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Abstract

The aim of this report is first to review some basics of plane waves implemen-
tation for electronic structure calculations and more especially plane waves
implementation in the Abinit code, and then go to the implementation of the
kinetic energy density which is for example required in meta-GGA formalism,
but also required for electron function localization (ELF).



Chapter 1

Wavefunction in plane waves
representation and symmetries

1.1 Plane waves representation

In periodic systems, we can express wavefunction (ψ) in terms of Bloch wave-
function as

ψnk(r) = unk(r)ei2πk·r (1.1)

where each Bloch wavefunction is characterized by the number of the band
n1 and the wavevector k. The term unk gives to the Bloch wavefunction the
periodicity of the system

unk(r + R) = unk(r) (1.2)

where R is any linear combinations of the real space lattice vectors Rlatt.
Hence we have for the wavefunction

ψnk(r + R) = ψnk(r)ei2πk·R (1.3)

The term unk (and thus also the wavefunction) can be represented in term
of plane waves as

unk(r) =
∑
Gk

cnk(Gk)ei2πGk·r (1.4)

ψnk(r) =
∑
Gk

cnk(Gk)ei2π(k+Gk)·r (1.5)

1Here the use band labelling implicitely means that we work only in the 1rst Brillouin
zone (see Fig.(1.2))
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where ei2πGk·r are the plane waves and cnk(Gk) are their corresponding
weigth and actually nothingelse than the Fourier transform components of
unk(r). Here Gk are any linear combinations of the reciprocal lattice vectors
Glatt

2. Other theoretical considerations for Abinit code can be find in [1].
In the previous equation we notice the index k on Gk which comes from the
fact that in practice, to avoid an infinite sum over G vectors, we limit us
(for each k) to a finite number of G vectors defined by the cut-off energy
Ekin−cut. Therefore Gk is such that

(2π)2|Gk + k|2

2
< Ekin−cut (1.6)

According to this definition, the number of G vectors (i.e. number of
plane waves) can be different for each k (Fig. 1.1), that’s why we use an
index on G.

Figure 1.1: Schematic view of reciprocal space with 1rst Brillouin zone and
associated reciprocal lattice vectors (G) for a simple 2D rectangular unit
cell. The set of allowed Gk defined by Eq.(1.6) is represented by a star for
two different k vectors (k = 0: left panel, k = 1/2(Glatt,1 + Glatt,2): right
panel). The number of plane waves for each k (npw k) can be different.
Note that we count the vector Gk = 0.

2We remind that Glatt is obtained with Glatt,i·Rlatt,j = δij . In many textbook you can
find Glatt,i·Rlatt,j = 2πδij but then you have to define Bloch wavefunction as ψnk(r) =
unk(r)eik·r. Both convention are possible it is up to you, here we use the one of Abinit.
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Hence, rigourously, we should write explicitely for the wavefunction

ψnk(r) =

npw k∑
Gk

cnk(Gk)ei2π(k+Gk)·r (1.7)

Finally we have a last relation for the wavefunction which is related the
fact that we work only in the 1rst Brillouin zone (Fig.(1.2)).

ψn(k+G)(r) = ψnk(r)

and thus, un(k+G)(r) = unk(r)ei2πG·r

But we have to precise that when we want to write equatility between
two wavefunctions, we should always consider that all linear combinations

are also possible. So we introduce the notation
L.C.
= when this is the case3.

ψn(k+G)(r)
L.C.
= ψnk(r) (1.8)

un(k+G)(r)
L.C.
= unk(r)ei2πG·r (1.9)

Figure 1.2: Band structure (E(k)) for the 1D free electron gaz showing the pe-
riodicity with respect to reciprocal lattice vectors Glatt which leads to define the
1rst Brillouin zone and the labelling of band (n). Working only with 1rst Brillouin
zone means that ψnk(r) and ψn(k+G)(r) gives the same energy Enk.

