

Apache Spark

 i

About the Tutorial

Apache Spark is a lightning-fast cluster computing designed for fast computation. It was

built on top of Hadoop MapReduce and it extends the MapReduce model to efficiently use

more types of computations which includes Interactive Queries and Stream Processing.

This is a brief tutorial that explains the basics of Spark Core programming.

Audience

This tutorial has been prepared for professionals aspiring to learn the basics of Big Data

Analytics using Spark Framework and become a Spark Developer. In addition, it would

be useful for Analytics Professionals and ETL developers as well.

Prerequisite

Before you start proceeding with this tutorial, we assume that you have prior exposure

to Scala programming, database concepts, and any of the Linux operating system

flavors.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache Spark

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisite.. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. SPARK INTRODUCTION ... 1

Apache Spark .. 1

Evolution of Apache Spark .. 1

Features of Apache Spark .. 1

Spark Built on Hadoop .. 2

Components of Spark .. 3

2. SPARK – RDD .. 4

Resilient Distributed Datasets ... 4

Data Sharing is Slow in MapReduce .. 4

Iterative Operations on MapReduce ... 4

Interactive Operations on MapReduce .. 5

Data Sharing using Spark RDD ... 6

Iterative Operations on Spark RDD.. 6

Interactive Operations on Spark RDD .. 6

3. SPARK – INSTALLATION .. 8

Step 1: Verifying Java Installation.. 8

Step 2: Verifying Scala installation .. 8

Step 3: Downloading Scala .. 8

Step 4: Installing Scala ... 9

Step 5: Downloading Apache Spark ... 9

file:///E:/Tutorials/Spark/Spark%20Programming/Spark%20Programming%20-%20Reviewed.doc%23_Toc430867199

Apache Spark

 iii

Step 6: Installing Spark .. 10

Step 7: Verifying the Spark Installation ... 10

4. SPARK – CORE PROGRAMMING.. 12

Spark Shell .. 12

RDD ... 12

Transformations .. 12

Actions .. 16

Programming with RDD ... 17

UN Persist the Storage .. 21

5. SPARK – DEPLOYMENT ... 23

Spark-submit Syntax ... 27

6. ADVANCED SPARK PROGRAMMING ... 30

Broadcast Variables... 30

Accumulators .. 30

Numeric RDD Operations .. 31

Apache Spark

 1

Industries are using Hadoop extensively to analyze their data sets. The reason is that

Hadoop framework is based on a simple programming model (MapReduce) and it

enables a computing solution that is scalable, flexible, fault-tolerant and cost effective.

Here, the main concern is to maintain speed in processing large datasets in terms of

waiting time between queries and waiting time to run the program.

Spark was introduced by Apache Software Foundation for speeding up the Hadoop

computational computing software process.

As against a common belief, Spark is not a modified version of Hadoop and is not,

really, dependent on Hadoop because it has its own cluster management. Hadoop is just

one of the ways to implement Spark.

Spark uses Hadoop in two ways – one is storage and second is processing. Since

Spark has its own cluster management computation, it uses Hadoop for storage purpose

only.

Apache Spark

Apache Spark is a lightning-fast cluster computing technology, designed for fast

computation. It is based on Hadoop MapReduce and it extends the MapReduce model to

efficiently use it for more types of computations, which includes interactive queries and

stream processing. The main feature of Spark is its in-memory cluster computing

that increases the processing speed of an application.

Spark is designed to cover a wide range of workloads such as batch applications,

iterative algorithms, interactive queries and streaming. Apart from supporting all these

workload in a respective system, it reduces the management burden of maintaining

separate tools.

Evolution of Apache Spark

Spark is one of Hadoop’s sub project developed in 2009 in UC Berkeley’s AMPLab by

Matei Zaharia. It was Open Sourced in 2010 under a BSD license. It was donated to

Apache software foundation in 2013, and now Apache Spark has become a top level

Apache project from Feb-2014.

Features of Apache Spark

Apache Spark has following features.

 Speed: Spark helps to run an application in Hadoop cluster, up to 100 times faster

in memory, and 10 times faster when running on disk. This is possible by reducing

number of read/write operations to disk. It stores the intermediate processing data

in memory.

1. SPARK – INTRODUCTION

Apache Spark

 2

 Supports multiple languages: Spark provides built-in APIs in Java, Scala, or

Python. Therefore, you can write applications in different languages. Spark comes

up with 80 high-level operators for interactive querying.

 Advanced Analytics: Spark not only supports ‘Map’ and ‘reduce’. It also supports

SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.

Spark Built on Hadoop

The following diagram shows three ways of how Spark can be built with Hadoop

components.

There are three ways of Spark deployment as explained below.

 Standalone: Spark Standalone deployment means Spark occupies the place on

top of HDFS(Hadoop Distributed File System) and space is allocated for HDFS,

explicitly. Here, Spark and MapReduce will run side by side to cover all spark jobs

on cluster.

