
1

“It’s difficult to imagine the power that
you’re going to have when so many
different sorts of data are available”

Tim Berners-Lee, WWW Inventor, 2007

2

Lecture C2
Dataflow Processing

CS205: Computing Foundations for Computational Science
Dr. Ignacio M. Llorente

Spring Term 2021

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C1. Batch Data Processing
C2. Dataflow Processing
C3. Stream Data Processing

Wrap-Up: Advanced Topics

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
4

CS205: Contents
APPLICATION SOFTWARE

Application Software

Platform

Architecture

Programming Model
Map-Reduce

Spark

Slurm Hadoop

Cloud Computing Computing Cluster

B
IG

 D
A

TA

B
IG

 C
O

M
P

U
TE

Application Parallelism Program Design

OpenACC

OpenMP MPI

Optimization

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
5

Before We Start
Where We Are

Batch Data Processing => MapReduce
3/18

Lecture C1
Batch Data
Processing

(Quiz & Reading)

3/23
Hands-on H4
MapReduce

Programming

Lab
Lab I8

MapReduce
Hadoop Cluster

Concepts Platform

Dataflow Processing => Spark
3/25

Lecture C2
Dataflow

Processing
(Quiz & Reading)

3/30
Hands-on H5

Spark
Programming

Lab
Lab I9

Spark Single
Node

Lab
Lab I10

Spark Cluster

Programming

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
6

Context
The MapReduce Programming Model

JOB DESCRIPTION
(map / reduce)

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
7

Context
The Hadoop Platform

B
IG

 D
A

TA

O
PE

R
A

TI
N

G

SY
ST

EM

B
IG

 C
O

M
PU

TE
O

PE
R

A
TI

N
G

SY

ST
EM

Cloud Management Platform

COMPUTE NETWORK STORAGE CLOUD

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
8

MapReduce Limitations

The Spark Execution Engine

The Spark Programming Model

The Spark Ecosystem

Roadmap
Dataflow Processing

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
9

Hadoop Limitations
First Impressions about MapReduce?

Sources: https://www.packtpub.com/books/content/getting-started-apache-hadoop-and-apache-spark

What are your first impressions
about MapReduce?

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
10

MapReduce Limitations
MapReduce Is for One-Pass Computations of Large Data Sets

Suitability of the Programming Model
•Any use case should be converted into MapReduce pattern where each step in
the data processing workflow requires one Map phase and one Reduce phase
•Work from/to disk, which is too slow for small data, interactive queries, iterative
jobs, streaming…

Complex Deployment
•MapReduce always requires clusters that are hard to set up and manage, and the
integration of several tools for different big data use cases
•Separate modules require separate administration

Inefficient Multi-pass Computations
•The output data between each step
has to be stored in the DFS before
the next step can begin, which is slow
due to replication & disk storage

Sources: https://www.packtpub.com/books/content/getting-started-apache-hadoop-and-apache-spark

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
11

The Spark Execution Engine
In-Memory Cluster Computing

Complements Hadoop

Not a modified version of Hadoop
Can work standalone or on Hadoop common

Supports Scala, Python and Java

Overcoming MapReduce Limitations
• In-memory data sharing across DAGs, so that different jobs can

work with the same data
• Develop complex, multi-step data pipelines using DAG patterns
• Simple deployment and management

Spark is general-purpose Big Dataflow Processing

MapReduce is special-purpose Big Dataflow Processing

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
12

The Spark Execution Engine
Deployment Models

Local Cluster

• Standalone – Simple cluster manager
included with Spark that makes it easy to
set up a cluster
•Apache Mesos – General cluster manager
that can also run Hadoop MapReduce and
service applications.
•Hadoop YARN – Resource manager in
Hadoop 2.
•Multi-core and multi-node!

•Non-distributed single-node deployment
mode, Spark spawns all the execution
components in the same single node.
•Multi-core!

Sources: https://spark.apache.org/docs/latest/cluster-overview.html

Sources: https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-local.html

I9 I10

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
13

The Spark Execution Engine
Functional Programming

Functional Parallel Programming
•Application decomposed into a set of connections (functions/transformations) as
Directed Acyclic Graphs (DAG), with emphasis on “data flow” between the nodes

Computation of Distributed Collections of Data
•Resilient Distributed Datasets (RDD). The environment only lets you make a
collection of immutable data sets that are distributed across a cluster such that
they can be automatically re-built upon node failure.
•Coarse-grained transformations. A program is a set of parallel transformations
(e.g, map, filter, join, · · · ,) that compute on RDDs.

Declarative Definition of Computations
•Functions: Mathematically, like mapping from set A (domain) to set B (co-
domain), and computationally, transformation of input into output
•Composition (pipelining) of functions: Written f.g(x) and interpreted as
g(f(x)) i.e, apply the function f to x, and then apply g to the the result of f(x)

F1 F2 F3A B C D

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
14

The Spark Execution Engine
DAG Parallelism

A Parallel Program is Modelled as a DAG
• Vertices (nodes) representing RDDs
• Edges (arrows) representing functions that are either

– Transformations : RDD => RDD (eg. map, filter, groupBy, join)
– Actions : RDD => result (eg., count, reduce)

https://

Sources: medium.com/towards-data-science/apache-spark-101-3f961c89b8c5

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
15

TRANSF

wordcounts = sc.textFile('input.txt')

RDD

The Spark Programming Model
The Basics

The Fundamental Data Structure - Resilient Distributed Dataset

• Resilient: Fault-tolerant
• Distributed: Multiple-node
• Dataset: Collection of partitioned

data organized in records

(the, 7)

(od, 4)

(spark, 1)

(at, 1)

(bok, 8)

(home, 1)

(cloud, 76)

(data, 5)

(set, 34)

