Solutions to Practice Problems

Exercise 4.12

Prove that the sequence $\{\cos (n \pi)\}_{n=1}^{\infty}$ is divergent.

Solution.

Note that $\{\cos (n \pi)\}_{n=1}^{\infty}=\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ and by Exercise 4.4, this sequence is divergent

Exercise 4.13

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be the sequence defined by $a_{n}=n$ for all $n \in \mathbb{N}$. Explain why the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ does not converge to any limit.

Solution.

The sequence is unbounded

Exercise 4.14

(a) Show that for all $n \in \mathbb{N}$ we have

$$
\frac{n!}{n^{n}} \leq \frac{1}{n}
$$

(b) Show that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n}=\frac{n!}{n^{n}}$ is convergent and find its limit.

Solution.

(a) We know that $\frac{n-i}{n} \leq 1$ for all $0 \leq i \leq n-1$. Thus, $\frac{n!}{n^{n}}=\frac{n(n-1)(n-2) \cdots 2 \cdot 1}{n \cdot n \cdots n}=$ $\frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{2}{n} \cdot \frac{1}{n} \leq \frac{1}{n}$.
(b) By the Squeeze rule we find that $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$

Exercise 4.15

Using only the definition of convergence show that

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n}-5001}{\sqrt[3]{n}-1001}=1
$$

Solution.

Let $\epsilon>0$. We want to find a positive integer N such that if $n \geq N$ then

$$
\left|\frac{\sqrt[3]{n}-5001}{\sqrt[3]{n}-1001}-1\right|<\epsilon
$$

or

$$
\left|\frac{-4001}{\sqrt[3]{n}-1001}\right|<\epsilon
$$

Let $n>1001^{3}$. Then $\sqrt[3]{n}-1001>0$ so that the previous inequality becomes

$$
\frac{4001}{\sqrt[3]{n}-1001}<\epsilon
$$

Solving this for n we find

$$
n>\left(\frac{4001}{\epsilon}+1001\right)^{3}
$$

Let N be a positive integer greater than $\left(\frac{4001}{\epsilon}+1001\right)^{3}$. Then for $n \geq N$ we have

$$
\left|\frac{\sqrt[3]{n}-5001}{\sqrt[3]{n}-1001}-1\right|<\epsilon
$$

Exercise 4.16
Consider the sequence defined recursively by $a_{1}=1$ and $a_{n+1}=\sqrt{2+a_{n}}$ for all $n \in \mathbb{N}$. Show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded. Hint: Exercise 1.14.

Solution.

The proof is by induction on n. For $n=1$ we have $a_{1}=1 \leq 2$. Suppose that $a_{n} \leq 2$. Then $a_{n+1}=\sqrt{2+a_{n}} \leq \sqrt{2+2}=2$

Exercise 4.17

Calculate $\lim _{n \rightarrow \infty} \frac{\left(n^{2}+1\right) \cos n}{n^{3}}$ by using the squeeze rule.

Solution.

We have

$$
-\frac{n^{2}+1}{n^{3}} \leq \frac{\left(n^{2}+1\right) \cos n}{n^{3}} \leq \frac{n^{2}+1}{n^{3}} .
$$

By the Squeeze rule we conclude that the limit is 0

Exercise 4.18

Calculate $\lim _{n \rightarrow \infty} \frac{2(-1)^{n+3}}{\sqrt{n}}$ by using the squeeze rule.

Solution.

We have

$$
-\frac{2}{\sqrt{n}} \leq \frac{2(-1)^{n+3}}{\sqrt{n}} \leq \frac{2}{\sqrt{n}}
$$

By the Squeeze rule the limit is 0

Exercise 4.19

Suppose that $\lim _{n \rightarrow \infty} a_{n}=L$ with $L>0$. Show that there is a positive integer N such that $2 a_{N}>L$.

Solution.

