
Julia Programming for Operations Research 2/e

Changhyun Kwon

Julia Programming for Operations Research

https://www.chkwon.net/julia

Second Edition

Published by Changhyun Kwon
Copyright © 2019 by Changhyun Kwon
All Rights Reserved.
Paper and electronic versions are available at https://www.chkwon.net/

julia and can be purchased at Amazon, Google Play, etc.

Cover Design by Joo Yeon Woo / www.spacekite.net

Cat Drawing by Bomin Kwon
version 2021/08/16 23:08:00

ii

https://www.chkwon.net/julia
https://www.chkwon.net/julia
https://www.chkwon.net/julia
https://www.amazon.com/gp/product/1798205475
https://play.google.com/store/books/details?id=SDYLEAAAQBAJ

Contents

1 Introduction and Installation 1

1.1 What is Julia and Why Julia? . 2

1.2 Installing Julia . 4

1.2.1 Installing Julia in Windows 4

1.2.2 Installing Julia in macOS . 10

1.2.3 Running Julia Scripts . 15

1.2.4 Installing Gurobi . 15

1.2.5 Installing CPLEX . 16

1.3 Installing IJulia . 18

1.4 Package Management . 21

1.5 Help . 25

2 Simple Linear Optimization 29

2.1 Linear Programming (LP) Problems 30

2.2 Alternative Ways of Writing LP Problems 34

2.3 Yet Another Way of Writing LP Problems 37

2.4 Mixed Integer Linear Programming (MILP) Problems 38

iii

3 Basics of the Julia Language 41

3.1 Vector, Matrix, and Array . 41
3.2 Tuple . 47
3.3 Indices and Ranges . 48
3.4 Printing Messages . 51
3.5 Collection, Dictionary, and For-Loop 54
3.6 Function . 57
3.7 Scope of Variables . 59
3.8 Random Number Generation . 63
3.9 File Input/Output . 67
3.10 Plotting . 72

3.10.1 The PyPlot Package . 72
3.10.2 Avoiding Type-3 Fonts in PyPlot 77

4 Selected Topics in Numerical Methods 79

4.1 Curve Fitting . 79
4.2 Numerical Differentiation . 84
4.3 Numerical Integration . 87
4.4 Automatic Differentiation . 91

5 The Simplex Method 95

5.1 A Brief Description of the Simplex Method 95
5.2 Searching All Basic Feasible Solutions 98
5.3 Using the JuMP Package . 104
5.4 Pivoting in Tableau Form . 105
5.5 Implementing the Simplex Method 107

5.5.1 initialize(c, A, b) . 109
5.5.2 is_optimal(tableau) . 111
5.5.3 pivoting!(tableau) . 112
5.5.4 Creating a Module . 116

5.6 Next Steps . 122

6 Network Optimization Problems 123

6.1 The Minimal-Cost Network-Flow Problem 123
6.2 The Transportation Problem . 133
6.3 The Shortest Path Problem . 139

iv

6.4 Implementing Dijkstra’s Algorithm 144

7 Interior Point Methods 151

7.1 The Affine Scaling Algorithm . 151

7.2 The Primal Path Following Algorithm 157

7.3 Remarks . 162

8 Nonlinear Optimization Problems 165

8.1 Unconstrained Optimization . 165

8.1.1 Line Search . 165

8.1.2 Unconstrained Optimization 167

8.1.3 Box-constrained Optimization 168

8.2 Nonlinear Optimization . 169

8.3 Other Solvers . 170

8.4 Mixed Integer Nonlinear Programming 175

9 Monte Carlo Methods 177

9.1 Probability Distributions . 177

9.2 Randomized Linear Program . 179

9.3 Estimating the Number of Simple Paths 186

10 Lagrangian Relaxation 197

10.1 Introduction . 197

10.1.1 Lower and Upper Bounds . 198

10.1.2 Subgradient Optimization . 200

10.1.3 Summary . 200

10.2 The p-Median Problem . 201

10.2.1 Reading the Data File . 202

10.2.2 Solving the p-Median Problem Optimally 204

10.2.3 Lagrangian Relaxation . 205

10.2.4 Finding Lower Bounds . 206

10.2.5 Finding Upper Bounds . 210

10.2.6 Updating the Lagrangian Multiplier 212

v

11 Complementarity Problems 225

11.1 Linear Complementarity Problems (LCP) 225
11.2 Nonlinear Complementarity Problems (NCP) 233
11.3 Mixed Complementarity Problems (MCP) 237

