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Chapter 4. Nonlinear Hyperbolic Problems 
 

4.1. Introduction 
 
Reading: Durran sections 3.5-3.6. Mesinger and Arakawa (1976) Chapter 3 sections 6-7. 
Supplementary reading: Tannehill et al sections 4.4 and 4.5 – Inviscid and viscous Burgers equations. 
 
Nonlinear problems creates two important problems in CFD: 
 
1. They generate nonlinear instability. 
2. New waves can be generated in nonlinear problems via nonlinear wave interaction. 
 
The stability analysis we discussed in the previous Chapter refers to linear stability and linear instability – because 
they do not require nonlinearity in the equation. 
 
The above two issues are specific to nonlinear equations. 
 
Many processes in the atmosphere can be nonlinear – many physical processes, such as phase changes are 
nonlinear. In the Navier-Stokes equations, the most significant nonlinear term is the advection term. 
 
The simplest equation including nonlinear advection is the Burges Equation: 
 
 

Inviscid:  0u uu
t x

∂ ∂
+ =

∂ ∂
   (Hyperbolic)   (1a) 
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Viscous:  
2

2

u u uu
t x x

υ∂ ∂ ∂
+ =

∂ ∂ ∂
   (Parobolic)    (1b) 

 
 

We can rewrite the advection term 
2

2
u uu
x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂ ⎝ ⎠

 - the nonlinearity is often called quadratic nonlinearity. 

 
There is a fundamental difference between the inviscid Burger's equation (1a) and the linear advection equation, 

0u uc
t x

∂ ∂
+ =

∂ ∂
, we discussed in last chapter, where c is a constant. 

 
1. In the linear problem, all points on the wave move at the same speed, c, the shape of the wave remain 
unchanged: 

 
For a nonlinear equation (1b), the wave advects itself such the local speed depends on the wave amplitude and the 
shape of the wave change in time: 



 4-3

 
The process is called nonlinear steepening, and eventually results in shock waves and overturning if the flow is 
inviscid. In this case, the characteristics coalesce into a group where multiple values of u exist for a given x. 

 
 

2. Nonlinear problems create new waves modes. This was evident in the previous problem where we start with a 
single sine wave and ended up with a step-like function. Clearly the step function can be not represented by a 
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single wave  new waves have been generated!  For nonlinear problems, the principle of superposition does not 
apply! 
 
 
To illustrate this, consider u = sin(kx). Plug it into the advection term  
 

sin( )cos( ) sin(2 ) / 2uu k kx kx k kx
x

∂
= =

∂
. 

 
Now the system contains a new wave – sin(2kx), whose wave number is 2k, and wavelength is L=π/k, half of the 
wave length of the original 2π/k. 
 
The new wave can interact with itself and the original one, the process goes on and on and an entire spectrum of 
waves will result!  This process is the source of aliasing error, to be discussed soon. 
 
 
Despite of its nonlinear, Burger's equation has analytical solutions.  
 
For the inviscid case, one of the examples is: 
 
if   u(x,t=0) = - U tanh(kx)  
 
then   u(x, t) = - U tanh[ k(x-ut) ]. 
 
Note that the solution is an implicit function of u, and it has to be solved iteratively for the value of u. 
 
For the viscous case, an example is: 
 



 4-5

if  u(x, t=0) = -U tanh(kx) 
 
then the steady state solution is 
 
  u(x, t)= -U tanh( ux/2υ ). 
 
Here, dissipation of energy within the shock is exactly balanced by the conversion of kinetic energy from infinity. 
 
References for exact solutions:  
 
Platzman, 1996: Tellus, 4, 422-431. 
 
Solution techniques 
 
Many solution techniques discussed earlier for linear advection equation can be used for Burgers equation. We will 
not discuss them in details here, but we will look the behavior of the solutions: 
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Because of the nonlinear steepening, the solution contains sharp gradient near the step – numerical schemes tend to 
perform poorly near sharp gradient, and most schemes, especially high order ones, generates small scale 
oscillations near the sharp gradient – monotonic schemes are particularly good at dealing with sharp gradient, 
because they are designed to prevent overshoot and undershoot from being generated. 
 
