www.packt.com

7))
=
o
< =
o L
Lo
o) C
C ©
W o
= 0
g 2
= (0
-
-7,

Over 70 recipes for mastering post-processing effects and advanced
Brais Brenlla Ramos and John P. Doran

shading techniques

Unreal Engine 4 Shaders and
Effects Cookbook

Over 70 recipes for mastering post-processing effects and
advanced shading techniques

Brais Brenlla Ramos
John P. Doran

BIRMINGHAM - MUMBAI

Unreal Engine 4 Shaders and Effects
Cookbook

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Trusha Shriyan

Content Development Editor: Pranay Fereira
Technical Editor: Diksha Wakode

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Alishon Mendonsa

Production Coordinator: Deepika Naik

First published: May 2019
Production reference: 1240519

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-854-0

www.packtpub.com

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the authors

Brais Brenlla Ramos is a passionate Architect, 3D artist, Unreal Engine 4 developer and
first-time author based between A Coruiia and his place of work in London, UK. His
passion for all things 3D-related dates back to when he was playing games as a child,
experiences that fuelled his later studies in architecture and computer animation. His
entrance into the professional 3D world happened at the same time as his studies were
finishing, with initial projects undertaken in the field of architectural visualization for
different studios. Since then, he's worked on many different 3D modeling and app
development projects, first as a team member, and later as the Unreal Engine 4 lead
developer at a company called AccuCities, based in London.

To my friends and family, who got me this far; and to my partner, Tamy, whose support
and love carried me throughout.

John P. Doran is a passionate and seasoned technical game designer, software engineer,
and author based in Peoria, Illinois.

For over a decade, John has gained extensive hands-on expertise in game development,
working in a variety of roles, ranging from game designer to lead UI programmer.
Additionally, John has worked in game development education teaching in Singapore,
South Korea, and the United States. To date, he has authored over 10 books pertaining to
game development.

John is currently an instructor in residence at Bradley University. Prior to his present
ventures, he was an award-winning videographer.

I want to thank my wife, Hien, for all of her support over the course of working on this
book.

About the reviewer

Deepak Jadhav is a game developer based in Pune, India. Deepak received his bachelor's
degree in computer technology and master's degree in game programming and project
management. Currently, he is working as a game developer in India's leading game
development company. He has been involved in developing games on multiple platforms,
such as PC, Mac, and mobile. With years of experience in game development, he has a
strong background in C# and C++, and he has developed his skills in platforms including
Unity, Unreal Engine, and augmented and virtual reality.

I'would like to thank the authors and the Packt Publishing team for giving me the
opportunity to review this book.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Chapter 1: Physically Based Rendering
Introduction
Setting up a studio scene
Getting ready
How to do it...
How it works...
Working inside the material editor
Getting ready
How to do it...
How it works...
Our first physically based material
Getting ready
How to do it...
How it works...
Creating some simple glass with the translucent blend mode
Getting ready
How to do it...
How it works...
Lighting our scene with image-based lighting
Getting ready
How to do it...
How it works...
Checking the cost of our materials
Getting ready
How to do it...
How it works...

Chapter 2: Post-Processing Effects
Introduction
Using a post-process volume
Getting ready
How to do it...
How it works...
See also
Changing the mood of a scene through color grading
Getting ready
How to do it...
How it works...

Table of Contents

There's more...
See also
Setting up a cinematic shot using depth of field
Getting ready
How to do it...
How it works...
There's more...
See also
Applying cinematic effects to our games
Getting ready
How to do it...
How it works...
There's more...
See also
Mimicking a real-life camera using Bloom and Lens Flares
Getting ready
How to do it...
How it works...
There's more...
See also
A horror movie pulsating effect with post process materials
Getting ready
How to do it...
How it works...
There's more...
See also
Adjusting anti aliasing and other rendering features
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 3: Opaque Materials and Texture Mapping
Introduction
Using masks within a material
Getting ready
How to do it...
How it works...
There's more...
See also
Instancing a material
Getting ready
How to do it...
How it works...

73
75
75
75
76
81
82
82
83
83
83
89
89
90
90
90
91
97
98
99
99
99
100
108
109
110
110
111
111
117
118
119

120
121
122
122
123
129
130
131
131
131
132
136

[ii]

Table of Contents

There's more...
See also
Texturing a small prop

Getting ready

How to do it...

How it works...

There's more...

