
Solutions to Practice Problems

Exercise 4.12
Prove that the sequence {cos (nπ)}∞n=1 is divergent.

Solution.
Note that {cos (nπ)}∞n=1 = {(−1)n}∞n=1 and by Exercise 4.4, this sequence is
divergent

Exercise 4.13
Let {an}∞n=1 be the sequence defined by an = n for all n ∈ N. Explain why
the sequence {an}∞n=1 does not converge to any limit.

Solution.
The sequence is unbounded

Exercise 4.14
(a) Show that for all n ∈ N we have

n!

nn
≤ 1

n
.

(b) Show that the sequence {an}∞n=1 where an = n!
nn is convergent and find

its limit.

Solution.
(a) We know that n−i

n
≤ 1 for all 0 ≤ i ≤ n− 1. Thus, n!

nn = n(n−1)(n−2)···2·1
n·n···n =

n
n
· n−1

n
· n−2

n
· · · 2

n
· 1
n
≤ 1

n
.

(b) By the Squeeze rule we find that limn→∞
n!
nn = 0

Exercise 4.15
Using only the definition of convergence show that

lim
n→∞

3
√
n− 5001

3
√
n− 1001

= 1.

Solution.
Let ε > 0. We want to find a positive integer N such that if n ≥ N then∣∣∣∣ 3

√
n− 5001

3
√
n− 1001

− 1

∣∣∣∣ < ε
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or ∣∣∣∣ −4001
3
√
n− 1001

∣∣∣∣ < ε.

Let n > 10013. Then 3
√
n−1001 > 0 so that the previous inequality becomes

4001
3
√
n− 1001

< ε.

Solving this for n we find

n >

(
4001

ε
+ 1001

)3

.

Let N be a positive integer greater than
(

4001
ε

+ 1001
)3
. Then for n ≥ N we

have ∣∣∣∣ 3
√
n− 5001

3
√
n− 1001

− 1

∣∣∣∣ < ε

Exercise 4.16
Consider the sequence defined recursively by a1 = 1 and an+1 =

√
2 + an for

all n ∈ N. Show that {an}∞n=1 is bounded. Hint: Exercise 1.14.

Solution.
The proof is by induction on n. For n = 1 we have a1 = 1 ≤ 2. Suppose that
an ≤ 2. Then an+1 =

√
2 + an ≤

√
2 + 2 = 2

Exercise 4.17
Calculate limn→∞

(n2+1) cosn
n3 by using the squeeze rule.

Solution.
We have

−n
2 + 1

n3
≤ (n2 + 1) cosn

n3
≤ n2 + 1

n3
.

By the Squeeze rule we conclude that the limit is 0

Exercise 4.18
Calculate limn→∞

2(−1)n+3
√
n

by using the squeeze rule.
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Solution.
We have

− 2√
n
≤ 2(−1)n+3

√
n

≤ 2√
n
.

By the Squeeze rule the limit is 0

Exercise 4.19
Suppose that limn→∞ an = L with L > 0. Show that there is a positive
integer N such that 2aN > L.

Solution.
Let ε = L

2
. Then there is a positive integer N such that if n ≥ N we have

|an − L| < L
2
. Thus, |aN − L| < L

2
or −L

2
< aN − L < L

2
. Hence, aN > L

2
or

2aN > L

Exercise 4.20
Let a ∈ R and n ∈ N. Clearly, a < a+ 1

n
.

(a) Show that there is an ∈ Q such that a < an < a+ 1
n
.

(b) Show that the sequence {an}∞n=1 converges to a.
We have proved that if a is a real number then there is a sequence of rational
numbers converging to a. We say that the set Q is dense in R.

Solution.
(a) This follows from Exercise 3.6(c).
(b) Applying the Squeeze rule, we obtain limn→∞ an = a

Exercise 4.21
Consider the sequence {an}∞n=1 where an = α for all n ∈ N. Use the definition
of convergence to show that limn→∞ an = α.

Solution.
Let ε > 0 be given. Let N be any positive integer. Then for n ≥ N we have
|an − α| = |α− α| = 0 < ε

Exercise 4.22
Suppose that limn→∞ an = L. For each n ∈ N let bn = an+an+1

2
. Show that

limn→∞ bn = L.
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Solution.
Let ε > 0 be given. There is a positive integer N such that |an − L| < ε for
all n ≥ N. Since n + 1 ≥ N + 1 ≥ N we have |an+1 − L| < ε. Hence, for all
n ≥ N we have

|bn − L| =
∣∣∣∣an − L2

+
an+1 − L

2

∣∣∣∣ ≤ ∣∣∣∣an − L2

∣∣∣∣ +

∣∣∣∣an+1 − L
2

∣∣∣∣ < ε

2
+
ε

2
= ε.

This shows that limn→∞ bn = L

Exercise 4.23
(a) Show that if limn→∞ an = L then limn→∞ |an| = |L|.
(b) Give an example of a sequence where {an}∞n=1 is divergent but {|an|}∞n=1

is convergent.

Solution.
(a) Let ε > 0 be given. Then there is a positive integer N such that |an−L| <
ε for all n ≥ N. Thus,

||an| − |L|| ≤ |an − L| < ε

for all n ≥ N. This shows that limn→∞ |an| = |L|.
(b) The sequence {(−1)n}∞n=1 is divergent but {|an|}∞n=1 = {1, 1, 1, · · · } is
convergent with limit 1

Exercise 4.24
Show that if limn→∞ |an| = 0 then limn→∞ an = 0.

Solution.
This follows from −|an| ≤ an ≤ |an| and the squeeze rule

Exercise 4.25
Let a = supA. Show that there is a sequence {an}∞n=1 ⊂ A such that
limn→∞ an = a. Hint: Exercise 3.12.

Solution.
By Exercise 3.12, for each n ∈ N we can find an ∈ A such that 0 ≤ a−an < 1

n
.

Now the result follows by applying the squeeze rule

4



Exercise 4.26
Let {an}∞n=1 be a sequence such that |am − an| ≤ 1

|m−n| for all m 6= n. Show
that a1 = a2 = a3 = · · · .

Solution.
Fix m ∈ N. Let ε > 0 be given. Since limn→∞

1
m−n = 0, we can find a

positive integer N such that 1
|m−n| < ε for all n ≥ N. Thus, for n ≥ N we

have |an − am| < ε. This shows that limn→∞ an = am. Since the limit of a
sequence is unique and the sequence converges to each of its term, we must
have that all the terms are equal
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