3Choosing strictly the equality is like doing a choice of gauge.
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1.2 Symmetries

In the case of ab initio code we are often limited by memory and computa-
tional cost, hence we try to reduce the calculation to its minimal cost. That
is why we have to take benifit of the symmetries of the problem4 and of the
system (i.e. the eventual symmetries of the unit cell).
In real space we can define the symmetries by a set of symmetry operators
St

5[2]. These operators act on real space vectors as

St(r) = r′ (1.10)

Where by example, r is vector pointing on an atom and r′ is the vector
pointing on the symmetric atom. The different possible symmetry operations
are identity, inversion, (mirror-)reflections, rotations, rotation-inversions6,
translations, screw rotations7 and glide reflections8. The first symmetry op-
erations: identity, inversion, reflections, rotations and rotation-inversion; are
called symmorphic operations (S) and can be described in matrix represen-
tation by 3× 3 matrices Sαβ as

r′ = S(r) ⇒ r′α =
∑
β

Sαβ rβ (1.11)

For translation operations and other operations which are combined with
translation (screw rotations and glide reflections) we need a translation vector
t. For simple translation we have

r′ = r + t ⇒ r′α = rα + tα (1.12)

For screw rotations and glide reflections we have

r′ = S(r) + t ⇒ r′α =
∑
β

Sαβ rβ + tα (1.13)

For practical reasons it is better to group all symmetry operation types in
a single representation, so we use the most general form (the screw rotations
and glide reflections form) and we define the generalized operator St

9 as

4such as time reversal symmetry
5The whole set of symmetry operators is called a space group.
6which combines a rotation plus an inversion operation. Why define a such combined

operation? Because actually, even if a crystal has not the rotation and the inversion
symmetry (individually) it can have the rotation-inversion symmetry.

7which combines a rotation plus a translation operation.
8which combines a reflection plus a translation operation.
9The generalized operator St is also called a Seitz operator.
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r′ = St(r) ⇒ r′α =
∑
β

Sαβ rβ + tα (1.14)

where in the case of symmorphic operations the vector t is
−→
0 ; and in the

case of pure translation operations the matrix Sαβ is the identity matrix.
When applying these symmetry operators to the wavefunction we get

ψ′nk
L.C.
= St (ψnk) (1.15)

where here St is acting no more on real space but on the wavefunction
space. Consider that the wavefunction is a vector of wavefunction space, St

transforms this wavefunction vector into another wavefunction vector. Our
goal is to know what is this symmetrized wavefunction compared to the
starting wavefunction. Since the wavefunction is a function of real space we
can have the relation

(St (ψnk)) (r)
L.C.
= ψ′nk(r)

L.C.
= ψnk(S−1

t (r)) (1.16)

Notice that this not the same operation as

St (ψnk(r))
L.C.
= ψ′nk(St(r))

L.C.
= ψnk(r) (1.17)

In Eq.(1.16) we apply the inverse of the symmetry operator (S−1
t ) to the

real space vector r which is defined by

r′ = S−1
t (r) ⇒ r′α =

∑
β

S−1
αβ (rβ − tβ) (1.18)

Now let’s have a look at the symmetry operator applied to the wavefunc-
tion taken at r + R.

(St (ψnk)) (r + R)
L.C.
= ψ′nk(r + R)

L.C.
= ψnk(S−1

t (r + R)) (1.19)

where S−1
t (r + R) is

r′′ = S−1
t (r + R) ⇒ r′′α =

∑
β

S−1
αβ (rβ +Rβ − tβ)

r′′α =
∑
β

S−1
αβ (rβ − tβ) +

∑
β

S−1
αβRβ

r′′α = r′α + R̃α

r′′ = r′ + R̃

r′′ = S−1
t (r) + S−1 (R) (1.20)
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Hence, in virtue of Eq.(1.3) and previous result, we have

(St (ψnk)) (r + R)
L.C.
= ψnk(r′′)

L.C.
= ψnk(S−1

t (r) + S−1 (R))
L.C.
= ψnk(S−1

t (r))ei2πk·(S
−1(R)) (1.21)

Now the final step is to rewrite the phase factor ei2πk·(S
−1(R)) in order to

transfer the S−1 operator,which is acting on R (real space), to k (reciprocal
space). For that we use the transposed of S−1

ei2πk·(S
−1(R)) = ei2π

P
α kα(

P
β S
−1
αβRβ)

ei2πk·(S
−1(R)) = ei2π

P
αβ kαS

−1
αβRβ

ei2πk·(S
−1(R)) = ei2π

P
β(
P
α kαS

−1,t
βα )Rβ

ei2πk·(S
−1(R)) = ei2π(S

−1,t(k))·R (1.22)

Let’s call k′ the new vector such as

k′ = S−1,t (k) ⇒ k′β =
∑
α

S−1,t
βα kα (1.23)

Notice that to obtain k′ from k we use the symmetry operator without
the translation operation, i.e. we have used only the symmorphic part of the
symmetry operation. Finally we have

(St (ψnk)) (r + R)
L.C.
= ψ′nk(r + R)

L.C.
= ψnk(S−1

t (r))ei2πk
′·R

L.C.
= ψ′nk(r + R)

