart located on an east-west road.
The meteorologist at point A sights 
a tornado east of north. The 
meteorologist at point B sights the
same tornado west of north.
Find the distance from each meteo-
rologist to the tornado. Also find the distance between the 
tornado and the road.

53°

38°

A B

C

b

h

a
53°38°

N N

25 mi
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39. Engineering Design A 
vertical flagpole stands beside
a road that slopes at an angle
of with the horizontal.
When the angle of elevation of
the Sun is , the flagpole
casts a 16-ft shadow downhill
along the road. Find the height
of the flagpole.

40. Altitude Observers 2.32 mi
apart see a hot-air balloon
directly between them but at the
angles of elevation shown in the
figure. Find the altitude of the
balloon.

41. Reducing Air Resistance A 4-ft airfoil attached to the
cab of a truck reduces wind resistance. If the angle between the
airfoil and the cab top is and angle B is , find the length
of a vertical brace positioned as shown in the figure.

10°18°

62°

15°

46. Using Measurement Data A geometry class is divided
into ten teams, each of which is given a yardstick and a protrac-
tor to find the distance from a point A on the edge of a pond to a
tree at a point C on the opposite shore. After they mark points A
and B with stakes, each team uses a protractor to measure angles
A and B and a yardstick to measure distance AB. Their measure-
ments are given in the table.

440 CHAPTER 5 Analytic Trigonometry

C

15°

62°

62°

28°b a

A

75°

HorizontalB
16 ft

105°

2.32 mi

28° 37°
A B

4 ft
18°

B

42. Group Activity Ferris Wheel Design A Ferris
wheel has 16 evenly spaced cars. The distance between adja-
cent chairs is 15.5 ft. Find the radius of the wheel (to the near-
est 0.1 ft).

43. Finding Height Two observers are 600 ft apart on 
opposite sides of a flagpole. The angles of elevation from the
observers to the top of the pole are and Find the 
height of the flagpole.

44. Finding Height Two observers are 400 ft apart on 
opposite sides of a tree. The angles of elevation from the 
observers to the top of the tree are and Find the
height of the tree.

45. Finding Distance Two lighthouses A and B are known
to be exactly 20 mi apart on a north-south line. A ship’s captain
at S measures to be A radio operator at B measures

to be Find the distance from the ship to each light-
house.

52°.∠ABS
33°.∠ASB

20°.15°

21°.19°

A

B

S (ship)
33°

52°

20 mi

A B AB

26 4
25 5
26 0
26 1
25 11–¿87°79°

–¿87°80°
–¿83°79°
–¿82°81°
–¿84°79°

A B AB

25 3
26 5
25 8
26 4
25 7–¿82°79°

–¿83°77°
–¿85°78°
–¿82°82°
–¿84°83°

Use the data to find the class’s best estimate for the distance
AC.

C

A B

x 12.0
95°

53°

Standardized Test Questions
47. True or False The ratio of the sines of any two an-

gles in a triangle equals the ratio of the lengths of their
opposite sides. Justify your answer.

48. True or False The perimeter of a triangle with two
10-inch sides and two 40 angles is greater than 36. 
Justify your answer.

You may use a graphing calculator when answering these questions.

49. Multiple Choice The 
length x in the triangle shown 
at the right is

(A) 8.6. (B) 15.0. (C) 18.1.

(D) 19.2. (E) 22.6.

°

6965_CH05_pp403-454.qxd  1/14/10  1:52 PM  Page 440



50. Multiple Choice Which of the following three triangle
parts do not necessarily determine the other three parts?

(A) AAS (B) ASA (C) SAS

(D) SSA (E) SSS

51. Multiple Choice The shortest side of a triangle with 
angles , , and has length 9.0. What is the length of
the longest side?

(A) 11.0 (B) 11.5 (C) 12.0

(D) 12.5 (E) 13.0

52. Multiple Choice How many noncongruent triangles
ABC can be formed if , , and 

(A) None (B) One (C) Two

(D) Three (E) Infinitely many

Explorations
53. Writing to Learn

(a) Show that there are infinitely many triangles with AAA
given if the sum of the three positive angles is 

(b) Give three examples of triangles where , ,
and 

(c) Give three examples where 

54. Use the Law of Sines and the cofunction identities to derive the
following formulas from right triangle trigonometry:

(a) (b) (c)

55. Wrapping up Exploration 1 Refer to Figures 5.16
and 5.17 in Exploration 1 of this section.

(a) Express h in terms of angle A and length AB.

(b) In terms of the given angle A and the given length AB, state
the conditions on length BC that will result in no triangle
being formed.

tan A =

opp

adj
cos A =

adj

hyp
sin A =

opp

hyp

A = B = C = 60°.

C = 90°.
B = 60°A = 30°

180°.

BC = 8?A = 60°AB = 5

70°60°50°

(c) In terms of the given angle A and the given length AB, state
the conditions on length BC that will result in a unique tri-
angle being formed.

(d) In terms of the given angle A and the given length AB, state
the conditions on length BC that will result in two possible
triangles being formed.

Extending the Ideas
56. Solve this triangle assuming that is obtuse.

[Hint: Draw a perpendicular from A to the line
through B and C.]

57. Pilot Calculations Towers A and B are known to be 
4.1 mi apart on level ground. A pilot measures the angles of 
depression to the towers to be and , respectively, as
shown in the figure. Find distances AC and BC and the height
of the airplane.

25°36.5°

∠B
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A

B

C

22°
8

5

A B

C
25°

36.5°

4.1 mi
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We derive only the first of the three equations, since the other two are derived in 
exactly the same way. Set the triangle in a coordinate plane so that the angle that 
appears in the formula (in this case, A) is at the origin in standard position, with side
c along the positive x-axis. Depending on whether angle A is right (Figure 5.23a),
acute (Figure 5.23b), or obtuse (Figure 5.23c), the point C will be on the y-axis, in
QI, or in QII.

442 CHAPTER 5 Analytic Trigonometry

5.6 The Law of Cosines

Deriving the Law of Cosines
Having seen the Law of Sines, you will probably not be surprised to learn that there is
a Law of Cosines. There are many such parallels in mathematics. What you might
find surprising is that the Law of Cosines has absolutely no resemblance to the Law
of Sines. Instead, it resembles the Pythagorean Theorem. In fact, the Law of Cosines
is often called the “generalized Pythagorean Theorem” because it contains that classic
theorem as a special case.

What you’ll learn about
• Deriving the Law of Cosines
• Solving Triangles (SAS, SSS)
• Triangle Area and Heron’s 

Formula
• Applications

... and why
The Law of Cosines is an 
important extension of the
Pythagorean Theorem, with 
many applications.

Law of Cosines
Let be any triangle with sides and angles labeled in the usual way
(Figure 5.22).

Then

c2
= a2

+ b2
- 2ab cos C

b2
= a2

+ c2
- 2ac cos B

a2
= b2

+ c2
- 2bc cos A

¢ABC

A
B

C

a

c

b

FIGURE 5.22 A triangle with the usual
labeling (angles A, B, C; opposite 
sides a, b, c).

y

x

(a)

B(c, 0)

C(x, y)

A c

a
b

y

x

(b)

B(c, 0)

C(x, y)

A c

ab

y

x

(c)

B(c, 0)

C(x, y)

A c

a
b

FIGURE 5.23 Three cases for proving the Law of Cosines.

In each of these three cases, C is a point on the terminal side of angle A in standard
position, at distance b from the origin. Denote the coordinates of C by (x, y). By 
our definitions for trigonometric functions of any angle (Section 4.3), we can 
conclude that

and therefore

x = b cos A  and  y = b sin A.

x

b
= cos A  and  

y

b
= sin A,
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Now set a equal to the distance from C to B using the distance formula:

Distance formula

Square both sides.

Substitution

Pythagorean identity

Solving Triangles (SAS, SSS)
While the Law of Sines is the tool we use to solve triangles in the AAS and ASA cases,
the Law of Cosines is the required tool for SAS and SSS. (Both methods can be used in
the SSA case, but remember that there might be 0, 1, or 2 triangles.)

= b2
+ c2

- 2bc cos A

= b21cos2 A + sin2 A2 + c2
- 2bc cos A

= b2 cos2 A - 2bc cos A + c2
+ b2 sin2 A 

= 1b cos A - c22 + 1b sin A22
a2

= 1x - c22 + y2

a = 21x - c22 + 1y - 022
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EXAMPLE 1  Solving a Triangle (SAS)
Solve given that , , and . (See Figure 5.24.)

SOLUTION

We could now use either the Law of Cosines or the Law of Sines to find one of the
two unknown angles. As a general rule, it is better to use the Law of Cosines to find
angles, since the arccosine function will distinguish obtuse angles from acute angles.

So the six parts of the triangle are:

Now try Exercise 1.c L 6.5C = 20°

b = 5B = 15.2°

a = 11A = 144.8°

=  15.2°

B = 180° - 144.8° - 20°

L 144.8°

A = cos-1 a52
+ 16.529 Á 22 - 112

215216.529 Á 2 b

cos A =

52
+ 16.529 Á 22 - 112

215216.529 Á 2

112
= 52

+ 16.529 Á 22 - 215216.529 Á 2cos A

a2
= b2

+ c2
- 2bc cos A

c = 142.6338 Á L 6.5

= 42.6338 Á

= 112
+ 52

- 21112152 cos 20°

c2
= a2

+ b2
- 2ab cos C

C = 20°b = 5a = 11¢ABC

A

B

c

C

11

5
20°

FIGURE 5.24 A triangle with two sides and
an included angle known. (Example 1)

EXAMPLE 2  Solving a Triangle (SSS)
Solve if , , and . (See Figure 5.25.)c = 5b = 7a = 9¢ABC

A

BC

5

9

7

FIGURE 5.25 A triangle with three 
sides known. (Example 2)
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Area of a Triangle

¢ Area =

1

2
 bc sin A =

1

2
 ac sin B =

1

2
 ab sin C

EXAMPLE 3  Finding the Area of a Regular Polygon
Find the area of a regular octagon (8 equal sides, 8 equal angles) inscribed inside a
circle of radius 9 inches.

SOLUTION Figure 5.26 shows that we can split the octagon into 8 congruent trian-
gles. Each triangle has two 9-inch sides with an included angle of .
The area of each triangle is

Therefore, the area of the octagon is

square inches.
Now try Exercise 31.

There is also an area formula that can be used when the three sides of the triangle are
known.

Although Heron proved this theorem using only classical geometric methods, we prove
it, as most people do today, by using the tools of trigonometry.

Area = 8 ¢ Area = 16212 L 229

¢ Area = 11/22192192 sin 45° = 181/2) sin 45° = 8112/4.

u = 360°/8 = 45°

9

9
θ

FIGURE 5.26 A regular octagon 
inscribed inside a circle of radius 9 inches.
(Example 3)

Heron’s Formula
The formula is named after Heron of Alexandria,
whose proof of the formula is the oldest on
record, but ancient Arabic scholars claimed to
have known it from the works of Archimedes 
of Syracuse centuries earlier. Archimedes 
(c. 287–212 B.C.E.) is considered to be the great-
est mathematician of all antiquity.

SOLUTION We use the Law of Cosines to find two of the angles. The third angle
can be found by subtraction from .

Now try Exercise 3.

Triangle Area and Heron’s Formula
The same parts that determine a triangle also determine its area. If the parts happen to
be two sides and an included angle (SAS), we get a simple area formula in terms of
those three parts that does not require finding an altitude.

Observe in Figure 5.23 (used in explaining the Law of Cosines) that each triangle has
base c and altitude . Applying the standard area formula, we have

This is actually three formulas in one, as it does not matter which side we use as the
base.

¢ Area =

1

2
 1base21height2 =

1

2
 1c21b sin A2 =

1

2
 bc sin A.

y = b sin A

Then C = 180° - 95.7° - 50.7° = 33.6°.

L 50.7°L 95.7°

B = cos-1 157/902A = cos-1 1-0.12
90 cos B = 5770 cos A = -7

72
= 92

+ 52
- 2192152cos B92

= 72
+ 52

- 2172152cos A

b2
= a2

+ c2
- 2ac cos Ba2

= b2
+ c2

- 2bc cos A

180°
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Applications
We end this section with a few applications.
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THEOREM Heron’s Formula
Let a, b, and c be the sides of , and let s denote the semiperimeter.

Then the area of is given by 

Proof

Pythagorean identity

Law of Cosines

Difference of squares

Difference of squares

Area = 2s1s - a21s - b21s - c2
1Area22 = s1s - a21s - b21s - c2

161Area22 = 16s1s - a21s - b21s - c2
2s = a + b + c= 12s - 2a212s - 2b212s - 2c212s2

= 1c - a + b21c + a - b21a + b - c21a + b + c2
= 1c - 1a - b221c + (a - b2211a + b2 - c211a + b2 + c2
= 1c2

- (a - b22211a + b22 - c22
= 1c2

- 1a2
- 2ab + b22211a2

+ 2ab + b22 - c22
= 12ab - 1a2

+ b2
- c22212ab + 1a2

+ b2
- c222

= 4a2b2
- 1a2

+ b2
- c222

= 4a2b2
- 12ab cos C22

= 4a2b2
- 4a2b2 cos2 C

= 4a2b211 - cos2 C2
161Area)2

= 4a2b2 sin2 C

41Area2 = 2ab sin C

Area =

1

2
 ab sin C

Area = 2s1s - a21s - b21s - c2.¢ABC

1a + b + c)/2.

¢ABC

EXAMPLE 4  Using Heron’s Formula
Find the area of a triangle with sides 13, 15, 18.

SOLUTION First we compute the semiperimeter: .

Then we use Heron’s Formula

The approximate area is 96 square units. Now try Exercise 21.

= 123 # 10 # 8 # 5 = 19200 - 20123.

Area = 123 123 - 132123 - 152123 - 182

s = 113 + 15 + 182/2 = 23

EXAMPLE 5  Measuring a Baseball Diamond
The bases on a baseball diamond are 90 feet apart, and the front edge of the pitcher’s
rubber is 60.5 feet from the back corner of home plate. Find the distance from the
center of the front edge of the pitcher’s rubber to the far corner of first base.

(continued)
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SOLUTION Figure 5.27 shows first base as A, the pitcher’s rubber as B, and home
plate as C. The distance we seek is side c in .

By the Law of Cosines,

The distance from first base to the pitcher’s rubber is about 63.7 feet.
Now try Exercise 37.

L 63.7

c = 260.52
+ 902

- 2160.521902 cos 45°

c2
= 60.52

+ 902
- 2160.521902 cos 45°

¢ABC

EXAMPLE 6  Measuring a Dihedral Angle (Solid Geometry)
A regular tetrahedron is a solid with four faces, each of which is an equilateral trian-
gle. Find the measure of the dihedral angle formed along the common edge of two
intersecting faces of a regular tetrahedron with edges of length 2.

SOLUTION Figure 5.28 shows the tetrahedron. Point B is the midpoint of edge
DE, and A and C are the endpoints of the opposite edge. The measure of is
the same as the measure of the dihedral angle formed along edge DE, so we will find
the measure of .

Because both and are triangles, AB and BC both
have length . If we apply the Law of Cosines to , we obtain

The dihedral angle has the same measure as , approximately . (We
chose sides of length 2 for computational convenience, but in fact this is the measure
of a dihedral angle in a regular tetrahedron of any size.)

Now try Exercise 43.

70.53°∠ABC

∠ABC = cos-1 a1

3
b L 70.53°

cos 1∠ABC2 =

1

3

22
= 11322 + 11322 - 213 13 cos 1∠ABC2

¢ABC13
30° - 60° - 90°¢CDB¢ADB

∠ABC

∠ABC

2

2
2

1 1

C

B E
D

A

3

3

FIGURE 5.28 The measure of is
the same as the measure of any dihedral 
angle formed by two of the tetrahedron’s
faces. (Example 6)

∠ABC
EXPLORATION 1 Estimating Acreage of a Plot of Land

Jim and Barbara are house hunting and need to estimate the size of an irregular adja-
cent lot that is described by the owner as “a little more than an acre.” With Barbara
stationed at a corner of the plot, Jim starts at another corner and walks a straight line
toward her, counting his paces. They then shift corners and Jim paces again, until
they have recorded the dimensions of the lot (in paces) as in Figure 5.29. They later
measure Jim’s pace as 2.2 feet. What is the approximate acreage of the lot?

1. Use Heron’s Formula to find the area in square paces.

2. Convert the area to square feet, using the measure of Jim’s pace.

3. There are 5280 feet in a mile. Convert the area to square miles.

4. There are 640 square acres in a square mile. Convert the area to acres.

5. Is there good reason to doubt the owner’s estimate of the acreage of the lot?

6. Would Jim and Barbara be able to modify their system to estimate the area of
an irregular lot with five straight sides?

Second base

A (Fir

C

B
c

60.5 ft

45∞

Third
base

(Home plate)

90 ft

FIGURE 5.27 The diamond-shaped part
of a baseball diamond. (Example 5)

Platonic Solids
The regular tetrahedron in Example 6 is one of
only 5 regular solids (solids with faces that are
congruent polygons having equal angles and
equal sides). The others are the cube (6 square
faces), the octahedron (8 triangular faces), the
dodecahedron (12 pentagonal faces), and the
icosahedron (20 triangular faces). Referred to as
the Platonic solids, Plato did not discover them,
but they are featured in his cosmology as being
the stuff of which everything in the universe is
made. The Platonic universe itself is a dodecahe-
dron, a favorite symbol of the Pythagoreans.
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102

81

115

86112

FIGURE 5.29 Dimensions (in paces) of an irregular plot of land. (Exploration 1)

Chapter Opener Problem (from page 403)

Problem: Because deer require food, water, cover for protection from weather
and predators, and living space for healthy survival, there are natural limits to the
number of deer that a given plot of land can support. Deer populations in national
parks average 14 animals per square kilometer. If a triangular region with sides of 
3 kilometers, 4 kilometers, and 6 kilometers has a population of 50 deer, how close
is the population on this land to the average national park population?

Solution: We can find the area of the land region

by using Heron’s Formula with

and

so the area of the land region is 

If this land were to support , it would have
deer. Thus, the land supports 25 deer 

less than the average.
15.3 Á km22114 deer/km22 = 74.7 L 75

14 deer/km2

5.3 km2.

= B
13

2
 a7

2
b a5

2
b a1

2
b L 5.3,

= B
13

2
 a13

2
- 3b a13

2
- 4b a13

2
- 6b

Area = 1s1s - a21s - b21s - c2

s = 13 + 4 + 62/2 = 13/2

4 km3 km

6 km

QUICK REVIEW 5.6 (For help, go to Sections 2.4 and 4.7.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, find an angle between and that is a solu-
tion to the equation.

1. 2.

3. 4.

In Exercises 5 and 6, solve the equation (in terms of x and y) for 
(a) cos A and (b) A, .

5. 6. y2
= x2

+ 25 - 10 cos A92
= x2

+ y2
- 2xy cos A

0 … A … 180°

3 cos C = 1.92cos A = -0.68

cos C = -0.23cos A = 3/5

180°0°

In Exercises 7–10, find a quadratic polynomial with real coefficients
that satisfies the given condition.

7. Has two positive zeros

8. Has one positive and one negative zero

9. Has no real zeros

10. Has exactly one positive zero
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In Exercises 5–16, solve the triangle.

5. , ,

6. , ,

7. , ,

8. , ,

9. , ,

10. , ,

11. , ,

12. , ,

13. , ,

14. , ,

15. , ,

16. , ,

In Exercises 17–20, find the area of the triangle.

17. , ,

18. , ,

19. , ,

20. , , . 

In Exercises 21–28, decide whether a triangle can be formed with the
given side lengths. If so, use Heron’s Formula to find the area of the 
triangle.

21. , ,

22. , ,

23. , ,

24. , ,

25. , ,

26. , ,

27. , ,

28. , ,

29. Find the radian measure of the largest angle in the triangle with
sides of 4, 5, and 6.

30. A parallelogram has sides of 18 and 26 ft, and an angle of .
Find the shorter diagonal.

39°

c = 12.3b = 17.1a = 18.2

c = 22.3b = 28.5a = 33.4

c = 28b = 12.5a = 8.2

c = 31b = 22.5a = 19.3

c = 12b = 19a = 23

c = 8b = 5a = 3

c = 7b = 9a = 5

c = 8b = 5a = 4

b = 5.1 ina = 1.8 in.C = 112°

c = 22 cma = 10 cmB = 101°

c = 21 mb = 14 mA = 52°

c = 19 ftb = 32 ftA = 47°

b = 8.5a = 9.3A = 71°

b = 11.1a = 8.6A = 63°

b = 10a = 11A = 57°

b = 10a = 7A = 42°

c = 23b = 12a = 9.8

c = 6.4b = 7.6a = 3.2

c = 8b = 5a = 1

c = 4b = 5a = 1

A = 82°c = 31b = 22

C = 95°b = 21a = 12

c = 19a = 43B = 35°

c = 7b = 12A = 55°

37. Designing a Softball Field In softball, adjacent bases
are 60 ft apart. The distance from the center of the front edge
of the pitcher’s rubber to the far corner of home plate is 40 ft.

(a) Find the distance from the center of the pitcher’s rubber to
the far corner of first base.

(b) Find the distance from the center of the pitcher’s rubber to
the far corner of second base.

(c) Find in .¢ABC∠B
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31. Find the area of a regular hexagon inscribed in a circle of 
radius 12 inches. 

32. Find the area of a regular nonagon (9 sides) inscribed in a 
circle of radius 10 inches. 

33. Find the area of a regular hexagon circumscribed about a circle
of radius 12 inches. [Hint: Start by finding the distance from a
vertex of the hexagon to the center of the circle.] 

34. Find the area of a regular nonagon (9 sides) circumscribed
about a circle of radius 10 inches. 

35. Measuring Distance Indirectly
Juan wants to find the distance 
between two points A and B
on opposite sides of a building. 
He locates a point C that is 110 ft
from A and 160 ft from B, as 
illustrated in the figure. If the 
angle at C is , find distance AB.

36. Designing a Baseball Field

(a) Find the distance from the 
center of the front edge of the
pitcher’s rubber to the far 
corner of second base. How does this distance compare
with the distance from the pitcher’s rubber to first base?
(See Example 5.)

(b) Find in .¢ABC∠B

54°

A
C

B
8

13131°

A

C
B

12

14

42°

A

C
B

24
19

27

A
C

B

35

17
28

110 ft 160 ft

54°

A B

C

Second base

A (First base)

C

B
c

60.5 ft

45°

Third
base

(Home plate)

90 ft

SECTION 5.6 EXERCISES

In Exercises 1–4, solve the triangle.

1. 2.

3. 4.
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2 ft

C

AB

3 ft

1 ft

2 ft

C

A

B

42. Group Activity Architectural
Design Building Inspector Julie
Wang checks a building in the shape 
of a regular octagon, each side 20 ft
long. She checks that the contractor 
has located the corners of the founda-
tion correctly by measuring several of
the diagonals. Calculate what the lengths
of diagonals HB, HC, and HD should be.

43. Connecting Trigonometry 
and Geometry is 
inscribed in a rectangular box 
whose sides are 1, 2, and 3 ft 
long as shown. Find the measure 
of . 

44. Group Activity Connecting
Trigonometry and Geometry
A cube has edges of length 2 ft. 
Point A is the midpoint of an edge. 
Find the measure of . 

Standardized Test Questions
45. True or False If is any triangle with sides and

angles labeled in the usual way, then .
Justify your answer.

46. True or False If a, b, and are two sides and an 
included angle of a parallelogram, the area of the parallelogram
is . Justify your answer.

You may use a graphing calculator when answering these questions.

47. Multiple Choice What is the area of a regular dodecagon
(12-sided figure) inscribed in a circle of radius 12?

(A) 427 (B) 432 (C) 437 (D) 442 (E) 447

48. Multiple Choice The area of a triangle with sides 7, 8,
and 9 is

(A) . (B) . (C) . (D) . (E) .

49. Multiple Choice Two boats start at the same point 
and speed away along courses that form a angle. If 
one boat travels at 24 miles per hour and the other boat travels
at 32 miles per hour, how far apart are the boats after 
30 minutes?

(A) 21 miles (B) 22 miles (C) 23 miles

(D) 24 miles (E) 25 miles

50. Multiple Choice What is the measure of the smallest 
angle in a triangle with sides 12, 17, and 25?

(A) (B) (C) (D) (E) 

Explorations
51. Find the area of a regular polygon with n sides inscribed inside

a circle of radius r. (Express your answer in terms of n and r.)

25°24°23°22°21°

110°

18131713161312156115

ab sin u

u

b2
+ c2

7 2bc cos A
¢ABC

∠ABC

∠CAB

∠CAB

38. Surveyor’s Calculations Tony must find the distance
from A to B on opposite sides of a lake. He locates a point C
that is 860 ft from A and 175 ft from B. He measures the angle
at C to be . Find distance AB. 

39. Construction Engineering A manufacturer is 
designing the roof truss that is modeled in the figure shown.

(a) Find the measure of .

(b) If , find the length DF.

(c) Find the length EF.

40. Navigation Two airplanes flying together in formation
take off in different directions. One flies due east at 350 mph,
and the other flies east-northeast at 380 mph. How far apart are
the two airplanes 2 hr after they separate, assuming that they
fly at the same altitude? 

41. Football Kick The player waiting to receive a kickoff
stands at the 5 yard line (point A) as the ball is being kicked 
65 yd up the field from the opponent’s 30 yard line. The kicked
ball travels 73 yd at an angle of to the right of the receiver,
as shown in the figure (point B). Find the distance the receiver
runs to catch the ball.

8°

AF = 12 ft

∠CAE

78°

SECTION 5.6 The Law of Cosines 449

Second base

A (First base)

C

B
c

40 ft

45°

Third
base

(Home plate)

60 ft

A

B

C860 ft

175 ft

78°

C
F

A D E
36 ft

9 ft

6 ft

0 10 20 30 40 50 40 30 20 10 0

160
ft

Goal line

65 yd

8°
73 yd

Goal line

K
A

B

E D

H A

B

C

G

F

20 ft

20 ft

20 ft
20 ft
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52. (a) Prove the identity: .

(b) Prove the (tougher) identity:

[Hint: Use the identity in part (a), along with its other 
variations.]

53. Navigation Two ships leave a 
common port at 8:00 A.M. and travel
at a constant rate of speed. Each ship 
keeps a log showing its distance from 
port and its distance from the other 
ship. Portions of the logs from later 
that morning for both ships are shown 
in the following tables.

cos A
a

+

cos B

b
+

cos C
c

=

a2
+ b2

+ c2

2abc
.

cos A
a

=

b2
+ c2

- a2

2abc

(a) How fast is each ship traveling? (Express your answer in
knots, which are nautical miles per hour.)

(b) What is the angle of intersection of the courses of the two
ships?

(c) How far apart are the ships at 12:00 noon if they maintain
the same courses and speeds?

Extending the Ideas
54. Prove that the area of a triangle can be found with the formula

55. A segment of a circle is the region 
enclosed between a chord of a circle 
and the arc intercepted by the chord. 
Find the area of a segment intercepted 
by a 7-inch chord in a circle of radius 
5 inches.

¢ Area =

a2 sin B sin C

2 sin A
.
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Naut mi Naut mi Naut mi Naut mi
from from from from

Time port ship B Time port ship A

9:00 15.1 8.7 9:00 12.4 8.7
10:00 30.2 17.3 11:00 37.2 26.0

5

5

7

CHAPTER 5 Key Ideas

Properties, Theorems, and Formulas
Reciprocal Identities 404
Quotient Identities 404
Pythagorean Identities 405
Cofunction Identities 406
Odd-Even Identities 407
Sum/Difference Identities 422–424
Double-Angle Identities 428
Power-Reducing Identities 428

Half-Angle Identities 430
Law of Sines 434
Law of Cosines 442
Triangle Area 444
Heron’s Formula 445

Procedures
Strategies for Proving an Identity 413–415

CHAPTER 5 Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1 and 2, write the expression as the sine, cosine, or tan-
gent of an angle.

1.

2.
2 tan 40°

1 - tan2 40°

2 sin 100° cos 100°

In Exercises 3 and 4, simplify the expression to a single term. Support
your answer graphically.

3.

4.

In Exercises 5–22, prove the identity.

5.

6.

7. tan2 x - sin2 x = sin2 x tan2 x

cos2 2x - cos2 x = sin2 x - sin2 2x

cos 3x = 4 cos3 x - 3 cos x

1 - 4 sin2 x cos2 x

11 - 2 sin2 u22 + 4 sin2 u cos2 u
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SECTION 5 Review Exercises 451

C a B

A

cb

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. 18.

19.

20.

21.

22.

In Exercises 23 and 24, use a grapher to conjecture whether the equa-
tion is likely to be an identity. Confirm your conjecture.

23.

24.

In Exercises 25–28, write the expression in terms of and 
only.

25. 26.

27. 28.

In Exercises 29–34, find the general solution without using a calcula-
tor. Give exact answers.

29. 30.

31. 32.

33. 34.

In Exercises 35–38, solve the equation graphically. Find all solutions
in the interval .

35.

36.

37.

38. sin 2x = x3
- 5x2

+ 5x + 1

sin4 x + x2
= 2

cos3 x - 2 sin x - 0.7 = 0

sin2 x - 3 cos x = -0.5

30, 2p2

2 cos 2x = 1tan-1 x = 1

2 sin-1 x = 12tan x = -1

cos x =

13

2
sin 2x = 0.5

sin 3x - 3 sin 2xcos2 2x - sin 2x

sin 2x + cos 3xsin 3x + cos 3x

cos xsin x

1sin2 a - cos2 a21tan2 a + 12 = tan2 a - 1

sec x - sin x tan x = cos x

arctan t =

1

2
 arctan 

2t

1 - t 2
, -1 6 t 6 1

tan 
1

2
 b = csc b - cot b

1

4
 sin 4g = sin g cos3 g - cos g sin3 g

tan au +

3p

4
b =

tan u - 1

1 + tan u

A
1 - sin g

1 + sin g
=

ƒcos g ƒ

1 + sin gA
1 - cos y

1 + cos y
=

1 - cos y

ƒsin y ƒ

cos 1-z2
sec 1-z2 + tan 1-z2 = 1 + sin z

cos f

1 - tan f
+

sin f

1 - cot f
= cos f + sin f

tan3 g - cot3 g

tan2 g + csc2 g
= tan g - cot g

cos2 a t

2
b =

1 + sec t

2 sec t

sin 3u = 3 cos2 u sin u - sin3 u

1 + tan u

1 - tan u
+

1 + cot u

1 - cot u
= 0

tan u + sin u

2 tan u
= cos2 a u

2
b

csc x - cos x cot x = sin x

2 sin u cos3 u + 2 sin3 u cos u = sin 2u

A

B
C

80 ft

70°

65°

In Exercises 39– 44, find all solutions in the interval without
using a calculator. Give exact answers.

39. 40.

41. 42.

43. 44.

In Exercises 45–48, solve the inequality. Use any method, but give 
exact answers.

45. for 

46. for 

47. for 

48.

In Exercises 49 and 50, find an equivalent equation of the form 
Support your work graphically.

49. 50.

In Exercises 51–58, solve .

51. , ,

52. , ,

53. , , B = 30°b = 3a = 8

B = 110°b = 8a = 5

a = 7B = 33°A = 79°

¢ABC

y = 5 sin 2x - 12 cos 2xy = 3 sin 3x + 4 cos 3x

sin 1bx + c2.
y = a

tan x 6 sin x for -  

p

2
6 x 6

p

2

0 … x 6 2p2 cos x 6 1

0 6 x … 2psin 2x 7 2 cos x

0 … x 6 2p2 cos 2x 7 1

cos 2x + 5 cos x = 2sin 1cos x2 = 1

cos 2t = cos tsin2 x - 2 sin x - 3 = 0

sin 3x = sin x2 cos x = 1

30, 2p2

54. , ,

55. , ,

56. , , C = 55.1°A = 22.9°c = 41

c = 5B = 74°A = 34°

C = 33°A = 29.3°a = 14.7

57. , ,

58. , ,

In Exercises 59 and 60, find the area of .

59. , ,

60. , ,

61. If and , determine the values of b that will
produce the indicated number of triangles:

(a) Two (b) One (c) Zero

62. Surveying a Canyon Two markers A and B on the
same side of a canyon rim are 80 ft apart, as shown in the 
figure. A hiker is located across the rim at point C. A sur-
veyor determines that and .

(a) What is the distance between the hiker and point A?

(b) What is the distance between the two canyon rims? 
(Assume they are parallel.)

∠ABC = 65°∠BAC = 70°

B = 28°a = 12

C = 50°b = 6a = 10

c = 6b = 5a = 3

¢ABC

b = 4a = 6A = 85°

c = 6b = 7a = 5
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63. Altitude A hot-air balloon
is seen over Tucson, Arizona, 
simultaneously by two 
observers at points A and B
that are 1.75 mi apart on level
ground and in line with the bal-
loon. The angles of elevation
are as shown here. How high
above ground is the balloon?

64. Finding Distance In 
order to determine the distance between two points A and B on
opposite sides of a lake, a surveyor chooses a point C that is
900 ft from A and 225 ft from B, as shown in the figure. If the
measure of the angle at C is , find the distance between 
A and B.

65. Finding Radian Measure Find the radian measure 
of the largest angle of the triangle whose sides have lengths 
8, 9, and 10.

66. Finding a Parallelogram A parallelogram has sides
of 15 and 24 ft, and an angle of . Find the diagonals.

67. Maximizing Area A trapezoid is inscribed in the upper
half of a unit circle, as shown
in the figure.

(a) Write the area of the
trapezoid as a function 
of .

(b) Find the value of that
maximizes the area of
the trapezoid and the
maximum area.

68. Beehive Cells A single cell in a 
beehive is a regular hexagonal prism 
open at the front with a trihedral cut 
at the back. Trihedral refers to a 
vertex formed by three faces of a 
polyhedron. It can be shown that the 
surface area of a cell is given by

where is the angle between the axis 
of the prism and one of the back faces,
a is the depth of the prism, and b is the 
length of the hexagonal front. Assume

. and .b = 0.65 ina = 1.75 in

u

S1u2 = 6ab +

3

2
 b2

 a -cot u +

13

sin u
b ,

u

u

40°

70°

452 CHAPTER 5 Analytic Trigonometry

1.75 mi

33° 37°
A B

A

B

C900 ft

225 ft

70°

Rear
of cell

Front
of cell

Trihedral
angle �

b

a

b

y

x
θ

(1, 0)(–1, 0)

x2 + y2 = 1
(x, y)

θ

Earth

h
S

r

by [–2, 2]2 π ],[–2π

(a) Graph the function 

(b) What value of gives the minimum surface area? (Note:
This answer is quite close to the observed angle in nature.)

(c) What is the minimum surface area? 

69. Cable Television Coverage A cable broadcast satel-
lite S orbits a planet at a height h (in miles) above the Earth’s
surface, as shown in the figure. 
The two lines from S are tangent 
to the Earth’s surface. The part 
of the Earth’s surface that is in 
the broadcast area of the satellite 
is determined by the central 
angle indicated in the figure.

(a) Assuming that the Earth is spherical with a radius of 
4000 mi, write h as a function of .

(b) Approximate for a satellite 200 mi above the surface of
the Earth. 

70. Finding Extremum Values The graph of

is shown in the figure. The 
x-values that correspond to local
maximum and minimum points
are solutions of the equation 

. 
Solve this equation algebraically,
and support your solution using 
the graph of y.

71. Using Trigonometry in Geometry A regular
hexagon whose sides are 16 cm is inscribed in a circle. Find
the area inside the circle and outside the hexagon.

72. Using Trigonometry in Geometry A circle is 
inscribed in a regular pentagon whose sides are 12 cm. Find the
area inside the pentagon and outside the circle.

73. Using Trigonometry in Geometry A wheel of
cheese in the shape of a right circular cylinder is 18 cm in 
diameter and 5 cm thick. If a wedge of cheese with a central
angle of is cut from the wheel, find the volume of the
cheese wedge.

74. Product-to-Sum Formulas Prove the following
identities, which are called the product-to-sum formulas.

(a)

(b)

(c)

75. Sum-to-Product Formulas Use the product-to-sum
formulas in Exercise 74 to prove the following identities,
which are called the sum-to-product formulas.

sin u sin v =

1

2
 1sin 1u + v2 + sin 1u - v22

cos u cos v =

1

2
 1cos 1u - v2 + cos 1u + v22

sin u sin v =

1

2
 1cos 1u - v2 - cos 1u + v22

15°

sin x - sin 2x + sin 3x = 0

y = cos x -

1

2
 cos 2x +

1

3
 cos 3x

u

u

u

u

y = S1u2.
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Mirror
�

x x

B

C

A 24�

CARMEN PAT

2x 2x

138.4–20°138.4–20°
84.0–40°70.4–40°
48.0–60°48.0–60°
35.2–80°37.6–80°
30.4–100°31.2–100°
26.4–120°28.0–120°
25.2–140°25.6–140°
24.5–160°24.4–160°

uu

A′

A

C

B

(a)

(b)

(c)

(d)

76. Catching Students Faking Data
Carmen and Pat both need to
make up a missed physics lab.
They are to measure the total
distance traveled by a 
beam of light from point A
to point B and record it 
in increments of as they 
adjust the mirror upward 
vertically. They report the following measurements. However,
only one of the students actually did the lab; the other skipped it
and faked the data. Who faked the data, and how can you tell?

1C2
u20°

12x2

cos u - cos v = -2 sin 
u + v

2
  sin 

u - v

2

cos u + cos v = 2 cos 
u + v

2
 cos 

u - v

2

sin u - sin v = 2 sin 
u - v

2
  cos 

u + v

2

sin u + sin v = 2 sin 
u + v

2
  cos 

u - v

2
77. An Interesting Fact About (sin A) /a The ratio

that shows up in the Law of Sines shows up another
way in the geometry of It is 
the reciprocal of the radius of the 
circumscribed circle.

(a) Let be circumscribed as 
shown in the diagram, and construct
diameter . Explain why 
is a right angle.

(b) Explain why and are congruent.

(c) If a, b, and c are the sides opposite angles A, B, and C as
usual, explain why sin , where d is the diameter
of the circle.

(d) Finally, explain why .

(e) Do also equal ? Why?1/d1sin B2/b and 1sin C2/c
1sin A2/a =  1/d

A¿ = a/d

∠A∠A¿

∠A¿BCCA¿

¢ABC

¢ABC :
1sin A2/a
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CHAPTER 5 Project

Modeling the Illumination of the Moon
From the Earth, the Moon appears to be a circular disk in the
sky that is illuminated to varying degrees by direct sunlight.
During each lunar orbit the Moon varies from a status of being
a new Moon with no visible illumination to that of a full Moon,
which is fully illuminated by direct sunlight. The U.S. Naval

Observatory has developed a mathematical model to find the
fraction of the Moon’s visible disk that is illuminated by the
Sun. The data in the table below (obtained from the U.S. Naval
Observatory Web site, http://aa.usno.navy.mil/, Astronomical
Applications Department) show the fraction of the Moon illu-
minated at midnight for each day in January 2010.

Fraction of the Moon Illuminated, January 2005

Fraction Fraction Fraction Fraction
Day # illuminated Day # illuminated Day # illuminated Day # illuminated

1 1.00 9 0.32 17 0.03 25 0.68
2 0.97 10 0.23 18 0.07 26 0.78
3 0.92 11 0.15 19 0.13 27 0.87
4 0.84 12 0.09 20 0.20 28 0.94
5 0.74 13 0.04 21 0.28 29 0.98
6 0.64 14 0.01 22 0.38 30 1.00
7 0.53 15 0.00 23 0.48 31 0.99
8 0.42 16 0.01 24 0.58

EXPLORATIONS

1. Enter the data in the table above into your grapher or com-
puter. Create a scatter plot of the data.

2. Find values for a, b, h, and k so the equation
models the data in the data plot.

3. Verify graphically the cofunction identity 
by substituting for in the model above

and using sine instead of cosine. Note 
Observe how well this new model fits the data.

4. Verify graphically the odd-even identity 
for the model in #2 by substituting for and 

observing how well the graph fits the data.
u-u1-u2 cos 1u2 = cos

u = b1x - h2.21 u1p/2 - u2cos u
sin 1p/2 - u2 =

y = a cos 1b1x - h22 + k

5. Find values for a, b, h, and k so the equation
fits the data in the table.

6. Verify graphically the cofunction identity 
by substituting for in the model above

and using cosine rather than sine. Note 
Observe the fit of this model to the data.

7. Verify graphically the odd-even identity 
for the model in #5 by substituting for and

graphing . How does this model compare
to the original one?

-a sin 1-u2 + k
u-u-sin 1u2 sin 1-u2 =

b1x - h2.2u =1 u1p/2 - u2sin u
cos 1p/2 - u2 =y = a sin 1b1x - h22 + k
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455

Applications of 
Trigonometry

Young salmon migrate from the fresh water they are born in to salt water
and live in the ocean for several years. When it’s time to spawn, the
salmon return from the ocean to the river’s mouth, where they follow the
organic odors of their homestream to guide them upstream. Researchers
believe the fish use currents, salinity, temperature, and the magnetic field
of the Earth to guide them. Some fish swim as far as 3500 miles upstream
for spawning. See a related problem on page 463.

6.1 Vectors in the Plane

6.2 Dot Product of Vectors

6.3 Parametric Equations 
and Motion

6.4 Polar Coordinates

6.5 Graphs of Polar Equations

6.6 De Moivre’s Theorem 
and nth Roots

CHAPTER 6
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Chapter 6 Overview
We introduce vectors in the plane, perform vector operations, and use vectors to repre-
sent quantities such as force and velocity. Vector methods are used extensively in
physics, engineering, and applied mathematics. Vectors are used to plan airplane flight
paths. The trigonometric form of a complex number is used to obtain De Moivre’s The-
orem and find the nth roots of a complex number.

Parametric equations are studied and used to simulate motion. One of the principal appli-
cations of parametric equations is the analysis of motion in space. Polar coordinates 
(another of Newton’s inventions, although Jakob Bernoulli usually gets the credit because
he published first) are used to represent points in the coordinate plane. Planetary motion is
best described with polar coordinates. We convert rectangular coordinates to polar coordi-
nates, polar coordinates to rectangular coordinates, and study graphs of polar equations.

456 CHAPTER 6 Applications of Trigonometry

Jakob Bernoulli (1654–1705)
The first member of the Bernoulli family (driven
out of Holland by the Spanish persecutions and
settled in Switzerland) to achieve mathematical
fame, Jakob defined the numbers now known as
Bernoulli numbers. He determined the form (the
elastica) taken by an elastic rod acted on at one
end by a given force and fixed at the other end.

6.1 Vectors in the Plane

What you’ll learn about
• Two-Dimensional Vectors
• Vector Operations
• Unit Vectors
• Direction Angles
• Applications of Vectors

... and why
These topics are important in
many real-world applications,
such as calculating the effect of
the wind on an airplane’s path.

(a, b)

a, b

y

x

y

x

(a, b)

OO
(a) (b)

FIGURE 6.1 The point represents the ordered pair (a, b). The arrow (directed line segment)
represents the vector a, b .98

Two-Dimensional Vectors
Some quantities, like temperature, distance, height, area, and volume, can be repre-
sented by a single real number that indicates magnitude or size. Other quantities, such
as force, velocity, and acceleration, have magnitude and direction. Since the number
of possible directions for an object moving in a plane is infinite, you might be sur-
prised to learn that two numbers are all that we need to represent both the magnitude
of an object’s velocity and its direction of motion. We simply look at ordered pairs of
real numbers in a new way. While the pair determines a point in the plane, it
also determines a directed line segment (or arrow) with its tail at the origin and its
head at (Figure 6.1). The length of this arrow represents magnitude, while the
direction in which it points represents direction. Because in this context the ordered
pair represents a mathematical object with both magnitude and direction, we
call it the position vector of , and denote it as to distinguish it from the
point .1a, b2 8a, b91a, b21a, b2

1a, b2
1a, b2

DEFINITION Two-Dimensional Vector
A two-dimensional vector v is an ordered pair of real numbers, denoted in
component form as a, b . The numbers a and b are the components of the
vector v. The standard representation of the vector a, b is the arrow from
the origin to the point a, b . The magnitude of v is the length of the arrow, and
the direction of v is the direction in which the arrow is pointing. The vector

, called the zero vector, has zero length and no direction.0 = 80, 09
21 9898
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It is often convenient in applications to represent vectors with arrows that begin at
points other than the origin. The important thing to remember is that any two arrows
with the same length and pointing in the same direction represent the same vector. In
Figure 6.2, for example, the vector is shown represented by , an arrow with
initial point R and terminal point S, as well as by its standard representation Two
arrows that represent the same vector are called equivalent.

The quick way to associate arrows with the vectors they represent is to use the follow-
ing rule.

OP
!

.
RS

!83, 49

SECTION 6.1 Vectors in the Plane 457

Is an Arrow a Vector?
While an arrow represents a vector, it is not a
vector itself, since each vector can be repre-
sented by an infinite number of equivalent 
arrows. Still, it is hard to avoid referring to “the
vector ” in practice, and we will often do that
ourselves. When we say “the vector ”
we really mean “the vector u represented 
by .”PQ

!

u = PQ
!

,
PQ

!

y

x

P(3, 4)

O(0, 0)

R(–4, 2)

S(–1, 6)

FIGURE 6.2 The arrows and both
represent the vector , as would any ar-
row with the same length pointing in the same
direction. Such arrows are called equivalent.

83, 49
OP

!

RS
!

Head Minus Tail (HMT) Rule
If an arrow has initial point and terminal point , it represents
the vector .8x2 - x1, y2 - y19

1x2, y221x1, y12

EXAMPLE 1  Showing Arrows Are Equivalent
Show that the arrow from is equivalent to the arrow
from to (Figure 6.3).Q = 15, 32P = 12, -12 R = 1-4, 22 to S = 1-1, 62

x

y

Q(5, 3)

O

S(–1, 6)

R(–4, 2)

P(2, –1)

FIGURE 6.3 The arrows and appear to have the same magnitude and direction. 
The Head Minus Tail Rule proves that they represent the same vector. (Example 1)

PQ
!

RS
!

SOLUTION

Applying the HMT Rule, we see that represents the vector 

, while represents the vector Although they
have different positions in the plane, these arrows represent the same vector and are
therefore equivalent. Now try Exercise 1.

3 - 1-129 = 83, 49.85 - 2,PQ
!83, 49

8-1 - 1-42, 6 - 29 =RS
!

EXPLORATION 1 Vector Archery

See how well you can direct arrows in the plane using vector information and

the HMT Rule.

1. An arrow has initial point and terminal point . What vector does it
represent?

2. An arrow has initial point and represents the vector . What is the
terminal point?

3. If P is the point and represents , find Q.

4. If Q is the point and represents , find P.82, -49PQ
!14, -32

82, -49PQ
!14, -32

8-3, 6913, 52
17, 5212, 32
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The sum of the vectors u and v can be represented geometrically by arrows in two
ways.

In the tail-to-head representation, the standard representation of u points from the 
origin to . The arrow from to represents v (as you
can verify by the HMT Rule). The arrow from the origin to then
represents (Figure 6.6a).

In the parallelogram representation, the standard representations of u and v deter-
mine a parallelogram, the diagonal of which is the standard representation of 
(Figure 6.6b).

u + v

u + v
1u1 + v1, u2 + v22

1u1 + v1, u2 + v221u1, u221u1, u22

If you handled Exploration 1 with relative ease, you have a good understanding of how
vectors are represented geometrically by arrows. This will help you understand the 
algebra of vectors, beginning with the concept of magnitude.

The magnitude of a vector v is also called the absolute value of v, so it is usually de-
noted by . (You might see in some textbooks.) Note that it is a nonnegative real
number, not a vector. The following computational rule follows directly from the dis-
tance formula in the plane (Figure 6.4).

ƒ ƒv ƒ ƒƒv ƒ

458 CHAPTER 6 Applications of Trigonometry

y

x

P(x1, y1)

Q(x2, y2)

FIGURE 6.4 The magnitude of v is the
length of the arrow , which is found using
the distance formula: 

21x2 - x122 + 1y2 - y122.ƒv ƒ =

PQ
!

Magnitude
If v is represented by the arrow from to , then

If , then ƒv ƒ = 2a2
+ b2.v = 8a, b9

ƒv ƒ = 21x2 - x122 + 1y2 - y122.

1x2, y221x1, y12

EXAMPLE 2  Finding Magnitude of a Vector
Find the magnitude of the vector v represented by , where and

SOLUTION

Working directly with the arrow, Or,

the HMT Rule shows that , so 

(See Figure 6.5.) Now try Exercise 5.
ƒv ƒ = 21-222 + 1-222 = 212.v = 8-2, -29

ƒv ƒ = 21-5 - 1-3222 + 12 - 422 = 212.

Q = 1-5, 22. P = 1-3, 42PQ
!

y

x
v O(0, 0)

(–2, –2)

Q(–5, 2)

P(–3, 4)

FIGURE 6.5 The vector v of Example 2.

What About Direction?
You might expect a quick computational rule for
direction to accompany the rule for magnitude,
but direction is less easily quantified. We will
deal with vector direction later in the section.

Vector Operations
The algebra of vectors sometimes involves working with vectors and numbers at the
same time. In this context we refer to the numbers as scalars. The two most basic alge-
braic operations involving vectors are vector addition (adding a vector to a vector) and
scalar multiplication (multiplying a vector by a number). Both operations are easily
represented geometrically, and both have immediate applications to many real-world
problems.

What About Vector 
Multiplication?
There is a useful way to define the multiplication
of two vectors—in fact, there are two useful
ways, but neither one of them follows the simple
pattern of vector addition. (You may recall that
matrix multiplication did not follow the simple
pattern of matrix addition either, and for similar
reasons.) We will look at the dot product in 
Section 6.2. The cross product requires a third
dimension, so we will not deal with it in this
course.

DEFINITION Vector Addition and Scalar Multiplication
Let and be vectors and let k be a real number
(scalar). The sum (or resultant) of the vectors u and v is the vector

The product of the scalar k and the vector u is

ku = k8u1, u29 = 8ku1, ku29.

u + v = 8u1 + v1, u2 + v29.
v = 8v1, v29u = 8u1, u29
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SECTION 6.1 Vectors in the Plane 459

x

y

v

u

x

y

u + v

v

u

(a) (b)

u + v

FIGURE 6.6 Two ways to represent vector addition geometrically: (a) tail-to-head, and (b)
parallelogram.

The product ku of the scalar k and the vector u can be represented by a stretch (or
shrink) of u by a factor of k. If then ku points in the same direction as u; if

then ku points in the opposite direction (Figure 6.7).k 6 0,
k 7 0,

–2u

(1/2)uu

2u

FIGURE 6.7 Representations of u and
several scalar multiples of u.

EXAMPLE 3  Performing Vector Operations
Let and . Find the component form of the following vectors:

(a) (b) 3u (c)
SOLUTION Using the vector operations as defined, we have:

(a)

(b)

(c)

Geometric representations of and 3u are shown in Figure 6.8.u + v

2u + 1-12v = 28-1, 39 + 1-1284, 79 = 8-2, 69 + 8-4, -79 = 8-6, -19
3u = 38-1, 39 = 8-3, 99
u + v = 8-1, 39 + 84, 79 = 8-1 + 4, 3 + 79 = 83, 109

2u + 1-12vu + v

v = 84, 79u = 8-1, 39

y

x

v

u

u + v

(–1, 3)

(3, 10)

(a)

y

x

u =  –1, 3 

3u =  –3, 9 

(b)

FIGURE 6.8 Given that and , we can (a) represent by the
tail-to-head method, and (b) represent 3u as a stretch of u by a factor of 3.

u + vv = 84, 79u = 8-1, 39
Now try Exercise 13.

A Word About Vector Notation
Both notations, and , are designed
to convey the idea that a single vector v has two
separate components. This is what makes a two-
dimensional vector two-dimensional. You will
see both and used for
three-dimensional vectors, but scientists stick to
the notation for dimensions higher than three.98

ai + bj + ck8a, b, c9

ai + bj8a, b9

Unit Vectors
A vector u with length is a unit vector. If v is not the zero vector , then
the vector

u =

v

ƒv ƒ

=

1

ƒv ƒ

 v

80, 09ƒu ƒ = 1
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The two unit vectors and are the standard unit vectors. Any
vector v can be written as an expression in terms of the standard unit vectors:

Here the vector is expressed as the linear combination of the vec-
tors i and j. The scalars a and b are the horizontal and vertical components, respec-
tively, of the vector v. (See Figure 6.9.)

Direction Angles
You may recall from our applications in Section 4.8 that direction is measured in differ-
ent ways in different contexts, especially in navigation. A simple but precise way to
specify the direction of a vector v is to state its direction angle, the angle that v
makes with the positive x-axis, just as we did in Section 4.3. Using trigonometry 
(Figure 6.10), we see that the horizontal component of v is and the vertical 
component is . Solving for these components is called resolving the vector.ƒv ƒ  sin u

ƒv ƒ  cos u

u

ai + bjv = 8a, b9
 = ai + bj

 = a81, 09 + b80, 19
 = 8a, 09 + 80, b9

 v = 8a, b9
j = 80, 19i = 81, 09

460 CHAPTER 6 Applications of Trigonometry

EXAMPLE 4  Finding a Unit Vector
Find a unit vector in the direction of , and verify that it has length 1.

SOLUTION

The magnitude of this vector is

Thus, the magnitude of is 1. Its direction is the same as v because it is a positive
scalar multiple of v. Now try Exercise 21.

v/ ƒv ƒ

 = B
9

13
+

4

13
= B

13

13
= 1

 ̀ h -3

113
 , 

2

113
i ` = Ba

-3

113
b2

+ a 2

113
b2

 = h -3

113
 , 

2

113
i

 
v

ƒv ƒ

=

1

113
 8-3, 29

 ƒv ƒ = ƒ8-3, 29 ƒ = 21-322 + 1222 = 113, so

v = 8-3, 29

y

x

v|v| sin θ

|v| cos θ

θ

FIGURE 6.10 The horizontal and vertical
components of v.

Resolving the Vector
If v has direction angle , the components of v can be computed using the 
formula

v = 8 ƒv ƒ  cos u, ƒv ƒ  sin u9.
u

From the formula above, it follows that the unit vector in the direction of v is

u =

v

ƒv ƒ

= 8cos u, sin u9.

y

x

v = �a, b�

bj

ai

FIGURE 6.9 The vector v is equal to
ai + bj.

is a unit vector in the direction of v. Unit vectors provide a way to represent the direc-
tion of any nonzero vector. Any vector in the direction of v, or the opposite direction, is
a scalar multiple of this unit vector u.
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SECTION 6.1 Vectors in the Plane 461

EXAMPLE 5  Finding the Components of a Vector
Find the components of the vector v with direction angle and magnitude 6 
(Figure 6.11) using no technology except to approximate the exact trigonometric 
solution.

SOLUTION If a and b are the horizontal and vertical components, respectively, of
v, then

So, and .
Now try Exercise 29.

b = 6 sin 115° L 5.44a = 6 cos 115° L -2.54

v = 8a, b9 = 86 cos 115°, 6 sin 115°9.

 115°

y

x

v = �a, b�

6 115°

O

FIGURE 6.11 The direction angle of v
is 115°. (Example 5) EXAMPLE 6  Finding the Direction Angle of a Vector

Find the magnitude and direction angle of each vector:

(a) (b)

SOLUTION See Figure 6.12.

(a) is the magnitude. If is the direction angle of u, then

Horizontal component of u

is acute.

So the direction angle is about 33.69°.

(b) is the magnitude. If is the direction angle
of v, then .

Horizontal component of v

So the direction angle is about 248.2°. Now try Exercise 33.

180° 6 b 6 270° b = 360° - cos-1 a -2

129
b L 248.2°

 -2 = 129 cos b

ƒv ƒ = 21-222 + 1-522 -2 = 21-222 + 1-522 cos b

 -2 = ƒv ƒ  cos b

v = 8-2, -59 = 8 ƒv ƒ  cos b, ƒv ƒ  sin b9
bƒv ƒ = 21-222 + 1-522 = 129

a a = cos-1 a 3

113
b L 33.69°

 3 = 113 cos a

ƒu ƒ = 232
+ 22 3 = 232

+ 22 cos a

 3 = ƒu ƒ  cos a

u = 83, 29 = 8 ƒu ƒ  cos a, ƒu ƒ  sin a9.
aƒu ƒ = 232

+ 22
= 113

v = 8-2, -59u = 83, 29
y

x

β
α

u = �3, 2�

v = �–2, –5�

v

u

FIGURE 6.12 The two vectors of Exam-
ple 6.

Applications of Vectors
The velocity of a moving object is a vector because velocity has both magnitude and
direction. The magnitude of velocity is speed.

EXAMPLE 7  Writing Velocity as a Vector
A DC-10 jet aircraft is flying on a bearing of at 500 mph. Find the component
form of the velocity of the airplane. Recall that the bearing is the angle that the line
of travel makes with due north, measured clockwise (see Section 4.1, Figure 4.2).

SOLUTION Let v be the velocity of the airplane. A bearing of is equivalent to
a direction angle of . The plane’s speed, 500 mph, is the magnitude of vector v;
that is, (See Figure 6.13.)

(continued)
ƒv ƒ = 500.

 25°
 65°

 65°

x

y

v

500 mph

25°

65°

FIGURE 6.13 The airplane’s path 
(bearing) in Example 7.
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A typical problem for a navigator involves calculating the effect of wind on the direc-
tion and speed of the airplane, as illustrated in Example 8.

462 CHAPTER 6 Applications of Trigonometry

The horizontal component of v is 500 and the vertical component is 
500 , so

The components of the velocity give the eastward and northward speeds. That is, the
airplane travels about 453.15 mph eastward and about 211.31mph northward as it
travels at 500 mph on a bearing of . Now try Exercise 41.65°

 = 8500 cos 25°, 500 sin 25°9 L 8453.15, 211.319
 v = 1500 cos 25°2i + 1500 sin 25°2j

sin 25°
cos 25°

EXAMPLE 8  Calculating the Effect of Wind Velocity
Pilot Megan McCarty’s flight plan has her leaving San Francisco International Air-
port and flying a Boeing 727 due east. There is a 65-mph wind with the bearing .
Find the compass heading McCarty should follow, and determine what the airplane’s
ground speed will be (assuming that its speed with no wind is 450 mph).

SOLUTION See Figure 6.14. Vector represents the velocity produced by the
airplane alone, represents the velocity of the wind, and is the angle DAB. Vec-
tor represents the resulting velocity, so

We must find the bearing of and .

Resolving the vectors, we obtain

Because the plane is traveling due east, the second component of must be zero.

Thus, the compass heading McCarty should follow is

. Bearing

The ground speed of the airplane is

Using the unrounded
value of .

McCarty should use a bearing of approximately . The airplane will travel due
east at approximately 505.12 mph. Now try Exercise 43.

94.14°

u

 L 505.12

 = ƒ65 cos 30° + 450 cos u ƒ

 ƒv ƒ = ƒ  AD
!

 ƒ = 2165 cos 30° + 450 cos u22 + 02

7 90°90° + ƒu ƒ L 94.14°

u 6 0 L -4.14°

 u = sin-1 a -65 sin 30°

450
b

 65 sin 30° + 450 sin u = 0

AD
!

 = 865 cos 30° + 450 cos u, 65 sin 30° + 450 sin u9 
 AD

!

= AC
!

+ AB
!

 AB
!

= 8450 cos u, 450 sin u9
 AC

!

= 865 cos 30°, 65 sin 30°9

ƒv ƒAB
!

v = AD
!

= AC
!

+ AB
!

.

v = AD
!

uAC
!

AB
!

60°

y

xθ
A

C

B

D

60°
65 mph

450 mph

v

FIGURE 6.14 The x-axis represents the
flight path of the plane in Example 8.
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SECTION 6.1 Vectors in the Plane 463

EXAMPLE 9  Finding the Effect of Gravity
A force of 30 pounds just keeps the box in Figure 6.15 from sliding down the ramp
inclined at . Find the weight of the box.

SOLUTION We are given that Let ; then

Thus,

The weight of the box is about 87.71 pounds. Now try Exercise 47.

w =

30

sin 20°
L 87.71.

sin 20° =

ƒ  CB
!

 ƒ

w
=

30
w

.

ƒ  AB
!

 ƒ = wƒ  AD
!

 ƒ = 30.

20°w

A

B
C

D

20° 20°

FIGURE 6.15 The force of gravity has
a component that holds the box against the
surface of the ramp, and a component

that tends to push the box down the
ramp. (Example 9)
AD

!

= CB
!

AC
!

AB
!

A Reminder About 
Special Angles
As a reminder, it goes without saying that when
confronted with sin 60° you will use your mental 

skills to write the answer of without the aid 

of a calculator—similarly for all the special 
angles. However, for example, when a value for
sin 20° is needed you will use your calculator to
approximate the answer to the agreed-upon 
accuracy.

13

2

Chapter Opener Problem (from page 455)

Problem: During one part of its migration, a salmon is swimming at 6 mph, and
the current is flowing downstream at 3 mph at an angle of 7 degrees. How fast is
the salmon moving upstream?

Solution: Assume the salmon is swimming in a plane parallel to the surface of
the water.

In the figure, vector represents the current of 3 mph, is the angle CAB, which is
7 degrees, the vector represents the velocity of the salmon of 6 mph, and the 
vector is the net velocity at which the fish is moving upstream.

So we have

Thus 

The speed of the salmon is then mph upstream.ƒ  CB
!

 ƒ L 20.372
+ 3.022

L 3.04

 L 80.37, 3.029
 CB

!

= CA
!

+ AB
!

= 83 cos 1-83°2, 3 sin 1-83°2 + 69
CA

!

= 80, 69
AB

!

= 83 cos 1-83°2, 3 sin 1-83°29 L 80.37, -2.989

CB
!

CA
!

uAB
!

A

C

B

θ

salmon
swimming

in still water

current

salmon net
velocity
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464 CHAPTER 6 Applications of Trigonometry

QUICK REVIEW 6.1 (For help, go to Sections 4.3 and 4.7.)

In Exercises 5 and 6, solve for in degrees.

5.

6.

In Exercises 7–9, the point P is on the terminal side of the angle .
Find the measure of if .

7.

8.

9. , 

10. A naval ship leaves Port Norfolk and averages 42 knots
(nautical mph) traveling for 3 hr on a bearing of and
then 5 hr on a course of . What is the boat’s bearing
and distance from Port Norfolk after 8 hr?

125°
40°

 -52P1-2

P15, -72
P15, 92

0° 6 u 6 360°u

u

u = cos-1 a -1

115
b

u = sin-1 a 3

129
b
uIn Exercises 1–4, find the values of x and y.

1. 2.

3. 4.

SECTION 6.1 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–4, prove that and are equivalent by showing that
they represent the same vector.

1. and 

2. and 

3. and 

4. and 

In Exercises 5–12, let , and
Find the component form and magnitude of the vector.

5. 6.

7. 8.

9. 10.

11.

12.

In Exercises 13–20, let , and .
Find the component form of the vector.

13. 14.

15. 16. 3v

17. 18.

19. 20. -u - v-2u - 3v

2u - 4v2u + 3w

u - w

u + 1-12vu + v

w = 82, -59u = 8-1, 39, v = 82, 49
PS

!

- 3PQ
!

3QR
!

+ PS
!

1122 PR
!

2QS
!

PS
!

QR
!

RS
!

PQ
!

S = 12, -82.
P = 1-2, 22, Q = 13, 42, R = 1-2, 52

Q = 11, 42R = 1-2, -12, S = 12, 42, P = 1-3, -12,
Q = 1-1, 22R = 12, 12, S = 10, -12, P = 11, 42,

Q = 1-3, -22R = 17, -32, S = 14, -52, P = 10, 02,
Q = 13, -22R = 1-4, 72, S = 1-1, 52, P = 10, 02,

PQ
!

RS
!

In Exercises 21–24, find a unit vector in the direction of the given vector.

21. 22.

23.

24.

In Exercises 25–28, find the unit vector in the direction of the given
vector. Write your answer in (a) component form and (b) as a linear
combination of the standard unit vectors i and j.

25. 26.

27. 28.

In Exercises 29–32, find the component form of the vector v. Solve al-
gebraically and approximate exact answers with a calculator. Support
your solution by estimating the lengths of the components of the vector
in each figure and comparing with your answer.

29. 30.

u = 83, -49u = 8-4, -59
u = 8-3, 29u = 82, 19

w = 5i + 5j

w = - i - 2j

v = 81, -19u = 8-2, 49

y

x

9

30°

(x, y)

x

y 15

y

x

(x, y)

120°

x

y

y

x

(x, y)

y
7

220°
x

y

x

6

–50°

x

(x, y)

y

y

x25°

18 v

y

x
55°

14
v
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31. 32.
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47. Moving a Heavy Object Suppose the box described
in Exercise 46 is being towed up the inclined plane, as shown
in the figure below. Find the force w needed in order for the
component of the force parallel to the inclined plane to be 
2.5 lb. Give the answer in component form.

y

x

108°
47

v

y

x

136°33

v

In Exercises 33–38, find the magnitude and direction angle of the vector.
Use an algebraic method and approximate exact answers with a calcu-
lator when appropriate.

33. 34.

35. 36.

37.

38.

In Exercises 39 and 40, find the vector v with the given magnitude and
the same direction as u.

39. 40.

41. Navigation An airplane is flying on a bearing of 
at 530 mph. Find the component form of the velocity of the 
airplane.

42. Navigation An airplane is flying on a bearing of 
at 460 mph. Find the component form of the velocity of the 
airplane.

43. Flight Engineering An airplane is flying on a compass
heading (bearing) of at 325 mph. A wind is blowing with
the bearing at 40 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual ground speed and direction of the plane.

44. Flight Engineering An airplane is flying on a compass
heading (bearing) of at 460 mph. A wind is blowing with
the bearing at 80 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual ground speed and direction of the airplane.

45. Shooting a Basketball A basketball is shot at a 
angle with the horizontal direction with an initial speed 

of 10 m/sec.

(a) Find the component form of the initial velocity.

(b) Writing to Learn Give an interpretation of the hori-
zontal and vertical components of the velocity.

46. Moving a Heavy Object In a warehouse a box is be-
ing pushed up a inclined plane with a force of 2.5 lb, as
shown in the figure.

15°

70°

200°
170°

320°
340°

170°

335°

ƒv ƒ = 5, u = 8-5, 79ƒv ƒ = 2, u = 83, -39

21cos 60° i + sin 60° j2
71cos 135° i + sin 135° j2

-3i - 5j3i - 4j

8-1, 2983, 49

15°
2.5 lb

v

(a) Find the component form of the force.

(b) Writing to Learn Give an interpretation of the hori-
zontal and vertical components of the force.

15°

33°

w

48. Combining Forces Juana and Diego Gonzales, ages six
and four respectively, own a strong and stubborn puppy named
Corporal. It is so hard to take Corporal for a walk that they de-
vise a scheme to use two leashes. If Juana and Diego pull with
forces of 23 lb and 27 lb at the angles shown in the figure, how
hard is Corporal pulling if the puppy holds the children at a
standstill?

23 lb

27 lb

18°
15°

In Exercises 49 and 50, find the direction and magnitude of the resul-
tant force.

49. Combining Forces A force of 50 lb acts on an object at
an angle of . A second force of 75 lb acts on the object at an
angle of .

50. Combining Forces Three forces with magnitudes 100,
50, and 80 lb act on an object at angles of , , and ,
respectively.

51. Navigation A ship is heading due north at 12 mph. The
current is flowing southwest at 4 mph. Find the actual bearing
and speed of the ship.

52. Navigation A motor boat capable of 20 mph keeps the
bow of the boat pointed straight across a mile-wide river. The
current is flowing left to right at 8 mph. Find where the boat
meets the opposite shore.

53. Group Activity A ship heads due south with the current
flowing northwest. Two hours later the ship is 20 miles in the
direction west of south from the original starting point.
Find the speed with no current of the ship and the rate of the
current.

54. Group Activity Express each vector in component form
and prove the following properties of vectors.

(a)

(b)

(c) , where

(d) , where

(e)

(f ) 1a + b2u = au + bu

a1u + v2 = au + av

-8a, b9 = 8-a, -b9u + 1-u2 = 0

0 = 80, 09u + 0 = u

1u + v2 + w = u + 1v + w2
u + v = v + u

30°

-20°160°50°

-30°
 45°
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(g)

(h)

(i)

( j)

Standardized Test Questions
55. True or False If u is a unit vector, then is also a unit

vector. Justify your answer.

56. True or False If u is a unit vector, then 1/u is also a unit
vector. Justify your answer.

In Exercises 57–60, you may use a graphing calculator to solve the
problem.

57. Multiple Choice Which of the following is the magni-
tude of the vector ?

(A) 1 (B) (C)

(D) (E) 5

58. Multiple Choice Let and .
Which of the following is equal to ?

(A) (B) (C)

(D) (E)

59. Multiple Choice Which of the following represents the
vector v shown in the figure below?

8-6, 498-6, 29
8-2, 2982, 2986, -49

u - v
v = 84, -19u = 8-2, 39

15

15

5
13

82, -19

-u

ƒau ƒ = ƒa ƒ  ƒu ƒ

112u = u, 1-12u = -u

a0 = 0, 0u = 0

1ab2u = a1bu2
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Explorations
61. Dividing a Line Segment in a Given Ratio Let

A and B be two points in the plane, as shown in the figure.

(a) Prove that , where O
is the origin.

(b) Let C be a point on the line segment 
BA which divides the segment in the 
ratio x : y where That is,

Show that 

62. Medians of a Triangle Perform the following steps to
use vectors to prove that the medians of a triangle meet at a
point O which divides each median in the ratio 1 : 2. , ,
and are midpoints of the sides of the triangle shown in the
figure.

M3

M2M1

OC
!

= xOA
!

+ yOB
!

.

ƒ  BC
!

 ƒ

ƒ  CA
!

 ƒ

=

x

y
 .

x + y = 1.

BA
!

= OA
!

- OB
!

y

x

v

30°

3

O

(A) (B)

(C) (D)

(E)

60. Multiple Choice Which of the following is a unit vector
in the direction of 

(A) (B) (C)

(D) (E) -  

1

18
 i +

3

18
 j

1

110
 i -

3

110
 j

-  

1

110
 i +

3

110
 j

1

10
 i -

3

10
 j-  

1

10
 i +

3

10
 j

v = - i + 3j?

813 cos 30°, 13 sin 30°9
813 cos 30°, 13 sin 30°983 cos 60°, 3 sin 60°9
83 sin 30°, 3 cos 30°983 cos 30°, 3 sin 30°9

A
C

B

O

A B

C

O
M3 M2

M1

(a) Use Exercise 61 to prove that

(b) Prove that each of 

is equal to 

(c) Writing to Learn Explain why part (b) establishes
the desired result.

Extending the Ideas
63. Vector Equation of a Line Let L be the line through

the two points A and B. Prove that is on the line L if
and only if where t is a real number
and O is the origin.

64. Connecting Vectors and Geometry Prove that
the lines which join one vertex of a parallelogram to the mid-
points of the opposite sides trisect the diagonal.

OC
!

= t OA
!

+ 11 - t2OB
!

,
C = 1x, y2

OA
!

+ OB
!

+ OC
!

.2 OM3

!

+ OB
!

2 OM2

!

+ OA
!

,2 OM1

!

+ OC
!

,

 OM3

!

=

1

2
 OA

!

+

1

2
 OC

!

 OM2

!

=

1

2
 OC

!

+

1

2
 OB

!

 OM1

!

=

1

2
 OA

!

+

1

2
 OB

!
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6.2 Dot Product of Vectors

The Dot Product
Vectors can be multiplied in two different ways, both of which are derived from their
usefulness for solving problems in vector applications. The cross product (or vector
product or outer product) results in a vector perpendicular to the plane of the two vec-
tors being multiplied, which takes us into a third dimension and outside the scope of
this chapter. The dot product (or scalar product or inner product) results in a scalar. In
other words, the dot product of two vectors is not a vector but a real number! It is the
important information conveyed by that number that makes the dot product so worth-
while, as you will see.

Now that you have some experience with vectors and arrows, we hope we won’t con-
fuse you if we occasionally resort to the common convention of using arrows to name
the vectors they represent. For example, we might write “ ” as a shorthand for 

“u is the vector represented by .” This greatly simplifies the discussion of concepts
like vector projection. Also, we will continue to use both vector notations, and

, so you will get some practice with each.ai + bj
8a, b9PQ

!
u = PQ

!

What you’ll learn about
• The Dot Product
• Angle Between Vectors
• Projecting One Vector onto 

Another
• Work

... and why
Vectors are used extensively in
mathematics and science appli-
cations such as determining the
net effect of several forces acting
on an object and computing the
work done by a force acting on
an object.

Properties of the Dot Product
Let u, v, and w be vectors and let c be a scalar.

1.

2.

3. 0 # u = 0

u # u = ƒu ƒ
2

u # v = v # u

Dot products have many important properties that we make use of in this section. We
prove the first two and leave the rest for the exercises.

Dot Product and Standard 
Unit Vectors

1u1i + u2 j2 # 1v1i + v2 j2 = u1v1 + u2v2

4.

5. 1cu2 # v = u # 1cv2 = c1u # v2
1u + v2 # w = u # w + v # w

u # 1v + w2 = u # v + u # w

Proof

Let and .

Property 1

Definition of 

Commutative property of real numbers

Definition of 

Property 2

Definition of 

Definition of ƒu ƒ = ƒu ƒ
2

 = 12u1 

2
+ u2 

222
u # u u # u = u1 

2
+ u2 

2

u # v = v # u

 = v1u1 + v2u2

u # v u # v = u1v1 + u2v2

v = 8v1, v29u = 8u1, u29

DEFINITION Dot Product
The dot product or inner product of , and , is

u # v = u1v1 + u2v2.

v29v = 8v1u29u = 8u1

6965_CH06_pp455-518.qxd  1/14/10  1:54 PM  Page 467



Property 2 of the dot product gives us another way to find the length of a vector, as 
illustrated in Example 2.

468 CHAPTER 6 Applications of Trigonometry

EXAMPLE 1  Finding Dot Products
Find each dot product.

(a) (b) (c)

SOLUTION

(a)

(b)

(c)
Now try Exercise 3.

12i - j2 # 13i - 5j2 = 122132 + 1-121-52 = 11

81, -29 # 8-4, 39 = 1121-42 + 1-22132 = -10

83, 49 # 85, 29 = 132152 + 142122 = 23

12i - j2 # 13i - 5j281, -29 # 8-4, 3983, 49 # 85, 29

v

� u

v – u

FIGURE 6.16 The angle between
nonzero vectors u and v.

u

Dot Products On Calculators
It is really a waste of time to compute a 
simple dot product of two-dimensional 
vectors using a calculator, but it can be done.
Some calculators do vector operations outright,
and others can do vector operations via matrices.
If you have learned about matrix multiplication
already, you will know why the matrix 

product yields the dot 

product as a 1-by-1 matrix.
(The same trick works with vectors of higher 
dimensions.) This book will cover matrix multi-
plication in Chapter 7.

8u1, u29 # 8v1, v29
3u1, u24 # cv1

v2
d

EXAMPLE 2  Using Dot Product to Find Length
Use the dot product to find the length of the vector .

SOLUTION It follows from property 2 that Thus,

Now try Exercise 9.
ƒ84, -39 ƒ = 284, -39 # 84, -39 = 2142142 + 1-321-32 = 125 = 5.

ƒu ƒ = 1u # u.

u = 84, -39

Angle Between Vectors
Let u and v be two nonzero vectors in standard position as shown in Figure 6.16. The
angle between u and v is the angle or . The angle be-
tween any two nonzero vectors is the corresponding angle between their respective
standard position representatives.

We can use the dot product to find the angle between nonzero vectors, as we prove in
the next theorem.

0° … u … 180°u, 0 … u … p

THEOREM Angle Between Two Vectors
If is the angle between the nonzero vectors u and v, then

 and u = cos-1 a u # v

ƒu ƒ  ƒv ƒ

b
 cos u =

u # v

ƒu ƒ  ƒv ƒ

u

Proof

We apply the Law of Cosines to the triangle determined by u, v, and v u in Figure 6.16,
and use the properties of the dot product.

 u = cos-1 a u # v

ƒu ƒ  ƒv ƒ

b
 cos u =

u # v

ƒu ƒ  ƒv ƒ

 -2u # v = -2 ƒu ƒ  ƒv ƒ  cos u

 ƒv ƒ
2

- 2u # v + ƒu ƒ
2

= ƒu ƒ
2

+ ƒv ƒ
2

- 2 ƒu ƒ  ƒv ƒ  cos u

 v # v - v # u - u # v + u # u = ƒu ƒ
2

+ ƒv ƒ
2

- 2 ƒu ƒ  ƒv ƒ  cos u

 1v - u2 # 1v - u2 = ƒu ƒ
2

+ ƒv ƒ
2

- 2 ƒu ƒ  ƒv ƒ  cos u

 ƒv - u ƒ
2

= ƒu ƒ
2

+ ƒv ƒ
2

- 2 ƒu ƒ  ƒv ƒ  cos u

-

6965_CH06_pp455-518.qxd  1/14/10  1:54 PM  Page 468



If vectors u and v are perpendicular, that is, if the angle between them is , then

because cos 90° = 0.

u # v = ƒu ƒ  ƒv ƒ  cos 90° = 0

90°

SECTION 6.2 Dot Product of Vectors 469

EXAMPLE 3  Finding the Angle Between Vectors
Use an algebraic method to find the angle between the vectors u and v. Use a calcu-
lator to approximate exact answers when appropriate.

(a) (b)

SOLUTION

(a) See Figure 6.17a. Using the Angle Between Two Vectors Theorem, we have

So,

(b) See Figure 6.17b. Again using the Angle Between Two Vectors Theorem, we
have

So,

Now try Exercise 13.

u = cos-1 a -1

12
b = 135°.

cos u =

u # v

ƒu ƒ  ƒv ƒ

=

82, 19 # 8-1, -39
ƒ82, 19 ƒ  ƒ8-1, -39 ƒ =

-5

15 110
=

-1

12
 .

u = cos-1 a 11

113 129
b L 55.5°.

cos u =

u # v

ƒu ƒ  ƒv ƒ

=

82, 39 # 8-2, 59
ƒ82, 39 ƒ  ƒ8-2, 59 ƒ =

11

113 129
 .

u = 82, 19, v = 8-1, -39u = 82, 39, v = 8-2, 59

y

x

(a)

θ

v = �–2, 5�

u = �2, 3�

y

x

(b)

θ

v = �–1, –3�

u = �2, 1�

FIGURE 6.17 The vectors in (a) Example
3a and (b) Example 3b.

The terms “perpendicular” and “orthogonal” almost mean the same thing. The zero
vector has no direction angle, so technically speaking, the zero vector is not perpendic-
ular to any vector. However, the zero vector is orthogonal to every vector. Except for
this special case, orthogonal and perpendicular are the same.

EXAMPLE 4  Proving Vectors Are Orthogonal
Prove that the vectors and are orthogonal.

SOLUTION We must prove that their dot product is zero.

The two vectors are orthogonal. Now try Exercise 23.

u # v = 82, 39 # 8-6, 49 = -12 + 12 = 0

v = 8-6, 49u = 82, 39

DEFINITION Orthogonal Vectors
The vectors u and v are orthogonal if and only if u # v = 0.
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Projecting One Vector onto Another
The vector projection of onto a nonzero vector is the vector de-
termined by dropping a perpendicular from Q to the line PS (Figure 6.19). We have re-
solved u into components and 

with and perpendicular.

The standard notation for , the vector projection of u onto v, is With 
this notation, We ask you to establish the following formula in the
exercises (see Exercise 58).

RQ
!

= u - projvu.
PR

!

= projvu.PR
!

RQ
!

PR
!

u = PR
!

+ RQ
!

RQ
!

PR
!

PR
!

v = PS
!

u = PQ
!
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EXPLORATION 1 Angles Inscribed in Semicircles

Figure 6.18 shows inscribed in the upper half of the circle

1. For , find the component form of the vectors and 

2. Find . What can you conclude about the angle between these two 
vectors?

3. Repeat parts 1 and 2 for arbitrary a.

uu # v

v = BC
!

.
u = BA

!

a = 2

x2
+ y2

= a2.

∠ABC

y

x

θ

C(a, 0)A(–a, 0)

B(x, y)

FIGURE 6.18 The angle 
inscribed in the upper half of the circle

(Exploration 1)x2
+ y2

= a2.

∠ABC

S
R

Q

P

v

u

FIGURE 6.19 The vectors ,
, and the vector projection of u onto v,

PR
!

= projvu.
v = PS

!
u = PQ

!

Projection of u onto v
If u and v are nonzero vectors, the projection of u onto v is

projvu = au # v

ƒv ƒ
2 bv.

EXAMPLE 5  Decomposing a Vector into 
Perpendicular Components

Find the vector projection of onto . Then write u as the sum
of two orthogonal vectors, one of which is 

SOLUTION We write where and 
(Figure 6.20).

Thus, .
Now try Exercise 25.

u1 + u2 = 82, -29 + 84, 49 = 86, 29 = u

 u2 = u - u1 = 86, 29 - 82, -29 = 84, 49
 u1 = projvu = au # v

ƒv ƒ
2 bv =

20

50
 85, -59 = 82, -29

u2 = u - u1u1 = projvuu = u1 + u2

projvu.
v = 85, -59u = 86, 29

3
2
1

–6

y

–5
–4
–3
–2
–1

x
–1 321 4 5 6 7

v = �5, –5�

u = �6, 2�

u2

u1

FIGURE 6.20 The vectors 
, , and 

(Example 5)
u2 = u - u1.u1 = projvuv = 85, -59

u = 86, 29,
If u is a force, then represents the effective force in the direction of v
(Figure 6.21).

We can use vector projections to determine the amount of force required in problem 
situations like Example 6.

projvu
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Work
If F is a constant force whose direction is the same as the direction of , then the
work W done by F in moving an object from A to B is

If F is a constant force in any direction, then the work W done by F in moving an 
object from A to B is

where is the angle between F and Except for the sign, the work is the magnitude
of the effective force in the direction of AB

!

 times AB
!

.
AB

!

.u

 = ƒF ƒ  ƒ  AB
!

 ƒ  cos u

 W = F # AB
!

W = ƒF ƒ  ƒ  AB
!

 ƒ .

AB
!
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v

u

projv u

FIGURE 6.21 If we pull on a box with
force u, the effective force in the direction of
v is , the vector projection of u onto v.projvu

F1

F

45°

FIGURE 6.22 The sled in Example 6.

EXAMPLE 6  Finding a Force
Juan is sitting on a sled on the side of a hill inclined at . The combined weight of
Juan and the sled is 140 pounds. What force is required for Rafaela to keep the sled
from sliding down the hill? (See Figure 6.22.)

SOLUTION We can represent the force due to gravity as because
gravity acts vertically downward. We can represent the side of the hill with the vector

The force required to keep the sled from sliding down the hill is

because So,

The magnitude of the force that Rafaela must exert to keep the sled from sliding
down the hill is pounds. Now try Exercise 45.7012 L 99

F1 = 1F # v2v = 1-1402a12

2
bv = -701i + j2.

ƒv ƒ = 1.

F1 = projvF = aF # v

ƒv ƒ
2 bv = 1F # v2v

v = 1cos 45°2i + 1sin 45°2j =

12

2
  i +

12

2
  j.

F = -140j

45°

Units For Work
Work is usually measured in foot-pounds or
Newton-meters. One Newton-meter is commonly
referred to as one Joule.

EXAMPLE 7  Finding Work
Find the work done by a 10-pound force acting in the direction in moving an
object 3 feet from to .

SOLUTION The force F has magnitude 10 and acts in the direction , so

The direction of motion is from to , so . Thus, the
work done by the force is

Now try Exercise 53.

F # AB
!

=

10

 15
 81, 29 # 83, 09 =

30

15
L 13.42 foot-pounds.

= 83, 09AB
!

B = 13, 02A = 10, 02
F = 10 

81, 29
ƒ81, 29 ƒ =

10

15
 81, 29.

81, 29
13, 0210, 02 81, 29
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472 CHAPTER 6 Applications of Trigonometry

QUICK REVIEW 6.2 (For help, go to Section 6.1.)

7.

8.

In Exercises 9 and 10, find a vector u with the given magnitude in
the direction of v.

9.

10. ƒu ƒ = 3, v = -4i + 3j

ƒu ƒ = 2, v = 82, 39

A = 1-2, 02, B = 11, - 132
A = 12, 02, B = 11, - 132In Exercises 1–4, find .

1. 2.

3.

4.

In Exercises 5–8, the points A and B lie on the circle 
Find the component form of the vector .

5.

6. A = 12, 02, B = 11, 132
A = 1-2, 02, B = 11, 132

AB
!

x2
+ y2

= 4.

u = 21cos 75° i + sin 75° j2
u = cos 35° i + sin 35° j

u = -3i - 4ju = 82, -39
ƒu ƒ

SECTION 6.2 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–8, find the dot product of u and v.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, use the dot product to find .

9. 10.

11. 12.

In Exercises 13–22 use an algebraic method to find the angle between
the vectors. Use a calculator to approximate exact answers when 
appropriate.

13.

14.

15.

16.

17.

18. u = -2i, v = 5j

u = 3i - 3j, v = -2i + 213j

u = 85, 29, v = 8-6, -19
u = 82, 39, v = 8-3, 59
u = 82, -29, v = 8-3, -39
u = 8-4, -39, v = 8-1, 59

u = 3ju = -4i

u = 8-8, 159u = 85, -129
ƒu ƒ

u = 4i - 11j, v = -3j

u = 7i, v = -2i + 5j

u = 2i - 4j, v = -8i + 7j

u = -4i - 9j, v = -3i - 2j

u = 8-2, 79, v = 8-5, -89
u = 84, 59, v = 8-3, -79
u = 8-5, 29, v = 88, 139
u = 85, 39, v = 812, 49

21.

19.

20. u = acos 
p

3
b i + asin 

p

3
b j, v = a3 cos 

5p

6
b i + a3 sin 

5p

6
b j

u = a2 cos 
p

4
b i + a2 sin 

p

4
b j, v = acos 

3p

2
b i + asin 

3p

2
b j

3
2
1

–1

y

4
5
6

x
–4 –3 –2 –1 3 4 5 6 7 821 9

v u

(–3, 4)
(8, 5)

9

3
2

–1
–2

–10

y

4
5
6
7
8

–9

x
–4 –3 –2 –1 1

(–3, 8)

(–1, –9)

22.

In Exercises 23–24, prove that the vectors u and v are orthogonal.

23.

24. u = 8-4, -19, v = 81, -49
u = 82, 39, v = 83/2, -19
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In Exercises 25–28, find the vector projection of u onto v. Then write u
as a sum of two orthogonal vectors, one of which is 

25.

26.

27.

28.

In Exercises 29 and 30, find the interior angles of the triangle with
given vertices.

29. 30.

In Exercises 31 and 32, find satisfying the given conditions 
where is the angle between u and v.

31.

32.

In Exercises 33–38, determine whether the vectors u and v are parallel,
orthogonal, or neither.

33.

34.

35.

36.

37.

38.

In Exercises 39–42, find

(a) the x-intercept A and y-intercept B of the line.

(b) the coordinates of the point P so that is perpendicular to the
line and (There are two answers.)

39. 40.

41. 42.

In Exercises 43 and 44, find the vector(s) v satisfying the given 
conditions.

43.

44.

45. Sliding down a Hill Ojemba is sitting on a sled on the
side of a hill inclined at . The combined weight of Ojemba
and the sled is 160 pounds. What is the magnitude of the force
required for Mandisa to keep the sled from sliding down the hill?

46. Revisiting Example 6 Suppose Juan and Rafaela
switch positions. The combined weight of Rafaela and the sled is
125 pounds. What is the magnitude of the force required for Juan
to keep the sled from sliding down the hill?

47. Braking Force A 2000-pound car is parked on a street
that makes an angle of with the horizontal (see figure).

(a) Find the magnitude of the force required to keep the car
from rolling down the hill.

(b) Find the force perpendicular to the street.

12°

60°

u = 8-2, 59, u # v = -11, ƒv ƒ
2

= 10

u = 82, 39, u # v = 10, ƒv ƒ
2

= 17

x + 2y = 63x - 7y = 21

-2x + 5y = 103x - 4y = 12

ƒ  AP
!

 ƒ = 1.
AP

!

 

u = 82, -79, v = 8-4, 149
u = 8-3, 49, v = 820, 159
u = 85, -69, v = 8-12, -109
u = 815, -129, v = 8-4, 59
u = 82, 59, v = h 10

3
 , 

4

3
i

u = 85, 39, v = h -  

10

4
 , -  

3

2
i

u =

p

3
, ƒu ƒ = 12, ƒv ƒ = 40

u = 150°, ƒu ƒ = 3, ƒv ƒ = 8

u

u # v

1-4, 12, 11, -62, 15, -121-4, 52, 11, 102, 13, 12

u = 8-2, 89, v = 89, -39
u = 88, 59, v = 8-9, -29
u = 83, -79, v = 8-2, -69
u = 8-8, 39, v = 8-6, -29

projvu.
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48. Effective Force A 60-pound
force F that makes an angle of 
with an inclined plane is pulling a
box up the plane. The inclined 
plane makes an angle with 
the horizontal (see figure). What 
is the magnitude of the effective
force pulling the box up 
the plane?

49. Work Find the work done lifting a 2600-pound car 
5.5 feet.

50. Work Find the work done lifting a 100-pound bag of 
potatoes 3 feet.

51. Work Find the work done by a force F of 12 pounds acting
in the direction in moving an object 4 feet from 
to .

52. Work Find the work done by a force F of 24 pounds acting
in the direction in moving an object 5 feet from 
to .

53. Work Find the work done by a force F of 30 pounds acting
in the direction in moving an object 3 feet from to
a point in the first quadrant along the line 

54. Work Find the work done by a force F of 50 pounds acting
in the direction in moving an object 5 feet from to
a point in the first quadrant along the line 

55. Work The angle between a 200-pound force F and
is . Find the work done by F in moving an

object from A to B.

56. Work The angle between a 75-pound force F and is ,
where and Find the work done by 
F in moving an object from A to B.

57. Properties of the Dot Product Let u, v, and w be
vectors and let c be a scalar. Use the component form of vec-
tors to prove the following properties.

(a)

(b)

(c)

(d)

58. Group Activity Projection of a Vector Let u
and v be nonzero vectors. Prove that

(a) (b)

59. Group Activity Connecting Geometry and
Vectors Prove that the sum of the squares of the diagonals
of a parallelogram is equal to the sum of the squares of its sides.

60. If u is any vector, prove that we can write u as

Standardized Test Questions
61. True or False If and v are perpendicular.

Justify your answer.

62. True or False If u is a unit vector, then Justify
your answer.

u # u = 1.

u # v = 0, then u

u = 1u # i2i + 1u # j)j.

1u - projvu2 # 1projvu2 = 0projvu = au # v

ƒv ƒ
2
bv

1cu2 #  v = u # 1cv2 = c1u # v2
1u + v2 # w = u # w + v # w

u # 1v + w2 = u # v + u # w

0 # u = 0

B = 14, 32.A = 1-1, 12
60°AB

!

30°AB
!

= 2i + 3j

y = x.
10, 0282, 39

y = 11/22x.
10, 0282, 29

15, 02
10, 0284, 59

14, 02
10, 0281, 29

18°

25°

12°

18°

25°
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In Exercises 63–66, you may use a graphing calculator to solve the
problem.

63. Multiple Choice Let and .
Which of the following is the angle between u and v?

(A) (B) (C) (D) (E)

64. Multiple Choice Let and .
Which of the following is equal to ?

(A) (B) (C) 7 (D) 23 (E)

65. Multiple Choice Let and .
Which of the following is equal to 

(A) (B) (C)

(D) (E)

66. Multiple Choice Which of the following vectors de-
scribes a 5-lb force acting in the direction of ?

(A) (B) (C)

(D) (E)
5

2
 8-1, 195

12
 81, -19

581, -195

12
 8-1, 1958-1, 19

u = 8-1, 19
8-3/2, -3/2983/2, 3/29

8-3/2, 0983, 0983/2, 09
projvu?

v = 82, 09u = 83/2, -3/29
17-7-23

u # v
v = 8-2, -39u = 84, -59
135°90°60°45°0°

v = 8-1, 19u = 81, 19

474 CHAPTER 6 Applications of Trigonometry

Explorations
67. Distance from a Point to a Line Consider the 

line L with equation and the point 

(a) Verify that and are the y-and 
x-intercepts of L.

(b) Find and 

(c) Writing to Learn Explain why is the distance
from P to L. What is this distance?

(d) Find a formula for the distance of any point 
to L.

(e) Find a formula for the distance of any point 
to the line 

Extending the Ideas
68. Writing to Learn Let where

u and v are not parallel.

(a) Can the vector w be parallel to the vector u? Explain.

(b) Can the vector w be parallel to the vector v? Explain.

(c) Can the vector w be parallel to the vector ? Explain.

69. If the vectors u and v are not parallel, prove that

au + bv = cu + dv Q a = c, b = d.

u + v

w = 1cos t) u + 1sin t2 v

ax + by = c.
P = 1x0, y02
P = 1x0, y02

ƒw2 ƒ

w2 = AP
!

- projAB
!

 AP
!

.w1 = projAB
!

  AP
!

B = 15, 02A = 10, 22
P = 13, 72.2x + 5y = 10
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6.3 Parametric Equations 
and Motion

Parametric Equations
Imagine that a rock is dropped from a 420-ft tower. The rock’s height y in feet above
the ground t seconds later (ignoring air resistance) is modeled by 
as we saw in Section 2.1. Figure 6.23 shows a coordinate system imposed on the
scene so that the line of the rock’s fall is on the vertical line 

The rock’s original position and its position after each of the first 5 seconds are the
points

(2.5, 420), (2.5, 404), (2.5, 356), (2.5, 276), (2.5, 164), (2.5, 20),

which are described by the pair of equations

when These two equations are an example of parametric equations
with parameter t. As is often the case, the parameter t represents time.

Parametric Curves
In this section we study the graphs of parametric equations and investigate motion of
objects that can be modeled with parametric equations.

t = 0, 1, 2, 3, 4, 5.

y = -16t 2
+ 420,x = 2.5,

x = 2.5.

y = -16t 2
+ 420

What you’ll learn about
• Parametric Equations
• Parametric Curves
• Eliminating the Parameter
• Lines and Line Segments
• Simulating Motion with a 

Grapher

... and why
These topics can be used to
model the path of an object such
as a baseball or a golf ball.

[0, 5] by [–10, 500]

t = 0, y = 420
t = 1, y = 404
t = 2, y = 356

t = 3, y = 276

t = 4, y = 164

t = 5, y = 20

FIGURE 6.23 The position of the rock at
0, 1, 2, 3, 4, and 5 seconds.

EXAMPLE 1  Graphing Parametric Equations
For the given parameter interval, graph the parametric equations

(a) (b) (c)

SOLUTION In each case, set Tmin equal to the left endpoint of the interval and
Tmax equal to the right endpoint of the interval. Figure 6.24 shows a graph of the
parametric equations for each parameter interval. The corresponding relations are
different because the parameter intervals are different. Now try Exercise 7.

-3 … t … 3-2 … t … 3-3 … t … 1

y = 3t.x = t 2
- 2,

DEFINITION Parametric Curve, Parametric Equations
The graph of the ordered pairs where

are functions defined on an interval I of t-values is a parametric curve. The
equations are parametric equations for the curve, the variable t is a parameter,
and I is the parameter interval.

y = g1t2x = ƒ1t2,
1x, y2

When we give parametric equations and a parameter interval for a curve, we have
parametrized the curve. A parametrization of a curve consists of the parametric
equations and the interval of t-values. Sometimes parametric equations are used by
companies in their design plans. It is then easier for the company to make larger and
smaller objects efficiently by just changing the parameter t.

Graphs of parametric equations can be obtained using parametric mode on a grapher.
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Eliminating the Parameter
When a curve is defined parametrically it is sometimes possible to eliminate the para-
meter and obtain a rectangular equation in x and y that represents the curve. This often
helps us identify the graph of the parametric curve as illustrated in Example 2.

476 CHAPTER 6 Applications of Trigonometry

[–10, 10] by [–10, 10]

(a)

[–10, 10] by [–10, 10]

(b)

[–10, 10] by [–10, 10]

(c)

FIGURE 6.24 Three different relations defined parametrically. (Example 1)

[–10, 5] by [–5, 5]

FIGURE 6.25 The graph of
(Example 2)y = 0.5x + 1.5.

EXAMPLE 2 Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric curve

SOLUTION We solve the first equation for t:

Then we substitute this expression for t into the second equation:

The graph of the equation is a line with slope 0.5 and y-intercept 
1.5 (Figure 6.25). Now try Exercise 11.

y = 0.5x + 1.5

 y = 0.5x + 1.5

 y = 2 -

1

2
 11 - x2

 y = 2 - t

 t =

1

2
 11 - x2

 2t = 1 - x

 x = 1 - 2t

- q 6 t 6 q .y = 2 - t,x = 1 - 2t,

EXPLORATION 1 Graphing the Curve of Example 2 Parametrically
1. Use the parametric mode of your grapher to reproduce the graph in 

Figure 6.25. Use for Tmin and 5.5 for Tmax.

2. Prove that the point is on the graph of Find the cor-
responding value of t that produces this point.

3. Repeat part 2 for the point , .

4. Assume that is on the graph of Find the corresponding
value of t that produces this point.

5. How do you have to choose Tmin and Tmax so that the graph in Figure 6.25
fills the window?

y = 0.5x + 1.5.1a, b2
-1021-23

y = 0.5x + 1.5.117, 102
-2
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If we do not specify a parameter interval for the parametric equations , 
it is understood that the parameter t can take on all values that produce real numbers for
x and y. We use this agreement in Example 3.

y = g1t2,x = ƒ1t2

SECTION 6.3 Parametric Equations and Motion 477

EXAMPLE 3  Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric curve

SOLUTION Here t can be any real number. We solve the second equation for t, 
obtaining , and substitute this value for y into the first equation.

Figure 6.24c shows what the graph of these parametric equations looks like. In 
Chapter 8 we will call this a parabola that opens to the right. Interchanging x and y,
we can identify this graph as the inverse of the graph of the parabola 

Now try Exercise 15.
x2

= 91y + 22.

 y2
= 91x + 22

 x =

y2

9
- 2

 x = a y

3
b2

- 2

 x = t 2
- 2

t = y/3

x = t 2
- 2, y = 3t.

Parabolas
The inverse of a parabola that opens up or down
is a parabola that opens left or right. We will 
investigate these curves in more detail in 
Chapter 8.

EXAMPLE 4  Eliminating the Parameter
Eliminate the parameter and identify the graph of the parametric curve

SOLUTION The graph of the parametric equations in the square viewing window
of Figure 6.26 suggests that the graph is a circle of radius 2 centered at the origin.
We confirm this result algebraically.

The graph of is a circle of radius 2 centered at the origin. Increasing the
length of the interval will cause the grapher to trace all or part of the
circle more than once. Decreasing the length of the interval will cause the grapher to
only draw a portion of the complete circle. Try it! Now try Exercise 23.

0 … t … 2p
x2

+ y2
= 4

 = 4

cos2 t + sin2 t = 1 = 4112
 = 41cos2 t + sin2 t2

 x2
+ y2

= 4 cos2 t + 4 sin2 t

0 … t … 2p.y = 2 sin t,x = 2 cos t,

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 6.26 The graph of the circle of
Example 4.

In Exercise 65, you will find parametric equations for any circle in the plane.

Lines and Line Segments
We can use vectors to help us find parametric equations for a line as illustrated in 
Example 5.
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The fact that yields point A and yields point B in Example 5 is no accident,
as a little reflection on Figure 6.27 and the vector equation should
suggest. We use this fact in Example 6.

OP
!

= OA
!

+ t # AB
!

t = 1t = 0

478 CHAPTER 6 Applications of Trigonometry

EXAMPLE 5  Finding Parametric Equations for a Line
Find a parametrization of the line through the points and 

SOLUTION Let be an arbitrary point on the line through A and B. As you 

can see from Figure 6.27, the vector is the tail-to-head vector sum of and .
You can also see that is a scalar multiple of .

If we let the scalar be t, we have

This vector equation is equivalent to the parametric equations and
Together with the parameter interval , these equations define

the line.

We can confirm our work numerically as follows: If , then and ,
which gives the point A. Similarly, if , then and , which gives the
point B. Now try Exercise 27.

y = 6x = 3t = 1
y = 3x = -2t = 0

1- q , q2y = 3 + 3t.
x = -2 + 5t

 8x, y9 = 8-2 + 5t, 3 + 3t9
 8x, y9 = 8-2, 39 + t85, 39
 8x, y9 = 8-2, 39 + t83 - 1-22, 6 - 39

 OP
!

= OA
!

+ t # AB
!

 OP
!

= OA
!

+ AP
!

AB
!

AP
!

AP
!

OA
!

OP
!

P1x, y2
B = 13, 62.A = 1-2, 32

y

A(–2, 3)

B(3, 6) P(x, y)

x
O 1

FIGURE 6.27 Example 5 uses vectors to
construct a parametrization of the line through
A and B.

EXAMPLE 6  Finding Parametric Equations for a Line Segment
Find a parametrization of the line segment with endpoints and 

SOLUTION In Example 5 we found parametric equations for the line through A
and B:

We also saw in Example 5 that produces the point A and produces the
point B. A parametrization of the line segment is given by

As t varies between 0 and 1 we pick up every point on the line segment between A
and B. Now try Exercise 29.

x = -2 + 5t, y = 3 + 3t, 0 … t … 1.

t = 1t = 0

x = -2 + 5t, y = 3 + 3t

B = 13, 62.A = 1-2, 32

Simulating Motion with a Grapher
Example 7 illustrates several ways to simulate motion along a horizontal line using
parametric equations. We use the variable t for the parameter to represent time.

EXAMPLE 7  Simulating Horizontal Motion
Gary walks along a horizontal line (think of it as a number line) with the coordinate
of his position (in meters) given by

where . Use parametric equations and a grapher to simulate his motion.
Estimate the times when Gary changes direction.

0 … t … 12

s = -0.11t 3
- 20t 2

+ 110t -  852
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Example 8 solves a projectile-motion problem. Parametric equations are used in two
ways: to find a graph of the modeling equation and to simulate the motion of the pro-
jectile.

SECTION 6.3 Parametric Equations and Motion 479

Start, t = 0

(a)

T=0
X=8.5 Y=5

5 sec later, t = 5

(b)

T=5
X=–9 Y=5

3 sec after that, t = 8

(c)

T=8
X=–2.7 Y=5

FIGURE 6.28 Three views of the graph

, 0 t 12 in the by
viewing window. (Example 7)3-10, 104

3-12, 124……y1 = 5
C1: x1 = -0.11t 3

- 20t 2
+ 110t - 852,

SOLUTION We arbitrarily choose the horizontal line to display this motion.
The graph of the parametric equations,

simulates the motion. His position at any time t is given by the point 

Using TRACE in Figure 6.28 we see that when , Gary is 8.5 m to the right of
the y-axis at the point (8.5, 5), and that he initially moves left. Five seconds later he
is 9 m to the left of the y-axis at the point And after 8 seconds he is only 2.7
m to the left of the y-axis. Gary must have changed direction during the walk. The
motion of the trace cursor simulates Gary’s motion.

A variation in ,

can be used to help visualize where Gary changes direction. The graph shown in
Figure 6.29 suggests that Gary reverses his direction at 3.9 seconds and again at 9.5
seconds after beginning his walk. Now try Exercise 37.

C2

C2 : x2 = -0.11t 3
- 20t 2

+ 110t - 852, y2 = - t, 0 … t … 12,

y1t2

(-9, 5).

t = 0

1x11t2, 52.
C1: x1 = -0.1(t 3

- 20t 2
+ 110t - 85), y1 = 5, 0 … t … 12,

C1

y = 5

Grapher Note
The equation is typically used in the para-
metric equations for the graph in Figure 6.29.
We have chosen to get two curves in
Figure 6.29 that do not overlap. Also notice that
the y-coordinates of are constant ,
and that the y-coordinates of vary with time

.t 1y2 = - t2
C2

1y1 = 52C1

y2 = - t
C2

y2 = t

[–12, 12] by [–15, 15]

(a)

C2

C1

T=3.9
X=–9.9119 Y=–3.9

[–12, 12] by [–15, 15]

(b)

C2

C1

T=9.5
X=–1.2375 Y=–9.5

FIGURE 6.29 Two views of the graph 
and the graph , 

in the by viewing window. (Example 7)3-15, 1543-12, 1240 … t … 12
y2 = - t,C2: x2 = -0.11t 3

- 20t 2
+ 110t - 852y1 = 5, 0 … t … 12

C1 : x1 = -0.1(t 3
- 20t 2

+ 110t - 85),

EXAMPLE 8  Simulating Projectile Motion
A distress flare is shot straight up from a ship’s bridge 75 ft above the water with an
initial velocity of 76 ft/sec. Graph the flare’s height against time, give the height of
the flare above water at each time, and simulate the flare’s motion for each length of
time.

(a) 1 sec (b) 2 sec (c) 4 sec (d) 5 sec

SOLUTION An equation that models the flare’s height above the water t seconds
after launch is

A graph of the flare’s height against time can be found using the parametric 
equations

(continued)

x1 = t, y1 = -16t 2
+ 76t + 75.

y = -16t 2
+ 76t + 75.
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In Example 8 we modeled the motion of a projectile that was launched straight up.
Now we investigate the motion of objects, ignoring air friction, that are launched at an-
gles other than 90° with the horizontal.

Suppose that a baseball is thrown from a point feet above ground level with an initial
speed of ft/sec at an angle with the horizontal (Figure 6.31). The initial velocity
can be represented by the vector

The path of the object is modeled by the parametric equations

The x-component is simply

The y-component is the familiar vertical projectile-motion equation using the y-component
of initial velocity.

distance = 1x-component of initial velocity2 * time.

x = 1v0 cos u2t, y = -16t 2
+ 1v0 sin u2t + y0.

v = 8v0 cos u, v0 sin u9.
uv0

y0

480 CHAPTER 6 Applications of Trigonometry

To simulate the flare’s flight straight up and its fall to the water, use the parametric
equations

(We chose so that the two graphs would not intersect.)

Figure 6.30 shows the two graphs in simultaneous graphing mode for (a) 
(b) (c) and (d) We can read that the height of the
flare above the water after 1 sec is 135 ft, after 2 sec is 163 ft, after 4 sec is 123 ft,
and after 5 sec is 55 ft. Now try Exercise 39.

0 … t … 5.0 … t … 4,0 … t … 2,
0 … t … 1,

x2 = 5.5

x2 = 5.5, y2 = -16t 2
+ 76t + 75.

[0, 6] by [0, 200]

(a)

T=1
X=5.5           Y=135

[0, 6] by [0, 200]

(b)

T=2
X=5.5   Y=163

[0, 6] by [0, 200]

(c)

T=4
X=5.5   Y=123

[0, 6] by [0, 200]

(d)

T=5
X=5.5   Y=55

FIGURE 6.30 Simultaneous graphing of (height against time) and (the
actual path of the flare). (Example 8)

x2 = 5.5, y2 = -16t 2
+ 76t + 75x1 = t, y1 = -16t 2

+ 76t + 75

x

y

y0 �
v0 cos �

v0 sin �
v0

FIGURE 6.31 Throwing a baseball.

EXAMPLE 9  Hitting a Baseball
Kevin hits a baseball at 3 ft above the ground with an initial speed of 150 ft/sec at an
angle of with the horizontal. Will the ball clear a 20-ft wall that is 400 ft away?

SOLUTION The path of the ball is modeled by the parametric equations

A little experimentation will show that the ball will reach the fence in less than 3 sec.
Figure 6.32 shows a graph of the path of the ball using the parameter interval

and the 20-ft wall. The ball does not clear the wall.
Now try Exercise 43.

0 … t … 3

x = 1150 cos 18°2t, y = -16t 2
+ 1150 sin 18°2t + 3.

18°

[0, 450] by [0, 80]

FIGURE 6.32 The fence and path of the
baseball in Example 9. See Exploration 2 for
ways to draw the wall.

6965_CH06_pp455-518.qxd  1/14/10  1:55 PM  Page 480



In Example 10 we see how to write parametric equations for position on a moving 
Ferris wheel, using time t as the parameter.

SECTION 6.3 Parametric Equations and Motion 481

EXPLORATION 2 Extending Example 9

1. If your grapher has a line segment feature, draw the fence in Example 9.

2. Describe the graph of the parametric equations

3. Repeat Example 9 for the angles , , , and .22°21°20°19°

0 … t … 3.y = 201t/32,x = 400,

EXAMPLE 10  Riding on a Ferris Wheel
Jane is riding on a Ferris wheel with a radius of 30 ft. As we view it in Figure 6.33,
the wheel is turning counterclockwise at the rate of one revolution every 10 sec. 
Assume that the lowest point of the Ferris wheel (6 o’clock) is 10 ft above the
ground and that Jane is at the point marked A (3 o’clock) at time Find para-
metric equations to model Jane’s path and use them to find Jane’s position 22 sec
into the ride.

t = 0.
10 ft

30 ft

A

FIGURE 6.33 The Ferris wheel of 
Example 10.

y

x

A

P

40

30
θ

FIGURE 6.34 A model for the Ferris wheel of Example 10.

SOLUTION Figure 6.34 shows a circle with center and radius 30 that
models the Ferris wheel. The parametric equations for this circle in terms of the para-
meter , the central angle of the circle determined by the arc AP, are

To take into account the rate at which the wheel is turning we must describe as a
function of time t in seconds. The wheel is turning at the rate of radians every 
10 sec, or rad/sec. So, . Thus, parametric equations that
model Jane’s path are given by

We substitute into the parametric equations to find Jane’s position at that
time:

After riding for 22 sec, Jane is approximately 68.5 ft above the ground and approxi-
mately 9.3 ft to the right of the y-axis, using the coordinate system of Figure 6.34.

Now try Exercise 51.

y L 68.53x L 9.27

y = 40 + 30 sin ap
5

# 22bx = 30 cos ap
5

# 22b

t = 22

t Ú 0.y = 40 + 30 sin ap
5

 tb ,x = 30 cos ap
5

 tb ,

u = 1p/52t2p/10 = p/5
2p

u

x = 30 cos u, y = 40 + 30 sin u, 0 … u … 2p.

u

10, 402
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482 CHAPTER 6 Applications of Trigonometry

QUICK REVIEW 6.3 (For help, go to Sections P.2, P.4, 1.3, 4.1, and 6.1.)

In Exercises 7 and 8, write an equation for the circle with given
center and radius.

7. 8.

In Exercises 9 and 10, a wheel with radius r spins at the given rate.
Find the angular velocity in radians per second.

9. rpm 10. rpmr = 12 in., 700r = 13 in., 600

1-2, 52, 310, 02, 2

In Exercises 1 and 2, find the component form of the vectors 
(a) , (b) , and (c) where O is the origin.

1.

2.

In Exercises 3 and 4, write an equation in point-slope form for the
line through the two points.

3. 4.

In Exercises 5 and 6, find and graph the two functions defined im-
plicitly by each given relation.

5. 6. y2
= -5xy2

= 8x

1-1, 32, 14, -321-3, -22, 14, 62

A = 1-1, 3), B = 14, -32
A = 1-3, -2), B = 14, 62

AB
!

OB
!

OA
!

SECTION 6.3 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–4, match the parametric equations with their graph.
Identify the viewing window that seems to have been used.

In Exercises 7–10, graph the parametric equations , ,
in the specified parameter interval. Use the standard viewing window.

7. 8.

9. 10.

In Exercises 11–26, use an algebraic method to eliminate the parameter
and identify the graph of the parametric curve. Use a grapher to support
your answer.

11. , 12. , 

13. , , 3

14. , ,

15. [Hint: Eliminate t and solve for x in terms
of y.]

16. , 

17.

18. [Hint: Eliminate t and solve for x in terms
of y.]

19. , [Hint: Eliminate t and solve for x in terms
of y.]

20.

21.

22.

23.

24.

25. , 

26. , , 

In Exercises 27–32 find a parametrization for the curve.

27. The line through the points and 

28. The line through the points , and 

29. The line segment with endpoints and 16, -3213, 42
15, 12-321-3

14, 221-2, 52

0 … t … py = 3 sin tx = 3 cos t

y = 2 cos t, 0 … t … 3p/2x = 2 sin t

x = 4 cos t, y = 4 sin t

x = 5 cos t, y = 5 sin t

x = t + 2, y = 4/t, t Ú 2

… t … 5x = t - 3, y = 2/t, -5

… t … 2x = 0.5t, y = 2t 3
- 3, -2

y = tx = 4 - t 2

x = 2t 2
- 1, y = t

x = t, y = t 3
- 2t + 3

y = t 2
- 3x = t

x = t 2, y = t + 1

-1 … t … 3y = 2 + tx = 5 - 3t

… t … 5y = 9 - 4tx = 2t - 3

y = 5 + tx = 2 - 3ty = tx = 1 + t

-2 … t … 4-3 … t … 3

-10 … t … 00 … t … 10

y = 2tx = 3 - t 2

(a) (b)

(c) (d)

1. 2. , 

3. , 

4. , 

In Exercises 5 and 6, (a) complete the table for the parametric equa-
tions and (b) plot the corresponding points.

5.

6. x = cos t, y = sin t

x = t + 2, y = 1 + 3/t

y = cos t + t sin tx = sin t - t cos t

y = 2 sin t + sin 2tx = 2 cos t + 2 cos2 t

y = sin 2tx = 3 cos tx = 4 cos3 t, y = 2 sin3 t

t 0 1 2

x

y

-1-2

t 0
x

y

2p3p/2pp/2
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30. The line segment with endpoints and , 

31. The circle with center and radius 3

32. The circle with center , and radius 2

Exercises 33–36 refer to the graph of the parametric equations

given below. Find the values of the parameter t that produces the graph
in the indicated quadrant.

x = 2 - ƒ t ƒ , y = t - 0.5, -3 … t … 3

-421-2

15, 22
-421-215, 22
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(b) Use parametric mode to simulate the drop during the first 
6 sec.

(c) After 4 sec of free fall, parachutes open. How many feet
above the ground are the food containers when the para-
chutes open?

40. Height of a Pop-up A baseball is hit straight up from a
height of 5 ft with an initial velocity of 80 ft/sec.

(a) Write an equation that models the height of the ball as a
function of time t.

(b) Use parametric mode to simulate the pop-up.

(c) Use parametric mode to graph height against time. [Hint:
Let .]

(d) How high is the ball after 4 sec?

(e) What is the maximum height of the ball? How many sec-
onds does it take to reach its maximum height?

41. The complete graph of the parametric equations ,
is the circle of radius 2 centered at the origin. Find

an interval of values for t so that the graph is the given portion
of the circle.

(a) The portion in the first quadrant

(b) The portion above the x-axis

(c) The portion to the left of the y-axis

42. Writing to Learn Consider the two pairs of parametric
equations , and , 
for .

(a) Give a convincing argument that the graphs of the pairs of
parametric equations are the same.

(b) Explain how the parametrizations are different.

43. Hitting a Baseball Consider Kevin’s hit discussed in
Example 9.

(a) Approximately how many seconds after the ball is hit does
it hit the wall?

(b) How high up the wall does the ball hit?

(c) Writing to Learn Explain why Kevin’s hit might be
caught by an outfielder. Then explain why his hit would
likely not be caught by an outfielder if the ball had been hit
at a 20° angle with the horizontal.

44. Hitting a Baseball Kirby hits a ball when it is 4 ft
above the ground with an initial velocity of 120 ft/sec. The ball
leaves the bat at a 30° angle with the horizontal and heads to-
ward a 30-ft fence 350 ft from home plate.

(a) Does the ball clear the fence?

(b) If so, by how much does it clear the fence? If not, could the
ball be caught?

45. Hitting a Baseball Suppose that the moment Kirby hits
the ball in Exercise 44 there is a 5-ft/sec split-second wind
gust. Assume the wind acts in the horizontal direction out with
the ball.

(a) Does the ball clear the fence?

(b) If so, by how much does it clear the fence? If not, could the
ball be caught?

0 … t … 2p
y = 3 cos tx = 3 sin ty = 3 sin tx = 3 cos t

y = 2 sin t
x = 2 cos t

x1t2 = t

[–5, 5] by [–5, 5]

33. Quadrant I

34. Quadrant II

35. Quadrant III

36. Quadrant IV

37. Simulating a Foot Race Ben can sprint at the rate of
24 ft/sec. Jerry sprints at 20 ft/sec. Ben gives Jerry a 10-ft head
start. The parametric equations can be used to model a race.

(a) Find a viewing window to simulate a 100-yd dash. Graph
simulaneously with t starting at and Tstep .

(b) Who is ahead after 3 sec and by how much?

38. Capture the Flag Two opposing players in “Capture the
Flag” are 100 ft apart. On a signal, they run to capture a flag
that is on the ground midway between them. The faster runner,
however, hesitates for 0.1 sec. The following parametric equa-
tions model the race to the flag:

(a) Simulate the game in a by viewing win-
dow with t starting at 0. Graph simultaneously.

(b) Who captures the flag and by how many feet?

3-1, 10430, 1004
 x2 = 100 - 9t,  y2 = 3

 x1 = 101t - 0.12,  y1 = 3

= 0.05t = 0

 y2 = 5 x2 = 24t - 10,

 y1 = 3 x1 = 20t,

50 ft 50 ft

39. Famine Relief Air Drop A relief agency drops food
containers from an airplane on a war-torn famine area. The
drop was made from an altitude of 1000 ft above ground level.

(a) Use an equation to model the height of the containers (dur-
ing free fall) as a function of time t.
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46. Two-Softball Toss Chris and Linda warm up in the out-
field by tossing softballs to each other. Suppose both tossed a
ball at the same time from the same height, as illustrated in the
figure. Find the minimum distance between the two balls and
when this minimum distance occurs.

484 CHAPTER 6 Applications of Trigonometry

53. Cycloid The graph of the parametric equations
, is a cycloid.y = 1 - cos t x = t - sin t

41 ft/sec45 ft/sec

Linda Chris5 ft

78 ft

44° 39°

47. Yard Darts Tony and Sue are launching yard darts 20 ft
from the front edge of a circular target of radius 18 in. on the
ground. If Tony throws the dart directly at the target, and 
releases it 3 ft above the ground with an initial velocity of 
30 ft/sec at a 70° angle, will the dart hit the target?

48. Yard Darts In the game of darts described in Exercise 47,
Sue releases the dart 4 ft above the ground with an initial velocity
of 25 ft/sec at a 55° angle. Will the dart hit the target?

49. Hitting a Baseball Orlando hits a ball when it is 4 ft
above ground level with an initial velocity of 160 ft/sec. The
ball leaves the bat at a 20° angle with the horizontal and heads
toward a 30-ft fence 400 ft from home plate. How strong must
a split-second wind gust be (in feet per second) that acts di-
rectly with or against the ball in order for the ball to hit within
a few inches of the top of the wall? Estimate the answer graph-
ically and solve algebraically.

50. Hitting Golf Balls Nancy hits golf balls off the practice
tee with an initial velocity of 180 ft/sec with four different
clubs. How far down the fairway does the ball hit the ground if
it comes off the club making the specified angle with the hori-
zontal?

(a) 15° (b) 20° (c) 25° (d) 30°

51. Analysis of a Ferris Wheel Ron is on a Ferris wheel
of radius 35 ft that turns counterclockwise at the rate of one
revolution every 12 sec. The lowest point of the Ferris wheel 
(6 o’clock) is 15 ft above ground level at the point on a
rectangular coordinate system. Find parametric equations for
the position of Ron as a function of time t (in seconds) if the
Ferris wheel starts with Ron at the point .

52. Revisiting Example 5 Eliminate the parameter t from
the parametric equations of Example 5 to find an equation in x
and y for the line. Verify that the line passes through the points A
and B of the example.

135, 5021t = 02

10, 152

[–2, 16] by [–1, 10]

(a) What is the maximum value of How is that
value related to the graph?

(b) What is the distance between neighboring x-intercepts?

54. Hypocycloid The graph of the parametric equations
is a hypocycloid.

The graph is the path of a point P on a circle of radius 1 rolling
along the inside of a circle of radius 3, as illustrated in the figure.

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t

y = 1 - cos t?

3

–3

y

x
–3 3

C1

P
t

(a) Graph simultaneously this hypocycloid and the circle of 
radius 3.

(b) Suppose the large circle had a radius of 4. Experiment!
How do you think the equations in part (a) should be
changed to obtain defining equations? What do you think
the hypocycloid would look like in this case? Check your
guesses.

Group Activity In Exercises 55–58, a particle moves along a
horizontal line so that its position at any time t is given by . Write a
description of the motion. [Hint: See Example 7.]

55.

56.

57.

58.

Standardized Test Questions
59. True or False The two sets of parametric equations

, and , cor-
respond to the same rectangular equation. Justify your answer.

60. True or False The graph of the parametric equations
, is a line segment with end-

points and . Justify your answer.12, 5210, 12
y = 2t - 1, 1 … t … 3x = t - 1

y2 = 2tx2 = 12/32t - 4/3y1 = 3t + 1x1 = t - 1

s1t2 = t 3
- 5t 2

+ 4t, -1 … t … 5

s1t2 = 0.5(t 3
- 7t 2

+ 2t2, -1 … t … 7

s1t2 = - t 2
+ 4t, -1 … t … 5

s1t2 = - t 2
+ 3t, -2 … t … 4

s1t2
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In Exercises 61–64, solve the problem without using a calculator.

61. Multiple Choice Which of the following points corre-

sponds to in the parametrization , 

?

(A) (B) (C)

(D) (E)

62. Multiple Choice Which of the following values of t
produces the same point as in the parametrization

, ?

(A) (B) (C)

(D) (E)

63. Multiple Choice A rock is thrown straight up from level
ground with its position above ground at any time given
by , At what time will the rock
be 91 ft above ground?

(A) 1.5 sec (B) 2.5 sec

(C) 3.5 sec (D) 1.5 sec and 3.5 sec

(E) The rock never goes that high.

64. Multiple Choice Which of the following describes the
graph of the parametric equations 

?

(A) A straight line

(B) A line segment

(C) A ray

(D) A parabola

(E) A circle

Explorations
65. Parametrizing Circles Consider the parametric equa-

tions

(a) Graph the parametric equations for in the
same square viewing window.

(b) Eliminate the parameter t in the parametric equations to
verify that they are all circles. What is the radius?

Now consider the parametric equations

(c) Graph the equations for using the following pairs of
values for h and k:

(d) Eliminate the parameter t in the parametric equations and
identify the graph.

(e) Write a parametrization for the circle with center 
and radius 3.

1-1, 42

a = 1

0 … t … 2p.y = k + a sin t,x = h + a cos t,

a = 1, 2, 3, 4

0 … t … 2p.y = a sin t,x = a cos t,

t Ú 0
x = 1 - t, y = 3t + 2,

y = -16t 2
+ 80t + 7.x = 5

t Ú 0

t =

7p

3
t =

4p

3

t =

-p

3
t = -  

2p

3
t = -  

4p

3

y = 2 sin tx = 2 cos t
t = 2p/3

13, 22(-5, 0)

(-5, -2)(-3, 0)(-3, -2)

y = t +

1

t

x = t 2
- 4t = -1
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66. Group Activity Parametrization of Lines
Consider the parametrization

where a and c are not both zero.

(a) Graph the curve for , , , and 

(b) Graph the curve for , , , and 

(c) Writing to Learn Eliminate the parameter t and
write an equation in x and y for the curve. Explain why its
graph is a line.

(d) Writing to Learn Find the slope, y-intercept, and 
x-intercept of the line if they exist. If not, explain why not.

(e) Under what conditions will the line be horizontal? 
Vertical?

67. Throwing a Ball at a Ferris Wheel A 20-ft 
Ferris wheel turns counterclockwise one revolution every 
12 sec (see figure). Eric stands at point D, 75 ft from the base
of the wheel. At the instant Jane is at point A, Eric throws a
ball at the Ferris wheel, releasing it from the same height as the
bottom of the wheel. If the ball’s initial speed is 60 ft/sec and it
is released at an angle of 120° with the horizontal, does Jane
have a chance to catch the ball? Follow the steps below to ob-
tain the answer.

(a) Assign a coordinate system so that the bottom car of the
Ferris wheel is at and the center of the wheel is at

. Then Eric releases the ball at the point .
Explain why parametric equations for Jane’s path are

(b) Explain why parametric equations for the path of the ball are

(c) Graph the two paths simultaneously and determine if Jane
and the ball arrive at the point of intersection of the two
paths at the same time.

(d) Find a formula for the distance between Jane and the
ball at any time t.

(e) Writing to Learn Use the graph of the parametric
equations , to estimate the minimum dis-
tance between Jane and the ball and when it occurs. Do
you think Jane has a chance to catch the ball?

x3 = t, y3 = d1t2

d1t2

x2 = -30t + 75, y2 = -16t 2
+ 130132t, t Ú 0.

x1 = 20 cos ap
6

 tb , y1 = 20 + 20 sin ap
6

 tb , t Ú 0.

175, 0210, 202
10, 02

d = 3.c = 1b = 4a = 3

d = 2.c = -1b = 3a = 2

x = at + b, y = ct + d,

h 2 3

k 3 3 -3-2

-4-2

75 ft

A

D
20 ft
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68. Throwing a Ball at a Ferris Wheel A 71-ft-radius
Ferris wheel turns counterclockwise one revolution every 
20 sec. Tony stands at a point 90 ft to the right of the base of
the wheel. At the instant Matthew is at point A (3 o’clock),
Tony throws a ball toward the Ferris wheel with an initial 
velocity of 88 ft/sec at an angle with the horizontal of 100°.
Find the minimum distance between the ball and Matthew.

Extending the Ideas
69. Two Ferris Wheels Problem Chang is on a Ferris

wheel of center and radius 20 ft turning counterclock-
wise at the rate of one revolution every 12 sec. Kuan is on a
Ferris wheel of center and radius 15 turning counter-
clockwise at the rate of one revolution every 8 sec. Find the
minimum distance between Chang and Kuan if both start out

at 3 o’clock.

70. Two Ferris Wheels Problem Chang and Kuan are
riding the Ferris wheels described in Exercise 69. Find the
minimum distance between Chang and Kuan if Chang starts
out at 3 o’clock and Kuan at 6 o’clock.1t = 02

1t = 02

115, 152
10, 202
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Exercises 71–73 refer to the graph C of the parametric equations

where and are two fixed points.

71. Using Parametric Equations in Geometry
Show that the point on C is equal to

(a)

(b)

72. Using Parametric Equations in Geometry
Show that if , the corresponding point on C is the
midpoint of the line segment with endpoints and .

73. What values of t will find two points that divide the line seg-
ment into three equal pieces? Four equal pieces?P1P2

1c, d21a, b2
1x, y2t = 0.5

P21c, d2 when t = 1.

P11a, b2 when t = 0.

P1x, y2
P21c, d2P11a, b2

x = tc + 11 - t2a, y = td + 11 - t2b
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SECTION 6.4 Polar Coordinates 487

6.4 Polar Coordinates

What you’ll learn about
• Polar Coordinate System
• Coordinate Conversion
• Equation Conversion
• Finding Distance Using Polar

Coordinates

... and why
Use of polar coordinates some-
times simplifies complicated rec-
tangular equations and they
are useful in calculus.

EXAMPLE 1  Plotting Points in the Polar Coordinate System
Plot the points with the given polar coordinates.

(a) (b) (c)

SOLUTION Figure 6.36 shows the three points. Now try Exercise 7.

R13, -45°2Q1-1, 3p/42P12, p/32

O

2

(a)

π b2, 
3

Pa

π
3

O
1

(b)

b–1, Qa
4

3π

4
3π

O

3

(c)

–45°

R(3, –45°)

FIGURE 6.36 The three points in Example 1.

P(r, )θ

θ
O

Pole

Polar axis

FIGURE 6.35 The polar coordinate 
system.

Each polar coordinate pair determines a unique point. However, the polar coordinates
of a point P in the plane are not unique.

EXAMPLE 2  Finding All Polar Coordinates for a Point
If the point P has polar coordinates , find all polar coordinates for P.

SOLUTION Point P is shown in Figure 6.37. Two additional pairs of polar coordi-
nates for P are

We can use these two pairs of polar coordinates for P to write the rest of the possi-
bilities:

where n is any integer. Now try Exercise 23.

 a -3, 
p

3
+ 12n + 12pb = a -3, 

16n + 42 p
3

b

 a3, 
p

3
+ 2npb = a3, 

16n + 12 p
3

b  or

a3, 
p

3
+ 2pb = a3, 

7p

3
b   and  a -3, 

p

3
+ pb = a -3, 

4p

3
b

13, p/32

Polar Coordinate System
A polar coordinate system is a plane with a point O, the pole, and a ray from O, 
the polar axis, as shown in Figure 6.35. Each point P in the plane is assigned as
polar coordinates follows: r is the directed distance from O to P, and is the
directed angle whose initial side is on the polar axis and whose terminal side is on
the line OP.

As in trigonometry, we measure as positive when moving counterclockwise and neg-
ative when moving clockwise. If , then P is on the terminal side of . If  ,
then P is on the terminal side of . We can use radian or degree measure for the
angle as illustrated in Example 1.u

u + p

r 6 0ur 7 0
u

u
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The coordinates , and all name the same point. In gen-
eral, the point with polar coordinates also has the following polar coordinates:1r, u21-r, u + p21r, u2, 1r, u + 2p2

488 CHAPTER 6 Applications of Trigonometry

O

3

π b3, 
3

Pa

π
3

3
4π

FIGURE 6.37 The point P in 
Example 2.

Coordinate Conversion
When we use both polar coordinates and Cartesian coordinates, the pole is the origin
and the polar axis is the positive x-axis as shown in Figure 6.38. By applying trigonom-
etry we can find equations that relate the polar coordinates and the rectangular
coordinates of a point P.1x, y2 1r, u2

Finding all Polar Coordinates of a Point
Let P have polar coordinates Any other polar coordinate of P must be of
the form

where n is any integer. In particular, the pole has polar coordinates ,
where is any angle.u

10, u2
1r, u + 2np2 or 1-r, u + 12n + 12p2

1r, u2.

Coordinate Conversion Equations
Let the point P have polar coordinates and rectangular coordinates 

. Then

 y = r sin u,  tan u =

y

x
 .

 x = r cos u,  r 2
= x2

+ y2,

1x, y2 1r, u2

y

x

P(r, )θ

θPole

Polar axis

P(x, y)

x

r
y

O(0, 0)

FIGURE 6.38 Polar and rectangular 
coordinates for P.

These relationships allow us to convert from one coordinate system to the other.

EXAMPLE 3  Converting from Polar to Rectangular 
Coordinates

Use an algebraic method to find the rectangular coordinates of the points with
given polar coordinates. Approximate exact solution values with a calculator when
appropriate.

(a) (b)

SOLUTION

(a) For , and :

and

The rectangular coordinates for P are (Figure 6.39a).

(b) For and :

The rectangular coordinates for Q are approximately (Figure 6.39b).
Now try Exercise 15.

1-1.88, 0.682

x = r cos u

x = 2 cos 1-200°2 L -1.88
    and    

y = r sin u

y = 2 sin 1-200°2 L 0.68

u = -200°Q12, -200°), r = 2

1-313/2, 1.52 L 1-2.60, 1.52
y = 3 a1

2
b = 1.5x = 3 a -  

13

2
b L -2.60

y = 3 sin 
5p

6
x = 3 cos 

5p

6

y = r sin ux = r cos u

u = 5p/6r = 3P13, 5p/62

Q12, -200°2P13, 5p/62

y

x

(a)

6
5π

3
b3, Pa

6
5π

y

x

(b)

Q(2, –200°)

–200°

2

FIGURE 6.39 The points P and Q in Ex-
ample 3.
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When converting rectangular coordinates to polar coordinates, we must remember that
there are infinitely many possible polar coordinate pairs. In Example 4 we report two of
the possibilities.

SECTION 6.4 Polar Coordinates 489

EXAMPLE 4  Converting from Rectangular 
to Polar Coordinates

Find two polar coordinate pairs for the points with given rectangular coordinates.

(a) (b)

SOLUTION

(a) For and :

We use the angles and . Because P is on the ray opposite
the terminal side of , the value of r corresponding to this angle is negative 
(Figure 6.40). Because P is on the terminal side of , the value of r corresponding
to this angle is positive. So two polar coordinate pairs of point P are

(b) For , and . Thus, and . We use the an-
gles 0 and . So two polar coordinate pairs for point Q are

.

Now try Exercise 27.

1-3, 0)  and  13, p2
p

u = npr = �3y = 0x = -3Q1-3, 02
a - 12, -  

p

4
b   and  a12, 

3p

4
b .

3p/4
-p/4

-p/4 + p = 3p/4-p/4

u = tan-1 1-12 + np = -

p

4
+ np r = � 12

 tan u =

1

-1
= -1 r 2

= 1-122 + 1122
 tan u =

y

x
 r 2

= x2
+ y2

y = 1P1-1, 12, x = -1

Q1-3, 02P1-1, 12

y

x

P(–1, 1)
2

tan–1(–1) = π–
4

π + tan–1(–1) = 
4

3π

FIGURE 6.40 The point P in Example 4a.

EXPLORATION 1 Using a Grapher to Convert Coordinates

Most graphers have the capability to convert polar coordinates to rectangular

coordinates and vice versa. Usually they give just one possible polar coordinate

pair for a given rectangular coordinate pair.

1. Use your grapher to check the conversions in Examples 3 and 4.

2. Use your grapher to convert the polar coordinate pairs 
to rectangular coordinate 

pairs.

3. Use your grapher to convert the rectangular coordinate pairs
to polar coordinate 

pairs.
1-1, - 132, 10, 22, 13, 02, 1-1, 02, 10, -42

(3, 2p212,p2, 1-5, 3p/22,1-1, p/2),
12, p/32,
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Equation Conversion
We can use the coordinate conversion equations to convert polar form to rectangular
form and vice versa. For example, the polar equation can be converted to
rectangular form as follows:

Subtract 4x and add 4.

Factor.

Thus the graph of is all or part of the circle with center and radius 2.

Figure 6.41 shows the graph of for obtained using the polar
graphing mode of our grapher. So, the graph of is the entire circle.

Just as with parametric equations, the domain of a polar equation in r and is under-
stood to be all values of for which the corresponding values of r are real numbers.
You must also select a value for and to graph in polar mode.

You may be surprised by the polar form for a vertical line in Example 5.

u maxu min
u

u

r = 4 cos u
0 … u … 2pr = 4 cos u

12, 02r = 4 cos u

 1x - 222 + y2
= 4

 x2
- 4x + 4 + y2

= 4

r2
= x2

+ y2, r cos u = x x2
+ y2

= 4x

 r 2
= 4r cos u

 r = 4 cos u

r = 4 cos u
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[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 6.41 The graph of the polar
equation in .0 … u … 2pr = 4 cos u

EXAMPLE 5  Converting from Polar Form to Rectangular Form
Convert to rectangular form and identify the graph. Support your answer
with a polar graphing utility.

SOLUTION

Divide by sec .

.

The graph is the vertical line (Figure 6.42). Now try Exercise 35.x = 4

r cos u = x x = 4

cos u =
1

sec u r cos u = 4

u 
r

sec u
= 4

 r = 4 sec u

r = 4 sec u

[–2, 8] by [–10, 10]

FIGURE 6.42 The graph of the vertical
line . (Example 5)r = 4 sec u 1x = 42

EXAMPLE 6  Converting from Rectangular Form to Polar Form
Convert to polar form.

SOLUTION

Substituting for , for x, and r sin for y gives the following:

The graph of consists of a single point, the origin, which is also on the graph
of . Thus, the polar form is

The graph of for is shown in Figure 6.43 and ap-
pears to be a circle with center and radius , as expected.

Now try Exercise 43.
11313, 22 0 … u … 2pr = 6 cos u + 4 sin u

r = 6 cos u + 4 sin u.

r - 6 cos u - 4 sin u = 0
r = 0

 r = 0 or r - 6 cos u - 4 sin u = 0

 r1r - 6 cos u - 4 sin u2 = 0

 r 2
- 6r cos u - 4r sin u = 0

ur cos ux2
+ y2r 2

 x2
+ y2

- 6x - 4y = 0

 x2
- 6x + 9 + y2

- 4y + 4 = 13

 1x - 322 + 1y - 222 = 13

1x - 322 + 1y - 222 = 13

[–5, 10] by [–2, 8]

FIGURE 6.43 The graph of the 
circle . (Example 6)r = 6 cos u + 4 sin u
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Finding Distance Using Polar Coordinates
A radar tracking system sends out high-frequency radio waves and receives their reflec-
tion from an object. The distance and direction of the object from the radar is often
given in polar coordinates.

SECTION 6.4 Polar Coordinates 491

y

x

(5, 15°)

(8, 110°)

FIGURE 6.44 The distance and direction of
two airplanes from a radar source. (Example 7)

EXAMPLE 7  Using a Radar Tracking System
Radar detects two airplanes at the same altitude. Their polar coordinates are (8 mi,
110°) and (5 mi, 15°). (See Figure 6.44.) How far apart are the airplanes?

SOLUTION By the Law of Cosines (Section 5.6),

The airplanes are about 9.80 mi apart. Now try Exercise 51.

 d L 9.80

 d = 282
+ 52

- 2 # 8 # 5 cos 95°

 d2
= 82

+ 52
- 2 # 8 # 5 cos 1110° - 15°2

QUICK REVIEW 6.4 (For help, go to Sections P.2, 4.3, and 5.6.)

8. Center and radius 3

In Exercises 9 and 10, use the Law of Cosines to find the measure
of the third side of the given triangle.

9. 10.

10, -42In Exercises 1 and 2, determine the quadrants containing the termi-
nal side of the angles.

1. (a) (b)

2. (a) (b)

In Exercises 3–6, find a positive and a negative angle coterminal
with the given angle.

3. 4.

5. 6.

In Exercises 7 and 8, write a standard form equation for the circle.

7. Center and radius 213, 02

-120°160°

p/3-p/4

210°-300°

-3p/45p/6

We can also use the Law of Cosines to derive a formula for the distance between points
in the polar coordinate system. See Exercise 61.

10
60°

12
6

40°

9
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SECTION 6.4 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–4, the polar coordinates of a point are given. Find its
rectangular coordinates.

1. 2.

29. 30.

In Exercises 31–34, use your grapher to match the polar equation with
its graph.

P = 1-1, -22P = 1-2, 52

y

x

π b3, 
3
2a

y

x

π b–4, 
4
5a

y

x

(–2, 60°)

y

x
(–1, 315°)

3. 4.

In Exercises 5 and 6, (a) complete the table for the polar equation and
(b) plot the corresponding points.

5. r = 3 sin u

r

2p4p/3p5p/6p/2p/4u

r

2p4p/3p5p/6p/2p/4u

6. r = 2 csc u

In Exercises 7–14, plot the point with the given polar coordinates.

7. 8. 9.

10. 11. 12.

13. 14.

In Exercises 15–22, use an algebraic method to find the rectangular 
coordinates of the point with given polar coordinates. Approximate the
exact solution values with a calculator when appropriate.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–26, polar coordinates of point P are given. Find all of
its polar coordinates.

23. 24.

25. 26.

In Exercises 27–30, rectangular coordinates of a point P are given. Use
an algebraic method, and approximate exact solution values with a cal-
culator when appropriate, to find all polar coordinates of P that satisfy

(a) (b) (c) .

27. 28. P = 11, 32P = 11, 12
0 … u … 4p-p … u … p0 … u … 2p

P = 1-2.5, 50°2P = 11.5, -20°2
P = 11, -p/42P = 12, p/62

1-3, 360°212, 270°2
11, p/221-2, p2
1-2, -14p/521-3, -29p/72
12.5, 17p/4211.5, 7p/32

1-3, 135°21-2, 120°2
13, 210°212, 30°21-3, 17p/102
1-1, 2p/5212, 5p/6213, 4p/32

(a) (b)

(c) (d)

31. 32.

33. 34.

In Exercises 35–42, convert the polar equation to rectangular form and
identify the graph. Support your answer by graphing the polar equation.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–50, convert the rectangular equation to polar form.
Sketch the graph of the rectangular equation (do not use a grapher),
then support your hand sketch by graphing the polar equation with your
grapher.

43. 44.

45. 46.

47. 48.

49.

50.

51. Tracking Airplanes The location, given in polar coor-
dinates, of two planes approaching the Vicksburg airport are

and . Find the distance between the air-
planes.

52. Tracking Ships The locations of two ships from Mays
Landing Lighthouse, given in polar coordinates, are 

and . Find the distance between the ships.

53. Using Polar Coordinates in Geometry A square
with sides of length a and center at the origin has two sides
parallel to the x-axis. Find polar coordinates of the vertices.

54. Using Polar Coordinates in Geometry A regular
pentagon whose center is at the origin has one vertex on the
positive x-axis at a distance a from the center. Find polar coor-
dinates of the vertices.

15 mi, 150°2170°2
13 mi,

12 mi, 72°214 mi, 12°2

1x - 122 + 1y + 422 = 17

1x + 322 + 1y + 322 = 18

x2
+ 1y - 122 = 11x - 322 + y2

= 9

3x + 4y = 22x - 3y = 5

x = 5x = 2

r = 4 cos u - 4 sin ur = 2 sin u - 4 cos u

r sec u = 3r csc u = 1

r = -4 cos ur = -3 sin u

r = -2 csc ur = 3 sec u

r = 4 sin 3ur = 4 cos 3u

r = 4 sin ur = 5 csc u
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Standardized Test Questions
55. True or False Every point in the plane has exactly two

polar coordinates. Justify your answer.

56. True or False If and are not 0, and if and
represent the same point in the plane, then

. Justify your answer.

In Exercises 57–60, solve the problem without using a calculator.

57. Multiple Choice If , which of the following polar
coordinate pairs represents the same point as the point with 
polar coordinates ?

(A) (B) (C)

(D) (E)

58. Multiple Choice Which of the following are the 
rectangular coordinates of the point with polar coordinate

? 

(A) (B) (C)

(D) (E)

59. Multiple Choice Which of the following polar coordi-
nate pairs represent the same point as the point with polar coor-
dinates ?

(A) (B) (C)

(D) (E)

60. Multiple Choice Which of the following polar coordi-
nate pairs does not represent the point with rectangular coordi-
nates ?

(A) (B) (C) 

(D) (E) 1-212, 135°21-212, 45°2
1-212, -315°21212, 225°21212, -135°2

1-2, -22

12, 290°212, -70°2
1-2, -250°21-2, 110°21-2, -70°2

12, 110°2

11, 13211, - 132
1-1, 1321-1, - 1321- 13, 12

1-2, -p/32

1r, u + 3p21r, u + p2
1-r, u + 3p21-r, u + 2p21-r, u2

1r, u2
r Z 0

r1 = -r2

1r2, u + p2
1r1, u2r2r1

Explorations
61. Polar Distance Formula Let and have polar

coordinates and , respectively.

(a) If is a multiple of , write a formula for the dis-
tance between and .

(b) Use the Law of Cosines to prove that the distance between
and is given by

(c) Writing to Learn Does the formula in part (b)
agree with the formula(s) you found in part (a)? Explain.

62. Watching Your -Step Consider the polar curve
. Describe the graph for each of the following.

(a) (b)

(c) (d)

In Exercises 63–66, use the results of Exercise 61 to find the distance
between the points with given polar coordinates.

63.

64.

65. , 

66. , 

Extending the Ideas
67. Graphing Polar Equations Parametrically

Find parametric equations for the polar curve .

Group Activity In Exercises 68–71, use what you learned in 
Exercise 67 to write parametric equations for the given polar equation.
Support your answers graphically.

68. 69.

70. 71. r = 4 csc ur = 2 sec u

r = 5 sin ur = 2 cos u

r = ƒ1u2

18, -65°216, -35°2
1-5, 160°21-3, 25°2

14, 20°2, 16, 65°2
12, 10°2, 15, 130°2

0 … u … 4p0 … u … 3p/2

0 … u … 3p/40 … u … p/2

r = 4 sin u
U

d = 2r1 

2
+ r2 

2
- 2r1r2 cos 1u1 - u22.

P2P1

P2P1

pu1 - u2

1r2, u221r1, u12
P2P1

SECTION 6.4 Polar Coordinates 493
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Symmetry
You learned algebraic tests for symmetry for equations in rectangular form in Section 1.2.
Algebraic tests also exist for equations in polar form.

Figure 6.45 on the next page shows a rectangular coordinate system superimposed on a
polar coordinate system, with the origin and the pole coinciding and the positive x-axis
and the polar axis coinciding.

The three types of symmetry figures to be considered will have:

1. The x-axis (polar axis) as a line of symmetry (Figure 6.45a).

2. The y-axis (the line ) as a line of symmetry (Figure 6.45b).

3. The origin (the pole) as a point of symmetry (Figure 6.45c).

All three algebraic tests for symmetry in polar forms require replacing the pair 
which satisfies the polar equation, with another coordinate pair and determining
whether it also satisfies the polar equation.

1r, u2,

u = p/2

494 CHAPTER 6 Applications of Trigonometry

6.5 Graphs of Polar Equations

What you’ll learn about
• Polar Curves and Parametric

Curves
• Symmetry
• Analyzing Polar Graphs
• Rose Curves
• Limaçon Curves
• Other Polar Curves

... and why
Graphs that have circular 
or cylindrical symmetry often
have simple polar equations,
which is very useful in calculus.

Polar Curves and Parametric Curves
Polar curves are actually just special cases of parametric curves. Keep in mind that
polar curves are graphed in the plane, despite the fact that they are given in
terms of r and . That is why the polar graph of is a circle (see Figure 6.41
in Section 6.4) rather than a cosine curve.

In function mode, points are determined by a vertical coordinate that changes as the
horizontal coordinate moves left to right. In polar mode, points are determined by a di-
rected distance from the pole that changes as the angle sweeps around the pole. The
connection is provided by the coordinate conversion equations from Section 6.4, which
show that the graph of is really just the graph of the parametric equations

for all values of in some parameter interval that suffices to produce a complete graph.
(In many of our examples, will do.)

Since modern graphing calculators produce these graphs so easily in polar mode, we
are frankly going to assume that you do not have to sketch them by hand. Instead we
will concentrate on analyzing the properties of the curves. In later courses you can dis-
cover further properties of the curves using the tools of calculus.

0 … u 6 2p
u

 y = ƒ1u2 sin u

 x = ƒ1u2 cos u

r = ƒ1u2

r = 4 cos uu

1x, y2

Symmetry Tests for Polar Graphs

The graph of a polar equation has the indicated symmetry if either replacement pro-
duces an equivalent polar equation.

To Test for Symmetry Replace By

1. about the x-axis, or .

2. about the y-axis, .

3. about the origin, .1-r, u2 or 1r, u + p21r, u2
1-r, -u2 or 1r, p - u21r, u2

1-r, p - u21r, -u21r, u2
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Analyzing Polar Graphs
We analyze graphs of polar equations in much the same way that we analyze graphs of
rectangular equations. For example, the function r of Example 1 is a continuous func-
tion of . Also when and when is any integer multiple of . The do-
main of this function is the set of all real numbers.

TRACE can be used to help determine the range of this polar function (Figure 6.47). It
can be shown that .-4 … r … 4

p/3uu = 0r = 0u

SECTION 6.5 Graphs of Polar Equations 495

y

x

(a)

(r, )θ

(r, – ) = (–r, –θ π )θ

– θ

θ

y

x

(b)

(r, )θ(r,  (–r, – )θ–π ) =θ

–π θ

θ

y

x

(c)

(r, )θ

(–r, ) = (r, +θ θ )π

+θ π θ

FIGURE 6.45 Symmetry with respect to (a) the x-axis (polar axis), (b) the y-axis (the line ), and (c) the origin (the pole).u = p/2

EXAMPLE 1  Testing for Symmetry
Use the symmetry tests to prove that the graph of is symmetric about
the y-axis.

SOLUTION Figure 6.46 suggests that the graph of is symmetric
about the y-axis and not symmetric about the x-axis or origin.

Replace by 

sin is an odd function of .

(Same as original)

Because the equations and are equivalent, there is
symmetry about the y-axis. Now try Exercise 13.

r = 4 sin 3u-r = 4 sin 31-u2
 r = 4 sin 3u

uu -r = -4 sin 3u

 -r = 4 sin 1-3u)

1-r, -u2.1r, u2 -r = 4 sin 31-u)
 r = 4 sin 3u

sin 3ur = 4

r = 4 sin 3u

[–6,6] by [–4, 4]

FIGURE 6.46 The graph of 
is symmetric about the y-axis. (Example 1)

r = 4 sin 3u

[–6,6] by [–5, 3]

1

R=4 =.52359878θ

(a)

[–6,6] by [–5, 3]

1

 R=�4 =1.5707963θ

(b)

FIGURE 6.47 The values of r in vary from (a) 4 to (b) .-4r = 4 sin 3u
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Usually, we are more interested in the maximum value of rather than the range of r
in polar equations. In this case, so we can conclude that the graph is bounded.

A maximum value for is a maximum r-value for a polar equation. A maximum 
r-value occurs at a point on the curve that is the maximum distance from the pole. In
Figure 6.47, a maximum r-value occurs at and . In fact, we get a
maximum r-value at every , which represents the tip of one of the three petals.

To find maximum r-values we must find maximum values of as opposed to the di-
rected distance r. Example 2 shows one way to find maximum r-values graphically.

ƒr ƒ

1r, u2 1-4, p/2214, p/62
ƒr ƒ

ƒr ƒ … 4
ƒr ƒ

496 CHAPTER 6 Applications of Trigonometry

EXAMPLE 2  Finding Maximum r-Values
Find the maximum r-value of .

SOLUTION Figure 6.48a shows the graph of for .
Because we are only interested in the values of r, we use the graph of the rectangular
equation in function graphing mode (Figure 6.48b). From this
graph we can see that the maximum value of r, or y, is 4. It occurs when is any
multiple of . Now try Exercise 21.2p

u

y = 2 + 2 cos x

0 … u … 2pr = 2 + 2 cos u

r = 2 + 2 cos u

[–4.7, 4.7] by [–3.1, 3.1]

Polar coordinates

(a)

r = 2 + 2 cos θ

Rectangular coordinates

(b)

by [–4, 4]2 π ][0,

y = 2 + 2 cos x

FIGURE 6.48 With , the y-values in
(b) are the same as the directed distance from
the pole to in (a).1r, u2

u = x

EXAMPLE 3  Finding Maximum r-Values
Identify the points on the graph of for that give maximum
r-values.

SOLUTION Using TRACE in Figure 6.49 we can show that there are four points
on the graph of in at maximum distance of 3 from the
pole:

Figure 6.50a shows the directed distances r as the y-values of , and 
Figure 6.50b shows the distances as the y-values of . There are four
maximum values of in part (b) corresponding to the four extreme values 
of in part (a). Now try Exercise 23.y1 1i.e., r 2

y2 1i.e., ƒr ƒ2
y2 = ƒ3 cos 2x ƒƒr ƒ

y1 = 3 cos 2x

13, 02, 1-3, p/22, 13, p2, and 1-3, 3p/22.
0 … u 6 2pr = 3 cos 2u

0 … u … 2pr = 3 cos 2u

y

x

π b–3, 
2
3a

π b–3, 
2

a

)(3, π

(3, 0)

Maximum
r-values

Maximum
r-values

FIGURE 6.49 The graph of 
(Example 3)

r = 3 cos 2u.

(a)

by [–5, 5]2 π ][0,

(b)

by [–5, 5]2 π ][0,

FIGURE 6.50 The graph of (a) and (b) in function graphing
mode. (Example 3)

y2
= ƒ3 cos 2x ƒy1 = 3 cos 2x

Rose Curves
The curve in Example 1 is a 3-petal rose curve, and the curve in Example 3 is a 4-petal
rose curve. The graphs of the polar equations and , where n
is an integer greater than 1, are rose curves. If n is odd there are n petals, and if n is
even there are 2n petals.

r = a sin nur = a cos nu
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Here are the general characteristics of rose curves. You will investigate these curves in
more detail in Exercises 67 and 68.

SECTION 6.5 Graphs of Polar Equations 497

EXAMPLE 4  Analyzing a Rose Curve
Analyze the graph of the rose curve .

SOLUTION Figure 6.51 shows the graph of the 8-petal rose curve .
The maximum r-value is 3. The graph appears to be symmetric about the x-axis, the
y-axis, and the origin. For example, to prove that the graph is symmetric about the 
x-axis we replace by :

Sine difference identity

Because the new polar equation is the same as the original equation, the graph is
symmetric about the x-axis. In a similar way, you can prove that the graph is sym-
metric about the y-axis and the origin. (See Exercise 58.)

Domain: All reals
Range: 
Continuous
Symmetric about the x-axis, the y-axis, and the origin
Bounded
Maximum r-value: 3
No asymptotes Now try Exercise 29.

3-3, 34

 r = 3 sin 4u

 -r = -3 sin 4u

sin 4p = 0, cos 4p = 1 -r = 33102 cos 4u - 112 sin 4u4
 -r = 33sin 4p cos 4u - cos 4p sin 4u4
 -r = 3 sin 14p - 4u2
 -r = 3 sin 41p - u2

 r = 3 sin 4u

1-r, p - u21r, u2

r = 3 sin 4u

r = 3 sin 4u

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 6.51 The graph of 8-petal rose
curve . (Example 4)r = 3 sin 4u

A ROSE IS A ROSE...
Budding botanists like to point out that the
rose curve doesn’t look much like a rose.
However, consider the beautiful stained-glass
window shown here, which is a feature of
many great cathedrals and is called a “rose
window.”

Graphs of Rose Curves
The graphs of and , where is an integer, have
the following characteristics:

Domain: All reals
Range: 
Continuous
Symmetry: n even, symmetric about x-, y-axis, origin

n odd, symmetric about x-axis
n odd, symmetric about y-axis

Bounded
Maximum r-value: 
No asymptotes
Number of petals: n, if n is odd

2n, if n is even

ƒa ƒ

r = a sin nu
r = a cos nu

3- ƒa ƒ , ƒa ƒ4

n 7 1r = a sin nur = a cos nu

Limaçon Curves
The limaçon curves are graphs of polar equations of the form

and

where and . Limaçon, pronounced “LEE-ma-sohn,” is Old French for
“snail.” There are four different shapes of limaçons, as illustrated in Figure 6.52.

b 7 0a 7 0

r = a � b cos u,r = a � b sin u
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(a)

Limaçon with an inner loop: < 1a
b

(b)

Cardioid: = 1a
b

(c)

Dimpled limaçon:  1 < < 2a
b

(d)

Convex limaçon: ≥ 2a
b

FIGURE 6.52 The four types of limaçons.

EXAMPLE 5  Analyzing a Limaçon Curve
Analyze the graph of .

SOLUTION We can see from Figure 6.53 that the curve is a cardioid with maxi-
mum r-value 6. The graph is symmetric only about the y-axis.

Domain: All reals
Range: 
Continuous
Symmetric about the y-axis
Bounded
Maximum r-value: 6
No asymptotes Now try Exercise 33.

30, 64

r = 3 - 3 sin u

[–7, 7] by [–8, 2]

=4.712389θR=6

1

FIGURE 6.53 The graph of the cardioid
of Example 5.

EXAMPLE 6  Analyzing a Limaçon Curve
Analyze the graph of .

SOLUTION We can see from Figure 6.54 that the curve is a limaçon with an inner
loop and maximum r-value 5. The graph is symmetric only about the x-axis.

Domain: All reals
Range: 
Continuous
Symmetric about the x-axis
Bounded
Maximum r-value: 5
No asymptotes Now try Exercise 39.

3-1, 54

r = 2 + 3 cos u

[–3, 8] by [–4, 4]

=0θR=5

1

FIGURE 6.54 The graph of a limaçon
with an inner loop. (Example 6)

Graphs of Limaçon Curves
The graphs of and , where and ,
have the following characteristics:

Domain: All reals
Range: 
Continuous
Symmetry: , symmetric about y-axis

, symmetric about x-axis
Bounded
Maximum r-value: 
No asymptotes

a + b

r = a � b cos u
r = a � b sin u

3a - b, a + b4

b 7 0a 7 0r = a � b cos ur = a � b sin u
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EXPLORATION 1 Limaçon Curves

Try several values for a and b to convince yourself of the characteristics of

limaçon curves listed above.

Other Polar Curves
All the polar curves we have graphed so far have been bounded. The spiral in Example 7
is unbounded.

EXAMPLE 7  Analyzing the Spiral of Archimedes
Analyze the graph of .

SOLUTION

We can see from Figure 6.55 that the curve has no maximum r-value and is symmetric
about the y-axis.

Domain: All reals
Range: All reals
Continuous
Symmetric about the y-axis
Unbounded
No maximum r-value
No asymptotes Now try Exercise 41.

r = u

[–30, 30] by [–20, 20]

(a)

[–30, 30] by [–20, 20]

(b)

FIGURE 6.55 The graph of for (a)
, 

and (b) 
. (Example 7)ustep = 0.12umax = 0,

u … 0 1set umin = -45,ustep = 0.12
umax = 45,1set umin = 0u Ú 0

r = u

The lemniscate curves are graphs of polar equations of the form

r 2
= a2 sin 2u and r 2

= a2 cos 2u.

EXAMPLE 8  Analyzing a Lemniscate Curve
Analyze the graph of for .

SOLUTION It turns out that you can get the complete graph using .
You also need to choose a very small step to produce the graph in Figure 6.56.

Domain: 
Range: 
Symmetric about the x-axis, the y-axis, and the origin
Continuous (on its domain)
Bounded
Maximum r-value: 2
No asymptotes Now try Exercise 43.

3-2, 2430, p/44 ´ 33p/4, 5p/44 ´ 37p/4, 2p4
u

r = 21cos 2u

30, 2p4r 2
= 4 cos 2u

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 6.56 The graph of the lemnis-
cate . (Example 8)r 2

= 4 cos 2u
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EXPLORATION 2 Revisiting Example 8

1. Prove that -values in the intervals and are not in
the domain of the polar equation .

2. Explain why produces the same graph as in
the interval .

3. Use the symmetry tests to show that the graph of is symmetric
about the x-axis.

4. Use the symmetry tests to show that the graph of is symmetric
about the y-axis.

5. Use the symmetry tests to show that the graph of is symmetric
about the origin.

r 2
= 4 cos 2u

r 2
= 4 cos 2u

r 2
= 4 cos 2u

30, 2p4 r = 21cos 2ur = -21cos 2u

r 2
= 4 cos 2u

15p/4, 7p/421p/4, 3p/42u

QUICK REVIEW 6.5 (For help, go to Sections 1.2 and 5.3.)

In Exercises 7–10, use trig identities to simplify the expression.

7.

8.

9.

10. sin 2(p + u2
cos 2(p + u2
cos 1p - u2
sin 1p - u2

In Exercises 1–4, find the absolute maximum value and absolute
minimum value in and where they occur.

1. 2.

3. 4.

In Exercises 5 and 6, determine if the graph of the function is sym-
metric about the (a) x-axis, (b) y-axis, and (c) origin.

5. 6. y = cos 4xy = sin 2x

y = 3 - 3 sin xy = 21cos 2x

y = 2 + 3 cos xy = 3 cos 2x

30, 2p4

SECTION 6.5 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, (a) complete the table for the polar equation, and
(b) plot the corresponding points.

1.

2.

In Exercises 3–6, draw a graph of the rose curve. State the smallest 
-interval that will produce a complete graph.

3. 4.

5. 6.

Exercises 7 and 8 refer to the curves in the given figure.

r = 3 sin 5ur = 3 cos 2u

r = -3 cos 2ur = 3 sin 3u

10 … u … k2u

r = 2 sin 3u

r = 3 cos 2u

7. The graphs of which equations are shown?

8. Use trigonometric identities to explain which of these curves is
the graph of 

In Exercises 9–12, match the equation with its graph without using
your graphing calculator.

r = 6 cos 2u sin 2u.

r1 = 3 cos 6u r2 = 3 sin 8u r3 = 3 ƒcos 3u ƒ

0
r

7p/43p/25p/4p3p/4p/2p/4u

0
r

p5p/62p/3p/2p/3p/6u

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–4.7, 4.7] by [–4.1, 2.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–3.7, 5.7] by [–3.1, 3.1]

(c)

[–4.7, 4.7] by [–4.1, 2.1]

(d)

6965_CH06_pp455-518.qxd  1/14/10  1:55 PM  Page 500



9. Does the graph of or appear
in the figure? Explain.

10. Does the graph of or appear
in the figure? Explain.

11. Is the graph in (a) the graph of or
? Explain.

12. Is the graph in (d) the graph of or
? Explain.

In Exercises 13–20, use the polar symmetry tests to determine if the
graph is symmetric about the x-axis, the y-axis, or the origin. Support
your algebraic solution with a grapher.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–24, identify the points for where maxi-
mum r-values occur on the graph of the polar equation.

21. 22.

23. 24.

In Exercises 25–44, analyze the graph of the polar curve.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43.

44.

In Exercises 45–48, find the length of each petal of the polar curve.

45. 46.

47. 48.

In Exercises 49–52, select the two equations whose graphs are the same
curve. Then, even though the graphs of the equations are identical, de-
scribe how the two paths are different as increases from 0 to .

49. , ,

50. , ,

51. , ,

52. , ,

In Exercises 53–56, (a) describe the graph of the polar equation, 
(b) state any symmetry that the graph possesses, and (c) state its 
maximum r-value if it exists.

53. 54.

55. 56. r = 1 + 3 sin 3ur = 1 - 3 cos 3u

r = 3 cos 2u - sin 3ur = 2 sin2 2u + sin 2u

r3 = 2 - 2 sin ur2 = -2 + 2 sin ur1 = 2 + 2 sin u

r3 = -1 - 2 cos ur2 = 1 - 2 cos ur1 = 1 + 2 cos u

r3 = -1 + 2 cos ur2 = -1 - 2 cos ur1 = 1 + 2 cos u

r3 = 1 - 3 sin ur2 = -1 + 3 sin ur1 = 1 + 3 sin u

2pu

r = 3 + 4 sin 5ur = 1 - 4 cos 5u

r = 3 - 5 cos 2ur = 2 + 4 sin 2u

r 2
= 9 cos 2u, 0 … u … 2p

r 2
= sin 2u, 0 … u … 2p

r = u/4r = 2u

r = 2 + sin ur = 1 - cos u

r = 3 - 4 sin ur = 2 + 5 cos u

r = 3 - sin ur = 5 + 2 cos u

r = 5 - 5 sin ur = 4 + 4 cos u

r = 6 - 5 cos ur = 5 + 4 sin u

r = -3 cos 4ur = 2 sin 3u

u = -p/4u = p/3

r = -2r = 3

r = 4 sin 2ur = 3 cos 3u

r = -3 + 2 sin ur = 2 + 3 cos u

0 … u … 2p

r =

2

1 - cos u
r =

3

1 + sin u

r = 7 sin 3ur = 5 cos 2u

r = 1 - 3 sin ur = 4 - 3 cos u

r = 1 + 2 cos ur = 3 + 3 sin u

r = 2 - 1.5 sin u
r = 2 + 1.5 cos u

r = 2 + 2 cos u
r = 2 - 2 sin u

r = 2 - 3 cos ur = 2 + 3 cos u

r = 2 - 2 cos ur = 2 + 2 sin u
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57. Group Activity Analyze the graphs of the polar equa-
tions and when n is an even integer.

58. Revisiting Example 4 Use the polar symmetry tests to
prove that the graph of the curve is symmetric
about the y-axis and the origin.

59. Writing to Learn Revisiting Example 5
Confirm the range stated for the polar function 
of Example 5 by graphing for . 
Explain why this works.

60. Writing to Learn Revisiting Example 6
Confirm the range stated for the polar function 
of Example 6 by graphing for .
Explain why this works.

Standardized Test Questions
61. True or False A polar curve is always bounded. Justify

your answer. 

62. True or False The graph of is symmetric
about the x-axis. Justify your answer.

In Exercises 63–66, solve the problem without using a calculator.

63. Multiple Choice Which of the following gives the num-
ber of petals of the rose curve 

(A) 1 (B) 2 (C) 3 (D) 4 (E) 6

64. Multiple Choice Which of the following describes the
symmetry of the rose graph of 

(A) Only the x-axis

(B) Only the y-axis

(C) Only the origin

(D) The x-axis, the y-axis, the origin

(E) Not symmetric about the x-axis, the y-axis, or the origin

65. Multiple Choice Which of the following is a maximum
r-value for 

(A) 6 (B) 5 (C) 3 (D) 2 (E) 1

66. Multiple Choice Which of the following is the number
of petals of the rose curve 

(A) 1 (B) 3 (C) 6 (D) 10 (E) 15

Explorations
67. Analyzing Rose Curves Consider the polar equation

for n, an odd integer.

(a) Prove that the graph is symmetric about the x-axis.

(b) Prove that the graph is not symmetric about the y-axis.

(c) Prove that the graph is not symmetric about the origin.

(d) Prove that the maximum r-value is .

(e) Analyze the graph of this curve.

ƒa ƒ

r = a cos nu

r = 5 sin 3u?

r = 2 - 3 cos u?

r = 3 cos 2u?

r = 3 cos 2u?

r = 2 + cos u

0 … x … 2py = 2 + 3 cos x
r = 2 + 3 cos u

0 … x … 2py = 3 - 3 sin x
r = 3 - 3 sin u

r = 3 sin 4u

r = a sin nur = a cos nu
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68. Analyzing Rose Curves Consider the polar equation
for n, an odd integer.

(a) Prove that the graph is symmetric about the y-axis.

(b) Prove that the graph is not symmetric about the x-axis.

(c) Prove that the graph is not symmetric about the origin.

(d) Prove that the maximum r-value is .

(e) Analyze the graph of this curve.

69. Extended Rose Curves The graphs of
and may be called

rose curves.

(a) Determine the smallest -interval that will produce a 
complete graph of ; of .

(b) How many petals does each graph have?

r2r1

u

r2 = 3 sin 117/22u2r1 = 3 sin 117/22u2

ƒa ƒ

r = a sin nu
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Extending the Ideas
In Exercises 70–72, graph each polar equation. Describe how they are
related to each other.

70. (a) (b)

(c)

71. (a) (b)

(c)

72. (a) (b)

(c)

73. Writing to Learn Describe how the graphs of 
, and are related. Explain why

you think this generalization is true.
r = ƒ1u - a2r = ƒ1u + a2

r = ƒ1u2,
r3 = r1 au +

p

3
b

r2 = r1 au +

p

4
br1 = 2 - 2 cos u

r3 = 2 sec au -

p

3
b

r2 = 2 sec au -

p

4
br1 = 2 sec u

r3 = 3 sin 3 au +

p

4
b

r2 = 3 sin 3 au +

p

12
br1 = 3 sin 3u

6965_CH06_pp455-518.qxd  1/14/10  1:55 PM  Page 502



SECTION 6.6 De Moivre’s Theorem and nth Roots 503

6.6 De Moivre’s Theorem 
and nth Roots

What you’ll learn about
• The Complex Plane
• Trigonometric Form of Complex

Numbers
• Multiplication and Division 

of Complex Numbers
• Powers of Complex Numbers
• Roots of Complex Numbers

... and why
This material extends your
equation-solving technique to
include equations of the form

, n an integer and c a
complex number.
zn

= c

a

a + bi
bi

(a)

Imaginary axis

Real
axis

2

(b)

2 + 3i
3i

Imaginary axis

Real
axis

FIGURE 6.57 Plotting points in the com-
plex plane.

EXAMPLE 1  Plotting Complex Numbers
Plot , , and in the complex plane. These three points and
the origin determine a quadrilateral. Is it a parallelogram?

SOLUTION First notice that . The num-
bers u, v, and are plotted in Figure 6.58a. The quadrilateral is a parallelogram
because the arithmetic is exactly the same as in vector addition (Figure 6.58b).

Now try Exercise 1.

u + v
u + v = 11 + 3i2 + 12 + i2 = 3 + 2i

u + vv = 2 - iu = 1 + 3i

Imaginary axis

Real
axisO

u = 1 + 3i

u + v = 3 + 2i

v = 2 – i

(a)

y

x
O

u =  1, 3 

u + v =  3, 2

v =   2, –1  

(b)

FIGURE 6.58 (a) Two numbers and their sum are plotted in the complex plane. (b) The
arithmetic is the same as in vector addition. (Example 1)

Example 1 shows how the complex plane representation of complex number addition is
virtually the same as the Cartesian plane representation of vector addition. Another
similarity between complex numbers and two-dimensional vectors is the definition of
absolute value.

Is There a Calculus of Complex
Functions?
There is a calculus of complex functions. If you
study it someday, it should only be after acquir-
ing a pretty firm algebraic and geometric under-
standing of the calculus of real functions.

The Complex Plane
You might be curious as to why we reviewed complex numbers in Section P.6, then
proceeded to ignore them for the next six chapters. (Indeed, after this section we will
pretty much ignore them again.) The reason is simply because the key to understand-
ing calculus is the graphing of functions in the Cartesian plane, which consists of two
perpendicular real (not complex) lines.

We are not saying that complex numbers are impossible to graph. Just as every real
number is associated with a point of the real number line, every complex number can
be associated with a point of the complex plane. This idea evolved through the work
of Caspar Wessel (1745–1818), Jean-Robert Argand (1768–1822), and Carl Friedrich
Gauss (1777–1855). Real numbers are placed along the horizontal axis (the real axis)
and imaginary numbers along the vertical axis (the imaginary axis), thus associating
the complex number with the point . In Figure 6.57 we show the graph of

as an example.2 + 3i
1a, b2a + bi
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Trigonometric Form of Complex Numbers
Figure 6.59 shows the graph of in the complex plane. The distance r
from the origin is the modulus of z. If we define a direction angle for z just as we
did with vectors, we see that and . Substituting these expres-
sions for a and b gives us the trigonometric form (or polar form) of the complex
number z.

b = r sin ua = r cos u
u

z = a + bi

504 CHAPTER 6 Applications of Trigonometry

Polar Form
What’s in a cis?

Trigonometric (or polar) form appears frequently
enough in scientific texts to have an abbreviated
form. The expression “ is often
shortened to “ ” (pronounced “kiss ”). Thus

.z = r cis u
ucis u

cos u + i sin u” z  = a + bi

r
b = r sin u

a = r cos u
θ

Imaginary axis

Real
axis

FIGURE 6.59 If r is the distance of from the origin and is the directional an-
gle shown, then , which is the trigonometric form of z.z = r1cos u + i sin u2

uz = a + bi

An angle for the trigonometric form of z can always be chosen so that ,
although any angle coterminal with could be used. Consequently, the angle and
argument of a complex number z are not unique. It follows that the trigonometric form
of a complex number z is not unique.

uu

0 … u … 2pu

EXAMPLE 2  Finding Trigonometric Forms
Use an algebraic method to find the trigonometric form with for the
complex number. Approximate exact values with a calculator when appropriate.

(a) (b)

SOLUTION

(a) For ,

r = ƒ1 - 13 i ƒ = 21122 + 11322 = 2.

1 - 13i

-3 - 4i1 - 13 i

0 … u 6 2p

DEFINITION Absolute Value (Modulus) of a Complex Number
The absolute value or modulus of a complex number is

In the complex plane, is the distance of from the origin.a + biƒa + bi ƒ

ƒz ƒ = ƒa + bi ƒ = 2a2
+ b2

 .

z = a + bi

DEFINITION Trigonometric Form of a Complex Number
The trigonometric form of the complex number is

where , , and . The number
r is the absolute value or modulus of z, and is an argument of z.u

tan u = b/ar = 2a2
+ b2a = r cos u, b = r sin u

z = r1cos u + i sin u2
z = a + bi
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Multiplication and Division 
of Complex Numbers
The trigonometric form for complex numbers is particularly convenient for multiplying
and dividing complex numbers. The product involves the product of the moduli and the
sum of the arguments. (Moduli is the plural of modulus.) The quotient involves the quo-
tient of the moduli and the difference of the arguments.

SECTION 6.6 De Moivre’s Theorem and nth Roots 505

Because the reference angle is (Figure 6.60),

Thus,

(b) For ,

The reference angle for (Figure 6.61) satisfies the equation

Because the terminal side of is in the third quadrant, we conclude that

Therefore,

Now try Exercise 5.

-3 - 4i L 51cos 4.07 + i sin 4.072.

u = p + u¿ L 4.07.

u

 u¿ = tan-1 
4

3
= 0.927. Á

 tan u¿ =

4

3
 , so

uu¿

ƒ -3 - 4i ƒ = 21-322 + 1-422 = 5.

-3 - 4i

1 - 13 i = 2 cos 
5p

3
+ 2i sin 

5p

3
 .

u = 2p + a-

p

3
b =

5p

3
 .

-p/3u¿ for u

θ ′

θ

1 – 3i

Imaginary axis

Real
axis

FIGURE 6.60 The complex number for
Example 2a.

θ ′

θ

–3 – 4i

Imaginary axis

Real
axis

FIGURE 6.61 The complex number for
Example 2b.

Product and Quotient of Complex Numbers
Let . Then

1.

2.
z1

z2
=

r1

r2
 3cos 1u1 - u22 + i sin 1u1 - u224, r2 Z 0.

z1
# z2 = r1r23cos 1u1 + u22 + i sin 1u1 + u224.

1cos u1 + i sin u12 and z2 = r21cos u2 + i sin u22z1 = r1

Proof of the Product Formula

You will be asked to prove the quotient formula in Exercise 63.

 = r1r23cos 1u1 + u22 + i sin 1u1 + u224
 = r1r231cos u1 cos u2 - sin u1 sin u22 + i 1sin u1 cos u2 + cos u1 sin u224

 z1
# z2 = r11cos u1 + i sin u12 # r21cos u2 + i sin u22
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Powers of Complex Numbers
We can use the product formula to raise a complex number to a power. For example, let

. Then

Figure 6.62 gives a geometric interpretation of squaring a complex number: Its argu-
ment is doubled and its distance from the origin is multiplied by a factor of r, increased
if r or decreased if r .

We can find by multiplying z by :

= r 31cos 3u + i sin 3u2
= r 33cos 1u + 2u) + i sin 1u + 2u24
= r 1cos u + i sin u2 # r 21cos 2u + i sin 2u2

z3
= z # z2

z2z3

6 17 1

= r 21cos 2u + i sin 2u2
= r 23cos 1u + u2 + i sin 1u + u24
= r 1cos u + i sin u2 # r 1cos u + i sin u2

z2
= z # z

z = r1cos u + i sin u2

506 CHAPTER 6 Applications of Trigonometry

EXAMPLE 3  Multiplying Complex Numbers
Use an algebraic method to express the product of and in standard form. 
Approximate exact values with a calculator when appropriate.

SOLUTION

Now try Exercise 19.L 478.11 + 128.11i

= 35012 acos 
p

12
+ i sin 

p

12
b

= 25 # 1412 ccos a -p

4
+

p

3
b + i sina -p

4
+

p

3
b d

z1
# z2 = 2512acos 

-p

4
+ i sin 

-p

4
b # 14acos 

p

3
+ i sin 

p

3
b

z1 = 2512acos 
-p

4
+ i sin 

-p

4
b ,  z2 = 14acos 

p

3
+ i sin 

p

3
b

z2z1

EXAMPLE 4  Dividing Complex Numbers
Use an algebraic method to express the product in standard form. Approximate
exact values with a calculator when appropriate.

SOLUTION

Now try Exercise 23.L -0.46 - 0.12i

=

12

3
 3cos 1-165°2 + i sin 1-165°24

=

12

3
 3cos 1135° - 300°2 + i sin 1135° - 300°24

z1

z2
=

212 1cos 135° + i sin 135°2
61cos 300° + i sin 300°2

z1 = 2121cos 135° + i sin 135°2,  z2 = 61cos 300° + i sin 300°2
z1/z2

Imaginary axis

Real
axis

z2

r2 r
z

θ
2 θ

FIGURE 6.62 A geometric 
interpretation of .z2
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Similarly,

This pattern can be generalized to the following theorem, named after the mathemati-
cian Abraham De Moivre (1667–1754), who also made major contributions to the field
of probability.

o

z5
= r 51cos 5u + i sin 5u2

z4
= r 41cos 4u + i sin 4u2

SECTION 6.6 De Moivre’s Theorem and nth Roots 507

De Moivre’s Theorem
Let and let n be a positive integer. Then

zn
= 3r 1cos u + i sin u24n = r n1cos nu + i sin nu2.

z = r 1cos u + i sin u2

EXAMPLE 5  Using De Moivre’s Theorem
Find using De Moivre’s Theorem.

SOLUTION

Solve Algebraically See Figure 6.63. The argument of ,
and its modulus is Therefore,

Support Numerically Figure 6.64a sets the graphing calculator we use in complex
number mode. Figure 6.64b supports the result obtained algebraically.

Now try Exercise 31.

= 81-1 + 0i2 = -8

= 81cos p + i sin p2
z3

= 23 ccos a3 #
p

3
b + i sin a3 #

p

3
b d

z = 2acos 
p

3
+ i sin 

p

3
b

ƒ1 + i13 ƒ = 11 + 3 = 2.
z = 1 + i13 is u = p/3

11 + i1323
Imaginary axis

Real
axis

2

1

1 + i   3

3

FIGURE 6.63 The complex number 
in Example 5.

i

(a)

θ

Normal Sci Eng
Float 0123456789
Radian Degree
Func Par Pol Seq
Connected Dot
Sequential Simul
Real a+bi re^
Full Horiz G–T

(1+i (3))3
–8

(b)

FIGURE 6.64 (a) Setting a graphing calculator in complex number mode.
(b) Computing with a graphing calculator.11 + i 1323

EXAMPLE 6  Using De Moivre’s Theorem
Find using De Moivre’s Theorem.

SOLUTION The argument of , and its
modulus is

(continued)

` - 12

2
+ i 

12

2
` = A

1

2
+

1

2
= 1.

z = 1- 12/22 + i112/22 is u = 3p/4

31- 12/22 + i112/2248
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Therefore,

Now try Exercise 35.

Roots of Complex Numbers
The complex number in Example 5 is a solution of and the 
complex number in Example 6 is a solution of . The 
complex number is a third root of and is an eighth
root of 1.

1- 12/22 + i112/22-8,1 + i13
z8

= 11- 12/22 + i112/22 z3
= -8,1 + i13

= 1 + i # 0 = 1

= cos 6p + i sin 6p

z8
= cos a8 #

3p

4
b + i sin a8 #

3p

4
b

z = cos 
3p

4
+ i sin 

3p

4

508 CHAPTER 6 Applications of Trigonometry

nth Root of a Complex Number
A complex number is an nth root of z if

If , then v is an nth root of unity.z = 1

vn
= z.

v = a + bi

We use De Moivre’s Theorem to develop a general formula for finding the nth roots of
a nonzero complex number. Suppose that is an nth root of

Then

(1)

Next, we take the absolute value of both sides:

Substituting into Equation (1), we obtain

Therefore, n can be any angle coterminal with . Consequently, for any integer k, v is
an n th root of z if and

The expression for v takes on n different values for , and the values
start to repeat for .

We summarize this result.

k = n, n + 1, Á

k = 0, 1, Á , n - 1

a =

u + 2pk

n
.

na = u + 2pk

s = 1n r
ua

cos na + i sin na = cos u + i sin u.

sn
= r

s = 2n r

s 7 0, r 7 0sn
= r

2s2n
= 2r 2

2s2n 1cos2 na + sin2 na2 = 2r 21cos2 u + sin2 u2
ƒsn1cos na + i sin na2 ƒ = ƒr1cos u + i sin u2 ƒ

sn1cos na + i sin na2 = r1cos u + i sin u2
3s1cos a + i sin a24n = r1cos u + i sin u2

vn
= z

z = r1cos u + i sin u2. v = s1cos a + i sin a2
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Finding nth Roots of a Complex Number
If , then the n distinct complex numbers

where are the n th roots of the complex number z.k = 0, 1, 2, Á , n - 1,

1n r acos 
u + 2pk

n
+ i sin 

u + 2pk

n
b ,

z = r1cos u + i sin u2

EXAMPLE 7  Finding Fourth Roots
Find the fourth roots of 

SOLUTION The fourth roots of z are the complex numbers

for .

Taking into account that , the list becomes

Now try Exercise 45.

= 14 5 ccos 
19p

12
+ i sin 

19p

12
d

z4 = 14 5 ccos a p
12

+

3p

2
b + i sin a p

12
+

3p

2
b d

= 14 5 ccos 
13p

12
+ i sin 

13p

12
d

z3 = 14 5 ccos a p
12

+

2p

2
b + i sin a p

12
+

2p

2
b d

= 14 5 ccos 
7p

12
+ i sin 

7p

12
d

z2 = 14 5 ccos a p
12

+

p

2
b + i sin a p

12
+

p

2
b d

= 14 5 ccos 
p

12
+ i sin 

p

12
d

z1 = 14 5 ccos a p
12

+

0

2
b + i sin a p

12
+

0

2
b d

1p/3 + 2pk2/4 = p/12 + pk/2

k = 0, 1, 2, 3

14 5 acos 
p/3 + 2pk

4
+ i sin 

p/3 + 2pk

4
b

z = 51cos 1p/32 + i sin 1p/322.

EXAMPLE 8  Finding Cube Roots
Find the cube roots of and plot them.

SOLUTION First we write the complex number in trigonometric form

The third roots of are the complex numbers

(continued)

cos 
p + 2pk

3
+ i sin 

p + 2pk

3
, 

z = -1 = cos p + i sin p

z = -1 + 0i = cos p + i sin p.

z = -1

-1
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for . The three complex numbers are

Figure 6.65 shows the graph of the three cube roots z1, z2, and z3. They are evenly
spaced (with distance of radians) around the unit circle.

Now try Exercise 57.
2p/3

z3 = cos 
p + 4p

3
+ i sin 

p + 4p

3
=

1

2
-

13

2
 i.

z2 = cos 
p + 2p

3
+ i sin 

p + 2p

3
= -1 + 0i,

=

1

2
+

13

2
 i,z1 = cos 

p

3
+ i sin 

p

3

k = 0, 1, 2

[–2.4, 2.4] by [–1.6, 1.6]

z1

z2

z3

FIGURE 6.65 The three cube roots 
z1, z2, and z3 of displayed on the unit 
circle (dashed). (Example 8)

-1

EXAMPLE 9  Finding Roots of Unity
Find the eight eighth roots of unity.

SOLUTION First we write the complex number in trigonometric form

The eighth roots of are the complex numbers

for 

Figure 6.66 shows the eight points. They are spaced radians apart.

Now try Exercise 59.
2p/8 = p/4

z8 = cos 
7p

4
+ i sin 

7p

4
=

12

2
-

12

2
 i

z7 = cos 
3p

2
+ i sin 

3p

2
= 0 - i

z6 = cos 
5p

4
+ i sin 

5p

4
= -  

12

2
-

12

2
 i

= -1 + 0iz5 = cos p + i sin p

z4 = cos 
3p

4
+ i sin 

3p

4
= -  

12

2
+

12

2
 i

= 0 + iz3 = cos 
p

2
+ i sin 

p

2

=

12

2
+

12

2
 iz2 = cos 

p

4
+ i sin 

p

4

= 1 + 0iz1 = cos 0 + i sin 0

k = 0, 1, 2, Á , 7.

cos 
0 + 2pk

8
+ i sin 

0 + 2pk

8
,

z = 1 + 0i = cos 0 + i sin 0

z = 1 + 0i = cos 0 + i sin 0.

z = 1

Imaginary axis

Real
axis

z4

z6

z2

z8

z1z5

z3

z7

FIGURE 6.66 The eight eighth roots of
unity are evenly spaced on a unit circle. (Ex-
ample 9)
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SECTION 6.6 De Moivre’s Theorem and nth Roots 511

QUICK REVIEW 6.6 (For help, go to Sections P.5, P.6, and 4.3.)

6.

7.

8.

In Exercises 9 and 10, find all real solutions.

9.

10. x4
- 1 = 0

x3
- 1 = 0

sin u = -  

12

2
  and  cos u = -

12

2

sin u = -  

13

2
  and  cos u = -  

1

2

sin u = -  

12

2
  and  cos u =

12

2

In Exercises 1 and 2, write the roots of the equation in form.

1.

2.

In Exercises 3 and 4, write the complex number in standard form
.

3.

4.

In Exercises 5–8, find an angle that satisfies both
equations.

5. sin u =

1

2
  and  cos u = -  

13

2

u in 0 … u 6 2p

11 - i24
11 + i25

a + bi

51x2
+ 12 = 6x

x2
+ 13 = 4x

a + bi

SECTION 6.6 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, plot all four points in the same complex plan.

1.

2.

In Exercises 3–12, find the trigonometric form of the complex number
where the argument satisfies 

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, write the complex number in standard form .

13.

14.

15.

16.

17.

18. 17 acos 
p

12
+ i sin 

p

12
b

12 acos 
7p

6
+ i sin 

7p

6
b

5acos 
p

4
+ i sin 

p

4
b

53cos 1-60°2 + i sin 1-60°24
81cos 210° + i sin 210°2
31cos 30° - i sin 30°2

a + bi

4 - 7i3 + 2i

3 - 3i-2 + 2i13

13 + i2 + 2i

-2i3i

0 … u 6 2p.

2 - 3i, 1 + i, 3, -2 - i

1 + 2i, 3 - i, -2 + 2i, i

In Exercises 19–22, find the product of z1 and z2. Leave the answer in
trigonometric form.

19.

20.

21.

22.

In Exercises 23–26, find the trigonometric form of the quotient.

23. 24.

25. 26.

In Exercises 27–30, find the product and quotient in two
ways, (a) using the trigonometric form for z1 and z2 and (b) using the
standard form for z1 and z2.

27.

28.

29.

30.

In Exercises 31–38, use De Moivre’s Theorem to find the indicated
power of the complex number. Write your answer in standard form

and support with a calculator.a + bi

z1 = 2 - 3i  and  z2 = 1 - 13i

z1 = 3 + i  and  z2 = 5 - 3i

z1 = 1 - i  and  z2 = 13 + i

z1 = 3 - 2i  and  z2 = 1 + i

z1/z2z1
# z2

cos 1p/22 + i sin 1p/22
cos 1p/42 + i sin 1p/42

61cos 5p + i sin 5p2
31cos 2p + i sin 2p2

51cos 220° + i sin 220°2
21cos 115° + i sin 115°2

21cos 30° + i sin 30°2
31cos 60° + i sin 60°2

z1 = 13 acos 
3p

4
+ i sin 

3p

4
b   z2 =

1

3
 acos 

p

6
+ i sin 

p

6
b

z1 = 5acos 
p

4
+ i sin 

p

4
b   z2 = 3acos 

5p

3
+ i sin 

5p

3
b

z2 = 0.53cos 1-19°2 + i sin 1-19°24
z1 = 121cos 118° + i sin 118°2
z2 = 21cos 130° + i sin 130°2
z1 = 71cos 25° + i sin 25°2

y

x
30°

3
z

y

x
45°

4
z

31.

32. c3acos 
3p

2
+ i sin 

3p

2
b d5

acos 
p

4
+ i sin 

p

4
b3
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33.

34.

35.

36.

37. 38.

Use an algebraic method in Exercises 39–44 to find the cube roots of the
complex number. Approximate exact solution values when appropriate.

39. 40.

41. 42.

43. 44.

In Exercises 45–50, find the fifth roots of the complex number.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, find the nth roots of the complex number for the
specified value of n.

51. 52.

53. 54.

55. 56.

In Exercises 57–60, express the roots of unity in standard form .
Graph each root in the complex plane.

57. Cube roots of unity 58. Fourth roots of unity

59. Sixth roots of unity 60. Square roots of unity

61. Determine z and the three cube roots of z if one cube root of z
is 

62. Determine z and the four fourth roots of z if one fourth root of z
is 

63. Quotient Formula Let and
sin . Verify that

.

64. Group Activity nth Roots Show that the nth roots 
of the complex number are spaced 

radians apart on a circle with radius .

Standardized Test Questions
65. True or False The trigonometric form of a complex

number is unique. Justify your answer.

66. True or False The complex number i is a cube root of
Justify your answer.- i.

1n r

2p/nr1cos u + i sin u2
z1/z2 = r1/r2 3cos (u1 - u22 + i sin (u1 - u224

u22, r2 Z 0z2 = r21cos u2 + i
z1 = r11cos u1 + i sin u12

-2 - 2i.

1 + 13i.

a + bi

32,  n = 5-2i,  n = 6

-2 + 2i,  n = 42 + 2i,  n = 3

1 - i,  n = 61 + i,  n = 4

1 + 13 i2i

2acos 
p

4
+ i sin 

p

4
b2acos 

p

6
+ i sin 

p

6
b

32acos 
p

2
+ i sin 

p

2
bcos p + i sin p

-2 + 2i3 - 4i

27acos 
11p

6
+ i sin 

11p

6
b3acos 

4p

3
+ i sin 

4p

3
b

2acos 
p

4
+ i sin 

p

4
b21cos 2p + i sin 2p2

a1

2
+ i 

13

2
b311 - 13i23

13 + 4i220

11 + i25
c6acos 

5p

6
+ i sin 

5p

6
b d4

c2acos 
3p

4
+ i sin 

3p

4
b d3 In Exercises 67–70, do not use technology to solve the problem.