With conventional schemes, there is a tendency for the small-scale noises to grow quickly and eventually destroy 
the solution or cause instability. Such instability occurs only in nonlinear problems, and was first discussed by the 
developer of NGM, Norman Phillips (1959), and the instability is called Nonlinear Instability. 
 

4.2. Nonlinear Instability 
 
Linear instability occurs when the linear stability criteria is violated, usually when ∆t is too large.  
 
Nonlinear instability occurs when waves shorter than 2∆x are generated and feed energy spuriously into the 
wavelengths near but larger than 2∆x. The energy buildup becomes catastrophic. 
 
The generation of waves with wavelength < 2∆x is a consequence of aliasing (c.f., p.35-42. Mesinger and Arakawa 
1976. Read it!). 
 
Aliasing: 
 
Consider a function u = sin(kx). 
 
We know that the shortest wave that can be represented by a grid has a wavelength of 2∆x, and a wave number of  
kmax = 2π/(2∆x) = π/∆x  the largest wave number is kmax=π/∆x. 
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We saw earlier for the nonlinear advection term uu
x

∂
∂

 

 

sin( )cos( ) sin(2 ) / 2uu k kx kx k kx
x

∂
= =

∂
. 

 
If k = kmax, then the new wave has a wave number of 2kmax, corresponding to a wavelength of (2∆x)/2 = ∆x  - too 
short to be represented on the grid! 
 
Therefore, nonlinear interaction between waves can generate waves that are unresolvable by the original grid! 
 
Then what happens to these unresolvable waves? They are spuriously presented, or aliased, as resolvable waves! 
 
Consider a wave with W.L. = 4/3∆x (<2∆x). With only three grid points to represent one wavelength, it cannot tell 
it apart from the 4∆x wave. In fact, the grid misrepresents it as 4∆x wave! 
 

 



 4-9

 
Consider now a general case of a function u that contains harmonic components: 
 

n
u

u u= ∑  

 
nonlinear term will be of the form 
 
  sin(k1x) sin(k2x) = [ cos( k1-k2 )x – cos( k1+k2)x ]/2 
 

  two new waves, k1 ± k2, are created! 
 
Even if the calculation is started with all wavelengths ≥ 2∆x, waves < 2∆x will be generated, through nonlinear 
interaction. 
 
To generalize, let's write  
 
 cos( kx) = cos[ 2kmax – (2kmax-k) ] xi 

      = 2 2 2 2cos cos( ) sin sin( )i i
i i

x xk x k x
x x x x

π π π π
− + −

∆ ∆ ∆ ∆
. 

 

Since xi = i ∆x, and i is integer, 2 2sin sin 0ix i x
x x

π π ∆
= =

∆ ∆
, 2cos 1ix

x
π

=
∆

 

 
maxcos( ) cos{[2 ] }i ikx k k x= −  

 
Knowing only those values at the grid points, we cannot distinguish between wavenumber k and 2kmax-k, thus, if k 
> kmax (W.L. < 2∆x), then k is really misrepresented as (or aliased as)  
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k* = 2kmax –k. 

 
Thus, the aliased wave k* is less than kmax by an amount equal to the amount by which k was greater then kmax: 
 

 
 
 
Back to our example, let W.L. = 4/3 ∆x, this is aliased as  
 

k* = 2π/(2∆x) – 2π/(4/3∆x) = 2π/(4∆x)  4∆x wave  
 
– the same as we saw earlier by the graphic means. 
 
Note that the waves generated by aliasing are always near 2∆x – energy start to pile up in the form of short wave 
noises. In the next section, we will look at ways to control such pileup. 
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4.3. Controlling Nonlinear Instability 

4.3.1. Consequences of N.L. Instability 
 
If a flow contains many modes, it is useful to examine the distribution of energy (a measure of the amplitude of the 
modes) as a function of wavenumber: 
 

2'
2

ku
E = ∑ . 

