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Abstract

In this paper, we describe why and how to build a local community of practice in
scientific programming for life scientists that use computers and programming in their
research. A community of practice is a small group of scientists that meet regularly
to help each other and promote good practices in scientific programming. While most
life scientists are well-trained in the laboratory to conduct experiments, good practices
with (big) datasets and their analysis are often missing. We propose a model on how to
build such a community of practice at a local academic institution, present two real-life
examples and introduce challenges and implemented solutions. We believe that the
current data deluge that life scientists face can benefit from the implementation of these
small communities. Good practices spread among experimental scientists will foster
open, transparent and sound scientific results beneficial to society.
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Introduction 1

Life Sciences is becoming a data-driven field 2

In the last ten years, since the advent of the first next-generation sequencing (NGS) 3

technologies, DNA and RNA sequencing costs have plunged to levels that make genome 4

sequencing an affordable reality for every life scientist. Yet the vast majority of wet lab 5

biologists need tailor-made, practical training to learn scientific programming and data 6

analysis [6–9,13,14]. Current efforts in bioinformatics and data science training for life 7

scientists have been initiated worldwide to cope with these training demands [10–14]. 8

Good practices in scientific programming are needed to increase 9

research reproducibility 10

Modern biology is facing reproducibility issues [15]. While evidence suggests this might 11

not be as bad as it sounds [16], there is clearly a need for increased reproducibility. For 12

instance, out of 400 algorithms presented at two conferences, only 6% had published their 13

corresponding code [17]. Thus, most research code remains a “black box” [18] although 14

programming is a central tool in research [19]. Use of laboratory notebooks is widely 15

taught in biology but not emphasized for coding. Both code documentation and better 16

practices in data management are needed so anyone can redo or understand the analyses 17

later on. Part of the solution lies in dedicated training to researchers to promote good 18

programming practices [20]. One of the recent relevant initiatives is the FAIR (Findable, 19

Accessible, Interoperable and Reusable) principles initiative which provides guidelines to 20

boost reproducibility and reuse of datasets [21]. Therefore, the long term goal of any 21

programming scientist should be to steward good practices in code-intensive research by 22

promoting open science, reproducible research and sustainable software development. 23

Part of the solution: building a local community of practice 24

Training workshops in scientific programming are often offered as one-time courses 25

but researchers would benefit from a more permanent support. Fueled by Etienne 26

Wenger’s idea that learning is usually a social activity [22,23], we propose to build a local 27

community of practice in scientific programming for life scientists. This community fulfills 28

the three requirements of Wenger’s definition: it has a specific domain i.e. bioinformatics 29

and data science, its members engage in common activities e.g. training events, and they 30

are practitioners i.e. researchers currently engaged in research that involves scientific 31

programming. Community building and organization is a field in itself that has been 32

considerably reviewed [24–29]. Requirements include a few motivated leaders and a 33

safe environment where participants can experiment with their new knowledge [26]. As 34

stated by Wenger and Snyder [30], communities of practice “help to solve problems 35

quickly”, “transfer best practices” and “develop professional skills”. While short-term 36

immediate issues (”help me now to debug my code”) can be solved, the community 37

also has the capacity to steward solutions for long-term data-related problems (”how do 38

I comply with the FAIR guidelines?”) and can therefore help to solve reproducibility 39

issues. Communities of practice can also foster the adoption of good practices [31] since 40

by co-working with their peers, scientists are probably more likely to compare their 41

methods and embrace best practices. 42

This paper will explicitly describe why and how to build a local community of practice in 43

scientific programming. We propose a model of how to build such a community that we 44

exemplify in two case studies. Finally, we discuss the challenges and possible solutions 45

that we encountered when building these communities. Overall, we believe that building 46

these local communities of practice in scientific programming will support and speed-up 47
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scientific research, spread good practices and, ultimately, help to tackle the data deluge 48

in the life sciences. 49

Why do we need to build up local community of prac- 50

tice in scientific programming? 51

Isolation 52

Wet lab biologists are increasingly being asked by their supervisors to analyze a set of pre- 53

existing data in labs where their peers have little to no coding experience. Without access 54

to experienced bioinformaticians, they can lead to a sentiment of isolation deleterious to 55

their work. 56

Self-learning and adoption of bad practices 57

In such a scenario, most researchers tend to invent their own solution sometimes re- 58

inventing the wheel. While wasting time, it also leads to the adoption of bad practices 59