L.C.
= ψ′nk(r)ei2πk

′·R (1.24)

which actually means that the symmetrized wavefunction ψ′nk is the Bloch
wavefunction at k′ (see Eq.(1.3)), thus

(St (ψnk)) (r)
L.C.
= ψ′nk(r)

L.C.
= ψnk′(r) (1.25)

In Abinit code we store only the weigth of each plane wave (cnk(Gk)) so
we are more interested to find relation between cnk(Gk)

(St (ψnk)) (r)
L.C.
= ψnk′(r)

ψnk(S−1
t (r))

L.C.
= ψnk′(r)

npw k∑
Gk

cnk(Gk)ei2π(k+Gk)·(S−1
t (r)) L.C.

=

npw k’∑
Gk′

cnk′(Gk′)e
i2π(k′+Gk′ )·r (1.26)
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At this stage we have to specify two things:
First we can easily see that npw k = npw k’ because |k| = |k′| (see Eq.(1.6)
and Fig.(1.1) for instance). Indeed k′ is obtained from symmorphic opera-
tion (S−1,t) applied to k (that is all symmetry operation but the ones with
translations, which leads to preserve the modulus of the vector). This is
important to get a one to one correspondance at the end.
Secondly, what is Gk′ compared to Gk. Actually this is just (see Fig.(1.3))

Gk′ = G′k = S−1,t (Gk) ⇒ Gk′,β = G′k,β =
∑
α

S−1,t
βα Gk,α (1.27)

Figure 1.3: Schematic view of reciprocal space with 1rst Brillouin
zone and associated reciprocal lattice vectors (G) for a simple 2D
rectangular unit cell. The set of allowed Gk defined by Eq.(1.6) is
represented by a star for two symmetric k vectors (k :left panel,
k′: right panel). The number of plane waves for symmetric k
(npw k) is the same, and k-associated plane waves are symmetric
to k′-associated plane waves.
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so we have

npw k∑
Gk

cnk(Gk)ei2π
P
αβ(kα+Gk,α)S−1

αβ (rβ−tβ) =

npw k’∑
G′k

cnk′(G
′
k)ei2π

P
αβ(kα+Gk,α)S−1,t

βα rβ

which yields to

cnk(Gk)e−i2π
P
αβ(kα+Gk,α)S−1

αβ tβ = cnk′(G
′
k)

cnk(Gk)e−i2π(k
′+G′k)·t = cnk′(G

′
k)

cnk(Gk) = cnk′(G
′
k)e+i2π(k

′+G′k)·t (1.28)

or in a equivalent manner10

cnk′(G
′
k) = cnk(Gk)e+i2π(k+Gk)·t (1.29)

Remember now how we have defined the generalized symmetry operator
St (Eq.1.14). For the previous result, it means that for all symmorphic

symmetry operations (i.e. when t =
−→
0 ) we have the simple relation

cnk′(G
′
k) = cnk(Gk) (1.30)

Notably for the inversion symmetry operation we have

cn(k′=−k)((G
′
k = −Gk)) = cnk(Gk) (1.31)

and for the wavefunction (using Eq.(1.25))

ψnk(−r)
L.C.
= ψn(−k)(r) (1.32)

To finish this section on the use of symmetries, we can add another type
of symmetry which has not yet been taken into account because this is not
a space group symmetry but a symmetry of the problem; that is the time
reversal symmetry (for non-magnetic case) which is

ψnk(r)
L.C.
= ψ∗n(−k)(r) (1.33)

which for cnk(Gk) gives the relation

cnk(Gk) = c∗n(−k)(−Gk) (1.34)

10Indeed we can interchange k′ and G′k with k and Gk by considering the inverse
symmetry operation.
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Chapter 2

Electronic density and kinetic
energy density

We are going to look now at two quantities which are electronic density and
kinetic energy density. We treat them in the same chapter because they have
quite similar forms1.

2.1 Electronic density

The electronic density (n(r)) is given by

n(r) =
∑
k

∑
n

f(Enk)|ψnk(r)|2 (2.1)

where f(E) is the Fermi-Dirac distribution.
Let’s work at zero temperature and reduce the sum to a sum over the states
below and up to the Fermi level (Ef )

2.

n(r) =
∑
k

∑
n

|ψnk(r)|2 (2.2)

Consider also that the system might have some symmetries and from
what we have seen in the previous chapter it is thus possible to reduce again
the sum to a sum over an irreducible set of k vectors. It corresponds to what
we call the irreducible Brillouin zone (IBZ). See figure (Fig.(2.1)) for an
example.