 

In a numerical simulation, aliasing occurs near 2∆x  energy is shifted to small scales and the short waves grow 
with time  nonlinear instability. 

4.3.2. Filter Method 
 
Phillips (1959) showed that catastrophic growth of wave disturbances can be prevented in a 2-level geostrophic 
model, by periodically applying a spectral filter, which eliminates waves shorter than or equal to 4∆x.  
 
The method decomposes the solution into Fourier modes (waves / harmonics), and recomposes them without hence 
eliminating the shortest waves. 
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Orszag (1971) later showed that it is sufficient to eliminate only waves equal to or shorter than 3∆x (see hand out). 
 
The use of spectral filter is very expensive in grid point model. Doing it in spectral models is straightforward, 
however, since the solution is already in the spectral form. 
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4.3.3. Spatial Smoothing or Damping 
 
In this case, we apply, at chosen intervals (often every time step), a spatial smoother similar in form to the term in 
our parabolic diffusion equation.  
 
We want the smoothing to be selective, so that only the short (aliased) waves get damped.  
 
Filter types: 
 
Low-pass:  allows low-frequency or long wavelength waves to pass through 
High-pass:  allows high-frequency or short wavelength waves to pass through 
Band-pass:  allows intermediate waves to pass through 
 
 
What is desired here: 
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There exist many types of filters. Let look at one that is commonly used, the 1-2-1 or Shapiro filter: 
 

1 10.5 ( 2 )j j j j ju u u u uυ + −= + − +       (2) 
 
where the ju  is the value after smoothing. 
 
To see what the smoother does, we need to look at the response function σ defined by 
 

u uσ= . 
 

- all a filter does is changing the wave amplitude (a well-designed filter should not change the phase). Here σ might 
be a function of k, ∆x, ν etc., much like | λ | earlier. 
 
 
The method for obtaining σ is very similar to the method for von Neumann stability analysis. 
 
Let exp( ).ju A ikx=  Plug it into (2)  

 
[1 (1 cos( ))] exp( )ju k x A ikxυ= − − ∆    

 
σ = [1 (1 cos( ))]k xυ− − ∆   -- response function of filter (2). 

 
See Figure. 
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One can create multi-dimensional smoothers by successive applications of 1-D smoothers, one can also design 
fully MD ones. 
 

4.3.4. Smoothing via numerical diffusion 
 
This method damps the aliased waves by adding a smoothing or diffusion term to the prognostic equations (called 
computational mixing term in the ARPS – which also helps to suppress small scale noises created by dispersion 
and physical processes. Actually, ARPS uses advective formulations that conserve the advected quantities and their 
variances – therefore nonlinear instability due to aliasing is reasonably controlled even without the smoothing). 
 
 
Consider for example of the CTCS case for linear advection: 



 4-16

 
 

1

2 2

n

xx
t x

xxxx

xxxxxx

u
u

u u u
u
u

δ
δ δ α

δ
δ

−−⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥−
⎢ ⎥
⎣ ⎦

   ,      (3) 

 
the right RHS terms are called zero, 2nd, 4th and 6th order numerical diffusion / smoothing, respectively. Note that 
the diffusion term is evaluated at time level n-1 – this makes the time integration forward in time relative to this 
term – remember that forward-in-time is (conditionally) stable for diffusion term but centered-in-time scheme is 
absolutely unstable. 
 
 
We can find the response function to be  
 

2
2

4

6

1
[2 2cos( )]/

| | 1 2
[6 8cos( ) 2cos(2 )]/

[20 30cos( ) 12cos(2 ) 2cos(3 )]/

k x x
t

k x k x x
k x k x k x x

λ α

⎧
⎪ − ∆ ∆⎪= − ∆ ⎨ − ∆ + ∆ ∆⎪
⎪ − ∆ + ∆ − ∆ ∆⎩

 (4) 

 
and they are plotted in the following figure. We can see that this term selectively damps shorter waves, and the 
higher order schemes are more selective, which is desirable. Given  
| λ |, you can estimate the amplitude change due to the diffusion for different wavelength after given number of 
time steps. 
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         From Xue (2001, MWR) 
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4.3.5. Lagrangian or Semi-Lagrangian Formulation 
 
The cause of nonlinear instability is the nonlinear advection term in momentum equations. If we can get rid of this 
term, we can eliminate the instability! 
 