(lack of version control) and irreproducible results. While some compiled easy-to-use 60

software such as samtools [32] can help to get started, typically researchers need to build 61

their own collection of tools and scripts. For instance, version control is essential: we 62

believe that using git1 and github2 for instance should be considered a mandatory, good 63

practice just like accurate pipetting in the molecular lab. 64

Apprehension 65

Researchers may also fear the breadth of knowledge they need before achieving anything 66

which may lead to “impostor syndrome“: the researcher feels like he will be exposed as 67

a fraud and someone more competent will unveil his lack of knowledge of coding and 68

bioinformatics. This also inhibits continued learning since the researcher is then afraid 69

to ask for help. 70

The issue of how to get started 71

Learning to code in a research team is akin to an apprenticeship. The ’apprentice’ will 72

benefit from the experience and knowledge of more experienced team members. For 73

instance, a researcher working on RNA-Seq for several years will be able to demonstrate 74

the use of basic QC tools, short-read aligners, differential gene expression calls, etc. Yet, 75

many research teams do not have an experienced bioinformatician on staff. Even in 76

the best case where an expert bioinformatician is available, it may be problematic for 77

beginners to get all their knowledge in one field from one person. Instead, we propose 78

that building a community to spread good practices and help to connect novices and 79

experts. Ideally, a novice should make progress toward increased skill levels, as illustrated 80

in Fig 1 [33]. 81

How do we build local communities in scientific pro- 82

gramming? A model inspired by experience 83

Here, we propose a three-stage working model (Fig 2) to create a local community of 84

practice in scientific programming composed of life scientists at any given institution 85

1https://git-scm.com/
2https://github.com/
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Fig 1. Different learning stages in scientific programming. This figure displays
the different stages of learning encountered by experimental biologists.

without any prior community structure. 86
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87

In stage 1, we form the ”primer” of a local community of practice by first running 88

 Stage 3: train and attract new champions

Beginners 

 Stage 1: formation of a study group

• Teach basic skills in programming & data science
• First experience of coding in group
• Build a first "primer" of the community

Community leads ("champions")

The study group: 
• Solve code-related issues
• Build a network of coding researchers
• Teach lessons in programming
• Promote good practises

Organize intial Carpentries workshops

Advanced beginners 

The programming
workshop:

Face issues

Continue
programming

Give up / Leave

Self-study

A

 Stage 2: from advanced begginners to competent practitioners

The study group:

• Solve code-related issues
• Co-develop pipelines / online applications
• Contribute lesson material for teaching
• Teach good practices in programming
• Code along during ad hoc hands-on lessons

B

C

Competent practitioners

Advanced beginners

The study group:

• Solve code-related issues
• Co-develop pipelines / online applications
• Contribute lesson material for teaching
• Help to make data more FAIR
• Teach good practices in programming
• Help to move towards Reproducible Research

The instructor 
training:

Community leads ("champions")

Organize Carpentries instructor training

Participates to instructor training

• Teach principles of learning 
• Collect feedback from learners
• Build teaching skills 
• Create a positive learning environment

Community leads ("champions")

Coordinate efforts
Assist learners

Competent practitioners

Competent practitionersNew champions

A local community of practice in scientific programming
Advanced beginners Beginners 

Beginners 

Join the study group

Work together

Join the study group

Fig 2. (Legend on next page)

