

Hands-On Software
Engineering with Python

Move beyond basic programming and construct reliable
and efficient software with complex code

Brian Allbee

BIRMINGHAM - MUMBAI

Hands-On Software Engineering with
Python
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Sandeep Mishra
Content Development Editor: Anugraha Arunagiri
Technical Editor: Ashi Singh
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tania Dutta
Production Coordinator: Shantanu Zagade

First published: October 2018

Production reference: 1241018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-201-1

www.packt.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Brian Allbee has been writing programs since the mid-1970s, and started a career in
software just as the World Wide Web was starting to take off. He has worked in areas
as varied as organization membership management, content/asset management, and
process and workflow automation in industries as varied as advertising, consumer
health advisement, technical publication, and cloud-computing automation. He has
focused exclusively on Python solutions for the best part of a decade.

There are more people deserving of my thanks than I have room to thank. It's 99%
certain, if you've ever worked with me, I learned something about this craft from
you.

Thank you!

Special thanks to Erik, Saul, Tim, and Josh for lobbing ideas, and Dawn, for being
there, always.

#GNU Charlie Allbee and Sir Terry Pratchett — Mind how you go…

About the reviewers
Chad Greer's focus lies in helping others find excellence. He works to replace typical
"systems thinking" with talent-based approaches, breaking the mold of traditional
business processes. Embracing the principles of agility, he works to respond to
changing market and societal needs in order to ensure that the best solutions are
created and delivered. He has worked in many different industries, including real
estate, accounting, construction, local government, law enforcement, martial arts,
music, healthcare, and several others. He draws on his breadth of experience to help
others around him develop and prosper.

Nimesh Kiran Verma has a dual degree in maths and computing from IIT Delhi and
has worked with companies such as LinkedIn, Paytm, and ICICI for about 5 years in
software development and data science. He co-founded a micro-lending company,
Upwards Fintech, and presently serves as its CTO. He loves coding and has mastered
Python and its popular frameworks, Django and Flask. He extensively leverages
Amazon Web Services, design patterns, and SQL and NoSQL databases to build
reliable, scalable, and low latency architectures.

To my mom, Nutan Kiran Verma, who made me what I am today and gave the
confidence to pursue all my dreams.

Thanks, Papa, Naveen, and Prabhat, who motivated me to steal time for this book
when in fact I was supposed to spend it with them.

Ulhas and the entire Packt team's support was tremendous. Thanks, Varsha Shetty,
for introducing me to Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Programming versus Software Engineering 8
The bigger picture 9
Asking questions 10
Summary 18

Chapter 2: The Software Development Life Cycle 19
Pre-development phases of the SDLC 20

Initial concept/vision 21
Concept development 23
Project management planning 25

Development – specific phases of the SDLC 27
Requirements analysis and definition 27
System architecture and design 27
Development and quality assurance 28
System integration, testing, and acceptance 28

Post-development phases of the SDLC 29
Summary 31

Chapter 3: System Modeling 32
Architecture, both logical and physical 32

Logical architecture 33
Physical architecture 35

Use cases (business processes and rules) 37
Data structure and flow 39
Interprocess communication 41
System scope and scale 44
Summary 46

Chapter 4: Methodologies, Paradigms, and Practices 47
Process methodologies 48

Waterfall 49
Agile (in general) 53
Scrum 56

Scrum and the phases of the SDLC model 63
Kanban 64

Kanban and the phases of the SDLC model 66
Other Agile methodologies 67

Extreme programming 67
Feature-driven development 68

Table of Contents

[ii]

Test-driven design 69
Development paradigms 70

Object-oriented programming 71
Functional programming 74

Development practices 76
Continuous integration 77
Continuous delivery or deployment 78

Summary 79

Chapter 5: The hms_sys System Project 80
Goals for the system 80
What's known/designed before development starts 82
What the iteration chapters will look like 85

Iteration goals and stories 86
Writing and testing the code 87
Post-development considerations and impact 87

Summary 88

Chapter 6: Development Tools and Best Practices 89
Development tools 89

Integrated Development Environment (IDE) options 90
IDLE 92
Geany 94
Eclipse variations + PyDev 96
Others 99

Source Code Management 100
Typical SCM activities 102
Git 104
Subversion 105
Basic workflows for Git and SVN compared 105
Other SCM options 107

Best practices 107
Standards for code 108

PEP-8 109
Internal standards 112

Code organization in modules 112
Structure and standards for classes 116
Function and method annotation (hinting) 122

Process standards 125
Unit testing 126
Repeatable build processes 132
Integrating unit tests and build processes 137

Defining package structures for Python code 138
Packages in a project's context 140

Using Python virtual environments 141
Summary 145

Chapter 7: Setting Up Projects and Processes 147

Table of Contents

[iii]

Iteration goals 148
Assembly of stories and tasks 148
Setting Up SCM 149
Stubbing out component projects 156

Component project analysis 156
Component project setup 157

Packaging and build process 158
Python virtual environments 163

Basic unit testing 171
Identifying missing test case classes 173
Identifying missing test methods 177
Creating reusable module code coverage tests 182
The property and method testing decorators 190
Creating unit test template files 193

Integrating tests with the build process 198
Summary 200

Chapter 8: Creating Business Objects 201
Iteration goals 202
Assembly of stories and tasks 203
A quick review of classes 205
Implementing the basic business objects in hms_sys 206

Address 206
BaseArtisan 216

OO principles – composition over inheritance 218
Implementing BaseArtisan's properties 221
Implementing BaseArtisan's methods 231

BaseCustomer 236
BaseOrder 237
BaseProduct 239
Dealing with duplicated code – HasProducts 246

Summary 253

Chapter 9: Testing Business Objects 254
Starting the unit testing process 255

Unit testing the Address class 261
Unit testing HasProducts 274
Unit testing BaseProduct 277
Unit testing BaseOrder 281
Unit-testing BaseCustomer 283
Unit testing BaseArtisan 285

Unit testing patterns established so far 287
Distribution and installation considerations 288
Quality assurance and acceptance 291
Operation/use, maintenance, and decommissioning
considerations 292

Table of Contents

[iv]

Summary 293

Chapter 10: Thinking About Business Object Data Persistence 294
Iterations are (somewhat) flexible 295
Data storage options 297

Relational databases 298
Advantages and drawbacks 299
MySQL/MariaDB 300
MS-SQL 301
PostgresQL 301

NoSQL databases 301
Advantages and drawbacks 304
MongoDB 305
Other NoSQL options 305

Other data storage options 306
Selecting a data storage option 307
Polymorphism (and programming to an interface) 309
Data access design strategies 310

Data access decisions 317
Why start from scratch? 317

Summary 318

Chapter 11: Data Persistence and BaseDataObject 319
The BaseDataObject ABC 320
Unit testing BaseDataObject 337
Summary 346

Chapter 12: Persisting Object Data to Files 347
Setting up the hms_artisan project 348
Creating a local file system data store 349
Implementing JSONFileDataObject 351
The concrete business objects of hms_artisan 365

Dealing with is_dirty and properties 366
hms_artisan.Artisan 368
hms_artisan.Product 374
hms_artisan.Order 377

Summary 389

Chapter 13: Persisting Data to a Database 390
The Artisan Gateway and Central Office application objects 391

Picking out a backend datastore engine 392
The data access strategy for the Central Office projects 397
Supporting objects for data persistence 398
RDBMS implementations 418

The concrete business objects of the Central Office projects 426
hms_core.co_objects.Artisan 427
hms_core.co_objects.Product 434

Table of Contents

[v]

Other hms_core.co_objects classes 440
Accounting for the other CRUD operations 441

Summary 443

Chapter 14: Testing Data Persistence 444
Writing the unit tests 445
Testing hms_artisan.data_storage 445

Testing hms_artisan.artisan_objects 455
Testing the new hms_core Classes 471

Unit testing hms_core.data_storage.py 472
Unit testing hms_core.co_objects.py 481

Unit tests and trust 481
Building/distribution, demonstration, and acceptance 481
Operations/use, maintenance, and decommissioning
considerations 485
Summary 485

Chapter 15: Anatomy of a Service 486
What is a service? 487
Service structure 487

Configuration 491
Windows-style .ini files 492
JSON files 494
YAML files 495

Logging service activities 496
Handling requests and generating responses 499

Filesystem – based 500
HTTP- or web-based 501
Message- queue-based 503
Other request types 504
Request and response formats 505

A generic service design 506
The BaseDaemon ABC 508
The BaseRequestHandler and BaseResponseFormatter ABCs 523

Integrating a service with the OS 531
Running a service using systemctl (Linux) 531
Running a service using NSSM (Windows) 533
macOS, launchd, and launchctl 535
Managing services on other systems 536

Summary 537

Chapter 16: The Artisan Gateway Service 538
Overview and goal 539
Iteration stories 542
Messages 543
Deciding on a message-transmission mechanism 553

Table of Contents

[vi]

Message-queue implementation with RabbitMQ 555
Handling messages 567
Queues and related Artisan properties 572
Requirements for a web-service-based daemon 578

Traffic to and from the service 580
Impacts on testing and deployment 585
Summary 586

Chapter 17: Handling Service Transactions 587
Remaining stories 588
A bit of reorganization 590
Preparation for object transactions 591
Product object transactions 593

Artisan – creating a product 594
Central Office – approving/listing a product 596
Central Office – altering product data 598
Artisan – updating product data 600
Artisan – deleting a product 601

Artisan object transactions 601
Central Office – creating an artisan 604
Central Office – updating artisan data 605
Central Office – deleting an artisan 606
Artisan – updating Artisan data 606

Order object transactions 607
Customer – relaying order items to artisans 608
Customer – canceling an order 618
Artisan – fulfilling an item in an order 620

When do messages get sent? 622
Summary 630

Chapter 18: Testing and Deploying Services 631
The challenges of testing services 631
The overall testing strategy 634

Unit testing variations of note 635
Testing Artisan transactions 640

Demonstrating the service 655
Packaging and deploying the service 660

Common considerations across all operating systems 662
Linux (systemd) execution 664
Windows (NSSM) execution 665

Where hms_sys development could go from here 668
Code review, refactoring, and cleanup 668
Developing a UI 670
Order fulfilment and shipping APIs 672

Summary 672

Table of Contents

[vii]

Chapter 19: Multiprocessing and HPC in Python 673
Common factors to consider 674
A simple but expensive algorithm 676

Some testing setup 677
Local parallel processing 678

Threads 687
Parallelizing across multiple machines 688

Common functionality 690
The Worker nodes 692
The Orchestrator 694
The Dispatcher 695

Integrating Python with large-scale, cluster computing
frameworks 696

Python, Hadoop, and Spark 699
Summary 700

Other Books You May Enjoy 701

Index 704

Preface
Ultimately, the purpose of this book is to illustrate pragmatic software engineering
principles and how they can be applied to Python development. To that end, most of
this book is dedicated to exploring and implementing what I'd consider to be a
realistically scoped, but probably unrealistic project: a distributed product-
management and order-fulfillment system. In many cases, the functionality is
developed from scratch, and from first principles—the fundamental concepts and
assumptions that lie at the foundation of the system. In a real-world scenario, the
odds are good that ready-made solutions would be available to deal with many of the
implementation details, but exposing the underlying theories and requirements is, I
think, essential for understanding why things work the way they do. That, I believe,
is an essential part of the difference between programming and software engineering,
no matter what languages are in play.

Python is a rare beast in many respects—it's a dynamic language that is
nevertheless strongly typed. It's an object-oriented language too. These, taken
together, make for an amazingly flexible and sometimes surprisingly powerful
language. Though it can be taken as my opinion, I strongly believe that you'd be
hard-pressed to find another language that is as generally capable as Python that is
also as easy to write and maintain code in. It doesn't surprise me in the least that
Python has racked up the kinds of success stories that are listed on the language's
official site (https:/ /www. python. org/ about/ success/). It also doesn't surprise me
that Python is one of the core supported languages for at least two of the big name
public cloud providers—Amazon and Google. Even so, it's often still thought of as
only a scripting language, and I sincerely hope that this book can also show that view
to be wrong.

Who this book is for
This book is aimed at developers with some Python experience looking to expand
their repertoire from "just writing code" to a more "software engineering" focus.
Knowledge of Python basics—functions, modules, and packages, and their
relationship to files in a project's structure, as well as how to import functionality
from other packages—is assumed.

https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/
https://www.python.org/about/success/

Preface

[2]

What this book covers
Chapter 1, Programming versus Software Engineering, discusses the differences between
programming (merely writing code), and software engineering—the discipline,
mindset, and ramifications of them.

Chapter 2, The Software Development Life Cycle, examines a detailed software
development life cycle, with particular attention to the inputs, needs, and outcomes
that relate to software engineering.

Chapter 3, System Modeling, explores different ways of modeling and diagramming
functional, data-flow, and interprocess-communication aspects of systems and their
components, and what information those provide with respect to software
engineering.

Chapter 4, Methodologies, Paradigms, and Practices, delves into current process
methodologies, including a few Agile process variants, looking at the advantages and
drawbacks to each, before reviewing object-oriented programming (OOP) and
functional programming paradigms.

Chapter 5, The hms_sys System Project, introduces the concepts behind the example
project used through the book to exercise software engineering design and
development mindsets.

Chapter 6, Development Tools and Best Practices, investigates some of the more
common (or at least readily available) development tools—both for writing code and
for managing it in ways that reduce ongoing development efforts and risks.

Chapter 7, Setting up Projects and Processes, walks through an example structure that
could be used for any Python project or system, and the thought processes behind
establishing a common starting-point that is compatible with source control
management, automated testing, and repeatable build and deployment processes.

Chapter 8, Creating the Business Objects, starts the first iteration of the hms_sys
project, defining core library business-object data structures and capabilities.

Chapter 9, Testing the Business Objects, closes the first iteration of the hms_sys project
after designing, defining, and executing repeatable automated testing of the business
object code defined during the iteration.

Preface

[3]

Chapter 10, Thinking about Business Object Data Persistence, examines the common
need for data persistence in applications, some of the more common mechanisms, and
criteria for selecting a "best match" data-storage solution for a variety of
implementation requirements.

Chapter 11, Data Persistence and BaseDataObject, starts the second iteration of the
hms_sys project with the design and implementation of a common, abstract data-
access strategy that can be re-used across any of the project's components.

Chapter 12, Persisting Object Data to Files, continues the second iteration's efforts with
a concrete implementation of the abstract Data Access Layer (DAL), which persists
business-object data into local files.

Chapter 13, Persisting Data to a Database, implements a concrete DAL that stores and
retrieves data from a commonly used NoSQL database—MongoDB—and compares
that approach with the requirements of an equivalent SQL-based DAL.

Chapter 14, Testing Data Persistence, concludes the second iteration of the hms_sys
project by implementing automated tests against the varied implementations of both
DAL strategies built during the iteration.

Chapter 15, Anatomy of a Service, analyzes the common functional requirements for
free-standing services, and works through the construction of abstract
service/daemon classes, which are reusable for creating a variety of concrete service
implementations.

Chapter 16, The Artisan Gateway Service, starts the third iteration of the hms_sys
project with an analysis of the communication needs of the system components,
several options for implementing those communications, securing them, and finally
working them into the concrete implementation of the core service for the project.

Chapter 17, Handling Service Transactions, considers all of the necessary business-
object communications between hms_sys components, extracts some common
functionality for all of them, and walks through the processes required to implement
them.

Chapter 18, Testing and Deploying Services, wraps up the hms_sys development in the
book, and investigates and resolves some common automated-testing concerns for
service/daemon applications.

Preface

[4]

Chapter 19, Multi-Processing and HPC in Python, walks through the theory and basic
practices involved in writing Python code that can scale to multiple processors on a
single machine, or to multiple machines in a clustered-computing environment, and
provides starting-point code-structure variations for executing Python code on
common high-performance computing systems.

To get the most out of this book
You should know, specifically, about the following:

How to download and install Python (3.6.x was used while writing this
book, but the code here is expected to work in 3.7.x with little or no
modification)
How to write Python functions
How to write basic Python classes
How to install Python modules with pip, and how to import modules into
your code

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com1.
Select the SUPPORT tab2.
Click on Code Downloads & Errata3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Hands-On-Software-Engineering-with-Python. We also have
other code bundles from our rich catalog of books and videos available at https:/ /
github.com/PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /www. packtpub. com/ sites/ default/
files/downloads/ 9781788622011_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Within the src directory is the package tree for the project."

A block of code is set as follows:

def SetNodeResource(x, y, z, r, v):
 n = get_node(x,y)
 n.z = z
 n.resources.add(r, v)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 def __private_method(self, arg, *args, **kwargs):
 print('%s.__private_method called:' % self.__class__.__name__)
 print('+- arg %s' % arg)
 print('+- args %s' % str(args))
 print('+- kwargs ... %s' % kwargs)

Any command-line input or output is written as follows:

$python setup.py test

https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/Hands-On-Software-Engineering-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788622011_ColorImages.pdf

Preface

[6]

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title
in the subject of your message. If you have questions about any aspect of this book,
please email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Programming versus

Software Engineering
Development shops often have specific levels, grades, or ranks that their developers
fall into, indicating the levels of experience, expertise, and industry wisdom expected
of staff at each level. These may vary (perhaps wildly) from location to location, but a
typical structure looks something like the following:

Junior developers: A junior developer is typically someone that doesn't
have much programming experience. They probably know the basics of
writing code, but they are not expected to know much beyond that.
Developers: Mid-level developers (referred to by whatever formal title
might apply) usually have enough experience that they can be relied on to
write reasonably solid code, with little to no supervision. They probably
have enough experience to determine implementation details and
strategies, and they will often have some understanding of how different
chunks of code can (and do) interact with each other, and what approaches
will minimize difficulties in those interactions.
Senior developers: Senior developers have enough experience - even if it's
focused on a set of specific products/projects - to firmly grasp all of the
technical skills involved in typical development efforts. At this point in
their careers, they will almost always have a solid handle on a lot of the
non-technical (or semi-technical) skills that are involved, as
well—especially policies and procedures, and strategies and tactics that
encourage or enforce business values such as stability and the
predictability of development efforts. They may not be experts in those
areas, but they will know when to call out risks, and they will often have
several options to suggest for mitigating those risks.

Programming versus Software Engineering Chapter 1

[9]

Above the level of the senior developer, the terminology and
definition often varies even more wildly, and the skill set usually
starts to focus more on business-related abilities and responsibilities
(scope and influence) than on technical capabilities or expertise.

The dividing line between programming and software engineering falls somewhere
within the differences between developers and senior developers, as far as technical
capabilities and expertise are concerned. At a junior level, and sometimes at a
developer level, efforts are often centered around nothing more than writing code to
meet whatever requirements apply, and conforming to whatever standards are in
play. Software engineering, at a senior developer level, has a big-picture view of the
same end results. The bigger picture involves awareness of, and attention paid to, the
following things:

Standards, both technical/developmental and otherwise, including best
practices
The goals that code is written to accomplish, including the business values
that are attached to them
The shape and scope of the entire system that the code is a part of

The bigger picture
So, what does this bigger picture look like? There are three easily-identifiable areas of
focus, with a fourth (call it user interaction) that either weaves through the other
three or is broken down into its own groups.

Software engineering must pay heed to standards, especially non-technical (business)
ones, and also best practices. These may or may not be followed but, since they are
standards or best practices for a reason, not following them is something that should
always be a conscious (and defensible) decision. It's not unusual for business-process
standards and practices to span multiple software components, which can make them
difficult to track if a certain degree of discipline and planning isn't factored into the
development process to make them more visible. On the purely development-related
side, standards and best practices can drastically impact the creation and upkeep of
code, its ongoing usefulness, and even just the ability to find a given chunk of code,
when necessary.

Programming versus Software Engineering Chapter 1

[10]

It's rare for code to be written simply for the sake of writing code. There's almost
always some other value associated with it, especially if there's business value or
actual revenue associated with a product that the code is a part of. In those cases,
understandably, the people that are paying for the developmental effort will be very
interested in ensuring that everything works as expected (code-quality) and can be
deployed when expected (process-predictability).

Code-quality concerns will be addressed during the development of the hms_sys
project a few chapters from now, and process-predictability is mostly impacted by the
developmental methodologies discussed in Chapter 5, The hms_sys System-Project.

The remaining policy-and-procedure related concerns are generally managed by
setting up and following various standards, processes, and best practices during the
startup of a project (or perhaps a development team). Those items - things such as
setting up source control, having standard coding conventions, and planning for
repeatable, automated testing - will be examined in some detail during the set up
chapter for the hms_sys project. Ideally, once these kinds of developmental
process are in place, the ongoing activities that keep them running and reliable will
just become habits, a part of the day-to-day process, almost fading into the
background.

Finally, with more of a focus on the code side, software engineering must, by
necessity, pay heed to entire systems, keeping a universal view of the system in mind.
Software is composed of a lot of elements that might be classified as atomic; they are
indivisible units in and of themselves, under normal circumstances. Just like their
real-world counterparts, when they start to interact, things get interesting, and
hopefully useful. Unfortunately, that's also when unexpected (or even dangerous)
behaviors—bugs—usually start to appear.

This awareness is, perhaps, one of the more difficult items to cultivate. It relies on
knowledge that may not be obvious, documented, or readily available. In large or
complex systems, it may not even be obvious where to start looking, or what kinds of
question to ask to try to find the information needed to acquire that knowledge.

Asking questions
There can be as many distinct questions that can be asked about any given chunk of
code as there are chunks of code to ask about—even very simple code, living in a
complex system, can raise questions in response to questions, and more questions in
response to those questions.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=29&action=edit

Programming versus Software Engineering Chapter 1

[11]

If there isn't an obvious starting point, starting with the following really basic
questions is a good first step:

Who will be using the functionality?
What will they be doing with it?
When, and where, will they have access to it?
What problem is it trying to solve? For example, why do they need it?
How does it have to work? If detail is lacking, breaking this one down into
two separate questions is useful:

What should happen if it executes successfully?
What should happen if the execution fails?

Teasing out more information about the whole system usually starts with something
as basic as the following questions:

What other parts of the system does this code interact with?
How does it interact with them?

Having identified all of the moving parts, thinking about "What happens if…"
scenarios is a good way to identify potential points where things will break, risks, and
dangerous interactions. You can ask questions such as the following:

What happens if this argument, which expects a number, is handed a
string?
What happens if that property isn't the object that's expected?
What happens if some other object tries to change this object while it's
already being changed?

Whenever one question has been answered, simply ask, What else? This can be useful
for verifying whether the current answer is reasonably complete.

Let's see this process in action. To provide some context, a new function is being
written for a system that keeps track of mineral resources on a map-grid, for three
resources: gold, silver, and copper. Grid locations are measured in meters from a
common origin point, and each grid location keeps track of a floating-point number,
from 0.0 to 1.0, which indicates how likely it is that resource will be found in the grid
square. The developmental dataset already includes four default nodes - at (0,0), (0,1),
(1,0), and (1,1) - with no values, as follows:

Programming versus Software Engineering Chapter 1

[12]

The system already has some classes defined to represent individual map nodes, and
functions to provide basic access to those nodes and their properties, from whatever
central data store they live in:

Constants, exceptions, and functions for various purposes already exist, as follows:

node_resource_names: This contains all of the resource names that the
system is concerned with, and can be thought of and treated as a list of
strings: ['gold','silver','copper']
NodeAlreadyExistsError: An exception that will be raised if an attempt
is made to create a MapNode that already exists
NonexistentNodeError: An exception that will be raised if a request is
made for a MapNode that doesn't exist

Programming versus Software Engineering Chapter 1

[13]

OutOfMapBoundsError: An exception that will be raised if a request is
made for a MapNode that isn't allowed to exist in the map area
create_node(x,y): Creates and returns a new, default MapNode,
registering it in the global dataset of nodes in the process
get_node(x,y): Finds and returns a MapNode at the specified (x, y)
coordinate location in the global dataset of available nodes

A developer makes an initial attempt at writing the code to set a value for a single
resource at a given node, as a part of a project. The resulting code looks as follows
(assume that all necessary imports already exist):

def SetNodeResource(x, y, z, r, v):
 n = get_node(x,y)
 n.z = z
 n.resources.add(r, v)

This code is functional, from the perspective that it will do what it's supposed to (and
what the developer expected) for a set of simple tests; for example, executing, as
follows:

SetNodeResource(0,0,None,'gold',0.25) print(get_node(0,0))
SetNodeResource(0,0,None,'silver',0.25) print(get_node(0,0))
SetNodeResource(0,0,None,'copper',0.25) print(get_node(0,0))

The results are in the following output:

By that measure, there's nothing wrong with the code and its functions, after all.
Now, let's ask some of our questions, as follows:

Who will be using this functionality?: The function may be called, by
either of two different application front-ends, by on-site surveyors, or by
post-survey assayers. The surveyors probably won't use it often, but if they
see obvious signs of a deposit during the survey, they're expected to log it
with a 100% certainty of finding the resource(s) at that grid location;
otherwise, they'll leave the resource rating completely alone.

What will they be doing with it?: Between the base requirements (to set a
value for a single resource at a given node) and the preceding answer, this
feels like it's already been answered.

Programming versus Software Engineering Chapter 1

[14]

When, and where, do they have access to it?: Through a library that's used
by the surveyor and assayer applications. No one will use it directly, but it
will be integrated into those applications.

How should it work?: This has already been answered, but raises the
question: Will there ever be a need to add more than one resource rating at
a time? That's probably worth nothing, if there's a good place to implement
it.

What other parts of the system does this code interact with?: There's not
much here that isn't obvious from the code; it uses MapNode objects, those
objects' resources, and the get_node function.

What happens if an attempt is made to alter an existing MapNode?: With
the code as it was originally written, this behaves as expected. This is the
happy path that the code was written to handle, and it works.

What happens if a node doesn't already exist?: The fact that there is a
NonexistentNodeError defined is a good clue that at least some map
operations require a node to exist before they can complete. Execute a quick
test against that by calling the existing function, as follows:

SetNodeResource(0,6,None,'gold',0.25)

The preceding command results in the following:

This is the result because the development data doesn't have a MapNode at
that location yet.

What happens if a node can't exist at a given location?: Similarly, there's
an OutOfMapBoundsError defined. Since there are no out-of-bounds
nodes in the development data, and the code won't currently get past the
fact that an out-of-bounds node doesn't exist, there's no good way to see
what happens if this is attempted.

Programming versus Software Engineering Chapter 1

[15]

What happens if the z-value isn't known at the time?: Since the
create_node function doesn't even expect a z-value, but MapNode
instances have one, there's a real risk that calling this function on an
existing node would overwrite an existing z-altitude value, on an existing
node. That, in the long run, could be a critical bug.
Does this meet all of the various developmental standards that apply?:
Without any details about standards, it's probably fair to assume that any
standards that were defined would probably include, at a minimum, the
following:

Naming conventions for code elements, such as function
names and arguments; an existing function at the same
logical level as get_node, using SetNodeResources as the
name of the new function, while perfectly legal syntactically,
may be violating a naming convention standard.
At least some of the effort towards documentation, of which
there's none.
Some inline comments (maybe), if there is a need to explain
parts of the code to future readers—there are none of these
also, although, given the amount of code in this version and
the relatively straightforward approach, it's arguable
whether there would be any need.

What should happen if the execution fails?: It should probably throw
explicit errors, with reasonably detailed error messages, if something fails
during execution.
What happens if an invalid value is passed for any of the arguments?:
Some of them can be tested by executing the current function (as was done
previously), while supplying invalid arguments—an out-of -range number
first, then an invalid resource name.

Consider the following code, executed with an invalid number:

SetNodeResource(0,0,'gold',2)

The preceding code results in the following output:

Programming versus Software Engineering Chapter 1

[16]

Also, consider the following code, with an invalid resource type:

SetNodeResource(0,0,'tin',0.25)

The preceding code results in the following:

The function itself can either succeed or raise an error during execution, judging by
these examples; so, ultimately, all that really needs to happen is that those potential
errors have to be accounted for, in some fashion.

Other questions may come to mind, but the preceding questions are enough to
implement some significant changes. The final version of the function, after
considering the implications of the preceding answers and working out how to
handle the issues that those answers exposed, is as follows:

def set_node_resource(x, y, resource_name,
 resource_value, z=None):
 """
Sets the value of a named resource for a specified
node, creating that node in the process if it doesn't
exist.

Returns the MapNode instance.

Arguments:
 - x (int, required, non-negative) The
 x-coordinate location of the node
 that the resource type and value is
 to be associated with.
 - y (int, required, non-negative) The
 y-coordinate location of the node
 that the resource type and value is
 to be associated with.
 - z (int, optional, defaults to None)
 The z-coordinate (altitude) of the
 node.
 - resource_name (str, required, member of
 node_resource_names) The name of the
 resource to associate with the node.
 - resource_value ... (float, required, between 0.0 and 1.0,
 inclusive) The presence of the
 resource at the node's location.

Programming versus Software Engineering Chapter 1

[17]

Raises
 - RuntimeError if any errors are detected.
"""
 # Get the node, if it exists
 try:
 node = get_node(x,y)
 except NonexistentNodeError:
 # The node doesn't exist, so create it and
 # populate it as applicable
 node = create_node(x, y)
 # If z is specified, set it
 if z != None:
 node.z = z
TODO: Determine if there are other exceptions that we can
do anything about here, and if so, do something
about them. For example:
except Exception as error:
Handle this exception
 # FUTURE: If there's ever a need to add more than one
 # resource-value at a time, we could add **resources
 # to the signature, and call node.resources.add once
 # for each resource.
 # All our values are checked and validated by the add
 # method, so set the node's resource-value
 try:
 node.resources.add(resource_name, resource_value)
 # Return the newly-modified/created node in case
 # we need to keep working with it.
 return node
 except Exception as error:
 raise RuntimeError(
 'set_node_resource could not set %s to %0.3f '
 'on the node at (%d,%d).'
 % (resource_name, resource_value, node.x,
 node.y)
)

Programming versus Software Engineering Chapter 1

[18]

Stripping out the comments and documentation for the moment, this may not look
much different from the original code—only nine lines of code were added—but the
differences are significant, as follows:

It doesn't assume that a node will always be available.
If the requested node doesn't exist, it creates a new one to operate on, using
the existing function defined for that purpose.
It doesn't assume that every attempt to add a new resource will succeed.
When such an attempt fails, it raises an error that shows what happened.

All of these additional items are direct results of the questions asked earlier, and of
making conscious decisions on how to deal with the answers to those questions. That
kind of end result is where the difference between the programming and software
engineering mindsets really appears.

Summary
There's more to software engineering than just writing code. Experience; attention to
detail; and asking questions about how the code functions, interacts with the rest of a
system, and so on; are important aspects of evolving from a programming to a
software engineering mindset. The time required to acquire experience can be
shortened, perhaps significantly, by simply asking the right questions.

There are also factors completely outside the realm of creating and managing code
that require examination and questioning. They mainly focus on what can, or should,
be expected from the pre-development planning around a developmental effort, and
that starts with understanding a typical software development life cycle.

2
The Software Development

Life Cycle
All software development, Python or otherwise, above a certain level of complexity
follows repeatable patterns, or has a life cycle. A Software (or System) Development
Life-Cycle (SDLC) might be used as its own distinct development methodology,
providing a set of tasks and activities that apply to the development process. That is,
even if there is no formal process wrapped around an SDLC, any or all of the
activities that go on through one may still take place, and any or all of the artifacts
that come out of them may be available during the development of a project.

From the perspective of the actual development, not all of the artifacts resulting from
an SDLC, formal or otherwise, may be significantly useful, either, particularly those
coming out of the first few phases of the life cycle's process. Even so, the more
knowledge that is available during the development process, the less likely it is that
development efforts will go in directions that run contrary to the intentions of the
system on a longer-term basis.

In order to fully explore what an SDLC might provide, we'll use one of the more
detailed ones that can be found on the internet. It breaks the life cycle down into ten
phases, which would be executed in the following order, barring process alterations
from a development methodology:

Initial concept/vision
Concept development
Project management planning
Requirements analysis and definition
System architecture and design
Development (writing code) and quality assurance
System integration, testing, and acceptance

The Software Development Life Cycle Chapter 2

[20]

Implementation/installation/distribution
Operations/use and maintenance
Decommissioning

Many of these individual phases can be merged together, or might
be broken out into smaller sub-phases, but this breakdown—these
ten phases—is a useful grouping of similar activities with similar
scopes.

The first three phases may all occur before any code is written, defining the high-level
concepts and goals, and planning for how to accomplish those goals. The last three
generally happen after code is complete, though as new features are thought of, or as
bugs surface, code development may restart to address those items. The balance,
phases 4 through 7, are loosely classifiable as during development, though, except for
the actual writing of code in phase 6, that classification may depend on what
development processes or methodologies are in play, something that is likely decided
during phase 3 if it isn't already determined by external policies or forces.

Different software development methodologies (Agile ones in
particular) may well address these in more of an on-demand
manner, grouping phase activities iteration by iteration, story by
story, or out of the sequence they are listed in here. A deeper
exploration of these variations can be found in Chapter
4, Methodologies, Paradigms, and Practices.

Pre-development phases of the SDLC
Before the first line of code is written, there is the potential for a fair amount of
thought and work going into a project. Not all of the work is going to be visible by the
time development starts, and, realistically, not all of what could be produced pre-
development will be, in many cases. Even those artifacts that are created may not
have any formal structure or documentation around them, or may not be as complete
or detailed as might be desired. Despite all of that, knowing what might be available
that is of use or interest during development can at least help answer questions that
can arise during the actual writing-of-code portion of a system/project.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=28&action=edit
https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=28&action=edit

The Software Development Life Cycle Chapter 2

[21]

Initial concept/vision
The very first thing that happens in a project's or system's life is its conception.
Behind the scenes, that usually involves the recognition of some unfulfilled need, or
something that isn't working the way it should, though other variations might occur
as well. As part of that realization, there will frequently be a collection of capabilities
that the conceived system will provide, benefits or functionality that will drive the
system's development, and determine when that development is complete. At this
initial, very high-level overview, there may not be much in the way of detail—we
need a better way to manage inventory, maybe for the entire vision, for example—but
it's possible that more detail will enter the picture, too.

The concept and the benefits might come from anyone with a stake in the system:
business staff who are looking for a better way of doing things, developers who
perhaps recognize that an existing system isn't as effective as it could be, or maybe
that it's difficult to maintain. System administrators might have concerns about how
easily managed an in-place system is and want a newer, better approach taken, or the
initial vision might be for something completely new, at least in the context of the
business setting—we need a way to keep track of fuel efficiency across our delivery
truck fleet, maybe. What about if our customers could order our products online?

Hopefully, if off-the-shelf solutions or products are available that meet parts of these
needs, those options will have been investigated in some detail—maybe even to the
point where the vision owner would be able to point to some feature set(s) of those
products and say, "We want something like this." Having examples of functionality
that's close to what's actually wanted can be a significant time-saver during pre-
development design and development alike, and it's almost always worth asking if
there are examples of what's wanted as the design and development processes move
along. If that sort of investigation was undertaken and no options were found that
were even close, that, too, has useful information embedded in it—what was missing?
What did product X do that wasn't meeting the needs in the concept? If no
investigation was undertaken, or if nothing came out of an investigation, it's quite
possible that the initial concept would be no more than a sentence or two. That's
alright, though, since more detail will be extracted later on as the concept
development gets underway.

The "no investigation was undertaken" scenario, in the author's
experience, happens more frequently than might be expected,
particularly in businesses that are heavily invested in the
development of their own products, or where there is a desire to
own all the code.

The Software Development Life Cycle Chapter 2

[22]

In more formal processes, other analyses may also take place, looking for things such
as the following:

Specific user needs: What users must be able to do within the system, and
probably what they should be able to do. There may also be a collection of
nice-to-have features—things that users would like to be able to do, but
that are not a functional necessity.
Specific functional needs: What problems the system needs to solve, or at
least mitigate in a significant fashion.
Risks: Usually business-process-related risks, but those may also serve to
guide design and development in later phases.
Costs: Both in money and resources. Odds are that this information won't
yield much use from a development process perspective, but it's not
impossible for an occasional significant nugget of information to come out
of this either.
Operational feasibility: Examining how well the conceptual system
addresses the needs it's been thought up to address. Like with cost analysis,
the odds are good that there won't be much that comes out of this that's
directly useful for development purposes, but it might identify operational
or design areas where there is doubt about feasibility, and those doubts, in
turn, may well shape design and/or implementation by the time the system
is in development.

At best, then, given either a formal process, or sufficient attention to detail in an
informal one, the initial concept might produce information or documentation about
the following:

Benefits or functionality expected from the system (usually at a high level,
at least to start with):

A collection of specific, high-level functional needs
A collection of specific user needs

Specific features or functionality that were not provided by an off-the-shelf
system (thus justifying custom development effort)
Specific risks to mitigate against
Specific functional or feasibility concerns to address

All of these have at least some value once development is underway and will
hopefully make their way into design or requirements, and from there into
development.

The Software Development Life Cycle Chapter 2

[23]

Concept development
Concept development is concerned mostly with fleshing out some of the high-level
details that come out of the initial concept, providing details and direction for efforts
later in the life cycle. One of the more significant aspects of this step is the generation
of various System Modeling artifacts—and there's enough involved in those efforts
that they'll be covered in a separate chapter. The balance of the development-related
information that comes out of this phase is probably focused more on marrying
business processes and system functionality, and providing some detail around
system goals. There is also room here for a definition of at least a basic user
experience and/or user interface, especially as they connect to the
process/functionality.

Defining the business processes embedded in a system includes identifying the
business objects that the system keeps track of, the actions that can be taken with
respect to those objects, and the outcomes of those actions, at a minimum. Applying
of the sort of questioning described earlier in Chapter 1, Programming versus Software
Engineering, can yield a fair bit of that information, if more detail is needed.

This same system concept will be revisited in Chapter 3, System
Modeling, to illustrate how fleshing out the high-level technical
design aspects of a system might progress.

By way of example, consider a system whose concept begins with the knowledge that
they need a way to keep track of fuel efficiency across their delivery truck fleet.
Working out the business objects and activities from there could answer some very
basic questions, such as the following:

What is the system keeping track of?: The individual trucks in the fleet,
the mileage on the odometers of those trucks at irregular intervals, and the
refueling of those trucks, at a minimum.
What does a refueling look like?: A fuel quantity and the odometer
reading at the time of refueling, to start with. Those two data points would
allow for the calculation of fuel efficiency, which is calculated in whatever
units each uses (gallons or liters for fuel, miles or kilometers for the
odometer). Fuel efficiency becomes a calculation of any given refueling for
any given truck, and the current odometer reading for any given truck can
be retrieved from the odometer reading at its last refueling.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=25&action=edit
https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=27&action=edit

The Software Development Life Cycle Chapter 2

[24]

How many refuelings should be kept for any given truck?: If one of the
goals of the system is to detect when a truck's fuel efficiency has dropped,
in order to flag it for maintenance, perhaps, or to trigger a review of the
delivery scheduling associated with it, then there is an obvious need to
keep track of more than one such refueling—maybe all of them.
Who will be using the system, how, and where?: There would need to be
at least two types of physical access point: one from mobile devices (when
fueling a truck), and one from in-office computers (for reporting purposes,
if nothing else). That set of use cases tells us that we're looking at either a
web application, or some sort of dedicated phone and computer
application set, with access to some common data stores, possibly through
a service layer.

There may be other questions that could be asked, but these four alone probably give
enough information to make the most of major concept design decisions, though the
latter may require a bit more exploration before they can be finalized. Similar
questioning, asking things such as What can (a specific type of user) do with the
system until there aren't any more users and activities, can also yield more specific
system goals:

Various users can log refuelings, providing the current odometer reading,
and the quantity of fuel involved:

Delivery drivers (at local fuel stations)
Fleet maintenance staff (at the main office, where there is a
company fuel station)

Fleet maintenance staff will be alerted when a truck's calculated fuel
efficiency drops to lower than 90% of its average, so that the truck can be
scheduled for an examination
Office staff will also be alerted when a truck's calculated fuel efficiency
drops to lower than 90% of its average, so that the truck's delivery rounds
can be examined

The question of how and where users will interact with the system may well spark
some discussion and design decisions around user experience and interface design as
well. In this case, perhaps after discussion about whether the system is a web
application or dedicated phone and desktop application, the decision is made to make
it a web application and to use the Clarity Design System for the UI, because the
primary stakeholder in the system's vision likes the way it handles on-screen cards:

The Software Development Life Cycle Chapter 2

[25]

Project management planning
This phase of the life cycle is where all of the conceptual items come together,
hopefully in a form or fashion that's ready for the actual creation of code to start. If
there is a formal PMP document as a result, its outline might look something like this:

Business purpose
Objectives
Goals
What's included
What's excluded
Key assumptions
Project organization:

Roles and responsibilities
Stakeholders
Communication

The Software Development Life Cycle Chapter 2

[26]

Risks, issues, and dependencies
Preliminary schedule of deliverables
Change management
Risk and issue management

Developers won't need all of these items, but knowing where to look for various bits
and pieces of the information they will need (or, in some cases, who to contact for
information) is advantageous, so:

The Business purpose, Objectives, and Goals sections should, ideally, collect all of
the original vision information (from the initial concept/vision phase) with whatever
details have been added or changes made after the concept design was complete.
These will, in all probability, include the starting points for the Requirements
analysis and definition efforts that go on during the development-specific phases of
the life cycle. In addition, the What's included, What's excluded, and Key
assumptions sections, between them, should expose what the actual scope of
development looks like, as well as providing high-level design decisions and any
relevant high-level system modeling information. Risks, issues, and dependencies
may provide specific items of concern or other interests that will help shape the
development efforts. Finally, Change management will set expectations (at a high
level, at least) for what processes are expected or planned for as changes to the system
are made.

People in a position to answer questions or make decisions about the system's
implementation that fall outside the scope of pure development will probably be
listed in the Roles and responsibilities and/or Stakeholders sections, though there
may be specific established processes for raising those questions in the
Communication section.

Even without formal documentation around project management expectations, much
of the information noted previously should still be made known to development
staff—the less time spent having to track down who can answer a question, the more
time can be devoted to actually writing code, after all.

The Software Development Life Cycle Chapter 2

[27]

Development – specific phases of the
SDLC
Since the advent of Agile methodologies, and the widespread adoption of many of
them, the specific shapes of the development-specific phases of an SDLC can vary
substantially. Different methodologies make different decisions about what to
prioritize or emphasize, and those differences can, in turn, yield significantly different
processes and artifacts to accomplish the goals of formal SDLC phases that focus
directly on developer needs and activities. Whole books have been written about
several of the Agile processes, so a complete discussion of them is well beyond the
scope of this book, but all of them address the following activities.

Requirements analysis and definition
Requirements analysis and definition are concerned with discovering and detailing
the specific requirements of a system—what the system needs to allow users to do
with it. Users obviously includes end users, ranging from office workers using the
system to conduct day-to-day business, to external end users such as customers. Less
obviously, users should also include system administrators, staff who receive data
from the system through some reporting processes, and perhaps any number of other
people who interact with the system in any fashion, or who are acted upon by
it—including the developers themselves.

Requirements are, first and foremost, about those interactions, and
developers have to know what is expected of the system in order to
write code to provide those capabilities.

System architecture and design
If requirements analysis and definition are about what a system provides, system
architecture and design are primarily about how those capabilities work. The
differences in how various development methodologies deal with architecture and
design is less about that how and more about when they are defined. Essentially,
given a set of requirements (the intentions behind the system, or the why), the
implementation details (the how) will almost certainly be determined more by those
requirements and the specifics of how best to implement them in the programming
language than by when they are identified, consolidated, or formalized.

The Software Development Life Cycle Chapter 2

[28]

Developers need to know how best to implement the required
functionality, and that is what this phase is concerned with.

Development and quality assurance
The development part of this phase probably requires the least explanation: it's when
the actual code gets written, using the defined requirements to determine what the
goals of the code are, and the architecture/design to determine how to write the code.
An argument could probably be made that the quality assurance part of this phase
should be broken out into its own grouping, if only because many of the activities
involved are substantially different—there's less code authoring going on, if there is
any at all, in executing a manual test plan, after all. That said, the concept of
automated testing, which may be able to replace a lot of the old-style manual test plan
execution activities, does require a substantial amount of code, at least at first. Once
those test suites are established, regression testing becomes much simpler and less
time-consuming. Development methodologies' concerns with the QA aspects of this
phase are usually centered around when QA activities take place, while the actual
expectations of those activities are usually a combination of development standards
and best practices.

Developers need to know what quality assurance efforts are
expected of them, and plan (and perhaps write code) accordingly
during development.

Automated testing is also a critical foundation for increasingly
popular Continuous Integration (CI) and Continuous
Delivery/Deployment (CD) practices.

System integration, testing, and acceptance
If a system is above a certain size or degree of complexity, it's just a matter of time
before new code coming out of development efforts will have to be incorporated into
the larger system environment. Attention may also need to be paid to interactions
with other systems, and any of the implications that are raised in those scenarios. In
smaller, less complex systems, this integration may be achievable during
development.

The Software Development Life Cycle Chapter 2

[29]

In either case, the integration of new (or modified) functionality needs to be tested to
assure that it hasn't broken anything, both in the local system and in any other
systems that interact with it.

Developers need to know how and where their code fits into the
larger system, and thus how to integrate it. As with the Quality
Assurance portion of the previous phase, developers also need to
know what testing efforts are expected of them, for much the same
reasons.

Post-development phases of the SDLC
The portions of the SDLC that happen after the core code of a system is written can
still have significant impacts on the development cycle. Historically, they might not
involve a lot of real development effort—some code may be written as a one-off for
various specific purposes such as packaging the system's code, or facilitating its
installation on a target environment, for example. If the structure of the system's code
base or, rarely, the language that the system is written in doesn't somehow prevent it,
most of any code that was written in support of post-development activities would
probably be created very early on in the development process in order to meet some
other need.

As a case in point, packaging the code-base, and/or the creation of some installation
mechanism is pretty likely to be undertaken the first time the code-base needs to be
installed on an environment for user acceptance testing. If that expectation is known
ahead of time—and it should be, at some level—then efforts to write the packaging
process in order to write the installer may well start before any real code is created.
After that point, further efforts will usually happen infrequently, as new components
need to be added to a package structure, or changes to an installation process need to
be undertaken. Changes at that level will often be minor, and typically needed with
less and less frequency as the process matures and the code base installation. This sort
of process evolution is at least a starting point for DevOps and some Continuous
Delivery practices.

Developers will need to know how the system is supposed to be
distributed and installed so that they can plan around those needs,
writing code to facilitate them as required.

The Software Development Life Cycle Chapter 2

[30]

The last two phases of the SDLC, concerned with the day-to-day use of the system
and with its eventual retirement, will have less relevance to the core development
process in general. The most likely exception to that would be re-entry into the
development cycle phases in order to handle bugs or add new features or
functionality (the Use and Maintenance part of the Operations/Use and Maintenance
phase).

From the perspective of system administrators, the staff responsible for the execution
of activities in those phases, developers are contributors to the knowledge and
processes they need in much the same way that all of the pre-development
contributors to the system's development were with respect to developer knowledge
and processes. System administration and maintenance staff will be looking for and
using various artifacts that come out of the development process in order to be able to
execute their day-to-day efforts with respect to the system. The odds are good that
those artifacts will mostly be knowledge, in the form of documentation, and perhaps
the occasional system administration tool.

Developers will need to know what kind of information is needed
for post-development activities in order to be able to provide the
relevant documentation or to write code to facilitate common or
expected tasks.

Finally, with respect to the process of decommissioning a system, taking it offline,
presumably never to be used again: someone, probably at a business decision level,
will have to provide direction, or even formal business policies and procedures
around what needs to happen. At a minimum, those will likely include the following

Requirements for preserving and archiving system data (or how it should
be disposed of, if it's sensitive data)
Requirements for notifying users of the system's decommissioning

There may well be more, even a lot more—it's very dependent on the system itself,
both structurally and functionally, as well as any business policies that might apply.

Developers will need to know what should happen when the system
is finally shut down for good so that they can plan and document
accordingly.

Knowing how things will be handled during a complete and
permanent shutdown may give significant insight into how system
processes and data can or should be handled when normal data
deletion is executed during normal system operation.

The Software Development Life Cycle Chapter 2

[31]

Summary
Even if there is no formal SDLC in place, a lot of the information that would come out
of one is still advantageous for developers to have access to. If enough of it is
available, and if it's sufficiently detailed, readily accessible, and, above all, accurate, it
can certainly help make the difference between a project just being programmed and
being well-engineered software.

Another significant contributor to making that difference is the availability of similar
information about the system itself, in any or all of several System Model artifacts.
Those provide more implementation-oriented details that should be at least as useful
as the policy and procedure-level information from the various SDLC artifacts. We’ll
take a look at those next.

3
System Modeling

The goal of any system modeling process is to define and document a conceptual
model of some aspect of a system, usually focusing individually on one (or many)
specific faces of that system. System models may be defined in a formal architecture
description language, such as Unified Modeling Language (UML), and can, in those
cases, get very detailed – down to the minimum required property and method
members of classes. Details at that level are generally fluid – or at least not finalized –
until the requirements analysis processes in Agile methodologies, and will be
discussed in more detail in Chapter 4, Methodologies, Paradigms, and Practices.

At a higher, less granular level, there are still several system-model views that are of
particular interest going into the development process, particularly with respect to
the bigger picture:

Architecture, both logical and physical
Business processes and rules
Data structure and flow
Interprocess communication
System scope/scale

Architecture, both logical and physical
The goal of both logical and physical architecture specifications is to define and
document the logical and physical components of a system, respectively, in order to
provide clarity around how those component elements relate to one another. The
artifacts resulting from either effort could be text documentation, or diagrams, and
both have their own advantages and drawbacks.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=28&action=edit

System Modeling Chapter 3

[33]

Text documentation is usually quicker to produce, but unless there is some sort of
architectural documentation standard that can be applied, the formats can (and
probably will) vary from one system team to another, at a minimum. That sort of
variance can make it difficult for the resulting artifacts to be understandable outside
the team that it originated with. If there is not a lot of movement of developers
between teams, or a significant influx of new developers to teams, that may not be a
significant concern. It can also be difficult to ensure that all of the moving parts or the
connections between them are fully accounted for.

The primary advantage to diagrams is the relative ease with which they can be
understood. If the diagram has obvious indicators, or symbols that unambiguously
indicate, for example, that one component is a database service and another is an
application, then the difference between them becomes obvious at a glance. Diagrams
also have the advantage of being more easily understandable to non-technical
audiences.

In both cases, text-based or diagram-based documents are, obviously, most useful if
they are well-constructed, and provide an accurate view or model of the system.

Logical architecture
Development is often going to be more concerned with the logical architecture of a
system than with the physical. Provided that whatever mechanisms needed are in
place for the actual code in a system to be deployed to, live on, connect to, and use the
various physical components that relate to the logical components, and that any
physical architecture constraints are accounted for, little more information is
generally needed, so where any given component lives just isn't as important from
that perspective. That often means that a physical architecture breakdown is at best a
nice-to-have item, or maybe a should-have at most. That also assumes that the
structure in question isn't something that's so commonplace that a need for it to be
documented surfaced. There are, for example, any number of systems in the wild that
follow the same common three-tier structure, with a request-response cycle that
progresses as follows:

A user makes a request through the Presentation Tier1.
That request is handed off to the Application Tier2.
The application retrieves any data needed from the Data Tier, perhaps3.
doing some manipulation or aggregation of it in the process

System Modeling Chapter 3

[34]

The Application Tier generates a response and hands it back to the4.
Presentation Tier
The Presentation Tier returns that response to the user5.

Diagrammed, that structure might look as follows:

This three-tier architecture is particularly common in web applications, where:

The Presentation Tier is the web-server (with the web browser being no
more than a remote output-rendering component)
The Application Tier is code called by, and generating responses to, the
web server, written in whatever language and/or framework
The Data Tier is any of several back-end data-store variants that persist
application data between requests

Consider, as an example, the following logical architecture for the refueling-tracking
system concept mentioned earlier. It serves as a good example of this three-tier
architecture as it applies to a web application, with some specifically identified
components:

System Modeling Chapter 3

[35]

Physical architecture
The primary difference between logical and physical architecture documentation is
that, while logical architecture's concerns end with identifying functional elements of
the system, physical architecture takes an additional step, specifying actual devices
that those functional elements execute on. Individual items identified in logical
architecture may reside on common devices, physically. Really, the only limitations
are the performance and capabilities of the physical device. This means that these
different physical architectures are all logically identical; they are all valid ways of
implementing the same three-tier web application's logical architecture:

With the current enthusiasm for virtualization, serverless, and cloud-based
technologies in the industry, provided by public and private cloud technologies such
as Amazon Web Services and VMware, whether a physical architecture specification
really is a physical architecture often becomes something of a semantics quibble.
While, in some cases, there may not be a single, identifiable physical computer the
way there would be if there was a dedicated piece of server hardware, in many cases
that distinction is irrelevant. If it acts like a distinct physical server, it can be treated as
one for the purposes of defining a physical architecture. In that case, from a
documentation standpoint, there is no knowledge value lost in treating a virtual
server like a real one.

System Modeling Chapter 3

[36]

When considering many serverless elements in a system, several can still be
represented as a physical architecture element as well – so long as it acts like a real
device from the perspective of how it interacts with the other elements, the
representation is adequate. That is, given a hypothetical web application that lives
completely in some public cloud, where:

That cloud allows serverless functions to be defined
Functions will be defined for processing the following, with back-end
databases for each of those entities also living in the cloud:

Customers
Products
Orders

A corresponding physical architecture might look something as follows:

An example real-world implementation of this serverless architecture can be
implemented in all three of the big-name public clouds: Amazon Web Services
(AWS), Azure, and Google Cloud Platform (GCP). Each of these public cloud
platforms provides virtual server-instances that could serve the website and maybe
databases. The processor servers in this structure could use serverless functions (AWS
Lambda, or Cloud Functions in Azure and GCP) to drive the interactions between the
website and the databases as the website sends events to the functions in the
processor elements.

System Modeling Chapter 3

[37]

Collectively, logical and physical architecture specifications provide
development with at least some of the information needed to be able
to interact with non-application tiers. Even if specific credentials will
be required but are not supplied in the documentation, knowing, for
example, what kind of database drives the data tier of a system
defines how that data tier will be accessed.

Use cases (business processes and
rules)
In any system, the most important thing is whether it's doing what it's supposed to do
for all of the use cases that it's supposed to support. Code has to be written for each of
those use cases, and each use case corresponds to one or more business processes or
rules, so it's only logical that each of those use cases needs to be defined and
documented to whatever extent is appropriate for the development process. As with
the logical and physical architecture, it's possible to execute those definitions as either
text or some sort of diagram, and those approaches have the same advantages and
drawbacks that were noted before.

The Unified Modeling Language (UML) provides a high-level diagramming standard
for use cases, useful mostly for capturing the relationship between specific types of
users (actors, in UML's terminology) and the processes that they are expected to
interact with. That's a good start, and may even be sufficient all by itself if the process
itself is very simple, already extensively documented, or known across the
development team. The use case diagram for the Refuel-Tracker application concept
that was discussed earlier in Use Cases section is, so far, very simple, and harks back
to the system goals that were established for it in the Chapter 2, The Software
Development Life Cycle. This time, though, we'll attach some names to them for
reference in the diagram:

Refuel: Various users can log refueling's, providing the current odometer
reading and the quantity of fuel involved:

Delivery drivers (at local fuel-stations)
Fleet maintenance staff (at the main office, where there is a
company fuel station)

Maintenance Alert: Fleet maintenance staff will be alerted when a truck's
calculated fuel efficiency drops to lower than 90% of its average, so that the
truck can be scheduled for an examination.

System Modeling Chapter 3

[38]

Route Review Alert: Office staff will also be alerted when a truck's
calculated fuel efficiency drops to lower than 90% of its average, so that the
truck's delivery rounds can be examined.

Those three use cases are simple to diagram, if that's the preferred documentation.
The following list of processes is also a viable option. In some ways it's actually better
than a standard diagram, since it provides some business rules of the system that a
standard use case diagram doesn't capture:

Even if the diagram were modified to include some of the missing information (what
a refueling is, and what the rules around the two «trigger» items are), it still only
tells part of the story: who is expected (or allowed) to use specific process
functionality. The balances, the actual processes underneath the use cases, are still
unknown, but need to be exposed so that code can be written around them to actually
make them work. This also can be handled either as plain text of some sort, or
through a diagram. Looking at the Refuel process that's been identified, it breaks
down to something as follows:

A Driver or Fleet Tech logs a refuel of a truck, providing:
The current odometer reading
The amount of fuel used to fill the truck

Those values are stored (probably in an application database, though that
may not be part of the actual requirements) with an association to the truck
(how that gets specified has yet to be determined).

System Modeling Chapter 3

[39]

The application calculates the fuel efficiency for the refueling: (current
odometer reading minus previous odometer reading) ÷ quantity of fuel.
If the efficiency is less than or equal to 90% of the most recent efficiency
value for that truck, the Route Review alert is triggered .
If the efficiency is less than or equal to 90% of at least half of the previous
four efficiency values for that truck, the Maintenance alert is triggered.

Whether a diagram (such as the following flowchart) would add any value to the
documentation will likely depend on the process being described, and on team or
even personal preferences. These five steps, as a simple flowchart, are simple enough
that going any further than a text description of them is probably not going to add
any value, but more complex processes might benefit from a diagram:

From a developer's perspective, use cases map out to one-to-many
functions or methods that will have to be implemented, and if there
are process flows documented, those explain how they will execute
at runtime.

Data structure and flow
Between the two of them, basic use-case and business-process documentation may
provide enough information to make the structure and flow of the data through the
system obvious, or at least transparent enough that development won't need any
additional information. The Refuel process we've been looking at probably falls into
that category, but let's see what a data-flow diagram for it might look like anyway.

System Modeling Chapter 3

[40]

The data that's coming in (the Refuel Data in the flowchart) was defined earlier in
Use Cases section, and at least some of the related data flow was also noted, but
having some names to associate with those values, and knowing what types of value
they are, will be helpful:

odometer: The current odometer reading (probably an <int> value)

fuel_quantity: The amount of fuel used to fill the truck (probably a
<float> value)

truck_id: The truck being refueled (a unique identifier for the record of
the truck in the application's database – to keep things simple, we'll assume
it's also <int>)

During the process, a refuel-efficiency value is also being created that might need to
be passed along to the Route Review alert and/or Maintenance alert processes:

re: The calculated refuel-efficiency value, a <float> value

In this very simple case, data elements are simply being noted, by name and type. The
diagram indicates where they start being available, or when they are explicitly passed
to a process – otherwise they are assumed to be available all the way through. Then
the data elements are just added to the previous flowchart diagram:

System Modeling Chapter 3

[41]

In a more complicated system, something that has more complex data structures,
more data structures in general, more processes that use those, or any of several
combinations of those factors, a source and destination oriented flow-diagram may be
a better option – something that doesn't really pay attention to the inner workings of
the processes, just to what data is needed, and where it comes from.

Data-flow documentation/diagrams tell developers what data is
expected, where it's originating from, and where/whether it's going
to live after the processes are done with it.

Interprocess communication
It's very common for different processes to communicate with each other. At the most
basic level, that communication might take the form of something as simple as one
function or method calling another from somewhere in the code they share. As
processes scale outward, though, especially if they are distributed across separate
physical or virtual devices, those communication chains will often get more complex
themselves, sometimes even requiring dedicated communications protocols. Similar
communication-process complexities can also surface, even in relatively
uncomplicated systems, if there are interprocess dependencies that need to be
accounted for.

System Modeling Chapter 3

[42]

In pretty much any scenario where the communication mechanism between two
processes is more complicated than something at the level of methods calling other
methods, or perhaps a method or process writing data that another process will pick
up and run with the next time it's executed, it's worth documenting how those
communications will work. If the basic unit of communication between processes is
thought of as a message, then, at a minimum, documenting the following will
generally provide a solid starting point for writing the code that implements those
interprocess communication mechanisms:

What the message contains: The specific data expected:
What is required in the message
What additional/optional data might be present

How the message is formatted: If the message is serialized in some
fashion, converted to JSON, YAML, or XML, for example, that needs to be
noted

How the message is transmitted and received: It could be queued up on a
database, transmitted directly over some network protocol, or use a
dedicated message-queue system such as RabbitMQ, AWS SQS, or Google
Cloud Platform's Publish/Subscribe

What kinds of constraint apply to the message protocol: For
example, most message-queuing systems will guarantee the
delivery of any given queued message once, but not more
than once.

How messages are managed on the receiving end: In some
distributed message-queue systems – certain variants of
AWS SQS, for example – the message has to be actively
deleted from the queue, lest it be received more than once,
and potentially acted upon more than once. Others, such as
RabbitMQ, automatically delete messages as they are
retrieved. In most other cases, the message only lives as long
as it takes to reach its destination and be received.

Interprocess-communication diagramming can usually build on the logical
architecture and use-case diagrams. One provides the logical components that are the
endpoints of the communication process, the other identifies what processes need to
communicate with each other. Documented data flow may also contribute to the
bigger picture, and would be worth looking at from the perspective of identifying any
communication paths that might've been missed elsewhere.

System Modeling Chapter 3

[43]

The refuel tracker, for example:

Can access the database for the existing route-scheduling application,
which provides a dashboard for the route schedulers.

The maintenance alert functionality can leverage a web service call
belonging to an off-the-shelf fleet-maintenance system that was purchased,
which has its own dashboard used by the fleet technicians.

The relevant messaging involved for the route-review and maintenance-alert
processes is very simple under these circumstances:

An update in the route-scheduling database, perhaps flagging the last route
that the truck was scheduled for as an inefficient route, or maybe some sort
of notification that'll pop up on the dashboard to alert a route scheduler to
review the route

A JSON-over-REST API call made to the maintenance-tracking system

That messaging would fit on a simple variant of the use case diagram already shown:

System Modeling Chapter 3

[44]

The order-processing, fulfillment, and shipping system might use RabbitMQ
messaging to deal with order-fulfillment, passing entire orders and simple inventory
checks from the products datasource to determine whether an order can be fulfilled.
It might also use any of several web service API calls to manage order shipment,
pushing the shipping information back into the order over a similar web service call.
That message flow (omitting the data structure for brevity) might then look as
follows:

The main takeaway from a development focus on Interprocess
Communication is how the data identified earlier gets from one
point in the system to another.

System scope and scale
If all of these items are documented and/or diagrammed, if it's done thoroughly and
accurately, they will, collectively, provide a holistic view of the total scope of a
system:

Every system component role should be identified in the Logical
Architecture
Where each of those components actually resides should be identified in
the Physical Architecture
Every use case (and hopefully every business process) that the system is
supposed to implement should be identified in the use-case
documentation, and any of the underlying processes that aren't painfully
obvious should have at least a rough happy-path breakdown

System Modeling Chapter 3

[45]

Every chunk of data that moves from one place or process to another
should be identified in the Data Flow, with enough detail to collate a fairly
complete picture of the structure of that data as well
The formats and protocols that govern how that data move about, at least
for any part of the system that involves more than just passing system
objects from one function or method in the code-base to another, should be
identified
A fair idea of where and how those data are persisted should be discernible
from the Logical, and maybe Physical, architectures

The only significant missing piece that hasn't been noted is the scale of the system. If
the scope is how many types of object are being worked with or are moving around in
the system, the scale would be how many of those objects exist, either at rest (stored
in a database, for example) or actively at any given time.

Scale can be hard to anticipate with any accuracy, depending on the context of the
system. Systems such as the hypothetical refueling tracker and order-
processing/fulfillment/shipping system that have been used for illustration are
generally going to be more predictable:

The number of users is going to be reasonably predictable: All employees
and all customers pretty much covers the maximum user base for both of
those

The number of objects being used is also going to be reasonably
predictable: The delivery company only has so many trucks, after all, and
the company running the order system, though probably less predictable,
will still have a fair idea of how many orders are in flight at most, and at
typical levels

When a system or application enters a user space such as the web, though, there is
potential for radical variation, even over very short periods of time. In either case,
some sort of planning around expected and maximum/worst-case scale should be
undertaken. That planning may have significant design and implementation effects –
fetching and working with a dozen records at a time out of a few hundred or
thousand total records doesn't require nearly the attention to efficiency that those
same twelve records out of several million or billion would, just as a basic
example – on how code might be written. If planning for even potential massive
surges in use involves being able to scale out to multiple servers, or load-balance
requests, that might also have an effect on the code, though probably at a higher,
interprocess-communication level.

System Modeling Chapter 3

[46]

Summary
All of the components, data, and documentation from this chapter, as well as the
previous two chapters, are potentially available in any software engineering effort.
How much is actually is available probably depends in part on how much discipline
is involved in the predevelopment processes, even if there isn't anything formal
associated with it. That discipline might be present because of a singularly talented
project manager.

Another contributor to when, how much, and what quality of data is available is often
the development methodology in play through the life of a project, system, or team.
Several of the more common methodologies manage these predevelopment efforts in
significantly different manners, and their treatment can make a substantial difference.

4
Methodologies, Paradigms,

and Practices
It could be argued that software engineering, at least as it's usually thought of now,
really came into being with the first formally identified software development
methodology. That methodology (which was eventually dubbed Waterfall in 1976)
made people start thinking about not just how the software worked, or how to write
the code, but what the processes around writing the code needed to look like in order
to make it more effective. Since then, roughly a dozen other methodologies have
come into being, and in at least one case, the collection of various Agile
methodologies, there are nearly a dozen distinct sub-variants, though Scrum is almost
certainly the most widely known, and Kanban may be a close second.

While those methodologies were growing and maturing, the increase in computing
power also led, eventually, to newer, more useful, or more efficient development
paradigms. Object-Oriented Programming (OOP) and Functional Programming
(FP) are probably the most well-known advances on the original procedural
programming paradigm that dominated the scene for decades. Automation of code
integration and promotion practices (Continuous Integration and Delivery,
respectively) have also become popular in recent years.

In this chapter, we will cover the following topics:

Process methodologies
Waterfall
Agile:

Scrum
Kanban

Development paradigms:
Object-Oriented Programming (OOP)
Functional Programming (FP)

Methodologies, Paradigms, and Practices Chapter 4

[48]

Development practices:
Continuous Integration
Continuous Delivery

Process methodologies
At some level, all development process methodologies are variations on the theme of
managing development within the boundaries of some common realities:

There are only so many useful working hours per person per day that can
be devoted to a project
There is a limit to the available resources, whether in terms of people,
equipment, or money, available to a project
There is a minimum acceptable quality standard for the project when it's
complete

This is sometimes expressed as the Iron Triangle of project management:

The primary concern with respect to the Speed point is time—the most common
focus is probably on a project needing to be complete by a specific deadline, or there
is some other time constraint that may only be surmountable by adding developers to
the team (an increase in Cost), or by cutting corners (a decrease in Quality).
 Budget variations are a common theme for the Cost point—anything that costs
money, whether in the form of additional developers, newer/faster/better tools, and
so on.
Reducing the available resources/staff decreases the Speed of project completion
and/or the final Quality.

Methodologies, Paradigms, and Practices Chapter 4

[49]

The Quality point is, obviously, concerned with quality measures—which might
include specific internal or external standards—but could easily include less obvious
items such as longer-term maintainability and support for new features and
functionality. Prioritizing Quality, at a minimum, requires more developer hours,
decreasing Speed, and increasing Cost.

Often, significant priority (whatever value for significant might apply) can only be
given to two out of the three points of the triangle at most, yielding three priority
possibilities:

Fast, inexpensive development, at the cost of quality
Fast, high-quality development, but at greater cost
High-quality, inexpensive development that takes a longer time to
complete

The Lean Startup Method (or just Lean) is sometimes cited as an
alternative process methodology that can overcome the constraints
of the Iron Triangle, but is beyond the scope of this book. A
reasonable introduction to its concepts can be found at https:/ /
www. castsoftware. com/ glossary/ lean- development.

There are three specific development process methodologies that are worth an in-
depth examination in the context of this book. The first, Waterfall, will be examined in
order to provide a frame of reference for two Agile methodologies, Scrum and
Kanban, and a few others will be looked at as well, at least briefly. A full discussion of
any of them is well beyond the scope of this book, but the intention is to provide
enough detail on each of them to illustrate what their focuses and priorities are, as
well as their advantages and drawbacks. At a minimum, this should provide a
baseline of what to expect while working in any of them, tying the phases of each
methodology back to the phases of the model SDLC from Chapter 3, System Modeling,
to show what happens, when, and how.

Waterfall
Waterfall's ancestry can probably be traced back to manufacturing and/or
construction planning. In many respects, it's a very simple approach to planning and
implementing a development effort, and is essentially broken down into defining and
designing what to build, building it, testing it, and deploying it.

https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://www.castsoftware.com/glossary/lean-development
https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=27&action=edit

Methodologies, Paradigms, and Practices Chapter 4

[50]

More formally, it's six separate phases, intended to be executed in this order:

Requirements
Analysis
Design
Implementation
Testing
Installation and Operation:

These phases correspond fairly neatly with the sequence of phases in the SDLC. They
are very similar, whether by accident or design, and are intended to accomplish many
of the same goals. Their focus is probably best summarized as an effort to design,
document, and define everything that's needed for development to succeed, before
handing that design off to development for implementation. In an ideal execution, the
design and requirement information will give developers everything they need, and
the project manager may be completely hands-off once implementation starts.

Methodologies, Paradigms, and Practices Chapter 4

[51]

Conceptually, there is some merit to the approach—if everything is thoroughly and
accurately documented, then developers will have everything that they need, and
they can focus entirely on writing code to accomplish the requirements.
Documentation, as part of the initial project specifications, is already created, so once
the software is deployed, anyone managing the resulting system will have access to
that, and some of that documentation may even be user-oriented and available to
them.

If done well, it almost certainly captures and allows for dependencies during
implementation, and it provides an easily followed sequence of events. Overall, the
methodology is very easily understood. It's almost a reflexive approach to building
something: decide what to do, plan how to do it, do it, check that what was done is
what was wanted, and then it's done.

In practice, though, a good Waterfall plan and execution is not an easy thing to
accomplish unless the people executing the Requirements, Analysis, and Design
phases are really good, or sufficient time is taken (maybe a lot of time) to arrive at and
review those details. This assumes that the requirements are all identifiable to begin
with, which is frequently not the case, and that they don't change mid-stream, which
happens more often than might be obvious. Since its focus is on documentation first,
it also tends to slow down over long-term application to large or complex
systems—the ongoing updating of a growing collection of documentation takes time,
after all—and additional (and growing) expenditure of time is almost always required
to keep unmanageable bloat from creeping in to other support structures around the
system.

The first three phases of a Waterfall process (Requirements, Analysis, and Design)
encompass the first five phases of the SDLC model:

Initial concept/vision
Concept development
Project management planning
Requirements analysis and definition
System architecture and design

These would ideally include any of the documentation/artifacts from those phases, as
well as any System Modeling items (Chapter 3, System Modeling), all packaged up for
developers to use and refer to. Typically, these processes will involve a dedicated
Project planner, who is responsible for talking to and coordinating with the various
stakeholders, architects, and so on, in order to assemble the whole thing.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=27&action=edit

Methodologies, Paradigms, and Practices Chapter 4

[52]

In a well-defined and managed Waterfall process, the artifact that comes out of these
three phases and gets handed off to development and quality assurance is a
document or collection of documents that make up a Project plan. Such a plan can be
very long, since it should ideally capture all of the output from all of the pre-
development efforts that's of use in and after development:

Objectives and goals (probably at a high level)
What's included, and expected of the finished efforts:

Complete requirement breakdowns
Any risks, issues, or dependencies that need to be mitigated,
or at least watched for

Architecture, design, and system model considerations (new structures or
changes to existing structures):

Logical and/or physical architecture items
Use cases
Data structure and flow
Interprocess communication

Development plan(s)
Quality assurance/testing plan(s)
Change management plans
Installation/Distribution plans
Decommissioning plans

The Implementation and Testing phases of a Waterfall process, apart from having
the Project plan as a starting point reference, are probably going to follow a simple
and very typical process:

Developer writes code
Developer tests code (writing and executing unit tests), fixing any
functional issues and retesting until it's complete
Developer hands finished code off to quality assurance for further testing
Quality assurance tests code, handing it back to the developer if issues are
found
Tested/approved code is promoted to the live system

This process is common enough across all development efforts and methodologies
that it will not be mentioned again later unless there is a significant deviation from it.

Methodologies, Paradigms, and Practices Chapter 4

[53]

Waterfall's Installation and Operation phase incorporates the
Installation/Distribution and Operations/Use and Maintenance phases from the
SDLC model. It may also incorporate the Decommissioning phase as well, since that
may be considered as a special Operation situation. Like the Implementation and
Testing phases, chances are that these will progress in an easily anticipated
manner—again, apart from the presence of whatever relevant information might exist
in the Project plan documentation, there's not really anything to dictate any deviation
from a simple, common-sense approach to those, for whatever value of common-
sense applies in the context of the system.

While Waterfall is generally dismissed as an outdated methodology, one that tends to
be implemented in a too-rigid fashion, and that more or less requires rock-star
personnel to work well on a long-term basis, it can still work, provided that one or
more conditions exist:

Requirements and scope are accurately analyzed, and completely
accounted for
Requirements and scope will not change significantly during execution
The system is not too large or too complex for the methodology to manage
Changes to a system are not too large or too complex for the methodology
to manage

Of these, the first is usually not something that can be relied upon without policy and
procedure support that is usually well outside the control of a development team. The
latter two will, almost inevitably, be insurmountable given a long enough period of
time, if only because it's rare for systems to become smaller or less complex over time,
and changes to larger and more complex systems tend to become larger and more
complex themselves.

Agile (in general)
By the early 1990s, a sea change was under way in how development processes were
viewed. The Waterfall process, despite widespread adoption, even in government
contractor policies in the US, started to show more and more of the flaws inherent to
its application to large and complex systems. Other, non-Waterfall methodologies
that were in use were also starting to show signs of wear from being too heavy, too
prone to counter-productive micro-management, and a variety of other complaints
and concerns.

Methodologies, Paradigms, and Practices Chapter 4

[54]

As a result, a lot of thought around development processes started focusing on
lightweight, iterative, and less management-intensive approaches, that eventually
coalesced around the Agile Manifesto and the twelve principles that underlie it:

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work, we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more. We follow these principles:

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.
Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference for the shorter timescale.
Business people and developers must work together daily throughout the
project.
Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.
The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.
Working software is the primary measure of progress.
Agile processes promote sustainable development. Sponsors, developers,
and users should be able to maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances
agility.
Simplicity—the art of maximizing the amount of work not done—is
essential.
The best architectures, requirements, and designs emerge from self-
organizing teams.
At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Methodologies, Paradigms, and Practices Chapter 4

[55]

You may refer to The Agile Manifesto at http:/ / Agilemanifesto.
org/ for more details.

In an application, these principles lead to a few common characteristics across
different methodologies. There may be exceptions in other methodologies that are
still considered Agile, but for our purposes, and with respect to the specific
methodologies discussed here, those common traits are as follows:

Development happens in a sequence of iterations, each of which has one to
many goals
Each goal is a subset of the final system
At the conclusion of each iteration, the system is deployable and
operational (perhaps only for a given value of operational)
Requirements are defined in detail in small chunks, and may not be
defined at all until just before the iteration that they're going to be worked
on

Scrum is claimed to be the most popular, or at least most widely used, Agile
development methodology (the 12th Annual State of Agile Report puts it at 56% of Agile
methods in use), and as such is probably worth some more detailed attention. Kanban
is another Agile methodology that bears some examination, if only because it's closer
to how the main system project in this book is going to be presented.

There are a few other Agile methodologies that also bear at least a quick look-over for
some of the specific focus they can bring to a development effort, either on their own,
or as a hybrid or mix-in with other methodologies.

Businesses are also exploring additions and modifications
to textbook Agile processes to improve them and address needs that
weren't encompassed by the original concept. One such process is
the Scaled Agile Framework, which is used to improve the use of
Agile processes at larger scales.

http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/

Methodologies, Paradigms, and Practices Chapter 4

[56]

Scrum
Scrum has the following moving parts, broadly:

The Scrum methodology centers around time-limited iterations called
Sprints:

A Sprint is defined as taking some fixed length of time that
the development team (and sometimes stakeholders) can
agree upon
Sprint durations are usually the same duration each time, but
that duration can be changed, either temporarily or
permanently (until the next time it's changed) if there is
reason to do so

Each Sprint has a set of features/functionality associated with it that the
development team has committed to completing by the end of the Sprint.
Each feature/functionality item is described by a user story.
The team determines what user stories they can commit to completing,
given the duration of the Sprint.
The priority of user stories is determined by a stakeholder (usually a
Product Owner), but can be negotiated.
The team gathers periodically to groom the backlog, which can include:

Estimating the size of stories that don't have one
Adding task-level detail to user stories
Subdividing stories into smaller, more manageable chunks if
there are functional dependencies or size-related execution
concerns, and getting those approved by the relevant
stakeholder(s)

The team reviews the Sprint at the end, looking for things that went well,
or for ways to improve on things that went less-than-well.
The team meets periodically to plan the next Sprint.
The team has a short, daily meeting (a stand-up), the purpose of which is to
reveal what status has changed since the last update. The best-known
format, though not the only one for these meetings, is a quick statement
from each participant on:

What they have worked on since the last stand-up, complete
or otherwise.

Methodologies, Paradigms, and Practices Chapter 4

[57]

What they are planning on working on until the next stand-
up.
What roadblocks they are dealing with, that someone else in
the team might be able to assist with.

Story sizing should not be based around any sort of time estimate.
Doing so tends to discount any assessments of complexity and risk
that might be critically important, and implies an expectation that all
developers will be able to complete the same story in the same
length of time, which is probably not going to be the case. Use story
points or t-shirt sizes (extra small, small, medium, large, extra large
and extra-extra large) instead!

From beginning to end, a typical Sprint will unfold something like this,1.
assuming all goes well:
Day 1 Sprint start-up activities:2.

Stories and tasks are set up on the task board, whether it's real or1.
virtual, all in a Not Started status, in priority order.
Team members claim a story to work on, starting with the2.
highest priority item. If more than one person is working on a
single story, they each claim one of the tasks associated with it.
Claimed stories are moved to an In Progress status on the task
board.

Day 1 –day before end of Sprint: Development and QA.3.
Daily stand – up meeting (probably skipped on the first day).4.
Development:5.

As tasks are completed, their status is updated on the task board1.
to indicate as much.
As stories are completed, they are moved to the next status on2.
the task board after development. This column might be Dev-
Complete, QA-Ready, or whatever other status description
makes sense given the team's structure.
If roadblocks are encountered, they are notified to the Scrum3.
Master, who is responsible for facilitating resolving the blocking
issue. If it cannot be resolved immediately, the status of the
blocked story or task should be updated on the task board, and
the developer moves on to the next task or story that they can
tackle.

Methodologies, Paradigms, and Practices Chapter 4

[58]

As roadblocks get resolved, the items they were blocking reenter4.
development status, and progress as normal from that point on.
There is nothing to say that the developer who encountered the
block initially has to be the one to continue work on the item
after the block is resolved.

Quality Assurance activities:
If QA staff are embedded into the development team, their
processes are often similar to development activities, except
that they'll start by claiming a story to test from whichever
column indicates Dev-Complete items
Testing a story should include, at a minimum, the acceptance
criteria of that story
Testing may well (and probably should) include functional
tests that are not part of the acceptance criteria

Story Acceptance: If there are any stories completed that haven't been
accepted, they can be demonstrated and accepted or declined by the
relevant stakeholder(s). Declined items will probably go back to the In
Development or Not Started status, depending on why they were
declined, and what can be done to resolve the reason for being declined.
Sprint-Close Day:

Demonstration and acceptance of any remaining stories.
If time has not been available to do so before, preparation for
the next Sprint should take place:

Sprint Planning, to prepare the user stories for
the next Sprint
Backlog Grooming, to prepare and define
details and tasks for any user stories that need
those details

Acceptance of remaining stories.
Retrospective meeting—the team gathers to identify the
following:

What worked well in the Sprint, in order to try
and leverage what made it work well
What worked poorly, or not at all, in order to
avoid similar scenarios in the future

Methodologies, Paradigms, and Practices Chapter 4

[59]

All of the daily activities orbit around a task board, which provides a quick
mechanism for easily seeing what's in progress, and what the status of each item is:

An example task board, showing stories and tasks in different stages of development

The task board shown has more detailed status columns than are
technically required—the bare-minimum column set would be
Stories, where the top-level stories' details live until they are done,
Not Started, and In Progress for tasks that are part of the Sprint,
and Done, where tasks (and possibly stories) land when they are
complete, tested, and ready for acceptance.

Methodologies, Paradigms, and Practices Chapter 4

[60]

Scrum's priorities are its focus on transparency, inspection, and self-correction, and its
adaptability to changing needs and requirements. The task board is a significant part
of the transparency aspect of the methodology, allowing anyone with any interest to
see at a glance what the current status of development efforts is. But it doesn't end
there—there is a role known as the Product Owner, who acts as the central
communications point between the development team and all of the stakeholders of
the system. They attend the daily stand-ups, in order to have near-real-time visibility
into progress, roadblocks, and so on, and are expected to speak for and make
decisions on behalf of the entire collection of stakeholders. They are also responsible
for connecting team members with external stakeholders in the event that questions
or concerns arise that the Product Owner cannot address themselves. Their role is
critical in assuring a good balance between providing transparency into ongoing
development efforts to the stakeholders and and not burdening the development
team with ongoing status reporting from them.

Scrum expects a fair amount of self-inspection in the process itself, and encourages a
similar inspection of the results of the process—the software being created, and the
practices and disciplines used in creating it—by prioritizing team openness and
member intercommunication, providing a mechanism for raising visibility into risks
and blocking conditions, and even, to some degree, by encouraging user stories that
entail the smallest amount of effort to achieve a given functional goal. When concerns
or issues arise, the emphasis on immediate communication and the ready availability
of someone who can provide direction and make decisions resolve those issues
quickly, and with a minimal degree of interference with the ongoing development
process.

Scrum is, perhaps, one of the better methodologies from an adaptability-to-change
perspective. Imagine a situation where a development team has been working on
parts of a project for the first week of a two-week (or longer) Sprint. At that point,
someone at the stakeholder level suddenly decides that a change needs to be made to
one of the stories. There are several possible reasons—good, bad, or indifferent—for
that sort of change to be necessary.

Perhaps the functionality that underlies the story is deemed obsolete, and no longer
needed at all—if the story hasn't been completed, then it can simply be removed from
the Sprint, and another story from the backlog pulled in to be worked on, if one is
available that is no larger than the one being removed. If there's already code written
against the story, it will probably need to be removed, but that's about it in terms of
impact on the code base. If the story is complete, then the related code also gets
removed, but no new work (additional stories) gets pulled in.

Methodologies, Paradigms, and Practices Chapter 4

[61]

If the story is changed—the functionality behind it is being altered to better fit user
needs or expectations, for example—the story gets withdrawn from the current Sprint
in the same fashion as if it were being removed, at the very least. If there is time
available to re-scope the story and re-insert it into the Sprint, that can be undertaken,
otherwise it will be added to the backlog, probably at or near the top of the list from a
priority perspective.

On occasion, it's possible for a Sprint to derail, but the methodology has expectations
around how that gets handled as well. If a Sprint cannot complete successfully for
any reason, it's supposed to stop, and a new Sprint is planned to pick up from where
that one ended.

Some advantageous aspects of Scrum include:

Scrum is well-suited to work that can be broken down into small, quick
efforts. Even in large-scale systems, if additions to or alterations of the large
code base can be described in short, low-effort stories, Scrum is a good
process to apply.
Scrum works well for teams that have reasonably consistent skillsets within
their domains. That is, if all developers on a team can, for example, write
code in the main language of the project without significant assistance,
that's a better team dynamic than if only one out of six team members can.

At the same time, because of the structure involved in a Scrum process, there are
some caveats:

Since a Sprint represents a commitment to complete a set of stories and
functionality, changing an in-process Sprint, even with a really good
reason, is troublesome, time-consuming, and disruptive. That implies, then,
that whoever is in the position of making decisions that could require in-
process Sprint changes needs to be aware of the potential impacts of those
decisions—ideally, perhaps, they would avoid Sprint-disruptive changes
without really, really good reasons.
Scrum may not lend itself well to meeting project- or system-level
deadlines until or unless the team has a fair amount of expertise across the
entire domain of the system and its code base. Iteration deadlines are at less
risk, though they may require altered or reduced scope in order to deliver
working software on an iteration-by-iteration basis.

Methodologies, Paradigms, and Practices Chapter 4

[62]

Development efforts and outputs become less predictable if the team
members change—every new team member, especially if they join the team
at different times, will have some impact on the team's ability to be
predictable until the new team roster has had time to settle in. Scrum can
be particularly sensitive to these changes, since new team members may
not have all the necessary tribal knowledge to meet an iteration's
commitments for a while.
Scrum may not work well—perhaps not at all—if the members of a team
aren't all in the same physical area. With modern teleconferencing, holding
the daily stand-up is still possible, as are the other varied meetings, but
Scrum is intended to be collaborative, so easier direct access to other team
members tends to become important pretty quickly as soon as questions or
issues arise.
Unless it's pretty carefully managed not to, Scrum tends to reinforce skill-
set silos in a team—if only one developer knows, for example, how to write
code in a secondary language that the system needs, that person will be
tapped more frequently or by default for any tasks or stories that need that
knowledge in order to meet the iteration's commitments. Making a
conscious effort to turn silo-reinforcing stories or tasks into a team or
paired development effort can go a long way toward reducing these effects,
but if no efforts are made, or if there isn't support for reducing these silos,
they will persist.
Scrum may be challenging if the system has a lot of external dependencies
(work from other teams, for example), or a lot of quality control effort that
developers have to contend with. This last item can be particularly
problematic if those quality control requirements have legal or regulatory
requirements associated with them. Assuring that external dependencies
are themselves more predictable can go a long way to mitigate these kinds
of challenges, but that may be out of the team's control.

Methodologies, Paradigms, and Practices Chapter 4

[63]

Scrum and the phases of the SDLC model
The phases of our SDLC model that are important to the development effort
happening during specific parts of a Scrum process are as follows:

Before development starts:
Requirement analysis and definition happens during the
story creation and grooming portions of the process, often
with some follow-up during Sprint planning. The goal is for
each story's requirements to be known and available before
the story is included in a Sprint.
System architecture and design items follow much the same
pattern, though it's possible for a story in an iteration to have
architecture and/or design tasks too.

The development process itself:
Development, obviously, happens during the Sprint.
Quality assurance activities generally also happen as part of
the Sprint, being applied to each story as it's deemed
complete by the developers. If testing activities reveal issues,
the story would go back to an In-Development status, or
perhaps an earlier status, on the task board, and would be
picked up and corrected as soon as possible.
System integration and testing will probably happen during
the Sprint as well, assuming that an environment is available
to execute these activities with the new code.
Acceptance can happen on a story-by-story basis as each
story makes its way through all the QA and System
Integration and Testing activities, or it can happen all at once
at an end-of-Sprint demo-and-acceptance meeting.

It's not hard to see why Scrum is popular—from a developer's perspective, with
disciplined planning and devoting care and attention to making sure that the
developers' time is respected and realistically allocated, their day-to-day concerns
reduce down to whatever they're working on at the moment. Given a mature team,
who have a reasonably consistent skill set and a good working knowledge of the
system and its code base, Scrum will be reasonably predictable from a business
perspective. Finally, Scrum, if managed with care and discipline, is self-correcting—as
issues or concerns arise, with the process, or with the system and code base to some
extent, the process will provide mechanisms for addressing and correcting those items.

Methodologies, Paradigms, and Practices Chapter 4

[64]

Kanban
Kanban, as a process, has a lot of similarities to Scrum:

The main unit of effort is a user story.
Stories have the same sort of story-level process status, to the point where
the same sort of task board, real or virtual, is used to track and provide
visibility into work in progress.
Stories should have all of their requirements and other relevant
information ready and waiting before work on them commences. That
implies that there is some sort of story grooming process, though it may not
be as formally structured as the equivalent in Scrum.

Kanban, unlike Scrum:

Is not time-boxed—there is no Sprint.
Does not expect or require the daily status/stand-up meeting, though it's a
useful enough tool and is thus commonly adopted. Other variants and
approaches, perhaps focusing first on blocked items, then concerns on in-
progress items, then anything else, are also viable.
Does not expect or require that stories be sized, though again it's a useful
enough tool and is not uncommon, especially if it is a useful criterion for
prioritizing stories for development.

Kanban's primary focus might be described as an effort to minimize context changes,
which plays out as working on single stories until they are complete before moving
on to the next. This frequently results in prioritization of functionality by need, which
lends itself well to situations where there are functional dependencies between
stories.

That working-until-complete focus is probably going to occur in a
Scrum process as well, but it's not actually expected, since the goal
in Scrum is to complete all stories in a Sprint, and assistance from
others on the team to complete a story may well be necessary at any
point to accomplish that goal.

Kanban's entire process is very simple:

Stories (and their tasks) are made ready, and prioritized for work
One or more developers selects a story, and works on it until it's complete,
then repeats the process with another story, and another, and so on

Methodologies, Paradigms, and Practices Chapter 4

[65]

While development and work against current stories is underway, new
stories are made ready and added to the stack of available work as details
become available, and prioritized accordingly

Kanban, with different policies and procedures than Scrum, offers different
advantages:

Kanban is fairly well-suited to efforts where there are significant silos of
knowledge or expertise, since it's focused on completion of functionality,
no matter how long it might take
Kanban handles stories and functionality that are both large and not easily
divisible into smaller logical or functional chunk, without having to go
through the process of subdividing them into Sprint-sized chunks (but see
the next section for the drawbacks of this)
Kanban limits Work In Progress directly, which reduces the likelihood of
overworking developers, provided that the flow of the work is planned
correctly and well
Kanban allows the addition of new work by stakeholders at any point in
time, and with any priority, though interruption of in-progress work is still
best avoided
Provided that each story is independent and deliverable, each completed
story is ready for installation or implementation as soon as it's been
accepted

It also has its own set of caveats:

Kanban can be more prone to bottlenecks in development, particularly if
there are large-scale or long-duration dependencies for subsequent
stories—an example might be a data storage system that takes three weeks
to complete—that is, there is a dependency for a number of small class
structures that need it, which could be implemented in a few days if the
data storage system were complete.
Since it doesn't really provide any concrete milestones at a higher level than
individual stories, Kanban requires more direct and conscious effort to
establish those milestones if they are needed for external business reasons.
More conscious thought and effort are typically needed for functionality
that is being developed in phases in a Kanban process for it to be
efficient—any functionality that has must-have, should-have, and nice-to-
have capabilities that are all going to be implemented, for example, needs
to provide some awareness of, and guidance future phase goals from the
beginning to remain efficient.

Methodologies, Paradigms, and Practices Chapter 4

[66]

Kanban doesn't require that the team as a whole be aware of the design
underlying the work, which can lead to misunderstandings, or even
development efforts at cross-purposes. Making a conscious effort to de-silo
design, and raise overall awareness of the larger-scale requirements may be
needed, and it may not be apparent that it is needed at first.

Kanban and the phases of the SDLC model
Many Agile processes, especially those that use stories as a basic unit of effort or
work, have a lot of similarities. Since most story-related items have been described in
some detail in discussing Scrum, any later methodologies that use stories will only
note variations on the themes:

Before development starts: Requirement analysis and definition, and
system architecture and design, work in much the same way as they do in
Scrum, and for many of the same reasons. The primary difference is that
there is a less formal structure expected in Kanban to accomplish the
attachment of requirements-and-architecture details to stories. It generally
happens when there's time and/or a perceived need, such as the
development team being close to running out of workable stories.
The development process itself: Development and Quality Assurance
processes are part of the flow of a given story as it's being worked to
completion. So, too is system integration and testing, and acceptance pretty
much has to happen during a story's life cycle, since there isn't an end-of-
Sprint meeting to demonstrate development results and acquire
acceptance.

With a less formal structure, fewer process rituals, and a readily-understandable just-
in-time approach to its process, Kanban is easily understood, and reasonably easily
managed. Some additional care at key points, and the ability to identify those key
points, helps considerably in keeping things moving smoothly and well, but as long
as the ability to recognize and address those key points improves over time, so too
will the process.

Methodologies, Paradigms, and Practices Chapter 4

[67]

Other Agile methodologies
Scrum and Kanban aren't the only two Agile methodologies, or even the only two
worthy of consideration. Some others that are worth noting include Extreme
Programming, as a free-standing methodology, and Feature and Test-Driven
Development, either as standalone methodologies or, perhaps as mix-ins to some
other methodology.

Extreme programming
The most noticeable aspect of Extreme Programming (XP) is probably the paired
programming approach, which can be an integral part of its implementation. The
intention/expectation behind it is that two developers, using one computer, work on
the code, which, ideally improves their focus, their ability to collaborate, solve any
challenges more quickly, and allows for faster, better, and more reliable detection of
potential risks that are inherent to the code being produced. In a paired scenario, the
two developers alternate with some frequency between being the person writing the
code and the person reviewing it as it's being written. Not all XP implementations use
the paired approach, but when it's not in play, other processes, such as extensive and
frequent code reviews and unit testing, are necessary to maintain at least some of the
benefits that are lost by not using that option.

XP as a methodology may not be able to handle highly complex code bases or highly
complex changes to code bases without sacrificing some of its development velocity.
It also tends to require more intensive planning and requirements than the more just-
in-time approaches such as Scrum and Kanban, since the paired developers should,
ideally, be able to work on code in as autonomous a fashion as they can manage. The
more information the pair team has up-front, the less time they will have to spend
trying to track down information they need, and the less disruption will occur to their
efforts. XP doesn't really have any method for tracking progress, or keeping efforts
and roadblocks visible, but adopting or bolting on something from some other
methodology is certainly possible.

Methodologies, Paradigms, and Practices Chapter 4

[68]

Feature-driven development
The primary unit of work in a Feature-Driven Development (FDD) process is a
feature. Those features are the end result of a detailed System Modeling effort,
focusing on creating one-to-many domain models in significant detail, mapping out
where features live in the system's domain, how (or if) they are expected to interact
with each other—the sort of information that should come out of use cases, data
structures, flow models, and Interprocess Communication models. Once the overall
model is established, a feature list is constructed and prioritized, with a specific view
to at least trying to keep the implementation time frame of each feature in the list at a
reasonable maximum—two weeks seems to be the typical limit. If an individual
feature is expected to take more than the longest acceptable time, it is subdivided
until it can be accomplished and delivered in that time period.

Once the complete feature list is ready for implementation, iterations around
completing those features are planned around a fixed time period. In each iteration,
features or sets of features are assigned to developers, singly or in groups. Those
developers work out a final implementation design, and review and refine it if
needed. Once the design is deemed solid, development and testing of code to
implement the design take place, and the resulting new code is promoted to the
build- or distribution-ready code base for deployment.

FDD goes hand-in-hand with several development best practices—automated testing,
configuration management, and regular builds so that, if they aren't a full, formal
Continuous Integration process, they are very close to being one. The feature teams
are generally small, dynamically formed, and intended to have at least two
individuals, at a minimum, on them, with the intention of promoting collaboration
and early feedback, especially on a features' designs and implementation quality.

FDD may be a good option for large and complex systems—by breaking work down
into small, manageable features, even development in the context of very large, very
complex systems is going to be maintainable with a good success rate. The processes
around getting any individual feature up and running are simple and easily
understood. Barring occasional check-ins to make sure that development isn't stalling
for some reason, FDD is very lightweight and non-intrusive. Feature teams will
usually have a lead developer associated with them, who has some responsibility for
coordinating the development efforts and refining implementation details when and
if needed. That does mean, however, that the lead developer is less likely to
contribute to the actual code, particularly if they are spending much of their time
executing coordination or design-refinement efforts, or mentoring other members of
the team.

Methodologies, Paradigms, and Practices Chapter 4

[69]

Test-driven design
Test-Driven Design (TDD), as might be expected from its name, is focused first and
foremost on using automated tests of a code base to direct development efforts. The
overall process breaks down into the following steps:

For each functionality goal (new or enhanced feature) being implemented:
Write a new test or set of tests that will fail until the code
being tested meets whatever contract and expectations are
being tested.
Assure that the new test(s) fail, as expected, for the reasons
expected, and don't raise any other failures.
Write code that passes the new test(s). It may be horribly
kludgy and inelegant initially, but this doesn't matter as long
as it meets the requirements embedded in the test(s).
Refine and/or re-factor the new code as needed, retesting to
assure that the tests still pass, moving it to an appropriate
location in the code base if necessary, and generally making
sure that it meets whatever other standards and expectations
are present for the code base as a whole.

Run all tests to prove that the new code still passes the new tests, and that
no other tests fail as a result of the new code.

TDD offers some obvious benefits as a process:

All code in a system will be tested, and have a full suite of regression tests,
at a minimum
Since the primary goal of writing the code is just to pass the tests created
for it, code will frequently be just enough to achieve that, which usually
results in smaller, and easier-to-manage code bases
Similarly, TDD code tends to be more modular, which is almost always a
good thing, and in turn that generally lends itself to better architecture,
which also contributes to more manageable code

Methodologies, Paradigms, and Practices Chapter 4

[70]

The main trade-off, also obviously, is that the test suites have to be created and
maintained. They will grow as the system grows, and will take longer and longer
periods of time to execute, though significant increases will (hopefully) take a while
before they manifest. Creation and maintenance of test suites take time, and is a
discipline all to itself—some argue that writing good tests is an art form, even, and
there's a fair amount of truth to that. On top of that, there's a tendency to look for the
wrong sort of metrics to show how well tests perform: metrics such as code coverage,
or even just the number of individual test cases, which indicate nothing about the
quality of the tests.

Development paradigms
Programming, when it first appeared, was often limited by hardware capabilities and
the higher-level languages that were available at the time for simple procedural code.
A program, in that paradigm, was a sequence of steps, executed from beginning to
end. Some languages supported subroutines and perhaps even simple function-
definition capabilities, and there were ways to, for example, loop through sections of
the code so that a program could continue execution until some termination condition
was reached, but it was, by and large, a collection of very brute-force, start-to-finish
processes.

As the capabilities of the underlying hardware improved over time, more
sophisticated capabilities started to become more readily available—formal functions
as they are generally thought of now, are more powerful , or at least have a flexible
loop and other flow control options, and so on. However, outside a few languages
that were generally accessible only inside the halls and walls of Academia, there
weren't many significant changes to that procedural approach in mainstream efforts
until the 1990s, when Object-Oriented Programming first started to emerge as a
significant, or even dominant paradigm.

The following is an example of a fairly simple procedural program that asks for a
website URL, reads the data from it, and writes that data to a file:

#!/usr/bin/env python
"""
An example of a simple procedural program. Asks the user for a URL,
retrieves the content of that URL (http:// or https:// required),
writes it to a temp-file, and repeats until the user tells it to
stop.
"""

import os

Methodologies, Paradigms, and Practices Chapter 4

[71]

import urllib.request

if os.name == 'posix':
 tmp_dir = '/tmp/'
else:
 tmp_dir = 'C:\\Temp\\'

print('Simple procedural code example')

the_url = ''
while the_url.lower() != 'x':
 the_url = input(
 'Please enter a URL to read, or "X" to cancel: '
)
 if the_url and the_url.lower() != 'x':
 page = urllib.request.urlopen(the_url)
 page_data = page.read()
 page.close()
 local_file = ('%s%s.data' % (tmp_dir, ''.join(
 [c for c in the_url if c not in ':/']
)
)).replace('https', '').replace('http', '')
 with open(local_file, 'w') as out_file:
 out_file.write(str(page_data))
 print('Page-data written to %s' % (local_file))

print('Exiting. Thanks!')

Object-oriented programming
The distinctive feature of Object-Oriented Programming is (no great surprise) that it
represents data and provides functionality through instances of objects. Objects are
structures of data, or collections of attributes or properties, that have related
functionality (methods) attached to them as well. Objects are constructed as needed
from a class, through a definition of the properties and methods that, between them,
define what an object is, or has, and what an object can do. An OO approach allows
programming challenges to be handled in a significantly different, and usually more
useful, manner than the equivalents in a procedural approach, because those object
instances keep track of their own data.

Methodologies, Paradigms, and Practices Chapter 4

[72]

The following is the same functionality as the simple procedural example shown
previously, but written using an Object-Oriented approach:

#!/usr/bin/env python
"""
An example of a simple OOP-based program. Asks the user for a URL,
retrieves the content of that URL, writes it to a temp-file, and
repeats until the user tells it to stop.
"""

Importing stuff we'll use
import os

import urllib.request

if os.name == 'posix':
 tmp_dir = '/tmp/'
else:
 tmp_dir = 'C:\\Temp\\'
if not os.path.exists(tmp_dir):
 os.mkdirs(tmp_dir)

Defining the class

class PageReader:
 # Object-initialization method
 def __init__(self, url):
 self.url = url
 self.local_file = ('%s%s.data' % (tmp_dir,
 ''.join(
 [c for c in the_url if c not in ':/']
)
)).replace('https', '').replace('http', '')
 self.page_data = self.get_page_data()
 # Method to read the data from the URL
 def get_page_data(self):
 page = urllib.request.urlopen(self.url)
 page_data = page.read()
 page.close()
 return page_data
 # Method to save the page-data
 def save_page_data(self):
 with open(self.local_file, 'w') as out_file:
 out_file.write(str(self.page_data))
 print('Page-data written to %s' % (self.local_file))

if __name__ == '__main__':
 # Almost the same loop...

Methodologies, Paradigms, and Practices Chapter 4

[73]

 the_url = ''
 while the_url.lower() != 'x':
 the_url = input(
 'Please enter a URL to read, or "X" to cancel: '
)
 if the_url and the_url.lower() != 'x':
 page_reader = PageReader(the_url)
 page_reader.save_page_data()
 print('Exiting. Thanks!')

Although this performs the exact same task, and in the exact same fashion as far as
the user is concerned, underneath it all is an instance of the PageReader class that
does all the actual work. In the process, it stores various data, which could be
accessed as a member of that instance. That is, the page_reader.url,
page_reader.local_file, and page_reader.page_data properties all exist and
could be retrieved and used if there were a need to retrieve that data, and the
page_reader.get_page_data method could be called again to fetch a fresh copy of
the data on the page. It's important to note that the properties are attached to the
instance, so it'd be possible to have multiple instances of PageReader, each with it's
own data, that can all do the same things with their own data. That is, if the following
code were executed:

python_org = PageReader('http://python.org')
print('URL %s' % python_org.url)
print('Page data length ... %d' % len(python_org.page_data))
google_com = PageReader('http://www.google.com')
print('URL %s' % google_com.url)
print('Page data length ... %d' % len(google_com.page_data))

It would yield the following output:

Methodologies, Paradigms, and Practices Chapter 4

[74]

Object-Oriented design and implementation make the development of a complex
system, with the attendant complex interactions, considerably easier a fair portion of
the time, though it may not be a panacea for all development challenges and efforts. If
the basic principles of good OO designs are adhered to, however, they will usually
make code easier to write, easier to maintain, and less prone to breakage. A full
discussion of OO design principles is well beyond the scope of this book, but some of
the more fundamental ones that can cause a lot of difficulty if they aren't adhered to
are as follows:

Objects should have a Single Responsibility—each should do (or
represent) one thing, and do so well
Objects should be open for extension but closed for modification—changes
to what an instance actually does, unless it's a new functionality that flat-
out doesn't exist, should not require modification to the actual code
Objects should encapsulate what varies—it shouldn't require the use of an
object to know anything about how it does and what it does, just that it can
do it
Use of objects should be exercises in programming to an interface, not to an
implementation—this is a complex topic that's worth some detailed
discussion, with some substance and context, so it'll be looked at in some
detail in Chapter 9, Testing the Business-Objects, while working out the
architecture of the hms_sys project

Functional programming
Functional Programming (FP) is a development approach centered around the
concept of passing control through a series of pure functions, and avoiding shared
state and mutable data structures. That is, the majority of any real functionality in FP
is wrapped in functions that will always return the same output for any given input,
and don't modify any external variables. Technically, a pure function should not
write data to anywhere—neither logging to a console or file, nor writing to a
file—and how the need for that sort of output is accommodated is a discussion well
outside the scope of this book.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=375&action=edit

Methodologies, Paradigms, and Practices Chapter 4

[75]

The following is the same functionality that was in the previous two examples, but
written using a Functional Programming approach (if only barely, since the task it's
performing isn't all that complex):

#!/usr/bin/env python
"""
An example of a simple FP-based program. Asks the user for a URL,
retrieves the content of that URL, writes it to a temp-file, and
repeats until the user tells it to stop.
"""

Importing stuff we'll use
import os

import urllib.request

if os.name == 'posix':
 tmp_dir = '/tmp/'
else:
 tmp_dir = 'C:\\Temp\\'
if not os.path.exists(tmp_dir):
 os.mkdirs(tmp_dir)

Defining our functions

def get_page_data(url):
 page = urllib.request.urlopen(url)
 page_data = page.read()
 page.close()
 return page_data

def save_page_data(local_file, page_data):
 with open(local_file, 'w') as out_file:
 out_file.write(str(page_data))
 return('Page-data written to %s' % (local_file))

def get_local_file(url):
 return ('%s%s.data' % (tmp_dir, ''.join(
 [c for c in the_url if c not in ':/']
)
)).replace('https', '').replace('http', '')

def process_page(url):
 return save_page_data(
 get_local_file(url), get_page_data(url)
)

def get_page_to_process():

Methodologies, Paradigms, and Practices Chapter 4

[76]

 the_url = input(
 'Please enter a URL to read, or "X" to cancel: '
)
 if the_url:
 return the_url.lower()
 return None

if __name__ == '__main__':
 # Again, almost the same loop...
 the_url = get_page_to_process()
 while the_url not in ('x', None):
 print(process_page(the_url))
 the_url = get_page_to_process()
 print('Exiting. Thanks!')

Again, this code performs the exact same function, and it does so with the same
discrete steps/processes as the previous two examples. It does so, however, without
having to actually store any of the various data it's using—there are no mutable data
elements in the process itself, only in the initial input to the process_page function,
and even then, it's not usefully mutable for very long. The main function,
process_page, also doesn't use any mutable values, just the results of other function
calls. All of the component functions return something, even if it's only a None value.

Functional Programming is not a new paradigm, but it hasn't become widely
accepted until relatively recently. It has the potential to be as fundamentally
disruptive as Object-Oriented Programming was. It's also different, in many respects,
so that making a transition to it might well be difficult—it relies, after all, on
substantially different approaches, and on a stateless basis that is very atypical in or
of other modern development paradigms. That stateless nature, though, and the fact
that it enforces a rigid sequence of events during execution, have the potential to
make FP-based code and processes much more stable than their OO or procedural
counterparts.

Development practices
At least two post-development process automation practices have arisen, either as a
result of some incremental development methodologies, or merely at the same time:
Continuous Integration and Continuous Delivery (or Deployment).

Methodologies, Paradigms, and Practices Chapter 4

[77]

Continuous integration
Continuous Integration (CI), in its simplest description, is a repeatable, automated
process for merging new or altered code into a common, shared environment, either
on some sort of timed basis, or as a result of some event such as committing changes
to a source control system. Its primary goal is to try and detect potential integration
problems as early in the code promotion or deployment process as possible, so that
any issues that arise can be resolved before they are deployed to a live, production
branch. In order to implement a CI process, regardless of any tools that might be used
to control or manage it, there are a few prerequisites:

Code needs to be maintained in a version control system of some sort, and
there should be, ideally, one and only one branch that a CI process will
execute against.
The build process should be automated, whether it fires off on a
predetermined schedule, or as a result of a commit to the version control
system.
As part of that build process, all automated tests (unit tests in particular,
but any integration or system tests that can be usefully executed should at
least be considered for inclusion) should execute. When those test fire off
may be worth discussing, since there may be two or more windows of
opportunity, and they both have their advantages:

Tests executed before the commit and build is complete, if
the tools and processes can either prevent the commit or
build, or roll a commit back to its last good state on a test
failure, will prevent code that fails its tests from being
committed. The trade-off in this scenario is that it's possible
that conflicting changes from two or more code change
sources might be significantly tangled and need
correspondingly significant attention to remedy.
Additionally, if the offending code cannot be committed, that
may make it difficult to hand off the offending code to a
different developer who might well be able to solve the issue
quickly.
Tests that execute after a build will allow code that's failed
one or more tests to be committed to the collective code base,
but with known issues at a minimum. Depending on the
shape and scope of those issues, it might well break the
build—and that can be disruptive to the whole team's
productivity.

Methodologies, Paradigms, and Practices Chapter 4

[78]

Some sort of notification process needs to be in place to alert
developers that there is an issue—particularly if the issue
resulted in a broken build.
The process needs to assure that every commit is tested and
successfully buildable.
The results of a successful build need to be made available in
some fashion—whether through some sort of scripted or
automated deployment to a specific testing environment,
making an installer for the new build available for download,
or whatever other mechanism best suits the product's,
team's, or stakeholders' needs.

With these in place, the rest of the process is just a case of working out some of the
process rules and expectations, and implementing, monitoring, and adjusting them
when/if needed:

When should commits happen? Daily? At the end of development of a
story, feature, or whatever unit of work might apply?
How quickly does the commit-test-build process need to run? What steps
can be taken, if any, to keep it quick enough to be useful?

Continuous delivery or deployment
Continuous Delivery or Deployment (CD) is a natural extension or offshoot of the CI
process, taking each successful build, collecting all of the components involved, and
either deploying it directly (typically for web and cloud-resident applications and
systems), or taking whatever steps would be necessary to make the new build
available for deployment—creating a final, end user or production-ready installation
package, for example—but not actually deploying it.

A complete CD process will allow for the creation, update, or recreation of a
production system based solely on information in a source control system. It also
likely involves some Configuration Management and Release Management tools at
the system administration side, and those may well impose specific requirements,
functionally or architecturally, or both, on a system's design and implementation.

Methodologies, Paradigms, and Practices Chapter 4

[79]

Summary
These last several chapters have hopefully given you at least a glimpse into all of the
moving parts (outside the actual writing of code) in development efforts that are
useful to be aware of in software engineering. The odds are good that any given team
or company will have selected which methodology, and what pre- and post-
development processes are going to be in play. Even so, knowing what to expect from
them, or what might be causes for concern while working within their various
combined contexts, is useful information, and often one of the expectations that
divide programmers from software engineers.

With all of that said and out of the way, it's time to start looking in more depth and
detail at the meat of any combination of these—the development processes
themselves. To do that, we need a system—a project to work on.

5
The hms_sys System Project

The project that the next several chapters will focus on is being written for an
imaginary company, Hand Made Stuff, that specializes in connecting consumers with
artisans who create and sell a variety of unique handmade items. Those products
cover a wide range of materials and purposes, and include furniture, craft, and
jewelry items, such as beads and bits and pieces for costuming. Pretty much anything
that someone is willing to make and someone else is willing to buy.

Goals for the system
Hand Made Stuff (HMS) is now looking for a way to streamline the business process
that they use to allow artisans to make their wares available through the main
website. At present, when an Artisan has created something that they're willing to
sell, they send an email to someone at the HMS central office, with one or more
attached photos if it's something new, sometimes with new photos if it's a new
version or set of a previously-offered products. Someone in the HMS central office
copies the relevant information into their web system and does a bit of basic setup to
make the items available. From there, once a consumer decides that they want to
order something an Artisan has made, the order goes through another manual
process that involves the HMS central office emailing the Artisan with the order
information.

The hms_sys System Project Chapter 5

[81]

All of these manual processes are time-consuming, and sometimes error-prone. On
occasion, they have taken so long that more than one customer has tried to purchase
the same item because the information was still being processed to get the first order
in motion:

Hand Made Stuff's website runs on an off-the-shelf system that is not easily
modifiable. It does have an API, but that API was designed to be used for internal
access processes, so there are security concerns about opening access to it up enough
to allow artisans to connect to it through new web-application development.

The business that this imaginary company does is, perhaps, not
terribly realistic. It certainly doesn't feel like it'd actually be able to
compete with existing businesses such as Etsy or (maybe) craigslist
or eBay. Even so, the implementation concepts for the system are
reasonably realistic, in that they are variations of tasks that need to
be implemented across several real-world problem domains. They're
just combined in an unusual fashion.

The hms_sys System Project Chapter 5

[82]

Since the following chapters are intended to represent individual development
iterations, in a process that's at least somewhat along the lines of a Kanban
methodology, there are some artifacts from the pre-development processes that are
worth noting before getting into what those iterations/chapters will look like.

What's known/designed before
development starts
The primary goals of the new system center around streamlining and (as much as
possible) automating the existing process to get artisans' products into the online
catalog. Specifically:

artisans should be able to submit product information without having to
go through an email-based process. As part of that change:

Some data-entry control will be enforced, to prevent simple
mistakes (missing or invalid data).
artisans will be able to modify their product data, with some
limitations, and with a review still required before those
revisions go live. At a minimum, though, they will be able to
deactivate live product listings, and activate existing-but-
deactivated items as well.

Product Reviewers will be able to make revisions directly (for simple
changes, at least), and send items back for major revisions. This part of the
process is loosely defined, and may need further detail and definition later
in the development cycle.
The Product Managers' data-entry tasks will be reduced significantly, at
least as far as the setup of new products is concerned. The new system will
take care of most or all of that.

The hms_sys System Project Chapter 5

[83]

The use-case diagram for the new process, then, looks like the following before any
detailed design has taken place:

The intention is for each Artisan to be supplied with an installable application that
allows them to interact with the HMS main office. That local application will connect
to an Artisan gateway that will handle the Artisan-to-main-office communications,
and store the incoming data from artisans as a sort of staging area for anything that's
pending approval. From there, a Reviewer (and/or Product manager) application will
allow Product reviewers and managers to move Artisan-supplied products into the
main web store, using its native API. The logical architecture, with some rough inter-
process communication flows, at this point looks like the following:

Between these diagrams and the initial concept noted earlier, there are a lot of specific
user needs that have already been captured. It's possible that more will arise during
development or at least planning for development (as stories for iterations are fleshed
out).

The hms_sys System Project Chapter 5

[84]

The actual data structure behind artisans and their products is not known yet, only
that products are distinct elements that can be owned by one and only one Artisan.
More detail will be needed to implement these, as well as to determine what data
moves where (and when), but the relationship between them is already
diagrammable:

The current lack of information about the inner data structure of these elements also
makes any sort of UI design specification difficult, if not impossible. Similarly, it will
be difficult to determine any business rules that aren't already implied by the use-case
and logical-architecture/data-flow diagrams. Those, too, will require more details
before anything more useful can be discerned.

