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Stability Conditions for Time-varying Networks of Telegraph

Summary

e Stability Conditions for Time-varying Networks of Telegrapher's
Equations or Difference Delay Equations

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet



Stability Conditions for Time-varying Networks of Telegraph

Example time-varying Networks of Telegrapher’s equations

Telegrapher’s equations :

Ovk(t,x) _ Oik(t, x)

Ck = )

o 0 (txen,
[ ik(t,x) _ Owe(t, x)
ot ox

Q = {(t,x)€*, 0<x<1land0<t< 400},

With k € {1,--- , N} where N positive integer denoting the
number of Telegrapher’s equations.
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General time-varying Networks of Telegrapher's equations
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General time-varying Networks of Telegrapher's equations

V(ta O) _i(ta O)
V(t) = ;o (t) = :
v(t,1) i(t,1)

Boundary conditions : V(t) = A(t)I(t).
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General time-varying Networks of Telegrapher's equations

v(t,0) —i(t,0)
v(t,1) i(t,1)

Boundary conditions : V(t) = A(t)I(t).

Assumption (Dissipativity)

The map t — A(t) is continuous and bounded.

A(t) + A*(t) > ald, a>0 teR.
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Equivalence with linear time-varying delay system

Xl(t) Xl(t*Tl)
x(t) B - ot — )
° nio) | = (I + A1) K) (1 = A(t) K) P, (e — 1)
YN-(t) )/N(t._TN)

o K diagonal positive matrix and P, permutation matrix.

@ One to one linear relation between iy, vi and xg, vi.
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Generalities on the linear time-varying delay systems

z(t) = Z Di(t) z(t — ;) t>0. (1)

Let ¢ be an element of L?([—ny, 0], RY).

(i) There is a unique solution z to (1) in L2 ([—nn,+oc), RY)
meeting the initial condition z[_, o] = ¢.

(i) Moreover if ¢ is continuous on [—ny, 0] with

6(0) = __f:lD,-(O) o(—m) . then z € CO([—nw, +o0), B).

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet



Stability Conditions for Time-varying Networks of Telegraph

Definition Stability

N

2(t) =) Di(t)z(t — ) (2)

[y

Definition
The system (2) is L2 (resp. C°) exponentially stable if there exists
v, K > 0 such that :

12(t 4+ )l 2(j—nw,01 ey < Ke™ ¥ [l2() 2w .01.re) t >0

(resp. [|z(t + )l coqny,0.re) < Ke " |2()ll coj—np.01re)s t=0).
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Stability linear delay system

N

2(6) =" Diz(c—m) 3)

i=1

Theorem (Henry-Hale Theorem, [Hen74, HVL93])

The following properties are equivalent :
@ System (3) is L? exponentially stable.
@ System (3) is CO exponentially stable.
© There exists § < 0 for which

N

ld—z D; e~ i s invertible for all X € C such that R(\) > 6.
i=1
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Stability network of Telegrapher's equation

Under the dissipativity assumption, the delay difference system
associated to the network of Telegrapher's equations with
time-invariant boundaries is C° exponentially stable.

Proof :
o
N e\
Y Dje i = [Id+AK] '[Id—AK] P,
i=1 e~ NN
@ There exists |||, H’ZIN:l Dje i ’K < e RM)m
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Time-varying linear delay system?

The Henry-Hale theorem is no longer true for time-varying linear
difference delay system.
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Time-varying linear delay system?

The Henry-Hale theorem is no longer true for time-varying linear
difference delay system.

Few references :

o Statibility criteria through Perron-Froebenius theorem
Ngoc and Huy [NH15]
— Not suitable for our case

@ Stability criteria through joint spectral radius
Chitour, Mazanti and Sigalotti [CMS16]
— Combinatorics too complicated
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Under the dissipativity assumption, we want to prove the C°
exponential stability of the time-varying telegrapher’s equations.
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Stability Conditions for Time-varying Networks of Telegraph

Under the dissipativity assumption, we want to prove the C°
exponential stability of the time-varying telegrapher’s equations.

Our Strategy :

— Prove L? stability through Lyapunov functional for system of
PDEs

— Prove that stability L2 is equivalent to the stability C° for
difference delay system ([CMS16] or [BFLP19])

— Conclude that we have the C° stability for our system of PDEs.
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L2 stability for PDE

Under the dissipativity, the delay system associated to the
time-varying network of telegrapher’s equation is L> exponentially
stable.