PLOS 6/14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 11, 2018. ; https://doi.org/10.1101/265421doi: bioRxiv preprint 

https://doi.org/10.1101/265421
http://creativecommons.org/licenses/by-nc/4.0/


Fig 2. (Previous page.)A three-step model to build a local community of practice in
scientific programming for life scientists. (A) First, a few scientists acting as community
leads set up one or more Carpentries workshops to impart basic programming and data
science skills to wet lab life scientists. After completion of the workshop, the novices
will often face programming issues that need to be solved frequently. Furthermore, they
need to continue to learn new programming skills. Therefore, a local study group such
as a Mozilla Study Group can be formed by community leads (”champions”) and
”advanced beginners” to foster a regular meeting place for solving programming issues
together and discovering new tools. (B) By attending a regularly scheduled study group,
advanced beginners start to work together and make progress. Together with additional
guidance and ad hoc assistance by community leads, some advanced beginners become
”competent practitioners”.
(C) Finally, as some ”competent practitioners” attend the Carpentries’ instructor
training sessions, new community leads (”champions”) are trained. In addition, the
local study group keeps attracting new beginners. Study group sessions together with
optional Carpentries events help to educate community members and help them to
become ”advanced beginners” and ”competent practitioners”. As ”competent
practitioners” become community ”champions”, this closes the loop and help the local
community of practice become fully mature with all categories of learners present.

basic programming workshops organized by local community leads (”champions”) and 89

then coupling them to formation of a study group. Champions do not necessarily have 90

to be experts themselves. In our experience, Carpentries workshops work well since they 91

provide training aimed at researchers and possess a long history of teaching programming 92

to scientists [11,20]. These programming workshops serve as a starting point for both 93

learning and gathering researchers together in one room where people are actively paired 94

and invited to learn about each other. Often beginners and bioinformaticians who 95

might have never met despite working at the same institution will connect and engage 96

afterwards. 97

When absolute beginners join these workshops, they become ”advanced beginners” once 98

they gain some programming notions. During their daily work, ”advanced beginners” 99

often lack the support needed to face programming issues that they may encounter 100

frequently. Community ”champions” and ”advanced beginners” can ”seed” a local 101

community of practice (Fig 2) which meet regularly to continue practicing the skills 102

they learned at these programming workshops. Therefore, a local co-working group that 103

follow a well documented handbook such as that of the Mozilla Study Group3 should be 104

set-up with a regular meeting schedule. Other forms of co-working groups can be used 105

but we believe that Mozilla Study Groups offer the best existing model. 106

107

In stage 2, the study group becomes a regular practice for advanced beginners where they 108

progressively become competent practitioners (Fig 2). This study group also welcomes 109

new novice members as they join the research institution or as they hear about the 110

existence of the group. The community leads will provide guidance, specific lessons, and 111

assistance during hands-on practicals which will nurture the community and raise the 112

community global scientific programming level. Again, leading sessions is not restricted 113

to champions and any motivated individual can lead. Also, champions do not necessarily 114

have to be experts themselves but can instead invite experts and facilitate discussions. 115

At the end of this stage, most advanced beginners will likely have become competent 116

practitioners. 117

118

3http://mozillascience.github.io/studyGroupHandbook/
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In stage 3, a subset of the competent practitioners from the local community will 119

become community leads (”champions”, Fig 2) by increasing their teaching and facilitat- 120

ing skills and recognizing the skill level of their audience (Fig 1). These competencies can 121

be attained by becoming a Carpentries instructor which requires attending an instructor 122

training event: these sessions can be organized by initial community champions since 123

they usually have both the network and know-how to set-up these specific workshops. 124

Once again, it is not mandatory to rely on the Carpentries Foundation organization as 125

long as competent practitioners get a deeper knowledge of teaching techniques where 126

they improve their own skills. However, we now have a good perspective on the long-term 127

experience and success of the Carpentries Foundation with over 500 workshops organized 128

and 16,000 attendees present [11,12]. 129

130

131

Case studies 132

The Amsterdam Science Park example 133

In October 2016, Mateusz Kuzak, Carlos Martinez and Marc Galland organized a two-day 134

Software Carpentry workshop in Amsterdam to teach basic programming skills (Shell, 135

version control and Python) to a group of 26 wet lab biologists. This started a dialog 136

about the skills life scientists need in their daily work. After a few months, a subset of 137

the workshop attendees made progress but most of them did not continue to program 138

either because (i) they did not need it at the time, (ii) they felt isolated and could 139

not get support from their peers or (iii) they did not make time for practice alongside 140

regular lab work. Thus, a regular meetup group was needed so that researchers with 141

different programming levels could help and support each other. Hence, in March 2017, 142

we started up the Amsterdam Science Park Study Group following the Mozilla Study 143