1their implementations in ABINIT are thus grouped in a single routine (mkrho).
2the Fermi-Dirac distribution becomes f(E) = 1 when E ≤ Ef and f(E) = 0 otherwise.
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Figure 2.1: Schematic view of reciprocal space with 1rst Brillouin
zone and associated reciprocal lattice vectors (G) for a simple 2D
cubic unit cell. The irreducible Brillouin zone (IBZ) is repre-
sented by the hatched triangle.

Hence the electronic density can be cutted in symmetric part and thus is
now written as a sum over symmetry operators applied to electronic density
part defined in the IBZ,

n(r) =
∑
St

(
St n

IBZ
)

(r) =
∑
St

nIBZ
(
S−1

t (r)
)

(2.3)

where nIBZ is the electronic density part defined in the IBZ,

nIBZ(r) =
∑

k∈IBZ

∑
n

|ψnk(r)|2 =
∑

k∈IBZ

∑
n

nIBZnk (r) (2.4)

For the total electronic density, we have
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n(r) =
∑
St

(
St

∑
k∈IBZ

∑
n

nIBZnk

)
(r) (2.5)

n(r) =
∑
St

∑
k∈IBZ

∑
n

nIBZnk (S−1
t (r))

n(r) =
∑
St

∑
k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)e−i2π(k+Gk)·(S−1
t (r))

∑
G̃k

cnk(G̃k)ei2π(k+G̃k)·(S−1
t (r))


n(r) =

∑
St

∑
k∈IBZ

∑
n

∑
Gk

∑
G̃k

c∗nk(Gk)cnk(G̃k)ei2π(G̃k−Gk)·(S−1
t (r))

 (2.6)

We could use this last equation with the double sum over plane waves
vectors set (Gk) to compute the electronic density but in practice it is better
for numerical cost to make appear a Fourier transform from this last equation
and use the performant Fast Fourier Transform (FFT) tools. Indeed we can

define a new set of plane waves vectors ( ˜̃Gk = G̃k −Gk), which will be a
larger set of plane waves vectors3 (see Fig.(2.2)).

The electronic density becomes

n(r) =
∑
St

∑
k∈IBZ

∑
n

∑
Gk

∑
˜̃Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)ei2π
˜̃Gk·(S−1

t (r))


n(r) =

∑
St

∑
˜̃Gk

( ∑
k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

)
ei2π

˜̃Gk·(S−1
t (r))

n(r) =
∑
St

∑
˜̃Gk

ñIBZ( ˜̃Gk) ei2π
˜̃Gk·(S−1

t (r)) (2.7)

Comparing this last result with Eq.(2.3) we clearly see that ñIBZ( ˜̃Gk)
are Fourier transform components of nIBZ

(
S−1

t (r)
)
. Moreover you can see

that ñIBZ( ˜̃Gk) is independent of the symmetry operators S and then can be
computed by FFT with considering whatever symmetry operation we want.
In practice we choose off course the identity meaning that we use directly

3In Abinit this larger set of plane waves vectors is actually even larger and become
k-independent ( ˜̃G). This new larger set of plane waves vectors defines what we call the
FFT box.

11



Figure 2.2: Left: Schematic view of reciprocal space with 1rst

Brillouin zone and associated reciprocal lattice vectors (G) for a
simple 2D rectangular unit cell. The set of allowed Gk defined by
Eq.(1.6) is represented by a star for a given k vector. Right: The
corresponding FFT box defined by ˜̃Gk = G̃k −Gk.

the part of the electronic density computed in the IBZ (nIBZ(r)).
The idea is now to transfer the sum over symmetry operators which is acting
on real space (S−1

t (r)) to the reciprocal space4.

4as we have already done for wavefunction symmetrization in previous chapter
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n(r) =
∑
˜̃Gk

∑
St

ñIBZ( ˜̃Gk) ei2π
P
α

˜̃Gk,α(
P
β S
−1
αβ (rβ−tβ))

n(r) =
∑
˜̃Gk

∑
St

ñIBZ( ˜̃Gk) ei2π
P
αβ

˜̃Gk,αS
−1,t
βα (rβ−tβ)

n(r) =
∑
˜̃Gk

∑
St

ñIBZ( ˜̃Gk) e
i2π
“
S−1,t( ˜̃Gk)

”
·(r−t)

(2.8)

Now take a second to look at the term S−1,t( ˜̃Gk) and the figure (Fig.(2.2)).