@ Lyapunov function :
1 /! N
Ex(t) = 2/0 [Cevie(t, %) + Liig(t,x)] dx,  E(t) =) Ei(t).
k=1
N
Q@ S E(t) < —aY [i2(t,0)+i2(t,1)].
k=1

© We can prove : E(t) < Ke " E(0), v, K > 0.
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Equivalence C° and L2 stability for difference delay system

Proposition ([CMS16], BFLP 2019)

A periodic delay system is L? exponentially stable if and only if it is
CO exponentially stable.

Sketch of proof :
o

+o00
A=Y My(t)o(t —0q),  t20,
qg=1

for at most Ct" non zero terms.
@ Using suitable test initial data, L2 or C? stability implies :

H|Mq(5)m < CO e—757 e CO > 0.
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Under the dissipativity assumption, the delay system associated to
the time-varying network of telegrapher’s equations is C°
exponentially stable.
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Under the dissipativity assumption, the delay system associated to
the time-varying network of telegrapher’s equations is C°
exponentially stable.

The Cauchy problem associated to the Telegrapher’s equation is
well-posed for the continuous solution ([BFLP19]).
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Stability Conditions for Time-varying Networks of Telegraph

Under the dissipativity assumption, the delay system associated to
the time-varying network of telegrapher’s equations is C°
exponentially stable.

The Cauchy problem associated to the Telegrapher’s equation is
well-posed for the continuous solution ([BFLP19]).

Under the dissipativity assumption, the time-varying network of
telegrapher’s equations is C° exponentially stable.
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Stability for a subclass of delay system

N
z(t) =Y Di(t) z(t — 1), n; distinct

=

Theorem

If we have :
@ Disjoint column properties,

@ The sum of the matrices D;(t) is uniformly contractive:
N
ZD,-(t) <v,v<l,
i=1 2

then the difference delay system is CO stable.
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Summary

e Stability of high frequency amplifiers
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Stability of high frequency amplifiers

Inside

An amplifier is made of interconnected
@ resistors, inductors, capacitors,
@ diodes/transistors,

© lossless transmission lines wich cannot be neglected at high
frequency inducing delays.
Forcing periodic signal »» periodic solution in the amplifier »-»
amplified signal.
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Motivation

e Amplifiers at high frequency are ubiquitous (Cell phones,
relays...). They need to be quick to design and produced in
large quantites.

e Computer-assisted design (CAD) and simulation before
production.

o Powerful “frequency simulation” tools give a reliable prediction
of the response, but that response might be unstable.

@ Need for a tool to predict stability/unstability in the frequency
domain.
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Harmonic Balance

The Harmonic Balance method, through Fourier development,
Laplace transform and fixed point methods permits to :

@ approximate the periodic solution of the circuit,
@ linearize the circuit around the periodic solution,

@ give a frequency response to a periodic signal wich disturbs the
linearized circuit.

Our focus : Structure of the harmonic transfer function, its
singularities, links with stability.
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General system, T-periodic :

N
) — Ay (£)x(t) + > Bui(t)y(t 1)

y(t) = ZNle,i(t))/(t S ) 4 A)x(D), s,
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General system, T-periodic :

N
) — Ay (£)x(t) + > Bui(t)y(t 1)

y(t) = ZNle,i(t))/(t S ) 4 A)x(D), s,

o [2:=R" x L%([-7n, 0], RK).
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Stability of high frequency amplifiers

General system, T-periodic :

N
) — Ay (£)x(t) + > Bui(t)y(t 1)

y(t) = z”lsz,f(t>y(t S ) 4 A)x(D), s,

o [2:=R" x L%([-7n, 0], RK).
e Solution operator U(t,s) : L% — L2
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General system, T-periodic :

N

dr. — Al(t)X(t) + ;0 Bl,i(t)y(t — T,')

y(t) = z”lsz,f(t>y(t S ) 4 A)x(D), s,

o [2:=R" x L%([-7n, 0], RK).
e Solution operator U(t,s) : L% — L2
e Monodromy operator U(T,0)
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Stability of high frequency amplifiers

General system, T-periodic :

N
) — Ay (£)x(t) + > Bui(t)y(t 1)

y(t) = z”lsz,f(t>y(t S ) 4 A)x(D), s,

o [2:=R" x L%([-7n, 0], RK).
e Solution operator U(t,s) : L% — L2
e Monodromy operator U(T,0)

°
L? exponential o Sp(U(T,0)) included in
stability disc of radius r < 1
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Stability of high frequency amplifiers

General system, T-periodic :

dr = Al(t)X(t) + iBL;(t)y(t — 7’,‘)

y(t) = éBz,i(t)Y(t ) A(x(E), £ s,

1

L2 :=R" x L?([-7n, 0], R¥).
Solution operator U(t,s) : L% — L2
Monodromy operator U(T,0)

L? exponential Sp(U(T,0)) included in
=
stability disc of radius r < 1
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Behaviour at high frequency

High frequency system :

x(t)=0

y(t) = _ZNle,i(t))/(t —Tj), t>s,

o [2:= {0,} x L2([-7w, 0], RY).
e Solution operator V/(t,s): [2 — [2.
e Monodromy operator V/(T,0).