67. Multiple Choice Which of the following is a trigono-
metric form of the complex number 

(A) (B)

(C) (D)

(E)

68. Multiple Choice Which of the following is the number
of distinct complex number solutions of 

(A) 0 (B) 1 (C) 3 (D) 4 (E) 5

69. Multiple Choice Which of the following is the standard
form for the product

of 

(A) 2 (B) (C) (D) (E) 

70. Multiple Choice Which of the following is not a fourth
root of 1?

(A) (B) (C) (D) (E) 

Explorations
71. Complex Conjugates The complex conjugate of

is . Let .

(a) Prove that .

(b) Use the trigonometric form to find .

(c) Use the trigonometric form to find 

(d) Prove that 

72. Modulus of Complex Numbers Let
.

(a) Prove that 

(b) Use the trigonometric form for the complex numbers z1
and z2 to prove that 

Extending the Ideas
73. Using Polar Form on a Graphing Calculator

The complex number can be entered in polar
form on some graphing calculators as .

(a) Support the result of Example 3 by entering the complex
numbers z1 and z2 in polar form on your graphing 
calculator and computing the product with your graphing
calculator.

(b) Support the result of Example 4 by entering the complex
numbers z1 and z2 in polar form on your graphing 
calculator and computing the quotient with your graphing
calculator.

(c) Support the result of Example 5 by entering the complex
number in polar form on your graphing calculator and
computing the power with your graphing calculator.

reiu
r1cos u + i sin u2

ƒz1
# z2 ƒ = ƒz1 ƒ

#
ƒz2 ƒ .

ƒz ƒ = ƒr ƒ .

z = r1cos u + i sin u2
-z = r 3cos 1u + p2 + i sin 1u + p24.

z/ z, if z Z 0.

z # z

z = r 3cos 1-u2 + i sin 1-u24
z = r 1cos u + i sin u2z = a - biz = a + bi

1i- 1-11-1- i2i2

1 - i-1 + i-2i-2

12 acos 
p

4
+ i sin 

p

4
b  and 12 acos 

7p

4
+ i sin 

7p

4
b?

z5
= 1 + i ?

2acos 
7p

3
+ i sin 

7p

3
b

2acos 
5p

3
+ i sin 

5p

3
b2acos 

4p

3
+ i sin 

4p

3
b

2acos 
2p

3
+ i sin 

2p

3
b2acos 

p

3
+ i sin 

p

3
b

-1 + 13i?
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74. Visualizing Roots of Unity Set your graphing calcu-
lator in parametric mode with Tstep ,
Xmin , Xmax 2.4, Ymin 1.6, and Ymax 1.6.

(a) Let and . Use
TRACE to visualize the eight eighth roots of unity. We say
that generates the eighth roots of unity. (Try both dot
mode and connected mode.)

(b) Replace in part (a) by the arguments of other eighth
roots of unity. Do any others generate the eighth roots of
unity?

(c) Repeat parts (a) and (b) for the fifth, sixth, and seventh
roots of unity, using appropriate functions for x and y.

(d) What would you conjecture about an nth root of unity that
generates all the nth roots of unity in the sense of part (a)?

75. Parametric Graphing Write parametric equations that 
represent for Draw and label an accurate
spiral representing for .n = 0, 1, 2, 3, 4112 + i2n

n = t.112 + i2n

2p/8

2p/8

y = sin 112p/82t2x = cos 112p/82t2
== -== -2.4

= 10 … T … 8,
76. Parametric Graphing Write parametric equations

that represent . Draw and label an accurate
spiral representing for .

77. Explain why the triangles formed 
by 0, 1, and z1, and by 0, z2, and 
z1z2 shown in the figure are similar 
triangles.

78. Compass and Straightedge 
Construction Using only a 
compass and straightedge, 
construct the location of z1z2 given 
the location of 0, 1, z1, and z2.

In Exercises 79–84, find all solutions of the equation (real and complex).

79. 80.

81. 82.

83. 84. x5
- 1 = 0x5

+ 1 = 0

x4
+ 1 = 0x3

+ 1 = 0

x4
- 1 = 0x3

- 1 = 0

n = 0, 1, 2, 3, 41-1 + i2n
1-1 + i2n for n = t

CHAPTER 6 Key Ideas 513

y

x
10

z1

z2

z1z2

CHAPTER 6 Key Ideas

Properties, Theorems, and Formulas
Component Form of a Vector 456
The Magnitude or Length of a Vector 458
Vector Addition and Scalar Multiplication 458
Unit Vector in the Direction of the Vector v 459
Dot Product of Two Vectors 467
Properties of the Dot Product 467
Theorem Angle Between Two Vectors 468
Projection of the Vector u onto the Vector v 470

Procedures
Head Minus Tail Rule for Vectors 457
Resolving a Vector 460

Work 471
Coordinate Conversion Equations 488
Symmetry Tests for Polar Graphs 494
The Complex Plane 503
Modulus or Absolute Value of a Complex 
Number 504
Trigonometric Form of a Complex Number 504
De Moivre’s Theorem 507

Product and Quotient of Complex Numbers 505
nth Root of a Complex Number 508

Gallery of Functions
Rose Curves: r a cos n and r a sin n

r 4 sin 3 r 3 sin 4
Limaçon Curves: r a b sin and r a b cos with a 0 and b 0

Limaçon with an inner loop: 1 Cardioid: 1
a
b

=

a
b

6

77u�=u�=

u=u=

u=u=

[–6,6] by [–4, 4] [–4.7, 4.7] by [–3.1, 3.1]
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Dimpled limaçon: 1 2 Convex limaçon: 2

Spiral of Archimedes: Lemniscate Curves: r2 a2 sin 2 and r2 a2 cos 2

r , 0 45 r2 4 cos 2u=… u …u=

u=u=

a
b

Ú6

a
b

6

[–30, 30] by [–20, 20] [–4.7, 4.7] by [–3.1, 3.1]

CHAPTER 6 Review Exercises

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–6, let , , 4, , and 1, be
vectors. Find the indicated expression.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, let , , , and
. Find the component form and magnitude of the vector.

7. 8.

9. 10.

In Exercises 11 and 12, find (a) a unit vector in the direction of 
and (b) a vector of magnitude 3 in the opposite direction.

11.

12.

In Exercises 13 and 14, find (a) the direction angles of u and v and
(b) the angle between u and v.

13. , 14. , 

Use an algebraic method in Exercises 15–18 to convert the polar 
coordinates to rectangular coordinates. Approximate exact values
with a calculator when appropriate.

15.

16. 1-3.1, 135°2
1-2.5, 25°2

v = 86, 49u = 8-2, 49v = 82, 59u = 84, 39

A = 13, 12, B = 15, 12
A = 14, 02, B = 12, 12

AB
!

CD
!

+ AB
!

AC
!

+ BD
!

AB
!

+ CD
!

3AB
!

D = 11, -52
C = 1-4, 22B = 13, 12A = 12, -12

u # wu # v

ƒw - 2u ƒƒu + v ƒ

2u - 3wu - v

-39w = 829v = 8-19u = 82

17.

18.

In Exercises 19 and 20, polar coordinates of point P are given. Find 
all of its polar coordinates.

19. 20.

Use an algebraic method in Exercises 21–24 to find the polar coordi-
nates of the given rectangular coordinates of point P that satisfy the
stated conditions. Approximate exact values with a calculator when 
appropriate.

(a) (b) (c)

21. 22.

23. 24.

In Exercises 25–30, eliminate the parameter t and identify the graph.
Support your answer with a grapher.

25.

26.

27.

28.

29.

30.

In Exercises 31 and 32, find a parametrization for the curve.

31. The line through the points and 

32. The line segment with endpoints and 15, 121-2, 32
13, 421-1, -22

x = t 3, y = ln t, t 7 0

x = e2t
- 1, y = et

x = 3 cos t, y = 3 sin t

x = 2t 2
+ 3, y = t - 1

x = 4 + t, y = -8 - 5t, -3 … t … 5

x = 3 - 5t, y = 4 + 3t

P = 10, -22P = 15, 02
P = 1-10, 02P = 12, -32

0 … u … 4p-p … u … p0 … u … 2p

P = 1-2, 5p/62P = 1-1, -2p/32

13.6, 3p/42
12, -p/42
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Exercises 33 and 34 refer to the complex number z1 shown in the 
figure.

33. If , find a, b, and 

34. Find the trigonometric form of .

In Exercises 35–38, write the complex number in standard form.

35. 36.

37. 38.

Use an algebraic method in Exercises 39–42 to find the trigonometric
form with for the given complex number. Then write
three other possible trigonometric forms for the number. Approximate
exact values with a calculator when appropriate.

39. 40.

41. 42.

In Exercises 43 and 44, write the complex numbers and in
trigonometric form.

43.

44.

In Exercises 45–48, use De Moivre’s Theorem to find the indicated
power of the complex number. Write your answer in (a) trigonometric
form and (b) standard form.

45.

46.

47.

48.

In Exercises 49–52, find and graph the nth roots of the complex number
for the specified value of n.

49. 50.

51. 52.

In Exercises 53–60, decide whether the graph of the given polar equa-
tion appears among the four graphs shown.

-1,  n = 61,  n = 5

8,  n = 33 + 3i,  n = 4

c7acos 
p

24
+ i sin 

p

24
b d6

c5acos 
5p

3
+ i sin 

5p

3
b d3

c2acos 
p

12
+ i sin 

p

12
b d8

c3acos 
p

4
+ i sin 

p

4
b d5

z1 = 51cos 20° +  i sin 20°2 and z2 = -21cos 45° +  i sin 45°2
z1 = 31cos 30° + i sin 30°) and z2 = 41cos 60° + i sin 60°2

z1/z2z1
# z2

-2 - 2i3 - 5i

-1 + i123 - 3i

0 … u 6 2p

41cos 2.5 + i sin 2.522.5acos 
4p

3
+ i sin 

4p

3
b

31cos 150° + i sin 150°261cos 30° + i sin 30°2

z1

ƒz1 ƒ .z1 = a + bi 53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61–64, convert the polar equation to rectangular form and
identify the graph.

61. 62.

63. 64.

In Exercises 65–68, convert the rectangular equation to polar form.
Graph the polar equation.

65. 66.

67.

68.

In Exercises 69–72, analyze the graph of the polar curve.

69. 70.

71. 72.

73. Graphing Lines Using Polar Equations

(a) Explain why is a polar form for the line .

(b) Explain why is a polar form for the line .

(c) Let Prove that

is a polar form for the line. What is the domain of r?

(d) Illustrate the result in part (c) by graphing the line
using the polar form from part (c).

74. Flight Engineering An airplane is flying on a bearing
of 80° at 540 mph. A wind is blowing with the bearing 100°
at 55 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual speed and direction of the airplane.

75. Flight Engineering An airplane is flying on a bearing
of 285° at 480 mph. A wind is blowing with the bearing 265°
at 30 mph.

(a) Find the component form of the velocity of the airplane.

(b) Find the actual speed and direction of the airplane.

y = 2x + 3

r =

b

sin u - m cos u

y = mx + b.

y = br = b csc u

x = ar = a sec u

r 2
= 2 sin 2u, 0 … u … 2pr = 2 sin 3u

r = 4 - 4 cos ur = 2 - 5 sin u

2x - 3y = 4

1x - 322 + 1y + 122 = 10

x = 5y = -4

r = 3 sec ur = -3 cos u - 2 sin u

r = -2 sin ur = -2

r = 3 - 2 tan ur = 3 cos 5u

r = 1 - 2 cos ur = 2 - 2 sin u

r = 3 ƒsin 3u ƒr = 2 + 2 sin u

r = 2 + sin ur = 3 sin 4 u

CHAPTER 6 Review Exercises 515

4

Imaginary axis

Real
axis–3

z1

(a) (b)

(c) (d)
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76. Combining Forces A force of 120 lb acts on an object
at an angle of 20°. A second force of 300 lb acts on the object
at an angle of . Find the direction and magnitude of the 
resultant force. 

77. Braking Force A 3000-pound car is parked on a street
that makes an angle of 16° with the horizontal (see figure).

(a) Find the force required to keep the car from rolling down
the hill. 

(b) Find the component of the force perpendicular to the street.

78. Work Find the work done by a force F of 36 pounds acting
in the direction given by the vector in moving an object
10 feet from (0, 0) to (10, 0).

79. Height of an Arrow Stewart shoots an arrow straight
up from the top of a building with initial velocity of 245 ft/sec.
The arrow leaves from a point 200 ft above level ground.

(a) Write an equation that models the height of the arrow as a
function of time t. 

(b) Use parametric equations to simulate the height of the arrow.

(c) Use parametric equations to graph height against time.

(d) How high is the arrow after 4 sec?

(e) What is the maximum height of the arrow? When does it
reach its maximum height? 

(f ) How long will it be before the arrow hits the ground?

80. Ferris Wheel Problem Lucinda is on a Ferris wheel
of radius 35 ft that turns at the rate of one revolution every 
20 sec. The lowest point of the Ferris wheel (6 o’clock) is 15 ft
above ground level at the point (0, 15) of a rectangular coordi-
nate system. Find parametric equations for the position of 
Lucinda as a function of time t in seconds if Lucinda starts

at the point (35, 50).

81. Ferris Wheel Problem The lowest point of a Ferris
wheel (6 o’clock) of radius 40 ft is 10 ft above the ground, and
the center is on the y-axis. Find parametric equations for
Henry’s position as a function of time t in seconds if his starting
position is the point (0, 10) and the wheel turns at the
rate of one revolution every 15 sec.

82. Ferris Wheel Problem Sarah rides the Ferris wheel
described in Exercise 81. Find parametric equations for Sarah’s
position as a function of time t in seconds if her starting posi-
tion is the point (0, 90) and the wheel turns at the rate
of one revolution every 18 sec.

83. Epicycloid The graph of the parametric equations

is an epicycloid. The graph is the path of a point P on a circle
of radius 1 rolling along the outside of a circle of radius 3, as
suggested in the figure.

x = 4 cos t - cos 4t,  y = 4 sin t - sin 4t

1t = 02

1t = 02

1t = 02

83, 59

-5°

(a) Graph simultaneously this epicycloid and the circle of 
radius 3.

(b) Suppose the large circle has a radius of 4. Experiment! How
do you think the equations in part (a) should be changed to
obtain defining equations? What do you think the epicycloid
would look like in this case? Check your guesses.

84. Throwing a Baseball Sharon releases a baseball 4 ft
above the ground with an initial velocity of 66 ft/sec at an an-
gle of 5° with the horizontal. How many seconds after the ball
is thrown will it hit the ground? How far from Sharon will the
ball be when it hits the ground?

85. Throwing a Baseball Diego releases a baseball 3.5 ft
above the ground with an initial velocity of 66 ft/sec at an an-
gle of 12° with the horizontal. How many seconds after the ball
is thrown will it hit the ground? How far from Diego will the
ball be when it hits the ground?

86. Field Goal Kicking Spencer practices kicking field
goals 40 yd from a goal post with a crossbar 10 ft high. If he
kicks the ball with an initial velocity of 70 ft/sec at a 45° angle
with the horizontal (see figure), will Spencer make the field
goal if the kick sails “true”?

87. Hang Time An NFL place-kicker kicks a football down-
field with an initial velocity of 85 ft/sec. The ball leaves his
foot at the 15 yard line at an angle of 56° with the horizontal.
Determine the following:

(a) The ball’s maximum height above the field.

(b) The “hang time” (the total time the football is in the air).

88. Baseball Hitting Brian hits a baseball straight toward a
15-ft-high fence that is 400 ft from home plate. The ball is hit
when it is 2.5 ft above the ground and leaves the bat at an angle
of 30° with the horizontal. Find the initial velocity needed for
the ball to clear the fence.
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89. Throwing a Ball at a Ferris Wheel A 60-ft-radius
Ferris wheel turns counterclockwise one revolution every 12
sec. Sam stands at a point 80 ft to the left of the bottom 
(6 o’clock) of the wheel. At the instant Kathy is at 3 o’clock,
Sam throws a ball with an initial velocity of 100 ft/sec and an
angle with the horizontal of 70°. He releases the ball from the
same height as the bottom of the Ferris wheel. Find the mini-
mum distance between the ball and Kathy.

90. Yard Darts Gretta and Lois are launching yard darts 20 ft
from the front edge of a circular target of radius 18 in. If Gretta
releases the dart 5 ft above the ground with an initial velocity
of 20 ft/sec and at a 50° angle with the horizontal, will the dart
hit the target?

CHAPTER 6 Review Exercises 517

CHAPTER 6 Project

Parametrizing Ellipses
As you discovered in the Chapter 4 Data Project, it is possible
to model the displacement of a swinging pendulum using a 
sinusoidal equation of the form

where x represents the pendulum’s distance from a fixed point
and t represents total elapsed time. In fact, a pendulum’s 
velocity behaves sinusoidally as well: ,
where y represents the pendulum’s velocity and a, b, and c are
constants common to both the displacement and velocity
equations.

Use a motion detection device to collect distance, velocity,
and time data for a pendulum, then determine how a resulting

plot of velocity versus displacement (called a phase-space
plot) can be modeled using parametric equations.

Collecting the Data
Construct a simple pendulum by fastening about 1 meter of
string to the end of a ball. Collect time, distance, and velocity
readings for between 2 and 4 seconds (enough time to capture
at least one complete swing of the pendulum). Start the pen-
dulum swinging in front of the detector, then activate the sys-
tem. The data table below shows a sample set of data col-
lected as a pendulum swung back and forth in front of a CBR
where t is total elapsed time in seconds, distance from
the CBR in meters, velocity in meters/second.v =

d =

y = ab cos 1b1t - c22

x = a sin 1b1t - c22 + d

t d v t d v t d v

0 1.021 0.325 0.7 0.621 0.869 1.4 0.687 0.966
0.1 1.038 0.013 0.8 0.544 0.654 1.5 0.785 1.013
0.2 1.023 0.309 0.9 0.493 0.359 1.6 0.880 0.826
0.3 0.977 0.598 1.0 0.473 0.044 1.7 0.954 0.678
0.4 0.903 0.819 1.1 0.484 0.263 1.8 1.008 0.378
0.5 0.815 0.996 1.2 0.526 0.573 1.9 1.030 0.049
0.6 0.715 0.979 1.3 0.596 0.822 2.0 1.020 –0.260-

-

-

--

--

-

-

Explorations
1. Create a scatter plot for the data you collected or the data

above.

2. With your calculator/computer in function mode, find 
values for a, b, c, and d so that the equation

(where y is distance and x is
time) fits the distance versus time data plot.

3. Make a scatter plot of velocity versus time. Using the
same a, b, and c values you found in (2), verify that the
equation (where y is velocity and
x is time) fits the velocity versus time data plot.

y = ab cos 1b1x - c22

y = a sin 1b1x - c22 + d

4. What do you think a plot of velocity versus distance (with
velocity on the vertical axis and distance on the horizontal
axis) would look like? Make a rough sketch of your 
prediction, then create a scatter plot of velocity versus 
distance. How well did your predicted graph match the 
actual data plot?

5. With your calculator/computer in parametric mode, graph
the parametric curve 

where x represents dis-
tance, y represents velocity, and t is the time parameter.
How well does this curve match the scatter plot of velocity
versus time?

ab cos 1b1t - c22, 0 … t … 2,
x = a sin 1b1t - c22 + d, y =
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Explorations
1. Create a scatter plot for the data you collected or the data

above.

2. With your calculator/computer in function mode, find 
values for a, b, c, and d so that the equation

(where y is distance and x is
time) fits the distance versus time data plot.

3. Make a scatter plot of velocity versus time. Using the
same a, b, and c values you found in (2), verify that the
equation (where y is velocity and
x is time) fits the velocity versus time data plot.

y = ab cos 1b1x - c22

y = a sin 1b1x - c22 + d

4. What do you think a plot of velocity versus distance (with
velocity on the vertical axis and distance on the horizontal
axis) would look like? Make a rough sketch of your 
prediction, then create a scatter plot of velocity versus 
distance. How well did your predicted graph match the 
actual data plot?

5. With your calculator/computer in parametric mode, graph
the parametric curve 

where x represents dis-
tance, y represents velocity, and t is the time parameter.
How well does this curve match the scatter plot of velocity
versus time?

ab cos 1b1t - c22, 0 … t … 2,
x = a sin 1b1t - c22 + d, y =
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519

Systems and Matrices

Scientists studying hemoglobin molecules, as represented in the photo,
can make new discoveries by viewing the image on a computer. To see all
the details, they may need to move the image up or down (translation),
turn it around (rotation), or change the size (scaling). In computer graph-
ics these operations are performed using matrix operations. See a related
problem involving scaling a triangle on page 539.

7.1 Solving Systems of 
Two Equations

7.2 Matrix Algebra

7.3 Multivariate Linear Systems
and Row Operations

7.4 Partial Fractions

7.5 Systems of Inequalities 
in Two Variables

CHAPTER 7
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Chapter 7 Overview
Many applications of mathematics in science, engineering, business, and other areas in-
volve the use of systems of equations or inequalities in two or more variables as models
for the corresponding problems. We investigate several techniques commonly used to
solve such systems; and we investigate matrices, which play a central role in several of
these techniques. The information age has made the use of matrices widespread because
of their use in handling vast amounts of data.

We decompose a rational function into a sum of simpler rational functions using the
method of partial fractions. This technique can be used to analyze a rational function,
and is used in calculus to integrate rational functions analytically. Finally, we introduce
linear programming, a method used to solve problems concerned with decision making
in management science.

520 CHAPTER 7 Systems and Matrices

7.1 Solving Systems 
of Two Equations

What you’ll learn about
• The Method of Substitution
• Solving Systems Graphically
• The Method of Elimination
• Applications

... and why
Many applications in business
and science can be modeled 
using systems of equations.

EXAMPLE 1  Using the Substitution Method
Solve the system

SOLUTION

Solve Algebraically Solving the first equation for y yields Then sub-
stitute the expression for y into the second equation.

Second equation

Replace y by .

Distributive property

Collect like terms.

Divide by 7.

Use .y = 2x - 10 y = -4

 x = 3

 7x = 21

 3x + 4x - 20 = 1

2x - 10 3x + 212x - 102 = 1

 3x + 2y = 1

y = 2x - 10.

 3x + 2y = 1.

 2x - y = 10

The Method of Substitution
Here is an example of a system of two linear equations in the two variables x and y:

A solution of a system of two equations in two variables is an ordered pair of real
numbers that is a solution of each equation. For example, the ordered pair is a
solution to the above system. We can verify this by showing that is a solution
of each equation. Substituting and into each equation, we obtain

So, both equations are satisfied.

We have solved the system of equations when we have found all its solutions. In 
Example 1, we use the method of substitution to see that is the only solution of
this system.

13, -42

3x + 2y = 3132 + 21-42 = 9 - 8 = 1.

2x - y = 2132 - 1-42 = 6 + 4 = 10,

y = -4x = 3
13, -42 13, -42

 3x + 2y = 1

 2x - y = 10
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The method of substitution can sometimes be applied when the equations in the system
are not linear, as illustrated in Example 2.

SECTION 7.1 Solving Systems of Two Equations 521

[–5, 10] by [–20, 20]

Intersection
X=3 Y=–4

FIGURE 7.1 The two lines 
and intersect in the point

. (Example 1)13, -42
y = -1.5x + 0.5

y = 2x - 10

Support Graphically
The graph of each equation is a line. Figure 7.1 shows that the two lines intersect in
the single point .

Interpret
The solution of the system is , or the ordered pair .

Now try Exercise 5.
(3, -4)x = 3, y = -4

(3, -4)

y

x

FIGURE 7.2 The rectangular garden in
Example 2.

EXAMPLE 2  Solving a Nonlinear System by Substitution
Find the dimensions of a rectangular garden that has perimeter 100 ft and area

SOLUTION

Model
Let x and y be the lengths of adjacent sides of the garden (Figure 7.2). Then

Perimeter is 100.

Area is 300.

Solve Algebraically
Solving the first equation for y yields Then substitute the expression for
y into the second equation.

Second equation

Replace y by .

Distributive property

Quadratic formula

Evaluate.

Use .

Support Graphically Figure 7.3 shows that the graphs of and
have two points of intersections.

Interpret The two ordered pairs and 
produce the same rectangle whose dimensions are approximately 7 ft by 43 ft.

Now try Exercise 11.

143.027 Á , 6.972 Á 216.972 Á , 43.027 Á 2
y = 300/x

y = 50 - x

y = 50 - x y L 43.03 or    y L 6.97

 x L 6.97  or  x L 43.03

 x =

50 � 21-5022 - 413002
2

 x2
- 50x + 300 = 0

 50x - x2
= 300

50 - x x150 - x2 = 300

 xy = 300

y = 50 - x.

 xy = 300.

 2x + 2y = 100

300 ft2.

[0, 60] by [–20, 60]

Intersection
X=6.9722436   Y=43.027756

FIGURE 7.3 We can assume x 0 and y 0 because x and y are lengths. (Example 2)ÚÚ
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Solving Systems Graphically
Sometimes the method of substitution leads to an equation in one variable that we are
not able to solve using the standard algebraic techniques we have studied in this text. In
these cases we can solve the system graphically by finding intersections as illustrated in
Exploration 1.

522 CHAPTER 7 Systems and Matrices

EXAMPLE 3  Solving a Nonlinear System Algebraically
Solve the system

Support your solution graphically.

SOLUTION

Substituting the value of y from the first equation into the second equation yields

Zero factor property

Use .

The system of equations has three solutions: , , , and .

Support Graphically The graphs of the two equations in Figure 7.4 suggest that the
three solutions found algebraically are correct. Now try Exercise 13.

13, 9210, 02-921-3

y = 3x y = 0, y = 9, y = -9

 x = 0, x = 3, x = -3

 x1x - 321x + 32 = 0

 x3
- 9x = 0

 x3
- 6x = 3x

 y = 3x.

 y = x3
- 6x

Rounding at the End
In Example 2, we did not round the values found
for x until we computed the values for y. For the
sake of accuracy, do not round intermediate re-
sults. Carry all decimals on your calculator com-
putations and then round the final answer(s).

[–5, 5] by [–15, 15]

FIGURE 7.4 The graphs of 
and have three points of intersection.
(Example 3)

y = 3x
y = x3

- 6x

EXPLORATION 1 Solving a System Graphically

Consider the system:

1. Draw the graphs of the two equations in the by viewing 
window.

2. Use the graph in part 1 to find the coordinates of the points of intersection
shown in the viewing window.

3. Use your knowledge about the graphs of logarithmic and quadratic functions
to explain why this system has exactly two solutions.

3-5, 5430, 104
 y = x2

- 4x + 2

 y = ln x

Substituting the expression for y of the first equation of Exploration 1 into the second
equation yields

We have no standard algebraic technique to solve this equation.

The Method of Elimination
Consider a system of two linear equations in x and y. To solve by elimination, we
rewrite the two equations as two equivalent equations so that one of the variables has
opposite coefficients. Then we add the two equations to eliminate that variable.

ln x = x2
- 4x + 2.
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EXAMPLE 4  Using the Elimination Method
Solve the system

SOLUTION

Solve Algebraically Multiply the first equation by 3 and the second equation by 
2 to obtain

Then add the two equations to eliminate the variable x.

Next divide by 19 to solve for y.

Finally, substitute into either of the two original equations to determine that

The solution of the original system is . Now try Exercise 19.1-2, 32
x = -2.

y = 3

y = 3

19y = 57

 -6x + 10y = 42.

 6x + 9y = 15

 -3x + 5y = 21.

 2x + 3y = 5

EXAMPLE 5  Finding No Solution
Solve the system

SOLUTION We use the elimination method.

Solve Algebraically

Multiply first equation by .

Second equation

Add.

The last equation is true for no values of x and y. The system has no solution.

Support Graphically
Figure 7.5 suggests that the two lines that are the graphs of the two equations in the
system are parallel. Solving for y in each equation yields

The two lines have the same slope of 1/3 and are therefore parallel.
Now try Exercise 23.

 y =

1

3
 x -

2

3
.

 y =

1

3
 x +

2

3

 0 = 8

 2x - 6y = 4

-2 -2x + 6y = 4

 2x - 6y = 4.

 x - 3y = -2

[–4.7, 4.7] by [–3.1, 3.1]

FIGURE 7.5 The graph of the two lines in
Example 5 in this square viewing window 
appear to be parallel.

An easy way to determine the number of solutions of a system of two linear equations in
two variables is to look at the graphs of the two lines. There are three possibilities. The
two lines can intersect in a single point, producing exactly one solution as in Examples 1
and 4. The two lines can be parallel, producing no solution as in Example 5. The two
lines can be the same, producing infinitely many solutions as illustrated in Example 6.
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Applications
Table 7.1 shows the personal consumption expenditures (in billions of dollars) for den-
tists and health insurance in the United States for several years.

524 CHAPTER 7 Systems and Matrices

EXAMPLE 6  Finding Infinitely Many Solutions
Solve the system

SOLUTION

Multiply first equation by 3.

Second equation

Add.

The last equation is true for all values of x and y. Thus, every ordered pair that satis-
fies one equation satisfies the other equation. The system has infinitely many solu-
tions.

Another way to see that there are infinitely many solutions is to solve each equation
for y. Both equations yield

The two lines are the same. Now try Exercise 25.

y =

4

5
 x -

2

5
 .

 0 = 0

 -12x + 15y = -6

 12x - 15y = 6

 -12x + 15y = -6.

 4x - 5y = 2

Table 7.1 U.S. Personal Consumption Expenditures

Year Dentists (billions) Health Insurance (billions)

2001 66.8 89.4
2002 72.2 96.6
2003 74.6 112.8
2004 80.2 129.5
2005 85.0 141.3
2006 91.1 146.7
2007 95.8 153.2

Source: U.S. Department of Commerce Bureau of Economic Analysis, 
Table 2.5.5. Personal Consumption Expenditures by Type of Expenditure, 
Last Revised on August 6, 2008.

EXAMPLE 7  Estimating Personal Expenditures 
with Linear Models

(a) Find linear regression equations for the U.S. personal consumption expenditures
for dentists and health insurance in Table 7.1. Superimpose their graphs on a
scatter plot of the data.

(b) Use the models in part (a) to estimate when the U.S. personal consumption 
expenditures for dentists was the same as that for health insurance and the 
corresponding amount.

SOLUTION

(a) Let stand for 2000, for 2001, and so forth. We use a graphing cal-
culator to find linear regression equations for the amount of expenditures for
dentists, , and the amount of expenditures for health insurance, :

 yHI L 11.4321x + 78.4857

 yD L 4.8286x + 61.5

yHIyD

x = 1x = 0
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Suppliers will usually increase production, x, if they can get higher prices, p, for their
products. So, as one variable increases, the other also increases. Normal mathematical
practice would be to use p as the independent variable and x as the dependent variable.
However, most economists put x on the horizontal axis and p on the vertical axis. In
keeping with this practice, we write for a supply curve. On one hand, as the
price increases (vertical axis) so does the willingness for suppliers to increase produc-
tion x (horizontal axis).

On the other hand, the demand, x, for a product by consumers will decrease as the
price, p, goes up. So, as one variable increases, the other decreases. Again economists
put x (demand) on the horizontal axis and p (price) on the vertical axis, even though it
seems as though p should be the dependent variable. In keeping with this practice, we
write for a demand curve.

Finally, a point where the supply curve and demand curve intersect is an equilibrium
point. The corresponding price is the equilibrium price.

p = g1x2

p = ƒ1x2

SECTION 7.1 Solving Systems of Two Equations 525

Figure 7.6 shows the two regression equations together with a scatter plot of the two
sets of data.

(b) Figure 7.6 shows that the graphs of and intersect at approximately
. stands for 1997, so Figure 7.6 suggests that the per-

sonal consumption expenditures for dentists and for health insurance were both
about 49.08 billion sometime during 1997. Now try Exercise 45.

x = -349.0821-2.57,
yHIyD

[–5, 10] by [–25, 200]

FIGURE 7.6 The scatter plot and regres-
sion equations for the data in Table 7.1. 
Dentist , health insurance . 
(Example 7)

1+22n1

EXAMPLE 8  Determining the Equilibrium Price
Nibok Manufacturing has determined that production and price of a new tennis shoe
should be geared to the equilibrium point for this system of equations.

Demand curve

Supply curve

The price, p, is in dollars and the number of shoes, x, is in millions of pairs. Find the
equilibrium point.

SOLUTION

We use substitution to solve the system.

Substitute this value of x into the demand curve and solve for p.

The equilibrium point is . The equilibrium price is $135, the price for which
supply and demand will be equal at 5 million pairs of tennis shoes.

Now try Exercise 43.

15, 1352
 p = 160 - 5152 = 135

 p = 160 - 5x

 x = 5

 25x = 125

 160 - 5x = 35 + 20x

 p = 35 + 20x

 p = 160 - 5x
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QUICK REVIEW 7.1 (For help, go to Sections P.4 and P.5.)

8. Write an equation for the line through the point and
perpendicular to the line 

9. Write an equation equivalent to with coeffi-
cient of x equal to 

10. Find the points of intersection of the graphs of and
graphically.y = x3

- 6x
y = 3x

-4.
2x + 3y = 5

4x + 5y = 2.
1-1, 22In Exercises 1 and 2, solve for y in terms of x.

1. 2.

In Exercises 3–6, solve the equation algebraically.

3. 4.

5. 6.

7. Write an equation for the line through the point and
parallel to the line 4x + 5y = 2.

1-1, 22
x3

+ x2
= 6xx3

= 4x

2x2
+ 5x - 10 = 03x2

- x - 2 = 0

xy + x = 42x + 3y = 5

SECTION 7.1 EXERCISES
Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, determine whether the ordered pair is a solution
of the system.

1.

(a) (b)

(c) , 

2.

(a) (b)

(c)

In Exercises 3–12, solve the system by substitution.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
 x - y2

= 3y
 x = y + 3

 y - 9 = 0
 y = x2

 -9x + 3y = 6
 3x - y = -2

 -2x + 6y = 4
 x - 3y = 6

2x - 5y = -16
3x + 2y = -5

4x + 5y = 8
2x - 3y = -7

 x + y = 0
 2x - 3y = -23

x - 2y = 10
3x + y = 20

 x - y = 20
 x = 3

 y = -2
 x + 2y = 5

16, 52
11, -5212, -32

y = 2x - 7
y = x2

- 6x + 5

-921-2

12, 1210, 42
2x - 3y = 1
5x - 2y = 8

In Exercises 13–18, solve the system algebraically. Support your 
answer graphically.

13.

14.

15.

16.

17.

18.

In Exercises 19–26, solve the system by elimination.

19.

20.

21.

22.

23.

24.

25.

26.
 -4x + 2y = 5

 2x - y = 3

 -6x + 9y = -15
 2x - 3y = 5

 -x + 2y = -4
 2x - 4y = 8

 -3x + 6y = -21
 2x - 4y = -10

3x + 4y = 6
4x - 5y = -23

5x + 4y = 28
3x - 2y = 8

x - 2y = -5
2x + y = 10

 x + y = 6
 x - y = 10

 4x + 7y = 13
 x2

+ y2
= 16

 x - 3y = -1
 x2

+ y2
= 9

y = -x2
y = x3

+ x2

y = 2x2
y = x3

- x2

2x + y = 20
y = 2x2

+ x

7x + y = 3
y = 6x2
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In Exercises 27–30, use the graph to estimate any solutions of the sys-
tem. Confirm by substitution.

SECTION 7.1 Solving Systems of Two Equations 527

44.

45. Medical Research Expenditures Table 7.2 shows
expenditures (in billions of dollars) for public medical research
costs for several years. Let stand for 2000, stand
for 2001, and so forth.

(a) Find the quadratic regression equation and superimpose its
graph on a scatter plot of the data.

(b) Find the logistic regression equation and superimpose its
graph on a scatter plot of the data.

(c) When will the two models predict expenditures of 
42 billion dollars?

(d) Writing to Learn Explain the long-range implica-
tions of using the quadratic regression equation to predict
future expenditures.

(e) Writing to Learn Explain the long-range implica-
tions of using the logistic regression equation to predict fu-
ture expenditures.

x = 1x = 0

 p = 2 +

3

100
 x

 p = 15 -

7

100
 x

[–3, 5] by [–3, 3] [–3, 5] by [–3, 3]

[–5, 5] by [–3, 5] [–9.4, 9.4] by [–6.2, 6.2]

27. 28.
 2x + y = 4

 6x - 2y = 7

y = 1 - x
y = 1 + 2x - x2

29.
 0.5x + y = 2

 x + 2y = 0 30.
 y + 4 = x2

 x2
+ y2

= 16

In Exercises 31–34, use graphs to determine the number of solutions
for the system.

31.

32.

33.

34.

In Exercises 35–42, solve the system graphically. Support your answer
numerically using substitution and a calculator.

35.

36.

37.

38.

39.

40.

41.

42.

In Exercises 43 and 44, find the equilibrium point for the given demand
and supply curve.

43.
 p = 50 + 25x
 p = 200 - 15x

y = 2 - x2
x2

+ y2
= 9

y = x2
- 2

x2
+ y2

= 9

x - 2y = 2
x2

+ y2
= 4

 x + 2y = 2
 x2

+ y2
= 4

1 = 2x - y
y = x2

- 3x - 5

4 = x - 2y
y = x3

- 4x

1 = 2x - y
y = 3 cos x

1 = 2x + y
y = ln x

3x + 4y = 1
x - 7y = 9

3x - 6y = 9
2x - 4y = 6

2x - 6y = 1
3x - 9y = 6

4x - 2y = -3
3x + 5y = 7

Source: U.S. Government Census Bureau, Table 125.
National Health Expenditures by Type: 1990 to 2006.

Table 7.2 National Public Expenditures
on Medical Research

Year Expenditures (billions)

2000 23.1
2001 26.0
2002 29.5
2003 32.2
2004 35.4
2005 36.9
2006 37.8

46. Personal Income Table 7.3 gives the total personal in-
come (in billions of dollars) for residents of the states of Iowa
and Nevada for several years. Let stand for 2000, 
stand for 2001, and so forth.

(a) Find the linear regression equation for the Iowa data and
superimpose its graph on a scatter plot of the Iowa data.

(b) Find the linear regression equation for the Nevada data and
superimpose its graph on a scatter plot of the Nevada data.

(c) When will Nevada’s personal income be about 14 billion
dollars greater than Iowa’s?

x = 1x = 0

Table 7.3 Total Personal Income

Year Iowa (billions) Nevada (billions)

2002 82.4 66.6
2006 97.2 96.5
2007 104.2 101.8
2008 110.1 104.9

Source: U.S. Total Personal Income by State, U.S.
Department of Commerce Bureau of Economic Analysis,
data released March 24, 2009.
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47. Population Table 7.4 gives the population in thousands
of the states of Florida and Indiana in selected years. 
Let stand for 1990, stand for 1991, and so forth.

(a) Find the linear regression equation for Florida’s data and
superimpose its graph on a scatter plot of Florida’s data.

(b) Find the linear regression equation for Indiana’s data and
superimpose its graph on a scatter plot of Indiana’s data.

(c) Using the models in parts (a) and (b), when were the popu-
lations of the two states about the same?

x = 1x = 0
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54. Nut Mixture A 5-lb nut mixture is worth $2.80 per
pound. The mixture contains peanuts worth $1.70 per pound
and cashews worth $4.55 per pound. How many pounds of
each type of nut are in the mixture?

55. Connecting Algebra and Functions Determine 
a and b so that the graph of contains the two
points and .

56. Connecting Algebra and Functions Determine 
a and b so that the graph of contains the two
points and , .

57. Rental Van Pedro has two plans to choose from to rent a van.

Company A: a flat fee of $40 plus 10 cents a mile.

Company B: a flat fee of $25 plus 15 cents a mile.

(a) How many miles can Pedro drive in order to be charged the
same amount by the two companies?

(b) Writing to Learn Give reasons why Pedro might
choose one plan over the other. Explain.

58. Salary Package Stephanie is offered two different
salary options to sell major household appliances.

Plan A: a $300 weekly salary plus 5% of her sales.

Plan B: a $600 weekly salary plus 1% of her sales.

(a) What must Stephanie’s sales be to earn the same amount
on the two plans?

(b) Writing to Learn Give reasons why Stephanie
might choose one plan over the other. Explain.

-621-412, -12
ax + by = 8

12, 621-1, 42
y = ax + b

Table 7.4 Population

Florida Indiana
Year (thousands) (thousands)

1990 12,938 5,544
2000 15,983 6,081
2002 16,668 6,151
2003 16,959 6,185
2004 17,343 6,219
2005 17,736 6,257
2006 18,058 6,303
2007 18,251 6,345

Source: U.S. Census Bureau, Current Population Reports,
P25-1106, “Table CO-EST2001-12-00—Time Series of
Intercensal State Population Estimates: April 1, 1990 to
April 1, 2000”; published April 11, 2002.

48. Group Activity Describe all possibilities for the number
of solutions to a system of two equations in two variables if the
graphs of the two equations are (a) a line and a circle, and 
(b) a circle and a parabola.

49. Garden Problem Find the dimensions of a rectangle
with a perimeter of 200 m and an area of 500 m2.

50. Cornfield Dimensions Find the dimensions of a rec-
tangular cornfield with a perimeter of 220 yd and an area of

51. Rowing Speed Hank can row a boat 1 mi upstream
(against the current) in 24 min. He can row the same distance
downstream in 13 min. If both the rowing speed and current
speed are constant, find Hank’s rowing speed and the speed of
the current.

52. Airplane Speed An airplane flying with the wind from
Los Angeles to New York City takes 3.75 hr. Flying against the
wind, the airplane takes 4.4 hr for the return trip. If the air dis-
tance between Los Angeles and New York is 2500 mi and the
airplane speed and wind speed are constant, find the airplane
speed and the wind speed.

53. Food Prices At Philip’s convenience store the total cost
of one medium and one large soda is $1.74. The large soda
costs $0.16 more than the medium soda. Find the cost of each
soda.

3000 yd2.

Standardized Test Questions
59. True or False Let a and b be real numbers. The follow-

ing system of equations can have exactly two solutions:

Justify your answer.

60. True or False If the resulting equation after using elimi-
nation correctly on a system of two linear equations in two
variables is , then the system has infinitely many solu-
tions. Justify your answer.

In Exercises 61–64, solve the problem without using a calculator.

61. Multiple Choice Which of the following is a solution of
the system 

(A) (B) (C)

(D) (E)

62. Multiple Choice Which of the following cannot be the
number of solutions of a system of two equations in two vari-
ables whose graphs are a circle and a parabola?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 5

16, 0213, 22
13, -221-1, 021-3, 12

x + 2y = -1?
2x - 3y = 12

7 = 0

3x - 4y = b
2x + 5y = a
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63. Multiple Choice Which of the following cannot be the
number of solutions of a system of two equations in two vari-
ables whose graphs are parabolas?

(A) 1 (B) 2 (C) 4

(D) 5 (E) Infinitely many

64. Multiple Choice Which of the following is the number
of solutions of a system of two linear equations in two vari-
ables if the resulting equation after using elimination correctly
is 

(A) 0 (B) 1 (C) 2

(D) 3 (E) Infinitely many

4 = 4?
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66. A Hyperbola and a Line Consider the system of
equations

(a) Solve the equation for y in terms of x to
determine the two implicit functions determined by the 
equation.

(b) Solve the system of equations graphically.

(c) Use substitution to confirm the solutions found in part (b).

Extending the Ideas
In Exercises 67 and 68, use the elimination method to solve the system
of equations.

67.

68.

In Exercises 69 and 70, is the demand curve. The total revenue if 
x units are sold is Find the number of units sold that gives the
maximum revenue.

69.

70. p = 80 - x2

p = 100 - 4x

R = px.
p1x2

x2
- y2

= 1
x2

+ y2
= 1

x2
+ y = 4

x2
- 2y = -6

x2/4 - y2/9 = 1

 x - y = 0.

 
x2

4
-

y2

9
= 1

Explorations
65. An Ellipse and a Line Consider the system of 

equations

(a) Solve the equation for y in terms of x to
determine the two implicit functions determined by the 
equation.

(b) Solve the system of equations graphically.

(c) Use substitution to confirm the solutions found in part (b).

x2/4 + y2/9 = 1

 x + y = 1.

 
x2

4
+

y2

9
= 1
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Each element, or entry, , of the matrix uses double subscript notation. The row sub-
script is the first subscript i, and the column subscript is j. The element is in the ith
row and jth column. In general, the order of an matrix is . If , the
matrix is a square matrix. Two matrices are equal matrices if they have the same or-
der and their corresponding elements are equal.

m = nm * nm : n
aij

aij
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7.2 Matrix Algebra

Matrices
A matrix is a rectangular array of numbers. Matrices provide an efficient way to solve
systems of linear equations and to record data. The tables of data presented in this
textbook are examples of matrices.

What you’ll learn about
• Matrices
• Matrix Addition and Subtraction
• Matrix Multiplication
• Identity and Inverse Matrices
• Determinant of a Square Matrix
• Applications

... and why
Matrix algebra provides a pow-
erful technique to manipulate
large data sets and solve the re-
lated problems that are modeled
by the matrices.

Historical Note
Methods used by the Chinese between 200 B.C.E.
and 100 B.C.E. to solve problems involving several
unknowns were similar to modern methods that
use matrices. Matrices were formally developed
in the 18th century by several mathematicians,
including Leibniz, Cauchy, and Gauss.

EXAMPLE 1  Determining the Order of a Matrix

(a) The matrix has order .

(b) The matrix has order .

(c) The matrix has order and is a square matrix.

Now try Exercise 1.

3 * 3C1 2 3

4 5 6

7 8 9

S

4 * 2D
1 -1

0 4

2 -1

3 2

T
2 * 3c1 -2 3

2 0 4
d

Matrix Addition and Subtraction
We add or subtract two matrices of the same order by adding or subtracting their corre-
sponding entries. Matrices of different orders cannot be added or subtracted.

DEFINITION Matrix
Let m and n be positive integers. An matrix (read “m by n matrix”) is a
rectangular array of m rows and n columns of real numbers.

We also use the shorthand notation for this matrix.3aij4

D
a11 a12 Á a1n

a21 a22 Á a2n

o o o

am1 am2 Á amn

T

m : n

DEFINITION Matrix Addition and Matrix Subtraction
Let and be matrices of order .

1. The sum is the matrix

2. The difference is the matrix

A - B = 3aij - bij4.
m * nA � B

A + B = 3aij + bij4.
m * nA � B

m * nB = 3bij4A = 3aij4
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When we work with matrices, real numbers are scalars. The product of the real number
k and the matrix is the matrix

The matrix is a scalar multiple of A.kA = 3kaij4
kA = 3kaij4.

m * nA = 3aij4m * n

SECTION 7.2 Matrix Algebra 531

EXAMPLE 2  Using Matrix Addition
Matrix A gives the mean SAT verbal scores for the six New England states over the
time period from 2001 to 2004. (Source: The College Board, World Almanac and
Book of Facts, 2005.) Matrix B gives the mean SAT mathematics scores for the same
4-year period. Express the mean combined scores for the New England states from
2001 to 2004 as a single matrix.

01 02 03 04 01 02 03 04

SOLUTION The combined scores can be obtained by adding the two matrices:

01 02 03 04

Now try Exercise 11.

A + B =

CT

ME

MA

NH

RI

VT

 F
1019 1018 1026 1030

1006 1005 1004 1006

1026 1028 1038 1041

1036 1038 1043 1043

1000 1007 1006 1005

1017 1022 1027 1028

V

A =

CT

ME

MA

NH

RI

VT

 F
509 509 512 515

506 503 503 505

511 512 516 518

520 519 522 522

501 504 502 503

511 512 515 516

V B =

CT

ME

MA

NH

RI

VT

 F
510 509 514 515

500 502 501 501

515 516 522 523

516 519 521 521

499 503 504 502

506 510 512 512

V

Power of Matrix Algebra
The result in Example 2 is fairly simple, but it is
significant that we found (essentially) 24 pieces
of information with a single mathematical opera-
tion. That is the power of matrix algebra.

EXAMPLE 3  Using Scalar Multiplication
A consumer advocacy group has computed the mean retail prices for brand name
products and generic products at three different stores in a major city. The prices are
shown in the matrix.

Brand Generic

The city has a combined sales tax of 7.25%. Construct a matrix showing the compar-
ative prices with sales tax included.

SOLUTION Multiply the original matrix by the scalar 1.0725 to add the sales tax
to every price.

Brand Generic

Now try Exercise 13.

1.0725 * C3.97 3.64

3.78 3.69

3.75 3.67

S L

Store A

Store B

Store C

 C4.26 3.90

4.05 3.96

4.02 3.94

S

Store A

Store B

Store C

 C3.97 3.64

3.78 3.69

3.75 3.67

S
3 * 2
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Matrices inherit many properties possessed by the real numbers. Let be any
matrix. The matrix consisting entirely of zeros is the zero matrix

because In other words, O is the additive identity for the set of all 
matrices. The matrix consisting of the additive inverses of the en-
tries of A is the additive inverse of A because We also write 
Just as with real numbers,

Thus, subtracting B from A is the same as adding the additive inverse of B to A.

A - B = 3aij - bij4 = 3aij + 1-bij24 = 3aij4 + 3-bij4 = A + 1-B2.
B = -A.A + B = O.

B = 3-aij4m * n
m * nA + O = A.

O = 304m * nm * n
A = 3aij4

532 CHAPTER 7 Systems and Matrices

EXPLORATION 1 Computing with Matrices

Let and be matrices with 

and for , 2 and .

1. Determine A and B.

2. Determine the additive inverse of A and verify that 
What is the order of ?

3. Determine .3A - 2B

304 A + 1-A2 = 304.-A

j = 1, 2i = 1bij = i2
+ j2

- 3

aij = 3i - j2 * 2B = 3bij4A = 3aij4

Matrix Multiplication
To form the product AB of two matrices, the number of columns of the matrix A on the
left must be equal to the number of rows of the matrix B on the right. In this case, any
row of A has the same number of entries as any column of B. Each entry of the product
is obtained by summing the products of the entries of a row of A by the corresponding
entries of a column of B.

The key to understanding how to form the product of any two matrices is to first con-
sider the product of a matrix with an matrix According
to the definition, is the matrix where 

For example, the product AB of the matrix A and the matrix B,
where

is

Then, the ij-entry of the product AB of an matrix with an matrix is the
product of the ith row of A, considered as a matrix, with the jth column of B,
considered as an matrix, as illustrated in Example 4.r * 1

1 * r
r * nm * r

A # B = 31 2 34 # C4

5

6

S = 31 # 4 + 2 # 5 + 3 # 64 = 3324.

A = 31 2 34 and B = C4

5

6

S ,

3 * 11 * 3a1rbr1.
c11 = a11b11 + a12b21 +

Á  +1 * 1AB = 3c114
B = 3bj14.r * 1A = 3a1j41 * r

DEFINITION Matrix Multiplication
Let be an matrix and an matrix. 
The product is the matrix where
cij = ai1b1j + ai2b2j +

Á
+ airbrj.

m * nAB = 3cij4
r * nB = 3bij4m * rA = 3aij4
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EXAMPLE 4  Finding the Product of Two Matrices
Find the product AB if possible, where

(a) and

(b) and

SOLUTION

(a) The number of columns of A is 3 and the number of rows of B is 3, so the prod-
uct AB is defined. The product is a matrix where

Thus, Figure 7.7 supports this computation.

(b) The number of columns of A is 3 and the number of rows of B is 2, so the prod-
uct AB is not defined. Now try Exercise 19.

AB = c -1 -6

2 2
d .

 c22 = 30 1 24 C -4

2

0

S = 0 # 1-42 + 1 # 2 + 2 # 0 = 2.

 c21 = 30 1 24 C1

0

1

S = 0 # 1 + 1 # 0 + 2 # 1 = 2,

 c12 = 32 1 -34 C -4

2

0

S = 2 # 1-42 + 1 # 2 + 1-3) # 0 = -6,

 c11 = 32 1 -34 C1

0

1

S = 2 # 1 + 1 # 0 + 1-32 # 1 = -1,

2 * 2AB = 3cij4

B = c3 -4

2 1
d .A = c2 1 -3

0 1 2
d

B = C1 -4

0 2

1 0

S .A = c2 1 -3

0 1 2
d

[A] [B]
[[–1  –6] 
[2  2  ]]

FIGURE 7.7 The matrix product AB of
Example 4. Notice that the grapher displays
the rows of the product as matrices.1 * 2

EXAMPLE 5  Using Matrix Multiplication
A florist makes three different cut flower arrangements for Mother’s Day (I, II, and III),
each involving roses, carnations, and lilies. Matrix A shows the number of each type
of flower used in each arrangement.

I II III

The florist can buy his flowers from two different wholesalers (W1 and W2), but
wants to give all his business to one or the other. The cost of the three flower types
from the two wholesalers is shown in matrix B.

W1 W2

Construct a matrix showing the cost of making each of the three flower arrangements
from flowers supplied by the two different wholesalers.

(continued)

B =

Roses

Carnations

Lilies

 C1.50 1.35

0.95 1.00

1.30 1.35

S

A =

Roses

Carnations

Lilies

 C5 8 7

6 6 7

4 3 3

S
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Identity and Inverse Matrices
The matrix with 1’s on the main diagonal (upper left to lower right) and 0’s
elsewhere is the identity matrix of order

For example,

If is any matrix, we can prove (see Exercise 56) that

that is, is the multiplicative identity for the set of matrices.

If a is a nonzero real number, then is the multiplicative inverse of a, that is,
The definition of the multiplicative inverse of a square matrix is

similar.
aa-1

= a11/a2 = 1.
a-1

= 1/a

n * nIn

AIn = InA = A,

n * nA = 3aij4

I2 = c1 0

0 1
d , I3 = C1 0 0

0 1 0

0 0 1

S , and I4 = D
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

T .

In = E
1 0 0 Á 0

0 1 0 Á 0

0 0 1 Á 0

o o o o

0 0 0 Á 1

U .

n : n
Inn * n
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SOLUTION

We can use the labeling of the matrices to help us. We want the columns of A to match
up with the rows of B (since that’s how the matrix multiplication works). We therefore
switch the rows and columns of A to get the flowers along the columns. (The new ma-
trix is called the transpose of A, denoted by ) We then find the product :

Rose Carn Lily W1 W2 W1 W2

Figure 7.8 shows the product and supports our computation.
Now try Exercise 47.

ATB

I

II

III

 C5 6 4

8 6 3

7 7 3

S *

Rose

Carn

Lilly

 C1.50 1.35

0.95 1.00

1.30 1.35

S =

I

II

III

 C18.40 18.15

21.60 20.85

21.05 20.50

S

ATBAT.

[A]T[B]
[[ 18.4  18.15 ] 

[ 21.05 20.5   ]]
[ 21.6 20.85 ] 

FIGURE 7.8 The product for the ma-
trices A and B of Example 5.

ATB

We will see that not every square matrix (Example 7) has an inverse. If a square matrix
A has an inverse, then A is nonsingular. If A has no inverse, then A is singular.

DEFINITION Inverse of a Square Matrix
Let be an matrix. If there is a matrix B such that

then B is the inverse of A. We write (read “A inverse”).B = A-1

AB = BA = In,

n * nA = 3aij4
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Determinant of a Square Matrix
There is a simple test that determines if a matrix has an inverse.2 * 2

SECTION 7.2 Matrix Algebra 535

EXAMPLE 6  Verifying an Inverse Matrix
Prove that

are inverse matrices.

SOLUTION Figure 7.9 shows that Thus, and 
Now try Exercise 33.

A = B-1.B = A-1AB = BA = I2.

A = c 3 -2

-1 1
d and B = c1 2

1 3
d

[A] [B]

[B] [A]

[[ 1  0 ] 

[[ 1  0 ] 
[ 0  1 ]]

[ 0  1 ]]

FIGURE 7.9 Showing A and B are 
inverse matrices. (Example 6)

EXAMPLE 7  Showing a Matrix Has No Inverse

Prove that the matrix is singular, that is, A has no inverse.

SOLUTION Suppose A has an inverse Then, 

Using equality of matrices we obtain:

Multiplying both sides of the equation by 3 yields There
are no values for x and z for which the value of is both 0 and 1. Thus, A does
not have an inverse. Now try Exercise 37.

6x + 3z
6x + 3z = 0.2x + z = 0

 2x + z = 0  2y + w = 1

 6x + 3z = 1  6y + 3w = 0

 = c6x + 3z 6y + 3w

2x + z 2y + w
d = c1 0

0 1
d

 AB = c6 3

2 1
d cx y

z w
d = c1 0

0 1
d

AB = I2.B = cx y

z w
d .

A = c6 3

2 1
d

Inverse of a Matrix
If , then

ca b

c d
d-1

=

1

ad - bc
 c d -b

-c a
d .

ad - bc Z 0

2 * 2

In Exercise 55 we ask you to prove the theorem above. The number is the

determinant of the matrix and is denoted

To define the determinant of a higher-order square matrix, we need to introduce the
minors and cofactors associated with the entries of a square matrix. Let be an

matrix. The minor (short for “minor determinant”) corresponding to the ele-
ment is the determinant of the matrix obtained by deleting the 
row and column containing The cofactor corresponding to is Aij = 1-12i+ jMij.aijaij.

1n - 12 * 1n - 12aij

Mijn * n
A = 3aij4

det A = ` a b

c d
` = ad - bc.

A = ca b

c d
d2 * 2

ad - bc
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If is a matrix, then, using the definition of determinant applied to the
second row, we obtain

The determinant of a matrix involves three determinants of matrices, the
determinant of a matrix involves four determinants of matrices, and so
forth. This is a tedious definition to apply. Most of the time we use a grapher to evaluate
determinants in this textbook, as shown in the margin note.

3 * 34 * 4
2 * 23 * 3

- a231a11a32 - a12a312
= -a211a12a33 - a13a322 + a221a11a33 - a13a312

+ a231-125 ` a11 a12

a31 a32
`

= a211-123 ` a12 a13

a32 a33
` + a221-124 ` a11 a13

a31 a33
`

3 a11 a12 a13

a21 a22 a23

a31 a32 a33

3 = a21A21 + a22A22 + a23A23

3 * 3A = 3aij4
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DEFINITION Determinant of a Square Matrix
Let be a matrix of order . The determinant of A, 

denoted by det A or , is the sum of the entries in any row or any column 
multiplied by their respective cofactors. For example, expanding by the ith 
row gives

det A = ƒA ƒ = ai1Ai1 + ai2Ai2 +
Á

+ ainAin.

ƒA ƒ

1n 7 22n * nA = 3aij4

We can now state the condition under which square matrices have inverses.

THEOREM Inverses of Matrices
An matrix A has an inverse if and only if det A Z 0.n * n

n : n

There are complicated formulas for finding the inverses of nonsingular matrices of
order or higher. We will use a grapher instead of these formulas to find inverses
of square matrices.

3 * 3

Computing Determinants
We expect you to compute the determinant of a

matrix mentally, e.g., Example 8a:

Using a grapher for higher-dimension matrices is
appropriate, e.g., Example 8b:

det 1A2 = 3*2 - 1*4 = 6 - 4 = 2.
2 * 2

EXPLORATION 2 Investigating the Definition of Determinant

1. Complete the expansion of the determinant of the matrix 
started above. Explain why each term in the expansion contains an element
from each row and each column.

2. Use the first row of the matrix to expand the determinant and compare
to the expression in 1.

3. Prove that the determinant of a square matrix with a zero row or a zero column
is zero.

3 * 3

A = 3aij43 * 3
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We list five of the important properties of matrices, some of which you will be asked to
prove in the exercises.

SECTION 7.2 Matrix Algebra 537

EXAMPLE 8  Finding Inverse Matrices
Determine whether the matrix has an inverse. If so, find its inverse matrix.

(a) (b)

SOLUTION

(a) Since det , we conclude that A has an in-
verse. Using the formula for the inverse of a matrix, we obtain

You can check that 

(b) Figure 7.10 shows that det and

You can use your grapher to check that 
Now try Exercise 41.

B-1B = BB-1
= I3.

B-1
= C0.1 0.2 -0.5

0.5 0 0.5

0.1 0.2 0.5

S .

B = -10 Z 0

A-1A = A-1A = I2.

 = c 1 -0.5

-2 1.5
d

 A-1
=

1

ad - bc
 c d -b

-c a
d =

1

2
 c 2 -1

-4 3
d

2 * 2
A = ad - bc = 3 # 2 - 1 # 4 = 2 Z 0

B = C 1 2 -1

2 -1 3

-1 0 1

SA = c3 1

4 2
d

det([B])

[B]–1
–10

[[.1  .2  –.5] 

[.1  .2   .5]]
[.5  0   .5] 

FIGURE 7.10 The matrix B is nonsingu-
lar and so has an inverse. (Example 8b)

Properties of Matrices
Let A, B, and C be matrices whose orders are such that the following sums, dif-
ferences, and products are defined.

1. Commutative property
Addition:

Multiplication:
(Does not hold in general)

A + B = B + A

2. Associative property
Addition:

Multiplication:1AB2C = A1BC2
1A + B2 + C = A + 1B + C2

3. Identity property
Addition: 
Multiplication: order of 
A # In = In

# A = A
A = n * n

A + O = A
4. Inverse property

Addition: 
Multiplication: order of 
AA-1

= A-1A = In, ƒA ƒ Z 0
A = n * n

A + 1-A2 = O

5. Distributive property

Multiplication over addition

1A + B2C = AC + BC

A1B + C2 = AB + AC
Multiplication over subtraction

1A - B2C = AC - BC

A1B - C2 = AB - AC

Applications
Points in the Cartesian coordinate plane can be represented by matrices. For
example, the point can be represented by the matrix . We can
calculate the images of points acted upon by some of the transformations studied in
Section 1.5, using matrix multiplication as illustrated in Example 9.

32 -341 * 212, -32 1 * 2
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538 CHAPTER 7 Systems and Matrices

EXAMPLE 9  Reflecting with Respect to the x-Axis 
as Matrix Multiplication

Prove that the image of a point under a reflection across the x-axis can be obtained 

by multiplying by .

SOLUTION The image of the point under a reflection across the x-axis is
. The product

shows that the point (in matrix form ) is moved to the point (in
matrix form ). Now try Exercise 57.3x -y4 1x, -y23x y41x, y2

3x y4c1 0

0 -1
d = 3x -y4

1x, -y2 1x, y2
c1 0

0 -1
d

Figure 7.11 shows the xy-coordinate system rotated through the angle to obtain the 
-coordinate system. In Example 10, we see that the coordinates of a point in the 
-coordinate system can be obtained by multiplying the coordinates of the point in

the xy-coordinate system by an appropriate matrix. In Exercise 71, you will see
that the reverse is also true.

2 * 2
y¿x¿

y¿x¿

a

y

xα
θ

x ′

y′

P

r

FIGURE 7.11 Rotating the xy-coordinate
system through the angle to obtain the 

-coordinate system. (Example 10)y¿x¿

a

EXAMPLE 10  Rotating a Coordinate System
Prove that the , coordinates of P in Figure 7.11 are related to the coordi-
nates of P by the equations

Then, prove that the coordinates , can be obtained from the coordinates by
matrix multiplication. We use this result in Section 8.4 when we study conic sections.

SOLUTION Using the right triangle formed by P and the -coordinate system,
we obtain

Expanding the above expressions for and , using trigonometric identities for
and yields

It follows from the right triangle formed by P and the xy-coordinate system that
and Substituting these values for x and y into the above pair

of equations yields

which is what we were asked to prove. Finally, matrix multiplication shows that

Now try Exercise 71.

3x¿ y¿4 = 3x y4ccos a -sin a

sin a cos a
d .

 = -x sin a + y cos a,

 x¿ = x cos a + y sin a and y¿ = y cos a - x sin a

y = r sin u.x = r cos u

 y¿ = r sin u cos a - r cos u sin a.

 x¿ = r cos u cos a + r sin u sin a, and

sin 1u - a2,cos 1u - a2 y¿x¿

x¿ = r cos 1u - a2 and y¿ = r sin 1u - a2.
y¿x¿

1x, y2y¿21x¿

 y¿ = -x sin a + y cos a.

 x¿ = x cos a + y sin a

1x, y2y¿21x¿
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Chapter Opener Problem (from page 519)

Problem: If we have a triangle with vertices at and and we
want to double the lengths of the sides of the triangle, where would the vertices of
the enlarged triangle be?

Solution: Given a triangle with vertices at and as in 
Figure 7.12, we can find the vertices of a new triangle whose sides are twice as 
long by multiplying by the scale matrix.

For the point we have

For the point we have

And for the point we have

So the new triangle has vertices and as Figure 7.13 shows.14, 02,10, 02, 12, 22,
3x¿ y¿4 = 32 04c2 0

0 2
d = 34 04.

12, 02,
3x¿ y¿4 = 31 14c2 0

0 2
d = 32 24.

11, 12,
3x¿ y¿4 = 30 04c2 0

0 2
d = 30 04.

10, 02,
c2 0

0 2
d

12, 02,10, 02, 11, 12,

12, 02,10, 02, 11, 12,

1

1

2

3

4

2 3 4
x

y

(1, 1)
(2, 0)

(0, 0)

FIGURE 7.12

1

1

2

3

4

2 3 4
x

y

(2, 2)

(4, 0)

(0, 0)

FIGURE 7.13

QUICK REVIEW 7.2 (For help, go to Sections 1.5, 5.3, and 6.4.)

6.

In Exercises 7–10, expand the expression.

7. 8.

9. 10. cos 1a - b2cos 1a + b2
sin 1a - b2sin 1a + b2

In Exercises 1–4, the points (a) and (b) are reflected
across the given line. Find the coordinates of the reflected points.

1. The x-axis 2. The y-axis

3. The line 4. The line 

In Exercises 5 and 6, express the coordinates of P in terms of .

5.

u

y = -xy = x

1x, y213, -22

y

xθ

3

P(x, y)

y

xθ

r

P(x, y)
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SECTION 7.2 EXERCISES
Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–6, determine the order of the matrix. Indicate whether
the matrix is square.

1. 2. 3.

4. 5. 6.

In Exercises 7–10, identify the element specified for the following matrix.

7. 8. 9. 10.

In Exercises 11–16, find (a) , (b) , (c) 3A, and (d) .

11.

12.

13.

14.

15.

16. , and

In Exercises 17–22, use the definition of matrix multiplication to find
(a) AB and (b) BA. Support your answer with the matrix feature of your
grapher.

17.

18.

19.

20. A = c1 0 -2 3

2 1 4 -1
d , B = D

5 -1

0 2

-1 3

4 2

T

A = c2 0 1

1 4 -3
d , B = C 1 2

-3 1

0 -2

S
A = c1 -4

2 6
d , B = c 5 1

-2 -3
d

A = c 2 3

-1 5
d , B = c 1 -3

-2 -4
d

B = 31 2 -2 04A = 3-1 -2 0 34

A = C -2

1

0

S , B = C -1

0

4

S
A = c 5 -2 3 1

-1 0 2 2
d , B = c -2 3 1 0

4 0 -1 -2
d

A = C -3 1

0 -1

2 1

S , B = C 4 0

-2 1

-3 -1

S
A = C -1 0 2

4 1 -1

2 0 1

S , B = C 2 1 0

-1 0 2

4 -3 -1

S
A = c 2 3

-1 5
d , B = c 1 -3

-2 -4
d

2A - 3BA - BA + B

a33a32a24a13

C -2 0 3 4

3 1 5 -1

1 4 -1 3

S

304C 2

-1

0

S3-1 0 64

C 5 6

-1 2

0 0

Sc 1 3

-1 2
dc2 3 -1

1 0 5
d

21.

22.

In Exercises 23–28, find (a) AB and (b) BA, or state that the product is not
defined. Support your answer using the matrix feature of your grapher.

23.

24.

25.

26.

27.

28.

In Exercises 29–32, solve for a and b.

29.

30.

31.

32.

In Exercises 33 and 34, verify that the matrices are inverses of each
other.

33.

34. A = C -2 1 3

1 2 -2

0 1 -1

S , B = C0 1 -2

0.25 0.5 -0.25

0.25 0.5 -1.25

S
A = c2 1

3 4
d , B = c 0.8 -0.2

-0.6 0.4
d

ca + 3 2

0 5
d = c4 2

0 b - 1
d

C 2 a - 1

2 3

-1 2

S = C 2 -3

b + 2 3

-1 2

S
c1 -1 0

a -2 1
d = c1 b 0

3 -2 1
d

ca -3

4 2
d = c5 -3

4 b
d

A = D
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

T , B = D
-1 2 3 -4

2 1 0 -1

-3 2 1 3

4 0 2 -1

T

A = C0 0 1

0 1 0

1 0 0

S , B = C 1 2 1

2 0 1

-1 3 4

S

A = D
-1 3

0 1

1 0

-3 -1

T , B = c5 -6

2 3
d

A = c -1 2

3 4
d , B = 3-3 54

A = C -2

3

-4

S , B = 3-1 2 44

A = 32 -1 34, B = C -5

4

2

S

A = C -2 3 0

1 -2 4

3 2 1

S , B = C 4 -1 2

0 2 3

-1 3 -1

S
A = C -1 0 2

4 1 -1

2 0 1

S , B = C 2 1 0

-1 0 2

4 -3 -1

S
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In Exercises 35–40, find the inverse of the matrix if it has one, or state
that the inverse does not exist.

35. 36.

37. 38.

39.

40.

In Exercises 41 and 42, use the definition to evaluate the determinant of
the matrix.

41. 42.

In Exercises 43 and 44, solve for X.

43.

44.

45. Symmetric Matrix The matrix below gives the road
mileage between Atlanta (A), Baltimore (B), Cleveland (C),
and Denver (D). (Source: AAA Road Atlas)

(a) Writing to Learn Explain why the entry in the ith
row and jth column is the same as the entry in the jth row
and ith column. A matrix with this property is symmetric.

(b) Writing to Learn Why are the entries along the 
diagonal all 0’s?

A B C D

46. Production Jordan Manufacturing has two factories,
each of which manufactures three products. The number of
units of product i produced at factory j in one week is repre-
sented by in the matrix

If production levels are increased by 10%, write the new pro-
duction levels as a matrix B. How is B related to A?

47. Egg Production Happy Valley Farms produces three
types of eggs: 1 (large), 2 (X-large), 3 (jumbo). The number of
dozens of type i eggs sold to grocery store j is represented by

in the matrix.

A = C100 60

120 70

200 120

S .

aij

A = C120 70

150 110

80 160

S .

aij

A

B

C

D

 D
0 689 774 1406

689 0 371 1685

774 371 0 1340

1406 1685 1340 0

T

2X + A = B, where A = c -1 2

0 3
d  and B = c1 4

1 -1
d .

3X + A = B, where A = c1
3
d  and B = c4

2
d .

D
1 0 2 0

0 1 2 3

1 -1 0 2

1 0 0 3

TC 2 1 1

-1 0 2

1 3 -1

S

B = 3bij4, bij = ƒ i - j ƒ , 1 … i … 3, 1 … j … 3

A = 3aij4, aij = 1-12i+ j, 1 … i … 4, 1 … j … 4

C 2 3 -1

-1 0 4

0 1 1

SC1 2 -1

2 -1 3

3 1 2

S
c 6 3

10 5
dc2 3

2 2
d
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The per dozen price Happy Valley Farms charges for egg type i
is represented by in the matrix

(a) Find the product 

(b) Writing to Learn What does the matrix 
represent?

48. Inventory A company sells four models of one name
brand “all-in-one fax, printer, copier, and scanner machine” 
at three retail stores. The inventory at store i of model j is 
represented by in the matrix

The wholesale and retail prices of model i are represented by
and , respectively, in the matrix

(a) Determine the product SP.

(b) Writing to Learn What does the matrix SP
represent?

49. Profit A discount furniture store sells four types of 5-piece
bedroom sets. The price charged for a bedroom set of type j is
represented by in the matrix

The number of sets of type j sold in one period is represented
by in the matrix

The cost to the furniture store for a bedroom set of type j is
given by in the matrix

(a) Write a matrix product that gives the total revenue made
from the sale of the bedroom sets in the one period.

(b) Write an expression using matrices that gives the profit
produced by the sale of the bedroom sets in the one period.

50. Construction A building contractor has agreed to build
six ranch-style houses, seven Cape Cod-style houses, and 14
colonial-style houses. The number of units of raw materials
that go into each type of house are shown in the matrix

Steel Wood Glass Paint Labor

Assume that steel costs $1600 a unit, wood $900 a unit, glass
$500 a unit, paint $100 a unit, and labor $1000 a unit.

(a) Write a matrix B that represents the number of each
type of house to be built.

1 * 3

R =

Ranch

Cape Cod

Colonial

 C5 22 14 7 17

7 20 10 9 21

6 27 8 5 13

S .

C = 3$199 $268 $500 $6704.
c1j

B = 335 25 20 104.
b1j

A = 3$398 $598 $798 $9984.
a1j

P = D
$180 $269.99

$275 $399.99

$355 $499.99

$590 $799.99

T .

pi2pi1

S = C16 10 8 12

12 0 10 4

4 12 0 8

S .

sij

BTA

BTA.

B = C$0.80

$0.85

$1.00

S .

bi1
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(b) Write a matrix product that gives the number of units 
of each raw material needed to build the houses.

(c) Write a matrix C that represents the per unit cost of
each type of raw material.

(d) Write a matrix product that gives the cost of each house.

(e) Writing to Learn Compute the product BRC. What
does this matrix represent?

51. Rotating Coordinate Systems The xy-coordinate
system is rotated through the angle 30° to obtain the -
coordinate system.

(a) If the coordinates of a point in the xy-coordinate system are
, what are the coordinates of the rotated point in the

x y -coordinate system?

(b) If the coordinates of a point in the -coordinate system
are , what are the coordinates of the point in the 
xy-coordinate system that was rotated to it?

52. Group Activity Let A, B, and C be matrices whose 
orders are such that the following expressions are defined.
Prove that the following properties are true.

(a)

(b)

(c)

(d)

53. Group Activity Let A and B be matrices and 
c and d scalars. Prove that the following properties are true.

(a) (b)

(c) (d)

54. Writing to Learn Explain why the definition given for
the determinant of a square matrix agrees with the definition
given for the determinant of a matrix. (Assume that the
determinant of a matrix is the entry.)

55. Inverse of a Matrix Prove that the inverse of
the matrix

provided 

56. Identity Matrix Let be an matrix.
Prove that 

In Exercises 57–61, prove that the image of a point under the given
transformation of the plane can be obtained by matrix multiplication.

57. A reflection across the y-axis

58. A reflection across the line 

59. A reflection across the line 

60. A vertical stretch or shrink by a factor of a

61. A horizontal stretch or shrink by a factor of c

Standardized Test Questions
62. True or False Every square matrix has an inverse. 

Justify your answer.

63. True or False The determinant of the square matrix A
is greater than or equal to 0. Justify your answer.

ƒA ƒ

y = -x

y = x

AIn = In A = A.
n * nA = 3aij4

ad - bc Z 0.

A = ca b

c d
d is A-1

=

1

ad - bc
 c d -b

-c a
d

2 : 2

1 * 1
2 * 2

1 # A = Ac1dA2 = 1cd2A
1c + d2A = cA + dAc1A + B2 = cA + cB

m * n

1A - B2C = AC - BC

A1B + C2 = AB + AC

1A + B2 + C = A + 1B + C2
A + B = B + A

11, 12
y¿x¿

¿¿

11, 12

y¿x¿

5 * 1

542 CHAPTER 7 Systems and Matrices

In Exercises 64–67, solve the problem without using a calculator.

64. Multiple Choice Which of the following is equal to the

determinant of 

(A) 4 (B) (C) 10 (D) (E)

65. Multiple Choice Let A be a matrix of order and 
B a matrix of order . Which of the following gives the 
order of the product AB?

(A) (B) (C) (D)

(E) The product is not defined.

66. Multiple Choice Which of the following is the inverse 

of the matrix 

(A) (B) (C)

(D) (E)

67. Multiple Choice Which of the following is the value 

of in the matrix 

(A) (B) 7 (C) (D) 3 (E) 10

Explorations
68. Continuation of Exploration 2 Let be an

matrix.

(a) Prove that the determinant of A changes sign if two rows or
two columns are interchanged. Start with a matrix
and compare the expansion by expanding by the same row
(or column) before and after the interchange. [Hint: Com-
pare without expanding the minors.] How can you general-
ize from the case?

(b) Prove that the determinant of a square matrix with two
identical rows or two identical columns is zero.

(c) Prove that if a scalar multiple of a row (or column) is
added to another row (or column) the value of the determi-
nant of a square matrix is unchanged. [Hint: Expand by the
row (or column) being added to.]

69. Continuation of Exercise 68 Let be an
matrix.

(a) Prove that if every element of a row or column of a matrix
is multiplied by the real number c, then the determinant of
the matrix is multiplied by c.

(b) Prove that if all the entries above the main diagonal (or all
below it) of a matrix are zero, the determinant is the prod-
uct of the elements on the main diagonal.

70. Writing Equations for Lines Using Determi-
nants Consider the equation

3 1 x y

1 x1 y1

1 x2 y2

3 = 0.

n * n
A = 3aij4

3 * 3

3 * 3

n * n
A = 3aij4

-3-7

3aij4 = C1 2 3

4 5 6

7 8 9

S?a13

c 4 -7

-1 2
dc 4 -1

-7 2
d

c 2 -1

-7 4
dc 2 -7

-1 4
dc -4 7

1 -2
d

c2 7

1 4
d?

6 * 84 * 33 * 42 * 2

2 * 4
3 * 2

-14-10-4

A = c 2 4

-3 -1
d?
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(a) Verify that the equation is linear in x and y.

(b) Verify that the two points and , lie on the
line in part (a).

(c) Use a determinant to state that the point , lies on the
line in part (a).

(d) Use a determinant to state that the point , does not
lie on the line in part (a).

71. Continuation of Example 10 The xy-coordinate
system is rotated through the angle to obtain the 

-coordinate system (see Figure 7.11).

(a) Show that the inverse of the matrix

of Example 10 is

(b) Prove that the coordinates of P in Figure 7.11 are re-
lated to the , coordinates of P by the equations

 y = x¿ sin a + y¿ cos a.

 x = x¿ cos a - y¿ sin a

y¿21x¿

1x, y2
A-1

= c cos a sin a

-sin a cos a
d .

A = ccos a -sin a

sin a cos a
d

x¿y¿

a

y321x3

y321x3

y221x21x1, y12

SECTION 7.2 Matrix Algebra 543

(c) Prove that the coordinates can be obtained from the
, coordinates by matrix multiplication. How is this

matrix related to A?

Extending the Ideas
72. Characteristic Polynomial Let be a

matrix and define 

(a) Expand the determinant to show that is a polynomial
of degree 2. (The characteristic polynomial of A)

(b) How is the constant term of related to det A?

(c) How is the coefficient of x related to A?

(d) Prove that 

73. Characteristic Polynomial Let be a
matrix and define 

(a) Expand the determinant to show that is a polynomial
of degree 3. (The characteristic polynomial of A)

(b) How is the constant term of related to det A?

(c) How is the coefficient of related to A?

(d) Prove that ƒ1A2 = 0.

x2

ƒ1x2
ƒ1x2

ƒ1x2 = det 1xI3 - A2.3 * 3
A = 3aij4

ƒ1A2 = 0.

ƒ1x2
ƒ1x2

ƒ1x2 = det1xI2 - A2.2 * 2
A = 3aij4

y¿21x¿

1x, y2
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7.3 Multivariate Linear Systems 
and Row Operations

What you’ll learn about
• Triangular Form for Linear 

Systems
• Gaussian Elimination
• Elementary Row Operations 

and Row Echelon Form
• Reduced Row Echelon Form
• Solving Systems with Inverse 

Matrices
• Applications

... and why
Many applications in business
and science are modeled by 
systems of linear equations in
three or more variables.

Back Substitution
The method of solution used in Example 1 is
sometimes referred to as back substitution.

EXAMPLE 1  Solving by Substitution
Solve the system

SOLUTION The third equation determines z, namely Substitute the value
of z into the second equation to determine y.

Second equation

Substitute .

Finally, substitute the values for y and z into the first equation to determine x.

First equation

Substitute .

The solution of the system is , or the ordered triple .
Now try Exercise 1.

12, -1, 32x = 2, y = -1, z = 3

 x = 2

y = -1, z = 3 x - 21-12 + 3 = 7

 x - 2y + z = 7

 y = -1

z = 3 y - 2132 = -7

 y - 2z = -7

z = 3.

 z = 3.

 y - 2z = -7

 x - 2y + z = 7

Gaussian Elimination
Transforming a system to triangular form is Gaussian elimination, named after the
famous German mathematician Carl Friedrich Gauss (1777–1855). Here are the opera-
tions needed to transform a system of linear equations into triangular form.

Triangular Form for Linear Systems
The method of elimination used in Section 7.1 can be extended to systems of linear
(first-degree) equations in more than two variables. The goal of the elimination
method is to rewrite the system as an equivalent system of equations whose solution 
is obvious. Two systems of equations are equivalent if they have the same solution.

A triangular form of a system is an equivalent form from which the solution is easy to
read. Here is an example of a system in triangular form.

This convenient triangular form allows us to solve the system using substitution as 
illustrated in Example 1.

 z = 3

 y - 2z = -7

 x - 2y + z = 7
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Watch how we use property 3 to bring the system in Example 2 to triangular form.

SECTION 7.3 Multivariate Linear Systems and Row Operations 545

Equivalent Systems of Linear Equations
The following operations produce an equivalent system of linear equations.

1. Interchange any two equations of the system.

2. Multiply (or divide) one of the equations by any nonzero real number.

3. Add a multiple of one equation to any other equation in the system.

EXAMPLE 2  Using Gaussian Elimination
Solve the system

SOLUTION Each step in the following process leads to a system of equations
equivalent to the original system.

Multiply the first equation by and add the result to the second equation, replacing
the second equation. (Leave the first and third equations unchanged.)

Multiply the first equation by and add the result to the third equation, replacing
the third equation.

Multiply the second equation by and add the result to the third equation, replac-
ing the third equation.

This is the same system of Example 1 and is a triangular form of the original system.
We know from Example 1 that the solution is .

Now try Exercise 3.
12, -1, 32

2y - 3z = -11
-2y + 4z = 14 z = 3

 y - 2z = -7

 x - 2y + z = 7

-2

2x - 2y - z = 3
-2x + 4y - 2z = -14 2y - 3z = -11

 y - 2z = -7

 x - 2y + z = 7

-2

 2x - 2y - z = 3 3x - 5y + z = 14
-3x + 6y - 3z = -21 y - 2z = -7

 x - 2y + z = 7

-3

 2x - 2y - z = 3

 3x - 5y + z = 14

 x - 2y + z = 7

For a system of equations that has exactly one solution, the final system in Example 2 is
in triangular form. In this case, the leading term of each equation has coefficient 1, the
third equation has one variable , the second equation has at most two variables in-
cluding one not in the third equation , and the first one has the remaining variable, 
x in this case.

1y21z2
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Elementary Row Operations 
and Row Echelon Form
When we solve a system of linear equations using Gaussian elimination, all the action
is really on the coefficients of the variables. Matrices can be used to record the coeffi-
cients as we go through the steps of the Gaussian elimination process. We illustrate
with the system of Example 2.

The augmented matrix of this system of equations is

The entries in the last column are the numbers on the right-hand side of the equations.
For the record, the coefficient matrix of this system is

Here the entries are the coefficients of the variables. We use this matrix to solve certain
linear systems later in this section.

We repeat the Gaussian elimination process used in Example 2 and record the corre-
sponding action on the augmented matrix.

C1 -2 1

3 -5 1

2 -2 -1

S .

C1 -2 1 7

3 -5 1 14

2 -2 -1 3

S .

 2x - 2y - z = 3

 3x - 5y + z = 14

 x - 2y + z = 7

546 CHAPTER 7 Systems and Matrices

EXAMPLE 3  Finding No Solution
Solve the system

SOLUTION Use Gaussian elimination.

Add first equation to second equation.

Multiply first equation by and 
add to third equation.

Multiply second equation by 2 and add 
to third equation.

Since is never true, we conclude that this system has no solution.
Now try Exercise 5.

0 = 2

 0 = 2

 -y - 4z = 7

 x - 3y + z = 4

-5 2y + 8z = -12

 -y - 4z = 7

 x - 3y + z = 4

 5x - 13y + 13z = 8

 -y - 4z = 7

 x - 3y + z = 4

 5x - 13y + 13z = 8

 -x + 2y - 5z = 3

 x - 3y + z = 4
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System of Equations Augmented Matrix
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 2x - 2y - z = 3

 y - 2z = -7

 x - 2y + z = 7 C1 -2 1 7

0 1 -2 -7

2 -2 -1 3

S Multiply eq. 1 (row 1) by ; 
add result to eq. 2 (row 2), 
replacing eq. 2 (row 2).

-3

 2y - 3z = -11

 y - 2z = -7

 x - 2y + z = 7 C1 -2 1 7

0 1 -2 -7

0 2 -3 -11

S Multiply eq. 1 (row 1) by ; 
add result to eq. 3 (row 3), 
replacing eq. 3 (row 3).

-2

 z = 3

 y - 2z = -7

 x - 2y + z = 7 C1 -2 1 7

0 1 -2 -7

0 0 1 3

S Multiply eq. 2 (row 2) by ; 
add result to eq. 3 (row 3), 
replacing eq. 3 (row 3).

-2

The augmented matrix above, corresponding to the triangular form of the original sys-
tem of equations, is a row echelon form of the augmented matrix of the original system
of equations. In general, the last few rows of a row echelon form of a matrix can consist
of all 0’s. We will see examples like this in a moment.

DEFINITION Row Echelon Form of a Matrix
A matrix is in row echelon form if the following conditions are satisfied.

1. Rows consisting entirely of 0’s (if there are any) occur at the bottom of the
matrix.

2. The first entry in any row with nonzero entries is 1.

3. The column subscript of the leading 1 entries increases as the row subscript
increases.

Elementary Row Operations on a Matrix
A combination of the following operations will transform a matrix to row eche-
lon form.

1. Interchange any two rows.

2. Multiply all elements of a row by a nonzero real number.

3. Add a multiple of one row to any other row.

Another way to phrase parts 2 and 3 of the above definition is to say that the leading 1’s
move to the right as we move down the rows.

Our goal is to take a system of equations, write the corresponding augmented matrix,
and transform it to row echelon form without carrying along the equations. From there
we can read off the solutions to the system fairly easily.

The operations that we use to transform a linear system to equivalent triangular form
correspond to elementary row operations of the corresponding augmented matrix of the
linear system.

Example 4 illustrates how we can transform the augmented matrix to row echelon form
to solve a system of linear equations.
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Reduced Row Echelon Form
If we continue to apply elementary row operations to a row echelon form of a matrix,
we can obtain a matrix in which every column that has a leading 1 has 0’s elsewhere.
This is the reduced row echelon form of the matrix. It is usually easier to read the so-
lution from the reduced row echelon form.

We apply elementary row operations to the row echelon form found in Example 4 until
we find the reduced row echelon form.

From this reduced row echelon form, we can immediately read the solution to the sys-
tem of Example 4: Figure 7.14 shows that the above final ma-
trix is the reduced row echelon form of the augmented matrix of Example 4.

x = -2, y = 7, z = 3.

C1 0 0 -2

0 1 0 7

0 0 1 3

S   
112R3+R2    !C1 0 0 -2

0 1 -1 4

0 0 1 3

S

 1-12R3+R1    !C1 0 1 1

0 1 -1 4

0 0 1 3

S  
112R2+R1     !C1 -1 2 -3

0 1 -1 4

0 0 1 3

S

548 CHAPTER 7 Systems and Matrices

Notation
1. indicates interchanging the ith and jth row

of a matrix.

2. indicates multiplying the ith row by the
nonzero real number k.

3. indicates adding k times the ith row
to the jth row.
kRi + Rj

kRi

Rij

Row Echelon Form
A word of caution! You can use your grapher to
find a row echelon form of a matrix. However,
row echelon form is not unique. Your grapher
may produce a row echelon form different from
the one you obtained by paper and pencil. Fortu-
nately, all row echelon forms produce the same
solution to the system of equations. (Correspond-
ingly, a triangular form of a linear system is also
not unique.)

EXAMPLE 4  Finding a Row Echelon Form
Solve the system

SOLUTION We apply elementary row operations to find a row echelon form of
the augmented matrix. The elementary row operations used are recorded above the
arrows, using the notation in the margin.

The last matrix is in row echelon form. Then we convert each row into equation form
and complete the solution by substitution.

The solution of the original system of equations is .

Now try Exercise 33.

1-2, 7, 32
 y = 7  x = -2

z = 3  y - 3 = 4  x - 7 + 2132 = -3

 y - z = 4  x - y + 2z = -3

C1 -1 2 -3

0 1 -1 4

0 0 1 3

S 1-1/22R3    
!C1 -1 2 -3

0 1 -1 4

0 0 -2 -6

S

1-32R2+R3    !C1 -1 2 -3

0 1 -1 4

0 3 -5 6

S        R23          !C1 -1 2 -3

0 3 -5 6

0 1 -1 4

S
 
112R1+R3   !C 1 -1 2 -3

0 3 -5 6

-1 2 -3 7

S 1-22R1+R2
!C 1 -1 2 -3

2 1 -1 0

-1 2 -3 7

S

 -x + 2y - 3z = 7

 2x + y - z = 0

 x - y + 2z = -3

rref([A])
[[1  0  0  –2] 

[0  0  1  3  ]]
[0  1  0  7  ] 

FIGURE 7.14 A is the augmented matrix
of the system of linear equations in Example 4.
“rref” stands for the grapher-produced 
reduced row echelon form of A.
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We can also solve linear systems with more than three variables, or more than three
equations, or both, by finding a row (or reduced row) echelon form. The solution set
may become more complicated, as illustrated in Example 6.
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EXAMPLE 5  Finding Infinitely Many Solutions
Solve the system

SOLUTION Figure 7.15 shows the reduced row echelon form for the augmented
matrix of the system. So, the following system of equations is equivalent to the origi-
nal system.

Solving the first two equations for x and y in terms of z yields:

This system has infinitely many solutions because for every value of z we can use
these two equations to find corresponding values for x and y.

Interpret
The solution is the set of all ordered triples of the form where
z is any real number. Now try Exercise 39.

1-3z + 5, 2z - 2, z2

 y = 2z - 2

 x = -3z + 5

 0 = 0

 y - 2z = -2

 x + 3z = 5

 x + 2y - z = 1

 2x + y + 4z = 8

 x + y + z = 3

rref([A])
[[1  0  3   5  ] 

[0 0  0   0  ]]
[0  1  –2  –2] 

FIGURE 7.15 The reduced row echelon
form for the augmented matrix of Example 5.

EXAMPLE 6  Finding Infinitely Many Solutions
Solve the system

SOLUTION The augmented matrix is

Figure 7.16 shows the reduced row echelon form from which we can read that:

This system has infinitely many solutions because for every pair of values for z and w
we can use these two equations to find corresponding values for x and y.

Interpret
The solution is the set of all ordered 4-tuples of the form 

where z and w are any real numbers.
Now try Exercise 43.

2z + w - 1, z, w2 1-z - 2w + 1,

 y = 2z + w - 1

 x = -z - 2w + 1

C1 2 -3 0 -1

2 3 -4 1 -1

3 5 -7 1 -2

S .

3 * 5

3x + 5y - 7z + w = -2

2x + 3y - 4z + w = -1

x + 2y - 3z = -1

rref([A])
[[ 1  0  1   2   1   ] 

[ 0 0  0   0  0  ]]
[ 0  1  –2  –1  –1 ] 

FIGURE 7.16 The reduced row echelon
form for the augmented matrix of Example 6.
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Solving Systems with Inverse Matrices
If a linear system consists of the same number of equations as variables, then the coef-
ficient matrix is square. If this matrix is also nonsingular, then we can solve the system
using the technique illustrated in Example 7.

550 CHAPTER 7 Systems and Matrices

EXAMPLE 7  Solving a System Using Inverse Matrices
Solve the system

SOLUTION First we write the system as a matrix equation. Let

Then

so that

where A is the coefficient matrix of the system. You can easily check that det ,
so exists. From Figure 7.17, we obtain

The solution of the system is , , or .
Now try Exercise 49.

110, 152y = 15x = 10

X = A-1B = c10

15
d .

A-1
A = 1

AX = B,

A # X = c 3 -2

-1 1
d # cx

y
d = c3x - 2y

-x + y
d

A = c 3 -2

-1 1
d ,  X = cx

y
d ,  and  B = c0

5
d .

 -x + y = 5.

 3x - 2y = 0

Linear Equations
If a and b are real numbers with , the 
linear equation has a unique solution

A similar statement holds for the 
linear matrix equation when A is a non-
singular square matrix. (See the Invertible
Square Linear Systems Theorem.)

AX = B
x = a-1b.

ax = b
a Z 0

[A]–1[B]
[[10] 
[15]]

FIGURE 7.17 The solution of the matrix
equation of Example 7.

Examples 7 and 8 are two instances of the following theorem.

EXAMPLE 8  Solving a System Using Inverse Matrices
Solve the system

SOLUTION Let

A = C 3 -3 6

1 -3 10

-1 3 -5

S ,  X = C x

y

z

S ,  and  B = C20

40

30

S .

 -x + 3y - 5z = 30

 x - 3y + 10z = 40

 3x - 3y + 6z = 20

THEOREM Invertible Square Linear Systems
Let A be the coefficient matrix of a system of n linear equations in n variables
given by , where X is the matrix of variables and B is the 
matrix of numbers on the right-hand side of the equations. If exists, then
the system of equations has the unique solution

X = A-1B.

A-1
n * 1n * 1AX = B
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Applications
Any three noncollinear points with distinct x-coordinates determine exactly one second-
degree polynomial, as illustrated in Example 9. The graph of a second-degree polyno-
mial is a parabola.

SECTION 7.3 Multivariate Linear Systems and Row Operations 551

The system of equations can be written as

Figure 7.18 shows that det so exists and

Interpret
The solution of the system of equations is , , and , or 

. Now try Exercise 51.118, 39 
1
3, 142

z = 14y = 39 
1
3x = 18

X = A-1B = C18

39.3

14

S .

A-1A = -30 Z 0,

A # X = B.
det([A])

[A]–1[B]

  [39.33333333]
  [[18                ]

  [14                 ]]

–30

FIGURE 7.18 The solution of the system
in Example 8.

EXAMPLE 9  Fitting a Parabola to Three Points
Determine a, b, and c so that the points , and are on the
graph of 

SOLUTION

Model
We must have , , and 

The above system of three linear equations in the three variables a, b, and c can be
written in matrix form , where

Solve Numerically
Figure 7.19a shows that

Thus, , , and The second-degree polynomial
contains the points , and 

(Figure 7.19b). Now try Exercise 67.
13, 132-121-1, 52, 12,ƒ1x2 = 4x2

- 6x - 5
c = -5.b = -6a = 4

X = A-1B = C 4

-6

-5

S .

A = C1 -1 1

4 2 1

9 3 1

S ,  X = Ca

b

c

S ,  and  B = C 5

-1

13

S .

AX = B

 ƒ132 = 9a + 3b + c = 13

 ƒ122 = 4a + 2b + c = -1

 ƒ1-12 = a - b + c = 5

ƒ132 = 13:ƒ122 = -1ƒ1-12 = 5

ƒ1x2 = ax2
+ bx + c.

13, 132-121-1, 52, 12,

[A]–1[B]
[[4  ] 

[–5]]
[–6] 

(a)

[–5, 5] by [–15, 20]

(b)

FIGURE 7.19 (a) The solution of the ma-
trix equation of Example 9. (b) A graph of

superimposed on a
scatter plot of the three points 

and .13, 13212, -12,
1-1, 52,

ƒ1x2 = 4x2
- 6x - 5
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EXPLORATION 1 Mixing Solutions

Aileen’s Drugstore needs to prepare a 60-L mixture that is 40% acid, using

three concentrations of acid. The first concentration is 15% acid, the second is

35% acid, and the third is 55% acid. Because of the amounts of acid solution on

hand, they need to use twice as much of the 35% solution as the 55% solution.

How much of each solution should they use?

Let the number of liters of 15% solution used, the number of liters of

35% solution used, and the number of liters of 55% solution used.

1. Explain how the equation is related to the problem.

2. Explain how the equation is related to the 
problem.

3. Explain how the equation is related to the problem.

4. Write the system of three equations obtained from parts 1–3 in the form
, where A is the coefficient matrix of the system. What are A, B, 

and X?

5. Solve the matrix equation in part 4.

6. Interpret the solution in part 5 in terms of the problem situation.

AX = B

y = 2z

0.15x + 0.35y + 0.55z = 24

x + y + z = 60

z =

y =x =

QUICK REVIEW 7.3 (For help, go to Sections 1.2 and 7.2.)

6.

(a) (b)

In Exercises 7 and 8, solve for x or y in terms of the other variables.

7.

8.

In Exercises 9 and 10, find the inverse of the matrix.

9.

10. C 0 0 2

-2 1 3

0 2 -2

S
c 1 3

-2 -2
d

x - 2z + w = 3

y + z - w = 1

1-2, -17210, -12
ƒ1x2 = x3

- 4x - 1In Exercises 1 and 2, find the amount of pure acid in the solution.

1. 40 L of a 32% acid solution

2. 60 mL of a 14% acid solution

In Exercises 3 and 4, find the amount of water in the solution.

3. 50 L of a 24% acid solution

4. 80 mL of a 70% acid solution

In Exercises 5 and 6, determine which points are on the graph of the
function.

5.

(a) (b) 12, 121-1, 62
ƒ1x2 = 2x2

- 3x + 1

SECTION 7.3 EXERCISES
Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1 and 2, use substitution to solve the system of equations.

1.

 z = -2
 2y + 3z = 1

 x - 3y + z = 0

In Exercises 3–8, use Gaussian elimination to solve the system of 
equations.

3.

 -x - y + 2z = -1
 2x - 3z = -1

 x - y + z = 0

2.

 2z = 4
 y + 3z = 3

 3x - y + 2z = -2

4.

 3y + z = 8
 x + 3y - z = -3

 2x - y = 0

5.

 -3x + 2y + z = 4
 4x - y = -5

 x + y + z = -3 6.

 3x - 7y + 5z = 4
 2x - 3y + z = 4

 x + y - 3z = -1
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7.

 x + z + w = 1
 x - y = 1
 y + w = -4

 x + y - z = 4
In Exercises 25–28, write the augmented matrix corresponding to the
system of equations.

25.

 3x - z = 2
 -x + y - 4z = -3
 2x - 3y + z = 1

8.

 y + w = 0
 x - z = 2

 -x + y + z + 2w = -3

 
1

2
 x - y + z - w = 1

In Exercises 9–12, perform the indicated elementary row operation on
the matrix

9. 10.

11. 12.

In Exercises 13–16, what elementary row operations applied to

will yield the given matrix?

13.

14.

15.

16.

In Exercises 17–20, find a row echelon form for the matrix.

17. 18.

19. 20.

In Exercises 21–24, find the reduced row echelon form for the matrix.

21.

22.

23. 24. C 3 -6 3 -3

2 -4 2 -2

-3 6 -3 3

Sc 1 2 3 1

-3 -5 -7 -4
d

D
1 -2 2 1 1

3 -5 6 3 -1

-2 4 -3 -2 5

3 -5 6 4 -3

T

C1 0 2 1

3 2 4 7

2 1 3 4

S

c3 6 9 -6

2 5 5 -3
dC 1 2 3 -4

-2 6 -6 2

3 12 6 12

S
C 1 2 -3

-3 -6 10

-2 -4 7

SC 1 2 -1

2 1 4

-3 0 1

S

C -2 1 -1 2

1 -2 3 0

0.75 0.25 -0.25 0.5

S
C -2 1 -1 2

1 -2 3 0

0 7 -10 2

S
C0 -3 5 2

1 -2 3 0

3 1 -1 2

S
C 1 -2 3 0

-2 1 -1 2

3 1 -1 2

S

C -2 1 -1 2

1 -2 3 0

3 1 -1 2

S
112R1 + R21-22R2 + R1 

11/22R113/22R1 + R3 

C 2 -6 4

1 2 -3

-3 1 -2

S .

26.
 x + z - 2w = 4

 3x - 4y + z - w = 1

27.

28.

In Exercises 29–32, write the system of equations corresponding to the
augmented matrix.

29. 30.

31. 32.

In Exercises 33–34, solve the system of equations by finding a row 
echelon form for the augmented matrix.

33.

 -3x + y + 3z = 5
 2x + y - 3z = -9

 x - 2y + z = 8

c 2 1 -2 4

-3 0 2 -1
dC 2 0 1 3

-1 1 0 2

0 2 -3 -1

S
C 1 0 -1 2 -3

2 1 0 -1 4

-1 1 2 0 0

Sc 3 2 -1

-4 5 2
d

 -x + 5y = 7
 3x - 2y = 5

 2y - 3z - w = 5
 x - 2z + w = 4

 2x - 5y + z - w = -3

34.

 4x + 9y - 13z = 53
 x + 2y - 3z = 12

 3x + 7y - 11z = 44

In Exercises 35–44, solve the system of equations by finding the 
reduced row echelon form for the augmented matrix.

35.

 -2x - 4y + 3z = -5
 3x + 7y - 3z = 12

 x + 2y - z = 3 36.

 4x - 8y + 5z = -5
 2x - 3y + 2z = 2

 x - 2y + z = -2

37.

 x + 2y + 4z = 3
 3x + 4y + 10z = 5

 x + y + 3z = 2 38.

 2x + y - z = 3
 -2x + y + 3z = -5

 x - z = 2

39.
 2x + y + z = 5

 x + z = 2 40.
 -3x - 5y + 8z = -29

 x + 2y - 3z = 1

41.

 2x + 3y = 4
 3x + 4y = 5

 x + 2y = 4 42.

 2x + 2y = 6
 2x + 3y = 8

 x + y = 3

43.

44.

In Exercises 45 and 46, write the system of equations as a matrix equa-
tion , with A as the coefficient matrix of the system.

45.
 x - 2y = 1

 2x + 5y = -3

AX = B

 x - 2y - z + 3w = -6
 2x - y - 2z + 3w = -3

 x - y - z + 2w = -3

 2x + y - 4z - w = 3
 x - z - w = 2

 x + y - 3z = 1

46.

 x + y + z = -3
 2x - 3y - z = 3
 5x - 7y + z = 2

In Exercises 47 and 48, write the matrix equation as a system of 
equations.

47. c3 -1

2 4
d cx

y
d = c -1

3
d
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48. C 1 0 -3

2 -1 3

-2 3 -4

S C x

y

z

S = C 3

-1

2

S

554 CHAPTER 7 Systems and Matrices

69. Family of Curves

, , 

70. Family of Curves

, , 

71. Population Table 7.5 gives the population (in thousands)
for Richardson, TX, and Garland, TX, for several years. Use

for 1980, for 1981, and so forth.

(a) Find the linear regression equation for the Richardson data
and superimpose its graph on a scatter plot of the data.

(b) Find the linear regression equation for the Garland data
and superimpose its graph on a scatter plot of the data.

(c) Estimate when the population of Garland will be about
159,000 more than the population of Richardson.

x = 1x = 0

10, -12, 11, 22-621-1

ƒ1x2 = ax3
+ bx2

+ cx + d

11, -22-421-1

ƒ1x2 = ax2
+ bx + c

In Exercises 49–54, solve the system of equations by using an inverse
matrix.

49.
 4x + y = -5

 2x - 3y = -13 50.
 3x - 4y = 9

 x + 2y = -2

51.

 3x - 2y + z = -3
 x + 2y - 3z = 9

 2x - y + z = -6 52.

 -3x + 3y - 5z = -13
 2x + y + z = 6

 x + 4y - 2z = 0

53.

54.

In Exercises 55–66, use a method of your choice to solve the system of
equations.

55.

 y + z = -9
 x - z = -1

 2x - y = 10

 4x - 3y + 2z - 5w = 39
 -2x + y - 3w = -1

 3x + 2y - z - w = 10
 2x + y + 2z = 8

 -2x + 3y + z - 3w = -3
 3x - y - z + 2w = 3
 x + 2y - 3z + w = 12

 2x - y + z + w = -3

56.

 3x - 1.5y = -6
 y - 5.5z = -2.75

 1.25x + z = -2

57.

58.

59.
 x + y + 2z = -2

 x - y + z = 6

 -2x + z + w = 5
 2x - 2y - z = -10

 -2x + y + z = 8
 x - y + w = -4

 x + z + w = 1
 3x + 3y + 3z + 2w = 12

 2x + y + 2z = 5
 x + 2y + 2z + w = 5

60.
 2x + y - z = -4
 x - 2y + z = 3

61.

 x + y + z + 2w = 0
 x + 2y + z + w = 1

 2x + y + z + 4w = -1 62.

 x + y + 2z + 3w = -1
 x + 2y + 2z + 5w = 0

 2x + 3y + 3z + 7w = 0

63.

64.

65.

66.

In Exercises 67–70, determine ƒ so that its graph contains the given
points.

67. Curve Fitting

68. Curve Fitting

, , , -52, 12, 192-112, 10, 1-1-3721-2

ƒ1x2 = ax3
+ bx2

+ cx + d.

11, -32, 12, 021-1, 32,
ƒ1x2 = ax2

+ bx + c

 x + y + w = 2
 x + 3y + z - 3w = 2
 x + 4y + z - 2w = 3

 x + y + w = 2

 2x + 2y - z + 5w = 4
 x + y + 3w = 3
 y - z + 2w = -1

 x + y - z + 2w = 0

 x + y + z + w = 5
 2x + y + 4w = 6

 x + y + z + w = -1.5
 2x + y + z + 2w = -3.5

Table 7.5 Population Estimates

Richardson Garland
Year (thousands) (thousands)

1980 72 139
1990 75 181
2000 92 216
2009 100 228

Source: North Central Texas Council of Governments
Research and Information Services, Population
Estimates April 2009, Summary of Regional
Population Estimates; www.nctcog.org

Table 7.6 Population

Anaheim Anchorage
Year (thousands) (thousands)

1970 166 48
1980 219 174
1990 267 226
2000 328 260
2006 334 279

Source: U.S. Census Bureau, Statistical Abstract of the
United States, 2001, 2004–2006; http://quickfacts.
census.gov/qfd/states/06/0602000.html

72. Population Table 7.6 gives the population (in thousands)
for Anaheim, CA, and Anchorage, AK, for several years. Use

for 1970, for 1971, and so forth.

(a) Find the linear regression equation for the Anaheim data
and superimpose its graph on a scatter plot of the data.

(b) Find the linear regression equation for the Anchorage data
and superimpose its graph on a scatter plot of the data.

(c) Estimate when the population of the two cities will be the
same.

x = 1x = 0

73. Train Tickets At the Pittsburgh zoo, children ride a train
for 25 cents, adults pay $1.00, and senior citizens 75 cents. On
a given day, 1400 passengers paid a total of $740 for the rides.
There were 250 more children riders than all other riders. Find
the number of children, adult, and senior riders.
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74. Manufacturing Stewart’s
Metals has three silver alloys on
hand. One is 22% silver, another is
30% silver, and the third is 42%
silver. How many grams of each
alloy is required to produce 
80 grams of a new alloy that is
34% silver if the amount of 30%
alloy used is twice the amount of
22% alloy used.

75. Investment Monica receives an $80,000 inheritance. She
invests part of it in CDs (certificates of deposit) earning 6.7%
APY (annual percentage yield), part in bonds earning 9.3%
APY, and the remainder in a growth fund earning 15.6% APY.
She invests three times as much in the growth fund as in the
other two combined. How much does she have in each invest-
ment if she receives $10,843 interest the first year?

76. Investments Oscar invests $20,000 in three investments
earning 6% APY, 8% APY, and 10% APY. He invests $9000
more in the 10% investment than in the 6% investment. How
much does he have invested at each rate if he receives $1780
interest the first year?

77. Investments Morgan has $50,000 to invest and wants to
receive $5000 interest the first year. He puts part in CDs earning
5.75% APY, part in bonds earning 8.7% APY, and the rest in a
growth fund earning 14.6% APY. How much should he invest at
each rate if he puts the least amount possible in the growth fund?

78. Mixing Acid Solutions Simpson’s Drugstore needs to
prepare a 40-L mixture that is 32% acid from three solutions: a
10% acid solution, a 25% acid solution, and a 50% acid solu-
tion. How much of each solution should be used if Simpson’s
wants to use as little of the 50% solution as possible?

79. Loose Change Matthew has 74 coins consisting of nick-
els, dimes, and quarters in his coin box. The total value of the
coins is $8.85. If the number of nickels and quarters is four
more than the number of dimes, find how many of each coin
Matthew has in his coin box.

80. Vacation Money Heather has saved $177 to take with
her on the family vacation. She has 51 bills consisting of $1,
$5, and $10 bills. If the number of $5 bills is three times the
number of $10 bills, find how many of each bill she has.

In Exercises 81–82, use inverse matrices to find the equilibrium point
for the demand and supply curves.

81. Demand curve

Supply curve p = 20 + 10x

 p = 100 - 5x
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84. Writing to Learn Explain why subtracting one row
from another row in a matrix is an elementary row operation.

Standardized Test Questions
85. True or False Every nonzero square matrix has an in-

verse. Justify your answer.

86. True or False The reduced row echelon form of the aug-
mented matrix of a system of three linear equations in three
variables must be of the form

where a, b, c, are real numbers. Justify your answer.

In Exercises 87–90, you may use a graphing calculator to solve the
problem.

87. Multiple Choice Which of the following is the determi-

nant of the matrix ?

(A) 0 (B) 4

(C) (D) 8

(E)

88. Multiple Choice Which of the following is the aug-
mented matrix of the system of equations

(A) (B)

(C) (D)

(E)

89. Multiple Choice The matrix

was obtained from by an

elementary row operation. Which of the following describes
the elementary row operation?

(A) (B)

(C) (D)

(E) 122R2 + R1

122R1 + R21-22R2 + R1

1-22R1 + R21-22R1

C1 2 3

4 5 6

7 8 9

SC1 2 3

2 1 0

7 8 9

S

C1 2 -1

2 -1 -3

3 1 1

S
C1 2 1

2 -1 3

3 1 -1

SC1 2 1 0

2 -1 3 0

3 1 -1 0

S
C1 2 1 1

2 -1 3 4

3 1 -1 2

SC1 2 1 -1

2 -1 3 -4

3 1 -1 -2

S
 3x + y - z = -2

 2x - y + 3z = -4?
 x + 2y + z = -1

-8

-4

c 2 2

-1 3
d

C1 0 0 a

0 1 0 b

0 0 1 c

S ,

82. Demand curve

Supply curve

83. Writing to Learn Explain why adding one row to an-
other row in a matrix is an elementary row operation.

 p = 30 + 24x

 p = 150 - 12x
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90. Multiple Choice Which of the following is the reduced
row echelon form for the augmented matrix of

?

(A) (B)

(C) (D)

(E)

Explorations
91. Group Activity Investigating the Solution of

a System of 3 Linear Equations in 3 Variables
Assume that the graph of a linear equation in three variables 
is a plane in 3-dimensional space. (You will study these in
Chapter 8.)

(a) Explain geometrically how such a system can have a
unique solution.

(b) Explain geometrically how such a system can have no 
solution. Describe several possibilities.

(c) Explain geometrically how such a system can have 
infinitely many solutions. Describe several possibilities.
Construct physical models if you find that helpful.

Extending the Ideas
92. Writing to Learn Explain why a row echelon form of a

matrix is not unique. That is, show that a matrix can have two
unequal row echelon forms. Give an example.

C1 0 0 -2

0 1 0 3

0 0 1 -4

S
C1 0 0 2

0 1 0 -3

0 0 1 4

SC1 0 0 -2

0 1 0 3

0 0 0 -4

S
C1 0 0 2

0 1 0 -3

0 0 0 4

SC1 2 0 4

0 1 0 3

0 0 1 -4

S
 2x - y + 3z = -19

 -x + 3y + 2z = 3
 x + 2y - z = 8

556 CHAPTER 7 Systems and Matrices

The roots of the characteristic polynomial of the
matrix A are the eigenvalues of A (see Section 7.2, Exercises 72

and 73). Use this information in Exercises 93 and 94.

93. Let 

(a) Find the characteristic polynomial of A.

(b) Find the graph of 

(c) Find the eigenvalues of A.

(d) Compare det A with the y-intercept of the graph of

(e) Compare the sum of the main diagonal elements of
with the sum of the eigenvalues.

94. Let 

(a) Find the characteristic polynomial of A.

(b) Find the graph of 

(c) Find the eigenvalues of A.

(d) Compare det A with the y-intercept of the graph of

(e) Compare the sum of the main diagonal elements of
with the sum of the eigenvalues.A 1a11 + a222

y = C1x2.

y = C1x2.
C1x2

A = c 2 -1

-5 2
d .

A 1a11 + a222
y = C(x).

y = C1x2.
C1x2

A = c3 2

1 5
d .

n * n
C1x2 = det 1xIn - A2
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7.4 Partial Fractions

What you’ll learn about
• Partial Fraction Decomposition
• Denominators with Linear Factors
• Denominators with Irreducible

Quadratic Factors
• Applications

... and why
Partial fraction decompositions
are used in calculus in integra-
tion and can be used to guide
the sketch of the graph of a 
rational function.

Partial Fraction Decomposition of 

1. Degree of degree of d: Use the division algorithm to divide ƒ by d to obtain
the quotient q and remainder r and write

2. Factor into a product of factors of the form or 

where is irreducible.

3. For each factor The partial fraction decomposition of 
must include the sum

where , are real numbers.

4. For each factor : The partial fraction decomposition of
must include the sum

where , , and , , are real numbers.

The partial fraction decomposition of the original rational function is the sum of
and the fractions in parts 3 and 4.q1x2

CvC2, ÁC1BvB2, ÁB1

B1x + C1

ax2
+ bx + c

+

B2x + C2

1ax2
+ bx + c22 +

Á
+

Bvx + Cv

1ax2
+ bx + c2v  ,

r1x2/d1x2
1ax2

+ bx + c2v
AuA2, Á ,A1

A1

mx + n
+

A2

1mx + n22 +
Á

+

Au

1mx + n2u  ,

r1x2/d1x21mx + n2u:

ax2
+ bx + c

1ax2
+ bx + c2v,1mx + n2ud1x2

ƒ1x2
d1x2 = q1x2 +

r1x2
d1x2  .

ƒ Ú

ƒ1x2/d1x2

EXAMPLE 1  Writing the Decomposition Factors
Write the terms for the partial fraction decomposition of the rational function

but do not solve for the corresponding constants.

(continued)

5x - 1

x31x + 321x2
+ 12  ,

Partial Fraction Decomposition
In Section 2.6 we saw that a polynomial with real coefficients could be factored into a
product of factors with real coefficients, where each factor was either a linear factor
or an irreducible quadratic factor. In this section we show that a rational function can
be expressed as a sum of rational functions where each denominator is a power of a
linear factor or a power of an irreducible quadratic factor.

For example,

Each fraction in the sum is a partial fraction, and the sum is a partial fraction 
decomposition of the original rational function.

3x - 4

x2
- 2x

=

2
x

+

1

x - 2
 .
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Denominators with Linear Factors
Examples 2 and 3 illustrate how the constants in part 3 of the partial fraction decom-
position procedure can be found.

Ai

558 CHAPTER 7 Systems and Matrices

SOLUTION Applying part 3 to the factor of the denominator produces the 
expression

Then, applying part 3 to the factor of the denominator produces the expression

Finally, applying part 4 to the factor of the denominator produces the 
expression

Adding these terms produces the partial fraction decomposition for the rational function

Now try Exercise 1.

5x - 1

x31x + 321x2
+ 12 =

A1

x
+

A2

x2 +

A3

x3 +

B1

x + 3
+

C1x + D1

x2
+ 1

 .

C1x + D1

x2
+ 1

 .

1x2
+ 12

B1

x + 3
 .

1x + 32

A1

x
+

A2

x2 +

A3

x3  .

x3

EXAMPLE 2  Decomposing a Fraction with Distinct 
Linear Factors

Find the partial fraction decomposition of

SOLUTION The denominator factors into We write

and then “clear fractions” by multiplying both sides of the above equation by
to obtain

Comparing coefficients on the left and right side of the above equation, we obtain the
following system of two equations in the two variables and :

We can write this system in matrix form as where

and read from Figure 7.20 that

X = c2
3
d .

B = c 1 1

-5 3
d , X = cA1

A2
d ,  and  C = c 5

-1
d ,

BX = C

 -5A1 + 3A2 = -1

 A1 + A2 = 5

A2A1

 5x - 1 = 1A1 + A22x + 1-5A1 + 3A22.
 5x - 1 = A11x - 52 + A21x + 32

x2
- 2x - 15

5x - 1

x2
- 2x - 15

=

A1

x + 3
+

A2

x - 5

1x + 321x - 52.

5x - 1

x2
- 2x - 15

 .

[B]–1[C]
[[2] 
[3]]

FIGURE 7.20 The solution of the system
of equations in Example 2.
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Thus, , and

Support Graphically
Figure 7.21 suggests that the following two functions are the same:

Now try Exercise 17.

y =

5x - 1

x2
- 2x - 15

 and y =

2

x + 3
+

3

x - 5

5x - 1

x2
- 2x - 15

=

2

x + 3
+

3

x - 5
 .

A1 = 2, A2 = 3

[–10, 10] by [–10, 10]

FIGURE 7.21 The graphs of
and

appear to 
be the same. (Example 2)
y = 2/1x + 32 + 3/1x - 52
y = 15x - 12/1x2

- 2x - 152

EXAMPLE 3  Decomposing a Fraction with a Repeated 
Linear Factor

Find the partial fraction decomposition of

SOLUTION The denominator factors into Because the factor is
squared, it contributes two terms to the decomposition:

We clear fractions by multiplying both sides of the above equation by .

Expanding and combining like terms in the above equation we obtain:

Comparing coefficients of powers of x on the left and right side of the above equa-
tion, we obtain the following system of equations:

The reduced row echelon form of the augmented matrix

of the preceding system of equations is

Thus , and

Now try Exercise 25.

-x2
+ 2x + 4

x3
- 4x2

+ 4x
=

1
x

+

-2

x - 2
+

2

1x - 222 .

A1 = 1, A2 = -2, A3 = 2

C1 0 0 1

0 1 0 -2

0 0 1 2

S .

C 1 1 0 -1

-4 -2 1 2

4 0 0 4

S

 4A1 = 4

 -4A1 - 2A2 + A3 = 2

 A1 + A2 = -1

-x2
+ 2x + 4 = 1A1 + A22x2

+ 1-4A1 - 2A2 + A32x + 4A1

-x2
+ 2x + 4 = A11x - 222 + A2x1x - 22 + A3x

x3
- 4x2

+ 4x

-x2
+ 2x + 4

x3
- 4x2

+ 4x
=

A1

x
+

A2

x - 2
+

A3

1x - 222

x - 2x1x - 222.

-x2
+ 2x + 4

x3
- 4x2

+ 4x
 .
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Sometimes we can solve for the variables introduced in a partial fraction decomposi-
tion by substituting strategic values for x, as illustrated in Exploration 1.

560 CHAPTER 7 Systems and Matrices

EXPLORATION 1 Revisiting Examples 2 and 3

1. When we cleared fractions in Example 2 we obtained the equation

(a) Substitute into this equation and solve for 

(b) Substitute into this equation and solve for 

2. When we cleared fractions in Example 3 we obtained the equation

(a) Substitute into this equation and solve for 

(b) Substitute into this equation and solve for 

(c) Substitute any other value for x and use the values found for and 
to solve for A2.

A3A1

A1.x = 0

A3.x = 2

-x2
+ 2x + 4 = A11x - 222 + A2x1x - 22 + A3x.

A1.x = -3

A2.x = 5

5x - 1 = A11x - 52 + A21x + 32.

Denominators with Irreducible 
Quadratic Factors
Example 4 shows how to find the partial fraction decomposition for a rational function
whose denominator has an irreducible quadratic factor.

EXAMPLE 4  Decomposing a Fraction with an Irreducible 
Quadratic Factor

Find the partial fraction decomposition of

SOLUTION We factor the denominator by grouping terms:

Each factor occurs once, so each one leads to one term in the decomposition:

We clear fractions by multiplying both sides of the above equation by :

Expanding and combining like terms in the above equation we obtain:

Comparing coefficients of powers of x on the left and right side of the above equa-
tion, we obtain the following system of equations:

 A - C = 1

 -B + C = 4

 A + B = 1

x2
+ 4x + 1 = 1A + B2x2

+ 1-B + C2x + 1A - C2

x2
+ 4x + 1 = A1x2

+ 12 + 1Bx + C21x - 12
x3

- x2
+ x - 1

x2
+ 4x + 1

x3
- x2

+ x - 1
=

A

x - 1
+

Bx + C

x2
+ 1

 = 1x - 121x2
+ 12

 x3
- x2

+ x - 1 = x21x - 12 + 1x - 12

x2
+ 4x + 1

x3
- x2

+ x - 1
 .

6965_CH07_pp519-578.qxd  1/14/10  1:58 PM  Page 560



SECTION 7.4 Partial Fractions 561

Using mental mathematics (adding the first two equations) we have then
adding that equation to the last equation , we have or 
Then by substitution in the first equation and also by substitution in
the last equation. Thus,

Now try Exercise 31.

x2
+ 4x + 1

x3
- x2

+ x - 1
=

3

x - 1
+

-2x + 2

x2
+ 1

.

C = 2B = -2
A = 3.2A = 6A - C = 1

A + C = 5;

EXAMPLE 5  Decomposing a Fraction with a Repeated 
Irreducible Quadratic Factor

Find the partial fraction decomposition of

SOLUTION The factor in the denominator leads to two terms in the
partial fraction decomposition:

We clear fractions by multiplying both sides of the above equation by :

Comparing coefficients of powers of x on the left and right side of the above equa-
tion, we see that , and It follows that

and Thus,

Now try Exercise 29.

2x3
- x2

+ 5x

1x2
+ 122 =

2x - 1

x2
+ 1

+

3x + 1

1x2
+ 122.

C2 = 1.B2 = 3
C1 + C2 = 0.B1 = 2, C1 = -1, B1 + B2 = 5

 = B1x3
+ C1x2

+ 1B1 + B22x + 1C1 + C22
 2x3

- x2
+ 5x = 1B1x + C121x2

+ 12 + B2x + C2

1x2
+ 122

2x3
- x2

+ 5x

1x2
+ 122 =

B1x + C1

x2
+ 1

+

B2x + C2

1x2
+ 122

1x2
+ 122

2x3
- x2

+ 5x

1x2
+ 122 .

Checking Algebraic Solutions
To become proficient in applying different meth-
ods to solve systems of equations in problems
like those given in Examples 3 and 4, we suggest
you use the reduced row echelon and matrix in-
version methods to double check your algebraic
solutions.

Applications
Each part of the partial fraction decomposition of a rational function plays a central role
in the analysis of its graph. One summand can be used to describe the end behavior of
the graph.The other parts can be used to describe the behavior of the graph at one of its
vertical asymptotes, as illustrated in Example 6.

EXAMPLE 6  Investigating the Graph of a Rational Function
Compare the graph of the rational function

with the graphs of the terms in its partial fraction decomposition.

SOLUTION We use division to rewrite in the form

(continued)

ƒ1x2 = 2 +

x - 6

x2
- 4

.

ƒ1x2

ƒ1x2 =

2x2
+ x - 14

x2
- 4
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[–4.7, 4.7] by [–8, 12]

FIGURE 7.22 The graph of

(Example 6)
ƒ1x2 = 12x2

+ x - 142/1x2
- 42.

[–4.7, 4.7] by [–8, 12]

(a)

[–4.7, 4.7] by [–8, 12]

(b)

FIGURE 7.23 The graphs of (a) and (b) (Example 6)y = -1/1x - 22.y = 2/1x + 22

Then we use the techniques of this section to find the partial fraction decomposition
of , and, in turn, that of ƒ:

Figure 7.22 shows the graph of ƒ. You can see the relation of this graph to the graph
of the end behavior asymptote , one of the terms of ƒ. The graph of the term

is very similar to the graph of ƒ near (Figure 7.23a). The
graph of the term is very similar to the graph of ƒ near 
(Figure 7.23b). Now try Exercise 33.

x = 2y = -1/1x - 22 x = -2y = 2/1x + 22 y = 2

ƒ1x2 = 2 +

x - 6

x2
- 4

= 2 +

2

x + 2
+

-1

x - 2

1x - 62/1x2
- 42

QUICK REVIEW 7.4 (For help, go to Sections A.2, A.3, and 2.4.)

In Exercises 7 and 8, write the polynomial as a product of linear
and irreducible quadratic factors with real coefficients.

7.

8.

In Exercises 9 and 10, assume that What can you
conclude about A, B, C, and D?

9.

10.
 g1x2 = -x3

+ 2x2
- x - 5

 ƒ1x2 = 1A + 12x3
+ Bx2

+ Cx + D

g1x2 = 3x2
- x + 2

ƒ1x2 = Ax2
+ Bx + C + 1

ƒ1x2 = g1x2.
x4

- x3
- 15x2

- 23x - 10

x4
- 2x3

+ x2
- 8x - 12

In Exercises 1–4, perform the indicated operations and write your
answer as a single reduced fraction.

1. 2.

3. 4.

In Exercises 5 and 6, divide by to obtain a quotient 
and remainder . Write a summary statement in fraction form:

5.

6. ƒ1x2 = 2x3
+ 3x2

- 14x - 8, d1x2 = x2
+ x - 6

ƒ1x2 = 3x3
- 6x2

- 2x + 7, d1x2 = x - 2

q1x2 + r1x2/d1x2.
r1x2

q1x2d1x2ƒ1x2

3

x2
+ 1

-

x + 1

1x2
+ 122

1
x

+

3

x + 1
+

1

1x + 122

5

x + 4
-

2

x + 1

1

x - 1
+

2

x - 3

SECTION 7.4 EXERCISES
Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–4, write the terms for the partial fraction decomposition
of the rational function. Do not solve for the constants.

1. 2.

3. 4.
x2

+ 3x + 2

1x3
- 123

x5
- 2x4

+ x - 1

x31x - 1221x2
+ 92

x4
+ 3x2

- 1

1x2
+ x + 1221x2

- x + 12
x2

- 7

x1x2
- 42

Exercises 5–8, use inverse matrices to find the partial fraction decom-
position.

5.

6.

7.
3x2

+ 2x + 2

1x2
+ 122 =

Ax + B

x2
+ 1

+

Cx + D

1x2
+ 122

x - 3

x1x + 32 =

A

x + 3
+

B

x

x + 22

1x + 421x - 22 =

A

x + 4
+

B

x - 2
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8.

In Exercises 9–12, use the reduced row echelon form for the augmented
matrix to find the partial fraction decomposition.

9.

10.

11.

12.

In Exercises 13–16, find the partial fraction decomposition. Confirm
your answer algebraically by combining the partial fractions.

13. 14.

15. 16.

In Exercises 17–20, find the partial fraction decomposition. Support
your answer graphically.

17. 18.

19. 20.

Use an algebraic method in Exercises 21–32 to find a partial fraction
decomposition.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–36, use division to write the rational function in the
form , where the degree of is less than the degree
of . Then find the partial fraction decomposition of 
Compare the graphs of the rational function with the graphs of its terms
in the partial fraction decomposition.

33. 34.

35. 36.
x3

+ 2

x2
- x

x3
- 2

x2
+ x

3x2
+ 2x

x2
- 4

2x2
+ x + 3

x2
- 1

r1x2/d1x2.d1x2
r1x2q1x2 + r1x2/d1x2

2x2
- 4x + 3

x3
+ 1

x2
+ 3x + 2

x3
- 1

3x3
+ 6x - 1

1x2
+ 222

2x3
+ 4x - 1

1x2
+ 222

5x2
+ 7x - 4

x3
+ 4x2

3x2
- 4x + 3

x3
- 3x2

-6x + 25

x3
- 6x2

+ 9x

x2
- x + 2

x3
- 2x2

+ x

3x2
+ 4

1x2
+ 122

2x2
+ 5

1x2
+ 122

4x - 11

2x2
- x - 3

x + 17

2x2
+ 5x - 3

7x - 7

x2
- 3x - 10

-x + 10

x2
+ x - 12

-6

x2
- 3x

1

x2
+ 2x

6

x2
- 9

4

x2
- 1

4

1x + 321x + 72
2

1x - 521x - 32

=  
A

x - 1
+

B

1x - 122 +

C

x + 4
+

D

1x + 422

-x3
- 6x2

- 5x + 87

1x - 122 1x + 422

=  
A

x + 3
+

B

1x + 322 +

Cx + D

x2
+ 2

+

Ex + F

1x2
+ 222

5x5
+ 22x4

+ 36x3
+ 53x2

+ 71x + 20

1x + 3221x2
+ 222

5x3
- 10x2

+ 5x - 5

1x2
+ 421x2

+ 92 =

Ax + B

x2
+ 4

+

Cx + D

x2
+ 9

x2
- 2x + 1

1x - 223 =

A

x - 2
+

B

1x - 222 +

C

1x - 223

4x + 4

x21x + 22 =

A

x
+

B

x2
+

C

x + 2
In Exercises 37–42, match the function with its graph. Do this without
using your grapher.

20

10

y

x
–4 –2 2 4

(a)

20

10

y

x
–4 –2 2 4

(b)

20

10

y

x
–4 –2 2 4

(c)

–10

y

x
–4 –2 2 4

(d)

–10

y

x
–4 –2 2 4

(e)

20

10

–10

y

x
–4 –2 2 4

(f)

37.

38.

39.

40.

41.

42.

43. Group Activity Find the partial fraction decomposition of

44. Group Activity Find the partial fraction decomposition of

.

45. Group Activity Find the partial fraction decomposition of

46. Group Activity Find the partial fraction decomposition of

Standardized Test Questions
47. True or False If 

then Justify your answer.lim
x:3-

 ƒ1x2 = - q .

ƒ1x2 =

1

x - 3
+

1

x2
+ 1

,

2

x2
- a2

.

3

1x - a21x - b2.

-1

1x - 221x - b2

1

x1x - a2.

y = 2 -

1

x + 1
-

2

x - 3

y = 2 +

2

x + 1
-

2

x - 3

y = x + 3 +

2

x + 1
+

1

x - 3

y = x + 3 -

1

x + 1
-

2

x - 3

y = x + 3 -

1

x + 1
+

1

x - 3

y = x + 3 +

2

x + 1
-

2

x - 3
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48. True or False If 

then Justify your answer.

In Exercises 49–52, solve the problem without using a calculator.

49. Multiple Choice Which of the following gives the form 

of the partial fraction decomposition of ?

(A) (B)

(C) (D)

(E)

50. Multiple Choice Which of the following gives the form of

the partial fraction decomposition of 

(A)

(B)

(C)

(D)

(E)

51. Multiple Choice Which of the following could be the 

graph of 3 +

2

x - 2
-

3

x + 1
?

A1

x + 3
+

A2

1x + 322 +

B1

x2
+ 4

+

B2

1x2
+ 422

A1

x + 3
+

A2

1x + 322 +

B1x + C1

x2
+ 4

+

1B2x + C222
x2

+ 4

A1

x + 3
+

A2

1x + 322 +

B1x + C1

x2
+ 4

+

B2x + C2

1x2
+ 422

A1

x + 3
+

B1x + C1

x2
+ 4

+

B2x + C2

1x2
+ 422

A1

x + 3
+

B1x + C1

x2
+ 4

2x2
- x + 1

1x + 3221x2
+ 422?

A1

x
+

A2

x2
+

B1x + C1

x2
+ 2

A1

x
+

A2

x2
+

B1x

x2
+ 2

A1

x
+

A2

x2
+

B1

x2
+ 2

B1x + C1

x2
+ 2

A1

x
+

B1x + C1

x2
+ 2

3x - 1

x21x2
+ 22

lim
x: q

 ƒ1x2 = -1.

ƒ1x2 = -1 +

1

x - 2
-

1

1x - 322,
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52. Multiple Choice Which of the following could be the 

graph of -2 -

3

x - 1
-

1

1x + 222?

y

x

(A)

y

x

(B)

y

x

(C)

y

x

(D)

y

x

(E)

y

x

(A)

y

x

(B)

y

x

(C)

y

x

(D)

y

x

(E)

Explorations
53. Revisiting Example 3 When we cleared fractions in

Example 3 we obtained the equation

(a) Substitute into this equation and solve for A.

(b) Substitute and into this equation to find a
system of 2 equations to solve for B and C.

54. Writing to Learn Explain why it is valid in this section
to obtain the systems of equations by equating coefficients of
powers of x.

Extending the Ideas
55. Group Activity Examine the graph of 

for

(i) (ii)

(iii) (iv)

Based on this examination, which of the two functions
or has the greater effect on the

graph of near 

56. Writing to Learn Use partial fraction decomposition to
explain why the graphs of

are so different near x = 1.

ƒ1x2 =

2x - 3

1x - 122 and g1x2 =

2x + 3

1x - 122

x = 1?ƒ1x2
y = b/1x - 122y = a/1x - 12

a = -1, b = -1.a = -1, b = 1.

a = 1, b = -1.a = b = 1.

ƒ1x2 =

a

x - 1
+

b

1x - 122

x = - ix = i

x = 1

x2
+ 4x + 1 = A1x2

+ 12 + 1Bx + C21x - 12.
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SECTION 7.5 Systems of Inequalities in Two Variables 565

What you’ll learn about
• Graph of an Inequality
• Systems of Inequalities
• Linear Programming

... and why
Linear programming is used in
business and industry to maxi-
mize profits, minimize costs, 
and help management make 
decisions.

7.5 Systems of Inequalities 
in Two Variables

10
8
6
4

–2
–4
–6
–8

–10

y

x
–10–8 –6 –4 642 8 10

y = 2x + 3

FIGURE 7.24 A graph of 
(dashed line) and (shaded area). 
The line is dashed to indicate it is not part 
of the solution of y 6 2x + 3.

y 6 2x + 3
y = 2x + 3

Graph of an Inequality
An ordered pair of real numbers is a solution of an inequality in x and y if
the substitution and satisfies the inequality. For example, the ordered
pair is a solution of because

However, the ordered pair is not a solution because

When we have found all the solutions we have solved the inequality.

The graph of an inequality in x and y consists of all pairs that are solutions of
the inequality. The graph of an inequality involving two variables typically is a region
of the coordinate plane.

The point is on the graph of the line but is not a solution of
A point below the line is on the graph of 

and those above it are not. The graph of is the set of all points below the
line The graph of the line is the boundary of the region
(Figure 7.24).

We can summarize our observations about the graph of an inequality in two variables
with the following procedure.

y = 2x + 3y = 2x + 3.
y 6 2x + 3

y 6 2x + 3,y = 2x + 312, y2y 6 2x + 3.
y = 2x + 312, 72

1x, y2

8 � 2122 + 3 = 7.

12, 82
5 6 2122 + 3 = 7.

y 6 2x + 312, 52 y = bx = a
1a, b2

Steps for Drawing the Graph of an Inequality in Two Variables

1. Draw the graph of the equation obtained by replacing the inequality sign by an
equal sign. Use a dashed line if the inequality is or . Use a solid line if 
the inequality is or .

2. Check a point in each of the two regions of the plane determined by the graph 
of the equation. If the point satisfies the inequality, then shade the region 
containing the point.

Ú…

76

[–10, 10] by [–10, 10]

FIGURE 7.25 The graph of 
(Example 1)

y Ú 2x + 3.

EXAMPLE 1  Graphing a Linear Inequality
Draw the graph of State the boundary of the region.

SOLUTION

Step 1. Because of “ ,” the graph of the line is part of the graph of the
inequality and should be drawn as a solid line.

Step 2. The point is above the line and satisfies the inequality because

Thus, the graph of consists of all points on or above the line 
The boundary is the graph of (Figure 7.25). Now try Exercise 9.

The graph of the linear inequality , or
is a half-plane. The graph of the line is the boundary of the

region.
y = ax + by 6 ax + b

y Ú ax + b, y 7 ax + b, y … ax + b

y = 2x + 3
y = 2x + 3.y Ú 2x + 3

4 Ú 2102 + 3 = 3.

10, 42
y = 2x + 3Ú

y Ú 2x + 3.
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EXAMPLE 2  Graphing Linear Inequalities
Draw the graph of the inequality. State the boundary of the region.

(a) (b)

SOLUTION

(a) Step 1. Replacing “ ” by “ ” we obtain the equation whose graph is a
vertical line.

Step 2. The graph of is the set of all points on and to the right of the verti-
cal line (Figure 7.26a). The line is the boundary of the region.

(b) Step 1. Replacing “ ” by “ ” we obtain the equation whose graph is a
horizontal line.

Step 2. The graph of is the set of all points below the horizontal line
(Figure 7.26b). The line is the boundary of the region.

Now try Exercise 7.
y = -3y = -3

y 6 -3

y = -3=6

x = 2x = 2
x Ú 2

x = 2=Ú

y 6 -3x Ú 2

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 31 4 5

(a)

5
4
3
2
1

–1
–2

–4
–5

y

x
–5 –4 –3 –2 –1 321 4 5

(b)

FIGURE 7.26 The graphs of (a) and (b) (Example 2)y 6 -3.x Ú 2

[–5, 5] by [–5, 15] 

FIGURE 7.27 The graph of 
(Example 3)

y Ú x2
- 3.

EXAMPLE 3  Graphing a Quadratic Inequality
Draw the graph of State the boundary of the region.

SOLUTION

Step 1. Replacing “ ” by “ ” we obtain the equation whose graph is a
parabola.

Step 2. The pair is a solution of the inequality because

Thus, the graph of is the parabola together with the region inside the
parabola (Figure 7.27). The parabola is the boundary of the region.

Now try Exercise 11.

Systems of Inequalities
A solution of a system of inequalities in x and y is an ordered pair that satisfies
each inequality in the system. When we have found all the common solutions we have
solved the system of inequalities.

The technique for solving a system of inequalities graphically is similar to that for solv-
ing a system of equations graphically. We graph each inequality and determine the
points common to the individual graphs.

1x, y2

y Ú x2
- 3

1 Ú 1022 - 3 = -3.

10, 12
y = x2

- 3=Ú

y Ú x2
- 3.
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EXAMPLE 4  Solving a System of Inequalities Graphically
Solve the system.

SOLUTION The graph of is shaded in Figure 7.28a. It does not include its
boundary The graph of is shaded in Figure 7.28b. It does not
include its boundary The solution to the system is the intersection of
these two graphs, as shaded in Figure 7.28c.

2x + 3y = 4.
2x + 3y 6 4y = x2.

y 7 x2

 2x + 3y 6 4

 y 7 x2

Shading Graphs
Most graphing utilities are capable of 
shading solutions to inequalities. Check the
owner’s manual for your grapher.

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 321 4 5

(a)

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 21 4 5

(b)

5
4
3
2
1

–1
–2
–3
–4
–5

y

x
–5 –4 –3 –2 –1 21 4 5

(c)

FIGURE 7.28 The graphs of (a) , (b) , and (c) the system of Example 4.2x + 3y 6 4y 7 x2

Support with a Grapher
Figure 7.29 shows what our grapher produces when we shade above the curve 
and below the curve The shaded portion appears to be identical to the
shaded portion in Figure 7.28c. Now try Exercise 19.

2x + 3y = 4.
y = x2

[–3, 3] by [–2, 5]

FIGURE 7.29 The solution of the system
in Example 4. Most graphers cannot distin-
guish between dashed and solid boundaries.

EXAMPLE 5  Solving a System of Inequalities
Solve the system.

SOLUTION The solution is in the first quadrant because and , it lies
below each of the two lines and , and includes all of its
boundary points (Figure 7.30). Now try Exercise 23.

Linear Programming
Sometimes decision making in management science requires that we find a minimum
or a maximum of a linear function

called an objective function, over a set of points. Such a problem is a linear program-
ming problem. In two dimensions, the function ƒ takes the form and theƒ = ax + by

ƒ = a1x1 + a2x2 +
Á

+  anxn,

2x + 3y = 142x + y = 10
y Ú 0x Ú 0

 y Ú 0
 x Ú 0

 2x + 3y … 14

 2x + y … 10

[0, 10] by [0, 10]

2x + 3y = 14

2x + y = 10

FIGURE 7.30 The solution (shaded) of
the system in Example 5. The boundary points
are included.
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set of points is the solution of a system of inequalities, called constraints, such as the
one in Figure 7.30. The solution of the system of inequalities is the set of feasible xy
points for the optimization problem.

It can be shown that if a linear programming problem has a solution it occurs at one of
the vertex points, or corner points, along the boundary of the region. We use this in-
formation in Examples 6 and 7.

568 CHAPTER 7 Systems and Matrices

EXAMPLE 6  Solving a Linear Programming Problem
Find the maximum and minimum values of the objective function , sub-
ject to the constraints given by the system of inequalities.

SOLUTION The feasible xy points are those graphed in Figure 7.30. Figure 7.31
shows that the two lines and intersect at . The
corner points are:

the y-intercept of ,

the x-intercept of , and

the point of intersection of and 

The following table evaluates ƒ at the corner points of the region in Figure 7.31.

The maximum value of ƒ is 112/3 at The minimum value is 0 at 
Now try Exercise 31.

Here is one way to analyze the linear programming problem in Example 6. By assign-
ing positive values to ƒ in , we obtain a family of parallel lines whose dis-
tance from the origin increases as f increases. (See Exercise 47.) This family of lines
sweeps across the region of feasible solutions. Geometrically, we can see that there is a
minimum and maximum value for ƒ if the line is to intersect the region of
feasible solutions.

ƒ = 5x + 8y

ƒ = 5x + 8y

10, 02.10, 14/32.

2x + y = 102x + 3y = 1414, 22,
2x + y = 1015, 02,

2x + 3y = 1410, 14/32,
10, 02,

14, 222x + y = 102x + 3y = 14

 y Ú 0

 x Ú 0

 2x + 3y … 14

 2x + y … 10

ƒ = 5x + 8y

ƒ 0 112/3 36 25

15, 0214, 2210, 14/3210, 021x, y2

[0, 10] by [–5, 10]

Intersection
X=4         Y=2

FIGURE 7.31 The lines 
and intersect at 
(Example 6)

14, 22.2x + y = 10
2x + 3y = 14

EXAMPLE 7  Purchasing Fertilizer
Johnson’s Produce is purchasing fertilizer with two nutrients: N (nitrogen) and P
(phosphorus). They need at least 180 units of N and 90 units of P. Their supplier has
two brands of fertilizer for them to buy. Brand A costs $10 a bag and has 4 units of N
and 1 unit of P. Brand B costs $5 a bag and has 1 unit of each nutrient. Johnson’s
Produce can pay at most $800 for the fertilizer. How many bags of each brand should
be purchased to minimize cost?

SOLUTION

Model

Let number of bags of Brand A

Let number of bags of Brand By =

x =

Making a Sketch by Hand
It is usually easier to draw a hand sketch of the
lines in the examples and exercises in this chap-
ter (by using the x- and y-intercept method) than
to use a graphing calculator. You can support
your sketches using a grapher.
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The region in Example 8 is unbounded. Using the discussion following Example 6, we
can see geometrically that the linear programming problem in Example 8 does not have
a maximum value but, fortunately, does have a minimum value.

SECTION 7.5 Systems of Inequalities in Two Variables 569

[0, 100] by [0, 200]

10x + 5y = 800

x + y = 90

4x + y = 180

Johnson's Produce

FIGURE 7.32 The feasible region in 
Example 7.

Then the total cost is the objective function to be minimized. The
constraints are:

Amount of N is at least 180.

Amount of P is at least 90.

Total cost to be at most $800.

Solve Graphically
The region of feasible xy points is the intersection of the graphs of ,

, and in the first quadrant (Figure 7.32).

The region has three corner points at the points of intersections of the three lines
, , and : 10, 140 , 70, 20 , and 30, 60 .

The values of the objective function C at the corner points are:

Interpret
The minimum cost for the fertilizer is $600 when 30 bags of Brand A and 60 bags of
Brand B are purchased. For this purchase, Johnson’s Produce gets exactly 180 units
of nutrient N and 90 units of nutrient P. Now try Exercise 37.

 C130, 602 = 101302 + 51602 = 600

 C170, 202 = 101702 + 51202 = 800

 C110, 1402 = 101102 + 511402 = 800

21212110x + 5y = 800x + y = 904x + y = 180

10x + 5y … 800x + y Ú 90
4x + y Ú 180

x Ú 0, y Ú 0

10x + 5y … 800

x + y Ú  90

4x + y Ú 180

= 10x + 5yC =

EXAMPLE 8  Minimizing Operating Cost
Gonza Manufacturing has two factories that produce three grades of paper: low-grade,
medium-grade, and high-grade. It needs to supply 24 tons of low-grade, 6 tons of
medium-grade, and 30 tons of high-grade paper. Factory A produces 8 tons of low-
grade, 1 ton of medium-grade, 2 tons of high-grade paper daily, and costs $2000 per
day to operate. Factory B produces 2 tons of low-grade, 1 ton of medium-grade, 
8 tons of high-grade paper daily, and costs $4000 per day to operate. How many days
should each factory operate to fill the orders at minimum cost?

SOLUTION

Model

Let the number of days Factory A operates.

Let the number of days Factory B operates.

Then total operating cost 2000 4000y is the objective function to be
minimized. The constraints are:

Amount of low-grade is at least 24.

Amount of medium-grade is at least 6.

Amount of high-grade is at least 30.

Solve Graphically
The region of feasible points is the intersection of the graphs of ,

, and in the first quadrant (Figure 7.33).

(continued)

2x + 8y Ú 30x + y Ú 6
8x + 2y Ú 24

 x Ú 0, y Ú 0

 2x + 8y Ú 30

 x + y Ú 6

 8x + 2y Ú 24

x +=C =

y =

x =
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0

5

10

15

5 10 15 20
x

y

(0, 12)

(2, 4)
(3, 3)

(15, 0)

FIGURE 7.33 The graph of the 
feasible points in Example 8.

The region has four corner points:

the y-intercept of ,

the point of intersection of and ,

the point of intersection of and ,

the x-intercept of 

The values of the objective function C at the corner points are:

Interpret
The minimum operational cost is $18,000 when the two factories are operated for 
3 days each. The two factories will produce 30 tons of low-grade, 6 tons of medium-
grade, and 30 tons of high-grade. They will have a surplus of 6 tons of low-grade paper.

Now try Exercise 39.

C115, 02 = 20001152 + 4000102  = 30,000

C13, 32 = 2000132  + 4000132  = 18,000

C12, 42 = 2000122  + 4000142  = 20,000

C10, 122 = 2000102  + 40001122 = 48,000

2x + 8y = 30.115, 02,
2x + 8y = 30x + y = 613, 32,

x + y = 68x + 2y = 2412, 42,
8x + 2y = 2410, 122,

QUICK REVIEW 7.5 (For help, go to Sections P.4 and 7.1.)

6. and 

7. and 

8. and 

9. and 

10. Solve the system of equations:

2x + 3y = 4

y = x2

2x + 8y = 30x + y = 6

x + y = 68x + 2y = 24

10x + 5y = 8004x + y = 180

10x + 5y = 800x + y = 90In Exercises 1–4, find the x- and y-intercepts of the line and draw its
graph.

1. 2.

3. 4.

In Exercises 5–9, find the point of intersection of the two lines. (We
will use these values in Examples 7 and 8.)

5. and x + y = 904x + y = 180

x

30
-

y

20
= 1

x

20
+

y

50
= 1

5x + 10y = 302x - 3y = 6

SECTION 7.5 EXERCISES
Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–6, match the inequality with its graph. Indicate whether
the boundary is included in or excluded from the graph. All graphs are
drawn in by 

1. 2.

3. 4.

5. 6. x2
+ y2

6 4y Ú 2 - x2

y 7 11/22x2
- 12x - 5y Ú 2

y 7 2x … 3

3-3.1, 3.14.3-4.7, 4.74

(a) (b)

(c) (d)

(e) (f)
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In Exercises 7–16, draw a hand sketch of the inequality. State the
boundary of the region.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

Use an algebraic method in Exercises 17–22 to solve the system of 
inequalities. Support with a grapher.

17.
3x + 4y … 18
5x - 3y 7 1

y 6 sin xy 7 2x

x2
+ y2

Ú 4x2
+ y2

6 9

y Ú x2
- 3y 6 x2

+ 1

3x - y 7 42x + 5y … 7

y Ú -3x … 4

In Exercises 31–36, find the minimum and maximum, if they exist, of
the objective function ƒ, subject to the constraints.

31. Objective function: 
Constraints:

32. Objective function: 
Constraints:

33. Objective function: 
Constraints:

, 

34. Objective function: 
Constraints:

35. Objective function: 
Constraints:

, 
36. Objective function: 

Constraints:

, 

37. Mining Ore Pearson’s Metals mines two ores: R and S.
The company extracts minerals A and B from each type of ore.
It costs $50 per ton to extract 
80 lb of A and 160 lb of B
from ore R. It costs $60 per 
ton to extract 140 lb of A 
and 50 lb of B from ore 
S. Pearson’s must produce at 
least 4000 lb of A and 
3200 lb of B. How much of 
each ore should be processed 
to minimize cost? What is the 
minimum cost?

y Ú 0x Ú 0
2x + 7y Ú 30
5x + 6y Ú 52
3x + 2y Ú 20

ƒ = 3x + 5y
y Ú 0x Ú 0

x + 2y Ú 10
4x + 3y Ú 30
2x + y Ú 12

ƒ = 5x + 2y
x Ú 0, y Ú 0

11x + 28y … 380
x + 8y Ú 40

3x + 4y Ú 60

f = 15x + 25y

y Ú 0x Ú 0
4x + 6y Ú 204
x + 6y Ú 60
5x + y Ú 60

ƒ = 7x + 4y

x Ú 0, y Ú 0
3x - y Ú 0

x + y … 90

ƒ = 10x + 11y

 x Ú 0, y Ú 0
 x - 2y … 0

 x + y … 80

ƒ = 4x + 3y

SECTION 7.5 Systems of Inequalities in Two Variables 571

18.
2x - y … -8

4x + 3y … -6

19.

20.

21.

x2
+ y2

… 4

y Ú x2

y 7 -x2
- 2x + 2

x - 3y - 6 6 0

y Ú x2
- 2

y … 2x + 3

Use an algebraic method in Exercises 23–26 to solve the system of 
inequalities. Support with a grapher.

In Exercises 23–26, solve the system of inequalities.

In Exercises 27–30, write a system of inequalities whose solution is the
region shaded in the given figure. All boundaries are to be included.

27. Group Activity 28. Group Activity

29. Group Activity 30. Group Activity

23.

y Ú 0
x Ú 0

x + 2y … 80
2x + y … 80 24.

y Ú 0
x Ú 6

9x + 4y Ú 360
3x + 8y Ú 240

25.

y Ú 0
x Ú 0

x + y Ú 2
2x + 3y … 18
5x + 2y … 20 26.

x + y Ú 30
3x + 7y … 210
7x + 3y … 210

22.

y Ú ƒx ƒ

x2
+ y2

… 9

[–4.7, 4.7] by [–3.1, 3.1] [–4.7, 4.7] by [–3.1, 3.1]

[–1, 8] by [–1, 8]

(4, 3)

[–1, 8] by [–1, 8]

(2, 1)
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38. Planning a Diet Paul’s diet is to contain at least 24 units
of carbohydrates and 16 units of protein. Food substance A costs
$1.40 per unit and each unit contains 3 units of carbohydrates
and 4 units of protein. Food substance B costs $0.90 per unit and
each unit contains 2 units of carbohydrates and 1 unit of protein.
How many units of each food substance should be purchased in
order to minimize cost? What is the minimum cost?

39. Producing Gasoline Two oil refineries produce three
grades of gasoline: A, B, and C. At each refinery, the three
grades of gasoline are produced in a single operation in the fol-
lowing proportions: Refinery 1 produces 1 unit of A, 2 units of
B, and 1 unit of C; Refinery 2 produces 1 unit of A, 4 units of B,
and 4 units of C. For the production of one operation, Refinery 1
charges $300 and Refinery 2 charges $600. A customer needs
100 units of A, 320 units of B, and 200 units of C. How should
the orders be placed if the customer is to minimize his cost?

40. Maximizing Profit A manufacturer wants to maximize
the profit for two products. Product A yields a profit of 
$2.25 per unit, and product B yields a profit of $2.00 per unit.
Demand information requires that the total number of units
produced be no more than 3000 units, and that the number of
units of product B produced be greater than or equal to half the
number of units of product A produced. How many of each
unit should be produced to maximize profit?

Standardized Test Questions
41. True or False The graph of a linear inequality in x and y

is a half-line. Justify your answer.

42. True or False The boundary of the solution of
is the graph of Justify your answer.

In Exercises 43–46, you may use a graphing calculator to solve the
problem.

For Exercises 43–44, use the figure below, which shows the graphs of
the two lines and 

43. Multiple Choice Which of the following represents the
solution of the system 

(A) Region I plus its boundary

(B) Region I without its boundary

(C) Region II plus its boundary

(D) Region II without its boundary

(E) Region IV plus its boundary

44. Multiple Choice Which of the following represents the
solution of the system 

(A) Region II plus its boundary

(B) Region III plus its boundary

2x - 3y 7 4?

3x + 4y 6 5

2x - 3y … 4?
3x + 4y Ú 5

2x - 3y = 4.3x + 4y = 5

3y = 2x - 5.2x - 3y 6 5

(C) Region III without its boundary

(D) Region IV plus its boundary

(E) Region IV without its boundary

Exercises 45–46 refer to the following linear programming problem:
Objective function: 
Constraints:

45. Multiple Choice Which of the following is not a corner
point?

(A) 0, 0 (B) 5, 0

(C) 0, 4 (D) 3, 4

(E) 3.6, 2.8

46. Multiple Choice What is the maximum value of ƒ in the
feasible region of the problem?

(A) 0 (B) 25 (C) 40 (D) 46 (E) 55

Explorations
47. Revisiting Example 6 Consider the objective function

of Example 6.

(a) Prove that for any two real number values for f, the two
lines are parallel.

(b) Writing to Learn For give reasons why the
line moves farther away from the origin as the value of 
ƒ increases.

(c) Writing to Learn Give a geometric explanation of
why the region of Example 6 must contain a minimum and
a maximum value for ƒ.

48. Writing to Learn Describe all the possible ways that
two distinct parabolas of the form can intersect. Give
examples.

Extending the Ideas
49. Implicit Functions The equation

defines y as two implicit functions of x. Solve for y to find the
two functions and draw the graph of the equation.

50. Implicit Functions The equation

defines y as two implicit functions of x. Solve for y to find the
two functions and draw the graph of the equation.

51. Solve the system of inequalities:

[Hint: See Exercise 49.]

52. Graph the inequality [Hint: See Exercise 50.]x2
- y2

… 4.

y Ú x2
- 1

x2

9
+

y2

4
… 1

x2
- y2

= 4

x2

9
+

y2

4
= 1

y = ƒ1x2

ƒ 7 0,

ƒ = 5x + 8y

21
2121
2121

 x Ú 0, y Ú 0
 x + 3y … 12
 2x + y … 10

ƒ = 5x + 10y
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CHAPTER 7 Key Ideas

Properties, Theorems, and Formulas
Matrix Operations 530, 532
Theorem Inverses of n n Matrices 536
Properties of Matrices 537
Theorem Invertible Square Linear Systems 550

*

Procedures
Solving Systems of Equations Algebraically 520, 521, 
544, 550

Partial Fraction Decomposition of 557
f 1x2
d1x2

CHAPTER 7 Review Exercises

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1 and 2, find (a) , (b) , (c) and 
(d) 

1. ,

2.

In Exercises 3–8, find the products AB and BA, or state that a given
product is not possible.

3.

4.

5.

6.

7.

8. A = D
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

T ,  B = D
-2 1 0 1

3 0 2 1

-1 1 2 -1

3 -2 1 0

T

A = C 0 1 0

1 0 0

0 0 1

S ,  B = C 2 -3 4

1 2 -3

-2 1 -1

S

A = c -1 1

0 1
d ,  B = D

3 -4

1 2

3 1

1 1

T
A = 3-1  44,  B = c5 -3

2 1
d

A = C -1 2

3 -1

4 3

S ,  B = C -2 3 1

2 1 0

-1 2 -3

S
A = c -1 4

0 6
d ,  B = c3 -1 5

0 -2 4
d

A = C 2 3 -1 2

1 4 -2 -3

0 -3 2 1

S ,  B = C -1 2 0 4

2 -1 3 3

-2 4 1 3

S
B = c2 -1

4 3
dA = c -1 3

4 0
d

3A - 2B.
-2A,A - BA + B

In Exercises 9 and 10, use multiplication to verify that the matrices are
inverses.

9.

10.

In Exercises 11 and 12, find the inverse of the matrix if it has one. If it
does, use multiplication to support your result.

11. 12.

In Exercises 13 and 14, evaluate the determinant of the matrix.

13. 14.

In Exercises 15–18, find the reduced row echelon form of the matrix.

15. 16.

17. 18.

In Exercises 19–22, state whether the system of equations has a solu-
tion. If it does, solve the system.

19.
x + 2y = 5
3x - y = 1

C 1 -2 0 4

-2 5 3 -6

2 -4 1 9

SC1 2 3 1

2 3 3 -2

1 2 4 6

S
C 2 1 1 1

-3 -1 -2 1

5 2 2 3

SC1 0 2

3 1 5

1 -1 3

S

D
-2 3 0 1

3 0 2 0

5 2 -3 4

1 -1 2 3

TC 1 -3 2

2 4 -1

-2 0 1

S

C -1 0 1

2 -1 1

1 1 1

SD
1 2 0 -1

2 -1 1 2

2 0 1 2

-1 1 1 4

T

A = C -1 1 1

2 1 0

-1 0 2

S ,  B = C -0.4 0.4 0.2

0.8 0.2 -0.4

-0.2 0.2 0.6

S

A = D
1 -2 1 1

1 -1 0 3

1 -1 2 2

2 -4 2 3

T ,  B = D
8 1.5 0.5 -4.5

2 0.5 0.5 -1.5

-1 -0.5 0.5 0.5

-2 0 0 1

T

21.
4y - 4 = -2x
x + 2y = 1

20.
-2x + y = 5

x - 2y = -1

22.

3y -

3

2
 x = -9

x - 2y = 9
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41.

 y = 0.5x2
- 1

 y = -0.5x2
+ 3

574 CHAPTER 7 Systems and Matrices

25.

 -2x - 2y + 4z = 6
 3x - y + z = 4
 x + y - 2z = 2

27.

28.

In Exercises 29–32, solve the system of equations by using inverse
matrices.

29.

 2x - 3y + z = 5
 x - 3y + 2z = 1

 x + 2y + z = -1

-x + 3y + 3z - w = -5
-x + 2y + 2z - 2w = -6

y + z = -1
-x + 2y + 2z - w = -4

 -x - 3y + z - 2w = -7
 2x + 2y + 2z = 6

 2x + y + 3z - w = 4
 -x - 6y + 4z - 5w = -13

26.

 -2x - 2y + 4z = -4
 3x - y + z = 1
 x + y - 2z = 2

31.

32.

In Exercises 33–36, solve the system of equations by finding the
reduced row echelon form of the augmented matrix.

33.

34.

35.

36.

In Exercises 37 and 38, find the equilibrium point for the 
demand and supply curves.

37.

38.

p = 5 + 4x

p = 80 -

1

10
 x2

p = 20 + 3x
p = 100 - x2

 2x + y + 5z - 4w = 9
 4x + y + 7z - 6w = 15
 2x + y + 4z - 3w = 7

 x + 2z - 2w = 5

 3x + 5y + 10z + 14w = 15
 2x + 4y + 7z + 11w = 10
 3x + 4y + 8z + 11w = 11

 x + 2y + 4z + 6w = 6

 x + 3y - 3z + w = 11
 2x + 7y - 7z + 2w = 25

 x + 2y - 2z + w = 8

 2x + 3y - 3z + 2w = 13
 x + 2y - 2z + w = 8

 x + 3y - z + w = 4
 x - y + 2z - w = -1
 2x + y - z - w = -1
 x - 2y + z - w = 2

 x - 2y + z - w = 1
 -x + y - z + w = -3
 2x - y + z - w = -2
 2x + y + z - w = 1

30.

 x + y - 2z = 3
 2x - y + z = 1
 x + 2y - z = -2

40.
 y = 0.5x2

- 3
 y = x - 1.5

43.
 y = 2x - 3
 y = 2 sin x

42.

 y = 2x2
- 3

 x2
+ y2

= 4

44.

 y = 2x2
- 12x + 15

 y = ln 2x

In Exercises 45 and 46, find the coefficients of the function so that its
graph goes through the given points.

45. Curve Fitting

2, 8 , 4, 5 , 6, 3 , 9, 4

46. Curve Fitting

, , 1, 2 , 3, 6 , 4, , 7, 8

In Exercises 47–52, find the partial fraction decomposition of the 
rational function.

47. 48.

49. 50.

51. 52.

In Exercises 53–56, match the function with its graph. Do this without
using your grapher.

-x2
- 5x + 2

x3
+ 2x2

+ 4x + 8

5x2
- x - 2

x3
+ x2

+ x + 1

313 + 2x + x22
x3

+ 3x2
- 4

3x + 5

x3
+ 4x2

+ 5x + 2

x - 16

x2
+ x - 2

3x - 2

x2
- 3x - 4

212-2121212-4-21
ƒ1x2 = ax4

+ bx3
+ cx2

+ dx + e

21212121
ƒ1x2 = ax3

+ bx2
+ cx + d

(a) (b)

(c) (d)

53.

54.

55.

56.

In Exercises 57 and 58, graph the inequality.

57. 58. x + 3y 6 22x - y … 1

y = -x + 2 -

1

x + 3
-

2

x - 1

y = -x + 2 +

1

x + 3
+

2

x - 1

y = -x + 2 +

1

x + 3
-

2

x - 1

y = -x + 2 -

1

x + 3
+

2

x - 1

In Exercises 23–28, use Gaussian elimination to solve the system of
equations.

23.

 3x + 2y + 3z + w = 8
 x + y + z = 3
 x + z + w = 2 24.

 -x - 2y - 2z - 3w = 2
 x + y + z + 2w = -2

 x + w = -2

In Exercises 39–44, solve the system of equations graphically.

39.
 2x + y = -2

 3x - 2y = 5
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In Exercises 59–64, solve the system of inequalities. Give the coordinates
of any corner points.

59.

 x + y … 90
 9x + 4y Ú 360
 4x + 9y Ú 360

(a) Find a linear regression model and superimpose its graph
on a scatter plot of the data.

(b) Find a power regression model and superimpose its graph
on a scatter plot of the data.

(c) Find when the models in parts (a) and (b) predict the same
disbursement amounts.

(d) Writing to Learn Which model appears to be a 
better fit for the data? Explain.

Which model would you choose to make predictions
beyond 2010?

71. Population Table 7.8 gives the population (in thousands)
of the states of Hawaii and Idaho for several years. Let 
stand for 1980, for 1981, and so forth.x = 1

x = 0

SECTION 7 Review Exercises 575

Source: U.S. Census Bureau, Statistical Abstract of the United States: 
2009, Table 125. National Health Expenditures by Type: 1990 to 2006;
http://www.census.gov/prod/2008pubs/09statab/health.pdf

Table 7.7 Total Medicare Disbursements

Year Disbursements (billions)

2000 224.3
2001 247.7
2002 265.1
2003 281.5
2004 309.3
2005 338.0
2006 401.3

Source: U.S. Census Bureau, Current
Population Reports, P25-1106.

Table 7.8 Population

Year Hawaii Idaho
(thousands) (thousands)

1980 965 944
1990 1108 1007
2000 1212 1294
2002 1229 1342
2003 1240 1364
2004 1254 1392
2005 1268 1426
2006 1279 1464
2007 1283 1499

(a) Find a linear regression model for Hawaii’s data and super-
impose its graph on a scatter plot of Hawaii’s data.

(b) Find a linear regression model for Idaho’s data and super-
impose its graph on a scatter plot of Idaho’s data.

(c) Using the models in parts (a) and (b), when was the popu-
lation of the two states the same?

(d) Writing to Learn Why might you want to use a 
different model than a linear model for the population
growth? What model do you think would be best for
Hawaii and then for Idaho—linear, logistic, exponential,
power, quadratic, or cubic? Explain your thinking.

60.

 y Ú 0
 x Ú 0

 x + y Ú 3
 2x + y … 10

 7x + 10y … 70

61.

62.

63.

64.

In Exercises 65–68, find the minimum and maximum, if they exist, of
the objective function ƒ, subject to the constraints.

65. Objective function: 
Constraints:

66. Objective function: 
Constraints:

67. Objective function: 
Constraints:

68. Objective function: 
Constraints:

69. Rotating Coordinate Systems The xy-coordinate
system is rotated through the angle 45° to obtain the 

-coordinate system.

(a) If the coordinates of a point in the xy-coordinate system are
what are the coordinates of the rotated point in the

-coordinate system?

(b) If the coordinates of a point in the -coordinate system
are what are the coordinates of the point in the 
xy-coordinate system that was rotated to it?

70. Medicare Disbursements Table 7.7 shows the total
Medicare Disbursements in billions of dollars for several years.
Let stand for 1990, for 1991, and so forth.x = 1x = 0

11, 22,
x¿y¿

x¿y¿

11, 22,
x¿y¿

3x + 10y Ú 360
9x + 2y Ú 240

x + y … 120

ƒ = 9x + 14y

x Ú 0, y Ú 0
5x + 11y … 460

x + 4y Ú 110
5x + 2y Ú 100

ƒ = 3x + 7y

x Ú 0, y Ú 0
5x + 8y Ú 120
5x + 2y Ú 60

ƒ = 11x + 5y

x Ú 0, y Ú  0
2x + 5y Ú  50
7x + 5y Ú 100

ƒ = 7x + 6y

 x2
+ y2

Ú 4

 y … x2
+ 4

 y Ú x2

 x2
+ y2

… 4

 y … 9 - x2

 x + 2y Ú 4

 y 7 x2
- 6x + 7

 x - 3y + 6 6 0
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72. (a) The 2003 population data for three states are listed below.
Use the data in the first table of the Chapter 7 Project to
create a 3 2 matrix that estimates the number of males
and females in each state.

(b) Write the data from the 2003 Census table below in the
form of a 3 2 matrix.*

*

75. Truck Deliveries Brock’s Discount TV has three types
of television sets on sale: a 13-in. portable, a 27-in. remote, and
a 50-in. console. They have three types of vehicles to use for
delivery: vans, small trucks, and large trucks. The vans can
carry 8 portable, 3 remote, and 2 console TVs; the small trucks,
15 portable, 10 remote, and 6 console TVs; and the large
trucks, 22 portable, 20 remote, and 5 console TVs. On a given
day of the sale they have 115 portable, 85 remote, and 35 con-
sole TVs to deliver. How many vehicles of each type are
needed to deliver the TVs?

76. Investments Jessica invests $38,000; part at 7.5% simple
interest and the remainder at 6% simple interest. If her annual
interest income is $2600, how much does she have invested at
each rate?

77. Business Loans Thompson’s Furniture Store borrowed
$650,000 to expand its facilities and extend its product line.
Some of the money was borrowed at 4%, some at 6.5%, and
the rest at 9%. How much was borrowed at each rate if the 
annual interest was $46,250 and the amount borrowed at 9%
was twice the amount borrowed at 4%?

78. Home Remodeling Sanchez Remodeling has three
painters: Sue, Esther, and Murphy. Working together they can
paint a large room in 4 hours. Sue and Murphy can paint the
same size room in 6 hours. Esther and Murphy can paint the
same size room in 7 hours. How long would it take each of
them to paint the room alone?

79. Swimming Pool
Three pipes, A, B, and C, 
are connected to a 
swimming pool. When all 
three pipes are running, 
the pool can be filled in 
3 hr. When only A and B 
are running, the pool can 
be filled in 4 hr. When 
only B and C are running, the pool can be filled in 3.75 hr. How
long would it take each pipe running alone to fill the pool?

80. Writing to Learn If the products AB and BA are defined
for the n n matrix A, what can you conclude about the order
of matrix B? Explain.

81. Writing to Learn If A is an m n matrix and B is a 
p q matrix, and if AB is defined, what can you conclude
about their orders? Explain.

*

*

*

576 CHAPTER 7 Systems and Matrices

% Pop. Under % Pop. 65 Years
State 18 Years or Older

California 26.5 10.6
Florida 23.1 17.0
Rhode Island 22.8 14.0

 

State Population (millions)

California 35.5
Florida 17.0
Rhode Island 1.1

(c) Multiply your 3 2 matrix in part (b) by the scalar 0.01
to change the values from percentages to decimals.

(d) Use matrix multiplication to multiply the transpose of the
matrix from part (c) by the matrix from part (a). What 
information does the resulting matrix provide?

(e) How many males under age 18 lived in these three states in
2003? How many females age 65 or older lived in these
three states?

73. Using Matrices A stockbroker sold a customer 
200 shares of stock A, 400 shares of stock B, 600 shares of
stock C, and 250 shares of stock D. The price per share of A,
B, C, and D is $80, $120, $200, and $300, respectively.

(a) Write a matrix N representing the number of shares
of each stock the customer bought.

(b) Write a matrix P representing the price per share of
each stock.

(c) Write a matrix product that gives the total cost of the
stocks that the customer bought.

74. Basketball Attendance At Whetstone High School
452 tickets were sold for the first basketball game. There were
two ticket prices: $0.75 for students and $2.00 for nonstudents.
How many tickets of each type were sold if the total revenue
from the sale of tickets was $429?

1 * 4

1 * 4

*
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CHAPTER 7 Project

Examine the male and female population data from 1990 to
2006 given in Table 7.9.

1. Plot the data using 1990 as the year zero. Find a linear re-
gression model for each.

2. What do the slope and y-intercept mean in each equation?

3. What conclusions can you draw? According to these models,
will the male population ever become greater than the 

female population? Was the male population ever greater
than the female population? Are there enough data to create
a model for a hundred years or more? Explain your answers.

4. Notice that the data in Table 7.9 give information for a
span of only 15 years. This is often not enough informa-
tion to accurately answer the questions asked above. Data
over a small period often appear to be linear and can be
modeled with a linear equation that works well over that
limited domain. Table 7.10 gives more data. Now use
these data to plot the number of males versus time and fe-
males versus time, using 1890 as year zero.

5. Notice that these data in Table 7.10 do not seem to be linear.
Often, you may remember from Chapter 3, a logistic model
is used to model population growth. Find the logistic regres-
sion model for each data plot. What is the intersection of the
curves and what does it represent? Would any of your 
responses in question 3 above change? If so, how? Why?

6. Go to the U.S. Census Bureau Web site (www.census.gov).
How does your model predict the populations for the 
current year?

7. Use the census data for 2000. What percentage of the 
population is male and what percentage is female?

8. Go to the U.S. Census Bureau Web site (www.census.gov)
and use the most recent data along with the concepts from
this chapter to collect and analyze other data.

Source: http://www.census.gov/popest/national/asrh/NC-EST2006/
NC-EST2006-02.xls

Table 7.9 U.S. Male and Female Population
Data from 1990 to 2006

Population Male Female
(millions)

1990 121.3 127.5
1997 130.8 137.0
1998 132.0 138.3
1999 133.3 139.4
2000 138.1 143.4
2001 140.1 145.1
2002 141.5 146.4
2003 143.0 147.8
2004 144.5 149.2
2005 146.0 150.5
2006 147.5 151.9

Table 7.10 U.S. Male and Female Population Data from 1890 to 2000

Population Population
(millions) Male Female (millions) Male Female

1890 32.2 30.7 1950 75.2 76.1
1900 38.8 37.2 1960 88.3 91.0
1910 47.3 44.6 1970 98.9 104.3
1920 53.9 51.8 1980 110.1 116.5
1930 62.1 60.6 1990 121.3 127.5
1940 66.0 65.6 2000 138.1 143.4
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579

Analytic Geometry in Two
and Three Dimensions

The oval lawn behind the White House in Washington, D.C., is called the
Ellipse. It has views of the Washington Monument, the Jefferson Memorial,
the Department of Commerce, and the Old Post Office Building. The 
Ellipse is 616 ft long and 528 ft wide, and is in the shape of a conic section.
Its shape can be modeled using the methods of this chapter. See page 598.

8.1 Conic Sections 
and Parabolas

8.2 Ellipses

8.3 Hyperbolas

8.4 Translation and Rotation 
of Axes

8.5 Polar Equations of Conics

8.6 Three-Dimensional 
Cartesian Coordinate 
System

CHAPTER 8
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Chapter 8 Overview
Analytic geometry combines number and form. It is the marriage of algebra and geom-
etry that grew from the works of Frenchmen René Descartes (1596–1650) and Pierre 
de Fermat (1601–1665). Their achievements allowed geometry problems to be solved
algebraically and algebra problems to be solved geometrically—two major themes 
of this book. Analytic geometry opened the door for Newton and Leibniz to develop
calculus.

In Sections 8.1–8.4, we will learn that parabolas, ellipses, and hyperbolas are all conic
sections and can all be expressed as second-degree equations. We will investigate their
uses, including the reflective properties of parabolas and ellipses and how hyperbolas
are used in long-range navigation. In Section 8.5, we will see how parabolas, ellipses,
and hyperbolas are unified in the polar coordinate setting. In Section 8.6, we will move
from the two-dimensional plane to revisit the concepts of point, line, midpoint, dis-
tance, and vector in three-dimensional space.

580 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

8.1 Conic Sections and Parabolas

What you’ll learn about
• Conic Sections
• Geometry of a Parabola
• Translations of Parabolas
• Reflective Property of a Parabola

... and why
Conic sections are the paths of
nature: Any free-moving object in
a gravitational field follows the
path of a conic section.

FIGURE 8.1 A right circular cone (of two nappes).

Axis
Generator

Upper
nappe

Lower
nappe

V

History of Conic Sections
Parabolas, ellipses, and hyperbolas had been
studied for many years when Apollonius
(c.250–175 B.C.E.) wrote his eight-volume Conic
Sections. Apollonius, born in Perga, Asia Minor,
was the first to unify these three curves as cross
sections of a cone and to view the hyperbola as
having two branches. Interest in conic sections
was renewed in the 17th century when Galileo
proved that projectiles follow parabolic paths
and Johannes Kepler (1571–1630) discovered
that planets travel in elliptical orbits.

Conic Sections
Imagine two nonperpendicular lines intersecting at a point V. If we fix one of the lines
as an axis and rotate the other line (the generator) around the axis, then the generator
sweeps out a right circular cone with vertex V, as illustrated in Figure 8.1. Notice
that V divides the cone into two parts called nappes, with each nappe of the cone 
resembling a pointed ice-cream cone.

A conic section (or conic) is a cross section of a cone, in other words, the intersection
of a plane with a right circular cone. The three basic conic sections are the parabola,
the ellipse, and the hyperbola (Figure 8.2a).

Some atypical conics, known as degenerate conic sections, are shown in Figure 8.2b.
Because it is atypical and lacks some of the features usually associated with an ellipse,
a circle is considered to be a degenerate ellipse. Other degenerate conic sections can be
obtained from cross sections of a degenerate cone; such cones occur when the genera-
tor and axis of the cone are parallel or perpendicular. (See Exercise 73.)
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The conic sections can be defined algebraically as the graphs of second-degree 
(quadratic) equations in two variables, that is, equations of the form

where A, B, and C are not all zero.

Geometry of a Parabola
In Section 2.1 we learned that the graph of a quadratic function is an upward- or downward-
opening parabola. We have seen the role of the parabola in free fall and projectile mo-
tion. We now investigate the geometric properties of parabolas.

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0,

SECTION 8.1 Conic Sections and Parabolas 581

FIGURE 8.2 (a) The three standard types of conic sections and (b) three degenerate conic 
sections.

Ellipse

(a)

(b)

Parabola Hyberbola

Point: plane through
cone's vertex only

Single line: plane
tangent to cone

Intersecting lines

A Degenerate Parabola
If the focus F lies on the directrix l, the parabola
“degenerates” to the line through F perpendicu-
lar to l. Henceforth, we will assume F does not
lie on l.

DEFINITION Parabola
A parabola is the set of all points in a plane equidistant from a particular line
(the directrix) and a particular point (the focus) in the plane (Figure 8.3).
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As you can see in Figure 8.3, the line passing through the focus and perpendicular to
the directrix is the (focal) axis of the parabola. The axis is the line of symmetry for the
parabola. The point where the parabola intersects its axis is the vertex of the parabola.
The vertex is located midway between the focus and the directrix and is the point of the
parabola that is closest to both the focus and the directrix.
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FIGURE 8.4 The geometry of a parabola.

Point on the parabola

Dist. to focus
Axis

Focus

Vertex

Directrix

Dist. to directrix

We can generalize the situation in Exploration 1 to show that an equation for the
parabola with focus and directrix is (Figure 8.5).

We must show first that a point that is equidistant from and the line
satisfies the equation , and then that a point satisfying the equation

is equidistant from and the line :

Let be equidistant from and the line Notice that

distance from , and

distance from P1x, y2 to y = -p.21x - x22 + 1y - 1-p222 =

P1x, y2 to F10, p221x - 022 + 1y - p22 =

y = -p.F10, p2P1x, y2
y = -pF10, p2x2

= 4py
x2

= 4pyy = -p
F10, p2P1x, y2

x2
= 4pyy = -p10, p2

FIGURE 8.3 Structure of a Parabola. The distance from each point on the
parabola to both the focus and the directrix is the same.

EXPLORATION 1 Understanding the Definition of Parabola

1. Prove that the vertex of the parabola with focus and directrix 
is (Figure 8.4).

2. Find an equation for the parabola shown in Figure 8.4.

3. Find the coordinates of the points of the parabola that are highlighted in 
Figure 8.4.

10, 02 y = -110, 12

y

x

(0, 1)

Locus of a Point
Before the word set was used in mathematics, the
Latin word locus, meaning “place,” was often used
in geometric definitions. The locus of a point was
the set of possible places a point could be and still
fit the conditions of the definition. Sometimes,
conics are still defined in terms of loci.
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Equating these distances and squaring yields:

Simplify.

Expand.

Combine like terms.

By reversing the above steps, we see that a solution of is equidistant
from and the line 

The equation is the standard form of the equation of an upward- or downward-
opening parabola with vertex at the origin. If p 0, the parabola opens upward; if
p 0, it opens downward. An alternative algebraic form for such a parabola 
is , where So the graph of is also the graph of the 

quadratic function 

When the equation of an upward- or downward-opening parabola is written as ,
the value p is interpreted as the focal length of the parabola—the directed distance from
the vertex to the focus of the parabola. A line segment with endpoints on a parabola is a
chord of the parabola. The value is the focal width of the parabola—the length of
the chord through the focus and perpendicular to the axis.

Parabolas that open to the right or to the left are inverse relations of upward- or downward-
opening parabolas. Therefore, equations of parabolas with vertex that open to the
right or to the left have the standard form If p 0, the parabola opens to the
right, and if p 0, to the left (Figure 8.6).6

7y2
= 4px.

10, 02

ƒ4p ƒ

x2
= 4py

ƒ1x2 = ax2.

x2
= 4pya = 1/14p2.y = ax2

6

7

x2
= 4py

y = -p.F10, p2 x2
= 4py1x, y2

 x2
= 4py

 x2
+ y2

- 2py + p2
= y2

+ 2py + p2

 x2
+ 1y - p22 = 0 + 1y + p22

 1x - 022 + 1y - p22 = 1x - x22 + 1y - 1-p222
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FIGURE 8.5 Graphs of with p 0 and p 0.61b271a2x2
= 4py

y

x

x2 = 4py

Directrix:  y = –p

Focus

(a)

F(0, p)

D(x, –p)
l

P(x, y)p

p

The vertex lies
halfway between

directrix and focus.

y

x

x2 = 4py

Directrix:  y = –p

Vertex at origin

(b)

F(0, p)

Focus

FIGURE 8.6 Graph of 
with (a) p 0 and (b) p 0.67

y2
= 4px

y

x

y2 = 4px
Directrix:

x = –p

Vertex

(a)

Focus

F(p, 0)O

y

x

y2 = 4px
Directrix:

x = –p

Vertex

(b)

Focus

F(p, 0) O

Parabolas with Vertex (0, 0)

• Standard equation

• Opens Upward or To the right or
downward to the left

• Focus 0, p p, 0

• Directrix

• Axis y-axis x-axis

• Focal length p p

• Focal width

See Figures 8.5 and 8.6.

ƒ4p ƒƒ4p ƒ

x = -py = -p

2121

y2
= 4pxx2

= 4py
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Translations of Parabolas
When a parabola with the equation or is translated horizontally by
h units and vertically by k units, the vertex of the parabola moves from 0, 0 to h, k
(Figure 8.7). Such a translation does not change the focal length, the focal width, or the
direction the parabola opens.

2121
y2

= 4pxx2
= 4py
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EXAMPLE 1  Finding the Focus, Directrix, and Focal Width
Find the focus, the directrix, and the focal width of the parabola 

SOLUTION Multiplying both sides of the equation by yields the standard form
The coefficient of y is ; thus So the focus is 
Because , the directrix is the line The

focal width is Now try Exercise 1.ƒ4p ƒ = ƒ -3 ƒ = 3.

y = 3/4.-p = -1-3/42 = 3/410, -3/42.
10, p2 =p = -3/4.4p = -3x2

= -3y.
-3

y = -11/32x2.

EXAMPLE 2  Finding an Equation of a Parabola
Find an equation in standard form for the parabola whose directrix is the line 
and whose focus is the point 

SOLUTION Because the directrix is and the focus is the focal length
is and the parabola opens to the left. The equation of the parabola in standard
form is or, more specifically, Now try Exercise 15.y2

= -8x.y2
= 4px

p = -2
1-2, 02,x = 2

1-2, 02. x = 2

FIGURE 8.7 Parabolas with vertex h, k and focus on (a) and (b) y = k.x = h21

y

x

(a)

(h, k + p)

(h, k)

y

x

(b)

(h + p, k)

(h, k)

Parabolas with Vertex (h, k)

• Standard equation
• Opens Upward or To the right or

downward to the left

• Focus
• Directrix
• Axis
• Focal length p p

• Focal width
See Figure 8.7.

ƒ4p ƒƒ4p ƒ

y = kx = h

x = h - py = k - p

1h + p, k21h, k + p2

1y - k22 = 4p1x - h21x - h22 = 4p1y - k2

6965_CH08_pp579-640.qxd  1/14/10  2:00 PM  Page 584



When solving a problem like Example 3, it is a good idea to sketch the vertex, the fo-
cus, and other features of the parabola as we solve the problem. This makes it easy to
see whether the axis of the parabola is horizontal or vertical and the relative positions
of its features. Exploration 2 “walks us through” this process.
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EXAMPLE 3  Finding an Equation of a Parabola
Find the standard form of the equation for the parabola with vertex and focus

SOLUTION The axis of the parabola is the line passing through the vertex 
and the focus This is the line So the equation has the form

Because the vertex , and The directed distance from the
vertex to the focus is , so Thus the equation we
seek is

Now try Exercise 21.
1y - 422 = 81x - 32.

4p = 8.p = 5 - 3 = 215, 4213, 42 k = 4.h = 31h, k2 = 13, 42
1y - k22 = 4p1x - h2.

y = 4.15, 42. 13, 42
15, 42. 13, 42

EXPLORATION 2 Building a Parabola

Carry out the following steps using a sheet of rectangular graph paper.

1. Let the focus F of a parabola be and its directrix be Draw the 
x- and y-axes on the graph paper. Then sketch and label the focus and directrix
of the parabola.

2. Locate, sketch, and label the axis of the parabola. What is the equation of the
axis?

3. Locate and plot the vertex V of the parabola. Label it by name and coordinates.

4. What are the focal length and focal width of the parabola?

5. Use the focal width to locate, plot, and label the endpoints of a chord of the
parabola that parallels the directrix.

6. Sketch the parabola.

7. Which direction does it open?

8. What is its equation in standard form?

y = 4.12, -22

Sometimes it is best to sketch a parabola by hand, as in Exploration 2; this helps us see
the structure and relationships of the parabola and its features. At other times, we may
want or need an accurate, active graph. If we wish to graph a parabola using a function
grapher, we need to solve the equation of the parabola for y, as illustrated in Example 4.

EXAMPLE 4  Graphing a Parabola
Use a function grapher to graph the parabola of Example 3.

SOLUTION

Extract square roots.

Add 4.

Let and and graph the two equations
in a window centered at the vertex, as shown in Figure 8.8.

Now try Exercise 45.

Y2 = 4 - 281x - 32,Y1 = 4 + 281x - 32
y = 4 � 281x - 32

y - 4 = � 281x - 32
1y - 422 = 81x - 32

1y - 422 = 81x - 32

6965_CH08_pp579-640.qxd  1/14/10  2:00 PM  Page 585



Reflective Property of a Parabola
The main applications of parabolas involve their use as reflectors of sound, light, radio
waves, and other electromagnetic waves. If we rotate a parabola in three-dimensional
space about its axis, the parabola sweeps out a paraboloid of revolution. If we place a
signal source at the focus of a reflective paraboloid, the signal reflects off the surface in
lines parallel to the axis of symmetry, as illustrated in Figure 8.9a. This property is used
by flashlights, headlights, searchlights, microwave relays, and satellite up-links.

The principle works for signals traveling in the reverse direction as well (Figure 8.9b);
signals arriving parallel to a parabolic reflector’s axis are directed toward the reflector’s
focus. This property is used to intensify signals picked up by radio telescopes and tele-
vision satellite dishes, to focus arriving light in reflecting telescopes, to concentrate
heat in solar ovens, and to magnify sound for sideline microphones at football games.
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Closing the Gap
In Figure 8.8, we centered the graphing window at
the vertex 3, 4 of the parabola to ensure that this
point would be plotted. This avoids the common
grapher error of a gap between the two upper and
lower parts of the conic section being plotted.

21

FIGURE 8.8 The graphs of and 

together form the graph of (Example 4)1y - 422 = 81x - 32.
Y 2 = 4 - 28 1x - 32Y1 = 4 + 28 1x - 32

[–1, 7] by [–2, 10]

EXAMPLE 5  Using Standard Forms with a Parabola
Prove that the graph of is a parabola, and find its vertex,
focus, and directrix.

SOLUTION Because this equation is quadratic in the variable y, we complete the
square with respect to y to obtain a standard form.

Isolate the y-terms.

Complete the square.

This equation is in the standard form , where , ,
and It follows that

• the vertex h, k is 2, ;

• the focus , k is 3.5, , or 7/2, ;

• the directrix is 5, or 
Now try Exercise 49.

x = 1/2.x = 0.x = h - p

2-112-112h + p1
2-1121

p = 6/4 = 3/2 = 1.5.
k = -1h = 21y - k22 = 4p1x - h2

 1y + 122 = 61x - 22
 1y + 122 = 6x - 12

 y2
+ 2y + 1 = 6x - 13 + 1

 y2
+ 2y = 6x - 13

 y2
- 6x + 2y + 13 = 0

y2
- 6x + 2y + 13 = 0

FIGURE 8.9 Examples of parabolic 
reflectors.

SEARCHLIGHT

Outgoing

rays of lig
ht

 Filament
(light source)
 at focus

(a)

RADIO TELESCOPE

Incoming radio signals

concentrate at focus

Parabolic radio
wave reflector

(b)

EXAMPLE 6  Studying a Parabolic Microphone
On the sidelines of each of its televised football games, the FBTV network uses a
parabolic reflector with a microphone at the reflector’s focus to capture the conversa-
tions among players on the field. If the parabolic reflector is 3 ft across and 1 ft deep,
where should the microphone be placed?

FIGURE 8.10 Cross section of 
parabolic reflector in Example 6.

y

x
V(0, 0)

F(0, p)
(–1.5, 1) (1.5, 1)
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SOLUTION

We draw a cross section of the reflector as an upward-opening parabola in the Carte-
sian plane, placing its vertex V at the origin (Figure 8.10). We let the focus F have
coordinates to yield the equation

Because the reflector is 3 ft across and 1 ft deep, the points must lie on the
parabola. The microphone should be placed at the focus, so we need to find the value
of p. We do this by substituting the values we found into the equation:

Because , or 6.75 inches, the microphone should be placed inside the
reflector along its axis and inches from its vertex. Now try Exercise 59.6 

3
4

p = 0.5625 ft

 p =

2.25

4
= 0.5625

 2.25 = 4p

 1�1.522 = 4p(1)

 x = 4py

1�1.5, 12
x2

= 4py.

10, p2

QUICK REVIEW 8.1 (For help, go to Sections P.2, P.5, and 2.1.)

