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PREFACE.

Thirty or forty years ago, in the field of physical science, there was
a widespread feeling that the days of adventurous discovery had passed
forever, and the conservative physicist was only too happy to devote his
life to the measurement to the sixth decimal place of quantities whose
significance for physical theory was already an old story. The passage of
time, however, has completely upset such bourgeois ideas as to the state
of physical science, through the discovery of some most extraordinary
experimental facts and the development of very fundamental theories
for their explanation.

On the experimental side, the intervening years have seen the dis-
covery of radioactivity, the exhaustive study of the conduction of elec-
tricity through gases, the accompanying discoveries of cathode, canal
and X-rays, the isolation of the electron, the study of the distribution
of energy in the hohlraum, and the final failure of all attempts to detect
the earth’s motion through the supposititious ether. During this same
time, the theoretical physicist has been working hand in hand with the
experimenter endeavoring to correlate the facts already discovered and
to point the way to further research. The theoretical achievements,
which have been found particularly helpful in performing these func-
tions of explanation and prediction, have been the development of the
modern theory of electrons, the application of thermodynamic and sta-
tistical reasoning to the phenomena of radiation, and the development
of Einstein’s brilliant theory of the relativity of motion.

It has been the endeavor of the following book to present an in-
troduction to this theory of relativity, which in the decade since the
publication of Einstein’s first paper in 1905 (Annalen der Physik) has
become a necessary part of the theoretical equipment of every physicist.
Even if we regard the Einstein theory of relativity merely as a conve-
nient tool for the prediction of electromagnetic and optical phenomena,
its importance to the physicist is very great, not only because its intro-
duction greatly simplifies the deduction of many theorems which were

1



Preface. 2

already familiar in the older theories based on a stationary ether, but
also because it leads simply and directly to correct conclusions in the
case of such experiments as those of Michelson and Morley, Trouton and
Noble, and Kaufman and Bucherer, which can be made to agree with
the idea of a stationary ether only by the introduction of complicated
and ad hoc assumptions. Regarded from a more philosophical point of
view, an acceptance of the Einstein theory of relativity shows us the
advisability of completely remodelling some of our most fundamental
ideas. In particular we shall now do well to change our concepts of
space and time in such a way as to give up the old idea of their com-
plete independence, a notion which we have received as the inheritance
of a long ancestral experience with bodies moving with slow velocities,
but which no longer proves pragmatic when we deal with velocities
approaching that of light.

The method of treatment adopted in the following chapters is to
a considerable extent original, partly appearing here for the first time
and partly already published elsewhere.∗ Chapter III follows a method
which was first developed by Lewis and Tolman,† and the last chapter a
method developed by Wilson and Lewis.‡ The writer must also express
his special obligations to the works of Einstein, Planck, Poincaré, Laue,
Ishiwara and Laub.

It is hoped that the mode of presentation is one that will be found
well adapted not only to introduce the study of relativity theory to
those previously unfamiliar with the subject but also to provide the
necessary methodological equipment for those who wish to pursue the
theory into its more complicated applications.

∗Philosophical Magazine, vol. 18, p. 510 (1909); Physical Review, vol. 31, p. 26
(1910); Phil. Mag., vol. 21, p. 296 (1911); ibid., vol. 22, p. 458 (1911); ibid., vol. 23,
p. 375 (1912); Phys. Rev., vol. 35, p. 136 (1912); Phil. Mag., vol. 25, p. 150 (1913);
ibid., vol. 28, p. 572 (1914); ibid., vol. 28, p. 583 (1914).

†Phil. Mag., vol. 18, p. 510 (1909).
‡Proceedings of the American Academy of Arts and Sciences, vol. 48, p. 389

(1912).
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After presenting, in the first chapter, a brief outline of the historical
development of ideas as to the nature of the space and time of sci-
ence, we consider, in Chapter II, the two main postulates upon which
the theory of relativity rests and discuss the direct experimental evi-
dence for their truth. The third chapter then presents an elementary
and non-mathematical deduction of a number of the most important
consequences of the postulates of relativity, and it is hoped that this
chapter will prove especially valuable to readers without unusual math-
ematical equipment, since they will there be able to obtain a real grasp
of such important new ideas as the change of mass with velocity, the
non-additivity of velocities, and the relation of mass and energy, with-
out encountering any mathematics beyond the elements of analysis and
geometry.

In Chapter IV we commence the more analytical treatment of the
theory of relativity by obtaining from the two postulates of relativity
Einstein’s transformation equations for space and time as well as trans-
formation equations for velocities, accelerations, and for an important
function of the velocity. Chapter V presents various kinematical ap-
plications of the theory of relativity following quite closely Einstein’s
original method of development. In particular we may call attention to
the ease with which we may handle the optics of moving media by the
methods of the theory of relativity as compared with the difficulty of
treatment on the basis of the ether theory.

In Chapters VI, VII and VIII we develop and apply a theory of the
dynamics of a particle which is based on the Einstein transformation
equations for space and time, Newton’s three laws of motion, and the
principle of the conservation of mass.

We then examine, in Chapter IX, the relation between the theory
of relativity and the principle of least action, and find it possible to
introduce the requirements of relativity theory at the very start into
this basic principle for physical science. We point out that we might
indeed have used this adapted form of the principle of least action, for
developing the dynamics of a particle, and then proceed in Chapters
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X, XI and XII to develop the dynamics of an elastic body, the dynamics
of a thermodynamic system, and the dynamics of an electromagnetic
system, all on the basis of our adapted form of the principle of least
action.

Finally, in Chapter XIII, we consider a four-dimensional method of
expressing and treating the results of relativity theory. This chapter
contains, in Part I, an epitome of some of the more important methods
in four-dimensional vector analysis and it is hoped that it can also be
used in connection with the earlier parts of the book as a convenient
reference for those who are not familiar with ordinary three-dimensional
vector analysis.

In the present book, the writer has confined his considerations to
cases in which there is a uniform relative velocity between systems of
coördinates. In the future it may be possible greatly to extend the ap-
plications of the theory of relativity by considering accelerated systems
of coördinates, and in this connection Einstein’s latest work on the re-
lation between gravity and acceleration is of great interest. It does not
seem wise, however, at the present time to include such considerations
in a book which intends to present a survey of accepted theory.

The author will feel amply repaid for the work involved in the prepa-
ration of the book if, through his efforts, some of the younger American
physicists can be helped to obtain a real knowledge of the important
work of Einstein. He is also glad to have this opportunity to add his tes-
timony to the growing conviction that the conceptual space and time of
science are not God-given and unalterable, but are rather in the nature
of human constructs devised for use in the description and correlation
of scientific phenomena, and that these spatial and temporal concepts
should be altered whenever the discovery of new facts makes such a
change pragmatic.

The writer wishes to express his indebtedness to Mr. William H.
Williams for assisting in the preparation of Chapter I.



CHAPTER I.

HISTORICAL DEVELOPMENT OF IDEAS AS TO THE NATURE
OF SPACE AND TIME.

1. Since the year 1905, which marked the publication of Einstein’s
momentous article on the theory of relativity, the development of sci-
entific thought has led to a complete revolution in accepted ideas as
to the nature of space and time, and this revolution has in turn pro-
foundly modified those dependent sciences, in particular mechanics and
electromagnetics, which make use of these two fundamental concepts
in their considerations.

In the following pages it will be our endeavor to present a descrip-
tion of these new notions as to the nature of space and time,∗ and
to give a partial account of the consequent modifications which have
been introduced into various fields of science. Before proceeding to
this task, however, we may well review those older ideas as to space
and time which until now appeared quite sufficient for the correlation
of scientific phenomena. We shall first consider the space and time of
Galileo and Newton which were employed in the development of the
classical mechanics, and then the space and time of the ether theory of
light.

part i. the space and time of galileo and newton.

2. The publication in 1687 of Newton’s Principia laid down so
satisfactory a foundation for further dynamical considerations, that it
seemed as though the ideas of Galileo and Newton as to the nature
of space and time, which were there employed, would certainly remain
forever suitable for the interpretation of natural phenomena. And in-
deed upon this basis has been built the whole structure of classical
mechanics which, until our recent familiarity with very high velocities,

∗Throughout this work by “space” and “time” we shall mean the conceptual
space and time of science.

5
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has been found completely satisfactory for an extremely large number
of very diverse dynamical considerations.

An examination of the fundamental laws of mechanics will show
how the concepts of space and time entered into the Newtonian system
of mechanics. Newton’s laws of motion, from which the whole of the
classical mechanics could be derived, can best be stated with the help
of the equation

F =
d

dt
(mu). (1)

This equation defines the force F acting on a particle as equal to the
rate of change in its momentum (i.e., the product of its mass m and its
velocity u), and the whole of Newton’s laws of motion may be summed
up in the statement that in the case of two interacting particles the
forces which they mutually exert on each other are equal in magnitude
and opposite in direction.

Since in Newtonian mechanics the mass of a particle is assumed
constant, equation (1) may be more conveniently written

F = m
du

dt
= m

d

dt

(
dr

dt

)
,

or
Fx = m

d

dt

(
dx

dt

)
,

Fy = m
d

dt

(
dy

dt

)
,

Fz = m
d

dt

(
dz

dt

)
,

(2)

and this definition of force, together with the above-stated principle
of the equality of action and reaction, forms the starting-point for the
whole of classical mechanics.

The necessary dependence of this mechanics upon the concepts of
space and time becomes quite evident on an examination of this funda-
mental equation (2), in which the expression for the force acting on a
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particle is seen to contain both the variables x, y, and z, which specify
the position of the particle in space, and the variable t, which specifies
the time.

3. Newtonian Time. To attempt a definite statement as to the
meaning of so fundamental and underlying a notion as that of time is
a task from which even philosophy may shrink. In a general way, con-
ceptual time may be thought of as a one-dimensional, unidirectional,
one-valued continuum. This continuum is a sort of framework in which
the instants at which actual occurrences take place find an ordered po-
sition. Distances from point to point in the continuum, that is intervals
of time, are measured by the periods of certain continually recurring
cyclic processes such as the daily rotation of the earth. A unidirectional
nature is imposed upon the time continuum among other things by an
acceptance of the second law of thermodynamics, which requires that
actual progression in time shall be accompanied by an increase in the
entropy of the material world, and this same law requires that the con-
tinuum shall be one-valued since it excludes the possibility that time
ever returns upon itself, either to commence a new cycle or to intersect
its former path even at a single point.

In addition to these characteristics of the time continuum, which
have been in no way modified by the theory of relativity, the Newto-
nian mechanics always assumed a complete independence of time and
the three-dimensional space continuum which exists along with it. In
dynamical equations time entered as an entirely independent variable
in no way connected with the variables whose specification determines
position in space. In the following pages, however, we shall find that the
theory of relativity requires a very definite interrelation between time
and space, and in the Einstein transformation equations we shall see
the exact way in which measurements of time depend upon the choice
of a set of variables for measuring position in space.

4. Newtonian Space. An exact description of the concept of space
is perhaps just as difficult as a description of the concept of time. In
a general way we think of space as a three-dimensional, homogeneous,
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isotropic continuum, and these ideas are common to the conceptual
spaces of Newton, Einstein, and the ether theory of light. The space of
Newton, however, differs on the one hand from that of Einstein because
of a tacit assumption of the complete independence of space and time
measurements; and differs on the other hand from that of the ether
theory of light by the fact that “free” space was assumed completely
empty instead of filled with an all-pervading quasi-material medium—
the ether. A more definite idea of the particularly important character-
istics of the Newtonian concept of space may be obtained by considering
somewhat in detail the actual methods of space measurement.

Positions in space are in general measured with respect to some ar-
bitrarily fixed system of reference which must be threefold in character
corresponding to the three dimensions of space. In particular we may
make use of a set of Cartesian axes and determine, for example, the
position of a particle by specifying its three Cartesian coördinates x, y
and z.

In Newtonian mechanics the particular set of axes chosen for spec-
ifying position in space has in general been determined in the first
instance by considerations of convenience. For example, it is found by
experience that, if we take as a reference system lines drawn upon the
surface of the earth, the equations of motion based on Newton’s laws
give us a simple description of nearly all dynamical phenomena which
are merely terrestrial. When, however, we try to interpret with these
same axes the motion of the heavenly bodies, we meet difficulties, and
the problem is simplified, so far as planetary motions are concerned,
by taking a new reference system determined by the sun and the fixed
stars. But this system, in its turn, becomes somewhat unsatisfactory
when we take account of the observed motions of the stars themselves,
and it is finally convenient to take a reference system relative to which
the sun is moving with a velocity of twelve miles per second in the di-
rection of the constellation Hercules. This system of axes is so chosen
that the great majority of stars have on the average no motion with
respect to it, and the actual motion of any particular star with respect
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to these coördinates is called the peculiar motion of the star.
Suppose, now, we have a number of such systems of axes in uni-

form relative motion; we are confronted by the problem of finding some
method of transposing the description of a given kinematical occur-
rence from the variables of one of these sets of axes to those of another.
For example, if we have chosen a system of axes S and have found
an equation in x, y, z, and t which accurately describes the motion
of a given point, what substitutions for the quantities involved can be
made so that the new equation thereby obtained will again correctly
describe the same phenomena when we measure the displacements of
the point relative to a new system of reference S ′ which is in uniform
motion with respect to S? The assumption of Galileo and Newton that
“free” space is entirely empty, and the further tacit assumption of the
complete independence of space and time, led them to propose a very
simple solution of the problem, and the transformation equations which
they used are generally called the Galileo Transformation Equations to
distinguish them from the Einstein Transformation Equations which we
shall later consider.

5. The Galileo Transformation Equations. Consider two sys-
tems of right-angled coördinates, S and S ′, which are in relative motion
in the X direction with the velocity V ; for convenience let the X axes,
OX and O′X ′, of the two systems coincide in direction, and for further
simplification let us take as our zero point for time measurements the
instant when the two origins O and O′ coincide. Consider now a point
which at the time t has the coördinates x, y and z measured in sys-
tem S. Then, according to the space and time considerations of Galileo
and Newton, the coördinates of the point with reference to system S ′

are given by the following transformation equations:

x′ = x− V t, (3)
y′ = y, (4)
z′ = z, (5)
t′ = t. (6)
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These equations are fundamental for Newtonian mechanics, and may
appear to the casual observer to be self-evident and bound up with
necessary ideas as to the nature of space and time. Nevertheless, the
truth of the first and the last of these equations is absolutely dependent
on the unsupported assumption of the complete independence of space
and time measurements, and since in the Einstein theory we shall find
a very definite relation between space and time measurements we shall
be led to quite a different set of transformation equations. Relations
(3), (4), (5) and (6) will be found, however, to be the limiting form
which the correct transformation equations assume when the velocity
between the systems V becomes small compared with that of light.
Since until very recent times the human race in its entire past history
has been familiar only with velocities that are small compared with that
of light, it need not cause surprise that the above equations, which are
true merely at the limit, should appear so self-evident.

6. Before leaving the discussion of the space and time system of
Newton and Galileo we must call attention to an important characteris-
tic which it has in common with the system of Einstein but which is not
a feature of that assumed by the ether theory. If we have two systems
of axes such as those we have just been considering, we may with equal
right consider either one of them at rest and the other moving past
it. All we can say is that the two systems are in relative motion; it is
meaningless to speak of either one as in any sense “absolutely” at rest.
The equation x′ = x−V t which we use in transforming the description
of a kinematical event from the variables of system S to those of system
S ′ is perfectly symmetrical with the equation x = x′ + V t′ which we
should use for a transformation in the reverse direction. Of all possible
systems no particular set of axes holds a unique position among the
others. We shall later find that this important principle of the relativ-
ity of motion is permanently incorporated into our system of physical
science as the first postulate of relativity. This principle, common both
to the space of Newton and to that of Einstein, is not characteristic of
the space assumed by the classical theory of light. The space of this
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theory was supposed to be filled with a stationary medium, the luminif-
erous ether, and a system of axes stationary with respect to this ether
would hold a unique position among the other systems and be the one
peculiarly adapted for use as the ultimate system of reference for the
measurement of motions.

We may now briefly sketch the rise of the ether theory of light and
point out the permanent contribution which it has made to physical
science, a contribution which is now codified as the second postulate of
relativity.

part ii. the space and time of the ether theory.

7. Rise of the Ether Theory. Twelve years before the appearance
of the Principia, Römer, a Danish astronomer, observed that an eclipse
of one of the satellites of Jupiter occurred some ten minutes later than
the time predicted for the event from the known period of the satellite
and the time of the preceding eclipse. He explained this delay by the
hypothesis that it took light twenty-two minutes to travel across the
earth’s orbit. Previous to Römer’s discovery, light was generally sup-
posed to travel with infinite velocity. Indeed Galileo had endeavored
to find the speed of light by direct experiments over distances of a few
miles and had failed to detect any lapse of time between the emission
of a light flash from a source and its observation by a distant observer.
Römer’s hypothesis has been repeatedly verified and the speed of light
measured by different methods with considerable exactness. The mean
of the later determinations is 2.9986× 1010 cm. per second.

8. At the time of Römer’s discovery there was much discussion as
to the nature of light. Newton’s theory that it consisted of particles or
corpuscles thrown out by a luminous body was attacked by Hooke and
later by Huygens, who advanced the view that it was something in the
nature of wave motions in a supposed space-filling medium or ether. By
this theory Huygens was able to explain reflection and refraction and
the phenomena of color, but assuming longitudinal vibrations he was
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unable to account for polarization. Diffraction had not yet been ob-
served and Newton contested the Hooke-Huygens theory chiefly on the
grounds that it was contradicted by the fact of rectilinear propagation
and the formation of shadows. The scientific prestige of Newton was
so great that the emission or corpuscular theory continued to hold its
ground for a hundred and fifty years. Even the masterly researches of
Thomas Young at the beginning of the nineteenth century were unable
to dislodge the old theory, and it was not until the French physicist,
Fresnel, about 1815, was independently led to an undulatory theory and
added to Young’s arguments the weight of his more searching mathe-
matical analysis, that the balance began to turn. From this time on
the wave theory grew in power and for a period of eighty years was
not seriously questioned. This theory has for its essential postulate the
existence of an all-pervading medium, the ether, in which wave distur-
bances can be set up and propagated. And the physical properties of
this medium became an enticing field of inquiry and speculation.

9. Idea of a Stationary Ether. Of all the various properties with
which the physicist found it necessary to endow the ether, for us the
most important is the fact that it must apparently remain stationary,
unaffected by the motion of matter through it. This conclusion was
finally reached through several lines of investigation. We may first
consider whether the ether would be dragged along by the motion of
nearby masses of matter, and, second, whether the ether enclosed in
a moving medium such as water or glass would partake in the latter’s
motion.

10. Ether in the Neighborhood of Moving Bodies. About the
year 1725 the astronomer Bradley, in his efforts to measure the parallax
of certain fixed stars, discovered that the apparent position of a star
continually changes in such a way as to trace annually a small ellipse in
the sky, the apparent position always lying in the plane determined by
the line from the earth to the center of the ellipse and by the direction
of the earth’s motion. On the corpuscular theory of light this admits of
ready explanation as Bradley himself discovered, since we should expect
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the earth’s motion to produce an apparent change in the direction of
the oncoming light, in just the same way that the motion of a railway
train makes the falling drops of rain take a slanting path across the
window pane. If c be the velocity of a light particle and v the earth’s
velocity, the apparent or relative velocity would be c−v and the tangent
of the angle of aberration would be

v

c
.

Upon the wave theory, it is obvious that we should also expect a
similar aberration of light, provided only that the ether shall be quite
stationary and unaffected by the motion of the earth through it, and
this is one of the important reasons that most ether theories have as-
sumed a stationary ether unaffected by the motion of neighboring mat-
ter.∗

In more recent years further experimental evidence for assuming
that the ether is not dragged along by the neighboring motion of large
masses of matter was found by Sir Oliver Lodge. His final experiments
were performed with a large rotating spheroid of iron with a narrow
groove around its equator, which was made the path for two rays of
light, one travelling in the direction of rotation and the other in the
opposite direction. Since by interference methods no difference could
be detected in the velocities of the two rays, here also the conclusion
was reached that the ether was not appreciably dragged along by the
rotating metal.

11. Ether Entrained in Dielectrics. With regard to the action
of a moving medium on the ether which might be entrained within it,
experimental evidence and theoretical consideration here too finally led
to the supposition that the ether itself must remain perfectly station-
ary. The earlier view first expressed by Fresnel, in a letter written to
Arago in 1818, was that the entrained ether did receive a fraction of
the total velocity of the moving medium. Fresnel gave to this fraction

∗The most notable exception is the theory of Stokes, which did assume that the
ether moved along with the earth and then tried to account for aberration with the
help of a velocity potential, but this led to difficulties, as was shown by Lorentz.
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the value
µ2 − 1

µ2
, where µ is the index of refraction of the substance

forming the medium. On this supposition, Fresnel was able to account
for the fact that Arago’s experiments upon the reflection and refraction
of stellar rays show no influence whatever of the earth’s motion, and for
the fact that Airy found the same angle of aberration with a telescope
filled with water as with air. Moreover, the later work of Fizeau and
the accurate determinations of Michelson and Morley on the velocity of
light in a moving stream of water did show that the speed was changed
by an amount corresponding to Fresnel’s fraction. The fuller theoret-
ical investigations of Lorentz, however, did not lead scientists to look
upon this increased velocity of light in a moving medium as an evidence
that the ether is pulled along by the stream of water, and we may now
briefly sketch the developments which culminated in the Lorentz theory
of a completely stationary ether.

12. The Lorentz Theory of a Stationary Ether. The con-
siderations of Lorentz as to the velocity of light in moving media be-
came possible only after it was evident that optics itself is a branch of
the wider science of electromagnetics, and it became possible to treat
transparent media as a special case of dielectrics in general. In 1873,
in his Treatise on Electricity and Magnetism, Maxwell first advanced
the theory that electromagnetic phenomena also have their seat in the
luminiferous ether and further that light itself is merely an electromag-
netic disturbance in that medium, and Maxwell’s theory was confirmed
by the actual discovery of electromagnetic waves in 1888 by Hertz.

The attack upon the problem of the relative motion of matter and
ether was now renewed with great vigor both theoretically and exper-
imentally from the electromagnetic side. Maxwell in his treatise had
confined himself to phenomena in stationary media. Hertz, however,
extended Maxwell’s considerations to moving matter on the assump-
tion that the entrained ether is carried bodily along by it. It is evident,
however, that in the field of optical theory such an assumption could
not be expected to account for the Fizeau experiment, which had al-
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ready been explained on the assumption that the ether receives only a
fraction of the velocity of the moving medium; while in the field of elec-
tromagnetic theory it was found that Hertz’s assumptions would lead
us to expect no production of a magnetic field in the neighborhood of
a rotating electric condenser providing the plates of the condenser and
the dielectric move together with the same speed and this was deci-
sively disproved by the experiment of Eichenwald. The conclusions of
the Hertz theory were also out of agreement with the important exper-
iments of H. A. Wilson on moving dielectrics. It remained for Lorentz
to develop a general theory for moving dielectrics which was consistent
with the facts.

The theory of Lorentz developed from that of Maxwell by the ad-
dition of the idea of the electron, as the atom of electricity, and his
treatment is often called the “electron theory.” This atomistic con-
ception of electricity was foreshadowed by Faraday’s discovery of the
quantitative relations between the amount of electricity associated with
chemical reactions in electrolytes and the weight of substance involved,
a relation which indicates that the atoms act as carriers of electricity
and that the quantity of electricity carried by a single particle, whatever
its nature, is always some small multiple of a definite quantum of elec-
tricity, the electron. Since Faraday’s time, the study of the phenomena
accompanying the conduction of electricity through gases, the study of
radioactivity, and finally indeed the isolation and exact measurement of
these atoms of electrical charge, have led us to a very definite knowledge
of many of the properties of the electron.

While the experimental physicists were at work obtaining this more
or less first-hand acquaintance with the electron, the theoretical physi-
cists and in particular Lorentz were increasingly successful in explaining
the electrical and optical properties of matter in general on the basis
of the behavior of the electrons which it contains, the properties of
conductors being accounted for by the presence of movable electrons,
either free as in the case of metals or combined with atoms to form
ions as in electrolytes, while the electrical and optical properties of di-
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electrics were ascribed to the presence of electrons more or less bound
by quasi-elastic forces to positions of equilibrium. This Lorentz electron
theory of matter has been developed in great mathematical detail by
Lorentz and has been substantiated by numerous quantitative experi-
ments. Perhaps the greatest significance of the Lorentz theory is that
such properties of matter as electrical conductivity, magnetic perme-
ability and dielectric inductivity, which occupied the position of rather
accidental experimental constants in Maxwell’s original theory, are now
explainable as the statistical result of the behavior of the individual
electrons.

With regard now to our original question as to the behavior of mov-
ing optical and dielectric media, the Lorentz theory was found capable
of accounting quantitatively for all known phenomena, including Airy’s
experiment on aberration, Arago’s experiments on the reflection and
refraction of stellar rays, Fresnel’s coefficient for the velocity of light
in moving media, and the electromagnetic experiments upon moving
dielectrics made by Röntgen, Eichenwald, H. A. Wilson, and others.
For us the particular significance of the Lorentz method of explaining
these phenomena is that he does not assume, as did Fresnel, that the
ether is partially dragged along by moving matter. His investigations
show rather that the ether must remain perfectly stationary, and that
such phenomena as the changed velocity of light in moving media are
to be accounted for by the modifying influence which the electrons in
the moving matter have upon the propagation of electromagnetic dis-
turbances, rather than by a dragging along of the ether itself.

Although it would not be proper in this place to present the mathe-
matical details of Lorentz’s treatment of moving media, we may obtain
a clearer idea of what is meant in the Lorentz theory by a stationary
ether if we look for a moment at the five fundamental equations upon
which the theory rests. These familiar equations, of which the first four
are merely Maxwell’s four field equations, modified by the introduction
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of the idea of the electron, may be written

curl h =
1

c

∂e

∂t
+ ρ

u

c
,

curl e = −1

c

∂h

∂t
,

div e = ρ,

div h = 0,

f = ρ
{

e +
[u
c
× h

]∗}
in which the letters have their usual significance. (See Chapter XII.)
Now the whole of the Lorentz theory, including of course his treatment
of moving media, is derivable from these five equations, and the fact
that the idea of a stationary ether does lie at the basis of his theory
is most clearly shown by the first and last of these equations, which
contain the velocity u with which the charge in question is moving, and
for Lorentz this velocity is to be measured with respect to the assumed
stationary ether.

We have devoted this space to the Lorentz theory, since his work
marks the culmination of the ether theory of light and electromag-
netism, and for us the particularly significant fact is that by this line of
attack science was inevitably led to the idea of an absolutely immovable
and stationary ether.

13. We have thus briefly traced the development of the ether theory
of light and electromagnetism. We have seen that the space continuum
assumed by this theory is not empty as was the space of Newton and
Galileo but is assumed filled with a stationary medium, the ether, and
in conclusion should further point out that the time continuum assumed
by the ether theory was apparently the same as that of Newton and
Galileo, and in particular that the old ideas as to the absolute indepen-
dence of space and time were all retained.
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part iii. rise of the einstein theory of relativity.

14. The Michelson-Morley Experiment. In spite of all the
brilliant achievements of the theory of a stationary ether, we must now
call attention to an experiment, performed at the very time when the
success of the ether theory seemed most complete, whose result was in
direct contradiction to its predictions. This is the celebrated Michelson-
Morley experiment, and to the masterful interpretation of its conse-
quences at the hands of Einstein we owe the whole theory of relativity,
a theory which will nevermore permit us to assume that space and time
are independent.

If the theory of a stationary ether were true we should find, contrary
to the expectations of Newton, that systems of coördinates in relative
motion are not symmetrical, a system of axes fixed relatively to the
ether would hold a unique position among all other systems moving
relative to it and would be peculiarly adapted for the measurement
of displacements and velocities. Bodies at rest with respect to this
system of axes fixed in the ether would be spoken of as “absolutely”
at rest and bodies in motion through the ether would be said to have
“absolute” motion. From the point of view of the ether theory one of the
most important physical problems would be to determine the velocity
of various bodies, for example that of the earth, through the ether.

Now the Michelson-Morley experiment was devised for the very pur-
pose of determining the relative motion of the earth and the ether. The
experiment consists essentially in a comparison of the velocities of light
parallel and perpendicular to the earth’s motion in its orbit. A ray of
light from the source S falls on the half silvered mirror A, where it is
divided into two rays, one of which travels to the mirror B and the
other to the mirror C, where they are totally reflected. The rays are
recombined and produce a set of interference fringes at O. (See Fig. 1.)

We may now think of the apparatus as set so that one of the divided
paths is parallel to the earth’s motion and the other perpendicular to it.
On the basis of the stationary ether theory, the velocity of the light with
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reference to the apparatus would evidently be different over the two
paths, and hence on rotating the apparatus through an angle of ninety
degrees we should expect a shift in the position of the fringes. Knowing
the magnitude of the earth’s velocity in its orbit and the dimensions
of the apparatus, it is quite possible to calculate the magnitude of the
expected shift, a quantity entirely susceptible of experimental determi-

+×S
A

B

C

O

Fig. 1.

nation. Nevertheless the most careful experiments made at different
times of day and at different seasons of the year entirely failed to show
any such shift at all.

This result is in direct contradiction to the theory of a stationary
ether and could be reconciled with that theory only by very arbitrary
assumptions. Instead of making such assumptions, the Einstein theory
of relativity finds it preferable to return in part to the older ideas of
Newton and Galileo.

15. The Postulates of Einstein. In fact, in accordance with
the results of this work of Michelson-Morley and other confirmatory
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experiments, the Einstein theory takes as its first postulate the idea
familiar to Newton of the relativity of all motion. It states that there
is nothing out in space in the nature of an ether or of a fixed set of
coördinates with regard to which motion can be measured, that there
is no such thing as absolute motion, and that all we can speak of is the
relative motion of one body with respect to another.

Although we thus see that the Einstein theory of relativity has re-
turned in part to the ideas of Newton and Galileo as to the nature
of space, it is not to be supposed that the ether theory of light and
electromagnetism has made no lasting contribution to physical science.
Quite on the contrary, not only must the ideas as to the periodic and
polarizable nature of the light disturbance, which were first appreciated
and understood with the help of the ether theory, always remain incor-
porated in every optical theory, but in particular the Einstein theory
of relativity takes as the basis for its second postulate a principle that
has long been familiar to the ether theory, namely that the velocity
of light is independent of the velocity of the source. We shall see in
following chapters that it is the combination of this principle with the
first postulate of relativity that leads to the whole theory of relativity
and to our new ideas as to the nature and interrelation of space and
time.



CHAPTER II.

THE TWO POSTULATES OF THE EINSTEIN THEORY OF
RELATIVITY.

16. There are two general methods of evaluating the theoretical
development of any branch of science. One of these methods is to test
by direct experiment the fundamental postulates upon which the theory
rests. If these postulates are found to agree with the facts, we may feel
justified in assuming that the whole theoretical structure is a valid one,
providing false logic or unsuspected and incorrect assumptions have
not later crept in to vitiate the conclusions. The other method of
testing a theory is to develop its interlacing chain of propositions and
theorems and examine the results both for their internal coherence and
for their objective validity. If we find that the conclusions drawn from
the theory are neither self-contradictory nor contradictory of each other,
and furthermore that they agree with the facts of the external world, we
may again feel that our theory has achieved a measure of success. In the
present chapter we shall present the two main postulates of the theory
of relativity, and indicate the direct experimental evidence in favor of
their truth. In following chapters we shall develop the consequences of
these postulates, show that the system of consequences stands the test
of internal coherence, and wherever possible compare the predictions
of the theory with experimental facts.

The First Postulate of Relativity.

17. The first postulate of relativity as originally stated by New-
ton was that it is impossible to measure or detect absolute translatory
motion through space. No objections have ever been made to this
statement of the postulate in its original form. In the development of
the theory of relativity, the postulate has been modified to include the
impossibility of detecting translatory motion through any medium or
ether which might be assumed to pervade space.

21
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In support of the principle is the general fact that no effects due
to the motion of the earth or other body through the supposed ether
have ever been observed. Of the many unsuccessful attempts to de-
tect the earth’s motion through the ether we may call attention to
the experiments on the refraction of light made by Arago, Respighi,
Hoek, Ketteler and Mascart, the interference experiments of Ketteler
and Mascart, the work of Klinkerfuess and Haga on the position of
the absorption bands of sodium, the experiment of Nordmeyer on the
intensity of radiation, the experiments of Fizeau, Brace and Strasser
on the rotation of the plane of polarized light by transmission through
glass plates, the experiments of Mascart and of Rayleigh on the rotation
of the plane of polarized light in naturally active substances, the elec-
tromagnetic experiments of Röntgen, Des Coudres, J. Koenigsberger,
Trouton, Trouton and Noble, and Trouton and Rankine, and finally
the Michelson and Morley experiment, with the further work of Morley
and Miller. For details as to the nature of these experiments the reader
may refer to the original articles or to an excellent discussion by Laub
of the experimental basis of the theory of relativity.∗

In none of the above investigations was it possible to detect any ef-
fect attributable to the earth’s motion through the ether. Nevertheless
a number of these experiments are in accord with the final form given
to the ether theory by Lorentz, especially since his work satisfactorily
accounts for the Fresnel coefficient for the changed velocity of light in
moving media. Others of the experiments mentioned, however, could
be made to accord with the Lorentz theory only by very arbitrary as-
sumptions, in particular those of Michelson and Morley, Mascart and
Rayleigh, and Trouton and Noble. For the purposes of our discussion
we shall accept the principle of the relativity of motion as an experi-
mental fact.

∗Jahrbuch der Radioaktivität, vol. 7, p. 405 (1910).
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The Second Postulate of the Einstein Theory of Relativity.

18. The second postulate of relativity states that the velocity of
light in free space appears the same to all observers regardless of the
relative motion of the source of light and the observer. This postulate
may be obtained by combining the first postulate of relativity with a
principle which has long been familiar to the ether theory of light. This
principle states that the velocity of light is unaffected by a motion of
the emitting source, in other words, that the velocity with which light
travels past any observer is not increased by a motion of the source
of light towards the observer. The first postulate of relativity adds
the idea that a motion of the source of light towards the observer is
identical with a motion of the observer towards the source. The second
postulate of relativity is seen to be merely a combination of these two
principles, since it states that the velocity of light in free space appears
the same to all observers regardless both of the motion of the source of
light and of the observer.

19. It should be pointed out that the two principles whose combi-
nation thus leads to the second postulate of Einstein have come from
very different sources. The first postulate of relativity practically de-
nies the existence of any stationary ether through which the earth, for
instance, might be moving. On the other hand, the principle that the
velocity of light is unaffected by a motion of the source was originally
derived from the idea that light is transmitted by a stationary medium
which does not partake in the motion of the source. This combination
of two principles, which from a historical point of view seem somewhat
contradictory in nature, has given to the second postulate of relativity
a very extraordinary content. Indeed it should be particularly empha-
sized that the remarkable conclusions as to the nature of space and time
forced upon science by the theory of relativity are the special product
of the second postulate of relativity.

A simple example of the conclusions which can be drawn from this
postulate will make its extraordinary nature evident.
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Fig. 2.

S is a source of light and A and B two moving systems. A is moving
towards the source S, and B away from it. Observers on the systems
mark off equal distances aa′ and bb′ along the path of the light and
determine the time taken for light to pass from a to a′ and b to b′

respectively. Contrary to what seem the simple conclusions of common
sense, the second postulate requires that the time taken for the light
to pass from a to a′ shall measure the same as the time for the light to
go from b to b′. Hence if the second postulate of relativity is correct it
is not surprising that science is forced in general to new ideas as to the
nature of space and time, ideas which are in direct opposition to the
requirements of so-called common sense.

Suggested Alternative to the Postulate of the Independence
of the Velocity of Light and the Velocity of the Source.

20. Because of the extraordinary conclusions derived by combining
the principle of the relativity of motion with the postulate that the
velocity of light is independent of the velocity of its source, a number
of attempts have been made to develop so-called emission theories of
relativity based on the principle of the relativity of motion and the
further postulate that the velocity of light and the velocity of its source
are additive.

Before examining the available evidence for deciding between the
rival principles as to the velocity of light, we may point out that this
proposed postulate, of the additivity of the velocity of source and light,
would as a matter of fact lead to a very simple kind of relativity theory
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without requiring any changes in our notions of space and time. For
if light or other electromagnetic disturbance which is being emitted
from a source did partake in the motion of that source in such a way
that the velocity of the source is added to the velocity of emission, it
is evident that a system consisting of the source and its surrounding
disturbances would act as a whole and suffer no permanent change in
configuration if the velocity of the source were changed. This result
would of course be in direct agreement with the idea of the relativity of
motion which merely requires that the physical properties of a system
shall be independent of its velocity through space.

As a particular example of the simplicity of emission theories we
may show, for instance, how easily they would account for the negative

O

A

B

Direction of Earth’s Motion

Fig. 3.

result of the Michelson-Morley experi-
ment. If O, Fig. 3, is a source of light
and A and B are mirrors placed a meter
away from O, the Michelson-Morley ex-
periment shows that the time taken for
light to travel to A and back is the same
as for the light to travel to B and back,
in spite of the fact that the whole appa-
ratus is moving through space in the di-
rection O−B, due to the earth’s motion
around the sun. The basic assumption
of emission theories, however, would re-

quire exactly this result, since it says that light travels out from O with
a constant velocity in all directions with respect to O, and not with
respect to some ether through which O is supposed to be moving.

The problem now before us is to decide between the two rival prin-
ciples as to the velocity of light, and we shall find that the bulk of the
evidence is all in favor of the principle which has led to the Einstein
theory of relativity with its complete revolution in our ideas as to space
and time, and against the principle which has led to the superficially
simple emission theories of relativity.
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21. Evidence Against Emission Theories of Light. All emis-
sion theories agree in assuming that light from a moving source has
a velocity equal to the vector sum of the velocity of light from a sta-
tionary source and the velocity of the source itself at the instant of
emission. And without first considering the special assumptions which
distinguish one emission theory from another we may first present cer-
tain astronomical evidence which apparently stands in contradiction to
this basic assumption of all forms of emission theory. This evidence
was pointed out by Comstock∗ and later by de Sitter.†

Consider the rotation of a binary star as it would appear to an
observer situated at a considerable distance from the star and in its
plane of rotation. (See Fig. 4.) If an emission theory of light be true,
the velocity of light from the star in position A will be c+u, where u is
the velocity of the star in its orbit, while in the position B the velocity
will be c − u. Hence the star will be observed to arrive in position A,
l

c+ u
seconds after the event has actually occurred, and in position B,

l

c− u seconds after the event has occurred. This will make the period
of half rotation from A to B appear to be

∆t− l

c+ u
+

l

c− u = ∆t+
2ul

c2
,

where ∆t is the actual time of a half rotation in the orbit, which for
simplicity may be taken as circular. On the other hand, the period of
the next half rotation from B back to A would appear to be

∆t− 2ul

c2
.

Now in the case of most spectroscopic binaries the quantity
2ul

c2
is

not only of the same order of magnitude as ∆t but oftentimes probably
∗Phys. Rev., vol. 30, p. 291 (1910).
†Phys. Zeitschr., vol. 14, pp. 429, 1267 (1913).
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even larger. Hence, if an emission theory of light were true, we could
hardly expect without correcting for the variable velocity of light to
find that these orbits obey Kepler’s laws, as is actually the case. This
is certainly very strong evidence against any form of emission theory.
It may not be out of place, however, to state briefly the different forms
of emission theory which have been tried.

22. Different Forms of Emission Theory. As we have seen,
emission theories all agree in assuming that light from a moving source
has a velocity equal to the vector sum of the velocity of light from a
stationary source and the velocity of the source itself at the instant
of emission. Emission theories differ, however, in their assumptions as
to the velocity of light after its reflection from a mirror. The three
assumptions which up to this time have been particularly considered
are (1) that the excited portion of the reflecting mirror acts as a new
source of light and that the reflected light has the same velocity c with
respect to the mirror as has original light with respect to its source;
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(2) that light reflected from a mirror acquires a component of velocity
equal to the velocity of the mirror image of the original source, and
hence has the velocity c with respect to this mirror image; and (3) that
light retains throughout its whole path the component of velocity which
it obtained from its original moving source, and hence after reflection
spreads out with velocity c in a spherical form around a center which
moves with the same speed as the original source.