Actually applying any symmetry operator S−1,t to any ˜̃Gk gives another vec-

tor ˜̃G′k which is already considered in the set of ( ˜̃Gk) vectors. This is because

the set of plane waves vectors ( ˜̃Gk) contains already all symmetries. Hence,

applying a symmetry operator on ˜̃Gk and summing over the whole set of

( ˜̃Gk) leads to the same sum as we did not applied the symmetry operator:∑
˜̃Gk

e
i2π
“
S−1,t( ˜̃Gk)

”
·(r−t)

=
∑
˜̃Gk

ei2π
˜̃Gk·(r−t) (2.9)

Hence, back to the electronic density

n(r) =
∑
˜̃Gk

(∑
St

ñIBZ( ˜̃Gk) e−i2π
˜̃Gk·t

)
ei2π

˜̃Gk·r

n(r) =
∑
˜̃Gk

ñ( ˜̃Gk)ei2π
˜̃Gk·r (2.10)

As you can see the final result gives that the total (or symmetrized)
electronic density in real space (n(r))5 is the Fourier transform of the to-

tal (symmetrized) electronic density in reciprocal space (ñ( ˜̃Gk))6 where the
latter is defined by

ñ( ˜̃Gk) =
∑
St

ñIBZ( ˜̃Gk) e−i2π
˜̃Gk·t (2.11)

The phase factor e−i2π
˜̃Gk·t is called nonsymmorphic translation phase7.

5this is named rhor in ABINIT
6this is named rhog in ABINIT
7this is named phnons in ABINIT
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2.2 Kinetic energy density

The kinetic energy density (τ(r)) is quite similar to the electronic density
(n(r)) except that we take the gradient (∇) of the wavefunction. It is written
as

τ(r) =
1

2

∑
k

∑
n

f(Enk)|∇ψnk(r)|2 (2.12)

Let’s again work at zero temperature and reduce the sum to a sum over
the states below and up to the Fermi level (Ef ) to obtain

τ(r) =
1

2

∑
k

∑
n

|∇ψnk(r)|2 (2.13)

We will follow the same procedure as for the electronic density, but it is
going to become more complex because of the gradient. But at the end we
will see that we can again construct the total kinetic energy density from the
kinetic energy density defined in the IBZ, the symmetry operators and the
FFT. Let’s start as in Eq.(2.5)
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τ(r) =
1

2

∑
St

∑
k∈IBZ

∑
n

τ IBZnk (S−1
t (r))

τ(r) =
1

2

∑
St

∑
k∈IBZ

∑
n

|∇ψnk(S−1
t (r))|2

τ(r) =
1

2

∑
St

∑
k∈IBZ

∑
n

∑
γ

∣∣∣∣ ∂∂γψnk(S−1
t (r))

∣∣∣∣2
τ(r) =

1

2

∑
St

∑
k∈IBZ

∑
n

∑
γ

∣∣∣∣∑
Gk

cnk(Gk)
∂

∂γ
ei2π(k+Gk)·(S−1

t (r))
∣∣∣∣2

τ(r) =
1

2

∑
St

∑
k∈IBZ

∑
n

∑
γ

∣∣∣∣∑
Gk

cnk(Gk)
∂

∂γ
ei2π

P
αβ(kα+Gk,α)S−1

αβ (rβ−tβ)

∣∣∣∣2
τ(r) =

1

2

∑
St

∑
k∈IBZ

∑
n

∑
γ

∣∣∣∣∑
Gk

cnk(Gk)

(
i2π
∑
α

(kα +Gk,α)S−1
αγ

)
ei2π(k+Gk)·(S−1

t (r))
∣∣∣∣2

τ(r) =
1

2

∑
St

∑
k∈IBZ

∑
n

∑
γ

×
∑
Gk

∑
G̃k

c∗nk(Gk)cnk(G̃k)(2π)2

(∑
α

(kα +Gk,α)S−1
αγ

)(∑
α

(
kα + G̃k,α

)
S−1
αγ

)

× ei2π(G̃k−Gk)·(S−1
t (r))

τ(r) =
1

2

∑
St

∑
k∈IBZ

∑
n

∑
γ

×
∑
Gk

∑
˜̃Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)(2π)2

(∑
α

(kα +Gk,α)S−1
αγ

)

×

(∑
α

(
kα + ˜̃Gk,α +Gk,α

)
S−1
αγ

)
e
i2π
“

˜̃Gk

”
·(S−1

t (r)) (2.14)

We use then the same trick as in Eq.(2.9) to rewrite the phase factor.
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τ(r) =
1

2

∑
˜̃Gk

∑
St

∑
k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

×(2π)2
∑
γ

(∑
α

(kα +Gk,α)S−1
αγ

)(∑
α

(
kα + ˜̃Gk,α +Gk,α

)
S−1
αγ

)
e−i2π

˜̃Gk·t

× ei2π
˜̃Gk·r (2.15)

We have almost the same form as for Eq.(2.10), i.e.

