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“It’s difficult to imagine the power that 
you’re going to have when so many 
different sorts of data are available”

Tim Berners-Lee, WWW Inventor, 2007
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Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C1. Batch Data Processing
C2. Dataflow Processing
C3. Stream Data Processing

Wrap-Up: Advanced Topics
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Context
The MapReduce Programming Model

JOB DESCRIPTION
(map / reduce)
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Context
The Hadoop Platform
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MapReduce Limitations

The Spark Execution Engine

The Spark Programming Model

The Spark Ecosystem

Roadmap
Dataflow Processing
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Hadoop Limitations
First Impressions about MapReduce?

Sources: https://www.packtpub.com/books/content/getting-started-apache-hadoop-and-apache-spark

What are your first impressions 
about MapReduce?
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MapReduce Limitations
MapReduce Is for One-Pass Computations of Large Data Sets

Suitability of the Programming Model
•Any use case should be converted into MapReduce pattern where each step in 
the data processing workflow requires one Map phase and one Reduce phase
•Work from/to disk, which is too slow for small data, interactive queries, iterative 
jobs, streaming… 

Complex Deployment
•MapReduce always requires clusters that are hard to set up and manage, and the 
integration of several tools for different big data use cases
•Separate modules require separate administration

Inefficient Multi-pass Computations
•The output data between each step 
has to be stored in the DFS before 
the next step can begin, which is slow 
due to replication & disk storage

Sources: https://www.packtpub.com/books/content/getting-started-apache-hadoop-and-apache-spark
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The Spark Execution Engine
In-Memory Cluster Computing

Complements Hadoop

Not a modified version of Hadoop
Can work standalone or on Hadoop common

Supports Scala, Python and Java

Overcoming MapReduce Limitations
• In-memory data sharing across DAGs, so that different jobs can 

work with the same data
• Develop complex, multi-step data pipelines using DAG patterns
• Simple deployment and management

Spark is general-purpose Big Dataflow Processing 

MapReduce is special-purpose Big Dataflow Processing  
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The Spark Execution Engine
Deployment Models

Local Cluster

• Standalone – Simple cluster manager 
included with Spark that makes it easy to 
set up a cluster 
•Apache Mesos – General cluster manager 
that can also run Hadoop MapReduce and 
service applications.
•Hadoop YARN – Resource manager in 
Hadoop 2.
•Multi-core and multi-node!

•Non-distributed single-node deployment 
mode, Spark spawns all the execution 
components in the same single node.
•Multi-core!

Sources: https://spark.apache.org/docs/latest/cluster-overview.html

Sources: https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-local.html

I9 I10



Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
13

The Spark Execution Engine
Functional Programming

Functional Parallel Programming
•Application decomposed into a set of connections (functions/transformations) as 
Directed Acyclic Graphs (DAG), with emphasis on “data flow” between the nodes

Computation of Distributed Collections of Data
•Resilient Distributed Datasets (RDD). The environment only lets you make a 
collection of immutable data sets that are distributed across a cluster such that 
they can be automatically re-built upon node failure.
•Coarse-grained transformations. A program is a set of parallel transformations 
(e.g, map, filter, join, · · · ,) that compute on RDDs.

Declarative Definition of Computations
•Functions: Mathematically, like mapping from set A (domain) to set B (co-
domain), and computationally, transformation of input into output
•Composition (pipelining) of functions: Written f.g(x) and interpreted as 
g(f(x)) i.e, apply the function f to x, and then apply g to the the result of f(x)

F1 F2 F3A B C D
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The Spark Execution Engine
DAG Parallelism

A Parallel Program is Modelled as a DAG
• Vertices (nodes) representing RDDs
• Edges (arrows) representing functions that are either

– Transformations : RDD => RDD (eg. map, filter, groupBy, join)
– Actions : RDD => result (eg., count, reduce)

https://

Sources: medium.com/towards-data-science/apache-spark-101-3f961c89b8c5
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TRANSF

wordcounts = sc.textFile('input.txt') 

RDD

The Spark Programming Model
The Basics

The Fundamental Data Structure - Resilient Distributed Dataset

• Resilient: Fault-tolerant
• Distributed: Multiple-node
• Dataset: Collection of partitioned 

data organized in records

(the, 7)

(od, 4)

(spark, 1)

(at, 1)

(bok, 8)

(home, 1)

(cloud, 76)

(data, 5)

(set, 34)

RDD

.filter(lambda line: ”spark" in line)

valueACTION

.count()

Operations: Transformations and Actions
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The Spark Programming Model
The WordCount Example with Spark

'The Project Gutenberg EBook of Moby Dick; or The Whale, by Herman'
'Melville. This eBook is for the use of anyone anywhere at no cost and'

wordcounts = sc.textFile('input.txt') 

'the project gutenberg eBook of moby dick or the whale by herman'
'melville this eBook is for the use of anyone anywhere at no cost and'

.map(lambda x: x.replace(',',' ').replace('.',' '). lower())

'the’ 'project' 'gutenberg' 'eBook' 'of' 'moby' 'dick' 'or' 'the 'whale'
'by' 'herman' 'melville' 'this' 'eBook' 'is' 'for' 'the' 'use' 'of'

.flatMap(lambda x: x.split())

