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“When I hear you give your reasons,” I remarked, “the thing always appears to me to be so
ridiculously simple that I could easily do it myself, though at each successive instance of your
reasoning I am baffled until you explain your process.”

Dr. Watson to Sherlock Holmes
A Scandal in Bohemia

0.1 Description

This solutions manual contains solutions for all odd numbered problems plus a large number of
solutions for even numbered problems. Of the 624 exercises in Statistical Inference, Second Edition,
this manual gives solutions for 484 (78%) of them. There is an obtuse pattern as to which solutions
were included in this manual. We assembled all of the solutions that we had from the first edition,
and filled in so that all odd-numbered problems were done. In the passage from the first to the
second edition, problems were shuffled with no attention paid to numbering (hence no attention
paid to minimize the new effort), but rather we tried to put the problems in logical order.

A major change from the first edition is the use of the computer, both symbolically through
Mathematicatm and numerically using R. Some solutions are given as code in either of these lan-
guages. Mathematicatm can be purchased from Wolfram Research, and R is a free download from
http://www.r-project.org/.

Here is a detailed listing of the solutions included.

Chapter Number of Exercises Number of Solutions Missing
1 55 51 26, 30, 36, 42
2 40 37 34, 38, 40
3 50 42 4, 6, 10, 20, 30, 32, 34, 36
4 65 52 8, 14, 22, 28, 36, 40

48, 50, 52, 56, 58, 60, 62
5 69 46 2, 4, 12, 14, 26, 28

all even problems from 36− 68
6 43 35 8, 16, 26, 28, 34, 36, 38, 42
7 66 52 4, 14, 16, 28, 30, 32, 34,

36, 42, 54, 58, 60, 62, 64
8 58 51 36, 40, 46, 48, 52, 56, 58
9 58 41 2, 8, 10, 20, 22, 24, 26, 28, 30

32, 38, 40, 42, 44, 50, 54, 56
10 48 26 all even problems except 4 and 32
11 41 35 4, 20, 22, 24, 26, 40
12 31 16 all even problems
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and Tom Wehrly. Thank you all for your help.

And, as we said the first time around, although we have benefited greatly from the assistance and
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comments of others in the assembly of this manual, we are responsible for its ultimate correctness.
To this end, we have tried our best but, as a wise man once said, “You pays your money and you
takes your chances.”

George Casella
Roger L. Berger
Damaris Santana
December, 2001



Chapter 1

Probability Theory

“If any little problem comes your way, I shall be happy, if I can, to give you a hint or two as
to its solution.”

Sherlock Holmes
The Adventure of the Three Students

1.1 a. Each sample point describes the result of the toss (H or T) for each of the four tosses. So,
for example THTT denotes T on 1st, H on 2nd, T on 3rd and T on 4th. There are 24 = 16
such sample points.

b. The number of damaged leaves is a nonnegative integer. So we might use S = {0, 1, 2, . . .}.
c. We might observe fractions of an hour. So we might use S = {t : t ≥ 0}, that is, the half

infinite interval [0,∞).

d. Suppose we weigh the rats in ounces. The weight must be greater than zero so we might use
S = (0,∞). If we know no 10-day-old rat weighs more than 100 oz., we could use S = (0, 100].

e. If n is the number of items in the shipment, then S = {0/n, 1/n, . . . , 1}.

1.2 For each of these equalities, you must show containment in both directions.

a. x ∈ A\B ⇔ x ∈ A and x /∈ B ⇔ x ∈ A and x /∈ A ∩ B ⇔ x ∈ A\(A ∩ B). Also, x ∈ A and
x /∈ B ⇔ x ∈ A and x ∈ Bc ⇔ x ∈ A ∩Bc.

b. Suppose x ∈ B. Then either x ∈ A or x ∈ Ac. If x ∈ A, then x ∈ B ∩ A, and, hence
x ∈ (B ∩A)∪ (B ∩Ac). Thus B ⊂ (B ∩A)∪ (B ∩Ac). Now suppose x ∈ (B ∩A)∪ (B ∩Ac).
Then either x ∈ (B ∩ A) or x ∈ (B ∩ Ac). If x ∈ (B ∩ A), then x ∈ B. If x ∈ (B ∩ Ac),
then x ∈ B. Thus (B ∩A) ∪ (B ∩Ac) ⊂ B. Since the containment goes both ways, we have
B = (B ∩ A) ∪ (B ∩ Ac). (Note, a more straightforward argument for this part simply uses
the Distributive Law to state that (B ∩A) ∪ (B ∩Ac) = B ∩ (A ∪Ac) = B ∩ S = B.)

c. Similar to part a).

d. From part b).
A ∪B = A ∪ [(B ∩A) ∪ (B ∩Ac)] = A ∪ (B ∩ A) ∪ A ∪ (B ∩ Ac) = A ∪ [A ∪ (B ∩Ac)] =
A ∪ (B ∩Ac).

1.3 a. x ∈ A ∪B ⇔ x ∈ A or x ∈ B ⇔ x ∈ B ∪A

x ∈ A ∩B ⇔ x ∈ A and x ∈ B ⇔ x ∈ B ∩A.

b. x ∈ A ∪ (B ∪ C) ⇔ x ∈ A or x ∈ B ∪ C ⇔ x ∈ A ∪B or x ∈ C ⇔ x ∈ (A ∪B) ∪ C.
(It can similarly be shown that A ∪ (B ∪ C) = (A ∪ C) ∪B.)
x ∈ A ∩ (B ∩ C) ⇔ x ∈ A and x ∈ B and x ∈ C ⇔ x ∈ (A ∩B) ∩ C.

c. x ∈ (A ∪B)c ⇔ x /∈ A or x /∈ B ⇔ x ∈ Ac and x ∈ Bc ⇔ x ∈ Ac ∩Bc

x ∈ (A ∩B)c ⇔ x /∈ A ∩B ⇔ x /∈ A and x /∈ B ⇔ x ∈ Ac or x ∈ Bc ⇔ x ∈ Ac ∪Bc.

1.4 a. “A or B or both” is A∪B. From Theorem 1.2.9b we have P (A∪B) = P (A)+P (B)−P (A∩B).
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b. “A or B but not both” is (A ∩Bc) ∪ (B ∩Ac). Thus we have

P ((A ∩Bc) ∪ (B ∩Ac)) = P (A ∩Bc) + P (B ∩Ac) (disjoint union)
= [P (A)− P (A ∩B)] + [P (B)− P (A ∩B)] (Theorem1.2.9a)
= P (A) + P (B)− 2P (A ∩B).

c. “At least one of A or B” is A ∪B. So we get the same answer as in a).
d. “At most one of A or B” is (A ∩B)c, and P ((A ∩B)c) = 1− P (A ∩B).

1.5 a. A ∩B ∩ C = {a U.S. birth results in identical twins that are female}
b. P (A ∩B ∩ C) = 1

90 ×
1
3 ×

1
2

1.6
p0 = (1− u)(1− w), p1 = u(1− w) + w(1− u), p2 = uw,

p0 = p2 ⇒ u + w = 1
p1 = p2 ⇒ uw = 1/3.

These two equations imply u(1 − u) = 1/3, which has no solution in the real numbers. Thus,
the probability assignment is not legitimate.

1.7 a.

P (scoring i points) =

{
1− πr2

A if i = 0
πr2

A

[
(6−i)2−(5−i)2

52

]
if i = 1, . . . , 5.

b.

P (scoring i points|board is hit) =
P (scoring i points ∩ board is hit)

P (board is hit)

P (board is hit) =
πr2

A

P (scoring i points ∩ board is hit) =
πr2

A

[
(6− i)2 − (5− i)2

52

]
i = 1, . . . , 5.

Therefore,

P (scoring i points|board is hit) =
(6− i)2 − (5− i)2

52
i = 1, . . . , 5

which is exactly the probability distribution of Example 1.2.7.
1.8 a. P (scoring exactly i points) = P (inside circle i) − P (inside circle i + 1). Circle i has radius

(6− i)r/5, so

P (sscoring exactly i points) =
π(6− i)2r2

52πr2
− π ((6−(i + 1)))2r2

52πr2
=

(6− i)2−(5− i)2

52
.

b. Expanding the squares in part a) we find P (scoring exactly i points) = 11−2i
25 , which is

decreasing in i.
c. Let P (i) = 11−2i

25 . Since i ≤ 5, P (i) ≥ 0 for all i. P (S) = P (hitting the dartboard) = 1 by
definition. Lastly, P (i ∪ j) = area of i ring + area of j ring = P (i) + P (j).

1.9 a. Suppose x ∈ (∪αAα)c, by the definition of complement x 6∈ ∪αAα, that is x 6∈ Aα for all
α ∈ Γ. Therefore x ∈ Ac

α for all α ∈ Γ. Thus x ∈ ∩αAc
α and, by the definition of intersection

x ∈ Ac
α for all α ∈ Γ. By the definition of complement x 6∈ Aα for all α ∈ Γ. Therefore

x 6∈ ∪αAα. Thus x ∈ (∪αAα)c.
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b. Suppose x ∈ (∩αAα)c, by the definition of complement x 6∈ (∩αAα). Therefore x 6∈ Aα for
some α ∈ Γ. Therefore x ∈ Ac

α for some α ∈ Γ. Thus x ∈ ∪αAc
α and, by the definition of

union, x ∈ Ac
α for some α ∈ Γ. Therefore x 6∈ Aα for some α ∈ Γ. Therefore x 6∈ ∩αAα. Thus

x ∈ (∩αAα)c.
1.10 For A1, . . . , An

(i)

(
n⋃

i=1

Ai

)c

=
n⋂

i=1

Ac
i (ii)

(
n⋂

i=1

Ai

)c

=
n⋃

i=1

Ac
i

Proof of (i): If x ∈ (∪Ai)c, then x /∈ ∪Ai. That implies x /∈ Ai for any i, so x ∈ Ac
i for every i

and x ∈ ∩Ai.
Proof of (ii): If x ∈ (∩Ai)c, then x /∈ ∩Ai. That implies x ∈ Ac

i for some i, so x ∈ ∪Ac
i .

1.11 We must verify each of the three properties in Definition 1.2.1.

a. (1) The empty set ∅ ∈ {∅, S}. Thus ∅ ∈ B. (2) ∅c = S ∈ B and Sc = ∅ ∈ B. (3) ∅∪S = S ∈ B.
b. (1) The empty set ∅ is a subset of any set, in particular, ∅ ⊂ S. Thus ∅ ∈ B. (2) If A ∈ B,

then A ⊂ S. By the definition of complementation, Ac is also a subset of S, and, hence,
Ac ∈ B. (3) If A1, A2, . . . ∈ B, then, for each i, Ai ⊂ S. By the definition of union, ∪Ai ⊂ S.
Hence, ∪Ai ∈ B.

c. Let B1 and B2 be the two sigma algebras. (1) ∅ ∈ B1 and ∅ ∈ B2 since B1 and B2 are
sigma algebras. Thus ∅ ∈ B1 ∩ B2. (2) If A ∈ B1 ∩ B2, then A ∈ B1 and A ∈ B2. Since
B1 and B2 are both sigma algebra Ac ∈ B1 and Ac ∈ B2. Therefore Ac ∈ B1 ∩ B2. (3) If
A1, A2, . . . ∈ B1 ∩B2, then A1, A2, . . . ∈ B1 and A1, A2, . . . ∈ B2. Therefore, since B1 and B2

are both sigma algebra, ∪∞i=1Ai ∈ B1 and ∪∞i=1Ai ∈ B2. Thus ∪∞i=1Ai ∈ B1 ∩ B2.

1.12 First write

P

( ∞⋃
i=1

Ai

)
= P

(
n⋃

i=1

Ai ∪
∞⋃

i=n+1

Ai

)

= P

(
n⋃

i=1

Ai

)
+ P

( ∞⋃
i=n+1

Ai

)
(Ais are disjoint)

=
n∑

i=1

P (Ai) + P

( ∞⋃
i=n+1

Ai

)
(finite additivity)

Now define Bk =
⋃∞

i=k Ai. Note that Bk+1 ⊂ Bk and Bk → φ as k →∞. (Otherwise the sum
of the probabilities would be infinite.) Thus

P

( ∞⋃
i=1

Ai

)
= lim

n→∞
P

( ∞⋃
i=1

Ai

)
= lim

n→∞

[
n∑

i=1

P (Ai) + P (Bn+1)

]
=

∞∑
i=1

P (Ai).

1.13 If A and B are disjoint, P (A ∪ B) = P (A) + P (B) = 1
3 + 3

4 = 13
12 , which is impossible. More

generally, if A and B are disjoint, then A ⊂ Bc and P (A) ≤ P (Bc). But here P (A) > P (Bc),
so A and B cannot be disjoint.

1.14 If S = {s1, . . . , sn}, then any subset of S can be constructed by either including or excluding
si, for each i. Thus there are 2n possible choices.

1.15 Proof by induction. The proof for k = 2 is given after Theorem 1.2.14. Assume true for k, that
is, the entire job can be done in n1 × n2 × · · · × nk ways. For k + 1, the k + 1th task can be
done in nk+1 ways, and for each one of these ways we can complete the job by performing
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the remaining k tasks. Thus for each of the nk+1 we have n1 × n2 × · · · × nk ways of com-
pleting the job by the induction hypothesis. Thus, the number of ways we can do the job is
(1× (n1 × n2 × · · · × nk)) + · · ·+ (1× (n1 × n2 × · · · × nk))︸ ︷︷ ︸

nk+1terms

= n1 × n2 × · · · × nk × nk+1.

1.16 a) 263. b) 263 + 262. c) 264 + 263 + 262.

1.17 There are
(
n
2

)
= n(n− 1)/2 pieces on which the two numbers do not match. (Choose 2 out of

n numbers without replacement.) There are n pieces on which the two numbers match. So the
total number of different pieces is n + n(n− 1)/2 = n(n + 1)/2.

1.18 The probability is (n
2)n!

nn = (n−1)(n−1)!
2nn−2 . There are many ways to obtain this. Here is one. The

denominator is nn because this is the number of ways to place n balls in n cells. The numerator
is the number of ways of placing the balls such that exactly one cell is empty. There are n ways
to specify the empty cell. There are n− 1 ways of choosing the cell with two balls. There are(
n
2

)
ways of picking the 2 balls to go into this cell. And there are (n− 2)! ways of placing the

remaining n − 2 balls into the n − 2 cells, one ball in each cell. The product of these is the
numerator n(n− 1)

(
n
2

)
(n− 2)! =

(
n
2

)
n!.

1.19 a.
(
6
4

)
= 15.

b. Think of the n variables as n bins. Differentiating with respect to one of the variables is
equivalent to putting a ball in the bin. Thus there are r unlabeled balls to be placed in n
unlabeled bins, and there are

(
n+r−1

r

)
ways to do this.

1.20 A sample point specifies on which day (1 through 7) each of the 12 calls happens. Thus there
are 712 equally likely sample points. There are several different ways that the calls might be
assigned so that there is at least one call each day. There might be 6 calls one day and 1 call
each of the other days. Denote this by 6111111. The number of sample points with this pattern
is 7
(
12
6

)
6!. There are 7 ways to specify the day with 6 calls. There are

(
12
6

)
to specify which of

the 12 calls are on this day. And there are 6! ways of assigning the remaining 6 calls to the
remaining 6 days. We will now count another pattern. There might be 4 calls on one day, 2 calls
on each of two days, and 1 call on each of the remaining four days. Denote this by 4221111.
The number of sample points with this pattern is 7

(
12
4

)(
6
2

)(
8
2

)(
6
2

)
4!. (7 ways to pick day with 4

calls,
(
12
4

)
to pick the calls for that day,

(
6
2

)
to pick two days with two calls,

(
8
2

)
ways to pick

two calls for lowered numbered day,
(
6
2

)
ways to pick the two calls for higher numbered day,

4! ways to order remaining 4 calls.) Here is a list of all the possibilities and the counts of the
sample points for each one.

pattern number of sample points
6111111 7

(
12
6

)
6! = 4,656,960

5211111 7
(
12
5

)
6
(
7
2

)
5! = 83,825,280

4221111 7
(
12
4

)(
6
2

)(
8
2

)(
6
2

)
4! = 523,908,000

4311111 7
(
12
4

)
6
(
8
3

)
5! = 139,708,800

3321111
(
7
2

)(
12
3

)(
9
3

)
5
(
6
2

)
4! = 698,544,000

3222111 7
(
12
3

)(
6
3

)(
9
3

)(
7
2

)(
5
2

)
3! = 1,397,088,000

2222211
(
7
5

)(
12
2

)(
10
2

)(
8
2

)(
6
2

)(
4
2

)
2! = 314,344,800

3,162,075,840

The probability is the total number of sample points divided by 712, which is 3,162,075,840
712 ≈

.2285.

1.21 The probability is ( n
2r)22r

(2n
2r)

. There are
(
2n
2r

)
ways of choosing 2r shoes from a total of 2n shoes.

Thus there are
(
2n
2r

)
equally likely sample points. The numerator is the number of sample points

for which there will be no matching pair. There are
(

n
2r

)
ways of choosing 2r different shoes
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styles. There are two ways of choosing within a given shoe style (left shoe or right shoe), which
gives 22r ways of arranging each one of the

(
n
2r

)
arrays. The product of this is the numerator(

n
2r

)
22r.

1.22 a) (31
15)(29

15)(31
15)(30

15)···(31
15)

(366
180)

b)
336
366

335
365 ···

316
336

(366
30 ) .

1.23

P ( same number of heads ) =
n∑

x=0

P (1st tosses x, 2nd tosses x)

=
n∑

x=0

[(
n

x

)(
1
2

)x(1
2

)n−x
]2

=
(

1
4

)n n∑
x=0

(
n

x

)2

.

1.24 a.

P (A wins) =
∞∑

i=1

P (A wins on ith toss)

=
1
2

+
(

1
2

)2 1
2

+
(

1
2

)4(1
2

)
+ · · · =

∞∑
i=0

(
1
2

)2i+1

= 2/3.

b. P (A wins) = p + (1− p)2p + (1− p)4p + · · · =
∑∞

i=0 p(1− p)2i = p
1−(1−p)2

.

c. d
dp

(
p

1−(1−p)2

)
= p2

[1−(1−p)2]2
> 0. Thus the probability is increasing in p, and the minimum

is at zero. Using L’Hôpital’s rule we find limp→0
p

1−(1−p)2
= 1/2.

1.25 Enumerating the sample space gives S′ = {(B,B), (B,G), (G, B), (G, G)} ,with each outcome
equally likely. Thus P (at least one boy) = 3/4 and P (both are boys) = 1/4, therefore

P ( both are boys | at least one boy ) = 1/3.

An ambiguity may arise if order is not acknowledged, the space is S′ = {(B,B), (B,G), (G, G)},
with each outcome equally likely.

1.27 a. For n odd the proof is straightforward. There are an even number of terms in the sum
(0, 1, · · · , n), and

(
n
k

)
and

(
n

n−k

)
, which are equal, have opposite signs. Thus, all pairs cancel

and the sum is zero. If n is even, use the following identity, which is the basis of Pascal’s
triangle: For k > 0,

(
n
k

)
=
(
n−1

k

)
+
(
n−1
k−1

)
. Then, for n even

n∑
k=0

(−1)k

(
n

k

)
=

(
n

0

)
+

n−1∑
k=1

(−1)k

(
n

k

)
+
(

n

n

)

=
(

n

0

)
+
(

n

n

)
+

n−1∑
k=1

(−1)k

[(
n− 1

k

)
+
(

n− 1
k − 1

)]
=

(
n

0

)
+
(

n

n

)
−
(

n− 1
0

)
−
(

n− 1
n− 1

)
= 0.

b. Use the fact that for k > 0, k
(
n
k

)
= n

(
n−1
k−1

)
to write

n∑
k=1

k

(
n

k

)
= n

n∑
k=1

(
n− 1
k − 1

)
= n

n−1∑
j=0

(
n− 1

j

)
= n2n−1.
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c.
∑n

k=1 (−1)k+1
k
(
n
k

)
=

∑n
k=1(−1)k+1

(
n−1
k−1

)
= n

∑n−1
j=0 (−1)j

(
n−1

j

)
= 0 from part a).

1.28 The average of the two integrals is

[(n log n− n) + ((n + 1) log (n + 1)− n)] /2 = [n log n + (n + 1) log (n + 1)] /2− n

≈ (n + 1/2) log n− n.

Let dn = log n!− [(n + 1/2) log n− n], and we want to show that limn→∞ mdn = c, a constant.
This would complete the problem, since the desired limit is the exponential of this one. This
is accomplished in an indirect way, by working with differences, which avoids dealing with the
factorial. Note that

dn − dn+1 =
(

n +
1
2

)
log
(

1 +
1
n

)
− 1.

Differentiation will show that ((n + 1
2 )) log((1 + 1

n )) is increasing in n, and has minimum
value (3/2) log 2 = 1.04 at n = 1. Thus dn − dn+1 > 0. Next recall the Taylor expansion of
log(1 + x) = x − x2/2 + x3/3 − x4/4 + · · ·. The first three terms provide an upper bound on
log(1 + x), as the remaining adjacent pairs are negative. Hence

0 < dndn+1 <

(
n +

1
2

)(
1
n

1
2n2

+
1

3n3

)
− 1 =

1
12n2

+
1

6n3
.

It therefore follows, by the comparison test, that the series
∑∞

1 dn−dn+1 converges. Moreover,
the partial sums must approach a limit. Hence, since the sum telescopes,

lim
N→∞

N∑
1

dn − dn+1 = lim
N→∞

d1 − dN+1 = c.

Thus limn→∞ dn = d1 − c, a constant.

1.29 a.
Unordered Ordered
{4,4,12,12} (4,4,12,12), (4,12,12,4), (4,12,4,12)

(12,4,12,4), (12,4,4,12), (12,12,4,4)
Unordered Ordered

(2,9,9,12), (2,9,12,9), (2,12,9,9), (9,2,9,12)
{2,9,9,12} (9,2,12,9), (9,9,2,12), (9,9,12,2), (9,12,2,9)

(9,12,9,2), (12,2,9,9), (12,9,2,9), (12,9,9,2)
b. Same as (a).
c. There are 66 ordered samples with replacement from {1, 2, 7, 8, 14, 20}. The number of or-

dered samples that would result in {2, 7, 7, 8, 14, 14} is 6!
2!2!1!1! = 180 (See Example 1.2.20).

Thus the probability is 180
66 .

d. If the k objects were distinguishable then there would be k! possible ordered arrangements.
Since we have k1, . . . , km different groups of indistinguishable objects, once the positions of
the objects are fixed in the ordered arrangement permutations within objects of the same
group won’t change the ordered arrangement. There are k1!k2! · · · km! of such permutations
for each ordered component. Thus there would be k!

k1!k2!···km! different ordered components.
e. Think of the m distinct numbers as m bins. Selecting a sample of size k, with replacement,

is the same as putting k balls in the m bins. This is
(
k+m−1

k

)
, which is the number of distinct

bootstrap samples. Note that, to create all of the bootstrap samples, we do not need to know
what the original sample was. We only need to know the sample size and the distinct values.

1.31 a. The number of ordered samples drawn with replacement from the set {x1, . . . , xn} is nn. The
number of ordered samples that make up the unordered sample {x1, . . . , xn} is n!. Therefore
the outcome with average x1+x2+···+xn

n that is obtained by the unordered sample {x1, . . . , xn}
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has probability n!
nn . Any other unordered outcome from {x1, . . . , xn}, distinct from the un-

ordered sample {x1, . . . , xn}, will contain m different numbers repeated k1, . . . , km times
where k1 + k2 + · · · + km = n with at least one of the ki’s satisfying 2 ≤ ki ≤ n. The
probability of obtaining the corresponding average of such outcome is

n!
k1!k2! · · · km!nn

<
n!
nn

, since k1!k2! · · · km! > 1.

Therefore the outcome with average x1+x2+···+xn

n is the most likely.

b. Stirling’s approximation is that, as n →∞, n! ≈
√

2πnn+(1/2)e−n, and thus(
n!
nn

)/(√
2nπ

en

)
=

n!en

nn
√

2nπ
=
√

2πnn+(1/2)e−nen

nn
√

2nπ
= 1.

c. Since we are drawing with replacement from the set {x1, . . . , xn}, the probability of choosing
any xi is 1

n . Therefore the probability of obtaining an ordered sample of size n without xi

is (1− 1
n )n. To prove that limn→∞(1− 1

n )n = e−1, calculate the limit of the log. That is

lim
n→∞

n log
(

1− 1
n

)
= lim

n→∞

log
(
1− 1

n

)
1/n

.

L’Hôpital’s rule shows that the limit is −1, establishing the result. See also Lemma 2.3.14.
1.32 This is most easily seen by doing each possibility. Let P (i) = probability that the candidate

hired on the ith trial is best. Then

P (1) =
1
N

, P (2) =
1

N − 1
, . . . , P (i) =

1
N − i + 1

, . . . , P (N) = 1.

1.33 Using Bayes rule

P (M |CB) =
P (CB|M)P (M)

P (CB|M)P (M) + P (CB|F )P (F )
=

.05× 1
2

.05× 1
2+.0025× 1

2

= .9524.

1.34 a.

P (Brown Hair)
= P (Brown Hair|Litter 1)P (Litter 1) + P (Brown Hair|Litter 2)P (Litter 2)

=
(

2
3

)(
1
2

)
+
(

3
5

)(
1
2

)
=

19
30

.

b. Use Bayes Theorem

P (Litter 1|Brown Hair) =
P (BH|L1)P (L1)

P (BH|L1)P (L1) + P (BH|L2)P (L2
=

(
2
3

) (
1
2

)
19
30

=
10
19

.

1.35 Clearly P (·|B) ≥ 0, and P (S|B) = 1. If A1, A2, . . . are disjoint, then

P

( ∞⋃
i=1

Ai

∣∣∣∣∣B
)

=
P (
⋃∞

i=1 Ai ∩B)
P (B)

=
P (
⋃∞

i=1 (Ai ∩B))
P (B)

=
∑∞

i=1 P (Ai ∩B)
P (B)

=
∞∑

i=1

P (Ai|B).
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1.37 a. Using the same events A, B, C and W as in Example 1.3.4, we have

P (W) = P (W|A)P (A) + P (W|B)P (B) + P (W|C)P (C)

= γ

(
1
3

)
+ 0

(
1
3

)
+ 1

(
1
3

)
=

γ+1
3

.

Thus, P (A|W) = P (A∩W)
P (W) = γ/3

(γ+1)/3 = γ
γ+1 where,

γ
γ+1 = 1

3 if γ = 1
2

γ
γ+1 < 1

3 if γ < 1
2

γ
γ+1 > 1

3 if γ > 1
2 .

b. By Exercise 1.35, P (·|W) is a probability function. A, B and C are a partition. So

P (A|W) + P (B|W) + P (C|W) = 1.

But, P (B|W) = 0. Thus, P (A|W) + P (C|W) = 1. Since P (A|W) = 1/3, P (C|W) = 2/3.
(This could be calculated directly, as in Example 1.3.4.) So if A can swap fates with C, his
chance of survival becomes 2/3.

1.38 a. P (A) = P (A ∩ B) + P (A ∩ Bc) from Theorem 1.2.11a. But (A ∩ Bc) ⊂ Bc and P (Bc) =
1− P (B) = 0. So P (A ∩Bc) = 0, and P (A) = P (A ∩B). Thus,

P (A|B) =
P (A ∩B)

P (B)
=

P (A)
1

= P (A)

.
b. A ⊂ B implies A ∩B = A. Thus,

P (B|A) =
P (A ∩B)

P (A)
=

P (A)
P (A)

= 1.

And also,

P (A|B) =
P (A ∩B)

P (B)
=

P (A)
P (B)

.

c. If A and B are mutually exclusive, then P (A ∪ B) = P (A) + P (B) and A ∩ (A ∪ B) = A.
Thus,

P (A|A ∪B) =
P (A ∩ (A ∪B))

P (A ∪B)
=

P (A)
P (A) + P (B)

.

d. P (A ∩B ∩ C) = P (A ∩ (B ∩ C)) = P (A|B ∩ C)P (B ∩ C) = P (A|B ∩ C)P (B|C)P (C).

1.39 a. Suppose A and B are mutually exclusive. Then A ∩ B = ∅ and P (A ∩ B) = 0. If A and B
are independent, then 0 = P (A ∩ B) = P (A)P (B). But this cannot be since P (A) > 0 and
P (B) > 0. Thus A and B cannot be independent.

b. If A and B are independent and both have positive probability, then

0 < P (A)P (B) = P (A ∩B).

This implies A ∩B 6= ∅, that is, A and B are not mutually exclusive.

1.40 a. P (Ac ∩ B) = P (Ac|B)P (B) = [1− P (A|B)]P (B) = [1− P (A)]P (B) = P (Ac)P (B) , where
the third equality follows from the independence of A and B.

b. P (Ac ∩Bc) = P (Ac)− P (Ac ∩B) = P (Ac)− P (Ac)P (B) = P (Ac)P (Bc).
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1.41 a.

P ( dash sent | dash rec)

=
P ( dash rec | dash sent)P ( dash sent)

P ( dash rec | dash sent)P ( dash sent) + P ( dash rec | dot sent)P ( dot sent)

=
(2/3)(4/7)

(2/3)(4/7) + (1/4)(3/7)
= 32/41.

b. By a similar calculation as the one in (a) P (dot sent|dot rec) = 27/434. Then we have
P ( dash sent|dot rec) = 16

43 . Given that dot-dot was received, the distribution of the four
possibilities of what was sent are

Event Probability
dash-dash (16/43)2

dash-dot (16/43)(27/43)
dot-dash (27/43)(16/43)
dot-dot (27/43)2

1.43 a. For Boole’s Inequality,

P (∪n
i=1) ≤

n∑
i=1

P (Ai)− P2 + P3 + · · · ± Pn ≤
n∑

i=1

P (Ai)

since Pi ≥ Pj if i ≤ j and therefore the terms −P2k + P2k+1 ≤ 0 for k = 1, . . . , n−1
2 when

n is odd. When n is even the last term to consider is −Pn ≤ 0. For Bonferroni’s Inequality
apply the inclusion-exclusion identity to the Ac

i , and use the argument leading to (1.2.10).

b. We illustrate the proof that the Pi are increasing by showing that P2 ≥ P3. The other
arguments are similar. Write

P2 =
∑

1≤i<j≤n

P (Ai ∩Aj) =
n−1∑
i=1

n∑
j=i+1

P (Ai ∩Aj)

=
n−1∑
i=1

n∑
j=i+1

[
n∑

k=1

P (Ai ∩Aj ∩Ak) + P (Ai ∩Aj ∩ (∪kAk)c)

]

Now to get to P3 we drop terms from this last expression. That is

n−1∑
i=1

n∑
j=i+1

[
n∑

k=1

P (Ai ∩Aj ∩Ak) + P (Ai ∩Aj ∩ (∪kAk)c)

]

≥
n−1∑
i=1

n∑
j=i+1

[
n∑

k=1

P (Ai ∩Aj ∩Ak)

]

≥
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

P (Ai ∩Aj ∩Ak) =
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak) = P3.

The sequence of bounds is improving because the bounds P1, P1−P2+P3, P1−P2+P3−P4+
P5, . . ., are getting smaller since Pi ≥ Pj if i ≤ j and therefore the terms −P2k + P2k+1 ≤ 0.
The lower bounds P1 − P2, P1 − P2 + P3 − P4, P1 − P2 + P3 − P4 + P5 − P6, . . ., are getting
bigger since Pi ≥ Pj if i ≤ j and therefore the terms P2k+1 − P2k ≥ 0.
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c. If all of the Ai are equal, all of the probabilities in the inclusion-exclusion identity are the
same. Thus

P1 = nP (A), P2 =
(

n

2

)
P (A), . . . , Pj =

(
n

j

)
P (A),

and the sequence of upper bounds on P (∪iAi) = P (A) becomes

P1 = nP (A), P1 − P2 + P3 =
[
n−

(
n

2

)
+
(

n

3

)]
P (A), . . .

which eventually sum to one, so the last bound is exact. For the lower bounds we get

P1 − P2 =
[
n−

(
n

2

)]
P (A), P1 − P2 + P3 − P4 =

[
n−

(
n

2

)
+
(

n

3

)
−
(

n

4

)]
P (A), . . .

which start out negative, then become positive, with the last one equaling P (A) (see Schwa-
ger 1984 for details).

1.44 P (at least 10 correct|guessing) =
∑20

k=10

(
20
k

) (
1
4

)k ( 3
4

)n−k = .01386.
1.45 X is finite. Therefore B is the set of all subsets of X . We must verify each of the three properties

in Definition 1.2.4. (1) If A ∈ B then PX(A) = P (∪xi∈A{sj ∈ S : X(sj) = xi}) ≥ 0 since P
is a probability function. (2) PX(X ) = P (∪m

i=1{sj ∈ S : X(sj) = xi}) = P (S) = 1. (3) If
A1, A2, . . . ∈ B and pairwise disjoint then

PX(∪∞k=1Ak) = P (
∞⋃

k=1

{∪xi∈Ak
{sj ∈ S : X(sj) = xi}})

=
∞∑

k=1

P (∪xi∈Ak
{sj ∈ S : X(sj) = xi}) =

∞∑
k=1

PX(Ak),

where the second inequality follows from the fact the P is a probability function.
1.46 This is similar to Exercise 1.20. There are 77 equally likely sample points. The possible values of

X3 are 0, 1 and 2. Only the pattern 331 (3 balls in one cell, 3 balls in another cell and 1 ball in a
third cell) yields X3 = 2. The number of sample points with this pattern is

(
7
2

)(
7
3

)(
4
3

)
5 = 14,700.

So P (X3 = 2) = 14,700/77 ≈ .0178. There are 4 patterns that yield X3 = 1. The number of
sample points that give each of these patterns is given below.

pattern number of sample points
34 7

(
7
3

)
6 = 1,470

322 7
(
7
3

)(
6
2

)(
4
2

)(
2
2

)
= 22,050

3211 7
(
7
3

)
6
(
4
2

)(
5
2

)
2! = 176,400

31111 7
(
7
3

)(
6
4

)
4! = 88,200

288,120

So P (X3 = 1) = 288,120/77 ≈ .3498. The number of sample points that yield X3 = 0 is
77 − 288,120− 14,700 = 520,723, and P (X3 = 0) = 520,723/77 ≈ .6322.

1.47 All of the functions are continuous, hence right-continuous. Thus we only need to check the
limit, and that they are nondecreasing

a. limx→−∞
1
2 + 1

π tan−1(x) = 1
2 + 1

π

(−π
2

)
= 0, limx→∞

1
2 + 1

π tan−1(x) = 1
2 + 1

π

(
π
2

)
= 1, and

d
dx

(
1
2+ 1

π tan−1(x)
)

= 1
1+x2 > 0, so F (x) is increasing.

b. See Example 1.5.5.
c. limx→−∞ e−e−x

= 0, limx→∞ e−e−x

= 1, d
dxe−e−x

= e−xe−e−x

> 0.
d. limx→−∞(1− e−x) = 0, limx→∞(1− e−x) = 1, d

dx (1− e−x) = e−x > 0.
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e. limy→−∞
1−ε

1+e−y = 0, limy→∞ ε+ 1−ε
1+e−y = 1, d

dx ( 1−ε
1+e−y ) = (1−ε)e−y

(1+e−y)2 > 0 and d
dx (ε+ 1−ε

1+e−y ) >

0, FY (y) is continuous except on y = 0 where limy↓0(ε+ 1−ε
1+e−y ) = F (0). Thus is FY (y) right

continuous.

1.48 If F (·) is a cdf, F (x) = P (X ≤ x). Hence limx→∞ P (X ≤ x) = 0 and limx→−∞ P (X ≤ x) = 1.
F (x) is nondecreasing since the set {x : X ≤ x} is nondecreasing in x. Lastly, as x ↓ x0,
P (X ≤ x) → P (X ≤ x0), so F (·) is right-continuous. (This is merely a consequence of defining
F (x) with “ ≤ ”.)

1.49 For every t, FX(t) ≤ FY (t). Thus we have

P (X > t) = 1− P (X ≤ t) = 1− FX(t) ≥ 1− FY (t) = 1− P (Y ≤ t) = P (Y > t).

And for some t∗, FX(t∗) < FY (t∗). Then we have that

P (X > t∗) = 1− P (X ≤ t∗) = 1− FX(t∗) > 1− FY (t∗) = 1− P (Y ≤ t∗) = P (Y > t∗).

1.50 Proof by induction. For n = 2
2∑

k=1

tk−1 = 1 + t =
1−t2

1−t
.

Assume true for n, this is
∑n

k=1 tk−1 = 1−tn

1−t . Then for n + 1

n+1∑
k=1

tk−1 =
n∑

k=1

tk−1 + tn =
1−tn

1−t
+ tn =

1−tn+tn(1−t)
1−t

=
1−tn+1

1−t
,

where the second inequality follows from the induction hypothesis.
1.51 This kind of random variable is called hypergeometric in Chapter 3. The probabilities are

obtained by counting arguments, as follows.

x fX(x) = P (X = x)

0
(
5
0

)(
25
4

)/(
30
4

)
≈ .4616

1
(
5
1

)(
25
3

)/(
30
4

)
≈ .4196

2
(
5
2

)(
25
2

)/(
30
4

)
≈ .1095

3
(
5
3

)(
25
1

)/(
30
4

)
≈ .0091

4
(
5
4

)(
25
0

)/(
30
4

)
≈ .0002

The cdf is a step function with jumps at x = 0, 1, 2, 3 and 4.
1.52 The function g(·) is clearly positive. Also,∫ ∞

x0

g(x)dx =
∫ ∞

x0

f(x)
1−F (x0)

dx =
1−F (x0)
1−F (x0)

= 1.

1.53 a. limy→−∞ FY (y) = limy→−∞ 0 = 0 and limy→∞ FY (y) = limy→∞ 1 − 1
y2 = 1. For y ≤ 1,

FY (y) = 0 is constant. For y > 1, d
dy FY (y) = 2/y3 > 0, so FY is increasing. Thus for all y,

FY is nondecreasing. Therefore FY is a cdf.

b. The pdf is fY (y) = d
dy FY (y) =

{
2/y3 if y > 1
0 if y ≤ 1.

c. FZ(z) = P (Z ≤ z) = P (10(Y − 1) ≤ z) = P (Y ≤ (z/10) + 1) = FY ((z/10) + 1). Thus,

FZ(z) =

{
0 if z ≤ 0
1−

(
1

[(z/10)+1]2

)
if z > 0.
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1.54 a.
∫ π/2

0
sinxdx = 1. Thus, c = 1/1 = 1.

b.
∫∞
−∞ e−|x|dx =

∫ 0

−∞ exdx +
∫∞
0

e−xdx = 1 + 1 = 2. Thus, c = 1/2.
1.55

P (V ≤ 5) = P (T < 3) =
∫ 3

0

1
1.5

e−t/1.5 dt = 1− e−2.

For v ≥ 6,

P (V ≤ v) = P (2T ≤ v) = P
(
T ≤ v

2

)
=
∫ v

2

0

1
1.5

e−t/1.5 dt = 1− e−v/3.

Therefore,

P (V ≤ v) =

{ 0 −∞ < v < 0,
1− e−2 0 ≤ v < 6 ,
1− e−v/3 6 ≤ v

.



Chapter 2

Transformations and Expectations

2.1 a. fx(x) = 42x5(1 − x), 0 < x < 1; y = x3 = g(x), monotone, and Y = (0, 1). Use Theorem
2.1.5.

fY (y) = fx(g−1(y))
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ = fx(y1/3)
d

dy
(y1/3) = 42y5/3(1− y1/3)(

1
3
y−2/3)

= 14y(1− y1/3) = 14y − 14y4/3, 0 < y < 1.

To check the integral,∫ 1

0

(14y − 14y4/3)dy = 7y2−14
y7/3

7/3

∣∣∣∣1
0

= 7y2−6y7/3
∣∣∣1
0

= 1− 0 = 1.

b. fx(x) = 7e−7x, 0 < x < ∞, y = 4x + 3, monotone, and Y = (3,∞). Use Theorem 2.1.5.

fY (y) = fx(
y − 3

4
)
∣∣∣∣ d

dy
(
y − 3

4
)
∣∣∣∣ = 7e−(7/4)(y−3)

∣∣∣∣14
∣∣∣∣ = 7

4
e−(7/4)(y−3), 3 < y < ∞.

To check the integral,∫ ∞

3

7
4
e−(7/4)(y−3)dy = −e−(7/4)(y−3)

∣∣∣∞
3

= 0− (−1) = 1.

c. FY (y) = P (0 ≤ X ≤ √
y) = FX(

√
y). Then fY (y) = 1

2
√

y fX(
√

y). Therefore

fY (y) =
1

2
√

y
30(

√
y)2(1−√y)2 = 15y

1
2 (1−√y)2, 0 < y < 1.

To check the integral,∫ 1

0

15y
1
2 (1−√y)2dy =

∫ 1

0

(15y
1
2 − 30y + 15y

3
2 )dy = 15(

2
3
)− 30(

1
2
) + 15(

2
5
) = 1.

2.2 In all three cases, Theorem 2.1.5 is applicable and yields the following answers.

a. fY (y) = 1
2y−1/2, 0 < y < 1.

b. fY (y) = (n+m+1)!
n!m! e−y(n+1)(1− e−y)m, 0 < y < ∞.

c. fY (y) = 1
σ2

log y
y e−(1/2)((log y)/σ)2 , 0 < y < ∞.

2.3 P (Y = y) = P ( X
X+1 = y) = P (X = y

1−y ) = 1
3 ( 2

3 )y/(1−y), where y = 0, 1
2 , 2

3 , 3
4 , . . . , x

x+1 , . . . .

2.4 a. f(x) is a pdf since it is positive and∫ ∞

−∞
f(x)dx =

∫ 0

−∞

1
2
λeλxdx +

∫ ∞

0

1
2
λe−λxdx =

1
2

+
1
2

= 1.
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b. Let X be a random variable with density f(x).

P (X < t) =

{∫ t

−∞
1
2λeλxdx if t < 0∫ 0

−∞
1
2λeλxdx+

∫ t

0
1
2λe−λxdx if t ≥ 0

where,
∫ t

−∞
1
2λeλxdx = 1

2eλx
∣∣t
−∞ = 1

2eλt and
∫ t

0
1
2λe−λxdx = − 1

2e−λx
∣∣t
0

= − 1
2e−λt + 1

2 .
Therefore,

P (X < t) =
{

1
2eλt if t < 0
1− 1

2e−λtdx if t ≥ 0

c. P (|X| < t) = 0 for t < 0, and for t ≥ 0,

P (|X| < t) = P (−t < X < t) =
∫ 0

−t

1
2
λeλxdx +

∫ t

0

1
2
λe−λxdx

=
1
2
[
1− e−λt

]
+

1
2
[
−e−λt+1

]
= 1− e−λt.

2.5 To apply Theorem 2.1.8. Let A0 = {0}, A1 = (0, π
2 ), A3 = (π, 3π

2 ) and A4 = (3π
2 , 2π). Then

gi(x) = sin2(x) on Ai for i = 1, 2, 3, 4. Therefore g−1
1 (y) = sin−1(

√
y), g−1

2 (y) = π− sin−1(
√

y),
g−1
3 (y) = sin−1(

√
y) + π and g−1

4 (y) = 2π − sin−1(
√

y). Thus

fY (y) =
1
2π

∣∣∣∣ 1√
1− y

1
2
√

y

∣∣∣∣+ 1
2π

∣∣∣∣− 1√
1− y

1
2
√

y

∣∣∣∣+ 1
2π

∣∣∣∣ 1√
1− y

1
2
√

y

∣∣∣∣+ 1
2π

∣∣∣∣− 1√
1− y

1
2
√

y

∣∣∣∣
=

1
π
√

y(1− y)
, 0 ≤ y ≤ 1

To use the cdf given in (2.1.6) we have that x1 = sin−1(
√

y) and x2 = π− sin−1(
√

y). Then by
differentiating (2.1.6) we obtain that

fY (y) = 2fX(sin−1(
√

y)
d

dy
(sin−1(

√
y)− 2fX(π − sin−1(

√
y)

d

dy
(π − sin−1(

√
y)

= 2(
1
2π

1√
1− y

1
2
√

y
)− 2(

1
2π

−1√
1− y

1
2
√

y
)

=
1

π
√

y(1− y)

2.6 Theorem 2.1.8 can be used for all three parts.

a. Let A0 = {0}, A1 = (−∞, 0) and A2 = (0,∞). Then g1(x) = |x|3 = −x3 on A1 and
g2(x) = |x|3 = x3 on A2. Use Theorem 2.1.8 to obtain

fY (y) =
1
3
e−y1/3

y−2/3, 0 < y < ∞

.
b. Let A0 = {0}, A1 = (−1, 0) and A2 = (0, 1). Then g1(x) = 1− x2 on A1 and g2(x) = 1− x2

on A2. Use Theorem 2.1.8 to obtain

fY (y) =
3
8
(1− y)−1/2 +

3
8
(1− y)1/2, 0 < y < 1

.
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c. Let A0 = {0}, A1 = (−1, 0) and A2 = (0, 1). Then g1(x) = 1− x2 on A1 and g2(x) = 1− x
on A2. Use Theorem 2.1.8 to obtain

fY (y) =
3
16

(1−
√

1− y)2
1√

1− y
+

3
8
(2− y)2, 0 < y < 1

.

2.7 Theorem 2.1.8 does not directly apply.

a. Theorem 2.1.8 does not directly apply. Instead write

P (Y ≤ y) = P (X2 ≤ y)

=
{

P (−√y ≤ X ≤ √
y) if |x| ≤ 1

P (1 ≤ X ≤ √
y) if x ≥ 1

=

{∫√y

−√y
fX(x)dx if |x| ≤ 1∫√y

1
fX(x)dx if x ≥ 1

.

Differentiation gives

fy(y) =

{
2
9

1√
y if y ≤ 1

1
9 + 1

9
1√
y if y ≥ 1

.

b. If the sets B1, B2, . . . , BK are a partition of the range of Y , we can write

fY (y) =
∑

k

fY (y)I(y ∈ Bk)

and do the transformation on each of the Bk. So this says that we can apply Theorem 2.1.8
on each of the Bk and add up the pieces. For A1 = (−1, 1) and A2 = (1, 2) the calculations
are identical to those in part (a). (Note that on A1 we are essentially using Example 2.1.7).

2.8 For each function we check the conditions of Theorem 1.5.3.

a. (i) limx→0 F (x) = 1− e−0 = 0, limx→−∞ F (x) = 1− e−∞ = 1.
(ii) 1− e−x is increasing in x.
(iii) 1− e−x is continuous.
(iv) F−1

x (y) = − log(1− y).
b. (i) limx→−∞ F (x) = e−∞/2 = 0, limx→∞ F (x) = 1− (e1−∞/2) = 1.

(ii) e−x/2 is increasing, 1/2 is nondecreasing, 1− (e1−x/2) is increasing.
(iii) For continuity we only need check x = 0 and x = 1, and limx→0 F (x) = 1/2,

limx→1 F (x) = 1/2, so F is continuous.
(iv)

F−1
X (y) =

{
log(2y) 0 ≤ y < 1

2 ≤ y < 1,
1− log(2(1− y)) 1

2 ≤ y < 1

c. (i) limx→−∞ F (x) = e−∞/4 = 0, limx→∞ F (x) = 1− e−∞/4 = 1.
(ii) e−x/4 and 1− e−x/4 are both increasing in x.
(iii) limx↓0 F (x) = 1− e−0/4 = 3

4 = F (0), so F is right-continuous.

(iv) F−1
X (y) =

{
log(4y) 0 ≤ y < 1

4
− log(4(1− y)) 1

4 ≤ y < 1
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2.9 From the probability integral transformation, Theorem 2.1.10, we know that if u(x) = Fx(x),
then Fx(X) ∼ uniform(0, 1). Therefore, for the given pdf, calculate

u(x) = Fx(x) =

{ 0 if x ≤ 1
(x− 1)2/4 if 1 < x < 3
1 if 3 ≤ x

.

2.10 a. We prove part b), which is equivalent to part a).
b. Let Ay = {x : Fx(x) ≤ y}. Since Fx is nondecreasing, Ay is a half infinite interval, either

open, say (−∞, xy), or closed, say (−∞, xy]. If Ay is closed, then

FY (y) = P (Y ≤ y) = P (Fx(X) ≤ y) = P (X ∈ Ay) = Fx(xy) ≤ y.

The last inequality is true because xy ∈ Ay, and Fx(x) ≤ y for every x ∈ Ay. If Ay is open,
then

FY (y) = P (Y ≤ y) = P (Fx(X) ≤ y) = P (X ∈ Ay),

as before. But now we have

P (X ∈ Ay) = P (X ∈ (−∞,xy)) = lim
x↑y

P (X ∈ (−∞, x]),

Use the Axiom of Continuity, Exercise 1.12, and this equals limx↑y FX(x) ≤ y. The last
inequality is true since Fx(x) ≤ y for every x ∈ Ay, that is, for every x < xy. Thus,
FY (y) ≤ y for every y. To get strict inequality for some y, let y be a value that is “jumped
over” by Fx. That is, let y be such that, for some xy,

lim
x↑y

FX(x) < y < FX(xy).

For such a y, Ay = (−∞, xy), and FY (y) = limx↑y FX(x) < y.

2.11 a. Using integration by parts with u = x and dv = xe
−x2

2 dx then

EX2 =
∫ ∞

−∞
x2 1

2π
e
−x2

2 dx =
1
2π

[
−xe

−x2

2

∣∣∣∣∞
−∞

+
∫ ∞

−∞
e
−x2

2 dx

]
=

1
2π

(2π) = 1.

Using example 2.1.7 let Y = X2. Then

fY (y) =
1

2
√

y

[
1√
2π

e
−y
2 +

1√
2π

e
−y
2

]
=

1√
2πy

e
−y
2 .

Therefore,

EY =
∫ ∞

0

y√
2πy

e
−y
2 dy =

1√
2π

[
−2y

1
2 e

−y
2

∣∣∣∞
0

+
∫ ∞

0

y
−1
2 e

−y
2 dy

]
=

1√
2π

(
√

2π) = 1.

This was obtained using integration by parts with u = 2y
1
2 and dv = 1

2e
−y
2 and the fact the

fY (y) integrates to 1.
b. Y = |X| where −∞ < x < ∞. Therefore 0 < y < ∞. Then

FY (y) = P (Y ≤ y) = P (|X| ≤ y) = P (−y ≤ X ≤ y)
= P (x ≤ y)− P (X ≤ −y) = FX(y)− FX(−y).
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Therefore,

FY (y) =
d

dy
FY (y) = fX(y) + fX(−y) =

1√
2π

e
−y
2 +

1√
2π

e
−y
2 =

√
2
π

e
−y
2 .

Thus,

EY =
∫ ∞

0

y

√
2
π

e
−y
2 dy =

√
2
π

∫ ∞

0

e−udu =

√
2
π

[
−e−u

∣∣∞
0

]
=

√
2
π

,

where u = y2

2 .

EY 2 =
∫ ∞

0

y2

√
2
π

e
−y
2 dy =

√
2
π

[
−ye

−y
2

∣∣∣∞
0

+
∫ ∞

0

e
−y
2 dy

]
=

√
2
π

√
π

2
= 1.

This was done using integration by part with u = y and dv = ye
−y
2 dy. Then Var(Y ) = 1− 2

π .

2.12 We have tanx = y/d, therefore tan−1(y/d) = x and d
dy tan−1(y/d) = 1

1+(y/d)2
1
ddy = dx. Thus,

fY (y) =
2
πd

1
1+(y/d)2

, 0 < y < ∞.

This is the Cauchy distribution restricted to (0,∞), and the mean is infinite.
2.13 P (X = k) = (1− p)kp + pk(1− p), k = 1, 2, . . .. Therefore,

EX =
∞∑

k=1

k[(1− p)kp + pk(1− p)] = (1− p)p

[ ∞∑
k=1

k(1− p)k−1 +
∞∑

k=1

kpk−1

]

= (1− p)p
[

1
p2

+
1

(1− p)2

]
=

1− 2p + 2p2

p(1− p)
.

2.14 ∫ ∞

0

(1− FX(x))dx =
∫ ∞

0

P (X > x)dx

=
∫ ∞

0

∫ ∞

x

fX(y)dydx

=
∫ ∞

0

∫ y

0

dxfX(y)dy

=
∫ ∞

0

yfX(y)dy = EX,

where the last equality follows from changing the order of integration.
2.15 Assume without loss of generality that X ≤ Y . Then X ∨ Y = Y and X ∧ Y = X. Thus

X + Y = (X ∧ Y ) + (X ∨ Y ). Taking expectations

E[X + Y ] = E[(X ∧ Y ) + (X ∨ Y )] = E(X ∧ Y ) + E(X ∨ Y ).

Therefore E(X ∨ Y ) = EX + EY − E(X ∧ Y ).
2.16 From Exercise 2.14,

ET =
∫ ∞

0

[
ae−λt+(1− a)e−µt

]
dt =

−ae−λt

λ
− (1− a)e−µt

µ

∣∣∣∣∞
0

=
a

λ
+

1− a

µ
.
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2.17 a.
∫m

0
3x2dx = m3 set= 1

2 ⇒ m =
(

1
2

)1/3 = .794.
b. The function is symmetric about zero, therefore m = 0 as long as the integral is finite.

1
π

∫ ∞

−∞

1
1+x2

dx =
1
π

tan−1(x)
∣∣∣∣∞
−∞

=
1
π

(π

2
+

π

2

)
= 1.

This is the Cauchy pdf.
2.18 E|X − a| =

∫∞
−∞ |x− a|f(x)dx =

∫ a

−∞−(x− a)f(x)dx +
∫∞

a
(x− a)f(x)dx. Then,

d

da
E|X − a| =

∫ a

−∞
f(x)dx−

∫ ∞

a

f(x)dx
set= 0.

The solution to this equation is a = median. This is a minimum since d2/da2E|X−a| = 2f(a) >
0.

2.19

d

da
E(X − a)2 =

d

da

∫ ∞

−∞
(x− a)2fX(x)dx =

∫ ∞

−∞

d

da
(x− a)2fX(x)dx

=
∫ ∞

−∞
−2(x− a)fX(x)dx = −2

[∫ ∞

−∞
xfX(x)dx− a

∫ ∞

−∞
fX(x)dx

]
= −2[EX − a].

Therefore if d
daE(X−a)2 = 0 then −2[EX−a] = 0 which implies that EX = a. If EX = a then

d
daE(X − a)2 = −2[EX − a] = −2[a− a] = 0. EX = a is a minimum since d2/da2E(X − a)2 =
2 > 0. The assumptions that are needed are the ones listed in Theorem 2.4.3.

2.20 From Example 1.5.4, if X = number of children until the first daughter, then

P (X = k) = (1− p)k−1p,

where p = probability of a daughter. Thus X is a geometric random variable, and

EX =
∞∑

k=1

k(1− p)k−1p = p−
∞∑

k=1

d

dp
(1− p)k = −p

d

dp

[ ∞∑
k=0

(1− p)k−1

]

= −p
d

dp

[
1
p
−1
]

=
1
p
.

Therefore, if p = 1
2 ,the expected number of children is two.

2.21 Since g(x) is monotone

Eg(X) =
∫ ∞

−∞
g(x)fX(x)dx =

∫ ∞

−∞
yfX(g−1(y))

d

dy
g−1(y)dy =

∫ ∞

−∞
yfY (y)dy = EY,

where the second equality follows from the change of variable y = g(x), x = g−1(y) and
dx = d

dy g−1(y)dy.

2.22 a. Using integration by parts with u = x and dv = xe−x2/β2
we obtain that∫ ∞

0

x2e−x2/β2
dx2 =

β2

2

∫ ∞

0

e−x2/β2
dx.

The integral can be evaluated using the argument on pages 104-105 (see 3.3.14) or by trans-
forming to a gamma kernel (use y = −λ2/β2). Therefore,

∫∞
0

e−x2/β2
dx =

√
πβ/2 and hence

the function integrates to 1.
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b. EX = 2β/
√

π EX2 = 3β2/2 VarX = β2
[
3
2−

4
π

]
.

2.23 a. Use Theorem 2.1.8 with A0 = {0}, A1 = (−1, 0) and A2 = (0, 1). Then g1(x) = x2 on A1

and g2(x) = x2 on A2. Then

fY (y) =
1
2
y−1/2, 0 < y < 1.

b. EY =
∫ 1

0
yfY (y)dy = 1

3 EY 2 =
∫ 1

0
y2fY (y)dy = 1

5 VarY = 1
5 −

(
1
3

)2 = 4
45 .

2.24 a. EX =
∫ 1

0
xaxa−1dx =

∫ 1

0
axadx = axa+1

a+1

∣∣∣1
0

= a
a+1 .

EX2 =
∫ 1

0
x2axa−1dx =

∫ 1

0
axa+1dx = axa+2

a+2

∣∣∣1
0

= a
a+2 .

VarX = a
a+2 −

(
a

a+1

)2

= a
(a+2)(a+1)2

.

b. EX =
∑n

x=1
x
n = 1

n

∑n
x=1 x = 1

n
n(n+1)

2 = n+1
2 .

EX2 =
∑n

i=1
x2

n = 1
n

∑n
i=1 x2 = 1

n
n(n+1)(2n+1)

6 = (n+1)(2n+1)
6 .

VarX = (n+1)(2n+1)
6 −

(
n+1

2

)2 = 2n2+3n+1
6 − n2+2n+1

4 = n2+1
12 .

c. EX =
∫ 2

0
x3

2 (x− 1)2dx = 3
2

∫ 2

0
(x3 − 2x2 + x)dx = 1.

EX2 =
∫ 2

0
x2 3

2 (x− 1)2dx = 3
2

∫ 2

0
(x4 − 2x3 + x2)dx = 8

5 .

VarX = 8
5 − 12 = 3

5 .

2.25 a. Y = −X and g−1(y) = −y. Thus fY (y) = fX(g−1(y))| d
dy g−1(y)| = fX(−y)| − 1| = fX(y)

for every y.

b. To show that MX(t) is symmetric about 0 we must show that MX(0 + ε) = MX(0− ε) for
all ε > 0.

MX(0 + ε) =
∫ ∞

−∞
e(0+ε)xfX(x)dx =

∫ 0

−∞
eεxfX(x)dx +

∫ ∞

0

eεxfX(x)dx

=
∫ ∞

0

eε(−x)fX(−x)dx +
∫ 0

−∞
eε(−x)fX(−x)dx =

∫ ∞

−∞
e−εxfX(x)dx

=
∫ ∞

−∞
e(0−ε)xfX(x)dx = MX(0− ε).

2.26 a. There are many examples; here are three. The standard normal pdf (Example 2.1.9) is
symmetric about a = 0 because (0 − ε)2 = (0 + ε)2. The Cauchy pdf (Example 2.2.4) is
symmetric about a = 0 because (0− ε)2 = (0 + ε)2. The uniform(0, 1) pdf (Example 2.1.4)
is symmetric about a = 1/2 because

f((1/2) + ε) = f((1/2)− ε) =
{

1 if 0 < ε < 1
2

0 if 1
2 ≤ ε < ∞ .

b. ∫ ∞

a

f(x)dx =
∫ ∞

0

f(a + ε)dε (change variable, ε = x− a)

=
∫ ∞

0

f(a− ε)dε (f(a + ε) = f(a− ε) for all ε > 0)

=
∫ a

−∞
f(x)dx. (change variable, x = a− ε)
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Since ∫ a

−∞
f(x)dx +

∫ ∞

a

f(x)dx =
∫ ∞

−∞
f(x)dx = 1,

it must be that ∫ a

−∞
f(x) dx =

∫ ∞

a

f(x) dx = 1/2.

Therefore, a is a median.

c.

EX − a = E(X − a) =
∫ ∞

−∞
(x− a)f(x)dx

=
∫ a

−∞
(x− a)f(x)dx +

∫ ∞

a

(x− a)f(x)dx

=
∫ ∞

0

(−ε)f(a− ε)dε +
∫ ∞

0

εf(a + ε)dε

With a change of variable, ε = a−x in the first integral, and ε = x−a in the second integral
we obtain that

EX − a = E(X − a)

= −
∫ ∞

0

εf(a− ε)dε +
∫ ∞

0

εf(a− ε)dε (f(a + ε) = f(a− ε) for all ε > 0)

= 0. (two integrals are same)

Therefore, EX = a.

d. If a > ε > 0,
f(a− ε) = e−(a−ε) > e−(a+ε) = f(a + ε).

Therefore, f(x) is not symmetric about a > 0. If −ε < a ≤ 0,

f(a− ε) = 0 < e−(a+ε) = f(a + ε).

Therefore, f(x) is not symmetric about a ≤ 0, either.

e. The median of X = log 2 < 1 = EX.

2.27 a. The standard normal pdf.

b. The uniform on the interval (0, 1).

c. For the case when the mode is unique. Let a be the point of symmetry and b be the mode. Let
assume that a is not the mode and without loss of generality that a = b+ε > b for ε > 0. Since
b is the mode then f(b) > f(b+ ε) ≥ f(b+2ε) which implies that f(a− ε) > f(a) ≥ f(a+ ε)
which contradict the fact the f(x) is symmetric. Thus a is the mode.
For the case when the mode is not unique, there must exist an interval (x1, x2) such that
f(x) has the same value in the whole interval, i.e, f(x) is flat in this interval and for all
b ∈ (x1, x2), b is a mode. Let assume that a 6∈ (x1, x2), thus a is not a mode. Let also assume
without loss of generality that a = (b + ε) > b. Since b is a mode and a = (b + ε) 6∈ (x1, x2)
then f(b) > f(b + ε) ≥ f(b + 2ε) which contradict the fact the f(x) is symmetric. Thus
a ∈ (x1, x2) and is a mode.

d. f(x) is decreasing for x ≥ 0, with f(0) > f(x) > f(y) for all 0 < x < y. Thus f(x) is
unimodal and 0 is the mode.
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2.28 a.

µ3 =
∫ ∞

−∞
(x− a)3f(x)dx =

∫ a

−∞
(x− a)3f(x)dx +

∫ ∞

a

(x− a)3f(x)dx

=
∫ 0

−∞
y3f(y + a)dy +

∫ ∞

0

y3f(y + a)dy (change variable y = x− a)

=
∫ ∞

0

−y3f(−y + a)dy +
∫ ∞

0

y3f(y + a)dy

= 0. (f(−y + a) = f(y + a))

b. For f(x) = e−x, µ1 = µ2 = 1, therefore α3 = µ3.

µ3 =
∫ ∞

0

(x− 1)3e−xdx =
∫ ∞

0

(x3 − 3x2 + 3x− 1)e−xdx

= Γ(4)− 3Γ(3) + 3Γ(2)− Γ(1) = 3!− 3× 2! + 3× 1− 1 = 3.

c. Each distribution has µ1 = 0, therefore we must calculate µ2 = EX2 and µ4 = EX4.

(i) f(x) = 1√
2π

e−x2/2, µ2 = 1, µ4 = 3, α4 = 3.

(ii) f(x) = 1
2 , −1 < x < 1, µ2 = 1

3 , µ4 = 1
5 , α4 = 9

5 .
(iii) f(x) = 1

2e−|x|, −∞ < x < ∞, µ2 = 2, µ4 = 24, α4 = 6.

As a graph will show, (iii) is most peaked, (i) is next, and (ii) is least peaked.
2.29 a. For the binomial

EX(X − 1) =
n∑

x=2

x(x− 1)
(

n

x

)
px(1− p)n−x

= n(n− 1)p2
n∑

x=2

(
n− 2

x

)
px−2(1− p)n−x

= n(n− 1)p2
n−2∑
y=0

(
n− 2

y

)
py(1− p)n−2−y = n(n− 1)p2,

where we use the identity x(x− 1)
(
n
x

)
= n(n− 1)

(
n−2

x

)
, substitute y = x− 2 and recognize

that the new sum is equal to 1. Similarly, for the Poisson

EX(X − 1) =
∞∑

x=2

x(x− 1)
e−λλx

x!
= λ2

∞∑
y=0

e−λλy

y!
= λ2,

where we substitute y = x− 2.
b. Var(X) = E[X(X − 1)] + EX − (EX)2. For the binomial

Var(X) = n(n− 1)p2 + np− (np)2 = np(1− p).

For the Poisson
Var(X) = λ2 + λ− λ2 = λ.

c.

EY =
n∑

y=0

y
a

y + a

(
n

y

) (
a+b−1

a

)(
n+a+b−1

y+a

) =
n∑

y=1

n
a

(y − 1) + (a + 1)

(
n− 1
y − 1

) (
a+b−1

a

)(
(n−1)+(a+1)+b−1

(y−1)+(a+1)

)
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=
n∑

y=1

n
a

(y − 1) + (a + 1)

(
n− 1
y − 1

) (
a+b−1

a

)(
(n−1)+(a+1)+b−1

(y−1)+(a+1)

)
=

na
a+1

(
a+b−1

a

)(
a+1+b−1

a+1

) n∑
y=1

a + 1
(y − 1) + (a + 1)

(
n− 1
y − 1

) (
a+1+b−1

a+1

)(
(n−1)+(a+1)+b−1

(y−1)+(a+1)

)
=

na

a + b

n−1∑
j=0

a + 1
j + (a + 1)

(
n− 1

j

) (
a+1+b−1

a+1

)(
(n−1)+(a+1)+b−1

(j+(a+1)

) =
na

a + b
,

since the last summation is 1, being the sum over all possible values of a beta-binomial(n−
1, a + 1, b). E[Y (Y − 1)] = n(n−1)a(a+1)

(a+b)(a+b+1) is calculated similar to EY, but using the identity
y(y− 1)

(
n
y

)
= n(n− 1)

(
n−2
y−2

)
and adding 2 instead of 1 to the parameter a. The sum over all

possible values of a beta-binomial(n− 2, a + 2, b) will appear in the calculation. Therefore

Var(Y ) = E[Y (Y − 1)] + EY − (EY )2 =
nab(n + a + b)

(a + b)2(a + b + 1)
.

2.30 a. E(etX) =
∫ c

0
etx 1

cdx = 1
cte

tx
∣∣c
0

= 1
cte

tc − 1
ct1 = 1

ct (e
tc − 1).

b. E(etX) =
∫ c

0
2x
c2 etxdx = 2

c2t2 (ctetc − etc + 1). (integration-by-parts)
c.

E(etx) =
∫ α

−∞

1
2β

e(x−α)/βetxdx +
∫ ∞

α

1
2β

e−(x−α)/βetxdx

=
e−α/β

2β

1
( 1

β +t)
ex( 1

β +t)

∣∣∣∣∣
α

−∞

+ −eα/β

2β

1
( 1

β − t)
e−x( 1

β−t)

∣∣∣∣∣
∞

α

=
4eαt

4−β2t2
, −2/β < t < 2/β.

d. E
(
etX
)

=
∑∞

x=0 etx
(
r+x−1

x

)
pr(1 − p)x = pr

∑∞
x=0

(
r+x−1

x

) (
(1− p)et

)x

. Now use the fact

that
∑∞

x=0

(
r+x−1

x

) (
(1− p)et

)x (
1− (1− p)et

)r

= 1 for (1− p)et < 1, since this is just the

sum of this pmf, to get E(etX) =
(

p
1−(1−p)et

)r

, t < − log(1− p).

2.31 Since the mgf is defined as MX(t) = EetX , we necessarily have MX(0) = Ee0 = 1. But t/(1− t)
is 0 at t = 0, therefore it cannot be an mgf.

2.32

d

dt
S(t)

∣∣∣∣
t=0

=
d

dt
(log(Mx(t))

∣∣∣∣
t=0

=
d
dtMx(t)
Mx(t)

∣∣∣∣∣
t=0

=
EX

1
= EX

(
since MX(0) = Ee0 = 1

)

d2

dt2
S(t)

∣∣∣∣
t=0

=
d

dt

(
M ′

x(t)
Mx(t)

)∣∣∣∣
t=0

=
Mx(t)M ′′

x(t)− [M ′
x(t)]2

[Mx(t)]2

∣∣∣∣∣
t=0

=
1 · EX2−(EX)2

1
= VarX.