 Hadoop Yarn: Hadoop Yarn deployment means, simply, spark runs on Yarn

without any pre-installation or root access required. It helps to integrate Spark

into Hadoop ecosystem or Hadoop stack. It allows other components to run on

top of stack.

 Spark in MapReduce (SIMR): Spark in MapReduce is used to launch spark job

in addition to standalone deployment. With SIMR, user can start Spark and uses

its shell without any administrative access.

Apache Spark

 3

Components of Spark

The following illustration depicts the different components of Spark.

Apache Spark Core

Spark Core is the underlying general execution engine for spark platform that all other

functionality is built upon. It provides In-Memory computing and referencing datasets in

external storage systems.

Spark SQL

Spark SQL is a component on top of Spark Core that introduces a new data abstraction

called SchemaRDD, which provides support for structured and semi-structured data.

Spark Streaming

Spark Streaming leverages Spark Core's fast scheduling capability to perform streaming

analytics. It ingests data in mini-batches and performs RDD (Resilient Distributed

Datasets) transformations on those mini-batches of data.

MLlib (Machine Learning Library)

MLlib is a distributed machine learning framework above Spark because of the

distributed memory-based Spark architecture. It is, according to benchmarks, done by

the MLlib developers against the Alternating Least Squares (ALS) implementations.

Spark MLlib is nine times as fast as the Hadoop disk-based version of Apache

Mahout (before Mahout gained a Spark interface).

GraphX

GraphX is a distributed graph-processing framework on top of Spark. It provides an API

for expressing graph computation that can model the user-defined graphs by using

Pregel abstraction API. It also provides an optimized runtime for this abstraction.

Apache Spark

 4

Resilient Distributed Datasets

Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark. It is an

immutable distributed collection of objects. Each dataset in RDD is divided into logical

partitions, which may be computed on different nodes of the cluster. RDDs can contain

any type of Python, Java, or Scala objects, including user-defined classes.

Formally, an RDD is a read-only, partitioned collection of records. RDDs can be created

through deterministic operations on either data on stable storage or other RDDs. RDD is

a fault-tolerant collection of elements that can be operated on in parallel.

There are two ways to create RDDs: parallelizing an existing collection in your driver

program, or referencing a dataset in an external storage system, such as a shared file

system, HDFS, HBase, or any data source offering a Hadoop Input Format.

Spark makes use of the concept of RDD to achieve faster and efficient MapReduce

operations. Let us first discuss how MapReduce operations take place and why they are

not so efficient.

Data Sharing is Slow in MapReduce

MapReduce is widely adopted for processing and generating large datasets with a

parallel, distributed algorithm on a cluster. It allows users to write parallel computations,

using a set of high-level operators, without having to worry about work distribution and

fault tolerance.

Unfortunately, in most current frameworks, the only way to reuse data between

computations (Ex: between two MapReduce jobs) is to write it to an external stable

storage system (Ex: HDFS). Although this framework provides numerous abstractions for

accessing a cluster’s computational resources, users still want more.

Both Iterative and Interactive applications require faster data sharing across parallel

jobs. Data sharing is slow in MapReduce due to replication, serialization, and disk

IO. Regarding storage system, most of the Hadoop applications, they spend more than

90% of the time doing HDFS read-write operations.

Iterative Operations on MapReduce

Reuse intermediate results across multiple computations in multi-stage applications. The

following illustration explains how the current framework works, while doing the iterative

operations on MapReduce. This incurs substantial overheads due to data replication, disk

I/O, and serialization, which makes the system slow.

2. SPARK – RDD

Apache Spark

 5

Figure: Iterative operations on MapReduce

Interactive Operations on MapReduce

User runs ad-hoc queries on the same subset of data. Each query will do the disk I/O on

the stable storage, which can dominates application execution time.

The following illustration explains how the current framework works while doing the

interactive queries on MapReduce.

Figure: Interactive operations on MapReduce

Apache Spark

 6

Data Sharing using Spark RDD

Data sharing is slow in MapReduce due to replication, serialization, and disk IO. Most

of the Hadoop applications, they spend more than 90% of the time doing HDFS read-

write operations.

Recognizing this problem, researchers developed a specialized framework called Apache

Spark. The key idea of spark is Resilient Distributed Datasets (RDD); it supports in-

memory processing computation. This means, it stores the state of memory as an object

across the jobs and the object is sharable between those jobs. Data sharing in memory

is 10 to 100 times faster than network and Disk.

Let us now try to find out how iterative and interactive operations take place in Spark

RDD.

Iterative Operations on Spark RDD

The illustration given below shows the iterative operations on Spark RDD. It will store

intermediate results in a distributed memory instead of Stable storage (Disk) and make

the system faster.

Note: If the Distributed memory (RAM) is sufficient to store intermediate results (State

of the JOB), then it will store those results on the disk.

