On deciding stability of high frequency amplifiers

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet

December 10, 2019 Journées McTAO-CAGE

Summary

Example time-varying Networks of Telegrapher's equations

Telegrapher's equations :

$$\begin{cases} C_k \frac{\partial v_k(t,x)}{\partial t} = -\frac{\partial i_k(t,x)}{\partial x}, \\ L_k \frac{\partial i_k(t,x)}{\partial t} = -\frac{\partial v_k(t,x)}{\partial x}, \end{cases} \quad (t,x) \in \Omega, \end{cases}$$

$$\Omega \ = \ \{(t,x) \in^2, \ 0 < x < 1 \ \text{and} \ 0 < t < +\infty\},$$

· < ∃ > < ∃ >

With $k \in \{1, \dots, N\}$ where N positive integer denoting the number of Telegrapher's equations.

Stability Conditions for Time-varying Networks of Telegraph Stability of high frequency amplifiers

General time-varying Networks of Telegrapher's equations

$$v(x,t) = \begin{pmatrix} v_1(x,t) \\ \vdots \\ v_N(x,t) \end{pmatrix}, \quad i(x,t) = \begin{pmatrix} i_1(x,t) \\ \vdots \\ i_N(x,t) \end{pmatrix}$$

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet

General time-varying Networks of Telegrapher's equations

$$\mathbf{v}(x,t) = \begin{pmatrix} v_1(x,t) \\ \vdots \\ v_N(x,t) \end{pmatrix}, \quad i(x,t) = \begin{pmatrix} i_1(x,t) \\ \vdots \\ i_N(x,t) \end{pmatrix}$$
$$\mathbf{V}(t) = \begin{pmatrix} v(t,0) \\ v(t,1) \end{pmatrix}, \quad \mathbf{I}(t) = \begin{pmatrix} -i(t,0) \\ i(t,1) \end{pmatrix},$$

Boundary conditions : V(t) = A(t)I(t).

General time-varying Networks of Telegrapher's equations

$$\mathbf{v}(x,t) = \begin{pmatrix} \mathbf{v}_1(x,t) \\ \vdots \\ \mathbf{v}_N(x,t) \end{pmatrix}, \quad i(x,t) = \begin{pmatrix} i_1(x,t) \\ \vdots \\ i_N(x,t) \end{pmatrix}$$
$$\mathbf{V}(t) = \begin{pmatrix} \mathbf{v}(t,0) \\ \mathbf{v}(t,1) \end{pmatrix}, \quad \mathbf{I}(t) = \begin{pmatrix} -i(t,0) \\ i(t,1) \end{pmatrix},$$

Boundary conditions : V(t) = A(t)I(t).

Assumption (Dissipativity)

The map $t \mapsto \mathbf{A}(t)$ is continuous and bounded.

$$\mathbf{A}(t) + \mathbf{A}^*(t) \ge \alpha \, Id, \qquad \alpha > 0 \qquad t \in \mathbb{R}.$$

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet

Stability Conditions for Time-varying Networks of Telegraph Stability of high frequency amplifiers

Equivalence with linear time-varying delay system

•
$$\begin{pmatrix} x_{1}(t) \\ \vdots \\ x_{N}(t) \\ y_{1}(t) \\ \vdots \\ y_{N}(t) \end{pmatrix} = (I + \mathbf{A}(t) \mathbf{K})^{-1} (I - \mathbf{A}(t) \mathbf{K}) P_{2} \begin{pmatrix} x_{1}(t - \tau_{1}) \\ \vdots \\ x_{N}(t - \tau_{N}) \\ y_{1}(t - \tau_{1}) \\ \vdots \\ y_{N}(t - \tau_{N}) \end{pmatrix}$$

- K diagonal positive matrix and P₂ permutation matrix.
- One to one linear relation between i_k , v_k and x_k , y_k .

Generalities on the linear time-varying delay systems

$$z(t) = \sum_{i=1}^{N} D_i(t) z(t - \eta_i) \quad t \ge 0.$$
 (1)

Theorem

Let ϕ be an element of $L^2([-\eta_N, 0], \mathbb{R}^d)$.

(i) There is a unique solution z to (1) in $L^2_{loc}([-\eta_N, +\infty), \mathbb{R}^d)$ meeting the initial condition $z_{|[-\eta_N, 0]} = \phi$.