2.33 a. MX(t) =
∑∞

x=0 etx e−λλx

x! = e−λ
∑∞

x=1
(etλ)x

x! = e−λeλet

= eλ(et−1).

EX = d
dtMx(t)

∣∣
t=0

= eλ(et−1)λet
∣∣∣
t=0

= λ.
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EX2 = d2

dt2
Mx(t)

∣∣∣
t=0

= λeteλ(et−1)λet+λeteλ(et−1)
∣∣∣
t=0

= λ2 + λ.

VarX = EX2 − (EX)2 = λ2 + λ− λ2 = λ.

b.

Mx(t) =
∞∑

x=0

etxp(1− p)x = p

∞∑
x=0

((1− p)et)x

= p
1

1−(1− p)et =
p

1−(1− p)et , t < − log(1− p).

EX =
d

dt
Mx(t)

∣∣∣∣
t=0

=
−p

(1− (1− p)et)2
(
−(1− p)et

)∣∣∣∣∣
t=0

=
p(1− p)

p2
=

1−p

p
.

EX2 =
d2

dt2
Mx(t)

∣∣∣∣
t=0

=

(
1−(1− p)et

)2 (
p(1− p)et

)
+p(1− p)et2

(
1−(1− p)et

)
(1− p)et

(1− (1− p)et)4

∣∣∣∣∣∣∣
t=0

=
p3(1− p) + 2p

2(1− p)2

p4
=

p(1− p) + 2(1− p)2

p2
.

VarX =
p(1− p) + 2(1− p)2

p2
− (1− p)2

p2
=

1−p

p2
.

c. Mx(t) =
∫∞
−∞ etx 1√

2πσ
e−(x−µ)2/2σ2

dx = 1√
2πσ

∫∞
−∞ e−(x2−2µx−2σ2tx+µ2)/2σ2

dx. Now com-
plete the square in the numerator by writing

x2 − 2µx− 2σ2tx+µ2 = x2 − 2(µ + σ2t)x± (µ + σ2t)2 + µ2

= (x− (µ + σ2t))2 − (µ + σ2t)2 + µ2

= (x− (µ + σ2t))2 − [2µσ2t + (σ2t)2].

Then we have Mx(t) = e[2µσ2t+(σ2t)2]/2σ2 1√
2πσ

∫∞
−∞ e−

1
2σ2 (x−(µ+σ2t))2dx = eµt+ σ2t2

2 .

EX = d
dtMx(t)

∣∣
t=0

= (µ+σ2t)eµt+σ2t2/2
∣∣∣
t=0

= µ.

EX2 = d2

dt2
Mx(t)

∣∣∣
t=0

= (µ+σ2t)2eµt+σ2t2/2+σ2eµt+σ2t/2
∣∣∣
t=0

= µ2 + σ2.

VarX = µ2 + σ2 − µ2 = σ2.

2.35 a.

EXr
1 =

∫ ∞

0

xr 1√
2πx

e−(log x)2/2dx (f1 is lognormal with µ = 0, σ2 = 1)

=
1√
2π

∫ ∞

−∞
ey(r−1)e−y2/2eydy (substitute y = log x, dy = (1/x)dx)

=
1√
2π

∫ ∞

−∞
e−y2/2+rydy =

1√
2π

∫ ∞

−∞
e−(y2−2ry+r2)/2er2/2dy

= er2/2.
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b. ∫ ∞

0

xrf1(x) sin(2πlog x)dx =
∫ ∞

0

xr 1√
2πx

e−(log x)2/2 sin(2π log x)dx

=
∫ ∞

−∞
e(y+r)r 1√

2π
e−(y+r)2/2 sin(2πy + 2πr)dy

(substitute y = log x, dy = (1/x)dx)

=
∫ ∞

−∞

1√
2π

e(r2−y2)/2 sin(2πy)dy

(sin(a + 2πr) = sin(a) if r = 0, 1, 2, . . .)
= 0,

because e(r2−y2)/2 sin(2πy) = −e(r2−(−y)2)/2 sin(2π(−y)); the integrand is an odd function
so the negative integral cancels the positive one.

2.36 First, it can be shown that
lim

x→∞
etx−(log x)2 = ∞

by using l’Hôpital’s rule to show

lim
x→∞

tx− (log x)2

tx
= 1,

and, hence,
lim

x→∞
tx− (log x)2 = lim

x→∞
tx = ∞.

Then for any k > 0, there is a constant c such that∫ ∞

k

1
x

etxe( log x)2/2dx ≥ c

∫ ∞

k

1
x

dx = c log x|∞k = ∞.

Hence Mx(t) does not exist.
2.37 a. The graph looks very similar to Figure 2.3.2 except that f1 is symmetric around 0 (since it

is standard normal).
b. The functions look like t2/2 – it is impossible to see any difference.
c. The mgf of f1 is eK1(t). The mgf of f2 is eK2(t).
d. Make the transformation y = ex to get the densities in Example 2.3.10.

2.39 a. d
dx

∫ x

0
e−λtdt = e−λx. Verify

d

dx

[∫ x

0

e−λtdt

]
=

d

dx

[
− 1

λ
e−λt

∣∣∣∣x
0

]
=

d

dx

(
− 1

λ
e−λx +

1
λ

)
= e−λx.

b. d
dλ

∫∞
0

e−λtdt =
∫∞
0

d
dλe−λtdt =

∫∞
0
−te−λtdt = −Γ(2)

λ2 = − 1
λ2 . Verify

d

dλ

∫ ∞

0

e−λtdt =
d

dλ

1
λ

= − 1
λ2

.

c. d
dt

∫ 1

t
1
x2 dx = − 1

t2 . Verify

d

dt

[∫ 1

t

1
x2

dx

]
=

d

dt

(
− 1

x

∣∣∣∣1
t

)
=

d

dt

(
−1 +

1
t

)
= − 1

t2
.

d. d
dt

∫∞
1

1
(x−t)2

dx =
∫∞
1

d
dt

(
1

(x−t)2

)
dx =

∫∞
1

2(x− t)−3dx = −(x− t)−2
∣∣∣∞
1

= 1
(1−t)2

. Verify

d

dt

∫ ∞

1

(x− t)−2dx =
d

dt

[
−(x− t)−1

∣∣∣∞
1

]
=

d

dt

1
1− t

=
1

(1− t)2
.



Chapter 3

Common Families of Distributions

3.1 The pmf of X is f(x) = 1
N1−N0+1 , x = N0, N0 + 1, . . . , N1. Then

EX =
N1∑

x=N0

x
1

N1−N0+1
=

1
N1−N0+1

(
N1∑
x=1

x−
N0−1∑
x=1

x

)

=
1

N1−N0+1

(
N1(N1+1)

2
−

(N0−1)(N0−1 + 1)
2

)
=

N1 + N0

2
.

Similarly, using the formula for
∑N

1 x2, we obtain

Ex2 =
1

N1−N0+1

(
N1(N1+1)(2N1+1)−N0(N0−1)(2N0−1)

6

)
VarX = EX2 − EX =

(N1−N0)(N1−N0+2)
12

.

3.2 Let X = number of defective parts in the sample. Then X ∼ hypergeometric(N = 100,M,K)
where M = number of defectives in the lot and K = sample size.

a. If there are 6 or more defectives in the lot, then the probability that the lot is accepted
(X = 0) is at most

P (X = 0 | M = 100, N = 6,K) =

(
6
0

)(
94
K

)(
100
K

) =
(100−K) · · · · · (100−K − 5)

100 · · · · · 95
.

By trial and error we find P (X = 0) = .10056 for K = 31 and P (X = 0) = .09182 for
K = 32. So the sample size must be at least 32.

b. Now P (accept lot) = P (X = 0 or 1), and, for 6 or more defectives, the probability is at
most

P (X = 0 or 1 | M = 100, N = 6,K) =

(
6
0

)(
94
K

)(
100
K

) +

(
6
1

)(
94

K−1

)(
100
K

) .

By trial and error we find P (X = 0 or 1) = .10220 for K = 50 and P (X = 0 or 1) = .09331
for K = 51. So the sample size must be at least 51.

3.3 In the seven seconds for the event, no car must pass in the last three seconds, an event with
probability (1 − p)3. The only occurrence in the first four seconds, for which the pedestrian
does not wait the entire four seconds, is to have a car pass in the first second and no other
car pass. This has probability p(1 − p)3. Thus the probability of waiting exactly four seconds
before starting to cross is [1− p(1− p)3](1− p)3.
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3.5 Let X = number of effective cases. If the new and old drugs are equally effective, then the
probability that the new drug is effective on a case is .8. If the cases are independent then X ∼
binomial(100, .8), and

P (X ≥ 85) =
100∑

x=85

(
100
x

)
.8x.2100−x = .1285.

So, even if the new drug is no better than the old, the chance of 85 or more effective cases is
not too small. Hence, we cannot conclude the new drug is better. Note that using a normal
approximation to calculate this binomial probability yields P (X ≥ 85) ≈ P (Z ≥ 1.125) =
.1303.

3.7 Let X ∼ Poisson(λ). We want P (X ≥ 2) ≥ .99, that is,

P (X ≤ 1) = e−λ + λe−λ ≤ .01.

Solving e−λ + λe−λ = .01 by trial and error (numerical bisection method) yields λ = 6.6384.

3.8 a. We want P (X > N) < .01 where X ∼ binomial(1000, 1/2). Since the 1000 customers choose
randomly, we take p = 1/2. We thus require

P (X > N) =
1000∑

x=N+1

(
1000

x

)(
1
2

)x(
1− 1

2

)1000−x

< .01

which implies that (
1
2

)1000 1000∑
x=N+1

(
1000

x

)
< .01.

This last inequality can be used to solve for N , that is, N is the smallest integer that satisfies(
1
2

)1000 1000∑
x=N+1

(
1000

x

)
< .01.

The solution is N = 537.

b. To use the normal approximation we take X ∼ n(500, 250), where we used µ = 1000( 1
2 ) = 500

and σ2 = 1000( 1
2 )( 1

2 ) = 250.Then

P (X > N) = P

(
X − 500√

250
>

N − 500√
250

)
< .01

thus,

P

(
Z >

N − 500√
250

)
< .01

where Z ∼ n(0, 1). From the normal table we get

P (Z > 2.33) ≈ .0099 < .01 ⇒ N − 500√
250

= 2.33

⇒ N ≈ 537.

Therefore, each theater should have at least 537 seats, and the answer based on the approx-
imation equals the exact answer.
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3.9 a. We can think of each one of the 60 children entering kindergarten as 60 independent Bernoulli
trials with probability of success (a twin birth) of approximately 1

90 . The probability of having
5 or more successes approximates the probability of having 5 or more sets of twins entering
kindergarten. Then X ∼ binomial(60, 1

90 ) and

P (X ≥ 5) = 1−
4∑

x=0

(
60
x

)(
1
90

)x(
1− 1

90

)60−x

= .0006,

which is small and may be rare enough to be newsworthy.
b. Let X be the number of elementary schools in New York state that have 5 or more sets

of twins entering kindergarten. Then the probability of interest is P (X ≥ 1) where X ∼
binomial(310,.0006). Therefore P (X ≥ 1) = 1− P (X = 0) = .1698.

c. Let X be the number of States that have 5 or more sets of twins entering kindergarten
during any of the last ten years. Then the probability of interest is P (X ≥ 1) where X ∼
binomial(500, .1698). Therefore P (X ≥ 1) = 1− P (X = 0) = 1− 3.90× 10−41 ≈ 1.

3.11 a.

lim
M/N→p,M→∞,N→∞

(
M
x

)(
N−M
K−x

)(
N
K

)
=

K!
x!(K−x)!

lim
M/N→p,M→∞,N→∞

M !(N−M)!(N−K)!
N !(M−x)!(N−M−(K−x))!

In the limit, each of the factorial terms can be replaced by the approximation from Stirling’s
formula because, for example,

M ! = (M !/(
√

2πMM+1/2e−M ))
√

2πMM+1/2e−M

and M !/(
√

2πMM+1/2e−M ) → 1. When this replacement is made, all the
√

2π and expo-
nential terms cancel. Thus,

lim
M/N→p,M→∞,N→∞

(
M
x

)(
N−M
K−x

)(
N
K

)
=

(
K

x

)
lim

M/N→p,M→∞,N→∞

MM+1/2(N−M)N−M+1/2(N−K)N−K+1/2

NN+1/2(M−x)M−x+1/2(N−M−K+x)N−M−(K−x)+1/2
.

We can evaluate the limit by breaking the ratio into seven terms, each of which has a finite
limit we can evaluate. In some limits we use the fact that M →∞, N →∞ and M/N → p
imply N −M →∞. The first term (of the seven terms) is

lim
M→∞

(
M

M − x

)M

= lim
M→∞

1(
M−x

M

)M = lim
M→∞

1(
1+−x

M

)M =
1

e−x
= ex.

Lemma 2.3.14 is used to get the penultimate equality. Similarly we get two more terms,

lim
N−M→∞

(
N −M

N −M − (K − x)

)N−M

= eK−x

and

lim
N→∞

(
N −K

N

)N

= e−K .
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Note, the product of these three limits is one. Three other terms are

limM →∞
(

M

M − x

)1/2

= 1

lim
N−M→∞

(
N −M

N −M − (K − x)

)1/2

= 1

and

lim
N→∞

(
N −K

N

)1/2

= 1.

The only term left is

lim
M/N→p,M→∞,N→∞

(M − x)x(N −M − (K − x))K−x

(N −K)K

= lim
M/N→p,M→∞,N→∞

(
M − x

N −K

)x(
N −M − (K − x)

N −K

)K−x

= px(1− p)K−x.

b. If in (a) we in addition have K → ∞, p → 0, MK/N → pK → λ, by the Poisson approxi-
mation to the binomial, we heuristically get(

M
x

)(
N−M
K−x

)(
N
K

) →
(

K

x

)
px(1− p)K−x → e−λλx

x!
.

c. Using Stirling’s formula as in (a), we get

lim
N,M,K→∞, M

N →0, KM
N →λ

(
M
x

)(
N−M
K−x

)(
N
K

)
= lim

N,M,K→∞, M
N →0, KM

N →λ

e−x

x!
KxexMxex(N−M)K−x

eK−x

NKeK

=
1
x!

lim
N,M,K→∞, M

N →0, KM
N →λ

(
KM

N

)x(
N −M

N

)K−x

=
1
x!

λx lim
N,M,K→∞, M

N →0, KM
N →λ

(
1−

MK
N

K

)K

=
e−λλx

x!
.

3.12 Consider a sequence of Bernoulli trials with success probability p. Define X = number of
successes in first n trials and Y = number of failures before the rth success. Then X and Y
have the specified binomial and hypergeometric distributions, respectively. And we have

Fx(r − 1) = P (X ≤ r − 1)
= P (rth success on (n + 1)st or later trial)
= P (at least n + 1− r failures before the rth success)
= P (Y ≥ n− r + 1)
= 1− P (Y ≤ n− r)
= 1− FY (n− r).
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3.13 For any X with support 0, 1, . . ., we have the mean and variance of the 0−truncated XT are
given by

EXT =
∞∑

x=1

xP (XT = x) =
∞∑

x=1

x
P (X = x)
P (X > 0)

=
1

P (X > 0)

∞∑
x=1

xP (X = x) =
1

P (X > 0)

∞∑
x=0

xP (X = x) =
EX

P (X > 0)
.

In a similar way we get EX2
T = EX2

P (X>0) . Thus,

VarXT =
EX2

P (X > 0)
−
(

EX

P (X > 0)

)2

.

a. For Poisson(λ), P (X > 0) = 1− P (X = 0) = 1− e−λλ0

0! = 1− e−λ, therefore

P (XT = x) =
e−λλx

x!(1−e−λ)
x = 1, 2, . . .

EXT = λ/(1− e−λ)
VarXT = (λ2 + λ)/(1− e−λ)− (λ/(1− e−λ))2.

b. For negative binomial(r, p), P (X > 0) = 1−P (X = 0) = 1−
(
r−1
0

)
pr(1−p)0 = 1−pr. Then

P (XT = x) =

(
r+x−1

x

)
pr(1− p)x

1−pr , x = 1, 2, . . .

EXT =
r(1− p)
p(1− pr)

VarXT =
r(1− p) + r2(1− p)2

p2(1− pr)
−
[

r(1− p)
p(1− pr)2

]
.

3.14 a.
∑∞

x=1
−(1−p)x

x log p = 1
log p

∑∞
x=1

−(1−p)x

x = 1, since the sum is the Taylor series for log p.
b.

EX =
−1

log p

[ ∞∑
x=1

(1−p)x

]
=

−1
log p

[ ∞∑
x=0

(1−p)x−1

]
==

−1
log p

[
1
p
−1
]

=
−1

log p

(
1−p

p

)
.

Since the geometric series converges uniformly,

EX2 =
−1

log p

∞∑
x=1

x(1− p)x =
(1−p)
log p

∞∑
x=1

d

dp
(1− p)x

=
(1−p)
log p

d

dp

∞∑
x=1

(1− p)x =
(1−p)
log p

d

dp

[
1−p

p

]
=

−(1−p)
p2 log p

.

Thus

VarX =
−(1−p)
p2 log p

[
1 +

(1−p)
log p

]
.

Alternatively, the mgf can be calculated,

Mx(t) =
−1

log p

∞∑
x=1

[
(1−p)et

]x
=

log(1+pet−et)
log p

and can be differentiated to obtain the moments.
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3.15 The moment generating function for the negative binomial is

M(t) =
(

p

1−(1− p)et

)r

=

(
1 +

1
r

r(1− p)(et−1)
1−(1− p)et

)r

,

the term

r(1− p)(et−1)
1−(1− p)et → λ(et−1)

1
= λ(et − 1) as r →∞, p → 1 and r(p− 1) → λ.

Thus by Lemma 2.3.14, the negative binomial moment generating function converges to
eλ(et−1), the Poisson moment generating function.

3.16 a. Using integration by parts with, u = tα and dv = e−tdt, we obtain

Γ(α + 1) =
∫ ∞

0

t(α+1)−1e−tdt = tα(−e
−t)
∣∣∣∞
0
−
∫ ∞

0

αtα−1(−e−t)dt = 0 + αΓ(α) = αΓ(α).

b. Making the change of variable z =
√

2t, i.e., t = z2/2, we obtain

Γ(1/2) =
∫ ∞

0

t−1/2e−tdt =
∫ ∞

0

√
2

z
e−z2/2zdz =

√
2
∫ ∞

0

e−z2/2dz =
√

2
√

π√
2

=
√

π.

where the penultimate equality uses (3.3.14).
3.17

EXν =
∫ ∞

0

xν 1
Γ(α)βα

xα−1e−x/βdx =
1

Γ(α)βα

∫ ∞

0

x(ν+α)−1e−x/βdx

=
Γ(ν+α)βν+α

Γ(α)βα
=

βνΓ(ν+α)
Γ(α)

.

Note, this formula is valid for all ν > −α. The expectation does not exist for ν ≤ −α.

3.18 If Y ∼ negative binomial(r, p), its moment generating function is MY (t) =
(

p
1−(1−p)et

)r

, and,

from Theorem 2.3.15, MpY (t) =
(

p
1−(1−p)ept

)r

. Now use L’Hôpital’s rule to calculate

lim
p→0

(
p

1−(1− p)ept

)
= lim

p→0

1
(p− 1)tept+ept

=
1

1− t
,

so the moment generating function converges to (1− t)−r, the moment generating function of
a gamma(r, 1).

3.19 Repeatedly apply the integration-by-parts formula

1
Γ(n)

∫ ∞

x

zn−1z−zdz =
xn−1e−x

(n− 1)!
+

1
Γ(n− 1)

∫ ∞

x

zn−2z−zdz,

until the exponent on the second integral is zero. This will establish the formula. If X ∼
gamma(α, 1) and Y ∼ Poisson(x). The probabilistic relationship is P (X ≥ x) = P (Y ≤ α− 1).

3.21 The moment generating function would be defined by 1
π

∫∞
−∞

etx

1+x2 dx. On (0,∞), etx > x, hence∫ ∞

0

etx

1+x2 dx >

∫ ∞

0

x

1+x2 dx = ∞,

thus the moment generating function does not exist.
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3.22 a.

E(X(X−1)) =
∞∑

x=0

x(x− 1)
e−λλx

x!

= e−λλ2
∞∑

x=2

λx−2

(x−2)!
(let y = x− 2)

= e−λλ2
∞∑

y=0

λy

y!
= e−λλ2eλ = λ2

EX2 = λ2 + EX = λ2 + λ

VarX = EX2 − (EX)2 = λ2 + λ− λ2 = λ.

b.

E(X(X−1)) =
∞∑

x=0

x(x− 1)
(

r + x− 1
x

)
pr(1− p)x

=
∞∑

x=2

r(r + 1)
(

r + x− 1
x− 2

)
pr(1− p)x

= r(r + 1)
(1− p)2

p2

∞∑
y=0

(
r + 2 + y − 1

y

)
pr + 2(1− p)y

= r(r − 1)
(1− p)2

p2
,

where in the second equality we substituted y = x− 2, and in the third equality we use the
fact that we are summing over a negative binomial(r + 2, p) pmf. Thus,

VarX = EX(X − 1) + EX − (EX)2

= r(r + 1)
(1− p)2

p2
+

r(1− p)
p

− r2(1− p)2

p2

=
r(1− p)

p2
.

c.

EX2 =
∫ ∞

0

x2 1
Γ(α)βα

xα−1e−x/βdx =
1

Γ(α)βα

∫ ∞

0

xα+1e−x/βdx

=
1

Γ(α)βα
Γ(α + 2)βα+2 = α(α + 1)β2.

VarX = EX2 − (EX)2 = α(α + 1)β2 − α2β2 = αβ2.

d. (Use 3.3.18)

EX =
Γ(α+1)Γ(α+β)
Γ(α+β+1)Γ(α)

=
αΓ(α)Γ(α+β)

(α+β)Γ(α+β)Γ(α)
=

α

α+β
.

EX2 =
Γ(α+2)Γ(α+β)
Γ(α+β+2)Γ(α)

=
(α+1)αΓ(α)Γ(α+β)

(α+β+1)(α+β)Γ(α+β)Γ(α)
=

α(α+1)
(α+β)(α+β+1)

.

VarX = EX2 − (EX)2 =
α(α+1)

(α+β)(α+β+1)
− α2

(α+β)2
=

αβ

(α+β)2(α+β+1)
.
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e. The double exponential(µ, σ) pdf is symmetric about µ. Thus, by Exercise 2.26, EX = µ.

VarX =
∫ ∞

−∞
(x− µ)2

1
2σ

e−|x−µ|/σdx =
∫ ∞

−∞
σz2 1

2
e−|z|σdz

= σ2

∫ ∞

0

z2e−zdz = σ2Γ(3) = 2σ2.

3.23 a. ∫ ∞

α

x−β−1dx =
−1
β

x−β

∣∣∣∣∞
α

=
1

βαβ
,

thus f(x) integrates to 1 .

b. EXn = βαn

(n−β) , therefore

EX =
αβ

(1− β)

EX2 =
αβ2

(2− β)

VarX =
αβ2

2−β
− (αβ)2

(1−β)2

c. If β < 2 the integral of the second moment is infinite.
3.24 a. fx(x) = 1

β e−x/β , x > 0. For Y = X1/γ , fY (y) = γ
β e−yγ/βyγ−1, y > 0. Using the transforma-

tion z = yγ/β, we calculate

EY n =
γ

β

∫ ∞

0

yγ+n−1e−yγ/βdy = βn/γ

∫ ∞

0

zn/γe−zdz = βn/γΓ
(

n

γ
+1
)

.

Thus EY = β1/γΓ( 1
γ + 1) and VarY = β2/γ

[
Γ
(

2
γ +1

)
−Γ2

(
1
γ +1

)]
.

b. fx(x) = 1
β e−x/β , x > 0. For Y = (2X/β)1/2, fY (y) = ye−y2/2, y > 0 . We now notice that

EY =
∫ ∞

0

y2e−y2/2dy =
√

2π

2

since 1√
2π

∫∞
−∞ y2e−y2/2 = 1, the variance of a standard normal, and the integrand is sym-

metric. Use integration-by-parts to calculate the second moment

EY 2 =
∫ ∞

0

y3e−y2/2dy = 2
∫ ∞

0

ye−y2/2dy = 2,

where we take u = y2, dv = ye−y2/2. Thus VarY = 2(1− π/4).
c. The gamma(a, b) density is

fX(x) =
1

Γ(a)ba
xa−1e−x/b.

Make the transformation y = 1/x with dx = −dy/y2 to get

fY (y) = fX(1/y)|1/y2| = 1
Γ(a)ba

(
1
y

)a+1

e−1/by.
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The first two moments are

EY =
1

Γ(a)ba

∫ ∞

0

(
1
y

)a

e−1/by =
Γ(a− 1)ba−1

Γ(a)ba
=

1
(a− 1)b

EY 2 =
Γ(a− 2)ba−2

Γ(a)ba
=

1
(a− 1)(a− 2)b2

,

and so VarY = 1
(a−1)2(a−2)b2 .

d. fx(x) = 1
Γ(3/2)β3/2 x3/2−1e−x/β , x > 0. For Y = (X/β)1/2, fY (y) = 2

Γ(3/2)y
2e−y2

, y > 0. To

calculate the moments we use integration-by-parts with u = y2, dv = ye−y2
to obtain

EY =
2

Γ(3/2)

∫ ∞

0

y3e−y2
dy =

2
Γ(3/2)

∫ ∞

0

ye−y2
dy =

1
Γ(3/2)

and with u = y3, dv = ye−y2
to obtain

EY 2 =
2

Γ(3/2)

∫ ∞

0

y4e−y2
dy =

3
Γ(3/2)

∫ ∞

0

y2e−y2
dy =

3
Γ(3/2)

√
π.

Using the fact that 1
2
√

π

∫∞
−∞ y2e−y2

= 1, since it is the variance of a n(0, 2), symmetry yields∫∞
0

y2e−y2
dy =

√
π. Thus, VarY = 6− 4/π, using Γ(3/2) = 1

2

√
π.

e. fx(x) = e−x, x > 0. For Y = α−γ log X, fY (y) = e−e α−y
γ e

α−y
γ 1

γ , −∞ < y < ∞. Calculation
of EY and EY 2 cannot be done in closed form. If we define

I1 =
∫ ∞

0

log xe−xdx, I2 =
∫ ∞

0

(log x)2e−xdx,

then EY = E(α − γ log x) = α − γI1, and EY 2 = E(α − γ log x)2 = α2 − 2αγI1 + γ2I2.The
constant I1 = .5772157 is called Euler’s constant.

3.25 Note that if T is continuous then,

P (t ≤ T ≤ t+δ|t ≤ T ) =
P (t ≤ T ≤ t+δ, t ≤ T )

P (t ≤ T )

=
P (t ≤ T ≤ t+δ)

P (t ≤ T )

=
FT (t+δ)− FT (t)

1−FT (t)
.

Therefore from the definition of derivative,

hT (t) =
1

1− FT (t)
= lim

δ→0

FT (t + δ)− FT (t)
δ

=
F ′

T (t)
1− FT (t)

=
fT (t)

1−FT (t)
.

Also,

− d

dt
(log[1− FT (t)]) = − 1

1−FT (t)
(−fT (t)) = hT (t).

3.26 a. fT (t) = 1
β e−t/β and FT (t) =

∫ t

0
1
β e−x/βdx = − e−x/β

∣∣t
0

= 1− e−t/β . Thus,

hT (t) =
fT (t)

1−FT (t)
=

(1/β)e−t/β

1−(1− e
−t/β)

=
1
β

.



3-10 Solutions Manual for Statistical Inference

b. fT (t) = γ
β tγ−1e−tγ/β , t ≥ 0 and FT (t) =

∫ t

0
γ
β xγ−1e−xγ/βdx =

∫ tγ/β

0
e−udu = − e−u|t

γ/β

0 =
1− e−tγ/β , where u = xγ/β . Thus,

hT (t) =
(γ/β)tγ−1e−tγ/β

e−tγ/β
=

γ

β
tγ−1.

c. FT (t) = 1
1+e−(t−µ)/β and fT (t) = e−(t−µ)/β

(1+e−(t−µ)/β)2 . Thus,

hT (t) =
1
β

e−(t−µ)/β(1+e−(t−µ)/β)2 1
e−(t−µ)/β

1+e−(t−µ)/β

=
1
β

FT (t).

3.27 a. The uniform pdf satisfies the inequalities of Exercise 2.27, hence is unimodal.

b. For the gamma(α, β) pdf f(x), ignoring constants, d
dxf(x) = xα−2e−x/β

β [β(α−1)− x], which
only has one sign change. Hence the pdf is unimodal with mode β(α− 1).

c. For the n(µ, σ2) pdf f(x), ignoring constants, d
dxf(x) = x−µ

σ2 e−(−x/β)2/2σ2
, which only has

one sign change. Hence the pdf is unimodal with mode µ.
d. For the beta(α, β) pdf f(x), ignoring constants,

d

dx
f(x) = xα−2(1− x)β−2 [(α−1)− x(α+β−2)] ,

which only has one sign change. Hence the pdf is unimodal with mode α−1
α+β−2 .

3.28 a. (i) µ known,

f(x|σ2) =
1√
2πσ

exp
(
−1
2σ2

(x− µ)2
)

,

h(x) = 1, c(σ2) = 1√
2πσ2 I(0,∞)(σ2), w1(σ2) = − 1

2σ2 , t1(x) = (x− µ)2.
(ii) σ2 known,

f(x|µ) =
1√
2πσ

exp
(
− x2

2σ2

)
exp

(
− µ2

2σ2

)
exp

(
µ

x

σ2

)
,

h(x) = exp
(
−x2

2σ2

)
, c(µ) = 1√

2πσ
exp

(
−µ2

2σ2

)
, w1(µ) = µ, t1(x) = x

σ2 .

b. (i) α known,

f(x|β) =
1

Γ(α)βα
xα−1e

−x
β ,

h(x) = xα−1

Γ(α) , x > 0, c(β) = 1
βα , w1(β) = 1

β , t1(x) = −x.
(ii) β known,

f(x|α) = e−x/β 1
Γ(α)βα

exp((α− 1) log x),

h(x) = e−x/β , x > 0, c(α) = 1
Γ(α)βα w1(α) = α− 1, t1(x) = log x.

(iii) α, β unknown,

f(x|α, β) =
1

Γ(α)βα
exp((α− 1) log x− x

β
),

h(x) = I{x>0}(x), c(α, β) = 1
Γ(α)βα , w1(α) = α− 1, t1(x) = log x,

w2(α, β) = −1/β, t2(x) = x.
c. (i) α known, h(x) = xα−1I[0,1](x), c(β) = 1

B(α,β) , w1(β) = β − 1, t1(x) = log(1− x).
(ii) β known, h(x) = (1− x)β−1I[0,1](x), c(α) = 1

B(α,β) , w1(x) = α− 1, t1(x) = log x.
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(iii) α, β unknown,
h(x) = I[0,1](x), c(α, β) = 1

B(α,β) , w1(α) = α− 1, t1(x) = log x,

w2(β) = β − 1, t2(x) = log(1− x).
d. h(x) = 1

x!I{0,1,2,...}(x), c(θ) = e−θ, w1(θ) = log θ, t1(x) = x.

e. h(x) =
(

x−1
r − 1

)
I{r,r+1,...}(x), c(p) =

(
p

1−p

)r

, w1(p) = log(1− p), t1(x) = x.

3.29 a. For the n(µ, σ2)

f(x) =
(

1√
2π

)(
e−µ2/2σ2

σ

)(
e−x2/2σ2+xµ/σ2

)
,

so the natural parameter is (η1, η2) = (−1/2σ2, µ/σ2) with natural parameter space
{(η1,η2):η1 < 0,−∞ < η2 < ∞}.

b. For the gamma(α, β),

f(x) =
(

1
Γ(α)βα

)(
e(α−1) log x−x/β

)
,

so the natural parameter is (η1, η2) = (α− 1,−1/β) with natural parameter space
{(η1,η2):η1 > −1,η2 < 0}.

c. For the beta(α, β),

f(x) =
(

Γ(α+β)
Γ(α)Γ(β)

)(
e(α−1) log x+(β−1) log(1−x)

)
,

so the natural parameter is (η1, η2) = (α − 1, β − 1) and the natural parameter space is
{(η1,η2):η1 > −1,η2 > −1}.

d. For the Poisson

f(x) =
(

1
x!

)(
e−θ
)
exlogθ

so the natural parameter is η = log θ and the natural parameter space is {η:−∞ < η < ∞}.
e. For the negative binomial(r, p), r known,

P (X = x) =
(

r+x−1
x
)

(pr)
(
ex log (1−p)

)
,

so the natural parameter is η = log(1− p) with natural parameter space {η:η < 0}.
3.31 a.

0 =
∂

∂θ

∫
h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx

=
∫

h(x)c′(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx

+
∫

h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)(
k∑

i=1

∂wi(θ)
∂θj

ti(x)

)
dx

=
∫

h(x)
[

∂

∂θj
logc(θ)

]
c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx + E

[
k∑

i=1

∂wi(θ)
∂θj

ti(x)

]

=
∂

∂θj
logc(θ) + E

[
k∑

i=1

∂wi(θ)
∂θj

ti(x)

]

Therefore E
[∑k

i=1
∂wi(θ)

∂θj
ti(x)

]
= − ∂

∂θj
logc(θ).
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b.

0 =
∂2

∂θ2

∫
h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx

=
∫

h(x)c′′(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx

+
∫

h(x)c′(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)(
k∑

i=1

∂wi(θ)
∂θj

ti(x)

)
dx

+
∫

h(x)c′(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)(
k∑

i=1

∂wi(θ)
∂θj

ti(x)

)
dx

+
∫

h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)(
k∑

i=1

∂wi(θ)
∂θj

ti(x)

)2

dx

+
∫

h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)(
k∑

i=1

∂2wi(θ)
∂θ2

j

ti(x)

)
dx

=
∫

h(x)

[
∂2

∂θ2
j

logc(θ)

]
c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx

+
∫

h(x)
[
c′(θ)
c(θ)

]2
c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
dx

+2
(

∂

∂θj
logc(θ)

)
E

[
k∑

i=1

∂wi(θ)
∂θj

ti(x)

]

+E

[
(

k∑
i=1

∂wi(θ)
∂θj

ti(x))2
]

+ E

[
k∑

i=1

∂2wi(θ)
∂θ2

j

ti(x)

]

=
∂2

∂θ2
j

logc(θ) +
[

∂

∂θj
logc(θ)

]2
−2E

[
k∑

i=1

∂wi(θ)
∂θj

ti(x)

]
E

[
k∑

i=1

∂wi(θ)
∂θj

ti(x)

]

+E

[
(

k∑
i=1

∂wi(θ)
∂θj

ti(x))2
]

+ E

[
k∑

i=1

∂2wi(θ)
∂θ2

j

ti(x)

]

=
∂2

∂θ2
j

logc(θ) + Var

(
k∑

i=1

∂wi(θ)
∂θj

ti(x)

)
+ E

[
k∑

i=1

∂2wi(θ)
∂θ2

j

ti(x)

]
.

Therefore Var
(∑k

i=1
∂wi(θ)

∂θj
ti(x)

)
= − ∂2

∂θ2
j

logc(θ)− E
[∑k

i=1
∂2wi(θ)

∂θ2
j

ti(x)
]
.

3.33 a. (i) h(x) = exI{−∞<x<∞}(x), c(θ) = 1√
2πθ

exp(−θ
2 )θ > 0, w1(θ) = 1

2θ , t1(x) = −x2.

(ii) The nonnegative real line.

b. (i) h(x) = I{−∞<x<∞}(x), c(θ) = 1√
2πaθ2 exp(−1

2a )−∞ < θ < ∞, a > 0,

w1(θ) = 1
2aθ2 , w2(θ) = 1

aθ , t1(x) = −x2, t2(x) = x.
(ii) A parabola.
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c. (i) h(x) = 1
xI{0<x<∞}(x), c(α) = αα

Γ(α)α > 0, w1(α) = α, w2(α) = α,

t1(x) = log(x), t2(x) = −x.
(ii) A line.

d. (i) h(x) = C exp(x4)I{−∞<x<∞}(x), c(θ) = exp(θ4)−∞ < θ < ∞, w1(θ) = θ,
w2(θ) = θ2, w3(θ) = θ3, t1(x) = −4x3, t2(x) = 6x2, t3(x) = −4x.

(ii) The curve is a spiral in 3-space.
(iii) A good picture can be generated with the Mathematica statement

ParametricPlot3D[{t, t^2, t^3}, {t, 0, 1}, ViewPoint -> {1, -2, 2.5}].

3.35 a. In Exercise 3.34(a) w1(λ) = 1
2λ and for a n(eθ, eθ), w1(θ) = 1

2eθ .

b. EX = µ = αβ, then β = µ
α . Therefore h(x) = 1

xI{0<x<∞}(x),
c(α) = αα

Γ(α)( µ
α )α , α > 0, w1(α) = α, w2(α) = α

µ , t1(x) = log(x), t2(x) = −x.

c. From (b) then (α1, . . . , αn, β1, . . . , βn) = (α1, . . . , αn, α1
µ , . . . , αn

µ )

3.37 The pdf ( 1
σ )f( (x−µ)

σ ) is symmetric about µ because, for any ε > 0,

1
σ

f

(
(µ+ε)−µ

σ

)
=

1
σ

f
( ε

σ

)
=

1
σ

f
(
− ε

σ

)
=

1
σ

f

(
(µ−ε)−µ

σ

)
.

Thus, by Exercise 2.26b, µ is the median.

3.38 P (X > xα) = P (σZ + µ > σzα + µ) = P (Z > zα) by Theorem 3.5.6.

3.39 First take µ = 0 and σ = 1.

a. The pdf is symmetric about 0, so 0 must be the median. Verifying this, write

P (Z ≥ 0) =
∫ ∞

0

1
π

1
1+z2

dz =
1
π

tan−1(z)
∣∣∣∣∞
0

=
1
π

(π

2
−0
)

=
1
2
.

b. P (Z ≥ 1) = 1
π tan−1(z)

∣∣∞
1

= 1
π

(
π
2−

π
4

)
= 1

4 . By symmetry this is also equal to P (Z ≤ −1).
Writing z = (x− µ)/σ establishes P (X ≥ µ) = 1

2 and P (X ≥ µ + σ) = 1
4 .

3.40 Let X ∼ f(x) have mean µ and variance σ2. Let Z = X−µ
σ . Then

EZ =
(

1
σ

)
E(X − µ) = 0

and

VarZ = Var
(

X − µ

σ

)
=
(

1
σ2

)
Var(X − µ) =

(
1
σ2

)
VarX =

σ2

σ2
= 1.

Then compute the pdf of Z, fZ(z) = fx(σz+µ) ·σ = σfx(σz+µ) and use fZ(z) as the standard
pdf.

3.41 a. This is a special case of Exercise 3.42a.
b. This is a special case of Exercise 3.42b.

3.42 a. Let θ1 > θ2. Let X1 ∼ f(x− θ1) and X2 ∼ f(x− θ2). Let F (z) be the cdf corresponding to
f(z) and let Z ∼ f(z).Then

F (x | θ1) = P (X1 ≤ x) = P (Z + θ1 ≤ x) = P (Z ≤ x− θ1) = F (x− θ1)
≤ F (x− θ2) = P (Z ≤ x− θ2) = P (Z + θ2 ≤ x) = P (X2 ≤ x)
= F (x | θ2).
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The inequality is because x− θ2 > x− θ1, and F is nondecreasing. To get strict inequality
for some x, let (a, b] be an interval of length θ1− θ2 with P (a < Z ≤ b) = F (b)−F (a) > 0.
Let x = a + θ1. Then

F (x | θ1) = F (x− θ1) = F (a + θ1 − θ1) = F (a)
< F (b) = F (a + θ1 − θ2) = F (x− θ2) = F (x | θ2).

b. Let σ1 > σ2. Let X1 ∼ f(x/σ1) and X2 ∼ f(x/σ2). Let F (z) be the cdf corresponding to
f(z) and let Z ∼ f(z). Then, for x > 0,

F (x | σ1) = P (X1 ≤ x) = P (σ1Z ≤ x) = P (Z ≤ x/σ1) = F (x/σ1)
≤ F (x/σ2) = P (Z ≤ x/σ2) = P (σ2Z ≤ x) = P (X2 ≤ x)
= F (x | σ2).

The inequality is because x/σ2 > x/σ1 (because x > 0 and σ1 > σ2 > 0), and F is
nondecreasing. For x ≤ 0, F (x | σ1) = P (X1 ≤ x) = 0 = P (X2 ≤ x) = F (x | σ2). To
get strict inequality for some x, let (a, b] be an interval such that a > 0, b/a = σ1/σ2 and
P (a < Z ≤ b) = F (b)− F (a) > 0. Let x = aσ1. Then

F (x | σ1) = F (x/σ1) = F (aσ1/σ1) = F (a)
< F (b) = F (aσ1/σ2) = F (x/σ2)
= F (x | σ2).

3.43 a. FY (y|θ) = 1− FX( 1
y |θ) y > 0, by Theorem 2.1.3. For θ1 > θ2,

FY (y|θ1) = 1− FX

(
1
y

∣∣∣∣ θ1

)
≤ 1− FX

(
1
y

∣∣∣∣ θ2

)
= FY (y|θ2)

for all y, since FX(x|θ) is stochastically increasing and if θ1 > θ2, FX(x|θ2) ≤ FX(x|θ1) for
all x. Similarly, FY (y|θ1) = 1 − FX( 1

y |θ1) < 1 − FX( 1
y |θ2) = FY (y|θ2) for some y, since if

θ1 > θ2, FX(x|θ2) < FX(x|θ1) for some x. Thus FY (y|θ) is stochastically decreasing in θ.
b. FX(x|θ) is stochastically increasing in θ. If θ1 > θ2 and θ1, θ2 > 0 then 1

θ2
> 1

θ1
. Therefore

FX(x| 1
θ1

) ≤ FX(x| 1
θ2

) for all x and FX(x| 1
θ1

) < FX(x| 1
θ2

) for some x. Thus FX(x| 1θ ) is
stochastically decreasing in θ.

3.44 The function g(x) = |x| is a nonnegative function. So by Chebychev’s Inequality,

P (|X| ≥ b) ≤ E|X|/b.

Also, P (|X| ≥ b) = P (X2 ≥ b2). Since g(x) = x2 is also nonnegative, again by Chebychev’s
Inequality we have

P (|X| ≥ b) = P (X2 ≥ b2) ≤ EX2/b2.

For X ∼ exponential(1), E|X| = EX = 1 and EX2 = VarX + (EX)2 = 2 . For b = 3,

E|X|/b = 1/3 > 2/9 = EX2/b2.

Thus EX2/b2 is a better bound. But for b =
√

2,

E|X|/b = 1/
√

2 < 1 = EX2/b2.

Thus E|X|/b is a better bound.
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3.45 a.

MX(t) =
∫ ∞

−∞
etxfX(x)dx ≥

∫ ∞

a

etxfX(x)dx

≥ eta

∫ ∞

a

fX(x)dx = etaP (X ≥ a),

where we use the fact that etx is increasing in x for t > 0.

b.

MX(t) =
∫ ∞

−∞
etxfX(x)dx ≥

∫ a

−∞
etxfX(x)dx

≥ eta

∫ a

−∞
fX(x)dx = etaP (X ≤ a),

where we use the fact that etx is decreasing in x for t < 0.

c. h(t, x) must be nonnegative.

3.46 For X ∼ uniform(0, 1), µ = 1
2 and σ2 = 1

12 , thus

P (|X − µ| > kσ) = 1− P

(
1
2
− k√

12
≤ X ≤ 1

2
+

k√
12

)
=
{

1− 2k√
12

k <
√

3,

0 k ≥
√

3,

For X ∼ exponential(λ), µ = λ and σ2 = λ2, thus

P (|X − µ| > kσ) = 1− P (λ− kλ ≤ X ≤ λ + kλ) =
{

1 + e−(k+1) − ek−1 k ≤ 1
e−(k+1) k > 1.

From Example 3.6.2, Chebychev’s Inequality gives the bound P (|X − µ| > kσ) ≤ 1/k2.

Comparison of probabilities
k u(0, 1) exp(λ) Chebychev

exact exact
.1 .942 .926 100
.5 .711 .617 4
1 .423 .135 1

1.5 .134 .0821 .44√
3 0 0.0651 .33

2 0 0.0498 .25
4 0 0.00674 .0625
10 0 0.0000167 .01

So we see that Chebychev’s Inequality is quite conservative.

3.47

P (|Z| > t) = 2P (Z > t) = 2
1√
2π

∫ ∞

t

e−x2/2dx

=

√
2
π

∫ ∞

t

1+x2

1+x2 e−x2/2dx

=

√
2
π

[∫ ∞

t

1
1+x2 e−x2/2dx+

∫ ∞

t

x2

1+x2 e−x2/2dx

]
.
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To evaluate the second term, let u = x
1+x2 , dv = xe−x2/2dx, v = −e−x2/2, du = 1−x2

(1+x2)2 , to
obtain ∫ ∞

t

x2

1 + x2
e−x2/2dx =

x

1 + x2
(−e−x2/2)

∣∣∣∣∞
t

−
∫ ∞

t

1− x2

(1 + x2)2
(−e−x2/2)dx

=
t

1 + t2
e−t2/2 +

∫ ∞

t

1− x2

(1 + x2)2
e−x2/2dx.

Therefore,

P (Z ≥ t) =

√
2
π

t

1 + t2
e−t2/2 +

√
2
π

∫ ∞

t

(
1

1 + x2
+

1− x2

(1 + x2)2

)
e−x2/2dx

=

√
2
π

t

1 + t2
e−t2/2 +

√
2
π

∫ ∞

t

(
2

(1 + x2)2

)
e−x2/2dx

≥
√

2
π

t

1 + t2
e−t2/2.

3.48 For the negative binomial

P (X = x + 1) =
(

r + x + 1− 1
x + 1

)
pr(1− p)x+1 =

(
r + x

x + 1

)
(1− p)P (X = x).

For the hypergeometric

P (X = x + 1) =


(M−x)(k−x+x+1)(x+1)

P (X=x) if x < k, x < M , x ≥ M − (N − k)
( M

x+1)( N−M
k−x−1)

(N
k) if x = M − (N − k)− 1

0 otherwise.

3.49 a.

E(g(X)(X − αβ)) =
∫ ∞

0

g(x)(x− αβ)
1

Γ(α)
βαxα−1e−x/βdx.

Let u = g(x), du = g′(x), dv = (x− αβ)xα−1e−x/β , v = −βxαe−x/β . Then

Eg(X)(X − αβ) =
1

Γ(α)βα

[
−g(x)βxαe−x/β

∣∣∣∞
0

+ β

∫ ∞

0

g′(x)xαe−x/βdx

]
.

Assuming g(x) to be differentiable, E|Xg′(X)| < ∞ and limx→∞ g(x)xαe−x/β = 0, the first
term is zero, and the second term is βE(Xg′(X)).

b.

E
[
g(X)

(
β−(α−1)

1−X

x

)]
=

Γ(α+β)
Γ(α)Γ(β)

∫ 1

0

g(x)
(

β − (α− 1)
1−x

x

)
xα−1(1− x)β−1dx.

Let u = g(x) and dv = (β − (α− 1) 1−x
x )xα−1(1− x)β . The expectation is

Γ(α + β)
Γ(α)Γ(β)

[
g(x)xα−1(1− x)β

∣∣1
0

+
∫ 1

0

(1− x)g′(x)xα−1(1− x)β−1dx

]
= E((1−X)g′(X)),

assuming the first term is zero and the integral exists.
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3.50 The proof is similar to that of part a) of Theorem 3.6.8. For X ∼ negative binomial(r, p),

Eg(X)

=
∞∑

x=0

g(x)
(

r + x− 1
x

)
pr(1− p)x

=
∞∑

y=1

g(y − 1)
(

r + y − 2
y − 1

)
pr(1− p)y−1 (set y = x + 1)

=
∞∑

y=1

g(y − 1)
(

y

r + y − 1

)(
r + y − 1

y

)
pr(1− p)y−1

=
∞∑

y=0

[
y

r + y − 1
g(y − 1)
1− p

] [(
r + y − 1

y

)
pr(1− p)y

]
(the summand is zero at y = 0)

= E
(

X

r + X − 1
g(X − 1)

1− p

)
,

where in the third equality we use the fact that
(
r+y−2

y−1

)
=
(

y
r+y−1

) (
r+y−1

y

)
.



Chapter 4

Multiple Random Variables

4.1 Since the distribution is uniform, the easiest way to calculate these probabilities is as the ratio
of areas, the total area being 4.

a. The circle x2 + y2 ≤ 1 has area π, so P (X2 + Y 2 ≤ 1) = π
4 .

b. The area below the line y = 2x is half of the area of the square, so P (2X − Y > 0) = 2
4 .

c. Clearly P (|X + Y | < 2) = 1.

4.2 These are all fundamental properties of integrals. The proof is the same as for Theorem 2.2.5
with bivariate integrals replacing univariate integrals.

4.3 For the experiment of tossing two fair dice, each of the points in the 36-point sample space are
equally likely. So the probability of an event is (number of points in the event)/36. The given
probabilities are obtained by noting the following equivalences of events.

P ({X = 0, Y = 0}) = P ({(1, 1), (2, 1), (1, 3), (2, 3), (1, 5), (2, 5)}) =
6
36

=
1
6

P ({X = 0, Y = 1}) = P ({(1, 2), (2, 2), (1, 4), (2, 4), (1, 6), (2, 6)}) =
6
36

=
1
6

P ({X = 1, Y = 0})
= P ({(3, 1), (4, 1), (5, 1), (6, 1), (3, 3), (4, 3), (5, 3), (6, 3), (3, 5), (4, 5), (5, 5), (6, 5)})

=
12
36

=
1
3

P ({X = 1, Y = 1})
= P ({(3, 2), (4, 2), (5, 2), (6, 2), (3, 4), (4, 4), (5, 4), (6, 4), (3, 6), (4, 6), (5, 6), (6, 6)})

=
12
36

=
1
3

4.4 a.
∫ 1

0

∫ 2

0
C(x + 2y)dxdy = 4C = 1, thus C = 1

4 .

b. fX(x) =
{∫ 1

0
1
4 (x + 2y)dy = 1

4 (x + 1) 0 < x < 2
0 otherwise

c. FXY (x, y) = P (X ≤ x, Y ≤ y) =
∫ x

−∞
∫ y

−∞ f(v, u)dvdu. The way this integral is calculated
depends on the values of x and y. For example, for 0 < x < 2 and 0 < y < 1,

FXY (x, y) =
∫ x

−∞

∫ y

−∞
f(u, v)dvdu =

∫ x

0

∫ y

0

1
4
(u + 2v)dvdu =

x2y

8
+

y2x

4
.

But for 0 < x < 2 and 1 ≤ y,

FXY (x, y) =
∫ x

−∞

∫ y

−∞
f(u, v)dvdu =

∫ x

0

∫ 1

0

1
4
(u + 2v)dvdu =

x2

8
+

x

4
.
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The complete definition of FXY is

FXY (x, y) =


0 x ≤ 0 or y ≤ 0
x2y/8 + y2x/4 0 < x < 2 and 0 < y < 1
y/2 + y2/2 2 ≤ x and 0 < y < 1
x2/8 + x/4 0 < x < 2 and 1 ≤ y
1 2 ≤ x and 1 ≤ y

.

d. The function z = g(x) = 9/(x + 1)2 is monotone on 0 < x < 2, so use Theorem 2.1.5 to
obtain fZ(z) = 9/(8z2), 1 < z < 9.

4.5 a. P (X >
√

Y ) =
∫ 1

0

∫ 1√
y
(x + y)dxdy = 7

20 .

b. P (X2 < Y < X) =
∫ 1

0

∫√y

y
2xdxdy = 1

6 .
4.6 Let A = time that A arrives and B = time that B arrives. The random variables A and B are

independent uniform(1, 2) variables. So their joint pdf is uniform on the square (1, 2)× (1, 2).
Let X = amount of time A waits for B. Then, FX(x) = P (X ≤ x) = 0 for x < 0, and
FX(x) = P (X ≤ x) = 1 for 1 ≤ x. For x = 0, we have

FX(0) = P (X ≤ 0) = P (X = 0) = P (B ≤ A) =
∫ 2

1

∫ a

1

1dbda =
1
2
.

And for 0 < x < 1,

FX(x) = P (X ≤ x) = 1−P (X > x) = 1−P (B−A > x) = 1−
∫ 2−x

1

∫ 2

a+x

1dbda =
1
2

+x− x2

2
.

4.7 We will measure time in minutes past 8 A.M. So X ∼ uniform(0, 30), Y ∼ uniform(40, 50) and
the joint pdf is 1/300 on the rectangle (0, 30)× (40, 50).

P (arrive before 9 A.M.) = P (X + Y < 60) =
∫ 50

40

∫ 60−y

0

1
300

dxdy =
1
2
.

4.9

P (a ≤ X ≤ b, c ≤ Y ≤ d)
= P (X ≤ b, c ≤ Y ≤ d)− P (X ≤ a, c ≤ Y ≤ d)
= P (X ≤ b, Y ≤ d)− P (X ≤ b, Y ≤ c)− P (X ≤ a, Y ≤ d) + P (X ≤ a, Y ≤ c)
= F (b, d)− F (b, c)− F (a, d)− F (a, c)
= FX(b)FY (d)− FX(b)FY (c)− FX(a)FY (d)− FX(a)FY (c)
= P (X ≤ b) [P (Y ≤ d)− P (Y ≤ c)]− P (X ≤ a) [P (Y ≤ d)− P (Y ≤ c)]
= P (X ≤ b)P (c ≤ Y ≤ d)− P (X ≤ a)P (c ≤ Y ≤ d)
= P (a ≤ X ≤ b)P (c ≤ Y ≤ d).

4.10 a. The marginal distribution of X is P (X = 1) = P (X = 3) = 1
4 and P (X = 2) = 1

2 . The
marginal distribution of Y is P (Y = 2) = P (Y = 3) = P (Y = 4) = 1

3 . But

P (X = 2, Y = 3) = 0 6= (
1
2
)(

1
3
) = P (X = 2)P (Y = 3).

Therefore the random variables are not independent.
b. The distribution that satisfies P (U = x, V = y) = P (U = x)P (V = y) where U ∼ X and

V ∼ Y is
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U
1 2 3

2 1
12

1
6

1
12

V 3 1
12

1
6

1
12

4 1
12

1
6

1
12

4.11 The support of the distribution of (U, V ) is {(u, v) : u = 1, 2, . . . ; v = u + 1, u + 2, . . .}. This
is not a cross-product set. Therefore, U and V are not independent. More simply, if we know
U = u, then we know V > u.

4.12 One interpretation of “a stick is broken at random into three pieces” is this. Suppose the length
of the stick is 1. Let X and Y denote the two points where the stick is broken. Let X and Y
both have uniform(0, 1) distributions, and assume X and Y are independent. Then the joint
distribution of X and Y is uniform on the unit square. In order for the three pieces to form
a triangle, the sum of the lengths of any two pieces must be greater than the length of the
third. This will be true if and only if the length of each piece is less than 1/2. To calculate the
probability of this, we need to identify the sample points (x, y) such that the length of each
piece is less than 1/2. If y > x, this will be true if x < 1/2, y − x < 1/2 and 1 − y < 1/2.
These three inequalities define the triangle with vertices (0, 1/2), (1/2, 1/2) and (1/2, 1). (Draw
a graph of this set.) Because of the uniform distribution, the probability that (X, Y ) falls in
the triangle is the area of the triangle, which is 1/8. Similarly, if x > y, each piece will have
length less than 1/2 if y < 1/2, x − y < 1/2 and 1− x < 1/2. These three inequalities define
the triangle with vertices (1/2, 0), (1/2, 1/2) and (1, 1/2). The probability that (X, Y ) is in this
triangle is also 1/8. So the probability that the pieces form a triangle is 1/8 + 1/8 = 1/4.

4.13 a.

E(Y − g(X))2

= E((Y − E(Y | X)) + (E(Y | X)− g(X)))2

= E(Y − E(Y | X))2 + E(E(Y | X)− g(X))2 + 2E [(Y − E(Y | X))(E(Y | X)− g(X))] .

The cross term can be shown to be zero by iterating the expectation. Thus

E(Y − g(X))2 = E(Y −E(Y | X))2 +E(E(Y | X)−g(X))2 ≥ E(Y −E(Y | X))2, for all g(·).

The choice g(X) = E(Y | X) will give equality.
b. Equation (2.2.3) is the special case of a) where we take the random variable X to be a

constant. Then, g(X) is a constant, say b, and E(Y | X) = EY .

4.15 We will find the conditional distribution of Y |X + Y . The derivation of the conditional distri-
bution of X|X + Y is similar. Let U = X + Y and V = Y . In Example 4.3.1, we found the
joint pmf of (U, V ). Note that for fixed u, f(u, v) is positive for v = 0, . . . , u. Therefore the
conditional pmf is

f(v|u) =
f(u, v)
f(u)

=
θu−ve−θ

(u−v)!
λve−λ

v!

(θ+λ)ue−(θ+λ)

u!

=
(

u

v

)(
λ

θ+λ

)v (
θ

θ+λ

)u−v

, v = 0, . . . , u.

That is V |U ∼ binomial(U, λ/(θ + λ)).

4.16 a. The support of the distribution of (U, V ) is {(u, v) : u = 1, 2, . . . ; v = 0,±1,±2, . . .}.
If V > 0, then X > Y . So for v = 1, 2, . . ., the joint pmf is

fU,V (u, v) = P (U = u, V = v) = P (Y = u, X = u + v)
= p(1− p)u+v−1p(1− p)u−1 = p2(1− p)2u+v−2.
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If V < 0, then X < Y . So for v = −1,−2, . . ., the joint pmf is

fU,V (u, v) = P (U = u, V = v) = P (X = u, Y = u− v)
= p(1− p)u−1p(1− p)u−v−1 = p2(1− p)2u−v−2.

If V = 0, then X = Y . So for v = 0, the joint pmf is

fU,V (u, 0) = P (U = u, V = 0) = P (X = Y = u) = p(1− p)u−1p(1− p)u−1 = p2(1− p)2u−2.

In all three cases, we can write the joint pmf as

fU,V (u, v) = p2(1− p)2u+|v|−2 =
(
p2(1− p)2u

)
(1− p)|v|−2, u = 1, 2, . . . ; v = 0,±1,±2, . . . .

Since the joint pmf factors into a function of u and a function of v, U and V are independent.
b. The possible values of Z are all the fractions of the form r/s, where r and s are positive

integers and r < s. Consider one such value, r/s, where the fraction is in reduced form. That
is, r and s have no common factors. We need to identify all the pairs (x, y) such that x and
y are positive integers and x/(x + y) = r/s. All such pairs are (ir, i(s − r)), i = 1, 2, . . ..
Therefore,

P
(
Z =

r

s

)
=

∞∑
i=1

P (X = ir, Y = i(s− r)) =
∞∑

i=1

p(1− p)ir−1p(1− p)i(s−r)−1

=
p2

(1− p)2

∞∑
i=1

((1− p)s)i =
p2

(1− p)2
(1− p)s

1−(1− p)s =
p2(1− p)s−2

1−(1− p)s .

c.

P (X = x,X + Y = t) = P (X = x, Y = t− x) = P (X = x)P (Y = t− x) = p2(1− p)t−2.

4.17 a. P (Y = i + 1) =
∫ i+1

i
e−xdx = e−i(1− e−1), which is geometric with p = 1− e−1.

b. Since Y ≥ 5 if and only if X ≥ 4,

P (X − 4 ≤ x|Y ≥ 5) = P (X − 4 ≤ x|X ≥ 4) = P (X ≤ x) = e−x,

since the exponential distribution is memoryless.

4.18 We need to show f(x, y) is nonnegative and integrates to 1. f(x, y) ≥ 0, because the numerator
is nonnegative since g(x) ≥ 0, and the denominator is positive for all x > 0, y > 0. Changing
to polar coordinates, x = r cos θ and y = r sin θ, we obtain∫ ∞

0

∫ ∞

0

f(x, y)dxdy =
∫ π/2

0

∫ ∞

0

2g(r)
πr

rdrdθ =
2
π

∫ π/2

0

∫ ∞

0

g(r)drdθ =
2
π

∫ π/2

0

1dθ = 1.

4.19 a. Since (X1 −X2)
/√

2 ∼ n(0, 1), (X1 −X2)2
/

2 ∼ χ2
1 (see Example 2.1.9).

b. Make the transformation y1 = x1
x1+x2

, y2 = x1 + x2 then x1 = y1y2, x2 = y2(1 − y1) and
|J | = y2. Then

f(y1, y2) =
[

Γ(α1+α2)
Γ(α1)Γ(α2)

yα1−1
1 (1− y1)

α2−1

] [
1

Γ(α1+α2)
yα1+α2−1
2 e−y2

]
,

thus Y1 ∼ beta(α1, α2), Y2 ∼ gamma(α1 + α1, 1) and are independent.
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4.20 a. This transformation is not one-to-one because you cannot determine the sign of X2 from
Y1 and Y2. So partition the support of (X1, X2) into A0 = {−∞ < x1 < ∞, x2 = 0},
A1 = {−∞ < x1 < ∞, x2 > 0} and A2 = {−∞ < x1 < ∞, x2 < 0}. The support of (Y1, Y2)
is B = {0 < y1 < ∞,−1 < y2 < 1}. The inverse transformation from B to A1 is x1 = y2

√
y1

and x2 =
√

y1−y1y
2
2 with Jacobian

J1 =

∣∣∣∣∣∣
1
2

y2√
y1

√
y1

1
2

√
1−y2

2√
y1

y2
√

y1√
1−y2

2

∣∣∣∣∣∣ = 1
2
√

1− y2
2

.

The inverse transformation from B to A2 is x1 = y2
√

y1 and x2 = −
√

y1−y1y
2
2 with J2 =

−J1. From (4.3.6), fY1,Y 2
(y1, y2) is the sum of two terms, both of which are the same in this

case. Then

fY1,Y 2
(y1, y2) = 2

[
1

2πσ2
e−y1/(2σ2) 1

2
√

1−y2
2

]

=
1

2πσ2
e−y1/(2σ2) 1√

1−y2
2

, 0 < y1 < ∞,−1 < y2 < 1.

b. We see in the above expression that the joint pdf factors into a function of y1 and a function
of y2. So Y1 and Y2 are independent. Y1 is the square of the distance from (X1, X2) to
the origin. Y2 is the cosine of the angle between the positive x1-axis and the line from
(X1, X2) to the origin. So independence says the distance from the origin is independent of
the orientation (as measured by the angle).

4.21 Since R and θ are independent, the joint pdf of T = R2 and θ is

fT,θ(t, θ) =
1
4π

e−t/2, 0 < t < ∞, 0 < θ < 2π.

Make the transformation x =
√

t cos θ, y =
√

t sin θ. Then t = x2 + y2, θ = tan−1(y/x), and

J =
∣∣∣∣ 2x 2y

−y
x2+y2

−x
x2+y2

∣∣∣∣ = 2.

Therefore

fX,Y (x, y) =
2
4π

e−
1
2 (x2+y2), 0 < x2 + y2 < ∞, 0 < tan−1 y/x < 2π.

Thus,

fX,Y (x, y) =
1
2π

e−
1
2 (x2+y2) , −∞ < x, y < ∞.

So X and Y are independent standard normals.

4.23 a. Let y = v, x = u/y = u/v then

J =
∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ = ∣∣∣∣ 1
v − u

v2

0 1

∣∣∣∣ = 1
v
.

fU,V (u, v) =
Γ(α+β)
Γ(α)Γ(β)

Γ(α+β+γ)
Γ(α+β)Γ(γ)

(u

v

)α−1 (
1− u

v

)β−1

vα+β−1(1−v)γ−1 1
v
, 0 < u < v < 1.
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Then,

fU (u) =
Γ(α+β+γ)

Γ(α)Γ(β)Γ(γ)
uα−1

∫ 1

u

vβ−1(1− v)γ−1(
v−u

v
)β−1dv

=
Γ(α+β+γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1

∫ 1

0

yβ−1(1− y)γ−1dy

(
y =

v − u

1−u
, dy =

dv

1−u

)
=

Γ(α+β+γ)
Γ(α)Γ(β)Γ(γ)

uα−1(1− u)β+γ−1 Γ(β)Γ(γ)
Γ(β+γ)

=
Γ(α+β+γ)
Γ(α)Γ(β+γ)

uα−1(1− u)β+γ−1, 0 < u < 1.

Thus, U ∼ gamma(α, β + γ).
b. Let x =

√
uv, y =

√
u
v then

J =
∣∣∣∣ ∂x

∂u
∂x
∂v

∂y
∂u

∂x
∂v

∣∣∣∣ = ∣∣∣∣ 1
2v1/2u−1/2 1

2u1/2v−1/2

1
2v−1/2u−1/2 − 1

2u1/2v−3/2

∣∣∣∣ = 1
2v

.

fU,V (u, v) =
Γ(α + β + γ)
Γ(α)Γ(β)Γ(γ)

(
√

uv
α−1(1−

√
uv)β−1

(√
u

v

)α+β−1(
1−

√
u

v

)γ−1
1
2v

.

The set {0 < x < 1, 0 < y < 1} is mapped onto the set {0 < u < v < 1
u , 0 < u < 1}. Then,

fU (u)

=
∫ 1/u

u

fU,V (u, v)dv

=
Γ(α + β + γ)
Γ(α)Γ(β)Γ(γ)

uα−1(1−u)β+γ−1︸ ︷︷ ︸
∫ 1/u

u

(
1−

√
uv

1− u

)β−1
(

1−
√

u/v

1− u

)γ−1
(
√

u/v)β

2v(1− u)
dv.

Call it A

To simplify, let z =
√

u/v−u

1−u . Then v = u ⇒ z = 1, v = 1/u ⇒ z = 0 and dz = −
√

u/v

2(1−u)v dv.
Thus,

fU (u) = A

∫
zβ−1(1− z)γ−1dz ( kernel of beta(β, γ))

=
Γ(α+β+γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1− u)β+γ−1 Γ(β)Γ(γ)

Γ(β+γ)

=
Γ(α+β+γ)
Γ(α)Γ(β+γ)

uα−1(1− u)β+γ−1, 0 < u < 1.

That is, U ∼ beta(α, β + γ), as in a).
4.24 Let z1 = x + y, z2 = x

x+y , then x = z1z2, y = z1(1− z2) and

|J | =

∣∣∣∣∣ ∂x
∂z1

∂x
∂z2

∂y
∂z1

∂y
∂z2

∣∣∣∣∣ =
∣∣∣∣ z2 z1

1−z2 −z1

∣∣∣∣ = z1.

The set {x > 0, y > 0} is mapped onto the set {z1 > 0, 0 < z2 < 1}.

fZ1,Z2(z1, z2) =
1

Γ(r)
(z1z2)r−1e−z1z2 · 1

Γ(s)
(z1 − z1z2)s−1e−z1+z1z2z1

=
1

Γ(r+s)
zr+s−1
1 e−z1 · Γ(r+s)

Γ(r)Γ(s)
zr−1
2 (1− z2)s−1, 0 < z1, 0 < z2 < 1.
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fZ1,Z2
(z1, z2) can be factored into two densities. Therefore Z1 and Z2 are independent and

Z1 ∼ gamma(r + s, 1), Z2 ∼ beta(r, s).
4.25 For X and Z independent, and Y = X + Z, fXY (x, y) = fX(x)fZ(y − x). In Example 4.5.8,

fXY (x, y) = I(0,1)(x)
1
10

I(0,1/10)(y − x).

In Example 4.5.9, Y = X2 + Z and

fXY (x, y) = fX(x)fZ(y − x2) =
1
2
I(−1,1)(x)

1
10

I(0,1/10)(y − x2).

4.26 a.