Figure: Iterative operations on Spark RDD

Interactive Operations on Spark RDD

This illustration shows interactive operations on Spark RDD. If different queries are run

on the same set of data repeatedly, this particular data can be kept in memory for better

execution times.

Figure: Interactive operations on Spark RDD

Apache Spark

 7

By default, each transformed RDD may be recomputed each time you run an action on

it. However, you may also persist an RDD in memory, in which case Spark will keep the

elements around on the cluster for much faster access, the next time you query it. There

is also support for persisting RDDs on disk, or replicated across multiple nodes.

Apache Spark

 8

Spark is Hadoop’s sub-project. Therefore, it is better to install Spark into a Linux based

system. The following steps show how to install Apache Spark.

Step 1: Verifying Java Installation

Java installation is one of the mandatory things in installing Spark. Try the following

command to verify the JAVA version.

$java -version

If Java is already, installed on your system, you get to see the following response –

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

In case you do not have Java installed on your system, then Install Java before

proceeding to next step.

Step 2: Verifying Scala installation

You should Scala language to implement Spark. So let us verify Scala installation using

following command.

$scala -version

If Scala is already installed on your system, you get to see the following response –

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

In case you don’t have Scala installed on your system, then proceed to next step for

Scala installation.

Step 3: Downloading Scala

Download the latest version of Scala by visit the following link Download Scala. For this

tutorial, we are using scala-2.11.6 version. After downloading, you will find the Scala tar

file in the download folder.

3. SPARK – INSTALLATION

http://www.scala-lang.org/download

Apache Spark

 9

Step 4: Installing Scala

Follow the below given steps for installing Scala.

Extract the Scala tar file

Type the following command for extracting the Scala tar file.

$ tar xvf scala-2.11.6.tgz

Move Scala software files

Use the following commands for moving the Scala software files, to respective directory

(/usr/local/scala).

$ su –

Password:

cd /home/Hadoop/Downloads/

mv scala-2.11.6 /usr/local/scala

exit

Set PATH for Scala

Use the following command for setting PATH for Scala.

$ export PATH = $PATH:/usr/local/scala/bin

Verifying Scala Installation

After installation, it is better to verify it. Use the following command for verifying Scala

installation.

$scala -version

If Scala is already installed on your system, you get to see the following response –

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

Step 5: Downloading Apache Spark

Download the latest version of Spark by visiting the following link Download Spark. For

this tutorial, we are using spark-1.3.1-bin-hadoop2.6 version. After downloading it,

you will find the Spark tar file in the download folder.

https://spark.apache.org/downloads.html

Apache Spark

 10

Step 6: Installing Spark

Follow the steps given below for installing Spark.

Extracting Spark tar

The following command for extracting the spark tar file.

$ tar xvf spark-1.3.1-bin-hadoop2.6.tgz

Moving Spark software files

 The following commands for moving the Spark software files to respective directory

(/usr/local/spark).

$ su –

Password:

cd /home/Hadoop/Downloads/

mv spark-1.3.1-bin-hadoop2.6 /usr/local/spark

exit

Setting up the environment for Spark

Add the following line to ~/.bashrc file. It means adding the location, where the spark

software file are located to the PATH variable.

export PATH = $PATH:/usr/local/spark/bin

Use the following command for sourcing the ~/.bashrc file.

$ source ~/.bashrc

Step 7: Verifying the Spark Installation

Write the following command for opening Spark shell.

$spark-shell

If spark is installed successfully then you will find the following output.

Spark assembly has been built with Hive, including Datanucleus jars on

classpath

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

15/06/04 15:25:22 INFO SecurityManager: Changing view acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: Changing modify acls to: hadoop

Apache Spark

 11

15/06/04 15:25:22 INFO SecurityManager: SecurityManager: authentication

disabled; ui acls disabled; users with view permissions: Set(hadoop); users

with modify permissions: Set(hadoop)

15/06/04 15:25:22 INFO HttpServer: Starting HTTP Server

15/06/04 15:25:23 INFO Utils: Successfully started service 'HTTP class server'

on port 43292.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 1.4.0

 /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_71)

Type in expressions to have them evaluated.

Spark context available as sc

scala>

Apache Spark

 12

Spark Core is the base of the whole project. It provides distributed task dispatching,

scheduling, and basic I/O functionalities. Spark uses a specialized fundamental data

structure known as RDD (Resilient Distributed Datasets) that is a logical collection of

data partitioned across machines. RDDs can be created in two ways; one is by

referencing datasets in external storage systems and second is by applying

transformations (e.g. map, filter, reducer, join) on existing RDDs.

The RDD abstraction is exposed through a language-integrated API. This simplifies

programming complexity because the way applications manipulate RDDs is similar to

manipulating local collections of data.

Spark Shell

Spark provides an interactive shell: a powerful tool to analyze data interactively. It is

available in either Scala or Python language. Spark’s primary abstraction is a distributed

collection of items called a Resilient Distributed Dataset (RDD). RDDs can be created

from Hadoop Input Formats (such as HDFS files) or by transforming other RDDs.