12 Parameters in Optimization Solvers 239

12.1 Setting CPU Time Limit . 239
12.2 Setting the Optimality Gap Tolerance 240
12.3 Warmstart . 241
12.4 Big-M and Integrality Tolerance . 242
12.5 Turning off the Solver Output . 244
12.6 Other Solver Parameters . 244

Index 247

vi

Preface

The main motivation of writing this book was to help myself. I am a professor in the
field of operations research, and my daily activities involve building models of mathe-
matical optimization, developing algorithms for solving the problems, implementing
those algorithms using computer programming languages, experimenting with data,
etc. Three languages are involved: human language, mathematical language, and
computer language. My students and I need to go over three different languages.
We need “translation” among the three languages.

When my students seek help on the tasks of “translation,” I often provide them
with my prior translation as an example or find online resources that may be helpful
to them. If students have proper background with proper mathematical education,
sufficient computer programming experience, and good understanding of how numer-
ical computing works, students can learn easier and my daily tasks in research and
education would go smoothly.

To my frustration, however, many graduate students in operations research take
long time to learn how to “translate.” This book is to help them and help me to help
them.

I’m neither a computer scientist nor a software engineer. Therefore, this book
does not teach the best translation. Instead, I’ll try to teach how one can finish
some common tasks necessary in research and development works arising in the field
of operations research and management science. It will be just one translation, not

vii

the best for sure. But after reading this book, readers will certainly be able to get
things done, one way or the other.

What this book teaches

This book is neither a textbook in numerical methods, a comprehensive introduc-
tory book to Julia programming, a textbook on numerical optimization, a complete
manual of optimization solvers, nor an introductory book to computational science
and engineering—it is a little bit of all.

This book will first teach how to install the Julia Language itself. This book
teaches a little bit of syntax and standard libraries of Julia, a little bit of program-
ming skills using Julia, a little bit of numerical methods, a little bit of optimization
modeling, a little bit of Monte Carlo methods, a little bit of algorithms, and a little
bit of optimization solvers.

This book by no means is complete and cannot serve as a standalone textbook
for any of the above-mentioned topics. In my opinion, it is best to use this book
along with other major textbooks or reference books in operations research and
management science. This book assumes that readers are already familiar with
topics in optimization theory and algorithms or are willing to learn by themselves
from other references. Of course, I provide the best references of my knowledge to
each topic.

After reading this book and some coding exercises, readers should be able to
search and read many other technical documents available online. This book will
just help the first step to computing in operations research and management science.
This book is literally a primer on computing.

How this book can be used

This book will certainly help graduate students (and their advisors) for tasks in their
research. First year graduate students may use this book as a tutorial that guides
them to various optimization solvers and algorithms available. This book will also
be a companion through their graduate study. While students take various courses
during their graduate study, this book will be always a good starting point to learn
how to solve certain optimization problems and implement algorithms they learned.
Eventually, this book can be a helpful reference for their thesis research.

viii

Advanced graduate students may use this book as a reference. For example, when
they need to implement a Lagrangian relaxation method for their own problem, they
can refer to a chapter in this book to see how I did it and learn how they may be
able to do it.

It is also my hope that this book can be used for courses in operations research,
analytics, linear programming, nonlinear programming, numerical optimization, net-
work optimization, management science, and transportation engineering, as a sup-

plementary textbook. If there is a short course with 1 or 2 credit hours for teaching
numerical methods and computing tools in operations research and management sci-
ence, this book can be primary or secondary textbook, depending on the instructor’s
main focus.

Notes to advanced programmers

If you are already familiar with computing and at least one computer programming
language, I don’t think this book will have much value for you. There are many
resources available on the web, and you will be able to learn about the Julia Language
and catch up with the state-of-the-art easily. If you want to learn and catch up even
faster with much less troubles, this book can be helpful.

I had some experiences with MATLAB and Java before learning Julia. Learning
Julia was not very difficult, but exciting and fun. I just needed a good “excuse” to
learn and use Julia. Check what my excuse was in the first chapter.