P (Z ≤ z,W = 0) = P (min(X, Y ) ≤ z, Y ≤ X) = P (Y ≤ z, Y ≤ X)

=
∫ z

0

∫ ∞

y

1
λ

e−x/λ 1
µ

e−y/µdxdy

=
λ

µ+λ

(
1− exp

{
−
(

1
µ

+
1
λ

)
z

})
.

Similarly,

P (Z ≤ z,W=1) = P (min(X, Y ) ≤ z,X ≤ Y ) = P (X ≤ z,X ≤ Y )

=
∫ z

0

∫ ∞

x

1
λ

e−x/λ 1
µ

e−y/µdydx =
µ

µ+λ

(
1− exp

{
−
(

1
µ

+
1
λ

)
z

})
.

b.

P (W = 0) = P (Y ≤ X) =
∫ ∞

0

∫ ∞

y

1
λ

e−x/λ 1
µ

e−y/µdxdy =
λ

µ+λ
.

P (W = 1) = 1− P (W = 0) =
µ

µ+λ
.

P (Z ≤ z) = P (Z ≤ z,W = 0) + P (Z ≤ z,W = 1) = 1− exp
{
−
(

1
µ

+
1
λ

)
z

}
.

Therefore, P (Z ≤ z,W = i) = P (Z ≤ z)P (W = i), for i = 0, 1, z > 0. So Z and W are
independent.

4.27 From Theorem 4.2.14 we know U ∼ n(µ + γ, 2σ2) and V ∼ n(µ − γ, 2σ2). It remains to show
that they are independent. Proceed as in Exercise 4.24.

fXY (x, y) =
1

2πσ2
e−

1
2σ2 [(x−µ)2+(y−γ)2] (by independence, sofXY = fXfY )

Let u = x + y, v = x− y, then x = 1
2 (u + v), y = 1

2 (u− v) and

|J | =
∣∣∣∣ 1/2 1/2

1/2 −1/2

∣∣∣∣ = 1
2
.

The set {−∞ < x < ∞,−∞ < y < ∞} is mapped onto the set {−∞ < u < ∞,−∞ < v < ∞}.
Therefore

fUV (u, v) =
1

2πσ2
e
− 1

2σ2

[
(( u+v

2 )−µ)2
+(( u−v

2 )−γ)2
]
· 1
2

=
1

4πσ2
e
− 1

2σ2

[
2(u

2 )2−u(µ+γ)+
(µ+γ)2

2 +2( v
2 )2−v(µ−γ)+

(µ+γ)2

2

]
= g(u)

1
4πσ2

e
− 1

2(2σ2) (u− (µ + γ))2 · h(v)e−
1

2(2σ2) (v − (µ− γ))2 .

By the factorization theorem, U and V are independent.
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4.29 a. X
Y = R cos θ

R sin θ = cot θ. Let Z = cot θ. Let A1 = (0, π), g1(θ) = cot θ, g−1
1 (z) = cot−1 z,

A2 = (π, 2π), g2(θ) = cot θ, g−1
2 (z) = π + cot−1 z. By Theorem 2.1.8

fZ(z) =
1
2π
| −1
1 + z2

|+ 1
2π
| −1
1 + z2

| = 1
π

1
1 + z2

, −∞ < z < ∞.

b. XY = R2 cos θ sin θ then 2XY = R22 cos θ sin θ = R2 sin 2θ. Therefore 2XY
R = R sin 2θ.

Since R =
√

X2 + Y 2 then 2XY√
X2+Y 2 = R sin 2θ. Thus 2XY√

X2+Y 2 is distributed as sin 2θ which
is distributed as sin θ. To see this let sin θ ∼ fsin θ. For the function sin 2θ the values of
the function sin θ are repeated over each of the 2 intervals (0, π) and (π, 2π) . Therefore
the distribution in each of these intervals is the distribution of sin θ. The probability of
choosing between each one of these intervals is 1

2 . Thus f2 sin θ = 1
2fsin θ + 1

2fsin θ = fsin θ.
Therefore 2XY√

X2+Y 2 has the same distribution as Y = sin θ. In addition, 2XY√
X2+Y 2 has the

same distribution as X = cos θ since sin θ has the same distribution as cos θ. To see this let
consider the distribution of W = cos θ and V = sin θ where θ ∼ uniform(0, 2π). To derive
the distribution of W = cos θ let A1 = (0, π), g1(θ) = cos θ, g−1

1 (w) = cos−1 w, A2 = (π, 2π),
g2(θ) = cos θ, g−1

2 (w) = 2π − cos−1 w. By Theorem 2.1.8

fW (w) =
1
2π
| −1√

1− w2
|+ 1

2π
| 1√

1− w2
| = 1

π

1√
1− w2

,−1 ≤ w ≤ 1.

To derive the distribution of V = sin θ, first consider the interval (π
2 , 3π

2 ). Let g1(θ) = sin θ,
4g−1

1 (v) = π − sin−1 v, then

fV (v) =
1
π

1√
1− v2

, −1 ≤ v ≤ 1.

Second, consider the set {(0, π
2 )∪ ( 3π

2 , 2π)}, for which the function sin θ has the same values
as it does in the interval (−π

2 , π
2 ). Therefore the distribution of V in {(0, π

2 ) ∪ ( 3π
2 , 2π)} is

the same as the distribution of V in (−π
2 , π

2 ) which is 1
π

1√
1−v2 , −1 ≤ v ≤ 1. On (0, 2π) each

of the sets (π
2 , 3π

2 ), {(0, π
2 ) ∪ ( 3π

2 , 2π)} has probability 1
2 of being chosen. Therefore

fV (v) =
1
2

1
π

1√
1− v2

+
1
2

1
π

1√
1− v2

=
1
π

1√
1− v2

, −1 ≤ v ≤ 1.

Thus W and V has the same distribution.
Let X and Y be iid n(0, 1). Then X2 + Y 2 ∼ χ2

2 is a positive random variable. Therefore
with X = R cos θ and Y = R sin θ, R =

√
X2 + Y 2 is a positive random variable and

θ = tan−1( Y
X ) ∼ uniform(0, 1). Thus 2XY√

X2+Y 2 ∼ X ∼ n(0, 1).
4.30 a.

EY = E {E(Y |X)} = EX =
1
2
.

VarY = Var (E(Y |X)) + E (Var(Y |X)) = VarX + EX2 =
1
12

+
1
3

=
5
12

.

EXY = E[E(XY |X)] = E[XE(Y |X)] = EX2 =
1
3

Cov(X, Y ) = EXY − EXEY =
1
3
−
(

1
2

)2

=
1
12

.

b. The quick proof is to note that the distribution of Y |X = x is n(1, 1), hence is independent
of X. The bivariate transformation t = y/x, u = x will also show that the joint density
factors.
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4.31 a.

EY = E{E(Y |X)} = EnX =
n

2
.

VarY = Var (E(Y |X)) + E (Var(Y |X)) = Var(nX) + EnX(1−X) =
n2

12
+

n

6
.

b.

P (Y = y, X ≤ x) =
(

n

y

)
xy(1− x)n−y, y = 0, 1, . . . , n, 0 < x < 1.

c.

P (y = y) =
(

n

y

)
Γ(y + 1)Γ(n− y + 1)

Γ(n + 2)
.

4.32 a. The pmf of Y , for y = 0, 1, . . ., is

fY (y) =
∫ ∞

0

fY (y|λ)fΛ(λ)dλ =
∫ ∞

0

λye−λ

y!
1

Γ(α)βα
λα−1e−λ/βdλ

=
1

y!Γ(α)βα

∫ ∞

0

λ(y+α)−1 exp

 −λ(
β

1+β

)
 dλ

=
1

y!Γ(α)βα
Γ(y + α)

(
β

1+β

)y+α

.

If α is a positive integer,

fY (y) =
(

y + α− 1
y

)(
β

1+β

)y ( 1
1+β

)α

,

the negative binomial(α, 1/(1 + β)) pmf. Then

EY = E(E(Y |Λ)) = EΛ = αβ

VarY = Var(E(Y |Λ)) + E(Var(Y |Λ)) = VarΛ + EΛ = αβ2 + αβ = αβ(β + 1).

b. For y = 0, 1, . . ., we have

P (Y = y|λ) =
∞∑

n=y

P (Y = y|N = n, λ)P (N = n|λ)

=
∞∑

n=y

(
n

y

)
py(1− p)n−y e−λλn

n!

=
∞∑

n=y

1
y!(n− y)!

(
p

1−p

)y

[(1− p)λ]ne−λ

= e−λ
∞∑

m=0

1
y!m!

(
p

1−p

)y

[(1− p)λ]m+y (let m = n− y)

=
e−λ

y!

(
p

1−p

)y

[(1− p)λ]y
[ ∞∑

m=0

[(1−p)λ]m

m!

]
= e−λ(pλ)ye(1−p)λ

=
(pλ)y

e−pλ

y!
,
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the Poisson(pλ) pmf. Thus Y |Λ ∼ Poisson(pλ). Now calculations like those in a) yield the
pmf of Y , for y = 0, 1, . . ., is

fY (y) =
1

Γ(α)y!(pβ)α Γ(y + α)
(

pβ

1+pβ

)y+α

.

Again, if α is a positive integer, Y ∼ negative binomial(α, 1/(1 + pβ)).
4.33 We can show that H has a negative binomial distribution by computing the mgf of H.

EeHt = EE
(
eHt
∣∣N) = EE

(
e(X1+···+XN )t

∣∣∣N) = E
{[

E
(
eX1t

∣∣N)]N} ,

because, by Theorem 4.6.7, the mgf of a sum of independent random variables is equal to the
product of the individual mgfs. Now,

EeX1t =
∞∑

x1=1

ex1t −1
logp

(1− p)x1

x1
=
−1
logp

∞∑
x1=1

(et(1− p))x1

x1
=
−1
logp

(
− log

{
1−et(1− p)

})
.

Then

E
(

log {1−et(1− p)}
logp

)N

=
∞∑

n=0

(
log {1−et(1− p)}

logp

)n
e−λλn

n!
(since N ∼ Poisson)

= e−λe
λlog(1−et(1−p))

logp

∞∑
n=0

e
−λlog(1−et(1−p))

logp

(
λlog(1−et(1−p))

logp

)n

n!
.

The sum equals 1. It is the sum of a Poisson
(
[λlog(1− e

t(1− p))]/[logp]
)

pmf. Therefore,

E(eHt) = e−λ
[
elog(1−et(1−p))

]λ/ log p

=
(
elogp

)−λ/ logp
(

1
1−et(1− p)

)−λ/ log p

=
(

p

1−et(1− p)

)−λ/ logp

.

This is the mgf of a negative binomial(r, p), with r = −λ/ log p, if r is an integer.
4.34 a.

P (Y = y) =
∫ 1

0

P (Y = y|p)fp(p)dp

=
∫ 1

0

(
n

y

)
py(1− p)n−y 1

B(α, β)
pα−1(1− p)β−1dp

=
(

n

y

)
Γ(α+β)
Γ(α)Γ(β)

∫ 1

0

py+α−1(1− p)n+β−y−1dp

=
(

n

y

)
Γ(α+β)
Γ(α)Γ(β)

Γ(y+α)Γ(n+β−y)
Γ(α+n+β)

, y = 0, 1, . . . , n.

b.

P (X = x) =
∫ 1

0

P (X = x|p)fP (p)dp

=
∫ 1

0

(
r + x− 1

x

)
pr(1− p)x Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp



Second Edition 4-11

=
(

r + x− 1
x

)
Γ(α + β)
Γ(α)Γ(β)

∫ 1

0

p(r+α)−1(1− p)(x+β)−1dp

=
(

r + x− 1
x

)
Γ(α + β)
Γ(α)Γ(β)

Γ(r + α)Γ(x + β)
Γ(r + x + α + β)

x = 0, 1, . . .

Therefore,

EX = E[E(X|P )] = E
[
r(1− P )

P

]
=

rβ

α− 1
,

since

E
[
1− P

P

]
=

∫ 1

0

(
1− P

P

)
Γ(α + β)
Γ(α)Γ(β)

pα−1(1− p)β−1dp

=
Γ(α + β)
Γ(α)Γ(β)

∫ 1

0

p(α−1)−1(1− p)(β+1)−1dp =
Γ(α + β)
Γ(α)Γ(β)

Γ(α− 1)Γ(β + 1)
Γ(α + β)

=
β

α− 1
.

Var(X) = E(Var(X|P )) + Var(E(X|P )) = E
[
r(1− P )

P 2

]
+ Var

(
r(1− P )

P

)
= r

(β + 1)(α + β)
α(α− 1)

+ r2 β(α + β − 1)
(α− 1)2(α− 2)

,

since

E
[
1− P

P 2

]
=

∫ 1

0

Γ(α + β)
Γ(α)Γ(β)

p(α−2)−1(1− p)(β+1)−1dp =
Γ(α + β)
Γ(α)Γ(β)

Γ(α− 2)Γ(β + 1)
Γ(α + β − 1)

=
(β + 1)(α + β)

α(α− 1)

and

Var
(

1− P

P

)
= E

[(
1− P

P

)2
]
−
(

E
[
1− P

P

])2

=
β(β + 1)

(α− 2)(α− 1)
− (

β

α− 1
)2

=
β(α + β − 1)

(α− 1)2(α− 2)
,

where

E

[(
1− P

P

)2
]

=
∫ 1

0

Γ(α + β)
Γ(α)Γ(β)

p(α−2)−1(1− p)(β+2)−1dp

=
Γ(α + β)
Γ(α)Γ(β)

Γ(α− 2)Γ(β + 2)
Γ(α− 2 + β + 2)

=
β(β + 1)

(α− 2)(α− 1)
.

4.35 a. Var(X) = E(Var(X|P )) + Var(E(X|P )). Therefore,

Var(X) = E[nP (1− P )] + Var(nP )

= n
αβ

(α + β)(α + β + 1)
+ n2VarP

= n
αβ(α + β + 1− 1)

(α + β2)(α + β + 1)
+ n2VarP
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=
nαβ(α + β + 1)

(α + β2)(α + β + 1)
− nαβ

(α + β2)(α + β + 1)
+ n2VarP

= n
α

α + β

β

α + β
− nVarP + n2VarP

= nEP (1− EP ) + n(n− 1)VarP.

b. Var(Y ) = E(Var(Y |Λ)) + Var(E(Y |Λ)) = EΛ + Var(Λ) = µ + 1
αµ2 since EΛ = µ = αβ and

Var(Λ) = αβ2 = (αβ)2

α = µ2

α . The “extra-Poisson” variation is 1
αµ2.

4.37 a. Let Y =
∑

Xi.

P (Y = k) = P (Y = k,
1
2

< c =
1
2
(1 + p) < 1)

=
∫ 1

0

(Y = k|c =
1
2
(1 + p))P (P = p)dp

=
∫ 1

0

(
n

k

)
[
1
2
(1 + p)]k[1− 1

2
(1 + p)]n−k Γ(a + b)

Γ(a)Γ(b)
pa−1(1− p)b−1dp

=
∫ 1

0

(
n

k

)
(1 + p)k

2k

(1− p)n−k

2n−k

Γ(a + b)
Γ(a)Γ(b)

pa−1(1− p)b−1dp

=
(

n

k

)
Γ(a + b)

2nΓ(a)Γ(b)

k∑
j=0

∫ 1

0

pk+a−1(1− p)n−k+b−1dp

=
(

n

k

)
Γ(a + b)

2nΓ(a)Γ(b)

k∑
j=0

(
k

j

)
Γ(k + a)Γ(n− k + b)

Γ(n + a + b)

=
k∑

j=0

[((
k
j

)
2n

)((
n

k

)
Γ(a + b)
Γ(a)Γ(b)

Γ(k + a)Γ(n− k + b)
Γ(n + a + b)

)]
.

A mixture of beta-binomial.
b.

EY = E(E(Y |c)) = E[nc] = E
[
n

(
1
2
(1 + p)

)]
=

n

2

(
1 +

a

a + b

)
.

Using the results in Exercise 4.35(a),

Var(Y ) = nEC(1− EC) + n(n− 1)VarC.

Therefore,

Var(Y ) = nE
[
1
2
(1 + P )

](
1− E

[
1
2
(1 + P )

])
+ n(n− 1)Var

(
1
2
(1 + P )

)
=

n

4
(1 + EP )(1− EP ) +

n(n− 1)
4

VarP

=
n

4

(
1−

(
a

a + b

)2
)

+
n(n− 1)

4
ab

(a + b)2(a + b + 1)
.

4.38 a. Make the transformation u = x
ν −

x
λ , du = −x

ν2 dν, ν
λ−ν = x

λu . Then∫ λ

0

1
ν

e−x/ν 1
Γ(r)Γ(1− r)

νr−1

(λ−ν)r dν
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=
1

Γ(r)Γ(1− r)

∫ ∞

0

1
x

( x

λu

)r

e−(u+x/λ)du

=
xr−1e−x/λ

λrΓ(r)Γ(1− r)

∫ ∞

0

(
1
u

)r

e−udu =
xr−1e−x/λ

Γ(r)λr
,

since the integral is equal to Γ(1− r) if r < 1.
b. Use the transformation t = ν/λ to get∫ λ

0

pλ(ν)dν =
1

Γ(r)Γ(1− r)

∫ λ

0

νr−1(λ− ν)−rdν =
1

Γ(r)Γ(1− r)

∫ 1

0

tr−1(1− t)−rdt = 1,

since this is a beta(r, 1− r).
c.

d

dx
log f(x) =

d

dx

[
log

1
Γ(r)λr

+(r − 1) log x− x/λ

]
=

r−1
x

− 1
λ

> 0

for some x, if r > 1. But,

d

dx

[
log
∫ ∞

0

e−x/ν

ν
qλ(ν)dν

]
=
−
∫∞
0

1
ν2 e−x/νqλ(ν)dν∫∞

0
1
ν e−x/νqλ(ν)dν

< 0 ∀x.

4.39 a. Without loss of generality lets assume that i < j. From the discussion in the text we have
that

f(x1, . . . , xj−1, xj+1, . . . , xn|xj)

=
(m− xj)!

x1!· · · · ·xj−1!·xj+1!· · · · ·xn!

×
(

p1

1− pj

)x1

· · · · ·
(

pj−1

1− pj

)xj−1
(

pj+1

1− pj

)xj+1

· · · · ·
(

pn

1− pj

)xn

.

Then,

f(xi|xj)

=
∑

(x1,...,xi−1,xi+1,...,xj−1,xj+1,...,xn)

f(x1, . . . , xj−1, xj+1, . . . , xn|xj)

=
∑

(xk 6=xi,xj)

(m− xj)!
x1!· · · · ·xj−1!·xj+1!· · · · ·xn!

× (
p1

1− pj
)x1 · · · · ·( pj−1

1− pj
)xj−1(

pj+1

1− pj
)xj+1 · · · · ·( pn

1− pj
)xn

×
(m− xi − xj)!

(
1− pi

1−pj

)m−xi−xj

(m− xi − xj)!
(
1− pi

1−pj

)m−xi−xj

=
(m− xj)!

xi!(m− xi − xj)!
(

pi

1− pj
)xi

(
1− pi

1− pj

)m−xi−xj

×
∑

(xk 6=xi,xj)

(m− xi − xj)!
x1!· · · · ·xi−1!, xi+1!· · · · ·xj−1!, xj+1!· · · · ·xn!

× (
p1

1− pj − pi
)x1 · · · · ·( pi−1

1− pj − pi
)xi−1(

pi+1

1− pj − pi
)xi+1
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× (
pj−1

1− pj − pi
)xj−1(

pj+1

1− pj − pi
)xj+1 · · · · ·( pn

1− pj − pi
)xn

=
(m− xj)!

xi!(m− xi − xj)!
(

pi

1− pj
)xi

(
1− pi

1− pj

)m−xi−xj

.

Thus Xi|Xj = xj ∼ binomial(m− xj ,
pi

1−pj
).

b.

f(xi, xj) = f(xi|xj)f(xj) =
m!

xi!xj !(m− xj − xi)!
pxi

i p
xj

j (1− pj − pi)m−xj−xi .

Using this result it can be shown that Xi + Xj ∼ binomial(m, pi + pj). Therefore,

Var(Xi + Xj) = m(pi + pj)(1− pi − pj).

By Theorem 4.5.6 Var(Xi + Xj) = Var(Xi) + Var(Xj) + 2Cov(Xi, Xj). Therefore,

Cov(Xi, Xj) =
1
2
[m(pi+pj)(1−pi−pj)−mpi(1−pi)−mpi(1−pi)] =

1
2
(−2mpipj) = −mpipj .

4.41 Let a be a constant. Cov(a,X) = E(aX)− EaEX = aEX − aEX = 0.
4.42

ρXY,Y =
Cov(XY, Y )

σXY σY
=

E(XY
2)−µXY µY

σXY σY
=

EXEY 2−µXµY µY

σXY σY
,

where the last step follows from the independence of X and Y. Now compute

σ2
XY = E(XY )2 − [E(XY )]2 = EX2EY 2 − (EX)2(EY )2

= (σ2
X + µ2

X)(σ2
Y + µ2

Y )− µ2
Xµ2

Y = σ2
Xσ2

Y + σ2
Xµ2

Y + σ2
Y µ2

X .

Therefore,

ρXY,Y =
µX(σ2

Y +µ2
Y )−µXµ2

Y

(σ2
Xσ2

Y +σ2
Xµ2

Y +σ2
Y µ2

X)1/2
σY

=
µXσY

(µ2
Xσ2

Y +µ2
Y σ2

X+σ2
Xσ2

Y )1/2
.

4.43

Cov(X1 + X2, X2 + X3) = E(X1 + X2)(X2 + X3)− E(X1 + X2)E(X2 + X3)
= (4µ2 + σ2)− 4µ2 = σ2

Cov(X1+X2)(X1−X2) = E(X1 + X2)(X1 −X2) = EX2
1 −X2

2 = 0.

4.44 Let µi = E(Xi). Then

Var

(
n∑

i=1

Xi

)
= Var (X1 + X2 + · · ·+ Xn)

= E [(X1 + X2 + · · ·+ Xn)− (µ1 + µ2 + · · ·+ µn)]2

= E [(X1−µ1) + (X2−µ2) + · · ·+ (Xn−µn)]2

=
n∑

i=1

E(Xi − µi)2 + 2
∑

1≤i<j≤n

E(Xi − µi)(Xj − µj)

=
n∑

i=1

VarXi + 2
∑

1≤i<j≤n

Cov(Xi, Xj).
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4.45 a. We will compute the marginal of X. The calculation for Y is similar. Start with

fXY (x, y) =
1

2πσXσY

√
1−ρ2

× exp

[
− 1

2(1−ρ2)

{(
x−µX

σX

)2

−2ρ

(
x−µX

σX

)(
y−µY

σY

)
+
(

y−µY

σY

)2
}]

and compute

fX(x) =
∫ ∞

−∞
fXY (x, y)dy =

∫ ∞

−∞

1

2πσXσY

√
1−ρ2

e
− 1

2(1−ρ2) (ω2−2ρωz+z2)σY dz,

where we make the substitution z = y−µY

σY
, dy = σY dz, ω = x−µX

σX
. Now the part of the

exponent involving ω2 can be removed from the integral, and we complete the square in z
to get

fX(x) =
e
− ω2

2(1−ρ2)

2πσX

√
1−ρ2

∫ ∞

−∞
e
− 1

2(1−ρ2) [(z
2−2ρωz+ρ2ω2)−ρ2ω2]

dz

=
e−ω2/2(1−ρ2)eρ2ω2/2(1−ρ2)

2πσX

√
1−ρ2

∫ ∞

−∞
e
− 1

2(1−ρ2)
(z−ρω)2

dz.

The integrand is the kernel of normal pdf with σ2 = (1 − ρ2), and µ = ρω, so it integrates
to
√

2π
√

1−ρ2. Also note that e−ω2/2(1−ρ2)eρ2ω2/2(1−ρ2) = e−ω2/2. Thus,

fX(x) =
e−ω2/2

2πσX

√
1−ρ2

√
2π
√

1−ρ2 =
1√

2πσX

e
− 1

2

(
x−µX

σX

)2
,

the pdf of n(µX , σ2
X).

b.

fY |X(y|x)

=

1

2πσXσY

√
1−ρ2

e
− 1

2(1−ρ2)

[(
x−µX

σX

)2
−2ρ
(

x−µX
σX

)(
y−µY

σY

)
+
(

y−µY
σY

)2]
1√

2πσX
e
− 1

2σ2
X

(x−µX)2

=
1

√
2πσY

√
1−ρ2

e
− 1

2(1−ρ2)

[(
x−µX

σX

)2
−(1−ρ2)

(
x−µX

σX

)2
−2ρ
(

x−µX
σX

)(
y−µY

σY

)
+
(

y−µY
σY

)2]

=
1

√
2πσY

√
1−ρ2

e
− 1

2(1−ρ2)

[
ρ2
(

x−µX
σX

)2
−2ρ
(

x−µX
σX

)(
y−µY

σY

)
+
(

y−µY
σY

)2]

=
1

√
2πσY

√
1−ρ2

e
− 1

2σ2
Y

√
(1−ρ2

[
(y−µY )−

(
ρ

σY
σX

(x−µX)
)]2

,

which is the pdf of n
(
(µY − ρ(σY /σX)(x− µX) , σY

√
1− ρ2

)
.

c. The mean is easy to check,

E(aX + bY ) = aEX + bEY = aµX + bµY ,
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as is the variance,

Var(aX + bY ) = a2VarX + b2VarY + 2abCov(X, Y ) = a2σ2
X + b2σ2

Y + 2abρσXσY .

To show that aX + bY is normal we have to do a bivariate transform. One possibility is
U = aX + bY , V = Y , then get fU,V (u, v) and show that fU (u) is normal. We will do this in
the standard case. Make the indicated transformation and write x = 1

a (u − bv), y = v and
obtain

|J | =
∣∣∣∣ 1/a −b/a

0 1

∣∣∣∣ = 1
a
.

Then
fUV (u, v) =

1

2πa
√

1−ρ2
e
− 1

2(1−ρ2)

[
[ 1

a (u−bv)]2−2 ρ
a (u−bv)+v2

]
.

Now factor the exponent to get a square in u. The result is

− 1
2(1−ρ2)

[
b2 + 2ρab + a2

a2

] [
u2

b2 + 2ρab + a2
−2
(

b + aρ

b2 + 2ρab + a2

)
uv + v2

]
.

Note that this is joint bivariate normal form since µU = µV = 0, σ2
v = 1, σ2

u = a2 + b2 +2abρ
and

ρ∗ =
Cov(U, V )

σUσV
=

E(aXY + bY 2)
σUσV

=
aρ + b√

a2 + b2 + abρ
,

thus

(1− ρ∗2) = 1− a2ρ2 + abρ + b2

a2 + b2 + 2abρ
=

(1−ρ2)a2

a2 + b2 + 2abρ
=

(1− ρ2)a2

σ2
u

where a
√

1−ρ2 = σU

√
1−ρ∗2. We can then write

fUV (u, v) =
1

2πσUσV

√
1−ρ∗2

exp

[
− 1

2
√

1−ρ∗2

(
u2

σ2
U

−2ρ
uv

σUσV
+

v2

σ2
V

)]
,

which is in the exact form of a bivariate normal distribution. Thus, by part a), U is normal.
4.46 a.

EX = aXEZ1 + bXEZ2 + EcX = aX0 + bX0 + cX = cX

VarX = a2
XVarZ1 + b2

XVarZ2 + VarcX = a2
X + b2

X

EY = aY 0 + bY 0 + cY = cY

VarY = a2
Y VarZ1 + b2

Y VarZ2 + VarcY = a2
Y + b2

Y

Cov(X,Y ) = EXY − EX · EY

= E[(aXaY Z2
1 + bXbY Z2

2 + cXcY + aXbY Z1Z2 + aXcY Z1 + bXaY Z2Z1

+ bXcY Z2 + cXaY Z1 + cXbY Z2)− cXcY ]
= aXaY + bXbY ,

since EZ2
1 = EZ2

2 = 1, and expectations of other terms are all zero.
b. Simply plug the expressions for aX , bX , etc. into the equalities in a) and simplify.
c. Let D = aXbY − aY bX = −

√
1−ρ2σXσY and solve for Z1 and Z2,

Z1 =
bY (X−cX)− bX(Y−cY )

D
=

σY (X−µX)+σX(Y−µY )√
2(1+ρ)σXσY

Z2 =
σY (X−µX)+σX(Y−µY )√

2(1−ρ)σXσY

.
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Then the Jacobian is

J =

(
∂z1
∂x1

∂z1
∂y

∂z2
∂x

∂z2
∂y

)
=
(

bY

D
−bX

D−aY

D
aX

D

)
=

aXbY

D2
− aY bX

D2
=

1
D

=
1

−
√

1−ρ2σXσY

,

and we have that

fX,Y (x, y) =
1√
2π

e
− 1

2
(σY (x−µX )+σX (y−µY ))2

2(1+ρ)σ2
X

σ2
Y

1√
2π

e
− 1

2
(σY (x−µX )+σX (y−µY ))2

2(1−ρ)σ2
X

σ2
Y

1√
1−ρ2σXσY

= (2πσXσY

√
1− ρ2)−1 exp

(
− 1

2(1− ρ2)

(
x− µX

σX

)2
)

− 2ρ
x− µX

σX

(
y − µY

σY

)
+
(

y − µY

σY

)2

, −∞ < x < ∞, −∞ < y < ∞,

a bivariate normal pdf.

d. Another solution is

aX = ρσXbX =
√

(1− ρ2)σX

aY = σY bY = 0
cX = µX

cY = µY .

There are an infinite number of solutions. Write bX = ±
√

σ2
X−a2

X ,bY = ±
√

σ2
Y−a2

Y , and
substitute bX ,bY into aXaY = ρσXσY . We get

aXaY +
(
±
√

σ2
X−a2

X

)(
±
√

σ2
Y−a2

Y

)
= ρσXσY .

Square both sides and simplify to get

(1− ρ2)σ2
Xσ2

Y = σ2
Xa2

Y − 2ρσXσY aXaY + σ2
Y a2

X .

This is an ellipse for ρ 6= ±1, a line for ρ = ±1. In either case there are an infinite number
of points satisfying the equations.

4.47 a. By definition of Z, for z < 0,

P (Z ≤ z) = P (X ≤ z and XY > 0) + P (−X ≤ z and XY < 0)
= P (X ≤ z and Y < 0) + P (X ≥ −z and Y < 0) (since z < 0)
= P (X ≤ z)P (Y < 0) + P (X ≥ −z)P (Y < 0) (independence)
= P (X ≤ z)P (Y < 0) + P (X ≤ z)P (Y > 0) (symmetry of Xand Y )
= P (X ≤ z)(P (Y < 0) + P (Y > 0))
= P (X ≤ z).

By a similar argument, for z > 0, we get P (Z > z) = P (X > z), and hence, P (Z ≤ z) =
P (X ≤ z). Thus, Z ∼ X ∼ n(0, 1).

b. By definition of Z, Z > 0 ⇔ either (i)X < 0 and Y > 0 or (ii)X > 0 and Y > 0. So Z and
Y always have the same sign, hence they cannot be bivariate normal.
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4.49 a.

fX(x) =
∫

(af1(x)g1(y) + (1− a)f2(x)g2(y))dy

= af1(x)
∫

g1(y)dy + (1− a)f2(x)
∫

g2(y)dy

= af1(x) + (1− a)f2(x).

fY (y) =
∫

(af1(x)g1(y) + (1− a)f2(x)g2(y))dx

= ag1(y)
∫

f1(x)dx + (1− a)g2(y)
∫

f2(x)dx

= ag1(y) + (1− a)g2(y).

b. (⇒) If X and Y are independent then f(x, y) = fX(x)fY (y). Then,

f(x, y)− fX(x)fY (y)
= af1(x)g1(y) + (1− a)f2(x)g2(y)

− [af1(x) + (1− a)f2(x)][ag1(y) + (1− a)g2(y)]
= a(1− a)[f1(x)g1(y)− f1(x)g2(y)− f2(x)g1(y) + f2(x)g2(y)]
= a(1− a)[f1(x)− f2(x)][g1(y)− g2(y)]
= 0.

Thus [f1(x)− f2(x)][g1(y)− g2(y)] = 0 since 0 < a < 1.
(⇐) if [f1(x)− f2(x)][g1(y)− g2(y)] = 0 then

f1(x)g1(y) + f2(x)g2(y) = f1(x)g2(y) + f2(x)g1(y).

Therefore

fX(x)fY (y)
= a2f1(x)g1(y) + a(1− a)f1(x)g2(y) + a(1− a)f2(x)g1(y) + (1− a)2f2(x)g2(y)
= a2f1(x)g1(y) + a(1− a)[f1(x)g2(y) + f2(x)g1(y)] + (1− a)2f2(x)g2(y)
= a2f1(x)g1(y) + a(1− a)[f1(x)g1(y) + f2(x)g2(y)] + (1− a)2f2(x)g2(y)
= af1(x)g1(y) + (1− a)f2(x)g2(y) = f(x, y).

Thus X and Y are independent.

c.

Cov(X, Y ) = aµ1ξ1 + (1− a)µ2ξ2 − [aµ1 + (1− a)µ2][aξ1 + (1− a)ξ2]
= a(1− a)[µ1ξ1 − µ1ξ2 − µ2ξ1 + µ2ξ2]
= a(1− a)[µ1 − µ2][ξ1 − ξ2].

To construct dependent uncorrelated random variables let (X, Y ) ∼ af1(x)g1(y) + (1 −
a)f2(x)g2(y) where f1, f2, g1, g2 are such that f1 − f2 6= 0 and g1 − g2 6= 0 with µ1 = µ2 or
ξ1 = ξ2.

d. (i) f1 ∼ binomial(n, p), f2 ∼ binomial(n, p), g1 ∼ binomial(n, p), g2 ∼ binomial(n, 1− p).
(ii) f1 ∼ binomial(n, p1), f2 ∼ binomial(n, p2), g1 ∼ binomial(n, p1), g2 ∼ binomial(n, p2).
(iii) f1 ∼ binomial(n1,

p
n1

), f2 ∼ binomial(n2,
p

n2
), g1 ∼ binomial(n1, p), g2 ∼ binomial(n2, p).



Second Edition 4-19

4.51 a.

P (X/Y ≤ t) =
{

1
2 t t > 1
1
2 + (1− t) t ≤ 1

P (XY ≤ t) = t− t log t 0 < t < 1.

b.

P (XY/Z ≤ t) =
∫ 1

0

P (XY ≤ zt)dz

=

{∫ 1

0

[
zt
2 + (1− zt)

]
dz if t ≤ 1∫ 1

t

0

[
zt
2 + (1− zt)

]
dz +

∫ 1
1
t

1
2ztdz if t ≤ 1

=
{

1− t/4 if t ≤ 1
t− 1

4t + 1
2t log t if t > 1 .

4.53

P (Real Roots) = P (B2 > 4AC)
= P (2 log B > log 4 + log A + log C)
= P (−2 log B ≤ − log 4− log A− log C)
= P (−2 log B ≤ − log 4 + (− log A− log C)) .

Let X = −2 log B, Y = − log A− log C. Then X ∼ exponential(2), Y ∼ gamma(2, 1), indepen-
dent, and

P (Real Roots) = P (X < − log 4 + Y )

=
∫ ∞

log 4

P (X < − log 4 + y)fY (y)dy

=
∫ ∞

log 4

∫ − log 4+y

0

1
2
e−x/2dxye−ydy

=
∫ ∞

log 4

(
1− e−

1
2 log 4e−y/2

)
ye−ydy.

Integration-by-parts will show that
∫∞

a
ye−y/b = b(a + b)e−a/b and hence

P (Real Roots) =
1
4
(1 + log 4)− 1

24

(
2
3

+ log 4
)

= .511.

4.54 Let Y =
∏n

i=1 Xi. Then P (Y ≤ y) = P (
∏n

i=1 Xi ≤ y) = P (
∑n

i=1− log Xi ≥ − log y). Now,
− log Xi ∼ exponential(1) = gamma(1, 1). By Example 4.6.8,

∑n
i=1− log Xi ∼ gamma(n, 1).

Therefore,

P (Y ≤ y) =
∫ ∞

− log y

1
Γ(n)

zn−1e−zdz,

and

fY (y) =
d

dy

∫ ∞

− log y

1
Γ(n)

zn−1e−zdz

= − 1
Γ(n)

(− log y)n−1e−(− log y) d

dy
(− log y)

=
1

Γ(n)
(− log y)n−1, 0 < y < 1.
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4.55 Let X1, X2, X3 be independent exponential(λ) random variables, and let Y = max(X1, X2, X3),
the lifetime of the system. Then

P (Y ≤ y) = P (max(X1, X2, X3) ≤ y)
= P (X1 ≤ y and X2 ≤ y and X3 ≤ y)
= P (X1 ≤ y)P (X2 ≤ y)P (X3 ≤ y).

by the independence of X1, X2 and X3. Now each probability is P (X1 ≤ y) =
∫ y

0
1
λe−x/λdx =

1− e−y/λ, so

P (Y ≤ y) =
(
1−e−y/λ

)3

, 0 < y < ∞,

and the pdf is

fY (y) =
{

3
(
1− e−y/λ

)2
e−y/λ y > 0

0 y ≤ 0.

4.57 a.

A1 = [
1
n

n∑
x=1

x1
i ]

1
1 =

1
n

n∑
x=1

xi, the arithmetic mean.

A−1 = [
1
n

n∑
x=1

x−1
i ]−1 =

1
1
n ( 1

x1
+ · · ·+ 1

xn
)
, the harmonic mean.

lim
r→0

log Ar = lim
r→0

log[
1
n

n∑
x=1

xr
i ]

1
r = lim

r→0

1
r

log[
1
n

n∑
x=1

xr
i ] = lim

r→0

1
n

∑n
i=1 rxr−1

i
1
n

∑n
i=1 xr

i

= lim
r→0

1
n

∑n
i=1 xr

i log xi

1
n

∑n
i=1 xr

i

=
1
n

n∑
i=1

log xi =
1
n

log(
n∏

i=1

xi).

Thus A0 = limr→0 Ar = exp( 1
n log(

∏n
i=1 xi)) = (

∏n
i=1 xi)

1
n , the geometric mean. The term

rxr−1
i = xr

i log xi since rxr−1
i = d

dr xr
i = d

dr exp(r log xi) = exp(r log xi) log xi = xr
i log xi.

b. (i) if log Ar is nondecreasing then for r ≤ r′ log Ar ≤ log Ar′ , then elog Ar ≤ elog Ar′ . Therefore
Ar ≤ Ar′ . Thus Ar is nondecreasing in r.

(ii) d
dr log Ar = −1

r2 log( 1
n

∑n
x=1 xr

i ) + 1
r

1
n

∑n

i=1
rxr−1

i

1
n

∑n

i=1
xr

i

= 1
r2

[
r
∑n

i=1
xr

i log xi∑n

x=1
xr

i

− log( 1
n

∑n
x=1 xr

i )
]
,

where we use the identity for rxr−1
i showed in a).

(iii)

r
∑n

i=1 xr
i log xi∑n

x=1 xr
i

− log(
1
n

n∑
x=1

xr
i )

= log(n) +
r
∑n

i=1 xr
i log xi∑n

x=1 xr
i

− log(
n∑

x=1

xr
i )

= log(n) +
n∑

i=1

[
xr

i∑n
i=1 xr

i

r log xi −
xr

i∑n
i=1 xr

i

log(
n∑

x=1

xr
i )

]

= log(n) +
n∑

i=1

[
xr

i∑n
i=1 xr

i

(r log xi − log(
n∑

x=1

xr
i ))

]

= log(n)−
n∑

i=1

xr
i∑n

i=1 xr
i

log(
∑n

x=1 xr
i

xr
i

) = log(n)−
n∑

i=1

ai log(
1
ai

).
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We need to prove that log(n) ≥
∑n

i=1 ai log( 1
ai

). Using Jensen inequality we have that
E log( 1

a ) =
∑n

i=1 ai log( 1
ai

) ≤ log(E 1
a ) = log(

∑n
i=1 ai

1
ai

) = log(n) which establish the
result.

4.59 Assume that EX = 0, EY = 0, and EZ = 0. This can be done without loss of generality
because we could work with the quantities X −EX, etc. By iterating the expectation we have

Cov(X, Y ) = EXY = E[E(XY |Z)].

Adding and subtracting E(X|Z)E(Y |Z) gives

Cov(X, Y ) = E[E(XY |Z)− E(X|Z)E(Y |Z)] + E[E(X|Z)E(Y |Z)].

Since E[E(X|Z)] = EX = 0, the second term above is Cov[E(X|Z)E(Y |Z)]. For the first term
write

E[E(XY |Z)− E(X|Z)E(Y |Z)] = E [E {XY − E(X|Z)E(Y |Z)|Z}]

where we have brought E(X|Z) and E(Y |Z) inside the conditional expectation. This can now
be recognized as ECov(X, Y |Z), establishing the identity.

4.61 a. To find the distribution of f(X1|Z), let U = X2−1
X1

and V = X1. Then x2 = h1(u, v) = uv+1,
x1 = h2(u, v) = v. Therefore

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))|J | = e−(uv+1)e−vv,

and

fU (u) =
∫ ∞

0

ve−(uv+1)e−vdv =
e−1

(u + 1)2
.

Thus V |U = 0 has distribution ve−v. The distribution of X1|X2 is e−x1 since X1 and X2

are independent.
b. The following Mathematica code will draw the picture; the solid lines are B1 and the dashed

lines are B2. Note that the solid lines increase with x1, while the dashed lines are constant.
Thus B1 is informative, as the range of X2 changes.

e = 1/10;
Plot[{-e*x1 + 1, e*x1 + 1, 1 - e, 1 + e}, {x1, 0, 5},
PlotStyle -> {Dashing[{}], Dashing[{}],Dashing[{0.15, 0.05}],
Dashing[{0.15, 0.05}]}]

c.

P (X1 ≤ x|B1) = P (V ≤ v∗| − ε < U < ε) =

∫ v∗

0

∫ ε

−ε
ve−(uv+1)e−vdudv∫∞

0

∫ ε

−ε
ve−(uv+1)e−vdudv

=
e−1

[
e−v∗(1+ε)

1+ε − 1
1+ε −

e−v∗(1−ε)

1−ε + 1
1−ε

]
e−1

[
− 1

1+ε + 1
1−ε

] .

Thus limε→0 P (X1 ≤ x|B1) = 1− e−v∗ − v∗e−v∗ =
∫ v∗

0
ve−vdv = P (V ≤ v∗|U = 0).

P (X1 ≤ x|B2) =

∫ x

0

∫ 1+ε

0
e−(x1+x2)dx2dx1∫ 1+ε

0
e−x2dx2

=
e−(x+1+ε) − e−(1+ε) − e−x + 1

1− e−(1+ε)
.

Thus limε→0 P (X1 ≤ x|B2) = 1− ex =
∫ x

0
ex1dx1 = P (X1 ≤ x|X2 = 1).
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4.63 Since X = eZ and g(z) = ez is convex, by Jensen’s Inequality EX = Eg(Z) ≥ g(EZ) = e0 = 1.
In fact, there is equality in Jensen’s Inequality if and only if there is an interval I with P (Z ∈
I) = 1 and g(z) is linear on I. But ez is linear on an interval only if the interval is a single
point. So EX > 1, unless P (Z = EZ = 0) = 1.

4.64 a. Let a and b be real numbers. Then,

|a + b|2 = (a + b)(a + b) = a2 + 2ab + b2 ≤ |a|2 + 2|ab|+ |b|2 = (|a|+ |b|)2.

Take the square root of both sides to get |a + b| ≤ |a|+ |b|.
b. |X + Y | ≤ |X|+ |Y | ⇒ E|X + Y | ≤ E(|X|+ |Y |) = E|X|+ E|Y |.

4.65 Without loss of generality let us assume that Eg(X) = Eh(X) = 0. For part (a)

E(g(X)h(X)) =
∫ ∞

−∞
g(x)h(x)fX(x)dx

=
∫
{x:h(x)≤0}

g(x)h(x)fX(x)dx +
∫
{x:h(x)≥0}

g(x)h(x)fX(x)dx

≤ g(x0)
∫
{x:h(x)≤0}

h(x)fX(x)dx + g(x0)
∫
{x:h(x)≥0}

h(x)fX(x)dx

=
∫ ∞

−∞
h(x)fX(x)dx

= g(x0)Eh(X) = 0.

where x0 is the number such that h(x0) = 0. Note that g(x0) is a maximum in {x : h(x) ≤ 0}
and a minimum in {x : h(x) ≥ 0} since g(x) is nondecreasing. For part (b) where g(x) and
h(x) are both nondecreasing

E(g(X)h(X)) =
∫ ∞

−∞
g(x)h(x)fX(x)dx

=
∫
{x:h(x)≤0}

g(x)h(x)fX(x)dx +
∫
{x:h(x)≥0}

g(x)h(x)fX(x)dx

≥ g(x0)
∫
{x:h(x)≤0}

h(x)fX(x)dx + g(x0)
∫
{x:h(x)≥0}

h(x)fX(x)dx

=
∫ ∞

−∞
h(x)fX(x)dx

= g(x0)Eh(X) = 0.

The case when g(x) and h(x) are both nonincreasing can be proved similarly.



Chapter 5

Properties of a Random Sample

5.1 Let X = # color blind people in a sample of size n. Then X ∼ binomial(n, p), where p = .01.
The probability that a sample contains a color blind person is P (X > 0) = 1 − P (X = 0),
where P (X = 0) =

(
n
0

)
(.01)0(.99)n = .99n. Thus,

P (X > 0) = 1− .99n > .95 ⇔ n > log(.05)/ log(.99) ≈ 299.

5.3 Note that Yi ∼ Bernoulli with pi = P (Xi ≥ µ) = 1 − F (µ) for each i. Since the Yi’s are iid
Bernoulli,

∑n
i=1 Yi ∼ binomial(n, p = 1− F (µ)).

5.5 Let Y = X1 + · · ·+ Xn. Then X̄ = (1/n)Y , a scale transformation. Therefore the pdf of X̄ is
fX̄(x) = 1

1/nfY

(
x

1/n

)
= nfY (nx).

5.6 a. For Z = X − Y , set W = X. Then Y = W − Z, X = W , and |J | =
∣∣∣∣ 0 1
−1 1

∣∣∣∣ = 1. Then

fZ,W (z, w) = fX(w)fY (w − z) · 1, thus fZ(z) =
∫∞
−∞ fX(w)fY (w − z)dw.

b. For Z = XY , set W = X. Then Y = Z/W and |J | =
∣∣∣∣ 0 1

1/w −z/w
2

∣∣∣∣ = −1/w. Then

fZ,W (z, w) = fX(w)fY (z/w) · |−1/w|, thus fZ(z) =
∫∞
−∞ |−1/w| fX(w)fY (z/w)dw.

c. For Z = X/Y , set W = X. Then Y=W/Z and |J | =
∣∣∣∣ 0 1
−w/z

2 1/z

∣∣∣∣ = w/z2. Then

fZ,W (z, w) = fX(w)fY (w/z) · |w/z2|, thus fZ(z) =
∫∞
−∞ |w/z2|fX(w)fY (w/z)dw.

5.7 It is, perhaps, easiest to recover the constants by doing the integrations. We have∫ ∞

−∞

B

1+
(

ω
σ

)2 dω = σπB,

∫ ∞

−∞

D

1+
(

ω−z
τ

)2 dω = τπD

and ∫ ∞

−∞

[
Aω

1+
(

ω
σ

)2− Cω

1+
(

ω−z
τ

)2
]

dω

=
∫ ∞

−∞

[
Aω

1+
(

ω
σ

)2− C(ω−z)

1+
(

ω−z
τ

)2
]

dω − Cz

∫ ∞

−∞

1

1+
(

ω−z
τ

)2 dω

= A
σ2

2
log
[
1+
(ω

σ

)2
]
− Cτ2

2
log

[
1+
(

ω−z

τ

)2
]∣∣∣∣∣
∞

−∞

− τπCz.

The integral is finite and equal to zero if A = M 2
σ2 , C = M 2

τ2 for some constant M . Hence

fZ(z) =
1

π2στ

[
σπB−τπD−2πMz

τ

]
=

1
π(σ+τ)

1
1+ (z/(σ+τ))2

,

if B = τ
σ+τ , D = σ

σ+τ) , M = −στ2

2z(σ+τ)
1

1+( z
σ+τ )2 .
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5.8 a.

1
2n(n− 1)

n∑
i=1

n∑
j=1

(Xi−Xj)
2

=
1

2n(n− 1)

n∑
i=1

n∑
j=1

(Xi − X̄ + X̄ −Xj)2

=
1

2n(n− 1)

n∑
i=1

n∑
j=1

[
(Xi−X̄)2−2(Xi−X̄)(Xj−X̄) + (Xj−X̄)2

]

=
1

2n(n− 1)


n∑

i=1

n(Xi − X̄)2 − 2
n∑

i=1

(Xi − X̄)
n∑

j=1

(Xj−X̄)︸ ︷︷ ︸
=0

+n
n∑

j=1

(Xj − X̄)2


=

n

2n(n− 1)

n∑
i=1

(Xi − X̄)2 +
n

2n(n− 1)

n∑
j=1

(Xj − X̄)2

=
1

n− 1

n∑
i=1

(Xi − X̄)2 = S2.

b. Although all of the calculations here are straightforward, there is a tedious amount of book-
keeping needed. It seems that induction is the easiest route. (Note: Without loss of generality
we can assume θ1 = 0, so EXi = 0.)

(i) Prove the equation for n = 4. We have S2 = 1
24

∑4
i=1

∑4
j=1(Xi −Xj)2, and to calculate

Var(S2) we need to calculate E(S2)2 and E(S2). The latter expectation is straightforward
and we get E(S2) = 24θ2. The expected value E(S2)2 = E(S4) contains 256(= 44) terms
of which 112(= 4× 16 + 4× 16− 42) are zero, whenever i = j. Of the remaining terms,
• 24 are of the form E(Xi −Xj)4 = 2(θ4 + 3θ2

2)
• 96 are of the form E(Xi −Xj)2(Xi −Xk)2 = θ4 + 3θ2

2

• 24 are of the form E(Xi −Xj)2(Xk −X`)2 = 4θ2
2

Thus,

Var(S2) =
1

242

[
24× 2(θ4 + 3θ2

2) + 96(θ4 + 3θ2
2) + 24× 4θ4 − (24θ2)

2
]

=
1
4

[
θ4 −

1
3
θ2
2

]
.

(ii) Assume that the formula holds for n, and establish it for n+1. (Let Sn denote the variance
based on n observations.) Straightforward algebra will establish

S2
n+1 =

1
2n(n + 1)

 n∑
i=1

n∑
j=1

(Xi−Xj)
2 + 2

n∑
k=1

(Xk−Xn+1)
2


def’n=

1
2n(n + 1)

[A + 2B]

where

Var(A) = 4n(n− 1)2
[
θ4 −

n− 3
n− 1

θ2
2

]
(induction hypothesis)

Var(B) = n(n + 1)θ4 − n(n− 3)θ2
2 (Xk and Xn+1 are independent)

Cov(A,B) = 2n(n− 1)
[
θ4 − θ2

2

]
(some minor bookkeeping needed)
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Hence,

Var(S2
n+1) =

1
4n2(n + 1)2

[Var(A) + 4Var(B) + 4Cov(A,B)] =
1

n + 1

[
θ4 −

n− 2
n

θ2
2

]
,

establishing the induction and verifying the result.

c. Again assume that θ1 = 0. Then

Cov(X̄, S2) =
1

2n2(n− 1)
E


n∑

k=1

Xk

n∑
i=1

n∑
j=1

(Xi−Xj)
2

.

The double sum over i and j has n(n − 1) nonzero terms. For each of these, the entire
expectation is nonzero for only two values of k (when k matches either i or j). Thus

Cov(X̄, S2) =
2n(n− 1)
2n2(n− 1)

EXi(Xi −Xj)2 =
1
n

θ3,

and X̄ and S2 are uncorrelated if θ3 = 0.

5.9 To establish the Lagrange Identity consider the case when n = 2,

(a1b2 − a2b1)2 = a2
1b

2
2 + a2

2b
2
1 − 2a1b2a2b1

= a2
1b

2
2 + a2

2b
2
1 − 2a1b2a2b1 + a2

1b
2
1 + a2

2b
2
2 − a2

1b
2
1 − a2

2b
2
2

= (a2
1 + a2

2)(b
2
1 + b2

2)− (a1b1 + a2b2)2.

Assume that is true for n, then(
n+1∑
i=1

a2
i

)(
n+1∑
i=1

b2
i

)
−

(
n+1∑
i=1

aibi

)2

=

(
n∑

i=1

a2
i + a2

n+1

)(
n∑

i=1

b2
i + b2

n+1

)
−

(
n∑

i=1

aibi + an+1bn+1

)2

=

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
−

(
n∑

i=1

aibi

)2

+

(
n∑

i=1

a2
i

)
b2
n+1 + a2

n+1

(
n∑

i=1

b2
i

)
− 2

(
n∑

i=1

aibi

)
an+1bn+1

=
n−1∑
i=1

n∑
j=i+1

(aibj − ajbi)2 +
n∑

i=1

(aibn+1 − an+1bi)2

=
n∑

i=1

n+1∑
j=i+1

(aibj − ajbi)2.

If all the points lie on a straight line then Y − µy = c(X − µx), for some constant c 6= 0. Let
bi = Y −µy and ai = (X −µx), then bi = cai. Therefore

∑n
i=1

∑n+1
j=i+1(aibj − ajbi)2 = 0. Thus

the correlation coefficient is equal to 1.

5.10 a.

θ1 = EXi = µ
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θ2 = E(Xi − µ)2 = σ2

θ3 = E(Xi−µ)3

= E(Xi − µ)2(Xi − µ) (Stein’s lemma: Eg(X)(X − θ) = σ2Eg′(X))
= 2σ2E(Xi − µ) = 0

θ4 = E(Xi − µ)4 = E(Xi − µ)3(Xi − µ) = 3σ2E(Xi − µ)2 = 3σ4.

b. VarS2 = 1
n (θ4 − n−3

n−1θ2
2) = 1

n (3σ4 − n−3
n−1σ4) = 2σ4

n−1 .
c. Use the fact that (n− 1)S2/σ2 ∼ χ2

n−1 and Varχ2
n−1 = 2(n− 1) to get

Var

(
(n− 1)S2

σ2

)
= 2(n− 1)

which implies ( (n−1)2

σ4 )VarS2 = 2(n− 1) and hence

VarS2 =
2(n− 1)

(n− 1)2/σ4
=

2σ4

n− 1
.

Remark: Another approach to b), not using the χ2 distribution, is to use linear model theory.
For any matrix A Var(X ′AX) = 2µ2

2trA
2 + 4µ2θ

′Aθ, where µ2 is σ2, θ = EX = µ1. Write
S2 = 1

n−1

∑n
i=1(Xi − X̄) = 1

n−1X ′(I − J̄n)X.Where

I − J̄n =


1− 1

n − 1
n · · · − 1

n

− 1
n 1− 1

n

...
...

. . .
...

− 1
n · · · · · · 1− 1

n

 .

Notice that trA2 = trA = n− 1, Aθ = 0. So

VarS2 =
1

(n− 1)2
Var(X ′AX) =

1
(n− 1)2

(
2σ4(n− 1) + 0

)
=

2σ4

n− 1
.

5.11 Let g(s) = s2. Since g(·) is a convex function, we know from Jensen’s inequality that Eg(S) ≥
g(ES), which implies σ2 = ES2 ≥ (ES)2. Taking square roots, σ ≥ ES. From the proof of
Jensen’s Inequality, it is clear that, in fact, the inequality will be strict unless there is an
interval I such that g is linear on I and P (X ∈ I) = 1. Since s2 is “linear” only on single points,
we have ET 2 > (ET )2 for any random variable T , unless P (T = ET ) = 1.

5.13

E
(
c
√

S2
)

= c

√
σ2

n− 1
E

(√
S2(n− 1)

σ2

)

= c

√
σ2

n− 1

∫ ∞

0

√
q

1
Γ
(

n−1
2

)
2(n−1)/2

q(
n−1

2 )−1e−q/2dq,

Since
√

S2(n− 1)/σ2 is the square root of a χ2 random variable. Now adjust the integrand to
be another χ2 pdf and get

E
(
c
√

S2
)

= c

√
σ2

n− 1
· Γ(n/2)2n/2

Γ((n− 1)/2)2((n−1)/2

∫ ∞

0

1
Γ(n/2)2n/2

q(n−1)/2 − 1
2
e−q/2dq︸ ︷︷ ︸

=1 since χ2
n pdf

.

So c =
Γ(n−1

2 )
√

n−1
√

2Γ(n
2 ) gives E(cS) = σ.
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5.15 a.

X̄n+1 =
∑n+1

i=1 Xi

n + 1
=

Xn+1 +
∑n

i=1 Xi

n + 1
=

Xn+1 + nX̄n

n + 1
.

b.

nS2
n+1 =

n

(n + 1)− 1

n+1∑
i=1

(
Xi − X̄n+1

)2
=

n+1∑
i=1

(
Xi−

Xn+1 + nX̄n

n + 1

)2

(use (a))

=
n+1∑
i=1

(
Xi−

Xn+1

n + 1
− nX̄n

n + 1

)2

=
n+1∑
i=1

[(
Xi − X̄n

)
−
(

Xn+1

n + 1
− X̄n

n + 1

)]2 (
±X̄n

)
=

n+1∑
i=1

[(
Xi−X̄n

)2−2
(
Xi−X̄n

)(Xn+1−X̄n

n + 1

)
+

1
(n + 1)2

(
Xn+1−X̄n

)2]

=
n∑

i=1

(
Xi − X̄n

)2 +
(
Xn+1 − X̄n

)2 − 2
(Xn+1−X̄n)2

n + 1
+

n + 1
(n + 1)2

(
Xn+1 − X̄n

)2
(

since
n∑
1

(Xi − X̄n) = 0

)
= (n− 1)S2

n +
n

n + 1
(
Xn+1 − X̄n

)2
.

5.16 a.
∑3

i=1

(
Xi−i

i

)2 ∼ χ2
3

b.
(

Xi−1
i

)/√√√√∑3
i=2

(
Xi−i

i

)2/
2 ∼ t2

c. Square the random variable in part b).
5.17 a. Let U ∼ χ2

p and V ∼ χ2
q, independent. Their joint pdf is

1
Γ
(

p
2

)
Γ
(

q
2

)
2(p+q)/2

u
p
2−1v

q
2−1e

−(u+v)
2 .

From Definition 5.3.6, the random variable X = (U/p)/(V/q) has an F distribution, so we
make the transformation x = (u/p)/(v/q) and y = u + v. (Of course, many choices of y will
do, but this one makes calculations easy. The choice is prompted by the exponential term
in the pdf.) Solving for u and v yields

u =
p
q xy

1 + q
px

, v =
y

1 + q
px

, and |J | =
q
py(

1 + q
px
)2 .

We then substitute into fU,V (u, v) to obtain

fX,Y (x, y) =
1

Γ
(

p
2

)
Γ
(

q
2

)
2(p+q)/2

(
p
q xy

1 + q
px

) p
2−1(

y

1 + q
px

) q
2−1

e
−y
2

q
py(

1 + q
px
)2 .
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Note that the pdf factors, showing that X and Y are independent, and we can read off the
pdfs of each: X has the F distribution and Y is χ2

p+q. If we integrate out y to recover the
proper constant, we get the F pdf

fX(x) =
Γ
(

p+q
2

)
Γ
(

p
2

)
Γ
(

q
2

)(q

p

)p/2
xp/2−1(

1 + q
px
) p+q

2

.

b. Since Fp,q = χ2
p/p

χ2
q/q , let U ∼ χ2

p, V ∼ χ2
q and U and V are independent. Then we have

EFp,q = E
(

U/p

V/q

)
= E

(
U

p

)
E
( q

V

)
(by independence)

=
p

p
qE
(

1
V

)
(EU = p).

Then

E
(

1
V

)
=

∫ ∞

0

1
v

1
Γ
(

q
2

)
2q/2

v
q
2−1e−

v
2 dv =

1
Γ
(

q
2

)
2q/2

∫ ∞

0

v
q−2
2 −1e−

v
2 dv

=
1

Γ
(

q
2

)
2q/2

Γ
(

q − 2
2

)
2(q−2)/2 =

Γ
(

q−2
2

)
2(q−2)/2

Γ
(

q−2
2

) (
q−2
2

)
2q/2

=
1

q − 2
.

Hence, EFp,q = p
p

q
q−2 = q

q−2 , if q > 2. To calculate the variance, first calculate

E(F 2
p,q) = E

(
U2

p2

q2

V 2

)
=

q2

p2
E(U2)E

(
1

V 2

)
.

Now
E(U2) = Var(U) + (EU)2 = 2p + p2

and

E
(

1
V 2

)
=
∫ ∞

0

1
v2

1
Γ (q/2) 2q/2

v(q/2)−1e−v/2dv =
1

(q − 2)(q − 4)
.

Therefore,

EF 2
p,q =

q2

p2
p(2 + p)

1
(q − 2)(q − 4)

=
q2

p

(p + 2)
(q − 2)(q − 4)

,

and, hence

Var(Fp,q) =
q2(p + 2)

p(q − 2)(q − 4)
− q2

(q − 2)2
= 2

(
q

q − 2

)2(
q + p− 2
p(q − 4)

)
, q > 4.

c. Write X = U/p
V/p then 1

X = V/q
U/p ∼ Fq,p, since U ∼ χ2

p, V ∼ χ2
q and U and V are independent.

d. Let Y = (p/q)X
1+(p/q)X = pX

q+pX , so X = qY
p(1−Y ) and

∣∣∣dx
dy

∣∣∣ = q
p (1− y)−2. Thus, Y has pdf

fY (y) =
Γ
(

q+p
2

)
Γ
(

p
2

)
Γ
(

q
2

) (p

q

) p
2

(
qy

p(1−y)

) p−2
2

(
1 + p

q
qy

p(1−y)

) p+q
2

q

p(1− y)2

=
[
B
(p

2
,
q

2

)]−1

y
p
2−1(1− y)

q
2−1 ∼ beta

(p

2
,
q

2

)
.
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5.18 If X ∼ tp, then X = Z/
√

V/p where Z ∼ n(0, 1), V ∼ χ2
p and Z and V are independent.

a. EX = EZ/
√

V/p = (EZ)(E1/
√

V/p) = 0, since EZ = 0, as long as the other expectation is
finite. This is so if p > 1. From part b), X2 ∼ F1,p. Thus VarX = EX2 = p/(p− 2), if p > 2
(from Exercise 5.17b).

b. X2 = Z2/(V/p). Z2 ∼ χ2
1, so the ratio is distributed F1,p.

c. The pdf of X is

fX(x) =

[
Γ(p+1

2 )
Γ(p/2)

√
pπ

]
1

(1 + x2/p)(p+1)/2
.

Denote the quantity in square brackets by Cp. From an extension of Stirling’s formula
(Exercise 1.28) we have

lim
p→∞

Cp = lim
p→∞

√
2π
(

p−1
2

) p−1
2 + 1

2 e−
p−1
2

√
2π
(

p−2
2

) p−2
2 + 1

2 e−
p−2
2

1
√

pπ

=
e−1/2

√
π

lim
p→∞

(
p−1
2

) p−1
2 + 1

2(
p−2
2

) p−2
2 + 1

2 √p
=

e−1/2

√
π

e1/2

√
2

,

by an application of Lemma 2.3.14. Applying the lemma again shows that for each x

lim
p→∞

(
1+x2/p

)(p+1)/2
= ex2/2,

establishing the result.
d. As the random variable F1,p is the square of a tp, we conjecture that it would converge to

the square of a n(0, 1) random variable, a χ2
1.

e. The random variable qFq,p can be thought of as the sum of q random variables, each a tp
squared. Thus, by all of the above, we expect it to converge to a χ2

q random variable as
p →∞.

5.19 a. χ2
p ∼ χ2

q + χ2
d where χ2

q and χ2
d are independent χ2 random variables with q and d = p − q

degrees of freedom. Since χ2
d is a positive random variable, for any a > 0,

P (χp > a) = P (χ2
q + χ2

d > a) > P (χ2
q > a).

b. For k1 > k2, k1Fk1,ν ∼ (U + V )/(W/ν), where U , V and W are independent and U ∼ χ2
k2

,
V ∼ χ2

k1−k2
and W ∼ χ2

ν . For any a > 0, because V/(W/ν) is a positive random variable,
we have

P (k1Fk1,ν > a) = P ((U + V )/(W/ν) > a) > P (U/(W/ν) > a) = P (k2Fk2,ν > a).

c. α = P (Fk,ν > Fα,k,ν) = P (kFk,ν > kFα,k,ν). So, kFα,k,ν is the α cutoff point for the random
variable kFk,ν . Because kFk,ν is stochastically larger that (k−1)Fk−1,ν , the α cutoff for kFk,ν

is larger than the α cutoff for (k − 1)Fk−1,ν , that is kFα,k,ν > (k − 1)Fα,k−1,ν .
5.20 a. The given integral is∫ ∞

0

1√
2π

e−t2x/2ν
√

x
1

Γ(ν/2)2ν/2
(νx)(ν/2)−1e−νx/2dx

=
1√
2π

νν/2

Γ(ν/2)2ν/2

∫ ∞

0

e−t2x/2x((ν+1)/2)−1e−νx/2dx
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=
1√
2π

νν/2

Γ(ν/2)2ν/2

∫ ∞

0

x((ν+1)/2)−1e−(ν+t2)x/2dx

(
integrand is kernel of

gamma((ν+1)/2, 2/(ν+t2)

)

=
1√
2π

νν/2

Γ(ν/2)2ν/2
Γ((ν + 1)/2)

(
2

ν+t2

)(ν+1)/2

=
1√
νπ

Γ((ν+1)/2)
Γ(ν/2)

1

(1 + t
2
/ν)(ν+1)/2

,

the pdf of a tν distribution.
b. Differentiate both sides with respect to t to obtain

νfF (νt) =
∫ ∞

0

yf1(ty)fν(y)dy,

where fF is the F pdf. Now write out the two chi-squared pdfs and collect terms to get

νfF (νt) =
t−1/2

Γ(1/2)Γ(ν/2)2(ν+1)/2

∫ ∞

0

y(ν−1)/2e−(1+t)y/2dy

=
t−1/2

Γ(1/2)Γ(ν/2)2(ν+1)/2

Γ(ν+1
2 )2(ν+1)/2

(1 + t)(ν+1)/2
.

Now define y = νt to get

fF (y) =
Γ(ν+1

2 )
νΓ(1/2)Γ(ν/2)

(y/ν)−1/2

(1 + y/ν)(ν+1)/2
,

the pdf of an F1,ν .
c. Again differentiate both sides with respect to t, write out the chi-squared pdfs, and collect

terms to obtain

(ν/m)fF ((ν/m)t) =
t−m/2

Γ(m/2)Γ(ν/2)2(ν+m)/2

∫ ∞

0

y(m+ν−2)/2e−(1+t)y/2dy.

Now, as before, integrate the gamma kernel, collect terms, and define y = (ν/m)t to get

fF (y) =
Γ(ν+m

2 )
Γ(m/2)Γ(ν/2)

(m

ν

)m/2 ym/2−1

(1 + (m/ν)y)(ν+m)/2
,

the pdf of an Fm,ν .
5.21 Let m denote the median. Then, for general n we have

P (max(X1, . . . , Xn) > m) = 1− P (Xi ≤ m for i = 1, 2, . . . , n)

= 1− [P (X1 ≤ m)]n = 1−
(

1
2

)n

.