SECTION 8.1 EXERCISES

In Exercises 1–6, find the vertex, focus, directrix, and focal width of the
parabola.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, match the graph with its equation.

5y2
= 16x3x2

= -4y

1x + 422 = -61y + 121y - 222 = 41x + 32
y2

= -8xx2
= 6y

7. 8.

9. 10.

In Exercises 11–30, find an equation in standard form for the parabola
that satisfies the given conditions.

11. Vertex 0, 0 , focus , 0

12. Vertex 0, 0 , focus 0, 22121
2-3121

y2
= 10xy2

= -5x

x2
= -4yx2

= 3y

y

x

(a)

y

x

(b)

y

x

(c)

y

x

(d)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the distance between the given points.

1. , 3 and 2, 5 2. 2, ) and a, b

In Exercises 3 and 4, solve for y in terms of x.

3. 4.

In Exercises 5 and 6, complete the square to rewrite the equation in
vertex form.

5. 6. y = 2x2
+ 6x - 5y = -x2

+ 2x - 7

3y2
= 15x2y2

= 8x

21-31212-11

In Exercises 7 and 8, find the vertex and axis of the graph of ƒ. 
Describe how the graph of ƒ can be obtained from the graph of

, and graph ƒ.

7.

8.

In Exercises 9 and 10, write an equation for the quadratic function
whose graph contains the given vertex and point.

9. Vertex , 3 , point 0, 1

10. Vertex 2, , point 5, 13212-51
212-11

ƒ1x2 = -2x2
+ 12x + 1

ƒ1x2 = 3(x - 122 + 5

g1x2 = x2
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13. Vertex directrix 

14. Vertex directrix 

15. Focus directrix 

16. Focus , 0 , directrix 

17. Vertex opens to the right, focal width

18. Vertex opens to the left, focal width

19. Vertex opens downward, focal width

20. Vertex opens upward, focal width

21. Focus , , vertex ,

22. Focus , 3 , vertex , 6

23. Focus 3, 4 , directrix 

24. Focus 2, , directrix 

25. Vertex 4, 3 , directrix 

26. Vertex 3, 5 , directrix 

27. Vertex 2, , opens upward, focal width

28. Vertex , 3 , opens downward, focal width

29. Vertex , , opens to the left, focal width

30. Vertex 2, 3 , opens to the right, focal width

In Exercises 31–36, sketch the graph of the parabola by hand.

31. 32.

33.

34.

35. 36.

In Exercises 37–48, graph the parabola using a function grapher.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–52, prove that the graph of the equation is a parabola,
and find its vertex, focus, and directrix.

49.

50.

51.

52.

In Exercises 53–56, write an equation for the parabola.

53. 54.

y2
- 2y + 4x - 12 = 0

y2
- 4y - 8x + 20 = 0

3x2
- 6x - 6y + 10 = 0

x2
+ 2x - y + 3 = 0

1y - 622 = 161x - 421y + 222 = -81x + 12
1y - 122 = -41x + 521y + 322 = 12(x - 22
1x + 422 = -61y - 122 - y = 16(x - 322
61y - 32 = 1x + 122121y + 12 = 1x - 322
x = 2y2x = -8y2

y = -  

1

6
 x2y = 4x2

1x - 522 = 201y + 221y - 122 = 81x + 32
1y + 222 = -161x + 32
1x + 422 = -121y + 12

x2
= 8yy2

= -4x

= 521
= 102-4-11

= 202-31
= 162-11

y = 721
x = 621

x = 52-31
y = 121

2-512-51
2-4-412-4-21

= 310, 02,
= 610, 02,

= 1210, 02,
= 810, 02,

x = 42-41
y = -510, 52,
x = -210, 02,
y = 410, 02, 55. 56.

57. Writing to Learn Explain why the derivation of
is valid regardless of whether p 0 or p 0.

58. Writing to Learn Prove that an equation for the
parabola with focus and directrix is 

59. Designing a Flashlight Mirror The mirror of a
flashlight is a paraboloid of revolution. Its diameter is 6 cm and
its depth is 2 cm. How far from the vertex should the filament
of the lightbulb be placed for the flashlight to have its beam run
parallel to the axis of its mirror?

60. Designing a Satellite Dish The reflector of a televi-
sion satellite dish is a paraboloid of revolution with diameter 
5 ft and a depth of 2 ft. How far from the vertex should the 
receiving antenna be placed?

61. Parabolic Microphones
The Sports Channel uses a 
parabolic microphone to capture 
all the sounds from golf 
tournaments throughout a 
season. If one of its 
microphones has a parabolic 
surface generated by the 
parabola , locate the 
focus (the electronic receiver) of the parabola.

62. Parabolic Headlights Stein Glass, Inc., makes para-
bolic headlights for a variety of automobiles. If one of its head-
lights has a parabolic surface generated by the parabola

, where should its lightbulb be placed?

63. Group Activity Designing a Suspension
Bridge The main cables of a suspension bridge uniformly
distribute the weight of the bridge when in the form of a
parabola. The main cables of a particular bridge are attached to
towers that are 600 ft apart. The cables are attached to the tow-
ers at a height of 110 ft above the roadway and are 10 ft above
the roadway at their lowest points. If vertical support cables are
at 50-ft intervals along the level roadway, what are the lengths
of these vertical cables?

x2
= 12y

x2
= 10y

y2
= 4px.x = -p1p, 02

67x2
= 4py
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y

x
(–6, –4)

(0, 2)

y

x
(1, –3)

(5.5, 0)

y

x

(0, –2)
(2, –1)

y

x
(–1, 3)

(3, 5)

6 cm

2 cm

5 ft

2 ft
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64. Group Activity Designing a Bridge Arch
Parabolic arches are known to have greater strength than other
arches. A bridge with a supporting parabolic arch spans 60 ft
with a 30-ft-wide road passing underneath the bridge. In order
to have a minimum clearance of 16 ft, what is the maximum
clearance?

Standardized Test Questions
65. True or False Every point on a parabola is the same 

distance from its focus and its axis. Justify your answer.

66. True or False The directrix of a parabola is parallel to
the parabola’s axis. Justify your answer.

In Exercises 67–70, solve the problem without using a calculator.

67. Multiple Choice Which of the following curves is not a
conic section?

(A) Circle

(B) Ellipse

(C) Hyperbola

(D) Oval

(E) Parabola

68. Multiple Choice Which point do all conics of the form
have in common?

(A)

(B)

(C)

(D)

(E) 1-1, -12
10, 02
10, 12
11, 02
11, 12

x2
= 4py

69. Multiple Choice The focus of is

(A) 3, 3 .

(B) 3, 0 .

(C) 0, 3 .

(D) 0, 0 .

(E) , .

70. Multiple Choice The vertex of 
is

(A) 3, .

(B) , .

(C) , 2 .

(D) , 3 .

(E) , .

Explorations
71. Dynamically Constructing a Parabola Use a

geometry software package, such as Cabri Geometry II TM, The
Geometer’s Sketchpad®, or similar application on a handheld
device, to construct a parabola geometrically from its defini-
tion. (See Figure 8.3.)

(a) Start by placing a line l (directrix) and a point F (focus) not
on the line in the construction window.

(b) Construct a point A on the directrix, and then the segment AF.

(c) Construct a point P where the perpendicular bisector of AF
meets the line perpendicular to l through A.

(d) What curve does P trace out as A moves?

(e) Prove that your answer to part (d) is correct.

72. Constructing Points of a Parabola Use a geome-
try software package, such as Cabri Geometry II TM, The
Geometer’s Sketchpad®, or similar application on a handheld
device, to construct Figure 8.4, associated with Exploration 1.

(a) Start by placing the coordinate axes in the construction
window.

(b) Construct the line as the directrix and the point
as the focus.

(c) Construct the horizontal lines and concentric circles shown
in Figure 8.4.

(d) Construct the points where these horizontal lines and con-
centric circles meet.

(e) Prove these points lie on the parabola with directrix
and focus .

73. Degenerate Cones and Degenerate Conics
Degenerate cones occur when the generator and axis of the
cone are parallel or perpendicular.

(a) Draw a sketch and describe the “cone” obtained when the
generator and axis of the cone are parallel.

(b) Draw sketches and name the types of degenerate conics
obtained by intersecting the degenerate cone in part (a)
with a plane.

10, 12y = -1

10, 12
y = -1

2-3-21
2-21
2-31
2-2-31
2-21

1y - 322 = -81x + 22
2-3-31

21
21
21
21

y2
= 12x
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600 ft

110 ft
50 ft

60 ft

30 ft
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(c) Draw a sketch and describe the “cone” obtained when the
generator and axis of the cone are perpendicular.

(d) Draw sketches and name the types of degenerate conics
obtained by intersecting the degenerate cone in part (c)
with a plane.

Extending the Ideas
74. Tangent Lines A tangent line of a parabola is a line that

intersects but does not cross the parabola. Prove that a line tan-
gent to the parabola at the point crosses the 
y-axis at .

75. Focal Chords A focal chord of a parabola is a chord of
the parabola that passes through the focus.

10, -b2
1a, b2x2

= 4py

(a) Prove that the x-coordinates of the endpoints of a focal

chord of are , where m

is the slope of the focal chord.

(b) Using part (a), prove that the minimum length of a focal
chord is the focal width .

76. Latus Rectum The focal chord of a parabola perpendicular
to the axis of the parabola is the latus rectum, which is Latin for
“right chord.” Using the results from Exercises 74 and 75, prove:

(a) For a parabola the two endpoints of the latus rectum and
the point of intersection of the axis and directrix are the
vertices of an isosceles right triangle.

(b) The legs of this isosceles right triangle are tangent to the
parabola.

ƒ4p ƒ

x = 2p1m� 2m2
+ 12x2

= 4py
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Figure 8.12 shows a point of an ellipse. The fixed points and are the foci
of the ellipse, and the distances whose sum is constant are and We can construct
an ellipse using a pencil, a loop of string, and two pushpins. Put the loop around the
two pins placed at and , pull the string taut with a pencil point P, and move the
pencil around to trace out the ellipse (Figure 8.13).

We now use the definition to derive an equation for an ellipse. For some constants a and
c with a c 0, let and be the foci (Figure 8.14). Then an ellipse
is defined by the set of points such that

Using the distance formula, the equation becomes

Rearrange terms.

Square.
Simplify.

Square.

Simplify.

Letting , we have

which is usually written as

Because these steps can be reversed, a point satisfies this last equation if 
and only if the point lies on the ellipse defined by , provided that 
a c 0 and The Pythagorean relation can be written
many ways, including and 

The equation is the standard form of the equation of an ellipse
centered at the origin with the x-axis as its focal axis. An ellipse centered at the origin
with the y-axis as its focal axis is the inverse of , and thus has an
equation of the form

y2

a2 +

x2

b2 = 1.

x2/a2
+ y2/b2

= 1

x2/a2
+ y2/b2

= 1

a2
= b2

+ c2.c2
= a2

- b2
b2

= a2
- c2b2

= a2
- c2.Ú7

PF1 + PF2 = 2a
P1x, y2

x2

a2 +

y2

b2 = 1.

b2x2
+ a2y2

= a2b2,

b2
= a2

- c2

1a2
- c22x2

+ a2y2
= a21a2

- c22
a21x2

+ 2cx + c2
+ y22 = a4

+ 2a2cx + c2x2

a21x + c22 + y2
= a2

+ cx

x2
- 2cx + c2

+ y2
= 4a2

- 4a21x + c22 + y2
+ x2

+ 2cx + c2
+ y2

21x - c22 + y2
= 2a - 21x + c22 + y2

21x + c22 + 1y - 022 + 21x - c22 + 1y - 022 = 2a.

PF1 + PF2 = 2a.

P1x, y2F21c, 02F11-c, 02Ú7

F2F1

d2.d1

F2F1P1x, y2
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8.2 Ellipses

Geometry of an Ellipse
When a plane intersects one nappe of a right circular cylinder and forms a simple
closed curve, the curve is an ellipse.

What you’ll learn about
• Geometry of an Ellipse
• Translations of Ellipses
• Orbits and Eccentricity
• Reflective Property of an Ellipse

... and why
Ellipses are the paths of planets
and comets around the Sun, or 
of moons around planets.

FIGURE 8.11 Key points on the focal 
axis of an ellipse.

Vertex Focus Center

Focal axis

Focus Vertex

DEFINITION Ellipse
An ellipse is the set of all points in a plane whose distances from two fixed
points in the plane have a constant sum. The fixed points are the foci (plural of
focus) of the ellipse. The line through the foci is the focal axis. The point on
the focal axis midway between the foci is the center. The points where the el-
lipse intersects its axis are the vertices of the ellipse (Figure 8.11).

FIGURE 8.12 Structure of an Ellipse. The
sum of the distances from the foci to each
point on the ellipse is a constant.

y

x
F1 F2

d2

d1

P

d1 + d2 = constant
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As with circles and parabolas, a line segment with endpoints on an ellipse is a chord of
the ellipse. The chord lying on the focal axis is the major axis of the ellipse. The chord
through the center perpendicular to the focal axis is the minor axis of the ellipse. The
length of the major axis is 2a and of the minor axis is 2b. The number a is the
semimajor axis, and b is the semiminor axis.

592 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

FIGURE 8.13 How to draw an ellipse.

FIGURE 8.14 The ellipse defined by 
is the graph of the 

equation , where 
b2

= a2
- c2.
x2/a2

+ y2/b2
= 1

PF1 + PF2 = 2a

F1 F2

P(x, y)

y

x
Center

Focus Focus
F1(–c, 0) F2(c, 0)O

b

a

P(x, y)

Ellipses with Center (0, 0)

• Standard equation

• Focal axis x-axis y-axis

• Foci

• Vertices

• Semimajor axis a a

• Semiminor axis b b

• Pythagorean relation

See Figure 8.15.

a2
= b2

+ c2a2
= b2

+ c2

10, �a21�a, 02
10, �c21�c, 02

y2

a2 +

x2

b2 = 1
x2

a2 +

y2

b2 = 1

Axis Alert
For an ellipse, the word axis is used in several
ways. The focal axis is a line. The major and mi-
nor axes are line segments. The semimajor and
semiminor axes are numbers.

FIGURE 8.15 Ellipses centered at the origin with foci on (a) the x-axis and (b) the y-axis.
In each case, a right triangle illustrating the Pythagorean relation is shown.

y

x

b

c

a

(a)

(c, 0) (a, 0)(–c, 0)(–a, 0)

(0, b)

(0, –b)

y

x
b

c
a

(b)

(b, 0)(–b, 0)

(0, c)

(0, a)

(0, –c)

(0, –a)

EXAMPLE 1  Finding the Vertices and Foci of an Ellipse
Find the vertices and the foci of the ellipse 

SOLUTION Dividing both sides of the equation by 36 yields the standard form
Because the larger number is the denominator of , the focal axis

is the x-axis. So , and Thus the vertices
are and the foci are Now try Exercise 1.

An ellipse centered at the origin with its focal axis on a coordinate axis is symmetric
with respect to the origin and both coordinate axes. Such an ellipse can be sketched by
first drawing a guiding rectangle centered at the origin with sides parallel to the coordi-
nate axes and then sketching the ellipse inside the rectangle, as shown in the Drawing
Lesson.

1� 15, 02.1�3, 02,
c2

= a2
- b2

= 9 - 4 = 5.a2
= 9, b2

= 4
x2x2/9 + y2/4 = 1.

4x2
+ 9y2

= 36.
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If we wish to graph an ellipse using a function grapher, we need to solve the equation of
the ellipse for y, as illustrated in Example 2.

SECTION 8.2 Ellipses 593

Drawing Lesson

How to Sketch the Ellipse 

1. Sketch line segments at 
and and

complete the rectangle
they determine.

2. Inscribe an ellipse that is 
tangent to the rectangle at 

and .10, �b21�a, 02

y = �bx = �a

x2/a2 � y2/b2 � 1
y

x

b

–b

a–a

y

x

b

–b

a–a

EXAMPLE 2  Finding an Equation and Graphing an Ellipse
Find an equation of the ellipse with foci 0, and 0, 3 whose minor axis has
length 4. Sketch the ellipse and support your sketch with a grapher.

SOLUTION The center is 0, 0 . The foci are on the y-axis with The semi-
minor axis is Using , we have So
the standard form of the equation for the ellipse is

Using and , we can sketch a guiding rectangle and then the 
ellipse itself, as explained in the Drawing Lesson. (Try doing this.) To graph the ellipse
using a function grapher, we solve for y in terms of x.

Figure 8.16 shows three views of the graphs of

We must select the viewing window carefully to avoid grapher failure.
Now try Exercise 17.

Y1 = 21311 - x2/42  and  Y2 = - 21311 - x2/42.

 y = � 21311 - x2/42
 y2

= 1311 - x2/42
 
y2

13
= 1 -

x2

4

b = 2a = 113 L 3.61

y2

13
+

x2

4
= 1.

a2
= 22

+ 32
= 13.a2

= b2
+ c2b = 4/2 = 2.

c = 3.21
212-31

FIGURE 8.16 Three views of the ellipse All of the windows are square or approximately square viewing win-
dows so we can see the true shape. Notice that the gaps between the upper and lower function branches do not occur when the grapher
window includes columns of pixels whose x-coordinates are as in (b) and (c). (Example 2)�2

y2/13 + x2/4 = 1.

[–6, 6] by [–4, 4]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–9.4, 9.4] by [–6.2, 6.2]

(c)
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Translations of Ellipses
When an ellipse with center 0, 0 is translated horizontally by h units and vertically by
k units, the center of the ellipse moves from 0, 0 to h, k , as shown in Figure 8.17.
Such a translation does not change the length of the major or minor axis or the
Pythagorean relation.

212121
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FIGURE 8.17 Ellipses with center 
h, k and foci on (a) and (b) x = h.y = k21

y

x

(a)

(h – a, k)

(h – c, k)

(h, k)

(h + c, k)

(h + a, k)

y

x

(b)

(h, k)

(h, k + a)

(h, k – c)

(h, k + c)

(h, k – a)

Ellipses with Center (h, k)

• Standard
equation

• Focal axis

• Foci

• Vertices

• Semimajor a a
axis

• Semiminor b b
axis

• Pythagorean
relation

See Figure 8.17.

a2
= b2

+ c2a2
= b2

+ c2

1h, k � a21h � a, k2
1h, k � c21h � c, k2
x = hy = k

1y - k22
a2 +

1x - h22
b2 = 1

1x - h22
a2 +

1y - k22
b2 = 1

EXAMPLE 3  Finding an Equation of an Ellipse
Find the standard form of the equation for the ellipse whose major axis has endpoints

, and 8, , and whose minor axis has length 8.

SOLUTION Figure 8.18 shows the major axis endpoints, the minor axis, and the
center of the ellipse. The standard equation of this ellipse has the form

where the center h, k is the midpoint 3, of the major axis. The semimajor
axis and semiminor axis are

So the equation we seek is

Now try Exercise 31.

1x - 322
25

+

1y + 122
16

= 1.

1x - 322
52 +

1y - 1-1222
42 = 1,

a =

8 - 1-22
2

= 5  and  b =

8

2
= 4.

2-1121

1x - h22
a2 +

1y - k22
b2 = 1,

2-112-1-21

FIGURE 8.18 Given information for 
Example 3.

y

x

(–2, –1) (8, –1)8

6

10

EXAMPLE 4  Locating Key Points of an Ellipse
Find the center, vertices, and foci of the ellipse

1x + 222
9

+

1y - 522
49

= 1.
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Orbits and Eccentricity
Kepler’s First Law of Planetary Motion, published in 1609, states that the path of a
planet’s orbit is an ellipse with the Sun at one of the foci. Asteroids, comets, and other
bodies that orbit the Sun follow elliptical paths. The closest point to the Sun in such an
orbit is the perihelion, and the farthest point is the aphelion (Figure 8.19). The shape of
an ellipse is related to its eccentricity.

SECTION 8.2 Ellipses 595

SOLUTION The standard equation of this ellipse has the form

The center h, k is , 5 . Because the semimajor axis the vertices
h, k a are

and

Because

the foci h, k c are , 5 or approximately , 11.32 and 
, . Now try Exercise 37.

With the information found about the ellipse in Example 4 and knowing that its semi-
minor axis , we could easily sketch the ellipse. Obtaining an accurate
graph of the ellipse using a function grapher is another matter. Generally, the best way
to graph an ellipse using a graphing utility is to use parametric equations.

b = 19 = 3

2-1.32-21
2-211-2, 5 �  1402,-212�1

c = 2a2
- b2

= 149 - 9 = 140

1h, k - a2 = 1-2, 5 - 72 = 1-2, -22.
1h, k + a2 = 1-2, 5 + 72 = 1-2, 122

2�1 a = 149 = 7,2-2121

1y - 522
49

+

1x + 222
9

= 1.

EXPLORATION 1 Graphing an Ellipse Using Its 
Parametric Equations

1. Use the Pythagorean trigonometry identity to prove that
the parametrization will
produce a graph of the ellipse 

2. Graph in a square viewing
window to support part 1 graphically.

3. Create parametrizations for the ellipses in Examples 1, 2, and 3.

4. Graph each of your parametrizations in part 3 and check the features of the
obtained graph to see whether they match the expected geometric features
of the ellipse. Revise your parametrization and regraph until all features
match.

5. Prove that each of your parametrizations is valid.

x = -2 + 3 cos t, y = 5 + 7 sin t, 0 … t … 2p

1x + 222/9 + 1y - 522/49 = 1.
sin t, 0 … t … 2px = -2 + 3 cos t, y = 5 + 7

cos2 t + sin2 t = 1

A New e
Try not to confuse the eccentricity e with the 
natural base e used in exponential and logarith-
mic functions. The context should clarify which
meaning is intended.

DEFINITION Eccentricity of an Ellipse
The eccentricity of an ellipse is

where a is the semimajor axis, b is the semiminor axis, and c is the distance
from the center of the ellipse to either focus.

e =

c

d
=

2a2
- b2

a
,
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The noun eccentricity comes from the adjective eccentric, which means off-center.
Mathematically, the eccentricity is the ratio of c to a. The larger c is, compared to a, the
more off-center the foci are.

In any ellipse, a c 0. Dividing this inequality by a shows that 0 e 1. So the
eccentricity of an ellipse is between 0 and 1.

Ellipses with highly off-center foci are elongated and have eccentricities close to 1; for
example, the orbit of Halley’s comet has eccentricity e 0.97. Ellipses with foci near
the center are almost circular and have eccentricities close to 0; for instance, Venus’s
orbit has an eccentricity of 0.0068.

What happens when the eccentricity In an ellipse, because a is positive, 
implies that and thus In this case, the ellipse degenerates into a

circle. Because the ellipse is a circle when , it is customary to denote this com-
mon value as r and call it the radius of the circle.

Surprising things happen when an ellipse is nearly but not quite a circle, as in the orbit
of our planet, Earth.

a = b
a = b.c = 0c/a = 0

e =e = 0?

L

6…Ú7
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FIGURE 8.19 Many celestial objects have elliptical orbits around the Sun.

Center

Sun at
focus

Semimajor axis a

Orbiting
object

a – c a + c

Perihelion

Aphelion

EXAMPLE 5  Analyzing Earth’s Orbit
Earth’s orbit has a semimajor axis a 149.598 Gm (gigameters) and an eccentricity
of e 0.0167. Calculate and interpret b and c.

SOLUTION Because , and

The semiminor axis b 149.577 Gm is only 0.014% shorter than the semimajor axis
a 149.598 Gm. The aphelion distance of Earth from the Sun is 

Gm, and the perihelion distance is 
147.100 Gm.

Thus Earth’s orbit is nearly a perfect circle, but the distance between the center of the
Sun at one focus and the center of Earth’s orbit is c 2.498 Gm, more than 2 orders
of magnitude greater than The eccentricity as a percentage is 1.67%; this mea-
sures how far off-center the Sun is.

Now try Exercise 53.

a - b.
L

a - c L 149.598 - 2.498 =2.498 = 152.096
a + c L 149.598 +L

L

b = 2a2
- c2

L 2149.5982
- 2.49828662

L 149.577.

c = ea L 0.0167 * 149.598 = 2.4982866e = c/a

L

L
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Reflective Property of an Ellipse
Because of their shape, ellipses are used to make reflectors of sound, light, and other
waves. If we rotate an ellipse in three-dimensional space about its focal axis, the ellipse
sweeps out an ellipsoid of revolution. If we place a signal source at one focus of a 
reflective ellipsoid, the signal reflects off the elliptical surface to the other focus, as 
illustrated in Figure 8.20. This property is used to make mirrors for optical equipment
and to study aircraft noise in wind tunnels.

SECTION 8.2 Ellipses 597

EXPLORATION 2 Constructing Ellipses to Understand Eccentricity

Each group will need a pencil, a centimeter ruler, scissors, some string, several
sheets of unlined paper, two pushpins, and a foam board or other appropriate
backing material.

1. Make a closed loop of string that is 20 cm in circumference.

2. Place a sheet of unlined paper on the backing material, and carefully place the
two pushpins 2 cm apart near the center of the paper. Construct an ellipse 
using the loop of string and a pencil as shown in Figure 8.13. Measure and
record the resulting values of a, b, and c for the ellipse, and compute the ratios
e c/a and b/a for the ellipse.

3. On separate sheets of paper repeat step 2 three more times, placing the push-
pins 4, 6, and 8 cm apart. Record the values of a, b, c and the ratios e and b/a
for each ellipse.

4. Write your observations about the ratio b/a as the eccentricity ratio e increases.
Which of these two ratios measures the shape of the ellipse? Which measures
how off-center the foci are?

5. Plot the ordered pairs e, b/a , determine a formula for the ratio b/a as a
function of the eccentricity e, and overlay this function’s graph on the 
scatter plot.

21

=

FIGURE 8.20 The reflective property of an ellipse.

F2F1

Whispering Galleries
In architecture, ceilings in the shape of an 
ellipsoid are used to create whispering galleries.
A person whispering at one focus can be heard
across the room by a person at the other focus.
An ellipsoid is part of the design of the Texas
state capitol; a hand clap made in the center of
the main vestibule (at one focus of the ellipsoid)
bounces off the inner elliptical dome, passes
through the other focus, bounces off the dome a
second time, and returns to the person as a 
distinct echo.

Ellipsoids are used in health care to avoid surgery in the treatment of kidney stones.
An elliptical lithotripter emits underwater ultrahigh-frequency (UHF) shock waves
from one focus, with the patient’s kidney carefully positioned at the other focus 
(Figure 8.21).
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FIGURE 8.21 How a lithotripter breaks up kidney stones.

Patient’s
kidney
stone

Source of
UHF shock
waves

y

(0, 0)

F2

F1

Kidney
Stone

Source

EXAMPLE 6  Focusing a Lithotripter
The ellipse used to generate the ellipsoid of a lithotripter has a major axis of 12 ft
and a minor axis of 5 ft. How far from the center are the foci?

SOLUTION From the given information, we know and
So

The foci are about 5 ft 5.5 inches from the center of the lithotripter.

Now try Exercise 59.

c = 2a2
- b2

L 262
- 2.52

L 5.4544.

b = 5/2 = 2.5.
a = 12/2 = 6

Chapter Opener Problem (from page 579)

Problem: If the Ellipse at the White House is 616 ft long and 528 ft wide, what
is its equation?

Solution: For simplicity’s sake, we model the Ellipse as centered at (0, 0) with
the x-axis as its focal axis. Because the Ellipse is 616 ft long, ,
and because the Ellipse is 528 ft wide, Using ,
we obtain

Other models are possible.

x2

94,864
+

y2

69,696
= 1.

x2

3082 +

y2

2642 = 1,

x2/a2
+ y2/b2

= 1b = 528/2 = 264.
a = 616/2 = 308

The Ellipse
616 ft

528 ft

White House
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7. 8.

9.

10.

In Exercises 11–16, sketch the graph of the ellipse by hand.

11. 12.

13. 14.
y2

49
+

x2

25
= 1

y2

9
+

x2

4
= 1

x2

81
+

y2

25
= 1

x2

64
+

y2

36
= 1

1x - 122
11

+ 1y + 222 = 1

1y - 222
16

+

1x + 322
4

= 1

y2

36
+

x2

9
= 1

x2

25
+

y2

16
= 1
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QUICK REVIEW 8.2 (For help, go to Sections P.2 and P.5.)

SECTION 8.2 EXERCISES
In Exercises 1–6, find the vertices and foci of the ellipse.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, match the graph with its equation, given that the tick
marks on all axes are 1 unit apart.

9x2
+ 4y2

= 363x2
+ 4y2

= 12

x2

11
+

y2

7
= 1

y2

36
+

x2

27
= 1

y2

25
+

x2

21
= 1

x2

16
+

y2

7
= 1

15.

16.

In Exercises 17–20, graph the ellipse using a function grapher.

17. 18.

19.

20.

In Exercises 21–36, find an equation in standard form for the ellipse
that satisfies the given conditions.

21. Major axis length 6 on y-axis, minor axis length 4

22. Major axis length 14 on x-axis, minor axis length 10

23. Foci 2, 0 , major axis length 10

24. Foci 0, 3 , major axis length 10

25. Endpoints of axes are 4, 0 and 0, 5

26. Endpoints of axes are 7, 0 and 0, 4

27. Major axis endpoints 0, 6 , minor axis length 8

28. Major axis endpoints 5, 0 , minor axis length 4

29. Minor axis endpoints 0, 4 , major axis length 10

30. Minor axis endpoints 12, 0 , major axis length 26

31. Major axis endpoints 1, and 1, 8 , minor axis length 8

32. Major axis endpoints , and , 7 , minor axis length 4

33. Foci and , major axis endpoints and

34. Foci and , major axis endpoints and

35. Major axis endpoints and , minor axis length 6

36. Major axis endpoints , 2 and 3, 2 , minor axis length 6212-51
13, 3213, -72

1-2, 72
1-2, -121-2, 521-2, 12

16, -42
10, -4215, -4211, -42

2-212-3-21
212-41

2�1
2�1
2�1
2�1

2�12�1
2�12�1

2�1
2�1

1x - 422
16

+ 161y + 422 = 8

1x + 222
5

+ 21y - 122 = 1

y2

64
+

x2

16
= 1

x2

36
+

y2

16
= 1

1x - 122
2

+

1y + 322
4

= 1

1x + 322
16

+

1y - 122
4

= 1

y

x

(a)

y

x

(b)

y

x

(c)

y

x

(d)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the distance between the given points.

1. , and 2, 4

2. , and a, b

In Exercises 3 and 4, solve for y in terms of x.

3. 4.
x2

36
+

y2

25
= 1

y2

9
+

x2

4
= 1

212-4-31
212-2-31

In Exercises 5–8, solve for x algebraically.

5.

6.

7.

8.

In Exercises 9 and 10, find exact solutions by completing the square.

9. 10. 2x2
+ 4x - 5 = 02x2

- 6x - 3 = 0

22x2
+ 8 + 23x2

+ 4 = 8

26x2
+ 12 + 26x2

+ 1 = 11

16x + 12 - 14x + 9 = 1

13x + 12 + 13x - 8 = 10
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In Exercises 37–40, find the center, vertices, and foci of the ellipse.

37. 38.

39. 40.

In Exercises 41–44, graph the ellipse using a parametric grapher.

41. 42.

43. 44.

In Exercises 45–48, prove that the graph of the equation is an ellipse,
and find its vertices, foci, and eccentricity.

45.

46.

47.

48.

In Exercises 49 and 50, write an equation for the ellipse.

49. 50.

51. Writing to Learn Prove that an equation for the ellipse

with center 0, 0 , foci 0, c , and semimajor axis a c 0

is , where [Hint: Refer to

derivation at the beginning of the section.]

52. Writing to Learn Dancing Among the Stars
Using the data in Table 8.1, prove that the object with the most
eccentric orbit sometimes is closer to the Sun than the planet
with the least eccentric orbit.

b2
= a2

- c2.y2/a2
+ x2/b2

= 1

Ú72�121

4x2
+ y2

- 32x + 16y + 124 = 0

9x2
+ 16y2

+ 54x - 32y - 47 = 0

3x2
+ 5y2

- 12x + 30y + 42 = 0

9x2
+ 4y2

- 18x + 8y - 23 = 0

1y + 122
15

+

1x - 222
6

= 1
1x + 322

12
+

1y - 622
5

= 1

x2

30
+

y2

20
= 1

y2

25
+

x2

4
= 1

1y - 122
25

+

1x + 222
16

= 1
1y + 322

81
+

1x - 722
64

= 1

1x - 322
11

+

1y - 522
7

= 1
1x + 122

25
+

1y - 222
16

= 1

53. The Moon’s Orbit The Moon’s apogee (farthest 
distance from Earth) is 252,710 miles, and perigee (closest 
distance to Earth) is 221,463 miles. Assuming the Moon’s orbit
of Earth is elliptical with Earth at one focus, calculate and 
interpret a, b, c, and e.

54. Hot Mercury Given that the diameter of the Sun is 
about 1.392 Gm, how close does Mercury get to the Sun’s 
surface?

55. Saturn Find the perihelion and aphelion distances of 
Saturn. 

56. Venus and Mars Write equations for the orbits of Venus
and Mars in the form 

57. Sungrazers One comet group, known as the sungrazers,
passes within a Sun’s diameter 1.392 Gm of the solar sur-
face. What can you conclude about a c for orbits of the 
sungrazers?

58. Halley’s Comet The orbit of Halley’s comet is 36.18 AU
long and 9.12 AU wide. What is its eccentricity?

59. Lithotripter For an ellipse that generates the ellipsoid of
a lithotripter, the major axis has endpoints , 0 and 8, 0 .
One endpoint of the minor axis is 0, 3.5 . Find the coordinates
of the foci.

60. Lithotripter (Refer to Figure 8.21.) A lithotripter’s shape
is formed by rotating the portion of an ellipse below its minor
axis about its major axis. If the length of the major axis is 
26 in. and the length of the minor axis is 10 in., where should
the shock-wave source and the patient be placed for maximum
effect?

Group Activities In Exercises 61 and 62, solve the system
of equations algebraically and support your answer graphically.

61. 62.

63. Group Activity Consider the system of equations

(a) Solve the system graphically.

(b) If you have access to a grapher that also does symbolic 
algebra, use it to find the exact solutions to the system.

64. Writing to Learn Look up the adjective eccentric in a
dictionary and read its various definitions. Notice that the 
word is derived from ex-centric, meaning “out-of-center” or
“off-center.” Explain how this is related to the word’s everyday
meanings as well as its mathematical meaning for ellipses.

Standardized Test Questions
65. True or False The distance from a focus of an ellipse to

the closer vertex is where a is the semimajor axis
and e is the eccentricity. Justify your answer.

66. True or False The distance from a focus of an ellipse to
either endpoint of the minor axis is half the length of the major
axis. Justify your answer.

a11 + e2,

y = 2x2
- 3

x2
+ 4y2

= 4

x - 3y = -3x2
+ y2

= 4

x2

9
+ y2

= 1
x2

4
+

y2

9
= 1

21
212-81

-

21
x2/a2

+ y2/b2
= 1.
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y

(2, 6)

(2, 3)
(6, 3)

x

y

(0, 2)
(�4, 2)

(�4, 5)

x

Source: Shupe, et al., National Geographic Atlas of the
World (rev.6th ed.). Washington, DC: National Geographic
Society, 1992, plate 116, and other sources.

Table 8.1 Semimajor Axes and
Eccentricities of the Planets and Pluto

Object Semimajor Axis (Gm) Eccentricity

Mercury 57.9 0.2056
Venus 108.2 0.0068
Earth 149.6 0.0167
Mars 227.9 0.0934
Jupiter 778.3 0.0485
Saturn 1427 0.0560
Uranus 2869 0.0461
Neptune 4497 0.0050
Pluto 5900 0.2484
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In Exercises 67–70, you may use a graphing calculator to solve the
problem.

67. Multiple Choice One focus of is

(A) 4, 0 . (B) 2, 0 .

(C) , 0 . (D) , 0 .

(E) 1, 0 .

68. Multiple Choice The focal axis of

is

(A) (B)

(C) (D)

(E)

69. Multiple Choice The center of
is

(A) 4, 2 . (B) 4, 3 .

(C) 4, 4 . (D) 4, 5 .

(E) 4, 6 .

70. Multiple Choice The perimeter of a triangle with one
vertex on the ellipse and the other two 
vertices at the foci of the ellipse would be

(A) (B)

(C) (D)

(E)

Explorations
71. Area and Perimeter The area of an ellipse is

but the perimeter cannot be expressed so simply:

(a) Prove that, when , these become the familiar for-
mulas for the area and perimeter (circumference) of a circle.

(b) Find a pair of ellipses such that the one with greater area
has smaller perimeter.

a = b = r

P L p1a + b2a3 -

213a + b21a + 3b2
a + b

b
A = pab,

a + b + c.

2b + 2c.2a + 2c. 

2a + 2b.a + b. 

x2/a2
+ y2/b2

= 1

21
2121
2121

9x2
+ 4y2

- 72x - 24y + 144 = 0

y = 5.

y = 4.y = 3.

y = 2.y = 1.

1x - 222
25

+

1y - 322
16

= 1

21
21212131

2121
x2

+ 4y2
= 4

72. Writing to Learn Kepler’s Laws We have 
encountered Kepler’s first and third laws (pages 179, 595).
Using a library or the Internet,

(a) Read about Kepler’s life, and write in your own words how
he came to discover his three laws of planetary
motion.

(b) What is Kepler’s Second Law? Explain it with both 
pictures and words.

73. Pendulum Velocity vs. Position As a pendulum
swings toward and away from a motion detector, its distance
(in meters) from the detector is given by the position function

, where t represents time (in sec-
onds). The velocity (in m/sec) of the pendulum is given by

(a) Using parametric mode on your grapher, plot the 
relation for velocity versus position for 0 t .

(b) Write the equation of the resulting conic in standard form,
in terms of x and y, and eliminating the parameter t.

74. Pendulum Velocity vs. Position A pendulum that
swings toward and away from a motion detector has a distance
(in feet) from the detector of 
and a velocity (in ft/sec) of where
t represents time (in seconds).

(a) Prove that the plot of velocity versus position (distance) is
an ellipse.

(b) Writing to Learn Describe the motion of the 
pendulum.

Extending the Ideas
75. Prove that a nondegenerate graph of the equation

is an ellipse if AC 0.

76. Writing to Learn The graph of the equation

is considered to be a degenerate ellipse. Describe the graph.
How is it like a full-fledged ellipse, and how is it different?

1x - h22
a2

+

1y - k22
b2

= 0

7

Ax2
+ Cy2

+ Dx + Ey + F = 0

y1t2 = 3p cos 1pt + p/22,
x1t2 = 5 + 3 sin 1pt + p/22

… 2p…

1x, y2
y1t2 = -2 sin 12t - 52.
x1t2 = 3 + cos 12t - 52

SECTION 8.2 Ellipses 601
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Figure 8.23 shows a hyperbola centered at the origin with its focal axis on the x-axis.
The vertices are at and , where a is some positive constant. The fixed
points and are the foci of the hyperbola, with c a.

Notice that the hyperbola has two branches. For a point on the right-hand
branch, On the left-hand branch, Combining
these two equations gives us

Using the distance formula, the equation becomes

Rearrange terms.

Square.
Simplify.

Square.

Multiply by and simplify.

Letting , we have

which is usually written as

Because these steps can be reversed, a point satisfies this last equation if and
only if the point lies on the hyperbola defined by , provided thatPF1 - PF2 = �2a

P1x, y2

x2

a2 -

y2

b2 = 1.

b2x2
- a2y2

= a2b2,

b2
= c2

- a2

-11c2
- a22x2

- a2y2
= a21c2

- a22
a21x2

+ 2cx + c2
+ y22 = a4

+ 2a2cx + c2x2

� a21x + c22 + y2
= a2

+ cx

x2
- 2cx + c2

+ y2
= 4a2 � 4a21x + c22 + y2

+ x2
+ 2cx + c2

+ y2

21x - c22 + y2
= �2a + 21x + c22 + y2

21x + c22 + 1y - 022 - 21x - c22 + 1y - 022 = �2a.

PF1 - PF2 = �2a.

PF2 - PF1 = 2a.PF1 - PF2 = 2a.
P1x, y2

7F21c, 02F11-c, 02
1a, 021-a, 02
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8.3 Hyperbolas

Geometry of a Hyperbola
When a plane intersects both nappes of a right circular cylinder, the intersection is a
hyperbola. The definition, features, and derivation for a hyperbola closely resemble
those for an ellipse. As you read on, you may find it helpful to compare the nature of
the hyperbola with the nature of the ellipse.

What you’ll learn about
• Geometry of a Hyperbola
• Translations of Hyperbolas
• Eccentricity and Orbits
• Reflective Property of a 

Hyperbola
• Long-Range Navigation

... and why
The hyperbola is the least-known
conic section, yet it is used in as-
tronomy, optics, and navigation.

DEFINITION Hyperbola
A hyperbola is the set of all points in a plane whose distances from two fixed
points in the plane have a constant difference. The fixed points are the foci of
the hyperbola. The line through the foci is the focal axis. The point on the focal
axis midway between the foci is the center. The points where the hyperbola 
intersects its focal axis are the vertices of the hyperbola (Figure 8.22).

FIGURE 8.23 Structure of a Hyperbola. 
The difference of the distances from the 
foci to each point on the hyperbola is 
a constant.

y

x
F1(–c, 0) F2(c, 0)O

P(x, y)

x = ax = –a

FIGURE 8.22 Key points on the 
focal axis of a hyperbola.

VertexFocus

Center

Focal axis

FocusVertex
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and The Pythagorean relation can be written
many ways, including and 

The equation is the standard form of the equation of a hyperbola
centered at the origin with the x-axis as its focal axis. A hyperbola centered at the origin
with the y-axis as its focal axis is the inverse relation of , and thus
has an equation of the form

As with other conics, a line segment with endpoints on a hyperbola is a chord of the
hyperbola. The chord lying on the focal axis connecting the vertices is the transverse
axis of the hyperbola. The length of the transverse axis is 2a. The line segment of
length 2b that is perpendicular to the focal axis and that has the center of the hyper-
bola as its midpoint is the conjugate axis of the hyperbola. The number a is the
semitransverse axis, and b is the semiconjugate axis.

The hyperbola

has two asymptotes. These asymptotes are slant lines that can be found by replacing the
1 on the right-hand side of the hyperbola’s equation by a 0:

hyperbola Replace 1 by 0. asymptotes

A hyperbola centered at the origin with its focal axis one of the coordinate axes is sym-
metric with respect to the origin and both coordinate axes. Such a hyperbola can be
sketched by drawing a rectangle centered at the origin with sides parallel to the coordi-
nate axes, followed by drawing the asymptotes through opposite corners of the rectan-
gle, and finally sketching the hyperbola using the central rectangle and asymptotes as
guides, as shown in the Drawing Lesson.

x2

a2 -

y2

b2 = 1 :  
x2

a2 -

y2

b2 = 0 :  y = �
b

a
 x

x2

a2 -

y2

b2 = 1

y2

a2 -

x2

b2 = 1.

x2/a2
- y2/b2

= 1

x2/a2
- y2/b2

= 1

c2
= a2

+ b2.a2
= c2

- b2
b2

= c2
- a2b2

= c2
- a2.c 7 a 7 0
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� � � 

Naming Axes
The word “transverse” comes from the Latin
trans vertere: to go across. The transverse axis
“goes across” from one vertex to the other. The
conjugate axis is the transverse axis for the
conjugate hyperbola, defined in Exercise 73.

Drawing Lesson

How to Sketch the Hyperbola 

1. Sketch line segments at a
and , and complete the 
rectangle they determine.

2. Sketch the asymptotes by 
extending the rectangle’s 
diagonals.

3. Use the rectangle and asymptotes 
to guide your drawing.

y = �b
x = �

x2/a2 � y2/b2 � 1

y

x–a a

–b

b

y

x–a a

–b

b
y = – xb

a
y = xb

a

y

x–a a

–b

b = 1–x2

a2
y2

b2
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Hyperbolas with Center (0, 0)

• Standard equation

• Focal axis x-axis y-axis

• Foci

• Vertices

• Semitransverse axis a a

• Semiconjugate axis b b

• Pythagorean relation

• Asymptotes

See Figure 8.24.

y = �
a

b
 xy = �

b

a
 x

c2
= a2

+ b2c2
= a2

+ b2

10, �a21�a, 02
10, �c21�c, 02

y2

a2 -

x2

b2 = 1
x2

a2 -

y2

b2 = 1

FIGURE 8.24 Hyperbolas centered at the
origin with foci on (a) the x-axis and (b) the 
y-axis.

y

x

(a)

(a, 0)(–a, 0)(–c, 0) (c, 0)

y = xb
a

y = – xb
a

= 1–x2

a2
y2

b2

y

x

(b)

y = xa
b

y = – xa
b

= 1–y2

a2
x2

b2

(0, c)

(0, a)

(0, –a)

(0, –c)

EXAMPLE 1  Finding the Vertices and Foci of a Hyperbola
Find the vertices and the foci of the hyperbola 

SOLUTION Dividing both sides of the equation by 36 yields the standard form
So , , and Thus the

vertices are and the foci are Now try Exercise 1.

If we wish to graph a hyperbola using a function grapher, we need to solve the equation
of the hyperbola for y, as illustrated in Example 2.

1� 113, 02.1�3, 02,
c2

= a2
+ b2

= 9 + 4 = 13.b2
= 4a2

= 9x2/9 - y2/4 = 1.

4x2
- 9y2

= 36.

EXAMPLE 2  Finding an Equation and Graphing a Hyperbola
Find an equation of the hyperbola with foci and whose conjugate axis
has length 4. Sketch the hyperbola and its asymptotes, and support your sketch with a
grapher.

SOLUTION The center is . The foci are on the y-axis with The semi-
conjugate axis is Thus The standard
form of the equation for the hyperbola is

Using and , we can sketch the central rectangle, the asymp-
totes, and the hyperbola itself. Try doing this. To graph the hyperbola using a func-
tion grapher, we solve for y in terms of x.

Add 

Multiply by 5.

Extract square roots.

Figure 8.25 shows the graphs of

together with the asymptotes of the hyperbola

Now try Exercise 17.y3 =

15

2
 x  and  y4 = -  

15

2
 x.

y1 = 2511 + x2/42  and  y2 = - 2511 + x2/42,

y = � 2511 + x2/42
y2

= 511 + x2/42
x2

4

y2

5
= 1 +

x2

4

b = 2a = 15 L 2.24

y2

5
-

x2

4
= 1.

a2
= c2

- b2
= 32

- 22
= 5.b = 4/2 = 2.

c = 3.10, 02

10, 3210, -32

FIGURE 8.25 The hyperbola 
, shown with its 

asymptotes. (Example 2)
y2/5 - x2/4 = 1

[–9.4, 9.4] by [–6.2, 6.2]
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In Example 2, because the hyperbola had a vertical focal axis, selecting a viewing rec-
tangle was easy. When a hyperbola has a horizontal focal axis, we try to select a view-
ing window to include the two vertices in the plot and thus avoid gaps in the graph of
the hyperbola.

Translations of Hyperbolas
When a hyperbola with center is translated horizontally by h units and vertically
by k units, the center of the hyperbola moves from to , as shown in Figure
8.26. Such a translation does not change the length of the transverse or conjugate axis
or the Pythagorean relation.

1h, k210, 0210, 02
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FIGURE 8.26 Hyperbolas with center
and foci on (a) and (b) .x = hy = k1h, k2

y

x

(a)

(h + c, k)
(h + a, k)(h, k)

y = k

(h – c, k)
(h – a, k)

(x – h) + ky = b
a

(x – h) + ky = – b
a

y

x

(b)

(h, k)

x = h

(x – h) + ky = a
b

(x – h) + ky = – a
b

(h, k + c)
(h, k + a)
(h, k – a)
(h, k – c)

Hyperbolas with Center (h, k)

• Standard
equation

• Focal axis

• Foci

• Vertices

• Semitransverse a a
axis

• Semiconjugate b b
axis

• Pythagorean
relation

• Asymptotes

See Figure 8.26.

y = �
a

b
 1x - h2 + ky = �

b

a
 1x - h2 + k

c2
= a2

+ b2c2
= a2

+ b2

1h, k � a21h � a, k2
1h, k � c21h � c, k2
x = hy = k

1y - k22
a2 -

1x - h22
b2 = 1

1x - h22
a2 -

1y - k22
b2 = 1

EXAMPLE 3  Finding an Equation of a Hyperbola
Find the standard form of the equation for the hyperbola whose transverse axis has
endpoints and and whose conjugate axis has length 8.

SOLUTION Figure 8.27 shows the transverse axis endpoints, the conjugate axis,
and the center of the hyperbola. The standard equation of this hyperbola has the form

where the center is the midpoint of the transverse axis. The semitrans-
verse axis and semiconjugate axis are

So the equation we seek is

Now try Exercise 31.
1x - 322

25
-

1y + 122
16

= 1.

1x - 322
52 -

1y - 1-1222
42 = 1,

a =

8 - 1-22
2

= 5  and  b =

8

2
= 4.

13, -121h, k2

1x - h22
a2 -

1y - k22
b2 = 1,

18, -121-2, -12

FIGURE 8.27 Given information for 
Example 3.

y

x

(–2, –1) (8, –1)8

6

10
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EXAMPLE 4  Locating Key Points of a Hyperbola
Find the center, vertices, and foci of the hyperbola

SOLUTION The center is . Because the semitransverse axis
the vertices are

and

Because the foci are 

or approximately and Now try Exercise 39.

With the information found about the hyperbola in Example 4 and knowing that its semi-
conjugate axis we could easily sketch the hyperbola. Obtaining an accu-
rate graph of the hyperbola using a function grapher is another matter. Often, the best way
to graph a hyperbola using a graphing utility is to use parametric equations.

b = 149 = 7,

1-9.62, 52.15.62, 5252,
1-2 �  158,1h � c, k2c = 2a2

+ b2
= 19 + 49 = 158,

1h - a, k2 = 1-2 - 3, 52 = 1-5, 52.
1h + a, k2 = 1-2 + 3, 52 = 11, 52

a = 19 = 3,
1-2, 521h, k2

1x + 222
9

-

1y - 522
49

= 1.

EXPLORATION 1 Graphing a Hyperbola Using Its 
Parametric Equations

1. Use the Pythagorean trigonometry identity to prove that
the parametrization will
produce a graph of the hyperbola 

2. Using Dot graphing mode, graph 
in a square viewing window to support part 1 graphically.

Switch to Connected graphing mode, and regraph the equation. What do you
observe? Explain.

3. Create parametrizations for the hyperbolas in Examples 1, 2, 3, and 4.

4. Graph each of your parametrizations in part 3 and check the features of the 
obtained graph to see whether they match the expected geometric features of
the hyperbola. If necessary, revise your parametrization and regraph until all
features match.

5. Prove that each of your parametrizations is valid.

10 … t … 2p2
x = -1 + 3/cos t, y = 1 + 2 tan t

1x + 122/9 - 1y - 122/4 = 1.
10 … t … 2p2x = -1 + 3/cos t, y = 1 + 2 tan t

sec2 t - tan2 t = 1

Eccentricity and Orbits

For a hyperbola, because c a, the eccentricity e 1. In Section 8.2 we learned that
the eccentricity of an ellipse satisfies the inequality 0 e 1 and that, for , the
ellipse is a circle. In Section 8.5 we will generalize the concept of eccentricity to all
types of conics and learn that the eccentricity of a parabola is e = 1.

e = 06…

77

DEFINITION Eccentricity of a Hyperbola
The eccentricity of a hyperbola is

where a is the semitransverse axis, b is the semiconjugate axis, and c is the dis-
tance from the center to either focus.

e =

c

a
=

2a2
+ b2

a
,
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Kepler’s First Law of Planetary Motion says that a planet’s orbit is elliptical with the
Sun at one focus. Since 1609, astronomers have generalized Kepler’s Law; the current
theory states: A celestial body that travels within the gravitational field of a much more
massive body follows a path that closely approximates a conic section that has the more
massive body as a focus. Two bodies that do not differ greatly in mass (such as Earth
and the Moon, or Pluto and its moon Charon) actually revolve around their balance
point, or barycenter. In theory, a comet can approach the Sun from interstellar space,
make a partial loop about the Sun, and then leave the solar system, returning to deep
space; such a comet follows a path that is one branch of a hyperbola.

SECTION 8.3 Hyperbolas 607

FIGURE 8.28 The graph of one
branch of 
(Example 5)

x2/6400 - y2/22,500 = 1.

y

400 Gm

x
Sun (170, 0)

90 Gm
281.25 Gm

Path of
comet

FIGURE 8.29 Cross section of
a reflecting telescope.

Primary mirror

Parabola

Ellipse

Hyperbola

FP = FH

FH = FE

FE

EXAMPLE 5  Analyzing a Comet’s Orbit
A comet following a hyperbolic path about the Sun has a perihelion distance of 90 Gm.
When the line from the comet to the Sun is perpendicular to the focal axis of the orbit,
the comet is 281.25 Gm from the Sun. Calculate a, b, c, and e. What are the coordinates
of the center of the Sun if we coordinatize space so that the hyperbola is given by

SOLUTION The perihelion distance is When 
(see Exercise 74). So , or Because , we
have the system

which yields the equation:

Therefore, , , , and (Figure
8.28). If the comet’s path is the branch of the hyperbola with positive x-coordinates,
then the Sun is at the focus Now try Exercise 55.

Reflective Property of a Hyperbola
Like other conics, a hyperbola can be used to make a reflector of sound, light, and other
waves. If we rotate a hyperbola in three-dimensional space about its focal axis, the 
hyperbola sweeps out a hyperboloid of revolution. If a signal is directed toward a focus
of a reflective hyperboloid, the signal reflects off the hyperbolic surface to the other 
focus. In Figure 8.29 light reflects off a primary parabolic mirror toward the mirror’s focus

, which is also the focus of a small hyperbolic mirror. The light is then reflected
off the hyperbolic mirror, toward the hyperboloid’s other focus , which is also
the focus of an elliptical mirror. Finally the light is reflected into the observer’s eye,
which is at the second focus of the ellipsoid 

Reflecting telescopes date back to the 1600s when Isaac Newton used a primary para-
bolic mirror in combination with a flat secondary mirror, slanted to reflect the light out
the side to the eyepiece. French optician G. Cassegrain was the first to use a hyperbolic
secondary mirror, which directed the light through a hole at the vertex of the primary
mirror (see Exercise 70). Today, reflecting telescopes such as the Hubble Space Tele-
scope have become quite sophisticated and must have nearly perfect mirrors to focus
properly.

FE.

FH = FE

FP = FH

1c, 02 = 1170, 02.
e = 17/8 = 2.125c = 170 Gmb = 150 Gma = 80 Gm

 a = 80

 8100 = 101.25a

 a2
+ 180a + 8100 - a2

= 281.25a

 1a + 9022 - a2
= 281.25a

c - a = 90  and  c2
- a2

= 281.25a,

b2
= c2

- a2b2
= 281.25a.b2/a = 281.25

x = c, y = �b2/ac - a = 90.

x2

a2 -

y2

b2 = 1?
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Long-Range Navigation
Hyperbolas and radio signals are the basis of the LORAN (long-range navigation) sys-
tem. Example 6 illustrates this system using the definition of hyperbola and the fact that
radio signals travel 980 ft per microsecond (1 microsecond sec).= 1 msec = 10-6

608 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 6  Using the LORAN System
Radio signals are sent simultaneously from transmitters located at points O, Q, and R
(Figure 8.30). R is 100 mi due north of O, and Q is 80 mi due east of O. The LORAN
receiver on sloop Gloria receives the signal from O 323.27 sec after the signal from
R, and 258.61 sec after the signal from Q. What is the sloop’s bearing and distance
from O?

SOLUTION The Gloria is at a point of intersection between two hyperbolas: one
with foci O and R, the other with foci O and Q.

The hyperbola with foci O and R has center and transverse axis

Thus a 30 and yielding the equation

The hyperbola with foci O and Q has center and transverse axis

Thus a 24 and , yielding the equation

The Gloria is at point P where upper and right-hand branches of the hyperbolas meet
(Figure 8.31). Using a grapher we find that P 187.09, 193.49 . The bearing from
point O is

and the distance from point O is

So the Gloria is about 187.1 mi east and 193.5 mi north of point O on a bearing of
roughly 44°, and the sloop is about 269 mi from point O. Now try Exercise 57.

d L 2187.092
+ 193.492

L 269.15.

u L 90° - tan-1a193.49

187.09
b L 44.04°,

2L 1

1x - 4022
242 -

y2

322 = 1.

b = 2c2
- a2

L 2402
- 242

= 32L

2a = 1258.61 msec21980 ft/msec211 mi/5280 ft2 L 48 mi.

140, 02180, 0210, 02

1y - 5022
302 -

x2

402 = 1.

b = 2c2
- a2

L 2502
- 302

= 40,L

2a = 1323.27 msec21980 ft/msec211 mi/5280 ft2 L 60 mi.

10, 50210, 100210, 02

m

m

FIGURE 8.30 Strategically located 
LORAN transmitters O, Q, and R.
(Example 6)

100 mi

80 mi

R

QO

FIGURE 8.31 Graphs for Example 6.

[–200, 400] by [–200, 400]

QUICK REVIEW 8.3 (For help, go to Sections P.2, P.5, and 7.1.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the distance between the given points.

1. and 

2. and 

In Exercises 3 and 4, solve for y in terms of x.

3. 4.
x2

36
-

y2

4
= 1

y2

16
-

x2

9
= 1

1b, c21a, -32
1-7, -8214, -32

In Exercises 5–8, solve for x.

5.

6.

7.

8.

In Exercises 9 and 10, solve the system of equations.

9. and 

10. and c2
- a2

= 25a/12c - a = 1

c2
- a2

= 16a/3c - a = 2

22x2
+ 12 - 23x2

+ 4 = -8

26x2
+ 12 - 26x2

+ 1 = 1

14x + 12 - 1x + 8 = 1

13x + 12 - 13x - 8 = 10
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SECTION 8.3 EXERCISES

In Exercises 1–6, find the vertices and foci of the hyperbola.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, match the graph with its equation.

7. 8.

9.

10.

In Exercises 11–16, sketch the graph of the hyperbola by hand.

11. 12.

13. 14.

15.

16.

In Exercises 17–22, graph the hyperbola using a function grapher.

17. 18.

19. 20.

21. 22.
1y - 322

9
-

1x + 222
4

= 1
x2

4
-

1y - 322
5

= 1

y2

16
-

x2

9
= 1

x2

4
-

y2

9
= 1

y2

64
-

x2

16
= 1

x2

36
-

y2

16
= 1

1x - 122
2

-

1y + 322
4

= 1

1x + 322
16

-

1y - 122
4

= 1

x2

169
-

y2

144
= 1

y2

25
-

x2

16
= 1

y2

64
-

x2

25
= 1

x2

49
-

y2

25
= 1

1x - 222
9

- 1y + 122 = 1

1y - 222
4

-

1x + 322
16

= 1

y2

4
-

x2

9
= 1

x2

25
-

y2

16
= 1

9x2
- 4y2

= 363x2
- 4y2

= 12

x2

9
-

y2

16
= 1

y2

36
-

x2

13
= 1

y2

25
-

x2

21
= 1

x2

16
-

y2

7
= 1

In Exercises 23–38, find an equation in standard form for the hyperbola
that satisfies the given conditions.

23. Foci 3, 0 , transverse axis length 4

24. Foci 0, 3 , transverse axis length 4

25. Foci 0, 15 , transverse axis length 8

26. Foci 5, 0 , transverse axis length 3

27. Center at , , horizontal focal axis

28. Center at , , vertical focal axis

29. Center at , , vertical focal axis

30. Center at , , horizontal focal axis

31. Transverse axis endpoints 2, 3 and , conjugate 
axis length 6

32. Transverse axis endpoints 5, 3) and , 3 , conjugate axis
length 10

33. Transverse axis endpoints , 3) and 5, 3 , slope of one 
asymptote 4/3

34. Transverse axis endpoints , ) and , 7 , slope of one
asymptote 4/3

35. Foci , 2 and 2, 2 , transverse axis endpoints , 2
and 

36. Foci , and , 0 , transverse axis endpoints 
, and , 

37. Center at , 6 , , , vertical focal axis

38. Center at 1, , , , horizontal focal axis

In Exercises 39– 42, find the center, vertices, and the foci of the 
hyperbola.

39.

40.

41.

42.

In Exercises 43–46, graph the hyperbola using a parametric grapher in
Dot graphing mode.

43. 44.

45.

46.

In Exercises 47–50, graph the hyperbola, and find its vertices, foci, and
eccentricity.

47.

48. 41x - 222 - 91y + 422 = 1

41y - 122 - 91x - 322 = 36

1y + 122
15

-

1x - 222
6

= 1

1x + 322
12

-

1y - 622
5

= 1

x2

30
-

y2

20
= 1

y2

25
-

x2

4
= 1

1y - 122
25

-

1x + 522
11

= 1

1y + 322
64

-

1x - 222
81

= 1

1x + 422
12

-

1y + 622
13

= 1

1x + 122
144

-

1y - 222
25

= 1

e = 2c = 62-41
e = 2a = 52-31

2-2-312-9-31
2-312-11-31

11, 22
2-31212-41

2-21-2-21
21-11
2-711

12, -1221
e = 2c = 610, 02,
e = 13/12b = 510, 02,
e = 3/2a = 410, 02,
e = 2a = 510, 02,

2�1
2�1
2�1
2�1

y

x

(a)

y

x

(b)

y

x

(c)

y

x

(d)
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49.

50.

In Exercises 51 and 52, write an equation for the hyperbola.

51. 52.

53. Writing to Learn Prove that an equation for the hyper-

bola with center , foci , and semitransverse axis

a is , where c a 0 and 

[Hint: Refer to derivation at the beginning of the section.]

54. Degenerate Hyperbolas Graph the degenerate 
hyperbola.

(a) (b)

55. Rogue Comet A comet following a hyperbolic path
about the Sun has a perihelion of 120 Gm. When the line from
the comet to the Sun is perpendicular to the focal axis of the
orbit, the comet is 250 Gm from the Sun. Calculate a, b, c, 
and e. What are the coordinates of the center of the Sun if the
center of the hyperbolic orbit is (0, 0) and the Sun lies on the
positive x-axis?

56. Rogue Comet A comet following a hyperbolic path
about the Sun has a perihelion of 140 Gm. When the line from
the comet to the Sun is perpendicular to the focal axis of the
orbit, the comet is 405 Gm from the Sun. Calculate a, b, c, 
and e. What are the coordinates of the center of the Sun if the
center of the hyperbolic orbit is (0, 0) and the Sun lies on the
positive x-axis?

57. Long-Range Navigation Three LORAN radio trans-
mitters are positioned as shown in the figure, with R due north
of O and Q due east of O. The cruise ship Princess Ann
receives simultaneous signals from the three transmitters. The
signal from O arrives 323.27 sec after the signal from R, and
646.53 sec after the signal from Q. Determine the ship’s bear-
ing and distance from point O.

m

m

y2

9
-

x2

16
= 0

x2

4
- y2

= 0

b2
= c2

- a2.77y2/a2
- x2/b2

= 1

10, �c210, 02

25y2
- 9x2

- 50y - 54x - 281 = 0

9x2
- 4y2

- 36x + 8y - 4 = 0 58. Gun Location Observers are located at positions A, B,
and C with A due north of B. A cannon is located somewhere
in the first quadrant as illustrated in the figure. A hears the
sound of the cannon 2 sec before B, and C hears the sound 4
sec before B. Determine the bearing and distance of the cannon
from point B. (Assume that sound travels at 1100 ft/sec.)

Group Activities In Exercises 59 and 60, solve the system
of equations algebraically and support your answer graphically.

59. 60.

61. Group Activity Consider the system of equations

(a) Solve the system graphically.

(b) If you have access to a grapher that also does symbolic 
algebra, use it to find the the exact solutions to the system.

62. Writing to Learn Escape of the Unbound
When NASA launches a space probe, the probe reaches a
speed sufficient for it to become unbound from Earth and 
escape along a hyperbolic trajectory. Look up escape speed
in an astronomy textbook or on the Internet, and write a para-
graph in your own words about what you find.

Standardized Test Questions
63. True or False The distance from a focus of a hyperbola

to the closer vertex is where a is the semitransverse
axis and e is the eccentricity. Justify your answer.

64. True or False Unlike that for an ellipse, the Pythagorean
relation for a hyperbola is the usual Justify your
answer.

In Exercises 65–68, you may use a graphing calculator to solve the
problem.

65. Multiple Choice One focus of is

(A)

(B)

(C)

(D)

(E) 11, 02.
113, 02.
12, 02.
115, 02.
14, 02.

x2
- 4y2

= 4

a2
+ b2

= c2.

a1e - 12,

x2

25
+

y2

4
= 1.

x2

4
-

y2

25
= 1

x2
+ y2

= 9x -

213

3
 y = -2

x2

4
- y2

= 1
x2

4
-

y2

9
= 1

610 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

y

x
(–2, 0) (2, 0)

(3, 2)

y

x
(2, –2)

ba0, 2

ba0, – 2

80 mi

200 mi

R

QO

CB 7000 ft

4000 ft

A

y

x
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66. Multiple Choice The focal axis of

is

(A)

(B)

(C)

(D)

(E)

67. Multiple Choice The center of
is

(A)

(B)

(C)

(D)

(E)

68. Multiple Choice The slopes of the asymptotes of the 

hyperbola are

(A)

(B)

(C)

(D)

(E)

Explorations
69. Constructing Points of a Hyperbola Use a

geometry software package, such as Cabri Geometry II TM, The
Geometer’s Sketchpad®, or a similar application on a handheld
device, to carry out the following construction.

(a) Start by placing the coordinate axes in the construction
window.

(b) Construct two points on the x-axis at as the foci.

(c) Construct concentric circles of radii 
centered at these two foci.

(d) Construct the points where these concentric circles meet
and have a difference of radii of , and overlay the
conic that passes through these points if the software has a
conic tool.

(e) Find the equation whose graph includes all of these 
points.

2a = 6

r = 1, 2, 3, Á ,12

1�5, 02

�4/3.

�2/3.

� 13/2.

�3/2.

�1.

x2

4
-

y2

3
= 1

12, -62.
12, -52.
12, -42.
12, -32.
12, -22.

4x2
- 12y2

- 16x - 72y - 44 = 0

y = 6.

y = 5.

y = 4.

y = 3.

y = 2.

1x + 522
9

-

1y - 622
16

= 1

70. Cassegrain Telescope A Cassegrain telescope as de-
scribed in the section has the dimensions shown in the figure.
Find the standard form for the equation of the hyperbola cen-
tered at the origin with the x-axis as the focal axis.

Extending the Ideas
71. Prove that a nondegenerate graph of the equation

is a hyperbola if 

72. Writing to Learn The graph of the equation

is considered to be a degenerate hyperbola. Describe the graph.
How is it like a full-fledged hyperbola, and how is it different?

73. Conjugate Hyperbolas The hyperbolas

and

obtained by switching the order of subtraction in their standard
equations are conjugate hyperbolas. Prove that these hyperbo-
las have the same asymptotes and that the conjugate axis of each
of these hyperbolas is the transverse axis of the other hyperbola.

74. Focal Width of a Hyperbola Prove that for the hy-
perbola

if , then Why is it reasonable to define the
focal width of such hyperbolas to be ?

75. Writing to Learn Explain how the standard form 
equations for the conics are related to

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0.

2b2/a
y = �b2/a.x = c

x2

a2
-

y2

b2
= 1,

1y - k22
b2

-

1x - h22
a2

= 1
1x - h22

a2
-

1y - k22
b2

= 1

1x - h22
a2

-

1y - k22
b2

= 0

AC 6 0.

Ax2
+ Cy2

+ Dx + Ey + F = 0

SECTION 8.3 Hyperbolas 611

Primary Parabolic Mirror

Eyepiece

Secondary Hyperbolic Mirror

120 cm

100 cm

80 cm

FH
FP � FH
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612 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

8.4 Translation and Rotation 
of Axes

Second-Degree Equations in Two Variables
In Section 8.1, we began with a unified approach to conic sections, learning that
parabolas, ellipses, and hyperbolas are all cross sections of a right circular cone. In
Sections 8.1–8.3, we gave separate plane-geometry definitions for parabolas, ellipses,
and hyperbolas that led to separate kinds of equations for each type of curve. In this
section and the next, we once again consider parabolas, ellipses, and hyperbolas as a
unified family of interrelated curves.

In Section 8.1, we claimed that the conic sections can be defined algebraically in the
Cartesian plane as the graphs of second-degree equations in two variables, that is,
equations of the form

where A, B, and C are not all zero. In this section, we investigate equations of this type,
which are really just quadratic equations in x and y. Because they are quadratic equa-
tions, we can adapt familiar methods to this unfamiliar setting. That is exactly what we
do in Examples 1–3.

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0,

What you’ll learn about
• Second-Degree Equations in Two

Variables
• Translating Axes Versus 

Translating Graphs
• Rotation of Axes
• Discriminant Test

... and why
You will see ellipses, hyperbolas,
and parabolas as members of
the family of conic sections rather
than as separate types of curves.

EXAMPLE 1  Graphing a Second-Degree Equation
Solve for y, and use a function grapher to graph

SOLUTION Rearranging terms yields the equation

The quadratic formula gives us

Let

and graph the two equations in the same viewing window, as shown in Figure 8.32.
The combined figure appears to be an ellipse. Now try Exercise 1.

In the equation in Example 1, there was no Bxy term. None of the examples in 
Sections 8.1–8.3 included such a cross-product term. A cross-product term in the equation
causes the graph to tilt relative to the coordinate axes, as illustrated in Examples 2 and 3.

Y1 = -2 + 0.752-x2
+ 2x + 15 and Y2 = -2 - 0.752-x2

+ 2x + 15,

= -2 �
3

4
 2-x2

+ 2x + 15

=

-8 � 32-x2
+ 2x + 15

4

y =

-64 � 2642
- 4116219x2

- 18x - 172
21162

16y2
+ 64y + (9x2

- 18x - 712 = 0.

9x2
+ 16y2

- 18x + 64y - 71 = 0.

FIGURE 8.32 The graph of 

(Example 1)
9x2

+ 16y2
- 18x + 64y - 71 = 0.

[–9.4, 9.4] by [–6.2, 6.2]

EXAMPLE 2  Graphing a Second-Degree Equation
Solve for y, and use a function grapher to graph

SOLUTION This equation can be rewritten as or as The
graph of this equation is shown in Figure 8.33. It appears to be a hyperbola with a
slant focal axis. Now try Exercise 5.

y = 9/12x2.2xy = 9

2xy - 9 = 0.
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The graphs obtained in Examples 1–3 all appear to be conic sections, but how can we be
sure? If they are conics, then we probably have classified Examples 1 and 2 correctly,
but couldn’t the graph in Example 3 (Figure 8.34) be part of an ellipse or one branch of a
hyperbola? We now set out to answer these questions and to develop methods for simpli-
fying and classifying second-degree equations in two variables.

Translating Axes Versus Translating Graphs
The coordinate axes are often viewed as a permanent fixture of the plane, but this just
isn’t so. We can shift the position of axes just as we have been shifting the position of
graphs since Chapter 1. Such a translation of axes produces a new set of axes parallel
to the original axes, as shown in Figure 8.35.

SECTION 8.4 Translation and Rotation of Axes 613

FIGURE 8.33 The graph of 
(Example 2)2xy - 9 = 0.

[–9.4, 9.4] by [–6.2, 6.2]

EXAMPLE 3  Graphing a Second-Degree Equation
Solve for y, and use a function grapher to graph

SOLUTION We rearrange the terms as a quadratic equation in y:

The quadratic formula gives us

Let

and graph the two equations in the same viewing window, as shown in Figure 8.34a.
The combined figure appears to be a parabola, with a slight gap due to grapher failure.
The combined graph should connect at a point for which the radicand ,
that is, when Figure 8.34b supports this analysis.

Now try Exercise 9.
x = 225/60 = 15/4 = 3.75.

225 - 60x = 0

y1 =

45 - 2x + 1225 - 60x

4
 and y2 =

45 - 2x - 1225 - 60x

4
 ,

=

45 - 2x � 1225 - 60x

4

y =

-14x - 902 � 214x - 9022 - 41421x2
- 30x + 4502

2142

4y2
+ 14x - 902y + 1x2

- 30x + 4502 = 0

x2
+ 4xy + 4y2

- 30x - 90y + 450 = 0.

FIGURE 8.34 The graph of 

(a) with a gap and (b) with the TRACE feature
activated at the connecting point. (Example 3)

x2
+ 4xy + 4y2

- 30x - 90y + 450 = 0

[–23, 23] by [–5, 25]

(a)

[–23, 23] by [–5, 25]

(b)

X=3.75  Y=9.375

FIGURE 8.35 A translation of Cartesian coordinate axes.

y y′

y′

x

x′x′

O

O′(h, k)

h

k

P(x, y) = P(x′, y′)

Figure 8.35 shows a plane containing a point P that is named in two ways: using the 
coordinates and the coordinates . The coordinates are based on the
original x- and y-axes and the original origin O, while are based on the trans-
lated - and -axes and the corresponding origin .O¿y¿x¿

1x¿, y¿2 1x, y21x¿, y¿21x, y2
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We use the second pair of translation formulas in Example 4.

614 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Translation-of-Axes Formulas

The coordinates and based on parallel sets of axes are related by
either of the following translation formulas:

or

x¿ = x - h  and  y¿ = y - k.

 x = x¿ + h  and  y = y¿ + k

1x¿, y¿21x, y2

EXAMPLE 4  Revisiting Example 1
Prove that is the equation of an ellipse. Translate
the coordinate axes so that the origin is at the center of this ellipse.

SOLUTION We complete the square of both x and y:

This is a standard equation of an ellipse. If we let and , then
the equation of the ellipse becomes

Figure 8.36 shows the graph of this final equation in the new -coordinate system,
with the original xy-axes overlaid. Compare Figures 8.32 and 8.36.

Now try Exercise 21.

Rotation of Axes
To show that the equation in Example 2 or 3 is the equation of a conic section, we need
to rotate the coordinate axes so that one axis aligns with the (focal) axis of the conic. In
such a rotation of axes, the origin stays fixed, and we rotate the x- and y-axes through
an angle to obtain the - and -axes (Figure 8.37).

Figure 8.37 shows a plane containing a point P named in two ways: as and as
. The coordinates are based on the original - and -axes, while 

are based on the rotated - and -axes.y¿x¿

1x¿, y¿2yx1x, y21x¿, y¿2 1x, y2
y¿x¿a

x¿y¿

1x¿22
16

+

1y¿22
9

= 1.

y¿ = y + 2x¿ = x - 1

 
1x - 122

16
+

1y + 222
9

= 1

 91x - 122 + 161y + 222 = 144

 91x2
- 2x + 12 + 161y2

+ 4y + 42 = 71 + 9112 + 16142
 9x2

- 18x + 16y2
+ 64y = 71

9x2
+ 16y2

- 18x + 64y - 71 = 0

FIGURE 8.36 The graph of 
(Example 4)1x¿22/16 + 1y¿22/9 = 1.

y
y′

x
x′

8

12

FIGURE 8.37 A rotation of Cartesian
coordinate axes.

α

α

α

y

x

x′

x′

y′

y′

x

P(x, y) = P(x′, y′)

O

y

Rotation-of-Axes Formulas

The coordinates and based on rotated sets of axes are related by
either of the following rotation formulas:

or

where , 0 /2, is the angle of rotation.6 pa6a

x = x¿ cos a - y¿ sin a  and  y = x¿ sin a + y¿ cos a,

x¿ = x cos a + y sin a  and  y¿ = -x sin a + y cos a,

1x¿, y¿21x, y2
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The first pair of equations was established in Example 10 of Section 7.2. The second
pair can be derived directly from the geometry of Figure 8.37 (see Exercise 55) and is
used in Example 5.

SECTION 8.4 Translation and Rotation of Axes 615

EXAMPLE 5  Revisiting Example 2
Prove that is the equation of a hyperbola by rotating the coordinate
axes through an angle 

SOLUTION Because the rotation equations 
become

So by rotating the axes, the equation becomes

To see that this is the equation of a hyperbola, we put it in standard form:

Figure 8.38 shows the graph of the original equation in the original xy system with
the -axes overlaid. Now try Exercise 37.

In Example 5 we converted a second-degree equation in x and y into a second-degree
equation in and using the rotation formulas. By choosing the angle of rotation 
appropriately, there was no cross-product term in the final equation, which allowed
us to put it in standard form. We now generalize this process.

x¿y¿

y¿x¿

x¿y¿

1x¿22
9

-

1y¿22
9

= 1

1x¿22 - 1y¿22 = 9

1x¿22 - 1y¿22 - 9 = 0.

2a x¿ - y¿

12
b a x¿ + y¿

12
b - 9 = 0

2xy - 9 = 0

x =

x¿ - y¿

12
  and  y =

x¿ + y¿

12
.

cos 1p/42 = sin 1p/42 = 1/12,

a = p/4.
2xy - 9 = 0

FIGURE 8.38 The graph of 
(Example 5)2xy - 9 = 0.

y

x

x'y'

3

3

Coefficients for a Conic in a Rotated System
If we apply the rotation formulas to the general second-degree equation in x and y,
we obtain a second-degree equation in and of the form

where the coefficients are

 F¿ = F

 E¿ = E cos a - D sin a

 D¿ = D cos a + E sin a

 C¿ = C cos2 a - B cos a sin a + A sin2 a

 B¿ = B cos 2a + 1C - A2 sin 2a

 A¿ = A cos2 a + B cos a sin a + C sin2 a

A¿x¿
2

+ B¿x¿y¿ + C¿y¿
2

+ D¿x¿ + E¿y¿ + F¿ = 0,

y¿x¿

In order to eliminate the cross-product term and thus align the coordinate axes with the
focal axis of the conic, we rotate the coordinate axes through an angle that causes 
to equal 0. Setting leads to the following useful
result.

B¿ = B cos 2a + 1C - A2 sin 2a = 0
B¿a
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616 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Angle of Rotation to Eliminate the Cross-Product Term
If an angle of rotation such that

will eliminate the term from the second-degree equation in the rotated
-coordinate system.x¿y¿

B¿x¿y¿

cot 2a =

A - C

B
 and 0 6 a 6

p

2

aB Z 0,

FIGURE 8.39 The graph of 
(Example 6)4y2

- 30x - 90y + 450 = 0.
x2

+ 4xy +

x

y

x

20

20

10

10–20 –10

y

EXAMPLE 6  Revisiting Example 3
Prove that is the equation of a parabola
by rotating the coordinate axes through a suitable angle .

SOLUTION The angle of rotation must satisfy the equation

So

and thus

Therefore the coefficients of the transformed equation are

So the equation becomes

After completing the square of the x-terms, the equation becomes

If we translate using and , then the equation becomes

a standard equation of a parabola.

Figure 8.39 shows the graph of the original equation in the original xy-coordinate
system, with the -axes overlaid. Now try Exercise 39.x–y–

1x–22 =

6

15
 1y–2,

k = 315/10h = 21/15

ax¿ -

21

15
b2

=

6

15
 ay¿ -

315

10
b .

5x¿
2

- 4215x¿ - 615y¿ + 450 = 0.

x2
+ 4xy + 4y2

- 30x - 90y + 450 = 0

 F¿ = 450

 E¿ = -90 #
1

15
+ 30 #

2

15
= -  

30

15
= -615

 D¿ = -30 #
1

15
- 90 #

2

15
= -  

210

15
= -4215

 C¿ = 4 #
1

5
- 4 #

2

5
+ 1 #

4

5
= 0

 B¿ = 0

 A¿ = 1 #
1

5
+ 4 #

2

5
+ 4 #

4

5
=

25

5
= 5

 sin a = A
1 - cos 2a

2
= B

1 - 1-3/52
2

=

2

15
.

 cos a = A
1 + cos 2a

2
= B

1 + 1-3/52
2

=

1

15
,

cos 2a = -  

3

5
,

cot 2a =

A - C

B
=

1 - 4

4
= -  

3

4
.

a

a

x2
+ 4xy + 4y2

- 30x - 90y + 450 = 0
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Discriminant Test
Example 6 demonstrates that the algebra of rotation can get ugly. Fortunately, we can
determine which type of conic a second-degree equation represents by looking at the
sign of the discriminant B2

- 4AC.

SECTION 8.4 Translation and Rotation of Axes 617

Discriminant Test

The second-degree equation graphs as

• a hyperbola if ,

• a parabola if ,

• an ellipse if ,

except for degenerate cases.

B2
- 4AC 6 0

B2
- 4AC = 0

B2
- 4AC 7 0

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

This test hinges on the fact that the discriminant is invariant under rotation;
in other words, even though A, B, and C do change when we rotate the coordinate axes,
the combination maintains its value.B2

- 4AC

B2
- 4AC

EXAMPLE 7  Revisiting Examples 5 and 6
(a) In Example 5, before the rotation , and after

the rotation The positive discriminant
tells us the conic is a hyperbola.

(b) In Example 6, before the rotation , and after
the rotation The zero discriminant tells us
the conic is a parabola. Now try Exercise 43.

Not only is the discriminant invariant under rotation, but also its sign is 
invariant under translation and under algebraic manipulations that preserve the equiva-
lence of the equation, such as multiplying both sides of the equation by a nonzero 
constant.

The discriminant test can be applied to degenerate conics. Table 8.2 displays the three 
basic types of conic sections grouped with their associated degenerate conics. Each conic
or degenerate conic is shown with a sample equation and the sign of its discriminant.

B2
- 4AC

B¿
2

- 4 A¿C¿ = 1022 - 4152102 = 0.
B2

- 4AC = 1422 - 4112142 = 0

B¿
2

- 4A¿C¿ = 1022 - 41121-12 = 4.
B2

- 4AC = 1222 - 4102102 = 4

Table 8.2 Conics and the Equation Ax2 Bxy Cy2 Dx Ey F 0

Sample Sign of
Conic Equation A B C D E F Discriminant

Hyperbola 1 Positive

Intersecting lines 1 1 Positive

Parabola 1 Zero

Parallel lines 1 Zero

One line 1 Zero

No graph 1 1 Zero

Ellipse 1 2 Negative

Circle 1 1 Negative

Point 1 1 Negative

No graph 1 1 1 Negativex2
+ y2

= -1

x2
+ y2

= 0

-9x2
+ y2

= 9

-1x2
+ 2y2

= 1

x2
= -1

y2
= 0

-4x2
= 4

-2x2
= 2y

x2
+ xy = 0

-1-2x2
- 2y2

= 1

������
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618 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

QUICK REVIEW 8.4 (For help, go to Sections 4.7 and 5.4.)

SECTION 8.4 EXERCISES

In Exercises 1–12, solve for y, and use a function grapher to graph the
conic.

1.

2.

3.

4.

5. 6.

7. 8.

9.

10.

11.

12.

In Exercises 13–16, write an equation in standard form for the conic shown.

13. 14.

15. 16.

In Exercises 17–20, using the point and the translation informa-
tion, find the coordinates of P in the translated -coordinate system.

17.

18. P1x, y2 = 1-2, 52, h = -4, k = -7

P1x, y2 = 12, 32, h = -2, k = 4

x¿y¿

P1x, y2

2x2
- 4xy + 2y2

- 5x + 6y - 15 = 0

2x2
- 4xy + 8y2

- 10x + 4y - 13 = 0

-x2
+ 3xy + 4y2

- 5x - 10y - 20 = 0

2x2
- xy + 3y2

- 3x + 4y - 6 = 0

2x2
- 5xy + y = 0xy - y - 8 = 0

2xy + 6 = 0-4xy + 16 = 0

x2
- 4y2

+ 6x - 40y + 91 = 0

y2
- 8x - 8y + 8 = 0

4x2
+ y2

+ 24x - 2y + 21 = 0

x2
+ y2

- 6x + 10y + 18 = 0

19.

20. P1x, y2 = 1-5, -42, h = 12, k = -3

P1x, y2 = 16, -32, h = 1, k = 15

y

x
(2, –1)

y

x
(2, 4)

y

x

4

3

y

x

3

4

In Exercises 21–30, identify the type of conic, write the equation in
standard form, translate the conic to the origin, and sketch it in the
translated coordinate system.

21.

22.

23. 24.

25.

26.

27.

28.

29. 30.

31. Writing to Learn Translation Formulas Use
the geometric relationships illustrated in Figure 8.35 to explain
the translation formulas and 

32. Translation Formulas Prove that if and
, then and 

In Exercises 33–36, using the point and the rotation information,
find the coordinates of P in the rotated -coordinate system.

33.

34. , 

35.

36.

In Exercises 37– 40, identify the type of conic, and rotate the coordinate
axes to eliminate the xy-term. Write and graph the transformed equation.

37. 38.

39.

40.

In Exercises 41 and 42, identify the type of conic, solve for y, and graph the
conic. Approximate the angle of rotation needed to eliminate the xy-term.

41.

42. 4x2
- 6xy + 2y2

- 3x + 10y - 6 = 0

16x2
- 20xy + 9y2

- 40 = 0

3x2
+ 213xy + y2

- 14 = 0

2x2
+ 13xy + y2

- 10 = 0

3xy + 15 = 0xy = 8

P1x, y2 = 12, 32, cot 2a = 0

P1x, y2 = 1-5, -42, cot 2a = -3/5

a = p/3P1x, y2 = 16, -32
P1x, y2 = 1-2, 52, a = p/4

x¿y¿

P1x, y2
y¿ = y - k.x¿ = x - hy = y¿ + k

x = x¿ + h

y = y¿ + k.x = x¿ + h

y2
- 2y + 4x - 12 = 02x2

- y2
+ 4x + 6 = 0

2x2
- 4x + y2

- 6y = 9

y2
- 4y - 8x + 20 = 0

16x2
- y2

- 32x - 6y - 57 = 0

9x2
+ 4y2

- 18x + 16y - 11 = 0

3x2
- 6x - 6y + 10 = 0x2

+ 2x - y + 3 = 0

2x2
+ 3y2

+ 12x - 24y + 60 = 0

4y2
- 9x2

- 18x - 8y - 41 = 0

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–10, use trigonometric identities and assume 
0 /2.

1. Given that , find cos 2 .

2. Given that , find 

3. Given that find cos 2 .

4. Given that find cos 2 .acot 2a = 2/15,

acot 2a = 1/13,

cos 2a.cot 2a = 8/15

acot 2a = 5/12

p6  a…

5. Given that , find .

6. Given that , find .

7. Given that , find cos .

8. Given that , find cos .

9. Given that find sin .

10. Given that , find sin .acot 2a = 45/28

acot 2a = 5/111,

acot 2a = 3/17

acot 2a = 3/4

acot 2a = 13

acot 2a = 0
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In Exercises 43–52, use the discriminant to decide whether
the equation represents a parabola, an ellipse, or a hyperbola.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53. Revisiting Example 5 Using the results of Example 5,
find the center, vertices, and foci of the hyperbola 
in the original coordinate system.

54. Revisiting Examples 3 and 6 Use information from
Examples 3 and 6
(a) to prove that the point where the

graphs of and 
meet is not the vertex of the

parabola;

(b) to prove that the point is the vertex of
the parabola.

55. Rotation Formulas Prove and
using the geometric relationships 

illustrated in Figure 8.37.

56. Rotation Formulas Prove that if 
and , then and

.

Standardized Test Questions
57. True or False The graph of the equation 

(A and C not both zero) has a focal axis
aligned with the coordinate axes. Justify your answer.

58. True or False The graph of the equation 
is a circle or a degenerate circle. Justify your answer.

In Exercises 59–62, solve the problem without using a calculator.

59. Multiple Choice Which of the following is not a reason
to translate the axes of a conic?

(A) To simplify its equation

(B) To eliminate the cross-product term

(C) To place its center or vertex at the origin

(D) To make it easier to identify its type

(E) To make it easier to sketch by hand

60. Multiple Choice Which of the following is not a reason
to rotate the axes of a conic?

(A) To simplify its equation

(B) To eliminate the cross-product term

(C) To place its center or vertex at the origin

(D) To make it easier to identify its type

(E) To make it easier to sketch by hand

Ey + F = 0
x2

+ y2
+ Dx +

Dx + Ey + F = 0
Ax2

+ Cy2
+

y = x¿ sin a + y¿ cos a
x = x¿cos a - y¿sin ay¿ = -x sin a + y cos a

x¿ = x cos a + y sin a

y = x¿ sin a + y¿ cos a
x = x¿ cos a - y¿ sin a

V1x, y2 = 13.6, 8.72
145 - 2x - 1225 - 60x2/4

Y2 =Y1 = 145 - 2x + 1225 - 60x2/4
P1x, y2 = 13.75, 9.3752

2xy - 9 = 0

6x2
- 4xy + 9y2

- 40x + 20y - 56 = 0

4x2
- 2xy + y2

- 5x + 18 = 0

5x2
+ 4xy + 3y2

+ 2x + y = 0

x2
- 3y2

- y - 22 = 0

3x2
- 12xy + 4y2

+ x - 5y - 4 = 0

8x2
- 4xy + 2y2

+ 6 = 0

-xy + 3y2
- 4x + 2y + 8 = 0

9x2
- 6xy + y2

- 7x + 5y = 0

x2
- 4xy + 3x + 25y - 6 = 0

x2
- 4xy + 10y2

+ 2y - 5 = 0

B2
- 4AC 61. Multiple Choice The vertices of

are

(A) 1 4, . (B) 1 3, .

(C) 4 1, 3 . (D) 4 2, 3 .

(E) 1, 3 .

62. Multiple Choice The asymptotes of the hyperbola
are

(A) (B)

(C) (D)

(E) the coordinate axes.

Explorations
63. Axes of Oblique Conics The axes of conics that are

not aligned with the coordinate axes are often included in the
graphs of conics.

(a) Recreate the graph shown in Figure 8.38 using a function
grapher including the - and -axes. What are the equa-
tions of these rotated axes?

(b) Recreate the graph shown in Figure 8.39 using a function
grapher including the - and -axes. What are the 
equations of these rotated and translated axes?

64. The Discriminant Determine what happens to the sign
of within the equation

when

(a) the axes are translated h units horizontally and k units 
vertically;

(b) both sides of the equation are multiplied by the same
nonzero constant k.

Extending the Ideas
65. Group Activity Working together, prove that the formu-

las for the coefficients A , B , C , D , E , and F in a rotated
system given on page 615 are correct.

66. Identifying a Conic Develop a way to decide whether
, with A and C not both 0,

represents a parabola, an ellipse, or a hyperbola. Write an ex-
ample to illustrate each of the three cases.

67. Rotational Invariant Prove that 

4AC

when the xy-coordinate system is rotated through an angle .

68. Other Rotational Invariants Prove that each of the
following are invariants under rotation:

(a) F (b) (c) 

69. Degenerate Conics Graph all of the degenerate conics
listed in Table 8.2. Recall that degenerate cones occur when the
generator and axis of the cone are parallel or perpendicular.
(See Figure 8.2.) Explain the occurrence of all of the degenerate
conics listed on the basis of cross sections of typical or degenerate
right circular cones.

D2
+ E2A + C

a

B¿
2

- 4A¿C¿ = B2 
-

Ax2
+ Cy2

+ Dx + Ey + F = 0

¿¿¿¿¿¿

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

B2
- 4AC

y–x–

y¿x¿

y = 4x, y = -  

x

4
.y = -2x, y =

x

2
.

y = 2x, y = -  

x

2
.y = x, y = -x.

xy = 4

2�-21
2�12�1
2-2�12-2�1

9x2
+ 16y2

- 18x + 64y - 71 = 0
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620 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

8.5 Polar Equations of Conics

What you’ll learn about
• Eccentricity Revisited
• Writing Polar Equations 

for Conics
• Analyzing Polar Equations 

of Conics
• Orbits Revisited

... and why
You will learn the approach to 
conics used by astronomers.

Eccentricity Revisited
Eccentricity and polar coordinates provide ways to see once again that parabolas, 
ellipses, and hyperbolas are a unified family of interrelated curves. We can define
these three curves simultaneously by generalizing the focus-directrix definition of a
parabola given in Section 8.1.

Conic
section

Focus
Directrix

Vertex

Focal
axis

D

P

F

FIGURE 8.40 The geometric structure 
of a conic section.

Focus-Directrix Definition of a Conic Section
A conic section is the set of all points in a plane whose distances from a particular
point (the focus) and a particular line (the directrix) in the plane have a constant
ratio (Figure 8.40). (We assume that the focus does not lie on the directrix.)

The line passing through the focus and perpendicular to the directrix is the (focal) axis
of the conic section. The axis is a line of symmetry for the conic. Each point where the
conic intersects its axis is a vertex of the conic. If P is a point of the conic, F is the 
focus, and D is the point of the directrix closest to P, then the constant ratio PF/PD is
the eccentricity e of the conic (see Figure 8.40). A parabola has one focus and one di-
rectrix. Ellipses and hyperbolas have two focus-directrix pairs, and either focus-direc-
trix pair can be used with the eccentricity to generate the entire conic section.

Focus-Directrix-Eccentricity Relationship
If P is a point of a conic section, F is the conic’s focus, and D is the point of the
directrix closest to P, then

where e is a constant and the eccentricity of the conic. Moreover, the conic is

• a hyperbola if e 1,

• a parabola if ,

• an ellipse if e 1.6

e = 1

7

e =

PF

PD
  and  PF = e # PD,
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In this approach to conic sections, the eccentricity e is a strictly positive constant, and
there are no circles or other degenerate conics.

Writing Polar Equations for Conics
Our focus-directrix definition of conics works best in combination with polar coordinates.
Recall that in polar coordinates the origin is the pole and the x-axis is the polar axis. To
obtain a polar equation for a conic section, we position the pole at the conic’s focus and
the polar axis along the focal axis with the directrix to the right of the pole (Figure 8.41).
If the distance from the focus to the directrix is k, the Cartesian equation of the directrix is

From Figure 8.41, we see that

So the equation becomes

which when solved for r is

In Exercise 53, you are asked to show that this equation is still valid if r 0 or 
r cos k. This one equation can produce all sizes and shapes of nondegenerate conic
sections. Figure 8.42 shows three typical graphs for this equation. In Exploration 1, you
will investigate how changing the value of e affects the graph of .r = ke/(1 + e cos u2

7  u

6

r =

ke

1 + e cos u
.

r = e1k - r cos u2,
PF = e # PD

PF = r  and  PD = k - r cos u.

x = k.

SECTION 8.5 Polar Equations of Conics 621

FIGURE 8.41 A conic section in the 
polar plane.

Conic
section

Focus at
the pole

Directrix

D

r

F
x

x = k

r cos  θ

k – r cos  θ

θ

P(r, )θ

FIGURE 8.42 The three types of conics possible for r = ke/11 + e cos u2.

x

y

Directrix

e = < 1
PD
PF

(a)

Ellipse

x = k

F(0, 0)

P D

x

Directrix

e = = 1
PD
PF

(b)

Parabola

x = k

F(0, 0)

P D

y

x

Directrix

e = > 1
PD
PF

(c)

Hyperbola

x = k

F(0, 0)

P D

y

Remarks
• To be consistent with our work on parabolas,

we could use 2p for the distance from the 
focus to the directrix, but following George B.
Thomas, Jr., we use k for this distance. This
simplifies our polar equations of conics.

• Rather than religiously using polar coordinates
and equations, we use a mixture of the polar
and Cartesian systems. So, for example, we
use for the directrix rather than

or r = k sec u.r cos u = k
x = k

EXPLORATION 1 Graphing Polar Equations of Conics

Set your grapher to Polar and Dot graphing modes, and to Radian mode. 
Using , an xy window of by 

and graph

for , 0.8, 1, 1.5, 3. Identify the type of conic section obtained for each 
e value. Overlay the five graphs, and explain how changing the value of e affects 
the graph of Explain how the five graphs are similar and 
how they are different.

r = ke/11 + e cos u2.
e = 0.7

r =

ke

1 + e cos u

ustep = p/48,2p,
umax =3-12, 124, umin = 0,3-12, 244k = 3
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622 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

Polar Equations for Conics
The four standard orientations of a conic in the polar plane are as follows.

(a) (b)

(c) (d) r =

ke

1 - e sin u
r =

ke

1 + e sin u

r =

ke

1 - e cos u
r =

ke

1 + e cos u

Focus at pole
x

Directrix x = k

(a)

y

Focus at pole
x

Directrix x = –k

(b)

y

Focus
at pole

y

Directrix y = k

(c)

x Focus
at pole

y

Directrix y = –k

(d)

x

EXAMPLE 1  Writing and Graphing Polar Equations of Conics
Given that the focus is at the pole, write a polar equation for the specified conic and
graph it.

(a) Eccentricity , directrix 

(b) Eccentricity , directrix 

(c) Eccentricity , directrix 

SOLUTION

(a) Setting and in yields

Figure 8.43a shows this ellipse and the given directrix.

=

6

5 + 3 cos u

r =

213/52
1 + 13/52 cos u

r =

ke

1 + e cos u
k = 2e = 3/5

y = 4.e = 3/2

x = -2.e = 1

x = 2.e = 3/5
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Analyzing Polar Equations of Conics
The first step in analyzing the polar equations of a conic section is to use the eccentric-
ity to identify which type of conic the equation represents. Then we determine the
equation of the directrix.

SECTION 8.5 Polar Equations of Conics 623

(b) Setting and in yields

Figure 8.43b shows this parabola and its directrix.

(c) Setting and in yields

Figure 8.43c shows this hyperbola and the given directrix. Now try Exercise 1.

=

12

2 + 3 sin u
.

r =

413/22
1 + 13/22 sin u

r =

ke

1 + e sin u
k = 4e = 3/2

r =

2

1 - cos u
.

r =

ke

1 - e cos u
k = 2e = 1

FIGURE 8.43 Graphs for Example 1.

[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–15,15] by [–5, 15]

(c)

EXAMPLE 2  Identifying Conics from Their Polar Equations
Determine the eccentricity, the type of conic, and the directrix.

(a) (b) 

SOLUTION

(a) Dividing numerator and denominator by 2 yields So the
eccentricity , and thus the conic is a hyperbola. The numerator ,
so , and thus the equation of the directrix is 

(b) Dividing numerator and denominator by 4 yields So
the eccentricity , and thus the conic is an ellipse. The numerator

, so , and thus the equation of the directrix is 

Now try Exercise 7.

All of the geometric properties and features of parabolas, ellipses, and hyperbolas 
developed in Sections 8.1–8.3 still apply in the polar coordinate setting. In Example 3
we use this prior knowledge.

y = -2.k = 2ke = 1.5
e = 0.75

r = 1.5/11 - 0.75 sin u2.
x = 2.k = 2

ke = 3e = 1.5
r = 3/11 + 1.5 cos u2.

r =

6

4 - 3 sin u
r =

6

2 + 3 cos u
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Orbits Revisited
Polar equations for conics are used extensively in celestial mechanics, the branch of
astronomy based on the work of Kepler and others who have studied the motion of 
celestial bodies. The polar equations of conic sections are well suited to the two-body
problem of celestial mechanics for several reasons. First, the same equations are used
for ellipses, parabolas, and hyperbolas—the paths of one body traveling about another.
Second, a focus of the conic is always at the pole. This arrangement has two immediate
advantages:

• The pole can be thought of as the center of the larger body, such as the Sun, with the
smaller body, such as Earth, following a conic path about the larger body.

• The coordinates given by a polar equation are the distance r between the two bodies
and the direction from the larger body to the smaller body relative to the axis of
the conic path of motion.

For these reasons, polar coordinates are preferred over Cartesian coordinates for study-
ing orbital motion.

To use the data in Table 8.3 to create polar equations for the elliptical orbits of the planets,
we need to express the equation in terms of a and e. We apply the
formula to the ellipse shown in Figure 8.45:

From Figure 8.45

Use 

Distribute the e.

Add ae.

Subtract .

Factor.ke = a11 - e22
ae2ke = a - ae2

ae2
+ ke = a

ae2
+ ke - ae = a - ae

e = c/a.e1ae + k - a2 = a - ae

e1c + k - a2 = a - c

e # PD = PF

PF = e # PD
r = ke/11 + e cos u2

u

624 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 3  Analyzing a Conic
Analyze the conic section given by the equation Include in
the analysis the values of e, a, b, and c.

SOLUTION Dividing numerator and denominator by 5 yields

.

So the eccentricity , and thus the conic is an ellipse. Figure 8.44 shows this
ellipse. The vertices (endpoints of the major axis) have polar coordinates and

. So , and thus 

The vertex is 2 units to the left of the pole, and the pole is a focus of the 
ellipse. So , and thus An alternative way to find c is to use the fact
that the eccentricity of an ellipse is , and thus 

To find b we use the Pythagorean relation of an ellipse:

With all of this information, we can write the Cartesian equation of the ellipse:

Now try Exercise 31.

1x - 322
25

+

y2

16
= 1

b = 2a2
- c2

= 125 - 9 = 4

c = ae = 5 # 0.6 = 3.e = c/a
c = 3.a - c = 2

12, p2
a = 5.2a = 8 + 2 = 1012, p2 18, 02e = 0.6

r =

3.2

1 - 0.6 cos u

r = 16/15 - 3 cos u2.

FIGURE 8.44 Graph of the ellipse 
(Example 3)r = 16/15 - 3 cos u2.

[–5, 10] by [–5, 5]

FIGURE 8.45 Geometric relationships
within an ellipse.

Focus
at poleCenter

Vertex

x

Directrix
x = k

C F P D

c
a
c + k
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SECTION 8.5 Polar Equations of Conics 625

Ellipse with Eccentricity e and Semimajor Axis a

r =

a11 - e22
1 + e cos u

EXAMPLE 4  Analyzing a Planetary Orbit
Using data from Table 8.3, find a polar equation for the orbit of Mercury, and use it
to approximate its aphelion (farthest distance from the Sun) and perihelion (closest
distance to the Sun).

SOLUTION Setting and in

Mercury’s aphelion is

Mercury’s perihelion is

Now try Exercise 41.

r =

57.911 - 0.205622
1 + 0.2056

L 46.0 Gm.

r =

57.911 - 0.205622
1 - 0.2056

L 69.8 Gm.

r =

a11 - e22
1 + e cos u

  yields  r =

57.911 - 0.205622
1 + 0.2056 cos u

.

a = 57.9e = 0.2056

QUICK REVIEW 8.5 (For help, go to Section 6.4.)

Source: Shupe, et al., National Geographic Atlas of the World (rev. 6th ed.). 
Washington, DC: National Geographic Society, 1992, plate 116, and other sources.

Table 8.3 Semimajor Axes and Eccentricities of the Planets

Planet Semimajor Axis (Gm) Eccentricity

Mercury 57.9 0.2056
Venus 108.2 0.0068
Earth 149.6 0.0167
Mars 227.9 0.0934
Jupiter 778.3 0.0485
Saturn 1427 0.0560
Uranus 2869 0.0461
Neptune 4497 0.0050

In this form of the equation, when , the equation reduces to , the equation
of a circle with radius a.

r = ae = 0

So the equation can be rewritten as follows:r = ke/11 + e cos u2

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, solve for r.

1.

2.

In Exercises 3 and 4, solve for .

3.

4. 1-3, 4p/32 = 13, u2, -2p … u … 2p

11.5, p/62 = 1-1.5, u2, -2p … u … 2p

u

1-2, u2 = 1r, u + p2
13, u2 = 1r, u + p2

In Exercises 5 and 6, find the focus and directrix of the parabola.

5. 6.

In Exercises 7–10, find the foci and vertices of the conic.

7. 8.

8. 10.
y2

36
-

x2

4
= 1

x2

16
-

y2

9
= 1

y2

25
+

x2

9
= 1

x2

9
+

y2

4
= 1

y2
= -12xx2

= 16y
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SECTION 8.5 EXERCISES

In Exercises 1–6, find a polar equation for the conic with a focus at the
pole and the given eccentricity and directrix. Identify the conic, and
graph it.

1. , 2. , 

3. , 4. , 

5. , 6. , 

In Exercises 7–14, determine the eccentricity, type of conic, and directrix.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–20, match the polar equation with its graph, and identify
the viewing window.

r =

20

2 + 5 sin u
r =

6

5 + 2 cos u

r =

42

2 - 7 sin u
r =

20

6 + 5 sin u

r =

2

4 - cos u
r =

5

2 - 2 sin u

r =

6

1 + 2 cos u
r =

2

1 + cos u

x = -5e = 2/3y = -1e = 7/3

y = 2e = 1y = 4e = 3/5

x = 4e = 5/4x = -2e = 1

27.

28.

In Exercises 29 and 30, find a polar equation for the conic with a focus
at the pole.

29. 30.

In Exercises 31–36, graph the conic, and find the values of e, a, b, and c.

31. 32.

33. 34.

35. 36.

In Exercises 37 and 38, determine a Cartesian equation for the given
polar equation.

37. 38.

In Exercises 39 and 40, use the fact that is twice the focal
length and half the focal width, to determine a Cartesian equation of the
parabola whose polar equation is given.

39. 40.

41. Halley’s Comet The orbit 
of Halley’s comet has a semimajor
axis of 18.09 AU and an orbital 
eccentricity of 0.97. Compute its 
perihelion and aphelion distances.

42. Uranus The orbit of the planet Uranus has a semimajor
axis of 19.18 AU and an orbital eccentricity of 0.0461. Com-
pute its perihelion and aphelion distances.

In Exercises 43 and 44, the velocity of an object traveling in a circular
orbit of radius r (distance from center of planet in meters) around a
planet is given by

where k is a constant related to the mass of the planet and the orbiting
object.

v = B
3.99 * 1014 k

r
 m/sec,

r =

12

3 + 3 cos u
r =

4

2 - 2 cos u

k = 2p

r =

6

1 + 2 cos u
r =

4

2 - sin u

r =

12

1 - 5 sin u
r =

16

3 + 5 cos u

r =

16

5 + 3 cos u
r =

24

4 + 2 sin u

r =

11

6 - 5 sin u
r =

21

5 - 2 cos u

a -6, 
p

2
b  and a2, 

3p

2
b

a2.4, 
p

2
b  and a -12, 

3p

2
b

(a) (b)

(c) (d)

(e) (f)

15. 16.

17. 18.

19. 20.

In Exercises 21–24, find a polar equation for the ellipse with a focus at the
pole and the given polar coordinates as the endpoints of its major axis.

21. 22.

23. 24.

In Exercises 25–28, find a polar equation for the hyperbola with a focus
at the pole and the given polar coordinates as the endpoints of its trans-
verse axis.

25. 26. 1-3, 02 and 11.5, p213, 02 and 1-15, p2

13, p/22 and 10.75, -p/2211, p/22 and 13, 3p/22
11.5, 02 and 11, p211.5, 02 and 16, p2

r =

15

4 + 4 cos u
r =

15

2 + 5 sin u

r =

9

5 - 3 sin u
r =

5

2 - 2 sin u

r =

4

3 + 2 cos u
r =

8

3 - 4 cos u

y

x
)(3, π (0.75, 0)

y

x

π b1, 
2

a
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43. Group Activity Lunar Module A lunar excursion
module is in a circular orbit 250 km above the surface of the
Moon. Assume that the Moon’s radius is 1740 km and that

Find the following.

(a) the velocity of the lunar module

(b) the length of time required for the lunar module to circle
the Moon once

44. Group Activity Mars Satellite A satellite is in a
circular orbit 1000 mi above Mars. Assume that the radius of
Mars is 2100 mi and that Find the velocity of the
satellite.

Standardized Test Questions
45. True or False The equation yields

no true circles. Justify your answer.

46. True or False The equation 
yields no true parabolas. Justify your answer.

In Exercises 47–50, solve the problem without using a calculator.

47. Multiple Choice Which ratio of distances is constant for
a point on a nondegenerate conic?

(A) Distance to center : distance to directrix

(B) Distance to focus : distance to vertex

(C) Distance to vertex : distance to directrix

(D) Distance to focus : distance to directrix

(E) Distance to center : distance to vertex

48. Multiple Choice Which type of conic section has an 
eccentricity greater than one?

(A) An ellipse

(B) A parabola

(C) A hyperbola

(D) Two parallel lines

(E) A circle

49. Multiple Choice For a conic expressed by
, which point is located at the pole?

(A) The center

(B) A focus

(C) A vertex

(D) An endpoint of the minor axis

(E) An endpoint of the conjugate axis

50. Multiple Choice Which of the following is not a polar
equation of a conic?

(A)

(B)

(C)

(D)

(E) r = 1/11 + 2 cos u2
r = 1/12 - cos u2
r = 3

r = 1/11 + sin u2
r = 1 + 2 cos u

r = ke/11 + e sin u2

r = a11 - e22/11 + e cos u2
r = ke/11 + e cos u2

k = 0.11.

k = 0.012.

SECTION 8.5 Polar Equations of Conics 627

Explorations
51. Planetary Orbits Use the polar equation

in completing the following 
activities.

(a) Use the fact that cos 1 to prove that the 
perihelion distance of any planet is and the 
aphelion distance is 

(b) Use to confirm that and

(c) Use the formulas and to compute the
perihelion and aphelion distances of each planet listed in
Table 8.4.

(d) For which of these planets is the difference between the
perihelion and aphelion distance the greatest?

a11 + e2a11 - e2
a11 + e2 = a + c.

a11 - e2 = a - ce = c/a

a11 + e2.
a11 - e2

…u…-1

r = a11 - e22/11 + e cos u2

Source: Encrenaz & Bibring. The Solar System (2nd ed.). 
New York: Springer, p. 5.

Table 8.4 Semimajor Axes and
Eccentricities of the Six Innermost Planets

Planet Semimajor Axis (AU) Eccentricity

Mercury 0.3871 0.206
Venus 0.7233 0.007
Earth 1.0000 0.017
Mars 1.5237 0.093
Jupiter 5.2026 0.048
Saturn 9.5547 0.056

52. Using the Astronomer’s Equation for Conics
Using Dot mode, , an xy window of by ,

, , and , graph
, 0.3, 0.7, 1.5, 3. Iden-

tify the type of conic section obtained for each e value. What
happens when 

Extending the Ideas
53. Revisiting Figure 8.41 In Figure 8.41, if or

then we must use 
Prove that, even in these cases, the resulting equation

is still 

54. Deriving Other Polar Forms for Conics Using
Figure 8.41 as a guide, draw an appropriate diagram for and
derive the equation.

(a)

(b)

(c)

55. Revisiting Example 3 Use the formulas and

to transform the polar equation 

into the Cartesian equation 
1x - 322

25
+

y2

16
= 1.

r =

16

5 - 3 cos u
x2

+ y2
= r 2

x = r cos u

r =

ke

1 - e sin u

r =

ke

1 + e sin u

r =

ke

1 - e cos u

r = ke/11 + e cos u2.
PF = ƒr ƒ .

PD = ƒk - r cos u ƒ  and7 k,r cos u
r 6 0

e = 1?

r = a 11 - e22/11 + e cos u2 for e = 0
ustep = p/48u max = 2pu min = 0

3-6, 643-13, 54a = 2
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56. Focal Widths Using polar equations, derive formulas for
the focal width of an ellipse and the focal width of a hyperbola.
Begin by defining focal width for these conics in a manner
analogous to the definition of the focal width of a parabola
given in Section 8.1.

57. Prove that for a hyperbola the formula is
equivalent to where a is the
semitransverse axis of the hyperbola.

58. Connecting Polar to Rectangular Consider the
ellipse

where half the length of the major axis is a, and the foci are

such that Let L be the vertical line

(a) Prove that L is a directrix for the ellipse. [Hint: Prove that
PF/PD is the constant c/a, where P is a point on the ellipse,
and D is the point on L such that PD is perpendicular to L.]

(b) Prove that the eccentricity is 

(c) Prove that the distance from F to L is a/e ea.-

e = c/a.

x = a2/c.

c2
= a2

- b2.1�c, 02

x2

a2
+

y2

b2
= 1,

r = a1e2
- 12/11 - e cos u2,

r = ke/11 - e cos u2

59. Connecting Polar to Rectangular Consider the
hyperbola

where half the length of the transverse axis is a, and the foci

are such that Let L be the vertical line

(a) Prove that L is a directrix for the hyperbola. [Hint: Prove
that PF/PD is the constant c/a, where P is a point on the
hyperbola, and D is the point on L such that PD is perpen-
dicular to L.]

(b) Prove that the eccentricity is 

(c) Prove that the distance from F to L is ea a/e.-

e = c/a.

x = a2/c.

c2
= a2

+ b2.1�c, 02

x2

a2
-

y2

b2
= 1,
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D

L

y

x

(a, 0)

(–a, 0)

F(c, 0)

(–c, 0)

P(x, y)

x = a2

c

y

x

(a, 0)
(–c, 0)

(–a, 0)

F(c, 0)

x = a2

c

D

DP

P

L
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Notice that Figure 8.46 exhibits several important features of the three-dimensional
Cartesian coordinate system:

• The axes are labeled x, y, and z, and these three coordinate axes form a right-
handed coordinate frame: When you hold your right hand with fingers curving
from the positive x-axis toward the positive y-axis, your thumb points in the direc-
tion of the positive z-axis.

• A point P in space uniquely corresponds to an ordered triple of real num-
bers. The numbers x, y, and z are the Cartesian coordinates of P.

• Points on the axes have the form , , or , with on
the x-axis, on the y-axis, and on the z-axis.

In Figure 8.47, the axes are paired to determine the coordinate planes:

• The coordinate planes are the xy-plane, the xz-plane, and the yz-plane, and have
equations , , and , respectively.

• Points on the coordinate planes have the form , , or , with
on the xy-plane, on the xz-plane, and on the yz-plane.

• The coordinate planes meet at the origin, (0, 0, 0).

• The coordinate planes divide space into eight regions called octants, with the first
octant containing all points in space with three positive coordinates.

10, y, z21x, 0, z21x, y, 02 10, y, z21x, 0, z21x, y, 02
x = 0y = 0z = 0

10, 0, z210, y, 02 1x, 0, 0210, 0, z210, y, 021x, 0, 02
1x, y, z2

SECTION 8.6 Three-Dimensional Cartesian Coordinate System 629

8.6 Three-Dimensional Cartesian
Coordinate System

What you’ll learn about
• Three-Dimensional Cartesian

Coordinates
• Distance and Midpoint Formulas
• Equation of a Sphere
• Planes and Other Surfaces
• Vectors in Space
• Lines in Space

... and why
This is the analytic geometry of
our physical world.

Three-Dimensional Cartesian Coordinates
In Sections P.2 and P.4, we studied Cartesian coordinates and the associated basic
formulas and equations for the two-dimensional plane; we now extend these ideas to
three-dimensional space. In the plane, we used two axes and ordered pairs to name
points; in space, we use three mutually perpendicular axes and ordered triples of real
numbers to name points (Figure 8.46).

FIGURE 8.46 The point in Cartesian space.P1x, y, z2

z

x
x � constant

y � constant

z � constant

(x, y, 0)

(0, y, z)

(0, y, 0)

P(x, y, z)

(0, 0, z)

(x, 0, z)

(x, 0, 0)
y

FIGURE 8.47 The coordinate planes 
divide space into eight octants.

z � 0

y � 0

x � 0

y

Origin

(0, 0, 0)

z

x

6965_CH08_pp579-640.qxd  1/14/10  2:01 PM  Page 629



Distance and Midpoint Formulas
The distance and midpoint formulas for space are natural extensions of the correspond-
ing formulas for the plane.

630 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 1  Locating a Point in Cartesian Space
Draw a sketch that shows the point .

SOLUTION To locate the point , we first sketch a right-handed three-di-
mensional coordinate frame. We then draw the planes , , and ,
which parallel the coordinate planes , , and , respectively. The
point lies at the intersection of the planes , , and , as
shown in Figure 8.48. Now try Exercise 1.

z = 5y = 3x = 212, 3, 52 z = 0y = 0x = 0
z = 5y = 3x = 2

12, 3, 52
12, 3, 52

FIGURE 8.48 The planes , , and determine the point . (Example 1)12, 3, 52z = 5y = 3x = 2

y

(2, 0, 0) (0, 3, 0)
0

(0, 0, 5)

Line x � 2, y � 3

Line x � 2, z � 5

Line y � 3, z � 5

Plane y � 3

Plane z � 5

Plane x � 2

z

x

(2, 3, 5)

Just as in the plane, the coordinates of the midpoint of a line segment are the averages
for the coordinates of the endpoints of the segment.

Midpoint Formula (Cartesian Space)
The midpoint M of the line segment PQ with endpoints and

is

M = a x1 + x2

2
, 

y1 + y2

2
, 

z1 + z2

2
b .

Q1x2, y2, z22
P1x1, y1, z12

Distance Formula (Cartesian Space)
The distance between the points and in
space is

Q1x2, y2, z22P1x1, y1, z12d1P, Q2

d1P, Q2 = 21x1 - x222 + 1y1 - y222 + 1z1 - z222.
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EXAMPLE 2  Calculating a Distance and Finding a Midpoint
Find the distance between the points and , and find the mid-
point of line segment PQ.

SOLUTION The distance is given by

The midpoint is

Now try Exercises 5 and 9.

 M = a -2 + 4

2
, 

3 - 1

2
, 

1 + 5

2
b = 11, 1, 32.

 = 168 L 8.25

 = 136 + 16 + 16

 d1P, Q2 = 21-2 - 422 + 13 + 122 + 11 - 522

Q14, -1, 52P1-2, 3, 12

Drawing Lesson

How to Draw Three-Dimensional Objects to Look Three-Dimensional

1. Make the angle between the 
positive x-axis and the
positive y-axis large enough.

2. Break lines. When one line
passes behind another, break 
it to show that it doesn’t
touch and that part of it is 
hidden.

z

x

y

z

x

y

This Not this

A

C

B

D
A

C

B

D
A

C

B

D

Intersecting CD behind AB AB behind CD

3. Dash or omit hidden portions 
of lines. Don’t let the line 
touch the boundary of the 
parallelogram that represents 
the plane, unless the line lies 
in the plane.

4. Spheres: Draw the sphere
first (outline and equator); 
draw axes, if any, later. 
Use line breaks and dashed 
lines.

Line below plane Line above plane Line in plane

Hidden part
dashed

Sphere first Axes later

Break

A contact dot
sometimes helps

z

x

y

Break
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Planes and Other Surfaces
In Section P.4, we learned that every line in the Cartesian plane can be written as a first-
degree (linear) equation in two variables; that is, every line can be written as

where A and B are not both zero. Conversely, every first-degree equation in two vari-
ables represents a line in the Cartesian plane.

In an analogous way, every plane in Cartesian space can be written as a first-degree
equation in three variables:

Ax + By + C = 0,

632 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 3  Finding the Standard Equation of a Sphere
The standard equation of the sphere with center and radius 7 is

Now try Exercise 13.
1x - 222 + y2

+ 1z + 322 = 49.

12, 0, -32

Equation for a Plane in Cartesian Space
Every plane can be written as

where A, B, and C are not all zero. Conversely, every first-degree equation in
three variables represents a plane in Cartesian space.

Ax + By + Cz + D = 0,

FIGURE 8.49 The intercepts 
, and determine the plane

(Example 4)12x + 15y + 20z = 60.
10, 0, 3210, 4, 02

15, 0, 02,

z

x

y

(5, 0, 0)

(0, 4, 0)

(0, 0, 3)

12x + 15y + 20z = 60

EXAMPLE 4  Sketching a Plane in Space
Sketch the graph of 

SOLUTION Because this is a first-degree equation, its graph is a plane. Three
points determine a plane. To find three points, we first divide both sides of

by 60:

In this form, it is easy to see that the points , and satisfy
the equation. These are the points where the graph crosses the coordinate axes.
Figure 8.49 shows the completed sketch. Now try Exercise 17.

10, 0, 3215, 0, 02, 10, 4, 02
x

5
+

y

4
+

z

3
= 1

12x + 15y + 20z = 60

12x + 15y + 20z = 60.

Equation of a Sphere
A sphere is the three-dimensional analogue of a circle: In space, the set of points that
lie a fixed distance from a fixed point is a sphere. The fixed distance is the radius, and
the fixed point is the center of the sphere. The point is a point of the sphere
with center (h, k, l) and radius r if and only if

Squaring both sides gives the standard equation shown below.

21x - h22 + 1y - k22 + 1z - l22 = r.

P1x, y, z2

Standard Equation of a Sphere
A point is on the sphere with center and radius r if and only if

1x - h22 + 1y - k22 + (z - l22 = r 2.

1h, k, l2P1x, y, z2
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Equations in the three variables x, y, and z generally graph as surfaces in three-dimensional
space. Just as in the plane, second-degree equations are of particular interest. Recall
that second-degree equations in two variables yield conic sections in the Cartesian
plane. In space, second-degree equations in three variables yield quadric surfaces:
The paraboloids, ellipsoids, and hyperboloids of revolution that have special reflective
properties are all quadric surfaces, as are such exotic-sounding surfaces as hyperbolic
paraboloids and elliptic hyperboloids.

Other surfaces of interest include graphs of functions of two variables, whose equa-
tions have the form Some examples are , and

The last equation graphs as a hemisphere (see Exercise 63).
Equations of the form can be graphed using some graphing calculators and
most computer algebra software. Quadric surfaces and functions of two variables are
studied in most university-level calculus course sequences.

Vectors in Space
In space, just as in the plane, the sets of equivalent directed line segments (or arrows)
are vectors. They are used to represent forces, displacements, and velocities in three di-
mensions. In space, we use ordered triples to denote vectors:

The zero vector is and the standard unit vectors are ,
, and . As shown in Figure 8.50, the vector v can be ex-

pressed in terms of these standard unit vectors:

The vector v that is represented by the arrow from to is

A vector can be multiplied by a scalar (real number) c as follows:

Many other properties of vectors extend in a natural way when we move from two to
three dimensions:

cv = c8v1, v2, v39 = 8cv1, cv2, cv39
v = 8v1, v2, v39

v = PQ
!

= 8x - a, y - b, z - c9 = 1x - a2i + 1y - b2j + 1z - c2k.

Q1x, y, z2P1a, b, c2
v = 8v1, v2, v39 = v1i + v2 j + v3k

k = 80, 0, 19j = 80, 1, 09 i = 81, 0, 090 = 80, 0, 09,
v = 8v1, v2, v39

z = ƒ1x, y2z = 21 - x2
- y2.

z = x ln y, z = sin 1xy2z = ƒ1x, y2.

SECTION 8.6 Three-Dimensional Cartesian Coordinate System 633

FIGURE 8.50 The vector v = 8v1, v2, v39.

z

x

y
�0, 1, 0�

�1, 0, 0�

�0, 0, 1�
�v1, v2, v3�

i

v

j

k

v1

v2

v3

EXAMPLE 5  Computing with Vectors
(a)

(b)

(c)

(d)

(e)

Now try Exercises 23–26.= -30 + 6 - 3 = -27

85, 3, -19 # 8-6, 2, 39 = 5 # 1-62 + 3 # 2 + 1-12 # 3

ƒ 82, 0, - 69 ƒ = 222
+ 02

+ 62
= 140 L 6.32

81, -3, 49 - 8-2, -4, 59 = 81 + 2, -3 + 4, 4 - 59 = 83, 1, -19
80, 6, -79 + 8-5, 5, 89 = 80 - 5, 6 + 5, -7 + 89 = 8-5, 11, 19
38-2, 1, 49 = 83 #

-2, 3 # 1, 3 # 49 = 8-6, 3, 129

Vector Relationships in Space
For vectors and ,

• Equality: if and only if , and 

• Addition:

• Subtraction:

• Magnitude:

• Dot product:

• Unit vector: , is the unit vector in the direction of v.u = v/ ƒv ƒ , v Z 0

v # w = v1w1 + v2w2 + v3w3

ƒv ƒ = 2v1 

2
+ v2 

2
+ v3 

2

v - w = 8v1 - w1, v2 - w2, v3 - w39
v + w = 8v1 + w1, v2 + w2, v3 + w39

v3 = w3v1 = w1, v2 = w2v = w

w = 8w1, w2, w39v = 8v1, v2, v39
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In Exercise 64, you will be asked to interpret the meaning of the velocity vector ob-
tained in Example 6.

Lines in Space
We have seen that first-degree equations in three variables graph as planes in space. So
how do we get lines? There are several ways. First notice that to specify the x-axis,
which is a line, we could use the pair of first-degree equations and As 
alternatives to using a pair of Cartesian equations, we can specify any line in space using

• one vector equation, or

• a set of three parametric equations.

Suppose is a line through the point and in the direction of a nonzero
vector (Figure 8.51). Then for any point on ,

for some real number t. The vector v is a direction vector for line . If 
and , then So an equation of the line is

r = r0 + tv.
/r - r0 = tv.r0 = OP0

!

= 8x0, y0, z098x, y, z9 r = OP
!

 =/

P0P
!

= tv

/P1x, y, z9v = 8a, b, c9 P01x0, y0, z02/

z = 0.y = 0

634 CHAPTER 8 Analytic Geometry in Two and Three Dimensions

EXAMPLE 6  Using Vectors in Space
A jet airplane just after takeoff is pointed due east. Its air velocity vector makes an
angle of 30° with flat ground with an airspeed of 250 mph. If the wind is out of the
southeast at 32 mph, calculate a vector that represents the plane’s velocity relative to
the point of takeoff.

SOLUTION Let i point east, j point north, and k point up. The plane’s air velocity is

and the wind velocity, which is pointing northwest, is

The velocity relative to the ground is , so

Now try Exercise 33.
 = 193.88i + 22.63j + 125k

 L 8193.88, 22.63, 1259
 v L 8216.506, 0, 1259 + 8-22.627, 22.627, 09

v = a + w

w = 832 cos 135°, 32 sin 135°, 09 L 8-22.627, 22.627, 09.

a = 8250 cos 30°, 0, 250 sin 30°9 L 8216.506, 0, 1259,

FIGURE 8.51 The line is parallel to the
direction vector .v = 8a, b, c9

/

z

x

y

v = �a, b, c�

P0(x0, y0, z0)

P(x, y, z)

�

EXAMPLE 7  Finding Equations for a Line
The line through with direction vector can be written

• in vector form as ; or

• in parametric form as , and 
Now try Exercise 35.

z = -1 + 7t.x = 4 - 2t, y = 3 + 2t

r = 84, 3, -19 + t8-2, 2, 79
v = 8-2, 2, 79P014, 3, -12

Equations for a Line in Space
If is a line through the point in the direction of a nonzero vector

, then a point is on if and only if

• Vector form:            , where and ; or

• Parametric form: , and ,

where t is a real number.

z = z0 + ctx = x0 + at, y = y0 + bt

r0 = 8x0, y0, z09r = 8x, y, z9r = r0 + tv

/P1x, y, z2v = 8a, b, c9 P01x0, y0, z02/
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SECTION 8.6 Three-Dimensional Cartesian Coordinate System 635

EXAMPLE 8  Finding Equations for a Line
Using the standard unit vectors i, j, and k, write a vector equation for the line con-
taining the points and , and compare it to the parametric
equations for the line.

SOLUTION The line is in the direction of

Using , the vector equation of the line becomes:

The parametric equations are the three component equations

Now try Exercise 41.

x = 3 - 4t, y = 2t, and z = -2 - 3t.

 xi + yj + zk = 13 - 4t2i + 2t j + 1-2 - 3t2k
 8x, y, z9 = 83 - 4t, 2t, -2 - 3t9
 8x, y, z9 = 83, 0, -29 + t8-4, 2, -39

 r = r0 + tv

r0 = OA
!

v = AB
!

= 8-1 - 3, 2 - 0, -5 + 29 = 8-4, 2, -39.

B1-1, 2, -52A13, 0, -22

QUICK REVIEW 8.6 (For help, go to Sections 6.1 and 6.3.)

SECTION 8.6 EXERCISES

In Exercises 1–4, draw a sketch that shows the point.

1. 2.

3. 4.

In Exercises 5–8, compute the distance between the points.

5.

6.

7.

8.

In Exercises 9–12, find the midpoint of the segment PQ.

9.

10.

11.

12. P1-a, -b, -c2, Q13a, 3b, 3c2
P12x, 2y, 2z2, Q1-2, 8, 62
P12, -1, -82, Q16, -3, 42
P1-1, 2, 52, Q13, -4, 62

1x, y, z2, 1p, q, r2
1a, b, c2, 11, -3, 22
12, -1, -82, 16, -3, 42
1-1, 2, 52, 13, -4, 62

1-2, 3, -5211, -2, -42
12, -3, 6213, 4, 22

In Exercises 13–16, write an equation for the sphere with the given
point as its center and the given number as its radius.

13. 14.

15. 16.

In Exercises 17–22, sketch a graph of the equation. Label all intercepts.

17. 18.

19. 20.

21. 22.

In Exercises 23–32, evaluate the expression using ,
, and .w = 84, -3, 129v = 8-3, 4, -59

r = 81, 0, -39
x = 3x - 3y = 6

2y + z = 6x + z = 3

x + y - 2z = 8x + y + 3z = 9

1p, q, r2, 611, -3, 22, 1a, a 7 0

1-1, 5, 82, 1515, -1, -22, 8

23. 24. r - wr + v

25. 26.

27. 28.

29. 30.

31. 32. 1r # v2w8i # v, j # v, k # v9
i # rw/ ƒw ƒ

1r # v2 + 1r # w2r # 1v + w2
ƒw ƒv # w

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–3, let and be points in the xy-plane.

1. Compute the distance between P and Q.

2. Find the midpoint of the line segment PQ.

3. If P is 5 units from Q, describe the position of P.

In Exercises 4–6, let be a vector in the
xy-plane.

4. Find the magnitude of v.

v = 8-4, 59 = -4i + 5j

Q12, -32P1x, y2
5. Find a unit vector in the direction of v.

6. Find a vector 7 units long in the direction of .

7. Give a geometric description of the graph of
in the xy-plane.

8. Give a geometric description of the graph of
in the xy-plane.

9. Find the center and radius of the circle
in the xy-plane.

10. Find a vector from to in the xy-plane.Q1-1, -42P12, 52
x2

+ y2
+ 2x - 6y + 6 = 0

x = 2 - t, y = -4 + 2t

1x + 122 + 1y - 522 = 25

-v

6965_CH08_pp579-640.qxd  1/14/10  2:01 PM  Page 635



In Exercises 33 and 34, let i point east, j point north, and k point up.

33. Three-Dimensional Velocity An airplane just after
takeoff is headed west and is climbing at a angle relative to
flat ground with an airspeed of 200 mph. If the wind is out of
the northeast at 10 mph, calculate a vector v that represents the
plane’s velocity relative to the point of takeoff.

34. Three-Dimensional Velocity A rocket soon after
takeoff is headed east and is climbing at an angle relative
to flat ground with an airspeed of 12,000 mph. If the wind is
out of the southwest at 8 mph, calculate a vector v that repre-
sents the rocket’s velocity relative to the point of takeoff.

In Exercises 35–38, write the vector and parametric forms of the line
through the point in the direction of v.

35.

36.

37.

38.

In Exercises 39–48, use the points , , and
.

39. Find the distance from A to the midpoint of BC.

40. Find the vector from A to the midpoint of BC.

41. Write a vector equation of the line through A and B.

42. Write a vector equation of the line through A and the midpoint
of BC.

43. Write parametric equations for the line through A and C.

44. Write parametric equations for the line through B and C.

45. Write parametric equations for the line through B and the mid-
point of AC.

46. Write parametric equations for the line through C and the mid-
point of AB.

47. Is ABC equilateral, isosceles, or scalene?

48. If M is the midpoint of BC, what is the midpoint of AM?

In Exercises 49–52, (a) sketch the line defined by the pair of equations,
and (b) Writing to Learn give a geometric description of the line,
including its direction and its position relative to the coordinate frame.

49.

50.

51.

52.

53. Write a vector equation for the line through the distinct points
and .

54. Write parametric equations for the line through the distinct
points and .

55. Generalizing the Distance Formula
Prove that the distance between the points

and in space is

by using the point
, the two-dimensional distance formula within the

plane , the one-dimensional distance formula within the
line , and the Pythagorean Theorem. [Hint: A
sketch may help you visualize the situation.]

r = 8x2, y2, t9
z = z1

R1x2, y2, z12
21x1 - x222 + 1y1 - y222 + 1z1 - z222

Q1x2, y2, z22P1x1, y1, z12
d1P, Q2
Q1x2, y2, z22P1x1, y1, z12

Q1x2, y2, z22P1x1, y1, z12
y = 1, z = 3

x = -3, y = 0

x = 0, z = 2

x = 0, y = 0

¢

C12, -4, 12
B10, 6, -32A1-1, 2, 42

P010, -1, 42, v = 80, 0, 19
P016, -9, 02, v = 81, 0, -49
P01-3, 8, -12, v = 8-3, 5, 29
P012, -1, 52, v = 83, 2, -79

P0

80°

20°

56. Generalizing a Property of the Dot Product
Prove where u is a vector in three-dimensional
space.

Standardized Test Questions
57. True or False represents a surface in

space. Justify your answer.

58. True or False The parametric equations ,
, represent a line in space. Justify

your answer.

In Exercises 59–62, you may use a graphing calculator to solve the 
problem.

59. Multiple Choice A first-degree equation in three vari-
ables graphs as

(A) a line.

(B) a plane.

(C) a sphere.

(D) a paraboloid.

(E) an ellipsoid.

60. Multiple Choice Which of the following is not a
quadric surface?

(A) A plane

(B) A sphere

(C) An ellipsoid

(D) An elliptic paraboloid

(E) A hyperbolic paraboloid

61. Multiple Choice If v and w are vectors and c is a scalar,
which of these is a scalar?

(A)

(B)

(C)

(D)

(E)

62. Multiple Choice The parametric form of the line
is

(A)

(B)

(C)

(D)

(E)

Explorations
63. Group Activity Writing to Learn The figure

shows a graph of the ellipsoid drawn
in a box using Mathematica computer software.

(a) Describe its cross sections in each of the three coordinate
planes, that is, for , , and In your de-
scription, include the name of each cross section and its
position relative to the coordinate frame.

x = 0.y = 0z = 0

x2/9 + y2/4 + z2/16 = 1

x = 2 + t, y = -3, z = - t.

x = 1 + 2t, y = -3, z = -1t.

x = 1 + 2t, y = 0 - 3t, z = -1 + 0t.

x = 2t, y = -3 + 0t, z = 0 - 1t.

x = 2 - 3t, y = 0 + 1t, z = 0 - 1t.

r = 82, -3, 09 + t81, 0, -19
ƒv ƒw

cv

v # w

v - w

v + w

z = -5 + 0ty = 2 - 0t
x = 1 + 0t

x2
+ 4y2

= 1

u # u = ƒu ƒ
2
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(b) Explain algebraically why the graph of 
is half of a sphere. What is the equation of the related
whole sphere?

(c) By hand, sketch the graph of the hemisphere

. Check your sketch using a 3D 
grapher if you have access to one.

(d) Explain how the graph of an ellipsoid is related to the
graph of a sphere and why a sphere is a degenerate
ellipsoid.

z = 21 - x2
- y2

z = 21 - x2
- y2 64. Revisiting Example 6 Read Example 6. Then using

, establish the following:

(a) The plane’s compass bearing is 83.34°.

(b) Its speed downrange (that is, ignoring the vertical compo-
nent) is 195.2 mph.

(c) The plane is climbing at an angle of 32.63°.

(d) The plane’s overall speed is 231.8 mph.

Extending the Ideas
The cross product of the vectors and

is

Use this definition in Exercises 65–68.

65.

66.

67. Prove that 

68. Assuming the theorem about angles between vectors (Section
6.2) holds for three-dimensional vectors, prove that is
perpendicular to both u and v if they are nonzero.

u * v

i * j = k.

84, -1, 29 * 81, -3, 29
81, -2, 39 * 8-2, 1, -19

= 1u2v3 - u3v22i + 1u3v1 - u1v32j + 1u1v2 - u2v12k.

u * v = 3 i j k
u1 u2 u3

v1 v2 v3

3
v = v1i + v2 j + v3k

u = u1i + u2j + u3ku : v

v = 193.88i + 22.63j + 125k

CHAPTER 8 Key Ideas 637

–2
–1

0
1

2

–2

0

2

–4

–2

0

2

4

CHAPTER 8 Key Ideas

Properties, Theorems, and Formulas
Parabolas with Vertex (0, 0) 583
Parabolas with Vertex (h, k) 584
Ellipses with Center (0, 0) 592
Ellipses with Center (h, k) 594
Hyperbolas with Center (0, 0) 604
Hyperbolas with Center (h, k) 605
Translation Formulas 614
Rotation Formulas 614
Coefficients for a Conic in a Rotated System 615
Angle of Rotation to Eliminate the Cross-Product Term 616
Discriminant Test 617
Focus–Directrix–Eccentricity Relationship 620
Polar Equations for Conics 622
Ellipse with Eccentricity e and Semimajor Axis a 625
Distance Formula (Cartesian Space) 630

Midpoint Formula (Cartesian Space) 630
Standard Equation of a Sphere 632
Equation for a Plane in Cartesian Space 632
Vector Relationships in Space 633
Equations for a Line in Space 634

Procedures

How to Sketch the Ellipse 593

How to Sketch the Hyperbola 603

Translation of Axes 613–614
Rotation of Axes 614–616
How to Draw Three-Dimensional Objects to Look

Three-Dimensional 631

x2

a
2 -

y2

b
2 = 1

x2

a
2 +

y2

b
2 = 1
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y

x

(c)

y

x

(d)

y

x

(e)

y

x

(f)

y

x

(g)

y

x

(h)

y

x

(b)

y

x

(a)

CHAPTER 8 Review Exercises

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1–4, find the vertex, focus, directrix, and focal width of
the parabola, and sketch the graph.

1. 2.

3. 4.

In Exercises 5–12, identify the type of conic. Find the center, vertices,
and foci of the conic, and sketch its graph.

5. 6.

7. 8.

9.

10.

11.

12.

In Exercises 13–20, match the equation with its graph.

y2

36
+

1x + 622
20

= 1

1x - 222
16

+

1y + 122
7

= 1

1y - 322
9

-

1x - 722
12

= 1

1x + 322
18

-

1y - 522
28

= 1

x2

49
-

y2

9
= 1

x2

25
-

y2

36
= 1

y2

16
-

x2

49
= 1

y2

8
+

x2

5
= 1

1y + 222 = 16x1x + 222 = -41y - 12
x2

= -8yy2
= 12x

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–28, identify the conic. Then complete the square to
write the conic in standard form, and sketch the graph.

21.

22.

23.

24.

25.

26.

27.

28.

29. Prove that the parabola with focus and directrix
has the equation 

30. Prove that the equation represents a parabola with
focus and directrix 

In Exercises 31–36, identify the conic. Solve the equation for y and
graph it.

31.

32.

33.

34.

35.

36.

In Exercises 37–48, find the equation for the conic in standard form.

37. Parabola: vertex , focus 

38. Parabola: vertex , opens downward, focal width

39. Parabola: vertex , directrix 

40. Parabola: vertex , opens to the left, focal 

41. Ellipse: center , foci , vertices 1�13, 021�12, 0210, 02
length = 211, -22

y = 01-3, 32
= 1210, 02

12, 0210, 02

-3x2
+ 7xy - 2y2

- 2x + 3y - 10 = 0

-3x2
+ 7xy - 2y2

- x + 20y - 15 = 0

5xy - 6y2
+ 10x - 17y + 20 = 0

3x2
- 2xy - 5x + 6y - 10 = 0

10x2
- 8xy + 6y2

+ 8x - 5y - 30 = 0

3x2
- 8xy + 6y2

- 5x - 5y + 20 = 0

x = -p.1p, 02
y2

= 4px

x2
= 4py.y = -p

10, p2
12x2

- 4y2
- 72x - 16y + 44 = 0

2x2
- 3y2

- 12x - 24y + 60 = 0

3x2
- 6x - 4y - 9 = 0

y2
- 6x - 4y - 13 = 0

x2
+ 2x + 4y - 7 = 0

x2
- y2

- 2x + 4y - 6 = 0

x2
+ 4x + 3y2

- 5 = 0

x2
- 6x - y - 3 = 0

y2
= 6xx2

= -4y

x2
= y

y2

3
+ x2

= 1

x2

9
-

y2

25
= 1

y2

5
- x2

= 1

1x - 222
4

+ y2
= 1y2

= -3x
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75. Parabolic Microphones B-Ball Network uses a
parabolic microphone to capture all the sounds from the bas-
ketball players and coaches during each regular season game.
If one of its microphones has a parabolic surface generated 
by the parabola , locate the focus (the electronic 
receiver) of the parabola.

76. Parabolic Headlights Specific Electric makes 
parabolic headlights for a variety of automobiles. If one of 
its headlights has a parabolic surface generated by the
parabola (see figure), where should its lightbulb 
be placed?

y2
= 15x

18y = x2

Focus Light
rays

77. Writing to Learn
Elliptical Billiard Table
Elliptical billiard tables have 
been constructed with spots 
marking the foci. Suppose such 
a table has a major axis of 6 ft 
and minor axis of 4 ft.

(a) Explain the strategy that a “pool shark” who knows conic
geometry would use to hit a blocked spot on this table.

(b) If the table surface is coordinatized so that repre-
sents the center of the table and the x-axis is along the 
focal axis of the ellipse, at which point(s) should the ball
be aimed?

78. Weather Satellite The Nimbus weather satellite trav-
els in a north-south circular orbit 500 meters above Earth.
Find the following. (Assume Earth’s radius is 6380 km.)

(a) The velocity of the satellite using the formula for veloc-
ity v given for Exercises 43 and 44 in Section 8.5 with

(b) The time required for Nimbus to circle Earth once

79. Elliptical Orbits The velocity of a body in an elliptical
Earth orbit at a distance r (in meters) from the focus (the center
of Earth) is

where a is the semimajor axis of the ellipse. An Earth satellite
has a maximum altitude (at apogee) of 18,000 km and has a
minimum altitude (at perigee) of 170 km. Assuming Earth’s
radius is 6380 km, find the velocity of the satellite at its
apogee and perigee.

80. Icarus The asteroid Icarus is about 1 mi wide. It revolves
around the Sun once every 409 Earth days and has an orbital
eccentricity of 0.83. Use Kepler’s first and third laws to deter-
mine Icarus’s semimajor axis, perihelion distance, and aphe-
lion distance.

v = B3.99 * 1014 a2
r

-

1
a
b  m/sec,

k = 1

10, 02

42. Ellipse: center , foci , vertices 

43. Ellipse: center , semimajor , one focus is
.

44. Ellipse: center , semimajor , one focus is
.

45. Hyperbola: center , foci , vertices 

46. Hyperbola: center , vertices , asymptotes

47. Hyperbola: center , vertices , one asymptote is

48. Hyperbola: center , one focus is , one vertex
is .

In Exercises 49–54, find the equation for the conic in standard form.

49.

50. , , 

51. , , 

52. , 

53. , , 

54. , , 

In Exercises 55–62, identify and graph the conic, and rewrite the
equation in Cartesian coordinates.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–74, use the points and and
the vectors and .

63. Compute the distance from P to Q.

64. Find the midpoint of segment PQ.

65. Compute 

66. Compute 

67. Compute .

68. Compute the magnitude of v.

69. Write the unit vector in the direction of w.

70. Compute .

71. Write an equation for the sphere centered at P with radius 4.

72. Write parametric equations for the line through P and Q.

73. Write a vector equation for the line through P in the direction
of v.

74. Write parametric equations for the line in the direction of w
through the midpoint of PQ.

1v # w21v + w2

v # w

v - w.

v + w.

w = 83, -4, 09v = 8-3, 1, -29
Q13, -2, -42P1-1, 0, 32

r =

4

4 - 4 cos u
r =

2

1 + cos u

r =

15

2 + 5 cos u
r =

35

2 - 7 sin u

r =

3

4 + sin u
r =

4

3 - cos u

r =

5

1 - sin u
r =

4

1 + cos u

0 … t … 2py = 3 tan tx = 4 sec t

0 … t … 2py = 5 tan tx = 3 sec t

-2p … t … 0x = 5 + 3 cos t, y = -3 + 3 sin t

2p … t … 4py = 4 + sin tx = -2 + cos t

0 … t … 4py = 6 cos tx = 4 sin t

x = 5 cos t, y = 2 sin t, 0 … t … 2p

1-5, 22
1-5, 321-5, 02

y = 14/321x - 22 + 1
12�3, 1212, 12

y = �2x
1�2, 0210, 02

10, �5210, �6210, 02
10, -42

axis = 41-3, -42
12, 22

axis = 310, 22
10, �6210, �2210, 02
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CHAPTER 8 Project

Ellipses as Models of Pendulum Motion
As a simple pendulum swings back and forth, a plot of its 
velocity versus its position is elliptical in nature and can be
modeled using a standard form of the equation of an ellipse,

where x represents the pendulum’s position relative to a fixed
point and y represents the pendulum’s velocity. In this project,
you will use a motion detection device to collect position 
(distance) and velocity data for a swinging pendulum, then
find a mathematical model that describes the pendulum’s 
velocity with respect to position.

Collecting the Data
Construct a simple pendulum by fastening about 0.5 meter of
string to a ball. Set up a Calculator-Based Ranger (CBR) sys-
tem to collect distance and velocity readings for 4 seconds
(enough time to capture at least one complete swing of the
pendulum). See the printed or online CBR guidebook for spe-
cific setup instructions. Start the pendulum swinging toward
and away from the detector, then activate the CBR system.
The table below is a sample set of data collected in the 
manner just described.

1x - h22
a2 +

1y - k22
b2 = 1 or 

1y - k22
a2 +

1x - h22
b2 = 1,

Explorations
1. If you collected data using a CBR, a plot of distance ver-

sus time may be shown on your grapher screen. Go to the
plot setup screen and create a scatter plot of velocity ver-
sus distance. If you do not have access to a CBR, use the
distance and velocity data from the table below to create a
scatter plot.

2. Find values for a, b, h, and k so that the equation

fits the velocity versus position data plot. To graph this
model, you will have to solve the appropriate equation for
y and enter it into the calculator in Y1 and Y2.

3. With respect to the ellipse modeled above, what do the
variables a, b, h, and k represent?

4. What are the physical meanings of a, b, h, and k with re-
spect to the motion of the pendulum?

5. Set up plots of distance versus time and velocity versus
time. Find models for both of these plots and use them to
graph the plot of the ellipse using parametric equations.

1x - h22
a2 +

1y - k22
b2 = 1 or 

1y - k22
a2 +

1x - h22
b2 = 1

Time Distance from Velocity Time Distance from Velocity
(sec) the CBR (m) (m/sec) (sec) the CBR (m) (m/sec)

0 0.682 0.647 0.454 0.279
0.059 0.659 0.706 0.476 0.429
0.118 0.629 0.765 0.505 0.544
0.176 0.594 0.824 0.54 0.616
0.235 0.557 0.882 0.576 0.639
0.294 0.521 0.941 0.612 0.612
0.353 0.489 1 0.645 0.536
0.412 0.463 1.059 0.672 0.418
0.471 0.446 1.118 0.69 0.266
0.529 0.438 1.176 0.699 0.094
0.588 0.442 0.106 1.235 0.698 -0.086

-0.071
-0.246
-0.4
-0.523
-0.605
-0.638
-0.621
-0.555
-0.445
-0.3
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Discrete Mathematics

As the use of cellular telephones, modems, pagers, and fax machines has
grown in recent years, the increasing demand for unique telephone num-
bers has necessitated the creation of new area codes in many areas of the
United States. Counting the number of possible telephone numbers in a
given area code is a combinatorial problem, and such problems are solved
using the techniques of discrete mathematics. See page 648 for more on
the subject of telephone area codes.

9.1 Basic Combinatorics

9.2 The Binomial Theorem

9.3 Probability

9.4 Sequences

9.5 Series

9.6 Mathematical Induction

9.7 Statistics and Data
(Graphical)

9.8 Statistics and Data 
(Algebraic)

9.9 Statistical Literacy

CHAPTER 9
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Chapter 9 Overview
The branches of mathematics known broadly as algebra, analysis, and geometry come
together so beautifully in calculus that it has been difficult over the years to squeeze
other mathematics into the curriculum. Consequently, many worthwhile topics like
probability and statistics, combinatorics, graph theory, and numerical analysis that
could easily be introduced in high school are (for many students) either first seen in
college electives or never seen at all. This situation is gradually changing as the appli-
cations of noncalculus mathematics become increasingly more important in the mod-
ern, computerized, data-driven workplace. Therefore, besides introducing important
topics like sequences and series and the Binomial Theorem, this chapter will touch on
some other discrete topics that might prove useful to you in the near future.

9.1 Basic Combinatorics

What you’ll learn about
• Discrete Versus Continuous
• The Importance of Counting
• The Multiplication Principle 

of Counting
• Permutations
• Combinations
• Subsets of an n-Set

... and why
Counting large sets is easy if you
know the correct formula.

Discrete Versus Continuous
A point has no length and no width, and yet intervals on the real line—which are made
up of these dimensionless points—have length! This little mystery illustrates the dis-
tinction between continuous and discrete mathematics. Any interval contains a
continuum of real numbers, which is why you can zoom in on an interval forever and
there will still be an interval there. Calculus concepts like limits and continuity depend
on the mathematics of the continuum. In discrete mathematics, we are concerned with
properties of numbers and algebraic systems that do not depend on that kind of analy-
sis. Many of them are related to the first kind of mathematics that most of us ever did,
namely counting. Counting is what we will do for the rest of this section.

The Importance of Counting
We begin with a relatively simple counting problem.

1a, b2

EXAMPLE 1  Arranging Three Objects in Order
In how many different ways can three distinguishable objects be arranged in order?

SOLUTION It is not difficult to list all the possibilities. If we call the objects A, B,
and C, the different orderings are: ABC, ACB, BAC, BCA, CAB, and CBA. A good way
to visualize the six choices is with a tree diagram, as in Figure 9.1. Notice that we
have three choices for the first letter. Then, branching off each of those three choices
are two choices for the second letter. Finally, branching off each of the 
branches formed so far is one choice for the third letter. By beginning at the “root” of
the tree, we can proceed to the right along any of the branches and
get a different ordering each time. We conclude that there are six ways to arrange
three distinguishable objects in order. Now try Exercise 3.

Scientific studies will usually manipulate one or more explanatory variables and 
observe the effect of that manipulation on one or more response variables. The key to
understanding the significance of the effect is to know what is likely to occur by chance
alone, and that often depends on counting. For example, Exploration 1 shows a real-
world application of Example 1.

3 * 2 * 1 = 6

3 * 2 = 6

A

C

B

A

A

A

A

C

B

C

B

C

B

C

B

FIGURE 9.1 A tree diagram for 
ordering the letters ABC. (Example 1)
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The Multiplication Principle of Counting
You would not want to draw the tree diagram for ordering five objects (ABCDE), but
you should be able to see in your mind that it would have 
branches. A tree diagram is a geometric visualization of a fundamental counting princi-
ple known as the Multiplication Principle.

5 * 4 * 3 * 2 * 1 = 120

EXPLORATION 1 Questionable Product Claims

A salesman for a copying machine company is trying to convince a client to

buy his $2000 machine instead of his competitor’s $5000 machine. To make his

point, he lines up an original document, a copy made by his machine, and a

copy made by the more expensive machine on a table and asks 60 office work-

ers to identify which is which. To everyone’s surprise, not a single worker iden-

tifies all three correctly. The salesman states triumphantly that this proves that

all three documents look the same to the naked eye and that therefore the client

should buy his company’s less expensive machine.

What do you think?

1. Each worker is essentially being asked to put the three documents in the 
correct order. How many ways can the three documents be ordered?

2. Suppose all three documents really do look alike. What fraction of the workers
would you expect to put them into the correct order by chance alone?

3. If zero people out of 60 put the documents in the correct order, should we 
conclude that “all three documents look the same to the naked eye”?

4. Can you suggest a more likely conclusion that we might draw from the results
of the salesman’s experiment?

Multiplication Principle of Counting
If a procedure P has a sequence of stages and if

can occur in ways,

can occur in ways,

can occur in ways,

then the number of ways that the procedure P can occur is the product

r1r2
Á rn.

rnSn

o

r2S2

r1S1

S1, S2, Á , Sn

It is important to be mindful of how the choices at each stage are affected by the choices
at preceding stages. For example, when choosing an order for the letters ABC we have 
3 choices for the first letter, but only 2 choices for the second and 1 for the third.

EXAMPLE 2  Using the Multiplication Principle
The Tennessee license plate shown here consists of three letters of the alphabet fol-
lowed by three numerical digits (0 through 9). Find the number of different license
plates that could be formed

(a) if there is no restriction on the letters or digits that can be used;

(b) if no letter or digit can be repeated.
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SOLUTION Consider each license plate as having six blanks to be filled in: three
letters followed by three numerical digits.

(a) If there are no restrictions on letters or digits, then we can fill in the first blank 
26 ways, the second blank 26 ways, the third blank 26 ways, the fourth blank 
10 ways, the fifth blank 10 ways, and the sixth blank 10 ways. By the Multiplication
Principle, we can fill in all six blanks in 
17,576,000 ways. There are 17,576,000 possible license plates with no restric-
tions on letters or digits.

(b) If no letter or digit can be repeated, then we can fill in the first blank 26 ways,
the second blank 25 ways, the third blank 24 ways, the fourth blank 10 ways, the
fifth blank 9 ways, and the sixth blank 8 ways. By the Multiplication Principle,
we can fill in all six blanks in 
ways. There are 11,232,000 possible license plates with no letters or digits 
repeated. Now try Exercise 5.

Permutations
One important application of the Multiplication Principle of Counting is to count the
number of ways that a set of n objects (called an n-set) can be arranged in order. Each
such ordering is called a permutation of the set. Example 1 showed that there are

permutations of a 3-set. In fact, if you understood the tree diagram, you can
probably guess how many permutations there are of an n-set.
3! = 6

26 * 25 * 24 * 10 * 9 * 8 = 11,232,000

26 * 26 * 26 * 10 * 10 * 10 =

License Plate Restrictions
Although prohibiting repeated letters and digits
as in Example 2 would make no practical sense
(why rule out more than 6 million possible plates
for no good reason?), states do impose some 
restrictions on license plates. They rule out 
certain letter progressions that could be 
considered obscene or offensive.

Factorials
If n is a positive integer, the symbol n!
(read “n factorial”) represents the product

We 
also define 0! = 1.
n1n - 121n - 221n - 32Á 2 # 1.

Permutations of an n-set
There are n! permutations of an n-set.

Usually the elements of a set are distinguishable from one another, but we can adjust
our counting when they are not, as we see in Example 3.

EXAMPLE 3  Distinguishable Permutations
Count the number of different 9-letter “words” (don’t worry about whether they’re in
the dictionary) that can be formed using the letters in each word.

(a) DRAGONFLY (b) BUTTERFLY (c) BUMBLEBEE

SOLUTION

(a) Each permutation of the 9 letters forms a different word. There are 
such permutations.

(b) There are also 9! permutations of these letters, but a simple permutation of the
two T’s does not result in a new word. We correct for the overcount by dividing

by 2!. There are distinguishable permutations of the letters in

BUTTERFLY.

(c) Again there are 9! permutations, but the three B’s are indistinguishable, as are
the three E’s, so we divide by 3! twice to correct for the overcount. There are

distinguishable permutations of the letters in BUMBLEBEE.

Now try Exercise 9.

9!

3!3!
= 10,080

9!

2!
= 181,440

9! = 362,880
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In many counting problems, we are interested in using n objects to fill r blanks in order,
where These are called permutations of n objects taken r at a time. The proce-
dure for counting them is the same; only this time we run out of blanks before we run out
of objects.

The first blank can be filled in n ways, the second in ways, and so on until we come
to the rth blank, which can be filled in ways. By the Multiplication Principle,
we can fill in all r blanks in ways. This expression can
be written in a more compact (but less easily computed) way as .n!/1n - r2!

n1n - 121n - 22Á 1n - r + 12
n - 1r - 12

n - 1

r 6 n.

SECTION 9.1 Basic Combinatorics 645

Distinguishable Permutations
There are distinguishable permutations of an n-set containing n distinguishable
objects.

If an n-set contains objects of a first kind, objects of a second kind, and
so on, with then the number of distinguishable per-
mutations of the n-set is

n!

n1!n2!n3! Á nk!
.

n1 + n2 +
Á

+  nk = n,
n2n1

n!

Permutation Counting Formula
The number of permutations of n objects taken r at a time is denoted and is
given by

If then .nPr = 0r 7 n,

nPr =

n!

1n - r2!  for  0 … r … n.

nPr

Notice that which we have already seen is the
number of permutations of a complete set of n objects. This is why we define 0! = 1.

nPn = n!/1n - n2! = n!/0! = n!/1 = n!,

Permutations on a Calculator
Most modern calculators have an selection
built in. They also compute factorials, but 
remember that factorials get very large. If you
want to count the number of permutations of 90
objects taken 5 at a time, be sure to use the 
function. The expression 90!/85! is likely to lead
to an overflow error.

nPr

nPr

EXAMPLE 4  Counting Permutations
Evaluate each expression without a calculator.

(a) (b) (c) 

SOLUTION

(a) By the formula, 

(b) Although you could use the formula again, you might prefer to apply the Multi-
plication Principle directly. We have 11 objects and 3 blanks to fill:

(c) This time it is definitely easier to use the Multiplication Principle. We have n
objects and 3 blanks to fill; so assuming 

Now try Exercise 15.
nP3 = n1n - 121n - 22.

n Ú 3,

11P3 = 11 # 10 # 9 = 990

6 # 5 # 4 # 3 = 360.
6P4 = 6!/16 - 42! = 6!/2! = 16 # 5 # 4 # 3 # 2!2/2! =

nP311P36P4

Notes on Example
Example 4 shows some paper-and-pencil 
methods for calculating permutations. It is 
important that students have the algebraic skills
to perform these operations, since the numbers 
in some counting problems may exceed the 
capacity of a calculator.
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We can verify the formula with the Multiplication Principle. Since every permuta-
tion can be thought of as an unordered selection of r objects followed by a particular
ordering of the objects selected, the Multiplication Principle gives 

Therefore

nCr =
nPr

r!
=

1

r!
#

n!

1n - r2! =

n!

r!1n - r2!.

nPr = nCr
# r!.

nCr

646 CHAPTER 9 Discrete Mathematics

EXAMPLE 5  Applying Permutations
Sixteen actors answer a casting call to try out for roles as dwarfs in a production of
Snow White and the Seven Dwarfs. In how many different ways can the director cast
the seven roles?

SOLUTION The 7 different roles can be thought of as 7 blanks to be filled, and 
we have 16 actors with which to fill them. The director can cast the roles in

ways. Now try Exercise 12.

Combinations
When we count permutations of n objects taken r at a time, we consider different order-
ings of the same r selected objects as being different permutations. In many applica-
tions we are only interested in the ways to select the r objects, regardless of the order in
which we arrange them. These unordered selections are called combinations of n
objects taken r at a time.

16P7 = 57,657,600

Combination Counting Formula
The number of combinations of n objects taken r at a time is denoted and is
given by

If then nCr = 0.r 7 n,

nCr =

n!

r!1n - r2!  for  0 … r … n.

nCr

EXAMPLE 6  Distinguishing Combinations from Permutations
In each of the following scenarios, tell whether permutations (ordered) or combina-
tions (unordered) are being described.

(a) A president, vice-president, and secretary are chosen from a 25-member garden
club.

(b) A cook chooses 5 potatoes from a bag of 12 potatoes to make a potato salad.

(c) A teacher makes a seating chart for 22 students in a classroom with 30 desks.

SOLUTION

(a) Permutations. Order matters because it matters who gets which office.

(b) Combinations. The salad is the same no matter what order the potatoes are chosen.

(c) Permutations. A different ordering of students in the same seats results in a dif-
ferent seating chart.

Notice that once you know what is being counted, getting the correct number is easy
with a calculator. The number of possible choices in the scenarios above are: (a) 

(b) and (c) 
Now try Exercise 19.

30P22 L 6.5787 * 1027.12C5 = 792,13,800,
25P3 =

A Word on Notation
Some textbooks use instead of and

instead of . Much more

common is the notation for . Both

and are often read “n choose r.”

Combinations on a Calculator
Most modern calculators have an nCr
selection built in. As with permutations, it 
is better to use the nCr function than to use

the formula , as the individual

factorials can get too large for the calculator.

n!

r!1n - r2!

nCran

r
b

nCran

r
b

nCrC1n, r2 nPrP1n, r2
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The solution to Example 9b suggests a general rule that will be our last counting for-
mula of the section.

SECTION 9.1 Basic Combinatorics 647

EXAMPLE 7  Counting Combinations
In the Miss America pageant, 51 contestants must be narrowed down to 10 finalists
who will compete on national television. In how many possible ways can the 10 
finalists be selected?

SOLUTION Notice that the order of the finalists does not matter at this phase; all
that matters is which women are selected. So we count combinations rather than per-
mutations.

The 10 finalists can be chosen in 12,777,711,870 ways. Now try Exercise 27.

51C10 =

51!

10!41!
= 12,777,711,870

EXAMPLE 8  Picking Lottery Numbers
The Georgia Lotto requires winners to pick 6 integers between 1 and 46. The order in
which you select them does not matter; indeed, the lottery tickets are always printed
with the numbers in ascending order. How many different lottery tickets are possible?

SOLUTION There are possible lottery tickets of this type.
(That’s more than enough different tickets for every person in the state of Georgia!)

Now try Exercise 29.

Subsets of an n-Set
As a final application of the counting principle, consider the pizza topping problem.

46C6 = 9,366,819

EXAMPLE 9  Selecting Pizza Toppings
Armando’s Pizzeria offers patrons any combination of up to 10 different toppings:
pepperoni, mushroom, sausage, onion, green pepper, bacon, prosciutto, black olive,
green olive, and anchovies. How many different pizzas can be ordered

(a) if we can choose any three toppings?

(b) if we can choose any number of toppings (0 through 10)?

SOLUTION

(a) Order does not matter (for example, the sausage-pepperoni-mushroom pizza is
the same as the pepperoni-mushroom-sausage pizza), so the number of possible
pizzas is 

(b) We could add up all the numbers of the form but there
is an easier way to count the possibilities. Consider the ten options to be lined up
as in the statement of the problem. In considering each option, we have two
choices: yes or no. (For example, the pepperoni-mushroom-sausage pizza would
correspond to the sequence YYYNNNNNNN.) By the Multiplication Principle,
the number of such sequences is which is
the number of possible pizzas. Now try Exercise 37.

2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 # 2 = 1024,

10Cr for r = 0, 1, Á , 10,
10C3 = 120.

Formula for Counting Subsets of an n-Set
There are subsets of a set with n objects (including the empty set and the 
entire set).

2n

6965_CH09_pp641-734.qxd  1/20/10  3:28 PM  Page 647



648 CHAPTER 9 Discrete Mathematics

EXAMPLE 10  Analyzing an Advertised Claim
A national hamburger chain used to advertise that it fixed its hamburgers “256 ways,”
since patrons could order whatever toppings they wanted. How many toppings must
have been available?

SOLUTION We need to solve the equation for n. We could solve this
easily enough by trial and error, but we will solve it with logarithms just to keep the
method fresh in our minds.

There must have been 8 toppings from which to choose.
Now try Exercise 39.

 n = 8

 n =

log 256

log 2

 n log 2 =  log 256

 log 2 n
=  log 256

 2n
= 256

2n
= 256

Why Are There Not 1000 
Possible Area Codes?
While there are 1000 three-digit numbers 
between 000 and 999, not all of them are available
for use as area codes. For example, area codes 
cannot begin with 0 or 1, and numbers of the form
abb have been reserved for other purposes.

Chapter Opener Problem (from page 641)

Problem: There are 680 three-digit numbers that are available for use as area
codes in North America. As of April 2002, 305 of them were actually being used
(Source: www.nanpa.com). How many additional three-digit area codes are avail-
able for use? Within a given area code, how many unique telephone numbers are
theoretically possible?

Solution: There are additional area codes available.Within a
given area code, each telephone number has seven digits chosen from the ten digits
0 through 9. Since each digit can theoretically be any of 10 numbers, there are

different telephone numbers possible within a given area code.

Putting these two results together, we see that the unused area codes in April 2002
represented an additional 3.75 billion possible telephone numbers!

10 # 10 # 10 # 10 # 10 # 10 # 10 = 107
= 10,000,000

680 - 305 = 375

QUICK REVIEW 9.1

5. The number of vertices of a decagon

6. The number of musicians in a string quartet

7. The number of players on a soccer team

8. The number of prime numbers between 1 and 10, inclusive

9. The number of squares on a chessboard

10. The number of cards in a contract bridge hand

In Exercises 1–10, give the number of objects described. In some
cases you might have to do a little research or ask a friend.

1. The number of cards in a standard deck

2. The number of cards of each suit in a standard deck

3. The number of faces on a cubical die

4. The number of possible totals when two dice are rolled
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SECTION 9.1 EXERCISES

In Exercises 1–4, count the number of ways that each procedure can be
done.

1. Line up three people for a photograph.

2. Prioritize four pending jobs from most to least important.

3. Arrange five books from left to right on a bookshelf.

4. Award ribbons for 1st place to 5th place to the top five dogs in
a dog show.

5. Homecoming King and Queen There are four can-
didates for homecoming queen and three candidates for king.
How many king-queen pairs are possible?

6. Possible Routes There are three roads from town A to
town B and four roads from town B to town C. How many 
different routes are there from A to C by way of B?

7. Permuting Letters How many 9-letter “words” (not
necessarily in any dictionary) can be formed from the letters
of the word LOGARITHM? (Curiously, one such arrange-
ment spells another word related to mathematics. Can you
name it?)

8. Three-Letter Crossword Entries Excluding J, Q,
X, and Z, how many 3-letter crossword puzzle entries can be
formed that contain no repeated letters? (It has been conjec-
tured that all of them have appeared in puzzles over the years,
sometimes with painfully contrived definitions.)

9. Permuting Letters How many distinguishable 
11-letter “words” can be formed using the letters in 
MISSISSIPPI?

10. Permuting Letters How many distinguishable 
11-letter “words” can be formed using the letters in 
CHATTANOOGA?

11. Electing Officers The 13 members of the East Brainerd
Garden Club are electing a President, Vice-President, and 
Secretary from among their members. How many different
ways can this be done?

12. City Government From among 12 projects under 
consideration, the mayor must put together a prioritized (that
is, ordered) list of 6 projects to submit to the city council for
funding. How many such lists can be formed?

In Exercises 13–18, evaluate each expression without a calculator. Then
check with your calculator to see if your answer is correct.

13. 4! 14.

15. 16.

17. 18.

In Exercises 19–22, tell whether permutations (ordered) or combina-
tions (unordered) are being described.

19. 13 cards are selected from a deck of 52 to form a bridge
hand.

20. 7 digits are selected (without repetition) to form a telephone
number.

21. 4 students are selected from the senior class to form a commit-
tee to advise the cafeteria director about food.

10C310C7

9P26P2

13!210!2

22. 4 actors are chosen to play the Beatles in a film biography.

23. License Plates How many different license plates begin
with two digits, followed by two letters and then three digits if
no letters or digits are repeated?

24. License Plates How many different license plates 
consist of five symbols, either digits or letters?

25. Tumbling Dice Suppose that two dice, one red and one
green, are rolled. How many different outcomes are possible
for the pair of dice?

26. Coin Toss How many different sequences of heads and
tails are there if a coin is tossed 10 times?

27. Forming Committees A 3-woman committee is to be
elected from a 25-member sorority. How many different com-
mittees can be elected?

28. Straight Poker In the original version of poker known
as “straight” poker, a five-card hand is dealt from a standard
deck of 52. How many different straight poker hands are possi-
ble?

29. Buying Discs Juan has money to buy only three of the 48
compact discs available. How many different sets of discs can
he purchase?

30. Coin Toss A coin is tossed 20 times and the heads and
tails sequence is recorded. From among all the possible 
sequences of heads and tails, how many have exactly seven
heads?

31. Drawing Cards How many different 13-card hands 
include the ace and king of spades?

32. Job Interviews The head of the personnel department
interviews eight people for three identical openings. How many
different groups of three can be employed?

33. Scholarship Nominations Six seniors at Rydell High
School meet the qualifications for a competitive honor scholar-
ship at a major university. The university allows the school to
nominate up to three candidates, and the school always nomi-
nates at least one. How many different choices could the nomi-
nating committee make?

34. Pu-pu Platters A Chinese 
restaurant will make a Pu-pu 
platter “to order” containing any 
one, two, or three selections 
from its appetizer menu. If the 
menu offers five different 
appetizers, how many different 
platters could be made?

35. Yahtzee In the game of Yahtzee, five dice are tossed 
simultaneously. How many outcomes can be distinguished if
all the dice are different colors?

36. Indiana Jones and the Final Exam Professor In-
diana Jones gives his class 20 study questions, from which he
will select 8 to be answered on the final exam. How many ways
can he select the questions?
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37. Salad Bar Mary’s lunch always consists of a full plate of
salad from Ernestine’s salad bar. She always takes equal
amounts of each salad she chooses, but she likes to vary her 
selections. If she can choose from among 9 different salads,
how many essentially different lunches can she create?

38. Buying a New Car A new car customer has to choose
from among 3 models, each of which comes in 4 exterior 
colors, 3 interior colors, and with any combination of up to 
6 optional accessories. How many essentially different ways
can the customer order the car?

39. Pizza Possibilities Luigi sells one size of pizza, but he
claims that his selection of toppings allows for “more than
4000 different choices.” What is the smallest number of top-
pings Luigi could offer?

40. Proper Subsets A subset of set A is called proper if it is
neither the empty set nor the entire set A. How many proper
subsets does an n-set have?

41. True-False Tests How many different answer keys are
possible for a 10-question true-false test?

42. Multiple-Choice Tests How many different answer
keys are possible for a 10-question multiple-choice test in
which each question leads to choice a, b, c, d, or e?

Standardized Test Questions
43. True or False If a and b are positive integers such that

Justify your answer.

44. True or False If a, b, and n are integers such that

Justify your answer.

You may use a graphing calculator when evaluating Exercises
45–48.

45. Multiple Choice Lunch at the Gritsy Palace consists of
an entrée, two vegetables, and a dessert. If there are four 
entrées, six vegetables, and six desserts from which to choose,
how many essentially different lunches are possible?

(A) 16

(B) 25

(C) 144

(D) 360

(E) 720

46. Multiple Choice How many different ways can the
judges choose 5th to 1st places from ten Miss America
finalists?

(A) 50

(B) 120

(C) 252

(D) 30,240

(E) 3,628,800

a 6 b 6 n, then an

a
b 6 an

b
b .

a + b = n, then an

a
b = an

b
b .

47. Multiple Choice Assuming r and n are positive integers
with which of the following numbers does not equal 1?

(A)

(B)

(C)

(D)

(E)

48. Multiple Choice An organization is electing 3 new
board members by approval voting. Members are given ballots
with the names of 5 candidates and are allowed to check off the
names of all candidates whom they would approve (which
could be none, or even all five). The three candidates with the
most checks overall are elected. In how many different ways
can a member fill out the ballot?

(A) 10

(B) 20

(C) 32

(D) 125

(E) 243

Explorations
49. Group Activity For each of the following numbers,

make up a counting problem that has the number as its answer.

(a)

(b)

(c)

(d)

(e)

50. Writing to Learn You have a fresh carton containing
one dozen eggs and you need to choose two for breakfast. Give
a counting argument based on this scenario to explain why

51. Factorial Riddle The number 50! ends in a string of
consecutive 0’s.

(a) How many 0’s are in the string?

(b) How do you know?

52. Group Activity Diagonals of a Regular 
Polygon In Exploration 1 of Section 1.7, you reasoned
from data points and quadratic regression that the number of
diagonals of a regular polygon with n vertices was

(a) Explain why the number of segments connecting all pairs
of vertices is 

(b) Use the result from part (a) to prove that the number of 
diagonals is 1n2

- 3n2/2.

nC2.

1n2
- 3n2/2.

12C2 = 12C10.

3 # 210

25

25P11

12C3

52C3

an

r
b , a n

n - r
b

an

n
b

nCn

nPn

1n - n2!
r 6 n,

650 CHAPTER 9 Discrete Mathematics

6965_CH09_pp641-734.qxd  1/20/10  3:28 PM  Page 650



Extending the Ideas
53. Writing to Learn Suppose that a chain letter (illegal if

money is involved) is sent to five people the first week of the
year. Each of these five people sends a copy of the letter to five
more people during the second week of the year. Assume that
everyone who receives a letter participates. Explain how you
know with certainty that someone will receive a second copy of
this letter later in the year.

54. A Round Table How many different seating arrange-
ments are possible for 4 people sitting around a round table?

55. Colored Beads Four beads—red, blue, yellow, and
green—are arranged on a string to make a simple necklace as
shown in the figure. How many arrangements are possible?

56. Casting a Play A director is casting a play with two 
female leads and wants to have a chance to audition the 
actresses two at a time to get a feeling for how well they would
work together. His casting director and his administrative assis-
tant both prepare charts to show the amount of time that would
be required, depending on the number of actresses who come
to the audition. Which time chart is more reasonable, and why?

SECTION 9.1 Basic Combinatorics 651

Red

Yellow Green

Blue

Number Time Number Time
Who Required Who Required

Audition (minutes) Audition (minutes)

3 10 3 10
6 45 6 30
9 110 9 60

12 200 12 100
15 320 15 150

57. Bridge Around the World Suppose that a contract
bridge hand is dealt somewhere in the world every second.
What is the fewest number of years required for every possible
bridge hand to be dealt? (See Quick Review Exercise 10.)

58. Basketball Lineups Each NBA basketball team has 
12 players on its roster. If each coach chooses 5 starters without
regard to position, how many different sets of 10 players can
start when two given teams play a game?
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By now you are probably ready to conclude that the binomial coefficients in the expan-
sion of are just the values of We also hope
you are wondering why this is true.

The expansion of

consists of all possible products that can be formed by taking one letter (either a or b)
from each factor The number of ways to form the product is exactly
the same as the number of ways to choose r factors to contribute an a, since the rest of
the factors will obviously contribute a b. The number of ways to choose r factors from
n factors is nCr.

arbn- r1a + b2.

1a + b2n = 1a + b21a + b21a + b2Á 1a + b2

nCr for r = 0, 1, 2, 3, 4, Á , n.1a + b2n

652 CHAPTER 9 Discrete Mathematics

9.2 The Binomial Theorem

Powers of Binomials
Many important mathematical discoveries have begun with the study of patterns. In
this chapter, we want to introduce an important polynomial theorem called the Bino-
mial Theorem, for which we will set the stage by observing some patterns.

If you expand for and 5, here is what you get:

1

Can you observe the patterns and predict what the expansion of will look
like? You can probably predict the following:

1. The powers of a will decrease from 6 to 0 by 1’s.

2. The powers of b will increase from 0 to 6 by 1’s.

3. The first two coefficients will be 1 and 6.

4. The last two coefficients will be 6 and 1.

At first you might not see the pattern that would enable you to find the other so-called
binomial coefficients, but you should see it after the following Exploration.

1a + b26
1a5b0

+ 5a4b1
+ 10a3b2

+ 10a2b3
+ 5a1b4

+ 1a0b51a + b25 =

1a4b0
+ 4a3b1

+ 6a2b2
+ 4a1b3

+ 1a0b41a + b24 =

1a3b0
+ 3a2b1

+ 3a1b2
+ 1a0b31a + b23 =

1a2b0
+ 2a1b1

+ 1a0b21a + b22 =

1a1b0
+ 1a0b11a + b21 =

1a + b20 =

n = 0, 1, 2, 3, 4,1a + b2n

What you’ll learn about
• Powers of Binomials
• Pascal’s Triangle
• The Binomial Theorem
• Factorial Identities

... and why
The Binomial Theorem is a 
marvelous study in combinatorial
patterns.

EXPLORATION 1 Exploring the Binomial Coefficients

1. Compute Where can you find these numbers in the 
binomial expansions above?

2. The expression tells the calculator to compute for
each of the numbers and display them as a list. Where can you
find these numbers in the binomial expansions above?

3. Compute Where can you find these numbers in the 
binomial expansions above?

5 nCr 50, 1, 2, 3, 4, 56.
r = 0, 1, 2, 3, 4

4Cr4 nCr = 50, 1, 2, 3, 46
3C0, 3C1, 3C2, and 3C3.

�
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Pascal’s Triangle
If we eliminate the plus signs and the powers of the variables a and b in the “triangular”
array of binomial coefficients with which we began this section, we get:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
. . .. . .. . .

This is called Pascal’s triangle in honor of Blaise Pascal (1623–1662), who used it in
his work but certainly did not discover it. It appeared in 1303 in a Chinese text, the
Precious Mirror, by Chu Shih-chieh, who referred to it even then as a “diagram of the
old method for finding eighth and lower powers.”

For convenience, we refer to the top “1” in Pascal’s triangle as row 0. That allows us to
associate the numbers along row n with the expansion of 

Pascal’s triangle is so rich in patterns that people still write about them today. One of
the simplest patterns is the one that we use for getting from one row to the next, as in
the following example.

1a + b2n.

SECTION 9.2 The Binomial Theorem 653

DEFINITION Binomial Coefficient
The binomial coefficients that appear in the expansion of are the values
of 

A classical notation for especially in the context of binomial coefficients,

is Both notations are read “n choose r.”an

r
b .

nCr ,
nCr for r = 0, 1, 2, 3, Á , n.

1a + b2n

EXAMPLE 1  Using nCr to Expand a Binomial
Expand using a calculator to compute the binomial coefficients.

SOLUTION Enter 5 into the calculator to find the binomial
coefficients for The calculator returns the list 1, 5, 10, 10, 5, 1 . Using these
coefficients, we construct the expansion:

Now try Exercise 3.
1a + b25 = 1a5

+ 5a4b + 10a3b2
+ 10a2b3

+ 5ab4
+ 1b5

65n = 5.
nCr 50, 1, 2, 3, 4, 56

1a + b25,
Table Trick
You can also use the table display to show bino-
mial coefficients. For example, let 
and set TblStart and to display
the binomial coefficients for .1a + b25

¢ Tbl = 1= 0
Y1 = 5 nCr X,

The Name Game
The fact that Pascal’s triangle was not discovered
by Pascal is ironic, but hardly unusual in the an-
nals of mathematics. We mentioned in Chapter 5
that Heron did not discover Heron’s Formula,
and Pythagoras did not even discover the
Pythagorean Theorem. The history of calculus is
filled with similar injustices.

EXAMPLE 2  Extending Pascal’s Triangle
Show how row 5 of Pascal’s triangle can be used to obtain row 6, and use the infor-
mation to write the expansion of .

SOLUTION The two outer numbers of every row are 1’s. Each number between
them is the sum of the two numbers immediately above it. So row 6 can be found
from row 5 as follows:

1x + y26

(continued)
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Here’s a counting argument to explain why it works. Suppose we are choosing r objects
from n objects. As we have seen, this can be done in ways. Now identify one of the
n objects with a special tag. How many ways can we choose r objects if the tagged ob-
ject is among them? Well, we have objects yet to be chosen from among the

that are untagged, so How many ways can we choose r objects if the
tagged object is not among them? This time we must choose all r objects from among
the without tags, so Since our selection of r objects must either contain
the tagged object or not contain it, counts all the possibilities with no
overlap. Therefore, 

It is not necessary to construct Pascal’s triangle to find specific binomial coefficients,

since we already have a formula for computing them: This

formula can be used to give an algebraic formula for the recursion formula above, but
we will leave that as an exercise for the end of the section.

nCr = an

r
b =

n!

r!1n - r2!.

nCr = n-1Cr-1 + n-1Cr.
n-1Cr-1 + n-1Cr

n-1Cr.n - 1

n-1Cr-1.n - 1
r - 1

nCr

654 CHAPTER 9 Discrete Mathematics

These are the binomial coefficients for , so

Now try Exercise 7.

The technique used in Example 1 to extend Pascal’s triangle depends on the following
recursion formula.

1x + y26 = x6
+ 6x5y + 15x4y2

+ 20x3y3
+ 15x2y4

+ 6xy5
+ y6.

1x + y26

Recursion Formula for Pascal’s Triangle

or, equivalently, nCr = n-1Cr-1 + n-1Cran

r
b = an - 1

r - 1
b + an - 1

r
b

EXAMPLE 3  Computing Binomial Coefficients
Find the coefficient of in the expansion of .

SOLUTION The only term in the expansion that we need to deal with is 
This is

The coefficient of is 96,096. Now try Exercise 15.

The Binomial Theorem
We now state formally the theorem about expanding powers of binomials, known as the

Binomial Theorem. For tradition’s sake, we will use the symbol instead of nCr.an

r
b

x10

15!

10!5!
# 25 # x10

= 3003 # 32 # x10
= 96,096 x10.

15C10 x
1025.

1x + 2215x10

The Binomial Theorem
For any positive integer n,

where

an

r
b = nCr =

n!

r!1n - r2!.

1a + b2n = an

0
ban

+ an

1
ban-1b + Á

+ an

r
ban- rbr 

+
Á

+  an

n
bbn,

The Binomial Theorem 
in Notation
For those who are already familiar with summa-
tion notation, here is how the Binomial Theorem
looks:

Those who are not familiar with this notation
will learn about it in Section 9.4.

1a + b2n = a

n

r=0
an

r
ban- rbr

g
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SECTION 9.2 The Binomial Theorem 655

EXAMPLE 4  Expanding a Binomial
Expand 

SOLUTION We use the Binomial Theorem to expand where and
.

Now try Exercise 17.

Factorial Identities
Expressions involving factorials combine to give some interesting identities, most of
them relying on the basic identities shown below (actually two versions of the same
identity).

= 16x4
- 32x3y2

+ 24x2y4
- 8xy6

+ y8

+ 412x21-y223 + 1-y224
12x - y224 = 12x24 + 412x231-y22 + 612x221-y222
1a + b24 = a4

+ 4a3b + 6a2b2
+ 4ab3

+ b4

b = -y2
a = 2x1a + b24

12x - y224.

Basic Factorial Identities

For any integer 

For any integer n Ú 0, 1n + 12! = 1n + 12n!

n Ú 1, n! = n1n - 12!

EXAMPLE 5  Proving an Identity with Factorials

Prove that for all integers 

SOLUTION

Combination counting formula

Basic factorial
identities

Now try Exercise 33.= n

=

2n

2

=

n2
+ n

2
-

n2
- n

2

=

1n + 121n21n - 12!
21n - 12! -

n1n - 121n - 22!
21n - 22!

an + 1

2
b - an

2
b =

1n + 12!
2!1n + 1 - 22! -

n!

2!1n - 22!

n Ú 2.an + 1

2
b - an

2
b = n

QUICK REVIEW 9.2 (Prerequisite skill Section A.2)

5. 6.

7. 8.

9. 10. 14m + 3n2312x - 3y23
1b - c231u + v23
13p - 4q2213s + 2t22In Exercises 1–10, use the distributive property to expand the 

binomial.

1. 2.

3. 4. 1a - 3b2215x - y22
1a + b221x + y22
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SECTION 9.2 EXERCISES

In Exercises 1–4, expand the binomial using a calculator to find the 
binomial coefficients.

1. 2.

3. 4.

In Exercises 5–8, expand the binomial using Pascal’s triangle to find the
coefficients.

5. 6.

7. 8.

In Exercises 9–12, evaluate the expression by hand (using the formula)
before checking your answer on a grapher.

9. 10.

11. 12.

In Exercises 13–16, find the coefficient of the given term in the bino-
mial expansion.

13. term, 

14. term, 

15. term, 

16. term, 

In Exercises 17–20, use the Binomial Theorem to find a polynomial ex-
pansion for the function.

17. 18.

19. 20.

In Exercises 21–26, use the Binomial Theorem to expand each expres-
sion.

21. 22.

23. 24.

25. 26.

27. Determine the largest integer n for which your calculator will
compute n!.

28. Determine the largest integer n for which your calculator will

compute 

29. Prove that for all integers .

30. Prove that for all integers 

31. Use the formula to prove that 

(This is the pattern in Pascal’s

triangle that appears in Example 2.)

32. Find a counterexample to show that each statement is false.

(a)

(b) 1nm2! = n!m!

1n + m2! = n! + m!

an

r
b = an - 1

r - 1
b + an - 1

r
b .

an

r
b =

n!

r!1n - r2!

n Ú r Ú 0.an

r
b = a n

n - r
b

n Ú 1an

1
b = a n

n - 1
b = n

a n

100
b .

1a - b-3271x -2
+ 325

11x + 132411x - 1y26
12y - 3x2512x + y24

ƒ1x2 = 13x + 425h1x2 = 12x - 127
g1x) = 1x + 326ƒ1x2 = 1x - 225

1x - 3211x7

1x - 2212x4

1x + y213x5y8

1x + y214x11y3

a166

0
ba166

166
b

a15

11
ba9

2
b

1p + q291p + q28
1x + y251x + y23

1x + y2101x + y27
1a + b261a + b24

33. Prove that for all integers 

34. Prove that for all integers 

Standardized Test Questions
35. True or False The coefficients in the polynomial expan-

sion of alternate in sign. Justify your answer.

36. True or False The sum of any row of Pascal’s triangle is
an even integer. Justify your answer.

You may use a graphing calculator when evaluating Exercises 37–40.

37. Multiple Choice What is the coefficient of in the 
expansion of 

(A) 16

(B) 256

(C) 1120

(D) 1680

(E) 26,680

38. Multiple Choice Which of the following numbers does
not appear on row 10 of Pascal’s triangle?

(A) 1

(B) 5

(C) 10

(D) 120

(E) 252

39. Multiple Choice The sum of the coefficients of
is

(A) 1.

(B) 1024.

(C) 58,025.

(D) 59,049.

(E) 9,765,625.

40. Multiple Choice

(A) 0. (B)

(C) (D)

(E)

Explorations
41. Triangular Numbers Numbers of the form

are called triangular numbers because they
count numbers in triangular arrays, as shown below:
1 + 2 + Á

+  n

6x2y + 2y3.

2x3
+ 6xy2.2x3

- 2y3.

2x3.

1x + y23 + 1x - y23 =

13x - 2y210

12x + 128?
x4

1x - y250

n Ú 2.a n

n - 2
b + an + 1

n - 1
b = n2

n Ú 2.an

2
b + an + 1

2
b = n2
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(a) Compute the first 10 triangular numbers.

(b) Where do the triangular numbers appear in Pascal’s triangle?

(c) Writing to Learn Explain why the diagram below
shows that the nth triangular number can be written as

(d) Write the formula in part (c) as a binomial coefficient.
(This is why the triangular numbers appear as they do in
Pascal’s triangle.)

42. Group Activity Exploring Pascal’s Triangle
Break into groups of two or three. Just by looking at patterns in
Pascal’s triangle, guess the answers to the following questions.
(It is easier to make a conjecture from a pattern than it is to
construct a proof!)

(a) What positive integer appears the least number of times?

(b) What number appears the greatest number of times?

(c) Is there any positive integer that does not appear in 
Pascal’s triangle?

(d) If you go along any row alternately adding and subtracting
the numbers, what is the result?

n1n + 12/2.

Extending the Ideas
43. Use the Binomial Theorem to prove that the sum of the entries

along the nth row of Pascal’s triangle is That is,

[Hint: Use the Binomial Theorem to expand 

44. Use the Binomial Theorem to prove that the alternating sum
along any row of Pascal’s triangle is zero. That is,

45. Use the Binomial Theorem to prove that

an

0
b + 2an

1
b + 4an

2
b  + Á

+  2nan

n
b = 3n.

an

0
b - an

1
b + an

2
b  - Á

+  1-12n an

n
b = 0.

11 + 12n.4
an

0
b + an

1
b + an

2
b  + Á

+  an

n
b = 2n.

2n.

SECTION 9.2 The Binomial Theorem 657

(e) If p is a prime number, what do all the interior numbers
along the pth row have in common?

(f ) Which rows have all even interior numbers?

(g) Which rows have all odd numbers?

(h) What other patterns can you find? Share your discoveries
with the other groups.
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The hypothesis of equally likely outcomes is critical here. Many people guess wrongly
on the probability in Example 1d because they figure that there are 11 possible out-
comes for the sum on two fair dice: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and that 4 is one
of them. (That reasoning is correct so far.) The reason that 1/11 is not the probability of
rolling a sum of 4 is that all those sums are not equally likely.

65
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9.3 Probability

Sample Spaces and Probability Functions
Most people have an intuitive sense of probability. Unfortunately, this sense is not 
often based on a foundation of mathematical principles, so people become victims of
scams, misleading statistics, and false advertising. In this lesson, we want to build on
your intuitive sense of probability and give it a mathematical foundation.

What you’ll learn about
• Sample Spaces and Probability

Functions
• Determining Probabilities
• Venn Diagrams and Tree 

Diagrams
• Conditional Probability
• Binomial Distributions

... and why
Everyone should know how 
mathematical the “laws of
chance” really are.

FIGURE 9.2 A sum of 4 on a 
roll of two dice. (Example 1d)

EXAMPLE 1  Testing Your Intuition About Probability
Find the probability of each of the following events.