Of these possible assumptions as to the velocity of reflected light,
the first seems to be the most natural and was early considered by
the author but shown to be incompatible, not only with an experi-
ment which he performed on the velocity of light from the two limbs
of the sun,∗ but also with measurements of the Stark effect in canal
rays.† The second assumption as to the velocity of light was made
by Stewart,‡ but has also been shown† to be incompatible with mea-
surements of the Stark effect in canal rays. Making use of the third
assumption as to the velocity of reflected light, a somewhat complete
emission theory has been developed by Ritz,§ and unfortunately optical
experiments for deciding between the Einstein and Ritz relativity theo-
ries have never been performed, although such experiments are entirely
possible of performance.† Against the Ritz theory, however, we have
of course the general astronomical evidence of Comstock and de Sitter
which we have already described above.

For the present, the observations described above, comprise the
whole of the direct experimental evidence against emission theories of
light and in favor of the principle which has led to the second postu-
late of the Einstein theory. One of the consequences of the Einstein
theory, however, has been the deduction of an expression for the mass
of a moving body which has been closely verified by the Kaufmann-

∗Phys. Rev., vol. 31, p. 26 (1910).
†Phys. Rev., vol. 35, p. 136 (1912).
‡Phys. Rev., vol. 32, p. 418 (1911).
§Ann. de chim. et phys., vol. 13, p. 145 (1908); Arch. de Génève vol. 26, p. 232

(1908); Scientia, vol. 5 (1909).
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Bucherer experiment. Now it is very interesting to note, that starting
with what has thus become an experimental expression for the mass of
a moving body, it is possible to work backwards to a derivation of the
second postulate of relativity. For the details of the proof we must refer
the reader to the original article.∗

Further Postulates of the Theory of Relativity.

23. In the development of the theory of relativity to which we shall
now proceed we shall of course make use of many postulates. The two
which we have just considered, however, are the only ones, so far as
we are aware, which are essentially different from those common to
the usual theoretical developments of physical science. In particular in
our further work we shall assume without examination all such general
principles as the homogeneity and isotropism of the space continuum,
and the unidirectional, one-valued, one-dimensional character of the
time continuum. In our treatment of the dynamics of a particle we
shall also assume Newton’s laws of motion, and the principle of the
conservation of mass, although we shall find, of course, that the Einstein
ideas as to the connection between space and time will lead us to a non-
Newtonian mechanics. We shall also make extensive use of the principle
of least action, which we shall find a powerful principle in all the fields
of dynamics.

∗Phys. Rev., vol. 31, p. 26 (1910).



CHAPTER III.

SOME ELEMENTARY DEDUCTIONS.

24. In order gradually to familiarize the reader with the conse-
quences of the theory of relativity we shall now develop by very elemen-
tary methods a few of the more important relations. In this preliminary
consideration we shall lay no stress on mathematical elegance or logical
exactness. It is believed, however, that the chapter will present a sub-
stantially correct account of some of the more important conclusions
of the theory of relativity, in a form which can be understood even by
readers without mathematical equipment.

Measurements of Time in a Moving System.

25. We may first derive from the postulates of relativity a relation
connecting measurements of time intervals as made by observers in
systems moving with different velocities. Consider a system S (Fig. 5)
provided with a plane mirror a a, and an observer A, who has a clock

m

V

a a b b

A B

S S ′

Fig. 5.

so that he can determine the time taken for a beam of light to travel up
to the mirror and back along the path AmA. Consider also another
similar system S ′, provided with a mirror b b, and an observer B, who
also has a clock for measuring the time it takes for light to go up to his
mirror and back. System S ′ is moving past S with the velocity V , the

30
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direction of motion being parallel to the mirrors a a and b b, the two
systems being arranged, moreover, so that when they pass one another
the two mirrors a a and b b will coincide, and the two observers A and B
will also come into coincidence.

A, considering his system at rest and the other in motion, measures
the time taken for a beam of light to pass to his mirror and return, over
the path AmA, and compares the time interval thus obtained with that
necessary for the performance of a similar experiment by B, in which
the light has to pass over a longer path such as B nB′, shown in Fig. 6,
where BB′ is the distance through which the observer B has moved

m
a a

A

n
b b

pB B′

Fig. 6.

during the time taken for the passage of the light up to the mirror and
back.

Since, in accordance with the second postulate of relativity, the
velocity of light is independent of the velocity of its source, it is evident
that the ratio of these two time intervals will be proportional to the ratio
of the two paths AmA and B nB′, and this can easily be calculated
in terms of the velocity of light c and the velocity V of the system S ′.

From Fig. 6 we have

(Am)2 = (p n)2 = (B n)2 − (B p)2.

Dividing by (B n)2,
(Am)2

(B n)2
= 1− (B p)2

(B n)2
.
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But the distance B p is to B n as V is to c, giving us

Am

B n
=

√
1− V 2

c2
,

and hence A will find, either by calculation or by direct measurement if
he has arranged clocks at B and B′, that it takes a longer time for the
performance of B’s experiment than for the performance of his own in

the ratio 1 :

√
1− V 2

c2
.

It is evident from the first postulate of relativity, however, that
B himself must find exactly the same length of time for the light to pass
up to his mirror and come back as did A in his experiment, because
the two systems are, as a matter of fact, entirely symmetrical and we
could with equal right consider B’s system to be the one at rest and
A’s the one in motion.

We thus find that two observers, A and B, who are in relative motion
will not in general agree in their measurements of the time interval
necessary for a given event to take place, the event in this particular
case, for example, having been the performance of B’s experiment;
indeed, making use of the ratio obtained in a preceding paragraph, we
may go further and make the quantitative statement that measurements
of time intervals made with a moving clock must be multiplied by the

quantity
1√

1− V 2

c2

in order to agree with measurements made with a

stationary system of clocks.
It is sometimes more convenient to state this principle in the form:

A stationary observer using a set of stationary clocks will obtain a

greater measurement in the ratio 1 :

√
1− V 2

c2
for a given time interval

than an observer who uses a clock moving with the velocity V .
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Measurements of Length in a Moving System.

26. We may now extend our considerations, to obtain a relation
between measurements of length made in stationary and moving sys-
tems.

As to measurements of length perpendicular to the line of motion
of the two systems S and S ′, a little consideration will make it at once
evident that both A and B must obtain identical results. This is true
because the possibility is always present of making a direct comparison
of the meter sticks which A and B use for such measurements by holding
them perpendicular to the line of motion. When the relative motion of
the two systems brings such meter sticks into juxtaposition, it is evident
from the first postulate of relativity that A’s meter and B’s meter
must coincide in length. Any difference in length could be due only
to the different velocity of the two systems through space, and such
an occurrence is ruled out by our first postulate. Hence measurements
made with a moving meter stick held perpendicular to its line of motion
will agree with those made with stationary meter sticks.

27. With regard to measurements of length parallel to the line of
motion of the systems, the affair is much more complicated. Any direct
comparison of the lengths of meter sticks in the two systems would
be very difficult to carry out; the consideration, however, of a simple
experiment on the velocity of light parallel to the motion of the systems
will lead to the desired relation.

Let us again consider two systems S and S ′ (Fig. 7), S ′ moving
past S with the velocity V .

A and B are observers on these systems provided with clocks and
meter sticks. The two observers lay off, each on his own system, paths
for measuring the velocity of light. A lays off a distance of one me-
ter, Am, so that he can measure the time for light to travel to the
mirror m and return, and B, using a meter stick which has the same
length as A’s when they are both at rest, lays off the distance B n.

Each observer measures the length of time it takes for light to travel
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A m

B n

V

Fig. 7.

to his mirror and return, and will evidently have to find the same length
of time, since the postulates of relativity require that the velocity of
light shall be the same for all observers.

Now the observer A, taking himself as at rest, finds that B’s light
travels over a path B n′B′ (Fig. 8), where nn′ is the distance through

B B′ n n′

Fig. 8.

which the mirror n moves while the light is travelling up to it, and
BB′ is the distance through which the source travels before the light
gets back. It is easy to calculate the length of this path.

We have
nn′

B n′
=
V

c

and
BB′

B n′B′
=
V

c
.
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Also, from the figure,

B n′ = B n+ nn′,

B n′B′ = B nB + 2nn′ −BB′.

Combining, we obtain

B n′B′

B nB
=

1

1− V 2

c2

.

Thus A finds that the path traversed by B’s light, instead of being
exactly two meters as was his own, will be longer in the ratio of 1 :(

1− V 2

c2

)
. For this reason A is rather surprised that B does not report

a longer time interval for the passage of the light than he himself found.
He remembers, however, that he has already found that measurements
of time made with a moving clock must be multiplied by the quantity

1√
1− V 2

c2

in order to agree with his own, and sees that this will account

for part of the discrepancy between the expected and observed results.
To account for the remaining discrepancy the further conclusion is now
obtained that measurements of length made with a moving meter stick,

parallel to its motion, must be multiplied by the quantity

√
1− V 2

c2
in

order to agree with those made in a stationary system.
In accordance with this principle, a stationary observer will obtain

a smaller measurement for the length of a moving body than will an
observer moving along with the object. This has been called the Lorentz
shortening, the shortening occurring in the ratio√

1− V 2

c2
: 1

in the line of motion.
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The Setting of Clocks in a Moving System.

28. It will be noticed that in our considerations up to this point we
have considered cases where only a single moving clock was needed in
performing the desired experiment, and this was done purposely, since
we shall find, not only that a given time interval measures shorter on a
moving clock than on a system of stationary clocks, but that a system
of moving clocks which have been set in synchronism by an observer
moving along with them will not be set in synchronism for a stationary
observer.

Consider again two systems S and S ′ in relative motion with the
velocity V . An observer A on system S places two carefully compared
clocks, unit distance apart, in the line of motion, and has the time
on each clock read when a given point on the other system passes it.
An observer B on system S ′ performs a similar experiment. The time
interval obtained in the two sets of readings must be the same, since the
first postulate of relativity obviously requires that the relative velocity
of the two systems V shall have the same value for both observers.

The observer A, however, taking himself as at rest, and familiar
with the change in the measurements of length and time in the moving
system which have already been deduced, expects that the velocity as
measured by B will be greater than the value that he himself obtains in

the ratio
1

1− V 2

c2

, since any particular one of B’s clocks gives a shorter

value for a given time interval than his own, while B’s measurements
of the length of a moving object are greater than his own, each by

the factor

√
1− V 2

c2
. In order to explain the actual result of B’s ex-

periment he now has to conclude that the clocks which for B are set
synchronously are not set in synchronism for himself.

From what has preceded it is easy to see that in the moving system,
from the point of view of the stationary observer, clocks must be set
further and further ahead as we proceed towards the rear of the system,
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since otherwise B would not obtain a great enough difference in the
readings of the clocks as they come opposite the given point on the other
system. Indeed, if two clocks are situated in the moving system, S ′, one
in front of the other by the distance l′, as measured by B, then for A it

will appear as though B had set his rear clock ahead by the amount
l′V
c2

.
29. We have now obtained all the information which we shall need

in this chapter as to measurements of time and length in systems mov-
ing with different velocities. We may point out, however, before pro-
ceeding to the application of these considerations, that our choice of
A’s system as the one which we should call stationary was of course
entirely arbitrary and immaterial. We can at any time equally well
take B’s system as the one to which we shall ultimately refer all our
measurements, and indeed all that we shall mean when we call one of
our systems stationary is that for reasons of convenience we have picked
out that particular system as the one with reference to which we par-
ticularly wish to make our measurements. We may also point out that
of course B has to subject A’s measurements of time and length to just

the same multiplications by the factor
1√

1− V 2

c2

as did A in order to

make them agree with his own.
These conclusions as to measurements of space and time are of

course very startling when first encountered. The mere fact, however,
that they appear strange to so-called “common sense” need cause us no
difficulty, since the older ideas of space and time were obtained from an
ancestral experience which never included experiments with high rela-

tive velocities, and it is only when the ratio
V 2

c2
becomes appreciable

that we obtain unexpected results. To those scientists who do not wish
to give up their “common sense” ideas of space and time we can merely
say that if they accept the two postulates of relativity then they will
also have to accept the consequences which can be deduced therefrom.
The remarkable nature of these consequences merely indicates the very
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imperfect nature of our older conceptions of space and time.

The Composition of Velocities.

30. Our conclusions as to the setting of clocks make it possible
to obtain an important expression for the composition of velocities.
Suppose we have a system S, which we shall take as stationary, and on
the system an observer A. Moving past S with the velocity V is another
system S ′ with an observer B, and finally moving past S ′ in the same
direction is a body whose velocity is u′ as measured by observer B.
What will be the velocity u of this body as measured by A?

Our older ideas led us to believe in the simple additivity of veloc-
ities and we should have calculated u in accordance with the simple
expression

u = V + u′.

We must now allow, however, for the fact that u′ is measured with
clocks which to A appear to be set in a peculiar fashion and running at
a different rate from his own, and with meter sticks which give longer
measurements than those used in the stationary system.

The determination of u′ by observer B would be obtained by mea-
suring the time interval necessary for the body in question to move a
given distance l′ along the system S ′. If t′ is the difference in the re-
spective clock readings when the body reaches the ends of the line l′,
we have

u′ =
l′

t′
.

We have already seen, however, that the two clocks are for A set
l′V
c2

units apart and hence for clocks set together the time interval

would have measured t′ +
l′V
c2

. Furthermore these moving clocks give

time measurements which are shorter in the ratio

√
1− V 2

c2
: 1 than
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those obtained by A, so that for A the time interval for the body to
move from one end of l′ to the other would measure

t′ + l′V

c2√
1− V 2

c2

;

furthermore, owing to the difference in measurements of length, this

line l′ has for A the length l′
√

1− V 2

c2
. Hence A finds that the body is

moving past S ′ with the velocity,

l′
√

1− V 2

c2

t′ +
l′V

c2√
1− V 2

c2

=

l′

t′

(
1− V 2

c2

)
1 +

l′

t′
V

c2

=
u′
(

1− V 2

c2

)
1 +

u′V

c2

.

This makes the total velocity of the body past S equal to the sum

u = V +
u′
(

1− V 2

c2

)
1 +

u′V

c2

,

or
u =

V + u′

1 +
u′V

c2

.

This new expression for the composition of velocities is extremely
important. When the velocities u′ and V are small compared with the
velocity of light c, we observe that the formula reduces to the simple
additivity principle which we know by common experience to be true
for all ordinary velocities. Until very recently the human race has had
practically no experience with high velocities and we now see that for
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velocities in the neighborhood of that of light, the simple additivity
principle is nowhere near true.

In particular it should be noticed that by the composition of veloc-
ities which are themselves less than that of light we can never obtain
any velocity greater than that of light. As an extreme case, suppose for
example that the system S ′ were moving past S itself with the velocity
of light (i.e., V = c) and that in the system S ′ a particle should itself
be given the velocity of light in the same direction (i.e., u′ = c); we
find on substitution that the particle still has only the velocity of light
with respect to S. We have

u =
c+ c

1 +
c2

c2

=
2c

2
= c.

By the consideration of such conclusions as these the reader will
appreciate more and more the necessity of abandoning his older naïve
ideas of space and time which are the inheritance of a long human
experience with physical systems in which only slow velocities were
encountered.

The Mass of a Moving Body.

31. We may now obtain an important relation for the mass of
a moving body. Consider again two similar systems, S at rest and
S ′ moving past with the velocity V . The observer A on system S
has a sphere made from some rigid elastic material, having a mass of
m grams, and the observer B on system S ′ is also provided with a
similar sphere. The two spheres are made so that they are exactly alike
when both are at rest; thus B’s sphere, since it is at rest with respect to
him, looks to him just the same as the other sphere does to A. As the
two systems pass each other (Fig. 9) each of these clever experimenters
rolls his sphere towards the other system with a velocity of u cm. per
second, so that they will just collide and rebound in a line perpendicular
to the direction of motion. Now, from the first postulate of relativity,
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system S ′ appears to B just the same as system S appears to A, and
B’s ball appears to him to go through the same evolutions that A finds
for his ball. A finds that his ball on collision undergoes the algebraic
change of velocity 2u, B finds the same change in velocity 2u for his
ball. B reports this fact to A, and A knowing that B’s measurements
of length agree with his own in this transverse direction, but that his

V

A

B

S

S ′

Fig. 9.

clock gives time intervals that are shorter than his own in the ratio√
1− V 2

c2
: 1, calculates that the change in velocity of B’s ball must

be 2u

√
1− V 2

c2
.

From the principle of the conservation of momentum, however,
A knows that the change in momentum of B’s ball must be the same
as that of his own and hence can write the equation

mau = mbu

√
1− V 2

c2
,
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where ma is the mass of A’s ball and mb is the mass of B’s ball. Solving
we have

mb =
ma√

1− V 2

c2

.

In other words, B’s ball, which had the same mass ma as A’s when
both were at rest, is found to have the larger mass

ma√
1− v2

c2

when

placed in a system that is moving with the velocity V .∗
The theory of relativity thus leads to the general expression

m =
m0√
1− v2

c2

for the mass of a body moving with the velocity u and having the
mass m0 when at rest.

Since we have very few velocities comparable with that of light it

is obvious that the quantity

√
1− v2

c2
seldom differs much from unity,

which makes the experimental verification of this expression difficult.
In the case of electrons, however, which are shot off from radioactive
substances, or indeed in the case of cathode rays produced with high
potentials, we do have particles moving with velocities comparable to
that of light, and the experimental work of Kaufmann, Bucherer, Hupka
and others in this field provides one of the most striking triumphs of
the theory of relativity.

The Relation Between Mass and Energy.

32. The theory of relativity has led to very important conclusions
as to the nature of mass and energy. In fact, we shall see that matter

∗In carrying out this experiment the transverse velocities of the balls should be
made negligibly small in comparison with the relative velocity of the systems V .
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and energy are apparently different names for the same fundamental
entity.

When we set a body in motion it is evident from the previous section
that we increase both its mass as well as its energy. Now we can show
that there is a definite ratio between the amount of energy that we give
to the body and the amount of mass that we give to it.

If the force f acts on a particle which is free to move, its increase
in kinetic energy is evidently

∆E =

∫
f dl.

But the force acting is, by definition, equal to the rate of increase in
the momentum of the particle

f =
d

dt
(mu).

Substituting we have

∆E =

∫
d(mu)

dt
dl =

∫
dl

dt
d(mu) =

∫
u d(mu).

We have, however, from the previous section,

m =
m0√
1− u2

c2

,

which, solved for u, gives us

u = c

√
1− m0

2

m2
.

Substituting this value of u in our equation for ∆E we obtain, after
simplification,

∆E =

∫
c2 dm = c2 ∆m.
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This says that the increase of the kinetic energy of the particle, in
ergs, is equal to the increase in mass, in grams, multiplied by the square
of the velocity of light. If now we bring the particle to rest it will give
up both its kinetic energy and its excess mass. Accepting the principles
of the conservation of mass and energy, we know, however, that neither
this energy nor the mass has been destroyed; they have merely been
passed on to other bodies. There is, moreover, every reason to believe
that this mass and energy, which were associated together when the
body was in motion and left the body when it was brought to rest, still
remain always associated together. For example, if the body should be
brought to rest by setting another body into motion, it is of course a
necessary consequence of our considerations that the kinetic energy and
the excess mass both pass on together to the new body which is set in
motion. A similar conclusion would be true if the body is brought to
rest by frictional forces, since the heat produced by the friction means
an increase in the kinetic energies of ultimate particles.

In general we shall find it pragmatic to consider that matter and
energy are merely different names for the same fundamental entity. One
gram of matter is equal to 1021 ergs of energy.

c2 = (2.9986× 1010)2 = approx. 1021.

This apparently extraordinary conclusion is in reality one which pro-
duces the greatest simplification in science. Not to mention numerous
special applications where this principle is useful, we may call attention
to the fact that the great laws of the conservation of mass and of energy
have now become identical. We may also point out that those opposing
camps of philosophic materialists who defend matter on the one hand
or energy on the other as the fundamental entity of the universe may
now forever cease their unimportant bickerings.



CHAPTER IV.

THE EINSTEIN TRANSFORMATION EQUATIONS FOR SPACE
AND TIME.

The Lorentz Transformation.

33. We may now proceed to a systematic study of the consequences
of the theory of relativity.

The fundamental problem that first arises in considering spatial
and temporal measurements is that of transforming the description of
a given kinematical occurrence from the variables of one system of
coördinates to those of another system which is in motion relative to
the first.

Consider two systems of right-angled Cartesian coördinates S and S ′
(Fig. 10) in relative motion in the X direction with the velocity V . The

X

Y

Z

O X ′

Y ′

Z ′

O′

V

Fig. 10.

position of any given point in space can be determined by specifying
its coördinates x, y, and z with respect to system S or its coördinates
x′, y′ and z′ with respect to system S ′. Furthermore, for the purpose
of determining the time at which any event takes place, we may think
of each system of coördinates as provided with a whole series of clocks
placed at convenient intervals throughout the system, the clocks of
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each series being set and regulated∗ by observers in the corresponding
system. The time at which the event in question takes place may be
denoted by t if determined by the clocks belonging to system S and
by t′ if determined by the clocks of system S ′.

For convenience the two systems S and S ′ are chosen so that the
axes OX and O′X ′ lie in the same line, and for further simplification
we choose, as our starting-point for time measurements, t and t′ both
equal to zero when the two origins come into coincidence.

The specific problem now before us is as follows: If a given kine-
matical occurrence has been observed and described in terms of the
variables x′, y′, z′ and t′, what substitutions must we make for the val-
ues of these variables in order to obtain a correct description of the
same kinematical event in terms of the variables x, y, z and t? In other
words, we want to obtain a set of transformation equations from the
variables of system S ′ to those of system S. The equations which we
shall present were first obtained by Lorentz, and the process of chang-
ing from one set of variables to the other has generally been called
the Lorentz transformation. The significance of these equations from
the point of view of the theory of relativity was first appreciated by
Einstein.

Deduction of the Fundamental Transformation Equations.

34. It is evident that these transformation equations are going to
depend on the relative velocity V of the two systems, so that we may
write for them the expressions

x′ = F1(V, x, y, z, t),

∗We may think of the clocks as being set in any of the ways that are usual in
practice. Perhaps the simplest is to consider the clocks as mechanisms which have
been found to “keep time” when they are all together where they can be examined
by one individual observer. The assumption can then be made, in accordance with
our ideas of the homogeneity of space, that they will continue to “keep time” after
they have been distributed throughout the system.
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y′ = F2(V, x, y, z, t),

z′ = F3(V, x, y, z, t),

t′ = F4(V, x, y, z, t),

where F1, F2, etc., are the unknown functions whose form we wish to
determine.

It is possible at the outset, however, greatly to simplify these rela-
tions. If we accept the idea of the homogeneity of space it is evident
that any other line parallel to OXX ′ might just as well have been cho-
sen as our line of X-axes, and hence our two equations for x′ and t′

must be independent of y and z. Moreover, as to the equations for
y′ and z′ it is at once evident that the only possible solutions are y′ = y
and z′ = z. This is obvious because a meter stick held in the system S ′

perpendicular to the line of relative motion, OX ′, of the system can
be directly compared with meter sticks held similarly in system S, and
in accordance with the first postulate of relativity they must agree in
length in order that the systems may be entirely symmetrical. We may
now rewrite our transformation equations in the simplified form

x′ = F1(V, t, x),

y′ = y,

z′ = z,

t′ = F2(V, t, x),

and have only two functions, F1 and F2, whose form has to be deter-
mined.

To complete the solution of the problem we may make use of three
further conditions which must govern the transformation equations.

35. Three Conditions to be Fulfilled. In the first place, when
the velocity V between the systems is small, it is evident that the
transformation equations must reduce to the form that they had in
Newtonian mechanics, since we know both from measurements and
from everyday experience that the Newtonian concepts of space and
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time are correct as long as we deal with slow velocities. Hence the lim-
iting form of the equations as V approaches zero will be (cf. Chapter I,
equations (3), (4), (5), (6))

x′ = x− V t,
y′ = y,

z′ = z,

t′ = t.

36. A second condition is imposed upon the form of the functions
F1 and F2 by the first postulate of relativity, which requires that the
two systems S and S ′ shall be entirely symmetrical. Hence the transfor-
mation equations for changing from the variables of system S to those
of system S ′ must be of exactly the same form as those used in the
reverse transformation, containing, however, −V wherever +V occurs
in the latter equations. Expressing this requirement in mathematical
form, we may write as true equations

x = F1(−V, t′, x′),
t = F2(−V, t′, x′),

where F1 and F2 must have the same form as above.
37. A final condition is imposed upon the form of F1 and F2 by

the second postulate of relativity, which states that the velocity of a
beam of light appears the same to all observers regardless of the mo-
tion of the source of light or of the observer. Hence our transformation
equations must be of such a form that a given beam of light has the
same velocity, c, when measured in the variables of either system. Let
us suppose, for example, that at the instant t = t′ = 0, when the two
origins come into coincidence, a light impulse is started from the com-
mon point occupied by O and O′. Then, measured in the coördinates of
either system, the optical disturbance which is generated must spread
out from the origin in a spherical form with the velocity c. Hence, using
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the variables of system S, the coördinates of any point on the surface
of the disturbance will be given by the expression

x2 + y2 + z2 = c2t2, (7)

while using the variables of system S ′ we should have the similar ex-
pression

x′2 + y′2 + z′2 = c2t′2. (8)

Thus we have a particular kinematical occurrence, the spreading out of
a light disturbance, whose description is known in the variables of either
system, and our transformation equations must be of such a form that
their substitution will change equation (8) to equation (7). In other
words, the expression x2 + y2 + z2 − c2t2 is to be an invariant for the
Lorentz transformation.

38. The Transformation Equations. The three sets of condi-
tions which, as we have seen in the last three paragraphs, are imposed
upon the form of F1 and F2 are sufficient to determine the solution of
the problem. The natural method of solution is obviously that of trial,
and we may suggest the solution:

x′ =
1√

1− V 2

c2

(x− V t) = κ(x− V t), (9)

y′ = y, (10)
z′ = z, (11)

t′ =
1√

1− V 2

c2

(
t− V

c2
x

)
= κ

(
t− V

c2
x

)
, (12)

where we have placed κ to represent the important and continually

recurring quantity
1√

1− V 2

c2

.
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It will be found as a matter of fact by examination that these solu-
tions do fit all three requirements which we have stated. Thus, when
V becomes small compared with the velocity of light, c, the equations
do reduce to those of Galileo and Newton. Secondly, if the equations are
solved for the unprimed quantities in terms of the primed, the resulting
expressions have an unchanged form except for the introduction of −V
in place of +V , thus fulfilling the requirements of symmetry imposed
by the first postulate of relativity. And finally, if we substitute the
expressions for x′, y′, z′ and t′ in the polynomial x′2 + y′2 + z′2 = c2t′2,
we shall obtain the expression x2 +y2 + z2− c2t2 and have thus secured
the invariance of x2 + y2 + z2 − c2t2 which is required by the second
postulate of relativity.

We may further point out that the whole series of possible Lorentz
transformations form a group such that the result of two successive
transformations could itself be represented by a single transformation
provided we picked out suitable magnitudes and directions for the ve-
locities between the various systems.

It is also to be noted that the transformation becomes imaginary
for cases where V > c, and we shall find that this agrees with ideas
obtained in other ways as to the speed of light being an upper limit for
the magnitude of all velocities.

Further Transformation Equations.

39. Before making any applications of our equations we shall find it
desirable to obtain by simple substitutions and differentiations a series
of further transformation equations which will be of great value in our
future work.

By the simple differentiation of equation (12) we can obtain

dt′

dt
= κ

(
1− ẋV

c2

)
, (13)
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where we have put ẋ for
dx

dt
.

40. Transformation Equations for Velocity. By differentiation
of the equations for x′, y′ and z′, nos. (9), (10) and (11), and sub-

stitution of the value just found for
dt′

dt
we may obtain the following

transformation equations for velocity:

ẋ′ =
ẋ− V
1− ẋV

c2

or u′x =
ux − V
1− uxV

c2

, (14)

ẏ′ =
ẏκ−1

1− ẏV

c2

u′y =
uyκ

−1

1− uxV

c2

, (15)

ż′ =
żκ−1

1− żV

c2

u′z =
uzκ

−1

1− uxV

c2

, (16)

where the placing of a dot has the familiar significance of differentiation

with respect to time,
dx

dt
being represented by ẋ and

dx′

dt′
by ẋ′.

The significance of these equations for the transformation of veloc-
ities is as follows: If for an observer in system S a point appears to
be moving with the uniform velocity (ẋ, ẏ, ż) its velocity (ẋ′, ẏ′, ż′), as
measured by an observer in system S ′, is given by these expressions
(14), (15) and (16).

41. Transformation Equations for the Function
1√

1− u2

c2

.

These three transformation equations for the velocity components of
a point permit us to obtain a further transformation equation for an
important function of the velocity which we shall find continually re-

curring in our later work. This is the function
1√

1− u2

c2

, where we have

indicated the total velocity of the point by u, according to the expres-
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sion u2 = ẋ2 + ẏ2 + ż2. By the substitution of equations (14), (15)
and (16) we obtain the transformation equation

1√
1− u2

c2

=

(
1− uxV

c2

)
κ√

1− u2

c2

. (17)

42. Transformation Equations for Acceleration. By further
differentiating equations (14), (15) and (16) and simplifying, we easily
obtain three new equations for transforming measurements of acceler-
ation from system S ′ to S, viz.:

ẍ′ =
(

1− ẋV

c2

)−3

κ−3ẍ, (18)

ÿ′ =
(

1− ẋV

c2

)−2

κ−2ÿ + ẏ
V

c2

(
1− ẋV

c2

)−3

κ−2ẍ, (19)

z̈′ =
(

1− ẋV

c2

)−2

κ−2z̈ + ż
V

c2

(
1− ẋV

c2

)−3

κ−2ẍ, (20)

or

u̇′x =

(
1− uxV

c2

)−3

κ−3üx, (18)

u̇′y =

(
1− uxV

c2

)−2

κ−2üy + uy
V

c2

(
1− uxV

c2

)−3

κ−2u̇x, (19)

u̇′z =

(
1− uxV

c2

)−2

κ−2üz + uz
V

c2

(
1− uxV

c2

)−3

κ−2u̇x. (20)
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KINEMATICAL APPLICATIONS.

43. The various transformation equations for spatial and temporal
measurements which were derived in the previous chapter may now
be used for the treatment of a number of kinematical problems. In
particular it will be shown in the latter part of the chapter that a
number of optical problems can be handled with extraordinary facility
by the methods now at our disposal.

The Kinematical Shape of a Rigid Body.

44. We may first point out that the conclusions of relativity theory
lead us to quite new ideas as to what is meant by the shape of a rigid
body. We shall find that the shape of a rigid body will depend entirely
upon the relative motion of the body and the observer who is making
measurements on it.

Consider a rigid body which is at rest with respect to system S ′. Let
x′1, y′1, z′1 and x′2, y′2, z′2 be the coördinates in system S ′ of two points in
the body. The coördinates of the same points as measured in system S
can be found from transformation equations (9), (10) and (11), and by
subtraction we can obtain the following expressions

(x2 − x1) =

√
1− V 2

c2
(x2
′ − x1

′), (21)

(y2 − y1) = (y′2 − y′1), (22)
(z2 − z1) = (z′2 − z′1), (23)

connecting the distances between the pair of points as viewed in the
two systems. In making this subtraction terms containing t have been
cancelled out since we are interested in the simultaneous positions of
the points. In accordance with these equations we may distinguish then
between the geometrical shape of a body, which is the shape that it has
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when measured on a system of axes which are at rest relative to it, and
its kinematical shape, which is given by the coördinates which express
the simultaneous positions of its various points when it is in motion
with respect to the axes of reference. We see that the kinematical
shape of a rigid body differs from its geometrical shape by a shortening

of all its dimensions in the line of motion in the ratio

√
1− V 2

c2
: 1;

thus a sphere, for example, becomes a Heaviside ellipsoid.
In order to avoid incorrectness of speech we must be very careful

not to give the idea that the kinematical shape of a body is in any
sense either more or less real than its geometrical shape. We must
merely learn to realize that the shape of a body is entirely dependent
on the particular set of coördinates chosen for the making of space
measurements.

The Kinematical Rate of a Clock.

45. Just as we have seen that the shape of a body depends upon
our choice of a system of coördinates, so we shall find that the rate
of a given clock depends upon the relative motion of the clock and its
observer. Consider a clock or any mechanism which is performing a
periodic action. Let the clock be at rest with respect to system S ′ and
let a given period commence at t1′ and end at t2′, the length of the
interval thus being ∆t′ = t2

′ − t1′.
From transformation equation (12) we may obtain

t′1 =
1√

1− V 2

c2

(
t1 − V

c2
x1

)
,

t′2 =
1√

1− V 2

c2

(
t2 − V

c2
x2

)
,
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and by subtraction, since x2 − x1 is obviously equal to V t, we have

t2 − t1 =
1√

1− V 2

c2

(t2
′ − t1′),

∆t =
1√

1− V 2

c2

∆t′.

Thus an observer who is moving past a clock finds a longer period for

the clock in the ratio 1 :

√
1− V 2

c2
than an observer who is stationary

with respect to it. Suppose, for example, we have a particle which
is turning alternately red and blue. For an observer who is moving
past the particle the periods for which it remains a given color measure

longer in the ratio 1 :

√
1− V 2

c2
than they do to an observer who is

stationary with respect to the particle.
46. A possible opportunity for testing this interesting conclusion

of the theory of relativity is presented by the phenomena of canal rays.
We may regard the atoms which are moving in these rays as little
clocks, the frequency of the light which they emit corresponding to the
period of the clock. If now we should make spectroscopic observations
on canal rays of high velocity, the frequency of the emitted light ought
to be less than that of light from stationary atoms of the same kind if
our considerations are correct. It would of course be necessary to view
the canal rays at right angles to their direction of motion, to prevent a
confusion of the expected shift in the spectrum with that produced by
the ordinary Doppler effect (see Section 54).

The Idea of Simultaneity.

47. We may now also point out that the idea of the absolute si-
multaneity of two events must henceforth be given up. Suppose, for
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example, an observer in the system S is interested in two events which
take place simultaneously at the time t. Suppose one of these events
occurs at a point having the X coördinate x1 and the other at a point
having the coördinate x2; then by transformation equation (12) it is
evident that to an observer in system S ′, which is moving relative to S
with the velocity V , the two events would take place respectively at the
times

t1
′ =

1√
1− V 2

c2

(
t− V

c2
x1

)

and

t2
′ =

1√
1− V 2

c2

(
t− V

c2
x2

)

or the difference in time between the occurrence of the events would
appear to this other observer to be

t2
′ − t1′ = V

c2

√
1− V 2

c2

(x1 − x2). (25)

The Composition of Velocities.

48. The Case of Parallel Velocities. We may now present one of
the most important characteristics of Einstein’s space and time, which
can be best appreciated by considering transformation equation (14), or
more simply its analogue for the transformation in the reverse direction

ux =
ux
′ + V

1 +
ux
′V

c2

. (26)
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Consider now the significance of the above equation. If we have
a particle which is moving in the X direction with the velocity u′x as
measured in system S ′, its velocity ux with respect to system S is to
be obtained by adding the relative velocity of the two systems V and

dividing the sum of the two velocities by 1 +
ux
′V
c2

. Thus we see that
we must completely throw overboard our old naïve ideas of the direct
additivity of velocities. Of course, in the case of very slow velocities,
when u′x and V are both small compared with the velocity of light, the

quantity
ux
′V
c2

is very nearly zero and the direct addition of velocities
is a close approximation to the truth. In the case of velocities, however,
which are in the neighborhood of the speed of light, the direct addition
of velocities would lead to extremely erroneous results.

49. In particular it should be noticed that by the composition of
velocities which are themselves less than that of light we can never
obtain any velocity greater than that of light. Suppose, for example,
that the system S ′ were moving past S with the velocity of light (i.e.,
V = c), and that in the system S ′ a particle should itself be given the
velocity of light in the X direction (i.e., u′x = c); we find on substitution
that the particle still has only the velocity of light with respect to S.
We have

ux =
c+ c

1 +
c2

c2

=
2c

2
= c.

If the relative velocity between the systems should be one half the
velocity of light,

c

2
, and an experimenter on S ′ should shoot off a particle

in the X direction with half the velocity of light, the total velocity with
respect to S would be

ux =
1
2
c+ 1

2
c

1 +
1
4c

2

c2

=
4

5
c.
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50. Composition of Velocities in General. In the case of par-
ticles which have components of velocity in other than the X direction
it is obvious that our transformation equations will here also provide
methods of calculation to supersede the simple addition of velocities.
If we place

u2 = ux
2 + uy

2 + uz
2,

u′2 = ux
′2 + uy

′2 + uz
′2,

we may obtain by the substitution of equations (14), (15) and (16)

u =

(
u′2 + V 2 + 2u′V cosα− u′

2
V 2 sin2 α

c2

)1/2

1 +
u′V cosα

c2

, (27)

where α is the angle in the system S ′ between the X ′ axis and the
velocity of the particle u′. For the particular case that V and u′ are in
the same direction, the equation obviously reduces to the simpler form

u =
u′ + V

1 +
u′V

c2

,

which we have already considered.
51. We may also call attention at this point to an interesting char-

acteristic of the equations for the transformation of velocities. It will
be noted from an examination of these equations that if to any observer
a particle appears to have a constant velocity, i.e., to be unacted on
by any force, it will also appear to have a uniform although of course
different velocity to any observer who is himself in uniform motion with
respect to the first. An examination, however, of the transformation
equations for acceleration (18), (19), (20) will show that here a differ-
ent state of affairs is true, since it will be seen that a point which has
uniform acceleration (ẍ, ÿ, z̈) with respect to an observer in system S
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will not in general have a uniform acceleration in another system S ′,
since the acceleration in system S ′ depends not only on the constant
acceleration but also on the velocity in system S, which is necessarily
varying.

Velocities Greater than that of Light.

52. In the preceding section we have called attention to the fact
that the mere composition of velocities which are not themselves greater
than that of light will never lead to a speed that is greater than that of
light. The question naturally arises whether velocities which are greater
than that of light could ever possibly be obtained in any way.

This problem can be attacked in an extremely interesting manner.
Consider two points A and B on the X axis of the system S, and sup-
pose that some impulse originates at A, travels to B with the velocity u
and at B produces some observable phenomenon, the starting of the
impulse at A and the resulting phenomenon at B thus being connected
by the relation of cause and effect.

The time elapsing between the cause and its effect as measured in
the units of system S will evidently be

∆t = tB − tA =
xB − xA

u
, (28)

where xA and xB are the coördinates of the two points A and B.
Now in another system S ′, which has the velocity V with respect

to S, the time elapsing between cause and effect would evidently be

∆t′ = t′B − t′A =
1√

1− V 2

c2

(
tB − V

c2
xB

)
− 1√

1− V 2

c2

(
tA − V

c2
xA

)
,

where we have substituted for t′B and t′A in accordance with equa-
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tion (12). Simplifying and introducing equation (28) we obtain

∆t′ =
1− uV

c2√
1− V 2

c2

∆t. (29)

Let us suppose now that there are no limits to the possible magnitude
of the velocities u and V , and in particular that the causal impulse
can travel from A to B with a velocity u greater than that of light.
It is evident that we could then take a velocity u great enough so

that
uV

c2
would be greater than unity and ∆t′ would become negative.

In other words, for an observer in system S ′ the effect which occurs
at B would precede in time its cause which originates at A. Such a
condition of affairs might not be a logical impossibility; nevertheless its
extraordinary nature might incline us to believe that no causal impulse
can travel with a velocity greater than that of light.

We may point out in passing, however, that in the case of kinematic
occurrences in which there is no causal connection there is no reason for
supposing that the velocity must be less than that of light. Consider, for
example, a set of blocks arranged side by side in a long row. For each
block there could be an independent time mechanism like an alarm
clock which would go off at just the right instant so that the blocks
would fall down one after another along the line. The velocity with
which the phenomenon would travel along the line of blocks could be
arranged to have any value. In fact, the blocks could evidently all be
fixed to fall just at the same instant, which would correspond to an
infinite velocity. It is to be noticed here, however, that there is no
causal connection between the falling of one block and that of the next,
and no transfer of energy.
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Application of the Principles of Kinematics to Certain Optical
Problems.