5.22 Calculating the cdf of Z2, we obtain

FZ2(z) = P ((min(X, Y ))2 ≤ z) = P (−z ≤ min(X, Y ) ≤
√

z)
= P (min(X, Y ) ≤

√
z)− P (min(X, Y ) ≤ −

√
z)

= [1− P (min(X, Y ) >
√

z)] − [1− P (min(X, Y ) > −
√

z)]
= P (min(X, Y ) > −

√
z)− P (min(X, Y ) >

√
z)

= P (X > −
√

z)P (Y > −
√

z)− P (X >
√

z)P (Y >
√

z),
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where we use the independence of X and Y . Since X and Y are identically distributed, P (X >
a) = P (Y > a) = 1− FX(a), so

FZ2(z) = (1− FX(−
√

z))2 − (1− FX(
√

z))2 = 1− 2FX(−
√

z),

since 1− FX(
√

z) = FX(−
√

z). Differentiating and substituting gives

fZ2(z) =
d

dz
FZ2(z) = fX(−

√
z)

1√
z

=
1√
2π

e−z/2z−1/2,

the pdf of a χ2
1 random variable. Alternatively,

P (Z2 ≤ z) = P
(
[min(X, Y )]2 ≤ z

)
= P (−

√
z ≤ min(X, Y ) ≤

√
z)

= P (−
√

z ≤ X ≤
√

z,X ≤ Y ) + P (−
√

z ≤ Y ≤
√

z, Y ≤ X)
= P (−

√
z ≤ X ≤

√
z|X ≤ Y )P (X ≤ Y )

+P (−
√

z ≤ Y ≤
√

z|Y ≤ X)P (Y ≤ X)

=
1
2
P (−

√
z ≤ X ≤

√
z) +

1
2
P (−

√
z ≤ Y ≤

√
z),

using the facts that X and Y are independent, and P (Y ≤ X) = P (X ≤ Y ) = 1
2 . Moreover,

since X and Y are identically distributed

P (Z2 ≤ z) = P (−
√

z ≤ X ≤
√

z)

and

fZ2(z) =
d

dz
P (−

√
z ≤ X ≤

√
z) =

1√
2π

(e−z/2 1
2
z−1/2 + e−z/2 1

2
z−1/2)

=
1√
2π

z−1/2e−z/2,

the pdf of a χ2
1.

5.23

P (Z > z) =
∞∑

x=1

P (Z > z|x)P (X = x) =
∞∑

x=1

P (U1 > z, . . . , Ux > z|x)P (X = x)

=
∞∑

x=1

x∏
i=1

P (Ui > z)P (X = x) (by independence of the Ui’s)

=
∞∑

x=1

P (Ui > z)xP (X = x) =
∞∑

x=1

(1− z)x 1
(e− 1)x!

=
1

(e− 1)

∞∑
x=1

(1− z)x

x!
=

e1−z − 1
e− 1

0 < z < 1.

5.24 Use fX(x) = 1/θ, FX(x) = x/θ, 0 < x < θ. Let Y = X(n), Z = X(1). Then, from Theorem
5.4.6,

fZ,Y (z, y) =
n!

0!(n− 2)!0!
1
θ

1
θ

(z

θ

)0
(

y − z

θ

)n−2 (
1−y

θ

)0

=
n(n− 1)

θn
(y−z)n−2, 0 < z < y < θ.
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Now let W = Z/Y , Q = Y . Then Y = Q, Z = WQ, and |J | = q. Therefore

fW,Q(w, q) =
n(n− 1)

θn
(q − wq)n−2q =

n(n− 1)
θn

(1− w)n−2qn−1, 0 < w < 1, 0 < q < θ.

The joint pdf factors into functions of w and q, and, hence, W and Q are independent.
5.25 The joint pdf of X(1), . . . , X(n) is

f(u1, . . . , un) =
n!an

θan
ua−1

1 · · ·ua−1
n , 0 < u1 < · · · < un < θ.

Make the one-to-one transformation to Y1 = X(1)/X(2), . . . , Yn−1 = X(n−1)/X(n), Yn = X(n).
The Jacobian is J = y2y

2
3 · · · yn−1

n . So the joint pdf of Y1, . . . , Yn is

f(y1, . . . , yn) =
n!an

θan
(y1 · · · yn)a−1(y2 · · · yn)a−1 · · · (yn)a−1(y2y

2
3 · · · yn−1

n )

=
n!an

θan
ya−1
1 y2a−1

2 · · · yna−1
n , 0 < yi < 1; i = 1, . . . , n− 1, 0 < yn < θ.

We see that f(y1, . . . , yn) factors so Y1, . . . , Yn are mutually independent. To get the pdf of
Y1, integrate out the other variables and obtain that fY1(y1) = c1y

a−1
1 , 0 < y1 < 1, for some

constant c1. To have this pdf integrate to 1, it must be that c1 = a. Thus fY1(y1) = aya−1
1 ,

0 < y1 < 1. Similarly, for i = 2, . . . , n − 1, we obtain fYi
(yi) = iayia−1

i , 0 < yi < 1. From
Theorem 5.4.4, the pdf of Yn is fYn(yn) = na

θna yna−1
n , 0 < yn < θ. It can be checked that the

product of these marginal pdfs is the joint pdf given above.
5.27 a. fX(i)|X(j)

(u|v) = fX(i),X(j)
(u, v)/fX(j)(v). Consider two cases, depending on which of i or

j is greater. Using the formulas from Theorems 5.4.4 and 5.4.6, and after cancellation, we
obtain the following.

(i) If i < j,

fX(i)|X(j)
(u|v) =

(j − 1)!
(i− 1)!(j − 1− i)!

fX(u)F i−1
X (u)[FX(v)− FX(u)]j−i−1F 1−j

X (v)

=
(j − 1)!

(i− 1)!(j − 1− i)!
fX(u)
FX(v)

[
FX(u)
FX(v)

]i−1 [
1−FX(u)

FX(v)

]j−i−1

, u < v.

Note this interpretation. This is the pdf of the ith order statistic from a sample of size j−1,
from a population with pdf given by the truncated distribution, f(u) = fX(u)/FX(v),
u < v.

(ii) If j < i and u > v,

fX(i)|X(j)
(u|v)

=
(n− j)!

(n− 1)!(i− 1− j)!
fX(u) [1−FX(u)]n−i [FX(u)− FX(v)]i−1−j [1−FX(v)]j−n

=
(n− j)!

(i− j − 1)!(n− i)!
fX(u)

1−FX(v)

[
FX(u)− FX(v)

1−FX(v)

]i−j−1 [
1−

FX(u)− FX(v)
1−FX(v)

]n−i

.

This is the pdf of the (i−j)th order statistic from a sample of size n−j, from a population
with pdf given by the truncated distribution, f(u) = fX(u)/(1− FX(v)), u > v.

b. From Example 5.4.7,

fV |R(v|r) =
n(n− 1)rn−2

/a
n

n(n− 1)rn−2(a− r)/a
n =

1
a− r

, r/2 < v < a− r/2.
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5.29 Let Xi = weight of ith booklet in package. The Xis are iid with EXi = 1 and VarXi = .052.
We want to approximate P

(∑100
i=1 Xi > 100.4

)
= P

(∑100
i=1 Xi/100 > 1.004

)
= P (X̄ > 1.004).

By the CLT, P (X̄ > 1.004) ≈ P (Z > (1.004− 1)/(.05/10)) = P (Z > .8) = .2119.
5.30 From the CLT we have, approximately, X̄1 ∼ n(µ, σ2/n), X̄2 ∼ n(µ, σ2/n). Since X̄1 and X̄2

are independent, X̄1 − X̄2 ∼ n(0, 2σ2/n). Thus, we want

.99 ≈ P
(∣∣X̄1−X̄2

∣∣ < σ/5
)

= P

(
−σ/5

σ/
√

n/2
<

X̄1−X̄2

σ/
√

n/2
<

σ/5
σ/
√

n/2

)

≈ P

(
−1

5

√
n

2
< Z <

1
5

√
n

2

)
,

where Z ∼ n(0, 1). Thus we need P (Z ≥
√

n/5(
√

2)) ≈ .005. From Table 1,
√

n/5
√

2 = 2.576,
which implies n = 50(2.576)2 ≈ 332.

5.31 We know that σ2
X̄

= 9/100. Use Chebyshev’s Inequality to get

P
(
−3k/10 < X̄−µ < 3k/10

)
≥ 1− 1/k2.

We need 1− 1/k2 ≥ .9 which implies k ≥
√

10 = 3.16 and 3k/10 = .9487. Thus

P (−.9487 < X̄ − µ < .9487) ≥ .9

by Chebychev’s Inequality. Using the CLT, X̄ is approximately n
(
µ, σ2

X̄

)
with σX̄ =

√
.09 = .3

and (X̄ − µ)/.3 ∼ n(0, 1). Thus

.9 = P

(
−1.645 <

X̄−µ

.3
< 1.645

)
= P (−.4935 < X̄ − µ < .4935).

Thus, we again see the conservativeness of Chebychev’s Inequality, yielding bounds on X̄ − µ
that are almost twice as big as the normal approximation. Moreover, with a sample of size 100,
X̄ is probably very close to normally distributed, even if the underlying X distribution is not
close to normal.

5.32 a. For any ε > 0,

P
(∣∣∣√Xn −

√
a
∣∣∣ > ε

)
= P

(∣∣∣√Xn −
√

a
∣∣∣ ∣∣∣√Xn +

√
a
∣∣∣ > ε

∣∣∣√Xn +
√

a
∣∣∣)

= P
(
|Xn − a| > ε

∣∣∣√Xn +
√

a
∣∣∣)

≤ P
(
|Xn − a| > ε

√
a
)
→ 0,

as n →∞, since Xn → a in probability. Thus
√

Xn →
√

a in probability.
b. For any ε > 0,

P

(∣∣∣∣ a

Xn
− 1
∣∣∣∣ ≤ ε

)
= P

(
a

1+ε
≤ Xn ≤

a

1−ε

)
= P

(
a− aε

1+ε
≤ Xn ≤ a +

aε

1−ε

)
≥ P

(
a− aε

1+ε
≤ Xn ≤ a +

aε

1+ε

) (
a +

aε

1+ε
< a +

aε

1−ε

)
= P

(
|Xn − a| ≤ aε

1+ε

)
→ 1,

as n →∞, since Xn → a in probability. Thus a/Xn → 1 in probability.
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c. S2
n → σ2 in probability. By a), Sn =

√
S2

n →
√

σ2 = σ in probability. By b), σ/Sn → 1 in
probability.

5.33 For all ε > 0 there exist N such that if n > N , then P (Xn + Yn > c) > 1− ε. Choose N1 such
that P (Xn > −m) > 1− ε/2 and N2 such that P (Yn > c + m) > 1− ε/2. Then

P (Xn + Yn > c) ≥ P (Xn > −m,+Yn > c + m) ≥ P (Xn > −m) + P (Yn > c + m)− 1 = 1− ε.

5.34 Using EX̄n = µ and VarX̄n = σ2/n, we obtain

E
√

n(X̄n−µ)
σ

=
√

n

σ
E(X̄n − µ) =

√
n

σ
(µ− µ) = 0.

Var
√

n(X̄n−µ)
σ

=
n

σ2
Var(X̄n − µ) =

n

σ2
VarX̄ =

n

σ2

σ2

n
= 1.

5.35 a. Xi ∼ exponential(1). µX = 1, VarX = 1. From the CLT, X̄n is approximately n(1, 1/n). So

X̄n−1
1/
√

n
→ Z ∼ n(0, 1) and P

(
X̄n−1
1/
√

n
≤ x

)
→ P (Z ≤ x).

b.

d

dx
P (Z ≤ x) =

d

dx
FZ(x) = fZ(x) =

1√
2π

e−x2/2.

d

dx
P

(
X̄n−1
1/
√

n
≤ x

)
=

d

dx

(
n∑

i=1

Xi ≤ x
√

n + n

) (
W =

n∑
i=1

Xi ∼ gamma(n, 1)

)

=
d

dx
FW (x

√
n + n) = fW (x

√
n + n) ·

√
n =

1
Γ(n)

(x
√

n + n)n−1e−(x
√

n+n)
√

n.

Therefore, (1/Γ(n))(x
√

n + n)n−1e−(x
√

n+n)
√

n ≈ 1√
2π

e−x2/2 as n →∞. Substituting x = 0

yields n! ≈ nn+1/2e−n
√

2π.
5.37 a. For the exact calculations, use the fact that Vn is itself distributed negative binomial(10r, p).

The results are summarized in the following table. Note that the recursion relation of problem
3.48 can be used to simplify calculations.

P (Vn = v)
(a) (b) (c)

v Exact Normal App. Normal w/cont.
0 .0008 .0071 .0056
1 .0048 .0083 .0113
2 .0151 .0147 .0201
3 .0332 .0258 .0263
4 .0572 .0392 .0549
5 .0824 .0588 .0664
6 .1030 .0788 .0882
7 .1148 .0937 .1007
8 .1162 .1100 .1137
9 .1085 .1114 .1144
10 .0944 .1113 .1024
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b. Using the normal approximation, we have µv = r(1− p)/p = 20(.3)/.7 = 8.57 and

σv =
√

r(1− p)/p
2 =

√
(20)(.3)/.49 = 3.5.

Then,

P (Vn = 0) = 1− P (Vn ≥ 1) = 1− P

(
Vn−8.57

3.5
≥ 1−8.57

3.5

)
= 1− P (Z ≥ −2.16) = .0154.

Another way to approximate this probability is

P (Vn = 0) = P (Vn ≤ 0) = P

(
V − 8.57

3.5
≤ 0−8.57

3.5

)
= P (Z ≤ −2.45) = .0071.

Continuing in this way we have P (V = 1) = P (V ≤ 1)−P (V ≤ 0) = .0154− .0071 = .0083,
etc.

c. With the continuity correction, compute P (V = k) by P
(

(k−.5)−8.57
3.5 ≤ Z ≤ (k+.5)−8.57

3.5

)
, so

P (V = 0) = P (−9.07/3.5 ≤ Z ≤ −8.07/3.5) = .0104 − .0048 = .0056, etc. Notice that the
continuity correction gives some improvement over the uncorrected normal approximation.

5.39 a. If h is continuous given ε > 0 there exits δ such that |h(xn)−h(x)| < ε for |xn−x| < δ. Since
X1, . . . , Xn converges in probability to the random variable X, then limn→∞ P (|Xn −X| <
δ) = 1. Thus limn→∞ P (|h(Xn)− h(X)| < ε) = 1.

b. Define the subsequence Xj(s) = s + I[a,b](s) such that in I[a,b], a is always 0, i.e, the subse-
quence X1, X2, X4, X7, . . .. For this subsequence

Xj(s) →
{

s if s > 0
s + 1 if s = 0.

5.41 a. Let ε = |x− µ|.
(i) For x− µ ≥ 0

P (|Xn − µ| > ε) = P (|Xn − µ| > x− µ)
= P (Xn − µ < −(x− µ)) + P (Xn − µ > x− µ)
≥ P (Xn − µ > x− µ)
= P (Xn > x) = 1− P (Xn ≤ x).

Therefore, 0 = limn→∞ P (|Xn−µ| > ε) ≥ limn→∞ 1−P (Xn ≤ x). Thus limn→∞ P (Xn ≤
x) ≥ 1.

(ii) For x− µ < 0

P (|Xn − µ| > ε) = P (|Xn − µ| > −(x− µ))
= P (Xn − µ < x− µ) + P (Xn − µ > −(x− µ))
≥ P (Xn − µ < x− µ)
= P (Xn ≤ x).

Therefore, 0 = limn→∞ P (|Xn − µ| > ε) ≥ limn→∞ P (Xn ≤ x).

By (i) and (ii) the results follows.
b. For every ε > 0,

P (|Xn − µ| > ε) ≤ P (Xn − µ < −ε) + P (Xn − µ > ε)
= P (Xn < µ− ε) + 1− P (Xn ≤ µ + ε) → 0 as n →∞.
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5.43 a. P (|Yn − θ| < ε) = P
(∣∣∣√(n)(Yn − θ)

∣∣∣ <√(n)ε
)
. Therefore,

lim
n→∞

P (|Yn − θ| < ε) = lim
n→∞

P
(∣∣∣√(n)(Yn − θ)

∣∣∣ <√(n)ε
)

= P (|Z| < ∞) = 1,

where Z ∼ n(0, σ2). Thus Yn → θ in probability.
b. By Slutsky’s Theorem (a), g′(θ)

√
n(Yn − θ) → g′(θ)X where X ∼ n(0, σ2). Therefore√

n[g(Yn)− g(θ)] = g′(θ)
√

n(Yn − θ) → n(0, σ2[g′(θ)]2).
5.45 We do part (a), the other parts are similar. Using Mathematica, the exact calculation is

In[120]:=
f1[x_]=PDF[GammaDistribution[4,25],x]
p1=Integrate[f1[x],{x,100,\[Infinity]}]//N
1-CDF[BinomialDistribution[300,p1],149]

Out[120]=
e^(-x/25) x^3/2343750

Out[121]=
0.43347

Out[122]=
0.0119389.

The answer can also be simulated in Mathematica or in R. Here is the R code for simulating
the same probability

p1<-mean(rgamma(10000,4,scale=25)>100)
mean(rbinom(10000, 300, p1)>149)

In each case 10,000 random variables were simulated. We obtained p1 = 0.438 and a binomial
probability of 0.0108.

5.47 a. −2 log(Uj) ∼ exponential(2) ∼ χ2
2. Thus Y is the sum of ν independent χ2

2 random variables.
By Lemma 5.3.2(b), Y ∼ χ2

2ν .
b. β log(Uj) ∼ exponential(2) ∼ gamma(1, β). Thus Y is the sum of independent gamma

random variables. By Example 4.6.8, Y ∼ gamma(a, β)
c. Let V =

∑a
j=1 log(Uj) ∼ gamma(a, 1). Similarly W =

∑b
j=1 log(Uj) ∼ gamma(b, 1). By

Exercise 4.24, V
V +W ∼ beta(a, b).

5.49 a. See Example 2.1.4.
b. X = g(U) = − log 1−U

U . Then g−1(x) = 1
1+e−y . Thus

fX(x) = 1×
∣∣∣∣ e−y

(1 + e−y)2

∣∣∣∣ = e−y

(1 + e−y)2
−∞ < y < ∞,

which is the density of a logistic(0, 1) random variable.

c. Let Y ∼ logistic(µ, β) then fY (y) = 1
β fZ(−(y−µ)

β ) where fZ is the density of a logistic(0, 1).
Then Y = βZ + µ. To generate a logistic(µ, β) random variable generate (i) generate U ∼
uniform(0, 1), (ii) Set Y = β log U

1−U + µ.
5.51 a. For Ui ∼ uniform(0, 1), EUi = 1/2, VarUi = 1/12. Then

X =
12∑

i=1

Ui − 6 = 12Ū − 6 =
√

12
(

Ū−1/2
1/
√

12

)
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is in the form
√

n
(
(Ū−EU)/σ

)
with n = 12, so X is approximately n(0, 1) by the Central

Limit Theorem.

b. The approximation does not have the same range as Z ∼ n(0, 1) where −∞ < Z < +∞,
since −6 < X < 6.

c.

EX = E

(
12∑

i=1

Ui−6

)
=

12∑
i=1

EUi − 6 =

(
12∑

i=1

1
2

)
− 6 = 6− 6 = 0.

VarX = Var

(
12∑

i=1

Ui−6

)
= Var

12∑
i=1

Ui = 12VarU1 = 1

EX3 = 0 since X is symmetric about 0. (In fact, all odd moments of X are 0.) Thus, the first
three moments of X all agree with the first three moments of a n(0, 1). The fourth moment
is not easy to get, one way to do it is to get the mgf of X. Since EetU = (et − 1)/t,

E
[
e
t
(∑12

i=1
Ui−6

)]
= e−6t

(
et−1

t

)12

=
(

et/2 − e−t/2

t

)12

.

Computing the fourth derivative and evaluating it at t = 0 gives us EX4. This is a lengthy
calculation. The answer is EX4 = 29/10, slightly smaller than EZ4 = 3, where Z ∼ n(0, 1).

5.53 The R code is the following:

a. obs <- rbinom(1000,8,2/3)
meanobs <- mean(obs)
variance <- var(obs)
hist(obs)
Output:
> meanobs
[1] 5.231
> variance
[1] 1.707346

b. obs<- rhyper(1000,8,2,4)
meanobs <- mean(obs)
variance <- var(obs)
hist(obs)
Output:
> meanobs
[1] 3.169
> variance
[1] 0.4488879

c. obs <- rnbinom(1000,5,1/3)
meanobs <- mean(obs)
variance <- var(obs)
hist(obs)
Output:
> meanobs
[1] 10.308
> variance
[1] 29.51665
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5.55 Let X denote the number of comparisons. Then

EX =
∞∑

k=0

P (X > k) = 1 +
∞∑

k=1

P (U > Fy(yk−1))

= 1 +
∞∑

k=1

(1− Fy(yk−1)) = 1 +
∞∑

k=0

(1− Fy(yi)) = 1 + EY

5.57 a. Cov(Y1, Y2) = Cov(X1 + X3, X2 + X3) = Cov(X3, X3) = λ3 since X1, X2 and X3 are
independent.

b.

Zi =
{ 1 if Xi = X3 = 0

0 otherwise

pi = P (Zi = 0) = P (Yi = 0) = P (Xi = 0, X3 = 0) = e−(λi+λ3). Therefore Zi are
Bernoulli(pi) with E[Zi] = pi, Var(Zi) = pi(1− pi) and

E[Z1Z2] = P (Z1 = 1, Z2 = 1) = P (Y1 = 0, Y2 = 0)
= P (X1 + X3 = 0, X2 + X3 = 0) = P (X1 = 0)P (X2 = 0)P (X3 = 0)
= e−λ1e−λ2e−λ3 .

Therefore,

Cov(Z1, Z2) = E[Z1Z2]− E[Z1]E[Z2]
= e−λ1e−λ2e−λ3 − e−(λi+λ3)e−(λ2+λ3) = e−(λi+λ3)e−(λ2+λ3)(eλ3 − 1)
= p1p2(eλ3 − 1).

Thus Corr(Z1, Z2) = p1p2(e
λ3−1)√

p1(1−p1)
√

p2(1−p2)
.

c. E[Z1Z2] ≤ pi, therefore

Cov(Z1, Z2) = E[Z1Z2]− E[Z1]E[Z2] ≤ p1 − p1p2 = p1(1− p2), and
Cov(Z1, Z2) ≤ p2(1− p1).

Therefore,

Corr(Z1, Z2) ≤
p1(1− p2)√

p1(1− p1)
√

p2(1− p2)
=

√
p1(1− p2)√
p2(1− p1)

and

Corr(Z1, Z2) ≤
p2(1− p1)√

p1(1− p1)
√

p2(1− p2)
=

√
p2(1− p1)√
p1(1− p2)

which implies the result.
5.59

P (Y ≤ y) = P (V ≤ y|U <
1
c
fY (V )) =

P (V ≤ y, U < 1
cfY (V ))

P (U < 1
cfY (V ))

=

∫ y

0

∫ 1
c fY (v)

0
dudv

1
c

=
1
c

∫ y

0
fY (v)dv
1
c

=
∫ y

0

fY (v)dv

5.61 a. M = supy

Γ(a+b)
Γ(a)Γ(b) ya−1(1−y)b−1

Γ([a]+[b])
Γ([a])Γ([b]) y[a]−1(1−y)[b]−1

< ∞, since a− [a] > 0 and b− [b] > 0 and y ∈ (0, 1).
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b. M = supy

Γ(a+b)
Γ(a)Γ(b) ya−1(1−y)b−1

Γ([a]+b)
Γ([a])Γ(b) y[a]−1(1−y)b−1

< ∞, since a− [a] > 0 and y ∈ (0, 1).

c. M = supy

Γ(a+b)
Γ(a)Γ(b) ya−1(1−y)b−1

Γ([a]+1+β)
Γ([a]+1)Γ(b′) y[a]+1−1(1−y)b′−1

< ∞, since a − [a] − 1 < 0 and y ∈ (0, 1). b − b′ > 0

when b′ = [b] and will be equal to zero when b′ = b, thus it does not affect the result.
d. Let f(y) = yα(1− y)β . Then

df(y)
dy

= αyα−1(1− y)β − yαβ(1− y)β−1 = yα−1(1− y)β−1[α(1− y) + βy]

which is maximize at y = α
α+β . Therefore for, α = a− a′ and β = b− b′

M =
Γ(a+b)
Γ(a)Γ(b)

Γ(a′+b′)
Γ(a′)Γ(b′)

(
a− a′

a− a′ + b− b′

)a−a′ (
b− b′

a− a′ + b− b′

)b−b′

.

We need to minimize M in a′ and b′. First consider
(

a−a′

a−a′+b−b′

)a−a′ (
b−b′

a−a′+b−b′

)b−b′

. Let

c = α + β, then this term becomes
(

α
c

)α ( c−α
c

)c−α. This term is maximize at α
c = 1

2 , this

is at α = 1
2c. Then M = (1

2 )(a−a′+b−b′)
Γ(a+b)
Γ(a)Γ(b)
Γ(a′+b′)
Γ(a′)Γ(b′)

. Note that the minimum that M could be

is one, which it is attain when a = a′ and b = b′. Otherwise the minimum will occur when
a − a′ and b − b′ are minimum but greater or equal than zero, this is when a′ = [a] and
b′ = [b] or a′ = a and b′ = [b] or a′ = [a] and b′ = b.

5.63 M = supy

1√
2π

e
−y2

2

1
2λ e

−|y|
λ

. Let f(y) = −y2

2 + |y|
λ . Then f(y) is maximize at y = 1

λ when y ≥ 0 and at

y = −1
λ when y < 0. Therefore in both cases M =

1√
2π

e
−1
2λ2

1
2λ e

−1
λ2

. To minimize M let M ′ = λe
1

2λ2 .

Then d log M ′

dλ = 1
λ −

1
λ3 , therefore M is minimize at λ = 1 or λ = −1. Thus the value of λ that

will optimize the algorithm is λ = 1.
5.65

P (X∗ ≤ x) =
m∑

i=1

P (X∗ ≤ x|qi)qi =
m∑

i=1

I(Yi ≤ x)qi =
1
m

∑m
i=1

f(Yi)
g(Yi)

I(Yi ≤ x)
1
m

∑m
i=1

f(Yi)
g(Yi)

−→
m→∞

Eg
f(Y )
g(Y ) I(Y ≤ x)

Eg
f(Y )
g(Y )

=

∫ x

−∞
f(y)
g(y) g(y)dy∫∞

−∞
f(y)
g(y) g(y)dy

=
∫ x

−∞
f(y)dy.

5.67 An R code to generate the sample of size 100 from the specified distribution is shown for part
c). The Metropolis Algorithm is used to generate 2000 variables. Among other options one can
choose the 100 variables in positions 1001 to 1100 or the ones in positions 1010, 1020, ..., 2000.

a. We want to generate X = σZ + µ where Z ∼ Student’s t with ν degrees of freedom.
Therefore we first can generate a sample of size 100 from a Student’s t distribution with
ν degrees of freedom and then make the transformation to obtain the X’s. Thus fZ(z) =
Γ( ν+1

2 )

Γ( ν
2 )

1√
νπ

1(
1+
(

z2
ν

))(v+1)/2 . Let V ∼ n(0, ν
ν−2 ) since given ν we can set

EV = EZ = 0, and Var(V ) = Var(Z) =
ν

ν − 2
.

Now, follow the algorithm on page 254 and generate the sample Z1, Z2 . . . , Z100 and then
calculate Xi = σZi + µ.
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b. fX(x) = 1√
2πσ

e−(log x−µ)2/2σ2

x . Let V ∼ gamma(α, β) where

α =
(eµ+(σ2/2))2

e2(µ+σ2) − e2µ+σ2 , and β =
e2(µ+σ2) − e2µ+σ2

eµ+(σ2/2)
,

since given µ and σ2 we can set

EV = αβ = eµ+(σ2/2) = EX

and
Var(V ) = αβ2 = e2(µ+σ2) − e2µ+σ2

= Var(X).

Now, follow the algorithm on page 254.

c. fX(x) = α
β e

−xα

β xα−1. Let V ∼ exponential(β). Now, follow the algorithm on page 254 where

ρi = min

{
V α−1

i

Zα−1
i−1

e
−V α

i
+Vi−Zi−1+Zα

i−1
β , 1

}

An R code to generate a sample size of 100 from a Weibull(3,2) is:

#initialize a and b
b <- 2
a <- 3
Z <- rexp(1,1/b)
ranvars <- matrix(c(Z),byrow=T,ncol=1)
for( i in seq(2000))
{
U <- runif(1,min=0,max=1)
V <- rexp(1,1/b)
p <- pmin((V/Z)^(a-1)*exp((-V^a+V-Z+Z^a)/b),1)
if (U <= p)
Z <- V

ranvars <- cbind(ranvars,Z)
}
#One option: choose elements in position 1001,1002,...,1100
to be the sample
vector.1 <- ranvars[1001:1100]
mean(vector.1)
var(vector.1)
#Another option: choose elements in position 1010,1020,...,2000
to be the sample
vector.2 <- ranvars[seq(1010,2000,10)]
mean(vector.2)
var(vector.2)
Output:
[1] 1.048035
[1] 0.1758335
[1] 1.130649
[1] 0.1778724

5.69 Let w(v, z) = fY (v)fV (z)
fV (v)fY (z) , and then ρ(v, z) = min{w(v, z), 1}. We will show that

Zi ∼ fY ⇒ P (Zi+1 ≤ a) = P (Y ≤ a).
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Write

P (Zi+1 ≤ a) = P (Vi+1 ≤ a and Ui+1 ≤ ρi+1) + P (Zi ≤ a and Ui+1 > ρi+1).

Since Zi ∼ fY , suppressing the unnecessary subscripts we can write

P (Zi+1 ≤ a) = P (V ≤ a and U ≤ ρ(V, Y )) + P (Y ≤ a and U > ρ(V, Y )).

Add and subtract P (Y ≤ a and U ≤ ρ(V, Y )) to get

P (Zi+1 ≤ a) = P (Y ≤ a) + P (V ≤ a and U ≤ ρ(V, Y ))
−P (Y ≤ a and U ≤ ρ(V, Y )).

Thus we need to show that

P (V ≤ a and U ≤ ρ(V, Y )) = P (Y ≤ a and U ≤ ρ(V, Y )).

Write out the probability as

P (V ≤ a and U ≤ ρ(V, Y ))

=
∫ a

−∞

∫ ∞

−∞
ρ(v, y)fY (y)fV (v)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(v, y) ≤ 1)

(
fY (v)fV (y)
fV (v)fY (y)

)
fY (y)fV (v)dydv

+
∫ a

−∞

∫ ∞

−∞
I(w(v, y) ≥ 1)fY (y)fV (v)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(v, y) ≤ 1)fY (v)fV (y)dydv

+
∫ a

−∞

∫ ∞

−∞
I(w(v, y) ≥ 1)fY (y)fV (v)dydv.

Now, notice that w(v, y) = 1/w(y, v), and thus first term above can be written∫ a

−∞

∫ ∞

−∞
I(w(v, y) ≤ 1)fY (v)fV (y)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(y, v) > 1)fY (v)fV (y)dydv

= P (Y ≤ a, ρ(V, Y ) = 1, U ≤ ρ(V, Y )).

The second term is∫ a

−∞

∫ ∞

−∞
I(w(v, y) ≥ 1)fY (y)fV (v)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(y, v) ≤ 1)fY (y)fV (v)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(y, v) ≤ 1)

(
fV (y)fY (v)
fV (y)fY (v)

)
fY (y)fV (v)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(y, v) ≤ 1)

(
fY (y)fV (v)
fV (y)fY (v)

)
fV (y)fY (v)dydv

=
∫ a

−∞

∫ ∞

−∞
I(w(y, v) ≤ 1)w(y, v)fV (y)fY (v)dydv

= P (Y ≤ a, U ≤ ρ(V, Y ), ρ(V, Y ) ≤ 1).
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Putting it all together we have

P (V ≤ a and U ≤ ρ(V, Y )) = P (Y ≤ a, ρ(V, Y ) = 1, U ≤ ρ(V, Y ))
+ P (Y ≤ a, U ≤ ρ(V, Y ), ρ(V, Y ) ≤ 1)

= P (Y ≤ a and U ≤ ρ(V, Y )),

and hence
P (Zi+1 ≤ a) = P (Y ≤ a),

so fY is the stationary density.



Chapter 6

Principles of Data Reduction

6.1 By the Factorization Theorem, |X| is sufficient because the pdf of X is

f(x|σ2) =
1√
2πσ

e−x2/2σ2
=

1√
2πσ

e−|x|
2/2σ2

= g( |x||σ2) · 1︸︷︷︸
h(x)

.

6.2 By the Factorization Theorem, T (X) = mini(Xi/i) is sufficient because the joint pdf is

f(x1, . . . , xn|θ) =
n∏

i=1

eiθ−xiI(iθ,+∞)(xi) = einθI(θ,+∞)(T (x))︸ ︷︷ ︸
g(T (x)|θ)

· e−Σixi︸ ︷︷ ︸
h(x)

.

Notice, we use the fact that i > 0, and the fact that all xis > iθ if and only if mini(xi/i) > θ.

6.3 Let x(1) = mini xi. Then the joint pdf is

f(x1, . . . , xn|µ, σ) =
n∏

i=1

1
σ

e−(xi−µ)/σI(µ,∞)(xi) =
(

eµ/σ

σ

)n

e−Σixi/σI(µ,∞)(x(1))︸ ︷︷ ︸
g(x(1),Σixi|µ,σ)

· 1︸︷︷︸
h(x)

.

Thus, by the Factorization Theorem,
(
X(1),

∑
i Xi

)
is a sufficient statistic for (µ, σ).

6.4 The joint pdf is

n∏
j=1

{
h(xj)c(θ) exp

(
k∑

i=1

wi(θ)ti(xj)

)}
= c(θ)n exp

 k∑
i=1

wi(θ)
n∑

j=1

ti(xj)


︸ ︷︷ ︸

g(T (x)|θ)

·
n∏

j=1

h(xj)︸ ︷︷ ︸
h(x)

.

By the Factorization Theorem,
(∑n

j=1 t1(Xj), . . . ,
∑n

j=1 tk(Xj)
)

is a sufficient statistic for θ.

6.5 The sample density is given by

n∏
i=1

f(xi|θ) =
n∏

i=1

1
2iθ

I (−i(θ − 1) ≤ xi ≤ i(θ + 1))

=
(

1
2θ

)n
(

n∏
i=1

1
i

)
I
(
min

xi

i
≥ −(θ − 1)

)
I
(
max

xi

i
≤ θ + 1

)
.

Thus (minXi/i,max Xi/i) is sufficient for θ.
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6.6 The joint pdf is given by

f(x1, . . . , xn|α, β) =
n∏

i=1

1
Γ(α)βα

xi
α−1e−xi/β =

(
1

Γ(α)βα

)n
(

n∏
i=1

xi

)α−1

e−Σixi/β .

By the Factorization Theorem, (
∏n

i=1 Xi,
∑n

i=1 Xi) is sufficient for (α, β).

6.7 Let x(1) = mini{x1, . . . , xn}, x(n) = maxi{x1, . . . , xn}, y(1) = mini{y1, . . . , yn} and y(n) =
maxi{y1, . . . , yn}. Then the joint pdf is

f(x,y|θ)

=
n∏

i=1

1
(θ3 − θ1)(θ4 − θ2)

I(θ1,θ3)(xi)I(θ2,θ4)(yi)

=
(

1
(θ3 − θ1)(θ4 − θ2)

)n

I(θ1,∞)(x(1))I(−∞,θ3)(x(n))I(θ2,∞)(y(1))I(−∞,θ4)(y(n))︸ ︷︷ ︸
g(T (x)|θ)

· 1︸︷︷︸
h(x)

.

By the Factorization Theorem,
(
X(1), X(n), Y(1), Y(n)

)
is sufficient for (θ1, θ2, θ3, θ4).

6.9 Use Theorem 6.2.13.
a.

f(x|θ)
f(y|θ)

=
(2π)−n/2

e−Σi(xi−θ)2/2

(2π)−n/2
e−Σi(yi−θ)2/2

= exp

{
−1

2

[(
n∑

i=1

x2
i−

n∑
i=1

y2
i

)
+2θn(ȳ−x̄)

]}
.

This is constant as a function of θ if and only if ȳ = x̄ ; therefore X̄ is a minimal sufficient
statistic for θ.

b. Note, for X ∼ location exponential(θ), the range depends on the parameter. Now

f(x|θ)
f(y|θ)

=
∏n

i=1

(
e−(xi−θ)I(θ,∞)(xi)

)∏n
i=1

(
e−(yi−θ)I(θ,∞)(yi)

)
=

enθe−Σixi
∏n

i=1 I(θ,∞)(xi)
enθe−Σiyi

∏n
i=1 I(θ,∞)(yi)

=
e−ΣixiI(θ,∞)(minxi)
e−ΣiyiI(θ,∞)(min yi)

.

To make the ratio independent of θ we need the ratio of indicator functions independent
of θ. This will be the case if and only if min{x1, . . . , xn} = min{y1, . . . , yn}. So T (X) =
min{X1, . . . , Xn} is a minimal sufficient statistic.

c.

f(x|θ)
f(y|θ)

=
e−Σi(xi−θ)∏n

i=1

(
1 + e−(xi−θ)

)2 ∏n
i=1

(
1 + e−(yi−θ)

)2
e−Σi(yi−θ)

= e−Σi(yi−xi)

(∏n
i=1

(
1 + e−(yi−θ)

)∏n
i=1

(
1 + e−(xi−θ)

))2

.

This is constant as a function of θ if and only if x and y have the same order statistics.
Therefore, the order statistics are minimal sufficient for θ.

d. This is a difficult problem. The order statistics are a minimal sufficient statistic.
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e. Fix sample points x and y. Define A(θ) = {i : xi ≤ θ}, B(θ) = {i : yi ≤ θ}, a(θ) = the
number of elements in A(θ) and b(θ) = the number of elements in B(θ). Then the function
f(x|θ)/f(y|θ) depends on θ only through the function

n∑
i=1

| xi−θ | −
n∑

i=1

| yi−θ |

=
∑

i∈A(θ)

(θ − xi) +
∑

i∈A(θ)c

(xi − θ)−
∑

i∈B(θ)

(θ − yi)−
∑

i∈B(θ)c

(yi − θ)

= (a(θ)− [n− a(θ)]− b(θ) + [n− b(θ)])θ

+

− ∑
i∈A(θ)

xi +
∑

i∈A(θ)c

xi +
∑

i∈B(θ)

yi −
∑

i∈B(θ)c

yi


= 2(a(θ)− b(θ))θ +

− ∑
i∈A(θ)

xi +
∑

i∈A(θ)c

xi +
∑

i∈B(θ)

yi −
∑

i∈B(θ)c

yi

 .

Consider an interval of θs that does not contain any xis or yis. The second term is constant
on such an interval. The first term will be constant, on the interval if and only if a(θ) = b(θ).
This will be true for all such intervals if and only if the order statistics for x are the same
as the order statistics for y. Therefore, the order statistics are a minimal sufficient statistic.

6.10 To prove T (X) = (X(1), X(n)) is not complete, we want to find g[T (X)] such that E g[T (X)] = 0
for all θ, but g[T (X)] 6≡ 0 . A natural candidate is R = X(n)−X(1), the range of X, because by
Example 6.2.17 its distribution does not depend on θ. From Example 6.2.17, R ∼ beta(n−1, 2).
Thus ER = (n − 1)/(n + 1) does not depend on θ, and E(R − ER) = 0 for all θ. Thus
g[X(n), X(1)] = X(n)−X(1)− (n− 1)/(n + 1) = R−ER is a nonzero function whose expected
value is always 0. So, (X(1), X(n)) is not complete. This problem can be generalized to show
that if a function of a sufficient statistic is ancillary, then the sufficient statistic is not complete,
because the expectation of that function does not depend on θ. That provides the opportunity
to construct an unbiased, nonzero estimator of zero.

6.11 a. These are all location families. Let Z(1), . . . , Z(n) be the order statistics from a random
sample of size n from the standard pdf f(z|0). Then (Z(1) + θ, . . . , Z(n) + θ) has the same
joint distribution as (X(1), . . . , X(n)), and (Y(1), . . . , Y(n−1)) has the same joint distribution
as (Z(n) + θ − (Z(1) + θ), . . . , Z(n) + θ − (Z(n−1) + θ)) = (Z(n) − Z(1), . . . , Z(n) − Z(n−1)).
The last vector depends only on (Z1, . . . , Zn) whose distribution does not depend on θ. So,
(Y(1), . . . , Y(n−1)) is ancillary.

b. For a), Basu’s lemma shows that (Y1, . . . ,Yn−1) is independent of the complete sufficient
statistic. For c), d), and e) the order statistics are sufficient, so (Y1, . . . ,Yn−1) is not inde-
pendent of the sufficient statistic. For b), X(1) is sufficient. Define Yn = X(1). Then the joint
pdf of (Y1, . . . ,Yn) is

f(y1, . . . , yn) = n!e−n(y1−θ)e−(n−1)yn

n−1∏
i=2

eyi ,
0 < yn−1 < yn−2 < · · · < y1

0 < yn < ∞.

Thus, Yn = X(1) is independent of (Y1, . . . , Yn−1).
6.12 a. Use Theorem 6.2.13 and write

f(x, n|θ)
f(y, n′|θ)

=
f(x|θ, N = n)P (N = n)
f(y|θ, N = n′)P (N = n

′)

=

(
n
x

)
θx(1−θ)n−x

pn(
n′

y

)
θy(1−θ)n′−y

pn′
= θx−y(1− θ)n−n′−x+y

(
n
x

)
pn(

n′

y

)
pn′

.
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The last ratio does not depend on θ. The other terms are constant as a function of θ if and
only if n = n′ and x = y. So (X, N) is minimal sufficient for θ. Because P (N = n) = pn

does not depend on θ, N is ancillary for θ. The point is that although N is independent of
θ, the minimal sufficient statistic contains N in this case. A minimal sufficient statistic may
contain an ancillary statistic.

b.

E
(

X

N

)
= E

(
E
(

X

N

∣∣∣∣N)) = E
(

1
N

E (X | N)
)

= E
(

1
N

Nθ

)
= E(θ) = θ.

Var
(

X

N

)
= Var

(
E
(

X

N

∣∣∣∣N))+ E
(

Var
(

X

N

∣∣∣∣N)) = Var(θ) + E
(

1
N2

Var (X | N)
)

= 0 + E
(

Nθ(1−θ)
N2

)
= θ(1− θ)E

(
1
N

)
.

We used the fact that X|N ∼ binomial(N, θ).
6.13 Let Y1 = log X1 and Y2 = log X2. Then Y1 and Y2 are iid and, by Theorem 2.1.5, the pdf of

each is

f(y|α) = α exp {αy − eαy} =
1

1/α
exp

{
y

1/α
− ey/(1/α)

}
, −∞ < y < ∞.

We see that the family of distributions of Yi is a scale family with scale parameter 1/α. Thus,
by Theorem 3.5.6, we can write Yi = 1

αZi, where Z1 and Z2 are a random sample from f(z|1).
Then

logX1

logX2
=

Y1

Y2
=

(1/α)Z1

(1/α)Z2

=
Z1

Z2
.

Because the distribution of Z1/Z2 does not depend on α, (log X1)/(log X2) is an ancillary
statistic.

6.14 Because X1, . . . , Xn is from a location family, by Theorem 3.5.6, we can write Xi = Zi+µ, where
Z1, . . . , Zn is a random sample from the standard pdf, f(z), and µ is the location parameter. Let
M(X) denote the median calculated from X1, . . . , Xn. Then M(X) = M(Z)+µ and X̄ = Z̄+µ.
Thus, M(X)− X̄ = (M(Z) + µ)− (Z̄ + µ) = M(Z)− Z̄. Because M(X)− X̄ is a function of
only Z1, . . . , Zn, the distribution of M(X)− X̄ does not depend on µ; that is, M(X)− X̄ is an
ancillary statistic.

6.15 a. The parameter space consists only of the points (θ, ν) on the graph of the function ν = aθ2.
This quadratic graph is a line and does not contain a two-dimensional open set.

b. Use the same factorization as in Example 6.2.9 to show (X̄, S2) is sufficient. E(S2) = aθ2

and E(X̄2) = VarX̄ + (EX̄)2 = aθ2/n + θ2 = (a + n)θ2/n. Therefore,

E
(

n

a + n
X̄2−S2

a

)
=
(

n

a + n

)(
a + n

n
θ2

)
− 1

a
aθ2 = 0, for all θ.

Thus g(X̄, S2) = n
a+nX̄2 − S2

a has zero expectation so (X̄, S2) not complete.

6.17 The population pmf is f(x|θ) = θ(1−θ)x−1 = θ
1−θ elog(1−θ)x, an exponential family with t(x) =

x. Thus,
∑

i Xi is a complete, sufficient statistic by Theorems 6.2.10 and 6.2.25.
∑

i Xi − n ∼
negative binomial(n, θ).

6.18 The distribution of Y =
∑

i Xi is Poisson(nλ). Now

Eg(Y ) =
∞∑

y=0

g(y)
(nλ)y

e−nλ

y!
.

If the expectation exists, this is an analytic function which cannot be identically zero.
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6.19 To check if the family of distributions of X is complete, we check if Ep g(X) = 0 for all p,
implies that g(X) ≡ 0. For Distribution 1,

Ep g(X) =
2∑

x=0

g(x)P (X = x) = pg(0) + 3pg(1) + (1− 4p)g(2).

Note that if g(0) = −3g(1) and g(2) = 0, then the expectation is zero for all p, but g(x) need
not be identically zero. Hence the family is not complete. For Distribution 2 calculate

Ep g(X) = g(0)p + g(1)p2 + g(2)(1− p− p2) = [g(1)− g(2)]p2 + [g(0)− g(2)]p + g(2).

This is a polynomial of degree 2 in p. To make it zero for all p each coefficient must be zero.
Thus, g(0) = g(1) = g(2) = 0, so the family of distributions is complete.

6.20 The pdfs in b), c), and e) are exponential families, so they have complete sufficient statistics
from Theorem 6.2.25. For a), Y = max{Xi} is sufficient and

f(y) =
2n

θ2n
y2n−1, 0 < y < θ.

For a function g(y),

E g(Y ) =
∫ θ

0

g(y)
2n

θ2n
y2n−1 dy = 0 for all θ implies g(θ)

2nθ2n−1

θ2n
= 0 for all θ

by taking derivatives. This can only be zero if g(θ) = 0 for all θ, so Y = max{Xi} is complete.
For d), the order statistics are minimal sufficient. This is a location family. Thus, by Example
6.2.18 the range R = X(n) − X(1) is ancillary, and its expectation does not depend on θ. So
this sufficient statistic is not complete.

6.21 a. X is sufficient because it is the data. To check completeness, calculate

Eg(X) =
θ

2
g(−1) + (1− θ)g(0) +

θ

2
g(1).

If g(−1) = g(1) and g(0) = 0, then Eg(X) = 0 for all θ, but g(x) need not be identically 0.
So the family is not complete.

b. |X| is sufficient by Theorem 6.2.6, because f(x|θ) depends on x only through the value of
|x|. The distribution of |X| is Bernoulli, because P (|X| = 0) = 1 − θ and P (|X| = 1) = θ.
By Example 6.2.22, a binomial family (Bernoulli is a special case) is complete.

c. Yes, f(x|θ) = (1 − θ)(θ/(2(1 − θ))|x| = (1 − θ)e|x|log[θ/(2(1−θ)], the form of an exponential
family.

6.22 a. The sample density is
∏

i θxθ−1
i = θn(

∏
i xi)θ−1, so

∏
i Xi is sufficient for θ, not

∑
i Xi.

b. Because
∏

i f(xi|θ) = θne(θ−1) log(Πixi), log (
∏

i Xi) is complete and sufficient by Theorem
6.2.25. Because

∏
i Xi is a one-to-one function of log (

∏
i Xi),

∏
i Xi is also a complete

sufficient statistic.
6.23 Use Theorem 6.2.13. The ratio

f(x|θ)
f(y|θ)

=
θ−nI(x(n)/2,x(1))(θ)
θ−nI(y(n)/2,y(1))(θ)

is constant (in fact, one) if and only if x(1) = y(1) and x(n) = y(n). So (X(1), X(n)) is a
minimal sufficient statistic for θ. From Exercise 6.10, we know that if a function of the sufficient
statistics is ancillary, then the sufficient statistic is not complete. The uniform(θ, 2θ) family is
a scale family, with standard pdf f(z) ∼ uniform(1, 2). So if Z1, . . . , Zn is a random sample
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from a uniform(1, 2) population, then X1 = θZ1, . . . , Xn = θZn is a random sample from a
uniform(θ, 2θ) population, and X(1) = θZ(1) and X(n) = θZ(n). So X(1)/X(n) = Z(1)/Z(n), a
statistic whose distribution does not depend on θ. Thus, as in Exercise 6.10, (X(1), X(n)) is not
complete.

6.24 If λ = 0, Eh(X) = h(0). If λ = 1,

Eh(X) = e−1h(0) + e−1
∞∑

x=1

h(x)
x!

.

Let h(0) = 0 and
∑∞

x=1
h(x)
x! = 0, so Eh(X) = 0 but h(x) 6≡ 0. (For example, take h(0) = 0,

h(1) = 1, h(2) = −2, h(x) = 0 for x ≥ 3 .)

6.25 Using the fact that (n − 1)s2
x =

∑
i x2

i − nx̄2, for any (µ, σ2) the ratio in Example 6.2.14 can
be written as

f(x|µ, σ2)
f(y|µ, σ2)

= exp

[
µ

σ2

(∑
i

xi −
∑

i

yi

)
− 1

2σ2

(∑
i

x2
i −

∑
i

y2
i

)]
.

a. Do part b) first showing that
∑

i X2
i is a minimal sufficient statistic. Because

(∑
i Xi,

∑
i X2

i

)
is not a function of

∑
i X2

i , by Definition 6.2.11
(∑

i Xi,
∑

i X2
i

)
is not minimal.

b. Substituting σ2 = µ in the above expression yields

f(x|µ, µ)
f(y|µ, µ)

= exp

[∑
i

xi −
∑

i

yi

]
exp

[
− 1

2µ

(∑
i

x2
i −

∑
i

y2
i

)]
.

This is constant as a function of µ if and only if
∑

i x2
i =

∑
i y2

i . Thus,
∑

i X2
i is a minimal

sufficient statistic.

c. Substituting σ2 = µ2 in the first expression yields

f(x|µ, µ2)
f(y|µ, µ2)

= exp

[
1
µ

(∑
i

xi −
∑

i

yi

)
− 1

2µ2

(∑
i

x2
i −

∑
i

y2
i

)]
.

This is constant as a function of µ if and only if
∑

i xi =
∑

i yi and
∑

i x2
i =

∑
i y2

i . Thus,(∑
i Xi,

∑
i X2

i

)
is a minimal sufficient statistic.

d. The first expression for the ratio is constant a function of µ and σ2 if and only if
∑

i xi =∑
i yi and

∑
i x2

i =
∑

i y2
i . Thus,

(∑
i Xi,

∑
i X2

i

)
is a minimal sufficient statistic.

6.27 a. This pdf can be written as

f(x|µ, λ) =
(

λ

2π

)1/2( 1
x3

)1/2

exp
(

λ

µ

)
exp

(
− λ

2µ2
x− λ

2
1
x

)
.

This is an exponential family with t1(x) = x and t2(x) = 1/x. By Theorem 6.2.25, the
statistic (

∑
i Xi,

∑
i(1/Xi)) is a complete sufficient statistic. (X̄, T ) given in the problem

is a one-to-one function of (
∑

i Xi,
∑

i(1/Xi)). Thus, (X̄, T ) is also a complete sufficient
statistic.

b. This can be accomplished using the methods from Section 4.3 by a straightforward but
messy two-variable transformation U = (X1 +X2)/2 and V = 2λ/T = λ[(1/X1)+ (1/X2)−
(2/[X1 + X2])]. This is a two-to-one transformation.
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6.29 Let fj = logistic(αj , βj), j = 0, 1, . . . , k. From Theorem 6.6.5, the statistic

T (x) =
(∏n

i=1 f1(xi)∏n
i=1 f0(xi)

, . . . ,

∏n
i=1 fk(xi)∏n
i=1 f0(xi)

)
=
(∏n

i=1 f1(x(i))∏n
i=1 f0(x(i))

, . . . ,

∏n
i=1 fk(x(i))∏n
i=1 f0(x(i))

)
is minimal sufficient for the family {f0, f1, . . . , fk}. As T is a 1 − 1 function of the order
statistics, the order statistics are also minimal sufficient for the family {f0, f1, . . . , fk}. If F is
a nonparametric family, fj ∈ F , so part (b) of Theorem 6.6.5 can now be directly applied to
show that the order statistics are minimal sufficient for F .

6.30 a. From Exercise 6.9b, we have that X(1) is a minimal sufficient statistic. To check completeness
compute fY1(y), where Y1 = X(1). From Theorem 5.4.4 we have

fY1(y) = fX(y) (1−FX(y))n−1
n = e−(y−µ)

[
e−(y−µ)

]n−1

n = ne−n(y−µ), y > µ.

Now, write Eµ g(Y1) =
∫∞

µ
g(y)ne−n(y−µ) dy. If this is zero for all µ, then

∫∞
µ

g(y)e−ny dy = 0
for all µ (because nenµ > 0 for all µ and does not depend on y). Moreover,

0 =
d

dµ

[∫ ∞

µ

g(y)e−ny dy

]
= −g(µ)e−nµ

for all µ. This implies g(µ) = 0 for all µ, so X(1) is complete.
b. Basu’s Theorem says that if X(1) is a complete sufficient statistic for µ, then X(1) is inde-

pendent of any ancillary statistic. Therefore, we need to show only that S2 has distribution
independent of µ; that is, S2 is ancillary. Recognize that f(x|µ) is a location family. So we
can write Xi = Zi + µ, where Z1, . . . , Zn is a random sample from f(x|0). Then

S2 =
1

n− 1

∑
(Xi − X̄)2 =

1
n− 1

∑
((Zi + µ)− (Z̄ + µ))2 =

1
n− 1

∑
(Zi − Z̄)2.

Because S2 is a function of only Z1, . . . , Zn, the distribution of S2 does not depend on µ;
that is, S2 is ancillary. Therefore, by Basu’s theorem, S2 is independent of X(1).

6.31 a. (i) By Exercise 3.28 this is a one-dimensional exponential family with t(x) = x. By Theorem
6.2.25,

∑
i Xi is a complete sufficient statistic. X̄ is a one-to-one function of

∑
i Xi,

so X̄ is also a complete sufficient statistic. From Theorem 5.3.1 we know that (n −
1)S2/σ2 ∼ χ2

n−1 = gamma((n− 1)/2, 2). S2 = [σ2/(n− 1)][(n− 1)S2/σ2], a simple scale
transformation, has a gamma((n−1)/2, 2σ2/(n−1)) distribution, which does not depend
on µ; that is, S2 is ancillary. By Basu’s Theorem, X̄ and S2 are independent.

(ii) The independence of X̄ and S2 is determined by the joint distribution of (X̄, S2) for each
value of (µ, σ2). By part (i), for each value of (µ, σ2), X̄ and S2 are independent.

b. (i) µ is a location parameter. By Exercise 6.14, M − X̄ is ancillary. As in part (a) X̄ is a
complete sufficient statistic. By Basu’s Theorem, X̄ and M−X̄ are independent. Because
they are independent, by Theorem 4.5.6 Var M = Var(M−X̄+X̄) = Var(M−X̄)+Var X̄.

(ii) If S2 is a sample variance calculated from a normal sample of size N , (N − 1)S2/σ2 ∼
χ2

N−1. Hence, (N − 1)2VarS2/(σ2)2 = 2(N − 1) and VarS2 = 2(σ2)2/(N − 1). Both M
and M − X̄ are asymptotically normal, so, M1, . . . ,MN and M1 − X̄1, . . . ,MN − X̄N

are each approximately normal samples if n is reasonable large. Thus, using the above
expression we get the two given expressions where in the straightforward case σ2 refers
to VarM , and in the swindle case σ2 refers to Var(M − X̄).

c. (i)

E(Xk) = E
(

X

Y
Y

)k

= E

[(
X

Y

)k (
Y k
)] indep.

= E
(

X

Y

)k

E
(
Y k
)
.

Divide both sides by E
(
Y k
)

to obtain the desired equality.
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(ii) If α is fixed, T =
∑

i Xi is a complete sufficient statistic for β by Theorem 6.2.25. Because
β is a scale parameter, if Z1, . . . , Zn is a random sample from a gamma(α, 1) distribution,
then X(i)/T has the same distribution as (βZ(i))/ (β

∑
i Zi) = Z(i)/ (

∑
i Zi), and this

distribution does not depend on β. Thus, X(i)/T is ancillary, and by Basu’s Theorem, it
is independent of T . We have

E(X(i)|T ) = E
(

X(i)

T
T

∣∣∣∣T) = TE
(

X(i)

T

∣∣∣∣T) indep.
= TE

(
X(i)

T

)
part (i)

= T
E(X(i))

ET
.

Note, this expression is correct for each fixed value of (α, β), regardless whether α is
“known” or not.

6.32 In the Formal Likelihood Principle, take E1 = E2 = E. Then the conclusion is Ev(E, x1) =
Ev(E, x2) if L(θ|x1)/L(θ|x2) = c. Thus evidence is equal whenever the likelihood functions are
equal, and this follows from Formal Sufficiency and Conditionality.

6.33 a. For all sample points except (2,x∗2) (but including (1,x∗1)), T (j,xj) = (j,xj). Hence,

g(T (j,xj)|θ)h(j,xj) = g((j,xj)|θ)1 = f∗((j,xj)|θ).

For (2,x∗2) we also have

g(T (2,x∗2)|θ)h(2,x∗2) = g((1,x∗1)|θ)C = f∗((1,x∗1)|θ)C = C
1
2
f1(x∗1|θ)

= C
1
2
L(θ|x∗1) =

1
2
L(θ|x∗2) =

1
2
f2(x∗2|θ) = f∗((2,x∗2)|θ).

By the Factorization Theorem, T (J,XJ) is sufficient.
b. Equations 6.3.4 and 6.3.5 follow immediately from the two Principles. Combining them we

have Ev(E1,x∗1) = Ev(E2,x∗2), the conclusion of the Formal Likelihood Principle.
c. To prove the Conditionality Principle. Let one experiment be the E∗ experiment and the

other Ej . Then

L(θ|(j,xj)) = f∗((j,xj)|θ) =
1
2
fj(xj |θ) =

1
2
L(θ|xj).

Letting (j,xj) and xj play the roles of x∗1 and x∗2 in the Formal Likelihood Principle we
can conclude Ev(E∗, (j,xj)) = Ev(Ej ,xj), the Conditionality Principle. Now consider the
Formal Sufficiency Principle. If T (X) is sufficient and T (x) = T (y), then L(θ|x) = CL(θ|y),
where C = h(x)/h(y) and h is the function from the Factorization Theorem. Hence, by the
Formal Likelihood Principle, Ev(E,x) = Ev(E,y), the Formal Sufficiency Principle.

6.35 Let 1 = success and 0 = failure. The four sample points are {0, 10, 110, 111}. From the likelihood
principle, inference about p is only through L(p|x). The values of the likelihood are 1, p, p2,
and p3, and the sample size does not directly influence the inference.

6.37 a. For one observation (X, Y ) we have

I(θ) = −E
(

∂2

∂θ2
log f(X, Y |θ)

)
= −E

(
−2Y

θ3

)
=

2EY

θ3
.

But, Y ∼ exponential(θ), and E Y = θ. Hence, I(θ) = 2/θ2 for a sample of size one, and
I(θ) = 2n/θ2 for a sample of size n.

b. (i) The cdf of T is

P (T ≤ t) = P

(∑
i Yi∑
i Xi

≤ t2
)

= P

(
2
∑

i Yi/θ

2
∑

i Xiθ
≤ t2/θ2

)
= P (F2n,2n ≤ t2/θ2)
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where F2n,2n is an F random variable with 2n degrees of freedom in the numerator and
denominator. This follows since 2Yi/θ and 2Xiθ are all independent exponential(1), or
χ2

2. Differentiating (in t) and simplifying gives the density of T as

fT (t) =
Γ(2n)
Γ(n)2

2
t

(
t2

t2 + θ2

)n(
θ2

t2 + θ2

)n

,

and the second derivative (in θ) of the log density is

2n
t4 + 2t2θ2 − θ4

θ2(t2 + θ2)2
=

2n

θ2

(
1− 2

(t2/θ2 + 1)2

)
,

and the information in T is

2n

θ2

[
1− 2E

(
1

T 2/θ2 + 1

)2
]

=
2n

θ2

1− 2E

(
1

F 2
2n,2n + 1

)2
 .

The expected value is

E

(
1

F 2
2n,2n + 1

)2

=
Γ(2n)
Γ(n)2

∫ ∞

0

1
(1 + w)2

wn−1

(1 + w)2n
=

Γ(2n)
Γ(n)2

Γ(n)Γ(n + 2)
Γ(2n + 2)

=
n + 1

2(2n + 1)
.

Substituting this above gives the information in T as

2n

θ2

[
1− 2

n + 1
2(2n + 1)

]
= I(θ)

n

2n + 1
,

which is not the answer reported by Joshi and Nabar.
(ii) Let W =

∑
i Xi and V =

∑
i Yi. In each pair, Xi and Yi are independent, so W and V are

independent. Xi ∼ exponential(1/θ); hence, W ∼ gamma(n, 1/θ). Yi ∼ exponential(θ);
hence, V ∼ gamma(n, θ). Use this joint distribution of (W,V ) to derive the joint pdf of
(T,U) as

f(t, u|θ) =
2

[Γ(n)]2t
u2n−1 exp

(
−uθ

t
− ut

θ

)
, u > 0, t > 0.

Now, the information in (T,U) is

−E
(

∂2

∂θ2
log f(T,U |θ)

)
= −E

(
−2UT

θ3

)
= E

(
2V

θ3

)
=

2nθ

θ3
=

2n

θ2
.

(iii) The pdf of the sample is f(x,y) = exp [−θ (
∑

i xi)− (
∑

i yi) /θ] . Hence, (W,V ) defined
as in part (ii) is sufficient. (T,U) is a one-to-one function of (W,V ), hence (T,U) is also
sufficient. But, E U2 = EWV = (n/θ)(nθ) = n2 does not depend on θ. So E(U2−n2) = 0
for all θ, and (T,U) is not complete.

6.39 a. The transformation from Celsius to Fahrenheit is y = 9x/5 + 32. Hence,

5
9
(T ∗(y)− 32) =

5
9

((.5)(y) + (.5)(212)− 32)

=
5
9

((.5)(9x/5 + 32) + (.5)(212)− 32) = (.5)x + 50 = T (x).

b. T (x) = (.5)x + 50 6= (.5)x + 106 = T ∗(x). Thus, we do not have equivariance.
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6.40 a. Because X1, . . . , Xn is from a location scale family, by Theorem 3.5.6, we can write Xi =
σZi + µ, where Z1, . . . , Zn is a random sample from the standard pdf f(z). Then

T1(X1, . . . , Xn)
T2(X1, . . . , Xn)

=
T1(σZ1+µ, . . . , σZn+µ)
T2(σZ1+µ, . . . , σZn+µ)

=
σT1(Z1, . . . , Zn)
σT2(Z1, . . . , Zn)

=
T1(Z1, . . . , Zn)
T2(Z1, . . . , Zn)

.

Because T1/T2 is a function of only Z1, . . . , Zn, the distribution of T1/T2 does not depend
on µ or σ; that is, T1/T2 is an ancillary statistic.

b. R(x1, . . . , xn) = x(n) − x(1). Because a > 0, max{ax1 + b, . . . , axn + b} = ax(n) + b and
min{ax1+b, . . . , axn+b} = ax(1)+b. Thus, R(ax1+b, . . . , axn+b) = (ax(n)+b)−(ax(1)+b) =
a(x(n) − x(1)) = aR(x1, . . . , xn). For the sample variance we have

S2(ax1 + b, . . . , axn + b) =
1

n− 1

∑
((axi + b)− (ax̄ + b))2

= a2 1
n− 1

∑
(xi − x̄)2 = a2S2(x1, . . . , xn).

Thus, S(ax1 + b, . . . , axn + b) = aS(x1, . . . , xn). Therefore, R and S both satisfy the above
condition, and R/S is ancillary by a).

6.41 a. Measurement equivariance requires that the estimate of µ based on y be the same as the
estimate of µ based on x; that is, T ∗(x1 + a, . . . , xn + a)− a = T ∗(y)− a = T (x).

b. The formal structures for the problem involving X and the problem involving Y are the same.
They both concern a random sample of size n from a normal population and estimation of
the mean of the population. Thus, formal invariance requires that T (x) = T ∗(x) for all x.
Combining this with part (a), the Equivariance Principle requires that T (x1+a, . . . , xn+a)−
a = T ∗(x1+a, . . . , xn+a)−a = T (x1, . . . , xn), i.e., T (x1+a, . . . , xn+a) = T (x1, . . . , xn)+a.

c. W (x1 + a, . . . , xn + a) =
∑

i(xi + a)/n = (
∑

i xi) /n + a = W (x1, . . . , xn) + a, so W (x)
is equivariant. The distribution of (X1, . . . , Xn) is the same as the distribution of (Z1 +
θ, . . . , Zn + θ), where Z1, . . . , Zn are a random sample from f(x − 0) and E Zi = 0. Thus,
EθW = E

∑
i(Zi + θ)/n = θ, for all θ.

6.43 a. For a location-scale family, if X ∼ f(x|θ, σ2), then Y = ga,c(X) ∼ f(y|cθ + a, c2σ2). So
for estimating σ2, ḡa,c(σ2) = c2σ2. An estimator of σ2 is invariant with respect to G1 if
W (cx1 + a, . . . , cxn + a) = c2W (x1, . . . , xn). An estimator of the form kS2 is invariant
because

kS2(cx1+a, . . . , cxn+a) =
k

n− 1

n∑
i=1

(
(cxi + a)−

n∑
i=1

(cxi + a)/n

)2

=
k

n− 1

n∑
i=1

((cxi + a)− (cx̄ + a))2

= c2 k

n− 1

n∑
i=1

(xi − x̄)2 = c2kS2(x1, . . . , xn).

To show invariance with respect to G2 , use the above argument with c = 1. To show
invariance with respect to G3, use the above argument with a = 0. ( G2 and G3 are both
subgroups of G1. So invariance with respect to G1 implies invariance with respect to G2 and
G3.)

b. The transformations in G2 leave the scale parameter unchanged. Thus, ḡa(σ2) = σ2. An
estimator of σ2 is invariant with respect to this group if

W (x1 + a, . . . , xn + a) = W (ga(x)) = ḡa(W (x)) = W (x1, . . . , xn).
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An estimator of the given form is invariant if, for all a and (x1, . . . , xn),

W (x1 + a, . . . , xn + a) = φ

(
x̄+a

s

)
s2 = φ

( x̄

s

)
s2 = W (x1, . . . , xn).

In particular, for a sample point with s = 1 and x̄ = 0, this implies we must have φ(a) = φ(0),
for all a; that is, φ must be constant. On the other hand, if φ is constant, then the estimators
are invariant by part a). So we have invariance if and only if φ is constant. Invariance
with respect to G1 also requires φ to be constant because G2 is a subgroup of G1. Finally,
an estimator of σ2 is invariant with respect to G3 if W (cx1, . . . , cxn) = c2W (x1, . . . , xn).
Estimators of the given form are invariant because

W (cx1, . . . , cxn) = φ
(cx̄

cs

)
c2s2 = c2φ

( x̄

s

)
s2 = c2W (x1, . . . , xn).



Chapter 7

Point Estimation

7.1 For each value of x, the MLE θ̂ is the value of θ that maximizes f(x|θ). These values are in the
following table.

x 0 1 2 3 4
θ̂ 1 1 2 or 3 3 3

At x = 2, f(x|2) = f(x|3) = 1/4 are both maxima, so both θ̂ = 2 or θ̂ = 3 are MLEs.
7.2 a.

