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Example time-varying Networks of Telegrapher’s equations

Telegrapher’s equations :


Ck
∂vk(t, x)

∂t
= −∂ik(t, x)

∂x
,

Lk
∂ik(t, x)

∂t
= −∂vk(t, x)

∂x
,

(t, x) ∈ Ω ,

Ω = {(t, x) ∈2, 0 < x < 1 and 0 < t < +∞},

With k ∈ {1, · · · ,N} where N positive integer denoting the
number of Telegrapher’s equations.
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General time-varying Networks of Telegrapher’s equations

v(x , t) =

v1(x , t)
...

vN(x , t)

 , i(x , t) =

 i1(x , t)
...

iN(x , t)



V(t) =

v(t, 0)

v(t, 1)

 , I(t) =

−i(t, 0)

i(t, 1)

 ,

Boundary conditions : V(t) = A(t) I(t).

Assumption (Dissipativity)

The map t 7→ A(t) is continuous and bounded.

A(t) + A∗(t) ≥ α Id , α > 0 t ∈ R.
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Equivalence with linear time-varying delay system



x1(t)
...

xN(t)
y1(t)
...

yN(t)


= (I + A(t) K)−1 (I − A(t) K)P2



x1(t − τ1)
...

xN(t − τN)
y1(t − τ1)

...
yN(t − τN)


.

K diagonal positive matrix and P2 permutation matrix.
One to one linear relation between ik , vk and xk , yk .

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Generalities on the linear time-varying delay systems

z(t) =
N∑
i=1

Di (t) z(t − ηi ) t ≥ 0. (1)

Theorem

Let φ be an element of L2([−ηN , 0],Rd).
(i) There is a unique solution z to (1) in L2

loc([−ηN ,+∞),Rd)
meeting the initial condition z|[−ηN ,0] = φ.

(ii) Moreover if φ is continuous on [−ηN , 0] with

φ(0) =
N∑
i=1

Di (0)φ(−ηi ) , then z ∈ C 0([−ηN ,+∞),Rd)).

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Definition Stability

z(t) =
N∑
i=1

Di (t) z(t − ηi ) (2)

Definition

The system (2) is L2 (resp. C 0) exponentially stable if there exists
γ,K > 0 such that :

‖z(t + ·)‖L2([−ηN ,0],Rd ) ≤ Ke−γt‖z(·)‖L2([−ηN ,0],Rd ), t ≥ 0

(resp. ‖z(t + ·)‖C0([−ηN ,0],Rd ) ≤ Ke−γt‖z(·)‖C0([−ηN ,0],Rd ), t ≥ 0 ).

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Stability linear time-invariant delay system

z(t) =
N∑
i=1

Di z(t − ηi ) (3)

Theorem (Henry-Hale Theorem, [Hen74, HVL93])

The following properties are equivalent :
1 System (3) is L2 exponentially stable.
2 System (3) is C 0 exponentially stable.
3 There exists β < 0 for which

Id−
N∑
i=1

Di e
−ληi is invertible for all λ ∈ C such that <(λ) > β.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Stability time-invariant network of Telegrapher’s equation

Theorem
Under the dissipativity assumption, the delay difference system
associated to the network of Telegrapher’s equations with
time-invariant boundaries is C 0 exponentially stable.

Proof :
1

N∑
i=1

Di e
−λτi = [Id+AK]−1[Id−AK]P2

e
−λη1

. . .
e−ληN

 .
2 There exists |||·|||K,

∣∣∣∣∣∣∣∣∣∑N
i=1 Di e

−λτi
∣∣∣∣∣∣∣∣∣

K
≤ e−<(λ)η1 .

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Time-varying linear delay system?

The Henry-Hale theorem is no longer true for time-varying linear
difference delay system.

Few references :
Statibility criteria through Perron-Froebenius theorem
Ngoc and Huy [NH15]
→ Not suitable for our case
Stability criteria through joint spectral radius
Chitour, Mazanti and Sigalotti [CMS16]
→ Combinatorics too complicated

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Under the dissipativity assumption, we want to prove the C 0

exponential stability of the time-varying telegrapher’s equations.