(a) Tossing a head on one toss of a fair coin

(b) Tossing two heads in a row on two tosses of a fair coin

(c) Drawing a queen from a standard deck of 52 cards

(d) Rolling a sum of 4 on a single roll of two fair dice

(e) Guessing all 6 numbers in a state lottery that requires you to pick 6 numbers 
between 1 and 46, inclusive

SOLUTION

(a) There are two equally likely outcomes: T, H . The probability is 1/2.

(b) There are four equally likely outcomes: TT, TH, HT, HH . The probability 
is 1/4.

(c) There are 52 equally likely outcomes, 4 of which are queens. The probability is
4/52, or 1/13.

(d) By the Multiplication Principle of Counting (Section 9.1), there are 
equally likely outcomes. Of these, three yield a sum of 4
(Figure 9.2). The probability is 3/36, or 1/12.

(e) There are equally likely ways that 6 numbers can be chosen
from 46 numbers without regard to order. Only one of these choices wins the lot-
tery. The probability is 1/9,366,819 0.00000010676. Now try Exercise 5.

Notice that in each of these cases we first counted the number of possible outcomes of
the experiment in question. The set of all possible outcomes of an experiment is the
sample space of the experiment. An event is a subset of the sample space. Each of our
sample spaces consisted of a finite number of equally likely outcomes, which enabled
us to find the probability of an event by counting.

L

46C6 = 9,366,819

511, 32, 13, 12, 12, 226 6 * 6 = 36

65
65

Probability of an Event (Equally Likely Outcomes)
If E is an event in a finite, nonempty sample space S of equally likely 
outcomes, then the probability of the event E is

P1E2 =

the number of outcomes in E

the number of outcomes in S
 .

Is Probability Just for Games?
Probability theory got its start in letters between
Blaise Pascal (1623–1662) and Pierre de Fermat
(1601–1665) concerning games of chance, but it
has come a long way since then. Modern mathe-
maticians like David Blackwell (1919), the first
African-American to receive a fellowship to the
Institute for Advanced Study at Princeton, have
greatly extended both the theory and the applica-
tions of probability, especially in the areas of sta-
tistics, quantum physics, and information theory.
Moreover, the work of John Von Neumann
(1903–1957) has led to a separate branch of
modern discrete mathematics that really is about
games, called game theory.
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On the other hand, we can assign probabilities to the 11 outcomes in this smaller sam-
ple space in a way that is consistent with the number of ways each total can occur. The
table below shows a probability distribution, in which each outcome is assigned a
unique probability by a probability function.

SECTION 9.3 Probability 659

Outcome Probability

2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36

10 3/36
11 2/36
12 1/36

We see that the outcomes are not equally likely, but we can find the probabilities of
events by adding up the probabilities of the outcomes in the event, as in the following
example.

EXAMPLE 2  Rolling the Dice
Find the probability of rolling a sum divisible by 3 on a single roll of two fair dice.

SOLUTION The event E consists of the outcomes 3, 6, 9, 12 . To get the proba-
bility of E we add up the probabilities of the outcomes in E (see the table of the prob-
ability distribution):

Now try Exercise 7.

Notice that this method would also have worked just fine with our 36-outcome sample
space, in which every outcome has probability 1/36. In general, it is easier to work with
sample spaces of equally likely events because it is not necessary to write out the prob-
ability distribution. When outcomes do have unequal probabilities, we need to know
what probabilities to assign to the outcomes.

Not every function that assigns numbers to outcomes qualifies as a probability function.

P1E2 =

2

36
+

5

36
+

4

36
+

1

36
=

12

36
=

1

3
.

65

Random Variables
A more formal treatment of probability would
distinguish between an outcome in a sample
space and a number that is associated with that
outcome. For example, an outcome in Example 2
is really something like n n, to which we asso-
ciate the number 2 � 1 � 3. A function that
assigns a number to an outcome is called a
random variable. A different random variable
might assign the number 2 1 � 2 to this out-
come of the dice. Another random variable might
assign the number 21. 

#

The probability of any event can then be defined in terms of the probability function.

DEFINITION Probability Function
A probability function is a function P that assigns a real number to each out-
come in a sample space S subject to the following conditions:

1. for every outcome O;

2. the sum of the probabilities of all outcomes in S is 1;

3. P1�2 = 0.

0 … P1O2 … 1

Probability of an Event (Outcomes Not Equally Likely)
Let S be a finite, nonempty sample space in which every outcome has a proba-
bility assigned to it by a probability function P. If E is any event in S, the
probability of the event E is the sum of the probabilities of all the outcomes
contained in E.

Empty Set
A set with no elements is the empty set, 
denoted by .�

...
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Determining Probabilities
It is not always easy to determine probabilities, but the arithmetic involved is fairly sim-
ple. It usually comes down to multiplication, addition, and (most importantly) counting.
Here is the strategy we will follow:

660 CHAPTER 9 Discrete Mathematics

EXAMPLE 3  Testing a Probability Function
Is it possible to weight a standard 6-sided die in such a way that the probability of
rolling each number n is exactly 

SOLUTION The probability distribution would look like this:

This is not a valid probability function, because 
Now try Exercise 9a.1/37 Z 1.

1/2 + 1/5 + 1/10 + 1/17 + 1/26 +

1/1n2
+ 12?

Outcome Probability

1 1/2
2 1/5
3 1/10
4 1/17
5 1/26
6 1/37

EXAMPLE 4  Choosing Chocolates, Sample Space I
Sal opens a box of a dozen chocolate cremes and generously offers two of them to
Val. Val likes vanilla cremes the best, but all the chocolates look alike on the outside.
If four of the twelve cremes are vanilla, what is the probability that both of Val’s
picks turn out to be vanilla?

SOLUTION The experiment in question is the selection of two chocolates, without
regard to order, from a box of 12. There are outcomes of this experiment,
and all of them are equally likely. We can therefore determine the probability by
counting.

The event E consists of all possible pairs of 2 vanilla cremes that can be chosen,
without regard to order, from 4 vanilla cremes available. There are ways to
form such pairs.

Therefore, Now try Exercise 25.P1E2 = 6/66 = 1/11.

4C2 = 6

12C2 = 66

Strategy for Determining Probabilities
1. Determine the sample space of all possible outcomes. When possible, choose

outcomes that are equally likely.

2. If the sample space has equally likely outcomes, the probability of an event E is
determined by counting:

3. If the sample space does not have equally likely outcomes, determine the proba-
bility function. (This is not always easy to do.) Check to be sure that the condi-
tions of a probability function are satisfied. Then the probability of an event E is
determined by adding up the probabilities of all the outcomes contained in E.

P1E2 =

the number of outcomes in E

the number of outcomes in S
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Many probability problems require that we think of events happening in succession, often
with the occurrence of one event affecting the probability of the occurrence of another
event. In these cases, we use a law of probability called the Multiplication Principle of
Probability.

SECTION 9.3 Probability 661

Multiplication Principle of Probability
Suppose an event A has probability and an event B has probability under the
assumption that A occurs. Then the probability that both A and B occur is p1p2.

p2p1

If the events A and B are independent, we can omit the phrase “under the assumption
that A occurs,” since that assumption would not matter.

As an example of this principle at work, we will solve the same problem as that posed
in Example 4, this time using a sample space that appears at first to be simpler, but
which consists of events that are not equally likely.

EXAMPLE 5  Choosing Chocolates, Sample Space II
Sal opens a box of a dozen chocolate cremes and generously offers two of them to
Val. Val likes vanilla cremes the best, but all the chocolates look alike on the outside.
If four of the twelve cremes are vanilla, what is the probability that both of Val’s
picks turn out to be vanilla?

SOLUTION As far as Val is concerned, there are two kinds of chocolate cremes:
vanilla and unvanilla . When choosing two chocolates, there are four possi-
ble outcomes: VV, VU, UV, and UU. We need to determine the probability of the 
outcome VV.

Notice that these four outcomes are not equally likely! There are twice as many U
chocolates as V chocolates. So we need to consider the distribution of probabilities,
and we may as well begin with P VV , as that is the probability we seek.

The probability of picking a vanilla creme on the first draw is 4/12. The probability
of picking a vanilla creme on the second draw, under the assumption that a vanilla
creme was drawn on the first, is 3/11. By the Multiplication Principle, the probability
of drawing a vanilla creme on both draws is

Since this is the probability we are looking for, we do not need to compute the proba-
bilities of the other outcomes. However, you should verify that the other probabilities
would be:

Notice that 
so the probability function checks out. Now try Exercise 33.

Venn Diagrams and Tree Diagrams
We have seen many instances in which geometric models help us to understand algebraic
models more easily, and probability theory is yet another setting in which this is true.
Venn diagrams, associated mainly with the world of set theory, are good for visualizing

114/332 = 1,
11/112 + 18/332 + 18/332 +P1VV2 + P1VU2 + P1UV2 + P1UU2 =

 P1UU2 =

8

12
#

7

11
=

14

33

 P1UV2 =

8

12
#

4

11
=

8

33

 P1VU2 =

4

12
#

8

11
=

8

33

4

12
#

3

11
=

1

11
.

21

1U21V2Ordered or Unordered?
Notice that in Example 4 we had a sample space
in which order was disregarded, whereas in 
Example 5 we have a sample space in which 
order matters. (For example, UV and VU are dis-
tinct outcomes.) The order matters in Example 5
because we are considering the probabilities of
two events (first draw, second draw), one of
which affects the other. In Example 4, we are 
simply counting unordered combinations.
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relationships among events within sample spaces. Tree diagrams, which we first met in
Section 9.1 as a way to visualize the Multiplication Principle of Counting, are good for
visualizing the Multiplication Principle of Probability.

662 CHAPTER 9 Discrete Mathematics

John Venn
John Venn (1834–1923) was an English logician
and clergyman, just like his contemporary,
Charles L. Dodgson. Although both men used
overlapping circles to illustrate their logical 
syllogisms, it is Venn whose name lives on in
connection with these diagrams. Dodgson’s
name barely lives on at all, and yet he is far the
more famous of the two: under the pen name
Lewis Carroll, he wrote Alice’s Adventures in
Wonderland and Through the Looking Glass.

Addition Principle of Probability
A more careful look at the Venn diagram in
Figure 9.4 will suggest the following general for-
mula for events A and B in a sample space:

If A and B do not happen to intersect, this re-
duces to In this case,
we call A and B mutually exclusive events.

P(A or B) = P(A) + (B).

P(A or B) = P(A) + (B) - P(A and B)

EXAMPLE 6  Using a Venn Diagram
In a large high school, 54% of the students are girls and 62% of the students play
sports. Half of the girls at the school play sports.

(a) What percentage of the students who play sports are boys?

(b) If a student is chosen at random, what is the probability that it is a boy who does
not play sports?

SOLUTION To organize the categories, we draw a large rectangle to represent the
sample space (all students at the school) and two overlapping regions to represent
“girls” and “sports” (Figure 9.3). We fill in the percentages (Figure 9.4) using the fol-
lowing logic:

• The overlapping (green) region contains half the girls, or of
the students.

• The yellow region (the rest of the girls) then contains of the
students.

• The blue region (the rest of the sports players) then contains 
of the students.

• The white region (the rest of the students) then contains of
the students. These are boys who do not play sports.

We can now answer the two questions by looking at the Venn diagram.

(a) We see from the diagram that the ratio of boys who play sports to all students who

play sports is , which is about 56.45%.

(b) We see that 11% of the students are boys who do not play sports, so 0.11 is the
probability. Now try Exercises 27a–d.

0.35

0.62

1100 - 892% = 11%

162 - 272% = 35%

154 - 272% = 27%

10.52154%2 = 27%

Girls Sports

FIGURE 9.3 A Venn diagram for 
Example 6. The overlapping region 
common to both circles represents 
“girls who play sports.” The region 
outside both circles (but inside the
rectangle) represents “boys who 
do not play sports.”

Girls Sports

0.27 0.27 0.35

0.11

FIGURE 9.4 A Venn diagram for 
Example 6 with the probabilities filled in.

EXAMPLE 7  Using a Tree Diagram
Two identical cookie jars are on a counter. Jar A contains 2 chocolate chip and 
2 peanut butter cookies, while jar B contains 1 chocolate chip cookie. We select a
cookie at random. What is the probability that it is a chocolate chip cookie?

SOLUTION It is tempting to say 3/5, since there are 5 cookies in all, 3 of which
are chocolate chip. Indeed, this would be the answer if all the cookies were in the
same jar. However, the fact that they are in different jars means that the 5 cookies are
not equally likely outcomes. That lone chocolate chip cookie in jar B has a much 
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Conditional Probability
The probability of drawing a chocolate chip cookie in Example 7 is an example of
conditional probability, since the “cookie” probability is dependent on the “jar” out-
come. A convenient symbol to use with conditional probability is , pronounced
“P of A given B,” meaning “the probability of the event A, given that event B occurs.” In
the cookie jars of Example 7,

(In the tree diagram, these are the probabilities along the branches that come out of the
two jars, not the probabilities at the ends of the branches.)

The Multiplication Principle of Probability can be stated succinctly with this notation
as follows:

This is how we found the numbers at the ends of the branches in Figure 9.6.

As our final example of a probability problem, we will show how to use this formula in a
different but equivalent form, sometimes called the conditional probability formula:

P1A and B2 = P1A2 # P1B|A2

P1chocolate chip|jar A2 =

2

4
  and  P1chocolate chip|jar B2 = 1

P1A ƒB2

SECTION 9.3 Probability 663

Jar
A

Jar
B CC

PB

CC

CC

PB

FIGURE 9.5 A tree diagram for Example 7.

Jar
A

Jar
B CC

PB

CC

CC

PB

0.5

0.5

0.25

0.25

0.25

0.25

0.125

0.125

0.125

0.125

0.5
1

FIGURE 9.6 The tree diagram for 
Example 7 with the probabilities filled in. 
Notice that the five cookies are not equally
likely to be drawn. Notice also that the 
probabilities of the five cookies do add up to 1.

better chance of being chosen than any of the cookies in jar A. We need to think of
this as a two-step experiment: first pick a jar, then pick a cookie from that jar.

Figure 9.5 gives a visualization of the two-step process. In Figure 9.6, we have filled
in the probabilities along each branch, first of picking the jar, then of picking the
cookie. The probability at the end of each branch is obtained by multiplying the
probabilities from the root to the branch. (This is the Multiplication Principle.) 
Notice that the probabilities of the 5 cookies (as predicted) are not equal.

The event “chocolate chip” is a set containing three outcomes. We add their probabil-
ities together to get the correct probability:

P chocolate chip 0.125 0.125 0.5 0.75 Now try Exercise 29.=++2 =1

Conditional Probability Formula

If the event B depends on the event A, then P1B|A2 =

P1A and B2
P1A2 .

EXAMPLE 8  Using the Conditional Probability Formula
Suppose we have drawn a cookie at random from one of the jars described in 
Example 7. Given that it is chocolate chip, what is the probability that it came from
jar A?

SOLUTION By the formula,

Now try Exercise 31.

 =

11/2212/42
0.75

=

0.25

0.75
=

1

3

 P1jar A|chocolate chip2 =

P1jar A and chocolate chip2
P1chocolate chip2
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Binomial Distributions
We noted in our “Strategy for Determining Probabilities” (page 660) that it is not 
always easy to determine a probability distribution for a sample space with unequal
probabilities. An interesting exception for those who have studied the Binomial Theo-
rem (Section 9.2) is the binomial distribution.

664 CHAPTER 9 Discrete Mathematics

EXPLORATION 1 Testing Positive for HIV

As of the year 2003, the probability of an adult in the United States having
HIV/AIDS was 0.006 (source: 2004 CIA World Factbook). The ELISA test is used
to detect the virus antibody in blood. If the antibody is present, the test reports 
positive with probability 0.997 and negative with probability 0.003. If the antibody
is not present, the test reports positive with probability 0.015 and negative with
probability 0.985.

1. Draw a tree diagram with branches to nodes “antibody present” and “antibody
absent” branching from the root. Fill in the probabilities for North American
adults (age 15–49) along the branches. (Note that these two probabilities must
add up to 1.)

2. From the node at the end of each of the two branches, draw branches to “posi-
tive” and “negative.” Fill in the probabilities along the branches.

3. Use the Multiplication Principle to fill in the probabilities at the ends of the
four branches. Check to see that they add up to 1.

4. Find the probability of a positive test result. (Note that this event consists of
two outcomes.)

5. Use the conditional probability formula to find the probability that a person
with a positive test result actually has the antibody, i.e., P(antibody present
positive).

You might be surprised that the answer to part 5 is so low, but it should be com-
pared with the probability of the antibody being present before seeing the positive
test result, which was 0.006. Nonetheless, that is why a positive ELISA test is fol-
lowed by further testing before a diagnosis of HIV/AIDS is made. This is the case
with many diagnostic tests.

|

EXAMPLE 9  Repeating a Simple Experiment
We roll a fair die four times. Find the probability that we roll:

(a) All 3’s. (b) No 3’s. (c) Exactly two 3’s.

SOLUTION

(a) We have a probability 1/6 of rolling a 3 each time. By the Multiplication Principle,
the probability of rolling a 3 all four times is 

(b) There is a probability 5/6 of rolling something other than 3 each time. By the
Multiplication Principle, the probability of rolling a non-3 all four times is

(c) The probability of rolling two 3’s followed by two non-3’s (again by the 
Multiplication Principle) is However, that is not the
only outcome we must consider. In fact, the two 3’s could occur

anywhere among the four rolls, in exactly ways. That gives us 6

outcomes, each with probability The probability of the event “exactly

two 3’s” is therefore Now try Exercise 47.a4

2
b11/62215/622 L 0.11574.

11/62215/622.

a4

2
b = 6

11/62215/622 L 0.01929.

15/624 L 0.48225.

11/624 L 0.00077.

Talking the Talk
Notice that the probabilities in Example 9 are
associated with the random variable that counts
the number of 3’s on four rolls of a fair die. For
this random variable, then, 

and (See the
margin note on random variables on page 659.)

P(2) L 0.01929.P(0) L 0.48225,
P(4) L 0.00077,
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Did the form of those answers look a little familiar? Watch what they look like when
we let and :

You can probably recognize these as three of the terms in the expansion of 
This is no coincidence. In fact, the terms in the expansion

give the exact probabilities of 4, 3, 2, 1, and 0 threes (respectively) when we toss a fair
die four times! That is why this is called a binomial probability distribution. The gen-
eral theorem follows.

1p + q24 = p4
+ 4p3q1

+ 6p2q2
+ 4p1q3

+ q4

1p + q24.

 P1two 3’s2 = a4

2
bp2q2

 P1no 3’s2 = q4

 P1four 3’s2 = p4

q = 5/6p = 1/6

SECTION 9.3 Probability 665

Binomial Probabilities 
on a Calculator
Your calculator might be programmed to find
values for the binomial probability distribution
function (binompdf). The solutions to Example 10
in one calculator syntax, for example, could be
obtained by:

(a) binompdf 20, .9, 20 20 repetitions, 
0.9 probability, 20 successes

(b) binompdf 20, .9, 18 20 repetitions, 
0.9 probability, 18 successes

(c) binomcdf 20, .9, 17 1 minus the
cumulative probability of 17 or fewer 
successes

Check your owner’s manual for more 
information.

2
1211 -

2
121

2
121

THEOREM Binomial Distribution
Suppose an experiment consists of n independent repetitions of an experiment
with two outcomes, called “success” and “failure.” Let and

Note that 

Then the terms in the binomial expansion of give the respective probabil-
ities of exactly successes. The distribution is shown below:n, n - 1, Á , 2, 1, 0

1p + q2n
2q = 1 - p.1P1failure2 = q.

P1success2 = p

Number of successes out of
n independent repetitions Probability

n

r

1

0 qn

an

1
bpqn-1

oo

an

r
bpr qn- r

oo

a n

n - 1
bpn-1qn - 1

pn

EXAMPLE 10  Shooting Free Throws
Suppose Michael makes 90% of his free throws. If he shoots 20 free throws, and if
his chance of making each one is independent of the other shots (an assumption you
might question in a game situation), what is the probability that he makes

(a) All 20? (b) Exactly 18? (c) At least 18?

SOLUTION We could get the probabilities of all possible outcomes by expanding
, but that is not necessary in order to answer these three questions. We

just need to compute three specific terms.

(a)

(b)

(c)

Now try Exercise 49.L 0.6769

= a20

18
b10.921810.122 + a20

19
b10.9219 10.12 + 10.9220

= P1182 + P1192 + P1202P1at least 18 successes2
P118 successes2 = a20

18
b10.921810.122 L 0.28518

P120 successes2 = 10.9220
L 0.12158

10.9 + 0.1220
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QUICK REVIEW 9.3 (Prerequisite skill Section 9.1)

7. Five people are lined up for a photograph.

8. Three-digit numbers are formed from the 
numbers without repetition.

In Exercises 9 and 10, evaluate the expression by pencil and paper.
Verify your answer with a calculator.

9. 10. 5C2

10C2

5C3

10C3

51, 2, 3, 4, 56

In Exercises 1–8, tell how many outcomes are possible for the 
experiment.

1. A single coin is tossed.

2. A single 6-sided die is rolled.

3. Three different coins are tossed.

4. Three different 6-sided dice are rolled.

5. Five different cards are drawn from a standard deck of 52.

6. Two chips are drawn simultaneously from a jar containing
10 chips.

SECTION 9.3 EXERCISES

In Exercises 1–8, a red die and a green die have been rolled. What is
the probability of the event?

1. The sum is 9. 2. The sum is even.

3. The number on the red die is greater than the number on the
green die.

4. The sum is less than 10.

5. Both numbers are odd.

6. Both numbers are even.

7. The sum is prime. 8. The sum is 7 or 11.

9. Writing to Learn Alrik’s gerbil cage has four compart-
ments, A, B, C, and D. After careful observation, he estimates
the proportion of time the gerbil spends in each compartment
and constructs the table below.

(a) Is this a valid probability function? Explain.

(b) Is there a problem with Alrik’s reasoning? Explain.

10. (Continuation of Exercise 9) Suppose Alrik determines that his
gerbil spends time in the four compartments A, B, C, and D in
the ratio 4:3:2:1. What proportions should he fill in the table
above? Is this a valid probability function?

The maker of a popular chocolate candy that is covered in a thin colored
shell has released information about the overall color proportions in its
production of the candy, which is summarized in the following table.

In Exercises 11–16, a single candy of this type is selected at random
from a newly opened bag. What is the probability that the candy has the
given color(s)?

11. Brown or tan 12. Red, green, or orange

13. Red 14. Not red

15. Neither orange nor yellow 16. Neither brown nor tan

A peanut version of the same candy has all the same colors except tan.
The proportions of the peanut version are given in the following table.

In Exercises 17–22, a candy of this type is selected at random from
each of two newly opened bags. What is the probability that the two
candies have the given color(s)?

17. Both are brown.

18. Both are orange.

19. One is red, and the other is green.

20. The first is brown, and the second is yellow.

21. Neither is yellow.

22. The first is not red, and the second is not orange.

Exercises 23–32 concern a version of the card game “bid Euchre” that
uses a pack of 24 cards, consisting of ace, king, queen, jack, 10, and 9
in each of the four suits (spades, hearts, diamonds, and clubs). In bid
Euchre, a hand consists of 6 cards. Find the probability of each event.

23. Euchre A hand is all spades.

24. Euchre All six cards are from the same suit.

25. Euchre A hand includes all four aces.

26. Euchre A hand includes two jacks of the same color
(called the right and left bower).

27. Using Venn Diagrams A and B are events in a sample
space S such that , , and

(a) Draw a Venn diagram showing the overlapping sets A and
B and fill in the probabilities of the four regions formed.

(b) Find the probability that A occurs but B does not.

(c) Find the probability that B occurs but A does not.

(d) Find the probability that neither A nor B occurs.

(e) Are events A and B independent? (That is, does
P1A|B2 = P1A2?2

P1A and B2 = 0.3.
P1B2 = 0.5P1A2 = 0.6

Compartment A B C D

Proportion 0.25 0.20 0.35 0.30

Color Brown Red Yellow Green Orange

Proportion 0.3 0.2 0.2 0.2 0.1

Color Brown Red Yellow Green Orange Tan

Proportion 0.3 0.2 0.2 0.1 0.1 0.1
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28. Using Venn Diagrams A and B are events in a sample
space S such that , , and

(a) Draw a Venn diagram showing the overlapping sets A and
B and fill in the probabilities of the four regions formed.

(b) Find the probability that A occurs but B does not.

(c) Find the probability that B occurs but A does not.

(d) Find the probability that neither A nor B occurs.

(e) Are events A and B independent? That is, does

In Exercises 29 and 30, it will help to draw a tree diagram.

29. Piano Lessons If it rains tomorrow, the probability is 0.8
that John will practice his piano lesson. If it does not rain 
tomorrow, there is only a 0.4 chance that John will practice.
Suppose that the chance of rain tomorrow is 60%. What is the
probability that John will practice his piano lesson?

30. Predicting Cafeteria Food If the school cafeteria
serves meat loaf, there is a 70% chance that they will serve peas.
If they do not serve meat loaf, there is a 30% chance that they
will serve peas anyway. The students know that meat loaf will be
served exactly once during the 5-day week, but they do not know
which day. If tomorrow is Monday, what is the probability that

(a) The cafeteria serves meat loaf?

(b) The cafeteria serves meat loaf and peas?

(c) The cafeteria serves peas?

31. Conditional Probability There are two precalculus
sections at West High School. Mr. Abel’s class has 12 girls and
8 boys, while Mr. Bonitz’s class has 10 girls and 15 boys. If a
West High precalculus student chosen at random happens to be
a girl, what is the probability she is from Mr. Abel’s class?
[Hint: The answer is not 12/22.]

32. Group Activity Conditional Probability Two
boxes are on the table. One box contains a normal coin and a
two-headed coin; the other box contains three normal coins. A
friend reaches into a box, removes a coin, and shows you one
side: a head. What is the probability that it came from the box
with the two-headed coin?

33. Renting Cars Floppy Jalopy Rent-a-Car has 25 cars
available for rental—20 big bombs and 5 midsize cars. If two
cars are selected at random, what is the probability that both
are big bombs?

34. Defective Calculators Dull Calculators, Inc., knows
that a unit coming off an assembly line has a probability of
0.037 of being defective. If four units are selected at random
during the course of a workday, what is the probability that
none of the units are defective?

35. Causes of Death The government designates a single
cause for each death in the United States. The resulting data in-
dicate that 45% of deaths are due to heart and other cardiovas-
cular disease and 22% are due to cancer.

(a) What is the probability that the death of a randomly selected
person will be due to cardiovascular disease or cancer?

(b) What is the probability that the death will be due to some
other cause?

P1A|B2 = P1A2?2
1

P1A and B2 = 0.2.
P1B2 = 0.4P1A2 = 0.7

36. Yahtzee In the game of Yahtzee, on the first roll five dice
are tossed simultaneously. What is the probability of rolling
five of a kind (which is Yahtzee!) on the first roll?

37. Writing to Learn Explain why the following statement
cannot be true. The probabilities that a computer salesperson
will sell zero, one, two, or three computers in any one day are
0.12, 0.45, 0.38, and 0.15, respectively.

38. HIV Testing A particular test for HIV, the virus that causes
AIDS, is 0.7% likely to produce a false positive result—a result
indicating that the human subject has HIV when in fact the 
person is not carrying the virus. If 60 individuals who are 
HIV-negative are tested, what is the probability of obtaining at
least one false result? 

39. Graduate School Survey The Earmuff Junction College
Alumni Office surveys selected members of the class of 2000. Of
the 254 who graduated that year, 172 were women, 124 of whom
went on to graduate school. Of the male graduates, 58 went on to
graduate school. What is the probability of the given event?

(a) The graduate is a woman.

(b) The graduate went on to graduate school.

(c) The graduate was a woman who went on to graduate school.

40. Indiana Jones and the Final Exam Professor 
Indiana Jones gives his class a list of 20 study questions, from
which he will select 8 to be answered on the final exam. If a
given student knows how to answer 14 of the questions, what is
the probability that the student will be able to answer the given
number of questions correctly?

(a) All 8 questions

(b) Exactly 5 questions

(c) At least 6 questions

41. Graduation Requirement To complete the kinesiol-
ogy requirement at Palpitation Tech you must pass two classes
chosen from aerobics, aquatics, defense arts, gymnastics, racket
sports, recreational activities, rhythmic activities, soccer, and
volleyball. If you decide to choose your two classes at random
by drawing two class names from a box, what is the probability
that you will take racket sports and rhythmic activities?

42. Writing to Learn During July in Gunnison, Colorado,
the probability of at least 1 hour a day of sunshine is 0.78, the
probability of at least 30 minutes of rain is 0.44, and the proba-
bility that it will be cloudy all day is 0.22. Write a paragraph
explaining whether this statement could be true.

In Exercises 43–50, ten dimes dated 1990 through 1999 are tossed.
Find the probability of each event.

43. Tossing Ten Dimes Heads on the 1990 dime only 

44. Tossing Ten Dimes Heads on the 1991 and 1996 dimes
only 

45. Tossing Ten Dimes Heads on all 10 dimes

46. Tossing Ten Dimes Heads on all but one dime

47. Tossing Ten Dimes Exactly two heads

48. Tossing Ten Dimes Exactly three heads

49. Tossing Ten Dimes At least one head

50. Tossing Ten Dimes At least two heads

SECTION 9.3 Probability 667
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Standardized Test Questions
51. True or False A sample space consists of equally likely

events. Justify your answer.

52. True or False The probability of an event can be greater
than 1. Justify your answer.

Evaluate Exercises 53–56 without using a calculator.

53. Multiple Choice The probability of rolling a total of 5
on a pair of fair dice is

(A) (B)

(C) (D)

(E)

54. Multiple Choice Which of the following numbers could
not be the probability of an event?

(A) 0 (B) 0.95

(C) (D)

(E)

55. Multiple Choice If A and B are independent events, then

(A) . (B) .

(C) . (D)

(E)

56. Multiple Choice A fair coin is tossed three times in suc-
cession. What is the probability that exactly one of the coins
shows heads?

(A) (B)

(C) (D)

(E)

Explorations
57. Empirical Probability In real applications, it is of-

ten necessary to approximate the probabilities of the various
outcomes of an experiment by performing the experiment a
large number of times and recording the results. Barney’s
Bread Basket offers five different kinds of bagels. Barney
records the sales of the first 500 bagels in a given week in the
table shown below:

2

3

1

2

3

8

1

3

1

8

P1A2 + P1B2.
P1A2 #  P1B2.P1B|A2
P1B2P1A2

P1A|B2 =

p

2

3
p

13

4

1

11
.

1

9
.

1

6
.

1

5
.

1

4
.

(a) Use the observed sales number to approximate the proba-
bility that a random customer buys a plain bagel. Do the
same for each other bagel type and make a table showing
the approximate probability distribution.

(b) Assuming independence of the events, find the probability
that three customers in a row all order plain bagels. 

(c) Writing to Learn Do you think it is reasonable to
assume that the orders of three consecutive customers actu-
ally are independent? Explain.

58. Straight Poker In the original version of poker known
as “straight” poker, a 5-card hand is dealt from a standard deck
of 52 cards. What is the probability of the given event?

(a) A hand will contain at least one king.

(b) A hand will be a “full house” (any three of one kind and a
pair of another kind).

59. Married Students Suppose that 23% of all college 
students are married. Answer the following questions for a 
random sample of eight college students.

(a) How many would you expect to be married?

(b) Would you regard it as unusual if the sample contained five
married students?

(c) What is the probability that five or more of the eight 
students are married?

60. Group Activity Investigating an Athletic 
Program A university widely known for its track and field
program claims that 75% of its track athletes get degrees. A jour-
nalist investigates what happened to the 32 athletes who began
the program over a 6-year period that ended 7 years ago. Of
these athletes, 17 have graduated and the remaining 15 are no
longer attending any college. If the university’s claim is true, the
number of athletes who graduate among the 32 examined should
have been governed by binomial probability with 

(a) What is the probability that exactly 17 athletes should have
graduated?

(b) What is the probability that 17 or fewer athletes should
have graduated?

(c) If you were the journalist, what would you say in your
story on the investigation?

Extending the Ideas
61. Expected Value If the outcomes of an experiment are

given numerical values (such as the total on a roll of two dice,
or the payoff on a lottery ticket), we define the expected value
to be the sum of all the numerical values times their respective
probabilities.

For example, suppose we roll a fair die. If we roll a multiple of
3, we win $3; otherwise we lose $1. The probabilities of the
two possible payoffs are shown in the table below:

p = 0.75.
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Type of Bagel Number Sold

Plain 185

Onion 60

Rye 55

Cinnamon Raisin 125

Sourdough 75

Value Probability

2/6

4/6-1

+3

6965_CH09_pp641-734.qxd  1/20/10  3:28 PM  Page 668



The expected value is

We interpret this to mean that we would win an average of 1/3
dollar per game in the long run.

(a) A game is called fair if the expected value of the payoff is
zero. Assuming that we still win $3 for a multiple of 3,
what should we pay for any other outcome in order to
make the game fair?

(b) Suppose we roll two fair dice and look at the total under
the original rules. That is, we win $3 for rolling a multiple
of 3 and lose $1 otherwise. What is the expected value of
this game?

62. Expected Value (Continuation of Exercise 61) Gladys
has a personal rule never to enter the lottery (picking 6 num-
bers from 1 to 46) until the payoff reaches 4 million dollars.
When it does reach 4 million, she always buys ten different 
$1 tickets.

3 * 12/62 + 1-12 * 14/62 = 16/62 - 14/62 = 1/3.

(a) Assume that the payoff for a winning ticket is 4 million
dollars. What is the probability that Gladys holds a win-
ning ticket? (Refer to Example 1 of this section for the
probability of any ticket winning.)

(b) Fill in the probability distribution for Gladys’s possible
payoffs in the table below. (Note that we subtract $10 from
the $4 million, since Gladys has to pay for her tickets even
if she wins.)

(c) Find the expected value of the game for Gladys.

(d) Writing to Learn In terms of the answer in part (b), 
explain to Gladys the long-term implications of her strategy.

SECTION 9.3 Probability 669

Value Probability

+3,999,990

-10
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9.4 Sequences

What you’ll learn about
• Infinite Sequences
• Limits of Infinite Sequences
• Arithmetic and Geometric 

Sequences
• Sequences and Graphing 

Calculators

... and why
Infinite sequences, especially
those with finite limits, are 
involved in some key concepts 
of calculus.

Infinite Sequences
One of the most natural ways to study patterns in mathematics is to look at an ordered
progression of numbers, called a sequence. Here are some examples of sequences:

1. 5, 10, 15, 20, 25

2. 2, 4, 8, 16, 32

3.

4. which is sometimes abbreviated 

The first of these is a finite sequence, while the other three are infinite sequences. Notice
that in and we were able to define a rule that gives the kth number in the sequence
(called the kth term) as a function of k. In we do not have a rule, but notice how we
can use subscript notation to identify the k th term of a “general” infinite sequence. In
this sense, an infinite sequence can be thought of as a function that assigns a unique num-
ber to each natural number k.1ak2

1ak2
142132122

5ak65a1, a2, a3, Á , ak, Á6,
e 1

k
; k = 1, 2, 3, . . . f

, Á , 2k, Á

EXAMPLE 1  Defining a Sequence Explicitly
Find the first 6 terms and the 100th term of the sequence in which 

SOLUTION Since we know the kth term explicitly as a function of k, we need only
to evaluate the function to find the required terms:

Now try Exercise 1.

Explicit formulas are the easiest to work with, but there are other ways to define 
sequences. For example, we can specify values for the first term (or terms) of a sequence,
then define each of the following terms recursively by a formula relating it to previous
terms. Example 2 shows how this is done.

a100 = 1002
- 1 = 9999

a1 = 12
- 1 = 0, a2 = 3, a3 = 8, a4 = 15, a5 = 24, a6 = 35,  and

ak = k2
- 1.5ak6

EXAMPLE 2  Defining a Sequence Recursively
Find the first 6 terms and the 100th term for the sequence defined recursively by the
conditions:

SOLUTION We proceed one term at a time, starting with and obtaining
each succeeding term by adding 2 to the term just before it:

etc.

Eventually it becomes apparent that we are building the sequence of odd natural
numbers beginning with 3:

53, 5, 7, 9, Á 6

 b3 = b2 + 2 = 7

 b2 = b1 + 2 = 5

 b1 = 3

b1 = 3

 bn = bn-1 + 2 for all n 7 1

 b1 = 3

Agreement on Sequences
Since we will be dealing primarily with
infinite sequences in this book, the word 
“sequence” will mean an infinite sequence 
unless otherwise specified.
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Limits of Infinite Sequences
Just as we were concerned with the end behavior of functions, we will also be con-
cerned with the end behavior of sequences.

SECTION 9.4 Sequences 671

The 100th term is 99 terms beyond the first, which means that we can get there
quickly by adding 99 2’s to the number 3:

Now try Exercise 5.
b100 = 3 + 99 * 2 = 201

DEFINITION Limit of a Sequence

Let be a sequence of real numbers, and consider If the limit is

a finite number L, the sequence converges and L is the limit of the sequence. 
If the limit is infinite or nonexistent, the sequence diverges.

 lim
n: q

an,5an6

EXAMPLE 3  Finding Limits of Sequences
Determine whether the sequence converges or diverges. If it converges, give the limit.

(a)

(b)

(c)

(d)

SOLUTION

(a) so the sequence converges to a limit of 0.

(b) Although the nth term is not explicitly given, we can see that .

The sequence converges to a

limit of 1.

(c) This time we see that . Since the sequence diverges.

(d) This sequence oscillates forever between two values and hence has no limit. The
sequence diverges. Now try Exercise 13.

It might help to review the rules for finding the end behavior asymptotes of rational
functions (page 221 in Section 2.6) because those same rules apply to sequences that
are rational functions of n, as in Example 4.

 lim
n: q

2n = q ,an = 2n

 lim
x: q

 
n + 1

n
=  lim

n: q

a1 +

1
n
b = 1 + 0 = 1.

an =

n + 1
n

 lim
x: q

1
n

= 0,

-1, 1, -1, 1, Á , 1-12n, Á

2, 4, 6, 8, 10, Á

2

1
, 

3

2
, 

4

3
, 

5

4
, Á

1

1
, 

1

2
, 

1

3
, 

1

4
, Á , 

1
n

, Á

EXAMPLE 4  Finding Limits of Sequences
Determine whether the sequence converges or diverges. If it converges, give the
limit.

(a)

(b)

(c) e n3
+ 2

n2
+ n
f

e 5n2

n3
+ 1
f

e 3n

n + 1
f
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Arithmetic and Geometric Sequences
There are all kinds of rules by which we can construct sequences, but two particular
types of sequences dominate in mathematical applications: those in which pairs of suc-
cessive terms all have a common difference (arithmetic sequences), and those in which
pairs of successive terms all have a common quotient, or ratio (geometric sequences).
We will take a closer look at these in this section.
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SOLUTION

(a) Since the degree of the numerator is the same as the degree of the denominator,
the limit is the ratio of the leading coefficients.

Thus The sequence converges to a limit of 3.

(b) Since the degree of the numerator is less than the degree of the denominator, the

limit is zero. Thus The sequence converges to 0.

(c) Since the degree of the numerator is greater than the degree of the denominator,

the limit is infinite. Thus is infinite. The sequence diverges.

Now try Exercise 15.

 lim
n: q

n3
+ 2

n2
+ n

 lim
n: q

5n2

n3
+ 1

= 0.

 lim
n: q

3n

n + 1
=

3

1
= 3.

DEFINITION Arithmetic Sequence
A sequence is an arithmetic sequence if it can be written in the form

for some constant d.

The number d is called the common difference.

Each term in an arithmetic sequence can be obtained recursively from its 
preceding term by adding d :

an = an-1 + d 1for all n Ú 22

5a, a + d, a + 2d, Á , a + 1n - 12d, Á 6
5an6Pronunciation Tip

The word “arithmetic” is probably more familiar
to you as a noun, referring to the mathematics
you studied in elementary school. In this word,
the second syllable (“rith”) is accented. When
used as an adjective, the third syllable (“met”)
gets the accent. (For the sake of comparison, a
similar shift of accent occurs when going from
the noun “analysis” to the adjective “analytic.”)

EXAMPLE 5  Defining Arithmetic Sequences
For each of the following arithmetic sequences, find (a) the common difference, (b) the
tenth term, (c) a recursive rule for the nth term, and (d) an explicit rule for the nth term.

(1) , , 2, 6, 10

(2) ln 3, ln 6, ln 12, ln 24

SOLUTION

(1) (a) The difference between successive terms is 4.

(b)

(c) The sequence is defined recursively by and for all

(d) The sequence is defined explicitly by 

(2) (a) This sequence might not look arithmetic at first, but

ln (by a law of logarithms) and the difference between

successive terms continues to be ln 2.

(b)

(c) The sequence is defined recursively by for
all 

(d) The sequence is defined explicitly by 
Now try Exercise 21.= ln 13 # 2n-12.

an = ln 3 + 1n - 12ln 2

n Ú 2.
a1 = ln 3 and an = an-1 + ln 2

a10 = ln 3 + 110 - 12ln 2 = ln 3 + 9 ln 2 = ln 13 # 292 = ln 1536

6 - ln 3 = ln 
6

3
 ln 2

an = -6 + 1n - 12142 = 4n - 10.

n Ú 2.
an = an-1 + 4a1 = -6

a10 = -6 + 110 - 12142 = 30

, Á

, Á-2-6
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DEFINITION Geometric Sequence
A sequence is a geometric sequence if it can be written in the form

for some nonzero constant r.

The number r is called the common ratio.

Each term in a geometric sequence can be obtained recursively from its preced-
ing term by multiplying by r:

an = an-1
# r 1for all n Ú 22

5a, a # r, a # r 2, Á , a # r n-1, Á 6
5an6

EXAMPLE 6  Defining Geometric Sequences
For each of the following geometric sequences, find (a) the common ratio, (b) the tenth
term, (c) a recursive rule for the nth term, and (d) an explicit rule for the nth term.

(1) 3, 6, 12, 24, 48

(2)

SOLUTION

(1) (a) The ratio between successive terms is 2.

(b)

(c) The sequence is defined recursively by and for 

(d) The sequence is defined explicitly by 

(2) (a) Applying a law of exponents, and the ratio between

successive terms continues to be 

(b)

(c) The sequence is defined recursively by and 

(d) The sequence is defined explicitly by 
Now try Exercise 25.102n-5.

an = 10-311022n-1
= 10-3+2n-2

=

n Ú 2.
an = 102an-1 fora1 = 10-3

a10 = 10-3 # 1102210-1
= 10-3+18

= 1015

102.

10-1

10-3 = 10-1-1-32
= 102,

an = 3 # 2n-1.

n Ú 2.an = 2an-1a1 = 3

a10 = 3 # 210-1
= 3 # 29

= 1536

10-3, 10-1, 101, 103, 105, Á

, Á

EXAMPLE 7  Constructing Sequences
The second and fifth terms of a sequence are 3 and 24, respectively. Find explicit and
recursive formulas for the sequence if it is (a) arithmetic and (b) geometric.

SOLUTION

(a) If the sequence is arithmetic, then and
Subtracting, we have

Then implies .

The sequence is defined explicitly by or 

The sequence is defined recursively by and for 

(b) If the sequence is geometric, then and 
Dividing, we have

continued
 r = 2

 r 3
= 8

 
a1

# r 4

a1
# r 1 =

24

3

a5 = a # r 4
= 24.a2 = a # r 1

= 3

n Ú 2.an = an-1 + 7a1 = -4

an = 7n - 11.an = -4 + 1n - 12 # 7,

a1 = -4a1 + d = 3

 d = 7

 3d = 21

 1a1 + 4d2 - 1a1 + d2 = 24 - 3

a5 = a1 + 4d = 24.a2 = a1 + d = 3
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Sequences and Graphing Calculators
As with other kinds of functions, it helps to be able to represent a sequence geometri-
cally with a graph. There are at least two ways to obtain a sequence graph on a graph-
ing calculator. One way to graph explicitly defined sequences is as scatter plots of
points of the form A second way is to use the sequence graphing mode on a
graphing calculator.

1k, ak2.

674 CHAPTER 9 Discrete Mathematics

Then implies .

The sequence is defined explicitly by 

The sequence is defined recursively by 

Now try Exercise 29.
a1 = 1.5 and an = 2 # an-1.

an = 1.5122n-1, or an = 3122n-2.

a1 = 1.5a1
# r 1

= 3

EXAMPLE 8  Graphing a Sequence Defined Explicitly
Produce on a graphing calculator a graph of the sequence in which 

Method 1 (Scatter Plot)
The command seq puts the first 10 natural numbers in list 
(You could change the 10 if you wanted to graph more or fewer points.)

The command puts the corresponding terms of the sequence in list 
A scatter plot of produces the graph in Figure 9.7a.

Method 2 (Sequence Mode)
With your calculator in Sequence mode, enter the sequence in the 
list as with and (You could
change the 10 if you wanted to graph more or fewer points.) Figure 9.7b shows the
graph in the same window as Figure 9.7a.

Now try Exercise 33.

u1nMin2 = 0.nMin = 1, nMax = 10,u1n2 = n2
- 1

Y =ak = k2
- 1

L1, L2

L2.L1 

2
- 1 : L2

L1.1K, K, 1, 102: L1

ak = k2
- 1.5ak6

Sequence Graphing
Most graphers enable you to graph in “sequence
mode.” Check your owner’s manual to see how
to use this mode.

X=6 Y=35
[–1, 15] by [–10, 100]

(a)

[–1, 15] by [–10, 100]

(b)

X=6 Y=35
n=6

1

FIGURE 9.7 The sequence graphed (a) as a scatter plot and (b) using the 
sequence graphing mode. Tracing along the points gives values of for 
(Example 8)

k = 1, 2, 3, . Áak

ak = k2
- 1

EXAMPLE 9  Generating a Sequence with a Calculator
Using a graphing calculator, generate the specific terms of the following sequences:

(a) (Explicit) for

(b) (Recursive) and for n = 2, 3, 4, Áan = an-1 + 3a1 = -2

k = 1, 2, 3, Áak = 3k - 5
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A recursive definition of can be made in terms of any combination of preceding
terms, just as long as those preceding terms have already been determined. A famous
example is the Fibonacci sequence, named for Leonardo of Pisa (ca. 1170–1250), who
wrote under the name Fibonacci. You can generate it with the two commands shown in
Figure 9.10.

an

SECTION 9.4 Sequences 675

SOLUTION

(a) On the home screen, type the two commands shown in Figure 9.8. The calcula-
tor will then generate the terms of the sequence as you push the ENTER key 
repeatedly.

(b) On the home screen, type the two commands shown in Figure 9.9. The first 
command gives the value of The calculator will generate the remaining terms
of the sequence as you push the ENTER key repeatedly.

Notice that these two definitions generate the very same sequence!
Now try Exercises 1 and 5 on your calculator.

a1.

0   K

K+1   K:3K–5

1
–2

0

7
4

FIGURE 9.8 Typing these two commands
(on the left of the viewing screen) will 
generate the terms of the explicitly defined 
sequence (Example 9a)ak = 3k - 5.

–2

Ans+3

4
1

–2

10
7

FIGURE 9.9 Typing these two commands
(on the left of the viewing screen) will 
generate the terms of the recursively defined
sequence with and 
(Example 9b)

an = an-1 + 3.a1 = -2

0   A:1   B

A+B   C:A   B:C   A
1

2
3

1
1

FIGURE 9.10 The two commands on the left will generate the Fibonacci sequence as
the ENTER key is pressed repeatedly.

The Fibonacci sequence can be defined recursively using three statements.Fibonacci Numbers
The numbers in the Fibonacci sequence have fas-
cinated professional and amateur mathematicians
alike since the thirteenth century. Not only is the
sequence, like Pascal’s triangle, a rich source of
curious internal patterns, but the Fibonacci num-
bers seem to appear everywhere in nature. If you
count the leaflets on a leaf, the leaves on a stem,
the whorls on a pine cone, the rows on an ear of
corn, the spirals in a sunflower, or the branches
from a trunk of a tree, they tend to be Fibonacci
numbers. (Check phyllotaxy in a biology book.)

The Fibonacci Sequence
The Fibonacci sequence can be defined recursively by

for all positive integers n Ú 3.

 an = an-2 + an-1

 a2 = 1

 a1 = 1

QUICK REVIEW 9.4 (For help, see Section P.1.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, evaluate each expression when ,
and 

1. 2.

In Exercises 3 and 4, evaluate each expression when ,
and 

3. 4.
a11 - r n2

1 - r
a # r n-1

n = 3.
a = 5, r = 4

n

2
 12a + 1n - 12d2a + 1n - 12d

n = 5.
a = 3, d = 4

In Exercises 5–10, find 

5. 6.

7. 8.

9.

10. ak =

k2

2k

ak = 32 - ak-1 and a9 = 17

ak =

4

3
 a1

2
bk-1

ak = 5 # 2k-1

ak = 5 + 1k - 123ak =

k

k + 1

a10.
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SECTION 9.4 EXERCISES

In Exercises 1–4, find the first 6 terms and the 100th term of the 
explicitly defined sequence.

1. 2.

3. 4.

In Exercises 5–10, find the first 4 terms and the eighth term of the re-
cursively defined sequence.

5.

6. and , for ,

7. and , for 

8. and , for 

9. , , and , for 

10. , , and , for 

In Exercises 11–20, determine whether the sequence converges or 
diverges. If it converges, give the limit.

11. 1, 4, 9, 16, , 

12.

13.

14.

15.

16.

17.

18.

19. and for 

20. and for 

In Exercises 21–24, the sequences are arithmetic. Find

(a) the common difference,

(b) the tenth term,

(c) a recursive rule for the nth term, and

(d) an explicit rule for the nth term.

21. 6, 10, 14, 18 22. , 1, 6, 11

23. , , 1, 4 24. , 4, 15, 26

In Exercises 25–28, the sequences are geometric. Find

(a) the common ratio,

(b) the eighth term,

(c) a recursive rule for the nth term, and

(d) an explicit rule for the nth term.

25. 2, 6, 18, 54 26. 3, 6, 12, 24

27. 1, , 28. , 2, , 2, Á-2-2, Á4, -8, 16-2

, Á, Á

, Á-7, Á-2-5

, Á-4, Á

n Ú 1un+1 =

un

3
u1 = 1

n Ú 1an+1 = an + 3a1 = 1

511.52n6
510.52n6
e 2n - 1

n + 1
f

e 3n - 1

2 - 3n
f

53n - 16
1

1
, 

1

4
, 

1

9
, 

1

16
, Á ,

1

2
, 

1

4
, 

1

8
, 

1

16
, Á , 

1

2n, Á

n2, ÁÁ

k Ú 3ck = ck-2 + ck-1c2 = 3c1 = -2

k Ú 1ck+2 = ck + ck+1 1c2 = -1c1 = 2

n Ú 2vn = 1-22vn-1v1 = 0.75

k Ú 1bk+1 = 3bkb1 = 2

k Ú 1uk+1 = uk + 10u1 = -3

a1 = 8 and an = an-1, - 4, for n Ú 2

dn = n2
- 5ncn = n3

- n

vn =

4

n + 2
un =

n + 1
n

29. The fourth and seventh terms of an arithmetic sequence are 
and 4, respectively. Find the first term and a recursive rule for
the nth term.

30. The fifth and ninth terms of an arithmetic sequence are and
, respectively. Find the first term and a recursive rule for

the nth term.

31. The second and eighth terms of a geometric sequence are 3 and
192, respectively. Find the first term, common ratio, and an 
explicit rule for the nth term.

32. The third and sixth terms of a geometric sequence are 75 and
9375, respectively. Find the first term, common ratio, and an

explicit rule for the nth term.

In Exercises 33–36, graph the sequence.

33. 34.

35. 36.

37. Rain Forest Growth The 
bungy-bungy tree in the Amazon 
rain forest grows an average 2.3 cm 
per week. Write a sequence that 
represents the weekly height of a 
bungy-bungy over the course of 
1 year if it is 7 meters tall today. 
Display the first four terms and 
the last two terms.

38. Half-Life (See Section 3.2) Thorium-232 has a half-life of
14 billion years. Make a table showing the half-life decay of a
sample of thorium-232 from 16 grams to 1 gram; list the time
(in years, starting with ) in the first column and the mass
(in grams) in the second column. Which type of sequence is
each column of the table?

39. Arena Seating The first row of seating in section J of
the Athena Arena has 7 seats. In all, there are 25 rows of seats
in section J, each row containing two more seats than the row
preceding it. How many seats are in section J?

40. Patio Construction Pat designs a patio with a trapezoid-
shaped deck consisting of 16 rows of congruent slate tiles. The
numbers of tiles in the rows form an arithmetic sequence. The
first row contains 15 tiles and the last row contains 30 tiles.
How many tiles are used in the deck?

41. Group Activity Pair up with a partner to create a 
sequence recursively together. Each of you picks five random
digits from 1 to 9 (with repetitions, if you wish). Merge your
digits to make a list of ten. Now each of you constructs a 
ten-digit number using exactly the numbers in your list.

Let the (positive) difference between your two numbers.

Let the sum of the digits of for 

This sequence converges, since it is eventually constant. What
is the limit? (Remember, you can check your answer in the
back of the book.)

n Ú 1.anan+1 =

a1 =

t = 0

dn = 3 + 2ncn = n2
- 5

bn = 1n - 3an = 2 -

1
n

-

-

-17
-5

-8
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42. Group Activity Here is an interesting recursively 
defined word sequence. Join up with three or four classmates
and, without telling it to the others, pick a word from this 
sentence. Then, with care, count the letters in your word. Move
ahead that many words in the text to come to a new word.
Count the letters in the new word. Move ahead again, and so
on. When you come to a point when your next move would
take you out of this problem, stop. Share your last word with
your friends. Are they all the same?

Standardized Test Questions
43. True or False If the first two terms of a geometric 

sequence are negative, then so is the third. Justify your answer.

44. True or False If the first two terms of an arithmetic 
sequence are positive, then so is the third. Justify your answer.

You may use a graphing calculator when solving Exercises 45–48.

45. Multiple Choice The first two terms of an arithmetic 
sequence are 2 and 8. The fourth term is

(A) 20. (B) 26. (C) 64. (D) 128. (E) 256.

46. Multiple Choice Which of the following sequences is
divergent?

(A) (B) (C) (D) (E) 

47. Multiple Choice A geometric sequence begins 2,

6 . What is 

(A) 3 (B) 4 (C) 9 (D) 12 (E) 81

48. Multiple Choice Which of the following rules for 
will define a geometric sequence if 

(A) (B)

(C) (D) (E)

Explorations
49. Rabbit Populations Assume that 2 months after birth,

each male-female pair of rabbits begins producing one new
male-female pair of rabbits each month. Further assume that
the rabbit colony begins with one newborn male-female pair of
rabbits and no rabbits die for 12 months. Let represent the
number of pairs of rabbits in the colony after months.

(a) Writing to Learn Explain why , and

(b) Find 

(c) Writing to Learn Explain why the sequence 
13, is a model for the size of the rabbit colony

for a 1-year period.

50. Fibonacci Sequence Compute the first seven terms of
the sequence whose nth term is

an =

1

15
 a 1 + 15

2
bn

-

1

15
 a1 - 15

2
bn

.

1 … n …

5an6,
a4, a5, a6, Á , a13.

a3 = 2.
a1 = 1, a2 = 1

n - 1
an

an+1 = an
# 3n-1an+1 = an 

3an+1 = an , 3

an+1 = an - 3an+1 = an + 3

a1 Z 0?
n Ú 1

a6

a2
?, Á

5an6
5n-26e 2n + 2

n + 1
f5p-n651n6e n + 100

n
f

How do these seven terms compare with the first seven terms
of the Fibonacci sequence?

51. Connecting Geometry and Sequences In the
following sequence of diagrams, regular polygons are inscribed
in unit circles with at least one side of each polygon perpendic-
ular to the positive x-axis.

(a) Prove that the perimeter of each polygon in the sequence is
given by where n is the number of
sides in the polygon.

(b) Investigate the value of for , 100, 1000, and
10,000. What conclusion can you draw? 

52. Recursive Sequence The population of Centerville
was 525,000 in 1992 and is growing annually at the rate of
1.75%. Write a recursive sequence for the population.
State the first term for your sequence.

53. Writing to Learn If is a geometric sequence with
all positive terms, explain why must be arithmetic.

54. Writing to Learn If is an arithmetic sequence, 
explain why must be geometric.

Extending the Ideas
55. A Sequence of Matrices Write out the first seven

terms of the “geometric sequence” with the first term the matrix

and the common ratio the matrix How is this

sequence of matrices related to the Fibonacci sequence?

56. Another Sequence of Matrices Write out the first
seven terms of the “geometric sequence” which has for its first
term the matrix and for its common ratio the matrix

How is this sequence of matrices related to the

arithmetic sequence?

c1 d

0 1
d .

31  a4

c0 1

1 1
d .31  14

510bn6
5bn6
5log an6

5an6
P1

5Pn6

n = 10an

an = 2n sin 1p/n2,
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(a) (b)

(c) (d)

y y

y y

x x

x x

1 1

1 1
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Although you probably computed them correctly, there is more going on in number 4
and number 5 in the above exploration than first meets the eye. We will have more to
say about these “infinite” summations toward the end of this section.

Sums of Arithmetic and Geometric Sequences
One of the most famous legends in the lore of mathematics concerns the German math-
ematician Karl Friedrich Gauss (1777–1855), whose mathematical talent was apparent
at a very early age. One version of the story has Gauss, at age ten, being in a class that
was challenged by the teacher to add up all the numbers from 1 to 100. While his class-
mates were still writing down the problem, Gauss walked to the front of the room to
present his slate to the teacher. The teacher, certain that Gauss could only be guessing,
refused to look at his answer. Gauss simply placed it face down on the teacher’s desk,
declared “There it is,” and returned to his seat. Later, after all the slates had been col-
lected, the teacher looked at Gauss’s work, which consisted of a single number: the cor-
rect answer. No other student (the legend goes) got it right.

The important feature of this legend for mathematicians is how the young Gauss got the
answer so quickly. We’ll let you reproduce his technique in Exploration 2.

678 CHAPTER 9 Discrete Mathematics

9.5 Series

Summation Notation
We want to look at the formulas for summing the terms of arithmetic and geomet-
ric sequences, but first we need a notation for writing the sum of an indefinite
number of terms. The capital Greek letter sigma provides our shorthand 
notation for a “summation.”

1g2
What you’ll learn about
• Summation Notation
• Sums of Arithmetic 

and Geometric Sequences
• Infinite Series
• Convergence of Geometric 

Series

... and why
Infinite series are at the heart 
of integral calculus.

EXPLORATION 1 Summing with Sigma

Sigma notation is actually even more versatile than the definition above suggests. See
if you can determine the number represented by each of the following expressions.

1. 2. 3. 4. 5.

(If you’re having trouble with number 5, here’s a hint: Write the sum as a decimal!)

a

q

k=1
 

3

10ka

q

n=1
sin 1np2a

12

n=0
cos 1np2a

8

k=5
k2

a

5

k=1
3k

Summations on a Calculator
If you think of summations as summing 
sequence values, it is not hard to translate
sigma notation into calculator syntax. Here,
in calculator syntax, are the first three sum-
mations in Exploration 1. (Don’t try these on
your calculator until you have first figured
out the answers with pencil and paper.)

1. sum seq 3K, K, 1, 5

2. sum seq K^2, K, 5, 8

3. sum seq cos N N, 0, 12 22p2,111
2211
2211

DEFINITION Summation Notation
In summation notation, the sum of the terms of the sequence 
is denoted

which is read “the sum of from to n.”

The variable k is called the index of summation.

k = 1ak

a

n

k=1
ak

5a1, a2, Á , an6

6965_CH09_pp641-734.qxd  1/20/10  3:28 PM  Page 678



If this story is true, then the youthful Gauss had discovered a fact that his elders knew
about arithmetic sequences. If you write a finite arithmetic sequence forward on one
line and backward on the line below it, then all the pairs stacked vertically sum to the
same number. Multiplying this number by the number of terms n and dividing by 2
gives us a shortcut to the sum of the n terms. We state this result as a theorem.

SECTION 9.5 Series 679

EXPLORATION 2 Gauss’s Insight

Your challenge is to find the sum of the natural numbers from 1 to 100 without a
calculator.

1. On a wide piece of paper, write the sum

“ ”

2. Underneath this sum, write the sum 

“ ”

3. Add the numbers two-by-two in vertical columns and notice that you get the
same identical sum 100 times. What is it?

4. What is the sum of the 100 identical numbers referred to in part 3?

5. Explain why half the answer in part 4 is the answer to the challenge. Can you
find it without a calculator?

100 + 99 + 98 + Á
+  3 + 2 + 1.

1 + 2 + 3 + Á
+  98 + 99 + 100.

THEOREM Sum of a Finite Arithmetic Sequence
Let be a finite arithmetic sequence with common difference d.
Then the sum of the terms of the sequence is

=

n

2
 12a1 + 1n - 12d2

= naa1 + an

2
b

a

n

k=1
ak = a1 + a2 +

Á
+  an

5a1, a2, Á , an6

Proof

We can construct the sequence forward by starting with and adding d each time, or
we can construct the sequence backward by starting at and subtracting d each time.
We thus get two expressions for the sum we are looking for:

Summing vertically, we get

a

n

k=1
ak = naa1 + an

2
b

2a

n

k=1
ak = n1a1 + an2

2a

n

k=1
ak = 1a1 + an2 + 1a1 + an2 + Á

+  1a1 + an2

a

n

k=1
ak = an + 1an - d2 + 1an - 2d2 + Á

+  1an - 1n - 12d2
a

n

k=1
ak = a1 + 1a1 + d2 + 1a1 + 2d2 + Á

+  1a1 + 1n - 12d2

an

a1
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If we substitute for we get the alternate formula

a

n

k=1
ak =

n

2
 12a1 + 1n - 12d2.

an,a1 + 1n - 12d
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EXAMPLE 1  Summing the Terms of an Arithmetic Sequence
A corner section of a stadium has 8 seats along the front row. Each successive row
has two more seats than the row preceding it. If the top row has 24 seats, how many
seats are in the entire section?

SOLUTION The numbers of seats in the rows form an arithmetic sequence with

Solving , we find that

Applying the Sum of a Finite Arithmetic Sequence Theorem, the total number of
seats in the section is 

We can support this answer numerically by computing the sum on a calculator:

Now try Exercise 7.

As you might expect, there is also a convenient formula for summing the terms of a 
finite geometric sequence.

sum1seq18 + 1N - 122, N, 1, 92 = 144

918 + 242/2 = 144.

 n = 9
 8 = n - 1

 16 = 1n - 12122
 24 = 8 + 1n - 12122

an = a1 + 1n - 12d
a1 = 8,  an = 24,  and  d = 2.

THEOREM Sum of a Finite Geometric Sequence
Let be a finite geometric sequence with common ratio .

Then the sum of the terms of the sequence is

=

a111 - r n2
1 - r

.

a

n

k=1
ak = a1 + a2 +

Á
+  an

r Z 15a1, a2, a3, Á , an6

Proof

Because the sequence is geometric, we have

.

Therefore,

.r #
a

n

k=1
ak = a1

# r + a1
# r 2 + Á

+  a1
# r n-1

+ a1
# r n

a

n

k=1
ak = a1 + a1

# r + a1
# r 2 + Á

+  a1
# r n-1
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If we now subtract the lower summation from the one above it, we have (after eliminat-
ing a lot of zeros):

a

n

k=1
ak =

a111 - r n2
1 - r

aa
n

k=1
akb11 - r2 = a111 - r n2

aa
n

k=1
akb - r # aa

n

k=1
akb = a1 - a1

# r n
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EXAMPLE 2  Summing the Terms of a Geometric Sequence
Find the sum of the geometric sequence 4, , 4/9, 

SOLUTION We can see that and The nth term is ,
which means that (Remember that the exponent on the nth term is ,
not n.) Applying the Sum of a Finite Geometric Sequence Theorem, we find that

3.000016935.

We can support this answer by having the calculator do the actual summing:

3.000016935. Now try Exercise 13.

As one practical application of the Sum of a Finite Geometric Sequence Theorem, we
will tie up a loose end from Section 3.6, wherein you learned that the future value FV of
an ordinary annuity consisting of n equal periodic payments of R dollars at an interest
rate i per compounding period (payment interval) is

.

We can now consider the mathematics behind this formula. The n payments remain in
the account for different lengths of time and so earn different amounts of interest. The
total value of the annuity after n payment periods (see Example 8 in Section 3.6) is

The terms of this sum form a geometric sequence with first term R and common ratio
. Applying the Sum of a Finite Geometric Sequence Theorem, the sum of the n

terms is

Infinite Series
If you change the “11” in the calculator sum in Example 2 to higher and higher num-
bers, you will find that the sum approaches a value of 3. This is no coincidence. In the
language of limits,

= 3

 =

411 - 02
4/3

 lim
x: q

a

n

k=1
4a -  

1

3
b k-1

=  lim
x: q

411 - 1-1/32n2
1 - 1-1/32

 = R 

11 + i2n - 1

i

 = R 

1 - 11 + i2n
- i

 FV =

R11 - 11 + i2n2
1 - 11 + i2

11 + i2
FV = R + R11 + i2 + R11 + i22 + Á

+  R11 + i2n-1.

FV = R 

11 + i2n - 1

i

sum1seq141-1/32^1N - 12, N, 1, 112 =

a

11

n=1
4a -  

1

3
bn-1

=

411 - 1-1/32112
1 - 1-1/32 L

n - 1n = 11.
41-1/3210r = -1/3.a1 = 4

-4/27, Á , 41-1/3210.-4/3
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This gives us the opportunity to extend the usual meaning of the word “sum,” which al-
ways applies to a finite number of terms being added together. By using limits, we can
make sense of expressions in which an infinite number of terms are added together.
Such expressions are called infinite series.

682 CHAPTER 9 Discrete Mathematics

DEFINITION Infinite Series
An infinite series is an expression of the form

a

q

n=1
an = a1 + a2 + Á

+  an + Á .

The first thing to understand about an infinite series is that it is not a true sum. There
are properties of real number addition that allow us to extend the definition of to
sums like but not to “infinite sums.” For example, we can
add any finite number of 2’s together and get a real number, but if we add an infinite
number of 2’s together we do not get a real number at all. Sums do not behave that way.

What makes series so interesting is that sometimes (as in Example 2) the sequence of
partial sums, all of which are true sums, approaches a finite limit S:

In this case we say that the series converges to S, and it makes sense to define S as the
sum of the infinite series. In sigma notation,

If the limit of partial sums does not exist, then the series diverges and has no sum.

a

q

k=1
ak = lim

n: q
a

n

k=1
ak = S.

 lim
n: q

a

n

k=1
ak = lim

n: q

1a1 + a2 + Á
+  an2 = S

a + b + c + d + e + f,
a + b

EXAMPLE 3  Looking at Limits of Partial Sums
For each of the following series, find the first five terms in the sequence of partial
sums. Which of the series appear to converge?

(a)

(b)

(c)

SOLUTION

(a) The first five partial sums are 0.1, 0.11, 0.111, 0.1111, 0.11111 . These appear
to be approaching a limit of which would suggest that the series con-
verges to a sum of 1/9.

(b) The first five partial sums are 10, 30, 60, 100, 150 . These numbers increase
without bound and do not approach a limit. The series diverges and has no sum.

(c) The first five partial sums are 1, 0, 1, 0, 1 . These numbers oscillate and do not
approach a limit. The series diverges and has no sum.

Now try Exercise 23.

You might have been tempted to “pair off” the terms in Example 3c to get an infinite
summation of 0’s (and hence a sum of 0), but you would be applying a rule (namely the
associative property of addition) that works on finite sums but not, in general, on infi-
nite series. The sequence of partial sums does not have a limit, so any manipulation of
the series in Example 3c that appears to result in a sum is actually meaningless.

65
65

0.1 = 1/9,
65

1 - 1 + 1 - 1 + Á

10 + 20 + 30 + 40 + Á

0.1 + 0.01 + 0.001 + 0.0001 + Á
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Convergence of Geometric Series
Determining the convergence or divergence of infinite series is an important part of a
calculus course, in which series are used to represent functions. Most of the conver-
gence tests are well beyond the scope of this course, but we are in a position to settle
the issue completely for geometric series.

SECTION 9.5 Series 683

EXAMPLE 4  Summing Infinite Geometric Series
Determine whether the series converges. If it converges, give the sum.

(a) (b)

(c) (d)

SOLUTION

(a) Since the series converges. The first term is ,
so the sum is 

(b) Since the series converges. The first term is , so
the sum is 

(c) Since the series diverges.

(d) Since the series converges. The first term is 1, and so the sum is
Now try Exercise 25.a/11 - r2 = 1/11 - 1/22 = 2.

ƒr ƒ = ƒ1/2 ƒ 6 1,

ƒr ƒ = ƒp/2 ƒ 7 1,

a/11 - r2 = 1/11 - 1-4/522 = 5/9.
1-4/520 = 1ƒr ƒ = ƒ -4/5 ƒ 6 1,

a/11 - r2 = 3/11 - 0.752 = 12.
310.7520 = 3|r ƒ = |0.75| 6 1,

1 +

1

2
+

1

4
+

1

8
 + Á

a

q

n=1
ap

2
bn

a

q

n=0
a -  

4

5
bn

a

q

k=1
310.752k-1

THEOREM Sum of an Infinite Geometric Series

The geometric series converges if and only if If it does
converge, the sum is a/11 - r2.

ƒ r ƒ 6 1.g
q    

k=1 a # r k-1

Proof

If , the series is which is unbounded and hence diverges. If
, the series is which diverges. (See Example 3c.) If

, then by the Sum of a Finite Geometric Sequence Theorem, the nth partial sum
of the series is The limit of the partial sums is

which converges if and only if is a finite number.

But is 0 when and unbounded when . Therefore, the sequence

of partial sums converges if and only if in which case the sum of the series is

.lim
n: q

3a11 - r n2/11 - r24 = a11 - 02/11 - r2 = a/11 - r2
ƒr ƒ 6 1,

ƒr ƒ 7 1ƒr ƒ 6 1limn:qr n
limn:qr nlimn:q3a11 - r n2/11 - r24,

g
n
k=1 a # r k-1

= a11 - r n2/11 - r2.
r Z 1

a - a + a - a + Á ,r = -1
a + a + a + Á ,r = 1

EXAMPLE 5  Converting a Repeating Decimal 
to Fraction Form

Express 0.234234234 in fraction form.

SOLUTION We can write this number as a sum: 

This is a convergent infinite geometric series in which and 
The sum is

Now try Exercise 31.

a

1 - r
=

0.234

1 - 0.001
=

0.234

0.999
=

234

999
=

26

111
.

r = 0.001.a = 0.234

0.000000234 + Á .
0.234 + 0.000234 +

Á0.234 =
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QUICK REVIEW 9.5 (For help, see Section 9.4.)

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1–4, is arithmetic. Use the given information to
find .

1. 2.

3.

4. for n Ú 1a5 = 3; an+1 = an + 5

a3 = 6; a8 = 21

a1 = 3; a2 = 1a1 = 4; d = 2

a10

5an6

SECTION 9.5 EXERCISES

In Exercises 1–6, write each sum using summation notation, assuming
the suggested pattern continues.

1.

2.

3.

4.

5.

6.

In Exercises 7–12, find the sum of the arithmetic sequence.

7. , , 1, 5, 9, 13

8. , , 6, 13, 20, 27

9. 1, 2, 3, 4 80

10. 2, 4, 6, 8 70

11. 117, 110, 103 33

12. 111, 108, 105 27

In Exercises 13–16, find the sum of the geometric sequence.

13. 3, 6, 12 12,288

14. 5, 15, 45 98,415

15. 42, 7, 42

16.

In Exercises 17–22, find the sum of the first n terms of the sequence.
The sequence is either arithmetic or geometric.

17. 2, 5, 8 ; 

18. 14, 8, 2 ; 

19. 4, , 1, ; 

20. 6, , , ; 

21. , 11, ; 

22. , 24, ; n = 8, Á-288-2

n = 9, Á-121-1

n = 11, Á-  

3

4

3

2
-3

n = 12, Á-  

1

2
-2

n = 9, Á ,

n = 10, Á ,

42, -7, 
7

6
 , Á , 42 a -  

1

6
b9

a 1

6
b8

, Á ,
7

6

, Á ,

, Á ,

, Á ,

, Á ,

, Á ,

, Á ,

-1-8

-3-7

5 - 15 + 45 - 135 + Á

6 - 12 + 24 - 48 + Á

1 + 8 + 27 + Á
+  1n + 123

1 + 4 + 9 + Á
+  1n + 122

2 + 5 + 8 + 11 + Á
+  29

-7 - 1 + 5 + 11 + Á
+  53

23. Find the first six partial sums of the following infinite series. If
the sums have a finite limit, write “convergent.” If not, write
“divergent.”

(a)

(b)

24. Find the first six partial sums of the following infinite series. If
the sums have a finite limit, write “convergent.” If not, write
“divergent.”

(a)

(b)

In Exercises 25–30, determine whether the infinite geometric series
converges. If it does, find its sum.

25. 26.

27.

28.

29. 30.

In Exercises 31–34, express the rational number as a fraction of 
integers.

31. 7.14141414

32. 5.93939393

33.

34.

35. Savings Account The table below shows the December
balance in a fixed-rate compound savings account each year
from 1996 to 2000.

Á-12.876876876

Á-17.268268268

Á

Á

a

q

n=1
5 a 2

3
bn

a

q

j=1
3 a1

4
b j

1

48
+

1

16
+

3

16
+

9

16
 + Á

1

64
+

1

32
+

1

16
+

1

8
 + Á

4 +

4

3
+

4

9
+

4

27
 + Á6 + 3 +

3

2
+

3

4
 + Á

1 - 0.7 - 0.07 - 0.007 - 0.0007 - Á

-2 + 2 - 2 + 2 - 2 + Á

1 - 2 + 3 - 4 + 5 - 6 + Á

0.3 + 0.03 + 0.003 + 0.0003 + Á

In Exercises 5–8, is geometric. Use the given information to
find 

5. 6.

7. 8.

9. Find the sum of the first 5 terms of the sequence .

10. Find the sum of the first 5 terms of the sequence .52n - 16
5n26

a8 = 10; a12 = 40a7 = 5; r = -2

a4 = 1; a6 = 2a1 = 1; a2 = 2

a10.
5an6

(a) The balances form a geometric sequence. What is r?

(b) Write a formula for the balance in the account n years after
December 1996.

(c) Find the sum of the December balances from 1996 to
2006, inclusive.

Year 1996 1997 1998 1999 2000

Balance $20,000 $22,000 $24,200 $26,620 $29,282
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36. Savings Account The table below shows the December
balance in a simple interest savings account each year from
1996 to 2000.

(a) The balances form an arithmetic sequence. What is d?

(b) Write a formula for the balance in the account n years after
December 1996.

(c) Find the sum of the December balances from 1996 to
2006, inclusive.

37. Annuity Mr. O’Hara deposits $120 at the end of each
month into an account that pays 7% interest compounded
monthly. After 10 years, the balance in the account, 
in dollars, is

(a) This is a geometric series. What is the first term? What 
is r?

(b) Use the formula for the sum of a finite geometric sequence
to find the balance.

38. Annuity Ms. Argentieri deposits $100 at the end of each
month into an account that pays 8% interest compounded
monthly. After 10 years, the balance in the account, in 
dollars, is

(a) This is a geometric series. What is the first term? What 
is r?

(b) Use the formula for the sum of a finite geometric sequence
to find the balance.

39. Group Activity Follow the Bouncing Ball
When “superballs” sprang upon the scene in the 1960s, kids
across the United States were amazed that these hard rubber
balls could bounce to 90% of the height from which they were
dropped. If a superball is dropped from a height of 2 m, how
far does it travel until it stops bouncing? [Hint: The ball goes
down to the first bounce, then up and down thereafter.]

40. Writing to Learn The Trouble with Flubber
In the 1961 movie classic The Absent Minded Professor, Prof.
Ned Brainard discovers flubber (flying rubber). If a “super
duper ball” made of flubber is dropped, it rebounds to an 
ever greater height with each bounce. How far does it travel 
if allowed to keep bouncing?

+ 100a1 +

0.08

12
b119

.

100a1 +

0.08

12
b0

+ 100a1 +

0.08

12
b1

 + Á

+ 120a1 +

0.07

12
b119

.

120a1 +

0.07

12
b0

+ 120a1 +

0.07

12
b1

 + Á

Standardized Test Questions
41. True or False If all terms of a series are positive, the se-

ries sums to a positive number. Justify your answer.

42. True or False If both diverge, then

diverges. Justify your answer.

You should solve Exercises 43–46 without the use of a calculator.

43. Multiple Choice The series 

(A) Converges to 1/2. (B) Converges to 1/3.

(C) Converges to 2/3. (D) Converges to 3/2. (E) Diverges.

44. Multiple Choice If then 

(A) 0.2. (B) 0.25. (C) 0.4. (D) 0.8. (E) 4.0.

45. Multiple Choice The sum of an infinite geometric series
with first term 3 and second term 0.75 is

(A) 3.75. (B) 2.4. (C) 4. (D) 5. (E) 12.

46. Multiple Choice

(A) (B) (C) (D) 10 (E) Divergent

Explorations
47. Population Density The National Geographic Picture

Atlas of Our Fifty States (2001) groups the states into 10 re-
gions. The two largest groupings are the Heartland (Table 9.1)
and the Southeast (Table 9.2). Population and area data for the
two regions are given in the tables. The populations are official
2000 U.S. Census figures.

(a) What is the total population of each region?

(b) What is the total area of each region?

(c) What is the population density (in persons per square mile)
of each region?

(d) Writing to Learn For the two regions, compute the
population density of each state. What is the average of the
seven state population densities for each region? Explain
why these answers differ from those found in part (c).

3

2
-  

5

2
-6

a

q

n=0
4a -  

5

3
bn

=

x =a

q

n=1
xn

= 4,

3-n + Á

3-1
+ 3-2

+ 3-3 + Á
+

a

q

n=1
1an + bn2

a

q

n=1
an and a

q

n=1
bn
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Table 9.1 The Heartland

State Population Area 

Iowa 2,926,324 56,275
Kansas 2,688,418 82,277
Minnesota 4,919,479 84,402
Missouri 5,595,211 69,697
Nebraska 1,711,283 77,355
North Dakota 642,200 70,703
South Dakota 754,844 77,116

1mi22

Year 1996 1997 1998 1999 2000

Balance $18,000 $20,016 $22,032 $24,048 $26,064
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48. Finding a Pattern Write the finite series 
in summation notation.

Extending the Ideas
49. Fibonacci Sequence and Series Complete the 

following table, where is the nth term of the Fibonacci 
sequence and is the nth partial sum of the Fibonacci series.
Make a conjecture based on the numerical evidence in the table.

Sn = a

n

k=1
Fk

Sn

Fn

-1 + 2 + 7 + 14 + 23 + Á
+  62

50. Triangular Numbers Revisited Exercise 41 in
Section 9.2 introduced triangular numbers as numbers that
count objects arranged in triangular arrays:

1 3 6 10 15

In that exercise, you gave a geometric argument that the nth trian-
gular number was Prove that formula algebraically
using the Sum of a Finite Arithmetic Sequence Theorem.

51. Square Numbers and Triangular Numbers
Prove that the sum of two consecutive triangular numbers is a
square number; that is, prove

for all positive integers n 2. Use both a geometric and an 
algebraic approach.

52. Harmonic Series Graph the sequence of partial sums of
the harmonic series:

Overlay on it the graph of The resulting picture
should support the claim that

for all positive integers n. Make a table of values to further 
support this claim. Explain why the claim implies that the 
harmonic series must diverge.

1 +

1

2
+

1

3
+

1

4
 + Á

+  
1
n

Ú ln n,

ƒ1x2 = ln x.

1 +

1

2
+

1

3
+

1

4
 + Á

+  
1
n

 + Á

Ú

Tn-1 + Tn = n2

n1n + 12/2.
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Table 9.2 The Southeast

State Population Area 

Alabama 4,447,100 51,705
Arkansas 2,673,400 53,187
Florida 15,982,378 58,644
Georgia 8,186,453 58,910
Louisiana 4,468,976 47,751
Mississippi 2,844,658 47,689
S. Carolina 4,012,012 31,113

1mi22

n

1 1
2 1
3 2
4
5
6
7
8
9

Fn+2 - 1SnFn
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Proof

(The anchor) First, we note that the assertion is true when We can certainly
move the one washer to the right peg in (minimally) one move, and 

(The inductive hypothesis) Now let us assume that the assertion holds for ; that
is, the minimum number of moves required to move k washers is (So far the
only k we are sure of is 1, but keep reading.)

(The inductive step) We next consider the case when washers. To get at
the bottom washer, we must first move the entire stack of k washers sitting on top of it.
By the assumption we just made, this will take a minimum of moves. We can
then move the bottom washer to the free peg (1 move). Finally, we must move the stack
of k washers back onto the bottom washer—again, by our assumption, a minimum of

moves. Altogether, moving washers requires

moves. Since that agrees with the formula in the statement of the proof, we have shown the
assertion to be true for washers—under the assumption that it is true for 

Remarkably, we are finished. Recall that we did prove the theorem to be true for 
Therefore, by the inductive step, it must also be true for By the inductive step
again, it must be true for And so on, for all positive integers n.

If we apply the Tower of Hanoi Solution to the legendary Tower of Hanoi Problem, the
monks will need seconds to move the 64 golden washers. The largest current
conjecture for the age of the universe is something on the order of 20 billion years. If
you convert seconds to years, you will find that the end of time (at least accord-
ing to this particular legend) is not exactly imminent. In fact, you might be surprised at
how much time is left!

264
- 1

264
- 1

n = 3.
n = 2.

n = 1.

n = k.n = k + 1

12k
- 12 + 1 + 12k

- 12 = 2 # 2k
- 1 = 2k+1

- 1

k + 12k
- 1

2k
- 1

n = k + 1

2k
- 1.

n = k

21
- 1 = 1.

n = 1.
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9.6 Mathematical Induction

The Tower of Hanoi Problem
You might be familiar with a game that is played with a stack of round washers of 
different diameters and a stand with three vertical pegs (Figure 9.11). The game is not
difficult to win once you get the hang of it, but it takes a while to move all the wash-
ers even when you know what you are doing. A mathematician, presented with this
game, wants to figure out the minimum number of moves required to win the game—
not because of impatience, but because it is an interesting mathematical problem.

In case mathematics is not sufficient motivation to look into the problem, there is a leg-
end attached to the game that provides a sense of urgency. The legend has it that a game
of this sort with 64 golden washers was created at the beginning of time. A special 
order of far eastern monks has been moving the washers at one move per second ever
since, always using the minimum number of moves required to win the game. When
the final washer is moved, that will be the end of time. The Tower of Hanoi Problem is
simply to figure out how much time we have left.

We will solve the problem by proving a general theorem that gives the minimum num-
ber of moves for any number of washers. The technique of proof we use is called the
principle of mathematical induction, the topic of this section.

What you’ll learn about
• The Tower of Hanoi Problem
• Principle of Mathematical 

Induction
• Induction and Deduction

... and why
The principle of mathematical 
induction is a valuable technique
for proving combinatorial 
formulas.

FIGURE 9.11 The Tower of Hanoi Game.
The object is to move the entire stack of wash-
ers to the rightmost peg, one washer at a time,
never placing a larger washer on top of a
smaller washer.

THEOREM The Tower of Hanoi Solution
The minimum number of moves required to move a stack of n washers in a
Tower of Hanoi game is .2n

- 1

Tower of Hanoi History
The legend notwithstanding, the Tower of Hanoi
dates back to 1883, when Édouard Lucas mar-
keted the game as “La Tour de Hanoï,” brought
back from the Orient by “Professor N. Claus de
Siam”—an anagram of “Professor Lucas
d’Amiens.” The legend appeared shortly there-
after. The game has been a favorite among com-
puter programmers, so a Web search on “Tower
of Hanoi” will bring up multiple sites that allow
you to play it on your home computer.
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Principle of Mathematical Induction
The proof of the Tower of Hanoi Solution used a general technique known as the Prin-
ciple of Mathematical Induction. It is a powerful tool for proving all kinds of theorems
about positive integers. We anchor the proof by establishing the truth of the theorem
for 1, then we show the inductive hypothesis that “true for k” implies “true for ”k + 1.

688 CHAPTER 9 Discrete Mathematics

EXPLORATION 1 Winning the Game

One thing that the Tower of Hanoi Solution does not settle is how to get the stack to
finish on the rightmost peg rather than the middle peg. Predictably, it depends on
where you move the first washer, but it also depends on the height of the stack. 
Using a Web site game, or coins of different sizes, or even the real game if you have
one, play the game with 1 washer, then 2, then 3, then 4, and so on, keeping track of
what your first move must be in order to have the stack wind up on the rightmost
peg in moves. What is the general rule for a stack of n washers?2n

- 1

Principle of Mathematical Induction
Let be a statement about the integer n. Then is true for all positive integers n
provided the following conditions are satisfied:

1. (the anchor) is true;

2. (the inductive step) if is true, then is true.Pk+1Pk

P1

PnPn

A good way to visualize how the principle works is to imagine an infinite sequence of
dominoes stacked upright, each one close enough to its neighbor so that any kth
domino, if it falls, will knock over the st domino (Figure 9.12). Given that fact
(the inductive step), the toppling of domino 1 guarantees the toppling of the entire infi-
nite sequence of dominoes.

Let us use the principle to prove a fact that we already know.

1k + 12

FIGURE 9.12 The Principle of 
Mathematical Induction visualized by
dominoes. The toppling of domino #1
guarantees the toppling of domino n for
all positive integers n.

EXAMPLE 1  Using Mathematical Induction
Prove that is true for all positive integers n.

SOLUTION Call the statement We could verify by using the formula for the
sum of an arithmetic sequence, but here is how we prove it by mathematical induction.

(The anchor) For , the equation reduces to , which is true.

(The inductive hypothesis) Assume that the equation is true for That is, 
assume

(The inductive step) The next term on the left-hand side would be 
We add this to both sides of and get

This is exactly the statement , so the equation is true for Therefore,
is true for all positive integers, by mathematical induction.

Now try Exercise 1.
Pn

n = k + 1.Pk+1

= 1k + 122
= k2

+ 2k + 1

 1 + 3 + Á
+  12k - 12 + 121k + 12 - 12 = k2

+ 12 1k + 12 - 12
Pk

21k + 12 - 1.

Pk: 1 + 3 + Á
+  12k - 12 = k2 is true.

n = k.

P1: 1 = 12n = 1

PnPn.

1 + 3 + 5 + Á
+  12n - 12 = n2
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Notice that we did not plug in on both sides of the equation in order to verify
the inductive step; if we had done that, there would have been nothing to verify. If you
find yourself verifying the inductive step without using the inductive hypothesis, you
can assume that you have gone astray.

Pnk + 1

SECTION 9.6 Mathematical Induction 689

EXAMPLE 2  Using Mathematical Induction
Prove that is true for all positive
integers n.

SOLUTION Let be the statement 

(The anchor) is true because 

(The inductive hypothesis) Assume that is true, so that

(The inductive step) The next term on the left-hand side would be We
add this to both sides of and get

This is exactly the statement , so the equation is true for Therefore,
is true for all positive integers, by mathematical induction.

Now try Exercise 13.

Applications of mathematical induction can be quite different from the first two exam-
ples. Here is one involving divisibility.

Pn

n = k + 1.Pk+1

 =

1k + 1211k + 12 + 12121k + 12 + 12
6

 =

1k + 121k + 2212k + 32
6

 =

1k + 1212k2
+ k + 6k + 62
6

 =

k1k + 1212k + 12 + 61k + 122
6

 12
+ 22 + Á

+  k2
+ 1k + 122 =

k1k + 1212k + 12
6

+ 1k + 122
Pk

1k + 122.

12
+ 22 + Á

+  k2
=

k1k + 1212k + 12
6

.

Pk

12
= 311221324/6.P1

3n1n + 1212n + 124/6.
12

+ 22
+ 32 + Á

+  n2
=Pn

12
+ 22

+ 32 
+

Á
+  n2

= [n1n + 1212n + 12]/6

EXAMPLE 3  Proving Divisibility
Prove that is evenly divisible by 3 for all positive integers n.

SOLUTION Let be the statement that is evenly divisible by 3 for all
positive integers n.

(The anchor) is true because is divisible by 3.

(The inductive hypothesis) Assume that is true, so that is divisible by 3.

(The inductive step) We need to prove that is divisible by 3.

Using a little algebra, we see that 

By the inductive hypothesis, is divisible by 3. Of course, so is 3. Therefore,
is a sum of multiples of 3, and hence divisible by 3. This is exactly

the statement is true. Therefore, is true for all positive integers, by
mathematical induction. Now try Exercise 19.

PnPk+1, so Pk+1

414k
- 12 + 3

4k
- 1

4k+1
- 1 = 4 # 4k

- 1 = 414k
- 12 + 3.

4k+1
- 1

4k
- 1Pk

41
- 1 = 3P1

4n
- 1Pn

4n
- 1
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Induction and Deduction
The words induction and deduction are usually used to contrast two patterns of logical
thought. We reason by induction when we use evidence derived from particular exam-
ples to draw conclusions about general principles. We reason by deduction when we
reason from general principles to draw conclusions about specific cases.

When mathematicians prove theorems, they use deduction. In fact, even a “proof by
mathematical induction” is a deductive proof, since it consists of applying the general
principle to a particular formula. We have been careful to use the term mathematical
induction in this section to distinguish it from inductive reasoning, which is often good
for inspiring conjectures—but not for proving general principles.

Exploration 2 illustrates why mathematicians do not rely on inductive reasoning.

690 CHAPTER 9 Discrete Mathematics

EXPLORATION 2 Is Prime for All n?
1. Plug in the numbers from 1 to 10. Are the results all prime?

2. Repeat for the numbers from 11 to 20.

3. Repeat for the numbers from 21 to 30. (Ready to make your 
conjecture?)

4. What is the smallest value of n for which is not prime?n2
+ n + 41

n2 � n � 41

There is one situation in which (nonmathematical) induction can constitute a proof. In
enumerative induction, one reasons from specific cases to the general principle by
considering all possible cases. This is simple enough when proving a theorem like “All
one-digit prime numbers are factors of 210,” but it can involve some very elegant math-
ematics when the number of cases is seemingly infinite. Such was the case in the proof
of the Four-Color Map Theorem, in which all possible cases were settled with the help
of a clever computer program.

The Four-Color Map Theorem
In 1852, Francis Guthrie conjectured that any
map on a flat surface could be colored in at
most four colors so that no two bordering
regions would share the same color. Mathe-
maticians tried unsuccessfully for almost 150
years to prove (or disprove) the conjecture,
until Kenneth Appel and Wolfgang Haken
finally proved it in 1976.

QUICK REVIEW 9.6 (Prerequisite skill Sections A.2 and 1.2)

In Exercises 7–10, evaluate the function at the given domain values
or variable expressions.

7.

8.

9.

10. P1n2 = 2n2
- n - 3; P112, P1k2, P1k + 12

P1n2 =

2n

3n + 1
 ; P112, P1k2, P1k + 12

ƒ1n2 =

n

n + 1
 ; ƒ112, ƒ1k2, ƒ1k + 12

ƒ1x2 = x + 4; ƒ112, ƒ1t2, ƒ1t + 12

SECTION 9.6 EXERCISES

In Exercises 1–4, use mathematical induction to prove that the state-
ment holds for all positive integers.

1.

2. 8 + 10 + 12 + Á
+  12n + 62 = n2

+ 7n

2 + 4 + 6 + Á
+  2n = n2

+ n

3.

4. 14 + 18 + 22 + Á
+  14n + 102 = 2n1n + 62

6 + 10 + 14 + Á
+  14n + 22 = n12n + 42

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–3, expand the product.

1. 2.

3.

In Exercises 4–6, factor the polynomial.

4.

5.

6. n3
- 3n2

+ 3n - 1

k3
+ 3k2

+ 3k + 1

n2
+ 2n - 3

k1k + 121k + 22
1n + 221n - 32n1n + 52
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In Exercises 5–8, state an explicit rule for the nth term of the recursively
defined sequence. Then use mathematical induction to prove the rule.

5. 6.

7. 8.

In Exercises 9–12, write the statements , , and (Do not write a
proof.)

9.

10.

11.

12.

In Exercises 13–20, use mathematical induction to prove that the state-
ment holds for all positive integers.

13.

14.

15.

16.

17. 18.

19. 3 is a factor of 20. 6 is a factor of 

In Exercises 21 and 22, use mathematical induction to prove that the
statement holds for all positive integers. (We have already seen each
proved in another way.)

21. The sum of the first n terms of a geometric sequence with first
term and common ratio is 

22. The sum of the first n terms of an arithmetic sequence with
first term and common difference d is

In Exercises 23 and 24, use mathematical induction to prove that the
formula holds for all positive integers.

23. Triangular Numbers

24. Sum of the First n Cubes

[Note that if you put the results from Exercises 23 and 24 together, you
obtain the pleasantly surprising equation

In Exercises 25–30, use the results of Exercises 21–24 and Example 2
to find the sums.

25. 26.

27. 28.

29.

30. 1 + 8 + 27 + Á
+  3375

1 + 2 + 4 + 8 + Á
+  234

13
+ 23

+ 33 + Á
+  7534 + 5 + 6 + Á

+  n 

12
+ 22 + Á

+  25021 + 2 + 3 + Á
+  500

13
+ 23

+ 33 + Á
+  n3

= 11 + 2 + 3 + Á
+  n22.4

a

n

k=1
 k

3
=

n21n + 122
4

a

n

k=1
 k =

n1n + 12
2

Sn =

n

2
 32a1 + 1n - 12d4

a1

a111 - r n2/11 - r2.r Z 1a1

7n
- 1.n3

+ 2n.

3n
Ú 3n2n

Ú 2n

1

1 # 3
+

1

3 # 5
 + Á

+  
1

12n - 1212n + 12 =

n

2n + 1

1

1 # 2
+

1

2 # 3
+

1

3 # 4
 + Á

+  
1

n1n + 12 =

n

n + 1

1 + 2 + 22 + Á
+  2n-1

= 2n
- 1

1 + 5 + 9 + Á
+  14n - 32 = n12n - 12

Pn: a

n

k=1
 k

4
=

n1n + 1212n + 1213n2
+ 3n - 12

30

Pn: 
1

1 # 2
+

1

2 # 3
 + Á

+  
1

n # 1n + 12 =

n

n + 1

Pn: 12
+ 32

+ 52 + Á
+  12n - 122 =

n12n - 1212n + 12
3

Pn: 1 + 2 + Á
+  n =

n1n + 12
2

Pk+1.PkP1

an = 5an-1, a1 = 3an = 3an-1, a1 = 2

an = an-1 + 2, a1 = 7an = an-1 + 5, a1 = 3

In Exercises 31–34, use the results of Exercises 21–24 and Example 2
to find the sum in terms of n.

31. 32.

33. 34.

35. Group Activity Here is a proof by mathematical 
induction that any gathering of n people must all have the same
blood type.

(Anchor) If there is 1 person in the gathering, everyone in the
gathering obviously has the same blood type.

(Inductive hypothesis) Assume that any gathering of k people
must all have the same blood type.

(Inductive step) Suppose people are gathered. Send one
of them out of the room. The remaining k people must all have
the same blood type (by the inductive hypothesis). Now bring
the first person back and send someone else out of the room.
You get another gathering of k people, all of whom must have
the same blood type. Therefore all people must have the
same blood type, and we are done by mathematical induction.

This result is obviously false, so there must be something
wrong with the proof. Explain where the proof goes wrong.

36. Writing to Learn Kitty is having trouble understanding
mathematical induction proofs because she does not under-
stand the inductive hypothesis. If we can assume it is true for k,
she asks, why can’t we assume it is true for n and be done with
it? After all, a variable is a variable! Write a response to Kitty
to clear up her confusion.

Standardized Test Questions
37. True or False The goal of mathematical induction is to

prove that a statement is true for all real numbers n. Justify
your answer.

38. True or False If is the statement “ ,”
then is true. Justify your answer.

You may use a graphing calculator when solving Exercises 39–42.

39. Multiple Choice In a proof by mathematical induction that

for all positive integers n,

the inductive hypothesis would be to assume that

(A)

(B)

(C)

(D) for all positive integers n.

(E) for some positive 

integer k.

1 + 2 + 3 + Á
+  k =

k1k + 12
2

1 + 2 + 3 + Á
+  n =

n1n + 12
2

1 =

111 + 12
2

.

k = 1.

n = 1.

1 + 2 + 3 + Á
+  n =

n1n + 12
2

P1

1n + 122 = 4nPn

Pn

k + 1

k + 1

a

n

k=1
 1k3

+ 4k - 52a

n

k=1
 1k3

- 12
a

n

k=1
 12k2

+ 5k - 22a

n

k=1
 1k2

- 3k + 42
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40. Multiple Choice The first step in a proof by mathemati-
cal induction is to prove

(A) the anchor.

(B) the inductive hypothesis.

(C) the inductive step.

(D) the inductive principle.

(E) the inductive foundation.

41. Multiple Choice Which of the following could be used
to prove that for all 
positive integers n?

I. Mathematical induction

II. The formula for the sum of a finite arithmetic sequence

III. The formula for the sum of a finite geometric sequence

(A) I only

(B) I and II only

(C) I and III only

(D) II and III only

(E) I, II, and III

42. Multiple Choice Mathematical induction can be used to

prove that, for any positive integer n, 

(A) (B)

(C) (D)

(E)

Explorations
43. Use mathematical induction to prove that 2 is a factor of

for all positive integers n.

44. Use mathematical induction to prove that 6 is a factor of
for all positive integers n. (You may assume

the assertion in Exercise 43 to be true.)

45. Give an alternate proof of the assertion in Exercise 43 based on
the fact that is a product of two consecutive
integers.

1n + 121n + 22

n1n + 121n + 22
1n + 121n + 22

n31n + 123
8

.

n31n + 123
2

.
n21n + 122

4
.

n21n + 122
2

.
n1n + 12

2
.

a

n

k=1
 k3

=

1 + 3 + 5 + Á
+  12n - 12 = n2

46. Give an alternate proof of the assertion in Exercise 44 based on
the fact that is a product of three consecutive
integers.

Extending the Ideas
In Exercises 47 and 48, use mathematical induction to prove that the
statement holds for all positive integers.

47. Fibonacci Sequence and Series

where is the Fibonacci sequence.

48. If is the sequence 

then .

49. Let a be any integer greater than 1. Use mathematical induction to
prove that divides evenly for all positive integers n.

50. Give an alternate proof of the assertion in Exercise 49 based on
the Factor Theorem of Section 2.4.

It is not necessary to anchor a mathematical induction proof at
; we might only be interested in the integers greater than or

equal to some integer c. In this case, we simply modify the anchor
and inductive step as follows:

Anchor: is true.

Inductive Step: If is true for some then is true.

(This is sometimes called the Extended Principle of Mathematical
Induction.) Use this principle to prove the statements in Exercises
51 and 52.

51. for all 52. for all 

53. Proving the interior angle formula Use 
extended mathematical induction to prove for 

The sum of the interior angles of an n-sided polygon is
180° .1n - 22
Pn:

n Ú 3.Pn

n Ú 42n
Ú n2,n Ú 23n - 4 Ú n,

Pk+1k Ú c,Pk

Pc

n = 1

an
- 1a - 1

an 6 232 + 22 + 12, Á ,

12, 22 + 12,5an6
5Fn6Fn+2 - 1 = a

n

k=1
 Fk,

n1n + 121n + 22
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SECTION 9.7 Statistics and Data (Graphical) 693

9.7 Statistics and Data (Graphical)

What you’ll learn about
• Statistics
• Displaying Categorical Data
• Stemplots
• Frequency Tables
• Histograms
• Time Plots

... and why
Graphical displays of data are
increasingly prevalent in profes-
sional and popular media. We
all need to understand them.

Table 9.3 Leading Causes of Death in the United States in 2006

Cause of Death Number of Deaths Percentage

Heart disease 629,191 25.9
Cancer 560,102 23.1
Stroke 137,265 5.7
Other 1,099,343 45.3

Source: National Center for Health Statistics, as reported in The World Almanac 
and Book of Facts 2009.

Because the causes of death are categories, not numbers, “cause of death” is a categori-
cal variable. The numbers of deaths and percentages, while certainly numerical, are not
values of a variable, because they do not describe the individuals. Nonetheless, the
numbers can communicate information about the categorical variables by telling us the
relative size of the categories in the 2006 population.

We can get that information directly from the numbers, but it is very helpful to see the
comparative sizes visually. This is why you will often see categorical data displayed
graphically, as a bar chart (Figure 9.13a), a pie chart (Figure 9.13b), or a circle graph
(Figure 9.13c). For variety, the popular press also makes use of picture graphs suited
to the categories being displayed. For example, the bars in Figure 9.13a could be made
to look like tombstones of different sizes to emphasize that these are causes of death. In
each case, the graph provides a visualization of the relative sizes of the categories, with
the pie chart and circle graph providing the added visualization of how the categories
are parts of a whole population.

Statistics
Statistics is a branch of science that draws from both discrete mathematics and the
mathematics of the continuum. The aim of statistics is to draw meaning from data 
and communicate it to others.

The objects described by a set of data are individuals, which may be people, animals, or
things. The characteristic of the individuals being identified or measured is a variable.
Variables are either categorical or quantitative. If the variable identifies each individual
as belonging to a distinct class, such as male or female, then the variable is a categorical
variable. If the variable takes on numerical values for the characteristic being measured,
then the variable is a quantitative variable.

Examples of quantitative variables are heights of people and weights of lobsters. You
have already seen many tables of quantitative data in this book; indeed, most of the
data-based exercises have been solved using techniques that are basic tools for statisti-
cians. So far, however, most of our attention has been restricted to finding models that
relate quantitative variables to each other. In the next two sections of this chapter, we
will look at some of the other graphical and algebraic tools that can be used to draw
meaning from data and communicate it to others.

Displaying Categorical Data
The National Center for Health Statistics reported that the leading causes of death in
2006 were heart disease, cancer, and stroke. Table 9.3 gives more detailed information.
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In bar charts of categorical data, the y-axis has a numerical scale, but the x-axis is la-
beled by category. The rectangular bars are separated by spaces to show that no contin-
uous numerical scale is implied. (In this respect, a bar graph differs from a histogram,
to be described later in this section.) A circle graph or a pie chart consists of shaded or
colored sections of a circle or “pie.” The central angles for the sectors are found by
multiplying the percentages by 360°. For example, the angle for the sector representing
cancer victims in Figure 9.13c is

It used to require time, skill, and mathematical savvy to draw data displays that were
both visually appealing and geometrically accurate, but modern spreadsheet programs
have made it possible for anyone with a computer to produce high-quality graphs from
tabular data with the click of a button.

Stemplots
A quick way to organize and display a small set of quantitative data is with a stemplot,
also called a stem-and-leaf plot. Each number in the data set is split into a stem, con-
sisting of its initial digit or digits, and a leaf, which is its final digit.

23.1% # 360° = 83.2°.
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FIGURE 9.13 Causes of death in the United States in 2006 shown in (a) a bar graph, (b) a 3-D pie chart, and (c) a circle graph.

EXAMPLE 1  Making a Stemplot
Table 9.4 gives the percentage of each state’s population that was 65 or older in the
2000 Census. Make a stemplot for the data.

Source: U.S. Census Bureau, 2001.

Table 9.4 Percentages of State Residents in 2000
Who Were 65 or Older

AL 13.0 HI 13.3 MA 13.5 NM 11.7 SD 14.3
AK 5.7 ID 11.3 MI 12.3 NY 12.9 TN 12.4
AZ 13.0 IL 12.1 MN 12.1 NC 12.0 TX 9.9
AR 14.0 IN 12.4 MS 12.1 ND 14.7 UT 8.5
CA 10.6 IO 14.9 MO 13.5 OH 13.3 VT 12.7
CO 9.7 KS 13.3 MT 13.4 OK 13.2 VA 11.2
CT 13.8 KY 12.5 NE 13.6 OR 12.8 WA 11.2
DE 13.0 LA 11.6 NV 11.0 PA 15.6 WV 15.3
FL 17.6 ME 14.4 NH 12.0 RI 14.5 WI 13.1
GA 9.6 MD 11.3 NJ 13.2 SC 12.1 WY 11.7
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SOLUTION To form the stem-and-leaf plot, we use the whole number part of each
number as the stem and the tenths digit as the leaf. We write the stems in order down
the first column and, for each number, write the leaf in the appropriate stem row.
Then we arrange the leaves in each stem row in ascending order. The final plot looks
like this:

Stem Leaf

5 7
6
7
8 5
9 6 7 9

10 6
11 0 2 2 3 3 6 7 7
12 0 0 1 1 1 1 3 4 4 5 7 8 9
13 0 0 0 1 2 2 3 3 3 4 5 5 6 8
14 0 3 4 5 7 9
15 3 6
16
17 6

Notice that we include the “leafless” stems (6, 7, 16) in our plot, as those empty gaps
are significant features of the visualization. For the same reason, be sure that each
“leaf” takes up the same space along the stem. A branch with twice as many leaves
should appear to be twice as long. Now try Exercise 1.

EXPLORATION 1 Using Information from a Stemplot

By looking at both the stemplot and the table, answer the following questions

about the distribution of senior citizens among the 50 states.

1. Judging from the stemplot, what was the approximate average national per-
centage of residents who were 65 or older?

2. In how many states were more than 15% of the residents 65 or older?

3. Which states were in the bottom tenth of all states in this statistic?

4. The numbers 5.7 and 17.6 are so far above or below the other numbers in
this stemplot that statisticians would call them outliers. Quite often there is
some special circumstance that sets outliers apart from the other individuals
under study and explains the unusual data. What could explain the two out-
liers in this stemplot?

Sometimes the data are so tightly clustered that a stemplot has too few stems to give a
meaningful visualization of the data. In such cases we can spread the data out by split-
ting the stems, as in Example 2.
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EXAMPLE 2  Making a Split-Stem Stemplot
The per capita federal aid to state and local governments for the top 15 states (in this
category) in 2003 are shown in Table 9.5. Make a stemplot that provides a good visu-
alization of the data. What is the average of the 15 numbers? Why is the stemplot a
better summary of the data than the average?

Source: U.S. Census Bureau Public Information Office.

Table 9.5 Federal Aid to State and Local Governments
Per Capita (2003) in Dollars

AL 3713 ND 1900 MI 1709
WY 2829 ME 1836 MT 1563
NY 2262 WV 1823 MA 1533
NM 2005 SD 1799 KY 1449
VT 1913 RI 1724 LA 1443

SOLUTION We first round the data to $100 units, which does not affect the visual-
ization. Then, to spread out the data a bit, we split each stem, putting leaves 0–4 on
the lower stem and leaves 5–9 on the upper stem.

Stem Leaf

1 4 4
1 5 6 7 7 8 8 8 9 9
2 0 3
2 8
3
3 7

The average of the 15 numbers is $1,967, but this is misleading. The table shows that
eleven of the numbers are lower than that, while only four are higher. It is better to
observe that the distribution is clustered fairly tightly around $1,800, with the num-
ber for Alabama being a significant outlier on the high end.

Now try Exercise 3.

EXAMPLE 3  Making Back-to-Back Stemplots
Mark McGwire and Barry Bonds entered the major leagues in 1986 and had overlap-
ping careers until 2001, the year that McGwire retired. During that period they aver-
aged 36.44 and 35.44 home runs per year, respectively (Table 9.6). Compare their 
annual home run totals with a back-to-back stemplot. Can you tell which player was
more consistent as a home run hitter?

Sometimes it is easier to compare two sets of data if we have a visualization that allows
us to view both stemplots simultaneously. Back-to-back stem-plots use the same
stems, but leaves from one set of data are added to the left, while leaves from another
set are added to the right.

Table 9.6 Major League Home Run Totals for Mark McGwire and Barry Bonds through 2001

Year 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

McGwire 3 49 32 33 39 22 42 9 9 39 52 58 70 65 32 29
Bonds 16 25 24 19 33 25 34 46 37 33 42 40 37 34 49 73

Source: Major League Baseball Enterprises, 2002.
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Frequency Tables
The visual impact of a stemplot comes from the lengths of the various rows of leaves,
which is just a way of seeing how many leaves branch off each stem. The number of
leaves for a particular stem is the frequency of observations within each stem interval.
Frequencies are often recorded in a frequency table. Table 9.7 shows a frequency table
for Mark McGwire’s yearly home run totals from 1986 to 2001 (see Example 3). The
table shows the frequency distribution—literally the way that the total frequency of
16 is “distributed” among the various home run intervals. This same information is
conveyed visually in a stemplot, but notice that the stemplot has the added numerical 
advantage of displaying what the numbers in each interval actually are.

SECTION 9.7 Statistics and Data (Graphical) 697

Table 9.7 Frequency Table for Mark McGwire’s Yearly
Home Run Totals, 1986–2001

Home Runs Frequency Home Runs Frequency
0–9 3 40–49 2

10–19 0 50–59 2
20–29 2 60–69 1
30–39 5 70–79 1

Total 16

Higher frequencies in a table correspond to longer leaf rows in a stemplot. Unlike a
stemplot, a frequency table does not display what the numbers in each interval
actually are.

SOLUTION We form a back-to-back stemplot with McGwire’s totals branching
off to the left and Bond’s to the right.

Mark McGwire Barry Bonds

9 9 3 0
1 6 9

9 2 2 4 5 5
9 9 3 2 2 3 3 3 4 4 7 7

9 2 4 0 2 6 9
8 2 5

5 6
0 7 3

The single-digit home run years for McGwire can be explained by fewer times at bat
(late entry into the league in 1986 and injuries in 1993 and 1994). If those years are
ignored as anomalies, McGwire’s numbers seem to indicate more consistency.
Bond’s record-setting 73 in 2001 was (and still is) an outlier of such magnitude that
it actually inspired more skepticism than admiration among baseball fans.

Now try Exercise 5.

Histograms
A histogram, closely related to a stemplot, displays the information of a frequency
table. Visually, a histogram is to quantitative data what a bar chart is to categorical data.
Unlike a bar chart, however, both axes of a histogram have numerical scales, and the
rectangular bars on adjacent intervals have no intentional gaps between them.
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Figure 9.14 shows a histogram of the information in Table 9.7, where each bar corre-
sponds to an interval in the table and the height of each bar represents the frequency of
observations within the interval.
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[–10, 80] by [–1, 6]

FIGURE 9.14 A histogram showing the distribution of Mark McGwire’s annual 
home run totals from 1986 to 2001. This is a visualization of the data in Table 9.7.

EXAMPLE 4  Graphing a Histogram on a Calculator
Make a histogram of Hank Aaron’s annual home run totals given in Table 9.8, using
intervals of width 5.

Home Runs Frequency Home Runs Frequency

10–14 3 30–34 4
15–19 0 35–39 3
20–24 2 40–44 6
25–29 3 45–49 2

Total 23

Table 9.8 Regular Season Home Run Statistics for Hank Aaron

Year Home Runs Year Home Runs Year Home Runs

1954 13 1962 45 1970 38
1955 27 1963 44 1971 47
1956 26 1964 24 1972 34
1957 44 1965 32 1973 40
1958 30 1966 44 1974 20
1959 39 1967 39 1975 12
1960 40 1968 29 1976 10
1961 34 1969 44

Source: The Baseball Encyclopedia (7th ed., 1988, New York: MacMillan), p. 695.

SOLUTION We first make a frequency table for the data, using intervals of width
5. (This is not needed for the calculator to produce the histogram, but we will com-
pare this with the result.)

[0, 55] by [–1, 7]

(b)

[0, 55] by [–1, 7]

(a)

P1

n=3
min=10
max<15

FIGURE 9.15 Calculator histograms of
Hank Aaron’s yearly home run totals. 
(Example 4)

To scale the x-axis to be consistent with the intervals of the table, let 
and Notice that the maximum frequency is 6 years (40–44

home runs), so the y-axis ought to extend at least to 7. Enter the data from Table 9.8
into list L1 and plot a histogram in the window by . (See Figure
9.15a.) Tracing along the histogram should reveal the same frequencies as in the fre-
quency table we made. (See Figure 9.15b.) Now try Exercise 11.

3-1, 7430, 554
Xscl = 5.Xmax = 55,

Xmin = 0,
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Time Plots
We have seen in this book many examples of functions in which the input variable is
time. It is also quite common to consider quantitative data as a function of time. If we
make a scatter plot of the data against the time that it was measured, we can an-
alyze the patterns as the variable changes over time. To help with the visualization, the
discrete points from left to right are connected by line segments, just as a grapher
would do in connect mode. The resulting line graph is called a time plot.

Time plots reveal trends in data over time. These plots frequently appear in magazines
and newspapers and on the Internet, a typical example being the graph of the historic
1999 climb of the Dow Jones Industrial Average (DJIA) in Figure 9.16.

1x21y2
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FIGURE 9.16 Time plot of the Dow Jones Industrial Average during the spectacular year 1999. Investors get a good vi-
sualization of where the stock market has been, although the trick is to figure out where it is going. (Source: Quote.com, as
reported by the Associated Press in the Chattanooga Times/Free Press.)

Table 9.9 Millions of Units of CDs Shipped to Retailers Each Year, 1995–2007

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

CDs 722.9 778.9 753.1 847.0 938.9 942.5 881.9 803.3 746.0 767.0 705.4 619.7 511.1

Source: Recording Industry Association of America, as reported in the World Almanac and Book of Facts 2005 and 2009.

EXAMPLE 5  Drawing a Time Plot
Table 9.9 gives the number of compact disc (CD) units shipped to retailers each year
in the 13-year period from 1995 to 2007. (The numbers are shown in millions, net af-
ter returns.) Display the data in a time plot and analyze the 13-year trend.

SOLUTION The horizontal axis represents time (in years) from 1995 to 2007. The
vertical axis represents the number of CDs shipped that year, in millions of units.
Since the visualization is enhanced by showing both axes in the viewing window, the
vertical axis of a time plot is usually translated to cross the x-axis at or near the be-
ginning of the time interval in the data. You can create this effect on your grapher by
entering the years as rather than .
The labeling on the x-axis can then display the years, as shown in Figure 9.17.

(continued )

51995, 1996, 1997, Á , 2007651, 2, 3, Á , 1361995 2007

100

1100

y

x

FIGURE 9.17 A time plot of CD volume
over the years from 1995 to 2007, as reflected
in shipments to retailers. (Example 5)
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Table 9.10 Millions of Units of Cassettes Shipped to Retailers Each Year, 1995–2007

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Cassettes 272.6 225.3 172.6 158.5 123.6 76.0 45.0 31.1 17.2 5.2 2.5 0.7 0.4

Source: Recording Industry Association of America, as reported in the World Almanac and Book of Facts 2005 and 2009.

EXAMPLE 6  Overlaying Two Time Plots
Table 9.10 gives the number of cassette units shipped to retailers each year in the 
13-year period from 1995 to 2007. (The numbers are shown in millions, net after re-
turns.) Compare the cassette trend with the CD trend by overlaying the time plots for
the two products.

SOLUTION The two time plots are shown in Figure 9.18. The popularity of cas-
sette tapes declined as more consumers switched to CD (and eventually MP3) 
technology. Now try Exercise 19.

1995 2007

100

1100

y

x

FIGURE 9.18 A time plot comparing cassette 
shipments and CD shipments for the time period from 
1995 to 2007. (Example 6)

QUICK REVIEW 9.7

In Exercises 7–10, round the given value to the nearest whole num-
ber in the specified units.

7. $234,598.43 (thousands of dollars)

8. 237,834,289 (millions)

9. 848.36 thousands (millions)

10. 1432 millions (billions)

In Exercises 1–6, solve for the required value.

1. 457 is what percent of 2953?

2. 827 is what percent of 3950?

3. 52° is what percent of 360°?

4. 98° is what percent of 360°?

5. 734 is 42.6% of what number?

6. 5106 is 55.5% of what number?

The time plot shows that CD shipments increased from 1995 to 2000; then they 
declined from 2000 to 2007. The music industry knew the reason for the dramatic
turnaround—do you? Now try Exercise 17.
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SECTION 9.7 EXERCISES

Table 9.11 shows the home run statistics for Roger Maris during his
major league career.

4. A stemplot showing life expectancies of females in the 
nations of South America (Round to nearest year and use 
split stems.)

5. A back-to-back stemplot for life expectancies of males and fe-
males in the nations of South America (Round to nearest year
and use split stems.)

6. A stemplot showing the difference between female and male
life expectancies in the nations of South America (Use un-
rounded data and do not split stems.)

In Exercises 7 and 8, use the data in Table 9.12 to construct the indi-
cated frequency table, using intervals 60.0–64.9, 65.0–69.9, etc.

7. Life expectancies of males in the nations of South America

8. Life expectancies of females in the nations of South America

In Exercises 9–12, draw a histogram for the given table.

9. The frequency table in Exercise 7

10. The frequency table in Exercise 8

11. Table 9.13 of Willie Mays’s annual home run totals, using in-
tervals 1–5, 6–10, 11–15, etc.

12. Table 9.13 of Mickey Mantle’s annual home run totals, using
intervals 0–4, 5–9, 10–14, etc.

Source: The Baseball Encyclopedia, 7th ed., 1988.

Table 9.11 Regular Season Home Run
Statistics for Roger Maris

Year Home Runs

1957 14
1958 28
1959 16
1960 39
1961 61
1962 33
1963 23
1964 26
1965 8
1966 13
1967 9
1968 5

1. Make a stemplot of the data in Table 9.11. Are there any 
outliers?

2. Make a back-to-back stemplot comparing the annual home run
production of Roger Maris (Table 9.11) with that of Hank
Aaron (Table 9.8 on page 698). Write a brief interpretation of
the stemplot.

In Exercises 3–6, construct the indicated stemplot from the data in
Table 9.12. Then write a brief interpretation of the stemplot.

Source: The World Almanac and Book of Facts 2005.

Table 9.12 Life Expectancy by Gender
for the Nations of South America

Nation Male Female

Argentina 72.0 79.7
Bolivia 62.5 67.9
Brazil 67.5 75.6
Chile 73.1 79.8
Colombia 67.6 75.4
Ecuador 73.2 79.0
Guyana 60.1 64.8
Paraguay 72.1 77.3
Peru 67.5 71.0
Suriname 66.8 71.6
Uruguay 72.7 79.2
Venezuela 71.0 77.3

Source: The Baseball Encyclopedia, 7th ed., 1988.

Table 9.13 Regular Season Home Run
Statistics for Willie Mays and Mickey Mantle

Year Mays Mantle Year Mays Mantle

1951 20 13 1962 38 30
1952 4 23 1963 47 15
1953 41 21 1964 52 35
1954 51 27 1965 37 19
1955 36 37 1966 22 23
1956 35 52 1967 23 22
1957 29 34 1968 13 18
1958 34 42 1969 28
1959 29 31 1970 18
1960 40 40 1971 8
1961 49 54 1972 6

3. A stemplot showing life expectancies of males in the nations of
South America (Round to nearest year and use split stems.)

In Exercises 13–16, make a time plot for the indicated data.

13. Willie Mays’s annual home run totals given in Table 9.13

14. Mickey Mantle’s annual home run totals given in Table 9.13

15. Mark McGwire’s home run totals given in Table 9.6 on 
page 696

16. Hank Aaron’s home run totals given in Table 9.8 on 
page 698. 
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Table 9.14 shows the total amount of money won (in units of $1000,
rounded to the nearest whole number) by the leading money winners in
women’s (LPGA) and men’s (PGA) professional golf for selected years
between 1970 and 2003.
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(a) Complete a stemplot for this data set.

(b) Create a frequency table for the data.

(c) Draw a histogram for the data. What viewing window did
you use?

(d) Why does a time plot not work well for the data?

24. The average wind speeds for one year at 44 climatic data cen-
ters around the United States are as follows:

9.0, 6.9, 9.1, 9.2, 10.2, 12.5, 12.0, 11.2, 12.9, 10.3, 10.6, 10.9,
8.7, 10.3, 11.0, 7.7, 11.4, 7.9, 9.6, 8.0, 10.7, 9.3, 7.9, 6.2, 8.3,
8.9, 9.3, 11.6, 10.6, 9.0, 8.2, 9.4, 10.6, 9.5, 6.3, 9.1, 7.9, 9.7,
8.8, 6.9, 8.7, 9.0, 8.9, 9.3

(a) Complete a stemplot for this data set.

(b) Create a frequency table for the data.

(c) Draw a histogram for the data. What viewing window did
you use?

(d) Why does a circle graph not work well for the data?

In Exercises 25 and 26, compare by overlaying time plots for the data
in Table 9.15.

Source: The World Almanac and Book of Facts 2005.

Table 9.14 Yearly Winnings (in Thousands
of Dollars) of the Top Money Winners in
Men’s and Women’s Golf for Selected Years
1970–2003

Year Men (PGA) Women (LPGA)

1970 157 30
1975 323 95
1980 531 231
1985 542 416
1990 1165 864
1995 1655 667
1996 1780 1002
1997 2067 1237
1998 2591 1093
1999 6617 1592
2000 9188 1877
2001 5688 2106
2002 6913 2864
2003 7574 2030

17. Make a time plot for the men’s winnings in Table 9.14. Write a
brief interpretation of the time plot.

18. Make a time plot for the women’s winnings in Table 9.14.
Write a brief interpretation of the time plot.

19. Compare the trends in Table 9.14 by overlaying the time plots.
Write a brief interpretation.

20. Writing to Learn (Continuation
of Exercise 19) The data in Table 9.14
show that the earnings for the top PGA
player rose by a modest 68% in the
decade from 1975 to 1985, while the
earnings for the top LPGA player rose
by a whopping 338%. Although this
was, in fact, a strong growth period for
women’s sports, statisticians would be
unlikely to draw any conclusions from a comparison of these
two numbers. Use the visualization from the comparative time
plot in Exercise 19 to explain why.

In Exercises 21 and 22, compare performances by overlaying time
plots.

21. The time plots from Exercises 13 and 14 to compare the per-
formances of Mays and Mantle

22. The time plots from Exercises 15 and 16 to compare the per-
formances of McGwire and Aaron

In Exercises 23 and 24, analyze the data as indicated.

23. The salaries of the workers in one department of the Garcia
Brothers Company (given in thousands of dollars) are as 
follows:

33.5, 35.3, 33.8, 29.3, 36.7, 32.8, 31.7, 36.3, 33.5, 28.2, 34.8,
33.5, 35.3, 29.7, 38.5, 32.7, 34.8, 34.2, 31.6, 35.4

Source: The World Almanac and Book of Facts 2005.

Table 9.15 Population (in millions) of 
the Six Most Populous States

Census CA FL IL NY PA TX

1900 1.5 0.5 4.8 7.3 6.3 3.0
1910 2.4 0.8 5.6 9.1 7.7 3.9
1920 3.4 1.0 6.5 10.4 8.7 4.7
1930 5.7 1.5 7.6 12.6 9.6 5.8
1940 6.9 1.9 7.9 13.5 9.9 6.4
1950 10.6 2.8 8.7 14.8 10.5 7.7
1960 15.7 5.0 10.1 16.8 11.3 9.6
1970 20.0 6.8 11.1 18.2 11.8 11.2
1980 23.7 9.7 11.4 17.6 11.9 14.2
1990 29.8 12.9 11.4 18.0 11.9 17.0
2000 33.9 16.0 12.4 19.0 12.3 20.9

25. The populations of California, New York, and Texas from 1990
through 2000

26. The populations of Florida, Illinois, and Pennsylvania from
1990 through 2000

Standardized Test Questions
27. True or False If there are stems without leaves in the in-

terior of a stemplot, it is best to omit them. Justify your answer.

28. True or False The highest and lowest numbers in a set
of data are called outliers. Justify your answer.

Answer Exercises 29–32 without using a calculator.

29. Multiple Choice A time plot is an example of a

(A) Histogram. (B) Bar graph.

(C) Line graph. (D) Pie chart.

(E) Table.
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30. Multiple Choice A back-to-back stemplot is particularly
useful for

(A) Identifying outliers.

(B) Comparing two data distributions.

(C) Merging two sets of data.

(D) Graphing home runs.

(E) Distinguishing stems from leaves.

31. Multiple Choice The histogram below would most
likely result from which set of data?
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Explorations
33. Group Activity Measure the resting pulse rates (beats

per minute) of the members of your class. Make a stemplot for
the data. Are there any outliers? Can they be explained?

34. Group Activity Measure the heights (in inches) of the
members of your class. Make a back-to-back stemplot to com-
pare the distributions of the male heights and the female
heights. Write a brief interpretation of the stemplot.

Extending the Ideas
35. Time Plot of Periodic Data Some data are periodic

functions of time. If data vary in an annual cycle, the period is
1 year. Use the information in Table 9.16 to overlay the time
plots for the average daily high and low temperatures for Bei-
jing, China.

(A) Test scores from a fairly easy test

(B) Weights of children in a third-grade class

(C) Winning soccer scores for a team over the course of a 
season

(D) Ages of all the people visiting the Bronx Zoo at a given
point in time

(E) Prices of all the desserts on the menu at a certain restaurant

32. Multiple Choice A sector on a pie chart with a central
angle of 45° corresponds to what percentage of the data?

(A) 8% (B) 12.5%

(C) 15% (D) 25%

(E) 45%

Source: National Geographic Atlas of the World (rev. 6th ed.,
1992, Washington, D.C.), plate 132.

Table 9.16 Average Daily High and Low
Temperatures in °C for Beijing, China

Month High Low

January 2
February 5
March 12
April 20 7
May 27 13
June 31 18
July 32 22
August 31 21
September 27 14
October 21 7
November 10
December 3 -7

-1

-1
-7
-9

36. Find a sinusoidal function that models each time plot in 
Exercise 35. (See Sections 4.4 and 4.8.)
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9.8 Statistics and Data (Algebraic)

What you’ll learn about
• Parameters and Statistics
• Mean, Median, and Mode
• The Five-Number Summary
• Boxplots
• Variance and Standard Deviation
• Normal Distributions

... and why
The language of statistics is be-
coming more commonplace in
our everyday world.

EXAMPLE 1  Distinguishing a Parameter from a Statistic
A 1996 study called Kids These Days: What Americans Really Think About the Next
Generation reported that 33% of adolescents say there is no adult at home when they
return from school. The report was based on a survey of 600 randomly selected peo-
ple aged 12 to 17 years old and had a margin of error of 4% (source: Public
Agenda). Did the survey measure a parameter or a statistic, and what does that “mar-
gin of error” mean?

SOLUTION The survey did not measure all adolescents in the population, so it did
not measure a parameter. They sampled 600 adolescents and found a statistic. On the
other hand, the statement “33% of adolescents say there is no adult at home” is mak-
ing an inference about all American adolescents. We should interpret that statement in
terms of the margin of error, as meaning “between 29% and 37% of all American ado-
lescents would say that there is no adult at home when they return from school.” In
other words, the statisticians are confident that the parameter is within 4% of their
sample statistic, even though they only sampled 600 adolescents—a tiny fraction of
the adolescent population! The mathematics that gives them that confidence is based
on the laws of probability and is scientifically reliable, but we will not go into it here.

Now try Exercise 1.

�

�

Mean, Median, and Mode
If you wanted to study the effect of chicken feed additives on the thickness of egg
shells, you would need to sample many eggs from different hens under various feeding
conditions. Suppose you were to gather data from 50 eggs from hens eating feed A and
50 eggs from hens eating feed B. How would you compare the two? The simplest way
would be to find the average egg shell thickness for each feed and compare those two
numbers.

The word “average,” however, can have several different meanings, all of them some-
how measures of center.

• If we say, “The average on last week’s test was 83.4,” we are referring to the mean.
(This is what most people usually think of as “average.”)

• If we say, “The average test score puts you right in the middle of the class,” we are
referring to the median.

• If we say, “The average American student starts college at age 18,” we are referring
to the mode.

Parameters and Statistics
The various numbers that are associated with a data set are called statistics. They
serve to describe the individuals from which the data come, so the gathering and 
processing of such numerical information is often called descriptive statistics. You
saw many examples of descriptive statistics in Section 9.7.

The science of statistics comes in when we use descriptive statistics (like the results of a
study of 1500 smokers) to make judgments, called inferences, about entire populations
(like all smokers). Statisticians are really interested in the numbers called parameters
that are associated with entire populations. Since it is usually either impractical or im-
possible to measure entire populations, statisticians gather statistics from carefully cho-
sen samples, then use the science of inferential statistics to make inferences about the
parameters.
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We will look at each of these measures separately.

SECTION 9.8 Statistics and Data (Algebraic) 705

The mean is also called the arithmetic mean, arithmetic average, or average value.

EXAMPLE 2  Computing a Mean
Find the mean annual home run total for Roger Maris’s major league career, 1957–1968
(Table 9.11 on page 701).

SOLUTION According to Table 9.11, we are looking for the mean of the follow-
ing list of 12 numbers: 

Now try Exercise 9.

x =

14 + 28 + 16 +
Á

+ 9 + 5

12
=

275

12
L 22.9

514, 28, 16, 39, 61, 33, 23, 26, 8, 13, 9, 56.

As common as it is to use the mean as a measure of center, sometimes it can be mis-
leading. For example, if you were to find the mean annual salary of a geography major
from the University of North Carolina working in Chicago in 1997, it would probably
be a number in the millions of dollars. This is because the group being measured,
which is not very large, includes an outlier named Michael Jordan. The mean can be
strongly affected by outliers.

We call a statistic resistant if it is not strongly affected by outliers. (See Exploration 1,
Section 9.7.) While the mean is not a resistant measure of center, the median is.

EXAMPLE 3  Finding a Median
Find the median of Roger Maris’s annual home run totals. (See Example 2.)

SOLUTION First, we arrange the list in ascending order: 5, 8, 9, 13, 14, 16, 23,
26, 28, 33, 39, 61 . Since there are 12 numbers, the median is the mean of the 6th
and 7th numbers:

Notice that this number is quite a bit smaller than the mean (22.9). The mean is
strongly affected by the outlier representing Maris’s record-breaking season, while
the median is not. The median would still have been 19.5 if he had hit only 41 home
runs that season, or, indeed, if he had hit 81. Now try Exercise 11.

16 + 23

2
= 19.5.

6 5

DEFINITION Mean
The mean of a list of n numbers is

x =

x1 + x2 +
Á

+ xn

n
=

1
n

 a

n

i=1
 x i 

.

5x1, x2, Á , xn6

DEFINITION Median
The median of a list of n numbers arranged in order (either as-
cending or descending) is

• the middle number if n is odd, and

• the mean of the two middle numbers if n is even.

5x1, x2, Á , xn6
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Both the mean and the median are important measures of center. A somewhat less im-
portant measure of center (but a measure of possible significance statistically) is the
mode.

706 CHAPTER 9 Discrete Mathematics

À la Mode
The mode can also be used for categorical 
variables.

EXAMPLE 4  Finding a Mode
Find the mode for the annual home run totals of Hank Aaron (Table 9.8 on page 698).
Is this number of any significance?

SOLUTION It helps to arrange the list in ascending order: 10, 12, 13, 20, 24, 26,
27, 29, 30, 32, 34, 34, 38, 39, 39, 40, 40, 44, 44, 44, 44, 45, 47 .

Most numbers in the list appear only once. Three numbers appear twice, and the
number 44 appears four times. The mode is 44.

It is rather unusual to have that many repeats of a number in a list of this sort. (By
comparison, the Maris list has no repeats—and hence no mode—while the lists for
Mays, Mantle, McGwire, and Bonds contain no number more than twice.) The mode
in this case has special significance only to baseball trivia buffs, who recognize 44 as
Aaron’s uniform number! Now try Exercise 17.

65

Example 4 demonstrates why the mode is less useful as a measure of center. The
mode is a long way from the median and the mean , either of which
does a much better job of representing Aaron’s annual home run output over the
course of his career.

132.83213421442

EXAMPLE 5  Using a Frequency Table
A teacher gives a 10-point quiz and records the scores in a frequency table (Table
9.17) as shown below. Find the mode, median, and mean of the data.

Table 9.17 Quiz Scores for Example 5

Score 10 9 8 7 6 5 4 3 2 1 0

Frequency 2 2 3 8 4 3 3 2 1 1 1

SOLUTION The total of the frequencies is 30, so there are 30 scores.

The mode is 7, since that is the score with the highest frequency.

The median of 30 numbers will be the mean of the 15th and 16th numbers. The table
is already arranged in descending order, so we count the frequencies from left to
right until we come to 15. We see that the 15th number is a 7 and the 16th number is
a 6. The median, therefore, is 6.5.

To find the mean, we multiply each number by its frequency, add the products, and
divide the total by 30:

Now try Exercise 19.= 5.93

x =

      + 4132 + 3122 + 2112 + 1112 + 01124
30

310122 + 9122 + 8132 + 7182 + 6142 + 5132

DEFINITION Mode
The mode of a list of numbers is the number that appears most frequently 
in the list.
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The formula for finding the mean of a list of numbers , with frequencies
is

This same formula can be used to find a weighted mean, in which numbers ,
are given weights before the mean is computed. The weights act the same

way as frequencies.
x2, Á , xn6

5x1

x =

x1ƒ1 + x2ƒ2 +
Á

+ xnƒn

ƒ1 + ƒ2 +
Á

+ ƒn
=

gx iƒi

gƒi
 .

5ƒ1, ƒ2, Á , ƒn6
x2, Á , xn65x1
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EXAMPLE 6  Working with a Weighted Mean
At Marty’s school, it is an administrative policy that the final exam must count 25%
of the semester grade. If Marty has an 88.5 average going into the final exam, what is
the minimum exam score needed to earn a 90 for the semester?

SOLUTION The preliminary average is given a weight of 0.75 and the final
exam is given a weight of 0.25. We will assume that a semester average of 89.5
will be rounded to a 90 on the transcript. Therefore,

Interpreting the answer, we conclude that Marty needs to make a 93 on the final
exam. Now try Exercise 21.

 x = 92.5

 0.25x = 89.5112 - 88.510.752
 
88.510.752 + x10.252

0.75 + 0.25
= 89.5

1x2 188.52

The Five-Number Summary
Measures of center tell only part of the story of a data set. They do not indicate how
widely distributed or highly variable the data are. Measures of spread do. The simplest
and crudest measure of spread is the range, which is the difference between the maxi-
mum and minimum values in the data set:

For example, the range of numbers in Roger Maris’s annual home run production is
Like the mean, the range is a statistic that is strongly influenced by out-

liers, so it can be misleading. A more resistant (and therefore more useful) measure is
the interquartile range, which is the range of the middle half of the data.

Just as the median separates the data into halves, the quartiles separate the data into
fourths. The first quartile is the median of the lower half of the data, the second
quartile is the median, and the third quartile is the median of the upper half of the
data. The interquartile range measures the spread between the first and third
quartiles, comprising the middle half of the data:

Taken together, the maximum, the minimum, and the three quartiles give a fairly com-
plete picture of both the center and the spread of a data set.

IQR = Q3 - Q1.

1IQR2 Q3

Q1

61 - 5 = 56.

Range = maximum - minimum.

Finding Quartiles
When we are finding the quartiles for a data set
with an odd number of values, we do not con-
sider the middle value to be included in either
the lower or the upper half of the data.

DEFINITION Five-Number Summary
The five-number summary of a data set is the collection

5minimum, Q1, median, Q3, maximum6.
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You can learn a lot about the data by considering the shape of the distribution, as visu-
alized in a histogram. Try answering the questions in Exploration 1.

708 CHAPTER 9 Discrete Mathematics

EXAMPLE 7  Five-Number Summary and Spread
Find the five-number summaries for the male and female life expectancies in South
American nations (Table 9.12 on page 701) and compare the spreads.

SOLUTION Here are the lists in ascending order.

Males:

Females:

We have spaced the lists to show where the quartiles appear. The median of the 12
values is midway between the 6th and 7th values. The first quartile is the median of
the lower 6 values (i.e., midway between the 3rd and 4th), and the third quartile is the
median of the upper 6 values (i.e., midway between the 9th and 10th).

The five-number summaries are shown below.

The males have a range of and an IQR of 

The females have a range of and an 

Not only do the women live longer, but there is less variability in their life expectan-
cies (as measured by the IQR). Male life expectancy is more strongly affected by dif-
ferent political conditions within countries (war, civil strife, crime, etc.).

Now try Exercise 23.

IQR of 77.7 - 70.25 = 7.45.79.4 - 66.2 = 13.2

71.65 - 64.1 = 7.55.72.6 - 59.0 = 13.6

 Females: 566.2, 70.25, 74.5, 77.7, 79.46
Males:     559.0, 64.1, 68.75, 71.65, 72.66

566.2, 66.7, 67.7, 72.8, 74.3, 74.4, 74.6, 76.5, 76.6, 78.8, 79.0, 79.46

559.0, 60.5, 61.5, 66.7, 67.9, 68.5, 69.0, 70.3, 71.4, 71.9, 72.1, 72.66

Computing Statistics on a
Calculator
Modern calculators will usually process lists of
data and give statistics like the mean, median,
and quartiles with a push of a button. Consult
your owner’s manual.

(a)

(b)

FIGURE 9.19 Which data set has more
variability? (Exploration 1)

(a) (b) (c)

FIGURE 9.20 Which graph shows a data set in which the mean is less than the median? Greater than the median? Approximately equal 
to the median? (Exploration 1)

EXPLORATION 1 Interpreting Histograms

1. Of the two histograms shown in Figure 9.19, which displays a data set with
more variability?

2. Of the three histograms in Figure 9.20, which has a median less than its mean?
Which has a median greater than its mean? Which has a median approximately
equal to its mean?
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The distribution in Figure 9.20a is symmetric because it looks approximately the same
when reflected about a vertical line through the median. The distribution in Figure
9.20b is skewed right because it has a longer “tail” to the right. The values in the tail
will pull nonresistant measures (like the mean) to the right, leaving resistant measures
(like the median) behind. The distribution in Figure 9.20c is skewed left, because non-
resistant measures are pulled to the left.

You can also see symmetry and skewedness in stemplots, which have the same shapes
vertically as histograms have horizontally.

Boxplots
A boxplot (sometimes called a box-and-whisker plot) is a graph that depicts the five-
number summary of a data set. The plot consists of a central rectangle (box) that ex-
tends from the first quartile to the third quartile, with a vertical segment marking the
median. Line segments (whiskers) extend at the ends of the box to the minimum and
maximum values. For example, the five-number summary for the male life expectan-
cies in South American nations (Example 7) was The
boxplot for the data is shown in Figure 9.21. Notice that the box and the whisker extend
further to the left of the median than to the right, suggesting a distribution that is
skewed left. (The histogram obtained in Exercise 9 of Section 9.7 confirms that this is
the case.)

559.0, 64.1, 68.75, 71.65, 72.66.

SECTION 9.8 Statistics and Data (Algebraic) 709

Min

Max

Med Q
3

Q
1

7570656055 80

FIGURE 9.21 A boxplot for the five-
number summary of the male life expectan-
cies in Example 7. (The features on the box
are labeled here for illustrative purposes; it is
not necessary in general to label the min, the
quartiles, or the max.)

7570656055 80

FIGURE 9.22 A single graph showing
boxplots for male and female life expectancies
in the nations of South America gives a good
visualization of the differences in the two data
sets. (Example 8)

[0, 65] by [–5, 10]

FIGURE 9.23 A boxplot of Roger Maris’s
annual home run production Table 9.11 on
page 701 . The outlier results in a long
whisker on the right because the maximum is
much larger than Q3.

16122
1

EXAMPLE 8  Comparing Boxplots
Draw boxplots for the male and female data in Example 7 and describe briefly the in-
formation displayed in the visualization.

SOLUTION The five-number summaries are:

Males:

Females:

The boxplots can be graphed simultaneously (Figure 9.22).

From this graph we can see that the middle half of the female life expectancies are all
greater than the median of the male life expectancies. The median life expectancy for
the women among South American nations is greater than the maximum for the men.

Now try Exercise 31.

566.2, 70.25, 74.5, 77.7, 79.46
559.0, 64.1, 68.75, 71.65, 72.66

If we look at the boxplot for Roger Maris’s annual home run totals 14, 28, 16, 39, 61,
33, 23, 26, 8, 13, 9, 5 , we see that the whisker on the right is very long (Figure 9.23).
This is a visualization of the effect of the outlier , which is much larger than the
third quartile .

In fact, a boxplot gives us a convenient way to think of an outlier: a number that makes
one of the whiskers noticeably longer than the box. The usual rule of thumb for “no-
ticeably longer” is 1.5 times as long. Since the length of the box is the IQR, that leads
us to the following numerical check.

130.52 16126 5

A number in a data set can be considered an outlier if it is more than
below the first quartile or above the third quartile.1.5 * IQR
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EXAMPLE 9  Identifying an Outlier
Is 61 an outlier in Roger Maris’s home run data according to the criterion?

SOLUTION Maris’s totals, in order: 

His five-number summary: 

His IQR: 

So,

Since the rule of thumb identifies it as an outlier.
Now try Exercise 39.

61 7 59.75,

Q3 + 1.5 * IQR = 30.5 + 1.5 * 19.5 = 59.75.

30.5 - 11 = 19.5

55, 11, 19.5, 30.5, 616
55, 8, 9, 13, 14, 16, 23, 26, 28, 33, 39, 616

1.5 * IQR

Defining Outliers
It must be pointed out that the rule of thumb
given here for identifying outliers is not a univer-
sal definition. The only sure way to characterize
an outlier is that it lies outside the expected
range of the data, and that “expected range” can
be a judgment call.

By their very nature, outliers can distort the overall picture we get of the data. For that
reason, statisticians will frequently look for reasons to omit them from their statistical
displays and calculations. (This can, of course, be risky. You want to omit a strange labo-
ratory reading if you suspect equipment error, but you do not want to ignore a potential
scientific discovery.) A modified boxplot is a compromise visualization that separates
outliers as isolated points, extending the whiskers only to the farthest nonoutliers.
Figure 9.24 shows a modified boxplot of Roger Maris’s home run data, as compared to
a regular boxplot.

Variance and Standard Deviation
You might be surprised that the five-number summary and its boxplot graph do not
even make reference to the mean, which is a more familiar measure than a median or a
quartile. This is because the mean, being a nonresistant measure, is less reliable in the
presence of outliers or skewed data.

On the other hand, the mean is an excellent measure of center when outliers and
skewedness are not present, which is quite often the case. Indeed, histograms of data
from all kinds of real-world sources tend to look something like Figure 9.25, in which
frequencies are higher close to the mean and lower as you move away from the mean in
either direction. Statisticians call these normal distributions. (We will make that term
more precise shortly.)

For normally distributed data, the mean is the preferred measure of center. There is also
a measure of variability for normal data that is better than the IQR, called the standard
deviation. Like the mean, the standard deviation is strongly affected by outliers and can
be misleading if outliers are present.

403020100 50 60 70

FIGURE 9.24 A modified boxplot and a
regular boxplot of Roger Maris’s annual home
run totals.

FIGURE 9.25 Histograms based on data
gathered from real-world sources are often
symmetric and higher in the middle, without
outliers. Frequency distributions with graphs
of this shape are called normal. If we define the “deviation” of a data value to be how much it differs from the mean,

then the variance is just the mean of the squared deviations. The standard deviation is
the square root of the mean of the squared deviations, which is why it is sometimes
called the root mean square deviation. The symbol “ ” is a lowercase Greek letter
sigma.

s

DEFINITION Standard Deviation
The standard deviation of the numbers is

where denotes the mean. The variance is , the square of the standard 
deviation.

s2x

s = B
1
n

 a

n

i=1
 1x i - x22 .

5x1, x2, Á , xn6 
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Calculating a standard deviation by hand can be tedious, but with modern calculators it
is usually only necessary to enter the list of data and push a button. In fact, most calcu-
lators give you a choice of two standard deviations, one slightly larger than the other.
The larger one (usually called s) is based on the formula

The difference is that the formula is for finding the true parameter, which means that
it only applies when is the whole population. If , is a
sample from the population, then the s formula actually gives a better estimate of the
parameter than the formula does. So use the larger standard deviation when your data
come from a sample (which is almost always the case).

s

x2, Á , xn65x15x1, x2, Á , xn6
s

s = B
1

n - 1
 a

n

i=1
 1x i - x22 .
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1–Var Stats

n=30

Sx=3.509823652
sx=3.450830818

Σx2=229992.25

x=87.49–
Σx=2624.7

FIGURE 9.26 Single-variable statistics in
a typical calculator display. (Example 10)

EXAMPLE 10  Finding Standard Deviation with a Calculator
A researcher measured 30 newly hatched loon chicks and recorded their weights in
grams as shown in Table 9.18.

Table 9.18 Weights in Grams of 30 Loon Chicks

79.5 87.5 88.5 89.2 91.6 84.5 82.1 82.3 85.7 89.8
84.0 84.8 88.2 88.2 82.9 89.8 89.2 94.1 88.0 91.1
91.8 87.0 87.7 88.0 85.4 94.4 91.3 86.4 85.7 86.0

Based on the sample, estimate the mean and standard deviation for the weights of
newly hatched loon chicks. Are these measures useful in this case, or should we use
the five-number summary?

SOLUTION We enter the list of data into a calculator and choose the command
that will produce statistics of a single variable. The output from one such calculator
is shown in Figure 9.26.

The mean is grams. For standard deviation, we choose grams
because the calculations are based on a sample of loon chicks, not the entire popula-
tion of loon chicks.

A histogram in the window by shows that the distribu-
tion is normal (as we would expect from nature), containing no outliers or strong
skewedness. Therefore, the mean and standard deviation are appropriate measures
(Figure 9.27). Now try Exercise 35.

30, 104377, 9841Xscl = 22

Sx = 3.51x = 87.49

[77, 98] by [0, 10]

FIGURE 9.27 The weights of the loon
chicks in Example 10 appear to be normal,
with no outliers or strong skewedness. We
conclude that the mean and standard deviation
are appropriate measures of center and vari-
ability, respectively.

Normal Distributions
Although we use the word normal in many contexts to suggest typical behavior, in the con-
text of statistics and data distributions it is really a technical term. If you graph the function

in the window by you will see what normal means mathematically
(Figure 9.28).

The shape corresponds to the kind of distribution we have been calling “normal.” In
fact this curve, called a Gaussian curve or normal curve, is a precise mathematical
model for normal behavior. That is where the mean and standard deviation come in.

The standard deviation of the curve in Figure 9.28 is 1. Using calculus, we can find that
about 68% of the total area under this curve lies between and 1 (Figure 9.29a).
Since any normal distribution has this shape, about 68% of the data in any normal dis-
tribution lie within 1 standard deviation of the mean.

-1

30, 14,3-3, 34
y = e-x2/2

y

x

FIGURE 9.28 The graph of 
This is a Gaussian (or normal) curve.

y = e-x2/2
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Similarly, we can find that about 95% of the total area under the Gaussian curve lies be-
tween and 2 (Figure 9.29b), implying that about 95% of the data in any normal dis-
tribution lie within 2 standard deviations of the mean.

Similarly, we can find that about 99.7% (nearly all) of the total area under the Gaussian
curve lies between and 3 (Figure 9.29c), implying that about 99.7% of the data in
any normal distribution lie within 3 standard deviations of the mean.

-3

-2
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y

x

y

x

y

x
(a) (b) (c)

FIGURE 9.29 (a) About 68% of the area under a Gaussian curve lies within 1 unit of the
mean. (b) About 95% of the area lies within 2 units of the mean. (c) About 99.7% of the area
lies within 3 units of the mean. If we think of the units as standard deviations, this gives us a
model for any normal distribution.

The 68–95–99.7 Rule
If the data for a population are normally distributed with mean and standard
deviation , then

• approximately 68% of the data lie between and ;

• approximately 95% of the data lie between and ;

• approximately 99.7% of the data lie between .m - 3s and m + 3s

m + 2sm - 2s

m + 1sm - 1s

s

m

What makes this rule so useful is that normal distributions are common in a wide vari-
ety of statistical applications. We close the section with a simple application.

EXAMPLE 11  Using the 68–95–99.7 Rule
Based on the research data presented in Example 10, would a loon chick weighing 
95 grams be in the top 2.5% of all newly hatched loon chicks?

SOLUTION We assume that the weights of newly hatched loon chicks are nor-
mally distributed in the whole population. Since we do not know the mean and stan-
dard deviation for the whole population the parameters and , we use 
and as estimates.

Look at Figure 9.29b. The shaded region contains 95% of the area, so the two identi-
cal white regions at either end must each contain 2.5% of the area. That is, to be in
the top 2.5%, a loon chick will have to weigh at least 2 standard deviations more than
the mean:

Since a 95-gram loon chick is indeed in the top 2.5%.

Now try Exercise 41.
95 7 94.51,

x + 2Sx = 87.49 + 213.512 = 94.51 grams

Sx = 3.51
x = 87.492sm1

Continuous Random Variables
Weights of loon chicks (Example 10) are values
of a continuous random variable, because, un-
like the random variables in Section 9.3, a loon
chick can theoretically assume any real-number
weight in an interval. Since normal random vari-
ables are continuous, their probability distribu-
tions are described using continuous curves.
Contrast this with the Binomial Distribution in
Section 9.3, which involved a discrete random
variable. (See the distinction between discrete
and continuous that opened this chapter.)
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QUICK REVIEW 9.8 (Prerequisite skill Section 9.5)

In Exercises 7–10, write the sum in sigma notation.

7.

8.

9.

10. B
1

7
 31x1 - x22 + 1x2 - x22 +

Á
+ 1x7 - x224

1

50
 31x1 - x22 + 1x2 - x22 +

Á
+ 1x50 - x224

1x1 - x22 + 1x2 - x22 +
Á

+ 1x10 - x22
x1ƒ1 + x2ƒ2 + x3ƒ3 +

Á
+ x8ƒ8

In Exercises 1–6, write the sum in expanded form.

1. 2.

3. 4.

5. 6. B
1

5
 a

5

i=1
 1x i - x221

5
 a

5

i=1
 1x i - x22

1

5
 a

5

i=1
 1x i - x21

7
 a

7

i=1
 x i

a

5

i=1
 1x i - x2a

7

i=1
 x i

SECTION 9.8 EXERCISES

1. In each case, identify whether the number described is a
parameter or a statistic.

(a) The average score on last week’s quiz was 73.4.

(b) About 13% of the human population is left-handed.

(c) In a study of laboratory rats, 93% became aggressive when
deprived of sleep.

2. In each case, identify whether the average described is a mean,
median, or mode.

(a) The average Irish child with red hair also has
freckles.

(b) The pitcher’s earned run average is 2.35.

(c) The choir lined up with tall people in the back, 
short people in front, and people of average height in 
the middle.

In Exercises 3–6, find the mean of the data set.

3.

4.

5.

6.

In Exercises 7 and 8, find the mean population of the six states listed in
Table 9.15 (page 702) for the indicated year.

7. 1900

8. 1990

527.4, 3.1, 9.7, 32.3, 12.8, 39.4, 73.76
532.4, 48.1, 85.3, 67.2, 72.4, 55.36
54, 8, 11, 6, 21, 76
512, 23, 15, 48, 366

In Exercises 9 and 10, find the mean of the indicated data.

9. The number of satellites (moons), from the data in 
Table 9.19.

Table 9.20 Size of Continent

Continent Area ( )

Africa 30,065,000
Antarctica 13,209,000
Asia 44,579,000
Australia/Oceania 8,112,000
Europe 9,938,000
North America 24,474,000
South America 17,819,000

km2

Source: Worldatlas.com, 2005.

If you study statistics more deeply someday, you will learn that more is going on in 
Example 11 than meets the eye. For starters, we need to know that the chicks are really
a random sample of all loon chicks (not, for example, from the same geographical
area). Also, we lose some accuracy by using a statistic to estimate the true standard 
deviation, and statisticians have ways of taking that into account.

Table 9.19 Planetary Satellites

Planet Number of Satellites

Mercury 0
Venus 0
Earth 1
Mars 2
Jupiter 61
Saturn 33
Uranus 26
Neptune 13
Pluto 1

Source: World Almanac and Book of Facts 2005.

10. The area of the continents, from the data in Table 9.20.
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11. Find the median of the data in Table 9.19. (See Exercise 9.)

12. Find the median of the data in Table 9.20. (See Exercise 10.)

13. Home Run Production Determine the average annual
home run production for Willie Mays and for Mickey Mantle
for their career totals of 660 over 22 years and 536 over 
18 years, respectively. Who had the greater production rate?

14. Painting Houses A painting crew in State College,
Pennsylvania, painted 12 houses in 5 days, and a crew in 
College Station, Texas, painted 15 houses in 7 days. Determine
the average number of houses per day each crew painted.
Which crew had the greater rate?

15. Skirt Production The Hip-Hop House produced 
1147 scooter skirts in 4 weeks, and What-Next Fashion pro-
duced 1516 scooter skirts in 4 weeks. Which company had the
greater production rate?

16. Per Capita Income Per capita income (PCI) is an aver-
age found by dividing a nation’s gross national product (GNP)
by its population. India has 882,575,000 people and a GNP of
311 billion dollars, and Mexico has 87,715,000 people and a
GNP of 218 billion dollars. Determine the PCI for India and
for Mexico. Which nation has the greater income per person?

17. Find the median and mode of the numbers in Table 9.18 on
page 711 (weights in grams of newly hatched loon chicks).

18. In 1998, a total of 116,517 students took the Advanced 
Placement examination in Calculus AB. From the frequency
table below, find the mean score in Calculus AB in 1998.
(Source: The College Board.)
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(c) Compare your results in parts (a) and (b). Do the weights have an
effect on the average? Why or why not? Which average is the bet-
ter indicator for these temperatures?

20. The monthly high temperatures

21. The monthly low temperatures

In Exercises 22–25, determine the five-number summary, the range,
and the interquartile range for the sets of data specified. Identify any
outliers.

22. The annual home run production data for Mark McGwire and
Barry Bonds in Table 9.6 (page 696).

23. The annual home run production data for Willie Mays and
Mickey Mantle in Table 9.13 (page 701).

24. The following average annual wind speeds at 44 climatic data
centers around the United States:

9.0, 6.9, 9.1, 9.2, 10.2, 12.5, 12.0, 11.2, 12.9, 10.3, 10.6, 10.9,
8.7, 10.3, 11.0, 7.7, 11.4, 7.9, 9.6, 8.0, 10.7, 9.3, 7.9, 6.2, 8.3,
8.9, 9.3, 11.6, 10.6, 9.0, 8.2, 9.4, 10.6, 9.5, 6.3, 9.1, 7.9, 9.7,
8.8, 6.9, 8.7, 9.0, 8.9, 9.3

25. The following salaries for employees in one department of the
Garcia Brothers Company (in thousands of dollars):

33.5, 35.3, 33.8, 29.3, 36.7, 32.8, 31.7, 37.3, 33.5, 28.2, 34.8,
33.5, 29.7, 38.5, 32.7, 34.8, 34.2, 31.6, 35.4

In Exercises 26–28, make (a) a boxplot and (b) a modified boxplot for
the data.

26. The annual home run production data for Mark McGwire in
Table 9.6 (page 696)

27. The annual home run production data for Barry Bonds in 
Table 9.6 (page 696)

28. The annual CD shipments in Table 9.9 (page 699)

In Exercises 29 and 30, refer to the wind speed data analyzed in 
Exercise 24.

29. Some wind turbine generators, to be efficient generators of
power, require average wind speeds of at least 10.5 mph. Ap-
proximately what fraction of the climatic centers are suited for
these wind turbine generators?

30. If technology improves the efficiency of the wind turbines so
that they are efficient in winds that average at least 7.5 mph,
approximately what fraction of the climatic centers are suited
for these improved wind generators?

In Exercises 31 and 32, use simultaneous boxplots of the annual home
run production data for Willie Mays and Mickey Mantle in Table 9.13
(page 701) to answer the question.

31. (a) Which data set has the greater range?

(b) Which data set has the greater interquartile range?

32. Writing to Learn Write a paragraph explaining the dif-
ference in home run production between Willie Mays and
Mickey Mantle.

In Exercises 33–38, find the standard deviation and variance of the data
set. (Since the data set is the population under consideration, use in
each case, rather than s.)

33.

34. 528, 84, 67, 71, 92, 37, 45, 32, 74, 966
523, 45, 29, 34, 39, 41, 19, 226

s

AP Examination Grade Number of Students

5 9879

4 5119

3 6143

2 2616

1 3027

AP Examination Grade Number of Students

5 18,522

4 27,102

3 31,286

2 20,732

1 18,875

19. In 1998, a total of 26,784 students took the Advanced Place-
ment examination in Calculus BC. From the frequency table
below, find the mean score in Calculus BC in 1998. (Source:
The College Board.)

In Exercises 20 and 21 use the data in Table 9.16 (page 703).

(a) Find the average (mean) of the indicated temperatures for Beijing.

(b) Find the weighted average using the number of days in the month
as the weight. (Assume no leap year.)
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35. The CD shipment data in Table 9.9 (page 699)

36. The cassette shipment data in Table 9.10 (page 700)

37. The data in Exercise 24

38. The data in Exercise 25

39. Mark McGwire’s annual home run production (Table 9.6, 
page 696) ranges from a low of 3 to a high of 70. Is either of
these numbers an outlier by the 1.5 IQR criterion?

40. Writing to Learn Is it possible for the standard devia-
tion of a set to be negative? To be zero? Explain your answer in
both cases.

41. SAT Scores In 1995, scores on the Scholastic Aptitude
Tests were re-scaled to their original mean with an ap-
proximate standard deviation of 100. SAT scores in the general
population have a normal distribution.

(a) Approximately what percentage of the 1995 scores fell be-
tween 400 and 600?

(b) Approximately what percentage of the 1995 scores fell be-
low 300?

(c) By 2001 the national average on the SAT Math section had
risen to 514. Is this number a parameter or a statistic?

42. ACT Scores In 2001, the national mean ACT Math score
was 20.7, with an approximate standard deviation of 6. ACT
scores in the general population have a normal distribution.

(a) Approximately what percentage of the 2001 scores were
higher than 26.7?

(b) Approximately what ACT Math score would one need to
make in 2001 to be ranked among the top 2.5% of all who
took the test?

(c) Writing to Learn Mean ACT scores are published
state by state. If we add up the 50 state means and divide
by 50, will the result be a good estimate for the national
mean score? Explain your answer.

Standardized Test Questions
43. True or False The median is strongly affected by out-

liers. Justify your answer.

44. True or False The length of the box in a boxplot is the
interquartile range. Justify your answer.

You may use a graphing calculator when solving Exercises 45–48.

45. Multiple Choice The plot of a normal distribution 
will be

(A) Symmetric.

(B) Skewed left.

(C) Skewed right.

(D) Lower in the middle than at the ends.

(E) Of no predictable shape.

46. Multiple Choice A frequency table for a set of 25 quiz
grades is given below. What is the mean of the data?

15002

*
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(A) 7.00

(B) 7.28

(C) 7.35

(D) 7.60

(E) 7.86

47. Multiple Choice Professor Mitchell grades the exams of
his 30 students and finds that the scores have a mean of 81.3
and a median of 80.5. He later determines that the top student
deserves 9 extra points for a misgraded proof. After the error is
corrected, the scores have

(A) A mean of 81.3 and a median of 80.5.

(B) A mean of 81.6 and a median of 80.5.

(C) A mean of 81.6 and a median of 80.8.

(D) A mean of 90.3 and a median of 80.5.

(E) A mean of 90.3 and a median of 89.5.

48. Multiple Choice If the calorie contents of robin eggs are
normally distributed with a mean of 25 and a standard devia-
tion of 1.2, then 95% of all robin eggs will have a calorie con-
tent in the interval

(A) .

(B) .

(C) .

(D) .

(E) .

Explorations
49. Group Activity List a set of data for which the inequal-

ity holds.

(a) Mode median mean

(b) Median mean mode

(c) Mean mode median

50. Group Activity List a set of data for which the equation
or inequality holds.

(a) Standard deviation interquartile range

(b) Interquartile range standard deviation

(c) Range interquartile range

51. Is it possible for the standard deviation of a data set to be
greater than the range? Explain.

52. Why can we find the mode of categorical data but not the mean
or median?

53. Draw a boxplot for which the inequality holds.

(a) Median mean

(b) interquartile range range

(c) Range interquartile range

54. Construct a set of data with median 5, mode 6, and mean 7.

6 2 *

62 *

6

=

6

6

66

66

66

323.8, 26.24
323, 274
322.6, 27.44
322, 284
321.4, 28.64

Quiz Grade 10 9 8 7 6 5 4 3 2 1

Number of Students 3 3 5 6 4 3 1 0 0 0
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Extending the Ideas
Weighting Data by Population The average life expectan-
cies for males and females in South American nations were given in
Table 9.12 (page 701). To find an overall average life expectancy for
males or females in all of these nations, we would need to weight the
national data according to the various national populations. Table 9.21
is an extension of Table 9.12, showing the populations (in millions).
Assume that males and females appear in roughly equal numbers in
every nation.
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In Exercises 55 and 56, use the data in Table 9.21 to find the mean life
expectancy for each group.

55. Women living in South American nations

56. Men living in South American nations 

57. Quality Control A plant manufactures ball bearings to
the purchaser’s specifications, rejecting any output with a di-
ameter that deviates more than 0.1 mm from the specified
value. If the ball bearings are produced with the specified mean
and a standard deviation of 0.05 mm, what percentage of the
output will be rejected?

58. Quality Control A 
machine fills 12-ounce cola cans
with a mean of 12.08 ounces of
cola and a standard deviation of
0.04 ounce. Approximately 
what percentage of the cans will 
actually contain less than the 
advertised 12 ounces of cola?

Source: The World Almanac and Book of Facts 2005.

Table 9.21 Life Expectancy by Gender and
Population (in millions) for the Nations of 
South America

Nation Female Male Population

Argentina 79.7 72.0 39.1
Bolivia 67.9 62.5 8.7
Brazil 75.6 67.5 184.1
Chile 79.8 73.1 15.8
Colombia 75.4 67.6 42.3
Ecuador 79.0 73.2 13.2
Guyana 64.8 60.1 0.7
Paraguay 77.3 72.1 6.2
Peru 71.0 67.5 27.5
Suriname 71.6 66.8 0.4
Uruguay 79.2 72.7 3.4
Venezuela 77.3 71.0 25.0
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9.9 Statistical Literacy

EXPLORATION 1 Test Your Statistical Savvy

Each one of the following scenarios contains at least one common misuse of

statistics. How many can you catch?

1. A researcher reported finding a high correlation between aggression in chil-
dren and gender.

2. Based on a survey of shoppers at the city’s busiest mall on two consecutive
weekday afternoons, the mayor’s staff concluded that 68% of the voters would
support his re-election.

3. A doctor recommended vanilla chewing gum to headache sufferers, noting that
he had tested it himself on 100 of his patients, 87 of whom reported feeling
better within two hours.

4. A school system studied absenteeism in its secondary schools and found a neg-
ative correlation between student GPA and student absences. They concluded
that absences cause a student’s grade to go down.

Correlation Revisited
We mentioned r, the correlation coefficient, briefly at the end of Section 1.7, along with

, the coefficient of determination. We suggested using the closeness of to 1 as a
measure of how well a curve fits the points of a scatter plot. In Section 2.1 we noted
that statisticians commonly use r for a similar purpose, but always as a measure of how
close the data points are to a straight line. We now want to be a little more emphatic
about that point. Consider the following graphs:

Figure 9.30 shows a positive association between the y-variable and the x-variable, as
the higher y-values are generally associated with the higher x-values. Because the un-
derlying relationship appears to be linear, it is appropriate to consider the correlation
coefficient. It is positive (because the line’s slope is positive), and it is close to 
because the points are close to the line. It is appropriate to say that there is a strong
positive correlation.

Figure 9.31 shows a definite negative association between the y-variable and the x-
variable, as the higher y-values are generally associated with the lower x-values. Be-
cause the underlying relationship appears to be linear, it is appropriate to consider the
correlation coefficient. It is negative (because the line’s slope is negative), but because
the points are quite scattered, it is not very close to . It is appropriate to say that
there is a weak negative correlation.

-1

+1

R2R2

r = 0.975

FIGURE 9.30

r = –0.689

FIGURE 9.31

The Many Misuses of Statistics
Just as knowing a little bit about edible wild mushrooms can get you into trouble, so
can knowing a little about statistics. This book has not ventured too far into the realm
of inferential statistics, the methods of using statistics to draw conclusions about
real-world phenomena, because that is rightfully another course. Unfortunately, a lack
of true understanding does not stop people from misusing statistics every day to draw
conclusions, many of them totally unjustified, and then inflicting those conclusions on
you. We will therefore end this chapter with a brief “consumer’s guide” to the most
common misuses of statistics.

What you’ll learn about
• The Many Misuses of Statistics
• Correlation Revisited
• The Importance of Randomness
• Surveys and Observational

Studies
• Experimental Design
• Using Randomness
• Probability Simulations

... and why
Statistical literacy is important in
today’s data-driven world.
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Figure 9.32 shows a strong association between the y-variable and the x-variable. The
association is negative for the smaller x-values and positive for the higher x-values. The
correlation coefficient happens to be positive, but the correlation coefficient in this case
is an inappropriate measure. We should not even be talking about correlation here, be-
cause that would be treating this relationship as linear! A quadratic model appears to be
much more appropriate.

Figure 9.33 shows a very weak negative association between the y-variable and the x-
variable. It is certainly not very useful to model this relationship with a line; indeed, we
should be far more interested in the down-up-down-up pattern, which might suggest a
periodic function. The correlation coefficient happens to be negative and close to 0, but
we would only be concerned with it if we believed a linear model to be appropriate. If
that is our belief, then we could appropriately say that there is a very weak negative
correlation.

Now that you know the terms, here are the things to watch for.
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r = 0.450

FIGURE 9.32

r = –0.227

FIGURE 9.33

FIGURE 9.34

Correlation Correctness
Be sure both variables are quantitative. If no scatter plot is shown, ask yourself
if you could possibly have the data to make one.

Don’t confuse association with correlation. Association is a much broader term
(even applicable to nonquantitative data), whereas correlation should be used
only for quantitative data to measure the strength of an association that we be-
lieve to be linear.

Correlation does not imply causation. If the points line up nicely, it is tempting
to conclude that the variable y is reacting to the variable x. It might actually be
the other way around, or both variables might be reacting to a third variable not
under consideration.

Be sure the underlying pattern in the scatter plot is linear. Strength of correla-
tion is not an appropriate measure for data exhibiting nonlinear behavior.

Transforming Data
Statisticians will often use function techniques to
transform data to conform to linear models, 
precisely so that correlation analysis can be used.
(We did this in Example 7 in Section 3.4.) When
your calculator reports an r-value for a nonlinear
regression, it is using the transformed data.

EXAMPLE 1  Being Critical About Correlation
In each case, tell whether correlation is being used correctly. Identify any statistical
errors.

(1) A graph of per capita gross domestic product against literacy rate for 
17 world countries is shown in Figure 9.34. The strong positive association 
(with ) proves that raising a country’s literacy rate will improve its per
capita gross domestic product.

(2) A research company reported a strong correlation between the religious affilia-
tion of American adults and the types of charitable organizations they support.

(3) A famous study of college freshmen once showed that the high school measure
that had the highest positive correlation with freshman GPA in college was
“number of mathematics courses taken in high school.” It showed that the best
preparation for college was to take a lot of math courses.

(4) A researcher in 1990 measured the heights and the annual salaries of all the 
people named Michael Jordan in Chicago. The correlation was an astounding
0.97, suggesting a strong linear relationship between height and salary among 
the group.

r = 0.788

1x21y2
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The Importance of Randomness
Statistical inference absolutely depends on randomness, ironically because it is so pre-
dictable. Take another look at Example 11 in Section 9.8, which used the 68-95-99.7
Rule (a rule based on the laws of probability) to infer a fact about loon chicks in the
population. Since the inference was based on a sample of 30 loon chicks, it was vital
that we trusted these 30 chicks as being typical of the overall population. Would we
have trusted the sample if all 30 chicks had been born in the same wildlife preserve in
northern Michigan? Probably not. What if a later study were to show that this particular
preserve produced unusually large loon chicks? It would render our data useless for
making inferences about the population of all loon chicks.

The only reasonable defense the statistician can use against this problem of potentially
atypical samples is to ensure that the samples are chosen randomly from the population
being studied. Then the laws of probability give us a measurable confidence that the
atypical cases in the population will, by chance, occur with the same relative frequency
in our sample as they do in the population.
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FIGURE 9.35

SOLUTION

(1) While the reference to the “strong positive association” is correct, it is inappropriate
here to report the correlation coefficient r, since the slight bend suggests that the
best model might not be linear. The biggest error, however, is jumping to the con-
clusion that an increase in literacy rate will cause an increase in per capita GDP.

(2) While there might well be an association between these two variables, they are
both categorical, so no correlation is possible.

(3) The error is in the conclusion that more math courses will cause the GPA to go
up. In fact, both variables here are probably responding to a third variable, the
academic motivation of the student.

(4) Everything here is actually correct, except that the researcher should not have
been astounded. One of the Michaels had an unusually high salary and an unusu-
ally high height, causing the scatter plot to look somewhat like Figure 9.35. The
only reason that the linear model looks so good is because of that one unusual
point, which results in a misleading value of r and, in this case, a misleading 
regression equation. Beware of such points when analyzing correlation.

Now try Exercise 5.

EXAMPLE 2  Analyzing Samples for Randomness
Which of the following sampling strategies will result in random samples from the
population under consideration?

(1) Your school wants to pick 5 random seniors to represent the school on a district
panel. The names of the seniors are written on slips of paper and placed in a
bucket. After the class president shakes the bucket, the blindfolded principal
draws five names.

(2) A group studying the increasing problem of obesity in America wants to esti-
mate the percentage of American teenagers who order hash browns with their
breakfast sandwiches at a particular national fast food chain. They visit each of
the chain’s restaurants in Idaho and gather data from the first ten teenagers they
see ordering breakfast sandwiches in each restaurant.

(3) The Miss America contest wants to choose 8 state representatives at random for a
publicity shoot. Each of the 52 women is given a card from a well-shuffled deck
of 52 playing cards. The publicity chair then chooses 8 cards at random from an-
other well-shuffled deck, and the women with the matching cards go to the shoot.

(continued)
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Surveys and Observational Studies
Recall that statisticians use statistics (numbers determined from samples) to estimate
parameters (numbers associated with populations). In a sample survey (such as a
political poll), data are gathered through questioning. In an observational study
(such as a wildlife count), the data are simply observed and recorded. You might
think it would be safer to gather data from the entire population (in which case the
study is called a census), but that is often impossible, or at least impractical. Instead,
statisticians pay attention to their sampling methods so that they can use the laws of
probability to make confident inferences about the population parameters. Some
sampling designs can be quite complicated, but the most basic requirement is that the
sampling be free of bias. That is, there should be nothing in the sampling process that
could systematically cause the sample to differ from the population with respect to
the statistic being gathered. Sadly, biased sampling is one of the most common flaws
in the world of bad statistics.
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SOLUTION

(1) This strategy rarely proves to be random, since the names usually enter the
bucket in nonrandom order (for example, alphabetically), and the typical shak-
ing does not usually compensate for that. As a result, the names toward the
end of the alphabet are still closer to the top and thus have a better chance of
being chosen. (This phenomenon famously affected the 1969 Selective Service
draft lottery.)

(2) Not random. Idaho has no guarantee of being typical for the purposes of this
study. (For example, people might be more partial to potatoes in Idaho than in,
say, Georgia.) Also, sampling the “first ten teenagers” at each site is not random,
as friends who arrive together are more apt to be like-minded diners.

(3) This strategy is random. Notice that the method is quite carefully designed, but
that is what is usually necessary for simulating randomness. We will return to
this point at the end of this section. Now try Exercise 9.

EXAMPLE 3  Analyzing Samples for Bias
Each of the following studies suffers from a form of sampling bias. Point out the
problem, and we will then give it a name for you.

(1) A local talk-show host wanted to assess the opinion of city residents on a pro-
posed tax increase for public education, so he invited listeners to phone in their
opinions. According to his poll, 93% opposed the tax increase.

(2) A parent group opposed to the proposed renovation of their high school audito-
rium passed out a questionnaire at the football games with the question: “Should
the school jeopardize vital school programs by diverting funds to improving an
auditorium that is needed only a few times a year?” They reported that 89% of
the people were opposed to the renovation.

(3) Seeking feedback on their new toothpaste flavor, a company supplied 500 den-
tists with free samples to give to their clients. With each sample came a stamped
postcard with a single box for the user to check: like the new flavor or don’t like
the new flavor. The company received 897 postcards back, 85% of which re-
ported that the user liked the new flavor.

(4) A biologist wanted to gather evidence that nuclear power plants caused genetic
defects in frogs that fed in nearby ponds. He sampled 50 frogs in a pond near his
local nuclear power plant and discovered that 8% of them had genetic defects.
This was, in fact, considerably higher than the rate in the general frog popula-
tion, so he considered this to be good evidence supporting his assertion.
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Experimental Design
Observational studies are certainly useful, and it is possible to draw conclusions from
the data up to a point. (You can argue about whether baseball standings determine the
“best team,” but they certainly do reveal which team has won the higher percentage of
games.) Observational studies suggested for years that there was a high positive associa-
tion between smoking rates and lung cancer rates, but did this prove that the smoking
variable caused an increase in the cancer rate variable? No. Indeed, there was also a high
positive association between coffee consumption and lung cancer rates! (Of course,
many coffee drinkers used to enjoy a cigarette or two with their coffee.) To show
causation, researchers had to control the confounding variables like coffee drinking,
and this required experimentation. In an experiment, researchers impose treatments on
subjects who are often volunteers. Each treatment is based on factors that might affect
the response variable under study. By controlling the factors, the researchers hope to
identify (with high probability) a causal relationship with one of the variables.

Experiments must be carefully designed to be effective. These are the four important
principles of experimental design:

1. Control. Variation between subject groups receiving different treatments should be
limited to the factor we are varying, while other conditions are made as similar as
possible. For example, if we are testing the effectiveness of a drug, everyone
should get a pill, but only one group’s pills would contain the drug. (The “blank”
pill is called a placebo.) The experiment should be blinded, meaning that neither
group (or anyone in contact with them) should know which treatment they are get-
ting until after the data are collected.

2. Randomization. Subjects must be assigned randomly to the different treatments so
that uncontrolled (often unforeseen) variation will be randomly spread among the
different groups.
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Probability Experiments
You may recall that we used the word “experi-
ment” in Section 9.3 to describe a procedure
leading to outcomes in a sample space. The word
has quite a different meaning in the context of
statistics (and other sciences), in which it is a
procedure specifically designed to test causation.

SOLUTION

(1) For starters, the sample was not likely to include anybody not listening to the
show. This is called undercoverage bias. Also, listeners had to be a little “fired
up” about the question to go to the phone, and coming out against a tax increase
fires people up. This is called voluntary response bias. The 93% number is
likely to be much higher than the population parameter.

(2) Sampling at football games (an example of a convenience sample) is another
source of undercoverage bias. (People who are more apt to go to the auditorium
might be less apt to go to the stadium.) The question itself also created bias, as
the wording was designed to provoke a negative response. Anything (intentional
or unintentional) in the study design that influences responses is a form of
response bias. The 89% is likely to be much higher than the parameter, the true
level of support among the whole school community.

(3) Undercoverage was probably not a problem if the 500 dentists were a represen-
tative group. (People who did not go to dentists were underrepresented, but they
were also less likely to buy toothpaste, so that was probably fine with the tooth-
paste company.) The real problem here was response bias, as the company may
have unintentionally elicited a favorable response by giving the people free
toothpaste. At the very least, people who slightly disliked it might have been less
inclined to send back the card (more voluntary response bias). The 85% ap-
proval is probably higher than the parameter.

(4) This was another convenience sample. The sample was far from random, mak-
ing undercoverage bias a strong possibility. These frogs did appear to have a
problem, but the fact that they all came from the same pond opened the door to
many other possible explanations for the high defect rate in the sample.

Now try Exercise 15.
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3. Replication. An effect should be observed in multiple subjects (the more the bet-
ter) to be statistically convincing, and other researchers should be able to perform
the same experiment on subjects from the same population with similar results.

4. Blocking. As a form of control, pre-existing differences among the subjects that we
think might affect the response variable (like gender or hereditary traits) should be
deliberately spread evenly (but at random) among the subject groups. For example,
suppose there are 10 women and 40 men among the subjects for a two-treatment ex-
periment, and we believe that men and women might respond differently to the
treatments. We could randomly assign 5 women to each group and 20 men to each
group. If the men and women did react differently to the treatment, we could take
that variability into account when assessing the effects of the factor under study.

722 CHAPTER 9 Discrete Mathematics

EXAMPLE 4  Designing an Experiment
A researcher wishes to test the effectiveness of vitamin C supplements for preventing
flu. He has a diverse group of 200 men, women, and children who have volunteered
for the study. Design an appropriate experiment that takes into account the likelihood
that flu will affect different age groups differently.

SOLUTION There is only one factor, requiring two treatment groups (supplements
and no supplements). A simple way to control for the age variable is to match volun-
teers of like ages together, then randomly assign one from each pair to each of the
two treatments. (This spreads the age variability equally among both groups.) One
group will take tablets containing vitamin C; the other group will take placebos. The
subjects and their caregivers will be blinded as to which tablets they are taking. We
monitor each group during flu season and record who gets the flu.

We can show the design of the experiment in a diagram (Figure 9.36):

200 people,
paired by age

Random
assignment

Group 1
100 people

Group 2
100 people

Treatment 1
vitamin C

Treatment 2
placebo

Compare
flu rates

FIGURE 9.36 The flu experiment. (Example 4)

Now try Exercise 25.

EXAMPLE 5  Analyzing Experimental Design
Each of the following experiments suffers from at least one flaw in design. Identify
the flaws and tell how each experiment can be improved.

(1) In a study of multitasking, psychologists test the time it takes a group of volun-
teers to type the same 100-word text message, first listening to loud rock music,
then listening to soft classical music, and finally listening to no music at all.

(2) To test the effectiveness of an expensive online homework service, a teacher
with two sections of freshman algebra signs up his thirty A period students for
the service and teaches his thirty B period students the same lessons, but without
the service. At the end of the year he compares the grades of the two sections on
the same tests.
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Using Randomness
Whether choosing a sample for an observational study or grouping subjects for an ex-
periment, we have seen that attention must be paid to randomness. But how do statisti-
cians achieve randomness? It is actually harder than most people think. Not only are we
notoriously bad at mimicking true randomness, but we are not even good at recognizing
it when we see it. Before the days of computers, researchers relied on random number
tables, entire books filled with pages of digits (0 through 9) generated by cleverly har-
nessed random processes in nature. Today we usually rely on computers to generate
pseudo-random numbers, which work well for most purposes (and which we will use
in this book).

SECTION 9.9 Statistical Literacy 723

(3) A drug company tests a new pain reliever on 100 arthritis patients, which it ran-
domly splits into two groups. Half the patients are given the new pill, while the
other half are told to continue their regularly prescribed medications. After 60
days, the two groups are interviewed by representatives of the drug company to
report their level of pain relief.

SOLUTION

(1) Since the text message is the same each time, the texters are likely to pick up
speed as they gain familiarity with it. The researchers should either work up three
different 100-word messages or else randomly assign the music treatments in six
different orders (RCN, RNC, CRN, CNR, NCR, NRC) and average the times.

(2) The subjects are not randomly assigned, so any difference in test scores might
well be due to other variables related to the two sections. The teacher should
randomly choose 30 of his 60 freshman algebra students to use the service, with-
out regard to A or B period.

(3) The biggest flaw is that the subjects know which treatment they are getting.
Those who get the new pill might feel better simply because they think they
ought to feel better. The pills should be made to look the same so that the sub-
jects do not know if they are taking their old medication or the new one. A sec-
ond flaw is that the drug company representatives might unintentionally treat
the subjects differently if they know which ones took the new pill. The person
who interviews the subject at the end of the study should not know the subject’s
treatment. (An experiment in which both the subjects and the data-gatherers are
blinded is called a double-blind experiment.) Now try Exercise 29.

EXAMPLE 6  Using Random Numbers in Sampling
A school is asked to choose 10 sixth-graders at random to be part of a multi-year 
educational study. If there are 135 sixth-graders at the school, how can they be 
chosen without bias?

SOLUTION

Method 1: Generating Random (actually Pseudo-Random) Numbers
Number the students from 1 to 135 (alphabetically, or in any order— this is not the
random step). On your calculator, enter the command “randInt 1, 135, 10 .” The 
calculator will return a list of ten random integers between 1 and 135 inclusive
(Figure 9.37). It might pick the same number more than once, but you can keep pick-
ing until you get ten.

(continued)

21
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Our list (we had to scroll to the right to see them all) consisted of the students num-
bered 4, 114, 84, 28, 133, 98, 41, 34, 128, 125.

Method 2: Doing a Random (actually Pseudo-Random) Sort

Enter the numbers 1 to 135 in list using the command “seq ”
and enter 135 random numbers in list using the command “rand .”
Then sort the random numbers into ascending order, bringing along for the ride,
using the command “SortA , .” The numbers in list are now in random or-
der, and you can simply pick the first ten students in the list. See Figure 9.38.

This time the lucky students are 71, 19, 68, 118, 18, 90, 1, 131, 17, and 7. (We
learned this neat randomizing trick from statistician, friend, and fellow textbook 
author Dan Teague.) Now try Exercise 33.

L1L121L2
L1

11352: L2L2
1X, X, 1, 1352: L1L1

MATH NUM CPX PRB
1:rand
2:nPr
3:nCr
4: !
5:randInt(
6:randNorm(
7:randBin(

randInt(1,135,10)
{4 114 84 28 13...

FIGURE 9.37 Use randInt 1, 135, 10 to pick 10 random numbers between 1 and
135 inclusive. (Example 6)

21

seq(X,X,1, 135)→L1
{1 2 3 4 5 6 7 ...
rand(135)→L2
{.0427909441 .1...
SortA(L2,L1)

Done

L1

L1 ={71,19,68,11...

.011 1 1

.01244

.01253

.01518

.01697

.02029

.04279

71
19
68
118
18
90
1

L2 L3 1
------

L1

L1(10) =7

.01518

.01697

.02029

.04279

.07101

.07718

.08574

L2 L3 1
118
18
90
1
131
17
7

FIGURE 9.38 Performing a random sort on the calculator. (Example 6)

Probability Simulations
As long as we have introduced you to random numbers, we will end this section with a
quick look at how they can be used to simulate probability experiments (see Section 9.3).

Planting the Seed
Your calculator uses a formula to move from one
number to the next, so you might be generating
the same pseudo-random list as your neighbor.
To get a different list, start with a different seed.
For example, the command “ ” stores
the seed 42. Different seeds will generate differ-
ent pseudo-random sequences. (You could each
enter the last 4 digits of your telephone number.)

42 : rand EXAMPLE 7  More Free Throw Shooting
Fred is a 70% free throw shooter. How many shots will it usually take him to hit 7
consecutive free throws?

SOLUTION We can simulate Fred’s free throw shooting with random digits. Let
digits 0 through 6 signify a made free throw, and let 7, 8, and 9 signify a miss. Enter
“randInt ” in your calculator. Each time you press ENTER you will see a digit
that represents a free throw with the correct probability, and Fred never has to pick
up a ball. The beginning screen is shown below, followed by the first four sequences
we (honestly!) generated before getting 7 consecutive “hits.”

10, 92
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Sequence #1:

6 1 4 9 1 2 6 0 3 0 8 7 2 4 7 2 0 5 0 3 6 8 6 0 3 4 2 1 8 8 5 5 7 3 6 5 0 9 5 3
8 2 4 9 6 4 1 9 8 5 0 7 7 3 8 3 8 8 6 9 6 1 9 4 1 4 1 4 6 6

Sequence #2:
3 3 3 2 5 5 2

Sequence #3:
6 4 4 5 2 3 4

Sequence #4:
8 8 2 4 6 2 6 6 2

You can verify that poor Fred had to put up 70 shots in the first sequence before
achieving the seven consecutive “hits” at the very end: 4141466. In the second and
third sequences, though, Fred starts off with seven in a row! By running this simula-
tion many times, you can get an idea of the average number of free throws Fred must
shoot before he hits seven in a row.

Incidentally, this set of results is pretty good evidence of how difficult it is for us to
recognize true randomness. You could ask a thousand people to “make up” free
throw sequences for this simulation, and nobody would ever give you a string of 70
followed by two 7’s! Now try Exercise 37.

These last three sections have offered only a brief glimpse into how statisticians use
mathematics. If you are interested in learning more, we urge you to find a good statis-
tics textbook and pursue it!

QUICK REVIEW 9.9 (Prerequisite skill Section 9.3)

6. A 6 appearing as the first digit and the last digit in a ran-
domly generated set of five digits.

7. A randomly generated set of five digits consisting of all 6’s

8. A randomly generated set of five digits containing no 6’s 
at all

9. A randomly generated set of five digits containing at least
one 6

10. A randomly generated set of five digits containing at most
one 6

Find the probability of each event:

1. Rolling a 6 on a single fair die

2. Rolling a total of 6 on a pair of fair dice

3. Drawing a 6 if we draw a single card from a deck of 
52 cards

4. A 6 appearing as the first digit in a randomly generated set
of five digits

5. A 6 appearing as the last digit in a randomly generated set
of five digits

SECTION 9.9 EXERCISES

In Exercises 1–6, tell whether correlation is being used correctly. Iden-
tify any statistical errors.

1. A newspaper article reports that a high correlation has been
discovered between beauty and intelligence in college women.

2. Because the correlation coefficient for
the data in the graph at the right is

, a student announces that 0.9
is the slope of the regression line that
goes through the points.

3. Sean has a theory that the average weight of an animal has a
high correlation with the number of letters in its name. He
checks his theory by gathering data on a rat, a bat, a fox, and a
great blue whale. Sure enough, the correlation coefficient is
higher than 0.99!

r = 0.9

4. Jenna says that the scatter plot at the
right shows a negative association 
between the x-variable and the 
y-variable. She then adds that the re-
gression line she found does not do a
very good job of describing the 
relationship. 

5. Marcus says that the scatter plot at the
right shows a weak negative associa-
tion between the x-variable and the 
y-variable. He then adds that the low
correlation indicates that
there is no significant mathematical
relationship. 

1r = -0.322

randInt(0,9)
6
1
4
9
1
2

FIGURE 9.39 Keep pressing ENTER 
to generate random digits.
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6. A researcher theorizes that sea snakes need to drink rainwater
floating on the top of the denser saltwater in order to avoid 
dehydration. Testing sites around the world, he finds a high
correlation between a site’s annual rainfall and the size of its
sea snake population, thus proving his theory to be true.

In Exercises 7–12, tell whether the sampling strategy will result in a
random sample from the population under consideration. If it is not 
random, explain why it is not.

7. The HR director of a large law firm wants to survey a random
sample of the firm’s 326 employees. She numbers the employees
alphabetically and uses her daughter’s calculator to choose 50
numbers with the command “randInt 1, 326, 50 .”

8. To get a sample of 50 students for a student services survey, an
assistant principal uses the calculator command “randInt 
1, 72, 5 ” to pick five numbers between 1 and 72. He goes to

those five pages in the 72-page student directory and chooses
the ten students pictured on each of those five pages.

9. To get a random sample of 50 Reno citizens for a political poll,
a worker starts at the beginning of the telephone book. For each
name in the book, he flips a fair coin. If it comes up heads, he
calls the person; if it comes up tails, he moves on. Once he has
called 50 people, he stops.

10. When 50 qualified students audition for the five chorus roles 
in the school musical, the director decides to choose the five
chorus members randomly. He tells them to form five lines of
ten people; then he announces that the seventh person in each
line will be in the chorus.

11. To choose 9 random campers to represent Camp Pathfinder in a
baseball game with Camp Ahmek, the counselors hold tryouts
and choose the best 9 players.

12. A talk-show hostess wants to give free automobiles to ten ran-
dom members of her audience. She instructs the ushers to go
into the theater before the show and place special stickers un-
der ten random seats of their choice.

In Exercises 13–18, each sampling method suffers from a form of bias.
Identify the bias, tell how the sample statistic might differ significantly
from the population parameter, and (writing to learn) suggest
how the problem might be corrected.

13. To gather feedback on his teaching, Professor Jones invites his
students to visit his Web site and respond to a brief question-
naire. He is depressed to discover that 68% of those who re-
spond are dissatisfied with his teaching.

14. To assess consumer response to its new cereal flavor, a cereal
company passes out free samples at a local mall and offers
shoppers a $5.00 gift certificate if they will fill out a brief form
evaluating the new product. They find that 94% of the respon-
dents like the new flavor.

15. The dining committee of the student council surveys students
in the lunch hall, asking them, “Do you prefer eating in the
lunch hall to eating off campus or bringing your own lunch?”
They are mildly surprised to learn that 93% of the students sur-
veyed prefer the dining hall.