L(β|x) =
n∏

i=1

1
Γ(α)βα

xα−1
i e−xi/β =

1
Γ(α)nβnα

[
n∏

i=1

xi

]α−1

e−Σixi/β

logL(β|x) = − log Γ(α)n − nα log β + (α−1) log

[
n∏

i=1

xi

]
−
∑

i xi

β

∂logL

∂β
= −nα

β
+
∑

i xi

β2

Set the partial derivative equal to 0 and solve for β to obtain β̂ =
∑

i xi/(nα). To check
that this is a maximum, calculate

∂2logL

∂β2

∣∣∣∣
β=β̂

=
nα

β2
−

2
∑

i xi

β3

∣∣∣∣
β=β̂

=
(nα)3

(
∑

i xi)
2 −

2(nα)3

(
∑

i xi)
2 = − (nα)3

(
∑

i xi)
2 < 0.

Because β̂ is the unique point where the derivative is 0 and it is a local maximum, it is a
global maximum. That is, β̂ is the MLE.

b. Now the likelihood function is

L(α, β|x) =
1

Γ(α)nβnα

[
n∏

i=1

xi

]α−1

e−Σixi/β ,

the same as in part (a) except α and β are both variables. There is no analytic form for the
MLEs, The values α̂ and β̂ that maximize L. One approach to finding α̂ and β̂ would be to
numerically maximize the function of two arguments. But it is usually best to do as much
as possible analytically, first, and perhaps reduce the complexity of the numerical problem.
From part (a), for each fixed value of α, the value of β that maximizes L is

∑
i xi/(nα).

Substitute this into L. Then we just need to maximize the function of the one variable α
given by

1
Γ(α)n (

∑
i xi/(nα))nα

[
n∏

i=1

xi

]α−1

e−Σixi/(Σixi/(nα))

=
1

Γ(α)n (
∑

i xi/(nα))nα

[
n∏

i=1

xi

]α−1

e−nα.
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For the given data, n = 14 and
∑

i xi = 323.6. Many computer programs can be used
to maximize this function. From PROC NLIN in SAS we obtain α̂ = 514.219 and, hence,
β̂ = 323.6

14(514.219) = .0450.

7.3 The log function is a strictly monotone increasing function. Therefore, L(θ|x) > L(θ′|x) if and
only if log L(θ|x) > log L(θ′|x). So the value θ̂ that maximizes log L(θ|x) is the same as the
value that maximizes L(θ|x).

7.5 a. The value ẑ solves the equation

(1− p)n =
∏

i

(1− xiz),

where 0 ≤ z ≤ (maxi xi)−1. Let k̂ = greatest integer less than or equal to 1/ẑ. Then from
Example 7.2.9, k̂ must satisfy

[k(1− p)]n ≥
∏

i

(k − xi) and [(k + 1)(1− p)]n <
∏

i

(k + 1− xi).

Because the right-hand side of the first equation is decreasing in ẑ, and because k̂ ≤ 1/ẑ (so
ẑ ≤ 1/k̂) and k̂ + 1 > 1/ẑ, k̂ must satisfy the two inequalities. Thus k̂ is the MLE.

b. For p = 1/2, we must solve
(

1
2

)4 = (1 − 20z)(1 − z)(1 − 19z), which can be reduced to the
cubic equation −380z3 + 419z2 − 40z + 15/16 = 0. The roots are .9998, .0646, and .0381,
leading to candidates of 1, 15, and 26 for k̂. The first two are less than maxi xi. Thus k̂ = 26.

7.6 a. f(x|θ) =
∏

i θx−2
i I[θ,∞)(xi) =

(∏
i x−2

i

)
θnI[θ,∞)(x(1)). Thus, X(1) is a sufficient statistic for

θ by the Factorization Theorem.
b. L(θ|x) = θn

(∏
i x−2

i

)
I[θ,∞)(x(1)). θn is increasing in θ. The second term does not involve θ.

So to maximize L(θ|x), we want to make θ as large as possible. But because of the indicator
function, L(θ|x) = 0 if θ > x(1). Thus, θ̂ = x(1).

c. EX =
∫∞

θ
θx−1 dx = θ logx|∞θ = ∞. Thus the method of moments estimator of θ does not

exist. (This is the Pareto distribution with α = θ, β = 1.)
7.7 L(0|x) = 1, 0 < xi < 1, and L(1|x) =

∏
i 1/(2

√
xi), 0 < xi < 1. Thus, the MLE is 0 if

1 ≥
∏

i 1/(2
√

xi), and the MLE is 1 if 1 <
∏

i 1/(2
√

xi).
7.8 a. EX2 = VarX + µ2 = σ2. Therefore X2 is an unbiased estimator of σ2.

b.

L(σ|x) =
1√
2πσ

e−x2/(2σ2). log L(σ|x) = log(2π)−1/2 − log σ − x2/(2σ2).

∂logL

∂σ
= − 1

σ
+

x2

σ3

set= 0 ⇒ σ̂X2 = σ̂3 ⇒ σ̂ =
√

X2 = |X|.

∂2logL

∂σ2
=

−3x2σ2

σ6
+

1
σ2

, which is negative at σ̂ = |x|.

Thus, σ̂ = |x| is a local maximum. Because it is the only place where the first derivative is
zero, it is also a global maximum.

c. Because EX = 0 is known, just equate EX2 = σ2 = 1
n

∑1
i=1 X2

i = X2 ⇒ σ̂ = |X|.
7.9 This is a uniform(0, θ) model. So EX = (0 + θ)/2 = θ/2. The method of moments estimator

is the solution to the equation θ̃/2 = X̄, that is, θ̃ = 2X̄. Because θ̃ is a simple function of the
sample mean, its mean and variance are easy to calculate. We have

E θ̃ = 2E X̄ = 2EX = 2
θ

2
= θ, and Var θ̃ = 4Var X̄ = 4

θ2/12
n

=
θ2

3n
.
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The likelihood function is

L(θ|x) =
n∏

i=1

1
θ
I[0,θ](xi) =

1
θn

I[0,θ](x(n))I[0,∞)(x(1)),

where x(1) and x(n) are the smallest and largest order statistics. For θ ≥ x(n), L = 1/θn, a
decreasing function. So for θ ≥ x(n), L is maximized at θ̂ = x(n). L = 0 for θ < x(n). So the
overall maximum, the MLE, is θ̂ = X(n). The pdf of θ̂ = X(n) is nxn−1/θn, 0 ≤ x ≤ θ. This
can be used to calculate

E θ̂ =
n

n + 1
θ, E θ̂2 =

n

n + 2
θ2 and Var θ̂ =

nθ2

(n + 2)(n + 1)2
.

θ̃ is an unbiased estimator of θ; θ̂ is a biased estimator. If n is large, the bias is not large
because n/(n + 1) is close to one. But if n is small, the bias is quite large. On the other hand,
Var θ̂ < Var θ̃ for all θ. So, if n is large, θ̂ is probably preferable to θ̃.

7.10 a. f(x|θ) =
∏

i
α

βα xα−1
i I[0,β](xi) =

(
α

βα

)n

(
∏

i xi)
α−1

I(−∞,β](x(n))I[0,∞)(x(1)) = L(α, β|x). By
the Factorization Theorem, (

∏
i Xi, X(n)) are sufficient.

b. For any fixed α, L(α, β|x) = 0 if β < x(n), and L(α, β|x) a decreasing function of β if
β ≥ x(n). Thus, X(n) is the MLE of β. For the MLE of α calculate

∂

∂α
logL =

∂

∂α

[
nlogα−nαlogβ+(α−1)log

∏
i

xi

]
=

n

α
− n log β + log

∏
i

xi.

Set the derivative equal to zero and use β̂ = X(n) to obtain

α̂ =
n

nlogX(n)− log
∏

i Xi
=

[
1
n

∑
i

(logX(n)− logXi)

]−1

.

The second derivative is −n/α2 < 0, so this is the MLE.
c. X(n) = 25.0, log

∏
i Xi =

∑
i log Xi = 43.95 ⇒ β̂ = 25.0, α̂ = 12.59.

7.11 a.

f(x|θ) =
∏

i

θxθ−1
i = θn

(∏
i

xi

)θ−1

= L(θ|x)

d

dθ
log L =

d

dθ

[
nlogθ+(θ−1)log

∏
i

xi

]
=

n

θ
+
∑

i

log xi.

Set the derivative equal to zero and solve for θ to obtain θ̂ = (− 1
n

∑
i log xi)−1. The second

derivative is −n/θ2 < 0, so this is the MLE. To calculate the variance of θ̂, note that
Yi = − log Xi ∼ exponential(1/θ), so −

∑
i log Xi ∼ gamma(n, 1/θ). Thus θ̂ = n/T , where

T ∼ gamma(n, 1/θ). We can either calculate the first and second moments directly, or use
the fact that θ̂ is inverted gamma (page 51). We have

E
1
T

=
θn

Γ(n)

∫ ∞

0

1
t
tn−1e−θt dt =

θn

Γ(n)
Γ(n− 1)

θn−1
=

θ

n− 1
.

E
1

T 2
=

θn

Γ(n)

∫ ∞

0

1
t2

tn−1e−θt dt =
θn

Γ(n)
Γ(n− 2)

θn−2
=

θ2

(n− 1)(n− 2)
,
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and thus

E θ̂ =
n

n− 1
θ and Var θ̂ =

n2

(n− 1)2(n− 2)
θ2 → 0 as n →∞.

b. Because X ∼ beta(θ, 1), EX = θ/(θ + 1) and the method of moments estimator is the
solution to

1
n

∑
i

Xi =
θ

θ+1
⇒ θ̃ =

∑
i Xi

n−
∑

i Xi
.

7.12 Xi ∼ iid Bernoulli(θ), 0 ≤ θ ≤ 1/2.

a. method of moments:
EX = θ =

1
n

∑
i

Xi = X̄ ⇒ θ̃ = X̄.

MLE: In Example 7.2.7, we showed that L(θ|x) is increasing for θ ≤ x̄ and is decreasing
for θ ≥ x̄. Remember that 0 ≤ θ ≤ 1/2 in this exercise. Therefore, when X̄ ≤ 1/2, X̄ is
the MLE of θ, because X̄ is the overall maximum of L(θ|x). When X̄ > 1/2, L(θ|x) is an
increasing function of θ on [0, 1/2] and obtains its maximum at the upper bound of θ which
is 1/2. So the MLE is θ̂ = min

{
X̄, 1/2

}
.

b. The MSE of θ̃ is MSE(θ̃) = Var θ̃ + bias(θ̃)2 = (θ(1− θ)/n) + 02 = θ(1− θ)/n. There is no
simple formula for MSE(θ̂), but an expression is

MSE(θ̂) = E(θ̂ − θ)2 =
n∑

y=0

(θ̂ − θ)2
(

n

y

)
θy(1− θ)n−y

=
[n/2]∑
y=0

( y

n
− θ
)2
(

n

y

)
θy(1− θ)n−y +

n∑
y=[n/2]+1

(
1
2
− θ

)2(
n

y

)
θy(1− θ)n−y,

where Y =
∑

i Xi ∼ binomial(n, θ) and [n/2] = n/2, if n is even, and [n/2] = (n − 1)/2, if
n is odd.

c. Using the notation used in (b), we have

MSE(θ̃) = E(X̄ − θ)2 =
n∑

y=0

( y

n
− θ
)2
(

n

y

)
θy(1− θ)n−y.

Therefore,

MSE(θ̃)−MSE(θ̂) =
n∑

y=[n/2]+1

[( y

n
− θ
)2

−
(

1
2
− θ

)2
](

n

y

)
θy(1− θ)n−y

=
n∑

y=[n/2]+1

(
y

n
+

1
2
− 2θ

)(
y

n
− 1

2

)(
n

y

)
θy(1− θ)n−y.

The facts that y/n > 1/2 in the sum and θ ≤ 1/2 imply that every term in the sum is positive.
Therefore MSE(θ̂) < MSE(θ̃) for every θ in 0 < θ ≤ 1/2. (Note: MSE(θ̂) = MSE(θ̃) = 0 at
θ = 0.)

7.13 L(θ|x) =
∏

i
1
2e−

1
2 |xi−θ| = 1

2n e−
1
2Σi|xi−θ|, so the MLE minimizes

∑
i |xi − θ| =

∑
i |x(i) − θ|,

where x(1), . . . , x(n) are the order statistics. For x(j) ≤ θ ≤ x(j+1),

n∑
i=1

|x(i) − θ| =
j∑

i=1

(θ − x(i)) +
n∑

i=j+1

(x(i) − θ) = (2j − n)θ −
j∑

i=1

x(i) +
n∑

i=j+1

x(i).
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This is a linear function of θ that decreases for j < n/2 and increases for j > n/2. If n is even,
2j − n = 0 if j = n/2. So the likelihood is constant between x(n/2) and x((n/2)+1), and any
value in this interval is the MLE. Usually the midpoint of this interval is taken as the MLE. If
n is odd, the likelihood is minimized at θ̂ = x((n+1)/2).

7.15 a. The likelihood is

L(µ, λ|x) =
λn/2

(2π)n
∏

i xi
exp

{
−λ

2

∑
i

(xi − µ)2

µ2xi

}
.

For fixed λ, maximizing with respect to µ is equivalent to minimizing the sum in the expo-
nential.

d

dµ

∑
i

(xi − µ)2

µ2xi
=

d

dµ

∑
i

((xi/µ)− 1)2

xi
= −

∑
i

2 ((xi/µ)− 1)
xi

xi

µ2
.

Setting this equal to zero is equivalent to setting∑
i

(
xi

µ
− 1
)

= 0,

and solving for µ yields µ̂n = x̄. Plugging in this µ̂n and maximizing with respect to λ
amounts to maximizing an expression of the form λn/2e−λb. Simple calculus yields

λ̂n =
n

2b
where b =

∑
i

(xi − x̄)2

2x̄2xi
.

Finally,

2b =
∑

i

xi

x̄2
− 2

∑
i

1
x̄

+
∑

i

1
xi

= −n

x̄
+
∑

i

1
xi

=
∑

i

(
1
xi
− 1

x̄

)
.

b. This is the same as Exercise 6.27b.
c. This involved algebra can be found in Schwarz and Samanta (1991).

7.17 a. This is a special case of the computation in Exercise 7.2a.
b. Make the transformation

z = (x2 − 1)/x1, w = x1 ⇒ x1 = w, x2 = wz + 1.

The Jacobean is |w|, and

fZ(z) =
∫

fX1(w)fX2(wz + 1)wdw =
1
θ2

e−1/θ

∫
we−w(1+z)/θdw,

where the range of integration is 0 < w < −1/z if z < 0, 0 < w < ∞ if z > 0. Thus,

fZ(z) =
1
θ2

e−1/θ

{∫ −1/z

0
we−w(1+z)/θdw if z < 0∫∞

0
we−w(1+z)/θdw if z ≥ 0

Using the fact that
∫

we−w/adw = −e−w/a(aw + a2), we have

fZ(z) = e−1/θ

{
zθ+e(1+z)/zθ(1+z−zθ)

θz(1+z)2 if z < 0
1

(1+z)2 if z ≥ 0
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c. From part (a) we get θ̂ = 1. From part (b), X2 = 1 implies Z = 0 which, if we use the second
density, gives us θ̂ = ∞.

d. The posterior distributions are just the normalized likelihood times prior, so of course they
are different.

7.18 a. The usual first two moment equations for X and Y are

x̄ = EX = µX ,
1
n

∑
i

x2
i = EX2 = σ2

X + µ2
X ,

ȳ = EY = µY ,
1
n

∑
i

y2
i = EY 2 = σ2

Y + µ2
Y .

We also need an equation involving ρ.

1
n

∑
i

xiyi = EXY = Cov(X, Y ) + (EX)(EY ) = ρσXσY + µXµY .

Solving these five equations yields the estimators given. Facts such as

1
n

∑
i

x2
i − x̄2 =

∑
i x2

i − (
∑

i xi)
2
/n

n
=
∑

i(xi − x̄)2

n

are used.
b. Two answers are provided. First, use the Miscellanea: For

L(θ|x) = h(x)c(θ) exp

(
k∑

i=1

wi(θ)ti(x)

)
,

the solutions to the k equations
∑n

j=1 ti(xj) = Eθ

(∑n
j=1 ti(Xj)

)
= nEθti(X1), i = 1, . . . , k,

provide the unique MLE for θ. Multiplying out the exponent in the bivariate normal pdf
shows it has this exponential family form with k = 5 and t1(x, y) = x, t2(x, y) = y, t3(x, y) =
x2, t4(x, y) = y2 and t5(x, y) = xy. Setting up the method of moment equations, we have∑

i

xi = nµX ,
∑

i

x2
i = n(µ2

X + σ2
X),∑

i

yi = nµY ,
∑

i

y2
i = n(µ2

Y + σ2
Y ),∑

i

xiyi =
∑

i

[Cov(X,Y ) + µXµY ] = n(ρσXσY + µXµY ).

These are the same equations as in part (a) if you divide each one by n. So the MLEs are
the same as the method of moment estimators in part (a).
For the second answer, use the hint in the book to write

L(θ|x,y) = L(θ|x)L(θ,x|y)

= (2πσ2
X)−

n
2 exp

{
− 1

2σ2
X

∑
i

(xi − µX)2
}

︸ ︷︷ ︸
A

×
(
2πσ2

Y (1−ρ2)
)−n

2 exp

[
−1

2σ2
Y (1− ρ2)

∑
i

{
yi −

(
µY + ρ

σY

σX
(xi − µX)

)}2
]

︸ ︷︷ ︸
B
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We know that x̄ and σ̂2
X =

∑
i(xi − x̄)2/n maximizes A; the question is whether given σY ,

µY , and ρ, does x̄, σ̂2
X maximize B? Let us first fix σ2

X and look for µ̂X , that maximizes B.
We have

∂logB

∂µX
∝ −2

(∑
i

[
(yi − µY )−ρσY

σX
(xi − µX)

])
ρσY

σX

set= 0

⇒
∑

i

(yi − µY ) =
ρσY

σX
Σ(xi − µ̂X).

Similarly do the same procedure for L(θ|y)L(θ,y|x) This implies
∑

i(xi−µX) = ρσX

σY

∑
i(yi−

µ̂Y ). The solutions µ̂X and µ̂Y therefore must satisfy both equations. If
∑

i(yi− µ̂Y ) 6= 0 or∑
i(xi − µ̂X) 6= 0, we will get ρ = 1/ρ, so we need

∑
i(yi − µ̂Y ) = 0 and

∑
i(xi − µ̂X) = 0.

This implies µ̂X = x̄ and µ̂Y = ȳ. (∂2log B
∂µ2

X

< 0. Therefore it is maximum). To get σ̂2
X take

∂log B

∂σ2
X

∝
∑

i

ρσY

σ2
X

(xi − µ̂X)
[
(yi − µY )−ρσY

σX
(xi − µX)

]
set= 0.

⇒
∑

i

(xi − µ̂X)(yi − µ̂Y ) =
ρσY

σ̂X

∑
(xi − µ̂X)2.

Similarly,
∑

i(xi − µ̂X)(yi − µ̂Y ) = ρσX

σ̂Y

∑
i(yi − µ̂Y )2. Thus σ̂2

X and σ̂2
Y must satisfy the

above two equations with µ̂X = X̄, µ̂Y = Ȳ . This implies

σ̂Y

σ̂X

∑
i

(xi − x̄)2 =
σ̂X

σ̂Y

∑
i

(yi − ȳ)2 ⇒
∑

i (xi − x̄)2

σ̂2
X

=
∑

i (yi − ȳ)2

σ̂2
Y

.

Therefore, σ̂2
X = a

∑
i(xi − x̄)2, σ̂2

Y = a
∑

i(yi − ȳ)2 where a is a constant. Combining the
knowledge that

(
x̄, 1

n

∑
i (xi − x̄)2

)
= (µ̂X , σ̂2

X) maximizes A, we conclude that a = 1/n.
Lastly, we find ρ̂, the MLE of ρ. Write

log L(x̄, ȳ, σ̂2
X , σ̂2

Y , ρ|x,y)

= −n

2
log(1− ρ2)− 1

2(1−ρ2)

∑
i

[
(xi − x̄)2

σ̂2
X

−
2ρ(xi − x̄)(yi − ȳ)

σ̂X ,σ̂Y
+

(yi − ȳ)2

σ̂2
Y

]

= −n

2
log(1− ρ2)− 1

2(1−ρ2)

2n− 2ρ
∑

i

(xi − x̄)(yi − ȳ)
σ̂X σ̂Y︸ ︷︷ ︸
A


because σ̂2

X = 1
n

∑
i(xi − x̄)2 and σ̂2

Y = 1
n

∑
i(yi − ȳ)2. Now

log L = −n

2
log(1− ρ2)− n

1− ρ2
+

ρ

1− ρ2
A

and
∂log L

∂ρ
=

n

1− ρ2
− nρ

(1−ρ2)2
+

A(1−ρ2) + 2Aρ2

(1−ρ2)2
set= 0.

This implies

A + Aρ2−nρ̂−nρ̂3

(1−ρ2)2
= 0 ⇒ A(1 + ρ̂2) = nρ̂(1 + ρ̂2)

⇒ ρ̂ =
A

n
=

1
n

∑
i

(xi − x̄)(yi − ȳ)
σ̂X σ̂Y

.
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7.19 a.

L(θ|y) =
∏

i

1√
2πσ2

exp
(
− 1

2σ2
(yi − βxi)2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

∑
i

(y2
i−2βxiyi + β2x2

i )

)

= (2πσ2)−n/2 exp
(
−

β2
∑

i x2
i

2σ2

)
exp

(
− 1

2σ2

∑
i

y2
i +

β

σ2

∑
i

xiyi

)
.

By Theorem 6.1.2, (
∑

i Y 2
i ,
∑

i xiYi) is a sufficient statistic for (β, σ2).
b.

logL(β,σ2|y) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

∑
y2

i +
β

σ2

∑
i

xiyi −
β2

2σ2

∑
i

x2
i .

For a fixed value of σ2,

∂logL

∂β
=

1
σ2

∑
i

xiyi −
β

σ2

∑
i

x2
i

set= 0 ⇒ β̂ =
∑

i xiyi∑
i x2

i

.

Also,
∂2logL

∂β2
=

1
σ2

∑
i

x2
i < 0,

so it is a maximum. Because β̂ does not depend on σ2, it is the MLE. And β̂ is unbiased
because

E β̂ =
∑

i xiEYi∑
i x2

i

=
∑

i xi · βxi∑
i x2

i

= β.

c. β̂ =
∑

i aiYi, where ai = xi/
∑

j x2
j are constants. By Corollary 4.6.10, β̂ is normally dis-

tributed with mean β, and

Var β̂ =
∑

i

a2
i VarYi =

∑
i

(
xi∑
j x2

j

)2

σ2 =
∑

i x2
i

(
∑

j x2
j )2

σ2 =
σ2∑
i x2

i

.

7.20 a.

E
∑

i Yi∑
i xi

=
1∑
i xi

∑
i

EYi =
1∑
i xi

∑
i

βxi = β.

b.

Var
(∑

i Yi∑
i xi

)
=

1
(
∑

i xi)2
∑

i

VarYi =
∑

i σ2

(
∑

i xi)2
=

nσ2

n2x̄2
=

σ2

nx̄2
.

Because
∑

i x2
i − nx̄2 =

∑
i(xi − x̄)2 ≥ 0,

∑
i x2

i ≥ nx̄2. Hence,

Var β̂ =
σ2∑
i x2

i

≤ σ2

nx̄2
= Var

(∑
i Yi∑
i xi

)
.

(In fact, β̂ is BLUE (Best Linear Unbiased Estimator of β), as discussed in Section 11.3.2.)
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7.21 a.

E
1
n

∑
i

Yi

xi
=

1
n

∑
i

EYi

xi
=

1
n

∑
i

βxi

xi
= β.

b.

Var
1
n

∑
i

Yi

xi
=

1
n2

∑
i

VarYi

x2
i

=
σ2

n2

∑
i

1
x2

i

.

Using Example 4.7.8 with ai = 1/x2
i we obtain

1
n

∑
i

1
x2

i

≥ n∑
i x2

i

.

Thus,

Var β̂ =
σ2∑
i x2

i

≤ σ2

n2

∑
i

1
x2

i

= Var
1
n

∑
i

Yi

xi
.

Because g(u) = 1/u2 is convex, using Jensen’s Inequality we have

1
x̄2
≤ 1

n

∑
i

1
x2

i

.

Thus,

Var
(∑

i Yi∑
i xi

)
=

σ2

nx̄2
≤ σ2

n2

∑
i

1
x2

i

= Var
1
n

∑
i

Yi

xi
.

7.22 a.

f(x̄, θ) = f(x̄|θ)π(θ) =
√

n√
2πσ

e−n(x̄−θ)2/(2σ2) 1√
2πτ

e−(θ−µ)2/2τ2
.

b. Factor the exponent in part (a) as

−n

2σ2
(x̄− θ)2 − 1

2τ2
(θ − µ)2 = − 1

2v2
(θ − δ(x))2 − 1

τ2 + σ2/n
(x̄− µ)2,

where δ(x) = (τ2x̄+(σ2/n)µ)/(τ2 +σ2/n) and v = (σ2τ2/n)
/

(τ +σ2/n). Let n(a, b) denote
the pdf of a normal distribution with mean a and variance b. The above factorization shows
that

f(x, θ) = n(θ, σ2/n)× n(µ, τ2) = n(δ(x), v2)× n(µ, τ2 + σ2/n),

where the marginal distribution of X̄ is n(µ, τ2 +σ2/n) and the posterior distribution of θ|x
is n(δ(x), v2). This also completes part (c).

7.23 Let t = s2 and θ = σ2. Because (n− 1)S2/σ2 ∼ χ2
n−1, we have

f(t|θ) =
1

Γ ((n− 1)/2) 2(n−1)/2

(
n− 1

θ
t

)[(n−1)/2]−1

e−(n−1)t/2θ n− 1
θ

.

With π(θ) as given, we have (ignoring terms that do not depend on θ)

π(θ|t) ∝

[(
1
θ

)((n−1)/2)−1

e−(n−1)t/2θ 1
θ

] [
1

θα+1
e−1/βθ

]

∝
(

1
θ

)((n−1)/2)+α+1

exp
{
−1

θ

[
(n− 1)t

2
+

1
β

]}
,
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which we recognize as the kernel of an inverted gamma pdf, IG(a, b), with

a =
n− 1

2
+ α and b =

[
(n− 1)t

2
+

1
β

]−1

.

Direct calculation shows that the mean of an IG(a, b) is 1/((a− 1)b), so

E(θ|t) =
n−1

2 t + 1
β

n−1
2 + α−1

=
n−1

2 s2 + 1
β

n−1
2 + α−1

.

This is a Bayes estimator of σ2.
7.24 For n observations, Y =

∑
i Xi ∼ Poisson(nλ).

a. The marginal pmf of Y is

m(y) =
∫ ∞

0

(nλ)ye−nλ

y!
1

Γ(α)βα
λα−1e−λ/β dλ

=
ny

y!Γ(α)βα

∫ ∞

0

λ(y+α)−1e−
λ

β/(nβ+1) dλ =
ny

y!Γ(α)βα
Γ(y + α)

(
β

nβ+1

)y+α

.

Thus,

π(λ|y) =
f(y|λ)π(λ)

m(y)
=

λ(y+α)−1e−
λ

β/(nβ+1)

Γ(y+α)
(

β
nβ+1

)y+α ∼ gamma
(

y + α,
β

nβ+1

)
.

b.

E(λ|y) = (y + α)
β

nβ+1
=

β

nβ+1
y +

1
nβ+1

(αβ).

Var(λ|y) = (y + α)
β2

(nβ+1)2
.

7.25 a. We will use the results and notation from part (b) to do this special case. From part (b),
the Xis are independent and each Xi has marginal pdf

m(x|µ, σ2, τ2) =
∫ ∞

−∞
f(x|θ, σ2)π(θ|µ, τ2) dθ =

∫ ∞

−∞

1
2πστ

e−(x−θ)2/2σ2
e−(θ−µ)2/2τ2

dθ.

Complete the square in θ to write the sum of the two exponents as

−

(
θ −

[
xτ2

σ2+τ2 + µσ2

σ2+τ2

])2

2 σ2τ2

σ2+τ2

− (x− µ)2

2(σ2 + τ2)
.

Only the first term involves θ; call it −A(θ). Also, e−A(θ) is the kernel of a normal pdf. Thus,∫ ∞

−∞
e−A(θ) dθ =

√
2π

στ√
σ2 + τ2

,

and the marginal pdf is

m(x|µ, σ2, τ2) =
1

2πστ

√
2π

στ√
σ2 + τ2

exp
{
− (x− µ)2

2(σ2 + τ2)

}
=

1√
2π
√

σ2 + τ2
exp

{
− (x− µ)2

2(σ2 + τ2)

}
,

a n(µ, σ2 + τ2) pdf.
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b. For one observation of X and θ the joint pdf is

h(x, θ|τ) = f(x|θ)π(θ|τ),

and the marginal pdf of X is

m(x|τ) =
∫ ∞

−∞
h(x, θ|τ) dθ.

Thus, the joint pdf of X = (X1, . . . , Xn) and θ = (θ1, . . . , θn) is

h(x,θ|τ) =
∏

i

h(xi, θi|τ),

and the marginal pdf of X is

m(x|τ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
i

h(xi, θi|τ) dθ1 . . . dθn

=
∫ ∞

−∞
· · ·
{∫ ∞

−∞
h(x1, θ1|τ) dθ1

} n∏
i=2

h(xi, θi|τ) dθ2 . . . dθn.

The dθ1 integral is just m(x1|τ), and this is not a function of θ2, . . . , θn. So, m(x1|τ) can be
pulled out of the integrals. Doing each integral in turn yields the marginal pdf

m(x|τ) =
∏

i

m(xi|τ).

Because this marginal pdf factors, this shows that marginally X1, . . . , Xn are independent,
and they each have the same marginal distribution, m(x|τ).

7.26 First write
f(x1, . . . , xn|θ)π(θ) ∝ e−

n
2σ2 (x̄−θ)2−|θ|/a

where the exponent can be written

n

2σ2
(x̄− θ)2−|θ|

a
=

n

2σ2
(θ − δ±(x)) +

n

2σ2

(
x̄2 − δ2

±(x)
)

with δ±(x) = x̄± σ2

na , where we use the “+” if θ > 0 and the “−” if θ < 0. Thus, the posterior
mean is

E(θ|x) =

∫∞
−∞ θe−

n
2σ2 (θ−δ±(x))2 dθ∫∞

−∞ e−
n

2σ2 (θ−δ±(x))2 dθ
.

Now use the facts that for constants a and b,∫ ∞

0

e−
a
2 (t−b)2 dt =

∫ 0

−∞
e−

a
2 (t−b)2 dt =

√
π

2a
,∫ ∞

0

te−
a
2 (t−b)2 dt =

∫ ∞

0

(t− b)e−
a
2 (t−b)2 dt +

∫ ∞

0

be−
a
2 (t−b)2 dt =

1
a
e−

a
2 b2 + b

√
π

2a
,∫ 0

−∞
te−

a
2 (t−b)2 dt = −1

a
e−

a
2 b2 + b

√
π

2a
,

to get

E(θ|x) =

√
πσ2

2n (δ−(x) + δ+(x))+σ2

n

(
e−

n
2σ2 δ2

+(x)−e−
n

2σ2 δ2
−(x)

)
2
√

πσ2

2n

.
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7.27 a. The log likelihood is

log L =
n∑

i=1

−βτi + yi log(βτi)− τi + xi log(τi)− log yi!− log xi!

and differentiation gives

∂

∂β
log L =

n∑
i=1

−τi +
yiτi

βτi
⇒ β =

∑n
i=1 yi∑n
i=1 τi

∂

∂τj
log L = −β +

yjβ

βτj
− i +

xj

τj
⇒ τj =

xj + yj

1 + β

⇒
n∑

j=1

τj =

∑n
j=1 xj +

∑n
j=1 yj

1 + β
.

Combining these expressions yields β̂ =
∑n

j=1 yj/
∑n

j=1 xj and τ̂j = xj+yj

1+β̂
.

b. The stationary point of the EM algorithm will satisfy

β̂ =
∑n

i=1 yi

τ̂1 +
∑n

i=2 xi

τ̂1 =
τ̂1 + y1

β̂ + 1

τ̂j =
xj + yj

β̂ + 1
.

The second equation yields τ1 = y1/β, and substituting this into the first equation yields
β =

∑n
j=2 yj/

∑n
j=2 xj . Summing over j in the third equation, and substituting β =∑n

j=2 yj/
∑n

j=2 xj shows us that
∑n

j=2 τ̂j =
∑n

j=2 xj , and plugging this into the first equa-
tion gives the desired expression for β̂. The other two equations in (7.2.16) are obviously
satisfied.

c. The expression for β̂ was derived in part (b), as were the expressions for τ̂i.

7.29 a. The joint density is the product of the individual densities.
b. The log likelihood is

log L =
n∑

i=1

−mβτi + yi log(mβτi) + xi log(τi) + log m!− log yi!− log xi!

and

∂

∂β
log L = 0 ⇒ β =

∑n
i=1 yi∑n

i=1 mτi

∂

∂τj
log L = 0 ⇒ τj =

xj + yj

mβ
.

Since
∑

τj = 1, β̂ =
∑n

i=1 yi/m =
∑n

i=1 yi/
∑n

i=1 xi. Also,
∑

j τj =
∑

j(yj + xj) = 1, which
implies that mβ =

∑
j(yj + xj) and τ̂j = (xj + yj)/

∑
i(yi + xi).

c. In the likelihood function we can ignore the factorial terms, and the expected complete-data
likelihood is obtained by on the rth iteration by replacing x1 with E(X1|τ̂ (r)

1 ) = mτ̂
(r)
1 .

Substituting this into the MLEs of part (b) gives the EM sequence.
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The MLEs from the full data set are β̂ = 0.0008413892 and

τ̂ = (0.06337310, 0.06374873, 0.06689681, 0.04981487, 0.04604075, 0.04883109,

0.07072460, 0.01776164, 0.03416388, 0.01695673, 0.02098127, 0.01878119,

0.05621836, 0.09818091, 0.09945087, 0.05267677, 0.08896918, 0.08642925).

The MLEs for the incomplete data were computed using R, where we take m =
∑

xi. The
R code is

#mles on the incomplete data#
xdatam<-c(3560,3739,2784,2571,2729,3952,993,1908,948,1172,

1047,3138,5485,5554,2943,4969,4828)
ydata<-c(3,4,1,1,3,1,2,0,2,0,1,3,5,4,6,2,5,4)
xdata<-c(mean(xdatam),xdatam); for (j in 1:500) {
xdata<-c(sum(xdata)*tau[1],xdatam) beta<-sum(ydata)/sum(xdata)
tau<-c((xdata+ydata)/(sum(xdata)+sum(ydata))) } beta tau

The MLEs from the incomplete data set are β̂ = 0.0008415534 and

τ̂ = (0.06319044, 0.06376116, 0.06690986, 0.04982459, 0.04604973, 0.04884062,

0.07073839, 0.01776510, 0.03417054, 0.01696004, 0.02098536, 0.01878485,

0.05622933, 0.09820005, 0.09947027, 0.05268704, 0.08898653, 0.08644610).

7.31 a. By direct substitution we can write

log L(θ|y) = E
[
log L(θ|y,X)| θ̂(r),y

]
− E

[
log k(X|θ,y)| θ̂(r),y

]
.

The next iterate, θ̂(r+1) is obtained by maximizing the expected complete-data log likelihood,
so for any θ, E

[
log L(θ̂(r+1)y,X)

∣∣∣ θ̂(r),y
]
≥ E

[
log L(θ|y,X)| θ̂(r),y

]
b. Write

E [log k(X|θ,y)|θ′,y] =
∫

log k(x|θ,y) log k(x|θ′,y)dx ≤
∫

log k(x|θ′,y) log k(x|θ′,y)dx,

from the hint. Hence E
[
log k(X|θ̂(r+1),y)

∣∣∣ θ̂(r),y
]
≤ E

[
log k(X|θ̂(r),y)

∣∣∣ θ̂(r),y
]
, and so the

entire right hand side in part (a) is decreasing.

7.33 Substitute α = β =
√

n/4 into MSE(p̂B) = np(1−p)

(α+β+n)2
+
(

np+α
α+β+n − p

)2

and simplify to obtain

MSE(p̂B) =
n

4(
√

n + n)2
,

independent of p, as desired.

7.35 a.

δp (g(x)) = δp(x1 + a, . . . , xn + a)

=

∫∞
−∞ t

∏
i f(xi + a− t) dt∫∞

−∞
∏

i f(xi + a− t) dt
=

∫∞
−∞ (y + a)

∏
i f(xi − y) dy∫∞

−∞
∏

i f(xi − y) dy
(y = t− a)

= a + δp(x) = ḡ (δp(x)) .
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b. ∏
i

f(xi − t) =
1

(2π)n/2
e−

1
2Σi(xi−t)2 =

1
(2π)n/2

e−
1
2 n(x̄−t)2e−

1
2 (n−1)s2

,

so

δp(x) =
(
√

n/
√

2π)
∫∞
−∞ te−

1
2 n(x̄−t)2dt

(
√

n/
√

2π)
∫∞
−∞ e−

1
2 n(x̄−t)2 dt

=
x̄

1
= x̄.

c. ∏
i

f(xi − t) =
∏

i

I

(
t− 1

2
≤ xi ≤ t +

1
2

)
= I

(
x(n) −

1
2
≤ t ≤ x(1) +

1
2

)
,

so

δp(x) =

∫ x(1)+1/2

x(n)+1/2 t dt∫ x(1)+1/2

x(n)+1/2 1 dt
=

x(1) + x(n)

2
.

7.37 To find a best unbiased estimator of θ, first find a complete sufficient statistic. The joint pdf is

f(x|θ) =
(

1
2θ

)n∏
i

I(−θ,θ)(xi) =
(

1
2θ

)n

I[0,θ)(max
i
|xi|).

By the Factorization Theorem, maxi |Xi| is a sufficient statistic. To check that it is a complete
sufficient statistic, let Y = maxi|Xi|. Note that the pdf of Y is fY (y) = nyn−1/θn, 0 < y < θ.
Suppose g(y) is a function such that

E g(Y ) =
∫ θ

0

nyn−1

θn
g(y) dy = 0, for all θ.

Taking derivatives shows that θn−1g(θ) = 0, for all θ. So g(θ) = 0, for all θ, and Y = maxi|Xi|
is a complete sufficient statistic. Now

EY =
∫ θ

0

y
nyn−1

θn
dy =

n

n + 1
θ ⇒ E

(
n + 1

n
Y

)
= θ.

Therefore n+1
n maxi|Xi| is a best unbiased estimator for θ because it is a function of a complete

sufficient statistic. (Note that
(
X(1), X(n)

)
is not a minimal sufficient statistic (recall Exercise

5.36). It is for θ < Xi < 2θ, −2θ < Xi < θ, 4θ < Xi < 6θ, etc., but not when the range is
symmetric about zero. Then maxi|Xi| is minimal sufficient.)

7.38 Use Corollary 7.3.15.

a.

∂

∂θ
logL(θ|x) =

∂

∂θ
log
∏

i

θxθ−1
i =

∂

∂θ

∑
i

[logθ + (θ−1) logxi]

=
∑

i

[
1
θ

+ logxi

]
= −n

[
−
∑

i

logxi

n
−1

θ

]
.

Thus, −
∑

i log Xi/n is the UMVUE of 1/θ and attains the Cramér-Rao bound.
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b.

∂

∂θ
logL(θ|x) =

∂

∂θ
log
∏

i

logθ

θ−1
θxi =

∂

∂θ

∑
i

[loglogθ − log(θ−1) + xilogθ]

=
∑

i

(
1

θlogθ
− 1

θ−1

)
+

1
θ

∑
i

xi =
n

θlogθ
− n

θ−1
+

nx̄

θ

=
n

θ

[
x̄−
(

θ

θ−1
− 1

logθ

)]
.

Thus, X̄ is the UMVUE of θ
θ−1 −

1
logθ and attains the Cramér-Rao lower bound.

Note: We claim that if ∂
∂θ log L(θ|X) = a(θ)[W (X) − τ(θ)], then EW (X) = τ(θ), because

under the condition of the Cramér-Rao Theorem, E ∂
∂θ log L(θ|x) = 0. To be rigorous, we

need to check the “interchange differentiation and integration“ condition. Both (a) and (b)
are exponential families, and this condition is satisfied for all exponential families.

7.39

Eθ

[
∂2

∂θ2
log f(X|θ)

]
= Eθ

[
∂

∂θ

(
∂

∂θ
log f(X|θ)

)]

= Eθ

[
∂

∂θ

(
∂
∂θf(X|θ)
f(X|θ)

)]
= Eθ

 ∂2

∂θ2 f(X|θ)
f(X|θ)

−

(
∂
∂θf(X|θ)
f(X|θ)

)2
 .

Now consider the first term:

Eθ

[
∂2

∂θ2 f(X|θ)
f(X|θ)

]
=

∫ [
∂2

∂θ2
f(x|θ)

]
dx =

d

dθ

∫
∂

∂θ
f(x|θ) dx (assumption)

=
d

dθ
Eθ

[
∂

∂θ
log f(X|θ)

]
= 0, (7.3.8)

and the identity is proved.
7.40

∂

∂θ
logL(θ|x) =

∂

∂p
log
∏

i

pxi(1− p)1−xi =
∂

∂p

∑
i

xi log p + (1− xi) log(1− p)

=
∑

i

[
xi

p
−

(1− xi)
1−p

]
=

nx̄

p
− n− nx̄

1−p
=

n

p(1− p)
[x̄− p].

By Corollary 7.3.15, X̄ is the UMVUE of p and attains the Cramér-Rao lower bound. Alter-
natively, we could calculate

−nEθ

(
∂2

∂θ2
logf(X|θ)

)
= −nE

(
∂2

∂p2
log
[
pX(1− p)1−X

])
= −nE

(
∂2

∂p2
[Xlogp + (1−X) log(1− p)]

)
= −nE

(
∂

∂p

[
X

p
− (1−X)

1−p

])
= −nE

(
−X

p2
− 1−X

(1− p)2

)

= −n

(
−1

p
− 1

1−p

)
=

n

p(1− p)
.
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Then using τ(θ) = p and τ ′(θ) = 1,

τ ′(θ)
−nEθ

(
∂2

∂θ2 logf(X|θ)
) =

1
n/p(1− p)

=
p(1− p)

n
= VarX̄.

We know that EX̄ = p. Thus, X̄ attains the Cramér-Rao bound.
7.41 a. E (

∑
i aiXi) =

∑
i aiEXi =

∑
i aiµ = µ

∑
i ai = µ. Hence the estimator is unbiased.

b. Var (
∑

i aiXi) =
∑

i a2
i VarXi =

∑
i a2

i σ
2 = σ2

∑
i a2

i . Therefore, we need to minimize
∑

i a2
i ,

subject to the constraint
∑

i ai = 1. Add and subtract the mean of the ai, 1/n, to get

∑
i

a2
i =

∑
i

[(
ai −

1
n

)
+

1
n

]2
=
∑

i

(
ai −

1
n

)2

+
1
n

,

because the cross-term is zero. Hence,
∑

i a2
i is minimized by choosing ai = 1/n for all i.

Thus,
∑

i(1/n)Xi = X̄ has the minimum variance among all linear unbiased estimators.
7.43 a. This one is real hard - it was taken from an American Statistician article, but the proof is

not there. A cryptic version of the proof is in Tukey (Approximate Weights, Ann. Math.
Statist. 1948, 91-92); here is a more detailed version.
Let qi = q∗i (1 + λti) with 0 ≤ λ ≤ 1 and |ti| ≤ 1. Recall that q∗i = (1/σ2

i )/
∑

j(1/σ2
j ) and

VarW ∗ = 1/
∑

j(1/σ2
j ). Then

Var

(
qiWi∑

j qj

)
=

1
(
∑

j qj)2
∑

i

qiσ
2
i

=
1

[
∑

j q∗j (1 + λtj)]2
∑

i

q∗2i (1 + λti)2σ2
i

=
1

[
∑

j q∗j (1 + λtj)]2
∑

j(1/σ2
j )

∑
i

q∗i (1 + λti)2,

using the definition of q∗i . Now write∑
i

q∗i (1 + λti)2 = 1 + 2λ
∑

j

qjtj + λ2
∑

j

qjt
2
j = [1 + λ

∑
j

qjtj ]2 + λ2[
∑

j

qjt
2
j − (

∑
j

qjtj)2],

where we used the fact that
∑

j q∗j = 1. Now since

[
∑

j

q∗j (1 + λtj)]2 = [1 + λ
∑

j

qjtj ]2,

Var

(
qiWi∑

j qj

)
=

1∑
j(1/σ2

j )

[
1 +

λ2[
∑

j qjt
2
j − (

∑
j qjtj)2]

[1 + λ
∑

j qjtj ]2

]

≤ 1∑
j(1/σ2

j )

[
1 +

λ2[1− (
∑

j qjtj)2]
[1 + λ

∑
j qjtj ]2

]
,

since
∑

j qjt
2
j ≤ 1. Now let T =

∑
j qjtj , and

Var

(
qiWi∑

j qj

)
≤ 1∑

j(1/σ2
j )

[
1 +

λ2[1− T 2]
[1 + λT ]2

]
,
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and the right hand side is maximized at T = −λ, with maximizing value

Var

(
qiWi∑

j qj

)
≤ 1∑

j(1/σ2
j )

[
1 +

λ2[1− λ2]
[1− λ2]2

]
= VarW ∗ 1

1− λ2
.

Bloch and Moses (1988) define λ as the solution to

bmax/bmin =
1 + λ

1− λ
,

where bi/bj are the ratio of the normalized weights which, in the present notation, is

bi/bj = (1 + λti)/(1 + λtj).

The right hand side is maximized by taking ti as large as possible and tj as small as possible,
and setting ti = 1 and tj = −1 (the extremes) yields the Bloch and Moses (1988) solution.

b.

bi =
1/k

(1/σ2
i )
/(∑

j 1/σ2
j

) =
σ2

i

k

∑
j

1/σ2
j .

Thus,

bmax =
σ2

max

k

∑
j

1/σ2
j and bmin =

σ2
min

k

∑
j

1/σ2
j

and B = bmax/bmin = σ2
max/σ2

min. Solving B = (1 + λ)/(1− λ) yields λ = (B − 1)/(B + 1).
Substituting this into Tukey’s inequality yields

VarW

VarW ∗ ≤
(B + 1)2

4B
=

((σ2
max/σ2

min) + 1)2

4(σ2
max/σ2

min)
.

7.44
∑

i Xi is a complete sufficient statistic for θ when Xi ∼ n(θ, 1). X̄2 − 1/n is a function of∑
i Xi. Therefore, by Theorem 7.3.23, X̄2 − 1/n is the unique best unbiased estimator of its

expectation.

E
(

X̄2− 1
n

)
= Var X̄ + (E X̄)2 − 1

n
=

1
n

+ θ2 − 1
n

= θ2.

Therefore, X̄2 − 1/n is the UMVUE of θ2. We will calculate

Var
(
X̄2−1/n

)
= Var(X̄2) = E(X̄4)− [E(X̄2)]2, where X̄ ∼ n (θ, 1/n) ,

but first we derive some general formulas that will also be useful in later exercises. Let Y ∼
n(θ, σ2). Then here are formulas for EY 4 and VarY 2.

EY 4 = E[Y 3(Y − θ + θ)] = EY 3(Y − θ) + EY 3θ = E Y 3(Y − θ) + θEY 3.

EY 3(Y−θ) = σ2E(3Y 2) = σ23
(
σ2+θ2

)
= 3σ4 + 3θ2σ2. (Stein’s Lemma)

θEY 3 = θ
(
3θσ2 + θ3

)
= 3θ2σ2 + θ4. (Example 3.6.6)

VarY 2 = 3σ4 + 6θ2σ2 + θ4 − (σ2 + θ2)2 = 2σ4 + 4θ2σ2.

Thus,

Var
(

X̄2 − 1
n

)
= Var X̄2 = 2

1
n2

+ 4θ2 1
n

>
4θ2

n
.
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To calculate the Cramér-Rao lower bound, we have

Eθ

(
∂2logf(X|θ)

∂θ2

)
= Eθ

(
∂2

∂θ2
log

1√
2π

e−(X−θ)2/2

)
= Eθ

(
∂2

∂θ2

[
log(2π)−1/2−1

2
(X−θ)2

])
= Eθ

(
∂

∂θ
(X−θ)

)
= −1,

and τ(θ) = θ2, [τ ′(θ)]2 = (2θ)2 = 4θ2 so the Cramér-Rao Lower Bound for estimating θ2 is

[τ ′(θ)]2

−nEθ

(
∂2

∂θ2 logf(X|θ)
) =

4θ2

n
.

Thus, the UMVUE of θ2 does not attain the Cramér-Rao bound. (However, the ratio of the
variance and the lower bound → 1 as n →∞.)

7.45 a. Because ES2 = σ2, bias(aS2) = E(aS2)− σ2 = (a− 1)σ2. Hence,

MSE(aS2) = Var(aS2) + bias(aS2)2 = a2Var(S2) + (a− 1)2σ4.

b. There were two typos in early printings; κ = E[X − µ]4/σ4 and

Var(S2) =
1
n

(
κ− n− 3

n− 1

)
σ4.

See Exercise 5.8b for the proof.

c. There was a typo in early printings; under normality κ = 3. Under normality we have

κ =
E[X − µ]4

σ4
= E

[
X − µ

σ

]4
= E Z4,

where Z ∼ n(0, 1). Now, using Lemma 3.6.5 with g(z) = z3 we have

κ = EZ4 = E g(Z)Z = 1E(3Z2) = 3EZ2 = 3.

To minimize MSE(S2) in general, write Var(S2) = Bσ4. Then minimizing MSE(S2) is
equivalent to minimizing a2B + (a − 1)2. Set the derivative of this equal to 0 (B is not a
function of a) to obtain the minimizing value of a is 1/(B + 1). Using the expression in part
(b), under normality the minimizing value of a is

1
B + 1

=
1

1
n

(
3− n−3

n−1

)
+ 1

=
n− 1
n + 1

.

d. There was a typo in early printings; the minimizing a is

a =
n− 1

(n + 1) + (κ−3)(n−1)
n

.

To obtain this simply calculate 1/(B + 1) with (from part (b))

B =
1
n

(
κ− n− 3

n− 1

)
.



Second Edition 7-19

e. Using the expression for a in part (d), if κ = 3 the second term in the denominator is
zero and a = (n − 1)/(n + 1), the normal result from part (c). If κ < 3, the second term
in the denominator is negative. Because we are dividing by a smaller value, we have a >
(n− 1)/(n+1). Because Var(S2) = Bσ4, B > 0, and, hence, a = 1/(B +1) < 1. Similarly, if
κ > 3, the second term in the denominator is positive. Because we are dividing by a larger
value, we have a < (n− 1)/(n + 1).

7.46 a. For the uniform(θ, 2θ) distribution we have EX = (2θ + θ)/2 = 3θ/2. So we solve 3θ/2 = X̄
for θ to obtain the method of moments estimator θ̃ = 2X̄/3.

b. Let x(1), . . . , x(n) denote the observed order statistics. Then, the likelihood function is

L(θ|x) =
1
θn

I[x(n)/2,x(1)](θ).

Because 1/θn is decreasing, this is maximized at θ̂ = x(n)/2. So θ̂ = X(n)/2 is the MLE. Use
the pdf of X(n) to calculate EX(n) = 2n+1

n+1 θ. So E θ̂ = 2n+1
2n+2θ, and if k = (2n + 2)/(2n + 1),

E kθ̂ = θ.
c. From Exercise 6.23, a minimal sufficient statistic for θ is (X(1), X(n)). θ̃ is not a function

of this minimal sufficient statistic. So by the Rao-Blackwell Theorem, E(θ̃|X(1), X(n)) is an
unbiased estimator of θ (θ̃ is unbiased) with smaller variance than θ̃. The MLE is a function
of (X(1), X(n)), so it can not be improved with the Rao-Blackwell Theorem.

d. θ̃ = 2(1.16)/3 = .7733 and θ̂ = 1.33/2 = .6650.
7.47 Xi ∼ n(r, σ2), so X̄ ∼ n(r, σ2/n) and E X̄2 = r2 + σ2/n. Thus E [(πX̄2 − πσ2/n)] = πr2 is

best unbiased because X̄ is a complete sufficient statistic. If σ2 is unknown replace it with s2

and the conclusion still holds.
7.48 a. The Cramér-Rao Lower Bound for unbiased estimates of p is[

d
dpp
]2

−nE d2

dp2 logL(p|X)
=

1

−nE
{

d2

dp2 log[pX(1− p)1−X ]
} =

1

−nE
{
−X

p2− (1−X)

(1−p)2

} =
p(1− p)

n
,

because EX = p. The MLE of p is p̂ =
∑

i Xi/n, with E p̂ = p and Var p̂ = p(1−p)/n. Thus
p̂ attains the CRLB and is the best unbiased estimator of p.

b. By independence, E(X1X2X3X4) =
∏

i EXi = p4, so the estimator is unbiased. Because∑
i Xi is a complete sufficient statistic, Theorems 7.3.17 and 7.3.23 imply that E(X1X2X3X4|∑
i Xi) is the best unbiased estimator of p4. Evaluating this yields

E

(
X1X2X3X4

∣∣∣∣∣∑
i

Xi= t

)
=

P (X1= X2= X3= X4= 1,
∑n

i=5 Xi= t− 4)
P (
∑

i Xi= t)

=
p4
(
n−4
t−4

)
pt−4(1− p)n−t(

n
t

)
pt(1− p)n−t =

(
n− 4
t− 4

)/(n

t

)
,

for t ≥ 4. For t < 4 one of the Xis must be zero, so the estimator is E(X1X2X3X4|
∑

i Xi =
t) = 0.

7.49 a. From Theorem 5.5.9, Y = X(1) has pdf

fY (y) =
n!

(n− 1)!
1
λ

e−y/λ
[
1−(1− e

−y/λ)
]n−1

=
n

λ
e−ny/λ.

Thus Y ∼ exponential(λ/n) so EY = λ/n and nY is an unbiased estimator of λ.
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b. Because fX(x) is in the exponential family,
∑

i Xi is a complete sufficient statistic and
E (nX(1)|

∑
i Xi) is the best unbiased estimator of λ. Because E (

∑
i Xi) = nλ, we must

have E (nX(1)|
∑

i Xi) =
∑

i Xi/n by completeness. Of course, any function of
∑

i Xi that
is an unbiased estimator of λ is the best unbiased estimator of λ. Thus, we know directly
that because E(

∑
i Xi) = nλ,

∑
i Xi/n is the best unbiased estimator of λ.

c. From part (a), λ̂ = 601.2 and from part (b) λ̂ = 128.8. Maybe the exponential model is not
a good assumption.

7.50 a. E(aX̄ + (1 − a)cS) = aE X̄ + (1 − a)E(cS) = aθ + (1 − a)θ = θ. So aX̄ + (1 − a)cS is an
unbiased estimator of θ.

b. Because X̄ and S2 are independent for this normal model, Var(aX̄+(1−a)cS) = a2V1+(1−
a)2V2, where V1 = VarX̄ = θ2/n and V2 = Var(cS) = c2ES2 − θ2 = c2θ2 − θ2 = (c2 − 1)θ2.
Use calculus to show that this quadratic function of a is minimized at

a =
V2

V1+V 2
=

(c2−1)θ2

((1/n) + c
2−1)θ2

=
(c2−1)

((1/n) + c
2−1)

.

c. Use the factorization in Example 6.2.9, with the special values µ = θ and σ2 = θ2, to show
that (X̄, S2) is sufficient. E(X̄ − cS) = θ − θ = 0, for all θ. So X̄ − cS is a nonzero function
of (X̄, S2) whose expected value is always zero. Thus (X̄, S2) is not complete.

7.51 a. Straightforward calculation gives:

E
[
θ − (a1X̄ + a2cS)

]2 = a2
1Var X̄ + a2

2c
2VarS + θ2(a1 + a2 − 1)2.

Because Var X̄ = θ2/n and VarS = E S2 − (ES)2 = θ2
(

c2−1
c2

)
, we have

E
[
θ − (a1X̄ + a2cS)

]2 = θ2
[
a2
1

/
n + a2

2(c
2 − 1) + (a1 + a2 − 1)2

]
,

and we only need minimize the expression in square brackets, which is independent of θ.
Differentiating yields a2 =

[
(n + 1)c2 − n

]−1 and a1 = 1−
[
(n + 1)c2 − n

]−1.
b. The estimator T ∗ has minimum MSE over a class of estimators that contain those in Exercise

7.50.
c. Because θ > 0, restricting T ∗ ≥ 0 will improve the MSE.
d. No. It does not fit the definition of either one.

7.52 a. Because the Poisson family is an exponential family with t(x) = x,
∑

i Xi is a complete
sufficient statistic. Any function of

∑
i Xi that is an unbiased estimator of λ is the unique

best unbiased estimator of λ. Because X̄ is a function of
∑

i Xi and E X̄ = λ, X̄ is the best
unbiased estimator of λ.

b. S2 is an unbiased estimator of the population variance, that is, ES2 = λ. X̄ is a one-to-one
function of

∑
i Xi. So X̄ is also a complete sufficient statistic. Thus, E(S2|X̄) is an unbiased

estimator of λ and, by Theorem 7.3.23, it is also the unique best unbiased estimator of λ.
Therefore E(S2|X̄) = X̄. Then we have

VarS2 = Var
(
E(S2|X̄)

)
+ EVar(S2|X̄) = Var X̄ + EVar(S2|X̄),

so Var S2 > Var X̄.
c. We formulate a general theorem. Let T (X) be a complete sufficient statistic, and let T ′(X) be

any statistic other than T (X) such that ET (X) = ET ′(X). Then E[T ′(X)|T (X)] = T (X)
and VarT ′(X) > VarT (X).



Second Edition 7-21

7.53 Let a be a constant and suppose Covθ0(W,U) > 0. Then

Varθ0(W + aU) = Varθ0W + a2Varθ0U + 2aCovθ0(W,U).

Choose a ∈
(
−2Covθ0(W,U)

/
Varθ0U, 0

)
. Then Varθ0(W + aU) < Varθ0W , so W cannot be

best unbiased.
7.55 All three parts can be solved by this general method. Suppose X ∼ f(x|θ) = c(θ)m(x), a < x <

θ. Then 1/c(θ) =
∫ θ

a
m(x) dx, and the cdf of X is F (x) = c(θ)/c(x), a < x < θ. Let Y = X(n) be

the largest order statistic. Arguing as in Example 6.2.23 we see that Y is a complete sufficient
statistic. Thus, any function T (Y ) that is an unbiased estimator of h(θ) is the best unbiased
estimator of h(θ). By Theorem 5.4.4 the pdf of Y is g(y|θ) = nm(y)c(θ)n/c(y)n−1, a < y < θ.
Consider the equations∫ θ

a

f(x|θ) dx = 1 and
∫ θ

a

T (y)g(y|θ) dy = h(θ),

which are equivalent to∫ θ

a

m(x) dx =
1

c(θ)
and

∫ θ

a

T (y)nm(y)
c(y)n−1

dy =
h(θ)
c(θ)n

.

Differentiating both sides of these two equations with respect to θ and using the Fundamental
Theorem of Calculus yields

m(θ) = − c′(θ)
c(θ)2

and
T (θ)nm(θ)

c(θ)n−1
=

c(θ)nh′(θ)− h(θ)nc(θ)n−1c′(θ)
c(θ)2n

.

Change θs to ys and solve these two equations for T (y) to get the best unbiased estimator of
h(θ) is

T (y) = h(y) +
h′(y)

nm(y)c(y)
.

For h(θ) = θr, h′(θ) = rθr−1.

a. For this pdf, m(x) = 1 and c(θ) = 1/θ. Hence

T (y) = yr +
ryr−1

n(1/y)
=

n + r

n
yr.

b. If θ is the lower endpoint of the support, the smallest order statistic Y = X(1) is a complete
sufficient statistic. Arguing as above yields the best unbiased estimator of h(θ) is

T (y) = h(y)− h′(y)
nm(y)c(y)

.

For this pdf, m(x) = e−x and c(θ) = eθ. Hence

T (y) = yr − ryr−1

ne−yey
= yr − ryr−1

n
.

c. For this pdf, m(x) = e−x and c(θ) = 1/(e−θ − e−b). Hence

T (y) = yr − ryr−1

ne−y
(e−y − e−b) = yr − ryr−1(1− e−(b−y))

n
.
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7.56 Because T is sufficient, φ(T ) = E[h(X1, . . . , Xn)|T ] is a function only of T . That is, φ(T ) is an
estimator. If E h(X1, . . . , Xn) = τ(θ), then

Eh(X1, · · · , Xn) = E [E (h(X1, . . . , Xn)|T )] = τ(θ),

so φ(T ) is an unbiased estimator of τ(θ). By Theorem 7.3.23, φ(T ) is the best unbiased estimator
of τ(θ).

7.57 a. T is a Bernoulli random variable. Hence,

EpT = Pp(T = 1) = Pp

(
n∑

i=1

Xi > Xn+1

)
= h(p).

b.
∑n+1

i=1 Xi is a complete sufficient statistic for θ, so E
(
T
∣∣∣∑n+1

i=1 Xi

)
is the best unbiased

estimator of h(p). We have

E

(
T

∣∣∣∣∣
n+1∑
i=1

Xi = y

)
= P

(
n∑

i=1

Xi > Xn+1

∣∣∣∣∣
n+1∑
i=1

Xi = y

)

= P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = y

)/
P

(
n+1∑
i=1

Xi = y

)
.

The denominator equals
(
n+1

y

)
py(1− p)n+1−y. If y = 0 the numerator is

P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = 0

)
= 0.

If y > 0 the numerator is

P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = y, Xn+1 = 0

)
+ P

(
n∑

i=1

Xi > Xn+1,
n+1∑
i=1

Xi = y, Xn+1 = 1

)

which equals

P

(
n∑

i=1

Xi > 0,
n∑

i=1

Xi = y

)
P (Xn+1 = 0) + P

(
n∑

i=1

Xi > 1,
n∑

i=1

Xi = y − 1

)
P (Xn+1 = 1).

For all y > 0,

P

(
n∑

i=1

Xi > 0,
n∑

i=1

Xi = y

)
= P

(
n∑

i=1

Xi = y

)
=
(

n

y

)
py(1− p)n−y.

If y = 1 or 2, then

P

(
n∑

i=1

Xi > 1,
n∑

i=1

Xi = y − 1

)
= 0.

And if y > 2, then

P

(
n∑

i=1

Xi > 1,
n∑

i=1

Xi = y − 1

)
= P

(
n∑

i=1

Xi = y − 1

)
=
(

n

y − 1

)
py−1(1− p)n−y+1.
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Therefore, the UMVUE is

E

(
T

∣∣∣∣∣
n+1∑
i=1

Xi = y

)
=


0 if y = 0
(n

y)py(1−p)n−y(1−p)

(n+1
y )py(1−p)n−y+1 = (n

y)
(n+1

y ) = 1
(n+1)(n+1−y) if y = 1 or 2

((n
y)+( n

y−1))py(1−p)n−y+1

(n+1
y )py(1−p)n−y+1 = (n

y)+( n
y−1)

(n+1
y ) = 1 if y > 2.

7.59 We know T = (n− 1)S2/σ2 ∼ χ2
n−1. Then

ET p/2 =
1

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

t
p+n−1

2 −1e−
t
2 dt =

2
p
2 Γ
(

p+n−1
2

)
Γ
(

n−1
2

) = Cp,n.

Thus

E

(
(n− 1)S2

σ2

)p/2

= Cp,n,

so (n − 1)p/2Sp
/

Cp,n is an unbiased estimator of σp. From Theorem 6.2.25, (X̄, S2) is a

complete, sufficient statistic. The unbiased estimator (n−1)p/2Sp
/

Cp,n is a function of (X̄, S2).
Hence, it is the best unbiased estimator.

7.61 The pdf for Y ∼ χ2
ν is

f(y) =
1

Γ(ν/2)2ν/2
yν/2−1e−y/2.

Thus the pdf for S2 = σ2Y/ν is

g(s2) =
ν

σ2

1
Γ(ν/2)2ν/2

(
s2ν

σ2

)ν/2−1

e−s2ν/(2σ2).

Thus, the log-likelihood has the form (gathering together constants that do not depend on s2

or σ2)

log L(σ2|s2) = log
(

1
σ2

)
+ K log

(
s2

σ2

)
−K ′ s

2

σ2
+ K ′′,

where K > 0 and K ′ > 0.
The loss function in Example 7.3.27 is

L(σ2, a) =
a

σ2
− log

( a

σ2

)
− 1,

so the loss of an estimator is the negative of its likelihood.
7.63 Let a = τ2/(τ2 + 1), so the Bayes estimator is δπ(x) = ax. Then R(µ, δπ) = (a− 1)2µ2 + a2.

As τ2 increases, R(µ, δπ) becomes flatter.
7.65 a. Figure omitted.

b. The posterior expected loss is E (L(θ, a)|x) = ecaE e−cθ−cE(a−θ)−1, where the expectation
is with respect to π(θ|x). Then

d

da
E (L(θ, a)|x) = cecaE e−cθ − c

set= 0,

and a = − 1
c log E e−cθ is the solution. The second derivative is positive, so this is the mini-

mum.
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c. π(θ|x) = n(x̄, σ2/n). So, substituting into the formula for a normal mgf, we find E e−cθ =
e−cx̄+σ2c2/2n, and the LINEX posterior loss is

E (L(θ, a)|x) = ec(a−x̄)+σ2c2/2n − c(a− x̄)− 1.

Substitute E e−cθ = e−cx̄+σ2c2/2n into the formula in part (b) to find the Bayes rule is
x̄− cσ2/2n.

d. For an estimator X̄ + b, the LINEX posterior loss (from part (c)) is

E (L(θ, x̄ + b)|x) = ecbec2σ2/2n − cb− 1.

For X̄ the expected loss is ec2σ2/2n − 1, and for the Bayes estimator (b = −cσ2/2n) the
expected loss is c2σ2/2n. The marginal distribution of X̄ is m(x̄) = 1, so the Bayes risk is
infinite for any estimator of the form X̄ + b.

e. For X̄ + b, the squared error risk is E
[
(X̄ + b)− θ

]2 = σ2/n + b2, so X̄ is better than the
Bayes estimator. The Bayes risk is infinite for both estimators.

7.66 Let S =
∑

i Xi ∼ binomial(n, θ).

a. E θ̂2 = ES2

n2 = 1
n2 ES2 = 1

n2 (nθ(1− θ) + (nθ)2) = θ
n + n−1

n θ2.

b. T
(i)
n =

(∑
j 6=i Xj

)2/
(n − 1)2. For S values of i, T

(i)
n = (S − 1)2/(n − 1)2 because the Xi

that is dropped out equals 1. For the other n − S values of i, T
(i)
n = S2/(n − 1)2 because

the Xi that is dropped out equals 0. Thus we can write the estimator as

JK(Tn) = n
S2

n2
− n− 1

n

(
S

(S − 1)2

(n− 1)2
+ (n− S)

S2

(n− 1)2

)
=

S2−S

n(n− 1)
.

c. E JK(Tn) = 1
n(n−1) (nθ(1− θ) + (nθ)2 − nθ) = n2θ2−nθ2

n(n−1) = θ2.

d. For this binomial model, S is a complete sufficient statistic. Because JK(Tn) is a function of
S that is an unbiased estimator of θ2, it is the best unbiased estimator of θ2.



Chapter 8

Hypothesis Testing

8.1 Let X = # of heads out of 1000. If the coin is fair, then X ∼ binomial(1000, 1/2). So

P (X ≥ 560) =
1000∑

x=560

(
1000

x

)(
1
2

)x(1
2

)n−x

≈ .0000825,

where a computer was used to do the calculation. For this binomial, EX = 1000p = 500 and
VarX = 1000p(1− p) = 250. A normal approximation is also very good for this calculation.

P {X ≥ 560} = P

{
X − 500√

250
≥ 559.5−500√

250

}
≈ P {Z ≥ 3.763} ≈ .0000839.