(ii) Moreover if ϕ is continuous on $[-\eta_N, 0]$ with $\phi(0) = \sum_{i=1}^N D_i(0) \phi(-\eta_i)$, then $z \in C^0([-\eta_N, +\infty), \mathbb{R}^d)).$

Stability Conditions for Time-varying Networks of Telegraph Stability of high frequency amplifiers

Definition Stability

$$z(t) = \sum_{i=1}^{N} D_i(t) z(t - \eta_i)$$
 (2)

< (目) → (目)

Definition

The system (2) is L^2 (resp. C^0) exponentially stable if there exists $\gamma, K > 0$ such that :

$$\begin{aligned} \|z(t+\cdot)\|_{L^{2}([-\eta_{N},0],\mathbb{R}^{d})} &\leq Ke^{-\gamma t} \|z(\cdot)\|_{L^{2}([-\eta_{N},0],\mathbb{R}^{d})}, \ t \geq 0 \\ (\text{resp. } \|z(t+\cdot)\|_{C^{0}([-\eta_{N},0],\mathbb{R}^{d})} &\leq Ke^{-\gamma t} \|z(\cdot)\|_{C^{0}([-\eta_{N},0],\mathbb{R}^{d})}, \ t \geq 0 \). \end{aligned}$$

Stability linear time-invariant delay system

$$z(t) = \sum_{i=1}^{N} D_i \, z(t - \eta_i)$$
(3)

Theorem (Henry-Hale Theorem, [Hen74, HVL93])

The following properties are equivalent :

- System (3) is L² exponentially stable.
- System (3) is C⁰ exponentially stable.
- **3** There exists $\beta < 0$ for which

$$Id-\sum_{i=1}^{N}D_{i} e^{-\lambda\eta_{i}}$$
 is invertible for all $\lambda \in \mathbb{C}$ such that $\Re(\lambda) > \beta$.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet

Stability time-invariant network of Telegrapher's equation

Theorem

Under the dissipativity assumption, the delay difference system associated to the network of Telegrapher's equations with time-invariant boundaries is C^0 exponentially stable.

Proof :

1

$$\sum_{i=1}^{N} D_i e^{-\lambda \tau_i} = [Id + \mathbf{AK}]^{-1} [Id - \mathbf{AK}] P_2 \begin{bmatrix} e^{-\lambda \eta_1} & & \\ & \ddots & \\ & & e^{-\lambda \eta_N} \end{bmatrix}$$

3 There exists
$$\| \cdot \|_{\mathbf{K}}$$
, $\| \sum_{i=1}^{N} D_i e^{-\lambda \tau_i} \|_{\mathbf{K}} \le e^{-\Re(\lambda)\eta_1}$

Stability Conditions for Time-varying Networks of Telegraph Stability of high frequency amplifiers

Time-varying linear delay system?

The Henry-Hale theorem is no longer true for time-varying linear difference delay system.

Time-varying linear delay system?

The Henry-Hale theorem is no longer true for time-varying linear difference delay system.

Few references :

- Statibility criteria through Perron-Froebenius theorem Ngoc and Huy [NH15]
 - \rightarrow Not suitable for our case
- Stability criteria through joint spectral radius Chitour, Mazanti and Sigalotti [CMS16]
 → Combinatorics too complicated

Under the dissipativity assumption, we want to prove the C^0 exponential stability of the time-varying telegrapher's equations.

Under the dissipativity assumption, we want to prove the C^0 exponential stability of the time-varying telegrapher's equations.

Our Strategy :

 \rightarrow Prove L^2 stability through Lyapunov functional for system of PDEs

 \rightarrow Prove that stability L^2 is equivalent to the stability C^0 for difference delay system ([CMS16] or [BFLP19])

 \rightarrow Conclude that we have the C^0 stability for our system of PDEs.

L2 stability for PDE

Theorem

Under the dissipativity, the delay system associated to the time-varying network of telegrapher's equation is L^2 exponentially stable.

Lyapunov function :

$$E_k(t) = \frac{1}{2} \int_0^1 \left[C_k v_k^2(t, x) + L_k i_k^2(t, x) \right] dx \,, \quad E(t) = \sum_{k=1}^N E_k(t) \,.$$

. .

Equivalence C^0 and L^2 stability for difference delay system

Proposition ([CMS16], BFLP 2019)

A periodic delay system is L^2 exponentially stable if and only if it is C^0 exponentially stable.

Sketch of proof :

1

$$z(t) = \sum_{q=1}^{+\infty} M_q(t) \phi(t - \sigma_q), \qquad t \ge 0,$$

for at most Ct^N non zero terms.

2 Using suitable test initial data, L^2 or C^0 stability implies :

$$|||M_q(s)||| \leq C_0 e^{-\gamma s}, \qquad \gamma, C_0 > 0.$$

Theorem

Under the dissipativity assumption, the delay system associated to the time-varying network of telegrapher's equations is C^0 exponentially stable.