See also

A plastic cloth using Fresnel and detail texturing

Getting ready
How to do it...
How it works...
There's more...
See also
Creating a semi procedural material
Getting ready
How to do it...
How it works...
There's more...
See also
Baking out a material
Getting ready
How to do it...
How it works...
There's more...
See also
Distance-based texture blending
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 4: Translucent Materials and More
Introduction
Creating a candle material with SSS
Getting ready
How to do it...
How it works...
There's more...
See also
Setting up a truly transparent glass
Getting ready
How to do it...
How it works...

138
139
139
140
140
146
146
147
147
148
148
152
153
154
155
155
155
161
161
162
162
162
163
168
169
169
170
170
171
174
175
177

178
179
179
180
180
187
189
189
189
190
190
196

[iii]

Table of Contents

There's more...
See also
A different type of translucency — holograms
Getting ready
How to do it...
How it works...
There's more...
See also
Achieving realistic reflections
Getting ready
How to do it...
How it works...
There's more...
See also

Mastering refraction by creating a pool water material

Getting ready
How to do it...
How it works...
There's more...
See also

Water caustics
Getting ready
How to do it...
How it works...
There's more...
See also

Animating a sea shader
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 5: Beyond Traditional Material Uses
Introduction
Using an emissive material to light the scene
Getting ready
How to do it...
How it works...
There's more...
See also
Playing a video from the internet on a screen
Getting ready
How to do it...
How it works...

197
197
198
198
199
207
208
208
208
209
210
220
221
221
221
222
223
232
233
233
233
234
235
243
244
244
245
245
246
257
258
258

259
259
260
261
261
268
269
270
270
271
271
276

[iv]

Table of Contents

There's more...
See also
Creating a CCTV camera feed
Getting ready
How to do it...
How it works...
There's more...
See also
Highlighting interactive elements within our game
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a game compass
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a mini map
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 6: Advanced Material Techniques
Introduction
Painting a mesh with vertex painting
Getting ready
How to do it...
How it works...
There's more...
See also
Using decals to add granularity to our scenes
Getting ready
How to do it...
How it works...
There's more...
See also

Creating a brick wall with Parallax Occlusion Mapping

Getting ready
How to do it...
How it works...

277
277
278
278
279
284
284
286
286
287
287
297
2908
208
299
299
300
307
308
311
312
312
313
321
322
322

323
324
324
325
325
330
331
332
333
333
334
338
339
340
340
341
341
347

[v]

Table of Contents

There's more...
See also
A brick wall using displacement
Getting ready
How to do it...
How it works...
There's more...
See also
Proximity-based masking with mesh distance fields
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 7: Using Material Instances
Introduction
Creating snow on top of objects using layered materials
Getting ready...
How to do it...
How it works...
Changing from a sunny scene to a snowy one through parameter
collection
Getting ready...
How to do it...
How it works...
Changing between seasons quickly with curve atlases
Getting ready...
How to do it...
How it works...
Blending landscape materials
Getting ready...
How to do it...
How it works...
Customizing UVs
Getting ready...
How to do it...
How it works...

Chapter 8: Mobile Shaders and Material Optimization
Introduction
Creating materials for mobile platforms
Getting ready...
How to do it...
How it works...
There's more...

348
349
349
350
350
354
354
355
355
356
356
360
362
362

363
363
364
364
365
379

380
380
380
384
385
385
385
396
397
397
398
404
405
405
405
411

412
412
413
413
413
415
416

[vi]

Table of Contents

See also...
Using the forward shading renderer for VR
Getting ready...
How to do it...
How it works...
See also...
Optimizing through texture atlases
Getting ready...
How to do it...
How it works...
Baking a 3D model material into a texture
Getting ready...
How to do it...
How it works...
Combining multiple meshes with the HLOD tool
Getting ready...
How to do it...
How it works...
General material-optimization techniques
Getting ready...
How to do it...
How it works...