τ(r) =
1

2

∑
˜̃Gk

τ̃( ˜̃Gk) ei2π
˜̃Gk·r (2.16)

with

τ̃( ˜̃Gk) =
∑
St

τ̃ IBZ( ˜̃Gk) e−i2π
˜̃Gk·t (2.17)

But this times τ̃ IBZ( ˜̃Gk) which is Fourier transform of τ IBZ
(
S−1

t (r)
)

does
not appear to be independent of S, indeed

τ̃ IBZ( ˜̃Gk) =
∑

k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

×(2π)2
∑
γ

(∑
α

(kα +Gk,α)S−1
αγ

)(∑
α

(
kα + ˜̃Gk,α +Gk,α

)
S−1
αγ

)
(2.18)

And if it was really the case we could not use directly the part of the

kinetic energy density computed in the IBZ (τ IBZ(r)) to compute τ̃ IBZ( ˜̃Gk),
but we should compute it for each symmetry operations. But hopefully we
can use the orthogonality property of S matrices to show that Eq.(2.18) is
independent of S and thus equivalent to

τ̃ IBZ( ˜̃Gk)|S=1 =
∑

k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

×(2π)2
∑
γ

(kγ +Gk,γ)
(
kγ + ˜̃Gk,γ +Gk,γ

)
(2.19)
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Let’s rewrite the triple sum where appear the S dependence in Eq.(2.18)

∑
γ

(∑
α

(kα +Gk,α)S−1
αγ

)(∑
α

(
kα + ˜̃Gk,α +Gk,α

)
S−1
αγ

)
(2.20)

=
∑
γαα′

S−1
αγ S

−1
α′γ (kα +Gk,α)

(
kα′ +

˜̃Gk,α′ +Gk,α′

)
(2.21)

=
∑
αα′

(∑
γ

S−1
αγ S

−1
α′γ

)
(kα +Gk,α)

(
kα′ +

˜̃Gk,α′ +Gk,α′

)
(2.22)

Here we can use the fact that all symmorphic symmetry matrices (S) are
orthogonal matrices and thus have the property that their inverse and their
transposed are equal and thus

S−1 = St (2.23)

SSt = 1 (2.24)

or,
∑
γ

SγαSγα′ = δαα′ (2.25)

or again,
∑
γ

S−1
αγ S

−1
α′γ = δαα′ (2.26)

Hence we have

∑
γ

(∑
α

(kα +Gk,α)S−1
αγ

)(∑
α

(
kα + ˜̃Gk,α +Gk,α

)
S−1
αγ

)
(2.27)

=
∑
α

(kα +Gk,α)
(
kα + ˜̃Gk,α +Gk,α

)
(2.28)

which is S idenpendent, and thus we can use the same techniques as for
the electronic density for the symmetrization of the kinetic energy density8

8In ABINIT the routine performing the symmetrization is symrhg.
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Chapter 3

Electron localization function
(ELF)

Now that we have seen this two important densities in the previous chapter,
namely the electronic density and the kinetic energy density, we can build
an interesting function which is often used in chemical bond analysis: the
Electron Localization Function (ELF ). In quantum chemical topology two
methods are usually used to investigate chemical bonds, Atoms in Molecules
(AIM) proposed by Bader, and the topological analysis of ELF proposed by
Silvi and Savin based on ELF formulation given by Becke and Edgecombe.

The formulation of ELF pass trough the definition of a new quantity
which is like kinetic energy density. Let’s call it the “Pauli kinetic energy
density” and let’s note it D(r). It is defined as

D(r) = τ(r)− 1

8

|∇n(r)|2

n(r)
(3.1)

where |∇n(r)|2 is the square modulus of the gradient of the electronic

density and where 1
8
|∇n(r)|2
n(r)

is actually the Weizsäcker kinetic energy density.

When the Pauli kinetic energy density D(r) approaches zero the probability
of finding localized electron is enhanced. For non-zero value of D(r) we need
a reference value to konw if electrons are rather localized or not. We use then
the Thomas-Fermi kinetic energy density D0(r) as the reference.