16. A group seeking taxpayer support for a new playground sends
pollsters to all the local PTA meetings to ask, “Do you support
the use of city taxes to fund a new park that will provide a safe
and convenient recreation facility for your children?” A grati-
fying 88% respond yes.

21

21
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17. After getting a ticket for running a stop sign, a statistics profes-
sor polls a random sample of citizens to ask, “Should the gov-
ernment be allowed to limit the freedom of private citizens to
utilize our neighborhood roads as we deem necessary?” He
tells the judge at his hearing that 97% of the citizens polled are
against stop signs.

18. For twenty years, Mrs. Bohackett has kept a daily log of birds
sighted at her backyard feeder. Over the last ten years, the first
appearance of a white-throated sparrow in the spring has
steadily moved earlier in the year by thirteen days. She 
attributes the change to global warming.

In Exercises 19–24, identify which are experiments and which are ob-
servational studies.

19. A health class analyzes 30 cereal products available at a local
food store, recording various nutritional data for a typical 
1-cup serving of each.

20. A school counselor looks at ten years of data to see if students
in some extracurricular activities make higher grades than 
students in others.

21. The receptionist at a veterinarian’s office keeps a daily 
log to see if more women than men accompany their pets 
to the vet.

22. Laboratory rats are fed diets with three different levels of 
caffeine content, and observers record how much time the rats
spend each day running on their treadmills.

23. Members of the school swimming team practice for eight
days under simulated racing conditions wearing three 
different brands of swimsuits to see if any one brand leads 
to faster times.

24. An English teacher offers extra credit points to students who
will keep nightly logs of time spent watching television and
time spent reading. She intends to use the data to see if there is
an association between either variable and a student’s success
in her class.

25. A farmer wishes to test the effectiveness of a new kind of fertil-
izer. He plants his crops on 24 plots of equal size. Design an
experiment he can use to test the new fertilizer. (Be sure to 
explain how randomness will be used.)

26. How would you amend the design in Exercise 25 if the farmer
knows that some of his plots have been historically more 
productive than others?

27. How would you amend the design in Exercise 25 if the farmer
can choose between two new fertilizers?

28. How would you amend the design in Exercise 25 if the farmer
wants to test the effectiveness of the new fertilizer on each of
two different crops?

In Exercises 29–32, each experiment suffers from at least one flaw in
design. Identify each flaw and (writing to learn) tell how the 
experiment can be improved.

29. Testing Golf Balls A company tests its new golf ball
with 100 experienced golfers. After having each golfer drive 20
of his current favorites to establish his current average distance,
the company has him drive 20 of the new balls. The distances
are then compared.
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30. Testing Soft Drinks To test the rumor that her com-
pany’s bottled soft drinks are “fizzier” than the same drinks in
cans, a researcher gives 50 volunteer tasters a can and a bottle
of the same soft drink at the same temperature. They then iden-
tify which tastes fizzier to them.

31. Testing Effect of Music As part of a study to see if
music affects babies in the womb, a researcher asks a group of
expectant mothers to volunteer to play an hour a day of a par-
ticular music type for their babies in their last month of preg-
nancy. The mothers could choose classical, country, or rock.
The researcher plans to gather developmental data on the chil-
dren at 4-year intervals from birth until adulthood.

32. Radio Advertising Researchers wish to test the effects
of radio advertising on 100 volunteers between the ages of 18 and
32. They use random numbers to split them into two groups. Both
groups hear the same advertisements, but one group hears them
delivered with all male voices and the other group hears them
with all female voices. Both groups then take the same quiz about
the products to see how much information they have retained.

33. Finding a Random Sample From 500 people who
attend a banquet, the caterer plans to choose 50 at random to
fill out a brief questionnaire about the service. The seats at the
banquet have already been numbered 1 to 500. How can the
caterer use a graphing calculator to select the random sample?

34. Selecting Customers Approximately 400 people are in
line at a retail store for an advertised chance to buy the sea-
son’s most anticipated Christmas toy. To avoid unpleasantness,
the store has promised that everyone who is in line when the
doors open will have an equal chance to buy one of the 100
available toys. How can the store use a graphing calculator to
select the lucky 100 customers?

35. Random Order A class of 32 students must present
their class projects in what the teacher has promised to be “ran-
dom order.” Tell how the teacher can use a graphing calculator
to determine the order.

36. Random Selection A teacher plans to pair his 28 stu-
dents randomly to be partners for a collaborative quiz. So they
will know it is random, he plans to pair them using a graphing
calculator with a student pushing the buttons. Explain how this
can be done.

37. Blood Donors About 40% of the blood donors at a local
facility give O-positive blood. In a typical hour the facility will
process twenty donors. Tell how to simulate an experiment to
determine how many of those 20 donor-hours in a 9-hour day
will result in fewer than 4 donors with O-positive blood.

38. Simulating a Spinner A spinner in a children’s game
once worked to pick a number between 1 and 8, but the chil-
dren lost the pointer. Tell how they can use a graphing calcula-
tor to simulate the spinner.

39. Simulate Rolling Two Six-sided Dice The
Millers want to play Parcheesi, but they have lost the pair of
six-sided dice that came with the game. Tell how they can use a
graphing calculator to simulate the roll of two dice.

40. Simulate Drawing Cards Bapa wants to simulate the
drawing of cards for a poker hand using his graphing calcula-
tor. Tell how the calculator can simulate the drawing of 5 ran-
dom cards from a deck of 52.
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Standardized Test Questions
41. True or False An observational study, if carefully done,

can usually establish causation. Justify your answer.

42. True or False A correlation coefficient of 0.96 would in-
dicate that a linear model for the data is certainly appropriate.
Justify your answer.

You may use a graphing calculator when answering Exercises 43–46.

43. Multiple Choice There could be a positive correlation
among high school students between SAT scores and

(A) Colleges of first choice.

(B) Freshman science grades.

(C) Teacher recommendations.

(D) Extracurricular activities.

(E) All of the above.

44. Multiple Choice Randomness is important in experi-
mental design in order to equalize (among the treatment
groups)

(A) Unforeseen variation.

(B) Extraneous blocking.

(C) Unnecessary placebos.

(D) Noncausal correlation.

(E) Expected behavior.

45. Multiple Choice A survey question is said to be biased
if it

(A) Causes discomfort among those surveyed.

(B) Is about a particular race or creed.

(C) Has an influence on the response.

(D) Elicits a voluntary response.

(E) Does not fit with the rest of the survey.

46. Multiple Choice Which of the following is not a 
valid way of choosing a random sample of 5 people from 
13 people?

(A) Number the people from 1 to 13. Enter “randInt 1, 13 ”
on your calculator until you have five different numbers.

(B) Number the people from 5 to 17. Enter “randInt 5, 17 ”
on your calculator until you have five different numbers.

(C) Give each person a playing card from the heart suit (thir-
teen cards). Shuffle the spade suit thoroughly and draw 
5 cards. Pick the people whose hearts match the spades.

(D) Go through the 13 names alphabetically and flip a fair coin
for each one. If it is heads, choose the person; otherwise,
move on. When you have five people, stop.

(E) Shuffle the thirteen cards from the heart suit thoroughly
and have each person draw a card. Line them up in order
(ace through king) and pick the middle 5 people in 
the line.

21
21
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Explorations
47. Group Activity Attempting Randomness

Try this experiment with your classmates. Without a calculator,
write down what you think is a sequence of 50 random digits
(0 through 9). Count up how many times each digit appears in
your sequence, then pool your tallies with those of your class-
mates. Did any digits appear unusually often?

48. Group Activity Attempting Randomness
(Continuation of Exercise 47) Group your random sequence
into 25 two-digit numbers. Count how many of them consist of
double digits (e.g., 11, 22, 33, etc.). Pool your tally with those
of your classmates. By chance, approximately one-tenth of a
random collection of two-digit numbers should consist of dou-
ble digits. Did your class come close?

49. The Effects of Unusual Points Each of the three
graphs below has an unusual point. If the unusual point is
removed and the regression line is recalculated, predict what
will happen to the correlation coefficient (increase, decrease, or
remain about the same) and the slope of the regression line (in-
crease, decrease, or remain about the same).
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51. Picture the Possibility Sketch a scatter plot that
shows a positive association between x and y for small values
of x, a positive association between x and y for large values of
x, and a negative association between x and y overall. [Hint:
Sketch two well-separated clusters of points.]

52. Picture the Possibility Sketch a scatter plot that
shows a negative association between x and y for small values
of x, a negative association between x and y for large values of
x, and a positive association between x and y overall.

Extending the Ideas
53. Lurking Variables One good reason that we should

never conclude causation from even the strongest correlation or
association is that the association between x and y might be due
to a third variable z that influences both x and y. If such a 
variable is not part of the study model, it is called a lurking
variable. For each of the following actual associations, identify
a possible lurking variable that could be causing it.

(a) There is a positive association between the size of a hospi-
tal and the death rate among its patients.

(b) There is a positive association between the number of seats
on a commercial jet and the speed at which the aircraft
travels.

(c) There is a positive association between shoe size and read-
ing level among elementary school students.

(d) There is a positive association between the number of fire-
men fighting a fire and the amount of damage that the fire
causes.

(e) Among professional football players there is a negative as-
sociation between body weight and annual income.

54. More on Observational Studies An observational
study is retrospective if it considers only existing data. It is
prospective if the study design calls for data to be collected as
time goes on. Tell which of the following observational studies
are retrospective and which are prospective.

(a) A sample of moose in a national park are given ear tags so
that naturalists can track their growth, movement, and
physical condition during a ten-year study.

(b) To see if crime rates are related to moon phases, a re-
searcher looks at ten years of archived police blotter re-
ports and compares them with moon charts from the same
period.

(c) Out of curiosity, Mimi looks up the ages of all the Best 
Actress winners in the years they won their Oscars, and
then gathers the same data for the Best Actor winners to
see whether male or female winners were, on the average,
younger.

(d) In a study of post-traumatic stress disorder, soldiers who have
been in combat are given biannual physical and psychologi-
cal tests for five years after they return from active duty.

(e) Paxton devises a complicated formula based on game sta-
tistics for rating quarterbacks. He applies it to all NFL
quarterbacks who played in the league between 1950 and
2000 and concludes that the quarterbacks from the 1970s
were the best overall.

(a)

(b)

(c)

50. Influential Points An unusual point in a scatter plot is
called an influential point if the regression model changes sig-
nificantly when it is removed. Which of the unusual points in
Exercise 49 are also influential points?
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Basic Factorial Identities 655
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Likely) 659
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CHAPTER 9 Review Exercises

Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1–6, evaluate the expression by hand, then check your
result with a calculator.

1. 2.

3. 4.

5. 6.

7. Code Words How many five-character code words are
there if the first character is always a letter and the other
characters are letters and/or digits?

8. Scheduling Trips A travel agent is trying to schedule
a client’s trip from city A to city B. There are three direct
flights, three flights from A to a connecting city C, and four
flights from this connecting city C to city B. How many trips
are possible?

9. License Plates How many license plates begin with
two letters followed by four digits or begin with three digits
followed by three letters? Assume that no letters or digits are
repeated.

10. Forming Committees A club has 45 members, and
its membership committee has three members. How many
different membership committees are possible?

11. Bridge Hands How many 13-card bridge hands in-
clude the ace, king, and queen of spades?

12. Bridge Hands How many 13-card bridge hands in-
clude all four aces and exactly one king?

13. Coin Toss Suppose that a coin is tossed five times. How
many different outcomes include at least two heads?

15P812P 7

35C2818C12

a789

787
ba12

5
b

14. Forming Committees A certain small business has 
35 employees, 21 women and 14 men. How many different 
employee representative committees are there if the committee
must consist of two women and two men?

15. Code Words How many code words of any length can be
spelled out using game tiles of five different letters (including
single-letter code words)?

16. A Pocket of Coins Sean tells Moira that he has less
than 50 cents in American coins in his pocket and no two coins
of the same denomination. How many possible total amounts
could be in Sean’s pocket?

17. Permutations Find the number of distinguishable per-
mutations that can be made from the letters in

(a) GERMANY

(b) PRESBYTERIANS

In each case, can you find a permutation that spells the first
and last name of a well-known female entertainer?

18. Permutations Find the number of distinguishable per-
mutations that can be made from the letters in

(a) FLORIDA

(b) TALLAHASSEE

In Exercises 19–24, expand each expression.

19. 20.

21. 22.

23. 24.

25. Find the coefficient of in the expansion of 

26. Find the coefficient of in the expansion of 12x + y28.x2y6

1x - 2211.x8

1x -2
+ y-12412a3

- b229
a1 +

1
x
b613x2

+ y325
14a - 3b2712x + y25 
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In Exercises 27–30, list the elements of the sample space.

27. Spinners A game spinner on a circular region divided
into 6 equal sectors numbered 1–6 is spun.

28. Rolling Dice A red die and a green die are rolled.

29. Code Words A two-digit code is selected from the digits
where no digits are to be repeated.

30. Production Line A product is inspected as it comes
off the production line and is classified as either defective or
nondefective.

In Exercises 31–34, a penny, a nickel, and a dime are tossed.

31. List all possible outcomes.

32. List all outcomes in the event “two heads or two tails.”

33. List all outcomes in the complement of the event in 
Exercise 32 (i.e., the event “neither two heads nor two 
tails.”)

34. Find the probability of tossing at least one head.

35. Coin Toss A fair coin is tossed six times. Find the proba-
bility of the event “HHTHTT.”

36. Coin Toss A fair coin is tossed five times. Find the prob-
ability of obtaining two heads and three tails.

37. Coin Toss A fair coin is tossed four times. Find the prob-
ability of obtaining one head and three tails.

38. Assembly Line In a random check on an assembly 
line, the probability of finding a defective item is 0.003. Find
the probability of a nondefective item occurring 10 times in 
a row.

39. Success or Failure An experiment has only two pos-
sible outcomes—success (S) or failure (F)—and repetitions of
the experiment are independent events. If , find
the probability of obtaining three successes and one failure in
four repetitions.

40. Success or Failure For the experiment in Exercise
39, explain why the probability of one success and three 
failures is equal to the probability of three successes and 
one failure.

In Exercises 41–44, an experiment has only two possible outcomes—
success (S) or failure (F)—and repetitions are independent events. The
probability of success is 0.4.

41. Find the probability of SF on two repetitions.

42. Find the probability of SFS on three repetitions.

43. Find the probability of at least one success on two 
repetitions.

44. Explain why the probability of one success and three failures is
not equal to the probability of three successes and one failure.

45. Mixed Nuts Two cans of mixed nuts of different brands
are open on a table. Brand A consists of 30% cashews, while
brand B consists of 40% cashews. A can is chosen at random,
and a nut is chosen at random from the can. Find the proba-
bility that the nut is

P1S2 = 0.5

51, 3, 66,

(a) From the brand A can.

(b) A brand A cashew.

(c) A cashew.

(d) From the brand A can, given that it is a cashew.

46. Horse Racing If the track is wet, Mudder Earth has a
70% chance of winning the fifth race at Keeneland. If the
track is dry, she only has a 40% chance of winning. Weather
forecasts predict an 80% chance that the track will be wet.
Find the probability that

(a) The track is wet and Mudder Earth wins.

(b) The track is dry and Mudder Earth wins.

(c) Mudder Earth wins.

(d) (In retrospect) the track was wet, given that Mudder Earth
won.

In Exercises 47 and 48, find the first 6 terms and the 40th term of the
sequence.

47.

48.

In Exercises 49–54, find the first 6 terms and the 12th term of the 
sequence.

49. and , for 

50. and , for 

51. Arithmetic sequence, with and 

52. Geometric sequence, with and 

53. , , and , for 

54. , , and , for 

In Exercises 55–62, the sequences are arithmetic or geometric. Find an
explicit formula for the nth term. State the common difference or ratio.

55. 56. , 

57. 58.

59. and for 

60. and for 

61. The fourth and ninth terms of a geometric sequence are 
and 196,608, respectively.

62. The third and eighth terms of an arithmetic sequence are 
14 and , respectively.

In Exercises 63–66, find the sum of the terms of the arithmetic 
sequence.

63. , , 

64. , , 

65. , 

66. , , -1, 1, Á , 55-3-5

-75.5-3.5, Á ,2.5, -0.5

-11-713, 9, 5, 1, -3

-2, 1, 4, 7, 10-5-11, -8

-3.5

-192

n Ú 2bn = 11/42 bn-1b1 = 7

n Ú 2an = an-1 + 4.5a1 = -11

-1, Á

1

8
, -  

1

4
, 

1

2
,10, 12, 14.4, 17.28, Á

-1, 3, 7, Á-512, 9.5, 7, 4.5, Á

k Ú 3wk = wk-2 + wk-1w2 = 2w1 = -3

k Ú 3vk = vk-2 + vk-1v2 = 1v1 = -3

r = 1/3a1 = 3

d = 1.5a1 = -5

k Ú 2bk = 2bk-1b1 = 5

n Ú 2an = an-1 + 3a1 = -1

bk =

1-22k
k + 1

an =

n2
- 1

n + 1
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In Exercises 67–70, find the sum of the terms of the geometric 
sequence.

67.

68. , , , , 

69.

70.

In Exercises 71 and 72, find the sum of the first 10 terms of the arith-
metic or geometric sequence.

71. 72.

In Exercises 73 and 74, graph the sequence.

73. 74.

75. Annuity Mr. Andalib pays $150 at the end of each month
into an account that pays 8% interest compounded monthly. At
the end of 10 years, the balance in the account, in dollars, is

Use the formula for the sum of a finite geometric series to
find the balance.

76. Annuity What is the minimum monthly payment at
month’s end that must be made in an account that pays 8% 
interest compounded monthly if the balance at the end of 
10 years is to be at least $30,000?

In Exercises 77–82, determine whether the geometric series con-
verges. If it does, find its sum.

77. 78.

79. 80.

81. 82.

In Exercises 83–86, write the sum in sigma notation.

83.

84.

85.

86.

In Exercises 87–90, use summation formulas to evaluate the expression.

87. 88.

89.

90. a
175

k=1
 13k2

- 5k + 12
a

25

k=1
 1k2

- 3k + 42
a

n

k=1
 3k2

a

n

k=1
 13k + 12

1 +

1

2
+

1

22
+

1

23
+

Á

12
+ 32

+ 52
+

Á

4 - 8 + 16 - 32 +
Á

- 2048

-8 - 3 + 2 +
Á

+ 92

a

q

k=1
 11.22ka

q

k=1
 310.52k

a

q

k=1
 5a6

5
b k

a

q

j=1
 4a -  

4

3
b j

a

q

k=1
 2a -  

1

3
bk

a

q

j=1
 2a 3

4
b j

150a1 +

0.08

12
b0

+ 150a1 +

0.08

12
b1

+
Á

+ 150a1 +

0.08

12
b119

an = 2n2
- 1an = 1 +

1-12n
n

94, 91, 88, Á2187, 729, 243, Á

-8192-8, Á ,1, -2, 4,

2, 6, 18, Á , 39,366

-  

1

27
-  

1

9
-  

1

3
-1-3

-  

1

8
-  

1

2
, 

1

4
,4, -2, 1,

In Exercises 91–94, use mathematical induction to prove that the
statement is true for all positive integers n.

91.

92.

93.

94. is divisible by 3.

In Exercises 95–98, construct (a) a stemplot, (b) a frequency table,
and (c) a histogram for the indicated data.

95. Real Estate Prices Use intervals of $10,000. The 
median sales prices (in units of $10,000) for homes in 30 ran-
domly selected metropolitan areas in 2001 were as follows:

10.7, 11.4, 12.7, 11.5, 14.6, 13.6, 9.2, 21.9, 16.1, 12.2, 13.5,
12.6, 12.0, 14.7, 23.4, 12.4, 17.0, 11.7, 11.5, 10.6, 14.1, 15.4,
15.8, 17.6, 14.7, 11.7, 12.7, 9.1, 16.4, 14.8

(Source: National Association of Realtors, as reported in The
World Almanac and Book of Facts 2002.)

96. Popular Web Sites Use intervals of 5 million. The
number of visitors (in units of 10 million) to the top 25 Web
sites in 2001 (as measured May 1–31) were as follows:

7.1, 6.1, 5.8, 3.3, 2.9, 2.8, 2.6, 2.0, 2.0, 2.0, 1.9, 1.9, 1.9, 1.5,
1.4, 1.4, 1.3, 1.3, 1.2, 1.2, 1.1, 1.1, 1.1, 1.1, 1.1

(Source: Media Matrix, as reported in The New York Times 
Almanac, 2002.)

97. Beatles Songs Use intervals of length 10. The lengths
(in seconds) of 24 randomly selected Beatles songs that ap-
peared on singles are as follows, in order of release date:

143, 120, 120, 139, 124, 144, 131, 132, 148, 163, 140, 177,
136, 124, 179, 131, 180, 137, 156, 202, 191, 197, 230, 190

(Source: Personal collection.)

98. Passing Yardage In 1995, Warren Moon of the 
Minnesota Vikings became the first pro quarterback to pass
for 60,000 total yards. Use intervals of 1000 yards for Moon’s
regular season passing yards given in Table 9.22.

n3
+ 2n

2n-1
… n!

1 # 2 + 2 # 3 + 3 # 4 +
Á

+ n1n + 12 =

n1n + 121n + 22
3

1 + 3 + 6 +
Á

+

n1n + 12
2

=

n1n + 121n + 22
6

Source: The Minnesota Vikings, as reported by Julie Stacey
in USA Today on September 25, 1995, and www.nfl.com

Table 9.22 Regular Season Passing
Yardage Statistics for Warren Moon

Year Yards Year Yards

1978 1112 1987 2806
1979 2382 1988 2327
1980 3127 1989 3631
1981 3959 1990 4689
1982 5000 1991 4690
1983 5648 1992 2521
1984 3338 1993 3485
1985 2709 1994 4264
1986 3489 1995 4228
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732 CHAPTER 9 Discrete Mathematics

In Exercises 99–102, find the five-number summary, the range, the in-
terquartile range, the standard deviation, and the variance for the
specified data (use and ). Identify any outliers.

99. The data in Exercise 95

100. The data in Exercise 96

101. The data in Exercise 97

102. The data in Exercise 98

In Exercises 103–106, construct (a) a boxplot and (b) a modified box-
plot for the specified data.

103. The data in Exercise 95 104. The data in Exercise 96

105. The data in Exercise 97 106. The data in Exercise 98

107. Make a back-to-back stemplot of the data in Exercise 97,
showing the earlier 12 songs in one plot and the later 12
songs in the other. Write a sentence interpreting the stemplot.

108. Make simultaneous boxplots of the data in Exercise 97, show-
ing the earlier 12 songs in one boxplot and the later 12 songs
in the other.

(a) Which set of data has the greater range?

(b) Which set of data has the greater interquartile range?

109. Time Plots Make a time plot for the data in Exercise 97,
assuming equal time intervals between songs. Interpret the
trend revealed in the time plot.

110. Damped Time Plots Statisticians sometimes use a
technique called damping to smooth out random fluctua-
tions in a time plot. Find the mean of the first four numbers
in Exercise 97, the mean of the next four numbers, and so
on. Then graph the six means as a function of time. Is there
a clear trend?

111. Find row 9 of Pascal’s triangle.

112. Show algebraically that

113. Baseball Bats Suppose that the probability of produc-
ing a defective baseball bat is 0.02. Four bats are selected at
random. What is the probability that the lot of four bats con-
tains the following?

(a) No defective bats

(b) One defective bat

nPk * n-kPj = nPk+ j.

s2s

s

114. Lightbulbs Suppose that the probability of producing a
defective lightbulb is 0.0004. Ten lightbulbs are selected at
random. What is the probability that the lot of 10 contains the
following?

(a) No defective lightbulbs

(b) Two defective lightbulbs

115. Identify any statistical errors and state whether correlation is
being used correctly: A newspaper article reports that a high
correlation has been discovered between strength and intelli-
gence in college men.

116. Is a student correct if he announces that because the correla-
tion coefficient for the data below is , the slope of
the regression line that goes through the points is ?

117. The HR director of a large law firm wants to survey a random
sample of the firm’s 443 employees. She numbers the em-
ployees alphabetically and uses her daughter’s graphing
calculator to choose 60 numbers with the command
“randInt(1 443, 60). Does this result in a random sample?

118. To get a random sample of 50 Atlanta citizens for a political
poll, a worker starts at the beginning of the telephone book.
For each name in the book, he flips a fair coin. If it comes up
heads, he calls the person; if it comes up tails, he moves on.
Once he has called 50 people, he stops. Does this result in a
random sample?

119. To gather information about the popularity of a radio station,
the station staff invites listeners to visit its Web site and re-
spond to a short questionnaire. The station staff was de-
pressed because only 45% of the respondents said they liked
the radio station. Identify any bias in this sampling method.

120. A social studies class analyzes 30 canned soups available at a
local food store, recording various nutritional data for a typical
1-cup serving. Is this an experiment or an observational study?

-0.95
r = -0.9

6965_CH09_pp641-734.qxd  1/20/10  3:29 PM  Page 732



CHAPTER 9 Project 733

CHAPTER 9 Project

Analyzing Height Data
The set of data below was gathered from a class of 30 precal-
culus students. Use this set of data or collect the data for your
own class and use it for analysis.

1. Create a stem-and-leaf plot of the data using split stems.
From these data, what is the approximate average height
of a student in the class?

2. Create a frequency table for the data using an interval of 2.
What information does this give?

3. Create a histogram for the data using an interval of 2.
What conclusions can you draw from this representation
of the data? Can you estimate the average height for males
and the average height for females?

4. Compute the mean, median, and mode for the data set.
Discuss whether each is a good measure of the average
height of a student in the class. Is each a good predictor
for average height of students in other precalculus classes?

5. What can you say about the data if the mean and median
values are close?

6. Find the five-number summary for the class heights.

7. Create a boxplot and explain what information it gives
about the data set.

8. A new student is now added to the class. He is a star
basketball player. Add his height to the data set. Recalcu-
late the mean, median, and five-number summary. Create a
new boxplot and use your calculator to plot it underneath
the boxplot for the original class. How does this new 
student affect the statistics?

9. Explain why this new student would be considered an out-
lier and the importance of identifying outliers when calcu-
lating statistics and making predictions from them.

10. Suppose now that three additional basketball players
transferred into the class. They are , , and . 
Recalculate the statistics from number 9 and discuss the
implications of using these statistics to make predictions
for other precalculus classes.

6¿10–6¿11–7¿0–

7¿2–

Heights of Students in Inches

66 69 72 64 68
70 71 66 65 63
72 59 64 63 66
68 63 64 71 71
69 62 61 67 69
64 73 75 61 70
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An Introduction 
to Calculus: Limits, 
Derivatives, and Integrals

Windmills have long been used to pump water from wells, grind grain,
and saw wood. They are more recently being used to produce electricity.
The propeller radius of these windmills range from one to one hundred
meters, and the power output ranges from a hundred watts to a thousand
kilowatts. See page 743 in Section 10.1 for some more information and a
question and answer about windmills.

10.1 Limits and Motion: 
The Tangent Problem

10.2 Limits and Motion: 
The Area Problem

10.3 More on Limits

10.4 Numerical Derivatives
and Integrals

CHAPTER 10
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Chapter 10 Overview
By the beginning of the 17th century, algebra and geometry had developed to the
point where physical behavior could be modeled both algebraically and graphically,
each type of representation providing deeper insights into the other. New discoveries
about the solar system had opened up fascinating questions about gravity and its ef-
fects on planetary motion, so that finding the mathematical key to studying motion
became the scientific quest of the day. The analytic geometry of René Descartes
(1596–1650) put the final pieces into place, setting the stage for Isaac Newton
(1642–1727) and Gottfried Leibniz (1646–1716) to stand “on the shoulders of giants”
and see beyond the algebraic boundaries that had limited their predecessors. With
geometry showing them the way, they created the new form of algebra that would come
to be known as the calculus.

In this chapter we will look at the two central problems of motion much as Newton and
Leibniz did, connecting them to geometric problems involving tangent lines and areas.
We will see how the obvious geometric solutions to both problems led to algebraic
dilemmas, and how the algebraic dilemmas led to the discovery of calculus. The lan-
guage of limits, which we have used in this book to describe asymptotes, end behavior,
and continuity, will serve us well as we make this transition.

736 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

10.1 Limits and Motion: 
The Tangent Problem

What you’ll learn about
• Average Velocity
• Instantaneous Velocity
• Limits Revisited
• The Connection to Tangent

Lines
• The Derivative

... and why
The derivative allows us to ana-
lyze rates of change, which are
fundamental to understanding
physics, economics, engineer-
ing, and even history.

EXAMPLE 1  Computing Average Velocity
An automobile travels 120 miles in 2 hours and 30 minutes. What is its average veloc-
ity over the entire -hour time interval?

SOLUTION The average velocity is the change in position (120 miles) divided by
the change in time (2.5 hours). If we denote position by s and time by t, we have

Now try Exercise 1.

vave =

¢s

¢t
=

120 miles

2.5 hours
= 48 miles per hour.

2 
1
2

Notice that the average velocity does not tell us how fast the automobile is traveling at
any given moment during the time interval. It could have gone at a constant 48 mph all
the way, or it could have sped up, slowed down, or even stopped momentarily several
times during the trip. Scientists like Galileo Galilei (1564–1642), who studied motion
prior to Newton and Leibniz, were looking for formulas that would give velocity as a
function of time, that is, formulas that would give instantaneous values of v for individ-
ual values of t. The step from average to instantaneous sounds simple enough, but there
were complications, as we shall see.

Average Velocity
Average velocity is the change in position divided by the change in time, as in the fol-
lowing familiar-looking example.
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Instantaneous Velocity
Galileo experimented with gravity by rolling a ball down an inclined plane and record-
ing its approximate velocity as a function of elapsed time. Here is what he might have
asked himself when he began his experiments:

SECTION 10.1 Limits and Motion: The Tangent Problem 737

A Velocity Question
A ball rolls a distance of 16 feet in 4 seconds. What is the instantaneous veloc-
ity of the ball at a moment of time 3 seconds after it starts to roll?

You might want to visualize the ball being frozen at that moment, and then try to deter-
mine its velocity. Well, then the ball would have zero velocity, because it is frozen! This
approach seems foolish, since, of course, the ball is moving.

Is this a trick question? On the contrary, it is actually quite profound—it is exactly the
question that Galileo (among many others) was trying to answer. Notice how easy it is
to find the average velocity:

Now, notice how inadequate our algebra becomes when we try to apply the same for-
mula to instantaneous velocity:

which involves division by 0—and is therefore undefined!

So Galileo did the best he could by making t as small as experimentally possible,
measuring the small values of s, and then finding the quotients. It only approximated
the instantaneous velocity, but finding the exact value appeared to be algebraically out
of the question, since division by zero was impossible.

Limits Revisited
Newton invented “fluxions” and Leibniz invented “differentials” to explain instanta-
neous rates of change without resorting to zero denominators. Both involved mysterious
quantities that could be infinitesimally small without really being zero. (Their 17th-
century colleague Bishop Berkeley called them “ghosts of departed quantities” and dis-
missed them as nonsense.) Though not well understood by many, the strange quantities
modeled the behavior of moving bodies so effectively that most scientists were willing
to accept them on faith until a better explanation could be developed. That development,
which took about a hundred years, led to our modern understanding of limits.

Since you are already familiar with limit notation, we can show you how this works
with a simple example.

¢

¢

vave =

¢s

¢t
=

0 feet

0 seconds
,

vave =

¢s

¢t
=

16 feet

4 seconds
= 4 feet per second.

A Disclaimer
Readers who know a little calculus will recog-
nize that the ball in the Velocity Question really
does have a nonzero instantaneous velocity after
3 seconds (as we will eventually show). The
point of the discussion is to show how difficult it
is to demonstrate that fact at a single instant,
since both time and the position of the ball 
appear not to change.

EXAMPLE 2  Using Limits to Avoid Zero Division
A ball rolls down a ramp so that its distance s from the top of the ramp after t seconds
is exactly feet. What is its instantaneous velocity after 3 seconds?

SOLUTION We might try to answer this question by computing average velocity
over smaller and smaller time intervals.

(continued)

t 2

6965_CH10_pp735-778.qxd  1/20/10  3:35 PM  Page 737



Notice that t is not equal to 3 but is approaching 3 as a limit, which allows us to make
the crucial cancellation in the second to last line of Example 2. If t were actually equal
to 3, the algebra above would lead to the incorrect conclusion that The differ-
ence between equaling 3 and approaching 3 as a limit is a subtle one, but it makes all
the difference algebraically.

It is not easy to formulate a rigorous algebraic definition of a limit (which is why 
Newton and Leibniz never really did). We have used an intuitive approach to limits so
far in this book and will continue to do so, deferring the rigorous definitions to your
calculus course. For now, we will use the following informal definition.

0/0 = 6.

738 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

On the interval :

On the interval :

Continuing this process we would eventually conclude that the instantaneous velocity
must be 6 feet per second.

However, we can see directly what is happening to the quotient by treating it as a
limit of the average velocity on the interval as t approaches 3:

Factor the numerator.

Since .

Now try Exercise 3.
 = 6

t Z 3, 
t - 3
t - 3

= 1 = lim
t:3

 1t + 32
 = lim

t:3
 1t + 32 # t - 3

t - 3

 = lim
t:3

 
1t + 321t - 32

t - 3

 lim
t:3

 
¢s

¢t
= lim

t:3
 
t 2

- 32

t - 3

33, t4

¢s

¢t
=

13.0522 - 32

3.05 - 3
=

0.3025

0.05
= 6.05 feet per second.

33, 3.054

¢s

¢t
=

13.122 - 32

3.1 - 3
=

0.61

0.1
= 6.1 feet per second 

33, 3.14

Arbitrarily Close
This definition is useless for mathematical proofs
until one defines “arbitrarily close,” but if you
have a sense of how it applies to the solution in
Example 2 above, then you are ready to use lim-
its to study motion problems.

DEFINITION (INFORMAL) Limit at a

When we write “ we mean that gets arbitrarily close to 

L as x gets arbitrarily close (but not equal) to a.

ƒ1x2lim
x:a

 ƒ1x2 = L,”

The Connection to Tangent Lines
What Galileo discovered by rolling balls down ramps was that the distance traveled
was proportional to the square of the elapsed time. For simplicity, let us suppose that
the ramp was tilted just enough so that the relation between s, the distance from the top
of the ramp, and t, the elapsed time, was given (as in Example 2) by

Graphing s as a function of gives the right half of a parabola (Figure 10.1).t Ú 0

s = t 2.
0

1

2

3

4

1 2 3
t

s

FIGURE 10.1 The graph of shows
the distance (s) traveled by a ball rolling down
a ramp as a function of the elapsed time t.

s = t 2
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Exploration 1 suggests an important general fact: If and are two
points on a distance-time graph, then the average velocity over the time interval 
can be thought of as the slope of the line connecting the two points. In fact, we desig-
nate both quantities with the same symbol: .

Galileo knew this. He also knew that he wanted to find instantaneous velocity by letting
the two points become one, resulting in an algebraic impossibility. The
picture, however, told a different story geometrically. If, for example, we were to con-
nect pairs of points closer and closer to , our secant lines would look more and
more like a line that is tangent to the curve at (Figure 10.2).

It seemed obvious to Galileo and the other scientists of his time that the slope of the tan-
gent line was the long-sought-after answer to the quest for instantaneous velocity. They
could see it, but how could they compute it without dividing by zero? That was the “tan-
gent line problem,” eventually solved for general functions by Newton and Leibniz in
slightly different ways. We will solve it with limits as illustrated in Example 3.

11, 1211, 12
¢s/¢t = 0/0,

¢s/¢t

3a, b41b, s1b221a, s1a22

SECTION 10.1 Limits and Motion: The Tangent Problem 739

EXPLORATION 1 Seeing Average Velocity

Copy Figure 10.1 on a piece of paper and connect the points and 

with a straight line. (This is called a secant line because it connects two points

on the curve.)

1. Find the slope of the line. 

2. Find the average velocity of the ball over the time interval .

3. What is the relationship between the numbers that answer questions 1 
and 2?

4. In general, how could you represent the average velocity of the ball over the
time interval geometrically?3a, b4

31, 24

12, 4211, 12

0

1

2

3

4

1 2 3
t

s

(1, 1)

FIGURE 10.2 A line tangent to the 
graph of at the point . The 
slope of this line appears to be the 
instantaneous velocity at , even 
though . The geometry 
succeeds where the algebra fails!

¢s/¢t = 0/0
t = 1

11, 12s = t 2

EXAMPLE 3  Finding the Slope of a Tangent Line
Use limits to find the slope of the tangent line to the graph of at the point

(Figure 10.2).

SOLUTION This will look a lot like the solution to Example 2.

Factor the numerator.

Since .

Now try Exercise 17(a).

 = 2

t Z 1, 
t - 1
t - 1

= 1 = lim
t:1

 1t + 12
 = lim

t:1
 1t + 12 # t - 1

t - 1

 = lim
t:1

 
1t + 121t - 12

t - 1

 lim
t:1

 
¢s

¢t
=  lim

t:1
 
t 2

- 12

t - 1

11, 12 s = t 2

If you compare Example 3 to Example 2 it should be apparent that a method for solving
the tangent line problem can be used to solve the instantaneous velocity problem, and
vice versa. They are geometric and algebraic versions of the same problem!
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The Derivative
Velocity, the rate of change of position with respect to time, is only one application of
the general concept of “rate of change.” If is any function, we can speak of
how y changes as x changes.

y = ƒ1x2

740 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

The Tangent Line Problem
Although we have focused on Galileo’s work
with motion problems in order to follow a coher-
ent story, it was Pierre de Fermat (1601–1665)
who first developed a “method of tangents” for
general curves, recognizing its usefulness for
finding relative maxima and minima. Fermat is
best remembered for his work in number theory,
particularly for Fermat’s Last Theorem, which
states that there are no positive integers x, y, and
z that satisfy the equation if n is an
integer greater than 2. Fermat wrote in the mar-
gin of a textbook, “I have a truly marvelous
proof that this margin is too narrow to contain,”
but if he had one, he apparently never wrote it
down. Although mathematicians tried for over
330 years to prove (or disprove) Fermat’s Last
Theorem, nobody succeeded until Andrew Wiles
of Princeton University finally proved it in 1994.

xn
+ yn

= zn

Differentiability
We say a function is “differentiable” at a if 
exists, because we can find the limit of the 
“quotient of differences.”

ƒ¿1a2

Using limits, we can proceed to a definition of the instantaneous rate of change of y
with respect to x at the point where . This instantaneous rate of change is called
the derivative.

x = a

A more computationally useful formula for the derivative is obtained by letting 
and looking at the limit as h approaches 0 (equivalent to letting x approach a).

x = a + h

The fact that the derivative of a function at a point can be viewed geometrically as the
slope of the line tangent to the curve at that point provides us with some in-
sight as to how a derivative might fail to exist. Unless a function has a well-defined
“slope” when you zoom in on it at a, the derivative at a will not exist. For example,
Figure 10.3 shows three cases for which exists but does not.ƒ¿102ƒ102

y = ƒ1x2

DEFINITION Derivative at a Point (easier for computing)
The derivative of the function ƒ at , denoted by and read 
“ƒ prime of a,” is

provided the limit exists.

ƒ¿1a2 = lim
h:0

 
ƒ1a + h2 - ƒ1a2

h
,

ƒ¿1a2x � a

DEFINITION Average Rate of Change
If then the average rate of change of y with respect to x on the 
interval is

Geometrically, this is the slope of the secant line through and
.1b, ƒ1b22 1a, ƒ1a22

¢y

¢x
=

ƒ1b2 - ƒ1a2
b - a

.

3a, b4y = ƒ1x2,

DEFINITION Derivative at a Point
The derivative of the function ƒ at , denoted by and read “ƒ prime
of a,” is

provided the limit exists.

Geometrically, this is the slope of the tangent line through .1a, ƒ1a22

ƒ¿1a2 = lim
x:a

 
ƒ1x2 - ƒ1a2

x - a
,

ƒ¿1a2x � a
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[–4.7, 4.7] by [–3.1, 3.1]

(a)

[–4.7, 4.7] by [–3.1, 3.1]

(b)

[–4.7, 4.7] by [–3.1, 3.1]

(c)

FIGURE 10.3 Three examples of functions defined at but not differentiable at .x = 0x = 0

has a graph with 
no definable slope at x = 0.
ƒ1x2 = ƒx ƒ has a graph with a vertical

tangent line (no slope) at x = 0.
ƒ1x2 = 13 x

has a graph with no definable 
slope at .x = 0

ƒ1x2 = e x - 1 for x 6 0

1 for x Ú 0

EXAMPLE 4  Finding a Derivative at a Point
Find 

SOLUTION

, since .

Now try Exercise 23.
 = 16

h Z 0
h
h

= 1 = lim
h:0

 116 + 2h2
 = lim

h:0
 
16h + 2h2

h

 = lim
h:0

 
2116 + 8h + h22 - 32

h

 = lim
h:0

 
214 + h22 - 3 - 12 # 42

- 32
h

 ƒ¿142 = lim
h:0

 
ƒ14 + h2 - ƒ142

h

ƒ¿(4) if ƒ1x2 = 2x2
- 3.

The derivative can also be thought of as a function of x. Its domain consists of all values
in the domain of ƒ for which ƒ is differentiable. The function can be defined by adapt-
ing the second definition above.

ƒ¿

DEFINITION Derivative
If , then the derivative of the function ƒ with respect to x is the
function whose value at x is

for all values of x where the limit exists.

ƒ¿(x) =  lim
h:0

 
ƒ1x + h2 - ƒ1x2

h
,

ƒ¿

y = ƒ1x2
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EXAMPLE 5  Finding the Derivative of a Function
(a) Find .

(b) Find .

SOLUTION

(a)

Since 

So 

(b)

So 

Now try Exercise 29.

dy

dx
= -

1

x2.

 = -

1

x2

 = lim
h:0

 
-1

x1x + h2

 = lim
h:0

 
-h

x1x + h2 #
1

h

 = lim
h:0

 

x - 1x + h2
x1x + h2

h

 = lim
h:0

 

1

x + h
-

1
x

h

 
dy

dx
= lim

h:0
 
ƒ1x + h2 - ƒ1x2

h

ƒ¿1x2 = 2x.

 = 2x

h Z 0, 
h
h

= 1. = lim
h:0

 12x + h2
 = lim

h:0
 
2xh + h2

h

 = lim
h:0

 
x2

+ 2xh + h2
- x2

h

 = lim
h:0

 
1x + h22 - x2

h

 ƒ¿1x2 = lim
h:0

 
ƒ1x + h2 - ƒ1x2

h

dy

dx
 if y =

1
x

ƒ¿1x2 if ƒ1x2 = x2

To emphasize the connection with slope Leibniz used the notation dy/dx for the
derivative. (The dy and dx were his “ghosts of departed quantities.”) This Leibniz notation
has several advantages over the “prime” notation, as you will learn when you study cal-
culus. We will use both notations in our examples and exercises.

¢y/¢x,
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Chapter Opener Problem (from page 735)

Problem: For an efficient windmill, the power generated in watts is given by 
the equation

where r is the radius of the propeller in meters, v is the wind velocity in meters per
second, and k is a constant with units of kg/m3. The exact value of k depends on
various characteristics of the windmill.

Suppose a windmill has a propeller with radius 5 meters and .

(a) Find the function P(v), which gives power as a function of wind velocity.

(b) Find , the rate of change in power generated with respect to wind veloc-
ity, when the wind velocity is 7 meters per second.

Solution:

(a) Since m and , we have

.

So, , where v is in meters per second and P is in watts.

(b)

The rate of change in power generated is about 492 watts per meter/sec.

 = 492.45

 = 3.3511472
 = lim

h:0
 33.351147 + 21h + h224

 = lim
h:0

 
3.351147h + 21h2

+ h32
h

 = lim
h:0

 
3.353173

+ 147h + 21h2
+ h32 - 734

h

 = lim
h:0

 
3.3517 + h23 - 3.351723

h

 P¿172 = lim
h:0

 
P17 + h2 - P172

h

P1v2 = 3.35v3

P = kr 2v3
= 10.13421522v3

= 3.35v3

k = 0.134 kg/m2r = 5

P¿172

k = 0.134 kg/m3

P = kr 2v3

QUICK REVIEW 10.1 (For help, go to Sections P.1 and P.4.)

In Exercises 7–10, simplify the expression assuming .

7.

8.

9.

10.
1/1x + h2 - 1/x

h

1/12 + h) - 1/2

h

13 + h22 + 3 + h - 12

h

12 + h)2
- 4

h

h Z 0Exercise numbers with a gray background indicate problems
that the authors have designed to be solved without a calculator.

In Exercises 1 and 2, find the slope of the line determined by the
points.

1. 2.

In Exercises 3–6, write an equation for the specified line.

3. Through with 

4. Through and 

5. Through and parallel to

6. Through and perpendicular to y = 13/42x + 211, 42
y = 13/42x + 211, 42

14, -1211, 62
slope = 3/21-2, 32

1-3, -12, 13, 321-2, 32, 15, -12
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SECTION 10.1 EXERCISES

1. Average Velocity A bicyclist travels 21 miles in 1 hour
and 45 minutes. What is her average velocity during the entire

-hour time interval?

2. Average Velocity An automobile travels 540 kilome-
ters in 4 hours and 30 minutes. What is its average velocity
over the entire -hour time interval?

In Exercises 3–6, the position of an object at time t is given by .
Find the instantaneous velocity at the indicated value of t.

3.

4.

5.

6.
[Hint: “Rationalize the numerator.”]

In Exercises 7–10, use the graph to estimate the slope of the tangent
line, if it exists, to the graph at the given point.

7. 8. x = 1x = 0

s1t2 = 1t + 1 at t = 1

s1t2 = at 2
+ 5 at t = 2

s1t2 =

2

t + 1
 at t = 2

s1t2 = 3t - 5 at t = 4

s1t2
4 

1
2

1 
3
4

16. Rocket Launch A toy rocket is
launched straight up in the air 
from level ground. The distance 
(in ft) the rocket is above the 
ground (the position function) is

at any time 
t (in sec). Find

(a)

(b) The initial velocity of the
rocket.

In Exercises 17–20, use the limit definition to find

(a) The slope of the graph of the function at the indicated point.

(b) An equation of the tangent line at the point.

(c) Sketch a graph of the curve near the point without using your
graphing calculator.

17.

18.

19.

20.

In Exercises 21 and 22, estimate the slope of the tangent line to the
graph of the function, if it exists, at the indicated points.

21.

22.

In Exercises 23–28, find the derivative, if it exists, of the function at the
specified point.

23.

24.

25.

26.

27.

28.

In Exercises 29–32, find the derivative of ƒ.

29.

30.

31.

32. ƒ1x2 =

1

x - 2

ƒ1x2 = 3x2
+ 2x - 1

ƒ1x2 = 2 - 3x2

ƒ1x2 = 2 - 3x

ƒ1x2 =

1

x + 2
 at x = -1

ƒ1x2 = ƒx + 2 ƒ at x = -2

ƒ1x2 = x2
- 3x + 1 at x = 1

ƒ1x2 = 3x2
+ 2 at x = -2

ƒ1x2 = 2x +

1

2
 x2 at x = 2

ƒ1x2 = 1 - x2 at x = 2

ƒ1x2 = tan-1 1x + 12 at x = -2, 2, and 0.

ƒ1x2 = ƒx ƒ at x = -2, 2, and 0.

ƒ1x2 =

1

x + 2
 at x = 1

ƒ1x2 = 2x2
- 7x + 3 at x = 2

ƒ1x2 = 2x - x2 at x = 2

ƒ1x2 = 2x2 at x = -1

ƒ¿102.
ƒ1t2 = 170t - 16t 2

y

x
–4 –2

–2

4

2 4

y

x
–4

–2

2

4

2 4

0 1

1

2

3

2
x

y y

x

2

4

9. 10. x = 4x = 2

In Exercises 11–14, graph the function in a square viewing window
and, without doing any calculations, estimate the derivative of the func-
tion at the given point by interpreting it as the tangent line slope, if it
exists at the point.

11.

12.

13.

14.

15. A Rock Toss A rock is thrown straight up from level
ground. The distance (in ft) the ball is above the ground (the
position function) is at any time 
t (in sec). Find

(a) .

(b) The initial velocity of the rock.

ƒ¿102
ƒ1t2 = 3 + 48t - 16t 2

ƒ1x2 = 2 sin x at x = p

ƒ1x2 = x3
- 6x2

+ 12x - 9 at x = 0

ƒ1x2 =

1

2
 x2

+ 2x - 5 at x = 2

ƒ1x2 = x2
- 2x + 5 at x = 3

6965_CH10_pp735-778.qxd  1/20/10  3:35 PM  Page 744



36.

37. �
38. �

In Exercises 39–42, sketch a possible graph for a function that has the
stated properties.

39. The domain of ƒ is and the derivative at is 3.

40. The domain of ƒ is and the derivative is 0 at both 
and .

41. The domain of ƒ is and the derivative at is 
undefined.

42. The domain of ƒ is , ƒ is nondecreasing on , and the
derivative at is 0.

43. Writing to Learn Explain why you can find the deriva-
tive of without doing any computations. What
is ?

44. Writing to Learn Use the first definition of derivative at
a point to express the derivative of as a
limit. Then explain why the limit does not exist. (A graph of
the quotient for x values near 0 might help.)

Standardized Test Questions
45. True or False When a ball rolls down a ramp, its instan-

taneous velocity is always zero. Justify your answer.

46. True or False If the derivative of the function ƒ exists at
, then the derivative is equal to the slope of the tangent

line at . Justify your answer.

In Exercises 47–50, choose the correct answer. You may use a calculator.

47. Multiple Choice If find .

(A) (B) (C) (D)

(E)

48. Multiple Choice If , find .

(A) (B) (C) (D)

(E)

49. Multiple Choice If , find the derivative of ƒ at
.

(A) 3 (B) 6 (C) 12 (D) 18 (E) Does not exist

50. Multiple Choice If , find the derivative of

ƒ at .

(A) (B) (C) (D) (E) Does not exist
1

2
-  

1

2

1

4
-  

1

4

x = 1

ƒ1x2 =

1

x - 3

x = 2
ƒ1x2 = x3

5x - 6x2

10x - 35x - 65 - 3x5 - 6x

ƒ¿1x2ƒ1x2 = 5x - 3x2

2x - 3

2x + 32x - 1x2
- 4x2

+ 3

ƒ¿1x2ƒ1x2 = x2
+ 3x - 4,

x = a
x = a

ƒ1x2 = ƒx ƒ  at x = 0

ƒ¿1x2
ƒ1x2 = ax + b

x = 2
30, 5430, 54

x = 230, 54
x = 4

x = 230, 54
x = 230, 54

sin x
x

 if x Z 0

1       if x = 0
 at x = 0ƒ1x2 =

ƒx - 2 ƒ

x - 2
 if x Z 2

1           if x = 2

at x = 2ƒ1x2 =

ƒ1x2 = e1 + 1x - 222 if x … 2

1 - 1x - 222 if x 7 2
 at x = 2

33. Average Speed A lead ball is held at water level and
dropped from a boat into a lake. The distance the ball falls at
0.1 sec time intervals is given in Table 10.1.

SECTION 10.1 Limits and Motion: The Tangent Problem 745

Table 10.1 Distance Data of the Lead Ball

Time (sec) Distance (ft)

0 0
0.1 0.1
0.2 0.4
0.3 0.8
0.4 1.5
0.5 2.3
0.6 3.2
0.7 4.4
0.8 5.8
0.9 7.3

Table 10.2 Distance Data of the Ball

Time (sec) Distance (ft)

0.2 30.00
0.4 28.36
0.6 25.44
0.8 21.24
1.0 15.76
1.2 9.02
1.4 0.95

(a) Compute the average speed from 0.5 to 0.6 second and
from 0.8 to 0.9 second.

(b) Find a quadratic regression model for the distance data and
overlay its graph on a scatter plot of the data.

(c) Use the model in part (b) to estimate the depth of the lake
if the ball hits the bottom after 2 seconds.

34. Finding Derivatives from Data A ball is dropped
from the roof of a two-story building. The distance in feet
above ground of the falling ball is given in Table 10.2 where t
is in seconds.

(a) Use the data to estimate the average velocity of the ball in
the interval .

(b) Find a quadratic regression model s for the data in Table 10.2
and overlay its graph on a scatter plot of the data.

(c) Find the derivative of the regression equation and use it to
estimate the velocity of the ball at time .

In Exercises 35–38, complete the following.

(a) Draw a graph of the function.

(b) Find the derivative of the function at the given point if it exists.

(c) Writing to Learn If the derivative does not exist at the
point, explain why not.

35. ƒ1x2 = e 4 - x if x … 2

x + 3 if x 7 2
 at x = 2

t = 1

0.8 … t … 1
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Explorations
Graph each function in Exercises 51–54 and then answer the following
questions.

(a) Writing to Learn Does the function have a derivative at
? Explain.

(b) Does the function appear to have a tangent line at ? If so,
what is an equation of the tangent line?

51. 52.

53. 54.

55. Free Fall A water balloon dropped from a window will
fall a distance of feet during the first t seconds. Find
the balloon’s (a) average velocity during the first 3 seconds of
falling and (b) instantaneous velocity at .

56. Free Fall on Another Planet It can be established
by experimentation that heavy objects dropped from rest free
fall near the surface of another planet according to the formula

, where y is the distance in meters the object falls in t
seconds after being dropped. An object falls from the top of a
125-m spaceship that landed on the surface. It hits the surface
in 5 seconds.

(a) Find the value of g.

(b) Find the average speed for the fall of the object.

(c) With what speed did the object hit the surface?

y = gt 2

t = 3

s = 16t 2

ƒ1x2 = tan-1 xƒ1x2 = x1/3

ƒ1x2 = ƒx1/3
ƒƒ1x2 = ƒx ƒ

x = 0

x = 0

746 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

Extending the Ideas
57. Graphing the Derivative The graph of

is shown below. Use your knowledge of the geo-
metric interpretation of the derivative to sketch a rough graph
of the derivative .y = ƒ¿1x2
ƒ1x2 = x2e-x

[0, 10] by [–1, 1]

[–5, 5] by [–10, 10]

58. Group Activity The graph of is shown 
below. Determine a possible graph for the function y = ƒ1x2.

y = ƒ¿1x2
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10.2 Limits and Motion: 
The Area Problem

Distance from a Constant Velocity
“Distance equals rate times time” is one of the earliest problem-solving formulas that
we learn in school mathematics. Given a velocity and a time period, we can use the
formula to compute distance traveled—as in the following standard example.

What you’ll learn about
• Distance from a Constant 

Velocity
• Distance from a Changing 

Velocity
• Limits at Infinity
• The Connection to Areas
• The Definite Integral

... and why
Like the tangent line problem, the
area problem has many applica-
tions in every area of science, as
well as historical and economic
applications.

EXAMPLE 1  Computing Distance Traveled
An automobile travels at a constant rate of 48 miles per hour for 2 hours and 30 minutes.
How far does the automobile travel?

SOLUTION We apply the formula :

Now try Exercise 1.

d = 148 mi/hr212.5 hr2 = 120 miles

d = rt

The similarity to Example 1 in Section 10.1 is intentional. In fact, if we represent dis-
tance traveled (i.e., the change in position) by s and the time interval by t, the for-
mula becomes

which is equivalent to

So the two Example 1’s are nearly identical—except that Example 1 of Section 10.1 did
not make an assumption about constant velocity. What we computed in that instance was
the average velocity over the 2.5-hour interval. This suggests that we could have actually
solved the following, slightly different, problem to open this section.

¢s

¢t
= 48 mph.

¢s = 148 mph2 ¢t,

¢¢

EXAMPLE 2  Computing Distance Traveled
An automobile travels at an average rate of 48 miles per hour for 2 hours and 
30 minutes. How far does the automobile travel?

SOLUTION The distance traveled is s, the time interval has length t, and 
s/ t is the average velocity.

Therefore,

Now try Exercise 5.

¢s =

¢s

¢t
#
¢t = 148 mph212.5 hr2 = 120 miles.

¢¢

¢¢

So, given average velocity over a time interval, we can easily find distance traveled. But
suppose we have a velocity function that gives instantaneous velocity as a chang-
ing function of time. How can we use the instantaneous velocity function to find 
distance traveled over a time interval? This was the other intriguing problem about in-
stantaneous velocity that puzzled the 17th-century scientists—and once again, algebra
was inadequate for solving it, as we shall see.

v1t2
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Distance from a Changing Velocity
When Galileo began his experiments, here’s what he might have asked himself about
using a changing velocity to find distance:

748 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

Zeno’s Paradoxes
The Greek philosopher Zeno of Elea (490–425
B.C.E.) was noted for presenting paradoxes simi-
lar to the Distance Question. One of the most 
famous concerns the race between Achilles and a
slow-but-sure tortoise. Achilles sportingly gives
the tortoise a head start, then sets off to catch
him. He must first get halfway to the tortoise, but
by the time he runs halfway to where the tortoise
was when he started, the tortoise has moved
ahead. Now Achilles must close half of that dis-
tance, but by the time he does, the tortoise has
moved ahead again. Continuing this argument
forever, we see that Achilles can never even
catch the tortoise, let alone pass him, so the 
tortoise must win the race.

A Distance Question
Suppose a ball rolls down a ramp and its velocity is always 2t feet per second,
where t is the number of seconds after it started to roll. How far does the ball
travel during the first 3 seconds?

DEFINITION (INFORMAL) Limit at Infinity
When we write “ ,” we mean that ƒ(x) gets arbitrarily close to L

as x gets arbitrarily large.

lim
x: q

 ƒ1x2 = L

One might be tempted to offer the following “solution”:

Velocity times t gives s. But instantaneous velocity occurs at an instant of time, so
. That means . So, at any given instant of time, the ball doesn’t move.

Since any time interval consists of instants of time, the ball never moves at all! (You
might well ask: Is this another trick question?)

As was the case with the Velocity Question in Section 10.1, this foolish-looking exam-
ple conceals a very subtle algebraic dilemma—and, far from being a trick question, it is
exactly the question that needed to be answered in order to compute the distance trav-
eled by an object whose velocity varies as a function of time. The scientists who were
working on the tangent line problem realized that the distance-traveled problem must
be related to it, but, surprisingly, their geometry led them in another direction. The dis-
tance traveled problem led them not to tangent lines, but to areas.

Limits at Infinity
Before we see the connection to areas, let us revisit another limit concept that will make
instantaneous velocity easier to handle, just as in the last section. We will again be con-
tent with an informal definition.

¢s = 0¢t = 0
¢¢

EXPLORATION 1 An Infinite Limit

A gallon of water is divided equally and poured into teacups. Find the amount
in each teacup and the total amount in all the teacups if there are

1. 10 teacups.

2. 100 teacups.

3. 1 billion teacups.

4. An infinite number of teacups.

The preceding Exploration probably went pretty smoothly until you came to the infinite
number of teacups. At that point you were probably pretty comfortable in saying what
the total amount would be, and probably a little uncomfortable in saying how much
would be in each teacup. (Theoretically it would be zero, which is just one reason why
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the actual experiment cannot be performed.) In the language of limits, the total amount
of water in the infinite number of teacups would look like this:

while the total amount in each teacup would look like this:

Summing up an infinite number of nothings to get something is mysterious enough when
we use limits; without limits it seems to be an algebraic impossibility. That is the dilemma
that faced the 17th-century scientists who were trying to work with instantaneous veloc-
ity. Once again, it was geometry that showed the way when the algebra failed.

The Connection to Areas
If we graph the constant velocity in Example 1 as a function of time t, we 
notice that the area of the shaded rectangle is the same as the distance traveled 
(Figure 10.4). This is no mere coincidence, either, as the area of the rectangle and the
distance traveled over the time interval are both computed by multiplying the same two
quantities:

Now suppose we graph a velocity function that varies continuously as a function of
time (Figure 10.5). Would the area of this irregularly shaped region still give the total
distance traveled over the time interval ?

Newton and Leibniz (and, actually, many others who had considered this question) were
convinced that it obviously would, and that is why they were interested in a calculus for
finding areas under curves. They imagined the time interval being partitioned into many
tiny subintervals, each one so small that the velocity over it would essentially be con-
stant. Geometrically, this was equivalent to slicing the area into narrow strips, each one
of which would be nearly indistinguishable from a narrow rectangle (Figure 10.6).

The idea of partitioning irregularly shaped areas into approximating rectangles was not
new. Indeed, Archimedes had used that very method to approximate the area of a circle
with remarkable accuracy. However, it was an exercise in patience and perseverance, as
Example 3 will show.

3a, b4

148 mph212.5 hr2 = 120 miles

v = 48

lim
n: q

 

1
n

= 0 gallons

lim
n: q

an #
1
n
b = lim

n: q

 

n

n
= 1 gallon
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Velocity (mph)

48

2.5
Time (hr)

FIGURE 10.4 For constant velocity, 
the area of the rectangle is the same as the 
distance traveled, since it represents the 
product of the same two quantities:

miles.148 mph212.5 hr2 = 120

velocity

ba
time

FIGURE 10.5 If the velocity varies over
the time interval , does the shaded re-
gion give the distance traveled?

3a, b4

velocity

ba
time

FIGURE 10.6 The region is partitioned
into vertical strips. If the strips are narrow
enough, they are almost indistinguishable
from rectangles. The sum of the areas of these
“rectangles” will give the total area and can be
interpreted as distance traveled.

EXAMPLE 3  Approximating an Area with Rectangles
Use the six rectangles in Figure 10.7 to approximate the area of the region below the
graph of over the interval .30, 34ƒ1x2 = x2

5

y

10

x
2 31

FIGURE 10.7 The area under the graph of is approximated by six rectangles,
each with base 1/2. The height of each rectangle is the function value at the right-hand end-
point of the subinterval. (Example 3)

ƒ1x2 = x2

(continued)
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Figure 10.7 shows that the right rectangular approximation method (RRAM) in 
Example 3 overestimates the true area. If we were to use the function values at the left-
hand endpoints of the subintervals (LRAM), we would obtain a rectangular approxima-
tion (6.875 square units) that underestimates the true area (Figure 10.8). The average of
the two approximations is 9.125 square units, which is actually a pretty good estimate
of the true area of 9 square units. If we were to repeat the process with 20 rectangles,
the average would be 9.01125. This method of converging toward an unknown area by
refining approximations is tedious, but it works—Archimedes used a variation of it
2200 years ago to estimate the area of a circle, and in the process demonstrated that the
ratio of the circumference to the diameter was between 3.140845 and 3.142857.

The calculus step is to move from a finite number of rectangles (yielding an approxi-
mate area) to an infinite number of rectangles (yielding an exact area). This brings us to
the definite integral.

The Definite Integral
In general, begin with a continuous function over an interval . Divide 
into n subintervals of length . Choose any value in the first subinterval,

in the second, and so on. Compute , multiply each value
by x, and sum up the products. In sigma notation, the sum of the products is

The limit of this sum as n approaches infinity is the solution to the area problem, and
hence the solution to the problem of distance traveled. Indeed, it solves a variety of
other problems as well, as you will learn when you study calculus. The limit, if it exists,
is called a definite integral.

a

n

i=1
 ƒ1x i2¢x.

¢

ƒ1x12, ƒ1x22, ƒ1x32, Á , ƒ1xn2x2

x1¢x = 1b - a2/n 3a, b43a, b4y = ƒ1x2
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SOLUTION The base of each approximating rectangle is 1/2. The height is deter-
mined by the function value at the right-hand endpoint of each subinterval. The areas
of the six rectangles and the total area are computed in the table below:

Base of Height of Area of 
Subinterval Rectangle Rectangle Rectangle

1/2
1/2
1/2
1/2
1/2
1/2

Total Area: 11.375

11/22192 = 4.500ƒ132 = 1322 = 935/2, 34
11/22125/42 = 3.125ƒ15/22 = 15/222 = 25/432, 5/24
11/22142 = 2.000ƒ122 = 1222 = 433/2, 24
11/2219/42 = 1.125ƒ13/22 = 13/222 = 9/431, 3/24
11/22112 = 0.500ƒ112 = 1122 = 131/2, 14
11/2211/42 = 0.125ƒ11/22 = 11/222 = 1/430, 1/24

5

y

10

x
2 31

FIGURE 10.8 If we change the rectangles
in Figure 10.7 so that their heights are deter-
mined by function values at the left-hand end-
points, we get an area approximation (6.875
square units) that underestimates the true area.

The six rectangles give a (rather crude) approximation of 11.375 square units for the
area under the curve from 0 to 3. Now try Exercise 11.

Definite Integral Notation
Notice that the notation for the definite integral
(another legacy of Leibniz) parallels the sigma
notation of the sum for which it is a limit. The
“ ” in the limit becomes a stylized “S,” for
“sum.” The “ x” becomes “dx” (as it did in the
derivative), and the “ ” becomes simply 

“ ” because we are effectively summing up 

all the -values along the interval (times an
arbitrarily small change in x), rendering the sub-
scripts unnecessary.

ƒ1x2
ƒ1x2

ƒ1x i2
¢

g

DEFINITION Definite Integral

Let ƒ be a function defined on and let be defined as 

above. The definite integral of ƒ over , denoted , is given by

provided the limit exists. If the limit exists, we say ƒ is integrable on .3a, b4
L

b

a
 ƒ1x2 dx = lim

n: q

 a

n

i=1
 ƒ1x i2¢x,

1
b

a  ƒ1x2 dx3a, b4
a

n

i=1
 ƒ1x i2¢x3a, b4

Riemann Sums

A sum of the form in which x1 is in 

the first subinterval, x2 is in the second, and so
on, is called a Riemann sum, in honor of Georg
Riemann (1826–1866), who determined the
functions for which such sums had limits as
n .: q

a

n

i=1
 ƒ1x i2¢x
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The solution to Example 3 shows that it can be tedious to approximate a definite inte-
gral by working out the sum for a large value of n. One of the crowning achievements
of calculus was to demonstrate how the exact value of a definite integral could be ob-
tained without summing up any products at all. You will have to wait until calculus to
see how that is done; meanwhile, you will learn in Section 10.4 how to use a calculator
to take the tedium out of finding definite integrals by summing.

You can also use the area connection to your advantage, as shown in these next two 
examples.

SECTION 10.2 Limits and Motion: The Area Problem 751

EXAMPLE 4  Computing an Integral

Find .

SOLUTION This will be the area under the line over the interval .
The graph in Figure 10.9 shows that this is the area of a trapezoid.

Using the formula , we find that

Now try Exercise 23.

L

5

1
 2x dx = 4a2112 + 2152

2
b = 24.

A = hab1 + b2

2
b

31, 54y = 2x

L

5

1
2x dx

y

x
1 5

y = 2x

FIGURE 10.9 The area of the trapezoid
equals . (Example 4)1

5
1  2x dx

EXAMPLE 5  Computing an Integral
Suppose a ball rolls down a ramp so that its velocity after t seconds is always 2t feet
per second. How far does it fall during the first 3 seconds?

SOLUTION The distance traveled will be the same as the area under the velocity
graph, , over the interval . The graph is shown in Figure 10.10. Since
the region is triangular, we can find its area: . The distance
traveled in the first 3 seconds, therefore, is feet.

Now try Exercise 45.
¢s = 11/2213 sec216 feet/sec2 = 9

A = 11/22132162 = 9
30, 34v1t2 = 2t

6

v

t
1 2 3

FIGURE 10.10 The area under the velocity graph , over the interval is the
distance traveled by the ball in Example 5 during the first 3 seconds.

30, 34,v1t2 = 2t
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QUICK REVIEW 10.2 (For help, go to Sections 1.1 and 9.4.)

7. A truck travels at an average speed of 57 mph for 4 hours.
How far does it travel?

8. A pump working at 5 gal/min pumps for 2 hours. How
many gallons are pumped?

9. Water flows over a spillway at a steady rate of 200 cubic
feet per second. How many cubic feet of water pass over
the spillway in 6 hours?

10. A county has a population density of 560 people per square
mile in an area of 35,000 square miles. What is the popula-
tion of the county?

In Exercises 1 and 2, list the elements of the sequence.

1.

2.

In Exercises 3–6, find the sum.

3. 4.

5. 6. a
n

k=1
 

1

2
 k2

a

10

k=1
 

1

2
 1k + 122

a

n

k=1
 1k + 12 a

10

k=1
 

1

2
 1k + 12

ak =

1

4
 a2 +

1

4
 kb2 for k = 1, 2, 3, 4, Á , 9, 10

ak =

1

2
 a 1

2
 kb2 for k = 1, 2, 3, 4, Á , 9, 10

SECTION 10.2 EXERCISES

In Exercises 1–4, explain how to represent the problem situation as an
area question and then solve the problem.

1. A train travels at 65 mph for 3 hours. How far does it 
travel?

2. A pump working at 15 gal/min pumps for one-half hour. How
many gallons are pumped?

3. Water flows over a spillway at a
steady rate of 150 cubic feet per 
second. How many cubic feet of 
water pass over the spillway in one 
hour?

4. A city has a population density of
650 people per square mile in an area of 20 square miles. What
is the population of the city?

5. An airplane travels at an average velocity of 640 kilometers per
hour for 3 hours and 24 minutes. How far does the airplane
travel?

6. A train travels at an average velocity of 24 miles per hour for 
4 hours and 50 minutes. How far does the train travel?

In Exercises 7–10, estimate the area of the region above the x-axis and
under the graph of the function from .

7. 8.

x = 0 to x = 5

9. 10.

x

y

0
0

1

2

3

4

5

1 2 3 4 5
x

y

0
0

1

2

3

4

5

1 2 3 4 5

x

y

0
0

1

2

3

4

5

6

1 2 3 4 5
x

y

0
0

1

2

3

4

5

6

1 2 3 4 5

In Exercises 11 and 12, use the 8 rectangles shown to approximate the
area of the region below the graph of over the interval

.

11. 12.

3-1, 34
ƒ1x2 = 10 - x2

5

y

2 31–1

5

y

2 31–1

In Exercises 13–16, partition the given interval into the indicated num-
ber of subintervals.

13. 14.

15. 16. 31, 54; 831, 44; 6

30, 24; 830, 24; 4
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In Exercises 17–20, complete the following.

(a) Draw the graph of the function for x in the specified interval. Verify
that the function is nonnegative in that interval.

(b) On the graph in part (a), draw and shade the approximating rectan-
gles for the RRAM using the specified partition. Compute the
RRAM area estimate without using a calculator.

(c) Repeat part (b) using the LRAM.

(d) Average the RRAM and LRAM approximations from parts (b) and
(c) to find an average estimate of the area.

17.

18.

19.

20.

In Exercises 21–28, find the definite integral by computing an area. 
(It may help to look at a graph of the function.)

21. 22.

23. 24.

25. 26.

27. 28.

It can be shown that the area enclosed between the x-axis and one arch
of the sine curve is 2. Use this fact in Exercises 29–38 to compute the
definite integral. (It may help to look at a graph of the function.)

29. 30.

31. 32.

33.

34.

35. [Hint: All the rectangles are twice as tall.]

36. [Hint: All the rectangles are twice as wide.]

37.

38.

In Exercises 39–42, find the integral, assuming that k is a number 
between 0 and 4.

39.

40.
L

k

0
 14x + 32 dx

L

4

0
 1kx + 32 dx

L

3p/2

-p

 ƒcos x ƒ  dx

L

2p

0
 ƒsin x ƒ  dx

L

2p

0
 sin a x

2
b  dx

L

p

0
 2 sin x dx

L

p/2

0
 cos x dx

L

p/2

0
 sin x dx

L

p/2

-p/2
 cos x dx

L

p+2

2
 sin 1x - 22 dx

L

p

0
 1sin x + 22 dx

L

p

0
 sin x dx

L

6

0
236 - x2 dx

L

2

-2
 24 - x2 dx

L

4

1
 13x - 22 dx

L

4

1
 1x + 32 dx

L

7

1
 0.5x dx

L

5

0
 3x dx

L

4

-1
 6 dx

L

7

3
 5 dx

ƒ1x2 = x3; 30, 34; 3 subintervals

ƒ1x2 = 4x - x2; 30, 44; 4 subintervals

ƒ1x2 = x2
+ 2; 30, 64; 6 subintervals

ƒ1x2 = x2; 30, 44; 4 subintervals
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41.

42.

43. Writing to Learn Let where ƒ has non-
negative function values on an interval . Explain why the
area above the graph of g is the same as the area under the
graph of ƒ in the same interval.

44. Writing to Learn Explain how you can find the area
under the graph of from to by
mental computation only.

45. Falling Ball Suppose a ball is dropped from a tower and
its velocity after t seconds is always 32t feet per second. How
far does the ball fall during the first 2 seconds?

46. Accelerating Automobile Suppose an automobile
accelerates so that its velocity after t seconds is always 
6t feet per second. How far does the car travel in the first 
7 seconds?

47. Rock Toss A rock is thrown straight up from level 
ground. The velocity of the rock at any time t (sec) is

.

(a) Graph the velocity function.

(b) At what time does the rock reach its maximum height?

(c) Find how far the rock has traveled at its maximum height.

48. Rocket Launch A toy rocket is launched straight up
from level ground. Its velocity function is 
feet per second, where t is the number of seconds after launch.

(a) Graph the velocity function.

(b) At what time does the rocket reach its maximum height?

(c) Find how far the rocket has traveled at its maximum
height.

49. Finding Distance Traveled as Area A ball is
pushed off the roof of a three-story building. Table 10.3 gives
the velocity (in feet per second) of the falling ball at 
0.2-second intervals until it hits the ground 1.4 seconds later.

ƒ1t2 = 170 - 32t

v1t2 = 48 - 32t ft/sec

x = 4x = 0ƒ1x2 = 216 - x2

3a, b4
g1x2 = -ƒ1x2

L

4

k
 14x + 32 dx

L

4

0
 13x + k2 dx

Table 10.3 Velocity Data of the Ball

Time Velocity

0.2
0.4
0.6
0.8
1.0
1.2 37.06
1.4 -43.47

-

-30.62
-24.21
-17.46
-11.43
-5.05

(a) Draw a scatter plot of the data.

(b) Find the approximate building height using RRAM areas
as in Example 4. Use the fact that if the velocity function is
always negative the distance traveled will be the same as if
the absolute value of the velocity values were used.
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50. Work Work is defined as force times distance. A full water
barrel weighing 1250 pounds has a significant leak and must be
lifted 35 feet. Table 10.4 displays the weight of the barrel mea-
sured after each 5 feet of movement. Find the approximate
work in foot-pounds done in lifting the barrel 35 feet.
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Explorations
57. Group Activity You may have erroneously assumed that

the function ƒ had to be positive in the definition of the definite 

integral. It is a fact that . Use the definition 

of the definite integral to explain why this is so. What does this 

imply about ?

58. Area Under a Discontinuous Function Let

.

(a) Draw a graph of ƒ. Determine its domain and range.

(b) Writing to Learn How would you define the area
under ƒ from ? Does it make a difference if
the function has no value at ?

Extending the Ideas
Group Activity From what you know about definite integrals,
decide whether each of the following statements is true or false for inte-
grable functions (in general). Work with your classmates to justify your
answers.

59.

60.

61.

62.

63.

64.
L

a

a
ƒ1x2 dx = 0

L

b

a
ƒ1x2 =

L

a

b
ƒ1x2

L

c

a
ƒ1x2 dx +

L

b

c
ƒ1x2 dx =

L

b

a
ƒ1x2 dx for a 6 c 6 b

L

b

a
ƒ1x2 # g1x2 dx =

L

b

a
ƒ1x2 dx #

L

b

a
g1x2 dx

L

b

a
8 # ƒ1x2 dx = 8 #

L

b

a
ƒ1x2 dx

L

b

a
 ƒ1x2 dx +

L

b

a
 g1x2 dx =

L

b

a
 1ƒ1x2 + g1x22 dx

x = 2
x = 0 to x = 4

ƒ1x2 = e1 if x 6 2

x if x 7 2

L

1

0
 1x - 12 dx

L

2p

0
 sin x dx = 0

Table 10.4 Weight of a Leaking Water Barrel

Distance (ft) Weight (lb)

0 1250
5 1150
10 1050
15 950
20 850
25 750
30 650

Standardized Test Questions
51. True or False When estimating the area under a curve

using LRAM, the accuracy typically improves as the number n
of subintervals is increased.

52. True or False The statement means that 

gets arbitrarily large as x gets arbitrarily close to L.

It can be shown that the area of the region enclosed by the curve
, the x-axis, and the line is 18. Use this fact in 

Exercises 53–56 to choose the correct answer. Do not use a calculator.

53. Multiple Choice

(A) 36 (B) 27 (C) 18 (D) 9 (E) 6

54. Multiple Choice

(A) 14 (B) 23 (C) 33 (D) 45 (E) 63

55. Multiple Choice

(A) 9 (B) 13 (C) 18 (D) 23 (E) 28

56. Multiple Choice

(A) 54 (B) 18 (C) 9 (D) 6 (E) 3

L

3

0
 13x dx

L

14

5
 11x - 52 dx

L

9

0
 11x + 52 dx

L

9

0
 21x dx

x = 9y = 1x

ƒ1x2
lim

x: q

 ƒ1x2 = L
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10.3 More on Limits

A Little History
Progress in mathematics occurs gradually and without much fanfare in the early
stages. The fanfare occurs much later, after the discoveries and innovations have been
cleaned up and put into perspective. Calculus is certainly a case in point. Most of the
ideas in this chapter pre-date Newton and Leibniz. Others were solving calculus 
problems as far back as Archimedes of Syracuse (ca. 287–212 B.C.E.), long before 
calculus was “discovered.” What Newton and Leibniz did was to develop the rules of
the game so that derivatives and integrals could be computed algebraically. Most 
importantly, they developed what has come to be called the Fundamental Theorem of
Calculus, which explains the connection between the “tangent line problem” and the
“area problem.”

But the methods of Newton and Leibniz depended on mysterious “infinitesimal” quan-
tities that were small enough to vanish and yet were not zero. Jean Le Rond d’Alembert
(1717–1783) was a strong proponent of replacing infinitesimals with limits (the strat-
egy that would eventually work), but these concepts were not well understood until
Karl Weierstrass (1815–1897) and his student Eduard Heine (1821–1881) introduced
the formal, unassailable definitions that are used in our higher mathematics courses to-
day. By that time, Newton and Leibniz had been dead for over 150 years.

Defining a Limit Informally
There is nothing difficult about the following limit statements:

That is why we have used limit notation throughout this book. Particularly when
electronic graphers are available, analyzing the limiting behavior of functions alge-
braically, numerically, and graphically can tell us much of what we need to know
about the functions.

What is difficult is to come up with an air-tight definition of what a limit really is. If
it had been easy, it would not have taken 150 years. The subtleties of the “epsilon-
delta” definition of Weierstrass and Heine are as beautiful as they are profound, but
they are not the stuff of a precalculus course. Therefore, even as we look more
closely at limits and their properties in this section, we will continue to refer to our
“informal” definition of limit (essentially that of d’Alembert). We repeat it here for
ready reference:

lim
x:3

 12x - 12 = 5  lim
x: q

 1x2
+ 32 = q  lim

n: q

 
1
n

= 0

What you’ll learn about
• A Little History
• Defining a Limit Informally
• Properties of Limits
• Limits of Continuous Functions
• One-Sided and Two-Sided Limits
• Limits Involving Infinity

... and why
Limits are essential concepts in
the development of calculus.

DEFINITION (INFORMAL) Limit at a
When we write “ ,” we mean that gets arbitrarily close to L

as x gets arbitrarily close (but not equal) to a.

ƒ1x2 lim
x:a

 ƒ1x2 = L
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Properties of Limits
When limits exist, there is nothing unusual about the way they interact algebraically
with each other. You could easily predict that the following properties would hold.
These are all theorems that one could prove with a rigorous definition of limit, but we
must state them without proof here.
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EXPLORATION 1 What’s the Limit?

As a class, discuss the following two limit statements until you really under-

stand why they are true. Look at them every way you can. Use your calculators.

Do you see how the above definition verifies that they are true? In particular,

can you defend your position against the challenges that follow the statements?

(This exploration is intended to be free-wheeling and philosophical. You can’t

prove these statements without a stronger definition.)

1.

Challenges:

• Isn’t 7x getting “arbitrarily close” to that number as x approaches 2?

• How can you tell that 14 is the limit and 14.000000000000000001 
is not?

2.

Challenges:

• How can the limit be 2 when the quotient isn’t even defined at 0?

• Won’t there be an asymptote at The denominator equals 0 
there.

• How can you tell that 2 is the limit and 1.99999999999999999999 
is not?

x = 0?

lim
x:0

 
x2

+ 2x

x
= 2

lim
x:2

 7x Z 14.000000000000000001

EXAMPLE 1  Finding a Limit

Find 

Solve Graphically
The graph in Figure 10.11a suggests 
that the limit exists and is about 3.

lim
x:1

 
x3

- 1

x - 1
 .

[–4, 4] by [–2, 8]

(a)

X=1.0212766 Y=3.0642825

1

FIGURE 10.11a A graph of 
ƒ1x2 = 1x3

- 12/1x - 12.

X

Y1 = (X3–1)/(X–1)

.997

.998

.999
1
1.001
1.002
1.003

2.991
2.994
2.997
ERROR
3.003
3.006
3.009

Y1

(b)

FIGURE 10.11b A table of values 
for ƒ1x2 = 1x3

- 12/1x - 12.

Solve Numerically
The table also gives compelling 
evidence that the limit is 3.

Solve Algebraically

= 3

= 1 + 1 + 1

= lim
x:1

 1x2
+ x + 12

= lim
x:1

 
1x - 121x2

+ x + 12
x - 1

lim
x:1

 
x3

- 1

x - 1

As convincing as the graphical and numerical evidence is, the best evidence is algebraic. The limit is 3.
Now try Exercise 11.
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Properties of Limits
If and both exist, then

1. Sum Rule

2. Difference Rule

3. Product Rule

4. Constant Multiple Rule

5. Quotient Rule ,

provided 

6. Power Rule for n

a positive integer

7. Root Rule for 

a positive integer, provided 

and are real numbers.lim
x:c

 2n ƒ1x2
2n lim

x:c
 ƒ1x2

n Ú 2lim
x:c

 2n ƒ1x2 = 2n lim
x:c

 ƒ1x2

lim
x:c

 1ƒ1x22n = 1 lim
x:c

 ƒ1x22n
 lim
x:c

 g1x2 Z 0

lim
x:c

 
ƒ1x2
g1x2 =

 lim
x:c

 ƒ1x2
 lim
x:c

 g1x2  

lim
x:c

 1k # g1x22 = k # lim
x:c

 g1x2
lim
x:c

 1ƒ1x2 # g1x22 = lim
x:c

 ƒ1x2 # lim
x:c

 g1x2
lim
x:c

 1ƒ1x2 - g1x22 = lim
x:c

 ƒ1x2 - lim
x:c

 g1x2
lim
x:c

 1ƒ1x2 + g1x22 = lim
x:c

 ƒ1x2 + lim
x:c

 g1x2
lim
x:c

 g1x2lim
x:c

 ƒ1x2

EXAMPLE 2  Using the Limit Properties

You will learn in Example 10 that Use this fact, along with the limit

properties, to find the following limits:

(a) (b) (c)

SOLUTION

(a)

Sum Rule

(b) Pythagorean identity

Product Rule

(c)

Root Rule

Now try Exercise 19. = 1

 = 23 1

 = A3   limx:0
 
sin x

x

 lim
x:0

 
23 sin x

23 x
= lim

x:0
 A3  

sin x
x

 = 1

 = 1 # 1

 = lim
x:0

 a sin x
x
b # lim

x:0
 a sin x

x
b

 = lim
x:0

 a sin x
x
b a sin x

x
b

 lim
x:0

 
1 - cos2 x

x2 = lim
x:0

 
sin2 x

x2

 = 2

 = 1 + 1

 = lim
x:0

 
x

x
+ lim

x:0
 
sin x

x

 lim
x:0

 
x + sin x

x
= lim

x:0
 a x

x
+

sin x
x
b

lim
x:0

 
23 sin x

23 x
 lim
x:0

 
1 - cos2 x

x2lim
x:0

 
x + sin x

x

lim
x:0

 
sin x

x
= 1.
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Limits of Continuous Functions
Recall from Section 1.2 that a function is continuous at a if This 

means that the limit (at a) of a function can be found by “plugging in a” provided the
function is continuous at a. (The condition of continuity is essential when employing this
strategy. For example, plugging in 0 does not work on any of the limits in Example 2.)

lim
x:a

 ƒ1x2 = ƒ1a2.

758 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

EXAMPLE 3  Finding Limits by Substitution
Find the limits.

(a) (b)

SOLUTION You might not recognize these functions as being continuous, but you
can use the limit properties to write the limits in terms of limits of basic functions.

(a) Quotient Rule

Difference and Power Rules

Limits of continuous functions

(b) Quotient Rule

Limits of continuous functions

Now try Exercise 23.
 = 1

 =

4

4

 =

116

log2 16

 lim
n:16

 
1n

log2 n
=

lim
n:16

 1n

lim
n:16

 log2 n

 = 1

 =

1 - 0

1

 =

e0
- tan 0

1cos 022

 =

lim
x:0

 ex
- lim

x:0
 tan x

1 lim
x:0

 cos x22

 lim
x:0

 
ex

- tan x

cos2 x
=

lim
x:0

 1ex
- tan x2

lim
x:0

 1cos2 x2

lim
n:16

 
1n

log2 n
lim
x:0

 
ex

- tan x

cos2 x

Example 3 hints at some important properties of continuous functions that follow from the
properties of limits. If ƒ and g are both continuous at , then so are ƒg,
and ƒ/g (with the assumption that does not create a zero denominator in the quo-
tient). Also, the nth power and nth root of a function that is continuous at a will also be
continuous at a (with the assumption that is real).

One-Sided and Two-Sided Limits
We can see that the limit of the function in Figure 10.11 is 3 whether x approaches 1
from the left or right. Sometimes the values of a function ƒ can approach different val-
ues as x approaches a number c from opposite sides. When this happens, the limit of ƒ
as x approaches c from the left is the left-hand limit of ƒ at c and the limit of ƒ as x ap-
proaches c from the right is the right-hand limit of ƒ at c. Here is the notation we use:

left-hand: The limit of ƒ as x approaches c from the left.

right-hand: The limit of ƒ as x approaches c from the right.lim
x:c+

 ƒ1x2
lim

x:c-

 ƒ1x2

1ƒ1a2
g1a2 ƒ + g, ƒ - g,x = a

6965_CH10_pp735-778.qxd  1/20/10  3:35 PM  Page 758



The limit is sometimes called the two-sided limit of ƒ at c to distinguish it 

from the one-sided left-hand and right-hand limits of ƒ at c. The following theorem in-
dicates how these limits are related.

lim
x:c

 ƒ1x2

SECTION 10.3 More on Limits 759

EXAMPLE 4  Finding Left- and Right-Hand Limits

Find and where 

SOLUTION Figure 10.12 suggests that the left- and right-hand limits of ƒ exist but
are not equal. Using algebra we find:

Definition of ƒ

Definition of ƒ

You can use TRACE or tables to support the above results.

Now try Exercise 27, parts (a) and (b).

 = 1

 = 2 # 2 - 3

 lim
x:2+

 ƒ1x2 = lim
x:2+

 12x - 32
 = 3

 = -22
+ 4 # 2 - 1

 lim
x:2-

 ƒ1x2 = lim
x:2-

 1-x2
+ 4x - 12

ƒ1x2 = e -x2
+ 4x - 1 if x … 2

2x - 3 if x 7 2
.lim

x:2+

 ƒ1x2lim
x:2-

 ƒ1x2

[–2, 8] by [–3, 7]

FIGURE 10.12 A graph of the piecewise-
defined function.

(Example 4)

ƒ1x2 = e -x2
+ 4x - 1 x … 2

2x - 3 x 7 2

THEOREM One-Sided and Two-Sided Limits
A function has a limit as x approaches c if and only if the left-hand and
right-hand limits at c exist and are equal. That is,

lim
x:c

 ƒ1x2 = L 3 lim
x:c-

 ƒ1x2 = L and lim
x:c+

 ƒ1x2 = L.

ƒ1x2

The limit of the function ƒ of Example 4 as x approaches 2 does not exist, so ƒ is dis-
continuous at However, discontinuous functions can have a limit at a point of
discontinuity. The function ƒ of Example 1 is discontinuous at because 
does not exist, but it has the limit 3 as x approaches 1. Example 5 illustrates another
way a function can have a limit and still be discontinuous.

ƒ112x = 1
x = 2.

EXAMPLE 5  Finding a Limit at a Point of Discontinuity
Let

�
Find and prove that ƒ is discontinuous at 

SOLUTION Figure 10.13 suggests that the limit of ƒ as x approaches 3 exists. Us-
ing algebra we find

We can assume x 3.

Because , ƒ is discontinuous at 

Now try Exercise 37.

x = 3.ƒ132 = 2 Z lim
x:3

 ƒ1x2
 = 6.

Z = lim
x:3

 1x + 32
 lim
x:3

 
x2

- 9

x - 3
= lim

x:3
 
1x - 321x + 32

x - 3

x = 3. lim
x:3

 ƒ1x2

x2
- 9

x - 3
 if x Z 3

2           if x = 3.

ƒ1x2 =

[–4.7, 4.7] by [–5, 10]

FIGURE 10.13 A graph of the function in
Example 5.
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Limits Involving Infinity
The informal definition that we have for a limit refers to where both a

and L are real numbers. In Section 10.2 we adapted the definition to apply to limits of
the form so that we could use this notation in describing definite integrals.

This is one type of “limit at infinity.” Notice that the limit itself (L) is a finite real num-
ber, assuming the limit exists, but that the values of x are approaching infinity.

lim
x: q

 ƒ1x2 = L

lim
x:a

 ƒ1x2 = L

760 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals

EXAMPLE 6  Finding One-Sided and Two-Sided Limits
Let (the greatest integer function). Find:

(a) (b) (c)

SOLUTION Recall that int is equal to the greatest integer less than or equal to x.
For example, From the definition of ƒ and its graph in Figure 10.14 we
can see that

(a)

(b)

(c) does not exist. Now try Exercise 41.lim
x:3

 int1x2
lim

x:3+

 int1x2 = 3

lim
x:3-

 int1x2 = 2

int132 = 3.
1x2

lim
x:3

 int1x2lim
x:3+

 int1x2lim
x:3-

 int1x2
ƒ1x2 = int1x2

[–5, 5] by [–5, 5]

FIGURE 10.14 The graph of 
(Example 6)ƒ1x2 = int1x2.

Notice that limits, whether at a or at infinity, are always finite real numbers; otherwise,
the limits do not exist. For example, it is correct to write

since it approaches no real number L. In this case, however, it is also convenient to write

which gives us a little more information about why the limit fails to exist. (It increases
without bound.) Similarly, it is convenient to write

since ln x decreases without bound as x approaches 0 from the right. In this context, the
symbols “ ” and “ ” are sometimes called infinite limits.- qq

lim
x:0+

 ln x = - q ,

lim
x:0

 
1

x2 = q ,

lim
x:0

 
1

x2 does not exist,

Infinite Limits Are Not Limits
It is important to realize that an infinite limit is
not a limit, despite what the name might imply. It
describes a special case of a limit that does not
exist. Recall that a sawhorse is not a horse and a
badminton bird is not a bird.

Archimedes (CA. 287–212 B.C.E.)
The Greek mathematician Archimedes found the
area of a circle using a method involving infinite
limits. See Exercise 89 for a modern version of
his method.

[–20, 20] by [–2, 2]

FIGURE 10.15 The graph of
(Example 7)ƒ1x2 = 1sin x2/x.

EXAMPLE 7  Investigating Limits as x
Let Find and 

SOLUTION The graph of ƒ in Figure 10.15 suggests that

Now try Exercise 47.

lim
x: q

 
sin x

x
= lim

x: -q

 
sin x

x
= 0.

lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2ƒ1x2 = 1sin x2/x.

: �ˆ

DEFINITION Limits at Infinity
When we write “ ,” we mean that gets arbitrarily close to L

as x gets arbitrarily large. We say that ƒ has a limit L as x approaches .

When we write “ ,” we mean that gets arbitrarily close to 

L as gets arbitrarily large. We say that ƒ has a limit L as x approaches .�ˆ-x

ƒ1x2 lim
x: -q

 ƒ1x2 = L

ˆ

ƒ1x2lim
x: q

 ƒ1x2 = L
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In Section 1.3, we used limits to describe the unbounded behavior of the function
as :

and

The behavior of the function as can be described by the following
two limits:

and

The function has unbounded behavior as and has a finite limit as
.x : - q

x : qg1x2 = ex

lim
x: -q

 ex
= 0lim

x: q

 ex
= q

x : � qg1x2 = ex

lim
x: -q

 x3
= - qlim

x: q

 x3
= q

x : � qƒ1x2 = x3
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EXAMPLE 8  Using Tables to Investigate Limits as x
Let Find and 

SOLUTION The tables in Figure 10.16 suggest that

and lim
x: -q

 xe-x
= - q .lim

x: q

 xe-x
= 0

lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2ƒ1x2 = xe-x.

: �ˆ

[–5, 5] by [–5, 5]

FIGURE 10.17 The graph of the 
function (Example 8)ƒ1x2 = xe-x.

X

Y2 = Xe^(–X)

0
10
20
30
40
50
60

0
4.5E–4
4.1E–8
3E–12
2E–16
1E–20
5E–25

Y2

(a)

X

Y2 = Xe^(–X)

0
–10
–20
–30
–40
–50
–60

0
–2.2E5
–9.7E9
–3E14
–9E18
–3E23
–7E27

Y2

(b)

FIGURE 10.16 The table in (a) suggests that the values of approach 0 as
and the table in (b) suggests that the values of approach as 

(Example 8)
x : - q .- qƒ1x2 = xe-xx : q

ƒ1x2 = xe-x

The graph of ƒ in Figure 10.17 supports these results.
Now try Exercise 49.

EXPLORATION 2 Investigating a Logistic Function

Let 

1. Use tables and graphs to find and 

2. Identify any horizontal asymptotes.

3. How is the numerator of the fraction for ƒ related to part 2?

 lim
x: -q

 ƒ1x2.lim
x: q

 ƒ1x2
ƒ1x2 =

50

1 + 23-x  .

[–4.7, 4.7] by [–5, 5]

FIGURE 10.18 The graph of
with its vertical asymptote

overlaid.
ƒ1x2 = 1/1x - 22

In Section 2.6 we used the graph of to state that

Either one of these unbounded limits allows us to conclude that the vertical line 
is a vertical asymptote of the graph of ƒ (Figure 10.18).

x = 2

lim
x:2-

 
1

x - 2
= - q and lim

x:2+

 
1

x - 2
= q .

ƒ1x2 = 1/1x - 22
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EXAMPLE 9  Investigating Unbounded Limits
Find 

SOLUTION The graph of in Figure 10.19 suggests that

and

This means that the limit of ƒ as x approaches 2 does not exist. The table of values in
Figure 10.20 agrees with this conclusion. The graph of ƒ has a vertical asymptote at

Now try Exercise 55.x = 2.

lim
x:2+

 
1

1x - 222 = q .lim
x:2-

 
1

1x - 222 = q

ƒ1x2 = 1/1x - 222
lim
x:2

 1/1x - 222.

EXAMPLE 10  Investigating a Limit at 
Find 

SOLUTION The graph of in Figure 10.15 suggests this limit ex-
ists. The table of values in Figure 10.21 suggests that

lim
x:0

 
sin x

x
= 1.

ƒ1x2 = 1sin x2/x
lim
x:0

 1sin x2/x.

x = 0

[–4, 6] by [–2, 10]

FIGURE 10.19 The graph of
in Example 9.ƒ1x2 = 1/1x - 222

X

Y1 = 1/(X–2)2

1.9
1.99
1.999
2
2.001
2.01
2.1

100
10000
1E6
ERROR
1E6
10000
100

Y1

FIGURE 10.20 A table of values

for (Example 9)ƒ1x2 =

1

1x - 222 .

Not all zeros of denominators correspond to vertical asymptotes as illustrated in 
Examples 5 and 7.

X

Y1 = sin(X)/X

–.03
–.02
–.01
0
.01
.02
.03

.99985

.99993

.99998
ERROR
.99998
.99993
.99985

Y1

FIGURE 10.21 A table of values for (Example 10)ƒ1x2 = 1sin x2/x.

Now try Exercise 63.

QUICK REVIEW 10.3 (For help, go to Sections 1.2 and 1.3.)

6.

In Exercises 7 and 8, find (a) the points of continuity and (b) the
points of discontinuity of the function.

7. 8.

Exercises 9 and 10 refer to the piecewise-defined function

.

9. Draw the graph of ƒ.

10. Find the points of continuity and the points of discontinuity
of ƒ.

ƒ1x2 = e3x + 1 if x … 1

4 - x2 if x 7 1

g1x2 =

2x + 1

x2
- 4

ƒ1x2 = 1x + 2

ƒ1x2 =

x4
+ 2x2

+ x + 1

x - 3

In Exercises 1 and 2, find (a) , (b) , and (c) .

1. 2.

In Exercises 3 and 4, find the (a) vertical asymptotes and (b) hori-
zontal asymptotes of the graph of ƒ, if any.

3. 4.

In Exercises 5 and 6, the end behavior asymptote of the function ƒ is
one of the following. Which one is it?

(a) (b) (c) (d)

5. ƒ1x2 =

2x3
- 3x2

+ 1

3 - x

y = -x3y = x3y = -2x2y = 2x2

ƒ1x2 =

x3
+ 1

2 - x - x2
ƒ1x2 =

2x2
+ 3

x2
- 4

ƒ1x2 =

sin x
x

ƒ1x2 =

2x + 1

12x - 422
ƒ122ƒ102ƒ1-22

6965_CH10_pp735-778.qxd  1/20/10  3:35 PM  Page 762



SECTION 10.3 More on Limits 763

SECTION 10.3 EXERCISES

Exercise numbers with a gray background indicate problems that
the authors have designed to be solved without a calculator.

In Exercises 1–10, find the limit by direct substitution if it exists.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, (a) explain why you cannot use substitution to find
the limit and (b) find the limit algebraically if it exists.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–22, use the fact that , along with the

limit properties, to find the following limits.

19. 20.

21. 22.

In Exercises 23–26, find the limits.

23. 24.

25. 26.

In Exercises 27–30, use the given graph to find the limits or to explain
why the limits do not exist.

27. (a)

(b)

(c)

28. (a)

(b)

(c) lim
x:3

 ƒ1x2
lim

x:3+

 ƒ1x2
lim

x:3-

 ƒ1x2

lim
x:2

 ƒ1x2
lim

x:2+

 ƒ1x2
lim

x:2-

 ƒ1x2

lim
x:27

 
1x + 9

log3 x
lim

x:p/2
 
ln12x2
sin2 x

lim
x:0

 
3 sin x - 4 cos x

5 sin x + cos x
lim
x:0

 
ex

- 1x

log41x + 22

lim
x:0

 
x + sin x

2x
lim
x:0

 
sin2 x

x

lim
x:0

 
sin 3x

x
lim
x:0

 
sin x

2x2
- x

lim
x:0

 
sin x

x
= 1

lim
x:0

 
x - 2

x2
lim
x:0

 1x - 3

lim
x: -2

 
ƒx2

- 4 ƒ

x + 2
lim

x: -2
 
x2

- 4

x + 2

lim
x:2

 
x3

- 2x2
+ x - 2

x - 2
lim

x: -1
 
x3

+ 1

x + 1

lim
x:3

 
x2

- 9

x2
+ 2x - 15

lim
x: -3

 
x2

+ 7x + 12

x2
- 9

lim
x:a

 
x2

- 1

x2
+ 1

lim
x:a

 1x2
- 22

lim
x:p

 ln asin 
x

2
blim

x:0
 1ex sin x2

lim
x: -2

 1x - 422/3lim
x:2

 1x + 5

lim
x: -2

 1x3
- x + 52lim

x:2
 1x3

- 2x + 32
lim
x:3

 1x - 1212lim
x: -1

 x 1x - 122

29. (a)

(b)

(c)

30. (a)

(b)

(c)

In Exercises 31 and 32, the graph of a function is given.
Which of the statements about the function are true and which are false?

31. (a)

(b)

(c)

(d)

(e) (f)

(g) (h)

(i) (j)

32. (a)

(b) does not exist

(c)

(d)

(e)

(f) does not exist

(g)

(h) exists for every c in .

(i) exists for every c in .

In Exercises 33 and 34, use a graph of ƒ to find (a) ,

(b) , and (c) if they exist.

33. 34.

35. Group Activity Assume that and
Find the limit.

(a) (b)

(c) (d)

36. Group Activity Assume that and
. Find the limit.

(a) (b)

(c) (d)  lim
x:a

 
ƒ1x2
g1x2lim

x:a
 13g1x2 + 12

lim
x:a

 1ƒ1x2 # g1x22lim
x:a

 1ƒ1x2 + g1x22
lim
x:a

 g1x2 = -3
lim
x:a

 ƒ1x2 = 2

lim
x:4

 
g1x2

ƒ1x2 - 1
lim
x:4

 g21x2
lim
x:4

 xƒ1x2lim
x:4

 1g1x2 + 22
lim
x:4

 g1x2 = 4.
lim
x:4

 ƒ1x2 = -1

ƒ1x2 = 11 + x21/12x2ƒ1x2 = 11 + x21/x

lim
x:0

 ƒ1x2lim
x:0+

 ƒ1x2
lim

x:0-

 ƒ1x2
11, 32lim

x:c
 ƒ1x2

1-1, 12lim
x:c

 ƒ1x2
lim

x:0+

 ƒ1x2 = lim
x:0-

 ƒ1x2
lim
x:1

 ƒ1x2
lim

x:1+

 ƒ1x2 = 1

lim
x:1-

 ƒ1x2 = 2

lim
x:2

 ƒ1x2 = 2

lim
x:2

 ƒ1x2
lim

x: -1+

 ƒ1x2 = 1

lim
x:2-

 ƒ1x2 = 2lim
x:1

 ƒ1x2 = 0

lim
x:1

 ƒ1x2 = 1lim
x:0

 ƒ1x2 = 1

lim
x:0

 ƒ1x2 = 0lim
x:0

 ƒ1x2 exists

lim
x:0-

 ƒ1x2 = lim
x:0+

 ƒ1x2
lim

x:0-

 ƒ1x2 = 1

lim
x:0-

 ƒ1x2 = 0

lim
x: -1+

 ƒ1x2 = 1

y = ƒ1x2

lim
x:1

 ƒ1x2
lim

x:1+

 ƒ1x2
lim

x:1-

 ƒ1x2

lim
x:3

 ƒ1x2
lim

x:3+

 ƒ1x2
lim

x:3-

 ƒ1x2

0 1

1

2

3

2 3
x

y

0 2

2
1

3

41 3
x

y

0 2

2

4
3

41 3
x

y

0 2

2

4

1

1 3
x

y

–1 2

3

1 3
x

y

–1 2

2
3

1 3
x

y

6965_CH10_pp735-778.qxd  1/20/10  3:35 PM  Page 763



71. 72.

Standardized Test Questions
73. True or False If , then

is undefined. Justify your answer.

74. True or False If and are two functions and
does not exist, then cannot exist.

Justify your answer.

Multiple Choice In Exercises 75–78, match the function
with the table. Do not use a calculator.y = ƒ1x2

lim
x:0

 3ƒ1x2 # g1x24lim
x:0

 ƒ1x2
g1x2ƒ1x2

lim
x:3

 ƒ1x2
ƒ1x2 = e x + 2 if x … 3

8 - x if x 7 3

lim
x: q

 3-xlim
x: q

 
ln x

ln x2
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In Exercises 37–40, complete the following for the given piecewise-
defined function ƒ.

(a) Draw the graph of ƒ.

(b) Determine and 

(c) Writing to Learn Does exist? If it does, give its 

value. If it does not exist, give an explanation.

37. , �
38. , 

39. , 

40. , 

In Exercises 41–46, find the limit.

41. int 42. int 

43. int 44. int 

45. 46.

In Exercises 47–54, find (a) y and (b) y.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–60, use graphs and tables to find the limit and identify
any vertical asymptotes.

55. 56.

57. 58.

59. 60.

In Exercises 61–64, determine the limit algebraically if possible. 
Support your answer graphically.

61. 62.

63. 64.

In Exercises 65–72, find the limit.

65. 66.

67. 68.

69. 70. lim
x: q

 
ln x2

ln x
lim
x:1

 
x2

+ 1

x - 1

lim
x:27

 cos a 1
x
blim

x:0
 cx sin a 1

x
b d

lim
x:0

 
x2

ƒx ƒ

lim
x:0

 
ƒx ƒ

x2

lim
x:2

 
x - 4

x2
- 4

lim
x:0

 
tan x

x

lim
x:0

 
1/13 + x2 - 1/3

x
lim
x:0

 
11 + x23 - 1

x

lim
x:2

 
1

x2
- 4

lim
x:5

 
1

1x - 522

lim
x: -2-

 
x

x + 2
lim

x: -2+

 
1

x + 2

lim
x:3+

 
x

x - 3
lim

x:3-

 
1

x - 3

y = e-x cos xy = -ex sin x

y = e-x
+ sin xy = x + sin x

y =

x

1 + 2x
y = 1 + 2x

y =

x + sin x
x

y =

cos x

1 + x

lim
x: - q

lim
x: q

lim
x:0-

 
5x

ƒ2x ƒ

lim
x: -3+

 
x + 3

ƒx + 3 ƒ

12x2lim
x:5/2-

1x2lim
x:0.0001

1x2lim
x:2-

1x2lim
x:2+

ƒ1x2 = e1 - x2 if x Ú -3

8 - x  if x 6 -3
a = -3

ƒ1x2 = e ƒx - 3 ƒ    if x 6 0

x2
- 2x if x Ú 0

a = 0

ƒ1x2 = e 2 - x if x 6 1

x + 1 if x Ú 1
a = 1

2 - x  if x 6 2

  1    if x = 2

x2
- 4  if x 7 2

ƒ1x2 =a = 2

lim
x:a

 ƒ1x2
lim

x:a-

 ƒ1x2.lim
x:a+

 ƒ1x2

X

X=2.7

–52.3
–82.2
–172.1
ERROR
188.1
98.2
68.3

Y1

(A)

2.7
2.8
2.9
3
3.1
3.2
3.3

X

X=2.7

3.7
3.8
3.9
ERROR
4.1
4.2
4.3

Y1

(B)

2.7
2.8
2.9
3
3.1
3.2
3.3

X

X=2.7

23.7
33.8
63.9
ERROR
–55.9
–25.8
–15.7

Y1

(C)

2.7
2.8
2.9
3
3.1
3.2
3.3

X

X=2.7

24.39
25.24
26.11
ERROR
27.91
28.84
29.79

Y1

(D)

2.7
2.8
2.9
3
3.1
3.2
3.3

X

X = 2.7

3.7
3.8
3.9
4
4.1
4.2
4.3

Y1

2.7
2.8
2.9
3
3.1
3.2
3.3

(E)

75. 76.

77. 78.

Explorations
In Exercises 79–82, complete the following for the given piecewise-
defined function ƒ.

(a) Draw the graph of ƒ.

(b) At what points c in the domain of ƒ does exist?

(c) At what points c does only the left-hand limit exist?

(d) At what points c does only the right-hand limit exist?

79.

80.

81. ƒ1x2 = d 21 - x2 if -1 … x 6 0

       x     if 0 … x 6 1

       2     if x = 1

ƒ1x2 = e sin x if -p … x 6 0

csc x if 0 … x … p

ƒ1x2 = e cos x   if -p … x 6 0

-cos x if 0 … x … p

lim
x:c

 ƒ1x2

y =

x3
- 27

x - 3
y =

x2
- 2x - 9

x - 3

y =

x2
+ 2x + 3

x - 3
y =

x2
- 2x - 3

x - 3
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82.

83. Rabbit Population The population of rabbits over a 
2-year period in a certain county is given in Table 10.5.

ƒ1x2 = c x2 if -2 … x 6 0 or 0 6 x … 2

1   if x = 0

2x if x 6 -2 or x 7 2

SECTION 10.3 More on Limits 765

(d)

(e) Writing to Learn Suppose that and 

Based on your results in parts (a)–(d), what 

can you say about ?

89. Limits and the Area of a Circle Consider an 
n-sided regular polygon made up of n congruent isosceles 
triangles, each with height h and base b. The figure shows an 
8-sided regular polygon.

 lim
x:a

 1ƒ1x2 # g1x22
lim
x:c

 g1x2 = 0.

lim
x:c

 ƒ1x2 = q

ƒ1x2 =

1

1x - 124, g1x2 = 1x - 1)2, c = 1

Table 10.5 Rabbit Population

Beginning of Number
Month (in thousands)

0 10
2 12
4 14
6 16
8 22

10 30
12 35
14 39
16 44
18 48
20 50
22 51

(a) Draw a scatter plot of the
data in Table 10.5.

(b) Find a logistic regression
model for the data. Find the
limit of that model as time
approaches infinity.

(c) What can you conclude
about the limit of the rabbit
population growth in the
county?

(d) Provide a reasonable explanation for the population growth
limit.

Group Activity In Exercises 84–87, sketch a graph of a function
that satisfies the stated conditions. Include any asymptotes.

84.

85.

86.

87.

Extending the Ideas
88. Properties of Limits Find the limits of ƒ, g, and ƒg as

x approaches c.

(a)

(b)

(c) ƒ1x2 = ` 3

x - 1
` , g1x2 = 1x - 1)2, c = 1

ƒ1x2 = ` 1
x
` , g1x2 = 23 x, c = 0

ƒ1x2 =

2

x2
 , g1x2 = x2, c = 0

 lim
x:2-

 ƒ1x2 = - q , lim
x: -q

 ƒ1x2 = q

lim
x:1

 ƒ1x2 = q , lim
x:2+

 ƒ1x2 = - q ,

lim
x: -2-

 ƒ1x2 = - q , lim
x: -q

 ƒ1x2 = q

lim
x: q

 ƒ1x2 = 2, lim
x: -2+

 ƒ1x2 = - q ,

lim
x:4

 ƒ1x2 = - q , lim
x: q

 ƒ1x2 = - q , lim
x: -q

 ƒ1x2 = 2

lim
x:0

 ƒ1x2 = q , lim
x: q

 ƒ1x2 = q , lim
x: -q

 ƒ1x2 = 2

y = ƒ1x2

bh

(a) Show that the area of an 8-sided regular polygon is 
and the area of the n-sided regular polygon is 

(b) Show that the base b of the n-sided regular polygon is
tan .

(c) Show that the area A of the n-sided regular polygon is
tan .

(d) Let Construct a table of values for n and A for
, 8, 16, 100, 500, 1000, 5000, 10000, 100000. Does

A have a limit as ?

(e) Repeat part (d) with 

(f) Give a convincing argument that , the area
of a circle of radius h.

90. Continuous Extension of a Function Let

.

(a) Sketch several possible graphs for ƒ.

(b) Find a value for a so that the function is continuous at

In Exercises 91–93, (a) graph the function, (b) verify that the function
has one removable discontinuity, and (c) give a formula for a continu-
ous extension of the function. [Hint: See Exercise 90.]

91. 92.

93. y =

x3
- 1

x - 1

y =

x - 5

5 - x
y =

2x + 4

x + 2

x = 2.

ƒ1x2 = e x2
- 3x + 3 if x Z 2

a           if x = 2

lim
n: q

 A = ph2

h = 3.

n : q

n = 4
h = 1.

1180/n2°A = nh2

1180/n2°b = 2h

A = 11/22nhb.
A = 4hb
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Derivatives on a Calculator
As computers and sophisticated calculators have become indispensable tools for
modern engineers and mathematicians (and, ultimately, for modern students of
mathematics), numerical techniques of differentiation and integration have re-
emerged as primary methods of problem solving. This is no small irony, as it was
precisely to avoid the tedious computations inherent in such methods that calculus
was invented in the first place. Although nothing can diminish the magnitude of cal-
culus as a significant human achievement, and although nobody can get far in math-
ematics or science without it, the modern fact is that applying the old-fashioned
methods of limiting approximations—with the help of a calculator—is often the
most efficient way to solve a calculus problem.

Most graphing calculators have built-in algorithms that will approximate derivatives
of functions numerically with good accuracy at most points of their domains. We will
use the notation NDER to denote such a calculator derivative approximation 
to .

For small values of h, the regular difference quotient

is often a good approximation of . However, the same value of h will usually pro-
duce a better approximation of if we use the symmetric difference quotient

,

as illustrated in Figure 10.22.

Many graphing utilities use the symmetric difference quotient with a default value of
for computing NDER . When we refer to the numerical derivative in this

book, we will assume that it is the symmetric difference quotient with h = 0.001.
ƒ1a2h = 0.001

ƒ1a + h2 - ƒ1a - h2
2h

ƒ¿1a2
ƒ¿1a2

ƒ1a + h2 - ƒ1a2
h

ƒ¿1a2 ƒ1a2

What you’ll learn about
• Derivatives on a Calculator
• Definite Integrals on a Calculator
• Computing a Derivative 

from Data
• Computing a Definite Integral

from Data

... and why
The numerical capabilities of a
graphing calculator make it easy
to perform many calculations that
would have been exceedingly
difficult in the past.

0
x

y

a – h a a + h

tangent line

m1 = 
2h

f (a + h) – f (a – h)

m2 = 
h

f (a + h) – f (a)

FIGURE 10.22 The symmetric difference
quotient (slope ) usually gives a better 
approximation of the derivative for a given
value of h than does the regular difference 
quotient (slope ).m2

m1

10.4 Numerical Derivatives 
and Integrals

DEFINITION Numerical Derivative
In this book, we define the numerical derivative of ƒ at a to be

Similarly, we define the numerical derivative of ƒ to be the function

NDER ƒ1x2 =

ƒ1x + 0.0012 - ƒ1x - 0.0012
0.002

.

NDER ƒ1a2 =

ƒ1a + 0.0012 - ƒ1a - 0.0012
0.002

.

EXAMPLE 1  Computing a Numerical Derivative
Let Compute NDER by calculating the symmetric difference 
quotient with Compare it to the actual value of ƒ¿1x2.h = 0.001.

ƒ122ƒ1x2 = x3.
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SECTION 10.4 Numerical Derivatives and Integrals 767

The numerical derivative in this case is obviously quite accurate. In practice, it is not
necessary to key in the symmetric difference quotient, as it is done by the calculator
with its built-in algorithm. Figure 10.23 shows the command that would be used on one
such calculator to find the numerical derivative in Example 1.

If exists, then NDER usually gives a good approximation to the actual
value. On the other hand, the algorithm will sometimes return a value for NDER 
when does not exist. (See Exercise 51.)

Definite Integrals on a Calculator
Recall from the history of the area problem (Section 10.2) that the strategy of summing
up thin rectangles to approximate areas is ancient. The thinner the rectangles, the better
the approximation—and, of course, the more tedious the computation. Today, thanks to
technology, we can employ the ancient strategy without the tedium.

Many graphing calculators have built-in algorithms to compute definite integrals with
great accuracy. We use the notation NINT to denote such a calculator 

approximation to Unlike NDER, which uses a fixed value of will

vary the value of until the numerical integral gets close to a limiting value, often
resulting in an exact answer (at least to the number of digits in the calculator display).
Because the algorithm for NINT finds the definite integral by Riemann sum approxi-
mation rather than by calculus, we call it a numerical integral.

¢x

¢x, NINT1
b

a  
ƒ1x2 dx.

1ƒ1x2, x, a, b2

ƒ¿1a2 ƒ1a2ƒ1a2ƒ¿1a2

SOLUTION

The actual value is

Now try Exercise 3.= 12

= lim
h:0

 112 + 6h + h22
= lim

h:0
 
8 + 12h + 6h2

+ h3
- 8

h

ƒ¿122 = lim
h:0

 
12 + h23 - 23

h

= 12.000001

=

ƒ12.0012 - ƒ11.9992
0.002

NDER ƒ1x2 =

ƒ12 + 0.0012 - ƒ12 - 0.0012
0.002

nDeriv(X3,X,2)
12.000001

FIGURE 10.23 Applying the numerical
derivative command on a graphing calculator.
(Example 1)

EXAMPLE 2  Finding a Numerical Integral
Use NINT to find the area of the region R enclosed between the x-axis and the graph
of from to .

SOLUTION The region is shown in Figure 10.24.

The area can be written as the definite integral , which we find on a graphing

calculator: NINT The exact answer (as you will learn in
a calculus course) is ln 4, which agrees in every displayed digit with the NINT value!
Figure 10.25 shows the syntax for numerical integration on one type of calculator.

Now try Exercise 13.

11/x, x, 1, 42 = 1.386294361.
L

4

1
 
1
x

 dx,

x = 4x = 1y = 1/x

y

x
1 4

R

FIGURE 10.24 The graph of 
with the area under the curve between 

and shaded. (Example 2)x = 4x = 1

ƒ1x2 = 1/x

fnInt(1/X,X,1,4)

1.386294361

FIGURE 10.25 A numerical integral 

approximation for (Example 2)
L

4

1
 
1
x

 dx.
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Remember that we were originally motivated to find areas because of their connection
to the problem of distance traveled. To show just one of the many applications of inte-
gration, we use the numerical integral to solve a distance problem in Example 3.

EXPLORATION 1 A Do-It-Yourself Numerical Integrator

Recall that a definite integral is the limit at infinity of a Riemann sum—that is, a 

sum of the form . You can use your calculator to evaluate sums of se-

quences using LIST commands. (It is not as accurate as NINT, and certainly not as 
easy, but at least you can see the summing that takes place.)

1. The integral in Example 2 can be computed using the command

This uses 50 RRAM rectangles, each with width Find the sum on
your calculator and compare it to the NINT value.

2. Study the command until you see how it works. Adapt the command to find
the RRAM approximation for 100 rectangles and compute it on your calcula-
tor. Does the approximation get better?

3. What definite integral is approximated by the command

Compute it on your calculator and compare it to the NINT value for the same 
integral.

4. Write a command that uses 50 RRAM rectangles to approximate 

. Compute it on your calculator and compare it to the 
NINT value for the same integral.
1

9
4 1x dx

sum1seq1sin(0 + K # p/502 # p/50, K, 1, 5022?

¢x = 3/50.

sum1seq11/(1 + K # 3/502 # 3/50, K, 1, 5022.

a

n

k=1
 ƒ1xk2¢x

EXAMPLE 3  Finding Distance Traveled
An automobile is driven at a variable rate along a test track for 2 hours so that its 
velocity at any time is given by miles per hour.
How far does the automobile travel during the 2-hour test?

SOLUTION According to the analysis found in Section 10.2, the distance traveled is

given by . We use a calculator to find the numerical integral:

Interpreting the answer, we conclude that the automobile travels 60.26 miles.
Now try Exercise 21.

Computing a Derivative from Data
Sometimes all we are given about a problem situation is a scatter plot obtained from a
set of data—a numerical model of the problem. There are two ways to get information
about the derivative of the model.

1. To approximate the derivative at a point: Remember that the average rate of change
over a small interval, approximates the derivative at points in that interval.
(Generally, the approximation is better near the middle of the interval than it is
near the endpoints.) The average rate of change on an interval between two data
points can be computed directly from the data.

¢y/¢x,

NINT 130 + 10 sin 16t2, t, 0, 22 L 60.26

1
2

0 130 + 10 sin 16t22 dt

v1t2 = 30 + 10 sin 6tt10 … t … 22

768 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals
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SECTION 10.4 Numerical Derivatives and Integrals 769

2. To approximate the derivative function: Regression techniques can be used to fit a
curve to the data, and then NDER can be applied to the regression model to 
approximate the derivative. Alternatively, the values of can be plotted, 
and then regression techniques can be used to fit a derivative approximation
through those points.

¢y/¢x

EXAMPLE 4  Finding Derivatives from Data
Table 10.6 shows the height (in feet) of a falling ball above ground level as measured
by a motion detector at time intervals of 0.04 second.

(a) Estimate the instantaneous speed of the ball at second.

(b) Draw a scatter plot of the data and use quadratic regression to model the height s
of the ball above the ground as a function of t.

(c) Use NDER to approximate and compare it to the value found in (a).

SOLUTION

(a) Since 0.2 is the midpoint of the time interval 0.16, 0.24 , the average rate of
change on the interval 0.16, 0.24 should give a good approximation to

The speed is about 14.375 feet per second at 

(b) The scatter plot is shown in Figure 10.26, along with the quadratic regression
curve. A graphing calculator gives as the
equation of the quadratic regression model.

(c) The calculator computes NDER to be which agrees quite well
with the approximation in (a). In fact, the difference is only 0.213 feet per sec-
ond, less than 1.5% of the speed of the ball. Now try Exercise 23.

-14.588,s10.22
s1t2 L -17.12t 2

- 7.74t + 7.13

t = 0.2.

s¿10.22 L

¢s

¢t
=

4.30 - 5.45

0.24 - 0.16
= -14.375.

s¿10.22. 43¢s/¢t
43

s¿10.22

t = 0.2

Who’s Driving???
We will candidly admit that the conditions in 
Example 3 would be virtually impossible to repli-
cate in a real setting, even if one could imagine a
reason for doing so. Mathematics textbooks are
filled with such unreal real-world problems, but
they do serve a purpose when students are 
being exposed to new material. Real real-
world problems are often either too easy to 
illustrate the concept or too hard for beginners 
to solve.

Table 10.6 Falling Ball

Time (sec) Position 

0.04 6.80
0.08 6.40
0.12 5.95
0.16 5.45
0.20 4.90
0.24 4.30
0.28 3.60
0.32 2.90
0.36 2.15
0.40 1.30
0.44 0.40

1ft2

EXAMPLE 5  Finding Derivatives from Data
This example also uses the falling ball data in Table 10.6.

(a) Compute the average velocity, on each subinterval of length 0.04. Make a
table showing the midpoints of the subintervals in one column and the values of

in the second column.

(b) Make a scatter plot showing the numbers in the second column as a function of
the numbers in the first column and find a linear regression model to model the
data.

(c) Use the linear regression model in (b) to approximate the velocity of the ball at
and compare it to the values found in Example 4.

SOLUTION

(a) The first subinterval, which begins at 0.04 and ends at 0.08, has a midpoint of 
On that interval, 

The rest of the midpoints and values of are computed similarly
and are shown in Table 10.7.

(b) The scatter plot and the regression line are shown in Figure 10.27. A graphing
calculator gives as the regression line.

(continued)
v(t2 = -34.470t - 7.727

¢s/¢t-10.00.
¢s/¢t = 16.40 - 6.802/10.08 - 0.042 =+  0.082/2 = 0.06.

10.04

t = 0.2

¢s/¢t

¢s/¢t,

FIGURE 10.26 A scatter plot of the 
data in Table 10.6 together with its quadratic 
regression model. (Example 4)

[0, 1] by [–2, 10]

Table 10.7 Change over 
Intervals from Table 10.6

Midpoint

0.06 10.00
0.10 11.25
0.14 12.50
0.18 13.75
0.22 15.00
0.26 17.50
0.30 17.50
0.34 18.75
0.38 21.25
0.42 22.50-

-

-

-

-

-

-

-

-

-

¢s/¢t
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Computing a Definite Integral from Data
If we are given a set of data points, the x-coordinates of the points define subintervals
between the smallest and largest x-values in the data. We can form a Riemann sum

using the lengths of the subintervals for and either the left or right endpoints of the
intervals as the The Riemann sum then approximates the definite integral of the
function over the interval.

Example 6 illustrates how this is done.

xk’s.
¢x

a

n

k=1
 ƒ1xk2 ¢x

(c) The linear regression model gives which is close to the values
found in Example 4. Now try Exercise 25.

v10.22 L -14.62,

FIGURE 10.27 A scatter plot of the data in Table 10.7 together with its linear regression
model. (Example 5)

[0, 0.5] by [–25, –7]

EXAMPLE 6  Finding a Definite Integral Using Data
Table 10.8 shows the velocity of a moving body (in meters per second) measured at
regular quarter-second intervals. Estimate the distance traveled by the body from

SOLUTION Figure 10.28 gives a scatter plot of the velocity data.

The distance traveled is , which we approximate with a Riemann sum 
constructed directly from the data. We sum up 15 products of the form , usingv1tk2 ¢t

1
3.75

0  v1t2 dx

t = 0 to t = 3.75.

Table 10.8 Velocity
of the Moving Body

Time Velocity
(sec) (m/sec)

0.00 0.00
0.25 0.28
0.50 0.53
0.75 0.73
1.00 0.90
1.25 1.01
1.50 1.11
1.75 1.18
2.00 1.21
2.25 1.17
2.50 1.13
2.75 1.05
3.00 0.91
3.25 0.72
3.50 0.55
3.75 0.26

[–0.25, 4] by [–0.25, 1.5]

FIGURE 10.28 A scatter plot of the velocity data in Table 10.8. (Example 6)

770 CHAPTER 10 An Introduction to Calculus: Limits, Derivatives, and Integrals
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the right endpoint for each time. (This is the RRAM approximation in the notation
of Section 10.2.) Note that for every subinterval.

So the distance traveled by the body is about 3.2 meters. Now try Exercise 27.

= 3.185

+ 0.55 + 0.262
+ 1.18 + 1.21 + 1.17 + 1.13 + 1.05 + 0.91 + 0.72

= 0.2510.28 + 0.53 + 0.73 + 0.90 + 1.01 + 1.11

L

3.75

0
 v1t2 dx = a

15

k=1
 v1tk2 ¢t

¢t = 0.25
tk

QUICK REVIEW 10.4 (For help, go to Sections P.4 and 1.3.)

In Exercises 7–10, compute the quotient
with the given ƒ and h.

7. 8.

9. 10. ƒ1x2 = ex, h = 0.0001ƒ1x2 = ln x, h = 0.001

ƒ1x2 = x4, h = 0.001ƒ1x2 = sin x, h = 0.01

1ƒ11 + h2 - ƒ11 - h22/2h
In Exercises 1–6, find on the interval under the given
conditions.

1. 2.

3. 4.

5. when and when 

6. The graph of passes through points 
11, -22.

14, 102 andy = ƒ1x2
x = 4.y = 11x = 1y = 2

y = 3xy = log2 x

y = 1xy = x2

31, 44¢y/¢x

SECTION 10.4 EXERCISES

In Exercises 1–10, use NDER on a calculator to find the numerical 
derivative of the function at the specified point.

1. at

2. at

3. at

4. at

5. at

6. at

7. at

8. at

9. at

10. at

In Exercises 11–20, use NINT on a calculator to find the numerical 
integral of the function over the specified interval.

11.

12.

13.

14. ƒ1x2 = sin x, 3p, 2p4
ƒ1x2 = sin x, 30, p4
ƒ1x2 = x2, 3-4, 04
ƒ1x2 = x2, 30, 44

x = pƒ1x2 = sin 3x

x = pƒ1x2 = 3 sin x

x = 1ƒ1x2 = 2 ln x

x = 1ƒ1x2 = ln 2x

x = -1ƒ1x2 =

1

x + 2

x = -2ƒ1x2 = ƒx + 2 ƒ

x = 1ƒ1x2 = x2
- 3x + 1

x = -2ƒ1x2 = 3x2
+ 2

x = 2ƒ1x2 = 2x +

1

2
 x2

x = 2ƒ1x2 = 1 - x2

15.

16.

17.

18.

19.

20.

21. Travel Time A truck is driven at a variable rate for 
3 hours so that its velocity at any time is given
by miles per hour. How far does the
truck travel during the 3 hours? Round your answer to the 
nearest hundredth.

22. Travel Time A bicyclist rides for 90 minutes, and her 
velocity at any time t hours is given by

miles per hour. How far does she travel
during the 90 minutes? Round your answer to the nearest 
hundredth.

23. Finding Derivatives from Data A ball is dropped
from the roof of a 30-story building. The height in feet above
the ground of the falling ball is measured at 1/2-second 
intervals and recorded in the table on the next page.

v1t2 = 12 - 8 sin 5t
10 … t … 1.52

v1t2 = 35 - 12 cos 4t
t 10 … t … 32

ƒ1x2 = sec2 x - tan2 x, 30, 104
ƒ1x2 =

2

1 + x2
, 30, 1084

ƒ1x2 = 1/x, 3e, 2e4
ƒ1x2 = 1/x, 31, e4
ƒ1x2 = ƒcos x ƒ , 30, p4
ƒ1x2 = cos x, 30, p4

6965_CH10_pp735-778.qxd  1/20/10  3:35 PM  Page 771



(a) Use the average velocity on the interval to estimate
the velocity of the ball at seconds.

(b) Draw a scatter plot of the data.

(c) Find a quadratic regression model for the data.

(d) Use NDER of the model in part (c) to estimate the velocity
of the ball at seconds.

(e) Use the model to estimate how fast the ball is going when
it hits the ground.

24. Estimating Average Rate of Change from Data
Table 10.9 gives the U.S. gross domestic product data in bil-
lions of dollars for the years 1999–2007.

t = 1.5

t = 1.5
31, 24

25. Estimating Velocity Refer to the data in Exercise 23.

(a) Compute the average velocity, , on each subinterval
of length 0.5. Make a table showing the midpoints of the
subintervals in one column and the average velocities in
the second column.

(b) Make a scatter plot showing the numbers in the second col-
umn as a function of the numbers in the first column and
find a linear regression model to model the data.

(c) Use the linear regression model in part (b) to approximate
the velocity of the ball at seconds, and compare
your result to the value found in Exercise 23(d).

26. Approximating Rate of Change Refer to the data
in Exercise 24.

(a) Compute the average rate of change, , on each
subinterval. Make a table showing the midpoints of the
subintervals in one column and the average rates of change
in the second column.

(b) Make a scatter plot showing the numbers in the second col-
umn as a function of the numbers in the first column and
find a linear regression model to model the data.

(c) Use the linear regression model in part (b) to approximate
the rate of change in 1997 and in 2001, and compare your
results to the values found in Exercise 24(c).

27. Estimating Distance A stone is dropped from a cliff
and its velocity (in feet per second) at regular 0.5-second inter-
vals is shown in Table 10.10. Estimate the distance that the
stone travels from 

28. Estimating Distance Table 10.11 shows the velocity of
a moving object in meters per second, measured at regular 0.2-
second intervals. Estimate the distance traveled by the body
from t = 0 to t = 1.6.

t = 0 to t = 2.5.

¢y/¢x

t = 1.5

¢y/¢x
Time (sec) Height (ft)

0 500
0.5 495
1.0 485
1.5 465
2.0 435
2.5 400
3.0 355
3.5 305
4.0 245
4.5 175
5.0 100
5.5 15

Source: Statistical Abstract of the United States: 2009.

Table 10.9 U.S. Gross Domestic
Product Data

Amount
Year (billions of dollars)

1999 9268
2000 9817
2001 10,128
2002 10,470
2003 10,961
2004 11,686
2005 12,434
2006 13,195
2007 13,841

(a) Find the average rate of change of the gross domestic prod-
uct from 2001 to 2002 and then from 2005 to 2006.

(b) Find a quadratic regression model for the data in Table 10.9
and overlay its graph on a scatter plot of the data. Let

stand for 1999, stand for 2000, and so forth.

(c) Use the model in part (b), and a calculator NDER compu-
tation, to estimate the rate of change of the gross domestic
product in 2001 and in 2005.

(d) Writing to Learn Use the model in part (b) to pre-
dict the gross domestic product in 2011. Is this reasonable?
Why or why not?

x = 1x = 0

Table 10.10 Velocity of the Stone

Time (sec) Velocity (ft/sec)

0 0
0.5 16
1 32
1.5 48
2 64
2.5 80

Table 10.11 Velocity of the Object

Time (sec) Velocity (m/sec)

0 1.20
0.2 0.98
0.4 0.72
0.6 0.50
0.8 0.34
1.0 0.30
1.2 0.44
1.4 0.79
1.6 1.40
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SECTION 10.4 Numerical Derivatives and Integrals 773

29. Writing to Learn Analyze the following program,
which produces an LRAM approximation for the function 
entered in Y1 in the calculator. Then write a short paragraph
explaining how it works.

30. Writing to Learn Analyze the following program,
which produces an RRAM approximation for the function 
entered in Y1 in the calculator. Then write a short paragraph
explaining how it works.

In Exercises 31–42, complete the following for the indicated interval

(a) Verify the given function is nonnegative.

(b) Use a calculator to find the LRAM, RRAM, and average 
approximations for the area under the graph of the function
from to with 10, 20, 50, and 100 approximating
rectangles. (You may want to use the programs in Exercises 
29 and 30.)

(c) Compare the average area estimate in part (b) using 100 ap-
proximating rectangles with the calculator NINT area estimate,
if your calculator has this feature.

31. ; 0, 4

32. ; 0, 6

33. ; 0, 4

34. ; 0, 6

35. ; 2, 6

36. ; 1, 5

37. 0, 4

38. ; 3, 6

39. ; 

40. ; 

41. ; 0, 2

42. ; 3, 543ƒ1x2 =

1

x - 2

43ƒ1x2 = xe-x

30, p/24ƒ1x2 = x cos x

30, p/24ƒ1x2 = cos x

43ƒ1x2 = 1x - 2

43ƒ1x2 = 1x + 2;

43ƒ1x2 = x3
+ 1

43ƒ1x2 = x2
+ x + 5

43ƒ1x2 = x2
+ x + 5

43ƒ1x2 = x2
- 2x + 1

43ƒ1x2 = 2x2
- 2x + 1

43ƒ1x2 = x2
- x + 1

x = bx = a

3a, b4.

Standardized Test Questions
43. True or False The numerical derivative algorithm

NDER always uses the same value of (or h) to complete its
calculations. Justify your answer.

44. True or False The numerical integral algorithm always
uses the same value of to complete its calculations. Justify
your answer.

In Exercises 45–48, choose the correct answer. Do not use a calculator.

45. Multiple Choice Estimating Area Under a
Curve Which of the following will typically produce the
most accurate estimate of an area under a curve?

(A) NDER (B) NINT

(C) LRAM, 10 rectangles (D) RRAM, 25 rectangles

(E) LRAM, 60 rectangles

46. Multiple Choice Estimating Derivative Values
Given a continuous function ƒ, which of the following expres-
sions will typically produce the most accurate estimate of

?

(A)

(B)

(C)

(D)

(E)

47. Multiple Choice Using a Numerical Integral
Which of the following cannot be estimated using a numerical
integral?

(A) The area under a curve that represents some function 

(B) The distance traveled, when the velocity function is known

(C) The instantaneous velocity of an object, when the position
function is known

(D) The change of a city’s population over a 10-year period,
when the rate-of-change function is known

(E) The change of a child’s height over a 4-year period, when
the rate-of-change function is known

48. Multiple Choice Using a Numerical Derivative
Which of the following cannot be estimated using a numerical
derivative?

(A) The instantaneous velocity of an object, when the position
function is known

(B) The slope of a curve that represents some function 

(C) The growth rate of a city’s population, when the population
is known as a function of time

(D) The area under a curve that represents some function 

(E) The rate of change of an airplane’s altitude, when the 
altitude is known as a function of time

ƒ1x2

g1x2

ƒ1x2

ƒ1a + 0.012 - ƒ1a - 0.012
0.02

ƒ1a + 0.012 - ƒ1a - 0.012
0.01

ƒ1a + 0.012 - ƒ1a2
0.01

ƒ1a + 0.052 - ƒ1a - 0.052
0.1

ƒ1a + 0.052 - ƒ1a - 0.052
0.05

ƒ¿1a2

¢x

¢x

PROGRAM:LRAM

:Input "B",B

:sum(seq(((B–A)/

:Disp "AREA =",C
)),K,0,N–1))→C

:Input "A",A

:Input "N",N

N)Y1(A+K((B–A)/N

PROGRAM:RRAM

:Input "B",B

:sum(seq(((B–A)/

:Disp "AREA =",C
)),K,1,N))→C

:Input "A",A

:Input "N",N

N)Y1(A+K((B–A)/N
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Explorations
49. Let and .

(a) Compute the derivative of ƒ.

(b) Compute the derivative of g.

(c) Using and , compute the standard differ-
ence quotient

and the symmetric difference quotient

.

(d) Using and , compare the approximations
to in part (c). Which is the better approximation?

(e) Repeat parts (c) and (d) for g.

50. When Are Derivatives and Areas Equal? Let
.

(a) Draw a graph of .

(b) Use NDER on your calculator to compute the derivative of
ƒ at 1.

(c) Use NINT on your calculator to compute the area under 
ƒ from to 
part (b).

(d) Group Activity What do you think the exact an-
swers to parts (b) and (c) are?

51. Calculator Failure Many calculators report that
NDER of evaluated at is equal to 0. Explain
why this is incorrect. Explain why this error occurs.

52. Grapher Failure Graph the function in
the window and explain why does
not exist. Find the value of NDER on the calculator and
explain why it gives an incorrect answer.

Extending the Ideas
53. Group Activity Finding Total Area The total

area bounded by the graph of the function and the 
x-axis from to is the area below the graph of

from to 

(a) Find the total area bounded by the graph of 
and the x-axis from to .

(b) Find the total area bounded by the graph of
and the x-axis from to .x = 5x = 0ƒ1x2 = x2

- 2x - 3

x = 2px = 0
ƒ1x2 = sin x

x = b.x = ay = ƒƒ1x2 ƒ
x = bx = a

y = ƒ1x2

ƒ102
ƒ¿1023-5, 54 by 3-3, 34

ƒ1x2 = ƒx ƒ /x

x = 0ƒ1x2 = ƒx ƒ

x = 1 and compare it to the answer inx = 0

ƒ for 0 … x … 1

ƒ1x2 = 1 + e 
x

ƒ¿122
h = 0.001x = 2

ƒ1x + h2 - ƒ1x - h2
2h

ƒ1x + h2 - ƒ1x2
h

h = 0.001x = 2

g1x2 = x3
+ 1ƒ1x2 = 2x2

+ 3x + 1

54. Writing to Learn If a function is unbounded in an interval
it may have finite area. Use your knowledge of limits at

infinity to explain why this might be the case.

55. Writing to Learn Let ƒ and g be two continuous func-
tions with on an interval . Devise a limit of
sums definition of the area of the region between the two
curves. Explain how to compute the area if the area under both
curves is already known.

56. Area as a Function Consider the function .

(a) Use NINT on a calculator to compute where A is the
area under the graph of ƒ from to for ,
0.5, 1, 1.5, 2, 2.5, and 3.

(b) Make a table of pairs for the values of x given in
part (a) and plot them using graph paper. Connect the plot-
ted points with a smooth curve.

(c) Use a quadratic regression equation to model the data in
part (b) and overlay its graph on a scatter plot of the data.

(d) Make a conjecture about the exact value of for any x
greater than zero.

(e) Find the derivative of the found in part (d). Record
any observations.

57. Area as a Function Consider the function .

(a) Use NINT on a calculator to compute where A is the
area under the graph of ƒ from to for ,
0.5, 1, 1.5, 2, 2.5, and 3.

(b) Make a table of pairs for the values of x given in
part (a) and plot them using graph paper. Connect the plot-
ted points with a smooth curve.

(c) Use a cubic regression equation to model the data in part (b)
and overlay its graph on a scatter plot of the data.

(d) Make a conjecture about the exact value of for any x
greater than zero.

(e) Find the derivative of the found in part (d). Record
any observations.

58. Group Activity Based on Exercises 56 and 57, discuss
how derivatives (slope functions) and integrals (area functions)
may be connected.

A1x2
A1x2

1x, A1x22
x = 0.25t = xt = 0

A1x2
ƒ1t2 = 3t 2

A1x2
A1x2

1x, A1x22
x = 0.25t = xt = 0

A1x2
ƒ1t2 = 2t

3a, b4ƒ1x2 Ú g1x2

3a, b4
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CHAPTER 10 Review Exercises 775

CHAPTER 10 Key Ideas

Properties, Theorems, and Formulas
Limit at a (informal definition) 738
Average Rate of Change 740
Derivative at a Point 740
Derivative at a Point (easier for computing) 740
Derivative 741
Limit at Infinity (informal definition) 748
Definite Integral 750
Properties of Limits 757

Limits at Infinity (informal definition) 760
Symmetric Difference Quotient 766
Numerical Derivative of ƒ at a 766
Numerical Derivative of ƒ 766
Numerical Integral 767

Procedure
Computing a Derivative From Data 768

In Exercises 11–14, find the limit. Support your answer with an appro-
priate table.

11. 12.

13. 14.

In Exercises 15–18, find the limit.

15. 16.

17. 18.

In Exercises 19–20, find the vertical and horizontal asymptotes, if any.

19. 20.

In Exercises 21–26, find the limit algebraically.

21. 22.

23.

24.

25. 26.

In Exercises 27 and 28, state a formula for the continuous extension of
the function. (See Exercise 90, Section 10.3.)

27. 28. ƒ1x2 =

x2
- 6x + 5

x - 5
ƒ1x2 =

x3
- 1

x - 1

lim
x:3

 
1x - 322

x - 3
lim
x:2

 
x2

- 5x + 6

x2
- 3x + 2

lim
x:2

 
tan 13x - 62

x - 2

lim
x:0

 
1/1-3 + x2 + 1/3

x

lim
x:1

 
x2

- 4x + 3

x - 1
lim
x:3

 
x2

+ 2x - 15

3 - x

ƒ1x2 =

x2
+ 1

2x - 4
ƒ1x2 =

x - 5

x2
+ 6x + 5

lim
x:0

 
12 + x23 - 8

x
lim
x:0

 
1/12 + x2 - 1/2

x

lim
x:2-

 
1

x2
- 4

lim
x:2 +

 
1

x - 2

lim
x: -q

 
x2

x - 2
lim

x: q

2 - x2

x

lim
x: q

 
x + 5

x - 3
lim

x: -q

 
-1

1x + 222

CHAPTER 10 Review Exercises

The collection of exercises marked in red could be used as a chapter
test.

In Exercises 1–4, use the graph of the function to find 
(a) and (b) .

1. 2.

3. 4.

In Exercises 5–10, find the limit at the indicated point, if it exists.
Support your answer graphically.

5.

6.

7.

8.

9.

10. ƒ1x2 =

2

1 - 2x, x = 0

ƒ1x2 = 2 tan-1 x, x = 0

ƒ1x2 = ƒx - 1 ƒ , x = 1

ƒ1x2 =

x2
- 3x - 10

x + 2
, x = -2

ƒ1x2 =

sin 5x

x
, x = 0

ƒ1x2 =

x - 1

x2
+ 1

, x = -1

lim
x:1

 ƒ1x2lim
x:1-

 ƒ1x2
y = ƒ1x2

y

x
–2–4

–2

2

4

2 4

y

x
–2–4

–4

2

4

2 4

y

x
–4

–2

–4

2

4

2 4

y

x
–4

–2

–4

2

4

2 4
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In Exercises 29 and 30, use the limit definition to find the derivative 
of the function at the specified point, if it exists. Support your answer
numerically with an NDER calculator estimate.

29.

30.

In Exercises 31 and 32, find (a) the average rate of change of the func-
tion over the interval 3, 3.01 and (b) the instantaneous rate of change
at .

31. 32.

In Exercises 33 and 34, find (a) the slope and (b) an equation of the
line tangent to the graph of the function at the indicated point.

33.

34.

In Exercises 35 and 36, find the derivative of ƒ.

35. 36.

In Exercises 37 and 38, complete the following for the indicated 
interval .

(a) Verify the given function is nonnegative.

(b) Use a calculator to find the LRAM, RRAM, and average 
approximations for the area under the graph of the function
from to with 50 approximating rectangles.

37. ;

38. ;

39. Gasoline Prices The annual average retail price for 
unleaded regular gasoline in the United States for the years
1990–2007 is given in Table 10.12.

31, 54ƒ1x2 = 2x2
- 3x + 1

30, 44ƒ1x2 = 1x - 522
x = bx = a

3a, b4

ƒ1x2 = 2 - 8x + 3x2ƒ1x2 = 5x2
+ 7x - 1

ƒ1x2 = 1x - 4  at  x = 7

ƒ1x2 = x3
- 2x + 1  at  x = 1

ƒ1x2 =

3

x + 2
ƒ1x2 = x2

+ 2x - 3

x = 3
43

ƒ1x2 = 1x + 3)2  at  x = 2

ƒ1x2 = 1 - x - 2x2  at  x = 2

(a) Draw a scatter plot of the data in Table 10.12. Use 
for 1990, for 1991, and so forth.

(b) Find the average rate of change from 1995 to 1996 and
from 2002 to 2003.

(c) From what year to the next consecutive year does the aver-
age rate exhibit the greatest increase?

(d) From what year to the next consecutive year does the aver-
age rate exhibit the greatest decrease?

(e) Find a linear regression model for the data and overlay its
graph on a scatter plot of the data.

(f ) Group Activity Find a cubic regression model for
the data and overlay its graph on a scatter plot of the data.
Discuss pro and con arguments that this is a good model
for the gasoline price data. Compare the cubic model with
the linear model. Which one does your group think is best?
Why?

(g) Writing to Learn Use the cubic regression model
found in part (f) and NDER to find the instantaneous rate
of change in 1997, 1998, 1999, and 2000. How could the
cubic model give some misleading information?

(h) Writing to Learn Use the cubic regression model
found in part (f) to predict the average price of a gallon of
unleaded regular gasoline in 2011. Do you think this is a
reasonable estimate? Give reasons.

40. An Interesting Connection
Let A

(a) Draw a scatter plot of the pairs for ,
0.4, 0.8, 0.12 6.0, 6.4.

(b) Find a function that seems to model the data in part (a) and
overlay its graph on a scatter plot of the data.

(c) Assuming that the function found in part (b) agrees with
for all values of x, what is the derivative of ?

(d) Writing to Learn Describe what seems to be true
about the derivative of NINT .1ƒ1t2, t, 0, x2

A1x2A1x2

, Á

x = 01x, A1x22
1x2 = NINT 1cos t, t, 0, x2

x = 1
x = 0

Table 10.12 U.S. Average Unleaded
Regular Gasoline Price

Year Price (cents per gallon)

1990 116.4
1991 114.0
1992 112.7
1993 110.8
1994 111.2
1995 114.7
1996 123.1
1997 123.4
1998 105.9
1999 116.5
2000 151.0
2001 146.1
2002 135.8
2003 159.1
2004 188.0
2005 229.5
2006 258.9
2007 280.1

Source: Energy Information Administration, U.S. Department
of Energy, World Almanac and Book of Facts 2009.
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SECTION 10 Project 777

CHAPTER 10 Project

Estimating Population Growth Rates
Las Vegas, Nevada, and its surrounding cities represent one of
the fastest-growing areas in the United States. Clark County,
the county in which Las Vegas is located, has grown by over
one million people in the past three decades. The data in the
table below (obtained from the Web site http://cber.unlv.edu/
pop.html) summarize the growth of Clark County from 1970
through 2004.

Explorations
1. Enter the data in the table above into your graphing cal-

culator or computer. (Let represent 1970.) Make a
scatter plot of the data.

2. Find the average population growth rates for Clark
County from 1970 to 2004, from 1980 to 2004, from
1990 to 2004, and from 1995 to 2004.

3. Use your calculator or computer to find an exponential
regression equation to model the population data set 
(see your grapher’s guidebook for instructions on how to
do this).

4. Use the exponential model you just found in question 3
and your calculator/computer NDER feature to estimate
the instantaneous population growth rate in 2004. Which
of the average growth rates you found in question 2 most
closely matches this instantaneous growth rate? Explain
why this makes sense.

5. Use the exponential regression model you found in ques-
tion 3 to predict the population of Clark County in the
years 2010, 2020, and 2030. Compare your predictions
with the predictions in the table below, obtained from the
Web site www.co.clark.nv.us. Which predictions seem
more reasonable? Explain.

t = 0

Year Population

1970 277,230
1980 463,087
1990 770,280
1995 1,055,435
1999 1,327,145
2000 1,394,440
2001 1,485,855
2002 1,549,657
2003 1,620,748
2004 1,715,337 Year Population

2010 2,089,102
2020 2,578,221
2030 2,941,398

Source: http://www.co.clark.nv.us/
comprehensive_planning/Advanced/
Demographics/Population_Forecasts/
Pop_Forecast_2002to2035.htm
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Appendixes Overview
This section contains a review of some basic algebraic skills. (You should read Section
P.1 before reading this appendix.) Radical and rational expressions are introduced and
radical expressions are simplified algebraically. We add, subtract, and multiply polyno-
mials and factor simple polynomials by a variety of techniques. These factoring tech-
niques are used to add, subtract, multiply, and divide fractional expressions.

APPENDIX A.1 Radicals and Rational Exponents 779

A.1 Radicals and Rational 
Exponents

What you’ll learn about
• Radicals
• Simplifying Radical Expressions
• Rationalizing the Denominator
• Rational Exponents

... and why
You need to review these 
basic algebraic skills if you
don’t remember them.

Radicals
If , then b is a square root of a. For example, both 2 and are square roots
of 4 because Similarly, b is a cube root of a if For exam-
ple, 2 is a cube root of 8 because 23

= 8.
b3

= a.22
= 1-222 = 4.

-2b2
= a

DEFINITION Real nth Root of a Real Number
Let n be an integer greater than 1 and a and b real numbers.

1. If , then b is an nth root of a.

2. If a has an nth root, the principal nth root of a is the nth root having the
same sign as a.

The principal nth root of a is denoted by the radical expression The positive
integer n is the index of the radical and a is the radicand.

1n a.

bn
= a

Every real number has exactly one real nth root whenever n is odd. For instance, 2 is the
only real cube root of 8. When n is even, positive real numbers have two real nth roots
and negative real numbers have no real nth roots. For example, the real fourth roots of 16
are , and has no real fourth roots. The principal fourth root of 16 is 2.

When , special notation is used for roots. We omit the index and write instead
of If a is a positive real number and n a positive even integer, its two nth roots are
denoted by and - 1n a.1n a

22  a.
1an = 2

-16�2

EXAMPLE 1  Finding Principal nth Roots

(a) because 

(b) because 

(c) because 

(d) is not a real number because the index 4 is even and the radicand 625
is negative (there is no real number whose fourth power is negative).

Now try Exercises 7 and 9.

Here are some properties of radicals together with examples that help illustrate their
meaning.

-24  -625

a -  

3

2
b3

= -  

27

8
.A3  -  

27

8
= -  

3

2

a3

2
b3

=

27

8
.A3  

27

8
=

3

2

62
= 36.136 = 6

Principal nth Roots 
and Calculators
Most calculators have a key for the principal nth
root. Use this feature of your calculator to check
the computations in Example 1.
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Simplifying Radical Expressions
Many simplifying techniques for roots of real numbers have been rendered obsolete be-
cause of calculators. For example, when determining the decimal form of , it was
once very common first to change the fraction so that the radical was in the numerator:

Using paper and pencil, it was then easier to divide a decimal approximation for by 
2 than to divide that decimal into 1. Now either form is quickly computed with a calcula-
tor. However, these techniques are still valid for radicals involving algebraic expressions
and for numerical computations when you need exact answers. Example 2 illustrates the
technique of removing factors from radicands.

12

1

12
=

1

12
#
12

12
=

12

2

1/12

Caution
Without the restriction that preceded the list,
property 5 would need special attention. For 
example,

because on the right is not a real number.1-3

21-322 Z 11-322

Properties of Radicals
Let u and v be real numbers, variables, or algebraic expressions, and m and n be
positive integers greater than 1. We assume that all of the roots are real numbers
and all of the denominators are not zero.

Property Example

1.

2.

3.

4.

5.

6. 2n un
= e ƒ u ƒ  n even

u   n odd

23  272
= 123  2722 = 32

= 92n um
= 12n u2m

124  524 = 512n u2n = u

323  7 = 22 #3
7 = 26  73m 2n u = 2m #n

u

24  96

24  6
= A4  

96

6
= 24  16 = 2An

u

v
=

2n u

2n
v

= 125 # 13 = 513

175 = 125 # 32n uv = 2n u # 2n v

23  1-623 = -6

21-622 = ƒ -6 ƒ = 6

EXAMPLE 2  Removing Factors from Radicands

(a) Finding greatest fourth-power factor

Property 1

Property 6

(b) Finding greatest square factor

Properties 1 and 6

(c) Finding greatest fourth-power factor

Property 6

(d) Finding greatest cube factor

Properties 1 and 6

Now try Exercises 29 and 33.

= -2y223  3

23  -24y6
= 23  1-2y223 # 3

= ƒxy ƒ

24  x4y4
= 24  1xy24
= 3x222x

9x4
= 13x222= 213x222 # 2x

218x5
= 29x4 # 2x

= 224  5

= 24  24 # 24  5

16 = 24
= 24  24 # 5

24  80 = 24  16 # 5

Properties of Exponents
Check the Properties of Exponents on page 7 of
Section P.1 to see why

16 = 24 and 9x4
= 13x222.
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Rationalizing the Denominator
The process of rewriting fractions containing radicals so that the denominator is free of
radicals is rationalizing the denominator. When the denominator has the form ,
multiplying numerator and denominator by and using property 6 will eliminate
the radical from the denominator because

.

Example 3 illustrates the process.

2n uk # 2n un-k
= 2n uk+n-k

= 2n un

2n un-k
2n uk

EXAMPLE 3  Rationalizing the Denominator

(a)

(b)

(c)

Now try Exercise 37.

Rational Exponents
We know how to handle exponential expressions with integer exponents (see Section P.1).
For example, , and so forth. But ex-
ponents can also be rational numbers. How should we define If we assume that
the same rules that apply for integer exponents also apply for rational exponents we get
a clue. For example, we want

This equation suggests that In general, we have the following definition.x1/2
= 1x.

x1/2 # x1/2
= x1.

x1/2?
x3 # x4

= x7, 1x322 = x6, x5/x2
= x3, x -2

= 1/x2

B
5 x2

y3 =

25  x2

25  y3
=

25  x2

25  y3
#
25  y2

25  y2
=

25  x2y2

25  y5
=

25  x2y2

y

1

24  x
=

1

24  x
#
24  x3

24  x3
=

24  x3

24  x4
=

24  x3

ƒx ƒ

A
2

3
=

12

13
=

12

13
#
13

13
=

16

3

DEFINITION Rational Exponents
Let u be a real number, variable, or algebraic expression, and n an integer
greater than 1. Then

If m is a positive integer, m/n is in reduced form, and all roots are real numbers,
then

um/n
= 1u1/n2m = 11n u2m    and   um/n

= 1um21/n
= 2n um.

u1/n
= 2n u.

The numerator of a rational exponent is the power to which the base is raised, and the
denominator is the root to be taken. The fraction m/n needs to be in reduced form be-
cause, for instance,

is defined for all real numbers u (every real number has a cube root), but

is defined only for (only nonnegative real numbers have sixth roots).u Ú 0

u4/6
= 126  u24

u2/3
= 123  u22

6965_App_pp779-813.qxd  1/20/10  3:20 PM  Page 781



782 APPENDIX A

Simplifying Radicals
If you also want the radical form in Example 4d
to be simplified, then continue as follows:

1

2z3
=

1

2z3
#
1z

1z
=

1z

z2

EXAMPLE 4  Converting Radicals to Exponentials 
and Vice Versa

(a) (b)

(c) (d)

Now try Exercises 43 and 47.

An expression involving powers is simplified if each factor appears only once and all
exponents are positive. Example 5 illustrates.

z-3/2
=

1

z3/2 =

1

2z3
x2/3y1/3

= 1x2y21/3
= 23  x2y

3x25  x2
= 3x # x2/5

= 3x7/521x + y23 = 1x + y23/2

EXAMPLE 5  Simplifying Exponential Expressions

(a)

(b)

Now try Exercise 61.

Example 6 suggests how to simplify a sum or difference of radicals.

a3x2/3

y1/2 b a2x -1/2

y2/5 b =

6x1/6

y9/10

1x2y921/31xy22 = 1x2/3y321xy22 = x5/3y5

EXAMPLE 6  Combining Radicals

(a) Find greatest square factors.

Remove factors from radicands.

Distributive property

(b) Find greatest square factors.

Remove factors from radicands.

Distributive property.

Now try Exercise 71.

Here’s a summary of the procedures we use to simplify expressions involving radicals.

= 12 ƒx ƒ - ƒy ƒ21y

= 2 ƒx ƒ 1y - ƒy ƒ 1y

24x2y - 2y3
= 212x22y - 2y2y

= 315

= 815 - 515

2180 - 1125 = 2116 # 5 - 125 # 5

Simplifying Radical Expressions

1. Remove factors from the radicand (see Example 2).

2. Eliminate radicals from denominators and denominators from radicands 
(see Example 3).

3. Combine sums and differences of radicals, if possible (see Example 6).

APPENDIX A.1 EXERCISES

In Exercises 1–6, find the indicated real roots.

1. Square roots of 81 2. Fourth roots of 81

3. Cube roots of 64 4. Fifth roots of 243

5. Square roots of 16/9 6. Cube roots of 

In Exercises 7–12, evaluate the expression without using a calculator.

7. 8. 9.

10. 11. 12. A
64

25A3  -  

64

27
23  216

23  -2161-161144

-27/8

In Exercises 13–22, use a calculator to evaluate the expression.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. a -  

125

64
b-1/3a -  

1

8
b-1/3

27-4/332-2/5

165/4813/2

112.2523  15.625

 25  312524  256
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In Exercises 23–26, use the information from the grapher screens below
to evaluate the expression.

23. 24.

25. 26.

In Exercises 27–36, simplify by removing factors from the radicand.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–42, rationalize the denominator.

37. 38.

39. 40.

41. 42.

In Exercises 43–46, convert to exponential form.

43. 44.

45. 46.

In Exercises 47–50, convert to radical form.

47. 48.

49. 50.

In Exercises 51–56, write using a single radical.

51. 52.

53. 54.

55. 56.

In Exercises 57–64, simplify the exponential expression.

57. 58.

59. 60. a x1/2

y2/3
b61a5/3b3/4213a1/3b5/42

1x2y421/2a3/5a1/3

a3/2

1a23  a225  a2

23  a

23  1ab24  1xy

323  3x2212x

1xy2-3/4x -5/3

x2/3y1/3a3/4b1/4

xy24  xy32x23  x2y

25  x2y323  1a + 2b22
B5  

a3

b2B3  

x2

y

2

24  y

1

25  x2

1

15

4

23  2

2108x4y925  96x10

  23  8x6y424  3x8y6

23  -27x3y622x3y4

24  19223  -250

 23  5001288

23  3.375 24  19.4481

119.448111.69

61. 62.

63. 64.

In Exercises 65–74, simplify the radical expression.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

In Exercises 75–82, replace with or to make a true statement.

75.

76.

77. 78.

79. 80.

81. 82.

83. The time t (in seconds) that it takes for a pendulum to complete
one cycle is approximately , where L is the length
(in feet) of the pendulum. How long is the period of a pendu-
lum of length 10 ft?

84. The time t (in seconds) that it takes for a rock to fall a distance
d (in meters) is approximately . How long does it
take for the rock to fall a distance of 200 m?

85. Writing to Learn Explain why and a real nth root
of a need not have the same value.

2n a

t = 0.451d

t = 1.12L

4-2/3
~ 3-3/422/3

~ 33/4

23  1-223 ~ -224  1-224 ~ -2

12-321/3
~ 213-22-1/2

~ 3

14 + 19 ~ 14 + 9

12 + 6 ~ 12 + 16

76 , = ,~

218x2y + 22y32x3
- 24xy2

21175 - 41283148 - 21108

25  9ab6 # 25  27a2b -1B3  

4x2

y2
# B3  

2x2

y

B5  

4x6y

9x3B4  

3x8y2

8x2

216y8z-229x -6y4

a2x1/2

y2/3
b a 3x -2/3

y1/2
b1x9y62-1/3

1x6y22-1/2

1p2q421/2

127q3p621/3
a -8x6

y-3
b2/3

APPENDIX A.1 Radicals and Rational Exponents 783

1.5^3

4.41^2
3.375

19.4481

1.3^2

2.1^4
1.69

19.4481
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A.2 Polynomials and Factoring

What you’ll learn about
• Adding, Subtracting, 

and Multiplying Polynomials
• Special Products
• Factoring Polynomials Using 

Special Products
• Factoring Trinomials
• Factoring by Grouping

... and why
You need to review these basic 
algebraic skills if you don’t 
remember them.

784 APPENDIX A

EXAMPLE 1  Adding and Subtracting Polynomials
(a)

(b)

SOLUTION

(a) We group like terms and then combine them as follows:

(b) We group like terms and then combine them as follows:

Now try Exercises 9 and 11.

To expand the product of two polynomials we use the distributive property. Here is
what the procedure looks like when we multiply the binomials and 

Distributive property

Distributive property

Product of Product of Product of Product of
First terms Outer terms Inner terms Last terms

In the above FOIL method for products of binomials, the outer (O) and inner (I ) terms
are like terms and can be added to give

Multiplying two polynomials requires multiplying each term of one polynomial by
every term of the other polynomial. A convenient way to compute a product is to
arrange the polynomials in standard form one on top of another so their terms align ver-
tically, as illustrated in Example 2.

13x + 2214x - 52 = 12x2
- 7x - 10.

10-8x+15x-=   12x2

= 13x214x2 - 13x2152 + 12214x2 - 122152
= 3x14x - 52 + 214x - 52

13x + 2214x - 52
4x - 5.3x + 2

= -2x3
+ 3x2

+ 4x - 6

10 - 2x32 + 14x2
- x22 + 13x - 1-x22 + 1-4 - 22

= 3x3
- x2

- x + 2

12x3
+ x32 + 1-3x2

+ 2x22 + 14x + 1-5x22 + 1-1 + 32

14x2
+ 3x - 42 - 12x3

+ x2
- x + 22

12x3
- 3x2

+ 4x - 12 + 1x3
+ 2x2

- 5x + 32

����

Adding, Subtracting, and Multiplying 
Polynomials
A polynomial in x is any expression that can be written in the form

where n is a nonnegative integer, and The numbers are real
numbers called coefficients. The degree of the polynomial is n and the leading 
coefficient is . Polynomials with one, two, or three terms are monomials,
binomials, or trinomials, respectively. A polynomial written with powers of x in
descending order is in standard form.

To add or subtract polynomials, we add or subtract like terms using the distributive
property. Terms of polynomials that have the same variable each raised to the same
power are like terms.

an

an-1, Á , a1, a0an Z 0.

anxn
+ an-1xn-1 

+
Á

+
 a1x + a0,
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Special Products
Certain products provide patterns that will be useful when we factor polynomials. Here
is a list of some special products for binomials.

APPENDIX A.2 Polynomials and Factoring 785

EXAMPLE 2  Multiplying Polynomials in Vertical Form
Write in standard form.

SOLUTION

Add.

Thus,

Now try Exercise 33.

1x2
- 4x + 321x2

+ 4x + 52 = x4
- 8x2

- 8x + 15.

x4
+ 0x3

- 8x2
- 8x + 15

= 51x2
- 4x + 325x2

- 20x + 15

= 4x1x2
- 4x + 324x3

- 16x2
+ 12x

= x21x2
- 4x + 32x4

- 4x3
+ 3x2

x2
+ 4x + 5

x2
- 4x + 3

1x2
- 4x + 321x2

+ 4x + 52

Special Binomial Products
Let u and v be real numbers, variables, or algebraic expressions.

1. Product of a sum and
a difference:

2. Square of a sum:

3. Square of a difference:

4. Cube of a sum:

5. Cube of a difference: 1u - v23 = u3
- 3u2v + 3uv2

- v3

1u + v23 = u3
+ 3u2v + 3uv2

+ v3

1u - v22 = u2
- 2uv + v2

1u + v22 = u2
+ 2uv + v2

1u + v21u - v2 = u2
- v2

EXAMPLE 3  Using Special Products
Expand the products.

(a)

(b)

(c)

Now try Exercises 23, 25, and 27.

Factoring Polynomials Using Special Products
When we write a polynomial as a product of two or more polynomial factors we are
factoring a polynomial. Unless specified otherwise, we factor polynomials into fac-
tors of lesser degree and with integer coefficients in this appendix. A polynomial that
cannot be factored using integer coefficients is a prime polynomial.

= 8x3
- 36x2y + 54xy2

- 27y3

+ 312x213y22 - 13y23
12x - 3y23 = 12x23 - 312x2213y2

= 25y2
- 40y + 16 

15y - 422 = 15y22 - 215y2142 + 42

= 9x2
- 64

13x + 8213x - 82 = 13x22 - 82
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A polynomial is completely factored if it is written as a product of its prime factors.
For example,

and

are completely factored (it can be shown that is prime). However,

is not completely factored because is not prime. In fact,
and

is completely factored.

The first step in factoring a polynomial is to remove common factors from its terms using
the distributive property as illustrated by Example 4.

x3
- 9x = x1x - 321x + 32

x2
- 9 = 1x - 321x + 32

1x2
- 92

x3
- 9x = x1x2

- 92
x2

+ 1

x3
+ x2

+ x + 1 = 1x + 121x2
+ 12

2x2
+ 7x - 4 = 12x - 121x + 42

786 APPENDIX A

EXAMPLE 4  Removing Common Factors
(a) 2x is the common factor.

(b) uv is the common factor.

Now try Exercise 43.

Recognizing the expanded form of the five special binomial products will help us factor
them. The special form that is easiest to identify is the difference of two squares. The
two binomial factors have opposite signs:

Two squares Square roots

Difference Opposite signs

u2
- v2

= 1u + v21u - v2.

u3v + uv3
= uv1u2

+ v22
2x3

+ 2x2
- 6x = 2x1x2

+ x - 32

EXAMPLE 5  Factoring the Difference of Two Squares
(a) Difference of two squares

Factors are prime.

(b) Difference of two squares

Factors are prime.

Simplify.

Now try Exercise 45.

A perfect square trinomial is the square of a binomial and has one of the two forms
shown here. The first and last terms are squares of u and v, and the middle term is twice
the product of u and v. The operation signs before the middle term and in the binomial
factor are the same.

Perfect square (sum) Perfect square (difference)

Same signs Same signs

u2
- 2uv + v2

= 1u - v22u2
+ 2uv + v2

= 1u + v22

= 12x + y + 3212x - y - 32
= 32x + 1y + 32432x - 1y + 324

4x2
- 1y + 322 = 12x22 - 1y + 322

= 15x + 6215x - 62
25x2

- 36 = 15x22 - 62
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EXAMPLE 6  Factoring Perfect Square Trinomials

(a)

(b)

Now try Exercise 49.

In the sum and difference of two cubes, notice the pattern of the signs.

Same signs Same signs

Opposite signs Opposite signs

u3
- v3

= 1u - v21u2
+ uv + v22u3

+ v3
= 1u + v21u2

- uv + v22

= 12x - 3y22
u = 2x, v = 3y4x2

- 12xy + 9y2
= 12x22 - 212x213y2 + 13y22

= 13x + 122
u = 3x, v = 19x2

+ 6x + 1 = 13x22 + 213x2112 + 12

EXAMPLE 7  Factoring the Sum and Difference of Two Cubes

(a) Difference of two cubes

Factors are prime.

(b) Sum of two cubes

Factors are prime.

Now try Exercise 55.

Factoring Trinomials
Factoring the trinomial into a product of binomials with integer coeffi-
cients requires factoring the integers a and c.

Factors of a

Factors of c

Because the number of integer factors of a and c is finite, we can list all possible bino-
mial factors. Then we begin checking each possibility until we find a pair that works.
(If no pair works, then the trinomial is prime.) Example 8 illustrates.

ax2
+ bx + c = 1n x + n21n x + n2

ax2
+ bx + c

= 12x + 3214x2
- 6x + 92

8x3
+ 27 = 12x23 + 33

= 1x - 421x2
+ 4x + 162

x3
- 64 = x3

- 43

EXAMPLE 8  Factoring a Trinomial with Leading
Coefficient 1

Factor 

SOLUTION The only factor pair of the leading coefficient is 1 and 1. The factor
pairs of 14 are 1 and 14, and 2 and 7. Here are the four possible factorizations of the
trinomial:

If you check the middle term from each factorization you will find that

Now try Exercise 59.

With practice you will find that it usually is not necessary to list all possible binomial
factors. Often you can test the possibilities mentally.

x2
+ 5x - 14 = 1x - 221x + 72.

1x - 221x + 721x + 221x - 72
1x + 121x - 142    1x - 121x + 142

x2
+ 5x - 14.

�
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EXAMPLE 9  Factoring a Trinomial with Leading
Coefficient 1

Factor 

SOLUTION The factor pairs of the leading coefficient are 1 and 35, and 5 and 7.
The factor pairs of 12 are 1 and 12, 2 and 6, and 3 and 4. The possible factorizations
must be of the form

where and ? are one of the factor pairs of 12. Because the two binomial factors
have opposite signs, there are 6 possibilities for each of the four forms—a total of 
24 possibilities in all. If you try them, mentally and systematically, you should find that

Now try Exercise 63.

We can extend the technique of Examples 8 and 9 to trinomials in two variables as il-
lustrated in Example 10.

35x2
- x - 12 = 15x - 3217x + 4).

*

15x + *217x - ?2,15x - *217x + ?2,
1x - *2135x + ?2,    1x + *2135x - ?2,

35x2
- x - 12.

�

EXAMPLE 10  Factoring Trinomials in x and y
Factor 

SOLUTION The only way to get as the middle term is with 

The signs in the binomials must be negative because the coefficient of is positive
and the coefficient of the middle term is negative. Checking the two possibilities,

and , shows that

Now try Exercise 67.

Factoring by Grouping
Notice that If a polynomial with four terms
is the product of two binomials, we can group terms to factor. There are only three
ways to group the terms and two of them work. So, if two of the possibilities fail, then
it is not factorable.

1a + b21c + d2 = ac + ad + bc + bd.

3x2
- 7xy + 2y2

= 13x - y21x - 2y2.
13x - 2y21x - y213x - y21x - 2y2

y2

2y2
= 13x - ?y21x - ?y2. 3x2

- 7xy +-7xy

3x2
- 7xy + 2y2.

EXAMPLE 11  Factoring by Grouping

(a)

Group terms.

Factor each group.

Distributive property

(b)

Group terms.

Factor each group.

Distributive property

Now try Exercise 69.

Here is a checklist for factoring polynomials.

= 1c - d212a + b2
= 2a1c - d2 + b1c - d2
= 12ac - 2ad2 + 1bc - bd2

2ac - 2ad + bc - bd

= 13x + 121x2
- 22

= x213x + 12 - 213x + 12
= 13x3

+ x22 - 16x + 22
3x3

+ x2
- 6x - 2
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Factoring Polynomials

1. Look for common factors.

2. Look for special polynomial forms.

3. Use factor pairs.

4. If there are four terms, try grouping.

APPENDIX A.2 EXERCISES

In Exercises 1–4, write the polynomial in standard form and state its
degree.

1. 2.

3. 4.

In Exercises 5–8, state whether the expression is a polynomial.

5. 6.

7. 8.

In Exercises 9–18, simplify the expression. Write your answer in 
standard form.

9.

10.

11.

12.

13. 14.

15. 16.

17. 18.

In Exercises 19–40, expand the product. Use vertical alignment in 
Exercises 33 and 34.

19.

20.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

37.

38. 1x2
- 1321x2

+ 132
11u + 1v211u - 1v2
1x1/2

- y1/221x1/2
+ y1/22

1x - 1221x + 122
12x2

- 3x + 121x2
- x + 22

1x2
+ x - 321x2

+ x + 12
1x2

+ 3x - 221x - 321x2
- 2x + 321x + 42

15x3
- 12212x3

- 3y212x3
+ 3y2

1u + 3v2312u - v23
1x - 12313x + 4y22

13 - 5x22
13x - y213x + y2
12x - 3212x + 32
13x - 521x + 22
12x + 3214x + 12
1x - 221x + 52

11 - x2
+ x4212x212 - x - 3x2215x2

-4v12 - 3v32-3u14u - 12
y212y2

+ 3y - 422x1x2
- x + 32

-1y2
+ 2y - 32 + 15y2

+ 3y + 42
14x3

- x2
+ 3x2 - 1x3

+ 12x - 32
1-3x2

- 52 - 1x2
+ 7x + 122

1x2
- 3x + 72 + 13x2

+ 5x - 32

1 - 3x + x41x2
+ x + 122

2x - 4
x

x3
- 2x2

+ x -1

x2
- x4

+ x - 31 - x7

x2
- 2x - 2x3

+ 12x - 1 + 3x2

39.

40.

In Exercises 41–44, factor out the common factor.

41. 42.

43. 44.

In Exercises 45–48, factor the difference of two squares.

45.

46.

47.

48.

In Exercises 49–52, factor the perfect square trinomial.

49. 50.

51. 52.

In Exercises 53–58, factor the sum or difference of two cubes.

53.

54.

55.

56.

57.

58.

In Exercises 59–68, factor the trinomial.

59.

60.

61.

62.

63. 64.

65. 66.

67. 68.

In Exercises 69–74, factor by grouping.

69. 70.

71. 72.

73.

74. 3uw + 12uz - 2vw - 8vz

2ac + 6ad - bc - 3bd

x6
+ 2x4

+ x2
+ 2x6

- 3x4
+ x2

- 3

2x3
- 3x2

+ 2x - 3x3
- 4x2

+ 5x - 20

15x2
+ 29xy - 14y26x2

+ 11xy - 10y2

2x2
- 3xy + y212x2

+ 11x - 15

10v2
+ 23v + 1214u2

- 33u - 5

6t 2
+ 5t + 1

z2
- 5z - 24

y2
- 11y + 30

x2
+ 9x + 14

27 - y3

1 - x3

64z3
+ 27

27y3
- 8

z3
+ 64

y3
- 8

9z2
- 24z + 164z2

- 4z + 1

36y2
+ 12y + 1y2

+ 8y + 16

16 - 1x + 222
64 - 25y2

9y2
- 16

z2
- 49

2x1x + 32 - 51x + 32yz3
- 3yz2

+ 2yz

5x3
- 20x5x - 15

1x + 121x2
- x + 12

1x - 221x2
+ 2x + 42
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In Exercises 75–90, factor completely.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

89. 90. x4
- 4x3

- x2
+ 4xx3

- 3x2
- 4x + 12

6ac - 2bd + 4bc - 3ad2ac - 2bd + 4ad - bc

3x2
+ 13xy - 10y212x2

+ 22x - 20

512x - 322 - 20215x + 122 - 18

z - 8z45y + 3y2
- 2y3

3x4
+ 24x16y - y3

2x3
- 16x2

+ 14x18y3
+ 48y2

+ 32y 

4y3
- 20y2

+ 25yx3
+ x

91. Writing to Learn Show that the grouping

leads to the same factorization as in Example 11b. Explain why
the third possibility,

does not lead to a factorization.

12ac - bd2 + 1-2ad + bc2

12ac + bc2 - 12ad + bd2
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A.3 Fractional Expressions

What you’ll learn about
• Domain of an Algebraic 

Expression
• Reducing Rational Expressions
• Operations with Rational 

Expressions
• Compound Rational 

Expressions

... and why
You need to review these basic
algebraic skills if you don’t 
remember them.

APPENDIX A.3 Fractional Expressions 791

EXAMPLE 1  Finding Domains of Algebraic Expressions

(a) (b) (c)

SOLUTION

(a) The domain of , like that of any polynomial, is the set of all real
numbers.

(b) Because only nonnegative numbers have square roots, , or . In
interval notation, the domain is .

(c) Because division by zero is undefined, , or The domain is the
set of all real numbers except 2. Now try Exercises 11 and 13.

Reducing Rational Expressions
Let u, v, and z be real numbers, variables, or algebraic expressions. We can write rational
expressions in simpler form using

provided . This requires that we first factor the numerator and denominator into
prime factors. When all factors common to numerator and denominator have been 
removed, the rational expression (or rational number) is in reduced form.

z Z 0

uz

vz
=

u

v

x Z 2.x - 2 Z 0

31, q2 x Ú 1x - 1 Ú 0

3x2
- x + 5

x

x - 2
1x - 13x2

- x + 5

EXAMPLE 2  Reducing Rational Expressions
Write in reduced form.

SOLUTION

Factor completely.

Remove common factors.

We include as part of the reduced form because 3 is not in the domain of the
original rational expression and thus should not be in the domain of the final rational
expression. Now try Exercise 35.

x Z 3

=

x

x + 3
,  x Z 3

x2
- 3x

x2
- 9

=

x1x - 32
1x + 321x - 32

1x2
- 3x2/1x2

- 92

Domain of an Algebraic Expression
A quotient of two algebraic expressions, besides being another algebraic expression,
is a fractional expression, or simply a fraction. If the quotient can be written as the
ratio of two polynomials, the fractional expression is a rational expression. Here are
examples of each.

The one on the left is a fractional expression but not a rational expression. The other is
both a fractional expression and a rational expression.

Unlike polynomials, which are defined for all real numbers, some algebraic expres-
sions are not defined for some real numbers. The set of real numbers for which an alge-
braic expression is defined is the domain of the algebraic expression.

x2
- 5x + 2

2x2
+ 1

    
2x3

- x2
+ 1

5x2
- x - 3
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Two rational expressions are equivalent if they have the same domain and have the
same value for all numbers in the domain. The reduced form of a rational expression
must have the same domain as the original rational expression. This is why we attached
the restriction to the reduced form in Example 2.

Operations with Rational Expressions
Two fractions are equal, , if and only if Here is how we operate
with fractions.

uw = vz.u/v = z /w

x Z 3

792 APPENDIX A

Operations with Fractions
Let u, v, w, and z be real numbers, variables, or algebraic expressions. All of the
denominators are assumed to be different from zero.

Operation Example

1.

2.

3.

4.

5. For subtraction, replace “ ” by “ ” in 1 and 2.-+

2

3
,

4

5
=

2

3
#
5

4
=

10

12
=

5

6

u

v
,

w

z
=

u

v
#

z

w
=

uz

vw

2

3
#
4

5
=

2 # 4

3 # 5
=

8

15

u

v
#
w

z
=

uw

vz

2

3
+

4

5
=

2 # 5 + 3 # 4

3 # 5
=

22

15

u

v
+

w

z
=

uz + vw

vz

2

3
+

5

3
=

2 + 5

3
=

7

3

u

v
+

w

v
=

u + w

v

Invert and Multiply
The division step shown in 4 is often referred to
as invert the divisor (the fraction following the
division symbol) and multiply the result times
the numerator (the first fraction).

EXAMPLE 3  Multiplying and Dividing Rational Expressions

(a)

Factor completely.

Remove common factors.

(b)

Invert and multiply.

Factor completely.

Remove common factors.

Now try Exercises 49 and 55.
=  x - 2,  x Z -1,  x Z 2

=  
1x + 121x2

- x + 121x - 222 1

1x + 121x - 221x2
- x + 12

=  
1x3

+ 121x2
- 4x + 42

1x2
- x - 221x2

- x + 12

x3
+ 1

x2
- x - 2

,

x2
- x + 1

x2
- 4x + 4

=  
2x - 3

x
,  x Z 2,  x Z -7

=  
12x - 321x + 72
x1x2

+ 2x + 42 #
1x - 221x2

+ 2x + 42
1x - 221x + 72

2x2
+ 11x - 21

x3
+ 2x2

+ 4x
#

x3
- 8

x2
+ 5x - 14

Note on Example
The numerator, , of the final 
expression in Example 4 is a prime polynomial.
Thus, there are no common factors.

x2
+ 4x - 6

EXAMPLE 4  Adding Rational Expressions

Definition of addition

Distributive property

Combine like terms.

Now try Exercise 59.

=

x2
+ 4x - 6

13x - 221x - 52

=

x2
- 5x + 9x - 6

13x - 221x - 52

x

3x - 2
+

3

x - 5
=

x1x - 52 + 313x - 22
13x - 221x - 52
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If the denominators of fractions have common factors, then it is often more efficient
to find the LCD before adding or subtracting the fractions. The LCD (least common
denominator) is the product of all the prime factors in the denominators, where each
factor is raised to the greatest power found in any one denominator for that factor.

APPENDIX A.3 Fractional Expressions 793

EXAMPLE 5  Using the LCD
Write the following expression as a fraction in reduced form.

SOLUTION The factored denominators are , x, and , 
respectively. The LCD is 

Factor.

Expand terms.

Simplify.

Factor.

Reduce.

Now try Exercise 61.

=

x - 1

1x - 221x + 22,  x Z 0

=

x1x - 12
x1x - 221x + 22

=

x2
- x

x1x - 221x + 22

=

2x + 4 + x2
- 4 - 3x

x1x - 221x + 22

=

21x + 22 + 1x - 221x + 22 - 3x

x1x - 221x + 22

=

21x + 22
x1x - 221x + 22 +

1x - 221x + 22
x1x - 221x + 22 -

3x

x1x - 221x + 22

=

2

x1x - 22 +

1
x

-

3

1x - 221x + 22

2

x2
- 2x

+

1
x

-

3

x2
- 4

x1x - 221x + 2).
1x - 221x + 22x1x - 22

2

x2
- 2x

+

1
x

-

3

x2
- 4

Equivalent
fractions

Combine 
numerators.

Compound Rational Expressions
Sometimes a complicated algebraic expression needs to be changed to a more familiar
form before we can work on it. A compound fraction (sometimes called a complex frac-
tion), in which the numerators and denominators may themselves contain fractions, is such
an example. One way to simplify a compound fraction is to write both the numerator and
denominator as single fractions and then invert and multiply. If the fraction then takes the
form of a rational expression, we write the expression in reduced or simplest form.

EXAMPLE 6  Simplifying a Compound Fraction

Combine fractions.

Simplify.

Invert and multiply.

Now try Exercise 63.

=

13x - 121x - 32
1x + 221x - 42 ,  x Z 3

=

3x - 1

x + 2

x - 4

x - 3

3 -

7

x + 2

1 -

1

x - 3

=

31x + 22 - 7

x + 2

1x - 32 - 1

x - 3
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A second way to simplify a compound fraction is to multiply the numerator and denom-
inator by the LCD of all fractions in the numerator and denominator as illustrated in
Example 7.

794 APPENDIX A

EXAMPLE 7  Simplifying Another Compound Fraction
Use the LCD to simplify the compound fraction

SOLUTION The LCD of the four fractions in the numerator and denominator is

Simplify.

Factor.

Reduce.
Now try Exercise 69.

=

b + a

ab
,  a Z b

=

1b + a21b - a2
ab1b - a2

=

b2
- a2

ab2
- a2b

1

a2 -

1

b2

1
a

-

1

b

=

a 1

a2 -

1

b2 ba2b2

a1
a

-

1

b
ba2b2

a2b2.

1

a2 -

1

b2

1
a

-

1

b

.

Multiply numerator and
denominator by LCD.

APPENDIX A.3 EXERCISES

In Exercises 1–8, rewrite as a single fraction.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–18, find the domain of the algebraic expression.

9. 10.

11. 12.

13.

14.

15.

16.

17.

18. x1x + 12-2

x2
+ x -1

3x - 1

x - 2
,  x Z 0

x

x - 1
,  x Z 2

x2
- 2

x2
- 4

2x + 1

x2
+ 3x

2

1x + 3
1x - 4

2x - 55x2
- 3x - 7

1

6
+

6

35
-

4

15

1

14
+

4

15
-

5

21

9

4
,

15

10

2

3
,

4

5

33

25
#
20

77

20

21
#

9

22

17

32
-

9

32

5

9
+

10

9

In Exercises 19–26, find the missing numerator or denominator so that
the two rational expressions are equal.

19. 20.

21. 22.

23.

24.

25.

26.

In Exercises 27–32, consider the original fraction and its reduced form
from the specified example. Explain why the given restriction is needed
on the reduced form.

27. Example 3a, 

28. Example 3b, 

29. Example 4, none 30. Example 5, 

31. Example 6, 32. Example 7, ba Zx Z 3

x Z 0

x Z -1, x Z 2

x Z 2, x Z -7

?

x2
- 9

=

x2
+ x - 6

x - 3

x2
- 3x

?
=

x - 3

x2
+ 2x

x - 4

x + 5
=

x2
- x - 12

?

x + 3

x - 2
=

?

x2
+ 2x - 8

x

x + 2
=

?

x2
- 4

x - 4
x

=

x2
- 4x

?

5

2y
=

15y

?

2

3x
=

?

12x3

6965_App_pp779-813.qxd  1/20/10  3:20 PM  Page 794



In Exercises 33–44, write the expression in reduced form.

33. 34.

35. 36.

37. 38.

39.

40.

41. 42.

43. 44.

In Exercises 45–62, simplify.

45.

46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.
7x - 7y

4y
,

14x - 14y

3y

x2
- 3x

14y
,

2xy

3y2

4x

y
,

8y

x

1

2x
,

1

4

y2
+ 8y + 16

3y2
- y - 2

#
3y2

+ 2y

y + 4

2y2
+ 9y - 5

y2
- 25

#
y - 5

2y2
- y

y3
+ 2y2

+ 4y

y3
+ 2y2

#
y2

- 4

y3
- 8

x3
- 1

2x2
#

4x

x2
+ x + 1

18x2
- 3x

3xy
#

12y2

6x - 1

x + 3

x - 1
#

1 - x

x2
- 9

x + 3

7
#

14

2x + 6

3

x - 1
#
x2

- 1

9

y2
+ 3y

y3
+ 3y2

- 5y - 15

x3
+ 2x2

- 3x - 6

x3
+ 2x2

2z3
+ 6z2

+ 18z

z3
- 27

8z3
- 1

2z2
+ 5z - 3

y3
+ 4y2

- 21y

y2
- 49

y2
- y - 30

y2
- 3y - 18

x2
+ 6x + 9

x2
- x - 12

z2
- 3z

9 - z2

2y2
+ 6y

4y + 12

x3

x2
- 2x

75y2

9y4

18x3

15x 57. 58.

59.

60.

61.

62.

In Exercises 63–70, simplify the compound fraction.

63. 64.

65. 66.

67. 68.

69. 70.

In Exercises 71–74, write with positive exponents and simplify.

71. 72.

73. 74. 1x -1
+ y-12-1x -1

+ y-1

1x + y2-1

1x - y2-1
a1

x
+

1
y
b1x + y2-1

1
a

+

1

b

b

a
-

a

b

b

a
-

a

b

1
a

-

1

b

x + h

x + h + 2
-

x

x + 2

h

1

1x + h22 -

1

x2

h

2 -

13

x + 5

2 +

3

x - 3

2x +

13x - 3

x - 4

2x +

x + 3

x - 4

1
x

+

1
y

1

x2
-

1

y2

x

y2
-

y

x2

1

y2
-

1

x2

5

x2
+ x - 6

-

2

x - 2
+

4

x2
- 4

3

x2
+ 3x

-

1
x

-

6

x2
- 9

3

x - 2
+

x + 1

x - 2

2x + 1

x + 5
-

3

x + 5

x2
- y2

2xy

y2
- x2

4x2y

2x2y

1x - 322
8xy

x - 3
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B Key Formulas

B.1 Formulas from Algebra
Exponents

If all bases are nonzero:

Radicals and Rational Exponents

If all roots are real numbers:

Special Products

Factoring Polynomials

Inequalities

If c 7 0, ƒu ƒ 7 c is equivalent to u 6 -c or u 7 c.

If c 7 0, ƒu ƒ 6 c is equivalent to -c 6 u 6 c.

If u 6 v and c 6 0, then uc 7 vc.

If u 6 v and c 7 0, then uc 6 vc.

If u 6 v, then u + w 6 v + w.

If u 6 v and v 6 w, then u 6 w.

u3
- v3

= 1u - v21u2
+ uv + v22

u3
+ v3

= 1u + v21u2
- uv + v22

u2
- 2uv + v2

= 1u - v22
u2

+ 2uv + v2
= 1u + v22

u2
- v2

= 1u + v21u - v2

1u - v23 = u3
- 3u2v + 3uv2

- v3

1u + v23 = u3
+ 3u2v + 3uv2

+ v3

1u - v22 = u2
- 2uv + v2

1u + v22 = u2
+ 2uv + v2

1u + v21u - v) = u2
- v2

um/n
= 1um21/n

= 2n um

um/n
= 1u1/n2m = 11n u2mu1/n

= 1n u

2n un
= e ƒu ƒ  n even

u   n odd
2n um

= 12n u2m
12n u2n = u2m 1n u =

mn1u

An
u

v
=

2n u

2n v
 1v Z 021n uv = 1n u # 1n v

au

v
bm

=

um

vm

1um2n = umn1uv2m = umvm

u-n
=

1

unu0
= 1

um

un = um-numun
= um+n

Quadratic Formula

If , the solutions of the equation are 
given by

Logarithms

If 

if and only if 

Determinants

Arithmetic Sequences and Series

or 

Geometric Sequences and Series

infinite geometric series

Factorial

Binomial Coefficient

Binomial Theorem

If n is a positive integer,

1a + b2n = an

0
b  an

+ an

1
b  an-1 b +

Á
+ an

r
b  an- rbr

+
Á

+ an

n
b  bn.