Open Spark Shell

The following command is used to open Spark shell.

$ spark-shell

Create simple RDD

Let us create a simple RDD from the text file. Use the following command to create a

simple RDD.

scala> val inputfile = sc.textFile(“input.txt”)

The output for the above command is

inputfile: org.apache.spark.rdd.RDD[String] = input.txt MappedRDD[1] at

textFile at <console>:12

The Spark RDD API introduces few Transformations and few Actions to manipulate

RDD.

RDD Transformations

RDD transformations returns pointer to new RDD and allows you to create dependencies

between RDDs. Each RDD in dependency chain (String of Dependencies) has a function

for calculating its data and has a pointer (dependency) to its parent RDD.

4. SPARK – CORE PROGRAMMING

Apache Spark

 13

Spark is lazy, so nothing will be executed unless you call some transformation or action

that will trigger job creation and execution. Look at the following snippet of the word-

count example.

Therefore, RDD transformation is not a set of data but is a step in a program (might be

the only step) telling Spark how to get data and what to do with it.

Given below is a list of RDD transformations.

S. No Transformations & Meaning

1

map(func)

Returns a new distributed dataset, formed by passing each element of the

source through a function func.

2

filter(func)

Returns a new dataset formed by selecting those elements of the source on

which func returns true.

3

flatMap(func)

Similar to map, but each input item can be mapped to 0 or more output

items (so func should return a Seq rather than a single item).

4

mapPartitions(func)

Similar to map, but runs separately on each partition (block) of the RDD, so

func must be of type Iterator<T> => Iterator<U> when running on an

RDD of type T.

5

mapPartitionsWithIndex(func)

Similar to map Partitions, but also provides func with an integer value

representing the index of the partition, so func must be of type (Int,

Iterator<T>) => Iterator<U> when running on an RDD of type T.

6

sample(withReplacement, fraction, seed)

Sample a fraction of the data, with or without replacement, using a given

random number generator seed.

7

union(otherDataset)

Returns a new dataset that contains the union of the elements in the source

Apache Spark

 14

dataset and the argument.

8

intersection(otherDataset)

Returns a new RDD that contains the intersection of elements in the source

dataset and the argument.

9

distinct([numTasks]))

Returns a new dataset that contains the distinct elements of the source

dataset.

10

groupByKey([numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K,

Iterable<V>) pairs.

Note: If you are grouping in order to perform an aggregation (such as a

sum or average) over each key, using reduceByKey or aggregateByKey will

yield much better performance.

11

reduceByKey(func, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs

where the values for each key are aggregated using the given reduce

function func, which must be of type (V, V) => V. Like in groupByKey, the

number of reduce tasks is configurable through an optional second

argument.

12

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs

where the values for each key are aggregated using the given combine

functions and a neutral "zero" value. Allows an aggregated value type that

is different from the input value type, while avoiding unnecessary

allocations. Like in groupByKey, the number of reduce tasks is configurable

through an optional second argument.

13

sortByKey([ascending], [numTasks])

When called on a dataset of (K, V) pairs where K implements Ordered,

returns a dataset of (K, V) pairs sorted by keys in ascending or descending

order, as specified in the Boolean ascending argument.

14 join(otherDataset, [numTasks])

Apache Spark

 15

When called on datasets of type (K, V) and (K, W), returns a dataset of (K,

(V, W)) pairs with all pairs of elements for each key. Outer joins are

supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

15

cogroup(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K,

(Iterable<V>, Iterable<W>)) tuples. This operation is also called group

With.

16

cartesian(otherDataset)

When called on datasets of types T and U, returns a dataset of (T, U) pairs

(all pairs of elements).

17

pipe(command, [envVars])

Pipe each partition of the RDD through a shell command, e.g. a Perl or bash

script. RDD elements are written to the process's stdin and lines output to

its stdout are returned as an RDD of strings.

18

coalesce(numPartitions)

Decrease the number of partitions in the RDD to numPartitions. Useful for

running operations more efficiently after filtering down a large dataset.

19

repartition(numPartitions)

Reshuffle the data in the RDD randomly to create either more or fewer

partitions and balance it across them. This always shuffles all data over the

network.

20

repartitionAndSortWithinPartitions(partitioner)

Repartition the RDD according to the given partitioner and, within each

resulting partition, sort records by their keys. This is more efficient than

calling repartition and then sorting within each partition because it can push

the sorting down into the shuffle machinery.

Apache Spark

 16

Actions

The following table gives a list of Actions, which return values.

S.No Action & Meaning

1

reduce(func)

Aggregate the elements of the dataset using a function func (which takes

two arguments and returns one). The function should be commutative and

associative so that it can be computed correctly in parallel.

2

collect()

Returns all the elements of the dataset as an array at the driver program.

This is usually useful after a filter or other operation that returns a sufficiently

small subset of the data.