There are a few other varied items that could be inferred from this information and
fall into one of the following pre-development steps:

Risks:
The fact that the connection between the Review/Manage
Application and the Web Store Database is one-way
probably indicates some concern that the data flow needs to
be carefully controlled. Realistically, it will probably be
necessary for the application to be able to at least read from
the database, if only so that existing products can be found
and modified, rather than creating new product entries over
and over again.
The use-case diagram shows that an Artisan can activate or
deactivate a product without involving the Product
Reviewer, but the architecture and flow don't have any
obvious way to handle that capability. At a minimum, an
examination of a connection from the Artisan gateway to the
Web Store Database should be undertaken, but that's
something that can happen later, during the relevant
development iteration. Since the web store system has an
API, it may be that the process can be managed by an API
call to the Web Store Application, from the
Artisan Gateway, but that hasn't been evaluated yet.

The hms_sys System Project Chapter 5

[85]

Project-management planning data:
If the project has made it to the development shop, the odds
are that all of the feasibility, cost-analysis, and other
business-level examinations have been made and approved.
Though there may not be any specific information needed
from these results, knowing that they are probably available
if a question arises is a good thing.

What the iteration chapters will look like
In the interest of showing what an Agile process might look like as a system is
developed under it, the development of hms_sys will be broken down into several
iterations. Each iteration, with a single, high-level goal, covers one or more chapters,
and is concerned with a common set of Stories. Of the agile methodologies discussed
in Chapter 4, Methodologies, Paradigms, and Practices, these chapters are closer to being
a Kanban approach than anything else, since the number and total sizes of stories
being completed in each iteration vary significantly between iterations. In a Scrum
setting, these iterations would be time-constrained, broken out into time-limited
chunks – that is, each iteration would be planned to last for some specific length of
time. The following chapters and their corresponding iterations are goal-oriented
instead, with each intended to achieve some milestone of system functionality. In that
respect, they are also close to following a Feature-Driven Development model.

Each iteration will address the same five items:

Iteration goals
Assembly of stories and tasks:

Requirement analysis and definition activities from the SDLC
model, as/if needed
System architecture and design activities, also from the SDLC
model, as/if needed

Writing and testing the code.
System integration, testing, and acceptance.
Post-development considerations and impact:

Implementation/installation/distribution
Operations/use and maintenance
Decommissioning

The hms_sys System Project Chapter 5

[86]

Iteration goals and stories
Each iteration will have a very specific, and reasonably tightly-focused set of goals to
be accomplished, building upon the accomplishments of previous iterations until the
final system is complete. In order, the goals for each iteration are:

Development foundations: Setting up projects and processes. Each of the
functional iterations needs be testable, buildable, and deployable by the
time they are finished, so some attention needs to be paid early in the
system project to making sure that there is some sort of common
foundation to build those on as development progresses.

Business object foundations: Definition and development of business-
object data structures and functionality.

Business-object data-persistence: Making sure that the various business
objects in use can be stored and retrieved as needed.

Service foundations: Building out the bare-bones functionality for the
main office and Artisan services, which will be the backbone of the
communication and data-exchange processes for the system as a whole.

Service communication: Defining, detailing, and implementing the actual
communication processes between components of the system, particularly
the service-layer implementations.

Each of these iterations has a perhaps-surprising amount of design- and
implementation-level decision-making that has to happen, and a lot of opportunities
to exercise various software-engineering principles across a wide variety of
functional, conceptual, and implementation scenarios.

The hms_sys System Project Chapter 5

[87]

Each iteration's efforts will be captured in a set of user stories, of the type described
when examining the Scrum and Kanban methodologies. Each iteration's criteria for
being complete will include having all of the stories associated with it complete, or at
least resolved. It's possible that some stories will have to be moved to later iterations
in order to accommodate functional dependencies, for example, in which case it may
not be possible to complete an implementation of those stories until later in the
system's development.

Writing and testing the code
Once all of the stories have been defined in sufficient detail to allow development, the
code itself will be written, both for the actual functionality associated with each story,
and for automated testing of that code – unit-testing with regression-testing
capabilities baked in. If possible and practical, integration- and system-testing code
will also be written with an eye toward providing the same automated, repeatable
testing of new code from those perspectives. The end goal of each iteration will be a
deployable and functional code-base that has been tested (and that can be retested on
demand). It may not be complete or even usable during the early iterations, but it will
be stable and predictable in terms of which capabilities it provides.

This part of the process will form the bulk of the next few chapters. Writing code is,
after all, the key aspect of development.

Post-development considerations and impact
The operations/use, maintenance, and decommissioning phases of hms_sys will be
discussed in some depth after development is complete, but as development unfolds
some effort will be made to anticipate specific needs that relate to those parts of the
system's life. There may or may not be code written during the core development
phases to address concerns in the system's active life, but any expected needs that
surface during those efforts could, at a minimum, have some documentation written
around them as part of the development effort, targeted for use by system
administrators.

The hms_sys System Project Chapter 5

[88]

Summary
The pre-development and high-level conceptual design items for hms_sys are fairly
straightforward, at least at the level of detail that's available coming out of the pre-
development planning cycle(s). More detail will bubble to the surface once the user
stories for the individual iterations' functionalities are fleshed out, along with a host
of questions and implementation decisions and details. There's one iteration, though,
that will happen first.

That first iteration, as hinted at, is concerned more with the definition of the tools,
processes, and practices that will be in play through the real development of the final
system. The odds are good that most of the decisions and setup that will be part of
that will already have been decided upon by the development team, and by those
who manage the team. Even so, it's worth looking at some of the options and
decision-making criteria that will hopefully have gone into making those decisions.
They can (and often do) have a significant impact on how well things work during
development.

6
Development Tools and Best

Practices
Before starting on the actual development of hms_sys, there are several decisions that
need to be made. In a real-world scenario, some (maybe all) of these decisions might
be made at a policy level, either by the development team or maybe by management
above the team. Some, such as the IDE/code editor program, might be an individual
decision by each individual team member; so long as there are no conflicts between
different developers' choices, or any issues raised as a result, there's nothing wrong
with that. On the other hand, having some consistency isn't a bad thing either; that
way, every team member knows what to expect when they're working on code that
someone else on the team has touched.

These choices fall into two main categories selection of development tools and what
best practices (and standards) will be in play, specifically the following:

Integrated Development Environment options
Source Control Management options
Code and development process standards, including organization of
Python code into packages
Setting up and using of Python virtual environments

Development tools
The two most important tool-oriented decisions that need to be considered are, not
surprisingly, centered around creating, editing, and managing the code through the
development life cycle.

Development Tools and Best Practices Chapter 6

[90]

Integrated Development Environment (IDE)
options
It's certainly possible to write and edit code without using a full-blown Integrated
Development Environment (IDE). Ultimately, anything that can read and write text
files of arbitrary types or with arbitrary file extensions is technically usable. Many
IDEs, though, provide additional, development-centric capabilities that can save time
and effort—sometimes a lot of time and effort. The trade-off is, generally, that the
more features and functionality that any given IDE provides, the less lightweight it is,
and the more complicated it can become. Finding one that every member of a
development team can agree on can be difficult, or even painful there are downsides
to most of them, and there may not be a single, obvious right choice. It's very
subjective.

In looking at code editing and management tools, only real IDEs will be examined. As
noted, text editors can be used to write code, and there are a fair few of them out
there that recognize various language formats, including Python. However good they
are (and there are some that are very good), if they don't provide at least one of the
following functional capabilities, they won't be considered. It's just a matter of time
until something in this list is needed and not available, and at a minimum, that
eventuality will be distracting, and at worst, it could be a critical issue (though that
seems unlikely). The feature set criteria are as follows:

Large-project support: A large project, for the purposes of discussion,
involves the development of two or more distinct, installable Python
packages that have different environmental requirements. An example
might include a business_objects class library that's used by two
separate packages such as an online_store and back_office that
provide different functionality for different users. The best-case scenario for
this would include the following :

Support for different Python interpreters (possibly as
individual virtual environments) in different package
projects
The ability to have and manage interproject references (in
this example, the online_store and back_office
packages would be able to have useful references to the
business_objects library)

Development Tools and Best Practices Chapter 6

[91]

Less important, but still highly useful, would be the ability to
have multiple projects open and editable at the same time, so
that as changes in one package project require corresponding
changes in another, there's little or no context change needed
by the developer making those changes

Refactoring support: Given a long enough period of time, it's inevitable
that changes to a system's code without changing how it behaves from an
external perspective is going to be necessary. That's a textbook definition of
refactoring. Refactoring efforts tend to require, at a minimum, the ability to
find and replace entity names in the code across multiple files, possibly
across multiple libraries. At the more complex end of the range, refactoring
can include the creation of new classes or members of classes to move
functionality into a different location in the code, while maintaining
the interface of the code.

Language exploration: The ability to examine code that's used by, but not a
part of, a project is helpful, at least occasionally. This is more useful than it
might sound, unless you are lucky enough to possess an eidetic memory,
and thus never have to look up function signatures, module members and
so on.

Code execution: The ability to actually run the code being worked on is
immensely helpful during development. Having to drop out of an editor
into a terminal in order to run code, to test changes to it, is a context
change, and those are tedious at the least, and can actually be disruptive to
the process under the right circumstances.

These items will be rated on the following scale, from best to worst:

Superb
Great
Good
Fair
Mediocre
Poor
Terrible

Development Tools and Best Practices Chapter 6

[92]

These are the author's opinion, obviously, so take these with an
appropriately sized grain of salt. Your personal views on any or all
of these, or your needs for any or all of them, may be substantially
different.

Many IDEs have various bells and whistles functionality that helps, perhaps
substantially, with the processes of writing or managing code, but isn't something
that's really critical. Examples of these include the following:

The ability to navigate to where a code entity is defined from someplace
where it's being used
Code completion and autosuggestion, which allows the developer to
quickly and easily select from a list of entities based on the first few
characters of an entity name that they've started typing
Code coloration and presentation, which provides an easy-to-understand
visual indication of what a given block of code is – comments, class,
function and variable names, that sort of thing

These will also be rated on the same scale, but since they aren't critical functionality,
they are presented merely as additional information items.

All of the following IDEs are available across all the major operating systems –
Windows, Macintosh, and Linux (and probably most UNIX systems, for that
matter) – so that, an important criteria for evaluating the IDE part of a development
toolkit is moot across the three discussed.

IDLE
IDLE is a simple IDE, written in Python and using the Tkinter GUI, which means
that it should run on pretty much anything that Python can run on. It is often, but not
always, part of a default Python installation but even when it's not included by
default, it's easily installed and doesn't require much of anything in the way of
external dependencies or other languages runtime environments.

Large-project support: Poor
Refactoring support: Poor
Language exploration: Good
Code execution: Good
Bells and whistles: Fair

Development Tools and Best Practices Chapter 6

[93]

Out of the box, IDLE doesn't provide any project management tools, though there
may be plugins that provide some of this capability. Even so, unless there are also
plugins available that allow for more than one file to be open at a time without
requiring each to be in a separate window, working with code across multiple files
will eventually be tedious, at best, and perhaps impractical to the point of being
effectively impossible.

Although IDLE's search-and-replace functionality includes one nice feature – regular
expression-based searches – that's about it as far as functionality that is meaningful or
useful for refactoring purposes. Any significant refactoring effort, or even widespread
but smaller scoped changes, will require a relatively high degree of manual effort.

Where IDLE really shines is in its ability to dig into the packages and modules
available on the system. It provides both a class browser that allows direct
exploration of any importable namespace in the Python path, and a path browser that
allows exploration of all available namespaces. The only downsides to these are a lack
of search capability and that each class browser has to reside in a separate window.
Were these not concerns, a Great rating would not seem out of line.

IDLE allows any open file to be executed with a single keystroke, with the
results/output of that run displayed in a single, common Python shell window. There
is no facility for passing arguments to those executions, but that's probably only a
concern if a project involves some sort of command-line program that accepts
arguments. IDLE also provides a syntax check that identifies the first syntax problem
detected in the code, which could be of some use.

The only reliably functional bells and whistles item that IDLE offers is coloration of
code. There are extensions that are supposed to provide things such as auto-
completion and some code authoring assistance (automatic generation of closing
parenthesis, for example), but none of them appear to be functional.

Development Tools and Best Practices Chapter 6

[94]

The following is a screenshot of IDLE showing the console, a code editing window,
class and path browser windows, and a search and replace window:

IDLE is probably a reasonable choice for small code efforts – anything that doesn't
require having more files open than the user's comfortable with having displayed in
their individual windows. It's lightweight, with a reasonably stable (if occasionally
quirky) GUI. It's not something that feels like it would work well for projects that
involve more than one distributable package, though.

Geany
Geany is a lightweight code editor and IDE with support for a number of languages,
including Python. It's available as an installable application across all the major
operating systems, though it has some features that aren't available on Windows.
Geany is available as a free download from www.geany.org:

Large-project support: Fair
Refactoring support: Mediocre
Language exploration: Mediocre
Code execution: Good
Bells and whistles: Good

http://www.geany.org/

Development Tools and Best Practices Chapter 6

[95]

This is a screenshot of Geany showing one of several project plugins' sidebars, an
open code file, project settings, and search and replace windows:

Geany's interface makes working with multiple concurrently open files a great deal
easier than the same task would be in IDLE; each open file resides in a single tab in
the UI, making multi-file editing quite a bit easier to deal with. It also supports a basic
project structure even in its most basic installed configuration, and there are a few
different project-oriented plugins that allow for easier/better management and
visibility into the files of a project. What it lacks, generally, for large-project support is
the ability to actually have multiple projects open at once, though multiple open files
across different project source trees is supported. With some careful planning, and
judicious configuration of individual projects' settings, it's possible to manage
different execution requirements and even specific Python virtual environments
across a set of related projects, though it requires some discipline to keep those well-
isolated and efficient. As can be seen in the screen capture, Geany also provides
settings for compilation and build/make commands at a project level, which can be
very handy.

Development Tools and Best Practices Chapter 6

[96]

Geany's refactoring support is just slightly better than IDLE's, mostly because of its
multi-file search and replace capabilities. There is no out-of-the box support for
refactoring operations such as renaming a Python module file across an entire project
or project set, leaving it as a wholly manual process, but with some care (and, again,
discipline) even those aren't difficult to manage correctly, though they may be tedious
and/or time consuming.

Geany's language exploration capabilities don't look like they should warrant as high
a rating as the Mediocre that was given. Short of actually opening every Python
namespace that's tied to a given project, which would at least allow exploration of
those packages in the Symbols panel, there really isn't much obviously available in
the way of support for digging into the underlying language. Geany's redemption
here is a very robust auto completion capability. Once the first four characters of an
identifiable language element are entered – whether that element is part of an open
file in the project or part of an imported module – all of the element names that match
the currently entered text are shown and selectable, and if the selected item is a
function or method, the code hint that comes up for the item includes that item's
argument signature.

Geany's code execution capabilities are pretty solid – slightly better than IDLE's in a
few respects, if not enough so, or across enough areas, to warrant a higher rating.
With some attention to needs and details early on in the project setup, it's possible to
configure a given project's Execute settings to use a specific Python interpreter, such
as one that's part of a specific virtual environment, and allow imports from other
projects' virtual environment installations and code bases. The downside is that doing
so does require a degree of planning, and it introduces additional complexity in
managing the related virtual environments.

Geany's out-of-the box bells and whistles are comparable to those provided by IDLE,
with a single significant improvement; a good number of readily-available plugins
for a lot of common and useful tasks and needs.

Eclipse variations + PyDev
The Eclipse Platform, managed by the Eclipse Foundation (www.eclipse.org), is
intended to provide a robust, customizable and fully featured IDE for any number of
languages and development focuses. It's an open source project, and has spun off at
least two distinct child variants (Aptana Studio, focused on web development), and
LiClipse , (focusing on Python development).

http://www.eclipse.org/

Development Tools and Best Practices Chapter 6

[97]

The LiClipse installation will be used as the basis of comparison here, since it requires
no language-specific setup to begin writing Python code, but it's perhaps worth
noting that any Eclipse-derived installation that has access to the same plugins and
extensions (PyDev for Python language support, and EGit for Git support) would
provide the same functionality. All that said, Eclipse is not, perhaps, for everyone. It
can be a very heavy IDE, especially if it's providing support for more than a couple of
languages, and can have a significant operational footprint memory and CPU usage –
even if its supported languages and functionality set is fairly tightly controlled:

Large project support: Great
Refactoring support: Good
Language exploration: Fair
Code execution: Good
Bells and whistles: Good

Here is a screenshot of LiClipse, showing a code outline view of the open code file,
project properties, and a task list automatically generated from TODO comments in
the open code files:

Development Tools and Best Practices Chapter 6

[98]

Eclipse's support for large Python projects is very good:

Multiple projects can be defined and open for modification at the same
time
Each project can have its own distinct Python interpreter, which can be a
project-specific virtual environment, allowing distinct package
requirements on a per-project basis, while still also allowing execution
Projects can be set up to use other projects through the Project References
settings as dependencies, and code execution will take those dependencies
into account; that is, if code is run in a project that has a different project set
up as a reference/dependency, the first project will still have access to the
second's code and installed packages

Refactoring support across all the Eclipse-derived IDEs is also quite good, providing
processes for the renaming of code elements including modules, the extraction of
variables and methods, and facilities for the generation of properties and other code
constructs. There may be other refactoring capabilities that are context dependent,
and thus aren't obviously available at first glance.

Once a Python environment has been associated with a project, the structure of that
environment is completely available in the project's UI. By itself, that allows for drill-
down exploration of what packages and functionality are available through the
associated environment. Less obviously, control-clicking on a member of an installed
package (for example, on urllib.request in the example code from Chapter 5, The
hms_sys System-Project, or the urlopen function that module provides) will take the
developer to the actual member (method or property) of the actual module that the
project has in its installation.

The Eclipse family of IDEs provides reasonably good execution capabilities for
Python code, though it takes some getting used to. Any module or package file can be
executed if or as needed, and any results, be they output or errors, will be displayed.
The execution of a specific file also generates an internal run configuration that can be
modified or removed as needed.

The Eclipse/PyDev bells and whistles are, for the most part, comparable with those of
Geany and IDLE code and structure coloration is available and configurable,
autosuggestion and autocompletion is available. The one potentially significant item
that LiClipse in particular provides from the get-go is an integrated Git
client. LiClipse's Git integration, before any repositories have been cloned, is shown
here:

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=29&action=edit

Development Tools and Best Practices Chapter 6

[99]

Others
These are not the only IDEs available for Python development, nor are they
necessarily the best. Other popular options, based on various professional and semi-
professional group polling, include:

PyCharm (Community or Professional version): PyCharm shows up pretty
consistently as a popular IDE for Python development. Its feature list
includes most of the same bells and whistles that have been noted for
Geany and Eclipse/PyDev tools, and it also features out-of-the box
integration with Git, Subversion, and Mercurial version control systems, as
well as UI and tools for working with various popular RDBMS, such as
MySQL and SQL Server in the Professional version. It's probably a good
first choice for the development of web applications in Python, provided
that its project management functionality isn't going to be overwhelmed by
the code base. PyCharm can be downloaded
at www.jetbrains.com/pycharm.

http://www.jetbrains.com/pycharm
http://www.jetbrains.com/pycharm
http://www.jetbrains.com/pycharm

Development Tools and Best Practices Chapter 6

[100]

Visual Studio Code: VS Code is touted as being a lightning fast code
editor, and has a lot of functionality available through a large collection of
extensions for various languages and purposes. Although it's one of the
newer IDEs in the wild with Python support, it's fast becoming a popular
choice for scripting tasks, and has a lot of potential for larger, application-
centric efforts as well. Visual Studio can be downloaded
at code.visualstudio.com.

Ninja IDE: Judging by its feature list, Ninja has most of the same base
features available through Geany, with the addition of a single, built-in
project management subsystem that sounds useful and attractive. Ninja
IDE can be downloaded at ninja-ide.org

Source Code Management
Whether described as a version or revision control system, Source Code
Management (SCM), or some other name, the more common and more popular
SCMs provide a host of features and capabilities to make certain aspects of the
development process easier, faster, or at a minimum, more stable. These include the
following:

Allowing multiple developers to collaborate on the same parts of the same
code base without having to worry (as much) about overwriting each
other's work
Keeping track of all versions of a code base, and who made what changes
to it at each point that a new version was committed
Providing visibility into what changes were made as each new version was
committed
Maintaining different versions of the same code base for specific purposes,
probably the most common variation of which is having versions for
different environments that code changes are worked on and promoted
through, which might include:

Local development environments
A shared development environment, where all developers'
local code changes first mix together
A shared test server for QA and broader integration testing

https://code.visualstudio.com/
http://ninja-ide.org/

Development Tools and Best Practices Chapter 6

[101]

A User Acceptance Testing server, using realistic,
production-like data, which can be used to demonstrate
functionality to whoever needs to give final approval for
changes to be promoted to a live environment or build
A staging environment that has full access to a complete
copy of production data, with an eye towards being able to
perform load and other tests that require access to that
dataset
The live environment/build code base

While there are at least a few major variations in how such systems function under
the hood, from a developer's perspective, those functional differences may not really
matter, so long as they function as expected and function well. Taken together, those
basic capabilities, and the permutations of them with various manual efforts, allow
the following:

Developers to roll back to an earlier version of a complete code base, make
changes to it, and re-commit those as a new version, which can be useful
for:

Finding and removing or fixing changes that unexpectedly
raised significant issues after being committed or even
promoted
Creating new branches of the code to experiment with other
approaches to committed functionality

Multiple developers with different areas of expertise to work on parts of
the same problem and/or code, allowing them to get that problem solved,
or that code written much faster
Developers with stronger architectural backgrounds or skill sets to define
bare-bones code structures (classes and their members, perhaps), then
commit them to be fully implemented by someone else
System domain experts to easily review changes to the code base,
identifying risks to functionality or performance before those get promoted
to an unforgiving environment
Configuration managers to access and deploy different versions of the code
base to their various target environments

There are probably a lot of other, more specific applications that a good SCM system,
especially if it's got good ties to the development and code promotion processes, can
help manage.

Development Tools and Best Practices Chapter 6

[102]

Typical SCM activities
Probably the most common use pattern for any SCM, no matter which one is in play,
and regardless of the specific command variations, is the following sequence of
operations:

Fetching a version of a given code base:
Usually, this will be the most recent version, perhaps from a
specific branch for development, but any branch or version
that needs to be retrieved could be fetched. In any event, the
process will make a complete copy of the requested code
base in some location on the local file-system, ready to be
edited.

Making changes to the local copy of the code.
Reconciling any differences prior to committing changes:

The goal with this step is to pull down any changes that have
been made to the same code base, and find and resolve any
conflicts between local changes and any that may have been
made by others in the same code. Several current SCMs
allow a local commit before committing to a shared
repository. In these SCMs, this reconciliation is, perhaps, not
as critical until code is being committed to the shared
repository, but doing so with every local commit will often
break the resolution of conflicts down into smaller, more
manageable chunks.

Committing to the shared repository:
Once this has been completed, the changes made are now
available for other developers to retrieve (and reconcile
conflicts against, if necessary).

This use pattern will probably encompass most development efforts—anything that
involves working on an established branch, and that doesn't require a new branch.
Creation of new branches is also not unusual, especially if there are major changes
expected to substantial portions of an existing code base. It's also not an unusual
strategy to have nested branches for different environments, where the deeper
branches are still pending some review or acceptance before being promoted up to
the more stable branches.

Development Tools and Best Practices Chapter 6

[103]

The branch structure is shown here:

The process for promoting code, for example from the [dev] branch up to [test], is
reduced to an upwards merge, copying code from the lower branch to the higher,
followed if necessary by branching from the higher branch back down to the lower
again.

It's also not unusual to have separate branches created for specific
projects—especially if there are two or more efforts underway that are likely to make
widespread and/or significant changes, and most especially if those efforts are
expected to conflict with each other. Project-specific branches will usually be taken
from a shared development branch, as shown here:

As code is completed for either [project1] or [project2] branches, it would be
committed to its own branch, then merged up into the existing [dev] branch,
checking for and resolving any conflicts in the process.

There are dozens of SCMs available, about a dozen of which are open source systems
and free of cost. The most popular systems are:

Git (by a wide margin)
Subversion
Mercurial

Development Tools and Best Practices Chapter 6

[104]

Git
Git is, by a significant margin, the most popular SCM in use at present. It is a
distributed SCM system that keeps local branches of code bases and other content
very inexpensively, while still providing the ability to push locally committed code
into a shared central repository that multiple users can then access and work from.
Above all else, it's capable of handling a lot of concurrent commit (or patch)
activity—not surprising since it was written to accommodate the Linux kernel
development team's efforts, where there might be hundreds of such patches/commits
at a time. It's fast and efficient, and the commands for basic functionality that covers
most day-to-day needs are fairly easily committed to memory, if using the command
line is the preferred approach.

Git has more functionality outside the normal commands and processes than in those
processes themselves, that is, there are eight or nine commands that probably
encompass the fetch/edit/reconcile/commit steps noted earlier, but Git has 21
commands in total, with the other 12-13 providing functionality that is less commonly
needed or used. Anecdotal evidence suggests that most developers, unless they are
working on projects over a certain size or complexity, are probably closer to the end
of the spectrum that these folks are at:

Development Tools and Best Practices Chapter 6

[105]

There's no shortage of GUI tools for Git either, though many IDEs, whether in an
effort to minimize context switches, or for some other reason, provide some sort of
interface to Git, even if it's through an optional plugin. The best of those will also
detect when problems with some process (a commit or push, for example) crop up,
and provide some instruction on how to resolve those problems. There are also free
standing Git-GUI applications, and even integrations with built-in system tools such
as TortoiseGit (https:/ /tortoisegit. org/) , which adds Git functionality to the
Windows File Explorer.

Subversion
Subversion (or SVN) is an older SCM that's been in play since early in 2004. It's one of
the most popular non-distributed SCMs still in use today. Like most SCMs before it,
SVN stores a complete local copy of the code and content for each checked-out branch
that it's tracking, and uploads those (perhaps in their entirety) during the commit
process. It's also a centralized rather than a distributed system, which means that all
branching and merging has to happen with respect to the master copy of the code
base, wherever it might live.

The various under-the-hood differences and popularity of Git notwithstanding, SVN
is a perfectly viable option for managing source code across a team, even if it's less
efficient or less popular than Git. It fully supports the typical get-edit-commit work
cycle, just not with the same degree of flexibility as Git provides.

Basic workflows for Git and SVN compared
Although the basic checkout, work, merge, and commit workflow is supported by all
mainstream SCMs, it's worth looking at some of the additional process steps that Git
requires. Each additional step is, obviously, an additional task that a developer will
have to perform before code is fully committed, though none of them are necessarily
long-running tasks, so the impact is rarely going to be substantial. On the other hand,
each additional step involved provides an additional point where additional code
modification can be made before it's attached to the master version of the code.

https://tortoisegit.org/
https://tortoisegit.org/
https://tortoisegit.org/
https://tortoisegit.org/
https://tortoisegit.org/
https://tortoisegit.org/
https://tortoisegit.org/
https://tortoisegit.org/

Development Tools and Best Practices Chapter 6

[106]

Compare the Git Workflow (left) and SVN Workflow (right):

The processes of getting the current version of the code and editing it are
fundamentally the same.

Git allows the developer to Stage Changes. However, perhaps the
modifications to the code in three out of five files are complete, and ready
to be committed, at least locally, while there are significant efforts still
needed on the other two. Since changes must be staged in Git prior to
committing, the files that are done can be staged and then committed
separately, leaving the others still in progress. Uncommitted staged files
can still be edited and re-staged (or not) as needed as well; until a change-
set is actually committed, everything is still in an in-progress state.

Git's Commit Changes is to a local repository, which again means that
continued editing can happen, as well as manipulation of local commits,
until everything is as it needs to be for the final master repository commit.

Development Tools and Best Practices Chapter 6

[107]

Both provide the ability to perform a Merge from Master before the final
Push or Commit to Master operations. Realistically, this can happen at any
point prior to the final commit, but the granularity of Git's stage-then-
commit approach lends itself well to doing so in smaller, more manageable
chunks, which will often mean that any merges down from the master
source code will also be smaller and easier to manage. There's no reason, on
the SVN side, why similar periodic merges down can't be performed, it's
just easier to remember to do so during a local commit routine during
development.

Other SCM options
Git and SVN are not the only available options, by any means. The next most popular
options are the following:

Mercurial: A free, open source SCM, written in Python, that uses a
distributed structure like Git, but doesn't require the change staging
operation that Git does. Mercurial has been adopted for internal use by
Google and Facebook.

Perforce Helix Core: A proprietary, distributed SCM that is at least
somewhat compatible with Git commands, targeted for Enterprise clients
and use.

Best practices
There are any number of standards and best practices that surround development, at
least once the code base(s) involved gets above a certain level of complexity. They are
considered as such because they solve (or prevent) various difficulties that will likely
arise if they aren't followed. A fair number of them also focus, if indirectly, on some
aspect of future-proofing code, at least from the perspective of trying to make it easier
for a new developer (or the same developer, maybe years later) to understand what
the code does, how to find specific chunks of code, or, perhaps, to extend or refactor
it.

Development Tools and Best Practices Chapter 6

[108]

Those guidelines fall, roughly, into two categories, no matter the programming
language:

Standards for code: Guidelines and concepts that focus on the structure
and organization of code, though not necessarily on how that code
functions – more on keeping it easily understood and navigable

Process standards: Guidelines and concepts that center around making
sure that code is well behaved and that changes to it can be made with the
minimum amount of hassle and disruption

Python adds two more items into that mix that don't quite fit into either of those
language-agnostic categories; they are the results of capabilities and functional
requirements in the context of Python specifically:

Package organization: How best to structure code at a file-system level;
where and when to generate new module files and package directories

When and how to use Python virtual environments: What purposes they
serve, and how best to leverage them for a given collection of code

Standards for code
Code level standards, at the end of the day, are as much about trying to ensure that
the code itself is written and structured in a predictable and easily understood
manner as anything else. When those standards are followed, and when they are
reasonably well understood by the developers who are working with the code base,
it's not unreasonable to expect that any developer, even one who may never have
seen a given chunk of code, will nevertheless be able to do the following:

Read and more easily understand the code and what it's doing
Find a code element (a class, function, constant, or some other item) that
may only be identified by name, or in terms of a namespace, quickly and
easily
Create new code elements in an existing structure that also conform to
those standards
Modify existing code elements and know what standards-related items
need to be modified in concert with those changes (if any)

Development Tools and Best Practices Chapter 6

[109]

The Python community has one set of guidelines (PEP-8), but there may well be
additional internal standards that are in place as well.

PEP-8
At least some of Python's DNA is bound to the observation that code is generally read
more often that it is written. That is the basis for significant functional aspects of its
syntax, particularly those that relate to the structure of Python code, such as the use
of indentation to indicate blocks of functionality. It should, perhaps, then come as no
great surprise that one of the earliest Python Enhancement Proposals (PEPs) is a
focused look at how to maintain readability of code where variations in style have no
functional significance. PEP-8 is a long specification, some 29 pages if printed directly
from the current Python page (www.python.org/dev/peps/pep-0008), but the
significant aspects are worth summarizing here.

The first, and perhaps most significant, item therein is the recognition that while it'd
be ideal if all Python code followed the same standards, there are a number of
defensible reasons not to (see A Foolish Consistency is the Hobgoblin of Little Minds in
PEP-8). Those include, but are not limited to, the following:

When applying PEP-8 style guidelines would make the code less readable,
even for someone who is used to reading code that follows the standards
To be consistent with surrounding code that also does not adhere to them
(maybe for historic reasons)
Because there is no reason other than the style guidelines to make changes
to the code
If adherence to the guidelines would break backwards compatibility (let
alone functionality, though that seems unlikely)

PEP-8 notes specifically that it is a style guide, and as mentioned in the Style Guide
Introduction of Solidity v0.3.0:

"A style guide is about consistency. Consistency with this style guide is important.
Consistency within a project is more important. Consistency within one module or
function is the most important".

http://www.python.org/dev/peps/pep-0008

Development Tools and Best Practices Chapter 6

[110]

That implies that there may be good (or at least defensible) reasons to not adhere to
some or all of the guidelines, even for new code. Examples might include the
following:

Using naming conventions from another language because the
functionality is equivalent, such as using JavaScript naming conventions in
a Python class library that provides the same Document Object Model
(DOM) manipulation functionality across a server-side class library for
creating and working with DOM objects
Using very specific documentation string structures or formats to conform
to a documentation management system's requirements that applies to all
code (Python or otherwise) across the business
Conforming to other internal standards that contradict the ones advised by
PEP-8

Ultimately though, since PEP-8 is a set of style guidelines, not functional ones, the
worst that can happen is that someone will complain that the code doesn't stick to the
publicly accepted standards. If your code is never going to be shared outside your
organization, that may well never be a concern.

There are three loose groupings in PEP-8's guidelines whose members can be
summarized briefly:

Code layout:

Indentation should be four spaces per level:
Don't use tabs
Hanging indentation should use the same set of rules
wherever possible, see the PEP-8 page for specifics and
recommendations

Functional lines should not exceed 79 characters in length and long text
strings should be limited to 72 characters per line, including indentation
spaces
If a line has to break around an operator (+, -, *, and, or, and so on), break it
before the operator
Surround top-level functions and class definitions with two blank lines

Development Tools and Best Practices Chapter 6

[111]

Comments:

Comments that contradict the code are worse than no comments—always
make a priority of keeping the comments up-to-date when the code
changes!
Comments should be complete sentences. The first word should be
capitalized, unless it is an identifier that begins with a lowercase letter
(never alter the case of identifiers!).
Block comments generally consist of one or more paragraphs built out of
complete sentences, with each sentence ending in a period.

Naming conventions:

Packages and modules should have short names, and use the
lowercase or (if necessary) lowercase_words naming convention
Class names should use the CapWords naming convention
Functions and methods should use the lowercase_words naming
convention
Constants should use the CAP_WORDS naming convention

Other items that are noted in PEP-8 but are too long to summarize usefully here
include the following:

Source file encoding (which feels like it may soon stop being a concern)
Imports
Whitespace in expressions and statements
Documentation strings (which have their own
PEP: www.python.org/dev/peps/pep-0257)
Designing for inheritance

These, along with PEP-8's substantial Programming Recommendations section, will be
followed in code during the development of the hms_sys project where they don't
conflict with other standards.

http://www.python.org/dev/peps/pep-0257

Development Tools and Best Practices Chapter 6

[112]

Internal standards
Any given development effort, team, or even company may have specific standards
and expectations around how code is written or structured. There may also be
functional standards as well, things such as policies that define what types of external
systems will be used to provide various functionality that systems consume, which
RDBMS engines are supported, what web servers will be used, and so on. For the
purposes of this book, the functional standards will be determined during
development, but some code structure and format standards will be defined here and
now. As a starting point, the PEP-8 code layout, comments, and naming convention
standards will apply. Over and above that, there are some code organization and
class structure standards that will also be in play.

Code organization in modules
The PEP-8 structure and sequence guidelines will be followed, with a module level
doc string, imports from __future__, various dunder-names (an __all__ list to
support from [module] import [member] use of the module's members, and
some standard __author__, __copyright__ and __status__ metadata about the
module), then imports from standard libraries, then third-party libraries, and finally
internal libraries.

After that, code will be organized and grouped by member types, in this order, with
each element in alphabetical order (unless there are functional reasons why that order
isn't viable, such as classes depending on or inheriting from other classes that haven't
been defined yet if they are in strict order):

Module-level constants
Custom exceptions defined in the module
Functions
Abstract base classes that are intended to serve as formal interfaces
Abstract base classes that are intended to serve as standard abstract classes,
or as mixins
Concrete classes

The goal of all of these structure constraints is to provide some predictability across
the entire code base, to make it easy to locate a given module member without having
to search for it every single time. Modern IDEs, with the ability to control-click on a
member name in code and jump straight to that member's definition, arguably make
that unnecessary, but if code is going to be viewed or read by someone without access
to such an IDE, organizing it this way still has some value.

Development Tools and Best Practices Chapter 6

[113]

Accordingly, module and package header files follow a very specific structure, and
that structure is set up in a set of template files, one for general purpose modules, and
one for package header (__init__.py) modules. Structurally, they are identical, with
only some slight variation between the two in the starting text/content. The
module.py template then is the following:

#!/usr/bin/env python
"""
TODO: Document the module.
Provides classes and functionality for SOME_PURPOSE
"""

#######################################
Any needed from __future__ imports
Create an "__all__" list to support
"from module import member" use
#######################################

__all__ = [
 # Constants
 # Exceptions
 # Functions
 # ABC "interface" classes
 # ABC abstract classes
 # Concrete classes
]

#######################################
Module metadata/dunder-names
#######################################

__author__ = 'Brian D. Allbee'
__copyright__ = 'Copyright 2018, all rights reserved'
__status__ = 'Development'

#######################################
Standard library imports needed
#######################################

Uncomment this if there are abstract classes or "interfaces"
defined in the module...
import abc

#######################################
Third-party imports needed
#######################################

Development Tools and Best Practices Chapter 6

[114]

#######################################
Local imports needed
#######################################

#######################################
Initialization needed before member
definition can take place
#######################################

#######################################
Module-level Constants
#######################################

#######################################
Custom Exceptions
#######################################

#######################################
Module functions
#######################################

#######################################
ABC "interface" classes
#######################################

#######################################
Abstract classes
#######################################

#######################################
Concrete classes
#######################################

#######################################
Initialization needed after member
definition is complete
#######################################

#######################################
Imports needed after member
definition (to resolve circular
dependencies - avoid if at all
possible
#######################################

#######################################
Code to execute if the module is
called directly

Development Tools and Best Practices Chapter 6

[115]

#######################################

if __name__ == '__main__':
 pass

The only real differences between a module's template and one for a package header
is the initial documentation and that there is a specific callout for including child
package and module namespace members in the __all__ list:

#!/usr/bin/env python
"""
TODO: Document the package.
Package-header for the PACKAGE_NAMESPACE namespace.
Provides classes and functionality for SOME_PURPOSE
"""

#######################################
Any needed from __future__ imports
Create an "__all__" list to support
"from module import member" use
#######################################

__all__ = [
 # Constants
 # Exceptions
 # Functions
 # ABC "interface" classes
 # ABC abstract classes
 # Concrete classes
 # Child packages and modules
]

#######################################
Module metadata/dunder-names
#######################################

...the balance of the template-file is as shown above...

Having these available as template files for developer use also makes starting a new
module or package a bit quicker and easier. Copying the file, or its contents, to a new
file takes a few seconds longer than just creating a new, blank file, but having the
structure ready to start coding in makes it a lot easier to maintain the relevant
standards.

Development Tools and Best Practices Chapter 6

[116]

Structure and standards for classes
Class definitions, whether for concrete/instantiable classes or any of the ABC variants,
have a similar structure defined, and will be arranged in sorted groups as follows:

Class attributes and constants
Property getter methods
Property setter methods
Property deleter methods
Instance property definitions
Object initialization (__init__)
Object deletion (__del__)
Instance methods (concrete or abstract)
Overrides of standard built-in methods (__str__)
Class methods
Static methods

The property getter, setter, and deleter methods approach was selected, rather than
using method decoration, in order to make it easier to keep property documentation
in a single location in the class definition. The use of properties (technically, they are
managed attributes, but properties is a shorter name, and has the same meaning
across several languages) as opposed to general attributes is a concession to unit
testing requirements, and to a policy of raising errors as close to their cause as
possible. Both will be discussed shortly, in the unit testing part of the Process standards
section.

The concrete class template then contains the following:

Blank line in the template, helps with PEP-8's space-before-and-
after rule
class ClassName:
 """TODO: Document the class.
Represents a WHATEVER
"""
 ###################################
 # Class attributes/constants #
 ###################################

 ###################################
 # Property-getter methods #
 ###################################

def _get_property_name(self) -> str:

Development Tools and Best Practices Chapter 6

[117]

return self._property_name

 ###################################
 # Property-setter methods #
 ###################################

def _set_property_name(self, value:str) -> None:
TODO: Type- and/or value-check the value argument of the
setter-method, unless it's deemed unnecessary.
self._property_name = value

 ###################################
 # Property-deleter methods #
 ###################################

def _del_property_name(self) -> None:
self._property_name = None

 ###################################
 # Instance property definitions #
 ###################################

property_name = property(
TODO: Remove setter and deleter if access is not needed
_get_property_name, _set_property_name, _del_property_name,
'Gets, sets or deletes the property_name (str) of the
instance'
)

 ###################################
 # Object initialization #
 ###################################

 # TODO: Add and document arguments if/as needed
 def __init__(self):
 """
Object initialization.

self (ClassName instance, required) The instance to
 execute against
"""
 # - Call parent initializers if needed
 # - Set default instance property-values using _del_...
methods
 # - Set instance property-values from arguments using
 # _set_... methods
 # - Perform any other initialization needed
 pass # Remove this line

Development Tools and Best Practices Chapter 6

[118]

 ###################################
 # Object deletion #
 ###################################

 ###################################
 # Instance methods #
 ###################################

def instance_method(self, arg:str, *args, **kwargs):
"""TODO: Document method
DOES_WHATEVER
#
self (ClassName instance, required) The instance to
execute against
arg (str, required) The string argument
args (object, optional) The arglist
**kwargs (dict, optional) keyword-args, accepts:
- kwd_arg (type, optional, defaults to SOMETHING) The
SOMETHING
to apply
"""
pass

 ###################################
 # Overrides of built-in methods #
 ###################################

 ###################################
 # Class methods #
 ###################################

 ###################################
 # Static methods #
 ###################################
Blank line in the template, helps with PEP-8's space-before-and-
after rule

Apart from the __init__ method, which will almost always be implemented, the
actual functional elements, the properties and methods, are commented out. This
allows the standards expected to be present in the template, and developers can, if
they so choose, simply copy and paste whichever code stub(s) they need, uncomment
the whole pasted block, rename what needs to be renamed, and start writing code.

Development Tools and Best Practices Chapter 6

[119]

The template file for abstract classes is very similar to the concrete class template,
with the addition of a few items to accommodate code elements that are not present
in a concrete class:

Remember to import abc!
Blank line in the template, helps with PEP-8's space-before-and-
after rule
class AbstractClassName(metaclass=abc.ABCMeta):
 """TODO: Document the class.
Provides baseline functionality, interface requirements, and
type-identity for objects that can REPRESENT_SOMETHING
"""
 ###################################
 # Class attributes/constants #
 ###################################

 # ... Identical to above ...

 ###################################
 # Instance property definitions #
 ###################################

abstract_property = abc.abstractproperty()

property_name = property(

 # ... Identical to above ...

 ###################################
 # Abstract methods #
 ###################################

@abc.abstractmethod
def instance_method(self, arg:str, *args, **kwargs):
"""TODO: Document method
DOES_WHATEVER
#
self (AbstractClassName instance, required) The
instance to execute against
arg (str, required) The string argument
args (object, optional) The arglist
**kwargs (dict, optional) keyword-args, accepts:
- kwd_arg (type, optional, defaults to SOMETHING) The
SOMETHING
to apply
"""
pass

Development Tools and Best Practices Chapter 6

[120]

 ###################################
 # Instance methods #
 ###################################

 # ... Identical to above ...

 ###################################
 # Static methods #
 ###################################
Blank line in the template, helps with PEP-8's space-before-and-
after rule

A similar template is also available for class definitions that are intended to serve as
formal interfaces; classes that define functional requirements for an instance of a class,
but that don't provide any implementation of those requirements. It looks very much
like the abstract class template, barring some name changes and the removal of
anything that is or implies a concrete implementation:

Remember to import abc!
Blank line in the template, helps with PEP-8's space-before-and-
after rule
class InterfaceName(metaclass=abc.ABCMeta):
 """TODO: Document the class.
Provides interface requirements, and type-identity for objects that
can REPRESENT_SOMETHING
"""
 ###################################
 # Class attributes/constants #
 ###################################

 ###################################
 # Instance property definitions #
 ###################################

abstract_property = abc.abstractproperty()

 ###################################
 # Object initialization #
 ###################################

 # TODO: Add and document arguments if/as needed
 def __init__(self):
 """
Object initialization.

self (InterfaceName instance, required) The instance to
 execute against
"""

Development Tools and Best Practices Chapter 6

[121]

 # - Call parent initializers if needed
 # - Perform any other initialization needed
 pass # Remove this line

 ###################################
 # Object deletion #
 ###################################

 ###################################
 # Abstract methods #
 ###################################

@abc.abstractmethod
def instance_method(self, arg:str, *args, **kwargs):
"""TODO: Document method
DOES_WHATEVER
#
self (InterfaceName instance, required) The
instance to execute against
arg (str, required) The string argument
args (object, optional) The arglist
**kwargs (dict, optional) keyword-args, accepts:
- kwd_arg (type, optional, defaults to SOMETHING) The
SOMETHING
to apply
"""
pass

 ###################################
 # Class methods #
 ###################################

 ###################################
 # Static methods #
 ###################################
Blank line in the template, helps with PEP-8's space-before-and-
after rule

Taken together, these five templates should provide solid starting points for writing
code for any of the more commonly expected element types expected in most
projects.

Development Tools and Best Practices Chapter 6

[122]

Function and method annotation (hinting)
If you've worked with Python functions and methods before, you may have noticed
and wondered about some unexpected syntax in some of the methods in the template
files earlier, specifically the items in bold here:

def _get_property_name(self) -> str:

def _set_property_name(self, value:str) -> None:

def _del_property_name(self) -> None:

def instance_method(self, arg:str, *args, **kwargs):

These are examples of type hints that are supported in Python 3. One of the standards
that hms_sys code will also adhere to is that all methods and functions should be
type hinted. The resulting annotations may eventually be used to enforce type
checking of arguments using a decorator, and even later on may be useful in
streamlining unit testing. On a shorter-term basis, there is some expectation that an
automatic documentation generation system will pay attention to those, so they're
part of the internal standards now.

Type hinting is probably new enough that it's not in common use just yet, so a walk-
through of what it does and how it works is probably worth examination. Consider
the following unannotated function and its results when executed:

def my_function(name, price, description=None):
 """
A fairly standard Python function that accepts name, description and
price values, formats them, and returns that value.
"""
 result = """
name %s
description ... %s
price %0.2f
""" % (name, description, price)
 return result

if __name__ == '__main__':
 print(
 my_function(
 'Product #1', 12.95, 'Description of the product'
)
)
 print(
 my_function(

Development Tools and Best Practices Chapter 6

[123]

 'Product #2', 10
)
)

The results from executing that code look good:

This is pretty straightforward, as Python functions go. The my_function function
expects a name and price, and also allows for a description argument, but that is
optional and defaults to None. The function itself just collects all those into a
formatted string-value and returns it. The price argument should be a number value
of some sort, and the others should be strings, if they exist. In this case, the expected
types of those argument values are probably obvious based on the argument names.

The price argument, though, could be any of several different numerical types, and
still function—int and float values obviously work, since the code runs without
error. So too would a decimal.Decimal value, or even a complex type, as
nonsensical as that would be. The type hinting annotation syntax exists, then, to
provide a way to indicate without requiring what type or types of values are expected
or returned.

Here's the same function, hinted:

def my_function(name:str, price:(float,int),
description:(str,None)=None) -> str:
 """
A fairly standard Python function that accepts name, description and
price values, formats them, and returns that value.
"""
 result = """
name %s
description ... %s
price %0.2f
""" % (name, description, price)
 return result

Development Tools and Best Practices Chapter 6

[124]

if __name__ == '__main__':
 print(
 my_function(
 'Product #1', 12.95, 'Description of the product'
)
)
 print(
 my_function(
 'Product #2', 10
)
)

 # - Print the __annotations__ of my_function
 print(my_function.__annotations__)

The only differences here are the type hinting annotations after each argument and
the return type hint at the end of the function's first line, which indicate the expected
types of each argument, and of the results of calling the function:

my_function(name:str, price:(float,int), description:(str,None)=None)
-> str:

The output from the function call is identical, but the __annotations__ attribute of
the function is shown at the end of the output:

All the type-hinting annotations really do is to populate the __annotations__
property of my_function, as shown at the end of the preceding execution.
Essentially, they are providing metadata about and attached to the function itself that
can be used later.

Development Tools and Best Practices Chapter 6

[125]

Taken together then, all of these standards are intended to do the following:

Help keep code as readable as possible (baseline PEP-8 conventions)

Keep the structure and organization of code within files predictable
(module and class element organization standards)

Make it easy to create new elements (modules, classes, and so on) that
conform to those standards (the various templates)

Provide some degree of future-proofing against efforts to allow automated
documentation generation, type checking of methods and functions, and
possibly some unit testing efficiencies to be explored later (type-hinting
annotations)

Process standards
Process standards are concerned with what processes are executed against a code
base towards any of several purposes. The two that are most common as separate
entities are the following:

Unit testing: Ensuring that code is tested and can be re-tested on demand,
in an effort to ensure in turn that it works as expected

Repeatable build processes: Designed so that whatever build process you
use and probably the installation process as a result, is automated, error
free, and repeatable on demand while requiring as little developer time to
execute as possible

Taken together, these two also lead to the idea of integrating unit tests and build
processes, so that, if needful or desired, a build process can ensure that its resulting
output has been tested.

Development Tools and Best Practices Chapter 6

[126]

Unit testing
It's not unusual for people, even developers, to think of unit testing as a process of
making sure that bugs aren't present in a code base. While there is a fair amount of
truth to that, at least in smaller code bases, that's actually more a result of the real
purpose behind unit testing: unit testing is about ensuring that code behaves in a
predictable fashion across all reasonably possible execution cases. The difference can
be subtle, but it's still a significant one.

Let's take another look at the preceding my_function, this time from a unit testing
perspective. It's got three arguments, one that is a required string value, one that is a
required number value, and one that is an optional string value. It makes no decisions
based on any of those values or their types, it just dumps them into a string and
returns that string. Let's assume that the arguments supplied are properties of a
product (which is what the output implies, even if that's not really the case). Even
without any decision making involved, there are aspects to the functionality that will
raise errors, or that probably should in that context:

Passing a non-numeric price value will raise a TypeError because the
string formatting won't format a non-numeric value with the %0.2f format
specified
Passing a negative price value probably should raise an error—unless it's
actually possible for a product to have a negative price, it just doesn't make
sense
Passing a price value that is numeric, but isn't a real number (like a
complex number) probably should raise an error
Passing an empty name value probably should raise an error—it makes no
sense to have what we presume to be a product name accept an empty
value
Passing a multi-line name value might be a case that should raise an error
Passing a non-string name value probably ought to raise an error as well,
for similar reasons, as would a non-string description value

Apart from the first item in the list, these are all potential flaws in the function itself,
none of which will raise any errors at present, but all of which could very well lead to
undesirable behavior.

Development Tools and Best Practices Chapter 6

[127]

Bugs.

The following basic test code is collected in the test-
my_function.py module.

Even without bringing a formal unit testing structure into play, it's not difficult to
write code that will test a representative set of all good argument values. First, those
values have to be defined:

- Generate a list of good values that should all pass for:
* name
good_names = [
 'Product',
 'A Very Long Product Name That is Not Realistic, '
 'But Is Still Allowable',
 'None', # NOT the actual None value, a string that says "None"
]
* price
good_prices = [
 0, 0.0, # Free is legal, if unusual.
 1, 1.0,
 12.95, 13,
]
* description
good_descriptions = [
 None, # Allowed, since it's the default value
 '', # We'll assume empty is OK, since None is OK.
 'Description',
 'A long description. '*20,
 'A multi-line\n\n description.'
]

Then, it's a simple matter of iterating over all the good combinations and keeping
track of any errors that surface as a result:

- Test all possible good combinations:
test_count = 0
tests_passed = 0
for name in good_names:
 for price in good_prices:
 for description in good_descriptions:
 test_count += 1
 try:
 ignore_me = my_function(name, price, description)
 tests_passed += 1

Development Tools and Best Practices Chapter 6

[128]

 except Exception as error:
 print(
 '%s raised calling my_function(%s, %s, %s)' %
 (error.__class__.__name__, name, price,
description)
)
if tests_passed == test_count:
 print('All %d tests passed' % (test_count))

The results from executing that code look good:

Next, a similar approach is taken for defining bad values for each argument, and
checking each possible bad value with known good values:

- Generate a list of bad values that should all raise errors for:
* name
bad_names = [
 None, -1, -1.0, True, False, object()
]
* price
bad_prices = [
 'string value', '',
 None,
 -1, -1.0,
 -12.95, -13,
]
* description
bad_description = [
 -1, -1.0, True, False, object()
]

...

for name in bad_names:
 try:
 test_count += 1
 ignore_me = my_function(name, good_price, good_description)
 # Since these SHOULD fail, if we get here and it doesn't,
 # we raise an error to be caught later...
 raise RuntimeError()
 except (TypeError, ValueError) as error:
 # If we encounter either of these error-types, that's what
 # we'd expect: The type is wrong, or the value is invalid...
 tests_passed += 1
 except Exception as error:

Development Tools and Best Practices Chapter 6

[129]

 # Any OTHER error-type is a problem, so report it
 print(
 '%s raised calling my_function(%s, %s, %s)' %
 (error.__class__.__name__, name, good_price,
good_description)
)

Even with just the name argument tests in place, we already start seeing issues:

And after adding in similar tests for price and description values:

for price in bad_prices:
 try:
 test_count += 1
 ignore_me = my_function(good_name, price, good_description)
 # Since these SHOULD fail, if we get here and it doesn't,
 # we raise an error to be caught later...
 raise RuntimeError()
 except (TypeError, ValueError) as error:
 # If we encounter either of these error-types, that's what
 # we'd expect: The type is wrong, or the value is invalid...
 tests_passed += 1
 except Exception as error:
 # Any OTHER error-type is a problem, so report it
 print(
 '%s raised calling my_function(%s, %s, %s)' %
 (error.__class__.__name__, good_name, price,
good_description)
)

for description in bad_descriptions:
 try:
 test_count += 1
 ignore_me = my_function(good_name, good_price, description)
 # Since these SHOULD fail, if we get here and it doesn't,
 # we raise an error to be caught later...
 raise RuntimeError()
 except (TypeError, ValueError) as error:
 # If we encounter either of these error-types, that's what
 # we'd expect: The type is wrong, or the value is invalid...

Development Tools and Best Practices Chapter 6

[130]

 tests_passed += 1
 except Exception as error:
 # Any OTHER error-type is a problem, so report it
 print(
 '%s raised calling my_function(%s, %s, %s)' %
 (error.__class__.__name__, good_name, good_price,
description)
)

The resulting list of issues is larger still, with a total of 15 items, any of which could
lead to a production code bug if they aren't addressed:

It's not enough, then, just to say that unit testing is a requirement in the development
process; some thought has to be given to what those tests actually do, to what the
relevant test policies look like, and what they are required to take into account. A
good bare-bones starting point test policy would probably include, at a minimum the
following:

What values are used when testing arguments or properties of specific
types:

Numeric values should probably include even and odd
variations, positive and negative values, and zero at a
minimum
String values should include expected values, an empty
string value, and strings that are nothing more than
whitespace (" ")

Some understanding of when each of those values is valid and when they
are not, for each element being tested

Development Tools and Best Practices Chapter 6

[131]

Tests must be written for both passing and failing cases
Tests must be written such that they execute every branch in the element
being tested

That last item bears some explanation. Thus far, the code being tested made no
decisions—it executes in exactly the same way, no matter what the values of the
arguments are. A full unit test executed against code that does make decisions based
on the values of arguments must be sure to pass test values for those arguments that
invoke all of the decisions that the code can make. It is rare that this need will not be
sufficiently accounted for by simply making sure that the good and bad test values
are sufficiently varied, but it can become more difficult to ensure when complex class
instances enter the picture, and those circumstances warrant closer, deeper attention.

It was noted earlier, in the discussion around class templates, that formal properties
(managed attributes) would be used, and that the reason behind that tied in to unit
testing policies. We've seen that it's relatively easy to generate tests that can check for
specific error types during the execution of a function or method. Since properties are
collections of methods, one each for get, set, and delete operation, packaged up by the
property keyword, it follows that performing checks against a value passed to a
setter method and raising errors if the value or type passed in is invalid (and thus
probably going to raise errors elsewhere) is going to make unit testing
implementation following the structure/pattern shown earlier at least somewhat
faster and easier. A basic structure, using the property_name property from the
class-concrete.py template, shows that it's quite straightforward to implement
such a property:

###################################
Property-getter methods
###################################

def _get_property_name(self) -> str:
 return self._property_name

###################################
Property-setter methods
###################################

def _set_property_name(self, value:(str, None)) -> None:
 if value is not None and type(value) is not str:
 raise TypeError(
 '%s.property_name expects a string or None '
 'value, but was passed "%s" (%s)' % (
 self.__class__.__name__, value,
 type(value).__name__

Development Tools and Best Practices Chapter 6

[132]

)
)
 self._property_name = value

###################################
Property-deleter methods
###################################

def _del_property_name(self) -> None:
 self._property_name = None

###################################
Instance property definitions
###################################

property_name = property(
 _get_property_name, _set_property_name, _del_property_name,
 'Gets, sets or deletes the property_name (str|None) of the
instance'
)

There are 18 lines of code involved, which is at least 17 lines more than would be
required if property_name was a simple, unmanaged attribute, and there are
probably going to be at least two more lines of code in the __init__ method of the
class that uses this property if property_name is set during the creation of an
instance. The trade-off, though, is that the managed attribute property is going to be
self regulating, so there won't have to be much in the way of checking its type or
value wherever else it might be used. The fact that it is accessible at all, that the
instance it's a member of hasn't thrown an error before the property is being accessed,
means that it's in a known (and valid) state.

Repeatable build processes
The idea of having a build process may have originated with languages that require
compilation before their code can be executed, but there are advantages to
establishing such a process even for languages such as Python that don't. In Python's
case, specifically, such a process can collect code from multiple project code bases,
define requirements without actually attaching them to the final package, and
package code up in a consistent fashion, ready for installation. Since a build process
is, itself, another program (or at least a script-like process), it also allows for the
possibility of executing other code to whatever end is needed, which means that a
build process can also execute automated tests, or even potentially deploy code to a
designated destination, locally or remotely.

Development Tools and Best Practices Chapter 6

[133]

Python's default installation includes two packaging tools, distutils , which is a
collection of bare-bones functionality, and setuptools, which builds on top of that
to provide a more powerful packaging solution. The output of a setuptools run, if
packaging arguments are supplied, is a ready-to-install package (an egg). The
conventional practice for the creation of a package is through a setup.py file that
makes a call to the setup function that setuptools provides, which might look
something like this:

#!/usr/bin/env python
"""
example_setup.py

A bare-bones setup.py example, showing all the arguments that are
likely to be needed for most build-/packaging-processes
"""

from setuptools import setup

The actual setup function call:
setup(
 name='',
 version='',
 author='',
 description='',
 long_description='',
 author_email='',
 url='',
 install_requires=[
 'package~=version',
 # ...
],
 package_dir={
 'package_name':'project_root_directory',
 # ...
 },
 # Can also be automatically generated using
 # setuptools.find_packages...
 packages=[
 'package_name',
 # ...
],
 package_data={
 'package_name':[
 'file_name.ext',
 # ...
]
 },

Development Tools and Best Practices Chapter 6

[134]

 entry_points={
 'console_scripts':[
 'script_name = package.module:function',
 # ...
],
 },
)

The arguments shown all relate to specific aspects of the final package:

name: Defines the base name for the final package file (for example,
MyPackageName)

version: Defines the version of the package, a string that will also be part
of the final package file's name

author: The name of the primary author of the package

description: A short description of the package

long_description: A long description of the package; this is often
implemented by opening and reading a file containing the long description
data, typically in Markdown format if the package is intended to be
uploaded to the Python website's package repository

author_email: The email address of the primary author of the package

url: The home URL for the package

install_requires: A list of package name and version requirements that
need to be installed in order to use the code in the package – a collection of
dependencies

package_dir: A dictionary that maps package names to source directories;
the 'package_name':'project_root_directory' value shown is
typical for projects that have their source code organized under a src or
lib directory, often at the same level in the filesystem as the setup.py file
itself

Development Tools and Best Practices Chapter 6

[135]

packages: A list of packages that will be added to the final output
package; the setuptools module also provides a function,
find_packages, that will search out and return that list, with provisions
for explicit exclusion of package directories and files using a list of patterns
to define what should be left out

package_data: A collection of non-Python files that need to be included in
the package directory that they are mapped to; that is, in the example
shown, the setup.py run will look for a package_name package (from the
packages list), and include the file_name.ext file in that package because
it's been listed for inclusion

entry_points: Allows the installer to create command-line-executable
aliases for specific functions in the code base; what it will actually do is
create a small, standard Python script that knows how to find and load the
specified function from the package, then execute it

A far more detailed look at the creation, execution, and results from an actual
setup.py will be undertaken with the first package created for hms_sys. There are
also options for specifying, requiring, and executing automated unit tests that will be
explored. If they provide the test execution and stop-on-failure functionality needed,
then setuptools.setup will probably suffice for all the needs of hms_sys.

If there are additional needs discovered that a standard Python setup process cannot
manage for whatever reason, then a fallback build process will be needed, though it
will almost certainly still use the results of a setup.py run as part of its process. In
order to keep that fallback as (relatively) simple as possible, and to ensure that the
solution is available across as many different platforms as possible, the fallback will
use GNU Make.

Make operates by executing command-line scripts for each target that is specified in a
Makefile. A simple Makefile, with targets for testing and executing a
setup.py file, is very simple:

An example Makefile

main: test setup
 # Doesn't (yet) do anything other than running the test and
 # setup targets

setup:
 # Calls the main setup.py to build a source-distribution

Development Tools and Best Practices Chapter 6

[136]

 # python setup.py sdist

test:
 # Executes the unit-tests for the package, allowing the build-
 # process to die and stop the build if a test fails

Running a Make process from the command line is as simple as executing make,
perhaps with a target specification:

The first run (make without any target specified) executes the first target in the
Makefile: main. The main target, in turn, has the test and setup targets specified
as prerequisite targets to execute before moving ahead with its own processes. The
same results would be returned if make main were executed. The second and third
runs, make test and make setup, respectively, execute those specific targets.

Make, then, is a very flexible and powerful tool to have available. So long as a given
build process step can be executed in the command line, it can be incorporated into a
Make-based build. If different processes are needed for different environments (dev,
test, stage , and live, for example), it's possible to set up Make targets that
correspond to those environments, allowing one build process to handle those
variations with nothing more complex than executing make dev, …, make live,
though some care in target naming will be needed to avoid name collisions between
two different but logically sound test targets in this case.

Development Tools and Best Practices Chapter 6

[137]

Integrating unit tests and build processes
The build process, as hinted earlier, should allow the incorporation and execution of
all available automated tests (unit tests at a minimum) that are created for a project.
The goal of that integration is to prevent code that's failed its suite of tests from being
buildable, and thus deployable, and thus to ensure that only demonstrably good code
is available for installation, at least at a live or production code level.

It may be necessary to allow broken code, code that fails its tests, to be buildable at a
local or shared development build level, though, if only because developers may well
want or need to install a broken build in order to troubleshoot issues. That will be
very circumstantial, dependent on whatever policies and procedures are in place to
handle circumstances like that. A possible policy set, based on five environments,
might boil down to the following:

Local development: No testing required at all

Shared development: Test required, but failed tests do not kill the build
process, so broken builds can be promoted to the common dev server(s);
broken builds are logged, however, and those logs are easily available in
case there's a need to promote code in a hurry

QA/test: As the shared development environment

Staging (and User Acceptance Testing) environments: Tests must execute
and pass for code to be installed or promoted

Live/production: As staging

If the standard setuptools-based packaging process will allow tests to run, cause
failed tests to abort the packaging effort, and won't require tests to execute during
installation, then that provides adequate functional coverage of this sort of policy set,
though use of a wrapper (such as Make) to provide environment-specific targets and
build processes may be needed to deal with policy conformance/coverage.

If unit testing and build process standards are in place and followed, the end result
will tend to be code that is both easily built and deployed, no matter what state it
might be in, and that behaves in a known (and provable) fashion under all known
circumstances. That doesn't mean that it will be free of bugs, though; it's much less
likely to have any significant bugs, so long as the test suite(s) are thorough and
complete, but that's not a guarantee.

Development Tools and Best Practices Chapter 6

[138]

There is some overhead involved in establishing the associated processes, and,
particularly on the unit testing side, still more overhead in maintaining them, but the
effects and impact on a system's stability can be amazing.

The author once wrote an asset catalog system for an advertising
firm that was in daily use by as many as 300 people every business
day following these process guidelines. Over the course of four
years, runtime, including an update to a new and significantly
changed version of the system, the total number of errors reported
that weren't user error, data entry errors, or enterprise-level access
permissions was four. These process standards make a difference.

Defining package structures for Python code
The package structure rules in Python are important, since they will determine what
code is accessible when an attempt is made to import members from that package.
Package structure is also a subset of the overall project structure that can have a
significant impact on an automated build process, and it might also have an impact
on unit testing setup and execution. Let's start then by examining a possible top-level
project structure first, as shown here, and then review what a Python package's
requirements are, and see how it fits into the project overall:

Development Tools and Best Practices Chapter 6

[139]

This project structure assumes that the final build will be installed on a POSIX system
– most Linux installations, macOS, UNIX, and so on. There may be different needs
for, say, a Windows installation, and that will be explored during the hms_sys
development cycle, when we start working out the remote desktop applications for it.
Even so, the structure may still hold up:

The bin directory is intended to collect code and programs that the end
user can execute, whether from a command line, or through the GUI of the
OS. Those items may or may not use the main package's code, though the
odds are good that it will if they are Python executables.

The etc directory is where configuration files are stored, and the
example_project directory beneath that would then be for a
configuration that is very specific to the final installed instance of the
project. It may be feasible, or even a better approach, to drop project-
specific configurations in the top-level, and so on, directory—that decision
will need to be evaluated on a project-by-project basis, and may depend on
whether the end user installing the project has permissions to install to
global directories.

The scratch-space directory is just a place to collect whatever random
files might be useful during development – proof-of-concept code, note
files, whatever. It's not intended to be part of a build and won't be
deployable.

The src directory is where the project code lives. We'll dig deeper into that
shortly.

The var directory is where POSIX systems store program data that needs
to be persisted as files. The cache directory within it is a standard POSIX
location for caching files, and the example_project directory within that
would therefore be the location specifically for the project's code to cache
files. It may be useful to have a dedicated, project-specific directory in var
that's not in cache, and that's also provided.

Development Tools and Best Practices Chapter 6

[140]

Packages in a project's context
Within the src directory is the package tree for the project. Each directory level at or
under the example_project directory that has an __init__.py file is a formal
Python package, and will be accessible through an import statement in Python code.
Once this project is built and installed, then, and assuming that the code within it is
written to accommodate the relevant import structure, all of the following would be
legitimate imports from the project's code:

import example_project
Imports the entire example_project
namespace

import example_project.package
Imports example_project.package and
all its membersfrom example_project import

package

from example_project.package
import member

Assuming that member exists, imports it
from example_project.package

import
example_project.package.subpackage Imports

example_project.package.subpackage

and all its membersfrom example_project.package
import subpackage

from
example_project.package.subpackage
import member

Assuming that member exists, imports it
from
example_project.package.subpackage

A typical pattern for packages in Python is to group code elements around common
realms of functionality. For example, a package that, at a very high level, is focused
on DOM manipulation (HTML page structure), and supports XML, XHTML, and
HTML5 might group things like so:

dom (__init__.py)

generic (__init__.py)

[General-purpose classes for working with
elements]

html (__init__.py)

generic (generic.py)

[General-purpose classes for
working with HTML elements]
forms (forms.py)

Development Tools and Best Practices Chapter 6

[141]

html5 (__init__.py)

[Classes for working with HTML-5-
specific elements]
forms (forms.py)

xhtml (__init__.py)

[Classes for working with XHTML-
specific elements]
forms (forms.py)

xml (__init__.py)

A full implementation, then, of that structure might allow a developer to access an
HTML5 Email field object by creating an instance of a class that lived at the
dom.html5.forms.EmailField namespace, and whose code lived in
.../dom/html5/forms.py as a class named EmailField.

Deciding where specific classes, functions, constants, and so on
should exist in the structure of a code base is a complex topic, and
will be explored in greater depth as part of the early architecture
and design of hms_sys.

Using Python virtual environments
Python allows a developer to create virtual environments that collect up all the
baseline language facilities and functionality into a single location. Once set up, those
virtual environments have packages installed in to or removed from them, which
allows a project that's executing in the context of the environment to have access to
packages and functionality that may not be needed in the base system. A virtual
environment also provides a mechanism for keeping track of those installations,
which in turn allows a developer to keep track of only those dependencies and
requirements that are relevant to the project itself.

Virtual environments can also be used, with some care and thought, to allow a project
to be developed against a specific version of the Python language – one that's no
longer supported, for example, or that's still too new to be available as a standard
installation in the development machine's OS. This last aspect can be very useful in
developing Python applications to run in various public clouds such as Amazon's
AWS, where the Python version may be newer than what's generally available, and
may also have significant syntax differences from earlier versions of the language.

Development Tools and Best Practices Chapter 6

[142]

Breaking changes at the language level aren't very common, but
they have happened in the past. Virtual environments won't solve
those, but they will, at least, allow different versions of code to be
maintained with more ease.

Provided that the appropriate Python module (venv in Python 3) is already installed,
creating a virtual environment, activating, and deactivating it at a command-line level
is pretty straightforward:

python3 -m venv ~/py_envs/example_ve

Creates a new, minimal virtual environment at the specified location (in this case, in a
directory named example_ve, in a directory named py_envs in the user's home
directory):

source ~/py_envs/example_ve/bin/activate

This activates the newly created virtual environment. At this point, launching python
shows that it's using version 3.5.2, and the command line interface prefaces each line
with (example_ve) to show that the virtual environment is active:

deactivate

This deactivates the active virtual environment. Launching python from the
command-line now shows the default Python version, 2.7.12, for the system.

Installing, updating, and removing packages, and showing what packages are
installed, are equally straightforward:

Development Tools and Best Practices Chapter 6

[143]

This activates the virtual environment again:

source ~/py_envs/example_ve/bin/activate

This shows the list of currently installed packages. It does not show any of the
packages that are part of the core Python distribution, only those that have been
added.

pip freeze

The first run, in this case, also notes that the current version of pip in the
environment is old and can be updated, which is done with this command:

pip install –upgrade pip

Development Tools and Best Practices Chapter 6

[144]

The pip package itself is part of the base Python installation, and even though it's just
been updated, that has no effect on the list of packages returned by calling pip
freeze again.

To illustrate how pip deals with installation of new packages, the pillow library, a
Python API for working with graphics files, was installed with this:

pip install pillow

Since pillow is not a standard library, it does appear in the results of another pip
freeze call. The results of pip freeze can be dumped to a requirements file
(requirements.txt, for the purposes of illustration) as part of a project structure,
and stored with the project, so that package dependencies don't actually have to live
in the source tree of the project, or be stored with it in an SCM. That would allow a
new developer on a project to simply create their own virtual environment, then
install the dependencies with another pip call:

pip install -r requirements.txt

The pillow library was then uninstalled to show what that looks like, with this:

pip uninstall pillow

The pip program does a good job of keeping track of dependencies,
but it may not be foolproof. Even if uninstalling a package removes
something that it lists as a dependency, but that's still in use, it's
easy enough to re-install it with another pip call.

Virtual environments, then, allow for a lot of control over what third-party packages
can be associated with a project. They come with a small price, though: they have to
be maintained, if rarely, and as changes to those external packages are made by one
developer, some discipline needs to be exerted to make sure that those changes are
available for other developers working on the same code base.

Development Tools and Best Practices Chapter 6

[145]

Summary
There are a fair few factors that can affect how code is written and managed, even
before the first line of code is written. Each of them can have some impact on how
smoothly a development effort progresses, or on how successful that effort is.
Fortunately, there are a lot of options, and a fair amount of flexibility in making the
decisions that determine which of them are in play, and how, even assuming that
some team or managerial-level policies don't dictate them.

Several of the decisions concerning these items for the hms_sys project have been
noted, but since the next chapter starts on that development for real, they might be
worth calling out once more:

Code will be written using either Geany or LiClipse as the IDE. They both
provide code project management facilities that should handle the
multiple-project structure that's expected, and will provide enough of the
bells and whistles needed to make navigating across projects relatively
painless. Initially, the effort will use Geany, and LiClipse will be held in
reserve if Geany becomes too troublesome to work with, or can't handle
some aspect of the project after development has progressed.
Source Code Management will be handled with Git, pointing at an external
repository service such as GitHub or Bitbucket.
Code will follow PEP-8 recommendations until or unless there's a
compelling reason not to, or they conflict with any of the internal standards
noted.
Code will be written following the structure laid out in the various
template files shown.
Callables – functions and class methods – will use type-hinting annotations
until or unless there is a compelling reason not to.
All code will be unit tested, though test policy details have yet to be
defined other than assuring that all public members are tested.
Each code project in the system will have its own build process, using
standard setup.py mechanisms, with Makefile-based processes
wrapped around them if needed.

Development Tools and Best Practices Chapter 6

[146]

Each build process will integrate unit test results in order to prevent a build
from completing if any of the unit tests fail.
Package structure within the projects has not yet been defined, but will
unfold as development gets underway.
Each project will have and use its own distinct virtual environment, in
order to keep the requirements and dependencies associated with each
project separate. This may require some build process tweaking, but that
remains to be seen.

7
Setting Up Projects and

Processes
Our first iteration is all about getting things ready for all of the following iterations,
and for any development efforts after the project is initially complete—bug fixes,
maintenance, new feature requests, and so on. This sort of preparation will need to be
undertaken for any new development effort over a certain expected degree of
complexity, but it may not be broken out into its own iteration. Creating many of the
foundational structures could be managed as part of other iterations;creating the
project's structure when the first development that needs it starts, for example. The
trade-off that's tied into taking that approach is that there is a higher probability that
early definition work will have to be significantly altered as later development
unfolds because that original structure couldn't accommodate multiple Python virtual
environments, or the addition of a new project to the system's code base.

Having some standard structural definitions, like the ones
from Chapter 6, Development Tools and Best Practices, will minimize a
fair number of these concerns going forward, but may not prevent
them.

This chapter will cover the setup and preparation items that are common to most
projects:

Source Code Management (SCM)
Project organization
Unit testing structure
Build and deploy processes

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=30&action=edit

Setting Up Projects and Processes Chapter 7

[148]

Iteration goals
The deliverables of this iteration are mostly focused, then, on the following:

A master repository, stored in a Git server or service (local server, GitHub,
or Bitbucket, for example) that contains the complete, empty project
structure for the system and its component projects
A component project for each deployable class library or application in the
system
A unit test suite that can be executed and whose execution passes for each
component project in the system
A build process for each component project – also executable – that results
in a deployable package, even if that package starts as something that's
essentially useless

Assembly of stories and tasks
The needs of developers can also be expressed as stories, with tasks to execute. These
foundational stories may be reused over multiple projects, and if they are, will likely
evolve over time to better capture common needs and goals across development
efforts—even for radically different systems. These should suffice as a starting point
for now:

As a developer, I need to know how source code for the system is going to
be managed and version controlled so that I will be able to appropriately
keep/store the code I write:

Create a blank SCM repository for the system—hms_sys1.
Populate the repository with baseline information and2.
documentation needed for ongoing use
Establish and distribute whatever credentials are needed for dev3.
team members to access the repository

As a developer, I need to know what the full structure of the system looks
like, at least at a high level, so that I will be able to write code that fits into
that structure. This will involve:

Analyzing the use cases, and the logical and physical1.
architecture, to define the component project's needs and its
structure

Setting Up Projects and Processes Chapter 7

[149]

Building out standard project starting points for each component2.
project identified
Implementing a minimal setup.py for each component project3.
that completes a source package build
Determining whether or not to use Python virtual environments4.
for component projects, implement them, and document how
they can be reproduced

As a developer, I need to know how and where to write unit tests for the
code base so that I can create unit tests after the code is written. I also need
to ensure that the code is thoroughly tested:

Define unit testing standards/requirements (coverage, standard1.
values by type, and so on)
Implement a mechanism for enforcing those standards2.
Define where unit test code is going to reside in a component3.
project's structure
Implement a basic, top-level test for each component project that4.
executes without any failures

As a developer, I need to know how to integrate unit tests for a component
project into the build process for that component project so that builds can
automatically execute unit tests, which involves:

Determining how to integrate unit tests into the build
process; and
Determining how to deal with build/test integration for
different environments

Setting Up SCM
Since the balance of the activities that need to happen in this iteration will ultimately
need to be stored in SCM, the first story from the list that will be undertaken, with its
tasks, is the following one:

As a developer, I need to know how source code for the system is going to
be managed and version controlled, so that I will be able to appropriately
keep/store the code I write:

Create a blank SCM repository for the system—hms_sys1.

Setting Up Projects and Processes Chapter 7

[150]

Populate the repository with the baseline information and2.
documentation needed for ongoing use
Establish and distribute whatever credentials are needed for dev3.
team members to access the repository

The code for hms_sys is going to live in Bitbucket (https:/ /bitbucket. org), in a Git
repository, so the first step is to set Up a new repository there:

https://bitbucket.org
https://bitbucket.org
https://bitbucket.org
https://bitbucket.org
https://bitbucket.org
https://bitbucket.org
https://bitbucket.org

Setting Up Projects and Processes Chapter 7

[151]

The settings for the new repository are as follows:

Owner: The user who owns the repository. If multiple users have access to
the repository through the Bitbucket account, or if there are groups
associated with it, those users and groups will be available as options for
this setting.

Repository name: The (required) name of the repository. Ideally, a
repository name should be easily associated with the system or project that
it contains, and since hms_sys is both the name of the overall project and it
wasn't already taken, that was used.

Access level: Determines whether the repository is public or private. Since
hms_sys is not intended for public perusal or distribution, the repository
has been made private.

Include a README?: Whether the system will create a README file as part
of the creation process. The options are as follows:

No: Will require the manual creation of the file later, if one is
even needed/desired.
Yes, with a template: Creates a basic file with minimal
information. This option was selected so that a basic README
file would be created.
Yes, with a tutorial (for beginners).

Version control system: Allows the repository to use either Git or
Mercurial as its SCM engine. Git was selected because that's what we
decided to use.

The Advanced settings have to be expanded to be available, and are as follows:

Description: Any description provided here will be added to the README
file if the Yes, with a template option was selected.

Forking: Controls whether/how forking is allowed from the repository. The
options are as follows:

Allow forks: Anyone who has access can fork the repository
Allow only private forks
No forks

Setting Up Projects and Processes Chapter 7

[152]

Project management: Allows the integration of issue tracking and wiki
systems with the repository.

Language: Specifies a primary programming language for the code in the
repository. This setting doesn't do anything other than categorize the
repository by its primary language, at least initially. Some SCM providers
will use the language settings to pre-populate Git's .gitignore file with
commonly ignored file patterns, though, so it's advantageous to specify it if
possible.

Once the Create repository button is clicked, the repository will be created:

Setting Up Projects and Processes Chapter 7

[153]

From the overview page for any repository, the HTTPS and SSH options for
connecting to and cloning/pulling the repository are available, and anyone who has
the requisite permissions can clone it (by whatever means are preferred) to a local
copy to work with it:

There are several ways to initialize a new Git repository. This
process, starting at the repository's provider, assures that the
repository is well-formed and accessible, as well as allowing for
some initial configuration and documentation setup that won't have
to be done by hand later.

At this point, two of the tasks from the story are resolved:

Create a blank SCM repo for the system—hms_sys.1.

Establish and distribute whatever credentials are needed for dev team2.
members to access the repository. Since the repository was created through
the external service provider's interface, the credentials needed for access
are managed there, and anyone whose user account is associated with the
repository's accounts or groups either has the access they'll need, or can be
given it through the user management in the provider's system.

The remaining task, populated with baseline information and the documentation
needed for ongoing use, has ties to the project structure that haven't been addressed,
but there are still items that can be addressed that are independent of that.

First is the creation and documentation of the base component projects in the top-
level repository directory. Initially, it's probably a good idea to create a top-level
project, encompassing the entire system code base—this will provide a single project
that can be used to organize items that span two or more of the component projects,
as well as anything that encompasses the system as a whole.

Setting Up Projects and Processes Chapter 7

[154]

In Geany, that's accomplished by using Project → New, supplying a project name,
project file path, and a base path for the project:

Since Geany project files store filesystem paths that may vary from one machine to
another, those need to be added to Git's .gitignore file:

.gitignore for hms_sys project
Geany project-files
*.geany

The .gitignore file is, ultimately, a list of files and/or folders that
Git will ignore when committing or pushing code to the central
repository. Any file or folder that matches one of the paths in
.gitignore will not be tracked by the SCM.

Additionally, instructions for creating a local hms_sys.geany file should probably be
documented so that any other developer who needs one can create one as needed.
That sort of information can be dropped into the README.md file, and similar efforts
will be undertaken as the component projects for the system are added:

hms_sys

The system-level repository for the hms_sys project, from "Hands On
Software Engineering with Python," published by Packt.

Setting Up Projects and Processes Chapter 7

[155]

Geany Project Set-up

Geany project-files (`*.geany`) are in the `.gitignore` for the entire
repository, since they have filesystem-specific paths that would break
as they were moved from one developer's local environment to another.
Instructions for (re-)creating those projects are provided for each.

HMS System (Overall) -- `hms_sys.geany`

This is an over-arching project that encompasses *all* of the
component
projects. It can be re-created by launching Geany, then using
Project → New and providing:

 * *Name:* HMS System (Overall)
 * *Filename:* `[path-to-git-repo]/hms_sys/hms_sys.geany`
 * *Base path:* `[path-to-git-repo]/hms_sys`

Once these changes are staged, committed locally, and pushed to the master
repository, what should appear there is a revised README.md file and a new
.gitignore, but not the hms_sys.geany project file:

As the component projects get added into the code base, the same sort of
documentation and setup should be followed, yielding similar results. At this point,
the final task of the first story is as complete as it can be, so it would be reviewed and
closed if it was judged complete and approved.

Setting Up Projects and Processes Chapter 7

[156]

Stubbing out component projects
On, then, to the next story:

As a developer, I need to know what the full structure of the system looks
like, at least at a high level, so that I will be able to write code that fits into
that structure:

Analyze the use cases, and the logical and physical architecture1.
to define the component project's needs and its structure
Build out standard project starting points for each component2.
project identified
Implement a minimal setup.py for each component project that3.
completes a source package build

Component project analysis
The logical architecture, along with the use cases diagram from Chapter
6, Development Tools and Best Practices, indicates three obvious component projects that
will need to be accounted for, one each for the following:

The Artisan Application
The Artisan Gateway
The Review/Manage Application

Each of these component projects, in turn, needs access to some common object
types—they all need to be able to handle Product instances, and most of them also
need to be able to work with Artisan and Order instances as well:

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=30&action=edit
https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=30&action=edit

Setting Up Projects and Processes Chapter 7

[157]

There may well be other business objects that aren't immediately apparent from this
breakout, but the fact that there are any is a good sign that there is probably a need
for a fourth component project to collect the code that provides those business objects
and their functionality. With that in mind, the initial component project structure
boils down to this:

HMS Core (hms-core): A class library collecting all of the baseline
business object definitions to provide representations of objects such
as artisans, products, and orders

The Central Office Application (hms-co-app): Provides an executable
application that allows Central Office staff to perform various tasks that
require communication with an Artisan about products, orders, and
perhaps other items as well

The Artisan Application (hms-artisan): Provides an executable local
application that allows an Artisan to manage products and orders,
communicating with the Central Office as needed

The HMS Artisan Gateway (hms-gateway): Provides an executable
service that the Artisan Application and Central Office Application use to
send information back and forth between the artisans and the Central
Office

Component project setup
Some decisions will have to be made later on about how the hms-core code will be
included in distributions of the other projects that require it, but those don't need to
be tackled until they're reached, so they'll be set aside for now. In the meantime,
setting Up starting point project structures for each of the component projects is the
next step. The basic structure, for now, is identical across all four of the component
projects;the only differences will be in the names of the various files and directories.

Setting Up Projects and Processes Chapter 7

[158]

Using hms-core as an example, since that's the first logical code set to start working
on, the project structures will look like this:

Packaging and build process
Setting up the minimal standard Python packaging for a project and providing the
bare-bones build process makes very few changes to the baseline setup.py and
Makefile files that were discussed earlier. There are only a few specifics that are
available before code starts being written: the package name and the top-level
directory of the main package that setup.py will use, and the setup.py file itself
that can be added to the Makefile. The Makefile changes are the simplest:

Makefile for the HMS Core (hms-core) project

main: test setup
 # Doesn't (yet) do anything other than running the test and
 # setup targets

Setting Up Projects and Processes Chapter 7

[159]

setup:
 # Calls the main setup.py to build a source-distribution
 # python setup.py sdist

test:
 # Executes the unit-tests for the package, allowing the build-
 # process to die and stop the build if a test fails

The setup.py file, though it's been populated with some starting data and
information, is still pretty much the same bare-bones starting point file that we saw
earlier:

#!/usr/bin/env python

from setuptools import setup

The actual setup function call:
setup(
 name='HMS-Core',
 version='0.1.dev0',
 author='Brian D. Allbee',
 description='',
 package_dir={
 '':'src',
 # ...
 },
 # Can also be automatically generated using
 # setuptools.find_packages...
 packages=[
 'hms_core',
 # ...
],
 package_data={
'hms_core':[
'filename.ext',
...
]
 },
 entry_points={
'console_scripts':[
'executable_name = namespace.path:function',
...
],
 },
)

Setting Up Projects and Processes Chapter 7

[160]

This structure will not acquire any of the various directories and files outside the core
package just yet either—at this point, there's no indication that any of them will be
needed, so their inclusion will be left until there's an actual need for them. Even
without those, though, the setup.py file can successfully build and install the source
distribution package, though it throws a few warnings during the build process, and
the installed package doesn't provide any functionality yet:

Setting Up Projects and Processes Chapter 7

[161]

In larger (or at least more formally structured) development shops, the
build/packaging processes for component projects may well need to accommodate
different builds for different environments:

A local environment, such as the developers' local machines
A shared development environment, where all developers' local code
changes first mix together
A shared test server for QA and broader integration testing
A User Acceptance Testing server, using realistic, production-like data that
can be used to demonstrate functionality to whoever needs to give final
approval for changes to be promoted to a live environment or build
A staging environment that has full access to a complete copy of
production data, with an eye toward being able to perform load and other
tests that require access to that dataset
The live environment/build code base

There is at least some potential for needing significant differentiation between these
different builds (local, dev, test, stage, and live, with the user acceptance build
assumed to be identical to a stage build for the time being). At this point in the
development effort, though, there really isn't anything to differentiate, so the best that
can be done is to plan around what will happen if it is needed.

Until there is a need for a completely different package structure for any given
environment, the current setup.py file will remain untouched. It's highly unlikely
that there will be an environment-specific need that isn't common across all
environments. If such a need does arise, then the approach will be to create a distinct
setup.py for each environment that has any distinct needs, and execute that specific
setup.py, either manually or though the Makefile. With some care and thought,
this should allow any environment-specific variances to be contained in a single
location, and in a reasonably standard fashion.

Setting Up Projects and Processes Chapter 7

[162]

That, in turn, means that there will have to be changes made to the Makefile.
Specifically, there will need to be a target for each environment-specific build process
(dev through live again), and some way of managing files that are specific to one of
those environments. Since the make process can manipulate files, create directories,
and so on, the strategy that will be used will be to do the following:

Identify environment-specific files by prefixing them with the build
target/environment name that they relate to. For example, there would be a
dev-setup.py file in the code base, as well as a test-setup.py file, and
so on.
Altering the Makefile to make a copy of all relevant files in the project's
code tree that can be altered (and destroyed) without impacting the core
project files.
Adding a process that will find and rename all of the environment-specific
files in the temporary copy as needed for a specific environment's build,
and removing any environment-specific files from the temporary tree that
aren't relevant to the build.
Executing the setup.py file as normal.

The changes that would be made to the Makefile would look something like this, at
least as a starting point.

First, define a common temporary build directory—the local build will be the default,
and will simply execute the standard setup.py file, just as the original process did:

Makefile for the HMS Core (hms-core) project
TMPDIR=/tmp/build/hms_core_build

local: setup
 # Doesn't (yet) do anything other than running the test and
 # setup targets

setup:
 # Calls the main setup.py to build a source-distribution
 ~/py_envs/hms/core/bin/python setup.py sdist

unit_test:
 # Executes the unit-tests for the package, allowing the build-
 # process to die and stop the build if a test fails
 ~/py_envs/hms/core/bin/python setup.py test

Setting Up Projects and Processes Chapter 7

[163]

A new target, build_dir, is created to create the temporary build directory, and to
copy all of the project files that can be part of any build into it:

build_dir:
 # Creates a temporary build-directory, copies the project-files
 # to it.
 # Creating "$(TMPDIR)"
 mkdir -p $(TMPDIR)
 # Copying project-files to $(TMPDIR)
 cp -R bin $(TMPDIR)
 cp -Ret cetera$(TMPDIR)
 cp -R src $(TMPDIR)
 cp -R var $(TMPDIR)
 cp setup.py $(TMPDIR)

A prep target for each environment, as well as the final target for each, will be written
to rename and remove files as needed, and to execute the setup.py file in the
temporary build directory:

dev_prep:
 # Renames any dev-specific files so that they will be the "real"
 # files included in the build.
 # At this point, there are none, so we'll just exit

dev: unit_test build_dir dev_prep
 # A make-target that generates a build intended to be deployed
 # to a shared development environment.
 cd $(TMPDIR);~/py_envs/hms/core/bin/python setup.py sdist

So, when make dev is executed against this Makefile, the dev target runs the
unit_test target, and then the build_dir target is used to create the temporary
copy of the project. Afterwards, dev_prep is used to deal with the filename changes
and the removal of files from other environments. Then, and only then, will it execute
the remaining setup.py.

Python virtual environments
The final task to address is determining whether or not to use Python virtual
environments for the various component projects, creating them if needed, and
documenting how to create them so that other developers will be able to reproduce
them if/as needed.

Setting Up Projects and Processes Chapter 7

[164]

Given the structure across the component projects, what is known about them, and
how their installed code is expected to interact with other system members, there isn't
an obvious need for different environments, or even an obvious advantage to
establishing them. Provided that sufficient care and discipline were exercised during
development, making sure that dependencies got added to each component project's
setup.py or other build process artifacts or configuration, the worst-case scenario
that would likely arise is that a missing dependency would be discovered during the
process of performing a test installation. In an otherwise bug-free live installation,
there might be some trivial inefficiencies that would creep in—the hms-gateway
project, for example, might install database or GUI libraries that it won't need or
doesn't use, or the two component projects might both have message-system libraries
that the other users installed, but which aren't needed.

None of these represent any sort of imminent threat to the operation of the individual
component project installations, but they do throw unnecessary code into the
installations. The potential for significant creep of needless library installations is very
real if it isn't carefully watched and managed, and could be a vector for security
issues in the future. Worse, any potential security issues might not be visible as a
result; if no-one is really aware that something not needed got installed with a given
program, then it may not get fixed until it's too late.

One of the first best steps that can be taken to keep systems secure is
to assure that they only have exactly what they need to function
installed. That won't cover every possibility, but it will reduce the
bandwidth needed to keep current with patches and security issues.

Keeping track of dependencies on a project-by-project basis is something that virtual
environments can make a difference in. That's a point in favor of setting them Up for
each project individually. Another point in favor of this practice is that some
platforms, such as the various public clouds, will require the ability to include
dependent packages as part of their deployment process, and a virtual environment
will keep those nicely separated from the core system installation package set. In that
respect, virtual environments are also, then, a type of future-proofing.

Setting Up Projects and Processes Chapter 7

[165]

In the context of developing hms_sys, then, we'll set up a separate virtual
environment for each component project. If they prove unnecessary later on, they can
always be deleted. The processes for creating, activating, and deactivating them are
pretty straightforward, and can be created wherever is convenient—there isn't really
any standard location — the commands vary per Operating System, though, as
shown below:

Virtual
Environment
Activity

Operating system

Linux/MacOS/Unix Windows

Creating python3 -m venv ~/path/to-
myenv

c:\>c:\Python3\python -m venv
c:\path\to\myenv

Activating source ~/path/to-
myenv/bin/activate

C:\>
c:\path\to\myenv\Scripts\activate.bat

Deactivating deactivate
C:\>
c:\path\to\myenv\Scripts\deactivate.bat

Once a virtual environment is created and activated, packages can
be installed in it with pip (or pip3), just like outside the virtual
environment's context. Installed packages are stored in the virtual
environment's libraries, instead of in the global system libraries.

Documenting which virtual environments are associated with which component
projects is just a matter of copying the commands needed to create it into project-level
documentation somewhere. For hms_sys, these will be stored in the README.md files
for each component project.

Let's review the tasks for this story:

Analyze the use cases, and the logical and physical architecture to define
component-project needs and structure—Done
Build out standard project starting points for each component project
identified—Done
Implement a minimal setup.py file for each component project that
completes a source package build—Done
Determine whether or not to use Python virtual environments for
component projects, implement them, and document how they can be
reproduced—Done
Providing a unit testing structure

Setting Up Projects and Processes Chapter 7

[166]

At the end of the previous chapter, it was noted that although an expectation had
been set that all code would be unit-tested, with all public members of modules and
classes subject to that requirement, it was also noted that no test policy details had
been defined yet, which is a good part of what the unit testing story in this iteration is
all about:

As a developer, I need to know how and where to write unit tests for the
code base so that I can create unit tests after the code is written. I also need
to assure that the code is thoroughly tested:

Define unit testing standards/requirements (coverage, standard1.
values by type, and so on)
Implement a mechanism for enforcing those standards2.
Define where unit test code is going to reside in a component3.
project's structure
Implement a basic, top-level test for each component project that4.
executes without any failures

The bulk of this unit testing material was adapted and converted
into Python 3 from Python 2.7.x code and a discussion of this is on
the author's blog (starting at bit.ly/HOSEP-IDIC-UT). Though that
code was written for an older version of Python, there may be
additional insights to be gained from the unit testing articles there.

It could be argued that all members, not just the public ones, should be tested—after
all, if the code in question gets used anywhere, it should also be held to the same
standards as far as predictable behavior is concerned, yes? Technically, there's no
reason that can't be done, particularly in Python where protected and private class
members aren't really protected or private they are merely treated as such by
convention—in earlier versions of Python, protected members were accessible, and
private members (prefixed with two underscores: __private_member) were not
directly accessible in derived classes, except by calling them by their mangled name.
In Python 3, there is no language-level enforcement of nominally protected or private
scope, even though the name mangling is still in play. This is quickly demonstrated.
Consider the following class definition:

class ExampleParent:

 def __init__(self):
 pass

 def public_method(self, arg, *args, **kwargs):

http://bit.ly/HOSEP-IDIC-UT

Setting Up Projects and Processes Chapter 7

[167]

 print('%s.public_method called:' % self.__class__.__name__)
 print('+- arg %s' % arg)
 print('+- args %s' % str(args))
 print('+- kwargs ... %s' % kwargs)

 def _protected_method(self, arg, *args, **kwargs):
 print('%s._protected_method called:' %
self.__class__.__name__)
 print('+- arg %s' % arg)
 print('+- args %s' % str(args))
 print('+- kwargs ... %s' % kwargs)

 def __private_method(self, arg, *args, **kwargs):
 print('%s.__private_method called:' % self.__class__.__name__)
 print('+- arg %s' % arg)
 print('+- args %s' % str(args))
 print('+- kwargs ... %s' % kwargs)

 def show(self):
 self.public_method('example public', 1, 2, 3, key='value')
 self._protected_method('example "protected"', 1, 2, 3,
key='value')
 self.__private_method('example "private"', 1, 2, 3,
key='value')

If we were to create an instance of ExampleParent, and call its show method, we'd
expect to see all three groups of output and that's exactly what happens:

Setting Up Projects and Processes Chapter 7

[168]

If the ExampleParent class structure is examined with dir(ExampleParent), all
three of the methods can be seen: ['_ExampleParent__private_method', …,
'_protected_method', 'public_method', …]. In earlier versions of Python, a class
derived from ExampleParent would still have access to public_method and
_protected_method, but would raise an error if __private_method was called by
that name. In Python 3 (and some later versions of Python 2.7.x), that is no longer the
case.

class ExampleChild(ExampleParent):
 pass

Creating an instance of this class, and calling its show method yields the same results:

Technically then, all members of a Python class are public.

So, what does that mean from the perspective of defining a unit testing policy, if all
class members are public? If the public/protected/private convention is adhered to,
then the following apply:

Public members should be tested in the test suite that corresponds to the
class they are defined in (their class of origin)
Most protected members are likely intended to be inherited by derived
classes, and should be tested in depth in the test suite that corresponds
with the class they are defined in
Private members should be treated as if they really were private—not
accessible at all outside their class of origin—or as if they were
implementation details that are subject to breaking changes without
warning

Setting Up Projects and Processes Chapter 7

[169]

Inherited members shouldn't require any testing again, then, since they will
have been tested against their class of origin
Members that are overridden from their parent classes will be tested in the
suite that relates to the class they are overridden in

Setting Up a unit testing process that applies all of these rules is possible, though it's
moderately complex and substantial enough that it'd be really advantageous to be
able to wrap it Up in some sort of reusable function or class so that it doesn't have to
be recreated in every test process, or maintained across dozens or hundreds of copies
of it if test policies change. The end goal would be to have a repeatable test structure
that's quickly and easily implemented which implies that it could also be templated
out in much the same way that modules and package headers were earlier.

First, though, we need something to test. Specifically, we need classes that have
methods that fall into the categories that were noted previously:

Defined locally
Inherited from a parent class
Overridden from a parent class

This covers all of the public/protected/private options. Though it wasn't specifically
mentioned previously, we should also include a class that has at least one abstract
method.Those are still classes, and will also need to be tested; they just haven't been
addressed yet. They don't need to be very complex to illustrate the test process,
though they should return testable values. With all of that in mind, here is a simple
set of classes that we'll use to test against and to generate the core test process:

These files are in the hms_sys code base, in the top-level scratch-
space directory.

import abc

class Showable(metaclass=abc.ABCMeta):
 @abc.abstractmethod
 def show(self):
 pass

class Parent(Showable):

 _lead_len = 33

 def __init__(self, arg, *args, **kwargs):

Setting Up Projects and Processes Chapter 7

[170]

 self.arg = arg
 self.args = args
 self.kwargs = kwargs

 def public(self):
 return (
 ('%s.arg [public] ' % self.__class__.__name__).ljust(
 self.__class__._lead_len, '.') + ' %s' % self.arg
)

 def _protected(self):
 return (
 ('%s.arg [protected] ' % self.__class__.__name__).ljust(
 self.__class__._lead_len, '.') + ' %s' % self.arg
)

 def __private(self):
 return (
 ('%s.arg [private] ' % self.__class__.__name__).ljust(
 self.__class__._lead_len, '.') + ' %s' % self.arg
)

 def show(self):
 print(self.public())
 print(self._protected())
 print(self.__private())

class Child(Parent):
 pass

class ChildOverride(Parent):

 def public(self):
 return (
 ('%s.arg [PUBLIC] ' % self.__class__.__name__).ljust(
 self.__class__._lead_len, '.') + ' %s' % self.arg
)

 def _protected(self):
 return (
 ('%s.arg [PROTECTED] ' % self.__class__.__name__).ljust(
 self.__class__._lead_len, '.') + ' %s' % self.arg
)

Setting Up Projects and Processes Chapter 7

[171]

 def __private(self):
 return (
 ('%s.arg [PRIVATE] ' % self.__class__.__name__).ljust(
 self.__class__._lead_len, '.') + ' %s' % self.arg
)

Creating a quick instance of each concrete class, and calling the show method of each
instance, shows the anticipated results:

Basic unit testing
Unit testing in Python is supported by the built-in unittest module. There may be
other modules that also provide unit testing functionality, but unittest is readily
available, is installed in Python virtual environments by default, and provides all the
testing functionality necessary for our purposes, at least as a starting point. The initial
test module for the preceding classes is quite simple, even if it doesn't do anything
more than define the test case classes that apply to the code being tested:

#!/usr/bin/env python

import unittest

class testShowable(unittest.TestCase):
 pass

class testParent(unittest.TestCase):
 pass

class testChild(unittest.TestCase):
 pass

class testChildOverride(unittest.TestCase):
 pass

unittest.main()

Setting Up Projects and Processes Chapter 7

[172]

Each of the classes that begin with test (and that are derived from
unittest.TestCase) will be instantiated by the unittest.main() call at the end
of the module, and each method within those classes whose name also starts with
test will be executed. If we add test methods to one of them, testParent for
example, and run the test module as follows:

class testParent(unittest.TestCase):
 def testpublic(self):
 print('### Testing Parent.public')
 def test_protected(self):
 print('### Testing Parent._protected')
 def test__private(self):
 print('### Testing Parent.__private')

The execution of the test methods can be seen:

If the print() calls are replaced with a pass, as shown in the following code, the
output is even simpler, printing a period for each test case's test method that executes
without raising an error:

class testParent(unittest.TestCase):
 def testpublic(self):
 pass
 def test_protected(self):
 pass
 def test__private(self):
 pass

When executed, this yields the following:

Setting Up Projects and Processes Chapter 7

[173]

So far, so good then;we have tests that can be executed, so the next question is how to
apply the test policy rules that we want applied. The first policy, having a test module
for each source module, is an aspect of project structure rather than one tied to test
execution processes. All that we really need to do in order to address that is define
where test code will live in any given project. Since we know that we're going to want
to address running tests during the build process later on, we need to have a common
test directory, a file just inside it (call it run_tests.py) that can run all the project's
tests on demand, and a test directory and file structure that's accessible to that file
should be included, which ends Up looking like this for the hms_core component
project:

Identifying missing test case classes
The balance of the testing goals noted earlier all require the ability to examine the
code being tested in order to identify module members, and members of those
members, that need to be tested. This might sound daunting, but Python provides a
module dedicated to that purpose: inspect. It provides a very robust collection of
functions that can be used to examine Python code at runtime, which can be
leveraged to generate collections of member names that can, in turn, be used to
determine whether the high-level test coverage meets the standard we're establishing.

Setting Up Projects and Processes Chapter 7

[174]

For the purposes of illustration, the preceding classes that we need to test will be
saved in a module called me.py, which makes them importable, and each step
demonstrating the process for finding the needed information about the me module
will be collected in inspect_me.py, as this shown here. The corresponding test cases
will live in test_me.py, which will start as a near-empty file—no test case classes
will be defined there at first.

The first step is identifying the target members of me that we're going to require test
case classes for. As things stand right now, all we need is a list of classes in the target
module, which can be retrieved as follows:

#!/usr/bin/env python

import inspect

import me as target_module

target_classes = set([
 member[0] for member in
 inspect.getmembers(target_module, inspect.isclass)
])
target_classes = {
'Child', 'ChildOverride', 'Parent', 'Showable'
} at this point

Step by step, what's happening is this:

The inspect module is being imported.1.

The me module is being imported, using target_module as an override to2.
its default module-name—we'll want to be able to keep imported module
names predictable and relatively constant to make things easier to reuse
down the line, and that starts here.

The getmembers function of inspect is called against the3.
target_module, using isclass as a filtering predicate. This returns a list
of tuples that look like ('ClassName', <class object>). Those results
are run through a list comprehension to extract only the class names, and
that list is handed off to a Python set to yield a formal set of class names
that were discovered.

Setting Up Projects and Processes Chapter 7

[175]

Python's set type is a very useful basic data type it provides an
iterable collection of values that are distinct (never repeated in the
set), and that can be merged with other sets (with union), have its
members removed from other sets (with difference), and a host of
other operations that would be expected from standard set theory.

With those names available, creating a set of expected test case class names is simple:

expected_cases = set([
 'test%s' % class_name
 for class_name in target_classes
]
)
expected_cases = {
'testChild', 'testShowable', 'testChildOverride',
'testParent'
} at this point

This is just another list comprehension that builds a set of class names that start with
test from the target class name set. A similar approach to the one that gathered the
class names in the target module can be used to find the test case classes that exist in
the test_me.py module:

import unittest

import test_me as test_module

test_cases = set([
 member[0] for member in
 inspect.getmembers(test_module, inspect.isclass)
 if issubclass(member[1], unittest.TestCase)
])
test_cases, before any TestCase classes have been defined,
is an empty set

Setting Up Projects and Processes Chapter 7

[176]

Apart from the issubclass check of each member found, which will limit the
members of the set to names of classes that are derived from unittest.TestCase,
this is identical to the process that built the initial target_classes set. Now that we
have sets that collect what's expected and what's actually defined, determining what
test case classes need to be created is a simple matter of removing the defined test
case names from the set of expected ones:

missing_tests = expected_cases.difference(test_cases)
missing_tests = {
'testShowable', 'testChild', 'testParent',
'testChildOverride'
}

If missing_tests is not empty, then its collection of names represents the test case
class names that need to be created in order to meet the first part of the "all members
will be tested" policy. A simple print of the results at this point will suffice for now:

if missing_tests:
 print(
 'Test-policies require test-case classes to be '
 'created for each class in the code-base. The '
 'following have not been created:\n * %s' %
 '\n * '.join(missing_tests)
)

Having identified the missing test case class items that need to be created, they can be
added to test_me.py:

#!/usr/bin/env python

import unittest

class testChild(unittest.TestCase):
 pass

class testChildOverride(unittest.TestCase):
 pass

Setting Up Projects and Processes Chapter 7

[177]

class testParent(unittest.TestCase):
 pass

class testShowable(unittest.TestCase):
 pass

if __name__ == '__main__':
 unittest.main()

Once they have been added (and once subclasses are derived from
unittest.TestCase, because of the check performed earlier in identifying actual
test case classes), there are no missing test cases that need to be addressed.

A similar approach could be taken for identifying module-level functions that should
arguably also be tested—they are also public members of a module, after all, and
that's what the policy is concerned with, public members of modules. The actual
implementation of tests against functions, or any other callable element, would follow
the structures and processes that will be established later for class methods.

Really, the only public members that may not be easily identified with this sort of
process are unmanaged attributes—module constants or variables that are created at
the module level. While those could still be tested, and arguably should be, the fact
that they are unmanaged, and can be changed at runtime without any checks to
assure that they aren't going to break things somewhere down the line, might well
make any formal testing policy around them little more than a waste of time. That
said, there's no harm in testing them, if only to assure that changes to them,
intentional or accidental, don't pass unnoticed and raise issues and bugs later on.

Identifying missing test methods
The inspect.getmembers function that was used to identify classes in modules
earlier can also be used to identify other member types of other target elements, such
as properties and methods of classes. The process for identifying either is similar to
what's already been shown for identifying classes in modules, and looks like this (for
properties):

target_class = target_module.Parent

target_properties = set([
 member[0] for member in
 inspect.getmembers(target_class, inspect.isdatadescriptor)
])
target_properties = {'__weakref__'}

Setting Up Projects and Processes Chapter 7

[178]

The only significant differences here from the process for finding classes in a module
are the target that's being inspected (in this case, the target_class, which we've set
to the Parent class) and the predicate (inspect.isdatadescriptor), which filters
the results to data descriptors—managed attributes or formal properties.

In Chapter 6, Development Tools and Best Practices, when the various internal code
standards were being discussed and defined, one aspect of using managed
attributes/properties was noted as being significant for unit testing purposes:the
ability to know what kinds of values to test with for any given property. This is
another advantage of taking that approach: class properties defined using the built-in
property() function can be detected as class members that need to be tested.
Unmanaged attributes, though they may well be detectable, may not be readily
identifiable as members of a class that need to be tested, and that identification is
almost certainly not something that can be automated.

A similar inspect.getmembers call can be used to identify class methods:

target_functions = set([
 member[0] for member in
 inspect.getmembers(target_class, inspect.isfunction)
])
target_methods = set([
 member[0] for member in
 inspect.getmembers(target_class, inspect.ismethod)
])
target_methods = target_methods.union(target_functions)
target_methods = {
'_Parent__private', 'public', 'show',
'_protected', '__init__'
}

Both of these member name collections include items that the test policy doesn't
require tests for, though the __weakref__ property is a built-in property of all classes
and the _Parent__private method entry ties back to our original __private
method, and neither of those need to be included in our lists of required test methods.
Some basic filtering can be accomplished by simply adding a check for a leading __ in
the property list names (since we'd never be testing a private property according to
our test policy). That'd take care of removing __weakref__ from the test list, and
allow public and protected properties to appear.

Setting Up Projects and Processes Chapter 7

[179]

After adding a property declaration (prop) to Parent, and adding that filtering
criteria, we would get the following:

target_properties = set([
 member[0] for member in
 inspect.getmembers(target_class, inspect.isdatadescriptor)
 if not member[0].startswith('__')
])
target_properties = {'prop'}

That same approach would not work well for finding class methods that need to be
tested, though;some common methods, such as __init__, have names that would be
removed based on name-based filtering, but are members that we'd want to assure
have tests required. This simple name-based filtering also doesn't deal with not
including member names that exist in a class but aren't defined in that class—like all
of the properties and members of the Child class. While the name-based filtering is a
step in the right direction, it feels like it's time to take a step back and look at a
broader solution,one that does account for where a member is defined.

That involves building the list of test names in a more complex fashion, and paying
attention to the Method Resolution Order (MRO) of each class, which can be found
in a class built-in __mro__ property. We'll start by defining an empty set and
acquiring the MRO of the class, then the same list of property names that were
available from the target class:

property_tests = set()
sourceMRO = list(target_class.__mro__)
sourceMRO.reverse()
Get all the item's properties
properties = [
 member for member in inspect.getmembers(
 target_class, inspect.isdatadescriptor)
 if member[0][0:2] != '__'
]
sourceMRO = [
<class 'object'>, <class 'me.Showable'>,
<class 'me.Parent'>
]

Setting Up Projects and Processes Chapter 7

[180]

We'll also need to keep track of where a property's definition can be found,that is,
what class it originates in, as well as the actual implementation of the properties.
We'll want to start with a complete data structure for each, which associates the
names with the source classes and implementations eventually, but that's initialized
with None values to start with. That will allow the final structure, once it's populated,
to be used to identify members of the class that aren't defined there:

propSources = {}
propImplementations = {}
for name, value in properties:
 propSources[name] = None
 propImplementations[name] = None
Populate the dictionaries based on the names found
for memberName in propSources:
 implementation = target_class.__dict__.get(memberName)
 if implementation and propImplementations[memberName] !=
implementation:
 propImplementations[memberName] = implementation
 propSources[memberName] = target_class
propImplementations = {
"prop": <property object at 0x7fa2f0edeb38>
}
propSources = {
"prop": <class 'me.Parent'>
}
If the target_class is changed to target_module.Child:
propImplementations = {
"prop": None # Not set because prop originates in Parent
}
propSources = {
"prop": None # Also not set for the same reason
}

With that data in hand, the generation of the list of required property test methods is
similar to the required test case class list shown earlier:

property_tests = set(
 [
 'test%s' % key for key in propSources
 if propSources[key] == target_class
]
)
property_tests = {'testprop'}
If the target_class is changed to target_module.Child:
property_tests = set()

Setting Up Projects and Processes Chapter 7

[181]

The process for acquiring and filtering down the method members of a class looks
almost the same, though we're going to include all members, even those whose names
begin with __, and acquire members that are either functions or methods, just to
ensure that we'll include class and static methods of classes:

method_tests = set()
sourceMRO = list(target_class.__mro__)
sourceMRO.reverse()
Get all the item's methods
methods = [
 member for member in inspect.getmembers(
 target_class, inspect.isfunction)
] + [
 member for member in inspect.getmembers(
 target_class, inspect.ismethod)
]

The process for constructing the dict items used to keep track of method sources and
implementations can actively skip local, private members and anything that's been
defined as abstract:

methSources = {}
methImplementations = {}
for name, value in methods:
 if name.startswith('_%s__' % target_class.__name__):
 # Locally-defined private method - Don't test it
 continue
 if hasattr(value, '__isabstractmethod__') and
value.__isabstractmethod__:
 # Locally-defined abstract method - Don't test it
 continue
 methSources[name] = None
 methImplementations[name] = None

The balance of the test name list generation is the same, though:

method_tests = set(
 [
 'test%s' % key for key in methSources
 if methSources[key] == target_class
]
)
method_tests = {
'testpublic', 'test__init__', 'test_protected',
'testshow'
}
If the target_class is changed to target_module.Child:

Setting Up Projects and Processes Chapter 7

[182]

method_tests = set()
If the target_class is changed to target_module.Showable:
method_tests = set()

So, what are the takeaways from all of this exploration? To put it briefly, they are as
follows:

It's possible to automate the process of detecting what members of a
module should require test cases to be created
It's possible to automate the process of verifying that those required test
cases exist in the test module that corresponds to a given source module,
though it still requires some discipline to assure that the test modules are
created
It's possible to automate the process of detecting what test methods need to
be required for any given test case/source class combination, and to do so
without requiring the testing of private and abstract members, neither of
which make much sense in the context of the test policies we're looking to
establish

That's a fair chunk of code, though. 80-odd lines, without some of the actual testing of
class members and the announcement of issues, and after stripping out all the
comments. That's a lot more code than should ever be copied and pasted around,
especially for a process that has the kind of high damage potential or impact that a
unit testing process has. It'd be a lot better to be able to keep it all in one place.
Fortunately, the unittest module's classes provide some options that will make
creating module-by-module code coverage tests amazingly easy—though it will
require some design and implementation first.

Creating reusable module code coverage tests
A good unit testing framework will allow not just the creation of tests for members of
code elements, but will also provide mechanisms for executing code before any of the
tests are run, as well as after all tests have executed, successfully or not. Python's
unittest module handles that in the individual TestCase classes, which allow the
class to implement the setUpClass and tearDownClass methods to handle the pre-
and post-test setup and teardown, respectively.

Setting Up Projects and Processes Chapter 7

[183]

That, then, means that it'd be possible to create a test class that could be imported,
extended with module-specific properties, and added to a test module that could
leverage all of the capabilities just shown to do the following:

Find all of the classes and functions in the target module
Determine what test case classes need to exist in the test module, and test
them to make sure they exist
Determine, for each source module member's test case class, what tests
need to exist in order to meet our unit testing policies and criteria
Test for the existence of those test methods

The code coverage test case class will need to know what module to examine in order
to find all of that information, but it should be able to manage everything else on its
own. Ultimately, it will define just one test of its own that it will execute the one to
assure that every class or function in the source module has a corresponding test case
class in the test module:

def testCodeCoverage(self):
 if not self.__class__._testModule:
 return
 self.assertEqual([], self._missingTestCases,
 'unit testing policies require test-cases for all classes '
 'and functions in the %s module, but the following have not '
 'been defined: (%s)' % (
 self.__class__._testModule.__name__,
 ', '.join(self._missingTestCases)
)
)

It will also need to be able to provide a mechanism to allow the checks for property
and method test methods. Doing so on a fully automated basis is tempting, if it could
even be achieved, but there may be cases where that could prove more troublesome
bring up than worthwhile. At least for the time being, the addition of those tests will
be made available by creating some decorators that will make attaching those tests to
any given test case class easy.