1integers n and r, n Ú r Ú 02an

r
b =

n!

r!1n - r2!

n # 1n - 12! = n!, 0! = 1

n! = n # 1n - 12 # 1n - 2) # Á # 3 # 2 # 1

S =

a1

1 - r
 1 ƒr ƒ 6 12

Sn =

a111 - r n2
1 - r

 1r Z 12
an = a1

# r n-1

Sn =

n

2
 32a1 + 1n - 12d4Sn = naa1 + an

2
b

an = a1 + 1n - 12d

` a b

c d
` = ad - bc

logb x =

loga x

loga b
logb Rc

= c logb R

logb 
R

S
= logb R - logb Slogb RS = logb R + logb S

b logbx
= xlogb by

= y

logb b = 1logb 1 = 0

by
= x.y = logb x

0 6 b Z 1, 0 6 a Z 1, x, R, S, 7 0

x =

-b � 2b2
- 4ac

2a
.

ax2
+ bx + c = 0a Z 0
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B.2 Formulas from Geometry
Triangle

Trapezoid

Circle

Sector of Circle

Right Circular Cone

Right Circular Cylinder

Right Triangle

Pythagorean Theorem:

Parallelogram

Circular Ring

Area = p1R2
- r 22

Area = bh

c2
= a2

+ b2

Lateral surface area = 2prh

Volume = pr 2h

Lateral surface area = pr2r 2
+ h2

Volume =

pr 2h

3

s = ru 1u in radians2
Area =

ur 2

2
 1u in radians2

Circumference = 2pr

Area = pr 2

Area =

h

2
 1a + b2

Area =

1

2
 bh

h = a sin u
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Ellipse

Cone

Sphere

B.3 Formulas from Trigonometry
Angular Measure

So, degrees,

and radians.

Reciprocal Identities

Quotient Identities

Pythagorean Identities

Odd-Even Identities

cot 1-x2 = -cot xtan 1-x2 = - tan x

sec 1-x2 = sec xcos 1-x2 = cos x

csc 1-x2 = -csc xsin 1-x2 = -sin x

1 + cot2 x = csc2 x

1 + tan2 x = sec2 x

sin2 x + cos2 x = 1

cot x =

cos x

sin x
tan x =

sin x
cos x

cot x =

1

tan x
tan x =

1

cot x

sec x =

1
cos x

cos x =

1
sec x

csc x =

1

sin x
sin x =

1
csc x

1 degree =

p

180

1 radian =

180
p

p radians = 180°

Surface area = 4pr 2

Volume =

4

3
 pr 3

Volume =

Ah

3
 1A = Area of base2

Area = pab 

ac
h

b
�

a

h

b

r

r

s

�

r

h

r

h

a
c

b

h

b

R

r

a

b

A

h

r
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Sum and Difference Identities

Cofunction Identities

Double-Angle Identities

Power-Reducing Identities

Half-Angle Identities

 =

1 - cos u

sin u
=

sin u

1 + cos u

 tan 
u

2
= � B

1 - cos u

1 + cos u

cos 
u

2
= � B

1 + cos u

2

sin 
u

2
= � B

1 - cos u

2

tan2 u =

1 - cos 2u

1 + cos 2u

cos2 u =

1 + cos 2u

2

sin2 u =

1 - cos 2u

2

tan 2u =

2 tan u

1 - tan2 u

 = 1 - 2 sin2 u

 = 2 cos2 u - 1

 cos 2u = cos2 u - sin2 u

sin 2u = 2 sin u cos u

csc ap
2

- ub = sec u

sec ap
2

- ub = csc u

cot ap
2

- ub = tan u

tan ap
2

- ub = cot u

sin ap
2

- ub = cos u

cos ap
2

- ub = sin u

tan 1u - v2 =

tan u - tan v

1 + tan u tan v

tan 1u + v2 =

tan u + tan v

1 - tan u tan v

cos 1u - v2 = cos u cos v + sin u sin v

cos 1u + v2 = cos u cos v - sin u sin v

sin 1u - v2 = sin u cos v - cos u sin v

sin 1u + v2 = sin u cos v + cos u sin v

Triangles

Law of sines:

Law of cosines:

Area:

Trigonometric Form of a Complex Number

De Moivre’s Theorem

 = r n1cos nu + i sin nu2
 zn

= 3r1cos u + i sin u24n

 = r1cos u + i sin u2
 z = a + bi = 1r cos u2 + 1r sin u2i

where s =

1

2
 1a + b + c2

Area = 2s1s - a21s - b21s - c2
 =

1

2
 ac sin B =

1

2
 ab sin C

 Area =

1

2
 bc sin A

c2
= a2

+ b2
- 2ab cos C

b2
= a2

+ c2
- 2ac cos B

a2
= b2

+ c2
- 2bc cos A

sin A
a

=

sin B

b
=

sin C
c

C

A B

a

c

b

�

�

�

y

x

π
2

π
3

π
4

π
6

6
11π

3
2π

4
3π

6
5π

6
7π

4
5π

3
4π

2
3π 3

5π 4
7π

π 2 π

30°

45°
60°

90°

120°
135°

150°

180°

210°

225°
240°

270°

300°
315°

330°

360°
00°

(0, 1)

(0, –1)

(1, 0)(–1, 0)

2
, 3 b1

2
a–

2
, – 3 b1

2
a–

2
, – 3 b1

2
a

2
, 3 b1

2
a

2
,3 b1

2
a

2
,3 b1

2
a–

2
, –3 b1

2
a–

2
, –3 b1

2
a

2
,2

2
2 ba

2
,2

2
2 ba–

2
, –2

2
2 ba–

2
, –2

2
2 ba
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B.4 Formulas from Analytic
Geometry
Basic Formulas

Distance d between points , and , :

Midpoint:

Slope of a line: 

Condition for parallel lines: 

Condition for perpendicular lines: 

Equations of a Line

The point-slope form, slope m and through :

The slope-intercept form, slope m and y-intercept b:

Equation of a Circle

The circle with center and radius r: 

Parabolas with Vertex (h, k)

Standard 
equation

Opens Upward or downward To the right or to the left

Focus

Directrix

Axis y = kx = h

x = h - py = k - p

1h + p, k21h, k + p2

1y - k22 = 4p1x - h21x - h22 = 4p1y - k2

1x - h22 + 1y - k22 = r 2

1h, k2

y = mx + b

y - y1 = m1x - x12
1x1, y12

m2 =

-1
m1

m1 = m2

m =

y2 - y1

x2 - x1

a x1 + x2

2
 , 

y1 + y2

2
b

d = 21x1 - x222 + 1y1 - y222
y22Q1x2y12P1x1

y

x

(h, k + p)

(h, k)

y

x

(h – a, k)

(h – c, k)

(h, k)

(h + c, k)

(h + a, k)

y

x

(h, k)

(h, k + a)

(h, k – c)

(h, k + c)

(h, k – a)

y

x

(h + c, k)
(h + a, k)(h, k)

y = k

(h – c, k)
(h – a, k)

(x – h) + ky = b
a

y = –    (x – h) + kb
a

y

x

(h, k)

x = h

(x – h) + ky = a
b

(x – h) + ky = – a
b

(h, k + c)
(h, k + a)
(h, k – a)
(h, k – c)

y

x

(h + p, k)

(h, k)

Pythagorean
relation

a2
= b2

+ c2a2
= b2

+ c2

Ellipses with Center (h, k) and a b 0

Standard
equation

>>

1y - k22
a2 +

1x - h22
b2 = 1

1x - h22
a2 +

1y - k22
b2 = 1

Focal axis

Foci

Vertices 1h, k � a21h � a, k2
1h, k � c21h � c, k2
x = hy = k

Hyperbolas with Center (h, k)

Standard 
equation

1y - k22
a2 -

1x - h22
b2 = 1

1x - h22
a2 -

1y - k22
b2 = 1

Focal axis

Foci

Vertices

Pythagorean
relation

Asymptotes y = �
a

b
 1x - h2 + ky = �

b

a
 1x - h2 + k

c2
= a2

+ b2c2
= a2

+ b2

1h, k � a21h � a, k2
1h, k � c21h � c, k2
x = hy = k
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B.5 Gallery of Basic Functions

Identity Function

Domain

Range = 1- q , q2
= 1- q , q2

ƒ1x2 = x

Squaring Function

Domain

Range = 30, q2
= 1- q , q2

ƒ1x2 = x2

Cubing Function

Domain

Range = 1- q , q2
= 1- q , q2

ƒ1x2 = x3

[–4.7, 4.7] by [–3.1, 3.1] [–4.7, 4.7] by [–1, 5] [–4.7, 4.7] by [–3.1, 3.1]

[–6, 6] by [–1, 7] [–4.7, 4.7] by [–3.1, 3.1] [–4.7, 4.7] by [–3.1, 3.1]

[–4, 4] by [–1, 5] [–4.7, 4.7] by [–0.5, 1.5] [–2, 6] by [–3, 3]

[–6, 6] by [–4, 4] [–2p, 2p] by [–4, 4] [–2p, 2p] by [–4, 4]

Absolute Value Function

Domain

Range = 30, q2
= 1- q , q2

ƒ1x2 = ƒx ƒ = abs (x2
Reciprocal Function

Domain

Range = 1- q , 0) ´ 10, q2
= 1- q , 02 ´ 10, q2

ƒ1x2 =

1
x

Square Root Function 

Domain

Range = 30, q2
= 30, q2

ƒ1x2 = 1x

Exponential Function

Domain

Range = 10, q2
= 1- q , q2

ƒ1x2 = ex

Logistic Function 

Domain

Range = 10, 12
= 1- q , q2

ƒ1x2 =

1

1 + e-x

Natural Logarithmic Function

Domain

Range = 1- q , q2
= 10, q2

ƒ1x2 = ln x

Greatest Integer Function 

Domain 

Range all integers=

= 1- q , q2
ƒ1x2 = int (x2

Sine Function 

Domain

Range = 3-1, 14
= 1- q , q2

ƒ1x2 = sin (x2
Cosine Function 

Domain

Range = 3-1, 14
= 1- q , q2

ƒ1x2 = cos (x2
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C.1 Logic: An Introduction

What you’ll learn about
• Statements
• Compound Statements

... and why
These topics are important in
the study of logic.

EXAMPLE 1  Negation of Statements
Negate each of the following statements:

(a)

(b) A hexagon has six sides.

(c) Today is not Monday.

SOLUTION

(a)

(b) A hexagon does not have six sides.

(c) Today is Monday.
Now try Exercise 5, parts (a), (b), and (c).

2 + 3 Z 5

2 + 3 = 5

The statements “The shirt is blue” and “The shirt is green” are not negations of each
other. A statement and its negation must have opposite truth values. If the shirt is actu-
ally red, then both of the above statements are false and, hence, cannot be negations of
each other. However, the statements “The shirt is blue” and “The shirt is not blue” are
negations of each other because they have opposite truth values no matter what color
the shirt really is.

Some statements involve quantifiers and are more complicated to negate. Quantifiers
include words such as all, some, every, and there exists.

The quantifiers all, every, and no refer to each and every element in a set and are
universal quantifiers. The quantifiers some and there exists at least one refer to one or

Statements
Logic is a tool used in mathematical thinking and problem solving. In logic, a
statement is a sentence that is either true or false, but not both.

The following expressions are not statements because their truth values cannot be 
determined without more information.

1. She has blue eyes.

2.

3.

The expressions above become statements if, for (1), “she” is identified, and for (2) and
(3), values are assigned to x and y, respectively. However, an expression involving he or
she or x or y may already be a statement. For example, “If he is over 210 cm tall, then
he is over 2 m tall,” and “ ” are both statements because they are
true no matter who he is or what the numerical values of x and y are.

From a given statement, it is possible to create a new statement by forming a negation.
The negation of a statement is a statement with the opposite truth value of the given
statement. If a statement is true, its negation is false, and if a statement is false, its nega-
tion is true. Consider the statement “It is snowing.” The negation of this statement may
be stated simply as “It is not snowing.”

2(x + y2 = 2x + 2y

2y + 7 7 1

x + 7 = 18
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more, or possibly all, of the elements in a set. Some and there exists are called
existential quantifiers. Examples with universal and existential quantifiers follow:

1. All roses are red. [universal]

2. Every student is important. [universal]

3. For each counting number x, [universal]

4. Some roses are red. [existential]

5. There exists at least one even counting number less than 3. [existential]

6. There are women who are taller than 200 cm. [existential]

Venn diagrams can be used to picture statements involving quantifiers. For example, 
Figures C.1a and C.1b picture statements (1) and (4). The x in Figure C.1b is used to
show that there must be at least one element of the set of roses that is red.

x + 0 = x.

Red Objects

Roses

U U

Red ObjectsRoses x

(a) (b)

FIGURE C.1 (a) All roses are red. (b) Some roses are red.

Consider the following statement involving the existential quantifier some. “Some pro-
fessors at Paxson University have blue eyes.” This means that at least one professor at
Paxson University has blue eyes. It does not rule out the possibilities that all the Paxson
professors have blue eyes or that some of the Paxson professors do not have blue eyes.
Because the negation of a true statement is false, neither “Some professors at Paxson
University do not have blue eyes” nor “All professors at Paxson have blue eyes” are
negations of the original statement. One possible negation of the original statement is
“No professors at Paxson University have blue eyes.”

Statement Negation

Some a are b. No a is b.
Some a are not b. All a are b.
All a are b. Some a are not b.
No a is b. Some a are b.

EXAMPLE 2  Negation with Quantifiers
Negate each of the following statements:

(a) All students like hamburgers.

(b) Some people like mathematics.

(c) There exists a counting number x such that 

(d) For all counting numbers x, 3x = 3x.

3x = 6.
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There is a symbolic system defined to help in the study of logic. If p represents a state-
ment, the negation of the statement p is denoted by . Truth tables are often used to
show all possible true-false patterns for statements. Table C.1 summarizes the truth 
tables for p and .

Observe that p and are analogous to sets P and . If x is an element of P, then x is
not an element of .

Compound Statements
From two given statements, it is possible to create a new, compound statement by 
using a connective such as and. For example, “It is snowing” and “the ski run is open”
together with and give “It is snowing and the ski run is open.” Other compound state-
ments can be obtained by using the connective or. For example, “It is snowing or the
ski run is open.”

The symbols and are used to represent the connectives and and or, respectively.
For example, if p represents “It is snowing,” and if q represents “The ski run is open,”
then “It is snowing and the ski run is open” is denoted by . Similarly, “It is snow-
ing or the ski run is open” is denoted by .

The truth value of any compound statement, such as , is defined using the truth
table of each of the simple statements. Because each of the statements p and q may be
either true or false, there are four distinct possibilities for the truth values of p and q, as
shown in Table C.2. The compound statement is the conjunction of p and q and
is defined to be true if, and only if, both p and q are true. Otherwise, it is false.

The compound statement —that is, p or q—is a disjunction. In everyday lan-
guage, or is not always interpreted in the same way. In logic, we use an inclusive or.
The statement “I will go to a movie or I will read a book” means that I will either go to
a movie, or read a book, or do both. Hence, in logic, p or q, symbolized as , is de-
fined to be false if both p and q are false and true in all other cases. This is summarized
in Table C.3.

p ¡ q

p ¡ q

p ¿ q

p ¿ q

p ¡ q
p ¿ q

¡¿

P
P'p

'p

'p

SOLUTION

(a) Some students do not like hamburgers.

(b) No people like mathematics.

(c) For all counting numbers .

(d) There exists a counting number x such that .
Now try Exercise 5, parts (e) and ( f ).

3x Z 3x

x, 3x Z 6

Table C.1 Negation

p

T F
F T

'p

Table C.2 Conjunction

p q

T T T
T F F
F T F
F F F

p ¿ q

Table C.3 Disjunction

p q

T T T
T F T
F T T
F F F

p ¡ q

EXAMPLE 3  Conjunction and Disjunction
Given the following statements, classify each of the conjunctions and disjunctions as
true or false:

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) ( j) (k) (l)

(continued)

'1p ¡ q2'p ¡ qr ¡ ss ¡ q

p ¡ rp ¡ q'1p ¿ q2'p ¿ q

r ¿ ss ¿ qp ¿ rp ¿ q

s: 2 # 4 = 9q: 2 # 3 = 6

r : 5 + 3 = 9p: 2 + 3 = 5
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There is an analogy between the connectives and and the set operations of inter-
section and union . Just as the statement is true only when p and q are
both true, so an element x belongs to the set only when x belongs to both P and
Q. Similarly, the statement is true when either p or q is true, and an element x be-
longs to the set when x belongs to either P or Q.P ´ Q

p ¡ q
P ¨ Q

p ¿ q1´21¨2 ¡¿

SOLUTION

(a) p is true and q is true, so is true.

(b) p is true and r is false, so is false.

(c) s is false and q is true, so is false.

(d) r is false and s is false, so is false.

(e) is false and q is true, so is false.

(f) is true [part (a)], so is false.

(g) p is true and q is true, so is true.

(h) p is true and r is false, so is true.

(i) s is false and q is true, so is true.

(j) r is false and s is false, so is false.

(k) is false and q is true, so is true.

(l) is true [part (g)], so is false.
Now try Exercise 7, parts (a) and ( f).

'1p ¡ q2p ¡ q

'p ¡ q'p

r ¡ s

s ¡ q

p ¡ r

p ¡ q

'1p ¿ q2p ¿ q

'p ¿ q'p

r ¿ s

s ¿ q

p ¿ r

p ¿ q

EXAMPLE 4  Statements and Sets
Use set operations to construct a set that corresponds, by analogy, to each of the fol-
lowing statements:

(a) (b) (c) (d)
SOLUTION

(a) (b) (c) (d)
Now try Exercise 9.

P ´ RP ¨ QR ´ QP ¨ R

'1p ¡ 'r2'1p ¿ q2'r ¡ qp ¿ r

EXAMPLE 5  Logical Equivalence
Use a truth table to determine if and are logically equivalent.

SOLUTION Table C.5 shows headings and the four distinct possibilities for p and
q. In the column headed , we write the negations of the p column. In the col-
umn, we write the negations of the q column. Next, we use the values in the and
the columns to construct the column. To find the truth values for

, we use the p and q columns to find the truth values for and then
negate .p ¿ q

p ¿ q'1p ¿ q2
'p ¡ 'q'q

'p

'q'p

'1p ¿ q2'p ¡ 'q

Not only are truth tables used to summarize the truth values of compound statements,
they also are used to determine if two statements are logically equivalent. Two state-
ments are logically equivalent if, and only if, they have the same truth values. For 
example, we could show that is logically equivalent to by using a truth
table as in Table C.4.

q ¿ pp ¿ q

Table C.4

p q

T T T T
T F F F
F T F F
F F F F

q ¿ pp ¿ q

! !
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Since the values in the columns for and are identical, the state-
ments are equivalent. Now try Exercise 4, parts (b) and (d).

'1p ¿ q2'p ¡ 'q

Table C.5

p q

T T F F F T F
T F F T T F T
F T T F T F T
F F T T T F T

'1p ¿ q2p ¿ q'p ¡ 'q'q'p

! !

APPENDIX C.1 EXERCISES

1. Determine which of the following are statements, and then
classify each statement as true or false:

(a) (b) Shut the window.

(c) Los Angeles is a state. (d) He is in town.

(e) What time is it? (f)

(g) (h)

(i) This statement is false. ( j) Stay put!

2. Use quantifiers to make each of the following true where x is a
natural number:

(a) (b)

(c) (d)

3. Use quantifiers to make each equation in Exercise 2 false.

4. Complete each of the following truth tables:

(a)

(b)

(c) Based on part (a), is p logically equivalent to ?

(d) Based on part (b), is logically equivalent to
?

5. Write the negation for each of the following statements:

(a) The book has 500 pages.

(b) Six is less than eight.

(c)

(d) Some people have blond hair.

(e) All dogs have four legs.

(f) Some cats do not have nine lives.

(g) All squares are rectangles.

(h) Not all rectangles are squares.

(i) For all natural numbers x, x + 3 = 3 + x.

3 # 5 = 15

p ¿ 'p
p ¡ 'p

'1'p2

x + 1 = x + 2x2
= 4

x + 0 = xx + 8 = 11

2x2
7 x3 # 2 = 6

5x = 15

2 + 4 = 8

( j) There exists a natural number x such that

(k) Every counting number is divisible by itself and 1.

(l) Not all natural numbers are divisible by 2.

(m) For all natural numbers x, 

6. If q stands for “This course is easy” and r stands for “Lazy 
students do not study,” write each of the following in symbolic
form:

(a) This course is easy and lazy students do not study.

(b) Lazy students do not study or this course is not 
easy.

(c) It is false that both this course is easy and lazy students do
not study.

(d) This course is not easy.

7. If p is false and q is true, find the truth values for each of the
following:

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) ( j)

8. Find the truth value for each statement in Exercise 7 if p is
false and q is false.

9. Use set operations to construct a set that corresponds, by anal-
ogy, to each of the following statements.

(a) (b)

(c) (d) p ¿ 1r ¡ s2'1r ¡ q2
q ¿ 'qr ¡ s

'q ¿ 'p'1'p ¿ q2
'1p ¡ q2p ¿ 'q

'p ¡ q'1'p2
'q'p

p ¡ qp ¿ q

q ¿ r

5x + 4x = 9x.

3 # 1x + 22 = 12.

p

T
F

'1'p2'p

p

T
F

p ¿ 'pp ¡ 'p'p
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10. For each of the following, is the pair of statements logically
equivalent?

(a) and 

(b) and 

(c) and 

(d) and 

11. (a) Write two logical equivalences discovered in parts
10(a)–(d). These equivalences are called DeMorgan’s
Laws for “and” and “or.”

(b) Write an explanation of the analogy between DeMorgan’s
Laws for sets and those found in part (a).

'p ¡ 'q'1p ¿ q2
'p ¿ 'q'1p ¿ q2
'p ¿ 'q'1p ¡ q2
'p ¡ 'q'1p ¡ q2

12. Complete the following truth table:

p q

T T
T F
F T
F F

'p ¡ q'q'p

13. Restate the following in a logically equivalent form:

(a) It is not true that both today is Wednesday and the month is
June.

(b) It is not true that yesterday I both ate breakfast and
watched television.

(c) It is not raining or it is not July.
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C.2 Conditionals 
and Biconditionals

What you’ll learn about
• Forms of Statements
• Valid Reasoning

... and why
These topics are important in
the study of logic.

Table C.6 Implication

p q

T T T
T F F
F T T
F F T

p : q

Forms of Statements
Statements expressed in the form “if p, then q” are called conditionals, or
implications, and are denoted by . Such statements also can be read “p implies
q.” The “if ” part of a conditional is called the hypotheses of the implication and the
“then” part is called the conclusion.

Many types of statements can be put in “if-then” form; an example follows:

Statement: All first graders are 6 years old.

If-then form: If a child is a first grader, then the child is 6 years old.

An implication may also be thought of as a promise. Suppose Betty makes the promise,
“If I get a raise, then I will take you to dinner.” If Betty keeps her promise, the implica-
tion is true; if Betty breaks her promise, the implication is false. Consider the following
four possibilities:

p q

(1) T T Betty gets the raise; she takes you to dinner.
(2) T F Betty gets the raise; she does not take you to dinner.
(3) F T Betty does not get the raise; she takes you to dinner. 
(4) F F Betty does not get the raise; she does not take you to dinner.

The only case in which Betty breaks her promise is when she gets her raise and fails to
take you to dinner, case (2). If she does not get the raise, she can either take you to din-
ner or not without breaking her promise. The definition of implication is summarized
in Table C.6. Observe that the only cause for which the implication is false is when p is
true and q is false.

An implication may be worded in several equivalent ways, as follows:

1. If the sun shines, then the swimming pool is open. (If p, then q.)

2. If the sun shines, the swimming pool is open. (If p, q.)

3. The swimming pool is open if the sun shines. (q if p.)

4. The sun shines implies the swimming pool is open. ( p implies q.)

5. The sun is shining only if the pool is open. ( p only if q.)

6. The sun’s shining is a sufficient condition for the swimming pool to be open. ( p is
a sufficient condition for q.)

7. The swimming pool’s being open is a necessary condition for the sun to be shin-
ing. (q is a necessary condition for p.)

Any implication p q has three related implication statements, as follows:

Statement: If p, then q. p q

Converse: If q, then p. q p

Inverse: If not p, then not q.

Contrapositive: If not q, then not p. 'q : 'p

'p : 'q

:
:

:

p : q
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Table C.7 shows that an implication and its converse do not always have the same truth
value. However, an implication and its contrapositive always have the same truth value.
Also, the converse and inverse of a conditional statement are logically equivalent.

EXAMPLE 1  Converse, Inverse, Contrapositive
Write the converse, the inverse, and the contrapositive for each of the following 
statements:

(a) If then .

(b) If I am in San Francisco, then I am in California.

SOLUTION

(a) Converse: If then .
Inverse: If , then .
Contrapositive: If , then .

(b) Converse: If I am in California, then I am in San Francisco.
Inverse: If I am not in San Francisco, then I am not in California.
Contrapositive: If I am not in California, then I am not in San Francisco.

Now try Exercise 3, parts (a) and (b).

2x Z 6x Z 3
x Z 32x Z 6
2x = 6x = 3,

x = 32x = 6,

Table C.7 Converse, Inverse, Contrapositive

Contra-
Implication Converse Inverse positive

p q p q q p

T T F F T T T T
T F F T F T T F
F T T F T F F T
F F T T T T T T

'q : 'p'p : 'q::'q'p

Table C.8 Biconditional

Biconditional

p q p q q p or p q

T T T T T
T F F T F
F T T F F
F F T T T

4::
1p : q2 ¿ 1q : p2

! !

! !
Connecting a statement and its converse with the connective and gives

This compound statement can be written as and usually is
read “p if and only if q.” The statement “p if and only if q” is a biconditional. A truth
table for is given in Table C.8. Observe that p q is true if and only if both
statements are true or both are false.

4p 4 q

p 4 q1p : q2 ¿ 1q : p2.
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Now consider the following statement:

It is raining or it is not raining.

This statement, which can be modeled as , is always true, as shown in 
Table C.9. A statement that is always true is called a tautology. One way to make a tau-
tology is to take two logically equivalent statements such as p q and 
(from Table C.7) and form them into a biconditional as follows:

Because p q and have the same truth values, is a
tautology.

Valid Reasoning

In problem solving, the reasoning used is said to be valid if the conclusion follows 
unavoidably from the hypotheses. Consider the following example:

Hypotheses: All roses are red. 
This flower is a rose.

Conclusion: Therefore, this flower is red.

The statement “All roses are red” can be written as the implication “If a flower is a rose,
then it is red” and pictured with the Venn diagram in Figure C.2a.

1p : q24 1'q : 'p2'q : 'p:
p : q 4 1'q : 'p2

'q : 'p:

p ¡ 1'p2

EXAMPLE 2  Biconditionals
Given the following statements, classify each of the biconditionals as true or false:

(a) p q (b) p r

(c) s q (d) r s

SOLUTION

(a) p q is true and q p is true, so p q is true.

(b) p r is false and r p is true, so p r is false.

(c) s q is true and q s is false, so s q is false.

(d) r s is true and s r is true, so r s is true.
Now try Exercise 5, parts (a) and (f ).

4::
4::
4::
4::

44
44

s: 2 + 3 = 1 + 3q: 2 Z 1

r: 2 = 1p: 2 = 2

Table C.9 A Tautology

p

T F T
F T T

p ¡ 1'p2'p

(a) (b)

FIGURE C.2 (a) All roses are red. (b) This flower is a rose.

Red Objects Red Objects

Roses
Roses
Flower

U U
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The information “This flower is a rose” implies that this flower must belong to the cir-
cle containing roses, as pictured in Figure C.2b. This flower also must belong to the cir-
cle containing red objects. Thus the reasoning is valid because it is impossible to draw
a picture satisfying the hypotheses and contradicting the conclusion.

Consider the following argument:

Hypotheses: All elementary school teachers are mathematically literate.
Some mathematically literate people are not children.

Conclusion: Therefore, no elementary school teacher is a child.

Let E be the set of elementary school teachers, M be the set of mathematically literate
people, and C be the set of children. Then the statement “All elementary school teach-
ers are mathematically literate” can be pictured as in Figure C.3a. The statement “Some
mathematically literate people are not children” can be pictured in several ways. Three
of these are illustrated in Figure C.3b–d.

(a) (b) (c) (d)

FIGURE C.3 (a) All elementary school teachers are mathematically literate. (b)–(d) Some
mathematically literate people are not children.

E
M

C

E
M

C
E

M
C

E
M

According to Figure C.3d, it is possible that some elementary school teachers are chil-
dren, and yet the given statements are satisfied. Therefore, the conclusion that “No ele-
mentary school teacher is a child” does not follow from the given hypotheses. Hence,
the reasoning is not valid.

If a single picture can be drawn to satisfy the hypotheses of an argument and contra-
dict the conclusion, the argument is not valid. However, to show that an argument is
valid, all possible pictures must be considered to show that there are no contradictions.
There must be no way to satisfy the hypotheses and contradict the conclusion if the
argument is valid.

EXAMPLE 3  Argument Validity
Determine if the following argument is valid:

Hypotheses: In Washington, D.C., all senators wear power ties. 
No one in Washington, D.C., over 6 ft tall wears a power tie.

Conclusion: Persons over 6 ft tall are not senators in Washington, D.C.

SOLUTION

If S represents the set of senators and P represents the set of people who wear power
ties, the first hypothesis is pictured as shown in Figure C.4a. If T represents the set
of people in Washington, D.C., over 6 ft tall, the second hypothesis is pictured in
Figure C.4b. Because people over 6 ft tall are outside the circle representing power
tie wearers and senators are inside the circle P, the conclusion is valid and no person
over 6 ft tall can be a senator in Washington, D.C.

Now try Exercise 14(a).

(a) (b)

FIGURE C.4 (a) In Washington, D.C., 
all senators wear power ties. (b) No one in
Washington, D.C., over 6 ft tall wears a 
power tie.

S
P

T
S

P
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A different method for determining if an argument is valid uses direct reasoning and a
form of argument called the Law of Detachment (or Modus Ponens). For example,
consider the following true statements:

If the sun is shining, then we shall take a trip.

The sun is shining.

Using these two statements, we can conclude that we shall take a trip. In general, the
Law of Detachment is stated as follows:

If a statement in the form “if p, then q” is true, and p is true, then q must 
also be true.

The Law of Detachment is sometimes described schematically as follows, where all
statements above the horizontal line are true and the statement below the horizontal line
is the conclusion.

The Law of Detachment follows from the truth table for p q given in Table C.6. The
only case in which both p and p q are true is when q is true (line 1 in the table).:

:

p : q
p

q

EXAMPLE 4  Applications of the Law of Detachment
Determine if each of the following arguments is valid:

Hypotheses: If you eat spinach, then you will be strong.
You eat spinach.

Conclusion: Therefore, you will be strong.

Hypotheses: If Claude goes skiing, he will break his leg.
If Claude breaks his leg, he cannot enter the dance contest.
Claude goes skiing.

Conclusion: Therefore, Claude cannot enter the dance contest.

SOLUTION

(a) Using the Law of Detachment, we see that the conclusion is valid.
(b) By using the Law of Detachment twice, we see that the conclusion is valid.

Now try Exercise 14(d).

A different type of reasoning, indirect reasoning, uses a form of argument called
Modus Tollens. For example, consider the following true statements:

If Chicken Little had been hit by a jumping frog, he would have thought Earth was rising.

Chicken Little did not think Earth was rising.

What is the conclusion? The conclusion is that Chicken Little did not get hit by a jump-
ing frog. This leads us to the general form of Modus Tollens:

If we have a conditional accepted as true, and we know the conclusion is false, then the
hypothesis must be false.

Modus Tollens is sometimes schematically described as follows:

The validity of Modus Tollens also follows from the truth table for p q given in
Table C.6. The only case in which both p q is true and q is false is when p is false:

:

p : q
'q

'p
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(line 4 in the table). The validity of Modus Tollens also can be established from the fact
that an implication and its contrapositive are equivalent.

EXAMPLE 5  Applications of Modus Tollens
Determine conclusions for each of the following sets of true statements:

(a) If an old woman lives in a shoe, then she does not know what to do.
Mrs. Pumpkin Eater, an old woman, knows what to do.

(b) If Jack is nimble, he will not get burned. Jack was burned.

SOLUTION

(a) Mrs. Pumpkin Eater does not live in a shoe.

(b) Jack was not nimble.
Now try Exercise 13(a).

People often make invalid conclusions based on advertising or other information. Con-
sider, for example, the statement “Healthy people eat Super-Bran cereal.” Are the fol-
lowing conclusions valid?

If a person eats Super-Bran cereal, then the person is healthy.
If a person is not healthy, the person does not eat Super-Bran cereal.

If the original statement is denoted by p q, where p is “a person is healthy” and q is
“a person eats Super-Bran cereal,” then the first conclusion is the converse of —
that is, q p—and the second conclusion is the inverse of p q—that is, 
Table C.7 points out that neither the converse nor the inverse is logically equivalent to
the original statement, and consequently the conclusions are not necessarily true.

The final reasoning argument to be considered here involves the Chain Rule. Consider
the following statements:

If my wife works, I will retire early.
If I retire early, I will become lazy.

What is the conclusion? The conclusion is that if my wife works, I will become lazy. In
general, the Chain Rule can be stated as follows:

If “if p, then q,” and “if q, then r” are true, then “if p, then r” is true.

The Chain Rule is sometimes schematically described as follows:

Notice that the Chain Rule shows that implication is a transitive relation.

p : q
q : r
p : r

'p : 'q.::
p : q

:

EXAMPLE 6  Applications of the Chain Rule
Determine conclusions for each of the following sets of true statements:

(a) If Alice follows the White Rabbit, she falls into a hole. If she falls into a hole,
she goes to a tea party.

(b) If Chicken Little is hit by an acorn, we think the sky is falling. If we think the
sky is falling, we will go to a fallout shelter. If we go to a fallout shelter, we will
stay there a month.

SOLUTION

(a) If Alice follows the White Rabbit, she goes to a tea party.

(b) If Chicken Little is hit by an acorn, we will stay in a fallout shelter for a month.
Now try Exercise 13(c).

Remark
Note that in Example 6, the Chain Rule can be
extended to contain several implications.
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APPENDIX C.2 EXERCISES

1. Write each of the following in symbolic form if p is the state-
ment “It is raining” and q is the statement “The grass is wet.”

(a) If it is raining, then the grass is wet.

(b) If it is not raining, then the grass is wet.

(c) If it is raining, then the grass is not wet.

(d) The grass is wet if it is raining.

(e) The grass is not wet implies that it is not raining.

(f) The grass is wet if, and only if, it is raining.

2. Construct a truth table for each of the following:

(a) (b)

(c) (d)

3. For each of the following implications, state the converse, 
inverse, and contrapositive.

(a) If you eat Meaties, then you are good in sports.

(b) If you do not like this book, then you do not like 
mathematics.

(c) If you do not use Ultra Brush toothpaste, then you have
cavities.

(d) If you are good at logic, then your grades are high.

4. Can an implication and its converse both be false? Explain
your answer.

5. If p is true and q is false, find the truth values for each of the
following:

(a) (b)

(c) (d)

(e) (f)

6. If p is false and q is false, find the truth values for each of the
statements in Exercise 5.

7. Iris makes the true statement, “If it rains, then I am going to the
movies.” Does it follow logically that if it does not rain, then
Iris does not go to the movies?

8. Consider the statement “If every digit of a number is 6, then
the number is divisible by 3.” Determine whether each of the
following is logically equivalent to the statement.

(a) If every digit of a number is not 6, then the number is not
divisible by 3.

(b) If a number is not divisible by 3, then some digit of the
number is not 6.

(c) If a number is divisible by 3, then every digit of the 
number is 6.

9. Write a statement logically equivalent to the statement “If a
number is a multiple of 8, then it is a multiple of 4.”

10. Use truth tables to prove that the following are tautologies:

(a) Law of Added Hypothesis

(b) Law of Detachment31p : q2 ¿ p4: q

1p : q2: 31p ¿ r2: q4

1 p ¡ q24 1 p ¿ q21 p ¡ 'p2: p

p : 'p1 p ¡ q2: 1 p ¿ q2
'1 p : q2'p : 'q

'1p : q2p 4 '1'p2
1p ¿ q2: qp : 1p ¡ q2

(c) Modus Tollens

(d) Chain Rule

11. (a) Suppose that , and r s are all true, but s is
false. What can you conclude about the truth value of p?

(b) Suppose that is true, r is false, and q is true.
What can you conclude about the truth value of p?

(c) Suppose that p q is true and q p is false. Can q be
true? Why or why not?

12. Translate the following statements into symbolic form. Give
the meanings of the symbols that you use.

(a) If Mary’s little lamb follows her to school, then its appear-
ance there will break the rules and Mary will be sent home.

(b) If it is not the case that Jack is nimble and quick, then Jack
will not make it over the candlestick.

(c) If the apple had not hit Isaac Newton on the head, then the
laws of gravity would not have been discovered.

13. For each of the following, form a conclusion that follows logi-
cally from the given statements:

(a) All college students are poor.
Helen is a college student.

(b) Some freshmen like mathematics.
All people who like mathematics are intelligent.

(c) If I study for the final, then I will pass the final.
If I pass the final, then I will pass the course.
If I pass the course, then I will look for a teaching job.

(d) Every equilateral triangle is isosceles.
There exist triangles that are equilateral.

14. Investigate the validity of each of the following arguments:

(a) All women are mortal.
Hypatia was a woman.
Therefore, Hypatia was mortal.

(b) All squares are quadrilaterals.
All quadrilaterals are polygons.
Therefore, all squares are polygons.

(c) All teachers are intelligent.
Some teachers are rich.
Therefore, some intelligent people are rich.

(d) If a student is a freshman, then she takes mathematics.
Jane is a sophomore.
Therefore, Jane does not take mathematics.

15. Write the following in if-then form:

(a) Every figure that is a square is a rectangle.

(b) All integers are rational numbers.

(c) Figures with exactly three sides may be triangles.

(d) It rains only if it is cloudy.

::

1p ¿ q2: r

:p : q, q : r

31p : q2 ¿ 1q : r24: 1p : r2
31p : q2 ¿ 'q4: 'p
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Absolute maximum A value is an absolute maximum
value of if for all x in the domain of , p. 90.

Absolute minimum A value is an absolute minimum value
of if for all x in the domain of , p. 90.

Absolute value of a complex number The absolute value of
the complex number is given by ;
also, the length of the segment from the origin to z in the
complex plane, p. 504.

Absolute value of a real number Denoted by , represents
the number a or the positive number if , p. 13.

Absolute value of a vector See Magnitude of a vector.

Acceleration due to gravity ,
p. 167.

Acute angle An angle whose measure is between and ,
p. 329.

Acute triangle A triangle in which all angles measure less than
, p. 434.

Addition principle of probability
. If A and B are mutually exclusive

events, then , p. 662.

Addition property of equality If and , then
, p. 21.

Addition property of inequality If , then
, p. 23.

Additive identity for the complex numbers is the
complex number zero, p. 50.

Additive inverse of a real number The opposite of , 
or , p. 6.

Additive inverse of a complex number The opposite of
, or , p. 50.

Algebraic expression A combination of variables and 
constants involving addition, subtraction, multiplication,
division, powers, and roots, p. 5.

Algebraic model An equation that relates variable quantities
associated with phenomena being studied, p. 65.

Ambiguous case The case in which two sides and a nonin-
cluded angle can determine two different triangles, p. 435.

Amplitude See Sinusoid.

Anchor See Mathematical induction.

Angle Union of two rays with a common endpoint (the 
vertex). The beginning ray (the initial side) can be rotated
about its endpoint to obtain the final position (the terminal
side), p. 338.

Angle between vectors The angle formed by two nonzero
vectors sharing a common initial point, p. 468.

Angle of depression The acute angle formed by the line of
sight (downward) and the horizontal, p. 388.

Angle of elevation The acute angle formed by the line of
sight (upward) and the horizontal, p. 388.

Angular speed Speed of rotation, typically measured in radians
or revolutions per unit time, p. 323.

Annual percentage rate (APR) The annual interest rate, p. 310.

Annual percentage yield (APY) The rate that would give the
same return if interest were computed just once a year, p. 307.

Annuity A sequence of equal periodic payments, p. 308.

Aphelion The farthest point from the Sun in a planet’s orbit,
p. 595.

Arc length formula The length of an arc in a circle of radius r
intercepted by a central angle of radians is , 
p. 322.

Arccosecant function See Inverse cosecant function.

Arccosine function See Inverse cosine function.

Arccotangent function See Inverse cotangent function.

Arcsecant function See Inverse secant function.

Arcsine function See Inverse sine function.

Arctangent function See Inverse tangent function.

Argument of a complex number The argument of is
the direction angle of the vector , p. 504.

Arithmetic sequence A sequence in which 
for every integer . The number d is the common differ-
ence, p. 672.

Arrow The notation denoting the directed line segment
with initial point P and terminal point Q.

Associative properties ,
, p. 6.

Augmented matrix A matrix that represents a system of
equations, p. 546.

Average rate of change of ƒ over [a, b] The number 

, provided , p. 160.

Average velocity The change in position divided by the
change in time, p. 736.

Axis of symmetry See Line of symmetry.

Back-to-back stemplot A stemplot with leaves on either side
used to compare two distributions, p. 696.

a Z b
ƒ1b2 - ƒ1a2

b - a

a1bc2 = 1ab2c a + 1b + c2 = 1a + b2 + c

PQ
!

n Ú 2
an = an-1 + d5an6

8a, b9 a + bi

s = r uu

-a - bia + bi

-b
b

0 + 0i

u + w 6 v + w
u 6 v

u + w = v + z
w = zu = v

P1A or B2 = P1A2 + P1B2P1B2 - P1A and B2 P1A or B2 = P1A2 +

90°

90°0°

g L 32 ft/sec2
L 9.8 m/sec

a 6 0-a
ƒa ƒ

2a2
+ b2z = a + bi

ƒƒ1c2 … ƒ1x2ƒ
ƒ1c2

ƒƒ1c2 Ú ƒ1x2ƒ
ƒ1c2

Glossary
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Bar chart A rectangular graphical display of categorical data,
p. 693.

Base See Exponential function, Logarithmic function, nth
power of a.

Basic logistic function The function p. 259.

Bearing Measure of the clockwise angle that the line of travel
makes with due north, p. 321.

Bias A flaw in the design of a sampling process that systemat-
ically causes the sample to differ from the population with
respect to the statistic being measured. Undercoverage bias
results when the sample systematically excludes one or
more segments of the population. Voluntary response bias
results when a sample consists only of those who volunteer
their responses. Response bias results when the sampling
design intentionally or unintentionally influences the
responses, pp. 720, 721.

Binomial A polynomial with exactly two terms, p. 652.

Binomial coefficients The numbers in Pascal’s triangle: 

p. 653.

Binomial probability In an experiment with two possible out-
comes, the probability of one outcome occurring k times in

n independent trials is 

where p is the probability of the outcome occurring once,

p. 665.

Binomial theorem A theorem that gives an expansion formula
for , p. 652.

Blind experiment An experiment in which subjects do not 
know if they have been given an active treatment or a placebo,
p. 721.

Blocking A feature of some experimental designs that controls
for potential differences between subject groups by applying
treatments randomly within homogeneous blocks of subjects,
p. 722.

Boundary The set of points on the “edge” of a region, p. 565.

Bounded A function is bounded if there are numbers b and
B such that for all x in the domain of , 
p. 89.

Bounded above A function is bounded above if there is a
number B such that for all x in the domain of ,
p. 89.

Bounded below A function is bounded below if there is a
number b such that for all x in the domain of ,
p. 89.

Bounded interval An interval that has finite length (does not
extend to or ), p. 4.

Boxplot (or box-and-whisker plot) A graph that displays a
five-number summary, p. 709.

Branches The two separate curves that make up a hyperbola,
p. 602.

Cardioid A limaçon whose polar equation is ,
or , where , p. 498.

Cartesian coordinate system An association between the
points in a plane and ordered pairs of real numbers; or an
association between the points in three-dimensional space
and ordered triples of real numbers, pp. 12, 629.

Categorical variable In statistics, a nonnumerical variable
such as gender or hair color. Numerical variables like zip
codes, in which the numbers have no quantitative signifi-
cance, are also considered to be categorical. 

Causation A relationship between two variables in which the
values of the response variable are directly affected by the
values of the explanatory variable, p. 718.

Census An observational study that gathers data from an
entire population, p. 720.

Center The central point in a circle, ellipse, hyperbola, or
sphere, pp. 15, 591, 602, 632.

Central angle An angle whose vertex is the center of a circle,
p. 320.

Characteristic polynomial of a square matrix A
, where A is an matrix, p. 556.

Chord of a conic A line segment with endpoints on the conic,
pp. 583, 592, 603.

Circle A set of points in a plane equally distant from a fixed
point called the center, p. 15.

Circle graph A circular graphical display of categorical data,
p. 693.

Circular functions Trigonometric functions when applied to
real numbers are circular functions, p. 344.

Closed interval An interval that includes its endpoints, p. 4.

Coefficient The real number multiplied by the variable(s) in a
polynomial term, p. 185.

Coefficient of determination The number or that mea-
sures how well a regression curve fits the data, p. 146.

Coefficient matrix A matrix whose elements are the coeffi-
cients in a system of linear equations, p. 546.

Cofunction identity An identity that relates the sine, secant, or
tangent to the cosine, cosecant, or cotangent, respectively,
p. 406.

Combination An arrangement of elements of a set, in which
order is not important, p. 646.

R2r 2

n * ndet1xIn - A2

a 7 0r = a � a cos u
r = a � a sin u

- qq

ƒb … ƒ1x2ƒ

ƒƒ1x2 … B
ƒ

ƒb … ƒ1x2 … B
ƒ

1a + b2n

P1E2 =

n!

k!1n - k2! pk11 - p)n-k,

nCr = an

r
b =

n!

r!1n - r2!,

ƒ1x2 =

1

1 + e-x,

Combinations of n objects taken r at a time There are

such combinations, p. 646.

Combinatorics A branch of mathematics related to determin-
ing the number of elements of a set or the number of ways
objects can be arranged or combined, p. 642.

nCr =

n!

r!1n - r2!
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Common difference See Arithmetic sequence.

Common logarithm A logarithm with base 10, p. 275.

Common ratio See Geometric sequence.

Commutative properties , , p. 6.

Complements or complementary angles Two angles of posi-
tive measure whose sum is , p. 406.

Completing the square A method of adding a constant to an
expression in order to form a perfect square, p. 41.

Complex conjugates Complex numbers and , 
p. 51.

Complex fraction See Compound fraction.

Complex number An expression , where a (the real
part) and b (the imaginary part) are real numbers, p. 49.

Complex plane A coordinate plane used to represent the
complex numbers. The x-axis of the complex plane is called
the real axis and the y-axis is the imaginary axis, p. 503.

Component form of a vector If a vector’s representative in
standard position has a terminal point or ,
then or is the component form of the vec-
tor, and a and b are the horizontal and vertical components
of the vector (or a, b, and c are the x-, y-, and z-components
of the vector, respectively), p. 456.

Components of a vector See Component form of a vector.

Composition of functions , p. 110.

Compound fraction A fractional expression in which the
numerator or denominator may contain fractions, p. 793.

Compound interest Interest that becomes part of the invest-
ment, p. 304.

Compounded annually See Compounded k times per year.

Compounded continuously Interest compounded using the
formula , p. 306.

Compounded k times per year Interest compounded using

the formula , where is compounded

annually, is compounded quarterly, is 
compounded monthly, etc., pp. 304, 306.

Compounded monthly See Compounded k times per year.

Conditional probability The probability of an event A given
that an event B has already occurred , p. 663.

Cone See Right circular cone.

Confounding variable A third variable that affects either of
two variables being studied, making inferences about causa-
tion unreliable, p. 721.

Conic section (or conic) A curve obtained by intersecting a
double-napped right circular cone with a plane, p. 580.

Conjugate axis of a hyperbola The line segment of length 2b
that is perpendicular to the focal axis and has the center of
the hyperbola as its midpoint, p. 603.

Constant A letter or symbol that stands for a specific number,
p. 5.

Constant function (on an interval) for any 
and (in the interval), pp. 87, 93, 159.

Constant term See Polynomial function, p. 161.

Constant of variation See Power function.

Constraints See Linear programming problem.

Continuous function A function that is continuous on its
entire domain, p. 102.

Continuous at , p. 85.

Control The principle of experimental design that makes it
possible to rule out other factors when making inferences
about a particular explanatory variable, p. 721.

Convenience sample A sample that sacrifices randomness for
convenience, p. 721.

Convergence of a sequence A sequence converges 

to a if , p. 671.

Convergence of a series A series converges to a 

sum S if , p. 682.

Conversion factor A ratio equal to 1, used for unit conversion,
p. 143.

Coordinate(s) of a point The number associated with a point
on a number line, or the ordered pair associated with a
point in the Cartesian coordinate plane, or the ordered triple
associated with a point in the Cartesian three-dimensional
space, pp. 3, 12, 629.

Coordinate plane See Cartesian coordinate system.

Correlation coefficient A measure of the strength of the linear
relationship between two variables, pp. 146, 162.

Cosecant The function , p. 364.

Cosine The function , p. 351.

Cotangent The function , p. 362.

Coterminal angles Two angles having the same initial side
and the same terminal side, p. 338.

Course See Bearing.

Cube root nth root, where (see Principal nth root), 
p. 509.

Cubic A degree 3 polynomial function, p. 185.

Cycloid The graph of the parametric equations ,
, p. 484.

Damping factor The factor in an equation such as
, p. 373.

Data Facts collected for statistical purposes (singular form is
datum), p. 693.

y = Ae-at cos bt
Ae-at

y = 1 - cos t
x = t - sin t

n = 3

y = cot x

y = cos x

y = csc x

lim
n: q

 a

n

k=1
ak = S

a

q

k=1
ak

lim
n: q

 an = a

5an6

lim
x:a

 ƒ1x2 = ƒ1a2x � a

x2

x1ƒ1x12 = ƒ1x22

1P1A ƒB22

k = 12k = 4

k = 1A = Pa1 +

r

k
bkt

A = Pert

1ƒ � g21x2 = ƒ1g1x22

28a, b, c918a, b9 21a, b, c211a, b2

a + bi

a - bia + bi

90°

ab = baa + b = b + a
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De Moivre’s theorem

, p. 507.

Decreasing on an interval A function f is decreasing on an
interval I if, for any two points in I, a positive change in x
results in a negative change in , pp. 87, 93.

Deductive reasoning The process of utilizing general informa-
tion to prove a specific hypothesis, pp. 73, 80.

Definite integral The definite integral of the function ƒ over 

a, b is provided the 

limit of the Riemann sums exists, p. 750.

Degree Unit of measurement (represented by the symbol ) 
for angles or arcs, equal to 1/360 of a complete revolution,
p. 320.

Degree of a polynomial (function) The largest exponent on
the variable in any of the terms of the polynomial (function),
p. 158.

Demand curve , where x represents demand and 
p represents price, p. 525.

Dependent event An event whose probability depends on
another event already occurring, p. 663.

Dependent variable Variable representing the range value of
a function (usually y), p. 80.

Derivative of ƒ The function defined by 

for all of x where the 

limit exists, p. 740.

Derivative of ƒ at

provided the limit exists, p. 740.

Descriptive statistics The gathering and processing of numeri-
cal information, p. 704.

Determinant A number that is associated with a square
matrix, p. 535.

Difference identity An identity involving a trigonometric
function of , pp. 422–424.

Difference of complex numbers
, p. 49.

Difference of functions , 
p. 110.

Difference of two vectors

, p. 633.

Differentiable at exists, p. 740.

Dihedral angle An angle formed by two intersecting planes,
p. 446.

Direct variation See Power function.

Directed angle See Polar coordinates.

Directed distance See Polar coordinates.

Directed line segment See Arrow.

Direction angle of a vector The angle that the vector makes
with the positive x-axis, p. 460.

Direction vector for a line A vector in the direction of a line
in three-dimensional space, p. 634.

Direction of an arrow The angle the arrow makes with the
positive x-axis, p. 456.

Directrix of a parabola, ellipse, or hyperbola A line used to
determine the conic, pp. 581, 620.

Discriminant For the equation , the expression
; for the equation 

, the expression , pp. 51, 617.

Distance (in a coordinate plane) The distance 

between and , 
, p. 14.

Distance (on a number line) The distance between real 
numbers a and b, or , p. 13.

Distance (in Cartesian space) The distance 
between and and , or 

, p. 630.

Distributive property and related 
properties, p. 6.

Divergence A sequence or series diverges if it does not 
converge, p. 682.

Division , p. 6.

Division algorithm for polynomials Given 
there are unique polynomials (quotient) and 
(remainder) with with either

or degree of degree of , p. 197.

Divisor of a polynomial See Division algorithm for 
polynomials.

DMS measure The measure of an angle in degrees, minutes,
and seconds, p. 320.

Domain of a function The set of all input values for a 
function, p. 80.

Domain of validity of an identity The set of values of the 
variable for which both sides of the identity are defined, 
p. 404.

Dot product The number found when the corresponding 
components of two vectors are multiplied and then
summed, p. 467.

Double-angle identity An identity involving a trigonometric
function of 2u, p. 428.

Double-blind experiment A blind experiment in which the
researcher gathering data from the subjects is not told
which subjects have received which treatment, p. 723.

d1x2r1x2 6r1x2 = 0
ƒ1x2 = d1x2q1x2 + r1x2 r1x2q1x2 ƒ1x2, d1x2 Z 0

a

b
= aa1

b
b , b Z 0

a1b + c2 = ab + ac

d1P, Q221x1 - x222 + 1y1 - y222 + 1z1 - z222
Q1x, y, z2P1x, y, z2 d1P, Q2

ƒa - b ƒ

21x1 - x222 + 1y1 - y222d1P, Q2 =

Q1x, y2P1x, y2
d1P, Q2

B2
- 4ACEy + F = 0

Ax2
+ Bxy + Cy2

+ Dx +b2
- 4ac

ax2
+ bx + c

ƒ¿1a2x � a

= 8u1 - v1, u2 - v2, u3 - v39
= 8u1 - v1, u2 - v29 or 8u1, u2, u39 - 8v1, v2, v39

8u1, u29 - 8v1, v29
1ƒ - g21x2 = ƒ1x2 - g1x2
1a - c2 + 1b - d2i1a + bi2 - 1c + di2 =

u - v

ƒ¿1a2 = lim
x:a

 

ƒ1x2 - ƒ1a2
x - a

x � a

ƒ¿1x2 = lim
h:0

 

ƒ1x + h2 - ƒ1x2
h

ƒ¿

p = g1x2

°

L

b

a
 ƒ1x2 dx = lim

n: q

 a

n

i=1
 ƒ1x i2 ¢x43

ƒ1x2

r n1cos nu + i sin nu21r1cos u + i sin u22n =
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Double inequality A statement that describes a bounded inter-
val, such as , p. 25.

Eccentricity A nonnegative number that specifies how 
off-center the focus of a conic is, pp. 595–596, 606, 
620.

Elementary row operations The following three row opera-
tions: Multiply all elements of a row by a nonzero constant;
interchange two rows; and add a multiple of one row to
another row, p. 547.

Elements of a matrix See Matrix element.

Elimination method A method of solving a system of linear
equations, p. 522.

Ellipse The set of all points in the plane such that the sum of
the distances from a pair of fixed points (the foci) is a con-
stant, p. 591.

Ellipsoid of revolution A surface generated by rotating an
ellipse about its major axis, p. 597.

Empty set A set with no elements, p. 659.

End behavior The behavior of a graph of a function as
, p. 187.

End behavior asymptote of a rational function A polynomial

that the function approaches as , p. 221.

Endpoint of an interval A real number that represents one
“end” of an interval, p. 5.

Equal complex numbers Complex numbers whose real parts
are equal and whose imaginary parts are equal, p. 49.

Equal matrices Matrices that have the same order and equal
corresponding elements, p. 530.

Equally likely outcomes Outcomes of an experiment that have
the same probability of occurring, p. 658.

Equation A statement of equality between two expressions, 
p. 21.

Equilibrium point A point where the supply curve and demand
curve intersect. The corresponding price is the equilibrium
price, p. 525.

Equilibrium price See Equilibrium point.

Equivalent arrows Arrows that have the same magnitude and
direction, p. 457.

Equivalent equations (inequalities) Equations (inequalities)
that have the same solutions, pp. 21, 24.

Equivalent systems of equations Systems of equations that
have the same solution, p. 544.

Equivalent vectors Vectors with the same magnitude and
direction, p. 457.

Even function A function whose graph is symmetric about 
the y-axis for all x in the domain of ƒ , 
p. 90.

Event A subset of a sample space, p. 658.

Expanded form The right side of , 
p. 6.

Expanded form of a series A series written explicitly as a
sum of terms (not in summation notation), p. 682.

Experiment In probability, a procedure that has one or more
possible outcomes, p. 658. In statistics, a controlled study
in which one or more treatments is imposed, p. 721.

Explanatory variable A variable that affects a response 
variable, p. 642.

Explicitly defined sequence A sequence in which the kth term
is given as a function of k, p. 670.

Exponent See nth power of a, p. 7.

Exponential decay function Decay modeled by ,
with , p. 254.

Exponential form An equation written with exponents instead
of logarithms, p. 274.

Exponential function A function of the form ,
where , , p. 252.

Exponential growth function Growth modeled by
, , p. 254.

Exponential regression A procedure for fitting an exponential
function to a set of data, p. 145.

Extracting square roots A method for solving equations in
the form , p. 41.

Extraneous solution Any solution of the resulting equation
that is not a solution of the original equation, p. 228.

Factor In algebra, a quantity being multiplied in a product. In
statistics, a potential explanatory variable under study in an
experiment, p. 721.

Factor Theorem is a factor of a polynomial if and only
if c is a zero of the polynomial, p. 199.

Factored form The left side of , 
p. 6.

Factoring (a polynomial) Writing a polynomial as a product
of two or more polynomial factors, p. 43.

Feasible points Points that satisfy the constraints in a linear
programming problem, p. 568.

Fibonacci numbers The terms of the Fibonacci sequence, 
p. 675.

Fibonacci sequence The sequence 1, 1, 2, 3, 5, 8, 13, . . . , 
p. 675.

Finite sequence A function whose domain is the first n positive
integers for some fixed integer n, p. 670.

Finite series Sum of a finite number of terms, p. 678.

First-degree equation in x , y, and z An equation that can be
written in the form , p. 632.

First octant The points in space with , ,
and , p. 629.z 7 0

y 7 0x 7 01x, y, z2
Ax + By + Cz + D = 0

u1v + w2 = uv + uw

x - c

x2
= k

a 7 0, b 7 1ƒ1x2 = a # bx

b Z 1a Z 0, b 7 0
ƒ1x2 = a # bx

0 6 b 6 1a 7 0
ƒ1x2 = a # bx

u1v + w2 = uv + uw

21ƒ1-x2 = ƒ1x2

ƒx ƒ : q

ƒx ƒ : q

3 … x 6 5
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First quartile See Quartile.

Fitting a line or curve to data Finding a line or curve that
comes close to passing through all the points in a scatter
plot, p. 143.

Five-number summary The minimum, first quartile, median,
third quartile, and maximum of a data set, p. 707.

Focal axis The line through the focus and perpendicular to the
directrix of a conic, pp. 582, 591, 602, 620.

Focal length of a parabola The directed distance from the
vertex to the focus, p. 583.

Focal width of a parabola The length of the chord through
the focus and perpendicular to the axis, p. 583.

Focus, foci See Ellipse, Hyperbola, Parabola.

Frequency Reciprocal of the period of a sinusoid, p. 353.

Frequency (in statistics) The number of individuals or obser-
vations with a certain characteristic, p. 697.

Frequency distribution See Frequency table.

Frequency table (in statistics) A table showing frequencies, 
p. 697.

Function A relation that associates each value in the domain
with exactly one value in the range, pp. 80, 633.

Fundamental Theorem of Algebra A polynomial function of
degree has n complex zeros (counting multiplicity),
p. 210.

Future value of an annuity The net amount of money
returned from an annuity, p. 308.

Gaussian curve See Normal curve.

Gaussian elimination A method of solving a system of n
linear equations in n unknowns, p. 544.

General form (of a line) , where A and B
are not both zero, p. 30.

Geometric sequence A sequence in which 
for every positive integer . The nonzero number r is
called the common ratio, p. 673.

Geometric series A series whose terms form a geometric
sequence, p. 683.

Graph of a function ƒ The set of all points in the coordinate
plane corresponding to the pairs for x in the
domain of ƒ, p. 81.

Graph of a polar equation The set of all points in the polar
coordinate system corresponding to the ordered pairs r, 
that are solutions of the polar equation, p. 494.

Graph of a relation The set of all points in the coordinate plane
corresponding to the ordered pairs of the relation, p. 116.

Graph of an equation in x and y The set of all points in the
coordinate plane corresponding to the pairs x, y that are
solutions of the equation, p. 31.

Graph of an inequality in x and y The set of all points in the
coordinate plane corresponding to the solutions x, y of
the inequality, p. 565.

Graph of parametric equations The set of all points in the
coordinate plane corresponding to the ordered pairs deter-
mined by the parametric equations, p. 475.

Grapher or graphing utility Graphing calculator or a com-
puter with graphing software, p. 31.

Graphical model A visible representation of a numerical or
algebraic model, p. 66.

Half-angle identity Identity involving a trigonometric func-
tion of u/2, p. 430.

Half-life The amount of time required for half of a radioactive
substance to decay, p. 266.

Half-plane The graph of the linear inequality ,
, , or , p. 565.

Head minus tail (HMT) rule An arrow with initial point 
( ) and terminal point ( ) represents the vector

, p. 457.

Heron’s formula The area of with semiperimeter s is

given by , p. 445.

Higher-degree polynomial function A polynomial function
whose degree is , p. 185.

Histogram A graph that visually represents the information in
a frequency table using rectangular areas proportional to the
frequencies, p. 697.

Horizontal asymptote The line is a horizontal asymp-

tote of the graph of a function ƒ if or 

, p. 93.

Horizontal component See Component form of a vector.

Horizontal line , p. 30.

Horizontal Line Test A test for determining whether the
inverse of a relation is a function, p. 122.

Horizontal shrink or stretch See Shrink, stretch.

Horizontal translation A shift of a graph to the left or right,
p. 130.

Hyperbola A set of points in a plane, the absolute value of 
the difference of whose distances from two fixed points 
(the foci) is a constant, p. 602.

Hyperboloid of revolution A surface generated by rotating a
hyperbola about its transverse axis, p. 607.

Hypotenuse Side opposite the right angle in a right triangle,
p. 329.

Identity An equation that is always true throughout its
domain, p. 404.

Identity function The function , p. 99.ƒ1x2 = x

y = b

lim
x: q

 ƒ1x2 = b

lim
x: - q

 ƒ1x2 = b

y = b

Ú 3

2s1s - a21s - b21s - c2
¢ABC

8x2 - x1, y2 - y19
x2, y2x1, y1

y 6 ax + by … ax + by 7 ax + b
y Ú ax + b

21

21

u21

1x, ƒ1x22

n Ú 2
an = an-1

# r5an6
Ax + By + C = 0

n 7 0
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Identity matrix A square matrix with 1’s in the main diagonal
and 0’s elsewhere, p. 534.

Identity properties , , p. 6.

Imaginary axis See Complex plane.

Imaginary part of a complex number See Complex number.

Imaginary unit The complex number , p. 49.

Implicitly defined function A function that is a subset of a
relation defined by an equation in x and y, p. 115.

Implied domain The domain of a function’s algebraic 
expression, p. 82.

Increasing on an interval A function ƒ is increasing on an
interval I if, for any two points in I, a positive change in x
results in a positive change in , p. 87.

Independent events Events A and B such that 
, p. 661.

Independent variable Variable representing the domain value
of a function (usually x), p. 80.

Index See Radical.

Index of summation See Summation notation.

Inductive step See Mathematical induction.

Inequality A statement that compares two quantities using an
inequality symbol, p. 3.

Inequality symbol or , p. 3.

Inferential statistics Using the science of statistics to make
inferences about the parameters in a population from a 
sample, p. 704.

Infinite discontinuity at or 

, p. 85.

Infinite limit A special case of a limit that does not exist,
p. 760.

Infinite sequence A function whose domain is the set of all
natural numbers, p. 670.

Initial point See Arrow.

Initial side of an angle See Angle.

Initial value of a function ƒ 0 , p. 161.

Instantaneous rate of change See Derivative at .

Instantaneous velocity The instantaneous rate of change of a
position function with respect to time, p. 737.

Integers The numbers . . . , , , , 0, 1, 2, . . . , p. 2.

Integrable over [a, b] exists, p. 750.

Intercept Point where a curve crosses the x-, y-, or z-axis in a
graph, pp. 31, 70, 629.

Intercepted arc Arc of a circle between the initial side and
terminal side of a central angle, p. 320.

Intermediate Value Theorem If ƒ is a polynomial function
and , then ƒ assumes every value between and

, p. 190.

Interquartile range The difference between the third quartile
and the first quartile, p. 702.

Interval Connected subset of the real number line with at least
two points, p. 4.

Inverse composition rule The composition of a one-to-
one function with its inverse results in the identity function,
p. 124.

Interval notation Notation used to specify intervals, pp. 4, 5.

Inverse cosecant function The function .

Inverse cosine function The function , p. 380.

Inverse cotangent function The function .

Inverse function The inverse relation of a one-to-one function,
p. 122.

Inverse of a matrix The inverse of a square matrix A, if it
exists, is a matrix B, such that , where I is an
identity matrix, p. 534.

Inverse properties , , p. 6.

Inverse reflection principle If the graph of a relation is
reflected across the line , the graph of the inverse
relation results, p. 123.

Inverse relation (of the relation R) A relation that consists 
of all ordered pairs b, a for which a, b belongs to R,
p. 121.

Inverse secant function The function .

Inverse sine function The function , p. 378.

Inverse tangent function The function , p. 381.

Inverse variation See Power function.

Invertible linear system A system of n linear equations in n
variables whose coefficient matrix has a nonzero determi-
nant, p. 550.

Irrational numbers Real numbers that are not rational, p. 2.

Irrational zeros Zeros of a function that are irrational num-
bers, p. 201.

Irreducible quadratic over the reals A quadratic polynomial
with real coefficients that cannot be factored using real
coefficients, p. 214.

Jump discontinuity at and exist 

but are not equal, p. 85.

kth term of a sequence The kth expression in the sequence,
p. 670.

Law of cosines , 
, , 

p. 442.
c2

= a2
+ b2

- 2ab cos Cc2
- 2ac cos Bb2

= a2
+

a2
= b2

+ c2
- 2bc cos A

lim
x:a +

 ƒ1x2lim
x:a -

 ƒ1x2x � a

y = tan-1 x

y = sin-1 x

y = sec-1 x

2121

y = x

a #
1
a

= 11a Z 02a + 1-a2 = 0

AB = BA = I

y = cot-1 x

y = cos-1 x

y = csc-1 x

ƒ1b2 ƒ1a2a 6 b

L

b

a
 ƒ1x2 dx

-1-2-3

x = a

21

lim
x:a -

 ƒ1x2 = � q

lim
x:a +

 ƒ(x2 = � qx � a

Ú6 , 7 , … ,

P1A2P1B2P1A and B2 =

ƒ1x2

i = 2-1

a # 1 = aa + 0 = a
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Law of sines , p. 434.

Leading coefficient See Polynomial function in x.

Leading term See Polynomial function in x, p. 185.

Leaf The final digit of a number in a stemplot, p. 694.

Least-squares line See Linear regression line.

Leibniz notation The notation for the derivative of ƒ, 
p. 742.

Left-hand limit of f at The limit of ƒ as x approaches a
from the left, p. 758.

Lemniscate A graph of a polar equation of the form 

or , p. 499.

Length of an arrow See Magnitude of an arrow.

Length of a vector See Magnitude of a vector.

Limaçon A graph of a polar equation or
with , , p. 497.

Limit means that gets arbitrarily close 

to L as x gets arbitrarily close (but not equal) to a,
p. 755.

Limit to growth See Logistic growth function.

Limit at infinity means that gets arbitrarily

close to L as x gets arbitrarily large; means

that gets arbitrarily close to L as gets arbitrarily
large, pp. 748, 760.

Line graph A graph of data in which consecutive data points
are connected by line segments, p. 699.

Line of symmetry A line over which a graph is the mirror
image of itself, p. 164.

Line of travel The path along which an object travels, 
p. 321.

Linear combination of vectors u and v An expression
, where a and b are real numbers, p. 460.

Linear correlation A scatter plot with points clustered along a
line. Correlation is positive if the slope is positive and nega-
tive if the slope is negative, p. 161.

Linear equation in x An equation that can be written in the
form , where a and b are real numbers and

, p. 21.

Linear factorization theorem A polynomial of 

degree has the factorization 

where the are the zeros of ƒ, 
p. 210.

Linear function A function that can be written in the form
, where and b are real numbers, 

p. 159.

Linear inequality in two variables x and y An inequality
that can be written in one of the following forms:

, , , or 
with , p. 565.

Linear inequality in x An inequality that can be written 
in the form , , , or

, where a and b are real numbers and , 
p. 23.

Linear programming problem A method of solving certain
problems involving maximizing or minimizing a function 
of two variables (called an objective function) subject to
restrictions (called constraints), p. 567.

Linear regression A procedure for finding the straight line
that is the best fit for the data, p. 145.

Linear regression equation Equation of a linear regression
line, p. 144.

Linear regression line The line for which the sum of the
squares of the residuals is the smallest possible, p. 144.

Linear system A system of linear equations, p. 520.

Local extremum A local maximum or a local minimum, p. 90.

Local maximum A value is a local maximum of ƒ if
there is an open interval I containing c such that

for all values of x in I, p. 90.

Local minimum A value is a local minimum of ƒ if there
is an open interval I containing c such that for
all values of x in I, p. 90.

Logarithm An expression of the form (see Logarithmic
function), p. 274.

Logarithmic form An equation written with logarithms instead
of exponents, p. 274.

Logarithmic function with base b The inverse of the 
exponential function , denoted by , 
pp. 274, 287.

Logarithmic re-expression of data Transformation of a data
set involving the natural logarithm: exponential regression,
natural logarithmic regression, power regression, p. 298.

Logarithmic regression See Natural logarithmic regression.

Logistic growth function A model of population growth: 

or , where a, b, c, 

and k are positive with . c is the limit to growth, 
p. 258.

Logistic regression A procedure for fitting a logistic curve to
a set of data, p. 145.

Lower bound of f Any number b for which for all x
in the domain of ƒ, p. 89.

Lower bound for real zeros A number c is a lower bound for
the set of real zeros of ƒ if whenever , p. 202.x 6 cƒ1x2 Z 0
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Lower bound test for real zeros A test for finding a lower
bound for the real zeros of a polynomial, p. 202.

LRAM A Riemann sum approximation of the area under a
curve from using as the left-hand
endpoint of each subinterval, p. 750.

Magnitude of an arrow The magnitude of is the distance
between P and Q, p. 456.

Magnitude of a real number See Absolute value of a real
number.

Magnitude of a vector The magnitude of is . 

The magnitude of is , pp. 458, 633.

Main diagonal The diagonal from the top left to the bottom
right of a square matrix, p. 534.

Major axis The line segment through the foci of an ellipse
with endpoints on the ellipse, p. 592.

Mapping A function viewed as a mapping of the elements of
the domain onto the elements of the range, p. 80.

Mathematical model A mathematical structure that approxi-
mates phenomena for the purpose of studying or predicting
their behavior, p. 64.

Mathematical induction A process for proving that a statement
is true for all natural numbers n by showing that it is true for

(the anchor) and that, if it is true for , then it
must be true for (the inductive step), p. 687.

Matrix, A rectangular array of m rows and n columns
of real numbers, p. 530.

Matrix element Any of the real numbers in a matrix, p. 530.

Maximum r-value The value of at the point on the graph
of a polar equation that has the maximum distance from the
pole, p. 496.

Mean (of a set of data) The sum of all the data divided by
the total number of items, p. 704.

Measure of an angle The number of degrees or radians in an
angle, p. 320.

Measure of center A measure of the typical, middle, or average
value for a data set, p. 705.

Measure of spread A measure that tells how widely distributed
data are, p. 707.

Median (of a data set) The middle number (or the mean of the
two middle numbers) if the data are listed in order, p. 704.

Midpoint (in a coordinate plane) For the line segment with

endpoints a, b and c, d , , p. 15.

Midpoint (on a number line) For the line segment with 

endpoints a and b, , p. 14.

Midpoint (in Cartesian space) For the line segment with 

endpoints and , 

, p. 630.

Minor axis The perpendicular bisector of the major axis of an
ellipse with endpoints on the ellipse, p. 592.

Minute Angle measure equal to 1/60 of a degree, p. 320.

Mode of a data set The category or number that occurs most
frequently in the set, p. 704.

Modified boxplot A boxplot with the outliers removed, 
p. 710.

Modulus See Absolute value of a complex number.

Monomial function A polynomial with exactly one term, 
p. 175.

Multiplication principle of counting A principle used to find
the number of ways an event can occur, p. 643.

Multiplication principle of probability If A and B are inde-

pendent events, then . If A

depends on B, then , p. 661.

Multiplication property of equality If and , then
, p. 21.

Multiplication property of inequality If and ,
then . If and , then , p. 23.

Multiplicative identity for matrices See Identity matrix.

Multiplicative inverse of a complex number The reciprocal 

of , or , p. 51.

Multiplicative inverse of a matrix See Inverse of a matrix.

Multiplicative inverse of a real number The reciprocal of b,
or , p. 6.

Multiplicity The multiplicity of a zero c of a polynomial 
of degree is the number of times the factor 
occurs in the linear factorization 

, p. 189.

Nappe See Right circular cone.

Natural exponential function The function , p. 256.

Natural logarithm A logarithm with base e, p. 277.

Natural logarithmic function The inverse of the exponential
function , denoted by , p. 278.

Natural logarithmic regression A procedure for fitting a log-
arithmic curve to a set of data, p. 145.

Natural numbers The numbers 1, 2, 3, . . . , p. 2.

Nautical mile Length of 1 minute of arc along the Earth’s
equator, p. 324.

NDER ƒ(a) See Numerical derivative of ƒ at , p. 766.x = a
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GLOSSARY 825

Negative association A relationship between two variables in
which higher values of one variable are generally associated
with lower values of the other variable, p. 717.

Negative angle Angle generated by clockwise rotation, p. 338.

Negative linear correlation See Linear correlation.

Negative numbers Real numbers shown to the left of the 
origin on a number line, p. 3.

Newton’s law of cooling , p. 296.

n factorial For any positive integer n, n factorial is 
zero factorial is

p. 644.

NINT (ƒ(x), x, a, b) A calculator approximation to ,

p. 767.

Nonsingular matrix A square matrix with nonzero determinant,
p. 534.

Normal curve The graph of , p. 711.

Normal distribution A distribution of data shaped like the
normal curve, p. 711.

n-set A set of n objects, p. 644.

nth power of a The number with n factors
of a , where n is the exponent and a is the base, p. 7.

nth root See Principal nth root.

nth root of a complex number z A complex number v such
that , p. 508.

nth root of unity A complex number v such that , 
p. 508.

Number line graph of a linear inequality The graph of the
solutions of a linear inequality in x on a number line, p. 24.

Numerical derivative of ƒ at a

NDER , p. 766.

Numerical model A model determined by analyzing numbers
or data in order to gain insight into a phenomenon, p. 64.

Objective function See Linear programming problem.

Observational study A process for gathering data from a sub-
set of a population through current or past observations.
This differs from an experiment in that no treatment is
imposed, p. 720.

Obtuse triangle A triangle in which one angle is greater than
90°, p. 434.

Octants The eight regions of space determined by the coordi-
nate planes, p. 629.

Odd-even identity For a basic trigonometric function f, an
identity relating to p. 407.

Odd function A function whose graph is symmetric about the
origin for all x in the domain of , p. 91.

One-to-one function A function in which each element of 
the range corresponds to exactly one element in the domain,
p. 122.

One-to-one rule of exponents if and only if ,
p. 292.

One-to-one rule of logarithms if and only if
, p. 292.

Open interval An interval that does not include its endpoints,
p. 5.

Opens upward or downward A parabola 
opens upward if and opens downward if , 
p. 584.

Opposite See Additive inverse of a real number and Additive
inverse of a complex number.

Order of magnitude (of n) log n, p. 294.

Order of an matrix The order of an matrix is
, p. 530.

Ordered pair A pair of real numbers , p. 12.

Ordered set A set is ordered if it is possible to compare any
two elements and say that one element is “less than” or
“greater than” the other, p. 3.

Ordinary annuity An annuity in which deposits are made at
the same time interest is posted, p. 308.

Origin The number zero on a number line, or the point where
the x- and y-axes cross in the Cartesian coordinate system,
or the point where the x-, y-, and z-axes cross in Cartesian
three-dimensional space, p. 3.

Orthogonal vectors Two vectors u and v with , 
p. 469.

Outcomes The various possible results of an experiment, 
p. 658.

Outliers Data items more than 1.5 times the IQR below the
first quartile or above the third quartile, p. 709.

Parabola The graph of a quadratic function, or the set of
points in a plane that are equidistant from a fixed point 
(the focus) and a fixed line (the directrix), p. 581.

Paraboloid of revolution A surface generated by rotating a
parabola about its line of symmetry, p. 586.

Parallel lines Two lines that are both vertical or have equal
slopes, p. 32.

Parallelogram representation of vector addition Geometric
representation of vector addition using the parallelogram
determined by the position vectors.

Parameter See Parametric equations.

Parameter interval See Parametric equations.

Parametric curve The graph of parametric equations, 
p. 475.
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Parametric equations Equations of the form 
and for all t in an interval I. The variable t is the
parameter and I is the parameter interval, pp. 119, 475.

Parametric equations for a line in space The line through
in the direction of the nonzero vector
has parametric equations 

p. 634.

Parametrization A set of parametric equations for a curve, 
p. 475.

Partial fraction decomposition See Partial fractions.

Partial fractions The process of expanding a fraction into a
sum of fractions. The sum is called the partial fraction
decomposition of the original fraction, p. 557.

Partial sums See Sequence of partial sums.

Pascal’s triangle A number pattern in which row n beginning
with consists of the coefficients of the expanded
form of , p. 653.

Perihelion The closest point to the Sun in a planet’s orbit, 
p. 595.

Period See Periodic function.

Periodic function A function ƒ for which there is a positive
number c such that for every value t in the
domain of ƒ. The smallest such number c is the period of
the function, p. 345.

Permutation An arrangement of elements of a set, in which
order is important, p. 644.

Permutations of n objects taken r at a time There are 

such permutations, p. 645.

Perpendicular lines Two lines that are at right angles to each
other, p. 31.

PH The measure of acidity, p. 295.

Phase shift See Sinusoid.

Piecewise-defined function A function whose domain is
divided into several parts with a different function rule
applied to each part, p. 104.

Pie chart See Circle graph.

Placebo In an experimental study, an inactive treatment that is
equivalent to the active treatment in every respect except for
the factor about which an inference is to be made. Subjects
in a blind experiment do not know if they have been given
the active treatment or the placebo, p. 721.

Plane in Cartesian space The graph of 
, where A, B, and C are not all zero, p. 632.

Point-slope form (of a line) p. 29.

Polar axis See Polar coordinate system.

Polar coordinate system A coordinate system whose ordered
pair is based on the directed distance from a central point
(the pole) and the angle measured from a ray from the pole
(the polar axis), p. 487.

Polar coordinates The numbers that determine a point’s
location in a polar coordinate system. The number r is the
directed distance and is the directed angle, p. 487.

Polar distance formula The distance between the points 
with polar coordinates and 

p. 493.

Polar equation An equation in r and , p. 490.

Polar form of a complex number See Trigonometric form of
a complex number.

Pole See Polar coordinate system.

Polynomial function A function in which is a polynomial
in x, p. 158.

Polynomial in x An expression that can be written in the form
where n is a nonneg-

ative integer, the coefficients are real numbers, and 
The degree of the polynomial is n, the leading coefficient is

, the leading term is , and the constant term is .
(The number 0 is the zero polynomial), p. 158.

Polynomial interpolation The process of fitting a polynomial
of degree n to points, p. 192.

Position vector of the point (a, b) The vector , p. 456.

Positive angle Angle generated by a counterclockwise 
rotation, p. 338.

Positive association A relationship between two variables in
which higher values of one variable are generally associated
with higher values of the other variable, p. 717.

Positive linear correlation See Linear correlation.

Positive numbers Real numbers shown to the right of the 
origin on a number line, p. 3.

Power function A function of the form , where k
and a are nonzero constants. k is the constant of variation
and a is the power, p. 174.

Power-reducing identity A trigonometric identity that reduces
the power to which the trigonometric functions are raised,
p. 454.

Power regression A procedure for fitting a curve 
to a set of data, p. 145.

Power rule of logarithms p. 283.

Present value of an annuity The net amount of your money
put into an annuity, p. 309.

Principal nth root If , then b is an nth root of a. If
and a and b have the same sign, b is the principal

nth root of a (see Radical), p. 508.
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GLOSSARY 827

Principle of mathematical induction A principle related to
mathematical induction, p. 688.

Probability distribution The collection of probabilities of out-
comes in a sample space assigned by a probability function,
p. 659.

Probability of an event in a finite sample space of equally
likely outcomes The number of outcomes in the event
divided by the number of outcomes in the sample space, 
p. 658.

Probability function A function P that assigns a real 
number to each outcome O in a sample space satisfying:

and the sum of the probabili-
ties of all outcomes is 1, p. 659.

Probability simulation A numerical simulation of a probability
experiment in which assigned numbers appear with the same
probabilities as the outcomes of the experiment, p. 724.

Product of complex numbers
, pp. 50, 505.

Product of a scalar and a vector The product of scalar k
and vector is 

pp. 458, 633.

Product of functions , p. 110.

Product of matrices A and B The matrix in which each entry
is obtained by multiplying the entries of a row of A by the
corresponding entries of a column of B and then adding, 
p. 532.

Product rule of logarithms
p. 283.

Projectile motion The movement of an object that is subject
only to the force of gravity, p. 57.

Projection of u onto v The vector 
p. 470.

Proportional See Power function.

Pseudo-random numbers Computer-generated numbers that
can be used to approximate true randomness in scientific
studies. Since they depend on iterative computer algo-
rithms, they are not truly random, p. 723.

Pythagorean identities
p. 405.

Pythagorean Theorem In a right triangle with sides a and b
and hypotenuse , p. 14.

Quadrant Any one of the four parts into which a plane is
divided by the perpendicular coordinate axes, p. 12.

Quadrantal angle An angle in standard position whose 
terminal side lies on an axis, p. 342.

Quadratic equation in x An equation that can be written in
the form , p. 41.

Quadratic formula The formula 

used to solve , p. 42.

Quadratic function A function that can be written in the form
, where a, b, and c are real numbers,

and , p. 164.

Quadratic regression A procedure for fitting a quadratic
function to a set of data, p. 145.

Quadric surface The graph in three dimensions of a second-
degree equation in three variables, p. 633.

Quantitative variable A variable (in statistics) that takes 
on numerical values for a characteristic being measured, 
p. 693.

Quartic function A degree 4 polynomial function, p. 185.

Quartic regression A procedure for fitting a quartic function
to a set of data, p. 145.

Quartile The first quartile is the median of the lower half of 
a set of data, the second quartile is the median, and the 
third quartile is the median of the upper half of the data, 
p. 707.

Quotient identities p. 404.

Quotient of complex numbers

pp. 51, 505.

Quotient of functions , p. 110.

Quotient rule of logarithms

p. 283.

Quotient polynomial See Division algorithm for polynomials.

Radian The measure of a central angle whose intercepted arc
has a length equal to the circle’s radius, p. 321.

Radian measure The measure of an angle in radians, or, for a
central angle, the ratio of the length of the intercepted arc to
the radius of the circle, p. 322.

Radicand See Radical.

Radius The distance from a point on a circle (or a sphere) to
the center of the circle (or the sphere), pp. 15, 632.

Random behavior Behavior that is determined only by the
laws of probability, p. 719.

Random numbers Numbers that can be used by researchers to
simulate randomness in scientific studies (they are usually
obtained from lengthy tables of decimal digits that have
been generated by verifiably random natural phenomena),
p. 723.

Random variable A function that assigns real-number values
to the outcomes in a sample space, p. 659.
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Randomization The principle of experimental design that
makes it possible to use the laws of probability when 
making inferences, p. 721.

Range of a function The set of all output values correspond-
ing to elements in the domain, p. 80.

Range (in statistics) The difference between the greatest and
least values in a data set, p. 707.

Range screen See Viewing window.

Rational expression An expression that can be written as a
ratio of two polynomials, p. 791.

Rational function Function of the form where and 

are polynomials and is not the zero polynomial, 
p. 218.

Rational numbers Numbers that can be written as a/b, where
a and b are integers, and , p. 2.

Rational zeros Zeros of a function that are rational numbers,
p. 201.

Rational zeros theorem A procedure for finding the possible
rational zeros of a polynomial, p. 201.

Real axis See Complex plane.

Real number Any number that can be written as a decimal, 
p. 2.

Real number line A horizontal line that represents the set of
real numbers, p. 3.

Real part of a complex number See Complex number.

Real zeros Zeros of a function that are real numbers, p. 189.

Reciprocal function The function p. 100.

Reciprocal identity An identity that equates a trigonometric
function with the reciprocal of another trigonometric 
function, p. 404.

Reciprocal of a real number See Multiplicative inverse of a
real number.

Rectangular coordinate system See Cartesian coordinate
system.

Recursively defined sequence A sequence defined by giving
the first term (or the first few terms) along with a procedure
for finding the subsequent terms, p. 670.

Reduced row echelon form A matrix in row echelon form
with every column that has a leading 1 having 0’s in all
other positions, p. 548.

Re-expression of data A transformation of a data set, p. 287.

Reference angle See Reference triangle.

Reference triangle For an angle in standard position, a ref-
erence triangle is a triangle formed by the terminal side of
angle , the x-axis, and a perpendicular dropped from a
point on the terminal side to the x-axis. The angle in a ref-
erence triangle at the origin is the reference angle, p. 341.

Reflection Two points that are symmetric with respect to a line
or a point, p. 131.

Reflection across the x-axis x, y and are reflections
of each other across the x-axis, p. 131.

Reflection across the y-axis x, y and are reflections
of each other across the y-axis, p. 131.

Reflection through the origin x, y and are reflec-
tions of each other through the origin, p. 131.

Reflexive property of equality , p. 21.

Regression model An equation found by regression and
which can be used to predict unknown values, p. 144.

Relation A set of ordered pairs of real numbers, p. 115.

Relevant domain The portion of the domain applicable to the
situation being modeled, p. 82.

Remainder polynomial See Division algorithm for 
polynomials.

Remainder theorem If a polynomial is divided by ,
the remainder is , p. 198.

Removable discontinuity at x � a

but either the common limit is not equal to or is
not defined, p. 84.

Repeated zeros Zeros of multiplicity (see Multiplicity),
p. 190.

Replication The principle of experimental design that mini-
mizes the effects of chance variation by repeating the exper-
iment multiple times, p. 722.

Residual The difference where is a
point in a scatter plot and is a line that fits the
set of data, p. 173.

Resistant measure A statistical measure that does not change
much in response to outliers, p. 705.

Resolving a vector Finding the horizontal and vertical compo-
nents of a vector, p. 460.

Response variable A variable that is affected by an explana-
tory variable, p. 642.

Richter scale A logarithmic scale used in measuring the inten-
sity of an earthquake, pp. 290, 295.

Riemann sum A sum where the interval is 

divided into n subintervals of equal length and is in 
the ith subinterval, p. 750.

Right angle A 90° angle, p. 329.

Right circular cone The surface created when a line is rotated
about a second line that intersects but is not perpendicular
to the first line, p. 580.

Right-hand limit of ƒ at x � a The limit of ƒ as x approaches 
a from the right, p. 758.

x i¢x

3a, b4a

n

i=1
ƒ1x i2¢x

y = ax + b
1x1, y12y1 - 1ax1 + b2,

Ú 2

ƒ1a2ƒ1a2
 lim
x:a-

 ƒ1x2 = lim
x:a+

 ƒ1x2
ƒ1c2

x - cƒ1x2

a = a

1-x, -y221
1-x, y221
1x,-y221

u

u

ƒ1x2 =

1
x

,

b Z 0

g1x2g1x2
ƒ1x2ƒ1x2

g1x2,
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Right triangle A triangle with a 90° angle, p. 14.

Rigid transformation A transformation that leaves the basic
shape of a graph unchanged, p. 129.

Root of a number See Principal nth root.

Root of an equation A solution, p. 70.

Rose curve A graph of a polar equation or
, p. 496.

Row echelon form A matrix in which rows consisting of all
0’s occur only at the bottom of the matrix, the first nonzero
entry in any row with nonzero entries is 1, and the leading
1’s move to the right as we move down the rows, p. 547.

Row operations See Elementary row operations.

RRAM A Riemann sum approximation of the area under a
curve from using as the right-hand
end point of each subinterval, p. 750.

Sample space Set of all possible outcomes of an experiment,
p. 658.

Sample standard deviation The standard deviation computed
using only a sample of the entire population, p. 710.

Sample survey A process for gathering data from a subset of
a population, usually through direct questioning, p. 720.

Scalar A real number, p. 458.

Scatter plot A plot of all the ordered pairs of a two-variable
data set on a coordinate plane, p. 12.

Scientific notation A positive number written as ,
where and m is an integer, p. 8.

Secant The function , p. 363.

Secant line of ƒ A line joining two points of the graph of ƒ, 
p. 740.

Second Angle measure equal to 1/60 of a minute, p. 320.

Second quartile See Quartile.

Second-degree equation in two variables
, where A, B, and C are not all

zero, p. 581.

Semimajor axis The distance from the center to a vertex of an
ellipse, p. 592.

Semiminor axis The distance from the center of an ellipse to
a point on the ellipse along a line perpendicular to the
major axis, p. 592.

Semiperimeter of a triangle One-half of the sum of the
lengths of the sides of a triangle, p. 445.

Sequence See Finite sequence, Infinite sequence.

Sequence of partial sums The sequence , where is the
nth partial sum of the series, that is, the sum of the first n
terms of the series, p. 682.

Series A finite or infinite sum of terms, p. 678.

Shrink of factor c A transformation of a graph obtained by
multiplying all the x-coordinates (horizontal shrink) by the
constant 1/c or all of the y-coordinates (vertical shrink) by
the constant , p. 134.

Simple harmonic motion Motion described by 
or , p. 391.

Sine The function p. 350.

Singular matrix A square matrix with zero determinant, 
p. 534.

Sinusoid A function that can be written in the form

. The number a is the amplitude, and the number h is
the phase shift, p. 352.

Sinusoidal regression A procedure for fitting a curve
to a set of data, p. 145.

Slant asymptote An end behavior asymptote that is a slant
line, p. 221.

Slant line A line that is neither horizontal nor vertical, p. 159.

Slope Ratio p. 28.

Slope-intercept form (of a line) , p. 30.

Solution set of an inequality The set of all solutions of an
inequality, p. 23.

Solution of a system in two variables An ordered pair of
real numbers that satisfies all of the equations or inequali-
ties in the system, p. 520.

Solution of an equation or inequality A value of the variable
(or values of the variables) for which the equation or
inequality is true, pp. 21, 23.

Solve algebraically Use an algebraic method, including paper
and pencil manipulation and obvious mental work, with no
calculator or grapher use. When appropriate, the final exact
solution may be approximated by a calculator, p. 69.

Solve graphically Use a graphical method, including use of a
hand sketch or use of a grapher. When appropriate, the
approximate solution should be confirmed algebraically, p. 69.

Solve an equation or inequality To find all solutions of the
equation or inequality, pp. 21, 23.

Solve a triangle To find one or more unknown sides or angles
of a triangle, p. 333.

Solve a system To find all solutions of a system, p. 520.

Solve by elimination or substitution Methods for solving sys-
tems of linear equations, p. 522.

Solve by substitution Method for solving systems of linear
equations, p. 520.

Speed The magnitude of the velocity vector, given by 
distance/time, p. 461.

Sphere A set of points in Cartesian space equally distant from
a fixed point called the center, p. 632.

y = mx + b

change in y

change in x
,

y = a sin 1bx + c2 + d

+  k
or ƒ1x2 = a cos 1b1x - h22ƒ1x2 = a sin 1b1x - h22 + k 

y = sin x,

d = a cos vt
d = a sin vt

c, 0 6 c 6 1

Sn5Sn6

Cy2
+ Dx + Ey + F = 0

Ax2
+ Bxy +

y = sec x

1 … c 6 10
c * 10m

xix = a to x = bƒ1x2

r = a sin nu
r = a cos nu
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Spiral of Archimedes The graph of the polar curve , 
p. 499.

Square matrix A matrix whose number of rows equals the
number of columns, p. 530.

Standard deviation A measure of how a data set is spread, 
p. 710.

Standard form: 
equation of a circle , p. 15.

equation of an ellipse or 

, p. 591.

equation of a hyperbola or 

, p. 603.

equation of a parabola or 

, p. 583.

equation of a quadratic function
, p. 164.

Standard form of a complex number where a and b
are real numbers, p. 49.

Standard form of a polar equation of a conic

pp. 621–622.

Standard form of a polynomial function
, p. 185.

Standard position (angle) An angle positioned on a rectangu-
lar coordinate system with its vertex at the origin and its
initial side on the positive x-axis, pp. 329, 338.

Standard representation of a vector A representative arrow
with its initial point at the origin, p. 456.

Standard unit vectors In the plane and ;
in space , and , 
pp. 460, 633.

Statistic A number that measures a quantitative variable for a
sample from a population, p. 704.

Statute mile 5280 feet, p. 324.

Stem The initial digit or digits of a number in a stemplot, 
p. 694.

Stemplot (or stem-and-leaf plot) An arrangement of a numer-
ical data set into a specific tabular format, p. 694.

Stretch of factor c A transformation of a graph obtained by
multiplying all the x-coordinates (horizontal stretch) by the
constant 1/c, or all of the y-coordinates (vertical stretch) of
the points by a constant c, , p. 134.

Subtraction , p. 6.

Sum identity An identity involving a trigonometric function
of p. 421.

Sum of a finite arithmetic series

p. 679.

Sum of a finite geometric series p. 680.

Sum of an infinite geometric series , 
p. 683.

Sum of an infinite series See Convergence of a series.

Sum of complex numbers
, p. 49.

Sum of functions , p. 110.

Sum of two vectors
or 

, pp. 458, 633.

Summation notation The series where n is a natural 

number or is in summation notation and is read “the
sum of from to n (or infinity).” k is the index of
summation, and is the kth term of the series, p. 678.

Supply curve , where x represents production and 
p represents price, p. 525.

Symmetric difference quotient of ƒ at a

, p. 766.

Symmetric matrix A matrix with the property
for all i and j, p. 541.

Symmetric about the origin A graph in which is on
the graph whenever is; or a graph in which or

is on the graph whenever is, p. 91.

Symmetric about the x-axis A graph in which is on
the graph whenever is; or a graph in which or

is on the graph whenever is, p. 91.

Symmetric about the y-axis A graph in which is on
the graph whenever is; or a graph in which 
or is on the graph whenever is, p. 90.

Symmetric property of equality If , then , p. 21.

Synthetic division A procedure used to divide a polynomial
by a linear factor, , p. 199.

System A set of equations or inequalities, p. 520.

Tangent The function , p. 361.

Tangent line of ƒ at x � a The line through a, with
slope provided exists, p. 740.

Terminal point See Arrow.

Terminal side of an angle See Angle.

ƒ¿1a2ƒ¿1a2 ƒ1a221
y = tan x

x - a

b = aa = b

1r, u21r, p - u2 1-r, -u21x, y2 1-x, y2
1r, u21-r, p - u2 1r, -u21x, y2 1x, -y2
1r, u21r, u + p2 1-r, u21x, y2 1-x, -y2

aij = aji

A = 3aij4
ƒ1x + h2 - ƒ1x - h2

2h

p = ƒ1x2
ak

k = 1ak

2q1
a

n

k=1
ak,

8u1 + v1, u2 + v2, u3 + v39
8u1, u2, u39 + 8v1, v2, v39 =

8u1, u29 + 8v1, v29 = 8u1 + v1, u2 + v29
1ƒ + g21x2 = ƒ1x2 + g1x2

1a + c2 + 1b + d2i 1a + bi2 + 1c + di2 =

Sn =

a

1 - r
, ƒr ƒ 6 1

Sn =

a111 - r n2
1 - r

,

Sn = naa1 + a2

2
b =

n

2
 32a1 + 1n - 12d4,

u + v,

a - b = a + 1-b2
c 7 1

k = 80, 0, 19i = 81, 0, 09, j = 80, 1, 09 j = 80, 19i = 81, 09

ƒ1x2 = an xn
+ an-1xn-1

+
Á

+ a1x + a0

r =

ke

1 � e cos u
 or r =

ke

1 � e sin u
,

a + bi,

ƒ1x2 = ax2
+ bx + c1a Z 02

1y - k22 = 4p1x - h2
1x - h22 = 4p1y - k2

1y - k22
a2 -

1x - h22
b2 = 1

1x - h22
a2 -

1y - k22
b2 = 1

1y - k22
a2 +

1x - h22
b2 = 1

1x - h22
a2 +

1y - k22
b2 = 1

1x - h22 + 1y - k22 = r 2

r = u
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Term of a polynomial (function) An expression of the form
in a polynomial (function), p. 185.

Terms of a sequence The range elements of a sequence, 
p. 670.

Third quartile See Quartile.

Time plot A line graph in which time is measured on the 
horizontal axis, p. 699.

Transformation A function that maps real numbers to real
numbers, p. 129.

Transitive property If and , then 
Similar properties hold for the inequality symbols

pp. 21, 23.

Translation See Horizontal translation, Vertical translation.

Transpose of a matrix The matrix obtained by inter-
changing the rows and columns of A, p. 534.

Transverse axis The line segment whose endpoints are the
vertices of a hyperbola, p. 603.

Tree diagram A visualization of the Multiplication Principle
of Probability, p. 662.

Triangular form A special form for a system of linear equa-
tions that facilitates finding the solution, p. 544.

Triangular number A number that is a sum of the arithmetic
series for some natural number n, 
p. 656.

Trichotomy property For real numbers a and b, exactly one of
the following is true: , or , p. 4.

Trigonometric form of a complex number ,
p. 504.

Unbounded interval An interval that extends to or
(or both), p. 5.

Union of two sets A and B The set of all elements that
belong to A or B or both, p. 55.

Unit circle A circle with radius 1 centered at the origin, 
p. 344.

Unit ratio See Conversion factor.

Unit vector Vector of length 1, pp. 459, 633.

Unit vector in the direction of a vector A unit vector that has
the same direction as the given vector, pp. 460, 633.

Upper bound for ƒ Any number B for which for all
x in the domain of ƒ, p. 89.

Upper bound for real zeros A number d is an upper bound
for the set of real zeros of ƒ if whenever ,
p. 202.

Upper bound test for real zeros A test for finding an upper
bound for the real zeros of a polynomial, p. 202.

Variable A letter that represents an unspecified number, p. 5.

Variable (in statistics) A characteristic of individuals that is
being identified or measured, p. 693.

Variance The square of the standard deviation, p. 710.

Variation See Power function.

Vector An ordered pair of real numbers in the plane, 
or an ordered triple of real numbers in space. 
A vector has both magnitude and direction, pp. 456, 633.

Vector equation for a line in space The line through
in the direction of the nonzero vector
has vector equation , where

, p. 634.

Velocity A vector that specifies the motion of an object in
terms of its speed and direction, p. 461.

Venn diagram A visualization of the relationships among
events within a sample space, p. 661.

Vertex of a cone See Right circular cone.

Vertex of a parabola The point of intersection of a parabola
and its line of symmetry, pp. 164, 582.

Vertex of an angle See Angle.

Vertex form for a quadratic function ,
p. 165.

Vertical asymptote The line is a vertical asymptote of
the graph of the function ƒ if or 

, pp. 93, 221.

Vertical component See Component form of a vector.

Vertical line , p. 30.

Vertical line test A test for determining whether a graph is a
function, p. 81.

Vertical stretch or shrink See Stretch, Shrink.

Vertical translation A shift of a graph up or down, p. 131.

Vertices of an ellipse The points where the ellipse intersects
its focal axis, p. 591.

Vertices of a hyperbola The points where a hyperbola inter-
sects the line containing its foci, p. 602.

Viewing window The rectangular portion of the coordinate
plane specified by the dimensions [Xmin, Xmax] by [Ymin,
Ymax], p. 31.

Weighted mean A mean calculated in such a way that some
elements of the data set have higher weights (that is, are
counted more strongly in determining the mean) than others,
p. 707.

Weights See Weighted mean.

Whole numbers The numbers , p. 2.

Window dimensions The restrictions on x and y that specify a
viewing window. See Viewing window.

Work The product of a force applied to an object over a given
distance , p. 471.

Wrapping function The function that associates points on the
unit circle with points on the real number line, p. 344.

W = ƒF ƒ ƒAB
!

ƒ

0, 1, 2, 3, Á

x = a

 lim
x:a-

 ƒ1x2 = � q

 lim
x:a+

 ƒ1x2 = � q

x = a

ƒ1x2 = a1x - h22 + k

r = 8x, y, z9 r = r0 + tvV = 8a, b, c9P01x0, y0, z02

8a, b, c98a, b9

x 7 dƒ1x2 Z 0

ƒ1x2 … B

q- q

r1cos u + i sin u2
a 7 ba 6 b, a = b

1 + 2 + 3 +
Á

+ n

AT

6 , … , 7 , Ú ,

a = c.b = ca = b

anxn
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x-axis Usually the horizontal coordinate line in a Cartesian
coordinate system with positive direction to the right, 
pp. 12, 629.

x-coordinate The directed distance from the y-axis yz-plane
to a point in a plane (space), or the first number in an
ordered pair (triple), pp. 12, 629.

x-intercept A point that lies on both the graph and the x-axis,
pp. 31, 70.

Xmax The x-value of the right side of the viewing window, 
p. 31.

Xmin The x-value of the left side of the viewing window, 
p. 31.

Xscl The scale of the tick marks on the x-axis in a viewing
window, p. 31.

xy-plane The points x, y, 0 in Cartesian space, p. 629.

xz-plane The points x, 0, z in Cartesian space, p. 629.

y-axis Usually the vertical coordinate line in a Cartesian coor-
dinate system with positive direction up, pp. 12, 629.

y-coordinate The directed distance from the x-axis xz-plane
to a point in a plane (space), or the second number in an
ordered pair (triple), pp. 12, 629.

y-intercept A point that lies on both the graph and the y-axis,
p. 29.

Ymax The y-value of the top of the viewing window, p. 31.

Ymin The y-value of the bottom of the viewing window, p. 31.

Yscl The scale of the tick marks on the y-axis in a viewing
window, p. 31.

yz-plane The points 0, y, z in Cartesian space, p. 629.

z-axis Usually the third dimension in Cartesian space, p. 629.

z-coordinate The directed distance from the xy-plane to a
point in space, or the third number in an ordered triple, 
p. 629.

Zero factor property If , then either or ,
pp. 41, 69.

Zero factorial See n factorial.

Zero of a function A value in the domain of a function that
makes the function value zero, p. 70.

Zero matrix A matrix consisting entirely of zeros, p. 532.

Zero vector The vector or , pp. 456, 633.

Zoom out A procedure of a graphing utility used to view
more of the coordinate plane (used, for example, to find the
end behavior of a function), p. 188.

80, 0, 0980, 09

b = 0a = 0ab = 0

21

21

21
21

21
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Selected Answers
Quick Review P.1
1. 3. 5. (a) 1187.75 (b) 7. 9. 0, 1, 2, 3, 4, 5, 6

Exercises P.1
1. (terminating) 3. (repeating) 5. ; All real numbers less than or equal to 2

7. ; All real numbers less than 7 9. ; All real numbers 
less than 0

11. 13. 15. 17. 19. 21.

23. The real numbers greater than 4 and less than or equal to 9 25. The real numbers greater than or equal to , or the real numbers which 
are at least 27. The real numbers greater than 29. ; endpoints and 4; bounded; half-open 31. ; 
endpoint 5; unbounded; open 33. or ; 35. or ; per gallon 

of gasoline 37. 39. 41. 43. 5 45. (a) Associative property of multiplication

(b) Commutative property of multiplication (c) Addition inverse property (d) Addition identity property (e) Distributive property of 

multiplication over addition 47. 49. 51. 53. 55.

57. 59. 0.000 000 033 3 61. 5,870,000,000,000 63.

65. (a) Because implies that . (b) Because implies that .

67. False. For example, the additive inverse of is 5, which is positive. 69. E 71. B 73. 0, 1, 2, 3, 4, 5, 6

75.

SECTION P.2
Quick Review P.2
1. 3.

5. 7. 5.5 9. 10

Exercises P.2
1. 3. (a) First quadrant (b) On the y-axis, between quadrants I and II

(c) Second quadrant (d) Third quadrant 5. 6 7. 6 9. 11. 19.9 13. 8 15. 5 17. 7
19. 21.

23. 0.65 25. 27. a -  

1

3
, -  

3

4
b12, 62

Perimeter = 2120 + 16 L 24.94; area = 32area = 20.5Perimeter = 2141 + 182 L 21.86;
4 - p

A11, 02, B12, 42, C1-3, -22, D10, -22

y

x

5

5

A

B

C

D

Distance: 17 - 12 L 1.232

0 1 2 3 4 5�1�2�3�4�51.50.5 2 2.5 31

-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6

-5

a-m
=

1

amam
Z 0, ama-m

= am-m
= a0

= 1a0
= 1ama0

= am+0
= amam

Z 0,

2.4 * 10-84.839 * 108

1.4347 * 10104.49595 * 1011x4y416

x4

x2

y2

p - 61a + d2x2ax2
+ ab

x = dollars31.099, 1.39941.099 … x … 1.399x = Bill’s age329, q2x Ú 29
x 6 5-3-3 6 x … 4-1-3

-3

1-3, 441-2, -121-3, q2-1 6 x 6 2- q 6 x 6 5, or x 6 5-1 … x 6 1

0 1 2 3 4 5�1�2�3�4�50 1 2 3 4 5 6 7 8�1�2

0 1 2 3 4 5�1�2�3�4�5
-2.16-4.625

-3; 1.375-4.725-3, -2, -1651, 2, 3, 4, 5, 66
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29. 31.

33.

Su
rp
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s 

(b
ill

io
ns

 o
f 

do
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)

U.S. Agricultural Trade Surplus
y

x
2000 2004 2007
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V
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 (

bi
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s 
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 d
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U.S. Imports from Mexico

y

x
2000 2004 2007
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100
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s)

U.S. Motor Vehicle Production
y

x
2001 2004 2007

2000

4000

6000

8000

10,000

12,000

35. (a) About $183,000 (b) About $277,000 37. The three sides have lengths 5,
5, and . Since two sides have the same length, the triangle is isosceles.

39. (a) 8; 5; (b)
41.

43. 45. Center: ; radius: 6
47. Center: ; radius: 49. 51. 53. 7; 6

55. Midpoint is . Distances from this point to vertices are equal to .

57. or x Ú 2x … -8

118.5a5

2
, 

7

2
b

ƒx - c ƒ 6 dƒx - 4 ƒ = 31510, 02
13, 121x + 122 + 1y + 422 = 9

1x - 122 + 1y - 222 = 25
82

+ 52
= 64 + 25 = 89 = 118922289

512

59. True. because M is the midpoint of AB. By similar triangles, , so is the midpoint 

of AC. 61. C 63. E 65. If the legs have lengths a and b, and the hypotenuse is c units long, then without loss of generality, we can 

assume the vertices are and . Then the midpoint of the hypotenuse is The distance to the other 

vertices is 67. 69.

SECTION P.3
Quick Review P.3

1. 3. 5. 7. 9.

Exercises P.3

1. (a) and (c) 3. (b) 5. Yes 7. No 9. No 11. 13. 15. 17.

19. 21. 23. 25. 27. 29. (a) The figure shows that 

is a solution of the equation . (b) The figure shows that is a solution of the equation . 31. (a)

33. (b) and (c) 35. 37.

39. 41.

43. 45. 47. 49. 51. 53. 55. x = 1x …

34

7
y 6

7

6
x 7

21

5
-  

5

2
… z 6

3

2
-  

1

2
… y …

17

2
x … -  

19

5

x Ú 3
0 1 2 3 4 5 6 7 8�1�2

-4 … x 6 3
0 1 2 3 4 5�1�2�3�4�5

x Ú -2
0 1 2 3 4 5�1�2�3�4�5

x 6 6
0 1 2 3 4 5 6 7 8 9�1

2x2
+ x - 6 = 0x =

3

2
2x2

+ x - 6 = 0

x = -2t =

31

9
x =

17

10
= 1.7z =

8

19
x =

4

3
x =

7

4
= 1.75

y = -  

4

5
= -0.8x = 1t = 4x = 8

11x + 18

10

2x + 1
x

5
y

3x + 2y4x + 5y + 9

Q1-a, -b2Q1a, -b2B
a2

4
+

b2

4
=

c

2
=

1

2
 c.B a

a

2
b2

+ a b

2
b2

=

aa + 0

2
, 

b + 0

2
b = aa

2
, 

b

2
b .10, b210, 02, 1a, 02,

M¿

length of AM¿

length of AC
=

length of AM

length of AB
=

1

2

length of AM

length of AB
=

1

2
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Quick Review P.4

1. 3. 5. 7. 9.

Exercises P.4

1. 3. 5. 8 7. 9. 11. 13. 15.

17. 19. 21. 23. 25.

27. 29.

[–1, 5] by [–10, 80][–5, 10] by [–10, 60]

y = -  

2

5
 x +

12

5
y = -  

1

4
 x + 4y = -3x +  5x - y + 3 = 0y + 3 = 0

x - y + 5 = 0y + 4 = -21x - 52y - 4 = 21x - 12y = 16x = 2
4

7
-2

2

3
y =

17

5
y =

2

5
 x -

21

5
x = 12x = -  

7

3

45. (a) 3187.5; 42,000 (b) 9.57 years (c) ; (d) 12 years 47. 32,000 ft

49. , so asphalt shingles are acceptable.

51. (a) (b) $7.64 trillion (c) $8.61 trillion (d)

53. (a) (b)

[–5, 30] by [0, 7000]

y = 80.5x + 4453

[–5, 30] by [0, 7000]

[1985, 2010] by [0, 10]

y = 0.24x - 473.8

m =

3

8
7

4

12

t = 10.043187.5t + 42,000 = 74,000

31. (a): the slope is 1.5, compared to 1 in (b). 33.
35. 37.
39.

41. (a) (b)

43. (a) (b) y =

3

2
 x -

7

2
y = -  

2

3
 x + 3

y = -  

1

3
 x +

7

3
y = 3x - 1

Ymin = -20/3, Ymax = 20/3, Yscl = 2/3
Ymin = -30, Ymax = 30, Yscl = 3x = -10; y = -7

x = 4; y = 21

(c) 6868 million

57. 59. Multiply both sides of the first equation by 2. 61. (a) No (b) Yes 63. False. because 
lies to the left of on the number line. 65. E 67. A 69. (a) (no answer) (b) (no answer) (c)
(d) (e) If your calculator returns 0 when you enter , you can conclude that the value stored in x is not 

a solution of the inequality . 71. 73.

SECTION P.4
Exploration 1
1. The graphs of and have the same slope but different y-intercepts.

3.

In each case, the two lines appear to be at right angles to one another.

[–4.7, 4.7] by [–3.1, 3.1]
m=5

[–4.7, 4.7] by [–3.1, 3.1]
m=4

[–4.7, 4.7] by [–3.1, 3.1]
m=3

[–4.7, 4.7] by [–3.1, 3.1]
m=1

y = mx + cy = mx + b

F =

9

5
 C + 32b1 =

2A

h
- b22x + 1 6 4

2x + 1 6 4-103/102 7 -102/101
800/801 7 799/800-2

-6-6 6 -2x = 3, 4, 5, 6
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69. As in the diagram, we can choose one point to be the origin, and another to be on the x-axis. The midpoints of the sides, starting from the origin 

and working around counterclockwise in the diagram, are then , , , and The opposite sides are 

therefore parallel, since the slopes of the four lines connecting those points are: ; ; ; 

71. A has coordinates , while B is , , so the line containing A and B is the horizontal line , and the distance from 

A to B is 

SECTION P.5
Exploration 1

` a + b

2
-

b

2
` =

a

2
.

y =

c

2

c

2
baa + b

2
a b

2
, 

c

2
b

mDA =

e

d - a
.mCD =

c

b
mBC =

e

d - a
mAB =

c

b

Dad

2
, 

e

2
b .Cab + d

2
, 

c + e

2
bBaa + b

2
, 

c

2
bAaa

2
, 0b

836 SELECTED ANSWERS

1. 3. By this method, we have zeros at 0.79 and
2.21.

5. The answers in parts 2, 3, and 4 are the same. 7. 0.792893; 2.207107

Quick Review P.5

1. 3. 5. 7. 9.

Exercises P.5

1. or 3. 5. 7. 9. 11.

13. or 15. 17. or x = 6x = 2x =

7

2
- 211 L 0.18 or x =

7

2
+ 211 L 6.82x = 1x = -7

y = �A
7

2
x = -4 � A

8

3
x = �

5

2
x = -  

2

3
 or x = 3x = 0.5 or x = 1.5x = 5x = -4

1x - 221x + 12
12x + 121x + 3213x + 121x2

- 5215x - 2226x2
- 7x - 59x2

- 24x + 16

[–1, 4] by [–5, 10][–1, 4] by [–5, 10][–1, 4] by [–5, 10]

55. 9 57. 59. (a) No; perpendicular lines have slopes with opposite signs. (b) No; perpendicular lines have slopes 
with opposite signs. 61. False. The slope of a vertical line is undefined. For example, the vertical line through and would have 
slope , which is undefined. 63. A 65. E

67. (a) (b) (c) (d) a is the x-intercept and b is the
y-intercept when .

(e)

a is half the x-intercept and b is half the y-intercept when .c = 2

[–10, 10] by [–10, 10][–10, 10] by [–10, 10][–10, 10] by [–10, 10]

c = 1

[–5, 5] by [–5, 5][–5, 5] by [–5, 5][–5, 5] by [–5, 5]

16 - 12/13 - 32 = 5/0
13, 6213, 12

b = 5; a = 6

(f) When , a is the opposite of
the x-intercept and b is the opposite
of the y-intercept.

c = -1
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19. 21. 23.

25. x-intercept: 3; y-intercept: 27. x-intercepts: , 0, 2; y-intercept: 0
29. 31. 33.

35. 37. 39. 41. or 43. or 

45. (a) (the one that begins on the x-axis) and (b) (c) The x-coordinates of the 

intersections in the first picture are the same as the x-coordinates where the second graph crosses the x-axis. 47. or 

49. or 51. or or 53. 55. or 

57. (a) There must be 2 distinct real zeros, because implies that are 2 distinct real numbers. (b) There must be 

1 real zero, because implies that , so the root must be (c) There must be no real zeros, because 

implies that are not real numbers. 59. 80 yd wide; 110 yd long 61. ft 63. False. Notice that

, so x could also be . 65. B 67. E 69. (a) (b) (c) (d) (e) There is no other 

possible number of solutions of this equation. For any c, the solution involves solving two quadratic equations, each of which can have 0, 1, or 2 

solutions. 71. or approximately 0.697 and 4.303

SECTION P.6
Quick Review P.6
1. 3. 5. 7. 9.

Exercises P.6
1. 3. 5. 7. 9. 11. 13. 15.

17. 4i 19. 21. 23. 25. 27. 29. 13 31. 25

33. 35. 37. 39. 41. 43.

45. False. Any complex number bi has this property. 47. E 49. A 51. (a) (b)

(c) 1 (d) (no answer) 53. , real part is zero

55. and

are equal

57. but . Because the coefficient of x in is not a real number, the complex 

conjugate, i, of , need not be a solution.

SECTION P.7
Quick Review P.7

1. 3. or 5. 7. 9.

Exercises P.7
1. 3.

5. 7. 1- q , -114 ´ 37, q2
�8 �6 �4 �2 0 2 4 6 8�10�12

a-

2

3
, 

10

3
b

0 1 2 3 4 5�1�2�3�4�5

11, 52
0 1 2 3 4 5 6 7 8�1�2

1- q , -94 ´ 31, q2
�8 �6 �4 �2 0 2 4 6 8�10�12

4x2
- 4x - 1

1x - 1213x - 42
z + 5

z
x1x - 221x + 22x = -5x = 1-2 6 x 6 5

- i

x2
- ix + 2 = 01i22 - i1i2 + 2 Z 01- i22 - i1- i2 + 2 = 0

1a + bi2 # 1c + di2 = 1a - bi2 # 1c - di2 = 1ac - bd2 - 1ad + bc2i
1a + bi2 # 1c + di2 = 1ac - bd2 - 1ad + bc2i = 1ac - bd2 - 1ad + bc2i

1a + bi2 - 1a - bi2 = 2bi

- i; -1; i; 1; - i; -1; i; 1i; -1; - i; 1; i; -1; - i; 1

x =

7

8
�

115

8
 ix = -1 � 2i7/5 - 1/5i1/2 - 7/2i3/5 + 4/5i2/5 - 1/5i

-1 + 0i5 + 12ix = 1, y = 2x = 2, y = 313i

5 - 10i-48 - 4i-5 - 14i7 + 4i-5 + i5 - 11 + 13 2i13 - 4i8 + 2i

x2
- 2x - 1x2

- 2x2
- x - 6a + 2dx + 9

2.5 +

1

2
113,

c = -1c = 5c = 4c = 2-321-322 = 18

L  11.98�2b2
- 4acb2

- 4ac 6 0

x = -  

b

2a
.�2b2

- 4ac = 0b2
- 4ac = 0

�2b2
- 4acb2

- 4ac 7 0

x L 2.91x L -2.41x = -2 � 213x = 1x L -0.44x L -4.56x = -2x = 3

x = 1x = -2

y = 31x + 4 - x2
+ 1y2 = x2

- 1y1 = 31x + 4

x = 1x = -3x = -6x = 1t = 6 or t = 101.62; -0.62x2
+ 2x - 1 = 0; x L 0.4

[–5, 5] by [–5, 5][–5, 5] by [–5, 5][–5, 5] by [–5, 5][–5, 5] by [–5, 5]

-2-2

-  

5

2
+

273

2
L 1.77 or -  

5

2
-

273

2
L -6.77x = -1 or x = 4x = -4 - 312 L -8.24 or x = -4 + 312 L 0.24
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9. 11. 13. 15. 17.

19. 21. 23. 25. No solution

27. 29. 31. (a) (b) (c) (d)

(e) (f ) 33. (a) ; sec down (b) When t is in the interval 

(c) When t is in the interval or 35. Reveals the boundaries of the solution set 37. (a) .

(b) When x is in the interval . 39. No more than $100,000 41. True. The absolute value of any real number is always greater 

than or equal to zero. 43. D 45. D 47.

CHAPTER P REVIEW EXERCISES
1. Endpoints 0 and 5; bounded 3. 5. 7. 9. 5,000,000,000

11. (a) (b) (c) (d) (e) 13. 19; 4.5

15. 17. 19. Center: ; radius: 3

21. (a) (b) 23.

25. 27.

29. 31.

33. (a) (b) (c) 518.8, which is higher than 515. (d) 521.2

35. 2.5 37. 39. 41. 43.

45. 47. 49. 51. 53.

55. 57. 59. 61.

63. 65. 67.

69. 71. 73. 75. 77. 79. 4i
81. (a) (b) When t is in the interval or (approximately) (c) When t is in the interval 

(approximately) 83. (a) When w is in the interval (b) When w is in the interval (approximately)

SECTION 1.1
Exploration 1
1. 0.75 3. 0.8025 5. $124.61

Exploration 2
1. Percentages must be
3. A statistician might look for adverse economic factors in 1990, especially those that would affect people near or below the poverty line.

Quick Review 1.1
1. 3. 5. 7. 9. 12x - 121x - 521x + 421x - 1214h2

+ 9212h + 3212h - 3219y + 2219y - 221x + 421x - 42

… 100.

122.19, q210, 18.54
38, 124312, 20410, 84t L 8 sec up; t L 12 sec down

25 + 0i7 + 4i1 + 3i1- q , q21- q , -172 ´ 13, q2
1- q , -2.824 ´ 3-0.34, 3.1541- q , -0.372 ´ 11.37, q21- q , -24 ´ c- 2

3
, q b

a - q , 
1

3
d

0 2 4 6 8 10�2�4�6�8�10

1-6, 34x L 2.36x = 0 or x = -

2

3
 or x = 7

x =

3

4
-

117

4
L -0.28 or x =

3

4
+

117

4
L 1.783 � 2ix = 0, x = 3x =

5

2
x =

7

2
 or x = -4

x =

1

3
 or x = -

3

2
x = 2 - 17 L -0.65; x = 2 + 17 L 4.65y = 3x = -3

[–2, 10] by [500, 525]

y = 0.8x + 513.2

[–2, 10] by [500, 525]

y = -

2

5
 x -

11

5
y = 4

y =

4

5
 x - 4.4y + 1 = -

2

3
 1x - 22

a = 7; b = 9112022 + (18022 = 20 + 80 = 100 = 102120 L 4.47, 180 L 8.94, 10

1-5, -4)1x - 022 + 1y - 022 = 22, or x2
+ y2

= 4515; 215; 1145

7.1 * 1099.7 * 1071.15 * 10105.456 * 1081.45 * 1010

3.68 * 109v42x2
- 2x

1-5.69, -4.112 ´ 10.61, 2.192
11, 254

1 in. 6 x 6 34 in312, 16210, 44
34, 124t = 12t = 4 sec upx1x - 42 Ú 01x + 121x - 42 7 0

1x + 221x - 52 … 0x2
… 0x2

+ 1 6 0x2
+ 1 7 011.11, q23-2.08, 0.174 ´ 31.19, q2

a - q , 
1

2
b ´ a1

2
, q b1- q , -1.414 ´ 30.08, q2a - q , -

1

2
b ´ a 4

3
, q b

1-0.24, 4.2423-1, 04 ´ 31, q21- q , -22 ´ a1

3
, q b1- q , -52 ´ a3

2
, q b3-7, -3/24
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47. (a) $46.94 (b) 210 mi

49. (a) for all . (b) (c) Yes (d) For values of x close to 
is so small that the calculator is
unable to distinguish it from
zero. It returns a value of

rather than x.

51. (a) or 1.1 or 1.15 (b)
53. Let n be any integer. , which is either the product of two odd integers or the product of two even integers. The product
of two odd integers is odd. The product of two even integers is a multiple of 4, since each even integer in the product contributes a factor of 2 to
the product. Therefore, is either odd or a multiple of 4.
55. False; a product is zero if at least one factor is zero. 57. C 59. B
61. (a) March (b) $120 (c) June, after three months of poor performance (d) About $2000 (e) After reaching a low in June, the stock
climbed back to a price near $140 by December. LaToya’s shares had gained $2000 by that point. (f) Any graph that decreases steadily from
March to December would favor Ahmad’s strategy over LaToya’s.

63. (a) (b) The linear model for subscribers as a function of years after 1990 is
.

(c) The fit is very good: (d) The monthly bill scatter plot has an obviously curved shape that could be modeled more
effectively by a function with a curved graph. Some possibilities: quadratic (parabola),
logarithm, sine, power (e.g., square root), logistic. (We will learn about these curves
later in the book.)

y = 20.475x - 94.6

[7, 18] by [35, 280] [7, 18] by [35, 53]

Subscribers Monthly Bills

n2
+ 2n

n2
+ 2n = n1n + 22

-3-3

01/200
= 0

0, x200

[0, 1] by [0, 1]

x Ú 0y = 1x20021/200
= x200/200

= x1
= x

Exercises 1.1
1. (d)(q) 3. (a)(p) 5. (e)(l) 7. (g)(t) 9. (i)(m) 11. (a) Increasing, except for a slight drop from 1999 to 2004
(b) 1974 to 1979 13. Women , Men 15. Women: ; men: 

17. 2018, 69.9% 19. (a) and (b)

21. Square stones 23. 25. The lower line shows the minimum salaries, since they are lower than the average salaries.
27. Year 15. There is a clear drop in the average salary right after the 1994 strike.

29. 31. 33. 35. 37. 5-  

7

2
�

1105

2
-1.5; 4-1; 4�A

13

3

y = 1.2t 2

L3

3.7975
4.375
5.5405
5.8986
6.657

y = -0.211x + 83.5y = 0.582x + 32.3

[–5, 55] by [23, 92]

1+21n2

SELECTED ANSWERS 839

39. 41. 43. 45.

x L  1.33 or x = 4

[–4, 4] by [–10, 10]

x L  3.91

[–5, 5] by [–10, 10]

x L -1.47

[–10, 10] by [–10, 10]

x L  1.77

[–10, 10] by [–10, 10]

6965_SE_Ans_833-934.qxd  1/25/10  3:40 PM  Page 839



(e) (f ) Cellular phone technology was still emerging in 1995, so the growth rate was not as
fast, explaining the lower slope on the subscriber scatter plot. The new technology was
also more expensive before competition drove prices down, explaining the anomaly on
the monthly bill scatter plot.

SECTION 1.2
Exploration 1
1. From left to right, the tables are (c) constant, (b) decreasing, and (a) increasing.
3. Positive; negative; 0

Quick Review 1.2
1. 3. 5. 7. 9.

Exercises 1.2
1. Function 3. Not a function; y has two values for each positive value of x.
5. Yes 7. No

x 6 -2, x Ú  3x 6 16x = 16x 6 10x = �4

[4, 18] by [10, 280] [4, 18] by [35, 53]

Subscribers Monthly Bills

840 SELECTED ANSWERS

23. Yes, non-removable

[–10, 10] by [–2, 2]

9. 11. 13.

15. 17. 19. 1- q , q2 ´ 30, q21- q , 104

[–5, 5] by [–5, 5]

[–10, 10] by [–5, 5][–10, 10] by [–10, 10]

1- q , q2

[–5, 5] by [–5, 15]

29. Decreasing on ;
increasing on 

[–10, 10] by [–2, 18]

3-2, q2
1- q , -24 31. Decreasing on ; 

constant on ; 
increasing on 

[–10, 10] by [0, 20]

31, q2
3-2, 14
1- q , -2] 33. Increasing on ;

decreasing on 

[–4, 6] by [–25, 25]

31, q2
1- q , 14

25. Local maxima at and , local minimum at . The function increases on
, decreases on , increases on , and decreases on .

27. and are neither, is a local maximum, and is a local minimum. The
function increases on , decreases on , and increases on .35, q231, 541- q , 14

15, 1211, 5213, 321-1, 32
35, q232, 543-1, 241- q , -14

12, 2215, 521-1, 42

21. Yes, non-removable

[–10, 10] by [–10, 10]
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55. 57.

59. 61. ; 

63. (b) 65. (a)

x = 2y = 0

[–4, 6] by [–5, 5]

y = 1; x = 1; x = -1

[–10, 10] by [–10, 10]

y = -1; x = 3

[–8, 12] by [–10, 10]

y = 1; x = 1

[–10, 10] by [–10, 10]

SELECTED ANSWERS 841

35. Bounded 37. Bounded below 39. Bounded

43. Local minimum: at .
Local maximum: at .

[–5, 5] by [–50, 50]

x L 0.82y L -1.91
x L -0.82y L -4.0941. ƒ has a local minimum of 

at . It has no maximum.

[–5, 5] by [0, 36]

x = 0.5
y = 3.75 45. Local maximum: at .

Local minimum: at and 
at .

[–5, 5] by [0, 80]

x = -4
y = 0x = 0y = 0

x L -3.20y L 9.16

47. Even 49. Even 51. Neither 53. Odd

67. (a) crosses the horizontal
asymptote at .

(b) crosses the horizontal
asymptote at .

(c) intersects the horizontal 
asymptote at .

[–5, 5] by [–5, 5]

10, 02
h1x2

[–10, 10] by [–5, 5]

10, 02
g1x2

[–10, 10] by [–10, 10]

10, 02
ƒ1x2

69. (a) The vertical asymptote is , 
and this function is undefined at 

(because a denominator 
can’t be zero).

(b)

Add the point .
(c) Yes

10, 02
[–10, 10] by [–10, 10]

x = 0

x = 0 71. True; this is the definition of the graph 
of a function.

73. B 75. C
77. (a)

(b)

but the discriminant of is negative 
so the graph never crosses the x-axis on the

interval .10, q2
1-32,

x2
- x + 1

x

1 + x2
6 1 3 x 6 1 + x2

3 x2
- x + 1 7 0;

k = 1

[–3, 3] by [–2, 2]

(c)

(d)

but the discriminant of
is negative 

so the graph never crosses the
x-axis on the interval .1- q , 02

1-32,x2
- x + 1

-1 - x2
3 x2

+ x + 1 7 0;

x

1 + x2
7 -1 3 x 7

k = -1
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79. (a) (b) (c) (d) (e) Answers vary. 81. (a) (b) (c) (d) Answers vary. 83. (a) 2. It is in the range. (b) 3. It is not in 
the range. (c) is not bounded above. (d) 2. It is in the range. (e) 1. It is in the range.

85. Since ƒ is odd, for all x. In particular, . This is equivalent to saying that , and the only
number which equals its opposite is 0. Therefore , which means the graph must pass through the origin.

87. (a) ƒ is continuous on ; the maximum value is 13, which occurs at and the minimum value is , which occurs at .

(b) ƒ is continuous on the maximum value is 1, which occurs at , and the minimum value is 0.2, which occurs at .
(c) ƒ is continuous on the maximum value is 5, which occurs at , and the minimum value is 2, which occurs at .
(d) ƒ is continuous on the maximum value is 5, which occurs at both and , and the minimum value is 3, which occurs 
at .

SECTION 1.3
Exploration 1
1. , 3. , , 5. No. There is a removable discontinuity at .

Quick Review 1.3
1. 59.34 3. 5. 0 7. 3 9.

Exercises 1.3
1. (e) 3. ( j) 5. (i) 7. (k) 9. (d) 11. (l) 13. Ex. 8 15. Ex. 7, 8 17. Ex. 2, 4, 6, 10, 11, 12

19. 21. 23.

25. 27. 29. Domain: all reals; Range: 

31. Domain: ; Range: all reals 33. Domain: all reals; Range: all integers 35. (a) Increasing on (b) Neither

(c) Minimum value of 0 at (d) Square root function, shifted 10 units right 37. (a) Increasing on (b) Neither

(c) None (d) Logistic function, stretched vertically by a factor of 3 39. (a) Increasing on ; decreasing on (b) Even

(c) Minimum of at (d) Absolute value function, shifted 10 units down 41. (a) Increasing on ; decreasing on 

(b) Neither (c) Minimum of 0 at (d) Absolute value function, shifted 2 units right 43. , y = -2y = 2x = 2

1- q , 2432, q2x = 0-10

1- q , 0430, q2
1- q , q2x = 10

310, q21-6, q2
3-5, q2y = x, y = x3, y = 1/x, y = sin xy = 1/x, y = sin x, y = cos x, y = 1/11 + e-x2

y = 1/x, y = ex, y = 1/11 +  e-x2y = x2, y = 1/x, y = ƒx ƒy = x, y = x3, y = 1/x, y = sin x

-47 - p

x = 0ƒ1x2 = 1/11 + e-x2ƒ1x2 = exƒ1x2 = 1/xƒ1x2 = ln xƒ1x2 = 1/x

x = 0
x = 4x = -43-4, 44;

x = -1x = -43-4, 14;
x = 5x = 131, 54;

x = 0-3x = 4,3-2, 44
ƒ102 = 0

ƒ102 = -ƒ102ƒ1-02 = -ƒ102ƒ1-x2 = -ƒ1x2
h1x2

842 SELECTED ANSWERS

45.

No points of discontinuity

x

y

5

5

47.

No points of discontinuity

x

y

5

5

49.

No points of discontinuity

x

y

5

5

51.

x = 0

x

y

5

5

53. (a)

(b) ƒ1x2 = 2x2
= 2 ƒx ƒ

2
= ƒx ƒ = g1x2

g1x2 = ƒx ƒ

[–5, 5] by [–5, 5]

55. (a)

(b) The fact that shows that 
the natural logarithm function takes on
arbitrarily large values. In particular, it
takes on the value L when .x = eL

ln1ex2 = x

ƒ1x2 = x

[–5, 5] by [–5, 5]
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57. Domain: all real numbers; Range: all integers; Continuity: There is a discontinuity at each integer value of x; 
Increasing/decreasing behavior: constant on intervals of the form , where k is an integer; Symmetry: none; 
Boundedness: not bounded; Local extrema: every non-integer is both a local minimum and local maximum; 
Horizontal asymptotes: none; Vertical asymptotes: none; End behavior: as and as .

59. True; the asymptotes are and . 61. D 63. E 65. (a) Even (b) Even (c) Odd
67. (a) Pepperoni count ought to be proportional to the area of the pizza, which is proportional to the square of the radius
(b) 0.75 (c) Yes, very well. (d) The fact that the pepperoni count fits the expected quadratic model so perfectly suggests 
that the pizzeria uses such a chart. If repeated observations produced the same results, there would be little doubt.

69. (a) (b) (c)

(d) (e) The odd functions: sin 

SECTION 1.4
Exploration 1

Quick Review 1.4
1. 3. 5. 7. 9.

Exercises 1.4
1. . There are no restrictions on any of the 

domains, so all three domains are .

3. . Domain in each case is .

5. and , so the domain is .

, so the domain is 

7. so the domain is .

the domain is 

9. 11. 5; 13. 8; 3 15. ; ; 1- q , q2g1ƒ1x22 = 3x + 1ƒ1g1x22 = 3x - 1; 1- q , q2-6

[0, 5] by [0, 5]

3-1, 02 ´ 10, 14.1g/ƒ21x2 = 21 - x2/x2; 1 - x2
Ú 0 and x Z 0;

1-1, 12x2
6 1;1ƒ/g21x2 = x2/21 - x2; 1 - x2

7 0,

1-3, q2.1g/ƒ21x2 =

x2

1x + 3
 ; x + 3 7 0

3-3, 02 ´ 10, q2x Z 01ƒ/g21x2 =

1x + 3

x2
 ; x + 3 Ú 0

30, q21ƒ + g21x2 = 1x + sin x; 1ƒ - g21x2 = 1x - sin x; 1ƒg21x2 = 1x sin x

1- q , q2
1ƒ + g21x2 = 2x - 1 + x2; 1ƒ - g21x2 = 2x - 1 - x2; 1ƒg21x2 = 12x - 121x22 = 2x3

- x2

1-1, 121- q , q231, q21- q , 541- q , -32 ´ 1-3, q2

xx, x3, 1/x,ƒ1x2 = ln x

ƒ1x2 = exƒ1x2 = xƒ1x2 = 1/x, ƒ1x2 = ex, ƒ1x2 = ln x, ƒ1x2 = cos x, ƒ1x2 = 1/(1 + e-x2

x = 1x = 0

x : qint1x2: qx : - qint1x2: - q

3k, k + 12
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ƒ g

x

ln x

2 sin x cos x sin x

cos xsina x

2
b1 - 2x2

x

2

ln1e3x2x - 3

x3x0.6x5

ƒx ƒx21x

x2
1x - 221x + 22

2
ƒ2x + 4 ƒ

x + 3

2
2x - 3

ƒ � g

17.

19. ƒ1g1x22 = 1 - x2; 3-1, 14; g1ƒ1x22 = 21 - x4; 3-1, 14
ƒ1g1x22 = x - 1; 3-1, q2; g1ƒ1x22 = 2x2

- 1; 1- q , -14 ´ 31, q2
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21.

23. One possibility: and 

25. One possibility: and 27. One possibility: and 

29. One possibility: and 31. 33.

35. 37. and 39. and 

41. 43. and or and 

45. False; x is not in the domain of if 47. C 49. E

51. 53. (a) (b) (c)

55.

SECTION 1.5
Exploration 1
1. T starts at , at the point . It stops at , at the point . 61 points are computed.

3. The graph is less smooth because the plotted points are further apart.

5. The grapher skips directly from the point to the point corresponding to the T-values and . The two points are
connected by a straight line, hidden by the Y-axis.

7. Leave everything else the same, but change Tmin back to and Tmax to .

Quick Review 1.5

1. 3. 5. 7. 9. and 

Exercises 1.5
1. 3. 115, 2216, 92

x Ú 0y = x2
- 3, y Ú -3,y =

4x + 1

x - 2
y =

3x + 2

1 - x
y = �1x - 4y =

1

3
 x + 2

-1-4

T = 0T = -210, 12,10, -12
18, 32T = 21-8, -32-4

y =

-x2 � 2x4
+ 20

2

[–9.4, 9.4] by [–6.2, 6.2]

g1x2 = xg1x2 = 1g1x2 = 0

g1x2 = 0.1ƒ/g21x2
y = - ƒx ƒy = ƒx ƒy = -xy = xy = 1 - x and y = x - 1

y = - 2x2
- 25y = 2x2

- 25y = - 225 - x2y = 225 - x213, -12
t L 3.63 secV =

4

3
 pr 3

=

4

3
 p148 + 0.03t23; 775,734.6 in.3 g1x2 = 1xƒ1x2 = cos x

g1x2 = x - 3ƒ1x2 = x5
+ 2g1x2 = 3x - 2ƒ1x2 = ƒx ƒ

g1x2 = x2
- 5xƒ1x2 = 1x

ƒ1g1x22 =

3x

2
; 1- q , 02 ´ 10, q2; g1ƒ1x22 =

2x

3
; 1- q , 02 ´ 10, q2

844 SELECTED ANSWERS

5. (a)

(b) ; It is a function.

(c)

7. (a)

(b) ; It is not a function.

(c)

[–1, 5] by [–5, 1]

x = 1y + 222
19, -52, 14, -42, 11, -32, 10, -22, 11, -12, 14, 02, 19, 12

[–5, 5] by [–3, 3]

1.5x - 1

1-6, -102, 1-4, -72, 1-2, -42, 10, -12, 12, 22, 14, 52, 16, 82

9. (a) No (b) Yes 11. (a) Yes (b) Yes 13. 15.

17. 19. 21. ƒ 
-11x2 = x3

- 5, 1- q , q2ƒ 
-11x2 = 23 x, 1- q , q2ƒ 

-11x2 = x2
+ 3, x Ú 0

ƒ 
-11x2 =

x + 3

2 - x
, 1- q , 22 ´ (2, q2ƒ-11x2 =

1

3
 x + 2, 1- q , q2

ƒ g D

2 ln x

x Z 1
1

x - 1
a x + 1

x
b2

1- q , q2x + 1x2
- 2x + 1

x Z 0
x + 1

x

1

1x - 122

1- q , 2412 - x1x2
- 222

32, q21x - 21x2
+ 222

10, q2ex
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27.

29.

31.

33. (a) 108 euros (b) . This converts euros to dollars . (c) $44.44 35. and are inverses. If we restrict 

the domain of the function to the interval , then the restricted function and are inverses. 37.

39. True. All the ordered pairs swap domain and range values. 41. E 43. C 45. Answers may vary. (a) If the graph of ƒ is 
unbroken, its reflection in the line will be also. (b) Both ƒ and its inverse must be one-to-one in order to be inverse functions.

(c) Since f is odd, is on the graph whenever is. This implies that is on the graph of whenever is. That 

implies that is odd. (d) Let . Since the ratio of y to x is positive, the ratio of x to y is positive. Any ratio of y to x on the

graph of is the same as some ratio of x to y on the graph of ƒ, hence positive. This implies that is increasing.

47. (a) (b) . It converts scaled scores to raw scores. 49. (a) No (b) No (c) 45°; yes

51. When , the scaling function is linear. Opinions will vary as to which is the best value of k.

SECTION 1.6
Exploration 1
1. They raise or lower the parabola along the y-axis. 3. Yes

Exploration 2
1. Graph C. Points with positive y-coordinates remain unchanged, while points with negative y-coordinates are reflected across the x-axis.
3. Graph F. The graph will be a reflection across the y-axis of graph C.

Exploration 3
1. The 1.5 and the 2 stretch the graph vertically; the 0.5 and the 0.25 shrink the graph vertically.

Quick Review 1.6
1. 3. 5. 7. 9.

Exercises 1.6
1. Vertical translation down 3 units 3. Horizontal translation left 4 units 5. Horizontal translation to the right 100 units
7. Horizontal translation to the right 1 unit, and Vertical translation up 3 units 9. Reflection across x-axis 11. Reflection across y-axis

13. Vertically stretch by 2 15. Horizontally stretch by , or vertically shrink by 17. Translate right 6 units to get g0.23
= 0.008

1

0.2
= 5

x3
- 6x + 5x2

- x + 21x - 5/2221x + 6221x + 122

[–4.7, 4.7] by [–1.1, 5.1]

k = 1

y =

4

3
 1x - 312y = 0.75x + 31

ƒ 
-1

¢¢ƒ 
-1

¢¢¢¢¢¢y = ƒ1x2ƒ 
-1

1x, y2ƒ 
-11-y, -x21x, y21-x, -y2

y = x

y = ƒx ƒy = 1x30, q2y = x2

y = ln xy = ex1y21x2y =

25

27
 x

ƒ1g1x22 =

1

x - 1
+ 1

1

x - 1

= 1x - 12a 1

x - 1
+ 1b = 1 + x - 1 = x; g1ƒ1x22 =

1

x + 1
x

- 1

= § 1

x + 1
x

- 1

¥ #
x

x
=

x

x + 1 - x
=

x

1
= x

ƒ1g1x22 = 31x - 121/343 + 1 = 1x - 121 + 1 = x - 1 + 1 = x; g1ƒ1x22 = 31x3
+ 12 - 141/3

= 1x321/3
= x1

= x

ƒ1g1x22 = 3 c1
3

 1x + 22 d - 2 = x + 2 - 2 = x; g1ƒ1x22 =

1

3
 313x - 22 + 24 =

1

3
 13x2 = x
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23. One-to-one

x

y

5

3

25. One-to-one
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19. Translate left 4 units, and reflect across the x-axis to get g
21. 23.

25. 27. 29. (a) (b)

31. (a) (b)
33. Let ƒ be an odd function; that is, for all x in the domain of ƒ. To reflect the graph of across the y-axis, we make
the tranformation But for all x in the domain of ƒ, so this transformation results in That is exactly the
translation that reflects the graph of ƒ across the x-axis, so the two reflections yield the same graph.

35. 37. 39. (a) (b)
41. (a) (b)
43. Starting with , translate right 3 units, vertically stretch

by 2, and translate down 4 units.

45. Starting with , horizontally shrink by and translate

down 4 units.

47. 49.

51. 53. 55. Reflections have more effect on points that are farther away
from the line of reflection. Translations affect the distance of
points from the axes, and hence change the effect of the
reflections.

57. First vertically stretch by , then translate up 32 units.

59. False; it is translated left. 61. C 63. A

65. (a) (b) Change the y-value by multiplying by the conversion rate from dollars to yen, a number that
changes according to international market conditions. This results in a vertical stretch by the
conversion rate.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Month

P
ri

ce
 (

do
ll

ar
s)

y

x

9

5

y

x

–5

–5

5

5

y

x
–5

–5

5

5

y = 2 ƒx + 2 ƒ - 4y = 31x - 422

1

3
y = x2

y = x2
9x2

+ 3x - 22x2
+ 2x - 4

27x3
- 12x2x3

- 8x

x

y

x

y

y = -ƒ1x2.ƒ1-x2 = -ƒ1x2y = ƒ1-x2.
y = ƒ1x2ƒ1-x2 = -ƒ1x2

y = ƒ1-x2 = 13 81-x2 = -213 xy = -ƒ1x2 = -113 8x2 = -213 x
-x3

- 5x2
+ 3x + 2-x3

+ 5x2
+ 3x - 2ƒ1x2 = - 1x + 2 + 3 = 3 - 1x + 2ƒ1x2 = 1x + 5

y

h

f

g

x

3

6–6

–6

y

h

f

g

x

3

6–6

–6
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67. (a) The original graph is on the top;
the graph of is on the bottom.

(b) The original graph is on the top; the graph of is 

on the bottom.

[–5, 5] by [–10, 10][–5, 5] by [–10, 10]

y = ƒ1 ƒx ƒ2

[–5, 5] by [–10, 10][–5, 5] by [–10, 10]

y = ƒƒ1x2 ƒ
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(c) (d)

SECTION 1.7
Exploration 1
1.

2, 5, 9, 14, 20, 27
3. Linear: ; power: ; quadratic: ; cubic: ; quartic: 5. Since the quadratic curve fits the points
perfectly, there is nothing to be gained by adding a cubic term or a quartic term. The coefficients of these terms in the regressions are zero.

Quick Review 1.7

1. 3. 5. 7. 9.

Exercises 1.7
1. 3. 0.17x 5. 7. 1.045x 9. 0.60x 11. Let C be the total cost and n be the number of 

items produced; . 13. Let R be the revenue and n be the number of items sold: . 15.
17. 19. 21. 23.
25. 27. ; The $33 shirt is a better bargain, because the sale price is cheaper.

29. 9% 31. (a) (b) Use gallons of the 10% solution and about 42.86 gal of the 

45% solution. 33. (a) (b) (c) Approx. 2.06 in. by 2.06 in. 35. 6 in. 37. Approx. 21.36 in.

39. Approx. 11.42 mph 41. True; the correlation coefficient is close to 1 if there is a good fit. 43. C 45. B
47. (a) (b) (c) pairs of shoes (d) The point of intersection corresponds to the break-even point, 

where . 49. (a) (b) (c) (d)

(e) (f) You should recommend stringing the rackets; fewer strung rackets need to 
be sold to begin making a profit (since the intersection of and occurs 
for smaller x than the intersection of and ).y3y1

y4y2

[0, 10,000] by [0, 500,000]

y4 = Rs1x2 = 79xy3 = Ru1x2 = 56xy2 = s1x2 = 125,000 + 31xy1 = u1x2 = 125,000 + 23xC = R

x = 5000R = 50xC = 100,000 + 30x

10, 52V = x110 - 2x2118 - 2x2
x L 57.140.10x + 0.451100 - x2 = 0.2511002

0.601332 = 19.8, 0.751272 = 20.25182 = 52t, so t = 3.5 hr
1.035x = 36,432; x = 35,200x + 4x = 620; x = 124; 4x = 496A = 24r 2A = a2115/4

V =  (2/3)pr 3R = 3.75nC =  34,500 + 5.75n

1x + 1221x23x + 5

P =

A

11 + r/n2nt = A11 + r/n2-nth =

A - 2pr 2

2pr
=

A

2pr
- rr = A3   

3V

4p
h = V/1pr 22h = 21A/b2

R2
= 1R2

= 1R2
= 1r 2

= 0.9903r 2
= 0.9758

n = 10;  d = 35n = 9;  d = 27n = 8;  d = 20n = 7;  d = 14

n = 6;  d = 9n = 5;  d = 5
n = 4;  d = 2

n = 3;  d = 0

y

x

y

x
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51. (a) (b) List 

(c) . It fits the data extremely well.

CHAPTER 1 REVIEW EXERCISES
1. d 3. i 5. b 7. g 9. a 11. (a) All reals (b) All reals 13. (a) All reals (b)

15. (a) All reals (b) 17. (a) All reals except 0 and 2 (b) All reals except 0

19. Continuous 21. (a) Vertical asymptotes at and (b)

23. (a) none (b) and 25.

27. 29. Not bounded

31. Bounded above 33. (a) None (b) , at 

35. (a) , at (b) None 37. Even 39. Neither 41. 43. 2/x

45. 47.

49. 51.

53. 55.

57. 59. 61. 63.

65. (a) (b) The regression line is (c) 2450 (thousands of barrels)

[–1, 9] by [1160, 1970][–1, 9] by [1160, 1970]

40 - t/150p2100phps2/2lim
x: q

 1x = q

1ƒ � g21x2 = 1x1x2
- 42; 30, q21ƒ � g21x2 = 2x2

- 4; 1- q , -24 ´ 32, q2
[–5, 5] by [–5, 5][–5, 5] by [–5, 5]

[–5, 5] by [–5, 5][–5, 5] by [–5, 5]

1x - 32/2x = 0-1

x = -1-7

1- q , -12, 1-1, 12, 11, q2
1- q , q2y = -7y = 7

y = 0x = 5x = 0

38, q2
30, q2

y = 118.07 * 0.951x

50.8, 47.9, 45.2, 43.26
L3 = 5112.3, 106.5, 101.5, 96.6, 92.0, 87.2, 83.1, 79.8, 75.0, 71.7, 68, 64.1, 61.5, 58.5, 55.9, 53.0,

[0, 22] by [100, 200]

848 SELECTED ANSWERS

3

3 3h
2

r r

h

3 – r2h = 2

(b) (c) (d) (e) 12.57 in.3

[0,    3] by [0, 20]��

30, 1342pr 223 - r 2

.y = 79.58x + 1256.11

67. (a) h = 223 - r 2
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Chapter 1 Project
1. 3. 34.854; 49.785 5. The logistic model for the data is .

SECTION 2.1
Exploration 1
1. per year 3. $50,000; $18,000

Quick Review 2.1
1. 3. 5. 7. 9.

Exercises 2.1
1. Not a polynomial function because of the exponent 3. Polynomial of degree 5 with leading coefficient 2
5. Not a polynomial function because of the radical

-5

y

7

x
5

(3, 1)
(�2, 4)

21x - 1223x2
- 36x + 108x2

+ 6x + 9y = -0.6x + 2.8y = 8x + 3.6

-$2000

y =

16,098

1 + 432.23e-0.3678x

[–2, 20] by [–1720, 12000]
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7. 9. 11.

y

5

x
5

(0, 3)

(3, 0)

ƒ1x2 = -x + 3

y

10

x
10

(–4, 6)

(–1, 2)

ƒ1x2 = -  

4

3
 x +

2

3

y

5

x
3

(2, 4)

(–5, –1)

ƒ1x2 =

5

7
 x +

18

7

13. (a) 15. (b) 17. (e)

19. Translate the graph of units right and the 
result 2 units down.

21. Translate the graph of units left, vertically 

shrink the resulting graph by a factor of , and translate 

that graph 3 units down.

x

y

10

10

1

2

y = x2 2

x

y

10

10

y = x2 3
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23. Vertex: ; axis: 25. Vertex: ; axis: 

27. Vertex: axis: 

29. Vertex: ; axis: 

31. Vertex: ; axis: x =

3

5
; g1x2 = 5ax -

3

5
b2

+

11

5
a3

5
, 

11

5
b

x = 4; ƒ1x2 = -1x - 422 + 1914, 192
x = -  

5

6
; ƒ1x2 = 3ax +

5

6
b2

-

73

12
a -  

5

6
, -  

73

12
b ;

x = 111, -72x = 111, 52
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33. ; Vertex: ;
axis: ; opens upward;
does not intersect x-axis

35. ;
Vertex: ; axis: ; opens 
downward; intersects x-axis at about 

and 0.602, or 

37. ;

Vertex: ; axis: ;

opens upward; does not intersect 
x-axis; vertically stretched by 2

[–3.7, 1] by [2, 5.1]

x = -  

3

2
a -  

3

2
, 

5

2
b

ƒ1x2 = 2ax +

3

2
b2

+

5

2

[–20, 5] by [–100, 100]

1-8 � 1742-16.602

x = -81-8, 742
ƒ1x2 = -1x + 822 + 74

[–4, 6] by [0, 20]

x = 2
12, 22ƒ1x2 = 1x - 222 + 2

39. 41. 43. 45. Strong positive 47. Weak positive

49. (a) (b) Strong positive 51. $940

53. (a) . The slope says that hourly compensation for production workers increases about 37¢/yr. (b) About $19.59
55. (a) by is one possibility. (b) either 107,335 units or 372,665 units 57. 3.5 ft

59. (a) (b) (c) 90 cents per can; $16,200

61. (a) About 215 ft above the field (b) About 6.54 sec (c) About 117 ft/sec downward
63. (a) (b) 90 ft, 2.5 sec 65. 2006

[0, 5] by [–10, 100]

h = -16t 2
+ 80t - 10

[0, 15] by [10,000, 17,000]

R1x2 = 126,000 - 1000x210.50 + 0.05x2
30, 1000430, 1004

y L 0.371x + 2.891

[15, 45] by [20, 50]

y = 21x - 122 + 3y = -21x - 122 + 11y = 21x + 122 - 3

67. (a)

[15, 45] by [20, 40]

(b)

(c) On average, the children gained
0.68 pounds per month.

y L 0.68x + 9.01 (d)

[15, 45] by [20, 40]

(e) L 29.41 lb
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77. (a) (i), (iii), and (v) because they are slant lines (b) (i), (iii), (iv), (v), and (vi) because they are not vertical (c) (ii) is not a function
because it is vertical.
79. The line that minimizes the sum of the squares of vertical distances is nearly always different from the line that minimizes the sum of the
squares of horizontal distances to the points in a scatter plot. For the data in Table 2.2, the regression line obtained from reversing the ordered
pairs has a slope of 1/15,974.90; whereas, the inverse of the function in Example 3 has a slope of 1/15,358.93—close but not the same slope.

81. (a) The two solutions are their sum is .

(b) The product of the two solutions given above is 83.

85. Suppose with m and b constants and . Let and be real numbers with . Then the average rate of change 

of ƒ is a nonzero constant. On the other hand, suppose m and are constants

and . Let x be a real number with and let ƒ be a function defined on all real numbers such that Then

and . Notice that the expression is a constant; call it b. Then

; so, and for all . Thus ƒ is a linear function.

SECTION 2.2
Exploration 1

1. The pairs and are common 

to all three graphs.

Quick Review 2.2
1. 3. 5. 7. 9.

Exercises 2.2

1. Power , constant 3. Not a power function 5. Power constant 7. Power constant

9. Power constant 11. Degree coefficient 13. Degree coefficient

15. Degree coefficient 17. 19. 21.
23. The weight w of an object varies directly with its mass m, with the constant of variation g.

25. The refractive index n of a medium is inversely proportional to v, the velocity of light in the medium, with constant of variation c, the 
constant velocity of light in free space.

E = mc2I = V/RA = ks2
= 4p= 2,

= -6= 7,= -4= 0,= k= -2,

=

g

2
= 2,= c2

= 1,= -  

1

2
= 5

L 1.71x -4/33x3/21/25 q41/d223 x2

1-1, -1210, 02, 11, 12

[–5, 5] by [–15, 15]  [–20, 20] by [–200, 200][–2.35, 2.35] by [–1.5, 1.5]

x Z x1ƒ1x2 = mx + bƒ1x12 = mx1 + bƒ1x12 - mx1 = b

ƒ1x12 - mx1ƒ1x2 = mx + 1ƒ1x12 - mx12ƒ1x2 - ƒ1x12 = m1x - x12

ƒ1x2 - ƒ1x12
x - x1

= m.x Z x1m Z 0

x1

ƒ1x22 - ƒ1x12
x2 - x1

=

1mx2 + b2 - 1mx1 + b2
x2 - x1

=

m1x2 - x12
x2 - x1

= m,

x1 Z x2x2x1m Z 0ƒ1x2 = mx + b

aa + b

2
, -  

1a - b22
4

bb2
- (b2

- 4ac)

4a2
=

c

a
.

2a -  

b

2a
b = -  

b

a

-b + 2b2
- 4ac

2a
 and 

-b - 2b2
- 4ac

2a
;

--
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27. Power , constant ; Domain: ; Range: ;
Continuous; Decreasing on . Increasing on ; Even.
Symmetric with respect to y-axis; Bounded below, but not above; 
Local minimum at ; Asymptotes: none; End Behavior: 

[–5, 5] by [–1, 49]

2x4
= q , lim

x: q

 2x4
= qlim

x: -q

x = 0

10, q21- q , 02
30, q21- q , q2= 2= 4

69. The Identity Function 

Domain: ; Range: ; Continuous;
Increasing for all x; 
Symmetric about the origin; Not bounded; No local
extrema; No horizontal or vertical asymptotes; End
behavior: lim

x: q

 ƒ1x2 = qlim
x: -q

 ƒ1x2 = - q , 

1- q , q21- q , q2

[–4.7, 4.7] by [–3.1, 3.1]

ƒ1x2 = x 71. False. The initial value is 

73. E 75. B

ƒ102 = -3
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65. (a) The graphs of and 
are similar and appear in the first and third
quadrants only. The graphs of and

are similar and appear in the first
and second quadrants only. The pair is
common to all four functions.

11, 12
k1x2 = x -4

g1x2 = x -2

h1x2 = x -3ƒ1x2 = x -1

[0, 1] by [0, 5] [0, 3] by [0, 3] [–2, 2] by [–2, 2]

37. (g) 39. (d) 41. (h) 43. . ƒ is increasing in Quadrant I. ƒ is undefined for .

45. . ƒ is decreasing in Quadrant IV. ƒ is even. 47. , . ƒ is decreasing in Quadrant I. ƒ is odd.

49. , power , constant 51. 2.21 L 53.

55. (a) (b) (c) (d) Approximately 37.67 beats/min, which is
very close to Clark’s observed value

57. (a) (b) ; yes (c) (d) Approximately and 
0.697 , respectively

59. False, because . The graph of ƒ is symmetric about the origin. 61. E 63. Bƒ1-x2 = 1-x21/3
= -x1/3

= -ƒ1x2

W/m2
2.76 W/m2

[0.8, 3.2] by [�0.3, 9.2]

y L 7.932 # x -1.987

[0.8, 3.2] by [–0.3, 9.2]

[–2, 71] by [50, 450]

r L 231.204 # w-0.297

[–2, 71] by [50, 450]

1.24 * 108 m/sec= 8= -2y =

8

x2

a = -3k =

1

2
k = -2, a =

4

3

x 6 0k = 3, a =

1

4
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29. Power , constant ; Domain: ;

Range: ; Continuous; Increasing on ; 
Bounded below; Neither even nor odd; Local minimum at ;
Asymptotes: none; 

End Behavior: [–1, 99] by [–1, 4]lim
x: q

 
1

2
 14 x = q

10, 02
30, q230, q2

30, q2=

1

2
=

1

4

31. Shrink vertically by ; ƒ is even.
33. Stretch vertically by 1.5 and reflect 

over the x-axis; ƒ is odd. 35. Shrink vertically by ; ƒ is even.

[–5, 5] by [–1, 49]

1

4

[–5, 5] by [–20, 20][–5, 5] by [–1, 19]

2

3
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ƒ g h k

Domain

Range

Continuous yes yes yes yes

Increasing

Decreasing

Symmetry w.r.t. origin w.r.t. y-axis w.r.t. origin w.r.t. y-axis

Bounded not below not below

Extrema none none none none

Asymptotes x-axis, y-axis x-axis, y-axis x-axis, y-axis x-axis, y-axis

End Behavior lim
x: � q

 k(x) = 0lim
x: � q

 h(x) = 0lim
x: � q

 g(x) = 0lim
x: � q

 ƒ(x) = 0

10, q21- q , 02, 10, q210, q21- q , 02, 10, q2
1- q , 021- q , 02

y 7 0y Z 0y 7 0y Z 0

x Z 0x Z 0x Z 0x Z 0

f g h k

Domain

Range

Continuous yes yes yes yes

Increasing

Decreasing

Symmetry none w.r.t. origin none w.r.t. origin

Bounded below not below not

Extrema min at none min at none

Asymptotes none none none none

End 

behavior lim
x: -q

 k1x2 = - qlim
x: -q

 g1x2 = - q

lim
x: q

 k1x2 = qlim
x: q

 h1x2 = qlim
x: q

 g1x2 = qlim
x: q

 ƒ1x2 = q

10, 0210, 02

1- q , q230, q21- q , q230, q2

1- q , q2y Ú 01- q , q2y Ú 0

3- q , q230, q21- q , q230, q2

(b) The graphs of and are simi-
lar and appear in the first quadrant only. The graphs of

and are similar and appear 
in the first and third quadrants only. The pairs

are common to all four functions.10, 02, 11, 12
k1x2 = x1/5g1x2 = x1/3

h1x2 = x1/4ƒ1x2 = x1/2

[0, 1] by [0, 1] [0, 3] by [0, 2] [–3, 3] by [–2, 2]

67. . Squaring both sides shows that approximately . 69. If is even, . If is 

odd, . If , then and . So by the reasoning used

above, if is even, so is and if is odd, so is . 71. (a) The force F acting on an object varies jointly as the mass m of the

object and the acceleration a of the object. (b) The kinetic energy KE of an object varies jointly as the mass m of the object and the square of

the velocity v of the object. (c) The force of gravity F acting on two objects varies jointly as their masses m1 and and inversely as the square

of the distance r between their centers, with the constant of variation G, the universal gravitational constant.

SECTION 2.3
Exploration 1
1. (a) (b) (c) (d) 3. (a) (b) (c) (d) q ; - qq ; q- q ; - q- q ; q- q ; qq ; - q- q ; qq ; - q

m2

ƒ1x2g1x2ƒ1x2,g1x2
ƒ1x2 = 1/g1x2ƒ1x2 # g1x2 = 1g1x2 = 1/ƒ1x2g1-x2 = 1/ƒ1-x2 = 1/1-ƒ1x22 = -1/ƒ1x2 = -g1x2

ƒ1x2g1-x2 = 1/ƒ1-x2 = 1/ƒ1x2 = g1x2ƒ1x2T2
= a3T L a1.5

Exploration 2
1. y = 0.0061x3

+ 0.0177x2
- 0.5007x + 0.9769
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1. Shift to the right by 3 units, 
stretch vertically by 2. 
y-intercept: 

3. Shift to the left by 1 unit, 

vertically shrink by , reflect over the 

x-axis, and then vertically shift up 2 units. 

y-intercept: 

x

y

5

5

a0, 
3

2
b

1

2

y = x3

x

y

10

10

10, -542
y = x3

7. Local maximum: , zeros: and . 9. (c) 11. (a)x L 1.26x = 0L 10.79, 1.192
13. One possibility: 15. One possibility:

[–50, 50] by [–1000, 1000][–100, 100] by [–1000, 1000]

17. 19.

lim
x: q 

ƒ1x2 = - q ; lim
x: -q

 ƒ1x2 = q

[–8, 10] by [–120, 100]

lim
x: q 

ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = - q

[–5, 3] by [–8, 3]

21. 23.

lim
x: q 

ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = q

[–3, 5] by [–50, 50]

lim
x: q 

ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = q

[–5, 5] by [–14, 6]

25. 27.

29. (a) There are 3 zeros: they are and 1.1.

31. (c) There are 3 zeros: approximately and 1.

33. and 2 35. and 37. and 10, -  

2

3
,-  

1

3

2

3
-4

-0.273 aactually -  

3

11
b , -0.25,

-2.5, 1,

- q , qq , q

5. Shift to the left 2 units, 
vertically stretch by 2, reflect over the 
x-axis, and vertically shift down 
3 units. y-intercept: 

x

y

5

40

10, -352

y = x4

Quick Review 2.3
1. 3. 5. 7. 9.

Exercises 2.3

x = -6, x = -3, x = 1.5x = 0, x = 1x13x - 221x - 1213x - 221x - 321x - 421x + 32
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49. and 6 51. 53. 55.

57. 59.
61. It follows from the Intermediate Value Theorem.

y = -2.21x4
+ 45.75x3

- 339.79x2
+ 1075.25x - 1231y = 0.25x3

- 1.25x2
- 6.75x + 19.75

ƒ1x2 = x3
- 4x2

- 3x + 12ƒ1x2 = x3
- 5x2

- 18x + 72-5, 1, 110, -6,

SELECTED ANSWERS 855

39. Degree 3; zeros: (mult. 1, graph crosses x-axis),
(mult. 2, graph is tangent)

41. Degree 5; zeros: (mult. 3, graph crosses x-axis), 
(mult. 2, graph is tangent)

y

10

–10

x
–5 5

x = -2
x = 1

x

y

6

10

x = 3
x = 0

43. 45. 47.

-4.90, -0.45, 1, 1.35

[–6, 4] by [–100, 20]

-2.47, -1.46, 1.94

[–3, 3] by [–10, 10]

-2.43, -0.74, 1.67

[–3, 2] by [–10, 10]

63. (a)

(b)

(c)

(d) (e) 67.74 mph

65. (a)

(b) 0.3391 cm

[0, 0.8] by [0, 1.20]

L 56.39 ft

[0, 60] by [–10, 210]

y = 0.051x2
+ 0.97x + 0.26

[0, 60] by [–10, 210]

67. or 69. True. Because ƒ is continuous and and , the Intermediate Value Theorem 

assures us that the graph of f crosses the x-axis between and . 71. C 73. B 75. The figure at left shows the end behavior
and a zero of , but hides the other four zeros. The figure at right shows zeros near and 3, but hides the fifth zero and the end
behavior. 77. The exact behavior near is hard to see. A zoomed-in view around the point suggests that the graph just touches the 

x-axis at 0 without actually crossing it — that is, is alocal maximum. One possible window is by .

79. A maximum and minimum are not visible in the standard window, but can be seen on the window by . 81. The graph 

of increases, then decreases, then increases; the graph of only increases. Therefore, this graph cannot be obtained from the
graph of by the transformations studied in Chapter 1 (translations, reflections, and stretching/shrinking). Since the right side includes only 

these transformations, there can be no solution.

y = x3
y = x3y = 31x3

- x2
35.29, 5.3430.2, 0.44
3-1 * 10-7, 1 * 10-7430.9999, 1.0001411, 02

11, 02x = 1
-2, -1, 1,x L 9

x = 2x = 1

ƒ122 = 2ƒ112 = -23.644 … x 6 50 6 x … 0.929

85. (a) and imply implies . Combining these yields , which 

implies . (b) Equation (a) says . So, . Thus . (c) By the Pythagorean Theorem, 

and . Subtracting equal quantities yields . So, . Thus, 

, or . This is equivalent to .

(d) Notice that . So, the solution we seek is , which yields and .D L 16.21y L 25.24x L 11.718 6 x 6 20

x4
- 16x3

+ 500x2
- 8000x + 32000 = 0500x2

- 8000x + 32000 = 64x2
- x4

+ 16x3
- 64x264x2

- x21x - 822
500 1x - 822 =500 = a 8x

x - 8
b2

- x2y2
- x2

= 500x2
+ D2

= 400y2
+ D2

= 900

y =

8x

x - 8

8
y

= 1 -

8
x

=

x - 8
x

8
x

= 1 -

8
y

8
x

=

y - 8

y

uy

x
=

u1y - 82
8

D - u =

u1y - 82
8

D - u =

uy

x
#
8
u

=

y - 8

D - u

8
u

=

y

D

8

D - u
=

x

D

83. (a) Substituting , , we find that
, so Q is on line L, 

and also ,
so Q is on the graph of .ƒ1x2

ƒ122 = -8 + 8 + 18 - 11 = 7
7 = 512 - 22 + 7

y = 7x = 2 (b)

[1.8, 2.2] by [6, 8]

(c) The line L also crosses the graph of
at .1-2, -132ƒ1x2
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SECTION 2.4
Quick Review 2.4
1. 3. 5. 7. 9.

Exercises 2.4

1. 3.

5. ; 

7. 9. 11. 13. 3 15.

17. 5 19. Yes 21. No 23. Yes 25. 27.

29. 31. 33. 35.

37. Numbers in last line— —are nonnegative, so 3 is an upper bound. 39. Numbers in last line—1, 1, 3, 7, 2—are nonnegative, so
2 is an upper bound. 41. Numbers in last line—3, , 8, —have alternating signs, so –1 is a lower bound. 43. Numbers in last
line—1, , 7, —are nonnegative, so 0 is a lower bound. 45. No zeros outside window 47. There are zeros not shown 

. 49. Rational zero: ; irrational zeros: 51. Rational: ; irrational: 53. Rational: 

and 4; irrational: 55. Rational: and 4; irrational: none 57. $36.27; 53.7 59. 61. (b) 2 is a zero of 

(c) (d) One irrational zero is . (e)

63. False. is a factor if and only if . 65. A 67. B 69. (a) Volume of buoy

(b) (c) (d)

71. (a) Shown is one possible view, on the window by .

(b) The maximum population, after 300 days, is 460 turkeys.
(c) when — about 523 days after release.
(d) Answers will vary.

73. (a) 0 or 2 positive zeros, 1 negative zero (b) No positive zeros, 1 or 3 negative zeros (c) 1 positive zero, no negative zeros
(d) 1 positive zero, 1 negative zero

75. Answers will vary, but should include a diagram of the synthetic division and a summary:

77. (a) (b) and 3 (c) There are no rational zeros. 79. (a) Approximate zeros: .

(b) (c) Graphically: graph the original function and the approximate 

factorization on a variety of windows and observe their similarity. Numerically: Compute and for several values of c.

SECTION 2.5
Exploration 1
1. ; no.

3. The Complex Conjugate Zeros Theorem does not necessarily hold true for a polynomial function with complex coefficients.

Quick Review 2.5
1. 3. 5. 7. 9. �1, �2, �1/3, �2/3

5

2
�

119

2
 i12x - 321x + 127 + 4i1 + 3i

ƒ12i2 = (2i22 - i(2i2 + 2 = -4 + 2 + 2 = 0; ƒ1- i2 = 1- i22 - i1- i2 + 2 = -1 - 1 + 2 = 0

g1c2ƒ1c2
ƒ1x2 L g1x2 = 1x + 3.12621x + 1.07521x - 0.91021x - 2.2912

-3.126, -1.075, 0.910, 2.291-  

7

3
, 

1

2
,

= 12x - 12a2x2
-

3

2
 x +

3

4
b +

7

4

4x3
- 5x2

+ 3x + 1 = ax -

1

2
b a4x2

- 3x +

3

2
b +

7

4

t L 523.22P = 0

[0, 600] by [0, 500]

30, 500430, 6004
x L 0.6527 mV # d =

px

6
# 13r 2

+ x22 # d = pd # x13r 2
+ x22/64

3
 p #

d

4
=

pd

3

=

4

3
 pr 3

=

4

3
 p # 1123 =

4

3
 pƒ1-22 = 01x + 22

ƒ1x2 L 1x - 221x - 2.0421x2
+ 6.04x + 9.31162x L 2.041x3

+ 4x2
- 3x - 1921x - 22

ƒ1x2-2-  

1

2
�12

-11 � 13-3�12
3

2
1approx. -11.002 and 12.0032

-2-4
-5-7

2, 2, 7, 19

�1, �3, �9

�1, �2
 ; 

3

2

�1

�1, �2, �3, �6
 ; 1ƒ1x2 = 31x + 421x - 321x - 522x3

- 8x2
+

19

2
 x - 3

2x3
- 6x2

- 12x + 16ƒ1x2 = 1x + 321x - 12(5x - 172
-43-5x3

- 20x2
- 80x - 317 +

-1269

4 - x
9x2

+ 97x + 967 +

9670

x - 10
x2

- 6x + 9 +

-11

x + 1

ƒ1x2
x2

+ 2x - 1
= x2

- 4x + 12 +

-32x + 18

x2
+ 2x - 1

ƒ1x2 = 1x2
- 4x + 1221x2

+ 2x - 12 - 32x + 18

ƒ1x2
2x + 1

= 2x2
- 5x +

7

2
-

9/2

2x + 1

ƒ1x2 = 1x2
+ x + 421x + 32 - 21; 

ƒ1x2
x + 3

= x2
+ x + 4 -

21

x + 3
ƒ1x2 = 1x - 122 + 2; 

ƒ1x2
x - 1

= x - 1 +

2

x - 1

1x + 221x + 121x - 1241x + 521x - 32x1x + 221x - 227x3
+ x2

- 3x2
- 4x + 7
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Exercises 2.5
1. ; zeros: ; x-intercepts: none 3. ; zeros: 1 , ; x-intercept: 5.

7. 9. 11. 13.
15. 17. (b) 19. (d) 21. 2 complex zeros; none real 23. 3 complex zeros; 1 real

25. 4 complex zeros; 2 real 27. Zeros: 

29. Zeros: 

31. Zeros: 

33. Zeros: 

35. Zeros: 

37. 39. 41. 43.

45. Yes, 47. No, either the degree would be at least 5 or some of the coefficients would be nonreal.

49.

51. (a)

(b) Sally walks toward the detector, turns and walks away (or walks backward), then walks toward the
detector again.

(c) and sec .

53. False. If is a zero, then must also be a zero. 55. E 57. C

59. (a) (b)

(c) Reconcile as needed.

61. 63. Synthetic division shows that (the remainder), and at the same 

time gives . 65.

SECTION 2.6
Exploration 1

-4, 2 + 213 i, 2 - 213 iƒ1x2 , 1x - i2 = x2
+ 3x - i = h1x2, so ƒ1x2 = 1x - i21x2

+ 3x - i2
ƒ1i2 = 0ƒ1i2 = i3

- i(i22 + 2i1i2 + 2 = - i + i - 2 + 2 = 0

11 + i210
= 32i

11 + i29 = 16 + 16i

11 + i28 = 16

11 + i27 = 8 - 8i

1 + 2i1 - 2i

1D L 3.65 m2t L 5.64t L 1.81 sec (D L 1.35 m2

[–1, 9] by [0, 5]

D L -0.0820t 3
+ 0.9162t 2

- 2.5126t + 3.3779

ƒ1x2 = -2x4
+ 12x3

- 20x2
- 4x + 30

ƒ1x2 = 1x + 222 = x3
+ 6x2

+ 12x + 8.

h L 3.776 ft1x - 121x + 421x2
+ 121x - 12(2x2

+ x + 321x - 221x2
+ x + 12

x = �12, x = 3 � 2i; ƒ1x2 = 1x - 1221x + 1221x - 3 + 2i21x - 3 - 2i2
x = �13, x = 1 � i; ƒ1x2 = 1x - 1321x + 1321x - 1 + i21x - 1 - i2
x = -  

7

3
, x =

3

2
, x = 1 � 2i; ƒ1x2 = 13x + 7212x - 321x - 1 + 2i21x - 1 - 2i2

x = �1, x = -  

1

2
�

123

2
 i; ƒ1x2 =

1

4
 1x - 121x + 1212x + 1 + 123i212x + 1 - 123i2

x = 1, x = -  

1

2
�

119

2
 i; ƒ1x2 =

1

4
 1x - 1212x + 1 + 119i212x + 1 - 119i2

x4
- 10x3

+ 38x2
- 64x + 40

x5
+ 4x4

+ x3
- 10x2

- 4x + 8x3
- 11x2

+ 43x - 65x4
- 5x3

+ 7x2
- 5x + 6x3

- x2
+ 9x - 9

x2
+ 1x = 1�2i1mult. 22x4

- 2x3
+ 5x2

- 8x + 4�3ix2
+ 9
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Power Real Part Imaginary Part

7 8
8 16 0
9 16 16

10 0 32

-8

1. 3.

[–1, 9] by [–5, 5]

k1x2 =

3

x + 4
- 2

[–3, 7] by [–5, 5]

g1x2 =

1

x - 2

Quick Review 2.6

1. 3. 5. 7. 2; 7 9. 3; -5x = 1x = �2x = -3, x =

1

2
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Exercises 2.6
1. Domain: all ; 

3. Domain: all ;  ƒ1x2 = q , lim
x:2-

 ƒ1x2 = q , lim
x:2+

 ƒ1x2 = - qlim
x: -2+

 ƒ1x2 = - q ,lim
x: -2-

x Z -2, 2

 ƒ1x2 = qlim
x: -3+

 ƒ1x2 = - q ,lim
x: -3-

x Z -3

858 SELECTED ANSWERS

5. Translate right 3 units.
Asymptotes: , 

7. Translate left 3 units, reflect across x-axis, 
vertically stretch by 7, translate up 2 units. 
Asymptotes: , 

9. Translate left 4 units, vertically stretch by
13, translate down 2 units. Asymptotes:

, 

x

y

6

8

y = -2x = -4

x

y

6

10

y = 2x = -3

x

y

5

5

y = 0x = 3

11. 13. 0 15. 17. 5 19. Vertical asymptote: none; horizontal asymptote: ; 

21. Vertical asymptotes: , ; horizontal asymptote: , ,

lim
x:1+

 ƒ1x2 = q , lim
x: -q

 ƒ1x2 = lim
x: q

 ƒ1x2 = 0

lim
x:1-

 ƒ1x2 = - qy = 0; lim
x:0-

 ƒ1x2 = q , lim
x:0+

 ƒ1x2 = - qx = 1x = 0

ƒ1x2 = lim
x: q

 ƒ1x2 = 2lim
x: -q

y = 2qq

23. Intercepts: and ;

asymptotes: , ,
and 

[–4, 6] by [–5, 5]

y = 0
x = 3x = -1

12, 02a0, 
2

3
b 25. No intercepts;

asymptotes: , ,
, and 

[–4.7, 4.7] by [–10, 10]

y = 0x = 1
x = 0x = -1

27. Intercepts: 
and ; asymptotes:

, , and 

[–5, 5] by [–4, 6]

y = 2x = -1x = 1
(0.78, 02

10, 22, 1-1.28, 02, 29. Intercept: ;

asymptotes: ,

[–20, 20] by [–20, 20]

y = x - 4
x = -2

a0, 
3

2
b

31. (d); , , , and , , 
33. (a); , , , and , , 
35. (e); , , , and , , 

37. Intercept: asymptotes: 

Domain: Range: Continuity: all 

Increasing: ; Decreasing: Unbounded; 

Local Maximum at Horizontal asymptote: 

Vertical asymptotes: End behavior: 

39. Intercepts: ; asymptotes: 

Domain: ; Range: ;

Continuity: all ;

Decreasing: , ;

No symmetry; Unbounded; No extrema;

Horizontal asymptote: ; Vertical asymptotes: ;

End behavior: lim
x: -q

 h1x2 = lim
x: q

 h1x2 = 0

x = -3, x = 4y = 0

14, q21- q , -32, 1-3, 42
x Z -3, 4

1- q , q2x Z -3, 4

[–5.875, 5.875] by [–3.1, 3.1]

lim
x:4+

 h1x2 = q

x = -3, x = 4, y = 0; lim
x: -3-

 h1x2 = - q , lim
x: -3+

 h1x2 = q , lim
x:4-

 h1x2 = - q ,a0, 
1

12
b , 11, 02

lim
x:  -q

ƒ1x2 = lim
x: q

ƒ1x2 =  0x = -1, x =

3

2
 ;

y = 0;a1

4
, -  

16

25
b ;

c1
4

, 
3

2
b , a3

2
, q b ;1- q , -12, a -1, 

1

4
d

x Z -1, 
3

2
 ;a - q , -  

16

25
d ´ 10, q2;x Z -1, 

3

2
;

[–4.7, 4.7] by [–3.1, 3.1]

lim
x: (3/2)+ 

ƒ1x2 = q ;

 lim
x: (3/2)- 

ƒ1x2 = - q , lim
x:  -1-

 ƒ1x2 = q , lim
x: - 1+

 ƒ1x2 = - q ,x = -1, x =

3

2
 , y = 0;a0, -  

2

3
b ;

Yscl = 1Ymax = 3Ymin = -3Xscl = 1Xmax = 8Xmin = -2
Yscl = 1Ymax = 10Ymin = -5Xscl = 1Xmax = 5Xmin = -3

Yscl = 1Ymax = 3Ymin = -3Xscl = 1Xmax = 8Xmin = -2
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41. Intercepts: asymptotes: ,

Domain: ; Range: ; Continuity: all ;
Increasing: ; Decreasing: ;
No symmetry; Unbounded; Local maximum at ;
Horizontal asymptote: ; Vertical asymptotes: , ;
End behavior: 

43. Intercepts: asymptotes: 

Domain: , Range: ;
Continuity: all ;
Increasing: ;
No symmetry; Unbounded; No extrema;
Horizontal asymptote: none; Vertical asymptote: ;
Slant asymptote: ; End behavior: 

45. 47.
(a) (a)

(b) (b)

[–50, 50] by [–1500, 2500][–500, 500] by [–500, 500]

[–10, 10] by [–30, 60][–10, 20] by [–10, 30]

y = x2
- 3x + 6y = x + 3

lim
x: -q

 h1x2 = - q , lim
x: q

 h1x2 = qy = x
x = -2

1- q , -22, 1-2, q2
x Z -2

1- q , q2x Z -2

[–9.4, 9.4] by [–10, 20]

x = -2, y = x; lim
x: -2-

 h1x2 = q ,  lim
x: -2+

 h1x2 = - qa0, -  

3

2
b ;1-3, 02, 11, 02,

lim
x: -q

 ƒ1x2 = lim
x: q

 ƒ1x2 = 1
x = 3x = -3y = 1

1-0.675, 0.2602
1-0.675, 32, (3, q21- q , -32, 1-3, -0.6752

x Z -3, 31- q , 0.2604 ´ 11, q2x Z -3, 3

[–9.4, 9.4] by [–3, 3]

lim
x:3+

 ƒ1x2 = q

x = -3, x = 3, y = 1; lim
x: -3-

 ƒ1x2 = q , lim
x: -3+

 ƒ1x2 = - q , lim
x:3-

 ƒ1x2 = - q1-2, 02, 11, 02, a0, 
2

9
b ;
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49.
(a)

(b)

[–20, 20] by [–5000, 5000]

[–5, 5] by [–100, 200]

y = x3
+ 2x2

+ 4x + 6

51. Intercept: 

Domain: ; Range: 

Continuity: Increasing: , ;

Decreasing: , 

No symmetry; Bounded;

Local max at local min at , ;

Horizontal asymptote: ; Vertical asymptote: none;

End behavior: 

53. Intercepts: 

Domain: ; Range: ; Continuity: ;

Increasing: ;

Decreasing: , ;

No symmetry; Not bounded;

Local max at local min at 

and ; Horizontal asymptote: none;

Vertical asymptote: ;

End behavior: ;

End behavior asymptote: 

[–10, 10] by [–20, 50]

y = x2
+ 2x + 4

lim
x: -q

 h1x2 = lim
x: q

 h1x2 = q

x = 2

12.942, 25.9702
1-0.384, 0.443210.442, 0.5862,

30.442, 22, 12, 2.94241- q , -0.3844
3-0.384, 0.4424, 32.942, q2

x Z 21- q , q2x Z 2

11, 02, a0, 
1

2
b ;

[–15, 15] by [–5, 15]

lim
x: -q

 ƒ1x2 = lim
x: q

 ƒ1x2 = 3

y = 3

0.77321-0.24512.445, 14.2272,

32.445, q2;1- q , -0.2454
2.44543-0.2451- q , q2;

30.773, 14.2274;1- q , q2
a0, 

4

5
b ;
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77. The graph of f is the graph shifted horizontally units, stretched vertically by a factor of reflected across the x-axis

if and only if , and then shifted vertically by a/c.bc - ad 6 0

ƒbc - ad ƒ /c2,-d/cm =

1
x

860 SELECTED ANSWERS

55. Intercepts: ;

Domain: ; Range: ; Continuity: ;

Increasing: ;

Decreasing: ;

No symmetry; Not bounded;

Local min at ;

Horizontal asymptote: none;

Vertical asymptote: ;

End behavior: ;

End behavior asymptote: 

[–5, 5] by [–10, 10]

y =

1

2
 x2

-

3

4
 x +

1

8

lim
x: -q

 ƒ1x2 = lim
x: q

 ƒ1x2 = q

x =

1

2

1-0.184, 0.9202

1- q , -0.1844
B -0.184, 

1

2
b , a1

2
, q b

x Z

1

2
1- q , q2x Z

1

2

11.755, 02, (0, 12 57. Intercept: ;
Vertical asymptote: ;
End behavior asymptote:

[–5, 5] by [–30, 30]

y = x3
- x2

+ x - 1

x = -1
10, 12 59. Intercepts: ;

Vertical asymptote: ;
End behavior asymptote:

[–5, 5] by [–200, 400]

y = x4
- 2x3

+ 4x2
- 8x + 16

x = -2

11, 02, a0, -  

1

2
b

61. Intercepts: ;

Vertical asymptote: ;

End behavior asymptote: 

[–5, 5] by [–5, 5]

y = x4
+ x3

+ x2
+ x + 1

y = 2

x = 1

1-1.476, 02, 10, -22 63. False. is a rational function and has no vertical asymptotes. 65. E 67. D

69. (a) No: the domain of f is ; the domain of g is all real numbers.

(b) No: while it is not defined at 3, it does not tend toward on either side.

(c) Most grapher viewing windows do not reveal that f is undefined at 3.

(d) Almost — but not quite; they are equal for all .x Z 3

�q

1- q , 32 ´ (3, q2
1

x2
+ 1

73. Horizontal asymptotes: and ;

intercepts: 

75. Horizontal asymptotes: ;

intercepts: 

[–10, 10] by [–5, 5]

ƒ1x2 = d
5 - 3x

x + 4
x Ú 0

5 - 3x

-x + 4
x 6 0

a0, 
5

4
b , a5

3
 , 0b ;

y = �3

[–5, 5] by [–5, 5]

h1x2 = d
2x - 3

x + 2
x Ú 0

2x - 3

-x + 2
x 6 0

a0, -  

3

2
b , a3

2
 , 0b ;

y = 2y = -2

71. (a) The volume is , where x is pressure and k is a constant. is a quotient of polynomials and hence is rational, but

, so is a power function with constant of variation k and power . (b) If , where a is a negative integer, then the

power function f is also a rational function. (c) 4.22 L

ƒ1x2 = kxa
-1ƒ1x2 = k # x -1

ƒ1x2ƒ1x2 = k/x
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SECTION 2.7
Quick Review 2.7

1. 3. LCD: 5. LCD: ; 7. 9.

Exercises 2.7
1. 3. or 5. or ; the latter is extraneous. 7. or 9. or 

11. or ; the latter is extraneous. 13. or ; the latter is extraneous. 15. or ; the latter 

is extraneous. 17. or ; both of these are extraneous (there are no real solutions). 19. 21. Both

23. or 25. 27. No real solutions 29. or or 

31. (a) The total amount of solution is mL; of this, the amount of acid is x plus 60% of the original amount, or .

(b) (c) ; 

33. (a) (b) 4762 hats per week (c) 6350 hats per week

35. (a) (b) (a square); 

37. (a) (b) Either and or and .

39. (a) (b) ohms 41. (a) (b)

43. (a) (b) About 10.6 years 45. False. An extraneous solution is a solution of the equation cleared of fractions
that is not a solution of the original equation.

47. D 49. E 51. (a) (b) (c) (d) The graph appears to be the
horizontal line with
holes at and .

53. 55. x =

2y - 3

y - 2
x =

y

y - 1

[–4.7, 4.7] by [–3.1, 3.1]

x = 0x = -2
y = 1

ƒ1x2 = e1,                          x Z -2, 0

undefined, x = -2 or x = 0
x Z 0, -2ƒ1x2 =

x2
+ 2x

x2
+ 2x

[60, 110] by [0, 50]

t L 5.74 hD1t2 =

4.75 + t

4.75t
x L 6.52R1x2 =

2.3x

x + 2.3

h L 1.23 cmx L 11.37 cmh L 126.88 cmx L 1.12 cmS =

2px3
+ 1000
x

P L 53.96x L 13.49P1x2 = 2x +

364
x

C1x2 =

3000 + 2.12x

x

x L 169.12 mLC1x2 =

x + 75

x + 125
= 0.83y = 0.83

x + 0.6112521125 + x2
x L 2.439x L 0.661x L -3.100x = 1x = 3 - 12 L 1.586x = 3 + 12 L 4.414

x = -2x = 0x = -2

x = 0x = 5x = 2x = -  

1

3
x = -1x =

1

2

x = 4x = 3x = 5x = 2x = 3x = -4x = -7x = 2x = -1

-1 � 17

3

3 � 117

4

x2
- 7x - 2

12x + 121x - 3212x + 121x - 3236; -  

1

36
2x2

+ 8x
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SECTION 2.8
Exploration 1
1. (a)

Negative Negative Positive
(+)(–)(+) (+)(–)(+) (+)(+)(+)

2–3

x

Quick Review 2.8
1. ; 3. , 5. 7.

9. (a) (b) 1x + 1212x - 321x + 12�1, �
1

2
 , �3, �

3

2

x2
- 7x - 2

2x2
- 5x - 3

1x3
+ 52/xlim

x: -q

 g1x2 = qlim
x: q

 g1x2 = qlim
x: -q

 ƒ1x2 = - qlim
x: q

 ƒ1x2 = q

(b)

[–5, 5] by [–250, 50]

3. (a)
Positive Negative Negative
(+)(+) (–)(–) (+)(+) (+)(–) (+)(+) (+)(–)

2–4
x

(b)

[–5, 5] by [–3000, 2000]
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Exercises 2.8
1. (a) (b) or (c)
3. (a) (b) or (c)
5. (a) (b) or 7. 9.
11. 13. 15. 17. 19.

21. (a) (b) (c) There are no solutions. (d) There are no solutions. 23. (a) (b)

(c) There are no solutions. (d) 25. (a) (b) (c) or (d) , or 

27. (a) (b) (c) (d) 29. (a) (b) , 

(c) or (d) 31. (a) (b) , (c) or 

(d) is never negative. 33. 35. 37. 39.

41. 43. 45. 47. 49.

51. 53. 55. Answers will vary; can be solved graphically, numerically, and algebraically: .