D0(r) =
3

10

(
3π2
)2/3

n5/3(r) = CFn
5/3(r) (3.2)

where CF ∼ 2.871 is the Fermi constant. The electron localization func-
tion is then defined by
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ELF (r) =
1

1 +
(
D(r)
D0(r)

)2 (3.3)

With this definition ELF (r) is a dimensionless quantity which is bounded
between 0 and 1. When ELF (r) ∼ 1 then the electrons in this region are
localized, when ELF (r) ∼ 1

2
it means that D(r) = D0(r) and that the

electrons are no more localized than in the homogeneous gaz.
Now if you consider the spin dependent densities you can build a spin

dependent ELF , which is given for each spin by the same general formula

ELFσ(r) =
1

1 +
(
Dσ(r)
D0
σ(r)

)2 (3.4)

Actually the original formulation of ELF given by Becke and Edgecombe
was built on the electron pair density of electron of the same spin. Indeed,
because of Pauli principle we can argue that a pair of electrons of same spin
are more correlated than a pair of electrons of different spin.

In that case we need the spin dependent densities defined as

nσ(r) =
∑
k

∑
nσ

f(Enσk)|ψnσk(r)|2 (3.5)

τσ(r) =
1

2

∑
k

∑
nσ

f(Enσk)|∇ψnσk(r)|2 (3.6)

with the property1

n(r) = nσ=↑(r) + nσ=↓(r) (3.7)

τ(r) = τσ=↑(r) + τσ=↓(r) (3.8)

The Becke and Edgecombe (B-E) formulation of ELF for each spin was
based the following formula for Pauli kinetic energy density and Thomas
Fermi kinetic energy density

DB−E
σ (r) = 2τσ(r)− 1

4

|∇nσ(r)|2

nσ(r)
(3.9)

D0 B−E
σ (r) = CF (2nσ(r))5/3 (3.10)

1at least in the spin collinear case.
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Savin (S) formulation given in Eq.3.1 and 3.2 which is a spin independent
formulation stick to the Becke and Edgecombe formulation for closed shell
systems. Indeed for such system we have

1

2
n(r) = nσ=↑(r) = nσ=↓(r) (3.11)

1

2
τ(r) = τσ=↑(r) = τσ=↓(r) (3.12)

DS(r) = τ(r)− 1

8

|∇n(r)|2

n(r)

= 2τσ(r)− 1

8

|∇2nσ(r)|2

2nσ(r)

= 2τσ(r)− 1

4

|∇nσ(r)|2

nσ(r)
= DB−E

σ (r) (3.13)

D0 S(r) = CFn
5/3(r)

= CF (2nσ(r))5/3 = D0 B−E
σ (r) (3.14)

In the spirit of Becke-Edgecombe ELF formulation based on electron pair
density of the same spin, Savin formulation is thus only strictly valid for
closed shell system. But without the spin information (spin dependent den-
sities) Savin interpretation for open shell system is still usefull.
Because of the presence of factors 2 between this two formulation (B-E and
S), which could be misleading, Kohout and Savin (K-S) have redefined the
Pauli kinetic energy density and Thomas Fermi kinetic energy density in the
spin dependent case[3] following the spin-density functional theory, such as

DK−S
σ (r) =

DB−E
σ (r)

2
= τσ(r)− 1

8

|∇nσ(r)|2

nσ(r)
(3.15)

D0 K−S
σ (r) =

D0 B−E
σ (r)

2
= 22/3CFn

5/3
σ (r) (3.16)

And they have also given a new formulation for total ELF which in prin-
ciple is valid also for open shell systems because this time it is built on spin
dependent quantities
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DK−S(r) = DK−S
σ=↑ (r) +DK−S

σ=↓ (r)

= τσ=↑(r) + τσ=↓(r)− 1

8

|∇nσ=↑(r)|2

nσ=↑(r)
− 1

8

|∇nσ=↓(r)|2

nσ=↓(r)

= τ(r)− 1

8

(
|∇nσ=↑(r)|2

nσ=↑(r)
+
|∇nσ=↓(r)|2

nσ=↓(r)

)
(3.17)

D0 K−S(r) = D0 K−S
σ=↑ (r) +D0 K−S

σ=↓ (r)

= 22/3CF

(
n

5/3
σ=↑(r) + n

5/3
σ=↓(r)

)
(3.18)
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Chapter 4

Generalization of the kinetic
energy density to the tensorial
form

In chapter 2, section 2.2 we have seen how is defined the kinetic energy density
(Eq.(2.13)). We are now going to generalize this definition to a tensorial form.
Indeed the kinetic energy density can actually be seen as the trace over a
kinetic energy density tensor (τ) (a 3 by 3 matrix) with each of its elements
defined by