53. Let us now apply our kinematical considerations to some prob-
lems in the field of optics. We may consider a beam of light as a
periodic electromagnetic disturbance which is propagated through a
vacuum with the velocity c. At any point in the path of a beam of
light the intensity of the electric and magnetic fields will be undergoing
periodic changes in magnitude. Since the intensities of both the electric
and the magnetic fields vary together, the statement of a single vector
is sufficient to determine the instantaneous condition at any point in
the path of a beam of light. It is customary to call this vector (which
might be either the strength of the electric or of the magnetic field) the
light vector.

For the case of a simple plane wave (i.e., a beam of monochromatic
light from a distant source) the light vector at any point in the path of
the light may be put proportional to

sinω

(
t− lx+my + nz

c

)
, (30)

where x, y and z are the coördinates of the point under observation,
t is the time, l, m and n are the cosines of the angles α, β and γ
which determine the direction of the beam of light with reference to
our system, and ω is a constant which determines the period of the
light.

If now this same beam of light were examined by an observer in
system S ′ which is moving past the original system in the X direction
with the velocity V , we could write the light vector proportional to

sinω′
(
t′ − l′x′ +m′y′ + n′z′

c

)
, (31)

It is not difficult to show that the transformation equations which we
have already developed must lead to the following relations between
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the measurements in the two systems∗

ω′ = ωκ
(

1− l V
c

)
, (32)

l′ =
l − V

c

1− l V
c

, (33)

m′ =
m

κ
(

1− lV
c

) , (34)

n′ =
n

κ
(

1− lV
c

) . (35)

∗Methods for deriving the relation between the accented and unaccented quan-
tities will be obvious to the reader. For example, consider the relation between
ω and ω′. At the origin of coördinates x = y = z = 0 in system S, we shall have in
accordance with expression (30) the light vector proportional to sinωt, and hence
similarly at the point O′, which is the origin of coördinates in system S′, we shall
have the light vector proportional to sinω′t′. But the point O′ as observed from
system S moves with the velocity V along the X axis and at any instant has the
position x = V t; hence substituting in expression (30) we have the light vector at
the point O′ as measured in system S proportional to

sinωt
(

1− l V
c

)
, (36)

while as measured in system S′ the intensity is proportional to

sinω′t′. (37)
We have already obtained, however, a transformation equation for t′, namely,

t′ = κ

(
t− V

c2
x

)
,

and further may place x = V t. Making these substitutions and comparing expres-
sions (36) and (37) we see that we must have the relation

ω′ = ωκ

(
1− l V

c

)
.

Methods of obtaining the relation between the cosines l, m and n and the corre-
sponding cosines l′, m′, and n′ as measured in system S′ may be left to the reader.
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With the help of these equations we may now treat some important
optical problems.

54. The Doppler Effect. At the origin of coördinates, x = y =
z = 0, in system S we shall evidently have from expression (30) the
light vector proportional to sinωt. That means that the vector becomes
zero whenever ωt = 2Nπ, where N is any integer; in other words, the

period of the light is p =
2π

ω
or the frequency

ν =
ω

2π
.

Similarly the frequency of the light as measured by an observer in sys-
tem S ′ would be

ν ′ =
ω′

2π
.

Combining these two equations and substituting the equation connect-
ing ω and ω′ we have

ν =
ν ′

κ
(

1− lV
c

) .
This is the relation between the frequencies of a given beam of light as
it appears to observers who are in relative motion.

If we consider a source of light at rest with respect to system S ′

and at a considerable distance from the observer in system S, we may
substitute for ν ′ the frequency of the source itself, ν0, and for l we may
write cosφ, where φ is the angle between the line connecting source
and observer and the direction of motion of the source, leading to the
expression

ν =
ν0

κ
(

1− cosφ
V

c

) . (38)

This is the most general equation for the Doppler effect. When
the source of light is moving directly in the line connecting source and
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observer, we have cosφ = 1, and the equation reduces to

ν =
ν0

κ
(

1− V

c

) , (39)

which except for second order terms is identical with the older ex-
pressions for the Doppler effect, and hence agrees with experimental
determinations.

We must also observe, however, that even when the source of light
moves at right angles to the line connecting source and observer there
still remains a second-order effect on the observed frequency, in con-
tradiction to the predictions of older theories. We have in this case
cosφ = 0,

ν = ν0

√
1− V 2

c2
. (40)

This is the change in frequency which we have already considered when
we discussed the rate of a moving clock. The possibilities of direct
experimental verification should not be overlooked (see Section 46).

55. The Aberration of Light. Returning now to our transfor-
mation equations, we see that equation (33) provides an expression for
calculating the aberration of light. Let us consider that the source of
light is stationary with respect to system S, and let there be an observer
situated at the origin of coördinates of system S ′ and thus moving past
the source with the velocity V in the X direction. Let φ be the angle
between the X axis and the line connecting source of light and observer
and let φ′ be the same angle as it appears to the moving observer; then
we can obviously substitute in equation (33), cosφ = l, cosφ′ = l′,
giving us

cosφ′ =
cosφ− V

c

1− cosφ
V

c

. (41)

This is a general equation for the aberration of light.
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For the particular case that the direction of the beam of light is
perpendicular to the motion of the observer we have cosφ = 0

cosφ′ = −V
c
, (42)

which, except for second-order differences, is identical with the familiar
expression which makes the tangent of the angle of aberration numer-
ically equal to V/c. The experimental verification of the formula by
astronomical measurements is familiar.

56. Velocity of Light in Moving Media. It is also possible to
treat very simply by kinematic methods the problem of the velocity of
light in moving media. We shall confine ourselves to the particular case
of a beam of light in a medium which is itself moving parallel to the
light.

Let the medium be moving with the velocity V in the X direction,
and let us consider the system of coördinates S ′ as stationary with
respect to the medium. Now since the medium appears to be stationary
with respect to observers in S ′ it is evident that the velocity of the light
with respect to S ′ will be c/µ, where µ is index of refraction for the
medium. If now we use our equation (26) for the addition of velocities
we shall obtain for the velocity of light, as measured by observers in S,

u =

c

µ
+ V

1 +
V
c

µ

c2

. (43)

Carrying out the division and neglecting terms of higher order we obtain

u =
c

µ
+

(
µ2 − 1

µ2

)
V. (44)

The equation thus obtained is identical with that of Fresnel, the quan-

tity
(
µ2 − 1

µ2

)
being the well-known Fresnel coefficient. The empirical
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verification of this equation by the experiments of Fizeau and of Michel-
son and Morley is too well known to need further mention.

For the case of a dispersive medium we should obviously have to
substitute in equation (44) the value of µ corresponding to the particu-
lar frequency, ν ′, which the light has in system S ′. It should be noticed
in this connection that the frequencies ν ′ and ν which the light has
respectively in system S and system S ′, although nearly enough the
same for the practical use of equation (44), are in reality connected by
an expression which can easily be shown (see Section 54) to have the
form

ν ′ = κ

(
1− V

c

)
ν. (45)

57. Group Velocity. In an entirely similar way we may treat the
problem of group velocity and obtain the equation

G =
G′ + V

1 +
G′V

c2

, (46)

where G′ is the group velocity as it appears to an observer who is
stationary with respect to the medium. G′ is, of course, an experimental
quantity, connected with frequency and the properties of the medium,
in a way to be determined by experiments on the stationary medium.

In conclusion we wish to call particular attention to the extraordi-
nary simplicity of this method of handling the optics of moving media as
compared with those that had to be employed before the introduction
of the principle of relativity.



CHAPTER VI.

THE DYNAMICS OF A PARTICLE.

58. In this chapter and the two following, we shall present a system
of “relativity mechanics” based on Newton’s three laws of motion, the
Einstein transformation equations for space and time, and the principle
of the conservation of mass.

The Laws of Motion.

Newton’s laws of motion may be stated in the following form:
I. Every particle continues in its state of rest or of uniform motion

in a straight line, unless it is acted upon by an external force.
II. The rate of change of the momentum of the particle is equal to

the force acting and is in the same direction.
III. For the action of every force there is an equal force acting in

the opposite direction.
Of these laws the first two merely serve to define the concept of

force, and their content may be expressed in mathematical form by the
following equation of definition

F =
d

dt
(mu) = m

du

dt
+
dm

dt
u, (47)

where F is the force acting on a particle of mass m which has the
velocity u, and hence the momentum mu.

Quite different in its nature from the first two laws, which merely
give us a definition of force, the third law states a very definite physical
postulate, since it requires for every change in the momentum of a body
an equal and opposite change in the momentum of some other body.
The truth of this postulate will of course be tested by comparing with
experiment the results of the theory of mechanics which we base upon
its assumption.

67



Chapter Six. 68

Difference between Newtonian and Relativity Mechanics.

59. Before proceeding we may point out the particular difference
between the older Newtonian mechanics, which were based on the laws
of motion and theGalilean transformation equations for space and time,
and our new system of relativity mechanics based on those same laws
of motion and the Einstein transformation equations.

In the older mechanics there was no reason for supposing that the
mass of a body varied in any way with its velocity, and hence force
could be defined interchangeably as the rate of change of momentum
or as mass times acceleration, since the two were identical. In relativity
mechanics, however, we shall be forced to conclude that the mass of a
body increases in a perfectly definite way with its velocity, and hence
in our new mechanics we must define force as equal to the total rate of
change of momentum

d(mu)

dt
= m

du

dt
+
dm

dt
u

instead of merely as mass times acceleration m
du

dt
. If we should try

to define force in “relativity mechanics” as merely equal to mass times
acceleration, we should find that the application of Newton’s third law
of motion would then lead to very peculiar results, which would make
the mass of a body different in different directions and force us to give
up the idea of the conservation of mass.

The Mass of a Moving Particle.

60. In Section 31 we have already obtained in an elementary way
an expression for the mass of a moving particle, by considering a colli-
sion between elastic particles and calculating how the resulting changes
in velocity would appear to different observers who are themselves in
relative motion. Since we now have at our command general formulæ
for the transformation of velocities, we are now in a position to han-
dle this problem much more generally, and in particular to show that
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the expression obtained for the mass of a moving particle is entirely
independent of the consideration of any particular type of collision.

61. Transverse Collision. Let us first treat the case of a so-
called “transverse” collision. Consider a system of coördinates and two

+v

+u

−v

−u
Fig. 11.

exactly similar elastic par-
ticles, each having the
mass m0 when at rest, one
moving in the X direction
with the velocity +u and
the other with the veloc-

ity −u. (See Fig. 11.) Besides the large components of velocity
+u and −u which they have in the X direction let them also have
small components of velocity in the Y direction, +v and −v. The ex-
periment is so arranged that the particles will just undergo a glancing
collision as they pass each other and rebound with components of veloc-
ity in the Y direction of the same magnitude, v, which they originally
had, but in the reverse direction. (It is evident from the symmetry of
the arrangement that the experiment would actually occur as we have
stated.)

We shall now be interested in the way this experiment would appear
to an observer who is in motion in the X direction with the velocity V
relative to our original system of coördinates.

From equation (14) for the transformation of velocities, it can be
seen that this new observer would find for the X component velocities
of the two particles the values

u1 =
u− V
1− uV

c2

and u2 =
−u− V
1 +

uV

c2

(48)

and from equation (15) for the Y component velocities would find the
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values

v1 = ±
v

√
1− V 2

c2

1− uV

c2

and v2 = ∓
v

√
1− V 2

c2

1− uV

c2

, (49)

the signs depending on whether the velocities are measured before or
after the collision.

Now from Newton’s third law of motion (i.e., the principle of the
equality of action and reaction) it is evident that on collision the two
particles must undergo the same numerical change in momentum.

For the experiment that we have chosen the only change in momen-
tum is in the Y direction, and the observer whose measurements we
are considering finds that one particle undergoes the total change in
velocity

2v1 =
2v

√
1− V 2

c2

1− uV

c2

and that the other particle undergoes the change in velocity

2v2 =
2v

√
1− V 2

c2

1 +
uV

c2

.

Since these changes in the velocities of the particles are not equal,
it is evident that their masses must also be unequal if the principle of
the equality of action and reaction is true for all observers, as we have
assumed. This difference in the mass of the particles, each of which
has the mass m0 when at rest, arises from the fact that the mass of a
particle is a function of its velocity and for the observer in question the
two particles are not moving with the same velocity.



Dynamics of a Particle. 71

Using the symbols m1 and m2 for the masses of the particles, we
may now write as a mathematical expression of the requirements of the
third law of motion

2m1v

√
1− V 2

c2

1− uV

c2

=
2m2v

√
1− V 2

c2

1 +
uV

c2

.

Simplifying, we obtain by direct algebraic transformation

m1

m2

=
1− uV

c2

1 +
uV

c2

=

√√√√√
1−

(
−u− V
1 + uV

c2

)2

c2√√√√√
1−

(
u− V
1− uV

c2

)2

c2

,

which on the substitution of equations (48) gives us

m1

m2

=

√
1− u2

2

c2√
1− u1

2

c2

. (50)

This equation thus shows that the mass of a particle moving with

the velocity u∗ is inversely proportional to

√
1− u2

c2
, and, denoting the

mass of the particle at rest by m0, we may write as a general expression
∗For simplicity of calculation we consider the case where the components of

velocity in the Y direction are small enough to be negligible in their effect on the
mass of the particles compared with the large components of velocity u1 and u2 in
the X direction.
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for the mass of a moving particle

m =
m0√
1− u2

c2

. (51)

62. Mass the Same in All Directions. The method of derivation
that we have just used to obtain this expression for the mass of a
moving particle is based on the consideration of a so-called “transverse
collision,” and in fact the expression obtained has often been spoken of
as that for the transverse mass of a moving particle, while a different
expression,

m0(
1− u2

c2

)3/2
, has been used for the so-called longitudinal

mass of the particle. These expressions
m0√
1− u2

c2

and
m0(

1− u2

c2

)3/2
are,

as a matter of fact, the values of the electric force necessary to give a
charged particle unit acceleration respectively at right angles and in the
same direction as its original velocity, and hence such expressions would
be proper for the mass of a moving particle if we should define force
as mass times acceleration. As already stated, however, it has seemed
preferable to retain, for force, Newton’s original definition which makes
it equal to the rate of change of momentum, and we shall presently see
that this more suitable definition is in perfect accord with the idea that
the mass of a particle is the same in all directions.

Aside from the unnecessary complexity which would be introduced,
the particular reason making it unfortunate to have different expres-
sions for mass in different directions is that under such conditions it
would be impossible to retain or interpret the principle of the conserva-
tion of mass. And we shall now proceed to show that by introducing the
principle of the conservation of mass, the consideration of a “longitudi-
nal collision” will also lead to exactly the same expression,

m0√
1− u2

c2

,



Dynamics of a Particle. 73

for the mass of a moving particle as we have already obtained from the
consideration of a transverse collision.

63. Longitudinal Collision. Consider a system of coördinates
and two elastic particles moving in the X direction with the velocities
+u and −u so that a “longitudinal” (i.e., head-on) collision will occur.
Let the particles be exactly alike, each of them having the mass m0

when at rest. On collision the particles will evidently come to rest, and
then under the action of the elastic forces developed start up and move
back over their original paths with the respective velocities −u and +u
of the same magnitude as before.

Let us now consider how this collision would appear to an observer
who is moving past the original system of coördinates with the veloc-
ity V in the X direction. Let u1 and u2 be the velocities of the particles
as they appear to this new observer before the collision has taken place.
Then, from our formula for the transformation of velocities (14), it is
evident that we shall have

u1 =
u− V
1− uV

c2

and u2 =
−u− V
1 +

uV

c2

. (52)

Since these velocities u1 and u2 are not of the same magnitude, the
two particles which have the same mass when at rest do not have the
same mass for this observer. Let us call the masses before collision
m1 and m2.

Now during the collision the velocities of the particles will all the
time be changing, but from the principle of the conservation of mass
the sum of the two masses must all the time be equal to m1 + m2.
When in the course of the collision the particles have come to relative
rest, they will be moving past our observer with the velocity −V , and
their momentum will be −(m1 + m2)V . But, from the principle of
the equality of action and reaction, it is evident that this momentum
must be equal to the original momentum before collision occurred. This
gives us the equation −(m1 +m2)V = m1u1 +m2u2. Substituting our
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values (52) for u1 and u2 we have

m1(
1− uV

c2

) =
m2(

1 +
uV

c2

) ,
and by direct algebraic transformation, as in the previous proof, this
can be shown to be identical with

m1

m2

=

√
1− u2

2

c2√
1− u1

2

c2

,

leading to the same expression that we obtained before for the mass of
a moving particle, viz.:

m =
m0√
1− u2

c2

.

64. Collision of Any Type. We have derived this formula for the
mass of a moving particle first from the consideration of a transverse
and then of a longitudinal collision between particles which are elastic
and have the same mass when at rest. It seems to be desirable to
show, however, that the consideration of any type of collision between
particles of any mass leads to the same formula for the mass of a moving
particle.

For the mass m of a particle moving with the velocity u let us write
the equation m = m0F (u2), where F ( ) is the function whose form we
wish to determine. The mass is written as a function of the square
of the velocity, since from the homogeneity of space the mass will be
independent of the direction of the velocity, and the mass is made
proportional to the mass at rest, since a moving body may evidently
be thought of as divided into parts without change in mass. It may be
further remarked that the form of the function F ( ) must be such that
its value approaches unity as the variable approaches zero.
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Let us now consider two particles having respectively the masses
m0 and n0 when at rest, moving with the velocities u and w before
collision, and with the velocities U and W after a collision has taken
place.

From the principle of the conservation of mass we have

m0F (ux
2 + uy

2 + uz
2) + n0F (wx

2 + wy
2 + wz

2)

= m0F (Ux
2 + Uy

2 + Uz
2) + n0F (Wx

2 +Wy
2 +Wz

2), (53)

and from the principle of the equality of action and reaction (i.e., New-
ton’s third law of motion)

m0F (ux
2 + uy

2 + uz
2)ux + n0F (wx

2 + wy
2 + wz

2)wx

= m0F (Ux
2 + Uy

2 + Uz
2)Ux + n0F (Wx

2 +Wy
2 +Wz

2)Wx, (54)

m0F (ux
2 + uy

2 + uz
2)uy + n0F (wx

2 + wy
2 + wz

2)wy

= m0F (Ux
2 + Uy

2 + Uz
2)Uy + n0F (Wx

2 +Wy
2 +Wz

2)Wy, (55)

m0F (ux
2 + uy

2 + uz
2)uz + n0F (wx

2 + wy
2 + wz

2)wz

= m0F (Ux
2 + Uy

2 + Uz
2)Uz + n0F (Wx

2 +Wy
2 +Wz

2)Wz. (56)

These velocities, ux, uy, ux, wx, wy, wz, Ux, etc., are measured, of
course, with respect to some definite system of “space-time” coördi-
nates. An observer moving past this system of coördinates with the
velocity V in the X direction would find for the corresponding compo-
nent velocities the values

ux − V
1− uxV

c2

,

√
1− V 2

c2

1− uxV

c2

uy,

√
1− V 2

c2

1− uxV

c2

uz,
wx − V
1− wxV

c2

, etc.,

as given by our transformation equations for velocity (14), (15), (16).
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Since the law of the conservation of mass and Newton’s third law
of motion must also hold for the measurements of the new observer,
we may write the following new relations corresponding to equations
(53) to (56):

m0F


 ux − V

1− uxV

c2


2

+


√

1− V 2

c2
uy

1− uxV

c2


2

+


√

1− V 2

c2
uz

1− uxV

c2


2


+n0F


 wx − V

1− wxV

c2


2

+


√

1− V 2

c2
wy

1− wxV

c2


2

+


√

1− V 2

c2
wz

1− wxV

c2


2


= m0F


 Ux − V

1− UxV

c2


2

+


√

1− V 2

c2
Uy

1− UxV

c2


2

+


√

1− V 2

c2
Uz

1− UxV

c2


2


+n0F


 Wx − V

1− WxV

c2


2

+


√

1− V 2

c2
Wy

1− WxV

c2


2

+


√

1− V 2

c2
Wz

1− WxV

c2


2
 ,

(53a)

m0F{ux · · · } ux − V
1− uxV

c2

+ n0F{wx · · · } wx − V
1− wxV

c2

= m0F{Ux · · · } Ux − V
1− UxV

c2

+ n0F{Wx · · · } Wx − V
1− WxV

c2

,

(54a)
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m0F{ux · · · }

√
1− V 2

c2
uy

1− uxV

c2

+ n0F{wx · · · }

√
1− V 2

c2
wy

1− wxV

c2

= m0F{Ux · · · }

√
1− V 2

c2
Uy

1− UxV

c2

+ n0F{Wx · · · }

√
1− V 2

c2
Wy

1− WxV

c2

,

(55a)

m0Fux · · ·

√
1− V 2

c2
ux

1− uxV

c2

+ n0Fwx · · ·

√
1− V 2

c2
wx

1− wxV

c2

= m0FUx · · ·

√
1− V 2

c2
Ux

1− UxV

c2

+ n0FWx · · ·

√
1− V 2

c2
Wx

1− WxV

c2

.

(56a)

It is evident that these equations (53a)–(56a) must be true no mat-
ter what the velocity between the new observer and the original system
of coördinates, that is, true for all values of V . The velocities ux, uy, uz,
wx, etc., are, however, perfectly definite quantities, measured with ref-
erence to a definite system of coördinates and entirely independent
of V . If these equations are to be true for perfectly definite values of
ux, uy, uz, wx, etc., and for all values of V , it is evident that the func-
tion F ( ) must be of such a form that the equations are identities in V .
As a matter of fact, it is found by trial that V can be cancelled from all

the equations if we make F ( ) of the form
1√

1− ( )
c2

; and we see that

the expected relation is a solution of the equations, although perhaps
not necessarily a unique solution.

Before proceeding to use our formula for the mass of a moving par-
ticle for the further development of our system of mechanics, we may
call attention in passing to the fact that the experiments of Kaufmann,
Bucherer, and Hupka have in reality shown that the mass of the elec-
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tron increases with its velocity according to the formula which we have
just obtained. We shall consider the dynamics of the electron more in
detail in the chapter devoted to electromagnetic theory. We wish to
point out now, however, that in this derivation we have made no ref-
erence to any electrical charge which might be carried by the particle
whose mass is to be determined. Hence we may reject the possibility
of explaining the Kaufmann experiment by assuming that the charge
of the electron decreases with its velocity, since the increase in mass is
alone sufficient to account for the results of the measurement.

Transformation Equations for Mass.

65. Since the velocity of a particle depends on the particular system
of coördinates chosen for the measurement, it is evident that the mass
of the particle will also depend on our reference system of coördinates.
For the further development of our system of dynamics, we shall find it
desirable to obtain transformation equations for mass similar to those
already obtained for velocity, acceleration, etc.

We have
m =

m0√
1− u2

c2

,

where the velocity u is measured with respect to some definite system
of coördinates, S. Similarly with respect to a system of coördinates S ′
which is moving relatively to S with the velocity V in the X direction
we shall have

m′ =
m0√

1− u′
2

c2

.

We have already obtained, however, a transformation equation (17)
for the function of the velocity occurring in these equations and on
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substitution we obtain the desired transformation equation

m′ =
(

1− uxV

c2

)
κm, (57)

where κ has the customary significance

κ =
1√

1− V 2

c2

.

By differentiation of (57) with respect to the time and simplification,
we obtain the following transformation equation for the rate at which
the mass of a particle is changing owing to change in velocity

ṁ′ = ṁ− mV

c2

(
1− uxV

c2

)−1
dux
dt

. (58)

Equation for the Force Acting on a Moving Particle.

66. We are now in a position to return to our development of the
dynamics of a particle. In the first place, the equation which we have
now obtained for the mass of a moving particle will permit us to rewrite
the original equation by which we defined force, in a number of ways
which will be useful for future reference.

We have our equation of definition (47)

F =
d

dt
(mu) = m

du

dt
+
dm

dt
u,

which, on substitution of the expression for m, gives us

F =
d

dt

[
m0√
1− u2

c2

u

]
=

m0√
1− u2

c2

du

dt
+
d

dt

[
m0√
1− u2

c2

]
u (59)
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or, carrying out the indicated differentiation,

F =
m0√
1− u2

c2

du

dt
+

m0(
1− u2

c2

)3/2

u

c2
du

dt
u. (60)

Transformation Equations for Force.

67. We are also in position to obtain transformation equations for
force. We have

F =
d

dt
(mu) = mu̇ + ṁu

or

Fx = mu̇x + ṁux,

Fy = mu̇y + ṁuy,

Fz = mu̇z + ṁuz.

We have transformation equations, however, for all the quantities on
the right-hand side of these equations. For the velocities we have equa-
tions (14), (15) and (16), for the accelerations (18), (19) and (20), for
mass, equation (57) and for rate of change of mass, equation (58). Sub-
stituting above we obtain as our transformation equations for force

F ′x =
Fx − ṁV
1− uxV

c2

= Fx − uyV

c2 − uxV Fy − uzV

c2 − uxV Fz, (61)

F ′y =
κ−1

1− uxV

c2

Fy, (62)

F ′z =
κ−1

1− uxV

c2

Fz. (63)

We may now consider a few applications of the principles governing
the dynamics of a particle.
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The Relation between Force and Acceleration.

68. If we examine our equation (59) for the force acting on a particle

F =
m0√
1− u2

c2

du

dt
+
d

dt

[
m0√
1− u2

c2

]
u, (59)

we see that the force is equal to the sum of two vectors, one of which is

in the direction of the acceleration
du

dt
and the other in the direction of

O X

Y

m ux

uy u

Fig. 12.

the existing velocity u, so that in
general force and the acceleration
it produces are not in the same
direction. We shall find it inter-
esting to see, however, that if the
force which does produce acceler-
ation in a given direction be re-
solved perpendicular and parallel
to the acceleration, the two com-
ponents will be connected by a
definite relation.

Consider a particle (Fig. 12)
in plane space moving with the
velocity

u = uxi + uyj.

Let it be accelerated in the X direction by the action of the component
forces Fx and Fy.

From our general equation (59) for the force acting on a particle we
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have for these component forces

Fx =
m0√
1− u2

c2

dux
dt

+
d

dt

[
m0√
1− u2

c2

]
ux, (64)

Fy =
m0√
1− u2

c2

duy
dt

+
d

dt

[
m0√
1− u2

c2

]
uy. (65)

Introducing the condition that all the acceleration is to be in the

Y direction, which makes
dux
dt

= 0, and further noting that u2 = u2
x+u2

y,
by the division of equation (64) by (65), we obtain

Fx
Fy

=
uxuy

c2 − ux2
,

Fx =
uxuy

c2 − ux2
Fy. (66)

Hence, in order to accelerate a particle in a given direction, we may
apply any force Fy in the desired direction, but must at the same time
apply at right angles another force Fx whose magnitude is given by
equation (66).

Although at first sight this state of affairs might seem rather un-
expected, a simple qualitative consideration will show the necessity of
a component of force perpendicular to the desired acceleration. Refer
again to Fig. 12; since the particle is being accelerated in the Y di-
rection, its total velocity and hence its mass are increasing. This in-
creasing mass is accompanied by increasing momentum in the X direc-
tion even when the velocity in that direction remains constant. The
component force Fx is necessary for the production of this increase in
X-momentum.

In a later paragraph we shall show an application of equation (66)
in electrical theory.
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Transverse and Longitudinal Acceleration.

69. An examination of equation (66) shows that there are two
special cases in which the component force Fx disappears and the force
and acceleration are in the same direction. Fx will disappear when
either ux or uy is equal to zero, so that force and acceleration will be
in the same direction when the force acts exactly at right angles to the
line of motion of the particle, or in the direction of the motion (or of
course also when ux and uy are both equal to zero and the particle is
at rest). It is instructive to obtain simplified expressions for force for
these two cases of transverse and longitudinal acceleration.

Let us again examine our equation (60) for the force acting on a
particle

F =
m0√
1− u2

c2

du

dt
+

m0(
1− u2

c2

)3/2

u

c2
du

dt
u. (60)

For the case of a transverse acceleration there is no component of
force in the direction of the velocity u and the second term of the
equation is equal to zero, giving us

F =
m0√
1− u2

c2

du

dt
. (67)

For the case of longitudinal acceleration, the velocity u and the

acceleration
du

dt
are in the same direction, so that we may rewrite the

second term of (60), giving us

F =
m0√
1− u2

c2

du

dt
+

m0(
1− u2

c2

)3/2

u2

c2
du

dt
,
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and on simplification this becomes

F =
m0(

1− u2

c2

)3/2

du

dt
. (68)

An examination of this expression shows the reason why
m0(

1− u2

c2

)3/2

is sometimes spoken of as the expression for the longitudinal mass of a
particle.

The Force Exerted by a Moving Charge.

70. In a later chapter we shall present a consistent development
of the fundamentals of electromagnetic theory based on the Einstein
transformation equations for space and time and the four field equa-
tions. At this point, however, it may not be amiss to point out that
the principles of mechanics themselves may sometimes be employed to
obtain a simple and direct solution of electrical problems.

Suppose, for example, we wish to calculate the force with which a
point charge in uniform motion acts on any other point charge. We
can solve this problem by considering a system of coördinates which
move with the same velocity as the charge itself. An observer mak-
ing use of the new system of coördinates could evidently calculate the
force exerted by the charge in question by Coulomb’s familiar inverse
square law for static charges, and the magnitude of the force as mea-
sured in the original system of coördinates can then be determined from
our transformation equations for force. Let us proceed to the specific
solution of the problem.

Consider a system of coördinates S, and a charge e in uniform mo-
tion along the X axis with the velocity V . We desire to know the
force acting at the time t on any other charge e1 which has any desired
coördinates x, y, and z and any desired velocity ux, uy and uz.



Dynamics of a Particle. 85

Assume a system of coördinates, S ′, moving with the same velocity
as the charge e which is taken coincident with the origin. To an observer
moving with the system S ′, the charge e appears to be always at rest
and surrounded by a pure electrostatic field. Hence in system S ′ the
force with which e acts on e1 will be, in accordance with Coulomb’s
law∗

F′ =
ee1r

′

r′3
or

F ′x =
ee1x

′

(x′2 + y′2 + z′2)3/2
, (69)

F ′y =
ee1x

′

(y′2 + y′2 + z′2)3/2
, (70)

F ′z =
ee1x

′

(z′2 + y′2 + z′2)3/2
, (71)

where x′, y′, and z′ are the coördinates of the charge e1 at the time t′.
For simplicity let us consider the force at the time t′ = 0; then from
transformation equations (9), (10), (11), (12) we shall have

x′ = κ−1x, y′ = y, z′ = z.

Substituting in (69), (70), (71) and also using our transformation equa-
tions for force (61), (62), (63), we obtain the following equations for

∗It should be noted that in its original form Coulomb’s law merely stated that
the force between two stationary charges was proportional to the product of the
charges and inversely to the distance between them. In the present derivation we
have extended this law to apply to the instantaneous force exerted by a stationary
charge upon any other charge.
The fact that a charge of electricity appears the same to observers in all systems

is obviously also necessary for the setting up of equations (69), (70), (71). That such
is the case, however, is an evident consequence of the atomic nature of electricity.
The charge e would appear of the same magnitude to observers both in system S
and system S′, since they would both count the same number of electrons on the
charge. (See Section 157.)
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the force acting on e1, as it appears to an observer in system S:

Fx =
ee1x

′

(x′2 + y′2 + z′2)3/2

(
x+

V

c2
κ2(yuy + zuz)

)
, (72)

Fy =
ee1

(
1− uxV

c2

)
κy

(κ−2x′2 + y′2 + z′2)3/2
, (73)

Fz =
ee1

(
1− uxV

c2

)
κz

(κ−2x′2 + y′2 + z′2)3/2
. (74)

These equations give the force acting on e1 at the time t. From

transformation equation (12) we have t =
V

c2
x, since t′ = 0. At this

time the charge e, which is moving with the uniform velocity V along
the X axis, will evidently have the position

xe =
V 2

c2
x, ye = 0, ze = 0.

For convenience we may now refer our results to a system of coör-
dinates whose origin coincides with the position of the charge e at the
instant under consideration. If X, Y and Z are the coördinates of e1
with respect to this new system, we shall evidently have the relations

X = x− V 2

c2
x = κ−2x, Y = y, Z = z,

Ux = ux, Uy = uy, Uz = uz.

Substituting into (72), (73), (74) we obtain

Fx =
ee1
s3

(
1− V 2

c2

)(
X +

V

c2
(Y Uy + ZUz)

)
, (75)

Fy =
ee1
s3

(
1− V 2

c2

)(
1− UxV

c2
)

)
Y, (76)

Fz =
ee1
s3

(
1− V 2

c2

)(
1− UxV

c2
)

)
Z, (77)
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where for simplicity we have placed

s =

√
X2 +

(
1− V 2

c2

)
(Y 2 + Z2).

These are the same equations which would be obtained by sub-
stituting the well-known formulæ for the strength of the electric and
magnetic field around a moving point charge into the fifth fundamental

equation of the Maxwell-Lorentz theory, f = ρ

(
e +

1

c
[u× h]∗

)
. They

are really obtained in this way more easily, however, and are seen to
come directly from Coulomb’s law.

The Field around a Moving Charge. Evidently we may also
use these considerations to obtain an expression for the electric field
produced by a moving charge e, if we consider the particular case that
the charge e1 is stationary (i.e., Ux = Uy = Uz = 0) and equal to unity.
Making these substitutions in (75), (76), (77) we obtain the well-known
expression for the electrical field in the neighborhood of a moving point
charge

F = e =
e

s3

(
1− V 2

c2

)
r, (78)

where
r = Xi + Y j + Zk.

71. Application to a Specific Problem. Equations (75), (76),
(77) can also be applied in the solution of a rather interesting specific
problem.

Consider a charge e constrained to move in the X direction with the
velocity V and at the instant under consideration let it coincide with the
origin of a system of stationary coördinates Y eX (Fig. 13). Suppose
now a second charge e1, situated at the point X = 0, Y = Y and
moving in the X direction with the same velocity V as the charge e,
and also having a component velocity in the Y direction Uy. Let us
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e

e1

X

Y

Ux = V

Uy

Fig. 13.

predict the nature of its motion under
the influence of the charge e, it being
otherwise unconstrained.

From the simple qualitative con-
siderations placed at our disposal by
the theory of relativity, it seems evi-
dent that the charge e1 ought merely
to increase its component of veloc-
ity in the Y direction and retain un-
changed its component in the X di-
rection, since from the point of view
of an observer moving along with e
the phenomenon is merely one of or-
dinary electrostatic repulsion.

Let us see whether our equations
for the force exerted by a moving
charge actually lead to this result. By
making the obvious substitutions in

equations (75) and (76) we obtain for the component forces on e1

Fx =
ee1
s3

(
1− V 2

c2

)
V

c2
Y Uy, (79)

Fx =
ee1
s3

(
1− V 2

c2

)2

Y. (80)

Now under the action of the component force Fx we might at first
sight expect the charge e1 to obtain an acceleration in the X direction,
in contradiction to the simple qualitative prediction that we have just
made on the basis of the theory of relativity. We remember, however,
that equation (66) prescribes a definite ratio between the component
forces Fx and Fy if the acceleration is to be in the Y direction, and
dividing (79) by (80) we actually obtain the necessary relation

Fx
Fy

=
V Uy

c2 − V 2
.
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Other applications of the new principles of dynamics to electrical,
magnetic and gravitational problems will be evident to the reader.

Work.

72. Before proceeding with the further development of our theory
of dynamics we shall find it desirable to define the quantities work,
kinetic, and potential energy.

We have already obtained an expression for the force acting on a
particle and shall define the work done on the particle as the integral
of the force times the distance through which the particle is displaced.
Thus

W =

∫
F · dr, (81)

where r is the radius vector determining the position of the particle.

Kinetic Energy.

73. When a particle is brought from a state of rest to the velocity u
by the action of an unbalanced force F, we shall define its kinetic energy
as numerically equal to the work done in producing the velocity. Thus

K = W =

∫
F · dr.

Since, however, the kinetic energy of a particle turns out to be
entirely independent of the particular choice of forces used in producing
the final velocity, it is much more useful to have an expression for kinetic
energy in terms of the mass and velocity of the particle.

We have

K =

∫
F · dr =

∫
F · dr

dt
dt =

∫
F · u dt.
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Substituting the value of F given by the equation of definition (47) we
obtain

K =

∫
m
du

dt
· u dt+

∫
dm

dt
u · udt

=

∫
mu · du +

∫
u · u dm

=

∫
mudu+

∫
u2 dm.

Introducing the expression (51) for the mass of a moving particle m =
m0√
1− u2

c2

, we obtain

K =

∫
m0

u√
1− u2

c2

du+

∫
m0

c2
u3(

1− u2

c2

)3/2
du

and on integrating and evaluating the constant of integration by placing
the kinetic energy equal to zero when the velocity is zero, we easily
obtain the desired expression for the kinetic energy of a particle:

K = m0c
2

[
1√

1− u2

c2

− 1

]
, (82)

= c2(m−m0). (83)

It should be noticed, as was stated above, that the kinetic energy
of a particle does depend merely on its mass and final velocity and is
entirely independent of the particular choice of forces which happened
to be used in producing the state of motion.

It will also be noticed, on expansion into a series, that our expres-
sion (82) for the kinetic energy of a particle approaches at low velocities
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the form familiar in the older Newtonian mechanics,

K = 1
2
m0u

2.

Potential Energy.

74. When a moving particle is brought to rest by the action of a
conservative∗ force we say that its kinetic energy has been transformed
into potential energy. The increase in the potential energy of the par-
ticle is equal to the kinetic energy which has been destroyed and hence
equal to the work done by the particle against the force, giving us the
equation

∆U = −W = −
∫

F · dr. (84)

The Relation between Mass and Energy.

75. We may now consider a very important relation between the
mass and energy of a particle, which was first pointed out in our chapter
on “Some Elementary Deductions.”

When an isolated particle is set in motion, both its mass and energy
are increased. For the increase in mass we may write

∆m = m−m0,

∗A conservative force is one such that any work done by displacing a system
against it would be completely regained if the motion of the system should be
reversed.
Since we believe that the forces which act on the ultimate particles and con-

stituents of matter are in reality all of them conservative, we shall accept the gen-
eral principle of the conservation of energy just as in Newtonian mechanics. (For
a logical deduction of the principle of the conservation of energy in a system of
particles, see the next chapter, Section 89.)
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and for the increase in energy we have the expression for kinetic energy
given in equation (83), giving us

∆E = c2(m−m0),

or, combining with the previous equation,

∆E = c2∆m. (85)

Thus the increase in the kinetic energy of a particle always bears the
same definite ratio (the square of the velocity of light) to its increase in
mass. Furthermore, when a moving particle is brought to rest and thus
loses both its kinetic energy and its extra (“kinetic”) mass, there seems
to be every reason for believing that this mass and energy which are
associated together when the particle is in motion and leave the particle
when it is brought to rest will still remain always associated together.
For example, if the particle is brought to rest by collision with another
particle, it is an evident consequence of our considerations that the
energy and the mass corresponding to it do remain associated together
since they are both passed on to the new particle. On the other hand,
if the particle is brought to rest by the action of a conservative force,
say for example that exerted by an elastic spring, the kinetic energy
which leaves the particle will be transformed into the potential energy
of the stretched spring, and since the mass which has undoubtedly left
the particle must still be in existence, we shall believe that this mass
is now associated with the potential energy of the stretched spring.

76. Such considerations have led us to believe that matter and
energy may be best regarded as different names for the same funda-
mental entity: matter, the name which has been applied when we have
been interested in the property of mass or inertia possessed by the en-
tity, and energy, the name applied when we have been interested in the
part taken by the entity in the production of motion and other changes
in the physical universe. We shall find these ideas as to the relations
between matter, energy and mass very fruitful in the simplification of
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physical reasoning, not only because it identifies the two laws of the
conservation of mass and the conservation of energy, but also for its
frequent application in the solution of specific problems.

77. We must call attention to the great difference in size between
the two units, the gram and the erg, both of which are used for the
measurement of the one fundamental entity, call it matter or energy as
we please. Equation (85) gives us the relation

E = c2m, (86)

where E is expressed in ergs and m in grams; hence, taking the velocity
of light as 3× 1010 centimeters per second, we shall have

1 gram = 9× 1020 ergs. (87)

The enormous number of ergs necessary for increasing the mass of a
system to the amount of a single gram makes it evident that experimen-
tal proofs of the relation between mass and energy will be hard to find,
and outside of the experimental work on electrons at high velocities,
already mentioned in Section 64 and the well-known relations between
the energy and momentum of a beam of light, such evidence has not
yet been forthcoming.