Python's decorators are a fairly detailed topic in their own right. For
now, don't worry about how they work just be aware of what using
them looks like and trust that they do work.

Setting Up Projects and Processes Chapter 7

[184]

Our starting point is just a class derived from unittest.TestCase that defines the
setUpClass class method noted earlier, and does some initial checking for a defined
class-level _testModule attribute—if there is no test module, then all tests should
simply skip or pass, since there's nothing being tested:

class ModuleCoverageTest(unittest.TestCase):
 """
A reusable unit-test that checks to make sure that all classes in the
module being tested have corresponding test-case classes in the
unit-test module where the derived class is defined.
"""
@classmethod
def setUpClass(cls):
 if not cls._testModule:
 cls._missingTestCases = []
 return

The @classmethod line is a built-in class method decorator.

We need to start by finding all the classes and functions available in the target
module:

cls._moduleClasses = inspect.getmembers(
 cls._testModule, inspect.isclass)
cls._moduleFunctions = inspect.getmembers(
 cls._testModule, inspect.isfunction)

We'll keep track of the name of the module being tested as an additional check criteria
for class and function members, just in case:

cls._testModuleName = cls._testModule.__name__

The mechanism for keeping track of the class and function tests is similar to the
sources-and-implementations dictionaries in the initial exploration:

cls._classTests = dict(
 [
 ('test%s' % m[0], m[1])
 for m in cls._moduleClasses
 if m[1].__module__ == cls._testModuleName
]
)
cls._functionTests = dict(
 [

Setting Up Projects and Processes Chapter 7

[185]

 ('test%s' % m[0], m[1])
 for m in cls._moduleFunctions
 if m[1].__module__ == cls._testModuleName
]
)

The list of required test case class names is the aggregated list of all class and function
test case class names:

cls._requiredTestCases = sorted(
 list(cls._classTests.keys()) + list(cls._functionTests.keys())
)

The collection of actual test case classes will be used later to test against:

cls._actualTestCases = dict(
 [
 item for item in
 inspect.getmembers(inspect.getmodule(cls),
 inspect.isclass)
 if item[1].__name__[0:4] == 'test'
 and issubclass(item[1], unittest.TestCase)
]
)

Next, we'll generate the list of missing test case names that the
class testCodeCoverage test method uses:

cls._missingTestCases = sorted(
 set(cls._requiredTestCases).difference(
 set(cls._actualTestCases.keys())))

At this point, that lone test method would be able to execute, and either pass or fail
with an output that indicates what test cases are missing. If we write out the
test_me.py module as follows:

from unit_testing import ModuleCoverageTest

class testmeCodeCoverage(ModuleCoverageTest):
 _testModule = me

if __name__ == '__main__':
 unittest.main()

Setting Up Projects and Processes Chapter 7

[186]

Then after it's been executed, we would get the following:

All that needs to be done to make that top-level code coverage test pass is to add the
missing test case classes:

class testmeCodeCoverage(ModuleCoverageTest):
 _testModule = me

class testChild(unittest.TestCase):
 pass

class testChildOverride(unittest.TestCase):
 pass

class testParent(unittest.TestCase):
 pass

class testShowable(unittest.TestCase):
 pass

if __name__ == '__main__':
 unittest.main()

Setting Up Projects and Processes Chapter 7

[187]

This approach, taking a proactive stance on ensuring code coverage in this fashion,
lends itself well to making unit testing a lot less troublesome. If the process for
writing tests starts with a common test that will tell the test developer what's missing
at every step along the way, then the entire process of writing tests really becomes
repeating the following steps until there are no tests failing:

Execute the test suite
If there are failing tests, make whatever code changes are needed to make
the last one pass:

If it's a missing test failure, add the necessary test class or
method
If it's a failure because of the code in the source, alter that
accordingly after verifying that the test values involved in
the failure should have passed

Onward!

In order to be able to test for missing property and method tests across all the test
case classes in the test module, we'll need to find all of them and keep track of them
on a class-by-class basis. This is mostly the same process that we discovered earlier,
but the stored values have to be retrievable by class name since we want the single
coverage test instance to check all of the source and test case classes, so we'll store
them in a couple of dictionaries, propSources for the sources of each, and
propImplementations for the actual functionality objects:

cls._propertyTestsByClass = {}
for testClass in cls._classTests:
 cls._propertyTestsByClass[testClass] = set()
 sourceClass = cls._classTests[testClass]
 sourceMRO = list(sourceClass.__mro__)
 sourceMRO.reverse()
 # Get all the item's properties
 properties = [
 member for member in inspect.getmembers(
 sourceClass, inspect.isdatadescriptor)
 if member[0][0:2] != '__'
]
 # Create and populate data-structures that keep track of where
 # property-members originate from, and what their implementation
 # looks like. Initially populated with None values:
 propSources = {}
 propImplementations = {}
 for name, value in properties:
 propSources[name] = None

Setting Up Projects and Processes Chapter 7

[188]

 propImplementations[name] = None
 for memberName in propSources:
 implementation = sourceClass.__dict__.get(memberName)
 if implementation \
 and propImplementations[memberName] != implementation:
 propImplementations[memberName] = implementation
 propSources[memberName] = sourceClass
 cls._propertyTestsByClass[testClass] = set(
 [
 'test%s' % key for key in propSources
 if propSources[key] == sourceClass
]
)

The acquisition of the method tests works in the same way, and uses the same
approach from the previous exploration as well:

cls._methodTestsByClass = {}
for testClass in cls._classTests:
 cls._methodTestsByClass[testClass] = set()
 sourceClass = cls._classTests[testClass]
 sourceMRO = list(sourceClass.__mro__)
 sourceMRO.reverse()
Get all the item's methods
methods = [
 member for member in inspect.getmembers(
 sourceClass, inspect.ismethod)
] + [
 member for member in inspect.getmembers(
 sourceClass, inspect.isfunction)
]
Create and populate data-structures that keep track of where
method-members originate from, and what their implementation
looks like. Initially populated with None values:
methSources = {}
methImplementations = {}
for name, value in methods:
 if name.startswith('_%s__' % sourceClass.__name__):
 # Locally-defined private method - Don't test it
 continue
 if hasattr(value, '__isabstractmethod__') \
 and value.__isabstractmethod__:
 # Locally-defined abstract method - Don't test it
 continue methSources[name] = None
 methImplementations[name] = None
 for memberName in methSources:
 implementation = sourceClass.__dict__.get(memberName)
 if implementation \

Setting Up Projects and Processes Chapter 7

[189]

 and methImplementations[memberName] != implementation:
 methImplementations[memberName] = implementation
 methSources[memberName] = sourceClass
 cls._methodTestsByClass[testClass] = set(
 [
 'test%s' % key for key in methSources
 if methSources[key] == sourceClass
]
)

Once these last two blocks have executed, the code coverage test class will have a
complete breakout of all the test methods needed for each test case class in the test
module. The property test collection (cls._propertyTestsByClass) is sparse, since
there's only one property associated with any class, Parent.prop:

{
 "testChild": set(),
 "testChildOverride": set(),
 "testParent": {"testprop"},
 "testShowable": set()
}

The method test structure (cls._methodTestsByClass) has a bit more meat to it,
though, and is accurately representing that the public and _protected methods in
the ChildOverride class need their own test methods, and that the abstract show
method in Showable does not need to be tested:

{
 "testChild": set(),
 "testChildOverride": {
 "test_protected", "testpublic"
 },
 "testParent": {
 "test__init__", "test_protected",
 "testpublic", "testshow"
 },
 "testShowable": set()
}

That data is all that's needed to handle the tests for the required property and method
tests. All that remains is working out a way to attach them to each test case class.

Setting Up Projects and Processes Chapter 7

[190]

The property and method testing decorators
A decorator can be thought of as a function that takes another function as an
argument, and extends or wraps other functionality around the decorated function
without actually modifying it. Any callable—a function, an instance method of a
class, or (in this case) a class method belonging to a class—can be used as the
decorating function. In this case, the code coverage test case class is going to define
two class methods (AddPropertyTesting and AddMethodTesting) using a
decorator function structure in order to add new methods (testPropertyCoverage
and testMethodCoverage) to any classes that are decorated with them. Those two
methods, since they are nested members of the main code coverage class, have access
to the data in the class—specifically the lists of required property and method test
names that were generated. Also, because they are nested members of the decorator
functions themselves, they will have access to the variables and data in those
methods.

The two decorator methods are almost identical, except for their names, their
messaging, and where they look for their data, so only the first, AddMethodTesting,
will be detailed. The method starts by checking to make sure that it's a member of a
class that extends the ModuleCoverageTest class—this assures that the data it's
going to be looking at is limited to only that which is relevant to the combined source
and test modules:

@classmethod
def AddMethodTesting(cls, target):
 if cls.__name__ == 'ModuleCoverageTest':
 raise RuntimeError('ModuleCoverageTest should be extended '
 'into a local test-case class, not used as one directly.')
 if not cls._testModule:
 raise AttributeError('%s does not have a _testModule defined '
 'as a class attribute. Check that the decorator-method is '
 'being called from the extended local test-case class, not '
 'from ModuleCoverageTest itself.' % (cls.__name__))

The target argument that's passed in at the start of the function is
a unittest.TestCase class (though it's not explicitly type checked).

Setting Up Projects and Processes Chapter 7

[191]

It also needs to make sure that the data it's going to use is available. If it's not, for
whatever reason, that can be remedied by explicitly calling the class setUpClass
method ,which was just defined:

try:
 if cls._methodTestsByClass:
 populate = False
 else:
 populate = True
except AttributeError:
 populate = True
if populate:
 cls.setUpClass()

The next step is defining a function instance to actually execute the test. This function
is defined as if it were a member of a class because it will be by the time the
decoration process has completed, but because it's nested inside the decorator
method, it has access to, and will preserve the values of, all of the variables and
arguments defined in the decorator method so far. Of these, the most important is the
target, since that's the class that's going to be decorated. That target value is,
essentially, attached to the function that's being defined/created:

def testMethodCoverage(self):
 requiredTestMethods = cls._methodTestsByClass[target.__name__]
 activeTestMethods = set(
 [
 m[0] for m in
 inspect.getmembers(target, inspect.isfunction)
 if m[0][0:4] == 'test'
]
)
 missingMethods = sorted(
 requiredTestMethods.difference(activeTestMethods)
)
 self.assertEquals([], missingMethods,
 'unit testing policy requires test-methods to be created for '
 'all public and protected methods, but %s is missing the '
 'following test-methods: %s' % (
 target.__name__, missingMethods
)
)

Setting Up Projects and Processes Chapter 7

[192]

The test method itself is pretty straightforward: it creates a set of active test method
names that are defined in the test case class it's attached to, removes those from the
required test methods for the test case class that it retrieves from the coverage test
class, and if there are any left over, the test will fail and announce what's missing.

All that remains to do is attach the function to the target and return the target so that
access to it isn't disrupted:

target.testMethodCoverage = testMethodCoverage
return target

Once those decorators are defined, they can be applied to the unit testing code like so:

class testmeCodeCoverage(ModuleCoverageTest):
 _testModule = me

@testmeCodeCoverage.AddPropertyTesting
@testmeCodeCoverage.AddMethodTesting
class testChild(unittest.TestCase):
 pass

@testmeCodeCoverage.AddPropertyTesting
@testmeCodeCoverage.AddMethodTesting
class testChildOverride(unittest.TestCase):
 pass

@testmeCodeCoverage.AddPropertyTesting
@testmeCodeCoverage.AddMethodTesting
class testParent(unittest.TestCase):
 pass

@testmeCodeCoverage.AddPropertyTesting
@testmeCodeCoverage.AddMethodTesting
class testShowable(unittest.TestCase):
 pass

Setting Up Projects and Processes Chapter 7

[193]

And, with them in place, the test run starts reporting what's missing:

Creating unit test template files
The bare-bones starting point for the collection of tests just shown would work as a
starting point for any other collection of tests that are concerned with a single
module. The expected code structure for hms_sys, however, includes whole packages
of code, and may include packages inside those packages. We don't know yet,
because we haven't gotten that far. That's going to have an impact on the final unit
testing approach, as well as on the creation of template files to make the creation of
those test modules faster and less error-prone.

Setting Up Projects and Processes Chapter 7

[194]

The main impact is centered around the idea that we want to be able to execute all of
the tests for an entire project with a single call, while at the same time not being
required to execute every test in the component project's test suite in cases where the
interest is in one or more tests running against something deeper in the package
structure. It would make sense, then, to break the tests out in the same sort of
organizational structure as the package that they are testing, and allow test modules
at any level to import child tests when they are called or imported themselves by a
parent higher Up the module tree.

To that end, the template module for unit tests needs to accommodate the same sort
of import capabilities that the main code base does, while keeping track of all the tests
that result from whatever import process originated with the test run. Fortunately,
the unittest module also provides classes that can be used to manage that need,
such as the TestSuite class, which is a collection of tests that can be executed and
that can have new tests added to it as needed. The final test module template looks
much like the module template we created earlier, though it starts with some search-
and-replace boilerplate comments:

#!/usr/bin/env python

Python unit-test-module template. Copy the template to a new
unit-test-module location, and start replacing names as needed:
#
PackagePath ==> The path/namespace of the parent of the
module/package
being tested in this file.
ModuleName ==> The name of the module being tested
#
Then remove this comment-block

"""
Defines unit-tests for the module at PackagePath.ModuleName.
"""

#######################################
Any needed from __future__ imports
Create an "__all__" list to support
"from module import member" use
#######################################

Setting Up Projects and Processes Chapter 7

[195]

Unlike the packages and modules that provide application functionality, the unit test
module template doesn't expect or need to provide much in the way
of all entries—only the test case classes that reside in the module itself, and any
child test modules:

__all__ = [
 # Test-case classes
 # Child test-modules
]

There are a few standard imports that will occur in all test modules, and there is the
potential for third-party imports as well, though that's probably not going to be
common:

#######################################
Standard library imports needed
#######################################

import os
import sys
import unittest

#######################################
Third-party imports needed
#######################################

#######################################
Local imports needed
#######################################

from unit_testing import *

#######################################
Initialization needed before member
definition can take place
#######################################

All the test modules will define a unittest.TestSuite instance
named LocalSuite, which contains all of the local test cases and can be imported by
name in parent modules when needed:

#######################################
Module-level Constants
#######################################

LocalSuite = unittest.TestSuite()

Setting Up Projects and Processes Chapter 7

[196]

#######################################
Import the module being tested
#######################################

import PackagePath.ModuleName as ModuleName

We'll also define boilerplate code that defines the code coverage test case class:

#######################################
Code-coverage test-case and
decorator-methods
#######################################

class testModuleNameCodeCoverage(ModuleCoverageTest):
 _testModule = ModuleName

LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testModuleNameCodeCoverage
)
)

From this point on, everything that isn't part of the __main__ execution of the
module should be definitions of the test case classes:

#######################################
Test-cases in the module
#######################################

#######################################
Child-module test-cases to execute
#######################################

If child test modules need to be imported later on, the code structure for doing so is
here, commented out and ready to copy, paste, uncomment, and rename as needed:

import child_module
LocalSuite.addTests(child_module.LocalSuite._tests)

There more standard module sections, following the organization structure of the
standard module and package templates:

#######################################
Imports to resolve circular
dependencies. Avoid if possible.
#######################################

#######################################

Setting Up Projects and Processes Chapter 7

[197]

Initialization that needs to
happen after member definition.
#######################################

#######################################
Code to execute if file is called
or run directly.
#######################################

Finally, there's some provision for executing the module directly, running the tests,
and displaying and writing out the reports when no failures occur:

if __name__ == '__main__':
 import time
 results = unittest.TestResult()
 testStartTime = time.time()
 LocalSuite.run(results)
 results.runTime = time.time() - testStartTime
 PrintTestResults(results)
 if not results.errors and not results.failures:
 SaveTestReport(results, 'PackagePath.ModuleName',
 'PackagePath.ModuleName.test-results')

The template provides a handful of items that can be found and replaced when it's
first copied to a final test module:

PackagePath: The full namespace to the module being tested, minus the
module itself. For example, if a test module was being created for a module
whose full namespace was
hms_core.business.processes.artisan, the PackagePath would be
hms_core.business.processes

ModuleName: The name of the module being tested (artisan, using the
preceding example)

That search-and-replace operation will also provide a unique name for the
ModuleCoverageTest subclass definition that's embedded in the template. As soon
as those replacements are completed, the test module can be run, as shown in the
preceding example, and will start reporting on missing test cases and methods.

Setting Up Projects and Processes Chapter 7

[198]

Each test module that follows this structure keeps track of its local tests in a
unittest.TestSuite object that can be imported by parent test modules, and this
can add tests from child TestSuite instances as needed a commented-out example
of what that would look like is in place of the template file:

import child_module
LocalSuite.addTests(child_module.LocalSuite._tests)

Finally, the template file makes use of some display and reporting functions defined
in the custom unit_testing module to write summary test result data to the console
and (when tests run without failure) to a local file that can be tracked in source
control if/as desired.

Integrating tests with the build process
There's only one story/task set remaining how to integrate unit tests with whatever
build process will be put into play for the component projects:

As a developer, I need to know how to integrate unit tests for a component
project into the build process for that component project so that builds can
automatically execute unit tests:

Determine how to integrate unit tests into the build process
Determine how to deal with build/test integration for
different environments

With the unit testing structures just defined in place in a component project,
integrating them into a build process is relatively easily accomplished. In a setup.py
file-based build, the test modules can be specified in the test_suite argument for
the setup function itself, and tests can be run by executing python setup.py test.
It will be necessary in the hms_sys component projects to add the path for the unit
testing standards code to setup.py as well:

#!/usr/bin/env python

Adding our unit testing standards
import sys
sys.path.append('../standards')

from setuptools import setup

The actual setup function call:
setup(

Setting Up Projects and Processes Chapter 7

[199]

 name='HMS-Core',
 version='0.1.dev0',
 author='Brian D. Allbee',
 description='',
 package_dir={
 '':'src',
 # ...
 },
 # Can also be automatically generated using
 # setuptools.find_packages...
 packages=[
 'hms_core',
 # ...
],
 package_data={
'hms_core':[
'filename.ext',
...
]
 },
 entry_points={
'console_scripts':[
'executable_name = namespace.path:function',
...
],
 },
Adding the test suite for the project
 test_suite='tests.test_hms_core',
)

If a Makefile-based build process becomes necessary, the specific call to setup.py
test can simply be included in whatever Make targets are relevant:

Makefile for the HMS Core (hms-core) project

main: test setup
 # Doesn't (yet) do anything other than running the test and
 # setup targets

setup:
 # Calls the main setup.py to build a source-distribution
 # python setup.py sdist

test:
 # Executes the unit-tests for the package, allowing the build-
 # process to die and stop the build if a test fails
 python setup.py. test

Setting Up Projects and Processes Chapter 7

[200]

A test suite executed from within setup.py will return the appropriate values to stop
the Make process if an error is raised or a failure occurs.

Summary
It's probable, barring the setup of a new team or new business, that most of these
processes and policies will have been established well before the start of a
project—usually before or during the first project that the team undertook. Most
development shops and teams will have discovered the needs that underlie the sorts
of solutions presented in this chapter, and will have acted upon them.

With all of these items set and committed to the SCM, the foundations are laid for all
of the subsequent iterations' development work. The first “real” iteration will tackle
the basic business object's definition and implementation.

8
Creating Business Objects

While examining the logical architecture of hms_sys in Chapter 7, Setting up Projects
and Processes, a handful of common business object types surfaced across the entire
scope of the system:

The objects, as displayed in the preceding diagram, are explained as follows:

An Artisan object represents a single Artisan—an end user who creates
product items to be sold, and who makes those products available to the
HMS Central Office through the system. Artisans are collected in the
Central Office's data structure, and can be managed to a certain extent by
Central Office staff, but the majority of their actual data needs to be owned
and managed by the individual artisans themselves; that way, they have as
much control over their information as possible, and Central Office staff
aren't put in the position of managing data changes for artisans if, for
example, they change their address, or want to add or change a company
name.
A Product is a representation of a physical object, something that an
Artisan has created that is for sale.
An Order is the result of a customer placing an order for a Product through
the HMS web store.

Creating Business Objects Chapter 8

[202]

These three object types also infer two others that were not called out earlier:

A Customer, representing an actual customer that placed an Order, and
that can be attached to one or more orders
An Address, representing a physical location that something could be
shipped to or from, which can also be attached to one or more orders, may
be a property of a Customer, and almost certainly will be a property of an
Artisan

This chapter will cover the implementation of those objects as a common class library
that can be leveraged by the application and service projects' code, including the
design, implementation, automated testing, and build process that turns it into a
deployable package.

This chapter covers the following:

Iteration goals
Assembly of stories and tasks
A quick review of classes
Implementing the basic business objects in hms_sys
Testing the business objects
Distribution and installation considerations
Quality assurance and acceptance
Operation/use, maintenance, and decommissioning considerations

Iteration goals
The deliverable for this iteration, then, is a class library that can be installed alongside
or incorporated with the packages and code of the real projects—the user applications
and the service—to provide the common representational structure of these business
objects:

The hms_core package/library
Unit tested
Capable of being built as a free standing package

Creating Business Objects Chapter 8

[203]

Includes base classes that provide baseline representations of the following:

Artisans
Customers
Orders
Products

Assembly of stories and tasks
Since the components of the business objects package are intended to be consumed or
used by other packages in the system, most of the relevant stories are still focused on
providing something that a developer needs:

As a developer, I need a common definition and functional structure to
represent addresses in the system, so that I can incorporate them into the
parts of the system that need them:

Define a BaseAddress Abstract Base Class (ABC)
Implement the BaseAddress ABC
Unit test the BaseAddress ABC

As a developer, I need a common definition and functional structure to
represent artisans in the system, so that I can incorporate them into the
parts of the system that need them:

Define a BaseArtisan ABC
Implement the BaseArtisan ABC
Unit test the BaseArtisan ABC

As a developer, I need a common definition and functional structure to
represent customers in the system, so that I can incorporate them into the
parts of the system that need them:

Define a BaseCustomer ABC
Implement the BaseCustomer ABC
Unit test the BaseCustomer ABC

Creating Business Objects Chapter 8

[204]

As a developer, I need a common definition and functional structure to
represent orders in the system, so that I can incorporate them into the parts
of the system that need them:

Define a BaseOrder ABC
Implement the BaseOrder ABC
Unit test the BaseOrder ABC

As a developer, I need a common definition and functional structure to
represent products in the system, so that I can incorporate them into the
parts of the system that need them:

Define a BaseProduct ABC
Implement the BaseProduct ABC
Unit test the BaseProduct ABC

As an Artisan, I need the business objects library to be installed with my
application so that the application will work as needed without me having
to install dependent components for it:

Determine whether setup.py based packaging can include
packages from outside the local project structure, and
implement it if it can
Otherwise, implement Makefile based processes for
including hms_core in the other projects' packaging
processes

As a Central Office user, I need the business objects library to be installed
with my application so that the application will work as needed without
me having to install dependent components of it:

Verify that the Artisan packaging/installation process will
also work for Central Office installations

As a system administrator, I need the business objects library to be installed
with the Artisan gateway service so that it will work as needed without me
having to install dependent components of it:

Verify that the Artisan packaging/installation process will
also work for Artisan gateway installations

Creating Business Objects Chapter 8

[205]

It's worth noting that while this design starts by defining a lot of abstract classes, that
is not the only way it could have gone. Another viable option would have been to
start with simple Concrete Classes in each of the other libraries, then extract the
common requirements across those, and create ABCs to enforce those requirements.
That approach would yield concrete functionality sooner, while relegating structural
and data standards to later, and requiring the movement of a fair chunk of code from
the Concrete Classes back down to the ABCs, but it's still a viable option.

A quick review of classes
A class, in any object-oriented language, can be thought of as a blueprint for creating
objects—defining what those objects, as instances of the class, are, have, and can do.
Classes frequently represent real world objects, be they people, places, or things, but
even when they don't, they provide a concise set of data and capabilities/functionality
that fits into a logical conceptual unit.

As hms_sys development progresses, there will be several classes, both concrete and
abstract, that will be designed and implemented. In most cases, the design will start
with a class diagram—a drawing of one-to-many classes that shows the structure of
each and any relationship between them:

A Concrete Class is intended to be instantiated, to have object instances created from
the blueprint it provides. An Abstract Class provides baseline functionality, interface
requirements, and type identity for objects that have specific Class Members
(concrete or abstract) that will be inherited by, or that require implementation in,
classes that derive from them. The scope of those members, both Properties and
Methods, are indicated by + for public members, - for private members, and # for
protected members by convention, though as already noted, Python doesn't have
truly protected or private members. Still, those at least provide some indication of
what the intended scope of a member is.

Creating Business Objects Chapter 8

[206]

Implementing the basic business objects
in hms_sys
At this point in the development process, we simply don't know whether the exact
same functionality for all of the business object classes will be in play in the two
applications and the service that are going to be built. The data ownership
rules—determination of what users can create, update, or delete what data inside an
object—haven't been detailed enough to make those decisions yet. We do, however,
have enough information, based solely on the purposes of those objects, to start
defining what data they represent, and what constraints should exist around those
data points.

We may have enough information here and now to know that certain functionalities
need to exist for some of these object types as well—that Artisan objects need the
ability to add and remove related Product objects, for example—even if we don't
know yet how that's going to work, or whether there are data ownership rules around
those. We can also make some educated guesses around which classes will need to be
abstract (because their actual implementations will vary between the applications and
the service).

Address
 The Address class represents a physical location—a place that something could be
mailed or shipped to, or that could be found on a map. The properties of an address
are going to be consistent no matter what context the objects are encountered in—that
is, an address is an address whether it's associated with an Artisan, a Customer, or an
Order—and it feels safe to assume at this point that the whole of any address can be
altered by an object that it is a member of, or none of it can be. At this point, barring
information to the contrary, it doesn't feel like storing addresses as separate items in
the backend data structure will be necessary; although it's possible that they'll have a
meaningful independent existence of their own, there's no reason to assume that they
will.

Creating Business Objects Chapter 8

[207]

With that in mind, making addresses an abstract class doesn't feel like it's necessary,
at least not yet:

An Address is a dumb data object, at least so far; it consists of a data structure, but
has no methods or functionality. The properties of the class themselves are fairly
simple, and have a few rules around them:

street_address is the street address of the location. It should be a single
line string value, is required (cannot be empty), and should probably not
allow any whitespace characters other than spaces. An example value of
street_address would be 1234 Main Street.

building_address is an optional second line of the address, used to
indicate more detail about where at the street address the actual location is.
Examples might include an apartment number, a suite or office location or
number, and so on. If it's present in any given address, it should be a string
value with the same constraints as street_address, but, again, it's an
optional value.

city is a required string value, also restricted to a single line, and the same
whitespace rules as street_address.

region is an optional string value, with the same constraints, as are
postal_code and country, at least for the time being.

Creating Business Objects Chapter 8

[208]

These last three properties are difficult to generate rules around without some sort of
country specific context. It's possible, though it seems unlikely, for addresses in some
countries to not have regions or postal codes, while in other countries, they have
completely different names and data requirements. By way of example, consider that
in the United States, region and postal_code represent the State and ZIP Code (five
numbers, with an optional dash and four more numbers), while in Canada they
would represent a territory or province and a postal code that is alphanumeric. There
may be a solution for some aspects of the requirements on a country by country basis,
and that will be examined after the initial property definitions are taken care of.

The initial implementation of Address is pretty straightforward; we start by defining
a class with the properties that will be available:

class Address:
 """
Represents a physical mailing-address/location
"""
 ###################################
 # Class attributes/constants #
 ###################################

... removed for brevity

 ###################################
 # Instance property definitions #
 ###################################

 building_address = property(
 _get_building_address, _set_building_address,
 _del_building_address,
 'Gets, sets or deletes the building_address (str|None) '
 'of the instance'
)
 city = property(
 _get_city, _set_city, _del_city,
 'Gets, sets or deletes the city (str) of the instance'
)
 country = property(
 _get_country, _set_country, _del_country,
 'Gets, sets or deletes the country (str|None) of the '
 'instance'
)
 region = property(
 _get_region, _set_region, _del_region,
 'Gets, sets or deletes the region (str|None) of the '
 'instance'

Creating Business Objects Chapter 8

[209]

)
 postal_code = property(
 _get_postal_code, _set_postal_code, _del_postal_code,
 'Gets, sets or deletes the postal_code (str|None) of '
 'the instance'
)
 street_address = property(
 _get_street_address, _set_street_address,
 _del_street_address,
 'Gets, sets or deletes the street_address (str) of the '
 'instance'
)

Each of those property calls specify a getter, setter, and deleter method that then
have to be implemented. The getter methods are all very simple, each returning the
associated property value that stores the instance's data for that property:

 ###################################
 # Property-getter methods #
 ###################################

 def _get_building_address(self) -> (str,None):
 return self._building_address

 def _get_city(self) -> str:
 return self._city

 def _get_country(self) -> (str,None):
 return self._country

 def _get_region(self) -> (str,None):
 return self._region

 def _get_postal_code(self) -> (str,None):
 return self._postal_code

 def _get_street_address(self) -> str:
 return self._street_address

The setter methods are also relatively simple, though there's logic that has to be
implemented in order to enforce the type and value rules noted earlier. The
properties of Address, so far, fall into two categories:

Required, non-empty, single line strings (such as street_address)

Optional (None) or non-empty, single line string values
(building_address)

Creating Business Objects Chapter 8

[210]

The implementation for the required values will all follow the same pattern, using
street_address as an example:

 def _set_street_address(self, value:str) -> None:
 # - Type-check: This is a required str value
 if type(value) != str:
 raise TypeError(
 '%s.street_address expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Value-check: no whitespace other than " "
 bad_chars = ('\n', '\r', '\t')
 is_valid = True
 for bad_char in bad_chars:
 if bad_char in value:
 is_valid = False
 break
 # - If it's empty or otherwise not valid, raise error
 if not value.strip() or not is_valid:
 raise ValueError(
 '%s.street_address expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Everything checks out, so set the attribute
 self._street_address = value

The setter method process, then, from start to finish, is as follows:

Make sure that the value submitted is a str type, and raises a TypeError1.
if that's not the case
Create a list of forbidden characters—newline, carriage return, and tab,2.
('\n', '\r', '\t')—that shouldn't be allowed in the value
Assume that the value is valid until otherwise determined (is_valid =3.
True)

Creating Business Objects Chapter 8

[211]

Check for the existence of each of those bad characters in the value, and if4.
they are present, flags the value as invalid
Check to see if the value is only whitespace (value.strip()) or if any5.
invalid characters were found, and if so, raises a ValueError
If no errors were raised, set the internal storage attribute for the property to6.
the now verified value (self._street_address = value)

This same code, with street_address changed to city, takes care of the city
property's setter implementation. This property setter process/flow is going to come
up repeatedly, in this iteration and iterations that follow. When it's in use from this
point on, it'll be referred to as a standard required text line property setter.

The optional properties use a very similar structure, but check for (and allow) a None
value first, since setting their values to None is technically valid/allowed. The
building_address property setter serves as an example of this process:

 def _set_building_address(self, value:(str,None)) -> None:
 if value != None:
 # - Type-check: If the value isn't None, then it has to
 # be a non-empty, single-line string without tabs
 if type(value) != str:
 raise TypeError(
 '%s.building_address expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces or None, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Value-check: no whitespace other than " "
 bad_chars = ('\n', '\r', '\t')
 is_valid = True
 for bad_char in bad_chars:
 if bad_char in value:
 is_valid = False
 break
 # - If it's empty or otherwise not valid, raise error
 if not value.strip() or not is_valid:
 raise ValueError(
 '%s.building_address expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces or None, but was passed '
 '"%s" (%s)' %

Creating Business Objects Chapter 8

[212]

 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - If this point is reached without error, then the
 # string-value is valid, so we can just exit the if
 self._building_address = value

This setter method process, like the standard required text line property before it, will
appear with some frequency, and will be referred to as a standard optional text line
property setter.

The deleter methods are also going to be quite simple—all of these properties, if
deleted, can be set to a value of None so that they still have a value (thus avoiding
instances of AttributeError if they are referenced elsewhere), but one that can be
used to indicate that there isn't a value:

 def _del_building_address(self) -> None:
 self._building_address = None

 def _del_city(self) -> None:
 self._city = None

 def _del_country(self) -> None:
 self._country = None

 def _del_region(self) -> None:
 self._region = None

 def _del_postal_code(self) -> None:
 self._postal_code = None

 def _del_street_address(self) -> None:
 self._street_address = None

With the property definitions and their underlying methods defined, all that remains
to make the class usable is the definition of its __init__ method, so that creation of
an Address instance can actually accept and store the relevant properties.

Creating Business Objects Chapter 8

[213]

It's tempting to just stick to a simple structure, with the various address elements
accepted and required in the order that they'd be normally be used in, something like
this:

 def __init__(self,
 street_address, # 1234 Main Street
 building_address, # Apartment 3.14
 city, region, postal_code, # Some Town, ST, 00000
 country # Country. Maybe.
):

Another approach, equally valid, would be to allow default values for the arguments
that would translate to the optional properties of the instance created:

 def __init__(self,
 street_address, # 1234 Main Street
 city, # Some Town
 building_address=None, # Apartment 3.14
 region=None, postal_code=None, # ST, 00000
 country=None # Country
):

Both approaches are perfectly valid from a functional standpoint—it would be
possible to create an Address instance using either—but the first is probably going to
be more easily understood, while the second would allow the creation of a minimal
instance without having to worry about specifying every argument value every time.
Making a decision about which argument structure to use should probably involve
some serious thought about a variety of factors, including these:

Who will be creating new Address instances?
What do those Address creation processes look like?
When and where will new Address instances be needed?
How will they be created? That is, will there be some sort of UI around the
process with any consistency?

The who question has a very simple answer, and one that mostly answers the other
questions as well: pretty much any user may need to be able to create a new address.
Central Office staff probably will in the process of setting up new Artisan accounts.
Artisans may occasionally need to if they need to change their address. Customers,
though only indirectly, will need to when they place their first order, and may well
need to create addresses for shipping separate from their own default/billing
addresses. Even the Artisan gateway service will probably need to create Address
instances as part of the processes for handling movement of data back and forth.

Creating Business Objects Chapter 8

[214]

In most of those cases, though, there will be some sort of UI involved: a web store
form for the Customer and Order related items, and whatever GUI is in place in the
Artisan and Central Office applications. With a UI sitting on top of the address
creation process, the onus for passing arguments from that UI to __init__ would
only be of importance or concern to the developer. So those questions, though they
shed some light on what the functional needs are, really don't help much in making a
choice between the two argument form possibilities.

That said, there's no reason that the __init__ can't be defined one way, and another
method created for Address to allow the other structure, a standard_address,
perhaps:

 @classmethod
 def standard_address(cls,
 street_address:(str,), building_address:(str,None),
 city:(str,), region:(str,None), postal_code:(str,None),
 country:(str,None)
):
 return cls(
 street_address, city, building_address,
 region, postal_code, country
)

That then allows __init__ to use the structure that leverages the various default
argument values:

def __init__(self,
 street_address:(str,), city:(str,),
 building_address:(str,None)=None, region:(str,None)=None,
 postal_code:(str,None)=None, country:(str,None)=None
):
 """
Object initialization.

self (Address instance, required) The instance to
 execute against
street_address (str, required) The base street-address of the
 location the instance represents
city (str, required) The city portion of the street-
 address that the instance represents
building_address .. (str, optional, defaults to None) The second
 line of the street address the instance
represents,
 if applicable
region (str, optional, defaults to None) The region
 (state, territory, etc.) portion of the street-

Creating Business Objects Chapter 8

[215]

 address that the instance represents
postal_code (str, optional, defaults to None) The postal-code
 portion of the street-address that the instance
 represents
country (str, optional, defaults to None) The country
 portion of the street-address that the instance
 represents
"""
 # - Set default instance property-values using _del_... methods
 self._del_building_address()
 self._del_city()
 self._del_country()
 self._del_postal_code()
 self._del_region()
 self._del_street_address()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_street_address(street_address)
 self._set_city(city)
 if building_address:
 self._set_building_address(building_address)
 if region:
 self._set_region(region)
 if postal_code:
 self._set_postal_code(postal_code)
 if country:
 self._set_country(country)

That makes Address functionally complete, at least for the purposes of the story
concerning it in this iteration.

As any class is undergoing development, it's quite possible that questions will arise
around use cases that the developer envisions, or that simply occur while considering
some aspect of how the class works. Some examples that surfaced while Address was
being fleshed out are as follows:

What can/should happen if a non-default property value is deleted in an
instance? If a required value is deleted, the instance is no longer well
formed and is technically invalid as a result—should it even be possible to
perform such a deletion?

Creating Business Objects Chapter 8

[216]

There is a Python module, pycountry, that gathers up ISO derived
country and region information. Would it be desirable to try to leverage
that data in order to ensure that country/region combinations are realistic?

Will Address eventually need any sort of output capabilities? Label text,
for example? Or maybe the ability to generate a row in a CSV file?

Such questions are probably worth saving somewhere, even if they never become
relevant. If there isn't some sort of project system repository for such things, or some
process in place in the development team for preserving them so they don't get lost,
they can always be added to the code itself as some kind of comment, perhaps like so:

TODO: Consider whether Address needs some sort of #validation
mechanism that can leverage pycountry to assure #that
county/region combinations are kosher.
pycountry.countries—collection of countries
pycountry.subdivisions—collection of regions by #country
TODO: Maybe we need some sort of export-mechanism? Or a
label-ready output?
TODO: Consider what can/should happen if a non-default #property-
value is deleted in an instance. If a required #value is
deleted, the instance is no longer well-formed...
class Address:
 """
#Represents a physical mailing-address/location
"""

BaseArtisan
The Artisan class represents an artisan who participates in the Hand Made Stuff
marketplace—a person who creates products that are available to be sold through the
Central Office's web store. Knowing that there will almost certainly be different
functional rules for each different user's interaction with a final Artisan class, it
makes sense to make an abstract class in the hms_core code base that defines the
common functionality and requirements for any concrete Artisan in the other
packages. We'll name that class BaseArtisan.

Creating Business Objects Chapter 8

[217]

Like the Address class we just completed, the design and implementation of
BaseArtisan starts with a class diagram:

It's not unusual for abstract classes to have a naming convention that
indicates that they are abstract. In this case, the prefix of Base is that
indicator, and will be used for other abstract classes as development
progresses.

BaseArtisan is intended to provide a common set of state data rules and
functionality for all of the properties associated with any Artisan in any part of the
system. The properties themselves, then, will be concrete implementations.
BaseArtisan is also intended to provide some (minimal) functional requirements, in
the form of the add_product and remove_product methods. It's a given, since
artisans and products relate to each other, that a concrete Artisan object will need to
be able to add and remove Product objects, but the specifics about how those
processes work may well vary between the two applications and the services that are
making use of that functionality, so they will be abstract—required to be
overridden/implemented in any class that derives from BaseArtisan.

This class diagram also includes the Address class that was created earlier, with a
diamond ended connector between the two classes. That connection indicates that the
Address class is used as an aggregated property of BaseArtisan—that is, that the
address property of BaseArtisan is an instance of Address. That is also indicated in
the address property itself, with an <Address> specified as the type of the address
property. In simple terms, a BaseArtisan has an Address.

Creating Business Objects Chapter 8

[218]

It would also be possible to define BaseArtisan as inheriting from Address. The
class diagram for that relationship would be almost identical, except for the
connector, as shown here:

In this relationship, a BaseArtisan is an Address—it would have all of the
properties of an Address, as well as any method members that might be added down
the line. Both of these relationships are perfectly legal, but there are advantages to
using the aggregation (or composition) approach over relying on inheritance that are
worth noting before moving on to the implementation of BaseArtisan.

OO principles – composition over inheritance
It's probable that the most obvious of those advantages is that the structure is easily
understood. An Artisan instance will have an address property that is another
object, and that object has its own relevant properties. At the Artisan level, where
there is only one address of any importance, that might not seem significant. Other
objects, however, such as Customer and Order, might have more than one associated
address (billing and shipping addresses, for example), or even
several: Customer might have several shipping addresses that need to be held on to
and available.

Creating Business Objects Chapter 8

[219]

As a system's object library becomes larger and more complex, using a purely
inheritance based design approach will inevitably result in large trees of classes,
many of which may do nothing more than provide functionality solely for the
purpose of being inherited. A composition based design will reduce that complexity,
probably significantly more so in larger and more complex libraries, since the
functionality will be encapsulated in single classes, instances of which become
properties themselves.

This sort of composition does have some potential drawbacks too, though: deeply
nested objects, properties of properties of properties ad nauseam, can result in long
chains of data structure. For example, if an order in the context of hms_sys has a
customer that in turn has a shipping_address, finding the postal_code of that
address from the Order would look something like
order.customer.shipping_address.postal_code. That's not a terribly deep or
complex path to get the data involved, and because the property names are easily
understood it's not difficult to understand the entire path. At the same time, it's not
hard to imagine this sort of nesting getting out of control, or relying on names that
aren't as easily understood.

It's also possible (perhaps likely) that a need will arise for a class to provide a local
implementation of some composed property class methods, which adds to the
complexity of the parent object's class. By way of example, assume that the address
class of the shipping_address just mentioned has a method that checks various
shipping APIs and returns a list of them sorted from lowest to highest cost—call it
find_best_shipping. If there is a requirement that the order objects be able to use
that functionality, that will probably end up with a find_best_shipping method
being defined at the order class level that calls the address-level method and returns
the relevant data.

Neither of those are significant drawbacks, however. Provided that there is some
discipline exercised in making sure that the design is logical and easily understood,
with meaningful member names, they will probably be no worse than tedious.

From a more pure, object oriented standpoint, a more significant concern is the
diamond problem. Consider the following code:

class Root:
 def method(self, arg, *args, **kwargs):
 print('Root.method(%s, %s, %s)' % (arg, str(args), kwargs))

class Left(Root):
 def method(self, arg, *args, **kwargs):
 print('Left.method(%s, %s, %s)' % (arg, str(args), kwargs))

Creating Business Objects Chapter 8

[220]

class Right(Root):
 def method(self, arg, *args, **kwargs):
 print('Right.method(%s, %s, %s)' % (arg, str(args), kwargs))

class Bottom(Left, Right):
 pass

b = Bottom()

Diagrammed, these classes form a diamond shape, hence the diamond problem's
name:

What happens upon the execution of the following:

b.method('arg', 'args1', 'args2', keyword='value')

Which method will be called? Unless the language itself defines how to resolve the
ambiguity, the only thing that is probably safe to assume is that the method of Root
will not be called, since both the Left and Right classes override it.

Python resolves ambiguities of this nature by using the order of inheritance specified
in the class' definition as a Method Resolution Order (MRO). In this case, because
Bottom is defined as inheriting from Left and Right—class Bottom(Left,

Right)—that is the order that will be used to determine which method of the several
available will actually be executed:

Outputs "Left.method(arg, ('args1', 'args2'), {'keyword': 'value'})"

Creating Business Objects Chapter 8

[221]

Although it seems unlikely that any of the installable hms_sys components will ever
reach a level of complexity where inheritance issues would be a significant concern,
there is no guarantee that it will never happen. Given that, and that a refactoring
effort to move from an inheritance based to a composition based structure would
probably be both painful and prone to introducing breaking changes, a composition
based approach, even with some of the drawbacks inherent to it, feels like a better
design even at this point.

Implementing BaseArtisan's properties
In order to represent an Artisan as a person (who may also have a company name),
with a location and products, BaseArtisan provides six property members:

contact_name is the name of the contact person for an Artisan. It should
be a standard required text line property, as defined earlier.
contact_email is the email address of the person named in
contact_name. It should be a well formed email address, and will be
required.
company_name is a standard optional text line property (optional because
not all artisans will have a company name).
address will be required, and will be an instance of Address.
website is an optional web site address for the Artisan. If it's present, it
will need to be a well formed URL.
products will be a collection of BaseProduct objects, in much the same
way that address is a single Address instance. Some implementation
details around product will be deferred until BaseProduct is fully
defined.

As before, the process starts with creating the class, and defining the properties
whose implementations will be fleshed out next:

class BaseArtisan(metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can represent an Artisan in
the context of the HMS system.
"""

Creating Business Objects Chapter 8

[222]

The inclusion of metaclass=abc.ABCMeta defines BaseArtisan as an Abstract
Base Class, using the abc module's ABCMeta functionality:

 ###################################
 # Instance property definitions #
 ###################################

 address = property(
 _get_address, _set_address, _del_address,
 'Gets, sets or deletes the physical address (Address) '
 'associated with the Artisan that the instance represents'
)
 company_name = property(
 _get_company_name, _set_company_name, _del_company_name,
 'Gets, sets or deletes the company name (str) associated '
 'with the Artisan that the instance represents'
)
 contact_email = property(
 _get_contact_email, _set_contact_email, _del_contact_email,
 'Gets, sets or deletes the email address (str) of the '
 'named contact associated with the Artisan that the '
 'instance represents'
)
 contact_name = property(
 _get_contact_name, _set_contact_name, _del_contact_name,
 'Gets, sets or deletes the name of the contact (str) '
 'associated with the Artisan that the instance represents'
)
 products = property(
 _get_products, None, None,
 'Gets the collection of products (BaseProduct) associated '
 'with the Artisan that the instance represents'
)
 website = property(
 _get_website, _set_website, _del_website,
 'Gets, sets or deletes the URL of the website (str) '
 'associated with the Artisan that the instance represents'
)

Since company_name and contact_name are standard optional and required text line
implementations, as were described in creating the Address class, their
implementations will follow the pattern established there, and will not be examined
in any detail. The processes for both are identical to those for
Address.building_address and Address.street_address, respectively—the
only things that will change are the names of the getter, setter, and deleter methods
and the state data attributes that store the properties' values.

Creating Business Objects Chapter 8

[223]

Similarly, the _get_ and _del_ methods that are associated with all of the properties
except for products will follow the same basic patterns that've been established
already:

Getter methods will simply return the value stored in the corresponding
state storage attribute
Deleter methods will set the value of the corresponding state storage
attribute to None

The getter and deleter method implementations for address, company_name, and
contact_email, for example, can be the exact same process as previously shown,
even though address is not a simple value property and contact_email hasn't
been implemented yet:

 def _get_address(self) -> (Address,):
 return self._address

 def _del_address(self) -> None:
 self._address = None

 def _get_company_name(self) -> (str,None):
 return self._company_name

 def _del_company_name(self) -> None:
 self._company_name = None

 def _get_contact_email(self) -> (str,None):
 return self._contact_email

 def _del_contact_email(self) -> None:
 self._contact_email = None

This probably feels like a lot of boilerplate, copy and paste code, but that's the cost of
being able to perform the type and value checking that's handled by the setter
methods. The setter methods themselves are where the magic happens that keeps the
high degree of data type and integrity that's desired.

Creating Business Objects Chapter 8

[224]

The setter for the address property is perhaps surprisingly simple, since all that
really needs to be enforced is that any value passed to it must be an instance of the
Address class. There is no value checking, since any Address instance that was
successfully created will have performed its own type and value checks as part of the
initialization process:

 def _set_address(self, value:Address) -> None:
 if not isinstance(value, Address):
 raise TypeError(
 '%s.address expects an Address object or an object '
 'derived from Address, but was passed "%s" (%s) '
 'instead, which is not.' %
 (value, type(value).__name__)
)
 self._address = value

The contact_email setter could work much like the standard required text line
setter process defined in Address._set_street_address. It has some of the same
data rules associated, after all—it's a required value, cannot be empty, and since it's
an email address, it can't be multi-line or have tabs. Since it's an email address,
though, it also cannot have spaces in it, and there are other character restrictions that
are common to all email addresses that aren't accounted for in that original structure.
Since the requirements for the property include it being a well formed email address,
there may be other, better ways to validate a value passed to the setter.

Ideally, an application will want to assure that an email address is
both well formed and valid. There's really only one way to do either,
though, and it's out of scope for hms_sys, even if it makes sense to
try and implement it: send a confirmation email, and don't store the
value until/unless a confirmation response is received.

There are a number of approaches that will get us most of the way to the validation of
a well formed email address. The one that is probably the best place to start is to use a
regular expression to match against the value, or to remove everything that is a well
formed email address and not allow the value to be set unless there's nothing left
after that replacement executes. Using a regular expression probably won't guarantee
that the value is well formed, though it will catch a lot of invalid values. Combining
that with some standard Python functionality found in the email.utils module
should at least get the code to a point where testing can be built to look for well
formed addresses that fail, and allow modification of the check process.

Creating Business Objects Chapter 8

[225]

First, we need to import some items, namely the parseaddr function from
email.utils and the re module, in order to create the regular expression object
we'll use to test with. Those imports should happen at the top of the module:

#######################################
Standard library imports needed
#######################################

import abc # This was already present
import re

from email.utils import parseaddr

Next, we'll create a module level constant regular expression object that will be used
to check email address values:

EMAIL_CHECK = re.compile(
 r'(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)'
)

This will match whole strings that start with one or more characters A through Z
(upper or lower case), any digit 0-9, or an underscore, period, plus, or dash, followed
by @, then most domain names. This structure was found on the internet with a quick
search, and may not be complete, but it looks like it should work for most email
addresses as it is. All the setter method implementation needs to do now is check that
the value is a string, parse a recognizable address out of the string, check the parsed
value, and if everything checks out, set the value of the data storage attribute:

 def _set_contact_email(self, value:str) -> None:
 # - Type-check: This is a required str value
 if type(value) != str:
 raise TypeError(
 '%s.contact_email expects a str value that is a '
 'well-formed email address, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Since we know it's a string, we can start by parsing value
 # with email.utils.parseaddr, and using the second item of
 # that result to check for well-formed-ness
 check_value = parseaddr(value)[1]
 # - If value is not empty, then there was *something* that was
 # recognized as being an email address
 valid = (check_value != '')

Creating Business Objects Chapter 8

[226]

 if valid:
 # - Try removing an entire well-formed email address, as
 # defined by EMAIL_CHECK, from the value. If it works,
 # there will either be a remnant or not. If there is
 # a remnant, it's considered badly-formed.
 remnant = EMAIL_CHECK.sub('', check_value)
 if remnant != '' or not value:
 valid = False
 if not check_value or not valid:
 raise TypeError(
 '%s.contact_email expects a str value that is a '
 'well-formed email address, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 self._contact_email = value

A similar approach should be a good starting point for the website setter method,
using the following as the regular expression to test with:

URL_CHECK = re.compile(
 r'(^https?://[A-Za-z0-9][-_A-Za-z0-9]*\.[A-Za-z0-9][-_A-Za-
z0-9\.]*$)'
)

It starts with the same optional value check that was established in
Address._set_building_address, but uses the URL_CHECK regular expression
object to check the value passed in much the same way that _set_contact_email
does:

 def _set_website(self, value:(str,None)) -> None:
 # - Type-check: This is an optional required str value
 if value != None:
 if type(value) != str:
 raise TypeError(
 '%s.website expects a str value that is a '
 'well-formed URL, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 remnant = URL_CHECK.sub('', value)
 if remnant != '' or not value:

Creating Business Objects Chapter 8

[227]

 raise TypeError(
 '%s.website expects a str value that is a '
 'well-formed URL, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 self._website = value

That leaves just one property to implement: products. The products property has
aspects to it that may not be apparent at first, but that have potentially significant
implications on how it should be implemented. First and foremost, it's a collection of
other objects—whether that's a list, a dictionary, or something else hasn't yet been
decided—but in any event it's not a single object the way that address is.
Additionally, it was defined as being a read-only property:

 products = property(
 _get_products, None, None,
 'Gets the collection of products (BaseProduct) associated '
 'with the Artisan that the instance represents'
)

Only the getter method is provided in the property definition. This is intentional,
but requires some explanation.

Since products is intended to deal with a collection of product objects, it's pretty
important that the products property itself cannot be changed to something else. For
example, if products were settable, it would be possible to execute something like
this:

Given artisan = Artisan(...whatever initialization…)
artisan.products = 'Not a product collection anymore!'

Now, it's certainly possible to put type and value checking code in place to prevent
that sort of assignment—and although there isn't a setter method associated with the
property itself, we'll almost certainly want to have one available later on, and it
should implement that type and value checking anyway. However, its use will
probably be limited to populating an instance's products during the creation of the
artisan instance.

Creating Business Objects Chapter 8

[228]

The other potential concern is that it would be possible to alter the collection's
membership in ways that are both bug prone and difficult to regulate. For example,
using the same artisan instance, and assuming that the underlying data storage for
products is a list, there is nothing to stop code from doing any of the following:

artisan.products.append('This is not a product!')
artisan.products[0] = 'This is also not a product!'

Similarly, allowing arbitrary deletion of an artisan's products (del
artisan.products) is probably not a great idea.

At a minimum, then, we want to assure the following:

Manipulation of the membership of products is either not allowed or
cannot affect the real, underlying data
Access to (and perhaps manipulation of) individual products members'
members is still allowed, that is, given a list of product instances, reading
data from and writing data to them is not constrained by the collection they
live in

There are a couple of options, even without developing some sort of custom collection
type. Since the products property uses a getter method to fetch and return the
values, it would be possible to alter the data being returned in order to either:

Return a direct copy of the actual data, in which case altering the
membership of the returned collection wouldn't touch the original
collection
Return a copy of the data in a different collection type; if the real data is
stored in a list, for example, returning a tuple of that list would provide all
of the same iterable sequence capabilities as the original list, but would not
allow alteration of the membership of that copy itself

Python keeps track of objects by object reference—that is, it pays attention to where in
memory an object actually lives, by association with the name assigned to the
object—so when a list or tuple of objects is created from an already existing list of
objects, the members of the new collection are the same objects as were present in the
original list, for example:

- Create a class to demonstrate with
class Example:
 pass

- Create a list of instances of the class
example_list = [

Creating Business Objects Chapter 8

[229]

 Example(), Example(), Example(), Example()
]

print('Items in the original list (at %s):' % hex(id(example_list)))
for item in example_list:
 print(item)

Items in the original list (at 0x7f9cd9ed6a48):
<__main__.Example object at 0x7f9cd9eed550>
<__main__.Example object at 0x7f9cd9eed5c0>
<__main__.Example object at 0x7f9cd9eed5f8>
<__main__.Example object at 0x7f9cd9eed630>

Creating a copy of the original list will create a new and distinct collection that will
still have the same members in it:

new_list = list(example_list)
print('Items in the new list (at %s):' % hex(id(new_list)))
for item in new_list:
 print(item)

Items in the new list (at 0x7f9cd89dca88):
<__main__.Example object at 0x7f9cd9eed550>
<__main__.Example object at 0x7f9cd9eed5c0>
<__main__.Example object at 0x7f9cd9eed5f8>
<__main__.Example object at 0x7f9cd9eed630>

So, too will creating a tuple in a similar fashion:

new_tuple = tuple(example_list)
print('Items in the new tuple (at %s):' % hex(id(new_tuple)))
for item in new_tuple:
 print(item)

Items in the new tuple (at 0x7f9cd9edd4a8):
<__main__.Example object at 0x7f9cd9eed550>
<__main__.Example object at 0x7f9cd9eed5c0>
<__main__.Example object at 0x7f9cd9eed5f8>
<__main__.Example object at 0x7f9cd9eed630>

Creating Business Objects Chapter 8

[230]

Returning either a new list or a tuple created from the original state data value would,
then, take care of preventing changes made against the property value from affecting
the real underlying data. For now the tuple returning option feels like the better
choice, since it's more restrictive, in which case _get_products will be implemented
as follows:

def _get_products(self) -> (tuple,):
 return tuple(self._products)

The deleter method _del_products cannot use None as a default with the getter
that's now in place. It will have to be changed to something else since trying to return
a tuple of a None default value would raise an error. For now, the deleted value will
be changed to an empty list:

def _del_products(self) -> None:
 self._products = []

Finally, here is the setter method, _set_products:

 def _set_products(self, value:(list, tuple)) -> None:
 # - Check first that the value is an iterable - list or
 # tuple, it doesn't really matter which, just so long
 # as it's a sequence-type collection of some kind.
 if type(value) not in (list, tuple):
 raise TypeError(
 '%s.products expects a list or tuple of BaseProduct '
 'objects, but was passed a %s instead' %
 (self.__class__.__name__, type(value).__name__)
)
 # - Start with a new, empty list
 new_items = []
 # - Iterate over the items in value, check each one, and
 # append them if they're OK
 bad_items = []
 for item in value:
 # - We're going to assume that all products will derive
 # from BaseProduct - that's why it's defined, after all
 if isinstance(item, BaseProduct):
 new_items.append(item)
 else:
 bad_items.append(item)
 # - If there are any bad items, then do NOT commit the
 # changes -- raise an error instead!
 if bad_items:
 raise TypeError(
 '%s.products expects a list or tuple of BaseProduct '
 'objects, but the value passed included %d items '

Creating Business Objects Chapter 8

[231]

 'that are not of the right type: (%s)' %
 (
 self.__class__.__name__, len(bad_items),
 ', '.join([str(bi) for bi in bad_items])
)
)
 self._products = value

Taken together, these variations restrict changes to the products property pretty
significantly:

The property itself is read-only, not allowing the value to be set or deleted
The value returned from the getter method is identical to, but distinct from,
the one that's actually stored in the state data of the object it's being gotten
from, and while it still allows access to the members of the original
collection, it does not allow the original collection's membership to be
altered
The setter method enforces type checking for the entire collection, assuring
that the membership of the collection is composed only of the appropriate
object types

What isn't accounted for yet are actual processes for making changes to the
collection's members—that capability is in the method members.

Implementing BaseArtisan's methods
BaseArtisan, as it's currently designed, is expected to provide two abstract
methods:

add_product, which requires a mechanism for adding products to the
products collection of an instance to be implemented on derived Concrete
Classes
remove_product, which similarly requires a mechanism for removing an
item from the products collection of a derived instance

These are specified as abstract methods because, while there will almost certainly be
some common functionality involved with each of them across the application and
service installables of hms_sys, there will also almost certainly be significant
implementation differences across those same components—artisans, for example,
may well be the only users who can truly remove items from their products
collections.

Creating Business Objects Chapter 8

[232]

Typically, in most programming languages that support defining abstract methods,
those methods are not expected to provide any actual implementation. It's quite
possible, in fact, that the act of defining a method as abstract actually prohibits any
implementation. Python does not enforce that restriction on abstract methods, but still
doesn't expect any implementation either. As a result, our abstract methods do not
need to be any more complicated than this:

 @abc.abstractmethod
 def add_product(self, product:BaseProduct):
 pass

 @abc.abstractmethod
 def remove_product(self, product:BaseProduct):
 pass

Since we're allowed to put concrete implementation into an abstract method, though,
it's possible to leverage that to provide baseline functionality in cases where there is
some that's useful to keep in one place. These two methods, add_product and
remove_product, fall into that category:

Adding a product will always need to perform type checking, raise errors
when invalid types are presented, and append the new item to the
instance's collection
Removing a product will always involve removing the specified product
from the instance's product collection

With those factors in mind, it can actually be beneficial to put those common
processes into the abstract method as if they were concrete implementations. Those
processes can then be called from derived class instances, with or without additional
logic before or after the execution of the baselines themselves. Consider a basic
implementation of add_product in BaseArtisan that looks like this:

 @abc.abstractmethod
 def add_product(self, product:BaseProduct):
 """
Adds a product to the instance's collection of products.

Returns the product added.

self (BaseArtisan instance, required) The instance to
 execute against
product ... (BaseProduct, required) The product to add to the
 instance's collection of products

Raises TypeError if the product specified is not a BaseProduct-

Creating Business Objects Chapter 8

[233]

 derived instance

May be implemented in derived classes by simply calling
 return BaseArtisan.add_product(self, product)
"""
 # - Make sure the product passed in is a BaseProduct
 if not isinstance(product, BaseProduct):
 raise TypeError(
 '%s.add_product expects an instance of '
 'BaseProduct to be passed in its product '
 'argument, but "%s" (%s) was passed instead' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Append it to the internal _products list
 self._products.append(product)
 # - Return it
 return product

A derived class—an Artisan class that lives in the Central Office's application, for
example—would be required to implement add_product, but could implement it as
follows:

 def add_product(self, product:BaseProduct):
 # - Add any additional checking or processing that might
 # need to happen BEFORE adding the product here

 # - Call the parent add_product to perform the actual
 # addition
 result = BaseArtisan.add_product(self, product)

 # - Add any additional checking or processing that might
 # need to happen AFTER adding the product here

 # - Return the product
 return result

There is a trade off to this approach, though: it would be possible for a derived class
to implement a completely new add_product process, skipping the ready-made
validation/business rules. An alternative approach would be to define an abstract
validation method (_check_products, maybe) that handles the validation process
and is called directly by a concrete implementation of add_product.

Creating Business Objects Chapter 8

[234]

The remove_product method can be similarly defined, and could be implemented in
a similar fashion in derived class instances:

 @abc.abstractmethod
 def remove_product(self, product:BaseProduct):
 """
Removes a product from the instance's collection of products.

Returns the product removed.

self (BaseArtisan instance, required) The instance to
 execute against
product ... (BaseProduct, required) The product to remove from
 the instance's collection of products

Raises TypeError if the product specified is not a BaseProduct-
 derived instance
Raises ValueError if the product specified is not a member of the
 instance's products collection

May be implemented in derived classes by simply calling
 return BaseArtisan.remove_product(self, product)
"""
 # - Make sure the product passed in is a BaseProduct.
 # Technically this may not be necessary, since type
 # is enforced in add_product, but it does no harm to
 # re-check here...
 if not isinstance(product, BaseProduct):
 raise TypeError(
 '%s.add_product expects an instance of '
 'BaseProduct to be passed in its product '
 'argument, but "%s" (%s) was passed instead' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 try:
 self._products.remove(product)
 return product
 except ValueError:
 raise ValueError(
 '%s.remove_product could not remove %s from its '
 'products collection because it was not a member '
 'of that collection' %
 (self.__class__.__name__, product)
)

Creating Business Objects Chapter 8

[235]

There may be other methods that would make sense to add to BaseArtisan, but if
there are, they will probably surface as the implementations of concrete Artisan
classes are developed. For now, we can call BaseArtisan done, after defining its
__init__ method:

 def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 **products
):
 """
Object initialization.

self (BaseArtisan instance, required) The instance to
 execute against
contact_name (str, required) The name of the primary contact
 for the Artisan that the instance represents
contact_email (str [email address], required) The email address
 of the primary contact for the Artisan that the
 instance represents
address (Address, required) The mailing/shipping address
 for the Artisan that the instance represents
company_name (str, optional, defaults to None) The company-
 name for the Artisan that the instance represents
products (BaseProduct collection) The products associated
 with the Artisan that the instance represents
"""
 # - Call parent initializers if needed
 # - Set default instance property-values using _del_...
methods
 self._del_address()
 self._del_company_name()
 self._del_contact_email()
 self._del_contact_name()
 self._del_products()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_contact_name(contact_name)
 self._set_contact_email(contact_email)
 self._set_address(address)
 if company_name:
 self._set_company_name(company_name)
 if products:
 self._set_products(products)
 # - Perform any other initialization needed

Creating Business Objects Chapter 8

[236]

BaseCustomer
The class that defines what a customer's data structure looks like is very simple, and
uses code structures that have already been established in Address and
BaseArtisan for all of its properties. Like the relationship of BaseArtisan with
concrete Artisan instances, Customer objects are expected to vary significantly in
what they can do, and perhaps what data access is allowed across the different
components of the system. Once again, we'll start by defining an
ABC—BaseCustomer—rather than a concrete Customer class:

The properties of BaseCustomer are:

name, a standard required text line.

billing_address and shipping_address, which are, apart from their
names, identical to the address property defined in BaseArtisan. The
shipping_address will be made optional, since it's quite possible for a
customer to have only one address that's used for both.

The only new aspect of BaseCustomer that feels worth mentioning is how the
shipping_address is annotated during initialization. BaseCustomer.__init__ is
mostly going to follow the same structure/approach that's been shown in previous
class definitions:

 def __init__(self,
 name:str, billing_address:Address,
 shipping_address(Address,None)=None
):
 """
Object initialization.

self (BaseCustomer instance, required) The instance to
 execute against

Creating Business Objects Chapter 8

[237]

name (str, required) The name of the customer.
billing_address ... (Address, required) The billing address of the
 customer
shipping_address .. (Address, optional, defaults to None) The shipping
 address of the customer.
"""
 # - Call parent initializers if needed
 # - Set default instance property-values using _del_...
methods
 self._del_billing_address()
 self._del_name()
 self._del_shipping_address()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_name(name)
 self._set_billing_address(billing_address)
 if shipping_address:
 self._set_shipping_address(shipping_address)
 # - Perform any other initialization needed

The shipping_address argument's annotation, (Address,None), is new, after a
fashion. We've used built in types as annotation types before, as well as having a built
in, non-None type and None for optional argument specifications before.
Address.__init__ uses this notation several times. This code, even though it uses a
class that we have defined, works the same way: the Address class is also a type, just
like str is in previous examples. It's just a type that has been defined here in this
project.

BaseOrder
The process of creating pretty much any dumb data object class, or even mostly dumb
ones, is very similar no matter what those classes represent, at least so long as
whatever data structure rules are in play hold true across the entire scope of those
efforts. As more such data oriented classes are created, fewer new approaches to
specific needs will be needed until eventually there will be a concise set of approaches
for implementing various properties of all the various types and value constraints
needed.

Creating Business Objects Chapter 8

[238]

The BaseOrder class, shown here with BaseProduct, is a good example of that
effect, at least at first glance:

The list of BaseOrder properties is very short, since all an order really represents is a
customer relationship with a collection of products:

customer is an instance of BaseCustomer, which in turn has the
billing_address and shipping_address properties of that
customer; apart from the fact that the type of the property's value is going
to be a BaseCustomer instance, it's reasonable to assume that it'll behave
in the same way that the Address type properties of BaseCustomer do
products is a collection of BaseProduct instances that can probably
behave exactly like the products property of BaseArtisan—it'll be doing
the same sort of thing, after all, storing product instances and preventing
mutation of those instances—so the initial implementation of it will be
copied directly from BaseArtisan

In short, both properties, barring some changing of names in the case of the customer
property, already have established implementation patterns, so there's nothing
substantially new to show in BaseOrder.

Copying code directly from one class to another is a contentious
topic at times; even if everything works perfectly, it is, by definition,
duplicating code, which means that there are now multiple copies of
that code to be maintained if something goes awry later on.

Creating Business Objects Chapter 8

[239]

BaseProduct
The BaseProduct ABC also has a lot of near boilerplate property code, though only
three of its properties fall into implementation patterns that've been established so far:

name is a standard required text line property.
summary is a standard required text line property.
description is an optional string value.
dimensions is a standard optional text line property.
shipping_weight is a required number value, which may only be used
for determining shipping costs, but could also appear in product displays
in the web store.
metadata is a dictionary of metadata keys (strings) and values (strings
also, probably). This is a new data structure, so we'll examine it in detail
shortly.
available is a required Boolean value that allows the artisan to indicate
that the product is available to be sold on the HMS web store, though it
may be visible to central office staff.
store_available is also a required Boolean value, indicating that the
HMS web store should consider the product available. It is intended to be
controlled by the Central Office staff, though it may be visible to an artisan.

BaseProduct has only two methods associated so far, both for use in managing the
metadata values associated with a product instance:

set_metadata will set a metadata key/value on the instance
remove_metadata will remove a metadata key and value from the
instance

The name, summary, and dimensions properties, as standard required and optional
text lines, will follow those patterns. The description is almost an optional text line
implementation; all that needs to be changed there is removing the whitespace
character checks, and it's good to go:

These lines aren't needed for description
- Value-check: no whitespace other than " "
bad_chars = ('\n', '\r', '\t')
for bad_char in bad_chars:
 if bad_char in value:
 is_valid = False
 break

Creating Business Objects Chapter 8

[240]

The implementation of the shipping_weight property varies most significantly in
the setter method _set_shipping_weight, but is (hopefully) about what would be
expected given the normal getter/setter/deleter method structure that is the typical
approach for properties in the project:

def _set_shipping_weight(self, value:(int,)):
 if type(value) != int:
 raise TypeError(
 '%s.shipping_weight expects a positive integer '
 'value, but was passed "%s" (%s)' %
 (
 self.__class__.__name__,
 value, type(value).__name__
)
)
 if value <= 0:
 raise ValueError(
 '%s.shipping_weight expects a positive integer '
 'value, but was passed "%s" (%s)' %
 (
 self.__class__.__name__,
 value, type(value).__name__
)
)
 self._shipping_weight = value

The same can be said for the implementation of both of the available properties,
though it makes sense to allow both formal Boolean (True and False) values and
integer value equivalents (1 and 0) as valid setter value arguments. This gives a bit of
wiggle room in cases where the object's state data may not be able to be stored as true
Booleans—though that is an unlikely circumstance, it's not out of the realm of
possibility, either:

def _set_available(self, value:(bool,int)):
 if value not in (True, False, 1, 0):
 raise ValueError(
 '%s.available expects either a boolean value '
 '(True|False) or a direct int-value equivalent '
 '(1|0), but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 if value:
 self._available = True
 else:
 self._available = False

Creating Business Objects Chapter 8

[241]

That leaves only the metadata property implementation. Metadata is probably best
thought of as data about other data—in this case, data about the products that the
class is fundamental to representing. In this particular case, the metadata property is
intended to provide highly flexible data that may vary wildly from one product (or
product type) to another, while still being available in a relatively simple manner
within a more rigidly defined class/object structure. This will be important in the
context of Hand Made Stuff's needs because the products that artisans create and sell
through their web store can be virtually anything: beads, wood, or metal furniture,
clothing, jewelry, whatever. Though there are a few descriptions that could
potentially be applied to any product—what it's made out of, for example, and
perhaps some basic items such as color—there are others that make it nearly
impossible to categorize products across the entire spectrum available without either
requiring a lot more data structures in the current product class structure, or a lot of
product types that live in what would almost certainly be a prohibitively complex
relationship with each other.

The initial implementation and design will center, then, around maintaining a
dict based metadata structure with each object. If more stringent requirements arise
later (such as requiring that items made of wood must specify the type of wood, for
example), a refactoring effort to adjust accordingly may be necessary, but for now a
simple dict feels reasonable.

Like the products property of BaseArtisan and BaseOrder, the metadata of
a BaseProduct needs to be difficult to casually or accidentally change—it should
require something of a conscious decision to make changes. Given that the
metadata structure is expected to provide data with which to categorize products,
the keys, at the very least, will have some restrictions around what can be used.
Metadata names should be meaningful and reasonably short. So, too should
metadata values, though they will probably be less constrained than their
corresponding keys.

Taking all of these items together, the getter and deleter methods are not significantly
different from their equivalents for the other properties—the usual name changes and
a different deleted default value are about all there is to them:

 ###################################
 # Property-getter methods #
 ###################################

 # ...

 def _get_metadata(self) -> (dict,):
 return self._metadata

Creating Business Objects Chapter 8

[242]

 # ...

 ###################################
 # Property-deleter methods #
 ###################################

 # ...

 def _del_metadata(self) -> None:
 self._metadata = {}

The setter method is, as is most often the case, where the significant differences are; in
this case, when it's called, the expectation is that the intention is to clear out any
existing metadata and replace it with a new, validated set of keys and values. This
changes the entire collection in the property, not just some or all of its members. Since
the class will also be providing a dedicated method to allow the addition of new
metadata, or changes to existing items in the metadata, and that method will need
to perform whatever validation is desired against both keys and values, the
_set_metadata property setter method will use the similarly named set_metadata
method to assure that all metadata meets the same standards.

The first step is to make sure that the incoming value is a dictionary:

 ###################################
 # Property-setter methods #
 ###################################
...

def _set_metadata(self, value:(dict,)):
 if type(value) != dict:
 raise TypeError(
 '%s.metadata expects a dictionary of metadata keys '
 '(strings) and values (also strings), but was passed '
 '"%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)

We'll set up a variable to keep track of any invalid values encountered, and clear the
current metadata out with the same mechanism that's used to clear it out during
initialization, _del_metadata:

badvalues = []
self._del_metadata()

Creating Business Objects Chapter 8

[243]

With those accomplished, we can iterate across the value's keys and values, calling
set_metadata for each pair until they've all been accounted for, and trapping any
errors raised in order to provide more useful error messaging when needed:

if value: # Checking because value could be an empty dict: {}
 for name in value:
 try:
 # - Since set_metadata will do all the type- and
 # value-checking we need, we'll just call that
 # for each item handed off to us here...
 self.set_metadata(name, value[name])
 except Exception:
 # - If an error was raised,then we want to capture
 # the key/value pair that caused it...
 badvalues.append((name, value[name]))

If any bad values were detected, then we'll want to raise an error and note them. If no
errors occur, then the property's been repopulated:

if badvalues:
 # - Oops... Something's not right...
 raise ValueError(
 '%s.metadata expects a dictionary of metadata keys '
 '(strings) and values, but was passed a dict with '
 'values that aren\'t allowed: %s' %
 (self.__class__.__name__, str(badvalues))
)

The set_metadata method looks a lot like our varied property setter methods—keys
and (for now) values in metadata both act like standard required text line
properties—so the type and value checking being performed for each will look very
familiar:

def set_metadata(self, key:(str,), value:(str,)):
 """
Sets the value of a specified metadata-key associated with the product
that the instance represents.

self (BaseProduct instance, required) The instance to
 execute against
key (str, required) The metadata key to associate a
 value with
value (str, required) The value to associate with the
 metadata key
"""

Creating Business Objects Chapter 8

[244]

Here's the type and value checking for the key argument's value:

if type(key) != str:
 raise TypeError(
 '%s.metadata expects a single-line, '
 'non-empty str key, with no whitespace '
 'other than spaces, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, key,
 type(key).__name__
)
)
 # - Value-check of key: no whitespace other than " "
 bad_chars = ('\n', '\r', '\t')
 is_valid = True
 for bad_char in bad_chars:
 if bad_char in key:
 is_valid = False
 break
 # - If it's empty or otherwise not valid, raise error
 if not key.strip() or not is_valid:
 raise ValueError(
 '%s.metadata expects a single-line, '
 'non-empty str key, with no whitespace '
 'other than spaces, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, key,
 type(key).__name__
)
)

And here's the type and value checking for the value argument's value:

if type(value) != str:
 raise TypeError(
 '%s.metadata expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Value-check of value: no whitespace other than " "
 bad_chars = ('\n', '\r', '\t')
 is_valid = True
 for bad_char in bad_chars:
 if bad_char in value:

Creating Business Objects Chapter 8

[245]

 is_valid = False
 break
 # - If it's empty or otherwise not valid, raise error
 if not value.strip() or not is_valid:
 raise ValueError(
 '%s.metadata expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 self._metadata[key] = value

The removal of metadata requires considerably shorter and simpler code, though it
also assumes that if an attempt is made to remove metadata that doesn't exist, no
error need be raised. There might be a need to allow such an error to occur, but for
now the assumption is that it won't be needed:

def remove_metadata(self, key):
 """
Removes the specified metadata associated with the product that the
instance represents, identified by the key

self (BaseProduct instance, required) The instance to
 execute against
key (str, required) The key that identifies the
 metadata value to remove
"""
 try:
 del self._metadata[key]
 except KeyError:
 pass

With BaseProduct complete, the required scope of the hms_core class library is
fulfilled. Unit testing still needs to be written, and any issues that surface as a result.

Creating Business Objects Chapter 8

[246]

Dealing with duplicated code – HasProducts
 BaseArtisan and BaseOrder have products properties that behave the same way,
to the extent that the original implementation of those properties involved essentially
copying and pasting the code from one into the other. While that's probably not such
a big deal in this particular case (since the hms_core class library is small, with few
members, and there are only two places where that duplicate code would have to be
maintained), in larger libraries, or if there was a lot of duplication of that code, it
could become very problematic very quickly. Since Python allows classes to inherit
from multiple parent classes, we can leverage that capability to define a new
ABC—HasProducts—that will keep all of the product property related code in one
place:

This approach is a variation of an object oriented principle that's
usually referred to as a mixin—a class that contains concrete
implementations of functionality for use in other classes.

The implementation of HasProducts is, essentially, just a collection or repackaging
of the product properties code of BaseArtisan and BaseOrder:

class HasProducts(metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can have a common products
property whose membership is stored and handled in the same
way.
"""

Creating Business Objects Chapter 8

[247]

The getter, setter, and deleter methods:

###################################
Property-getter methods
###################################

def _get_products(self) -> (tuple,):
 return tuple(self._products)

###################################
Property-setter methods
###################################

def _set_products(self, value:(list, tuple)) -> None:
- Check first that the value is an iterable - list or
tuple, it doesn't really matter which, just so long
as it's a sequence-type collection of some kind.
 if type(value) not in (list, tuple):
 raise TypeError(
 '%s.products expects a list or tuple of BaseProduct '
 'objects, but was passed a %s instead' %
 (self.__class__.__name__, type(value).__name__)
)
 # - Start with a new, empty list
 new_items = []
 # - Iterate over the items in value, check each one, and
 # append them if they're OK
 bad_items = []
for item in value:
 # - We're going to assume that all products will derive
 # from BaseProduct - That's why it's defined, after all
 if isinstance(item, BaseProduct):
 new_items.append(item)
 else:
 bad_items.append(item)
 # - If there are any bad items, then do NOT commit the
 # changes -- raise an error instead!
 if bad_items:
 raise TypeError(
 '%s.products expects a list or tuple of BaseProduct'
 'objects, but the value passed included %d items '
 'that are not of the right type: (%s)' %
 (
 self.__class__.__name__, len(bad_items),
 ', '.join([str(bi) for bi in bad_items])
)
)
 self._products = value

Creating Business Objects Chapter 8

[248]

###################################
Property-deleter methods
###################################

 def _del_products(self) -> None:
 self._products = []

The products property definition:

###################################
Instance property definitions
###################################

products = property(
_get_products, None, None,
'Gets the products (BaseProduct) of the instance'
)

Object initialization:

###################################
Object initialization
###################################

def __init__(self, *products):
 """
Object initialization.

self (HasProducts instance, required) The instance to
 execute against
products (list or tuple of BaseProduct instances) The
 products that were ordered
"""
 # - Call parent initializers if needed
 # - Set default instance property-values using _del_...
methods
 self._del_products()
 # - Set instance property-values from arguments using
 # _set_... methods
 if products:
 self._set_products(products)
 # - Perform any other initialization needed

###################################
Abstract methods
###################################

Creating Business Objects Chapter 8

[249]

The abstract methods for adding and removing products:

 @abc.abstractmethod
 def add_product(self, product:BaseProduct) -> BaseProduct:
 """
Adds a product to the instance's collection of products.

Returns the product added.

self (HasProducts instance, required) The instance to
 execute against
product ... (BaseProduct, required) The product to add to the
 instance's collection of products

Raises TypeError if the product specified is not a BaseProduct-
 derived instance

May be implemented in derived classes by simply calling
 return HasProducts.add_product(self, product)
"""
 # - Make sure the product passed in is a BaseProduct
 if not isinstance(product, BaseProduct):
 raise TypeError(
 '%s.add_product expects an instance of '
 'BaseProduct to be passed in its product '
 'argument, but "%s" (%s) was passed instead' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Append it to the internal _products list
 self._products.append(product)
 # - Return it
 return product

 @abc.abstractmethod
 def remove_product(self, product:BaseProduct):
 """
Removes a product from the instance's collection of products.

Returns the product removed.

self (HasProducts instance, required) The instance to
 execute against
product ... (BaseProduct, required) The product to remove from
 the instance's collection of products

Creating Business Objects Chapter 8

[250]

Raises TypeError if the product specified is not a BaseProduct-
 derived instance
Raises ValueError if the product specified is not a member of the
 instance's products collection

May be implemented in derived classes by simply calling
 return HasProducts.remove_product(self, product)
"""
 # - Make sure the product passed in is a BaseProduct.
 # Technically this may not be necessary, since type
 # is enforced in add_product, but it does no harm to
 # re-check here...
 if not isinstance(product, BaseProduct):
 raise TypeError(
 '%s.add_product expects an instance of '
 'BaseProduct to be passed in its product '
 'argument, but "%s" (%s) was passed instead' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 try:
 self._products.remove(product)
 return product
 except ValueError:
 raise ValueError(
 '%s.remove_product could not remove %s from its '
 'products collection because it was not a member '
 'of that collection' %
 (self.__class__.__name__, product)
)

Using HasProducts in BaseArtisan and BaseOrder is not difficult, though it
involves refactoring them to remove code that is already in place that will override
the common code in HasProducts. It starts with making sure that the class using
HasProducts inherits from it:

class BaseArtisan(HasProducts, metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can represent an Artisan in
the context of the HMS system.
"""

Creating Business Objects Chapter 8

[251]

The __init__ method of the derived class has to be altered to call the __init__ of
HasProducts as well, in order to assure that it performs all the relevant initialization
tasks:

def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 **products
):
 """
Object initialization.
"""
 # - Call parent initializers if needed
This is all that's needed to perform the initialization defined
in HasProducts
 HasProducts.__init__(self, *products)

The processes of setting default values and instance values for the new class no longer
have to worry about handling the products property setup, since that's handled by
HasProducts.__init__:

 # - Set default instance property-values using _del_...
methods
 self._del_address()
 self._del_company_name()
 self._del_contact_email()
 self._del_contact_name()
This can be deleted, or just commented out.
self._del_products()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_contact_name(contact_name)
 self._set_contact_email(contact_email)
 self._set_address(address)
 if company_name:
 self._set_company_name(company_name)
This also can be deleted, or just commented out.
if products:
self._set_products(products)

Creating Business Objects Chapter 8

[252]

Finally, the products property in each, along with their associated getter, setter, and
deleter methods, can just be removed from the derived classes:

This also can be deleted, or just commented out.
products = property(
_get_products, None, None,
'Gets the products (BaseProduct) of the instance'
)

With HasProducts implemented, the full structure and functionality of the
hms_core package is tentatively complete—tentatively because it hasn't been unit
tested yet. The class diagram for the entire package shows all of the moving parts,
and the relationships between them:

Creating Business Objects Chapter 8

[253]

Summary
Overall, these classes provide definitions that could be described as dumb data
objects. They provide little or no functionality that isn't directly related in some
fashion to the definition and regulation of a specific data structure. Even
HasProducts, and the classes that derive from it, fall into this category since the
functionality provided there is strictly concerned with providing a data structure and
controlling how that structure can be manipulated. As other classes are created that
derive from these classes, those classes will start to become smarter, starting with
persistence of the data for individual objects.

First, though, unit tests for these classes need to be written, to assure that they have
been tested, and that they can be retested on demand. Since that represents a
significant shift in coding goals, and will involve some in depth examination of
testing goals and how to accomplish them, this first unit testing pass warrants its own
chapter.

9
Testing Business Objects

Once the core business objects have been defined and tested, they can be used in
other packages as foundations for classes to provide concrete class functionality.
There are at least two advantages to taking this approach:

The core classes keep all of the code that deals with data types, data
structure, and data validation in a single place, which reduces the
complexity of the other code bases that rely upon them
Once unit tests have been created that pass for the core objects, none of the
functionality that they provide will have to be tested elsewhere
Those tests, written so that they can be executed on demand, can be
integrated into a final build process, providing a complete set of regression
tests that ensure that changes made in the future don't break existing
functionality before executing a build

The process of building out those unit tests, using the test extensions noted earlier,
while not difficult, will be time consuming at first. The entire process will be
examined in this chapter, establishing some testing patterns that we'll reuse in later
chapters, before integrating them into the package build process.

This chapter covers the following:

Testing business objects
Distribution and installation considerations
Quality assurance and acceptance
Operation/use, maintenance, and decommissioning considerations

Testing Business Objects Chapter 9

[255]

Starting the unit testing process
Using the standard unit testing structure/framework that we defined in the chapter
before last allows us to start the unit testing of any code base very quickly and easily.
It also lends itself well to an iterative test development process. The starting point test
module, once the configuration items have been set within it by the couple of search
and replace operations, immediately starts reporting on what test cases and methods
are reporting. Our initial test module is little more than the following (with some
comments removed to keep the listing short):

#!/usr/bin/env python
"""
Defines unit-tests for the module at hms_core.
"""
#######################################
Standard library imports needed
#######################################

import os
import sys
import unittest

#######################################
Local imports needed
#######################################

from idic.unit_testing import *

#######################################
Module-level Constants
#######################################

LocalSuite = unittest.TestSuite()

#######################################
Import the module being tested
#######################################

Testing Business Objects Chapter 9

[256]

import hms_core as hms_core

#######################################
Code-coverage test-case and
decorator-methods
#######################################

class testhms_coreCodeCoverage(ModuleCoverageTest):
 # - Class constants that point to the namespace and module
 # being tested
 _testNamespace = 'hms_core'
 _testModule = hms_core

LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testhms_coreCodeCoverage
)
)

#######################################
Test-cases in the module
#######################################

#######################################
Code to execute if file is called
or run directly.
#######################################

if __name__ == '__main__':
 import time
 results = unittest.TestResult()
 testStartTime = time.time()
 LocalSuite.run(results)
 results.runTime = time.time() - testStartTime
 PrintTestResults(results)
 if not results.errors and not results.failures:
 SaveTestReport(results, 'hms_core',
 'hms_core.test-results')

Testing Business Objects Chapter 9

[257]

Executing the test module yields the following results:

That test run output informs us, then, that we need to generate test case classes for
each of the six classes defined in the module being tested; specifically, we need to
create testAddress, testBaseArtisan, testBaseCustomer, testBaseOrder, tes
tBaseProduct, and testHasProducts test case classes. 3

Testing Business Objects Chapter 9

[258]

Each of those should, in order to leverage the property and method coverage tests
that the standard unit testing structure provides, be decorated with
the AddMethodTesting and AddPropertyTesting decorators
that testhms_coreCodeCoverage provides:

#######################################
Test-cases in the module
#######################################

@testhms_coreCodeCoverage.AddMethodTesting
@testhms_coreCodeCoverage.AddPropertyTesting
class testAddress(unittest.TestCase):
 pass
LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testAddress
)
)

@testhms_coreCodeCoverage.AddMethodTesting
@testhms_coreCodeCoverage.AddPropertyTesting
class testBaseArtisan(unittest.TestCase):
 pass
LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testBaseArtisan
)
)

@testhms_coreCodeCoverage.AddMethodTesting
@testhms_coreCodeCoverage.AddPropertyTesting
class testBaseCustomer(unittest.TestCase):
 pass
LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testBaseCustomer
)
)

Testing Business Objects Chapter 9

[259]

@testhms_coreCodeCoverage.AddMethodTesting
@testhms_coreCodeCoverage.AddPropertyTesting
class testBaseOrder(unittest.TestCase):
 pass
LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testBaseOrder
)
)
@testhms_coreCodeCoverage.AddMethodTesting
@testhms_coreCodeCoverage.AddPropertyTesting
class testBaseProduct(unittest.TestCase):
 pass
LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testBaseProduct
)
)

@testhms_coreCodeCoverage.AddMethodTesting
@testhms_coreCodeCoverage.AddPropertyTesting
class testHasProducts(unittest.TestCase):
 pass
LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testHasProducts
)
)

Once those are in place, rerunning the test module will generate a (long!) list of items
that need to be addressed before the test policy tests will pass. The full list of
requirements was long enough that including it in the book directly would've just
ended up with 2-3 pages of a bulleted list. The full results, however, are included in
the hms_core code base, in miscellany/initial-test-run.txt. The entire initial
output was far too long to reproduce in its entirety here, but the start and end of the
output is reproduced as follows, and specifies a total of 105 test methods that need to
be implemented across the six test case classes:

Testing Business Objects Chapter 9

[260]

Testing Business Objects Chapter 9

[261]

From that point on, the test writing process is just a matter of repeating the following
cycle until all tests pass:

Pick a missing test method or set of test methods that need to be written
Add the test method(s) to the applicable test case class, set up to fail
because they aren't implemented
Run the test module to verify that the tests fail as expected
For each test method:

Write real test code in the method
Execute the test module and ensure that the only failure in
that method is the explicit one added, correcting any issues
that arise
Remove the explicit failures

Even with the guidance that is provided by the standard unit testing process, there is
no denying that writing out all of the unit tests for a module, even one as relatively
short as hms_core, can be incredibly tedious. There are a few things that can be done
to make the process go at least somewhat faster, though—especially since we know
that there are some common value types and formats that we're expecting. We'll start
by writing out tests for the Address class, which has one of the largest collections of
properties that we're going to be dealing with. As many of those tests get built out,
some common (and re usable) test values will start to surface.

This run through of the unit testing process will also yield a test case
class template file (test-case-class.py) that will be included in
the book's code in the code templates directory.

Unit testing the Address class
The Address class tests initially report that the following test methods need to be
written:

Methods: test__init__, test_del_building_address, test_del_ci
ty, test_del_country, test_del_postal_code, test_del_region, te
st_del_street_address, test_get_building_address, test_get_c
ity, test_get_country, test_get_postal_code, test_get_region, t
est_get_street_address, test_set_building_address, test_set_
city, test_set_country, test_set_postal_code, test_set_region,
test_set_street_address, and test_standard_address

Testing Business Objects Chapter 9

[262]

Properties: testbuilding_address, testcity, testcountry, testpos
tal_code, testregion, and teststreet_address

The primary concern of the test methods for the properties of the class being tested
are, arguably, to make sure that the properties use the appropriate methods for their
getter, setter, and deleter functionalities. If that is established as being correct, then
the actual processes for handling the properties and their values can be tested solely
in the test methods for those methods. With that in mind, the bulk of the property
tests for Address will look like this:

def testproperty_name(self):
 # Tests the property_name property of the Address class
 # - Assert that the getter is correct:
 self.assertEqual(
 Address.property_name.fget,
 Address._get_property_name,
 'Address.property_name is expected to use the '
 '_get_property_name method as its getter-method'
)
 # - If property_name is not expected to be publicly
settable,
 # the second item here
 # (Address._set_property_name) should
 # be changed to None, and the failure message #
adjusted
 # accordingly:
 self.assertEqual(
 Address.property_name.fset,
 Address._set_property_name,
 'Address.property_name is expected to use the '
 '_set_property_name method as its setter-method'
)
 # If property_name is not expected to be publicly #
deletable,
 # the second item here (Address._del_property_name) #
should
 # be changed to None, and the failure message #
adjusted
 # accordingly:
 self.assertEqual(
 Address.property_name.fdel,
 Address._del_property_name,
 'Address.property_name is expected to use the '
 '_del_property_name method as its deleter-method'
)

Testing Business Objects Chapter 9

[263]

By switching the templated property_name in that code block out for
the actual property name, the individual property tests can be created quite quickly,
for example, implementing testbuilding_address:

def testbuilding_address(self):
Tests the building_address property of the Address class
- Assert that the getter is correct:
 self.assertEqual(
 Address.building_address.fget,
 Address._get_building_address,
 'Address.building_address is expected to use the '
 '_get_building_address method as its getter-method'
)
- Assert that the setter is correct:
 self.assertEqual(
 Address.building_address.fset,
 Address._set_building_address,
 'Address.building_address is expected to use the '
 '_set_building_address method as its setter-method'
)
- Assert that the deleter is correct:
 self.assertEqual(
 Address.building_address.fdel,
 Address._del_building_address,
 'Address.building_address is expected to use the '
 '_del_building_address method as its deleter-method'
)

The getter and deleter method tests will usually also be quite simple—all they need to
do, ultimately, is ensure that they are retrieving data from the correct internal storage
attribute and setting the value of that attribute to the expected default value,
respectively. The test_del_building_address test method serves as an example:

def test_del_building_address(self):
Tests the _del_building_address method of the Address
class
 test_object = Address('street address', 'city')
 self.assertEqual(
 test_object.building_address, None,
 'An Address object is expected to have None as its default '
 'building_address value if no value was provided'
)
- Hard-set the storage-property's value, call the
deleter-method, and assert that it's what's expected
afterwards:
 test_object._building_address = 'a test value'
 test_object._del_building_address()

Testing Business Objects Chapter 9

[264]

 self.assertEqual(
 test_object.building_address, None,
 'An Address object is expected to have None as its '
 'building_address value after the deleter is called'
)

It's worth noting that in order to test the deleter method (as well as the getter and
setter methods later on), we actually have to create an instance of the object being
tested—that's what the third line of the test method is doing (test_object =
Address…). Once that instance is created, if the property whose deleter method is
being tested isn't required or supplied as part of that test object's creation, we can
(and should) also test the default/deleted value of the instance. Even if there is a value
supplied for the test object, testing the deletion process by setting a value in the
underlying storage attribute, calling the deleter method, and verifying the results
afterwards will remain constant in almost all cases.

Testing the corresponding getter method is going to be similar; again, all it really has
to do is provide that the property is retrieving data from the correct storage attribute:

def test_get_building_address(self):
Tests the _get_building_address method of the Address
class
 test_object = Address('street address', 'city')
 expected = 'a test-value'
 test_object._building_address = expected
 actual = test_object._get_building_address()
 self.assertEqual(
 actual, expected,
 'Address._get_building_address was expected to return '
 '"%s" (%s), but returned "%s" (%s) instead' %
 (
 expected, type(expected).__name__,
 actual, type(actual).__name__,
)
)

It's often useful to set expected and actual values that can be passed to the core
assertion of the test, particularly if retrieving those values involves using a method or
function. It won't make a functional difference, but it can be a lot easier to read later
on, and keeping things easily understood and readable is, if
anything, more important than keeping the code being tested readable and
understandable—test code is a quality assurance effort, after all, and would not be
well served by having errors creep in because of a cryptic structure.

Testing Business Objects Chapter 9

[265]

It's also worth noting that the test methods for city and street_address properties
vary slightly, because they are both properties that are set during the creation of an
instance:

def test_del_city(self):
 # Tests the _del_city method of the Address class
 expected = 'city'
 test_object = Address('street address', expected)
 self.assertEqual(
 test_object.city, expected,
 'An Address object is expected to have "%s" (%s) as its '
 'current city value, since that value was provided' %
 (expected, type(expected).__name__)
)
- Since we have a value, just call the deleter-method,
and
assert that it's what's expected afterwards:
 test_object._del_city()
 self.assertEqual(
 test_object.city, None,
 'An Address object is expected to have None as its '
 'city value after the deleter is called'
)

The difference is that since the test object being created is expected to provide a value
because it was initialized with one, we're setting up the expected value to test against
before the test object is created, creating it using that expected value, then testing to
ensure that the deleter doesn't delete that initially set value during object creation.
The test that it does getting deleted when explicitly told to is essentially the same,
though.

Once all of the getter and deleter method tests have been established using those
patterns, the test module run starts to show progress. One of the 29 tests being run
(and that is one of the failures) is the code coverage test that is picking up the missing
test case classes for BaseArtisan and the other hms_core classes, which have been
commented out to make working with the results output of the testAddress test
methods easier. Of the remaining eight failures, six are the setter method tests
for testAddress, which we'll implement next, and the other two
are test__init__ and teststandard_address, which we'll look at last:

Testing Business Objects Chapter 9

[266]

The test methods corresponding to the getter and deleter methods are simple because
the methods being tested are, themselves, quite simple. They (thus far) make no
decisions, and neither do they do any manipulation of the values themselves; they
simply return the current value, or replace it without having to make any decisions
about what it's being replaced with. On top of that, they also have no arguments to
contend with.

The setter methods are more complicated; they will make decisions, will have
arguments (if only one), and might be expected to behave differently depending on
the types and values of those arguments. Their corresponding test methods, then,
might be expected to be more complex too as a result, and that expectation would be
well founded. Test complexity will grow as the complexity of the input grows for well
designed tests, because those tests must check all of the logical variants of the input.
That will start to become apparent as we test the setter methods of our properties,
starting with Address.building_address again.

Well designed unit tests need to do several things, not all of which may be obvious at
first. The most obvious item is probably testing all of the happy path input
possibilities: inputs that are of expected types and with expected and valid values,
which should execute without errors and yield the expected results, whatever those
results may be. Less obviously perhaps, unit tests should also test with a
representative sample set of known bad values—values that are expected to raise
errors and prevent the process being tested from completing with erroneous data.
Let's take another look at the _set_building_address method of Address with
that in mind:

def _set_building_address(self, value:(str,None)) -> None:
 if value != None:
 # - Type-check: If the value isn't None, then it has to
 # be a non-empty, single-line string without tabs
 if type(value) != str:
 raise TypeError(

Testing Business Objects Chapter 9

[267]

 '%s.building_address expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces or None, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - Value-check: no whitespace other than " "
 bad_chars = ('\n', '\r', '\t')
 is_valid = True
 for bad_char in bad_chars:
 if bad_char in value:
 is_valid = False
 break
 # - If it's empty or otherwise not valid, raise error
 if not value.strip() or not is_valid:
 raise ValueError(
 '%s.building_address expects a single-line, '
 'non-empty str value, with no whitespace '
 'other than spaces or None, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 # - If this point is reached without error, then the
 # string-value is valid, so we can just exit the if
 self._building_address = value

The good values that can be reasonably tested include the following:

None—If None is passed as the value, then it simply passes through and is
set in the inner storage attribute.
Any single line, non-empty string that doesn't contain tabs or other
whitespace characters other than spaces.

Viable bad values would include the following:

Any value that isn't a string.
An empty string.
A string that contains any line breaking characters, or any whitespace that
isn't a space.

Testing Business Objects Chapter 9

[268]

A string that is nothing but space characters; this item is less obvious, but
the code will raise a ValueError because such an input would be caught
by the if not value.strip() that's part of the value checking code. The
results of a .strip() called against a string that is nothing but whitespace
is an empty string, and that would evaluate as False (-ish), thus raising the
error.

The _set_building_address method doesn't try to do any content validation, so
we don't currently have to worry about that; we're implicitly assuming that if
someone took the effort to enter a well formed building_address value then the
value entered is going to be accurate.

Earlier, the business_address property was classified as a standard optional text
line property. If that classification holds true, then it would be both possible and
advantageous to generate a single list of good standard optional text line property
values, so that those values can be reused for all of the property tests that they'd
logically apply to. That list, set up as a constant in the test module, might look
something like this:

GoodStandardOptionalTextLines = [
 'word', 'hyphenated-word', 'short phrase',
 'A complete sentence.',
 'A short paragraph. This\'s got some punctuation, '
 'including "quoted text."',
 None # Because optional items are allowed to be None
]

Testing the good values in test_set_business_address then becomes a simple
matter of iterating over that list of values, calling the setter method, and asserting that
the results of the getter method after the value's been set match the expected value:

- Create an object to test with:
test_object = Address('street address', 'street_address')
- Test all permutations of "good" argument-values:
 for expected in GoodStandardOptionalTextLines:
 test_object._set_building_address(expected)
 actual = test_object._get_building_address()
 self.assertEqual(
 expected, actual,
 'Address expects a building_address value set to '
 '"%s" (%s) to be retrieved with a corresponding '
 'getter-method call, but "%s" (%s) was returned '
 'instead' %
 (

Testing Business Objects Chapter 9

[269]

expected, type(expected).__name__,
 actual, type(actual).__name__,
)
)

It would also be valid to perform the assertion against
the property instead of the getter method, since we've tested that the
property is associated with the getter method elsewhere.

A corresponding bad values list would have to include all of the bad items listed
previously, and would look something like this:

BadStandardOptionalTextLines = [
 # Bad string values
 'multiple\nlines', 'also multiple\rlines',
 'text\twith\tabs',
 # Values that aren't strings at all
 1, True, 0, False, object(),
 # empty and whitespace-only strings
 '', ' ',
]

The corresponding bad value tests are a similar iteration to the good value iteration
shown previously, except that they will specifically look for cases where the execution
is expected to fail, and fail if those don't happen or happen in an unexpected fashion:

- Test all permutations of "bad" argument-values:
for value in BadStandardOptionalTextLines:
 try:
 test_object._set_building_address(value)
 # - If this setter-call succeeds, that's a
 # test-failure!
 self.fail(
 'Address._set_business_address should raise '
 'TypeError or ValueError if passed "%s" (%s), '
 'but it was allowed to be set instead.' %
 (value, type(value).__name__)
)
 except (TypeError, ValueError):
 # - This is expected, so it passes
 pass
 except Exception as error:
 self.fail(
 'Address._set_business_address should raise '
 'TypeError or ValueError if passed an invalid '
 'value, but %s was raised instead: %s.' %

Testing Business Objects Chapter 9

[270]

 (error.__class__.__name__, error)
)

This test process, by using the try … except blocks, will do the following:

Explicitly fail if the setter method allows a bad value to be set without
raising an error
Pass if a bad value raises an expected error (TypeError or ValueError in
most cases) while trying to set a bad value in the test object
Fail if any error other than the two types expected is raised by the setter
method during execution

This same test method structure can be used for all of the Address properties that are
also standard optional text line values/types with no more effort than changing the
setter method names. Basically, all of the property setters of an Address, except the
ones for city and street_address, which are standard required text line items, are
identical, except for those names.

The only difference between the optional and required text line properties, though, is
that optional items can allow None as a valid argument, while required ones cannot.
If we create separate test value lists that account for those differences, and change
which list the test method is using, the same structure, just with different good and
bad values, will still work:

GoodStandardRequiredTextLines = [
 'word', 'hyphenated-word', 'short phrase',
 'A complete sentence.',
 'A short paragraph. This\'s got some punctuation, '
 'including "quoted text."',
]
BadStandardRequiredTextLines = [
 # Bad string values
 'multiple\nlines', 'also multiple\rlines',
 'text\twith\tabs',
 # Values that aren't strings at all
 1, True, 0, False, object(),
 # empty and whitespace-only strings
 '', ' ',
 None # Because optional items are NOT allowed to be None
]

...

def test_set_city(self):
 # Tests the _set_city method of the Address class

Testing Business Objects Chapter 9

[271]

 # - Create an object to test with:
 test_object = Address('street address', 'street_address')
 # - Test all permutations of "good" argument-values:
 for expected in GoodStandardRequiredTextLines:
 test_object._set_city(expected)
 actual = test_object._get_city()
 self.assertEqual(
 expected, actual,
 'Address expects a city value set to '
 '"%s" (%s) to be retrieved with a corresponding '
 'getter-method call, but "%s" (%s) was returned '
 'instead' %
 (
 expected, type(expected).__name__,
 actual, type(actual).__name__,
)
)
 # - Test all permutations of "bad" argument-values:
 for value in BadStandardRequiredTextLines:
 try:
 test_object._set_city(value)
 # - If this setter-call succeeds, that's a
 # test-failure!
 self.fail(
 'Address._set_business_address should raise '
 'TypeError or ValueError if passed "%s" (%s), '
 'but it was allowed to be set instead.' %
 (value, type(value).__name__)
)
 except (TypeError, ValueError):
 # - This is expected, so it passes
 pass
 except Exception as error:
 self.fail(
 'Address._set_business_address should raise '
 'TypeError or ValueError if passed an invalid '
 'value, but %s was raised instead: %s.' %
 (error.__class__.__name__, error)
)

With all of the setter method tests in place, rerunning the test module shows that
there are only three tests failing:

Testing Business Objects Chapter 9

[272]

Discounting the coverage test for the other test case classes, that leaves only
the __init__ and standard_address methods to test.

Testing the __init__ method is not going to be difficult. All it really needs to
establish is that the initialization process that is part of creating a new object instance
is calling the various property setters in an appropriate fashion. Other tests have
already established that the properties connect to their intended getter/setter/deleter
methods, and that those methods are doing what they're supposed to. Since we have
predefined lists of good values that we can iterate over, it's a simple matter to set up a
(large) set of nested loops to check all the possible combinations of those values as
they apply to each property. The nesting level of the loops gets pretty deep (enough
so that the following code is indented only two spaces per line in order to fit on the
page), but it works:

def test__init__(self):
 # Tests the __init__ method of the Address class
 # - Test all permutations of "good" argument-values:
 for building_address in GoodStandardOptionalTextLines:
 for city in GoodStandardRequiredTextLines:
 for country in GoodStandardOptionalTextLines:
 for postal_code in GoodStandardOptionalTextLines:
 for region in GoodStandardOptionalTextLines:
 for street_address in GoodStandardRequiredTextLines:
 test_object = Address(
 street_address, city, building_address,
 region, postal_code, country
)
 self.assertEqual(test_object.street_address,
street_address)
 self.assertEqual(test_object.city, city)
 self.assertEqual(test_object.building_address,
building_address)
 self.assertEqual(test_object.region, region)
 self.assertEqual(test_object.postal_code, postal_code)
 self.assertEqual(test_object.country, country)

Testing Business Objects Chapter 9

[273]

The same approach works just as well in implementing teststandard_address:

def teststandard_address(self):
 # Tests the standard_address method of the Address class
 # - Test all permutations of "good" argument-values:
 for street_address in GoodStandardRequiredTextLines:
 for building_address in GoodStandardOptionalTextLines:
 for city in GoodStandardRequiredTextLines:
 for region in GoodStandardOptionalTextLines:
 for postal_code in GoodStandardOptionalTextLines:
 for country in GoodStandardOptionalTextLines:
 test_object = Address.standard_address(
 street_address, building_address,
 city, region, postal_code,
 country
)
 self.assertEqual(test_object.street_address,
street_address)
 self.assertEqual(test_object.building_address,
building_address)
 self.assertEqual(test_object.city, city)
 self.assertEqual(test_object.region, region)
 self.assertEqual(test_object.postal_code, postal_code)
 self.assertEqual(test_object.country, country)

That, then, completes the tests for the Address class:

Testing Business Objects Chapter 9

[274]

The balance of the unit testing process for the module really consists of reactivating
the other test case classes, creating the baseline failing test methods for all of them
and then just running the test module and writing and correcting tests, as noted
earlier. Because of the way that the test process executes, the output generated will be
for each test method of each test case class, in alphabetical order. So, the test case class
for HasProducts will execute last, and within, that the testproducts method,
preceded by test_del_products, test_get_products, and test_set_products.
It takes less time to simply deal with the last failing test case(s) in the output, rather
than scrolling through the entire output looking for a single, specific test method
that's being worked on, so the remaining tests will be worked on and discussed in
that order.

Unit testing HasProducts
The test method for the products property, testproducts, has to account for the
read only nature of the property—remember that the products property is set up to
prevent, or at least minimize, the possibility of casual manipulation of the
underlying list value. Apart from the changes to the tests of setter and deleter method
assignment, it's pretty much the same as previous property test methods, though:

def testproducts(self):
 # Tests the products property of the HasProducts class
 # - Assert that the getter is correct:
 self.assertEqual(
 HasProducts.products.fget,
 HasProducts._get_products,
 'HasProducts.products is expected to use the '
 '_get_products method as its getter-method'
)
 # - Assert that the setter is correct:
 self.assertEqual(
 HasProducts.products.fset, None,
 'HasProducts.products is expected to be read-only, with '
 'no associated setter-method'
)
 # - Assert that the deleter is correct:
 self.assertEqual(
 HasProducts.products.fdel, None,
 'HasProducts.products is expected to be read-only, with '
 'no associated deleter-method'
)

Testing Business Objects Chapter 9

[275]

Testing the methods of an ABC like HasProducts is, at one level, the same sort of
process as for a concrete class like Address: a test object that is an instance of the
ABC has to be created, then relevant test values are passed to the methods and their
results asserted. An ABC, if it has abstract members, cannot be instantiated, however,
so a throwaway derived class that has minimal implementations of the abstract
members has to be defined and used in place of the concrete class to create test
objects. For the purposes of testing the member methods of HasProducts , that class
is HasProductsDerived, and it looks like this:

class HasProductsDerived(HasProducts):
 def __init__(self, *products):
 HasProducts.__init__(self, *products)
NOTE: These do NOT have to actually *do* anything, they
merely have to *exist* in order to allow an instance
 # to be created:
 def add_product(self, product):
 pass
 def remove_product(self, product):
 pass

With that class defined, the tests
for _get_products, _set_products, and _del_products can be created as
straightforward variations of the test strategies used so far, though they
require GoodProducts and BadProducts definitions that make use of the
throwaway class first:

Since we needed this class in order to generate good # product-
setter test-values, but it wasn't defined until now, # we'll
create the GoodProducts test-values here...
GoodProducts = [
 [
 BaseProductDerived('test1', 'summary1', True, True),
 BaseProductDerived('test2', 'summary2', True, True),
],
 (
 BaseProductDerived('test3', 'summary3', True, True),
 BaseProductDerived('test4', 'summary4', True, True),
),
]
BadProducts = [
 object(), 'string', 1, 1.0, True, None,
 ['list','with','invalid','values'],
 [
 BaseProductDerived('test4', 'summary4', True, True),
 'list','with','invalid','values'
],

Testing Business Objects Chapter 9

[276]

 ('tuple','with','invalid','values'),
 (
 BaseProductDerived('test4', 'summary4', True, True),
 'tuple','with','invalid','values'
),
]

Once those are also in place, the test methods are as follows:

def test_del_products(self):
Tests the _del_products method of the HasProducts class
 test_object = HasProductsDerived()
 self.assertEqual(test_object.products, (),
 'HasProducts-derived instances are expected to return '
 'an empty tuple as a default/deleted value'
)
- Test all permutations of "good" argument-values:
 test_object._set_products(GoodProducts[0])
 self.assertNotEqual(test_object.products, ())
 test_object._del_products()
 self.assertEqual(test_object.products, ())

def test_get_products(self):
 # Tests the _get_products method of the HasProducts class
 test_object = HasProductsDerived()
 # - Test all permutations of "good" argument-values:
 expected = GoodProducts[1]
 test_object._products = expected
 self.assertEqual(test_object._get_products(), expected)

 def test_set_products(self):
Tests the _set_products method of the HasProducts class
 test_object = HasProductsDerived()
- Test all permutations of "good" argument-values:
 for expected in GoodProducts:
 test_object._set_products(expected)
 if type(expected) != tuple:
 expected = tuple(expected)
 self.assertEqual(expected, test_object._get_products())
- Test all permutations of each "bad" argument-value
set against "good" values for the other arguments:
 for value in BadProducts:
 try:
 test_object._set_products(value)
 self.fail(
 'HasProducts-derived classes should not allow '
 '"%s" (%s) as a valid products value, but it '
 'was allowed to be set.' %

Testing Business Objects Chapter 9

[277]

 (str(value), type(value).__name__)
)
 except (TypeError, ValueError):
 pass

The test method for HasProducts.__init__ uses much the same sort of approach
as test_set_products:

def test__init__(self):
 # Tests the __init__ method of the HasProducts class
 # - Test all permutations of "good" argument-values:
 for expected in GoodProducts:
 test_object = HasProductsDerived(*expected)
 if type(expected) != tuple:
 expected = tuple(expected)
 self.assertEqual(test_object.products, expected)

Since HasProducts has concrete functionality hidden behind
its add_product and remove_product methods, it would also be possible to test
that functionality in the same fashion, but any derived class methods that call those
methods would still have to be individually tested anyway, according to our test
policy, so there's not much point in making the additional effort at this time.

Unit testing BaseProduct
The test methods for the properties of BaseProduct don't require anything new; they
follow the same approaches shown for properties with full get/set/delete capabilities,
except for the test of the metadata property, which tests as a read-only property like
the test for HasProducts.products we have just shown.

Many of the test methods for BaseProduct will also follow previously established
patterns—testing for good and bad value variants of standard required and optional
text lines—but there are a few that require new, or at least variant, approaches as
well.

The set_metadata and remove_metadata method tests are just different enough
from previous tests that they are worth a closer examination. In order to test
the addition of new metadata key/value items, it's necessary to keep track of an
expected value that the same addition of keys and values can be performed against.
That is achieved in the test method by creating an empty dictionary (expected =
{}) that is modified in the iteration that calls the set_metadata method on the test
object. As each iteration progresses, the expected value is altered accordingly, and is
compared to the actual value:

Testing Business Objects Chapter 9

[278]

def testset_metadata(self):
 # Tests the set_metadata method of the BaseProduct class
 test_object = BaseProductDerived('name', 'summary', True, True)
 expected = {}
 # - Test all permutations of "good" argument-values:
 for key in GoodStandardRequiredTextLines:
 value = '%s value'
 expected[key] = value
 test_object.set_metadata(key, value)
 self.assertEqual(test_object.metadata, expected)

Tests for bad key and value sets use a single good value for whichever item is
not being tested, and iterate over the bad values, making sure that appropriate errors
are raised:

 # - Test all permutations of each "bad" argument-value
 # set against "good" values for the other arguments:
 value = GoodStandardRequiredTextLines[0]
 for key in BadStandardRequiredTextLines:
 try:
 test_object.set_metadata(key, value)
 self.fail(
 'BaseProduct.set_metadata should not allow '
 '"%s" (%s) as a key, but it raised no error'
 % (key, type(key).__name__)
)
 except (TypeError,ValueError):
 pass
 except Exception as error:
 self.fail(
 'BaseProduct.set_metadata should raise TypeError '
 'or ValueError if passed "%s" (%s) as a key, '
 'but %s was raised instead:\n %s' %
 (
 key, type(key).__name__,
 error.__class__.__name__, error
)
)
 key = GoodStandardRequiredTextLines[0]
 for value in BadStandardRequiredTextLines:
 try:
 test_object.set_metadata(key, value)
 self.fail(
 'BaseProduct.set_metadata should not allow '
 '"%s" (%s) as a value, but it raised no error'
 % (value, type(value).__name__)
)
 except (TypeError,ValueError):

Testing Business Objects Chapter 9

[279]

 pass
 except Exception as error:
 self.fail(
 'BaseProduct.set_metadata should raise TypeError '
 'or ValueError if passed "%s" (%s) as a value, '
 'but %s was raised instead:\n %s' %
 (
 value, type(value).__name__,
 error.__class__.__name__, error
)
)

The test method for the remove_metadata method of BaseProduct uses a similar
strategy for keeping track of an expected value to compare test results against. The
only significant difference is that the expected value (and the test
object's metadata too) need to be populated before trying to remove any metadata
values:

def testremove_metadata(self):
 # Tests the remove_metadata method of the BaseProduct class
 # - First we need sopme meadata to remove
 test_object = BaseProductDerived('name', 'summary', True, True)
 expected = {
 'materials':'wood',
 'material-names':'cherry,oak',
 'finish':'gloss'
 }
 for key in expected:
 test_object.set_metadata(key, expected[key])
 self.assertEqual(test_object.metadata, expected)
 # - Test all permutations of "good" argument-values:
 keys = list(expected.keys())
 for key in keys:
 del expected[key]
 test_object.remove_metadata(key)
 self.assertEqual(test_object.metadata, expected)

The tests for the setter methods of the Boolean value properties
of BaseProduct, available, and store_available still use the same good and
bad value iteration approach that's been used elsewhere, they just need a different list
of good and bad values to test with:

GoodBooleanOrIntEquivalents = [
 True, False, 1, 0
]

Testing Business Objects Chapter 9

[280]

BadBooleanOrIntEquivalents = [
 'true', '', (1,2), tuple()
]

Similarly, the test method for _set_shipping_weight needs yet another set of value
lists, as does the test method for _set_metadata:

GoodWeights = [
 0, 1, 2, 0.0, 1.0, 2.0, 1.5
]
BadWeights = [
 -1, -1.0, object(), 'true', '', (1,2), tuple()
]
GoodMetadataDicts = [
 {},
 {'spam':'eggs'}
]
BadMetadataDicts = [
 -1, -1.0, object(), 'true', '', (1,2), tuple()
]

The initial test run against _set_shipping_weight also prompted a review of the
assumptions around what constitutes a valid shipping weight. On reflection, and
without knowing what the measurement units are at this point, it's quite possible that
those values will need to allow floating point values, especially if the units of measure
need to eventually allow for pounds, kilograms, or even tons of shipping, as unlikely
as that might be.