RDD

.filter(lambda line: ”spark" in line)

valueACTION

.count()

Operations: Transformations and Actions

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
16

The Spark Programming Model
The WordCount Example with Spark

'The Project Gutenberg EBook of Moby Dick; or The Whale, by Herman'
'Melville. This eBook is for the use of anyone anywhere at no cost and'

wordcounts = sc.textFile('input.txt')

'the project gutenberg eBook of moby dick or the whale by herman'
'melville this eBook is for the use of anyone anywhere at no cost and'

.map(lambda x: x.replace(',',' ').replace('.',' '). lower())

'the’ 'project' 'gutenberg' 'eBook' 'of' 'moby' 'dick' 'or' 'the 'whale'
'by' 'herman' 'melville' 'this' 'eBook' 'is' 'for' 'the' 'use' 'of'

.flatMap(lambda x: x.split())

’(the, 1)’ '(project ,1)' '(gutenberg, 1)' '(eBook, 1)' '(of, 1)' '(moby
, 1)' '(dick, 1)' '(or, 1)' '(the, 1)’ '(whale, 1)' '(by, 1)'

.map(lambda x: (x, 1))

’(the, 11)’ '(project ,10)' '(gutenberg, 9)' '(eBook, 37)' '(of, 15)'
'(moby , 5)' '(dick, 7)' '(or, 9)' '(the, 9)’ '(whale, 123)' '(by, 98)'

.reduceByKey(lambda x,y:x+y)

A Pipeline of Transformations

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
17

The Spark Programming Model
The WordCount Example with Spark

from pyspark import SparkConf, SparkContext

import string

conf = SparkConf().setMaster('local').setAppName('WordCount')

sc = SparkContext(conf = conf)

RDDvar = sc.textFile("input.txt")

words = RDDvar.flatMap(lambda line: line.split())

result = words.map(lambda word:
(str(word.lower()).translate(None,string.punctua

tion),1))

aggreg1 = result.reduceByKey(lambda a, b: a+b)

aggreg1.saveAsTextFile("output.txt")

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
18

The Spark Programming Model
Parallel Execution

NUMBER OF TASKS CREATED BY SPARK TO
PROCESS IN PARALLEL EACH RDD

NUMBER OF NODES AND THREADS PER NODE

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
19

The Spark Programming Model
Parallel Execution

Application Parallelism
•A task is created to process each partition
•RDD partitions (1) given by the programmer (parallelize) for new created
data, or (2) determined by the parent RDD, or defined by the underlying file
system

(the, 7)

(od, 4)

(spark, 1)

(at, 1)

(bok, 8)

(home, 1)

(cloud, 76)

(data, 5)

(set, 34)

ratings.csv is 709 MB

Local FS
709/32 = 22 partitions

HDFS
709/128 = 6partitions

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
20

The Spark Programming Model
Parallel Execution

System Parallelism
• In local mode setMaster in the SparkConf
• In cluster mode, determined by the executors (one per node) and the threads
(cores) per executor

--num-executors --executor-cores in spark-submit

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
21

The Spark Programming Model
Parallel Execution

from pyspark import SparkConf, SparkContext

import string

conf = SparkConf().setMaster('local[2]').setAppName('Pi')

sc = SparkContext(conf = conf)

N = 10000000

delta_x = 1.0 / N

print sc.parallelize(xrange (N),4).map(lambda i: (i +0.5) *
delta_x).map(lambda x: 4 / (1 + x **2)).reduce (lambda a, b:
a+b) * delta_x

Compute PI Number with Spark

Execute with different number of partitions and threads, and
compare number of tasks and execution time

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
22

The Spark Ecosystem
Spark Ecosystem

Hadoop Common

HDFS
Distributes &

replicates data
across machines

YARN
Distributes &

monitors tasks

Spark SQL
Data abstraction that
provides support for
structured and semi-

structured data

Standalone
Scheduler

Spark Streaming
Fast scheduling

capability to perform
streaming analytics

MLlib
Distributed machine
learning framework

GraphX
Distributed graph-

processing framework

Spark Core Engine

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
23

The Spark Ecosystem
DataFrames

Higher Level Abstraction that Gives a Tabular View of Data
• Like an RDD, a DataFrame is an immutable distributed collection of data.
• Unlike an RDD, data is organized into a tabular format, a two-dimensional array-like

structure.
• Makes large data sets processing easier, and allows Spark to run certain

optimizations on the finalized query or processing operation.

df = spark.read.json("examples/src/main/resources/people.json")

Displays the content
df.show()
+----+-------+
| age| name |
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+

Select a Column
df.select("name").show()
+-------+
| name |
+-------+
|Michael|
| Andy|
| Justin|
+-------+

Select people older
df.filter(df['age'] > 21).show()
+----+-------+
| age| name |
+----+-------+
| 30| Andy|
+----+-------+

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
24

The Spark Ecosystem
Machine Learning with Spark

Unsupervised learning
Training data sets without labels.

Clustering:
• K-means clustering
Dimensionality reduction
• Principal component analysis
• SVD

Supervised learning
Training data contains both input vector
and desired output. We also called it as
labeled data.

Classification:
• Naive Bayes
• SVM
• Random Decision Forests
Regression:
• Linear Regression
• Logistic Regression

Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
25

The Spark Ecosystem
Streaming with Spark

DStream (micro-batching)
• A continuous data stream is discretized into a continuous series of RDD

New file in dir
New content in file

TCP socket
Flume
Kafka

Kinesis

26

Next Steps

• Get ready for next lab:
I9. Install Spark in Local
I10. Spark Clusters

• Get ready for next hands-on:
H6. Spark Programming (Thursday 3/30)

27

Questions
Dataflow Processing

http://piazza.com/harvard/spring2021/cs205/home