3

count()

Returns the number of elements in the dataset.

4

first()

Returns the first element of the dataset (similar to take (1)).

5

take(n)

Returns an array with the first n elements of the dataset.

6

takeSample (withReplacement,num, [seed])

Returns an array with a random sample of num elements of the dataset, with

or without replacement, optionally pre-specifying a random number

generator seed.

7

takeOrdered(n, [ordering])

Returns the first n elements of the RDD using either their natural order or a

custom comparator.

8

saveAsTextFile(path)

Writes the elements of the dataset as a text file (or set of text files) in a

given directory in the local filesystem, HDFS or any other Hadoop-supported

file system. Spark calls toString on each element to convert it to a line of text

Apache Spark

 17

in the file.

9

saveAsSequenceFile(path) (Java and Scala)

Writes the elements of the dataset as a Hadoop SequenceFile in a given path

in the local filesystem, HDFS or any other Hadoop-supported file system. This

is available on RDDs of key-value pairs that implement Hadoop's Writable

interface. In Scala, it is also available on types that are implicitly convertible

to Writable (Spark includes conversions for basic types like Int, Double,

String, etc).

10

saveAsObjectFile(path) (Java and Scala)

Writes the elements of the dataset in a simple format using Java serialization,

which can then be loaded using SparkContext.objectFile().

11

countByKey()

Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs

with the count of each key.

12

foreach(func)

Runs a function func on each element of the dataset. This is usually, done for

side effects such as updating an Accumulator or interacting with external

storage systems.

Note: modifying variables other than Accumulators outside of

the foreach() may result in undefined behavior. See Understanding

closures for more details.

Programming with RDD

Let us see the implementations of few RDD transformations and actions in RDD

programming with the help of an example.

Example

Consider a word count example: It counts each word appearing in a document. Consider

the following text as an input and is saved as an input.txt file in a home directory.

input.txt: input file.

people are not as beautiful as they look,

as they walk or as they talk.

they are only as beautiful as they love,

Apache Spark

 18

as they care as they share.

Follow the procedure given below to execute the given example.

Open Spark-Shell

The following command is used to open spark shell. Generally, spark is built using Scala.

Therefore, a Spark program runs on Scala environment.

$ spark-shell

If Spark shell opens successfully then you will find the following output. Look at the last

line of the output “Spark context available as sc” means the Spark container is

automatically created spark context object with the name sc. Before starting the first

step of a program, the SparkContext object should be created.

Spark assembly has been built with Hive, including Datanucleus jars on

classpath

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

15/06/04 15:25:22 INFO SecurityManager: Changing view acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: Changing modify acls to: hadoop

15/06/04 15:25:22 INFO SecurityManager: SecurityManager: authentication

disabled; ui acls disabled; users with view permissions: Set(hadoop); users

with modify permissions: Set(hadoop)

15/06/04 15:25:22 INFO HttpServer: Starting HTTP Server

15/06/04 15:25:23 INFO Utils: Successfully started service 'HTTP class server'

on port 43292.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 1.2.0

 /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_71)

Type in expressions to have them evaluated.

Spark context available as sc

scala>

Apache Spark

 19

Create an RDD

First, we have to read the input file using Spark-Scala API and create an RDD.

The following command is used for reading a file from given location. Here, new RDD is

created with the name of inputfile. The String which is given as an argument in the

textFile(“”) method is absolute path for the input file name. However, if only the file

name is given, then it means that the input file is in the current location.

scala> val inputfile = sc.textFile("input.txt")

Execute Word count Transformation

Our aim is to count the words in a file. Create a flat map for splitting each line into words

(flatMap(line => line.split(“ ”)).

Next, read each word as a key with a value ‘1’ (<key, value> = <word,1>)using map

function (map(word => (word, 1)).

Finally, reduce those keys by adding values of similar keys (reduceByKey(_+_)).

The following command is used for executing word count logic. After executing this, you

will not find any output because this is not an action, this is a transformation; pointing a

new RDD or tell spark to what to do with the given data)

scala> val counts = inputfile.flatMap(line => line.split(" ")).map(word =>

(word, 1)).reduceByKey(_+_);

Current RDD

While working with the RDD, if you want to know about current RDD, then use the

following command. It will show you the description about current RDD and its

dependencies for debugging.

scala> counts.toDebugString

Caching the Transformations

You can mark an RDD to be persisted using the persist() or cache() methods on it. The

first time it is computed in an action, it will be kept in memory on the nodes. Use the

following command to store the intermediate transformations in memory.

scala> counts.cache()

Applying the Action

Applying an action, like store all the transformations, results into a text file. The String

argument for saveAsTextFile(“ ”) method is the absolute path of output folder. Try the

following command to save the output in a text file. In the following example, ‘output’

folder is in current location.

Apache Spark

 20

scala> counts.saveAsTextFile("output")

Checking the Output

Open another terminal to go to home directory (where spark is executed in the other

terminal). Use the following commands for checking output directory.