Group guidelines. We quickly decided to stick to the guidelines suggested by the Mozilla 144

Science Lab4. Originally, we started with one scientist from the University of Amsterdam 145

(Marc Galland) and two engineers in software engineering (Mateusz Kuzak and Carlos 146

Martinez). But after five months, we decided to gather more scientists to build up 147

a community with expertise in R and Python programming as well as from different 148

scientific fields (genomics, statistics, ecology). Most study group members came from 149

two different institutes which helped the group to be more multidisciplinary. At the 150

same time, a proper website5 was set-up to streamline communication and advertise 151

events. 152

The University of Wisconsin-Madison example 153

At the University of Wisconsin-Madison, Sarah Stevens started a community of practice 154

in the fall of 2014 centered around Computational Biology, Ecology and Evolution 155

(”ComBEE”). It was started as a place to help other graduate students to learn scientific 156

coding, such as Python and discuss scientific issues in computational biology, such as 157

metagenomics. The main ComBEE group meets once a month to discuss computational 158

biology in ecology and evolution. Under the ComBEE umbrella, there are also two 159

spin-off study groups, which alternate each week so that attendees can focus on their 160

favorite programming language. Later in ComBEE’s development, Sarah transitioned to 161

being a part of the Mozilla Study Group community, taking advantage of the existing 162

4https://mozillascience.github.io/study-group-orientation/
5https://scienceparkstudygroup.github.io/studyGroup/
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resources to, for instance, build their web page6. 163

Early in the development of ComBEE, the facilitating of the language-specific study 164

groups was delegated on a semester by semester basis: this helped to keep more members 165

involved in the growth and maturation of the local community. One of the early members 166

of ComBEE was a life sciences graduate student who had recently attended a Software 167

Carpentry Workshop and had no other experience doing bioinformatics. He wanted 168

to continue his development and was working on a very computationally intensive 169

project. He has since run the Python Study Group for several semesters and is now an 170

exceedingly competent computational biologist. He continued to contribute back to the 171

group through the end of his PhD, lending his expertise and experience to the latest 172

study group discussions. The ComBEE study group is now more than three years old 173

and acts as a stable resource center for new graduate students and employees. 174

Room for improvement: challenges and solutions learned175

from experience 176

Below we describe essential components of a successful community of practice based on 177

both literature [25–27,29] and experience. 178

Gather a core group of motivated individuals 179

One of the first tasks for setting up a community of practice is to gather a team of 180

motivated individuals that will act as leaders of the community [26,27]. To recruit these 181

leaders, one can: 182

• Rely on existing communities e.g. ”R lunch group” since these informal groups 183

are often lead by motivated individuals. 184

• Recruit scientists that share similar values such as: 185

– Advocating Open Science 186

– Having a collaborative attitude 187

– Show tolerance towards cultural and scientific differences 188

– Being supportive of beginners and lifelong learners in general 189

• Search within institutions with a reasonably big size e.g. Universities. 190

Keeping participants coming and engaging into the community 191

For someone who is part of the “core team” of a study group, the challenge is to attract 192

experts or new members and ensure that they regularly participate in activities (lessons, 193

co-working sessions, organizational meetings) [26, 27,29]. Among possible incentives to 194

keep new members and leaders engaging, we suggest to tell them that they can: 195

• Reach out to a wider audience by participating to lessons, workshops, etc. 196

• Improve their teaching skills and eventually become a Carpentries instructor 197

• Solve basic issues for several beginners simultaneously through workshops 198

• Lead the community for a semester and thereby develop their leadership 199

• Tailor topics to their interests 200

• Increase their group management, communication and networking capacities 201

6https://combee-uw-madison.github.io
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How to deal with the ever-ongoing turnover at academic institu- 202

tions 203

The constant turnover of students and temporary staff remains a continual challenge. 204