This can be achieved by solving the advection problem in a Lagrangian or Semi-Lagrangian framework. 
 
With Lagrangian methods, the pure advection problem is  
 

0du
dt

=  

 
i.e., u is conserved along the trajectory, which is also the characteristic curve (dx/dt=c) in this case. 
 
In the purely Lagrangian method, the grid points move with the flow, and the grid can become severely deformed.  
 
Semi-Lagrangian method is based on a regular grid – it finds the solution at grid points by finding the values of u at 
the departure points – the location where the parcels come from. Spatial interpolation is usually needed to find the 
value at the departure point. We will cover this topic in more details later. 
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4.3.6. Use of conservation to control nonlinear instability 
 
 
Recall that aliasing acts to feed energy into small-scale components. It is possible to control (not prevent) aliasing 
by forcing the total energy or other physical properties (e.g., enstrophy – squared voroticity) to be conserved – just 
as the continuous system does. 
 
 
If such constraints are satisfied, the energy spectrum cannot grow without bound! 
 
 
Consider 2-D advection in a non-divergent flow: 
 

0A A Au v
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
        (5a) 

0u v
x y

∂ ∂
+ =

∂ ∂
         (5b) 

 
We can write the advection-form equation (5a) in a flux-divergence form: 
 

 ( ) ( ) 0A uA vA
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
       (6) 

 
What is conserved for this system of equations? 
 
 
We first the domain integration of the first moment of A to be: 
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( ) ( )

[( ) ( ) ] [( ) ( ) ] 0L R T B

uA vAAdxdy dxdy dxdy
t x y

uA uA dy vA vA dx

∂ ∂ ∂⎡ ⎤ = − −⎣ ⎦∂ ∂ ∂

− − − − =

∫∫ ∫∫ ∫∫

∫ ∫
   (7) 

 
for a periodic domain. For non-periodic domain, we can see that the change in the domain integration of A equals 
to the net flux through the lateral boundaries – there is no interior source or sink in A. 
 
We say the domain integral of the first moment of A is conserved by this system of equations. 
 
Let's now look at the conservation of the second moment of A, i.e., A2: 
 
Multiply (6) by A  
 

( ) ( ) 0A uA vAA A A
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

2 ( ) ( ) 0
2
A uAA vAA A AuA vA

t x y x y
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + − − =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
    (8) 

 
Multiply (5b) by A  
 

 
2

0
2
A A AuA vA

t x y
⎛ ⎞∂ ∂ ∂

+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
       (9) 

 
(8) + (9)  
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2 2 2( ) ( ) 0A uA vA

t x y
∂ ∂ ∂

+ + =
∂ ∂ ∂

       (10) 

 
we have a conservation equation for A2 in the flux divergence form too! 
 
For a periodic domain, we have  
 

 2 0A dxdy
t

∂ ⎡ ⎤ =⎣ ⎦∂ ∫∫  

 
therefore the second-moment of A is also conserved by the continuous system. 
 
 
What about the discrete equations? Do they also conserve these quantities? Not all discrete forms do. We will show 
one conservative example in the following. 
 
Conservation for the Discrete System 
 
Consider the case of staggered Arakawa C-grid: 
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u u

v

v

A

x

∆

∆

y

 
and the following second-order FD formulation: 
 

2 ( ) ( ) 0x y
t x yA uA vAδ δ δ+ + =       (11a) 

 
0x yu vδ δ+ =          (11b) 

 
Q: Does this system conserve A and A2? 
 
 
Note that xA  is defined at u point and yA at v point, we denote xA =B and yA =C  
 

1 1 0 0 2 2 1 1

1 1 2 2 1 1

( ) ( ) / ( ) / ....