Thus, if the coin is fair, the probability of observing 560 or more heads out of 1000 is very
small. We might tend to believe that the coin is not fair, and p > 1/2.

8.2 Let X ∼ Poisson(λ), and we observed X = 10. To assess if the accident rate has dropped, we
could calculate

P (X ≤ 10|λ = 15) =
10∑

i=0

e−15 15i

i!
= e−15

[
1+15+

152

2!
+ · · ·+1510

10!

]
≈ .11846.

This is a fairly large value, not overwhelming evidence that the accident rate has dropped. (A
normal approximation with continuity correction gives a value of .12264.)

8.3 The LRT statistic is

λ(y) =
supθ≤θ0

L(θ|y1, . . . , ym)
supΘL(θ|y1, . . . , ym)

.

Let y =
∑m

i=1 yi, and note that the MLE in the numerator is min {y/m,θ0} (see Exercise 7.12)
while the denominator has y/m as the MLE (see Example 7.2.7). Thus

λ(y) =

{
1 if y/m ≤ θ0

(θ0)
y(1−θ0)

m−y

(y/m)y(1−y/m)m−y if y/m > θ0,

and we reject H0 if
(θ0)

y(1−θ0)
m−y

(y/m)y(1− y/m)m−y < c.

To show that this is equivalent to rejecting if y > b, we could show λ(y) is decreasing in y so
that λ(y) < c occurs for y > b > mθ0. It is easier to work with log λ(y), and we have

log λ(y) = y log θ0 + (m− y) log (1− θ0)− y log
( y

m

)
− (m− y) log

(
m− y

m

)
,
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and

d

dy
logλ(y) = log θ0 − log(1− θ0)− log

( y

m

)
− y

1
y

+ log
(

m− y

m

)
+ (m− y)

1
m− y

= log

(
θ0

y/m

(
m−y

m

)
1−θ0

)
.

For y/m > θ0, 1 − y/m = (m − y)/m < 1 − θ0, so each fraction above is less than 1, and the
log is less than 0. Thus d

dy log λ < 0 which shows that λ is decreasing in y and λ(y) < c if and
only if y > b.

8.4 For discrete random variables, L(θ|x) = f(x|θ) = P (X = x|θ). So the numerator and denomi-
nator of λ(x) are the supremum of this probability over the indicated sets.

8.5 a. The log-likelihood is

log L(θ, ν|x) = n log θ + nθ log ν − (θ + 1) log

(∏
i

xi

)
, ν ≤ x(1),

where x(1) = mini xi. For any value of θ, this is an increasing function of ν for ν ≤ x(1). So
both the restricted and unrestricted MLEs of ν are ν̂ = x(1). To find the MLE of θ, set

∂

∂θ
log L(θ, x(1)|x) =

n

θ
+ n log x(1) − log

(∏
i

xi

)
= 0,

and solve for θ yielding
θ̂ =

n

log(
∏

i xi/x
n
(1))

=
n

T
.

(∂2/∂θ2) log L(θ, x(1)|x) = −n/θ2 < 0, for all θ. So θ̂ is a maximum.

b. Under H0, the MLE of θ is θ̂0 = 1, and the MLE of ν is still ν̂ = x(1). So the likelihood ratio
statistic is

λ(x) =
xn

(1)/(
∏

i xi)
2

(n/T )n
x

n2/T
(1)

/
(
∏

i xi)
n/T+1

=
(

T

n

)n
e−T

(e−T )n/T
=
(

T

n

)n

e−T+n.

(∂/∂T ) log λ(x) = (n/T ) − 1. Hence, λ(x) is increasing if T ≤ n and decreasing if T ≥ n.
Thus, T ≤ c is equivalent to T ≤ c1 or T ≥ c2, for appropriately chosen constants c1 and c2.

c. We will not use the hint, although the problem can be solved that way. Instead, make
the following three transformations. First, let Yi = log Xi, i = 1, . . . , n. Next, make the
n-to-1 transformation that sets Z1 = mini Yi and sets Z2, . . . , Zn equal to the remaining
Yis, with their order unchanged. Finally, let W1 = Z1 and Wi = Zi − Z1, i = 2, . . . , n.
Then you find that the Wis are independent with W1 ∼ fW1(w) = nνne−nw, w > log ν,
and Wi ∼ exponential(1), i = 2, . . . , n. Now T =

∑n
i=2 Wi ∼ gamma(n − 1, 1), and, hence,

2T ∼ gamma(n− 1, 2) = χ2
2(n−1).

8.6 a.

λ(x,y) =
supΘ0

L(θ|x,y)
supΘL(θ|x,y)

=
supθ

∏n
i=1

1
θ e−xi/θ

∏m
j=1

1
θ e−yj/θ

supθ,µ

∏n
i=1

1
θ e−xi/θ

∏m
j=1

1
µe−yj/µ

=
supθ

1
θm+n exp

{
−
(∑n

i=1 xi +
∑m

j=1 yj

)/
θ
}

supθ,µ
1

θn exp {−
∑n

i=1 xi/θ} 1
µm exp

{
−
∑m

j=1 yj/µ
} .
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Differentiation will show that in the numerator θ̂0 = (
∑

i xi +
∑

j yj)/(n + m), while in the
denominator θ̂ = x̄ and µ̂ = ȳ. Therefore,

λ(x,y) =

(
n+m∑

i
xi+
∑

j
yj

)n+m

exp
{
−
(

n+m∑
i
xi+
∑

j
yj

)(∑
i xi+

∑
j yj

)}
(

n∑
i
xi

)n

exp
{
−
(

n∑
i
xi

)∑
i xi

}(
m∑
j

yj

)m

exp
{
−
(

m∑
j

yj

)∑
j yj

}

=
(n + m)n+m

nnmm

(
∑

i xi)
n
(∑

j yj

)m

(∑
i xi +

∑
j yj

)n+m .

And the LRT is to reject H0 if λ(x,y) ≤ c.
b.

λ =
(n + m)n+m

nnmm

( ∑
i xi∑

i xi +
∑

j yj

)n( ∑
j yj∑

i xi +
∑

j yj

)m

=
(n + m)n+m

nnmm
Tn(1− T )m.

Therefore λ is a function of T . λ is a unimodal function of T which is maximized when
T = n

m+n . Rejection for λ ≤ c is equivalent to rejection for T ≤ a or T ≥ b, where a and b
are constants that satisfy an(1− a)m = bn(1− b)m.

c. When H0 is true,
∑

i Xi ∼ gamma(n, θ) and
∑

j Yj ∼ gamma(m, θ) and they are indepen-
dent. So by an extension of Exercise 4.19b, T ∼ beta(n, m).

8.7 a.

L(θ, λ|x) =
n∏

i=1

1
λ

e−(xi−θ)/λI[θ,∞)(xi) =
(

1
λ

)n

e−(Σixi−nθ)/λI[θ,∞)(x(1)),

which is increasing in θ if x(1) ≥ θ (regardless of λ). So the MLE of θ is θ̂ = x(1). Then

∂log L

∂λ
= −n

λ
+
∑

i xi − nθ̂

λ2

set= 0 ⇒ nλ̂ =
∑

i

xi − nθ̂ ⇒ λ̂ = x̄− x(1).

Because

∂2log L

∂λ2
=

n

λ2
− 2

∑
i xi − nθ̂

λ3

∣∣∣∣∣
x̄−x(1)

=
n

(x̄− x(1))
2 −

2n(x̄− x(1))

(x̄− x(1))
3 =

−n

(x̄− x(1))
2 < 0,

we have θ̂ = x(1) and λ̂ = x̄−x(1) as the unrestricted MLEs of θ and λ. Under the restriction
θ ≤ 0, the MLE of θ (regardless of λ) is

θ̂0 =
{

0 if x(1) > 0
x(1) if x(1) ≤ 0.

For x(1) > 0, substituting θ̂0 = 0 and maximizing with respect to λ, as above, yields λ̂0 = x̄.
Therefore,

λ(x) =
supΘ0

L(θ,λ | x)
supΘL(θ,λ | x)

=
sup{(λ,θ):θ≤0}L(λ,θ | x)

L(θ̂, λ̂ | x)
=

{
1 if x(1) ≤ 0
L(x̄,0|x)

L(λ̂,θ̂|x)
if x(1) > 0,

where

L(x̄, 0 | x)

L(λ̂, θ̂ | x)
=

(1/x̄)n
e−nx̄/x̄(

1/λ̂
)n

e−n(x̄−x(1))/(x̄−x(1))
=

(
λ̂

x̄

)n

=
(

x̄−x(1)

x̄

)n

=
(
1−

x(1)

x̄

)n

.

So rejecting if λ(x) ≤ c is equivalent to rejecting if x(1)/x̄ ≥ c∗, where c∗ is some constant.
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b. The LRT statistic is

λ(x) =
supβ(1/βn)e−Σixi/β

supβ,γ(γn/βn)(
∏

i xi)
γ−1

e−Σix
γ
i
/β

.

The numerator is maximized at β̂0 = x̄. For fixed γ, the denominator is maximized at
β̂γ =

∑
i xγ

i /n. Thus

λ(x) =
x̄−ne−n

supγ(γn/β̂
n

γ )(
∏

i xi)
γ−1

e−Σix
γ
i
/β̂γ

=
x̄−n

supγ(γn/β̂
n

γ )(
∏

i xi)
γ−1

.

The denominator cannot be maximized in closed form. Numeric maximization could be used
to compute the statistic for observed data x.

8.8 a. We will first find the MLEs of a and θ. We have

L(a, θ | x) =
n∏

i=1

1√
2πaθ

e−(xi−θ)2/(2aθ),

log L(a, θ | x) =
n∑

i=1

−1
2

log(2πaθ)− 1
2aθ

(xi − θ)2.

Thus

∂log L

∂a
=

n∑
i=1

(
− 1

2a
+

1
2θa2

(xi − θ)2
)

= − n

2a
+

1
2θa2

n∑
i=1

(xi − θ)2 set= 0

∂log L

∂θ
=

n∑
i=1

[
− 1

2θ
+

1
2aθ2

(xi − θ)2+
1
aθ

(xi − θ)
]

= − n

2θ
+

1
2aθ2

n∑
i=1

(xi − θ)2 +
nx̄− nθ

aθ

set= 0.

We have to solve these two equations simultaneously to get MLEs of a and θ, say â and θ̂.
Solve the first equation for a in terms of θ to get

a =
1
nθ

n∑
i=1

(xi − θ)2.

Substitute this into the second equation to get

− n

2θ
+

n

2θ
+

n(x̄−θ)
aθ

= 0.

So we get θ̂ = x̄, and

â =
1

nx̄

n∑
i=1

(xi − x̄)2 =
σ̂2

x̄
,

the ratio of the usual MLEs of the mean and variance. (Verification that this is a maximum
is lengthy. We omit it.) For a = 1, we just solve the second equation, which gives a quadratic
in θ that leads to the restricted MLE

θ̂R =
−1+

√
1+4(σ̂2+x̄2)

2
.
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Noting that âθ̂ = σ̂2, we obtain

λ(x) =
L(θ̂R | x)

L(â, θ̂ | x)
=

∏n
i=1

1√
2πθ̂R

e−(xi−θ̂R)2/(2θ̂R)∏n
i=1

1√
2πâθ̂

e−(xi−θ̂)2/(2âθ̂)

=

(
1/(2πθ̂R)

)n/2

e−Σi(xi−θ̂R)2/(2θ̂R)

(1/(2πσ̂2))n/2
e−Σi(xi−x̄)2/(2σ̂2)

=
(
σ̂2/θ̂R

)n/2

e(n/2)−Σi(xi−θ̂R)2/(2θ̂R).

b. In this case we have

log L(a, θ | x) =
n∑

i=1

[
−1

2
log(2πaθ2)− 1

2aθ2
(xi − θ)2

]
.

Thus

∂logL

∂a
=

n∑
i=1

(
− 1

2a
+

1
2a2θ2

(xi − θ)2
)

= − n

2a
+

1
2a2θ2

n∑
i=1

(xi − θ)2 set= 0.

∂logL

∂θ
=

n∑
i=1

[
−1

θ
+

1
aθ3

(xi − θ)2+
1

aθ2
(xi − θ)

]

= −n

θ
+

1
aθ3

n∑
i=1

(xi − θ)2 +
1

aθ2

n∑
i=1

(xi − θ) set= 0.

Solving the first equation for a in terms of θ yields

a =
1

nθ2

n∑
i=1

(xi − θ)2.

Substituting this into the second equation, we get

−n

θ
+

n

θ
+ n

∑
i (xi−θ)∑
i (xi−θ)2

= 0.

So again, θ̂ = x̄ and

â =
1

nx̄2

n∑
i=1

(xi − x̄)2 =
σ̂2

x̄2

in the unrestricted case. In the restricted case, set a = 1 in the second equation to obtain

∂log L

∂θ
= −n

θ
+

1
θ3

n∑
i=1

(xi − θ)2 +
1
θ2

n∑
i=1

(xi − θ) set= 0.

Multiply through by θ3/n to get

−θ2 +
1
n

n∑
i=1

(xi − θ)2 − θ

n

n∑
i=1

(xi − θ) = 0.

Add ±x̄ inside the square and complete all sums to get the equation

−θ2 + σ̂2 + (x̄− θ)2 + θ(x̄− θ) = 0.
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This is a quadratic in θ with solution for the MLE

θ̂R = x̄ +
√

x̄+4(σ̂2+x̄2)
/

2.

which yields the LRT statistic

λ(x) =
L(θ̂R | x)

L(â, θ̂ | x)
=

∏n
i=1

1√
2πθ̂2

R

e−(xi−θ̂R)2/(2θ̂
2
R)

∏n
i=1

1√
2πâθ̂2

e−(xi−θ̂)2/(2âθ̂
2
)

=
(

σ̂

θ̂R

)n

e(n/2)−Σi(xi−θ̂R)2/(2θ̂R).

8.9 a. The MLE of λ under H0 is λ̂0 =
(
Ȳ
)−1, and the MLE of λi under H1 is λ̂i = Y −1

i . The
LRT statistic is bounded above by 1 and is given by

1 ≥
(
Ȳ
)−n

e−n

(
∏

i Yi)
−1

e−n
.

Rearrangement of this inequality yields Ȳ ≥ (
∏

i Yi)
1/n, the arithmetic-geometric mean

inequality.
b. The pdf of Xi is f(xi|λi) = (λi/x2

i )e
−λi/xi , xi > 0. The MLE of λ under H0 is λ̂0 =

n/ [
∑

i(1/Xi)], and the MLE of λi under H1 is λ̂i = Xi. Now, the argument proceeds as in
part (a).

8.10 Let Y =
∑

i Xi. The posterior distribution of λ|y is gamma (y + α, β/(β + 1)).
a.

P (λ ≤ λ0|y) =
(β+1)y+α

Γ(y+α)βy+α

∫ λ0

0

ty+α−1e−t(β+1)/β dt.

P (λ > λ0|y) = 1− P (λ ≤ λ0|y).
b. Because β/(β + 1) is a scale parameter in the posterior distribution, (2(β + 1)λ/β)|y has

a gamma(y + α, 2) distribution. If 2α is an integer, this is a χ2
2y+2α distribution. So, for

α = 5/2 and β = 2,

P (λ ≤ λ0|y) = P

(
2(β+1)λ

β
≤ 2(β+1)λ0

β

∣∣∣∣ y) = P (χ2
2y+5 ≤ 3λ0).

8.11 a. From Exercise 7.23, the posterior distribution of σ2 given S2 is IG(γ, δ), where γ = α+(n−
1)/2 and δ = [(n − 1)S2/2 + 1/β]−1. Let Y = 2/(σ2δ). Then Y |S2 ∼ gamma(γ, 2). (Note:
If 2α is an integer, this is a χ2

2γ distribution.) Let M denote the median of a gamma(γ, 2)
distribution. Note that M depends on only α and n, not on S2 or β. Then we have P (Y ≥
2/δ|S2) = P (σ2 ≤ 1|S2) > 1/2 if and only if

M >
2
δ

= (n− 1)S2 +
2
β

, that is, S2 <
M − 2/β

n− 1
.

b. From Example 7.2.11, the unrestricted MLEs are µ̂ = X̄ and σ̂2 = (n− 1)S2/n. Under H0,
µ̂ is still X̄, because this was the maximizing value of µ, regardless of σ2. Then because
L(x̄, σ2|x) is a unimodal function of σ2, the restricted MLE of σ2 is σ̂2, if σ̂2 ≤ 1, and is 1,
if σ̂2 > 1. So the LRT statistic is

λ(x) =
{

1 if σ̂2 ≤ 1
(σ̂2)n/2

e−n(σ̂2−1)/2 if σ̂2 > 1.
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We have that, for σ̂2 > 1,

∂

∂(σ̂2)
log λ(x) =

n

2

(
1
σ̂2
− 1
)

< 0.

So λ(x) is decreasing in σ̂2, and rejecting H0 for small values of λ(x) is equivalent to rejecting
for large values of σ̂2, that is, large values of S2. The LRT accepts H0 if and only if S2 < k,
where k is a constant. We can pick the prior parameters so that the acceptance regions
match in this way. First, pick α large enough that M/(n−1) > k. Then, as β varies between
0 and ∞, (M − 2/β)/(n− 1) varies between −∞ and M/(n− 1). So, for some choice of β,
(M − 2/β)/(n− 1) = k and the acceptance regions match.

8.12 a. For H0 : µ ≤ 0 vs. H1 : µ > 0 the LRT is to reject H0 if x̄ > cσ/
√

n (Example 8.3.3). For
α = .05 take c = 1.645. The power function is

β(µ) = P

(
X̄−µ

σ/
√

n
> 1.645− µ

σ/
√

n

)
= P

(
Z > 1.645−

√
nµ

σ

)
.

Note that the power will equal .5 when µ = 1.645σ/
√

n.
b. For H0 : µ = 0 vs. HA : µ 6= 0 the LRT is to reject H0 if |x̄| > cσ/

√
n (Example 8.2.2). For

α = .05 take c = 1.96. The power function is

β(µ) = P
(
−1.96−

√
nµ/σ ≤ Z ≤ 1.96 +

√
nµ/σ

)
.

In this case, µ = ±1.96σ/
√

n gives power of approximately .5.

8.13 a. The size of φ1 is α1 = P (X1 > .95|θ = 0) = .05. The size of φ2 is α2 = P (X1+X2 > C|θ = 0).
If 1 ≤ C ≤ 2, this is

α2 = P (X1 + X2 > C|θ = 0) =
∫ 1

1−C

∫ 1

C−x1

1 dx2 dx1 =
(2− C)2

2
.

Setting this equal to α and solving for C gives C = 2 −
√

2α, and for α = .05, we get
C = 2−

√
.1 ≈ 1.68.

b. For the first test we have the power function

β1(θ) = Pθ(X1 > .95) =

{ 0 if θ ≤ −.05
θ + .05 if −.05 < θ ≤ .95
1 if .95 < θ.

Using the distribution of Y = X1 + X2, given by

fY (y|θ) =

{
y − 2θ if 2θ ≤ y < 2θ + 1
2θ + 2− y if 2θ+1 ≤ y < 2θ + 2
0 otherwise,

we obtain the power function for the second test as

β2(θ) = Pθ(Y > C) =


0 if θ ≤ (C/2)− 1
(2θ + 2− C)2/2 if (C/2)− 1 < θ ≤ (C − 1)/2
1− (C − 2θ)2/2 if (C − 1)/2 < θ ≤ C/2
1 if C/2 < θ.

c. From the graph it is clear that φ1 is more powerful for θ near 0, but φ2 is more powerful for
larger θs. φ2 is not uniformly more powerful than φ1.
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d. If either X1 ≥ 1 or X2 ≥ 1, we should reject H0, because if θ = 0, P (Xi < 1) = 1. Thus,
consider the rejection region given by

{(x1, x2) : x1 + x2 > C}
⋃
{(x1, x2) : x1 > 1}

⋃
{(x1, x2) : x2 > 1}.

The first set is the rejection region for φ2. The test with this rejection region has the same
size as φ2 because the last two sets both have probability 0 if θ = 0. But for 0 < θ < C − 1,
The power function of this test is strictly larger than β2(θ). If C − 1 ≤ θ, this test and φ2

have the same power.
8.14 The CLT tells us that Z = (

∑
i Xi − np)/

√
np(1− p) is approximately n(0, 1). For a test that

rejects H0 when
∑

i Xi > c, we need to find c and n to satisfy

P

(
Z >

c−n(.49)√
n(.49)(.51)

)
= .01 and P

(
Z >

c−n(.51)√
n(.51)(.49)

)
= .99.

We thus want
c−n(.49)√
n(.49)(.51)

= 2.33 and
c−n(.51)√
n(.51)(.49)

= −2.33.

Solving these equations gives n = 13,567 and c = 6,783.5.
8.15 From the Neyman-Pearson lemma the UMP test rejects H0 if

f(x | σ1)
f(x | σ0)

=
(2πσ2

1)−n/2
e−Σix

2
i /(2σ2

1)

(2πσ2
0)−n/2

e−Σix2
i
/(2σ2

0)
=
(

σ0

σ1

)n

exp

{
1
2

∑
i

x2
i

(
1
σ2

0

− 1
σ2

1

)}
> k

for some k ≥ 0. After some algebra, this is equivalent to rejecting if∑
i

x2
i >

2log (k (σ1/σ0)
n)(

1
σ2
0
− 1

σ2
1

) = c

(
because

1
σ2

0

− 1
σ2

1

> 0
)

.

This is the UMP test of size α, where α = Pσ0(
∑

i X2
i > c). To determine c to obtain a specified

α, use the fact that
∑

i X2
i /σ2

0 ∼ χ2
n. Thus

α = Pσ0

(∑
i

X2
i /σ2

0 > c/σ2
0

)
= P

(
χ2

n > c/σ2
0

)
,

so we must have c/σ2
0 = χ2

n,α, which means c = σ2
0χ2

n,α.
8.16 a.

Size = P (reject H0 | H0 is true) = 1 ⇒ Type I error = 1.

Power = P (reject H0 | HA is true) = 1 ⇒ Type II error = 0.

b.

Size = P (reject H0 | H0 is true) = 0 ⇒ Type I error = 0.

Power = P (reject H0 | HA is true) = 0 ⇒ Type II error = 1.

8.17 a. The likelihood function is

L(µ, θ|x,y) = µn

(∏
i

xi

)µ−1

θn

∏
j

yj

θ−1

.
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Maximizing, by differentiating the log-likelihood, yields the MLEs

µ̂ = − n∑
i log xi

and θ̂ = − m∑
j log yj

.

Under H0, the likelihood is

L(θ|x,y) = θn+m

∏
i

xi

∏
j

yj

θ−1

,

and maximizing as above yields the restricted MLE,

θ̂0 = − n + m∑
i log xi +

∑
j log yj

.

The LRT statistic is

λ(x,y) =
θ̂m+n
0

µ̂nθ̂m

(∏
i

xi

)θ̂0−µ̂
∏

j

yj

θ̂0−θ̂

.

b. Substituting in the formulas for θ̂, µ̂ and θ̂0 yields (
∏

i xi)
θ̂0−µ̂

(∏
j yj

)θ̂0−θ̂

= 1 and

λ(x,y) =
θ̂m+n
0

µ̂nθ̂m
=

θ̂n
0

µ̂n

θ̂m
0

θ̂m
=
(

m + n

m

)m(
m + n

n

)n

(1− T )mTn.

This is a unimodal function of T . So rejecting if λ(x,y) ≤ c is equivalent to rejecting if
T ≤ c1 or T ≥ c2, where c1 and c2 are appropriately chosen constants.

c. Simple transformations yield − log Xi ∼ exponential(1/µ) and − log Yi ∼ exponential(1/θ).
Therefore, T = W/(W + V ) where W and V are independent, W ∼ gamma(n, 1/µ) and
V ∼ gamma(m, 1/θ). Under H0, the scale parameters of W and V are equal. Then, a
simple generalization of Exercise 4.19b yields T ∼ beta(n, m). The constants c1 and c2 are
determined by the two equations

P (T ≤ c1) + P (T ≥ c2) = α and (1− c1)mcn
1 = (1− c2)mcn

2 .

8.18 a.

β(θ) = Pθ

(
|X̄−θ0|
σ/
√

n
> c

)
= 1− Pθ

(
|X̄−θ0|
σ/
√

n
≤ c

)
= 1− Pθ

(
− cσ√

n
≤ X̄−θ0 ≤

cσ√
n

)
= 1− Pθ

(
−cσ/

√
n + θ0−θ

σ/
√

n
≤ X̄−θ

σ/
√

n
≤ cσ/

√
n + θ0−θ

σ/
√

n

)
= 1− P

(
−c +

θ0−θ

σ/
√

n
≤ Z ≤ c +

θ0−θ

σ/
√

n

)
= 1 + Φ

(
−c +

θ0−θ

σ/
√

n

)
− Φ

(
c +

θ0−θ

σ/
√

n

)
,

where Z ∼ n(0, 1) and Φ is the standard normal cdf.
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b. The size is .05 = β(θ0) = 1 + Φ(−c) − Φ(c) which implies c = 1.96. The power (1 −
type II error) is

.75 ≤ β(θ0 + σ) = 1 + Φ(−c−
√

n)− Φ(c−
√

n) = 1 + Φ(−1.96−
√

n)︸ ︷︷ ︸
≈0

−Φ(1.96−
√

n).

Φ(−.675) ≈ .25 implies 1.96−
√

n = −.675 implies n = 6.943 ≈ 7.
8.19 The pdf of Y is

f(y|θ) =
1
θ
y(1/θ)−1e−y1/θ

, y > 0.

By the Neyman-Pearson Lemma, the UMP test will reject if

1
2
y−1/2ey−y1/2

=
f(y|2)
f(y|1)

> k.

To see the form of this rejection region, we compute

d

dy

(
1
2
y−1/2ey−y1/2

)
=

1
2
y−3/2ey−y1/2

(
y − y1/2

2
− 1

2

)
which is negative for y < 1 and positive for y > 1. Thus f(y|2)/f(y|1) is decreasing for y ≤ 1
and increasing for y ≥ 1. Hence, rejecting for f(y|2)/f(y|1) > k is equivalent to rejecting for
y ≤ c0 or y ≥ c1. To obtain a size α test, the constants c0 and c1 must satisfy

α = P (Y ≤ c0|θ = 1) + P (Y ≥ c1|θ = 1) = 1− e−c0 + e−c1 and
f(c0|2)
f(c0|1)

=
f(c1|2)
f(c1|1)

.

Solving these two equations numerically, for α = .10, yields c0 = .076546 and c1 = 3.637798.
The Type II error probability is

P (c0 < Y < c1|θ = 2) =
∫ c1

c0

1
2
y−1/2e−y1/2

dy = −e−y1/2
∣∣∣c1

c0

= .609824.

8.20 By the Neyman-Pearson Lemma, the UMP test rejects for large values of f(x|H1)/f(x|H0).
Computing this ratio we obtain

x 1 2 3 4 5 6 7
f(x|H1)
f(x|H0)

6 5 4 3 2 1 .84

The ratio is decreasing in x. So rejecting for large values of f(x|H1)/f(x|H0) corresponds to
rejecting for small values of x. To get a size α test, we need to choose c so that P (X ≤
c|H0) = α. The value c = 4 gives the UMP size α = .04 test. The Type II error probability is
P (X = 5, 6, 7|H1) = .82.

8.21 The proof is the same with integrals replaced by sums.
8.22 a. From Corollary 8.3.13 we can base the test on

∑
i Xi, the sufficient statistic. Let Y =∑

i Xi ∼ binomial(10, p) and let f(y|p) denote the pmf of Y . By Corollary 8.3.13, a test
that rejects if f(y|1/4)/f(y|1/2) > k is UMP of its size. By Exercise 8.25c, the ratio
f(y|1/2)/f(y|1/4) is increasing in y. So the ratio f(y|1/4)/f(y|1/2) is decreasing in y, and
rejecting for large value of the ratio is equivalent to rejecting for small values of y. To get
α = .0547, we must find c such that P (Y ≤ c|p = 1/2) = .0547. Trying values c = 0, 1, . . .,
we find that for c = 2, P (Y ≤ 2|p = 1/2) = .0547. So the test that rejects if Y ≤ 2 is the
UMP size α = .0547 test. The power of the test is P (Y ≤ 2|p = 1/4) ≈ .526.
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b. The size of the test is P (Y ≥ 6|p = 1/2) =
∑10

k=6

(
10
k

) (
1
2

)k ( 1
2

)10−k ≈ .377. The power
function is β(θ) =

∑10
k=6

(
10
k

)
θk(1− θ)10−k

c. There is a nonrandomized UMP test for all α levels corresponding to the probabilities
P (Y ≤ i|p = 1/2), where i is an integer. For n = 10, α can have any of the values 0,

1
1024 , 11

1024 , 56
1024 , 176

1024 , 386
1024 , 638

1024 , 848
1024 , 968

1024 , 1013
1024 , 1023

1024 , and 1.
8.23 a. The test is Reject H0 if X > 1/2. So the power function is

β(θ) = Pθ(X > 1/2) =
∫ 1

1/2

Γ(θ+1)
Γ(θ)Γ(1)

xθ−1(1− x)1−1 dx = θ
1
θ
xθ

∣∣∣∣1
1/2

= 1− 1
2θ

.

The size is supθ∈H0
β(θ) = supθ≤1(1− 1/2θ) = 1− 1/2 = 1/2.

b. By the Neyman-Pearson Lemma, the most powerful test of H0 : θ = 1 vs. H1 : θ = 2 is given
by Reject H0 if f(x | 2)/f(x | 1) > k for some k ≥ 0. Substituting the beta pdf gives

f(x|2)
f(x|1)

=
1

β(2,1)x
2−1(1− x)1−1

1
β(1,1)x

1−1(1− x)1−1 =
Γ(3)

Γ(2)Γ(1)
x = 2x.

Thus, the MP test is Reject H0 if X > k/2. We now use the α level to determine k. We have

α = sup
θ∈Θ0

β(θ) = β(1) =
∫ 1

k/2

fX(x|1) dx =
∫ 1

k/2

1
β(1, 1)

x1−1(1− x)1−1 dx = 1− k

2
.

Thus 1− k/2 = α, so the most powerful α level test is reject H0 if X > 1− α.
c. For θ2 > θ1, f(x|θ2)/f(x|θ1) = (θ2/θ1)xθ2−θ1 , an increasing function of x because θ2 > θ1.

So this family has MLR. By the Karlin-Rubin Theorem, the test that rejects H0 if X > t is
the UMP test of its size. By the argument in part (b), use t = 1− α to get size α.

8.24 For H0 : θ = θ0 vs. H1 : θ = θ1, the LRT statistic is

λ(x) =
L(θ0|x)

max{L(θ0|x), L(θ1|x)}
=
{

1 if L(θ0|x) ≥ L(θ1|x)
L(θ0|x)/L(θ1|x) if L(θ0|x) < L(θ1|x).

The LRT rejects H0 if λ(x) < c. The Neyman-Pearson test rejects H0 if f(x|θ1)/f(x|θ0) =
L(θ1|x)/L(θ0|x) > k. If k = 1/c > 1, this is equivalent to L(θ0|x)/L(θ1|x) < c, the LRT. But
if c ≥ 1 or k ≤ 1, the tests will not be the same. Because c is usually chosen to be small (k
large) to get a small size α, in practice the two tests are often the same.

8.25 a. For θ2 > θ1,
g(x | θ2)
g(x | θ1)

=
e−(x−θ2)

2/2σ2

e−(x−θ1)
2/2σ2 = ex(θ2−θ1)/σ2

e(θ2
1−θ2

2)/2σ2
.

Because θ2 − θ1 > 0, the ratio is increasing in x. So the families of n(θ, σ2) have MLR.
b. For θ2 > θ1,

g(x | θ2)
g(x | θ1)

=
e−θ2θx

2/x!
e−θ1θx

1/x!
=
(

θ2

θ1

)x

eθ1−θ2 ,

which is increasing in x because θ2/θ1 > 1. Thus the Poisson(θ) family has an MLR.
c. For θ2 > θ1,

g(x | θ2)
g(x | θ1)

=

(
n
x

)
θx
2 (1−θ2)

n−x(
n
x

)
θx
1 (1−θ1)

n−x =
(

θ2(1−θ1)
θ1(1−θ2)

)x(1− θ2

1− θ1

)n

.

Both θ2/θ1 > 1 and (1− θ1)/(1− θ2) > 1. Thus the ratio is increasing in x, and the family
has MLR.
(Note: You can also use the fact that an exponential family h(x)c(θ) exp(w(θ)x) has MLR if
w(θ) is increasing in θ (Exercise 8.27). For example, the Poisson(θ) pmf is e−θ exp(x log θ)/x!,
and the family has MLR because log θ is increasing in θ.)
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8.26 a. We will prove the result for continuous distributions. But it is also true for discrete MLR
families. For θ1 > θ2, we must show F (x|θ1) ≤ F (x|θ2). Now

d

dx
[F (x|θ1)− F (x|θ2)] = f(x|θ1)− f(x|θ2) = f(x|θ2)

(
f(x|θ1)
f(x|θ2)

−1
)

.

Because f has MLR, the ratio on the right-hand side is increasing, so the derivative can only
change sign from negative to positive showing that any interior extremum is a minimum.
Thus the function in square brackets is maximized by its value at ∞ or −∞, which is zero.

b. From Exercise 3.42, location families are stochastically increasing in their location param-
eter, so the location Cauchy family with pdf f(x|θ) = (π[1+(x−θ)2])−1 is stochastically
increasing. The family does not have MLR.

8.27 For θ2 > θ1,
g(t|θ2)
g(t|θ1)

=
c(θ2)
c(θ1)

e[w(θ2)−w(θ1)]t

which is increasing in t because w(θ2) − w(θ1) > 0. Examples include n(θ, 1), beta(θ, 1), and
Bernoulli(θ).

8.28 a. For θ2 > θ1, the likelihood ratio is

f(x|θ2)
f(x|θ1)

= eθ1−θ2

[
1+ex−θ1

1+ex−θ2

]2
.

The derivative of the quantity in brackets is

d

dx

1+ex−θ1

1+ex−θ2
=

ex−θ1 − ex−θ2

(1+ex−θ2)2
.

Because θ2 > θ1, ex−θ1 > ex−θ2 , and, hence, the ratio is increasing. This family has MLR.
b. The best test is to reject H0 if f(x|1)/f(x|0) > k. From part (a), this ratio is increasing

in x. Thus this inequality is equivalent to rejecting if x > k′. The cdf of this logistic is
F (x|θ) = ex−θ

/
(1 + ex−θ). Thus

α = 1− F (k′|0) =
1

1+ek′
and β = F (k′|1) =

ek′−1

1+ek′−1
.

For a specified α, k′ = log(1− α)/α. So for α = .2, k′ ≈ 1.386 and β ≈ .595.
c. The Karlin-Rubin Theorem is satisfied, so the test is UMP of its size.

8.29 a. Let θ2 > θ1. Then

f(x|θ2)
f(x|θ1)

=
1+(x− θ1)

2

1+(x− θ2)
2 =

1 + (1+θ1)
2
/x

2 − 2θ1/x

1 + (1+θ2)
2
/x

2 − 2θ2/x
.

The limit of this ratio as x → ∞ or as x → −∞ is 1. So the ratio cannot be monotone
increasing (or decreasing) between −∞ and ∞. Thus, the family does not have MLR.

b. By the Neyman-Pearson Lemma, a test will be UMP if it rejects when f(x|1)/f(x|0) > k,
for some constant k. Examination of the derivative shows that f(x|1)/f(x|0) is decreasing
for x ≤ (1−

√
5)/2 = −.618, is increasing for (1−

√
5)/2 ≤ x ≤ (1 +

√
5)/2 = 1.618, and is

decreasing for (1+
√

5)/2 ≤ x. Furthermore, f(1|1)/f(1|0) = f(3|1)/f(3|0) = 2. So rejecting
if f(x|1)/f(x|0) > 2 is equivalent to rejecting if 1 < x < 3. Thus, the given test is UMP of
its size. The size of the test is

P (1 < X < 3|θ = 0) =
∫ 3

1

1
π

1
1+x2 dx =

1
π

arctanx

∣∣∣∣3
1

≈ .1476.
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The Type II error probability is

1− P (1 < X < 3|θ = 1) = 1−
∫ 3

1

1
π

1
1+(x− 1)2

dx = 1− 1
π

arctan(x− 1)
∣∣∣∣3
1

≈ .6476.

c. We will not have f(1|θ)/f(1|0) = f(3|θ)/f(3|0) for any other value of θ 6= 1. Try θ = 2, for
example. So the rejection region 1 < x < 3 will not be most powerful at any other value of
θ. The test is not UMP for testing H0 : θ ≤ 0 versus H1 : θ > 0.

8.30 a. For θ2 > θ1 > 0, the likelihood ratio and its derivative are

f(x|θ2)
f(x|θ1)

=
θ2

θ1

θ2
1+x2

θ2
2+x2

and
d

dx

f(x|θ2)
f(x|θ1)

=
θ2

θ1

θ2
2−θ2

1

(θ2
2+x2)2

x.

The sign of the derivative is the same as the sign of x (recall, θ2
2 − θ2

1 > 0), which changes
sign. Hence the ratio is not monotone.

b. Because f(x|θ) = (θ/π)(θ2 + |x|2)−1, Y = |X| is sufficient. Its pdf is

f(y|θ) =
2θ

π

1
θ2+y2

, y > 0.

Differentiating as above, the sign of the derivative is the same as the sign of y, which is
positive. Hence the family has MLR.

8.31 a. By the Karlin-Rubin Theorem, the UMP test is to reject H0 if
∑

i Xi > k, because
∑

i Xi

is sufficient and
∑

i Xi ∼ Poisson(nλ) which has MLR. Choose the constant k to satisfy
P (
∑

i Xi > k|λ = λ0) = α.
b.

P

(∑
i

Xi > k

∣∣∣∣∣λ = 1

)
≈ P

(
Z > (k − n)/

√
n
) set= .05,

P

(∑
i

Xi > k

∣∣∣∣∣λ = 2

)
≈ P

(
Z > (k − 2n)/

√
2n
) set= .90.

Thus, solve for k and n in

k − n√
n

= 1.645 and
k − 2n√

2n
= −1.28,

yielding n = 12 and k = 17.70.
8.32 a. This is Example 8.3.15.

b. This is Example 8.3.19.
8.33 a. From Theorems 5.4.4 and 5.4.6, the marginal pdf of Y1 and the joint pdf of (Y1, Yn) are

f(y1|θ) = n(1− (y1 − θ))n−1, θ < y1 < θ + 1,

f(y1, yn|θ) = n(n− 1)(yn − y1)n−2, θ < y1 < yn < θ + 1.

Under H0, P (Yn ≥ 1) = 0. So

α = P (Y1 ≥ k|0) =
∫ 1

k

n(1− y1)n−1 dy1 = (1− k)n.

Thus, use k = 1− α1/n to have a size α test.
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b. For θ ≤ k − 1, β(θ) = 0. For k − 1 < θ ≤ 0,

β(θ) =
∫ θ+1

k

n(1− (y1 − θ))n−1 dy1 = (1− k + θ)n.

For 0 < θ ≤ k,

β(θ) =
∫ θ+1

k

n(1− (y1 − θ))n−1 dy1 +
∫ k

θ

∫ θ+1

1

n(n− 1)(yn − y1)n−2 dyn dy1

= α + 1− (1− θ)n.

And for k < θ, β(θ) = 1.
c. (Y1, Yn) are sufficient statistics. So we can attempt to find a UMP test using Corollary 8.3.13

and the joint pdf f(y1, yn|θ) in part (a). For 0 < θ < 1, the ratio of pdfs is

f(y1, yn|θ)
f(y1, yn|0)

=

{ 0 if 0 < y1 ≤ θ, y1 < yn < 1
1 if θ < y1 < yn < 1
∞ if 1 ≤ yn < θ + 1, θ < y1 < yn.

For 1 ≤ θ, the ratio of pdfs is

f(y1, yn|θ)
f(y1, yn|0)

=
{

0 if y1 < yn < 1
∞ if θ < y1 < yn < θ + 1.

For 0 < θ < k, use k′ = 1. The given test always rejects if f(y1, yn|θ)/f(y1, yn|0) > 1 and
always accepts if f(y1, yn|θ)/f(y1, yn|0) < 1. For θ ≥ k, use k′ = 0. The given test always
rejects if f(y1, yn|θ)/f(y1, yn|0) > 0 and always accepts if f(y1, yn|θ)/f(y1, yn|0) < 0. Thus
the given test is UMP by Corollary 8.3.13.

d. According to the power function in part (b), β(θ) = 1 for all θ ≥ k = 1 − α1/n. So these
conditions are satisfied for any n.

8.34 a. This is Exercise 3.42a.
b. This is Exercise 8.26a.

8.35 a. We will use the equality in Exercise 3.17 which remains true so long as ν > −α. Recall that
Y ∼ χ2

ν = gamma(ν/2, 2). Thus, using the independence of X and Y we have

ET ′ = E
X√
Y/ν

= (E X)
√

νEY −1/2 = µ
√

ν
Γ((ν − 1)/2)
Γ(ν/2)

√
2

if ν > 1. To calculate the variance, compute

E(T ′)2 = E
X2

Y/ν
= (E X2)νEY −1 = (µ2 + 1)ν

Γ((ν − 2)/2)
Γ(ν/2)2

=
(µ2 + 1)ν

ν − 2

if ν > 2. Thus, if ν > 2,

VarT ′ =
(µ2 + 1)ν

ν − 2
−
(

µ
√

ν
Γ((ν − 1)/2)
Γ(ν/2)

√
2

)2

b. If δ = 0, all the terms in the sum for k = 1, 2, . . . are zero because of the δk term. The
expression with just the k = 0 term and δ = 0 simplifies to the central t pdf.

c. The argument that the noncentral t has an MLR is fairly involved. It may be found in
Lehmann (1986, p. 295).
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8.37 a. P (X̄ > θ0 + zασ/
√

n|θ0) = P
(
(X̄−θ0)/(σ/

√
n) > zα|θ0

)
= P (Z > zα) = α, where Z ∼

n(0, 1). Because x̄ is the unrestricted MLE, and the restricted MLE is θ0 if x̄ > θ0, the LRT
statistic is, for x̄ ≥ θ0

λ(x) =
(2πσ2)−n/2

e−Σi(xi−θ0)
2/2σ2

(2πσ2)−n/2
e−Σi(xi−x̄)2/2σ2

=
e
−[n(x̄−θ0)

2+(n−1)s2]]
/

2σ2

e−(n−1)s2/2σ2 = e−n(x̄−θ0)
2/2σ2

.

and the LRT statistic is 1 for x̄ < θ0. Thus, rejecting if λ < c is equivalent to rejecting if
(x̄− θ0)/(σ/

√
n) > c′ (as long as c < 1 – see Exercise 8.24).

b. The test is UMP by the Karlin-Rubin Theorem.
c. P (X̄ > θ0 + tn−1,αS/

√
n|θ = θ0) = P (Tn−1 > tn−1,α) = α, when Tn−1 is a Student’s

t random variable with n − 1 degrees of freedom. If we define σ̂2 = 1
n

∑
(xi − x̄)2 and

σ̂2
0 = 1

n

∑
(xi− θ0)2, then for x̄ ≥ θ0 the LRT statistic is λ = (σ̂2/σ̂2

0)n/2, and for x̄ < θ0 the
LRT statistic is λ = 1. Writing σ̂2 = n−1

n s2 and σ̂2
0 = (x̄− θ0)2 + n−1

n s2, it is clear that the
LRT is equivalent to the t-test because λ < c when

n−1
n s2

(x̄−θ0)
2+n−1

n s2
=

(n− 1)/n

(x̄−θ0)
2
/s

2+(n− 1)/n
< c′ and x̄ ≥ θ0,

which is the same as rejecting when (x̄− θ0)/(s/
√

n) is large.
d. The proof that the one-sided t test is UMP unbiased is rather involved, using the bounded

completeness of the normal distribution and other facts. See Chapter 5 of Lehmann (1986)
for a complete treatment.

8.38 a.

Size = Pθ0

{
| X̄ − θ0 |> tn−1,α/2

√
S2/n

}
= 1− Pθ0

{
−tn−1,α/2

√
S2/n ≤ X̄ − θ0 ≤ tn−1,α/2

√
S2/n

}
= 1− Pθ0

{
−tn−1,α/2 ≤

X̄ − θ0√
S2/n

≤ tn−1,α/2

} (
X̄ − θ0√

S2/n
∼ tn−1 under H0

)
= 1− (1− α) = α.

b. The unrestricted MLEs are θ̂ = X̄ and σ̂2 =
∑

i(Xi − X̄)2/n. The restricted MLEs are
θ̂0 = θ0 and σ̂2

0 =
∑

i(Xi − θ0)2/n. So the LRT statistic is

λ(x) =
(2πσ̂0)

−n/2exp{−nσ̂2
0/(2σ̂

2
0)}

(2πσ̂)−n/2exp{−nσ̂2/(2σ̂
2)}

=

[ ∑
i (xi−x̄)2∑
i (xi−θ0)

2

]n/2

=

[ ∑
i (xi−x̄)2∑

i (xi−x̄)2 + n(x̄−θ0)
2

]n/2

.

For a constant c, the LRT is

reject H0 if

[ ∑
i (xi−x̄)2∑

i (xi−x̄)2 + n(x̄−θ0)
2

]
=

1
1 + n(x̄−θ0)

2
/
∑

i (xi−x̄)2
< c2/n.

After some algebra we can write the test as

reject H0 if |x̄− θ0 |>
[(

c−2/n − 1
)

(n− 1)
s2

n

]1/2

.
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We now choose the constant c to achieve size α, and we

reject if |x̄− θ0 |> tn−1,α/2

√
s2/n.

c. Again, see Chapter 5 of Lehmann (1986).
8.39 a. From Exercise 4.45c, Wi = Xi − Yi ∼ n(µW , σ2

W ), where µX − µY = µW and σ2
X + σ2

Y −
ρσXσY = σ2

W . The Wis are independent because the pairs (Xi, Yi) are.
b. The hypotheses are equivalent to H0 : µW = 0 vs H1 : µW 6= 0, and, from Exercise 8.38, if

we reject H0 when | W̄ |> tn−1,α/2

√
S2

W /n, this is the LRT (based on W1, . . . ,Wn) of size
α. (Note that if ρ > 0, VarWi can be small and the test will have good power.)

8.41 a.

λ(x,y) =
supH0

L(µX , µY , σ2 | x,y)
supL(µX , µY , σ2 | x,y)

=
L(µ̂, σ̂2

0 | x,y)
L(µ̂X , µ̂Y , σ̂2

1 | x,y)
.

Under H0, the Xis and Yis are one sample of size m + n from a n(µ, σ2) population, where
µ = µX = µY . So the restricted MLEs are

µ̂ =
∑

i Xi +
∑

i Yi

n + m
=

nx̄+nȳ

n + m
and σ̂2

0 =
∑

i (Xi − µ̂)2+
∑

i (Y i − µ̂)2

n + m
.

To obtain the unrestricted MLEs, µ̂x, µ̂y, σ̂2, use

L(µX , µY , σ2|x, y) = (2πσ2)−(n+m)/2e−[Σi(xi−µX)2+Σi(yi−µY )2]/2σ2
.

Firstly, note that µ̂X = x̄ and µ̂Y = ȳ, because maximizing over µX does not involve µY

and vice versa. Then

∂log L

∂σ2
= −n + m

2
1
σ2

+
1
2

[∑
i

(xi − µ̂X)2+
∑

i

(yi − µ̂Y )2
]

1
(σ2)2

set= 0

implies

σ̂2 =

[
n∑

i=1

(xi − x̄)2+
m∑

i=1

(yi − ȳ)2
]

1
n + m

.

To check that this is a maximum,

∂2log L

∂(σ2)2

∣∣∣∣∣
σ̂2

=
n + m

2
1

(σ2)2
−

[∑
i

(xi − µ̂X)2+
∑

i

(yi − µ̂Y )2
]

1
(σ2)3

∣∣∣∣∣
σ̂2

=
n + m

2
1

(σ̂2)2
− (n + m)

1
(σ̂2)2

= −n + m

2
1

(σ̂2)2
< 0.

Thus, it is a maximum. We then have

λ(x,y) =
(2πσ̂2

0)−
n+m

2 exp
{
− 1

2σ̂2
0

[∑n
i=1 (xi − µ̂)2+

∑m
i=1 (yi − µ̂)2

]}
(2πσ̂2)−

n+m
2 exp

{
− 1

2σ̂2

[∑n
i=1 (xi − x̄)2+

∑m
i=1 (yi − ȳ)2

]} =
(

σ̂2
0

σ̂2
1

)−n+m
2

and the LRT is rejects H0 if σ̂2
0/σ̂2 > k. In the numerator, first substitute µ̂ = (nx̄ +

mȳ)/(n + m) and write

n∑
i=1

(
xi−

nx̄+mȳ

n + m

)2

=
n∑

i=1

(
(xi−x̄)+

(
x̄−nx̄+mȳ

n + m

))2

=
n∑

i=1

(xi − x̄)2 +
nm2

(n + m)2
(x̄− ȳ)2,
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because the cross term is zero. Performing a similar operation on the Y sum yields

σ̂2
0

σ̂2
=

∑
(xi−x̄)2+

∑
(yi−ȳ)2+ nm

n+m (x̄−ȳ)2

σ̂2
= n + m +

nm

n + m

(x̄−ȳ)2

σ̂2
.

Because σ̂2 = n+m−2
n+m S2

p , large values of σ̂2
0

/
σ̂2 are equivalent to large values of (x̄− ȳ)2

/
S2

p

and large values of |T |. Hence, the LRT is the two-sample t-test.
b.

T =
X̄ − Ȳ√

S2
p(1/n + 1/m)

=
(X̄ − Ȳ )

/√
σ2(1/n + 1/m)√

[(n + m− 2)S2
p/σ2]/(n + m− 2)

.

Under H0, (X̄−Ȳ ) ∼ n(0, σ2(1/n+1/m)). Under the model, (n−1)S2
X/σ2 and (m−1)S2

Y /σ2

are independent χ2 random variables with (n − 1) and (m − 1) degrees of freedom. Thus,
(n + m − 2)S2

p/σ2 = (n − 1)S2
X/σ2 + (m − 1)S2

Y /σ2 ∼ χ2
n+m−2. Furthermore, X̄ − Ȳ is

independent of S2
X and S2

Y , and, hence, S2
p . So T ∼ tn+m−2.

c. The two-sample t test is UMP unbiased, but the proof is rather involved. See Chapter 5 of
Lehmann (1986).

d. For these data we have n = 14, X̄ = 1249.86, S2
X = 591.36, m = 9, Ȳ = 1261.33, S2

Y = 176.00
and S2

p = 433.13. Therefore, T = −1.29 and comparing this to a t21 distribution gives a
p-value of .21. So there is no evidence that the mean age differs between the core and
periphery.

8.42 a. The Satterthwaite approximation states that if Yi ∼ χ2
ri

, where the Yi’s are independent,
then ∑

i

aiYi
approx∼ χ2

ν̂

ν̂
where ν̂ =

(
∑

i aiYi)
2∑

i a2
i Y

2
i /ri

.

We have Y1 = (n− 1)S2
X/σ2

X ∼ χ2
n−1 and Y2 = (m− 1)S2

Y /σ2
Y ∼ χ2

m−1. Now define

a1 =
σ2

X

n(n− 1) [(σ2
X/n) + (σ2

Y /m)]
and a2 =

σ2
Y

m(m− 1) [(σ2
X/n) + (σ2

Y /m)]
.

Then, ∑
aiYi =

σ2
X

n(n− 1) [(σ2
X/n) + (σ2

Y /m)]
(n− 1)S2

X

σ2
X

+
σ2

Y

m(m− 1) [(σ2
X/n) + (σ2

Y /m)]
(m− 1)S2

Y

σ2
Y

=
S2

X/n + S
2
Y /m

σ2
X/n+σ2

Y /m
∼ χ2

ν̂

ν̂

where

ν̂ =

(
S2

X/n+S2
Y /m

σ2
X

/n+σ2
Y

/m

)2

1
(n−1)

S4
X

n2(σ2
X

/n+σ2
Y

/m)2 + 1
(m−1)

S4
Y

m2(σ2
X

/n+σ2
Y

/m)2

=

(
S2

X/n + S
2
Y /m

)2

S4
X

n2(n−1)+
S4

Y

m2(m−1)

.

b. Because X̄ − Ȳ ∼ n
(
µX − µY , σ2

X/n+σ2
Y /m

)
and S2

X/n+S2
Y /m

σ2
X

/n+σ2
Y

/m

approx∼ χ2
ν̂/ν̂, under H0 :

µX − µY = 0 we have

T ′ =
X̄ − Ȳ√

S2
X/n + S

2
Y /m

=
(X̄ − Ȳ )

/√
σ2

X/n+σ2
Y /m√

(S2
X

/n+S2
Y /m)

(σ2
X

/n+σ2
Y

/m)

approx∼ tν̂ .
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c. Using the values in Exercise 8.41d, we obtain T ′ = −1.46 and ν̂ = 20.64. So the p-value is
.16. There is no evidence that the mean age differs between the core and periphery.

d. F = S2
X/S2

Y = 3.36. Comparing this with an F13,8 distribution yields a p-value of 2P (F ≥
3.36) = .09. So there is some slight evidence that the variance differs between the core and
periphery.

8.43 There were typos in early printings. The t statistic should be

(X̄ − Ȳ )− (µ1 − µ2)√
1

n1
+ ρ2

n2

√
(n1−1)s2

X
+(n2−1)s2

Y
/ρ2

n1+n2−2

,

and the F statistic should be s2
Y /(ρ2s2

X). Multiply and divide the denominator of the t statistic
by σ to express it as

(X̄ − Ȳ )− (µ1 − µ2)√
σ2

n1
+ ρ2σ2

n2

divided by √
(n1 − 1)s2

X/σ2 + (n2 − 1)s2
Y /(ρ2σ2)

n1 + n2 − 2
.

The numerator has a n(0, 1) distribution. In the denominator, (n1 − 1)s2
X/σ2 ∼ χ2

n1−1 and
(n2−1)s2

Y /(ρ2σ2) ∼ χ2
n2−1 and they are independent, so their sum has a χ2

n1+n2−2 distribution.
Thus, the statistic has the form of n(0, 1)/

√
χ2

ν/ν where ν = n1 + n2 − 2, and the numerator
and denominator are independent because of the independence of sample means and variances
in normal sampling. Thus the statistic has a tn1+n2−2 distribution. The F statistic can be
written as

s2
Y

ρ2s2
X

=
s2

Y /(ρ2σ2)
s2

X/σ2
=

[(n2 − 1)s2
Y /(ρ2σ2)]/(n2 − 1)

[(n1 − 1)s2
X/(σ2)]/(n1 − 1)

which has the form [χ2
n2−1/(n2 − 1)]/[χ2

n1−1/(n1 − 1)] which has an Fn2−1,n1−1 distribution.
(Note, early printings had a typo with the numerator and denominator degrees of freedom
switched.)

8.44 Test 3 rejects H0 : θ = θ0 in favor of H1 : θ 6= θ0 if X̄ > θ0 + zα/2σ/
√

n or X̄ < θ0 − zα/2σ/
√

n.
Let Φ and φ denote the standard normal cdf and pdf, respectively. Because X̄ ∼ n(θ, σ2/n),
the power function of Test 3 is

β(θ) = Pθ(X̄ < θ0 − zα/2σ/
√

n) + Pθ(X̄ > θ0 + zα/2σ/
√

n)

= Φ
(

θ0 − θ

σ/
√

n
− zα/2

)
+ 1− Φ

(
θ0 − θ

σ/
√

n
+ zα/2

)
,

and its derivative is

dβ(θ)
dθ

= −
√

n

σ
φ

(
θ0 − θ

σ/
√

n
− zα/2

)
+
√

n

σ
φ

(
θ0 − θ

σ/
√

n
+ zα/2

)
.

Because φ is symmetric and unimodal about zero, this derivative will be zero only if

−
(

θ0 − θ

σ/
√

n
− zα/2

)
=

θ0 − θ

σ/
√

n
+ zα/2,

that is, only if θ = θ0. So, θ = θ0 is the only possible local maximum or minimum of the power
function. β(θ0) = α and limθ→±∞ β(θ) = 1. Thus, θ = θ0 is the global minimum of β(θ), and,
for any θ′ 6= θ0, β(θ′) > β(θ0). That is, Test 3 is unbiased.
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8.45 The verification of size α is the same computation as in Exercise 8.37a. Example 8.3.3 shows
that the power function βm(θ) for each of these tests is an increasing function. So for θ > θ0,
βm(θ) > βm(θ0) = α. Hence, the tests are all unbiased.

8.47 a. This is very similar to the argument for Exercise 8.41.
b. By an argument similar to part (a), this LRT rejects H+

0 if

T+ =
X̄ − Ȳ − δ√
S2

p

(
1
n + 1

m

) ≤ −tn+m−2,α.

c. Because H0 is the union of H+
0 and H−

0 , by the IUT method of Theorem 8.3.23 the test
that rejects H0 if the tests in parts (a) and (b) both reject is a level α test of H0. That is,
the test rejects H0 if T+ ≤ −tn+m−2,α and T− ≥ tn+m−2,α.

d. Use Theorem 8.3.24. Consider parameter points with µX − µY = δ and σ → 0. For any
σ, P (T+ ≤ −tn+m−2,α) = α. The power of the T− test is computed from the noncentral t
distribution with noncentrality parameter |µx − µY − (−δ)|/[σ(1/n + 1/m)] = 2δ/[σ(1/n +
1/m)] which converges to∞ as σ → 0. Thus, P (T− ≥ tn+m−2,α) → 1 as σ → 0. By Theorem
8.3.24, this IUT is a size α test of H0.

8.49 a. The p-value is

P

{(
7 or more successes

out of 10 Bernoulli trials

)∣∣∣∣ θ=1
2

}
=

(
10
7

)(
1
2

)7(1
2

)3

+
(

10
8

)(
1
2

)8(1
2

)2

+
(

10
9

)(
1
2

)9(1
2

)1

+
(

10
10

)(
1
2

)10(1
2

)0

= .171875.

b.

P-value = P{X ≥ 3 | λ = 1} = 1− P (X < 3 | λ = 1)

= 1−
[
e−112

2!
+

e−111

1!
+

e−110

0!

]
≈ .0803.

c.

P-value = P{
∑

i

Xi ≥ 9 | 3λ = 3} = 1− P (Y < 9 | 3λ = 3)

= 1− e−3

[
38

8!
+

37

7!
+

36

6!
+

35

5!
+ · · ·+31

1!
+

30

0!

]
≈ .0038,

where Y =
∑3

i=1 Xi ∼ Poisson(3λ).
8.50 From Exercise 7.26,

π(θ|x) =
√

n

2πσ2
e−n(θ−δ±(x))2/(2σ2),

where δ±(x) = x̄± σ2

na and we use the “+” if θ > 0 and the “−” if θ < 0.

a. For K > 0,

P (θ > K|x, a) =
√

n

2πσ2

∫ ∞

K

e−n(θ−δ+(x))2/(2σ2) dθ = P

(
Z >

√
n

σ
[K−δ+(x)]

)
,

where Z ∼ n(0, 1).
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b. As a →∞, δ+(x) → x̄ so P (θ > K) → P
(
Z >

√
n

σ (K−x̄)
)
.

c. For K = 0, the answer in part (b) is 1− (p-value) for H0 : θ ≤ 0.

8.51 If α < p(x),
sup
θ∈Θ0

P (W (X) ≥ cα) = α < p(x) = sup
θ∈Θ0

P (W (X) ≥ W (x)).

Thus W (x) < cα and we could not reject H0 at level α having observed x. On the other hand,
if α ≥ p(x),

sup
θ∈Θ0

P (W (X) ≥ cα) = α ≥ p(x) = sup
θ∈Θ0

P (W (X) ≥ W (x)).

Either W (x) ≥ cα in which case we could reject H0 at level α having observed x or W (x) < cα.
But, in the latter case we could use c′α = W (x) and have {x′ : W (x′) ≥ c′α} define a size α
rejection region. Then we could reject H0 at level α having observed x.

8.53 a.

P (−∞ < θ < ∞) =
1
2

+
1
2

1√
2πτ2

∫ ∞

−∞
e−θ2/(2τ2) dθ =

1
2

+
1
2

= 1.

b. First calculate the posterior density. Because

f(x̄|θ) =
√

n√
2πσ

e−n(x̄−θ)2/(2σ2),

we can calculate the marginal density as

mπ(x̄) =
1
2
f(x̄|0) +

1
2

∫ ∞

−∞
f(x̄|θ) 1√

2πτ
e−θ2/(2τ2)dθ

=
1
2

√
n√

2πσ
e−nx̄2/(2σ2) +

1
2

1√
2π
√

(σ2/n)+τ2
e−x̄2/[2((σ2/n)+τ2)]

(see Exercise 7.22). Then P (θ = 0|x̄) = 1
2f(x̄|0)/mπ(x̄).

c.

P
(
|X̄| > x̄

∣∣ θ = 0
)

= 1− P
(
|X̄| ≤ x̄

∣∣ θ = 0
)

= 1− P
(
−x̄ ≤ X̄ ≤ x̄

∣∣ θ = 0
)

= 2
[
1−Φ

(
x̄/(σ/

√
n)
)]

,

where Φ is the standard normal cdf.
d. For σ2 = τ2 = 1 and n = 9 we have a p-value of 2 (1− Φ(3x̄)) and

P (θ = 0| x̄) =

(
1 +

√
1
10

e81x̄2/20

)−1

.

The p-value of x̄ is usually smaller than the Bayes posterior probability except when x̄ is
very close to the θ value specified by H0. The following table illustrates this.

Some p-values and posterior probabilities (n = 9)
x̄

0 ±.1 ±.15 ±.2 ±.5 ±.6533 ±.7 ±1 ±2
p-value of x̄ 1 .7642 .6528 .5486 .1336 .05 .0358 .0026 ≈ 0
posterior

P (θ = 0|x̄) .7597 .7523 .7427 .7290 .5347 .3595 .3030 .0522 ≈ 0



Second Edition 8-21

8.54 a. From Exercise 7.22, the posterior distribution of θ|x is normal with mean [τ2/(τ2 + σ2/n)]x̄
and variance τ2/(1 + nτ2/σ2). So

P (θ ≤ 0|x) = P

(
Z ≤ 0− [τ2/(τ2+σ2/n)]x̄√

τ2/(1 + nτ2/σ2)

)

= P

(
Z ≤ − τ√

(σ2/n)(τ2+σ2/n)
x̄

)
= P

(
Z ≥ τ√

(σ2/n)(τ2+σ2/n)
x̄

)
.

b. Using the fact that if θ = 0, X̄ ∼ n(0, σ2/n), the p-value is

P (X̄ ≥ x̄) = P

(
Z ≥ x̄− 0

σ/
√

n

)
= P

(
Z ≥ 1

σ/
√

n
x̄

)
c. For σ2 = τ2 = 1,

P (θ ≤ 0|x) = P

(
Z ≥ 1√

(1/n)(1 + 1/n)
x̄

)
and P (X̄ ≥ x̄) = P

(
Z ≥ 1√

1/n
x̄

)
.

Because
1√

(1/n)(1 + 1/n)
<

1√
1/n

,

the Bayes probability is larger than the p-value if x̄ ≥ 0. (Note: The inequality is in the
opposite direction for x̄ < 0, but the primary interest would be in large values of x̄.)

d. As τ2 →∞, the constant in the Bayes probability,

τ√
(σ2/n)(τ2+σ2/n)

=
1√

(σ2/n)(1+σ2/(τ2n))
→ 1

σ/
√

n
,

the constant in the p-value. So the indicated equality is true.
8.55 The formulas for the risk functions are obtained from (8.3.14) using the power function β(θ) =

Φ(−zα + θ0 − θ), where Φ is the standard normal cdf.
8.57 For 0–1 loss by (8.3.12) the risk function for any test is the power function β(µ) for µ ≤ 0 and

1 − β(µ) for µ > 0. Let α = P (1 < Z < 2), the size of test δ. By the Karlin-Rubin Theorem,
the test δzα that rejects if X > zα is also size α and is uniformly more powerful than δ, that
is, βδzα

(µ) > βδ(µ) for all µ > 0. Hence,

R(µ, δzα) = 1− βδzα
(µ) < 1− βδ(µ) = R(µ, δ), for all µ > 0.

Now reverse the roles of H0 and H1 and consider testing H∗
0 : µ > 0 versus H∗

1 : µ ≤ 0. Consider
the test δ∗ that rejects H∗

0 if X ≤ 1 or X ≥ 2, and the test δ∗zα
that rejects H∗

0 if X ≤ zα. It is
easily verified that for 0–1 loss δ and δ∗ have the same risk functions, and δ∗zα

and δzα have the
same risk functions. Furthermore, using the Karlin-Rubin Theorem as before, we can conclude
that δ∗zα

is uniformly more powerful than δ∗. Thus we have

R(µ, δ) = R(µ, δ∗) ≥ R(µ, δ∗zα
) = R(µ, δzα

), for all µ ≤ 0,

with strict inequality if µ < 0. Thus, δzα is better than δ.



Chapter 9

Interval Estimation

9.1 Denote A = {x : L(x) ≤ θ} and B = {x : U(x) ≥ θ}. Then A ∩ B = {x : L(x) ≤ θ ≤ U(x)}
and 1 ≥ P {A ∪B} = P {L(X) ≤ θ or θ ≤ U(X)} ≥ P {L(X) ≤ θ or θ ≤ L(X)} = 1, since
L(x) ≤ U(x). Therefore, P (A∩B) = P (A)+P (B)−P (A∪B) = 1−α1+1−α2−1 = 1−α1−α2.

9.3 a. The MLE of β is X(n) = maxXi. Since β is a scale parameter, X(n)/β is a pivot, and

.05 = Pβ(X(n)/β ≤ c) = Pβ(all Xi ≤ cβ) =
(

cβ

β

)α0n

= cα0n

implies c = .051/α0n. Thus, .95 = Pβ(X(n)/β > c) = Pβ(X(n)/c > β), and {β : β <

X(n)/(.051/α0n)} is a 95% upper confidence limit for β.

b. From 7.10, α̂ = 12.59 and X(n) = 25. So the confidence interval is (0, 25/[.051/(12.59·14)]) =
(0, 25.43).

9.4 a.

λ(x, y) =
supλ=λ0

L
(
σ2

X , σ2
Y

∣∣x, y
)

supλ∈(0,+∞) L (σ2
X , σ2

Y |x, y)

The unrestricted MLEs of σ2
X and σ2

Y are σ̂2
X = ΣX2

i

n and σ̂2
Y = ΣY 2

i

m , as usual. Under the
restriction, λ = λ0, σ2

Y = λ0σ
2
X , and

L
(
σ2

X , λ0σ
2
X

∣∣x, y
)

=
(
2πσ2

X

)−n/2 (
2πλ0σ

2
X

)−m/2
e−Σx2

i /(2σ2
X) · e−Σy2

i /(2λ0σ2
X)

=
(
2πσ2

X

)−(m+n)/2
λ
−m/2
0 e−(λ0Σx2

i +Σy2
i )/(2λ0σ2

X)

Differentiating the log likelihood gives

d log L

d (σ2
X)2

=
d

dσ2
X

[
−m + n

2
log σ2

X − m + n

2
log (2π)− m

2
log λ0−

λ0Σx2
i + Σy2

i

2λ0σ2
X

]
= −m + n

2
(
σ2

X

)−1
+

λ0Σx2
i + Σy2

i

2λ0

(
σ2

X

)−2 set= 0

which implies

σ̂2
0 =

λ0Σx2
i + Σy2

i

λ0(m + n)
.