The system shouldn't place any constraints on what a valid shipping weight is, other
than ensuring that it's a number (because it always will be) and isn't negative.
Products might, after all, include something like a piece of calligraphy, or an
illustration on a single sheet of paper, and that's not going to weigh much at all. On
the other end of the spectrum, a marble bust or even a large metal sculpture in the
dozens of pounds to one or more tons weight range is just as possible.

With all of these considerations in mind, _set_shipping_weight was altered to
allow a broader range of value types, and to allow a zero value as well:

def _set_shipping_weight(self, value:(int,float)):
 if type(value) not in (int, float):
 raise TypeError(
 '%s.shipping_weight expects a non-negative numeric '
 'value, but was passed "%s" (%s)' %
 (
 self.__class__.__name__,
 value, type(value).__name__

Testing Business Objects Chapter 9

[281]

)
)
 if value < 0:
 raise ValueError(
 '%s.shipping_weight expects a non-negative numeric '
 'value, but was passed "%s" (%s)' %
 (
 self.__class__.__name__,
 value, type(value).__name__
)
)
 self._shipping_weight = value

Testing _set_description also requires one additional new value list to test bad
values with; a description can be any string value, as it's currently implemented, and
there are no bad value lists that adequately capture bad values for that yet:

BadDescriptions = [
 # Values that aren't strings at all
 1, True, 0, False, object(),
 # empty and whitespace-only strings
 '', ' ',
]

Unit testing BaseOrder
Unit testing BaseOrder, according to the coverage test, is only going to be concerned
with testing the customer property and whatever methods interact with that
property. This is because BaseOrder inherits from HasProducts. Since none of the
members of HasProducts have been overridden in BaseOrder, they are still owned
by HasProducts, and have been tested accordingly already:

Testing Business Objects Chapter 9

[282]

Like the testing processes for BaseProduct and HasProducts,
testing BaseOrder requires the creation of a throwaway derived class that can be
used to test method members. Since BaseOrder also expects a customer instance to
be provided during object construction, we'll also need to create
a BaseCustomer derived class to provide such an object, and good and bad customer
values to test with:

class BaseCustomerDerived(BaseCustomer):
 pass

GoodCustomers = [
 BaseCustomerDerived('customer name', Address('street-address',
'city'))
]
BadCustomers = [
 '', 'string', 1, 0, True, False, 1.0, 0.0, object(), [],
]

The BaseCustomerDerived class doesn't have to implement anything,
since BaseCustomer itself has no abstract members, which raises an interesting
thought: if it doesn't have any abstract members, why did we define it as an abstract
class to begin with? The original thought behind that decision was that Customer
objects are expected to vary significantly in what they can do, and perhaps what data
access is allowed across the different components of the system.

That expectation hasn't changed since our initial implementation, so it still feels valid.
At the same time, it would be possible to create an actual instance of BaseCustomer,
simply because it has no abstract members defined, and that has at
least some potential to introduce bugs somewhere down the line; if we believe
that BaseCustomer really is abstract, even though it provides no abstract members,
creating a concrete instance of it shouldn't be allowed. That, at least, can be managed,
though doing so may feel a bit awkward, by adding a few lines to
the __init__ method of BaseCustomer:

def __init__(self,
 name:(str,), billing_address:(Address,),
 shipping_address:(Address,None)=None
):

 # ...

 # - Prevent a direct instantiation of this class - it's
 # intended to be abstract, even though it has no
 # explicitly-abstract members:
 if self.__class__ == BaseCustomer:

Testing Business Objects Chapter 9

[283]

 raise NotImplementedError(
 'BaseCustomer is intended to be an abstract class, '
 'even though it does not have any explicitly '
 'abstract members, and should not be instantiated.'
)

That, essentially, checks the class type of the object being created, and raises
a NotImplementedError if the object being created is an instance of the abstract
class itself. We'll have to remember to test that when we write
the test__init__ method for that class, so it's worth noting that in the test
method now, so that it doesn't get lost later on:

def test__init__(self):
 # Tests the __init__ method of the BaseCustomer class
 # - Test to make sure that BaseCustomer can't be
 # instantiated on its own!
 # - Test all permutations of "good" argument-values:
 # - Test all permutations of each "bad" argument-value
 # set against "good" values for the other arguments:
 self.fail('test__init__ is not yet implemented')

That aside, the creation of a BaseCustomerDerived class
and GoodCustomers and BadCustomers value lists to test with allows the test-
structures for all of the testBaseOrder test case class to follow the usual patterns
that have been in play so far.

Unit-testing BaseCustomer
All of the property getter, setter, and deleter method tests for BaseCustomer follow
the typical pattern, though the test_object created is usually better handled by
creating individual instances in each test. Doing otherwise leads, pretty quickly, to
one test making changes to a common object that made other tests fail, and creating
individual test objects for each test solves that neatly:

test_object = BaseCustomer(
 'customer name', Address('street-address', 'city')
)

The test for __init__, which needed to explicitly test whether
a BaseCustomer object could be created, as noted earlier, is still pretty typical of the
test structure established in previous test case classes, even with that addition:

Testing Business Objects Chapter 9

[284]

def test__init__(self):
Tests the __init__ method of the BaseCustomer class
- BaseCustomer is an abstract class, but has no abstract
members, so this was set up to keep it from being
accidentally used in an inappropriate fashion
 try:
 test_object = BaseCustomer(
 'customer name', Address('street-address', 'city')
)
 self.fail(
 'BaseCustomer is expected to raise '
 'NotImplementedError if instantiated directly, '
 'but did not do so'
)
 except NotImplementedError:
 pass

The balance of the test method is what would be expected from previous tests,
iterating over a relevant set of good values and asserting that they carry through to
the properties as expected upon instantiation:

- Test all permutations of "good" argument-values:
 for name in GoodStandardRequiredTextLines:
 for billing_address in GoodAddresses:
 # - Testing without a shipping-address first
 test_object = BaseCustomerDerived(
 name, billing_address
)
 self.assertEqual(test_object.name, name)
 self.assertEqual(
 test_object.billing_address,
 billing_address
)
 for shipping_address in GoodAddresses:
 test_object = BaseCustomerDerived(
 name, billing_address,
 shipping_address
)
 self.assertEqual(
 test_object.shipping_address,
 shipping_address
)

Testing Business Objects Chapter 9

[285]

Unit testing BaseArtisan
At this point, we've got established patterns that should be used for all of the tests to
execute against BaseArtisan:

It's an abstract class, so we need to create a derived class for testing
purposes (BaseArtisanDerived)
All of the property getter, setter, and deleter methods follow one of the
patterns already established:

All of the getter and deleter method tests are standard
address is almost a direct copy of the tests for billing and
shipping address properties in BaseCustomer, and uses the
same GoodAddresses/BadAddresses value lists
company_name is a standard optional text line test, like
many of the other properties we've tested already
The contact_email and website setter methods are also
follow the standard pattern, though they need new good and
bad value lists to test against
contact_name is a standard required text line property, and
is tested like all of the other such properties

The following demonstrates examples of good and bad value lists:

GoodEmails = [
 'someone@somewhere.com',
 'brian.allbee+hosewp@gmail.com',
]
BadEmails = [
 '', 'string', -1, -1.0, object(), 'true', '', (1,2), tuple()
]
GoodURLs = [
 'http://www.google.com',
 'https://www.google.com',
]
BadURLs = [
 '', 'string', -1, -1.0, object(), 'true', '', (1,2), tuple()
]

Testing Business Objects Chapter 9

[286]

The testing of BaseArtisan, however, revealed that there was no website argument
provided in the __init__ method, nor any support for passing a website along to
an object during construction, so that was altered accordingly:

def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 website:(str,)=None,
 **products
):

 # ...

 # - Call parent initializers if needed
 HasProducts.__init__(self, *products)
 # - Set default instance property-values using _del_... methods
 self._del_address()
 self._del_company_name()
 self._del_contact_email()
 self._del_contact_name()
 self._del_website()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_contact_name(contact_name)
 self._set_contact_email(contact_email)
 self._set_address(address)
 if company_name:
 self._set_company_name(company_name)
 if website:
 self._set_website(website)

And that, finally, completes all of the 118 tests for the first module of the system:

Testing Business Objects Chapter 9

[287]

Unit testing patterns established so far
There's been a lot of exploration of the unit testing of the first module in the system,
and that exploration has established some patterns that will appear frequently in unit
testing of the other system code as it is written, so they will not be re-examined in any
significant detail from this point on unless there's a significant new aspect to them.

Those patterns are as follows:

Iteration over good and bad value lists that are meaningful as values for the
member being tested:

Standard optional text line values
Standard required text line values
Boolean (and numeric equivalent) values
Metadata values
Non-negative numeric values (for weight values, in this case)

Verifying property method associations—getter methods in every case so
far, and setter and deleter methods where they are expected
Verifying that getter methods retrieve their underlying storage attribute
values
Verifying that deleter methods reset their underlying storage attribute
values as expected
Verifying that setter methods enforce type and value checks as expected
Verifying that initialization methods (__init__) call all of the deleter and
setter methods as expected

Testing Business Objects Chapter 9

[288]

Distribution and installation
considerations
The default setup.py, with the package name for hms_core added and comments
removed, is very basic but still provides all that's needed to build a deployable
Python package of the hms_core code base so far. It also provides the ability to
execute all of the unit tests that've been created for the package, given the path that
they reside in, and the ability to find the unit testing extensions that were put in play:

#!/usr/bin/env python

- Provide an import-path for the unit-testing standards we're using:
import sys
sys.path.append('../standards')

- Standard setup.py import and structure
from setuptools import setup

The actual setup function call:
setup(
 name='HMS-Core',
 version='0.1.dev0',
 author='Brian D. Allbee',
 description='',
 package_dir={
 '':'src',
 },
 packages=[
 'hms_core',
],
 test_suite='tests.test_hms_core',
)

Execute the following:

python setup.py test

Testing Business Objects Chapter 9

[289]

This will execute the entire test suite living in the tests/test_hms_core directory
of the project:

Executing the following:

python setup.py sdist

This will create a source distribution of the package, which can then be installed with
the following:

pip install HMS-Core-0.1.dev0.tar.gz

This can be done from a Terminal session in the directory that the package file lives
in.

Testing Business Objects Chapter 9

[290]

The setup.py build process will, at this point, raise a few errors, but none of them
will prevent the package from being built, or from being installed:

warning: sdist: standard file not found: should have one
of README, README.rst, README.txt

warning: check: missing required meta-data: url

warning: check: missing meta-data: if 'author' supplied,
'author_email' must be supplied too

Once installed, the hms_core package can be used just like any other Python
package:

Three of the original stories in this iteration, focused on how the build and deploy
processes would interact between hms_core and the other component project
libraries, have not yet been addressed:

As an Artisan, I need the business objects library to be installed with my
application so that the application will work as needed without me having
to install dependent components of it
As a Central Office user, I need the business objects library to be installed
with my application so that the application will work as needed without
me having to install dependent components of it

Testing Business Objects Chapter 9

[291]

As a System Administrator I need the business objects library to be
installed with the Artisan gateway service so that it will work as needed
without me having to install dependent components of it

At this point, because we don't have any other libraries to test with, they
realistically cannot be executed against—we'll have to wait for the actual
implementation of at least one of the installables' packages before these can be
addressed, so they'll go back into the backlog and be picked up when they can
actually be worked on.

Quality assurance and acceptance
Since the functionality this library provides is foundational—intended to be
consumed by other libraries—there isn't really much in the way of public facing
capabilities that could be usefully tested in a formal Quality Assurance (QA) process.
If such a formal QA process were involved in this iteration, about the most that could
be done would be to execute the unit test suite and verify that those tests execute
without failures or errors.

Similarly, since the bulk of the stories involved in the iteration were for the benefit
of developers, there would be little external acceptance needed; the fact that the
various classes in the library exist and function as expected should be sufficient for
acceptance of those stories:

As a developer, I need a common definition and functional structure to
represent addresses in the system, so that I can incorporate them into the
parts of the system that need them
As a developer, I need a common definition and functional structure to
represent artisans in the system, so that I can incorporate them into the
parts of the system that need them
As a developer, I need a common definition and functional structure to
represent customers in the system, so that I can incorporate them into the
parts of the system that need them
As a developer, I need a common definition and functional structure to
represent orders in the system, so that I can incorporate them into the parts
of the system that need them
As a developer, I need a common definition and functional structure to
represent products in the system, so that I can incorporate them into the
parts of the system that need them

Testing Business Objects Chapter 9

[292]

The stories focused on installation are in something of an odd state at this point—they
were specifically concerned with a single installable package for all the various end
users, which is currently the case, but there will be more functionality in other
libraries as development progresses. As things stand right now, an argument could be
made that these stories meet all the stated requirements, if only because there is only
one component installation:

As an Artisan, I need the business objects library to be installed with my
application so that the application will work as needed without me having
to install dependent components of it
As a Central Office user, I need the business objects library to be installed
with my application so that the application will work as needed without
me having to install dependent components of it
As a System Administrator, I need the business objects library to be
installed with the Artisan Gateway service so that it will work as needed
without me having to install the dependent components of it

It could also be argued that these stories, though they are complete here and now,
will have to be repeated in the development cycles for the various application and
service components that are still to be built. Until those components have their own
code, builds, and packages, there are no dependencies that need to be dealt with.

Operation/use, maintenance, and
decommissioning considerations
Given how simple this package is, and that it has no external dependencies, there are
no obvious considerations or items of even potential concern with regards to the
operation and use of the package, or of decommissioning it. In the latter case,
decommissioning would be nothing more than uninstalling the package (pip
uninstall HMS-Core). Maintenance considerations would be similarly limited to
updates of the package itself, which would be managed by simply rerunning the
original installation process with a new package file.

Testing Business Objects Chapter 9

[293]

Summary
This iteration has defined basic business objects representing significant functional
aspects of the system, which represent the data elements of the final system. None of
them do any more than provide the basic structure and some business rules around
what constitutes a valid structure of those elements, though—There is, as yet, no
mechanism for storing those elements, retrieving them or interacting with them,
except through their properties, directly in code.

The next iteration chapter will start looking in depth at what is required to provide
the storage and state data persistence that the system's applications and service layer
will require.

10
Thinking About Business
Object Data Persistence

It's a given that most programs and systems have a need to store and retrieve data to
operate with. The alternative, embedding data into the code itself, is simply not
practical, after all. The specific shape of the data storage involved can vary wildly,
based on the underlying storage mechanism, the specific needs of an application or
service, and even on nominally non-technical constraints such as the need to not
require end users to install other software, but the fundamental need remains the
same, no matter what those factors add up to.

The various component projects/sub-systems of hms_sys are no exception to this:

The Artisan Application will need to allow Artisan users to manage the
products that the Artisan is creating and selling, and to manage at least
some of their own business entity data
The Artisan Gateway service will probably need to at least stage data for
artisans, products, and orders, with associated Customer and Address
objects, as the data those objects contain moves through various processes
The Central Office Application will need to be able to manage parts of
Artisan and Product data, and may need to read order data, if only for
troubleshooting purposes

Thinking About Business Object Data Persistence Chapter 10

[295]

So far, no specific requirements exist for how this data is going to be persisted, or
even where, though it's probable that the Artisan Application will need to keep data
locally and propagate it up to or through the Artisan Gateway, where the Central
Office Application will access it, as shown in the following diagram:

This iteration will work through the requirements, implementation, and testing of the
data persistence mechanisms involved for each of the component projects in
hms_sys, starting with some basic analysis of the needs and scope that is specific to
each component project. However, at this point, we don't have any clear direction as
to what the backend data storage even looks like, so we can't really write any stories
that provide useful guidance for how to implement data persistence. Clearly, then,
more investigation will be needed before planning and executing this iteration.

This chapter will examine the following topics:

How an iterative (Agile) process usually handles stories that don't have
sufficient information to execute against
What data storage and persistence options are available, in general
What data access strategies should be examined, before making a decision
about how the various hms_sys component projects will deal with data
access

Iterations are (somewhat) flexible
In many Agile methodologies, there are specific artefacts and/or processes intended
to handle the kinds of scenario that this iteration is starting in—there is a need, even if
it's only implied, for some functionality, but not enough information is available to
actually make any development progress against that need. There might even be
stories already in place that appear to be complete, but that are lacking some nuts-
and-bolts details that are needed for development to progress. In this case, those
stories might resemble the following:

Thinking About Business Object Data Persistence Chapter 10

[296]

As an Artisan, I need my Product data to be stored locally, so that I can
work with it without having to worry about connecting to an external
system that I may not have ready access to at the moment
As a Product Manager/Approver, I need to be able to access Product
information across any/all artisans so that I can manage the availability of
those products in the web store
As a System Administrator, I need the Artisan Gateway to store Product
and related data separate from the main Web Store application so that it
can be safely staged before being released to the public site

All of these stories might look complete in that they are defining what needs to
happen from each user's perspective, but they lack any information about how those
should function.

Enter the Spike.

Spikes, which originated with the XP methodology and have been adopted (officially
or otherwise) across several other Agile methodologies, are essentially stories whose
purpose is to research and return usable planning details for other stories. Ideally,
stories that need Spikes generated around them will be identified before they enter an
iteration—if that doesn't occur, stories whose information is lacking will be
unworkable, and some sort of shuffle will inevitably take place to either defer the
incomplete stories until their spikes have been completed, or incorporate the spikes
and their results into a revised iteration plan. The former will frequently be the more
likely of the two, though, since without the information from the Spike estimating the
target stories will be difficult at best, and perhaps impossible. The spike stories that
relate to the original stories that we mentioned previously might be written like so:

As a developer, I need to know how Artisan Application data is to be
stored and retrieved so that I can write code for those processes
accordingly
As a developer, I need to know how Central Office Application data is to
be stored and retrieved so that I can write code for those processes
accordingly
As a developer, I need to know how Artisan Gateway data is to be stored
and retrieved so that I can write code for those processes accordingly

In order to work through and resolve these spikes, and to finalize the stories for this
iteration, it'll be helpful to know what options are available. Once those have been
explored, they can be weighed in the context of the applications and the service layer
of the system, and some final decisions about implementation approaches can be
made, along with some final stories being written to work against.

Thinking About Business Object Data Persistence Chapter 10

[297]

Data storage options
All of the options that will be given serious consideration have a few common
properties:

They will allow data to be stored offline, so that the application or service
program doesn't need to be running constantly in order to ensure that the
relevant data isn't lost
They have to allow the applications and service to perform at least three of
the four standard CRUD operations:

Create: Allowing data for new objects to be stored.
Read: Allowing access to data for existing objects, one at a
time, all at once, and possibly with some filtering/searching
capabilities.
Update: Allowing existing data to be altered when/if needed.
Delete: Allowing (perhaps) the ability to remove data for
objects that are no longer relevant. At a minimum, flagging
such data so that it's not generally available will work as
well.

They should also be examined and evaluated in terms of ACID characteristics,
though not all of these properties may be essential in the context of the data needs of
hms_sys. None should be unachievable, however:

Atomicity: Data transactions should be all or nothing, so that if part of a
data-write fails, the entire dataset being written should also fail, leaving
data in a stable state
Consistency: Data transactions should always result in a valid data state
across the entire dataset, observing and obeying any storage system rules
(application-level rules are the responsibility of the applications, though)
Isolation: Data transactions should always result in the same end state that
would occur if their component changes were executed one at a time in the
same order
Durability: Data transactions should, once committed, be stored in a
fashion that prevents loss due to system crashes, power-down, and so on

Thinking About Business Object Data Persistence Chapter 10

[298]

Relational databases
Relational Database Management Systems (RDBMSes) are one of the more mature
data storage approaches available for applications, with options that have been in
common use for decades. They typically store data as individual records (sometimes
called rows) in tables (or relations) that define field names (columns) and types for all
member records. Tables often define a primary key field that provides a unique
identifier for each record in the table. A simple example of a table that defines user
records might resemble the following:

Each record in a table is, then, a consistent structure of data—all users in the
preceding example would have user_id, first_name, last_name, and
email_address values, though the values for the fields other than user_id might be
empty, or NULL. The data from any table can be accessed or assembled through a
query without having to change the tables themselves, and it's possible to join tables
in a query so that, say, users in one table can be associated with records that they own
in another—orders, perhaps.

This structure is often referred to as a schema, and it both defines
structure and enforces data constraints such as value type and size.

The most common query language for relational databases is the Structured Query
Language (SQL)—or at least some variant of it. SQL is an ANSI standard, but there
are a number of variants available. There may be others, but SQL is almost certainly
the most popular option, and is very mature and stable.

SQL is a complex enough topic in its own right, even setting
aside its variations across database engines, to warrant a book of its
own. We'll explore a little bit of SQL as hms_sys iterations progress,
though, with some explanation of what is happening.

Thinking About Business Object Data Persistence Chapter 10

[299]

Advantages and drawbacks
One of the more significant advantages of a relational database data store is its ability
to retrieve related records in a single query request—the user/orders structure
mentioned earlier, for example. Most relational databases systems will also allow
multiple queries to be made in a single request, and will return a collection of records
for each of those queries as a single result set. The same user- and orders-table
structure could, for example, be queried to return a single user and all of that user's
orders, which has some advantages in application object structures where one object
type has one or more collections of objects associated with them.

Another potentially significant advantage to most relational database engines is their
support for transactions—allowing a potentially complex set of changes to, or
insertions of data, to roll back as a whole if any single data manipulation fails for any
reason. This is virtually guaranteed to be available in any SQL RDBMS, and is a very
significant advantage when dealing with financial systems. Support for transactions
may be a functional requirement for systems that deal with moving money
around—if it isn't, it's probably worth asking why it isn't. Support for transactions
that encompass multiple operations is a key aspect of full ACID compliance—without
it, the atomicity, consistency, and (to some extent) isolation criteria will be suspect.
Fortunately, almost any relational database system that's worthy of being called one
at all will provide transaction support sufficient enough for any need likely to arise.

Many relational database systems also support the creation of views and stored
procedures/functions that can make data access faster and more stable as well. Views
are, for all practical purposes, predefined queries, often across multiple tables, and
are often built to retrieve specific data subsets across the tables they are tied to. Stored
procedures and functions can be thought of as approximate equivalents to application
functions, accepting certain input, performing some set of tasks, and perhaps
returning data that was generated by the execution of those tasks. At a minimum,
stored procedures can be used in place of writing queries, which has some
performance and security benefits.

The schema inherent to tables in most relational databases is both an advantage and a
drawback, potentially. Since that schema enforces data constraints, there is less
likelihood of having bad data living in a table. Fields that are expected to be string
values, or integer values, will always be string or integer values, because it's simply
not possible to set a string field to a non-string value. Those constraints ensure data
type integrity. The trade-off for that, though, is that value types (and sometimes the
values themselves) may have to be checked and/or converted when going into or
coming out of the data store.

Thinking About Business Object Data Persistence Chapter 10

[300]

If relational databases have a downside, it's probably that the structures of the tables
containing data are fixed, so making changes to those requires more time and effort,
and those changes can have effects on the code that accesses them. Changing a field
name in a database, for example, may well break application functionality that
references that field name. Most relational database systems also require separate
software installations, and server hardware that is operational at all times, like
associated applications are. This may or may not be a concern for any given project,
but can be a cost consideration, particularly if that server lives in someone else's
infrastructure.

Scaling an RDBMS may be limited to adding more horsepower to the server
itself—improving the hardware specifications, adding RAM, or moving databases to
new, more powerful servers. Some of the aforementioned database engines have
additional packages that can provide multi-server scale, though, such as scaling
horizontally into multiple servers that still act like a single database server.

MySQL/MariaDB
MySQL is a popular RDBMS that started as an open source project in the mid 1990s.
MariaDB is a community-maintained fork of MySQL, intended to serve as a drop-in
replacement for MySQL, and to remain available as an open source option in case
MySQL (now owned by Oracle) every ceases to be released under an open source
license. MySQL and MariaDB are, at the time of writing this book, interchangeable.

Both use the same variant of SQL, with mostly trivial syntax differences from
standard SQL that are typically very straightforward. MySQL is—and MariaDB is
presumed to be—more optimized for reading/retrieving data than for writing it, but
for many applications, those optimizations will likely not be noticeable.

MySQL and MariaDB can be horizontally scaled through the use of clustering and/or
replication software additions to a base installation to meet high availability or load
needs, though for this to really be effective additional servers (real or virtual) are
necessary.

There are several Python libraries for connecting to and interacting with MySQL, and
since MariaDB is intended to be able to directly replace MySQL, those same libraries
are expected to work without modification for MariaDB access.

Thinking About Business Object Data Persistence Chapter 10

[301]

MS-SQL
Microsoft's SQL Server is a proprietary SQL-based DBMS, using its own variant of
standard SQL (T-SQL—like MySQL's variants, the differences are generally trivial, at
least for simple to somewhat complex needs).

MS-SQL also has clustering and replication options for high availability and load
scenarios, with the same need for discrete servers to maximize the effectiveness of
horizontal scaling.

There are at least two Python options for connecting to and working with MS-SQL
databases:

pymssql: This specifically leverages the Tabular Data Stream (TDS)
protocol used by MS-SQL, and allows more direct connection to a backend
engine
pyodbc: This provides database connectivity through the Open Database
Connectivity (ODBC) protocol, which Microsoft has placed its confidence
in as of mid-2018

PostgresQL
PostgreSQL is another open source database option—an object-relational database
system that is designed with an emphasis on standards compliance. As an ORDBMS,
it allows data structures to be defined in a more object-oriented fashion, with tables
that act like classes with the ability to inherit from other tables/classes. It still uses
SQL—its own variant, but again, with mostly trivial differences for most
development purposes—and has several Python options for connecting to and
working with a database. It also has replication and clustering support, with the same
sort of caveats noted for previous options.

NoSQL databases
At the time of writing, there were dozens of NoSQL database options available, both
as standalone/local service installations and as cloud database options. The driving
factors behind the designs of most of them include an emphasis on the following:

Support for massive numbers of users: Tens of thousands of concurrent
users, maybe millions—and supporting them should have as small
a performance impact as possible

Thinking About Business Object Data Persistence Chapter 10

[302]

High availability and reliability: Being able to interact with the data even
if one or more database nodes were to go completely offline
Supporting highly fluid data structures: Allowing structured data that
isn't bound to a rigid data schema, perhaps even across records in the same
data store collection

From a development perspective, the last point in this list is perhaps the most
significant, allowing almost arbitrary data structures to be defined as needed.

If the concept of a table in a RDBMS is a storage model, there are a number of
alternative storage models across the NoSQL database continuum:

Document stores: Each record equivalent is a document containing
whatever data structure it was created with. Documents are often JSON
data structures, and as such allow for some differentiation between
different data types—strings, numbers, and booleans as simple values,
nested lists/arrays and objects for more complex data structures—and also
allow for the use of a formal null value.

Key/Value stores: Each record equivalent is simply a value, of whatever
type, and is identified by a single unique key. This approach could be
thought of as a database that is equivalent to a single Python dict
structure.

Wide column stores: Each record could be thought of as belonging to a
RDBMS table with a very large (infinite?) number of columns available,
perhaps with a primary key, or perhaps not.

There are also some variants that feel like they combine aspects of these basic models.
Creating a data store in Amazon's DynamoDB, for example, starts by defining a table,
which requires a key field to be defined, and allows a secondary key field to be
defined as well. Once those have been created, though, the contents of those tables
acts like a document store. The net result, then, act like a key/document store (a
key/value store where each key points to a document).

Thinking About Business Object Data Persistence Chapter 10

[303]

NoSQL databases are typically non-relational, though there are exceptions to this.
From a development perspective, this implies that one of at least three approaches
needs to be taken into consideration when dealing with application data that is stored
and retrieved from a NoSQL data store:

Never use data that relates to other data—assure that every record contains
everything it needs as a single entity. The trade-off here is that it will be
difficult, if not impossible, to account for situations where a record (or the
object that the record is associated with) is shared by two or more other
records/objects. An example of that might be a user group that multiple
users are a member of.
Deal with the relationships between records in the code that works with
those records. Using the same users/groups concept just mentioned, that
might involve a Group object, reading all the relevant User records and
populating a users property with User objects from that data during
instantiation. There might be some risk of concurrent changes interfering
with each other, but not significantly more than the same sort of process
would risk in a RDBMS-backed system. This approach also implies that
data will be organized by object type—a distinct collection of User object
data and a distinct collection of Group object data, perhaps—but any
mechanism that allows the different object types to be differentiated will
work.
Pick a backend data store engine that provides some sort of relational
support.

NoSQL databases are also less likely to support transactions, though again there are
options that do provide full ACID-compliant transaction capabilities, and the
criteria/options for dealing with transactional requirements at the data store level are
very similar to those mentioned previously, that is, dealing with relational
capabilities. Even those without any transaction support are still going to be ACID-
compliant for single records—at that level of complexity, all that is required to be
compliant is that the record is successfully stored.

Thinking About Business Object Data Persistence Chapter 10

[304]

Advantages and drawbacks
Given the high availability and concurrent user focus behind most NoSQL options, it
should come as no great surprise that they are better suited than their RDBMS
counterparts for applications where availability and the ability to scale is important.
Those properties are even more important in big data applications, and applications
that live in the cloud—as evidenced by the fact that the major cloud providers all
have their own offerings in that space, as well as providing starting-points for some
well-known NoSQL options:

Amazon (AWS):
DynamoDB

Google:
Bigtable (for big data needs)
Datastore

Microsoft (Azure):
Cosmos DB (formerly DocumentDB)
Azure Table Storage

The ability to more or less arbitrarily define data structures can also be a significant
advantage during development, since it eliminates the need for defining database
schemas and tables. The trade-off for that, potentially, at least, is that since data
structures can change just as arbitrarily, code that uses them has to be written to be
tolerant of those structure changes, or some sort of conscious effort may have to be
planned to apply the changes to existing data items without disrupting systems and
their usage.

Consider, as an example, the User class mentioned earlier—if a password_hash
property needs to be added to the class, in order to provide
authentication/authorization support, the instantiation code will likely have to
account for it, and any existing user-object records won't have the field already. On
the code side, that may not be that big a deal—making password_hash an optional
argument during initialization would take care of allowing the objects to be created,
and storing it as a null value in the data if it hasn't been set would take care of the
data storage side, but some sort of mechanism would need to be planned, designed,
and implemented to prompt users to supply a password in order to store the real
value. The same sort of process would have to occur if a similar change were made in
an RDBMS-backed system, but the odds are good enough that there would be
established processes for making changes to database schemas, and those would
probably include both altering the schema and assuring that all records have a known
starting value.

Thinking About Business Object Data Persistence Chapter 10

[305]

Given the number of options available, it should also not be surprising that there are
differences (sometimes significant ones) between them with respect to performing
similar tasks. That is, retrieving a record from the data, given nothing more than a
unique identifier for the item to be retrieved (id_value), uses different libraries and
syntax/structure based on the engine behind the data store:

In MongoDB (using a connection object):
connection.find_one({'unique_id':'id_value'})

In Redis (using a redis connection):
connection.get('id_value')

In Cassandra (using a query value and a criteria list, executing against a
Cassandra session object):

session.execute(query, criteria)

It's quite possible that each different engine will have its own distinct methods for
performing the same tasks, though there may be some common names that
emerge—there are only so many alternatives for function or method names, like get
or find, that make sense, after all. If a system needs to be able to work with multiple
different data store backend engines, those are good candidates for designing and
implementing a common (probably abstract) data store adapter.

Since relational and transactional support varies from one engine to another, this
inconsistency can be a drawback to a NoSQL-based data store as well, though there
are at least some options that can be pursued if they are lacking.

MongoDB
MongoDB is a free, open source, NoSQL document store engine—that is, it stores
whole data structures as individual documents that are, if not JSON, very JSON-like.
Data sent to and retrieved from a MongoDB database in Python uses Python-native
data types (dict and list collections, any simple types such as str and int, and
probably other standard types like datetime objects).

MongoDB was designed to be usable as a distributed database, supporting high
availability, horizontal scaling, and geographic distribution out of the box.

Like most NoSQL data storage solutions, MongoDB is schema-less, allowing
documents within a MongoDB collection (roughly equivalent to a table in an RDBMS)
to have totally different structures.

Thinking About Business Object Data Persistence Chapter 10

[306]

Other NoSQL options
There are, as noted, dozens of NoSQL database options to pick and choose from.
Three of the more popular options for locally installed NoSQL databases with Python
drivers/support are as follows:

Redis: A key/value store engine
Cassandra: A wide-column store engine
Neo4j: A graph database

Other data storage options
Another option—one that is probably not going to work well for large quantities of
data, or under significant concurrent user-load—is simply to store application data
locally as one to many files on the local machine. With the advent of simple
structured data representation formats such as JSON, this can be a better option than
it might seem at first glance, at least for certain needs: JSON, in particular, with its
basic value-type support and the ability to represent arbitrarily complex or large data
structures, is a reasonable storage format.

The most significant impediment is making sure that data access has at least some
degree of ACID compliance, though, as with NoSQL databases, if all transactions are
single records, ACID compliance can still be counted on, for the same reason—the
sheer simplicity of the transaction.

The other significant concern that would have to be addressed in using files to store
application data is how the language or the underlying OS handles file locking. If
either allows a file that's open for writing to be read while the write is in process or
incomplete, it's just a matter of time until a read of an incomplete data file misreads
the data available, then commits the bad data to the file, probably resulting in loss of
data at a minimum, and perhaps breaking the entire data store in the process.

That would be bad, obviously.

Speed of access could be a concern as well, since file access is slower than access to
and from data stored in memory.

Thinking About Business Object Data Persistence Chapter 10

[307]

That said, there are strategies that can be applied to make a local file-based data store
immune to that sort of failure, provided that the data is only accessed from a single
source in the code. Addressing the potential access-speed concern can also be
accomplished in the same process, which would resemble the following:

The program that uses data starts:
Data is read into memory from a persistent file system data
store

The program is used, and a data-access occurs:
Data is read from the copy in memory, and passed off to the
user

Data is altered in some fashion:
The alteration is noted, and the change(s) is/are committed to
the file system data store before returning control to the user

The program is shut down:
Before terminating, all data is checked to assure that no
changes are still pending
If there are changes, wait for them to complete
If necessary, re-write all data to the file system data store

Selecting a data storage option
Looking at the logical architecture for hms_sys, and allowing for a local data store for
the Artisan Application that wasn't in the original diagram, there are three databases
that development needs to be concerned with:

Thinking About Business Object Data Persistence Chapter 10

[308]

The Web-Store Database is attached to the Web-Store Application, and cannot be
modified as a result. The current expectation is that modifications to data in that
database will be handled by a call to the API that the Web-Store Application makes
available. At this point, then, data access to and from this database can be set aside.

The artisan Database, on the other hand, doesn't exist yet at all, and will have to be
created as part of the development of hms_sys. It feels safe to assume, given the
artisan-level, installation-related stories from the first iteration, that keeping the
number of software installations they need to perform to the minimum possible is
preferable. That, in turn, suggests that a local file system data store is probably going
to be the preferred option at the Artisan Application level. That allows for the
following:

The data store is generated locally during the installation or initial setup of
the application
The Artisan's can manage their data locally, even if they are offline
Data storage to be managed without any additional software installation on
the part of the Artisan

Since the Artisan Application is expected to be a local desktop application, this fits
neatly into the set of processes noted previously for making a file-based data store
safe and stable. There is some risk of data conflicts if the Artisan has more than one
Artisan Application installed (one each on multiple machines, for example), but that
risk would exist for any local data store option, realistically—short of moving the data
store to a common online database, there really isn't a way to mitigate that particular
concern, and that's outside the development scope for hms_sys at present.

The idea of centralizing data and applications alike will be examined
in more detail later. For now, everything at the Artisan level will
reside locally with the Artisan Application.

The hms_sys Database also doesn't exist at all yet. Unlike the artisan Database,
though, it is intended to allow multiple concurrent users—any number of central
office users might be reviewing or managing products at any given time as artisans
are submitting product information to be reviewed, and orders relayed or pulled
from the web store could be set in motion to the relevant artisans while those
activities are going on, too. Taken together, these are sufficient to rule out the local file
store approach—it might well still be doable, and might even be viable at current
levels of usage, but could quickly run into scaling concerns if the usage/load grew too
much.

Thinking About Business Object Data Persistence Chapter 10

[309]

Given that, even if we don't really know what backend engine will be in use, knowing
that it won't be the same storage mechanism that the Artisan Application uses
confirms the idea noted earlier that we'd be well-served to define a common data
access method set, generate some sort of abstraction around that structure, and define
concrete implementations at each application- or service-object level. The advantages
of taking that approach really boil down to variations of the same Object-Oriented
Design Principle (OODP): polymorphism.

Polymorphism (and programming to an
interface)
Polymorphism, in its simplest terms, is the ability for objects to be interchangeable in
the code without breaking anything. In order to accomplish that, those objects must
present common public interface members—the same accessible properties and
methods—across the board. Ideally, those common interface members should be the
only interface members as well, otherwise there is a risk of breaking the
interchangeability of those objects. In a class-based structure, it's usually a good idea
to have that interface defined as an individual abstraction—an ABC in Python, with
or without concrete members. Consider the following collection of classes for making
connections to and querying against various relational database backends:

Where:

BaseDatabaseConnector is an abstract class that requires a query method
to be implemented by all derived classes, and provides host, database,
user, and password properties that will be used to actually connect to a
given database

Thinking About Business Object Data Persistence Chapter 10

[310]

The concrete classes, MySQLConnector, MSSQLConnector, and
ODBCConnector, each implement the required query method, allowing
instances to actually execute queries against the database that the instance
is connected to

Provided that the connection properties (host, …, password) were stored in a
configuration file (or anywhere outside the actual code itself, really), along with some
way to specify which connector type to use, it wouldn't be difficult to allow those
different connection types to be defined at runtime, or maybe even switched out
during execution.

This interchangeability, in turn, allows code to be written that doesn't need to know
anything about how a process works, just how it should be called, and what it's
expected to return as a result. This is a practical illustration of the idea of
programming to an interface, not to an implementation, which was mentioned in
Chapter 5, The hms_sys System Project, as well as the concept of encapsulating what
varies. The two often go hand-in-hand, as they do in this case.

There is another benefit to the ability to replace objects in this fashion, which might be
called future-proofing a code base. If, at some time in the future, the code that uses
the data connectors shown previously were suddenly in need of being able to connect
to and use a database engine that wasn't available already, the level of effort to make
it available would be relatively small, provided that it used the same connection
arguments and a similar connection process as the ones that were already in place. All
that would need to be done, for example, to create a PostgreSQLConnector (used to
connect to a PostgreSQL database), would be to create the class, derive it from
BaseDatabaseConnector, and implement the required query method. It would still
require some development effort, but not as much as would probably be needed if
each database connection process had its own distinct classes to contend with.

Data access design strategies
The last bit of analysis that we need to undertake before we can start writing out the
stories for this iteration involves determining where the responsibility for object data
access is going to live. In a script or another purely procedural context, it would
probably suffice to simply connect to a data source, read the data from it as needed,
modify it as needed, and write any changes back out again, but that would only be
viable because the entire procedure would be relatively static.

https://cdp.packtpub.com/hands_on_software_engineering_with_python/wp-admin/post.php?post=29&action=edit

Thinking About Business Object Data Persistence Chapter 10

[311]

In an application or service such as hms_sys, data use is very much a random-access
scenario—there may be common procedures that might even look a lot like a simple
script's step-by-step implementations, but those processes could (and will) be
initiated in a fashion that may be totally unpredictable.

That, then, means that we need to have data access processes that are easily called
and repeatable with minimal effort. Given that we already know that at least two
different data storage mechanisms will be in play, it would also make future support
and development a lot easier if we could design these processes so that the exact same
method calls could be used, no matter what the underlying data store looks
like—again, abstracting the processes, and allowing code to use interfaces, not
implementations.

One option that would accomplish this sort of abstraction starts at the data source,
making each data source aware of the object-types that are in play, and storing the
information that it needs to be able to perform CRUD operations for each object-type
somewhere. That's technically a workable implementation, but it will get very
complicated very quickly, because each combination of data store and business object
type needs to be accounted for and maintained. Even if the initial class set is limited
to three data store variants (the file system data store of the Artisan Application, a
generic RDBMS data store, and a generic NoSQL data store), that's four operations
(CRUD) across three data store types for four business objects, for a total of 48
permutations (4 × 3 × 4) that have to be built, tested, and maintained. Each new
operation added into the mix, such as, say, the ability to search a business object data
store, as well as each new business object type to be persisted and each new data store
type, increases that permutation count multiplicatively—adding one of each increases
the count to 75 items (5 × 3 × 5) that have to be dealt with—which could easily get out
of control.

If we take a step back and think about what we actually need for all of those
combinations, a different and more manageable solution is possible. For each and
every business object that needs to be persisted, we need to be able to do the
following:

Create a record for a new object.1.
Read a record for a single object, identified somehow, and return an2.
instance for that item.
Update the record for a single object after changes have been made to it.3.
Delete the record for a single object.4.
Find and return zero-to-many objects based on matches to some criteria.5.

Thinking About Business Object Data Persistence Chapter 10

[312]

It might also be useful to be able to flag objects as being in specific states—active
versus inactive, and deleted (without actually deleting the underlying record),
perhaps. Tracking created and/or updated dates/times is also a common practice—it's
sometimes useful for sorting purposes, if nothing else.

All of the CRUD operations relate directly to the object type itself—that is, we need to
be able to create, read, update, delete, and find Artisan objects in order to work with
them. The various object properties of those instances can be retrieved and populated
as needed in the context of the instance's creation, created as part of the instance's
creation process, or updated with the owning instance or individually as needed.
With those subordinate actions in mind, keeping track of whether an object's record
needs to be created or updated will probably be useful as well. Finally, we'll need to
keep track of some unique identifier for each object's state data record in the data
store. Putting all of those together, the following is what a BaseDataObject ABC
might look like:

The properties are all concrete, with implementations baked in at the
BaseDataObject level:

oid is the unique identifier of the object, and is a UUID value that will be
stored as, and converted from, a string during data access.

Thinking About Business Object Data Persistence Chapter 10

[313]

created and modified are Python datetime objects, and may also need
to be converted to and from string-value representations during data
access.
is_active is a flag that indicates whether or not a given record should be
considered active, which allows for some management of active/inactive
state for records and thus for objects that those records represent.
is_deleted is a similar flag, indicating whether the record/object should
be considered as deleted, even if it really still exists in the database.
is_dirty and is_new are flags that keep track of whether an object's
corresponding record needs to be updated (because it's been changed) or
created (because it's new), respectively. They are local properties, and will
not be stored in a database.

Using a UUID instead of a numeric sequence requires a bit more
work, but has some security advantages, especially in web
application and service implementations—UUID values are not
easily predictable, and have 1632 possible values, making automated
exploits against them much more time-consuming.

There may be requirements (or at least a desire) to not really delete
records, ever. It's not unusual in certain industries, or for publicly
traded companies who are required to meet certain data-audit
criteria, to want to keep all data, at least for some period of time.

BaseDataObject defines two concrete and three abstract instance methods:

create (abstract and protected) will require derived classes to implement a
process for creating and writing a state data record to the relevant
database.
matches (concrete) will return a Boolean value if the property values of the
instance that it's called from match the corresponding values of the criteria
passed to it. This will be instrumental in implementing criteria-based
filtering in the get method, which will be discussed shortly.
save (concrete) will check the instance's is_dirty flag, calling the
instance's update method and exiting if it's True, then check the is_new
flag, calling the instance's create method if it is True. The net result of this
is that any object deriving from BaseDataObject can simply be told to
save itself, and the appropriate action will be taken, even if it's no action.

Thinking About Business Object Data Persistence Chapter 10

[314]

to_data_dict (abstract) will return a dict representation of the object's
state data, with values in formats and of types that can be written to the
database that state data records live in.
update (abstract and protected) is the update implementation counterpart
to the create method, and is used to update an existing state data record
for an object.

BaseDataObject also defines four class methods, all of which are abstract—each of
these methods, then, is bound to the class itself, not to instances of the class, and must
be implemented by other classes that derive from BaseDataObject:

delete performs a physical record deletion for each record identified by
the provided *oids.

from_data_dict returns an instance of the class, populated
with the state data in the data_dict provided, which will
usually result from a query against the database that those
records live in. It's the counterpart of the to_data_dict
method, which we already described.

get is the primary mechanism for returning objects with state data
retrieved from the database. It's been defined to allow both specific records
(the *oids argument list) and filtering criteria (in the **criteria
keyword arguments, which is expected to be the criteria argument passed
to matches for each object), and will return an unsorted list of object
instances according to those values.
sort accepts a list of objects and sorts them using a callback function or
method passed in sort_by.

Thinking About Business Object Data Persistence Chapter 10

[315]

BaseDataObject captures all of the functional requirements and common properties
that would need to be present in order to let the business object classes and instances
take responsibility for their data storage interactions. Setting aside any database
engine concerns for the moment, defining a data persistence-capable business object
class such as an Artisan in the Artisan Application becomes very simple—the final,
concrete Artisan class just needs to inherit from BaseArtisan and
BaseDataObject, as follows, and then implement the nine required abstract
methods that are required by those parent classes:

This approach would suffice if it could be safely assumed that any given application
or service instance will always use the same data store backend for each business
object type. Any engine-specific needs or capabilities could simply be added to each
final concrete class. It would also be possible, though, to collect any properties needed
by specific data store engines (MongoDB and MySQL, for example) into an additional
layer of abstraction, then have the final concrete objects derive from one of those
instead:

Thinking About Business Object Data Persistence Chapter 10

[316]

In this scenario, the final Artisan class could derive from either MongoDataObject
or MySQLDataObject, and those could enforce the provision of any data required to
execute the data access methods against those specific backend engines. Those
middle-layer ABCs might also provide some helper methods for tasks that are
relevant for each engine type—taking the template SQL in the create_sql class
attribute, for example, and populating it with instance data values from
to_data_dict() results in being able to create the final SQL for a MySQL call to
create an instance. This approach would keep most of the data access information
needed by any given business object class in that class, and associated with the
business object itself, which doesn't feel like a bad idea, though it has the potential to
get complex if a lot of combinations need to be supported. It would also keep the level
of effort involved in adding adding new functionality to all data objects (at the
BaseDataObject level of the class tree) more manageable—the addition of new
abstract functionality would still require implementation in all derived concrete
classes, but any concrete changes would simply be inherited and immediately
available.

Thinking About Business Object Data Persistence Chapter 10

[317]

Data access decisions
With all of these factors in mind, then, it's time to make some decisions about how the
various component projects' objects will deal with keeping track of their data. In the
interests of having a single interface around all object data access, we'll implement the
BaseDataObject ABC described previously, or something very similar to it, and
derive our final data-persisting concrete classes from a combination of that ABC and
the relevant business object class built in the previous iteration. Finally what we'll end
up with are classes for what we'll call data objects, which are capable of reading and
writing their own data.

In the Artisan Application, since we don't need to worry about concurrent users
interacting with the data at the same time, and since we don't want to burden an
Artisan user with additional software installations unless there's no better alternative,
we'll construct a data persistence mechanism by using local files to store object data.

In the code that will be running in a Central Office context, we will have concurrent
users, at least potentially, so data storage will need to be centralized in a dedicated
database system. There's no discernible need for a formal, database resident schema
(though having one wouldn't be a bad thing), so using a NoSQL option should allow
shorter development time, and allow some flexibility in case data structures need to
change unexpectedly. We'll reexamine those options in more detail when we get to
that portion of the development effort.

Why start from scratch?
This functional structure is going to be built from the ground up, but there are other
options that might work as well, or even better in other contexts. There are, for
example, several Object Relational Mapper (ORM) packages/libraries available that
would allow the definition of databases and structure to be defined in code and
propagated out to a data store, some of which are integrated into full application
frameworks. These include Django's models module, which is part of the overall
Django web application framework, a common and popular option for developing
web applications. Other variants include SQLAlchemy, providing an abstraction layer
over SQL operations and an ORM to work with an object's data.

Thinking About Business Object Data Persistence Chapter 10

[318]

There are also specific driver libraries for several database options (SQL and NoSQL
both), some of which may provide ORM functionality, but all of which provide at
least the basic capability to connect to a data source and execute queries or perform
operations against those data sources. It's quite possible to write code that simply
executes SQL against an RDBMS such as MySQL or MariaDB, or executes functions
that correspond to that SQL against a NoSQL engine like MongoDB or even cloud-
resident data stores such as Amazon's DynamoDB. For simple applications, that may
actually be a better approach, at least initially. It would keep the development time
down, since the various abstraction layers that we've explored so far simply wouldn't
be in the picture at all, and the code itself would have a certain type of simplicity,
since all it would need to do is execute basic CRUD operations, and maybe not even
all of those.

The data objects structure that is being developed for hms_sys will expose a lot of the
underlying principles that go into the design of a data access framework, and that's
part of the reason that the from-the-ground-up approach it entails was selected.
Another reason is that, because it will live somewhere between a full-on ORM
approach and the a low-level "execute a query against a connection" implementation
strategy, it will show a lot of the relevant aspects of both of those approaches.

Summary
There are a lot of options available for data access mechanisms and processes, and
while there will occasionally be requirements in play that more or less mandate one
of them over the others, there may not be a single right approach across all
development efforts. In particular, if time is of the essence, looking for an off-the-shelf
solution is probably a good place to start, but if requirements or other constraints
don't allow for one of those to be easily applied, creating a custom solution is not out
of the question either.

The logical starting point, before getting into the weeds with specific data storage
mechanisms, is probably to define the abstraction layer over the collective data access
needs— that is, defining the BaseDataObject ABC—so that's what we'll tackle next.

11
Data Persistence and

BaseDataObject
This chapter will focus exclusively on the development and testing of the
BaseDataObject ABC (Abstract Base Class), which we'll need in both the
hms_artisan (Artisan Application) and hms_gateway (Artisan Gateway service)
component projects. It is possible that the hms_co (Central Office Application) code
base will also need to utilize the same functionality. We'll look at that in some depth
later, while working through the hms_co code.

At present, we're expecting BaseDataObject to look something like this:

Data Persistence and BaseDataObject Chapter 11

[320]

The story that drives the design and implementation of the BaseDataObject that
was described earlier is as follows:

As a developer, I need a common structure for providing persistence of
state data for business objects that are available across the entire system so
that I can build the relevant final classes

 BaseDataObject is not functionally related to the business object definitions
in hms_core, but the functionality it provides still needs to be available to all of the
real code bases – the ones for the applications and the Artisan Gateway service – it
makes sense that it should live in the hms_core package, but perhaps not with the
business object definitions from the previous iteration. In the long run, it will be
easier to understand and maintain the hms_core package if its various members are
organized into modules that group elements into common purposes or themes.
Before the end of this iteration, the current hms_core.__init__.py module will be
renamed to something more indicative of the purposes it serves, and it will live next
to a new module that will contain all of the data objects' classes and
functionality: data_object.py.

There are two additional stories that relate to the structure of BaseDataObject and
capabilities, whose needs will be noted as they are met during the development of the
class:

As any data consumer, I need to be able to create, read, update and delete
individual data objects, so that I can perform basic data management tasks
against those objects.
As any data consumer, I need to be able to search for specific data objects
so that I can then work with the resulting items found.

The BaseDataObject ABC
The bulk of the properties of BaseDataObject are Boolean values, flags that indicate
whether an instance of the class is in a specific state. The implementations of those
properties all follow a simple pattern that's already been shown in the definition of
the available property of BaseProduct in the previous iteration. That structure
looks like this:

###################################
Property-getter methods
###################################

Data Persistence and BaseDataObject Chapter 11

[321]

def _get_bool_prop(self) -> (bool,):
 return self._bool_prop

###################################
Property-setter methods
###################################

def _set_bool_prop(self, value:(bool,int)):
 if value not in (True, False, 1, 0):
 raise ValueError(
 '%s.bool_prop expects either a boolean value '
 '(True|False) or a direct int-value equivalent '
 '(1|0), but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 if value:
 self._bool_prop = True
 else:
 self._bool_prop = False

###################################
Property-deleter methods
###################################

def _del_bool_prop(self) -> None:
 self._bool_prop = False

###################################
Instance property definitions
###################################

bool_prop = property(
 _get_bool_prop, _set_bool_prop, _del_bool_prop,
 'Gets sets or deletes the flag that indicates whether '
 'the instance is in a particular state'
)

The deleter methods behind those properties, since they are also used to set the
default values for an instance during initialization, should yield specific values when
the properties are deleted (calling those methods):

###################################
Property-deleter methods
###################################

def _del_is_active(self) -> None:
 self._is_active = True

Data Persistence and BaseDataObject Chapter 11

[322]

def _del_is_deleted(self) -> None:
 self._is_deleted = False

def _del_is_dirty(self) -> None:
 self._is_dirty = False

def _del_is_new(self) -> None:
 self._is_new = True

Unless overridden by a derived class, or by a specific object creation process, any
instance derived from BaseDataObject will start with these:

is_active == True

is_deleted == False

is_dirty == False

is_new == True

So a newly created instance will be active, not deleted, not dirty, and new , the
assumption being that the process of creating a new object will usually be with the
intention of saving a new, active object. If any state changes are made between the
creation of the instance, those may set the is_dirty flag to True in the process, but
the fact that is_new is True means that the object's record needs to be created rather
than updated in the backend datastore.

The only significant deviation from that standard Boolean property structure is in the
documentation of the properties themselves during their definition:

###################################
Instance property definitions
###################################

is_active = property(
 _get_is_active, _set_is_active, _del_is_active,
 'Gets sets or deletes the flag that indicates whether '
 'the instance is considered active/available'
)
is_deleted = property(
 _get_is_deleted, _set_is_deleted, _del_is_deleted,
 'Gets sets or deletes the flag that indicates whether '
 'the instance is considered to be "deleted," and thus '
 'not generally available'
)
is_dirty = property(
 _get_is_dirty, _set_is_dirty, _del_is_dirty,
 'Gets sets or deletes the flag that indicates whether '

Data Persistence and BaseDataObject Chapter 11

[323]

 'the instance\'s state-data has been changed such that '
 'its record needs to be updated'
)
is_new = property(
 _get_is_new, _set_is_new, _del_is_new,
 'Gets sets or deletes the flag that indicates whether '
 'the instance needs to have a state-data record created'
)

Two of the properties of BaseDataObject, created and modified, are shown in the
class diagram as datetime values – objects that represent a specific time of day on a
specific date. A datetime object stores the year, month, day, hour, minute, second,
and microsecond of a date/time, and provides several conveniences over, say,
working with an equivalent value that is managed strictly as a timestamp number
value, or a string representation of a date/time. One of those conveniences is the
ability to parse a value from a string, allowing
the _set_created and _set_modified setter methods behind the property to
accept a string value instead of requiring an actual datetime.
Similarly, datetime provides the ability to create a datetime instance from
a timestamp – the number of seconds elapsed from a common starting date/time. In
order to fully support all those argument types, it's necessary to define a common
format string that will be used to parse the datetime values from strings and to
format them into strings. That value, at least for now, feels like it's probably best
stored as a class attribute on BaseDataObject itself. That way, all classes that derive
from it will have the same value available by default:

class BaseDataObject(metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can persist their state-data in
any of several back-end data-stores.
"""
 ###################################
 # Class attributes/constants #
 ###################################

 _data_time_string = '%Y-%m-%d %H:%M:%S'

The setter methods are somewhat longer than most, since they are dealing with four
different viable value types, though there are only two subprocesses required to cover
all of those variations. The setter process starts by type checking the supplied value
and confirming that it's one of the accepted types first:

def _set_created(self, value:(datetime,str,float,int)):
 if type(value) not in (datetime,str,float,int):

Data Persistence and BaseDataObject Chapter 11

[324]

 raise TypeError(
 '%s.created expects a datetime value, a numeric '
 'value (float or int) that can be converted to '
 'one, or a string value of the format "%s" that '
 'can be parsed into one, but was passed '
 '"%s" (%s)' %
 (
 self.__class__.__name__,
 self.__class__._data_time_string, value,
 type(value).__name__,
)
)

Handling either of the numeric types that are legitimate is fairly straightforward. If an
error is detected, we should provide more specific messaging around the nature of
the encountered problem:

 if type(value) in (int, float):
 # - A numeric value was passed, so create a new
 # value from it
 try:
 value = datetime.fromtimestamp(value)
 except Exception as error:
 raise ValueError(
 '%s.created could not create a valid datetime '
 'object from the value provided, "%s" (%s) due '
 'to an error - %s: %s' %
 (
 self.__class__.__name__, value,
 type(value).__name__,
 error.__class__.__name__, error
)
)

The subprocess for handling string values is similar, apart from its call
to datetime.strptime instead of datetime.fromtimestamp, and its use of
the _data_time_string class attribute to define what a valid date/time string looks
like:

 elif type(value) == str:
 # - A string value was passed, so create a new value
 # by parsing it with the standard format
 try:
 value = datetime.strptime(
 value, self.__class__._data_time_string
)
 except Exception as error:

Data Persistence and BaseDataObject Chapter 11

[325]

 raise ValueError(
 '%s.created could not parse a valid datetime '
 'object using "%s" from the value provided, '
 '"%s" (%s) due to an error - %s: %s' %
 (
 self.__class__.__name__,
 self.__class__._data_time_string,
 value, type(value).__name__,
 error.__class__.__name__, error
)
)

If the original value was an instance of datetime, then neither of the previous
subprocesses would have executed. If either of them executed, then the original value
argument will have been replaced with a datetime instance. In either case, that value
can be stored in the underlying property attribute:

- If this point is reached without error,then we have a
well-formed datetime object, so store it
self._created = value

For the purposes of BaseDataObject,
both created and modified should always have a value, and if one isn't available
when it's needed – generally only when a data object's state data record is being
saved – one should be created then and there for the current value, which can be
accomplished in the getter method with datetime.now():

def _get_created(self) -> datetime:
 if self._created == None:
 self.created = datetime.now()
 return self._created

That, in turn, implies that the deleter method should set the property storage
attribute's value to None:

def _del_created(self) -> None:
 self._created = None

The corresponding property definitions are standard, except that
the created property doesn't allow deletion directly; it makes no sense to allow an
object to delete its own created date/time:

###################################
Instance property definitions
###################################

Data Persistence and BaseDataObject Chapter 11

[326]

created = property(
 _get_created, _set_created, None,
 'Gets, sets or deletes the date-time that the state-data '
 'record of the instance was created'
)

...

modified = property(
 _get_modified, _set_modified, _del_modified,
 'Gets, sets or deletes the date-time that the state-data '
 'record of the instance was last modified'
)

The last property of BaseDataObject is, perhaps, the most critical oid, which is
intended to uniquely identify the state data record for a given data object. That
property is defined as a Universally Unique Identifier (UUID) value, which Python
provides in its uuid library. There are at least two advantages to using a UUID as a
unique identifier instead of some of the more traditional approaches, such as a serial
record number:

UUIDs are not dependent on a database operation's success to be
available: They can be generated in code, without having to worry about
waiting for a SQL INSERT to complete, for example, or whatever
corresponding mechanism might be available in a NoSQL data store. That
means fewer database operations, and probably simpler ones as well,
which makes things easier.

UUIDs are not easily predictable: A UUID is a series of 32 hexadecimal
digits (with some dashes separating them into sections that are not relevant
for this discussion), such as ad6e3d5c-46cb-4547-9971-5627e6b3039a.
If they are generated with any of several standard functions provided by
the uuid library, their sequence, if not truly random, is at least random
enough to make finding a given value very difficult for a malicious
user, with 3.4 × 1034 possible values to look for (16 values per hex digit, 31
digits because one is reserved).

Data Persistence and BaseDataObject Chapter 11

[327]

The unpredictability of UUIDs is especially useful in applications
that have data accessible over the internet. Identification of records
by sequential numbering makes it much easier for malicious
processes to hit an API of some sort and just retrieve each record in
sequence, all else being equal.

There are some caveats, though:

Not all database engines will recognize UUID objects as viable field types.
That can be managed by storing actual UUID values in the data objects, but
writing and reading string representations of those values to and from the
database.
There may be very slight performance impacts on database operations that
use UUIDs as unique identifiers as well, especially if a string representation
is used instead of the actual value.
Their inherent unpredictability can make legitimate examination of data
difficult if there aren't other identifying criteria that can be used – human-
meaningful data values that can be queried against (against other
identifying criteria).

Even setting the advantages aside, BaseDataObject will use UUIDs for object
identity (the oid property) because of a combination of requirements and expected
implementations:

The Artisan Application won't have a real database behind it. It'll probably
end up being a simple, local document store so the generation of a unique
identifier for any given data object must be something that's self-contained
and not reliant on anything other than the application's code base.

The same oid values need to propagate to and from the Artisan
Application and the Artisan Gateway service. Trying to coordinate
identities across any number of artisans could lead, very quickly, to
identity collisions, and mitigating that would probably require more work
(maybe a lot more) without making significant changes to the requirements
of the system, or at least how the various installables in the system interact.
The likelihood of collisions between any two randomly-generated UUIDs
is extremely low (if not impossible for all practical purposes), simply
because of the number of possible values involved.

Data Persistence and BaseDataObject Chapter 11

[328]

Implementation of the oid property will follow a pattern similar to the one
established for the ones based on datetime. The getter method will create one on
demand, the setter method will accept UUID objects or string representations of it and
create actual UUID objects internally, and the deleter method will set the current
storage value to None:

def _get_oid(self) -> UUID:
 if self._oid == None:
 self._oid = uuid4()
 return self._oid

...

def _set_oid(self, value:(UUID,str)):
 if type(value) not in (UUID,str):
 raise TypeError(
 '%s.oid expects a UUID value, or string '
 'representation of one, but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 if type(value) == str:
 try:
 value = UUID(value)
 except Exception as error:
 raise ValueError(
 '%s.oid could not create a valid UUID from '
 'the provided string "%s" because of an error '
 '%s: %s' %
 (
 self.__class__.__name__, value,
 error.__class__.__name__, error
)
)
 self._oid = value

...

def _del_oid(self) -> None:
 self._oid = None

Most of the methods of BaseDataObject are abstract, including all of the class
methods. None of them has any concrete implementations that might be reused in
derived classes, so they are all very basic definitions:

 ###################################
 # Abstract methods #
 ###################################

Data Persistence and BaseDataObject Chapter 11

[329]

 @abc.abstractmethod
 def _create(self) -> None:
 """
Creates a new state-data record for the instance in the back-end
data-store
"""
 raise NotImplementedError(
 '%s has not implemented _create, as required by '
 'BaseDataObject' % (self.__class__.__name__)
)

 @abc.abstractmethod
 def to_data_dict(self) -> (dict,):
 """
Returns a dictionary representation of the instance which can
be used to generate data-store records, or for criteria-matching
with the matches method.
"""
 raise NotImplementedError(
 '%s has not implemented _create, as required by '
 'BaseDataObject' % (self.__class__.__name__)
)

 @abc.abstractmethod
 def _update(self) -> None:
 """
Updates an existing state-data record for the instance in the
back-end data-store
"""
 raise NotImplementedError(
 '%s has not implemented _update, as required by '
 'BaseDataObject' % (self.__class__.__name__)
)

 ###################################
 # Class methods #
 ###################################

 @abc.abstractclassmethod
 def delete(cls, *oids):
 """
Performs an ACTUAL record deletion from the back-end data-store
of all records whose unique identifiers have been provided
"""
 raise NotImplementedError(
 '%s.delete (a class method) has not been implemented, '
 'as required by BaseDataObject' % (cls.__name__)
)

Data Persistence and BaseDataObject Chapter 11

[330]

 @abc.abstractclassmethod
 def from_data_dict(cls, data_dict:(dict,)):
 """
Creates and returns an instance of the class whose state-data has
been populate with values from the provided data_dict
"""
 raise NotImplementedError(
 '%s.from_data_dict (a class method) has not been '
 'implemented, as required by BaseDataObject' %
 (cls.__name__)
)

 @abc.abstractclassmethod
 def get(cls, *oids, **criteria):
 """
Finds and returns all instances of the class from the back-end
data-store whose oids are provided and/or that match the supplied
criteria
"""
 raise NotImplementedError(
 '%s.get (a class method) has not been implemented, '
 'as required by BaseDataObject' % (cls.__name__)
)

The to_data_dict instance method and the from_data_dict class method are
intended to provide mechanisms to represent an instance's complete state data as
a dict, and create an instance from such a dict representation, respectively.
The from_data_dict method should facilitate record retrieval and conversion into
actual programmatic objects across most standard RDBMS-connection libraries in
Python, especially if the field names in the database are identical to the property
names of the class. Similar usage should be viable in NoSQL data stores as well.
Though the to_data_dict method may or may not be as useful in writing records to
a data store, it will be needed to match objects based on criteria (the matches method,
which we'll get to shortly).

PEP-249, the current Python Database API Specification, defines an
expectation that database queries in libraries that conform to the
standards of the PEP will, at a minimum, return lists of tuples as
result sets. Most mature database connector libraries also provide a
convenience mechanism to return a list of dict record values,
where each dict maps field names as keys to the values of the source
records.

Data Persistence and BaseDataObject Chapter 11

[331]

The _create and _update methods are simply requirements for the record creation
and record update processes, and will eventually be called by the save method. The
need for separate record creation and record update processes may not be applicable
to all data store engines, though; some, especially in the NoSQL realm, already
provide a single mechanism for writing a record, and simply don't care whether it
already exists. Others may provide some sort of mechanism that will allow an
attempt to create a new record to be made first, and if that fails (because a duplicate
key is found, indicating that the record already exists), then update the existing
record instead. This option is available in MySQL and MariaDB databases, but may
exist elsewhere. In any of those cases, overriding the save method to use those single-
point-of-contact processes may be a better option.

The delete class method is self-explanatory, and sort probably is as well.

The get method requires some examination, even without any concrete
implementation. As noted earlier, it is intended to be the primary mechanism for
returning objects with state data retrieved from the database, and to accept both zero-
to-many object IDs (the *oids argument list) and filtering criteria (in
the **criteria keyword arguments). The expectation for how the whole get
process will actually work is as follows:

If oids is not empty:

Perform whatever low-level query or lookup is needed to find1.
objects that match one of the provided oids, processing each
record with from_data_dict and yielding a list of objects
If criteria is not empty, filter the current list down to those2.
objects whose matches results against the criteria are True
Return the resulting list3.

Otherwise, if criteria is not empty:

Perform whatever low-level query or lookup is needed to
find objects that match one of the provided criteria values,
processing each record with from_data_dict and yielding
a list of objects
Filter the current list down to those objects
whose matches results against the criteria are True
Return the resulting list

Data Persistence and BaseDataObject Chapter 11

[332]

Otherwise, perform whatever low-level query or lookup is needed to
retrieve all available objects, again processing each record
with from_data_dict, yielding a list of objects and simply returning them
all

Taken together, the combination of the oids and criteria values will allow
the get class method to find and return objects that do the following:

Match one or more oids: get(oid[, oid, …, oid])

Match one or more oids and some set of criteria: get(oid[, oid, …,
oid], key=value[, key=value, …, key=value])

Match one or more criteria key/value pairs, regardless of the oids of the
found items: get(key=value[, key=value, …, key=value])

That simply exist in the backend data store: get()

That leaves the matches and save methods, the only two concrete implementations
in the class. The goal behind matches is to provide an instance-level mechanism for
comparing the instance with criteria names/values, which is the process that
the criteria in the get method uses and relies upon to actually find matching
items. Its implementation is simpler than it might appear at first, but relies on
operations against set objects, and on a Python built-in function that is often
overlooked (all), so the process itself is heavily commented in the code:

###################################
Instance methods
###################################

def matches(self, **criteria) -> (bool,):
 """
Compares the supplied criteria with the state-data values of
the instance, and returns True if all instance properties
specified in the criteria exist and equal the values supplied.
"""
 # - First, if criteria is empty, we can save some time
 # and simply return True - If no criteria are specified,
 # then the object is considered to match the criteria.
 if not criteria:
 return True
 # - Next, we need to check to see if all the criteria
 # specified even exist in the instance:
 data_dict = self.to_data_dict()
 data_keys = set(check_dict.keys())
 criteria_keys = set(criteria.keys())

Data Persistence and BaseDataObject Chapter 11

[333]

 # - If all criteria_keys exist in data_keys, then the
 # intersection of the two will equal criteria_keys.
 # If that's not the case, at least one key-value won't
 # match (because it doesn't exist), so return False
 if criteria_keys.intersection(data_keys) != criteria_keys:
 return False
 # - Next, we need to verify that values match for all
 # specified criteria
 return all(
 [
 (data_dict[key] == criteria[key])
 for key in criteria_keys
]
)

The all function is a nice convenience it returns True if all of the items in the iterable
it's passed evaluate to True (or at least true-ish, so non-empty strings, lists, tuples,
and dictionaries, and non-zero numbers, would all be considered True). It
returns False if any members of the iterable aren't True, and returns True if the
iterable is empty. The results of matches will be False if these conditions occur:

Any key in the criteria doesn't exist in the instance's data_dict – a
criteria key that cannot be matched, essentially
Any value specified in criteria doesn't exactly match its corresponding
value in the instance's data_dict

The save method is very simple. It just calls the
instance's _create or _update methods based on the current state of the
instance's is_new or is_dirty flag properties, respectively, and resets those flags
after either executes, leaving the object clean and ready for whatever might come
next:

 def save(self):
 """
Saves the instance's state-data to the back-end data-store by
creating it if the instance is new, or updating it if the
instance is dirty
"""
 if self.is_new:
 self._create()
 self._set_is_new = False
 self._set_is_dirty = False

Data Persistence and BaseDataObject Chapter 11

[334]

 elif self.is_dirty:
 self._update()
 self._set_is_dirty = False
 self._set_is_new = False

The initialization of a BaseDataObject should allow values for all of its properties,
but not require any of those values:

 def __init__(self,
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):

The actual initialization process follows the previously established pattern for
optional arguments for all arguments in that case: calling the
corresponding _del_ method for each, then calling the corresponding _set_ method
for each if the argument isn't None. Let's use the oid argument as an example:

 # - Call parent initializers if needed
 # - Set default instance property-values using _del_...
methods

 # ...

 self._del_oid()
 # - Set instance property-values from arguments using
 # _set_... methods
 if oid != None:
 self._set_oid(oid)

 # ...

 # - Perform any other initialization needed

Data Persistence and BaseDataObject Chapter 11

[335]

This initializer method's signature is getting pretty long, with seven arguments
(ignoring self, since that will always be present, and will always be the first
argument). Knowing that we'll eventually define concrete classes as combinations
of BaseDataObject and one of the business object classes defined, the signature
for __init__ on those concrete classes could get much longer, too. That, though, is
part of the reason why the initialization signature of BaseDataObject makes all of
the arguments optional. Taken in combination with one of those business object
classes, BaseArtisan, for example, with an __init__ signature of:

def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 website:(str,)=None,
 *products
):

The combined __init__ signature for an Artisan that's derived from both, while
long...

def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 website:(str,)=None,
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
 *products
):

... only requires the contact_name, contact_email, and address arguments
that BaseArtisan requires, and allows all of the arguments to be passed as if they
were keyword arguments, like this:

artisan = Artisan(
 contact_name='John Doe', contact_email='john@doe.com',
 address=my_address,
oid='00000000-0000-0000-0000-000000000000',
 created='2001-01-01 12:34:56', modified='2001-01-01
12:34:56'
)

Data Persistence and BaseDataObject Chapter 11

[336]

Allows the entire parameter set to be defined as a single dictionary and passed
whole-cloth to the initializer using the same syntax that passing a keyword argument
set would use:

artisan_parameters = {
 'contact_name':'John Doe',
 'contact_email':'john@doe.com',
 'address':my_address,
 'oid':'00000000-0000-0000-0000-000000000000',
 'created':'2001-01-01 12:34:56',
 'modified':'2001-01-01 12:34:56'
}
artisan = Artisan(**artisan_parameters)

That syntax for passing arguments in a dictionary
using **dictionary_name is a common form of argument
parameterization in Python, especially in functions and methods
where the full collection of arguments is unreasonably long. It
requires some thought and discipline on the design side of the
development process, and an eye toward being very restrictive with
respect to required arguments, but in the long run, it's more helpful
and easier to use than might appear at first glance.

This last structure will be critical in the implementation of
the from_data_dict methods of the various classes derived
from BaseDataObject – in most cases, it should allow the implementation of those
methods to be little more than this:

@classmethod
def from_data_dict(cls, data_dict):
 return cls(**data_dict)

Data Persistence and BaseDataObject Chapter 11

[337]

Unit testing BaseDataObject
Unit testing of BaseDataObject is going to be… interesting, as it stands right now.
Testing the matches method, a concrete method that depends on an abstract method
(to_data_dict), which, in turn depends on the actual data structure (properties)
of a derived class, is either not possible or meaningless in the context of the test case
class for BaseDataObject itself:

In order to test matches, we have to define a non-abstract class with a
concrete implementation of to_data_dict, and some actual properties to
generate that resulting dict from/with
That derived class, unless it also happens to be an actual class needed in the
system, has no relevance in the final system's code, so tests
there do not assure us that other derived classes won't have
issues in matches
Even setting the testing of the matches method completely aside,
testing save is similarly pointless, for much the same reason it's a concrete
method that depends on methods that are, at the BaseDataObject level,
abstract and undefined

Back when BaseArtisan was being implemented, we defined
its add_product and remove_product methods as abstract, but still wrote usable
concrete implementation code in both, in order to allow derived classes to simply call
the parent's implementation. In effect, we required an implementation of both in all
derived classes, but provided an implementation that could be called from within the
derived class methods. The same sort of approach, applied to
the matches and save methods in BaseDataObject, would essentially enforce
testing requirements on each derived concrete class, while still permitting the use of a
single implementation until or unless a need arose to override that implementation. It
might feel a bit hacky, but there don't appear to be any downsides to that approach:

The methods processed in this fashion still have to be implemented in the
derived classes.
If they need to be overridden for whatever reason, testing policies will still
require them to be tested.
If they are implemented as nothing more than a call to the parent class
method, they will function and testing policy code will still recognize them
as local to the derived class. Our testing policy says those are in need of a
test method, and that allows test methods to execute against the specific
needs and functionality of the derived class.

Data Persistence and BaseDataObject Chapter 11

[338]

Testing save doesn't have to take that approach, however. Ultimately, all we're really
concerned with as far as that method is concerned is that we can prove that it calls
the _create and _update abstract methods and resets the flags. If that proof can be
tested and established in the process of testing BaseDataObject, we won't have to
test it elsewhere unless the test policy code detects an override of the method.
That would, in turn, allow us to avoid having the same test code scattered across all
the test cases for all of the final, concrete classes later on, which is a good thing.

Starting the unit tests for the data_objects module is simple enough:

Create a test_data_object.py file in the1.
project's test_hms_core directory
Perform the two name replacements noted in the header comments2.
Add a reference to it in __init__.py in that same directory3.
Run the test code and go through the normal iterative test writing process4.

The reference to the new test module in __init__.py follows the structure that
already exists in our unit test module template making a copy of the two lines
starting with # import child_module in the existing code, then uncommenting
them and changing child_module to the new test module:

#######################################
Child-module test-cases to execute
#######################################

import test_data_objects
LocalSuite.addTests(test_data_objects.LocalSuite._tests)

import child_module
LocalSuite.addTests(child_module.LocalSuite._tests)

Data Persistence and BaseDataObject Chapter 11

[339]

That addition adds all of the tests in the new test_data_objects module to the
tests already present in the top-level __init__.py test module, allowing that top-
level test suite to execute the child module tests:

The tests in test_data_objects.py can also be executed independently, yielding
the same failure, but without executing all of the other existing tests:

Data Persistence and BaseDataObject Chapter 11

[340]

The iterative process for writing unit tests for data_objects.py is no different than
the process that was used for writing tests for the base business objects in the
previous iteration: run the test module, find a test that's failing, write or modify that
test, and re-run until all tests pass. Since BaseDataObject is an abstract class, a
throwaway, derived concrete class will be needed to perform some tests against it.
With the exception of the value-oriented testing of
the oid, created, and modified properties of BaseDataObject, we have
established patterns that cover everything else:

Iteration over good and bad value lists that are meaningful as values for the
member being tested:

(Not applicable yet) standard optional text-line values
(Not applicable yet) standard required text-line values
Boolean (and numeric-equivalent) values
(Not applicable yet) non-negative numeric values

Verifying property method associations – getter methods in every case so
far, and setter and deleter methods where they are expected
Verifying getter methods retrieve their underlying storage attribute values
Verifying deleter methods reset their underlying storage attribute values as
expected
Verifying that setter methods enforce type checks and value checks as
expected
Verifying that initialization methods (__init__) call all of the deleter and
setter methods as expected

Those same three properties (oid, created, and modified), apart from not having
an established test pattern already defined, share another common characteristic: all
three of them will create a value if the property is requested and doesn't already have
one (that is, the underlying storage attribute's value is None). That behavior requires
some additional testing beyond the normal confirmation that the getter reads the
storage attribute that the test methods start with (using test_get_created to
illustrate):

def test_get_created(self):
 # Tests the _get_created method of the BaseDataObject class
 test_object = BaseDataObjectDerived()
 expected = 'expected value'
 test_object._created = expected
 actual = test_object.created
 self.assertEquals(actual, expected,

Data Persistence and BaseDataObject Chapter 11

[341]

 '_get_created was expected to return "%s" (%s), but '
 'returned "%s" (%s) instead' %
 (
 expected, type(expected).__name__,
 actual, type(actual).__name__
)
)

Up to this point, the test method is pretty typical of a getter method test it sets an
arbitrary value (because what's being tested is whether the getter retrieves the value,
nothing more), and verifies that the result is what was set. Next, though, we force the
storage attribute's value to None, and verify that the result of the getter method is an
object of the appropriate type a datetime in this case:

 test_object._created = None
 self.assertEqual(type(test_object._get_created()), datetime,
 'BaseDataObject._get_created should return a '
 'datetime value if it\'s retrieved from an instance '
 'with an underlying None value'
)

The test method for the property setter method (_set_created in this case) has to
account for all of the different type variations that are legitimate for the
property – datetime, int, float, and str values alike for _set_created – and set
the expected value accordingly based on the input type before calling the method
being tested and checking the results:

def test_set_created(self):
 # Tests the _set_created method of the BaseDataObject class
 test_object = BaseDataObjectDerived()
 # - Test all "good" values
 for created in GoodDateTimes:
 if type(created) == datetime:
 expected = created
 elif type(created) in (int, float):
 expected = datetime.fromtimestamp(created)
 elif type(created) == str:
 expected = datetime.strptime(
 created, BaseDataObject._data_time_string
)
 test_object._set_created(created)
 actual = test_object.created
 self.assertEqual(
 actual, expected,
 'Setting created to "%s" (%s) should return '
 '"%s" (%s) through the property, but "%s" (%s) '
 'was returned instead' %

Data Persistence and BaseDataObject Chapter 11

[342]

 (
 created, type(created).__name__,
 expected, type(expected).__name__,
 actual, type(actual).__name__,
)
)
 # - Test all "bad" values
 for created in BadDateTimes:
 try:
 test_object._set_created(created)
 self.fail(
 'BaseDataObject objects should not accept "%s" '
 '(%s) as created values, but it was allowed to '
 'be set' %
 (created, type(created).__name__)
)
 except (TypeError, ValueError):
 pass
 except Exception as error:
 self.fail(
 'BaseDataObject objects should raise TypeError '
 'or ValueError if passed a created value of '
 '"%s" (%s), but %s was raised instead:\n'
 ' %s' %
 (
 created, type(created).__name__,
 error.__class__.__name__, error
)
)

The deleter method test is structurally the same test process that we've implemented
before, though:

def test_del_created(self):
 # Tests the _del_created method of the BaseDataObject class
 test_object = BaseDataObjectDerived()
 test_object._created = 'unexpected value'
 test_object._del_created()
 self.assertEquals(
 test_object._created, None,
 'BaseDataObject._del_created should leave None in the '
 'underlying storage attribute, but "%s" (%s) was '
 'found instead' %
 (
 test_object._created,
 type(test_object._created).__name__
)
)

Data Persistence and BaseDataObject Chapter 11

[343]

The exact same structure, with created changed to modified, tests the underlying
methods of the modified property. A very similar structure, changing names
(created to oid) and expected types (datetime to UUID), serves as a starting point
for the tests of the property methods for the oid property.

Testing _get_oid, then looks like this:

def test_get_oid(self):
 # Tests the _get_oid method of the BaseDataObject class
 test_object = BaseDataObjectDerived()
 expected = 'expected value'
 test_object._oid = expected
 actual = test_object.oid
 self.assertEquals(actual, expected,
 '_get_oid was expected to return "%s" (%s), but '
 'returned "%s" (%s) instead' %
 (
 expected, type(expected).__name__,
 actual, type(actual).__name__
)
)
 test_object._oid = None
 self.assertEqual(type(test_object.oid), UUID,
 'BaseDataObject._get_oid should return a UUID value '
 'if it\'s retrieved from an instance with an '
 'underlying None value'
)

And testing _set_oid looks like this (note that the type change also has to account
for a different expected type and value):

 def test_set_oid(self):
 # Tests the _set_oid method of the BaseDataObject class
 test_object = BaseDataObjectDerived()
 # - Test all "good" values
 for oid in GoodOIDs:
 if type(oid) == UUID:
 expected = oid
 elif type(oid) == str:
 expected = UUID(oid)
 test_object._set_oid(oid)
 actual = test_object.oid
 self.assertEqual(
 actual, expected,
 'Setting oid to "%s" (%s) should return '
 '"%s" (%s) through the property, but "%s" '
 '(%s) was returned instead.' %

Data Persistence and BaseDataObject Chapter 11

[344]

 (
 oid, type(oid).__name__,
 expected, type(expected).__name__,
 actual, type(actual).__name__,
)
)
 # - Test all "bad" values
 for oid in BadOIDs:
 try:
 test_object._set_oid(oid)
 self.fail(
 'BaseDatObject objects should not accept '
 '"%s" (%s) as a valid oid, but it was '
 'allowed to be set' %
 (oid, type(oid).__name__)
)
 except (TypeError, ValueError):
 pass
 except Exception as error:
 self.fail(
 'BaseDataObject objects should raise TypeError '
 'or ValueError if passed a value of "%s" (%s) '
 'as an oid, but %s was raised instead:\n'
 ' %s' %
 (
 oid, type(oid).__name__,
 error.__class__.__name__, error
)
)

With all of the data object tests complete (for now), it's a good time to move the class
definitions that were living in the package header file (hms_core/__init__.py) into
a module file just for them: business_objects.py. While it's purely a namespace
organizational concern (since none of the classes themselves are being changed, just
where they live in the package), it's one that makes a lot of sense, in the long run.
With the move completed, there is a logical grouping to the classes that reside in the
package:

Data Persistence and BaseDataObject Chapter 11

[345]

Business object definitions, and items that tie directly to those types, will all live in
the hms_core.business_objects namespace, and can be imported from there, for
example:

from hms_core.business_objects import BaseArtisan

All members of hms_core.business_objects could be imported, if needed, with:

import hms_core.business_objects

Similarly, functionality that relates to the data object structure that's still in
development will all live in the hms_core.data_objects namespace:

from hms_core.data_objects import BaseDataObject

Or, again, all members of the module could be imported with:

import hms_core.data_objects

With the basic data object structure ready and tested, it's time to start implementing
some concrete, data persisting business objects, starting with the ones living in the
Artisan Application.

Data Persistence and BaseDataObject Chapter 11

[346]

Summary
The implementation of BaseDataObject provides mechanisms for all of the common
data access needs we identified earlier (all the CRUD operations):

It allows derived data objects, once they've been instantiated, to create and
update their state data
It provides a single mechanism that allows one or more data objects to be
read from the data store, and as a bonus allows for some degree of object
retrieval based on criteria other than just the oid of the data objects in
question
It provides a single mechanism for the deletion of object data

The actual implementation of those methods is the responsibility of the data objects
themselves, which will relate directly to the storage mechanism that each object type
uses.

The data storage for the Artisan Application, reading and writing data to local files on
the user's machine, is, in many respects, the simpler of the two data storage options to
implement, so we'll start with that.

12
Persisting Object Data to

Files
At first glance, the process of reading and writing data to and from a file system-
resident data store probably looks much simpler than the equivalent processes for
many database-backed storage mechanisms. Reading and writing files, after all, is a
very basic process. In reality, it's a slightly more complex process, though. There are
precautions that need to be taken to deal with things such as file system permissions,
hard shutdowns of the application using data access, and even system crashes, to
some degree. While these complicate development somewhat, they are perhaps more
challenging to identify as possibilities than they are to implement safeguards around.

This chapter will cover the following:

The basic component project setup for hms_artisan
A further abstraction layer to encapsulate the file system-based data
storage needs involved
The development of data objects in the hms_artisan component project
for the following:

Artisans
Products
Orders

Persisting Object Data to Files Chapter 12

[348]

Setting up the hms_artisan project
With all of the foundation classes we need (so far) defined in hms_core, we can start
building out the concrete classes that correspond to them in other projects. Since the
plan is for the Artisan Application to have a custom, local data storage mechanism,
and that's likely going to be more complicated than the equivalents in the Central
Office application and the Artisan Gateway service, it arguably makes the most sense
to start with that project, and by creating a project structure to meet the needs of this
story:

As a developer, I need a project for the Artisan Application so that I have a
place to put the relevant code and build the application.

Initially, the code for the hms_artisan classes could start in the
hms_artisan/__init__.py file, just as the business object ABCs
in hms_core started in its root __init__.py file, but it seems reasonable to assume
that some variant of the reason why those were just moved to their
own business_objects.py module would be likely in the Artisan
Application codebase. With that in mind, we'll create
an artisan_objects.py module to keep them grouped and organized. That
will also make it easier to keep any data storage classes that we might need that aren't
themselves data objects in a separate module in the same package. We could just as
easily put all of the Artisan Application code into a single module (hms_artisan.py)
instead of having a package directory and the attendant files therein. There's
no functional reason for not doing so, but unless there's some certainty that there
would never be a need to change from that single module file implementation to a
package structure, it raises the longer-term risk of having to reorganize the entire
namespace file structure. The starting project structure looks very much like the
default defined in Chapter 7, Setting Up Projects and Processes:

Persisting Object Data to Files Chapter 12

[349]

That sort of reorganization is not difficult, but it is time consuming,
all the more so if unit test modules also have to be
reorganized. When such a reorganization is under way, it has the
potential to limit other work against a codebase by anyone who isn't
part of the reorganization effort. It also has a lot of potential to make
source control management very messy until it's complete, which
isn't a great situation for a member of a dev team with other tasks to
execute against that codebase to be in.

The odds are good that we'll want or need a separate module for the actual
application anyway, though, so it just makes sense to start subdividing code into
logical groupings at the outset.

Creating a local file system data store
Artisans' needs for storing data are captured in two stories:

As an Artisan, I need a local data store for all of my system data, so that I
don't have to be connected to the internet to make changes
As an Artisan, I need my local data store to be as simple as possible,
requiring no additional software installations, so that I don't have to worry
about installing and maintaining a database system as well as the Artisan
Application

Persisting Object Data to Files Chapter 12

[350]

The final relationships between the various Artisan Application data objects
and BaseDataObject could be as simple as having each Artisan-level class derive
directly from BaseDataObject. Indeed, if there were only one such class at the
Artisan level, and no expectation of that changing in the foreseeable future, it would
make a lot of sense to take that approach. The code that would handle the creation of
record files, updating the data therein, reading it, or deleting it could live in a lone
class. Since there are three object types that we need to be concerned with, though,
there is at least some potential benefit to collecting a common functionality for file-
based data stores into another abstract class that lives between BaseDataObject and
the concrete hms_artisan classes, such as hms_artisan..Artisan:

That intermediary class, JSONFileDataObject, would extend BaseDataObject,
adding functionality and data that is specific to the task of managing object state data
that lives in a collection of JSON-formatted files. At the same time, it would preserve
the abstraction requirements from BaseDataObject, or provide a concrete
implementation of them and make them available to classes such
as hms_artisan..Artisan. The net benefit of this inheritance structure is that,
ideally, all of the functionality necessary to perform CRUD operations against a
JSON-backed data store of objects would be able to reside in one place. Realistically,
some of the specifics may have to live in the concrete class implementations –
otherwise, they could all be wrapped into a single class, after all – but there will
almost certainly be substantial commonalities that can be implemented in that middle
inheritance level.

A more complete collection of goals for any class derived
from JSONFileDataObject would include the following, at a minimum:

All of the stored data for any derived class should probably live in one
location
Instance data for each object type (class) should probably live in a common
location within the top-level location
Data for any given instance should probably reside in a single, distinct file,
whose name can be uniquely related to the instance whose data it stores

Persisting Object Data to Files Chapter 12

[351]

Additionally, there are some should-have or nice-to-have functionalities that are
worth considering:

Data reading operations would be faster if the process didn't involve
finding, opening, reading, and creating objects for every file every time a
data read was executed. A trade-off for this is that any time data-altering
operations are executed, they have to be responsible for making the
appropriate alterations to whatever data is involved, in all the places it
lives. If there is an in-memory collection of objects that were read from the
persistent files, for example:

Create operations would have to add new objects to the in-
memory store
Updates would have to write to the data-store
file and update the in-memory object

Deletions would have to remove the relevant file and remove
the appropriate object from the in-memory store

None of these are particularly difficult to implement, though.

Implementing JSONFileDataObject
Defining the JSONFileDataObject abstract class starts with a standard
ABCMeta metaclass specification, and some class-level attributes for various purposes:

class JSONFileDataObject(BaseDataObject, metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can persist their state-data as
JSON files in a local file-system file-cache
"""
 ###################################
 # Class attributes/constants #
 ###################################

 _file_store_dir = None
 _file_store_ready = False
 _loaded_objects = None

Persisting Object Data to Files Chapter 12

[352]

Where:

_file_store_dir is a default file system directory specification that will
eventually need to be read from a configuration file in the final installable
application. For the time being, and for unit testing purposes, it will have a
hardcoded value set that can be used during development and testing, and
we'll look at the configuration setup when we get to the Artisan
Application's implementation.

_file_store_ready is a flag value that will be used to indicate to the
class whether it's loaded all of the available objects from the data files, and
thus whether it needs to load them before performing any CRUD
operations.

_loaded_objects is where the collection of objects loaded by the class
will be stored. The actual object stores will be a dict of object instances,
but until the loading operation has completed, it's defaulted to None in
order to make the determination between unloaded (None) and loaded-
with-no-objects (an empty dict) states later on.

Since it inherits from BaseDataObject, the class will start with the abstraction
requirements defined there, and could not be instantiated without fulfilling those
requirements. However, since we want JSONFileDataObject to also be abstract,
it also has the standard ABC metaclass specification, and is itself abstract.

The signature of the initialization method of JSONFileDataObject is identical to
that of the BaseDataObject it derives from, but it performs a few additional tasks
during that process:

###################################
Object initialization
###################################

def __init__(self,
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):
 """

Persisting Object Data to Files Chapter 12

[353]

Object initialization.

self (JSONFileDataObject instance, required) The
 instance to execute against
oid (UUID|str, optional, defaults to None)
created (datetime|str|float|int, optional, defaults to
None)
modified (datetime|str|float|int, optional, defaults to
None)
is_active (bool|int, optional, defaults to None)
is_deleted (bool|int, optional, defaults to None)
is_dirty (bool|int, optional, defaults to None)
is_new (bool|int, optional, defaults to None)
"""

The first new functionality involved is checking for a non-None value for
the _file_store_dir class attribute. Since the whole point of these classes is to be
able to save object data to JSON files, and that requires a place for those files to
actually reside, not having one specified is a critical issue that would prevent any
useful execution of CRUD operations, so an error is raised if a problem is detected:

 # - When used by a subclass, require that subclass to
 # define a valid file-system path in its _file_store_dir
 # class-attribute - that's where the JSON files will live
 if self.__class__._file_store_dir == None:
 raise AttributeError(
 '%s has not defined a file-system location to '
 'store JSON data of its instances\' data. Please '
 'set %s._file_store_dir to a valid file-system '
 'path' %
 (self.__class__.__name__, self.__class__.__name__)
)

Similarly, even if the file storage location is specified, that location has to exist, and be
accessible to the code as it runs under the user's account with the attendant
permissions. Each class, then, needs to check for the location's existence (and create it
if it doesn't exist), and make sure that files can be written, read, and deleted. This
checking process could fire off every time an instance of the class is created, but if the
process has completed once already, it should be satisfactory to skip it from that point
on:

if not self.__class__._file_store_ready:
 # - The first time the class is used, check the file-
 # storage directory, and if everything checks out,
 # then re-set the flag that controls the checks.
if not os.path.exists(self.__class__._file_store_dir):
 # - If the path-specification exists, try to

Persisting Object Data to Files Chapter 12

[354]

 # assure that the *path* exists, and create it
 # if it doesn't. If the path can't be created,
 # then that'll be an issue later too, so it'll
 # need to be dealt with.
 try:
 os.makedirs(self.__class__._file_store_dir)
 except PermissionError:
 raise PermissionError(
 '%s cannot create the JSON data-store '
 'directory (%s) because permission was '
 'denied. Please check permissions on '
 'that directory (or its parents, if it '
 'hasn\'t been created yet) and try '
 'again.' %
 (
 self.__class__.__name__,
 self.__class__._file_store_dir
)
)

It's worth noting that since the _file_store_ready value is a class attribute, that
value will persist for an entire Python run. That is, using the Artisan Application as
an example, the following will happen:

The application is started1.
At some point, a data object class instance is initialized (say, a Product),2.
and the checking process runs, successfully verifying all the data storage
needs for product objects and setting
the _file_store_ready to True accordingly
The user does things with the application that don't interact with any3.
product objects
Another product object is initialized, but because4.
the _file_store_ready flag has been set to True, the check process is
skipped

As soon as the application is shut down, though, that flag value goes away, so the
next time the application is started up, the check process is repeated the first time a
product object is initialized.

Persisting Object Data to Files Chapter 12

[355]

File access permissions are, as noted already, also checked by first writing a file:

 # - Check to make sure that files can be
 # created there...
 try:
 test_file = open(
 '%s%stest-file.txt' %
 (self.__class__._file_store_dir, os.sep),
 'w'
)
 test_file.write('test-file.txt')
 test_file.close()
 except PermissionError:
 raise PermissionError(
 '%s cannot write files to the JSON data-'
 'store directory (%s) because permission was '
 'denied. Please check permissions on that '
 'directory and try again.' %
 (
 self.__class__.__name__,
 self.__class__._file_store_dir
)
)

Then, by reading the file that was just written:

 # - ... that files can be read from there...
 try:
 test_file = open(
 '%s%stest-file.txt' %
 (self.__class__._file_store_dir, os.sep),
 'r'
)
 test_file.read()
 test_file.close()
 except PermissionError:
 raise PermissionError(
 '%s cannot read files in the JSON data-'
 'store directory (%s) because permission was '
 'denied. Please check permissions on that '
 'directory and try again.' %
 (
 self.__class__.__name__,
 self.__class__._file_store_dir
)
)

Persisting Object Data to Files Chapter 12

[356]

And finally, by deleting that file:

 # - ... and deleted from there...
 try:
 os.unlink(
 '%s%stest-file.txt' %
 (self.__class__._file_store_dir, os.sep)
)
 except PermissionError:
 raise PermissionError(
 '%s cannot delete files in the JSON data-'
 'store directory (%s) because permission was '
 'denied. Please check permissions on that '
 'directory and try again.' %
 (
 self.__class__.__name__,
 self.__class__._file_store_dir
)
)
 # - If no errors were raised, then re-set the flag:
 self._file_store_ready = True

The balance of __init__() follows the same structure established earlier. Since the
class has a parent class – BaseDataObject – it calls that initializer, but since there are
no local properties to initialize or set values for, there aren't any of those calls. All of
the other properties' initializations are handled by the call
to BaseDataObject.__init__:

 # - Call parent initializers if needed
 BaseDataObject.__init__(
 self, oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 # - Set default instance property-values using _del_... methods
 # - Set instance property-values from arguments using
 # _set_... methods
 # - Perform any other initialization needed

Three of the methods, either required by the abstraction in BaseDataObject or with
concrete implementations, need to be addressed in JSONFileDataObject.
The _create and _update methods are required by BaseDataObject, but don't
make a lot of sense in the context of this class because the same basic operation would
take place whether the operation involved was a creation or update effort. Both of
those, while implemented, do nothing more than raise an error with some
information that would be useful for developers who encounter it:

Persisting Object Data to Files Chapter 12

[357]

def _create(self) -> None:
 """
Creates a new state-data record for the instance in the back-end
data-store
"""
 # - Since all data-transactions for these objects involve
 # a file-write, we're just going to define this method
 # in order to meet the requirements of BaseDataObject,
 # make it raise an error, and override the save method
 # to perform the actual file-write.
 raise NotImplementedError(
 '%s._create is not implemented, because the save '
 'method handles all the data-writing needed for '
 'the class. Use save() instead.' %
 self.__class__.__name__
)

def _update(self) -> None:
 """
Updates an existing state-data record for the instance in the
back-end data-store
"""
 # - Since all data-transactions for these objects involve
 # a file-write, we're just going to define this method
 # in order to meet the requirements of BaseDataObject,
 # make it raise an error, and override the save method
 # to perform the actual file-write.
 raise NotImplementedError(
 '%s._update is not implemented, because the save '
 'method handles all the data-writing needed for '
 'the class. Use save() instead.' %
 self.__class__.__name__
)

Those changes, then, put all the responsibility for writing data to files on
the save method, no matter whether the data being saved represents a new/create
action or an edit/update one. Although it's not likely, it's not impossible for the
permissions of the directory where data files are stored to change while the program
is running. They were checked initially, but that only means that they were valid at
the time they were checked, so the process of writing data to files should check them
as well, independently:

def save(self):
 """
Saves the instance's state-data to the back-end data-store by
creating it if the instance is new, or updating it if the
instance is dirty

Persisting Object Data to Files Chapter 12

[358]

"""
 if self.is_new or self.is_dirty:

It does need to confirm that objects have been loaded into memory
first with _load_objects; at execution time, this will always be an instance of the
class calling a class method that's inherited, so the class has to be explicitly passed as
an argument:

- Make sure objects are loaded:
self.__class__._load_objects(self.__class__)

Then, it saves the data and confirms that the object itself is stored in memory:

- Try to save the data:
 try:
 # - Open the file
 fp = open(
 '%s%s-data%s%s.json' %
 (
 self.__class__._file_store_dir, os.sep,
 self.__class__.__name__, os.sep,
 self.oid
), 'w'
)
 # - Write the instance's data-dict to the file as JSON
 json.dump(fp, self.to_data_dict(), indent=4)
 # - re-set the new and dirty state-flags
 self._set_is_dirty(False)
 self._set_is_new(False)
 # - Update it in the loaded objects
 self.__class__._loaded_objects[self.oid] = self

If the file write fails (the json.dump call) with a permissions-related error, none of the
in-memory updates will be committed, and a more end user-friendly error message
should be raised, in case it needs to be displayed to that end user:

except PermissionError:
 # - Raise a more informative error
 raise PermissionError(
 '%s could not save an object to the JSON data-'
 'store directory (%s) because permission was '
 'denied. Please check permissions on that '
 'directory and try again.' %
 (
 self.__class__.__name__,
 self.__class__._file_store_dir

Persisting Object Data to Files Chapter 12

[359]

)
)
- Any other errors will just surface for the time being

The same common storage location file system path values that allow
the save method to be made concrete also allow the delete and get class methods to
be made concrete class methods of JSONFileDataObject. Because the class
properties define what's needed to find the data files relevant to any/all object
instances, delete code can directly make the needed file-deletion efforts, with the
appropriate error handling:

@classmethod
def delete(cls, *oids):
 """
Performs an ACTUAL record deletion from the back-end data-store
of all records whose unique identifiers have been provided
"""
 # - First, ensure that objects are loaded
 cls._load_objects(cls)
 # - For each oid specified, try to remove the file, handling
 # any errors raised in the process.
 failed_deletions = []
 for oid in oids:
 try:
 # - Try to delete the file first, so that deletion
 # failures won't leave the files but remove the
 # in-memory copies
 file_path = '%s%s%s-data%s%s.json' %(
 cls._file_store_dir, os.sep,
 cls.__name__, os.sep, oid
)
 # - Delete the file at file_path
 os.unlink(file_path)
 # - Remove the in-memory object-instance:
 del cls._loaded_objects[str(oid)]
 except PermissionError:
 failed_deletions.append(file_path)
 if failed_deletions:
 # - Though we *are* raising an error here, *some* deletions
 # may have succeeded. If this error-message is displayed,
 # the user seeing it need only be concerned with the
 # items that failed, though...
 raise PermissionError(
 '%s.delete could not delete %d object-data %s '
 'because permission was denied. Please check the '
 'permissions on %s and try again' %
 (

Persisting Object Data to Files Chapter 12

[360]

 cls.__name__, len(failed_deletions),
 ('files' if len(failed_deletions) > 1 else 'file'),
 ', '.join(failed_deletions)
)
)

The get method doesn't need read access to the files directly –
the _load_objects class method handles that, loading all the data that get relies
upon – and once the relevant objects exist in memory, finding them, even with criteria
or a combination of object IDs and criteria, is quite simple and fast:

@classmethod
def get(cls, *oids, **criteria):
 """
Finds and returns all instances of the class from the back-end
data-store whose oids are provided and/or that match the supplied
criteria
"""
 # - First, ensure that objects are loaded
 cls._load_objects(cls)

If oids have been supplied, the process has to account for those, and
for criteria if it was supplied:

 # - If oids have been specified, then the initial results are all
 # items in the in-memory store whose oids are in the supplied
 # oids-list
 if oids:
 oids = tuple(
 [str(o) for o in oids]
)
 # - If no criteria were supplied, then oids are all we need
 # to match against:
 if not criteria:
 results = [
 o for o in cls._loaded_objects.values()
 if str(o.oid) in oids
]
 # - Otherwise, we *also* need to use matches to find items
 # that match the criteria
 else:
 results = [
 o for o in cls._loaded_objects.values()
 if str(o.oid) in oids
 and o.matches(**criteria)
]
 # - In either case, we have a list of matching items, which

Persisting Object Data to Files Chapter 12

[361]

 # may be empty, so return it:
 return results

If no oids were supplied, but criteria was, the process is similar:

 # - If oids were NOT specified, then the results are all objects
 # in memory that match the criteria
 elif criteria:
 results = [
 o for o in cls._loaded_objects
 if o.matches(**criteria)
]
 return results
 # - If neither were specified, return all items available:
 else:
 return list(cls._loaded_objects.values())

In both branches, any filtering based on criteria is handled by the individual
object's matches method, making the process of searching for objects by specific
property values very easy.

All of these rely, then, on the _load_objects class method to retrieve and populate
the in-memory copies of all objects whose data has been persisted as JSON files, and
attaching them to the relevant class, in the _loaded_objects dictionary that was
defined as a common class attribute:

def _load_objects(cls, force_load=False):
 """
Class-level helper-method that loads all of the objects in the
local file-system data-store into memory so that they can be
used more quickly afterwards.

Expected to be called by the get class-method to load objects
for local retrieval, and other places as needed.

cls (class, required) The class that the method is
 bound to
force_load ... (bool, optional, defaults to False) If True,
 forces the process to re-load data from scratch,
 otherwise skips the load process if data already
 exists.
"""

Persisting Object Data to Files Chapter 12

[362]

If the data has not been loaded (indicated by the _loaded_objects attribute
containing a None value), or if an explicit reload of data was called for (a True value
received in the force_load argument), the method retrieves a list of all files in the
class data directory, after verifying that the relevant directories exist, trying to create
them if they don't, and raising errors if they need to be created but cannot be:

 if cls._loaded_objects == None or force_load:
 if not os.path.exists(cls._file_store_dir):
 # - If the path-specification exists, try to
 # assure that the *path* exists, and create it
 # if it doesn't. If the path can't be created,
 # then that'll be an issue later too, so it'll
 # need to be dealt with.
 try:
 os.makedirs(cls._file_store_dir)
 except PermissionError:
 raise PermissionError(
 '%s cannot create the JSON data-store '
 'directory (%s) because permission was '
 'denied. Please check permissions on '
 'that directory (or its parents, if it '
 'hasn\'t been created yet) and try '
 'again.' %
 (cls.__name__, cls._file_store_dir)
)
 class_files_path = '%s%s%s-data' % (
 cls._file_store_dir, os.sep,
 cls.__name__
)
 if not os.path.exists(class_files_path):
 try:
 os.makedirs(class_files_path)
 except PermissionError:
 raise PermissionError(
 '%s cannot create the JSON data-store '
 'directory (%s) because permission was '
 'denied. Please check permissions on '
 'that directory (or its parents, if it '
 'hasn\'t been created yet) and try '
 'again.' %
 (cls.__name__, class_files_path)
)
 # - Get a list of all the JSON files in the data-store
 # path
 files = [
 fname for fname in os.listdir(
 '%s%s%s-data' % (

Persisting Object Data to Files Chapter 12

[363]

 cls._file_store_dir, os.sep,
 cls.__name__
)
) if fname.endswith('.json')
]

If there are any files found, then an attempt is made to read each one, convert it from
the JSON-encoded data_dict expected into an actual instance of the class, and add
the instance to the _loaded_objects attribute. Since _loaded_objects is a
class attribute, loaded values will persist for as long as that class definition is active.
Barring an explicit purge or redefinition of the class itself, this will persist for the
duration of the Python interpreter that's running the code, allowing the data read in
by the process to persist for as long as the code that's using it is running:

 cls._loaded_objects = {}
 if files:
 for fname in files:
 item_file = '%s%s-data%s%s' % (
 self.__class__._file_store_dir, os.sep,
 self.__class__.__name__, os.sep, fname
)
 try:
 # - Read the JSON data
 fp = open(item_file, 'r')
 data_dict = json.load(fp)
 fp.close()
 # - Create an instance from that data
 instance = cls.from_data_dict(data_dict)
 # - Keep track of it by oid in the class
 cls._loaded_objects[instance.oid] = instance

Since it's possible, even if it's unlikely, for the file system permissions of the data files
themselves or of the parent directories of the file to change while the Artisan
Application is running, file reads could throw PermissionError exceptions, so
those are caught and tracked until the process is complete:

 # - If permissions are a problem, raise an
 # error with helpful information
 except PermissionError as error:
 raise PermissionError(
 '%s could not load object-data from '
 'the data-store file at %s because '
 'permission was denied. Please check '
 '(and, if needed, correct) the file- '
 'and directory-permissions and try '

Persisting Object Data to Files Chapter 12

[364]

 'again' %
 (cls.__name__, item_file)
)

Similarly, if the content of a data file is invalid, an error is raised, though in this case
it's immediate. The rationale for the immediacy is that data has been corrupted, and
that needs to be resolved before allowing any changes to occur:

- If data-structure or -content is a problem,
raise an error with helpful information
 except (TypeError, ValueError) as error:
 raise error.__class__(
 '%s could not load object-data from '
 'the data-store file at %s because '
 'the data was corrupt or not what '
 'was expected (%s: %s)' %
 (
 cls.__name__, item_file,
 error.__class__.__name__, error
)
)
- Other errors will simply surface, at
least for now

Any other errors will cascade out to the calling code, to be handled there or allowed
to abort the application's execution.

The original goals, including the should-have or nice-to-have functionalities, have all
been accounted for at this point, in a complete set of CRUD operation mechanisms:

All of the stored data for any derived class should probably live in one
location. This is enforced by the _file_store_dir class attribute.
Instance data for each object type (class) should probably live in a common
location within the top-level location and data for any given instance
should probably reside in a single, distinct file, whose name can be
uniquely related to the instance whose data it stores. These are managed by
ensuring that all the file paths used contain the class name, so that, for
example, all product instance data will be stored
in _file_store_dir/Product-data/*.json files.

Persisting Object Data to Files Chapter 12

[365]

Data reading operations would be faster if the process didn't involve
finding, opening, reading, and creating objects for every file every time that
a data read was executed. The _load_objects class method performs the
load, and making sure that it gets called before any CRUD operations are
executed takes care of making them available. The create, update, and
delete processes all take into account both the persistent data files and the
in-memory instances that relate to those instances.

The concrete business objects of
hms_artisan
The final definition of the concrete classes in the Artisan Application really just boils
down to the following:

Defining each concrete class:
Deriving from the corresponding base class in hms_core
Deriving from JSONFileDataObject that was just defined

Collecting the arguments for the new class __init__ method, which needs
to account for all of the arguments of the parent classes.
Implementing any of the abstract instance and class methods required by
the parent classes, many of which have already been set up to allow the
derived class to call the parent's abstract method.
Setting up a _file_store_dir class attribute value that can be used by
instances of the classes until the final application configuration is worked
out.

Persisting Object Data to Files Chapter 12

[366]

These relationships may make more sense if they are diagrammed:

Dealing with is_dirty and properties
BaseDataObject provides is_dirty, a property that's intended to indicate when
the state data of an object has been changed (for example, it should be set to True
when any of the various _set_ or _del_ methods have been called). Since the
concrete objects' property setter and deleter methods, as defined in their
corresponding base classes, aren't aware of that capability at all, it's up to the concrete
objects to implement that functionality.

Persisting Object Data to Files Chapter 12

[367]

However, since those setter and deleter methods can be called in the derived concrete
class definitions, the implementation is very straightforward. Using
the address property of Artisan as an example, we essentially define local setter
and deleter methods that call their counterparts in BaseArtisan:

###################################
Property-setter methods
###################################

def _set_address(self, value:Address) -> None:
 # - Call the parent method
 result = BaseArtisan._set_address(self, value)
 self._set_is_dirty(True)
 return result

...

###################################
Property-deleter methods
###################################

def _del_address(self) -> None:
 # - Call the parent method
 result = BaseArtisan._del_address(self)
 self._set_is_dirty(True)
 return result

Once those are defined, the property itself has to be redefined in order to point to the
appropriate methods. Without this step, the Artisan objects' properties would still
point to the BaseArtisan setter and deleter methods, so the is_dirty flag would
never get set, and data changes would never be saved:

###################################
Instance property definitions
###################################

address = property(
 BaseArtisan._get_address, _set_address, _del_address,
 'Gets, sets or deletes the physical address (Address) '
 'associated with the Artisan that the instance represents'
)

This same pattern will play out for all of the properties of the hms_artisan classes.

Persisting Object Data to Files Chapter 12

[368]

That also means, however, that all of those classes, since they all use their
various _del_ methods to initialize instance values during the execution of
their __init__ methods, may also need to explicitly reset is_dirty to False when
an object is created.

This is a very simplistic approach to handling the dirty state of object instances. The
fundamental assumption behind this implementation is that any property setting or
deletion that occurs will make a change to the applicable state value, so the instance is
dirty as a result. Even if the new value was the same as the old value of a property,
this would be the case. In systems where there is an actual monetary cost for each
database transaction (some cloud-based data stores), it might be worth the additional
effort of checking the property value before executing the set code or delete code, and
not even making the change, let alone setting the is_dirty flag, if the incoming new
value isn't different from the existing one.

hms_artisan.Artisan
Artisans need to be able to manipulate their own data in the Artisan Application:

As an Artisan, I need to be able to create, manage, and store my own
system data so that I can keep it up to date

The initial code for the Artisan class that provides the data structure and persistence
that fulfills this story's needs is very lightweight, since most of the functionality is
inherited from hms_core, BaseArtisan (for properties and data-structure),
and JSONFileDataObject (for methods and persistence functionality). Not counting
comments and documentation, it's just under 60 lines of real code:

class Artisan(BaseArtisan, JSONFileDataObject, object):
 """
Represents an Artisan in the context of the Artisan Application
"""
 ###################################
 # Class attributes/constants #
 ###################################

 # TODO: Work out the configuration-based file-system path
 # for this attribute
 _file_store_dir = '/tmp/hms_data'

Persisting Object Data to Files Chapter 12

[369]

The __init__ method has a long and detailed argument signature, with 12
arguments (three of which are required), and the products arglist. It may seem
daunting, but is not expected to be needed for most use cases (more on that shortly).
All it really needs to do is call the parent initializers to set the applicable property
values:

 ###################################
 # Object initialization #
 ###################################

 # TODO: Add and document arguments if/as needed
 def __init__(self,
 # - Required arguments from BaseArtisan
 contact_name:str, contact_email:str, address:Address,
 # - Optional arguments from BaseArtisan
 company_name:str=None, website:(str,)=None,
 # - Optional arguments from BaseDataObject/JSONFileDataObject
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
 # - the products arglist from BaseArtisan
 *products
):
 """
Object initialization.

self (Artisan instance, required) The instance to
 execute against
contact_name (str, required) The name of the primary contact
 for the Artisan that the instance represents
contact_email (str [email address], required) The email address
 of the primary contact for the Artisan that the
 instance represents
address (Address, required) The mailing/shipping address
 for the Artisan that the instance represents
company_name (str, optional, defaults to None) The company-
 name for the Artisan that the instance represents
website (str, optional, defaults to None) The the URL of
 the website associated with the Artisan that the
 instance represents
oid (UUID|str, optional, defaults to None)
created (datetime|str|float|int, optional, defaults to
None)

Persisting Object Data to Files Chapter 12

[370]

modified (datetime|str|float|int, optional, defaults to
None)
is_active (bool|int, optional, defaults to None)
is_deleted (bool|int, optional, defaults to None)
is_dirty (bool|int, optional, defaults to None)
is_new (bool|int, optional, defaults to None)
products (BaseProduct collection) The products associated
 with the Artisan that the instance represents
"""
 # - Call parent initializers if needed
 BaseArtisan.__init__(
 self, contact_name, contact_email, address,
 company_name, website, *products
)
 JSONFileDataObject.__init__(
 self, oid, created, modified, is_active,
 is_deleted, is_dirty, is_new
)
 # - Set default instance property-values using _del_...
methods
 # - Set instance property-values from arguments using
 # _set_... methods
 # - Perform any other initialization needed

The bulk of the instance methods can call the original abstract methods (with their
existing implementations) in the classes that they originate from:

 ###################################
 # Instance methods #
 ###################################

 def add_product(self, product:BaseProduct) -> BaseProduct:
 return HasProducts.add_product(self, product)

 def matches(self, **criteria) -> (bool,):
 return BaseDataObject.matches(self, **criteria)

 def remove_product(self, product:BaseProduct) -> BaseProduct:
 return HasProducts.remove_product(self, product)

The exception to that is the to_data_dict method, which must be customized for
each concrete class. All that it needs to do, though, is return a dict of all the
properties and values that should be persisted, and that can be used in the
initialization of an object. The address property has an issue with it, from the
perspective of being able to store it in a JSON file, and that will be examined shortly.