[hadoop@localhost ~]$ cd output/

[hadoop@localhost output]$ ls -1

part-00000

part-00001

_SUCCESS

The following command is used to see output from Part-00000 files.

[hadoop@localhost output]$ cat part-00000

Output

(people,1)

(are,2)

(not,1)

(as,8)

(beautiful,2)

(they, 7)

(look,1)

The following command is used to see output from Part-00001 files.

[hadoop@localhost output]$ cat part-00001

Output

(walk, 1)

(or, 1)

(talk, 1)

(only, 1)

(love, 1)

(care, 1)

Apache Spark

 21

(share, 1)

UN Persist the Storage

Before UN-persisting, if you want to see the storage space that is used for this

application, then use the following URL in your browser.

http://localhost:4040

You will see the following screen, which shows the storage space used for the

application, which are running on the Spark shell.

If you want to UN-persist the storage space of particular RDD, then use the following

command.

Scala> counts.unpersist()

You will see the output as follows:

15/06/27 00:57:33 INFO ShuffledRDD: Removing RDD 9 from persistence list

15/06/27 00:57:33 INFO BlockManager: Removing RDD 9

15/06/27 00:57:33 INFO BlockManager: Removing block rdd_9_1

Apache Spark

 22

15/06/27 00:57:33 INFO MemoryStore: Block rdd_9_1 of size 480 dropped from

memory (free 280061810)

15/06/27 00:57:33 INFO BlockManager: Removing block rdd_9_0

15/06/27 00:57:33 INFO MemoryStore: Block rdd_9_0 of size 296 dropped from

memory (free 280062106)

res7: cou.type = ShuffledRDD[9] at reduceByKey at <console>:14

For verifying the storage space in the browser, use the following URL.

http://localhost:4040

You will see the following screen. It shows the storage space used for the application,

which are running on the Spark shell.

http://localhost:4040/

Apache Spark

 23

Spark application, using spark-submit, is a shell command used to deploy the Spark

application on a cluster. It uses all respective cluster managers through a uniform

interface. Therefore, you do not have to configure your application for each one.

Example

Let us take the same example of word count, we used before, using shell commands.

Here, we consider the same example as a spark application.

Sample Input

The following text is the input data and the file named is in.txt.

people are not as beautiful as they look,

as they walk or as they talk.

they are only as beautiful as they love,

as they care as they share.

Look at the following program:

SparkWordCount.scala

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark._

object SparkWordCount {

 def main(args: Array[String]) {

 val sc = new SparkContext("local", "Word Count", "/usr/local/spark", Nil,

Map(), Map())

 /* local = master URL; Word Count = application name; */

 /* /usr/local/spark = Spark Home; Nil = jars; Map = environment */

 /* Map = variables to work nodes */

 /*creating an inputRDD to read text file (in.txt) through Spark context*/

 val input = sc.textFile("in.txt")

5. SPARK – DEPLOYMENT

Apache Spark

 24

 /* Transform the inputRDD into countRDD */

 val count=input.flatMap(line=>line.split(" "))

 .map(word=>(word, 1))

 .reduceByKey(_ + _)

 /* saveAsTextFile method is an action that effects on the RDD */

 count.saveAsTextFile("outfile")

 System.out.println("OK");

 }

}

Save the above program into a file named SparkWordCount.scala and place it in a

user-defined directory named spark-application.

Note: While transforming the inputRDD into countRDD, we are using flatMap() for

tokenizing the lines (from text file) into words, map() method for counting the word

frequency and reduceByKey() method for counting each word repetition.

Use the following steps to submit this application. Execute all steps in the spark-

application directory through the terminal.

Step 1: Download Spark Jar

Spark core jar is required for compilation, therefore, download spark-core_2.10-1.3.0.jar

from the following link Spark core jar and move the jar file from download directory to

spark-application directory.

Step 2: Compile program

Compile the above program using the command given below. This command should be

executed from the spark-application directory. Here, /usr/local/spark/lib/spark-

assembly-1.4.0-hadoop2.6.0.jar is a Hadoop support jar taken from Spark library.

$ scalac -classpath "spark-core_2.10-1.3.0.jar:/usr/local/spark/lib/spark-

assembly-1.4.0-hadoop2.6.0.jar" SparkPi.scala

Step 3: Create a JAR

Create a jar file of the spark application using the following command. Here, wordcount

is the file name for jar file.

jar -cvf wordcount.jar SparkWordCount*.class spark-core_2.10-1.3.0.jar

/usr/local/spark/lib/spark-assembly-1.4.0-hadoop2.6.0.jar

Step 4: Submit spark application

http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.3.0

Apache Spark

 25

Submit the spark application using the following command:

spark-submit --class SparkWordCount --master local wordcount.jar

If it is executed successfully, then you will find the output given below. The OK letting in

the following output is for user identification and that is the last line of the program. If

you carefully read the following output, you will find different things, such as:

 successfully started service 'sparkDriver' on port 42954

 MemoryStore started with capacity 267.3 MB

 Started SparkUI at http://192.168.1.217:4040

 Added JAR file:/home/hadoop/piapplication/count.jar

 ResultStage 1 (saveAsTextFile at SparkPi.scala:11) finished in 0.566 s

 Stopped Spark web UI at http://192.168.1.217:4040

 MemoryStore cleared

15/07/08 13:56:04 INFO Slf4jLogger: Slf4jLogger started

15/07/08 13:56:04 INFO Utils: Successfully started service 'sparkDriver' on

port 42954.