To see this is a maximum, check the second derivative:

d2 log L

d (σ2
X)2

=
m + n

2
(
σ2

X

)−2 − 1
λ0

(
λ0Σx2

i + Σy2
i

) (
σ2

X

)−3
∣∣∣∣
σ2

X
=σ̂2

0

= −m + n

2
(σ̂2

0)−2 < 0,
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therefore σ̂2
0 is the MLE. The LRT statistic is(

σ̂2
X

)n/2 (
σ̂2

Y

)m/2

λ
m/2
0 (σ̂2

0)(m+n)/2
,

and the test is: Reject H0 if λ(x, y) < k, where k is chosen to give the test size α.
b. Under H0,

∑
Y 2

i /(λ0σ
2
X) ∼ χ2

m and
∑

X2
i /σ2

X ∼ χ2
n, independent. Also, we can write

λ(X, Y ) =

 1
n

m+n + (ΣY 2
i

/λ0σ2
X

)/m

(ΣX2
i
/σ2

X
)/n

· m
m+n

n/2 1
m

m+n + (ΣX2
i
/σ2

X
)/n

(ΣY 2
i

/λ0σ2
X

)/m
· n

m+n

m/2

=

[
1

n
n+m + m

m+nF

]n/2 [
1

m
m+n + n

m+nF−1

]m/2

where F = ΣY 2
i /λ0m

ΣX2
i
/n

∼ Fm,n under H0. The rejection region is(x, y) :
1[

n
n+m + m

m+nF
]n/2

· 1[
m

m+n + n
m+nF−1

]m/2
< cα


where cα is chosen to satisfy

P

{[
n

n + m
+

m

m + n
F

]−n/2 [
m

n + m
+

n

m + n
F−1

]−m/2

< cα

}
= α.

c. To ease notation, let a = m/(n + m) and b = a
∑

y2
i /
∑

x2
i . From the duality of hypothesis

tests and confidence sets, the set

c(λ) =

λ :
(

1
a + b/λ

)n/2
(

1

(1− a)+a(1−a)
b λ

)m/2

≥ cα


is a 1−α confidence set for λ. We now must establish that this set is indeed an interval. To do
this, we establish that the function on the left hand side of the inequality has only an interior
maximum. That is, it looks like an upside-down bowl. Furthermore, it is straightforward to
establish that the function is zero at both λ = 0 and λ = ∞. These facts imply that the set of
λ values for which the function is greater than or equal to cα must be an interval. We make
some further simplifications. If we multiply both sides of the inequality by [(1 − a)/b]m/2,
we need be concerned with only the behavior of the function

h(λ) =
(

1
a + b/λ

)n/2( 1
b + aλ

)m/2

.

Moreover, since we are most interested in the sign of the derivative of h, this is the same as
the sign of the derivative of log h, which is much easier to work with. We have

d

dλ
log h(λ) =

d

dλ

[
−n

2
log(a + b/λ)− m

2
log(b + aλ)

]
=

n

2
b/λ2

a + b/λ
− m

2
a

b + aλ

=
1

2λ2(a + b/λ)(b + aλ)
[
−a2mλ2+ab(n−m)λ+nb2

]
.
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The sign of the derivative is given by the expression in square brackets, a parabola. It is easy
to see that for λ ≥ 0, the parabola changes sign from positive to negative. Since this is the
sign change of the derivative, the function must increase then decrease. Hence, the function
is an upside-down bowl, and the set is an interval.

9.5 a. Analogous to Example 9.2.5, the test here will reject H0 if T < k(p0). Thus the confidence
set is C = {p : T ≥ k(p)}. Since k(p) is nondecreasing, this gives an upper bound on p.

b. k(p) is the integer that simultaneously satisfies

n∑
y=k(p)

(
n

y

)
py(1− p)n−y ≥ 1− α and

n∑
y=k(p)+1

(
n

y

)
py(1− p)n−y < 1− α.

9.6 a. For Y =
∑

Xi ∼ binomial(n, p), the LRT statistic is

λ(y) =

(
n
y

)
py
0(1− p0)n−y(

n
y

)
p̂y(1− p̂)n−y

=
(

p0(1− p̂)
p̂(1− p0)

)y (1−p0

1−p̂

)n

where p̂ = y/n is the MLE of p. The acceptance region is

A(p0) =

{
y :
(

p0

p̂

)y (1−p0

1−p̂

)n−y

≥ k∗

}
where k∗ is chosen to satisfy Pp0(Y ∈ A(p0)) = 1− α. Inverting the acceptance region to a
confidence set, we have

C(y) =

{
p :
(

p

p̂

)y ( (1− p)
1−p̂

)n−y

≥ k∗

}
.

b. For given n and observed y, write

C(y) =
{

p : (n/y)y (n/(n− y))n−y
py(1− p)n−y ≥ k∗

}
.

This is clearly a highest density region. The endpoints of C(y) are roots of the nth degree
polynomial (in p), (n/y)y (n/(n− y))n−y

py(1− p)n−y − k∗. The interval of (10.4.4) is{
p :

∣∣∣∣∣ p̂− p√
p(1− p)/n

∣∣∣∣∣ ≤ zα/2

}
.

The endpoints of this interval are the roots of the second degree polynomial (in p), (p̂−p)2−
z2
α/2p(1 − p)/n. Typically, the second degree and nth degree polynomials will not have the

same roots. Therefore, the two intervals are different. (Note that when n →∞ and y →∞,
the density becomes symmetric (CLT). Then the two intervals are the same.)

9.7 These densities have already appeared in Exercise 8.8, where LRT statistics were calculated
for testing H0 : a = 1.

a. Using the result of Exercise 8.8(a), the restricted MLE of θ (when a = a0) is

θ̂0 =
−a0 +

√
a2
0 + 4

∑
x2

i /n

2
,

and the unrestricted MLEs are

θ̂ = x̄ and â =
∑

(xi − x̄)2

nx̄
.
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The LRT statistic is

λ(x) =

(
âθ̂

a0θ̂0

)n/2

e
− 1

2a0θ̂0
Σ(xi−θ̂0)

2

e−
1

2âθ̂
Σ(xi−θ̂)2

=
(

1

2πa0θ̂0

)n/2

en/2e
− 1

2a0θ̂0
Σ(xi−θ̂0)

2

The rejection region of a size α test is {x : λ(x) ≤ cα}, and a 1 − α confidence set is
{a0 : λ(x) ≥ cα}.

b. Using the results of Exercise 8.8b, the restricted MLE (for a = a0) is found by solving

−a0θ
2 + [σ̂2 + (x̄− θ)2] + θ(x̄− θ) = 0,

yielding the MLE
θ̂R = x̄ +

√
x̄ + 4a0(σ̂2 + x̄2)/2a0.

The unrestricted MLEs are

θ̂ = x̄ and â =
1

nx̄2

n∑
i=1

(xi − x̄)2 =
σ̂2

x̄2
,

yielding the LRT statistic

λ(x) =
(
σ̂/θ̂R

)n

e(n/2)−Σ(xi−θ̂R)2/(2θ̂R).

The rejection region of a size α test is {x : λ(x) ≤ cα}, and a 1 − α confidence set is
{a0 : λ(x) ≥ cα}.

9.9 Let Z1, . . . , Zn be iid with pdf f(z).

a. For Xi ∼ f(x− µ), (X1, . . . , Xn) ∼ (Z1 + µ, . . . , Zn + µ), and X̄ − µ ∼ Z + µ− µ = Z̄. The
distribution of Z̄ does not depend on µ.

b. For Xi ∼ f(x/σ)/σ, (X1, . . . , Xn) ∼ (σZ1, . . . , σZn), and X̄/σ ∼ σZ/σ = Z̄. The distribu-
tion of Z̄ does not depend on σ.

c. For Xi ∼ f((x − µ)/σ)/σ, (X1, . . . , Xn) ∼ (σZ1 + µ, . . . , σZn + µ), and (X̄ − µ)/SX ∼
(σZ + µ − µ)/SσZ+µ = σZ̄/(σSZ) = Z̄/SZ . The distribution of Z̄/SZ does not depend on
µ or σ.

9.11 Recall that if θ is the true parameter, then FT (T |θ) ∼ uniform(0, 1). Thus,

Pθ0({T : α1 ≤ FT (T |θ0) ≤ 1− α2}) = P (α1 ≤ U ≤ 1− α2) = 1− α2 − α1,

where U ∼ uniform(0, 1). Since

t ∈ {t : α1 ≤ FT (t|θ) ≤ 1− α2} ⇔ θ ∈ {θ : α1 ≤ FT (t|θ) ≤ 1− α2}

the same calculation shows that the interval has confidence 1− α2 − α1.
9.12 If X1, . . . , Xn ∼ iid n(θ, θ), then

√
n(X̄ − θ)/

√
θ ∼ n(0, 1) and a 1 − α confidence interval is

{θ : |
√

n(x̄− θ)/
√

θ| ≤ zα/2}. Solving for θ, we get{
θ : nθ2 − θ

(
2nx̄ + z2

α/2

)
+ nx̄2 ≤ 0

}
=
{

θ : θ ∈
(
2nx̄ + z2

α/2 ±
√

4nx̄z2
α/2 + z4

α/2

)
/2n

}
.

Simpler answers can be obtained using the t pivot, (X̄−θ)/(S/
√

n), or the χ2 pivot, (n−1)S2/θ2.
(Tom Werhley of Texas A&M university notes the following: The largest probability of getting
a negative discriminant (hence empty confidence interval) occurs when

√
nθ = 1

2zα/2, and
the probability is equal to α/2. The behavior of the intervals for negative values of x̄ is also
interesting. When x̄ = 0 the lefthand endpoint is also equal to 0, but when x̄ < 0, the lefthand
endpoint is positive. Thus, the interval based on x̄ = 0 contains smaller values of θ than that
based on x̄ < 0. The intervals get smaller as x̄ decreases, finally becoming empty.)
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9.13 a. For Y = −(log X)−1, the pdf of Y is fY (y) = θ
y2 e−θ/y, 0 < y < ∞, and

P (Y/2 ≤ θ ≤ Y ) =
∫ 2θ

θ

θ

y2
e−θ/ydy = e−θ/y

∣∣∣2θ

θ
= e−1/2 − e−1 = .239.

b. Since fX(x) = θxθ−1, 0 < x < 1, T = Xθ is a good guess at a pivot, and it is since fT (t) = 1,
0 < t < 1. Thus a pivotal interval is formed from P (a < Xθ < b) = b− a and is{

θ :
log b

log x
≤ θ ≤ log a

log x

}
.

Since Xθ ∼ uniform(0, 1), the interval will have confidence .239 as long as b− a = .239.
c. The interval in part a) is a special case of the one in part b). To find the best interval, we

minimize log b− log a subject to b− a = 1− α, or b = 1− α + a. Thus we want to minimize
log(1 − α + a) − log a = log

(
1+ 1−α

a

)
, which is minimized by taking a as big as possible.

Thus, take b = 1 and a = α, and the best 1− α pivotal interval is
{

θ : 0 ≤ θ ≤ log α
log x

}
. Thus

the interval in part a) is nonoptimal. A shorter interval with confidence coefficient .239 is
{θ : 0 ≤ θ ≤ log(1− .239)/log(x)}.

9.14 a. Recall the Bonferroni Inequality (1.2.9), P (A1 ∩ A2) ≥ P (A1) + P (A2) − 1. Let A1 =
P (interval covers µ) and A2 = P (interval covers σ2). Use the interval (9.2.14), with tn−1,α/4

to get a 1− α/2 confidence interval for µ. Use the interval after (9.2.14) with b = χ2
n−1,α/4

and a = χ2
n−1,1−α/4 to get a 1−α/2 confidence interval for σ. Then the natural simultaneous

set is

Ca(x) =

{
(µ, σ2) : x̄− tn−1,α/4

s√
n
≤ µ ≤ x̄ + tn−1,α/4

s√
n

and
(n− 1)s2

χ2
n−1,α/4

≤ σ2 ≤ (n− 1)s2

χ2
n−1,1−α/4

}

and P
(
Ca(X) covers (µ, σ2)

)
= P (A1∩A2) ≥ P (A1)+P (A2)−1 = 2(1−α/2)−1 = 1−α.

b. If we replace the µ interval in a) by
{

µ : x̄− kσ√
n
≤ µ ≤ x̄ + kσ√

n

}
then X̄−µ

σ/
√

n
∼ n(0, 1), so we

use zα/4 and

Cb(x) =

{
(µ, σ2) : x̄− zα/4

σ√
n
≤ µ ≤ x̄ + zα/4

σ√
n

and
(n− 1)s2

χ2
n−1,α/4

≤ σ2 ≤ (n− 1)s2

χ2
n−1,1−α/4

}

and P
(
Cb(X) covers (µ, σ2)

)
≥ 2(1− α/2)− 1 = 1− α.

c. The sets can be compared graphically in the (µ, σ) plane: Ca is a rectangle, since µ and σ2

are treated independently, while Cb is a trapezoid, with larger σ2 giving a longer interval.
Their areas can also be calculated

Area of Ca =
[
2tn−1,α/4

s√
n

]{√
(n− 1)s2

(
1

χ2
n−1,1−α/4

− 1
χ2

n−1,α/4

)}

Area of Cb =

[
zα/4

s√
n

(√
n− 1

χ2
n−1,1−α/4

+

√
n− 1

χ2
n−1,α/4

)]

×

{√
(n− 1)s2

(
1

χ2
n−1,1−α/4

− 1
χ2

n−1,α/4

)}
and compared numerically.
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9.15 Fieller’s Theorem says that a 1− α confidence set for θ = µY /µX is{
θ :

(
x̄2 −

t2n−1,α/2

n− 1
s2

X

)
θ2 − 2

(
x̄ȳ −

t2n−1,α/2

n− 1
sY X

)
θ +

(
ȳ2 −

t2n−1,α/2

n− 1
s2

Y

)
≤ 0

}
.

a. Define a = x̄2 − ts2
X , b = x̄ȳ − tsY X , c = ȳ2 − ts2

Y , where t =
t2n−1,α/2

n−1 . Then the parabola
opens upward if a > 0. Furthermore, if a > 0, then there always exists at least one real root.
This follows from the fact that at θ = ȳ/x̄, the value of the function is negative. For θ̄ = ȳ/x̄
we have (

x̄2 − ts2
X

) ( ȳ

x̄

)2

− 2 (x̄ȳ − tsXY )
( ȳ

x̄

)
+
(
ȳ2 − as2

Y

)
= −t

[
ȳ2

x̄2
s2

X − 2
ȳ

x̄
sXY +s2

Y

]
= −t

[
n∑

i=1

(
ȳ2

x̄2
(xi − x̄)2 − 2

ȳ

x̄
(xi − x̄)(yi − ȳ) + (yi − ȳ)2

)]

= −t

[
n∑

i=1

( ȳ

x̄
(xi − x̄)− (yi − ȳ)

)2
]

which is negative.
b. The parabola opens downward if a < 0, that is, if x̄2 < ts2

X . This will happen if the test of
H0 : µX = 0 accepts H0 at level α.

c. The parabola has no real roots if b2 < ac. This can only occur if a < 0.

9.16 a. The LRT (see Example 8.2.1) has rejection region {x : |x̄ − θ0| > zα/2σ/
√

n}, acceptance
region A(θ0) = {x : −zα/2σ/

√
n ≤ x̄− θ0 ≤ zα/2σ/

√
n}, and 1−α confidence interval C(θ) =

{θ : x̄− zα/2σ/
√

n ≤ θ ≤ x̄ + zα/2σ/
√

n}.
b. We have a UMP test with rejection region {x : x̄ − θ0 < −zασ/

√
n}, acceptance region

A(θ0) = {x : x̄−θ0 ≥ −zασ/
√

n}, and 1−α confidence interval C(θ) = {θ : x̄+zασ/
√

n ≥ θ}.
c. Similar to b), the UMP test has rejection region {x : x̄− θ0 > zασ/

√
n}, acceptance region

A(θ0) = {x : x̄− θ0 ≤ zασ/
√

n}, and 1−α confidence interval C(θ) = {θ : x̄− zασ/
√

n ≤ θ}.
9.17 a. Since X − θ ∼ uniform(−1/2, 1/2), P (a ≤ X − θ ≤ b) = b − a. Any a and b satisfying

b = a + 1− α will do. One choice is a = − 1
2 + α

2 , b = 1
2 −

α
2 .

b. Since T = X/θ has pdf f(t) = 2t, 0 ≤ t ≤ 1,

P (a ≤ X/θ ≤ b) =
∫ b

a

2t dt = b2 − a2.

Any a and b satisfying b2 = a2 + 1− α will do. One choice is a =
√

α/2, b =
√

1− α/2.
9.18 a. Pp(X = 1) =

(
3
1

)
p1(1− p)3−1 = 3p(1− p)2, maximum at p = 1/3.

Pp(X = 2) =
(
3
2

)
p2(1− p)3−2 = 3p2(1− p), maximum at p = 2/3.

b. P (X = 0) =
(
3
0

)
p0(1− p)3−0 = (1− p)3, and this is greater than P (X = 2) if (1− p)2 > 3p2,

or 2p2 + 2p− 1 < 0. At p = 1/3, 2p2 + 2p− 1 = −1/9.
c. To show that this is a 1 − α = .442 interval, compare with the interval in Example 9.2.11.

There are only two discrepancies. For example,

P (p ∈ interval | .362 < p < .634) = P (X = 1 or X = 2) > .442

by comparison with Sterne’s procedure, which is given by
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x interval
0 [.000,.305)
1 [.305,.634)
2 [.362,.762)
3 [.695,1].

9.19 For FT (t|θ) increasing in θ, there are unique values θU (t) and θL(t) such that FT (t|θ) < 1− α
2

if and only if θ < θU (t) and FT (t|θ) > α
2 if and only if θ > θL(t). Hence,

P (θL(T ) ≤ θ ≤ θU (T )) = P (θ ≤ θU (T ))− P (θ ≤ θL(T ))

= P
(
FT (T ) ≤ 1− α

2

)
− P

(
FT (T ) ≤ α

2

)
= 1− α.

9.21 To construct a 1− α confidence interval for p of the form {p : ` ≤ p ≤ u} with P (` ≤ p ≤ u) =
1− α, we use the method of Theorem 9.2.12. We must solve for ` and u in the equations

(1)
α

2
=

x∑
k=0

(
n

k

)
uk(1− u)n−k and (2)

α

2
=

n∑
k=x

(
n

k

)
`k(1− `)n−k.

In equation (1) α/2 = P (K ≤ x) = P (Y ≤ 1 − u), where Y ∼ beta(n − x, x + 1) and
K ∼ binomial(n, u). This is Exercise 2.40. Let Z ∼ F2(n−x),2(x+1) and c = (n− x)/(x + 1). By
Theorem 5.3.8c, cZ/(1 + cZ) ∼ beta(n− x, x + 1) ∼ Y . So we want

α/2 = P

(
cZ

(1 + cZ)
≤ 1− u

)
= P

(
1
Z
≥ cu

1− u

)
.

From Theorem 5.3.8a, 1/Z ∼ F2(x+1),2(n−x). So we need cu/(1−u) = F2(x+1),2(n−x),α/2. Solving
for u yields

u =
x+1
n−xF2(x+1),2(n−x),α/2

1 + x+1
n−xF2(x+1),2(n−x),α/2

.

A similar manipulation on equation (2) yields the value for `.

9.23 a. The LRT statistic for H0 : λ = λ0 versus H1 : λ 6= λ0 is

g(y) = e−nλ0(nλ0)y/e−nλ̂(nλ̂)y,

where Y =
∑

Xi ∼ Poisson(nλ) and λ̂ = y/n. The acceptance region for this test is
A(λ0) = {y : g(y) > c(λ0)) where c(λ0) is chosen so that P (Y ∈ A(λ0)) ≥ 1 − α. g(y) is a
unimodal function of y so A(λ0) is an interval of y values. Consider constructing A(λ0) for
each λ0 > 0. Then, for a fixed y, there will be a smallest λ0, call it a(y), and a largest λ0,
call it b(y), such that y ∈ A(λ0). The confidence interval for λ is then C(y) = (a(y), b(y)).
The values a(y) and b(y) are not expressible in closed form. They can be determined by a
numerical search, constructing A(λ0) for different values of λ0 and determining those values
for which y ∈ A(λ0). (Jay Beder of the University of Wisconsin, Milwaukee, reminds us that
since c is a function of λ, the resulting confidence set need not be a highest density region
of a likelihood function. This is an example of the effect of the imposition of one type of
inference (frequentist) on another theory (likelihood).)

b. The procedure in part a) was carried out for y = 558 and the confidence interval was found to
be (57.78, 66.45). For the confidence interval in Example 9.2.15, we need the values χ2

1116,.95 =
1039.444 and χ2

1118,.05 = 1196.899. This confidence interval is (1039.444/18, 1196.899/18) =
(57.75, 66.49). The two confidence intervals are virtually the same.
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9.25 The confidence interval derived by the method of Section 9.2.3 is

C(y) =
{

µ : y +
1
n

log
(α

2

)
≤ µ ≤ y +

1
n

log
(
1− α

2

)}
where y = mini xi. The LRT method derives its interval from the test of H0 : µ = µ0 versus
H1 : µ 6= µ0. Since Y is sufficient for µ, we can use fY (y | µ). We have

λ(y) =
supµ=µ0

L(µ|y)
supµ∈(−∞,∞) L(µ|y)

=
ne−n(y − µ0)I[µ0,∞)(y)

ne−(y−y)I[µ,∞)(y)

= e−n(y−µ0)I[µ0,∞)(y) =
{

0 if y < µ0

e−n(y−µ0) if y ≥ µ0.

We reject H0 if λ(y) = e−n(y−µ0) < cα, where 0 ≤ cα ≤ 1 is chosen to give the test level α. To
determine cα, set

α = P { reject H0|µ = µ0} = P

{
Y > µ0 −

log cα

n
or Y < µ0

∣∣∣∣µ = µ0

}
= P

{
Y > µ0 −

log cα

n

∣∣∣∣µ = µ0

}
=

∫ ∞

µ0− log cα
n

ne−n(y−µ0) dy

= −e−n(y−µ0)
∣∣∣∞
µ0− log cα

n

= elog cα = cα.

Therefore, cα = α and the 1− α confidence interval is

C(y) =
{

µ : µ ≤ y ≤ µ− log α

n

}
=
{

µ : y +
1
n

log α ≤ µ ≤ y

}
.

To use the pivotal method, note that since µ is a location parameter, a natural pivotal quantity
is Z = Y −µ. Then, fZ(z) = ne−nzI(0,∞)(z). Let P{a ≤ Z ≤ b} = 1−α, where a and b satisfy

α

2
=
∫ a

0

ne−nz dz = −e−nz
∣∣a
0

= 1− e−na ⇒ e−na = 1− α

2

⇒ a =
− log

(
1− α

2

)
n

α

2
=
∫ ∞

b

ne−nz dz = −e−nz
∣∣∞
b

= e−nb ⇒ −nb = log
α

2

⇒ b = − 1
n

log
(α

2

)
Thus, the pivotal interval is Y + log(α/2)/n ≤ µ ≤ Y + log(1−α/2), the same interval as from
Example 9.2.13. To compare the intervals we compare their lengths. We have

Length of LRT interval = y − (y +
1
n

log α) = − 1
n

log α

Length of Pivotal interval =
(

y +
1
n

log(1− α/2)
)
− (y +

1
n

log α/2) =
1
n

log
1− α/2

α/2

Thus, the LRT interval is shorter if − log α < log[(1−α/2)/(α/2)], but this is always satisfied.
9.27 a. Y =

∑
Xi ∼ gamma(n, λ), and the posterior distribution of λ is

π(λ|y) =
(y + 1

b )n+a

Γ(n + a)
1

λn+a+1
e−

1
λ (y+ 1

b ),
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an IG
(
n + a, (y + 1

b )−1
)
. The Bayes HPD region is of the form {λ : π(λ|y) ≥ k}, which is

an interval since π(λ|y) is unimodal. It thus has the form {λ : a1(y) ≤ λ ≤ a2(y)}, where a1

and a2 satisfy
1

a1
n+a+1

e−
1

a1
(y+ 1

b ) =
1

a2
n+a+1

e−
1

a2
(y+ 1

b ).

b. The posterior distribution is IG(((n−1)/2)+a, (((n−1)s2/2)+1/b)−1). So the Bayes HPD
region is as in part a) with these parameters replacing n + a and y + 1/b.

c. As a → 0 and b →∞, the condition on a1 and a2 becomes

1
a1

((n−1)/2)+1
e−

1
a1

(n−1)s2

2 =
1

a2
((n−1)/2)+1

e−
1

a2
(n−1)s2

2 .

9.29 a. We know from Example 7.2.14 that if π(p) ∼ beta(a, b), the posterior is π(p|y) ∼ beta(y +
a, n− y + b) for y =

∑
xi. So a 1− α credible set for p is:

{p : βy+a,n−y+b,1−α/2 ≤ p ≤ βy+a,n−y+b,α/2}.

b. Converting to an F distribution, βc,d = (c/d)F2c,2d

1+(c/d)F2c,2d
, the interval is

y+a
n−y+bF2(y+a),2(n−y+b),1−α/2

1 + y+a
n−y+bF2(y+a),2(n−y+b),1−α/2

≤ p ≤
y+a

n−y+bF2(y+a),2(n−y+b),α/2

1 + y+a
n−y+bF2(y+a),2(n−y+b),α/2

or, using the fact that Fm,n = F−1
n,m,

1
1 + n−y+b

y+a F2(n−y+b),2(y+a),α/2

≤ p ≤
y+a

n−y+bF2(y+a),2(n+b),α/2

1 + y+a
n−y+bF2(y+a),2(n−y+b),α/2

.

For this to match the interval of Exercise 9.21, we need x = y and

Lower limit: n− y + b = n− x + 1 ⇒ b = 1
y + a = x ⇒ a = 0

Upper limit: y + a = x + 1 ⇒ a = 1
n− y + b = n− x ⇒ b = 0.

So no values of a and b will make the intervals match.
9.31 a. We continually use the fact that given Y = y, χ2

2y is a central χ2 random variable with 2y
degrees of freedom. Hence

Eχ2
2Y = E[E(χ2

2Y |Y )] = E2Y = 2λ

Varχ2
2Y = E[Var(χ2

2Y |Y )] + Var[E(χ2
2Y |Y )]

= E[4Y ] + Var[2Y ] = 4λ + 4λ = 8λ

mgf = Eetχ2
2Y = E[E(etχ2

2Y |Y )] = E
(

1
1− 2t

)Y

=
∞∑

y=0

e−λ
(

λ
1−2t

)y

y!
= e−λ+ λ

1−2t .

From Theorem 2.3.15, the mgf of (χ2
2Y − 2λ)/

√
8λ is

e−t
√

λ/2
[
e
−λ+ λ

1−t/
√

2λ

]
.
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The log of this is

−
√

λ/2t− λ +
λ

1− t/
√

2λ
=

t2
√

λ

−t
√

2 + 2
√

λ
=

t2

−(t
√

2/
√

λ) + 2
→ t2/2 as λ →∞,

so the mgf converges to et2/2, the mgf of a standard normal.
b. Since P (χ2

2Y ≤ χ2
2Y,α) = α for all λ,

χ2
2Y,α − 2λ
√

8λ
→ zα as λ →∞.

In standardizing (9.2.22), the upper bound is

nb
nb+1χ2

2(Y +a),α/2 − 2λ
√

8λ
=

√
8(λ + a)

8λ

[
nb

nb+1 [χ2
2(Y +a),α/2 − 2(λ + a)]√

8(λ + a)
+

nb
nb+12(λ + a)− 2λ√

8(λ + a)

]
.

While the first quantity in square brackets → zα/2, the second one has limit

lim
λ→∞

−2 1
nb+1λ + a nb

nb+1√
8(λ + a)

→ −∞,

so the coverage probability goes to zero.
9.33 a. Since 0 ∈ Ca(x) for every x, P (0 ∈ Ca(X)|µ = 0) = 1. If µ > 0,

P (µ ∈ Ca(X)) = P (µ ≤ max{0, X + a}) = P (µ ≤ X + a) (since µ > 0)
= P (Z ≥ −a) (Z ∼ n(0, 1))
= .95 (a = 1.645.)

A similar calculation holds for µ < 0.
b. The credible probability is∫ max(0,x+a)

min(0,x−a)

1√
2π

e−
1
2 (µ−x)2 dµ =

∫ max(−x,a)

min(−x,−a)

1√
2π

e−
1
2 t2 dt

= P (min(−x,−a) ≤ Z ≤ max(−x, a)) .

To evaluate this probability we have two cases:

(i) |x| ≤ a ⇒ credible probability = P (|Z| ≤ a)
(ii) |x| > a ⇒ credible probability = P (−a ≤ Z ≤ |x|)

Thus we see that for a = 1.645, the credible probability is equal to .90 if |x| ≤ 1.645 and
increases to .95 as |x| → ∞.

9.34 a. A 1 − α confidence interval for µ is {µ : x̄ − 1.96σ/
√

n ≤ µ ≤ x̄ + 1.96σ/
√

n}. We need
2(1.96)σ/

√
n ≤ σ/4 or

√
n ≥ 4(2)(1.96). Thus we need n ≥ 64(1.96)2 ≈ 245.9. So n = 246

suffices.
b. The length of a 95% confidence interval is 2tn−1,.025S/

√
n. Thus we need

P

(
2tn−1,.025

S√
n
≤ σ

4

)
≥ .9 ⇒ P

(
4t2n−1,.025

S2

n
≤ σ2

16

)
≥ .9

⇒ P

 (n− 1)S2

σ2︸ ︷︷ ︸
∼χ2

n−1

≤ (n− 1)n
t2n−1,.025 · 64

 ≥ .9.
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We need to solve this numerically for the smallest n that satisfies the inequality

(n− 1)n
t2n−1,.025 · 64

≥ χ2
n−1,.1.

Trying different values of n we find that the smallest such n is n = 276 for which

(n− 1)n
t2n−1,.025 · 64

= 306.0 ≥ 305.5 = χ2
n−1,.1.

As to be expected, this is somewhat larger than the value found in a).

9.35 length = 2zα/2σ/
√

n, and if it is unknown, E(length) = 2tα/2,n−1cσ/
√

n, where

c =
√

n− 1Γ(n−1
2 )

√
2Γ(n/2)

and EcS = σ (Exercise 7.50). Thus the difference in lengths is (2σ/
√

n)(zα/2 − ctα/2). A little
work will show that, as n →∞, c → constant. (This can be done using Stirling’s formula along
with Lemma 2.3.14. In fact, some careful algebra will show that c → 1 as n →∞.) Also, we know
that, as n → ∞, tα/2,n−1 → zα/2. Thus, the difference in lengths (2σ/

√
n)(zα/2 − ctα/2) → 0

as n →∞.

9.36 The sample pdf is

f(x1, . . . , xn|θ) =
n∏

i=1

eiθ−xiI(iθ,∞)(xi) = eΣ(iθ−xi)I(θ,∞)[min(xi/i)].

Thus T = min(Xi/i) is sufficient by the Factorization Theorem, and

P (T > t) =
n∏

i=1

P (Xi > it) =
n∏

i=1

∫ ∞

it

eiθ−x dx =
n∏

i=1

ei(θ−t) = e−
n(n+1)

2 (t−θ),

and

fT (t) =
n(n + 1)

2
e−

n(n+1)
2 (t−θ), t ≥ θ.

Clearly, θ is a location parameter and Y = T − θ is a pivot. To find the shortest confidence
interval of the form [T + a, T + b], we must minimize b − a subject to the constraint P (−b ≤
Y ≤ −a) = 1− α. Now the pdf of Y is strictly decreasing, so the interval length is shortest if
−b = 0 and a satisfies

P (0 ≤ Y ≤ −a) = e−
n(n+1)

2 a = 1− α.

So a = 2 log(1− α)/(n(n + 1)).

9.37 a. The density of Y = X(n) is fY (y) = nyn−1/θn, 0 < y < θ. So θ is a scale parameter, and
T = Y/θ is a pivotal quantity. The pdf of T is fT (t) = ntn−1, 0 ≤ t ≤ 1.

b. A pivotal interval is formed from the set

{θ : a ≤ t ≤ b} =
{

θ : a ≤ y

θ
≤ b
}

=
{

θ :
y

b
≤ θ ≤ y

a

}
,

and has length Y (1/a − 1/b) = Y (b − a)/ab. Since fT (t) is increasing, b − a is minimized
and ab is maximized if b = 1. Thus shortest interval will have b = 1 and a satisfying
α =

∫ a

0
ntn−1dt = an ⇒ a = α1/n. So the shortest 1− α confidence interval is {θ : y ≤ θ ≤

y/α1/n}.
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9.39 Let a be such that
∫ a

−∞ f(x) dx = α/2. This value is unique for a unimodal pdf if α > 0. Let µ

be the point of symmetry and let b = 2µ− a. Then f(b) = f(a) and
∫∞

b
f(x) dx = α/2. a ≤ µ

since
∫ a

−∞ f(x) dx = α/2 ≤ 1/2 =
∫ µ

−∞ f(x) dx. Similarly, b ≥ µ. And, f(b) = f(a) > 0 since
f(a) ≥ f(x) for all x ≤ a and

∫ a

−∞ f(x) dx = α/2 > 0 ⇒ f(x) > 0 for some x < a ⇒ f(a) > 0.
So the conditions of Theorem 9.3.2 are satisfied.

9.41 a. We show that for any interval [a, b] and ε > 0, the probability content of [a − ε, b − ε] is
greater (as long as b− ε > a). Write∫ a

b

f(x) dx−
∫ b−ε

a−ε

f(x) dx =
∫ b

b−ε

f(x) dx−
∫ a

a−ε

f(x) dx

≤ f(b− ε)[b− (b− ε)]− f(a)[a− (a− ε)]
≤ ε[f(b− ε)− f(a)] ≤ 0,

where all of the inequalities follow because f(x) is decreasing. So moving the interval toward
zero increases the probability, and it is therefore maximized by moving a all the way to zero.

b. T = Y −µ is a pivot with decreasing pdf fT (t) = ne−ntI[0,∞](t). The shortest 1−α interval
on T is [0,− 1

n log α], since∫ b

0

ne−nt dt = 1− α ⇒ b = − 1
n

log α.

Since a ≤ T ≤ b implies Y −b ≤ µ ≤ Y −a, the best 1−α interval on µ is Y + 1
n log α ≤ µ ≤ Y .

9.43 a. Using Theorem 8.3.12, identify g(t) with f(x|θ1) and f(t) with f(x|θ0). Define φ(t) = 1 if
t ∈ C and 0 otherwise, and let φ′ be the indicator of any other set C ′ satisfying

∫
C′ f(t) dt ≥

1− α. Then (φ(t)− φ′(t))(g(t)− λf(t)) ≤ 0 and

0 ≥
∫

(φ− φ′)(g − λf) =
∫

C

g −
∫

C′
g − λ

[∫
C

f −
∫

C′
f

]
≥
∫

C

g −
∫

C′
g,

showing that C is the best set.
b. For Exercise 9.37, the pivot T = Y/θ has density ntn−1, and the pivotal interval a ≤ T ≤ b

results in the θ interval Y/b ≤ θ ≤ Y/a. The length is proportional to 1/a − 1/b, and thus
g(t) = 1/t2. The best set is {t : 1/t2 ≤ λntn−1}, which is a set of the form {t : a ≤ t ≤ 1}.
This has probability content 1− α if a = α1/n. For Exercise 9.24 (or Example 9.3.4), the g
function is the same and the density of the pivot is fk, the density of a gamma(k, 1). The
set {t : 1/t2 ≤ λfk(t)} = {t : fk+2(t) ≥ λ′}, so the best a and b satisfy

∫ b

a
fk(t) dt = 1 − α

and fk+2(a) = fk+2(b).
9.45 a. Since Y =

∑
Xi ∼ gamma(n, λ) has MLR, the Karlin-Rubin Theorem (Theorem 8.3.2)

shows that the UMP test is to reject H0 if Y < k(λ0), where P (Y < k(λ0)|λ = λ0) = α.
b. T = 2Y/λ ∼ χ2

2n so choose k(λ0) = 1
2λ0χ

2
2n,α and

{λ : Y ≥ k(λ)} =
{

λ : Y ≥ 1
2
λχ2

2n,α

}
=
{
λ : 0 < λ ≤ 2Y/χ2

2n,α

}
is the UMA confidence set.

c. The expected length is E 2Y
χ2

2n,α
= 2nλ

χ2
2n,α

.

d. X(1) ∼ exponential(λ/n), so EX(1) = λ/n. Thus

E(length(C∗)) =
2× 120
251.046

λ = .956λ

E(length(Cm)) =
−λ

120× log(.99)
= .829λ.
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9.46 The proof is similar to that of Theorem 9.3.5:

Pθ (θ′ ∈ C∗(X)) = Pθ (X ∈ A∗(θ′)) ≤ Pθ (X ∈ A(θ′)) = Pθ (θ′ ∈ C(X)) ,

where A and C are any competitors. The inequality follows directly from Definition 8.3.11.
9.47 Referring to (9.3.2), we want to show that for the upper confidence bound, Pθ(θ′ ∈ C) ≤ 1−α

if θ′ ≥ θ. We have
Pθ(θ′ ∈ C) = Pθ(θ′ ≤ X̄ + zασ/

√
n).

Subtract θ from both sides and rearrange to get

Pθ(θ′ ∈ C) = Pθ

(
θ′ − θ

σ/
√

n
≤ X̄ − θ

σ/
√

n
+ zα

)
= P

(
Z ≥ θ′ − θ

σ/
√

n
− zα

)
,

which is less than 1 − α as long as θ′ ≥ θ. The solution for the lower confidence interval is
similar.

9.48 a. Start with the hypothesis test H0 : θ ≥ θ0 versus H1 : θ < θ0. Arguing as in Example 8.2.4
and Exercise 8.47, we find that the LRT rejects H0 if (X̄ − θ0)/(S/

√
n) < −tn−1,α. So the

acceptance region is {x : (x̄− θ0)/(s/
√

n) ≥ −tn−1,α} and the corresponding confidence set
is {θ : x̄ + tn−1,αs/

√
n ≥ θ}.

b. The test in part a) is the UMP unbiased test so the interval is the UMA unbiased interval.
9.49 a. Clearly, for each σ, the conditional probability Pθ0(X̄ > θ0 + zασ/

√
n | σ) = α, hence the

test has unconditional size α. The confidence set is {(θ,σ) : θ ≥ x̄− zασ/
√

n}, which has
confidence coefficient 1− α conditionally and, hence, unconditionally.

b. From the Karlin-Rubin Theorem, the UMP test is to reject H0 if X > c. To make this size
α,

Pθ0(X > c) = Pθ0 (X > c|σ = 10) P (σ = 10) + P (X > c|σ = 1)P (σ = 1)

= pP

(
X − θ0

10
>

c− θ0

10

)
+ (1− p)P (X − θ0 > c− θ0)

= pP

(
Z >

c− θ0

10

)
+ (1− p)P (Z > c− θ0),

where Z ∼ n(0, 1). Without loss of generality take θ0 = 0. For c = z(α−p)/(1−p) we have for
the proposed test

Pθ0(reject) = p + (1− p)P
(
Z > z(α−p)/(1−p)

)
= p + (1− p)

(α−p)
(1− p)

= p + α− p = α.

This is not UMP, but more powerful than part a. To get UMP, solve for c in pP (Z >
c/10) + (1− p)P (Z > c) = α, and the UMP test is to reject if X > c. For p = 1/2, α = .05,
we get c = 12.81. If α = .1 and p = .05, c = 1.392 and z .1−.05

.95
=.0526= 1.62.

9.51

Pθ (θ ∈ C(X1, . . . , Xn)) = Pθ

(
X̄ − k1 ≤ θ ≤ X̄ + k2

)
= Pθ

(
−k2 ≤ X̄ − θ ≤ k1

)
= Pθ

(
−k2 ≤

∑
Zi/n ≤ k1

)
,

where Zi = Xi − θ, i = 1, . . . , n. Since this is a location family, for any θ, Z1, . . . , Zn are iid
with pdf f(z), i. e., the Zis are pivots. So the last probability does not depend on θ.
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9.52 a. The LRT of H0 : σ = σ0 versus H1 : σ 6= σ0 is based on the statistic

λ(x) =
supµ,σ=σ0

L (µ, σ0|x)
supµ,σ∈(0,∞) L(µ, σ2|x)

.

In the denominator, σ̂2 =
∑

(xi − x̄)2/n and µ̂ = x̄ are the MLEs, while in the numerator,
σ2

0 and µ̂ are the MLEs. Thus

λ(x) =

(
2πσ2

0

)−n/2
e
−Σ(xi−x̄)2

2σ2
0

(2πσ̂2)−n/2
e−

Σ(xi−x̄)2

2σ2

=
(

σ2
0

σ̂2

)−n/2
e
−Σ(xi−x̄)2

2σ2
0

e−n/2
,

and, writing σ̂2 = [(n− 1)/n]s2, the LRT rejects H0 if(
σ2

0
n−1

n s2

)−n/2

e
− (n−1)s2

2σ2
0 < kα,

where kα is chosen to give a size α test. If we denote t = (n−1)s2

σ2
0

, then T ∼ χ2
n−1 under H0,

and the test can be written: reject H0 if tn/2e−t/2 < k′α. Thus, a 1− α confidence set is

{
σ2 : tn/2e−t/2 ≥ k′α

}
=

{
σ2 :

(
(n− 1)s2

σ2

)n/2

e−
(n−1)s2

σ2 /2 ≥ k′α

}
.

Note that the function tn/2e−t/2 is unimodal (it is the kernel of a gamma density) so it
follows that the confidence set is of the form{

σ2 : tn/2e−t/2 ≥ k′α

}
=

{
σ2 : a ≤ t ≤ b

}
=

{
σ2 : a ≤ (n− 1)s2

σ2
≤ b

}
=

{
σ2 :

(n− 1)s2

b
≤ σ2 ≤ (n− 1)s2

b

}
,

where a and b satisfy an/2e−a/2 = bn/2e−b/2 (since they are points on the curve tn/2e−t/2).
Since n

2 = n+2
2 − 1, a and b also satisfy

1
Γ
(

n+2
2

)
2(n+2)/2

a((n+2)/2)−1e−a/2 =
1

Γ
(

n+2
2

)
2(n+2)/2

b((n+2)/2)−1e−b/2,

or, fn+2(a) = fn+2(b).
b. The constants a and b must satisfy fn−1(b)b2 = fn−1(a)a2. But since b((n−1)/2)−1b2 =

b((n+3)/2)−1, after adjusting constants, this is equivalent to fn+3(b) = fn+3(a). Thus, the
values of a and b that give the minimum length interval must satisfy this along with the
probability constraint. The confidence interval, say I(s2) will be unbiased if (Definition 9.3.7)

c.

Pσ2

(
σ′2 ∈ I(S2)

)
≤ Pσ2

(
σ2 ∈ I(S2)

)
= 1− α.

Some algebra will establish

Pσ2

(
σ′2 ∈ I(S2)

)
= Pσ2

(
(n− 1)S2

bσ2
≤ σ′2

σ2
≤ (n− 1)S2

aσ2

)

= Pσ2

(
χ2

n−1

b
≤ σ′2

σ2
≤

χ2
n−1

a

)
=

∫ bc

ac

fn−1(t) dt,
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where c = σ′2/σ2. The derivative (with respect to c) of this last expression is bfn−1(bc) −
afn−1(ac), and hence is equal to zero if both c = 1 (so the interval is unbiased) and
bfn−1(b) = afn−1(a). From the form of the chi squared pdf, this latter condition is equivalent
to fn+1(b) = fn+1(a).

d. By construction, the interval will be 1− α equal-tailed.
9.53 a. E [blength(C)− IC(µ)] = 2cσb− P (|Z| ≤ c), where Z ∼ n(0, 1).

b. d
dc [2cσb− P (|Z| ≤ c)] = 2σb− 2

(
1√
2π

e−c2/2
)

.

c. If bσ > 1/
√

2π the derivative is always positive since e−c2/2 < 1.
9.55

E[L((µ,σ), C)] = E [L((µ,σ), C)|S < K]P (S < K) + E [L((µ,σ), C)|S > K]P (S > K)
= E

[
L((µ,σ), C ′)|S < K

]
P (S < K) + E [L((µ,σ), C)|S > K]P (S > K)

= R
[
L((µ,σ), C ′)

]
+ E [L((µ,σ), C)|S > K]P (S > K),

where the last equality follows because C ′ = ∅ if S > K. The conditional expectation in the
second term is bounded by

E [L((µ,σ), C)|S > K] = E [blength(C)− IC(µ)|S > K]
= E [2bcS − IC(µ)|S > K]
> E [2bcK − 1|S > K] (since S > K and IC ≤ 1)
= 2bcK − 1,

which is positive if K > 1/2bc. For those values of K, C ′ dominates C.
9.57 a. The distribution of Xn+1 − X̄ is n[0, σ2(1 + 1/n)], so

P
(
Xn+1 ∈ X̄ ± zα/2σ

√
1 + 1/n

)
= P (|Z| ≤ zα/2) = 1− α.

b. p percent of the normal population is in the interval µ± zp/2σ, so x̄±kσ is a 1−α tolerance
interval if

P (µ± zp/2 ⊆ σX̄ ± kσ) = P (X̄ − kσ ≤ µ− zp/2σ and X̄ + kσ ≥ µ + zp/2σ) ≥ 1− α.

This can be attained by requiring

P (X̄ − kσ ≥ µ− zp/2σ) = α/2 and P (X̄ + kσ ≤ µ + zp/2σ) = α/2,

which is attained for k = zp/2 + zα/2/
√

n.

c. From part (a), (Xn+1 − X̄)/(S
√

1 + 1/n) ∼ tn−1, so a 1 − α prediction interval is X̄ ±
tn−1,α/2S

√
1 + 1/n.



Chapter 10

Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

EX = θ/3, EX2 = 1/3, VarX =
1
3
− θ2

9
.

So 3X̄n is an unbiased estimator of θ with variance

Var(3X̄n) = 9(VarX)/n = (3− θ2)/n→ 0 as n→∞.

So by Theorem 10.1.3, 3X̄n is a consistent estimator of θ.

10.3 a. The log likelihood is

−n
2

log (2πθ)− 1
2

∑
(xi − θ)/θ.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of θ2 + θ−W = 0. The roots of this equation are (−1±

√
1 + 4W )/2, and the MLE is the

root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (−2
∑
x2

i + nθ)/(2θ3), yielding an expected
Fisher information of

I(θ) = −Eθ
−2
∑
X2

i + nθ

2θ3
=

2nθ + n

2θ2
,

and by Theorem 10.1.12 the variance of the MLE is 1/I(θ).

10.4 a. Write ∑
XiYi∑
X2

i

=
∑
Xi(Xi + εi)∑

X2
i

= 1 +
∑
Xiεi∑
X2

i

.

From normality and independence

EXiεi = 0, VarXiεi = σ2(µ2 + τ2), EX2
i = µ2 + τ2, VarX2

i = 2τ2(2µ2 + τ2),

and Cov(Xi, Xiεi) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

E
(∑

XiYi∑
X2

i

)
≈ 1 and Var

(∑
XiYi∑
X2

i

)
≈ nσ2(µ2 + τ2)

[n(µ2 + τ2)]2
=

σ2

n(µ2 + τ2)

b. ∑
Yi∑
Xi

= β +
∑
εi∑
Xi

with approximate mean β and variance σ2/(nµ2).
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c.
1
n

∑ Yi

Xi
= β +

1
n

∑ εi
Xi

with approximate mean β and variance σ2/(nµ2).
10.5 a. The integral of ET 2

n is unbounded near zero. We have

ET 2
n >

√
n

2πσ2

∫ 1

0

1
x2
e−(x−µ)2/2σ2

dx >

√
n

2πσ2
K

∫ 1

0

1
x2
dx = ∞,

where K = max0≤x≤1 e
−(x−µ)2/2σ2

b. If we delete the interval (−δ, δ), then the integrand is bounded, that is, over the range of
integration 1/x2 < 1/δ2.

c. Assume µ > 0. A similar argument works for µ < 0. Then

P (−δ < X < δ) = P [
√
n(−δ − µ) <

√
n(X − µ) <

√
n(δ − µ)] < P [Z <

√
n(δ − µ)],

where Z ∼ n(0, 1). For δ < µ, the probability goes to 0 as n→∞.
10.7 We need to assume that τ(θ) is differentiable at θ = θ0, the true value of the parameter. Then

we apply Theorem 5.5.24 to Theorem 10.1.12.
10.9 We will do a more general problem that includes a) and b) as special cases. Suppose we want

to estimate λte−λ/t! = P (X = t). Let

T = T (X1, . . . , Xn) =
{

1 if X1 = t
0 if X1 6= t.

Then ET = P (T = 1) = P (X1 = t), so T is an unbiased estimator. Since
∑
Xi is a complete

sufficient statistic for λ, E(T |
∑
Xi) is UMVUE. The UMVUE is 0 for y =

∑
Xi < t, and for

y ≥ t,

E(T |y) = P (X1 = t|
∑

Xi = y)

=
P (X1 = t,

∑
Xi = y)

P (
∑
Xi = y)

=
P (X1 = t)P (

∑n
i=2Xi = y − t)

P (
∑
Xi = y)

=
{λte−λ/t!}{[(n− 1)λ]y−te−(n−1)λ/(y − t)!}

(nλ)ye−nλ/y!

=
(
y

t

)
(n− 1)y−t

ny
.

a. The best unbiased estimator of e−λ is ((n− 1)/n)y.
b. The best unbiased estimator of λe−λ is (y/n)[(n− 1)/n]y−1

c. Use the fact that for constants a and b,

d

dλ
λabλ = bλλa−1(a+ λ log b),

to calculate the asymptotic variances of the UMVUEs. We have for t = 0,

ARE

((
n− 1
n

)nλ̂

, e−λ

)
=

[
e−λ(

n−1
n

)nλ log
(

n−1
n

)n
]2

,
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and for t = 1

ARE

(
n

n− 1
λ̂

(
n− 1
n

)nλ̂

, λ̂e−λ

)
=

[
(λ− 1)e−λ

n
n−1

(
n−1

n

)nλ [1 + log
(

n−1
n

)n]
]2

.

Since [(n− 1)/n]n → e−1 as n→∞, both of these AREs are equal to 1 in the limit.
d. For these data, n = 15,

∑
Xi = y = 104 and the MLE of λ is λ̂ = X̄ = 6.9333. The

estimates are
MLE UMVUE

P (X = 0) .000975 .000765
P (X = 1) .006758 .005684

10.11 a. It is easiest to use the Mathematica code in Example A.0.7. The second derivative of the
log likelihood is

∂2

∂µ2
log
(

1
Γ[µ/β]βµ/β

x−1+µ/βe−x/β

)
=

1
β2
ψ′(µ/β),

where ψ(z) = Γ′(z)/Γ(z) is the digamma function.
b. Estimation of β does not affect the calculation.
c. For µ = αβ known, the MOM estimate of β is x̄/α. The MLE comes from differentiating

the log likelihood
d

dβ

(
−αn log β −

∑
i

xi/β

)
set= 0 ⇒ β = x̄/α.

d. The MOM estimate of β comes from solving
1
n

∑
i

xi = µ and
1
n

∑
i

x2
i = µ2 + µβ,

which yields β̃ = σ̂2/x̄. The approximate variance is quite a pain to calculate. Start from

EX̄ = µ, VarX̄ =
1
n
µβ, Eσ̂2 ≈ µβ, Varσ̂2 ≈ 2

n
µβ3,

where we used Exercise 5.8(b) for the variance of σ̂2. Now using Example 5.5.27 and (and
assuming the covariance is zero), we have Varβ̃ ≈ 3β3

nµ . The ARE is then

ARE(β̂, β̃) =
[
3β3/µ

] [
E
(
− d2

dβ2
l(µ, β|X

)]
.

Here is a small table of AREs. There are some entries that are less than one - this is due
to using an approximation for the MOM variance.

µ

β 1 3 6 10
1 1.878 0.547 0.262 0.154
2 4.238 1.179 0.547 0.317
3 6.816 1.878 0.853 0.488
4 9.509 2.629 1.179 0.667
5 12.27 3.419 1.521 0.853
6 15.075 4.238 1.878 1.046
7 17.913 5.08 2.248 1.246
8 20.774 5.941 2.629 1.451
9 23.653 6.816 3.02 1.662
10 26.546 7.704 3.419 1.878
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10.13 Here are the 35 distinct samples from {2, 4, 9, 12} and their weights.

{12, 12, 12, 12}, 1/256 {9, 12, 12, 12}, 1/64 {9, 9, 12, 12}, 3/128
{9, 9, 9, 12}, 1/64 {9, 9, 9, 9}, 1/256 {4, 12, 12, 12}, 1/64
{4, 9, 12, 12}, 3/64 {4, 9, 9, 12}, 3/64 {4, 9, 9, 9}, 1/64
{4, 4, 12, 12}, 3/128 {4, 4, 9, 12}, 3/64 {4, 4, 9, 9}, 3/128
{4, 4, 4, 12}, 1/64 {4, 4, 4, 9}, 1/64 {4, 4, 4, 4}, 1/256
{2, 12, 12, 12}, 1/64 {2, 9, 12, 12}, 3/64 {2, 9, 9, 12}, 3/64
{2, 9, 9, 9}, 1/64 {2, 4, 12, 12}, 3/64 {2, 4, 9, 12}, 3/32
{2, 4, 9, 9}, 3/64 {2, 4, 4, 12}, 3/64 {2, 4, 4, 9}, 3/64
{2, 4, 4, 4}, 1/64 {2, 2, 12, 12}, 3/128 {2, 2, 9, 12}, 3/64
{2, 2, 9, 9}, 3/128 {2, 2, 4, 12}, 3/64 {2, 2, 4, 9}, 3/64
{2, 2, 4, 4}, 3/128 {2, 2, 2, 12}, 1/64 {2, 2, 2, 9}, 1/64
{2, 2, 2, 4}, 1/64 {2, 2, 2, 2}, 1/256

The verifications of parts (a) − (d) can be done with this table, or the table of means
in Example A.0.1 can be used. For part (e),verifying the bootstrap identities can involve
much painful algebra, but it can be made easier if we understand what the bootstrap sample
space (the space of all nn bootstrap samples) looks like. Given a sample x1, x2, . . . , xn, the
bootstrap sample space can be thought of as a data array with nn rows (one for each
bootstrap sample) and n columns, so each row of the data array is one bootstrap sample.
For example, if the sample size is n = 3, the bootstrap sample space is

x1 x1 x1

x1 x1 x2

x1 x1 x3

x1 x2 x1

x1 x2 x2

x1 x2 x3

x1 x3 x1

x1 x3 x2

x1 x3 x3

x2 x1 x1

x2 x1 x2

x2 x1 x3

x2 x2 x1

x2 x2 x2

x2 x2 x3

x2 x3 x1

x2 x3 x2

x2 x3 x3

x3 x1 x1

x3 x1 x2

x3 x1 x3

x3 x2 x1

x3 x2 x2

x3 x2 x3

x3 x3 x1

x3 x3 x2

x3 x3 x3

Note the pattern. The first column is 9 x1s followed by 9 x2s followed by 9 x3s, the second
column is 3 x1s followed by 3 x2s followed by 3 x3s, then repeated, etc. In general, for the
entire bootstrap sample,



Second Edition 10-5

◦ The first column is nn−1 x1s followed by nn−1 x2s followed by, . . ., followed by nn−1 xns
◦ The second column is nn−2 x1s followed by nn−2 x2s followed by, . . ., followed by nn−2

xns, repeated n times
◦ The third column is nn−3 x1s followed by nn−3 x2s followed by, . . ., followed by nn−3

xns, repeated n2 times
...

◦ The nth column is 1 x1 followed by 1 x2 followed by, . . ., followed by 1 xn, repeated nn−1

times

So now it is easy to see that each column in the data array has mean x̄, hence the entire
bootstrap data set has mean x̄. Appealing to the 33 × 3 data array, we can write the
numerator of the variance of the bootstrap means as

3∑
i=1

3∑
j=1

3∑
k=1

[
1
3
(xi + xj + xk)− x̄

]2

=
1
32

3∑
i=1

3∑
j=1

3∑
k=1

[(xi − x̄) + (xj − x̄) + (xk − x̄)]2

=
1
32

3∑
i=1

3∑
j=1

3∑
k=1

[
(xi − x̄)2 + (xj − x̄)2 + (xk − x̄)2

]
,

because all of the cross terms are zero (since they are the sum of deviations from the mean).
Summing up and collecting terms shows that

1
32

3∑
i=1

3∑
j=1

3∑
k=1

[
(xi − x̄)2 + (xj − x̄)2 + (xk − x̄)2

]
= 3

3∑
i=1

(xi − x̄)2,

and thus the average of the variance of the bootstrap means is

3
∑3

i=1(xi − x̄)2

33

which is the usual estimate of the variance of X̄ if we divide by n instead of n − 1. The
general result should now be clear. The variance of the bootstrap means is

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

[
1
n

(xi1 + xi2 + · · ·+ xin)− x̄

]2
=

1
n2

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

[
(xi1 − x̄)2 + (xi2 − x̄)2 + · · ·+ (xin

− x̄)2
]
,

since all of the cross terms are zero. Summing and collecting terms shows that the sum is
nn−2

∑n
i=1(xi − x̄)2, and the variance of the bootstrap means is nn−2

∑n
i=1(xi − x̄)2/nn =∑n

i=1(xi − x̄)2/n2.

10.15 a. As B →∞ Var∗B(θ̂) = Var∗(θ̂).
b. Each Var∗Bi

(θ̂) is a sample variance, and they are independent so the LLN applies and

1
m

m∑
i=1

Var∗Bi
(θ̂) m→∞→ EVar∗B(θ̂) = Var∗(θ̂),

where the last equality follows from Theorem 5.2.6(c).
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10.17 a. The correlation is .7781
b. Here is R code (R is available free at http://cran.r-project.org/) to bootstrap the data,

calculate the standard deviation, and produce the histogram:

cor(law)
n <- 15
theta <- function(x,law){ cor(law[x,1],law[x,2]) }
results <- bootstrap(1:n,1000,theta,law,func=sd)
results[2]
hist(results[[1]])

The data “law” is in two columns of length 15, “results[2]” contains the standard deviation.
The vector “results[[1]]” is the bootstrap sample. The output is

V1 V2
V1 1.0000000 0.7781716
V2 0.7781716 1.0000000
$func.thetastar
[1] 0.1322881

showing a correlation of .7781 and a bootstrap standard deviation of .1323.
c. The R code for the parametric bootstrap is

mx<-600.6;my<-3.09
sdx<-sqrt(1791.83);sdy<-sqrt(.059)
rho<-.7782;b<-rho*sdx/sdy;sdxy<-sqrt(1-rho^2)*sdx
rhodata<-rho
for (j in 1:1000) {
y<-rnorm(15,mean=my,sd=sdy)
x<-rnorm(15,mean=mx+b*(y-my),sd=sdxy)
rhodata<-c(rhodata,cor(x,y))
}
sd(rhodata)
hist(rhodata)

where we generate the bivariate normal by first generating the marginal then the condid-
ional, as R does not have a bivariate normal generator. The bootstrap standard deviation
is 0.1159, smaller than the nonparametric estimate. The histogram looks similar to the
nonparametric bootstrap histogram, displaying a skewness left.

d. The Delta Method approximation is

r ∼ n(ρ, (1− ρ2)2/n),

and the “plug-in” estimate of standard error is
√

(1− .77822)2/15 = .1018, the smallest so
far. Also, the approximate pdf of r will be normal, hence symmetric.

e. By the change of variables

t =
1
2

log
(

1 + r

1− r

)
, dt =

1
1− r2

,

the density of r is

1√
2π(1− r2)

exp

(
−n

2

[
1
2

log
(

1 + r

1− r

)
− 1

2
log
(

1 + ρ

1− ρ

)]2)
, −1 ≤ r ≤ 1.

More formally, we could start with the random variable T , normal with mean 1
2 log

(
1+ρ
1−ρ

)
and variance 1/n, and make the transformation to R = e2T +1

e2T−1
and get the same answer.
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10.19 a. The variance of X̄ is

VarX̄ = E(X̄ − µ)2 = E

(
1
n

∑
i

Xi − µ

)2

=
1
n2

E

∑
i

(Xi − µ)2 + 2
∑
i>j

(Xi − µ)(Xj − µ)


=

1
n2

(
nσ2 + 2

n(n− 1)
2

ρσ2

)
=

σ2

n
+
n− 1
n

ρσ2

b. In this case we have

E

∑
i>j

(Xi − µ)(Xj − µ)

 = σ2
n∑

i=2

i−1∑
j=1

ρi−j .

In the double sum ρ appears n− 1 times, ρ2 appears n− 2 times, etc.. so

n∑
i=2

i−1∑
j=1

ρi−j =
n−1∑
i=1

(n− i)ρi =
ρ

1− ρ

(
n− 1− ρn

1− ρ

)
,

where the series can be summed using (1.5.4), the partial sum of the geometric series, or
using Mathematica.

c. The mean and variance of Xi are

EXi = E[E(Xi|Xi−1)] = EρXi−1 = · · · = ρi−1EX1

and
VarXi = VarE(Xi|Xi−1) + EVar(Xi|Xi−1) = ρ2σ2 + 1 = σ2

for σ2 = 1/(1− ρ2). Also, by iterating the expectation

EX1Xi = E[E(X1Xi|Xi−1)] = E[E(X1|Xi−1)E(Xi|Xi−1)] = ρE[X1Xi−1],

where we used the facts that X1 and Xi are independent conditional on Xi−1. Continuing
with the argument we get that EX1Xi = ρi−1EX2

1 . Thus,

Corr(X1, Xi) =
ρi−1EX2

1 − ρi−1(EX1)2√
VarX1VarXi

=
ρi−1σ2

√
σ2σ2

= ρi−1.

10.21 a. If any xi → ∞, s2 → ∞, so it has breakdown value 0. To see this, suppose that x1 → ∞.
Write

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1

(
[(1− 1

n
)x1 − x̄−1]2 +

n∑
i=2

(xi − x̄)2
)
,

where x̄−1 = (x2 + . . . + xn)/n. It is easy to see that as x1 → ∞, each term in the sum
→∞.

b. If less than 50% of the sample → ∞, the median remains the same, and the median of
|xi −M | remains the same. If more than 50% of the sample → ∞, M → ∞ and so does
the MAD.
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10.23 a. The ARE is [2σf(µ)]2. We have

Distribution Parameters variance f(µ) ARE
normal µ = 0, σ = 1 1 .3989 .64
logistic µ = 0, β = 1 π2/3 .25 .82
double exp. µ = 0, σ = 1 2 .5 2

b. If X1, X2, . . . , Xn are iid fX with EX1 = µ and VarX1 = σ2, the ARE is σ2[2 ∗ fX(µ)]2.
If we transform to Yi = (Xi − µ)/σ, the pdf of Yi is fY (y) = σfX(σy + µ) with ARE
[2 ∗ fY (0)]2 = σ2[2 ∗ fX(µ)]2

c. The median is more efficient for smaller ν, the distributions with heavier tails.

ν VarX f(0) ARE
3 3 .367 1.62
5 5/3 .379 .960
10 5/4 .389 .757
25 25/23 .395 .678
50 25/24 .397 .657
∞ 1 .399 .637

d. Again the heavier tails favor the median.

δ σ ARE
.01 2 .649
.1 2 .747
.5 2 .895
.01 5 .777
.1 5 1.83
.5 5 2.98

10.25 By transforming y = x− θ,∫ ∞

−∞
ψ(x− θ)f(x− θ)dx =

∫ ∞

−∞
ψ(y)f(y)dy.

Since ψ is an odd function, ψ(y) = −ψ(−y), and∫ ∞

−∞
ψ(y)f(y)dy =

∫ 0

−∞
ψ(y)f(y)dy +

∫ ∞

0

ψ(y)f(y)dy

=
∫ 0

−∞
−ψ(−y)f(y)dy +

∫ ∞

0

ψ(y)f(y)dy

= −
∫ ∞

0

ψ(y)f(y)dy +
∫ ∞

0

ψ(y)f(y)dy = 0,

where in the last line we made the transformation y → −y and used the fact the f is symmetric,
so f(y) = f(−y). From the discussion preceding Example 10.2.6, θ̂M is asymptotically normal
with mean equal to the true θ.

10.27 a.

lim
δ→0

1
δ
[(1− δ)µ+ δx− µ] = lim

δ→0

δ(x− µ)
δ

= x− µ.

b.

P (X ≤ a) = P (X ≤ a|X ∼ F )(1− δ) + P (x ≤ a|X = x)δ = (1− δ)F (a) + δI(x ≤ a)
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and

(1− δ)F (a) =
1
2

⇒ a = F−1

(
1

2(1− δ)

)
(1− δ)F (a) + δ =

1
2

⇒ a = F−1

( 1
2 − δ

2(1− δ)

)

c. The limit is
lim
δ→0

aδ − a0

δ
= a′δ|δ=0

by the definition of derivative. Since F (aδ) = 1
2(1−δ) ,

d

dδ
F (aδ) =

d

dδ

1
2(1− δ)

or
f(aδ)a′δ =

1
2(1− δ)2

⇒ a′δ =
1

2(1− δ)2f(aδ)
.

Since a0 = m, the result follows. The other limit can be calculated in a similar manner.

10.29 a. Substituting cl′ for ψ makes the ARE equal to 1.
b. For each distribution is the case that the given ψ function is equal to cl′, hence the resulting

M-estimator is asymptotically efficient by (10.2.9).

10.31 a. By the CLT,

√
n1

p̂1 − p1√
p1(1− p1)

→ n(0, 1) and
√
n2

p̂2 − p2√
p2(1− p2)

→ n(0, 1),

so if p̂1 and p̂2 are independent, under H0 : p1 = p2 = p,

p̂1 − p̂2√(
1

n1
+ 1

n2

)
p̂(1− p̂)

→ n(0, 1)

where we use Slutsky’s Theorem and the fact that p̂ = (S1 + S2)/(n1 + n2) is the MLE of
p under H0 and converges to p in probability. Therefore, T → χ2

1.
b. Substitute p̂is for Si and Fis to get

T ∗ =
n2

1(p̂1− p̂)
2

n1p̂
+
n2

2(p̂2− p̂)
2

n2p̂

+
n2

1 [(1− p̂1)− (1− p̂)]2

n1(1− p̂)
+
n2

2 [(1− p̂2)− (1− p̂)]2

n2p̂

=
n1(p̂1 − p̂)2

p̂(1− p̂)
+
n2(p̂2 − p̂)2

p̂(1− p̂)

Write p̂ = (n1p̂1 + n2p̂2)/(n1 + n2). Substitute this into the numerator, and some algebra
will get

n1(p̂1 − p̂)2 + n2(p̂2 − p̂)2 =
(p̂1 − p̂2)2

1
n1

+ 1
n2

,

so T ∗ = T .
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c. Under H0,
p̂1 − p̂2√(

1
n1

+ 1
n2

)
p(1− p)

→ n(0, 1)

and both p̂1 and p̂2 are consistent, so p̂1(1− p̂1) → p(1− p) and p̂2(1− p̂2) → p(1− p) in
probability. Therefore, by Slutsky’s Theorem,

p̂1−p̂2√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

→ n(0, 1),

and (T ∗∗)2 → χ2
1. It is easy to see that T ∗∗ 6= T in general.

d. The estimator (1/n1 + 1/n2)p̂(1 − p̂) is the MLE of Var(p̂1 − p̂2) under H0, while the
estimator p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n1 is the MLE of Var(p̂1 − p̂2) under H1. One might
argue that in hypothesis testing, the first one should be used, since under H0, it provides
a better estimator of variance. If interest is in finding the confidence interval, however, we
are making inference under both H0 and H1, and the second one is preferred.

e. We have p̂1 = 34/40, p̂2 = 19/35, p̂ = (34 + 19)/(40 + 35) = 53/75, and T = 8.495. Since
χ2

1,.05 = 3.84, we can reject H0 at α = .05.
10.32 a. First calculate the MLEs under p1 = p2 = p. We have

L(p|x) = px1px2px3 · · · pxn−1
n−1

(
1−2p−

n−1∑
i=3

pi

)m−x1−x2−···−xn−1

.