ταβ(r) =
∑
k

∑
n

(
∂

∂α
ψnk(r)

)∗(
∂

∂β
ψnk(r)

)
(4.1)

with that definition the kinetic energy density can be expressed as

τ(r) =
1

2

∑
α

ταα(r) =
1

2
Tr [τ(r)] (4.2)

A given element of the kinetic energy density tensor is a quantity which
can be useful in several developments, especially an individual diagonal ele-
ment1.
As we did before with the other densities, we are now going to see how these
elements of the kinetic energy density tensor can be symmetrized when we
work with symmetries and thus only in the IBZ.

1See for instance the documentation on STM (doc/theory/STM).
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ταβ(r) =
∑
St

∑
k∈IBZ

∑
n

τ IBZαβ nk(S−1
t (r))

ταβ(r) =
∑
St

∑
k∈IBZ

∑
n

(
∂

∂α
ψnk(S−1

t (r))

)∗(
∂

∂β
ψnk(S−1

t (r))

)
ταβ(r) =

∑
St

∑
k∈IBZ

∑
n

×
∑
Gk

∑
G̃k

c∗nk(Gk)cnk(G̃k)(2π)2

(∑
α′

(kα′ +Gk,α′)S
−1
α′α

)(∑
β′

(
kβ′ + G̃k,β′

)
S−1
β′β

)

× ei2π(G̃k−Gk)·(S−1
t (r))

ταβ(r) =
∑
St

∑
k∈IBZ

∑
n

×
∑
Gk

∑
˜̃Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)(2π)2

(∑
α′

(kα′ +Gk,α′)S
−1
α′α

)

×

(∑
β′

(
kβ′ +

˜̃Gk,β′ +Gk,β′

)
S−1
β′β

)
e
i2π
“

˜̃Gk

”
·(S−1

t (r))

ταβ(r) =
∑
˜̃Gk

∑
St

∑
k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

×(2π)2

(∑
α′

(kα′ +Gk,α′)S
−1
α′α

)(∑
β′

(
kβ′ +

˜̃Gk,β′ +Gk,β′

)
S−1
β′β

)
e−i2π

˜̃Gk·t

× ei2π
˜̃Gk·r (4.3)

Again we can make appear a Fourier transform which yields to

ταβ(r) =
∑
˜̃Gk

τ̃αβ( ˜̃Gk) ei2π
˜̃Gk·r (4.4)

with

τ̃αβ( ˜̃Gk) =
∑
St

τ̃ IBZαβ ( ˜̃Gk) e−i2π
˜̃Gk·t (4.5)

But this times τ̃ IBZαβ ( ˜̃Gk) which is Fourier transform of τ IBZαβ

(
S−1

t (r)
)

is
not independent of S, indeed
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τ̃ IBZαβ ( ˜̃Gk)
∣∣
∀S =

∑
k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

×(2π)2

(∑
α′

(kα′ +Gk,α′)S
−1
α′α

)(∑
β′

(
kβ′ +

˜̃Gk,β′ +Gk,β′

)
S−1
β′β

)
(4.6)

and there are no more orthogonality rules which can save us here. But

actually for a given couple {α, β} the quantity τ̃ IBZαβ ( ˜̃Gk) for any S can be
rewritten as a sum over all quantities token at S = 1. Indeed, if we consider
the identity S = 1 we have

τ̃ IBZαβ ( ˜̃Gk)
∣∣
S=1

=
∑

k∈IBZ

∑
n

∑
Gk

c∗nk(Gk)cnk( ˜̃Gk + Gk)

×(2π)2 (kα +Gk,α)
(
kβ + ˜̃Gk,β +Gk,β

)
(4.7)

and thus

τ̃ IBZαβ ( ˜̃Gk)
∣∣
∀S =

∑
α′,β′

τ̃ IBZα′β′ ( ˜̃Gk)
∣∣
S=1

S−1
α′αS

−1
β′β (4.8)

It means that in order to symmetrize one element of the tensor we need
to know all the nine elements in the IBZ. Finally we obtain

ταβ(r) =
∑
˜̃Gk

(∑
St

(∑
α′,β′

τ̃ IBZα′β′ ( ˜̃Gk)
∣∣
S=1

S−1
α′αS

−1
β′β

)
e−i2π

˜̃Gk·t

)
ei2π

˜̃Gk·r (4.9)
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