Our Strategy :

→ Prove L2 stability through Lyapunov functional for system of
PDEs
→ Prove that stability L2 is equivalent to the stability C 0 for
difference delay system ([CMS16] or [BFLP19])
→ Conclude that we have the C 0 stability for our system of PDEs.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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L2 stability for PDE

Theorem

Under the dissipativity, the delay system associated to the
time-varying network of telegrapher’s equation is L2 exponentially
stable.

1 Lyapunov function :

Ek(t) =
1
2

∫ 1

0

[
Ckv

2
k (t, x) + Lk i

2
k (t, x)

]
dx , E (t) =

N∑
k=1

Ek(t) .

2 d
dt E (t) ≤ −α

N∑
k=1

[
i2k (t, 0) + i2k (t, 1)

]
.

3 We can prove : E (t) ≤ Ke−γtE (0), γ,K > 0.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Equivalence C 0 and L2 stability for difference delay system

Proposition ([CMS16], BFLP 2019)

A periodic delay system is L2 exponentially stable if and only if it is
C 0 exponentially stable.

Sketch of proof :
1

z(t) =
+∞∑
q=1

Mq(t)φ(t − σq), t ≥ 0,

for at most CtN non zero terms.
2 Using suitable test initial data, L2 or C 0 stability implies :

|||Mq(s)||| ≤ C0 e
−γs , γ,C0 > 0.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Theorem

Under the dissipativity assumption, the delay system associated to
the time-varying network of telegrapher’s equations is C 0

exponentially stable.

The Cauchy problem associated to the Telegrapher’s equation is
well-posed for the continuous solution ([BFLP19]).

Theorem

Under the dissipativity assumption, the time-varying network of
telegrapher’s equations is C 0 exponentially stable.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Stability for a subclass of delay system

z(t) =
N∑
i=1

Di (t) z(t − ηi ), ηi distinct

Theorem

If we have :
1 Disjoint column properties,
2 The sum of the matrices Di (t) is uniformly contractive:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

Di (t)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ ν, ν < 1,

then the difference delay system is C 0 stable.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Inside

An amplifier is made of interconnected
1 resistors, inductors, capacitors,
2 diodes/transistors,
3 lossless transmission lines wich cannot be neglected at high

frequency inducing delays.
Forcing periodic signal II periodic solution in the amplifier II
amplified signal.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Motivation

Amplifiers at high frequency are ubiquitous (Cell phones,
relays...). They need to be quick to design and produced in
large quantites.
Computer-assisted design (CAD) and simulation before
production.
Powerful “frequency simulation” tools give a reliable prediction
of the response, but that response might be unstable.
Need for a tool to predict stability/unstability in the frequency
domain.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Harmonic Balance

The Harmonic Balance method, through Fourier development,
Laplace transform and fixed point methods permits to :

approximate the periodic solution of the circuit,
linearize the circuit around the periodic solution,
give a frequency response to a periodic signal wich disturbs the
linearized circuit.

Harmonic balance method : Numerically implemented.

Our focus : Structure of the harmonic transfer function, its
singularities, links with stability.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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General system, T -periodic :


dx(t)
dt = A1(t)x(t) +

N∑
i=0

B1,i (t)y(t − τi )

y(t) =
N∑
i=1

B2,i (t)y(t − τi ) + A2(t)x(t), t ≥ s,

L2 := Rn × L2([−τN , 0],Rk).
Solution operator U(t, s) : L2 → L2

Monodromy operator U(T , 0)

L2 exponential
stability

}
⇔
{

Sp(U(T , 0)) included in
disc of radius r < 1

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Behaviour at high frequency

High frequency system :


x(t) = 0

y(t) =
N∑
i=1

B2,i (t)y(t − τi ), t ≥ s,

L̃2 := {0n} × L2([−τN , 0],Rk).
Solution operator V (t, s) : L̃2 → L̃2.
Monodromy operator V (T , 0).