As to the possibility of obtaining further direct experimental evi-
dence of the relation between mass and energy, we certainly cannot look
towards thermal experiments with any degree of confidence, since even
on cooling a body down to the absolute zero of temperature it loses
but an inappreciable fraction of its mass at ordinary temperatures.∗ In
the case of some radioactive processes, however, we may find a transfer
of energy large enough to bring about measurable differences in mass.
And making use of this point of view we might account for the lack of
exact relations between the atomic weights of the successive products
of radioactive decomposition.†

∗It should be noticed that our theory points to the presence of enormous stores
of interatomic energy which are still left in substances cooled to the absolute zero.

†See, for example, Comstock, Philosophical Magazine, vol. 15, p. 1 (1908).
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78. Application to a Specific Problem. We may show an in-
teresting application of our ideas as to the relation between mass and
energy, in the treatment of a specific problem. Consider, just as in
Section 63, two elastic particles both of which have the mass m0 at
rest, one moving in the X direction with the velocity +u and the other
with the velocity −u, in such a way that a head-on collision between
the particles will occur and they will rebound over their original paths
with the respective velocities −u and +u of the same magnitude as
before.

Let us now consider how this collision would appear to an observer
who is moving past the original system of coördinates with the veloc-
ity V in the X direction. To this new observer the particles will be
moving before the collision with the respective velocities

u1 =
u− V
1− uV

c2

and u2 =
−u− V
1− uV

c2

, (88)

as given by equation (14) for the transformation of velocities. Further-
more, when in the course of the collision the particles have come to
relative rest they will obviously be moving past our observer with the
velocity −V .

Let us see what the masses of the particles will be both before and
during the collision. Before the collision, the mass of the first particle
will be

m0√
1− u1

2

c2

=
m0√√√√√

1−

[
u− V
1− uV

c2

]2

c2

=
m0

(
1− uV

c2

)
√(

1− V 2

c2

)(
1− u2

c2

)
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and the mass of the second particle will be

m0√
1− u2

2

c2

=
m0√√√√√

1−

[
−u− V
1 + uV

c2

]2

c2

=
m0

(
1 +

uV

c2

)
√(

1− V 2

c2

)(
1− u2

c2

) .

Adding these two expressions, we obtain for the sum of the masses of
the two particles before collision,

2m0√(
1− V 2

c2

)(
1− u2

c2

) .
Now during the collision, when the two particles have come to rel-

ative rest, they will evidently both be moving past our observer with
the velocity −V and hence the sum of their masses at the instant of
relative rest would appear to be

2m0√
1− V 2

c2

,

a quantity which is smaller than that which we have just found for the
sum of the two masses before the collision occurred. This apparent
discrepancy between the total mass of the system before and during
the collision, is removed, however, if we realize that when the particles
have come to relative rest an amount of potential energy of elastic
deformation has been produced, which is just sufficient to restore them
to their original velocities, and the mass corresponding to this potential
energy will evidently be just sufficient to make the total mass of the
system the same as before collision.

In the following chapter on the dynamics of a system of particles
we shall make further use of our ideas as to the mass corresponding to
potential energy.



CHAPTER VII.

THE DYNAMICS OF A SYSTEM OF PARTICLES.

79. In the preceding chapter we discussed the laws of motion of a
particle. With the help of those laws we shall now derive some useful
general dynamical principles which describe the motions of a system of
particles, and in the following chapter shall consider an application of
some of these principles to the kinetic theory of gases.

The general dynamical principles which we shall present in this
chapter will be similar in form to principles which are already familiar
in the classical Newtonian mechanics. Thus we shall deduce principles
corresponding to the principles of the conservation of momentum, of the
conservation of moment of momentum, of least action and of vis viva,
as well as the equations of motion in the Lagrangian and Hamiltonian
(canonical) forms. For cases where the velocities of all the particles
involved are slow compared with that of light, we shall find, moreover,
that our principles become identical in content, as well as in form, with
the corresponding principles of the classical mechanics. Where high ve-
locities are involved, however, our new principles will differ from those
of Newtonian mechanics. In particular we shall find among other dif-
ferences that in the case of high velocities it will no longer be possible
to define the Lagrangian function as the difference between the kinetic
and potential energies of the system, nor to define the generalized mo-
menta used in the Hamiltonian equations as the partial differential of
the kinetic energy with respect to the generalized velocity.

On the Nature of a System of Particles.

80. Our purpose in this chapter is to treat dynamical systems
consisting of a finite number of particles, each obeying the equation of
motion which we have already written in the forms,

F =
d

dt
(mu) = m

du

dt
+
dm

dt
u, (47)

96
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F =
d

dt

[
m0√
1− u2

c

u

]
=

m0√
1− u2

c

du

dt
+
d

dt

[
m0√
1− u2

c

]
u. (59)

It is not to be supposed, however, that the total mass of such a
system can be taken as located solely in these particles. It is evident
rather, since potential energy has mass, that there will in general be
mass distributed more or less continuously throughout the space in the
neighborhood of the particles. Indeed we have shown at the end of the
preceding chapter (Section 78) that unless we take account of the mass
corresponding to potential energy we can not maintain the principle of
the conservation of mass, and we should also find it impossible to retain
the principle of the conservation of momentum unless we included the
momentum corresponding to potential energy.

For a continuous distribution of mass we may write for the force
acting at any point on the material in a small volume, δV ,

f δV =
d

dt
(g δV ), (47A)

where f is the force per unit volume and g is the density of momen-
tum. This equation is of course merely an equation of definition for the
intensity of force at a point. We shall assume, however, that Newton’s
third law, that is, the principle of the equality of action and reaction,
holds for forces of this type as well as for those acting on particles. In
later chapters we shall investigate the way in which g depends on ve-
locity, state of strain, etc., but for the purposes of this chapter we shall
not need any further information as to the nature of the distributed
momentum.

Let us proceed to the solution of our specific problems.

The Conservation of Momentum.

81. We may first show from Newton’s third law of motion that the
momentum of an isolated system of particles remains constant.
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Considering a system of particles of masses m1, m2, m3, etc., we
may write in accordance with equation (47),

F1 + I1 =
d

dt
(m1u1),

F2 + I2 =
d

dt
(m2u2),

etc.,

(89)

where F1, F2, etc., are the external forces impressed on the individ-
ual particles from outside the system and I1, I2, etc., are the internal
forces arising from mutual reactions within the interior of the system.
Considering the distributed mass in the system, we may also write, in
accordance with (47A) the further equation

(f + i) δV =
d

dt
(g δV ), (90)

where f and i are respectively the external and internal forces acting
per unit volume of the distributed mass. Integrating throughout the
whole volume of the system V we have∫

(f + i) dV =
dG

dt
, (91)

where G is the total distributed momentum in the system. Adding this
to our previous equations (89) for the forces acting on the individual
particles, we have

∑
F1 +

∑
I1 +

∫
f dV +

∫
i dV =

d

dt

∑
m1u1 +

dG

dt
.

But from Newton’s third law of motion (i.e., the principle of the
equality of action and reaction) it is evident that the sum of the internal
forces,

∑
I1 +

∫
i dV , which arise from mutual reactions within the
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system must be equal to zero, which leads to the desired equation of
momentum ∑

F1 +

∫
f dv =

d

dt
(
∑
m1u1 + G). (92)

In words this equation states that at any given instant the vector
sum of the external forces acting on the system is equal to the rate at
which the total momentum of the system is changing.

For the particular case of an isolated system there are no external
forces and our equation becomes a statement of the principle of the
conservation of momentum.

The Equation of Angular Momentum.

82. We may next obtain an equation for the moment of momentum
of a system about a point. Consider a particle of mass m1 and veloc-
ity u1. Let r1 be the radius vector from any given point of reference to
the particle. Then for the moment of momentum of the particle about
the point we may write

M1 = r1 ×m1u1,

and summing up for all the particles of the system we may write∑
M1 =

∑
(r1 ×m1u1). (93)

Similarly, for the moment of momentum of the distributed mass we may
write

Mdist. =

∫
(r× g) dV, (94)

where r is the radius vector from our chosen point of reference to a
point in space where the density of momentum is g and the integration
is to be taken throughout the whole volume, V , of the system.

Adding these two equations (93) and (94), we obtain for the total
amount of momentum of the system about our chosen point

M =
∑

(r1 ×m1u1) +

∫
(r× g) dV ;
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and differentiating with respect to the time we have, for the rate of
change of the moment of momentum,

dM

dt
=
∑{

r1 × d

dt
(m1u1)

}
+
∑(

dr1

dt
×m1u1

)
+

∫ (
r× dg

dt

)
dV +

∫ (
dr

dt
× g

)
dV ;

or, making the substitutions given by equations (89) and (90), and

writing
dr1

dt
= u1, etc., we have

dM

dt
=
∑

(r1 × F1) +
∑

(r1 × I1) +
∑

(u1 ×m1u1)

+

∫
(r× f) dV +

∫
(r× i) dV +

∫
(u× g) dV.

To simplify this equation we may note that the third term is equal
to zero because it contains the outer product of a vector by itself.
Furthermore, if we accept the principle of the equality of action and
reaction, together with the further requirement that forces are not only
equal and opposite but that their points of application be in the same
straight line, we may put the moment of all the internal forces equal to
zero and thus eliminate the second and fifth terms. We obtain as the
equation of angular momentum

dM

dt
=
∑

(r1 × F1) +

∫
(r× f) dV +

∫
(u× g) dV. (95)

We may call attention to the inclusion in this equation of the inter-
esting term

∫
(u× g) dV . If density of momentum and velocity should

always be in the same direction this term would vanish, since the outer
product of a vector by itself is equal to zero. In our consideration of
the “Dynamics of Elastic Bodies,” however, we shall find bodies with
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a component of momentum at right angles to their direction of mo-
tion and hence must include this term in a general treatment. For a
completely isolated system it can be shown, however, that this term
vanishes along with the external forces and we then have the principle
of the conservation of moment of momentum.

The Function T .

83. We may now proceed to the definition of a function which will
be needed in our treatment of the principle of least action.

One of the most valuable properties of the Newtonian expression,
1
2
m0u

2, for kinetic energy was the fact that its derivative with respect
to velocity is evidently the Newtonian expression for momentum, m0u.
It is not true, however, that the derivative of our new expression for

kinetic energy (see Section 73), m0c
2

[
1√

1− u2

c2

−1

]
, with respect to ve-

locity is equal to momentum, and for that reason in our non-Newtonian
mechanics we shall find it desirable to define a new function, T , by the
equation,

T = m0c
2

(
1−

√
1− u2

c2

)
. (96)

For slow velocities (i.e., small values of u) this reduces to the New-
tonian expression for kinetic energy and at all velocities we have the
relation,

dT

du
= −m0c

2 d

du

√
1− u2

c2
=

m0u√
1− u2

c2

= mu, (97)

showing that the differential of T with respect to velocity is momentum.
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For a system of particles we shall define T as the summation of the
values for the individual particles:

T =
∑
m0c

2

(
1−

√
1− u2

c2

)
. (98)

The Modified Lagrangian Function.

84. In the older mechanics the Lagrangian function for a system of
particles was defined as the difference between the kinetic and potential
energies of the system. The value of the definition rested, however,
on the fact that the differential of the kinetic energy with respect to
velocity was equal to momentum, so that we shall now find it advisable
to define the Lagrangian function with the help of our new function T
in accordance with the equation

L = T − U. (99)

The Principle of Least Action.

85. We are now in a position to derive a principle corresponding to
that of least action in the older mechanics. Consider the path by which
our dynamical system actually moves from state (1) to state (2). The
motion of any particle in the system of mass m will be governed by the
equation

F =
d

dt
(mu). (100)

Let us now compare the actual path by which the system moves
from state (1) to state (2) with a slightly displaced path in which the
laws of motion are not obeyed, and let the displacement of the particle
at the instant in question be δr.
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Let us take the inner product of both sides of equation (100) with δr;
we have

F · δr =
d

dt
(mu) · δr

=
d

dt
(mu · δr)−mu · d δr

dt

=
d

dt
(mu · δr)−mu · δu)

(mu · δu + F · δr) dt = d(mu · δr).

Summing up for all the particles of the system and integrating be-
tween the limits t1 and t2, we have∫ t2

t1

(
∑
mu · δu +

∑
F · δr) dt = [

∑
mu · δr]t2t1 .

Since t1 and t2 are the times when the actual and displaced motions
coincide, we have at these times δr = 0; furthermore we also have
u · δu = u δu, so that we may write∫ t2

t1

(
∑
muδu+ F · δr) dt = 0.

With the help of equation (97), however, we see that
∑
muδu = δT ,

giving us ∫ t2

t1

(δT + F · δr) dt = 0. (101)

If the forces F are conservative, we may write F · δr = −δU , where
δU is the difference between the potential energies of the displaced and
the actual configurations. This gives us

δ

∫ t2

t1

(T − U) dt = 0
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or

δ

∫ t2

t1

Ldt = 0, (102)

which is the modified principle of least action. The principle evidently
requires that for the actual path by which the system goes from state (1)

to state (2), the quantity
∫ t2

t1

Ldt shall be a minimum (or maximum).

Lagrange’s Equations.

86. We may now derive the Lagrangian equations of motion from
the above principle of least action. Let us suppose that the position
of each particle of the system under consideration is completely deter-
mined by n independent generalized coördinates φ1, φ2, φ3 · · ·φn and
hence that L is some function of φ1, φ2, φ3 · · ·φn, φ̇1, φ̇2, φ̇3 · · · φ̇n,
where for simplicity we have put φ̇1 =

dφ1

dt
, φ̇2 =

dφ2

dt
, etc.

From equation (102) we have∫ t2

t1

(δL) dt =

∫ t2

t1

(
n∑
1

∂L

∂φi
δφi +

n∑
1

∂L

∂φ̇i
δφ̇i

)
dt = 0. (103)

But
δφ̇i =

d

dt
(δφi),

which gives us∫ t2

t1

∂L

∂φ̇i
δφ̇i dt =

∫ t2

t1

∂L

∂φ̇i

d

dt
(δφi) dt

=

[
∂L

∂φ̇i
δφi

]t2
t1

−
∫ t2

t1

δφi
d

dt

(
∂L

∂φ̇i

)
dt

or, since at times t1 and t2, δφi is zero, the first term in this expression
disappears and on substituting in equation (103) we obtain∫ t2

t1

[
n∑
1

δφi

{
∂L

∂φi
− d

dt

(
∂L

∂φ̇i

)}]
dt = 0.
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Since, however, the limits t1 and t2 are entirely at our disposal we must
have at every instant

n∑
1

δφi

{
∂L

∂φi
− d

dt

(
∂L

∂φ̇i

)}
= 0.

Finally, moreover, since the φ’s are independent parameters, we can
assign perfectly arbitrary values to δφ1, δφ2, etc., and hence must have
the series of equations

d

dt

(
∂L

∂φ̇1

)
− ∂L

∂φ1

= 0,

d

dt

(
∂L

∂φ̇2

)
− ∂L

∂φ2

= 0,

etc.

(104)

These correspond to Lagrange’s equations in the older mechanics, dif-
fering only in the definition of L.

Equations of Motion in the Hamiltonian Form.

87. We shall also find it desirable to obtain equations of motion in
the Hamiltonian or canonical form.

Let us define the generalized momentum ψi corresponding to the
coördinate φi by the equation,

ψi =
∂T

∂φ̇i
. (105)

It should be noted that the generalized momentum is not as in
ordinary mechanics the derivative of the kinetic energy with respect to
the generalized velocity but approaches that value at low velocities.

Consider now a function T ′ defined by the equation

T ′ = ψ1φ̇1 + ψ2φ̇2 + · · · − T. (106)
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Differentiating we have

dT ′ = ψ1 dφ̇1 + ψ2 dφ̇2 + · · ·
+ φ̇1 dψ1 + φ̇2 dψ2 + · · ·
− ∂T

∂φ1

dφ1 − ∂T

∂φ2

dφ2 − · · ·

− ∂T

∂φ̇1

dφ̇1 − ∂T

∂φ̇2

dφ̇2 − · · · ,

and this, by the introduction of (105), becomes

dT ′ = φ̇1 dψ1 + φ̇2 dψ2 + · · · − ∂T

∂φ1

dφ1 − ∂T

∂φ2

dφ2 − · · · . (107)

Examining this equation we have

∂T ′

∂φi
= − ∂T

∂φi
, (108)

∂T ′

∂ψi
= φ̇i. (109)

In Lagrange’s equations we have

d

dt

{
∂

∂φ̇i
(T − U)

}
− ∂

∂φi
(T − U) = 0.

But since U is independent of ψi we may write

∂(T − U)

∂φ̇i
=
∂T

∂φ̇i
= ψi,

and furthermore by (108),

∂T

∂φi
= −∂T

′

∂φi
.
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Substituting these two expressions in Lagrange’s equations we obtain

dψi
dt

= −∂(T ′ + U)

∂φi

or, writing T ′ + U = E, we have

dψi
dt

= −∂E
∂φi

(110)

and since U is independent of ψi we may rewrite equation (109) in the
form

dφi
dt

=
∂E

∂ψi
. (111)

The set of equations corresponding to (110) and (111) for all the
coördinates φ1, φ2, φ3, · · ·φn and the momenta ψ1, ψ2, ψ3, · · ·ψn are
the desired equations of motion in the canonical form.

88. Value of the Function T ′. We have given the symbol E to
the quantity T ′+U , since T ′ actually turns out to be identical with the
expression by which we defined kinetic energy, thus making E = T ′+U
the sum of the kinetic and potential energies of the system.

To show that T ′ is equal to K, the kinetic energy, we have by the
equation of definition (106)

T ′ = φ1ψ1 + φ2ψ2 + · · · − T,
= φ1

∂T

∂φ̇1

+ φ2
∂T

∂φ̇2

+ · · · − T.

But T by definition, equation (98), is

T =
∑
c2m0

(
1−

√
1− u2

c2

)
,
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which gives us

∂T

∂φ̇i
=
∑
m0

(
1− u2

c2

)−1/2

u
∂u

∂φ̇i

=
∑
mu

∂u

∂φ̇i

and substituting we obtain

T ′ = φ̇1

∑
mu

∂u

∂φ̇1

+ φ̇2

∑
mu

∂u

∂φ̇2

+ · · · − T

=
∑
mu

{
φ̇1

∂u

∂φ̇1

+ φ̇2
∂u

∂φ̇2

+ · · ·
}
− T.

(112)

We can show, however, that the term in parenthesis is equal to u. If the
coördinates x, y, z determine the position of the particle in question,
we have,

x = f(φ1φ2φ3 · · ·φn),

ẋ =
dx

dt
= φ̇1

∂f( )

∂φ1

+ φ̇2
∂f( )

∂φ2

+ φ̇3
∂f( )

∂φ3

+ · · ·

and differentiating with respect to the φ̇’s, we obtain,

∂ẋ

∂φ̇1

=
∂f( )

∂φ1

=
∂x

∂φ1

,
∂ẋ

∂φ̇2

=
∂x

∂φ2

,
∂ẋ

∂φ̇3

=
∂x

∂φ3

, etc.

Similarly

∂ẏ

∂φ̇1

=
∂y

∂φ1

,
∂ẏ

∂φ̇2

=
∂y

∂φ2

, etc.,

∂ż

∂φ̇1

=
∂z

∂φ1

,
∂ż

∂φ̇2

=
∂z

∂φ2

, etc.,
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Let us write now

u =
√
ẋ2 + ẏ2 + ż2,

∂u

∂φ̇i
=

1√
ẋ2 + ẏ2 + ż2

(
ẋ
∂ẋ

∂φ̇i
+ ẏ

∂ẏ

∂φ̇i
+ ż

∂ż

∂φ̇i

)
,

or making the substitutions for
∂ẋ

∂φ̇i
,
∂ẏ

∂φ̇i
, etc., given above, we have,

∂u

∂φ̇i
=

1

u

(
ẋ
∂x

∂φi
+ ẏ

∂y

∂φi
+ ż

∂z

∂φi

)
.

Substituting now in (112) we shall obtain,

T ′ =
∑
mu

{
ẋ

u

(
φ1

∂x

∂φ1
+ φ2

∂x

∂φ2
+ · · ·

)
+
ẏ

u

(
φ1

∂y

∂φ1
+ φ2

∂y

∂φ2
+ · · ·

)

+
ż

u

(
φ1

∂z

∂φ1
+ φ2

∂z

∂φ2
+ · · ·

)}
− T

=
∑
mu2 − T

or, introducing the value of T given by equation (98), we have

T ′ =
∑ m0√

1− u2

c2

{
u2 − c2

√
1− u2

c2
+ c2

(
1− u2

c2

)}

=
∑
c2(m−m0),

which is the expression (83) for kinetic energy.
Hence we see that the Hamiltonian function E = T ′+U is the sum

of the kinetic and potential energies of the system as in Newtonian
mechanics.
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The Principle of the Conservation of Energy.

89. We may now make use of our equations of motion in the canon-
ical form to show that the total energy of a system of interacting par-
ticles remains constant. If such were not the case it is obvious that our
definitions of potential and kinetic energy would not be very useful.

Since E = T ′ + U is a function of φ1, φ2, φ3, · · · ψ1, ψ2, ψ3, · · · , we
may write

dE

dt
=
∂E

∂φ1

φ̇1 +
∂E

∂φ2

φ̇2 + · · ·

+
∂E

∂ψ1

ψ̇1 +
∂E

∂ψ2

ψ̇2 + · · · .

Substituting the values of
∂E

∂φ1

,
∂E

∂ψ1

, etc., given by the canonical equa-

tions of motion (110) and (111), we have

dE

dt
= −ψ̇1φ̇1 − ψ̇2φ̇2 − · · ·

+ ψ̇1φ̇1 + ψ̇2φ̇2 + · · ·
= 0,

which gives us the desired proof that just as in the older Newtonian
mechanics the total energy of an isolated system of particles is a con-
servative quantity.

On the Location of Energy in Space.

90. This proof of the conservation of energy in a system of interact-
ing particles justifies us in the belief that the concept of energy will not
fail to retain in the newer mechanics the position of great importance
which it gradually acquired in the older systems of physical theory. In-
deed, our newer considerations have augmented the important rôle of
energy by adding to its properties the attribute of mass or inertia, and
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thus leading to the further belief that matter and energy are in reality
different names for the same fundamental entity.

The importance of this entity, energy, makes it very interesting to
consider the possibility of ascribing a definite location in space to any
given quantity of energy. In the older mechanics we had a hazy notion
that the kinetic energy of a moving body was probably located in some
way in the moving body itself, and possibly a vague idea that the po-
tential energy of a raised weight might be located in the space between
the weight and the earth. Our discovery of the relation between mass
and energy has made it possible, however, to give a much more definite,
although not a complete, answer to inquiries of this kind.

In our discussions of the dynamics of a particle (Chapter VI, Sec-
tion 61) we saw that an acceptance of Newton’s principle of the equality
of action and reaction forced us to ascribe an increased mass to a mov-
ing particle over that which it has at rest. This increase in the mass
of the moving particle is necessarily located either in the particle itself
or distributed in the surrounding space in such a way that its center
of mass always coincides with the position of the particle, and since
the kinetic energy of the particle is the energy corresponding to this
increased mass we may say that the kinetic energy of a moving particle
is so distributed in space that its center of mass always coincides with
the position of the particle.

If now we consider the transformation of kinetic energy into poten-
tial energy we can also draw somewhat definite conclusions as to the
location of potential energy. By the principle of the conservation of
mass we shall be able to say that the mass of any potential energy
formed is just equal to the “kinetic” mass which has disappeared, and
by the principle of the conservation of momentum we can say that the
velocity of this potential energy is just that necessary to keep the to-
tal momentum of the system constant. Such considerations will often
permit us to reach a good idea as to the location of potential energy.

Consider, for example, a pair of similar attracting particles which
are moving apart from each other with the velocities +u and −u and are
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gradually coming to rest under the action of their mutual attraction,
their kinetic energy thus being gradually changed into potential energy.
Since the total momentum of the system must always remain zero, we
may think of the potential energy which is formed as left stationary in
the space between the two particles.



CHAPTER VIII.

THE CHAOTIC MOTION OF A SYSTEM OF PARTICLES.

The discussions of the previous chapter have placed at our disposal
generalized equations of motion for a system of particles similar in form
to those familiar in the classical mechanics, and differing only in the
definition of the Lagrangian function. With the help of these equations
it is possible to carry out investigations parallel to those already de-
veloped in the classical mechanics, and in the present chapter we shall
discuss the chaotic motion of a system of particles. This problem has
received much attention in the classical mechanics because of the close
relations between the theoretical behavior of such an ideal system of
particles and the actual behavior of a monatomic gas. We shall find
no more difficulty in handling the problem than was experienced in the
older mechanics, and our results will of course reduce to those of New-
tonian mechanics in the case of slow velocities. Thus we shall find a
distribution law for momenta which reduces to that of Maxwell for slow
velocities, and an equipartition law for the average value of a function
which at low velocities becomes identical with the kinetic energy of the
particles.

91. The Equations of Motion. It has been shown that the Hamil-
tonian equations of motion

∂E

∂φ1

= −dψ1

dt
= −ψ̇1,

∂E

∂ψ1

=
dφ1

dt
= φ̇1,

etc.,

(113)

will hold in relativity mechanics provided we define the generalized
momenta ψ1, ψ2, etc., not as the differential of the kinetic energy with
respect to the generalized velocities φ̇1, φ̇2, etc., but as the differential

113
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with respect to φ̇1, φ̇2, etc., of a function

T =
∑
m0c

2

(
1−

√
1− u2

c2

)
,

where m0 is the mass of a particle having the velocity u and the sum-
mation

∑
extends over all the particles of the system.

92. Representation in Generalized Space. Consider now a
system defined by the n generalized coördinates φ1, φ2, φ3, · · · , φn,
and the corresponding momenta ψ1, ψ2, ψ3, · · · , ψn. Employing the
methods so successfully used by Jeans,∗ we may think of the state of the
system at any instant as determined by the position of a point plotted in
a 2n-dimensional space. Suppose now we had a large number of systems
of the same structure but differing in state, then for each system we
should have at any instant a corresponding point in our 2n-dimensional
space, and as the systems changed their state, in the manner required
by the laws of motion, the points would describe stream lines in this
space.

93. Liouville’s Theorem. Suppose now that the points were orig-
inally distributed in the generalized space with the uniform density ρ.
Then it can be shown by familiar methods that, just as in the classical
mechanics, the density of distribution remains uniform.

Take, for example, some particular cubical element of our gener-
alized space dφ1 dφ2 dφ3 . . . dψ1 dψ2 dψ3 . . . . The density of distribu-
tion will evidently remain uniform if the number of points entering
any such cube per second is equal to the number leaving. Consider
now the two parallel bounding surfaces of the cube which are perpen-
dicular to the φ1 axis, one cutting the axis at the point φ1 and the
other at the point φ1 + dφ1. The area of each of these surfaces is
dφ2 dφ3 . . . dψ1 dψ2 dψ3 . . . , and hence, if φ̇1 is the component of veloc-

ity which the points have parallel to the φ1 axis, and
∂φ̇1

∂φ1

is the rate at

∗Jeans, The Dynamical Theory of Gases, Cambridge, 1916.
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which this component is changing as we move along the axis, we may
obviously write the following expression for the difference between the
number of points leaving and entering per second through these two
parallel surfaces

ρ

[(
∂φ̇1

∂φ1

)
dφ1

]
dφ2 dφ3 . . . dψ1 dψ2 dψ3 · · · = ρ

∂φ̇1

∂φ1

dV.

Finally, considering all the pairs of parallel bounding surfaces, we
find for the total decrease per second in the contents of the element

ρ

(
∂φ̇1

∂φ1

+
∂φ̇2

∂φ2

+
∂φ̇3

∂φ3

+ · · ·+ ∂ψ̇1

∂ψ1

+
∂ψ̇2

∂ψ2

+
∂ψ̇3

∂ψ3

+ · · ·
)
dV.

But the motions of the points are necessarily governed by the Hamil-
tonian equations (113) given above, and these obviously lead to the
relations

∂φ̇1

∂φ1

+
∂ψ̇1

∂ψ1

= 0,

∂φ̇2

∂φ2

+
∂ψ̇2

∂ψ2

= 0,

etc.

So that our expression for the change per second in the number of
points in the cube becomes equal to zero, the necessary requirement
for preserving uniform density.

This maintenance of a uniform distribution means that there is no
tendency for the points to crowd into any particular region of the gen-
eralized space, and hence if we start some one system going and plot its
state in our generalized space, we may assume that, after an indefinite
lapse of time, the point is equally likely to be in any one of the little
elements dV . In other words, the different states of a system, which we
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can specify by stating the region dφ1 dφ2 dφ3 . . . dψ1 dψ2 dψ3 . . . in which
the values of the coördinates and momenta of the system fall, are all
equally likely to occur.∗

94. A System of Particles. Consider now a system contain-
ing Na particles which have the mass ma when at rest, Nb particles
which have the mass mb, Nc particles which have the mass mc, etc.
If at any given instant we specify the particular differential element
dx dy dz dψx dψy dψz which contains the coördinates x, y, z, and the cor-
responding momenta ψx, ψy, ψz for each particle, we shall thereby com-
pletely determine what Planck† has well called the microscopic state of
the system, and by the previous paragraph any microscopic state of the
system in which we thus specify the six-dimensional position of each
particle is just as likely to occur as any other microscopic state.

It must be noticed, however, that many of the possible micro-
scopic states which are determined by specifying the six-dimensional
position of each individual particle are in reality completely identi-
cal, since if all the particles having a given mass ma are alike among
themselves, it makes no difference which particular one of the various
available identical particles we pick out to put into a specified range
dx dy dz dψx dψy dψz.

For this reason we shall usually be interested in specifying the sta-
tistical state‡ of the system, for which purpose we shall merely state
the number of particles of a given kind which have coördinates falling
in a given range dx dy dz dψx dψy dψz. We see that corresponding to
any given statistical state there will be in general a large number of
microscopic states.

∗The criterion here used for determining whether or not the states are equally
liable to occur is obviously a necessary requirement, although it is not so evident
that it is a sufficient requirement for equal probability.

†Planck, Wärmestrahlung, Leipzig, 1913.
‡What we have here defined as the statistical state is what Planck calls the

macroscopic state of the system. The word macroscopic is unfortunate, however, in
implying a less minute observation as to the size of the elements dx dy dz dψx dψy dψz

in which the representative points are found.
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95. Probability of a Given Statistical State. We shall now be
particularly interested in the probability that the system of particles
will actually be in some specified statistical state, and since Liouville’s
theorem has justified our belief that all microscopic states are equally
likely to occur, we see that the probability of a given statistical state will
be proportional to the number of microscopic states which correspond
to it.

For the system under consideration let a particular statistical state
be specified by stating that Na

′, Na
′′, Na

′′′, · · · , Nb
′, Nb

′′, Nb
′′′, · · · , etc.,

are the number of particles of the corresponding masses ma, mb, etc.,
which fall in the specified elementary regions dx dy dz dψx dψy dψz, Nos.
1a, 2a, 3a, · · · , 1b, 2b, 3b, · · · , etc. By familiar methods of calculation
it is evident that the number of arrangements by which the particu-
lar distribution of particles can be effected, that is, in other words,
the number of microscopic states, W , which correspond to the given
statistical state, is given by the expression

W =
Na!Nb!Nc! · · ·

Na
′!Na

′′!Na
′′′! · · ·Nb

′!Nb
′′!Nb

′′′! · · ·
and this number W is proportional to the probability that the system
will be found in the particular statistical state considered.

If now we assume that each of the regions

dx dy dz dψx dψy dψz, Nos. 1a, 2a, 3a, · · · , 1b, 2b, 3b, · · · etc.

is great enough to contain a large number of particles,∗ we may apply
the Stirling formula

N ! =
√

2π N

(
N

ε

)N
∗The idea of successive orders of infinitesimals which permit the differential

region dx dy dz dψx dψy dψz, to contain a large number of particles is a familiar one
in mathematics.
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for evaluating Na!, Nb!, etc., and omitting negligible terms, shall obtain
for logW the result

logW = −Na

(
Na
′

Na

log
Na
′

Na

+
Na
′′

Na

log
Na
′′

Na

+
Na
′′′

Na

log
Na
′′′

Na

+ · · ·
)

−Nb

(
Nb
′

Nb

log
Nb
′

Nb

+
Nb
′′

Nb

log
Nb
′′

Nb

+
Nb
′′′

Nb

log
Nb
′′′

Nb

+ · · ·
)
,

etc.

For simplicity let us denote the ratios
Na
′

Na

,
Na
′′

Na

, etc., by the symbols

wa
′, wa′′, etc. These quantities wa′, wa′′, etc., are evidently the prob-

abilities, in the case of this particular statistical state, that any given
particle ma will be found in the respective regions Nos. 1a, 2a, etc.

We may now write

logW = −Na

∑
wa logwa −Nb

∑
wb logwb − , etc.,

where the summation extends over all the regions Nos. 1a, 2a, · · · 1b,
2b, etc.

96. Equilibrium Relations. Let us now suppose that the system
of particles is contained in an enclosed space and has the definite energy
content E. Let us find the most probable distribution of the particles.
For this the necessary condition will be

δ logW = −Na

∑
(logwa + 1) δwa

−Nb

∑
(logwb + 1) δwb · · · = 0. (114)

In carrying out our variation, however, the number of particles of each
kind must remain constant so that we have the added relations∑

δwa = 0,
∑
δwb = 0, etc. (115)

Finally, since the energy is to have a definite value E, it must also
remain constant in the variation, which will provide still a further re-
lation. Since the energy of a particle will be a definite function of its
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position and momentum,∗ let us write the energy of the system in the
form

E = Na

∑
waEa +Nb

∑
wbEb + · · · ,

where Ea is the energy of a particle in the region 1a, etc.
Since in carrying out our variation the energy is to remain constant,

we have the relation

E = Na

∑
Ea δwa +Nb

∑
Eb δwb + · · · = 0. (116)

Solving the simultaneous equations (114), (115), (116) by familiar
methods we obtain

logwa + 1 + λEa + µb = 0,

logwb + 1 + λEb + µb = 0,

etc.,

where λ, µa, µb, etc., are undetermined constants. (It should be spe-
cially noticed that λ is the same constant in each of the series of equa-
tions.)

Transforming we have

wa = αa e
−hEa ,

wb = αb e
−hEb ,

etc.,
(117)

as the expressions which determine the chance that a given particle of
mass ma, mb, etc., will fall in a given region dx dy dz dψx dψy dψz, when
we have the distribution of maximum probability. It should be noticed
that h, which corresponds to the λ of the preceding equations, is the
same constant in all of the equations, while αa, αb, etc., are different
constants, depending on the mass of the particles ma, mb, etc.

∗We thus exclude from our considerations systems in which the potential energy
depends appreciably on the relative positions of the independent particles.
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97. The Energy as a Function of the Momentum. Ea, Eb, etc.,
are of course functions of x, y, z, ψx, ψy, ψz. Let us now obtain an
expression for Ea in terms of these quantities. If there is no external
field of force acting, the energy of a particle Ea will be independent of
x, y, and z, and will be determined entirely by its velocity and mass.
In accordance with the theory of relativity we shall have∗

Ea =
mac

2√
1− u2

c2

, (118)

where ma is the mass of the particle at rest.
Let us now express Ea as a function of ψx, ψy, ψz.
We have from our equations (105) and (98), which were used for

defining momentum

ψx =
∂

∂ẋ
ma

(
1−

√
1− u2

c2

)

=
∂

∂ẋ
ma

(
1−

√
1− ẋ2 + ẏ2 + ż2

c2

)
=

m0ẋ√
1− u2

c2

.

∗This expression is that for the total energy of the particle, including that
internal energy m0c

2 which, according to relativity theory, the particle has when
it is at rest. (See Section 75.) It would be just as correct to substitute for Ea in

equation (117) the value of the kinetic energy mac
2

(
1√

1− u2

c2

− 1

)
instead of the

total energy
mac

2√
1− u2

c2

, since the two differ merely by a constant mac
2 which would

be taken care of by assigning a suitable value to αa.
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Constructing the similar expressions for ψy and ψz we may write the
relation

ψ2 = ψ2
x + ψ2

y + ψ2
z =

m2
a(ẋ

2 + ẏ2 + ż2)

1− u2

c2

=
m2
au

2

1− u2

c2

, (119)

which also defines ψ2.
By simple transformations and the introduction of equation (118)

we obtain the desired relation

Ea = c
√
ψ2 +ma

2c2. (120)

98. The Distribution Law. We may now rewrite equations (117)
in the form

wa = αa e
−hc
√
ψ2+ma

2c2 ,

wb = αb e
−hc
√
ψ2+mb

2c2 ,

etc.

(121)

These expressions determine the probability that a given particle of
mass ma, mb, etc., will fall in a given region dx dy dz dψx dψy dψz, and
correspond to Maxwell’s distribution law in ordinary mechanics. We
see that these probabilities are independent of the position x, y, z∗ but
dependent on the momentum.

αa e
−hc
√
ψ2+ma

2c2 is the probability that a given particle will fall in
a particular six-dimensional cube of volume dx dy dz dψx dψy dψz. Let
us now introduce, for convenience, a new quantity aa e

−hc
√
ψ2+ma

2c2

which will be the probability per unit volume that a given particle will
have the six dimensional location in question, the constants αa and aa
standing in the same ratio as the volumes dx dy dz dψx dψy dψz and
unity.

∗This is true only when, as assumed, no external field of force is acting.
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We may then write

wa = αa e
−hc
√
ψ2+ma

2c2 = aa e
−hc
√
ψ2+ma

2c2 dx dy dz dψx dψy dψz

wb = αb e
−hc
√
ψ2+mb

2c2 = ab e
−hc
√
ψ2+mb

2c2 dx dy dz dψx dψy dψz

etc.
Since every particle must have components of momentum lying be-

tween minus and plus infinity, and lie somewhere in the whole volume V
occupied by the mixture, we have the relation

V

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
aa e

−hc
√
ψ2+ma

2c2 dψx dψy dψz = 1. (122)

It is further evident that the average value of any quantity A which
depends on the momentum of the particles is given by the expression

[A]av. = V

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
aa e

−hc
√
ψ2+ma

2c2 Adψx dψy dψz, (123)

where A is some function of ψx, ψy, and ψz.
99. Polar Coördinates. We may express relations correspond-

ing to (122) and (123) more simply if we make use of polar coördi-
nates. Consider instead of the elementary volume dψx dψy dψz the vol-
ume ψ2 sin θ dθ dφ dψ expressed in polar coördinates, where

ψ2 = ψx
2 + ψy

2 + ψz
2.

The probability that a particle ma will fall in the region

dx dy dz ψ2 sin θ dθ dφ dψ

will be
aa e

−hc
√
ψ2+ma

2c2 dx dy dz ψ2 sin θ dθ dφ dψ,
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and since each particle must fall somewhere in the space x y z ψx ψy ψz
we shall have corresponding to (122) the relation

V

∫ π

0

∫ 2π

0

∫ ∞
0

aa e
−hc
√
ψ2+ma

2c2 ψ2 sin θ dθ dφ dψ = 1,

4πV

∫ ∞
0

aa e
−hc
√
ψ2+ma

2c2 ψ2 dψ = 1.

(124)

Corresponding to equation (123), we also see that the average value of
any quantity A, which is dependent on the momentum of the molecules
of mass ma, will be given by the expression

[A]av. = 4πV

∫ ∞
0

aa e
−hc
√
ψ2+ma

2c2 Aψ2 dψ. (125)

100. The Law of Equipartition. We may now obtain a law
which corresponds to that of the equipartition of vis viva in the classical
mechanics. Considering equation (124) let us integrate by parts, we
obtain[

4πV aa e
−hc
√
ψ2+ma

2c2 ψ
3

3

]ψ=∞

ψ=0

− 4πV

∫ ∞
0

ψ3

3
aa e

−hc
√
ψ2+ma

2c2 (−hc) ψ√
ψ2 +ma

2c2
dψ = 1.

Substituting the limits into the first term we find that it becomes zero
and may write

4πV

∫ ∞
0

aa e
−hc
√
ψ2+ma

2c2 ψ2c√
ψ2 +ma

2c2
ψ2 dψ =

3

h
.

But by equation (125) the left-hand side of this relation is the av-

erage value of
ψ2c√

ψ2 +ma
2c2

for the particles of mass ma. We have[
ψ2c√

ψ2 +ma
2c2

]
av.

=
3

h
.
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Introducing equation (119) which defines ψ2, we may transform this
expression into [

mau
2√

1− u2

c2

]
av.