Theorem

Under the dissipativity assumption, the delay system associated to the time-varying network of telegrapher's equations is C^0 exponentially stable.

The Cauchy problem associated to the Telegrapher's equation is well-posed for the continuous solution ([BFLP19]).

Theorem

Under the dissipativity assumption, the delay system associated to the time-varying network of telegrapher's equations is C^0 exponentially stable.

The Cauchy problem associated to the Telegrapher's equation is well-posed for the continuous solution ([BFLP19]).

Theorem

Under the dissipativity assumption, the time-varying network of telegrapher's equations is C^0 exponentially stable.

Stability Conditions for Time-varying Networks of Telegraph Stability of high frequency amplifiers

Stability for a subclass of delay system

$$z(t) = \sum_{i=1}^{N} D_i(t) z(t - \eta_i), \ \eta_i \text{ distinct}$$

Theorem

If we have :

Disjoint column properties,

• The sum of the matrices $D_i(t)$ is uniformly contractive: $\left\| \left\| \sum_{i=1}^N D_i(t) \right\|_2 \le \nu, \ \nu < 1,$

- 4 同 1 4 回 1 4 回 1

then the difference delay system is C^0 stable.

Summary

2 Stability of high frequency amplifiers

Inside

An amplifier is made of interconnected

- resistors, inductors, capacitors,
- diodes/transistors,
- Iossless transmission lines wich cannot be neglected at high frequency inducing delays.

Forcing periodic signal $\blacktriangleright \triangleright$ periodic solution in the amplifier $\blacktriangleright \triangleright$ amplified signal.

Motivation

- Amplifiers at high frequency are ubiquitous (Cell phones, relays...). They need to be quick to design and produced in large quantites.
- Computer-assisted design (CAD) and simulation before production.
- Powerful "frequency simulation" tools give a reliable prediction of the response, but that response might be unstable.
- Need for a tool to predict stability/unstability in the frequency domain.

Harmonic Balance

The Harmonic Balance method, through Fourier development, Laplace transform and fixed point methods permits to :

- approximate the periodic solution of the circuit,
- linearize the circuit around the periodic solution,
- give a frequency response to a periodic signal wich disturbs the linearized circuit.

Harmonic balance method : Numerically implemented.

Our focus : Structure of the harmonic transfer function, its singularities, links with stability.

$$\begin{cases} \frac{dx(t)}{dt} = A_1(t)x(t) + \sum_{i=0}^{N} B_{1,i}(t)y(t-\tau_i) \\ y(t) = \sum_{i=1}^{N} B_{2,i}(t)y(t-\tau_i) + A_2(t)x(t), \ t \ge s, \end{cases}$$

- 《圖》 《문》 《문》

$$\begin{cases} \frac{dx(t)}{dt} = A_1(t)x(t) + \sum_{i=0}^{N} B_{1,i}(t)y(t-\tau_i) \\ y(t) = \sum_{i=1}^{N} B_{2,i}(t)y(t-\tau_i) + A_2(t)x(t), \ t \ge s, \end{cases}$$

ъ.

< 47 ▶

•
$$L^2 := \mathbb{R}^n \times L^2([-\tau_N, 0], \mathbb{R}^k).$$

$$\begin{cases} \frac{dx(t)}{dt} = A_1(t)x(t) + \sum_{i=0}^{N} B_{1,i}(t)y(t-\tau_i) \\ y(t) = \sum_{i=1}^{N} B_{2,i}(t)y(t-\tau_i) + A_2(t)x(t), \ t \ge s, \end{cases}$$

•
$$L^2 := \mathbb{R}^n \times L^2([-\tau_N, 0], \mathbb{R}^k).$$

• Solution operator $U(t,s):L^2
ightarrow L^2$

$$\begin{cases} \frac{dx(t)}{dt} = A_1(t)x(t) + \sum_{i=0}^{N} B_{1,i}(t)y(t-\tau_i) \\ y(t) = \sum_{i=1}^{N} B_{2,i}(t)y(t-\tau_i) + A_2(t)x(t), \ t \ge s, \end{cases}$$

•
$$L^2 := \mathbb{R}^n \times L^2([-\tau_N, 0], \mathbb{R}^k).$$

- Solution operator $U(t,s):L^2
 ightarrow L^2$
- Monodromy operator U(T, 0)

$$\begin{cases} \frac{dx(t)}{dt} = A_1(t)x(t) + \sum_{i=0}^{N} B_{1,i}(t)y(t-\tau_i) \\ y(t) = \sum_{i=1}^{N} B_{2,i}(t)y(t-\tau_i) + A_2(t)x(t), \ t \ge s, \end{cases}$$