Chapter 9: Some Extra Useful Nodes
Introduction
Adding randomness to identical models
Getting ready
How to do it...
How it works...
There's more...
See also
Adding dirt to occluded areas
Getting ready
How to do it...
How it works...
There's more...
See also
Matching texture coordinates across multiple meshes
Getting ready
How to do it...
How it works...
There's more...
See also
Adjusting material complexity through quality switches
Getting ready

417
417
417
418
421
421
421
422
422
427
428
429
430
435
436
437
438
445
446
446
447
453

454
455
455
456
456
461
461
462
462
462
463
466
467
467
467
468
468
473
474
474
475
475

[vii]

Table of Contents

How to do it... 476

How it works... 481
There's more... 481

See also 482
Using interior cubemaps to texture the interior of a building 482
Getting ready 483

How to do it... 483

How it works... 486
There's more... 487

See also 488
Using fully procedural noise patterns 489
Getting ready 489

How to do it... 490

How it works... 494
There's more... 495

See also 496

Other Books You May Enjoy 497
Index 500

[wiii]

Preface

Unreal Engine 4 Shaders and Effects Cookbook aims to take you on a journey of creation and
discovery within the Unreal Engine 4 game engine. As the title of the book implies, we'll
travel hand in hand to every corner of the engine, performing actions that affect the visuals
of our games and apps. We'll do so in an orderly way, starting from the very beginning by
covering fundamental topics that will stay with us throughout the rest of the book. Each
chapter that follows will expand upon that base, allowing for a gentle progression curve
that will allow almost any user to follow along. In spite of that, each entry — or recipe — has
been also conceived as an independent unit, letting you tackle it separately from the others
in case you are already proficient with the other topics.

We'll start by covering the core concepts behind Unreal Engine's rendering pipeline, such as
its physically based rendering approach and post-processing effects. With solid
foundational knowledge about those two topics, we'll expand upon them and study
different types of materials: opaque ones, translucent ones, and more, such as the different
subsurface materials and other shading models. We'll also explore several advanced
material creation techniques and tricks that the engine lets us use to create multiple
different effects—from mixing materials and blueprints, to instancing and material
optimization. There's a whole lot we are going to be covering!

Upon finishing this book, you will have a thorough knowledge about many different
material concepts and techniques, both from a practical and a theoretical point of view.
You'll be able to use these newly learned concepts in any games, apps, or personal projects
that you tackle, with the absolute confidence that you are doing it right. With that said, let's
get to it!

Who this book is for

Unreal Engine 4 Shaders and Effects Cookbook benefits from a structure that goes in crescendo,
covering more difficult topics as we move along together. Thus, the book lends itself to
being read by multiple different profiles of user from novice users, to more seasoned ones
that haven't yet touched Unreal's material pipeline. Whatever the case, a good
understanding of Unreal is definitely a plus, and something that will make your journey
throughout this book a much smoother experience.

Preface

What this book covers

Chapter 1, Physically Based Rendering, starts off this book by going over the fundamental
rendering concepts that Unreal relies on, as well as introducing us to the material editor.

Chapter 2, Post-Processing Effects, introduces the user to the powerful concept of post-
processing in Unreal and explains the different effects that can be achieved through it.

Chapter 3, Opaque Materials and Texture Mapping, goes into detail about one of the most
common type of materials in Unreal and the different uses that it has.

Chapter 4, Translucent Materials and More, covers one of the most exciting type of materials,
the translucent ones, as well as many others, including subsurface and emissive materials.

Chapter 5, Beyond Traditional Material Uses, goes over different uses that materials can have
beyond simply being applied to 3D models, including light functions, Ul elements, and
displaying videos.

Chapter 6, Advanced Material Techniques, talks about some of the most high-end effects that
can be created within the material editor by using advanced techniques, such as parallax
occlusion mapping and mesh distance fields.

Chapter 7, Using Material Instances, discusses how to use the concept of instancing
to quickly make tweaks to a material instance, layer different shaders on top of each other,
and affect multiple material settings at once.

Chapter 8, Mobile Shaders and Material Optimization, goes over various ways to optimize
your materials to make them more performant on different hardware where efficiency is
important, such as on mobile devices or when working in virtual reality.

Chapter 9, Some Extra Useful Nodes, focuses on some of the most useful nodes we can find
within Unreal that don't really belong to a collective category of their own.

To get the most out of this book

Any reader will need to have installed a version of Unreal Engine on their computers; the
latest version, if possible. Most of the recipes we'll look at should work on different engine
versions, but we recommend 4.22 in order to have the latest features installed.

[2]

Preface

Prior knowledge about the engine is not a must, but having some working experience with
Unreal will help the reader enjoy a smoother experience throughout the book. Whilst no
coding skills are required, some fluency with the Blueprint visual scripting language would
also be of great help.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www .packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Unreal-Engine-4-Shaders-and-Effects-Cookbook. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789538540_ColorImages.pdf.