Persisting Object Data to Files Chapter 12

[371]

The datetime and UUID properties are converted to string values for the outgoing
data dictionary, and they are already situated during the initialization of
an Artisan object to be converted back to their native data types:

 def to_data_dict(self) -> (dict,):
 return {
 # Properties from BaseArtisan:
 'address':self.address,
 'company_name':self.company_name,
 'contact_email':self.contact_email,
 'contact_name':self.contact_name,
 'website':self.website,
 # - Properties from BaseDataObject (through
 # JSONFileDataObject)
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

The single class method, like the bulk of the preceding instance methods, also uses
the original abstract class methods that have implementations within them:

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def from_data_dict(cls, data_dict:(dict,)):
 return cls(**data_dict)

The long argument signature of Artisan.__init__ may feel a bit daunting at first
glance. There are a lot of arguments, after all, and Python's language stipulation that
requires that arguments have to go before optional ones in method and function
argument definitions means that three of those arguments have to come first (though
their sequence with respect to each other is up to the developer).

Persisting Object Data to Files Chapter 12

[372]

Most of the time, however, that __init__ method will probably not be called
directly. The creation of an instance from data retrieved from the data store is
expected to be handled with the from_data_dict method of the class, probably
looking something like this:

- open the data-file, read it in, and convert it to a dict:
with open('data-file.json', 'r') as artisan_file:
 artisan = Artisan.from_data_dict(json.load(artisan_file))

An Artisan instance could also be created directly by passing a dictionary of values:

artisan = Artisan(**data_dict)

The only considerations for that approach are that the required arguments must have
valid entries in the data_dict being passed, and that data_dict cannot contain
keys that don't exist as argument names in the __init__ method – essentially, that
object creation is equivalent to the following:

artisan = Artisan(
 contact_name='value', contact_email='value', address=<Address
Object>
 # ... and so on for any relevant optional arguments
)

It was noted that there were issues with the address property when it came to
creating JSON output for an Artisan instance. The core issue is that
the Address class is not directly serializable into JSON:

import json
address = Address('12345 Main Street', 'City Name')
a = Artisan('John Smith', 'j@smith.com', address)
print(json.dumps(a.to_data_dict(), indent=4))

If the preceding code is executed, TypeError:
<hms_core.business_objects.Address object> is not JSON

serializable is raised.

Although there are several possible solutions for this issue, since we've already
established a pattern of converting objects to and reading/creating them from
dictionary values, the one that is most like that pattern is to implement
the to_dict and from_dict methods on the original Address class in hms_core,
and change the to_data_dict result to use the to_dict of the instance's address.
The new Address methods are simple:

Persisting Object Data to Files Chapter 12

[373]

 ###################################
 # Instance methods #
 ###################################

 def to_dict(self) -> (dict,):
 return {
 'street_address':self.street_address,
 'building_address':self.building_address,
 'city':self.city,
 'region':self.region,
 'postal_code':self.postal_code,
 'country':self.country
 }

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def from_dict(cls, data_dict):
 return cls(**data_dict)

As is the change to Artisan.to_data_dict:

 def to_data_dict(self) -> (dict,):
 return {
 # Properties from BaseArtisan:
 'address':self.address.to_dict() if self.address else
None,
 'company_name':self.company_name,
 'contact_email':self.contact_email,
 'contact_name':self.contact_name,
 'website':self.website,
 # - Properties from BaseDataObject (through
 # JSONFileDataObject)
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

Persisting Object Data to Files Chapter 12

[374]

With those changes in place, rerunning the code that raised the TypeError before
now yields usable JSON, meaning that the results of a to_data_dict call can be used
to directly write the JSON files needed to persist Artisan data to the file system data
store:

hms_artisan.Product
Artisans have a similar data persistence need for Product object data:

As an Artisan, I need to be able to create, manage, and store Product data,
so that I can keep product information current in the central office system

The hms_artisan..Product class, like the Artisan class of the package, leverages
its corresponding hms_core base class (BaseProduct) and
the JSONFileDataObject ABC to minimize the amount of actual code needed in the
concrete implementation.

Persisting Object Data to Files Chapter 12

[375]

In fact, the only real differences are in the __init__ method (with different
arguments, and calling a different parent initialization method set):

 def __init__(self,
 # - Required arguments from BaseProduct
 name:(str,), summary:(str,), available:(bool,),
 store_available:(bool,),
 # - Optional arguments from BaseProduct
 description:(str,None)=None, dimensions:(str,None)=None,
 metadata:(dict,)={}, shipping_weight:(int,)=0,
 # - Optional arguments from BaseDataObject/JSONFileDataObject
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):
 """
Object initialization.

self (Product instance, required) The instance to
 execute against
name (str, required) The name of the product
summary (str, required) A one-line summary of the
 product
available (bool, required) Flag indicating whether the
 product is considered available by the artisan
 who makes it
store_available ... (bool, required) Flag indicating whether the
 product is considered available on the web-
 store by the Central Office
description (str, optional, defaults to None) A detailed
 description of the product
dimensions (str, optional, defaults to None) A measurement-
 description of the product
metadata (dict, optional, defaults to {}) A collection
 of metadata keys and values describing the
 product
shipping_weight ... (int, optional, defaults to 0) The shipping-
 weight of the product
"""
 # - Call parent initializers if needed
 BaseProduct.__init__(
 self, name, summary, available, store_available,
 description, dimensions, metadata, shipping_weight
)

Persisting Object Data to Files Chapter 12

[376]

 JSONFileDataObject.__init__(
 self, oid, created, modified, is_active,
 is_deleted, is_dirty, is_new
)
 # - Set default instance property-values using _del_...
methods
 # - Set instance property-values from arguments using
 # _set_... methods
 # - Perform any other initialization needed

The to_data_dict method (which has to account for the different properties of the
class):

 def to_data_dict(self) -> (dict,):
 return {
 # Properties from BaseProduct:
 'available':self.available,
 'description':self.description,
 'dimensions':self.dimensions,
 'metadata':self.metadata,
 'name':self.name,
 'shipping_weight':self.shipping_weight,
 'store_available':self.store_available,
 'summary':self.summary,
 # - Properties from BaseDataObject (through
 # JSONFileDataObject)
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

A similar simple creation of a Product object, and a dump of
its to_data_dict results, yield viable JSON output:

p = Product('name', 'summary', True, True)
print(json.dumps(p.to_data_dict(), indent=4))

Persisting Object Data to Files Chapter 12

[377]

This yields the following:

hms_artisan.Order
The ability for Artisans to have locally saved order data is also needed:

As an Artisan, I need to be able to create, manage, and store Order data so
that I can fulfill orders when they are relayed to me, and flag them as
fulfilled for the Central Office

Order data, though, is a bit different from the Artisan and Product data that we
have explored so far at a structural level:

An Order, when it comes right down to it, is an association of one
customer with one-to-many products.
There's no expected need for Artisans to keep track of individual
customers, except as they relate to orders, so Artisans
need Customer objects that aren't also data objects, in much the same way
that Artisan objects have an Address associated with them that aren't
themselves data objects.
The Customer object that is part of an Order also has an Address that has
to be accounted for.

Persisting Object Data to Files Chapter 12

[378]

The products associated with an order imply at least the possibility of
a quantity associated with them – a customer may want to order two of one
product, five of another, and one of a third, for example – and don't
really need to have all of the Product data transmitted, so long as
the oid for each Product in the order is supplied. That would be sufficient
information for the Artisan Application to look up products from its
local Product data store.

That last item, in retrospect, calls into question some of the structure
of BaseOrder in hms_core, or at least whether it's relevant in the scope of the
Artisan Application. As it's currently defined, it derives from hms_core ...
HasProducts, with the original intention that actual Product objects would be
associated with an Order. That might make sense in a Central Office or gateway
service context, but it's not going to be terribly useful in the context of the Artisan
Application. A better order-to-product relationship is probably to store the oids and
quantities of each Product in an Order, and let the applications and service look
them up when necessary:

Taking a step back and looking at what an Artisan Application's Order really is, it
would seem to be an Address, with the addition of a name property (who the order is
for), and some Product quantity data. The association between oid product
specifications and quantity values is easily managed in a dict property, and the
processes for adding and removing order items can be wrapped in a single method
that accepts the oid and a quantity value.

Persisting Object Data to Files Chapter 12

[379]

That feels like a much better solution for Artisans' order data. They don't
really need to know anything more than the data this structure covers:

Who the order is for (name)
Where it gets sent to (the properties derived from Address)
What products are part of the order, and in what quantities (items)

The Order class, then, starts by deriving from Address and JSONFileDataObject,
with the usual class attributes:

class Order(Address, JSONFileDataObject, object):
 """
Represents an Order in the context of the Artisan Application
"""
 ###################################
 # Class attributes/constants #
 ###################################

 # TODO: Work out the configuration-based file-system path
 # for this attribute
 _file_store_dir = '/tmp/hms_data'

The property definitions, getter, setter, and deleter methods, and the property
declarations follow the pattern we've used everywhere else so far,
with _get_items returning a copy of the current property in order to prevent
unwanted manipulation of the actual data. The setter and deleter methods also have
to explicitly call _set_is_dirty(True) to ensure that the is_dirty flag of the
instance gets changed appropriately when a local property is deleted or
set, and the properties themselves, with their setter and deleter methods that are
inherited from Address, have to be overridden. There are two local getter methods:

 ###################################
 # Property-getter methods #
 ###################################

 def _get_items(self) -> dict:
 return dict(self._items)

 def _get_name(self) -> (str,None):
 return self._name

Persisting Object Data to Files Chapter 12

[380]

Most of the setter methods call their ancestor methods, set is_dirty, and exit, but
the two that correspond to the local getters are full implementations:

 ###################################
 # Property-setter methods #
 ###################################

 def _set_building_address(self, value:(str,None)) -> None:
 result = Address._set_building_address(self, value)
 self._set_is_dirty(True)
 return result

 def _set_city(self, value:str) -> None:
 result = Address._set_city(self, value)
 self._set_is_dirty(True)
 return result

 def _set_country(self, value:(str,None)) -> None:
 result = Address._set_country(self, value)
 self._set_is_dirty(True)
 return result

 def _set_items(self, value:(dict,)) -> None:
 if type(value) != dict:
 raise TypeError(
 '%s.items expects a dict of UUID keys and int-'
 'values, but was passed "%s" (%s)' %
 (self.__class__.__name__, value,type(value).__name__)
)
 self._del_items()
 for key in value:
 self.set_item_quantity(key, value[key])
 self._set_is_dirty(True)

 def _set_name(self, value:(str,)) -> None:
 self._name = value
 self._set_is_dirty(True)

 def _set_region(self, value:(str,None)) -> None:
 result = Address._set_region(self, value)
 self._set_is_dirty(True)
 return result

 def _set_postal_code(self, value:(str,None)) -> None:
 result = Address._set_postal_code(self, value)
 self._set_is_dirty(True)
 return result

Persisting Object Data to Files Chapter 12

[381]

 def _set_street_address(self, value:str) -> None:
 result = Address._set_street_address(self, value)
 self._set_is_dirty(True)
 return result

The deleter methods follow the same pattern:

 ###################################
 # Property-deleter methods #
 ###################################

 def _del_building_address(self) -> None:
 result = Address._del_building_address(self)
 self._set_is_dirty(True)
 return result

 def _del_city(self) -> None:
 result = Address._del_city(self)
 self._set_is_dirty(True)
 return result

 def _del_country(self) -> None:
 result = Address._del_country(self)
 self._set_is_dirty(True)
 return result

 def _del_items(self) -> None:
 self._items = {}
 self._set_is_dirty(True)

 def _del_name(self) -> None:
 self._name = None
 self._set_is_dirty(True)

 def _del_region(self) -> None:
 result = Address._del_region(self)
 self._set_is_dirty(True)
 return result

 def _del_postal_code(self) -> None:
 result = Address._del_postal_code(self)
 self._set_is_dirty(True)
 return result

Persisting Object Data to Files Chapter 12

[382]

 def _del_street_address(self) -> None:
 result = Address._del_street_address(self)
 self._set_is_dirty(True)
 return result
 self._set_is_dirty(True)

And the properties follow suit:

 ###################################
 # Instance property definitions #
 ###################################

 building_address = property(
 Address._get_building_address, _set_building_address,
 _del_building_address,
 'Gets, sets or deletes the building_address (str|None) '
 'of the instance'
)
 city = property(
 Address._get_city, _set_city, _del_city,
 'Gets, sets or deletes the city (str) of the instance'
)
 country = property(
 Address._get_country, _set_country, _del_country,
 'Gets, sets or deletes the country (str|None) of the '
 'instance'
)
 items = property(
 _get_items, None, None,
 'Gets the items associated with the order, a dict of OID '
 'keys with quantity values'
)
 name = property(
 _get_name, _set_name, _del_name,
 'Gets, sets or deletes the name associated with the order'
)
 region = property(
 Address._get_region, _set_region, _del_region,
 'Gets, sets or deletes the region (str|None) of the '
 'instance'
)
 postal_code = property(
 Address._get_postal_code, _set_postal_code, _del_postal_code,
 'Gets, sets or deletes the postal_code (str|None) of '
 'the instance'
)
 street_address = property(
 Address._get_street_address, _set_street_address,

Persisting Object Data to Files Chapter 12

[383]

 _del_street_address,
 'Gets, sets or deletes the street_address (str) of the '
 'instance'
)

The initialization process (__init__) has a long signature again, since it has to
accommodate all of the arguments from its parent classes, plus arguments for the
local properties:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self,
 name:(str,),
 # - Required arguments from Address
 street_address:(str,), city:(str,),
 # - Local optional arguments
 items:(dict,)={},
 # - Optional arguments from Address
 building_address:(str,None)=None, region:(str,None)=None,
 postal_code:(str,None)=None, country:(str,None)=None,
 # - Optional arguments from BaseDataObject/JSONFileDataObject
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):
 """
Object initialization.

self (Order instance, required) The instance to
 execute against
name (str, required) The name of the addressee
street_address (str, required) The base street-address of the
 location the instance represents
city (str, required) The city portion of the street-
 address that the instance represents
items (dict, optional, defaults to {}) The dict of
 oids-to-quantities of products in the order
building_address .. (str, optional, defaults to None) The second
 line of the street address the instance
represents,
 if applicable
region (str, optional, defaults to None) The region

Persisting Object Data to Files Chapter 12

[384]

 (state, territory, etc.) portion of the street-
 address that the instance represents
postal_code (str, optional, defaults to None) The postal-code
 portion of the street-address that the instance
 represents
country (str, optional, defaults to None) The country
 portion of the street-address that the instance
 represents
oid (UUID|str, optional, defaults to None)
created (datetime|str|float|int, optional, defaults to
None)
modified (datetime|str|float|int, optional, defaults to
None)
is_active (bool|int, optional, defaults to None)
is_deleted (bool|int, optional, defaults to None)
is_dirty (bool|int, optional, defaults to None)
is_new (bool|int, optional, defaults to None)
"""
 # - Call parent initializers if needed
 Address.__init__(
 self, street_address, city, building_address, region,
 postal_code, country
)
 JSONFileDataObject.__init__(
 self, oid, created, modified, is_active,
 is_deleted, is_dirty, is_new
)
 # - Set default instance property-values using _del_...
methods
 self._del_items()
 self._del_name()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_name(name)
 if items:
 self._set_items(items)
 # - Perform any other initialization needed
 self._set_is_dirty(False)

The matches method can still just call the matches method
of BaseDataObject; there's no expectation that any matching will need to happen
that would require anything more or different:

def matches(self, **criteria) -> (bool,):
 return BaseDataObject.matches(self, **criteria)

Persisting Object Data to Files Chapter 12

[385]

The process for setting item quantities in an order has a fair amount of type and value
checking to do, but those all follow patterns that have been used in earlier code,
including checking for types, conversion of oid string values to UUID objects, and
checking for valid values:

 def set_item_quantity(self, oid:(UUID,str), quantity:(int,)) ->
None:
 if type(oid) not in (UUID, str):
 raise TypeError(
 '%s.set_item_quantity expects a UUID or string '
 'representation of one for its oid argument, but '
 'was passed "%s" (%s)' %
 (self.__class__.__name__, oid, type(oid).__name__)
)
 if type(oid) == str:
 try:
 oid = UUID(oid)
 except Exception as error:
 raise ValueError(
 '%s.set_item_quantity expects a UUID or string '
 'representation of one for its oid argument, but '
 'was passed "%s" (%s) which could not be '
 'converted into a UUID (%s: %s)' %
 (
 self.__class__.__name__, oid,
 type(oid).__name__, error.__class__.__name__,
 error
)
)
 if type(quantity) != int:
 raise TypeError(
 '%s.set_item_quantity expects non-negative int-value '
 'for its quantity argument, but was passed "%s" (%s)'
 % (
 self.__class__.__name__, quantity,
 type(quantity).__name__
)
)
 if quantity < 0:
 raise ValueError(
 '%s.set_item_quantity expects non-negative int-value '
 'for its quantity argument, but was passed "%s" (%s)'
 % (
 self.__class__.__name__, quantity,
 type(quantity).__name__
)
)

Persisting Object Data to Files Chapter 12

[386]

If the quantity specified for a given item is zero, the item in question is removed
entirely rather than leaving what is essentially a line item in the order for zero items
of a given product:

 if quantity != 0:
 self._items[oid] = quantity
 else:
 try:
 del self._items[oid]
 except KeyError:
 pass

The data dictionary generation actively converts the instance's items into a dictionary
with string value keys instead of UUID objects, but is otherwise pretty typical of the
implementations written so far:

 def to_data_dict(self) -> (dict,):
 return {
 # - Local properties
 'name':self.name,
 'street_address':self.street_address,
 'building_address':self.building_address,
 'city':self.city,
 'region':self.region,
 'postal_code':self.postal_code,
 'country':self.country,
 # - Generate a string:int dict from the UUID:int dict
 'items':dict(
 [
 (str(key), int(self.items[key]))
 for key in self.items.keys()
]
),
 # - Properties from BaseDataObject (through
 # JSONFileDataObject)
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid), }

Persisting Object Data to Files Chapter 12

[387]

The _load_objects and from_data_dict class methods are identical to those put
in play in earlier code. The Address class standard_address method cannot be left
as it is inherited by Order, since any attempt to call it would result in an error – it
would not have the new, required name argument – so it is overridden with a new
class method with a nearly identical argument set (adding the name), that can be used
to generate a new Order instance with no items added, but all of the other relevant
information:

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def standard_address(cls,
 name:(str,), street_address:(str,),
 building_address:(str,None), city:(str,),
 region:(str,None), postal_code:(str,None),
 country:(str,None)
):
 return cls(
 name=name, street_address=street_address, city=city,
 building_address=building_address, region=region,
 postal_code=postal_code, country=country
)

The results of these data storage operations can be seen in the file system:

Persisting Object Data to Files Chapter 12

[388]

Barring any corrections or changes prompted by unit testing later in the iteration, that
accounts for all of the classes in the Artisan Application that have any anticipated
need to persist data. Basic testing of the data persistence functionality by creating a
minimal data instance of each shows that they do, indeed, write JSON data to the
expected location, and that the data written is at least superficially correct. Detailed
unit testing will still have to be undertaken to ensure that the data really is accurately
written and retrievable without loss or corruption, but the bulk of the main
development for these objects is complete.

The relationships between these concrete classes and the hms_core equivalents has
changed somewhat, with the creation of Order as a class no longer attached
to hms_core..BaseOrder, and the removal of the Customer class at the Artisan
Application level:

Persisting Object Data to Files Chapter 12

[389]

The underlying data storage residing in structured JSON data could also be
repurposed to providing data access and CRUD operations against a remote API of
some sort. A RESTful/JSON web service, for example, that returned the same JSON
structures or accepted them as payloads for creation and update requests, could
almost certainly use these objects with only a little bit of modification, in most cases.
That sort of approach might be worth looking at in this system, were it ever to go
further than it will in this book.

Summary
Though it still needs to be thoroughly tested, which will be addressed in Chapter 14,
Testing Data Persistence, preliminary testing of the JSON-based data file persistence
feels pretty solid at this point. The CRUD operations that are required by
BaseDataObject, passing through JSONFileDataObject to all of the concrete data
objects, are all present and accounted for, and they appear to be fully functional. The
change to the structure of the Order class might be cause for some concern with
respect to the original design, but was not difficult to deal with. That change should
be specifically called out during the approval process for the iteration, since it
represents a change to the original design, but it doesn't feel like it will be a cause for
any major concerns at this time.

With one data persistence mechanism done, and while the concepts are still fresh, it's
time to look at the equivalent processes, backed by a real database engine, for the
Central Office applications and service.

13
Persisting Data to a Database
With the file system-backed data persistence of the Artisan Application under our
belt, it's time to turn our attention to their equivalents on the Central Office side of the
system. We'll be reusing the BaseDataObject ABC that was defined previously to
ensure that all data object functionality can be called in the same way (for example,
using the get method to read the data and save to write it, for example), but because
the underlying data storage process is significantly different in its implementation,
that is where most of the similarities will end. We'll still have to decide which of the
database options we're going to use, as well.

This chapter will cover the following topics:

Analyzing database options in depth and selecting a database engine for
data object persistence
Defining a data access strategy for the code that's expected to run at the
Central Office
Designing and implementing some supporting classes for the data access
and persistence that are required
Implementing the concrete data objects required at the Central Office:

Artisan
Product

There are also some data access considerations that will postpone at least some of the
concrete implementations, and those will be discussed in detail.

Persisting Data to a Database Chapter 13

[391]

The Artisan Gateway and Central Office
application objects
The Artisan Gateway and Central Office application both need project structures, so
that we will have a place to put the code that's specific to each of them. This need is
captured in two stories:

As a developer, I need a project for the Central Office application, so that I
have a place to put the relevant code and build the application
As a developer, I need a project for the Artisan Gateway, so that I have a
place to put the relevant code and build the service

The aforementioned structures can start with nothing more than the basic project
template, as follows:

As functionality is built out for the data persistence of business objects in the Artisan
Gateway and Central Office application, more modules can be added, as they were in
the Artisan Application's project structure. Whether that will be required can be
impacted substantially by the selection of the data store engine, but for the time
being, this should suffice.

Persisting Data to a Database Chapter 13

[392]

Picking out a backend datastore engine
The story that drives the selection of the backend data store engine for the Artisan
Gateway and Central Office application doesn't really mandate any particular engine,
just what that engine needs to provide:

As a consumer of business object data at the HMS Central Office, I need
business object data to be stored in a shared data store, so that data will be
accessible by multiple consumers simultaneously, with transactional
support/protection, and to the ends that they need access to it for.

In a real-world scenario, there might well be specific database engines that are
allowed, are encouraged, or are not allowed, based on any number of factors—what
system administrators are willing to install and support; what options are available,
based on the operating systems in use in the business; and possibly other external
factors. There can also be developmental constraints; perhaps the preferred database
doesn't have a reliable driver/library in the language being used, or data structure
requirements are having a direct impact on the viable options.

Another consideration, and one that does have some representation in the preceding
scenario, is how data is accessed (locally versus over a network). In this case, since
multiple users can access the system's data at the same time, having a central
database (of whatever flavor) that is accessible over the internal network is the easiest
solution, in a number of respects:

It would rely on database engines that are independently installable.
Those engines, as prepackaged installations, do not require developer effort
to create or maintain.
Their functionality can be tested externally, and thus, it can be trusted to
behave as expected; therefore, development doesn't have to test the engine,
but only interact with it.

Taken together, these factors would allow for one of several options; a standard, SQL-
based RDBMS would work, as would many of the available NoSQL database engines.

Another factor to consider is how the object data structure would be represented in
the various database options. Simple objects, such as the Address in hms_core, can
be represented quite easily in any RDBMS with a single table. More complicated
objects, such as an Artisan with its embedded Address, or a Product with variably
sized and variable content property data (metadata), require either discrete tables for
related properties (with relationships defined so that the objects' related properties
can be retrieved) or support for dynamic, structured data.

Persisting Data to a Database Chapter 13

[393]

As they'd be built in a typical RDBMS implementation, the relationships are very
simple; each Artisan has one address, and each Product has zero-to-
many metadata items, which would look something like the following:

Complications start to arise when we consider how to implement different data
retrieval processes, using the possible permutations from
the BaseDataObject.get class method and assuming that the real work happens at
the database engine side of things:

Getting one Artisan and its address, or one Product and
its metadata, isn't too complicated; assuming an oid value, it boils down
to variations of the following:

Getting the artisan or product record that matches the oid,
then converting it to a dict so that we can use
the from_data_dict class method to create an instance
For an Artisan: Getting the related address record,
converting it to a dict, and inserting it into the
first dict, created as address
For a Product: Getting the related metadata records,
converting the records returned to a key/value dict, and
inserting it into the first dict, created as metadata

Persisting Data to a Database Chapter 13

[394]

Creating the instance by calling the appropriate from_data_dict class
method.
Getting multiple instances based on only a list of oid values
isn't much different; it simply starts with retrieving all of the records with
matching oid values, then sorting out the data and creating and returning
a list of instances. Realistically, if this process and the single-oid process
used the same code, returning one (or zero) objects for a single oid (and no
results if there was no matching oid), it wouldn't be horrible to work with.

Getting zero-to-many instances based
on one local criteria value alone—finding
an Artisan or Product by company_name or name, respectively, is also
not difficult by itself. The actual process at the database side of the
operation is significantly different from the pure oid-based retrievals, as
follows:

You find all of the matches based on the criteria passed,
and keep track of the oid values for each match

Then, you return the items identified by those oid values

Finding items by address or metadata values is similar, but it gets the
initial list of oid values identifying results from the child table.

Getting multiple criteria values from a single table, parent, or child is
yet another permutation that has to be handled.

Another permutation is getting criteria values from parent and child
tables in the same criteria set.

The preceding list shows six different variations that have to be accounted for,
assuming that the intentions of BaseDataObject.get are honored. These don't
address how updates to (or deletions of) data are handled across related tables, either,
which adds more complexity.

Persisting Data to a Database Chapter 13

[395]

While it may be possible to implement all of them in SQL on the database side, such
an implementation is going to be complicated. If the developers aren't pretty
experienced database administrators, it may not be feasible at all; and, even if it is, it
will still be a complex solution, with all of the potential risks that follow.

A trade-off approach that could be easily implemented, but would incur more
processing time and/or memory usage, would be similar to the approach taken in the
Artisan Application: loading all of the objects for any call made
to BaseDataObject.get, then sorting out the results in the code. As the dataset
involved grows, the data being retrieved and sent back will grow, and the time
required to usefully retrieve the data that isn't just a simple "get me objects with any
of these oid values" request will take longer to find in the database and transmit to
the application. Given enough time, or enough data, it will start to suffer from
scalability issues. This approach is probably feasible, and it will probably work (if for
a limited time), provided that multi-table updates and the deletion of child records
can be managed in some fashion. The updating side of things would probably be
managed purely in the application code, and related record deletion could be
managed on the database side or in the application code.

Another option that's still in the realm of an RDBMS-based solution is to use an
engine that has support for structured but schema-less data; MySQL and MariaDB,
for example, have JSON field types that would allow entire Artisan and Product
records to be represented with a very simple table structure, as follows:

Provided that those JSON fields allow for queries to execute against the data structure
within them, all of the options that BaseDataObject.get needs to provide are
supported, and without the concern of having to manage child tables. For all practical
purposes, this specific approach would pretty much involve using MySQL as a
replacement for a document store NoSQL database such as MongoDB, but without
some of the functionality that a document store database likely already has.

All things considered, that's a lot of complexity that could be considered
disadvantageous for an RDBMS-based data store. However, there are some
advantages, too, even if they may not seem like significant ones at first glance. An
RDBMS data store will generally allow for multiple queries to be executed in one
pass. So, the multiple queries that are involved with the retrieval of data from
multiple tables can be written as multiple query statements that are executed as a
single call to the engine.

Persisting Data to a Database Chapter 13

[396]

Most SQL-based databases also allow for some sort of precompiled/prepared
functionality to be written: stored procedures or user functions; views; and, perhaps,
other constructs that can move substantial chunks of functionality out of the
application code and into the database. Those are usually quicker to execute, and,
although SQL may not support extensive functionality (even in procedures and
functions), there might be enough available to make their use worthwhile. Finally,
and perhaps most significantly, the enforced data structure of tables, combined with
the relational capabilities of pretty much any RDBMS worthy of the name, allows for
pretty much any data in the system to be queried as needed, while enforcing solid
data integrity across all system data if the databases are reasonably well designed.

If an SQL-based RDBMS were to be selected as the engine for object state data
persistence, the classes that used that engine to persist their state data would need
some (or all) of the following properties to be specified:

A host specification: The hostname (FQDN, machine network name, or IP
address) where the database resides
A database name: The name of the database on the specified host that
state data will be read from and written to
A user: This will be used to connect to the database on the host
A password: This will be used to connect to the database on the host

Instances would also need to be able to make connections to the database, which
could be implemented with a method (get_connection, perhaps) or a property
(connection, which could be lazily instantiated, and written so that an
active connection could be deleted and recreated, when needed). It would also need
a method to execute queries against the database once the connection had been
established (query, perhaps). If this seems familiar, it's because this is the exact
structure that was mentioned earlier, when discussing the idea of
a BaseDatabaseConnector class.

On the NoSQL side, all of the standard NoSQL advantages apply, as follows:

Since there aren't any hard and fast table structures involved in the
database, there's no significant development time required to make
changes to the data structure being stored. Once the data structure at the
application side has been changed, any new or updated records will be
adjusted when they are saved.

Persisting Data to a Database Chapter 13

[397]

Most of the NoSQL options already have the functionality to deal with the
sort of data retrieval that BaseDataObject.get is promising to provide,
and that has so much potential complexity in a more traditional RDBMS
solution. That will probably translate to less development time and simpler
code to maintain, both of which are good things.

The data writing (creation and update) processes will be simpler to
implement, as well, since the relationships that require separate tables or
unusual data structures in an RDBMS-based approach just go away,
really—data-writes can store an entire data structure all at once, and don't
have to worry about making sure that failures in a child table prevent the
parent table from being written to.

Of the two options, the NoSQL option feels like it will be easier to manage, while still
fulfilling all of the requirements of the data persistence stories. Of the various NoSQL
options, MongoDB feels like it will require the fewest changes to data structures, as
object data is read from and written to the database; so, MongoDB will be the
backend data store engine that we'll use.

The data access strategy for the Central Office
projects
Having selected the database engine, another decision that needs to be made is where
that engine will ultimately live, in relation to the Artisan Gateway and Central Office
application. Both of those will need to be able to read and write the same data from
the same location. Since MongoDB can be used across a network, the data store could
live pretty much anywhere that's accessible over that network (even on the same
machine as one of the two components).

The logical architecture perspective of the relationships between the Artisan Gateway,
several instances of the Central Office application, and the hms_sys database, then,
would look something like the following diagram (allowing for any number of
application instances, but showing only three):

Persisting Data to a Database Chapter 13

[398]

The physical architecture is less significant from a development perspective, provided
that each logical component has a readily identifiable physical location. During
development, all of those physical locations can be on a developer's local
computer. Once deployed, the Artisan Gateway service and
the hms_sys database might be installed to different machines, or they might reside
on the same machine. This arrangement would allow all of the application instances
and the service to share common data, reading from and writing to
the hms_sys database from wherever they might live.

Supporting objects for data persistence
It's almost unheard of for a database installation to not require some credentials for
access in a production system, and there are other parameters that need to be kept
track of across the various object types whose data will be saved in the data store.
Since those parameters will be common for all of the different object types in use (for
the most part), creating a mechanism that can be used to gather them all up seems
like a logical first step. The common parameters that will most likely be needed were
noted in the RDBMS exploration earlier, and are as follows:

host

port

database

user
password

Persisting Data to a Database Chapter 13

[399]

By the time hms_sys is deployed to a production environment, these will almost
certainly be saved in some sort of configuration file, and it doesn't hurt to get that
logic in place now, rather than waiting to do so later. All of the data store
configuration and connection parameters can be captured in a single object
instance—a DatastoreConfig:

class DatastoreConfig:
 """
Represents a set of credentials for connecting to a back-end
database engine that requires host, port, database, user, and
password values.
"""

With the exception of the port property, which only allows int values
from 0 through 65535 (the normal range of valid ports in a TCP/IP connection),
there's nothing substantially new in the property getter-, setter-, and deleter-methods.
The _set_port method's value checking is very straightforward, as follows:

 def _set_port(self, value:int) -> None:
 if type(value) != int:
 raise TypeError(
 '%s.port expects an int value from 0 through 65535, '
 'inclusive, but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 if value < 0 or value > 65535:
 raise ValueError(
 '%s.port expects an int value from 0 through 65535, '
 'inclusive, but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 self._port = value

The __init__ method is also very straightforward, though it has no required
arguments, because not all database engines will need all of the parameters, and the
class is intended to be very generic. Connection issues that occur as a result of
incomplete or invalid configuration will have to be handled at the relevant object
level:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self,
 host=None, port=None, database=None, user=None, password=None
):

Persisting Data to a Database Chapter 13

[400]

 """
Object initialization.

self (DatastoreConfig instance, required) The instance
 to execute against
host (str, optional, defaults to None) the host-name
 (FQDN, machine network-name or IP address) where
 the database that the instance will use to persist
 state-data resides
port (int [0..65535], optional, defaults to None) the
 TCP/IP port on the host that the database
 connection will use
database (str, optional, defaults to None) the name of
 the database that the instance will use to persist
 state-data
user (str, optional, defaults to None) the user-name
 used to connect to the database that the instance
 will use to persist state-data
password (str, optional, defaults to None) the password
 used to connect to the database that the instance
 will use to persist state-data
"""

Since there will eventually be a need to read configuration data from a file, a class
method (from_config) is defined to facilitate that, as follows:

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def from_config(cls, config_file:(str,)):
 # - Use an explicit try/except instead of with ... as ...
 try:
 fp = open(config_file, 'r')
 config_data = fp.read()
 fp.close()
 except (IOError, PermissionError) as error:
 raise error.__class__(
 '%s could not read the config-file at %s due to '
 'an error (%s): %s' %
 (
 self.__class__.__name__, config_file,
 error.__class__.__name__, error
)
)
 # - For now, we'll assume that config-data is in JSON, though
 # other formats might be better later on (YAML, for

Persisting Data to a Database Chapter 13

[401]

instance)
 load_successful = False
 try:
 parameters = json.loads(config_data)
 load_successful = True
 except Exception as error:
 pass
 # - YAML can go here
 # - .ini-file format here, maybe?
 if load_successful:
 try:
 return cls(**parameters)
 except Exception as error:
 raise RuntimeError(
 '%s could not load configuration-data from %s '
 'due to an %s: %s' %
 (
 cls.__name__, config_file,
 error.__class__.__name__, error
)
)
 else:
 raise RuntimeError(
 '%s did not recognize the format of the config-file '
 'at %s' % (cls.__name__, config_file)
)

The local MongoDB connections for development can then be created as instances
of DatastoreConfig, with the minimum parameters needed to connect to a local
database, as follows:

- The local mongod service may not require user-name and password
local_mongo = DatastoreConfig(
 host='localhost', port=27017, database='hms_local'
)

Reading and writing data against a Mongo database, using the pymongo library,
requires a few steps, as follows:

A connection to the Mongo engine has to be established (using1.
a pymongo.MongoClient object). This is where the actual credentials (the
username and password) will apply, if the Mongo engine requires them.
The connection (or client) allows the specification of…

Persisting Data to a Database Chapter 13

[402]

The database where the data is being stored has to be specified.2.
The database value in the configuration takes care of specifying the name
of the database, and the database itself,
a pymongo.database.Database object, once returned by the
client/connection allows the creation of…

The collection where the actual documents (records) reside3.
(a pymongo.collection.Collection object), and where all of the data
access processes actually occur.

A very simple, functional example of the connection/database/collection
setup for hms_sys development might include the following:

client = pymongo.MongoClient() # Using default host and port
database = client['hms_sys'] # Databases can be requested by name
objects = database['Objects'] # The collection of Object
documents/records

At this point, the objects object, as a Mongo Collection, provides methods for
reading, writing, and deleting documents/records in the Objects collection/table.

The organization of documents in a collection can be very arbitrary.
That objects collection could be used to store Artisan, Product, and Order state
data documents all in the same collection. There's no functional reason that prevents
it. Over a long enough period of time, though, reading data from that collection
would slow down more than reads from collections that, for example, grouped those
same Artisan, Product, and Order state data documents into separate
collections—one collection for each object type. There might be other considerations
that will make such a grouping beneficial, as well. Keeping objects of the same type
would probably make managing them through a GUI tool easier, and might be
similarly beneficial for command-line management tools.

Taking all of the preceding factors together, a fairly optimal integration of data
storage and parameters across the objects in the hms_sys data store would include
the following:

One or more client connections to a common MongoDB instance, whose
credentials and parameters are all configurable and are eventually
controlled by a configuration file
One database specification that is common to all of the objects in the
Central Office code bases, from the same configuration that the client setup
uses

Persisting Data to a Database Chapter 13

[403]

One collection specification per object type, which could be as simple as
using the name of the class

Having made all of these decisions, we can create an ABC that central-office
application and service objects can derive from in much the same way that Artisan
Application data objects derived from JSONFileDataObject, as we saw in Chapter
12, Persisting Object Data to Files,—call it HMSMongoDataObject. Since it will need to
be available to both the Artisan Gateway service and the Central Office application, it
needs to live in a package that is available to both. Without creating another package
project solely for this purpose, the logical place for it to live would be in a new
module in hms_core; and, if the naming convention established in the Artisan code
base is followed, that module would be named data_storage.py.

Diagrammed, the relationship between HMSMongoDataObject and the final central-
office data objects looks much like the Artisan Application's counterparts,
although hms_co .. Order is not included, because it may need some special
consideration that we haven't explored:

Persisting Data to a Database Chapter 13

[404]

The implementation of HMSMongoDataObject starts by inheriting
from BaseDataObject, and then it includes the following:

class HMSMongoDataObject(BaseDataObject, metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can persist their state-data to
a MongoDB-based back-end data-store.
"""

Since we'll be using a DatastoreConfig object to keep track of a common
configuration for all derived classes, that becomes a class attribute
(_configuration), as follows:

 ###################################
 # Class attributes/constants #
 ###################################

 # - Keeps track of the global configuration for data-access
 _configuration = None

MongoDB documents, when they are created, have an _id value that, if passed to a
normal from_data_dict to create an instance of the class, will throw an error.
There hasn't been an _id argument in any of our implementations so far, and there's
no reason to expect one to surface anywhere down the line, because we're using our
own oid property as the unique identifier for object records. In order to prevent that
from happening, from_data_dict will need to either explicitly remove
that _id value from its object creation process, or keep track of all of
the valid arguments that can exist, and filter things accordingly. Of those two options,
the latter, while slightly more complicated, also feels more stable. In the (unlikely)
event that more fine-grained filtering of data is needed during object creation
in from_data_dict, tracking the valid arguments will be easier to maintain than
having to modify a long list of key removals:

 # - Keeps track of the keys allowed for object-creation from
 # retrieved data
 _data_dict_keys = None

Persisting Data to a Database Chapter 13

[405]

Since we have decided that all objects of any given type should live in a collection
with a meaningful and related name, the approach that needs the least effort is simply
using the class name as the name of the MongoDB collection that state data for
instances of the class live in. We can't rule out a potential need to change that, though,
so another class attribute that allows that default behavior to be overridden feels like
a sensible precaution:

 # - Allows the default mongo-collection name (the __name__
 # of the class) to be overridden. This should not be changed
 # lightly, since data saved to the old collection-name will
 # no longer be available!
 _mongo_collection = None

The properties of HMSMongoDataObject look relatively normal at first glance, but
there is a significant difference that may not be obvious at first. Since data access for
any given class is focused on instances of that class, and creation of database
connections and collections could be computationally expensive, having a
single connection for all data object classes is a tempting idea—that implementation
would have the instance-level connection and database properties' underlying storage
attributes be members of HMSMongoDataObject, not of the derived classes
themselves, or instances of those classes.

That would, in effect, require that all data objects for hms_sys live in the same
database and be accessed through the same MongoDB instance at all times. While
that's not an unreasonable requirement, it could make moving live system data
problematic. The entire system might need to be shut down for such a data move. As
a compromise, the connection and database properties of each class will be
members of that class, instead – which would, for example, allow Artisan object
data to be moved independently of Product data. This may not be a likely
consideration in the near future of the system, but it doesn't feel like a bad
compromise to make if it has the potential of reducing effort somewhere down the
line:

 ###################################
 # Property-getter methods #
 ###################################

 def _get_collection(self) -> pymongo.collection.Collection:
 try:
 return self.__class__._collection
 except AttributeError:
 # - If the class specifies a collection-name, then use
that
 # as the collection...

Persisting Data to a Database Chapter 13

[406]

 if self.__class__._mongo_collection:
 self.__class__._collection = self.database[
 self.__class__._mongo_collection
]
 # - Otherwise, use the class-name
 else:
 self.__class__._collection = self.database[
 self.__class__.__name__
]
 return self.__class__._collection

 def _get_configuration(self) -> DatastoreConfig:
 return HMSMongoDataObject._configuration

 def _get_connection(self) -> pymongo.MongoClient:
 try:
 return self.__class__._connection
 except AttributeError:
 # - Build the connection-parameters we need:
 conn_config = []
 # - host
 if self.configuration.host:
 conn_config.append(self.configuration.host)
 # - port. Ports don't make any sense without a
 # host, though, so host has to be defined first...
 if self.configuration.port:
 conn_config.append(self.configuration.port)
 # - Create the connection
 self.__class__._connection =
pymongo.MongoClient(*conn_config)
 return self.__class__._connection

 def _get_database(self) -> pymongo.database.Database:
 try:
 return self.__class__._database
 except AttributeError:
 self.__class__._database = self.connection[
 self.configuration.database
]
 return self.__class__._database

Persisting Data to a Database Chapter 13

[407]

The collection, connection, and database properties are also handled
differently, for the purposes of deletion. The actual objects that are retrieved by the
getter methods are lazily instantiated (created when they are needed, in order to
reduce system load when they aren't going to be used), and, because they don't exist
until they are first created (by a reference to them), it's just easier to truly delete them,
rather than set them to some default value, such as None:

 ###################################
 # Property-deleter methods #
 ###################################

 def _del_collection(self) -> None:
 # - If the collection is deleted, then the database needs
 # to be as well:
 self._del_database()
 try:
 del self.__class__._collection
 except AttributeError:
 # - It may already not exist
 pass

 def _del_connection(self) -> None:
 # - If the connection is deleted, then the collection and
 # database need to be as well:
 self._del_collection()
 self._del_database()
 try:
 del self.__class__._connection
 except AttributeError:
 # - It may already not exist
 pass

 def _del_database(self) -> None:
 try:
 del self.__class__._database
 except AttributeError:
 # - It may already not exist
 pass

Persisting Data to a Database Chapter 13

[408]

The property definitions are slightly different than what we've used in the past,
because those properties can be retrieved or deleted, but not set. This corresponds to
the idea that the database and collection can only be retrieved (opened) or closed
(deleted). Accordingly, they have no setter methods defined or attached to the
properties themselves, and the configuration property takes that a step further – it is
read-only:

 ###################################
 # Instance property definitions #
 ###################################

 collection = property(
 _get_collection, None, _del_collection,
 'Gets or deletes the MongoDB collection that instance '
 'state-data is stored in'
)
 connection = property(
 _get_connection, None, _del_connection,
 'Gets or deletes the database-connection that the instance '
 'will use to manage its persistent state-data'
)
 database = property(
 _get_database, None, _del_database,
 'Gets or deletes the MongoDB database that instance '
 'state-data is stored in'
)
 configuration = property(
 _get_configuration, None, None,
 'Gets, sets or deletes the configuration-data '
 '(DatastoreConfig) of the instance, from HMSMongoDataObject'
)

The __init__ method looks very much like
the __init__ method of JSONFileDataObject, with the same arguments (and for
the same reasons). Since we have no properties that require default values to be set,
however, the only thing that it needs to do is call its own parent constructor, as
follows:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self,
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,

Persisting Data to a Database Chapter 13

[409]

 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):
 """
Object initialization.

self (HMSMongoDataObject instance, required) The
 instance to execute against
"""
 # - Call parent initializers if needed
 BaseDataObject.__init__(self,
 oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 # - Perform any other initialization needed

Like JSONFileDataObject, the _create and _update methods
for HMSMongoDataObject aren't necessary. MongoDB, like the JSON file approach
that was used earlier, doesn't distinguish between creating and updating a document.
Both processes will simply write all of the object data to the document, creating it if
necessary. Since they are required by BaseDataObject but aren't of use in this
context, the same implementation, simply raising an error with developer-useful
information, will suffice:

 ###################################
 # Instance methods #
 ###################################

 def _create(self) -> None:
 """
Creates a new state-data record for the instance in the back-end
data-store
"""
 raise NotImplementedError(
 '%s._create is not implemented, because the save '
 'method handles all the data-writing needed for '
 'the class. Use save() instead.' %
 self.__class__.__name__
)

 def _update(self) -> None:
 """
Updates an existing state-data record for the instance in the
back-end data-store
"""
 raise NotImplementedError(

Persisting Data to a Database Chapter 13

[410]

 '%s._update is not implemented, because the save '
 'method handles all the data-writing needed for '
 'the class. Use save() instead.' %
 self.__class__.__name__
)

The implementation of save, supported by the class-level collection and
its database and connection ancestors, is very simple. We need to acquire
the data_dict for the instance and tell the MongoDB connection to insert that
data. The one complicating factor in this process is the standard MongoDB _id value
that was mentioned earlier. If we did nothing more than calling insert, there would
be no _id value for the MongoDB engine to use to identify that a document that
already exists does, in fact, exist. The inevitable result of that would be the creation
of new document records for existing items on every update (instead
of replacing existing documents), polluting the data with out-of-date instances on
every update.

Under normal circumstances, the easiest solution for this would be to either change
the oid property to _id during data writing processes and from _id back
to oid during data reads, or to simply change the oid properties that have been
established thus far to _id in the classes defined thus far. The first option would
require only a bit of effort in each to_data_dict and from_data_dict method,
including the ones already defined in the Artisan data objects, but it would tend to
be more error-prone, as well, and it would require additional testing. It's a viable
option, but it may not be the best one. Changing the names of the oid properties
to _id across the board would be simpler (little more than a wide-scale search-and-
replace operation, really), but it would leave the classes with what would look like a
protected property name that would actually be a public property. Functionally,
that's not such a big deal, but it flies in the face of Python code standards, and it is not
a preferred option.

Another option is to simply assure that the hms_sys oid properties and
the _id values that MongoDB generates are identical. While that does mean that
individual document record sizes will increase, that change is trivial – on the order of
12 bytes per document record. Since that could be handled by the save method's
process, as a simple addition to the data_dict value being saved (and would need to
be ignored, or otherwise dealt with, during from_data_dict retrievals, as a part
of that process), there would only be two places where it would have to be written or
maintained.

Persisting Data to a Database Chapter 13

[411]

That feels like a much cleaner option, even with the additional data being stored. The
final implementation of save, then, would be as follows:

 def save(self):
 if self._is_new or self._is_dirty:
 # - Make sure to update the modified time-stamp!
 self.modified = datetime.now()
 data_dict = self.to_data_dict()
 data_dict['_id'] = self.oid
 self.collection.insert_one(data_dict)
 self._set_is_dirty(False)
 self._set_is_new(False)

The corresponding change in from_data_dict uses the _data_dict_keys class
attribute that was defined earlier. Since _data_dict_keys may not have been
defined, but needs to be, checking that it's been defined and raising a more detailed
error message will make debugging those (hopefully rare) occasions easier. Once
that's been verified, the incoming data_dict will simply be filtered down to only
those keys that match an argument in the __init__ method of the class, and will be
passed to __init__ to create the relevant instance:

 @classmethod
 def from_data_dict(cls, data_dict):
 # - Assure that we have the collection of keys that are
 # allowed for the class!
 if cls._data_dict_keys == None:
 raise AttributeError(
 '%s.from_data_dict cannot be used because the %s '
 'class has not specified what data-store keys are '
 'allowed to be used to create new instances from '
 'retrieved data. Set %s._data_dict_keys to a list '
 'or tuple of argument-names present in %s.__init__' %
 (cls.__name__, cls.__name__, cls.__name__,
cls.__name__)
)
 # - Remove any keys that aren't listed in the class'
 # initialization arguments:
 data_dict = dict(
 [
 (key, data_dict[key]) for key in data_dict.keys()
 if key in cls._data_dict_keys
]
)
 # - Then create and return an instance of the class
 return cls(**data_dict)

Persisting Data to a Database Chapter 13

[412]

In order to allow all HMSMongoDataObject-derived classes to be configured at once,
we need to provide a class method to that end. The one caveat to the implementation
of this method is that all of the derived classes will also have the method available,
but the method changes the _configuration attribute of
the HMSMongoDataObject class, even if it's called from a derived class. It can be
reasonably expected that calling, say, Artisan.configure, would configure data
access for only Artisan objects – but that is not what should happen, so we'll raise an
error to make sure that it doesn't go unnoticed if it's attempted:

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def configure(cls, configuration:(DatastoreConfig)):
 """
Sets configuration values across all classes derived from
HMSMongoDataObject.
"""
 if cls != HMSMongoDataObject:
 raise RuntimeError(
 '%s.configure will alter *all* MongoDB configuration,
'
 'not just the configuration for %s. Please use '
 'HMSMongoDataObject.configure instead.' %
 (cls.__name__, cls.__name__)
)
 if not isinstance(configuration, DatastoreConfig):
 raise TypeError(
 '%s.configure expects an instance of '
 'DatastoreConfig, but was passed "%s" (%s)' %
 (
 cls.__name__, configuration,
 type(configuration).__name__
)
)
 HMSMongoDataObject._configuration = configuration

Since all of the class methods that interact with the data store will need the relevant
connection, and it may not have been created by an instance before the call was made,
having a helper class method to acquire the connection will be useful. It is also
possible to force the acquisition of all of the relevant data store objects by creating an
instance, but that feels cumbersome and counter-intuitive:

 @classmethod
 def get_mongo_collection(cls) -> pymongo.collection.Collection:

Persisting Data to a Database Chapter 13

[413]

 """
Helper class-method that retrieves the relevant MongoDB collection for
data-access to state-data records for the class.
"""
 # - If the collection has already been created, then
 # return it, otherwise create it then return it
 try:
 return cls._collection
 except AttributeError:
 pass
 if not cls._configuration:
 raise RuntimeError(
 '%s must be configured before the '
 'use of %s.get will work. Call HMSMongoDataObject.'
 'configure with a DatastoreConfig object to resolve '
 'this issue' % (cls.__name__, cls.__name__)
)
 # - With configuration established, we can create the
 # connection, database and collection objects we need
 # in order to execute the request:
 # - Build the connection-parameters we need:
 conn_config = []
 # - host
 if cls._configuration.host:
 conn_config.append(cls.configuration.host)
 # - port. Ports don't make any sense without a
 # host, though, so host has to be defined first...
 if cls._configuration.port:
 conn_config.append(cls.configuration.port)
 # - Create the connection
 cls._connection = pymongo.MongoClient(*conn_config)
 # - Create the database
 cls._database = cls._connection[cls._configuration.database]
 # - and the collection
 if cls._mongo_collection:
 cls._collection = cls._database[cls._mongo_collection]
 # - Otherwise, use the class-name
 else:
 cls._collection = cls._database[cls.__name__]
 return cls._collection

Persisting Data to a Database Chapter 13

[414]

The implementation of the delete class method is very simple; it boils down to
iterating over the provided oids, and deleting each one in the iteration.
Since delete is interacting with the data store, and it's a class method, it calls
the get_mongo_collection class method that we defined first:

 @classmethod
 def delete(cls, *oids):
 """
Performs an ACTUAL record deletion from the back-end data-store
of all records whose unique identifiers have been provided
"""
 # - First, we need the collection that we're working with:
 collection = cls.get_mongo_collection()
 if oids:
 for oid in oids:
 collection.remove({'oid':str(oid)})

 @classmethod
 def from_data_dict(cls, data_dict):
 # - Assure that we have the collection of keys that are
 # allowed for the class!
 if cls._data_dict_keys == None:
 from inspect import getfullargspec
 argspec = getfullargspec(cls.__init__)
 init_args = argspec.args
 try:
 init_args.remove('self')
 except:
 pass
 try:
 init_args.remove('cls')
 except:
 pass
 print(argspec)
 if argspec.varargs:
 init_args.append(argspec.varargs)
 if argspec.varkw:
 init_args.append(argspec.varkw)
 raise AttributeError(
 '%s.from_data_dict cannot be used because the %s '
 'class has not specified what data-store keys are '
 'allowed to be used to create new instances from '
 'retrieved data. Set %s._data_dict_keys to a list '
 'or tuple of argument-names present in %s.__init__ '
 '(%s)' %
 (
 cls.__name__, cls.__name__, cls.__name__,

Persisting Data to a Database Chapter 13

[415]

 cls.__name__, "'" + "', '".join(init_args) + "'"
)
)
 # - Remove any keys that aren't listed in the class'
 # initialization arguments:
 data_dict = dict(
 [
 (key, data_dict[key]) for key in data_dict.keys()
 if key in cls._data_dict_keys
]
)
 # - Then create and return an instance of the class
 return cls(**data_dict)

The result of a failed check of _data_dict_keys is
an AttributeError that includes a list of the arguments of
the __init__ method of the class, using
the getfullargspec function of the inspect module.
Python's inspect module provides a very thorough set of functions
for examining code within the code that's running. We'll take a more
in-depth look at the module when we start to look at
metaprogramming concepts.

The get method of HMSMongoDataObject also starts by assuring that the
relevant collection is available. Structurally, it looks a lot like its counterpart
in JSONFileDataObject, which should come as no great surprise, since it's
performing the same sort of actions, and uses the same method signature that was
defined in BaseDataObject. Because MongoDB has more capabilities available than
the file system, there are some noteworthy differences:

 @classmethod
 def get(cls, *oids, **criteria) -> list:
 # - First, we need the collection that we're working with:
 collection = cls.get_mongo_collection()
 # - The first pass of the process retrieves documents based
 # on oids or criteria.

Rather than try to work out a (probably complex) mechanism for dynamically
generating arguments for the find functionality of pymongo that include
both oids and criteria, we'll handle requests based on the combination
of oids and criteria that are present. Each branch in the code will result in a list
of data_dict items that can be converted to a list of object instances later on.

Persisting Data to a Database Chapter 13

[416]

If oids are provided, then the initial request will only concern itself with those. At
present, the expectation is that get calls with oids will usually have only a
few oids involved (usually just one, in fact), so using very basic functionality to get
each document that corresponds to a single oid in the list should suffice, at least for
now:

 # - We also need to keep track of whether or not to do a
 # matches call on the results after the initial data-
 # retrieval:
 post_filter = False
 if oids:
 # - oid-based requests should usually be a fairly short
 # list, so finding individual items and appending them
 # should be OK, performance-wise.
 data_dicts = [
 collection.find_one({'oid':oid})
 for oid in oids
]

If, somewhere down the line, there is a need to handle longer collections
of oids, pymongo supports that, as well; so, we'll leave a comment about that in
place, just in case we need it later:

 # - If this becomes an issue later, consider changing
 # it to a variant of
 # collection.find({'oid':{'$in':oids}})
 # (the oids argument-list may need pre-processing first)

If oids and criteria are both provided, the eventual list of objects will need to be
filtered with the matches method, so the presence of criteria will have to be
monitored and tracked. If oids and criteria are both supplied, then we'll need to
know that later, in order to filter the initial results:

 if criteria:
 post_filter = True

Persisting Data to a Database Chapter 13

[417]

If only criteria is passed, then the entire set of data_dicts can be retrieved with a
single call, using a list comprehension to gather the found items from the cursor
that find returns:

 elif criteria:
 # - criteria-based items can do a find based on all
criteria
 # straight away
 data_dicts = [
 item for item in collection.find(criteria)
]

If neither oids nor criteria is passed, then we will want to return everything
available, as follows:

 else:
 # - If there are no oids specified, and no criteria,
 # the implication is that we want *all* object-records
 # to be returned...
 data_dicts = [
 item for item in collection.find()
]

Once the initial data_dict has been generated, it will be used to create the initial list
of object instances, as follows:

- At this point, we have data_dict values that should be
 # able to create instances, so create them.
 results = [
 cls.from_data_dict(data_dict)
 for data_dict in data_dicts
 if data_dict # <-- This could be None: check it!
]

And, if we still need to filter those results down even more (if we
set post_filter to True earlier), then the same filter process that was used
in JSONFileDataObject can be used now, calling the matches method of each
object in the initial results and only adding it to the final results list if it returns True,
as follows:

 # - If post_filter has been set to True, then the request
 # was for items by oid *and* that have certain criteria
 if post_filter:
 results = [
 obj for obj in results if obj.matches(**criteria)
]
 return results

Persisting Data to a Database Chapter 13

[418]

All of the basic CRUD operations that are needed for Artisan Gateway and Central
Office data objects should be easy to implement at this point, by simply deriving
them from the corresponding Base class in hms_core and HMSMongoDataObject:

Create and update operations still happen simply by calling1.
the save method of any instance.
Read operations are handled by the get class method, which also allows2.
for a fair bit of functionality for finding objects, though there might be the
need for additional functionality that supports more complex capabilities
later on.
Delete operations are handled by the delete class method; again, there3.
may be the need for deletion capabilities that aren't based on the oid, but
for now, this will suffice.

RDBMS implementations
So far, both of the data object implementations that we've created have overridden
the _create and _update methods that were required in BaseDataObject. It
would be fair, under the circumstances, to question why those were put in place at all.
The short answer to that question is that both of the implementations that have come
together so far use the same process at the data store level for creating and updating
records and documents. As a result, they simply haven't been needed. If it was
expected that hms_sys would never need any other database backend, we'd be
justified in removing them from the entire code base.

However, what would've happened if the decision to use MongoDB had gone a
different way, and the preferred (or mandated) backend data store engine was an
RDBMS such as Microsoft SQL Server? Or, worse, what if that sort of change was
mandated after the system was operational?

Persisting Data to a Database Chapter 13

[419]

Setting aside the data migration planning that would have to happen and focusing on
only the application and service code, what would that kind of change require? Not
much, when it comes right down to it. A generic SQL/RDBMS engine ABC
(HMSSQLDataObject) might look something like the following, for a
given RDBMS API/library:

class HMSSQLDataObject(BaseDataObject, metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can persist their state-data to
a (GENERIC) SQL-based RDBMS back-end data-store.
"""

The HMSSQLDataObject class that is shown here is by no means
complete, but should serve as a reasonable starting point for
building a full implementation of such a class, which connects to
and uses data from any of several RDBM systems. The complete
code, such as it is, can be found in the hms_core/ch-10-
snippets directory of the project code.

The same _configuration class property would probably be in use, serving the
same purpose. It's possible that the _data_dict_keys class attribute would also be
of use in reducing record fields to a valid argument dictionary in from_data_dict.
Since SQL, for the various CRUD operations, or at least for specific starting points for
those CRUD operations, would need to be stored and accessible to the classes, a
viable option for doing so would be to attach them as class-attributes, as well:

 ###################################
 # Class attributes/constants #
 ###################################

 # - Keeps track of the global configuration for data-access
 _configuration = None
 # - Keeps track of the keys allowed for object-creation from
 # retrieved data
 _data_dict_keys = None
 # - SQL for various expected CRUD actions:
 _sql_create = """Some SQL string goes here"""
 _sql_read_oids = """Some SQL string goes here"""
 _sql_read_all = """Some SQL string goes here"""
 _sql_read_criteria = """Some SQL string goes here"""
 _sql_update = """Some SQL string goes here"""
 _sql_delete = """Some SQL string goes here"""

Persisting Data to a Database Chapter 13

[420]

Since the SQL for the various CRUD operations would include the tables that the data
is stored in, and the process of connecting to the database in most RDBMS' handles
the equivalents to the connection and database in our MongoDB approach, only
the connection itself needs to be tracked and available as a property:

 ###################################
 # Property-getter methods #
 ###################################

 def _get_connection(self):
 try:
 return self.__class__._connection
 except AttributeError:
 # - Most RDBMS libraries provide a "connect" function, or
 # allow the creation of a "connection" object, using the
 # parameters we've named in DatastoreConfig, or simple
 # variations of them, so all we need to do is connect:
 self.__class__._connection = RDBMS.connect(
 **self.configuration
)
 return self.__class__._connection

Like its equivalent in the Mongo-based implementation, a connection is lazily
instantiated and performs an actual deletion, rather than resetting to default values,
as follows:

 ###################################
 # Property-deleter methods #
 ###################################

 def _del_connection(self) -> None:
 try:
 del self.__class__._connection
 except AttributeError:
 # - It may already not exist
 pass

Persisting Data to a Database Chapter 13

[421]

The related property declaration is identical, and is shown as follows:

 ###################################
 # Instance property definitions #
 ###################################

 connection = property(
 _get_connection, None, _del_connection,
 'Gets or deletes the database-connection that the instance '
 'will use to manage its persistent state-data'
)

Object initialization is also identical, as follows:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self,
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):
 """
Object initialization.

self (HMSMongoDataObject instance, required) The
 instance to execute against
oid (UUID|str, optional, defaults to None) The unique
 identifier of the object's state-data record in
the
 back-end data-store
created (datetime|str|float|int, optional, defaults to
None)
 The date/time that the object was created
modified (datetime|str|float|int, optional, defaults to
None)
 The date/time that the object was last modified
is_active (bool|int, optional, defaults to None) A flag
 indicating that the object is active
is_deleted (bool|int, optional, defaults to None) A flag
 indicating that the object should be considered
 deleted (and may be in the near future)
is_dirty (bool|int, optional, defaults to None) A flag

Persisting Data to a Database Chapter 13

[422]

 indicating that the object's data needs to be
 updated in the back-end data-store
is_new (bool|int, optional, defaults to None) A flag
 indicating that the object's data needs to be
 created in the back-end data-store
"""
 # - Call parent initializers if needed
 BaseDataObject.__init__(self,
 oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 # - Perform any other initialization needed

The significant, substantial differences are mostly in the methods that handle the
CRUD operations. The original save method, as implemented in BaseDataObject,
is left in place, and will call the _create or _update methods, as determined
by the is_dirty or is_new property values for the instance. Each of these methods
is responsible for acquiring the SQL template from the appropriate class attribute,
populating it, as needed, with current state data values, sanitizing the resultant SQL,
and executing it against the connection:

 ###################################
 # Instance methods #
 ###################################

 def _create(self):
 # - The base SQL is in self.__class__._sql_create, and the
 # field-values would be retrieved from self.to_data_dict():
 data_dict = self.to_data_dict()
 SQL = self.__class__._sql_create
 # - Some process would have to add the values, if not the
keys,
 # into the SQL, and the result sanitized, but once that was
 # done, it'd become a simple query-execution:
 self.connection.execute(SQL)

 def _update(self):
 # - The base SQL is in self.__class__._sql_update, and the
 # field-values would be retrieved from self.to_data_dict():
 data_dict = self.to_data_dict()
 SQL = self.__class__._sql_update
 # - Some process would have to add the values, if not the
keys,
 # into the SQL, and the result sanitized, but once that was
 # done, it'd become a simple query-execution:
 self.connection.execute(SQL)

Persisting Data to a Database Chapter 13

[423]

Sanitizing SQL is a very important security precaution, reducing the
risk of a system being vulnerable to an SQL injection attack. These
attacks can compromise data confidentiality and integrity, at a
minimum, and can also raise the risk of authentication and
authorization compromises, perhaps even across multiple systems,
depending on password policies and the enforcement of them. Most
RDBMS APIs will have some mechanism for sanitizing SQL before
executing it, and some will also support query parameterization that
can also reduce the risk of vulnerabilities. As a basic rule of thumb,
if data supplied by a user is being passed into a query, or even into a
stored procedure, it should be sanitized wherever/whenever
possible.

The delete class method is simple:

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def delete(cls, *oids):
 # - First, we need the database-connection that we're
 # working with:
 connection = cls.get_connection()
 SQL = cls._sql_delete % oids
 # - Don't forget to sanitize it before executing it!
 result_set = connection.execute(SQL)

Most of the pattern and approach behind the get method should look familiar; again,
it's got the same signature (and is intended to perform the same activities) as the
methods that have been created so far, which implement the required functionality of
the BaseDataObject:

 @classmethod
 def get(cls, *oids, **criteria) -> list:
 # - First, we need the database-connection that we're
 # working with:
 connection = cls.get_connection()
 # - The first pass of the process retrieves documents based
 # on oids or criteria.
 # - We also need to keep track of whether or not to do a
 # matches call on the results after the initial data-
 # retrieval:
 post_filter = False

Persisting Data to a Database Chapter 13

[424]

 # - Records are often returned as a tuple (result_set)
 # of tuples (rows) of tuples (field-name, field-value):
 # (..., (('field-name', 'value'), (...), ...), …)

The branch that handles oid requests is as follows:

 if oids:
 # - Need to replace any placeholder values in the raw SQL
 # with actual values, AND sanitize the SQL string, but
 # it starts with the SQL in cls._sql_read_oids
 SQL = cls._sql_read_oids
 result_set = connection.execute(SQL)
 if criteria:
 post_filter = True

The criteria branch is as follows:

 elif criteria:
 # - The same sort of replacement would need to happen here
 # as happens for oids, above. If the query uses just
 # one criteria key/value pair initially, we can use the
 # match-based filtering later to filter further as
needed
 key = criteria.keys()[0]
 value = criteria[key]
 SQL = cls._sql_read_criteria % (key, value)
 result_set = connection.execute(SQL)
 if len(criteria) > 1:
 post_filter = True

The default branch that simply gets everything else is as follows:

 else:
 SQL = cls._sql_read_all
 result_set = connection.execute(SQL)

All of the branches generate a list of data_dict values that can be used to create
object instances, though they may not be returned from the backend data store as
dictionary values.

The lowest common denominator results of a query are, as noted in the preceding
code comments, a tuple of tuples of tuples, which might look something like the
following:

This is the outermost tuple, collecting all of the
rows returned into a result_set:
(
 # Each tuple at this level is a single row:

Persisting Data to a Database Chapter 13

[425]

 (
 # Each tuple at this level is a key/value pair:
 ('oid', '43d240cd-4c9f-44c2-a196-1c7c56068cef'),
 ('first_name', 'John'),
 ('last_name', 'Smith'),
 ('email', 'john@smith.com'),
 # ...
),
 # more rows could happen here, or not...
)

If the engine, or the Python API to the engine, provides a built-in mechanism for
converting rows returned into dictionary instances, that's probably the preferred
approach to use to make the conversion. If there isn't anything built in to handle that,
converting the nested tuples to a series of dictionaries isn't difficult to do:

 # - We should have a result_set value here, so we can convert
 # it from the tuple of tuples of tuples (or whatever) into
 # data_dict-compatible dictionaries:
 data_dicts = [
 dict(
 [field_tuple for field_tuple in row]
)
 for row in result_set
]

From this point on, the process is pretty much the same as in the previous
implementations, in JSONFileDataObject and HMSMongoDataObject:

 # - With those, we can create the initial list of instances:
 results = [
 cls.from_data_dict(data_dict)
 for data_dict in data_dicts
]
 # - If post_filter has been set to True, then the request
 # was for items by oid *and* that have certain criteria
 if post_filter:
 results = [
 obj for obj in results if obj.matches(**criteria)
]

Persisting Data to a Database Chapter 13

[426]

Another (potentially major) difference concerns how child objects, such as
the products in an Artisan object, will have to be handled. If there is a need to fetch
those child objects as objects and populate the parent object with them, assuming that
they use the same BaseDataObject-derived interface, each child type will have a
class associated with it, each of those classes will have a get method, and that get
method will allow the oid of the parent object to be specified as criteria. That will
allow for a process that looks like the following, used to retrieve and attach any child
objects, as needed (using Artisan and Product classes as an example):

 # - Data-objects that have related child items, like the
 # Artisan to Product relationship, may need to acquire
 # those children here before returning the results. If
 # they do, then a structure like this should work most
 # of the time:
 for artisan in results:
 artisan._set_products(
 Product.get(artisan_oid=artisan.oid)
)
 return results

The other members of a final business/data object class that derives
from HMSSQLDataObject should, for the most part, be expected by now, since they
are also required for the implementation of final data objects derived from the other
two DataObject ABCs. They would include the concrete implementations
of to_data_dict and matches instance methods and the from_data_dict class
method, and the various class-specific variables (mostly the _sql class attributes).

The concrete business objects of the
Central Office projects
Up to this point, there's been a lot of effort concerning the foundations, but it's about
to pay off, as the creation of the initial Central Office classes gets under way. At
present, since the assumption is that the Central Office application and the Artisan
Gateway service will be using the same business object classes, and that they need to
reside in a common package that's not a part of the package set for either
of those code bases, the best option for where they should live appears to be in
the hms_core component project:

It was already in the design plan for hms_core to be included as a part of
the build or deployment of all the other packages, anyway

Persisting Data to a Database Chapter 13

[427]

Although it would certainly be possible to create yet another component
project/package specifically for the data access that these concrete classes
will provide, that's a fair amount of overhead for what will probably be a
single module, with only three classes (so far)

If, at some point in the future, there is a need or desire to move them to a different
package/project—say, if it's decided to change the Central Office application's data
access to a web service call to the Artisan Gateway—it won't be difficult to move the
code accordingly, although it will be somewhat tedious.

It will probably be easier to understand how the work regarding the foundations is
going to pay off by diving right in to one of the concrete classes, so we'll do that now,
starting with hms_core.co_objects.Artisan.

hms_core.co_objects.Artisan
The Story that's driving the concrete, state data persisting Artisan class is as follows:

As an Artisan manager, I need to be able to manage (create, modify, and
delete) artisans in the system, so that their statuses and information can be
kept current.

As with the hms_artisan equivalent, this is about being able to manage the
data, not the UI around that data management process. The various moving parts
of any of the data objects in co_objects will involve the following:

The properties of the object type, which will originate with the
corresponding Base class in hms_core.business_objects

The data persistence-related properties of all data objects in the system,
provided or required by HMSMongoDataObject or its
parent BaseDataObject

Concrete implementations of any abstract members inherited by the
concrete class, from any of the classes it derives from

Persisting Data to a Database Chapter 13

[428]

Using the concrete Artisan class as an example, the relationships involved are
shown in the following diagram:

In this particular case, there is only one property (the _data_dict_keys class
attribute that needs to be overridden from HMSMongoDataObject) that needs to be
created. Three of the four instance methods (add_product and remove_product,
and matches) have concrete implementations in the abstract methods that require
their implementation, and can be implemented as nothing more than a call to the
original methods in the classes that they originate in.

The to_data_dict method for any class deriving from BaseDataObject will have
to be implemented locally (that's just the nature of the structure that's been
developed), but that implementation is not going to be much more than creating and
returning a dict value.

Persisting Data to a Database Chapter 13

[429]

That leaves from_data_dict, the class method that data objects use to create
instances from dictionaries; those dictionaries are, in turn, being supplied by data
retrievals from the backend data store. In cases where the data object doesn't have
any child objects, the baseline method that BaseDataObject provides and requires
should simply work as an inherited class method. Object types (such as Artisan)
that do have child object properties will have to accommodate those, and that will
happen as a local override of the original class method from BaseDataObject.

So, all told, implementing most of these data objects will only involve the following:

Creating the _data_dict_keys class attribute, which can (more or less) be
copied and pasted from the argument list of the class' __init__ method

Implementing the matches method with a call to the method defined
in BaseDataObject that carries through to HMSMongoDataObject

Implementing to_data_dict from scratch

Implementing a from_data_dict class method from scratch, if a
customized method is needed

Creating an __init__ method that shouldn't need to do anything more
than call the relevant parent class __init__ methods

For most classes, then, the worst-case scenario, to get from nothing to a full, concrete
implementation, is two detailed methods to develop, and a few copy-and-paste
operations.

Those two methods play out in hms_core.co_objects.Artisan, as follows:

class Artisan(BaseArtisan, HMSMongoDataObject):
 """
Represents an Artisan in the context of the Central Office
applications and services
"""

The _data_dict_keys object is a fairly trivial effort, as follows:

 ###################################
 # Class attributes/constants #
 ###################################

 _data_dict_keys = (
 'contact_name', 'contact_email', 'address', 'company_name',

Persisting Data to a Database Chapter 13

[430]

 'website', 'oid', 'created', 'modified', 'is_active',
 'is_deleted', 'products'
)

The __init__ method still has a fairly complicated argument list, but they can be
copied from their source classes whole-cloth, unless those source
classes' __init__ methods have an argument list (*products, in this case) or a
keyword argument list (which has been avoided, in order to
keep __init__ signatures as simple as possible):

 ###################################
 # Object initialization #
 ###################################

 # TODO: Add and document arguments if/as needed
 def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 website:(str,)=None,
 # - Arguments from HMSMongoDataObject
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
 *products
):
 """
Object initialization.

self (Artisan instance, required) The instance to
 execute against
contact_name (str, required) The name of the primary contact
 for the Artisan that the instance represents
contact_email (str [email address], required) The email address
 of the primary contact for the Artisan that the
 instance represents
address (Address, required) The mailing/shipping address
 for the Artisan that the instance represents
company_name (str, optional, defaults to None) The company-
 name for the Artisan that the instance represents
oid (UUID|str, optional, defaults to None) The unique
 identifier of the object's state-data record in
the
 back-end data-store

Persisting Data to a Database Chapter 13

[431]

created (datetime|str|float|int, optional, defaults to
None)
 The date/time that the object was created
modified (datetime|str|float|int, optional, defaults to
None)
 The date/time that the object was last modified
is_active (bool|int, optional, defaults to None) A flag
 indicating that the object is active
is_deleted (bool|int, optional, defaults to None) A flag
 indicating that the object should be considered
 deleted (and may be in the near future)
is_dirty (bool|int, optional, defaults to None) A flag
 indicating that the object's data needs to be
 updated in the back-end data-store
is_new (bool|int, optional, defaults to None) A flag
 indicating that the object's data needs to be
 created in the back-end data-store
products (BaseProduct collection) The products associated
 with the Artisan that the instance represents
"""
 # - Call parent initializers if needed
 BaseArtisan.__init__(self,
 contact_name, contact_email, address, company_name
)
 HMSMongoDataObject.__init__(self,
 oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 if products:
 BaseArtisan._set_products(*products)
 # - Perform any other initialization needed

The instance methods that can call the parent classes' methods are all one-liners,
returning the results of calling the parent class' method with the appropriate
arguments:

 ###################################
 # Instance methods #
 ###################################

 def add_product(self, product:BaseProduct) -> BaseProduct:
 return Hasproducts.add_product(self, product)

 def matches(self, **criteria) -> (bool,):
 return HMSMongoDataObject.matches(self, **criteria)

 def remove_product(self, product:BaseProduct) -> None:
 return Hasproducts.remove_product(self, product)

Persisting Data to a Database Chapter 13

[432]

The to_data_dict method could be daunting, but, since the sequence of the keys in
the resultant dictionary is irrelevant, grouping them by the classes they originate
from allows several of them (the data store-related ones) to be copied around as
needed:

 def to_data_dict(self):
 return {
 # - BaseArtisan-derived items
 'address':self.address.to_dict() if self.address else
None,
 'company_name':self.company_name,
 'contact_email':self.contact_email,
 'contact_name':self.contact_name,
 'website':self.website,
 # - BaseDataObject-derived items
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

In retrospect, it might have been a better design to provide a method
or property of each of the classes that would be responsible for
generating their part of a final data_dict. That would've kept the
code for generating those dictionary items in a single place, at a
minimum, and would've allowed the final data_dict values to be
assembled from all of the parent class values for each instance.

The from_data_dict for the Artisan class uses the same logic and process as the
original class method in HMSMongoDataObject, but has to account for
the address property, which is either None or contains an Address instance:

 ###################################
 # Class methods #
 ###################################

 @classmethod
 def from_data_dict(cls, data_dict):
 # - This has to be overridden because we have to pre-process
 # incoming address and (maybe, eventually?) product-list
 # values...

Persisting Data to a Database Chapter 13

[433]

 if data_dict.get('address'):
 data_dict['address'] =
Address.from_dict(data_dict['address'])
 ####### NOTE: Changes made here, for whatever reason might
 # arise, may also need to be made in
 # HMSMongoDataObject.from_data_dict – it's the same
 ####### process!
 # - Assure that we have the collection of keys that are
 # allowed for the class!
 if cls._data_dict_keys == None:
 from inspect import getfullargspec
 argspec = getfullargspec(cls.__init__)
 init_args = argspec.args
 try:
 init_args.remove('self')
 except:
 pass
 try:
 init_args.remove('cls')
 except:
 pass
 print(argspec)
 if argspec.varargs:
 init_args.append(argspec.varargs)
 if argspec.varkw:
 init_args.append(argspec.varkw)
 # FullArgSpec(varargs='products', varkw=None
 raise AttributeError(
 '%s.from_data_dict cannot be used because the %s '
 'class has not specified what data-store keys are '
 'allowed to be used to create new instances from '
 'retrieved data. Set %s._data_dict_keys to a list '
 'or tuple of argument-names present in %s.__init__ '
 '(%s)' %
 (
 cls.__name__, cls.__name__, cls.__name__,
 cls.__name__, "'" + "', '".join(init_args) + "'"
)
)
 # - Remove any keys that aren't listed in the class'
 # initialization arguments:
 data_dict = dict(
 [
 (key, data_dict[key]) for key in data_dict.keys()
 if key in cls._data_dict_keys
]
)

Persisting Data to a Database Chapter 13

[434]

 # - Then create and return an instance of the class
 return cls(**data_dict)

With a total of seven items to implement concretely, and only two of them that aren't
manageable by calling a parent class' equivalent or writing very simple code, the
implementation is pretty painless.

hms_core.co_objects.Product
The corresponding Story for concrete Product object data persistence is as follows:

As a product manager, I need to be able to manage products in the system,
so that their statuses and information can be kept current.

The code that fulfills this scenario is even simpler than the code for Artisan objects;
it doesn't need any special handling of object properties, so from_data_dict can
simply fall back to the default, defined in HMSMongoDataObject. It doesn't have any
extraneous methods that are required, either, so a full, functional implementation
really just boils down to the _data_dict_keys class attribute and
the __init__, matches, and to_data_dict methods, with matches being
implemented as a call to HMSMongoDataObject.matches:

class Product(BaseProduct, HMSMongoDataObject):
 """
Represents a Product in the context of the Central Office
applications and services
"""
 ###################################
 # Class attributes/constants #
 ###################################

 _data_dict_keys = [
 'name', 'summary', 'available', 'store_available',
 'description', 'dimensions', 'metadata', 'shipping_weight',
 'oid', 'created', 'modified', 'is_active', 'is_deleted'
]

The __init__ method has a long argument set, which should come as no surprise:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self,

Persisting Data to a Database Chapter 13

[435]

 # - Arguments from HMSMongoDataObject
 name:(str,), summary:(str,), available:(bool,),
 store_available:(bool,),
 # - Optional arguments:
 description:(str,None)=None, dimensions:(str,None)=None,
 metadata:(dict,)={}, shipping_weight:(int,)=0,
 # - Arguments from HMSMongoDataObject
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
):
 """
Object initialization.

self (Product instance, required) The instance to
 execute against
name (str, required) The name of the product
summary (str, required) A one-line summary of the
 product
available (bool, required) Flag indicating whether the
 product is considered available by the artisan
 who makes it
store_available ... (bool, required) Flag indicating whether the
 product is considered available on the web-
 store by the Central Office
description (str, optional, defaults to None) A detailed
 description of the product
dimensions (str, optional, defaults to None) A measurement-
 description of the product
metadata (dict, optional, defaults to {}) A collection
 of metadata keys and values describing the
 product
shipping_weight ... (int, optional, defaults to 0) The shipping-
 weight of the product
oid (UUID|str, optional, defaults to None) The unique
 identifier of the object's state-data record in
the
 back-end data-store
created (datetime|str|float|int, optional, defaults to
None)
 The date/time that the object was created
modified (datetime|str|float|int, optional, defaults to
None)
 The date/time that the object was last modified

Persisting Data to a Database Chapter 13

[436]

is_active (bool|int, optional, defaults to None) A flag
 indicating that the object is active
is_deleted (bool|int, optional, defaults to None) A flag
 indicating that the object should be considered
 deleted (and may be in the near future)
is_dirty (bool|int, optional, defaults to None) A flag
 indicating that the object's data needs to be
 updated in the back-end data-store
is_new (bool|int, optional, defaults to None) A flag
 indicating that the object's data needs to be
 created in the back-end data-store
"""
 # - Call parent initializers if needed
 BaseProduct.__init__(
 self, name, summary, available, store_available,
 description, dimensions, metadata, shipping_weight
)
 HMSMongoDataObject.__init__(self,
 oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 # - Perform any other initialization needed

The implementations of matches and to_data_dict are very straightforward, as
follows:

 ###################################
 # Instance methods #
 ###################################

 def matches(self, **criteria) -> (bool,):
 return HMSMongoDataObject.matches(self, **criteria)

 def to_data_dict(self):
 return {
 # - BaseProduct-derived items
 'available':self.available,
 'description':self.description,
 'dimensions':self.dimensions,
 'metadata':self.metadata,
 'name':self.name,
 'shipping_weight':self.shipping_weight,
 'store_available':self.store_available,
 'summary':self.summary,
 # - BaseDataObject-derived items
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),

Persisting Data to a Database Chapter 13

[437]

 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

The matches method may need to be reexamined later on, either during the creation
of the Artisan Gateway service or when the various application UIs are being built,
because while it works for most cases, it will not currently allow a get with any
metadata criteria to return results unless criteria is the only value being searched
for (no oids are passed). It's worth a more detailed look here and now, though,
because it shows some aspects of how the data object code interacts with MongoDB.

First, let's create some example Product objects and save them, as follows:

- An example product - A copper-and-emerald necklace:
product = Product(
 'Necklace #1',
 'Showing some Product.get aspects', True, True,
 metadata={
 'metal':'Copper',
 'gemstone':'Emerald',
 }
)
product.save()
- Silver-and-emerald necklace:
product = Product(
 'Necklace #2',
 'Showing some Product.get aspects', True, True,
 metadata={
 'metal':'Silver',
 'gemstone':'Emerald',
 }
)
product.save()
- Copper-and-sapphire necklace:
product = Product(
 'Necklace #3',
 'Showing some Product.get aspects', True, True,
 metadata={
 'metal':'Copper',
 'gemstone':'Sapphire',
 }
)
product.save()

Persisting Data to a Database Chapter 13

[438]

- Silver-and-sapphire necklace:
product = Product(
 'Necklace #4',
 'Showing some Product.get aspects', True, True,
 metadata={
 'metal':'Silver',
 'gemstone':'Sapphire',
 }
)
product.save()

Finding products that have metadata indicating that they are made of silver and
have sapphire gemstones is fairly straightforward, although it requires criteria
specifications that look a little odd:

- importing json so we can usefully print the results:
import json
criteria = {
 'metadata':{
 'metal':'Silver',
 'gemstone':'Sapphire',
 }
}

Creating the criteria as a dict allows them to be passed to Product.get as a single
keyword argument set, and allows the criteria specification to be as detailed as we
need. We could, for example, add other metadata, specify a product name, or add any
other object properties that appear in the data-dict representation of a Product (as
returned by to_data_dict). The results will come back as a list of objects, and, by
printing the data-dict representations of them, we can see the results:

products = Product.get(**criteria)
print(json.dumps(
 [product.to_data_dict() for product in products],
 indent=4, sort_keys=True)
)

Persisting Data to a Database Chapter 13

[439]

Executing the preceding code yields the dataset for the one matching the Product,
our silver and sapphire necklace, as follows:

It's worth mentioning that passing criteria doesn't have to be a multi-level dict,
even for metadata values. Using criteria in this format is as follows:

criteria = {
 'metadata.metal':'Silver',
 'metadata.gemstone':'Sapphire',
}

This criteria structure works just as well. The underlying find() method provided
by a pymongo connection object treats dot-notation specifications of this sort as
references to a nested object structure that looks much like the dict value shown
previously, and will process the request accordingly.

Persisting Data to a Database Chapter 13

[440]

Other hms_core.co_objects classes
There could have been Stories and tasks in this iteration to deal with the data
persistence of Customer and Order objects, as well. Those would have probably
taken the same basic shape as the stories for the Artisan and Product objects,
looking something like the following Order example:

As an order manager, I need to be able to manage orders in the system, so
that their statuses and information can be kept current.

To do so, I would do the following:

Design and implement an Order class for the Central Office data store that
allows object data to be persisted.

Unit test the Order class.

Normally, in an Agile, iterative process, a story would have to be accepted before
being included in an iteration, and the process of it being accepted would involved
enough review and analysis that a full understanding of the tasks involved would be
reached, and the stories and tasks written and planned accordingly. In this case,
though, since there is a significant dependency on an external system (the Web Store
Application) and on an order acceptance and processing workflow that hasn't been
detailed yet, there's not a lot that can be done, beyond a bare-bones implementation
of the Customer and Order classes. The workflow, in particular, was going to be
somewhat dependent on the data structure that artisans need, which wasn't defined
until this iteration.

For all of the preceding reasons, there are no stories to deal with these objects and
their data persistence in this iteration. The data persistence aspects of the final classes
created for the Artisan Gateway and/or Central Office application will be handled as
parts of stories to implement the order processing workflow. In the meantime,
though, we can at least stub out the bare minimum structure for those classes in a
separate file (in future/co_objects.py, in the code for this chapter) while the data
object definition process is fresh in our minds, to save some effort later.

Persisting Data to a Database Chapter 13

[441]

Accounting for the other CRUD operations
Up to this point, we've only accounted for two of the CRUD operations that all of our
data objects need: create and read. The delete operations, across the board, are
accounted for, but not yet proven; however, since that process is very simple, it can
wait until we unit test everything, to prove that everything works. The missing item,
then, is the update operation, at least in part. The various object documents that have
been written to the database with every save() call have shown that the process of
writing object data is working, but we haven't actually tried to update anything yet;
and, if we were to try now, it would fail (and fail silently). The reason behind that
failure is very simple, and can be seen in the code from HMSMongoDataObject.save:

def save(self):
 if self._is_new or self._is_dirty:
 # - Make sure to update the modified time-stamp!
 self.modified = datetime.now()
 data_dict = self.to_data_dict()
 data_dict['_id'] = self.oid
 self.collection.insert_one(data_dict)
 self._set_is_dirty(False)
 self._set_is_new(False)

In a nutshell, it's because we're checking for the status of _is_new and _is_dirty,
and only calling the database write if one of them is True. By default, when a data
object is created, its _is_dirty flag value is set to False. If that value doesn't get
changed somewhere along the line, when an object's property values are altered, the
save method will never actually write the changed dataset to the database.

There are at least two different ways to resolve this. The more complex solution
would be to redefine each of the setter and deleter methods for each property of each
concrete data object class, and the property declarations for each of them, so that the
methods call their parent methods and the instance's _set_is_dirty methods in the
process. This is the approach that was taken for the corresponding objects in the
Artisan project. See the following code snippet, which uses
the Product.name property as an example:

def _set_name(self, value):
 BaseProduct._set_name(self, value)
 self._set_is_dirty(True)

...

def _del_name(self):
 BaseProduct._del_name(self)

Persisting Data to a Database Chapter 13

[442]

 self._set_is_dirty(True)

...

name = property(
 # - Using the "original" getter-method and the "local" setter-
 # and deleter methods
 BaseProduct._get_name, _set_name, _del_name,
 'Gets, sets or deletes the name of the Product'
)

Taking this approach would not be difficult (or even terribly time-consuming), but it
would add some additional unit testing requirements, since each of those method and
property overrides would register as new, local class members that need to be tested.
That's not a bad thing, though, since those tests would ultimately only be concerned
with verifying that the is_dirty state change happened when it was supposed to.

The other approach would be to simply remove the is_new and is_dirty check
condition from HMSMongoDataObject.save. That is a much simpler solution, in
many respects, but it comes with at least one caveat: it puts the responsibility of
making sure that the save of any changed object is called in the code that's making
those changes. Without some careful monitoring of how and when the code is making
and saving changes, there is a good possibility that many save calls will be made,
incrementally updating the data document for any given object. That may or may not
be a significant concern (it's unlikely to have a significant impact on performance for
small sets of data changes, for example), but it could get out of control quickly, if not
closely monitored. If the data store had a cost per query associated with it, as unlikely
as that might seem, that inefficiency would also cost more money on a long-term
basis.

Since the actual use cases involving updating the data haven't yet been developed (or
even had stories presented that could guide the decision), for now, in order to
close these stories, the latter solution will be taken. This keeps things simple for the
time being, and we know what will be involved for a more complex solution, should
the need for it arise. That, then, revises HMSMongoDataObject.save as follows:

def save(self):
 # TODO: For the time being, we're going to assume that save
 # operations don't need to care about whether the
 # object's data is new or dirty, that we wouldn't be
 # calling save unless we already knew that to be the
 # case. If that changes, we'll want to check is_dirty
 # and is_new, as shown below, *and* make sure that
 # they get modified accordingly.
if self._is_new or self._is_dirty:

Persisting Data to a Database Chapter 13

[443]

 # - Make sure to update the modified time-stamp!
 self.modified = datetime.now()
 data_dict = self.to_data_dict()
 data_dict['_id'] = self.oid
 self.collection.insert_one(data_dict)
 self._set_is_dirty(False)
 self._set_is_new(False)

Summary
As with the Artisan Application's data persistence, we've accounted for (if not
proven) all of the CRUD operation requirements for data objects living in the Central
Office code bases. Because the interface requirements are also defined by the same
BaseDataObject inheritance, even though there is additional functionality provided
between that ABC and the concrete data objects, the processes for reading and writing
data across all of the data objects look the same across the entire system – at least so
far.

None of the data access has been unit tested yet, however, and that's a critical item for
the system; at the end of the day, the data is, if not the most important part of the
system, certainly one of the most import aspects of it. It's time, then, to change the
context and write those unit tests, which we'll do in the next chapter.

14
Testing Data Persistence

Repeatable unit testing of code is rarely more critical than in the case of data
persistence. Code can change or be replaced over time, perhaps even to the point of
changing to a completely different system, written in a completely different language,
but once data exists, it can potentially outlive any number of code bases that make
use of it. The data in a system, it could be argued, is where the real business value
usually exists, so testing of the processes that interact with it, and have the potential
to destroy that value, is extremely important.

With that in mind, the bulk of this chapter will be focused on the following:

Writing the unit tests for the data object and related classes created in this
iteration:

The new hms_artisan classes
The new hms_core classes

Integration of those tests with the build process

There's also been enough new functionality added that some attention will have to be
paid to the following:

Other effects of the new code on the build process
Demonstration of the new code, and how acceptance of the related stories
might be facilitated
How the new code affects operations, use, maintenance, and
decommissioning concerns

Testing Data Persistence Chapter 14

[445]

Writing the unit tests
Most of the process of writing the unit tests for the new data object classes can simply
follow the process established in previous iterations:

Create the top-level test module for the package being tested.1.
Identify the child modules of the package being tested, and create a2.
corresponding test module for each.
Add references to the child test modules to the package test module and3.
import their tests.
For each child test module:4.

Execute the module and create test case classes for each item
reported as missing
Execute the module and create tests methods for each member
(property or method) reported as missing

There are several test modules that need to be created, one for each module that was
created in the src directories across the projects this iteration touched, yielding the
following:

hms_core/../data_objects.py →
test_hms_core/test_data_objects.py (already tested, but listed here
for the sake of having a complete list)
hms_artisan/../data_storage.py →
test_hms_artisan/test_data_storage.py

hms_artisan/../artisan_objects.py →
test_hms_artisan/test_artisan_objects.py

hms_core/../co_objects.py →
test_hms_core/test_co_objects.py

Testing hms_artisan.data_storage
The unit tests for hms_artisan.data_storage are, at this point, all concerned with
testing the JSONFileDataStore class. Because of what that class actually does, the
typical patterns for unit testing apply poorly, if at all. It has no properties to test, and
the one class attribute that can be tested (_file_store_dir) is overridden by
derived classes.

Testing Data Persistence Chapter 14

[446]

It's probably worth asserting that the default attribute is what's expected, though,
since if it doesn't default to None, that could cause failures in derived classes and
instances of those classes:

def test_file_store_dir(self):
 self.assertEqual(
 JSONFileDataObject._file_store_dir, None,
 'JSONFileDataObject._file_store_dir is expected to provide '
 'a None default value that must be overridden by derived '
 'classes, but it is set to "%s" (%s)' %
 (
 JSONFileDataObject._file_store_dir,
 type(JSONFileDataObject._file_store_dir).__name__
)
)

As far as the testing of methods is concerned, while there are several, they are
somewhat intertwined, and they also frequently rely upon implementations of
methods that are abstract themselves and thus not available in the ABC itself:

get, delete, and save all call the _load_objects helper class method
That _load_objects method relies on a concrete implementation of
from_data_dict in order to generate the collection of objects that the
other methods refer to
The save method also requires a concrete implementation of the
to_data_dict method

Since unit testing is about proving predictable functionality, the question then
becomes: what can we prove?

The first, and probably most obvious, item is that object initialization works in pretty
much the same fashion that it does in BaseDataObject:

class testJSONFileDataObject(unittest.TestCase):

 ###################################
 # Tests of class methods #
 ###################################

 def test__init__(self):
 # Tests the __init__ method of the JSONFileDataObject class
 # - All we need to do here is prove that the various
 # setter- and deleter-method calls are operating as
 # expected -- same as BaseDataObject
 # - deleters first

Testing Data Persistence Chapter 14

[447]

 test_object = JSONFileDataObjectDerived()
 self.assertEquals(test_object._created, None)
 self.assertEquals(test_object._is_active, True)
 self.assertEquals(test_object._is_deleted, False)
 self.assertEquals(test_object._is_dirty, False)
 self.assertEquals(test_object._is_new, True)
 self.assertEquals(test_object._modified, None)
 self.assertEquals(test_object._oid, None)
 # - setters
 oid = uuid4()
 created = GoodDateTimes[0]
 modified = GoodDateTimes[1]
 is_active = False
 is_deleted = True
 is_dirty = True
 is_new = False
 test_object = JSONFileDataObjectDerived(
 oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 self.assertEquals(test_object.oid, oid)
 self.assertEquals(test_object.created, created)
 self.assertEquals(test_object.is_active, is_active)
 self.assertEquals(test_object.is_deleted, is_deleted)
 self.assertEquals(test_object.is_dirty, is_dirty)
 self.assertEquals(test_object.is_new, is_new)
 self.assertEquals(test_object.modified, modified)

The GoodDateTimes test values are the same values we used to
test BaseDataObject.

Since the _create and _update methods aren't going to be used, we can prove that
they raise the expected errors when called:

def test_create(self):
 # Tests the _create method of the JSONFileDataObject class
 test_object = JSONFileDataObjectDerived()
 try:
 test_object._create()
 self.fail(
 'JSONFileDataObject is not expected to raise '
 'NotImplementedError on a call to _create'
)
 except NotImplementedError:
 pass

Testing Data Persistence Chapter 14

[448]

 except Exception as error:
 self.fail(
 'JSONFileDataObject is not expected to raise '
 'NotImplementedError on a call to _create, but %s '
 'was raised instead:\n - %s' %
 (error.__class__.__name__, error)
)

def test_update(self):
 # Tests the _update method of the JSONFileDataObject class
 test_object = JSONFileDataObjectDerived()
 try:
 test_object._update()
 self.fail(
 'JSONFileDataObject is not expected to raise '
 'NotImplementedError on a call to _update'
)
 except NotImplementedError:
 pass
 except Exception as error:
 self.fail(
 'JSONFileDataObject is not expected to raise '
 'NotImplementedError on a call to _update, but %s '
 'was raised instead:\n - %s' %
 (error.__class__.__name__, error)
)

The individual CRUD operations, plus the _load_objects method, since they are
joined at the hip, would end up with a lot of overlap – tests for one method would
have to execute tests for other methods as part of their own testing process in order to
really prove that everything was working as expected. Tests of that complexity are
tedious to write, but more importantly, require more effort and discipline to maintain,
and are thus more prone to getting out of touch with the code they are testing. A
better option, in this case, might be to skip those tests, and create one larger, unified
test of all the related functionality. Python's stock unittest module provides a skip
decorator function that provides the ability to tag tests to be skipped by standard unit
testing runs, and calling that requires that we log a reason for the test being skipped.
In this case, the reason is that all of the methods in question will be tested in one large
pass in a different test method:

@unittest.skip(
 'Since the file-load process provided by _load_objects is '
 'used by many of the CRUD operations, it is tested as part of '
 'testCRUDOperations'
)
def test_load_objects(self):

Testing Data Persistence Chapter 14

[449]

 # Tests the _load_objects method of the JSONFileDataObject class
 self.fail('test_load_objects is not yet implemented')

@unittest.skip(
 'Since deleting a data-file is part of the CRUD operations, '
 'it is tested as part of testCRUDOperations'
)
def testdelete(self):
 # Tests the delete method of the JSONFileDataObject class
 self.fail('testdelete is not yet implemented')

@unittest.skip(
 'Since reading data-files is part of the CRUD operations, '
 'it is tested as part of testCRUDOperations'
)
def testget(self):
 # Tests the get method of the JSONFileDataObject class
 self.fail('testget is not yet implemented')

@unittest.skip(
 'Since creating a data-file is part of the CRUD operations, '
 'it is tested as part of testCRUDOperations'
)
def testsave(self):
 # Tests the save method of the JSONFileDataObject class
 self.fail('testsave is not yet implemented')

That leaves the responsibility for testing most of JSONFileDataObject in the hands
of a single test-method – one that's not required by the code that enforces the
standard test policy, but that represents the best compromise between individual
class-member test coverage and maintainability: testCRUDOperations. There's not a
lot of opportunity for elegance in it; it has to brute-force its way through a lot of
conditions and object states simply because of the nature of the methods being tested.
If it's well thought out, though, it leaves the tests for the classes derived from it free to
not have to test the common functionality.

The first thing that it has to do is ensure that there's a clean object repository, both in
memory and on the filesystem. In order to do that, a throwaway class has to be
defined, with the bare minimum of the required functionality needed to assure that
all the necessary method classes are being made. That class,
JSONFileDataObjectDerived, looks like this:

class JSONFileDataObjectDerived(JSONFileDataObject):

Testing Data Persistence Chapter 14

[450]

We're providing a file storage location that is not in use by any real objects, which can
be deleted and recreated with object data however and whenever we need to:

_file_store_dir = '/tmp/hms_artisan_test'

Because these tests are concerned with file system data-persistence,
they were written for the OS that system development was
undertaken on—a Linux installation—though they would execute
without modification on any Unix-like OS. Converting them to run
under Windows isn't difficult:
Create a test-data directory (C:\TestData, for example), and
change all filesystem references that start with /tmp/ to
C:\\TestData\\ (note the double-backslashes), and alter the
remaining filesystem paths to use Windows' filesystem notation
(C:\\TestData\\path\\to\\some\\file.ext, note the double-
backslashes again).

We supply the bare minimum required functionality, using defaults or
proven/provable functionality from parent classes wherever possible, or the simplest
possible implementations:

def matches(self, **criteria) -> (bool,):
 return BaseDataObject.matches(self, **criteria)

@classmethod
def from_data_dict(cls, data_dict:(dict,)):
 return cls(**data_dict)

Where no default or inheritable functionality is available, we keep to the bare
minimum necessary for the tests to be meaningful – in the case of the to_data_dict
method, that means sticking to the properties and data structure required by all
classes derived from BaseDataObject, including JSONFileDataObject:

def to_data_dict(self):
 return {
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

Testing Data Persistence Chapter 14

[451]

That, then, lets us start the testCRUDOperations test method by directly clearing
the in-memory object cache, and removing any files in the storage location:

def testCRUDOperations(self):
 # - First, assure that the class-level data-object collection
 # (in JSONFileDataObjectDerived._loaded_objects) is None,
 # and that the file-repository does not exist.
 JSONFileDataObjectDerived._loaded_objects = None
 if os.path.exists(JSONFileDataObjectDerived._file_store_dir):
 rmtree(JSONFileDataObjectDerived._file_store_dir)

The rmtree function is from a Python package called shutils, and
recursively deletes files and sub directories from a specified
location, raising an error if the target location doesn't exist. The
os.path.exists call, from the built-in os module, checks for the
existence of a file or directory at the specified path, returning True if
something exists there, and False otherwise.

We'll need at least one object stored in the newly cleared caches to start our testing
process, so the creation of a data object, and saving its state data, comes next:

- Next, create an item and save it
first_object = JSONFileDataObjectDerived()
first_object.save()
- Verify that the file exists where we're expecting it
self.assertTrue(
 os.path.exists(
 '/tmp/hms_artisan_test/JSONFileDataObjectDerived-'
 'data/%s.json' % first_object.oid
)
)
- and that it exists in the in-memory cache
 self.assertNotEqual(
 JSONFileDataObjectDerived._loaded_objects.get(
 str(first_object.oid)
), None
)

With one object created and saved, we can verify that the data-write and -read
processes allow us to read the same data that we were expecting to be written. We
can leverage the matches method of the class, since it's inherited from
BaseDataObject, ultimately, and has been tested earlier.

Testing Data Persistence Chapter 14

[452]

Since matches uses the data dict generated by to_data_dict, and that doesn't
include properties that don't persist, such as is_dirty and is_new, those need to be
checked separately:

- Verify that the item can be retrieved, and has the same
data
first_object_get = JSONFileDataObjectDerived.get()[0]
self.assertTrue(
 first_object.matches(**first_object_get.to_data_dict())
)
self.assertEqual(
 first_object.is_dirty, first_object_get.is_dirty
)
self.assertEqual(
 first_object.is_new, first_object_get.is_new
)

A viable alternative, if any concerns arise about using matches as a
data-structure-verification process, would be to explicitly check each
property of the retrieved object against the corresponding property
of the original. Using matches is a convenience, not a requirement.

Next, we will check to make sure that multiple objects are saved and read as
expected. Since the files and the keys for the objects are both functions of the oid of
the objects, and we now know that the files and in-memory copies of data objects
work with the creation of one object, we just need to ensure that multiples don't break
anything. Creating two more objects also allows us to re-verify the entire collection
later on:

- Create and save two more items
second_object = JSONFileDataObjectDerived()
second_object.save()
third_object = JSONFileDataObjectDerived()
third_object.save()
- Verify that all three items can be retrieved, and that
they are the expected objects, at least by their oids:
Those, as part of the file-names, *will* be unique and
distinct...
all_objects = JSONFileDataObjectDerived.get()
expected = set(
 [o.oid for o in [first_object, second_object, third_object]]
)
actual = set([o.oid for o in all_objects])
self.assertEqual(expected, actual)

Testing Data Persistence Chapter 14

[453]

We also need to test that deletions behave as expected, removing the deleted object
from the in-memory cache and deleting the applicable file. Before performing the
deletion, we need to confirm that the file that's going to be deleted exists, in order to
avoid a false positive test result once the deletion executes:

- Verify that the file for the second item exists, so the
verification later of its deletion is a valid test
self.assertTrue(
 os.path.exists(
 '/tmp/hms_artisan_test/JSONFileDataObjectDerived-'
 'data/%s.json' % second_object.oid
)
)

Then we can delete the item and verify the deletion from both the memory and
filesystem:

- Delete the second item
JSONFileDataObjectDerived.delete(second_object.oid)
- Verify that the item has been removed from the loaded-
object store and from the filesystem
self.assertEqual(
JSONFileDataObjectDerived._loaded_objects.get(second_object.oid),
 None
)
self.assertFalse(
os.path.exists(
 '/tmp/hms_artisan_test/JSONFileDataObjectDerived-'
 'data/%s.json' % second_object.oid
)
)

We also need to verify that data writes of updated state data work. We can check that
by changing the is_active and is_deleted flags of an existing object, then saving
it, and retrieving a copy of it for comparison, and checking with matches:

- Update the last object created, and save it
third_object._set_is_active(False)
third_object._set_is_deleted(True)
third_object.save()
- Read the updated object and verify that the changes made
were saved to the file.
third_object_get = JSONFileDataObjectDerived.get(third_object.oid)[0]
self.assertEqual(
 third_object.to_data_dict(),
 third_object_get.to_data_dict()
)

Testing Data Persistence Chapter 14

[454]

self.assertTrue(
 third_object.matches(**third_object_get.to_data_dict())
)
self.assertEqual(
 third_object.is_dirty, third_object_get.is_dirty
)
self.assertEqual(
 third_object.is_new, third_object_get.is_new
)

In the event that other tests might be added to this test case class later, and in the
interests of cleaning up files once they are no longer needed, we'll repeat the process
of clearing out the in-memory and on-disk object stores. If other tests, created later for
whatever ends, need to start with the in-memory and on-disk stores in any particular
state, they'll have to make arrangements to get that state set up, but they won't have
to worry about clearing it first:

- Since other test-methods down the line might need to start
with empty object- and file-sets, re-clear them both
JSONFileDataObjectDerived._loaded_objects = None
if os.path.exists(JSONFileDataObjectDerived._file_store_dir):
 rmtree(JSONFileDataObjectDerived._file_store_dir)
self.fail('testCRUDOperations is not complete')

The original test_file_store_dir test method did not account for proving that
derived classes will not allow themselves to be instantiated without a
_file_store_dir class attribute that is set to something other than None. Revising
that, and using another class derived from JSONFileDataObject, which is
essentially a copy of the JSONFileDataObjectDerived class used for CRUD
operations testing but without the attribute specification, allows that to be tested as
part of the original test method like so:

###################################
Tests of class properties
###################################

def test_file_store_dir(self):
 self.assertEqual(
 JSONFileDataObject._file_store_dir, None,
 'JSONFileDataObject._file_store_dir is expected to provide '
 'a None default value that must be overridden by derived '
 'classes, but it is set to "%s" (%s)' %
 (
 JSONFileDataObject._file_store_dir,
 type(JSONFileDataObject._file_store_dir).__name__
)

Testing Data Persistence Chapter 14

[455]

)
 try:
 test_object = NoFileStoreDir()
 self.fail(
 'Classes derived from JSONFileDataObject are expected '
 'to define a _file_store_dir class-attribute, or cause '
 'instantiation of objects from classes that don\'t '
 'have one defined to fail with an AttributeError'
)
 except AttributeError:
 pass

Testing hms_artisan.artisan_objects
After the initial unit test setup, there are 74 tests that need to be implemented, largely
due to the overrides of properties and their setter and deleter methods from their
Base counterpart classes in hms_core. Since the main difference between the
properties and their overridden methods is the inclusion of an automatic change in
the instance's is_dirty property during a set or delete call, that might appear to be
the only thing that the property-related tests at this level need to be concerned with:

The tests for the properties are all close to the standard structure that has been used
so far, essentially verifying that each property has the appropriate getter, setter, and
deleter method associations. The only real difference is in which of those methods are
being specified. Looking at the testArtisan.testcontact_name, which tests
Artisan.contact_name as an example, the test assertions for the setter and deleter
methods are structurally identical to their counterparts from the tests for
BaseArtisan – they assert that the Artisan setter and deleter methods are associated
with the property's set and delete actions.