•
$$L^2 := \mathbb{R}^n \times L^2([-\tau_N, 0], \mathbb{R}^k).$$

- Solution operator $U(t,s):L^2
 ightarrow L^2$
- Monodromy operator U(T, 0)

۲

$$\left\{ egin{array}{l} rac{d \mathsf{x}(t)}{dt} = A_1(t) \mathsf{x}(t) + \sum\limits_{i=0}^N B_{1,i}(t) \mathsf{y}(t- au_i) \ y(t) = \sum\limits_{i=1}^N B_{2,i}(t) \mathsf{y}(t- au_i) + A_2(t) \mathsf{x}(t), \ t \geq s, \end{array}
ight.$$

•
$$L^2 := \mathbb{R}^n \times L^2([-\tau_N, 0], \mathbb{R}^k).$$

• Solution operator $U(t,s):L^2
ightarrow L^2$

• Monodromy operator U(T, 0)

$$\left. \begin{array}{c} L^2 \text{ exponential} \\ stability \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{c} Sp(U(T,0)) \text{ included in} \\ \text{ disc of radius } r < 1 \end{array} \right.$$

۲

Stability Conditions for Time-varying Networks of Telegraphe Stability of high frequency amplifiers

Behaviour at high frequency

High frequency system :

$$\begin{cases} x(t) = 0\\ y(t) = \sum_{i=1}^{N} B_{2,i}(t)y(t-\tau_i), \ t \geq s, \end{cases}$$

•
$$\tilde{L}^2 := \{0_n\} \times L^2([-\tau_N, 0], \mathbb{R}^k).$$

- Solution operator $V(t,s): \widetilde{L}^2
 ightarrow \widetilde{L}^2.$
- Monodromy operator V(T, 0).

$$\left. \begin{array}{l} L^2 \text{ or } C^0 \text{ exponential} \\ stability \end{array} \right\} \Leftrightarrow \{ \text{ High Frequency dissipativity} \\ \end{array} \right\}$$

Compact perturbation

Lemma

We have :

$$U(t,s) = V(t,s)P + K(t,s), t \ge s$$

with K(t,s) compact operator $L^2 \rightarrow L^2$ for all t, s and P the canonical projection $L^2 \rightarrow \tilde{L}^2$.

Compact perturbation

Lemma

We have :

$$U(t,s) = V(t,s)P + K(t,s), t \ge s$$

with K(t,s) compact operator $L^2 \rightarrow L^2$ for all t, s and P the canonical projection $L^2 \rightarrow \tilde{L}^2$.

Theorem

The monodromy operator U(T,0) possesses at most a finite number of eigenvalues ζ_1, \dots, ζ_n outside a disk of a radius strictly less than 1. Stability Conditions for Time-varying Networks of Telegraphe Stability of high frequency amplifiers

L^2 stability equivalent to C^0 stability

Theorem

The general system is L^2 exponentially stable if and only if it is C^0 exponentially stable.

The stability of high frequency amplifiers depends on a finite number of unstable eigenvalues.

Input-Output system

$$\int \frac{dx(t)}{dt} = A_1(t)x(t) + \sum_{i=0}^{N} B_i^1(t)y(t-\tau_i) + C_1(t)u(t)$$

$$y(t) = \sum_{i=1}^{N} B_i^2(t)y(t-\tau_i) + A_2(t)x(t) + C_2(t)u(t)$$

$$z(t) = \sum_{i=1}^{N} B_i^3(t)y(t-\tau_i) + A_3(t)x(t) + C_3(t)u(t), t \ge 0,$$

- Input $u \in L^2_{loc}([0, +\infty), \mathbb{R})$ current perturbation, output z the voltage,
- All coefficients are T periodic.