[3]

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Add a Cheap Contrast node after the Texture Sample, and connect its In

(S) input pin with the output of the previous image"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Drag a cable out of the original Texture Sample and create a new Multiply node"

0 Warnings or important notes appear like this.
8 Tips and tricks appear like this.

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

[4]

Preface

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in

and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[5]

Physically Based Rendering

Welcome to the first chapter of the book! In the next few pages, we are going to start
looking at how to set up a scene in Unreal for visualization purposes—we want to make
sure that we nail this first part down before we move any further. Beginner or advanced, no
matter what type of user you are, we'll need to make sure to take a look at some of the most
critical elements that can make or break a scene in Unreal. Things like taking advantage of
the right type of lighting, knowing where to look for the most common material
parameters, or learning to measure the impact in performance that the shaders have are
vital in any project. With that in mind, we are going to be learning about the following
topics:

Setting up a studio scene

Working inside the material editor

Our first physically based material

Creating some simple glass with the translucent blend mode

Lighting our scene with image-based lighting

Checking the cost of our materials

Introduction

Welcome to this in-depth journey through the material creation process in Unreal Engine 4!
I think you are going to have a great time if you are excited about the possibilities that this
game engine brings to the table in terms of state-of-the-art rendering techniques. And by
state-of-the-art I mean a powerful and robust rendering pipeline, where both photorealistic
and stylized game art are possible without changing to a different development suite.

The fact that such a flexible system is in place is courtesy of the continuous advances over
the years in the field of real-time rendering. We've journeyed from the 2D era into the 3D
era, from sprites and flat images to the rendering of polygons and whole worlds.

Physically Based Rendering Chapter 1

Each of these changes happened thanks to a combination of new and more powerful
hardware as well as increasingly intelligent rendering pipelines and techniques. One of the
latest improvements that we can talk about is what we are going to be covering throughout
this book—the PBR workflow.

And what does PBR stand for? That would be Physically Based Rendering—a particular
method that takes into account how light behaves when it comes into contact with 3D
objects. In order to represent materials placed in a 3D environment, artists need to specify
certain properties for each of the materials that they create—such as what the underlying
color should be, how much light they reflect, or how defined those reflections are.

This is significant change from previous workflows, where light propagation and its
simulation wasn't taken into account in a realistic way. This meant, for example, that
materials couldn't be replicated under different lighting conditions—having, for instance, a
night and a day scene using the same assets resulted in them looking substantially
different. An artist would therefore need to create different sets of textures or adjust the
materials to make them look right for each particular scenario they might be in.

This has changed with the recent introduction of the PBR workflow. Newer game engines,
such as Unreal Engine 4, have made this rendering approach their quasi default one—and I
say quasi as they also allow for older rendering methods to be thrown into the mix in order
to give artists more freedom. Materials are coherent under different lighting settings, and
knowing how to create content under this pipeline ensures usability under a lot of different
circumstances.

However, PBR is not a universally defined convention as far as its implementation goes.
This means that how things work under the hood varies across the different rendering
engines. The exact implementation that Epic has chosen for their Unreal Engine platform is
different from that of other third-party software creators. Furthermore, PBR workflows in
real-time applications are slightly different to offline renderers, as efficiency and speed are
a must in this industry and things have to be adapted consequently. What we need to take
away from these facts is that a physically based approach to rendering has huge advantages
(as well as some limitations) that we as artists need to be aware of if we are to use the
engine to its full potential.

We conceived the present book with that goal in mind. We aim to present you with a series
of recipes that tackle many different functionalities within Unreal, structured in a way
where each unit can be read independently from the rest. In order to do so, we'll be taking a
look in the following pages at how to get a hold of the engine and how to set up a basic
scene, which we'll use to visualize our projects.

[7]

Physically Based Rendering Chapter 1

Setting up a studio scene

In this first recipe, we are going to create a basic scene that we'll be able to use as our
background level throughout this course. This initial step is here just so we can go over the
basics of the engine and get familiar with different useful websites from where we can

download multiple assets.

Getting ready

Before we actually start creating our basic studio scene, we will need to download Unreal
Engine 4. I've started writing this book with version 4.20.3, but don't hesitate to use the
latest version at the time of reading.

Here's how you can download it:

1. Get the Epic Games Launcher from the engine's website, https://www.
unrealengine.com/en-US/blog, and follow the installation procedure indicated
there.