Testing Data Persistence Chapter 14

[456]

The getter method assertion is where things get different:

def testcontact_name(self):
 # Tests the contact_name property of the Artisan class
 # - Assert that the getter is correct:
 self.assertEqual(
 BaseArtisan.contact_name.fget,
 Artisan._get_contact_name,
 'Artisan.contact_name is expected to use the '
 'BaseArtisan._get_contact_name method as its getter-method'
)
 # - Assert that the setter is correct:
 self.assertEqual(
 Artisan.contact_name.fset,
 Artisan._set_contact_name,
 'Artisan.contact_name is expected to use the '
 '_set_contact_name method as its setter-method'
)
 # - Assert that the deleter is correct:
 self.assertEqual(
 Artisan.contact_name.fdel,
 Artisan._del_contact_name,
 'Artisan.contact_name is expected to use the '
 '_del_contact_name method as its deleter-method'
)

Since the Artisan class provided overridden methods for each setter and deleter
method, but not for the getter method, the assertion for that aspect of the property is
pointing instead to the original getter method, in this case, the one defined in and
inherited from BaseArtisan. The same basic pattern holds true even for properties
without a local setter or deleter method, such as Product.metadata, tested by
testProduct.testmetadata:

def testmetadata(self):
 # Tests the metadata property of the Product class
 # - Assert that the getter is correct:
 self.assertEqual(
 Product.metadata.fget,
 BaseProduct._get_metadata,
 'Product.metadata is expected to use the '
 'BaseProduct._get_metadata method as its getter-method'
)
 # - Assert that the setter is correct:
 self.assertEqual(
 Product.metadata.fset,
 None,
 'Product.metadata is expected to be read-only, with no setter'

Testing Data Persistence Chapter 14

[457]

)
 # - Assert that the deleter is correct:
 self.assertEqual(
 Product.metadata.fdel,
 None,
 'Product.metadata is expected to be read-only, with no
deleter'
)

The tests for the setter and deleter methods themselves can also be very simple, with
a caveat. If the fundamental assumptions are that:

All the properties inherited from a Base class in
hms_core.business_objects will be tested (which is true as things
stand right now)
Those tests can be trusted to prove the predictable behavior of those
properties when they are set or deleted
The local setter and deleter methods will always call back to their tested
counterparts

Then all that needs to be done in testing the local methods is checking that they set
is_dirty accordingly. There may not be any way, realistically, to verify that those
assumptions are in play as part of a unit-test set, though. It becomes a matter of
knowing that these items are expected, standard procedure, and maintaining those
procedures as new code is developed. If those principles and procedures can be
counted upon, the tests for the derived class property-method overrides don't need to
go through the same level of effort/detail that their ancestors do, and can be as simple
as these:

def test_del_address(self):
 # Tests the _del_address method of the Artisan class
 test_object = Artisan('name', 'me@email.com', GoodAddress)
 self.assertEqual(test_object.is_dirty, False,
 'A newly-created instance of an Artisan should '
 'have is_dirty of False'
)
 test_object._del_address()
 self.assertEqual(test_object.is_dirty, True,
 'The deletion of an Artisan address should set '
 'is_dirty to True'
)

...

def test_set_address(self):

Testing Data Persistence Chapter 14

[458]

 # Tests the _set_address method of the Artisan class
 test_object = Artisan('name', 'me@email.com', GoodAddress)
 self.assertEqual(test_object.is_dirty, False,
 'A newly-created instance of an Artisan should '
 'have is_dirty of False'
)
 test_object._set_address(GoodAddresses[0])
 self.assertEqual(test_object.is_dirty, True,
 'Setting an Artisan address should set '
 'is_dirty to True'
)

The data-dict methods (to_data_dict and from_data_dict) are common across all
of the data objects, and show up in the list of tests to be implemented across all of the
test case classes as a result. All of them have their own particular challenges to
writing good, thorough unit tests. The variations of to_data_dict all follow a pretty
consistent pattern:

Iterate over a (hopefully short) list of representative values for each1.
property that should appear in the output
Create an expected dictionary value that can be used to compare the output2.
against
Assert that the expected dictionary and the results of to_data_dict are3.
the same

In theory, the best way to ensure that all possible good and bad value combinations
get tested is to iterate over all those possible combinations, nesting loops within other
loops so that, for example, all possible combinations of name, street_address,
city values are tested. In practice, tests built using that strategy will take a long time
to execute, with a large number of combinations to test (the number of name values ×
the number of street_address values × the number of city values, and so on). The
class with the fewest properties that needs to appear in a data-dict representation is
the Order class, with five local properties in addition to the ones that are inherited
from other classes that are already tested. An incomplete start of the relevant
testto_data_dict method, with only one of those properties included in the mix,
comes to 72 lines:

def testto_data_dict(self):
 # Tests the to_data_dict method of the Order class
 for name in GoodStandardRequiredTextLines[0:2]:
 for street_address in GoodStandardRequiredTextLines[0:2]:
 for city in GoodStandardRequiredTextLines[0:2]:
 # - At this point, we have all the required
 # arguments, so we can start testing with

Testing Data Persistence Chapter 14

[459]

 # partial expected dict-values
 test_object = Order(
 name, street_address, city,
)
 expected = {
 'name':name,
 'street_address':street_address,
 'city':city,
 # - The balance are default values...
 'building_address':None,
 'region':None,
 'postal_code':None,
 'country':None,
 'items':{},
 # - We also need to include the data-object
 # items that should appear!
 'created':datetime.strftime(
 test_object.created,
 test_object._data_time_string
),
 'modified':datetime.strftime(
 test_object.modified,
 test_object._data_time_string
),
 'oid':str(test_object.oid),
 'is_active':test_object.is_active,
 'is_deleted':test_object.is_deleted,
 }
 self.assertEqual(
 test_object.to_data_dict(), expected
)

Each additional property that needs to be tested results in another loop inside the
current loop, and the creation of a new test object, making sure to include the new
property item/argument being tested:

for items in GoodOrderItems:
 test_object = Order(
 name, street_address, city,
 items=items,
)

Each sub-loop has to create its own expected value:

expected = {
 'name':name,
 'street_address':street_address,
 'city':city,

Testing Data Persistence Chapter 14

[460]

 'building_address':None,
 'region':None,
 'postal_code':None,
 'country':None,
 'items':items,
 'created':datetime.strftime(
 test_object.created,
 test_object._data_time_string
),
 'modified':datetime.strftime(
 test_object.modified,
 test_object._data_time_string
),
 'oid':str(test_object.oid),
 'is_active':test_object.is_active,
 'is_deleted':test_object.is_deleted,
}

Each sub-loop also has to perform its own assertion to test expected against the
actual value returned by the test_object.to_data_dict call:

self.assertEqual(
 test_object.to_data_dict(), expected
)

There are, at this point, four more properties that have to be tested, each of which will
start with its own nested loop:

for building_address in GoodStandardOptionalTextLines[0:2]:
 for region in GoodStandardOptionalTextLines[0:2]:
 for postal_code in GoodStandardOptionalTextLines[0:2]:
 for country in GoodStandardOptionalTextLines[0:2]:
 pass

Forcing a failure, with a notation that the test-method is not complete, helps prevent
false positives from sneaking in, and can also help to track down which test is being
worked on in a large list of results:

self.fail('testto_data_dict is not complete')

Testing Data Persistence Chapter 14

[461]

The tests for the various from_data_dict methods are similarly complex and deeply
nested, for a variation of the same reason – they have to account for reasonable
possibilities for all of the values that could be supplied. An incomplete start to testing
that method in the Order class shows the pattern that's started to take shape in 72
lines:

def testfrom_data_dict(self):
 # Tests the from_data_dict method of the Order class

Since there should always be default None values for certain results in the expected
values of each iteration segment, we can define them once, then add them to the
expected at each point needed:

defaults = {
 'building_address':None,
 'region':None,
 'postal_code':None,
 'country':None,
 'items':{},
}

The collection of nested loops themselves is identical to the ones for testing
to_data_dict, starting with variants of all of the required properties/arguments:

for name in GoodStandardRequiredTextLines[0:2]:
 for street_address in GoodStandardRequiredTextLines[0:2]:
 for city in GoodStandardRequiredTextLines[0:2]:

Each loop segment needs to create a data_dict with the current values in it, and
create a test object:

- At this point, we have all the required
arguments, so we can start testing with
partial expected dict-values
 data_dict = {
 'name':name,
 'street_address':street_address,
 'city':city,
 }
 test_object = Order.from_data_dict(data_dict)

Testing Data Persistence Chapter 14

[462]

Since we'll also be testing to_data_dict, we can assume that it's trustworthy for the
purposes of comparison to the test object's data-dict. If the to_data_dict tests
fail, they will raise those failures on their own, and not allow the test run to pass until
those failures are resolved, with the same net result tests failing:

actual = test_object.to_data_dict()

Creation of the expected value is a bit more complicated. It starts with a copy of the
preceding defaults values (since we don't want test iterations to pollute the master
defaults values). We also need to capture the expected values from the instance, as
we'd expect them to appear in the final data dict:

- Create a copy of the defaults as a starting-point
expected = dict(defaults)
instance_values = {
 'created':datetime.strftime(
 test_object.created,
 test_object._data_time_string
),
 'modified':datetime.strftime(
 test_object.modified,
 test_object._data_time_string
),
 'oid':str(test_object.oid),
 'is_active':test_object.is_active,
 'is_deleted':test_object.is_deleted,
 }

Building the expected value at this point, then, is simply a matter of updating it with
the data dict and instance values. With that done, we can perform the actual test
assertion:

expected.update(instance_values)
expected.update(data_dict)
self.assertEqual(expected, actual)

As before, each property/argument that needs to be tested requires its own nested
loop, and a copy of the same process from the topmost loop. At each successive loop
level, the data_dict value has to include more and more data to pass to the
from_data_dict method, but the balance of each sub-loop is otherwise identical:

for items in GoodOrderItems:
 # - Same structure as above, but adding items
 data_dict = {
 'name':name,
 'street_address':street_address,

Testing Data Persistence Chapter 14

[463]

 'city':city,
 'items':items,
 }
 test_object = Order.from_data_dict(data_dict)
 actual = test_object.to_data_dict()
 expected = dict(defaults)
 instance_values = {
 'created':datetime.strftime(
 test_object.created,
 test_object._data_time_string
),
 'modified':datetime.strftime(
 test_object.modified,
 test_object._data_time_string
),
 'oid':str(test_object.oid),
 'is_active':test_object.is_active,
 'is_deleted':test_object.is_deleted,
 }
 expected.update(instance_values)
 expected.update(data_dict)
 self.assertEqual(expected, actual)
 for building_address in GoodStandardOptionalTextLines[0:2]:
 for region in GoodStandardOptionalTextLines[0:2]:
 for postal_code in GoodStandardOptionalTextLines[0:2]:
 for country in GoodStandardOptionalTextLines[0:2]:
 pass
self.fail('testfrom_data_dict is not complete')

Testing the matches method turns out to be less complicated than might be expected
at first glance. A complete test, after all, needs to test for both True and False results,
across all the properties of an object instance, with criteria that might be 1 value or 12,
or (theoretically) dozens or hundreds. Fortunately, by using the same nested loop
structure that's been used for to_data_dict and from_data_dict tests, but varying
it to create the criteria being used for the test and determining what the expected
value needs to be at every step along the way, it's actually not that difficult. The test
process starts by creating an object with known functional data in every attribute:

def testmatches(self):
 # Tests the matches method of the Order class
 # - First, create an object to test against, with as complete
 # a data-set as we can manage
 test_object = Order(
 name = GoodStandardRequiredTextLines[0],
 street_address = GoodStandardRequiredTextLines[0],
 city = GoodStandardRequiredTextLines[0],
 building_address = GoodStandardOptionalTextLines[0],

Testing Data Persistence Chapter 14

[464]

 region = GoodStandardOptionalTextLines[0],
 postal_code = GoodStandardOptionalTextLines[0],
 country = GoodStandardOptionalTextLines[0],
)

The nested loop structure iterates over a range of numbers (0 and 1), and retrieves the
test value from the appropriate list based on the type of value that the property in the
loop relates to, creates or adds to the criteria, and determines whether the expected
result should be True or False based on any previous expected value and the
comparison of the loop's criteria value against the corresponding object property. All
that remains after that is the assertion that the expected value equals the actual value
from calling the test object's matches method:

- Then we'll iterate over some "good" values, create criteria
for name_num in range(0,2):
 name = GoodStandardRequiredTextLines[name_num]
 criteria = {'name':name}
 expected = (name == test_object.name)
 self.assertEqual(expected, test_object.matches(**criteria))

The reason that each sub-loop pays attention to the expected value set in its parent is
to make sure that False results at a higher loop level won't get overridden by a
potential True result at the current loop level. For example, at this point in the test
iterations, if name results in a False result (because it doesn't match
test_object.name), even if street_address does match, it should still return a
False result:

for str_addr_num in range(0,2):
 street_address = GoodStandardRequiredTextLines[str_addr_num]
 criteria['street_address'] = street_address
 expected = (expected and street_address ==
test_object.street_address)
 self.assertEqual(expected, test_object.matches(**criteria))

The pattern for each sub-loop is, apart from the name of the property value being
added to the criteria, and the redefinition of the expected value, identical all the way
down the tree of loops:

for city_num in range(0,2):
 city = GoodStandardRequiredTextLines[city_num]
 criteria['city'] = city
 expected = (expected and city == test_object.city)
 self.assertEqual(expected, test_object.matches(**criteria))
 for bldg_addr_num in range(0,2):
 building_address = GoodStandardOptionalTextLines[bldg_addr_num]
 criteria['building_address'] = building_address

Testing Data Persistence Chapter 14

[465]

 expected = (
 expected and
 building_address == test_object.building_address
)
 self.assertEqual(expected,
test_object.matches(**criteria))
 for region_num in range(0,2):
 for pc_num in range(0,2):
 for cntry_num in range(0,2):
country=GoodStandardOptionalTextLines[cntry_num]
self.fail('testmatches is not complete')

The last remaining method that's common to all of the new data objects is the
_load_objects helper class method. Initial unit testing raised some syntax concerns
that made it necessary to remove the abstraction on the method in
JSONFileDataObject, and implement an overriding class method in each of the
subordinate classes, all of which call the original class method as follows:

@classmethod
def _load_objects(cls, force_load=False):
 return JSONFileDataObject._load_objects(cls, force_load)

That, in turn, started raising test-method requirements for the methods in the test
runs. The implementation of those tests was not difficult, building to some extent on
the original test method written for JSONFileDataObject, where it originated. The
structure for that test against the Order class is the simplest example, and starts much
the same way, but forcing the on-disk and in-memory data stores to clear, but after
setting the on-disk location to a disposable directory:

def test_load_objects(self):
 # Tests the _load_objects method of the Order class
 # - First, forcibly change Order._file_store_dir to a disposable
 # temp-directory, and clear the in-memory and on-disk stores
 Order._file_store_dir = '/tmp/test_artisan_objects/'
 Order._loaded_objects = None
 if os.path.exists(Order._file_store_dir):
 rmtree(Order._file_store_dir)
 self.assertEqual(Order._loaded_objects, None)

Again, in order to test the loading process, it's necessary to create and save some
objects:

- Iterate through some objects, creating them and saving them.
 for name in GoodStandardRequiredTextLines[0:2]:
 for street_address in GoodStandardRequiredTextLines[0:2]:
 for city in GoodStandardRequiredTextLines[0:2]:

Testing Data Persistence Chapter 14

[466]

 test_object = Order(name, street_address, city)
 test_object.save()

As each object is created, its presence in the in-memory and on-disk stores is verified:

- Verify that the object exists
- in memory
self.assertNotEqual(
 Order._loaded_objects.get(str(test_object.oid)),
 None
)
- on disk
file_path = '%s/Order-data/%s.json' % (
 Order._file_store_dir, test_object.oid
)
self.assertTrue(
 os.path.exists(file_path),
 'The file was not written at %s' % file_path
)

It's also necessary to clear the in-memory store, reload it, and verify that the newly
created object is still there. This happens in each object-creation iteration:

- Make a copy of the OIDs to check with after clearing
the in-memory copy:
oids_before = sorted([str(key) for key in
Order._loaded_objects.keys()])
- Clear the in-memory copy and verify all the oids
exist after a _load_objects is called
Order._loaded_objects = None
Order._load_objects()
oids_after = sorted(
 [str(key) for key in Order._loaded_objects.keys()]
)
self.assertEqual(oids_before, oids_after)

Verification that the deletion process removes in-memory and on-disk objects works
by iterating over a list of instances, selecting one at random, deleting that instance,
and verifying its removal the same way that the initial creation was verified:

- Delete items at random and verify deletion and load after each
instances = list(Order._loaded_objects.values())
while instances:
 target = choice(instances)
 Order.delete(target.oid)
 # - Verify that the object no longer exists
 # - in memory
 self.assertEqual(

Testing Data Persistence Chapter 14

[467]

 Order._loaded_objects.get(str(test_object.oid)),
 None
)
 # - on disk
 file_path = '%s/Order-data/%s.json' % (
 Order._file_store_dir, target.oid
)
 self.assertFalse(
 os.path.exists(file_path),
 'File at %s was not deleted' % file_path
)
 # - Make a copy of the OIDs to check with after clearing
 # the in-memory copy:
 oids_before = sorted(
 [str(key) for key in Order._loaded_objects.keys()]
)
 # - Clear the in-memory copy and verify all the oids
 # exist after a _load_objects is called
 Order._loaded_objects = None
 Order._load_objects()
 oids_after = sorted([str(key) for key in
Order._loaded_objects.keys()])
 self.assertEqual(oids_before, oids_after)

The list of instances is updated at the end of each iteration:

instances.remove(target)

Finally, any files that might remain are deleted, just to be safe:

- Clean up any remaining in-memory and on-disk store items
Order._loaded_objects = None
if os.path.exists(Order._file_store_dir):
 rmtree(Order._file_store_dir)

Most of the balance of the test methods follow patterns established previously:

The various properties and their getter, setter, and deleter methods use the
structure noted at the beginning of this section
The various __init__ methods still create and assert argument-to-
property settings for a reasonable subset of good values for all
arguments/properties

Testing Data Persistence Chapter 14

[468]

There are a few outliers, though. First and foremost, the sort class method that was
defined without implementation, as an abstract class method in
BaseDataObject, has surfaced. At this point, we don't even know whether we're
going to need it, let alone what shape it will need to take. Under the circumstances,
deferring both its implementation and the testing of that implementation feels
prudent. In order to allow the required unit test to be ignored, it can be decorated
with unittest.skip:

@unittest.skip(
 'Sort will be implemented once there\'s a need for it, '
 'and tested as part of that implementation'
)
def testsort(self):
 # Tests the sort method of the Artisan class
 # - Test all permutations of "good" argument-values:
 # - Test all permutations of each "bad" argument-value
 # set against "good" values for the other arguments:
 self.fail('testsort is not yet implemented')

Two more outliers surfaced in the Artisan class: add_product and remove_product,
which had no testable concrete implementation before now. With the addition of
the Goodproducts and Badproducts value lists to test with, testadd_product is
very similar to previous test methods utilizing value lists to test against:

def testadd_product(self):
 # Tests the add_product method of the Artisan class
 test_object = Artisan('name', 'me@email.com', GoodAddress)
 self.assertEqual(test_object.products, ())
 check_list = []
 for product in Goodproducts[0]:
 test_object.add_product(product)
 check_list.append(product)
 self.assertEqual(test_object.products, tuple(check_list))
 test_object = Artisan('name', 'me@email.com', GoodAddress)
 for product in Badproducts:
 try:
 test_object.add_product(product)
 self.fail(
 'Artisan.add_product should not allow the '
 'addition of "%s" (%s) as a product-item, but '
 'it was allowed' % (product, type(product).__name__)
)
 except (TypeError, ValueError):
 pass

Testing Data Persistence Chapter 14

[469]

The process for testing remove_product starts by using that same process to create a
collection of products, then removes them one at a time, verifying the removal at each
iteration:

def testremove_product(self):
 # Tests the remove_product method of the Artisan class
 test_object = Artisan('name', 'me@email.com', GoodAddress)
 self.assertEqual(test_object.products, ())
 for product in Goodproducts[0]:
 test_object.add_product(product)
 check_list = list(test_object.products)
 while test_object.products:
 product = test_object.products[0]
 check_list.remove(product)
 test_object.remove_product(product)
 self.assertEqual(test_object.products, tuple(check_list))

Because hms_artisan..Order was built from the ground up, its property method
tests needed to explicitly perform that same sort of is_dirty check noted earlier, but
also had to implement any of several standard property tests. A typical deleter and
setter method test looks like this:

def test_del_building_address(self):
 # Tests the _del_building_address method of the Order class
 test_object = Order('name', 'street_address', 'city')
 self.assertEqual(
 test_object.building_address, None,
 'An Order object is expected to have None as its default '
 'building_address value if no value was provided'
)
 # - Hard-set the storage-property's value, call the
 # deleter-method, and assert that it's what's expected
 # afterwards:
 test_object._set_is_dirty(False)
 test_object._building_address = 'a test value'
 test_object._del_building_address()
 self.assertEqual(
 test_object.building_address, None,
 'An Order object is expected to have None as its '
 'building_address value after the deleter is called'
)
 self.assertTrue(test_object.is_dirty,
 'Deleting Order.building_address should set is_dirty to True'
)

...

Testing Data Persistence Chapter 14

[470]

def test_set_building_address(self):
 # Tests the _set_building_address method of the Order class
 # - Create an object to test with:
 test_object = Order('name', 'street_address', 'city')
 # - Test all permutations of "good" argument-values:
 for expected in GoodStandardOptionalTextLines:
 test_object._set_building_address(expected)
 actual = test_object._get_building_address()
 self.assertEqual(
 expected, actual,
 'Order expects a building_address value set to '
 '"%s" (%s) to be retrieved with a corresponding '
 'getter-method call, but "%s" (%s) was returned '
 'instead' %
 (
 expected, type(expected).__name__,
 actual, type(actual).__name__,
)
)
 # - Test is_dirty after a set
 test_object._set_is_dirty(False)
test_object._set_building_address(GoodStandardOptionalTextLines[1])
 self.assertTrue(test_object.is_dirty,
 'Setting a new value in Order.business_address should '
 'also set the instance\'s is_dirty to True'
)
 # - Test all permutations of "bad" argument-values:
 for value in BadStandardOptionalTextLines:
 try:
 test_object._set_building_address(value)
 # - If this setter-call succeeds, that's a
 # test-failure!
 self.fail(
 'Order._set_business_address should raise '
 'TypeError or ValueError if passed "%s" (%s), '
 'but it was allowed to be set instead.' %
 (value, type(value).__name__)
)
 except (TypeError, ValueError):
 # - This is expected, so it passes
 pass
 except Exception as error:
 self.fail(
 'Order._set_business_address should raise '
 'TypeError or ValueError if passed an invalid '
 'value, but %s was raised instead: %s.' %
 (error.__class__.__name__, error)
)

Testing Data Persistence Chapter 14

[471]

The final test-run report for all tests for the hms_artisan namespace shows that all
the tests were run except the seven that were explicitly skipped, with no test failures:

Testing the new hms_core Classes
After going through the usual setup process for the unit tests of a module (creating
the test module, executing the test module, creating test case classes for each item
reported as missing, executing the test module, and creating test methods for each
item reported as missing), the initial results show far fewer tests in need of
implementation than in previous unit test modules, with only 11 tests that need to be
populated:

Testing Data Persistence Chapter 14

[472]

There is a caveat to these results, though: they do not include tests of the data object
methods required by BaseDataObject and HMSMongoDataObject, just of the
properties and methods defined as part of the Artisan and Product classes that
were created. Those, living in their own test module, add another 33 tests that need to
be implemented:

Unit testing hms_core.data_storage.py
The bulk of the testing for the DatastoreConfig class follows testing patterns
that've been established earlier. The noteworthy exception is in testing its
from_config class method, which requires actual config files to be written to test
against. Testing all of the good values by creating a config file full of them doesn't
look that much different from other test methods that involve creating an object
instance from a dict value, though – the same sort of iteration over all the good test
values starts it off:

- Test all permutations of "good" argument-values:
config_file = '/tmp/datastore-test.json'
for database in good_databases:
 for host in good_hosts:
 for password in good_passwords:
 for port in good_ports:
 for user in good_users:
 config = {
 'database':database,
 'host':host,
 'password':password,
 'port':port,
 'user':user,
 }

Testing Data Persistence Chapter 14

[473]

This is where the temporary configuration file is created:

fp = open('/tmp/datastore-test.json', 'w')
json.dump(config, fp)
fp.close()

Then from_config is called, and the various assertions are executed:

test_object = DatastoreConfig.from_config(config_file)
self.assertEqual(test_object.database, database)
self.assertEqual(test_object.host, host)
self.assertEqual(test_object.password, password)
self.assertEqual(test_object.port, port)
self.assertEqual(test_object.user, user)
os.unlink(config_file)

A similar approach/structure is used in testing the various bad values for each
argument/property (database, host, password, port, and user). They all look
much like the test of bad database values:

- Test all permutations of each "bad" argument-value
set against "good" values for the other arguments:
- database
host = good_hosts[0]
password = good_passwords[0]
port = good_ports[0]
user = good_users[0]
for database in bad_databases:
 config = {
 'database':database,
 'host':host,
 'password':password,
 'port':port,
 'user':user,
 }
 fp = open('/tmp/datastore-test.json', 'w')
 json.dump(config, fp)
 fp.close()
 try:
 test_object = DatastoreConfig.from_config(config_file)
 self.fail(
 'DatastoreConfig.from_config should not '
 'accept "%s" (%s) as a valid database config-'
 'value, but it was allowed to create an '
 'instance' % (database, type(database).__name__)
)
 except (RuntimeError, TypeError, ValueError):
 pass

Testing Data Persistence Chapter 14

[474]

Much of the testing processes for HMSMongoDataObject are also in the vein of
previously established test-writing patterns:

Because the class derives from BaseDataObject, there are many of the
same required test methods that depend on abstract functionality being
implemented, so a derived class is created to test against, if only to ensure
that the dependent method calls are successful

The tests of the _create and _update methods are essentially identical to
those created while testing their hms_artisan counterparts, since they too
simply raise NotImplementedError

Testing the functionality of any HMSMongoDataObject-derived
class requires an operational MongoDB installation. Without one,
the tests may raise errors (which would hopefully at least indicate
what the problem is), or may just sit waiting for a connection to a
MongoDB to resolve until the connection-effort times out.

The local properties, since they all use actual deletion of their underlying storage
attributes, and are lazily instantiated (created when they are needed if they aren't
already available), require a different approach than previous property tests. In the
interests of keeping all of the related test code in one spot, the test_del_ methods
have been skipped, and the testing of the deletion aspects of the properties merged in
with the test_get_ methods. Using test_get_connection as an example:

def test_get_connection(self):
 # Tests the _get_connection method of the HMSMongoDataObject class
 # - Test that lazy instantiation on a new instance returns the
 # class-attribute value (_connection)
 test_object = HMSMongoDataObjectDerived()
 self.assertEqual(
 test_object._get_connection(),
 HMSMongoDataObjectDerived._connection
)
 # - Test that deleting the current connection and re-aquiring it
 # works as expected
 test_object._del_connection()
 self.assertEqual(
 test_object._get_connection(),
 HMSMongoDataObjectDerived._connection
)
 # - There may be more to test later, but this suffices for now...

Testing Data Persistence Chapter 14

[475]

The process for each is similar:

Create a test_object instance1.
Assert that the tested property getter returns the common class attribute2.
value when called (HMSMongoDataObjectDerived._connection in this
case)
Call the deleter method3.
Reassert that the common class attribute value is returned when the getter4.
is called again

It might also be a good idea to assert, between the deleter and getter method calls,
that the class attribute value is deleted, but it's not really necessary so long as the final
getter call assertion still passes.

There are several items in the test case class for HMSMongoDataObject that depend
on an actual database connection in order to be even remotely useful. In addition,
there are test methods that directly relate to that dependency that can be skipped, or
whose implementation is noteworthy. Since we'll need a database connection, that
has to be configured every time that the test case class runs. Ideally, it should not run
for every test that needs a connection, though – it's not a big deal if it does, at least not
at the scale of the system so far, but in larger-scale systems, creating a new database
for every test method that needs it could slow things down. Maybe substantially.

Fortunately, the standard Python unittest module provides methods that can be
used to both initialize the database connection data, and delete the database used for
testing after all the tests are complete. Those are, respectively, the setUp and
tearDown methods. setUp need do nothing more than configure the data access,
since HMSMongoDataObjects will take care of creating the connection,
database, and collection objects it needs when they are needed:

def setUp(self):
 # - Since we need a database to test certain methods,
 # create one here
 HMSMongoDataObject.configure(self.__class__.config)

tearDown is responsible for completely deleting the test database that will have been
created for the test case class, and simply creates a MongoClient, then uses it to drop
the database specified in the configuration:

def tearDown(self):
 # - delete the database after we're done with it, so that we
 # don't have data persisting that could bollix up subsequent
 # test-runs

Testing Data Persistence Chapter 14

[476]

 from pymongo import MongoClient
 client = MongoClient()
 client.drop_database(self.__class__.config.database)

The setUp and tearDown methods won't behave the same way as a typical test
method if we try to assert any expected values or behavior – any assertions made that
fail will simply raise errors. That, then, means that while we could assert that
configuration has completed accurately, it doesn't really do anything useful from the
perspective of reporting. In this case, if the configuration call doesn't raise any errors,
and the various test methods that rely on it pass, it can be taken as proof that
configuration is doing what it's expected to do. In that case, we can skip the relevant
test methods:

@unittest.skip(
 'The fact that the configuration works in setUp is sufficient'
)
def test_get_configuration(self):
 # Tests the _get_configuration method of the HMSMongoDataObject
class
 # - Test all permutations of "good" argument-values:
 # - Test all permutations of each "bad" argument-value
 # set against "good" values for the other arguments:
 self.fail('test_get_configuration is not yet implemented')

@unittest.skip(
 'The fact that the configuration works in setUp is sufficient'
)
def testconfigure(self):
 # Tests the configure method of the HMSMongoDataObject class
 self.fail('testconfigure is not yet implemented')

In order to fully test the delete, get, and save methods, we have to implement a
throwaway derived class – HMSMongoDataObjectDerived:

class HMSMongoDataObjectDerived(HMSMongoDataObject):

 _data_dict_keys = (
 'name', 'description', 'cost', 'oid', 'created', 'modified',
 'is_active', 'is_deleted'
)

Testing Data Persistence Chapter 14

[477]

We'll want some local properties that can be used to test get, in particular, but they
don't need to be anything more than simple attributes that are set during initialization
and that appear in the results of a to_data_dict call:

def __init__(self, name=None, description=None, cost=0,
 oid=None, created=None, modified=None, is_active=None,
 is_deleted=None, is_dirty=None, is_new=None
):
 HMSMongoDataObject.__init__(
 self, oid, created, modified, is_active, is_deleted,
 is_dirty, is_new
)
 self.name = name
 self.description = description
 self.cost = cost

def to_data_dict(self):
 return {
 # - "local" properties
 'name':self.name,
 'description':self.description,
 'cost':self.cost,
 # - standard items from HMSMongoDataObject/BaseDataObject
'created':self.created.strftime(self.__class__._data_time_string),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
'modified':self.modified.strftime(self.__class__._data_time_string),
 'oid':str(self.oid),
 }

def matches(self, **criteria):
 return HMSMongoDataObject.matches(self, **criteria)

In order to test the delete method, we need to first create and save some objects:

def testdelete(self):
 # Tests the delete method of the HMSMongoDataObject class
 # - In order to really test get, we need some objects to test
 # against, so create a couple dozen:
 names = ['Alice', 'Bob', 'Carl', 'Doug']
 costs = [1, 2, 3]
 descriptions = [None, 'Description']
 all_oids = []
 for name in names:
 for description in descriptions:
 for cost in costs:
 item = HMSMongoDataObjectDerived(
 name=name, description=description, cost=cost

Testing Data Persistence Chapter 14

[478]

)
 item.save()
 all_oids.append(item.oid)

We'll want to test that we can delete multiple items and single items alike, so we'll
take the last half of the collection of objects created, delete those, then take the last
half of the remaining items, and so on, until we're down to a single object. In each
iteration, we delete the current collection of oid, and verify that they don't exist after
they've been deleted. Finally, we verify that all of the created objects have been
deleted:

- Delete varying-sized sets of items by oid, and verify that
the deleted oids are gone afterwards...
while all_oids:
 try:
 oids = all_oids[len(all_oids)/2:]
 all_oids = [o for o in all_oids if o not in oids]
 except:
 oids = all_oids
 all_oids = []
 HMSMongoDataObjectDerived.delete(*oids)
 items = HMSMongoDataObjectDerived.get(*oids)
 self.assertEqual(len(items), 0)
- Verify that *no* items exist after they've all been deleted
items = HMSMongoDataObjectDerived.get()
self.assertEqual(items, [])

A similar approach is taken for testing get – creating several items with easily
identifiable property values that can be used as criteria:

def testget(self):
 # Tests the get method of the HMSMongoDataObject class
 # - In order to really test get, we need some objects to test
 # against, so create a couple dozen:
 names = ['Alice', 'Bob', 'Carl', 'Doug']
 costs = [1, 2, 3]
 descriptions = [None, 'Description']
 for name in names:
 for description in descriptions:
 for cost in costs:
 HMSMongoDataObjectDerived(
 name=name, description=description, cost=cost
).save()

Testing Data Persistence Chapter 14

[479]

Then we can iterate over those same values, creating a criteria set to use, and
verifying that the returned objects have the criteria values that we passed. One
criteria value first:

- Now we should be able to try various permutations of get
and get verifiable results. These tests will fail if the
_data_dict_keys class-attribute isn't accurate...
for name in names:
 criteria = {
 'name':name,
 }
 items = HMSMongoDataObjectDerived.get(**criteria)
 actual = len(items)
 expected = len(costs) * len(descriptions)
 self.assertEqual(actual, expected,
 'Expected %d items returned (all matching name="%s"), '
 'but %d were returned' %
 (expected, name, actual)
)
 for item in items:
 self.assertEqual(item.name, name)

Then we test with multiple criteria, to assure that more than one criteria value
behaves as expected:

for cost in costs:
 criteria = {
 'name':name,
 'cost':cost,
 }
 items = HMSMongoDataObjectDerived.get(**criteria)
 actual = len(items)
 expected = len(descriptions)
 self.assertEqual(actual, expected,
 'Expected %d items returned (all matching '
 'name="%s" and cost=%d), but %d were returned' %
 (expected, name, cost, actual)
)
 for item in items:
 self.assertEqual(item.name, name)
 self.assertEqual(item.cost, cost)

Testing Data Persistence Chapter 14

[480]

Between the tests of the delete and get methods, we've effectively already tested
the save method as well – we had to save objects to get or delete them, after all – so
testsave is arguably not really needed. In the interest of having an actual test, rather
that an entry for another skipped test, we'll implement it anyway, and use it to test
that we can also get an object by its oid value:

- Noteworthy because save/get rather than save/pymongo-query.
another option would be to do a "real" pymongo query, but that
test-code would look like the code in get anyway...?
def testsave(self):
 # Tests the save method of the HMSMongoDataObject class
 # - Testing save without using get is somewhat cumbersome, and
 # perhaps too simple...?
 test_object = HMSMongoDataObjectDerived()
 test_object.save()
 expected = test_object.to_data_dict()
 results = HMSMongoDataObjectDerived.get(str(test_object.oid))
 actual = results[0].to_data_dict()
 self.assertEqual(actual, expected)

The final test output, once everything is implemented and passes, shows 47 tests,
with five skipped:

Testing Data Persistence Chapter 14

[481]

Unit testing hms_core.co_objects.py
The Artisan and Product classes in co_objects, like their counterparts in
the artisan_objects module of hms_artisan, had to be overridden in order to
provide the appropriate is_dirty behavior when any of those properties that are
part of a state data record are altered. As a result, their corresponding test methods
had to be created, just as happened when testing their counterparts in the
hms_artisan package. Effectively, the same changes were made in both modules,
and as a result the test classes and the test methods within them for classes that exist
in both packages turned out to be identical.

Unit tests and trust
It was noted earlier that the real purpose of unit testing code is about ensuring that
code behaves in a predictable fashion across all possible execution cases. In a very real
way, it is also about establishing a measure of trust in a code base. In that context,
there is a line that has to be drawn with respect to where that trust can simply be
taken as a given. For example, the various unit tests in this iteration have focused on
ensuring that the code created for data persistence gets everything that is necessary to
and from the database engine. It has not been concerned with whether the library to
connect to the database engine is trustworthy; for our purposes, we assume that it is,
at least until we encounter a test failure that cannot be explained in any other way.

Unit tests provide that trust for others who might consume our code – knowing that
everything that needs to be tested has been, and that all the tests have passed.

Building/distribution, demonstration, and
acceptance
The build process for the individual modules will not have changed much, though
with unit tests now available, those can be added to the setup.py files that are used
to package the individual Python packages. The setup function that's already in
place can, with minimal changes, be used to execute the entire test suite simply by
providing a test_suite argument that points to the root test suite directory.

Testing Data Persistence Chapter 14

[482]

It may be necessary to ensure that the path to the test suite directory has been added
to sys.path as well:

#!/usr/bin/env python

import sys
sys.path.append('../standards')
sys.path.append('tests/test_hms_core') # <-- This path

The current setup function call, then, includes test_suite like this:

setup(
 name='HMS-Core',
 version='0.1.dev0',
 author='Brian D. Allbee',
 description='',
 package_dir={
 '':'src',
 },
 packages=[
 'hms_core',
],
 test_suite='tests.test_hms_core',
)

The entire test suite can then be executed with python setup.py test, which
returns a line-by-line summary of the tests executed and their results:

Testing Data Persistence Chapter 14

[483]

Packaging the code in a component project still uses python setup.py sdist from
within the individual project directories, and still yields an installable package:

Demonstrating the new data-persistence functionality could be done in several ways,
but requires the creation of disposable/temporary demo data objects in a
disposable/temporary database. There's code in the test_co_objects test module
that does just that, so creating a minimal data object class based on that structure
(calling it ExampleObject for demonstrative purposes), then running:

HMSMongoDataObject.configure(
 DatastoreConfig(database='demo_data')
)

print('Creating data-objects to demo with')
names = ['Alice', 'Bob', 'Carl', 'Doug']

Testing Data Persistence Chapter 14

[484]

costs = [1, 2, 3]
descriptions = [None, 'Description']
for name in names:
 for description in descriptions:
 for cost in costs:
 item = ExampleObject(
 name=name, description=description, cost=cost
)
 item.save()

It takes care of generating a dataset that can be examined. From that point, any tool –
the command-line mongo client or a GUI, such as Robo3T – can be used to view and
verify that data was, in fact, persisted:

If more detailed acceptance examples are needed – such as examples for each of the
business object types – a similar script could be written to create Artisan and
Product instances and save them as well. Similarly, with respect to the hms_artisan
data object classes, simply showing the files written for objects in an example/demo
environment should suffice.

Testing Data Persistence Chapter 14

[485]

Operations/use, maintenance, and
decommissioning considerations
There is no substantial change yet as these items are concerned:

The packages, though there are now three of them, are still very simple.
Although we've added an external dependency with the inclusion of the
pymongo library, we're not yet at a point where we need to worry about
how that dependency will be handled.
There will obviously need to be a MongoDB installation, but until the code
is ready to be integrated to some shared environment, even that is a non-
issue – local development can use local database engines for now.
From a decommissioning perspective, uninstalling the software hasn't
really changed except that there are now three packages to uninstall – but
the process for each is a variation of the process as it stood at the end of the
last iteration (pip uninstall HMS-Core).

Summary
While there may be other data-access and data-persistence tweaks in later iterations,
and there are a few data objects whose specific details aren't known yet because of
integration concerns with other systems, the bulk of the data objects work is
complete.

Thus far, the development iterations against the hms_sys code bases have had most
of their attention focused on what might be thought of as system
functionality – ensuring that data structures are well formed, can be validated, and
will live longer than a single user session or Python run. Interaction with system data
from a user perspective hasn't been addressed yet at all. Before that can be addressed,
though, there is another layer that needs to be at least analyzed, if not built – the
Artisan Gateway service, which acts as a central point where data from remote
artisans and Central Office staff comes together.

15
Anatomy of a Service

 The next logical chunk of functionality to attack in hms_sys is the Artisan Gateway
Service. This service waits for input from either Artisan or Central Office end users,
creating or updating object data as needed, and perhaps synchronizing that data with
the web store system's database. Both of the end user applications are expected to
communicate with the Artisan Gateway Service on a completely random basis;
whenever someone wants to make a change to the data, it'll be ready and waiting to
process that request.

Before we can really implement this service, however, we need to work out how any
service can or should work, written in Python. To that end, we will have to examine
and understand the following:

The basic implementation of the structure of a service, including the
following:

Options for managing the configuration of a service instance
How a service can read and respond to requests

How and when a service is launched in the following environments:
A reasonably modern, POSIX-compliant system (Linux, for
example)
Windows

Whether there are other, better designs that will work in any OS that
Python is available on

In order to better understand these facets of the implementation and execution of a
service, we'll build a basic service structure from the ground up, which can then be
used as a foundation for the final Artisan Gateway Service.

Anatomy of a Service Chapter 15

[487]

What is a service?
Services, at their most basic, are simply programs that run in the background on a
computer. They typically wait for input from somewhere, perform some actions
based on that input, and return data that, at a minimum, indicates that the actions
that were undertaken either succeeded or failed. At the most basic level, the input
might not even be something that is visible to a user; services that wait for network
activities, monitor filesystems, or even just run on some sort of timer-controlled basis,
are very common in many operating systems today.

Services should always be available, running continuously, for as long as the host
machine is running; this has some implications for how they are written and
implemented, as follows:

They have to be very fault-tolerant: a service that crashes and dies every
time something unexpected happens, and has to be restarted as a result, is
of little use.
They should, arguably, be as functionally self-contained as is possible;
external dependencies that could fail (and cause a running service to crash
as a result) should be examined with a critical eye.
Because their operations may be completely invisible to the user, there is a
lot of potential for a poorly designed or implemented service to overrun
system resources, which could eventually take down an entire machine.
Even if there is no multi-processing involved, care needs to be taken and
discipline exercised, in order to avoid things such as loops that never
terminate or functionality that leaves orphan objects, data, or functions in
memory. If these occur, it's just a matter of time (or load on the service)
until the memory or available CPU dwindles to nothing.

Service structure
All that said, services aren't necessarily all that complex. If there are operating system
facilities available to manage the actual code execution (startup and shutdown), they
might not be any more complex, structurally, than the following code:

#!/usr/bin/env python
"""
A simple daemon-like function that can be started from the command-
line.
"""
 import syslog

Anatomy of a Service Chapter 15

[488]

 from time import sleep

 def main_program():
 iterations = 0
 syslog.syslog('Starting %s' % __file__)
 while True:
 # TODO: Perform whatever request-acquisition and response-
 # generation is needed here...
 syslog.syslog('Event Loop (%d)' % iterations)
 sleep(10)
 iterations += 1
 syslog.syslog('Exiting %s' % __file__)

 if __name__ == '__main__':
 main_program()

When the preceding code is run, it generates no user-visible output, but watching the
system logs (using tail -f /var/log/syslog, on a Linux machine) shows that it is
doing what it's supposed to, as follows:

It writes the starting message to the log file before entering the main loop.
In each pass through the loop, it does the following:

Writes a message to the log, with the iteration number
Sleeps for 10 seconds
Increments the iteration counter

The exiting message is not being written to the log file, but that's expected at this
point, since the only way to stop the main loop is to kill the program itself, and that
terminates the program without exiting the loop. A typical log output, from startup
through a few iterations, looks as follows:

This isn't much of a service, to be sure, but it illustrates what might be considered the
bare minimum of the functionality that would be common to any service.

Anatomy of a Service Chapter 15

[489]

At the heart of most services is a loop that runs until the service is shut down or
killed. Within that loop is where the service will actually check for input, in one of
several ways. Some of the more common variants include the following:

It could be waiting on a request coming in over a network socket (a web
service would use this approach).
It could be waiting on incoming data from standard input (stdin).
It could actively poll for incoming messages from an external queue
system, such as RabbitMQ, or cloud-based equivalents, such as AWS's SQS
or Google Cloud Platform's Cloud Pub/Sub.

These are only a few of the possibilities for service input. Other
mechanisms that don't lend themselves to a direct waiting-for-
something model could always push events into a local queue, and
have the service watching or polling from that queue mechanism.

In all but the most basic of services, incoming requests will have to be evaluated, to
determine what functionality has to be called in order to handle the request. The most
common mechanism for associating incoming request data to a specific functionality
is probably a large if…elif…else structure that passes the responsibility for
handling a request to specific and dedicated functions, looking something like the
following:

- Evaluate the incoming request:
 if request['path'].startswith('/product'):
 return handle_product_request(request)
 elif request['path'].startswith('/artisan'):
 return handle_artisan_request(request)
 elif request['path'].startswith('/customer'):
 return handle_customer_request(request)
 else:
- Invalid request, so return an error
 return handle_invalid_request(request)

Each of the handle_{something}_request functions, then, would be responsible
for taking the incoming request, determining what to do with it, and returning the
resultant data.

There is a standard Python library, python-daemon, that takes this basic approach a
step further, allowing a function to be wrapped in a basic daemon context. The same
basic function, with a python-daemon DaemonContext wrapped around it, is very
similar, and is shown in the following snippet:

Anatomy of a Service Chapter 15

[490]

#!/usr/bin/env python
"""
A bare-bones daemon implementation.
"""
 import syslog
 from daemon import DaemonContext
 from time import sleep

 def main_program():
 iterations = 0
 syslog.syslog('Starting %s' % __file__)
 while True:
 # TODO: Perform whatever request-acquisition and response-
 # generation is needed here...
 syslog.syslog('Event Loop (%d)' % iterations)
 sleep(10)
 iterations += 1
 syslog.syslog('Exiting %s' % __file__)

 if __name__ == '__main__':
 with DaemonContext():
 main_program()

The terms service and daemon are, for the purposes of this book,
interchangeable; they both refer to the same sort of background
process program.

The execution of this code yields almost identical results (barring the filename that
appears in the log messages, it is identical, in fact). The actual differences are
effectively invisible, once the daemon code is running. Using DaemonContext
provides some operational aspects that the bare-bones, function-only code does not
deal with, which are considered to be best practices for daemon processes:

Assuring that any open files associated with the command during startup
get closed
Changing the working directory for the process to a known and/or secure
directory
Setting the file-creation permissions mask, so that the files created by the
processes will have a known (and securable) permissions set
Performing system-level process setup, to allow the process itself to run in
the background
Dissociating the process from any Terminal activity, so that it won't
respond to Terminal input once the daemon process is launched

Anatomy of a Service Chapter 15

[491]

Although python-daemon is a standard library, it may not be part
of a standard Python installation. If not, it can be installed with pip
install python-daemon.

The python-daemon module, then, provides a very easy way to manage a lot of the
best-practice operations for writing daemons and services. There is, however, a
potential problem with using it. It won't work on systems that don't have a Unix-like
password database (it depends on the pwd module, which is Unix-only). That rules it
out for services that need to run on Windows systems, at the very least.

Ultimately, though, knowing that a service implementation doesn't have to be much
more than a single function call with a perpetual loop, the main concern (outside
of the implementation of the service's logic) is probably how to get the host operating
system to start, stop, and manage the service instance. We'll examine that in
considerably more detail at the end of the chapter, but there are a few other common
service implementation patterns and concerns that bear some examination, first.

Configuration
Services frequently have to be configurable without making changes to the actual
service code, so that the end users or managers of active services don't have to be
developers themselves, in order to be able to effectively manage running service
instances. There are several options that can be used to read configuration and setting
values from files, each with its own strengths and weaknesses. In order to better
compare and contrast them, let's examine the variations that provide the
configuration for a service that does the following:

Logs information, warning, error, and critical level messages:
Information and warning level messages to a console
Everything, including information and warning level
messages, to a single, common log file, whose location is
configurable

Listens for input messages from a queue service, such as RabbitMQ, or a
cloud-based queue service, such as AWS's SQS or Google Cloud Platform's
Pub/Sub, and needs to know the following:

A queue name or URL to listen to
How often to check for incoming messages
The credentials for access to the queue in question

Anatomy of a Service Chapter 15

[492]

Windows-style .ini files
Python has a standard package for working with INI files (or, at least, files that are
similar to basic Windows INI files): configparser. A compatible INI-like file that
provides the configuration for previously listed items might look something such as
the following:

[DEFAULT]
This section handles settings-values that are available in other
sections.
- The minimum log-level that's in play
log_level: INFO
queue_type: rabbit
queue_check: 5

[console_log]
Settings for logging of messages to the console
- Message-types to log to a console
capture: INFO, WARNING

[file_log]
Settings for file-logging
log_file: /var/log/myservice/activity.log

[rabbit_config]
Configuration for the RabbitMQ server, if queue_type is "rabbit"
server: 10.1.10.1
port: 5672
queue_name: my-queue
user: username
password: password

Some of the advantages of an INI-style configuration file include the following:

The file structure allows for comments to be used. Any line starting with a
or ; is a comment, and is not parsed, which allows for configuration files
to be documented inline.
Values specified in the [DEFAULT] section are inherited by all of the other
sections, and are available as specified originally, or to be overridden in
later sections.
The format itself has been around for a long time, so it's very mature and
stable.

Anatomy of a Service Chapter 15

[493]

This configuration file's values can be examined with a simple script, listing the
available values in each configuration section and showing some of the potential
disadvantages of the format, as parsed with configparser tools:

The script that generated this output is in the code for Iteration 3, at
hms-gateway/scratch-space/configuration-

examples/ini_config.py.

Some of the potential disadvantages of the format include the following:

The values in the [DEFAULT] configuration section are inherited by all
other sections, even if they are not relevant. The queue_type and
queue_check values are available in the console_log and file_log
sections, for example, where they aren't really relevant.

Anatomy of a Service Chapter 15

[494]

All configuration values are strings, and would probably have to be
converted to their real value types: an int for queue_check and
rabbit_config:port, probably a list of str values for
console_log:capture, a conversion to bool values for any that might
appear, and so on.
The format only really supports two levels of configuration data (sections
and their members).

None of these constraints are likely to be too problematic, though. Knowing that they
exist is generally going to be enough to plan for how they will be accommodated, and
the shape of that accommodation might be nothing more complicated than having no
[DEFAULT] section, and grouping configuration values into more coherent sections,
such as logging and queue.

JSON files
JSON data structures are also a viable candidate for storing configuration file data.
JSON supports data of different types, and complex data structures. Both are
advantages, however trivial they might be, over the basic INI-file structure. There is
no predefined organizational structure, though, so figuring out how configuration
values should be grouped or organized is something that developers will have to give
some thought to. There is also no inheritance of configuration data across sections,
because there are no sections to inherit from. Still, it's a simple, robust, and reasonably
easy-to-understand option. An approximate JSON equivalent of the preceding INI-
flavored configuration file might look something such as the following:

{
 "logging": {
 "log_level": "INFO",
 "console_capture": ["INFO","WARNING"],
 "log_file": "/var/log/myservice/activity.log"
 },
 "queue": {
 "queue_type": "rabbit",
 "queue_check": 5,
 "server": "10.1.10.1",
 "port": 5672,
 "queue_name": "my-queue",
 "user": "username",
 "password": "password"
 }
}

Anatomy of a Service Chapter 15

[495]

If JSON has any disadvantages (with respect to its use as a configuration-file format),
they'd include the fact that there isn't a good way to allow in-file comments. The load
and loads functions provided by Python's json module (for converting a JSON
string and a JSON file, respectively) raise an error, JSONDecodeError, if there is
anything other than data structure in the JSON data being parsed. That's not a deal-
breaker, but there are definitely advantages to having the ability to add comments
(and thus, documentation) to a configuration file, especially if that configuration is
going to be managed by someone that isn't a developer, or isn't willing (or able) to dig
into the code itself, in order to work out how to configure some aspect of a system.

YAML files
Another good contender for configuration files is YAML. YAML acts like JSON in
many respects, in that it provides structured and typed data representations, and can
support complex, nested data structures. In addition, it allows for inline comments,
and the pyyaml module supports hinting for data structures that would not be usable
at all in a JSON-based approach. YAML, like Python, uses indentation as a structural
organization mechanism, indicating (in YAML's case) the key/value relationship
between items. An equivalent to the preceding JSON configuration file (with
comments, and breaking all elements (objects, list members, and so on) into discrete
items in the file), would look like this:

Logging configuration
logging:
 console_capture:
 - INFO
 - WARNING
 log_file: /var/log/myservice/activity.log
 log_level: INFO
Queue configuration
queue:
 queue_type: rabbit
 # Credentials
 user: username
 password: password
 # Network
 server: 10.1.10.1
 port: 5672
 # Queue settings
 queue_name: my-queue
 queue_check: 5

Anatomy of a Service Chapter 15

[496]

We'll build on the idea of using YAML to configure a service later in this chapter.
YAML obviously isn't the only option, but it's one of the better ones, allowing for a
good combination of ease of understanding, the ability to comment/document, and
the availability of more than one value type.

Logging service activities
Since services often run invisibly, in the background, they usually log their activities
in some fashion, if only to provide some visibility into what happened during a
service call where something went awry. Python provides a module, logging, that
allows for a lot of flexibility for logging events and messages from a running
program. The following is a very simple, brute-force example of a reasonably
complete logging process:

import logging

- Define a format for log-output
formatter = logging.Formatter(
 '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
- Get a logger. Once defned anywhere, loggers (with all their
settings and attached formats and handlers) can be retrieved
elsewhere by getting a logger instance using the same name.
logger = logging.getLogger('logging-example')
logger.setLevel(logging.DEBUG)
- Create a file-handler to write log-messages to a file
file_handler = logging.FileHandler('example.log')
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(formatter)
- Attach handler to logger
logger.addHandler(file_handler)

- Log some messages to show that it works:
logger.critical('This is a CRITICAL-level message')
logger.debug('This is a DEBUG-level message')
logger.error('This is an ERROR-level message')
logger.info('This is an INFO-level message')
logger.warn('This is a WARNING-level message')

Anatomy of a Service Chapter 15

[497]

When executed, the preceding script generates the following log output:

A Python Logger object (which is what's returned by the getLogger call) can be set
up to pay attention to log messages of varying priority levels. In order from the least
to the most critical (from a production-system standpoint), the default levels available
(and some typical uses for them) are as follows:

DEBUG: Recording information about processes as they run, steps they
undertake, and the like, with an eye toward providing some visibility into
the details of how the code was executed.
INFO: Informational items, such as the start and end times of request-
handling processes; and perhaps details or metrics on the processes
themselves, such as what arguments were passed, or if a given execution
took longer than expected, but still completed.
WARNING: Conditions that didn't prevent processes or operations from
completing, but that were suspect for some reason, such as taking a lot
longer than expected to complete.
ERROR: Actual errors that were encountered as the code executed, perhaps
including detailed trace-back information that would help a developer
figure out what actually caused the error in question.
CRITICAL: Recording information that was intercepted before a
critical/fatal failure of the running code – something that actually killed the
execution. In well-designed and implemented code, especially for a service
that is intended to always be available, this level of message recording
should rarely be needed. Errors would be captured and logged as ERROR-
level items, any cleanup that would be required after the error was
encountered would be undertaken, a response indicating that an error
occurred would be sent back to the requester, and the service would just
keep going, waiting for the next request.

Anatomy of a Service Chapter 15

[498]

The actual handling and recording of the messages of any given level are controlled
by the Logger object, and/or by its various handlers. The Logger object itself will not
accept messages with a priority lower than its set priority.
Having logger.setLevel(logging.DEBUG) in the example code would allow any
of the standard message priorities, while changing it to
logger.setLevel(logging.ERROR) would only allow ERROR and CRITICAL
messages to be accepted. Similarly, the handlers will ignore any incoming messages
that fall below the priority they've been configured to accept –
file_handler.setLevel(logging.DEBUG), in the previous example.

By combining detailed logging in the code itself, including DEBUG-level items
wherever it is necessary, and some configuration of the allowed message-priorities,
the same code can fine-tune its own log output for different environments. For
example:

def some_function(*args, **kwargs):
 logger.info('some_function(%s, %s) called' % (str(args),
str(kwargs)))
 if not args and not kwargs:
 logger.warn(
 'some_function was called with no arguments'
)
 elif args:
 logger.debug('*args exists: %s' % (str(args)))
 try:
 x, y = args[0:2]
 logger.debug('x = %s, y = %s' % (x, y))
 return x / y
 except ValueError as error:
 logger.error(
 '%s: Could not get x and y values from '
 'args %s' %
 (error.__class__.__name__, str(args))
)
 except Exception as error:
 logger.error(
 '%s in some_function: %s' %
 (error.__class__.__name__, error)
)
 logger.info('some_function complete')

Anatomy of a Service Chapter 15

[499]

This code set logs the following, depending on the differences in logging priorities set
up in the logger:

The complete script that generates this log information is in the
Iteration 3 code, at hms-gateway/scratch-space/logging-
examples/logging-example.py.

Like YAML configuration, we'll build on this logging structure later in this chapter, as
a part of building a reusable base daemon structure.

Handling requests and generating responses
Most services will follow some sort of a request-response process model. A request is
received, whether from a human user interacting with the service or some other
process; the service then reads the request, determines what to do with it, performs
whatever actions are needed, and generates and returns a response.

Anatomy of a Service Chapter 15

[500]

There are at least three distinct request types that are common enough to warrant a
detailed examination – filesystem, HTTP/web message, and queue-based – each with
its own baseline assumptions about how requests will be presented to a service, and
each with its own resultant implications for design and execution.

The responses generated for any given request type usually imply a response
mechanism of the same basic type. That is, a request that comes in from some
filesystem variant will usually generate a response that is also expressed as some sort
of filesystem output. That may not always be the case, but the odds are good that it
will be in many (perhaps most) cases.

Filesystem – based
Requests and responses from and to the local filesystem are typically (and
unsurprisingly) concerned with reading and writing data from and to local files. The
simplest request-and-response structure of this type is a service that reads data from
one file, processes it, and writes the results out to another file, possibly deleting or
flushing out the incoming file on every read, and either replacing the output file on
every write, or appending to it as each response is generated and returned.
Implementations for single input and output files may leverage the stdin and
stdout functionality of Python's sys module, or override either (or both) of them.

Both Windows and POSIX operating systems (Linux, macOS) have special file types,
called named pipes, that reside on the filesystem and act like files, in that they can be
opened, read from, and written to by using standard file-access code. The main
difference is that a named pipe file can be opened and written to/read from by
multiple different processes at the same time. That, then, allows for any number of
processes to add requests to a file, queuing them up for a service to read and handle.
Named pipes can also be used for service output.

Another variant is monitoring for changes to files in the local filesystem, including the
creation of new files, and changes to (or even the deletion of) existing files in a given
location. At its most basic, this would involve generating and maintaining a list of
files to keep track of, and periodically checking the actual filesystem structure for
those files' existence and modified time. An implementation that follows this pattern
might have a common input-file directory, and, as each iteration through the main
service loop occurred, it would check for new files, read them, execute, and remove
the file once processing was complete (in order to keep the number of files being
monitored reasonably small).

Anatomy of a Service Chapter 15

[501]

For scenarios where the number of files being monitored is large enough that creating
and refreshing that list is too computationally expensive to be practical, monitoring
filesystem events with functionality from the pyinotify library is a viable
alternative, though there have been differences in what's available between
POSIX/Linux and Windows versions of the library.

HTTP- or web-based
HTTP-based services (web services), as the name implies, use the HTTP protocol to
receive requests and transmit responses to those requests. As a subset of network-
aware services, web services allow access to the service from machines other than the
one that the service is actually running on. Web services don't have to be accessible on
the public internet; they can live entirely in a local network, and operate just as well
inside of those boundaries. They do, however, have to conform to some basic
minimum standards, and could benefit from adhering to others.

It is likely that the most important of those standards is adhering to the request
methods of the HTTP protocol. The methods that are most commonly seen in
websites, and that are supported by any web browser worthy of the name, are as
follows:

GET: Used to retrieve data
POST: Used to create data using an attached payload, even though POST is
typically used in web applications, for both create and update operations

There are several other methods available in the protocol, including:

PUT and PATCH: Intended to update data using an attached payload, in
whole or in part, respectively

DELETE: Intended to delete data

OPTIONS: Intended to provide data that indicates what methods are
available, especially methods that can create or alter data on the receiving
system, such as POST, PUT, and DELETE requests, and, most especially, if a
request is being made to the service from somewhere other than the
service's domain itself

Anatomy of a Service Chapter 15

[502]

Other methods that might come into play include HEAD, CONNECT, and
TRACE. Depending on the design and implementation of the service, each HTTP
method can be implemented as specific functions or methods of a class, allowing each
request type to be able to enforce any requirements specific to it, while still allowing
some functionality for common needs, such as the extraction of a payload for POST,
PUT, and PATCH requests.

A response from a web-service call, even if it's an empty response, is effectively
required; otherwise, the calling client will wait until the request times out. Web
service responses are limited to data types that can be transmitted by the HTTP
protocol, which isn't very limited, but may require some additional development
effort to support binary-resource responses (for example, images). As things stand, at
the time of writing this book, most responses that can be represented purely in text
seem to be returned as JSON data structures, but XML, HTML, and plain-text
responses are also in the realm of possibilities.

Although it's certainly possible to write a full-blown web service purely in Python,
there are a fair number of protocol-related items that might be better handled by any
of several libraries, packages, or frameworks, if only because doing so would reduce
the volume of code to be written, tested, and maintained. Options include, but are not
limited to, the following:

Writing a web service as a Web Server Gateway Interface (WSGI)
application that is accessible through an Apache or NGINX web server
Using the Django REST framework
Using the Flask-RESTful extension to the Flask framework

A web- server- and framework-based solution will also benefit from security updates
to the underlying web server and framework software, without requiring in-house
security audits.

If a web service is expected to be exposed to the public internet, any
of these are much better options than writing a service from the
ground up, for that reason alone. It won't eliminate the need to be
conscious of potential security concerns, but it will reduce the scope
of those concerns to the code for the service's functionality itself.

Anatomy of a Service Chapter 15

[503]

Message- queue-based
Message queue systems, such as RabbitMQ and the various cloud-based options,
have several advantages going for them for certain types of applications. They
generally allow pretty much any message format to be used, provided that it can be
expressed as text, and they allow messages to remain in a pending state until they are
explicitly retrieved and dealt with, keeping messages safe and ready to use until the
final consumer of those messages is ready to consume them. By way of example,
consider the following scenario:

Two users are sending messages to a service through a distributed queue1.
that lives on the Message-Queue Server
User #1 sends their first message2.
The service receives and acts on that message, but may not have deleted it3.
in the queue yet
The service is restarted for some reason – to update it to a new version,4.
perhaps, or because the server itself is being rebooted
In any case, before the service comes back online, User #2 sends their first5.
message.
User #1 sends another message6.

Before the target service completes its startup, the scenario looks as follows:

Once the target service has completed its startup, all it has to do to fulfill the pending
requests in those messages is poll the Message-Queue Server to retrieve any pending
messages, and execute against them, just like it was doing before it was restarted.

Anatomy of a Service Chapter 15

[504]

From the perspective of User #1 and User #2, there has been no interruption in access
to the service (though there may have been a noticeable, or even significant, delay in
getting their responses back). That would hold true whether the inactive period for
the target service was a few seconds, or a few hours. Either way, the
messages/commands that the end users sent were saved until they could be acted
upon, so no effort was lost.

If the responses to those requests are also transmitted through a queue-based process,
the same persistence of messages would hold true. So, as soon as the responses have
been generated and sent by the target service, the users are able to receive them, even
if they shut down and went home for the day before they were sent. Response
messages would wait until the receiving system was active again, at which point
they'd be delivered and acted upon.

Queue-based request-and-response cycles are, then, very well suited for managing log
running and/or asynchronous processes, provided that the code that's acting on the
messages takes that possibility into account.

Other request types
Python provides access to enough general-purpose networking functionality that
services can be written from scratch to read and respond to pretty much any sort of
network traffic desired. The web- and queue-based service types are specific
applications of that functionality, under the hood, supported to varying degrees by
additional libraries that address some of the needs specific to each, as follows:

Web services will probably make at least some use of the functionality
provided by the http.server, or socket modules;
the http.server.HTTPServer or socketserver.TCPServer classes are
the most likely starting points, but http.server.ThreadingHTTPServer
is also potentially viable.
Queue-based services may have libraries available that are specifically built
to interact with the underlying queue service they're attached to, including
the following:

pika, for RabbitMQ queue-services
boto3, for AWS SQS services, starting with creating a
boto3.SQS.Client object

Anatomy of a Service Chapter 15

[505]

Socket-based services that don't have some sort of supporting library available will
probably start with the socketserver.TCPServer class noted in the previous lists,
or perhaps with its UDP equivalent, socketserver.UDPServer. There are also
Threading and Forking mix-in classes available, which can be used to provide basic
server classes that support threading or (on POSIX-compliant systems) forking for
servers, in order to handle larger user load levels.

Request and response formats
From a purely technical/functional perspective, service implementations can be data-
and format-agnostic. That is, there's no functional reason why a service cannot accept
raw binary data input and return raw binary output. Data is data, after all. However,
even in cases where a service really is concerned with data that isn't readily readable
by human beings, there are advantages to formatting the incoming requests and
outgoing responses, to afford some degree of human readability. At a minimum, it
makes the debugging of requests and responses easier.

In that respect, request and response data share a lot of the concerns that were noted
about the needs of configuration files, as follows:

Being able to pass structured and typed data around is similarly
advantageous
Allowing that data structure to be at least somewhat comprehensible to a
casual reader/observer feels like a good thing, too
The ability to represent reasonably complex data structures—lists and
nested objects—also feels advantageous

Given the same types of concerns, a similar solution to address them makes sense,
which means that using a serialization format, such as JSON or YAML, also makes
sense. Doing so introduces a bit of additional development effort overhead; for
example, converting incoming data from JSON to a native data structure, or an
outbound native data structure response to JSON. That effort will generally be pretty
trivial, though.

Of those two formats, JSON is arguably a better general-purpose solution. It's well
established, and it's directly supported across a wider range of potential service
clients, if only because it is, essentially, a native data format for web browsers. YAML
is still a viable alternative, though, particularly in cases where there is no web
browser client support needed.

Anatomy of a Service Chapter 15

[506]

A generic service design
Given the configuration and logging possibilities that we've explored so far, the bare-
bones service-as-a-function approach feels less and less viable, unless it's reasonable
to expect that only one service will ever need to be written. Taking that basic
approach is still possible, to be sure, but if there's ever a need to create another
service, it'd be more efficient (and, at least, a somewhat more effective use of
developer time) if there were a common starting point for creating any service, no
matter what it's expected to do. To that end, then, we'll define a set of abstract base
classes (ABC) that define the lowest common denominators of features and
functionality that we'll expect from any service or daemon going forward, and we'll
use that as our starting point for the Artisan Gateway Service of hms_sys.

The rationale for defining a service as a class, rather than as a function, is centered
around the fact that we can reasonably expect at least a handful of properties and
methods that would be common to all services/daemons, that would be difficult,
tedious, and/or hard to maintain in a simple, function-based design. These include the
following:

A centralized logging facility, built along the lines of the example logging
code presented earlier
A strong possibility that configuration values for the service will need to be
accessible across multiple endpoints, which is probably easier to manage
with a class-based design
The ability to use what might be called pluggable request, response,
and formatting mechanisms will almost certainly be a lot easier to develop
and maintain, since those would be represented by classes that encapsulate
all of the necessary functionality

The classes defined here do not leverage any of the available standard library entities
that were noted earlier (for example, normal, threaded, or forking variants of
socketserver.TCPServer). They are, instead, a baseline starting point for any
service, at least at one level, and could potentially use any of those server classes as
additional mix-ins, if desired. At another level, they could be considered purely
illustrative of the kinds of functionality needed in a service class, though they are also
viable for use as a service class, for some applications.

Anatomy of a Service Chapter 15

[507]

These classes are also purely synchronous. They handle one request at a time,
processing it to completion and returning a response, before acquiring the next
request and handling it. That will probably suffice for low-load scenarios, of the sort
expected in the context of the hms_sys system projects, but might not be enough for
other use cases, especially if real-time responses and higher computational-cost
processes get involved. We'll examine some options for dealing with those kinds of
scenarios in chapter 19, Multiprocessing and HPC in Python, while discussing local
process-scaling options.

The collection of ABCs that we're going to build is as follows:

Consider the following:

BaseDaemon is a starting point for creating classes that actually provide the
service itself
BaseRequestHandler provides a starting point for defining callable
objects that will be used to actually handle an incoming request, and that
will be responsible for formatting the results using an instance of a class
derived from BaseResponseFormatter

Anatomy of a Service Chapter 15

[508]

BaseResponseFormatter is a similar, callable-object class that will
convert a response data structure into a serialized string value, ready to be
returned as a message in a queue, an HTTP response, or whatever other
format is best suited for the specific response requirement

The BaseDaemon ABC
The implementation of BaseDaemon starts, unsurprisingly, with a standard ABC
definition, and some class-level attributes/constants, as follows:

class BaseDaemon(metaclass=abc.ABCMeta):
"""
Provides baseline functionality, interface requirements, and type-
identity for objects that can act as a daemon/service managed by
facilities in the local OS
(like systemd) or by third-party service-configurators (like NSSM)
"""
 ###################################
 # Class attributes/constants #
 ###################################

 _handler_classes = {}
 _handler_keys = []

Since logging is a critical aspect of any service, making sure that some logging
parameters are always available is a good idea. That starts with setting up a class-
level constant that stores the default logging configuration, as follows:

- Default logging information
 _logging = {
 'name':None,
 'format':'%(asctime)s - %(name)s - %(levelname)s -
%(message)s',
 'file':{
 'logfile':None,
 'level':logging.INFO,
 },
 'console':{
 'level':logging.ERROR,
 }
 }

Anatomy of a Service Chapter 15

[509]

Those defaults are used by a common _create_logger method, provided as a
concrete method by the class, to assure that logging will always be available, but that
the parameters that control it can be overridden:

def _create_logger(self):
 """
Creates the instance's logger object, sets up formatting for log-
entries, and
handlers for various log-output destinations
"""
 if not self.__class__._logging.get('name'):
 raise AttributeError(
 '%s cannot establish a logging facility because no '
 'logging-name value was set in the class itself, or '
 'through configuration settings (in %s).' %
 (self.__class__.__name__, self.config_file)
)

After checking to see whether a logger name has been specified, the _logging class
attribute is used to define a common log output format, as follows:

 try:
 logging_settings = self.__class__._logging
 # - Global log-format
 formatter = logging.Formatter(logging_settings['format'])
 # - The main logger
 self._logger = logging.getLogger(
 logging_settings['name']
)
 # - By default, the top-level logger instance will accept
anything.
 # We'll change that to the appropriate level after checking
the
 # various log-level settings:
 final_level = logging.DEBUG

The same logging settings allow for independent control of the file and console
output for logging. The file-based log output needs a logfile specification, and
allows for an independent level, as well:

 if logging_settings.get('file'):
 # - We're logging *something* to a file, so create a
handler
 # to that purpose:
 if not self.__class__._logging['file'].get('logfile'):
 raise AttributeError(
 '%s cannot establish a logging facility because no

Anatomy of a Service Chapter 15

[510]

'
 'log-file value was set in the class itself, or '
 'through configuration settings (in %s).' %
 (self.__class__.__name__, self.config_file)
)
 # - The actual file-handler
 file_handler = logging.FileHandler(
 logging_settings['file']['logfile']
)
 # - Set the logging-level accordingly, and adjust
final_level
 file_handler.setLevel(logging_settings['file']['level'])
 final_level = min(
 [
 logging_settings['file']['level'],
 final_level
]
)
 # - Set formatting and attach it to the main logger:
 file_handler.setFormatter(formatter)
 self._logger.addHandler(file_handler)

As each logging output is created and attached, the logging level is used to reset the
final_level value, which will eventually allow the setup process to fine-tune the
logging level for the logger object that the output is being attached to. The console
logger output setup looks much the same as the file logger output, minus the
filename, which it doesn't need:

 if logging_settings.get('console'):
 # - We're logging *something* to the console, so create a
 # handler to that purpose:
 # - The actual console-handler
 console_handler = logging.StreamHandler()
 # - Set the logging-level accordingly, and adjust final_level
 console_handler.setLevel(
 logging_settings['console']['level']
)
 final_level = min(
 [
 logging_settings['console']['level'],
 final_level
]
)
 # - Set formatting and attach it to the main logger:
 console_handler.setFormatter(formatter)
 self._logger.addHandler(console_handler)
 # - For efficiency's sake, use the final_level at the logger

Anatomy of a Service Chapter 15

[511]

itself.
 # That should (hopefully) allow logging to run (trivially)
 # faster, since it'll know to skip anything that isn't
handled by
 # at least one handler...
 self._logger.setLevel(final_level)

In order to assure that logging will always be available, all of the setup so far executes
in a try…except structure. If any errors occur during the process of setting up
logging, a final RuntimeError is raised, with the intention of stopping all execution,
so that whatever's causing the logging failures must be fixed:

except Exception as error:
 raise RuntimeError(
 '%s could not complete the set-up of its logging '
 'facilities because %s was raised: %s' %
 (
 self.__class__.__name__, error.__class__.__name__,
 error
)
)
- Log the fact that we can log stuff now :-)
 self.info(
 'Logging started. Other messages may have been output to '
 'stdout/terminal prior to now'
)

Once the instance's logger object property has been created, logging any message is
simply a matter of calling one of the instance's various logging methods. Those
methods – critical, debug, error, info, and warn – all look more or less alike,
and will write the message supplied to the various pieces of logger output with the
appropriate priority, or will fall back to printing the message, if the logger hasn't
been created yet:

###################################
Logging methods
###################################

def critical(self, msg, *args, **kwargs):
 if self.logger:
 self.logger.critical(msg, *args, **kwargs)
 else:
 print('CRITICAL - %s' % msg)

def debug(self, msg, *args, **kwargs):
 if self.logger:
 self.logger.debug(msg, *args, **kwargs)

Anatomy of a Service Chapter 15

[512]

 else:
 print('DEBUG - %s' % msg)

The properties of the class are, for the most part, typical of the structures and patterns
that have been used in earlier code, with typical type and value checking attached to
their related setter methods:

 ###################################
 # Instance property definitions #
 ###################################

 config_file = property(
 _get_config_file, None, None,
 'Gets the configuration-file used to set up the instance'
)
 logger = property(
 _get_logger, None, None,
 'Gets the logger for the instance'
)

The setter method for the config_file property is worth a closer look, perhaps,
since it performs some checking, to make sure that the value passed is a readable file:

def _set_config_file(self, value:(str,)):
 if type(value) != str:
 raise TypeError(
 '%s.config_file expects a string value that points '
 'to a readable configuration-file on the local file-'
 'system, but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 if not os.path.isfile(value):
 if type(value) != str:
 raise TypeError(
 '%s.config_file expects a string value that '
 'points to a readable configuration-file on the '
 'local file-system, but was passed "%s" (%s), '
 'which is not a file' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 if not os.access(value, os.R_OK):
 if type(value) != str:
 raise TypeError(
 '%s.config_file expects a string value that '
 'points to a readable configuration-file on the '

Anatomy of a Service Chapter 15

[513]

 'local file-system, but was passed "%s" (%s), '
 'which is not a READABLE file' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 self.debug(
 '%s.config_file set to %s' % (self.__class__.__name__, value)
)
 self._config_file = value

Once the configuration file has been verified as ready for use, another concrete
method provided by the class, configure, can be called to read and apply it to an
instance of the class. The configure method is responsible for reading the file,
converting it to a common data structure, and handing it off to a required/abstract
method that actually applies the configuration data to the
instance: _on_configuration_loaded.

This division of responsibilities allows for a single common method, configure, to
be consistently available, while allowing for the specific needs of any given class to be
abstracted and made the responsibility of the derived class,
_on_configuration_loaded:

def configure(self):
 """
Reads the instance's configuration-file, converts it to a dictionary
of values, then hands the responsibility for actually configuring the
instance off to its required _on_configuration_loaded method
"""
 try:
 self.info('Loading configuration for %s' %
self.__class__.__name__)
 except RuntimeError:
 # - This should only happen during start-up...
 print('Loading configuration for %s' %
self.__class__.__name__)
 try:
 fp = open(self.config_file, 'r')
 config_data = yaml.load(fp)
 fp.close()
 except Exception as error:
 raise RuntimeError(
 '%s.config could not read configuration-data from '
 '%s, %s was raised: %s' %
 (
 self.__class__.__name__, config_file,

Anatomy of a Service Chapter 15

[514]

 error.__class__.__name__, error
)
)
 # - With the configuration read, it's time to actually
 # configure the instance
 self._on_configuration_loaded(**config_data)

The _on_configuration_loaded method can contain some concrete code that other
classes may choose to use, as follows:

@abc.abstractmethod
def _on_configuration_loaded(self, **config_data):
 """
Applies the configuration to the instance. Since there are
configuration values that may exist for any instance of the class,
this method should be called by derived classes in addition to any
local configuration.
"""
 if config_data.get('logging'):
 # - Since the class' logging settings are just a dict, we can
 # just update that dict, at least to start with:
 self.__class__._logging.update(config_data['logging'])
 # - Once the update is complete, we do need to change any
logging-
 # level items, though. We'll start with the file-logging:
 file_logging = self.__class__._logging.get('file')
 if file_logging:
 file_level = file_logging.get('level')
 if not file_level:
 file_logging['level'] = logging.INFO
 elif type(file_level) == str:
 try:
 file_logging['level'] = getattr(
 logging, file_level.upper()
)
 except AttributeError:
 file_logging['level'] = logging.INFO
 # - Similarly, console-logging
 console_logging = self.__class__._logging.get('console')
 if console_logging:
 console_level = console_logging.get('level')
 if not console_level:
 console_logging['level'] = logging.INFO
 elif type(console_level) == str:
 try:
 console_logging['level'] = getattr(
 logging, console_level.upper()
)

Anatomy of a Service Chapter 15

[515]

 except AttributeError:
 console_logging['level'] = logging.INFO

If this standard configuration is used, it will be looking for a YAML configuration file
that might look something like the following:

logging:
 console:
 level: error
 file:
 level: debug
 logfile: /var/log/daemon-name.log
 format: '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
 name: daemon-name

It is worth noting that the various configuration methods may well deal with logging
settings, and need to log messages before logging is complete. That is why the
logging methods shown earlier have the fall-back-to-printing functionality.

The default implementation that was just shown does exactly that. That accounts for
all of the code that executes when an instance of BaseDaemon is created. The
initialization itself is pretty basic, though there are a couple of new and noteworthy
items in it, as follows:

def __init__(self, config_file:(str,)):
 """
Object initialization.
self (BaseDaemon instance, required) The instance to
 execute against
config_file (str, file-path, required) The location of the
 configuration-file to be used to configure the
 daemon instance
"""
 # - Call parent initializers if needed
 # - Set default instance property-values using _del_... methods
 self._del_config_file()
 self._del_logger()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_config_file(config_file)
 # - Perform any other initialization needed
 # - Read configuration and override items as needed
 self.configure()
 # - Set up logging
 self._create_logger()
 # - Set up handlers to allow graceful shut-down
 signal.signal(signal.SIGINT, self.stop)

Anatomy of a Service Chapter 15

[516]

 signal.signal(signal.SIGTERM, self.stop)
 self.debug(
 'SIGINT and SIGTERM handlers for %s created' %
 (self.__class__.__name__)
)
 # - Set up the local flag that indicates whether we're expected
 # to be running or not:
 self._running = False

The first items of note are the calls to signal.signal(). These use Python's
signal module to set up signal-event-handling processes, so that a running instance
of the class, if it's killed at the OS level or interrupted in a Terminal session, will not
just immediately die. Instead, those calls trap the termination (SIGTERM) and
interruption (SIGINT) signals that the OS has issued, and allow the running code to
react to them before terminating execution. In this case, they both call the instance's
stop method, which gives the service instance the opportunity to tell its main loop to
terminate, and thus allows for a graceful shutdown.

The easiest way for that to be implemented is to have an instance value
(self._running, in this case) that is used by the main loop of the service to
determine whether to continue. That flag value is set at the end of the
previous __init__ method.

Although the main loop method of a service class is the most important aspect of the
class (without one, the service doesn't actually do anything, after all), that main loop
is something that is going to be specific to the derived class. It's required, but it cannot
really be implemented at the ABC's level, so it's made an abstract method, as follows:

@abc.abstractmethod
def main(self):
 """
The main event-loop (or whatever is equivalent) for the service
instance.
"""
 raise NotImplementedError(
 '%s.main has not been implemented as required by '
 'BaseDaemon' % (self.__class__.__name__)
)

Anatomy of a Service Chapter 15

[517]

In order to allow for processes that need to fire off before a service starts and after it
terminates, we're providing concrete methods for each preflight and cleanup.
These methods were made concrete, rather than abstract, so that they'd always be
available, but could be overridden on an as-needed basis. They do nothing more than
log that they have been called in their default implementations:

 def cleanup(self):
 """
Performs whatever clean-up actions/activities need to be executed
after the main process-loop terminates. Override this in your daemon-
class if needed, otherwise it can be left alone.
"""
 self.info('%s.cleanup called' % (self.__class__.__name__))

 def preflight(self):
 """
Performs whatever pre-flight actions/activities need to be executed
before starting the main process. Override this in your daemon-class
if needed, otherwise it can be left alone.
"""
 self.info('%s.preflight called' % (self.__class__.__name__))

The preflight method might be useful for implementing a reload method (a
process that, without stopping the service instance, reacquires any local, potentially
altered data, before resuming), for services that could benefit from one.

Finally, service instances need to be able to be started, stopped, and maybe restarted,
with single, simple commands. The methods that correspond to those are quite
simple, as follows:

def start(self):
 """
Starts the daemon/service that the instance provides.
"""
 if self._running:
 self.info(
 '%s instance is already running' %
(self.__class__.__name__)
)
 return
 self.preflight()
 self.info('Starting %s.main' % self.__class__.__name__)
 self.main()
 self.cleanup()

def stop(self, signal_num:(int,None)=None,
frame:(FrameType,None)=None):

Anatomy of a Service Chapter 15

[518]

 """
Stops the daemon-process. May be called by a signal event-handler, in
which case the signal_num and frame values will be passed. Can also be
called directly without those argument-values.

signal_num (int, optional, defaults to None) The signal-
number, if any, that prompted the shutdown.
frame (Stack-frame, optional, defaults to None) The
associated stack-frame.
"""
 self.info('Stopping %s' % self.__class__.__name__)
 self.debug('+- signal_num ... %s' % (signal_num))
 self.debug('+- frame %s' % (frame))
 self._running = False

def restart(self):
 """
Restarts the daemon-process by calling the instance's stop then start
methods. This may not be directly accessible (at least not in any
useful fashion) outside the running instance, but external
daemon/service managers should be able to simply kill the running
process and start it up again.
"""
 self.info('Restarting %s' % self.__class__.__name__)
 self.stop()
 self.start()

This class uses several packages/libraries that need to be included, so we have to
make sure to include them in the module that the class lives in, as follows:

#######################################
Standard library imports needed
#######################################

import atexit
import logging
import os
import signal
import yaml

from types import FrameType # Used by the signal handlers

Anatomy of a Service Chapter 15

[519]

With this code available, creating a new service class (equivalent to the simple,
function-based example at the start of the chapter) is quite simple:

class testdaemon(BaseDaemonizable):
 def _on_configuration_loaded(self, **config_data):
 try:
 BaseDaemonizable._on_configuration_loaded(self,
**config_data)
 self.info('%s configuration has been loaded:' %
 (self.__class__.__name__)
)
 except Exception as error:
 self.error(‘%s: %s' % (error.__class__.__name__, error))
 def main(self):
 iteration = 0
 self._running = True
 self.info('Starting main daemon event-loop')
 while self._running:
 iteration += 1
 msg = 'Iteration %d' % iteration
 self.info(msg)
 sleep(10)
 self.info('%s main loop terminated' %
(self.__class__.__name__))

The following screenshot shows the output and logged messages from starting
testdaemon, and from killing it after a few iterations. It shows all of the behavior
we'd expect from the code in place:

Anatomy of a Service Chapter 15

[520]

This basic service doesn't use any request handler classes—it's just too simple to need
them—but a more realistic service implementation will almost certainly need that
ability. Each handler class will need to be registered before the service instance is
started, and will need a way to associate some property or value from an incoming
request, to identify a handler class to create, in order to generate a response to the
request.

During execution, as requests come in, those requests will have to be examined in
order to identify the key that determines what handler class will be used to create an
instance. Execution can then be handed off to that instance to create the response.

Anatomy of a Service Chapter 15

[521]

The handler class registration process is not difficult, but has a fair amount of type
and value checking within it, to avoid bad, ambiguous, or conflicting results later on.
It's implemented as a class method, so that the association between the keys
(endpoints, commands, message types, or whatever applies to an incoming request),
and the handler classes behind those keys, can be established before the service is
even instantiated:

 @classmethod
 def register_handler(cls, handler_class:(type,), *keys):
 """
Registers a BaseRequestHandler *class* as a candidate for handling
requests for the specified keys
"""
 if type(handler_class) != type \
 or not issubclass(handler_class, BaseRequestHandler):
 raise TypeError(
 '%s.register_handler expects a *class* derived from '
 'BaseRequestHandler as its handler_class argument, but
'
 'was passed "%s" (%s), which is not such a class' %
 (cls.__name__, value, type(value).__name__)
)
 if not keys:
 raise ValueError(
 '%s.register_handler expects one or more keys, each '
 'a string-value, to register the handler-class with, '
 'but none were provided' % (cls.__name__)
)
 # - Check for malformed keys
 bad_keys = [
 key for key in keys
 if type(key) != str or '\n' in key or '\r' in key
 or '\t' in key or key.strip() != key or not key.strip()
]
 if bad_keys:
 raise ValueError(
 '%s.register_handler expects one or more keys, each a
'
 'single-line, non-empty string-value with no leading '
 'or trailing white-space, and no white-space other '
 'than spaces, but was passed a list including %s, '
 'which do not meet these criteria' %
 (cls.__name__, '"' + '", "'.join(bad_keys) + '"')
)
 # - Check for keys already registered
 existing_keys = [
 key for key in keys if key in cls._handler_classes.keys()

Anatomy of a Service Chapter 15

[522]

]
 if existing_keys:
 raise KeyError(
 '%s.register_handler is not allowed to replace
handler-'
 'classes already registered, but is being asked to do
'
 'so for %s keys' %
 (cls.__name__, '"' + '", "'.join(existing_keys) + '"')
)
 # - If this point is reached, everything is hunky-dory, so add
 # the handler_class for each key:
 for key in keys:
 cls._handler_classes[key] = handler_class

The process for finding a class to instantiate to handle a given request, given a key, is
also not difficult; see the following code:

def find_request_handler(self, key:(str,)):
 """
Finds a registered BaseRequestHandler class that is expected to be
able
to handle the request signified by the key value, creates an instance
of the class, and returns it.
"""
 # - Set up the _handler_keys if it hasn't been defined yet.
 # The goal here is to have a list of registered keys, sorted
from
 # longest to shortest so that we can match based on the
 # longest registered key/path/command-name/whatever that
 # matches the incoming value:
 if not self.__class__._handler_keys:
 self.__class__._handler_keys = sorted(
 self.__class__._handler_classes.keys(),
 key=lambda k: len(k),
 reverse=True
)
 # - Find the first (longest) key that matches the incoming key:
 for candidate_key in self.__class__._handler_keys:
 if candidate_key.startswith(key):
 # - If we find a match, then create an instance of
 # the class and return it
 result = self.__class__._handler_classes[candidate_key]
 return result(self)
 return None

Anatomy of a Service Chapter 15

[523]

This method will return an instance of the first class that it can find that matches an
incoming request key, and it will return for the longest key-match it can find, in order
to both allow the same class to handle multiple keys, and to (hopefully) eliminate the
possibility of a bad key-match. Consider a web service that interacts with client
objects that can have subordinate client objects, allowing access to those clients by
using paths that include the following:

/client/{client_id}: Uses a client_handler object to handle
requests
/client/{client_id}/client/{subordinate_id}: Uses a
subordinate_handler object to handle requests

In order to make sure that a request that should be handled by a
subordinate_handler doesn't accidentally acquire and use a client_handler, the
matching process iterates over the list of endpoint keys, from longest to shortest,
matches the longer one first, and returns the appropriate class.

The BaseRequestHandler and
BaseResponseFormatter ABCs
Without a concrete implementation derived from these classes, there's really not
much to them. They use the same standard property structure that has been in play
throughout this book for their properties, with typical type checking. The only new
concept that they present is a combination of abstraction (which is nothing new) and
the utilization of Python's __call__ magic method.

We'll look at these classes (indirectly, at least) when the concrete
implementations derived from them are created for the hms_sys
Artisan Gateway Service, in the next chapter.

When a class has a __call__ method, instances of that class can be called as if they
were functions, with the required arguments defined in the signature of the
__call__ method itself. In effect, callable class-instances can be thought of
as configurable functions. Each instance of a callable class can have completely
different state data that remains consistent within its own scope. As a simple
example, consider the following code:

class callable_class:
 def __init__(self, some_arg, some_other_arg):
 self._some_arg = some_arg

Anatomy of a Service Chapter 15

[524]

 self._some_other_arg = some_other_arg

 def __call__(self, arg):
 print('%s(%s) called:' % (self.__class__.__name__, arg))
 print('+- self._some_arg %s' % (self._some_arg))
 print('+- self._some_other_arg ... %s' %
(self._some_other_arg))

Suppose that we create an instance and call it the following:

instance1 = callable_class('instance 1', 'other arg')
instance1('calling instance 1')

We will then get the following output:

We can create additional instances, and call them, too, without affecting the results of
the first instance:

instance2 = callable_class('instance 2', 'yet other arg')
instance2('calling instance 2')

The preceding code yields the following:

By making the __call__ method of these two classes abstract, we are effectively
requiring them to implement a __call__ method that allows each instance to be
called as if it were a function, while simultaneously allowing each instance to access
the properties and methods available to any instances of the class.

Applying that to BaseRequestHandler, it means that each instance would have a
direct reference to the daemon instance, with all of its logging facilities, its start,
stop, and restart methods, and the original configuration file; therefore, the
following would apply:

A request handler instance wouldn't have to do anything terribly
complicated to log process details as a request was being handled

Anatomy of a Service Chapter 15

[525]

Configuration of individual request handlers would be feasible, and could
even live in the same configuration file that the daemon itself used,
although at present, the configuration would still have to be read and acted
upon

It'd be possible to write one or more handlers (with appropriate caution,
including authentication and authorization) that would allow a service
request to restart the service

Other service daemons, with more/other functionality at the level of the service
instance itself, could also provide a common functionality that would be accessible to
each endpoint. Structurally, then, a service that uses a full set of these request handler
and response formatter objects would entail the following:

A single service instance, derived from BaseDaemon, that has the
following:

One to many BaseRequestHandler-derived classes
registered and available to be instantiated and called in
response to incoming requests, each of which can, in turn,
create and call instances of any of several
BaseResponseFormatter-derived classes, to generate the
final output data

With an implementation of main that determines which class to create and
call for each request, based on the registration of those classes.

The flow of a request-response cycle for the Artisan Gateway Service, implemented
with request handlers for Artisan and product interactions and response formatters,
might look something like the following:

Anatomy of a Service Chapter 15

[526]

Step by step:

A Request is sent to the Artisan Gateway Service1.
The service determines, from some predefined context in the Request,2.
that the Artisan Handler class should be instantiated and called
That handler knows that it needs to generate JSON output, so, after3.
performing whatever processing is needed to generate a response that can
be formatted, it acquires a JSON Formatter instance and calls the instance
to generate the final Response
The Response is returned to the Artisan Handler4.
The Artisan Handler returns the Response to the Artisan Gateway Service5.
The Artisan Gateway Service returns the Response to the originator of the6.
Request

Most of that process hinges on concrete implementation that is not provided by the
BaseRequestHandler and BaseResponseFormatter classes. They are, as shown in
the preceding diagram, very simple. BaseRequestHandler starts with a standard
abstract class structure, as follows:

class BaseRequestHandler(metaclass=abc.ABCMeta):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can process daemon/service requests,
generating and returning a response, serialized to some string-based
format.
"""

Each derived class can have a default formatter class associated with it, so that the
eventual call of the instances of the class doesn't require a formatter to be specified, as
follows:

 ###################################
 # Class attributes/constants #
 ###################################

 _default_formatter = None

Anatomy of a Service Chapter 15

[527]

Request handlers could benefit from having access to the service/daemon instance
that they were created by. If nothing else, that allows the handler classes to use the
daemon's logging facilities. Accordingly, then, we'll keep track of that daemon as a
property of the instance, as follows:

 ###################################
 # Property-getter methods #
 ###################################

 def _get_daemon(self) -> (BaseDaemon,):
 return self._daemon
 ###################################
 # Property-setter methods #
 ###################################

 def _set_daemon(self, value:(BaseDaemon,)) -> None:
 if not isinstance(value, BaseDaemon):
 raise TypeError(
 '%s.daemon expects an instance of a class derived '
 'from BaseDaemon, but was passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 self._daemon = value

 ###################################
 # Property-deleter methods #
 ###################################

 def _del_daemon(self) -> None:
 self._daemon = None

 ###################################
 # Instance property definitions #
 ###################################

 daemon = property(
 _get_daemon, None, None,
 'Gets, sets or deletes the daemon associated with the
instance'
)

Anatomy of a Service Chapter 15

[528]

The initialization of an instance has to provide an argument to set the instance's
daemon property, but there's not much else to it:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self, daemon:(BaseDaemon,)):
 """
Object initialization.
self (BaseRequestHandler instance, required) The
 instance to execute against
daemon (BaseDaemon instance, required) The daemon that
the
 request to be handled originated with.
"""
- Set default instance property-values using _del_... methods
 self._del_daemon()
- Set instance property-values from arguments using
set... methods
 self._set_daemon(daemon)

Since the whole point of the ABC is to require instances to be callable by the service
that created them, we'll require a __call__ method. Any time an instance is called, it
will have an incoming request that needs to be processed and responded to. It also
feels like a good idea to allow a formatter to be passed that could override the
default formatter type, specified as a class attribute. As concrete implementations of
handler classes are written, some thought will need to be given to how to handle
cases where the class doesn't specify a formatter type, and no formatter type is
provided in the call itself. That may well vary considerably across request types,
though, so there's little point in going into any depth on that concern just yet:

 ###################################
 # Abstract methods #
 ###################################

 @abc.abstractmethod
 def __call__(self, request:(dict,), formatter=None) -> (str,):
"""
Makes the instance callable, providing a mechanism for processing the
supplied request, generating a data-structure containing the response
for the request, formatting that response, and returning it.
self (BaseRequestHandler instance, required) The
instance to execute against

Anatomy of a Service Chapter 15

[529]

request (dict, required) The request to be handled
formatter (BaseResponseFormatter instance, optional, if not
"""
 pass

The BaseResponseFormatter ABC also starts as a standard abstract class. It also
uses the same daemon property, and adds a request_handler property that uses a
similar setter method, allowing a formatter instance to access the request instance that
created it, as well as the daemon instance that the request was received by:

 def _set_request_handler(self, value:(BaseRequestHandler,)) ->
None:
 if not isinstance(value, BaseRequestHandler):
 raise TypeError(
 '%s.request_handler expects an instance of a class '
 'derived from BaseRequestHandler, but was passed '
 '"%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)
 self._request_handler = value

The request_handler, then, needs to be required when creating an instance, for
much the same reason that daemon is required:

 def __init__(self,
 daemon:(BaseDaemon,),
 request_handler:(BaseRequestHandler,),
):
"""
Object initialization.

self (BaseResponseFormatter instance, required) The
 instance to execute against
daemon (BaseDaemon instance, required) The daemon that
the
 request to be handled originated with.
request_handler ... (BaseRequesthandler instance, required) The
request-handler object associated with the instance.
"""
 # - Set default instance property-values using _del_...
methods
 self._del_daemon()
 self._del_request_handler()
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_daemon(daemon)
 self._set_request_handler(request_handler)

Anatomy of a Service Chapter 15

[530]

Finally, as with BaseRequestHandler, we'll require a __call__ method to be
implemented by any derived classes:

 @abc.abstractmethod
 def __call__(self, response:(dict,)) -> (str,):
 """
Makes the instance callable, providing a mechanism for formatting a
standard response-dictionary data-structure.

self (BaseRequestHandler instance, required) The
 instance to execute against
response (dict, required) The response to be formatted
"""
 pass

In general, classes (especially if they are concrete classes) that are this simple (having
only one method, plus their initializer, __init__) are not the best implementation
approach. A class with a single method can usually be handled as a single function
instead, even if the function has a more complex set of arguments. The formatter
classes may well end up falling into this category as concrete implementation
progresses. If they do, refactoring them into (hopefully simple) functions will be
undertaken, but for now, BaseResponseFormatter will be left standing, as it has
been written.

The BaseRequestHandler ABC is less of a concern on that count. Requests that
interact with different backend data objects can be grouped into handlers for those
object types; for example, an ArtisanHandler for artisans and a ProductHandler
for products. It's not a great stretch to anticipate that each of those handlers will have,
at a minimum, methods for various CRUD operations that will be called, as requests
are handled by the __call__ method, but other needs arise in specific use cases and
service contexts, as follows:

In a web service context, there could be as many as five additional methods
to be implemented – one each for HEAD, CONNECT, OPTIONS, TRACE, and
PATCH HTTP methods
In service contexts that don't have such a rigidly defined set of operations
as the HTTP methods of a web service, there is even more potential for
additional methods – even as many as one per business process that
requests need to be supported for

Anatomy of a Service Chapter 15

[531]

Even with these levels of complexity, implementing functions to handle the
request/response cycles would be feasible. They'd just be larger, more complex
functions, with a strong potential for being more difficult to change or maintain on a
long-term basis.

Integrating a service with the OS
The last substantial piece of the service implementation puzzle, before getting into the
concrete functionality, is getting a service program written in Python, to actually
execute as a service at the OS level. The specifics of that process vary, unsurprisingly,
across different operating systems (and even vary, to some extent, across different
versions of some operating systems – Linux, in particular), but there are common
operations that must be addressed across the board, as follows:

Services need to be started when the machine they run on boots up
Services need to stop gracefully, when the machine they run on is powered
down or rebooted
Services need to be able to be restarted (which is generally little more than
a stop-then-start process)

Some service models might also benefit from being able to reload their data and/or
configurations without interrupting service access in the process, particularly if the
equivalent reload process that would occur from a restart is time-consuming. There
may be other useful operations for specific scenarios.

An exploration of these mechanisms will use the testdaemon class that was shown
earlier.

Running a service using systemctl (Linux)
Linux distributions are moving away from their old System V-style startup processes
to a newer mechanism, the systemd daemon, and its associated systemctl
command-line tool. Services managed by systemd/systemctl require, at a
minimum, a configuration file that defines startup and shutdown processes, a type
definition that controls how those processes will be handled by the OS, and whatever
executables are needed to start or stop the service processes. A bare-bones
testdaemon.service configuration file could be as simple as the following:

[Unit]
Description=testdaemon: a simple service example written in Python

Anatomy of a Service Chapter 15

[532]

[Service]
Type=forking
ExecStart=/usr/bin/python /usr/local/bin/testdaemon.py
ExecStop=/usr/bin/pkill -f testdaemon.py

In the preceding code, the following apply:

The Unit/Description entry is simply a short description of the service,
often nothing more than a name.

Service/Type defines how the startup process will be handled by the
systemd daemon. In this case, the execution will be forked, so that
whatever process called it is no longer associated with it, and can terminate
without stopping the service itself.

Service/ExecStart defines a process for starting the service, in this case,
by executing the testdaemon.py file as a Python script.

Service/ExecStop defines a process for stopping the service, in this case,
by killing all of the processes with testdaemon.py in their name.

Assuming that the actual testdaemon class can be imported from some installed
package, the testdaemon.py script that starts the service can be as simple as the
following:

#!/usr/bin/env python

- Import the service-class
 from some_package import testdaemon
- The location of the config-file
 config_file = '/path/to/config.yaml'
- Create an instance of the service class
 d = testdaemon(config_file)
- Start it.
 d.start()

With both of those files in place, the commands for starting, restarting, and stopping
the service from the command line are, respectively, as follows:

systemctl start testdaemon.service

systemctl restart testdaemon.service

systemctl stop testdaemon.service

Anatomy of a Service Chapter 15

[533]

The services managed by systemd must be enabled in order to start at boot, as
follows:

systemctl enable testdaemon.service

The preceding command requires that an install specification be added to the
corresponding systemd .service file, as follows:

...
ExecStop=/usr/bin/pkill -f testdaemon.py

[Install]
WantedBy=multi-user.target

There are a lot of other options available to systemd service configurations, but these
bare-bones settings will allow a service to be auto-started and managed with standard
command-line tools.

Running a service using NSSM (Windows)
The easiest way to install services written in Python on a Windows machine is to
use Non-Sucking Service Manager (NSSM). NSSM provides a simple way to wrap a
specific executable (the main python.exe file, in this case), along with arguments
(the testdaemon.py script), and make them available as a Windows service. Starting
NSSM with nssm install provides a window with all of the fields needed for basic
service setup, as follows:

Anatomy of a Service Chapter 15

[534]

Once the Install service button is clicked, the service is available in the Windows
Services manager, where its Startup Type can be altered, if needed, along with all of
the other standard Windows service settings and properties:

Changes can also be made to the NSSM-created properties of the service, by running
nssm install <service-name>, which presents the same UI that was used to
create the service entry.

If an NSSM-packaged service fails to start, it will log useful
information to the standard Windows Event Log; debugging startup
problems should start there. Odds are good that if there are any
issues, they will be permissions-related, such as the service's account
not having access to the script file, a configuration file, and so on.

Anatomy of a Service Chapter 15

[535]

macOS, launchd, and launchctl
The Macintosh operating system (macOS) is, under the hood, a Unix variant, so in
many respects, there will be fewer issues or differences than there are between Linux
and Windows service installations. macOS provides approximate equivalents to
systemd and systemctl: the launchd and launchctl programs, respectively. They
provide the same sort of service startup and shutdown control capabilities, at a
minimum, with a lot of additional options for handling service processes, based on all
kinds of system events.

Disclaimer: While writing this book, no macOS machine was
available to test with, so, while this section should be complete and
usable as it stands, there may be issues that weren't identified before
publication

A bare-bones launchd-compatible service configuration file needs to contain a
service label, the program that is executed when the service starts up, and any
arguments that the program needs: exactly what systemd needs, although the
configuration files for launchd-managed services are XML files. A basic starting
point configuration, using testdaemon.py as the script to launch the actual service
object and providing both run-at-load and keep-alive controls, looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>testdaemon</string>
 <key>Program</key>
 <string>/path/to/python</string>
 <key>ProgramArguments</key>
 <string>/path/to/testdaemon.py</string>
 <key>RunAtLoad</key>
 <true/>
 <!--
 A very basic keep-alive directive. There may be better
options:
 See "SuccessfulExit" and "Crashed" subkeys
 -->
 <key>KeepAlive</key>
 <true/>
 </dict>
</plist>

Anatomy of a Service Chapter 15

[536]

That configuration, once in one of the standard locations for launchd files, allows the
service to be started, restarted, and stopped, respectively, as follows:

launchctl start testdaemon.service

launchctl restart testdaemon.service

launchctl stop testdaemon.service

Managing services on other systems
Although the current trend for managing service processes in Linux systems is, as
noted, moving toward systemd/systemctl, there may be operational systems that
still use System V-style initialization scripts. A bare-bones starting point for such a
script would look something like the following:

#!/bin/sh

- The action we're concerned with appears as $1 in a standard
bash-script
 case $1 in
 start)
 echo "Starting $0"
 /usr/bin/python /usr/local/bin/testdaemon.py
 ;;
 stop)
 echo "Stopping $0"
 /usr/bin/pkill -f testdaemon.py
 ;;
 restart)
 echo "Restarting $0"
 /usr/bin/pkill -f testdaemon.py
 /usr/bin/python /usr/local/bin/testdaemon.py
 ;;
 esac

Anatomy of a Service Chapter 15

[537]

In a System V-managed context, the service itself has to take responsibility for making
sure that it detaches from whatever process called it – a Terminal session, or the
startup processes of the OS itself. Otherwise, the service process may simply start,
then terminate before it actually does anything.

Since this scenario should be less and less common as time goes on,
but is still possible, there is a class in the daemons module,
BaseDaemonizable, that handles daemonizing a service class
instance, including writing the process ID (PID) to a file in a known
location, in case that's needed for some part of a service process.
Deriving a service class from that, instead of BaseDaemon, should
take care of the majority of the different needs, while still preserving
the BaseDaemon structure.

Summary
The service foundations that were created in this chapter should provide a solid,
common starting point for nearly any service, although tweaks to the structure or
overrides of existing functionality may be required for specific use cases. With the
foundations in place, the path is clear to actually creating the Artisan Gateway Service
in hms_sys, which will connect the Artisan and Central Office data flows in the next
chapter.

16
The Artisan Gateway Service

In order to implement the end user and Gateway-daemon communications, we need
to examine and make some decisions on several operational aspects of the daemon –
how it's going to work, how data gets sent and received, and how that data is acted
upon. In this chapter, we'll examine that in detail, and write code to implement
processes based on those decisions.

The chapter covers the following topics:

Defining what the data structure (messages) being sent back and forth
looks like, and what it needs to provide, including a signed-message
implementation that should work no matter what mechanism is used to
send the data
Examining two fundamental options for sending and receiving data:
message queues and web services
How messages will be handled, independently of the transmission
mechanism
The basic structures needed to implement a message-queue-based
transmission mechanism
What variations would be encountered (and how to deal with them) in a
web-service-based approach
What the traffic to and from the Artisan Gateway will look like
A minimal integration of those traffic patterns into existing data objects'
current processes

The Artisan Gateway Service Chapter 16

[539]

Overview and goal
In the context of the hms_sys system, the Artisan Gateway has been only loosely
defined thus far – it's been described as acting as a central contact point for
communication between Artisans and the Central Office, especially with respect to
the Product and Order objects – what its role is, in effect. The specifics of how it
works, and when, haven't really been touched upon, though at least some of the latter
are probably very obvious, following a simple rule that might be stated as changes
made (by whomever) need to propagate to all relevant parties as soon as is
feasible. Those changes are largely dependent on who is making them. At a
minimum, the following processes feel likely:

Artisans can create new Product data
Artisans can update current Product data
Artisans can delete a Product outright
Central Office staff can mark a Product as available – which is just a
specialized variant of a Product update process
Central Office staff can also make content changes to Products – also an
update variant – with some constraints on what can be altered
Customer end users can indirectly create Order objects, which need to
propagate out to Artisans in some fashion
Artisans can update Orders as part of the process of fulfilling them

All of these processes are variants of CRUD operations on the Product and/or Order
objects, and will probably not need much more functionality than is already provided
by the _create or _update methods of the related classes within each
subsystem. They should cover most, perhaps all, of how the data changes are actually
stored.

The transmission of those data changes, no matter what the timing or protocol ends
up looking like, has some common factors as well, with a process that will need to
handle the role-specific variations of the following steps:

A data change (create, update, or delete) is made locally, in one of the user-
level applications
The data change is validated, to assure that the data is well formed and
conforms to data-structure requirements

The Artisan Gateway Service Chapter 16

[540]

The data change is stored locally (if applicable)
The data change is serialized and transmitted to the Artisan Gateway
service, where whatever actions need to be undertaken are executed

These steps do not address the possibility of conflicting changes, such as an Artisan
and someone in the Central Office making different changes to the same data in the
same data-change timeframe. A strategy for dealing with that possibility may not
even be necessary, depending on the specific data-change business rules in play, but
will have to be examined as well.

That leaves only the decision about the transmission method itself to be made. Since
the individual users that will be making changes to data are not expected to be in the
same physical location, we need a network-transmission protocol of some sort – a
web service or message-queue-based process, as discussed in Chapter 15, Anatomy of
a Service. A web service, if it were written from scratch, would probably be a
significantly larger undertaking, potentially requiring code to handle authentication,
authorization, and processes for handling specific HTTP methods and tying them to
specific CRUD operations against individual data object types. There's enough
complexity between those alone to warrant looking at an existing service-capable
framework, such as Flask or Django, rather than writing (and having to test) all of the
relevant code.

Given that the system only needs to be concerned with the seven actions identified
earlier (Artisan: create, update, or delete Products, and so on), it feels simpler to write
those seven functions, and allow messages in a queue-based protocol to simply call
them when necessary. The potential concerns around authentication and
authorization can be mitigated significantly by assigning each Artisan its own distinct
queue, and perhaps signing each message originating with an Artisan. Between those
two approaches, an Artisan's identity can be determined simply by the fact that a
message is coming in from a given queue that's associated with them. Coupling that
with a signature on each message, as long as it can be generated by the Artisan's
application and verified by the Artisan Gateway service without transmitting any
secret data with the message, provides a reasonably robust authentication
mechanism. Authorization concerns in this context are nearly trivial – any given
channel, given that it can be associated with a user type, or even a specific user, can
simply be allowed access to (and thus execution of) the operations that are relevant to
that user or type only.

The Artisan Gateway Service Chapter 16

[541]

At a high level, the data flows for Artisan/Product operations, no matter which
transmission mechanism is selected, would look like this:

Where:

The various messages (Create Product, Update Product, and Delete
Product) with their respective {payload} data (or a {product_id} for deletion
operations) are created by the local Artisan Application, transmitted to the
Artisan Gateway service
Those messages are read, validated, and used to determine which service
method (artisan_create_product, and so on) should be called
The relevant method deals with whatever data storage is needed in the
Artisan Gateway Datastore during execution

Similar data flows would exist for all of the operations that Central Office users could
execute against Product objects, and for Artisan and Order object interactions, at a
minimum. In addition, there may well be related operations that need to be made
available for more specific data-object operations in more specific Central Office roles.
The Central Office staff will need to be able to manage Artisan objects, at a
minimum, and maybe Order objects as well.

The Artisan Gateway Service Chapter 16

[542]

Iteration stories
Although there are at least some aspects of many of these stories that rely on some UI
implementation that hasn't been examined yet, there are non-UI functional aspects to
each of them that can be usefully examined and worked. With that in mind, the
stories relevant for this iteration, at least initially, are as follows:

As an Artisan, I need to be able to send data changes to the Artisan
Gateway so that those changes can be propagated and acted upon as
needed
As a Central Office user, I need to be able to send data changes to the
Artisan Gateway so that those changes can be propagated and acted upon
as needed
As an Artisan Manager, I need to be able to create Artisan objects so that I
can manage Artisans
As an Artisan Manager, I need to be able to delete Artisan objects so that I
can manage Artisans
As an Artisan Manager, I need to be able to update Artisan objects so that
I can manage Artisans
As an Artisan, I need to be able to create Product objects so that I can
manage my Product offerings
As an Artisan, I need to be able to delete Product objects so that I can
manage my Product offerings
As an Artisan, I need to be able to update Order objects so that I can
indicate to the Central Office when my part of an Order is fulfilled
As an Artisan, I need to be able to update Product objects so that I can
manage my Product offerings
As an Artisan, I need to be able to update my own Artisan object so that I
can manage my information at HMS Central Office
As a Product Manager, I need to be able to activate Product objects so that
I can manage Product availability
As a Product Manager, I need to be able to deactivate Product objects so
that I can manage Product availability
As a Product Manager, I need to be able to update Product objects so that I
can manage Product information that an Artisan can't
As any user sending messages across, to, or from the Artisan Gateway
service, I need those messages to be signed so that they can be validated
before being acted upon

The Artisan Gateway Service Chapter 16

[543]

With the exception of the last item, these have been grouped more or less in the order
that they would need to be executed in a real use case: Central Office users (acting as
Artisan Managers) would need to create objects representing Artisans before those
Artisans could be expected to do anything, and Artisans have to be able to create
Product objects before Central Office users (acting as Product Managers) could be
expected to do anything with those objects.

Messages
Before taking a serious look at the transmission-mechanism options, it would be
beneficial to have a solid definition of what, exactly, constitutes a message being
transmitted. At a minimum, given what the data flows coming into the Artisan
Gateway service look like, and with some idea of what the actual data for a typical
data object being transmitted entails, it's apparent that a message needs to be able to
handle structured data. Internally, that's probably best represented by a dict, if only
because they are easy to serialize and un-serialize into at least two different formats
that are easily transmissible: JSON and YAML. We've already established data
dictionary structures for the objects whose state data can be stored. A Product, for
example, from an Artisan's perspective, whose data dictionary has been rendered into
JSON looks like this:

{
 "oid": "a7393e5c-c30c-4ea4-8469-e9cd4287714f",
 "modified": "2018-08-19 07:13:43",
 "name": "Example Product",
 "created": "2018-08-19 07:13:43",
 "description": "Description TBD",
 "metadata":{
 "wood": "Cherry, Oak"
 },
 "available": false,
 "dimensions": "2½\" x 4\" x ¾\"",
 "shipping_weight": 0.5,
 "summary": "Summary TBD",
}

The Artisan Gateway Service Chapter 16

[544]

This provides all of the data needed for any create or update operation of a Product
initiated by an Artisan, but doesn't specify what operation needs to be performed
with the data. It also doesn't have any signature data associated with it, which we'll
want to provide to complete the last of the iteration stories noted earlier. Both of those
items, operation and signature, need to be added to the message, but not to the
message data, so that creating an instance of the Product object on the receiving end
doesn't have to deal with removing non-product data from the incoming data
structure.

In the context of a message, they are both metadata: data about the data, in this case
describing what is to be done with the real data, and what signature should be used
to verify the integrity of the message. A more complete message, intended to update
an existing product (providing a description and summary, and making the item
available) would look something like this (assuming that all product-data is
transmitted during an update operation):

{
 "data":{
 "oid": "a7393e5c-c30c-4ea4-8469-e9cd4287714f",
 "modified": "2018-08-19 07:41:56",
 "name": "Example Product",
 "created": "2018-08-19 07:13:43",
 "description": "Cherry and oak business-card holder",
 "metadata": {
 "wood": "Cherry, Oak"
 },
 "available": true,
 "dimensions": "2½\" x 4\" x ¾\"",
 "shipping_weight": 0.5,
 "summary": "Cherry and oak business-card holder",
 },
 "operation":"update",
 "signature":"{Hash hexdigest}"
}

That data structure as an output goal gives us enough information to implement a
DaemonMessage class to represent any message going to or coming from the Artisan
Gateway service. DaemonMessage is a concrete class, and lives in the
hms_core.daemons module. It starts with a typical class declaration, and has a class
constant defined that will be used later for encoding string values into byte values, in
both instance and class methods:

class DaemonMessage(object):
 """
Represents a *signed* message being sent to or received from a

The Artisan Gateway Service Chapter 16

[545]

BaseDaemon instance.
"""
 ###################################
 # Class attributes/constants #
 ###################################

 # - class-constant encoding-type for signature processes
 __encoding = 'utf-8'

Most of the properties of DaemonMessage follow the standard getter, setter, and
deleter method/property-declaration pattern we've been using so far. One of them,
the signature property, needs to return a calculated value every time it's called, and
simply has a getter method definition – _get_signature:

 ###################################
 # Property-getter methods #
 ###################################

...

 def _get_signature(self) -> str:
 if not self.data:
 raise RuntimeError(
 '%s.signature cannot be calculated because there is '
 'no data to sign' % (self.__class__.__name__)
)
 if not self.signing_key:
 raise RuntimeError(
 '%s.signature cannot be calculated because there is '
 'no key to sign data with' % (self.__class__.__name__)
)
 return sha512(
 bytes(
 # - We're using json.dumps to assure a consistent
 # key-order here...
 json.dumps(self.data, sort_keys=True), self.__encoding
) + self.signing_key
).hexdigest()

The _get_signature method has several noteworthy aspects in its implementation.
First, since a signature should only be available if there is data to sign, and a signing
key value to sign the data with, it actively checks for those values, raising
RuntimeError if either is not set. Secondly, its return value has to ensure that hashes
of the data structure will always be the same for the same data structure. Python's
dict data structures do not guarantee the same sequence of keys across multiple
dict values, even if the same keys exist across them.

The Artisan Gateway Service Chapter 16

[546]

Since the hashing mechanism requires a bytes value, and rendering a dict into
bytes (using a str() conversion as an intermediate translation mechanism) will not
always return the same bytes sequence to be hashed, some mechanism for ensuring
the instance's data dict is always rendered into a consistent str/bytes sequence is
needed. Since the value going into the hashing process for generating the signature
could start as a string, and since json.dumps provides a mechanism for recursively
sorting the output's keys, that was a quick and simple solution.

The selection of json.dumps was made based on simplicity and
convenience. It might be better in the long run to create an
OrderedDict instance (from the collections module), add each
element, in order, to the new instance, then hash the string value of
that instead. If nothing else, that would alleviate any potential
concerns with data structures to be hashed containing values that
cannot be serialized into JSON. Another option would be to hash a
YAML value instead, since it deals with data types that aren't
directly serialize-able in a cleaner fashion.

The property setter and deleter methods are typical-enough implementations that
they don't warrant much in the way of explanation, though the setter method
corresponding to the operation property (_set_operation) checks the incoming
value against a limited set of options.