Taking logs and differentiating yield the following equations for the MLEs:

∂logL
∂p

=
x1+x2

p
−

2
(
m−

∑n−1
i=1 xi

)
1−2p−

∑n−1
i=3 pi

= 0

∂logL
∂pi

=
xi

pi
− xn

1−2p−
∑n−1

i=3 pi

= 0, i = 3, . . . , n− 1,

with solutions p̂ = x1+x2
2m , p̂i = xi

m , i = 3, . . . , n − 1, and p̂n =
(
m−

∑n−1
i=1 xi

)
/m. Except

for the first and second cells, we have expected = observed, since both are equal to xi. For
the first two terms, expected = mp̂ = (x1 + x2)/2 and we get

∑ (observed− expected)2

expected
=

(
x1−x1+x2

2

)2
x1+x2

2

+

(
x2−x1+x2

2

)2
x1+x2

2

=
(x1 − x2)

2

x1 + x2
.

b. Now the hypothesis is about conditional probabilities is given by H0: P(change—initial
agree)=P(change—initial disagree) or, in terms of the parameters H0 : p1

p1+p3
= p2

p2+p4
.

This is the same as p1p4 = p2p3, which is not the same as p1 = p2.
10.33 Theorem 10.1.12 and Slutsky’s Theorem imply that

θ̂ − θ√
1
nIn(θ̂)

→ n(0, 1)

and the result follows.
10.35 a. Since σ/

√
n is the estimated standard deviation of X̄ in this case, the statistic is a Wald

statistic
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b. The MLE of σ2 is σ̂2
µ =

∑
i(xi − µ)2/n. The information number is

− d2

d(σ2)2

(
−n

2
log σ2 − 1

2
σ̂2

µ

σ2

)∣∣∣∣∣
σ2=σ̂2

µ

=
n

2σ̂2
µ

.

Using the Delta method, the variance of σ̂µ =
√
σ̂2

µ is σ̂2
µ/8n, and a Wald statistic is

σ̂µ − σ0√
σ2

µ/8n
.

10.37 a. The log likelihood is

logL = −n
2

log σ2 − 1
2

∑
i

(xi − µ)2/σ2

with

d

dµ
=

1
σ2

∑
i

(xi − µ) =
n

σ2
(x̄− µ)

d2

dµ2
= − n

σ2
,

so the test statistic for the score test is

n
σ2 (x̄− µ)√

σ2/n
=
√
n
x̄− µ

σ

b. We test the equivalent hypothesis H0 : σ2 = σ2
0 . The likelihood is the same as Exercise

10.35(b), with first derivative

− d

dσ2
=
n(σ̂2

µ − σ2)
2σ4

and expected information number

E

(
n(2σ̂2

µ − σ2)
2σ6

)
=
n(2σ2 − σ2)

2σ6
=

n

2σ4
.

The score test statistic is √
n

2
σ̂2

µ − σ2
0

σ2
0

10.39 We summarize the results for (a)− (c) in the following table. We assume that the underlying
distribution is normal, and use that for all score calculations. The actual data is generated
from normal, logistic, and double exponential. The sample size is 15, we use 1000 simulations
and draw 20 bootstrap samples. Here θ0 = 0, and the power is tabulated for a nominal α = .1
test.
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Underlying
pdf Test θ0 θ0 + .25σ θ0 + .5σ θ0 + .75σ θ0 + 1σ θ0 + 2σ

Laplace Naive 0.101 0.366 0.774 0.957 0.993 1.
Boot 0.097 0.364 0.749 0.932 0.986 1.

Median 0.065 0.245 0.706 0.962 0.995 1.

Logistic Naive 0.137 0.341 0.683 0.896 0.97 1.
Boot 0.133 0.312 0.641 0.871 0.967 1.

Median 0.297 0.448 0.772 0.944 0.993 1.

Normal Naive 0.168 0.316 0.628 0.878 0.967 1.
Boot 0.148 0.306 0.58 0.836 0.957 1.

Median 0.096 0.191 0.479 0.761 0.935 1.

Here is Mathematica code:
This program calculates size and power for Exercise 10.39, Second Edition
We do our calculations assuming normality, but simulate power and size under other distri-
butions. We test H0 : θ = 0.

theta_0=0;
Needs["Statistics‘Master‘"]
Clear[x]
f1[x_]=PDF[NormalDistribution[0,1],x];
F1[x_]=CDF[NormalDistribution[0,1],x];
f2[x_]=PDF[LogisticDistribution[0,1],x];
f3[x_]=PDF[LaplaceDistribution[0,1],x];
v1=Variance[NormalDistribution[0,1]];
v2=Variance[LogisticDistribution[0,1]];
v3=Variance[LaplaceDistribution[0,1]];

Calculate m-estimate

Clear[k,k1,k2,t,x,y,d,n,nsim,a,w1]
ind[x_,k_]:=If[Abs[x]<k,1,0]
rho[y_,k_]:=ind[y,k]*y^2 + (1-ind[y,k])*(k*Abs[y]-k^2)
alow[d_]:=Min[Mean[d],Median[d]]
aup[d_]:=Max[Mean[d],Median[d]]
sol[k_,d_]:=FindMinimum[Sum[rho[d[[i]]-a,k],{i,1,n}],{a,{alow[d],aup[d]}}]
mest[k_,d_]:=sol[k,d][[2]]

generate data - to change underlying distributions change the sd and the distribution in the
Random statement.

n = 15; nsim = 1000; sd = Sqrt[v1];
theta = {theta_0, theta_0 +.25*sd, theta_0 +.5*sd,

theta_0 +.75*sd, theta_0 + 1*sd, theta_0 +2*sd}
ntheta = Length[theta]
data = Table[Table[Random[NormalDistribution[0, 1]],

{i, 1, n}],{j, 1,nsim}];
m1 = Table[Table[a /. mest[k1, data[[j]] - theta[[i]]],

{j, 1, nsim}], {i, 1, n\theta}];

Calculation of naive variance and test statistic

Psi[x_, k_] = x*If[Abs[x]<= k, 1, 0]- k*If[x < -k, 1, 0] +
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k*If[x > k, 1, 0];
Psi1[x_, k_] = If[Abs[x] <= k, 1, 0];
num =Table[Psi[w1[[j]][[i]], k1], {j, 1, nsim}, {i, 1,n}];
den =Table[Psi1[w1[[j]][[i]], k1], {j, 1, nsim}, {i, 1,n}];
varnaive = Map[Mean, num^2]/Map[Mean, den]^2;
naivestat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varnaive[[j]]/n],

{j, 1, nsim}],{i, 1, ntheta}];
absnaive = Map[Abs, naivestat];
N[Table[Mean[Table[If[absnaive[[i]][[j]] > 1.645, 1, 0],

{j, 1, nsim}]], {i, 1, n\theta}]]

Calculation of bootstrap variance and test statistic

nboot=20;
u:=Random[DiscreteUniformDistribution[n]]
databoot=Table[data[[jj]][[u]],{jj,1,nsim},{j,1,nboot},{i,1,n}];
m1boot=Table[Table[a/.mest[k1,databoot[[j]][[jj]]],

{jj,1,nboot}],{j,1,nsim}];
varboot = Map[Variance, m1boot];
bootstat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varboot[[j]]],

{j, 1, nsim}], {i, 1, ntheta}];
absboot = Map[Abs, bootstat];
N[Table[Mean[Table[If[absboot[[i]][[j]] > 1.645, 1,0],

{j, 1, nsim}]], {i, 1, ntheta}]]\)

Calculation of median test - use the score variance at the root density (normal)

med = Map[Median, data];
medsd = 1/(n*2*f1[theta_0]);
medstat = Table[Table[med[[j]] + \theta[[i]] - theta_0/medsd,

{j, 1, nsim}], {i, 1, ntheta}];
absmed = Map[Abs, medstat];
N[Table[Mean[Table[If[\(absmed[[i]][[j]] > 1.645, 1, 0],

{j, 1, nsim}]], {i, 1, ntheta}]]

10.41 a. The log likelihood is
logL = nr log p+ nx̄ log(1− p)

with
d

dp
logL =

nr

p
− nx̄

1− p
and

d2

dp2
logL = −nr

p2
− nx̄

(1− p)2
,

expected information nr
p2(1−p) and (Wilks) score test statistic

√
n

(
r
p −

nx̄
1−p

)
√

r
p2(1−p)

=
√
n

r

(
(1− p)r + px̄√

1− p

)
.

Since this is approximately n(0, 1), a 1− α confidence set is{
p :
∣∣∣∣√n

r

(
(1− p)r − px̄√

1− p

)∣∣∣∣ ≤ zα/2

}
.
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b. The mean is µ = r(1− p)/p, and a little algebra will verify that the variance, r(1− p)/p2

can be written r(1− p)/p2 = µ+ µ2/r. Thus√
n

r

(
(1− p)r − px̄√

1− p

)
=
√
n

µ− x̄√
µ+ µ2/r

.

The confidence interval is found by setting this equal to zα/2, squaring both sides, and
solving the quadratic for µ. The endpoints of the interval are

r(8x̄+ z2
α/2)±

√
rz2

α/2

√
16rx̄+ 16x̄2 + rz2

α/2

8r − 2z2
α/2

.

For the continuity correction, replace x̄ with x̄+1/(2n) when solving for the upper endpoint,
and with x̄− 1/(2n) when solving for the lower endpoint.

c. We table the endpoints for α = .1 and a range of values of r. Note that r = ∞ is the
Poisson, and smaller values of r give a wider tail to the negative binomial distribution.

r lower bound upper bound
1 22.1796 364.42
5 36.2315 107.99
10 38.4565 95.28
50 40.6807 85.71
100 41.0015 84.53
1000 41.3008 83.46
∞ 41.3348 83.34

10.43 a. Since

P

(∑
i

Xi = 0

)
= (1− p)n = α/2 ⇒ p = 1− α1/n

and

P

(∑
i

Xi = n

)
= pn = α/2 ⇒ p = α1/n,

these endpoints are exact, and are the shortest possible.
b. Since p ∈ [0, 1], any value outside has zero probability, so truncating the interval shortens

it at no cost.
10.45 The continuity corrected roots are

2p̂+ z2
α/2/n±

1
n ±

√
z2

α/2

n3 [±2n(1− 2p̂)− 1] + (2p̂+ z2
α/2/n)2 − 4p̂2(1 + z2

α/2/n)

2(1 + z2
α/2/n)

where we use the upper sign for the upper root and the lower sign for the lower root. Note that
the only differences between the continuity-corrected intervals and the ordinary score intervals
are the terms with ± in front. But it is still difficult to analytically compare lengths with the
non-corrected interval - we will do a numerical comparison. For n = 10 and α = .1 we have
the following table of length ratios, with the continuity-corrected length in the denominator

n 0 1 2 3 4 5 6 7 8 9 10
Ratio 0.79 0.82 0.84 0.85 0.86 0.86 0.86 0.85 0.84 0.82 0.79

The coverage probabilities are
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p 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
score .99 .93 .97 .92 .90 .89 .90 .92 .97 .93 .99
cc .99 .99 .97 .92 .98 .98 .98 .92 .97 .99 .99

Mathematica code to do the calculations is:

Needs["Statistics‘Master‘"]
Clear[p, x]
pbino[p_, x_] = PDF[BinomialDistribution[n, p], x];
cut = 1.645^2;
n = 10;

The quadratic score interval with and without continuity correction

slowcc[x_] := p /. FindRoot[(x/n - 1/(2*n) - p)^2 ==
cut*(p*((1 - p))/n, {p, .001}]

supcc[x_] := p /. FindRoot[(x/n + 1/(2*n) - p)^2 ==
cut*(p*((1 - p)/n, {p, .999}]

slow[x_] := p /. FindRoot[(x/n - p))^2 ==
cut*(p*(1 - p))/n, {p, .001}]

sup[x_] := p /. FindRoot[(x/n - p)^2 ==
cut*(p*(1 - p)/n, {p, .999}]

scoreintcc=Partition[Flatten[{{0,sup[0]},Table[{slowcc[i],supcc[i]},
{i,1,n-1}],{slowcc[n],1}},2],2];

scoreint=Partition[Flatten[{{0,sup[0]},Table[{slow[i],sup[i]},
{i,1,n-1}],{slowcc[n],1}},2],2];

Length Comparison

Table[(sup[i] - slow[i])/(supcc[i] - slowcc[i]), {i, 0, n}]

Now we’ll calculate coverage probabilities

scoreindcc[p_,x_]:=If[scoreintcc[[x+1]][[1]]<=p<=scoreintcc[[x+1]][[2]],1,0]
scorecovcc[p_]:=scorecovcc[p]=Sum[pbino[p,x]*scoreindcc[p,x],{x,0,n}]
scoreind[p_,x_]:=If[scoreint[[x+1]][[1]]<=p<=scoreint[[x+1]][[2]],1,0]
scorecov[p_]:=scorecov[p]=Sum[pbino[p,x]*scoreind[p,x],{x,0,n}]
{scorecovcc[.0001],Table[scorecovcc[i/10],{i,1,9}],scorecovcc[.9999]}//N
{scorecov[.0001],Table[scorecov[i/10],{i,1,9}],scorecov[.9999]}//N

10.47 a. Since 2pY ∼ χ2
nr (approximately)

P (χ2
nr,1−α/2 ≤ 2pY ≤ χ2

nr,α/2) = 1− α,

and rearrangment gives the interval.
b. The interval is of the form P (a/2Y ≤ p ≤ b/2Y ), so the length is proportional to b − a.

This must be minimized subject to the constraint
∫ b

a
f(y)dy = 1−α, where f(y) is the pdf

of a χ2
nr. Treating b as a function of a, differentiating gives

b′ − 1 = 0 and f(b)b′ − f(a) = 0

which implies that we need f(b) = f(a).
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Analysis of Variance and Regression

11.1 a. The first order Taylor’s series approximation is

Var[g(Y )] ≈ [g′(θ)]2 ·VarY = [g′(θ)]2 · v(θ).

b. If we choose g(y) = g∗(y) =
∫ y

a
1√
v(x)

dx, then

dg∗(θ)
dθ

=
d

dθ

∫ θ

a

1√
v(x)

dx =
1√
v(θ)

,

by the Fundamental Theorem of Calculus. Then, for any θ,

Var[g∗(Y )] ≈

(
1√
v(θ)

)2

v(θ) = 1.

11.2 a. v(λ) = λ, g∗(y) =
√

y, dg∗(λ)
dλ = 1

2
√

λ
, Varg∗(Y ) ≈

(
dg∗(λ)

dλ

)2

· v(λ) = 1/4, independent of λ.

b. To use the Taylor’s series approximation, we need to express everything in terms of θ =
EY = np. Then v(θ) = θ(1− θ/n) and

(
dg∗(θ)

dθ

)2

=

 1√
1− θ

n

· 1

2
√

θ
n

· 1
n

2

=
1

4nθ(1− θ/n)
.

Therefore

Var[g∗(Y )] ≈
(

dg∗(θ)
dθ

)2

v(θ) =
1
4n

,

independent of θ, that is, independent of p.
c. v(θ) = Kθ2, dg∗(θ)

dθ = 1
θ and Var[g∗(Y )] ≈

(
1
θ

)2 ·Kθ2 = K, independent of θ.
11.3 a. g∗λ(y) is clearly continuous with the possible exception of λ = 0. For that value use

l’Hôpital’s rule to get

lim
λ→0

yλ − 1
λ

= lim
λ→0

(log y)yλ

1
= log y.

b. From Exercise 11.1, we want to find v(λ) that satisfies

yλ−1
λ

=
∫ y

a

1√
v(x)

dx.

Taking derivatives

d

dy

(
yλ−1

λ

)
= yλ−1 =

d

dy

∫ y

a

1√
v(x)

dx =
1√
v(y)

.
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Thus v(y) = y−2(λ−1). From Exercise 11.1,

Var
(

yλ−1
λ

)
≈
(

d

dy

θλ−1
λ

)2

v(θ) = θ2(λ−1)θ−2(λ−1) = 1.

Note: If λ = 1/2, v(θ) = θ, which agrees with Exercise 11.2(a). If λ = 1 then v(θ) = θ2,
which agrees with Exercise 11.2(c).

11.5 For the model
Yij = µ + τi + εij , i = 1, . . . , k, j = 1, . . . , ni,

take k = 2. The two parameter configurations

(µ, τ1, τ2) = (10, 5, 2)
(µ, τ1, τ2) = (7, 8, 5),

have the same values for µ + τ1 and µ + τ2, so they give the same distributions for Y1 and Y2.
11.6 a. Under the ANOVA assumptions Yij = θi + εij , where εij ∼ independent n(0, σ2), so Yij ∼

independent n(θi, σ
2). Therefore the sample pdf is

k∏
i=1

ni∏
j=1

(2πσ2)−1/2e−
(yij−θi)

2

2σ2 = (2πσ2)−Σni/2 exp

− 1
2σ2

k∑
i=1

ni∑
j=1

(yij − θi)2


= (2πσ2)−Σni/2 exp

{
− 1

2σ2

k∑
i=1

niθ
2
i

}

× exp

− 1
2σ2

∑
i

∑
j

y2
ij +

2
2σ2

k∑
i=1

θiniȲi·

 .

Therefore, by the Factorization Theorem,Ȳ1·, Ȳ2·, . . . , Ȳk·,
∑

i

∑
j

Y 2
ij


is jointly sufficient for

(
θ1, . . . , θk, σ2

)
. Since (Ȳ1·, . . . , Ȳk·, S

2
p) is a 1-to-1 function of this

vector, (Ȳ1·, . . . , Ȳk·, S
2
p) is also jointly sufficient.

b. We can write

(2πσ2)−Σni/2 exp

− 1
2σ2

k∑
i=1

ni∑
j=1

(yij − θi)2


= (2πσ2)−Σni/2 exp

− 1
2σ2

k∑
i=1

ni∑
j=1

([yij − ȳi·] + [ȳi· − θi])2


= (2πσ2)−Σni/2 exp

− 1
2σ2

k∑
i=1

ni∑
j=1

[yij − ȳi·]2

 exp

{
− 1

2σ2

k∑
i=1

ni[ȳi· − θi]2
}

,

so, by the Factorization Theorem, Ȳi·, i = 1, . . . , n, is independent of Yij− Ȳi·, j = 1, . . . , ni,
so S2

p is independent of each Ȳi·.
c. Just identify niȲi· with Xi and redefine θi as niθi.
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11.7 Let Ui = Ȳi· − θi. Then

k∑
i=1

ni[(Ȳi· − ¯̄Y )− (θi − θ̄)]2 =
k∑

i=1

ni(Ui − Ū)2.

The Ui are clearly n(0, σ2/ni). For K = 2 we have

S2
2 = n1(U1 − Ū)2 + n2(U2 − Ū)2

= n1

(
U1 −

n1Ū1 + n2Ū2

n1 + n2

)2

+ n2

(
U2 −

n1Ū1 + n2Ū2

n1 + n2

)2

= (U1 − U2)2
[
n1

(
n2

n1 + n2

)2

+ n2

(
n1

n1 + n2

)2
]

=
(U1 − U2)2

1
n1

+ 1
n2

.

Since U1 − U2 ∼ n(0, σ2(1/n1 + 1/n2)), S2
2/σ2 ∼ χ2

1. Let Ūk be the weighted mean of k Uis,
and note that

Ūk+1 = Ūk +
nk+1

Nk+1
(Uk+1 − Ūk),

where Nk =
∑k

j=1 nj . Then

S2
k+1 =

k+1∑
i=1

ni(Ui − Ūk+1)2 =
k+1∑
i=1

ni

[
(Ui − Ūk)− nk+1

Nk+1
(Uk+1 − Ūk)

]2
= S2

k +
nk+1Nk

Nk+1
(Uk+1 − Ūk)2,

where we have expanded the square, noted that the cross-term (summed up to k) is zero, and
did a boat-load of algebra. Now since

Uk+1 − Ūk ∼ n(0, σ2(1/nk+1 + 1/Nk)) = n(0, σ2(Nk+1/nk+1Nk)),

independent of S2
k, the rest of the argument is the same as in the proof of Theorem 5.3.1(c).

11.8 Under the oneway ANOVA assumptions, Yij ∼ independent n(θi, σ
2). Therefore

Ȳi· ∼ n
(
θi, σ

2/ni

)
(Yij ’s are independent with common σ2.)

aiȲi· ∼ n
(
aiθi, a

2
i σ

2/ni

)
k∑

i=1

aiȲi· ∼ n

(∑
aiθi, σ

2
k∑

i=1

a2
i /ni

)
.

All these distributions follow from Corollary 4.6.10.

11.9 a. From Exercise 11.8,
T =

∑
aiȲi ∼ n

(∑
aiθi, σ

2
∑

a2
i

)
,

and under H0, ET = δ. Thus, under H0,∑
aiȲi−δ√

S2
p

∑
a2

i

∼ tN−k,
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where N =
∑

ni. Therefore, the test is to reject H0 if∣∣∑ aiȲi − δ
∣∣√

S2
p

∑
a2

i /ni

> tN−k, α
2
.

b. Similarly for H0 :
∑

aiθi ≤ δ vs. H1 :
∑

aiθi > δ, we reject H0 if∑
aiȲi − δ√

S2
p

∑
a2

i /ni

> tN−k,α.

11.10 a. Let Hi
0, i = 1, . . . , 4 denote the null hypothesis using contrast ai, of the form

Hi
0 :
∑

j

aijθj ≥ 0.

If H1
0 is rejected, it indicates that the average of θ2, θ3, θ4, and θ5 is bigger than θ1 which

is the control mean. If all Hi
0’s are rejected, it indicates that θ5 > θi for i = 1, 2, 3, 4. To see

this, suppose H4
0 and H5

0 are rejected. This means θ5 > θ5+θ4
2 > θ3; the first inequality is

implied by the rejection of H5
0 and the second inequality is the rejection of H4

0 . A similar
argument implies θ5 > θ2 and θ5 > θ1. But, for example, it does not mean that θ4 > θ3 or
θ3 > θ2. It also indicates that

1
2
(θ5 + θ4) > θ3,

1
3
(θ5 + θ4 + θ3) > θ2,

1
4
(θ5 + θ4 + θ3 + θ2) > θ1.

b. In part a) all of the contrasts are orthogonal. For example,

5∑
i=1

a2ia3i =
(

0, 1,−1
3
,−1

3
,−1

3

)
0
0
1
1
2
1
2

 = −1
3

+
1
6

+
1
6

= 0,

and this holds for all pairs of contrasts. Now, from Lemma 5.4.2,

Cov

(∑
i

ajiȲi·,
∑

i

aj′iȲi·

)
=

σ2

n

∑
i

ajiaj′i,

which is zero because the contrasts are orthogonal. Note that the equal number of obser-
vations per treatment is important, since if ni 6= ni′ for some i, i′, then

Cov

(
k∑

i=1

ajiȲi,
k∑

i=1

aj′iȲi

)
=

k∑
i=1

ajiaj′i
σ2

ni
= σ2

k∑
i=1

ajiaj′i

ni
6= 0.

c. This is not a set of orthogonal contrasts because, for example, a1×a2 = −1. However, each
contrast can be interpreted meaningfully in the context of the experiment. For example, a1

tests the effect of potassium alone, while a5 looks at the effect of adding zinc to potassium.

11.11 This is a direct consequence of Lemma 5.3.3.

11.12 a. This is a special case of (11.2.6) and (11.2.7).
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b. From Exercise 5.8(a) We know that

s2 =
1

k − 1

k∑
i=1

(ȳi· − ¯̄y)2 =
1

2k(k − 1)

∑
i,i′

(ȳi· − ȳi′·)
2
.

Then

1
k(k − 1)

∑
i,i′

t2ii′ =
1

2k(k − 1)

∑
i,i′

(ȳi· − ȳi′·)
2

s2
p/n

=
k∑

i=1

(ȳi· − ¯̄y)2

(k − 1)s2
p/n

=
∑

i n (ȳi· − ¯̄y)2 /(k − 1)
s2

p

,

which is distributed as Fk−1,N−k under H0 : θ1 = · · · = θk. Note that

∑
i,i′

t2ii′ =
k∑

i=1

k∑
i′=1

t2ii′ ,

therefore t2ii′ and t2i′i are both included, which is why the divisor is k(k−1), not k(k−1)
2 =

(
k
2

)
.

Also, to use the result of Example 5.9(a), we treated each mean Ȳi· as an observation, with
overall mean ¯̄Y . This is true for equal sample sizes.

11.13 a.

L(θ|y) =
(

1
2πσ2

)Nk/2

e
− 1

2

∑k

i=1

∑ni

j=1
(yij−θi)

2/σ2

.

Note that

k∑
i=1

ni∑
j=1

(yij − θi)2 =
k∑

i=1

ni∑
j=1

(yij − ȳi·)2 +
k∑

i=1

ni(ȳi· − θi)2

= SSW +
k∑

i=1

ni(ȳi· − θi)2,

and the LRT statistic is
λ = (τ̂2/τ̂2

0 )Nk/2

where
τ̂2 = SSW and τ̂2

0 = SSW +
∑

i

ni(ȳi· − ȳ··)2 = SSW + SSB.

Thus λ < k if and only if SSB/SSW is large, which is equivalent to the F test.
b. The error probabilities of the test are a function of the θis only through η =

∑
θ2

i . The
distribution of F is that of a ratio of chi squared random variables, with the numerator
being noncentral (dependent on η). Thus the Type II error is given by

P (F > k|η) = P

(
χ2

k−1(η)/(k − 1)
χ2

N−k/(N − k)
> k

)
≥ P

(
χ2

k−1(0)/(k − 1)
χ2

N−k/(N − k)
> k

)
= α,

where the inequality follows from the fact that the noncentral chi squared is stochastically
increasing in the noncentrality parameter.
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11.14 Let Xi ∼ n(θi, σ
2). Then from Exercise 11.11

Cov
(∑

i
ai√
ci

Xi,
∑

i

√
civiXi

)
= σ2

∑
aivi

Var
(∑

i
ai√
ci

Xi

)
= σ2

∑ a2
i

ci
, Var

(∑
i

√
civiXi

)
= σ2

∑
civ

2
i ,

and the Cauchy-Schwarz inequality gives(∑
aivi

)/(∑
a2

i /ci

)
≤
∑

civ
2
i .

If ai = civi this is an equality, hence the LHS is maximized. The simultaneous statement is
equivalent to (∑k

i=1 ai(ȳi· − θi)
)2

(
s2

p

∑k
i=1 a2

i /n
) ≤ M for all a1, . . . , ak,

and the LHS is maximized by ai = ni(ȳi· − θi). This produces the F statistic.
11.15 a. Since t2ν = F1,ν , it follows from Exercise 5.19(b) that for k ≥ 2

P [(k − 1)Fk−1,ν ≥ a] ≥ P (t2ν ≥ a).

So if a = t2ν,α/2, the F probability is greater than α, and thus the α-level cutoff for the F

must be greater than t2ν,α/2.
b. The only difference in the intervals is the cutoff point, so the Scheffé intervals are wider.
c. Both sets of intervals have nominal level 1 − α, but since the Scheffé intervals are wider,

tests based on them have a smaller rejection region. In fact, the rejection region is contained
in the t rejection region. So the t is more powerful.

11.16 a. If θi = θj for all i, j, then θi − θj = 0 for all i, j, and the converse is also true.
b. H0 : θ ∈ ∩ijΘij and H1 : θ ∈ ∪ij(Θij)c.

11.17 a. If all of the means are equal, the Scheffé test will only reject α of the time, so the t tests
will be done only α of the time. The experimentwise error rate is preserved.

b. This follows from the fact that the t tests use a smaller cutoff point, so there can be rejection
using the t test but no rejection using Scheffé. Since Scheffé has experimentwise level α,
the t test has experimentwise error greater than α.

c. The pooled standard deviation is 2.358, and the means and t statistics are

Mean t statistic
Low Medium High Med-Low High-Med High-Low
3.51. 9.27 24.93 3.86 10.49 14.36

The t statistics all have 12 degrees of freedom and, for example, t12,.01 = 2.68, so all of the
tests reject and we conclude that the means are all significantly different.

11.18 a.

P (Y > a|Y > b) = P (Y > a, Y > b)/P (Y > b)
= P (Y > a)/P (Y > b) (a > b)
> P (Y > a). (P (Y > b) < 1)

b. If a is a cutoff point then we would declare significance if Y > a. But if we only check if Y is
significant because we see a big Y (Y > b), the proper significance level is P (Y > a|Y > b),
which will show less significance than P (Y > a).
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11.19 a. The marginal distributions of the Yi are somewhat straightforward to derive. As Xi+1 ∼
gamma(λi+1, 1) and, independently,

∑i
j=1 Xj ∼ gamma(

∑i
j=1 λj , 1) (Example 4.6.8), we

only need to derive the distribution of the ratio of two independent gammas. Let X ∼
gamma(λ1, 1) and Y ∼ gamma(λ2, 1). Make the transformation

u = x/y, v = y ⇒ x = uv, y = v,

with Jacobian v. The density of (U, V ) is

f(u, v) =
1

Γ(λ1)Γ(λ2)
(uv)λ1−1vλ2−1ve−uve−v =

uλ1−1

Γ(λ1)Γ(λ2)
vλ1+λ2−1e−v(1+u).

To get the density of U , integrate with respect to v. Note that we have the kernel of a
gamma(λ1 + λ2, 1/(1 + u)), which yields

f(u) =
Γ(λ1 + λ2)
Γ(λ1)Γ(λ2)

uλ1−1

(1 + u)λ1+λ2−1
.

The joint distribution is a nightmare. We have to make a multivariate change of variable.
This is made a bit more palatable if we do it in two steps. First transform

W1 = X1, W2 = X1 + X2, W3 = X1 + X2 + X3, . . . , Wn = X1 + X2 + · · ·+ Xn,

with

X1 = W1, X2 = W2 −W1, X3 = W3 −W2, . . . Xn = Wn −Wn−1,

and Jacobian 1. The joint density of the Wi is

f(w1, w2, . . . , wn) =
n∏

i=1

1
Γ(λi)

(wi − wi−1)λi−1e−wn , w1 ≤ w2 ≤ · · · ≤ wn,

where we set w0 = 0 and note that the exponent telescopes. Next note that

y1 =
w2 − w1

w1
, y2 =

w3 − w2

w2
, . . . yn−1 =

wn − wn−1

wn−1
, yn = wn,

with
wi =

yn∏n−1
j=i (1 + yj)

, i = 1, . . . , n− 1, wn = yn.

Since each wi only involves yj with j ≥ i, the Jacobian matrix is triangular and the
determinant is the product of the diagonal elements. We have

dwi

dyi
= − yn

(1 + yi)
∏n−1

j=i (1 + yj)
, i = 1, . . . , n− 1,

dwn

dyn
= 1,

and

f(y1, y2, . . . , yn) =
1

Γ(λ1)

(
yn∏n−1

j=1 (1 + yj)

)λ1−1

×
n−1∏
i=2

1
Γ(λi)

(
yn∏n−1

j=i (1 + yj)
− yn∏n−1

j=i−1(1 + yj)

)λi−1

e−yn

×
n−1∏
i=1

yn

(1 + yi)
∏n−1

j=i (1 + yj)
.
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Factor out the terms with yn and do some algebra on the middle term to get

f(y1, y2, . . . , yn) = yΣiλi−1
n e−yn

1
Γ(λ1)

(
1∏n−1

j=1 (1 + yj)

)λ1−1

×
n−1∏
i=2

1
Γ(λi)

(
yi−1

1 + yi−1

1∏n−1
j=i (1 + yj)

)λi−1

×
n−1∏
i=1

1
(1 + yi)

∏n−1
j=i (1 + yj)

.

We see that Yn is independent of the other Yi (and has a gamma distribution), but there
does not seem to be any other obvious conclusion to draw from this density.

b. The Yi are related to the F distribution in the ANOVA. For example, as long as the sum
of the λi are integers,

Yi =
Xi+1∑i
j=1 Xj

=
2Xi+1

2
∑i

j=1 Xj

=
χ2

λi+1

χ2∑i

j=1
λj

∼ F
λi+1,

∑i

j=1
λj

.

Note that the F density makes sense even if the λi are not integers.

11.21 a.

Grand mean ȳ·· =
188.54

15
= 12.57

Total sum of squares =
3∑

i=1

5∑
j=1

(yij − ȳ··)
2 = 1295.01.

Within SS =
3∑
1

5∑
1

(yij − ȳi·)
2

=
5∑
1

(y1j − 3.508)2 +
5∑
1

(y2j − 9.274)2 +
5∑
1

(y3j − 24.926)2

= 1.089 + 2.189 + 63.459 = 66.74

Between SS = 5

(
3∑
1

(yij − ȳi·)
2

)
= 5(82.120 + 10.864 + 152.671) = 245.65 · 5 = 1228.25.

ANOVA table:
Source df SS MS F
Treatment 2 1228.25 614.125 110.42
Within 12 66.74 5.562
Total 14 1294.99

Note that the total SS here is different from above – round off error is to blame. Also,
F2,12 = 110.42 is highly significant.

b. Completing the proof of (11.2.4), we have

k∑
i=1

ni∑
j=1

(yij − ¯̄y)2 =
k∑

i=1

ni∑
j=1

((yij − ȳi·) + (ȳi − ¯̄y))2
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=
k∑

i=1

ni∑
j=1

(yij − ȳi·)
2 +

k∑
i=1

ni∑
j=1

(ȳi· − ¯̄y)2

+
k∑

i=1

ni∑
j=1

(yij − ȳi·) (ȳi· − ¯̄y) ,

where the cross term (the sum over j) is zero, so the sum of squares is partitioned as

k∑
i=1

ni∑
j=1

(yij − ȳi·)
2 +

k∑
i=1

ni (ȳi − ¯̄y)2

c. From a), the F statistic for the ANOVA is 110.42. The individual two-sample t’s, using
s2

p = 1
15−3 (66.74) = 5.5617, are

t212 =
(3.508− 9.274)2

(5.5617)(2/5)
=

33.247
2.2247

= 14.945,

t213 =
(3.508− 24.926)2

2.2247
= 206.201,

t223 =
(9.274− 24.926)2

2.2247
= 110.122,

and
2(14.945) + 2(206.201) + (110.122)

6
= 110.42 = F.

11.23 a.

EYij = E(µ + τi + bj + εij) = µ + τi + Ebj + Eεij = µ + τi

VarYij = Varbj + Varεij = σ2
B + σ2,

by independence of bj and εij .
b.

Var

(
n∑

i=1

aiȲi·

)
=

n∑
i=1

a2
i VarȲi· + 2

∑
i>i′

Cov(aiYi·, ai′Yi′·).

The first term is

n∑
i=1

a2
i VarȲi· =

n∑
i=1

a2
i Var

1
r

r∑
j=1

µ + τi + bj + εij

 =
1
r2

n∑
i=1

a2
i (rσ

2
B + rσ2)

from part (a). For the covariance
EȲi· = µ + τi,

and

E(Ȳi·Ȳi′·) = E

µ + τi +
1
r

∑
j

(bj + εij)

µ + τi′ +
1
r

∑
j

(bj + εi′j)


= (µ + τi)(µ + τi′) +

1
r2

E

∑
j

(bj + εij)

∑
j

(bj + εi′j)
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since the cross terms have expectation zero. Next, expanding the product in the second term
again gives all zero cross terms, and we have

E(Ȳi·Ȳi′·) = (µ + τi)(µ + τi′) +
1
r2

(rσ2
B),

and
Cov(Ȳi·, Ȳi′·) = σ2

B/r.

Finally, this gives

Var

(
n∑

i=1

aiȲi·

)
=

1
r2

n∑
i=1

a2
i (rσ

2
B + rσ2) + 2

∑
i>i′

aiai′σ
2
B/r

=
1
r

[
n∑

i=1

a2
i σ

2 + σ2
B(

n∑
i=1

ai)2
]

=
1
r
σ2

n∑
i=1

a2
i

=
1
r
(σ2 + σ2

B)(1− ρ)
n∑

i=1

a2
i ,

where, in the third equality we used the fact that
∑

i ai = 0.

11.25 Differentiation yields

a. ∂
∂cRSS = 2

∑
[yi − (c+dxi)] (−1) set= 0 ⇒ nc + d

∑
xi =

∑
yi

∂
∂dRSS = 2

∑
[yi − (ci+dxi)] (−xi)

set= 0 ⇒ c
∑

xi + d
∑

x2
i =

∑
xiyi.

b. Note that nc + d
∑

xi =
∑

yi ⇒ c = ȳ − dx̄. Then

(ȳ − dx̄)
∑

xi + d
∑

x2
i =

∑
xiyi and d

(∑
x2

i − nx̄2
)

=
∑

xiyi −
∑

xiȳ

which simplifies to d =
∑

xi(yi − ȳ)/
∑

(xi − x̄)2. Thus c and d are the least squares
estimates.

c. The second derivatives are

∂2

∂c2
RSS = n,

∂2

∂c∂d
RSS =

∑
xi,

∂2

∂d2
RSS =

∑
x2

i .

Thus the Jacobian of the second-order partials is∣∣∣∣ n
∑

xi∑
xi

∑
x2

i

∣∣∣∣ = n
∑

x2
i −

(∑
xi

)2

= n
∑

(xi − x̄)2 > 0.

11.27 For the linear estimator
∑

i aiYi to be unbiased for α we have

E

(∑
i

aiYi

)
=
∑

i

ai(α + βxi) = α ⇒
∑

i

ai = 1 and
∑

i

aixi = 0.

Since Var
∑

i aiYi = σ2
∑

i a2
i , we need to solve:

minimize
∑

i

a2
i subject to

∑
i

ai = 1 and
∑

i

aixi = 0.
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A solution can be found with Lagrange multipliers, but verifying that it is a minimum is
excruciating. So instead we note that∑

i

ai = 1 ⇒ ai =
1
n

+ k(bi − b̄),

for some constants k, b1, b2, . . . , bn, and

∑
i

aixi = 0 ⇒ k =
−x̄∑

i(bi − b̄)(xi − x̄)
and ai =

1
n
− x̄(bi − b̄)∑

i(bi − b̄)(xi − x̄)
.

Now ∑
i

a2
i =

∑
i

[
1
n
− x̄(bi − b̄)∑

i(bi − b̄)(xi − x̄)

]2
=

1
n

+
x̄2
∑

i(bi − b̄)2

[
∑

i(bi − b̄)(xi − x̄)]2
,

since the cross term is zero. So we need to minimize the last term. From Cauchy-Schwarz we
know that ∑

i(bi − b̄)2

[
∑

i(bi − b̄)(xi − x̄)]2
≥ 1∑

i(xi − x̄)]2
,

and the minimum is attained at bi = xi. Substituting back we get that the minimizing ai is
1
n −

x̄(xi−x̄)∑
i
(xi−x̄)2

, which results in
∑

i aiYi = Ȳ − β̂x̄, the least squares estimator.

11.28 To calculate

max
σ2

L(σ2|y, α̂β̂) = max
σ2

(
1

2πσ2

)n/2

e−
1
2Σi[yi−(α̂+β̂xi)]

2/σ2

take logs and differentiate with respect to σ2 to get

d

dσ2
log L(σ2|y, α̂, β̂) = − n

2σ2
+

1
2

∑
i[yi − (α̂ + β̂xi)]2

(σ2)2
.

Set this equal to zero and solve for σ2. The solution is σ̂2.
11.29 a.

Eε̂i = E(Yi − α̂− β̂xi) = (α + βxi)− α− βxi = 0.

b.

Varε̂i = E[Yi − α̂− β̂xi]2

= E[(Yi − α− βxi)− (α̂− α)− xi(β̂ − β)]2

= VarYi + Varα̂ + x2
i Varβ̂ − 2Cov(Yi, α̂)− 2xiCov(Yi, β̂) + 2xiCov(α̂, β̂).

11.30 a. Straightforward algebra shows

α̂ = ȳ − β̂x̄

=
∑ 1

n
yi −

x̄
∑

(xi − x̄)yi∑
(xi − x̄)2

=
∑[

1
n
− x̄(xi − x̄)∑

(xi − x̄)2

]
yi.
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b. Note that for ci = 1
n −

x̄(xi−x̄)∑
(xi−x̄)2

,
∑

ci = 1 and
∑

cixi = 0. Then

Eα̂ = E
∑

ciYi =
∑

ci(α + βxi = α,

Varα̂ =
∑

c2
i VarYi = σ2

∑
c2
i ,

and∑
c2
i =

∑[
1
n
−

x̄(xi − x̄)∑
(xi − x̄)2

]2
=

∑ 1
n2

+
∑

x̄2(xi − x̄)2

(
∑

(xi − x̄)2)2
(cross term = 0)

=
1
n

+
x̄2∑

(xi − x̄)2
=

∑
x2

i

nSxx
.

c. Write β̂ =
∑

diyi, where

di =
xi − x̄∑
(xi − x̄)2

.

From Exercise 11.11,

Cov(α̂, β̂) = Cov
(∑

ciYi,
∑

diYi

)
= σ2

∑
cidi

= σ2
∑[

1
n
− x̄(xi − x̄)∑

(xi − x̄)2

]
(xi − x̄)∑
(xi − x̄)2

=
−σ2x̄∑
(xi − x̄)2

.

11.31 The fact that
ε̂i =

∑
i

[δij − (cj + djxi)]Yj

follows directly from (11.3.27) and the definition of cj and dj . Since α̂ =
∑

i ciYi, from Lemma
11.3.2

Cov(ε̂i, α̂) = σ2
∑

j

cj [δij − (cj + djxi)]

= σ2

ci −
∑

j

cj(cj + djxi)


= σ2

ci −
∑

j

c2
j − xi

∑
j

cjdj

 .

Substituting for cj and dj gives

ci =
1
n
− (xi − x̄)x̄

Sxx∑
j

c2
j =

1
n

+
x̄2

Sxx

xi

∑
j

cjdj = −xix̄

Sxx
,

and substituting these values shows Cov(ε̂i, α̂) = 0. Similarly, for β̂,

Cov(ε̂i, β̂) = σ2

di −
∑

j

cjdj − xi

∑
j

d2
j
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with

di =
(xi − x̄)

Sxx∑
j

cjdj = − x̄

Sxx

xi

∑
j

d2
j =

1
Sxx

,

and substituting these values shows Cov(ε̂i, β̂) = 0.
11.32 Write the models as

3yi = α + βxi + εi

yi = α′ + β′(xi − x̄) + εi

= α′ + β′zi + εi.

a. Since z̄ = 0,

β̂ =
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

=
∑

zi(yi − ȳ)∑
z2
i

= β̂′.

b.

α̂ = ȳ − β̂x̄,

α̂′ = ȳ − β̂′z̄ = ȳ

since z̄ = 0.
α̂′ ∼ n(α + βz̄, σ2/n) = n(α, σ2/n).

c. Write

α̂′ =
∑ 1

n
yiβ̂

′ =
∑(

zi∑
z2
i

)
yi.

Then

Cov(α̂, β̂) = −σ2
∑ 1

n

(
zi∑
z2
i

)
= 0,

since
∑

zi = 0.

11.33 a. From (11.23.25), β = ρ(σY /σX), so β = 0 if and only if ρ = 0 (since we assume that the
variances are positive).

b. Start from the display following (11.3.35). We have

β̂2

S2/Sxx
=

S2
xy/Sxx

RSS/(n− 2)

= (n− 2)
S2

xy(
Syy − S2

xy/Sxx

)
Sxx

= (n− 2)
S2

xy(
SyySxx − S2

xy

) ,
and dividing top and bottom by SyySxx finishes the proof.

c. From (11.3.33) if ρ = 0 (equivalently β = 0), then β̂/(S/
√

Sxx) =
√

n− 2 r/
√

1− r2 has a
tn−2 distribution.
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11.34 a. ANOVA table for height data

Source df SS MS F
Regression 1 60.36 60.36 50.7
Residual 6 7.14 1.19
Total 7 67.50

The least squares line is ŷ = 35.18 + .93x.
b. Since yi − ȳ = (yi − ŷi) + (ŷi − ȳ), we just need to show that the cross term is zero.

n∑
i=1

(yi − ŷi)(ŷi − ȳ) =
n∑

i=1

[
yi − (α̂ + β̂xi)

] [
(α̂ + β̂xi)− ȳ

]
=

n∑
i=1

[
(ŷi − ȳ)− β̂(xi − x̄)

] [
β̂(xi − x̄)

]
(α̂ = ȳ − β̂x̄)

= β̂
n∑

i=1

(xi − x̄)(yi − ȳ)− β̂2
n∑

i=1

(xi − x̄)2 = 0,

from the definition of β̂.
c. ∑

(ŷi − ȳ)2 = β̂2
∑

(xi − x̄)2 =
S2

xy

Sxx
.

11.35 a. For the least squares estimate:

d

dθ

∑
i

(yi − θx2
i )

2 = 2
∑

i

(yi − θx2
i )x

2
i = 0

which implies

θ̂ =
∑

i yix
2
i∑

i x4
i

.

b. The log likelihood is

log L = −n

2
log(2πσ2)− 1

2σ2

∑
i

(yi − θx2
i )

2,

and maximizing this is the same as the minimization in part (a).
c. The derivatives of the log likelihood are

d

dθ
log L =

1
σ2

∑
i

(yi − θx2
i )x

2
i

d2

dθ2
log L =

−1
σ2

∑
i

x4
i ,

so the CRLB is σ2/
∑

i x4
i . The variance of θ̂ is

Varθ̂ = Var
(∑

i yix
2
i∑

i x4
i

)
=
∑

i

(
x2

i∑
j x4

j

)
σ2 = σ2/

∑
i

x4
i ,

so θ̂ is the best unbiased estimator.
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11.36 a.

Eα̂ = E(Ȳ − β̂X̄) = E
[
E(Ȳ − β̂X̄|X̄)

]
= E

[
α+βX̄ − βX̄

]
= Eα = α.

Eβ̂ = E[E(β̂|X̄)] = Eβ = β.

b. Recall

VarY = Var[E(Y |X)] + E[Var(Y |X)]
Cov(Y ,Z) = Cov[E(Y |X),E(Z|X)] + E[Cov(Y, Z|X)].

Thus

Varα̂ = E[Var(α̂|X)] = σ2E
[∑

X2
i

/
SXX

]
Varβ̂ = σ2E[1/SXX ]

Cov(α̂, β̂) = E[Cov(α̂, β̂|X̂)] = −σ2E[X̄/SXX ].

11.37 This is almost the same problem as Exercise 11.35. The log likelihood is

log L = −n

2
log(2πσ2)− 1

2σ2

∑
i

(yi − βxi)2.

The MLE is
∑

i xiyi/
∑

i x2
i , with mean β and variance σ2/

∑
i x2

i , the CRLB.
11.38 a. The model is yi = θxi + εi, so the least squares estimate of θ is

∑
xiyi/

∑
x2

i (regression
through the origin).

E
(∑

xiYi∑
x2

i

)
=

∑
xi(xiθ)∑

x2
i

= θ

Var
(∑

xiYi∑
x2

i

)
=

∑
x2

i (xiθ)

(
∑

x2
i )

2 = θ

∑
x3

i

(
∑

x2
i )

2 .

The estimator is unbiased.
b. The likelihood function is

L(θ|x) =
n∏

i=1

e−θxi(θxi)yi

(yi)!
=

e−θΣxi
∏

(θxi)yi∏
yi!

∂

∂θ
logL =

∂

∂θ

[
−θ
∑

xi+
∑

yilog(θxi)− log
∏

yi!
]

= −
∑

xi +
∑ xiyi

θxi

set= 0

which implies

θ̂ =
∑

yi∑
xi

Eθ̂ =
∑

θxi∑
xi

= θ and Varθ̂ = Var
(∑

yi∑
xi

)
=
∑

θxi

(
∑

xi)
2 =

θ∑
xi

.

c.

∂2

∂θ2
log L =

∂

∂θ

[
−
∑

xi+
∑

yi

θ

]
=
−
∑

yi

θ2
and E− ∂2

∂θ2
log L =

∑
xi

θ
.

Thus, the CRLB is θ/
∑

xi, and the MLE is the best unbiased estimator.
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11.39 Let Ai be the set

Ai =

α̂, β̂ :
[
(α̂ + β̂x0i)− (α + βx0i)

]/S

√
1
n

+
(x0i − x̄)2

Sxx

 ≤ tn−2,α/2m

 .

Then P (∩m
i=1Ai) is the probability of simultaneous coverage, and using the Bonferroni In-

equality (1.2.10) we have

P (∩m
i=1Ai) ≥

m∑
i=1

P (Ai)− (m− 1) =
m∑

i=1

(
1− α

m

)
− (m− 1) = 1− α.

11.41 Assume that we have observed data (y1, x1), (y2, x2), . . . , (yn−1, xn−1) and we have xn but not
yn. Let φ(yi|xi) denote the density of Yi, a n(a + bxi, σ

2).

a. The expected complete-data log likelihood is

E

(
n∑

i=1

log φ(Yi|xi)

)
=

n−1∑
i=1

log φ(yi|xi) + E log φ(Y |xn),

where the expectation is respect to the distribution φ(y|xn) with the current values of the
parameter estimates. Thus we need to evaluate

E log φ(Y |xn) = E
(
−1

2
log(2πσ2

1)− 1
2σ2

1

(Y − µ1)2
)

,

where Y ∼ n(µ0, σ
2
0). We have

E(Y − µ1)2 = E([Y − µ0] + [µ0 − µ1])2 = σ2
0 + [µ0 − µ1]2,

since the cross term is zero. Putting this all together, the expected complete-data log
likelihood is

−n

2
log(2πσ2

1)− 1
2σ2

1

n−1∑
i=1

[yi − (a1 + b1xi)]2 −
σ2

0 + [(a0 + b0xn)− (a1 + b1xn)]2

2σ2
1

= −n

2
log(2πσ2

1)− 1
2σ2

1

n∑
i=1

[yi − (a1 + b1xi)]2 −
σ2

0

2σ2
1

if we define yn = a0 + b0xn.
b. For fixed a0 and b0, maximizing this likelihood gives the least squares estimates, while the

maximum with respect to σ2
1 is

σ̂2
1 =

∑n
i=1[yi − (a1 + b1xi)]2 + σ2

0

n
.

So the EM algorithm is the following: At iteration t, we have estimates â(t), b̂(t), and σ̂2(t).
We then set y

(t)
n = â(t) + b̂(t)xn (which is essentially the E-step) and then the M-step is

to calculate â(t+1) and b̂(t+1) as the least squares estimators using (y1, x1), (y2, x2), . . .

(yn−1, xn−1), (y(t)
n , xn), and

σ̂
2(t+1)
1 =

∑n
i=1[yi − (a(t+1) + b(t+1)xi)]2 + σ

2(t)
0

n
.
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c. The EM calculations are simple here. Since y
(t)
n = â(t) + b̂(t)xn, the estimates of a and b

must converge to the least squares estimates (since they minimize the sum of squares of
the observed data, and the last term adds nothing. For σ̂2 we have (substituting the least
squares estimates) the stationary point

σ̂2 =
∑n

i=1[yi − (â + b̂xi)]2 + σ̂2

n
⇒ σ̂2 = σ2

obs,

where σ2
obs is the MLE from the n− 1 observed data points. So the MLE s are the same as

those without the extra xn.
d. Now we use the bivariate normal density (see Definition 4.5.10 and Exercise 4.45 ). Denote

the density by φ(x, y). Then the expected complete-data log likelihood is

n−1∑
i=1

log φ(xi, yi) + E log φ(X, yn),

where after iteration t the missing data density is the conditional density of X given Y = yn,

X|Y = yn ∼ n
(
µ

(t)
X + ρ(t)(σ(t)

X /σ
(t)
Y )(yn − µ

(t)
Y ), (1− ρ2(t))σ2(t)

X

)
.

Denoting the mean by µ0 and the variance by σ2
0 , the expected value of the last piece in

the likelihood is

E log φ(X, yn)

= −1
2

log(2πσ2
Xσ2

Y (1− ρ2))

− 1
2(1− ρ2)

[
E
(

X − µX

σX

)2

− 2ρE
(

(X − µX)(yn − µY )
σXσY

)
+
(

yn − µY

σY

)2
]

= −1
2

log(2πσ2
Xσ2

Y (1− ρ2))

− 1
2(1− ρ2)

[
σ2

0

σ2
X

+
(

µ0 − µX

σX

)2

− 2ρ

(
(µ0 − µX)(yn − µY )

σXσY

)
+
(

yn − µY

σY

)2
]

.

So the expected complete-data log likelihood is

n−1∑
i=1

log φ(xi, yi) + log φ(µ0, yn)− σ2
0

2(1− ρ2)σ2
X

.

The EM algorithm is similar to the previous one. First note that the MLEs of µY and σ2
Y

are the usual ones, ȳ and σ̂2
Y , and don’t change with the iterations. We update the other

estimates as follows. At iteration t, the E-step consists of replacing x
(t)
n by

x(t+1)
n = µ̂

(t)
X + ρ(t) σ

(t)
X

σ
(t)
Y

(yn − ȳ).

Then µ
(t+1)
X = x̄ and we can write the likelihood as

−1
2

log(2πσ2
X σ̂2

Y (1− ρ2))− 1
2(1− ρ2)

[
Sxx + σ2

0

σ2
X

− 2ρ
Sxy

σX σ̂Y
+

Syy

σ̂2
Y

]
.
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which is the usual bivariate normal likelihood except that we replace Sxx with Sxx + σ2
0 .

So the MLEs are the usual ones, and the EM iterations are

x(t+1)
n = µ̂

(t)
X + ρ(t) σ

(t)
X

σ
(t)
Y

(yn − ȳ)

µ̂
(t+1)
X = x̄(t)

σ̂
2(t+1)
X =

S
(t)
xx + (1− ρ̂2(t))σ̂2(t)

X

n

ρ̂(t+1) =
S

(t)
xy√

(S(t)
xx + (1− ρ̂2(t))σ̂2(t+1)

X )Syy

.

Here is R code for the EM algorithm:

nsim<-20;
xdata0<-c(20,19.6,19.6,19.4,18.4,19,19,18.3,18.2,18.6,19.2,18.2,
18.7,18.5,18,17.4,16.5,17.2,17.3,17.8,17.3,18.4,16.9)
ydata0<-(1,1.2,1.1,1.4,2.3,1.7,1.7,2.4,2.1,2.1,1.2,2.3,1.9,2.4,2.6,
2.9,4,3.3,3,3.4,2.9,1.9,3.9,4.2)
nx<-length(xdata0);
ny<-length(ydata0);
#initial values from mles on the observed data#
xmean<-18.24167;xvar<-0.9597797;ymean<-2.370833;yvar<- 0.8312327;
rho<- -0.9700159;
for (j in 1:nsim) {
#This is the augmented x (O2) data#
xdata<-c(xdata0,xmean+rho*(4.2-ymean)/(sqrt(xvar*yvar)))
xmean<-mean(xdata);
Sxx<-(ny-1)*var(xdata)+(1-rho^2)*xvar
xvar<-Sxx/ny
rho<-cor(xdata,ydata0)*sqrt((ny-1)*var(xdata)/Sxx)
}

The algorithm converges very quickly. The MLEs are

µ̂X = 18.24, µ̂Y = 2.37, σ̂2
X = .969, σ̂2

Y = .831, ρ̂ = −0.969.



Chapter 12

Regression Models

12.1 The point (x̂′, ŷ′) is the closest if it lies on the vertex of the right triangle with vertices (x′, y′)
and (x′, a+ bx′). By the Pythagorean theorem, we must have[

(x̂′−x′)2+
(
ŷ′−(a+ bx

′)
)2]

+
[
(x̂′−x′)2+(ŷ′−y′)2

]
= (x′ − x′)2 + (y′ − (a+ bx′))2 .

Substituting the values of x̂′ and ŷ′ from (12.2.7) we obtain for the LHS above[(
b(y′−bx′−a)

1+b2

)2

+
(
b2(y′−bx′−a)

1+b2

)2
]

+

[(
b(y′−bx′−a)

1+b2

)2

+
(
y′−bx−a)

1+b2

)2
]

= (y′ − (a+ bx′))2
[
b2+b4+b2+1

(1+b2)2

]
= (y′ − (a+ bx′))2 .

12.3 a. Differentiation yields ∂f/∂ξi = −2(xi − ξi) − 2λβ [yi−(α+βξi)]
set= 0 ⇒ ξi(1 + λβ2) =

xi−λβ(yi−α), which is the required solution. Also, ∂2f/∂ξ2 = 2(1 + λβ2) > 0, so this is a
minimum.

b. Parts i), ii), and iii) are immediate. For iv) just note that D is Euclidean distance between
(x1,

√
λy1) and (x2,

√
λy2), hence satisfies the triangle inequality.

12.5 Differentiate logL, for L in (12.2.17), to get

∂

∂σ2
δ

logL =
−n
σ2

δ

+
1

2(σ2
δ )2

λ

1+β̂2

n∑
i=1

[
yi−(α̂+ β̂xi)

]2
.

Set this equal to zero and solve for σ2
δ . The answer is (12.2.18).

12.7 a. Suppressing the subscript i and the minus sign, the exponent is

(x−ξ)2

σ2
δ

+
[y−(α+βξ)]2

σ2
ε

=
(
σ2

ε +β2σ2
δ

σ2
εσ

2
δ

)
(ξ−k)2 +

[y−(α+βx)]2

σ2
ε +β2σ2

δ

,

where k = σ2
ε x+σ2

δβ(y−α)

σ2
ε+β2σ2

δ

. Thus, integrating with respect to ξ eliminates the first term.

b. The resulting function must be the joint pdf of X and Y . The double integral is infinite,
however.

12.9 a. From the last two equations in (12.2.19),

σ̂2
δ =

1
n
Sxx − σ̂2

ξ =
1
n
Sxx −

1
n

Sxy

β̂
,

which is positive only if Sxx > Sxy/β̂. Similarly,

σ̂2
ε =

1
n
Syy − β̂2σ̂2

ξ =
1
n
Syy − β̂2 1

n

Sxy

β̂
,

which is positive only if Syy > β̂Sxy.
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b. We have from part a), σ̂2
δ > 0 ⇒ Sxx > Sxy/β̂ and σ̂2

ε > 0 ⇒ Syy > β̂Sxy. Furthermore,
σ̂2

ξ > 0 implies that Sxy and β̂ have the same sign. Thus Sxx > |Sxy|/|β̂| and Syy > |β̂||Sxy|.
Combining yields

|Sxy|
Sxx

<
∣∣∣β̂∣∣∣ < Syy

|Sxy|
.

12.11 a.

Cov(aY+bX, cY+dX)
= E(aY + bX)(cY + dX)− E(aY + bX)E(cY + dX)
= E

(
acY 2+(bc+ ad)XY+bdX2

)
− E(aY + bX)E(cY + dX)

= acVarY + ac(EY )2 + (bc+ ad)Cov(X,Y )
+(bc+ ad)EXEY + bdVarX + bd(EX)2 − E(aY + bX)E(cY + dX)

= acVarY + (bc+ ad)Cov(X,Y ) + bdVarX.

b. Identify a = βλ, b = 1, c = 1, d = −β, and using (12.3.19)

Cov(βλYi+Xi, Yi−βXi) = βλVarY + (1− λβ2)Cov(X,Y )− βVarX
= βλ

(
σ2

ε + β2σ2
ξ

)
+ (1− λβ2)βσ2

ξ − β
(
σ2

δ + σ2
ξ

)
= βλσ2

ε − βσ2
δ = 0

if λσ2
ε = σ2

δ . (Note that we did not need the normality assumption, just the moments.)
c. Let Wi = βλYi + Xi, Vi = Yi + βXi. Exercise 11.33 shows that if Cov(Wi, Vi) = 0,

then
√
n− 2r/

√
1− r2 has a tn−2 distribution. Thus

√
n− 2rλ(β)/

√
1− r2λ(β) has a tn−2

distribution for all values of β, by part (b). Also

P

({
β :

(n− 2)r2λ(β)

1− r2λ(β)

≤ F1,n−2,α

})
= P

({
(X,Y ) :

(n− 2)r2λ(β)
1− r2λ(β)

≤ F1,n−2,α

})
= 1− α.

12.13 a. Rewrite (12.2.22) to get

{
β : β̂ − tσ̂β√

n− 2
≤ β ≤ β̂ +

tσ̂β√
n− 2

}
=

β :
(β̂−β)2

σ2
β

/
(n− 2)

≤ F

 .

b. For β̂ of (12.2.16), the numerator of rλ(β) in (12.2.22) can be written

βλSyy+(1−β2λ)Sxy−βSxy = β2(λSxy) + β(Sxx − λSyy) + Sxy = λSxy(β − β̂)
(
β+

1

λβ̂

)
.

Again from (12.2.22), we have

r2λ(β)
1− r2λ(β)

=

(
βλSyy+(1−β2λ)Sxy−βSxy

)2
(β2λ2Syy+2βλSxy+Sxx) (Syy−2βSxy+β2Sxx)− (βλSyy+(1−β2λ)Sxy−βSxx)2

,

and a great deal of straightforward (but tedious) algebra will show that the denominator
of this expression is equal to

(1 + λβ2)2
(
SyySxx − S2

xy

)
.



Second Edition 12-3

Thus

r2λ(β)
1− r2λ(β)

= y
λ2S2

xy

(
β − β̂

)2 (
β+ 1

λβ̂

)2

(1−λβ2)2
(
SyySx−S2

xy

)
=

(
β−β̂

)2

σ̂2
β

(
1+λββ̂
1+λβ2

)2
(1 + λβ̂2)2S2

xy

β̂2
[
(Sxx − λSyy)2 + 4λS2

xy

] ,
after substituting σ̂2

β from page 588. Now using the fact that β̂ and −1/λβ̂ are both roots
of the same quadratic equation, we have

(1+λβ̂2)2

β̂2
=
(

1

β̂
+λβ̂

)2

=
(Sxx−λSyy)2+4λS2

xy

S2
xy

.

Thus the expression in square brackets is equal to 1.
12.15 a.

π(−α/β) =
eα+β(−α/β)

1 + eα+β(−α/β)
=

e0

1 + e0
=

1
2
.

b.

π((−α/β) + c) =
eα+β((−α/β)+c)

1 + eα+β((−α/β)+c)
=

eβc

1 + eβc
,

and

1− π((−α/β)− c) = 1− e−βc

1 + e−βc
=

eβc

1 + eβc
.

c.

d

dx
π(x) = β

eα+βx

[1 + eα+βx]2
= βπ(x)(1− π(x)).

d. Because
π(x)

1− π(x)
= eα+βx,

the result follows from direct substitution.
e. Follows directly from (d).
f. Follows directly from

∂

∂α
F (α+ βx) = f(α+ βx) and

∂

∂β
F (α+ βx) = xf(α+ βx).

g. For F (x) = ex/(1 + ex), f(x) = F (x)(1− F (x)) and the result follows. For F (x) = π(x) of
(12.3.2), from part (c) if follows that f

F (1−F ) = β.

12.17 a. The likelihood equations and solution are the same as in Example 12.3.1 with the exception
that here π(xj) = Φ(α+ βxj), where Φ is the cdf of a standard normal.

b. If the 0 − 1 failure response in denoted “oring” and the temperature data is “temp”, the
following R code will generate the logit and probit regression:

summary(glm(oring~temp, family=binomial(link=logit)))
summary(glm(oring~temp, family=binomial(link=probit)))
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For the logit model we have

Estimate Std. Error z value Pr(> |z|)
Intercept 15.0429 7.3719 2.041 0.0413

temp −0.2322 0.1081 −2.147 0.0318

and for the probit model we have

Estimate Std. Error z value Pr(> |z|)
Intercept 8.77084 3.86222 2.271 0.0232

temp −0.13504 0.05632 −2.398 0.0165

Although the coefficients are different, the fit is qualitatively the same, and the probability
of failure at 31◦, using the probit model, is .9999.

12.19 a. Using the notation of Example 12.3.1, the likelihood (joint density) is

J∏
j=1

[
eα+βxj

1 + eα+βxj

]y∗j [ 1
1 + eα+βxj

]nj−y∗j

=
J∏

j=1

[
1

1 + eα+βxj

]nj

e
α
∑

j
y∗j +β

∑
j

xjy∗j .

By the Factorization Theorem,
∑

j y
∗
j and

∑
j xjy

∗
j are sufficient.

b. Straightforward substitution.
12.21 Since d

dπ log(π/(1− π)) = 1/(π(1− π)),

Var log
(

π̂

1− π̂

)
≈
(

1
π(1− π)

)2
π(1− π)

n
=

1
nπ(1− π)

12.23 a. If
∑
ai = 0,

E
∑

i

aiYi =
∑

i

ai[α+ βxi + µ(1− δ)] = β
∑

i

aixi = β

for ai = xi − x̄.
b.

E(Ȳ − βx̄) =
1
n

∑
i

[α+ βxi + µ(1− δ)]− βx̄ = α+ µ(1− δ),

so the least squares estimate a is unbiased in the model Yi = α′ + βxi + εi, where α′ =
α+ µ(1− δ).

12.25 a. The least absolute deviation line minimizes

|y1 − (c+ dx1)|+ |y2 − (c+ dx1)|+ |y3 − (c+ dx3)| .

Any line that lies between (x1, y1) and (x1, y2) has the same value for the sum of the first
two terms, and this value is smaller than that of any line outside of (x1, y1) and (x2, y2).
Of all the lines that lie inside, the ones that go through (x3, y3) minimize the entire sum.

b. For the least squares line, a = −53.88 and b = .53. Any line with b between (17.9−14.4)/9 =
.39 and (17.9− 11.9)/9 = .67 and a = 17.9− 136b is a least absolute deviation line.

12.27 In the terminology of M -estimators (see the argument on pages 485 − 486), β̂L is consistent
for the β0 that satisfies Eβ0

∑
i ψ(Yi − β0xi) = 0, so we must take the “true” β to be this

value. We then see that ∑
i

ψ(Yi − β̂Lxi)→ 0

as long as the derivative term is bounded, which we assume is so.
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12.29 The argument for the median is a special case of Example 12.4.3, where we take xi = 1
so σ2

x = 1. The asymptotic distribution is given in (12.4.5) which, for σ2
x = 1, agrees with

Example 10.2.3.
12.31 The LAD estimates, from Example 12.4.2 are α̃ = 18.59 and β̃ = −.89. Here is Mathematica

code to bootstrap the standard deviations. (Mathematica is probably not the best choice here,
as it is somewhat slow. Also, the minimization seemed a bit delicate, and worked better when
done iteratively.) Sad is the sum of the absolute deviations, which is minimized iteratively
in bmin and amin. The residuals are bootstrapped by generating random indices u from the
discrete uniform distribution on the integers 1 to 23.

1. First enter data and initialize

Needs["Statistics‘Master‘"]
Clear[a,b,r,u]
a0=18.59;b0=-.89;aboot=a0;bboot=b0;
y0={1,1.2,1.1,1.4,2.3,1.7,1.7,2.4,2.1,2.1,1.2,2.3,1.9,2.4,

2.6,2.9,4,3.3,3,3.4,2.9,1.9,3.9};
x0={20,19.6,19.6,19.4,18.4,19,19,18.3,18.2,18.6,19.2,18.2,

18.7,18.5,18,17.4,16.5,17.2,17.3,17.8,17.3,18.4,16.9};
model=a0+b0*x0;
r=y0-model;
u:=Random[DiscreteUniformDistribution[23]]
Sad[a_,b_]:=Mean[Abs[model+rstar-(a+b*x0)]]
bmin[a_]:=FindMinimum[Sad[a,b],{b,{.5,1.5}}]
amin:=FindMinimum[Sad[a,b/.bmin[a][[2]]],{a,{16,19}}]

2. Here is the actual bootstrap. The vectors aboot and bboot contain the bootstrapped values.

B=500;
Do[
rstar=Table[r[[u]],{i,1,23}];
astar=a/.amin[[2]];
bstar=b/.bmin[astar][[2]];
aboot=Flatten[{aboot,astar}];
bboot=Flatten[{bboot,bstar}],
{i,1,B}]

3. Summary Statistics

Mean[aboot]
StandardDeviation[aboot]
Mean[bboot]
StandardDeviation[bboot]

4. The results are Intercept: Mean 18.66, SD .923 Slope: Mean −.893, SD .050.
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