2. Once installed, download the latest version of the engine. We can do so by
navigating to the UNREAL ENGINE section of the launcher, in the tab named
Library. In there, we'll be able to see a +icon (1), which lets us download
whichever version of Unreal we want. Once we've downloaded it, launch it (2) so
we can get started:

@ UNREAL ENGINE FORTNITE UNREAL TOURNAMENT SHADOW COMPLEX MODDING

ENGINEVERSIONSE K 1

4.19.2 4.20.3

GITHUB SOURCE RELEASE NOTES

Library

Launch
Unreal Engine 4.19.2

MY PROJECTS

[8]

Physically Based Rendering Chapter 1

And that's all you need! We now have everything required to get started in Unreal Engine
4. How cool is that? A whole new game engine at our fingertips, completely free, and with
a variety of tools within it that would take years to learn and master. It really is a thing of
wonder! Next up, we are going to start learning about one of those tools—the materials.
And in order to do so, let's start by creating our first project!

How to do it...

Let's start by launching the engine that we have just installed and creating a new project by
taking the following steps:

1. Create a New Project—give it a name and select the folder where you want it to
live. Just as a reference, as shown in the following screenshot, I've decided to
start off with a blank blueprint-based project, but it doesn't really matter what we
decide to initially include. Nothing special so far! You can choose to add the
Starter Content if you want, as it comes with several useful resources that we can
use later on:

AU Unreal Project Browser

Projects New Project

Choose a template to use as a starting point for your new project. Any ‘eatures can be added later by clicking Add Feature or Content Pack in Content Browser.

* el

Flying Handheld nDisplay Puzzle
AR

LGRS S

B~

Choose some settings for your project. Don't worry, you can change these later in the Target Hardware section of Project Settings. You can also add the Starter Content to your project later using
Content Browser.

-m
Desktop / Console Maximum Quality No Starter Content

Select a location for your project to be stored

D:\Unreal\0_Backend - | UE4ShadersAndEffects

Folder Name

Create Project

[9]

Physically Based Rendering Chapter 1

Additionally, you can get more free resources from other different places.
You can check the Learn tab within the Epic Games Launcher to see what

freely available examples you can get a hold of, or check the community
section to see if there is any new cool content.

Epic has recently collaborated with multiple content creators to make a multitude
of different assets available to anyone using Unreal, and you can check them out
atﬂﬁefoﬂovvhlg\vebsﬁe:https://www.unrealengine.com/en—US/blog/new—free—
content-coming-to-the-unreal-engine-marketplace?utm_source=launcher

utm_medium=chromiumutm_term=forumutm_content=FreeContentutm_campaign=
communitytab.

2. The first thing that we need to do once the editor loads is to go to File | Save
Current As, just to make sure that the changes we are about to implement get
saved. Otherwise, we would just be working on the default untitled map, which
wouldn't store any of the changes that we are about to make!

3. Once that's done, we are now ready to start spicing things up. Erase everything
from the world outliner—we are not going to be using any of that for our studio
scene. Your scene and the world outliner should look something like this:

[10]

Physically Based Rendering Chapter 1

4. If you haven't done so before, it is now time to include the Starter Content. Don't
worry if you didn't do it at first! I didn't say it was mandatory only to be able to
look at how to include it after starting a new project—just navigate to the content
browser and look for the Add New option in the upper left corner. Select the first
available option in there, named Add feature or Content Pack, as shown in the
following screenshot:

AL GRE W nge SO GToee

‘ U (<> | conen AL
|

Add Content to the Project

@ Blueprint Feature 'gg C++ Feature Q Content Packs

. Add Feature or Content Pack...

0 New Folder g | “";I.'
oxe

[g ,

W New C++ Class Mobile

% NewC Cla Starter e 29
Content % A

% Blueprint Class

Starter Content

i

- Level A collection of miscellaneous assets to include in your unreal project

—— Several static mesh props such as a table, a chair, a door, lamp etc.
A number of textures, bricks, clay, wood and so forth

- Basic mesh shapes a sphere, tube, torus etc.
Material Sample audio - an explosion, sparks, birds etc.
Particles such as fire, dust and explosion
Some walls, floors and windows.
~ m
:‘ Particle System Some sample blueprints.

4 Add to Project

Animation
Artificial Intelligence
Blendables

Blueprints

5. With that included, we can see that the Starter Content includes a blueprint that
can be quite useful for setting up the lighting in our scene. You can look for this
inside of the Content Browser | Starter Content | Blueprints folder, and it's
named BP_ Light Studio. Select it and drag it into the scene we have previously
created.