One significant deviation from the typical properties pattern we've used so far is that
DaemonMessage exposes most of its properties as settable and deletable. The
rationale behind that decision is that it seems likely that the data, operation, and
signing_key values of a message may not all be known when the message first
needs to be created, or they may even need to be altered before the message is being
sent by some other process. Allowing them to be set or deleted on the fly alleviates
any such concerns in later implementations that use instances of DaemonMessage. In
combination with the on-the-fly, calculated-value implementation of signature (and
its checking for required property-values before returning), this allows as much
flexibility as we should need later, while still preserving the type- and value-checking
of those properties:

 ###################################
 # Instance property definitions #
 ###################################

 data = property(
 _get_data, _set_data, _del_data,
 'Gets, sets, or deletes the data/content of the message'
)

The Artisan Gateway Service Chapter 16

[547]

 operation = property(
 _get_operation, _set_operation, _del_operation,
 'Gets, sets, or deletes the operation of the message'
)
 signature = property(
 _get_signature, None, None,
 'Gets the signature of the message'
)
signing_key = property(
 _get_signing_key, _set_signing_key, _del_signing_key,
 'Gets, sets, or deletes the signing_key of the message'
)

Accordingly, the initialization of a DaemonMessage doesn't require any of those
properties to be supplied to construct an instance, but it allows all of them:

 ###################################
 # Object initialization #
 ###################################

 def __init__(self,
 operation:(str,None)=None, data:(dict,None)=None,
 signing_key:(bytes,str,None)=None
):
 """
Object initialization.

self (DaemonMessage instance, required) The instance to
 execute against
operation (str, optional, defaults to None) The operation
 ('create', 'update', 'delete' or 'response') that
 the message is requesting
data (dict, optional, defaults to None) The data of the
 message
signing_key (bytes|str, optional, defaults to None) The raw
 data of the signing-key to be used to generate the
 message-signature.
"""
 # - Call parent initializers if needed
 # - Set default instance property-values using _del_...
methods
 self._del_data()
 self._del_operation()
 self._del_signing_key()
 # - Set instance property-values from arguments using
 # _set_... methods
 if operation:
 self.operation = operation

The Artisan Gateway Service Chapter 16

[548]

 if data:
 self.data = data
 if signing_key:
 self.signing_key = signing_key

Since the purpose of the DaemonMessage class is to provide a simple, consistent way
to generate messages serialized into JSON, and that requires a dict value to serialize
from, we provide methods to do both:

 def to_message_dict(self):
 return {
 'data':self.data,
 'operation':self.operation,
 'signature':self.signature,
 }

 def to_message_json(self):
 return json.dumps(self.to_message_dict())

Similarly, we'll need a way to unserialize messages from JSON, with an intermediate
from dictionary method. These are implemented as class methods, allowing
a message instance to be created and validated with a signing key. The critical aspects
of that functionality all reside in the from_message_dict class method:

 @classmethod
 def from_message_dict(cls,
 message_dict:(dict,), signing_key:(bytes,str)
):
 """
message_dict (dict, required) The incoming message as a dict,
 that is expected to have the following structure:
 {
 'data':dict,
 'operation':str, #
(create|update|delete|response)
 'signature':str # (hash hex-digest)
 }
signing_key (bytes|str, optional, defaults to None) The raw
 data of the signing-key to be used to generate the
 message-signature.
"""

Typical type- and value-checking is performed against the incoming arguments first:

 if type(message_dict) != dict:
 raise TypeError(
 '%s.from_message_dict expects a three-element '
 'message_dict value ({"data":dict, "signature":str, '

The Artisan Gateway Service Chapter 16

[549]

 '"operation":str}), but was passed "%s" (%s)' %
 (cls.__name__, data, type(data).__name__)
)
 if type(signing_key) not in (bytes,str):
 raise TypeError(
 '%s.from_message_dict expects a bytes or str
signing_key '
 'value, but was passed "%s" (%s)' %
 (cls.__name__, signing_key,
type(signing_key).__name__)
)
if type(signing_key) == str:
 signing_key = bytes(signing_key, cls.__encoding)

A new DaemonMessage instance is created from the data and operation values of the
incoming message_dict, and from the signing_key argument after ensuring that
all data is present and well formed:

 _data = message_dict.get('data')
 if not _data:
 raise ValueError(
 '%s.from_message_dict expects a three-element dict '
 '({"data":dict, "signature":str, "operation":str}), '
 'but was passed "%s" (%s) which did not include a '
 '"data" key' %
 (cls.__name__, data, type(data).__name__)
)
 _signature = message_dict.get('signature')
 if not _signature:
 raise ValueError(
 '%s.from_message_dict expects a three-element dict '
 '({"data":dict, "signature":str, "operation":str}), '
 'but was passed "%s" (%s) which did not include a '
 '"signature" key' %
 (cls.__name__, data, type(data).__name__)
)
 _operation = message_dict.get('operation')
 if not _operation:
 raise ValueError(
 '%s.from_message_dict expects a three-element dict '
 '({"data":dict, "operation":str, "operation":str}), '
 'but was passed "%s" (%s) which did not include a '
 '"operation" key' %
 (cls.__name__, data, type(data).__name__)
)
 result = cls(_operation, _data, signing_key)

The Artisan Gateway Service Chapter 16

[550]

Once the new DaemonMessage instance exists, provided that its data has the same
keys and values, and that the local signing_key used to generate the signature is the
same as the signing_key that was used to create the original message before it was
transmitted, the signature values of both messages should be identical. If they aren't,
then there is something suspect with the message. There are not many possible causes
for a signature failure:

The data in the message has gotten corrupted/altered in some fashion

The local and remote signing_key values are different

In either case, no action should be taken – either the data itself is suspect, or the
authenticity of the message cannot be verified. In any signature-failure condition, we
raise a custom error, InvalidMessageError:

 if result.signature == _signature:
 return result
 raise InvalidMessageError(
 'The message %s, with a signature of "%s" did not match '
 'the expected signature. Message DENIED' %
 (_data, result.signature)
)

The conversion from a JSON-serialized message to a DaemonMessage instance simply
decodes the incoming JSON, then feeds the resultant dict data structure into
from_message_dict, returning the resultant object:

 @classmethod
 def from_message_json(cls, json_in:(str,),
signing_key:(bytes,str)):
 return cls.from_message_dict(json.loads(json_in), signing_key)

Serializing messages to and from JSON doesn't impact our options for how the
Artisan Gateway service actually transmits those messages. Both of the options
mentioned, web service and message queue approaches, can handle JSON message
formats – so this message strategy is very portable in that respect.

The signing process of DaemonMessage relies heavily on the idea of creating and
managing signing keys for messages – messages cannot be sent or read without
them – and there are some significant considerations that should be discussed before
moving on.

The Artisan Gateway Service Chapter 16

[551]

Like any cryptographic process, hash-based signatures rely on a secret value
(signing_key, in this case) that has to be created and secured. With respect to
creating a signing_key, there are several factors to bear in mind, but the two most
significant areas follows:

The longer the value is, the harder it will be to crack
The more varied the characters in it are, the harder it will be to crack

The math underlying these is fairly straightforward: it takes less time to iterate over
10 values than it does over 100, so the more variations that are possible in a secret
value of any kind, the longer it will take to iterate over them all. The number of
possible values can be expressed mathematically as (the number of values per
character)(the number of characters in the string), so a 128-character signature_key, with 255
possible characters would entail 255128 possible values, or about 1.09 × 10308

combinations that would have to be checked to guarantee the calculation of a
signature_key of that size and scope. At one billion such calculations per second, or
about 3.15 × 1016 calculations per year, it's still technically/mathematically possible to
crack such a signing_key, but assuming that the hashing algorithm doesn't have
any significant flaws that can be exploited, it's impractical, at best.

The creation of a signature_key of whatever length is desired is fairly
straightforward. Python's os module provides a function, urandom, that returns a
character sequence (as a bytes object) suitable for cryptographic use, and of
whatever length is desired, so generation of even a very long key is as simple as
calling the following:

os.urandom(1024)

The results can be converted to a hexadecimal string value for storage, if needed, and
converted back from that hexadecimal string with bytes.fromhex():

import os

example_key = os.urandom(1024)
print(example_key)

example_key_hex = example_key.hex()
print(example_key_hex)

example_from_hex = bytes.fromhex(example_key_hex)
print(example_from_hex == example_key)

Yields:
b'!\x0cW\xe5\x89\x7fan ... a LOT more gibberish-looking

The Artisan Gateway Service Chapter 16

[552]

characters...'
210c57e5897f616ec9157f759617e7b4f ... a LOT more hexadecimal
digits...
True

Securing secret values is usually concerned with some combination of the following:

Assuring that they are encrypted at rest, so that even if the data store that
secrets reside in is compromised, the secrets themselves cannot be easily
used
Assuring that they are encrypted in motion, to prevent man-in-the-middle
exploits from being able to access easily usable keys
Changing (rotating) them on a reasonably frequent basis, to reduce the
likelihood that a captured secret can be compromised before it's no longer
useful

The creation and management of signing_key values for Artisans (and perhaps for
Central Office-to-Artisan communications as well), and the possibility of
implementing some sort of key-rotation process will be examined in more detail in
Chapter 17, Handling Service Transactions.

Ensuring that they are encrypted in motion could be a significant factor in deciding
how messages will be transmitted, though. In-flight encryption will require the
creation of an encryption certificate for either a web-service or locally hosted
message-queue implementation. A message-queue approach may allow a private
certificate to be used, while a web service might require a certificate from a public
Certificate Authority.

Encryption in motion should always be implemented when
transmitting any secret information, and a signing_key definitely
falls into that category!

Encryption at rest feels like it might be overkill for a system of this scope, though it
could be implemented in code with libraries such as PyCrypto, and/or by configuring
the MongoDB engine to use its Encrypted Storage Engine (available in MongoDB
Enterprise). It would also add more complexity to the system than seems warranted
at this point, including (again) key-creation and management.

The Artisan Gateway Service Chapter 16

[553]

Deciding on a message-transmission
mechanism
With the structure of the messages being passed now resolved, it's a good time to take
a deeper look at the options for how those messages could be transmitted. Ultimately,
a decision needs to be made regarding how to implement a process to deal with the
stories:

As an Artisan, I need to be able to send Product and Order data changes to
the Artisan Gateway so that those changes can be propagated and acted
upon as needed
As a Central Office user, I need to be able to send Artisan and Product data
changes to the Artisan Gateway so that those changes can be propagated
and acted upon as needed

Of the two options discussed earlier (web service or message-queue-based
implementations), using message queues feels like a better fit:

Given the limited number of operations expected, a queue-based approach
would involve less development effort, and probably less complexity than
a web-service implementation:

There's no need to handle any of the protocol-level details
(HTTP methods, variations of data-payload structures, and
so on) that would have to be dealt with in implementing a
web service
There's no need to write a full-blown HTTP server (either
from the ground up, or using one of the server classes
provided by the http.server package), or to integrate
functionality/code with any of several web-framework
options (Flask, or the Django REST Framework, for example)

Messages can be sent and will simply wait in their queues until they are
retrieved and acted upon, so:

All end users can continue to use their applications without
interruption so long as the queue server is accessible
The Artisan Gateway itself could be taken down (for
maintenance, updating, or even to be moved to a different
server) at any point

The Artisan Gateway Service Chapter 16

[554]

There are some caveats/trade-offs to this approach, though:

Messages that contain conflicting data changes, though they will still be
retrieved and processed, could require additional manual attention to
reconcile those changes. The same thing could happen in a web-service
context, but it's at least somewhat more likely with message queues.
Message-retrieval, as an active process over a network, could take
somewhat longer than simply reading an incoming request made directly
to the Artisan Gateway. As a result, service throughput may be impacted,
but even if a complete message-operation cycle took 10 seconds, that would
allow for 360 operations per hour (over 8,600 operations per day, or
3,1000,000 over the course of a year), assuming they were not performed in
parallel.
If the message-queue provider goes down, preventing messages from being
delivered in the first place, that could interrupt end user application usage.

Allocation of message queues will have to be given some consideration:

If each Artisan has their own queues, into and out of the
Artisan Gateway, at least some data about those queues has
to be stored and managed, and each Artisan-to-Gateway
queue will have to be checked individually
If all Artisans share one inbound queue to the Artisan
Gateway, identification of which Artisan a given message
originated with will have to be implemented for each
operation

Since there is no implicit response requirement in the message protocol to
indicate that it has been acted upon (or couldn't be because of an error), any
response to a message that needs to be sent to a user will have to be
actively/independently sent.

As an Artisan, I need a message queue created for and assigned to me so
that I can send my data changes to the Artisan Gateway.

The Artisan Gateway Service Chapter 16

[555]

Message-queue implementation with
RabbitMQ
The hms_sys projects will use RabbitMQ as its message-queue provider. RabbitMQ is
actively maintained, and is a zero-cost solution, with paid support and consultation
options, making it a good low-budget choice. Additionally, there is a ready-to-roll
Python library, pika (installed with pip install pika) that provides all the critical
functionality needed to send and receive messages from a RabbitMQ server, without
having to get too far into the weeds implementing a solution from scratch. The
makers of RabbitMQ, Pivotal Software, also offer a commercial version that includes
additional management features along with support agreements.

There are other options available for message-queue
implementations, including cloud-based solutions from Amazon
(SQS), Microsoft (Azure Service Bus), and Google (Cloud Pub/Sub),
all of which have corresponding Python libraries available for use.
Locally installable options include Apache Kafka and ActiveMQ,
and Kestrel. There is also a general-purpose AMQP library available
(amqp) that should allow connection to and interaction with any
message queue service that uses at least a basic AMQP protocol.

Sending a message to a RabbitMQ instance with pika is fairly straightforward. Here's
a simple example, using the DaemonMessage class to generate and sign messages:

#!/usr/bin/env python
- scratch-space/rabbitmq-sender.py
- Derived from RabbitMQ - RabbitMQ tutorial - "Hello world!"
https://www.rabbitmq.com/tutorials/tutorial-one-python.html

The pika library is for communicating with RabbitMQ
import pika

Use DaemonMessage to format our messages
from hms_core.daemons import DaemonMessage

Since we're transmitting a DaemonMessage, we need to generate a signing key and
message data:

Message-items
- Signing-key
signing_key = '!:iLL>S@]BN;h%"h\'<2cPGsaKA 3vbGJ'
- Message data (a dict)

The Artisan Gateway Service Chapter 16

[556]

message_data = {
 'hello':'Hello from %s' % __file__,
 'random_number':3, # not a random number yet
}

Then we create the message:

- The actual message to be sent
message = DaemonMessage(
 'response', message_data, signing_key
)

Next, we establish a connection to the RabbitMQ server:

RabbitMQ connection and related items
- Create a connection
connection = pika.BlockingConnection(
 pika.ConnectionParameters('localhost')
)
- Create (or at least specify) a channel
channel = connection.channel()
- Create or specify a queue
channel.queue_declare(queue='hello')

Then the message is sent, and the connection is closed:

Send the message
channel.basic_publish(
 exchange='', routing_key='hello',
 body=message.to_message_json()
)

Close the connection
connection.close()

Executing this script doesn't generate any output, but verification that the message
has been sent can be performed with the rabbitmqctl command-line tool:

The Artisan Gateway Service Chapter 16

[557]

Running the script a second time, and then the rabbitmqctl list_queues tool,
shows another message ready and waiting in the queue:

RabbitMQ requires the provision of a channel (or perhaps queue name is as good a
description) that provides organizational grouping for messages on the server, and
that we'll consider using to segregate messages by specific Artisans later on. Consider
the following queue-name declarations:

- Create or specify a queue
channel.queue_declare(queue='hello')

Send the message
channel.basic_publish(
 exchange='', routing_key='hello',
 body=message.to_message_json()
)

Here, the preceding queue-name declarations are changed to the following:

- Create or specify a queue
channel.queue_declare(queue='queue_name') # Changed here

Send the message
channel.basic_publish(
 exchange='', routing_key='queue_name', # Changed here also
 body=message.to_message_json()
)

When we review the queues and message counts with rabbitmqctl list_queues,
we see that a new queue (queue_name) has appeared, with one message in it:

The Artisan Gateway Service Chapter 16

[558]

Reading messages from a queue is a bit more complex, but not significantly so. An
example script to read the messages sent to our queue by the previous runs of the
rabbitmq-sender.py script starts much the same way:

#!/usr/bin/env python
- scratch-space/rabbitmq-receiver.py
- Derived from RabbitMQ - RabbitMQ tutorial - "Hello world!"
https://www.rabbitmq.com/tutorials/tutorial-one-python.html

import pika

from pprint import pprint
from hms_core.daemons import DaemonMessage

We need to use the same signing-key value, otherwise the messages being retrieved
won't be allowed to be read:

signing_key = '!:iLL>S@]BN;h%"h\'<2cPGsaKA 3vbGJ'

Message-handling is dealt with by providing a callback function that accepts all of the
message properties that are returned by the process of fetching a message from the
queue:

- Define a message-handler function
def message_handler(ch, method, properties, body):
 print('Handling a message:')
 # - Some print-output removed to keep the listing here shorter

It's important that we wrap functionality for message-handling in a try ... except
block, so that if something does go awry during the message-handling process, it
doesn't kill the main message-polling loop that we'll set up later. In this case, at least
one error could be raised: the InvalidMessageError error we defined earlier—it
gets thrown if a DaemonMessage cannot be created because of an invalid signature:

 try:
 message = DaemonMessage.from_message_json(
 body.decode(), signing_key
)
 print(
 '+- message (%s) %r' %
 (type(message).__name__, message)
)
 print(
 ' +- operation ... (%s) %r' %
 (type(message.operation).__name__, message.operation)
)
 print(

The Artisan Gateway Service Chapter 16

[559]

 ' +- signature ... (%s) %r' %
 (type(message.signature).__name__, message.signature)
)
 print(
 ' +- data (%s)' %
 (type(message.data).__name__)
)
 print('-- Message-data '.ljust(80,'-'))
 pprint(message.data)
 print('='*80)
 except Exception as error:
 print('%s: %s' % (error.__class__.__name__, error))

The processes for creating a connection, and associating a channel or queue name to
it, are the same:

Create a connection
connection = pika.BlockingConnection(
 pika.ConnectionParameters('localhost')
)
- Create (or at least specify) a channel
channel = connection.channel()
- Create or specify a queue
channel.queue_declare(queue='hello')

In this case, though, we're consuming messages, rather than sending them, so we
need to set that up:

- Set up a consumer
channel.basic_consume(
 message_handler, queue='hello', no_ack=True
)

Finally, we can start listening for messages:

- Listen for messages
print('Listening for messages:')
print('='*80)
channel.start_consuming()

The Artisan Gateway Service Chapter 16

[560]

On execution, this script sets up its own event loop, listening for messages on the
queue/channel specified. This is approximately equivalent to the event loop that
BaseDaemon.main requires of derived daemon classes, though an actual daemon
implementation might not use it. As soon as this script is run, it reads and outputs the
content of the two messages sent earlier by the first script:

This also allows us to verify that the signatures of the two messages,
with identical content and using the same signing key, are
identical. This is expected behavior, given that message data and the
signing key input did not change between sending the two
messages.

The Artisan Gateway Service Chapter 16

[561]

Imagine we change the signing key:

#!/usr/bin/env python
- scratch-space/rabbitmq-bad-sender.py
- Derived from RabbitMQ - RabbitMQ tutorial - "Hello world!"
https://www.rabbitmq.com/tutorials/tutorial-one-python.html

... Interim script-code removed for brevity

Message-items
- Signing-key
signing_key = 'Invalid signing key'

...

Then rerun the same script; we get different results from our message listener:

This serves as additional verification that the message-signing process will work as
expected: Not allowing messages with invalid signatures to be created, and thus not
being acted upon.

That message-handling functionality, with one minor change, can serve as the basis
for the main loop of the main class for the Artisan Gateway:

class ArtisanGatewayDaemon(BaseDaemon):
 """
Provides the main ArtisanGateway daemon/service.
"""

We still need a message-handling function, but now it's defined as a method of the
service class:

 def _handle_message(self, message:(dict,)) -> None:
 self.info(
 '%s._handle_message called:' % self.__class__.__name__
)
 self.info(str(message))

The Artisan Gateway Service Chapter 16

[562]

The main loop of the ArtisanGatewayDaemon class can start as a simple re-casting
of the original functionality from the receiver script:

 def main(self):
 """
The main event-loop (or whatever is equivalent) for the service
instance.
"""

Initially, just to establish that the functionality needed is viable, we'll use the same
signing_key, connection, and channel values established earlier. Eventually,
these will depend on configuration values – specifying the signing key, or at least
where or how to get it – and depending on whether the final implementation goes
down the path of having individual Artisan queues, there might be several queue-
names/channels, or just the one. For now, having just the one that was used in the
earlier script allows us to establish basic queue-reading functionality:

 signing_key = '!:iLL>S@]BN;h%"h\'<2cPGsaKA 3vbGJ'
 connection = pika.BlockingConnection(
 pika.ConnectionParameters('localhost')
)
 channel = connection.channel()
 channel.queue_declare(queue='hello')

The base structure of the loop that main executes is similar to the structure of the
main loop from the testdaemon of Chapter 15, Anatomy of a Service – so long as the
class' internal _running flag is True, the loop continues, performing the queue check
and processing incoming messages. Once the loop is terminated, whether by the stop
method of the class or by one of the signals that was registered during the execution
of BaseDaemon.__init__ by ArtisanGatewayDaemon.__init__, control exits and
the cleanup method of the class is called before it terminates completely.

The primary difference, as should be expected, is what actually happens during each
iteration through the loop. In this case, the channel is polled for the next available
message, and if one is detected, it's read, converted to a DaemonMessage,
acknowledged, and handed off to the message-handler method defined earlier. It
requires the same sort of connection and channel:

 # - To start with, we're just going to use the same
 # parameters for our pika connection and channel as
 # were used in the rabbitmq-sender.py script.
 connection = pika.BlockingConnection(
 pika.ConnectionParameters(
 self.connection_params['host'],
 self.connection_params.get('port'),

The Artisan Gateway Service Chapter 16

[563]

 self.connection_params.get('path'),
)
)
 # - Create (or at least specify) a channel
 channel = connection.channel()
 # - Create or specify a queue
 channel.queue_declare(queue=self.queue_name)

Once those are established, the main loop is very straightforward:

 # - Normal BaseDaemon main-loop start-up:
 self._running = True
 self.info('Starting main daemon event-loop')
 # - Rather than use a channel-consumer (see the example in
 # rabbitmq-reciever.py), we're going to actively poll for
 # messages *ourselves*, in order to capture just the
 # message-body - that's what we really care about in
 # this case...
 while self._running:
 try:
 # - Retrieve the next message from the queue, if
 # there is one, and handle it...
 method_frame, header, body =
channel.basic_get(self.queue_name)
 if method_frame:
 # - Any actual message, valid or not, will
 # generate a method_frame
 self.debug('received message:')
 message = DaemonMessage.from_message_json(
 body.decode(), self.signing_key
)
 self.debug('+- %s' % message.data)
 # - If we've received the message and processed
 # it, acknowledge it on basic principle
 channel.basic_ack(method_frame.delivery_tag)
 self._handle_message(message)
 except InvalidMessageError as error:
 # - If message-generation fails (bad signature),
 # we still need to send an acknowledgement in order
 # to clear the message from the queue
 err = '%s: %s' % (error.__class__.__name__, error)
 self.error(err)
 channel.basic_ack(method_frame.delivery_tag)
 except Exception as error:
 # Otherwise, we just log the error and move on
 err = '%s: %s' % (error.__class__.__name__, error)
 self.error(err)
 for line in traceback.format_exc().split('\n'):

The Artisan Gateway Service Chapter 16

[564]

 self.error(line)
 self.info('%s main loop terminated' % (self.__class__.__name__))

In order to test this, a quick, basic configuration file was assembled, mostly for
logging information, and an instance of the new class was created with that
configuration and started. The log output from startup to shutdown, including
sending a good message, a bad message, then another good message, shows that
everything operates as expected:

The quick, basic configuration for this daemon instance is very simple:

Logging configuration
scratch-space/hms_ag_conf.yaml
logging:
 format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 name: hms_ag
 console:
 level: info
 file:

The Artisan Gateway Service Chapter 16

[565]

 level: info
 logfile: "/tmp/hms_ag.log"

The queue parameters should reside in the configuration file as well, and be acquired
by the daemon instance. The additional configuration values end up looking like this:

queue:
 type: rabbit
 connection:
 host: localhost
 port: 5672
 path: /
 queue_name: "central-office"
signing_key: "0T*)B{Y#.C3yY8J>;1#<b\\q^:.@ZQjg2 tG~3(MJab_"

The process for loading those values involves the addition of some instance
properties that mostly follow the normal pattern in use thus far:

connection_params: A dict value whose values are retrieved from the
connection section of the config file that is used to create the RabbitMQ
connection
queue_name: A string, it is the queue-name/channel that the instance will
listen to
signing_key: A bytes or str value, it is the signing key that the instance
will use to create DaemonMessage instances sent on or received from its
queue

Actually getting and storing those values involves nothing more than adding to the
_on_configuration_loaded method of the class. Originally, all it did was call the
same method of the BaseDaemon parent class in order to set up logging capabilities,
and that remains the same:

 def _on_configuration_loaded(self, **config_data):
 # - Call the BaseDaemon function directly to set up logging,
 # since that's provided entirely there...
 BaseDaemon._on_configuration_loaded(self, **config_data)

Queue-specific items are retrieved next. Although there's no expectation at this point
that other queue systems will be needed, we can't rule out that possibility in the
future, so the code starts with the assumption that we'll want to allow for that in the
future:

 queue_config = config_data.get('queue')
 if queue_config:
 try:

The Artisan Gateway Service Chapter 16

[566]

 if queue_config['type'] == 'rabbit':
 self._connection_params =
queue_config['connection']
 self.info(
 'Connection-parameters: %s' %
 self.connection_params
)
 self._queue_name = queue_config['queue_name']
 self.info(
 'Main queue-name: %s' % self.queue_name
)
 # If other queue-types are eventually to be supported,
 # their configuration-load processes can happen here,
 # following this pattern:
 # elif queue_config['type'] == 'name':
 # # Configuration set-up for this queue-type...
 else:
 raise RuntimeError(
 '%s could not be configured because the '
 'configuration supplied did not specify a '
 'valid queue-type (%s)' %
 (self.__class__.__name__,
queue_config['type'])
)
 except Exception as error:
 raise RuntimeError(
 '%s could not be configured because of an '
 'error -- %s: %s' %
 (
 self.__class__.__name__,
 error.__class__.__name__, error
)
)
 else:
 raise RuntimeError(
 '%s could not be configured because the configuration
'
 'supplied did not supply message-queue configuration'
%
 (self.__class__.__name__)
)

The signing key is also in the configuration file, so acquiring and storing it comes
next:

 # - The signing-key is also in configuration, so get it too
 try:
 self._signing_key = config_data['signing_key']

The Artisan Gateway Service Chapter 16

[567]

 except Exception as error:
 raise RuntimeError(
 '%s could not be configured because of an error '
 'retrieving the required signing_key value -- %s: %s'
%
 (
 self.__class__.__name__,
 error.__class__.__name__, error
)
)

At least for the time being, that takes care of all of the configuration needed to remove
the hardcoded values that were in use in main, while keeping the class functional.
Execution of a variant of the original message-sending script (in scratch-
space/rabbitmq-sender-daemon-queue.py of the chapter code) showed that the
daemon still functioned as expected with these changes – listening for and acting
upon valid messages.

Handling messages
In order to actually do something with the data of a message, we'll need to define
what a well-formed command message actually looks like, implement methods to
execute the commands that are allowed, and implement functionality that knows how
to call those methods, given a well-formed and verified message to do so. The first
item from that list is quite simple, but could have a lot of different valid
implementation patterns. Consider that, at this point, we're allowed to transmit four
different operation actions by DaemonMessage: 'create', 'update',
'delete', and 'response'. These operation actions correspond directly to standard
CRUD operations, except for the 'response' value, though even that is, perhaps,
roughly equivalent to a read operation. For any given data object type, those
operations would, respectively, need to execute the same processes:

Create a new instance of the relevant class, populated with state data from1.
the message, using the from_data_dict class method (or a new
equivalent class method, perhaps), and save the new instance
Retrieve an existing instance of the relevant class, using the get class2.
method, update any of that instance's state data with new values from the
message (which would probably benefit from having a new method
created, perhaps update_from_message), and save the instance
Find and delete the instance specified by the message data with the delete3.
class method

The Artisan Gateway Service Chapter 16

[568]

Retrieve and return the data dict representation of the instance specified by4.
the message data, using the get class method to perform the retrieval, and
the to_data_dict method of the found instance to generate the data
structure of the message

The daemon, then, needs to have as many as 16 {action}_{object} methods, one
for each action/object combination, just to ensure that all of the combinations are
accounted for. For each object type (Artisans, Customers, Orders, and Products), the
set of methods would look something like this (the method names are self-
explanatory):

create_artisan

update_artisan

delete_artisan

response_artisan

The one critical piece of data that isn't yet accounted for, and is needed to determine
which of those methods to execute on receipt of a command message, is the object
type. The DaemonMessage class doesn't have a specific property for object types,
because the initial thought was that doing so could needlessly limit future uses of it to
messages that have both an operation and an object type. Revising DaemonMessage
to allow an object-type specification wouldn't be difficult. It would involve little more
than adding an optional property, allowing another optional argument in the
__init__ method, and any other methods that call it, and accounting for it in the
dictionary output methods. Going to those lengths, though, seems unnecessary: the
messages themselves, as structured data, can just as easily contain the necessary data.
As an example, consider a "create Artisan" message that looks like this:

{
 "data":{
 "target":"artisan",
 "properties":{
 "address":"1234 Main Street, etc.",
 "company_name":"Wirewerks",
 "contact_email":"jsmith@wirewerks.com",
 "contact_name":"John Smith",
 "website":"http://wirewerks.com",
 }
 },
 "operation":"create",

The Artisan Gateway Service Chapter 16

[569]

 "signature":"A long hex-string"
}

If any command message has an operation and indicates in its data an object type (the
target value) with the properties to be used in the operation as a standard structure,
that would work just as well. Similar data structures will also work for update
operations:

{
 "data":{
 "target":"artisan",
 "properties":{
 "address":"5432 West North Dr, etc.",
 "modified":"2019-06-27 16:42:13",
 "oid":"287db9e0-2fcc-4ff1-bd59-ff97a07f7989",
 }
 },
 "operation":"update",
 "signature":"A long hex-string"
}

For delete operations:

{
 "data":{
 "target":"artisan",
 "properties":{
 "oid":"287db9e0-2fcc-4ff1-bd59-ff97a07f7989",
 }
 },
 "operation":"delete",
 "signature":"A long hex-string"
}

As well as for response operations:

{
 "data":{
 "target":"artisan",
 "properties":{
 "oid":"287db9e0-2fcc-4ff1-bd59-ff97a07f7989",
 }
 },
 "operation":"response",
 "signature":"A long hex-string"
}

The Artisan Gateway Service Chapter 16

[570]

Determining which method to call based on the message's operation and
data.target values is simply a long chain of if…elif…else decisions:

def _handle_message(self, message:(dict,)) -> None:
 self.info(
 '%s._handle_message called:' % self.__class__.__name__
)

Since we'll need the target (for decision-making later) and the properties (to pass as
arguments to the method), get those first:

 target = message.data.get('target')
 properties = message.data.get('properties')

Each combination of operation and target looks very much like the others.
Starting with create operations:

 if message.operation == 'create':

If the target is one of the known, allowed types, then we can just call the appropriate
method:

 if target == 'artisan':
 self.create_artisan(properties)
 elif target == 'customer':
 self.create_customer(properties)
 elif target == 'order':
 self.create_order(properties)
 elif target == 'product':
 self.create_product(properties)

If the target is not known, we want to throw an error:

 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'object-type/target' %
 (
 self.__class__.__name__, target,
 type(target).__name__
)
)

The other operations work much the same way – update operations, for example:

 elif message.operation == 'update':
 if target == 'artisan':
 self.update_artisan(properties)

The Artisan Gateway Service Chapter 16

[571]

 elif target == 'customer':
 self.update_customer(properties)
 elif target == 'order':
 self.update_order(properties)
 elif target == 'product':
 self.update_product(properties)
 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'object-type/target' %
 (
 self.__class__.__name__, target,
 type(target).__name__
)
)

The delete and response operations are similar enough that there's little point in
reproducing them here, but they are present in the code. Finally, we also capture
cases where the operation isn't recognized, and raise an error in those cases as well:

 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'operation' %
 (
 self.__class__.__name__, operation,
 type(operation).__name__
)
)

The actual operation methods are, as a result of the data object design/structure and
the structure of the incoming messages, relatively simple. Creation of an Artisan, for
example:

def create_artisan(self, properties:(dict,)) -> None:
 self.info('%s.create_artisan called' % self.__class__.__name__)
 self.debug(str(properties))
 # - Create the new object...
 new_object = Artisan.from_data_dict(properties)
 # ...and save it.
 new_object.save()

Update of an Artisan:

def update_artisan(self, properties:(dict,)) -> None:
 self.info('%s.update_artisan called' % self.__class__.__name__)
 self.debug(str(properties))
 # - Retrieve the existing object, and get its data-dict

The Artisan Gateway Service Chapter 16

[572]

 # representation
 existing_object = Artisan.get(properties['oid'])
 data_dict = existing_object.to_data_dict()
 # - Update the data-dict with the values from properties
 data_dict.update(properties)
 # - Make sure it's flagged as dirty, so that save will
 # *update* instead of *create* the instance-record,
 # for data-stores where that applies
 data_dict['is_dirty'] = True
 # - Create a new instance of the class with the revised
 # data-dict...
 new_object = Artisan.from_data_dict(data_dict)
 # ...and save it.
 new_object.save()

Deletion of an Artisan:

def delete_artisan(self, properties:(dict,)) -> None:
 self.info('%s.delete_artisan called' % self.__class__.__name__)
 self.debug(str(properties))
 # - Delete the instance-record for the specified object
 Artisan.delete(properties['oid'])

Artisan response:

def response_artisan(self, properties:(dict,)) -> dict:
 self.info('%s.response_artisan called' % self.__class__.__name__)
 self.debug(str(properties))
 # - Since get allows both oids and criteria, separate those
 # out first:
 oid = properties.get('oid')
 criteria = {
 item[0]:item[1] for item in properties.items()
 if item[0] != 'oid'
 }
 return Artisan.get(oid, **criteria)

Queues and related Artisan properties
Since Artisans will communicate with the Gateway over specific queues, and those
queues have to be identified and consistently associated with their respective
Artisans, we'll need to have mechanisms in the various code bases to store queue
identifiers, and to associate them with their Artisan owners.

The Artisan Gateway Service Chapter 16

[573]

The queue specifications themselves can be implemented simply by adding a
property (queue_id) to the Artisan objects' classes. Since the Artisan objects at both
the Gateway service and Artisan application will make use of queue_id, it makes
sense to implement that in the hms_core.business_objects.BaseArtisan class,
where it will be inherited everywhere it's needed. The property getter and deleter
methods are typical implementations, as is the property declaration, though it
follows a read-only property pattern. The setter method is pretty typical also:

def _set_queue_id(self, value:(str)) -> None:
 if type(value) != str:
 raise TypeError(
 '%s.queue expects a single-line printable ASCII '
 'string-value, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, value,
 type(value).__name__
)
)
 badchars = [
 c for c in value
 if ord(c)<32 or ord(c) > 127
 or c in '\n\t\r'
]
 if len(badchars) != 0:
 raise ValueError(
 '%s.queue expects a single-line printable ASCII '
 'string-value, but was passed "%s" that contained '
 'invalid characters: %s' %
 (
 self.__class__.__name__, value,
 str(tuple(badchars))
)
)
 self._queue_id = value

Artisans will also need to keep track of a signing key property that is unique to each
Artisan, but exists in both the local Artisan objects at the Artisan Application side of
the message-transmission process and at the Artisan Gateway side. Signing keys, as
bytes values, may not be easily stored in their native value types, though: bytes
values are not natively JSON-serializable, which is problematic for the local Artisan
data storage already implemented, and could be problematic for the MongoDB
storage in use elsewhere.

The Artisan Gateway Service Chapter 16

[574]

Fortunately, the bytes type provides instance and class methods to serialize and
unserialize values to and from hexadecimal string values. Serializing a byte's value is
as simple as calling the hex() method of the value, and creating a bytes value from a
hex string is accomplished by calling bytes.fromhex(hex_string). A simple
example of a complete serialization/unserialization of a bytes value using
hex()/fromhex() shows that the value is preserved as needed:

import os

raw_key=os.urandom(24)
print('raw_key (%s)' % type(raw_key).__name__)
print(raw_key)
print()

serialized = raw_key.hex()
print('serialized (%s)' % type(serialized).__name__)
print(serialized)
print()

unserialized = bytes.fromhex(serialized)
print('unserialized (%s)' % type(unserialized).__name__)
print(unserialized)
print()

print('unserialized == raw_key: %s' % (unserialized == raw_key))

The output of this code will look like the following:

The Artisan Gateway Service Chapter 16

[575]

The corresponding property of the Artisan classes (signing_key) follows the typical
read-only property structure too, and apart from its setter method, is nothing
unusual. The setter method has to allow both raw bytes values and hex string
representations of bytes values, and stores a bytes value:

def _set_signing_key(self, value:(bytes,str)):
 if type(value) not in (bytes,str):
 raise TypeError(
 '%s.signing_key expects a bytes-value of no less '
 'than 64 bytes in length, or a hexadecimal string-'
 'representation of one, but wa passed "%s" (%s)' %
 (self.__class__.__name__, value, type(value).__name__)
)

If it's passed a string, it tries to convert that using bytes.fromhex():

 if type(value) == str:
 try:
 value = bytes.fromhex(value)
 except:
 raise ValueError(
 '%s.signing_key expects a bytes-value of no '
 'less than 64 bytes in length, or a hexadecimal '
 'string-representation of one, but wa passed '
 '"%s" (%s), which could not be converted from '
 'hexadecimal into bytes' %
 (
 self.__class__.__name__, value,
 type(value).__name__)
)
)

It also enforces a minimum length of the signing key, arbitrarily set to 64 bytes (512
bits):

 if len(value) < 64:
 raise ValueError(
 '%s.signing_key expects a bytes-value of no less '
 'than 64 bytes in length, or a hexadecimal string-'
 'representation of one, but wa passed "%s" (%s), '
 'which was only %d bytes in length after conversion' %
 (
 self.__class__.__name__, value,
 type(value).__name__, len(value)
)
)
 self._signing_key = value

The Artisan Gateway Service Chapter 16

[576]

The corresponding final Artisan objects have to account for these new properties in
their to_data_dict methods and __init__ methods. The to_data_dict changes
look the same – using hms_core.co_objects.Artisan as an example, and showing
the new properties added to the end of the dict result returned, they end up looking
like this:

def to_data_dict(self) -> (dict,):
 return {
 # - BaseArtisan-derived items
 'address':self.address.to_dict() if self.address else None,
 'company_name':self.company_name,
 'contact_email':self.contact_email,
 'contact_name':self.contact_name,
 'website':self.website,
 # - BaseDataObject-derived items
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'is_active':self.is_active,
 'is_deleted':self.is_deleted,
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 # Queue- and signing-key values
 'queue_id':self.queue_id,
 'signing_key':self.signing_key.hex(),
 }

The changes to the __init__ methods vary somewhat: since the new queue_id and
signing_key properties are assigned as BaseArtisan.__init__ executes, that
method has to actually call the deleter and setter methods:

def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
 queue_id:(str,None)=None, signing_key:(bytes,str,None)=None,
 website:(str,None)=None
 *products
):
 """Doc-string omitted for brevity"""
 # - Call parent initializers if needed
 # ... omitted for brevity
 # - Set instance property-values from arguments using
 # _set_... methods
 self._set_contact_name(contact_name)
 self._set_contact_email(contact_email)

The Artisan Gateway Service Chapter 16

[577]

 self._set_address(address)
 # New queue_id and signing_key properties
 self._set_queue_id(queue_id)
 self._set_signing_key(signing_key)
 if company_name:
 self._set_company_name(company_name)
 if website:
 self._set_website(website)

Since queue_id and signing_key are technically required
properties, if time allowed, moving them into the required-
arguments portion of the __init__ signature, between address
and company_name, would be the right thing to do. In this case, it's
more a matter of space constraints than time, so they're being added
into the signature at an easy location to deal with instead, rather
than having to review, modify, and reshow all of the various
BaseArtisan.__init__ calls that already exist in the code. They'll
still work as required properties, though, since the setter methods
won't accept the default None values, and they're being called
without the sort of checking that company_name and website use.

The __init__ methods of co_objects.Artisan and artisan_objects.Artisan
only have to be updated to include the new arguments in their signatures and pass
those along to their BaseArtisan.__init__ calls. The revisions to
co_objects.Artisan.__init__ look like this:

def __init__(self,
 contact_name:str, contact_email:str,
 address:Address, company_name:str=None,
New queue_id and signing_key arguments
 queue_id:(str,None)=None,
 signing_key:(bytes,str,None)=None,
 website:(str,None)=None
 # - Arguments from HMSMongoDataObject
 oid:(UUID,str,None)=None,
 created:(datetime,str,float,int,None)=None,
 modified:(datetime,str,float,int,None)=None,
 is_active:(bool,int,None)=None,
 is_deleted:(bool,int,None)=None,
 is_dirty:(bool,int,None)=None,
 is_new:(bool,int,None)=None,
 *products
):
 """Doc-string omitted for brevity"""
 # - Call parent initializers if needed

The Artisan Gateway Service Chapter 16

[578]

 BaseArtisan.__init__(self,
 contact_name, contact_email, address, company_name,
New queue_id and signing_key arguments
 queue_id, signing_key,
 website
)
 # ... other initialization omitted for brevity
 # - Perform any other initialization needed

Requirements for a web-service-based
daemon
If we were to pursue a web-service-based implementation for the Artisan Gateway
instead, there are several common factors, and a few hurdles that would have to be
overcome. Arguably the most significant hurdle would be in implementing the full
set of HTTP methods – POST, GET, PUT, and DELETE – the official and standards-
compliant methods that correspond to the Create, Read, Update, and Delete CRUD
operations we're expecting to use.

If the medium that commands are transmitted in is to remain the serialized and
signature-bearing message output of the DaemonMessage class, we'd need to be able
to pass a complete, signed message in at least two different ways:

In a query string format for the GET and DELETE operations: GET isn't
intended to support the same sort of payload capabilities that POST and
PUT methods allow, and though there doesn't seem to be any official stance
as to whether DELETE should or should not support it, it's probably safest
to assume that it won't, and write code accordingly.

In as many as two different payload formats for POST and PUT operations.
Thus far, we haven't addressed any of the Product data in any detail; even
if there is no requirement to support the transmission of product images,
it's just a matter of time until one would surface. The HTTP POST and PUT
operations allow a payload to be sent in the request body, and allow that
payload to be sent in two different formats (encodings) in a standard web
form request context:

As a key-value string list that looks very much like the
equivalent in a GET request

The Artisan Gateway Service Chapter 16

[579]

As a more detailed encoding, where each field in the request
has the same name and data as the key-value list, but also
allows fields to specify that they contain specific data types –
Files, for example, with other data, such as the filename

The latter encoding is seen in web pages that allow file uploads as an
enctype="multipart/form-data" attribute in the relevant <form> tag. Submitting
such a form, with two files included in the payload, will generate an HTTP request
that might look something like this:

In this example:

{field-separator} is a random string that uniquely identifies the
beginning of each field's dataset
{content-length} is the total size of the payload
{field-name} is the name of the field whose data is wrapped in the
section
{field-value} is text data from a field that is not a file-upload field
{file-name} is the name of the file being uploaded, as it existed on the
client machine

The Artisan Gateway Service Chapter 16

[580]

{MIME-type} is an indicator of the type of file being transmitted, for
example image/png
{file-data} is the data of the file corresponding to the field

In order to support a payload with just these three chunks of data, we'd have to find
or create code that can reliably parse out each data section and handle each data
chunk that gets spat back out. While there is at least one such library, requests-
toolbelt, there are known issues with it in certain core Python versions (3.3.0 and
3.3.1), so it may or may not be a viable option depending on what Python version is in
play. Writing (and testing) code from scratch to deal with multipart/form-data
payloads would be a time-consuming process at best.

Assuming that all of that is dealt with, although it's not difficult to write network
listeners that would be able to capture and handle an incoming request, that too could
involve a fair chunk of time, particularly on the testing side of things, just to be able to
reliably (and provably) handle incoming requests. In a web service scenario, it would
almost certainly be a better option to start with one of the well-established web
application packages that already deals with all of those needs and requirements, and
write code that simply maps incoming requests to the handler methods, in much the
same way that the message-queue implementation does. On the plus side, the signed
messages should be usable in that context, and the underlying operation methods
would likely not have to be modified to any significant degree.

Traffic to and from the service
The message-receiving aspect of the communication chain by the service is already in
place, in the main method of ArtisanGateway, but no message-sending functionality
has been implemented yet, apart from the bits and pieces focused around message
generation. Each data object type, when modified, created, or deleted, is going to
need to send a relevant command message to its counterpart subsystem. For example,
if an Artisan creates a new Product, the act of creating that Product object needs to
send a "create product" message to the Gateway service. Likewise, if a change is made
to a Product by Central Office staff, the Gateway service needs to send an "update
product" message to the appropriate Artisan Application instance.

The Artisan Gateway Service Chapter 16

[581]

On the Artisan Application side of those scenarios, all of the queue parameters
needed to send any message are going to be constant. They will always send
messages to the same queue server, on the same port, using the same connection and
channel. Rather than requiring all of the message-queue settings to be passed to all of
the various data objects during initialization, which could complicate them
significantly, and make the code difficult to deal with if a different message-transport
mechanism were needed later on, we can create another class that contains all of
those and provides a method for sending arbitrary messages to the queue server:
RabbitMQSender. In the process of defining that class, we can also leverage certain
aspects of Python class/instance relationships to make the creation of sender instances
considerably easier:

An instance of a Python class that has defined class attributes also has
instance attributes with the same name and value. That is, if
RabbitMQSender has a class attribute named _host, with a value of
localhost, all instances of RabbitMQSender will, when created, have a
_host attribute with the same localhost value.

Changing an instance attribute's value will have no effect on the class
attribute's value.
Changing a class attribute's value will also change the corresponding
instance values, provided that they haven't been explicitly set in those
instances. So, if an instance of RabbitMQSender is created, then
RabbitMQSender._host is changed, and the _host value of the instance
will be updated accordingly.

Taken together, and with some caution in design when applied, these allow
RabbitMQSender to be defined so that the class can be configured, allowing a usable
instance of the class to be created with nothing more than the most basic of calls,
along the lines of my_sender = RabbitMQSender().

If a different message-transport mechanism were to be needed later,
it would probably be a good idea to introduce a layer of abstraction
that RabbitMQSender would derive from – BaseMessageSender,
perhaps – that would require the message-sending method and all
of the relevant transport-mechanism properties. That would provide
a common interface for all transport mechanisms, and make it a lot
easier to switch between them if/as needed.

The Artisan Gateway Service Chapter 16

[582]

RabbitMQSender, then, starts as a typical class-definition, with the various
connection properties and any other message-transmission constants defined as
protected class attributes:

class RabbitMQSender(object):
 """
Provides baseline functionality, interface requirements, and
type-identity for objects that can send messages to a RabbitMQ
message-queue that shares configuration across all derived
classes
"""
 ###################################
 # Class attributes/constants #
 ###################################

 # - Common RabbitMQ parameters
 _host = None
 _port = None
 _queue_name = None
 _virtual_host = None

The properties that correspond to those have only getter methods, so that they cannot
be easily/accidentally altered:

 def _get_host(self):
 return self._host

 def _get_port(self):
 return self._port

 def _get_queue_name(self):
 return self._queue_name

 def _get_virtual_host(self):
 return self._virtual_host

They are associated with property names in a typical read-only property structure:

 host = property(
 _get_host, None, None,
 'Gets the host (FQDN or IP-address) of the RabbitMQ '
 'server that derived objects will send messages to'
)
 port = property(
 _get_port, None, None,
 'Gets the TCP/IP port on the RabbitMQ server that '
 'derived objects will send messages to'
)

The Artisan Gateway Service Chapter 16

[583]

 queue_name = property(
 _get_queue_name, None, None,
 'Gets the name of the queue on the RabbitMQ server that '
 'derived objects will send messages to'
)
 virtual_host = property(
 _get_virtual_host, None, None,
 'Gets the "virtual_host" on the RabbitMQ server that '
 'derived objects will send messages to'
)

The connection and channel properties follow a typical lazy-instantiation pattern,
being created on the first request for either of them, and are also exposed as read-only
properties:

 def _get_channel(self):
 try:
 return self._channel
 except AttributeError:
 # - Create (or at least specify) a channel
 self._channel = self.connection.channel()
 # - Create or specify a queue
 self._channel.queue_declare(queue=self._queue_name)
 return self._channel

 def _get_connection(self):
 try:
 return self._connection
 except AttributeError:
 self._connection = pika.BlockingConnection(
 # Parameters
 pika.ConnectionParameters(
 host=self._host,
 port=self.port,
 virtual_host=self.virtual_host
)
)
 return self._connection
...

 channel = property(
 _get_channel, None, None,
 'Gets the channel that the instance will send messages to'
)

The Artisan Gateway Service Chapter 16

[584]

 connection = property(
 _get_connection, None, None,
 'Gets the connection that the instance will send messages '
 'with/through'
)

There are no property-setter or -deleter methods needed, nor is there any
functionality needed in __init__ for the class. All of an instance's properties will
effectively refer back to the class attribute values, which can be set with a single class
method call:

 @classmethod
 def configure(cls,
 queue_name:(str), host:(str,), port:(int,None)=None,
 virtual_host:(str,None)=None
):
 cls._queue_name = queue_name
 cls._host = host
 if port:
 cls._port = port
 if virtual_host:
 cls._virtual_host = virtual_host

In the context of an Artisan Application, all that needs to be done to preconfigure all
instances of RabbitMQSender is to call RabbitMQSender.configure with the
appropriate settings, probably taken from the configuration file of the Artisan
Application instance:

RabbitMQSender.configure(
 queue_name = configuration['queue_name'],
 host = configuration['host'],
 port = configuration.get('port'),
 virtual_host = configuration.get('virtual_host'),
)

Finally, the process of sending messages is provided by a single method:

 def send_message(self, message:(DaemonMessage)):
 """
Sends the supplied message to the RabbitMG server common to
all RabbitMQSender objects

self (RabbitMQSender instance, required) The
 instance to execute against
message (DaemonMessage, required) The message to send.
"""
 # - Note that exchange is blank -- we're just using the

The Artisan Gateway Service Chapter 16

[585]

 # default exchange at this point...
 self.channel.basic_publish(
 exchange='', routing_key=self.queue_name,
 body=message.to_message_json()
)

On the Artisan Application side of the message-transfer processes, the creation of a
RabbitMQSender instance and calling its send_message method should take care of
the actual message transmission we'll need. On the Artisan Gateway side, when
sending messages to Artisan Application instances, the process will be similar –
simplified in some ways, possibly not needing the RabbitMQSender (or an
equivalent) class, or perhaps needing a similar variant in order to better handle
multiple outgoing queues. We'll integrate the Artisan-side processes and examine the
Gateway needs in more detail in Chapter 17, Handling Service Transactions.

Impacts on testing and deployment
At this point in the iteration, apart from standard unit-testing for various properties
and methods that aren't involved in any message transmission, there's not much that
can be done from a testing standpoint. We have yet to integrate messaging with data
changes, which we'll examine in Chapter 17, Handling Service Transactions, and
without a complete send-and-receive process available, in either direction, there's not
much that can be done, even from a manual-testing perspective, that hasn't already
been explored.

It also feels premature to work out any deployment details for the Artisan Gateway
daemon just yet, for similar reasons, though at this point, it feels like a very basic
setup.py/Makefile arrangement will probably handle everything we'll need.

The Artisan Gateway Service Chapter 16

[586]

Summary
Although we now have all the foundations needed to work through and close the 14
stories that the iteration stated with, only three are even potentially closed:

As an Artisan, I need to be able to send data changes to the Artisan
Gateway so that those changes can be propagated and acted upon as
needed
As a Central Office user, I need to be able to send data changes to the
Artisan Gateway so that those changes can be propagated and acted upon
as needed
As any user sending messages across to or from the Artisan Gateway
service, I need those messages to be signed so that they can be validated
before being acted upon

Those foundations include, however, a functional (if untested) Artisan Gateway
daemon/service, a mechanism for generating command messages that can be acted
upon by that service and the remote applications, and the basic processes for actually
transmitting those command messages. Between those accomplishments, the odds are
good that we've actually closed these three stories, but until they are tested, we
cannot prove that they can be.

The requisite testing to prove closure, and the balance of the stories still to be
implemented, all rely on integrating the various CRUD operations at the data-object
level in the Artisan and Central Office applications with the requisite messaging to
propagate those data changes to the Artisan Gateway, and (where needed) from the
Gateway to the remote Artisan and Central Office applications, which we'll address in
the next chapter.

17
Handling Service

Transactions

There is a substantial amount of interaction potential between system components
and the data objects that they individually manage. While we've worked out some of
the mechanisms that determine what transmitting a data change or command
message looks like, we've not yet started to explore the specifics of those interactions.
In a nutshell, we still need to address what the data flows (and, thus, message
transmissions) look like for all of the local CRUD operations.

In this chapter, we will cover the following topics:

Creation of products by artisans
Activation and deactivation of products by artisans and Central Office staff
Making changes to Product data by artisans and Central Office staff
Deletion of products by artisans
Creation of artisans by Central Office staff
Making changes to Artisan data by artisans and Central Office staff
Deletion of artisans by Central Office staff
Creation of orders by the Web Storefront, and relaying that information to
artisans for fulfillment
Cancellation of orders from the Web Storefront, and relaying that
information to artisans
Order-item fulfillment by artisans

Handling Service Transactions Chapter 17

[588]

Remaining stories
Since our work in Chapter 16, The Artisan Gateway Service, only (tentatively) closed
three stories, there are still several (eleven) that need to be addressed. The
implementation of RabbitMQSender and the RabbitMQ message transmission
strategy that was adopted also raised questions about how to propagate some of the
artifacts needed for those processes—the signing key in particular—and there's also a
decision pending about whether the Artisan Gateway will use one message queue for
inbound traffic from artisans, or one per Artisan, and that may add another story:

As an Artisan, I need a message queue created and assigned to me so that I
can send my data changes to the Artisan Gateway

The bulk of the stories still pending each represent a data flow process, a data
transaction tied to a specific action that's undertaken by a specific user in the context
of the system. Each process, in turn, is some variation of a CRUD
operation—generally creating, updating, or deleting one or more data objects, as
instructed by the relevant message. In reviewing the possibilities of all of the various
CRUD operations against all of the business objects available to each user role in the
system, five new stories surfaced:

As an Artisan, I need to be able to deactivate Product objects so that I can
manage Product availability (which may be handled by a general Update
operation)
As an Artisan, I need to be informed when an Order has been placed that
includes one of my Product offerings so that I can fulfil my part of that
Order (ultimately, the creation of an Artisan-resident Order object,
triggered by some activity on the Central Office side)
As a Customer, I need the relevant parts of my Order to be relayed to the
appropriate artisans so that they can fulfill their part of my Order (the other
half of the previous story, but it might add some functional needs to that)

Handling Service Transactions Chapter 17

[589]

As a Customer who's canceled an Order, I need the relevant parts of that
cancellation to be relayed to the appropriate artisans so that they won't
fulfill their part of the Order (essentially a deletion of an Artisan-resident
Order-object, but with notification on the Artisan Application side)
As an Artisan, I need to be informed when an Order has been canceled that
includes one of my Product offerings so that I can stop any in-process
fulfillment activities related to it and update my Product status as needed
(again, the other half of the previous story)

All of these transactions follow a similar pattern:

The relevant message data of the Object whose data needs to be sent along
is used to create a message (with DaemonMessage).
That message is sent by a sender (an instance of RabbitMQSender) to the
Artisan Gateway service.
The service reads the message, and calls the appropriate [process-
method], which will probably interact with the Artisan Gateway data
store.
The [process-method] itself may need to send other messages, either
back to the Artisan Gateway service itself for further local processing, or
through the service back to an Artisan. The processes for sending
subsequent messages will be very similar, with the potential for an
additional variation—the destination of the new message:

Handling Service Transactions Chapter 17

[590]

The primary points of variation are, then, in the message data itself, and those
variations should be shaped, in turn, by business rules around what the user role is
allowed to do to those objects.

A bit of reorganization
Before digging into the details of the individual transactions, some minor
reorganization of recent code seems in order. The RabbitMQSender and
DaemonMessage classes were originally written in the hms_core.daemons module,
because that seemed a logical place to keep them—they are still relevant to the
daemon, but also have relevance to parts of the Artisan Application (and perhaps the
Central Office application) that don't have any ties to the various daemon classes
themselves. Since we've also uncovered a need for various objects to be able to
generate message data structures, and that feels like it should be handled by a
different abstraction, it feels logical to move those two classes into a new hms_core
module (hms_core.messaging), and add the new abstraction there instead—that
way, all of the messaging-related classes are in one place. Moving the custom
exception, InvalidMessageError, to the new module also feels like a sensible step,
since it is also strictly message-related.

Those code moves require some trivial changes to the Artisan Gateway service's main
module, such as changing the original imports from this:

from hms_core.daemons import BaseDaemon, DaemonMessage, \
 InvalidMessageError
from hms_core.daemons import BaseDaemon

To the following:

from hms_core.daemons import BaseDaemon
from hms_core.messaging import DaemonMessage, InvalidMessageError

Similar changes are also necessary in any of the test scripts that have been generated
in order for them to still be useful.

Handling Service Transactions Chapter 17

[591]

This sort of code reorganization is probably inevitable, at least on a
long-term basis: it's just a matter of time before something just
doesn't feel right where it lives, and needs to be moved to a better
location. In general, the earlier the need for a reorganization like this
is caught, the better, as it will tend to be less troublesome or
disruptive because there's less chance of broken interactions with
code if there's less code to interact with. It also probably goes
without saying, but it's always a good idea to rerun any test code
that might have been created to assure that nothing is egregiously
broken before moving on. In this case, the final test script for the
daemon (scratch-space/daemon-artisan-tests.py) revealed
some minor issues that had to be resolved—not because of the code-
move, but because it wasn't rerun before closing out the code
in Chapter 16, The Artisan Gateway Service. Still, the issue was
caught before it became a real bug.

Preparation for object transactions
The preceding code reorganization gives us a solid, logical place to create the new
Abstract Base Class (ABC) that we mentioned earlier. The goal of this new ABC is to
require derived classes to be able to provide a message-data-ready data structure that
can be passed to DaemonMessage as the data argument in its __init__ method, both
streamlining the process of creating a message for any given object that needs one,
and allowing the code for that process to exist as part of the individual data object
classes themselves. In keeping with the naming convention that's evolved in the code
so far, this would probably be best written as an instance method named
to_message_data. Another option considered was to_message_dict, but that
method name already exists elsewhere, and it doesn't relate to the DaemonMessage
argument quite as well.

The to_message_data method can be completely abstract, with no concrete
implementation provided in the abstract method itself—unlike many of the abstract
methods defined thus far in the hms_sys code-base, there really isn't any common
functionality to fall back on.

Handling Service Transactions Chapter 17

[592]

And that's it, really. The new ABC doesn't need anything else that comes to mind. It
just defines a requirement for the new method. It doesn't even need an __init__
method, since there's nothing that would need to be passed as an instance property
value (though it will still inherit the __init__ method from the object class that all
classes ultimately derive from). Its entire definition, then, is as follows:

class HasMessageData(metaclass=abc.ABCMeta):
 """
Provides interface requirements, and type-identity for objects that
are expected to provide a to_message_data method.
"""

 ###################################
 # Abstract methods #
 ###################################

 @abc.abstractmethod
 def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.

self (HasMessageData instance, required) The
 instance to execute against
"""
 raise NotImplementedError(
 '%s.to_message_data has not been implemented as '
 'required by HasMessageData' %
 (self.__class__.__name__)
)

An ABC defined with no concrete functionality is about as close as Python code can
get to the sort of formal interface declaration that other object-oriented languages
provide. It's still just an Abstract Base Class, just like the other ABCs that have been
built for the project so far, but all it does is generate a set of functional requirements
that derived classes have to implement before they can be instantiated. In this case,
when we apply HasMessageData to the various data object classes that have already
been defined in the hms_core.co_objects and hms_artisan.artisan_objects
namespaces (Artisan and Product classes in both, and Order in the hms_artisan
namespace), this immediately establishes a requirement that those classes implement
to_message_data, without caring how they get implemented.

Handling Service Transactions Chapter 17

[593]

In hms_sys, since the concrete Artisan, Order, and Product
classes all derive from ABCs defined in hms_core, we could
actually attach HasMessageData to those ABCs, rather than to the
concrete classes. The end result would be the same—the concrete
classes would be required to implement to_message_data—and
there would be (very slightly) less work. The trade-off would be that
any future classes that derived from BaseArtisan, BaseOrder, or
BaseProduct would also be required to implement
to_message_data, even if there was no need for that functionality.
While that doesn't feel horrible, it does impose some functional
requirements on future development that may not be warranted. For
the time being, since we know that the current concrete classes
should derive from HasMessageData, we'll derive them from it
directly—if that needs to be changed in the future, it's a safer effort
to move the requirement deeper into the inheritance tree.

The concrete implementations of to_message_data provides a logical hook in the
code for the implementation of business rule restrictions regarding what each object is
allowed to send in a message. That is, neither Artisan nor Central Office users are
allowed to alter or set all state data for all objects—they each have specific properties
that they control. Even in cases where the user type owns the object type (artisans and
products), there are properties that the other user owns (products and
store_available, for example). Since to_message_data will be used to actually
generate the message data that will, in turn, be used to make changes on the receiving
end of each message transaction, the simple expedient of limiting the data structure
generated by it to the values that the user type can create or alter prevents illegal
changes to object data by each user. We'll dig into that as we work through the
specific transactions for each user/object/action combination.

Product object transactions
Since the set of Product data transactions have the largest number of individual
transactions (seven), we'll start with those in the hopes that they will expose any gaps
in the design sooner rather than later. Each transaction ties back to one of the original
iteration stories, and the specific story that relates to the transaction process will be
called out. The specific implementation of to_message_data for the user/object
combination will be defined in the first transaction for that combination, and refined
if/as needed in subsequent transaction details. Any other specific needs for that
particular combination will also be addressed.

Handling Service Transactions Chapter 17

[594]

Since all of the varied operations against any objects require the object to be
identified, the one constant in all to_message_data outputs is the oid property of
the object being transmitted. It plays a significant role in each of the operations:

When creating a new object, the oid has to be provided in the message so
that we don't end up with different unique identifiers across different
application installations or environments. That's already taken care of by
the generation of the oid value, which is inherited from BaseDataObject,
where the oid is created if it doesn't exist.
When updating an existing object, the oid has to be provided so that the
original object can be retrieved and altered.
When deleting an existing object, the same identification need exists—the
oid has to be provided in order to identify which object is being deleted.
Although we don't have a use case yet for a response message (more or less
equivalent to a read in the standard CRUD operations structure), it, too
would require an oid value in order to identify which object should be
fetched and returned.

Artisan – creating a product
The relevant story for an Artisan's need to create a Product, from the list earlier, is:

As an Artisan, I need to be able to create Product objects so that I can
manage my Product offerings

Artisan users own the majority of the data points for a Product object. In fact, the
only property that they really shouldn't be able to create or alter is the
store_available flag that controls whether a given Product is available on the Web
Storefront that the Central Office runs. As a result, the output of to_message_data
for hms_artisan.artisan_objects.Product looks very much like its
to_data_dict method:

def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.
"""
 return {
 'oid':str(self.oid),
 # - Properties from BaseProduct:

Handling Service Transactions Chapter 17

[595]

 'available':self.available,
 'description':self.description,
 'dimensions':self.dimensions,
 'metadata':self.metadata,
 'name':self.name,
 'shipping_weight':self.shipping_weight,
 'summary':self.summary,
 # - Date/time values, since we may well want/need to
 # keep those in sync across environments
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 }

The created and modified values are included in this data structure, operating
under the assumption that they should also be kept in sync across the Artisan and
Central Office data stores—that might, if nothing else, allow the UI logic to more
easily detect when something has changed that the UI needs to be aware of before
displaying instance data, though it would almost certainly require some
standardization of a common time—one across all application and service instances.

Given a new Product object (new_product) and the signing key for the Artisan
(signing_key), transmission of the new_product to the Artisan Gateway service
becomes very simple:

new_product_message = DaemonMessage(
 'create', new_product.to_message_data(), signing_key
)
- Assumes that RabbitMQSender has already been configured...
it would be slightly more involved if this were the first time
it was used...
sender = RabbitMQSender()
sender.send_message(new_product_message)

The Artisan Gateway method that accepts those messages and actually creates the
new Product is ArtisanGatewayDaemon.create_product. Since it's a method in a
service, and especially since it makes changes to data (creating new data, in this case),
there's nearly as much logging of its processes as there is process itself, though much
of it is debugging logging, and will only be logged if the service is configured to log
events at that level:

def create_product(self, properties:(dict,)) -> None:
 self.info('%s.create_product called' % self.__class__.__name__)

Handling Service Transactions Chapter 17

[596]

 if type(properties) != dict:
 raise TypeError(
 '%s.create_product expects a dict of Product '
 'properties, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, properties,
 type(properties).__name__
)
)
 self.debug('properties ... %s:' % (type(properties)))
 self.debug(str(properties))
 # - Create the new object...
 new_object = Product.from_data_dict(properties)
 self.debug('New object created successfully')
 # ...and save it.
 new_object.save()
 self.info(
 'New Product %s created successfully' % new_object.oid
)

At this point, the various Gateway methods aren't making any
determination about whether the incoming message is authorized to
make the changes that the method is making. We'll examine this
later on.

Central Office – approving/listing a product
The relevant Story for Central Office staff being able to activate products, from the
earlier collection of stories is:

As a Product Manager, I need to be able to activate Product objects so that
I can manage Product availability

The Central Office owns the store_available flag of products, so their version of
to_message_dict, living in hms_code.co_objects.Product, is, at least initially,
much simpler:

def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.
"""
 return {
 'oid':str(self.oid),

Handling Service Transactions Chapter 17

[597]

 # - Properties from BaseProduct:
 'store_available':self.store_available,
 # - Date/time values, since we may well want/need to
 # keep those in sync across environments
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 }

The related message transmission, with a product_to_activate Product object
and the Central Office signing_key is just as easy as the new-Product transmission
that we looked at prior:

product_message = DaemonMessage(
 'update', product_to_activate.to_message_data(), signing_key
)
sender = RabbitMQSender()
sender.send_message(product_message)

The same message structure and transmission process will also address the Central
Office's need to be able to deactivate products, another of the original iteration stories:

As a Product Manager, I need to be able to deactivate Product objects so
that I can manage Product availability

The Artisan Gateway method that accepts those messages and updates the relevant
Product is ArtisanGatewayDaemon.update_product. Like create_product, it
logs fairly extensively through its execution:

def update_product(self, properties:(dict,)) -> None:
 self.info('%s.update_product called' % self.__class__.__name__)
 if type(properties) != dict:
 raise TypeError(
 '%s.update_product expects a dict of Product '
 'properties, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, properties,
 type(properties).__name__
)
)
 self.debug('properties ... %s:' % (type(properties)))
 self.debug(str(properties))
 # - Retrieve the existing object, and get its data-dict
 # representation
 existing_object = Product.get(properties['oid'])
 self.debug(

Handling Service Transactions Chapter 17

[598]

 'Product %s retrieved successfully' % existing_object.oid
)
 data_dict = existing_object.to_data_dict()
 # - Update the data-dict with the values from properties
 data_dict.update(properties)
 # - Make sure it's flagged as dirty, so that save will
 # *update* instead of *create* the instance-record,
 # for data-stores where that applies
 data_dict['is_dirty'] = True
 # - Create a new instance of the class with the revised
 # data-dict...
 new_object = Product.from_data_dict(data_dict)
 # ...and save it.
 new_object.save()
 self.info('Product %s updated successfully' % new_object.oid)

Central Office – altering product data
The relevant story for a Central Office need to alter Product data, from the list earlier,
is:

As a Product Manager, I need to be able to update Product objects so that I
can manage Product information that an Artisan can't

It's not unreasonable to assume that the Central Office will want to be able to make
changes to specific Product properties without having to send them through an
Artisan—making minor spelling corrections, or similar, simple changes to Product
content that's carried over to their Web Storefront. Since there isn't any solid
definition of what properties would be involved, let's assume that those properties
include the name, description, and summary of a Product. In that case, the
to_message_data that was created for hms_code.co_objects.Product needs to
be altered to include those values:

def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.
"""
 return {
 'oid':str(self.oid),
 # - Properties from BaseProduct:
 'description':self.description,
 'name':self.name,
 'store_available':self.store_available,

Handling Service Transactions Chapter 17

[599]

 'summary':self.summary,
 # - Date/time values, since we may well want/need to
 # keep those in sync across environments
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 }

This implementation introduces a potentially unwanted side effect: any update
operation executed by a Central Office user can update all of these properties at once.
If that behavior is not desired, then there are options that could be pursued:

Additional methods could be added to ArtisanGatewayDaemon to handle
more specific actions, such as set_product_availability, which would
only change the store_available flag value. That would likely require
the following:

The addition of a corresponding allowed operation to
DaemonMessage

To check messages that originate with an Artisan so that they
can't accidentally or intentionally perform a store availability
change that they shouldn't be allowed to

Filtering of the outbound message data, to remove any elements from it
that don't apply to a specific operation, could be implemented as part of the
message generation:

Helper methods could be added to the concrete Product
classes to perform that filtering
The UI could be made responsible for determining what kind
of message should be sent, and it could perform that filtering

At present, there doesn't appear to be any real harm in allowing any update action to
update across multiple logical operations, though, so it can be left alone for now.

Alterations by this Central Office role, for now, can be handled by the same message
construction, transmission and, handling processes in use by the approval/listing
action—it's just another variant of a data update.

Handling Service Transactions Chapter 17

[600]

Artisan – updating product data
The relevant story for an Artisan's need to update Product data, from the list earlier,
is:

As an Artisan, I need to be able to update Product objects so that I can
manage my Product offerings

The only real difference between Artisan update and create transactions is the
operation associated with the outgoing message—we've already included the
modified property in the results of to_message_data in Artisan Product objects:

product_message = DaemonMessage(
 'update', product_to_update.to_message_data(), signing_key
)
sender = RabbitMQSender()
sender.send_message(product_message)

Data alterations originating from an Artisan are, from a process standpoint, identical
to data changes that originate from a Central Office user—they can use the same
ArtisanGatewayDaemon.update_product method to actually execute those
changes—so there's no new code needed for them.

Since artisans also control a Product availability flag (available), the same
considerations noted for the Central Office Product approval listing would apply at
the Artisan level. Those encompass two stories that weren't part of the original
iteration story set, but should be included for the sake of completeness:

As an Artisan, I need to be able to activate Product objects so that I can
manage Product availability
As an Artisan, I need to be able to deactivate Product objects so that I can
manage Product availability

These, too, can be handled by the same, existing data update process already defined,
so long as there's no requirement to isolate activation/deactivation changes from other
changes to the data structure. Even if such a requirement were to surface, it would be
feasible to handle them at the message origination side of the transaction, limiting the
content of the message to only the active flag and the oid that identifies the product
to be activated or deactivated.

Handling Service Transactions Chapter 17

[601]

Artisan – deleting a product
The relevant story for an Artisan's need to delete a Product, from the list earlier, is:

As an Artisan, I need to be able to delete Product objects so that I can
manage my Product offerings

As noted earlier, deletion actions really only require the oid of the item being deleted
in order to successfully execute. Any other information would be wasted bandwidth,
though if that's not a concern, the code for a deletion really only differs in the
operation sent in the message again:

product_message = DaemonMessage(
 'delete', product_to_delete.to_message_data(), signing_key
)
sender = RabbitMQSender()
sender.send_message(product_message)

Executing a more tightly focused message is not difficult—it doesn't require anything
more, ultimately, than taking more direct control of the message data, limiting it to
just the relevant object ID. One approach would be to create the message data
directly, like this:

message_data = {
 'oid':str(product_to_delete.oid)
}
product_message = DaemonMessage('delete',message_data, signing_key)
sender = RabbitMQSender()
sender.send_message(product_message)

The corresponding deletion method in the Artisan Gateway (delete_product) is a
lot simpler than those corresponding to the create or update processes for the same
reason: all that's really needed is the oid of the object whose data is to be deleted:

def delete_product(self, properties:(dict,)) -> None:
 self.info('%s.delete_product called' % self.__class__.__name__)
 self.debug(str(properties))
 # - Delete the instance-record for the specified object
 Product.delete(properties['oid'])
 self.debug(
 'Product %s deleted successfully' % properties['oid']
)

Handling Service Transactions Chapter 17

[602]

Artisan object transactions
The processes for sending Artisan object messages will not deviate significantly
from the examples shown previously for Product objects. The creation and
transmission of create and update messages will typically follow a structure that
looks something like this:

- Typical create-object message-creation and -transmission
create_message = DaemonMessage(
 'create', object_to_create.to_message_data(), signing_key
)
sender = RabbitMQSender()
sender.send_message(create_message)

- Typical update-object message-creation and -transmission
update_message = DaemonMessage(
 'update', object_to_update.to_message_data(), signing_key
)
sender = RabbitMQSender()
sender.send_message(update_message)

Deletion messages, depending on what decision is made regarding sending the full
object dataset, or just the required oid value, will typically follow one of these two
structures:

- Transmit the full object-data-set as the delete-message
delete_message = DaemonMessage(
 'delete', object_to_delete.to_message_data(), signing_key
)
sender = RabbitMQSender()
sender.send_message(delete_message)

- Transmit *only* the required oid as the delete-message:
message_data = {
 'oid':str(product_to_delete.oid)
}
delete_message = DaemonMessage('delete', message_data, signing_key)
sender = RabbitMQSender()
sender.send_message(delete_message)

Handling Service Transactions Chapter 17

[603]

Artisan objects, like Product objects, are not complicated from the standpoint of
their CRUD operations methods in the Artisan Gateway service. Indeed, apart from
the specifics of which objects are being worked on, and the specific expected structure
of the command messages associated with the various methods involved in executing
those operations, they are identical to their Product object counterparts. For
example, the update_artisan method of the Artisan Gateway service looks like this:

def update_artisan(self, properties:(dict,)) -> None:
 self.info('%s.update_artisan called' % self.__class__.__name__)
 if type(properties) != dict:
 raise TypeError(
 '%s.update_artisan expects a dict of Artisan '
 'properties, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, properties,
 type(properties).__name__
)
)
 self.debug('properties ... %s:' % (type(properties)))
 self.debug(str(properties))
 # - Retrieve the existing object, and get its data-dict
 # representation
 existing_object = Artisan.get(properties['oid'])
 self.debug(
 'Artisan %s retrieved successfully' % existing_object.oid
)
 data_dict = existing_object.to_data_dict()
 # - Update the data-dict with the values from properties
 data_dict.update(properties)
 # - Make sure it's flagged as dirty, so that save will
 # *update* instead of *create* the instance-record,
 # for data-stores where that applies
 data_dict['is_dirty'] = True
 # - Create a new instance of the class with the revised
 # data-dict...
 new_object = Artisan.from_data_dict(data_dict)
 # ...and save it.
 new_object.save()
 self.info('Artisan %s updated successfully' % new_object.oid)

Across the board, then, the various Artisan operations follow the same patterns as
those established by/for the Product operations.

Handling Service Transactions Chapter 17

[604]

Central Office – creating an artisan
The relevant Story for Central Office staff being able to create an Artisan, from the
earlier collection of stories is:

As an Artisan Manager, I need to be able to create Artisan objects so that I
can manage artisans

Artisan objects are unusual, in that while they are logically owned by the Artisan
that they represent, they are created by the Central Office. This implies that two
radically different message formats will be needed by the Central Office code-base:
one to create an Artisan and one to update it. If we start with a complete message
structure for creation purposes, we can better evaluate whether it presents any risks
or complications in the update process later:

def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.
"""
 return {
 'oid':str(self.oid),
 # - BaseArtisan-derived items
 'address':self.address.to_dict() if self.address else None,
 'company_name':self.company_name,
 'contact_email':self.contact_email,
 'contact_name':self.contact_name,
 'website':self.website,
 # - BaseDataObject-derived items
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 # Queue- and signing-key values
 'queue_id':self.queue_id,
 'signing_key':self.signing_key.hex(),
 }

Handling Service Transactions Chapter 17

[605]

Since the process for creating an Artisan should almost certainly involve the
creation and storage of the identifier of the message queue that's associated with
Artisan (queue_id) and an initial signing_key, those values are included in the
Central Office's Artisan.to_message_data method. We still have to define how
signing keys and queue identifiers are actually created within the Artisan objects,
but they will have to be sent along to the Artisan Gateway in some fashion so that
they'll be available for use in sending, receiving, and validating messages to and from
an Artisan Application instance.

These processes are significant from a security perspective: remember that the signing
key is considered a secret data value, one that should be treated with caution, and not
transmitted needlessly or without some attention to safeguarding the data. In many
respects, it's equivalent to a user password—a secret value that is associated with one
and only one user. If the signing key is a password, then the queue identifier could be
considered roughly equivalent to a username—data that is, perhaps, not quite as
secret, but that should still be treated with caution because it potentially uniquely
identifies a user, and is associated with a true secret, together forming a set of user
credentials. As the implementation- details around queue_id and signing_key
creation and management unfold, it's quite probable that we'll have to revisit this
message structure, so for now, we'll leave it in its current state.

Central Office – updating artisan data
The relevant Story for Central Office staff being able to update an Artisan's data, from
the earlier collection of stories is:

As an Artisan Manager, I need to be able to update Artisan objects so that
I can manage artisans

Once an Artisan object has been created, most of its properties are arguably owned
by the Artisan that the object represents. Certainly, from a common sense standpoint,
the Artisan user is in the best position to know whether their data is current, and it's
in their best interests to keep that data current. That said, and setting aside the
queue_id and signing_key properties until their processes have been fleshed out in
more detail, the risks of allowing Central Office users to modify Artisan data don't
feel significant, provided that changes made are propagated to, and can also be
changed by the Artisan users themselves. The caveat to this scenario is that the oid
property shouldn't be changeable by anyone—Central Office or Artisan users—but
that almost goes without saying. It is, after all, the unique identifier for the Artisan
object, and unique identifiers should never be changed lightly.

Handling Service Transactions Chapter 17

[606]

With all of that in mind, no modifications to the Central Office's
Artisan.to_message_data method are needed to fulfil this story yet, though
alterations may well surface, as with the creation process, as the queue_id and
signing_key management processes are defined and implemented.

Central Office – deleting an artisan
The relevant Story for Central Office staff being able to delete an Artisan's data, from
the earlier collection of stories is:

As an Artisan Manager, I need to be able to delete Artisan objects so that I
can manage artisans

Although the process of deleting an Artisan may have other implications—removal,
or at least deactivation of all their products, for example—there aren't any that come
to mind from the perspective of generating deletion command messages. Like the
deletion process for Product objects, the only property value that's really needed is
the oid of the Artisan to be deleted, and whatever decision is made about using the
full message body or creating a specific one for deletion process purposes in that
context will probably apply to this context as well.

Artisan – updating Artisan data
The relevant Story for Artisan being able to update an Artisan's data, from the earlier
collection of stories is:

As an Artisan, I need to be able to update my own Artisan object so that I
can manage my information at the HMS Central Office.

No matter what the eventual shape of the processes surrounding the queue_id and
signing_key properties of an Artisan turns out to be, those values, as secrets,
should never be sent across the open internet without some protection—encrypting
them while in motion, at a minimum. Without those values, changes to Artisan data
by Artisan users can travel unencrypted, so the base message structure for Artisan
updates is nearly a duplicate of the equivalent in the Central Office's namespace:

 def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.

Handling Service Transactions Chapter 17

[607]

"""
 return {
 'oid':str(self.oid),
 # - BaseArtisan-derived items
 'address':self.address.to_dict() if self.address else
None,
 'company_name':self.company_name,
 'contact_email':self.contact_email,
 'contact_name':self.contact_name,
 'website':self.website,
 # - BaseDataObject-derived items
 'created':datetime.strftime(
 self.created, self.__class__._data_time_string
),
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
)
 }

Between the Central Office and Artisan code-bases, we're allowing either user type to
alter most of an Artisan's data. The majority of it is some variation of contact
information, none of which has any functional implications, and the balance has
policies that have already been set down, if not implemented yet (oid), or is still
pending further definition (queue_id and signing_key). The worst risk that seems
even remotely likely with both user types having full control over these properties is
either simultaneous conflicting changes (probably best handled at the UI level), or
ongoing conflicting changes (one user changing a value, the other changing it back,
the first changing it again, and so on).

Order object transactions
orders, and their corresponding objects in the system, haven't been discussed much
since the definition of the concrete Order class in the artisan_objects module. In
part, this is because the other classes (particularly Artisan and Product) are
representations of data that originate in the hms_sys code-bases. Still, the
artisan_objects.Order class was left in about as complete a state as could be
expected, with full data persistence and a concrete implementation that was expected
to deal with all the requirements against it up to that point.

Handling Service Transactions Chapter 17

[608]

As a result, though, several aspects of orders fell off the radar. The original set of
stories for this iteration only included one Order-related story—an Artisan's need to
be able to update an Order as part of a fulfillment process—with nothing that
provided any path for that Order to get to an Artisan to begin with, let alone anything
prior to that. There also wasn't any accommodation for the potential of an order being
canceled before its fulfillment was complete. Accounting for the customer-to-gateway
and gateway-to-Artisan paths of those items, they adds four new stories that will be
addressed first.

Dealing with orders is also complicated somewhat by the fact that the specifics of the
Web Storefront system have been left intentionally vague. There are dozens of
options available, if not hundreds, written in most of the popular/mainstream
languages, and with varying degrees of extensibility. Rather than picking any one, a
fundamental assumption was made that hms_sys integration could be accomplished
in some fashion, which could include at least the following possibilities:

A brute-force process, executing on a schedule, could acquire new, raw
Order information from the store's data, and fire off the Artisan Gateway's
Order creation process
The store system, through some sort of small, custom extension, could fire
off a create Order message to the Artisan Gateway, either directly or
through the message queue, executing its Order creation process
If the store system were written in Python (there are at least eleven options
in this field), it might actually be able to import whatever hms_sys code is
needed, perhaps add some configuration, and directly execute the relevant
hms_sys code

In a real-world scenario, the cross-system integration would probably have been a
significant set of very specific requirements—but for the purposes of illustration, and
to keep focused on the project, those were intentionally left aside.

Customer – relaying order items to artisans
The relevant Story for Customer being able to relay Order items to artisans, from the
earlier collection of stories is:

As a Customer, I need the relevant parts of my Order to be relayed to the
appropriate artisans so that they can fulfill their part of my Order.

Handling Service Transactions Chapter 17

[609]

orders have a significantly more complex life cycle than any of the other objects in
hms_sys. Unlike Artisan objects, or perhaps Product objects, they are expected to
have a short active lifespan; being created, processed once, then archived or perhaps
even deleted. Artisan objects, in contrast, once created, are expected to persist for as
long as the Central Office/Artisan relationship lasts. Product objects may or may not
persist in an active state for long periods of time, but can also last as long as the
Central Office/Artisan relationship of their owning artisans continues. In both of these
cases, though the length of their life cycles may vary substantially, they are basically
created and persisted (with or without modification) indefinitely.

By contrast, a relatively simple Order, moving through a simple subset of what
hms_sys could support, might look like this:

Handling Service Transactions Chapter 17

[610]

Where:

The initial Order (for Product objects P1, P2, and P3) is created by the Web
Storefront and is handed off to the Artisan Gateway for distribution to and
handling by the relevant Artisan users
The Artisan Gateway sends Order messages to the Artisan Applications
associated with the artisans whose products are in the Order (Artisan #2, in
this example, exists, but the Order doesn't contain any of their products):

One Order, for products P1 and P3, is sent to Artisan #1
One Order for Product P2 is sent to Artisan #3

Artisan #1 fulfils the part of the order for Product P1 (P1 Fulfilled), which
sends an update message for the Order back to the Artisan Gateway,
where the fulfillment of that portion is noted and stored
A similar cycle occurs (P2 Fulfilled) for Artisan #3, with respect to Product
P2 from the original Order
The final fulfillment cycle (P3 Fulfilled) is executed by Artisan #1
The Order, with all of its fulfillment complete, can be archived, deleted, or
handled in whatever other way is needed

Since no concrete Order class was ever created that the Artisan Gateway service
would be able to access, that's the first thing that needs to be done. Without knowing
precisely how Order data is going to be relayed to the service, but still needing to be
able to perform round trip testing of the process later, there's little more that can be
done than to define it as a basic class derived from HMSMongoDataObject (like the
other data object classes in the co_objects module) and from BaseOrder (from the
business_objects module). Additions or changes to it may surface later, but
deriving Order from those two classes will provide enough functionality for it to be
testable.

After going through all of the analysis effort with the Artisan Application's Order
class definition, that feels like a better starting point for the corresponding class in the
Central Office code (co_objects), though it will need some modification/conversion
in the process. First and foremost, it needs to derive from HMSMongoDataObject
instead of JSONFileDataObject—but since both of those, in turn, are derived from
BaseDataObject, a fair portion of the new Order class is already implemented with
that inheritance change.

Handling Service Transactions Chapter 17

[611]

There's enough common code between the two Order classes that it
would almost certainly be worth spending time moving those
common items back down into BaseOrder. Designing, or even
implementing concrete classes, then gathering their common
functionality into common parent classes is just as valid a design or
implementation approach as starting from the foundations and
building out, though it happened accidentally in this case.

Beyond that, we'll need a mechanism that will allow the Web Storefront system to
create an Order. So far, we don't have any specifications around that process, but that
doesn't stop us from creating a class method that will (hopefully) eventually be used
in that capacity. For near future testing purposes, it will be set up to accept a
BaseCustomer object that's derived as a customer, and a list of Product identifiers,
with an eye toward the customer being revised at some point in the future. To start
with, all we're concerned with is a method that can be called to create a complete
Order with the relevant Product objects attached to it:

def create_order_from_store(
 cls, customer:(BaseCustomer,str,dict), **order_items
):
 """
Creates and returns a new order-instance, whose state is populated
with data from the

customer (Type TBD, required) The customer that placed
 the order
order_items (dict [oid:quantity], required) The items and
 their quantities in the order
"""

It feels reasonably safe to assume that the storefront will be able to pass Product
identifiers and their quantities in the Order along as some sort of dict value, and that
it won't be keeping track of entire Product objects, at least not in the same structure
that hms_sys code uses. Given the list of Product oid values available in the keys()
of the order_items, retrieving products to be added to the order instance on
creation is simply a matter of filtering all available products down into a collection of
the specific items in the Order, while preserving their associated quantities:

 # - Get all the products and quantities identified by the
 # incoming oid-values in order_items
 products = {
 product:order_items[str(product.oid)]
 for product in Product.get()

Handling Service Transactions Chapter 17

[612]

 if str(product.oid) in order_items.keys()
]

The products generated here are dicts, generated by a dictionary comprehension,
whose keys are Product objects, and values are the quantities of those products in
the Order. Then, we need to acquire the customer:

TODO: Determine how customer-data is going to be #provided
(probably a key/value string, could be a JSON packet
that could be converted to a dict), and find or create
a customer object if/as needed. In the interim, for
testing purposes, accept a BaseCustomer-derived object.
 if not isinstance(customer, BaseCustomer):
 raise NotImplementedError(
 "%s.create_order_from_store doesn't yet accept "
 "customer arguments that aren't BaseCustomer-"
 "derived objects, sorry" % (cls.__name__)
)

Finally, the new Order instance is created, saved (assuring that its data is persisted),
and returned (in case the calling code needs to reference it immediately after it's been
created):

- Create the order-instance, making sure it's tagged
as new and not dirty so that the save process will
call _create
new_order = cls(
 customer, is_dirty=False, is_new=True, *products
)
- Save it and return it
new_order.save()
return new_order

The Order class will also need a to_message_data method, just like their Product
and Artisan counterparts, and with one defined, can use a message transmission
process that is basically identical to what was established earlier:

def to_message_data(self) -> (dict,):
 """
Creates and returns a dictionary representation of the instance
that is safe to be passed to a DaemonMessage instance during or
after creation as the data of that message.
"""
 return {
 # - Local properties
 'name':self.name,
 'street_address':self.street_address,

Handling Service Transactions Chapter 17

[613]

 'building_address':self.building_address,
 'city':self.city,
 'region':self.region,
 'postal_code':self.postal_code,
 'country':self.country,
 # - Generate a string:int dict from the UUID:int dict
 'items':{
 str(key):int(self.items[key])
 for key in self.items.keys()
 },
 # - Properties from BaseDataObject (through
 # HMSMongoDataObject)
 'modified':datetime.strftime(
 self.modified, self.__class__._data_time_string
),
 'oid':str(self.oid),
 }

This process implies a new story that will probably be needed mostly for UI
development, but that might have some implications in additional design and
implementation of the Artisan Applications:

As an Artisan, I need to be informed when an Order has been placed that
includes one of my Product offerings so that I can fulfill my part of that
Order

Since the creation of a new Order by the Web Storefront also needs to relay new
Order objects to each Artisan (looking back at the Order flow diagram), and since it
seems reasonable to expect that only the store-to-Gateway-service portion of that flow
would be calling create_order_from_store, that seems like a reasonable place to
implement that messaging at first glance, but in doing so, there would be no access to
the service's logging facilities, so any failures in communication between the two
systems would potentially be lost. If, instead, the Web Storefront were to issue a
create Order message to the Artisan Gateway, the Gateway service could in turn call
create_order_from_store with the applicable data, and log events as
needed/desired while it executes. For the purposes of illustration, this is the approach
that is going to be assumed. In this case, create_order_from_store is complete as
it stands, and the Artisan/Order messaging happens as part of the Gateway service's
create_order method. The first major chunk of its code looks very much like the
other create processes:

def create_order(self, properties:(dict,)) -> None:
 self.info('%s.create_order called' % self.__class__.__name__)
 if type(properties) != dict:

Handling Service Transactions Chapter 17

[614]

 raise TypeError(
 '%s.create_order expects a dict of Order '
 'properties, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, properties,
 type(properties).__name__
)
)
 self.debug('properties ... %s:' % (type(properties)))
 self.debug(str(properties))
- Create the new object...
 new_order = Order.create_order_from_store(properties)
 self.info(
 'New Order %s created successfully' % new_order.oid
)

Since the create_order_from_store method already saves the new Order, we
don't need to save it here—it will already exist in the data store, and can be retrieved
by other processes as soon as this point in the code has been reached. In order to
proceed, and send the necessary Order messages to the individual artisans who need
to be aware of them, we need to sort out which products (and in what quantities) are
associated with each Artisan in the system.

Since the Artisan can have a Product, but a Product doesn't keep
track of which Artisan they belong to (which might be a good
thing to add, in retrospect), the best option we have right now is to
load up the Artisan, and search for it for each product. This is not
optimal, and definitely worth looking at changing, but it will work
for now.

The new_order variable is holding on to an Order object that, if expressed as a dict,
would look like this:

{
 'oid':<UUID>,
 'name':<str>,
 # - Shipping-address properties
 'street_address':<str>,
 'building_address':<str> or None,
 'city':<str>,
 'region':<str>,
 'postal_code':<str>,
 'country':<str> or None,
 # - order-items
 'items':{
 <Product object #1>:<int>,

Handling Service Transactions Chapter 17

[615]

 <Product object #2>:<int>,
 <Product object #3>:<int>,
 },
}

Rendering that down into a dict of Artisan/item:quantity values is simple, if done in a
brute-force manner:

 artisan_orders = {}
 # - Get all the artisans
 all_artisans = Artisan.get()
 # - Sort out which artisan is associated with each item
 # in the order, and create or add to a list of
 # products:quantities for each
 for product in new_order.products:
 try:
 artisan = [
 candidate for candidate in all_artisans
 if product.oid in [
 p.oid for p in candidate.products
]
][0]

If an Artisan is found that's associated with the Product, then one of two cases needs
to execute: either the artisan already exists as a key in the artisan_orders dict,
in which case we just append the item data to the current list of items associated with
the artisan, or they haven't had a Product match yet, in which case we create an
entry for the artisan, whose value is a list containing the item data in question:

item_data = {
 str(oid):new_order.products[product]
}
if artisan_orders.get(artisan):
 artisan_orders[artisan].append(item_data)
else:
 artisan_orders[artisan] = [item_data]
if artisan_orders.get(artisan):
 artisan_orders[artisan].append(product)
else:
 artisan_orders[artisan] = [product]

Handling Service Transactions Chapter 17

[616]

Although it shouldn't happen, it's possible that an Order could come in with a
Product that has no identifiable artisan to associate with it. The specifics of how
that error case should be handled may be dependent on the web store system. Even
setting that consideration aside, it should be handled in some fashion that hasn't been
defined yet. At a minimum, however, the failure should be logged:

except IndexError:
 self.error(
 '%s.create_order could not find an '
 'artisan-match for the product %s' %
 (product.oid)
)
self.debug('All artisan/product associations handled')

Once this sorting has completed, the artisan_orders dict will look something like
this, with each key in artisan_orders being an actual Artisan object, with all of
the properties and methods of any such instance, with the Product oid and quantities
associated:

{
 <Artisan #1>:{
 <str<UUID>>:<int>,
 <str<UUID>>:<int>,
 },
 <Artisan ...>:{
 <str<UUID>>:<int>,
 },
 <Artisan #{whatever}>:{
 <str<UUID>>:<int>,
 <str<UUID>>:<int>,
 },
}

Python dict instances can use almost anything as a key: any
immutable built-in type (like str and int values, and even
tuple values, but not list or other dict values) can be used as a
key in a dict. In addition, instances of user-defined classes, or even
those classes themselves, are viable. Instances of built-in classes, or
the built-in classes themselves, may not be valid dict keys, though.

Handling Service Transactions Chapter 17

[617]

With a complete and well-formed artisan_orders, the process of sending Order
messages to each Artisan is relatively simple—iterating over each Artisan key,
building the message data in the structure that the Artisan Application's Order class
expects, creating a DaemonMessage to sign the message, and sending it:

sender = RabbitMQSender()
self.info('Sending order-messages to artisans:')
for artisan in artisan_orders:
Get the products that this artisan needs to be concerned #with
items = artisan_orders[artisan]
- Create a message-structure that
artisan_objects.Order.from_message_dict can handle
new_order_data = {
 'target':'order',
 'properties':{
 'name':new_order.name,
 'street_address':new_order.street_address,
 'building_address':new_order.building_address,
 'city':new_order.city,
 'region':new_order.region,
 'postal_code':new_order.postal_code,
 'country':new_order.country,
 'items':items,
 'oid':str(new_order.oid),
 },
 }
 # - Create the signed message
 order_message = DaemonMessage(
 'create', new_order_data, artisan.signing_key
)

Sending a message to a specific Artisan requires another change: the send_message
method of RabbitMQSender was not originally built to send messages to a queue
other than the default it was configured with. It makes sense for each Artisan to have
their own message queue for several reasons, and in order to use that specific queue,
it has to be accepted as a send_message argument. The Gateway side call to send the
message reflects that (passing artisan.queue_id as an argument):

- Send the message to the artisan
sender.send_message(order_message, artisan.queue_id)
self.info(
 '+- Sent order-message with %d products to '
 'Artisan %s' % (len(items), artisan.oid)
)

Handling Service Transactions Chapter 17

[618]

The related changes in RabbitMQSender.send_message are not complicated: the
addition of an optional queue_name argument, and a check to see if it has been
provided, falling back to the configured default queue name is all that was needed:

def send_message(self, message:(DaemonMessage),
 # Added queue_name
 queue_name:(str,None)=None
):
 if type(message) != DaemonMessage:
 raise TypeError(
 '%s.send_message expects a DaemonMessage instance '
 'as its message argument, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, message,
 type(message).__name__
)
)
 # Using the optional queue_name to override the default
 if not queue_name:
 queue_name = self.queue_name
 # - Note that exchange is blank -- we're just using the
 # default exchange at this point…
 # - Also note that we're using queue_name instead of the
 # original self.queue_name default...
 self.channel.basic_publish(
 exchange='', routing_key=queue_name,
 body=message.to_message_json()
)

Customer – canceling an order
The relevant Story for Customer being able to cancel an Order, from the earlier
collection of stories is:

As a Customer who has canceled an Order, I need the relevant parts of that
cancellation to be relayed to the appropriate artisans so that they won't
fulfill their part of the Order.

Handling Service Transactions Chapter 17

[619]

Order cancellation has one aspect in common with Order creation: the origin point of
a cancellation should be with a customer, almost certainly as some functionality
available through the Web Storefront. Operating under the same assumptions that
shaped the creation of an Order, so that the Web Storefront will be able to send a
message to the Artisan Gateway service to indicate that a cancellation has been
initiated, similarly allows the Gateway to handle it in a single message handler
method: delete_order, in this case.

The delete_order message handler method is, ultimately, two tasks that it must
perform:

Given an Order, identified by an oid, it has to track down which artisans
were involved with the initial Order. That part of the process can be
identical to the identification of artisans and products in create_order.
The Product identification aspect of that code may not be needed, but it
doesn't do any harm to include it, and it might even be leveraged later on
to prevent the cancellation of orders that have been partially fulfilled.

It has to generate and send a message to each Artisan Application
associated with an Artisan who's associated with the Order: a delete
message with the Order's oid as the data payload.

The Artisan/Product association, yielding artisan_orders in the
create_order and delete_order code, would probably be worth
moving into a common helper method in the
ArtisanGatewayDaemon class: it's identical to being written in
those methods as things stand right now. With only two instances of
that code present right now, and those being close together in the
code, it's not an imperative, perhaps, but as long as there are two
instances of the same code, any changes to one have to be made to
the other as well.

Like the Order creation process, Order cancellation implies a new story, again
probably needed mostly for UI development, but that might have some additional
design and implementation implications for the Artisan Applications:

As an Artisan, I need to be informed when an Order has been canceled that
includes one of my Product offerings so that I can stop any in-process
fulfillment activities related to it and update my Product status as needed

Handling Service Transactions Chapter 17

[620]

The foundation for resolving this story, when it does become active, should be
mostly–if not entirely–in place as a result of the Order deletion messaging.

Artisan – fulfilling an item in an order
The relevant Story for Artisan being able to fulfil an item in an Order, from the earlier
collection of stories is:

As an Artisan, I need to be able to update Order objects so that I can
indicate to the Central Office when my part of an Order is fulfilled.

Ultimately, the act of fulfilling all or part of an Order by an Artisan is just another
update process, at least from a messaging standpoint. So far, though, there isn't a
mechanism for keeping track of fulfilled items in any of the Order classes, and that's
going to be problematic until it's addressed. Fortunately, the model for fulfilled items
can be essentially identical to the model for the original Order items—a collection (a
dict, specifically) of Product oid keys and int quantities. Adding that property to
artisan_objects.Order, using the items property as a model or guideline,
requires the following:

Including fulfilled_items, a dict, as an argument in __init__, and
integrating it the same way that the items argument/property is integrated
Creating the getter, setter, and deleter methods for it
Creating the fulfilled_items property, associated with
_get_fulfilled_items

Making sure that the to_data_dict method includes a representation of
fulfilled_items in its output results
Making sure that the from_data_dict class method doesn't need any
special handling of an incoming fulfilled_items value

Since fulfilled_items will follow the same constraints as the items property of an
Order, direct modification of the members of fulfilled_items is prohibited. The
underlying rationale for that prohibition is similar: we want modifications of those
members to be tightly controlled in order to prevent bad data changes as much as
possible. At the same time, we need to allow artisans to fulfill Order items (while
performing all the relevant checks to make certain that the data changes are valid).

Handling Service Transactions Chapter 17

[621]

To facilitate that, the artisan_objects.Order class needs a method that will be
called to allow an Artisan user to mark items as fulfilled:

def fulfill_items(self, oid:(UUID,str), quantity:(int,)):
 """
Assigns a number of items fulfilled to a given item-oid, and sets the
is_dirty state of the instance to True
"""

Order fulfillment data is, for an Artisan, one of the more important datasets, so we're
going to check every argument in several different ways before allowing the change
to be saved. The check processes starts with standard type and value checking
(stripping the error messaging out to keep the listing short):

if type(oid) not in (UUID,str):
 raise TypeError() # Expecting a UUID or str-UUID value
if type(oid) != UUID:
 try:
 oid = UUID(oid)
 except:
 raise ValueError() # Could not convert a str value to a UUID
if type(quantity) != int:
 raise TypeError()
if quantity < 0:
 raise ValueError() # Should not fulfill a negative quantity

We're also going to check to make sure that the item being fulfilled is actually part of
the Order:

if oid not in self._items:
 raise RuntimeError(
 '%s.fulfill_item was asked to fulfill an item '
 '(%s) that doesn\'t exist in the order-items' %
 (self.__class__.__name__, oid)
)

And we'll check to make sure that the fulfillment quantity isn't greater than the
quantity in the Order:

if quantity > self._items[oid]:
 raise RuntimeError(
 '%s.fulfill_item was asked to fulfill an item '
 '(%s) in a higher quantity (%d) than was '
 'ordered (%d)' %
 (
 self.__class__.__name__, oid, quantity,
 self._items[oid]

Handling Service Transactions Chapter 17

[622]

)
)
If everything checks out, then update the quantity, etc.
self._fulfilled_items[oid] = quantity
self._set_is_dirty(True)

Similar changes, minus the fulfill_items method, will also need to be made to the
Central Office Order class (co_objects.Order) to handle fulfillment messages. For
the time being, until we can focus on the round trip message testing in the next
chapter, these can be accommodated by simply copying the code from
artisan_objects.Order.

Copying that much code around is another argument for refactoring
the Order classes, re-defining BaseOrder, and deriving the concrete
classes from it instead. Time and space constraints in this book may
not allow for much discussion of this process, but we'll take at least
a brief look at it, either during or after testing.

When do messages get sent?
Up until this point, we've spent a fair length of time digging in to how the relevant
messaging will be generated and sent, but very little about when it happens, apart
from the examination of Order creation and cancellation. Since messages correspond
directly to various local CRUD operations, it's tempting to simply add the messaging
calls into the _create and _update methods that they already have, making sure to
account for the is_dirty and is_new flags that we defined in BaseDataObject.
Before going down that path, though, it would be a good idea to take a look at all of
the messaging processes, from origination to completion, to make sure that they have
a clear process termination. The scenario that we need to make sure to avoid, using a
Product update process as an example, looks like this:

Handling Service Transactions Chapter 17

[623]

Where:

An Artisan makes a change to one of their products:1.
The local data change is executed
Their Artisan Application sends a message to the Artisan
Gateway: Update Product "X"

The Artisan Gateway receives the message:2.
The local data change is executed
A message is sent to the corresponding Artisan Application:
Update Product "X"

The Artisan Application receives the message:3.
The local data change, which likely doesn't have any updated
data, is executed
A message is sent to the Artisan Gateway: Update Product "X"

At the end of the last step, the process would, without some check process or exit
condition, jump back to the second step, and into an infinite loop of update messages
that don't actually do anything. The same scenario could occur with any of the update
processes where more than one origin point for data changes could be in play:
the Artisan objects can be updated by the artisans they represent and by Central
Office staff. Order objects are currently exempt, but it's not difficult to imagine a
future need for a customer to alter an Order after it's been transmitted to the artisans
who'd be fulfilling items in it.

Ultimately, because the save methods of the various data object classes have no
awareness of where the data change they're executing came from, they cannot make
any decisions about whether or not it's appropriate to send a message out after the
data change has been executed. A possible solution, then, would be to allow (or even
require) an additional argument in each save that provides that information, and that
could be used to determine whether a message needs to be sent or not. The structure
of this modification might look something like this (for a data object living in the
Artisan Application's code-base):

def save(self, origin:(str,)):
 """
Saves the instance's state-data to the back-end data-store by
creating it if the instance is new, or updating it if the
instance is dirty
"""
 # - Perform the data-save process as it currently exists
 if self.is_new and origin != 'artisan':
 # - Send "create" message

Handling Service Transactions Chapter 17

[624]

 elif self.is_dirty and origin != 'artisan':
 # - Send "update" message
 self._set_is_new(False)
 self._set_is_dirty(False)

It would be feasible to add an additional abstraction layer between BaseDataObject
(where save is defined currently) and each of the concrete data objects that would
override the BaseDataObject.save method. This abstraction–an additional
ABC–would need to be created in the Artisan Application and Artisan Gateway code-
bases, at a minimum, and another variant might be needed in the Central Office
application as well, depending on implementation details that haven't been fully
explored yet.

The trade-off is that all data objects would have to pay attention to where their data
changes originated from. This feels… messy, complicated, and potentially difficult to
maintain, at least at first blush.

Another possibility would be to alter DaemonMessage: if the messages themselves
contain something, such as data that indicates where they originated from, then the
handlers for those messages would be able to tell whether or not a message needs to
be sent after the data change had been dealt with. In that design scenario, a
Product update message that originated with an Artisan, including an origin
specification, might look like this (before being converted to JSON):

{
 'operation':'update',
 'origin':'artisan',
 'data': {
 'target':'product',
 'properties':{
 'oid':str(new_order.oid),
 'name':'Revised Product Name',
 # - Other product-data skipped for brevity
 },
 },
 'signature':'signature hex-string'
}

Handling Service Transactions Chapter 17

[625]

The corresponding update_product handler method in the
ArtisanGatewayDaemon service class, along with other handler methods, currently
expects a dict (properties) to act upon, and is called by
ArtisanGatewayDaemon._handle_message as the main loop of the service reads
messages to be acted upon. We could change what the individual handler methods
expect, passing the original message (a DaemonMessage instance) instead, making
the handler methods responsible for breaking down the incoming message into the
properties and acting upon them as they already do, and giving them the
responsibility for determining whether a message needs to be sent and sending it.

Given a DaemonMessage with an origin, and a globally accessible value to compare
that origin with, the decision to send a message or not, and sending it if needed, isn't
complex. If it were anywhere in the Gateway service (that is, self is the service
instance), it would look more or less like this:

self.message_origin is an attribute containing 'gateway'
- message is the incoming DaemonMessage instance
- message.origin is 'artisan'
- artisan is the relevant Artisan object
if message.origin == self.message_origin:
 sender = RabbitMQSender()
 outbound_message = DaemonMessage(
 operation=message.operation,
 origin=self.message_origin,
 data=message.data,
 signing_key=self.signing_key
)
 sender.send_message(order_message, artisan.queue_id)

The data used to create the outbound_message might differ, depending on whether
the data dictionary or message dictionary of the newly created or recently updated
object was used instead.

So, when an incoming message is acted upon:

Its origin is checked
If that origin is local, then a corresponding outbound_message is created
and sent, using the original operation of the incoming message, the
local origin and signing_key, and whatever data is appropriate
Otherwise, that entire branch is skipped

Handling Service Transactions Chapter 17

[626]

That's not a lot of code to add—a mere nine lines, assuming that the sender isn't
created elsewhere. The changes to DaemonMessage are pretty trivial: adding the
origin property and making sure it's accounted for everywhere (basically, anywhere
that the operation property is already in use). At this point, this doesn't represent a
major change to existing code either—we've only created outbound messages for
Order creation and updates so far.

If there is a sticking point, it's in the need to acquire the Artisan instance that relates
to the operation so that the outbound message can use the appropriate message
queue (artisan.queue_id). This would be necessary no matter what approach we
decide to pursue, though, so it's probably a wash in this case (and it would
complicate the idea of modifying save, which we saw previously, even more).

Even with that, this feels like a solid approach. The changes to _handle_message are
mostly argument and variable name changes at this point:

def _handle_message(self, message:(DaemonMessage,)) -> None:
 self.info(
 '%s._handle_message called:' % self.__class__.__name__
)
 target = message.data.get('target')
 self.debug('+- target (%s) %s' % (
 type(target).__name__, target)
)
 self.debug('+- operation (%s) %s' % (
 type(message.operation).__name__, message.operation)
)
 if message.operation == 'create':
 if target == 'artisan':
 self.create_artisan(message)

... removed for brevity

 elif message.operation == 'update':
 if target == 'artisan':
 self.update_artisan(message)
 elif target == 'customer':
 self.update_customer(message)
 elif target == 'order':
 self.update_order(message)
 elif target == 'product':
 self.update_product(message)
 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'object-type/target' %

Handling Service Transactions Chapter 17

[627]

 (
 self.__class__.__name__, target,
 type(target).__name__
)
)

 # ... removed for brevity

 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'operation' %
 (
 self.__class__.__name__, message.operation,
 type(message.operation).__name__
)
)

The handler methods (using update_product, as an example) remain largely
unchanged:

def update_product(self, message:(DaemonMessage,)) -> None:
 self.info('%s.update_product called' % self.__class__.__name__)
 if type(message) != DaemonMessage:
 raise TypeError(
 '%s.update_product expects a DaemonMessage '
 'instance, but was passed "%s" (%s)' %
 (
 self.__class__.__name__, message,
 type(message).__name__
)
)

We still need the properties; we're just acquiring them in the individual handler
methods instead of in _handle_message:

properties = message.data.get('properties')
self.debug('properties ... %s:' % (type(properties)))
self.debug(str(properties))

Handling Service Transactions Chapter 17

[628]

The code, from that point until the modified object is saved, remains unchanged:

... and save it.
new_object.save()
self.info('Product %s updated successfully' % new_object.oid)

And then we can check to see if an outbound message needs to be sent, acquire the
relevant Artisan, create the message, and send it:

if message.origin == self.message_origin:
 # - Acquire the Artisan whose Product this is
 artisan = self.get_artisan_from_product(new_object)
 sender = RabbitMQSender()
 outbound_message = DaemonMessage(
 operation=message.operation,
 origin=message.origin,
 data=message.data,
 signing_key=self.signing_key
)
 sender.send_message(order_message, artisan.queue_id)

Since acquiring an Artisan from a Product is going to be a recurring theme, a
helper method (get_artisan_from_product) was created to streamline that
process. It also highlights the eventual need for a more direct association between
products and artisans, but a data object query-based process will suffice for now:

def get_artisan_from_product(
 self, product:(UUID,str,BaseProduct)
) -> (Artisan):
 # TODO: Add artisan (owner) to Product classes, and use
 # that instead. For now, use this approach
 all_artisans = Artisan.get()
 if isinstance(product, BaseProduct):
 product = product.oid
 elif type(product) == str:
 product = UUID(product)
 for artisan in all_artisans:
 if product in [p.oid for p in artisan.products]:
 return artisan

Handling Service Transactions Chapter 17

[629]

A final consideration before ending this chapter: when we started this chunk of
development, there was still a decision pending with respect to whether message
queues were going to be implemented as a "one for all artisans" or "one for each
Artisan." No formal decision was made, but there are other considerations that may
have arisen as the messaging processes were being thought out:

Each Artisan needs at least two separate message queues: one for traffic to
the Artisan, and one for traffic from them. If a single queue for all traffic is
implemented, then:

The code would have to be altered to include both an origin
(already done) and a destination in order to assure that,
for example, messages dropped in a queue by the Gateway
weren't also read by the Gateway
Even with that in place, a message that hasn't been read and
acted upon by the appropriate destination would almost
certainly block other messages in the queue from being read
and acted upon, without still more code changes and the
attendant complexity

If each Artisan has a distinct message queue for inbound and outbound
messages, that entire set of complications will simply go away. There is
some additional work that will be necessary—providing some means of
identifying individual inbound and outbound queues—but if each queue
handles only traffic in one direction, to or from one Artisan Application
and the Gateway service, this simplifies things considerably, and the
development cost should be pretty minimal.
As a side benefit, since each message in a queue would, simply because it
came from that queue, be immediately associable with the Artisan that the
queue belongs to.

The only remaining cost in having multiple message queues is that multiple queues
would exist—and that, in the main, is a cost that will be borne by the message queue
server.

Handling Service Transactions Chapter 17

[630]

Summary
The development efforts in this chapter have been scattered all over the system's
code-base, largely because of some requirement gaps or implementation needs and
details that surfaced as specific functionality unfolded. Ideally, in a real-world effort,
much of that would have surfaced considerably earlier, and been expressed as
specific tasks that were attached to the stories in the iteration, though some might still
have occurred—we've made some decisions, both in this chapter and the one before,
that shaped how things needed to work, that might not have been captured in an
initial story analysis exercise.

As a result, the code at this point is quite probably broken. Perhaps drastically
broken. Still, there's been a lot of progress against the iteration's stories, even if none
of them can be formally closed yet:

Fundamental functionality for dealing with all the data flow between
system components has been defined, with a few concrete implementations
that will serve as starting points for other concrete implementations
Changes needed to accomplish the transmission and receipt of messages
have been scoped, if not implemented
A solid (if basic) understanding of how and when those messages need to
be sent has been established

There's still work to be done on most of the iteration stories before they can be
considered complete—even setting aside the UI considerations, we still don't have
demonstrable, provable message flows in place. Getting those finalized will be the
focus of the next chapter, and it will take a decidedly test-driven approach, even if it's
not a formal TDD process.

18
Testing and Deploying

Services
Chapter 17, Handling Service Transactions, ended with an untested receipt of over-the-
wire CRUD operations being implemented for the data objects, originating with the
Artisan and Central Office applications. Since proving (and demonstrating) these
capabilities is going to be needed for both quality assurance and story approval
purposes, and since there was no structured or useful repeatable testing of that code,
in this chapter, we will take a detailed look at the following topics:

Identifying and dealing with the challenges of testing service applications
What is involved in packaging and deploying the service
An approach for demonstrating the service's functionality

Additionally, since the functional development of hms_sys is very nearly complete,
some thoughts and examinations of what's still remaining to be done in hms_sys for
it to be useful to end users, and some possible future enhancements to it, will be
undertaken.

The challenges of testing services
Testing services, while not difficult, can be substantially more elaborate than the
relatively basic unit testing that's been shown up to this point. Each point in the
general hms_sys data flow from an Artisan to the Gateway, for example, has specific
and individual testing concerns, but the flow as a whole should, ideally, be as well, so
that an end-to-end process verification can be performed on demand.

Testing and Deploying Services Chapter 18

[632]

The end-to-end flow could be pictured like this:

From start to finish, a test plan for this data flow would need to address, at a
minimum, the following:

Creating the message-data in a fashion that it could be used to verify the
process at its end
Creating the DaemonMessage (though probably not testing that it was
created accurately—there should already be unit tests that take care of
testing that)
Sending the resulting message
Verifying that the results of the Artisan Gateway service receiving the
message are as expected, by comparison with the original message-data

Depending on specifics of how the service operates, there are steps that happen
between the transmission and receipt of the message that may not be practical (or
may not be possible) to test:

Testing the send_message() part of the overall process has to take steps to
assure that the transmission of the message can be verified without some
other process (the Gateway service, in this case) consuming the message
before it can be verified. If the unit testing of send_message accounts for
that, to the extent that the send_message method itself can be considered
trustworthy, then the larger scope process test can safely skip testing that
part of the whole.

Testing and Deploying Services Chapter 18

[633]

Similarly, testing of the various [process-method] items should provide
adequate trustworthiness with respect to their parts of the whole flow
process. The alternative is altering those methods so that their operation
can be observed during the process, in which case they really aren't the
same methods, and any tests that are applied are potentially meaningless.

Given that each part of the overall process should have their own unit tests, it would
be fair to ask these questions: "What are we actually gaining by testing the whole process,
then? Isn't the collection of individual unit tests enough by itself?" The short answer
(though it may be taken as the author's opinion) is no—from one vantage point, all of
the process tests are, in a very real way, unit tests of the Artisan Gateway's main
method—the event loop that makes the decisions about which method to call based
on the content of an incoming message. From that perspective alone, and given that
ArtisanGatewayDaemon.main is the critical chunk of functionality in the class, it
must be thoroughly tested. Also consider that the unit tests required by our testing
policy essentially cover all of the boxes in the flow diagram: message-data,
DaemonMessage, send_message, and so on. They do not provide any coverage of
the arrows in the flow diagram. Though it may be unlikely that the code misses one of
the steps that the arrows represent, it's not impossible, so a higher-level, end-to-end
process test that would reveal any of those gaps would, in turn, provide proof of the
trustworthiness of the processes as a whole. Similarly, the end results of those
processes each need to be verifiable—if, for example, an Artisan-Creating-Product
process is fired off, some assurance needs to be made that once the process is
complete, that new Product object can be retrieved from the data store, with the
correct data.