Acknowledgment

I sincerely appreciate all the efforts from Julia developers. The Julia Language is
a beautiful language that I love very much. It changed my daily computing life
completely. I am thankful to the developers of the JuMP and other related packages.
After JuMP, I no longer look for better modeling languages. I am also grateful to
Joo Yeon Woo for the cover design and Bomin Kwon for the cat drawing.

Tampa, Florida
Changhyun Kwon

ix

x

1
Introduction and Installation

This chapter will introduce what the Julia Language is and explain why I love it.
More importantly, this chapter will teach you how to obtain Julia and install it
in your machine. Well, at this moment, the most challenging task for using Julia
in computing would probably be installing the language and other libraries and
programs correctly in your own machine. I will go over every step with fine details
with screenshots for both Windows and Mac machines. I assumed that Linux users
can handle the installation process well enough without much help from this book
by reading online manuals and googling. Perhaps the Mac section could be useful
to Linux users.

All Julia codes in this book are shared as a git repository and are available at
the book website: http://www.chkwon.net/julia. Codes are tested with

• Julia v1.3.0

• JuMP v0.21.2

• Optim v0.20.6

I will introduce what JuMP and Optim are gradually later in the book.

1

http://www.chkwon.net/julia

1.1. What is Julia and Why Julia?

1.1 What is Julia and Why Julia?

The Julia Language is a young emerging language, whose primary target is technical
computing. It is developed for making technical computing more fun and more
efficient. There are many good things about the Julia Language from the perspective
of computer scientists and software engineers; you can read about the language at
the official website1.

Here is a quote from the creators of Julia from their first official blog article “Why
We Created Julia”2:

“We want a language that’s open source, with a liberal license. We want
the speed of C with the dynamism of Ruby. We want a language that’s
homoiconic, with true macros like Lisp, but with obvious, familiar math-
ematical notation like Matlab. We want something as usable for general
programming as Python, as easy for statistics as R, as natural for string
processing as Perl, as powerful for linear algebra as Matlab, as good at
gluing programs together as the shell. Something that is dirt simple to
learn, yet keeps the most serious hackers happy. We want it interactive
and we want it compiled.

(Did we mention it should be as fast as C?)”

So this is how Julia was created, to serve all above greedy wishes.

Let me tell you my story. I used to be a Java developer for a few years before
I joined a graduate school. My first computer codes for homework assignments and
course projects were naturally written in Java; even before then, I used C for my
homework assignments for computing when I was an undergraduate student. Later,
in the graduate school, I started using MATLAB, mainly because my fellow graduate
students in the lab were using MATLAB. I needed to learn from them, so I used
MATLAB.

I liked MATLAB. Unlike in Java and C, I don’t need to declare every single
variable before I use it; I just use it in MATLAB. Arrays are not just arrays in the
computer memory; arrays in MATLAB are just like vectors and matrices. Plotting
computation results is easy. For modeling optimization problems, I used GAMS

1http://julialang.org
2http://julialang.org/blog/2012/02/why-we-created-julia

2

http://julialang.org
http://julialang.org/blog/2012/02/why-we-created-julia
http://julialang.org/blog/2012/02/why-we-created-julia
http://julialang.org
http://julialang.org/blog/2012/02/why-we-created-julia

Chapter 1. Introduction and Installation

and connected with solvers like CPLEX. While the MATLAB-GAMS-CPLEX chain
suited my purpose well, I wasn’t that happy with the syntax of GAMS—I couldn’t
fully understand—and the slow speed of the interface between GAMS and MATLAB.
While CPLEX provides complete connectivities with C, Java, and Python, it was
very basic with MATLAB.

When I finished with my graduate degree, I seriously considered Python. It
was—and still is—a very popular choice for many computational scientists. CPLEX
also has a better support for Python than MATLAB. Unlike MATLAB, Python is
a free and open source language. However, I didn’t go with Python and decided to
stick with MATLAB. I personally don’t like 0 being the first index of arrays in C
and Java. In Python, it is also 0. In MATLAB, it is 1. For example, if we have a
vector like:

v =

1
0
3
−1

it may be written in MATLAB as:

v = [1; 0; 3; -1]

The first element of this vector should be accessible by v(1), not v(0). The i-th
element must be v(i), not v(i-1). So I stayed with MATLAB.

Later in 2012, the Julia Language was introduced and it looked attractive to me,
since at least the array index begins with 1. After some investigations, I still didn’t
move to Julia at that time. It was ugly in supporting optimization modeling and
solvers. I kept using MATLAB.