15/07/08 13:56:04 INFO Remoting: Remoting started; listening on addresses

:[akka.tcp://sparkDriver@192.168.1.217:42954]

15/07/08 13:56:04 INFO MemoryStore: MemoryStore started with capacity 267.3 MB

15/07/08 13:56:05 INFO HttpServer: Starting HTTP Server

15/07/08 13:56:05 INFO Utils: Successfully started service 'HTTP file server'

on port 56707.

15/07/08 13:56:06 INFO SparkUI: Started SparkUI at http://192.168.1.217:4040

15/07/08 13:56:07 INFO SparkContext: Added JAR

file:/home/hadoop/piapplication/count.jar at

http://192.168.1.217:56707/jars/count.jar with timestamp 1436343967029

15/07/08 13:56:11 INFO Executor: Adding file:/tmp/spark-45a07b83-42ed-42b3-

b2c2-823d8d99c5af/userFiles-df4f4c20-a368-4cdd-a2a7-39ed45eb30cf/count.jar to

class loader

15/07/08 13:56:11 INFO HadoopRDD: Input split:

file:/home/hadoop/piapplication/in.txt:0+54

15/07/08 13:56:12 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 2001

bytes result sent to driver

 (MapPartitionsRDD[5] at saveAsTextFile at SparkPi.scala:11), which is now

runnable

15/07/08 13:56:12 INFO DAGScheduler: Submitting 1 missing tasks from

ResultStage 1 (MapPartitionsRDD[5] at saveAsTextFile at SparkPi.scala:11)

15/07/08 13:56:13 INFO DAGScheduler: ResultStage 1 (saveAsTextFile at

SparkPi.scala:11) finished in 0.566 s

15/07/08 13:56:13 INFO DAGScheduler: Job 0 finished: saveAsTextFile at

SparkPi.scala:11, took 2.892996 s

http://192.168.1.217:4040/
http://192.168.1.217:4040/

Apache Spark

 26

OK

15/07/08 13:56:13 INFO SparkContext: Invoking stop() from shutdown hook

15/07/08 13:56:13 INFO SparkUI: Stopped Spark web UI at

http://192.168.1.217:4040

15/07/08 13:56:13 INFO DAGScheduler: Stopping DAGScheduler

15/07/08 13:56:14 INFO MapOutputTrackerMasterEndpoint:

MapOutputTrackerMasterEndpoint stopped!

15/07/08 13:56:14 INFO Utils: path = /tmp/spark-45a07b83-42ed-42b3-b2c2-

823d8d99c5af/blockmgr-ccdda9e3-24f6-491b-b509-3d15a9e05818, already present as

root for deletion.

15/07/08 13:56:14 INFO MemoryStore: MemoryStore cleared

15/07/08 13:56:14 INFO BlockManager: BlockManager stopped

15/07/08 13:56:14 INFO BlockManagerMaster: BlockManagerMaster stopped

15/07/08 13:56:14 INFO SparkContext: Successfully stopped SparkContext

15/07/08 13:56:14 INFO Utils: Shutdown hook called

15/07/08 13:56:14 INFO Utils: Deleting directory /tmp/spark-45a07b83-42ed-42b3-

b2c2-823d8d99c5af

15/07/08 13:56:14 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint:

OutputCommitCoordinator stopped!

Step 5: Checking output

After successful execution of the program, you will find the directory named outfile in

the spark-application directory.

The following commands are used for opening and checking the list of files in the outfile

directory.

$ cd outfile

$ ls

Part-00000 part-00001 _SUCCESS

The commands for checking output in part-00000 file are:

$ cat part-00000

(people,1)

(are,2)

(not,1)

(as,8)

(beautiful,2)

(they, 7)

Apache Spark

 27

(look,1)

The commands for checking output in part-00001 file are:

$ cat part-00001

(walk, 1)

(or, 1)

(talk, 1)

(only, 1)

(love, 1)

(care, 1)

(share, 1)

Go through the following section to know more about the ‘spark-submit’ command.

Spark-submit Syntax

spark-submit [options] <app jar | python file> [app arguments]

Options

The table given below describes a list of options:-

S.No Option Description

1 --master spark://host:port, mesos://host:port, yarn, or local.