( ) / ( ) / 0

x
x

ij

N N N N N N N N

uA u B u B x u B u B x

u B u B x u B u B x

δ

− − − − − −

= − ∆ + − ∆ +

+ − ∆ + − ∆ =

∑
 

 
with periodic B.C.  
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The same is true to the flux in y direction – therefore A is conserved. 
 
 
Conservation of A2 is a little more complicated to show. We will make use of two identities (you can check them 
out for yourself): 
 

( ) ( )
xx

x x xP Q P Q P Qδ δ δ= +        (12a) 
 

2( / 2)x
x xP P Pδ δ=         (12b) 

 
 
Multiply (11a) by A  
 

2 ( ) ( )x y
t x yA A A uA A vAδ δ δ= − −       (13) 

 
Look at only the 1st term on RHS of (13): 
 

- ( )x
xA uAδ  

 
Let , ,xP A Q uA= =  (12a) becomes 
 

( ) ( ) ( )( )
x

x x x x
x x xA uA A uA A uAδ δ δ= +  

 
2( ) ( ) ( / 2)

xx x x
x x xA uA A uA u Aδ δ δ= −       (14) 
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The 2nd term on RHS of (14) is not in the flux form. Using (12a) again, let P = A2/2, Q=u  
 

  2 2 2( / 2 ) ( / 2) ( / 2)
x x

x x xA u A u A uδ δ δ= +  
 
therefore  
 

2 2 2( / 2) ( / 2 ) ( / 2)
x x

x x xu A A u A uδ δ δ= −      (15) 
 
Now (14) becomes 
 

2 2( ) ( ) ( / 2 ) ( / 2)
xx x x

x x x xA uA A uA A u A uδ δ δ δ= − +     (16) 
 

- only the last term is not in the flux form.  
 
For the y direction, we can also get 
 

 2 2( ) ( ) ( / 2 ) ( / 2)
y

y y y
y y y yA vA A vA A v A vδ δ δ δ= − +     (17) 

 
(16) + (17)    
 

2( ) ( ) .... ( / 2)( )x y
x y x yA uA A vA A u vδ δ δ δ+ = + +  

 
the last term is zero because of (11b)! 
 
Therefore  
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2 0t
ij

A Aδ =∑   1 1( ) 0n n n n

ij
A A A A+ −− =∑   

1 1( ) ( )n n n n

ij ij
A A A A+ −=∑ ∑  

 
1n nA A + is not exactly A2 due to the temporal discretization – we say A2 is quasi-conserved! 

 
Comments on Conservations: 
 

• Conservation is generally a good thing to have in a model – can be used to check the 
correctness of code – if you know your scheme conserves, check if the domain integral changes 
in time. 

• Don't want to use schemes that are known to conserve poorly. 
• It is not always possible to conserve all conservative quantities of the continuous system, 

however. 
 
Nonlinear advection schemes that conserve more quantities 
 
Arakawa derived and compared several methods for dealing with the nonlinear advection of a barotropic vorticity 
equation 
 

0u v
t x x
ζ ζ ζ∂ ∂ ∂

+ + =
∂ ∂ ∂

        (18) 

 

with 2 ; ;u v
y x
ψ ψζ ψ ∂ ∂

= ∇ = − =
∂ ∂

  

 
where ζ is vorticity and ψ is the streamfunction. 
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(18) can be rewritten as  
 

0
t y x x y
ζ ψ ζ ψ ζ∂ ∂ ∂ ∂ ∂

− + =
∂ ∂ ∂ ∂ ∂

       (19) 

 
where the advection can be written as a Jacobian: 
 

( , )J
x y y x
ψ ζ ψ ζψ ζ ∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

       (20) 

 
Arakawa came up with seven different forms of discretization for the Jacobian (called Arakawa Jacobians), some 
conserve total energy and enstrophy ( ζ2) (the PDE conserves both).  
 
The following figures show total kinetic energy, total enstrophy and the kinetic energy spectrum, as function of 
time, using different Jacobians. Formulation No. 7 (J7) is the only one that conserves both total energy and total 
enstrophy. 
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Read Mesinger and Arakawa (1976) GARP Report, section 7 of Chapter 3.  