In 2014, I came across several blog articles and tweets talking about Julia again.
I gave it one more look. Then I found a package for modeling optimization problems
in Julia, called JuMP—Julia for Mathematical Programming. After spending a few
hours, I fell in love with JuMP and decided to go with Julia, well more with JuMP.
Here is a part of my code for solving a network optimization problem:

@variable(m, 0<= x[links] <=1)

@objective(m, Min, sum(c[(i,j)] * x[(i,j)] for (i,j) in links))

3

1.2. Installing Julia

for i=1:no_node

@constraint(m, sum(x[(ii,j)] for (ii,j) in links if ii==i)

- sum(x[(j,ii)] for (j,ii) in links if ii==i) == b[i])

end

optimize!(m)

This is indeed a direct “translation” of the following mathematical language:

min
∑

(i,j)∈A

cijxij

subject to

∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i ∈ N

0 ≤ xij ≤ 1 ∀(i, j) ∈ A

I think it is a very obvious translation. It is quite beautiful, isn’t it?

CPLEX and its competitor Gurobi are also very smoothly connected with Julia
via JuMP. Why should I hesitate? After several years of using Julia, I still love it—I
even wrote a book.

1.2 Installing Julia

Graduate students and researchers are strongly recommended to install Julia in
their local computers. In this guide, we will first install Julia and then install two
optimization packages, JuMP and GLPK. JuMP stands for ‘Julia for Mathematical
Programming’, which is a modeling language for optimization problems. GLPK is an
open-source linear optimization solver that can solve both continuous and discrete
linear programs. Windows users go to Section 1.2.1, and Mac users go to Section
1.2.2.

4

Chapter 1. Introduction and Installation

1.2.1 Installing Julia in Windows

• Step 1. Download Julia from the official website.3 (Select an appropriate
version: 32-bit or 64-bit. 64-bit recommended whenever possible.)

• Step 2. Install Julia in C:\julia. (You need to make the installation folder
consistent with the path you set in Step 3.)

• Step 3. Open a Command Prompt and enter the following command:

3http://julialang.org/downloads/

5

http://julialang.org/downloads/
http://julialang.org/downloads/

1.2. Installing Julia

setx PATH "%PATH%;C:\julia\bin"

If you do not know how to open a Command Prompt, just google ‘how to open
command prompt windows.’

• Step 4. Open a NEW command prompt and type

echo %PATH%

The output must include C:\julia\bin in the end. If not, you must have
something wrong.

6

Chapter 1. Introduction and Installation

• Step 5. Run julia.

You have successfully installed the Julia Language on your Windows computer.
Now it is time to install additional packages for mathematical optimization.

• Step 6. In your Julia prompt, type

julia> using Pkg

julia> Pkg.add("JuMP")

julia> Pkg.add("GLPK")

Installing the first package can take long time, because it initializes your Julia
package folder and synchronizes with the entire package list.

7

1.2. Installing Julia

• Step 7. Open Notepad (or any other text editor such as Visual Studio Code4)
and type the following, and save the file as script.jl in some folder of your
choice.

using JuMP, GLPK

m = Model(GLPK.Optimizer)

@variable(m, 0 <= x <= 2)

@variable(m, 0 <= y <= 30)

@objective(m, Max, 5x + 3*y)

@constraint(m, 1x + 5y <= 3.0)

JuMP.optimize!(m)

println("Objective value: ", JuMP.objective_value(m))

println("x = ", JuMP.value(x))

println("y = ", JuMP.value(y))

• Step 8. Press and hold your Shift Key and right-click the folder name, and
choose “Open command window here.”

4https://code.visualstudio.com

8

https://code.visualstudio.com
https://code.visualstudio.com

Chapter 1. Introduction and Installation

• Step 9. Type dir to see your script file script.jl.

If you see a filename such as script.jl.txt, use the following command to
rename:

9

1.2. Installing Julia

ren script.jl.txt script.jl

• Step 10. Type julia script.jl to run your julia script.

After a few seconds, the result of your julia script will be printed. Done.

Please proceed to Section 1.2.3.

1.2.2 Installing Julia in macOS

In macOS, we will use a package manager, called Homebrew. It provides a very
convenient way of installing software in macOS.