L2 or C 0 exponential
stability

}
⇔ { High Frequency dissipativity

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Compact perturbation

Lemma

We have :

U(t, s) = V (t, s)P + K (t, s), t ≥ s

with K (t, s) compact operator L2 → L2 for all t, s and P the
canonical projection L2 → L̃2.

Theorem
The monodromy operator U(T , 0) possesses at most a finite
number of eigenvalues ζ1, · · · , ζn outside a disk of a radius strictly
less than 1.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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L2 stability equivalent to C 0 stability

Theorem

The general system is L2 exponentially stable if and only if it is C 0

exponentially stable.

The stability of high frequency amplifiers depends on a finite
number of unstable eigenvalues.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Input-Output system



dx(t)
dt = A1(t)x(t) +

N∑
i=0

B1
i (t)y(t − τi ) + C1(t)u(t)

y(t) =
N∑
i=1

B2
i (t)y(t − τi ) + A2(t)x(t) + C2(t)u(t)

z(t) =
N∑
i=1

B3
i (t)y(t − τi ) + A3(t)x(t) + C3(t)u(t), t ≥ 0,

• x(t), y(t), z(t) = 0 for t < 0,
• Input u ∈ L2

loc([0,+∞),R) current perturbation, output z the
voltage,
• All coefficients are T − periodic .

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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Harmonic Transfer Function

X (t, α) response at time t to an impulse at time α
z(t) =

∫ t
0 X (t, α)u(α)dα

G (s, t) =
∫ +∞
0 X (t, t − α)e−sαdα : Laplace Transform

Gk(s) = 1
T

∫ T
0 G (s, t)e−ikω0 tdt with ω0 := 2π

T

Definition (Harmonic Transfer Function HTF)

The infinite matrix H(s) defined by Hm,n(s) := Gn−m(s + 2iπm
T ) for

s ∈ C is called the harmonic transfer function.

L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet
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z(t) =

∫ t
0 X (t, α)u(α)dα

G (s, t) =
∫ +∞
0 X (t, t − α)e−sαdα : Laplace Transform

Gk(s) = 1
T

∫ T
0 G (s, t)e−ikω0 tdt with ω0 := 2π

T

Definition (Harmonic Transfer Function HTF)

The infinite matrix H(s) defined by Hm,n(s) := Gn−m(s + 2iπm
T ) for

s ∈ C is called the harmonic transfer function.
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Harmonic Transfer Function

Z (s) :=
∫ +∞
0 z(t)e−stdt and U(s) :=

∫ +∞
0 u(t)e−stdt.



...
Z(s + iω0)

Z(s)
Z(s − iω0)

...


=



. . .
...

...
...

...
· · · G2(s − iω0) G1(s) G0(s + iω0) · · ·
· · · G1(s − iω0) G0(s) G−1(s + iω0) · · ·
· · · G0(s − iω0) G−1(s) G−2(s + iω0) · · ·

...
...

...
...

. . .





...
U(s + iω0)

U(s)
U(s − iω0)

...



HTF is an operator valued analytic map
(values: continuous ops l2(Z)→ l2(Z))
its entries {Gn} are complex valued analytic maps
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Structure of the Harmonic Transfer Function

Define zj ,k =
ln(ζj )+2ikπ

T for j in {1...n}, k in Z.

Theorem

In {s ∈ C,<(s) ≥ γ} for some γ < 0,
H is a meromorphic operator l2(Z)→ l2(Z) wich possibly
poles at {zj ,k , j ∈ {1...n}, k ∈ Z}.

Under observability/controllability assumptions,
for all j , there is at leat a k such that zj ,k is a pole of H, and
also a pole of one Gn.

If no pole in right half plane, exponential C 0 stability.
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Contribution
• Advances in stability of time-varying delay systems coming

from a network of Telegrapher’s equations
• Math. foundation of HF amplifiers stability decision in CAD
• Projection on the unstable part and rationnal approximation to

find the poles

Open questions
• Generalization of the Henry-Hale to the periodic difference

delay system?
• For fixed j , which zj ,k is a pole of which Gn?

(In practice, few Gn are computed.)
• Bound on the number of unstable poles?
• May the (stable) singularities of the Gn’s be other than poles ?
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