57. in. 59. in. or . 61. (a)

(b) (c) About 348.73 

63. (a) (b) About July 22, 2012 65. False, because the factor does not change sign at . 67. Cx = 0x4y L 2.726x + 282.132

cm21.12 cm … x … 11.37 cm, 1.23 cm … h … 126.88 cm

S = 2px2
+ 1000/x4.20 in. … x … 6 in0 in. … x … 0.691 in. 6 x 6 34

3-3.5, q235, q23-3, q2
1- q , -12 ´ 31, 321- q , 02 ´ (13 2, q210, 22a -4, 

1

2
b10, 22 ´ 12, q2

3-1, 04 ´ 31, q21- q , -42 ´ 13, q23-1, 141- q , -22 ´ 11, 22ƒ1x2
x 7 43 6 x 6 4x 6 3x = 4x = 3-  

1

2
6 x 6 1x 7 1-5 6 x 6 -  

1

2

x 6 -5x = -  

1

2
, x = 1x = -5-3 6 x 6 0x 7 0x 6 -3x = 0, -3

1 6 x 6 4x 6 -  

3

2
x 7 4-  

3

2
6 x 6 1x = -  

3

2
, 4x = 1x =

4

3

1- q , q2x Z

4

3
1- q , q21- q , q2

13/2, 223-1.15, q21-1, 3/22 ´ 12, q23-1, 04 ´ 32, q23-2, 1/24 ´ 33, q2
1- q , -12 ´ 11, 221-1, 32 ´ 13, q2x 7 8-1 6 x 6 8x = 8, -1

-7 6 x 6 -4x 7 6x 6 -7 or -4 6 x 6 6x = -7, -4, 6
x 6 5x 6 -2 or -1 6x 7 5-2 6 x 6 -1x = -2, -1, 5
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69. D 71. Vertical asymptotes: , ; x-intercepts: ; y-intercept: 

Negative
3–1 1–2

0 un
de

fi
ne

d

0 un
de

fi
ne

d

x

(–)(–)2

(–)(–)

Negative

(–)(+)2

(–)(–)

Positive

(–)(+)2

(–)(+)

Negative

(+)(+)2

(–)(+)

Positive

(+)(+)2

(+)(+)

a0, 
4

3
b1-2, 02, 11, 02x = 3x = -1

By hand: Grapher

73. (a)

(b) If x stays within the dashed vertical lines, will stay within the dashed horizontal lines.

(c) The dashed lines would be closer when and

.

75. and .

CHAPTER 2 REVIEW EXERCISES
1. 3. Starting from , translate 

right 2 units and vertically stretch 
by 3 (either order), then translate 
up 4 units.

5. Vertex: ; axis: 7. Vertex: ; axis: 9. 11. y =

1

2
 1x - 322 - 2y = 15/921x + 222 - 3x = -41-4, 12x = -31-3, 52

x

y

6

10

y = x2

[–15, 5] by [–15, 5]

y = -x - 5

ab 6 b2; so, a2
6 b20 6 a 6 b Q a2

6 ab

y = 4

x = 3ƒx - 3 ƒ 6 0.01 Q ƒ3x - 9 ƒ 6 0.03 Q ƒ3x - 5 - 4 ƒ 6 0.03 Q ƒƒ1x2 - 4 ƒ 6 0.03.

ƒ1x2
ƒx - 3 ƒ 6 1/3 Q ƒ3x - 9 ƒ 6 1 Q ƒ3x - 5 - 4 ƒ 6 1 Q ƒƒ1x2 - 4 ƒ 6 1.

[0, 10] by [–40, 40][–5, 5] by [–5, 5]

x

y

105

30

–10

-30
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13. 15. 17.

19. The force F needed varies directly with the distance x from its resting position, with constant of variation k.

21. , , ƒ is increasing in the first quadrant, ƒ is odd. 23. , , ƒ is increasing in the fourth quadrant, ƒ is odd.

25. 27. 29. 31. Yes 37.

and 2 are zeros. 39. 41. i 43. 45. (c) 47. (b) 49. Rational: 0. Irrational: . No nonreal zeros.

51. Rational: none. Irrational: approximately , 0.57, 3.77. No nonreal zeros. 53.

55. , and 57.

59. 61.

63. 65.
67. Translate right 5 units and vertically stretch by 2 (either order), then translate down 1 unit. Horizontal asymptote: ; vertical asymp-

tote: .x = 5
y = -1

x4
- 4x3

- 12x2
+ 32x + 646x4

- 5x3
- 38x2

- 5x + 6

x3
- 3x2

- 5x + 15ƒ1x2 = 12x - 321x - 121x2
- 2x + 52

ƒ1x2 = 1x - 221x2
+ x + 12-  

5

2
; ƒ1x2 = 13x - 2212x + 521x - 121x + 121, -1, 

2

3

-  

3

2
, 3� i; ƒ1x2 = 12x + 321x - 3 + i21x - 3 - i2-2.34

5 � 123�2i-2 + 2i

�1, �2, �3, �6, �
1

2
, �

3

2
; -  

3

2
-392x2

- 3x + 1 +

-2x + 3

x2
+ 4

2x2
- x + 1 -

2

x - 3

a = -3k = -2a =

1

3
k = 4

S = kr 2

[–4, 3] by [–30, 30][–10, 7] by [–50, 10]
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69. Asymptotes: , , and
; intercept: 

[–5, 5] by [–5, 5]

10, -12x = 1
x = -1y = 1 71. End behavior asymptote: ;

vertical asymptote: ;

intercept: 

[–25, 25] by [–30, 20]

a0, 
5

3
b

x = -3
y = x - 7 73. y-intercept: , x-intercept: ;

Domain: ; Range: ;

Continuity: all ;

Decreasing: ;

Increasing: ;

Unbounded; Local minimum: ;

Vertical asymptote: ;

End behavior asymptote: ;

[–5, 5] by [–10, 20]

lim
x:  -q

ƒ1x2 =  lim
x: q

ƒ1x2 = q

y = x2
- x

x = -2

10.82, 1.632
30.82, q2
1- q , -22, 1-2, 0.824

x Z -2

1- q , q2x Z -2

1-2.55, 02a0, 
5

2
b

75. or 77. 79.

81. 83. Yes; at approximately 10.0002

85. (a) (b) Either or in.x L 8.63x L 4.57V = x130 - 2x2170 - 2x2 in.3

x = -3, x =

1

2

3-3, -22 ´ 12, q21- q , -5/22 ´ 1-2, 32x = 4x =

3

2

87. (a) (b) (c) The largest volume occurs when (so it is actually a sphere).

This volume is .
4

3
 p17023 L 1,436,755 ft3

x = 70

[0, 70] by [0, 1,500,000]

V =

4

3
 px3

+ px21140 - 2x2

89. (a) (b) (c) Using linear regression: in 2008; using
quadratic regression: in 2003

[0, 15] by [0, 30]

y = 0.188x2
- 1.411x + 13.331

[0, 15] by [0, 30]

y = 1.401x + 4.331
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91. (a) , , (b) (c) The deer population approaches (but never equals) 800.

93. (a) (b) about 33.33 ounces of distilled water (c)

95. (a) (b) 20 ft by 20 ft by 2.5 ft or , giving approximate dimensions 7.32 by 7.32 by 18.66.
(c) (lower bound approximate), so y must be between 2.5 and about 18.66.

Chapter 2 Project
Answers are based on the sample date shown in the table.
1. 3. The sign of a affects the direction the parabola opens. 

The magnitude of a affects the vertical stretch of the graph.
Changes to h cause horizontal shifts to the graph, while 
changes to k cause vertical shifts.

5.

SECTION 3.1
Exploration 1
1. is in common; Domain: ; Range: ; Continuous; Always increasing; Not symmetric; No local extrema; Bounded below

by , which is also the only asymptote; 

Exploration 2
1. 3.

Quick Review 3.1
1. 3. 9 5. 7. 9.

Exercises 3.1
1. Not exponential, a monomial function 3. Exponential function, initial value of 1 and base of 5 5. Not exponential, variable base

7. 3 9. 11. 13. 15. Translate by 3 units to the right. 17. Reflect over

the y-axis. 19. Vertically stretch by a factor of 3 and then shift 4 units up. 21. Reflect across the y-axis and 

horizontally shrink by a factor of 2. 23. Reflect across the y-axis, horizontally shrink by a factor of 3, translate 1 unit to the right, 

and vertically stretch by a factor of 2. 25. Graph (a) is the only graph shaped and positioned like the graph of .

27. Graph (c) is the reflection of across the x-axis. 29. Graph (b) is the graph of translated down 2 units.

31. Exponential decay; 33. Exponential decay; 

35. 37. 39. since 32x+4
= 321x+22

= 1322x+2
= 9x+2y1 = y3x 6 0x 6 0

lim
x: q

 ƒ1x2 = 0, lim
x: -q

 ƒ1x2 = qlim
x: q

 ƒ1x2 = 0, lim
x: -q

 ƒ1x2 = q

y = 3-xy = 2x

b 7 1y = bx,

ƒ1x2 = ex

ƒ1x2 = exƒ1x2 = 0.5x

ƒ1x2 = 4xƒ1x2 = 2x3 # 2x/23/2 # 11/22x-223 3

-1.41/a61/212
-6

k L 0.693

[–4, 4] by [–2, 8]

lim
x: q

 ƒ1x2 = q . lim
x: -q

 ƒ1x2 = 0y = 0

10, q21- q , q210, 12

y L -4.968x2
- 10.913x - 5.160

[0, 1.6] by [–0.1, 1]

7.32 6 x 6 20
x L 7.32S = x2

+ 4000/x

x =

100

3
L 33.33C1x2 =

50

50 + x

y =

640

0.8
P11002 = 648P1702 = 600P1152 = 325
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41.

y-intercept: 
Horizontal asymptotes:

, y = 12y = 0

10, 42
[–10, 20] by [–5, 15]

43.

y-intercept: 
Horizontal asymptotes:

, y = 16y = 0

10, 42
[–5, 10] by [–5, 20]

45.

Domain: ; Range: ; Continuous;
Always increasing; Not symmetric;
Bounded below by , which is also the only asymptote;

No local extrema; lim
x: q

 ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = 0

y = 0

10, q21- q , q2
[–3, 3] by [–2, 8]
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47.

Domain: ; Range: ; Continuous;

Always increasing; Not symmetric;
Bounded below by , which is the only asymptote;

No local extrema; 

49.

Domain: ; Range: ; Continuous;
Always increasing; Symmetric about ;

Bounded below by and above by , both of 
which are asymptotes;

No local extrema; lim
x: q

 ƒ1x2 = 5; lim
x: -q

 ƒ1x2 = 0

y = 5y = 0

10.69, 2.52
10, 521- q , q2

[–3, 4] by [–1, 7]

lim
x: q

 ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = 0

y = 0

10, q21- q , q2
[–2, 2] by [–1, 9]
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51. In 2006 53. Near the end of 2003 55. In 1970 57. (a) 100 (b)
59. False. If and , then is decreasing. 61. E 63. Aƒ1x2 = a # bxb 6 10 6a 7 0

L 6394

65. (a)

Domain: ; Range: ;

Decreasing on ; Increasing on ;

Bounded below by ; Local minimum at ;

Asymptote: 

(b)

Domain: ; Range: ;

Increasing on ; Decreasing on ;

Not bounded; Local maximum at ;

Asymptotes: , ;

lim
x: q

 g1x2 = 0; lim
x: -q

 g1x2 = - q

y = 0x = 0

1-1, -e2
3-1, 02 ´ 10, q21- q , -14

1- q , -e4 ´ 10, q21- q , 02 ´ 10, q2
[–3, 3] by [–7, 5]

y = 0; lim
x: q

 ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = 0

a -1, -  

1
e
by = -  

1
e

3-1, q21- q , -14
c -  

1
e

, q b1- q , q2
[–5, 5] by [–2, 5]

67. (a) decreases less rapidly as x increases. (b) — as x increases, decreases ever more rapidly. 69. , 

71. and , or and 73. As , so and ;

As , so and 

SECTION 3.2
Quick Review 3.2
1. 0.15 3. 5. 7. 1.01 9. 0.61

Exercises 3.2
1. exponential growth, 9% 3. exponential decay, 3.2% 5. exponential growth, 100% 7. 9.

11. 13. 15. 17. 19. 21.

23. 25. 27. 29. In 2021

31. (a) 12,315; 24,265 (b) 1966 33. (a) , where t is time in days (b) After 38.11 days

35. One possible answer: Exponential and linear functions are similar in that they are always increasing or always decreasing. However, the two
functions vary in how quickly they increase or decrease. While a linear function will increase or decrease at a steady rate over a given interval, the
rate at which exponential functions increase or decrease over a given interval will vary.
37. One possible answer: From the graph, we see that doubling time for this model is 4 yr. This is the time required to grow from 50,000 to
100,000, from 100,000 to 200,000, or from any population size to twice that size. Regardless of the population size, it takes 4 yr for it to double.
39. When ; every hour 41. 43. About 4,178,000, overestimated by 344,000; 9% error
45. (a) 16 (b) About 14 days (c) In about 17 days 47. About 310.6 million 49. Model matches.
51. False. This holds true for logistic growth, not exponential. 53. C 55. D
57. (a) (b) Underestimates actual population by 3.5 million. (c) Logistic modelL277,900,000

2.14 lb/in.2t = 1

y = 6.6a1

2
b t/14

20

1 + 3 # 0.58xL 128/11 + 7 # 0.844x240/31 + 3 # 11/32x4
L 4 # 1.15x2.3 # 1.25x592 # 2-x/60.6 # 2x/318 # 1.052x28,900 # 0.974x

16 # 0.5x5 # 1.17x

�223 # 1.07

c

1 + a # bx : c1 + a # bx : 1x : q , bx : 0

c

1 + a # bx : 01 + a # bx : qbx : q ,x : - q0 6 b 6 1a 6 0b 7 1a 7 0

c = 2a Z 0g1x2y3y1—ƒ1x2
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59.

61. (a) (b)

(c) which is logistic.

SECTION 3.3
Exploration 1
1.

Quick Review 3.3
1. 3. 5. 32 7. 9.

Exercises 3.3
1. 1 3. 5 5. 2/3 7. 3 9. 5 11. 1/3 13. 3 15. 17. 1/4 19. 3 21. 0.5 23. 6
25. 27. Undefined 29. 31. Undefined 33. 100 35. 0.1 37. (d) 39. (a)L 1.399L 0.975

-1

e-1/251/21/5 = 0.21/25 = 0.04

[–6, 6] by [–4, 4]

ƒ1x2 = 1 + tanh 1x2 = 1 +

ex
- e-x

ex
+ e-x =

ex
+ e-x

ex
+ e-x +

ex
- e-x

ex
+ e-x =

2ex

ex
+ e-x

#
e-x

e-x =

2

1 + e-2x
,

tanh 1-x2 =

sinh 1-x2
cosh 1-x2 =

-sinh 1x2
cosh 1x2 = - tanh 1x2sinh 1x2

cosh 1x2 =

1ex
- e-x2/2

1ex
+ e-x2/2 =

ex
- e-x

ex
+ e-x = tanh 1x2

sinh 1-x2 =

e-x
- e-1-x2

2
=

ex
- e-x

2
= -sinh 1x2

866 SELECTED ANSWERS

41. Starting with :
shift left 3 units.

43. Starting from :
reflect across the y-axis and
translate up 3 units.

45. Starting from 
reflect across the y-axis 
and translate right 2 units.

[–7, 3] by [–3, 3]

y = ln x:

[–4, 1] by [–3, 5]

y = ln x

[–5, 5] by [–3, 3]

y = ln x

47. Starting with 
shift down 1 unit.

49. Starting from :
reflect across both axes and
vertically stretch by 2

51. Starting from reflect across the
y-axis, translate right 3 units, vertically 
stretch by 2, translate down 1 unit.

[–5, 5] by [–4, 2]

y = log x:

[–8, 1] by [–2, 3]

y = log x

[–5, 15] by [–3, 3]

y = log x:

53. Domain: ; Range: ; 
Continuous; Always increasing; 
Not symmetric; Not bounded; 
No local extrema; Asymptote at

55.

Domain: ; Range: ;
Continuous; Always decreasing; 
Not symmetric; Not bounded; 
No local extrema;
Asymptote: 

57.

Domain: ; Range: ;
Continuous; Always increasing on its
domain; Not symmetric; Not bounded; 
No local extrema;
Asymptote: x = 0; lim

x: q
 x = q

1- q , q210, q2
[–3, 7] by [–3, 3]

x = 1; lim
x: q

 ƒ1x2 = - q

1- q , q211, q2
[–2, 8] by [–3, 3]

[–1, 9] by [–3, 3]

x = 2; lim
x: q

 ƒ1x2 = q

1- q , q212, q2
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59. (a) 10 dB (b) 70 dB (c) 150 dB 61. 2023 63. True, by definition. 65. C 67. B

69.

71. 73. Reflect across the x-axis

SECTION 3.4
Exploration 1
1. 3. 5. 1.20412; 1.50515; 1.80618

Exploration 2
1. False 3. True 5. False 7. False

Quick Review 3.4
1. 2 3. 5. 7. 9.

Exercises 3.4

1. 3. 5. 7. 9. 11.

13. log xy 15. 17. 19. 21. 23. 2.8074 25. 2.4837

27. 29. ln x/ln 3 31. 33. log x/log 2 35.

37. Let and Then So logb aR

S
b = x - y = logb R - logb S.

R

S
=

bx

by = bx-y.y = logb S.x = logb R

- log 1x + y2/log 2ln 1a + b2/ln 2-3.5850

log 1x4y/z32ln 1x2 y32log 13 xln 1y/32
1

4
 log x -

1

4
 log y2 ln x - 3 ln y3 log x + 2 log y5 log2 ylog 3 - log x3 ln 2 + ln x

1/13 ƒu ƒ2ƒx ƒ
3/ ƒy ƒx3y2

-2

0.90309 = 3 * 0.301030.90309 = 0.30103 + 0.60206

b = 1e; 1e, e2e

[–6, 6] by [–4, 4]

SELECTED ANSWERS 867

Domain

Range

Intercepts

Asymptotes x =  0y =  0

11, 0210, 12
1- q , q210, q2
10, q21- q , q2
log3 x3xƒ1x2

39. Starting with : vertically shrink by a factor of

.

41. Starting with : reflect across the x-axis, 

then vertically shrink by a factor of .

[–1, 10] by [–2, 2]

1

ln 3
L 0.91

g1x2 = ln x

[–1, 10] by [–2, 2]

1

ln 4
L 0.72

g1x2 = ln x

47.

Domain: ; Range: ; Continuous;

Always increasing; Asymptote: ;

49.

Domain: ; Range: ;

Discontinuous at ; Decreasing on interval ;

Increasing on interval ; Asymptote: ;

lim
x: q

 ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = q

x = 010, q2
1- q , 02x = 0

1- q , q21- q , 02 ´ 10, q2
[–10, 10] by [–2, 3]

lim
x: q

 ƒ1x2 = q

x = 0

1- q , q210, q2
[–1, 9] by [–1, 7]

43. (b): by , with and 45. (d): by , with and Yscl = 1Xscl = 13-3, 343-2, 84Yscl = 1Xscl = 13-3, 343-5, 54

51. (a) 0 (b) 10 (c) 60 (d) 80 (e) 100 (f ) 120 53. lumens 55. Vertical stretch by a factor of
57. True, by the product rule for logarithms 59. B 61. A

L 0.9102L 9.6645
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63. (a) (b) 49,616
(c)

(d)

(e) :

The two equations are almost the same.

a L 5, b L 1 so ƒ1x2 = e1x5
= ex5

L 2.72x5

1ln x2 + 1.011ln y2 = 5.00

[0, 3] by [0, 15]

2.75x5.0

868 SELECTED ANSWERS

1.39 1.87 2.14 2.30

7.94 10.37 11.71 12.52ln1y2
ln1x2

0.30 0.70 1.48 1.70 1.85

2.62 2.48 2.31 2.08 1.93 1.85 1.86log1r2
-0.52-0.70log1w265. (a)

(b)

(c)

(e) One possible answer: Consider the power function . Then

,

which is clearly a linear function of the form where 

and . As a result, there is a linear relationship

between log y and log x.

t = log xc = log a, ƒ1t2 = log y

m = b,ƒ1t2 = mt + c

log y = log (a # xb2 = log a + log xb
= log a + b log x = b1log x2 + log a

y = a # xb

[–1, 2] by [1.6, 2.8]

log w + 2.36log r = 1-0.302

[–1, 2] by [1.6, 2.8]

67. 69. (a) Domain of ƒ and g: (b) Domain of ƒ and g: (c) Domain of ƒ: ;

Domain of g: ; Answers will vary. 71. If and , then 

SECTION 3.5
Exploration 1
1. 1.60206, 2.60206, 3.60206, 4.60206, 5.60206, 6.60206, 7.60206, 8.60206, 9.60206, 10.60206
3. The decimal parts are exactly equal.

Quick Review 3.5
1. and 

3. and 

5. 7. 602,000,000,000,000,000,000,000 9.

Exercises 3.5
1. 10 3. 12 5. 7. 10,000 9. 5.25 11. 13. 15.
17. 19. Domain: ; graph (e) 21. Domain: ; graph (d)
23. Domain: ; graph (a) 25. or 27. 29. 31.
33. 35. 37. 4 39. 3 41. 1.5 43. 3 45. About 20 times greater
47. (a) (b) (c) 8 49.
51. (a) (b) (c) 89.47°C

53. (a) (b) The scatter plot is better because it accurately represents the 
times between the measurements. The equal spacing on the 
bar graph suggests that the measurements were taken at 
equally spaced intervals, which distorts our perception of 
how the consumption has changed over time.

[0, 20] by [0, 15]

T1x2 L 79.47 # 0.93x

[0, 40] by [0, 80][0, 40] by [0, 80]

L 28.41 min1081.26 * 10-4; 1.26 * 10-12
x L 2.3028x L -9.3780

x L �2.0634x L 3.5949�110x = -1000x = 100010, q2
1- q , -12 ´ 10, q21- q , -12 ´ 10, q2L 4.3956

L -0.4055L 39.6084L 24.2151-3

5.766 * 10127.783 * 108 km

g1ƒ1x22 = e311/3 ln x2
= eln x

= xƒ1g1x22 =

1

3
 ln1e3x2 =

1

3
13x2 = x

g1ƒ1x22 = ln1e2x21/2
= ln1ex2 = xƒ1g1x22 = e2 ln1x1/22

= eln x
= x

log x

ln x
 =

log x

log x/ log e
= log ex Z 1x 7 01-3, q2

1- q , -32 ´ 1-3, q215, q213, q216.41, 93.352
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59. False. The order of magnitude is its common logarithm. 61. B 63. E 65. Logistic regression
67. (a) As k increases, the bell curve stretches vertically. (b) As c increases, the bell curve compresses horizontally.
69. (a) (b) by 71. , a logarithmic regression

r cannot be negative since it is a distance.
73. 75. 77.

SECTION 3.6
Exploration 1
1. A approaches a limit of 

about 1105.1.

Quick Review 3.6
1. 7 3. 1.8125% 5. 65% 7. 150 9. $315

Exercises 3.6
1. $2251.10 3. $19,908.59 5. $2122.17 7. $86,496.26 9. $1728.31 11. $30,402.43 13. $14,755.51
15. $70,819.63 17. $43,523.31 19. $293.24 21. 6.63 years — round to 6 years 9 months
23. 13.78 years — round to 13 years 10 months 25. 27. 7.07% 29. 12.14 — round to 12 years 3 months
31. 7.7016 years; $48,217.82 33. 17.33%; $127,816.26 35. 17.42 — round to 17 years 6 months 37. 10.24 — round to 11 years
39. 9.93 — round to 10 years 41. 43. 45. 5.1% quarterly 47. $42,211.46
49. $239.42 51. $219.51 53. $676.57 55. (a) 172 months (14 years, 4 months) (b) $137,859.60
57. One possible answer: The APY is the percentage increase from the initial balance to the end-of-year balance ; specifically, it is

. Multiplying the initial balance by P results in the end-of-year balance being multiplied by the same amount, so that the ratio
remains unchanged. 59. One possible answer: Some of these situations involve counting things (e.g., populations), so that they can only take
on whole-number values — exponential models which predict, e.g., 439.72 fish, have to be interpreted in light of this fact. Technically, bacterial
growth, radioactive decay, and compounding interest also are “counting problems” — for example, we cannot have fractional bacteria, or fractional
molecules of radioactive material, or fractions of pennies. However, because these are generally very large numbers, it is easier to ignore the 

S112/S102 - 1
S112S102

L 6.50%L 6.14%

L 10.13%

x 7 90 6 x 6 1.7115 1approx.2x L 1.3066

y = a ln x + b3-5, 34; 2.380730, 104

[–10, 10] by [–10, 30]
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55. Logarithmic seems best — the scatterplot of 
looks most logarithmic. (The data can be modeled
by .)

57. Exponential — the scatterplot of is exactly

exponential. The data can be modeled by 

[0, 5] by [0, 30]

y =

3

2
# 2x.ba

1x, y2

[0, 5] by [0, 7]

y = 3 + 2 ln x

1x, y2

k A

10 1104.6

20 1104.9

30 1105

40 1105

50 1105.1

60 1105.1

70 1105.1

80 1105.1

90 1105.1

100 1105.1
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fractional parts. (This might also apply when one is talking about, e.g., the population of the whole world.) Another distinction: while we often
use an exponential model for all these situations, it generally fits better (over long periods of time) for radioactive decay than for most of the others.
Rates of growth in populations (esp. human populations) tend to fluctuate more than exponential models suggest. Of course, an exponential model
also fits well in compound interest situations where the interest rate is held constant, but there are many cases where interest rates change over time.

61. False. The limit is . 63. B 65. E 67. $364.38 69. (a) 8% (b) 12 (c) $100

CHAPTER 3 REVIEW EXERCISES
1. 3. 5. — starting from , horizontally shrink by , reflect across y-axis, and translate up 3 units.

7. — starting from , horizontally shrink by , reflect across y-axis, reflect across x-axis, translate down 3 units.

9. Starting from , horizontally shrink by , then translate right units — or translate right 3 units, then horizontally shrink by .

11. y-intercept: ; Asymptotes: , 13. exp. decay; lim
x: q

 ƒ1x2 = 2, lim
x: -q

 ƒ1x2 = qy = 20y = 010, 12.52
1

2

3

2

1

2
ex

1

3
2xƒ1x2 = -2-3x

- 3

1

2
2xƒ1x2 = 2-2x

+ 3y = 3 # 2x/2
-313 4

A = Pert
= 100e0.05

L $105.13

870 SELECTED ANSWERS

15.

Domain: ; Range: ; Continuous;
Always decreasing; Not symmetric;
Bounded below by , which is also the only asymptote;

No local extrema; 

17.

Domain: ; Range: ; Continuous; 

Increasing; Symmetric about ;

Bounded by the asymptotes , ;

No extrema; lim
x: q

 ƒ1x2 = 6; lim
x: -q

 ƒ1x2 = 0

y = 6y = 0

11.20, 32
10, 621- q , q2

[–5, 10] by [–2, 8]

lim
x: q

 ƒ1x2 = 1; lim
x: -q

 ƒ1x2 = q

y = 1

11, q21- q , q2
[–1, 4] by [–10, 30]

19. 21. 23. 25.

27. 5 29. 1/3 31. 33. 35. Translate left 4 units.

37. Translate right 1 unit, reflect across x-axis, and translate up 2 units.

y = xe235
= x

ƒ1x2 L

20

1 + 3e-0.37x
ƒ1x2 L 30/11 + 1.5e-0.55x2ƒ1x2 = 18 # 2x/21ƒ1x2 = 24 # 1.053x

39.

Domain: ; Range: ;

Continuous; Decreasing on ;

Increasing on ; Not symmetric;

Bounded below;

Local minimum at ; 

41.

Domain: ; Range: ;

Discontinuous at ;
Decreasing on ;

Increasing on ;
Symmetric across y-axis; Bounded below;
Local minima at and ;

No asymptotes; lim
x: q

 ƒ1x2 = q ; lim
x: -q

 ƒ1x2 = q

10.61, -0.1821-0.61, -0.182
3-0.61, 02, 30.61, q2
1- q , -0.614, 10, 0.614

x = 0

3-0.18, q21- q , 02 ´ 10, q2
[–5, 5] by [–5, 25]

lim
x: q

 ƒ1x2 = qa 1
e

, -  

1
e
b

30.37, q2
10, 0.374
c -  

1
e

, q b L 3-0.37, q210, q2
[–4.7, 4.7] by [–3.1, 3.1]

43. 45. 47. 0.0000001 49. 4 51. 53. 55. ln x/ln 2
57. log x/log 5 59. (c) 61. (b) 63. $515.00 65. 67. $28,794.06 69.
71.
73. (a) 90 units (b) 32.8722 units (c)

[0, 4] by [0, 90]

P1t2 L 2.0956 # 1.01218t, P11052 L 7.5 million
-0.3054Pert

L 99.5112L 2.1049L 22.5171log 4 L 0.6021
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75. (a) (b) 31.74 years 77. (a) (b) (c) months

79. (a) (b) 1,099,500 metric tons (c) 81. 6.31 83. 11.75 years

85. 137.7940 — about 11 years 6 months 87. 89. 91. or 

93. (a) 16 (b) About days (c) 8.7413 — about 8 or 9 days. 95. 97. (a) 9% (b) 4 (c) $100

99. (a) Grace’s balance will always remain $1000 since interest is not added to it. Every year she receives 5% of that $1000 in interest; after 
t years, she has been paid 5t% of the $1000 investment, meaning that altogether she has .
(b)

Chapter 3 Project
Answers are based on the sample data shown in the table.
3. 5.

7. A different ball would change the rebound percentage P.

9. so 

11. The linear regression is . Since , the slope is ln P and the y-intercept is ln H.

SECTION 4.1
Exploration 1
1. 3. No, not quite, since the distance would require a piece of thread times as long, and .

Quick Review 4.1
1. . 3. 5. (a) 47.52 ft (b) 39.77 km 7. 88 ft /sec 9. 6 mph

Exercises 4.1
1. 23.2° 3. 118.7375° 5. 7. 9. 11. 13. 15. rad
17. 30° 19. 18° 21. 140° 23. 25. 50 in. 27. 29. 3 (radians) 31. 360/p cm6/p ftL 114.59°

L1.0716L 1.2518 rad2p/3p/3118°19¿ 12–21°12¿

6
p

 m5p in

p 7 3ppr2pr

[–1, 6] by [–1.25, 1.25]

ln y = 1ln P2x + ln Hy L -0.253x + 1.005

y = 2.7188e-0.238xy = Heln1P2x

y L 2.7188 # 0.788x

[–1, 6] by [0, 3]

1000 + 1000 # 0.05t = 100011 + 0.05t2

L 41.54 minutes11 

1

2

b 7 10
1

10
6 b 6 10; 0 6 b 6

1

10
L 5.84 lumensL 8.57%

S0/2; S0/4S1t2 = S0
# 11/22t/1.5

L 8.965881,920; 2.3058 * 1019P1t2 = 20 # 2tP1t2 = 89,00010.9822t
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Not
Years Compounded Compounded

0 1000.00 1000.00

1 1050.00 1051.27

2 1100.00 1105.17

3 1150.00 1161.83

4 1200.00 1221.40

5 1250.00 1284.03

6 1300.00 1349.86

7 1350.00 1419.07

8 1400.00 1491.82

9 1450.00 1568.31

10 1500.00 1648.72
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33. rad and 35. 24 inches 37. 39. (a) 45° (b) 22.5° (c) 247.5°

41. ESE is closest at 112.5°. 43. statute miles 45. rpm 47.
49. 51. nautical miles 53. (a) in. (b) ft

55. (a) rad/sec (b) cm/sec (c) rad/sec 57. True. Horse A travels units of 
distance in the same amount of time as horse B travels units of distance, and so is moving twice as fast.
59. C 61. B 63. 65. 67. 80 naut mi 69. 902 naut mi

71. The whole circle’s area is ; the sector with central angle makes up of that area, or .

73.

SECTION 4.2
Exploration 1
1. sin and csc, cos and sec, and tan and cot 3. sec 5. sin and 

Exploration 2

1. Let . Then 

3. The value of a trig function at is the same as the value of its cofunction at .

Quick Review 4.2
1. 3. 6 5. 100.8 in. 7. 7.9152 km 9. (no units)

Exercises 4.2
1. , , , , , 3. , , , , , 

5. , , , , , 7. , , 

, , , 9. , , , , 

11. , , , , 13. , , , 

, 15. , , , , , 

17. , , , , 19. 21. 23. 25.

27. 29. 0.961 31. 0.943 33. 0.268 35. 1.524 37. 0.810

39. 2.414 41. 43. 45. 47. 49. 51.

53. 55. 57. 59. As gets smaller and smaller, 

the side opposite gets smaller and smaller, so its ratio to the hypotenuse approaches 0 as a limit. 61. 63.
65. 67. False. This is true only if is an acute angle in a right triangle. 69. E 71. D 73. Sine values should be
increasing, cosine values should be decreasing, and only tangent values can be greater than 1. Therefore, the first column is tangent, the second
column is sine, and the third column is cosine.

uL 378.80 ft
L 74.16 ft2

L 205.26 ftu

ub L 22.25, c L 27.16, a = 35°b L 33.79, c L 35.96, b = 70°
6

sin 35°
L 10.46

32

tan 57°
L 20.78

15

sin 34°
L 26.8230° =

p

6
60° =

p

3
60° =

p

3
30° =

p

6

14/3 = 2/13 = 213/3

12
12

2
13

13

2
cot u =

817

9
sec u =

23

817
tan u =

9

817
cos u =

817

23
sin u =

9

23

cot u =

11

3
sec u =

1130

11
csc u =

1130

3
tan u =

3

11
cos u =

11

1130
sin u =

3

1130
cot u =

9

5
sec u =

1106

9

csc u =

1106

5
cos u =

9

1106
sin u =

5

1106
cot u =

5

416
sec u =

11

5
csc u =

11

416
tan u =

416

5
sin u =

416

11

cot u =

2 110

3
sec u =

7

2110
csc u =

7

3
tan u =

3

2110
cos u =

2110

7
cot u =

8

157
sec u =

11

8
csc u =

11

157
tan u =

157

8

cos u =

8

11
sin u =

157

11
cot u =

11

7
sec u =

1170

11
csc u =

1170

7
tan u =

7

11
cos u =

11

1170
sin u =

7

1170
cot u =

5

12

sec u =

13

5
csc u =

13

12
tan u =

12

5
cos u =

5

13
sin u =

12

13
cot u =

3

4
sec u =

5

3
csc u =

5

4
tan u =

4

3
cos u =

3

5
sin u =

4

5

L1.0101512

90° - uu

sin u =

13

2
  csc u =

2

13
 or 

223

3

cos u =

1

2
  sec u = 2

tan u = 13 L 1.732   cot u =

1

13
 or 

23

3

u = 60°

cos uuu

60 mi AB

37°
340°

u

2p
# pr 2

=

1

2
 r 2u

u

2p
upr 2

5°37¿38°02¿

2pr
2p12r2 = 212pr27p28p4p

2p L 6.28316p L 50.265L 778

4 mi

2 mi
38°

47°

L 12,566.37L 387.85L 4.23

L 5.4 inchess2 = 36 cmu =

9

11
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75. The distance dA from A to the mirror is 5 cos 30°; the distance from B to the mirror is .

Then 

77. One possible proof: Pythagorean Theorem: 

SECTION 4.3
Exploration 1

1. The side opposite in the triangle has length y and the hypotenuse has length r. Therefore . 3.

Exploration 2
1. The x-coordinates on the unit circle lie between and 1, and cos t is always an x-coordinate on the unit circle. 3. The points corresponding
to t and on the number line are wrapped to points above and below the x-axis with the same x-coordinates. Therefore cos t and cos are equal.
5. Since is the distance around the unit circle, both t and get wrapped to the same point.

7. By the observation in , tan t and are ratios of the form and , which are either equal to each other or both undefined.

9. Answers will vary. For example, similar statements can be made about the functions cot, sec, and csc.

Quick Review 4.3

1. 3. 5. 7. 9.

Exercises 4.3
1. 450° 3. , , , , , 

5. , , , , , 

7. , , , , , 

9. , , tan undefined, , sec undefined, 11. , , , 

, , 13. 15. 17. 19. 21. (a) 23. (a) 25.

27. 2 29. 31. 1 33. 35. 37. (a) 1 (b) 0 (c) Undefined 39. (a) 0 (b) 1 (c) 0

41. (a) 1 (b) 0 (c) Undefined 43. 45. 47.

49. 1/2 51. 0 53. The calculator’s value of the irrational number is necessarily an approximation. When multiplied by a very large
number, the slight error of the original approximation is magnified sufficiently to throw the trigonometric functions off.

55. 57. (a) 0.4 in. (b) . 59. The difference in the elevations is 600 ft, so . 

Then: (a) (b) 600 ft (c) 61. True. Acute angles determine reference triangles in QI, where cosine is positive, 
while obtuse angles determine reference triangles in QII, where cosine is negative. 63. E 65. A 67. 69.
71. The two triangles are congruent: Both have hypotenuse 1, and the corresponding angles are congruent — the smaller acute angle has 
measure t in both triangles, and the two acute angles in a right triangle add up to . 73. One possible answer: Starting from the point 
on the unit circle — at an angle of t, so that cos — then measuring a quarter of the way around the circle (which corresponds to 
adding to the angle), we end at , so that . For in Quadrant I, this is shown in the figure; similar illustrations
can be drawn for the other quadrants.

1a, b2sin 1t + p/22 = a1-b, a2p/2
t = a

1a, b2p/2

7p/45p/6
L  933.43 ftL  848.53 ft

d = 600/sin uL  0.1852 inm =

sin 83°

sin 36°
L 1.69

p

csc u =

5

3
sec u = -  

5

4
;sec u =

5

121
tan u = -  

2

121
;tan u =

15

2
sin u =

15

3
;

---  

13

2

13

2

1

2

-1/2--- , - , ++ , + , +cot u = -  

5

2
sec u =

129

5
csc u = -  

129

2

tan u = -  

2

5
cos u =

5

129
sin u = -  

2

129
cot u = 0ucsc u = 1ucos u = 0sin u = 1

sec u = -1, cot u undefinedcot u =

3

4
sec u =

5

3
csc u =

5

4
tan u =

4

3
cos u =

3

5
sin u =

4

5

cot u = 1sec u = - 12csc u = - 12tan u = 1cos u = -  

1

12
sin u = -  

1

12
tan u = -  

3

4
 , csc u = -  

5

3
 , sec u =

5

4
 , cot u = -  

4

3

cot u = -  

1

2
sec u = - 15csc u =

15

2
tan u = -2cos u = -  

1

15
sin u =

2

15

cos u =

12

13
, tan u =

5

12
, csc u =

13

5
, sec u =

13

12
, cot u =

12

5
1213/31125°-30°

-y

-x

y

x
tan 1t + p2162

t + 2p2p
1- t2- t

-1

tan u = y/xsin u =

opp

hyp
=

y

r
u

a2
+ b2

= c2.211sin u22 + 1cos u22 = aa

c
b2

+ ab

c
b2

=

a2

c2
+

b2

c2
=

a2
+ b2

c2
=

c2

c2
= 1

PB =

dB

cos b
=

dA - 2

cos 30°
= 5 -

2

cos 30°
= 5 -

4

13
L 2.69 m

dB = dA - 2
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75. Starting from the point on the unit circle — at an angle of t,
so that cos — then measuring a quarter of the way around the
circle (which corresponds to adding to the angle), we end at

, so that . This holds true when is in
Quadrant II, just as it did for Quadrant I.

y

x
(1, 0)

P(a, b)

Q(–b, a)

t + π
2

t1a, b2sin (t + p/22 = a1-b, a2
p/2

t = a
1a, b2
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77. (approximately) 79. This Taylor polynomial is generally a very good approximation for sin — in fact, the relative error
is less than 1% for . It is better for close to 0; it is slightly larger than sin when and slightly smaller when .

SECTION 4.4
Exploration 1
1. 3. Both graphs cross the x-axis when the y-coordinate on the unit circle is 0. 5. The sine function tracks the
y-coordinate of the point as it moves around the unit circle. After the point has gone completely around the unit circle (a distance of ), the same
pattern of y-coordinates starts over again.

Quick Review 4.4
1. In order: 3. In order: 5. 7. Vertically stretch by 3 9. Vertically shrink by 0.5

Exercises 4.4
1. Amplitude 2; vertical stretch by a factor of 2 3. Amplitude 4; vertical stretch by a factor of 4, reflection across x-axis

5. Amplitude 0.73; vertical shrink by a factor of 0.73 7. Period ; horizontal shrink by a factor of 9. Period ; horizontal shrink

by a factor of , reflection across y-axis 11. Period ; horizontal shrink by a factor of , vertical stretch by a factor of 3
1

2
p

1

7

2p

7

1

3

2p

3

-5p/6+ , - , + , -+ , + , - , -

2p
1at the point 10, 122p/2

u 7 0u 6 0uuƒu ƒ 6 1 1approx.2
uƒu ƒ 6 0.2441
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13. Amplitude 3, period ,

frequency 

y

x

2

4

3�–3�

1

4p

4p 15. Amplitude , period ,

frequency 

y

x

4

4

–2

2

3�

–3�

1
p

p
3

2
17. y

x

2

–2

�–�

19. y

x

3

–3

�–�

21. y

x

0.5

–0.5

�–�

23. y

x

5

–5

1.5�

–1.5�

25. y

x

0.5

–0.5

�–�

27. y

x

4

–4

12�

–12�

29. Period ; amplitude 1.5; by 31. Period ; amplitude 3; by 

33. Period 6; amplitude 4; by 35. Maximum: 2 minimum: and zeros: 0, 

37. Maximum: minimum: zeros: , , 

39. Maximum: and ; minimum: , ; zeros: , , , 

41. One possibility is . 43. Starting from , horizontally shrink by and vertically shrink by 0.5.

45. Starting from , horizontally stretch by 3, vertically shrink by , reflect across x-axis.

47. Starting from , horizontally shrink by and vertically stretch by 3. 49. Starting with , vertically stretch by .

51. Starting with , horizontally shrink by . 53. (a) and (b) 55. (a) and (b) 57. One possibility is .

59. One possibility is sin . 61. Amplitude 2, period , phase shift , vertical translation 1 unit up
p

4
2p121x - 12y = 1.5

y = 3 sin 2x
1

2
y1

5

3
y1

3

2p
y = cos x

2

3
y = cos x

1

3
y = sin xy = sin 1x + p2

�
7p

4
�

5p

4
�

3p

4
�
p

4
�p, �2p21at 0-1�

3p

2
b1 aat �

p

2

�
7p

4
�

5p

4
�

3p

4
�
p

4
,-1 aat �

p

2
 and �

3p

2
b ;1 1at 0, �p, �2p2;

�p,  �2p
3p

2
b ;-2 aat -  

p

2
aat -  

3p

2
 and 
p

2
b ;3-5, 543-3, 34

3-4, 443-2p, 2p4p3-2, 243-2p, 2p4p
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63. Amplitude 5, period , phase shift , vertical translation 0.5 unit up

65. Amplitude 2, period 1, phase shift 0, vertical translation 1 unit up

67. Amplitude , period , phase shift , vertical translation 1 unit down

69.
71. (a) two (b) and 73. 75. (a) 1:00 A.M. (b) 8.90 ft; 10.52 ft (c) 4:06 A.M.L  15.90 sec12p, 1.3-2p2 L 16.28, 0.19210, 12

y = 2 sin 2x 1a = 2, b = 2, h = 0, k = 02
-  

5

2
2p

7

3

p

18

2p

3
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77. (a) The maximum d is approximately 21.4 cm.
The amplitude is 7.1 cm; scatter plot:

[0, 2.1] by [7, 22]

(b)

(c)

(d)

[0, 2.1] by [7, 22]

d1t2 = -7.1 cos a 2px

0.83
b + 14.3

L  0.83 sec 79. One possible solution is 

[0, 13] by [10, 80]

T = 21.5 cos ap
6
1x - 72b + 57.5.

81. False. is a horizontal stretch of by a factor of 2, so it has twice the period. 83. D 85. Cy = sin 4xy = sin 2x

87. (a)

(b)
(c) The coefficients are fairly similar.

0.0246x4
+ 0x3 -  0.4410x2

+ 0x + 0.9703

[–∏, ∏] by [–1.1, 1.1]

89. (a) 1/262 sec

(b) (“cycles per sec”), or 262 Hertz

(c) must equal k.

[0, 0.025] by [–2, 2]

a - b

ƒ = 262 
1

sec

91. (a) must equal 1.
(b) must equal 2
(c) must equal k.a - b

a - b
a - b

93. 95.

97. (a) If b is negative, then , where B is positive. Then sin , since sine is an odd
function. We will see in part (d) what to do if the number out front is negative.
(b) A sine graph can be translated a quarter of a period to the left to become a cosine graph of the same sinusoid. Thus 

has the same graph as 

We therefore choose .

(c) The angles and determine diametrically opposite points on the unit circle, so they have point symmetry with respect to the origin.
The y-coordinates are therefore opposites, so .

(d) By the identity in (c), . We therefore choose .

(e) Part (b) shows how to convert to , and parts (a) and (d) show how to ensure that a and b
are positive.

SECTION 4.5
Exploration 1
1. The graphs do not seem to intersect.

Quick Review 4.5
1. 3. 5. Zero: 3; asymptote: 7. Zero: ; asymptotes: and 9. Even

Exercises 4.5
1. The graph of must be vertically stretched by 2 compared to , so and .
3. y1 = 3 csc 2x, y2 = csc x

y2 = csc xy1 = 2 csc xy = csc xy = 2 csc x

x = -2x = 2-1x = -46pp

y = a sin 3b1x - H24 + kcos 3b1x - h24 + ky = a

H = h -

p

b
y = a sin 3b1x - h2 + p4 + k = -a sin 3b1x - h24 + k

sin (u + p2 = -sin u
uu + p

H = h -

p

2b

y = a cos 3b1x - h24 + k.y = a sin cba1x - h2 +

1

4
#
2p

b
b d + k = a sin cbax - ah -

p

2b
b b d + k

3-B1x - H24 + k = -a sin 3B1x - H24 + ky = ab = -B

B = ap
4

, 2b ; C = a3p

4
, 0bB = 10, 32; C = a3p

4
, 0b
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13. Graph (a); and 15. Graph (c); and 
17. Domain: All reals except integer multiples of ; Range: ; Continuous on its domain; Decreasing on each interval in its domain;
Symmetry with respect to the origin (odd); Not bounded above or below; No local extrema; No horizontal asymptotes; Vertical asymptotes:

for all integers k; End behavior: and do not exist.

19. Domain: All reals except integer multiples of ; Range: ; Continuous on its domain; On each interval centered at 

, where k is an integer, decreasing on the left half of the interval and increasing on the right; for , increasing on the 

first half of the interval and decreasing on the second half; Symmetric with respect to the origin (odd); Not bounded above or below; Local 

minimum 1 at each and local maximum at each , where k is an integer; No horizontal asymptotes; Vertical 

asymptotes: for all integers k; End behavior: and do not exist.

21. Starting with , vertically stretch by 3. 23. Starting with , vertically stretch by 3.

25. Starting with , horizontally stretch by 2, vertically stretch by 3, and reflect across x-axis.

27. Starting with , horizontally shrink by , reflect across x-axis, and shift up by 2 units.

29. 31. 33. 35. 37. 39. or 

41. (a) The reflection of across the origin is . (b) Definition of tangent (c)

(d) Since points on opposite sides of the unit circle determine the same tangent ratio, for all numbers t in the domain. Other
points on the unit circle yield triangles with different tangent ratios, so no smaller period is possible. (e) The same argument that uses the 

ratio above can be repeated using the ratio , which is the cotangent ratio.

43. For any . This is not true for any smaller value of p, since this is the smallest value that 

works for ƒ. 45. (a) sec x (b) 47. 49.
51. False. It is increasing only over intervals on which it is defined; i.e., intervals bounded by consecutive asymptotes.
53. A 55. D

L  1.107 or L2.034L  0.905L 16,831 ftd = 350

x, a 1

ƒ
b1x + p2 =

1

ƒ1x + p2 =

1

ƒ1x2 = a1

ƒ
b1x2

a

b

b

a

tan 1t � p2 = tan t

tan t =

b

a
=

-b

-a
= tan 1t - p21-a, -b21a, b2

x L 2.62x L 0.52x L 5.25x L 0.925p/25p/6p/3

2
p

y = tan x

y = cot x

y = csc xy = tan x

lim
x: -q

 csc xlim
x: q

 csc xx = kp

x =

3p

2
+ 2kp-1x =

p

2
+ 2kp

x =

3p

2
+ 2kpx =

p

2
+ 2kp

1- q , -14 ´ 31, q2p

lim
x: -q

 cot xlim
x: q

 cot xx = kp

1- q , q2p

Xmax = pXmin = -pXmax = pXmin = -p
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5.

Horizontal shrink of 
by factor 1/2; asymptotes at
multiples of 

7.

Horizontal shrink of 
by factor 1/3; asymptotes at
odd multiples of 

9.

Horizontal shrink of 
by factor 1/2; vertical stretch
by factor 2; asymptotes at
multiples of 

11.

Horizontal stretch of
by factor 2;

asymptotes at multiples 
of 2p

y = csc x

[–4∏, 4∏] by [–6, 6]

p/2

y = cot x

[–    ,     ] by [–6, 6]
∏
2

∏
2

p/6

y = sec x

[–      ,      ] by [–6, 6]
2∏
 3

2∏
 3

p/4

y = tan x

[–    ,     ] by [–6, 6]
∏
2

∏
2

57. About 

[–∏, ∏] by [–10, 10]

1-0.44, 02 ´ (0.44, p2 59. cot x is not defined at 0; the definition of
“increasing on ” requires that the
function be defined everywhere in .
Also, choosing and ,
we have but 

.

[–∏, ∏] by [–10, 10]

ƒ1b2 = -1
ƒ1a2 = 1 7a 6 b

b = p/4a = -p/4
1a, b2

1a, b2 61.

63.

65. L 0.8952 radians L 51.29°

[–0.5∏, 0.5∏] by [0, 100]

d =

30

cos x
= 30 sec x

csc x = sec ax -

p

2
b
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SECTION 4.6
Exploration 1

SELECTED ANSWERS 877

Sinusoid Sinusoid Not a Sinusoid

[–2∏, 2∏] by [–6, 6][–2∏, 2∏] by [–6, 6][–2∏, 2∏] by [–6, 6]

Sinusoid Sinusoid Not a Sinusoid

[–2∏, 2∏] by [–6, 6][–2∏, 2∏] by [–6, 6][–2∏, 2∏] by [–6, 6]

Quick Review 4.6
1. Domain: ; range: 3. Domain: ; range: 

5. Domain: ; range: 7. As as .

9. , domain: , domain: 

Exercises 4.6

1- q , -24 ´ 32, q21g � ƒ21x2 = 2x2
- 430, q2;1ƒ � g21x2 = x - 4

x : q , ƒ1x2: 0x : - q , ƒ1x2: q ;3-2, q21- q , q2
30, q231, q23-3, 341- q , q2

1. Periodic 3. Not periodic 5. Not periodic 7. Periodic

[–2�, 2�] by [–10, 10][–2�, 2�] by [–6, 6][–2�, 2�] by [–5, 20][–2�, 2�] by [–1.5, 1.5]

9. Since the period of cos x is , we have

.

The period is therefore an exact divisor of , and we see
graphically that it is . A graph for is
shown:

[–�, �] by [–1, 2]

-p … x … pp

2p

cos21x + 2p2 = 1cos 1x + 2p222 = 1cos x22 = cos2 x

2p 11. Since the period of cos x is , we have 

The period is therefore an exact divisor of , and we see graphically that it
is . A graph for is shown:

[–�, �] by [–1, 2]

-p … x … pp

2p

2cos21x + 2p2 = 21cos1x + 2p222 = 21cos x22 = 2cos2 x.

2p

13. Domain: ; range: ;

y

x

1

2

2�–2�

30, 141- q , q2 15. Domain: all ,
n an integer; range: ;

y

x

2

1

2�–2�

30, q2
x Z np
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25. Yes 27. No 29. , 31. 33. , , 
35. 37. 39. (a) 41. (c)

43. The damping factor is , and the damping occurs as . 45. No damping
47. The damping factor is , and the damping occurs as .x : 0x3

x : qe-x

[–∏, ∏] by [–5, 5][–∏, ∏] by [–3.5, 3.5]

h L -1.11b = 1a L 2.24a L 2.24, b = p, h L 0.35h L 0.49a L 3.61, b = 2
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17. Domain: all ,

n an integer; range: ;

y

x

1

–4

2�–2�

1- q , 04
x Z

p

2
+ np 19.

[–10, 10] by [–20, 20]

y = 2x - 1; y = 2x + 1 23. Yes21.

[–10, 10] by [–4, 8]

y = 1 - 0.3x; y = 3 - 0.3x

49. ƒ oscillates between and .
As , .

51. ƒ oscillates between and .

As , .

[0, 4∏] by [–1.5, 1.5]

ƒ1x2: 0x : q

-  

1
x

1
x

[0, 4∏] by [–1, 1]

ƒ1x2: 0x : q

-1.2-x1.2-x

53. 55. 57. Period 59. Not periodic

[–4∏, 4∏] by [–13, 13][–4∏, 4∏] by [–1, 4]

2p

[–2∏, 2∏] by [–3, 3]

2p

[–2∏, 2∏] by [–3.4, 2.8]

2p

61. Not periodic 63. Domain: ; range: 
65. Domain: ; range: 

67. Domain: ; that is, all x with an integer; range: 

69. Domain: 1- q , q2; range: 30, 14
30, 142np … x … 12n + 12p, nÁ ´ 3-2p, -p4 ´ 30, p4 ´ 32p, 3p4 ´ Á

31, q21- q , q2
1- q , q21- q , q2

[–4∏, 4∏] by [–7, 7]

71. (a)

(b) For (approximately).t 7 0.51

[0, 12] by [–0.5, 0.5]

73. Not periodic 75. (a) 77. Graph (d), shown on by 
79. Graph (b), shown on by 
81. False. For example, the function has a relative minimum of 0 at that is not repeated 

anywhere else.
83. B 85. D

x = 0
3-4, 443-2p, 2p4

3-4, 443-2p, 2p]
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87. (a) Answers will vary — for example, on a ; on a ; on a 

; on a .

(b) Period: . For any of the TI graphers, there are from 1 to 3 cycles between each pair of pixels; the graphs pro-
duced are therefore inaccurate, since so much detail is lost.

p = p/125 = 0.0251Á

TI-92: 
p

119
= 0.0263 Á L 0.03TI-85: 

p

63
= 0.0498 Á L 0.05

TI-82: 
p

47
= 0.0668 Á L 0.07TI-81: 

p

47.5
= 0.0661 Á L 0.07
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89. Domain: ; range: ;
horizontal asymptote: ; 

zeros at ln

n a nonnegative integer

91. Domain: ; range: ;
zeros at , n a nonnegative integer

[–0.5, 4∏] by [–4, 4]

np
1- q , q230, q2

[–3, 3] by [–1.2, 1.2]

ap
2

+ npb ,

y = 1
3-1, 141- q , q2

93. Domain: ;
range: approximately ;
horizontal asymptote: ;
zeros at a nonzero integer

95. Domain: ;

range: approximately ;

horizontal asymptote: ;

zeros at , n a nonzero integer

[–∏, ∏] by [–0.3, 1.2]

1
np

y = 1

3-0.22, 12
1- q , 02 ´ (0, q2

[–5∏, 5∏] by [–0.5, 1.2]

np, n
y = 0
3-0.22, 12

1- q , 02 ´ 10, q2

SECTION 4.7
Exploration 1
1. x 3. 5.

Quick Review 4.7
1. sin x: positive; cos x: positive; tan x: positive 3. sin x: negative; cos x: negative; tan x: positive 5. 1/2 7. 9.

Exercises 4.7
1. 3. 0 5. 7. 9. 11. 13. 21.22° 15. 17. 1.172 19.

21. and 23. 25. 27. 29. 31.

33. Domain: ; Range: ; Continuous; Increasing; Symmetric with respect to the origin (odd); Bounded; Absolute maximum of 
, 

absolute minimum of ; No asymptotes; No end behavior (bounded domain)

35. Domain: ; Range: ; Continuous; Increasing; Symmetric with respect to the origin (odd); Bounded; No local extrema; 

Horizontal asymptotes: and ; End behavior: and 

37. Domain: ; Range: ; Starting from , horizontally shrink by .

39. Domain: ; Range: ; Starting from x, horizontally stretch by 2 and vertically stretch by 5 (either order).y = tan-1a -  

5p

2
, 

5p

2
b1- q , q2

1

2
y = sin-1 xc -  

p

2
, 
p

2
dc -  

1

2
, 

1

2
d

 tan-1 x = -  

p

2
lim

x: -q

 tan-1 x =

p

2
lim

x: q

y = -  

p

2
y =

p

2

a -  

p

2
, 
p

2
b1- q , q2

-  

p

2

p

2
c -  

p

2
, 
p

2
d3-1, 14

1/2p/61/2p/413/2 tan-11x22 =

p

2
lim

x: -q

 tan-11x22 =

p

2
lim

x: q

-0.478-85.43°p/2-p/4-p/4p/3p/3

-1/2-1/2

21 + x221 + x2
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41. 1 43. and for all integers n 45. 47. 49. 51.

53. (b) (c) 2 or 15 ft.

55. (a) (b) As s changes from 10 to 20 ft, changes from about 1.1458 to 2.2906 — it almost exactly doubles (a 99.92% 

increase). As s changes from 200 to 210 ft, changes from about 21.80° to 22.78° — an increase of less than 1°, and a very small relative 
change (only about 4.5%). (c) The x-axis represents the height and the y-axis represents the angle: The angle cannot grow past 90° (in fact, it
approaches but never exactly equals 90°). 57. False. This is only true for , the domain of . 59. E 61. C
63. The cotangent function restricted to the interval is one-to-one and has an inverse. The unique angle y between 0 and (noninclusive)
such that is called the inverse cotangent (or arccotangent) of x, denoted or arccot x. The domain of is and
the range is .10, p2

1- q , q2y = cot-1 xcot-1 xcot y = x
p10, p2

sin-1 x-1 … x … 1

u

°°uu = tan-1 
s

500

[0, 25] by [0, 55]

1

21 + 4x2
x/21 - x2x/21 + x21

3

5p

6
+ 2np,

p

6
+ 2np
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67. 69.

71. (a) (b) (c) The graph on the left (d) The graph on the left

SECTION 4.8
Exploration 1
1. The unit circle
3. Since the grapher is plotting points along the unit circle, it covers the circle at a constant speed. Toward the extremes its motion is mostly verti-
cal, so not much horizontal progress (which is all that we see) occurs. Toward the middle, the motion is mostly horizontal, so it moves faster.

Quick Review 4.8
1. , 3. , , 

5. Complement: 58°; supplement: 148° 7. 45° 9. Amplitude: 3; period: 

Exercises 4.8
1. 3. 5. ; 
7. 185 tan 9. 100 tan 11. 13.
15. 17. Distance: naut mi; bearing is 19.

21. 23. 25.

27. (a) 8 cycles/sec (b) (c) About 4.1 in. left of the starting position 29.
31. (a) 25 ft (b) 33 ft (c) /radians sec
33. (a) (b) and k = 82 - 17 = 65a = 182 - 482/2 = 17p/6

p/10
d = 3 cos 4pt cmd = 6 cos 16pt

550

cot 70° - cot 80°
L 2931 ft36.5 tan 15° L 9.8 ft325 tan 63° L 638 ft

1097 cot 19° L 3186 ft140°.6012 L 84.852001tan 40° - tan 30°2 L 52.35 ft
4.25 tan 35° L 2.98 mi10 tan 55° L 14.3 ft83°12¿ L 839 ft80°1¿12– L 1051 ft

tower height = 5 tan 80° L 28.36 ftwire length = 5 sec 80° L 28.79 ft120 cot 10° L 680.55 ft30013 L 519.62 ft

pa = 28 csc 44° L 40.308
c = 28 csc 28° L 59.642b = 28 cot 28° - 28 cot 44° L 23.665c = 15 csc 31° L 29.124b = 15 cot 31° L 24.964

y = p/2, y = 3p/2y = p/2

18
 p

 tan-1 x + 33y =

p

2
- tan-1 x

65. (a) Domain all reals,
range , period 

[–2∏, 2∏] by [–0.5∏, 0.5∏]

2p3-p/2, p/24
(b) Domain all reals,

range , period 

[–2∏, 2∏] by [0, ∏]

2p30, p4
(c) Domain all reals except ,

n an integer, range , period .
Discontinuity is not removable.

[–2∏, 2∏] by [–∏, ∏]

p1-p/2, p/22
p/2 + np

(c) (d) The fit is very good:

[0, 13] by [42, 88]

13 + 1 = 42 (e) Setting 17 sin , we get
or . These represent (approximately)

days #139 and #287 of a 365-day year, namely May 19
and October 14.

t = 9.43t = 4.57
1p/61t - 422 + 65 = 70
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35. (a) March (b) November
37. True. Since the frequency and the period are reciprocals, the higher the frequency, the shorter the period. 39. D 41. D
43. (a) (b) The first is the best.

(c) About .

45. 47. 49.

51. (a) (b) One pretty good match is (that is, ,
. Answers will vary but should be close to these values.

(c) Frequency: about ; It appears to be a G.

(d) G

CHAPTER 4 REVIEW EXERCISES
1. positive y-axis; 450° 3. QIII; 5. QI; 7. QI; 

9. radians 11. 13. 15.

17. 19. 1 21. 23. 2 25. 27. 0

29. , , , , 

31. , , , , , 

33. , , , , , 

35. , , , , , 

37. 39. , , 

41. , , 43. , , 45. QIII 47. QII

49. , , , , , 

51. , , , , cot u =

5

3
sec u = -  

134

5
csc u = -  

134

3
tan u =

3

5
sin u = -  

3

134
 , cos u = -  

5

134

cot u = -  

1

2
sec u = - 15csc u =

15

2
tan u = -2cos u = -  

1

15
sin u =

 2

15

b L 45.58°a L 44.42°a = 216 L 4.90a = 42°c =

7

cos 48°
L 10.461b = 7 tan 48° L 7.774

b = 55°b = 15 cos 35° L 12.287a = 15 sin 35° L 8.604L 4.075 radians

cot u =

8

15
sec u =

17

8
csc u =

17

15
tan u =

15

8
cos u =

8

17
sin u =

15

17

cot a =

12

5
sec a =

13

12
csc a =

13

5
tan a =

5

12
cos a =

12

13
sin a =

5

13

cot 1-135°2 = 1sec 1-135°2 = - 12csc 1-135°2 = - 12tan 1-135°2 = 1cos 1-135°2 = -  

1

12
sin 1-135°2 = -  

1

12

cot a -  

p

6
b = - 13sec a-

p

6
 b =

2

13
csc a -  

p

6
b = -2tan a-

p

6
b = -

1

13
cos a -  

p

6
b =

13

2
sin a -  

p

6
b = -  

1

2
,

-11/21/2

360° + tan-11-22 L 296.565° L 5.176 radians120° = 2p/3 rad30° = p/6 rad270° or 
3p

2

15°13p/30-3p/4

2467

2p
L 393 Hz

b = 2467, h = 0.00022
a = 1.51971y = 1.51971 sin324671t - 0.000224

[0, 0.0092] by [–1.6, 1.6]

tan-1 0.06 L 3.4°AC L 33.6 in.; BD L 12.9 in2.5 cot 
p

7
L 5.2 cm

L  392 oscillations/sec
2464

2p
=

1232
p

[0, 0.0062] by [–0.5, 1]
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53. Starting from ,
translate left units.

55. Starting from , translate left units, 

reflect across x-axis, and translate up 4 units.

[–2∏, 2∏] by [–1, 6]

p

2
y = cos x

[–2∏, 2∏] by [–1.2, 1.2]

p

y = sin x

6965_SE_Ans_833-934.qxd  1/25/10  3:40 PM  Page 881



882 SELECTED ANSWERS

57. Starting from ,

horizontally shrink by .

59. Starting from , horizontally stretch by 2,
vertically stretch by 2, and reflect across x-axis (in any order).

[–4∏, 4∏] by [–8, 8]

y = sec x

[–0.5∏, 0.5∏] by [–5, 5]

1

2

y = tan x

61. Amplitude: 2; period: ; phase shift: 0; domain: ; range: 

63. Amplitude: 1.5; period: ; phase shift: ; domain: ; range: 

65. Amplitude: 4; period: ; phase shift: ; domain: ; range: 

67. , , and 69. 71.

73. Starting from , horizontally shrink by . Domain: ; range: 

75. Starting from , translate right 1 unit, horizontally shrink by , translate up 2 units. Domain: ; range: 

77. 79. 81. 83. As 85. 1 87. 3/4

89. Periodic; period: ; domain: , n an integer; range: 

91. Not periodic; domain: , n an integer; range: 93.

95. 97.
99. 101. 103. .

105. (a) Day 123 (May 3) (b) Day 287 (October 14)

Chapter 4 Project
Answers are based on the sample data shown in the table.
1.

3. The constant a represents half the distance the pendulum bob swings as it moves from its highest point to its lowest point; k represents 
the distance from the detector to the pendulum bob when it is in midswing.

5. ; Most calculator/computer regression models are expressed in the 
form , where in the equation . The latter equation form differs from 

only in h.y = a cos1b1x - h22 + k
y = a sin1b1x - h22 + k-p/b = hy = a sin 1bx + p2 + k

y L 0.22 sin 13.87x - 0.162 + 0.71

22p/15 L 4.6 in62 tan 72°24¿ L 195.4 ft

23°

128°

north tower

south tower

1501cot 18° - cot 42°2 L 295 ft100 tan 78° L 470 m

4p/31- q , q2x Z

p

2
+ np

31, q2x Z

p

2
+ npp

ƒx ƒ : q , 
sin x

x2
: 0.3p/23p/45p/6

c2 -

p

2
, 2 +

p

2
dc0, 

2

3
d1

3
y = sin-1 x

c -  

p

2
, 
p

2
dc -  

1

3
, 

1

3
d1

3
y = sin-1 x

45° = p/4 radL 49.996° L 0.873 radiansh L 1.11b = 1a L 4.47

3-4, 441- q , q21

2
p

3-1.5, 1.541- q , q2p

8
p

3-2, 241- q , q22p

3
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SECTION 5.1
Exploration 1

1. , , and 

3. , , and 

Quick Review 5.1
1. 3. 5. 7. 9. 11.

Exercises 5.1
1. and 3. and 5. 0.45 7. 9.
11. 1 13. 15. 17. 19. 21. 1 23. 25. 2 27. 29.
31. 33. 35. 37. 39. 41. 43.
45. 47. 49. 51. 53. 55.

57. , , 59. , , 61. , , 

63. , 65. or , 

67. , 69. 71. 73.

75. True. Since secant is an even function, sec , which equals csc x by one of the cofunction identities.

77. D 79. C

81. sin x, , , , , 

83. The two functions are parallel to each other, 
separated by 1 unit for every x. At any x, 
the distance between the two graphs is 

.

85. (a) (b) The equation is .

(c) days. This is the number of days that
it takes the moon to make one complete orbit of the Earth
(known as the moon’s sidereal period).

(d) 225,744 miles
(e) , or 

.

87. Factor the left-hand side: 
89. Use the hint:

Cofunction identity
Since cos is even
Cofunction identity

91. Since A, B, and C are angles of a triangle, . So: .sin 1A + B2 = sin 1p - C2 = sin CA + B = p - C
=  sin x
=  cos 1p/2 - x2
=  cos 1x - p/22
sin 1p - x2 = sin 1p/2 - 1x - p/222

sin4 u - cos4 u = 1sin2 u - cos2 u21sin2 u + cos2 u2 = 1sin2 u - cos2 u2 # 1 = sin2 u - cos2 u

cos 10.22997x2 + 238855y = 13,111
y = 13,111 cos 1-0.22997x2 + 238855

12p2/0.22998 L 27.32

[–6, 70] by [220000, 260000]

sin 10.22997 x + 1.5712 + 238,855y = 13,111

[–6, 70] by [220000, 260000]

[–2�, 2�] by [–4, 4]

sin2 x - 1-cos2 x2 = sin2 x + cos2 x = 1

cot x = �
21 - sin2 x

sin x
sec x = �

1

21 - sin2 x
csc x =

1

sin x
tan x = �

sin x

21 - sin2 x
cos x = � 21 - sin2 x

ax -

p

2
b = sec ap

2
- xb

9 ƒsec u ƒ3 ƒ tan u ƒƒsin u ƒ�1, �2, . . .65�0.8861 + np|n = 0

�1, �2, . . .62.8369 + 2np|n = 050.3047 + 2np�1, �2, . . .65�1.1918 + 2np|n = 0

�1, �2, . . .n = 0np�1, �2, . . .n = 0np�1, �2, . . .n = 0�
p

3
+ 2np

p/3, 2p/3, 4p/3, 5p/30, pp/6, p/2, 5p/6, 3p/21 - cos x1 - sin x12 tan x - 122
12 cos x - 121cos x + 1211 - sin x221cos x + 122cot x-sin x2 csc2 xtan x

tan xsec xcos x-1-1cos x sin2 xtan2 x
sin x-0.73cot u = -1/115 = - 115/15tan u = - 115cos u = 4/5sin u = 3/5

xy
y - 2x

xy
(2x + y)(x - 2y)1a - b222.4981 rad = 143.130°1.1760 rad = 67.380°

cot u =

cos u

sin u
cot u =

1

tan u
csc u =

1

sin u

tan u =

sin u

cos u
sec u =

1

cos u
cos u =

1

sec u
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SECTION 5.2
Exploration 1
1. The graphs lead us to conclude that this is not an identity. 3. Yes

5. No. The graph window cannot show the full graphs, so they could differ outside the viewing window. 
Also, the function values could be so close that the graphs appear to coincide.

Quick Review 5.2

1. 3. 5. 1 7. No. Any negative x. 9. No. Any x for which sin , e.g., . 11. Yes

Exercises 5.2

1. One possible proof: 

3. One possible proof: 5. Yes 7. No 9. Yes

11.

13.

15. 17.

19. Multiply out the expression on the left side.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43. cos5 x = cos4 x cos x = 1cos2 x221cos x2 = 11 - sin2 x22 1cos x2 = 11 - 2 sin2 x + sin4 x21cos x2
sin2 x cos3 x = sin2 x cos2 x cos x = sin2 x11 - sin2 x21cos x2 = 1sin2 x - sin4 x21cos x2

sin t

1 - cos t
+

1 + cos t

sin t
=

sin2 t + 11 + cos t211 - cos t2
1sin t211 - cos t2 =

1 - cos2 t + 1 - cos2 t

1sin t211 - cos t2 =

211 - cos2 t2
1sin t211 - cos t2 =

211 + cos t2
sin t

sin x - cos x

sin x + cos x
=

1sin x - cos x21sin x + cos x2
1sin x + cos x22 =

sin2 x - cos2 x

sin2 x + 2 sin x cos x + cos2 x
=

sin2 x - 11 - sin2 x2
1 + 2 sin x cos x

=

2 sin2 x - 1

1 + 2 sin x cos x

tan x

sec x - 1
=

tan x1sec x + 12
sec2 x + 1

=

tan x1sec x + 12
tan2 x

=

sec x + 1

tan x
. See also #26.

+  y2 sin2 a2 = x2 sin2 a + y2 cos2 a + x2 cos2 a + y2sin2 a = 1x2
+ y221sin2 a + cos2 a2 = x2

+ y2

1x sin a + y cos a22 + 1x cos a - y sin a22 = 1x2 sin2 a + 2xy sin a cos a + y2 cos2 a2 + 1x2 cos2 a - 2xy cos a sin a

cos4 x - sin4 x = 1cos2 x + sin2 x21cos2 x - sin2 x2 = 11cos2 x - sin2 x2 = cos2 x - sin2 x

cot2 x - cos2 x = a cos x

sin x
b2

- cos2 x =

cos2 x11 - sin2 x2
sin2 x

= cos2 x #
cos2 x

sin2 x
= cos2 x cot2 x

tan2 x

sec x + 1
=

sec2 x - 1

sec x + 1
= sec x - 1 =

1

cos x
- 1 =

1 - cos x

cos x

cos b

1 + sin b
=

cos2 b

cos b11 + sin b2 =

1 - sin2 b

cos b11 + sin b2 =

11 - sin b211 + sin b2
cos b11 + sin b2 =

1 - sin b

cos b

1 + tan2 x

sin2 x + cos2 x
=

sec2 x

1
= sec2 x

1cos t - sin t22 + 1cos t + sin t22 = cos2 t - 2 cos t sin t + sin2 t + cos2 t + 2 cos t sin t + sin2 t = 2 cos2 t + 2 sin2 t = 2

cos2 x - 1

cos x
=

-sin2 x

cos x
= -  

sin x

cos x
 sin x = - tan x sin x

11 - cos u211 + cos u2
cos2 u

=

1 - cos2 u

cos2 u
=

sin2 u

cos2 u
= tan2 u

11 - tan x22 = 1 - 2 tan x + tan2 x = 11 + tan2 x2 - 2 tan x = sec2 x - 2 tan x

1cos x21tan x + sin x cot x2 = cos x #
sin x

cos x
+ cos x sin x #

cos x

sin x
= sin x + cos2 x

x2
- 4

x - 2
-

x2
- 9

x + 3
=

1x + 221x - 22
x - 2

-

1x + 321x - 32
x + 3

= x + 2 - 1x - 32 = 5

x3
- x2

x
- 1x - 121x + 12 =

x1x2
- x2

x
- 1x2

- 12 = x2
- x - 1x2

- 12 = -x + 1 = 1 - x

x = -p/2x 6 0
1

sin x cos x

sin x + cos x

sin x cos x

[–2�, 2�] by [–4, 4]
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45.

47.

49.

51. 53. (d) 55. (c) 57. (b)

59. True. If x is in the domain of both sides of the equation, then The equation holds for all so it is an identity.
61. E 63. B 65. sin x 67. 1 69. 1
71. If A and B are complementary angles, then 

73. Multiply and divide by under the radical: since

. Now, since we can dispense with the absolute value in the numerator, but it must stay in the denominator.

75.

77. ln ƒ tan x ƒ = ln 
ƒsin x ƒ

ƒcos x ƒ

= ln ƒsin x ƒ - ln ƒcos x ƒ

= 1 - 3 cos2 x 11 - cos2 x2 = 1 - 3 cos2 x sin2 x

sin6 x + cos6 x = 1sin2 x23 + cos6 x = 11 - cos2 x23 + cos6 x = 11 - 3 cos2 x + 3 cos4 x - cos6 x2 + cos6 x

1 - sin t Ú 0,2a2
= ƒa ƒ

A
1 - sin t

1 + sin t
#
1 - sin t

1 - sin t
= C

11 - sin t22
1 - sin2 t

= C
11 - sin t22

cos2 t
=

ƒ1 - sin t ƒ

ƒcos t ƒ

1 - sin t

sin2 A + sin2 B = sin2 A + sin2 1p/2 - A2 = sin2 A + cos2 A = 1.

x Ú 0,x Ú 0.

sin5 x = 1sin4 x21sin x2 = 1sin2 x221sin x2 = 11 - cos2 x221sin x2 = 11 - 2 cos2 x + cos4 x21sin x2
cos3 x = 1cos2 x21cos x2 = 11 - sin2 x21cos x2
=

2 sin x cos x + cos2 x + sin2 x

1cos x - sin x21cos x + sin x2 =

1cos x + sin x22
1cos x - sin x21cos x + sin x2 =

cos x + sin x

cos x - sin x

2 tan x

1 - tan2 x
+

1

2 cos2 x - 1
=

2 tan x

1 - tan2 x
#
cos2 x

cos2 x
+

1

cos2 x - sin2 x
=

2 sin x cos x

cos2 x - sin2 x
+

cos2 x + sin2 x

cos2 x - sin2 x

=

sin3 x - cos3 x

sin x cos x1sin x - cos x2 =

sin2 x + sin x cos x + cos2 x

sin x cos x
=

1 + sin x cos x

sin x cos x
=

1

sin x cos x
+ 1 = csc x sec x + 1

tan x

1 - cot x
+

cot x

1 - tan x
=

tan x

1 - cot x
#
sin x

sin x
+

cot x

1 - tan x
#
cos x

cos x
= a sin2 x/cos x

sin x - cos x
+

cos2 x/sin x

cos x - sin x
b sin x cos x

sin x cos x
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79. (a) They are not equal. Shown is the window by ;
graphing on nearly any viewing window does not show any 
apparent difference—but using TRACE, one finds that the 
y-coordinates are not identical. Likewise, a table of values will
show slight differences; for example, when , 
while .

[–2�, 2�] by [–2, 2]

y2 = 0.54030
y1 = 0.53988x = 1

3-2, 243-2p, 2p4

81. In the decimal window, the x-coordinates used to plot the graph on the calculator are (e.g.) 0, 0.1, 0.2, 0.3, etc.—that is, where n
is an integer. Then and the sine of integer multiples of is 0; therefore, 

However, for other choices of x, such as we have 

SECTION 5.3
Exploration 1

1. No 3. . (Many other answers are possible.)

Quick Review 5.3
1. 3. 5. 7. No 9. Yes

Exercises 5.3
1. 3. 5. 7. 9. 11. 13.

15. 17. 19. 21. tan 12y + 3x2sin 2xcos ax -

p

7
btan 66°

sin 7p/10sin 25°112 - 162/42 + 13112 + 162/4116 + 122/4116 - 122/4

2p/3 - p/4210° - 45°45° - 30°

tan ap
3

+

p

3
b = - 13, tan 

p

3
+ tan 

p

3
= 213

cos x + sin 10px = cos x + sin 10 Z  cos x.x =

1
p

,

cos x + sin 10px = cos x + sin pn = cos x + 0 = cos x.p10px = pn,
x = n/10,

(b) One choice for h is 0.001 (shown). The function 
is a combination of three sinusoidal functions

, 
all with period .

[–2�, 2�] by [–0.001, 0.001]

2p
11000 sin 1x + 0.0012, 1000 sin x, and cos x2
y3
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23.

25.

27.

29.

31. Equations (b) and (f ) 33. Equations (d) and (h). 35.

37.

39. , using the first two cofunction identities.

41. , using the second cofunction identity.

43. 45.

47.

49.

51. use Exercise 48 with x replaced with 2x and y replaced with x.

53. since both the numerator and denominator are 

factored forms for differences of squares.

55.

57. False. For example, but and are not supplementary.
59. A 61. B

63.

65. The identity would involve , which does not exist. 

67.

69.

71.

=  
sin A sin B sin C

cos A cos B cos C
= tan A tan B tan C

=  
cos C sin 1p - C2 + sin C1cos 1p - C2 + sin A sin B2

cos A cos B cos C
=

cos C sin C + sin C1-cos C2 + sin C sin A sin B

cos A cos B cos C

=  
cos C1sin A cos B + cos A sin B2 + sin C1cos A cos B2

cos A cos B cos C
=

cos C sin 1A + B2 + sin C1cos 1A + B2 + sin A sin B2
cos A cos B cos C

tan A + tan B + tan C =

sin A

cos A
+

sin B

cos B
+

sin C

cos C
=

sin A1cos B cos C2 + sin B1cos A cos C2
cos A cos B cos C

+

sin C1cos A cos B2
cos A cos B cos C

sin 1A + B2 = sin 1p - C2 = sin p cos C - cos p sin C = 0 # cos C - 1-12 sin C = sin C

cos 1x + h2 - cos x

h
=

cos x cos h - sin x sin h - cos x

h
=

cos x 1cos h - 12 - sin x sin h

h
= cos xa cos h - 1

h
b - sin x 

sin h

h

=

sin x # 0 - cos x # 1-12
cos x # 0 + sin x # 1-12 = -cot x

tan ax -

3p

2
b =

sin ax -

3p

2
b

cos ax -

3p

2
b

=

sin x cos 
3p

2
- cos x sin 

3p

2

cos x cos 
3p

2
+ sin x sin 

3p

2

tan a3p

2
b

tan 1u - v2 =

sin 1u - v2
cos 1u - v2 =

sin u cos v - cos u sin v

cos u cos v + sin u sin v
=

sin u cos v

cos u cos v
-

cos u sin v

cos u cos v

cos u cos v

cos u cos v
+

sin u sin v

cos u cos v

=

sin u

cos u
-

sin v

cos v

1 +

sin u sin v

cos u cos v

=

tan u - tan v

1 + tan u tan v

4p3pcos 3p + cos 4p = 0

=  
1sin x cos y2/1cos x cos y2 + 1cos x sin y2/1cos x cos y2
1sin x cos y2/1cos x cos y2 - 1cos x sin y2/1cos x cos y2 =

1sin x/cos x2 + 1sin y/cos y2
1sin x/cos x2 - 1sin y/cos y2 =

tan x + tan y

tan x - tan y

sin 1x + y2
sin 1x - y2 =

sin x cos y + cos x sin y

sin x cos y - cos x sin y
=

sin x cos y + cos x sin y

sin x cos y - cos x sin y
#
1/1cos x cos y2
1/1cos x cos y2

tan 1x + y2 tan 1x - y2 = a tan x + tan y

1 - tan x tan y
b # a tan x - tan y

1 + tan x tan y
b =

tan2 x - tan2 y

1 - tan2 x tan2 y

cos 3x + cos x = cos 12x + x2 + cos 12x - x2;
-  1sin x cos x + cos x sin x2 sin x = cos3 x - sin2 x cos x - 2 cos x sin2 x = cos3 x - 3 sin2 x cos x

cos 3x = cos 31x + x2 + x4 = cos 1x + x2 cos x - sin 1x + x2 sin x = 1cos x cos x - sin x sin x2 cos x

sin 1x - y2 + sin 1x + y2 = 1sin x cos y - cos x sin y2 + 1sin x cos y + cos x sin y2 = 2 sin x cos y

y L 2.236 sin 13x + 0.46362y L 5 sin 1x + 0.92732
csc ap

2
- ub =

1

sin 1p/2 - u2 =

1

cos u
= sec u

cot ap
2

- ub =

cos 1p/2 - u2
sin 1p/2 - u2 =

sin u

cos u
= tan u

sin ap
2

- ub = sin 
p

2
 cos u - cos 

p

2
 sin u = 1 # cos u - 0 # sin u = cos u

x = np, n = 0, �1, �2, . . .

tan au +

p

4
b =

tan u + tan 1p/42
1 - tan u tan 1p/42 =

tan u + 1

1 - tan u # 1
=

1 + tan u

1 - tan u

sin ax +

p

6
b = sin x cos 

p

6
+ cos x sin 

p

6
= sin x #

13

2
+ cos x #

1

2

cos ax -

p

2
b = cos x cos 

p

2
+ sin x sin 

p

2
= cos x # 0 + sin x # 1 = sin x

sin ax -

p

2
b = sin x cos 

p

2
- cos x sin 

p

2
= sin x # 0 - cos x # 1 = -cos x
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73. This equation is easier to deal with after rewriting it as The left side of this equation is the expanded form
of , which of course equals the graph shown is simply The equation is easily solved on the interval

: or . The original graph is so crowded that one cannot see where crossings occur. The window shown is

by .

75.

The next-to-last step follows by the identity in Exercise 48.

SECTION 5.4
Exploration 1

1. 3.

Quick Review 5.4

1. 3. 5.

7. 9. 10 1/2 sq units

Exercises 5.4
1.

3. Starting with the result of Exercise 1: 5. 7.

9. 11.

13. 15.

17.

19.

21.

23. 25. 27. 0, 
p

3
, 
p

2
, 

2p

3
, p, 

4p

3
, 

3p

2
, 

5p

3

p

4
, 
p

2
, 

3p

4
, 

5p

4
, 

3p

2
, 

7p

4

p

3
, p, 

5p

3

=  1 - 8 sin2 x cos2 xcos 4x = cos 212x2 = 1 - 2 sin2 2x = 1 - 212 sin x cos x22
sin 3x = sin 2x cos x + cos 2x sin x = 2 sin x cos2 x + 12 cos2 x - 12 sin x = 1sin x214 cos2 x - 12
2 csc 2x =

2

sin 2x
=

2

2 sin x cos x
=

1

sin2 x
#

sin x

cos x
= csc2 x tan x

sin 4x = sin 212x2 = 2 sin 2x cos 2x2 sin u cos u + 4 cos3 u - 3 cos u or 2 sin u cos u + cos3 u - 3 sin2 u cos u

2 sin u cos u + cos u or 1cos u212 sin u + 120, 
p

4
, 

3p

4
, p, 

5p

4
, 

7p

4

p

6
, 

5p

6
, 

3p

2
0, pcos 2u = cos2 u - sin2 u = 11 - sin2 u2 - sin2 u = 1 - 2 sin2 u

cos 2u = cos 1u + u2 = cos u cos u - sin u sin u = cos2 u - sin2 u

x =

p

6
+ 2np or x =

5p

6
+ 2np or x = �

2p

3
+ 2np, n = 0, �1, �2, . . .

x = -  

p

4
+ np, n = 0, �1, �2, . . .x =

p

2
+ np, n = 0, �1, �2, . . .x =

p

4
+ np, n = 0, �1, �2, . . .

sin2 
9p

8
=

1 - cos 19p/42
2

=

1 - 112/22
2

#
2

2
=

2 - 12

4
sin2 
p

8
=

1 - cos 1p/42
2

=

1 - 112/22
2

#
2

2
=

2 - 12

4

=  
E0

c
 a2 cos vt cos 

vx

c
b = 2 

E0

c
 cos vt cos 

vx

c

B = Bin + Bref =

E0

c  cos avt -

vx

c
b +

E0

c
 cos avt +

vx

c
b =

E0

c
 ccos avt -

vx

c
b + cos avt +

vx

c
b d

[–2�, 2�] by [–1.1, 1.1]

3-1.1, 1.143-2p, 2p4
x = �

3p

2
x = �

p

2
3-2p, 2p4

cos x = 0y = cos x.cos x;cos 15x - 4x2
cos 5x cos 4x + sin 5x sin 4x = 0.
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29.

Solution: 50.1p, 0.5p, 0.9p, 1.3p, 1.5p, 1.7p6
[0, 2   ] by [–2, 2]�

31. 33. 35.

37. (a) Starting from the right side:

.

(b) Starting from the right side:

.
1

2
 11 + cos 2u2 =

1

2
 31 + 12 cos2 u - 124 =

1

2
 12 cos2 u2 = cos2 u

1

2
 11 - cos 2u2 =

1

2
 31 - 11 - 2 sin2 u24 =

1

2
 12 sin2 u2 = sin2 u

-2 - 1311/2232 - 2311/2232 - 23

39.

=  
1

8
 12 - 4 cos 2x + 1 + cos 4x2 =

1

8
 13 - 4 cos 2x + cos 4x2

sin4 x = 1sin2 x22 = c1
2

 11 - cos 2x2 d2 =

1

4
 11 - 2 cos 2x + cos2 2x2 =

1

4
 c1 - 2 cos 2x +

1

2
 11 + cos 4x2 d
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41.

43. ; general solution: or 

45. ; general solution: or , 

47. False. For example, has period and has period but the product 
49. D 51. E 53. (a) In the figure, the triangle with side lengths x/2 and R is a right triangle, since R is given as the 

perpendicular distance. Then the tangent of the angle is the ratio “opposite over adjacent”: . Solving for x gives the desired 

equation. The central angle since one full revolution of radians is divided evenly into n sections.

(b) , where , so .

55. ; the maximum value is about 12.99 . 57.

59.

61. sec 2u =

1

cos 2u
=

1

cos2 u - sin2 u
= a 1

cos2 u - sin2 u
b a sec2 u csc2 u

sec2 u csc2 u
b =

sec2 u csc2 u

csc2 u - sec2 u

sec 2u =

1

cos 2u
=

1

1 - 2 sin2 u
= a 1

1 - 2 sin2 u
b a csc2 u

csc2 u
b =

csc2 u

csc2 u - 2

csc 2u =

1

sin 2u
=

1

2 sin u cos u
=

1

2
#

1

sin u
#

1

cos u
=

1

2
 csc u sec uft3u =

p

6

R L 5.87/a2 tan 
p

11
b L 9.9957, R = 10u =

2p

11
5.87 L 2R tan 

u

2

2pu is 2p/n

tan 
u

2
=

x/2

R
u/2

has period p.
ƒ1x2 g1x2 = 2 sin x cos x = sin 2x2p,g1x2 = cos x2pƒ1x2 = 2 sin x

n = 0, �1, �2, . . .
p

2
+ 2np2np0, 

p

2

p + 2np, n = 0, �1, �2, . . .�
p

3
+ 2np

p

3
, p, 

5p

3

sin3 2x = sin 2x sin2 2x = sin 2x #
1

2
 11 - cos 4x2 =

1

2
 1sin 2x211 - cos 4x2
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63. (a) (b)

This is a fairly good fit, but not really as
good as one might expect from data gen-
erated by a sinusoidal physical model.

(c) The residual list:

.5.63, 9.79, 4.50, -3.66, -8.62, -2.396
53.73, 7.48, 3.05, -6.50, -9.77, -3.67,

Y1 = 44.52 sin 10.015x - 0.822 - 0.59

[–30, 370] by [–60, 60]
[–30, 370] by [–60, 60]

SECTION 5.5
Exploration 1
1. If , the segment will not reach from point B to the dotted line. On the other hand, if , then a circle of radius BC will inter-

sect the dotted line in a unique point. (Note that the line only extends to the left of point A.)
3. The second point is the reflection of the first point on the other side of the altitude.

5. If , then BC can only extend to the right of the altitude, thus determining a unique triangle.

Quick Review 5.5
1. bc/d 3. ad/b 5. 13.314 7. 17.458° 9. 224.427°

Exercises 5.5
1. 3. 5.
7. 9. 11.
13. zero 15. two 17. two 19. B1 L 72.7°; C1 L 43.3°; c1 L 12.2; B2 L 107.3°; C2 L 8.7°; c2 L 2.7

C L 37.2°; A L 72.8°; a L 14.2B L 20.1°; C L 127.9°; c L 25.3C = 77°; a L 4.1; c L 7.3
C = 110°; a L 12.9; c L 18.8B = 45°; b L 15.8; c L 12.8C = 75°; a L 4.5; c L 5.1

BC Ú AB

1C121C22
BC 7 ABBC … AB

(d)

This is another fairly good fit, which
indicates that the residuals are not ran-
dom. There is a periodic variation that is
most probably due to physical causes.

(e) The first regression indicates that the data
are nearly sinusoidal. The second regression
indicates that the variation of the data around
the predicted values is also nearly sinusoidal.
Periodic variation around periodic models is a
predictable consequence of bodies orbiting
bodies, but ancient astronomers had a difficult
time reconciling their data with their simpler
models of the universe.

Y2 = 8.73 sin 10.034x + 0.622 - 0.05

[–30, 370] by [–15, 15]
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21. ; ; ; ; ; 
23. (a) (b) or (c)
25. (a) No: this is an SAS case. (b) No: only two pieces of information given 27. No triangle is formed 29. No triangle is formed
31. 33. ; ; ; ; ; 
35. Cannot be solved with Law of Sines (an SAS case). 37. (a) 54.6 ft (b) 51.9 ft 39. 41. 1.9 ft 43.

45. 36.6 mi to A; 28.9 mi to B 47. True. By the Law of Sines, , which is equivalent to 

49. C 51. A
53. (b) Possible answers: , (or any set of three numbers proportional to these).
(c) Any set of three identical numbers.
55. (a) (b) (c) (d)
57.

SECTION 5.6
Exploration 1
1. 8475.742818 3. 0.0014714831 square miles
5. The estimate of “a little over an acre” seems questionable, but the roughness of their measurement system does not provide firm evidence
that it is incorrect. If Jim and Barbara wish to make an issue of it with the owner, they would be well advised to get some more reliable data.

Quick Review 5.6
1. 3.

5. (a) (b)

7. One answer: 9. One answer 

Exercises 5.6
1. 3. 5.
7. 9. No triangles possible 11.
13.
15. No triangle 17. 19. 21. 23. No triangle is formed 25.
27. 29. radians 31. 33. 35.
37. (a) (b) The home-to-second segment is the hypotenuse of a right triangle, so the distance from the pitcher’s rubber to second
base is (c)
39. (a) (b) (c)
41. 43.
45. True. By the Law of Cosines, , which is a positive number. Since , 
it follows that 
47. B 49. C 51.

53. (a) Ship A: knots; Ship B: knots (b) 35.18º (c) 34.8 nautical mi 55.

CHAPTER 5 REVIEW EXERCISES
1. sin 200° 3. 1

5.

7.

9.

11.

=  
11 + tan u - cot u - 12 + 11 + cot u - tan u - 12

11 - tan u211 - cot u2 =

0

11 - tan u211 - cot u2 = 0

1 + tan u

1 - tan u
+

1 + cot u

1 - cot u
=

11 + tan u211 - cot u2 + 11 + cot u211 - tan u2
11 - tan u211 - cot u2

csc x - cos x cot x =

1

sin x
- cos x #

cos x

sin x
=

1 - cos2 x

sin x
=

sin2 x

sin x
= sin x

=  sin2 x tan2 xtan2 x - sin2 x = sin2 x a1 - cos2 x

cos2 x
b = sin2 x #

sin2 x

cos2 x

=  cos3 x - 3 sin2 x cos x = cos3 x - 311 - cos2 x2cos x = cos3 x - 3 cos x + 3 cos3 x = 4 cos3 x - 3 cos x

cos 3x = cos 12x + x2 = cos 2x cos x - sin 2x sin x = 1cos2 x - sin2 x2 cos x - 12 sin x cos x2 sin x

6.9 in.2
37.2 - 12.4

2 hr
= 12.4

30.2 - 15.1

1 hr
= 15.1

Area = 1nr 2/22 sin 1360°/n2
b2

+ c2
7 2bc cos A.

b2
+ c2

- 2bc cos A 7 0b2
+ c2

- 2bc cos A = a2
L  37.9°L 12.5 yd

L  7.6 ftL  4.5 fttan-1 11/32 L 18.4°

L  93.3°6012 - 40 L 44.9 ft.
L  42.5 ft

L  130.42 ftL  498.8 in.2L  374.1 in.2L  1.445L  314.05

L  216.15L  8.18L  107.98 cm2
L  222.33 ft2

B1 L 72.9°; C1 L 65.1°, c1 L 9.487; B2 L 107.1°; C2 L 30.9°, c2 L 5.376
A L 24.6°; B L 99.2°, C L 56.2°A L 28.5°; B L 56.5°, c L 25.1

B L 89.3°; C L 35.7°, a L 9.8A L 76.8°; B L 43.2°, C L 60°A L 30.7°; C L 18.3°, b L 19.2

1x - i21x + i2 = x2
+ 11x - 121x - 22

A = cos-1 a x2
+ y2

- 81

2xy
bcos A =

x2
+ y2

- 81

2xy

A L 132.844°A L 53.130°

paces2

AC L 8.7 mi; BC L 12.2 mi; h L 5.2 mi
AB sin A 6 BC 6 ABBC Ú AB or BC = AB sin ABC 6 AB sin Ah = AB sin A

c = 2a = 1, b = 13

sin A

sin B
=

a

b
.

sin A
a

=

sin B

b

L  108.9 ftL  24.9 ft
a2 L 4.7B2 L 99.6°A2 L 5.4°a1 L 20.7B1 L 80.4°A1 L 24.6°A = 99°; a L 28.3; b L 19.1

b 6 6.691b Ú 10b L 6.6916.691 6 b 6 10
b2 L 3.4B2 L 10.2°A2 L 101.8°b1 L 10.8B1 L 33.8°A1 L 78.2°
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13.

15.

17.

we can drop that absolute value.

19.

21.

23. Yes: 

25. Many answers are possible, for example, 

27. Many answers are possible, for example, 

29. or 

31. 33. tan 1 35. 37. 39. 41. 43. No solutions

45. 47. 49. 51.

53. No triangle is formed. 55. 57. 59.
61. (a) (b) (c) 63. 65. 1.25 rad

67. (a) (b) square units

69. (a) miles (b)

71. 73.

75. (a) By the product-to-sum formula in Exercise 74c, 2 

.

(b) By the product-to-sum formula in Exercise 74c, 2 

. (c) By the product-to-sum formula in Exercise 74b, 

. (d) By the product-to-sum formula in 

Exercise 74a, .

77. (a) Any inscribed angle that intercepts an arc of is a right angle.

(b) Two inscribed angles that intercept the same arc are congruent. (c) In right 

(d) Because and are congruent, (e) Of course. They both equal by the Law of Sines.
sin A

a

sin A
a

=

sin A¿

a
=

a/d
a

=

1

d
.∠A∠A¿

¢A¿BC, sin A¿ =

opp

hyp
=

a

d
 .

180°

-2 sin 
u + v

2
 sin 

u - v

2
= -2 #

1

2
 acos 

u + v - 1u - v2
2

- cos 
u + v + u - v

2
b = -1cos v - cos u2 = cos u - cos v

=  2 #
1

2
 acos 

u + v - 1u - v2
2

+ cos 
u + v + u - v

2
b = cos v + cos u = cos u + cos v

2 cos 
u + v

2
 cos 

u - v

2
=  sin u + sin 1-v2 = sin u - sin v

sin 
u - v

2
 cos 

u + v

2
= 2 #

1

2
 asin 

u - v + u + v

2
+ sin 

u - v - 1u + v2
2

b
=  2 #

1

2
asin 

u + v + u - v

2
+ sin 

u + v - 1u - v2
2

b = sin u + sin v

sin 
u + v

2
 cos 

u - v

2

405p/24 L 53.01 cm3Area of circle - area of hexagon = 256p - 6 # 6413 L 139.140 cm2.

L  35.51°h = 4000 sec 
u

2
- 4000

u = 60°; L  1.30sin u +

1

2
 sin 2u

L  0.6 mib 6 5.6b L 5.6 or b Ú 12L 5.6 6 b 6 12

L  7.5A L 44.4°, B L 78.5°, C L 57.1°C = 72°; a L 2.9, b L 5.1

C = 68°, b L 3.9, c L 6.6y L 5 sin 13x + 0.927321p/3, 5p/32c0, 
p

6
b ´ a 5p

6
, 

7p

6
b ´ a11p

6
, 2pb

3p

2
p/3, 5p/3x L 1.15x L 1.12-  

p

4
+ np

5p

12
+ np, n = 0, �1, �2, . . .

p

12
+ np

1 - 4 sin2 x cos2 x - 2 sin x cos x.

1cos x - sin x211 + 4 sin x cos x2.
sec x - sin x tan x =

1

cos x
-

sin2 x

cos x
=

1 - sin2 x

cos x
=

cos2 x

cos x
= cos x

tan 
1

2
 b =

1 - cos b

sin b
=

1

sin b
-

cos b

sin b
= csc b - cot b

tan au +

3p

4
b =

tan u + tan 13p/42
1 - tan u tan 13p/42 =

tan u + 1-12
1 - tan u 1-12 =

tan u - 1

1 + tan u

=  
1 - cos y

ƒsin y ƒ

; since 1 - cos y Ú 0,

B
1 - cos y

1 + cos y
= D

11 - cos y22
11 + cos y211 - cos y2 = D

11 - cos y22
1 - cos2 y

= D
11 - cos y22

sin2 y
=

ƒ1 - cos y ƒ

ƒsin y ƒ

=  
cos2 f - sin2 f

cos f - sin f
= cos f + sin f

cos f

1 - tan f
+

sin f

1 - cot f
= a cos f

1 - tan f
b a cos f

cos f
b + a sin f

1 - cot f
b a sin f

sin f
b =

cos2 f

cos f - sin f
+

sin2 f

sin f - cos f

cos2 
t

2
= c� B

1

2
 11 + cos t2 d2 =

1

2
 11 + cos t2 = a1 + cos t

2
b a sec t

sec t
b =

1 + sec t

2 sec t
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Chapter 5 Project
1.

5. One possible model is 

SECTION 6.1
Exploration 1
1. 3.

Quick Review 6.1

1. 3. 5. 33.85° 7. 60.95° 9.

Exercises 6.1
1. Both vectors represent by the HMT Rule. 3. Both vectors represent by the HMT Rule.

5. 7. 9. 11. 13.

15. 17. 19. 21. 23.

25. (a) (b) 27. (a) (b)

29. 31. 33. 5; 35. 5; 37. 7; 135° 39.

41. 43. (a) (b) ; 45. (a)
(b) The horizontal component is the (constant) horizontal speed of the basketball as it travels toward the basket. The vertical component is the
vertical velocity of the basketball, affected by both the initial speed and the downward pull of gravity. 47.
49. 51. 53.
55. True. u and have the same length but opposite directions. Thus, the length of is also 1 57. D 59. A

SECTION 6.2
Exploration 1
1. 3. Answers will vary.

Quick Review 6.2

1. 3. 1 5. 7. 9.

Exercises 6.2
1. 72 3. 5. 30 7. 9. 13 11. 4 13. 15. 17. 165° 19. 135°

21. 25. 27. 29. 47.73°, 74.74°, 57.53°

31. 33. Parallel 35. Neither 37. Orthogonal 39. (a) and (b) or 

41. (a) and (b) or 43. or 45. pounds

47. (a) pounds (b) pounds 49. 14,300 foot-pounds 51. foot-pounds 53. foot-pounds

55. foot-pounds 61. False. If one of u or v is the zero vector, then but u and v are not perpendicular.

63. D 65. A 67. (a) and (b) (c)

(d) (e) d =

ƒax0 + by0 - c ƒ

2a2
+ b2

d =

ƒ2x0 + 5y0 - 10 ƒ

129

ƒw2 ƒ =

31129

29

5

29
 85, -29; 1

29
 862, 15592 # 5 + 5 # 0 = 102 # 0 + 5 # 2 = 10

u # v = 0100139 L 624.5

L  85.38L  21.47L  1956.30L  415.82

L  138.56h 53

13
, 

8

13
i8-1, 49 16.61, 0.922L  17.39, -0.92210, -3217, 02

13.4, 0.8214.6, -0.8210, -3214, 02L  -20.78

82

85
 89, 29; 82

85
 89, 29 +

29

85
 8-2, 99-  

21

10
 83, 19; -  

21

10
 83, 19 +

17

10
 8-1, 39L  94.86°

L  64.65°L  115.6°-14-47

h 4

113
, 

6

113
i8-1, - 13983, 139113

8-2 - x, -y9, 82 - x, -y9 

-u-u
L  13.66 mph; L 7.07 mphL  342.86°; L 9.6 mphƒF ƒ L 100.33 lb and u L -1.22°

L  82.20, 1.439
L  83.42, 9.409bearing L 337.84°L  362.85 mphL  8-111.16, 305.409L  8-223.99, 480.349
812, - 129L  306.87°L  53.13°L  8-14.52, 44.709L  816.31, 7.619

-  

4

141
 i -

5

141
 jh -  

4

141
, -  

5

141
i2

15
 i +

1

15
 jh 2

15
, 

1

15
i

-  

1

25
  i -

2

25
 j-  

1

25
  i +

2

25
 j8-4, -18984, -998-3, 89

81, 798-11, -79; 11708-2, -249; 211458-5, 19; 12685, 29; 129

8-2, -2983, -29

180° + tan-1 15/22 L 248.20°-5.36; -4.50
913

2
 ; 4.5

86, -7985, 29

y = 0.5 sin (0.2(x + 8.4)) + 0.5.

[–2, 34] by [–0.1, 1.1]
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SECTION 6.3
Exploration 1
1. 3. 5.

Exploration 2
3.

Quick Review 6.3

1. (a) , (b) (c) 3.

5. 7. 9.

Exercises 6.3
1. (b) 3. (a) by 

5. (a) 5. (b) y

5

x
8

(3, 4)

(1, –2)
a0, – b1

2

a4, b5
2

3-5, 543-5, 54-5, 543-5, 54 by 3

20p rad/secx2
+ y2

= 4

[–3, 7] by [–7, 7]

y + 2 =

8

7
 1x + 32 or y - 6 =

8

7
 1x - 4287, 8984, 69-298-3

[0, 450] by [0, 80][0, 450] by [0, 80][0, 450] by [0, 80][0, 450] by [0, 80]

Tmin … -2 and Tmax Ú 5.5t = 12

[–10, 5] by [–5, 5]

892 SELECTED ANSWERS

t 0 1 2

x 0 1 2 3 4

y und. 4 5/2-21/2

-1-2

7. 9.

11. : line through and 13. : line segment with endpoints and

15. : parabola that opens to right with vertex at 17. : cubic polynomial 19.

parabola that opens to left with vertex at 21. , so , on domain: 23. , 

circle of radius 5 centered at 25. , three-fourths of a circle of radius 2 centered at (not in Quadrant II)

27. 29. 31.

33. 35. 37. (b) Ben is ahead by 2 ft. 39. (a) (c) 744 fty = -16t 2
+ 1000-3 … t 6 -20.5 6 t 6 2

x = 5 + 3 cos t, y = 2 + 3 sin t, 0 … t … 2px = 3t + 3, y = 4 - 7t, 0 … t … 1x = 6t - 2; y = -3t + 5

10, 02x2
+ y2

= 410, 02
x2

+ y2
= 253-8, -32 ´ 1-3, 24y =

2

x + 3
t = x + 314, 02

x = 4 - y2y = x3
- 2x + 310, 12x = 1y - 122

 17, -11213, -32y = -2x + 3, 3 … x … 711, 0210, -12y = x - 1

[–10, 10] by [–10, 10][–10, 10] by [–10, 10]

6965_SE_Ans_833-934.qxd  1/25/10  3:40 PM  Page 892



41. (a) (b) (c) 43. (a) About 2.80 sec (b) ft 45. (a) Yes (b) 1.59 ft 

47. No 49. 51. and 

53. (a) When This corresponds to the highest points on the graph. (b) 55. (no answer)

57. (no answer) 59. True. Both correspond to the rectangular equation 61. A 63. D

65. (a) (b) a (c) (d) ; circle of radius a centered 

at 
(e)

67. (a) Jane is traveling in a circle of radius 20 feet and origin , which yields and .

Since the Ferris wheel is making one revolution every 12 seconds, so Thus, and

in radian mode. (b) Since the ball was released at 75 ft in the positive x-direction and gravity acts in the negative 

y-direction at , we have and , where a is the initial speed of the ball in the x-direction and b is the initial

speed of the ball in the y-direction. The initial velocity vector of the ball is so and 

As a result, and are the parametric equations for the ball.

(c) Jane and the ball will be close to each other but not at the exact same point at seconds.

(d)

(e) The minimum distance occurs at seconds, when feet. Jane will have a good chance of
catching the ball.

69. About 4.11 ft 71. (a) (no answer) (b) (no answer) 73.

SECTION 6.4
Exploration 1
1. (no answer) 3.

Quick Review 6.4
1. (a) II (b) III 3. 5. 7. 9.

Exercises 6.4

1. 3. 5. (a)

(b) 7. 9. 11. 13.

O 2

120°

(–2, 120°)

O

2
(2, 30°)
30°

O1

5
π2 ba–1, 

5
π2

3
π4 ba3,

3
O

3
π4y

5

x
5

2
� ba3, 

3
2 6

�5 b, a
3
�4 b, 

2
33a–

4
� b, 

2
23a

�)(0,
�)(0, 2

1-1, - 132a -  

3

2
, 

313

2
b

L  11.141x - 322 + y2
= 4500°, -200°7p/4, -9p/4

1-2, p/32, 12, p/22, 13, 02, 11, p2, 14, 3p/22

t =

1

3
, 

2

3
; t =

1

4
, 

1

2
, 

3

4

d1t2 L 1.64t L 2.2

d1t2 = Da20 cos ap
6

 tb + 30t - 75b2

+ a20 + 20 sin ap
6

 tb + 16t 2
- 3013tb2

t = 2.2

[–50, 100] by [–50, 50]

y2 = -16t3 + 130132tx2 = -30t + 75

b = 3013.a = -3060 8cos 120°, sin 120°9 = 8-30, 30139,
y2 = -16t2 + btx2 = at + 7516 ft/s2

y1 = 20 + 20 sin ap
6

 tb ,

x1 = 20 cos ap
6

 tbn =

2p

12
=

p

6
.2p = 12n,12p2

y1 = 20 + 20 sin 1nt2x1 = 20 cos 1nt210, 202

x = 3 cos t - 1; y = 3 sin t + 4
1h, k2
1x - h22 + 1y - k22 = a2

[–6, 6] by [–4, 4][–6, 6] by [–4, 4]

y = 3x + 4.

2p unitst = p 1or 3p, or 5p, etc.2, y = 2.

y = 50 + 35 sin ap
6

 tbx = 35 cos ap
6

 tbv L -10.00 ft/sec or 551.20 ft/sec

L  7.18p/2 6 t 6 3p/20 6 t 6 p0 6 t 6 p/2
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r 3 0 0-313/23/2312/2

2p4p/3p5p/6p/2p/4u
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15. 17. 19. 21. 23. and an integer

25. and an integer 27. (a) or (b) or 

(c) The answers from part (a), and also or 29. (a) or 

(b) or (c) The answers from part (a), plus or 31. (b) 33. (c)

35. — a vertical line 37. — a circle centered at with radius 

39. — a circle centered at with radius 41. — a circle centered at 

with radius 15

1-2, 121x + 222 + 1y - 122 = 5
1

2
a0, 

1

2
bx2

+ ay -

1

2
b2

=

1

4

3

2
a0, -  

3

2
bx2

+ ay +

3

2
b2

=

9

4
x = 3

1- 129, 11.3821129, 8.2321129, 1.9521- 129, -1.192
1- 129, 5.0921129, 1.952a - 12, 

13p

4
b .a12, 

9p

4
b

a - 12, -  

3p

4
ba12, 

p

4
ba - 12, 

5p

4
ba12, 

p

4
b1-1.5, 160° + 360n°2, n11.5, -20° + 360n°2

a -2, 
p

6
+ 12n + 12pb , na2, 

p

6
+  2npb10, -2212, 021-2.70, 1.302a3

4
, 

3

4
 13b
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43.

[–5, 5] by [–5, 5]

r = 2/cos u = 2 sec u 45.

[–5, 5] by [–5, 5]

r =

5

2 cos u - 3 sin u

47.

[–3, 9] by [–4, 4]

r 2
- 6r cos u = 0, so r = 6 cos u 49.

[–12, 6] by [–9, 3]

r 2
+ 6r cos u + 6r sin u = 0, so r = -6 cos u - 6 sin u

51. 53. , and 

55. False. for any integer n. These are all distinct polar coordinates. 57. C 59. A 61. (a) If is an

odd integer multiple of , then the distance is . If is an even integer multiple of , then the distance is . (b)
63. 65. 67. 69. 71.

SECTION 6.5
Quick Review 6.5

1. Minimum: at ; Maximum: 3 at 3. Minimum: 0 at ; Maximum: 2 

at 5. No; no; yes 7. 9.

Exercises 6.5
1. (a)

cos2 u - sin2 usin ux = 50, p, 2p6
x = ep

4
, 

3p

4
, 

5p

4
, 

7p

4
fx = 50, p, 2p6x = ep

2
, 

3p

2
f-3

x = 4 cot u, y = 4x = 51cos u21sin u2, y = 5 sin2 ux = ƒ1u2 cos 1u2, y = ƒ1u2 sin 1u2L  7.43L  6.24
ƒr1 - r2 ƒpu1 - u2ƒr1 + r2 ƒp

u1 - u21r, u2 = 1r, u + 2np2
a a

12
, 

7p

4
ba a

12
, 
p

4
b , a a

12
, 

3p

4
b , a a

12
, 

5p

4
b213 L 3.46 mi

0

r 3 0 0 3 0 0 -3-3

7p/43p/25p/4p3p/4p/2p/4u (b) y

5

x
5

2
� ba–3, 

2
�3 ba–3, 

4
�3 ba0, ,

4
�7

4
�5 ,,5 64

�

(3, 0)

(3, �)
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3.

[–5, 5] by [–4, 3]

k = p
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5.

[–5, 5] by [–3, 3]

k = 2p

7. is graph (b) 9. Graph (b) is 11. Graph (a) is 13. Symmetric about the y-axis
15. Symmetric about the x-axis 17. All three symmetries 19. Symmetric about the y-axis 21. Maximum r is 5—when 
for any integer n. 23. Maximum r is 3 —when for any integer n.u = 2np/31along with -32

u = 2np
r = 2 - 2 sin ur = 2 - 2 cos ur3

25. Domain: All reals
Range: 
Continuous
Symmetric about the x-axis,

y-axis, and origin
Bounded
Maximum r-value: 3
No asymptotes

r = 3

33. Domain: All reals
Range: 
Continuous
Symmetric about the x-axis
Bounded
Maximum r-value: 8
No asymptotes

[–6, 12] by [–6, 6]

30, 84

27. Domain: 
Range: 
Continuous
Symmetric about the origin
Unbounded
Maximum r-value: none
No asymptotes

[–4.7, 4.7] by [–3.1, 3.1]

1- q , q2
u = p/3 29. Domain: All reals

Range: 
Continuous
Symmetric about the y-axis
Bounded
Maximum r-value: 2
No asymptotes

[–3, 3] by [–2, 2]

3-2, 24
31. Domain: All reals

Range: 
Continuous
Symmetric about the y-axis
Bounded
Maximum r-value: 9
No asymptotes

[–9, 9] by [–2.5, 9.5]

31, 94

[–6, 6] by [–4, 4]

35. Domain: All reals
Range: 
Continuous
Symmetric about the x-axis
Bounded
Maximum r-value: 7
No asymptotes

[–7, 11] by [–6, 6]

33, 74
37. Domain: All reals

Range: 
Continuous
Symmetric about the x-axis
Bounded
Maximum r-value: 7
No asymptotes

[–4, 8] by [–4, 4]

3-3, 74
39. Domain: All reals

Range: 
Continuous
Symmetric about the x-axis
Bounded
Maximum r-value: 2
No asymptotes

[–3, 1.5] by [–1.5, 1.5]

30, 24

41. Domain: All reals
Range: 
Continuous
No symmetry
Unbounded
Maximum r-value: none
No asymptotes
Graph for :

[–45, 45] by [–30, 30]

u Ú 0

30, q2
43. Domain: 

Range: 
Continuous on domain
Symmetric about the origin
Bounded
Maximum r-value: 1
No asymptotes

[–1.5, 1.5] by [–1, 1]

30, 14
c0, 
p

2
d ´ cp, 

3p

2
d

6965_SE_Ans_833-934.qxd  1/25/10  3:40 PM  Page 895



45. 47. 49. 51. 53. (a) A 4-petal rose curve with 2 short petals
of length 1 and 2 long petals of length 3 (b) Symmetric about the origin (c) Maximum r-value: 3 55. (a) A 6-petal rose curve with 
3 short petals of length 2, and 3 long petals of length 4 (b) Symmetric about the x-axis (c) Maximum r-value: 4 57. (no answer)
59. (no answer) 61. False. The spiral is unbounded. 63. D 65. B
67. (e) Domain: All reals

Range: 
Continuous
Symmetric about the x-axis
Bounded
Maximum r-value: 
No asymptotes

69. (a) For (or any interval that (b) : 10 (overlapping) petals;
is units long). For : same answer. : 14 (overlapping) petals

71. Starting with the graph of , if we rotate counterclockwise (centered at the origin) by radians , 
we get the graph of ; rotating counterclockwise by radians gives the graph of 

73. (no answer)

SECTION 6.6
Quick Review 6.6

1. 3. 5. 7. 9. 1

Exercises 6.6
1.

3. 5. 7. 9.

11. 13. 15. 17. 19.

21. 23. 25. 27. (a) (b) Same as part (a)

29. (a) (b) Same as part (a) 31. 33. 35. 37.

39. 41. , 

43.

45.

47. 25 2acos 
13p

30
+ i sin 

13p

30
b , 25 2acos 

5p

6
+ i sin 

5p

6
b , 25 2acos 

37p

30
+ i sin 

37p

30
b , 25 2acos 

49p

30
+ i sin 

49p

30
b25 2acos 

p

30
+ i sin 

p

30
b ,

cos 
p

5
+ i sin 

p

5
, cos 

3p

5
+ i sin 

3p

5
, -1, cos 

7p

5
+ i sin 

7p

5
, cos 

9p

5
+ i sin 

9p

5

L  23 51cos 3.88 + i sin 3.882, L  23 51cos 5.97 + i sin 5.972L  23 51cos 1.79 + i sin 1.792,
23 3acos 

10p

9
+ i sin 

10p

9
b , 23 3acos 

16p

9
+ i sin 

16p

9
b23 3acos 

4p

9
+ i sin 

4p

9
b-1 + 13 i

23 4
; 

-1 - 13 i

23 4
; 23 2

-8-4 - 4i412 + 412 i-  

12

2
+ i 

12

2
18 - 4i; L  0.35 + 0.41i

5 + i; 
1

2
-

5

2
 i21cos p + i sin p22

3
 1cos 30° - i sin 30°215acos 

23p

12
+ i sin 

23p

12
b

141cos 155° + i sin 155°216

2
-

12

2
 i5/2 - 15/2213i

313

2
-

3

2
 i3acos 

p

6
+ i sin 

p

6
b

L  1131cos 0.59 + i sin 0.5924acos 
2p

3
+ i sin 

2p

3
b212acos 

p

4
+ i sin 

p

4
b3acos 

p

2
+ i sin 

p

2
b

1 + 2i

3 – i

–2 + 2i

i
x

y

4p

3
u =

5p

6
-4 - 4i2 + 3i, 2 - 3i

[–5, 5] by [–5, 5][–5, 5] by [–5, 5][–5, 5] by [–5, 5]

r3.160°2p/3r1r2

145°2p/4r1

r2r24p
r1r1: 0 … u … 4p

ƒa ƒ

3- ƒa ƒ , ƒa ƒ4
r = u

r2 and r3r1 and r253, 5, 3, 5, 3, 5, 3, 5, 3, 5656, 2, 6, 26
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49.

51.

53.

55.

26 2acos 
23p

12
+ i sin 

23p

12
b

1 + i

26 4
, 26 2acos 

7p

12
+ i sin 

7p

12
b , 26 2acos 

11p

12
+ i sin 

11p

12
b , 26 2acos 

5p

4
+ i sin 

5p

4
b , 26 2acos 

19p

12
+ i sin 

19p

12
b ,

12acos 
p

12
+ i sin 

p

12
b , -1 + i, 12acos 

17p

12
+ i sin 

17p

12
b

28 2acos 
p

16
+ i sin 

p

16
b , 28 2acos 

9p

16
+ i sin 

9p

16
b , 28 2acos 

17p

16
+ i sin 

17p

16
b , 28 2acos 

25p

16
+ i sin 

25p

16
b

25 2acos 
p

10
+ i sin 

p

10
b , 25 2i, 25 2acos 

9p

10
+ i sin 

9p

10
b , 25 2acos 

13p

10
+ i sin 

13p

10
b , 25 2acos 

17p

10
+ i sin 

17p

10
b
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57.

y

0.5

x
0.5

1, -  

1

2
�

13

2
 i 59.

y

0.5

x
0.5

�1, 
1

2
�

13

2
 i, -  

1

2
�

13

2
 i

61. ; and 65. False. For example, the complex number has infinitely many trigonometric forms. 

Here are two: , 67. B 69. A

71. (a) (no answer) (b) (c) (d) (no answer)
73. Set the calculator for rounding to 2 decimal places. In part (b), use Degree mode.

(a) (b) (c)

cos 12u2 + i sin 12u2r 2

12acos 
9p

4
+ i sin 

9p

4
b .12acos 

p

4
+ i sin 

p

4
b

1 + i1 � 13i-2-8

75.

[–7, 2] by [0, 6]

y1t2 = 1132t sin 10.62t2
x1t2 = 1132t cos 10.62t2

79.

81. -1, 
1

2
+

13

2
 i, 

1

2
-

13

2
 i

1, -  

1

2
+

13

2
 i, -  

1

2
-

13

2
 i

CHAPTER 6 REVIEW EXERCISES
1. 3. 5. 6 7. 9. 11. (a) (b)

13. (a) (b) 15. 17.

19. and an integera -1, -  

2p

3
+ 2npb , na1, -  

2p

3
+ 12n + 12pb

112, - 122L  1-2.27, -1.062L  0.55tan-1 a 3

4
b L 0.64, tan-1 a5

2
b L 1.19

h 6

15
, -  

3

15
ih -  

2

15
, 

1

15
i8-8, -39; 17383, 69; 3151378-2, -39

83. -1, L  0.81 + 0.59i, 0.81 - 0.59i, -0.31 + 0.95i, -0.31 - 0.95i
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21. (a) or 

(b) or 

(c) The answers from part (a), and also or 

23. (a) or or (b) or or (c) The answers from part (a), and also or 

25. : line through with slope 27. : parabola that opens to right with vertex 

at 29. : square root function starting at 31. , 33.

35. 37. 39. Other representations would use angles , n an integer.

41. . Other representations would use angles , n an integer.

43.

45. (a) (b) 47. (a) (b)

49.

51.

53. (b) 55. (a) 57. Not shown 59. (c) 61. —a circle with center and radius 2

63. —a circle of radius with center a -  

3

2
, -1b113

2
ax +

3

2
b2

+ 1y + 122 =

13

4

10, 02x2
+ y2

= 4

y

0.5

x
0.5

cos 
6p

5
+ i sin 

6p

5
, cos 

8p

5
+ i sin 

8p

5
1, cos 

2p

5
+ i sin 

2p

5
, cos 

4p

5
+ i sin 

4p

5
,

y

1

x
1

28 18acos 
17p

16
+ i sin 

17p

16
b , 28 18acos 

25p

16
+ i sin 

25p

16
b28 18acos 

p

16
+ i sin 

p

16
b , 28 18acos 

9p

16
+ i sin 

9p

16
b , 

-1251251cos p + i sin p2-  

24312

2
-

24312

2
 i243acos 

5p

4
+ i sin 

5p

4
b

121cos 90° + i sin 90°2; 3
4

 1cos 330° + i sin 330°2
L  5.25 + 2npL  1343cos 15.252 + i sin 15.2524

7p

4
+ 2np312acos 

7p

4
+ i sin 

7p

4
b .-1.25 - 1.2513 i313 + 3i

a = -3, b = 4, ƒz1 ƒ = 5y = 3t + 4x = 2t + 31-1, 02y = 1x + 113, -12
x = 21y + 122 + 3m = -  

3

5
a0, 

29

5
by = -  

3

5
 x +

29

5

15, 4p21-5, 3p21-5, p215, 021-5, -p215, 2p21-5, p215, 02
a113, 4p +  tan-1 a -  

3

2
b b L 1113, 11.582a - 113, 3p + tan-1 a -  

3

2
b b L 1- 113, 8.442

a - 113, p + tan-1 a -  

3

2
b b L 1- 113, 2.162a113, tan-1 a -  

3

2
b b L 1113, -0.982

a113, 2p + tan-1 a -  

3

2
b b L 1113, 5.302a - 113, p + tan-1 a -  

3

2
b b L 1- 113, 2.162
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65.

[–10, 10] by [–10, 10]

r = -  

4

sin u
= -4 csc u 67.

[–3, 9] by [–5, 3]

r = 6 cos u - 2 sin u
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69.

Domain: All reals
Range: 
Continuous
Symmetric about the y-axis
Bounded
Maximum r-value: 7
No asymptotes

3-3, 74

[–7.5, 7.5] by [–8, 2]

SELECTED ANSWERS 899

71.

Domain: All reals
Range: 
Continuous
Symmetric about the y-axis
Bounded
Maximum r-value: 2
No asymptotes

3-2, 24

[–3, 3] by [–2.5, 1.5]

73. (a) (no answer) (b) (no answer) (c) (no answer)

(d)

75. (a) (b) mph; bearing 77. (a) pounds (b) 2883.79 pounds

79. (a) (b) Graph and trace: and 

(c) (d) 924 ft (e) (f ) About 16.09 sec with (upper limit may vary) on
by . This graph will appear as a vertical line from about (17, 0) to about (17, 1138). Tracing

shows how the arrow begins at a height of 200 ft, rises to over 1000 ft, then falls back to the ground.

81. 83. (a) (b) All 4’s should be changed to 5’s.
85.
87. (a) (b)
89.

Chapter 6 Project
Answers are based on the sample data shown in the table.

1. 3. 5.

[0, 1.1] by [–1.1, 1.1][–0.1, 2.1] by [–1.1, 1.1][–0.1, 2.1] by [0, 1.1]

L  17.65 ft
L  4.404 secL  77.59 ft

t L 1.06 sec, x L 68.65 ft

[–7.5, 7.5] by [–5, 5]

x = 40 sin a 2p

15
 tb , y = 50 - 40 cos a2p

15
 tb

30, 1200430, 184
0 … t … 16.1L  1138 ft; t L 7.66

[0, 18] by [0, 1200]

y = -16t 2
+ 245t + 200x = 17h = -16t 2

+ 245t + 200

L  826.91L  283.84°L  508.29L  8-463.64, 124.239
[–9, 2] by [–6, 6]
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SECTION 7.1
Exploration 1
1.

Quick Review 7.1

1. 3. 5. 0, 2, 7. 9.

Exercises 7.1
1. (a) No (b) Yes (c) No 3. 5. 7. 9. No solution 11.

13. 15. and 17. and 

19. 21. 23. No solution 25. Infinitely many solutions 27. and 29. No solution

31. One solution 33. Infinitely many solutions 35. 37. , and 

39. 41. 43. Demand curve Supply curve 

45. (a) (b) (c) Quadratic: Never. Logistic: About 2015.

[–2, 10] by [–5, 50][–2, 10] by [–5, 50]

y L

42.2253

1 + 0.8520e-0.3467x
y L -0.2262x2

+ 3.9214x + 22.7333

13.75, 143.752L  12.05, 2.192 and 1-2.05, 2.1921-1.2, 1.62 and 12, 02
11.85, -1.08210.47, -1.772L  1-2.32, -3.162L  10.69, -0.372

13, -2210, 1214, 2218, -22
a -1 - 3189

10
, 

3 - 189

10
ba -1 + 3189

10
, 

3 + 189

10
b13, 18210, 021-3/2, 27/22 and 11/3, 2/32

1;3, 921-1/2, 22150/7, -10/7219, -22

-4x - 6y = -10y = 1-4x + 62/5-2x = -  

2

3
, x = 1y =

5

3
-

2

3
 x

[0, 10] by [–5, 5]

900 SELECTED ANSWERS

(d) The quadratic regression predicts that the 
expenditures will eventually be zero.

(e) The logistic regression predicts that the 
expenditures will eventually level off at 
about 42.225 billion dollars.

47. (a) (b) (c) About 1963

[0, 20] by [0, 10000][0, 20] by [0, 30000]

y L 46.853x + 5567.528y L 317.319x + 12894.513

65. (a) (b)

67. 69. 12.5 units1; 12/3, 10/32
L  1-1.29, 2.292 or 11.91, -0.912

[–4.7, 4.7 by –3.1, 3.1]

y = 13/2224 - x2, y = -13/2224 - x2

49.
51. Current speed ; rowing speed

53. Medium: $0.79; large: $0.95
55. and 57. (a) 300 miles
59. False. A system of two linear equations in two

variables has either 0, 1, or infinitely many
solutions.

61. C 63. D

b = 14/3a = 2/3

L  3.56 mph
L  1.06 mph

L  5.28 m * L 94.72 m
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SECTION 7.2
Exploration 1

1. 3.

Exploration 2
1. det 
3. Since each term in the expansion contains an element from each row and each column, at least one factor in each term is a zero. Therefore,
the expansion will be the sum of n zero terms, or zero.

Quick Review 7.2
1. 3. 5. 7. 9.

Exercises 7.2
1. ; not square 3. ; not square 5. ; not square 7. 3 9. 4

11. (a) (b) (c) (d) 13. (a) (b) (c)

(d) 15. (a) (b) (c) (d) 17. (a) (b)

19. (a) (b) 21. (a) (b) 23. (a)

(b) 25. Not possible; 27. (a) (b) 29.

31. 33. 35. 37. No inverse 39. No inverse 41. 43.

45. (a) The distance from city X to city Y is the same as the distance from city Y to city X.
(b) Each entry represents the distance from city X to city X. 47. (a) 49. (a) or (b)

51. (a) (b) 55. 57. 59.

61. 63. False. It can be negative. For example, the determinant of is 65. B 67. D

71. (a) (c) It is the inverse of A.

73. (b) The constant term equals A. (c) The coefficient of is the opposite of the sum of the elements of the main diagonal in A.

SECTION 7.3
Exploration 1
1. must equal 60 L.
3. The number of liters of 35% solution must equal twice the number of liters of 55% solution.

5.

Quick Review 7.3
1. 12.8 L 3. 38 L 5. 7. 9. c -0.5 -0.75

0.5 0.25
dy = -z + w + 11-1, 62

C 3.75

37.5

18.75

S
x + y + z

x2
-det

A # A-1
= A-1 # A = I2

-1.A = c1 0

2 -1
d3x  y4c c 0

0 1
d

3x  y4c 0 -1

-1 0
d3x  y4c -1 0

0 1
dA # A-1

= I2L  10.37 1.372L  11.37 0.372
1A - C2BTBAT ABT3382  227.504

B 1

-1/3
R-14c -1 1.5

1 -1
dAB = BA = I2a = -2, b = 0

a = 5, b = 2C1 2 1

1 0 2

4 3 -1

SC -1 3 4

2 0 1

1 2 1

S318, 144C -10 5 -15

8 -4 12

4 -2 6

S
3-84C 2 1 3

5 0 0

-18 -3 10

SC6 -7 -2

3 7 3

8 -1 -1

SC 4 8 -5

-5 4 -6

-2 -8 6

Sc 2 2

-11 12
d

c5 -12

0 -26
dc -4 -18

-11 -17
dC -1

2

-12

SC -6

3

0

SC -1

1

-4

SC -3

1

4

SC -18 2

6 -5

13 5

S
C -9 3

0 -3

6 3

SC -7 1

2 -2

5 2

SC 1 1

-2 0

-1 0

Sc1 15

4 22
dc 6 9

-3 15
dc1 6

1 9
dc 3 0

-3 1
d

3 * 13 * 22 * 3

cos a cos b - sin a sin bsin a cos b + cos a sin b13 cos u, 3 sin u21-2, 32; 1y, x213, 22; 1x, -y2

A = -a12a21a33 + a13a21a32 + a11a22a33 - a13a22a31 - a11a23a32 + a12a23a31

c 8 -1

11 2
dA = c2 1

5 4
d ; B = c -1 2

2 5
d
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Exercises 7.3

1. 3. 5. No solution 7.

9. 11. 13. 15.

For Exercises 17–20, possible answers are given.

17. 19. 21. 23.

25. 27.

In Exercises 29–32, the variable names are arbitrary.

C2 -5 1 -1 -3

1 0 -2 1 4

0 2 -3 -1 5

SC 2 -3 1 1

-1 1 -4 -3

3 0 -1 2

S
c1 0 -1 3

0 1 2 -1
dC1 0 2 1

0 1 -1 2

0 0 0 0

SC1 2 3 -4

0 1 0 -0.6

0 0 1 -9.2

SC1 3 -1

0 1 -1.2

0 0 1

S

1-32R2 + R3R12C 0 -10 10

1 2 -3

-3 1 -2

SC2 -6 4

1 2 -3

0 -8 4

S
a9

2
, 

7

2
, 4, -  

15

2
b11, 2, 12a25

2
, 

7

2
, -2b

902 SELECTED ANSWERS

29.
-4x + 5y = 2

3x + 2y = -1 31.

2y - 3z = -1
  -x + y = 2
 2x + z = 3

33. 35.

37. No solution 39. 41. No solution 43.

45. 47. 49. 51. 53.

55. 57. 59. 61.

63. 65. No solution 67. 69. , for any c

71. (a) (b) (c) 2020

[–10, 50] by [–50, 300][–10, 50] by [–50, 300]

y L 3.1290x + 144.8465y L 1.0404x + 69.4047

ƒ1x2 = 1-c - 32x2
+ x + cƒ1x2 = 2x2

- 3x - 21-w - 2, -z + 0.5, z, w2
1-2w - 1, w + 1, -w, w2a2 -

3

2
  z, -  

1

2
 z - 4, zb13, 3, -2, 0210, -10, 12

1-1, 2, -2, 321-2, -5, -721-2, 323x - y = -1  2x + 4y = 3c2 5

1 -2
d cx

y
d = c -3

1
d

1z + w + 2, 2z - w - 1, z, w212 - z, 1 + z, z2

1-2, 3, 1212, -1, 42; C1 -2 1 8

0 1 -1 -5

0 0 1 4

S

93. (a) (b) (c) (d) det 

(e)

SECTION 7.4
Exploration 1
1. (a) (b) 2 = A13 = A2

a11 + a22 = 14 - 132 + 14 + 132 = 8

A = C102 = 134 ; 13

[–1, 8.4] by [–3.1, 3.1]

C1x2 = x2
- 8x + 13

73. 825 children, 410 adults, 165 senior citizens
75. $14,500 CDs, $5500 bonds, $60,000 growth funds
77. $0 CDs, $38,983.05 bonds, $11,016.95 growth fund
79. 22 nickels, 35 dimes, and 17 quarters
81. 85. False. The determinant of the
matrix must be not equal to zero 87. D 89. D

116/3, 220/32
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Quick Review 7.4

1. 3. 5. 7. 9.

Exercises 7.4

1. 3. 5. 7.

9. 11. 13. 15.

17. 19. 21. 23. 25.

27. 29. 31.

33.

Graph of Graph of Graph of :

35.

Graph of Graph of : Graph of : Graph of :

37. (c) 39. (d) 41. (a) 43. 45.

47. True. The behavior of ƒ near is the same as the behavior of and 

49. E 51. B 53. (a) (b) 55.

SECTION 7.5
Quick Review 7.5
1. 3. 5. 7. 9.

x

y

50

50

x

y

5

5

13, 32110, 1402130, 602120, 02; 10, 50213, 02; 10, -22

b/1x - 122B = -2, C = 2A = 3

lim
x:3-

 
1

x - 3
= - q .y =

1

x - 3
x = 3

-3

1b - a21x - a2 +

3

1b - a21x - b2
-1
ax

+

1

a1x - a2

[–4.7, 4.7] by [–10, 15][–4.7, 4.7] by [–10, 15][–4.7, 4.7] by [–10, 15][–4.7, 4.7] by [–10, 15]

y = -2/xy = 3/1x + 12y = x - 1y = 1x3
- 22/1x2

+ x2
x - 1 +

x - 2

x2
+ x

; 
3

x + 1
+

-2
x

[–4.7, 4.7] by [–10, 10][–4.7, 4.7] by [–10, 10][–4.7, 4.7] by [–10, 10]

-2/1x + 123/1x - 12:12x2
+ x + 32/1x2

- 12:
2 +

x + 5

x2
- 1

; 
3

x - 1
+

-2

x + 1

2

x - 1
+

-x

x2
+ x + 1

2x

x2
+ 2

+

-1

1x2
+ 222

1
x

+

-1

x2
+

2

x - 3

2
x

+

-1

x - 1
+

2

1x - 122
2

x2
+ 1

+

3

1x2
+ 122

-2

x + 3
+

5

2x - 1

1

x - 3
+

-2

x + 4

1

2x
+

-1/2

x + 2

2

x - 1
+

-2

x + 1

1

x - 5
+

-1

x - 3

2

x + 3
+

-1

1x + 322 +

3x - 1

x2
+ 2

+

x + 2

1x2
+ 222

1

x - 2
+

2

1x - 222 +

1

1x - 223

3

x2
+ 1

+

2x - 1

1x2
+ 122

-3

x + 4
+

4

x - 2

A1

x
+

A2

x2
+

A3

x3
+

A4

x - 1
+

A5

1x - 122 +

B1x + C1

x2
+ 9

A1

x
+

A2

x - 2
+

A3

x + 2

A = 3, B = -1, C = 11x + 121x - 321x2
+ 423x2

- 2 +

3

x - 2

4x2
+ 6x + 1

x3
+ 2x2

+ x

3x - 5

x2
- 4x + 3
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Exercises 7.5
1. Graph (c); boundary included 3. Graph (b); boundary included 5. Graph (e); boundary included

904 SELECTED ANSWERS

7.

Boundary included

9.

Boundary included

11.

Boundary excludedy = x2
+ 1

y

9

x
5

2x + 5y = 7

y

5

x
5

x = 4

y

5

x
5

13.

Boundary excluded

15.

Boundary excluded

17.

Boundary excludedy = sin x

y

10

x
10

y = 2x

6

6

y

x

x2
+ y2

= 9

y

5

x
5

19. 21. 23. y

90

x
90

y

5

x
5

y

16

x
10

25. y

9

x
9

27.
y Ú -x2

+ 1

x2
+ y2

… 4 29.

y Ú 0
x Ú 0

y … -  

3

2
x + 9

y … -  

1

2
 x + 5 31. The minimum is 0 at ; the maximum is

880/3 at .1160/3, 80/32
10, 02

33. The minimum is 162 at ; there is no maximum.
35. The minimum is 24 at ; there is no maximum.
37. tons of ore R and tons of ore S; $1926.20
39. x operations at Refinery 1 and y operations at Refinery 2 such that with .
41. False. It is a half-plane. 43. A 45. D

40 … x … 1202x + 4y = 320
L  20.87L13.48

10, 122
16, 302

49. 51. y

5

x
5

y1 = 2B1 -

x2

9
; y2 = -2B1 -

x2

9
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CHAPTER 7 REVIEW EXERCISES

1. (a) (b) (c) (d) 3. not possible 5. ; not possible

7. 9. 11. 13. 20 15.

17. 19. 21. No solution 23. 25. No solution

27. 29. 31. No solution 33. 35.

37. Demand curve Supply curve 39. 41. or 

43. 45. 47.

49. 51. 53. (c) 55. (b)
2

x + 1
+

3x - 4

x2
+ 1

-1

x + 2
+

1

x + 1
+

2

1x + 122

1

x + 1
+

2

x - 4
1a, b, c, d2 = 117/840, -33/280, -571/420, 386/3521x, y2 L 12.27, 1.532

1x, y2 = 12, 121x, y2 = 1-2, 121x, y2 L 10.14, -2.292L  17.57, 42.712
1-2, 1, 3, -12

1-w + 2, z + 3, z, w219/4, -3/4, -7/421-2z + w + 1, z - w + 2, z, w2

1-z - w + 2, w + 1, z, w211, 22C1 0 0 8

0 1 0 -11

0 0 1 5

S

C1 0 2

0 1 -1

0 0 0

SD
-2 -5 6 -1

0 -1 1 0

10 24 -27 4

-3 -7 8 -1

TAB = BA = I4C 1 2 -3

2 -3 4

-2 1 -1

S ; C -3 2 4

2 1 -3

1 -2  -1

S
33 74c -3 -7 11

0 -12 24
d ; c -7 11

4 -6
dc 2 -6

-8 0
dc -3 4

0 -3
dc1 2

8 3
d
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57. y

5

x
5

59.

Corners at ,

Boundaries included
1360/13, 360/132

10, 902, 190, 02

y

90

x
90

61.

Corners at and

Boundaries included
L  15.41, 3.802

L  10.92, 2.312

y

7

x
8

63.

Corners at and

Boundaries included
L  11.25, 1.562

L  1-1.25, 1.562

y

5

x
5

65. The minimum is 106 at ; there is no maximum. 67. The minimum is 205 at ; the maximum is 292 at .

69. (a) (b)
71. (a) (b) (c) About 1989 and 7 months

[–5, 50] by [850, 1650][–5, 50] by [850, 1650]

y L 21.4916x + 880.8866y L 11.6327x + 975.4457

L  1-0.71, 2.122L  12.12, 0.712
14, 402110, 252110, 62

73. (a) (b) (c) 75. Answers will vary.

Chapter 7 Project
1. 3. Yes; no; no 5. Males: Females: 

This represents the time when the female population became greater than the male 
population. (159, 212); This represents the time when the male population will again
become greater than the female population.

7. Approx. 49.1% male and 50.9% female

Males: 
Females: y L 1.6173x + 126.4138

y L 1.7585x + 119.5765

y L

315.829

1 + 9.031e-0.01831x
; 145, 642;y L

412.574

1 + 10.956e-0.01539x
;

[–1, 20] by [110, 160]

NPT
= $259,000P = 3$80  $120  $200  $3004N = 3200  400  600  2504

77. $160,000 at 4%, $170,000 at 6.5%, $320,000 at 9%
79. Pipe A: 15 hours; Pipe B: hours; Pipe C: 12 hours
81. n must be equal to p.

L  5.45
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SECTION 8.1
Exploration 1
1. The axis of the parabola with focus (0, 1) and directrix is the y-axis because it is perpendicular to and passes through .

The vertex lies on this axis midway between the directrix and the focus, so the vertex is the point .

3.

Exploration 2
1. 3. 5. 7. Downward

Quick Review 8.1
1. 3. 5.

7. Vertex: (1, 5); can be obtained from by stretching 9.
by 3, shifting up 5 units, and shifting right 1 unit.

Exercises 8.1

1. Vertex: ; focus: ; directrix: ; focal width: 6 3. Vertex: ; focus: ; directrix: ; focal width: 4

5. Vertex: ; focus: ; directrix: ; focal width: 7. (c) 9. (a) 11. 13.

15. 17. 19. 21. 23.

25. 27. 29. 31.

33. 35. 37. 39.

[–8, 2] by [–2, 2][–4, 4] by [–2, 18]

y

10

x
6

y

5

x
5

y

5

x
5

1y + 422 = -101x + 121x - 222 = 161y + 121y - 322 = -81x - 42
1x - 322 = 61y - 5/221y + 422 = 81x + 42x2

= -6yy2
= 8xx2

= 20y

x2
= -16yy2

= -12x
4

3
y =

1

3
a0, -  

1

3
b10, 02

x = -41-2, 221-3, 22y = -  

3

2
a0, 

3

2
b10, 02

[–3, 4] by [–2, 20]

x2
ƒ1x2 = -21x + 122 + 3g1x2ƒ1x2

y + 6 = -1x - 122y = ;21x113

y

x

10

10
F(2, –2)

B(8, –2)A(–4, –2)

V(2, 1)

y = 4

x = 2

y

x

10

10
F(2, –2)

y = 4

x = 2

V(2, 1)

y

x

10

10
F(2, –2)

y = 4

51-216, 62, 1-215, 52, 1-4, 42, 1-213, 32, 1-212, 22, 1-2, 12, 10, 02, 12, 12, 1212, 22, 1213, 32, 14, 42, 1215, 52, 1216, 626
10, 02

10, 12y = -1y = -1
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41. 43. 45. 47.

49. Completing the square, the equation becomes , a parabola with vertex focus and directrix 

51. Completing the square, the equation becomes , a parabola with vertex focus and directrix 

53. 55. 57. The derivation only requires that p is a fixed real number.

59. The filament should be placed 1.125 cm from the vertex along the axis of the mirror. 61. The electronic receiver is located 2.5 units
from the vertex along the axis of the parabolic microphone. 63. Starting at the leftmost tower, the lengths of the cables are roughly

. 65. False. Every point on a parabola is the same distance from its 
focus and its directrix. 67. D 69. B
71. (a)–(c) (d) Parabola

73. (a) (b) (c) Axis

Generator

Plane
Circle Single line

Two parallel lines

Axis Generator

Cylinder

y

x

A
P

F

      l

79.44, 54.44, 35, 21.11, 12.78, 10, 12.78, 21.11, 35, 54.44, and 79.44

1x - 222 = -41y + 121y - 222 = -6x

x = 0.14, 22,12, 22,1y - 222 = 81x - 22
y = 7/4.1-1, 9/42,1-1, 22,1x + 122 = y - 2

[–13, 11] by [–10, 6][–22, 26] by [–19, 13][–2, 6] by [–40, 5][–10, 15] by [–3, 7]
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(d)

Plane Line

SECTION 8.2
Exploration 1

1. and ; and yields the equation 

3. Example 1: and 
Example 2: and 
Example 3: and 

5. Example 1: 

Example 2: 

Example 3: x = 3 + 5 cos t, y = -1 + 4 sin t; cos t =

x - 3

5
, sin t =

y + 1

4
; cos2 t + sin2 t = 1 yields 

1x - 322
25

+

1y + 122
16

= 1.

x = 2 cos t, y = 113 sin t; cos t =

x

2
, sin t =

y

113
; sin2 t + cos2 t = 1 yields 

y2

13
+

x2

4
= 1.

x = 3 cos t, y = 2 sin t; cos t =

x

3
, sin t =

y

2
; cos2 t + sin2 t = 1 yields 

x2

9
+

y2

4
= 1, or 4x2

+ 9y2
= 36.

y = -1 + 4 sin tx = 3 + 5 cos t
y = 113 sin tx = 2 cos t
y = 2 sin tx = 3 cos t

1x + 222
9

+

1y - 522
49

= 1.sin t =

y - 5

7
; cos2 t + sin2 t = 1cos t =

x + 2

3
y = 5 + 7 sin tx = -2 + 3 cos t
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Exploration 2
3.

5.

Quick Review 8.2

1. 3. 5. 7. 9.

Exercises 8.2
1. Vertices: Foci: 3. Vertices: Foci: 5. Vertices: 

Foci: 7. (d) 9. (a) 11. 13.

15. 17. 19.

21. 23. 25. 27. 29.

31. 33. 35.

37. Center: vertices: foci: 39. Center: vertices: foci: 

41. 43. 45. Vertices: foci: 

eccentricity: 

,

47. Vertices: foci: eccentricity: foci: eccentricity: 49.

51. 53. 55. L  1347 Gm, L  1507 Gma = 237,086.5, b L 236,571, c = 15,623.5, e L 0.066
y2

a2
+

x2

b2
= 1

1x - 222
16

+

1y - 322
9

= 1
13

2
14, -8 � 132;17

4
1-3 � 17, 12;1-7, 12, 11, 12;

y = 15 sin t + 6

x = 213 cos t - 3x = 2 cos t, y = 5 sin t

15

3

11, -1 � 152;11, -42, 11, 22;

[–8, 2] by [0, 10]
[–8, 8] by [–6, 6]

17, -3 � 117217, 62, 17, -122;17, -32;1-4, 22, 12, 221-6, 22, 14, 22;1-1, 22;
1y + 222/25 + 1x - 322/9 = 11x - 322/9 + 1y + 422/5 = 1

1y - 222
36

+

1x - 122
16

= 1

x2

25
+

y2

16
= 1

y2

36
+

x2

16
= 1

y2

25
+

x2

16
= 1x2/25 + y2/21 = 1

y2

9
+

x2

4
= 1

[–17, 4.7] by [–3.1, 3.1][–9.4, 9.4] by [–6.2, 6.2]

y

8

x
4

y

5

x
5

y

10

x
10

11, 02, 1-1, 02
12, 02, 1-2, 02;10, 32, 10, -3210, 62, 10, -62; 13, 02, 1-3, 0214, 02, 1-4, 02;

x =

3 � 115

2
x = 2, x = -2x = 8y = �

3

2
24 - x2161

b/a = 21 - e2

[–0.3, 1.5] by [0, 1.2]

b L 4.47 cm, c = 4 cm, e L 0.67, b/a L 0.75
a = 8 cm, b L 7.75 cm, c = 2 cm, e = 0.25, b/a L 0.97; a = 7 cm, b L 6.32 cm, c = 3 cm, e L 0.43, b/a L 0.90; a = 6 cm,
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57. Gm 59. 61.

63. (a) Approximate solutions: 

(b)

65. False. The distance is . 67. C 69. B

71. (a) When and (b) Answers will vary.

73. (a) (b)

SECTION 8.3
Exploration 1

1. and and yields the equation

3. Example 1: ; Example 2: , ; Example 3: , ; 
Example 4: 

5. Example 1: , ; , ; yields , or 
Example 2: ; tan yields 
Example 3: , ; ; yields

Example 4: , ; 

yields 

Quick Review 8.3

1. 3. 5. No solution 7. 9.

Exercises 8.3
1. Vertices: foci: 3. Vertices: foci: 5. Vertices: foci: 7. (c) 9. (a)

11. 13. 15. 17.

19. 21. 23. 25.

27. 29.

31. 33.

35. 37.
1y - 622

25
-

1x + 322
75

= 1
1x + 122

4
-

1y - 222
5

= 1

1x - 222
9

-

1y - 322
16

= 1
1y - 122

4
-

1x - 222
9

= 1

y2

144
-

x2

25
= 1

x2

25
-

y2

75
= 1

y2/16 - x2/209 = 1x2/4 - y2/5 = 1

[–9.4, 9.4] by [–3.2, 9.2][–9.4, 9.4] by [–6.2, 6.2]

[–9.4, 9.4] by [–6.2, 6.2]

y

4

x
3

y

x

15

20

y

15

x
20

1� 17, 021�2, 02;10, �7210, �62;1� 123, 021�4, 02;

a = 3, c = 5x = 2, x = -2y = �
4

3
 2x2

+ 91146

1x + 222/9 - 1y - 522/49 = 1.sec2 t - tan2 t = 1

sec t = 1x + 22/3, tan t = 1y - 52/7;y = 5 + 7 tan tx = -2 + 3/cos t = -2 + 3 sec t1x - 322/25 - 1y + 122/16 = 1.

sec2 t - tan2 t = 1sec t = 1x - 32/5, tan t = 1y + 12/4y = -1 + 4 tan tx = 3 + 5/cos t = 3 + 5 sec t
y2/5 - x2/4 = 1.t = x/2, sec t = y/15; sec2 t - tan2 t = 1x = 2 tan t, y = 15/cos t = 15 sec t

4x2
- 9y2

= 36.x2/9 - y2/4 = 1sec2 t - tan2 t = 1tan t = y/2sec t = x/3y = 2 tan tx = 3/cos t = 3 sec t

x = -2 + 3/cos t, y = 5 + 7 tan t
y = -1 + 4 tan tx = 3 + 5/cos ty = 15/cos tx = 2 tan tx = 3/cos t, y = 2 tan t

1x + 122
9

-

1y - 122
4

= 1.

tan t =

y - 1

2
; sec2 t - tan2 t = 1y = 1 + 2 tan t; sec t =

x + 1

3
x = -1 + 3/cos t = -1 + 3 sec t

y2/4 + 1x - 322 = 1

[–4.7, 4.7] by [–3.1, 3.1]

P L p12r2 # 13 - 114r214r2/12r22 = p12r2 # 13 - 22 = 2pr.a = b = r, A = pab = prr = pr 2

a11 - e2
a�

294 - 21161

8
, -  

1 + 1161

16
b , a�

294 + 21161

8
, 

-1 + 1161

16
b

1�1.04, -0.862, 1�1.37, 0.732
1-2, 02, 12, 021; 151.75, 02 L 1;7.19, 02a - c 6 1.511.3922 = 2.088
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39. Center: 41. Center: 
43. 45. 47.

49. 51. 53.

55. , ; 
The Sun is centered at 

57. A bearing and distance of about 40.29° and 
1371.11 miles, respectively

Vertices: ; foci: 12 � 113, 12; e =

113

2
10, 12, 14, 12

11560, 02.
b = 600, c = 1560, e = 13/12a = 1440

y2

a2
-

x2

b2
= 1

x2

4
-

5y2

16
= 1

[–9.4, 9.4] by [–6.2, 6.2]

[–9.4, 9.4] by [–5.2, 7.2][–12.4, 6.4] by [–0.2, 12.2][–14.1, 14.1] by [–9.3, 9.3]

12, -32; vertices: 12, 52, 12, -112; foci: 12, -3 � 114521-1, 22; vertices: 111, 22, 1-13, 22; foci: 112, 22, 1-14, 22

910 SELECTED ANSWERS

59.

[–9.4, 9.4] by [–4.2, 8.2]

1-2, 02, 14, 3132 61. (a) Four solutions: 
1�2.13, �1.812

[–9.4, 9.4] by [–6.2, 6.2]

63. True, because 65. B 67. B
69. (a–d) (e) 73. Answers will vary.

75. Answers will vary.

SECTION 8.4
Quick Review 8.4
1. 3. 5. 7. 9.

Exercises 8.4

sin a = 1/112cos a = 2/15a = p/4cos 2a = 1/2cos 2a = 5/13

x2/9 - y2/16 = 1y

x5

c - a = ae - a.

(b) a�10A
29

641
, �10A

21

641
b

1.

[–6.4, 12.4] by [–11.2, 1.2]

y = -5 � 2-x2
+ 6x + 7 3.

[–19.8, 17.8] by [–8.4, 16.4]

y = 4 � 212x + 2

Vertices: 

foci: 13, 1 � 1132; e =

113

3

13, -22, 13, 42;
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5.

[–9.4, 9.4] by [–6.2, 6.2]

y = 4/x

SELECTED ANSWERS 911

7.

[–10, 12] by [–12, 12]

y = 8/1x - 12 9.

[–4.7, 4.7] by [–3.1, 3.1]

y =

1

6
 1x - 4 � 2-23x2

+ 28x + 882

11. 13. 15. 17.

19. 1x¿, y¿2 = 15, -3 - 152

[–2, 8] by [–3, 3]

1x¿, y¿2 = 14, -12x2

9
-

y2

16
= 1x2

= -4yy =

1

4
 1x - 1 � 231-x2

+ 6x + 922

21. Hyperbola: 

y�

8

x�
5

1y - 122
9

-

1x + 122
4

= 1; 
1y¿22

9
-

1x¿22
4

= 1 23. Parabola: 

y�

25

x�
5

1x + 122 = y - 2; 1x¿22 = y¿

25. Ellipse: 

y�

4

x�
12

1y + 222
9

+

1x - 122
4

= 1; 
1y¿22

9
+

1x¿22
4

= 1

29. Hyperbola: 

31. The horizontal distance from O to P is , and the vertical distance is 

33. 35. L  1-5.94, 2.3821312/2, 712/2)

y = k + y¿ = y¿ + k.x = h + x¿ = x¿ + h

y�

x�

8

8

y2

4
-

1x + 122
2

= 1; 
1y¿22

4
-

1x¿22
2

= 1

27. Parabola: 

y�

8

x�
8

1y - 222 = 81x - 22; 1y¿22 = 8x¿
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37. Hyperbola: 

a L 0.954 L 54.65°

[–9.4, 9.4] by [–6.2, 6.2]

1x¿22
16

-

1y¿22
16

= 1

912 SELECTED ANSWERS

39. Ellipse: 

[–9.4, 9.4] by [–6.2, 6.2]

1y¿22
20

+

1x¿22
4

= 1 41. Ellipse: 

[–9.4, 9.4] by [–6.2, 6.2]

y =

10x � 2290 - 11x2

9

43. ; ellipse 45. 0; parabola 47. ; ellipse 49. ; hyperbola 51. ; ellipse

53. In the “old” coordinate system, the center is , the vertices are and , and the foci are 

and 55. Answers vary. 57. True, because there is no xy-term. 59. B 61. A

63. (a) (b) 67. Answers will vary.y = 2x + 3/2, y = 1-1/22x + 21/2y = ;x

1-3, -32.13, 32
a -  

312

2
, -  

312

2
ba312

2
, 

312

2
b10, 02

 -12 6 012 7 0-48 6 0-24 6 0

69. Answers vary. Intersecting lines:

A plane containing the axis of a cone intersects the cone.

[–4.7, 4.7] by [–3.1, 3.1]

Parallel lines:

A degenerate cone is created by a generator that is parallel to the
axis, producing a cylinder. A plane parallel to a generator of the
cylinder intersects the cylinder and its interior.

[–4.7, 4.7] by [–3.1, 3.1]

One line:

A plane containing a generator of a cone intersects the cone.

[–4.7, 4.7] by [–3.1, 3.1]

No graph:

A plane parallel to a generator of a cylinder fails to intersect the
cylinder. Also, a degenerate cone is created by a generator that is
perpendicular to the axis, producing a plane. A second plane per-
pendicular to the axis of this degenerate cone fails to intersect it.

[–4.7, 4.7] by [–3.1, 3.1]

Circle:

A plane perpendicular to the axis of a cone intersects
the cone but not its vertex.

[–4.7, 4.7] by [–3.1, 3.1]

Point:

A plane perpendicular to the axis of a cone intersects the vertex
of the cone.

[–4.7, 4.7] by [–3.1, 3.1]
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SECTION 8.5
Exploration 1

, : an ellipse; : a parabola; , : a hyperbola
The graphs have a common focus, , and a common directrix, the line As e increases, the 
graphs move away from the focus and toward the directrix.

Quick Review 8.5

1. 3. 5. The focus is , and the directrix is 

7. Foci: ; vertices: 9. Foci: ; vertices: 

Exercises 8.5

1;4, 021;5, 021;3, 021; 15, 02
y = -4.10, 42u =

7p

6
, u = -  

5p

6
r = -3

x = 3.10, 02
e = 3e = 1.5e = 1e = 0.8e = 0.7

[–12, 24] by [–12, 12]
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1. ; Parabola

[–10, 20] by [–10, 10]

r =

2

1 - cos u
3. ; Ellipse

[–7.5, 7.5] by [–7, 3]

r =

12

5 + 3 sin u
5. ; Hyperbola

[–5, 5] by [–4, 2]

r =

7

3 - 7 sin u

7. , parabola; directrix: 9. , parabola; directrix: 

11. , ellipse; directrix: 13. , ellipse; directrix: 

15. (b); by 17. (f); by 19. (c); by 

21. 23. 25. 27. 29. r =

6

5 + 3 cos u
r =

12

2 + 3 sin u
r =

15

2 + 3 cos u
r =

3

2 + sin u
r =

12

5 + 3 cos u

3-5, 1043-10, 1043-3, 343-5, 543-10, 1043-15, 54
x = 3e =

2

5
= 0.4y = 4e =

5

6

y = -  

5

2
= -2.5e = 1x = 2e = 1

31.

e = 0.4, a = 5, b = 121, c = 2

[–6, 14] by [–7, 6]

33.

e =

1

2
, a = 8, b = 413, c = 4

[–13, 14] by [–13, 5]

35.

e =

5

3
, a = 3, b = 4, c = 5

[–3, 12] by [–5, 5]

37. 39.

41. Perihelion distance AU; aphelion distance AU 43. (a) (b) About 2 hr 14 min
45. True. For a circle, , so the equation is , which graphs as a point. 47. D 49. B

51. (c)

r = 0e = 0
v L 1551 m/sec = 1.551 km/secL  35.64L  0.54

y2
= 41x + 1291y - 4/322

64
+

3x2

16
= 1

Planet Perihelion Distance (AU) Aphelion Distance (AU)

Mercury 0.307 0.467

Venus 0.718 0.728

Earth 0.983 1.017

Mars 1.382 1.665

Jupiter 4.953 5.452

Saturn 9.020 10.090

(d) The difference is greatest for Saturn.

55.

Completing the square yields , the desired result.
1x - 322

25
+

y2

16
= 116x2

- 96x + 25y2
= 256.

5r - 3r cos u = 16 Q 5r = 3x + 16. So, 25r 2
= 251x2

+ y22 = 13x + 1622. 25x2
+ 25y2

= 9x2
+ 96x + 256 Q
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SECTION 8.6
Quick Review 8.6
1. 3. P lies on the circle of radius 5 centered at 

5. 7. Circle of radius 5 centered at 9. Center: radius: 2

Exercises 8.6
1. 3. 5.

7.
9.

11.

13.

15.

17. 19. 21. 23.
25.
27.

29. 31. 33.

35. 37.

39. 41. 43. 45.

47. Scalene

49. (a) (b) The z-axis; a line through the 
origin in the direction k

z

5

y

x

5

5

x =

1

2
 t, y = 6 - 7t, z = -3 +

11

2
 tx = -1 + 3t, y = 2 - 6t, z = 4 - 3tt81, 4, -79r = 8-1, 2, 49 +130

r = 86, -9, 09 + t81, 0, -49; x = 6 + t, y = -9, z = -  4ty = -1 + 2t, z = 5 - 7tr = 82, -1, 59 + t83, 2, -79; x = 2 + 3t,

v = -195.01i - 7.07j + 68.40k8-3, 4, -59h 4

13
, -  

3

13
, 

12

13
i

-20
-84
8-2, 4, -89

(6, 0, 0)

(0, –2, 0)

z

5

y

x

5

10

(0, 0, 3)

(3, 0, 0)

z

6

y

x

5

6

z

5

y

x

10

10

(0, 9, 0)

(0, 0, 3)

(9, 0, 0)

1x - 122 + 1y + 322 + 1z - 222 = a

1x - 522 + 1y + 122 + 1z + 222 = 64

1x - 1, y + 4, z + 32
11, -1, 11/22
21a - 122 + 1b + 322 + 1c - 222
153z

y

x (1, –2, –4)

z

8

y

x

8

8

(3, 4, 2)

1-1, 32;1-1, 52h -4

141
, 

5

141
i

12, -32.21x - 222 + 1y + 322

914 SELECTED ANSWERS

51. (a) (b) The intersection of the xz-
plane and the plane

; a line parallel to the
z-axis through 1-3, 0, 02
x = -3

1y = 02z

5

y

x

5

5
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53. 55. Answers vary.

57. True. The equation can be viewed as an equation in three variables, where the coefficient of z is zero. The surface is an elliptical cylinder.
59. B 61. C 65.
67. i * j = 81, 0, 09 * 80, 1, 09 = 80 - 0, 0 - 0, 1 - 09 = 80, 0, 19 = k

8-1, -5, -39
r = 8x1 + 1x2 - x12t, y1 + 1y2 - y12t, z1 + 1z2 - z12t9
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CHAPTER 8 REVIEW EXERCISES
1.

Vertex: ; focus: 
directrix: ; focal width: 12x = -3

13, 02;10, 02

y

10

x
9

3.

Vertex: focus: 
directrix: ; focal width: 4y = 2

1-2, 02;1-2, 12;

y

2

x
8

5.

Ellipse; center: 

vertices: foci: 10, � 13210, �2122;
10, 02;

y

7

x
7

7.

Hyperbola; center: 

vertices: foci: 1� 161, 021�5, 02;
10, 02;

y

10

x
10

9.

Hyperbola; center: vertices:

foci: 1-3 � 146, 521-3 � 312, 52;
1-3, 52;

y

20

x
10

11.

Ellipse; center: vertices:

foci: 15, -12, 1-1, -1216, -12, 1-2, -12;
12, -12;

y

x

4

6

21.

Parabola; 1x - 322 = y + 12

y

40

x
10

23.

Hyperbola; 
1x - 122

3
-

1y - 222
3

= 1

y

7

x
6

25.

Parabola; 1y - 222 = 6ax +

17

6
b

y

11

x
10

13. (b) 15. (h) 17. (f) 19. (c)

27. 29. See proof on pages 582–583.

Hyperbola; 
1y + 422

30
-

1x - 322
45

= 1

x

y

–10 15

–15

10

31.

Ellipse;

y =

1

12
 38x + 5 � 2-8x2

+ 200x - 4554

[0, 25] by [0, 17]
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33.

Hyperbola; y =

3x2
- 5x - 10

2x - 6

[–8, 12] by [–5, 15]

35.

Hyperbola; y =

1

4
 37x + 20 � 225x2

+ 272x + 2804
[–24, 20] by [–20, 15]

37. 39. 41. 43. 45.

47. 49. 51. 53. x2/9 - y2/25 = 11x + 222 + 1y - 422 = 1x2/25 + y2/4 = 1
1x - 222

9
-

1y - 122
16

= 1

y2

25
-

x2

11
= 1x2/9 + 1y - 222/5 = 1

x2

169
+

y2

25
= 11x + 322 = 121y - 32y2

= 8x

55.

Parabola; y2
= -81x - 22

[–8, 3] by [–10, 10]

57.

Ellipse; 
41x - 1/22

9
+

y2

2
= 1

[–3, 3] by [–2, 2]

61.

Parabola; y2
= -41x - 12

[–20, 4] by [–8, 8]

59.

Hyperbola; 
811y + 49/922

196
-

9x2

245
= 1

[–8, 8] by [–11, 0]

63.
65.
67.
69.

71. 1x + 122 + y2
+ 1z - 322 = 16

83/5, -4/5, 09
-13
80, -3, -29
169

Chapter 8 Project
Answers are based on the sample data provided.
1. 3. With respect to the graph of the ellipse, the point represents the center of the ellipse. The value a is the

semimajor axis, and b is the semiminor axis.

5. The parametric equations for the sample data set are and 

[0.4, 0.75] by [–0.7, 0.7][–0.1, 1.4] by [–1, 1]

y1T L 0.639 sin 14.80T - 2.652.x1T L 0.131 sin 14.80T + 2.102 + 0.569

1h, k2

[0.4, 0.75] by [–0.7, 0.7]

73.
75. 79. At apogee, ; at perigee, v L 9800 m/secv L 2633 m/sec10, 4.52

r = 8-1, 0, 39 + t8-3, 1, -29
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SECTION 9.1
Exploration 1
1. 6 3. No

Quick Review 9.1
1. 52 3. 6 5. 10 7. 11 9. 64

Exercises 9.1
1. 6 3. 120 5. 12 7. 362,880 (ALGORITHM) 9. 34,650 11. 1716 13. 24 15. 30 17. 120
19. Combinations 21. Combinations 23. 19,656,000 25. 36 27. 2300 29. 17,296 31. 37,353,738,800

33. 41 35. 7776 37. 511 39. 12 41. 1024 43. True. Both equal 45. D 47. B

51. (a) 12 (b) There are 12 factors of 5 in 50!, one in each of 5, 10, 15, 20, 30, 35, 40, and 45 and two in each of 25 and 50. 
Each factor of 5, when paired with one of the 47 factors of 2, yields a factor of 10 and consequently a 0 at the end of 50!

55. 3 57. years

SECTION 9.2
Exploration 1
1. 1, 3, 3, 1; These are (in order) the coefficients in the expansion of 
3. These are (in order) the coefficients in the expansion of 

Quick Review 9.2
1. 3. 5.

7. 9.

Exercises 9.2
1. 3.

5. 7. 9. 36

11. 1 13. 364 15. 126,720 17.

19. 21.

23. 25.
35. True. The signs of the coefficients are determined by the powers of the 
37. C 39. A
41. (a) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 (b) They appear diagonally down the triangle, starting with either of the 1’s in row 2. (c) (d)

43.

SECTION 9.3
Exploration 1
1. 3. 5. L  0.286

p = 0.994

p = 0.006

p = 0.997
p = 0.00598

p = 0.00002

p = 0.01491

p = 0.97909

p = 0.003

p = 0.015

p = 0.985

Antibodies
present

Antibodies
absent

+

–

+

–

p = 0.994

p = 0.006

Antibodies
present

Antibodies
absent

2n
= 11 + 12n = an

0
b1n10

+ an

1
b1n-111

+ an

2
b1n-212

+
Á

+ an

n
b101n

= an

0
b + an

1
b + an

2
b +

Á
+ an

n
b

1-y2.
x -10

+ 15x -8
+ 90x -6

+ 270x -4
+ 405x -2

+ 243x3
- 6x5/2y1/2

+ 15x2y - 20x3/2y3/2
+ 15xy2

- 6x1/2y5/2
+ y3

16x4
+ 32x3y + 24x2y2

+ 8xy3
+ y4h1x2 = 128x7

- 448x6
+ 672x5

- 560x4
+ 280x3

- 84x2
+ 14x - 1

ƒ1x2 = x5
- 10x4

+ 40x3
- 80x2

+ 80x - 32

p8
+ 8p7q + 28p6q2

+ 56p5q3
+ 70p4q4

+ 56p3q5
+ 28p2q6

+ 8pq7
+ q8x3

+ 3x2y + 3xy2
+ y3

x7
+ 7x6y + 21x5y2

+ 35x4y3
+ 35x3y4

+ 21x2y5
+ 7xy6

+ y7a4
+ 4a3b + 6a2b2

+ 4ab3
+ b4

8x3
- 36x2y + 54xy2

- 27y3u3
+ 3u2v + 3uv2

+ v3

9s2
+ 12st + 4t 225x2

- 10xy + y2x2
+ 2xy + y2

1a + b25.51 5 10 10 5 16;
1a + b23.

L  20,123

n!

a! b!
.
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Quick Review 9.3

1. 2 3. 8 5. 2,598,960 7. 120 9.

Exercises 9.3
1. 3. 5. 7.
9. (a) No; the numbers do not add up to 1.

(b) Yes; assuming the gerbil cannot be in more than one compartment at a time, the proportions cannot sum to more than 1.
11. 0.4 13. 0.2 15. 0.7 17. 0.09 19. 0.08 21. 0.64 23. 25.
27. (a) (b) 0.3 (c) 0.2 (d) 0.2 (e) yes

29. 0.64 31. 33. 35. (a) 0.67 (b) 0.33 39. (a) 86/127 (b) 91/127 (c) 62/127
41. 1/36 43. 1/1024 45. 1/1024 47. 45/1024 49. 1023/1024
51. False. A sample space consists of outcomes, which are not necessarily equally likely. 53. D 55. A
57. (a) (b)

59. (a) (b) Yes (c)
61. (a) $1.50 (b) 1/3

SECTION 9.4
Quick Review 9.4
1. 19 3. 80 5. 10/11 7. 2560 9. 15

Exercises 9.4

1. 3. 0, 6, 24, 60, 120, 210; 999,900 5. 8, 4, 0, ; 7. 2, 6, 18, 54; 4374 9. 2, , 1, 0; 3

11. Diverges 13. Converges to 0 15. Converges to 17. Converges to 0 19. Diverges
21. (a) 4 (b) 42 (c) and for (d)

23. (a) 3 (b) 22 (c) and for (d)

25. (a) 3 (b) 4374 (c) and for (d)

27. (a) (b) (c) and for (d)

29. for 31. , and 

33. 35.

37. 39. 775 41. 9
43. True. The common ratio r must be positive, so the sign of the first term determines the sign of every number in the sequence.
45. A 47. E 49. (b) 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 51.(b)
55. The entries in the terms of this 

sequence are successive pairs of terms from the Fibonacci sequence.
a6 = 38 134, a7 = 313 214.a1 = 31 14, a2 = 31 24, a3 = 32 34, a4 = 33 54, a5 = 35 84,

an : 2p as n : q

700, 702.3, 704.6, 706.9, Á , 815, 817.3

[0, 10] by [–10, 100][0, 5] by [–2, 5]

an = 31�22n-2a1 = �
3

2
, r = �2n Ú 2an = an-1 + 4a1 = -20;

an = 1-22n-1n Ú 2an = -2an-1a1 = 1-128-2

an = 2 # 3n-1n Ú 2an = 3an-1a1 = 2

an = -5 + 31n - 12n Ú 2an = an-1 + 3a1 = -5

an = 6 + 41n - 12n Ú 2an = an-1 + 4a1 = 6
-1

-1-20-42, 
3

2
, 

4

3
, 

5

4
, 

6

5
, 

7

6
; 

101

100

L  1.913%L  2

L  0.051Type of Bagel Probability

Plain 0.37

Onion 0.12

Rye 0.11

Cinnamon Raisin 0.25

Sourdough 0.15

19/303/5

0.3
0.3

0.2

0.2

A B

5/35421/134,596

5/121/45/121/9

1

12
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SECTION 9.5
Exploration 1
1. 45 3. 1 5.

Exploration 2
1. 3. 101
5. The sum in 4 involves two copies of the same progression, so it doubles the sum of the progression. The answer is 5050.

Quick Review 9.5
1. 22 3. 27 5. 512 7. 9. 55

Exercises 9.5

1. 3. 5. 7. 18 9. 3240 11. 975 13. 24,573 15.

17. 155 19. 21. ,495,641 23. (a) 0.3, 0.33, 0.333, 0.3333, 0.33333, 0.333333; convergent

(b) 1, , 2, , 3, ; divergent 25. Yes; 12 27. No 29. Yes; 1 31. 707/99 33. 35. (a) 1.1

(b) (c) $370,623.34 37. (a) (b) $20,770.18 39.
41. False. The series might well diverge.

diverge, but is constant and converges to 0.

43. A 45 C 47. (a) Heartland: 19,237,759 people; Southeast: 42,614,977 people (b) Heartland: 517,825 ; Southeast: 348,999 
(c) Heartland: 37.15 ; Southeast: 122.11 people/mi
49.

SECTION 9.6
Exploration 1
Start with the rightmost peg if n is odd and the middle peg if n is even.

Exploration 2
1. Yes 3. Still all prime

Quick Review 9.6

1. 3. 5. 7. 9.

Exercises 9.6
1. is true: Now assume is true: 

Add to both sides: 

so is true. Therefore, is true for all 

3. is true: 
Now assume is true: Add to both sides:

so is true. Therefore, is true for all .n Ú 1PnPk+11k + 12321k + 12 + 44,
6 + 10 + 14 +

Á
+ 14k + 22 + 341k + 12 + 24 = k12k + 42 + 4k + 6 = 2k2

+ 8k + 6 = 1k + 1212k + 62 =

41k + 12 + 2 = 4k + 66 + 10 + 14 +
Á

+ 14k + 22 = k12k + 42.Pk

4112 + 2 = 112112 + 42.Pn: 6 + 10 + 14 +
Á

+ 14n + 22 = n12n + 42. P1

n Ú 1.PnPk+11k + 122 + 1k + 12,
2 + 4 + 6 +

Á
+ 2k + 21k + 12 = k2

+ k + 21k + 12 = k2
+ 3k + 2 = k2

+ 2k + 1 + k + 1 =21k + 12
2 + 4 + 6 +

Á
+ 2k = k2

+ k.Pk2112 = 12
+ 1.Pn: 2 + 4 + 6 +

Á
+ 2n = n2

+ n. P1

1

2
; 

2k

3k + 1
; 

2k + 2

3k + 4
5; t + 4; t + 51k + 123k3

+ 3k2
+ 2kn2

+ 5n

2
Lpeople/mi2

L

mi2mi2

a

8

n=1
 1n + 1-n22

L  24.05 m120; 1 + 0.07/1220,00011.12n
-  

17,251

999
-3-2-1

-196
8

3
 11 - 2-122 L 2.666

50.411 - 6-92 L 50.4a

q

k=0
 61-22ka

n+1

k=1
 k2

a

11

k=1
 16k - 132

-40

1 + 2 + 3 + Á
+  99 + 100

1

3
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n

1 1 1 1
2 1 2 2
3 2 4 4
4 3 7 7
5 5 12 12
6 8 20 20
7 13 33 33
8 21 54 54
9 34 88 88

Conjecture: Sn = Fn+2 - 1

Fn+2 - 1SnFn
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5. is true: Now assume is true: To get add 5 to ;
that is, This shows that is true. Therefore, is true for all 

7. is true: Now assume is true: To get , multiply by 3;
that is, This shows that is true. Therefore, is true for all n Ú 1.PnPk+1ak+1 = 3 # 2 # 3k-1

= 2 # 3k = 2 # 31k+12-1.
akak+1ak = 2 # 3k-1.Pka1 = 2 # 31-1

= 2 # 30
= 2.Pn: an = 2 # 3n-1. P1

n Ú 1.PnPk+1ak+1 = 15k - 22 + 5 = 51k + 12 - 2.
akak+1,ak = 5k - 2.Pka1 = 5 # 1 - 2 = 3.Pn: an = 5n - 2. P1

920 SELECTED ANSWERS

9.

11.

.

13. is true: 

Now assume is true: Add to both sides: 

so is true. Therefore, is true for all 

15. is true: .

Now assume is true: .

Add to both sides: 

so is true. Therefore, is true for all 

17. is true: (in fact, they are equal). Now assume is true: 

Then so is true. Therefore, is true for all 

19. is a factor of is true: 3 is a factor of Now assume is true: 3 is a factor of 
Then Since 3 is a factor of both terms,
it is a factor of the sum, so is true. Therefore, is true for all 

21. : The sum of the first n terms of a geometric sequence with first term and common ratio is 

is true: Now assume is true so that 

Add to both sides: 

so is true. Therefore, is true for all positive integers n.

23. is true: Now assume is true: 

Add to both sides, and we have 

is true. Therefore, is true for all 

25. 125,250 27. 29. 31. 33.

35. The inductive step does not work for 2 people. Sending them alternately out of the room leaves 1 person (and one blood type) each time, but
we cannot conclude that their blood types will match each other.

37. False. Mathematical induction is used to show that a statement is true for all positive integers. 39. E 41. B

43. is a factor of is true because 2 is a factor of . Now assume is true so that 2 is a factor of 

Then 

Since 2 is a factor of both terms of this sum, it is a factor of the sum, and so is true.

Therefore, is true for all positive integers n.
45. Given any two consecutive integers, one of them must be even. Therefore, their product is even. Since and are consecutive 

integers, their product is even. Therefore, 2 is a factor of 1n + 121n + 22.
n + 2n + 1

Pn

Pk+1=  1k + 121k + 22 + 21k + 22.
31k + 12 + 1431k + 12 + 24 = 1k + 221k + 32 = k2

+ 5k + 6 = k2
+ 3k + 2 + 2k + 41k + 121k + 22.

Pk1221321n + 121n + 22. P1Pn: 2

Pn

n1n - 121n2
+ 3n + 42 

4

n1n2
- 3n + 82 

3
L 3.44 * 1010

1n - 321n + 42 
2

n Ú 1.Pn=  
1k + 1211k + 12 + 12

2
, so Pk+1

a

k+1

i=1
 i =

k1k + 12 
2

+ 1k + 12 =

k1k + 12 
2

+

21k + 12 
2

=

1k + 121k + 22 
2

1k + 12
a

k

i=1
 i =

k1k + 12 
2

.Pka

1

k=1
 k = 1 =

1 # 2 

2
.Pn:  a

n

k=1
 k =

n1n + 12 
2

. P1

PnPk+1=  
a1 - a1r k

+ a1r k
- a1r k+1

1 - r
=

a1 - a1r k+1

1 - r
,

a1 + a1r +
Á

+ a1r k-1
+ a1r k

=

a111 - r k2 
11 - r2 + a1r k

=

a111 - r k2 + a1r k11 - r2 
1 - r

a1r k

a1 + a1r +
Á

+ a1r k-1
=

a111 - r k2 
11 - r2 .Pka1 =

a111 - r 12 
1 - r

.P1

a111 - r n2 
1 - r

.r Z 1a1Pn

n Ú 1.PnPk+1

1k + 123 + 21k + 12 = 1k3
+ 3k2

+ 3k + 12 + 12k + 22 = 1k3
+ 2k2 + 31k2

+ k + 12.
k3

+ 2k.Pk13
+ 2 # 1 = 3.n3

+ 2n. P1Pn: 3

n Ú 1.PnPk+12k+1
= 2 # 2k

Ú 2 # 2k = 2 # 1k + k2 Ú 21k + 12,
2k

Ú 2k.Pk21
Ú 2 # 1Pn: 2n

Ú 2n. P1

n Ú 1.PnPk+1=  
k1k + 22 + 1

1k + 121k + 22 =

1k + 121k + 12
1k + 121k + 22 =

k + 1

k + 2
=

k + 1

1k + 12 + 1
,

1

1 # 2 
+

1

2 # 3 
+

Á
+

1

k1k + 12 +

1

1k + 121k + 22 =

k

k + 1 
+

1

1k + 121k + 22 
1

1k + 121k + 22 

1

1 # 2 
+

1

2 # 3 
+

Á
+

1

k1k + 12 =

k

k + 1 
Pk

1

1 # 2 
=

1

1 + 1 
Pn: 

1

1 # 2 
+

1

2 # 3 
+

Á
+

1

n1n + 12 =

n

n + 1 
. P1

n Ú 1.PnPk+1

2k2
+ 3k + 1 = 1k + 1212k + 12 = 1k + 12321k + 12 - 14,+  14k - 32 + 341k + 12 - 34 = k12k - 12 + 4k + 1 =

1 + 5 + 9 +
Á41k + 12 - 3 = 4k + 11 + 5 + 9 +

Á
+ 14k - 32 = k12k - 12.Pk

4112 - 3 = 1 # 12 # 1 - 12.Pn: 1 + 5 + 9 +
Á

+ 14n - 32 = n12n - 12. P1

Pk+1: 
1

1 # 2
+

1

2 # 3 
+

Á
+

1

k1k + 12 +

1

1k + 121k + 22 =

k + 1

k + 2 

P1: 
1

1 # 2 
=

1

1 + 1 
. Pk: 

1

1 # 2 
+

1

2 # 3 
+

Á
+

1

k1k + 12 =

k

k + 1 
.

Pk+1: 1 + 2 +
Á

+ k + 1k + 12 =

1k + 121k + 22 
2

.Pk: 1 + 2 +
Á

+ k =

k1k + 12 
2

.P1: 1 =

111 + 12 
2

.
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47. is true since which equals 

Now assume that is true: . Then 

so is true. Therefore, is true for all .

49. is a factor of is true because is a factor of Now assume is true so that is a factor of 
Then Since is a factor of both terms in the sum, it is a factor of the sum, and so

is true. Therefore, is true for all positive integers n.

51. for is true since Now assume that is true: 

Then , so is true. Therefore, is true for all 
53. Use as the anchor and obtain the inductive step by representing any n-gon as the union of a triangle and an -gon.

SECTION 9.7
Exploration 1
1. The average is about 12.8. 3. Alaska, Colorado, Georgia, Texas, and Utah

Quick Review 9.7
1. 3. 5. 7. $235 thousand 9. 1 million

Exercises 9.7
1. 3. 5. 

L  1723L  14.44%L  15.48%

1n - 12P3

n Ú 2.PnPk+131k + 1) - 4 = 3k + 3 - 4 = 13k - 42 + 3 Ú k + 3 Ú k + 1

3k - 4 Ú k.Pk3 # 2 - 4 Ú 2.P2n Ú 2.Pn: 3n - 4 Ú n

PnPk+1

a - 1ak+1
- 1 = a # ak

- 1 = a1ak
- 12 + 1a - 12.

ak
- 1.a - 1Pka - 1.a - 1an

- 1. P1Pn: a - 1

n Ú 1PnPk+1=  1Fk+2 - 12 + Fk+1 = aa
k

i=1
 Fib +  Fk+1 = a

k+1

i=1
 Fi,

F1k+12+2 - 1 = Fk+3 - 1 = Fk+1 + Fk+2 - 1Fk+2 - 1 = a

k

i=1
 FiPk

a

1

k=1
 Fk = 1.F1+2 - 1 = F3 - 1 = 2 - 1 = 1,Pn: Fn+2 - 1 = a

n

k=1
 Fk. P1
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0 5 8 9
1 3 4 6
2 3 6 8
3 3 9
4
5
6 1

61 is an outlier.

Males
6 3 0
6 7 8 8 8
7 1 2 2 3 3 3
7

Males Females
3 0 6

8 8 8 7 6 5 8
3 3 3 2 2 1 7 1 2

7 5 6 7 7 9 9
8 0 0

7. 9. 11.

[0, 60] by [–1, 5][50, 80] by [–1, 9]

Life expectancy Frequency
(years)

60.0–64.9 2

65.0–69.9 4

70.0–74.9 6

13. 15.

[–1.5, 17] by [–2, 80][–1, 25] by [–5, 60]

17. The top male’s earnings appear to be grow-
ing exponentially, with unusually high
earnings in 1999 and 2000. Since the graph
only shows the earnings of the top player
(as opposed to a mean or median for all
players), it can behave strangely if the top
player has a very good year—as Tiger
Woods did in 1999 and 2000.

[1965, 2008] by [–1000, 11000]

19. After approaching parity
in 1985, the top PGA
player’s earnings have
grown much faster than
the top LPGA player’s
earnings, even if the
unusually good years for
Tiger Woods (1999 and
2000) are not considered
part of the trend.

[1965, 2008] by [–1000, 11000]

21. The two home run hitters enjoyed similar success.

[–1, 25] by [–5, 60]
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25.

=  CA; + = NY, . = TX

[1890, 2010] by [–4, 40]

922 SELECTED ANSWERS

23. (a) 28 2
29 3 7
30
31 6 7
32 7 8
33 5 5 5 8
34 2 8 8
35 3 3 4
36 3 7
37
38 5

(b) Interval Frequency

25.0–29.9 3
30.0–34.9 11
35.0–39.9 6

(c) (d) Time is not a variable in the data.

[20, 45] by [–1, 13]

27. False. The empty branches
are important for visualizing
the distribution of the data.

29. C 31. A 35.

[0, 13] by [–15, 40]

SECTION 9.8
Exploration 1
1. Figure (b)

Quick Review 9.8

1. 3. 5.

7. 9.

Exercises 9.8
1. (a) statistic (b) parameter (c) statistic 3. 26.8 5. 7. 3.9 million 9. satellites 11. 2
13. 30 runs/yr; runs/yr; Mays 15. What-Next Fashion
17. median: 87.85; mode: None 19. 21. (a) (b) (c) The weighted average is the better indicator.
23. Willie Mays: Five-number summary: {4, 20, 31.5, 40, 52}; Range: 48; IQR: 20; No outliers;
Mickey Mantle: Five-number summary: { 13, 21, 28.5, 37, 54}; Range: 41; IQR: 16; No outliers
25. 28.2, 31.7, 33.5, 35.3, 38.5 ; 10.3; 3.6; No outliers65

L  6.49°CL  6.42°CL  3.61
L  29.8

L  15.2L  60.12

1

50
 a

50

i=1
 1x i - x 22a

8

i=1
 x iƒi

1

5
 31x1 - x22 + 1x2 - x22 +

Á
+ 1x5 - x2241

7
 1x1 + x2 + x3 + x4 + x5 + x6 + x72x1 + x2 + x3 + x4 + x5 + x6 + x7

27. (a) (b)

[–3, 80] by [–1, 2][–3, 80] by [–1, 2]

29. 3/11 31. (a) Mays (b) Mays 33. 35. 37.
39. No 41. (a) 68% (b) 2.5% (c) A parameter 43. False. The median is a resistant measure. 45. A 47. B
49. There are many possible answers; examples are given. (a) 2, 2, 2, 3, 6, 8, 20 (b) 1, 2, 3, 4, 6, 48, 48 (c) 20, 1, 1, 1, 2, 3, 4, 5, 6
51. No 55. 75.9 years 57. 5%

SECTION 9.9
Exploration 1
1. Correlation begins with a scatter plot, which requires numerical data from two quantitative variables (like height and weight). 

“Gender” is categorical.
3. The doctor’s “experiment” proves nothing about the effect of vanilla gum on headache pain unless we can compare these subjects with 

a similar group that does not use vanilla gum. Many headaches are gone in two hours anyway.

65-6565
s L 1.53; s2

L 2.34s L 120.69; s2
L 14,566.59s L 9.08; s2

= 82.5

6965_SE_Ans_833-934.qxd  1/25/10  3:41 PM  Page 922



SELECTED ANSWERS 923

Quick Review 9.9

1. 3. 5. 7. 9.

Exercises 9.9
1. Incorrect. Intelligence might be associated with some quantitative variable, but beauty is categorical.
3. Incorrect. The high correlation coefficient does nothing to support Sean’s crazy theory, because the great blue whale (with a long name and a

huge weight) is an unusual point that lies far away from the other three.

1 - a 9

10
b5

= 0.40951a 1

10
b5

= 0.00001
1

10

4

52
=

1

13

1

6

5. Incorrect. Marcus is OK with his first observation, but not with 
his second. While his linear model is a bad fit, he should not 
conclude that “there is no significant mathematical relationship.” 
In fact, check out this sinusoidal fit:

7. This is random (technically pseudo-random, but it should suffice).
9. This is not a random sample of all Reno citizens. All fifty are likely

to be from early in the alphabet.
11. This is not random, nor does it apparently try to be.
13. Voluntary response bias. The students most likely to respond were

those who felt strongly about suggestions for improvement, so the
rate of negative responses was probably higher than the parameter.
He could have gotten a less biased response with an in-class
census of all his students (ideally in multiple-choice form so that
their handwriting would not betray their identities).

15. Undercoverage bias. The survey systematically excluded the students who were not actually eating in the dining hall, so the sample statistic
was bound to be higher than the population parameter. A better method would have been to choose a random sample from the student body
first, then seek them out for the survey (perhaps in their homerooms).

17. Response bias. The question was designed to elicit a negative response, and it never even mentioned stop signs. The 97% was much higher
than it would have been with a simple question like, “Should citizens be allowed to ignore stop signs?”

19. Observational study. No treatment imposed. 21. Observational study. No treatment imposed. 23. Experiment.
25. Using random numbers, select 12 of the 24 plots to get the new fertilizer. Use the original fertilizer on the other 12 plots. Compare the yields
at harvest time.
27. This requires three treatments. Split the 24 plots randomly into three groups of 8: new fertilizer 1, new fertilizer 2, and original fertilizer.
29. Fatigue may be a factor after they have driven 20 golf balls. They could gather the data on different days, or they could randomly choose 

half the golfers to drive the new ball first.
31. The music assignment should be randomized, not left to the choice of the mother. Otherwise, the mother’s music preference (with possible

lifestyle implications) becomes a potentially significant confounding variable.
33. One possible solution: Use the command “randInt ” to choose 50 random numbers from 1 to 500. If there are any repeat numbers

in the list, use “randInt ” to pick additional numbers until you have a sample of 50.
35. One possible solution: Enter the numbers 1 to 32 in list using the command “ ” and enter 32 random numbers in list

using the command “ .” Then sort the random numbers into ascending order, bringing along for the ride, using the com-
mand “ , .” The numbers in list are now in random order.