• Step 1. Open “Terminal.app” from your Applications folder. (If you do not
know how to open it, see this video.5 It is convenient to place “Terminal.app”
in your dock.

• Step 2. Visit http://brew.sh and follow the instruction to install Homebrew.
It may ask you to enter your password to install Xcode Command Line Tools.

5https://www.youtube.com/watch?v=zw7Nd67_aFw “How to open the terminal window on a Mac

”

10

http://brew.sh
https://www.youtube.com/watch?v=zw7Nd67_aFw
http://brew.sh
https://www.youtube.com/watch?v=zw7Nd67_aFw

Chapter 1. Introduction and Installation

• Step 3. Installing Julia using Homebrew: In your terminal, enter the following
command:

brew cask install julia

• Step 5. In your terminal, enter julia.

11

1.2. Installing Julia

• Step 6. In your Julia prompt, type

julia> using Pkg

julia> Pkg.add("JuMP")

julia> Pkg.add("GLPK")

Installing the first package can take a long time, because it initializes your
Julia package folder and synchronizes with the entire package list.

12

Chapter 1. Introduction and Installation

• Step 7. Open TextEdit (or any other text editor such as Visual Studio Code6)
and type the following, and save the file as script.jl in some folder of your
choice.

6https://code.visualstudio.com

13

https://code.visualstudio.com
https://code.visualstudio.com

1.2. Installing Julia

using JuMP, GLPK

m = Model(GLPK.Optimizer)

@variable(m, 0 <= x <= 2)

@variable(m, 0 <= y <= 30)

@objective(m, Max, 5x + 3*y)

@constraint(m, 1x + 5y <= 3.0)

JuMP.optimize!(m)

println("Objective value: ", JuMP.objective_value(m))

println("x = ", JuMP.value(x))

println("y = ", JuMP.value(y))

• Step 8. Open a terminal window7 at the folder that contains your script.jl.

• Step 9. Type ls –al to check your script file.

• Step 10. Type julia script.jl to run your script.

7To do this, you can drag the folder to the Terminal.app icon in your dock, or see http://

osxdaily.com/2011/12/07/open-a-selected-finder-folder-in-a-new-terminal-window/

14

http://osxdaily.com/2011/12/07/open-a-selected-finder-folder-in-a-new-terminal-window/
http://osxdaily.com/2011/12/07/open-a-selected-finder-folder-in-a-new-terminal-window/
http://osxdaily.com/2011/12/07/open-a-selected-finder-folder-in-a-new-terminal-window/

Chapter 1. Introduction and Installation

After a few seconds, the result of your julia script will be printed. Done.

Please proceed to Section 1.2.3.

1.2.3 Running Julia Scripts

When you are ready, there are basically two methods to run your Julia script:

• In your Command Prompt or Terminal, enter C:> julia your-script.jl

• In your Julia prompt, enter julia> include("your-script.jl").

1.2.4 Installing Gurobi

Instead of GLPK, one can use Gurobi, which is a commercial optimization solver
package for solving LP, MILP, QP, MIQP, etc. Gurobi is free for students, teachers,
professors, or anyone else related to educational organizations.

To install, follow these steps:

1. Download Gurobi Optimizer8 and install in your computer. (You will need to
register as an academic user.)

2. Request a free academic license9 and follow their instructions to activate it.

8https://www.gurobi.com/downloads/gurobi-optimizer-eula/
9https://www.gurobi.com/academia/academic-program-and-licenses/

15

https://www.gurobi.com/downloads/gurobi-optimizer-eula/
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gurobi.com/downloads/gurobi-optimizer-eula/
https://www.gurobi.com/academia/academic-program-and-licenses/

1.2. Installing Julia

3. Run Julia and add the Gurobi package. You need to tell Julia where Gurobi
is installed:

On Windows:

julia> ENV["GUROBI_HOME"] =

"C:\\Program Files\\gurobi910\\win64"

julia> using Pkg

julia> Pkg.add("Gurobi")

On macOS:

julia> ENV["GUROBI_HOME"] =

"/Library/gurobi910/mac64"

julia> using Pkg

julia> Pkg.add("Gurobi")

4. Ready. Test the following code:

using JuMP, Gurobi

m = Model(Gurobi.Optimizer)

@variable(m, x <= 5)

@variable(m, y <= 45)

@objective(m, Max, x + y)

@constraint(m, 50x + 24y <= 2400)

@constraint(m, 30x + 33y <= 2100)

JuMP.optimize!(m)

println("Objective value: ", JuMP.objective_value(m))

println("x = ", JuMP.value(x))

println("y = ", JuMP.value(y))

1.2.5 Installing CPLEX

Instead of Gurobi, you can install and connect the CPLEX solver, which is also free
to academics.