=
3

h
. (126)

Since we have shown that h is independent of the mass of the parti-

cles, we see that the average value of
m0u

2√
1− u2

c2

is the same for particles

of all different masses. This is the principle in relativity mechanics
that corresponds to the law of the equipartition of vis viva in the clas-
sical mechanics. Indeed, for low velocities the above expression reduces
to m0u

2, the vis viva of Newtonian mechanics, a fact which affords an
illustration of the general principle that the laws of Newtonian mechan-
ics are always the limiting form assumed at low velocities by the more
exact formulations of relativity mechanics.

We may now call attention in passing to the fact that this quantity
m0u

2√
1− u2

c2

, whose value is the same for particles of different masses, is

not the relativity expression for kinetic energy, which is given rather

by the formula c2
[

m0√
1− u2

c2

−m0

]
. So that in relativity mechanics the

principle of the equipartition of energy is merely an approximation. We
shall later return to this subject.

101. Criterion for Equality of Temperature. For a system of
particles of masses ma, mb, etc., enclosed in the volume V , and having
the definite energy content E, we have shown that

4πV aa e
−hc
√
ψ2+ma

2c2 ψ2 dψ
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and
4πV ab e

−hc
√
ψ2+mb

2c2 ψ2 dψ

are the respective probabilities that given particles of mass ma or
mass mb will have momenta between ψ and ψ + dψ. Suppose now
we consider a differently arranged system in which we have Na parti-
cles of mass ma by themselves in a space of volume Va and Nb particles
of mass mb in a contiguous space of volume Vb, separated from Va by
a partition which permits a transfer of energy, and let the total energy
of the double system be, as before, a definite quantity E (the energy
content of the partition being taken as negligible). Then, by reasoning
entirely similar to that just employed, we can obviously show that

4πVa aa e
−hc
√
ψ2+ma

2c2 ψ2 dψ

and
4πVb ab e

−hc
√
ψ2+mb

2c2 ψ2 dψ

are now the respective probabilities that given particles of mass ma or
mass mb will have momenta between ψ and ψ + dψ, the only changes
in the expressions being the substitution of the volumes Va and Vb in
the place of the one volume V . Furthermore, this distribution law will
evidently lead as before to the equality of the average values of

mau
2√

1− u2

c2

and
mbu

2√
1− u2

c2

.

Since, however, the spaces containing the two kinds of particles are in
thermal contact, their temperature is the same. Hence we find that the

equality of the average values of
m0u

2√
1− u2

c2

is the necessary condition for

equality of temperature.
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The above distribution law also leads to the important corollary that
for any given system of particles at a definite temperature the momenta
and hence the total energy content is independent of the volume.

We may now proceed to the derivation of relations which will permit

us to show that the important quantity
m0u

2√
1− u2

c2

is directly propor-

tional to the temperature as measured on the absolute thermodynamic
temperature scale.

102. Pressure Exerted by a System of Particles. We first
need to obtain an expression for the pressure exerted by a system of
N particles enclosed in the volume V . Consider an element of surface dS
perpendicular to the X axis, and let the pressure acting on it be p. The
total force which the element dS exerts on the particles that impinge
will be p dS, and this will be equal to the rate of change of the momenta
in the X direction of these particles.∗

Now by equation (122) the total number of particles having mo-
menta between ψx and ψx + dψx in the positive direction is

NV

∫ ψx+dψx

ψx

∫ +∞

−∞

∫ +∞

−∞
a e−hc

√
ψ2+m0

2c2 dψx dψy dψz.

But ẋ dS gives us the volume which contains the number of particles
having momenta between ψx and ψx + dψx which will reach dS in a
second. Hence the number of such particles which impinge per second
will be

NV
ẋ dS

V

∫ ψx+dψx

ψx

∫ +∞

−∞

∫ +∞

−∞
a e−hc

√
ψ2+m0

2c2 dψx dψy dψz.

and their change in momentum, allowing for the effect of the rebound,
∗The system is considered dilute enough for the mutual attractions of the par-

ticles to be negligible in their effect on the external pressure.
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will be

2N dS

∫ ψx+dψx

ψx

∫ +∞

−∞

∫ +∞

−∞
a e−hc

√
ψ2+m0

2c2 ψx ẋ dψx dψy dψz.

Finally, the total change in momentum per second for all particles can
be found by integrating for all possible positive values of ψx. Equating
this to the total force p dS we have

p dS = 2N dS

∫ ∞
0

∫ +∞

−∞

∫ +∞

−∞
a e−hc

√
ψ2+m0

2c2 ψx ẋ dψx dψy dψz.

Cancelling dS, multiplying both sides of the equation by the volume V ,

changing the limits of integration and substituting
m0ẋ√
1 +

u2

c2

for ψx, we

have

pV = NV

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
a e−hc

√
ψ2+m0

2c2 m0ẋ
2√

1− u2

c2

dψx dψy dψz.

But this by equation (123) reduces to

pV = N

[
m0ẋ

2√
1− u2

c2

]
av.

or, since

m0u
2√

1− u2

c2

=
m0ẋ

2√
1− u2

c2

+
m0ẏ

2√
1− u2

c2

+
m0ż

2√
1− u2

c2

,

we have from symmetry

pV =
N

3

[
m0u

2√
1− u2

c2

]
av.

. (127)
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Since at a given temperature we have seen that the term in parenthesis
is independent of the volume and the nature of the particles, we see
that the laws of Boyle and Avogadro hold also in relativity mechanics
for a system of particles.

For slow velocities equation (127) reduces to the familiar expression

pV =
N

3
(m0u

2)av..
103. The Relativity Expression for Temperature. We are now

in a position to derive the relativity expression for temperature. The
thermodynamic scale of temperature may be defined in terms of the
efficiency of a heat engine. Consider a four-step cycle performed with
a working substance contained in a cylinder provided with a piston.
In the first step let the substance expand isothermally and reversibly,
absorbing the heat Q2 from a reservoir at temperature T2; in the second
step cool the cylinder down at constant volume to T1; in the third step
compress to the original volume, giving out the heat Q1 at tempera-
ture T1, and in the fourth step heat to the original temperature. Now
if the working substance is of such a nature that the heat given out in
the second step could be used for the reversible heating of the cylinder
in the fourth step, we may define the absolute temperatures T2 and T1

by the relation
T2

T1

=
Q2

Q1

.∗

Consider now such a cycle performed on a cylinder which contains
one of our systems of particles. Since we have shown (Section 101) that
at a definite temperature the energy content of such a system is inde-
pendent of the volume, it is evident that our working substance fulfils
the requirement that the heat given out in the second step shall be suf-
ficient for the reversible heating in the last step. Hence, in accordance
with the thermodynamic scale, we may measure the temperatures of

the two heat reservoirs by the relation
T2

T1

=
Q2

Q1

and may proceed to

∗We have used this cycle for defining the thermodynamic temperature scale
instead of the familiar Carnot cycle, since it avoids the necessity of obtaining an
expression for the relation between pressure and volume in an adiabatic expansion.
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obtain expressions for Q2 and Q1.
In order to obtain these expressions we may again make use of the

principle that the energy content at a definite temperature is indepen-
dent of the volume. This being true, we see that Q2 and Q1 must
be equal to the work done in the changes of volume that take place
respectively at T2 and T1, and we may write the relations

Q2 =

∫ V ′

V

p dV (at T2),

Q1 =

∫ V ′

V

p dV (at T1).

But equation (127) provides an expression for p in terms of V , leading
on integration to the relations

Q2 =
N

3

[
m0u2

2√
1− u2

2

c2

]
av.

log
V ′

V
,

Q1 =
N

3

[
m0u1

2√
1− u1

2

c2

]
av.

log
V ′

V
,

which gives us on division

T2

T1

=
Q2

Q1

=

[
m0u2

2√
1− u2

2

c2

]
av.[

m0u1
2√

1− u1
2

c2

]
av.

.

We see that the absolute temperature measured on the thermody-

namic scale is proportional to the average value of
m0u

2√
1− u2

c2

.
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We may finally express our temperature in the same units custom-
arily employed by comparing equation (127)

pV =
N

3

[
m0u

2√
1− u2

c2

]
av.

,

with the ordinary form of the gas law

pV = nRT,

where n is the number of mols of gas present.
We evidently obtain

nRT =
N

3

[
m0u

2√
1− u2

c2

]
av.

,

T =
N

3nR

[
m0u

2√
1− u2

c2

]
av.

=
1

3k

[
m0u

2√
1− u2

c2

]
av.

,

(128)

where the quantity
nR

N
, which may be called the gas constant for a

single molecule, has been denoted, as is customary, by the letter k.

Remembering the relation

[
m0ẋ

2√
1− u2

c2

]
av.

=
3

h
, we have

kT =
1

h
. (129)

104. The Partition of Energy. We have seen that our new
equipartition law precludes the possibility of an exact equipartition of
energy. It becomes very important to see what the average energy of a
particle of a given mass does become at any temperature.
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Equation (125) provides a general expression for the average value
of any property of the particles. For the average value of the energy
c
√
ψ2 +m0

2c2 of particles of mass m0 (see equation 120) we shall have

[E]av. = 4πV

∫ ∞
0

a e−hc
√
ψ2+m0

2c2 c
√
ψ2 +m0

2c2 ψ2 dψ.

The unknown constant a may be eliminated with the help of the rela-
tion (124)

4πV

∫ ∞
0

a e−hc
√
ψ2+m0

2c2 ψ2 dψ = 1

and for h we may substitute the value given by (129), which gives us
the desired equation

[E]av. =

∫ ∞
0

e−(c/kT )
√
ψ2+m0

2c2 c
√
ψ2 +m0

2c2 ψ2 dψ∫ ∞
0

e−(c/kT )
√
ψ2+m0

2c2 ψ2 dψ

. (130)

105. Partition of Energy for Zero Mass. Unfortunately, no gen-
eral method for the evaluation of this expression seems to be available.
For the particular case that the mass m0 of the particles approaches
zero compared to the momentum, the expression reduces to

[E]av. =

c

∫ ∞
0

e−(cψ/kT ) ψ3 dψ∫ ∞
0

e−(cψ/kT ) ψ2 dψ

in terms of integrals whose values are known. Evaluating, we obtain

[E]av. = 3kT.

For the total energy of N such particles we obtain

E = 3NkT,
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and introducing the relation k =
nR

N
by which we defined k we have

E = 3nRT (131)

as the expression for the energy of n mols of particles if their value
of m0 is small compared with their momentum.

It is instructive to compare this with the ordinary expression of
Newtonian mechanics

E =
3

2
nRT,

which undoubtedly holds when the masses are so large and the velocities
so small that no appreciable deviations from the laws of Newtonian
mechanics are to be expected. We see that for particles of very small
mass the average kinetic energy at any temperature is twice as large as
that for large particles at the same temperature. It is also interesting
to note that in accordance with equation (131) a mol of particles which
approach zero mass at the absolute zero, would have a mass of

3× 8.31× 107 × 300

1021
= 7.47× 10−11

grams at room temperature (300◦ absolute). This suggests a field of
fascinating if profitless speculation.

106. Approximate Partition of Energy for Particles of any
Desired Mass. For particles of any desired mass we may obtain an
approximate idea of the relation between energy and temperature by
expanding the expression for kinetic energy into a series. For the aver-
age kinetic energy of a particle we have

[K]av. = c2

[
m0√
1− u2

c2

−m0

]
av.

.

Expanding into a series we obtain for the total kinetic energy of N par-
ticles

K = Nm0

(
1

2
u2 +

3

8

u4

c2
+

15

48

u6

c4
+

105

384

u8

c6
+ · · ·

)
, (132)
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where u2, u4, etc., are the average values of u2, u4, etc., for the indi-
vidual particles.

To determine approximately how the value of K varies with the
temperature we may also expand our expression (128) for temperature,

T =
1

3k

[
m0u

2√
1− u2

c2

]
Av.

,

into a series; we obtain

3
2
kNT =

3
2
nRT = Nm0

(
1
2

u2 +
1
4

u4

c2
+

3
16

u6

c4
+

15
96

u8

c6
+ · · ·

)
. (133)

Combining expressions (132) and (133) by subtraction and transposi-
tion, we obtain

K =
3

2
nRT +Nm0

(
1

8

u4

c2
+

1

8

u6

c4
+

15

128

u8

c6
+ · · ·

)
. (134)

For the case of velocities low enough so that u4 and higher powers
can be neglected, this reduces to the familiar expression of Newtonian

mechanics, K =
3

2
nRT .

In case we neglect in expression (134) powers higher than u4 we
have the approximate relation

Nm0u
4

8c2
=

1

2Nm0c2

(
Nm0u

2

2

)2

,

the left-hand term really being the larger, since the average square of a

quantity is greater than the square of its average. Since
(
Nm0u

2

2

)2

is

approximately equal to
(

3

2
nRT

)2

, we may write the approximation

K =
3

2
nRT +

1

2Nm0c2

(
3

2
nRT

)2

,
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or, noting that Nm0 = M , the total mass of the system at the absolute
zero, we have

K =
3

2
nRT +

9

8

n2R2

Mc2
T 2.

If we use the erg as our unit of energy, R will be 8.31× 107; expressing
velocities in centimeters per second, c2 will be 1021, and M will be the
mass of the system in grams.

For one mol of a monatomic gas we should have in ergs

K = 12.4× 107T +
7.77

M
10−6 T 2.

In the case of the electronM may be taken as approximately 1/1800.
At room temperature the second term of our equation would be en-
tirely negligible, being only 3.5 × 10−6 per cent of the first, and still
be only 3.5 × 10−4 per cent in a fixed star having a temperature of
30, 000◦. Hence at all ordinary temperatures we may expect the law
of the equipartition of energy to be substantially exact for particles of
mass as small as the electron.

Our purpose in carrying through the calculations of this chapter has
been to show that a very important and interesting problem in the clas-
sical mechanics can be handled just as easily in the newer mechanics,
and also to point out the nature of the modifications in existing theory
which will have to be introduced if the later developments of physics
should force us to consider equilibrium relations for particles of mass
much smaller than that of the electron.

We may also call attention to the fact that we have here considered a
system whose equations of motion agree with the principles of dynamics
and yet do not lead to the equipartition of energy. This is of particular
interest at a time when many scientists have thought that the failure
of equipartition in the hohlraum stood in necessary conflict with the
principles of dynamics.



CHAPTER IX.

THE PRINCIPLE OF RELATIVITY AND THE PRINCIPLE OF
LEAST ACTION.

It has been shown by the work of Helmholtz, J. J. Thomson, Planck
and others that the principle of least action is applicable in the most
diverse fields of physical science, and is perhaps the most general dy-
namical principle at our disposal. Indeed, for any system whose future
behavior is determined by the instantaneous values of a number of
coördinates and their time rate of change, it seems possible to throw
the equations describing the behavior of the system into the form pre-
scribed by the principle of least action. This generality of the principle
of least action makes it very desirable to develop the relation between it
and the principle of relativity, and we shall obtain in this way the most
important and most general method for deriving the consequences of
the theory of relativity. We have already developed in Chapter VII the
particular application of the principle of least action in the case of a
system of particles, and with the help of the more general development
which we are about to present, we shall be able to apply the princi-
ple of relativity to the theories of elasticity, of thermodynamics and of
electricity and magnetism.

107. The Principle of Least Action. For our purposes the prin-
ciple of least action may be most simply stated by the equation∫ t2

t1

(δH +W ) dt = 0. (135)

This equation applies to any system whose behavior is determined by
the values of a number of independent coördinates φ1φ2φ3 · · · and their
rate of change with the time φ̇1φ̇2φ̇3 · · · , and the equation describes the
path by which the system travels from its configuration at any time t1
to its configuration at any subsequent time t2.

H is the so-called kinetic potential of the system and is a function

135
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of the coördinates and their generalized velocities:

H = F (φ1φ2φ3 · · · φ̇1φ̇2φ̇3 · · · ). (136)

δH is the variation of H at any instant corresponding to a slightly
displaced path by which the system might travel from the same initial
to the same final state in the same time interval, and W is the external
work corresponding to the variation δ which would be done on the
system by the external forces if at the instant in question the system
should be displaced from its actual configuration to its configuration
on the displaced path. Thus

W = Φ1 δφ1 + Φ2 δφ2 + Φ3 δφ3 + · · · , (137)

where Φ1, Φ2, etc., are the so-called generalized external forces which
act in such a direction as to increase the values of the corresponding
coördinates.

The form of the function which determines the kinetic potential H
depends on the particular nature of the system to which the principle
of least action is being applied, and it is one of the chief tasks of gen-
eral physics to discover the form of the function in the various fields
of mechanical, electrical and thermodynamic investigation. As soon as
we have found out experimentally what the form of H is for any par-
ticular field of investigation, the principle of least action, as expressed
by equation (135), becomes the basic equation for the mathematical
development of the field in question, a development which can then be
carried out by well-known methods.

The special task for the theory of relativity will be to find a general
relation applicable to any kind of a system, which shall connect the
value of the kinetic potential H as measured with respect to a set of
coördinates S with its value H ′ as measured with reference to another
set of coördinates S ′ which is in motion relative to S. This relation
will of course be of such a nature as to agree with the principle of the
relativity of motion, and in this way we shall introduce the principle of
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relativity at the very start into the fundamental equation for all fields
of dynamics.

Before proceeding to the solution of that problem we may put the
principle of least action into another form which is sometimes more
convenient, by obtaining the equations for the motion of a system in
the so-called Lagrangian form.

108. The Equations of Motion in the Lagrangian Form. To
obtain the equations of motion in the Lagrangian form we may evidently
rewrite our fundamental equation (135) in the form∫ t2

t1

(
∂H

∂φ1

δφ1 +
∂H

∂φ2

δφ2 + · · ·+ ∂H

∂φ̇1

δφ̇1 +
∂H

∂φ̇2

δφ̇2 + · · ·

+ Φ1 δφ1 + Φ2 δφ2 + · · ·
)
dt = 0

(138)

We have now, however,

δφ̇1 =
d

dt
(δφ1), δφ̇2 =

d

dt
(δφ2), etc.,

which gives us∫ t2

t1

∂H

∂φ̇1

δφ̇1 dt =

∫ t2

t1

∂H

∂φ̇1

d

dt
(δφ1) dt

=

[
∂H

∂φ̇1

δφ1

]t2
t1

−
∫ t2

t1

δφ1
d

dt

(
∂H

∂φ̇1

)
dt,

or, since δφ1, δφ2, etc., are by hypothesis zero at times t1 and t2, we
obtain ∫ t2

t1

∂H

∂φ̇1

δφ̇1 = −
∫ t2

t1

d

dt

(
∂H

∂φ̇1

)
δφ1 dt,∫ t2

t1

∂H

∂φ̇2

δφ̇2 = −
∫ t2

t1

d

dt

(
∂H

∂φ̇2

)
δφ2 dt,

etc.
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On substituting these expressions in (138) we obtain∫ t2

t1

[(
∂H

∂φ1

− d

dt

(
∂H

∂φ̇1

)
+ Φ1

)
δφ1

+

(
∂H

∂φ2

− d

dt

(
∂H

∂φ̇2

)
+ Φ2

)
δφ2 + · · ·

]
dt = 0,

and since the variations of φ1, φ2, etc., are entirely independent and the
limits of integration t1 and t2 are entirely at our disposal, this equation
will be true only when each of the following equations is true. And
these are the equations of motion in the desired Lagrangian form,

d

dt

∂H

∂φ̇1

− ∂H

∂φ1

= Φ1,

d

dt

∂H

∂φ̇2

− ∂H

∂φ2

= Φ2,

etc.

(139)

In these equations H is the kinetic potential of a system whose state
is determined by the generalized coördinates φ1, φ2, etc., and their time
derivatives φ̇1, φ̇2 etc., where Φ1, Φ2, etc., are the generalized external
forces acting on the system in such a sense as to tend to increase the
values of the corresponding generalized coördinates.

109. Introduction of the Principle of Relativity. Let us now
investigate the relation between our dynamical principle and the prin-
ciple of the relativity of motion. To do this we must derive an equation
for transforming the kinetic potential H for a given system from one
set of coördinates to another. In other words, if S and S ′ are two sets of
reference axes, S ′ moving past S in the X direction with the velocity V ,
what will be the relation between H and H ′, the values for the kinetic
potential of a given system as measured with reference to S and S ′?

It is evident from the theory of relativity that our fundamental
equation (135) must hold for the behavior of a given system using either
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set of coördinates S or S ′, so that both of the equations∫ t2

t1

(δH +W ) dt = 0 and
∫ t2′

t1′
(δH ′ +W ′) dt′ = 0, (140)

or ∫ t2

t1

(δH +W ) dt =

∫ t2′

t1′
(δH ′ +W ′) dt′ = 0,

must hold for a given process, where it will be necessary, of course, to
choose the limits of integration t1 and t2, t1′ and t2′ wide enough apart
so that for both sets of coördinates the varied motion will be completed
within the time interval. Since we shall find it possible now to show

that in general
∫
W dt =

∫
W ′ dt′, we shall be able to obtain from the

above equations a simple relation between H and H ′.
110. Relation between

∫
W dt and

∫
W ′ dt′. To obtain the de-

sired proof we must call attention in the first place to the fact that all
kinds of force which can act at a given point must be governed by the
same transformation equations when changing from system S to sys-
tem S ′. This arises because when two forces of a different nature are of
such a magnitude as to exactly balance each other and produce no ac-
celeration for measurements made with one set of coördinates they must
evidently do so for any set of coördinates (see Chapter IV, Section 42).
Since we have already found transformation equations for the force act-
ing at a point, in our consideration of the dynamics of a particle, we
may now use these expressions in general for the evaluation

∫
W ′ dt′.

W ′ is the work which would be done by the external forces if at any
instant t′ we should displace our system from its actual configuration
to the simultaneous configuration on the displaced path. Hence it is
evident that

∫
W ′ dt′ will be equal to a sum of terms of the type∫

(Fx
′ δx′ + Fy

′ δy′ + Fz
′ δz′) dt′,

where Fx′, Fy ′, Fz ′, is the force acting at a given point of the system and
δx′, δy′, δz′ are the displacements necessary to reach the corresponding



Chapter Nine. 140

point on the displaced path, all these quantities being measured with
respect to S ′.

Into this expression we may substitute, however, in accordance with
equations (61), (62), (63) and (13), the values

Fx
′ = Fx − ẏV

c2
1

1− ẋV

c2

Fy − żV

c2
1

1− ẋV

c2

Fz,

Fy
′ =

Fyκ
−1

1− ẋV

c2

,

Fz
′ =

Fzκ
−1

1− ẋV

c2

,

dt′ = κ

(
1− ẋV

c2

)
dt.

(141)

We may also make substitutions for δx′, δy′ and δz′ in terms of
δx, δy and δz, but to obtain transformation equations for these quan-
tities is somewhat complicated owing to the fact that positions on the
actual and displaced path, which are simultaneous when measured with
respect to S ′, will not be simultaneous with respect to S. We have de-
noted by t′ the time in system S ′ when the point on the actual path
has the position x′, y′, z′ and simultaneously the point on the displaced
path has the position (x′ + δx′), (y′ + δy′), (z′ + δz′), when measured
in system S ′, or by our fundamental transformation equations (9), (10)
and (11) the positions κ(x′+V t′), y′, z′ and κ

(
[x′+δx′]+V t′

)
, (y′+δy′),

(z′ + δz′) when measured in system S. If now we denote by tA and tD
the corresponding times in system S we shall have, by our fundamental
transformation equation (12),

tA = κ

(
t′ +

V x′

c2

)
,

tD = κ

(
t′ +

V

c2
[x′ + δx′]

)
,
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and we see that in system S the point has reached the displaced position
at a time later than that of the actual position by the amount

tD − tA =
κV

c2
δx′,

and, since during this time-interval the displaced point would have
moved, neglecting higher-order terms, the distances

ẋ
κV

c2
δx′, ẏ

κV

c2
δx′, ż

κV

c2
δx′,

these quantities must be subtracted from the coördinates of the dis-
placed point in order to obtain a position on the displaced path which
will be simultaneous with tA as measured in system S. We obtain for
the simultaneous position on the displaced path

κ
(
[x′ + δx′] + V t′

)− κ ẋV
c2

δx′, y′ + δy′ − κ ẋV
c2

x′,

z′ + δz′ − κ żV
c2

δx′,

and for the corresponding position on the actual path

κ(x′ + V t′), y′, z′,

and obtain by subtraction

δx = κ

(
1− ẋV

c2

)
δx′,

δy = δy′ − κẏV
c2

δx′,

δz = δz′ − κżV
c2

δx′.

(142)
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Substituting now these equations, together with the other transforma-
tion equations (141), in our expression we obtain∫

(Fx
′ δx′ + Fy

′ δy′ + Fz
′ δz′) dt′

=

∫ ([
Fx − ẏV

c2
Fy

1− ẋV

c2

− żV

c2
Fz

1− ẋV

c2

]
κ−1

1− ẋV

c2

δx

+
κ−1

1− ẋV

c2

Fy

[
δy +

ẏV/c2

1− ẋV

c2

δx

]

+
κ−1

1− ẋV

c2

Fz

[
δz +

żV/c2

1− ẋV

c2

δx

])
κ

(
1− ẋV

c2

)

=

∫
(Fx δx+ Fy δy + Fz δz) dt′.

(143)

We thus see that we must always have the general equality∫
W ′ dt′ =

∫
W dt. (144)

111. Relation between H ′ and H. Introducing this equation
into our earlier expression (140) we obtain as a general relation between
H ′ and H ∫

δH ′ dt′ =
∫
δH dt. (145)

Restricting ourselves to systems of such a nature that we can assign
them a definite velocity u = ẋi+ ẏj+ żk, we can rewrite this expression
in the following form, where by HD and HA we denote the values of the
kinetic potential respectively on the displaced and actual paths∫
δH ′ dt′ =

∫
HD

′ dt′ −
∫
HA
′ dt′ =

∫
HD

′κ
(

1− (ẋ+ δẋ)V

c2

)
dt

−
∫
HA
′κ
(

1− ẋV

c2

)
dt =

∫
HD dt−

∫
HA dt,
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and hence obtain for such systems the simple expression

H ′ =
H

κ
(

1− ẋV

c2

) .
Noting the relation between

√
1− u′2

c2
and

√
1− u2

c2
given in equa-

tion (17), this can be rewritten

H ′√
1− u′

2

c2

=
H√

1− u2

c2

, (146)

and this is the expression which we shall find most useful for our future
development of the consequences of the theory of relativity. Expressing
the requirement of the equation in words we may say that the theory

of relativity requires an invariance of
H√

1− u2

c2

in the Lorentz transfor-

mation.
112. As indicated above, the use of this equation is obviously

restricted to systems moving with some perfectly definite velocity u.
Systems satisfying this condition would include particles, infinitesimal
portions of continuous systems, and larger systems in a steady state.

113. Our general method of procedure in different fields of inves-
tigation will now be to examine the expression for kinetic potential
which is known to hold for the field in question, provided the veloci-
ties involved are low and by making slight alterations when necessary,
see if this expression can be made to agree with the requirements of
equation (146) without changing its value for low velocities. Thus it is
well known, for example, that, in the case of low velocities, for a single
particle acted on by external forces the kinetic potential may be taken
as the kinetic energy 1

2
m0u

2. For relativity mechanics, as will be seen
from the developments of Chapter VII, we may take for the kinetic
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potential, −m0c
2

√
1− u2

c2
, an expression which, except for an additive

constant, becomes identical with 1
2
m0u

2 at low velocities, and which at
all velocities agrees with equation (146).



CHAPTER X.

THE DYNAMICS OF ELASTIC BODIES.

We shall now treat with the help of the principle of least action
the rather complicated problem of the dynamics of continuous elastic
media. Our considerations will extend the appreciation of the intimate
relation between mass and energy which we found in our treatment
of the dynamics of a particle. We shall also be able to show that the
dynamics of a particle may be regarded as a special case of the dynamics
of a continuous elastic medium, and to apply our considerations to a
number of other important problems.

114. On the Impossibility of Absolutely Rigid Bodies. In
the older treatises on mechanics, after considering the dynamics of a
particle it was customary to proceed to a discussion of the dynamics
of rigid bodies. These rigid bodies were endowed with definite and
unchangeable size and shape and hence were assigned five degrees of
freedom, since it was necessary to state the values of five variables
completely to specify their position in space. As pointed out by Laue,
however, our newer ideas as to the velocity of light as a limiting value
will no longer permit us to conceive of a continuous body as having only
a finite number of degrees of freedom. This is evident since it is obvious
that we could start disturbances simultaneously at an indefinite number
of points in a continuous body, and as these disturbances cannot spread
with infinite velocity it will be necessary to give the values of an infinite
number of variables in order completely to specify the succeeding states
of the system. For our newer mechanics the nearest approach to an
absolutely rigid body would of course be one in which disturbances
are transmitted with the velocity of light. Since, then, the theory of
relativity does not permit rigid bodies we may proceed at once to the
general theory of deformable bodies.

145
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part i. stress and strain.

115. Definition of Strain. In the more familiar developments of
the theory of elasticity it is customary to limit the considerations to
the case of strains small enough so that higher powers of the displace-
ments can be neglected, and this introduces considerable simplification
into a science which under any circumstances is necessarily one of great
complication. Unfortunately for our purposes, we cannot in general in-
troduce such a simplification if we wish to apply the theory of relativity,
since in consequence of the Lorentz shortening a body which appears
unstrained to one observer may appear tremendously compressed or
elongated to an observer moving with a different velocity. The best
that we can do will be arbitrarily to choose our state of zero deforma-
tion such that the strains will be small when measured in the particular
system of coördinates S in which we are specially interested.

A theory of strains of any magnitude was first attempted by Saint-
Venant and has been amplified and excellently presented by Love in
his Treatise on the Theory of Elasticity, Appendix to Chapter I. In
accordance with this theory, the strain at any point in a body is com-
pletely determined by six component strains which can be defined by
the following equations, wherein (u, v, w) is the displacement of a point
having the unstrained position (x, y, z):

εxx =
∂u

∂x
+ 1

2

{(
∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2
}
,

εyy =
∂y

∂v
+ 1

2

{(
∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2
}
,

εzz =
∂w

∂z
+ 1

2

{(
∂u

∂z

)2

+

(
∂v

∂z

)2

+

(
∂w

∂z

)2
}
,

(148)
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εyz =
∂w

∂y
+
∂v

∂z
+
∂u

∂y

∂u

∂z
+
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂z
,

εxz =
∂w

∂x
+
∂u

∂z
+
∂u

∂x

∂u

∂z
+
∂v

∂x

∂v

∂z
+
∂w

∂x

∂w

∂z
,

εxy =
∂v

∂x
+
∂u

∂y
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
+
∂w

∂x

∂w

∂y
.

(148)

It will be seen that these expressions for strain reduce to those
familiar in the theory of small strains if such second-order quantities as(
∂u

∂x

)2

or
∂u

∂y

∂u

∂z
can be neglected.

116. A physical significance for these strain components will be ob-
tained if we note that it can be shown from geometrical considerations
that lines which are originally parallel to the axes have, when strained,
the elongations

ex =
√

1 + 2εxx − 1,

ey =
√

1 + 2εyy − 1,

ez =
√

1 + 2εzz − 1,

(149)

and that the angles between lines originally parallel to the axes are
given in the strained condition by the expressions

cos θyz =
εyz√

1 + 2εyy
√

1 + 2εzz
,

cos θxz =
εxz√

1 + 2εxx
√

1 + 2εzz
,

cos θxy =
εxy√

1 + 2εxx
√

1 + 2εyy
,

(150)

Geometrical considerations are also sufficient to show that in case
the strain is a simple elongation of amount e the following equation will
be true:

εxx
l2

=
εyy
m2

=
εzz
n2

=
εyz

2mn
=
εxz
2ln

=
εxy
2lm

= e+ 1
2
e2, (151)
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where l, m, n are the cosines which determine the direction of the
elongation.

117. Definition of Stress. We have just considered the expres-
sions for the strain at a given point in an elastic medium; we may now
define stress in terms of the work done in changing from one state of
strain to another. Considering the material contained in unit volume
when the body is unstrained, we may write, for the work done by this
material on its surroundings when a change in strain takes place,

δW = −δE = txx δεxx + tyy δεyy + tzz δεzz

+ tyz δεyz + txz δεxz + txy δεxy,
(152)

and this equation serves to define the stresses txx, tyy, etc. In case the
strain varies from point to point we must consider of course the work
done per unit volume of the unstrained material. In case the strains
are small it will be noticed that the stresses thus defined are identical
with those used in the familiar theories of elasticity.

118. Transformation Equations for Strain. We must now pre-
pare for the introduction of the theory of relativity into our considera-
tions, by determining the way the strain at a given point P appears to
observers moving with different velocities. Let the point P in question
be moving with the velocity u = xi + yj + zk as measured in system S.
Since the state of zero deformation from which to measure strains can
be chosen perfectly arbitrarily, let us for convenience take the strain as
zero as measured in system S, giving us

εxx = εyy = εzz = εyz = εxz = εxy = 0. (153)

What now will be the strains as measured by an observer moving along
with the point P in question? Let us call the system of coördinates
used by this observer S◦. It is evident now from our considerations
as to the shape of moving systems presented in Chapter V that in
system S◦ the material in the neighborhood of the point in question
will appear to have been elongated in the direction of motion in the ratio
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of 1 :

√
1− u2

c2
. Hence in system S◦ the strain will be an elongation

e =
1√

1− u2

c2

− 1 (154)

in the line determined by the direction cosines

l =
ẋ

u
, m =

ẏ

u
, n =

ż

u
. (155)

We may now calculate from this elongation the components of strain
by using equation (151). We obtain

ε◦xx =
ẋ2

2c2

[
1

1− u2

c2

]
, ε◦yy =

ẏ2

2c2

[
1

1− u2

c2

]
, ε◦zz =

ż2

2c2

[
1

1− u2

c2

]
,

ε◦yz =
ẏż

c2

[
1

1− u2

c2

]
, ε◦xz =

ẋż

c2

[
1

1− u2

c2

]
, ε◦xy =

ẋẏ

c2

[
1

1− u2

c2

]
,

(156)

and these are the desired equations for the strains at the point P , the
accent ◦ indicating that they are measured with reference to a system
of coördinates S◦ moving along with the point itself.

119. Variation in the Strain. We shall be particularly interested
in the variation in the strain as measured in S◦ when the velocity
experiences a small variation δu, the strains remaining zero as measured
in S. For the sake of simplicity let us choose our coördinates in such
a way that the X axis is parallel to the original velocity, so that our
change in velocity will be from u = ẋi to

u + δu = (ẋ+ δẋ) i + δẏ j + δż k.

Taking δu small enough so that higher orders can be neglected, and
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noting that ẏ = ż = 0, we shall then have, from equations (156),

δε◦xx =
1(

1− u2

c2

)2

ẋ

c2
δẋ, δε◦yy = 0,

δε◦zz = 0, δε◦yz = 0,

δε◦xz =
1(

1− u2

c2

)2

ẋ

c2
δż, δε◦xy =

1(
1− u2

c2

)2

ẋ

c2
δẏ.

(157)

We shall also be interested in the variation in the strain as measured
in S◦ produced by a variation in the strain as measured in S. Consid-
ering again for simplicity that the X axis is parallel to the motion of
the point, we must calculate the variation produced in ε◦xx, ε◦yy, etc.,
by changing the values of εxx, εyy, etc., from zero to δεxx, δεyy, etc.

The variation δεxx will produce a variation in ε◦xx whose amount
can be calculated as follows: By equations (149) a line which has unit
length and is parallel to the X axis in the unstrained condition will
have when strained the length

√
1 + 2εxx when measured in system S

and
√

1 + 2ε◦xx when measured in system S◦. Since the strain in sys-
tem S is small, the line remains sensibly parallel to the X axis, which
is also the direction of motion, and these quantities will be connected
in accordance with the Lorentz shortening by the equation

√
1 + 2εxx =

√
1− u2

c2
√

1 + 2ε◦xx. (158)

Carrying out now our variation δεxx, neglecting εxx in comparison with
larger quantities and noting that except for second order quantities,

√
1 + 2ε◦xx =

1√
1− u2

c2

(159)

we obtain
δε◦xx =

δεxx(
1− u2

c2

) . (160)
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Since the variations δεyy, δεzz, δεyz affect only lines which are at
right angles to the direction of motion, we may evidently write

δε◦yy = δεyy, δε◦zz = δεzz, δε◦yz = δεyz. (161)

To calculate δε◦xz we may note that in accordance with equations (150)
we must have

cos θxz =
εxz√

1 + 2εxx
√

1 + 2εzz
,

cos θ◦xz =
ε◦xz√

1 + 2ε◦xx
√

1 + 2ε◦zz
,

where θxz is the angle between lines which in the unstrained condition
are parallel to the X and Z axes respectively. In accordance with the
Lorentz shortening, however, we shall have

cos θxz =

√
1− u2

c2
cos θ◦xz.

Introducing this relation, remembering that εxx = ε◦zz = 0, and noting
equation (159), we obtain

δε◦xz =
δεxz(

1− u2

x2

) , (162)

and similarly

δε◦xy =
δεxy(

1− u2

x2

) . (163)

We may now combine these equations (160), (161), (162) and (163)
with those for the variation in strain with velocity and obtain the final



Chapter Ten. 152

set which we desire:

δε◦xx =
1(

1− u2

c2

)2

ẋ

c2
δẋ+

1(
1− u2

c2

) δεxx,
δε◦yy = δεyy,

δε◦zz = δεzz,

δε◦yz = δεyz,

δε◦xz =
1(

1− u2

c2

)2

ẋ

c2
δż +

1(
1− u2

c2

) δεxz,
δε◦xy =

1(
1− u2

c2

)2

ẋ

c2
δẏ +

1(
1− u2

c2

) δεxy.

(164)

These equations give the variation in the strain measured in sys-
tem S◦ at a point P moving in the X direction with velocity u, provided
the strains are negligibly small as measured in S.

part ii. introduction of the principle of least action.

120. The Kinetic Potential for an Elastic Body. We are now
in a position to develop the mechanics of an elastic body with the help
of the principle of least action. In Newtonian mechanics, as is well
known, the kinetic potential for unit volume of material at a given
point P in an elastic body may be put equal to the density of kinetic
energy minus the density of potential energy, and it is obvious that our
choice for kinetic potential must reduce to that value at low velocities.
Our choice of an expression for kinetic potential is furthermore limited
by the fundamental transformation equation for kinetic potential which
we found in the last chapter

H√
1− u2

c2

=
H ′√

1− u′
2

c2

. (146)
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Taking these requirements into consideration, we may write for the
kinetic potential per unit volume of the material at a point P moving
with the velocity u the expression

H = −E◦
√

1− u2

c2
,

where E◦ is the energy as measured in system S◦ of the amount of ma-
terial which in the unstrained condition (i.e., as measured in system S)
is contained in unit volume.

The above expression obviously satisfies our fundamental transfor-
mation equation (146) and at low velocities reduces in accordance with
the requirements of Newtonian mechanics to

H = 1
2
m◦u2 − E◦,

provided we introduce the substitution made familiar by our previous

work, m◦ =
E◦

c2
.

121. Lagrange’s Equations. Making use of this expression for the
kinetic potential in an elastic body, we may now obtain the equations
of motion and stress for an elastic body by substituting into Lagrange’s
equations (139) Chapter IX.

Considering the material at the point P contained in unit volume in
the unstrained condition, we may choose as our generalized coördinates
the six component strains εxx, εyy, etc., with the corresponding stresses
−txx, −tyy, etc., as generalized forces, and the three coördinates x, y, z
which give the position of the point with the corresponding forces Fx, Fy
and Fz.

It is evident that the kinetic potential will be independent of the
time derivatives of the strains, and if we consider cases in which E◦ is
independent of position, the kinetic potential will also be independent
of the absolute magnitudes of the coördinates x, y and z. Substituting
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in Lagrange’s equations (139), we then obtain

− ∂

∂εxx

(
−E◦

√
1− u2

c2

)
= −txx,

− ∂

∂εyy

(
−E◦

√
1− u2

c2

)
= −tyy,

− ∂

∂εzz

(
−E◦

√
1− u2

c2

)
= −tzz,

− ∂

∂εyz

(
−E◦

√
1− u2

c2

)
= −tyz,

− ∂

∂εxz

(
−E◦

√
1− u2

c2

)
= −txz,

− ∂

∂εxy

(
−E◦

√
1− u2

c2

)
= −txy,



(165)

d

dt

∂

∂ẋ

(
−E◦

√
1− u2

c2

)
= Fx,

d

dt

∂

∂ẏ

(
−E◦

√
1− u2

c2

)
= Fy,

d

dt

∂

∂ż

(
−E◦

√
1− u2

c2

)
= Fz.