2 --deploy-mode

Whether to launch the driver program locally

("client") or on one of the worker machines inside the

cluster ("cluster") (Default: client).

3 --class Your application's main class (for Java / Scala apps).

4 --name A name of your application.

5 --jars
Comma-separated list of local jars to include on the

driver and executor classpaths.

6 --packages
Comma-separated list of maven coordinates of jars to

include on the driver and executor classpaths.

7 --repositories

Comma-separated list of additional remote

repositories to search for the maven coordinates

given with --packages.

Apache Spark

 28

8 --py-files
Comma-separated list of .zip, .egg, or .py files to

place on the PYTHON PATH for Python apps.

9 --files
Comma-separated list of files to be placed in the

working directory of each executor.

10 --conf (prop=val) Arbitrary Spark configuration property.

11 --properties-file
Path to a file from which to load extra properties. If

not specified, this will look for conf/spark-defaults.

12 --driver-memory Memory for driver (e.g. 1000M, 2G) (Default: 512M).

13 --driver-java-options Extra Java options to pass to the driver.

14 --driver-library-path Extra library path entries to pass to the driver.

15 --driver-class-path

Extra class path entries to pass to the driver.

Note that jars added with --jars are automatically

included in the classpath.

16 --executor-memory Memory per executor (e.g. 1000M, 2G) (Default: 1G).

17 --proxy-user User to impersonate when submitting the application.

18 --help, -h Show this help message and exit.

19 --verbose, -v Print additional debug output.

20 --version Print the version of current Spark.

21 --driver-cores NUM Cores for driver (Default: 1).

22 --supervise If given, restarts the driver on failure.

23 --kill If given, kills the driver specified.

24 --status If given, requests the status of the driver specified.

25 --total-executor-cores Total cores for all executors.

26 --executor-cores

Number of cores per executor. (Default: 1 in YARN

mode, or all available cores on the worker in

standalone mode).

Apache Spark

 29

Apache Spark

 30

Spark contains two different types of shared variables- one is broadcast variables and

second is accumulators.

 Broadcast variables: used to efficiently, distribute large values.

 Accumulators: used to aggregate the information of particular collection.

Broadcast Variables

Broadcast variables allow the programmer to keep a read-only variable cached on each

machine rather than shipping a copy of it with tasks. They can be used, for example, to

give every node, a copy of a large input dataset, in an efficient manner. Spark also

attempts to distribute broadcast variables using efficient broadcast algorithms to reduce

communication cost.

Spark actions are executed through a set of stages, separated by distributed “shuffle”

operations. Spark automatically broadcasts the common data needed by tasks within

each stage.

The data broadcasted this way is cached in serialized form and is deserialized before

running each task. This means that explicitly creating broadcast variables, is only useful

when tasks across multiple stages need the same data or when caching the data in

deserialized form is important.

Broadcast variables are created from a variable v by calling

SparkContext.broadcast(v). The broadcast variable is a wrapper around v, and its

value can be accessed by calling the value method. The code given below shows this:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

Output:

broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

After the broadcast variable is created, it should be used instead of the value v in any

functions run on the cluster, so that v is not shipped to the nodes more than once. In

addition, the object v should not be modified after its broadcast, in order to ensure that

all nodes get the same value of the broadcast variable.

Accumulators

Accumulators are variables that are only “added” to through an associative operation

and can therefore, be efficiently supported in parallel. They can be used to implement

counters (as in MapReduce) or sums. Spark natively supports accumulators of numeric

types, and programmers can add support for new types. If accumulators are created

with a name, they will be displayed in Spark’s UI. This can be useful for understanding

the progress of running stages (NOTE: this is not yet supported in Python).

6. ADVANCED SPARK PROGRAMMING

Apache Spark

 31

An accumulator is created from an initial value v by calling

SparkContext.accumulator(v). Tasks running on the cluster can then add to it using

the add method or the += operator (in Scala and Python). However, they cannot read

its value. Only the driver program can read the accumulator’s value, using

its value method.

The code given below shows an accumulator being used to add up the elements of an

array:

scala> val accum = sc.accumulator(0)

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)

If you want to see the output of above code then use the following command:

scala> accum.value

Output

res2: Int = 10

Numeric RDD Operations

Spark allows you to do different operations on numeric data, using one of the

predefined API methods. Spark’s numeric operations are implemented with a streaming

algorithm that allows building the model, one element at a time.

These operations are computed and returned as a StatusCounter object by calling

status() method.

The following is a list of numeric methods available in StatusCounter.

S.No Method & Meaning

1
count()

Number of elements in the RDD.

2
Mean()

Average of the elements in the RDD.

3
Sum()

Total value of the elements in the RDD.

4
Max()

Maximum value among all elements in the RDD.

Apache Spark

 32

5
Min()

Minimum value among all elements in the RDD.

6
Variance()

Variance of the elements.

7
Stdev()

Standard deviation.

If you want to use only one of these methods, you can call the corresponding method

directly on RDD.