You can follow this step by step guide to install:

16

Chapter 1. Introduction and Installation

1. Go to the IBM ILOG CPLEX Optimization Studio page10.

2. Click ‘Access free academic edition.’

3. Log in with your institution email and certify.

4. Download an appropriate version of IBM ILOG CPLEX Optimization Studio.
It should be v12.10 or higher.

5. Run the downloaded file and install CPLEX. I recommend using the default
installation folder.

6. Add the CPLEX package in Julia. You have to tell Julia where the CPLEX
library is installed.

On Windows:

julia> ENV["CPLEX_STUDIO_BINARIES"] =

"C:\\Program Files\\CPLEX_Studio1210\\cplex\\bin\\x86-64_win\\"

julia> using Pkg

julia> Pkg.add("CPLEX")

julia> Pkg.build("CPLEX")

On macOS:

julia> ENV["CPLEX_STUDIO_BINARIES"] =

"/Applications/CPLEX_Studio1210/cplex/bin/x86-64_osx/"

julia> using Pkg

julia> Pkg.add("CPLEX")

julia> Pkg.build("CPLEX")

7. Ready. Test the following code:

using JuMP, CPLEX

m = Model(CPLEX.Optimizer)

@variable(m, x <= 5)

@variable(m, y <= 45)

10https://www.ibm.com/products/ilog-cplex-optimization-studio

17

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

1.3. Installing IJulia

@objective(m, Max, x + y)

@constraint(m, 50x + 24y <= 2400)

@constraint(m, 30x + 33y <= 2100)

JuMP.optimize!(m)

println("Objective value: ", JuMP.objective_value(m))

println("x = ", JuMP.value(x))

println("y = ", JuMP.value(y))

1.3 Installing IJulia

You can also use an interactive Julia environment in your local computer, called
Jupyter Notebook11. Well, at first there was IPython notebook that was an in-
teractive programming environment for the Python language. It has been popular,
and now it is extended to cover many other languages such as R, Julia, Ruby, etc.
The extension became the Jupyter Notebook project. For Julia, it is called IJulia,
following the naming convention of IPython.

To use IJulia, we need a distribution of Python and Jupyter. Julia can auto-
matically install a distribution for you, unless you want to install it by yourself. If
you let Julia install Python and Jupyter, they will be private to Julia, i.e. you will
not be able to use Python and Jupyter outside of Julia.

The following process will automatically install Python and Jupyter.

1. Open a new terminal window and run Julia. Initialize environment variables:

julia> ENV["PYTHON"] = ""

""

julia> ENV["JUPYTER"] = ""

""

2. Install IJulia:

11http://jupyter.org

18

http://jupyter.org
http://jupyter.org

Chapter 1. Introduction and Installation

julia> using Pkg

julia> Pkg.add("IJulia")

3. To open the IJulia notebook in your web browser:

julia> using IJulia

julia> notebook()

It will open a webpage in your browser that looks like the following screenshot:

The current folder will be your home folder. You can move to another folder and
also create a new folder by clicking the “New” button on the top-right corner of the
screen. After locating a folder you want, you can now create a new IJulia notebook
by clicking the “New” button again and select the julia version of yours, for example
“Julia 1.1.0”. See Figure 1.1.

It will basically open an interactive session of the Julia Language. If you have
used Mathematica or Maple, the interface will look familiar. You can test basic
Julia commands. When you need to evaluate a block of codes, press Shift+Enter,
or press the “play” button. See Figure 1.2.

If you properly install a plotting package like PyPlot (details in Section 3.10.1),
you can also do plotting directly within the IJulia notebook as shown in Figure 1.4.

19

1.3. Installing IJulia

Figure 1.1: Creating a new notebook

Figure 1.2: Some basic Julia codes.

20

Chapter 1. Introduction and Installation

Figure 1.3: This is the REPL.