37. One possible solution: Use the command “ ” to generate 20 random numbers from 1 to 5. Let 1 and 2 designate donors with
O-positive blood. Do this nine times and keep track of how many strings have fewer than four numbers that are 1 or 2.

39. One possible solution: Use the command “ ” to generate random numbers between 1 and 6. Push ENTER twice to get a roll of two
dice. (Note that you do not want to generate random totals between 2 and 12. You learned in Section 9.3 that those totals are not equally likely.)

41. False. Observational studies can show strong associations, but experiments would be required to establish causation.
43. B (Note that this is the only quantitative variable among the choices.) 45. C
47. Answers will vary. Note that you should not expect all the counts to be exactly the same (that would suggest nonrandomness in itself), 

but “randomness” would predict an approximately equal distribution, especially for a large class.
49. (a) Correlation coefficient will increase; slope will remain about the same. (b) Correlation coefficient will increase; slope will increase.

(c) Correlation coefficient will decrease; slope will decrease.
51. One possible picture:

randInt 11, 62
randInt 11, 5, 202

L1L12SortA1L2
L1rand1322: L2L2

seq1X, X, 1, 322: L1L1
11, 5002

11, 500, 502

53. (a) The size of the hospital is not affecting the death rates of the patients. The lurk-
ing variable is the patient’s condition. Bigger hospitals tend to get the more critical cases,
and critical cases have a higher death rate. (b) The number of seats is not affecting the
speed of the jet. The lurking variable is the size of the aircraft. Larger jets generally have
more seats and go faster. (c) The size of the shoe does not affect reading ability. The
lurking variable is the age of the student. In general, older students have larger feet and
read at a higher level. (d) The extra firemen are not causing more damage. The lurking
variable is the size of the fire. Larger fires cause more damage and require more firefight-
ers. (e) The salary is not generally affected by the player’s weight. The lurking variable
is the player’s position on the team. Linemen weigh more and tend to earn less money
than the (usually lighter) players in the so-called “skill” positions (e.g., quarterbacks,
running backs, receivers, and defensive backs).
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CHAPTER 9 REVIEW EXERCISES
1. 792 3. 18,564 5. 3,991,680 7. 43,670,016 9. 14,508,000 11. 8,217,822,536 13. 26 15. 325
17. (a) 5040; Meg Ryan (b) 778,377,600; Britney Spears 19.
21.
23.
25. 27. 1, 2, 3, 4, 5, 6 29. 13, 16, 31, 36, 61, 63 31. HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
33. HHH, TTT 35. 1/64 37. 1/4 39. 0.25 41. 0.24 43. 0.64 45. (a) 0.5 (b) 0.15 (c) 0.35 (d) 0.43
47. 0, 1, 2, 3, 4, 5; 39 49. , 2, 5, 8, 11, 14; 32 51. , , , , 1, 2.5; 11.5 53. , 1, , , , ; 
55. Arithmetic with 57. Geometric with 
59. Arithmetic with 61. 63. 65. 67. 21/8

69. 59,048 71. 73. 75. $27,441.91 77. Converges; 6 79. Diverges 81. Converges; 3

83. 85. 87. 89. 4650

91. is true: 

Now assume is true: 

Add to both sides: 

, so is true.

Therefore, is true for all .

93. is true: (they are equal). Now assume is true: . 

Then , so is true. Therefore, is true for all .n Ú 1PnPk+121k+12-1
= 2 # 2k-1

… 2 # k! … 1k + 12k! = 1k + 12!
2k-1

… k!Pk21-1
… 1!Pn: 2n-1

… n!. P1

n Ú 1Pn

Pk+1=  1k + 121k + 22a k

6
+

1

2
b = 1k + 121k + 22a k + 3

6
b =

1k + 1211k + 12 + 1211k + 12 + 22
6

1 + 3 + 6 +
Á

+

k1k + 12
2

+

1k + 121k + 22
2

=

k1k + 121k + 22
6

+

1k + 121k + 22
2

1k + 121k + 22
2

1 + 3 + 6 +
Á

+

k1k + 12
2

=

k1k + 121k + 22
6

.Pk

111 + 12
2

=

111 + 1211 + 22
6

.Pn:1 + 3 + 6 +
Á

+

n1n + 12
2

=

n1n + 121n + 22
6

. P1

n13n + 52
2a

q

k=0
12k + 122 or a

q

k=1
12k - 122a

21

k=1
15k - 132

[0, 15] by [0, 2]

3280.4

-985.5-4an = 31-42n-1; r = -4d = 4.5; an = 4.5n - 15.5
r = 1.2; an = 10 # 11.22n-1d = -2.5; an = 14.5 - 2.5n

-76-4-3-1-2-3-0.5-2-3.5-5-1
L65
656565-1320

512a27
- 2304a24b2

+ 4608a21b4
- 5376a18b6

+ 4032a15b8
- 2016a12b10

+ 672a9b12
- 144a6b14

+ 18a3b16
- b18

243x10
+ 405x8y3

+ 270x6y6
+ 90x4y9

+ 15x2y12
+ y15

32x5
+ 80x4y + 80x3y2

+ 40x2y3
+ 10xy4

+ y5

95. (a) 9 1 2
10 6 7
11 4 5 5 7 7
12 0 2 4 6 7 7
13 5 6
14 1 6 7 7 8
15 4 8
16 1 4
17 0 6
18
19
20
21 9
22
23 4

(b) Price Frequency

90,000– 99,999 2
100,000–109,999 2
110,000–119,999 5
120,000–129,999 6
130,000–139,999 2
140,000–149,999 5
150,000–159,999 2
160,000–169,999 2
170,000–179,999 2
210,000–219,999 1
230,000–239,999 1

(c)

[8, 24] by [–1, 7]

97. (a) 12 0 0 4 4
13 1 1 2 6 7 9
14 0 3 4 8
15 6
16 3
17 7 9
18 0
19 0 1 7
20 2
21
22
23 0

(a) (c)

[120, 240] by [0, 7]

Length (in seconds) Frequency

120–129 4
130–139 6
140–149 4
150–159 1
160–169 1
170–179 2
180–189 1
190–199 3
200–209 1
210–219 0
220–229 0
230–239 1
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99. Five-number summary: 9.1, 11.7, 13.1, 15.4, 23.4 ; Range: 14.3; IQR: 3.7; 3.19, ; Outliers: 21.9 and 23.4
101. Five-number summary: 120, 131.5, 143.5, 179.5, 230 ; Range: 110; IQR: 48; 29.9, ; No outliers

103. (a) (b) 105. (a) (b)

[100, 250] by [–1, 1][100, 250] by [–1, 1][8, 4] by [–1, 1][8, 24] by [–1, 1]

s2
= 891.4s =65

s2
L 10.14s L65

107. Earlier Later
4 0 0 12 4
9 2 1 13 1 6 7

8 4 3 0 14
15 6

3 16
7 17 9

18 0
19 0 1 7
20 2
21
22
23 0

The songs released
in the earlier years
tended to be shorter.

109. Again, the data
demonstrates that
songs appearing
later tended to be
longer.

[–1, 25] by [100, 250]

111. 1 9 36 84 126 126 84 36 9 1
113. (a) (b)
115. Incorrect. Intelligence might

be associated with some
quantitative variable, but
strength is categorical.

117. This will work.
119. Voluntary response bias

L  0.075L  0.922

Chapter 9 Project
Answers are based on the sample data shown in the table.

3.

[59, 78] by [–1, 7]

5. The data set is well distributed and probably does not have outliers.
7.

[56, 78] by [–1, 7]

1. 5
5 9
6 1 1 2 3 3 3 4 4 4 4
6 5 6 6 6 7 8 8 9 9 9
7 0 0 1 1 1 2 2 3
7 5

66 or 67 inches

SECTION 10.1
Exploration 1
1. 3 3. They are the same.

Quick Review 10.1

1. 3. 5. 7. 9.

Exercises 10.1
1. 12 mi per hour 3. 3 5. 4a
7. 1 9. No tangent 11. 4 13. 12

15. (a) 48 (b) 48 ft/sec

[–10, 11] by [–12, 2][–7, 9] by [–1, 9]

-  

1

21h + 22h + 4y - 4 =

3

4
 1x - 12y = 13/22 x + 6-4/7
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17. (a)
(b)
(c) y

19

x
4

y - 2 = -41x + 12
-4 19. (a) 1

(b)
(c) y

5

x
4

y = x - 5

21. ; 1; none 23. 25. 27. Does not exist 29.
31. 33. (a) 9 ft/sec; 15 ft/sec (b)

[–0.1, 1] by [–0.1, 8]

ƒ1x2 = 8.94x2
+ 0.05x + 0.01, x = time in seconds6x + 2

-3-12-4-1

(c) L  35.9 ft

35. (a) y

9

x
5

(b) Since the graph of the function does not have a definable slope at , the derivative of f does not
exist at 

(c) Derivatives do not exist at points where functions have discontinuities.
x = 2.

x = 2

37. (a) y

3

x
5

(b) Since the graph of the function does not have a definable slope at , the derivative of f does
not exist at 

(c) Derivatives do not exist at points where functions have discontinuities.
x = 2.

x = 2

39. Possible answer:
y

10

–10

–1
x

5
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SECTION 10.2
Exploration 1
1. 0.1 gal; 1 gal 3. 0.000000001 gal; 1 gal

Quick Review 10.2

1. 3. 5. 7. 228 miles 9. 4,320,000 

Exercises 10.2
1. 195 mi 3. 540,000 5. 2176 km 7. 13; Answers will vary. 9. 13; Answers will vary. 11. 32.5

13.

15.

17. (a) (b)

RRAM: 30

y

18

x
54321

y

18

x
54321

c1, 
3

2
d , c  3

2
, 2 d , c2, 

5

2
d , c5

2
, 3 d , c3, 

7

2
d , c7

2
, 4 d

c0, 
1

2
d , c  1

2
, 1 d , c1, 

3

2
d , c3

2
, 2 d

ft3

ft3
505

2

65

2

1

8
, 

1

2
, 

9

8
, 2, 

25

8
, 

9

2
, 

49

8
, 8, 

81

8
, 

25

2

(c)

LRAM: 14

y

18

x
54321

(d) Average: 22

41. Possible answer:
y

5

–5

–1
x

5

43. The slope of the line is a; .
45. False; the instantaneous velocity is a limit of average velocities. It is nonzero when the ball is moving.
47. D 49. C

ƒ¿1x2 = a

51.

[–4.7, 4.7] by [–3.1, 3.1]

53.

[–4.7, 4.7] by [–3.1, 3.1]

(a) No, there is no derivative because
the graph has a corner at .

(b) No
x = 0

(a) No, there is no derivative
because the graph has a
vertical tangent (no slope)
at .

(b) Yes, .x = 0
x = 0

55. (a) 48 ft/sec (b) 96 ft/sec
57. y

1

x
10

6965_SE_Ans_833-934.qxd  1/25/10  3:41 PM  Page 927



928 SELECTED ANSWERS

19. (a) (b)

RRAM: 10

y

5

x
54321

y

5

x
54321

(c)

LRAM: 10

y

5

x
54321

21. 20 23. 37.5 25. 16.5 27. 29. 2 31. 2 33. 1 35. 4 37. 4
39. 41. 45. 64 ft24 + 4k8k + 12

2p

(d) Average:10

47. (a)

(b) (c) 36 ftt = 1.5 sec

[0, 3] by [0, 50]

49. (a)

(b) 33.86 ft

[0, 2] by [–50, 0]

51. True; the exact area is given by the limit as . 53. A 55. C

57. 59. True 61. False 63. False
L

1

0
 1x - 12 dx = -

1

2

n : q

SECTION 10.3
Exploration 2
1. 50; 0

Quick Review 10.3

1. (a) (b) (c) Undefined 3. (a) and (b) 5. (b) 7. (a) (b) None

9.

Exercises 10.3

1. 3. 7 5. 7. 0 9. 11. (a) Division by zero (b) 13. (a) Division by zero (b) 3

15. (a) Division by zero (b) 17. (a) The square root of negative numbers is not defined in the real plane. (b) The limit does not exist.
19. 21. 0 23. 2 25. ln 
27. (a) 3 (b) 1 (c) None 29. (a) 4 (b) 4 (c) 4 31. (a) True (b) True (c) False (d) False (e) False (f ) False
(g) False (h) True (i) False ( j) True 33. (a) (b) (c) 35. (a) 6 (b) (c) 16 (d) -2-4L  2.72L  2.72L  2.72

p-1
-4

-  

1

6
a2

- 217-4

y

5

x
4

[-2, q2y = 2x = 2x = -2
1

16
-  

3

64

6965_SE_Ans_833-934.qxd  1/25/10  3:41 PM  Page 928



SELECTED ANSWERS 929

83. (a)

[–2, 25] by [0, 60]

(b) , where the number

of months; 

(c) It’s about 58,000.

lim
x: q

 ƒ1x2 L 57.71

x =ƒ1x2 L

57.71

1 + 6.39e-0.19x

85. y

5

x
15

y = 2

x = 4

87. y

5

x
8

x = 2

x = 1

n A

4 4
8 3.3137

16 3.1826
100 3.1426
500 3.1416

1,000 3.1416
5,000 3.1416

10,000 3.1416
100,000 3.1416

89. (d) (e) n A

4 36
8 29.823

16 28.643
100 28.284
500 28.275

1,000 28.274
5,000 28.274

10,000 28.274
100,000 28.274

(f) One possible answer:

As the number of sides of the polygon increases, the dis-
tance between h and the edge of the circle becomes pro-
gressively smaller. As radius of the circle.n : q , h :

= h2p = ph2

 n tan a180°
n
blim

n: q

 = h2

 nh2 tan a180°
n
blim

n: q

 A = lim
n: q

Yes, as . As .n : q , A : 9pn : qA : p

41. 2 43. 0 45. 1 47. 0; 0 49. ; 1 51. (a) (b) 53. (a) Undefined (b) 0 55.

57. 59. 61. 3 63. 1 65. 67. 0 69. Undefined 71. 73. False; 

75. B 77. C

lim
x:3

 ƒ1x) = 5
1

2
qq ; x = 5q ; x = -2

- q ; x = 3- qqq

79. (a)

(b)
(c)
(d) x = -p

x = p

1-p, 0) ´ (0, p)

y

1

xπ

81. (a)

(b)
(c)
(d) x = -1

x = 1
1-1, 0) ´ (0, 1)

y

2

x
1

37. (a)

(b) 0; 0
(c) 0

y

9

x
4

39. (a)

(b) 0; 3
(c) Does not exist; lim

x:0+

 ƒ1x2lim
x:0-

 ƒ1x2 Z

y

8

x
4
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91. (a) y

x

5

5

(b)

(c) y = 2

y =

2x + 4

x + 2
=

21x + 22
x + 2

= 2

93. (a) y

x

8

5

(b)

(c) y = x2
+ x + 1

= x2
+ x + 1

y =

x3
- 1

x - 1
=

1x - 121x2
+ x + 12

x - 1

SECTION 10.4
Exploration 1
1. 1.364075504 3. ;

Quick Review 10.4
1. 5 3. 2/3 5. 3 7. 9.

Exercises 10.4
1. 3. 5. 0 7. 9. 11. 13. 2 15. 17. 1 19.
21. 106.61 mi

L  3.1416L  064/3L  -3.0000L  1.0000-12-4

L  1.000L  0.5403

fnInt1sin1X2, X, 0, p2 = 2sum1seq1sin10 + K*p/502*p/50, K, 1, 5022 = 1.9993419831
p

0  sin x dx;

23. (a) (b)

[–1, 6] by [0, 550]

-50 ft/sec (c)
(d)
(e) L  179.28 ft/sec

L  -47.88 ft/sec
s1t2 = -16.08t 2

+ 0.36t + 499.77

25. (a) (b)

[0, 6] by [–180, 20]

(c) Approximately ft/sec; this is
close to the results in Exercise 23.

-47.95Midpoint

0.25
0.75
1.25
1.75
2.25
2.75
3.25
3.75
4.25
4.75
5.25 -170

-150
-140
-120
-100
-90
-70
-60
-40
-20
-10

¢s/¢t
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57. (b)

[0, 5] by [–5, 30]

(c) (d) The exact value of for any 
x greater than zero appears to be 

(e) A¿1x2 = 3x2
x3.

A1x2

[–2, 5] by [–5, 30]

y L x3x

0.25 0.0156
0.5 0.125
1 1
1.5 3.375
2 8
2.5 15.625
3 27

A1x2

CHAPTER 10 REVIEW EXERCISES
1. (a) 2 (b) Does not exist 3. (a) 2 (b) 2 5. 7. 9. 0 11. 0 13. 15.

17. 19. ƒ has vertical asymptotes at and ; f has a horizontal asymptote at 21. 23.

25. 27. 29. 31. (a) 8.01 (b) 8

33. 1; 35.
37. LRAM: 42.2976; RRAM: 40.3776; 41.3376

10x + 7y = x - 1

-9y = L
x3

- 1

x - 1
if x Z 1

3 if x = 1
-1

-  

1

9
-8y = 0.x = -5x = -1-  

1

4

q- q-7-1

(b) 1995 to 1996: 8.4 cents per year; 2002 to 2003: 23.3 cents per year (c) 2004 to 2005
(d) 1997 to 1998 (e)

[–5, 20] by [0, 300]

y = 8.371x + 78.694
39. (a)

[–5, 20] by [0, 300]

(f )

[–5, 20] by [0, 300]

y = 0.0794x3
- 0.9206x2

+ 2.9743x + 112.5684

(g) 1997:1.8; 1998:3.5; 1999:5.7; 2000:8.4 (h) 504.6 cents per gallon. Likely too high.

27. 100 ft
31. (b)

(c) fnInt gives 17.33; at , the average is 17.3344.N100

N LRAM RRAM Average

10 15.04 19.84 17.44
20 16.16 18.56 17.36
50 16.86 17.82 17.34

100 17.09 17.57 17.33

33. (b)

(c) fnInt gives 9.33; at , the average is 9.3344.N100

N LRAM RRAM Average

10 7.84 11.04 9.44
20 8.56 10.16 9.36
50 9.02 9.66 9.34

100 9.17 9.49 9.33

35. (b)

(c) fnInt gives 105.33; at , the average is 105.3344.N100

N LRAM RRAM Average

10 98.24 112.64 105.44
20 101.76 108.96 105.36
50 103.90 106.78 105.34

100 104.61 106.05 105.33

37. (b)

(c) fnInt gives 7.91, the same result as .N100

N LRAM RRAM Average

10 7.70 8.12 7.91
20 7.81 8.02 7.91
50 7.87 7.95 7.91

100 7.89 7.93 7.91

39. (b)

(c) fnInt gives 1, the same result as .N100

N LRAM RRAM Average

10 1.08 0.92 1.00
20 1.04 0.96 1.00
50 1.02 0.98 1.00

100 1.01 0.99 1.00

41. (b)

(c) , the same result as .N100fnInt = 0.59

N LRAM RRAM Average

10 0.56 0.62 0.59
20 0.58 0.61 0.59
50 0.59 0.60 0.59

100 0.59 0.60 0.59

43. True; the notation NDER refers to a symmetric difference quotient using 45. B 47. C
49. (a) (b) (c) 11.002, 11 (d) The symmetric method provides a closer approximation to 
(e) 12.006001; 12.000001; symmetric
51. The values of and are the same 53. (a) 4 (b) L  19.67ƒ10 - h2ƒ10 + h2

ƒ¿122 = 11.3x24x + 3
h = 0.001.
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5. Regression model predictions: 2,382,109; 4,099,161; 7,053,883. The web site predictions are probably more
reasonable, since the scatter plot in Question 1 of this project suggests that growth in recent years has been
fairly linear.

APPENDIX A
Appendix A.1

1. 9 or 3. 4 5. 7. 12 9. 11. 13. 4 15. 2.5 17. 729 19. 0.25 21.

23. 1.3 25. 2.1 27. 29. 31. 33. 35. 37. 39.

41. 43. 45. 47. 49. 51. 53. 55.

57. 59. 61. 63. 65. 67. 69. 71. 0

73. 75. 77. 79. 81. 83.

85. If n is even, then there are two real nth roots of 

Appendix A.2
1. ; degree 2 3. ; degree 7 5. No 7. Yes 9. 11.
13. 15. 17. 19. 21. 23.
25. 27. 29. 31. 33.
35. 37. 39. 41. 43. 45.
47. 49. 51. 53. 55.
57. 59. 61. 63. 65.
67. 69. 71. 73. 75.
77. 79. 81. 83. 85.
87. 89.
91.
Neither of the groupings and have a common factor to remove.

Appendix A.3

1. 3. 5. 7. 9. All real numbers 11. 13. 15.

17. 19. 21. 23. 25. 27. cancels out during simplification; the
restriction indicates that the values 2 and were not valid in the original expression. 29. No factors were removed from the expression.
31. ends up in the numerator of the simplified expression; the restriction reminds us that it began in the denominator so that 3 is not allowed.

33. 35. 37. 39. 41. 43.

45. 47. 49. 51. 53.

55. 57. 59. 61.

63. 65. 67.

69. 71. 73.
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SECTION C
Appendix C.1
1. (a) False statement (b) Not a statement (c) False statement (d) Not a statement (e) Not a statement (f ) Not a statement
(g) True statement (h) Not a statement (i) Not a statement (j) Not a statement 3. (a) There is no natural number x such that

(b) There exists a natural number x such that . (c) There is no natural x such that (d) There exists a natural
number x such that 5. (a) The book does not have 500 pages. (b) Six is not less than eight. (c)
(d) No people have blond hair. (e) Some dogs do not have four legs. (f ) All cats have nine lives. (g) Some squares are not rectangles.
(h) All rectangles are squares. (i) There exists a natural number x such that ( j) For all natural numbers x, 
(k) Not every counting number is divisible by itself and 1. (l) All natural numbers are divisible by 2. (m) For some natural number x,

7. (a) F (b) T (c) T (d) F (e) F (f ) T (g) F (h) F (i) F ( j) F 9. (a) (b) (c)
(d) 11. (a) The statements and are equivalent, and the statements and are equiva-
lent. (b) The corresponding DeMorgan Laws for sets are and . The analogy comes from letting p mean “x is a
member of P” and letting q mean “x is a member of Q.” Then, for the first law, means “x is a member of ,” which is equivalent
to “x is a member of ,” which translates into 13. (a) Today is not Wednesday or the month is not June. (b) I did not eat
breakfast yesterday, or I did not watch television yesterday. (c) It is not true that both it is raining and it is July.

Appendix C.2
1. (a) (b) (c) (d) (e) (f ) 3. (a) Converse: If you’re good in sports, then you
eat Meaties; Inverse: If you don’t eat Meaties, then you’re not good in sports; Contrapositive: If you’re not good in sports, then you don’t eat
Meaties. (b) Converse: If you don’t like mathematics, then you don’t like this book; Inverse: If you like this book, then you like mathematics;
Contrapositive: If you like mathematics, then you like this book. (c) Converse: If you have cavities, then you don’t use Ultra Brush toothpaste;
Inverse: If you use Ultra Brush toothpaste, then you don’t have cavities; Contrapositive: If you don’t have cavities, then you use Ultra Brush tooth-
paste.
(d) Converse: If your grades are high, then you’re good at logic; Inverse: If you’re not good at logic, then your grades aren’t high; Contrapositive: 
If your grades aren’t high, then you’re not good at logic. 5. (a) T (b) T (c) F (d) F (e) T (f) F 7. No 9. If a number is 
not a multiple of 4, then it is not a multiple of 8. 11. (a) p is false. (b) p is false. (c) q can be true, and in fact q true and p false makes

true and is the only way for to be false. 13. (a) Helen is poor. (b) Some freshmen are intelligent. (c) If I study for the
final, then I will look for a teaching job. (d) There exist triangles that are isosceles. 15. (a) If a figure is a square, then it is a rectangle.
(b) If a number is an integer, then it is a rational number. (c) If a figure has exactly three sides, then it may be a triangle. (d) If it rains, then it
is cloudy.

q : pp : q

q 4 p'q : 'pp : qp : 'q'p : qp : q

'p ¿ 'q.P ¨ Q
P ´ Q'1 p ¡ q2

P ¨ Q = P ´ QP ´ Q = P ¨ Q

'p ¡ 'q'1 p ¿ q2'p ¿ 'q'1 p ¡ q2P ¨ 1R ´ S2
R ´ QQ ¨ QR ´ S5x + 4x Z 9x.

3 # 1x + 22 Z 12.x + 3 Z 3 + x.

3 # 5 Z 15x + 1 = x + 2.
x2

= 4.x + 0 Z xx + 8 = 11.
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Note: Numbers in parentheses refer to exercises
on the pages indicated

Biology and Life Science
Analyzing height data, 733
Angioplasty, 114
Average deer population, 403, 447
Bacterial growth, 263(57), 266, 272(39)
Biological research, 208(71)
Blood pressure, 358(76)
Blood type, 691(35)
Capillary action, 368(65)
Carbon dating, 263(58), 272(40)
Circulation of blood, 194(65)
Comparing age and weight, 170(49), 172(67)
Finding faked data, 453(76)
Focusing a lithotripter, 597, 600(59, 60)
Galileo’s gravity experiment, 66–67
Half-life, 676(38)
HIV testing, 667(38)
Humidity, 157, 224
Indirect measurements, 389, 448(35)
Latitude and longitude, 327–328(63–70)
Life expectancy, 170(50), 701(3–8), 708 ff.,

716(55, 56)
Medicare expenditures, 527(45), 575(70)
Modeling a rumor, 270
National Institutes of Health spending, 249(89)
Penicillin use, 302(53, 54)
Personal income, 527(46)
Salmon migration, 455, 463
Satellite photography, 117(33)
Sleep cycles, 397(44)
Spread of flu, 272(45), 316(76, 93)
Temperature conversion, 126(34)
Temperatures of selected cities, 144
Testing positive for HIV, 664
Weather balloons, 117(31)
Weight and pulse rate of selected mammals,

183(55), 291(65)
Weights of loon chicks, 711, 712, 714(17)
Weight loss, 397(36)

Business
Analyzing an advertised claim, 648
Analyzing profit, 194(64)
Analyzing the stock market, 78(61)
Beverage business, 171(59)
Breaking even, 233(33), 249(90)
Buying a new car, 650(38)
Cash-flow planning, 58(39)
Cell phone antennas, 149(29, 30)
City government, 649(12)
Company wages, 243(56)
Comparing prices, 65, 531
Costly doll making, 170(52)
Defective baseball bats, 732(113)

Defective calculators, 667(34)
Defective light bulbs, 732(114)
Depreciation of real estate, 33
Electing officers, 649(11)
Equilibrium price, 525
Estimating personal expenditures with linear

models, 524
Food prices, 528(53)
Forming committees, 649(27)
Gross domestic product data, 772(24)
Interior design, 149(36)
International finance, 138(65)
Inventory, 541(48)
Investment planning, 37(46)
Investment returns, 149(38), 150(40)
Investment value, 18(35, 36)
Job interviews, 649(32)
Job offers, 149(28)
Linear programming problems, 568 ff.,

575(65–68)
Management planning, 171(58, 60)
Manufacturing swimwear, 348(60)
Manufacturing, 150(47, 49), 555(74)
Maximizing profit, 572(40)
Maximum revenue, 529(69, 70)
Minimizing operating cost, 569
Mining ore, 571(37)
Modeling depreciation, 160
Monthly sales, 397(35)
Nut mixture, 528(54)
Painting houses, 714(14)
Percent discounts, 66
Pizza toppings, 647, 650(39)
Planning a diet, 572(38)
Planning for profit, 243(58)
Predicting cafeteria food, 667(30)
Predicting demand, 163
Predicting economic growth, 376(72)
Predicting revenue, 166–167
Producing gasoline, 572(39)
Production, 541(46, 47), 714(15)
Profit, 541(49)
Purchasing fertilizer, 568
Quality control, 716(57, 58)
Questionable product claims, 643
Real estate appreciation, 37(45)
Rental van, 528(57)
Renting cars, 667(33)
Salad bar, 650(37)
Salary package, 528(58)
Sale prices, 149(27)
Starbucks Coffee, 156
Stocks and matrices, 576(73)
Straight-line depreciation, 170(51)
Supply and demand, 206(57), 207(58), 

555(81, 82)
Telephone area codes, 641, 648
Total revenue, 170(55), 171(59)

Train tickets, 554(73)
U.S. motor vehicle production, 18(29)
World motor vehicle production, 18(30)
Yearly average gasoline prices, 776(39)

Chemistry and Physics
Accelerating automobile, 753(46)
Acid mixtures, 230–231, 233(31, 32), 249(93)
Airplane speed, 528(52)
Angular speed, 323
Archimedes’ Principle, 207–208(69, 70)
Atmospheric pressure, 267, 272(41, 42)
Boyle’s Law, 58(38), 183(51), 227(71)
Charles’s Law, 183(52)
Chemical acidity (pH), 296, 301(47, 48), 316(82)
Combining forces, 465(48–50), 516(76)
Diamond refraction, 183(53)
Drug absorption, 315(73)
Earthquake intensity, 290(52), 295, 301(45, 46),

316(81)
Escape velocity, 610(62)
Finding a force, 471, 473(45–47, 48), 516(77)
Finding the effect of gravity, 463
Flight engineering, 465(43, 44), 515(74, 75)
Light absorption, 281(60), 316(89)
Light intensity, 227(72), 290(53, 54)
Magnetic fields, 427(75)
Mixing solutions, 149(31, 32), 552, 555(78)
Moving a heavy object, 465(46, 47)
Newton’s Law of Cooling, 151(51, 52), 296 ff.,

301(49–52), 317(95, 96)
Oscillating spring, 374, 376(71), 396(29)
Physics experiment, 76(23)
Potential energy, 303(69)
Radioactive decay, 266, 271(33, 34), 316(79, 80)
Reflective property of a hyperbola, 607
Reflective property of an ellipse, 597
Reflective property of a parabola, 586
Refracted light, 348(55, 56)
Resistors, 234(39), 244(62), 249(92)
Rowing speed, 528(51)
Sound intensity, 251, 280, 281(59), 290(51)
Sound waves, 319, 393
Speed of light, 1, 35
Temperature, 359(79, 80)
Tuning fork, 396(30)
Windmill power, 183(54)
Work, 470–471, 473(49–56), 516(78), 754(50)

Construction and Engineering
Architectural design, 395(23), 449(42)
Architectural engineering, 208(72), 248(86)
Box with maximum volume, 140, 149(33)
Box with no top, 59(46), 194–195(66–68)
Building construction, 541(50)
Building specifications, 37(49)
Cassegrain telescope, 611(70)
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Civil engineering, 394(15), 395(21)
Construction engineering, 449(39)
Designing a baseball field, 448(36)
Designing a box, 191, 241, 243(59)
Designing a bridge arch, 589(64)
Designing a flashlight mirror, 588(59)
Designing a satellite dish, 588(60)
Designing a softball field, 448(37)
Designing a suspension bridge, 588(63)
Dimensions of a Norman window, 47(61)
Draining a cylindrical tank, 154(62–64)
Elliptical pool table, 639(77)
Ferris wheel design, 440(42)
Garden design, 336(66)
Grade of a highway, 37(48), 398(49)
Gun location, 610(58)
Height of a ladder, 47(60)
Industrial design, 249(94, 95)
Landscape design, 170(57)
Measuring a baseball diamond, 445–446
Packaging a satellite dish, 141, 149(35)
Parabolic headlights, 588(62), 639(76)
Parabolic microphone, 586, 588(61), 639(75)
Patio construction, 676(40)
Residential construction, 149(34)
Storage container, 248(87)
Surveying a canyon, 439(37), 451(62)
Surveyor’s calculations, 449(38)
Volume of a box, 194 (66–68), 248(85)
Weather forecasting, 439(38)

Data Collectors (CBR™, CBL™)
Analyzing a bouncing ball, 318
Ellipses as models of pendulum motion, 517,

601(73, 74), 640
Free fall with a ball, 167, 180, 753(45), 769 ff.
Height of a bouncing ball, 250
Light intensity, 183(57), 227(72)
Motion detector distance, 207(62), 216(51, 52),

402
Tuning fork, 396(30), 397(43), 398(51)

Financial
Annual percentage rate (APR), 310
Annual percentage yield (APY), 307, 312(57,

58), 316(87, 88)
Annuities, 308 ff., 311(49, 50), 313(69, 70),

316(83, 84), 317(97, 98) 685(37, 38), 
731(75, 76)

Business loans, 576(77)
Car loan, 310, 312(51, 52)
Cellular phone subscribers, 79(63)
Comparing salaries, 702(23), 714(25)
Comparing simple and compound interest,

312(60), 317(99)
Compound interest, 304 ff., 311(21–30),

315(63–65)
Consumer price index, 63, 146, 149(24)
Currency conversion, 126(33)
Employee benefits, 150(48)
Future value, 315(66), 681
House mortgage, 312(53–56), 316(85, 86)
Investments, 555(75–77), 576(76)

IRA account, 311(47, 48)
Loan payoff (spreadsheet), 312–313(67, 68)
Major League Baseball salaries, 76(25–28)
Per capita income, 714(16)
Present value, 315(67, 68)
Savings account, 684–685(35, 36)
Size of continent, 713(10)

Geometry
Area of a sector, 328(71, 72)
Area of regular polygon, 444
Beehive cells, 452(68)
Cone-shaped pile of grain, 142
Conical tank of water, 149(37)
Connecting algebra and geometry, 39(69–71),

77(50, 52), 173(82–84), 243(57)
Constructing a cone, 243(60)
Designing a juice can, 231, 241, 243(61)
Designing a running track, 323, 327(52)
Designing a swimming pool, 234(38)
Designing rectangles, 234(40)
Diagonals of a parallelogram, 16–17
Diagonals of a regular polygon, 146
Dividing a line segment in a given ratio, 466(61)
Dividing a line segment into thirds, 20(64)
Finding a maximum area, 170(54)
Finding a minimum perimeter, 231
Finding dimensions of a painting, 170(56)
Finding dimensions of a rectangular cornfield,

528(50)
Finding dimensions of a rectangular garden, 521,

528(49)
Industrial design, 234(37)
Inscribing a cylinder inside a sphere, 155(67)
Inscribing a rectangle under a parabola, 155(68)
Maximizing area of an inscribed trapezoid,

452(67)
Maximizing volume, 433(55)
Measuring a dihedral angle, 446
Medians of a triangle, 466(62)
Minimizing perimeter, 234(35)
Mirrors, 337(75)
Page design, 234(36)
Pool table, 337(76)
Tire sizing, 326(46)
Tunnel problem, 433(56)

Mathematics
Angle of depression, 388, 395(24)
Angle of elevation, 348(59), 395(22)
Approximation and error analysis, 349(77)
Calculating a viewing angle, 384, 385(53)
Characteristic polynomial, 543(72, 73)
Computing definite integrals from data, 770–771
Connecting geometry and sequences, 677(51)
Curve fitting, 554(67–70), 574(45, 46)
Cycloid, 484(53)
Designing an experiment, 722
Diagonals of a regular polygon, 650(52)
Distance from a point to a line, 474(67)
Eigenvalues of a matrix, 556(93, 94)
Epicycloid, 516(83)
Expected value, 668(61), 669(62)

Finding a random sample, 727(33)
Finding area, 401(104)
Finding derivatives from data, 745(34), 769–770,

771(23)
Finding distance, 336(65), 393(3), 394(4, 13),

395(19, 20, 24), 401(97, 98, 100), 439(38),
440(41, 45, 46), 452(64)

Finding distance from a velocity, 771(21, 22),
772(27, 28)

Finding distance traveled as area, 749, 751,
753(49), 768

Finding height, 334, 336(61, 62, 64), 389, 
393(1, 2), 394(5–9, 11, 12, 14), 395(22),
401(95, 96, 101, 102), 440(40, 44), 452(63)

Finding height of pole, 438, 440(39, 43)
Fitting a parabola to three points, 551
Graphing polar equations parametrically,

493(67–71)
Harmonic series, 686(52)
Hyperbolic functions, 420(80)
Hypocycloid, 484(54)
Limits and area of a circle, 765(89)
Locating a fire, 437
Normal distribution, 303(67)
Parametrizing circles, 476, 485(65)
Parametrizing lines, 478, 485(66)
Permuting letters, 649(7, 9, 10)
Polar distance formula, 493(61)
Reflecting graphs with matrices, 538
Rotating with matrices, 538, 542(51), 575(69)
Scaling triangles with matrices, 539
Solving triangles, 435, 443–444, 489
Symmetric matrices, 541(45)
Taylor polynomials, 349(79, 80)
Television coverage, 367(63)
Testing inequalities on a calculator, 27(69)
Tower of Hanoi, 687–688
Transformations and matrices, 542(57–61)

Miscellaneous
Acreage, 446
ACT scores, 715(42)
Advanced Placement Calculus exam scores,

714(18, 19)
Arena seating, 676(39)
Barry Bonds home runs, 696–697, 714(22, 27)
Basketball attendance, 576(74)
Basketball lineups, 651(58)
Baylor School grade point averages, 97(78)
Beatles songs, 731(97), 732(101, 105, 107–110)
Blood donors, 727(37)
Casting a play, 646, 651(56)
Chain letter, 651(53)
Choosing chocolates, 660, 661
Comparing cakes, 76(20)
Computer graphics, 519, 539
Computer imaging, 117(34)
Converting to nautical miles, 324
Ebb and flow of tides, 356, 358(75)
Flower arrangements, 533
Football kick, 449(41)
Graduate school survey, 667(39)
Graduation requirement, 667(41)
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Hank Aaron home runs, 698, 701(2, 16),
702(22), 706

Home remodeling, 576(78)
Horse racing, 730(46)
Indiana Jones and the final exam, 649(36),

667(40)
Investigating an athletic program, 668(60)
Length of days, 377(88)
License plate restrictions, 644, 649(23, 24), 729(9)
Lighthouse coverage, 367(45), 385(54)
Loose change, 555(79)
LPGA golf, 702(18–20)
Mark McGwire home runs, 696–697, 701(15),

702(22), 714(22, 26), 715(39)
Melting snowball, 117(32)
Mickey Mantle home runs, 701(12, 14), 702(21),

714(13, 23, 31, 32)
Modeling a musical note, 393
Modeling illumination of the Moon, 454
Modeling temperature, 396(33), 401(105)
Number of cassettes, 700, 715(36)
Number of CDs, 699, 714(28), 715(35)
Number of Wineries, 235(44)
Pageant finalists, 647
Pepperoni pizza, 108(67)
Pell Grants, 248(88)
PGA golf, 702(17, 19, 20)
Piano lessons, 667(29)
Picking lottery numbers, 647
Popular web sites, 731(96), 732(100, 104)
Radar tracking system, 491
Radio advertising, 727(32)
Real estate prices, 731(95), 732(99)
Roger Maris home runs, 701(1, 2), 705 ff.
SAT Math scores, 61(33)
SAT scores, 531, 715(41)
Scaling grades, 127(47)
Selecting customers, 727(34)
Shooting free throws, 665, 724–725
Simulate a spinner, 727(38)
Simulate rolling two six-sided dice, 727(39)
Simulate drawing cards, 727(40)
Soccer field dimensions, 47(59)
Solar collection panel, 336(63)
Stepping stones, 76(21)
Swimming pool, 576(79)
Swimming pool drainage, 234(41)
Telephone numbers, 648
Testing effects of music, 727(31)
Testing golf balls, 726(29)
Testing soft drinks, 727(30)
Time-rate problem, 234(42)
Tracking airplanes, 492(51)
Tracking ships, 492(52)
Travel planning, 58(36)
Truck deliveries, 576(75)
Vacation money, 555(80)
Visualizing a musical note, 360(89)
Warren Moon passing yardage, 731(98),

732(102, 106)
White House Ellipse, 579, 598
Willie Mays home runs, 701(11, 13), 702(21),

714(13, 23, 31, 32)

Wind speeds, 702(24), 714(24, 29, 30)
Women’s 100-meter freestyle, 154(66)
Yahtzee, 649(35), 667(36)

Motion
Airplane velocity as a vector, 461–462
Air conditioning belt, 327(55)
Automobile design, 326(44)
Average speed, 745(33)
Ball drop, 745(34)
Baseball throwing machine, 171(62)
Bicycle racing, 326(45), 328(74)
Bouncing ball, 685(39)
Bouncing block, 358(77)
Calculating the effect of wind velocity, 462,

465(43, 44)
Capture the flag, 483(38)
Current affecting ship’s path, 465(53)
Damped harmonic motion, 348(57)
Falling rock, 475, 772(27)
Famine relief air drop, 483(39)
Ferris wheel motion, 358(73), 396(31, 32, 34)
Field goal kicking, 516(86)
Fireworks planning, 171(63)
Foucault Pendulum, 327(54)
Free-fall motion, 76(22), 167, 171(61), 184(68),

746(55, 56)
Hang time, 516(87)
Harmonic motion, 390–392, 427(74)
Height of an arrow, 516(79)
Hitting a baseball, 480, 483(40, 43–45), 484(49),

516(88)
Hitting golf balls, 484(50)
Hot-air balloon, 367(46), 386(55)
Landscape engineering, 171(64)
Launching a rock, 248(84)
LP turntable, 359(78)
Mechanical design, 395(27, 28)
Mechanical engineering, 327(53)
Motion of a buoy, 358(72)
Navigation, 37(47), 62(82), 326(43, 48–50),

328(73), 390, 395(17, 18, 25, 26), 449(40),
450(53), 465(41, 42, 51, 52)

Path of a baseball, 127(49)
Pendulum, 348(58), 401(103), 402
Pilot calculations, 441(57)
Projectile motion, 57, 58(33, 34), 62(81)
Riding on a Ferris Wheel, 481, 484(51), 

516(80, 81, 82)
Rock toss, 485(63), 744(15), 753(47)
Rocket launch, 744(16), 753(48)
Rotating tire, 143, 149(39)
Salmon swimming, 463
Ship’s propeller, 327(56)
Shooting a basketball, 465(45)
Simulating a foot race, 483(37)
Simulating horizontal motion, 478, 

483(37, 38)
Simulating projectile motion, 479
Stopping distance, 194(63)
Taming The Beast, 401(106)
Throwing a ball at a Ferris Wheel, 485(67),

486(68), 517(89)

Throwing a baseball, 516(84, 85)
Tool design, 326(47)
Travel time, 149(25, 26), 771(21, 22)
Tsunami wave, 358(74)
Two Ferris Wheel problem, 486(69, 70)
Two softball toss, 484(46)
Using the LORAN system, 608, 610(57)
Velocity in 3-space, 633, 636(33, 34)
Windmill, 735, 743
Yard darts, 484(47, 48), 517(90)

Planets and Satellites
Analyzing a comet’s orbit, 607
Analyzing a planetary orbit, 625
Analyzing the Earth’s orbit, 596
Dancing planets, 600(52)
Elliptical orbits, 595, 639(79)
Halley’s Comet, 600(58), 626(41)
Icarus, 639(80)
Kepler’s Third Law, 288
Lunar Module, 626(43)
Mars satellite, 627(44)
Mercury, 600(54)
Modeling planetary data, 179, 184(67)
Orbit of the Moon, 412(85)
Orbit periods, 287
Planetary orbits, 627(51)
Planetary satellites, 713(9)
Rogue comet, 610(55, 56)
Saturn, 600(55)
Sungrazers, 600(57)
Television coverage, 398(50), 452(69)
The Moon’s orbit, 600(53)
Uranus, 626(42)
Venus and Mars, 600(56)
Weather satellite, 639(78)

Population
Alaska, 303(65)
Anaheim, CA, 554(72)
Anchorage, AK, 554(72)
Arizona, 273(50)
Austin, TX, 262–263(51–54)
Bear population, 234(34)
Columbus, OH, 262–263(51–54)
Comparing populations, 702(25, 26)
Dallas, TX, 261, 272(48)
Deer population, 249(91), 272(46), 316(94)
Detroit, MI, 265
Estimating population growth rates from data,

777
Florida, 269, 528(47)
Garland, TX, 554(71)
Georgia, 315(71)
Guppy population, 316(78)
Hawaii, 303(66), 575(71)
Idaho, 575(71)
Illinois, 315(72)
Indiana 528(47)
Los Angeles, CA, 272(43)
Mexico, 273(58)
Milwaukee, WI, 282(62)
New York State, 263(56), 272(49)

6965_SE_App_Indx_pp935-938.qxd  2/2/10  2:46 PM  Page 937



938 APPLICATIONS INDEX

Ohio, 263(55)
Pennsylvania, 269
Phoenix, AZ, 272(44)
Population and matrices, 576(72)
Population decrease, 315(74, 75)
Population density, 685(47)
Population growth, 271(29–32)
Rabbit population, 316(77), 677(49), 

765(83)
Rain forest growth, 676(37)
Richardson, TX, 554(71)
San Antonio, 281(61)
San Jose, CA, 260
Temperatures in Beijing, China, 703(35, 36),

714(20, 21)

U.S. population, 244(63), 268, 272(47), 
273(57, 58)

World population, 37(53)

U.S. Demographics
Air travel, 76(24)
Agriculture exports, 18(32)
Agriculture surplus, 18(33)
Americans’ income, 34, 37(50)
Americans’ spending, 37(51)
Analyzing U.S. Census data, 577
Annual housing cost, 244(64)
Average hourly wage, 151(50)
Causes of death, 667(35), 693, 694
Construction worker’s compensation, 170(53)

Crude oil imports, 154(65)
Education budget, 10(53–56), 60(11)
Employment statistics, 75(11–18)
Exports to Canada, 18(34), 38(54)
Exports to Mexico, 12
Female percentage of prison population, 65, 67
Imports from Mexico, 18(31), 37(52)
Median women’s income, 172(68)
Minimum hourly wage, 64
Patent applications, 171(65)
Per capita federal aid, 696
Per capita income, 244(63)
Prison population, 65
Remaining years, 234(43)
Residents 65 or older, 694
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A
Absolute maximum, 90
Absolute minimum, 90
Absolute value

complex number, 504
inequality involving, 240
properties of, 13
real number, 11, 13

Absolute value equation, 45
Absolute value function, 101, 105, 132
Absolute value inequality, 54
Acceleration due to gravity, 167
Acute angle, 329
Acute triangle, 435
Addition property

of equality, 21
of inequalities, 23

Additive identity
of algebraic expression, 6
of complex number, 50
of matrix, 532

Additive inverse
of algebraic expression, 6
of complex number, 50
of matrix, 532
properties of, 6
of real number, 6

Algebraic expression, 5. See also Rational
expression; Real number

constants and variables, 5
domain of, 791
expanded and factored, 6
properties of, 6

Algebraic function, 252
Algebraic models, 65
Ambiguous case of triangle, 435–437

law of sines, 435–437
Amplitude, 352
Anchor (mathematical induction), 687
Angle

acute, 329
central, 320
complements, 406
coterminal, 338
degree-minute-second measure, 320–321
degree-radian conversion, 322
of depression, 388
dihedral, 446
directed, 487
direction, 460
of elevation, 388
initial and terminal sides, 338
obtuse, 435
positive and negative, 338
quadrantal, 342, 346
radian measure, 321
reference, 341, 346
of rotation, 338
standard position of, 329, 338

between vectors, 468
Angle of rotation, 614
Angular speed, 323
Annual percentage rate (APR), 310
Annual percentage yield (APY), 307
Annuity, 308

ordinary, 308
present and future value, 308–309

Aphelion, 595
APOLLONIUS OF PERGA (c 250–175 B.C.E.),

580
Approximate solution

inequalities, 56
with table feature, 43–44

Arc length formula, 322–323
Arccos function, 380
ARCHIMEDES OF SYRACUSE (287–212

B.C.E.), 444, 749, 750, 755, 760
Arcsin function, 378
Arctan function, 381
Area, 748
Area of triangle, 444
Area problem, 749–750
ARGAND, JEAN ROBERT (1768–1822), 

503
Argument of complex number, 504
Arithmetic sequence, 672–674
Arithmetic series, finite, 670
Arrow, 456
Associative property

algebraic expression, 6
complex numbers, 50

Asymptote
end behavior, 221
horizontal, 92, 93
of hyperbola, 603
slant, 221
vertical, 92, 93, 221

Atmospheric pressure, 267
Augmented matrix, 546
Average, weighted, 707
Average rate of change, 160, 740
Average velocity, 736
Axis

of a cone, 580
of a conic, 581, 591, 602, 620
of ellipse, 565, 567
of hyperbola, 603, 605
of parabola, 164, 584
polar, 487
real, 503
x-, y-, and z-, 12, 629

B
Back-to-back stemplot, 696
Bar chart, 693
Base, 7

change-of-base formula, 285
of exponential function, 252

of logarithmic function, 274
of natural logarithm, 277

Basic functions
absolute value function, 101, 105, 132
cosine function, 101, 351
cubing function, 100, 176
exponential function, 100, 256
greatest integer function, 101
identity function, 99, 172
logistic function, 101
natural logarithm function, 100, 176
reciprocal function, 100
sine function, 100, 350
square root function, 100, 179
squaring function, 99, 172

Bearing, navigational, 321
Bel (B), 280
BELL, ALEXANDER GRAHAM (1847–1922),

280
BERNOULLI, JAKOB (1654–1705), 456
Best fit, line of. See Line of best fit
Bias, 720

analyzing samples for, 720–721
response, 721
undercoverage, 721
voluntary response, 721

Biconditional, 808. See also Logic
Binomial coefficients, 652–653
Binomial distribution, 664–665
Binomial probability, 665
Binomial theorem, 654
Binomials, 784–785
BLACKWELL, DAVID (b. 1919), 658
Blinded experiment, 721
Blocking, 722
Boundary of region, 565
Bounded function

above, 88–89
below, 88–89
on an interval, 89

Bounded intervals, 4
Box-and-whisker plot. See Boxplot
Boxplot, 709
Branches of hyperbola, 602

C
Calculator-Based Laboratory System (CBL), 227
Calculator Based Ranger (CBR), 167
Cardioid curve, 498
Cartesian coordinate system, 12, 629

circles, 15
conversion with polar, 488
distance formula, 14, 630
midpoint formula, 14, 630
plotting data, 12

CASSEGRAIN, G., 607
Cassegrain telescope, 611
Categorical variable, 693
Census, 720

Index
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Center
of circle, 15
of data, 704–705
of ellipse, 591
of hyperbola, 603
of sphere, 631

Central angle, 320
Chain rule, 812. See also Logic
Change-of-base formula, 285
Characteristic polynomial, 543
Chord of a conic, 583, 603
Circle

equation of, 15
parametric equations for, 475
and radian measure, 344
segment of, 446
unit, 344, 346

Circle graph, 693
Circular functions, 345
Closed interval, 4
Coefficient matrix, 546
Coefficient of determination, 146
Coefficient of term, 185
Cofactor, 535
Cofunction identities, 406
Column subscript (matrix), 530
Combinations, 646–647
Combinatorics, 642

combinations, 642
multiplication counting principle, 643
permutations, 644–646
tree diagram, 643

Common denominator, least, 793
compound fraction, 793–794
rational expressions, 793

Common difference of sequence, 672
Common logarithm, 275–276
Common ratio of sequence, 673
Commutative property

of algebraic expressions, 6
complex numbers, 50

Complement (angle), 406
Completely factored polynomial, 786
Completing the square, 41
Complex conjugate, 51, 211–212
Complex conjugate zero, 211–212
Complex fraction, 793
Complex number, 49

absolute value of, 504
adding and subtracting, 49
argument of, 504
conjugates, 51
and coordinate plane, 49
exponents of, 50
modulus of, 504
multiplying and dividing, 50–51, 505–506
nth root, 508
and quadratic equations, 51
and roots, 508–510
standard form of, 49
trigonometric form of, 504
and vectors, 504
zeros of function, 210–211, 211–212

Complex plane, 503
Component form of vector, 456, 633
Components of a vector, 456

Composition of functions, 111, 132
Compound fraction, 793
Compound interest, 304, 307
Compound statement, 803. See also Logic
Compounded annually, 304
Compounded continuously, 306
Conclusion, 807. See also Logic
Conditional probability, 663
Conditionals (Implications), 807. See also 

Logic
Confounding variable, 721
Conic section (conic), 580

defined as a ratio, 620
discriminant test, 671
ellipse, 591
focus coincident with pole, 621
hyperbola, 602
identifying, 617
parabola, 581
and polar equations, 621
rotation of, 615–616
and second-degree equation, 581
standard form of, 583, 591, 602
and transformations, 584, 594, 605

Conjugate, complex, 51
Conjugate axis of hyperbola, 603
Conjugate hyperbolas, 611
Conjunction, 803. See also Logic
Constant, 5

of proportion, 174
of variation, 174

Constant function on an interval, 86–87
Constant percentage rate, 265
Constant term of polynomial, 161
Constraints, 568
Continuous at a point, 85
Continuous function, 102, 758
Control, 721
Convenience sample, 721
Coordinate plane

Cartesian, 12
complex, 49
polar, 487
quadrants of, 12

Coordinates of a point, 3, 12, 629
Corner (vertex) point, 568
Correlation coefficient, 146, 162
Cosecant function, 329, 364

acute angle, 329
any angle, 340
graph of, 364
of special angles, 330

Cosine function, 329, 351
acute angles, 329
any angle, 340
cofunction identities, 442
of a difference identity, 421–422
graph of, 351
harmonic motion, 390–391
inverse, 380
law of cosines, 442–447
period of, 351, 353
special angles, 330
of a sum identity, 422

Cotangent function, 329, 362
acute angles, 329

any angle, 340
graph of, 362
of special angles, 330

Coterminal angle, 338
Counting. See Combinatorics
Counting subsets of an n set, 647
Course, navigational, 321
Cross-product term, 637
Cube

of difference, 785, 787
of sum, 785, 787

Cube root, 509–510, 779
Cubic inequality, 56
Cubic polynomial function, 185

graphing, 187
regression, 145

Cubing function, 100, 176
Cycloid, 484

D
d’ALEMBERT, JEAN LE ROND (1717–1783),

755
Damped oscillation, 373–375
Damping, 373
Damping factor, 373
Data. See also Statistics

definite integral from, 770
derivative from, 768–770
displaying, 693
function construction from, 143

Data analysis, 144
cubic regression, 145
exponential regression, 145
linear regression, 145
logarithmic regression, 145
logistic regression, 145
power regression, 145
quadratic regression, 145
quartic regression, 145
sinusoidal regression, 145

DE MOIVRE, ABRAHAM (1667–1754), 
507

De Moivre’s Theorem, 507
Decay curve, 254
Decay factor, 254
Decibel, 251, 280
Decimal form of rational number, 2
Decomposition

function, 113
partial fraction, 557

Decreasing function on an interval, 86–87
Deduction, 690
Deductive reasoning, 73
Definite integral, 750–751, 770
Degenerate conic section, 580
Degree, 320

of polynomial, 784
of polynomial function, 158

Degree-minute-second (DMS) angle
measurement, 320–321

Degree of angle, 320
Degree-radian conversion equations, 322
Demand curve, 525
Denominator, 791

least common, 793
with linear factors, 558–560

940 INDEX
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with quadratic factors, 560–561
rationalizing, 781

Dependent events, 663
Dependent variable, 80
Derivative at a point, 740, 766
Derivative of a function, 740–742

from data, 768–770
numerical, 766

DESCARTES, RENÉ (1596–1650), 49, 732
Descartes’ Rule of Signs, 208
Descriptive statistics, 704
Determinant of matrix, 535–536
Difference

of functions, 110
identity, 421–425
of sinusoids, 371–372
of two cubes, 787
of two squares, 415, 786

Differentiable, 740
Dihedral angle, 446
Direct reasoning, 811. See also Logic
Direct variation, 174
Directed angle, 487
Directed distance, 487
Directed line segment, 456
Direction angle of vector, 460
Direction of vector, 456, 458, 460
Direction vector of a line, 456, 634
Directrix, 581, 620
Discontinuity

infinite, 85
jump, 85
removable, 84–85

Discriminant of quadratic equation in x, 47
Discriminant of second-degree equation in x

and y, 617, 671
Discriminant test for a second-degree equation in

two variables, 617
Disjunction, 803. See also Logic
Distance

from changing velocity, 748–749
from constant velocity, 747

Distance formula
in Cartesian space, 630
coordinate plane, 14
number line, 13
space, 630

Distinguishable permutations, 645
Distribution of data, 697

normal, 711
skewed left, 709
skewed right, 709
symmetric, 709

Distributive property
algebraic expressions, 6
complex numbers, 50

Divergent series, 671, 682
Division, 6

of polynomials, 197
by zero, 791

Division algorithm for polynomials, 197
Domain

algebraic expression, 791
function, 80
implied, 82
inverse function, 122

relevant, 82
Dot or inner product, 467, 633

on calculator, 468
properties of, 467, 633

Double-angle identity, 428
Double-blind experiment, 723
Double inequality, 25
dy/dx, 742

E
e, base, 256–258
Eccentricity of conic

ellipse, 595–597
hyperbola, 606–607
and polar coordinates, 620

Eigenvalues, 556
Eighth root, 510
Element (entry) of a matrix, 530
Element of a set, 2
Elementary row operations, 546–548
Elimination method, 522–524
Ellipse, 591, 620

center and focus, 591, 594
directrix of, 620
eccentricity of, 595–597
equation, 591
focal axis, 591
graph of, 592, 593
parametric equation for, 595
Pythagorean relation, 591, 594
semimajor and semiminor axes of, 592, 

594
standard form of, 591, 594
transformation of, 594
vertices, 591, 592, 594

Ellipsoid of revolution, 597
Empirical probability, 668
Empty set, 659
End behavior, 93

asymptote, 221
of exponential function, 256
of logarithmic function, 274, 278
of polynomial, 187–189
of rational function, 221
of sequence, 671

Endpoints of interval, 4
Enumerative induction, 690
Equal complex numbers, 49
Equal fractions, 792
Equal matrices, 530
Equal vectors, 457, 633
Equally likely outcomes, 658
Equation, 21. See also Linear first-degree

equation; Polar equation; Solving
equations; Solving systems of equations;
Trigonometric equation

absolute value, 45
addition property, 21
algebraic solution, 21, 40, 69
approximate solutions, 43, 56
of circles, 15
of ellipse, 591, 594
extraneous solution, 229
graphical solution, 43, 69–70
matrix, 550
of parabola, 584

parametric, 475
polar, 490
properties of, 21
quadratic, 41
rational, 228
and relation, 114–116
second-degree, 581

Equation for a line in Cartesian space, 457
parametric form, 475–476
vector form, 457

Equation for a plane in Cartesian space, 632
Equation for a sphere in Cartesian space, 631
Equilibrium point, 525
Equilibrium price, 525
Equivalent directed line segments, 457
Equivalent equation, 21

inverse sine function, 379
inverse tangent function, 381
logarithmic function, 292
polar, 494

Equivalent inequalities, 24
Equivalent rational expression, 792
Equivalent systems of equations, 544
ERATOSTHENES OF CYRENE (276–194

B.C.E.), 320
Escape speed, 610
EULER, LEONHARD (1707–1783), 80, 100,

257
Even function, 90, 406–407
Event, 658

dependent, 663
independent, 661
multiplication principle, 661

Existential quantifiers, 802. See also Logic
Expanded algebraic expressions, 6
Expected value, 668
Experiment, 721

blinded, 721
designing, 722–723
double-blind, 723

Explanatory variable, 642
Explicitly defined sequence, 670
Exponential decay factor, 266
Exponential function, 252, 254. See also

Logarithmic function
base of, 252, 256–258
end behavior, 255, 256
graphing, 255
growth and decay curve, 254
inverse of, 292
logistic growth and decay, 258–260
one-to-one, 292
regression equation, 145
solving equations, 292

Exponential growth factor, 266
Exponential notation, 7
Exponents, 7

base, 7
of complex numbers, 506
positive and negative, 7
properties, 7
rational, 781

Extended principle of mathematical induction,
692

Extracting square roots, 41
Extraneous solution, 229

INDEX 941
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F

Factor, 721, 787–788. See also specific factors
Factor Theorem, 199
Factored algebraic expressions, 6
Factorial notation, 654
Factoring polynomials, 785–788

common factors, 786
completely factored, 786
by grouping, 788
higher degree, 189
linear factors, 210
and long division, 197
special forms, 785–788
trinomials, 784
zero factor property, 41

Feasible point, 568
FERMAT, PIERRE DE (1601–1665), 658, 740
Fibonacci. See LEONARDO OF PISA
Fibonacci number, 675
Fibonacci sequence, 675
Finite sequence, 670
Finite series

arithmetic, 683
geometric, 683

First-degree (linear) equation in three variables, 632
First octant, 629
First quartile, 707
Fitting a line to data, 144
Five-number summary, 707–708
Focal axis of a conic, 620

ellipse, 591, 594
hyperbola, 602, 605

Focal chord of a parabola, 590
Focal length of a parabola, 583
Focal width

of a hyperbola, 611
of a parabola, 583

Focus, 620
of ellipse, 591
of hyperbola, 602, 605
of parabola, 581

FOIL method, 784
Foot-pound, 471
Foucault pendulum, 327
Fourth root, 509
Fractional expressions, 791. See also Rational

expression
Fractions

complex/compound, 793
equal, 792
operations with, 791, 792–793
partial, 557
reduced form of, 791

Free-fall motion, 167
Frequency

distribution, 697
of observations, 697
of oscillations, 353, 391
of sinusoid, 353

Frequency table, 697
Function, 80. See also Exponential function;

Graph; Logarithmic function; Polynomial
function; Quadratic function; Rational
function; Trigonometric function

average rate of change of, 740
bounded above, 88–89
bounded below, 88–89
bounded on an interval, 89
combining, 110
composition of, 111
constant on an interval, 86–87
continuous, 102, 758
from data, 143
decomposing, 113
decreasing on an interval, 86–87
definite integral of, 750–751
derivative of, 740–742
difference of, 110
differentiable, 740
domain, 80
end behavior, 93
evaluating, 80
even, 90–91
from formulas, 140–141
graph of, 81
from graphs, 141–142
identity, 99
implicitly defined, 115
increasing on an interval, 86–87
instantaneous rate of change of, 740
integrable, 750
inverse, 122–123
inverse relation, 121–122
linear, 159
local maximum and minimum, 90
lower bound, 89
maximum and minimum, 90
monomial, 175–176
notation, 80
numerical derivative of, 766
numerical integral of, 767
odd, 91
one-to-one, 122
periodic, 345
piecewise-defined, 104
point of discontinuity, 85
power, 174
probability, 659
product of, 110
quadratic, 164–166
quartic, 185
quotient of, 110
range, 80, 81
reciprocal, 219
step, 101
sum of, 110
symmetric difference quotient of, 766
tangent line of, 739
of two variables, 633
upper bound, 89
from verbal description, 142–143
y-intercept, 29, 221
zeros of, 69–70, 201, 210–211

Fundamental Theorem of Algebra, 210
Future value of annuity, 308

G
GALILEI, GALILEO (1564–1642), 66, 167, 

732

GAUSS, CARL FRIEDRICH (1777–1855), 49,
544, 678

Gaussian curve. See Normal curve
Gaussian elimination, 544–545
General form of linear equation, 30
General second-degree equation, 581
Generator of a cone, 580
Geometric sequence, 672–674
Geometric series, finite, 680
Geosynchronous orbits, 398
Graph, 81. See also Function; Linear first-degree

equation
absolute value compositions, 132
of conics, 621–622
of cosecant function, 364
of cosine function, 351
of cotangent function, 362
of cubic function, 185
discontinuity, 84–85
of ellipse, 592, 593
of equation, 31
of equation in x and y, 31
of exponential function, 255–256
of a function, 81
functions from, 141–142
hidden behavior, 72
of histogram, 697
of hyperbola, 602, 605
of inequality, 24–25, 565
of inverse, 124
of leading term of polynomial, 188
limaçon curve, 498
of linear equation, 30
of linear system of equations, 522
local maximum and minimum, 90
of logarithmic function, 274, 277–278
of logistic growth, 259–260, 260–261
of parabola, 583
of parametric equations, 475–476
point-plotting method, 31
of polar equation, 495–496
of polynomial, 185
of quadratic function, 164–166
of quartic function, 185
of rational function, 221–222
of real number line, 3
of relation, 114–115
rose curve, 497
of secant function, 363
of second-degree equation, 612
of sequence, 674–675
of sine function, 350
of stemplot, 694
symmetry, 90–92
of system of inequalities, 566
of tangent function, 362
of timeplot, 697

Grapher, 31
ANS feature, 276, 675
approximating zeros, 69–70
complex numbers, 50
evaluating a function, 80
failure of, 72
hidden behavior, 72
NDER , 766ƒ1a2
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NINT 767
parametric mode, 120
scientific notation, 8
sequence mode, 674–675
simulating motion with, 478–481
slope, 28, 36
summing sequences, 678
tables, 43–44

Graphical model, 66
Graphing utility. See Grapher
Gravity, acceleration due to, 167
Growth

constrained, 258
exponential, 266
inhibited, 258
logistic, 252
restricted, 252
unrestricted, 252

Growth curve, 254
Growth factor, 254

H
Half-angle identity, 429–430
Half-life, 266
Half-plane, 565
Harmonic motion, 390–391
Head minus tail (HMT) rule, 457
HEINE, HEINRICH EDUARD (1821–1881), 

755
Heron’s formula, 444–445
Hidden behavior of graph, 72
Higher-degree polynomial function, 158

end behavior, 187–189
local extremum, 187
zeros of, 201, 210–211

HIPPARCHUS OF NICAEA (190–120 B.C.E.),
320

HIPPOCRATES OF CHOIS (c 470–410 B.C.E.),
320

Histogram, 697
Horizontal asymptote, 92, 93
Horizontal component of vector, 460
Horizontal Line Test, 122
Horizontal stretch and shrink, 133–135, 352
Horizontal translation, 129–131

cofunction identities, 406
of quadratic function, 164–165
of sinusoid, 352
of tangent function, 362

Hubble Space Telescope, 607
humidity, relative, 224
Hyperbola, 602, 620

asymptotes of, 603
branches of, 602
center and focus, 602, 605
focal axis, 602, 605
parametric equations for, 606, 609
Pythagorean relation, 603, 605
reflective property of, 607
semiconjugate axis, 603, 605
semitransverse axis, 603, 605
standard form of, 603, 605
transformation of, 605
vertices, 602, 605

Hyperbolic cosine function, 273

Hyperbolic sine function, 273, 293
Hyperbolic tangent function, 273
Hyperbolic trig functions, 273, 420
Hyperboloid of revolution, 607
Hypocycloid, 484
Hypotenuse, 329
Hypothesis, 807. See also Logic

I
Identity, trigonometric. See Trigonometric

identity
Identity function, 99, 172
Identity matrix, 534
Identity property, 6
Imaginary axis, 503
Imaginary axis of complex plane, 503
Imaginary number, 49
Imaginary part of complex number, 49
Imaginary unit i, 49
Implications (Conditionals), 807. See also Logic
Implicitly defined function, 115
Implied domain, 82
Increasing function on an interval, 86–87
Independent event, 661
Independent variable, 80
Index of radical, 779
Index of summation, 678
Indirect reasoning, 811. See also Logic
Individual, 693
Induction. See Mathematical induction
Inductive hypothesis, 689
Inductive reasoning, 690
Inductive step, 689
Inequality

absolute value, 54, 240
addition property, 23
double, 25
graph of, 24–25
linear, 23–25
polynomial, 236
properties of, 23
quadratic, 55, 236
radical, 240
rational, 239
symbols, 3
system of, 566–567

Inferential statistics, 704
Infinite discontinuity, 85
Infinite geometric series, 683
Infinite limit, 760
Initial point of a vector, 457
Initial point of directed line segment, 457
Initial side of angle, 338
Initial value of a function, 161
Instantaneous rate of change, 740
Instantaneous velocity, 738
Integer, 2
Integrable function, 750
Integral, definite, 770
Intercepted arc, 322
Interest

annual percentage rate (APR), 310
annual percentage yield (APY), 307
annuity, 308
compounded annually, 307

compounded continuously, 306
compounded k times per year, 304
value of investment, 307

Interest rate, finding, 306
Intermediate Value Theorem, 190
Interquartile range, 707
Intervals of real numbers, 4

bounded, 4
closed, 4
endpoints, 4
half-open, 4
open, 5
unbounded, 5

Invariant under rotation, 617
Inverse

additive, 6
multiplicative, 6

Inverse Composition Rule, 124
Inverse exponential function, 292
Inverse function, 122–123
Inverse matrix, 534
Inverse property, 6
Inverse Reflection Principle, 123
Inverse relation, 121–122, 124
Inverse trigonometric function

cosine, 380
graph of, 378, 380–381
sine, 378
tangent, 380–381

Inverse variation, 174
Invertible linear system, 550
Irrational numbers, 2
Irrational zeros of polynomial, 201
Irreducible quadratic function, 51, 214
Isosceles right triangle, 330

J
Joint variation, 184
Joule, 471
Jump discontinuity, 85

K
KEPLER, JOHANNES (1571–1630), 179, 580
Kepler’s First Law, 595
Kepler’s laws, 179, 287–288, 601, 607
Kepler’s Third Law, 179
Knot, 390
kth term of a sequence, 670

L
Latus rectum of a parabola, 590
Law of cosines, 442, 469
Law of detachment (modus ponens), 811. See

also Logic
Law of sines, 434–438
Leading coefficient

of polynomial, 185, 784
of polynomial function, 158

Leading term of polynomial function, 185
Leading Term Test for polynomial end behavior,

188
Leaf of stemplot, 694
Least common denominator (LCD), 793

compound fraction, 793
rational expressions, 793

1ƒ1x2, x, a, b2,
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Least-square lines, 173
Left-hand limit, 758
Left rectangular approximation method (LRAM),

750
LEIBNIZ, GOTTFRIED WILHELM (1646–1716),

80, 732, 737, 742, 749, 750, 755
Leibniz notation, 742
Lemiscate curve, 499
Length of arc, 457
Length (magnitude) of directed line segment, 456
Length (modulus) of vector, 456
LEONARDO OF PISA (c 1170–1250), 675
Like terms of polynomials, 784
Limaçon curve, 497–499
Limit, 85. See also Asymptote; Continuous

function; End Behavior
of continuous function, 758
infinite, 760
at infinity, 748–749, 760
informal definition of, 755
left-hand, 758
one-sided, 759
at a point, 758
properties of, 756–757
right-hand, 758
two-sided, 759

Limit at a point, 738
Limit at infinity, 748–749, 760
Limit to growth, 258
Limits of infinite sequences, 671
Line graph, 699
Line of best fit, 144, 173

linear correlation, 145
linear regression, 145
modeling data, 144
scatter plot, 12

Line of sight, 388
Line of symmetry, 90–91, 166
Line of travel, 321
Linear combination of unit vectors, 460
Linear correlation, 145, 161
Linear (first-degree) equation in three variables,

632
Linear Factorization Theorem, 210, 213–214
Linear factors

and partial fraction decomposition, 558–560
of polynomial, 210

Linear first-degree equation, 21
in 3 or more variables, 544
equivalent, 21
forms of, 30
general form of, 30
graphing, 31
parallel and perpendicular lines, 31–32
point-slope form, 29, 30
slope-intercept form, 30
slope of a line, 28
in x, 21
in x and y, 30
y, and z, 629
y-intercept, 29

Linear function, 159. See also Linear first-degree
equation

Linear inequality
double, 25

equivalent, 24
graph of, 566
number line graph, 25
in x, 23
in x and y, 568

Linear programming, 567
Linear regression line, 145
Linear regression model, 145
Linear speed, 323
Linear system of equations, 629

Gaussian elimination, 544–545
graphs of, 522
matrices, 546–547, 550–551
substitution, 520
triangular form, 544–545

Lithotripter, 597, 600
Local extremum, 90
Local (relative) maximum and minimum, 90, 187
Local maximum value of a function, 90
Local minimum value of a function, 90
Locus (loci), 582
Logarithmic function. See also Exponential

function
with base 10, 275
with base b, 274
common logarithm, 275
end behavior, 274, 278
graph of, 274, 277–278
inverse rule, 274, 275
modeling data with, 145
natural logarithm, 277
one-to-one rule, 292
power rule, 283
product rule, 283
properties of, 274
quotient rule, 283
regression equation, 145
solving equations, 293
transformations of, 278–279

Logarithmic re-expression of data, 298–300
Logic

biconditional, 808
chain rule, 812
compound statement, 803
conclusion, 807
conditionals (implications), 807
conjunction, 803
direct reasoning, 811
disjunction, 803
existential quantifiers, 802
hypothesis, 807
implications (conditionals), 807
indirect reasoning (modus tollens), 811
law of detachment (modus ponens), 811
logically equivalent, 804
modus ponens (law of detachment), 811
negation, 801
quantifiers, 801
statement, 801
tautology, 809
truth table, 803
universal quantifiers, 801
valid reasoning, 809–810

Logically equivalent, 804. See also Logic
Logistic curve, 258

Logistic function, 258–259
Logistic growth and decay function, 258
Logistic regression, 145
Long division of polynomials, 197
Long-range navigation (LORAN), 608
LORAN (long-range navigation) system, 608
Lower bound

of function, 89
for real zeros, 202
test for real zeros, 202

LRAM (left rectangular approximation method),
750

Lurking variable, 728

M
Magnitude

of real number. See Absolute value
of vector, 456, 458

Main diagonal of matrix, 534
Major axis of ellipse, 592
Mapping, 80
Mathematical induction, 687, 690

extended principle of, 692
inductive hypothesis, 687
principle of, 688

Mathematical model, 64, 76
Mathematical modeling, 64
Matrix, 530. See also Solving systems of

equations
addition and subtraction of, 530–531
determinant of, 535–536
elementary row operations, 546–548
equation, 550–551
invertible, 550
multiplication of, 532–534
multiplicative identity, 534
multiplicative inverse, 534
nonsingular, 534
properties of, 537
reduced row echelon form, 548
row echelon form, 547, 548
scalar multiple of, 531
singular, 534
square, 530
symmetric, 541
transpose of, 534

Maximum, local, 90
Maximum r-value, 496
Maximum sustainable population, 268
Mean, 704–705
Measure of angle, 338
Measure of center, 704–705
Measure of spread, 707
Median, 704–705
Midpoint formula

in Cartesian space, 630
coordinate plane, 15
number line, 14

Minimum, local, 90
Minor axis of ellipse, 592
Minor of a matrix, 535
Minute (of angle), 320
Mirror method (inverse), 123
Mode, 704, 706
Modeling data, 144–145
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with cubic functions, 145
with exponential functions, 145
line of best fit, 144
with logarithmic functions, 145
with logistic functions, 145
with power functions, 145
with quadratic functions, 145
with quartic functions, 145
with sinusoidal functions, 145

Modified boxplot, 710
Modulus of complex number, 504
Modus popens (law of detachment), 811
Modus tollens (indirect reasoning), 811. See also

Logic
Monomial function, 175–176
Monomials, 784
Motion

harmonic, 390–391
projectile, 57, 479–480
vertical free-fall, 167

Multiplication principle of counting, 643
Multiplication property

of equality, 21
of inequality, 23

Multiplicative identity
of algebraic expressions, 6
of complex number, 51

Multiplicative identity matrix, 534
Multiplicative inverse

of complex number, 51
of matrix, 534
of real number, 6

Multiplicity of zero of function, 189

N
n factorial, 644
n-set, 644, 647
NAPIER, JOHN (1550–1617), 274
Nappe of a cone, 580
Natural base e, 256–258
Natural exponential function, 255
Natural logarithm, 277
Natural logarithmic function, 278
Natural number, 2
Nautical mile, 324
Navigation, 321

nCr, 646
NDER 766
Negation, 801. See also Logic
Negative angle, 338
Negative assocation, 717, 718
Negative correlation, 717, 718
Negative linear correlation, 161
Negative number, 3
NEUMANN, JOHN VON (1903–1957), 658
NEWTON, ISAAC (1642–1727), 167, 732, 737,

749, 755
Newton-meter, 471
Newton’s Law of Cooling, 296
NINT 767
Non-identity, disproving, 416–417
Nonlinear system of equations, 521–522
Nonrigid transformation, 129
Nonsingular matrix, 534
Normal curve, 711

Normal distribution, 711

nPr, 645
nth power, 7
nth root, 779

of complex number, 508
of unity, 508

Number line, real, 3
Number system, real. See Real number
Numerator, 791
Numerical derivative, 766
Numerical derivative of ƒ at a, 766
Numerical integral, 767
Numerical model, 64

O
Objective function, 567
Observational study, 720
Obtuse triangle, 435
Octants, 629
Odd degree, polynomial function of, 214
Odd-even identity, 406–407
Odd function, 91, 406–407
One-sided limit, 759
One-to-one function, 122

exponential, 292
logarithmic, 292
trigonometric, 378

Open interval, 5
Operations for equivalent equations, 22
Opposite, algebraic, 6
Order of magnitude, 294
Order of matrix, 530
Ordered pair

and inverse relation, 121–122
of real number, 12
and relation, 115
solution of equation, 21

Ordered set, 3
Ordinary annuity, 308
Origin

coordinate plane, 12
number line, 3
space, 629

Orthogonal vectors, 469
Outcomes, equally likely, 658
Outliers, 709

P
Parabola, 99, 477, 581, 621

axis of, 164, 582
directrix, 581
focal chord of, 590
focal length, 583
focal width, 583
focus of, 581, 583
latus rectum of, 590
reflective property of, 586–587
standard form of, 583
transformations of, 586
translations of, 584–586
with vertex, 583, 584

Paraboloid of revolution, 586
Parallel lines, 31–32
Parallelogram, 458
Parameter, 110, 475, 704

Parameter interval, 475
Parametric curve, 475
Parametric equation, 475

for circle, 475
eliminating the parameter, 476–477
graphing, 475–476
and inverse relations, 121–122
for a line in Cartesian space, 475–476
for lines and line segments, 477–478
motion along a line, 478–479
motion in the plane, 479–481
motion of Ferris Wheels, 481

Parametrically defined relation, 119
Parametrization of curve, 475
Partial fraction, 557

decomposition, 557
with quadratic factors, 558–560

Partial sums, sequence of, 682
PASCAL, BLAISE (1623–1662), 653, 658
Pascal’s triangle, 653–654
Perfect square trinomial, 787
Perihelion, 595
Period, 345

of sinusoid, 353
of tangent function, 361

Periodic function, 345
Permutations, 644–646
Perpendicular lines, 31–32
pH, 295
Phase shift, 352
Picture graph, 693
Pie chart, 693
Piecewise-defined function, 104
Placebo, 721
Plane in space, 632
Plane trigonometry. See Trigonometric function
Planetary orbit, 624–625
Platonic solid, 446
Point of discontinuity, 85
Point of intersection, 45
Point-plotting method, 31
Point-slope form, 29, 30
Polar axis, 487
Polar coordinate system, 487

coordinate conversion equations, 490
finding distance, 491
graphing, 487

Polar coordinates, 487
Polar distance formula, 493
Polar equation

cardioid, 498
and conics, 621–622
equivalent, 494
graph of, 495–496
limaçon curve, 497–499
rose curve, 496–497
standard form, 622
symmetry, 494–495

Polar form of a complex number, 504
Pole, 487
PÓLYA, GEORGE (1887–1985), 70
Polynomial, 784. See also Rational function

adding and subtracting, 784
binomial products, 784
characteristic, 543

1ƒ1x2, x, a, b2,

ƒ1a2,
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Polynomial (continued)
degree of, 784
factoring, 214, 785–788
inequality, 236
multiplying, 784
prime, 785
standard form, 784
terms of, 185, 784

Polynomial function, 158
combining with trigonometric function, 369
complex conjugates, 51
cubic, 185, 187
degree of, 158
division algorithm, 197
end behavior, 187–189
Factor Theorem, 199
Fundamental Theorem of Algebra, 210
higher-degree, 187–189
Intermediate Value Theorem, 190
interpolation, 192
leading coefficient and term, 185, 784
Linear Factorization Theorem, 210
linear factors, 210
long division, 197
of odd degree, 214
quadratic, 164–166
quartic, 185
quotient, 197
with real coefficients, 214
regression, 145
remainder, 197
Remainder Theorem, 198
synthetic division, 199–201
zeros of, 201, 210–211

Polynomial interpolation, 192
Population, 711
Population growth, 260–261
Position vector, 456
Positive angle, 338
Positive association, 717
Positive correlation, strong, 717
Positive linear correlation, 161
Positive number, 3
Power function, 174

identifying the graph, 178
regression equation, 145

Power-reducing identity, 428
Power rule for logarithms, 283
Present value of annuity, 309
Prime polynomial, 785
Principal nth root, 779
Principle of mathematical induction, 688
Probability, 659

binomial, 665
conditional, 663
distribution, 659
of event, 658
expected value, 668
function, 659
independent events, 661
sample space, 658
strategy, 660

Probability simulations, 724–725
Problem-solving process, 70–71

linear regression line, 145

modeling data, 144
Product

binomial, 785
of complex numbers, 50, 505
of functions, 110
of scalar and vector, 458
of a sum and difference, 786
of two matrices, 532

Product rule for logarithms, 283
Projectile motion, 57, 479–480
Projection of u onto v, 470
Proof, 132, 469
Properties

of absolute value, 13
of additive inverse, 6
of algebraic expressions, 6
of dot product, 467
of equality, 21
of exponents, 7
of inequalities, 23
of limits, 756–757
of logarithms, 274, 276, 277, 283
of matrices, 537
of radicals, 780

Proving an identity
disproving non-identity, 416–417
strategies, 413–417

Pseuo-random numbers, 723
Pythagorean identities, 405
Pythagorean relation

ellipse, 591, 594
hyperbola, 603, 605

Pythagorean Theorem, 14

Q
Quadrantal angle, 342, 346
Quadrants of plane, 12

measure of angle, 339
trigonometric functions, 339

Quadratic equation, 41, 51
Quadratic (second-degree) equation in two

variables, 581, 612
Quadratic factors, irreducible, 214
Quadratic formula, 42
Quadratic function, 164–166

graphing, 164–166
irreducible over the reals, 51, 214
line of symmetry, 164
modeling data, 145
nature of, 166
opening upward or downward, 164
regression equation, 145
transformations of, 164–166
vertex form of, 164–165

Quadratic inequality, 55
Quadric surfaces, 633
Quantifiers, 801. See also Logic
Quantitative variable, 693
Quartic

polynomial function, 185, 187
regression, 145

Quartile, 707
Quotient

of complex numbers, 51, 505
of functions, 110

Quotient identity, 404
Quotient polynomial, 197, 557
Quotient rule for logarithms, 283

R
Radar tracking system, 491
Radian, 321

arc length formula, 322–323
degree-radian conversion, 322
in navigation, 321

Radical, 779
properties of, 780
rational exponents, 781
rationalizing the denominator, 781
simplifying, 780, 782

Radical inequality, 240
Radicand, 779
Radio signal, 608
Radioactive decay, 266
Radius

of circle, 15
of sphere, 631

Random number tables, 723
Randomization, 721
Randomness, 719–720, 723–724
Range

of data, 707
of function, 80, 81
interquartile, 707
inverse function, 122

Rational equation, 228
extraneous solution of, 229
solving, 228

Rational exponent, 781
Rational expression, 791. See also Algebraic

expression; Real number
adding, 784
compound, 793
domain of, 791
multiplying, 792
reducing, 791

Rational function, 218. See also Polynomial
end behavior asymptote, 221
horizontal asymptote, 221
and partial fractions, 557
reciprocal function, 219
slant asymptote, 221
transformation of, 219
vertical asymptote, 221
x- and y-intercepts, 221

Rational inequality, 239
Rational number, 2
Rational zeros of polynomial, 201
Rationalizing the denominator, 781
Re-expression of data, 287, 298–300
Real axis of complex plane, 503
Real number, 2. See also Algebraic expression;

Rational expression
absolute value, 13
bounded intervals, 4
coefficients of polynomial, 185
distance and midpoint formulas, 13–15
inequalities, 3
integers, 2
intervals of, 4
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irrational numbers, 2
natural and whole numbers, 2
order of, 3
positive and negative, 3
trigonometric functions of, 344

Real number line, 3
Real part of complex number, 49
Real zeros of polynomial, 201. See also Zero 

of a function
lower bound test, 202
rational and irrational zeros, 201
upper bound test, 202

Reciprocal, algebraic, 6
Reciprocal function, 219
Reciprocal identities, 404
Reciprocal transformation, 219
Rectangular coordinate system. See Cartesian

coordinate system
Recursive formula, 254
Recursively defined sequence, 670
Reduced form of fraction, 791
Reduced row echelon form, 548
Reduction formula, 424
Reference triangle, 341, 346
Reflecting telescope, 607
Reflections across axes, 131–133

of quadratic function, 164
through a line, 131

Reflective property of a hyperbola, 607
Reflective property of a parabola, 

586–587
Reflective property of an ellipse, 

597–598
Reflexive property, 21
Regression

analysis, 163
cubic, 145
exponential, 145
line, 144
linear, 145
logistic, 145
natural logarithmic, 145
power, 145
quadratic, 145
quartic, 145
selecting a model, 144
sinusoidal, 145

Relation, 115
inverse, 121–122
parametrically defined, 119

Relative humidity, 224
Relative maximum and minimum. See Local

(relative) maximum and minimum
Relevant domain, 82
Remainder polynomial, 197
Remainder Theorem, 198
Removable discontinuity, 84–85
Repeated zeros, 190
Replication, 722
Residual, 173
Resistant measure of center, 705
Resolving the vector, 460
Response bias, 721
Response variable, 642
Restricted growth, 252

Richter scale, 290, 295
RIEMANN, GEORG BERNHARD

(1826–1866), 750
Riemann sum, 750, 770
Right circular cone, 580
Right-hand limit, 758
Right-handed coordinate frame, 629
Right rectangular approximation method

(RRAM), 750
Right triangle, 329. See also Solving triangles;

Trigonometric function; Trigonometric
identity

determining, 333, 388
isosceles, 330
solving, 333, 388

Rigid transformation, 129
Root, 70. See also Radical; Real zeros of

polynomial; Zero of a function
of complex number, 508–510
cube root, 779
nth root, 508, 779
of unity, 508

Root mean square deviation, 710
Rose curve, 496–497
Rotation formulas, 538, 614
Rotation method (inverse), 124
Rotation of axes, 614
Rotation of conic, 615–616
Row echelon form, 547, 548
Row operations, elementary, 546–548
Row subscript (matrix), 530
RRAM (right rectangular approximation

method), 750
Rule of Signs, Descartes’, 208

S
Sample

convenience, 721
random numbers in, 723–724

Sample space, 658
Sample survey, 720
Scalar, 458, 531
Scalar multiple of a matrix, 531
Scalar multiple of a vector, 458
Scatter plot, 12
Scientific notation, 8
Secant function, 329, 363

acute, 329
any angle, 340
graph of, 363
special angles, 330

Secant line, 740
Second (of angle), 320
Second-degree (quadratic) equation in two

variables, 581, 612
Second-degree equation in x and y, 581, 637
Second quartile, 707
Segment, of circle, 450
Semiconjugate axis of a hyperbola, 603, 605
Semimajor axis of ellipse, 592, 594
Semiminor axis of ellipse, 592, 594
Semiperimeter of triangle, 445
Semitransverse axis of a hyperbola, 603, 605
Sequence, 670

arithmetic, 672–674

convergence/divergence of, 671
end behavior, 671
explicitly defined, 670
Fibonacci, 675
finite and infinite, 670
geometric, 672–674
limit of, 671
of partial sums, 682

Sequence (continued)
recursively defined, 670
and series, 682

Series, 681–682
arithmetic, 679
geometric, 682
infinite geometric, 683
sum of, 682
summation notation, 678

Set builder notation, 2
Sign chart, 237, 240
Similar geometric figures, 329
Simple harmonic motion, 390–391
Simplifying radicals, 780, 782
Simulation, probability, 724–725
Sine function, 329, 350

acute angles, 329
any angle, 340
cofunction identities, 406
graph of, 350
harmonic motion, 390–391
inverse, 379
law of sines, 434–438
period of, 350
special angles, 330
of sum and difference identity, 

423–424
Singular matrix, 534
Sinusoid, 352. See also Trigonometric function;

Trigonometric identity
68-95-99.7 rule, 712
16-point unit circle, 346
amplitude of, 352
combining transformations of, 371–372
frequency of, 353
harmonic motion, 390–391
maximum and minimum, 352
period, 353
phase shift, 352, 353
regression, 145
sums and differences, 371–372

Skewed left (distribution), 709
Skewed right (distribution), 709
Slant asymptote, 221
Slant line, 159
Slope-intercept form, 30
Slope of a line, 28
Solution

approximate. See Approximate solution
of equation in x, 21, 31
of equation in x and y, 565
extraneous, 229
of inequality in x, 23
of inequality in x and y, 565
of system of equations, 520
of system of inequalities, 567

Solution set of an inequality, 23
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Solving algebraically, graphically, numerically,
76–77

Solving equations, 40–45, 68–71
absolute value, 45
algebraically, 56–57
completing the square, 41
discriminant, 47
exponential, 292–293
extracting square roots, 41
factoring, 43
graphically, 40
intersections, 45
quadratic formula, 42
rational, 228
trigonometric, 408–409, 430–431
x-intercepts, 40

Solving inequalities, 23
absolute value, 54
double, 25

Solving systems of equations
elimination, 522–524
Gaussian elimination, 544–545
graphically, 522
intersections, 522
inverse matrices, 550–551
matrices, 546–547
nonlinear, 521–522
substitution, 520

Solving triangles, 333, 435–437
ambiguous case, 435–437
areas, 444
law of cosines, 442–447
law of sines, 434–438
number of triangles, 442
right, 333, 388

Speed, 184, 461
Sphere, 631
Spiral of Archimedes, 499
Split-stem plot, 696
Spread of data, 707
Square

of difference, 785
of sum, 785

Square matrix, 530, 535–536
Square root, 41, 779
Square root function, 100, 179
Square system of equations, 550
Square viewing window, 31
Squaring function, 172
Standard deviation, 710
Standard form

of complex number, 49
of polar equation of conic, 622
of polynomial, 185, 784
of quadratic equation, 164

Standard form equation
of circle, 15
of conic (polar), 622
of ellipse, 591, 594
of hyperbola, 602, 603, 605
of parabola, 583
of quadratic function, 164
of sphere, 631

Standard position of angle, 329, 338
Standard representation of a vector, 456

Standard unit vector, 460, 467, 633
Statement, 801. See also Logic
Statistics, 704

boxplot, 709
categorical, 693
descriptive, 704
five-number summary, 707–708
histogram, 697
inferential, 704
mean, 704–705
median, 704–705
misuses of, 717–725
mode, 704, 706
split-stem plot, 696
stemplot, 694
time plot, 699
weighted mean, 707

Statute mile, 324
Stem, 694
Stem-and-leaf plot, 694
Stemplot, 694
Step function, 101
Stretch and shrink, 133–135

quadratic function, 164
sinusoid, 352
tangent function, 361

Strong association, 718
Strong positive correlation, 717
Subjects, 721
Subtraction, 6
Sum

of functions, 110
identity, 421–425
perfect square trinomial, 787
of sinusoids, 371–372
of two cubes, 787

Sum of series, 682
finite arithmetic, 679
finite geometric, 680
infinite geometric, 683
partial sums, 682

Sum of vector, 458
Sum-to product formulas, 452
Summation notation, 678
Sungrazer, 600
Supply curve, 525
Symmetric difference quotient, 766
Symmetric distribution, 709
Symmetric matrix, 541
Symmetric property, 21
Symmetry

about the origin, 90–91, 494
about x-axis, 90, 494
about y-axis, 91, 494
of polar graphs, 494–495

Synthetic division of polynomials, 199–201
System of equations, 520. See also Solving

systems of equations
System of inequalities, 566–567

T
Tail-to-head representation, in vector operations,

458
Tangent function, 329, 361

acute angles, 329

any angle, 340
graph of, 361
inverse, 380–381
special angles, 330

Tangent line, 738–739
Tangent line of a function, 739
Tangent line of a parabola, 590
Tangent of a sum or difference of angles, 

424
Tautology, 809. See also Logic
Terminal point of a directed line segment, 

457
Terminal point of a vector, 457
Terminal side of angle, 338
Terms of polynomial, 185
Terms of sequence, 670
Tetrahedron, 446
Third quartile, 707
Three-dimensional Cartesian coordinate system

(Cartesian space), 629
Three-dimensional space, 629
Time plot, 699
Tower of Hanoi, 687–688
TRACE function, 101
Transcendental function, 252
Transformation, 129

of circles parametrically, 485
combining, 135–136
of ellipse, 594
of exponential functions, 255–256
of hyperbola, 605
of logarithmic function, 278–279
nonrigid, 129
of parabola, 584
of quadratic function, 164–166
of reciprocal function, 219
reflection, 131
rigid, 129
of sinusoid, 354–355
stretch and shrink, 133–135
translation, 129–131

Transitive property
of equations, 21
of inequalities, 23

Translation
of axes, 613–614
of parabola, 584–586
of quadratic function, 164–166
of sinusoid, 354
of tangent function, 361

Translation formulas, 614
Transpose of a matrix, 534
Transverse axis of hyperbola, 603
Treatments, 721
Tree diagram, 662
Triangle. See also Right triangle; Solving

triangles
acute, 435
area of, 444
obtuse, 435
Pascal’s, 653–654
reference, 341

Triangular form of linear system, 544–545
Triangular number, 656
Trichotomy property, 4
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Trigonometric equation
factoring, 409
using identities, 430–431

Trigonometric expression
factoring, 407
simplifying, 407–408
sinusoid, 352

Trigonometric form of a complex number, 504
Trigonometric function, 329, 338, 342. See also

Cosecant function; Cosine function;
Cotangent function; Secant function; Sine
function; Tangent function

of acute angles, 329
amplitude, 352
of any angle, 340
combining with inverse, 382–383
combining with polynomial, 369
and complex numbers, 504
domain, 351, 361, 364
even and odd, 406–407
frequency, 352
inverse, 380–384
one-to-one, 380–381
phase shift, 352
properties of, 351, 361, 364
quadrantal angle, 342, 346
range, 351, 361, 364
of real numbers, 344
reference triangle, 341
and right triangles, 329
signs of, 341
sinusoids, 352, 354
of special angles, 330
using calculator, 331–332
and vectors, 460

Trigonometric identity, 404
in calculus, 417
cofunction, 406
domain of validity, 404
double-angle, 428
half-angle, 429–430
odd-even, 406–407
perfect square, 787
power-reducing, 428
proof strategies, 413–417
proving, 413–416
Pythagorean, 405
quotient, 404
reciprocal, 404
sum and difference, 421–425
Trinomials, 784

Truth table, 803. See also Logic
Two-body problem, 624
Two-dimensional vector, 456–458
Two-sided limits, 759

U
Unbounded interval, 5
Undercoverage bias, 721
Union of two sets, 55
Unit circle, 344

16-point, 346

roots of unity, 508
and sine function, 344
and trigonometric functions, 344

Unit vector, 459–460, 633
Universal quantifiers. See Logic
Unrestricted growth, 252
Upper bound

of function, 89
test for real zeros, 202

V
Valid reasoning, 809–810. See also Logic
Value of annuity, 308
Value of investment, 307
Variable, 5

categorical and quantitative, 693
confounding, 721
dependent and independent, 80
explanatory and response, 642
lurking, 728

Variance, 710
Vector, 456, 633

addition and scalar multiplication, 458, 
633

and complex number, 504
component form of, 456, 633
components of, 456, 633
direction angle, 460
direction of, 456, 458
dot product, 467, 633
equal, 457, 633
head minus tail rule, 457
initial and terminal points of directed line

segments, 457, 633
length/magnitude of, 456, 633
linear combination, 460
magnitude of, 458, 633
resolving, 460
trigonometric form of, 504
two-dimensional, 456–458
unit, 459, 633
zero, 456, 633

Vector form of equation for a line in Cartesian
space, 457

Velocity, 461
average, 736
changing, 748–749
constant, 747
instantaneous, 738

VENN, JOHN (1834–1923), 662
Venn diagram, 661
Verbal description, functions from, 

142–143
Vertex

of an angle, 338
of ellipse, 591, 594
of hyperbola, 602, 605
of parabola, 164, 582
parabola with, 583, 584
of right circular cone, 580

Vertical asymptote, 92, 93, 221, 361
Vertical component of vector, 460

Vertical free-fall motion, 167
Vertical line test, 81
Vertical stretch and shrink, 133–135

of quadratic function, 164
of tangent function, 361

Vertical translation, 129–131
of quadratic function, 164
of sinusoid, 354
of tangent function, 361

Very weak negative association, 718
Viewing window, grapher, 31

slope, 36
square, 31

Voluntary response bias, 721
VON NEUMANN, JOHN (1903–1957), 

658

W
Weak negative correlation, 717
WEIERSTRASS, KARL (1815–1897), 

755
Weight, 707
Weighted mean, 707
WESSEL, CASPAR (1745–1818), 503
Whispering gallery, 597
Whole numbers, 2
Work, 471
Wrapping function, 344

X
x-axis, 12, 629
x-coordinate, 12, 629
x-intercept, 31, 69, 70, 221
xy-plane, 629
xz-plane, 629

Y
y-axis, 12, 629
y-coordinate, 12, 629
y-intercept, 29, 221. See also Function
yz-plane, 629

Z
z-axis, 629
z-coordinate, 629
z-intercept, 629
ZENO OF ELEA (c 490–425 B.C.E.), 

748
Zero factor property, 41, 69
Zero factorial, 645
Zero matrix, 532
Zero of a function, 69–70

complex conjugate, 51, 211–212
finding, 202, 212
higher-degree polynomials, 201, 212
multiplicity of, 189
rational and irrational, 201
real, 201
repeated, 190

Zero polynomial, 158–159
Zero vector, 456, 633
Zoom out, 188
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About This Guide 

Pearson is pleased to offer this Guide to Implementing the Common Core State Standards as a 
complement to Precalculus: Graphical, Numerical, Algebraic, 8th edition. In this Guide, you 
will find information about the Common Core State Standards that can be useful as you look to 
implement the (+) standards in your precalculus course. 

On page 3, you’ll find an overview of the Common Core State Standards, including the recent 
history leading to their establishment, and a brief description of the Standards for 
Mathematical Content, with a focus on the (+) standards, and the Standards for Mathematical 
Practice. 

Author Dan Kennedy, Ph.D., contributed his thoughts (pages 4 and 5) on incorporating the 
Common Core State Standards into this precalculus course. He describes the additional 
content that has been added and explains why covering the (+) standards will make stronger 
mathematical thinkers. Kennedy also notes that he and the other authors have embedded in 
this textbook for many years the practices and habits of mind that the Standards for 
Mathematical Practice in the Common Core State Standards stress as essential to developing 
mathematical proficiency (pages 6–10).  

Pages 11 through 32 show Correlations of the (+) Standards for Mathematical Content and 
indicate where the standards are addressed throughout Precalculus: Graphical, Numerical, 
Algebraic. You’ll notice that in addition to all (+) standards, this course also covers many of the 
non (+) Standards for Mathematical Content, which are expected to be taught in Algebra 1, 
Geometry, and Algebra 2.  

Beginning on page 33 is the additional content written to ensure complete coverage of (+) 
standards in the course. Closeness and Betweenness in a Complex World is an extension of 
Section 6.6 written to inform the student on complex planes. Random Variables and Expected 
Value expands on Section 9.3 and the textbook’s coverage of probability. Each expanded 
section is followed by accompanying exercises. Answers to the exercises are on pages  
47–49.  
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Common Core State Standards For Mathematics 
The Common Core State Standards Initiative is a state-led initiative coordinated by the 
National Governors Association Center for Best Practices (NGA Center) and the Council of 
Chief State School Officers (CCSSO), with a goal of developing a set of standards in 
mathematics and in English language arts that would be implemented in many, if not most 
states in the United States. 

The Common Core State Standards for Mathematics (CCSSM) were developed by 
mathematicians and math educators and reviewed by many professional groups and state 
department of education representatives of the 48 participating states. The members of the 
writing committee looked at state standards from high performing states in the United States 
and from high-performing countries around the world and developed standards that reflect 
the intent and content of these exemplars.  

The final draft was released in June 2010 after nearly 12 months of intense development, 
review, and revision. To date, over 40 states have adopted these new standards and are 

currently working to develop model 
curricula or curriculum frameworks based 
on these standards.  

These standards identify the knowledge 
and skills students should gain throughout 
their K–12 careers so that upon 
graduation from high school, students will 
be college- or career-ready. The standards 
include rigorous content and application  
of knowledge through higher-order 
thinking skills. 

The CCSSM consist of two interrelated sets of standards, the Standards for Mathematical 
Practice and the Standards for Mathematical Content. The Standards for Mathematical 
Practice describe the processes, practices, and dispositions that lead to mathematical 
proficiency. The eight standards are common to all grade levels, K–12, highlighting that 
these processes, practices, and dispositions are developed throughout one’s school career. 
A discussion of these standards is found on pages 6–9. 
 
The Standards for Mathematical Content are grade-specific for Kindergarten through Grade 
8; at the high school level, the standards are not structured by course or grade; rather they 
are organized into six conceptual categories. Within each conceptual category are domains 
and clusters, which each consists of one or more standards. Most of the high school 
standards are meant to be covered by the end of three years of high school mathematics;  
a few standards, indicated with (+), represent more advanced topics and expand upon the 
content learned in the core high school curriculum. These are generally addressed in 
advanced high school mathematics courses, such as Precalculus, Advanced Statistics, or 
Discrete Mathematics. An overview of how the (+) standards are addressed in Precalculus: 
Graphical, Numerical, Algebraic is found on page 5. 

These standards identify  
the knowledge and skills 
students should gain 
throughout their K–12 careers 
so that upon graduation from 
high school, students will be 
college- or career-ready. 
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Transitioning to the Common Core State Standards 
By Daniel Kennedy, Ph.D. 

Textbooks like this one evolve in many ways for many reasons, only some of which follow the 
design of the authors. The primary purpose of a book called precalculus, of course, is to 
prepare students for courses in calculus, and nine out of ten chapters of our book, 
Precalculus: Graphical, Numerical, Algberaic, are devoted to doing just that, in what we feel 
is the most pedagogically effective way. Chapter 9 on Discrete Mathematics, on the other 
hand, contains quite a bit of material that is not so important for studying calculus, but very 
important for coping with data in a quantitative world.  

In the last few decades, the attention of primary and secondary mathematics education has 
been shifting slowly but inexorably toward quantitative literacy and away from the classical 
focus on calculus and its attendant calculations. We have responded by adding more and 
more material to Chapter 9, all the time wondering whether teachers would have time to 
cover it in a typical school year. The need to meet every state’s individual standards 
requirements meant the inclusion of certain precalculus topics, and the exclusion of 
potentially more useful quantitative literacy material.  

That is why the adoption of Common Core State Standards seems to be a fine idea. Once 
we all agree on what ought to be taught, we can design our textbooks, our teacher 
development, and our assessments to ensure that students learn that content effectively. (The 
fact that they could already do this is one of the reasons for the remarkable success of the 
College Board's Advanced Placement courses over the years.) Eventually, we should be able 
to design more focused courses at every level and make the textbooks considerably smaller. 
This will, however, take time. 

For now, ironically, most textbooks will actually have to supplement their coverage –– as the 
country gets serious about quantitative literacy while remaining cautious about curricular 
reform. We were actually quite pleased that our book was already so consistent with the first 
set of Common Core State Standards; indeed, we only needed to expand the complex plane 
coverage in Section 6.6 and the treatment of probability theory in Section 9.3.    
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Additional Content for Complete Coverage  
of the (+) Standards 

Expanding Section 6.6: Closeness and Betweenness in a Complex World 

Most precalculus textbooks, ours included, have given scant attention to complex numbers, 
since they rarely come up in a first-year calculus course. They are algebraically important for 
understanding the Fundamental Theorem of Algebra, and they tie some important concepts 
together in DeMoivre's Theorem, but not much knowledge of the complex plane is required 
for those (primarily algebraic) applications. The Common Core State Standards, obviously 
looking ahead to courses beyond first-year calculus, have prescribed a somewhat deeper 
geometrical understanding of the complex plane for college-bound secondary students. This 
is easily provided with this brief supplement, which could be covered within one class 
period. As a nice bonus, students will understand why a "complex line" is impossible.  

Expanding Section 9.3: Random Variables and Expected Value 

From the beginning, one of our strategies for keeping Chapter 9 from becoming too huge 
was to cover just enough probability theory to explain the statistical applications. 
(Remember: It's a precalculus book.) This led us to side-step the classical terminology of 
random variables and expected value, which the Common Core State Standards have  
now opted to include. Admittedly, it is much easier to explain some statistical concepts  
(like Bayesian decision-making) if one has access to all that terminology, so it is almost 
liberating to have it now available through this supplement. 

The Common Core vision is that many of the statistical concepts introduced in Chapter 9  
will eventually be old news to precalculus students, making the more formal approach to 
probability theory an appropriate extension at this level. Note that the emphasis is still on  
the statistical applications, but the probability theory underlying them can be richer.  

How long it will take to teach this supplement will be heavily dependent on how much 
students already know about statistics. In fact, if students are lacking in statistical 
background, the teacher might want to incorporate examples from Sections 9.7 and  
9.8 as needed. 
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The Standards for Mathematical Practices  
For us authors, the most gratifying part of the Common Core State Standards is the part 
labeled "Mathematical Practices." These standards give clear evidence that the authors of 
these standards wanted us to know that what we teach is only part of the goal. Equally 

important is how we teach it  
and why.   

We would hope that anyone familiar with 
the layout of our book will take a look at 
the Mathematical Practices and demand to 
know how we got a copy of them ten years 
ago. In fact, these practices have been 
pillars of mathematics education reform for 
more than 20 years, and we very much 
wanted them to be reflected in our 
textbooks. In case you have not seen them, 

here are the eight practices that should be at the core of good mathematics education: 

 Make sense of problems and persevere in solving them.  
Mathematically proficient students start by explaining to themselves the meaning of a 
problem and looking for entry points to its solution. They analyze givens, constraints, 
relationships, and goals. They make conjectures about the form and meaning of the 
solution and plan a solution pathway rather than simply jumping into a solution 
attempt. They consider analogous problems, and try special cases and simpler forms 
of the original problem in order to gain insight into its solution. They monitor and 
evaluate their progress and change course if necessary. Older students might, 
depending on the context of the problem, transform algebraic expressions or change 
the viewing window on their graphing calculator to get the information they need. 
Mathematically proficient students can explain correspondences between equations, 
verbal descriptions, tables, and graphs or draw diagrams of important features and 
relationships, graph data, and search for regularity or trends. Younger students might 
rely on using concrete objects or pictures to help conceptualize and solve a problem. 
Mathematically proficient students check their answers to problems using a different 
method, and they continually ask themselves, “Does this make sense?” They can 
understand the approaches of others to solving complex problems and identify 
correspondences between different approaches. 

Our book is all about solving problems. We invoke George Polya's famous four-step process 
in the first section of the book. Our Examples model problem solving from every angle, and 
our Exercises range from the simple and computational to the rich and multi-representational.  

1 

These standards give clear 
evidence that the authors of 
these standards wanted us to 
know that what we teach is 
only part of the goal. Equally 
important is how we teach it 
and why. 
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 Reason abstractly and quantitatively.  
Mathematically proficient students make sense of quantities and their relationships in 
problem situations. They bring two complementary abilities to bear on problems 
involving quantitative relationships: the ability to decontextualize—to abstract a given 
situation and represent it symbolically and manipulate the representing symbols as if 
they have a life of their own, without necessarily attending to their referents—and the 
ability to contextualize, to pause as needed during the manipulation process in order 
to probe into the referents for the symbols involved. Quantitative reasoning entails 
habits of creating a coherent representation of the problem at hand; considering the 
units involved; attending to the meaning of quantities, not just how to compute them; 
and knowing and flexibly using different properties of operations and objects.  

Ideally, this is what it should mean to "do" mathematics, but many courses get bogged down 
in quantitative procedures and skills and miss the reasoning part. The Explorations in each 
section of our book get students to reason things out (abstractly and quantitatively) and 
thereby discover the procedures. Each set of Exercises includes problems (writing to learn) 
that reinforce the reasoning step, along with additional explorations and problems designed 
to extend the ideas. 
 

 Construct viable arguments and critique the reasoning of others.  
Mathematically proficient students understand and use stated assumptions, definitions, 
and previously established results in constructing arguments. They make conjectures 
and build a logical progression of statements to explore the truth of their conjectures. 
They are able to analyze situations by breaking them into cases, and can recognize 
and use counterexamples. They justify their conclusions, communicate them to others, 
and respond to the arguments of others. They reason inductively about data, making 
plausible arguments that take into account the context from which the data arose. 
Mathematically proficient students are also able to compare the effectiveness of two 
plausible arguments, distinguish correct logic or reasoning from that which is flawed, 
and—if there is a flaw in an argument—explain what it is. Elementary students can 
construct arguments using concrete referents such as objects, drawings, diagrams, and 
actions. Such arguments can make sense and be correct, even though they are not 
generalized or made formal until later grades. Later, students learn to determine 
domains to which an argument applies. Students at all grades can listen or read the 
arguments of others, decide whether they make sense, and ask useful questions to 
clarify or improve the arguments. 

Although we cannot guarantee that all teachers will use our books as we hope they will, our 
Explorations are designed to promote this kind of activity in every classroom. Indeed, we 
hope teachers will use this approach consistently in their teaching so that students will realize 
that the teacher is not the only one in the classroom who can initiate or sustain a learning 
experience. 

 

2 
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 Model with mathematics.  
Mathematically proficient students can apply the mathematics they know to solve 
problems arising in everyday life, society, and the workplace. In early grades, this 
might be as simple as writing an addition equation to describe a situation. In middle 
grades, a student might apply proportional reasoning to plan a school event or 
analyze a problem in the community. By high school, a student might use geometry to 
solve a design problem or use a function to describe how one quantity of interest 
depends on another. Mathematically proficient students who can apply what they 
know are comfortable making assumptions and approximations to simplify a 
complicated situation, realizing that these may need revision later. They are able to 
identify important quantities in a practical situation and map their relationships using 
such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can 
analyze those relationships mathematically to draw conclusions. They routinely 
interpret their mathematical results in the context of the situation and reflect on whether 
the results make sense, possibly improving the model if it has not served its purpose. 

This is such an important goal of our book that we have chosen to begin and end our all-
important first chapter with sections on modeling. The very name of the book reflects the 
importance of understanding how to model the real world graphically, numerically, and 
algebraically. In each new edition of the book we update the numerical data so that students 
will see how the mathematics they are studying can be used to model the world they are 
living in right now.   

 Use appropriate tools strategically.  
Mathematically proficient students consider the available tools when solving a 
mathematical problem. These tools might include pencil and paper, concrete models, 
a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a 
statistical package, or dynamic geometry software. Proficient students are sufficiently 
familiar with tools appropriate for their grade or course to make sound decisions 
about when each of these tools might be helpful, recognizing both the insight to be 
gained and their limitations. For example, mathematically proficient high school 
students analyze graphs of functions and solutions generated using a graphing 
calculator. They detect possible errors by strategically using estimation and other 
mathematical knowledge. When making mathematical models, they know that 
technology can enable them to visualize the results of varying assumptions, explore 
consequences, and compare predictions with data. Mathematically proficient students 
at various grade levels are able to identify relevant external mathematical resources, 
such as digital content located on a website, and use them to pose or solve problems. 
They are able to use technological tools to explore and deepen their understanding of 
concepts. 

We doubt that any author team of any precalculus textbook anywhere has been more closely 
associated with educational technology, particularly graphing calculators, than we have.  
Not only have we been urging the use of technology in mathematics education for more than 
two decades, but we have also been vigilant about insisting on the wise use of technology 
while helpfully pointing out the pitfalls. The strategic use of appropriate tools has been a 
hallmark of our approach from the start. 

4 
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 Attend to precision.  
Mathematically proficient students try to communicate precisely to others. They try to 
use clear definitions in discussion with others and in their own reasoning. They state 
the meaning of the symbols they choose, including using the equal sign consistently 
and appropriately. They are careful about specifying units of measure, and labeling 
axes to clarify the correspondence with quantities in a problem. They calculate 
accurately and efficiently, express numerical answers with a degree of precision 
appropriate for the problem context. In the elementary grades, students give carefully 
formulated explanations to each other. By the time they reach high school they have 
learned to examine claims and make explicit use of definitions. 

We suppose that any mathematical textbook would support this practice philosophically, but 
we feel strongly enough about it to invest some considerable ink into explaining it to the 
student. For example, the first section of the book discusses what it means to "solve" a 
problem and to "prove" that something is true mathematically, and we revisit those ideas in 
later Examples. It almost goes without saying that we address issues of calculator precision 
(and the limitations thereof), in context, throughout the book. 

 

 Look for and make use of structure.  
Mathematically proficient students look closely to discern a pattern or structure. Young 
students, for example, might notice that three and seven more is the same amount as 
seven and three more, or they may sort a collection of shapes according to how many 
sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 
5 + 7 × 3, in preparation for learning about the distributive property. In the expression 
x2 + 9x + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They 
recognize the significance of an existing line in a geometric figure and can use the 
strategy of drawing an auxiliary line for solving problems. They also can step back for 
an overview and shift perspective. They can see complicated things, such as some 
algebraic expressions, as single objects or as being composed of several objects. For 
example, they can see 5 – 3(x – y)2 as 5 minus a positive number times a square and 
use that to realize that its value cannot be more than 5 for any real numbers x and y. 

We essentially used this practice as our guiding principle when reworking the order of topics 
in this book. Graphing calculators enabled us to expose students to the comparative study of 
functions before becoming immersed in their algebraic behavior, so we did. Students could 
thereby appreciate (and hopefully discuss) the structure of functions from the beginning of the 
course, thus raising to a new level the unifying principle of function first envisioned by 
Leonhard Euler in 1748. It is also a guiding principle of our book that students will 
understand function behavior in all its representations: graphical, numerical, algebraic, and 
verbal.  
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 Look for and express regularity in repeated reasoning.  
Mathematically proficient students notice if calculations are repeated, and look both 
for general methods and for shortcuts. Upper elementary students might notice when 
dividing 25 by 11 that they are repeating the same calculations over and over again, 
and conclude they have a repeating decimal. By paying attention to the calculation of 
slope as they repeatedly check whether points are on the line through (1, 2) with slope 
3, middle school students might abstract the equation (y – 2)/(x – 1) = 3. Noticing the 
regularity in the way terms cancel when expanding (x – 1)(x + 1), (x – 1)(x2 + x + 1), 
and (x – 1)(x3 + x2 + x + 1) might lead them to the general formula for the sum of a 
geometric series. As they work to solve a problem, mathematically proficient students 
maintain oversight of the process, while attending to the details. They continually 
evaluate the reasonableness of their intermediate results. 

Every Example in our textbook is paired with an Exercise that allows students to affirm their 
understanding by employing this mathematical practice. Constructive learning is ideal when 
it works, but students can also learn by seeing examples, then looking for and expressing 
regularity by solving similar problems. This is also how homework plays a role, and we have 
much to say about homework in our book, including when calculator use is appropriate and 
when it is not.  

 

We hope that all of these Mathematical Practices will resonate strongly with teachers who 
have been using Precalculus: Graphical, Numerical, Algebraic. The more we can 
incorporate them into our daily teaching, the better it will be for our students. We expect 
some adjustments to be made to the Common Core State Standards in the near future 
regarding what topics should realistically be taught and when, but in our estimation the how 
and the why seem to be on pretty firm ground already.    
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Common Core State Standards  
Precalculus: Graphical, Numerical, Algebraic, 8th Edition  

The following shows the alignment of Precalculus, Graphical, Numerical, 
Algebraic to the High School Standards for Mathematical Content in the Common 
Core State Standards. We have included all of the standards, both non (+) and 
(+), to help teachers understand the progression of concepts and skills in high 
school mathematics. However, the goal of Precalculus: Graphical, Numerical, 
Algebraic is to cover only those standards marked in red with a (+). You'll notice 
there are coverage gaps in some of the non (+) standards as they are meant to be 
studied before taking this course. 

Key 
N-RN.1 non (+) standards that students study in Algebra 1, Geometry, and Algebra 2 

N-CN.3  (+) (+) standards, the main focus of study in fourth-year courses, like precalculus 

★ modeling standards 

TE page references in the annotated Teacher’s Edition 

TK page references in the additional lessons of this Transition Kit 

‘See related 
concepts and 

skills.’ 

indicates there is no direct instruction, but there is a lesson(s) that can be used 
to create instruction 

 
You'll notice Geometry (+) standard G.GMD.2, which requires informal arguments 
using Cavelieri’s principle with respect to formulas for volume of a sphere and 
other solid figures, is not covered in this course. The authors believe formulas for 
volume should be taught in geometry courses and therefore this standard is 
covered in Pearson’s Geometry text. 
  

Number and Quantity 

The Real Number System  N-RN 

Extend the properties of exponents to rational exponents. 

N-RN.1  Explain how the definition of the meaning of rational exponents follows 
from extending the properties of integer exponents to those values, allowing for 
a notation for radicals in terms of rational exponents.  

TE: 7, 781–783 

N-RN.2  Rewrite expressions involving radicals and rational exponents using the 
properties of exponents. 

TE: 780–783 

Use properties of rational and irrational numbers. 

N-RN.3  Explain why the sum or product of two rational numbers is rational; that 
the sum of a rational number and an irrational number is irrational; and that the 
product of a nonzero rational number and an irrational number is irrational. 

See related concepts 
and skills. 
TE: 2 
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Quantities N-Q 

Reason quantitatively and use units to solve problems. 

N-Q.1  Use units as a way to understand problems and to guide the 
solution of multi-step problems; choose and interpret units consistently 
in formulas; choose and interpret the scale and the origin in graphs 
and data displays. 

TE: 66–67, 76 (#25–#28), 
107 (#56), 126 (#34), 183 
(#53), 193–194(#66–#68), 
233 (#31), 263 (#58), 318, 
397 (#36), 402, 517, 640, 
733 

N-Q.2  Define appropriate quantities for the purpose of descriptive 
modeling. 

TE: 250, 318, 402, 517, 
640, 733 

N-Q.3  Choose a level of accuracy appropriate to limitations on 
measurement when reporting quantities. 

TE: 250, 318, 402, 517, 
640, 733 

The Complex Number System  N-CN 

Perform arithmetic operations with complex numbers. 

N-CN.1  Know there is a complex number i such that i2 = –1, and 
every complex number has the form a + bi with a and b real. 

TE: 49 

N-CN.2  Use the relation i2 = –1 and the commutative, associative, 
and distributive properties to add, subtract, and multiply complex 
numbers. 

TE: 49–50, 51, 52, 53, 62, 
505–506, 511 

N-CN.3  (+) Find the conjugate of a complex number; use conjugates 
to find moduli and quotients of complex numbers. 

TE: 51, 53 (#33–#40), 62 
(#80), 504–506, 511 

Represent complex numbers and their operations on the complex plane. 

N-CN.4  (+) Represent complex numbers on the complex plane in 
rectangular and polar form (including real and imaginary numbers), 
and explain why the rectangular and polar forms of a given complex 
number represent the same number. 

TE: 503–505, 511, 515 
 

N-CN.5  (+) Represent addition, subtraction, multiplication, and 
conjugation of complex numbers geometrically on the complex plane; 
use properties of this representation for computation.  

TE: 49, 50, 51, 52, 53, 62, 
505, 506, 511, 515 

N-CN.6 (+) Calculate the distance between numbers in the complex 
plane as the modulus of the difference, and the midpoint of a segment 
as the average of the numbers at its endpoints. 

TK: 6.6.1 
Also see related concepts and 
skills. 
TE: 49, 52, 503, 504, 511 
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Use complex numbers in polynomial identities and equations. 

N-CN.7  Solve quadratic equations with real coefficients that have 
complex solutions. 

TE: 213, 215 (#27–#36), 247 
(#49–#52) 

N-CN.8  (+) Extend polynomial identities to the complex numbers.  TE: 49–51 

N-CN.9  (+) Know the Fundamental Theorem of Algebra; show that it 
is true for quadratic polynomials. 

TE: 210, 211 215 (#21) 

Vector and Matrix Quantities  N-VM 

Represent and model with vector quantities. 

N-VM.1  (+) Recognize vector quantities as having both magnitude 
and direction. Represent vector quantities by directed line segments, 
and use appropriate symbols for vectors and their magnitudes (e.g., v, 
|v|, ||v||, v). 

TE: 456–458, 633 
 

N-VM.2  (+) Find the components of a vector by subtracting the 
coordinates of an initial point from the coordinates of a terminal point. 

TE: 456, 461, 464 (#29–#32) 
 

N-VM.3  (+) Solve problems involving velocity and other quantities 
that can be represented by vectors. 

TE: 461–463, 465, 515 (#74, 
#75), 516 (#76, #77) 

Perform operations on vectors. 

N-VM.4.a   Add vectors end-to-end, component-
wise, and by the parallelogram rule. Understand 
that the magnitude of a sum of two vectors is 
typically not the sum of the magnitudes. b. Given 
two vectors in magnitude and direction form, 
determine the magnitude and direction of their 
sum. 

TE: 458–459, 464 (#13, #14) 
 

N-VM.4.b  Given two vectors in magnitude and 
direction form, determine the magnitude and 
direction of their sum. 

TE: 460–462, 465 (#49, #50) 

N-VM.4  (+)  
Add and 
subtract 
vectors. 

N-VM.4.c   Understand vector subtraction v – w 
as v + (–w), where –w is the additive inverse of 
w, with the same magnitude as w and pointing in 
the opposite direction. Represent vector subtraction 
graphically by connecting the tips in the 
appropriate order, and perform vector subtraction 
component-wise. 

TE: 464 (#15, #18–#20), 514 
(#1, #2) 
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N-VM.5.a  Represent scalar multiplication 
graphically by scaling vectors and possibly 
reversing their direction; perform scalar 
multiplication component-wise, e.g., as c(vx, vy) = 
(cvx, cvy). 

TE: 459, 464 (#16) 
 

N-VM.5  (+) 
Multiply a vector 
by a scalar. 

N-VM.5.b  Compute the magnitude of a scalar 
multiple cv using ||cv|| = |c|v. Compute the 
direction of cv knowing that when |c|v ≠ 0, the 
direction of cv is either along v (for c > 0) or 
against v (for c < 0). 

TE: 458–459 
 

Perform operations on matrices and use matrices in applications. 

N-VM.6  (+) Use matrices to represent and manipulate data, e.g., to 
represent payoffs or incidence relationships in a network. 

TE: 531, 533–534, 541 

N-VM.7  (+) Multiply matrices by scalars to produce new matrices, 
e.g., as when all of the payoffs in a game are doubled. 

TE: 531, 540 (#11c–#16c), 
573 (#1c, #2c) 

N-VM.8  (+) Add, subtract, and multiply matrices of appropriate 
dimensions. 

TE: 530–534, 540 (#11–
#28), 573 (#1–#8) 

N-VM.9  (+) Understand that, unlike multiplication of numbers, matrix 
multiplication for square matrices is not a commutative operation, but 
still satisfies the associative and distributive properties. 

TE: 537 
 

N-VM.10  (+) Understand that the zero and identity matrices play a 
role in matrix addition and multiplication similar to the role of 0 and 1 
in the real numbers. The determinant of a square matrix is nonzero if 
and only if the matrix has a multiplicative inverse. 

TE: 532, 534–535, 537, 
540, 541 
 

N-VM.11  (+) Multiply a vector (regarded as a matrix with one 
column) by a matrix of suitable dimensions to produce another vector. 
Work with matrices as transformations of vectors. 

See related concepts and skills. 
TE: 532, 540 (#15, #16, 
#23, #24) 

N-VM.12  (+)  Work with 2 × 2 matrices as transformations of the 
plane, and interpret the absolute value of the determinant in terms of 
area. 

See related concepts and skills. 
TE: 535, 537–538 
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Algebra 

Seeing Structure in Expressions  A-SSE 

Interpret the structure of expressions 

A-SSE.1.a  Interpret parts of an expression, such as 
terms, factors, and coefficients. 

TE: 779–783, 784–790, 
791–795 

A-SSE.1  
Interpret 
expressions that 
represent a 
quantity in terms 
of its context.★ 

A-SSE.1.b  Interpret complicated expressions by 
viewing one or more of their parts as a single 
entity. 

TE: 785–790 
 

A-SSE.2  Use the structure of an expression to identify ways to rewrite 
it.  

TE: 780–783, 784–790, 
791–795 

Write expressions in equivalent forms to solve problems 

A-SSE.3.a  Factor a quadratic expression to reveal 
the zeros of the function it defines. 

TE: 40, 46 (#1–#6), 785–
786, 789 

A-SSE.3.b  Complete the square in a quadratic 
expression to reveal the maximum or minimum 
value of the function it defines. 

TE: 41–42, 46 (#13–#18), 
166, 169 (#33–#38) 

A-SSE.3  Choose 
and produce an 
equivalent form 
of an expression 
to reveal and 
explain 
properties of the 
quantity 
represented by 
the expression.★ 

A-SSE.3.c  Use the properties of exponents to 
transform expressions for exponential functions.  

TE: 270, 305, 306, 310 
 

A-SSE.4  Derive the formula for the sum of a finite geometric series 
(when the common ratio is not 1), and use the formula to solve 
problems.★ 

TE: 680–681, 685 (#37, 
#38), 731 (#75, #76) 

Arithmetic with Polynomials and Rational Expressions  A-APR 

Perform arithmetic operations on polynomials 

A-APR.1  Understand that polynomials form a system analogous to the 
integers, namely, they are closed under the operations of addition, 
subtraction, and multiplication; add, subtract, and multiply 
polynomials. 

TE: 784–785, 789 (#9–#18) 
 

Understand the relationship between zeros and factors of polynomials 

A-APR.2  Know and apply the Remainder Theorem: For a polynomial 
p(x) and a number a, the remainder on division by x – a is p(a), so 
p(a) = 0 if and only if (x – a) is a factor of p(x). 

TE: 198–199, 204 (#13–
#18), 246 (#29, #30) 
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A-APR.3  Identify zeros of polynomials when suitable factorizations are 
available, and use the zeros to construct a rough graph of the function 
defined by the polynomial. 

TE: 189–190 (#33–#42, 
#49–#52), 246 (#5–#8) 

Use polynomial identities to solve problems 

A-APR.4  Prove polynomial identities and use them to describe 
numerical relationships.  

TE: 785–788, 789, 790, 796 
 

A-APR.5 (+ ) Know and apply the Binomial Theorem for the expansion 
of (x + y)n in powers of x and y for a positive integer n, where x and y 
are any numbers, with coefficients determined for example by Pascal’s 
Triangle. 

TE: 652–655, 656–657, 729 
(#19–#26) 

Rewrite rational expressions 

A-APR.6  Rewrite simple rational expressions in different forms; write 
a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) 
are polynomials with the degree of r(x) less than the degree of b(x), 
using inspection, long division, or, for the more complicated examples, 
a computer algebra system. 

TE: 791–792, 793–794, 795 
(#33–#44, #63–#72) 

A-APR.7  (+) Understand that rational expressions form a system 
analogous to the rational numbers, closed under addition, subtraction, 
multiplication, and division by a nonzero rational expression; add, 
subtract, multiply, and divide rational expressions.  

TE: 792–793, 795 (#45–#62) 
 

Creating Equations ★  A-CED 

Create equations that describe numbers or relationships 

A-CED.1  Create equations and inequalities in one variable and use 
them to solve problems. Include equations arising from linear and 
quadratic functions, and simple rational and exponential functions. 

TE: 47 (#59–#61), 71, 77 
(#47), 230–232, 233, 234, 
260–261, 263 (#55–#58) 

A-CED.2  Create equations in two or more variables to represent 
relationships between quantities; graph equations on coordinate axes 
with labels and scales. 

TE: 67, 71, 75 (#15), 76 
(#24), 79 (#63), 92–93, 144, 
147, 151 (#50, #51), 163, 
167, 170 (#53), 171 (#58, 
#59, #62, #63), 172 (#67, 
#68), 220–223, 230, 268, 
269, 297, 302 (#51, #52), 
567–570, 571 (#31–#37), 
572 (#38), 603–604 

A-CED.3  Represent constraints by equations or inequalities, and by 
systems of equations and/or inequalities, and interpret solutions as 
viable or nonviable options in a modeling context.  

TE: 92–93, 220–232, 332–
333 (#13–#22), 241–242, 
260–261, 266–267, 268–
269, 567–570, 571 (#31–
#37), 572 (#38), 603–604 

A-CED.4  Rearrange formulas to highlight a quantity of interest, using 
the same reasoning as in solving equations.  

TE: 27 (#70–#73), 66 
(Exploration 1), 76 (#22), 
114, 140, 141, 305, 306 



 

 17 

 

Reasoning with Equations and Inequalities  A-REI 

Understand solving equations as a process of reasoning and explain the reasoning 

A-REI.1  Explain each step in solving a simple equation as following 
from the equality of numbers asserted at the previous step, starting 
from the assumption that the original equation has a solution. Construct 
a viable argument to justify a solution method. 

TE: 22, 23, 40, 41, 228, 
229, 230, 292, 293, 413, 
414, 415, 416 
 

A-REI.2  Solve simple rational and radical equations in one variable, 
and give examples showing how extraneous solutions may arise. 

TE: 228, 229, 230, 231, 
232, 233, 235 

Solve equations and inequalities in one variable 

A-REI.3  Solve linear equations and inequalities in one variable, 
including equations with coefficients represented by letters. 

TE: 22, 23, 24, 25, 26, 27, 
61 

A-REI.4.a  Use the method of completing the 
square to transform any quadratic equation in x 
into an equation of the form (x – p)2 = q that has 
the same solutions. Derive the quadratic formula 
from this form. 

TE: 41–42, 46, 47 (#68) 
 

A-REI.4  Solve 
quadratic 
equations in one 
variable.  

A-REI.4.b  Solve quadratic equations by inspection 
(e.g., for x2 = 49), taking square roots, completing 
the square, the quadratic formula and factoring, as 
appropriate to the initial form of the equation.  
Recognize when the quadratic formula gives 
complex solutions and write them as a ± bi for real 
numbers a and b. 

TE: 40, 41, 42, 43, 46, 47 
 

Solve systems of equations  

A-REI.5  Prove that, given a system of two equations in two variables, 
replacing one equation by the sum of that equation and a multiple of 
the other produces a system with the same solutions. 

See related concepts and skills. 
TE: 544–545 
 

A-REI.6  Solve systems of linear equations exactly and approximately 
(e.g., with graphs), focusing on pairs of linear equations in two 
variables. 

TE: 520–521, 523, 524–535, 
526, 527, 528 

A-REI.7  Solve a simple system consisting of a linear equation and a 
quadratic equation in two variables algebraically and graphically.  

TE: 526 (#2, #11–#14, #17, 
#18), 527 (#27, #28, #38, 
#39) 

A-REI.8  (+ ) Represent a system of linear equations as a single matrix 
equation in a vector variable. 

TE: 546–547, 553 (#25–#28) 

A-REI.9  (+) Find the inverse of a matrix if it exists and use it to 
solve systems of linear equations (using technology for matrices of 
dimension 3 × 3 or greater). 

TE: 550–552, 554 (#49–#52) 
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Represent and solve equations and inequalities graphically 

A-REI.10  Understand that the graph of an equation in two variables is 
the set of all its solutions plotted in the coordinate plane, often forming 
a curve (which could be a line). 

TE: 31, 36 (#27–#30), #37 
(#51, #52), 69, 83, 87–88, 
89, 91–92, 93–94, 95 (#21–
#24, #29–#34), 96 (#63–
#66), 99–101, 105, 106 (#1–
#12), 107 (#53–#56), 108 
(#64), 164–165, 169, (#13–
#18), 176–179, 182 (#37–
#42), 185, 193 (#9–#12), 
219–220, 225 (#5–#10), 226 
(#31–#36), 255, 256, 258, 
259, 262 (#15–#30), 278, 
279, 281 (#37–#58), 350, 
351, 357 (#13–#28), 361–
362, 363–364, 365 (#1–
#12), 366 (#13–#16) 

A-REI.11  Explain why the x-coordinates of the points where the graphs 
of the equations y = f(x) and y = g(x) intersect are the solutions of the 
equation f(x) = g(x); find the solutions approximately, e.g., using 
technology to graph the functions, make tables of values, or find 
successive approximations. Include cases where f(x) and/or g(x) are 
linear, polynomial, rational, absolute value, exponential, and 
logarithmic functions.★ 

TE: 520–522, 523, 524, 
525, 526 (#13–#18), 527 
(#35–#42), 529 (#65, #66) 
 

A-REI.12  Graph the solutions to a linear inequality in two variables as 
a halfplane (excluding the boundary in the case of a strict inequality), 
and graph the solution set to a system of linear inequalities in two 
variables as the intersection of the corresponding half-planes. 

TE: 565–566, 567 570, 571, 
574, 575 
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Functions 

Interpreting Functions  F-IF 

Understand the concept of a function and use function notation 

F-IF.1  Understand that a function from one set (called the domain) to 
another set (called the range) assigns to each element of the domain 
exactly one element of the range. If f is a function and x is an element 
of its domain, then f(x) denotes the output of f corresponding to the 
input x. The graph of f is the graph of the equation y = f(x). 

TE: 80–84, 94, 95, 96, 97, 
99–105, 106, 107, 152, 153 
 

F-IF.2  Use function notation, evaluate functions for inputs in their 
domains, and interpret statements that use function notation in terms of 
a context. 

TE: 83–84. 95 (#9–#16, 
#17–#20), 97 (#78), 107 
(#56), 140–147, 148 (#15–
#20), 150 (#49), 153 (#11–
#18), 154 (#59–#64) 

F-IF.3  Recognize that sequences are functions, sometimes defined 
recursively, whose domain is a subset of the integers.  

TE: 670–675, 676, 677, 730 
(#47–#62) 

Interpret functions that arise in applications in terms of the context 

F-IF.4  For a function that models a relationship between two 
quantities, interpret key features of graphs and tables in terms of the 
quantities, and sketch graphs showing key features given a verbal 
description of the relationship. Key features include: intercepts; 
intervals where the function is increasing, decreasing, positive, or 
negative; relative maximums and minimums; symmetries; end behavior; 
and periodicity.★ 

TE: 159–163, 164–168, 170, 
171, 172, 176–181, 183, 
184, 185–192, 194, 195, 
218–224, 227, 248, 249, 
250, 252–261, 262, 263, 
265–270, 271, 272, 273, 
277–280, 281, 282, 290, 
291, 350–356, 358, 359, 
360, 361–364, 367 

F-IF.5  Relate the domain of a function to its graph and, where 
applicable, to the quantitative relationship it describes.★ 

TE: 81–82, 95, 99–102, 105, 
106, 140–141, 176–181, 
219, 224, 255, 259, 266, 
267, 268, 269, 270, 278, 
350, 356, 361, 362, 363, 
364 

F-IF.6  Calculate and interpret the average rate of change of a function 
(presented symbolically or as a table) over a specified interval.  
Estimate the rate of change from a graph.★ 

TE: 160–161, 170 (#53), 171 
(60), 172 (#67), 173 (#78) 
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Analyze functions using different representations  

F-IF.7.a  Graph linear and quadratic functions and 
show intercepts, maxima, and minima. 

TE: 66–68, 99, 103–104, 
106, 159–163, 164–168, 
169, 170, 171, 172, 173, 
246, 247, 248, 249, 250 

F-IF.7.b  Graph square root, cube root, and 
piecewise-defined functions, including step 
functions and absolute value functions. 

TE: 100, 101, 103, 104–
105, 106, 107, 108, 179 

F-IF.7.c  Graph polynomial functions, identifying 
zeros when suitable factorizations are available, 
and showing end behavior. 

TE: 158–168, 169, 170, 
171, 172, 173, 185–192, 
193, 194, 195, 196, 246, 
247, 248, 249, 250 

F-IF.7.d  (+) Graph rational functions, identifying 
zeros and asymptotes when suitable factorizations 
are available, and showing end behavior. 

TE: 218–224, 225, 226, 
227, 247 

F-IF.7  Graph 
functions 
expressed 
symbolically and 
show key 
features of the 
graph, by hand 
in simple cases 
and using 
technology for 
more 
complicated 
cases.★ 

F-IF.7.e  Graph exponential and logarithmic 
functions, showing intercepts and end behavior, 
and trigonometric functions, showing period, 
midline, and amplitude. 

TE: 252–258, 260, 262, 
266–268, 274, 277–279, 
281, 314, 315, 318 

F-IF.8.a  Use the process of factoring and 
completing the square in a quadratic function to 
show zeros, extreme values, and symmetry of the 
graph, and interpret these in terms of a context. 

TE: 40–43, 47 (#1–#6, #13–
#18), 145, 164–168, 169, 
171 (#61–#65), 246, 248, 
249, 250 

F-IF.8  Write a 
function defined 
by an expression 
in different but 
equivalent forms 
to reveal and 
explain different 
properties of the 
function. 

F-IF.8.b  Use the properties of exponents to 
interpret expressions for exponential functions.  

TE: 7, 253, 254, 260, 262 
(#39, #40), 265–267, 270 
(#1–#6), 271 (#29–#34), 
272, 273 

F-IF.9  Compare properties of two functions each represented in a 
different way (algebraically, graphically, numerically in tables, or by 
verbal descriptions).  

TE: 90–92, 103–104, 105, 
176, 179, 219, 255, 256, 
259, 350, 351, 361, 362, 
363, 364 
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Building Functions  F-BF 

Build a function that models a relationship between two quantities 

F-BF.1.a  Determine an explicit expression, a 
recursive process, or steps for calculation from a 
context. 

TE: 254, 261 (#11, #12), 
266, 267, 271 (#58, #59, 
#62, #63), 191, 248 (#83, 
#85, #86), 249 (#90, #93–
#95), 395 (#27, #28), 396 
(#29, #32), 670–671, 672–
673, 674–675, 676 (#1–#10, 
#21–#31),  

F-BF.1.b  Combine standard function types using 
arithmetic operations.  

TE: 110, 116 (#1–#8), 117 
(#9, #10) 

F-BF.1 Write a 
function that 
describes a 
relationship 
between two 
quantities.★ 

F-BF.1.c  (+) Compose functions.  TE: 111–114, 117, 118, 154 

F-BF.2  Write arithmetic and geometric sequences both recursively and 
with an explicit formula, use them to model situations, and translate 
between the two forms.★ 

TE: 670–675, 676, 677 

Build new functions from existing functions 

F-BF.3  Identify the effect on the graph of replacing f(x) by f(x) + k, k 
f(x), f(kx), and f(x + k) for specific values of k (both positive and 
negative); find the value of k given the graphs. Experiment with cases 
and illustrate an explanation of the effects on the graph using 
technology.  Include recognizing even and odd functions from their 
graphs and algebraic expressions for them. 

TE: 90–92, 95 (#47–#54), 
103–104, 105, 129–136, 
137, 138, 139, 153 (#37–
#40), 176, 179, 185, 219, 
220, 255, 256, 258, 259, 
350, 351, 352, 353, 355, 
361 

F-BF.4.a  Solve an equation of the form f(x) = c for 
a simple function f that has an inverse and write an 
expression for the inverse.  

TE: 121–125, 126, 127, 128 

F-BF.4.b  (+) Verify by composition that one 
function is the inverse of another. 

TE: 124, 129 (#27–#32) 

F-BF.4.c  (+) Read values of an inverse function 
from a graph or a table, given that the function has 
an inverse. 

TE: 123–124, 126 (#23–#26) 

F-BF.4  Find 
inverse functions. 

F-BF.4.d  (+) Produce an invertible function from 
a non-invertible function by restricting the domain. 

TE: 123–124, 126 (#23–#26) 

F-BF.5  (+ ) Understand the inverse relationship between exponents 
and logarithms and use this relationship to solve problems involving 
logarithms and exponents. 

TE: 274–277, 281, 283, 
285, 288, 293, 297, 298 
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Linear, Quadratic, and Exponential Models★  F-LE 

Construct and compare linear, quadratic, and exponential models and solve problems 

F-LE.1.a  Prove that linear functions grow by equal 
differences over equal intervals, and that 
exponential functions grow by equal factors over 
equal intervals. 

See related concepts and skills. 
TE: 33 (Figure P.29(b)), 160–
161, 170 (#51, #52), 254–
255, 261 (#11, #12) 

F-LE.1.b  Recognize situations in which one 
quantity changes at a constant rate per unit interval 
relative to another. 

TE: 160–163, 170 (#53), 172 
(#67, #68) 

F-LE.1  
Distinguish 
between 
situations that 
can be modeled 
with linear 
functions and 
with exponential 
functions. F-LE.1.c  Recognize situations in which a quantity 

grows or decays by a constant percent rate per 
unit interval relative to another.  

TE: 260–261, 262 (#51), 263 
(#52–#58), 265–270, 271, 
272, 273 

F-LE.2  Construct linear and exponential functions, including arithmetic 
and geometric sequences, given a graph, a description of a 
relationship, or two input-output pairs (include reading these from a 
table). 

TE: 33–34, 37 (#45, #51), 
163, 170 (#53), 172 (#67, 
#68), 266–268, 271 (#33, 
#34), 272 

F-LE.3  Observe using graphs and tables that a quantity increasing 
exponentially eventually exceeds a quantity increasing linearly, 
quadratically, or (more generally) as a polynomial function. 

TE: 258–261, 262 (#51–#56) 
 

F-LE.4  For exponential models, express as a logarithm the solution to 
abct = d where a, c, and d are numbers and the base b is 2, 10, or e; 
evaluate the logarithm using technology. 

TE: 296–297 (Example 7), 
301 (#49, #50) 

Interpret expressions for functions in terms of the situation they model 

F-LE.5  Interpret the parameters in a linear or exponential function in 
terms of a context. 

TE: 258–261, 263 (#56), 
269–270, 272 (#46),  
273 (#58), 316 (#76, #94) 
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Trigonometric Functions  F-TF 

Extend the domain of trigonometric functions using the unit circle 

F-TF.1  Understand radian measure of an angle as the length of the arc 
on the unit circle subtended by the angle. 

TE: 320–323, 325, 327, 399 
 

F-TF.2  Explain how the unit circle in the coordinate plane enables the 
extension of trigonometric functions to all real numbers, interpreted as 
radian measures of angles traversed counterclockwise around the unit 
circle. 

TE: 338–346, 347–349, 400 
(#17–#28) 

F-TF.3  (+) Use special triangles to determine geometrically the values 
of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle 
to express the values of sine, cosine, and tangent for π–x, π+x, and 
2π–x in terms of their values for x, where x is any real number. 

TE: 341–342, 343, 344, 
346, 347 (#25–#36), 400 
(#29–#32) 

F-TF.4  (+) Use the unit circle to explain symmetry (odd and even) and 
periodicity of trigonometric functions. 

TE: 345–346, 348 (#49–
#52), 350, 351, 353, 354, 
355, 356, 357, 358, 359, 
360, 361, 362, 363, 364, 
365, 366, 400 (#61–#66) 

Model periodic phenomena with trigonometric functions 

F-TF.5  Choose trigonometric functions to model periodic phenomena 
with specified amplitude, frequency, and midline.★ 

TE: 354, 355, 358 (#57–#60) 
 

F-TF.6  (+) Understand that restricting a trigonometric function to a 
domain on which it is always increasing or always decreasing allows 
its inverse to be constructed. 

TE: 378–384, 385 
 

F-TF.7  (+) Use inverse functions to solve trigonometric equations that 
arise in modeling contexts; evaluate the solutions using technology, 
and interpret them in terms of the context.★ 

TE: 378–384, 386 (#55) 
 

Prove and apply trigonometric identities 

F-TF.8  Prove the Pythagorean identity sin2(θ) + cos2(θ) = 1 and use it 
to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the 
quadrant of the angle. 

TE: 345, 405–406, 410 
 

F-TF.9 (+) Prove the addition and subtraction formulas for sine, 
cosine, and tangent and use them to solve problems. 

TE: 421–425, 426, 427, 
428, 450 (#5) 
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Geometry 

Congruence  G-CO 

Experiment with transformations in the plane 

G-CO.1  Know precise definitions of angle, circle, 
perpendicular line, parallel line, and line segment, based on 
the undefined notions of point, line, distance along a line, 
and distance around a circular arc. 

TE: 13, 15, 31, 32, 338, 816, 817, 
819, 825, 826 
 

G-CO.2  Represent transformations in the plane using, e.g., 
transparencies and geometry software; describe 
transformations as functions that take points in the plane as 
inputs and give other points as outputs. 
Compare transformations that preserve distance and angle to 
those that do not (e.g., translation versus horizontal stretch).  

 

G-CO.3  Given a rectangle, parallelogram, trapezoid, or 
regular polygon, describe the rotations and reflections that 
carry it onto itself.  

 

G-CO.4  Develop definitions of rotations, reflections, and 
translations in terms of angles, circles, perpendicular lines, 
parallel lines, and line segments. 

 

G-CO.5  Given a geometric figure and a rotation, reflection, 
or translation, draw the transformed figure using, e.g., graph 
paper, tracing paper, or geometry software. Specify a 
sequence of transformations that will carry a given figure 
onto another. 

 

Understand congruence in terms of rigid motions 

G-CO.6  Use geometric descriptions of rigid motions to 
transform figures and to predict the effect of a given rigid 
motion on a given figure; given two figures, use the definition 
of congruence in terms of rigid motions to decide if they are 
congruent. 

 

G-CO.7  Use the definition of congruence in terms of rigid 
motions to show that two triangles are congruent if and only 
if corresponding pairs of sides and corresponding pairs of 
angles are congruent. 

See related concepts and skills. 
TE: 329 
 

G-CO.8  Explain how the criteria for triangle congruence 
(ASA, SAS, and SSS) follow from the definition of congruence 
in terms of rigid motions. 

See related concepts and skills. 
TE: 329 
 



 

 25 

 
Prove geometric theorems 

G-CO.9  Prove theorems about lines and angles. Theorems 
include: vertical angles are congruent; when a transversal 
crosses parallel lines, alternate interior angles are congruent 
and corresponding angles are congruent; points on a 
perpendicular bisector of a line segment are exactly those 
equidistant from the segment’s endpoints. 

 

G-CO.10  Prove theorems about triangles. Theorems include: 
measures of interior angles of a triangle sum to 180°; base 
angles of isosceles triangles are congruent; the segment 
joining midpoints of two sides of a triangle is parallel to the 
third side and half the length; the medians of a triangle meet 
at a point. 

See related concepts and skills. 
TE: 19 (#37, #54, #55, #59), 20 
(#65), 39 (#71) 
 

G-CO.11  Prove theorems about parallelograms. Theorems 
include: opposite sides are congruent, opposite angles are 
congruent, the diagonals of a parallelogram bisect each 
other, and conversely, rectangles are parallelograms with 
congruent diagonals. 

TE: 16–17 
 

Make geometric constructions 

G-CO.12  Make formal geometric constructions with a variety 
of tools and methods (compass and straightedge, string, 
reflective devices, paper folding, dynamic geometric 
software, etc.). Copying a segment; copying an angle; 
bisecting a segment; bisecting an angle; constructing 
perpendicular lines, including the perpendicular bisector of a 
line segment; and constructing a line parallel to a given line 
through a point not on the line. 

TE: 513 (#78), 589 (#71, #72), 611 
(#69) 
 

G-CO.13  Construct an equilateral triangle, a square, and a 
regular hexagon inscribed in a circle. 

 

Similarity, Right Triangles, and Trigonometry  G-SRT 

Understand similarity in terms of similarity transformations 

G-SRT.1.a  A dilation takes a line not 
passing through the center of the dilation 
to a parallel line, and leaves a line 
passing through the center unchanged. 

 G-SRT.1  Verify 
experimentally 
the properties of 
dilations given 
by a center and 
a scale factor: 

G-SRT.1.b  The dilation of a line segment 
is longer or shorter in the ratio given by 
the scale factor. 
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G-SRT.2  Given two figures, use the definition of similarity in 
terms of similarity transformations to decide if they are 
similar; explain using similarity transformations the meaning 
of similarity for triangles as the equality 
of all corresponding pairs of angles and the proportionality 
of all corresponding pairs of sides. 

See related concepts and skills. 
TE: 196 (#85), 329 
 

G-SRT.3  Use the properties of similarity transformations to 
establish the AA criterion for two triangles to be similar. 

See related concepts and skills. 
TE: 329 

Prove theorems involving similarity 

G-SRT.4  Prove theorems about triangles. Theorems include: a 
line parallel to one side of a triangle divides the other two 
proportionally, and conversely; the Pythagorean Theorem 
proved using triangle similarity. 

TE: 19 (#54, #55, #59) 
 

G-SRT.5  Use congruence and similarity criteria for triangles 
to solve problems and to prove relationships in geometric 
figures. 

TE: 196 (#85) 
 

Define trigonometric ratios and solve problems involving right triangles 

G-SRT.6  Understand that by similarity, side ratios in right 
triangles are properties of the angles in the triangle, leading 
to definitions of trigonometric ratios for acute angles. 

TE: 329–331, 355 
 

G-SRT.7  Explain and use the relationship between the sine 
and cosine of complementary angles. 

TE: 331 (Exploration 2) 
 

G-SRT.8  Use trigonometric ratios and the Pythagorean 
Theorem to solve right triangles in applied problems.★ 

TE: 334, 336 (#61–#65) 
 

Apply trigonometry to general triangles 

G-SRT.9  (+) Derive the formula A = 1/2 ab sin(C) for the 
area of a triangle by drawing an auxiliary line from a vertex 
perpendicular to the opposite side. 

TE: 337 (#78) 
 

G-SRT.10  (+) Prove the Laws of Sines and Cosines and use 
them to solve problems. 

TE: 434–438, 442 
 

G-SRT.11  (+) Understand and apply the Law of Sines and 
the Law of Cosines to find unknown measurements in right 
and non-right triangles (e.g., surveying problems, resultant 
forces). 

TE: 437–438, 439, 440, 445–446, 
448, 449 
 

Circles  G-C 

Understand and apply theorems about circles 

G-C.1  Prove that all circles are similar. See prerequisite concepts and skills. 
TE: 15 
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G-C.2   Identify and describe relationships among inscribed 
angles, radii, and chords. Include the relationship between 
central, inscribed, and circumscribed angles; inscribed 
angles on a diameter are right angles; the radius of a circle is 
perpendicular to the tangent where the radius intersects the 
circle. 

TE: 320 
 

G-C.3  Construct the inscribed and circumscribed circles of a 
triangle, and prove properties of angles for a quadrilateral 
inscribed in a circle. 

 

G-C.4 (+) Construct a tangent line from a point outside a 
given circle to the circle. 

See related concepts and skills. 
TE: 39 (#70) 
 

Find arc lengths and areas of sectors of circles 

G-C.5  Derive using similarity the fact that the length of the 
arc intercepted by an angle is proportional to the radius, and 
define the radian measure of the angle as the constant of 
proportionality; derive the formula for the area of a sector. 

TE: 328 (#71) 
 

Expressing Geometric Properties with Equations  G-GPE 

Translate between the geometric description and the equation for a conic section 

G-GPE.1  Derive the equation of a circle of given center and 
radius using the Pythagorean Theorem; complete the square 
to find the center and radius of a circle given by an equation. 

TE: 15–16, 19 (#41–#48), 799 
 

G-GPE.2  Derive the equation of a parabola given a focus 
and directrix. 

TE: 584–585, 588 (#15, #16, #23, 
#24), 799 

G-GPE.3 (+) Derive the equations of ellipses and hyperbolas 
given the foci, using the fact that the sum or difference of 
distances from the foci is constant. 

TE: 592–593, 594, 599 (#23, #24, 
#33. #34), 604–605, 609 (#23–#25, 
#35, #36), 799 

Use coordinates to prove simple geometric theorems algebraically 

G-GPE.4  Use coordinates to prove simple geometric 
theorems algebraically.  

TE: 13–17, 19 (#37–#40, #45–#48, 
#53–#55, #59), 20 (#65–#70) 

G-GPE.5  Prove the slope criteria for parallel and 
perpendicular lines and use them to solve geometric problems 
(e.g., find the equation of a line parallel or perpendicular to 
a given line that passes through a given point). 

TE: 31–32, 37 (#41–#43) 
 

G-GPE.6  Find the point on a directed line segment between 
two given points that partitions the segment in a given ratio. 

See related concepts and skills. 
TE: 14–15, 17 (#23–#28) 

G-GPE.7  Use coordinates to compute perimeters of polygons 
and areas of triangles and rectangles, e.g., using the 
distance formula.★ 

TE: 14, 20 (#66), 797 
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Geometric Measurement and Dimension  G-GMD 

Explain volume formulas and use them to solve problems 

G-GMD.1  Give an informal argument for the formulas for the 
circumference of a circle, area of a circle, volume of a 
cylinder, pyramid, and cone. Use dissection arguments, 
Cavalieri’s principle, and informal limit arguments. 

See related concepts and skills. 
TE: 27 (#72), 142–143, 153 (#67), 
231, 241, 243 (#60), 248 (#87), 797 

G-GMD.2 (+) Give an informal argument using Cavalieri’s 
principle for the formulas for the volume of a sphere and 
other solid figures. 

See page 14 for comments. 

G-GMD.3  Use volume formulas for cylinders, pyramids, 
cones, and spheres to solve problems.★ 

TE: 27 (#72), 142-143, 149 (#33), 
155 (#67), 191, 194-195, 231, 241, 
243 (#59, #60), 248 (#87), 797 

Visualize relationships between two-dimensional and three dimensional objects 

G-GMD.4  Identify the shapes of two-dimensional cross-
sections of three-dimensional objects, and identify three-
dimensional objects generated by rotations of two-
dimensional objects. 

TE: 580-581, 591, 602 
 

Modeling with Geometry  G-MG 

Apply geometric concepts in modeling situations 

G-MG.1  Use geometric shapes, their measures, and their 
properties to describe objects (e.g., modeling a tree trunk or 
a human torso as a cylinder).★ 

TE: 47 (#61), 114, 140, 142, 143, 
191, 195, 207, 231, 243, 248, 324, 
328, 542, 598 

G-MG.2  Apply concepts of density based on area and 
volume in modeling situations (e.g., persons per square mile, 
BTUs per cubic foot).★ 

TE: 207 
 

G-MG.3  Apply geometric methods to solve design problems 
(e.g., designing an object or structure to satisfy physical 
constraints or minimize cost; working with typographic grid 
systems based on ratios).★ 

TE: 59 (#46), 140–143, 191, 195, 
231, 243 
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Statistics and Probability 

Interpreting Categorical and Quantitative Data  S-ID 

Summarize, represent, and interpret data on a single count or measurement variable 

S-ID.1  Represent data with plots on the real number line (dot 
plots, histograms, and box plots). 

TE: 697–698, 701 (#9–#11), 703 
(#31) 
 

S-ID.2  Use statistics appropriate to the shape of the data 
distribution to compare center (median, mean) and spread 
(interquartile range, standard deviation) of two or more 
different data sets. 

TE: 704–712, 713–716 
 

S-ID.3  Interpret differences in shape, center, and spread in 
the context of the data sets, accounting for possible effects of 
extreme data points (outliers). 

TE: 698, 703 (#31), 704–712, 713–
716 
 

S-ID.4  Use the mean and standard deviation of a data set to 
fit it to a normal distribution and to estimate population 
percentages. Recognize that there are data sets for which 
such a procedure is not appropriate.  Use calculators, 
spreadsheets, and tables to estimate areas under the normal 
curve. 

TE: 711–712, 715 (#41, #42) 
 

Summarize, represent, and interpret data on two categorical and quantitative variables 

S-ID.5  Summarize categorical data for two categories in two-
way frequency tables. Interpret relative frequencies in the 
context of the data (including joint, marginal, and conditional 
relative frequencies). 

TE: 697, 698, 701 (#7, #8), 702 
(#23, #24) 
 

Recognize possible associations and trends in the data. 

S-ID.6.a  Fit a function to the data; 
use functions fitted to data to solve 
problems in the context of the data.  
Use given functions or choose a 
function suggested by the context. 
Emphasize linear, quadratic, and 
exponential models. 

TE: 33–34, 37, 67, 75, 76, 79, 82, 
144, 147, 151, 163, 167–168, 170, 
172, 179–181, 183 
 

S-ID.6.b  Informally assess the fit of a 
function by plotting and analyzing 
residuals. 

TE: 33–34, 37, 67, 75, 76, 79, 82, 
144, 147, 151, 163, 167–168, 170, 
172, 179–181, 183 
 

S-ID.6  Represent 
data on two 
quantitative 
variables on a 
scatter plot, and 
describe how the 
variables are 
related. 

S-ID.6.c  Fit a linear function for a 
scatter plot that suggests a linear 
association. 

TE: 33–34, 37, 67, 75, 76, 79, 82, 
144, 163, 170, 172 
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Interpret linear models 

S-ID.7  Interpret the slope (rate of change) and the intercept 
(constant term) of a linear model in the context of the data. 

TE: 29–30, 33, 34, 37, 38, 67, 75, 
79, 163, 170, 172 (#67) 

S-ID.8  Compute (using technology) and interpret the 
correlation coefficient of a linear fit. 

TE: 146, 162, 163, 167, 179, 717–
719, 725 
 

S-ID.9  Distinguish between correlation and causation.  TE: 162, 728 (#53) 

Making Inferences and Justifying Conclusions  S-IC 

Understand and evaluate random processes underlying statistical experiments 

S-IC.1  Understand statistics as a process for making 
inferences about population parameters based on a random 
sample from that population. 

TE: 704, 719–720, 723–724, 726, 
727, 728, 732 
 

S-IC.2  Decide if a specified model is consistent with results 
from a given data-generating process, e.g., using simulation 

TE: 719–728, 730, 731, 732 
 

Make inferences and justify conclusions from sample surveys, experiments,  
and observational studies 

S-IC.3  Recognize the purposes of and differences among 
sample surveys, experiments, and observational studies; 
explain how randomization relates to each. 

TE: 719–728, 730, 731, 732 
 

S-IC.4  Use data from a sample survey to estimate a 
population mean or proportion; develop a margin of error 
through the use of simulation models for random sampling. 

TE: 720–721, 726 (#7–#12), 727 
(#33, #34), 732 (#113, #114) 
 

S-IC.5  Use data from a randomized experiment to compare 
two treatments; use simulations to decide if differences 
between parameters are significant. 

TE: 721–723, 724–725, 726, 727, 
728 
 

S-IC.6  Evaluate reports based on data. TE: 695, 696, 697, 699–700, 701, 
702, 703, 707, 708, 709, 710, 712, 
733 
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Conditional Probability and the Rules of Probability  S-CP 

Understand independence and conditional probability and use them to interpret data 

S-CP.1 Describe events as subsets of a sample space (the set 
of outcomes) using characteristics (or categories) of the 
outcomes, or as unions, intersections, or complements of 
other events (“or,” “and,” “not”). 

TE: 661–662, 667 (#27, #28) 
 

S-CP.2 Understand that two events A and B are independent 
if the probability of A and B occurring together is the product 
of their probabilities, and use this characterization to 
determine if they are independent. 

TE: 661, 667 (#33, #34) 
 

S-CP.3  Understand the conditional probability of A given B 
as P(A and B)/P(B), and interpret independence of A and B 
as saying that the conditional probability of A given B is the 
same as the probability of A, and the conditional probability 
of B given A is the same as the probability of B. 

TE: 663–664, 667 (#31, #32) 
 

S-CP.4  Construct and interpret two-way frequency tables of 
data when two categories are associated with each object 
being classified. Use the two-way table as a sample space to 
decide if events are independent and to approximate 
conditional probabilities.  

Probability concepts are taught in 
Section 9.3. 
TE: 658–669 
 

S-CP.5 Recognize and explain the concepts of conditional 
probability and independence in everyday language and 
everyday situations.  

TE: 661–663, 666, 667 
 

Use the rules of probability to compute probabilities of compound events in a uniform probability model 

S-CP.6  Find the conditional probability of A given B as the 
fraction of B’s outcomes that also belong to A, and interpret 
the answer in terms of the model. 

Conditional probability is introduced in 
Section 9.3. 
TE: 663 
 

S-CP.7  Apply the Addition Rule, P(A or B) = P(A) + P(B) –  
P(A and B), and interpret the answer in terms of the model. 

TE: 662 
 

S-CP.8  (+) Apply the general Multiplication Rule in a 
uniform probability model, P(A and B) = P(A)P(B|A) = 
P(B)P(A|B), and interpret the answer in terms of the model. 

TE: 663, 667 (#31, #32) 
 

S-CP.9  (+) Use permutations and combinations to compute 
probabilities of compound events and solve problems.  

TE: 658, 661, 666 (#5, #6), 667 
(#33, #34) 
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Using Probability to Make Decisions  S-MD 

Calculate expected values and use them to solve problems 

S-MD.1 (+) Define a random variable for a quantity of 
interest by assigning a numerical value to each event in a 
sample space; graph the corresponding probability 
distribution using the same graphical displays as for data 
distributions. 

TE: 723–724, 727 (#33–#36) 
TK: 9.3.1, 9.3.2, 9.3.3, 9.3.7, 9.3.8 
 

S-MD.2 (+) Calculate the expected value of a random 
variable; interpret it as the mean of the probability 
distribution.  

TE: 668–669 (#61, #62) 
TK: 9.3.3, 9.3.4, 9.3.5, 9.3.6, 9.3.7, 
9.3.8 
 

S-MD.3 (+) Develop a probability distribution for a random 
variable defined for a sample space in which theoretical 
probabilities can be calculated; find the expected value.  

TE: 659–660, 668 (#57, #61), 669 
(#62) 
TK: 9.3.2, 9.3.3 
 
 

S-MD.4 (+) Develop a probability distribution for a random 
variable defined for a sample space in which probabilities 
are assigned empirically; find the expected value.  

TE: 659–660, 668 (#57, #61), 669 
(#62) 
TK: 9.3.6, 9.3.7, 9.3.8 
 

Use probability to evaluate outcomes of decisions 

S-MD.5.a Find the expected 
payoff for a game of chance. 

TE: 668–669 (#61, #62) 
TK: 9.3.3, 9.3.4, 9.3.5 

S-MD.5 (+) Weigh the 
possible outcomes of a 
decision by assigning 
probabilities to payoff values 
and finding expected values. 

S-MD.5.b. Evaluate and 
compare strategies on the 
basis of expected values. 

TE: 668–669 (#61, #62) 
TK: 9.3.6, 9.3.7 

S-MD.6 (+) Use probabilities to make fair decisions (e.g., 
drawing by lots, using a random number generator). 

TE: 723–724, 727 (#33, #34) 
 

S-MD.7 (+) Analyze decisions and strategies using 
probability concepts (e.g., product testing, medical testing, 
pulling a hockey goalie at the end of a game). 

TE: 664, 667 (#34, #35, #38), 727–
725, 732 (#113, #114) 
TK: 9.3.3, 9.3.4, 9.3.5, 9.3.6, 9.3.7 
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Closeness and Betweenness in a Complex World 

An extension of Section 6.6  

The real number line makes it easy to visualize closeness and betweenness in the world of 
real numbers, partly because the line represents an ordering of the real numbers, 
increasing from left to right along the line. The complex number system has some 
algebraic advantages (for example, we can factor any quadratic polynomial), but it has 
the disadvantage of not being orderable along a "complex number line."  
 
EXAMPLE 1   Proving that a Complex Number Line is Impossible 
Show that all three of these inequalities lead to contradictions according to the algebraic 
properties of order: i = 0, i > 0, i < 0.  
 
SOLUTION   
Suppose i = 0. Multiply both sides by i to get –1 = 0, a contradiction. 
Suppose i > 0. Multiply both sides by i to get –1 > 0, a contradiction.  
Suppose i < 0. Multiply both sides by i (remembering to switch the inequality because this 
time we are multiplying by a negative number) to get –1 > 0, a contradiction! 
 
This shows that you can't even put i on the same line with the real numbers and preserve 
the algebraic properties of order, so there can be no complex number line.  
 
Fortunately, we can still use the complex plane to understand closeness, as we hope you 
will discover in the following exploration. 

 
We hope you concluded in the exploration above that the distance between two complex 
numbers x and y in the complex plane is, conveniently, x y! , just as it is for distance 
between two real numbers on the real line. In fact, we can make this a definition. 

EXPLORATION 1   Measuring Closeness in the Complex Plane 
Which number is closer to 3 + 2i : 2 + 3i or 3 + 4i ? 
 
 1. Graph the three numbers in the complex plane and answer the question 

graphically. 

 2. For real numbers, we measure the distance from x to y by x y! . Does this 
appear to work for complex numbers? (Be sure to use the definition of absolute 
value in Section 6.6.) 

 

DEFINITION   Distance Between Two Complex Numbers 
The distance between the complex numbers x and y is x y! . That is,  
if x a bi= +  and y c di= + , then the distance between them is 

2 2( ) ( ) ( ) ( )a c b d i a c b d! + ! = ! + ! .  
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The fact that the concept of "closeness" can be extended to the (unordered) complex 
numbers is more important than it might seem to you now. Calculus is explained by limits, 
and limits are explained by closeness. The main intent of a course called "precalculus" is 
to prepare you to study the calculus of real-valued functions, but if you go on to study the 
calculus of complex-valued functions you will revisit the connections you have made here. 
 
The concept of "betweenness" does not extend as nicely, because the very notion of 
betweenness should imply that the numbers are, in fact, lined up. One related concept that 
does extend naturally, however, is that of the mean of two numbers.  
 
Notice that the mean of two real numbers is represented on the real line by the midpoint 
of the segment between them: 
 

  
 
 
Conveniently, the mean of two complex numbers is also represented in the complex plane 
by the midpoint of the segment between them: 
 

x

y

x + y

2

 
 
 
This follows from the midpoint formula for two points in the plane. That is, if x a bi= +  and 

y c di= + , then ( ) ( )

2 2 2 2

x y a c b d i a c b d
i

+ + + + + +! " ! "
= = +# $ # $

% & % &
.  

 
Although the picture is now two-dimensional, we would still say that the points on the 
segment connecting x and y "lie between" x and y. We can also extend this idea to other 
points in the complex plane, as the following example will show.  
 
 

x y x + y 
   2 
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EXAMPLE 2   Extending the Concept of Betweenness 
 a. Use an absolute value inequality to describe the set of real numbers that lie between  

3 and 15. 
 b. If the same absolute value inequality were to be used in the complex plane, what 

numbers would lie between 3+ 2i and 9 + 10i ? 
 
SOLUTION   
 a. The mean of 3 and 15 is 9, which is 6 units away from each number. The set of 

numbers between 3 and 15 is described by 9 6x! <  . 

 b. The mean of 3 + 2i and 9 + 10i is 6 + 6i, which is 2 2(6 3) (6 2) 5! + ! =  units away 

from each number. The inequality (6 6) 5z i! + <  describes the interior of a circle of 
radius 5 in the complex plane around the point 6 + 6i.  

 

 

 
This extends the algebraic and geometric concepts of betweenness in a natural way, but 
how should we describe it? It would be misleading to say that every point in the circle 
"lies between" 3 + 2i and 9 + 10i, as that should really describe the points on the 
connecting segment, even in higher dimensions. A more appropriate connection can be 
made using the concept of distance. The inequality in (a) describes the set of numbers on 
the real line whose distance is less than 6 units from the mean. Geometrically, their graph 
is an open line segment centered at the mean. The inequality in (b) describes the set of 
numbers in the complex plane whose distance is less than 6 units from the mean. 
Geometrically, their graph is the interior of a circle centered at the mean. We say that the 
points inside the circle form a "neighborhood" around the complex number 6 + 6i, just as 
the points in the open segment form a "neighborhood" around the real number 9. 
Neighborhoods will play an important role when you encounter limits of complex functions 
and limits of functions of several variables in future mathematics courses. 
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Exercises for “Closeness and Betweenness in a Complex World,”  
an extension of Section 6.6 

 
 1. Find the distance between 4 3i+  and 1 5i+ .  

 2. Which is closer to 8 3i+ , 2 i+  or 12 2i! ? 

 3. a. Accurately plot the complex numbers 2 4A i= ! ! , 1 1B i= +   
   and 3 4C i= + .  

  b. Does B appear to lie on the line segment connecting A and C? 

  c. Find the distance between each pair of complex numbers in part (a). 

  d. What has to be true about the distances to ensure that B lies on the line  
   segment between A and C? 

 4. Find a such that the distance between 7P a i= !  and 4 9Q i= ! !  is 6 units. 

 5. Find the midpoint between 8 10i! +  and 4 3i+ . 

 6. a. Write an absolute value inequality to express the neighborhood of all  
   complex numbers z that are closer to 6 i!  than is the number 2 14i! + . 

  b. Write a brief geometric description of the neighbor expressed in 6a. 
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Random Variables and Expected Value 

An extension of Section 9.3  

 
If you are an optimist, you might try for the biggest payoff and hope for the best. An 
optimist would probably choose deal #1 and hope to win $5000. 
 
If you are a pessimist, you might choose deal #3, which guarantees a better payoff 
($500) than the worst-case scenarios in the other two deals.  
 
The show sponsors, however, who need to pay off a large number of choosers, should 
consider the probabilities of the various payoffs. On the average: 
 

• they will lose (1/5)($10) (1/5)($20) (1/5)($50) (1/5)($100) (1/5)($5000)+ + + + = 
$1036 per person for those who choose deal 1;  

• they will lose (2/3)($0) (1/3)($4800) $1600+ =  per person for those who  
choose deal 2;  

• they will lose $500 per person for those who choose deal 3. 
 
So they should hope for an audience of pessimists who will play it safe and take deal #3. 
They also should hope that people will not opt for deal #2, which has the largest expected 
payoff. In fact, the audience would come out ahead if they all secretly conspired to pick 
deal #2 and split their total earnings equally! 
 
Not many of us will be lucky enough to face an offer like the one above, but companies 
face these kinds of decisions all the time. The Bayesian strategy uses probabilities to 
predict the optimal choice in the long run. The Bayesian choice in Exploration 1, for 
example, would be deal #2. To set a context for studying these Bayesian choices, we 
need some definitions. 

EXPLORATION 1   The Game Show Audience 
Suppose a TV game show host offers everyone in the audience the choice of  
three deals: 
 1. Pick an envelope from five in his hand. The envelopes contain a ten dollar bill, a 

twenty dollar bill, a fifty dollar bill, a hundred dollar bill, and a check for five 
thousand dollars.  

 2. Choose one of three suitcases. Two are empty and the third contains 240 twenty-
dollar bills.  

 3. Take $500 with no strings attached. 

Which deal would you take? Which deal do the show sponsors hope you will take? 

DEFINITION   Random Variable 
A random variable is a function that assigns a real number value to every outcome in 
a sample space.  
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It is convenient to denote random variables with capital letters and the individual values 
assumed by a random variable with subscripted lower-case letters. Thus X might be a 
random variable that takes on values { }1 2, , , nx x xK  and Y might be a random variable 

that takes on values { }1 2, , , ny y yK . We can then use the notation ( )P X  to denote a 
probability function (Section 8.3) that assigns probabilities to the values of a random 
variable. We can describe the probability distribution with a table, as in Section 8.3.  
 
EXAMPLE 1   Probability Distribution of a Random Variable 
Let X be the random variable that gives the sum of the numbers on the top faces when two 
fair, 6-sided dice are rolled. Make a table showing the probability distribution for X.  
 
SOLUTION    
The values of X come from the sample space of all possible sums: {2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12}. The probability distribution is shown in Table 1.  
 

X 2 3 4 5 6 7 8 9 10 11 12 

P(X) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 
Table 1: Probability distribution for the total on two fair dice. 
 
Since probability functions of random variables are real-valued 
functions of real numbers, we can graph them in the coordinate 
plane. The most useful visualization is given by a histogram 
(Section 9.7) in which the heights of the rectangles are probabilities 
rather than frequencies. A histogram for the probability function in 
Example 1 is shown below. Note that we put the values of X in list 

1
L  and the corresponding probabilities in list 

2
L .  

 

        
 

 
 

MARGIN NOTE   
Seeing the Mean 
If you look at the 
histogram of the 
probability distribution, 
you should be able to 
see why the mean 
would be 7. You can 
estimate the mean of 
any probability 
distribution by 
visualizing the 
balancing point of its 
histogram along the 
horizontal axis, and 
that is easy to do with 
a symmetric 
distribution like this. 
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Like frequency distributions, probability functions have means and standard deviations. 
We can find them on a calculator as shown below: 
 

       
 
In the case of a probability distribution, we give the mean a special name to suggest its 
significance in probability modeling. 

 
EXAMPLE 2   Finding Expected Value 
For $5, a carnival huckster will let you draw a card at random from a fair deck of 52. He 
will pay you a dollar times the value of your card (ace = 1), but zero for a face card. 
What is the expected value of the payoff? Would you pay $5 to play this game? 
 
SOLUTION  

1 1 1 1 1 1 1 1 1 1 3
( ) 1 2 3 4 5 6 7 8 9 10 0

13 13 13 13 13 13 13 13 13 13 13

55
4.23

13

E X = ! + ! + ! + ! + ! + ! + ! + ! + ! + ! + !

= "

 

The expected value might not influence your decision to play or not play, but it is very 
important to the huckster, who can expect to make an average of 77 cents per game in 
the long run by charging $5 to play it You might get lucky playing once or twice, but the 
expected value shows that if you play this game for a long time at $5 per play, you can 
expect to lose an average of 77 cents per game. 
 
An important random variable in mathematical modeling is the random variable that 
counts the number of successes in n independent trials of an experiment with two possible 
outcomes. This random variable has a binomial probability distribution (as discussed in 
Section 9.3).  
 

DEFINITION   Expected Value of a Random Variable 
If X is a random variable with probability function P(X), the mean of the probability 
distribution is also called the mean of X (denoted 

X
µ ) or the expected value of X 

(denoted E(X)). Computationally, the expected value is the sum of the values of X 

times their respective probabilities: 
1

( ) ( )X k k

n

k

E X x P xµ
=

= =! . 
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EXAMPLE 3   Expected Value and Binomial Distributions 
A fair coin is flipped five times. What is the expected number of heads? Interpret the 
expected value in the context of this example. 
 
SOLUTION   
If X is the random variable that counts the number of heads on five tosses, then X takes on 
the values {0,1, 2, 3, 4, 5} . Recall that the probabilities can be found by expanding the 
polynomial 5( )p q+  , where p is the probability of heads and q is the probability of tails 
(in this case, 1/2p q= = ).  

5 5 4 3 2 2 3 4 5( ) 1 5 10 10 5 1

1 5 10 10 5 1

32 32 32 32 32 32

p q p p q p q p q pq q+ = + + + + +

= + + + + +   

 

The expected value is 1 5 10 10 5 1
( ) 0 1 2 3 4 5 2.5

32 32 32 32 32 32
E X = ! + ! + ! + ! + ! + ! = . 

 
This does not mean that we "expect" 2.5 heads when we toss the 
coin 5 times, as that is impossible. It does mean that if we perform 
the 5-toss experiment many times, the mean (or average) number of 
heads will be around 2.5.  
 
It is no coincidence that the expected value turned out to be half the 
number of tosses; in fact, that is the value you probably expected 
(pun unavoidable)! What number of heads would you expect on five 
tosses if the coin were weighted with the probability of heads equal 
to 3/5? If you would expect three, you would be right. We can state 
the general case as a theorem. 
 
 
EXAMPLE 4   A Chimpanzee Takes Organic Chemistry 
A chimpanzee is shown 100 questions from a multiple-choice test in Organic Chemistry. 
As each question appears on a screen, the chimpanzee presses one of four buttons to 
indicate the selected answer (A, B, C, or D). What is the chimpanzee's expected score? 
 
SOLUTION   
If we assume that the chimpanzee is unfamiliar with the material, the test amounts to 100 
independent trials of a binomial experiment with probability ¼ of success. The expected 
number of correct answers is 100(1/4) = 25.  
 
Remember also that the expected value is really a mean, so a large class of chimpanzees 
would probably produce some scores higher than 25 (and, of course, some lower). An 
actual student taking this test should not conclude from a score of 25 that "Well, at least I 
showed that I knew 25% of the test." (See margin note.) 

THEOREM    
Expected Value for a 
Binomial Distribution 
If X counts the number 
of successes on n 
independent trials of a 
binomial experiment 
with probability p of 
success, then 
( )E X np= . 
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EXAMPLE 5   Playing the Lottery 
The payoff in your state lottery is up to 20 million dollars. To win, you must choose six 
numbers between 01 and 46 correctly. Optimistically, you purchase ten different lottery 
tickets at $2 each. What is the expected value of the game for you? 
 
SOLUTION 
The game rules will probably inform you that there are 9,366,819 possible lottery tickets 
of this type. You have ten of them, so your expected payoff in dollars is: 

9366809 10
0 20,000,000 21.35

9366819 9366819
! + ! " .

 

 
Unfortunately, you paid $20 for the tickets, bringing your expected profit down to $1.35. 
 
Probabilities in real life are often estimated rather than computed, but expected values can 
still guide Bayesian decision-making.  
 
EXAMPLE 6   The Warranty Extension 
For an extra $49 you can buy extended warranty protection on your new HDTV for three 
years. If the set requires maintenance during that time, it will be free. You estimate that 
there is a 5% chance that you might need a $300 repair within three years and a 1% 
chance that you will need a $500 repair, but the chances are 94% that you will need no 
repair at all. Based on expected values, should you purchase the extended coverage? 
 
SOLUTION 
If you DO purchase the coverage, your expected value (in dollars) is 
49 0(0.94) 0(0.05) 0(0.01) 49! + + + = ! . 

 
If you DO NOT purchase the coverage, your expected value (in dollars) is 
0 0(0.94) ( 300)(0.05) ( 500)(0.01) 20+ + ! + ! = ! . 
 
The Bayesian strategy would be to decline the extended warranty and hope for the best. 
(The optimist would agree, while the pessimist would buy the coverage and avoid the 
possibility of those potential big losses.) 
 

MARGIN NOTE   The Guessing Penalty 
You may know that some standardized multiple-choice tests are scored with a 
"guessing penalty" that would bring the average chimpanzee's score down to zero. 
For a test with four options, as in Example 4, the formula would be 1

3
R W!  for R 

right answers and W wrong answers. The chimp with the expected score of 25 
would get an adjusted score of 1

325 (75) 0! = . Note that, under this grading system, 
a student who gets 25 right and leaves the other 75 blank would get an adjusted 
score of 25 and could justifiably claim to have known 25% of the test. 
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In most statistical applications, the probabilities used for real-world random variables are 
empirical probabilities (inferred from data) rather than theoretical probabilities 
(determined by the laws of probability). Expected values are determined using the same 
formula in either case and can be equally useful in decision-making. 
 
Looking at Example 6 from the other direction, the company offering the extended 
warranty must estimate those repair probabilities as accurately as they can so that they 
will know what to charge for the protection. They can track the repair bills incurred by a 
large number of customers and use a frequency table to compute the probabilities 
empirically, as in Example 7. 
 
EXAMPLE 7   
A sample of 500 customers nationwide shows that they incurred repair bills in the first 
three years as recorded in Table 2: 
 

Repair Bill Frequency 
0 460 

50 20 
100 8 
200 5 
300 5 
500 2 

Table 2: A frequency table of 500 repair bills. 
 
If they charge each customer $29 for the extended warranty, what is their expected 
profit? 
 
SOLUTION 
We first approximate the probability distribution for the repair bills by dividing the 
frequencies by the sample size (500). The relative frequency table is shown in Table 3: 
 

Repair Bill Probability 
0 0.92 

50 0.04 
100 0.016 
200 0.01 
300 0.01 
500 0.004 

Table 3: A relative frequency table of 500 repair bills. 
 
The expected value in dollars is: 
0(0.92) 50(0.04) 100(0.016) 200(0.01) 300(0.01) 500(0.004)+ + + + + = 10.60 
 
If they charge $29 for the coverage, the expected profit per customer opting for the 
coverage is $29 – $10.60 = $18.40. 
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EXAMPLE 8   The Barber's Chair 
Bill the barber keeps a careful record of how long it takes him to cut the hair of 100 
random customers during a typical week. The frequencies are recorded in Table 4: 
 

Minutes in Chair Number of Customers 
8 32 
9 25 

10 22 
11 15 
12 6 

Table 4: Frequency table for the barber. 
 
What is the mean number of minutes a customer spends in Bill's chair? If there are four 
people waiting when he opens his shop, what is the expected time it will take for Bill to 
give all four of them haircuts? 
 
SOLUTION   
We begin by dividing the frequencies by the total number of customers, thus creating the 
empirical probability distribution shown in Table 5: 
 

Minutes in Chair Probability 
8 0.32 
9 0.25 

10 0.22 
11 0.15 
12 0.06 

Table 5: Empirical probability table for the barber. 
 
Then  ( ) 0.32(8) 0.25(9) 0.22(10) 0.15(11) 0.06(12)

9.38 minutes

E X = + + + +

=

 

 
Since it takes (on average) 9.38 minutes per customer, the expected length of time for Bill 
to cut the hair of four customers is 4(9.38) 37.52=  minutes.  
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Exercises for “Random Variables and Expected Value,”  
an extension of Section 9.3 

From the reading: 
 1. Make up an example of a random variable and specifically identify how it assigns 

numbers to outcomes in the sample space. 

 2. What is a probability distribution? 

 3. Describe two ways to display a probability distribution. 

 4. What is another name for the mean of a probability distribution? 

 5. What is a simple way to calculate the mean of a binomial probability distribution? 

 6. Describe the difference between empirical probabilities and theoretical probabilities. 

 

Applying the concepts: 
 7. A bag contains twenty numbered balls. Five of the balls have the number 1 on them. 

Three balls have the number 2 on them. Seven balls have the number 3 on them. Four 
balls are marked with a 4. One ball has a 5 on it. Let Y be the random variable that 
gives the number on a ball chosen at random from the bag.  

  a. Show the probability distribution for Y in a table. 

  b. Calculate the expected value for Y. 

 8. One hundred people were asked how many televisions are in their home. The 
histogram below shows the empirical probability distribution of the results of the 
survey. The top of each bar corresponds to an integer multiple of 0.05. Calculate the 
expected value. 

 

 

 

 

 

 

 

 

 9. Not all dice are six-sided. If two ten-sided dice with faces numbered one through ten 
are rolled, what is the expected value for the sum of the dice? 

0.05 

0.15 

1 

0.25 

2 3 4 5 7 6 
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10. At a carnival, people pay The Great Flubini $2 each to try to guess their weight within 
five pounds. If he guesses successfully, no prize is given. If he is off from five to ten 
pounds, participants get a prize worth $5. If he is off by more than ten pounds, 
participants get a $10 prize. The Great Fubini is correct 72% of the time, off from five 
to ten pounds 21% of the time and off by more than ten pounds 7% of the time. If The 
Great Fubini guesses the weights of 300 people per day, on average, is the carnival 
making money or losing money? How much per day? 

11. A circular spinner consists of eight identical sectors. The spinner is equally likely to 
land in any of the eight sectors. Four of the eight yield no payout at all if the spinner 
lands there. Three of the eight pay $6 if the spinner lands there. One sector pays $10. 
It costs $5 to spin the spinner once. Use expected value to determine if it is a wise 
idea to play this game. 

12. A game of chance consists of paying $4 to randomly draw a card from a deck of 50. 
The table below shows your chances of each net outcome. For example, 40% of the 
cards say, “You lose.” and so your net result is losing the $4 you paid to play. 
Complete the table below so that the game is a fair game. This means the expected 
value is 0. 

X –4 –3 ? 2 4 

P(X) 0.4 0.1 0.2 0.1 0.2 

 

13. An unfair coin is one that is weighted so that the probability of getting heads does not 
equal the probability of getting tails. Suppose you have a coin weighted so it is likely 
to land on tails 60% of the time. Let X be the random variable that counts the number 
of tails obtained on four tosses. 

  a. Expand 4( )t h+ . 

  b. If t is the probability of tails and h is the probability of heads calculate the value  
   of the term 3

4t h . What does the value represent? 

  c. Find the expected number of tails, E(X), using the polynomial. 

  d. Calculate the expected value using ( )E X np= . 

14. Most people have dreamed of showing up to a final exam for a class they never 
attended. Marcel actually did this for his Mandarin language final exam, so he had to 
randomly guess on the 80-question multiple choice exam. Each question had 5 
choices, A, B, C, D, or E, with only one answer being correct. Each question was 
worth one point.  

  a. What was the expected score for Marcel? 

  b. Explain why his actual score may have differed from his expected score. 



 

 46 

15. From problem 14, suppose Marcel’s professor had imposed a “guessing penalty”  

of 1
4

 point off the final score for each incorrect answer. Would the adjusted score 

have been a more accurate representation of his lack of Mandarin knowledge? 
Explain. 

16. A multiple choice test consists of 150 questions each with n choices, where n is an 
integer greater than or equal to two. Each correct answer earns one point. Find the 
appropriate “guessing penalty” in terms of n so that the expected score for randomly 
guessing on all questions is zero. 

17. A three year extended warranty on a laptop computer is offered for $79. Consumer 
reports show that typically, 4% of owners incur a $200 repair in that time and 1% of 
owners incur a $300 repair in that time. Does the extended warranty have a positive 
expected value for the consumer who purchases it? Show the work that leads to your 
conclusion. 

18. The records of 1000 randomly selected customers of the XTREM car insurance 
company showed the following repair payouts by the company in the last fiscal year. 
What was the expected value of a payout? 

Repair Payout (Dollars) Number 

0 726 

1000 83 

2000 46 

3000 52 

4000 63 

5000 17 

6000 13 
 

19. From problem 18, if the average annual premium payment collected from a customer 
was $1600, what was the company’s expected income per customer for extended 
warranties that year? 

20. Make up a game of chance involving payment to play and payouts, and compute the 
expected value of the game for the player.  
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ANSWER SETS 
Answers to the exercises for “Closeness and Betweenness  
in a Complex World” 

 1. 13 

 2. 2 i+  is closer because 40 41< . 

 3. a.  

 

 

 

 

 

 

 

   b. Yes, B appears to lie on the line segment between A and C. 

   c. 34AB = , 13BC = , 89AC =  

   d. AB BC AC+ =  (So B is not on the line segment between A and C.)  

 4. 4 4 2a = ! +  or 4 4 2a = ! !  

 5. 13
2

2
i! +  

 6. a. (6 ) 17z i! ! <  

  b. The neighborhood includes all points within a circle of radius 17  around  
  the complex number 6 i! . 

!6 !5 !4 !3 !2 !1 1 2 3 4 5 6

!4

!3

!2

!1

1

2

3

4

R

i

A

B

C
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Answers to the exercises for “Random Variables and Expected Value” 

From the reading: 
 1. Answers will vary. One example: The number cars entering a parking garage every 

five minutes between 8am and 9am. The random variable is the set of 12 whole 
numbers you get corresponding to cars entering from 8 to 8:05, 8:05 to 8:10, etc. 

 2. A probability distribution is a pairing of each element in the set of values of the 
random variable with the probability of that value occurring. 

 3. A probability distribution may be displayed as a table of values or a histogram. 

 4. Another name for the mean of a probability distribution is the expected value. 

 5. The mean of a binomial probability distribution is found by multiplying the number of 
independent trials by the probability of success. 

 6. Empirical probabilities are probabilities inferred from collected data and theoretical 
probabilities are those determined by the laws of probability. 

 

Applying the concepts: 
 7. a. 

 

 

 

 

  b. 53

20
 or 2.65 

 8. 3.8 

 9. 11 

10. The expected value is 0.31!  dollars which means, on average, the carnival is losing 
31 cents per person who plays the game. The carnival is losing about $93 per day. 

11. It is not wise to play the game. The expected value for the player is –1.5 dollars which 
means, on average, a player loses $1.50 per turn. 

12. The missing value is 4.5. 

13. a. 4 3 2 2 3 4
4 6 4t t h t h th h+ + + +  

  b. 0.3456 is the theoretical probability of getting exactly three tails and one head  
   in four flips of the coin. 

  c. E(X) = 2.4 

  d. E(X) = 2.4  

Y 1 2 3 4 5 

P(Y) 5

20  

3

20  

7

20  

4

20  

1

20  
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14. a. 16 

  b. The expected value of 16 is the expected average score of all scores if the test was 
repeated many times with random guessing. Any one trial may result in a variety of 
different scores. 

15. Yes. The penalty results in an expected value of zero. Since Marcel has never been to 
class, he probably knows no Mandarin at all. 

16. Take off 1

1n!  
points for each wrong answer. Expected number correct is 150

n  
and 

number wrong is 150
150

n
! . Solve 

150 150
1 150 ( ) 0a

n n

! "
# $ $ # =% &

' (
 for a. 

17. If you purchase the coverage your expected value is –79 dollars. If you do not 
purchase the coverage your expected value is –11 dollars. It seems financially wise to 
not purchase the coverage. 

18. $746 

19. $854 per customer per year 

20. Answers will vary. 
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