(166)

We may simplify these equations, however; by performing the indi-
cated differentiations and making suitable substitutions, we have

∂E◦xx
∂εxx

=
∂E◦xx
∂ε◦xx

∂ε◦xx
∂εxx

.
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But in accordance with equation (152) we may write

∂E◦xx
∂ε◦xx

= −t◦xx

and from equations (164) we may put

∂ε◦xx
∂εxx

=
1

1− u2

c2

.

Making the substitutions in the first of the Lagrangian equations we
obtain

txx = − ∂

∂εxx

(
E◦
√

1− u2

c2

)
= t◦xx

1

1− u2

c2

√
1− u2

c2
=

t◦xx√
1− u2

c2

.

122. Transformation Equations for Stress. Similar substitu-
tions can be made in all the equations of stress, and we obtain as our
set of transformation equations

txx =
t◦xx√
1− u2

c2

, tyy =

√
1− u2

c2
t◦yy, tzz =

√
1− u2

c2
t◦zz,

tyx =

√
1− u2

c2
t◦yx, txz =

t◦xz√
1− u2

c2

, txy =
t◦xy√
1− u2

c2

.

(167)

123. Value of E◦. With the help of these transformation equations
for stress we may calculate the value of E◦, the energy content, as
measured in system S◦, of material which in the unstrained condition
is contained in unit volume.

Consider unit volume of the material in the unstrained condition
and call its energy content w◦◦. Give it now the velocity u = ẋ, keep-
ing its state of strain unchanged in system S. Since the strain is not
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changing in system S, the stresses txx, etc., will also be constant in
system S. In system S◦, however, the component strain will change in
accordance with equations (156) from zero to

ε◦xx =
ẋ2

2c2
1(

1− u2

c2

) ,
and the corresponding stress will be given at any instant by the expres-
sion just derived,

t◦xx = txx

√
1− u2

c2
,

txx being, as we have just seen, a constant. We may then write for E◦
the expression

E◦ = w◦◦ − txx
∫ w

0

√
1− u2

c2
d

[
1(

1− u2

c2

) ẋ

2c2

]
.

Noting that u = ẋ we obtain on integration,

E◦ = w◦◦ + txx − txx√
1− u2

c2

(168)

as the desired expression for the energy as measured in system S◦ con-
tained in the material which in system S is unstrained and has unit
volume.

124. The Equations of Motion in the Lagrangian Form. We
are now in a position to simplify the three Lagrangian equations (166)
for Fx, Fy and Fz. Carrying out the indicated differentiation we have

Fx =
d

dt

∂

∂ẋ

(
−E◦

√
1− u2

c2

)
=

d

dt

[
E◦√

1− u2

c2

ẋ

c2
−
√

1− u2

c2
∂E◦

∂ẋ

]
,
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and introducing the value of E◦ given by equation (168) we obtain

Fx =
d

dt

[
w◦◦ + txx√

1− u2

c2

ẋ

c2

]
. (169)

Simple calculations will also give us values for Fy and Fz. We have
from (166)

Fy =
d

dt

∂

∂ẏ

(
−E◦

√
1− u2

c2

)
=

d

dt

[
E◦√

1− u2

c2

ẏ

c2
−
√

1− u2

c2
∂E◦

∂ẏ

]
.

But since we have adapted our considerations to cases in which the
direction of motion is along the X axis, we have ẏ = 0; furthermore we
may substitute, in accordance with equations (152), (157) and (167),

∂E◦

∂ẏ
=

∂E◦

∂ε◦xy

∂ε◦xy
∂ẏ

= −t◦xy 1(
1− u2

c2

) ẋ

c2
=

−txy√
1− u2

c2

ẋ

c2
.

We thus obtain as our three equations of motion

Fx =
d

dt

[
w◦◦ + txx√

1− u2

c2

ẋ

c2

]
,

Fy =
d

dt

(
txy

ẋ

c2

)
,

Fz =
d

dt

(
txz

ẋ

c2

)
.

(170)

In these equations the quantities Fx, Fy and Fz are the components of
force acting on a particular system, namely that quantity of material
which at the instant in question has unit volume. Since the volume of
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this material will in general be changing, Fx, Fy and Fz do not give us
the force per unit volume as usually defined. If we represent, however,
by fx, fy and fz the components of force per unit volume, we may
rewrite these equations in the form

Fx δV =
d

dt

[
w◦◦ + txx√

1− u2

c2

ẋ

c2
δV

]
,

Fy δV =
d

dt

(
txy

ẋ

c2
δV

)
,

Fz δV =
d

dt

(
txz

ẋ

c2
δV

)
,

(171)

where by δV we mean a small element of volume at the point in ques-
tion.

125. Density of Momentum. Since we customarily define force
as equal to the time rate of change of momentum, we may now write
for the density of momentum g at a point in an elastic body which is
moving in the X direction with the velocity u = ẋ

gx =
w◦◦ + txx√

1− u2

c2

ẋ

c2
, gy = txy

ẋ

c2
, gy = txy

ẋ

c2
. (172)

It is interesting to point out that there are components of momen-
tum in the Y and Z directions in spite of the fact that the material at
the point in question is moving in the X direction. We shall later see
the important significance of this discovery.

126. Density of Energy. It will be remembered that the forces
whose equations we have just obtained are those acting on unit volume
of the material as measured in system S, and hence we are now in a
position to calculate the energy density of our material. Let us start out
with unit volume of our material at rest, with the energy content w◦◦
and determine the work necessary to give it the velocity u = ẋ without
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change in stress or strain. Since the only component of force which
suffers displacement is Fx, we have

w = w◦◦ +

∫ u

0

d

dt

[
w◦◦ + txx√

1− u2

c2

ẋ

c2

]
ẋ dt,

= w◦◦ + (w◦◦ + txx)

∫ u

0

ẋ d

[
1√

1− u2

c2

ẋ

c2

]
,

=

{
w◦◦ + txx√

1− u2

c2

− txx
}

(173)

as an expression for the energy density of the elastic material.
127. Summary of Results Obtained from the Principle of

Least Action. We may now tabulate for future reference the results
obtained from the principle of least action.

At a given point in an elastic medium which is moving in the X di-
rection with the velocity u = ẋ, we have for the components of stress

txx =
t◦xx√
1− u2

c2

, tyy =

√
1− u2

c2
t◦yy, tzz =

√
1− u2

c2
t◦zz,

tyz =

√
1− u2

c2
t◦yz, txz =

t◦xz√
1− u2

c2

, txy =
t◦xz√
1− u2

c2

,

(167)

For the density of energy at the point in question we have

w =
w◦◦ + txx√

1− u2

c2

− txx. (173)
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For the density of momentum we have

gx =
w◦◦ + txx√

1− u2

c2

ẋ

c2
, gy = txy

ẋ

c2
, gz = txz

ẋ

c2
. (172)

part iii. some mathematical relations.

Before proceeding to the applications of these results which we have
obtained from the principle of least action, we shall find it desirable
to present a number of mathematical relations which will later prove
useful.

128. The Unsymmetrical Stress Tensor t. We have defined
the components of stress acting at a point by equation (152)

δW = txx δεxx + tyy δεyy + tzz δεzz + tyz δεyz + txz δεxz + txy δεxy,

where δW is the work which accompanies a change in strain and is
performed on the surroundings by the amount of material which was
contained in unit volume in the unstrained state. Since for convenience
we have taken as our state of zero strain the condition of the body as
measured in system S, it is evident that the components txx, tyy, etc.,
may be taken as the forces acting on the faces of a unit cube of material
at the point in question, the first letter of the subscript indicating the
direction of the force and the second subscript the direction of the
normal to the face in question.

Interpreting the components of stress in this fashion, we may now
add three further components and obtain a complete tensor

t =


txx txy txz

tyx tyy tyz

tzx tzy tzz

(174)
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The three new components tyx, tzx, tzy are forces acting on the unit
cube, in the directions and on the faces indicated by the subscripts.
A knowledge of their value was not necessary for our developments of
the consequences of the principle of least action, since it was possible
to obtain an expression for the work accompanying a change in strain
without their introduction. We shall find them quite important for
our later considerations, however, and may proceed to determine their
value.

tyz is the force acting in the Y direction tangentially to a face of the
cube perpendicular to the X axis, and measured with a system of coör-
dinates S. Using a system of coördinates S◦ which is stationary with
respect to the point in question, we should obtain, for the measurement
of this force,

t◦yx =
tyx√

1− u2

c2

in accordance with our transformation equation for force (62), Chap-
ter VI. Similarly we shall have the relation

t◦xy = txy.

In accordance with the elementary theory of elasticity, however, the
forces t◦yx and t◦xy which are measured by an observer moving with
the body will be connected by the relation

t◦xy =
t◦yx√
1− u2

c2

,

t◦xy being larger than t◦yx in the ratio of the areas of face upon which
they act. Combining these three equations, and using similar methods
for the other quantities, we can obtain the desired relations

tyx =

(
1− u2

c2

)
txy, tzx =

(
1− u2

c2

)
txz, tzy = tyz. (175)



Chapter Ten. 162

We see that t is an unsymmetrical tensor.
129. The Symmetrical Tensor p. Besides this unsymmetrical

tensor t we shall find it desirable to define a further tensor p by the
equation

p = t + gu. (176)

We shall call gu the tensor product of g and u and may indicate
tensor products in general by a simple juxtaposition of vectors. gu is
itself a tensor with components as indicated below:

gu =


gxux gxuy gxuz,

gyux gyuy gyuz,

gzux gzuy gzuz.

(177)

Unlike t, p will be a symmetrical tensor, since we may show, by
substitution of the values for g and u already obtained, that

pyx = pxy, pzx = pxz, pzy = pyz. (178)

Consider for example the value of pyx; we have from our definition

pyx = tyx + gyux,

and by equations (175) and (172) we have

txy =

(
1− u2

c2

)
txy, gy = txy

ux
c2
,

and hence by substitution obtain

pyx = txy.

We also have, however, by definition

pxy = txy + gxuy,
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and since for the case we are considering uy = 0, we arrive at the
equality

pxy = pyx.

The other equalities may be shown in a similar way.
130. Relation between div t and tn. At a given point P in

our elastic body we shall define the divergence of the tensor t by the
equation

div t =

(
∂txx
∂x

+
∂txy
∂y

+
∂txz
∂z

)
i

+

(
∂tyx
∂x

+
∂tyy
∂y

+
∂tyz
∂z

)
j

+

(
∂tzx
∂x

+
∂tzy
∂y

+
∂tzz
∂z

)
k,

(179)

where i, j and k are unit vectors parallel to the axes, div t thus being
an ordinary vector. It will be seen that div t is the elastic force acting
per unit volume of material at the point P .

Considering an element of surface dS, we shall define a further vec-
tor tn by the equation

tn = (txx cosα + txy cos β + txz cos γ) i

+ (tyx cosα + tyy cos β + tyz cos γ) j

+ (tzx cosα + tzy cos β + tzz cos γ) k,

(180)

where cosα, cos β and cos γ are the direction cosines of the inward-
pointing normal to the element of surface dS.

Considering now a definite volume V enclosed by the surface S it is
evident that div t and tn will be connected by the relation

−
∫

div t dV =

∫
0

tn dS, (181)

where the symbol 0 indicates that the integration is to be taken over
the whole surface which encloses the volume V . This equation is of



Chapter Ten. 164

course merely a direct application of Gauss’s formula, which states in
general the equality

−
∫ (

∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV =

∫
0
(P cosα+Q cosβ +R cos γ) dS, (182)

where P , Q and R may be any functions of x, y and z.
We shall also find use for a further relation between div t and tn.

Consider a given point of reference O, and let r be the radius vector
to any point P in the elastic body; we can then show with the help of
Gauss’s Formula (182) that

−
∫

(r× div t) dV =

∫
0

(r× tn) dS

−
∫ [

(tyz − tzy)jk + (txz − tzx)ik + (txy − tyx)ij
]
dV,

where × signifies as usual the outer product. Taking account of equa-
tions (172) and (175) this can be rewritten

−
∫

(r× div t) dV =

∫
0

(r× tn) dS −
∫

(u× g) dV. (183)

131. The Equations of Motion in the Eulerian Form. We saw
in Sections 124 and 125 that the equations of motion in the Lagrangian
form might be written

f δV =
d

dt
(g δV ),

where f is the density of force acting at any point and g is the density
of momentum.

Provided that there are no external forces acting and f is produced
solely by the elastic forces, our definition of the divergence of a tensor
will now permit us to put

f = − div t,
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and write for our equation of motion

(− div t) δV =
d

dt
(g δV ) = δV

dg

dt
+ g

d(δV )

dt
.

Expressing
dg

dt
in terms of partial differentials, and putting

d(δV )

dt
= δV div u

we obtain

− div t =

(
∂g

∂t
+ ux

∂g

∂x
+ uy

∂g

∂y
+ uz

∂g

∂z

)
+ g div u.

Our symmetrical tensor p, however, was defined by the equation (176)

p = t + gu,

and hence we may now write our equations of motion in the very beau-
tiful Eulerian form

− div p =
∂g

∂t
. (184)

We shall find this simple form for the equations of motion very
interesting in connection with our considerations in the last chapter.

part iv. applications of the results.

We may now use the results which we have obtained from the princi-
ple of least action to elucidate various problems concerning the behavior
of elastic bodies.

132. Relation between Energy and Momentum. In our work
on the dynamics of a particle we found that the mass of a particle was
equal to its energy divided by the square of the velocity of light, and
hence have come to expect in general a necessary relation between the
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existence of momentum in any particular direction and the transfer of
energy in that same direction. We find, however, in the case of elasti-
cally stressed bodies a somewhat more complicated state of affairs than
in the case of particles, since besides the energy which is transported
bodily by the motion of the medium an additional quantity of energy
may be transferred through the medium by the action of the forces
which hold it in its state of strain. Thus, for example, in the case of a
longitudinally compressed rod moving parallel to its length, the forces
holding it in its state of longitudinal compression will be doing work at
the rear end of the rod and delivering an equal quantity of energy at
the front end, and this additional transfer of energy must be included
in the calculation of the momentum of the bar.

As a matter of fact, an examination of the expressions for momen-
tum which we obtained from the principle of least action will show the
justice of these considerations. For the density of momentum in the
X direction we obtained the expression

gx = (w + txx)
ẋ

c2
,

and we see that in order to calculate the momentum in the X direction
we must consider not merely the energy w which is being bodily carried
along in that direction with the velocity ẋ, but also must take into
account the additional flow of energy which arises from the stress txx.
As we have already seen in Section 128, this stress txx can be thought
of as resulting from forces which act on the front and rear faces of
a centimeter cube of our material. Since the cube is moving with the
velocity ẋ, the force on the rear face will do the work txxẋ per second and
this will be given up at the forward face. We thus have an additional
density of energy-flow in the X direction of the magnitude txxẋ and

hence a corresponding density of momentum
txxẋ

c2
.

Similar considerations explain the interesting occurrence of compo-
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nents of momentum in the Y and Z directions,

gy = txy
ẋ

c2
, gz = txz

ẋ

c2
,

in spite of the fact that the material involved is moving in the X direc-
tion. The stress txy, for example, can be thought of as resulting from
forces which act tangentially in the X direction on the pair of faces of
our unit cube which are perpendicular to the Y axis. Since the cube
is moving in the X direction with the velocity ẋ, we shall have the
work txyẋ, done at one surface per second and transferred to the other,
and the resulting flow of energy in the X direction is accompanied by

the corresponding momentum
txyẋ

c2
.

133. The Conservation of Momentum. It is evident from our
previous discussions that we may write the equation of motion for an
elastic medium in the form

f δV =
d(g δV )

dt
,

where g is the density of momentum at any given point and f is the
force acting per unit volume of material. We have already obtained,
from the principle of least action, expressions (172) which permit the
calculation of g in terms of the energy density, stress and velocity at
the point in question, and our present problem is to discuss somewhat
further the nature of the force f .

We shall find it convenient to analyze the total force per unit volume
of material f into those external forces f ext. like gravity, which are pro-
duced by agencies outside of the elastic body and the internal force f int.

which arises from the elastic interaction of the parts of the strained
body itself. It is evident from the way in which we have defined the
divergence of a tensor (179) that for this latter we may write

f int. = − div t. (185)
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Our equation of motion then becomes

(f ext. − div t) δV =
d(g δV )

dt
, (186)

or, integrating over the total volume of the elastic body,∫
f ext. dV −

∫
div t dV =

d

dt

∫
g dV =

dG

dt
, (187)

where G is the total momentum of the body. With the help of the
purely analytical relation (181) we may transform the above equation
into ∫

f ext. dV +

∫
tn dS =

dG

dt
, (188)

where tn is defined in accordance with (180) so that the integral
∫

0

tn dS

becomes the force exerted by the surroundings on the surface of the
elastic body.

In the case of an isolated system both f ext. and tn would evidently
be equal to zero and we have the principle of the conservation of mo-
mentum.

134. The Conservation of Angular Momentum. Consider the
radius vector r from a point of reference O to any point P in an elastic
body; then the angular momentum of the body about O will be

M =

∫
(r× g) dV,

and its rate of change will be

dM

dt
=

∫ (
r× dg

dt

)
dV +

∫ (
dr

dt
× g

)
dV. (189)

Substituting equation (186), this may be written

dM

dt
=

∫
(r× f ext.) dV −

∫
(r× div t) dV +

∫
(u× g) dV,
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or, introducing the purely mathematical relation (183) we have,

dM

dt
=

∫
(r× f ext.) dV +

∫
0

(r× tn) dS. (190)

We see from this equation that the rate of change of the angular mo-
mentum of an elastic body is equal to the moment of the external forces
acting on the body plus the moment of the surface forces.

In the case of an isolated system this reduces to the important
principle of the conservation of angular momentum.

135. Relation between Angular Momentum and the Un-
symmetrical Stress Tensor. The fact that at a point in a strained
elastic medium there may be components of momentum at right angles
to the motion of the point itself, leads to the interesting conclusion that
even in a state of steady motion the angular momentum of a strained
body will in general be changing.

This is evident from equation (189), in the preceding section, which
may be written

dM

dt
=

∫ (
r× dg

dt

)
dV +

∫
(u× g) dV. (191)

In the older mechanics velocity u and momentum g were always in
the same direction so that the last term of this equation became zero.
In our newer mechanics, however, we have found (172) components of
momentum at right angles to the velocity and hence even for a body
moving in a straight line with unchanging stresses and velocity we find
that the angular momentum is increasing at the rate

dM

dt
=

∫
(u× g) dV, (192)

and in order to maintain the body in its state of uniform motion we must
apply external forces with a turning moment of this same amount.

The presence of this increasing angular momentum in a strained
body arises from the unsymmetrical nature of the stress tensor, the
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integral
∫

(u × g) dV being as a matter of fact exactly equal to the
integral over the same volume of the turning moments of the unsym-
metrical components of the stress. Thus, for example, if we have a body
moving in the X direction with the velocity u = ẋi we can easily see
from equations (172) and (175) the truth of the equality

(u× g) =
[
(tyz − tzy) jk + (txz − tzx) ik + (txy − tyx) ij

]
.

136. The Right-Angled Lever. An interesting example of the

l 1

l2

F1

F2

B C

A

Fig. 14.

principle that in general a turning mo-
ment is needed for the uniform transla-
tory motion of a strained body is seen
in the apparently paradoxical case of
the right-angled lever.

Consider the right-angled lever
shown in Fig. 14. This lever is station-
ary with respect to a system of coördi-
nates S◦. Referred to S◦ the two lever
arms are equal in length:

l1
◦ = l2

◦,

and the lever is in equilibrium under the action of the equal forces

F1
◦ = F2

◦.

Let us now consider the equilibrium as it appears, using a system of
coördinates S with reference to which the lever is moving in X direction
with the velocity V . Referred to this new system of coördinates the
length l1 of the arm which lies in the Y direction will be the same as
in system S◦, giving us

l1 = l1
◦.

But for the other arm which lies in the direction of motion we shall
have, in accordance with the Lorentz shortening,

l2 = l2
◦
√

1− V 2

c2
.
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For the forces F1 and F2 we shall have, in accordance with our equations
for the transformation of force (61) and (62),

F1 = F1
◦,

F2 = F2
◦
√

1− V 2

c2
.

We thus obtain for the moment of the forces around the pivot B

F1l1 − F2l2 = F1
◦l1◦ − F2

◦l2◦
(

1− V 2

c2

)
= F1

◦l1◦
V 2

c2
,= F1l1

V 2

c2
,

and are led to the remarkable conclusion that such a moving lever will
be in equilibrium only if the external forces have a definite turning
moment of the magnitude given above.

The explanation of this apparent paradox is obvious, however, in the
light of our previous discussion. In spite of the fact that the lever is in
uniform motion in a straight line, its angular momentum is continually
increasing owing to the fact that it is elastically strained, and it can
be shown by carrying out the integration indicated in equation (192)
that the rate of change of angular momentum is as a matter of fact just

equal to the turning moment F1l1
V 2

c2
.

This necessity for a turning moment F1l1
V 2

c2
can also be shown

directly from a consideration of the energy flow in the lever. Since the
force F1 is doing the work F1V per second at the point A, a stream of
energy of this amount is continually flowing through the lever from A
to the pivot B. In accordance with our ideas as to the relation between
energy and mass, this new energy which enters at A each second has

the mass
F1V

c2
, and hence each second the angular momentum of the

system around the point B is increased by the amount

F1V

c2
V l1 = F1l1

V 2

c2
.
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We have already found, however, exactly this same expression for the
moment of the forces around the pivot B and hence see that they are
of just the magnitude necessary to keep the lever from turning, thus
solving completely our apparent paradox.

137. Isolated Systems in a Steady State. Our considerations
have shown that the density of momentum is equal to the density of
energy flow divided by the square of the velocity of light. If we have
a system which is in a steady internal state, and is either isolated or
merely subjected to an external pressure with no components of force
tangential to the bounding surface, it is evident that the resultant flow
of energy for the whole body must be in the direction of motion, and
hence for these systems momentum and velocity will be in the same
direction without the complications introduced by a transverse energy
flow.

Thus for an isolated system in a steady internal state we may write,

G =
E

c2
u =

E◦

c2√
1− u2

c2

u. (193)

138. The Dynamics of a Particle. It is important to note that
particles are interesting examples of systems in which there will obvi-
ously be no transverse component of energy flow since their infinitesimal
size precludes the action of tangential surface forces. We thus see that
the dynamics of a particle may be regarded as a special case of the
more general dynamics which we have developed in this chapter, the
equation of motion for a particle being

F =
d

dt


E◦

c2√
1− u2

c2

u

 =
d

dt

[
m◦√
1− u2

c2

u

]
,

in agreement with the work of Chapter VI.
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139. Conclusion. We may now point out in conclusion the chief
results of this chapter. With the help of Einstein’s equations for spatial
and temporal considerations, we have developed a set of transformation
equations for the strain in an elastic body. Using the components of
strain and velocity as generalized coördinates, we then introduced the
principle of least action, choosing a form of function for kinetic potential
which agrees at low velocities with the choice made in the older theories
of elasticity and at all velocities agrees with the requirements of the
principle of relativity. Using the Lagrangian equations, we were then
able to develop all that is necessary for a complete theory of elasticity.

The most important consequence of these considerations is an ex-
tension in our ideas as to the relation between momentum and energy.
We find that the density of momentum in any direction must be placed
equal to the total density of energy flow in that same direction divided
by the square of the velocity of light; and we find that we must include
in our density of energy flow that transferred through the elastic body
by the forces which hold it in its state of strain and suffer displacement
as the body moves. This involves in general a flow of energy and hence
momentum at right angles to the motion of the body itself.

At present we have no experiments of sufficient accuracy so that
we can investigate the differences between this new theory of elasticity
and the older ones, and hence of course have found no experimental
contradiction to the new theory. It will be seen, however, from the
expressions for momentum that even at low velocities the consequences
of this new theory will become important as soon as we run across
elastic systems in which very large stresses are involved. It is also
important to show that a theory of elasticity can be developed which
agrees with the requirements of the theory of relativity. In fairness, it
must, however, be pointed out in conclusion that since our expression
for kinetic potential was not absolutely uniquely determined there may
also be other theories of elasticity which will agree with the principle
of relativity and with all the facts as now known.



CHAPTER XI.

THE DYNAMICS OF A THERMODYNAMIC SYSTEM.

We may now use our conclusions as to the relation between the prin-
ciple of least action and the theory of relativity to obtain information
as to the behavior of thermodynamic systems in motion.

140. The Generalized Coördinates and Forces. Let us con-
sider a thermodynamic system whose state is defined by the generalized
coördinates volume v, entropy S and the values of x, y and z which
determine its position. Corresponding to these coördinates we shall
have the generalized external forces, the negative of the pressure, −p,
temperature, T , and the components of force, Fx, Fy and Fz. These
generalized coördinates and forces are related to the energy change δE
accompanying a small displacement δ, in accordance with the equation

δE = −δW = −p δv + T δS + Fx δx+ Fy δy + Fz δz. (194)

141. Transformation Equation for Volume. Before we can
apply the principle of least action we shall need to have transformation
equations for the generalized coördinates, volume and entropy.

In accordance with the Lorentz shortening, we may write the follow-
ing expression for the volume v of the system in terms of v◦ as measured
with a set of axes S◦ with respect to which the system is stationary:

v = v◦
√

1− u2

c2
= v◦

√
1− ẋ2 + ẏ2 + ż2

c2
,

where u is the velocity of the system.
By differentiation we may obtain expressions which we shall find

useful,

∂v◦

∂v
=

1√
1− u2

c2

, (195)
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∂v◦

∂ẋ
=

v(
1− u2

c2

) 3
2

ẋ

c2
=

v◦(
1− u2

c2

) ẋ

c2
. (196)

142. Transformation Equation for Entropy. As for the entropy
of a thermodynamic system, this is a quantity which must appear the
same to all observers regardless of their motion. This invariance of
entropy is a direct consequence of the close relation between the entropy
of a system in a given state and the probability of that state. Let
us write, in accordance with the Boltzmann-Planck ideas as to the
interdependence of these quantities,

S = k logW,

where S is the entropy of the system in the state in question, k is
a universal constant, and W the probability of having a microscopic
arrangement of molecules or other elementary constituent parts which
corresponds to the desired thermodynamic state. Since this probability
is evidently independent of the relative motion of the observer and the
system we see that the entropy of a system S must be an invariant and
may write

S = S◦. (197)

143. Introduction of the Principle of Least Action. The
Kinetic Potential. We are now in a position to introduce the principle
of least action into our considerations by choosing a form of function for
the kinetic potential which will agree at low velocities with the familiar
principles of thermodynamics and will agree at all velocities with the
requirements of the theory of relativity.

If we use volume and entropy as our generalized coördinates, these
conditions are met by taking for kinetic potential the expression

H = −E◦
√

1− u2

c2
. (198)
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This expression agrees with the requirements of the theory of rela-

tivity that
H√

1− u2

c2

shall be an invariant (see Section 111) and at low

velocities reduces to H = −E, which with our choice of coördinates is
the familiar form for the kinetic potential of a thermodynamic system.

It should be noted that this expression for the kinetic potential
of a thermodynamic system applies of course only provided we pick
out volume v and entropy S as generalized coördinates. If, following
Helmholtz, we should think it more rational to take v as one coördi-
nate and a quantity θ whose time derivative is equal to temperature,
θ̇ = T , as the other coördinate, we should obtain of course a different
expression for the kinetic potential; in fact should have under those
circumstances

H = (E◦ − T ◦S◦)
√

1− u2

c2
.

Using this value of kinetic potential, however, with the corresponding
coördinates we should obtain results exactly the same as those which we
are now going to work out with the help of the other set of coördinates.

144. The Lagrangian Equations. Having chosen a form for the
kinetic potential we may now substitute into the Lagrangian equa-
tions (139) and obtain the desired information with regard to the be-
havior of thermodynamic systems.

Since we shall consider cases in which the energy of the system
is independent of the position in space, the kinetic potential will be
independent of the coördinates x, y and z, depending only on their time
derivatives. Noting also that the kinetic potential is independent of the
time derivatives of volume and entropy, we shall obtain the Lagrangian
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equations in the simple form

− ∂

∂v

(
−E◦

√
1− u2

c2

)
= −p,

− ∂

∂S

(
−E◦

√
1− u2

c2

)
= T,

d

dt

∂

∂ẋ

(
−E◦

√
1− u2

c2

)
= Fx,

d

dt

∂

∂ẏ

(
−E◦

√
1− u2

c2

)
= Fy,

d

dt

∂

∂ż

(
−E◦

√
1− u2

c2

)
= Fz.

(199)

145. Transformation Equation for Pressure. We may use the
first of these equations to show that the pressure is a quantity which
appears the same to all observers regardless of their relative motion.
We have

p =
∂

∂v

(
−E◦

√
1− u2

c2

)
= −

√
1− u2

c2
∂E◦

∂v
= −

√
1− u2

c2
∂E◦

∂v◦
∂v◦

∂v
.

But, in accordance with equation (194), p◦ = −∂E
◦

∂v◦
, and in accordance

with equation (195),
∂v◦

∂v
=

1√
1− u2

c2

,

which gives us the desired relation

p = p◦. (200)
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Defining pressure as force per unit area, this result will be seen to be
identical with that which is obtained from the transformation equations
for force and area which result from our earliest considerations.

146. Transformation Equation for Temperature. The second
of the Lagrangian equations (199) will provide us information as to
measurements of temperature made by observers moving with different
velocities. We have

T =
∂

∂S

(
E◦
√

1− u2

c2

)
=

√
1− u2

c2
∂E◦

∂S◦
∂S◦

∂S
.

But, in accordance with equation (194),
∂E◦

∂S◦
= T ◦ and in accordance

with (197)
∂S◦

∂S
= 1. We obtain as our transformation equation,

T = T ◦
√

1− u2

c2
, (201)

and see that the quantity
T√

1− u2

c2

is an invariant for the Lorentz

transformation.
147. The Equations of Motion for Quasistationary Adia-

batic Acceleration. Let us now turn our attention to the last three
of the Lagrangian equations. These are the equations for the motion of
a thermodynamic system under the action of external force. It is evi-
dent, however, that these equations will necessarily apply only to cases
of quasistationary acceleration, since our development of the principle
of least action gave us an equation for kinetic potential which was true
only for systems of infinitesimal extent or large systems in a steady
internal state. It is also evident that we must confine our considera-
tions to cases of adiabatic acceleration, since otherwise the value of E◦
which occurs in the expression for kinetic potential might be varying
in a perfectly unknown manner.
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The Lagrangian equations for force may be advantageously trans-
formed. We have

Fx =
d

dt

∂

∂ẋ

(
−E◦

√
1− u2

c2

)
=

d

dt

[
E◦√

1− u2

c2

ẋ

c2
−
√

1− u2

c2
∂E◦

∂ẋ

]

=
d

dt

{
E◦√

1− u2

c2

ẋ

c2
−
√

1− u2

c2

(
∂E◦

∂v◦
∂v◦

∂ẋ
+
∂E◦

∂S◦
∂S◦

∂ẋ

)}
.

But by equations (194), (196) and (197) we have

∂E◦

∂v◦
= −p◦, ∂v◦

∂ẋ
=

v◦(
1− u2

c2

) ẋ

c2
, and

∂S◦

∂ẋ
= 0.

We obtain

Fx =
d

dt

{
E◦ + p◦v◦√

1− u2

c2

ẋ

c2

}
. (202)

Similar equations may be obtained for the components of force in
the Y and Z directions and these combined to give the vector equation

F =
d

dt

{
E◦ + p◦v◦√

1− u2

c2

u

c2

}
. (203)

This is the fundamental equation of motion for the dynamics of a
thermodynamic system.

148. The Energy of a Moving Thermodynamic System. We
may use this equation to obtain an expression for the energy of a mov-
ing thermodynamic system. If we adiabatically accelerate a thermo-
dynamic system in the direction of its motion, its energy will increase
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both because of the work done by the force

F =
d

dt

{
E◦ + p◦v◦√

1− u2

c2

u

c2

}

which produces the acceleration and because of the work done by the
pressure p = p◦ which acts on a volume which is continually dimin-
ishing as the velocity u increases, in accordance with the expression

v = v◦
√

1− u2

c2
. Hence we may write for the total energy

E = E◦ +

∫ u

0

d

dt

{
E◦ + p◦v◦√

1− u2

c2

u

c2

}
u dt+ p◦v◦

(
1−

√
1− u2

c2

)
,

E =
E◦ + p◦v◦√

1− u2

c2

− p◦v◦
√

1− u2

c2
=
E◦ + p◦v◦√

1− u2

c2

− pv. (204)

149. The Momentum of a Moving Thermodynamic System.
We may compare this expression for the energy of a thermodynamic
system with the following expression for momentum which is evident
from the equation (203) for force:

G =
E◦ + p◦v◦√

1− u2

c2

u

c2
. (205)

We find again, as in our treatment of elastic bodies presented in the
last chapter, that the momentum of a moving system may be calculated
by taking the total flow of energy in the desired direction and dividing
by c2. Thus, comparing equations (204) and (205), we have

G =
E

c2
u +

pv

c2
u, (206)
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where the term
E

c2
u takes care of the energy transported bodily along

by the system and the term
pv

c2
u takes care of the energy transferred

in the u direction by the action of the external pressure on the rear and
front end of the moving system.

150. The Dynamics of a Hohlraum. As an application of our
considerations we may consider the dynamics of a hohlraum, since a
hohlraum in thermodynamic equilibrium is of course merely a special
example of the general dynamics which we have just developed. The
simplicity of the hohlraum and its importance from a theoretical point
of view make it interesting to obtain by the present method the same
expression for momentum that can be obtained directly but with less
ease of calculation from electromagnetic considerations.

As is well known from the work of Stefan and Boltzmann, the energy
content E◦ and pressure p◦ of a hohlraum at rest and in thermodynamic
equilibrium are completely determined by the temperature T ◦ and vol-
ume v◦ in accordance with the equations

E◦ = av◦T ◦4,

p◦ =
a

3
T ◦4,

where a is the so-called Stefan’s constant.
Substituting these values of E◦ and p◦ in the equation for the motion

of a thermodynamic system (203), we obtain

F =
d

dt

[
4

3

av◦T ◦4√
1− u2

c2

u

c2

]
=

d

dt

[
4

3

avT 4(
1− u2

c2

)3

u

c2

]
(207)

as the equation for the quasistationary adiabatic acceleration of a
hohlraum. In view of this equation we may write for the momentum
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of a hohlraum the expression

G =
4

3

av◦T ◦4√
1− u2

c2

u

c2
. (208)

It is a fact of significance that our dynamics leads to a result for the
momentum of a hohlraum which had been adopted on the ground of
electromagnetic considerations even without the express introduction
of relativity theory.



CHAPTER XII.

ELECTROMAGNETIC THEORY.

The Einstein theory of relativity proves to be of the greatest signif-
icance for electromagnetics. On the one hand, the new electromagnetic
theory based on the first postulate of relativity obviously accounts in
a direct and straightforward manner for the results of the Michelson-
Morley experiment and other unsuccessful attempts to detect an ether
drift, and on the other hand also accounts just as simply for the phe-
nomena of moving dielectrics as did the older theory of a stationary
ether. Furthermore, the theory of relativity provides considerably sim-
plified methods for deriving a great many theorems which were already
known on the basis of the ether theory, and gives us in general a clarified
insight into the nature of electromagnetic action.

151. The Form of the Kinetic Potential. In Chapter IX we in-
vestigated the general relation between the principle of least action and
the theory of the relativity of motion. We saw that the development
of any branch of dynamics would agree with the requirements of rela-
tivity provided only that the kinetic potential H has such a form that

the quantity
H√

1− u2

c2

is an invariant for the Lorentz transformation.

Making use of this discovery we have seen the possibility of developing
the dynamics of a particle, the dynamics of an elastic body, and the
dynamics of a thermodynamic system, all of them in forms which agree
with the theory of relativity by merely introducing slight modifications
into the older expressions for kinetic potential in such a way as to obtain

the necessary invariance for
H√

1− u2

c2

. In the case of electrodynamics,

however, on account of the closely interwoven historical development of
the theories of electricity and relativity, we shall not find it necessary
to introduce any modification in the form of the kinetic potential, but

183
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may take for H the following expression, which is known to lead to the
familiar equations of the Lorentz electron theory

H =

∫
dV

{
e2

2
+

curl φ)2

2
− φ ·

(
ė

c
+ ρ

u

c

)}
, (209)

where the integration is to extend over the whole volume of the sys-
tem V , e is the intensity of the electric field at the point in question,
φ is the value of the vector potential, ρ the density of charge and u its
velocity.∗

Let us now show that the expression which we have chosen for ki-
netic potential does lead to the familiar equations of the electron theory.

152. The Principle of Least Action. If now we denote by f the
force per unit volume of material exerted by the electromagnetic action
it is evident that we may write in accordance with the principle of least
action (135)∫

dt dV

[
δ

{
e2

2
+

(curl φ)2

2
− φ ·

(
ė

c
+ ρ

u

c

)}
+ f · δr

]
= 0, (210)

where δr is the variation in the radius vector to the particle under con-
sideration, and where the integration is to be taken over the whole vol-
ume occupied by the system and between two instants of time t1 and t2
at which the actual and displaced configurations of the system coincide.

153. The Partial Integrations. In order to simplify this equation,
we shall need to make use of two results which can be obtained by
partial integrations with respect to time and space respectively.

∗Strictly speaking this expression for kinetic potential is not quite correct, since
kinetic potential must have the dimensions of energy. To complete the equation
and give all the terms their correct dimensions, we could multiply the first term by
the dielectric inductivity of free space ε, and the last two terms by the magnetic
permeability µ. Since, however, ε and µ have the numerical value unity with the
usual choice of units, we shall not be led into error in our particular considerations
if we omit these factors.
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Thus we may write∫ t2

t1

dt (a δ̇b) =

∫ t2

t1

a d(δb) = [a δb]t2t1 −
∫ t2

t1

dt

(
da

dt
δb

)
,

or, since the displaced and actual motions coincide at t1 and t2,∫
dt (a δ̇b) = −

∫
dt

(
da

dt
δb

)
. (211)

We may also write∫
dV

(
a
db

dx

)
=

∫
dy dz (a db) =

∫
dy dz [ab]x=+∞

x=−∞ −
∫
dV

(
b
da

dx

)
,

or, since we are to carry out our integrations over the whole volume
occupied by the system, we shall take our functions as zero at the
limits of integration and may write∫

dV

(
a
db

dx

)
= −

∫
dV

(
b
da

dx

)
. (212)

Since similar considerations apply to derivatives with respect to the
other variables y and z, we can also obtain∫

dV a div b = −
∫
dV b · grad a, (213)∫

dV a · curl b =

∫
dV b · curl a. (214)

154. Derivation of the Fundamental Equations of Electro-
magnetic Theory. Making use of these purely mathematical re-
lationships we are now in a position to develop our fundamental
equation (210). Carrying out the indicated variation, noting that
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δu =
d(δr)

dt
and making use of (211) and (214) we easily obtain∫

dt dV

[{
e +

1

c

∂φ

∂t

}
· δe +

{
curl curl φ−

(
ė

c
+ ρ

u

c

)}
· δφ

− φ

c
· δ(ρu) + f · δr

]
= 0.

(215)

In developing the consequences of this equation, it should be noted,
however, that the variations are not all of them independent; thus, since
we shall define the density of charge by the equation

ρ = div e, (216)

it is evident that it will be necessary to preserve the truth of this equa-
tion in any variation that we carry out. This can evidently be done if
we add to our equation (215) the expression∫

dt dV ψ[δρ− div δe] = 0,

where ψ is an undetermined scalar multiplier. We then obtain with the
help of (213)∫

dt dV

[{
e +

1
c

∂φ

∂t
+ gradψ

}
· δe

+
{

curl curlφ−
(

ė
c

+ ρ
u
c

)}
· δφ− φ

c
· δ(ρu) + ψ δρ+ f · δr

]
= 0,

(217)

and may now treat the variations δe and δφ as entirely independent of
the others; we must then have the following equations true

e = −1

c

∂φ

∂t
− gradψ, (218)

curl curl φ =
ė

c
+
ρu

c
, (219)
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and have thus derived from the principle of least action the fundamental
equations of modern electron theory. We may put these in their familiar
form by defining the magnetic field strength h by the equation

h = curl φ. (220)

We then obtain from (219)

curl h =
1

c

∂e

∂t
+ ρ

u

c
, (221)

and, noting the mathematical identity curl gradψ = 0, we obtain from
(218)

curl e = −1

c

∂h

∂t
. (222)

We have furthermore by definition (216)

div e = ρ, (223)

and noting equation (220) may write the mathematical identity

div h = 0. (224)

These four equations (221)–(224) are the familiar expressions which
have been made the foundation of modern electron theory. They differ
from Maxwell’s original four field equations only by the introduction
in (221) and (223) of terms which arise from the density of charge ρ of
the electrons, and reduce to Maxwell’s set in free space.