Keeping the local community ongoing requires a critical mass both for the core team and 205

for the audience. Yet, the high turnover of students and staff also has its positive sides: 206

a dynamic environment brings in new people eager to learn and with relevant knowledge 207

to share in the group. We recommend using the turnover of people to your advantage by 208

making an effort to recruit both new members and champions. Some practical solutions 209

include: 210

• Advertising the community through its leaders: people bring people through word 211

to mouth 212

• Invite permanent staff to sustain the community development 213

• Use the turnover to your advantage: quickly invite newcomers to join the community 214

Dealing with the impostor syndrome 215

Creating a safe learning environment is one of the requirement for a thriving community 216

of practice [26]. To encourage beginners and newcomers to participate and feel welcome, 217

we recommend to: 218

• Enforce a Code of Conduct following an existing example7 to set-up expectations 219

and promote a welcoming atmosphere 220

• Promote all questions and forbid surprise reactions to very basic questions (”What 221

is the Shell?”, ”Oh you don’t know?”) 222

• Ban in-depth technical discussions that alienate novices 223

Community leadership and institutional support 224

An effort should be made to assign clear and specific roles to administration members 225

of the local community based on their expertise and interest. Another challenge is to 226

secure funding and people support from the local institution [26,27]. To do so, we advise 227

to: 228

• Delegate as much as possible to promote leadership: appoint someone to lead the 229

community for a semester for instance 230

• Get support from the local institution as soon as possible in terms of money, time 231

and/or staff 232

Community composition 233

Another important aspect to consider is the composition of the community. We have 234

identified the following types of community members as common components of the 235

community: 236

• Absolute and advanced beginners: these are people with the most basic level of 237

knowledge. For them, the motivation to be part of a community is obvious: they 238

want to learn programming and often need rapid assistance to complete their 239

research. 240

7https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
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• Competent practitioners: these are people who already competent in a particular 241

bioinformatics/data science domain. For them, contributing to the community is a 242

good way to reinforce their set of talents. Often, competent practitioners make 243

excellent teachers, as they are able to easily relate to the beginner state of mind. 244

In turn, this increases their learning and teaching skills. 245

• Experts: these are people with the highest experience level on a particular skill. 246

Experts usually reinforce their knowledge by ‘going back to basics’: it is useful 247

for them to understand what are the usual gotchas for novices. Building a local 248

community of practice provides experts with an opportunity to help novices in a 249

more structural way instead of helping each one individually. 250

Practical considerations 251

In our experience, we have found the following practical tips to be useful: 252

• Gather a critical mass of at least 10 recurrent community members that regularly 253

attend meetings and community sessions 254

• Send meeting notifications in advance and frequently enough: schedule the meetings 255

well-in-advance and keep a consistent day, time and place to help people remember 256

them. 257

• Have weekly or fortnightly meetings so that it is a compromise between researchers’ 258

schedules and community development. 259

• Organize meetings in a relatively quiet environment with a good Internet connection. 260

Places such as a campus café outside of busy hours or a small conference room can 261

be good places to start and help to keep an informal and welcoming atmosphere, 262

Conclusion 263

We hope that our model and the lessons learned from our experience described in this 264

paper will save time and effort for future community leads when they start their own local 265

community of practice in scientific programming. Building such a community is far from 266

trivial and we, as scientists, are perhaps not the most proficient on community building 267

and organization [24–28]. Since ”progress will not happen by itself” [20], a community 268

of practice in scientific programming will bring many benefits to its members and to 269

their institution: it fosters the development of new skills for its members, breaks down 270

“mental borders” between departments, networks domain experts at a local site and 271

helps to retain knowledge that would otherwise be lost with the departure of temporary 272

staff and students. 273

The convergence of the “big data” avalanche in biology and new FAIR requirements for 274

data management [21] makes it more and more important for wet lab researchers to 275

conduct good scientific programming, efficient data analysis, and proper research data 276

management. Eventually, these local communities of practice in scientific programming 277

should speed up code-intensive analyses, promote open science, research reproducibility 278

and spread good practices at a given institution. 279
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