Let $\epsilon=\frac{L}{2}$. Then there is a positive integer N such that if $n \geq N$ we have $\left|a_{n}-L\right|<\frac{L}{2}$. Thus, $\left|a_{N}-L\right|<\frac{L}{2}$ or $-\frac{L}{2}<a_{N}-L<\frac{L}{2}$. Hence, $a_{N}>\frac{L}{2}$ or $2 a_{N}>L$

Exercise 4.20

Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. Clearly, $a<a+\frac{1}{n}$.
(a) Show that there is $a_{n} \in \mathbb{Q}$ such that $a<a_{n}<a+\frac{1}{n}$.
(b) Show that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a.

We have proved that if a is a real number then there is a sequence of rational numbers converging to a. We say that the set \mathbb{Q} is dense in \mathbb{R}.

Solution.

(a) This follows from Exercise 3.6(c).
(b) Applying the Squeeze rule, we obtain $\lim _{n \rightarrow \infty} a_{n}=a$

Exercise 4.21

Consider the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n}=\alpha$ for all $n \in \mathbb{N}$. Use the definition of convergence to show that $\lim _{n \rightarrow \infty} a_{n}=\alpha$.

Solution.

Let $\epsilon>0$ be given. Let N be any positive integer. Then for $n \geq N$ we have $\left|a_{n}-\alpha\right|=|\alpha-\alpha|=0<\epsilon$

Exercise 4.22

Suppose that $\lim _{n \rightarrow \infty} a_{n}=L$. For each $n \in \mathbb{N}$ let $b_{n}=\frac{a_{n}+a_{n+1}}{2}$. Show that $\lim _{n \rightarrow \infty} b_{n}=L$.

Solution.

Let $\epsilon>0$ be given. There is a positive integer N such that $\left|a_{n}-L\right|<\epsilon$ for all $n \geq N$. Since $n+1 \geq N+1 \geq N$ we have $\left|a_{n+1}-L\right|<\epsilon$. Hence, for all $n \geq N$ we have

$$
\left|b_{n}-L\right|=\left|\frac{a_{n}-L}{2}+\frac{a_{n+1}-L}{2}\right| \leq\left|\frac{a_{n}-L}{2}\right|+\left|\frac{a_{n+1}-L}{2}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

This shows that $\lim _{n \rightarrow \infty} b_{n}=L$

Exercise 4.23

(a) Show that if $\lim _{n \rightarrow \infty} a_{n}=L$ then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|L|$.
(b) Give an example of a sequence where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is divergent but $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ is convergent.

Solution.

(a) Let $\epsilon>0$ be given. Then there is a positive integer N such that $\left|a_{n}-L\right|<$ ϵ for all $n \geq N$. Thus,

$$
\left|\left|a_{n}\right|-|L|\right| \leq\left|a_{n}-L\right|<\epsilon
$$

for all $n \geq N$. This shows that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|L|$.
(b) The sequence $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ is divergent but $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}=\{1,1,1, \cdots\}$ is convergent with limit 1

Exercise 4.24

Show that if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.

Solution.

This follows from $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$ and the squeeze rule

Exercise 4.25

Let $a=\sup A$. Show that there is a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset A$ such that $\lim _{n \rightarrow \infty} a_{n}=a$. Hint: Exercise 3.12.

Solution.

By Exercise 3.12, for each $n \in \mathbb{N}$ we can find $a_{n} \in A$ such that $0 \leq a-a_{n}<\frac{1}{n}$. Now the result follows by applying the squeeze rule

Exercise 4.26

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $\left|a_{m}-a_{n}\right| \leq \frac{1}{|m-n|}$ for all $m \neq n$. Show that $a_{1}=a_{2}=a_{3}=\cdots$.

Solution.

Fix $m \in \mathbb{N}$. Let $\epsilon>0$ be given. Since $\lim _{n \rightarrow \infty} \frac{1}{m-n}=0$, we can find a positive integer N such that $\frac{1}{|m-n|}<\epsilon$ for all $n \geq N$. Thus, for $n \geq N$ we have $\left|a_{n}-a_{m}\right|<\epsilon$. This shows that $\lim _{n \rightarrow \infty} a_{n}=a_{m}$. Since the limit of a sequence is unique and the sequence converges to each of its term, we must have that all the terms are equal