155. We have not yet made use of the last three terms in the
fundamental equation (217) which results from the principle of least
action. As a matter of fact, it can be shown that these terms can be
transformed into the expression∫

dt dV

[
ρ

c

∂φ

∂t
− ρ

c
[u× curl φ]∗ + ρ gradψ + f

]
· δr, (225)
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and hence lead to the familiar fifth fundamental equation of modern
electron theory,

f = ρ

{
−∂φ
c∂t
− gradψ +

[u
c
× curl Φ

]∗}
,

f = ρ
{

e +
[u
c
× h

]∗}
. (226)

The transformation of the last three terms of (217) into the form given
above (225) is a complicated one and it has not seemed necessary to
present it here since in a later paragraph we shall show the possibility
of deriving the fifth fundamental equation of the electron theory (226)
by combining the four field equations (221)–(224) with the transforma-
tion equations for force already obtained from the principle of relativity.
The reader may carry out the transformation himself, however, if he
makes use of the partial integrations which we have already obtained,
notes that in accordance with the principle of the conservation of elec-

tricity we must have δρ = − div ρ δr and notes that δu =
d(δr)

dt
, where

the differentiation
d

dt
indicates that we are following some particular

particle in its motion, while the differentiation
∂

∂t
occurring in

∂φ

∂t
in-

dicates that we intend the rate of change at some particular stationary
point.

156. The Transformation Equations for e, h and ρ. We have
thus shown the possibility of deriving the fundamental equations of
modern electron theory from the principle of least action. We now wish
to introduce the theory of relativity into our discussions by presenting
a set of equations for transforming measurements of e, h and ρ from
one set of space-time coördinates S to another set S ′ moving past S in
the X direction with the velocity V . This set of equations is as follows:

ex
′ = ex, ey

′ = κ

(
ey − V

c
hz

)
, ez

′ = κ

(
ez +

V

c
hy

)
, (227)

hx
′ = hx, hy

′ = κ

(
hy +

V

c
ez

)
, hz

′ = κ

(
hz − V

c
ey

)
, (228)
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ρ′ = ρκ

(
1− uzV

c2

)
, (229)

where κ has its customary significance
1√

1− V 2

c2

.

As a matter of fact, this set of transformation equations fulfills all
the requirements imposed by the theory of relativity. Thus, in the first
place, it will be seen, on development, that these equations are them-
selves perfectly symmetrical with respect to the primed and unprimed
quantities except for the necessary change from +V to −V . In the
second place, it will be found that the substitution of these equations
into our five fundamental equations for electromagnetic theory (221),
(222), (223), (224), (226) will successfully transform them into an en-
tirely similar set with primed quantities replacing the unprimed ones.
And finally it can be shown that these equations agree with the general

requirement derived in Chapter IX that the quantity
H√

1− u2

c2

shall be

an invariant for the Lorentz transformation.
To demonstrate this important invariance of

H√
1− u2

c2

we may point

out that by introducing equations (220), (221) and (214), our original
expression for kinetic potential

H =

∫
dV

{
e2

2
+

(curl φ)2

2
− φ ·

(
ė

c
+ ρ

u

c

)}
can easily be shown equal to∫

dV

(
e2

2
− h2

2

)
, (230)
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and, noting that our fundamental equations for space and time provide
us with the relation

dV√
1− u2

c2

=
dV ′√
1− u′

2

c2

,

we can easily show that our transformation equations for e and h do
lead to the equality

H√
1− u2

c2

=
H ′√

1− u′
2

c2

.

We thus know that our development of the fundamental equations
for electromagnetic theory from the principle of least action is indeed
in complete accordance with the theory of relativity, since it conforms
with the general requirement which was found in Chapter IX to be
imposed by the theory of relativity on all dynamical considerations.

157. The Invariance of Electric Charge. As to the significance
of the transformation equations which we have presented for e, h and ρ,
we may first show, in accordance with the last of these equations, that
a given electric charge will appear the same to all observers no matter
what their relative motion.

To demonstrate this we merely have to point out that, by introduc-
ing equation (17), we may write our transformation equation for ρ (229)
in the form

ρ′

ρ
=

√
1− u2

c2√
1− u′

2

c2

,

which shows at once that the two measurements of density of charge
made by O and O′ are in exactly the same ratio as the corresponding
measurements for the Lorentz shortening of the charged body, so that
the total charge will evidently measure the same for the two observers.
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We might express this invariance of electric charge by writing the
equation

Q′ = Q. (231)

It should be noted in passing that this result is in entire accord
with the whole modern development of electrical theory, which lays
increasing stress on the fundamentality and indivisibility of the electron
as the natural unit quantity of electricity. On this basis the most direct
method of determining the charge on an electrified body would be to
count the number of electrons present and this number must obviously
appear the same both to observer O and observer O′.∗

158. The Relativity of Magnetic and Electric Fields. As
to the significance of equations (227) and (228) for transforming the
values of the electric and magnetic field strengths from one system
to another, we see that at a given point in space we may distinguish
between the electric vector e = ex i + ey j + ez k as measured by our
original observer O and the vector e′ = ex

′ i + ey
′ j + ez

′ k as measured
in units of his own system by an observer O′ who is moving past O
with the velocity V in the X direction. Thus if O finds in an unvarying
electromagnetic field that Qe is the force on a small test charge Q which
is stationary with respect to his system, O′ will find experimentally for a
similar test charge that moves along with him a value for the force Qe′,
where e′ can be calculated from with the help of these equations (227).
Similar remarks would apply to the forces which would act on magnetic
poles.

These considerations show us that we should now use caution in
speaking of a pure electrostatic or pure magnetic field, since the de-
scription of an electromagnetic field is determined by the particular
choice of coördinates with reference to which the field is measured.

159. Nature of Electromotive Force. We also see that the
“electromotive” force which acts on a charge moving through a magnetic

∗A similar invariance of electric charge has been made fundamental in the au-
thor’s development of the theory of similitude (i.e., the theory of the relativity of
size). See for example Phys. Rev., vol. 3, p. 244 (1914).
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field finds its interpretation as an “electric” force provided we make use
of a system of coördinates which are themselves stationary with respect
to the charge. Such considerations throw light on such questions, for
example, as to the seat of the “electromotive” forces in “homopolar”
electric dynamos where there is relative motion of a conductor and a
magnetic field.

Derivation of the Fifth Fundamental Equation.

160. We may now make use of this fact that the forces acting on
a moving charge of electricity may be treated as purely electrostatic,
by using a set of coördinates which are themselves moving along with
the charge, to derive the fifth fundamental equation of electromagnetic
theory.

Consider an electromagnetic field having the values e and h for the
electric and magnetic field strengths at some particular point. What
will be the value of the electromagnetic force f acting per unit volume
on a charge of density ρ which is passing through the point in question
with the velocity u?

To solve the problem take a system of coördinates S ′ which itself
moves with the same velocity as the charge, for convenience letting the
X axis coincide with the direction of the motion of the charge. Since the
charge of electricity is stationary with respect to this system, the force
acting on it as measured in units of this system will be by definition
equal to the product of the charge by the strength of the electric field
as it appears to an observer in this system, so that we may write

F = Q′e′,

or
Fx
′ = Q′ex′, Fy

′ = Q′ey ′, Fz
′ = Q′ez ′.

For the components of the electrical field ex′, ey ′, ez ′, we have just ob-
tained the transformation equations (227), while in our earlier dynami-
cal considerations in Chapter VI we obtained transformation equations
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(61), (62), and (63) for the components of force. Substituting above
and bearing in mind that ux = V , uy = uz = 0, and that Q′ = Q, we
obtain on simplification

Fx = Qex,

Fy = Q
(
ey − ux

c
hz

)
,

Fz = Q
(
ez − ux

c
hy

)
,

which in vectorial form gives us the equation

F = Q

(
e− 1

c
[u× h]∗

)
or for the force per unit volume

f = ρ

(
e +

1

c
[u× h]∗

)
. (226)

This is the well-known fifth fundamental equation of the Maxwell-
Lorentz theory of electromagnetism. We have already indicated the
method by which it could be derived from the principle of least action.
This derivation, however, from the transformation equations, provided
by the theory of relativity, is particularly simple and attractive.

Difference between the Ether and the Relativity Theories of
Electromagnetism.

161. In spite of the fact that we have now found five equations
which can be used as a basis for electromagnetic theory which agree
with the requirements of relativity and also have exactly the same form
as the five fundamental equations used by Lorentz in building up the
stationary ether theory, it must not be supposed that the relativity
and ether theories of electromagnetism are identical. Although the
older equations have exactly the same form as the ones which we shall



Chapter Twelve. 194

henceforth use, they have a different interpretation, since our equations
are true for measurements made with the help of any non-accelerated
set of coördinates, while the equations of Lorentz were, in the first in-
stance, supposed to be true only for measurements which were referred
to a set of coördinates which were stationary with respect to the as-
sumed luminiferous ether. Suppose, for example, we desire to calculate
with the help of equation (226),

t = ρ

(
e +

1

c
[u× h]∗

)
,

the force acting on a charged body which is moving with the velocity u;
we must note that for the stationary ether theory, u must be the velocity
of the charged body through the ether, while for us u may be taken as
the velocity past any set of unaccelerated coördinates, provided e and h
are measured with reference to the same set of coördinates. It will be
readily seen that such an extension in the meaning of the fundamental
equations is an important simplification.

162. A word about the development from the theory of a station-
ary ether to our present theory will not be out of place. When it was
found that the theory of a stationary ether led to incorrect conclusions
in the case of the Michelson-Morley experiment, the hypothesis was
advanced by Lorentz and Fitzgerald that the failure of that experiment
to show any motion through the ether was due to a contraction of the
apparatus in the direction of its motion through the ether in the ratio

1 :

√
1− u2

c2
. Lorentz then showed that if all systems should be thus

contracted in the line of their motion through the ether, and observers
moving with such system make use of suitably contracted meter sticks
and clocks adjusted to give what Lorentz called the “local time,” their
measurements of electromagnetic phenomena could be described by a
set of equations which have nearly the same form as the original four
field equations which would be used by a stationary observer. It will
be seen that Lorentz was thus making important progress towards our
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present idea of the complete relativity of motion. The final step could
not be taken, however, without abandoning our older ideas of space
and time and giving up the Galilean transformation equations as the
basis of kinematics. It was Einstein who, with clearness and boldness
of vision, pointed out that the failure of the Michelson-Morley experi-
ment, and all other attempts to detect motion through the ether, is not
due to a fortuitous compensation of effects but is the expression of an
important general principle, and the new transformation equations for
kinematics to which he was led have not only provided the basis for an
exact transformation of the field equations but have so completely rev-
olutionized our ideas of space and time that hardly a branch of science
remains unaffected.

163. With regard to the present status of the ether in scientific
theory, it must be definitely stated that this concept has certainly lost
both its fundamentality and the greater part of its usefulness, and this
has been brought about by a gradual process which has only found
its culmination in the work of Einstein. Since the earliest days of the
luminiferous ether, the attempts of science to increase the substantiality
of this medium have met with little success. Thus we have had solid
elastic ethers of most extreme tenuity, and ethers with a density of a
thousand tons per cubic millimeter; we have had quasi-material tubes
of force and lines of force; we have had vibratory gyrostatic ethers
and perfect gases of zero atomic weight; but after every debauch of
model-making, science has recognized anew that a correct mathematical
description of the actual phenomena of light propagation is superior to
any of these sublimated material media. Already for Lorentz the ether
had been reduced to the bare function of providing a stationary system
of reference for the measurement of positions and velocities, and now
even this function has been taken from it by the work of Einstein, which
has shown that any unaccelerated system of reference is just as good
as any other.

To give up the notion of an ether will be very hard for many physi-
cists, in particular since the phenomena of the interference and polar-
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ization of light are so easily correlated with familiar experience with
wave motions in material elastic media. Consideration will show us,
however, that by giving up the ether we have done nothing to destroy
the periodic or polarizable nature of a light disturbance. When a plane
polarized beam of light is passing through a given point in space we
merely find that the electric and magnetic fields at that point lie on
perpendiculars to the direction of propagation and undergo regular pe-
riodic changes in magnitude. There is no need of going beyond these
actual experimental facts and introducing any hypothetical medium. It
is just as simple, indeed simpler, to say that the electric or magnetic
field has a certain intensity at a given point in space as to speak of a
complicated sort of strain at a given point in an assumed ether.

Applications to Electromagnetic Theory.

164. The significant fact that the fundamental equations of the new
electromagnetic theory have the same form as those of Lorentz makes it
of course possible to retain in the structure of modern electrical theory
nearly all the results of his important researches, care being taken to
give his mathematical equations an interpretation in accordance with
the fundamental ideas of the theory of relativity. It is, however, entirely
beyond our present scope to make any presentation of electromagnetic
theory as a whole, and in the following paragraphs we shall confine
ourselves to the proof of a few theorems which can be handled with
special ease and directness by the methods introduced by the theory of
relativity.

165. The Electric and Magnetic Fields around a Moving
Charge. Our transformation equations for the electromagnetic field
make it very easy to derive expressions for the field around a point
charge in uniform motion. Consider a point charge Q moving with the
velocity V . For convenience consider a system of reference S such that
Q is moving along the X axis and at the instant in question, t = 0, let
the charge coincide with the origin of coördinates O. We desire now to
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calculate the values of electric field e and the magnetic field h at any
point in space x, y, z.

Consider another system of reference, S ′, which moves along with
the same velocity as the charge Q, the origin of coördinates O′ and
the charge always coinciding in position. Since the charge is stationary
with respect to their new system of reference, we shall have the electric
field at any point x′, y′, z′ in this system given by the equations

ex
′ =

Qx′

(x′2 + y′2 + z′2)3/2
,

ey
′ =

Qy′

(x′2 + y′2 + z′2)3/2
,

ez
′ =

Qz′

(x′2 + y′2 + z′2)3/2
,

while the magnetic field will obviously be zero for measurements made
in system S ′, giving us

hx
′ = 0, hy

′ = 0, hz
′ = 0.

Introducing our transformation equations (9), (10) and (11) for x′, y′
and z′ and our transformation equations (227) and (228) for the electric
and magnetic fields and substituting t = 0, we obtain for the values of
e and h in system S at the instant when the charge passes through the
point O,

ex =
Qκx

(κ2x2 + y2 + z2)3/2
=

Q
(

1− V 2

c2

)
x[

x2 +
(

1− V 2

c2

)
(y2 + z2)

]3/2 ,
ey =

Qκy

(κ2x2 + y2 + z2)3/2
=

Q
(

1− V 2

c2

)
y[

x2 +
(

1− V 2

c2

)
(y2 + z2)

]3/2 ,
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ez =
Qκz

(κ2x2 + y2 + z2)3/2
=

Q
(

1− V 2

c2

)
z[

x2 +
(

1− V 2

c2

)
(y2 + z2)

]3/2 ,
hx = 0,

hy = −V
c
ez,

hz =
V

c
ey,

or, putting s for the important quantity

√
x2 +

(
1− V 2

c2

)
(y2 + z2)

and writing the equations in the vectorial form where we put

r = (x i + y j + z k),

we obtain the familiar equations for the field around a point charge in
uniform motion with the velocity u = V in the X direction

e = Q

(
1− u2

c2

)
r

s3
, (232)

h =
1

c
[u× e]∗. (233)

166. The Energy of a Moving Electromagnetic System. Our
transformation equations will permit us to obtain a very important
expression for the energy of an isolated electromagnetic system in terms
of the velocity of the system and the energy of the same system as it
appears to an observer who is moving along with it.

Consider a physical system surrounded by a shell which is imperme-
able to electromagnetic radiation. This system is to be thought of as
consisting of the various mechanical parts, electric charges and electro-
magnetic fields which are inside of the impermeable shell. The system
is free in space, except that it may be acted on by external electromag-
netic fields, and its energy content thus be changed.
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Let us now equate the increase in the energy of the system to the
work done by the action of the external field on the electric charges in
the system. Since the force which a magnetic field exerts on a charge
is at right angles to the motion of the charge it does no work and we
need to consider only the work done by the external electric field and
may write for the increase in the energy of the system

∆E =

∫∫∫∫
ρ(exux + eyuy + ezuz) dx dy dz dt, (234)

where the integration is to be taken over the total volume of the system
and over any time interval in which we may be interested.

Let us now transform this expression with the help of our transfor-
mation equations for the electric field (227) for electric charge (229),
and for velocities (14), (15), (16). Noting that our fundamental equa-
tions for kinematic quantities give us dx dy dz dt = dx′ dy′ dz′ dt′, we
obtain

∆E = κ

∫∫∫∫
ρ′(ex′ux′ + ey

′uy ′ + ez
′uz ′) dx′ dy′ dz′ dt′

+ κV

∫∫∫∫
ρ′
(
ex
′ +

uy
′

c
hz
′ − uz

′

c
hy
′
)
dx′ dy′ dz′ dt′.

Consider now a system which both at the beginning and end of our
time interval is free from the action of external forces ; we may then
rewrite the above equation for this special case in the form

∆E = κ∆E ′ + κV

∫ ∑
Fx
′ dt′,

where, in accordance with our earlier equation (234), ∆E ′ is the increase
in the energy of the system as it appears to observer O′ and

∑
Fx
′ is

the total force acting on the system in X direction as measured by O′.
The restriction that the system shall be unacted on by external

forces both at the beginning and end of our time interval is necessary
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because it is only under those circumstances that an integration be-
tween two values of t can be considered as an integration between two
definite values of t′, simultaneity in different parts of the system not
being the same for observers O and O′.

We may now apply this equation to a specially interesting case. Let
the system be of such a nature that we can speak of it as being at
rest with respect to S ′, meaning thereby that all the mechanical parts
have low velocities with respect to S ′ and that their center of gravity
moves permanently along with S ′. Under these circumstances we may
evidently put

∫ ∑
Fx
′ dt′ = 0 and may write the above equation in the

form

∆E =
∆E0√
1− u2

c2

,

or

∂∆E

∂E0

=
1√

1− u2

c2

,

where u is the velocity of the system, and E◦ is its energy as measured
by an observer moving along with it. The energy of a system which
is unacted on by external forces is thus a function of two variables, its
energy E0 as measured by an observer moving along with the system
and its velocity u.

We may now write

E =
1√

1− u2

c2

E0 + φ(u) + const.,

where φ(u) represents the energy of the system which depends solely
on the velocity of the system and not on the changes in its E0 values.
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φ(u) will thus evidently be the kinetic energy of the mechanical masses
in the system which we have already found (82) to have the value
m0c

2√
1− u2

c2

− m0c
2 where m0 is to be taken as the total mass of the

mechanical part of our system when at rest. We may now write

E =
1√

1− u2

c2

(m0c
2 + E0)−m0c

2 + const.

Or, assuming as before that the constant is equal to m0c
2, which will

be equivalent to making a system which has zero energy also have zero
mass, we obtain

E =
1√

1− u2

c2

(m0c
2 + E0), (235)

which is the desired expression for the energy of an isolated system
which may contain both electrical and mechanical parts.

167. Relation between Mass and Energy. This expression for
the energy of a system that contains electrical parts permits us to show
that the same relation which we found between mass and energy for
mechanical systems also holds in the case of electromagnetic energy.
Consider a system containing electromagnetic energy and enclosed by
a shell which is impermeable to radiation. Let us apply a force F to the
system in such a way as to change the velocity of the system without
changing its E0 value. We can then equate the work done per second
by the force to the rate of increase of the energy of the system. We
have

F · u =
dE

dt
.

But from equation (235) we can obtain a value for the rate of increase
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of energy
dE

dt
, giving us

F · u = Fxux + Fyuy + Fzuz =

(
m0 +

E0

c2

) u
du

dt(
1− u2

c2

)3
2

,

and solving this equation for F we obtain

F =
d

dt


(
m0 +

E0

c2

)
√

1− u2

c2

u

 , (236)

which for low velocities assumes the form

F =
d

dt

[(
m0 +

E0

c2

)
u

]
. (237)

Examination of these expressions shows that our system which con-
tains electromagnetic energy behaves like an ordinary mechanical sys-

tem with the mass
(
m0 +

E0

c2

)
at low velocities or

m0 +
E0

c2√
1− u2

c2

at any

desired velocity u. To the energy of the system E0, part of which is

electromagnetic, we must ascribe the mass
E0

c2
just as we found in the

case of mechanical energy. We realize again that matter and energy
are but different names for the same fundamental entity, 1021 ergs of
energy having the mass 1 gram.

The Theory of Moving Dielectrics.

168. The principle of relativity proves to be very useful for the
development of the theory of moving dielectrics.
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It was first shown by Maxwell that a theory of electromagnetic phe-
nomena in material media can be based on a set of field equations
similar in form to those for free space, provided we introduce besides
the electric and magnetic field strengths, E and F, two new field vec-
tors, the dielectric displacement D and the magnetic induction B, and
also the density of electric current in the medium i. These quantities
are found to be connected by the four following equations similar in
form to the four field equations for free space:

curl H =
1

c

(
∂D

∂t
+ i

)
, (238)

curl E = −1

c

∂B

∂t
, (239)

div D = ρ, (240)
div B = 0. (241)

For stationary homogeneous media, the dielectric displacement,
magnetic induction and electric current are connected with the electric
and magnetic field strengths by the following equations:

D = εE, (242)
B = µH, (243)
i = σE, (244)

where ε is the dielectric constant, µ the magnetic permeability and
σ the electrical conductivity of the medium in question.

169. Relation between Field Equations for Material Media
and Electron Theory. It must not be supposed that the four field
equations (238)–(241) for electromagnetic phenomena in material me-
dia are in any sense contradictory to the four equations (221)–(224)
for free space which we took as the fundamental basis for our develop-
ment of electromagnetic theory. As a matter of fact, one of the main
achievements of modern electron theory has been to show that the elec-
tromagnetic behavior of material media can be explained in terms of
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the behavior of the individual electrons and ions which they contain,
these electrons and ions acting in accordance with the four fundamen-
tal field equations for free space. Thus our new equations for material
media merely express from a macroscopic point of view the statisti-
cal result of the behavior of the individual electrons in the material in
question. E and H in these new equations are to be looked upon as the
average values of e and h which arise from the action of the individual
electrons in the material, the process of averaging being so carried out
that the results give the values which a macroscopic observer would
actually find for the electric and magnetic forces acting respectively on
a unit charge and a unit pole at the point in question. These average
values, E and H, will thus pay no attention to the rapid fluctuations of
e and h which arise from the action and motion of the individual elec-
trons, the macroscopic observer using in fact differentials for time, dt,
and space, dx, which would be large from a microscopic or molecular
viewpoint.

Since from a microscopic point of view E and H are not really
the instantaneous values of the field strength at an actual point in
space, it has been found necessary to introduce two new vectors, electric
displacement, D, and magnetic induction, B, whose time rate of change
will determine the curl of E and H respectively. It will evidently be
possible, however, to relate D and B to the actual electric and magnetic
fields e and h produced by the individual electrons, and this relation
has been one of the problems solved by modern electron theory, and the
field equations (238)–(241) for material media have thus been shown
to stand in complete agreement with the most modern views as to the
structure of matter and electricity. For the purposes of the rest of
our discussion we shall merely take these equations as expressing the
experimental facts in stationary or in moving media.

170. Transformation Equations for Moving Media. Since
equations (238) to (241) are assumed to give a correct description of
electromagnetic phenomena in media whether stationary or moving
with respect to our reference system S, it is evident that the equa-
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tions must be unchanged in form if we refer our measurements to a
new system of coördinates S ′ moving past S, say, with the velocity V
in the X direction.

As a matter of fact, equations (238) to (241) can be transformed
into an entirely similar set

curl H′ =
1

c

(
∂D′

∂t′
+ i′
)
,

curl E′ = −1

c

∂B′

∂t′
,

div D′ = ρ′,

div B′ = 0,

provided we substitute for x, y, z and t the values of x′, y′, z′ and t′

given by the fundamental transformation equations for space and time
(9) to (12), and substitute for the other quantities in question the re-
lations

Ex
′ = Ex, Ey

′ = κ

(
Ey − V

c
Bz

)
, Ez

′ = κ

(
Ez +

V

c
By

)
,

Dx
′ = Dx, Dy

′ = κ

(
Dy − V

c
Hz

)
, Dz

′ = κ

(
Dz +

V

c
Hy

)
,

(245)

Hx
′ = Hx, Hy

′ = κ

(
Hy +

V

c
Dz

)
, Hz

′ = κ

(
Hz − V

c
Dy

)
,

Bx
′ = Bx, By

′ = κ

(
By +

V

c
Ez

)
, Bz

′ = κ

(
Bz − V

c
Ey

)
,

(246)

ρ′ = κ

(
ρ− V

c2
ix

)
, ix

′ = κ(ix − Vρ), iy
′ = iy, iz

′ = iz. (247)

It will be noted that for free space these equations will reduce to
the same form as our earlier transformation equations (227) to (229)
since we shall have the simplifications D = E, B = H and i = ρu.
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We may also call attention at this point to the fact that our funda-
mental equations for electromagnetic phenomena (238)–(241) in dielec-
tric media might have been derived from the principle of least action,
making use of an expression for kinetic potential which could be shown

equal to H =

∫
dV

(
E ·D

2
− H ·B

2

)
, and it will be noticed that our

transformation equations for these quantities are such as to preserve

that necessary invariance for
H√

1− u2

c2

which we found in Chapter IX

to be the general requirement for any dynamical development which
agrees with the theory of relativity.

171. We are now in a position to handle the theory of moving me-
dia. Consider a homogeneous medium moving past a system of coör-
dinates S in the X direction with the velocity V ; our problem is to
discover relations between the various electric and magnetic vectors in
this medium. To do this, consider a new system of coördinates S ′ also
moving past our original system with the velocity V . Since the medium
is stationary with respect to this new system S ′ we may write for mea-
surements referred to S ′ in accordance with equations (242) to (244)
the relations

D′ = εE′,

B′ = µH′,

i′ = σE′,

which, as we have already pointed out, are known experimentally to be
true in the case of stationary, homogeneous media. ε, µ and σ are evi-
dently the values of dielectric constant, permeability and conductivity
of the material in question, which would be found by an experimenter
with respect to whom the medium is stationary.

Making use of our transformation equations (245) to (247) we can
obtain by obvious substitutions the following set of relations for mea-
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surements made with respect to the original system of coördinates S:

Dx = εEx,

Dy − V

c
Hz = ε

(
Ey − V

c
Bz

)
,

Dz +
V

c
Hy = ε

(
Ez +

V

c
By

)
,

(248)

Bx = µHx,

By +
V

c
Ez = µ

(
Hy +

V

c
Dz

)
,

Bz − V

c
Ey = µ

(
Hz − V

c
Dy

)
,

(249)

κ(ix − Vρ) = σEx,

iy = σκ

(
Ey − V

c
Bz

)
,

iz = σκ

(
Ez +

V

c
By

)
.

(250)

172. Theory of the Wilson Experiment. The equations which
we have just developed for moving media are, as a matter of fact, in
complete accord with the celebrated experiment of H. A. Wilson on
moving dielectrics and indeed all other experiments that have been
performed on moving media.

Wilson’s experiment consisted in the rotation of a hollow cylinder
of dielectric, in a magnetic field which was parallel to the axis of the
cylinder. The inner and outer surfaces of the cylinder were covered
with a thin metal coating, and arrangements made with the help of wire
brushes so that electrical contact could be made from these coatings to
the pairs of quadrants of an electrometer. By reversing the magnetic
field while the apparatus was in rotation it was possible to measure with
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the electrometer the charge produced by the electrical displacement in
the dielectric. We may make use of our equations to compute the
quantitative size of the effect.

Y

Z

X

AA

Fig. 15.

Let Fig. 15 represent a cross-section of the rotating cylinder. Con-
sider a section of the dielectric AA which is moving perpendicularly to
the plane of the paper in the X direction with the velocity V . Let the
magnetic field be in the Y direction parallel to the axis of rotation. The
problem is to calculate dielectric displacement Dz in the Z direction.

Referring to equations (248) we have

Dz +
V

c
Hy = ε

(
Ez +

V

c
By

)
,

and, substituting the value of By given by equations (249),

By +
V

c
Ez = µ

(
Hy +

V

c
Dz

)
we obtain(

1− εµ V
2

c2

)
Dz = ε

(
1− V 2

c2

)
Ez +

V

c
(εµ− 1)Hy,

or, neglecting terms of orders higher than
V

c
, we have

Dz = εEz +
V

c
(εµ− 1)Hy. (251)
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For a substance whose permeability is practically unity such as Wil-
son actually used the equation reduces to

Dz = εEz +
V

c
(ε− 1)Hy,

and this was found to fit the experimental facts, since measurements
with the electrometer show the surface charge actually to have the
magnitude Dz per square centimeter in accordance with our equation
divD = ρ.

It would be a matter of great interest to repeat the Wilson exper-
iment with a dielectric of high permeability so that we could test the
complete equation (251). This is of some importance since the original
Lorentz theory led to a different equation,

Dz = εEz +
V

c
(ε− 1)µHy.



CHAPTER XIII.

FOUR-DIMENSIONAL ANALYSIS.

173. In the present chapter we shall present a four-dimensional
method of expressing the results of the Einstein theory of relativity, a
method which was first introduced by Minkowski, and in the form which
we shall use, principally developed by Wilson and Lewis. The point of
view adopted consists essentially in considering the properties of an
assumed four-dimensional space in which intervals of time are thought
of as plotted along an axis perpendicular to the three Cartesian axes of
ordinary space, the science of kinematics thus becoming the geometry
of this new four-dimensional space.

The method often has very great advantages not only because it
sometimes leads to considerable simplification of the mathematical form
in which the results of the theory of relativity are expressed, but also
because the analogies between ordinary geometry and the geometry of
this imaginary space often suggest valuable modes of attack. On the
other hand, in order to carry out actual numerical calculations and
often in order to appreciate the physical significance of the conclusions
arrived at, it is necessary to retranslate the results obtained by this
four-dimensional method into the language of ordinary kinematics. It
must further be noted, moreover, that many important results of the
theory of relativity can be more easily obtained if we do not try to
employ this four-dimensional geometry. The reader should also be on
his guard against the fallacy of thinking that extension in time is of
the same nature as extension in space merely because intervals of space
and time can both be represented by plotting along axes drawn on the
same piece of paper.

174. Idea of a Time Axis. In order to grasp the method let us
consider a particle constrained to move along a single axis, say OX, and
let us consider a time axis OT perpendicular to OX. Then the position
of the particle at any instant of time can be represented by a point in
the XT plane, and its motion as time progresses by a line in the plane.

210
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If, for example, the particle were stationary, its behavior in time and
space could be represented by a line parallel to the time axis OT as
shown for example by the line ab in Fig. 16. A particle moving with

O X

T

a

b
c

∆x

∆t

Fig. 16.

the uniform velocity u =
dx

dt
could be represented by a straight line ac

making an angle with the time axes, and the kinematical behavior of
an accelerated particle could be represented by a curved line.

By conceiving of a four -dimensional space we can extend this
method which we have just outlined to include motion parallel to
all three space axes, and in accordance with the nomenclature of
Minkowski might call such a geometrical representation of the space-
time manifold “the world,” and speak of the points and lines which
represent the instantaneous positions and the motions of particles as
“world-points” and “world-lines.”

175. Non-Euclidean Character of the Space. It will be at once
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evident that the graphical method of representing kinematical events
which is shown by Fig. 16 still leaves something to be desired. One
of the most important conclusions drawn from the theory of relativity
was the fact that it is impossible for a particle to move with a velocity
greater than that of light, and it is evident that there is nothing in our
plot to indicate that fact, since we could draw a line making any desired
angle with the time axis, up to perpendicularity, and thus represent
particles moving with any velocity up to infinity,

u =
∆x

∆t
=∞.

It is also evident that there is nothing in our plot to correspond to
that invariance in the velocity of light which is a cornerstone of the
theory of relativity. Suppose, for example, the line OC, in Fig. 17,

represents the trajectory of a beam of light with the velocity
∆x

∆t
= c;

there is then nothing so far introduced into our method of plotting to
indicate the fact that we could not equally well make use of another
set of axes OX ′T ′, inclined to the first and thus giving quite a different

value,
∆x′

∆t′
, to the velocity of the beam of light.

There are a number of methods of meeting this difficulty and obtain-
ing the invariance for the four-dimensional expression x2 +y2 +z2−c2t2
(see Chapter IV) which must characterize our system of kinematics.
One of these is to conceive of a four-dimensional Euclidean space with
an imaginary time axis, such that instead of plotting real instants
in time along this axis we should plot the quantity l = ict where
i =
√−1. In this way we should obtain invariance for the quantity

x2 + y2 + z2 + l2 = x2 + y2 + z2 − c2t2, since it may be regarded as
the square of the magnitude of an imaginary four-dimensional radius
vector. This method of treatment has been especially developed by
Minkowski, Laue, and Sommerfeld. Another method of attack, which
has been developed by Wilson and Lewis and is the one which we shall
adopt in this chapter, is to use a real time axis, for plotting the real
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X ′

T ′

∆x

∆t

c

∆x ′

∆t ′

O X

T

Fig. 17.

quantity ct, but to make use of a non-Euclidean four-dimensional space
in which the quantity (x2 +y2 +z2−c2t2) is itself taken as the square of
the magnitude of a radius vector. This latter method has of course the
disadvantages that come from using a non-Euclidean space; we shall
find, however, that these reduce largely to the introduction of certain
rules as to signs. The method has the considerable advantage of retain-
ing a real time axis which is of some importance, if we wish to visualize
the methods of attack and to represent them graphically.
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We may now proceed to develop an analysis for this non-Euclidean
space. We shall find this to be quite a lengthy process but at its com-
pletion we shall have a very valuable instrument for expressing in con-
densed language the results of the theory of relativity. Our method of
treatment will be almost wholly analytical, and the geometrical analo-
gies may be regarded merely as furnishing convenient names for useful
analytical expressions. A more geometrical method of attack will be
found in the original work of Wilson and Lewis.

part i. vector analysis of the non-euclidean
four-dimensional manifold.

176. Consider a four-dimensional manifold in which the position
of a point is determined by a radius vector

r = (x1k1 + x2k2 + x3k3 + x4k4),

where k1, k2, k3 and k4 may be regarded as unit vectors along four
mutually perpendicular axes and x1, x2, x3, and x4 as the magnitudes
of the four components of r along these four axes. We may identify
x1, x2, and x3 with the three spatial coördinates of a point x, y and z
with reference to an ordinary set of space axes and consider x4 as a
coördinate which specifies the time (multiplied by the velocity of light)
when the occurrence in question takes place at the point xyz. We have

x1 = x, x2 = y, x3 = z, x4 = ct, (252)

and from time to time we shall make these substitutions when we wish
to interpret our results in the language of ordinary kinematics. We
shall retain the symbols x1, x2, x3, and x4 throughout our development,
however, for the sake of symmetry.

177. Space, Time and Singular Vectors. Our space will differ
in an important way from Euclidean space since we shall consider three
classes of one-vector, space, time and singular vectors. Considering
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the coördinates x1, x2, x3, and x4 which determine the end of a radius
vector,
Space or γ-vectors will have components such that

(x1
2 + x2

2 + x3
2) > x4

2,

and we shall put for their magnitude

s =
√
x1

2 + x2
2 + x3

2 − x4
2. (253)

Time or δ-vectors will have components such that

x4
2 > (x1

2 + x2
2 + x3

2),

and we shall put for their magnitude

s =
√
x4

2 − x1
2 − x2

2 − x3
2. (254)

Singular or α-vectors will have components such that

(x1
2 + x2

2 + x3
2) = x4

2,

and their magnitude will be zero.
178. Invariance of x2 + y2 + z2 − c2t2. Since we shall naturally

consider the magnitude of a vector to be independent of any particular
choice of axes we have obtained at once by our definition of magnitude
for any rotation of axes that invariance for the expression

(x1
2 + x2

2 + x3
2 − x4

2) = (x2 + y2 + z2 − c2t2),

which is characteristic of the Lorentz transformation, and have thus
evidently set up an imaginary space which will be suitable for plotting
kinematical events in accordance with the requirements of the theory
of the relativity of motion.
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179. Inner Product of One-Vectors. We shall define the inner
product of two one-vectors with the help of the following rules for the
multiplication of unit vectors along the axes

k1 ·k1 = k2 ·k2 = k3 ·k3 = 1, k4 ·k4 = −1, kn ·km = 0. (255)

It should be noted, of course, that there is no particular significance
in picking out the product k4 · k4 as the one which is negative; it
would be equally possible to develop a system in which the products
k1 · k1,k2 · k2 and k3 · k3 should be negative and k4 · k4 positive.

The above rules for unit vectors are sufficient to define completely
the inner product provided we include the further requirements that
this product shall obey the associative law for a scalar factor and the
distributive and commutative laws, namely

(na) · b = n(a · b) = (a · b)(n),

a · (b + c) = a · b + a · c,
a · b = b · a.

(256)

For the inner product of a one-vector by itself we shall have, in
accordance with these rules,

r · r = (x1k1 + x2k2 + x3k3 + x4k4) · (x1k1 + x2k2 + x3k3 + x4k4)

= (x2
1 + x2

2 + x2
3 − x2

4) (257)

and hence may use the following expressions for the magnitudes of
vectors in terms of inner product

s =
√

r · r for γ-vectors, s =
√−r · r for δ-vectors. (258)

For curved lines we shall define interval along the curve by the
equations ∫

ds =

∫ √
dr · dr for γ-curves,∫

ds =

∫ √−dr · dr for δ-curves.
(259)
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Our rules further show us that we may obtain the space components
of any one vector by taking its inner product with a unit vector along
the desired axis and may obtain the time component by taking the
negative of the corresponding product. Thus

r · k1 = (x1k1 + x2k2 + x3k3 + x4k4) · k1 = x1,

r · k2 = (x1k1 + x2k2 + x3k3 + x4k4) · k2 = x2,

r · k3 = (x1k1 + x2k2 + x3k3 + x4k4) · k3 = x3,

r · k4 = (x1k1 + x2k2 + x3k3 + x4k4) · k4 = −x4.

(260)

We see finally moreover in general that the inner product of any pair
of vectors will be numerically equal to the product of the magnitude
of either by the projection of the other upon it, the sign depending on
the nature of the vectors involved.

180. Non-Euclidean Angle. We shall define the non-Euclidean
angle θ between two vectors r1 and r2 in terms of their magnitudes
s1 and s2 by the expressions

±r1 · r2 = (s1 × projection s2) = s1s2 cosh θ, (261)

the sign depending on the nature of the vectors in the way indicated in
the preceding section. We note the analogy between this equation and
those familiar in Euclidean vector-analysis, the hyperbolic trigonomet-
ric functions taking the place of the circular functions used in the more
familiar analysis.

For the angle between unit vectors k and k′ we shall have

cosh θ = ±k · k′, (262)

where the sign must be chosen so as to make cosh θ positive, the plus
sign holding if both are γ-vectors and the minus sign if both are δ-
vectors.

181. Kinematical Interpretation of Angle in Terms of Ve-
locity. At this point we may temporarily interrupt the development of
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our four-dimensional analysis to consider a kinematical interpretation
of non-Euclidean angles in terms of velocity. It will be evident from our
introduction that the behavior of a moving particle can be represented
in our four-dimensional space by a δ-curve,∗ each point on this curve
denoting the position of the particle at a given instant of time, and it
is evident that the velocity of the particle will be determined by the
angle which this curve makes with the axes.

Let r be the radius vector to a given point on the curve and consider
the derivative of r with respect to the interval s along the curve; we
have

w =
dr

ds
=
dx1

ds
k1 +

dx2

ds
k2 +

dx3

ds
k3 +

dx4

ds
k4, (263)

and this may be regarded as a unit vector tangent to the curve at the
point in question.