’(the, 1)’ '(project ,1)' '(gutenberg, 1)' '(eBook, 1)' '(of, 1)' '(moby
, 1)' '(dick, 1)' '(or, 1)' '(the, 1)’ '(whale, 1)' '(by, 1)'

.map(lambda x: (x, 1))

’(the, 11)’ '(project ,10)' '(gutenberg, 9)' '(eBook, 37)' '(of, 15)'
'(moby , 5)' '(dick, 7)' '(or, 9)' '(the, 9)’ '(whale, 123)' '(by, 98)'

.reduceByKey(lambda x,y:x+y)

A Pipeline of Transformations
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The Spark Programming Model
The WordCount Example with Spark

from pyspark import SparkConf, SparkContext

import string

conf = SparkConf().setMaster('local').setAppName('WordCount')

sc = SparkContext(conf = conf)

RDDvar = sc.textFile("input.txt")

words = RDDvar.flatMap(lambda line: line.split())

result = words.map(lambda word: 
(str(word.lower()).translate(None,string.punctua

tion),1))

aggreg1 = result.reduceByKey(lambda a, b: a+b)

aggreg1.saveAsTextFile("output.txt")
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The Spark Programming Model
Parallel Execution

NUMBER OF TASKS CREATED BY SPARK TO 
PROCESS IN PARALLEL EACH RDD

NUMBER OF NODES AND THREADS PER NODE
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The Spark Programming Model
Parallel Execution

Application Parallelism 
•A task is created to process each partition
•RDD partitions (1) given by the programmer (parallelize) for new created 
data, or (2) determined by the parent RDD, or defined by the underlying file 
system

(the, 7)

(od, 4)

(spark, 1)

(at, 1)

(bok, 8)

(home, 1)

(cloud, 76)

(data, 5)

(set, 34)

ratings.csv is 709 MB

Local FS
709/32 = 22 partitions

HDFS
709/128 = 6partitions
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The Spark Programming Model
Parallel Execution

System Parallelism 
• In local mode setMaster in the SparkConf
• In cluster mode, determined by the executors (one per node) and the threads 
(cores) per executor

--num-executors --executor-cores in spark-submit
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The Spark Programming Model
Parallel Execution

from pyspark import SparkConf, SparkContext

import string

conf = SparkConf().setMaster('local[2]').setAppName('Pi')

sc = SparkContext(conf = conf)

N = 10000000

delta_x = 1.0 / N

print sc.parallelize( xrange (N),4 ).map( lambda i: (i +0.5) * 
delta_x ).map( lambda x: 4 / (1 + x **2) ).reduce ( lambda a, b: 
a+b) * delta_x

Compute PI Number with Spark

Execute with different number of partitions and threads, and 
compare number of tasks and execution time
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The Spark Ecosystem
Spark Ecosystem

Hadoop Common

HDFS
Distributes & 

replicates data 
across machines

YARN
Distributes & 

monitors tasks 

Spark SQL
Data abstraction that 
provides support for 
structured and semi-

structured data

Standalone
Scheduler

Spark Streaming
Fast scheduling 

capability to perform 
streaming analytics

MLlib
Distributed machine 
learning framework

GraphX
Distributed graph-

processing framework

Spark Core Engine
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The Spark Ecosystem
DataFrames

Higher Level Abstraction that Gives a Tabular View of Data 
• Like an RDD, a DataFrame is an immutable distributed collection of data. 
• Unlike an RDD, data is organized into a tabular format, a two-dimensional array-like 

structure.
• Makes large data sets processing easier, and allows Spark to run certain 

optimizations on the finalized query or processing operation.

df = spark.read.json("examples/src/main/resources/people.json") 

# Displays the content
df.show()
# +----+-------+ 
# | age| name  | 
# +----+-------+ 
# |null|Michael| 
# |  30|   Andy| 
# |  19| Justin| 
# +----+-------+

# Select a Column
df.select("name").show()
# +-------+ 
# | name  | 
# +-------+ 
# |Michael| 
# |   Andy| 
# | Justin| 
# +-------+

# Select people older
df.filter(df['age'] > 21).show()
# +----+-------+ 
# | age| name  | 
# +----+-------+ 
# |  30|   Andy| 
# +----+-------+
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The Spark Ecosystem
Machine Learning with Spark

Unsupervised learning
Training data sets without labels.

Clustering: 
• K-means clustering
Dimensionality reduction
• Principal component analysis
• SVD

Supervised learning
Training data contains both input vector 
and desired output. We also called it as 
labeled data.

Classification: 
• Naive Bayes
• SVM
• Random Decision Forests
Regression: 
• Linear Regression
• Logistic Regression



Lecture C2. Dataflow Processing
CS205: Computing Foundations for Computational Science

Dr. Ignacio M. Llorente
25

The Spark Ecosystem
Streaming with Spark

DStream (micro-batching)
• A continuous data stream is discretized into a continuous series of RDD 

New file in dir
New content in file

TCP socket
Flume
Kafka

Kinesis
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Next Steps

• Get ready for next lab:
I9. Install Spark in Local
I10. Spark Clusters

• Get ready for next hands-on:
H6. Spark Programming (Thursday 3/30)
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Questions
Dataflow Processing

http://piazza.com/harvard/spring2021/cs205/home