Finally, since the various processes all happen behind the scenes, they will likely be
very hard to debug if a bug slips through into production installation:

There will be little or no visibility into the individual Artisan application
installations that are starting the execution of the processes
The messages that are being sent back and forth, barring extremely detailed
logging of their content/data, won't persist long enough to be readable and
usable for debugging in a production setting
Without more detailed logging, the specific daemon process calls are
happening invisibly, and their results, if there are any, cannot be checked
against the original data that they originated from

Testing and Deploying Services Chapter 18

[634]

The overall testing strategy
Before writing the code that implements the full process testing, an effort needs to be
made to complete and successfully execute all of the outstanding unit tests. Once this
is complete, we can logically take it as a given that any failures that arise in the process
tests are because of something in that process, though we may want to take steps to
verify sub-process steps, and raise failures for certain conditions. This may well
evolve as the process tests are written.

Each business object that has a set of corresponding processes needs to check for
any/all of the following processes that apply:

Creation of the object, and both local and remote persistence of its data:
By each role that is allowed to perform an update
Making sure to test both valid and invalid update attempts

Updating the object's data:
By each role that is allowed to perform an update
Making sure to test both valid and invalid update attempts

Deletion of the object:
By each role that is allowed perform a deletion
Making sure to test both valid and invalid deletion attempts
Verifying applicable local and remote data changes after the
attempt is made

Determining what would constitute an invalid attempt requires consideration of the
following questions, at a minimum:

At any step in the process being tested, what could be corrupted that
should prevent the process from completing successfully?
At any step in the process being tested, what could be altered with
malicious intent that should prevent the process from completing
successfully?
What tests are already in place that account for these scenarios?
What tests need to be created for any scenarios that aren't accounted for?

Testing and Deploying Services Chapter 18

[635]

In the case of the Gateway service, the points with potential for bad data variations
are:

An invalid attempt is made to create or alter a business object instance:
These should be mostly covered by unit tests on the creation and update
processes of the business objects themselves—these tests should assure
that, for example, only well-formed data creation and updates are allowed,
and having raised an exception there, the message transmission process
shouldn't even fire. These cases really can't be tested in the context of the
Gateway daemon, but must be tested in the applications that talk to it.
An unauthorized data event message is received: The testing of message
signatures in DaemonMessage should assure that messages with invalid
signatures raise an error. As an extension of that, tests of the data event
processes should assure that if an unauthorized message error is raised, it
is handled cleanly, and does not execute any data changes.
An authorized data event message is received with invalid data: Provided
that the unit tests that are relevant for the data event on the origination side
of the message are complete, this may be an indicator of malicious activity.
Testing considerations aside for the moment, some review of the logging
around this event should probably be undertaken to assure that events in
this category are logged. Whether malicious or not, the corresponding unit
tests on the receiving end of the message should assure that some kind of
exception is raised, and the data event process tests should assure that any
exceptions raised are handled cleanly and do not execute any data changes.

Though these tests will not, strictly speaking, be unit tests (they would be formally
classified as some mixture of system or integration tests), we can still leverage the
functionality of the unittest module that has driven all of the automated testing for
the system up until this point. This will allow the process tests to be integrated into,
and thus run as part of a complete test suite, if there was a desire to do so, or to be run
independently, or even individually if needed/desired.

Unit testing variations of note
The bulk of the unit tests that need to be implemented fall fairly neatly into the
standard processes that have been in play since the beginning of the hms_sys
development effort, and there's nothing new to say about those. A relatively small
number of others, however, have some noteworthy variations.

Testing and Deploying Services Chapter 18

[636]

With the advent of a substantial amount of new code that relies heavily on either
standard Python modules (atexit, logging, and signal, for example, in the
daemons codebases), or various third-party modules that were installed to meet
specific needs (pika, for RabbitMQ support), another aspect of testing policy bubbles
up: the question of how deeply (or even whether) to test functionality that are little
more than wrappers around functionality from other sources. It's not an unreasonable
assumption that any packages that are part of the Python distribution itself are
thoroughly tested before they're included in the distribution. It's probably not
unreasonable to assume that any packages that are available to be installed through
the pip utility are also thoroughly tested, though that may well vary significantly
from package to package.

These are variations on a theme that might be expressed as trusting the framework.
Essentially, this boils down to operating under the assumption that packages installed
through pip (or whatever facilities are provided by the OS) are sufficiently tested (for
whatever the value of sufficient might be). If these are considered sufficiently tested,
they do not need to be categorically tested themselves. Whether the functionality that
was developed that uses trusted framework functionality needs to be tested becomes
something of a judgment call, perhaps depending on the specifics of how the external
functionality is used.

This consideration should be borne in mind as the noteworthy variations of unit tests
are listed.

In the hms_core package, tests for the BaseDaemon and BaseDaemonizable ABCs
have corresponding concrete classes defined (BaseDaemonDerived and
BaseDaemonizableDerived, respectively), which are used to create test instances as
needed. That's not new in and of itself—we've used concrete derived classes to
simplify testing of ABCs before. Creating testable instances of either, though, requires
a configuration file to be passed during instance construction. The creation and clean
up of that file is handled by the setUpClass and tearDownClass methods, which
are defined on the TestCase class:

class testBaseDaemon(unittest.TestCase):

...

 @classmethod
 def setUpClass(cls):
 # - Create a basic config-file that can be used to create
 # instances of BaseDaemonDerived.
 config_data = """logging:
 format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"

Testing and Deploying Services Chapter 18

[637]

 name: example
 console:
 level: info
 file:
 level: debug
 logfile: "/tmp/example.log"
"""
 cls._config_file = 'example.config'
 with open(cls._config_file, 'w') as fp:
 fp.write(config_data)

 @classmethod
 def tearDownClass(cls):
 try:
 os.unlink(cls._config_file)
 except:
 pass

When setUpClass executes, before any of the test methods fire, it creates a usable
config file (example.config) in the current working directory, populates it with
bare-bones configuration data, and keeps track of the filename in a class attribute
(cls._config_file) that the test methods can access. The typical pattern for
creating a test object within a test method ends up looking like this:

 def testmethod(self):
 # Tests the method method of the BaseDaemon class
 test_object = BaseDaemonDerived(self._config_file)
 # - Whatever assertions and other test-processes are needed...

A number of tests against members of hms_core.daemons were actively skipped.
The various control methods (start, stop, and restart) of BaseDaemon were
skipped grudgingly. The fundamental issue with trying to test those is that, as they
stand right now, they are little more than a collection of calls to other methods, many
of which will, themselves, be tested. The balance falls into the trust of the framework
category. At most, there is one decision point (in start, where a check of the instance's
_running flag is made) that could, perhaps, be usefully tested, but it would have to
happen really quickly before a change to that flag value would terminate the
instance's processes. Ultimately, as long as an instance of the daemon starts, stops,
and restarts without error, these methods are performing as expected, and there is
little to gain by explicitly testing the corresponding methods.

Testing and Deploying Services Chapter 18

[638]

A similar decision was made for the daemonize, preflight, and start methods in
BaseDaemonizable, for similar reasons, with the added wrinkle that many of the
methods being called are provided by standard modules, and themselves would fall
into the category of trusting the framework.

All of the logging wrapper methods of BaseDaemon (critical, debug, error, info,
and warn) were actively skipped. The rationale behind that decision was that as long
as the Logger instance that they call is created correctly, those instances fall into the
"trust the framework" category.

The properties of BaseDaemonizable whose values are filesystem paths (stdin,
stdout, stderr, and pidfile) almost follow the standard testing structures that we
established earlier. The primary difference is that they are filesystem path values, and
so the test methods for those properties need to include both valid and invalid paths
and paths that were well-formed, but that couldn't be written to or read from because
of filesystem permissions. These tests are also tightly bound to the operating system,
in a sense: a perfectly valid file path in Windows, for example, is not going to be valid
in a POSIX-style filesystem, such as those used by Linux or macOS.

A similar strategy was required for BaseDaemon.config_file, and the configure
method.

The cleanup and preflight methods of BaseDaemon fell into a unique category: by
default, all they do is log (at an info logging level) that they have been called, so that
startup and shutdown activity logging can announce that they were executed. If a
derived class doesn't actually override these methods, the baseline functionality
provided by BaseDaemon will be called, and perform the same logging. If the same
standards are applied that were applied to the logging wrapper methods noted
earlier, the implication is that cleanup and preflight both fall into the "trust the
framework" classification. But what happens if a future need changes one of those
methods, adding something that goes beyond the simple call to log that the method
has executed? In that case, if the tests are skipped, there won't be any testing being
performed, even if there should be. The simple truth of the matter is that changes
made that would impact the associated tests cannot be anticipated, and as a result, a
certain amount of expected discipline has to be assumed—that anyone making a
substantive change to those base methods will also have to update the corresponding
tests accordingly.

Testing and Deploying Services Chapter 18

[639]

In the process of building and executing these unit tests, a handful of classes that
were stubbed out earlier in the development cycle, but that were never actually used,
surfaced as requiring tests. Since those were never needed (or even implemented, in
many cases), the classes themselves have been removed, and the corresponding test
requirements went away as a result.

The RabbitMQSender class, in hms_core.messaging, had one
method—send_message—that partly fell into the "trust the framework" category. It
also needed testing to assure that the type checking for a DaemonMessage instance
was accounted for, though. Taken together, the complete testing for the method
amounted to little more than the type checking test, and assured that the method
executed without error. After some consideration, retrieving the sent message, or at
least performing the acknowledgement of it so that it won't sit in some test queue
forever, was implemented in send_message as well.

The remaining outstanding tests needed, all of which followed reasonably simple
variations of the standard unit testing processes, were as follows:

In hms_core.business_objects and hms_artisan.artisan_objects:
Testing the Artisan.queue_id and
Artisan.signing_key properties

In hms_core.co_objects:
Testing the Artisan.to_message_data method
Testing the new Order class

In hms_core.daemons:
Testing BaseDaemon._create_logger

In hms_core.messaging:
Testing DaemonMessage
Testing HasMessageData
Testing InvalidMessageError
Testing the standard items of RabbitMQSender

In hms_artisan.artisan_objects:
Testing the Artisan.to_message_data method

Testing and Deploying Services Chapter 18

[640]

With all of the tests in classes outside the hms_Gateway namespace accounted for,
that leaves the properties and methods of the ArtisanGatewayDaemon class, which
are ready to be tested. The properties and most of the methods therein, once more,
can be tested by following the standard testing policy and process that's been in play.
The most noteworthy exception is ArtisanGatewayDaemon.main, which will be
skipped in the test module, and tested with the end-to-end-process tests that we can
build now.

Testing Artisan transactions
The end-to-end process test for an Artisan needs to include the following:

Creating an Artisan as it would happen if originating from a Central Office
staff member
Updating an Artisan as it would happen if originating from a Central
Office staff member
Updating an Artisan as it would happen if originating with the Artisan
themselves
Deleting an Artisan as it would happen if originating from a Central Office
staff member

Since we aren't testing classes, which has been the pattern for all of our unit tests so
far, we don't need all of the functionality of our standard unit test extensions, but we
will want to use enough of the same structure and at least some of the utilities that
were created there in order to integrate the process flow tests with the regular unit
test runs for the hms_Gateway namespace. With that in mind, the starting point code
looks very similar to our previous test modules:

#!/usr/bin/env python
"""
Defines end-to-end process-tests for the ArtisanGatewayDaemon
"""

#######################################
Standard library imports needed
#######################################

import os
import sys
import unittest

Testing and Deploying Services Chapter 18

[641]

Since all we really need from the unit testing extensions we've been using is the
output and report-saving functionality, we will only import those:

#######################################
Local imports needed
#######################################

from idic.unit_testing import PrintTestResults, SaveTestReport

The module-level constants stay the same, and since we're going to be testing against
a running instance of the ArtisanGatewayDaemon class, we already know that we'll
need to import that:

#######################################
Module-level Constants
#######################################

LocalSuite = unittest.TestSuite()

#######################################
Imports needed for testing
#######################################

from hms_Gateway.daemons import ArtisanGatewayDaemon

The four process flows that we're going to test initially can each be represented by a
single test method. Each of these methods will have to provide whatever code needs
to be executed for each step of the flow test, but they can start with nothing more than
an explicit failure:

#######################################
Test-cases in the module
#######################################

class testArtisanProcesses(unittest.TestCase):

 def testArtisanCreateFromCO(self):
 self.fail('testArtisanCreateFromCO is not yet implemented')

 def testArtisanUpdateFromCO(self):
 self.fail('testArtisanUpdateFromCO is not yet implemented')

 def testArtisanUpdateFromArtisan(self):
 self.fail('testArtisanUpdateFromArtisan is not yet
implemented')

Testing and Deploying Services Chapter 18

[642]

 def testArtisanDeleteFromCO(self):
 self.fail('testArtisanDeleteFromCO is not yet implemented')

Since we're using our standard unit testing extensions, we still need to actively add
each test case class to the local test suite:

LocalSuite.addTests(
 unittest.TestLoader().loadTestsFromTestCase(
 testArtisanProcesses
)
)

Finally, since we'll want to be able to run the process tests module independently,
we'll include the same if __name__ == '__main__' code block that's been in all
the previous modules, which will provide the output of the test results and save the
results to a report file if there are no failures:

#######################################
Code to execute if file is called
or run directly.
#######################################

if __name__ == '__main__':
 import time
 results = unittest.TestResult()
 testStartTime = time.time()
 LocalSuite.run(results)
 results.runTime = time.time() - testStartTime
 PrintTestResults(results)
 if not results.errors and not results.failures:
 SaveTestReport(results, 'hms_Gateway.ModuleName',
 'hms_Gateway.EndToEndProcesses.test-results')

Since all of these tests will need a running instance of the ArtisanGatewayDaemon
class, we also need to make sure that one is available. Because a running instance of
the class is a service, running independently of any other processes, starting up a
service instance cannot happen as a normal part of any test method—the main loop
would start, and nothing else would progress until it terminated, making it
impossible to actually test the processes that main controls.

Testing and Deploying Services Chapter 18

[643]

There are a couple of options that could be pursued to alleviate this issue:

The test process could, in some fashion, use the operating system service
control facilities to start a local service instance in much the same way that
it would be controlled once it was deployed. On a long-term basis, this
might be a better approach, but at this point in the development process,
we aren't able to actually deploy the service code, so that would have to
wait for future development. There is a trade-off to this approach, though:
the service would have to be deployed, or some equivalent mechanism
would have to be created to mimic a deployed service, on each execution of
the test suite in order for tests to be accurate.
Since the service is, ultimately, just an instance of a class, the test process
could create an instance and start it, let the tests execute, then terminate the
service instance that was used for the tests. Although this is a more
complex solution, it feels better in at least one respect: each test suite would
be able to execute against a service instance that could be customized
specifically for those tests, including having distinct message queues that
could, if necessary, be examined while working through issues raised by
the test methods, without having to sort through a potentially huge set of
messages.

Implementing the second option involves using the setUpClass and
tearDownClass methods that were noted earlier to create the service instance and
make it run before any tests execute, and shut the instance down after they've all
completed. Since it makes sense to have one test case class for each business object
process set, setting up setUpClass and tearDownClass so that they can be reused
by the various test case classes also feels like a good plan. We can simplify this by
creating a class that contains all the required logic for both methods, then derive the
individual test case classes from that new class and the normal unittest.TestCase
class that's been the backbone of our test case classes so far:

class NeedsArtisanGateway:

 @classmethod
 def setUpClass(cls):
 """
Creates and starts an instance of the ArtisanGatewayDaemon that
can be used during execution of the tests.
"""

Testing and Deploying Services Chapter 18

[644]

This, incidentally, shows that it's possible to add helper classes to
test suites—classes that provide some functionality or capabilities
needed during test execution, but that aren't, themselves, test case
classes.

We need to create a configuration file that the service instance will use, but before we
do that, we'll store some of the values we're likely to need in the test methods as class
attributes so that we can access them later when needed:

 cls.Gateway_signing_key = os.urandom(64).hex()
 cls.Gateway_queue_id = 'hms_ag_%s_process_test' %
cls.queue_name
 cls.Gateway_config_file = 'process_test.config'

The configuration data can be set up as a string that follows the configuration
structure that was established earlier. Customization of the service instance, if
needed, can be managed by adding variable/attribute values to the class, and making
sure that those values get carried into the string, as was done with the
cls.Gateway_queue_id and cls.Gateway_signing_key attributes here:

 cls.Gateway_config_data="""# Logging configuration
logging:
 format: "%%(asctime)s - %%(name)s - %%(levelname)s - %%(message)s"
 name: hms_ag_process_test
 file:
 level: debug
 logfile: "/tmp/hms_ag_process_test.log"
queue:
 type: rabbit
 connection:
 host: localhost
 port: 5672
 path: /
 queue_name: "%s"
signing_key: "%s"
""" % (cls.Gateway_queue_id, cls.Gateway_signing_key)

The configuration data is written to a temporary config file that's used by the test case
class, in much the same way that we did before when testing BaseDaemon:

with open(cls.Gateway_config_file, 'w') as fp:
 fp.write(cls.Gateway_config_data)

Testing and Deploying Services Chapter 18

[645]

Since we may need to access the service instance itself, we'll create and store the
instance as another class attribute:

cls.Gateway = ArtisanGatewayDaemon(cls.Gateway_config_file)

Starting the service instance requires executing its start method so that the process is
independent of the running test code. To achieve this, we're going to use the Process
class, from Python's multiprocessing module, telling it what method to call when
the Process is started, and that the process should be treated as a daemon, keeping
its execution independent from other running code. Once that's been set up, we can
start the Process, which executes the start method of the service instance stored in
cls.Gateway:

cls.Gateway_process = Process(target=cls.Gateway.start, daemon=True)
cls.Gateway_process.start()

The multiprocessing module will be explored in more detail in
Chapter 19, Multi-processing and HPC in Python, as we explore
various strategies and approaches for scaling computational load
across multiple processes and machines.

The teardown is much simpler: having stored the process that controls the running
service instance (cls.Gateway_process), that Process simply needs to be
terminated (the terminate method call), and the temporary config file deleted so
that we don't leave it in the test code. Because the termination of the process may not
be complete before the teardown execution is complete, a short delay has been added
as well:

 @classmethod
 def tearDownClass(cls):
 # - Stop the service-instance
 cls.Gateway_process.terminate()
 # - Clean up (delete) the temp. config-file
 os.unlink(cls.Gateway_config_file)
 # - Add a short delay to allow the process-termination time
 # to complete before proceeding with the next item...
 time.sleep(1)

Using the NeedsArtisanGateway class in the test case classes requires some trivial
code changes: each test case class needs to derive from NeedsArtisanGateway and
unittest.TestCase, to begin with:

class testArtisanProcesses(NeedsArtisanGateway, unittest.TestCase):

Testing and Deploying Services Chapter 18

[646]

Also, since NeedsArtisanGateway requires a queue_name class attribute to create
the Gateway_queue_id class attribute, that needs to be defined:

queue_name = 'artisan'

From that point on, however, all that remains is unchanged:

def testArtisanCreateFromCO(self):
 self.fail('testArtisanCreateFromCO is not yet implemented')

...

Before implementing any of the tests, there is some configuration and setup that
needs to happen within the test module. All of the process tests are expected to need
data access capabilities, so we need to import the main data store class, as well as the
data store configuration class, and configure data access to allow those capabilities:

from hms_core.data_storage import DatastoreConfig, HMSMongoDataObject

config = DatastoreConfig(
 database='hms_proc_tests',
)
HMSMongoDataObject.configure(config)

Similarly, since the process tests are all concerned with message transmission, we'll
need to be able to create sender objects—instances of RabbitMQSender—as well as
DaemonMessage objects. Those, too, need to be imported, and a base
RabbitMQSender.configuration call needs to be made:

from hms_core.messaging import DaemonMessage, RabbitMQSender, \
 MESSAGE_ORIGINS
RabbitMQSender.configure(
 'hms_ag_process_test', 'localhost', 5672, '/'
)

MESSAGE_ORIGINS in the import line is a new module constant, a collection of
names and values that can be used to control what values are members of the
collection, what names are associated with them, and to determine whether a given
value is a member of the collection. It is defined as follows:

MESSAGE_ORIGINS = namedtuple(
 'MESSAGE_ORIGINS', ['artisan', 'central_office']
)(
 artisan='artisan',
 central_office='central-office',
)

Testing and Deploying Services Chapter 18

[647]

Python does have some official enumeration classes, but the one that
would otherwise be best suited to meet this need, enum.Enum, does
not allow an arbitrary value to check for membership in the
enumeration. The differences can be seen in the results shown in the
enumeration-example.py file in this chapter's code (in
hms_Gateway/scratch-space).

Lastly, since the test processes will be using classes with the same names from
different namespaces (for example, hms_core.co_objects.Artisan and
hms_artisan.artisan_objects.Artisan, both named Artisan), we need to
import these and rename them in the process, like so:

from hms_core.co_objects import Artisan as COArtisan
from hms_artisan.artisan_objects import Artisan as ARArtisan

From this point onward, any creation of a COArtisan object will be instances of the
hms_core.co_objects.Artisan class, and ARArtisan objects will be
hms_artisan.artisan_objects.Artisan instances.

With those out of the way, the implementation of the first process test method can
(finally) begin. It starts with the creation of the sender object, which will be used to
send the test messages:

def testArtisanCreateFromCO(self):
 sender = RabbitMQSender()

In order to test the Artisan creation process, we have to create an Artisan:

 parameters = {
 'contact_name':'contact-name',
 'contact_email':'no-one@me.co',
 'address':{
 'street_address':'street-address',
 'city':'city',
 },
 'queue_id':self.Gateway_queue_id,
 'signing_key':self.Gateway_signing_key,
 }
 new_artisan = COArtisan.from_data_dict(parameters)

Testing and Deploying Services Chapter 18

[648]

We then create the message to be sent, and send it:

 message = DaemonMessage(
 operation='create',
 origin=MESSAGE_ORIGINS.central_office,
 data={
 'target':'artisan',
 'properties':new_artisan.to_message_data(),
 },
 signing_key=self.Gateway_signing_key
)
 sender.send_message(message, self.Gateway_queue_id)

At this point in the code, the message has been sent, but there's no easy way to
determine whether it's been received yet, let alone processed. Without actually
writing code (possibly a lot of code) to keep track of messages and their status, there's
not much in the way of options to pause processing until we're reasonably certain
that the message has been delivered and acted upon. The next best option, and one
that takes a lot less code effort, though it will slow down the test process, is to simply
delay the execution for a short time—long enough to allow the message to be
delivered and acted upon, but not so long that running the tests becomes
problematically long. Using time.sleep, we're going to delay processing for 5
seconds, at least for now. It may need to be increased later, or it might be able to be
decreased if a better feel for how long the process takes to complete is required:

time.sleep(5)

Once the message has been received and acted upon, if all went well, then a
new_artisan object will be created by the Gateway service, and saved to the
database that it's using. The next step in testing the process is to assure that a new
object was, in fact, created and stored:

 try:
 verify_artisan = COArtisan.get(str(new_artisan.oid))[0]
 except IndexError:
 self.fail(
 'Although the new artisan (oid: %s) was created, '
 'it could not be retrieved' % (new_artisan.oid)
)

Testing and Deploying Services Chapter 18

[649]

Knowing that the new object was created, we can then check to make sure that the
new object's data is identical to the data that was originally sent to create it. Since the
data dict representation of any data object is going to be the most comprehensive—it
should include all data that gets persisted—that is a simple comparison of the original
Artisan and the newly created and retrieved Artisan:

 self.assertEquals(
 verify_artisan.to_data_dict(), new_artisan.to_data_dict()
)

If the test process gets past that check, then we're done with the new_artisan object
that we created to test, and we can delete it from the database:

 COArtisan.delete(str(new_artisan.oid))

This concludes the "happy path" testing of the process—where everything was
created, formatted, and sent exactly as intended. Testing unauthorized and badly
formed messages requires a bit more work, since we'll be circumventing the checking
that's performed by the Artisan and DaemonMessage classes. Starting, then, with an
unauthorized message, where the signature of the message doesn't match the
signature calculated on the receiving end, we need to first create an unauthorized
message. We can use the existing message, since it still exists, extract the data we'll be
sending, and then alter something—either a data value or the signature will do:

unauthorized_message_data = message.to_message_dict()
unauthorized_message_data['data']['properties']['website'] = \
 'http://some-bogus-website.com'

Since we already have a sender, we can use its channel, along with the
Gateway_queue_id of the instance, to circumvent the normal sending process that
expects a DaemonMessage instance. Instead, we'll send the JSON dump of the
unauthorized message that we just created:

sender.channel.basic_publish(
 exchange='', routing_key=self.Gateway_queue_id,
 body=json.dumps(
 unauthorized_message_data, sort_keys=True
)
)

Testing and Deploying Services Chapter 18

[650]

The test portion of this branch is concerned with whether a data change made it
through the Gateway service. If one did, it would have generated a new Artisan
record, and we could retrieve the corresponding object. If it did, and we can, then
something went wrong, and we explicitly cause the test to fail. If the retrieval attempt
failed (raising an IndexError because the result set that comes back is a zero-length
list, and has no element at [0]), that's the expected/desired behavior, and we can
simply ignore the error, passing that portion of the test:

 try:
 verify_artisan = COArtisan.get(str(new_artisan.oid))[0]
 self.fail(
 'An unauthorized message should not execute a data-'
 'change'
)
 except IndexError:
 pass

Testing an invalid but authorized message works much the same way, but we'll alter
the message data, and then use a normal DaemonMessage/sender process:

 invalid_message_data = new_artisan.to_message_data()
 # - Alter a data-value, like website
 invalid_message_data['website'] = 12.345
 invalid_message = DaemonMessage(
 operation='create',
 origin=MESSAGE_ORIGINS.central_office,
 data={
 'target':'artisan',
 'properties':invalid_message_data,
 },
 signing_key=self.Gateway_signing_key
)
 sender.send_message(invalid_message, self.Gateway_queue_id)
 try:
 verify_artisan = COArtisan.get(str(new_artisan.oid))[0]
 self.fail(
 'An unauthorized message should not execute a data-'
 'change'
)
 except IndexError:
 pass

Testing and Deploying Services Chapter 18

[651]

Variations on the same theme for the Central-Office-updating-Artisan and Central-
Office-deleting-Artisan processes will look very similar, with each doing the
following:

Creating a local Artisan and saving it in order to have a data object that's
going to be manipulated
Optionally verifying that the newly created Artisan exists in the database
before proceeding, though if the Artisan.save method is considered
trustworthy from other tests, this could be skipped
Creating an appropriate message to execute the process being tested, and
sending it
Testing the results against a second instance of the same Artisan:

The update process tests have to make a point of changing all
fields that can be legitimately changed by the role that the
test is acting in—as a Central Office user/Artisan Manager. In
that respect, it might look very much like previous unit tests
against methods like Artisan.to_data_dict, which return
dictionary representations of the objects
It should also make a point of trying to make changes to the
Artisan that shouldn't be allowed, and verifying that those
attempts fail
The deletion process test will be considerably simpler, since
all it will need to do is try and re-acquire the test object
(using something similar to verify_artisan =
COArtisan.get(str(new_artisan.oid))[0], which we
looked at previously) with the test passing if the retrieval
effort fails after deletion is executed

Tests against invalid access attempts, such as an Artisan creating an Artisan, should
also be implemented, and would have a code structure similar to portions of the test
code shown previously. Before those tests could pass, though, mechanisms to actually
check the message in the various operation methods would have to be implemented.
Using the origin of the incoming DaemonMessage for any given operation, this
might look something like this, showing a general, any-role-is-allowed check and a
specific-role-only check, and using the create_artisan method of the Gateway
service as an example:

def create_artisan(self, message:(DaemonMessage,)) -> None:
 self.info('%s.create_artisan called' % self.__class__.__name__)

 # ...

Testing and Deploying Services Chapter 18

[652]

 # - Assure that only the appropriate roles can execute this
 # method. First check against *all* valid origins (at a
 # minimum, this check should occur in *all* methods)
 if message.origin not in MESSAGE_ORIGINS:
 raise RuntimeError(
 'Malformed message: "%s" is not an accepted '
 'message-origin' % message.origin
)
 # - Alternately, check against specific roles/origins instead,
 # if they are limited
 if message.origin != MESSAGE_ORIGINS.central_office:
 raise RuntimeError(
 'Unauthorized Action: "%s" is not allowed to '
 'execute this method' % message.origin
)

Tests against invalid role/action execution variants would look very much like the
testing of invalid_message that we saw previously, verifying that the operation
method doesn't execute when presented with a well-formed message that's
attempting to execute an operation that's not allowed by any given role/origin.

Testing transaction processes that originate from the application side of a relationship
is a bit more complicated, if only because there's been no significant development so
far on those applications. To test these processes, a bare-bones mock-up of the
application processes would have to be created, at least initially—later on down the
line, when there are reasonably complete and tested applications, it might be better to
actually run a local instance of them. Both Artisan and Central Office applications
would need a mock-up, and would need to provide CRUD operations methods in
much the same manner that the Gateway service daemon's class does. A mock-up of
the Artisan application might start with code such as this:

class ArtisanapplicationMock:

 # ... Properties and initialization would need to be fleshed
 # out, obviously...

 # CRUD-operation methods to implement
 def update_artisan(self, message:(DaemonMessage,)) -> (None,):
 # TODO: Implement this method
 pass

 def create_order(self, message:(DaemonMessage,)) -> (None,):
 # TODO: Implement this method
 pass

 def update_order(self, message:(DaemonMessage,)) -> (None,):

Testing and Deploying Services Chapter 18

[653]

 # TODO: Implement this method
 pass

 def delete_order(self, message:(DaemonMessage,)) -> (None,):
 # TODO: Implement this method
 pass

 def update_product(self, message:(DaemonMessage,)) -> (None,):
 # TODO: Implement this method
 pass

The structure of the Gateway service could be reused, in part, to provide a method
that routes messages to their respective operation methods:

 def _handle_message(self, message:(DaemonMessage,)) -> (None,):
 # - This method would look very much like its counterpart
 # in hms_Gateway.daemons.ArtisanGatewayDaemon
 # TODO: Implement this method
 pass

Rather than having a main loop, though, the mock-up would be better served by
having a single method that acts like a single pass through the Gateway service's
main loop. For testing purposes, this allows the handling of messages to be more
tightly controlled so that any number of test messages can be sent as part of a test
process. Then, a single call can be made to the ArtisanapplicationMock method to
read and handle all messages, which results in the fact that those messages can be
tested. This method, handle_pending_messages, still looks a lot such
as ArtisanGatewayDaemon.main, though:

def handle_pending_messages(self) -> (None,):
 # - Create a connection
 connection = pika.BlockingConnection(
 pika.ConnectionParameters(
 self.connection_params['host'],
 self.connection_params.get('port'),
 self.connection_params.get('path'),
)
)
 # - Create (or at least specify) a channel
 channel = connection.channel()
 # - Create or specify a queue
 channel.queue_declare(queue=self.queue_name)
 # - Get *all* pending messages, and execute against them
 polling = True
 while polling:
 try:
 # - Retrieve the next message from the queue, if

Testing and Deploying Services Chapter 18

[654]

 # there is one, and handle it...
 method_frame, header, body =
channel.basic_get(self.queue_name)
 if method_frame:
 # - Any actual message, valid or not, will
 # generate a method_frame
 message = DaemonMessage.from_message_json(
 body.decode(), self.signing_key
)
 # - We've received the message, and will
 # process it, so acknowledge it on basic
 # principle
 channel.basic_ack(method_frame.delivery_tag)
 self._handle_message(message)
 else:
 polling = False
 except InvalidMessageError as error:
 # - If message-generation fails (bad signature),
 # we still need to send an acknowledgement in order
 # to clear the message from the queue
 channel.basic_ack(method_frame.delivery_tag)

With that available, and a corresponding mock-up for the Central Office application,
the processes for testing transactions that originate with an application passing
through the Gateway service to the other application and making changes will be
similar to the testing process for simpler transactions, such as creating an Artisan:

A message is created for the operation, with the appropriate origin and1.
data
That message is sent to the Gateway service2.
Verification of any service-level data changes is performed, possibly after a3.
delay to ensure that there's been time for the message to be delivered and
acted upon
The handle_pending_messages method of the appropriate application4.
mock-up class is called to read and process the incoming message
Testing of the expected results is performed—new local data created for5.
creation transactions, changes to existing data for update transactions, and
the removal of existing data for deletion transactions

Testing and Deploying Services Chapter 18

[655]

This entire process—the creation of code that simulates a more
complex system or object for testing purposes—is called Mocking.
Mocking allows tests to be written without having to rely on actual
(and often far more complex) real code implementations.

Testing for products and orders, for the most part, can follow similar patterns. The
primary differences will, of course, be in what object types are being created and
manipulated, and in what various roles are allowed to do to those objects, according
to the business rules for each role/operation combination. Additional tests may need
to be defined to specifically target certain operations—artisans fulfilling part of an
order, for example, which is fundamentally just an update operation. However, this
should only alter item fulfilment data, and not all of that data at that. Even so, this
will almost certainly follow similar test processes and structures to those outlined
here.

Demonstrating the service
A mainstay of many iterative development processes is the requirement that the
functionality of code can be demonstrated to stakeholders so that they have sufficient
information to agree that requirements for a story have been met, or to point out any
gaps in those requirements. Demonstration of a service poses some unique challenges
to meeting that requirement:

Everything that's happening is happening "behind the scenes" invisibly
Much of what is happening happens so quickly that there simply isn't time
to see the interim steps that lead to the final results
The odds are good that there won't be any sort of user interface associated,
or that even if there is one, that it will provide enough visibility into the
processes to demonstrate them in enough detail

Sometimes, as is the case of the Gateway service, there are also external
systems—databases, message queue services, and so on, that need to be available to
the code being run for a demonstration process to actually run successfully.
Preparation for demonstration needs to take that into account, and have running
instances of any needed external services available, obviously. In this case, since
development and testing already relies on those same services being available, this is
a non-issue, provided that a code demo can be run from a development environment.

Testing and Deploying Services Chapter 18

[656]

The process tests that have been implemented can be executed to demonstrate that
the code is behaving in a predictable fashion, and this a good item to be
demonstrated, but it does nothing to address our initial concerns. A very basic
approach to show the inner workings of the various processes would be to write a
demonstration script that performs the same tasks that occur in the final code, in
whatever logical or required order is needed, but in user controllable chunks, with
displays of relevant data when and as needed. It's a brute-force, bare-bones approach,
but makes the steps in the processes visible (addressing the first concern), and
executes each step when a user says to (addressing the second concern). In effect, it's
solving the first two concerns by creating a user interface to that specific purpose.
Though the full demo script is too long to reproduce here, it will largely look like the
process tests:

#!/usr/bin/env python
"""
A (partial) script that runs through the various processes we need
to demo for the Artisan Gateway service.
"""

- Imports needed for the demo-script
import unittest
import os

from hms_core.co_objects import Artisan as COArtisan
from hms_core.messaging import DaemonMessage, RabbitMQSender, \
 MESSAGE_ORIGINS

The configuration of various items, like the data store that the demo process will use
or the message queue, would need to be provided at about this point in the code.

Because the unit tests for the entire service live in a package structure (that mirrors
the structure of the real code), the entire unit test suite can be imported, and a
function can be written to execute them on demand:

from test_hms_Gateway import LocalSuite

def demoUnitTests():
 print(
 '+== Showing that unit-tests run without error '.ljust(79,'=')
+ '+'
)
 results = unittest.TestResult()
 LocalSuite.run(results)
 print('+== Unit-tests run complete '.ljust(79,'=') + '+\n\n')

Testing and Deploying Services Chapter 18

[657]

The demonstrations of each data transaction process can also be wrapped in
individual functions in the demo module. With the exception of new code to display
information as the demo is running, and to prompt whoever is running the demo to
allow it to continue, they will look very much like the corresponding process test
methods:

def demoArtisanCreateFromCO():
 print(
 '+== Central Office Creating Artisan '.ljust(79,'=') + '+'
)

The code for creating an Artisan test object to work with is nearly identical:

 parameters = {
 'contact_name':'contact-name',
 'contact_email':'no-one@me.co',
 'address':{
 'street_address':'street-address',
 'city':'city',
 },
 'queue_id':'bogus-queue-id',
 'signing_key':os.urandom(64),
 }
 new_artisan = COArtisan.from_data_dict(parameters)

Since the demo will need to show the initial state of the new_artisan object before
the transmission of its create message to show that the data persisted as expected,
some simple, brute-force output of the object's data-dict is in order:

 initial_state = new_artisan.to_data_dict()
 print('| Initial state:'.ljust(79, ' ') + '|')
 for key in sorted(initial_state.keys()):
 print(
 (
 ('| +- %s ' % key).ljust(24, '.') + ' %s' %
initial_state[key]
)[0:78].ljust(79, ' ') + '|'
)
 print('+' + '-'*78 + '+')

Creating the message, and sending it, looks almost identical, apart from the
queue_id that's used to identify which queue it gets sent through. It also has the
same time.sleep delay as the corresponding process test, for the same reason:

 sender = RabbitMQSender()
 # - Send the new-COArtisan message to the service
 message = DaemonMessage(

Testing and Deploying Services Chapter 18

[658]

 operation='create',
 origin=MESSAGE_ORIGINS.central_office,
 data={
 'target':'artisan',
 'properties':new_artisan.to_message_data(),
 },
 signing_key=parameters['signing_key']
)
 sender.send_message(message, parameters['queue_id'])
 # - The message has been sent, but we have to wait for
 # a bit before it is received and acted upon before we
 # can verify the creation happened
 time.sleep(5)

The display of the results is essentially the same code used to display the
initial_state that we saw previously; it's just using the data-dict of the
retrieved, database-persisted instance instead of the original instance:

 verify_artisan = COArtisan.get(str(new_artisan.oid))[0]
 verify_state = new_artisan.to_data_dict()
 print('| Saved state:'.ljust(79, ' ') + '|')
 for key in sorted(verify_state.keys()):
 print(
 (
 ('| +- %s ' % key).ljust(24, '.') + ' %s' %
verify_state[key]
)[0:78].ljust(79, ' ') + '|'
)
 print('+' + '='*78 + '+')

Since showing the original and persisted data is one logical grouping, the script waits
for input from the user before continuing with the next step of the demo:

 print('\n')
 input('[Enter] to continue the demo')
 print('\n')

Setting aside the remaining items in this demo function, and all of the other demo
functions that would likely be needed, the entire demo script can be executed by
simply calling each demo function if the module is executed directly (if __name__
== '__main__'):

if __name__ == '__main__':
 demoArtisanCreateFromCO()

Testing and Deploying Services Chapter 18

[659]

The output with just this first segment of the first demo method in place can already
be used to show that data persistence is accurate:

The steps that follow for this first demo function will be similar:

Wrapping the execution with data displays of before and after whatever
changes are made
Displaying what data changes are being made when applicable, so that
there is visibility into those changes
Demonstrating expected failure cases, such as invalid message data or
signatures, and any role-based variants

There will almost certainly be enough similarity between what the process test
methods are proving (and executing) and the demonstrations of those same processes
that the test methods will supply most of the code needed for all of the demo
functions.

Testing and Deploying Services Chapter 18

[660]

Packaging and deploying the service
Since the hms_Gateway and hms_core projects each have their own setup.py file,
the packaging and deployment process doesn't need to be any more complicated than
doing the following:

Executing each setup.py to generate the installable package
Moving those package files to the server that is going to run the Gateway
service
Installing them with the following code:

pip install HMS-Core-0.1.dev0.tar.gz

pip install HMS-Gateway-0.1.dev0.tar.gz

Creating, for new installations, the configuration file at the necessary
location

The configuration needed to allow the Gateway daemon to start up automatically on
system boot and shutdown with a system shutdown will vary based on the OS of the
target machine (more on that in a bit).

If, on the other hand, there is a need for a single package, consolidating the src
directories from all of the relevant projects will need to be undertaken as part of the
packaging process. That can be accomplished, if it's not available through some
combination of the normal setuptools.setup function's arguments, with a
Makefile and a minor change to the setup.py that's in place in the project.

Support for the inclusion of source code outside a project's main
source directory has, in the author's experience, had sporadic issues
with earlier versions of Python and/or the setuptools package. If
those issues are resolved in the current version, then it may possible
to use the package_dir argument of setuptools.setup, possibly
in combination with the setuptools.find_package function to
instruct the main setup function where you can find other package
source trees outside the current project. The Makefile approach
described here is not as elegant, and can have other (generally
minor) issues, but works all the time with only basic setup.py
functionality/requirements.

Testing and Deploying Services Chapter 18

[661]

The relevant change to the setup.py file is simple, requiring only the addition of the
hms_core package name to the list of packages to include in the distribution:

The actual setup function call:
setup(
 name='HMS-Artisan-Gateway',
 version='0.1.dev0',

 # ...

 packages=[
 'hms_Gateway',
 'hms_core',
],

 # ...

)

Since setup.py doesn't care where it's being run from, a simple brute-force solution
to gather all of the relevant source code into a single location as a Makefile target
might start with this:

full_package:
 # Create a temporary packaging directory to copy all the
 # relevant files to
 mkdir -p /tmp/Gateway-packaging
 # Copy those files
 cp -R src/hms_Gateway /tmp/Gateway-packaging
 cp -R ../hms-core/src/hms_core /tmp/Gateway-packaging
 # - Change to the temporary packaging directory, execute
setup.py
 cd /tmp/Gateway-packaging;python setup.py
 # - Move the resulting package to somewhere outside the
 # temporary packaging directory, after assuring that the
 # location exists
 mkdir -p ~/Desktop/HMS-Builds
 mv /tmp/Gateway-packaging/dist/* ~/Desktop/HMS-Builds
 # - Clean up the temporary directory
 rm -fR /tmp/Gateway-packaging

Testing and Deploying Services Chapter 18

[662]

Step-by-step, all the target is actually doing is the following:

Creating a temporary build directory
Copying the entire package directory from each project into that directory
Jumping into the directory and executing a typical setup.py run (with the
modified setup.py file)
Making sure that a directory exists on the filesystem that the final package
files can be moved to
Moving the newly created package files to that directory
Removing the temporary build directory

The final output of the combined Makefile/setup.py process would be a single
package file, HMS-Gateway-0.1.dev0.tar.gz, that includes both the hms_Gateway
and hms_core package directories, ready for installation with pip install HMS-
Gateway-0.1.dev0.tar.gz.

Common considerations across all operating
systems
No matter what operating system the Gateway service daemon is running under, it
will require a full configuration file, at a known location, that stores all of the settings
that the service will need to know about when it starts up. The basic, Linux-flavored
version of this configuration file (living in /etc/hms/hms_Gateway.conf on the
target machine the service is running on) looks very much like the bare-bones
example used in the Message-Queue implementation with RabbitMQ section of Chapter
16, The Artisan Gateway Service:

HMS Artisan Gateway Service Configuration
- Used by the hms_Gateway.daemons.ArtisanGatewayDaemon class
to launch an active instance of the service
logging:
 format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 name: hms_Gateway
If console-logging is desired, uncomment these lines
console:
level: info
 file:
 level: error
 logfile: "/var/log/hms/hms_Gateway.log"
queue:
 type: rabbit

Testing and Deploying Services Chapter 18

[663]

 connection:
 host: rabbitmq.hms.com
 port: 5672
 path: /
 queue_name: "central-office"
Signing-key should be generated and added to configuration
during installation. It should be a 64-character,
bytes-type-compatible string-value, and will likely need to be
explicitly quoted
signing_key: ""

This config file is intentionally not part of the packaging process—otherwise, every
time an update was installed, there would be some risk of overwriting an existing and
operational configuration. Once the final configuration is in place, it should not need
to be modified under any reasonably normal circumstances. The only difference
between the Linux version of the configuration file and one that would be used on a
Windows server is the log file path (logging:file:logfile), which would need to
be pointed at a Windows filesystem path.

The service management options that we'll examine, under both Windows and Linux
operating systems, allow a simple command-line execution to start the service
daemon. Older Linux service management might require a separate, freestanding
script in Bash or Python to bridge between the operating system's core functionality
and the user's and system's interaction with it. With the advent of these more modern
options, though, we can launch the service daemon on a production system in much
the same way it was launched for testing during its development, by adding a few
lines of code to the end of hms_Gateway/daemons.py:

if __name__ == '__main__':
 daemon = ArtisanGatewayDaemon('/etc/hms/hms_Gateway.conf')
 daemon.start()

When a Python module is directly executed by the Python
interpreter—python -m hms_Gateway.daemons, for example, or
python /path/to/hms_Gateway/daemons.py—the if
__name__ == '__main__' condition will evaluate to True, and
the code within that if statement will be executed. In this case, it
creates an instance of ArtisanGatewayDaemon, passing the hard-
coded config file path, then calling the start method of the daemon
object, starting the service.

Testing and Deploying Services Chapter 18

[664]

Linux (systemd) execution
On a reasonably recent Linux system, service management is handled by another
service: systemd. Configuration is needed for systemd to know when and how to
launch the service daemon, how to shut it down, and how to restart it, along with
some additional information that is used to determine when the service starts during
the system's boot process. A bare-bones starting point systemd configuration file for
the Gateway service would look like this:

[Unit]
Description = Artisan Gateway Service
After = network-online.target

[Service]
- Start-up process
ExecStart = python -m hms_Gateway.daemons
- How to shut the service down
ExecStop = pkill -f hms_Gateway.daemons
ExecRestart = pkill -f hms_Gateway.daemons;python -m
hms_Gateway.daemons

- If it stops unexpectedly, do we want it to restart?
Restart = always

[Install]
- This corresponds, at least roughly, to runlevel 3, after
a complete system start
WantedBy = multi-user.target

Where the roles for he mentioned keywords are as follows:

Description is a simple description of the service
After indicates an operational state target that should be completely
established before launching the service daemon—in this case, since the
Gateway service requires network access, we are indicating that it should
start after the network online target is complete, expecting that all network
functionality will be available at that point
ExecStart is a command that can be executed by the OS to start the
service

Testing and Deploying Services Chapter 18

[665]

ExecStop is a command that will be used to stop the service—in this case,
using the pkill OS utility to find (-f) and kill any processes that match
the hms_Gateway.daemons string
Restart allows systemd to automatically restart the service if it dies
unexpectedly
WantedBy is an OS state indicator that, in this case, defines under what
circumstances the service daemon should launch—when a (standard)
multi-user-capable run-level is reached, typical of a command-line only
server system

Once both of these configuration files are in place, the Gateway service should start
automatically after the system boots up, shut down cleanly if the system is shut
down, and can be manually started, stopped, and restarted with the following
standard commands:

systemctl start hms_Gateway

systemctl stop hms_Gateway

systemctl restart hms_Gateway

Windows (NSSM) execution
Running the Gateway service on a Windows machine requires some middleware to
create a service-compatible wrapper around the Python code that's going to be
executed. One of the more popular and stable middleware options is the Non-
Sucking Service Manager (NSSM). NSSM provides a GUI for creating, installing,
and managing services that are written in a variety of languages—in general, if a
program can be run from a command line, NSSM can almost certainly get it running
as a Windows service.

Testing and Deploying Services Chapter 18

[666]

NSSM may need to be run with administrative privileges, but in any event, is
launched from the command line—C:\path\to\nssm.exe install launches the
GUI, and all of the settings needed are present under one of the tabs. The application
tab defines the Path to the program to be executed (python.exe, in our case) with
whatever Arguments are needed (the Python script to run), as well as a Service
name, which is used to identify the service:

If an existing NSSM-managed service needs to be modified, it can be accessed by
executing the NSSM program and specifying the Service name in the command:
C:\path\to\nssm.exe install hms_Gateway, for example.

The Details tab allows a Display name and Description to be provided, which will
appear in the Windows Service Administration interface. It also allows for the control
of the Startup type: whether the service starts automatically, or under other
circumstances:

Testing and Deploying Services Chapter 18

[667]

Once the Install Service button is clicked, it's done—the new service, wrapped and
manageable by NSSM, is available in the Windows Services administrator!

At this point, what might be called the "functional foundations" of hms_sys are pretty
complete: all of the data flows that are expected have been accounted for, and if there
are restrictions mandated by the business rules that aren't implemented in the
business logic, there is at least enough support for making the decisions related to
them quick and easy to implement.

We still haven't actually closed most of the stories that the iteration started with,
though, in retrospect, those were written with goals that were too broad for them to
be closed without UI development. Had they been broken out into two stories (or
more) each, one of each set, focusing on the end-user goals and needs would look
pretty much the same:

As an Artisan Manager, I need to be able to create Artisan objects in a
GUI so that I can manage artisans quickly and easily
As an Artisan Manager, I need to be able to delete Artisan objects in a
GUI so that I can manage artisans quickly and easily

Each of these would have a corresponding story that focuses more on assuring that
there would be some code, some functionality that the GUI-related stories could start
with, and build upon. Those would probably have looked something like this:

As

a UI developer, I need a mechanism to send create
Artisan messages to the Gateway service so that I can create
a UI to execute that process
As a UI developer, I need a mechanism to send delete
Artisan messages to the Gateway service so that I can create
a UI to execute that process

Alternately, if each of the original stories' development processes had taken the
approach of making sure that the entire process for each end user action, from GUI to
service to database to (where applicable) amother user application, had tasks
associated with it, that would have allowed the stories as they were originally written
to be completed in their entirety.

Testing and Deploying Services Chapter 18

[668]

This kind of gap, in a real-world situation, would have been addressed as part of
grooming the stories, before they were even put into an active iteration. Story
grooming is a development team activity, where incoming stories are examined,
fleshed out, and (when necessary) tweaked with the help of any stakeholders to
assure that they can be accomplished. Part of this process involves reviewing stories
and their attendant tasks to assure that everything needed for the story to be worked
to completion is accounted for. A review of that nature would almost certainly have
revealed that either the stories, as originally presented here, had tasks that
represented everything the story needed, or that splitting the original stories into UI
and mechanism stories was necessary.

Still, a few stories from the original set feel like they can be closed, barring tweaks
that might surface during the demonstration and review:

As an Artisan, I need to be able to send data changes to the Artisan
Gateway so that those changes can be propagated and acted upon as
needed
As a Central Office user, I need to be able to send data changes to the
Artisan Gateway so that those changes can be propagated and acted upon
as needed
As any user sending messages across to or from the Artisan Gateway
service, I need those messages to be signed so that they can be validated
before being acted upon

Where hms_sys development could go
from here
There's still a substantial amount of work needed for hms_sys to be truly complete,
but all of the design, development, and process principles that needed to be exposed
have been at this point, so this feels like a good point to break away from it and move
on to other things. Before moving on, though, there are some easily identified items
that could be picked up and worked on.

Code review, refactoring, and cleanup
There are at least a couple of items in the code as it stands right now that could be
reviewed and remedied.

Testing and Deploying Services Chapter 18

[669]

So far, there's been no call for any request-response process that would need to
simply return any of the data objects. There are, however, methods that were stubbed
out to address those potential needs (the various response_{object} methods in
ArtisanGatewayDaemon), even though the needs themselves never surfaced. While
it doesn't hurt to leave them in place, that would, ultimately, entail having test case
classes and/or test methods that are required by the testing policy that don't really
serve any purpose. The methods being tested don't do anything, and aren't expected
to in the foreseeable future. At a minimum, these methods and any tests associated
with them should probably be commented out, but they could even be completely
removed, keeping the code cleaner.

Since distinct classes were created for orders in both the Artisan and Central Office
contexts, taking some time to winnow out their common functionality and interface,
and re-define the BaseOrder class in hms_core would clean the codebases up a bit
too. That would also entail reworking the relevant unit tests, and might (probably
trivially) touch other classes that use the current Order classes.

The presence of Central Office classes in hms_core, while an understandable decision
at the time, could present a small data integrity risk on a longer term basis: as
members of hms_core, they would, at present, be distributed as part of an Artisan
application (which depends on hms_core), and would be available to a disgruntled
Artisan, if that were ever to occur. Though the risk is probably trivial, it's certainly not
an impossible scenario, and there's really no reason why an Artisan application
should have any code that's intended for use only by Central Office staff. Re-
organizing those items into a separate project/module, or altering the build/packaging
process to actively remove that module from the Artisan application's codebase, feels
like a good idea, eliminating any concerns that might arise about deploying code to
users who wouldn't/shouldn't use it.

A similar reorganization effort may be needed later on with respect to where the
daemons.py module lives, and how it's used. At this point, we don't really have a
design for the end user applications–just a collection of functional requirements that
have been implemented at a fundamental level, and so there's no real feeling for how
the applications themselves will function. It's possible that the design would involve a
local service, even if it's only running while the main application is active, in which
case keeping daemons.py in the hms_core namespace makes sense. If, on the other
hand, the end-user applications don't use such a service, then there's no reason to
deploy the relevant code in either of the end-user applications and moving it into its
own deployable package, or into a separate but dependent project would not a bad
idea.

Testing and Deploying Services Chapter 18

[670]

There are at least a few unit tests (the ones testing the various to_data_dict
methods are probably the most obvious ones) that, because of the way the test
arguments are used in deeply nested loops, will, over time, take longer and longer to
execute. As things stand right now, there are as many as a dozen value variations that
are (or could be) tested, and only a few values being used per variation. With three
values per variation, and 12 variations to test, each of which lives in its own loop,
that's 312—over half a million—assertions that would be executed on every execution
of that test method. This takes time to execute. Reworking the various nested loop test
methods so that each value variant is tested individually, un-nesting the loops, would
speed up test execution significantly—there would be 36 (3 × 12) assertions instead of
the half-million needed now. The trade-off is that the test code will be substantially
longer, and potentially (slightly) more difficult to maintain as a result, but the time
saved in the long run will be worth the effort.

Developing a UI
There are literally dozens of GUI options available for Python applications, even if the
list is limited to those that are usable on more than one OS/platform—a list is
maintained on the Python website at https:/ / wiki. python. org/ moin/
GuiProgramming. The more widely used are sufficiently feature-rich, and whole books
could be written about each of them. Noteworthy GUI frameworks and toolkits
include the following:

Tkinter: Distributed as part of Python installations
PyGObject: A GUI used for many Linux/Gnome applications, related to
GnomePython and
PyGTK (https://pygobject.readthedocs.io/en/latest/)
Kivy: This includes support for Android and iOS (iPhone) applications
(https:/ / kivy. org/)

Tkinter is the de facto standard for Python application GUIs, and has shipped with
Python distributions for a long time. While the GUI elements it provides are, in many
respects, quite basic, it provides enough of them for a wide range of application needs
to be met. As one of the more mature options, there is a lot of documentation
available for it (see https:/ /wiki. python. org/ moin/ TkInter), and it is quite stable.
There are also a fair number of extension packages available that likely address needs
that a baseline Tkinter installation may not fulfil, including Python Megawidgets
(PMW—http:/ /pmw. sourceforge. net/doc/). While Tkinter GUIs may not be the
most attractive in the world—their appearance is tightly bound to the GUI engine of
the underlying OS, with all the variations that entails—they are eminently functional.

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://pygobject.readthedocs.io/en/latest/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/
http://pmw.sourceforge.net/doc/

Testing and Deploying Services Chapter 18

[671]

Tkinter doesn't have complex dependencies, making it extremely portable; a given
Tkinter GUI will function without alteration on any OS, and simple tweaks based on
the detection of which OS is present are generally not difficult, though they may
require significant planning ahead of time.

If you've ever worked on a Linux system that has a Gnome frontend, the odds are
good that you've been exposed to a PyGObject-based GUI, whether you knew it or
not. Although it's part of the open source Gnome Project, and thus perhaps more
focused on fulfilling needs for various Linux systems, PyGObject is a viable option on
Windows and Macintosh systems as well. Like most of the GUI frameworks available
for Python, PyGObject does involve at least some additional software installation, and
there may be extensive dependencies involved, even if they aren't directly visible, but
those should be managed by the installation process of PyGObject itself. PyGObject
assumes at least some control over widget appearance, taking that control away from
the underlying GUI engine of the OS in order to provide a more attractive
appearance.

Kivy is a popular option, and is often cited as the go-to GUI framework for Python
applications needing mobile technology support (Android and iOS applications).
Judging by several of the entries in their gallery page (https:/ /kivy. org/ #gallery),
it can provide very clean and attractive GUIs. Kivy uses its own design language to
define how a GUI is laid out, and what the elements look like. Mobile application
support through Kivy is accomplished by bundling a complete Python installation
with each Android apk or iOS app file.

Another option, though it might sound odd at first, would be to implement the
Artisan and Central Office applications as local web servers, and use HTML, CSS, and
JavaScript to create the GUI. This isn't as far-fetched as it might sound: Python
includes a variety of web server classes in the http.server module (https:/ /docs.
python.org/3.6/ library/ http. server. html), and even if none of them were ready
to use as-is, they could be extended to provide whatever functionality was lacking.
Though the servers provided might not be as powerful or feature-rich as a dedicated
web server (Apache or IIS), they wouldn't really need to be, since there would be only
a handful of users accessing it at any given time.

https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://kivy.org/#gallery
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html
https://docs.python.org/3.6/library/http.server.html

Testing and Deploying Services Chapter 18

[672]

Order fulfilment and shipping APIs
The basic data changes involved in the order fulfilment process that an Artisan would
execute are reasonably detailed and understood, but there is certainly room for
improvement. One feature that would be very nice to have would be integration with
online APIs for the various shipping companies that would be used to deliver those
fulfilled order items. That integration, depending on the shape of all the requirements
around it, could be a major development effort all by itself, and could include the
following:

Allowing an Artisan user to provide a package or shipping ID during
transactions for both individual and multiple item fulfilment
Sending a confirmation email (if the APIs don't handle that on their own) to
the customer with shipment tracking information
Sending some sort of notification to the Central Office that order items have
been fulfilled, which would be a trigger for whatever manual or automatic
process which pays the Artisan for the items shipped

Over and above that, there would be definitions needed for the various shipper APIs
(since it's unlikely that any two of them will use the exact same request structure) and
testing strategies and implementations for them, quite possibly with extensive
mocking, if the APIs themselves don't provide any test harnesses.

Summary
The testing of services, particularly in a repeatable fashion that can be used as
ongoing regression testing, has its own particular challenges, but none of them is
insurmountable. The methods presented here are a solid starting point, and could be
elaborated on in as much detail as required to meet almost any testing requirements.
That said, these are reasonably complete, and easily managed/maintained should new
testing requirements surface, whether through the discovery and correction of bugs,
or the advent of new functional requirements that have to be reflected in tests.

19
Multiprocessing and HPC in

Python
High-performance computing (HPC), quite simply, is the use of parallel processing
during the execution of an application to spread the computational load across
multiple processors, often across multiple machines. There are several MPC strategies
to choose from, ranging from custom applications that leverage local multiprocessor
computer architecture through to dedicated MPC systems, such as Hadoop or
Apache Spark.

In this chapter, we will explore and apply different Python capabilities, building from
executing a baseline algorithm against elements in a dataset one element at a time,
and look at the following topics:

Building parallel processing approaches that exploit locally available
multiprocessor architectures, and the limitations of those approaches using
Python's multiprocessing module
Defining and implementing an approach across multiple machines to
parallelize the baseline serial process—essentially creating a basic
computational cluster
Exploring how to use Python code in dedicated, industry-standard HPC
clusters

Multiprocessing and HPC in Python Chapter 19

[674]

Common factors to consider
Code that executes in a parallel manner has a few additional factors to consider as it's
being developed. The first consideration is the input to the program. If the primary
operations against any set of data are wrapped in a function or method, then the data
is handed off to the function. The function does whatever it needs to do, and control
is handed back to the code where the function was called. In a parallel processing
scenario, that same function might be called any number of times, with different data,
with control passing back to the calling code in a different order than their execution
started in. As the datasets get larger, or more processing power is made available to
parallelize the function, more control has to be exerted over how that function is
called, as well as when (under what circumstances), in order to reduce or eliminate
that possibility. There may also be a need to control how much data is being worked
on at any given time, if only to avoid overwhelming the machine that the code is
running on.

An example of this scenario seems to be in order. Consider three calls to the same
function, all within a few milliseconds, where the first and third call complete in one
second, but the second call, for whatever reason, takes ten seconds. The order of calls
to the function would be as follows:

Call #1
Call #2
Call #3

The order that those return in, though, is as follows:

Call #1 (in one second)
Call #3 (also in one second)
Call #2 (in ten seconds)

The potential concern is that if the returns from the function are expected to come
back in the same order they were called, even if it's only implicitly, with
dependencies on Call #2 needed by Call #3, the expected data won't be present, and
Call #3 will fail, probably in a very confusing manner.

This collection of controls over the input data, and as a result over when, how, and
how often the parallelized process is executed, has several names, but we'll use the
term orchestration here. Orchestration can take many forms, from simple loops over a
small dataset, launching parallel processes for each element in the dataset, to large-
scale, over-the-wire message-based process request-and-response mechanisms.

Multiprocessing and HPC in Python Chapter 19

[675]

The output from a set of parallel processes also has to be considered in some detail.
Some of the parallelization methods available in Python simply do not allow the
results of a function call to be directly returned to the calling code (at least not yet).
Others may allow it, but only when the active process is complete and the code
actively attaches to the process, blocking access to any other processes until the
targeted one has completed. One of the more common strategies for dealing with
output is to create the processes to be parallelized so that they are fire-and-forget
calls—calling the function deals with the actual processing of the data and with
sending the results to some common destination. Destinations can include
multiprocess-aware queues (provided by the multiprocessing module as a Queue
class), writing data to files, storing the results to a database, or sending some sort of
asynchronous message to somewhere that stores the results independent of the
orchestration or execution of those processes. There may be several different terms for
these processes, but we'll use dispatch in our exploration here. Dispatch may also be
controlled to some extent by whatever orchestration processes are in play, or might
have their own independent orchestration, depending on the complexity of the
processes.

The processes themselves, and any post-dispatch use of their results, also need to be
given some additional thought, at least potentially. Since the goal, ultimately, is to
have some number of independent processes working on multiple elements of the
dataset at the same time, and there is no sure way to anticipate how long any
individual process might take to complete, there is a very real possibility that two or
more processes will resolve and dispatch their data at different rates. That may be
true even if the expected runtime for the relevant data elements is the same. There is
no guarantee, then, for any given sequence of elements to be processed, that the
results will be dispatched in the same sequence that the processes against those
elements were started. This is particularly true in distributed processing architectures,
since the individual machines that are actually doing the work may have other
programs consuming their available CPU cycles, memory, or other resources that are
needed to run the process.

Keeping the processes and the dispatch of their results independent, as much as
possible, will go a long way toward mitigating that particular concern. Independent
processes won't interact with or depend on any other processes, eliminating any
potential for cross-process conflicts, and independent dispatches eliminate the
potential for cross-results data contamination. If there is a need for processes that
have dependencies, those can still be implemented, but additional effort (most likely
in the form of dispatch-focused orchestration) may be needed to prevent conflicts
from arising as results from parallel processes become available.

Multiprocessing and HPC in Python Chapter 19

[676]

A simple but expensive algorithm
First, we need to solve a problem. In order to keep the focus on the various
mechanisms for parallel processing, that domain of that problem needs to be easily
understood. At the same time, it needs to allow for processing of arbitrarily large
datasets, preferably with unpredictable runtimes per element in the dataset, and with
results that are unpredictable. To that end, the problem we're going to solve is
determining all of the factors of every number in some range of integer values. That
is, for any given positive integer value, x, we want to be able to calculate and return a
list of all the integer values that x is evenly divisible by. The function to calculate and
return the list of factors for a single number (factors_of) is relatively simple:

def factors_of(number:(int)) -> (list):
 """
Returns a list of factors of the provided number:
All integer-values (x) between 2 and number/2 where number % x == 0
"""
 if type(number) != int:
 raise TypeError(
 'factors_of expects a positive integer value, but was
passed '
 '"%s" (%s)' % (number, type(number).__name__)
)
 if number < 1:
 raise ValueError(
 'factors_of expects a positive integer value, but was
passed '
 '"%s" (%s)' % (number, type(number).__name__)
)
 return [
 x for x in range(2, int(number/2) + 1)
 if number % x == 0
]

Although this function, by itself, only deals with a single number, a process that calls
it over and over again for any set of numbers can be scaled out to any number of
numbers to process, giving us the arbitrarily large dataset capabilities when needed.
The runtimes are somewhat predictable—it should be possible to get a reasonable
runtime estimate for numbers across various ranges, though they will vary based on
how large the number is. If a truly unpredictable runtime simulation is needed, we'd
be able to pre-generate the list of numbers to be processed, then randomly select
them, one at a time. Finally, the results on a number-by-number basis aren't
predictable.

Multiprocessing and HPC in Python Chapter 19

[677]

Some testing setup
It may be useful to capture some runtime information for a sample set of numbers,
say from 10,000,000 to 10,001,000, capturing both the total runtime and the
average time per number. A simple script (serial_baseline.py), executing the
factors_of function against each of those numbers one at a time (serially), is easily
assembled:

#!/usr/bin/env python
"""serial_baseline.py

Getting data that we can use to estimate how long a factor_of call
will
take for some sample "large" numbers.
"""

print(
 '# Execution of %s, using all of one CPU\'s capacity' % __file__
)
print('='*80)
print()

import time
from factors import factors_of

- The number we'll start with
range_start = 10000000
- The number of calls we'll make to the function
range_length = 1000
- The number that we'll end with - range *stops* at the number
specified without including it in the value-set
range_end = range_start + range_length + 1
- Keep track of the time that the process starts
start_time = time.time()
- Execute the function-call the requisite number of times
for number in range(range_start, range_end):
 factors_of(number)
- Determine the total length of time the process took to execute
run_time = time.time() - start_time
- Show the relevant data
print(
 '%d iterations executed in %0.6f seconds' %
 (range_length, run_time)
)
print(
 'Average time per iteration was %0.6f seconds' %

Multiprocessing and HPC in Python Chapter 19

[678]

 (run_time/range_length)
)

Assuming that any/all machines involved in the calculation processes are essentially
identical in terms of processing power, the output from this script gives a reasonable
estimate for how long it takes to perform the factors_of calculation against a
number near a value of 10,000,000. The output from a fairly new powerful laptop,
where this code was initially tested, looked like this:

For testing purposes further down the line, we'll also create a constant list of test
numbers (TEST_NUMBERS), chosen to provide a fairly wide range of processing times:

TEST_NUMBERS = [
 11, # Should process very quickly
 16, # Also quick, and has factors
 101, # Slower, but still quick
 102, # Slower, but still quick
 1001, # Slower still, but still fairly quick
 1000001, # Visibly longer processing time
 1000000001, # Quite a while
]

These seven numbers were chosen to provide a good range of larger and smaller
numbers, varying the individual runtimes for calls of the factors_of function. Since
there are only seven numbers, any test runs that make use of them (instead of the
1,000 numbers used in the preceding code) will take substantially less time to execute,
while still providing some insight into the individual runtimes if needed.

Local parallel processing
The primary focus for the local parallelization of processing will be on the
multiprocessing module. There are a couple of other modules that might be usable
for some parallelization efforts (and those will be discussed later), but
multiprocessing provides the best combination of flexibility and power with the
least potential for restrictions from the Python interpreter or other OS-level
interference.

Multiprocessing and HPC in Python Chapter 19

[679]

As might be expected from the module's name, multiprocessing provides a class
(Process) that facilitates the creation of child processes. It also provides a number of
other classes that can be used to make working with child processes easier, including
Queue (a multiprocess-aware queue implementation that can be used as a data
destination), and Value and Array, which allow single and multiple values (of a
single type) to be stored in a memory space that is shared across multiple processes,
respectively.

The full life cycle of a Process object involves the following steps:

Creating the Process object, defining what function or method will be1.
executed when it is started, and any arguments that should be passed to it
Starting the Process, which begins its execution2.
Joining the Process, which waits for the process to complete, blocking3.
further execution from the calling process until it is complete

For comparison purposes, a multiprocessing-based baseline timing test script,
equivalent to the serial_baseline.py script, was created. The significant
differences between the two scripts start with the import of the multiprocessing
module:

#!/usr/bin/env python
"""multiprocessing_baseline.py

Getting data that we can use to estimate how long a factor_of call
will
take for some sample "large" numbers.
"""

print(
 '# Execution of %s, using all available CPU capacity (%d)' %
 (__file__, multiprocessing.cpu_count())
)
print('='*80)

import multiprocessing
import time

Multiprocessing and HPC in Python Chapter 19

[680]

Because there are multiple processes being created, and because they will need to be
polled after all of them have been created, we create a list of processes, and append
each new process as it's created. As the process objects are being created, we're
specifying a name as well—that has no bearing or impact on the functionality, but
does make things a bit more convenient for display purposes, should it be needed in
testing:

- Keep track of the processes
processes = []
- Create and start all the processes needed
for number in range(range_start, range_end):
 process = multiprocessing.Process(
 name='factors_of-%d' % number,
 target=factors_of,
 args=(number,),
)
 processes.append(process)
 process.start()

As soon as process.start() is called for each process, it launches and runs in the
background until it's complete. The individual processes don't terminate once they're
complete, though: that happens when process.join() is called and the process that
has been joined has completed. Since we want all of the processes to start executing
before joining to any of them (which blocks the continuation of the loop), we handle
all of the joins separately—which also gives every process that has started some time
to run until they're complete:

- Iterate over the entire process-set, and use join() to connect
and wait for them
for process in processes:
 process.join()

The output from this test script on the same machine that the previous script was run
on, and with the same programs running in the background, shows some significant
improvement in the raw runtime:

Multiprocessing and HPC in Python Chapter 19

[681]

This is an improvement, even without any sort of orchestration driving it other than
whatever is managed by the underlying OS (it just throws the same 1,000 numbers at
Process instances that call the factors_of function): the total runtime is about 55%
of the time that the serial processing took.

Why only 55%? Why not 25%, or at least close to that? Without some
sort of orchestration to control how many processes were being run,
this created a 1,000 processes, with all the attendant overhead at the
operating system level, and had to give time to each of them in turn,
so there was a lot of context shifting going on. A more carefully
tuned orchestration process should be able to reduce that runtime
more, but might not reduce it by much.

The next step toward a useful multiprocessing solution would be to actually be able
to retrieve the results of the child process operations. In order to provide some
visibility into what's actually happening, we're going to print several items through
the process as well. We'll also randomize the sequence of test numbers so that each
run will execute them in a different order, which will (often) show how the processes
are interwoven:

#!/usr/bin/env python
"""multiprocessing_tests.py
Also prints several bits of information as it runs, but those
can be removed once their purpose has been served
"""

import multiprocessing
import random
- If we want to simulate longer run-times later for some reason,
this will need to be uncommented
import time

from datetime import datetime

We're going to use TEST_NUMBERS we set up earlier, and randomly arrange them into
a list:

- Use the small, fixed set of numbers to test with:
from factors import TEST_NUMBERS
- Randomize the sequence of numbers
TEST_NUMBERS.sort(key=lambda i:random.randrange(1,1000000))

Multiprocessing and HPC in Python Chapter 19

[682]

In order to actually capture the results, we'll need somewhere that they can be sent
when they are calculated: an instance of multiprocessing.Queue:

queue = multiprocessing.Queue()

The resultant queue object, as noted earlier, lives in memory that is shared by and
accessible to the top-level process (the multiprocessing_tests.py script) and by
all of the child Process objects' processes when they execute.

Since we're going to be storing results in the queue object as they are calculated, we
need to modify the factors_of function to handle that. We'll also add in some
print() calls to display when the function is called, and when it's done with its
work:

def factors_of(number:(int)) -> (list):
 """
Returns a list of factors of the provided number:
All integer-values (x) between 2 and number/2 where number % x == 0
"""
 print(
 '==> [%s] factors_of(%d) called' %
 (datetime.now().strftime('%H:%M:%S.%f'), number)
)

The type and value checking remains unchanged:

 if type(number) != int:
 raise TypeError(
 'factors_of expects a positive integer value, but was
passed '
 '"%s" (%s)' % (number, type(number).__name__)
)
 if number < 1:
 raise ValueError(
 'factors_of expects a positive integer value, but was
passed '
 '"%s" (%s)' % (number, type(number).__name__)
)
- If we want to simulate longer run-times later for some reason,
this will need to be uncommented
time.sleep(10)

Multiprocessing and HPC in Python Chapter 19

[683]

The actual calculation of the factors of number remains unchanged, though we're
assigning the results to a variable instead of returning them so that we can deal with
them differently as the function completes:

 factors = [
 x for x in range(2, int(number/2) + 1)
 if number % x == 0
]
 print(
 '<== [%s] factors_of(%d) complete' %
 (datetime.now().strftime('%H:%M:%S.%f'), number)
)

Instead of returning the calculated values, we're going to use queue.put() to add
them to the results that queue is keeping track of. The queue object doesn't
particularly care what data gets added to it—any object will be accepted—but for
consistency's sake, and to assure that each result that gets sent back has both the
number and the factors of that number, we'll put a tuple with both of those values:

 queue.put((number, factors))

With all of that prepared, we can start the main body of the test script:

print(
 '# Execution of %s, using all available CPU capacity (%d)' %
 (__file__, multiprocessing.cpu_count())
)
print('='*80)
print()

We need to keep track of the starting time for the calculation of the runtime later:

start_time = time.time()

Creating and starting the processes that call factors_of is the same basic structure
that we used earlier:

processes = []
for number in TEST_NUMBERS:
 # - Thread has been created, but not started yet
 process = multiprocessing.Process(
 name='factors_of-%d' % number,
 target=factors_of,
 args=(number,),
)
 # - Keeping track of the individual threads
 processes.append(process)

Multiprocessing and HPC in Python Chapter 19

[684]

 # - Starting the current thread
 process.start()

At this point, we have a set of started but possibly incomplete child processes running
in the background. If the first few that were created and started were for the smaller
numbers, they may have already completed, and are just waiting for a join() to
finish their execution and terminate. If, on the other hand, one of the larger numbers
was the first to be executed against, that first child process may well still be running
for some time, while the others, with shorter individual runtimes, may be idling in
the background, waiting for a join(). In any event, we can simply iterate over the
list of process items, and join() each one in turn until they're all done:

for process in processes:
 print(
 '*** [%s] Joining %s process' %
 (datetime.now().strftime('%H:%M:%S.%f'), process.name)
)
 process.join()

Once all of the join() calls have completed, the queue will have all of the results for
all of the numbers, in an arbitrary order. The heavy lifting of the child processes is all
complete, so we can calculate the final runtime and show the relevant information:

- Determine the total length of time the process took to execute
run_time = time.time() - start_time
- Show the relevant data
print('='*80)
print(
 '%d factor_of iterations executed in %0.6f seconds' %
 (len(TEST_NUMBERS), run_time)
)
print(
 'Average time per iteration was %0.6f seconds' %
 (run_time/len(TEST_NUMBERS))
)

Actually accessing the results, which in this case is just for display purposes, requires
calling the get method of the queue object—each get call fetches and removes one
item that was put into the queue earlier, and for now we can simply print
queue.get() until the queue is empty:

print('='*80)
print('results:')
while not queue.empty():
 print(queue.get())

Multiprocessing and HPC in Python Chapter 19

[685]

There are several noteworthy items that appear in the results of the test run, as shown
in the following screenshot:

Multiprocessing and HPC in Python Chapter 19

[686]

All of the lines that begin with ==> show where the calls to the factors_of function
occurred during the run. Unsurprisingly, they are all near the beginning of the
process. The lines beginning with *** show where the processes were joined—one of
which happened in the middle of a run of Process creation events. Lines beginning
with <== show where the factors_of calls were completed, after which they
remained idle until the corresponding process.join() was called.

The randomized sequence of test numbers, judging by the calls to factors_of, was
11, 101, 102, 1000000001, 16, 1000001, and 1001. The sequence of calls
completed was 11, 101, 102, 16, 1001, 1000001, and 100000000—a slightly different
sequence, and the joins sequence (and thus the sequence of the final results) was
slightly different from that as well. All of these confirm that the various processes
were starting, executing, and completing independently of the main process (the for
number in TEST_NUMBERS loop).

With the Queue instance in place, and a way established for accessing the results of
the child processes, that's everything really needed for basic local multiprocess-based
parallelization. There are a few things that could be tweaked or enhanced, if there
were functional needs for them:

If throttling of the number of active child processes were needed, or any
finer control over how or when they were created, started, and joined, a
more structured Orchestrator of some sort could be constructed:

The number of processes allowed could be limited based on
the number of available CPUs on the machine, which can be
retrieved with multiprocessing.cpu_count().

Regardless of how the number of processes allowed was
determined, limiting the number of active processes could be
managed in several ways, including a Queue for pending
requests, another for results, and a third for requests that
were ready to be joined. Overriding each Queue object's put
so that it would check the other queues' status, and trigger
whatever actions/code was appropriate in those other
queues, could allow a single queue to control the entire
process.

Multiprocessing and HPC in Python Chapter 19

[687]

Orchestration functionality could, itself, be wrapped in a Process, as could
whatever data handling was needed after the dispatch of the child process
data.

The multiprocessing module also provides other object types that might
prove useful for certain multiprocessing scenarios, including the following:

The multiprocessing.pool.Pool class—objects that
provide/control a pool of Worker processes to which jobs can
be submitted, with support for asynchronous results,
timeouts and callbacks, and more

A variety of manager-object options that provide ways to
create data that can be shared between different
processes—including sharing over a network between
processes running on different machines

Threads
Python has another local parallelization library—thread. The thread objects it
provides are created and used in much the same way that
multiprocessing.Process objects are, but thread-based processes run in the same
memory space as the parent process, while Process objects, when they are started,
actually create a new Python interpreter instance (with some connection capabilities
to the parent Python interpreter).

Because threads run in the same interpreter and memory space, they are not capable
of accessing multiple processors the same way that a Process can.

A thread's access to multiple CPUs on a machine is a function of the
Python interpreter that's used to run the code. The standard
interpreter that ships with Python (Cpython) and the alternative
PyPy interpreter both share this limitation. IronPython, an
interpreter that runs under/in the .NET framework, and Jython,
which runs in a Java runtime environment, do not have that
limitation.

Multiprocessing and HPC in Python Chapter 19

[688]

Thread-based parallelization is also far more likely to encounter conflicts with
Python's global interpreter lock (GIL). The GIL actively prevents multiple threads
from executing or altering the same Python bytecode at the same time. There are
some potentially long-running processes that happen outside the GIL's control—I/O,
networking, some image processing functionality, and various libraries such as
NumPy—but outside those exceptions, any multithreaded Python program that
spends a lot of its execution time interpreting or manipulating Python bytecode will
eventually hit a GIL bottleneck, losing its parallelization in the process.

More information about the GIL, why it exists, what it does, and so
on, can be found on the Python wiki at https:/ / wiki. python. org/
moin/ GlobalInterpreterLock.

Parallelizing across multiple machines
Another common parallelization strategy is to spread the workload of computational
processes across multiple machines (physical or virtual). Where local parallelization is
limited, ultimately, by the number of CPUs, or the number of cores, or the
combination of both on a single machine, machine-level parallelization is limited by
the number of machines that can be thrown at a problem. In this day and age, with
immense reservoirs of virtual machines able to be made available in public clouds
and private data centers, it's relatively easy to scale the number of available machines
to match the computational needs of a problem.

The basic design for this kind of horizontally scalable solution is more complicated
than the design for a local solution—it has to accomplish the same tasks, but separate
the ability to do those tasks so that they can be made available on any number of
machines, and provide mechanisms for executing processes and accepting the results
from the remote tasks as they complete. In order to be reasonably fault-tolerant, there
also needs to be more visibility into the status of the remote process machines, and
those, in turn, have to be proactive about sending notifications to the central
controller when something occurs that will disrupt their ability to do their jobs. A
typical logical architecture, at a high level, looks like this:

https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

Multiprocessing and HPC in Python Chapter 19

[689]

Where:

The Orchestrator is a process running on one machine that is responsible
for taking bits of the Process dataset, and sending them to the next
available Worker.
It also keeps track of what Worker nodes are available, and probably what
each Worker's capacity is.
In order to accomplish that, the Orchestrator would have to be capable of
registering and unregistering Worker nodes.
The Orchestrator should probably also keep track of the general
health/availability of each of its Worker nodes, and be able to associate
tasks with those nodes—if one becomes unavailable, and still has pending
tasks, it can then reassign those tasks to other, available Worker nodes.
Each Worker node is a process running on an individual machine that,
while running, accepts process instructions in incoming message items,
executes the process(es) necessary to generate the results, and sends a
results message to the Dispatcher when complete.
Each Worker node would also have to announce to the Orchestrator when
it becomes available, in order to be registered, and when it is shutting
down normally so that the Orchestrator could unregister it accordingly.

Multiprocessing and HPC in Python Chapter 19

[690]

If processing an incoming message wasn't possible because of an error, a
Worker should also be able to relay that information back to the
Orchestrator, allowing it to reassign the task to another Worker when it
can.
The Dispatcher is a process running on one machine that is responsible for
accepting result message data, and doing whatever needs to be done with
it—storing it in a database, writing it to a file, and so on. The Dispatcher
could, conceivably, be the same machine, or even the same process as the
Orchestrator—so long as dispatch-related message items get handled
appropriately and without bogging down the orchestration processes,
where it lives is a matter of preference.

The basic structure of this kind of system could be implemented with the code that
was already shown in Chapter 16, The Artisan Gateway Service:

The Orchestrator and Worker nodes could be implemented as a daemon,
similar to ArtisanGatewayDaemon. If it were determined that the
Dispatcher needed to be independent, it, too, could be a similar daemon.
The messaging between them could be handled with a variant of
DaemonMessage objects, providing the same signed message security,
transmitted over a RabbitMQ message system.
That message transmission process could leverage the RabbitMQSender
class that was already defined (also from Chapter 16, The Artisan Gateway
Service).

A complete implementation of this approach is outside the scope of this book, but the
critical aspects of it can be examined in enough detail to write an implementation if
the reader so desires.

Common functionality
The existing DaemonMessage class would need to be altered or overridden to accept
different operations at the Orchestrator, Worker, and Dispatcher levels, creating new
namedtuple constants that are applicable for each. Initially, the Worker node would
only be concerned with accepting calls to its factors_of method, and its allowed
operations would reflect this:

WORKER_OPERATIONS = namedtuple(
 'WORKER_OPERATIONS', ['factors_of',]
)
(

Multiprocessing and HPC in Python Chapter 19

[691]

 factors_of='factors_of',
)

The corresponding change to the setter method for the operation property could use
the appropriate namedtuple constant to control accepted values (for example,
replacing _OPERATIONS with WORKER_OPERATIONS, in some fashion, for a Worker
node's implementation):

 def _set_operation(self, value:str) -> None:
- Other operations would need to be added
 if not value in _OPERATIONS:
 raise ValueError(
 '%s.operation expects a string value (one of '
 '"%s"), but was passed "%s" (%s)' %
 (
 self.__class__.__name__,
 '", "'.join(_OPERATIONS._fields),
 value, type(value).__name__
)
)
 self._operation = value

Similarly, all three components would potentially need to know about all the possible
origin values, in order to be able to assign message origins appropriately:

MESSAGE_ORIGINS = namedtuple(
 'MESSAGE_ORIGINS', ['orchestrator', 'worker', 'dispatcher']
)
(
 orchestrator='orchestrator',
 worker='worker',
 dispatcher='dispatcher',
)

The main method of any of the individual daemons would remain essentially
unchanged from how ArtisanGatewayDaemon implemented it.

In this approach, there are only a few distinct variations of a few class members for
each of the daemon classes (Worker Node, Orchestrator, and Dispatcher), but they are
worth noting because of their distinct nature. The bulk of the differences is in the
_handle_message methods of each daemon class, and each would have to
implement its own instance methods for the operations they map process requests to
as well.

Multiprocessing and HPC in Python Chapter 19

[692]

The Worker nodes
All of the operations that were defined in the previous section for a hypothetical
Worker daemon would have to be handled in the class' _handle_message
method—to start with, that's nothing more than the factors_of method:

 def _handle_message(self, message:(DaemonMessage,)) -> None:
 self.info(
 '%s._handle_message called:' % self.__class__.__name__
)
 target = message.data.get('target')
 self.debug('+- target (%s) %s' % (
 type(target).__name__, target)
)
 self.debug('+- operation (%s) %s' % (
 type(message.operation).__name__, message.operation)
)
 if message.operation == WORKER_OPERATIONS.factors_of:
 self.factors_of(message)
 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'operation' %
 (
 self.__class__.__name__, message.operation,
 type(message.operation).__name__
)
)

The implementation of the factors_of method would not be substantially different
from the original factors_of function, as defined at the beginning of this chapter,
except that it would have to send a results message to the Dispatcher's message queue
rather than returning a value:

 def factors_of(self, number):

 # ... code that generates the results

 # - Assuming that the configuration for RabbitMQSender
 # is handled elsewhere, we can just get a new instance
 sender = RabbitMQSender()
 outbound_message = DaemonMessage(
 operation=dispatch_results,
 origin=MESSAGE_ORIGINS.worker,
 data={
 'number':number,
 'factors':factors,

Multiprocessing and HPC in Python Chapter 19

[693]

 },
 signing_key=self.signing_key
)
 sender.send_message(outbound_message, self.dispatcher_queue)

The Worker node daemons, which need to notify the Orchestrator when they become
available and are becoming unavailable, can do so in their preflight and cleanup
methods, respectively:

def preflight(self):
 """
Sends a message to the orchestrator to indicate that the instance is
no longer available
"""
 # - Assuming that the configuration for RabbitMQSender
 # is handled elsewhere, we can just get a new instance
 sender = RabbitMQSender()
 outbound_message = DaemonMessage(
 operation=ORCHESTRATOR_OPERATIONS.register_worker,
 origin=MESSAGE_ORIGINS.worker,
 data={
 'worker_id':self.worker_id,
 'max_capacity':1,
 },
 signing_key=self.signing_key
)
 sender.send_message(outbound_message, self.orchestrator_queue)

def cleanup(self):
 """
Sends a message to the orchestrator to indicate that the instance is
no longer available
"""
 # - Assuming that the configuration for RabbitMQSender
 # is handled elsewhere, we can just get a new instance
 sender = RabbitMQSender()
 outbound_message = DaemonMessage(
 operation=DISPATCH_OPERATIONS.unregister_worker,
 origin=MESSAGE_ORIGINS.worker,
 data={
 'worker_id':self.worker_id,
 },
 signing_key=self.signing_key
)
 sender.send_message(outbound_message, self.orchestrator_queue)

Multiprocessing and HPC in Python Chapter 19

[694]

They would also have to implement the dispatcher_queue, worker_id, and
orchestrator_queue properties that these methods use, providing a unique
identifier of the worker node (which could be as simple as a random UUID) and the
common Orchestrator and Dispatcher queue names (probably from a configuration
file that's common to all Worker instances).

The Orchestrator
The Orchestrator would be concerned with registration, unregistration, and pulse
operations (allowing the Workers to send messages to the Orchestrator, essentially
saying "I'm still alive"):

ORCHESTRATOR_OPERATIONS = namedtuple(
 'ORCHESTRATOR_OPERATIONS', [
 'register_worker', 'unregister_worker', 'worker_pulse'
]
)
(
 register_worker='register_worker',
 unregister_worker='unregister_worker',
 worker_pulse='worker_pulse',
)

The Orchestrator's _handle_message would have to map each operation to the
appropriate method:

 def _handle_message(self, message:(DaemonMessage,)) -> None:
 self.info(
 '%s._handle_message called:' % self.__class__.__name__
)

 # ...

 if message.operation ==
ORCHESTRATOR_OPERATIONS.register_worker:
 self.register_worker(message)
 elif message.operation ==
ORCHESTRATOR_OPERATIONS.unregister_worker:
 self.unregister_worker(message)
 elif message.operation ==
ORCHESTRATOR_OPERATIONS.worker_pulse:
 self.worker_pulse(message)
 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '

Multiprocessing and HPC in Python Chapter 19

[695]

 'operation' %
 (
 self.__class__.__name__, message.operation,
 type(message.operation).__name__
)
)

The Dispatcher
Initially, the Dispatcher, if it were an independent process and not folded into the
Orchestrator, would be concerned with dispatch result operations only:

DISPATCH_OPERATIONS = namedtuple(
 'DISPATCH_OPERATIONS', ['dispatch_results',]
)
(
 dispatch_results='dispatch_results',
)

Its _handle_message method would be constructed accordingly:

 def _handle_message(self, message:(DaemonMessage,)) -> None:
 self.info(
 '%s._handle_message called:' % self.__class__.__name__
)

 # ...

 if message.operation == DISPATCH_OPERATIONS.dispatch_results:
 self.dispatch_results(message)
 else:
 raise RuntimeError(
 '%s error: "%s" (%s) is not a recognized '
 'operation' %
 (
 self.__class__.__name__, message.operation,
 type(message.operation).__name__
)
)

Multiprocessing and HPC in Python Chapter 19

[696]

Integrating Python with large-scale,
cluster computing frameworks
Large-scale, cluster computing frameworks, in order to provide as much
compatibility with custom written operations as possible, will probably accept input
in only two different ways: as command-line arguments, or using standard input,
with the latter being more common for systems that are targeted for big data
operations. In either case, what's needed to allow a custom process to be executed at
and scaled to a clustered environment is a self-contained, command-line executable
that usually returns its data to standard output.

A minimal script that accepts standard input—whether by passing data into it with a
pipe, or by reading the contents of a file and using that—could be implemented like
this:

#!/usr/bin/env python
"""factors_stdin.py

A command-line-ready script that allows factors_of to be called with

> {incoming list of numbers} | python factors_stdin.py

which executes factors_of against the provided numbers and prints the
result FOR EACH NUMBER in the format

number:[factors-of-number]
"""

Standard input is available through Python's sys module as sys.stdin. It's a file-
like object, and can be both read and iterated over on a line-by-line basis:

from sys import stdin

The factors_of function should probably be included directly in the script code, if
only so that the entire script is totally self-contained, and won't require any custom
software installation to be usable. For the sake of keeping the code shorter and easier
to walk through, though, we'll just import it:

from factors import factors_of

Multiprocessing and HPC in Python Chapter 19

[697]

If the script is executed directly—python factors_stdin.py—then we'll actually
execute the process, starting with acquiring all of the numbers from stdin. They may
come in as multiple lines, each of which could have multiple numbers, so the first
step is to extract all of them so that we end up with one list of numbers to process:

if __name__ == '__main__':
 # - Create a list of stdin lines - multi-line input is
 # common enough that it needs to be handled
 lines = [line.strip() for line in stdin]
 # - We need the numbers as individual values, though, so
 # build a list of them that we'll actually execute against
 numbers = []
 for line in lines:
 numbers += [n for n in line.split(' ') if n]

With all of the numbers ready, we can iterate over them, convert each value from the
string value that was in the input into an actual int, and process them. If a value in
the input can't be converted to an int, we'll simply skip it for now, though
depending on the calling cluster framework, there may be specific ways to
handle—or at least log—any bad values as errors:

 for number in numbers:
 try:
 number = int(number)
 except Exception as error:
 pass
 else:
 # - We've got the number, so execute the function and
 # print the results
 print('%d:%s' % (number, factors_of(number)))

The script can be tested by echoing a list of numbers, and piping that into python
factors_stdin.py. The results are printed, one result per line, which would be
accepted by a calling program as standard output, ready to be passed to some other
process that accepted standard input:

Multiprocessing and HPC in Python Chapter 19

[698]

If the source numbers are in a file (hugos_numbers.txt, in the chapter code), those
can be used just as easily, and generate the same results:

If the cluster environment expects command-line arguments to be passed, a script can
be written to accommodate that as well. It starts with much the same code:

#!/usr/bin/env python
"""factors_cli.py

A command-line-ready script that allows factors_of to be called with

> python factors_cli.py number [number [number]] ...

which executes factors_of against the provided numbers and
prints the results for each in the format

number:[factors-of-number]
"""

from factors import factors_of
from sys import argv

Where it deviates is in acquiring the numbers to be processed. Since they are passed
as command-line values, they will be part of the argv list (another item provided by
Python's sys module), after the script name. The balance of this process is identical to
the stdin based script:

if __name__ == '__main__':
 # - Get the numbers from the arguments
 numbers = argv[1:]
 for number in numbers:
 try:
 number = int(number)
 except Exception as error:
 # - Errors should probably be logged in some fashion,
 # but the specifics may well vary across different
 # systems, so for now we'll just pass, skipping anything
 # that can't be handled.

Multiprocessing and HPC in Python Chapter 19

[699]

 pass
 else:
 # - We've got the number, so execute the function and
 # print the results
 print('%d:%s' % (number, factors_of(number)))

The output, as with the previous script, is simply printed to the console, and would
be accepted as standard input by any other processes that it was handed off to:

Python, Hadoop, and Spark
It's likely that the most common or popular of the large-scale, cluster computing
frameworks available is Hadoop. Hadoop is a collection of software that provides
cluster computing capabilities across networked computers, as well as a distributed
storage mechanism that can be thought of as a network-accessible filesystem.

Among the utilities it provides is Hadoop Streaming (https:/ /hadoop. apache. org/
docs/r1.2.1/ streaming. html), which allows for the creation and execution of
Map/Reduce jobs using any executable or script as a mapper and/or reducer.
Hadoop's operational model, at least for processes that can use Streaming, is file-
centric, so processes written in Python and executed under Hadoop will tend to fall
into the stdin based category that we discussed earlier more often than not.

Apache Spark is another option in the large-scale, cluster computing frameworks
arena. Spark is a distributed, general-purpose framework, and has a Python API
(pyspark, http:/ /spark. apache. org/ docs/ 2.2.0/ api/ python/ pyspark. html)
available for installation with pip, allowing for more direct access to its capabilities.

https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html
http://spark.apache.org/docs/2.2.0/api/python/pyspark.html

Multiprocessing and HPC in Python Chapter 19

[700]

Summary
In this chapter, we have covered all of the basic permutations (serial and parallel,
local and remote/distributed) of multiprocessing in Python, as it would apply to
custom HPC operations. The basics needed for integrating a process written in
Python to be executed by a large-scale cluster computing system such as Hadoop
are quite basic—simple executable scripts—and the integration prospects with those
system are as varied as the systems themselves.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Clean Code in Python
Mariano Anaya

ISBN: 978-1-78883-583-1

Set up tools to effectively work in a development environment
Explore how the magic methods of Python can help us write better code
Examine the traits of Python to create advanced object-oriented design
Understand removal of duplicated code using decorators and descriptors
Effectively refactor code with the help of unit tests
Learn to implement the SOLID principles in Python

https://www.packtpub.com/application-development/clean-code-python

Other Books You May Enjoy

[702]

Mastering Python Design Patterns - Second Edition
Kamon Ayeva

ISBN: 978-1-78883-748-4

Explore Factory Method and Abstract Factory for object creation
Clone objects using the Prototype pattern
Make incompatible interfaces compatible using the Adapter pattern
Secure an interface using the Proxy pattern
Choose an algorithm dynamically using the Strategy pattern
Keep the logic decoupled from the UI using the MVC pattern
Leverage the Observer pattern to understand reactive programming
Explore patterns for cloud-native, microservices, and serverless
architectures

https://www.packtpub.com/application-development/mastering-python-design-patterns-second-edition

Other Books You May Enjoy

[703]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
Abstract Base Class (ABC) 591
Abstract Class 205
ACID characteristics
 atomicity 297
 consistency 297
 durability 297
 isolation 297
Address class
 unit testing 261, 264, 266, 270, 274
Agile methodology
 about 67
 Extreme Programming (XP) 67
 Feature-Driven Development (FDD) process

68

 Test-Driven Design (TDD) 69, 70
Agile process 53, 55
algorithm 676
Amazon Web Services (AWS) 36
Artisan Gateway
 backend datastore engine, picking 392, 393,

395

 goal 540
 iteration 542
 messages 543, 546
 objects 391
 objects, supporting for data persistence 398,

401, 402, 404, 407, 409, 410, 412, 415,
417

 overview 539, 541
 product, creating 588
 properties 573, 576
 queues 572, 576
 RDBMS implementations 418, 422, 424
 testing and deployment, impacts 585
Artisan object transactions
 about 602

 artisan data, updating 605, 606
 artisan, creating 604
 artisan, deleting 606
Artisan transactions
 testing 640, 643, 646, 649, 652, 655

B
BaseArtisan
 about 216, 218
 methods, implementing 231, 233, 235
 OO principles 218, 221
 properties, implementing 221, 223, 226,

228, 231
 unit testing 285, 286
BaseCustomer
 about 236, 237
 unit testing 283
BaseDaemon ABC 508, 510, 515, 519, 523
BaseDataObject
 about 320
 properties, defining 320, 321, 322, 323, 324,

325, 326, 327, 328, 330, 331, 332, 333,
334, 335, 336

 unit-testing 337, 339, 340, 341, 342, 343,
344, 345

BaseOrder
 about 237
 unit testing 281, 283
BaseProduct
 about 239, 241, 245
 unit testing 277, 280, 281
BaseRequestHandler 523, 526, 528, 531
BaseResponseFormatter ABCs 523, 526, 528,

531

best practices
 about 107
 code level standards 108

[705]

 process standards 125
build process
 about 481
 tests, integrating with 198, 199
 unit tests, integrating with 137
business objects, Central Office projects
 about 427
 CRUD operations 441
 hms_core.co_objects classes 440
 hms_core.co_objects.Artisan 427, 429, 431
 hms_core.co_objects.Product 434, 436, 438
business objects, hms_sys
 address 206, 209, 211, 213, 216
 BaseArtisan 216, 218
 BaseCustomer 236, 237
 BaseOrder 237
 BaseProduct 239, 241, 245
 HasProducts ABC 246, 250, 252
business objects
 implementing, in hms_sys 206
 iteration 202
 stories 203, 205
 tasks 203, 205

C
Central Office application
 backend datastore engine, picking 392, 393,

395

 objects 391
 objects, supporting for data persistence 398,

401, 403, 404, 407, 409, 410, 412, 415,
418

 RDBMS implementation 418, 420, 422, 424
Central Office projects
 business objects 426
 data access strategy 397, 398
classes 205
code level standards
 internal standards 112
 PEP-8 109
code reorganization 590
component projects
 analyzing 156, 157
 basic unit testing 171, 172, 173
 build process 158, 161

 method testing decorators 190
 missing test case classes, identifying 173,

175, 177
 missing test methods, identifying 177, 179,

180, 182
 packaging 158, 161
 property testing decorators 190
 Python virtual environments 164, 165, 168,

169

 reusable module code coverage tests,
creating 182, 183, 184, 187, 188

 setting up 157
 stubbing out 156
 unit test template files, creating 193, 194,

195

Concrete Class 205
configurable functions 523
considerations
 about 674
 decommissioning 485
 maintenance 485
Continuous Delivery or Deployment (CD) 78
Continuous Integration (CI) 77, 78
CRUD operations
 create 297
 delete 297
 read 297
 update 297

D
data access design strategies 310
data flow 39
data storage options
 about 297, 306, 307
 NoSQL databases 301
 relational databases 298
 selecting 307, 308
data structure 39
data-persistence functionality
 demonstrating 483
development paradigms
 about 70
 Functional programming (FP) 76
 Functional Programming (FP) 74
 Object-Oriented Programming 71, 74

[706]

development phases, SDLC
 acceptance 28
 development 28
 quality assurance 28
 requirement analysis and definition 27
 system architecture and design 27
 system integration 28
 testing 28
development practices
 about 76
 Continuous Delivery or Deployment (CD) 78
 Continuous Integration (CI) 77, 78
development tools
 about 89
 Integrated Development Environment (IDE)

90

 Source Code Management (SCM) 100, 101
distribution 481
Document Object Model (DOM) 110

E
Eclipse Platform 96
Eclipse
 support, for large Python projects 98
Extreme Programming (XP) 67

F
Feature-Driven Development (FDD) process 68
Feature-Driven Development model 85
Functional Programming (FP) 47, 74, 76

G
Geany
 about 94, 95, 96
 reference 94
generic service design
 about 506, 507
 BaseDaemon ABC 508, 510, 515, 519, 523
 BaseRequestHandler 523, 526, 528, 531
 BaseResponseFormatter ABCs 523, 526,

528, 531
Git 104, 105
Git workflow
 versus SVN workflow 105, 106
global interpreter lock (GIL)

 reference 688
Google Cloud Platform (GCP) 36

H
Hadoop Streaming
 reference 699
Hand Made Stuff (HMS) 80, 81
HasProducts ABC 246, 250, 252
HasProducts
 unit testing 274, 276, 277
high-performance computing (HPC) 673
hms_artisan project
 concrete business objects, defining 365
 data, manipulating 368, 369, 370, 371, 372,

373

 hms_artisan.Order class, creating 377, 378,
379, 380, 381, 382, 383, 384, 386, 387,
388, 389

 hms_artisan.Product class, creating 374, 376
 is_dirty property, dealing with 366, 367, 368
 setting up 348, 349
hms_artisan.data_storage
 hms_artisan.artisan_objects, testing 455,

458, 461, 465, 467
 testing 445, 448, 451, 454
hms_core class
 hms_core.data_storage.py, unit testing 472,

474, 478, 481
 testing 471
hms_sys development
 about 668
 APIs, shipping 672
 cleanup 669
 code review 669
 order fulfilment 672
 refactoring 668
hms_sys system project
 code, testing 87
 code, writing 87
 goals 80, 81
 iteration 85, 86
 post-development considerations 87
 primary goals 82, 83, 84
 use case diagram 83
hms_sys

[707]

 business objects, implementing 206
http.server module
 reference 671

I
IDLE 92, 93
Integrated Development Environment (IDE)
 about 90
 Eclipse variations + PyDev 96
 feature set criteria 90, 91
 Geany 94, 95, 96
 IDLE 92, 94
 Ninja IDE 100
 PyCharm 99
 Visual Studio Code 100
internal standards
 about 112
 class definitions 116, 119, 120
 code organization, in modules 112, 115
 hinting 122, 123
interprocess communication 41, 43
iteration
 about 85, 295, 296
 goals 86, 148

J
JSONFileDataObject
 implementing 351, 352, 353, 354, 355, 356,

357, 358, 360, 361, 362, 363, 364, 365

K
Kanban process 64, 65
Kivy
 about 671
 reference 671

L
LiClipse 97
Linux system
 execution, with systemd 664
local file system data store
 creating 349, 350, 351
local parallel processing
 about 678, 679, 680, 681, 682, 684, 685,

686

 threads 687

M
Macintosh operating system (macOS)
 used, for executing service 535
Maintenance Alert 37
MariaDB 300
Mercurial 107
message-transmission mechanism
 deciding 553, 554
messages
 sending error 622, 629
 transmitting 543, 544, 546, 548, 550, 552
Method Resolution Order (MRO) 179, 220
MongoDB 305
MS-SQL 301
multiple machines
 common functionality 690
 dispatcher 695
 orchestrator 694
 parallelizing across 688
 worker nodes 692
MySQL 300

N
named pipes 500
Ninja IDE 100
Non-Sucking Service Manager (NSSM)
 used, for executing service 533, 534
NoSQL databases
 about 301
 advantages 304
 Cassandra 306
 drawbacks 305
 MongoDB 305
 Neo4j 306
 Redis 306

O
object transactions
 preparing for 591
Object-Oriented Programming (OOP) 47, 71,

74

Open Database Connectivity (ODBC) 301

[708]

operating systems
 considerations 662
order object transactions
 about 607
 item, fulfilling 620
 order items, relaying to Artisans 609, 615
 order, canceling 618

P
package structures
 defining, for Python code 138
PEP-249 330
PEP-8
 about 109
 reference 109
Perforce Helix Core 107
polymorphism 309, 310
post-development phases, SDLC 29, 30
PostgreSQL 301
pre-development phases, SDLC
 about 20
 concept development 23
 initial concept/vision 21, 22
 project management planning 25, 26
process methodologies
 about 48, 49
 Agile process 53, 55
 Kanban process 64, 65
 Scrum methodology 56, 58, 60, 62
 Waterfall process 49, 52, 53
process standards
 about 125
 repeatable build processes 132, 135
 unit testing 126, 127, 129, 130
product object transaction
 about 594
 object, creating 594
 product data, altering 598
 product data, updating 600
 product, approving 596
 product, deleting 601
 product, listing 596
project-management planning data 85
PyCharm 99
PyGObject-based GUI 671

Python API
 reference 699
Python code
 package structures, defining for 138
Python Enhancement Proposals (PEPs) 109
Python Megawidgets
 reference 670
Python package
 decommissioning considerations 292
 distributing 288, 289, 291
 installation considerations 288, 289, 291
 maintenance 292
 operations 292
Python virtual environments
 using 141, 142, 144
Python
 and Hadoop 699
 integrating, with cluster computing

frameworks 696, 698
 reference 670

Q
Quality Assurance (QA) 291

R
RabbitMQ
 messages, handling 567, 571
 used, for message-queue implementation

555, 559, 562, 565
Refuel 37
Relational Database Management Systems

(RDBMSes)
 about 298
 advantages 299
 drawbacks 300
 MariaDB 300
 MS-SQL 301
 MySQL 300
 PostgreSQL 301
repeatable build processes 132, 135
risks 84
Route Review Alert 38, 39

[709]

S
Scrum methodology 56, 58, 60, 62
SDLC model
 Kanban process 66
 phases 63, 66
 Scrum process 63
service
 about 487
 activities, logging 496, 499
 configuration 491
 executing, with macOS 535
 executing, with NSSM 533, 534
 executing, with systemctl 531, 532, 533
 filesystem based 500, 501
 HTTP-based services 501, 502
 integrating, with OS 531
 JSON files 494
 launchctl 535
 launchd 535
 managing, on other systems 536
 message queue based 503, 504
 request formats 505
 request types 504, 505
 requests, handling 499
 response formats 505
 responses, generating 499
 structure 487, 489, 491
 web-based service 501, 502
 windows-style .ini files 492, 494
 YAML files 495, 496
Software Development Life-Cycle (SDLC)
 about 19
 development 27
 post-development phases 29, 30
 pre-development phases 20
software engineering
 about 9
 code interaction 10, 12, 15, 18
 knowledge, seeking 10, 12, 15, 18
Source Code Management (SCM)
 about 100, 101
 Git 104, 105
 Mercurial 107
 Perforce Helix Core 107

 setting up 149, 151, 152, 153, 154
 Subversion 105
 typical SCM activities 102, 103
stories
 assembling, with tasks 148
Structured Query Language (SQL) 298
Subversion 105
SVN workflow
 versus Git workflow 105, 106
system modeling
 about 32
 logical architecture 33
 physical architecture 32, 35
 scope and scale 44

T
Tabular Data Stream (TDS) 301
tasks
 stories, assembling with 148
Test-Driven Design (TDD) 69, 70
testing service
 challenges 631, 633
 demonstrating 655, 658
 deploying 660
 packaging 660
testing setup 677, 678
testing strategy
 about 634
 unit testing variations, of note 635, 638
tests
 integrating, with build process 198, 199
Tkinter
 about 670
 reference 670
TortoiseGit
 reference 105
type hinting 122
typical SCM activities 102, 103

U
UI
 developing 670
Unified Modeling Language (UML) 32
unit testing patterns
 overview 287

unit testing variation
 of note 635, 640
unit testing
 about 126, 127, 129, 130
 acceptance 291
 initiating 255, 258, 261
 measure of trust, establishing 481
unit tests
 integrating, with build process 137
 writing 445
Universally Unique Identifier (UUID)
 advantages 326
use cases 37
User Acceptance Testing 101

V
Visual Studio Code
 about 100
 reference 100

W
Waterfall process 49, 52, 53
Web Server Gateway Interface (WSGI) 502
web-service-based daemon
 requisites 578, 580
 traffic, controlling 580, 581, 582, 584
Windows execution
 Non-Sucking Service Manager (NSSM),

using 665, 668

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Programming versus Software Engineering
	The bigger picture
	Asking questions
	Summary

	Chapter 2: The Software Development Life Cycle
	Pre-development phases of the SDLC
	Initial concept/vision
	Concept development
	Project management planning

	Development – specific phases of the SDLC
	Requirements analysis and definition
	System architecture and design
	Development and quality assurance
	System integration, testing, and acceptance

	Post-development phases of the SDLC
	Summary

	Chapter 3: System Modeling
	Architecture, both logical and physical
	Logical architecture
	Physical architecture

	Use cases (business processes and rules)
	Data structure and flow
	Interprocess communication
	System scope and scale
	Summary

	Chapter 4: Methodologies, Paradigms, and Practices
	Process methodologies
	Waterfall
	Agile (in general)
	Scrum
	Scrum and the phases of the SDLC model

	Kanban
	Kanban and the phases of the SDLC model

	Other Agile methodologies
	Extreme programming
	Feature-driven development
	Test-driven design

	Development paradigms
	Object-oriented programming
	Functional programming

	Development practices
	Continuous integration
	Continuous delivery or deployment

	Summary

	Chapter 5: The hms_sys System Project
	Goals for the system
	What's known/designed before development starts
	What the iteration chapters will look like
	Iteration goals and stories
	Writing and testing the code
	Post-development considerations and impact

	Summary

	Chapter 6: Development Tools and Best Practices
	Development tools
	Integrated Development Environment (IDE) options
	IDLE
	Geany
	Eclipse variations + PyDev
	Others

	Source Code Management
	Typical SCM activities
	Git
	Subversion
	Basic workflows for Git and SVN compared
	Other SCM options

	Best practices
	Standards for code
	PEP-8
	Internal standards
	Code organization in modules
	Structure and standards for classes
	Function and method annotation (hinting)

	Process standards
	Unit testing
	Repeatable build processes
	Integrating unit tests and build processes

	Defining package structures for Python code
	Packages in a project's context

	Using Python virtual environments

	Summary

	Chapter 7: Setting Up Projects and Processes
	Iteration goals
	Assembly of stories and tasks
	Setting Up SCM
	Stubbing out component projects
	Component project analysis
	Component project setup
	Packaging and build process
	Python virtual environments

	Basic unit testing
	Identifying missing test case classes
	Identifying missing test methods
	Creating reusable module code coverage tests
	The property and method testing decorators
	Creating unit test template files

	Integrating tests with the build process
	Summary

	Chapter 8: Creating Business Objects
	Iteration goals
	Assembly of stories and tasks
	A quick review of classes
	Implementing the basic business objects in hms_sys
	Address
	BaseArtisan
	OO principles – composition over inheritance
	Implementing BaseArtisan's properties
	Implementing BaseArtisan's methods

	BaseCustomer
	BaseOrder
	BaseProduct
	Dealing with duplicated code – HasProducts

	Summary

	Chapter 9: Testing Business Objects
	Starting the unit testing process
	Unit testing the Address class
	Unit testing HasProducts
	Unit testing BaseProduct
	Unit testing BaseOrder
	Unit-testing BaseCustomer
	Unit testing BaseArtisan

	Unit testing patterns established so far
	Distribution and installation considerations
	Quality assurance and acceptance
	Operation/use, maintenance, and decommissioning considerations
	Summary

	Chapter 10: Thinking About Business Object Data Persistence
	Iterations are (somewhat) flexible
	Data storage options
	Relational databases
	Advantages and drawbacks
	MySQL/MariaDB
	MS-SQL
	PostgresQL

	NoSQL databases
	Advantages and drawbacks
	MongoDB
	Other NoSQL options

	Other data storage options

	Selecting a data storage option
	Polymorphism (and programming to an interface)
	Data access design strategies
	Data access decisions
	Why start from scratch?

	Summary

	Chapter 11: Data Persistence and BaseDataObject
	The BaseDataObject ABC
	Unit testing BaseDataObject
	Summary

	Chapter 12: Persisting Object Data to Files
	Setting up the hms_artisan project
	Creating a local file system data store
	Implementing JSONFileDataObject
	The concrete business objects of hms_artisan
	Dealing with is_dirty and properties
	hms_artisan.Artisan
	hms_artisan.Product
	hms_artisan.Order

	Summary

	Chapter 13: Persisting Data to a Database
	The Artisan Gateway and Central Office application objects
	Picking out a backend datastore engine
	The data access strategy for the Central Office projects
	Supporting objects for data persistence
	RDBMS implementations

	The concrete business objects of the Central Office projects
	hms_core.co_objects.Artisan
	hms_core.co_objects.Product
	Other hms_core.co_objects classes
	Accounting for the other CRUD operations

	Summary

	Chapter 14: Testing Data Persistence
	Writing the unit tests
	Testing hms_artisan.data_storage
	Testing hms_artisan.artisan_objects

	Testing the new hms_core Classes
	Unit testing hms_core.data_storage.py
	Unit testing hms_core.co_objects.py

	Unit tests and trust
	Building/distribution, demonstration, and acceptance
	Operations/use, maintenance, and decommissioning considerations
	Summary

	Chapter 15: Anatomy of a Service
	What is a service?
	Service structure
	Configuration
	Windows-style .ini files
	JSON files
	YAML files

	Logging service activities
	Handling requests and generating responses
	Filesystem – based
	HTTP- or web-based
	Message- queue-based
	Other request types
	Request and response formats

	A generic service design
	The BaseDaemon ABC
	The BaseRequestHandler and BaseResponseFormatter ABCs

	Integrating a service with the OS
	Running a service using systemctl (Linux)
	Running a service using NSSM (Windows)
	macOS, launchd, and launchctl
	Managing services on other systems

	Summary

	Chapter 16: The Artisan Gateway Service
	Overview and goal
	Iteration stories
	Messages
	Deciding on a message-transmission mechanism
	Message-queue implementation with RabbitMQ
	Handling messages
	Queues and related Artisan properties
	Requirements for a web-service-based daemon

	Traffic to and from the service
	Impacts on testing and deployment
	Summary

	Chapter 17: Handling Service Transactions
	Remaining stories
	A bit of reorganization
	Preparation for object transactions
	Product object transactions
	Artisan – creating a product
	Central Office – approving/listing a product
	Central Office – altering product data
	Artisan – updating product data
	Artisan – deleting a product

	Artisan object transactions
	Central Office – creating an artisan
	Central Office – updating artisan data
	Central Office – deleting an artisan
	Artisan – updating Artisan data

	Order object transactions
	Customer – relaying order items to artisans
	Customer – canceling an order
	Artisan – fulfilling an item in an order

	When do messages get sent?
	Summary

	Chapter 18: Testing and Deploying Services
	The challenges of testing services
	The overall testing strategy
	Unit testing variations of note
	Testing Artisan transactions

	Demonstrating the service
	Packaging and deploying the service
	Common considerations across all operating systems
	Linux (systemd) execution
	Windows (NSSM) execution

	Where hms_sys development could go from here
	Code review, refactoring, and cleanup
	Developing a UI
	Order fulfilment and shipping APIs

	Summary

	Chapter 19: Multiprocessing and HPC in Python
	Common factors to consider
	A simple but expensive algorithm
	Some testing setup

	Local parallel processing
	Threads

	Parallelizing across multiple machines
	Common functionality
	The Worker nodes
	The Orchestrator
	The Dispatcher

	Integrating Python with large-scale, cluster computing frameworks
	Python, Hadoop, and Spark

	Summary

	Other Books You May Enjoy
	Index