If φ is the angle between the k4 axis and the tangent to the curve
at the point in question, we have by equation (262)

coshφ = −w · k4 =
dx4

ds
;

making the substitutions for x1, x2, x3, and x4, in terms of x, y, z and t
we may write, however,

ds =
√
dx2

4 − dx2
1 − dx2

2 − dx2
3 =

√
1− u2

c2
c dt, (264)

which gives us

coshφ =
1√

1− u2

c2

(265)

∗It is to be noted that the actual trajectories of particles are all of them rep-
resented by δ-curves since as we shall see γ-curves would correspond to velocities
greater than that of light.
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and by the principles of hyperbolic trigonometry we may write the
further relations

sinhφ =

u

c√
1− u2

c2

, (266)

tanhφ =
u

c
. (267)

Vectors of Higher Dimensions

182. Outer Products. We shall define the outer product of two
one-vectors so that it obeys the associative law for a scalar factor, the
distributive law and the anti-commutative law, namely,

(na)× b = n(a× b) = a× (nb),

a× (b + c) = a× b + a× c, (a + b)× c = a× c + b× c,

a× b = −b× a.

(268)

From a geometrical point of view, we shall consider the outer prod-
uct of two one-vectors to be itself a two-vector, namely the parallelo-
gram, or more generally, the area which they determine. The sign of
the two-vector may be taken to indicate the direction of progression
clockwise or anti-clockwise around the periphery. In order to accord
with the requirement that the area of a parallelogram determined by
two lines becomes zero when they are rotated into the same direction,
we may complete our definition of outer product by adding the require-
ment that the outer product of a vector by itself shall be zero.

a× a = 0. (269)

We may represent the outer products of unit vectors along the cho-
sen axes as follows:

k1 × k1 = k2 × k2 = k3 × k3 = k4 × k4 = 0,

k1 × k2 = −k2 × k1 = k12 = −k21,

k1 × k3 = −k3 × k1 = k13 = −k31, etc.,
(270)
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where we may regard k12, for example, as a unit parallelogram in the
plane X1OX2.

We shall continue to use small letters in Clarendon type for one-
vectors and shall use capital letters in Clarendon type for two-vectors.
The components of a two-vector along the six mutually perpendicu-
lar planes X1OX2, X1OX3, etc., may be obtained by expressing the
one-vectors involved in terms of their components along the axes and
carrying out the indicated multiplication, thus:

A = a× b = (a1k1 + a2k2 + a3k3 + a4k4)

× (b1k1 + b2k2 + b3k3 + b4k4)

= (a1b2 − a2b1)k12 + (a1b3 − a3b1)k13 + (a1b4 − a4b1)k14

+ (a2b3 − a3b2)k23 + (a2b4 − a4b2)k24 + (a3b4 − a4b3)k34,

(271)

or, calling the quantities (a1b2−a2b1), etc., the component magnitudes
of A, A12, etc., we may write

A = A12k12 + A13k13 + A14k14 + A23k23 + A24k24 + A34k34. (272)

The concept of outer product may be extended to include the idea
of vectors of higher number of dimensions than two. Thus the outer
product of three one-vectors, or of a one-vector and a two-vector will
be a three-vector which may be regarded as a directed parallelopiped
in our four-dimensional space. The outer product of four one-vectors
will lead to a four-dimensional solid which would have direction only
in a space of more than four dimensions and hence in our case will be
called a pseudo-scalar. The outer product of vectors the sum of whose
dimensions is greater than that of the space considered will vanish.

The results which may be obtained from different types of outer
multiplication are tabulated below, where one-vectors are denoted by
small Clarendon type, two-vectors by capital Clarendon type, three-
vectors by Tudor black capitals, and pseudo-scalars by bold face Greek
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letters.

A = a× b = −b× a

= (a1b2 − a2b1)k12 + (a1b4 − a3b1)k13 + (a1b4 − a4b1)k14

+ (a2b3 − a3b2)k23 + (a2b4 − a4b2)k21 + (a3b4 − a4b3)k34,

A = c×A

= (c1A23 − c2A13 + c3A12)k123 + (c1A24 − c2A14 + c4A12)k124

+ (c1A34 − c2A14 + c4A15)k134 + (c2A34 − c3A24 + c4A23)k234

(273)

α = d×A = −A× d

= (d1A234 − d2A134 + d3A124 − d4A123)k1234,

α = A×B

= (A12B34 −A13B24 +A14B23 +A23B14 −A24B13 +A34B12)k1234.

The signs in these expressions are determined by the general rule
that the sign of any unit vector k̄nmo will be reversed by each transpo-
sition of the order of a pair of adjacent subscripts, thus :

kabcd = −kbacd = kbcad, etc., · · · . (274)

183. Inner Product of Vectors in General. We have previously
defined the inner product for the special case of a pair of one-vectors,
in order to bring out some of the important characteristics of our non-
Euclidean space. We may now give a general rule for the inner product
of vectors of any number of dimensions.

The inner product of any pair of vectors follows the associative law
for scalar factors, and follows the distributive and commutative laws.

Since we can express any vector in terms of its components, the
above rules will completely determine the inner product of any pair
of vectors provided that we also have a rule for obtaining the inner
products of the unit vectors determined by the mutually perpendicular
axes. This rule is as follows: Transpose the subscripts of the unit
vectors involved so that the common subscripts occur at the end and
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in the same order and cancel these common subscripts. If both the
unit vectors still have subscripts the product is zero; if neither vector
has subscripts the product is unity, and if one of the vectors still has
subscripts that itself will be the product. The sign is to be taken as that
resulting from the transposition of the subscripts (see equation (274)),
unless the subscript 4 has been cancelled, when the sign will be changed.

For example:

k124 · k34 = k12 · k3 = 0,

k132 · k123 = −k123 · k123 = −1,

k124 · k42 = −k124 · k24 = k1.

(275)

It is evident from these rules that we may obtain the magnitude
of any desired component of a vector by taking the inner product of
the vector by the corresponding unit vector, it being noticed, of course,
that when the unit vector involved contains the subscript 4 we obtain
the negative of the desired component. For example, we may obtain
the k12 component of a two-vector as follows:

A12 = A · k12 = (A12k12 + A13k13 + A14k14

+ A23k23 + A24k24 + A34k34) · k12.
(276)

184. The Complement of a Vector. In an n-dimensional space
any m-dimensional vector will uniquely determine a new vector of di-
mensions (n−m) which may be called the complement of the original
vector. The complement of a vector may be exactly defined as the inner
product of the original vector with the unit pseudo-scalar k123···n. In
general, we may denote the complement of a vector by placing an aster-
isk ∗ after the symbol. As an example we may write as the complement
of a two-vector A in our non-Euclidean four-dimensional space:

A∗ = A · k1234 = (A12k12 + A13k13 + A14k14

+ A23k23 + A24k24 + A34k34) · k1234

= (A12k34 − A13k24 − A14k23 + A23k14 + A24k13 − A34k12).

(277)
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185. The Vector Operator, ♦ or Quad. Analogous to the fa-
miliar three-dimensional vector-operator del,

∇ = k1
∂

∂x1

+ k2
∂

∂x2

+ k3
∂

∂x3

, (278)

we may define the four-dimensional vector-operator quad,

♦ = k1
∂

∂x1

+ k2
∂

∂x2

+ k3
∂

∂x3

− k4
∂

∂x4

. (279)

If we have a scalar or a vector field we may apply these operators
by regarding them formally as one-vectors and applying the rules for
inner and outer multiplication which we have already given.

Thus if we have a scalar function F which varies continuously from
point to point we can obtain a one-vector which we may call the four-
dimensional gradient of F at the point in question by simple multipli-
cation; we have

gradF = ♦F = k1
∂F

∂x1

+ k2
∂F

∂x2

+ k3
∂F

∂x3

− k4
∂F

∂x4

. (280)

If we have a one-vector field, with a vector f whose value varies from
point to point we may obtain by inner multiplication a scalar quantity
which we may call the four-dimensional divergence of f . We have

div f = ♦ · f =
∂f1

∂x1

+
∂f2

∂x2

+
∂f3

∂x3

+
∂f4

∂x4

. (280)

Taking the outer product with quad we may obtain a two-vector, the
four-dimensional curl of f ,

curl f = ♦× f =

(
∂f2

∂x1

− ∂f1

∂x2

)
k12 +

(
∂f3

∂x1

− ∂f1

∂x3

)
k13

+

(
∂f4

∂x1

+
∂f1

∂x4

)
k14 +

(
∂f3

∂x2

− ∂f2

∂x3

)
k23

+

(
∂f4

∂x2

+
∂f2

∂x4

)
k24 +

(
∂f4

∂x3

+
∂f3

∂x4

)
k34.

(282)
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By similar methods we could apply quad to a two-vector function F
and obtain the one-vector function ♦ · F and the three-vector function
♦× F.

186. Still regarding ♦ as a one-vector we may obtain a number of
important expressions containing ♦ more than once; we have:

♦× (♦F ) = 0, (283) ♦× (♦× f) = 0, (286)

♦ · (♦ · F) = 0, (284) ♦× (♦× F) = 0, (287)

♦ · (♦ · F) = 0, (285)

♦ · (♦× f) = ♦(♦ · f)− (♦ · ♦)f , (288)
♦ · (♦× F) = ♦× (♦ · F) + (♦ · ♦)F, (289)
♦ · (♦× F) = ♦× (♦ · F)− (♦ · ♦)F. (290)

The operator ♦ · ♦ or ♦2 has long been known under the name of
the D’Alembertian,

♦2 =
∂2

∂x1
2

+
∂2

∂x2
2

+
∂2

∂x3
2
− ∂2

∂x4
2

= ∆2 − ∂2

c2 ∂t2
. (291)

From the definition of the complement of a vector given in the pre-
vious section it may be shown by carrying out the proper expansions
that

(♦× φ)∗ = ♦ · φ∗, (292)

where φ is a vector of any number of dimensions.
187. Tensors. In analogy to three-dimensional tensors we may

define a four-dimensional tensor as a quantity with sixteen components
as given in the following table:

T =



T11 T12 T13 T14,

T21 T22 T23 T24,

T31 T32 T33 T34,

T41 T42 T43 T44,

(293)
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with the additional requirement that the divergence of the tensor, de-
fined as follows, shall itself be a one-vector.

div T =

{
∂T11

∂x1

+
∂T12

∂x2

+
∂T13

∂x3

+
∂T14

∂x4

}
k1

+

{
∂T21

∂x1

+ · · ·
}

k2

+

{
∂T31

∂x1

+ · · ·
}

k3

+

{
∂T41

∂x1

+ · · ·
}

k4

(294)

188. The Rotation of Axes. Before proceeding to the application
of our four-dimensional analysis to the actual problems of relativity
theory we may finally consider the changes in the components of a
vector which would be produced by a rotation of the axes. We have
already pointed out that the quantity (x1

2 + x2
2 + x3

2 − x4
2) is an

invariant in our space for any set of rectangular coördinates having the
same origin since it is the square of the magnitude of a radius vector,
and have noted that in this way we have obtained for the quantity
(x2 + y2 + z2 − c2t2) the desired invariance which is characteristic of
the Lorentz transformation. In fact we may look upon the Lorentz
transformation as a rotation from a given set of axes to a new set,
with a corresponding re-expression of quantities in terms of the new
components. The particular form of Lorentz transformation, familiar
in preceding chapters, in which the new set of spatial axes has a velocity
component relative to the original set, in the X direction alone, will
be found to correspond to a rotation of the axes in which only the
directions of the X1 and X4 axes are changed, the X2 and X3 axes
remaining unchanged in direction.

Let us consider a one-vector

a = (a1k1 + a2k2 + a3k3 + a4k4) = (a1
′k1
′ + a2

′k2
′ + a3

′k3
′ + a4

′k4
′),
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where a1, a2, a3 and a4 are the component magnitudes, using a set
of axes which have k1, k2, k3 and k4 as unit vectors and a1

′, a2
′, a3

′

and a4
′ the corresponding magnitudes using another set of mutually

perpendicular axes with the unit vectors k1
′, k2

′, k3
′ and k4

′. Our
problem, now, is to find relations between the magnitudes a1, a2, a3

and a4 and a1
′, a2

′, a3
′ and a4

′.
We have already seen, Sections 179 and 183, that we may obtain any

desired component magnitude of a vector by taking its inner product
with a unit vector in the desired direction, reversing the sign if the
subscript 4 is involved. We may obtain in this way an expression for a1

in terms of a1
′, a2

′, a3
′ and a4

′. We have

a1 = a · k1 = (a1
′k1
′ + a2

′k2
′ + a3

′k3
′ + a4

′k4
′) · k1

= a1
′k1
′ · k1 + a2

′k2
′ · k1 + a3

′k3
′ · k1 + a4

′k4
′ · k1. (295)

By similar multiplications with k2, k3 and k4 we may obtain expres-
sions for a2, a3 and −a4. The results can be tabulated in the convenient
form

a1
′ a2

′ a3
′ a4

′

a1 k1
′ · k1 k2

′ · k1 k3
′ · k1 k4

′ · k1

a2 k1
′ · k2 k2

′ · k2 k3
′ · k2 k4

′ · k2

a3 k1
′ · k3 k2

′ · k3 k3
′ · k3 k4

′ · k3

a4 −k1
′ · k4 −k2

′ · k4 −k3
′ · k4 −k4

′ · k4

(296)

Since the square of the magnitude of the vector, (a1
2+a2

2+a3
2−a4

2),
is a quantity which is to be independent of the choice of axes, we shall
have certain relations holding between the quantities k1

′ · k1, k1
′ · k2,

etc. These relations, which are analogous to the familiar conditions of
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orthogonality in Euclidean space, can easily be shown to be

(k1
′ · k1)

2 + (k1
′ · k2)

2 + (k1
′ · k3)

2 − (k1
′ · k4)

2 = 1,

(k2
′ · k1)

2 + (k2
′ · k2)

2 + (k2
′ · k3)

2 − (k2
′ · k4)

2 = 1,

(k3
′ · k1)

2 + (k3
′ · k2)

2 + (k3
′ · k3)

2 − (k3
′ · k4)

2 = 1,

(k4
′ · k1)

2 + (k4
′ · k2)

2 + (k4
′ · k3)

2 − (k4
′ · k4)

2 = −1,

(297)

and

(k1
′ · k1)(k2

′ · k1) + (k1
′ · k2)(k2

′ · k2)

+ (k1
′ · k3)(k2

′ · k3)− (k1
′ · k4)(k2

′ · k4) = 0,

etc., for each of the six pairs of vertical columns in table (296).
Since we shall often be interested in a simple rotation in which the

directions of the X2 and X3 axes are not changed, we shall be able to
simplify this table for that particular case by writing

k2
′ = k2, k3

′ = k3,

and noting the simplifications thus introduced in the products of the
unit vectors, we shall obtain

a1
′ a2

′ a3
′ a4

′

a1 k1
′ · k1 0 0 k4

′ · k1

a2 0 1 0 0

a3 0 0 1 0

a4 −k1
′ · k4 0 0 −k4

′ · k4

(298)

If now we call φ the angle of rotation between the two time axes
OX4

′ and OX4, we may write, in accordance with equation (262),

−k4
′ · k4 = coshφ.
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Since we must preserve the orthogonal relations (297) and may also
make use of the well-known expression of hyperbolic trigonometry

cosh2 φ− sinh2 φ = 1,

we may now rewrite our transformation table in the form

a1
′ a2

′ a3
′ a4

′

a1 coshφ 0 0 sinhφ

a2 0 1 0 0

a3 0 0 1 0

a4 sinhφ 0 0 coshφ

(299)

By a similar process we may obtain transformation tables for the
components of a two-vector A. Expressing A in terms of the unit vec-
tors k12

′, k13
′, k14

′, etc., and taking successive inner products with the
unit vectors k12, k13, k14, etc., we may obtain transformation equations
which can be expressed by the tabulation (300) shown on the following
page.

For the particular case of a rotation in which the direction of the
X2 and X3 axes are not changed we shall have

k2
′ = k2, k3

′ = k3,

and very considerable simplification will be introduced. We shall have,
for example,

k12
′ · k12 = (k1

′ × k2
′) · (k1 × k2) = (k1

′ × k2) · (k1 × k2) = k1
′ · k1,

k13
′ · k12 = (k1

′ × k3
′) · (k1 × k2) = (k1

′ × k3) · (k1 × k2) = 0,

etc.

Making these and similar substitutions and introducing, as before, the
relation −k4

′ ·k4 = coshφ where φ is the non-Euclidean angle between
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the two time axes, we may write our transformation table in the form

A12
′ A13

′ A14
′ A23

′ A24
′ A34

′

A12 coshφ 0 0 0 sinhφ 0

A13 0 coshφ 0 0 0 sinhφ

A14 0 0 1 0 0 0

A23 0 0 0 1 0 0

A24 − sinhφ 0 0 0 coshφ 0

A34 0 − sinhφ 0 0 0 coshφ

(301)

189. Interpretation of the Lorentz Transformation as a Ro-
tation of Axes. We may now show that the Lorentz transformation
may be looked upon as a change from a given set of axes to a rotated
set.

Since the angle φ which occurs in our transformation tables is that
between the k4 axis and the new k4

′ axis, we may write, in accordance
with equations (265) and (266),

coshφ =
1√

1− V 2

c2

, sinhφ =

V

c√
1− V 2

c2

,

where V is the velocity between the two sets of space axes which corre-
spond to the original and the rotated set of four-dimensional axes. This
will permit us to rewrite our transformation table for the components
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of a one-vector in the forms

a1
′ a2

′ a3
′ a4

′

a1
1√

1− V 2

c2

0 0
V/c√
1− V 2

c2

a2 0 1 0 0

a3 0 0 1 0

a4
V/c√
1− V 2

c2

0 0
1√

1− V 2

c2

(302)

a1 a2 a3 a4

a1
′ 1√

1− V 2

c2

0 0
−V/c√
1− V 2

c2

a2
′ 0 1 0 0

a3
′ 0 0 1 0

a4
′ −V/c√

1− V 2

c2

0 0
1√

1− V 2

c2

Consider now any point P (x1, x2, x3, x4). The radius vector from
the origin to this point will be r = (x1k1 + x2k2 + x3k3 + x4k4), or,
making use of the relations between x1, x2, x3, x4 and x, y, z, t given
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by equations (252), we may write

r = (xk1 + yk2 + zk3 + ctk4).

Applying our transformation table to the components of this one-vector,
we obtain the familiar equations for the Lorentz transformation

x′ =
x− V t√
1− V 2

c2

,

y′ = y,

z′ = z,

t′ =
1√

1− V 2

c2

(
t− V

c2
x

)
.

We thus see that the Lorentz transformation is to be interpreted in
our four-dimensional analysis as a rotation of axes.

190. Graphical Representation. Although we have purposely
restricted ourselves in the foregoing treatment to methods of attack
which are almost purely analytical rather than geometrical in nature,
the importance of a graphical representation of our four-dimensional
manifold should not be neglected. The difficulty of representing all
four axes on a single piece of two-dimensional paper is not essentially
different from that encountered in the graphical representation of the
facts of ordinary three-dimensional solid geometry, and these difficulties
can often be solved by considering only one pair of axes at a time, say
OX1 and OX4, and plotting the occurrences in the X1OX4 plane. The
fact that the geometry of this plane is a non-Euclidean one presents a
more serious complication since the figures that we draw on our sheet of
paper will obviously be Euclidean in nature, but this difficulty also can
be met if we make certain conventions as to the significance of the lines
we draw, conventions which are fundamentally not so very unlike the
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conventions by which we interpret as solid, a figure drawn in ordinary
perspective.

Consider for example the diagram shown in Fig. 18, where we have
drawn a pair of perpendicular axes, OX1, and OX4 and the two unit
hyperbolæ given by the equations

x1
2 − x4

2 = 1,

x1
2 − x4

2 = −1,
(303)

together with their asymptotes, OA and OB, given by the equation

x1
2 − x4

2 = 0. (304)

This purely Euclidean figure permits, as a matter of fact, a fairly satis-
factory representation of the non-Euclidean properties of the manifold
with which we have been dealing.

OX1 and OX4 may be considered as perpendicular axes in the non-
Euclidean X1OX4 plane. Radius vectors lying in the quadrant AOB
will have a greater component along the X4 than along the X1 axis
and hence will be δ-vectors with the magnitude s =

√
x4

2 − x1
2, where

x1 and x4 are the coördinates of the terminal of the vector. γ-radius-
vectors will lie in the quadrant BOC and will have the magnitude
s =
√
x1

2 − x4
2. Radius vectors lying along the asymptotesOA andOB

will have zero magnitudes (s =
√
x1

2 − x4
2 = 0) and hence will be

singular vectors.
Since the two hyperbolæ have the equations x1

2 − x4
2 = 1 and

x1
2−x4

2 = −1, rays such as Oa, Oa′, Ob, etc., starting from the origin
and terminating on the hyperbolæ, will all have unit magnitude. Hence
we may consider the hyperbolæ as representing unit pseudo-circles in
our non-Euclidean plane and consider the rays as representing the radii
of these pseudo-circles.

A non-Euclidean rotation of axes will then be represented by
changing from the axes OX1 and OX4 to OX1

′ and OX4
′, and taking

Oa′ and Ob′ as unit distances along the axes instead of Oa and Ob.
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A

C

B

D

O a

a′
b b′

X1

X4

X ′
1

X ′
4

θ

θ

dx1

dx4

Fig. 18.

It is easy to show, as a matter of fact, that such a change of
axes and units does correspond to the Lorentz transformation. Let
x1 and x4 be the coördinates of any point with respect to the origi-
nal axes OX1 and OX4, and x1

′′ and x4
′′ the coördinates of the same

point referred to the oblique axes OX1
′ and OX4

′, no change having yet
been made in the actual lengths of the units of measurement. Then,
by familiar equations of analytical geometry, we shall have

x1 = x1
′′ cos θ + x4

′′ sin θ,

x4 = x1
′′ sin θ + x4

′′ cos θ,
(305)
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where θ is the angle X1OX1
′.

We have, moreover, from the properties of the hyperbola,

Oa′

Oa
=
Ob′

Ob
=

1√
cos2 θ − sin2 θ

,

and hence if we represent by x1
′ and x4

′ the coördinates of the point
with respect to the oblique axes and use Oa′ and Ob′ as unit distances
instead of Oa and Ob, we shall obtain

x1 = x1
′ cos θ√

cos2 θ − sin2 θ
+ x4

′ sin θ√
cos2 θ − sin2 θ

,

x4 = x1
′ sin θ√

cos2 θ − sin2 θ
+ x4

′ cos θ√
cos2 θ − sin2 θ

.

It is evident, however, that we may write

sin θ

cos θ
= tan θ =

dx1

dx4

=
V

c
,

where V may be regarded as the relative velocity of our two sets of space
axes. Introducing this into the above equations and also writing x1 = x,
x4 = ct, x1

′ = x′, x4
′ = ct′, we may obtain the familiar equations

x =
1√

1− V 2

c2

(x′ + V t′),

t =
1√

1− V 2

c2

(
t′ +

V

c2
x′
)
.

We thus see that our diagrammatic representation of non-Euclidean
rotation in the X1OX4 plane does as a matter of fact correspond to the
Lorentz transformation.
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Diagrams of this kind can now be used to study various kinematical
events. δ-curves can be drawn in the quadrant AOB to represent the
space-time trajectories of particles, their form can be investigated using
different sets of rotated axes, and the equations for the transformation
of velocities and accelerations thus studied. γ-lines perpendicular to
the particular time axis used can be drawn to correspond to the instan-
taneous positions of actual lines in ordinary space and studies made of
the Lorentz shortening. Singular vectors along the asymptote OB can
be used to represent the trajectory of a ray of light and it can be shown
that our rotation of axes is so devised as to leave unaltered, the angle
between such singular vectors and the OX4 axis, corresponding to the
fact that the velocity of light must appear the same to all observers.
Further development of the possibilities of graphical representation of
the properties of our non-Euclidean space may be left to the reader.

part ii. applications of the four-dimensional analysis.

191. We may now apply our four-dimensional methods to a number
of problems in the fields of kinematics, mechanics and electromagnetics.
Our general plan will be to express the laws of the particular field in
question in four-dimensional language, making use of four-dimensional
vector quantities of a kinematical, mechanical, or electromagnetic na-
ture. Since the components of these vectors along the three spatial axes
and the temporal axis will be closely related to the ordinary quantities
familiar in kinematical, mechanical, and electrical discussions, there
will always be an easy transition from our four-dimensional language
to that ordinarily used in such discussions, and necessarily used when
actual numerical computations are to be made. We shall find, however,
that our four-dimensional language introduces an extraordinary brevity
into the statement of a number of important laws of physics.
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Kinematics.

192. Extended Position. The position of a particle and the par-
ticular instant at which it occupies that position can both be indicated
by a point in our four-dimensional space. We can call this the ex-
tended position of the particle and determine it by stating the value of
a four-dimensional radius vector

r = (x1k1 + x2k2 + x3k3 + x4k4). (306)

193. Extended Velocity. Since the velocity of a real particle can
never exceed that of light, its changing position in space and time will
be represented by a δ-curve.

The equation for a unit vector tangent to this δ-curve will be

w =
dr

ds
=

(
dx1

ds
k1 +

dx2

ds
k2 +

dx3

ds
k3 +

dx4

ds
k4

)
, (307)

where ds indicates interval along the δ-curve; and this important vec-
tor w may be called the extended velocity of the particle.

Remembering that for a δ-curve

ds =
√
dx4

2 − dx1
2 − dx2

2 − dx3
2 = c dt

√
1− u2

c2
, (308)

we may rewrite our expression for extended velocity in the form

w =
1√

1− u2

c2

{u

c
+ k4

}
, (309)

where u is evidently the ordinary three-dimensional velocity of the par-
ticle.

Since w is a four-dimensional vector in our imaginary space, we
may use our tables for transforming the components of w from one set
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of axes to another. We shall find that we may thus obtain transfor-
mation equations for velocity identical with those already familiar in
Chapter IV.

The four components of w are

ux

c√
1− u2

c2

k1,

uy

c√
1− u2

c2

k2,

uz

c√
1− u2

c2

k3,
k4√

1− u2

c2

,

and with the help of table (302) we may easily obtain, by making simple
algebraic substitutions, the following familiar transformation equations:

ux
′ =

ux − V
1− uxV

c2

, uy
′ =

uy

√
1− V 2

c2

1− uxV

c2

, uz
′ =

uz

√
1− V 2

c2

1− uxV

c2

,

1√
1− u′

2

c2

=
1− uxV

c2√
1− u2

c2

√
1− V 2

c2

.

This is a good example of the ease with which we can derive our
familiar transformation equations with the help of the four-dimensional
method.

194. Extended Acceleration. We may define the extended ac-
celeration of a particle as the rate of curvature of the δ-line which
determines its four-dimensional position. We have

c =
d2r

ds2
=
dw

ds
=

d

ds


u
c

+ k4√
1− u2

c2

 . (310)
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Or, introducing as before the relation ds = c dt

√
1− u2

c2
, we may write

c =
1

c2

{
1(

1− u2

c2

) du
dt

+
1(

1− u2

c2

)2

u

c2
du

dt
u

+
1(

1− u2

c2

)2

u

c

du

dt
k4

}
, (311)

where u is evidently the ordinary three-dimensional velocity, and
du

dt
the three-dimensional acceleration; and we might now use our transfor-
mation table to determine the transformation equations for acceleration
which we originally obtained in Chapter IV.

195. The Velocity of Light. As an interesting illustration of
the application to kinematics of our four-dimensional methods, we may
point out that the trajectory of a ray of light will be represented by
a singular line. Since the magnitude of all singular vectors is zero by
definition, we have for any singular line

dx1
2 + dx2

2 + dx3
2 = dx4

2,

or, since the magnitude will be independent of any particular choice of
axes, we may also write

dx1
′2 + dx2

′2 + dx3
′2 = dx4

′2.

Transforming the first of these equations we may write

dx1
2 + dx2

2 + dx3
2

dx4
2 =

dx2 + dy2 + dz2

c2 dt2
= 1

or
dl

dt
= c.
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Similarly we could obtain from the second equation

dl′

dt′
= c.

We thus see that a singular line does as a matter of fact correspond to
the four-dimensional trajectory of a ray of light having the velocity c,
and that our four-dimensional analysis corresponds to the requirements
of the second postulate of relativity that a ray of light shall have the
same velocity for all reference systems.

The Dynamics of a Particle.

196. Extended Momentum. We may define the extended mo-
mentum of a material particle as equal to the product m0w of its
mass m0, measured when at rest, and its extended velocity w. In
accordance with equation (309) for extended velocity, we may write
then, for the extended momentum,

m0w =
m0√
1− u2

c2

(u

c
+ k4

)
. (312)

Or, if in accordance with our considerations of Chapter VI we put for
the mass of the particle at the velocity u

m =
m0√
1− u2

c2

,

we may write
m0w = m

u

c
+mk4. (313)

We note that the space component of this vector is ordinary momen-
tum and the time component has the magnitude of mass, and by ap-
plying our transformation table (302) we can derive very simply the
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transformation equations for mass and momentum already obtained in
Chapter VI.

197. The Conservation Laws. We may now express the laws for
the dynamics of a system of particles in a very simple form by stating
the principle that the extended momentum of a system of particles is a
quantity which remains constant in all interactions of the particles, we
have then ∑

m0w =
∑(mu

c
+mk4

)
= a constant, (314)

where the summation
∑

extends over all the particles of the system.
It is evident that this one principle really includes the three princi-

ples of the conservation of momentum, mass, and energy. This is true
because in order for the vector

∑
m0w to be a constant quantity, its

components along each of the four axes must be constant, and as will be
seen from the above equation this necessitates the constancy of the mo-
mentum

∑
mu, of the total mass

∑
m, and of the total energy

∑ m

c2
.

The Dynamics of an Elastic Body.

Our four-dimensional methods may also be used to present the re-
sults of our theory of elasticity in a very compact form.

198. The Tensor of Extended Stress. In order to do this we
shall first need to define an expression which may be called the four-
dimensional stress in the elastic medium. For this purpose we may take
the symmetrical tensor Tm defined by the following table:

Tm =



pxx pxy pxz cgx,

pyx pyy pyz cgy,

pzx pzy pzz cgz,
sx
c

sy
c

sz
c

w,

(315)



Chapter Thirteen. 242

where the spatial components of Tm are equal to the components of the
symmetrical tensor p which we have already defined in Chapter X and
the time components are related to the density of momentum g, density
of energy flow s and energy density w, as shown in the tabulation.

From the symmetry of this tensor we may infer at once the simple
relation between density of momentum and density of energy flow:

g =
s

c2
, (316)

with which we have already become familiar in Section 132.
199. The Equation of Motion. We may, moreover, express the

equation of motion for an elastic medium unacted on by external forces
in the very simple form

div Tm = 0. (317)

It will be seen from our definition of the divergence of a four-
dimensional tensor, Section 187, that this one equation is in reality
equivalent to the two equations

div p +
∂g

∂t
= 0 (318)

and

div s +
∂w

∂t
= 0.

The first of these equations is identical with (184) of Chapter X, which
we found to be the equation for the motion of an elastic medium in the
absence of external forces, and the second of these equations expresses
the principle of the conservation of energy.

The elegance and simplicity of this four-dimensional method of ex-
pressing the results of our laborious calculations in Chapter X cannot
fail to be appreciated.
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Electromagnetics.

We also find it possible to express the laws of the electromagnetic
field very simply in our four-dimensional language.

200. Extended Current. We may first define the extended cur-
rent, a simple but important one-vector, whose value at any point will
depend on the density and velocity of charge at that point. We shall
take as the equation of definition

q = ρ0w = ρ
{u

c
+ k4

}
, (319)

where
ρ =

ρ0√
1− u2

c2

is the density of charge at the point in question.
201. The Electromagnetic Vector M. We may further define

a two-vector M which will be directly related to the familiar vectors
strength of electric field e and strength of magnetic field h by the
equation of definition

M = (h1k23 + h2k31 + h3k12 − e1k14 − e2k24 − e3k34)

or (320)

M∗ = (e1k23 + e2k31 + e3k12 + h1k14 + h2k24 + h3k34),

where e1, e2, e3, and h1, h2, h3 are the components of e and h.
202. The Field Equations. We may now state the laws of the

electromagnetic field in the extremely simple form

♦ ·M = q, (321)
♦×M = 0. (322)
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These two simple equations are, as a matter of fact, completely
equivalent to the four field equations which we made fundamental for
our treatment of electromagnetic theory in Chapter XII. Indeed if we
treat ♦ formally as a one-vector(

k1
∂

∂x1

+ k2
∂

∂x2

+ k3
∂

∂x3

− k4
∂

∂x4

)
and apply it to the electromagnetic vector M expressed in the extended
form given in the equation of definition (320) we shall obtain from (321)
the two equations

curl h− 1

c

∂e

∂t
= ρ

u

c
,

div e = ρ,

and from (322)

div h = 0,

curl e +
1

c

∂h

∂t
= 0,

where we have made the substitution x4 = ct. These are of course the
familiar field equations for the Maxwell-Lorentz theory of electromag-
netism.

203. The Conservation of Electricity. We may also obtain very
easily an equation for the conservation of electric charge. In accordance
with equation (284) we may write as a necessary mathematical identity

♦ · (♦ ·M) = 0. (323)

Noting that ♦ ·M = q, this may be expanded to give us the equation
of continuity.

div ρu +
∂ρ

∂t
= 0. (324)
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204. The Product M · q. We have thus shown the form taken by
the four field equations when they are expressed in four dimensional
language. Let us now consider with the help of our four-dimensional
methods what can be said about the forces which determine the motion
of electricity under the action of the electromagnetic field.

Consider the inner product of the electromagnetic vector and the
extended current:

M · q = (h1k23 + h2k31 + h3k12− e1k14− e2k24− e3k34) · ρ
{u

c
+ k4

}
= ρ

{
e +

[u× h]∗

c

}
+ ρ

e · h
c

k4. (325)

We see that the space component of this vector is equal to the expres-
sion which we have already found in Chapter XII as the force acting on
the charge contained in unit volume, and the time component is pro-
portional to the work done by this force on the moving charge; hence
we may write the equation

M · q =

{
f +

f · u
c

k4

}
, (326)

an expression which contains the same information as that given by the
so-called fifth fundamental equation of electromagnetic theory, f being
the force exerted by the electromagnetic field per unit volume of charged
material.

205. The Extended Tensor of Electromagnetic Stress. We
may now show the possibility of defining a four-dimensional tensor Te,
such that the important quantity M ·q shall be equal to − div Te. This
will be valuable since we shall then be able to express the equation
of motion for a combined mechanical and electrical system in a very
simple and beautiful form.
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Consider the symmetrical tensor

Te =



T11 T12 T13 T14,

T21 T22 T23 T24,

T31 T32 T33 T34,

T41 T42 T43 T44,

(327)

defined by the expression

Tjk = 1
2
{Mj1Mk1 +Mj2Mk2 +Mj3Mk3 −Mj4Mk4

+Mj1
∗Mk1

∗ +Mj2
∗Mk2

∗ +Mj3
∗Mk3

∗ −Mj4
∗Mk4

∗}, (328)

where j, k = 1, 2, 3, 4.
It can then readily be shown by expansion that

− div Te = M · (♦ ·M) + M∗ · (♦ ·M∗).

But, in accordance with equations (321), (326), (292) and (322), this is
equivalent to

− div Te = M · q =

{
f +

(f · u)

c
k4

}
. (329)

Since in free space the value of the force f is zero, we may write for
free space the equation

div Te = 0. (330)

This one equation is equivalent, as a matter of fact, to two important
and well-known equations of electromagnetic theory. If we develop the
components T11, T12, etc., of our tensor in accordance with equations
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(328) and (320) we find that we can write

Te =



ψxx ψxy ψxz
Sx
c
,

ψyx ψyy ψyz
Sy
c
,

ψzx ψzxy ψzz
Sz
c
,

sx
c

sx
c

sx
c

w,

(331)

where we shall have

ψxx = −1
2
(ex

2 − ey2 − ez2 + hx
2 − hy2 − hz2),

ψxy = −(exhy + hxhy),

etc.
sx = c(eyhz − ezhy),

etc.
w = 1

2
(e2 + h2),

(332)

ψ thus being equivalent to the well-known Maxwell three-dimensional
stress tensor, sx, sy, etc., being the components of the Poynting vector
c [e × h]∗, and w being the familiar expression for density of electro-

magnetic energy
e2 + h2

s
. We thus see that equation (330) is equivalent

to the two equations

divψ +
1

c2
∂s

∂t
= 0,

div s +
∂w

∂t
= 0.

The first of these is the so-called equation of electromagnetic momen-
tum, and the second, Poynting’s equation for the flow of electromag-
netic energy.
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206. Combined Electrical and Mechanical Systems. For a
point not in free space where mechanical and electrical systems are both
involved, taking into account our previous considerations, we may now
write the equation of motion for a combined electrical and mechanical
system in the very simple form

div Tm + div Te = 0.

And we may point out in closing that we may reasonably expect all
forces to be of such a nature that our most general equation of motion
for any continuous system can be written in the form

div T1 + div T2 + · · · = 0.



APPENDIX I.—Symbols for Quantities.

Scalar Quantities. (Indicated by Italic type.)

c speed of light.

e electric charge.

E energy.

H kinetic potential.

K kinetic energy.

l, m, n direction cosines.

L Lagrangian function.

p pressure.

Q quantity of electricity.

S entropy.

t time.

T temperature, function
∑
m0c

2

(
1−

√
1− u2

c2

)
.

U potential energy.

v volume.

V relative speed of coördinate systems, volume.

w energy density.

W work.

ε dielectric constant.

249
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κ
1√

1− V 2

c2

.

µ index of refraction, magnetic permeability.

ν frequency.

ρ density of charge.

σ electrical conductivity.

φ non-Euclidean angle between time axes.

φ1φ2φ3 · · · generalized coördinates.

ψ scalar potential.

ψ1ψ2ψ3 · · · generalized momenta.

Vector Quantities. (Indicated by Clarendon type.)

B magnetic induction.

c extended acceleration.

D dielectric displacement.

e electric field strength in free space.

E electric field strength in a medium.

f force per unit volume.

F force acting on a particle.

g density of momentum.

h magnetic field strength in free space.

H magnetic field strength in a medium.
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i density of electric current.

M angular momentum, electromagnetic vector.

p symmetrical elastic stress tensor.

q extended current.

r radius vector.

s density of energy flow.

t unsymmetrical elastic stress tensor.

u velocity.

w extended velocity.

φ vector potential.



APPENDIX II.—Vector Notation.

Three Dimensional Space.

Unit Vectors, i j k
Radius Vector, r = xi + yj + zk
Velocity,

u =
dr

dt
= ẋi + ẏj + żk

= uxi + uyj + uzk

Acceleration,

u̇ =
d2r

dt2
= ẍi + ÿj + z̈k

= u̇xi + u̇yj + u̇zk

Inner Product,

a · b = axbx + ayby + azbz

Outer Product,

a× b = (axby − aybx)ij + (aybz − azby)jk + (azbx − axbz)ki

Complement of Outer Product,

[a× b]∗ = (aybz − azby)i + (azbx − axbz)j + (axby − aybx)k

The Vector Operator Del or ∇,

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

252
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gradA = ∇A = i
∂A

∂x
+ j

∂A

∂y
+ k

∂A

∂z

div a = ∇ · a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

curl a = [∇× a]∗

=

(
∂az
∂y
− ∂ay

∂z

)
i +

(
∂ax
∂z
− ∂az

∂x

)
j +

(
∂ay
∂x
− ∂ax

∂y

)
k

Non-Euclidean Four Dimensional Space.

Unit Vectors, k1 k2 k3 k4

Radius Vector,

r = x1k1 + x2k2 + x3k3 + x4k4

= xi + yj + zk + ctk4

One Vector,

a = a1k1 + a2k2 + a3k3 + a4k4

Two Vector,

A = A12k12 + A13k13 + A14k14 + A23k23 + A24k24 + A34k34

Three Vector,

A = A123k123 + A124k124 + A134k134 + A234k234

Pseudo Scalar,
α = αk1234

Transposition of Subscripts,

kabc··· = −kbac··· = kbca···
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Inner Product of One Vectors,
(See Section 183).
Outer Product of One Vectors,

kab··· × knm··· = kab···nm···

Complement of a Vector,

φ∗ = φ · k1234

The Vector Operator Quad or ♦,

♦ = k1
∂

∂x1

+ k2
∂

∂x2

+ k3
∂

∂x3

+ k4
∂

∂x4
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