Personally, I prefer the REPL for most tasks, but I do occasionally use IJulia,
especially when I need to test some simple things and need to plot the result quickly,
or when I need to share the result of Julia computation with someone else. (IJulia
can export the notebook in various formats, including HTML and PDF.)

What is REPL? It stands for read-eval-print loop. It is the Julia session that
runs in your terminal; see Figure 1.3, which must look familiar to you already.

1.4 Package Management

There are many useful packages in Julia and we rely many parts of our computations
on packages. If you have followed my instructions to install Julia, JuMP, Gurobi, and
CPLEX, you have already installed a few packages. There are some more commands
that are useful in managing packages.

julia> using Pkg

julia> Pkg.add("PackageName")

21

1.4. Package Management

Figure 1.4: Plotting in IJulia

22

Chapter 1. Introduction and Installation

Figure 1.5: Package Mode in REPL

This installs a package, named PackageName. To find its online repository, you can
just google the name PackageName.jl, and you will be directed to a repository
hosted at GitHub.com.

Using Pkg.add requires using Pkg first. In REPL, by pressing the ‘]’ key, you
can enter the package management mode (Figure 1.5) and the prompt will change
as follows:

(v1.3) pkg>

Then to install a package you can simply enter:

(v1.3) pkg> add PackageName

To install the JuMP package, you can do:

23

1.4. Package Management

(v1.3) pkg> add JuMP

To come back to the julia prompt, press the backspace or delete key.

julia> Pkg.rm("PackageName")

(v1.3) pkg> rm PackageName

This removes the package.

julia> Pkg.update()

(v1.3) pkg> update

This updates all packages that are already installed in your machine to the most
recent versions.

julia> Pkg.status()

(v1.3) pkg> status

This displays what packages are installed and what their versions are. If you just
want to know the version of a specific package, you can do:

julia> Pkg.installed()["PackageName"]

julia> Pkg.build("PackageName")

(v1.3) pkg> build PackageName

Occasionally, installing a package will fail during the Pkg.add("PackageName") pro-
cess, usually because some libraries are not installed or system path variables are
not configured correctly. Try to install some required libraries again and check the
system path variables first. Then you may need to reboot your system or restart
your Julia session. Then Pkg.build("PackageName"). Since you have downloaded
package files during Pkg.build("PackageName"), you don’t need to download them
again; you just build it again.

24

Chapter 1. Introduction and Installation

1.5 Help

In REPL, you can use the Help mode. By pressing the ? key in REPL, you can
enter the help mode. The prompt will change as follows:

help?>

Then type in any function name, for example, println, which results in:

help?> println

search: println printstyled print sprint isprint

println([io::IO], xs...)

Print (using print) xs followed by a newline. If io is not supplied, prints to

stdout.

Examples

julia> println("Hello, world")

Hello, world

julia> io = IOBuffer();

julia> println(io, "Hello, world")

julia> String(take!(io))

"Hello, world\n"

See also Figure 1.6.
Readers can find codes and other helpful resources in the author’s website at

http://www.chkwon.net/julia

which also includes a link to a Facebook page of this book for discussion and com-
munication.

This book does not teach everything of the Julia Language—only a very small
part of it. When you want to learn more about the language, the first place you
need to visit is

25

http://www.chkwon.net/julia

1.5. Help

Figure 1.6: Help Mode in REPL

26

Chapter 1. Introduction and Installation

http://julialang.org/learning/

where many helpful books, tutorials, videos, and articles are listed. Also, you will
need to visit the official documentation of the Julia Language at

http://docs.julialang.org/

which I think serves as a good tutorial as well.
When you have a question, there will be many Julia enthusiasts ready for you.

For questions and discussion, visit

https://discourse.julialang.org

and

http://julialang.org/community/

You can also ask questions at http://stackoverflow.com with tag julia-lang.
The webpage of JuMP is worth visiting for information about the JuMP.jl pack-

age.

http://jump.dev

27

http://julialang.org/learning/
http://docs.julialang.org/
https://discourse.julialang.org
http://julialang.org/community/
http://stackoverflow.com
http://jump.dev

1.5. Help

28

	Introduction and Installation
	What is Julia and Why Julia?
	Installing Julia
	Installing Julia in Windows
	Installing Julia in macOS
	Running Julia Scripts
	Installing Gurobi
	Installing CPLEX

	Installing IJulia
	Package Management
	Help