Stability Conditions for Time-varying Networks of Telegraphe Stability of high frequency amplifiers

Harmonic Transfer Function

• $X(t, \alpha)$ response at time t to an impulse at time α $z(t) = \int_0^t X(t, \alpha) u(\alpha) d\alpha$

- $X(t, \alpha)$ response at time t to an impulse at time α $z(t) = \int_0^t X(t, \alpha) u(\alpha) d\alpha$
- $G(s,t) = \int_0^{+\infty} X(t,t-\alpha) e^{-s\alpha} d\alpha$: Laplace Transform

- $X(t, \alpha)$ response at time t to an impulse at time α $z(t) = \int_0^t X(t, \alpha) u(\alpha) d\alpha$
- $G(s,t) = \int_0^{+\infty} X(t,t-\alpha) e^{-s\alpha} d\alpha$: Laplace Transform
- $G_k(s) = \frac{1}{T} \int_0^T G(s,t) e^{-ik\omega_0 t} dt$ with $\omega_0 := \frac{2\pi}{T}$

• $X(t, \alpha)$ response at time t to an impulse at time α $z(t) = \int_0^t X(t, \alpha) u(\alpha) d\alpha$

•
$$G(s,t) = \int_0^{+\infty} X(t,t-\alpha) e^{-s\alpha} d\alpha$$
 : Laplace Transform

•
$$G_k(s) = \frac{1}{T} \int_0^T G(s,t) e^{-ik\omega_0 t} dt$$
 with $\omega_0 := \frac{2\pi}{T}$

Definition (Harmonic Transfer Function HTF)

The infinite matrix H(s) defined by $H_{m,n}(s) := G_{n-m}(s + \frac{2i\pi m}{T})$ for $s \in \mathbb{C}$ is called the harmonic transfer function.

$$Z(s):=\int_0^{+\infty} z(t)e^{-st}dt$$
 and $U(s):=\int_0^{+\infty} u(t)e^{-st}dt.$

$$\begin{pmatrix} \vdots \\ Z(s+i\omega_0) \\ Z(s) \\ Z(s-i\omega_0) \\ \vdots \end{pmatrix} = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & G_2(s-i\omega_0) & G_1(s) & G_0(s+i\omega_0) & \cdots \\ \cdots & G_1(s-i\omega_0) & G_0(s) & G_{-1}(s+i\omega_0) & \cdots \\ \cdots & G_0(s-i\omega_0) & G_{-1}(s) & G_{-2}(s+i\omega_0) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \vdots \\ U(s+i\omega_0) \\ U(s) \\ U(s) \\ U(s-i\omega_0) \\ \vdots \end{pmatrix}$$

- HTF is an operator valued analytic map (values: continuous ops l²(ℤ) → l²(ℤ))
- its entries $\{G_n\}$ are complex valued analytic maps

Structure of the Harmonic Transfer Function

Define
$$z_{j,k} = \frac{ln(\zeta_j)+2ik\pi}{T}$$
 for j in $\{1...n\}$, k in \mathbb{Z} .

Theorem

In
$$\{s \in \mathbb{C}, \Re(s) \geq \gamma\}$$
 for some $\gamma < 0$,

H is a meromorphic operator l²(Z) → l²(Z) wich possibly poles at {z_{j,k}, j ∈ {1...n}, k ∈ Z}.

Under observability/controllability assumptions,

• for all *j*, there is at leat a *k* such that $z_{j,k}$ is a pole of *H*, and also a pole of one G_n .

If no pole in right half plane, exponential C^0 stability.

Contribution

- Advances in stability of time-varying delay systems coming from a network of Telegrapher's equations
- Math. foundation of HF amplifiers stability decision in CAD
- Projection on the unstable part and rationnal approximation to find the poles

Open questions

- Generalization of the Henry-Hale to the periodic difference delay system?
- For fixed j, which z_{j,k} is a pole of which G_n? (In practice, few G_n are computed.)
- Bound on the number of unstable poles?
- May the (stable) singularities of the G_n's be other than poles ?

Stability Conditions for Time-varying Networks of Telegraphe Stability of high frequency amplifiers

- Laurent Baratchart, Sébastien Fueyo, Gilles Lebeau, and Jean-Baptiste Pomet, *Sufficient Stability Conditions for Time-varying Networks of Telegrapher's Equations or Difference Delay Equations*, working paper or preprint, November 2019.
- Yacine Chitour, Guilherme Mazanti, and Mario Sigalotti, Stability of non-autonomous difference equations with applications to transport and wave propagation on networks, Netw. Heterog. Media **11** (2016), no. 4, 563–601.
- Daniel Henry, Linear autonomous neutral functional differential equations, J. Differential Equations 15 (1974), no. 1, 106–128.
- Jack K. Hale and Sjoerd M. Verduyn Lunel, *Introduction to Functional Differential Equations*, Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993.
- Pham Huu Anh Ngoc and Nguyen Dinh Huy, *Exponential* stability of linear delay difference equations with continuous

Stability Conditions for Time-varying Networks of Telegraphe Stability of high frequency amplifiers

time, Vietnam Journal of Mathematics **43** (2015), no. 2, 195–205.

< E

< 4 1 →

Э.

э