L2 or CO exponential

stability } < { High Frequency dissipativity
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Stability of high frequency amplifiers

Compact perturbation

We have :
U(t,s) = V(t,s)P + K(t,s), t>s

with K(t,s) compact operator L?> — L2 for all t,s and P the
canonical projection L? — [2.
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Stability of high frequency amplifiers

Compact perturbation

We have :

U(t,s) = V(t,s)P + K(t,s), t=>s

with K(t,s) compact operator L?> — L2 for all t,s and P the
canonical projection L? — [2.

The monodromy operator U(T,0) possesses at most a finite
number of eigenvalues (1, - - ,(, outside a disk of a radius strictly
less than 1.
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L? stability equivalent to C° stability

The general system is L> exponentially stable if and only if it is C°
exponentially stable.

The stability of high frequency amplifiers depends on a finite
number of unstable eigenvalues.
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Stability of high frequency amplifiers
Input-Output system

J(Ox(D) + ﬁo B (E)y(t — 1)+ Cu(e)u(t)

y(t) = % B2(t)y(t — 1) + Ax(t)x(t) + Cao(t)u(t)

g
X
©
I

>

z(t) = % B (t)y(t — i) + As(t)x(t) + Ga(t)u(t), t =0,

e x(t),y(t),z(t) =0 for t <O,
e Input u € L2 ([0,+00),R) current perturbation, output z the
voltage,

o All coefficients are T — periodic.
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Harmonic Transfer Function

e X(t,«) response at time t to an impulse at time «
z(t) = [y X(t,a)u(a)da
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Stability of high frequency amplifiers

Harmonic Transfer Function

e X(t,«) response at time t to an impulse at time «
z(t) = [y X(t,a)u(a)da

o G(s,t) = O+°° X(t, t — a)e **da : Laplace Transform
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Stability of high frequency amplifiers

Harmonic Transfer Function

e X(t,«) response at time t to an impulse at time «
z(t) = [y X(t,a)u(a)da

o G(s,t) = O+°° X(t, t — a)e **da : Laplace Transform

o G(s) = % J7 Gls,t)e " otde with wo = &
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Harmonic Transfer Function

° X(t, «) response at time t to an impulse at time «
= [y X(t, @)u(a)da
° G(s t) o X(t t —a)e *da : Laplace Transform

o Gi(s) = Tfo s, t)e kwotdt  with wg := 2F

Definition (Harmonic Transfer Function HTF)

The infinite matrix H(s) defined by Hp n(s) := Gp_m(s + 27) for
s € C is called the harmonic transfer function.
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Harmonic Transfer Function

Z(S) = oo Z(t)e_Stdt and U(S) = 0+O° u(t)e‘“dt,

Z(s + iwo) o Gas—iwo)  Gu(s)  Go(s+iwe) - || U(s+iwo)

Z(S) = |- G1(S — iwo) Go(s) G_1(S + iwo) oo U(S)

Z(Sf iOJo) Go(sf fwo) Gfl(s) G72(S+I'UJ0) U(Sf iu.)o)

@ HTF is an operator valued analytic map
(values: continuous ops 1?(Z) — I12(Z))

e its entries {G,} are complex valued analytic maps

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet



Stability of high frequency amplifiers

Structure of the Harmonic Transfer Function

In(

Define z; y = M for jin {1...n}, k in Z.

Theorem

In {s € C,R(s) > v} for some v < 0,
e H is a meromorphic operator I?(Z) — I>(Z) wich possibly
poles at {zj «,j € {1...n}, k € Z}.
Under observability /controllability assumptions,

o for all j, there is at leat a k such that zj , is a pole of H, and
also a pole of one G,.

If no pole in right half plane, exponential C° stability.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet



Stability of high frequency amplifiers

Contribution

e Advances in stability of time-varying delay systems coming
from a network of Telegrapher's equations

Math. foundation of HF amplifiers stability decision in CAD

Projection on the unstable part and rationnal approximation to
find the poles

Open questions

e Generalization of the Henry-Hale to the periodic difference
delay system?

For fixed j, which z; « is a pole of which G,?
(In practice, few G, are computed.)

Bound on the number of unstable poles?

May the (stable) singularities of the G,'s be other than poles ?
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