The asset called BP_Light Studio is a blueprint that Epic Games has already
created for us. It includes several lighting settings that will make our lives
easier—instead of having to set up multiple lights and assign them different
values, it automates all of that work for us so we just have to choose how we want
our scene to look. Making a simple studio scene will be something very easy to do
this way.

[11]

Physically Based Rendering Chapter 1

Retaining that level of control over which lights are placed and how we do that is,
of course, very important, and something that we'll do later in the book, but for
now this is a very powerful tool that we will use.

6. With the BP_ Light Studio placed in our scene, we can start tweaking its default
values just so we can use it as a lighting studio setup. Select the blueprint from
the world outliner and let's tweak several settings.

7. The first one we can look at is the HDRIi tab inside the details panel for the BP_
Light Studio. HDRIi is short for High Dynamic Range imaging, which is a type
of texture that stores the lighting information from the place at which the photo
was taken. Using that data as a type of light in 3D scenes is a very powerful
technique, which makes our environments look more natural and real:

o o Edit Blueprint ~
e ——————————
15

Use HDRI
HDRI Brightness
HDRI Contrast

> HDRI Tint

HDRI_Epic_Courtyard_Daylight =
e

HDRI Cubemap

HDRI Rotation

8. However, useful HDRi might be, this lighting method is turned off by default, so
make sure to tick the Use HDRi checkbox. That will make the texture placed in
the HDRi Cubemap slot light the scene. Feel free to use any other ones you
might have or download one to use throughout the project!

HDRi images are very useful for 3D artists, even though they can be tricky to
create as it is usually a lengthy process. There are many websites from which you
can buy them, but I like the following one that gives you free access to some very
useful ones: http://www.hdrlabs.com/sibl/archive.html.

[12]

Physically Based Rendering Chapter 1

We will be using the one called Alexs Apartment, which is quite useful for
interior visualization.

9. You can now untick the Use Light Sun and the Use Atmosphere option found
under the Sun and the Atmosphere section of the BP_LightStudio blueprint if
you use an HDRi image. As we said earlier, this type of picture stores lighting
information, which renders the use of other lights sometimes optional.

10. Once you've done that, let's create a basic plane on which we can use to lay out
our objects. Dragging a plane into the scene from the Modes panel will do the
job: Modes | Basic category | Plane.

11. Let's assign our newly placed plane an interesting default material so we have
something to look at—with the plane selected, scroll down to the Materials
section of the details panel and change its default value to M_Wood_Pine. Said
material is part of the Starter Content, so make sure you have it installed!

We should now be looking at something like the following;:

With that out of the way, we can say that we've finished creating our basic studio scene.
Having done that will enable us to use this level for visualization purposes, kind of like
having a white canvas on which to paint. We will use this to place other models and
materials as we create them, in order to correctly visualize our assets.

[13]

Physically Based Rendering Chapter 1

How it works...

There are at least two different objectives that we can complete if we follow the previous set
of steps—the creation of our intro scene being the first one and the second one being getting
familiar with the engine. This final task is something that will continue to happen over
time—but getting our hands dirty now will have hopefully accelerated that process.

Something that could also speed that up even more is a review process of what we've just
done. Not only will we learn things potentially faster, but knowing why we do the things
the way we do them will help us cement the knowledge we acquire—so expect to see a How
it works... section after each recipe we tackle! As the first ever example of the
aforementioned section, we'll briefly go over what we have just done before in order to
understand how things work in Unreal.

The first step we've taken was to actually create the Unreal Engine project on which we'll be
working throughout this book. We've then added the assets present in the Starter Content
package that Epic Games supplies, as it contains useful 3D models and materials that we
can check later on as we work on other recipes. The most important bit we've done was
probably the lighting setup though, as this will be the basis of some of the next recipes. This
is because having a light source is vital to visualizing the different assets that we create or
add to the scene. Lighting is something that we'll explore more in some of the next recipes,
but the method we've chosen in this one is a very cool technique that you can use in your
own projects. We are using an asset that Unreal calls a blueprint, something that allows
you to use the engine's visual scripting language to create different functionalities within
the game engine without using C++ code. This is extremely useful, as you can program
different behaviors across multiple types of actors to use to your advantage—turning a
light on and off, opening a door, creating triggers to fire certain events, and so on. We'll
explore them more as we go along, but at the moment we are just using an already
available one to specify the lighting effects we want to have in our scene. This is in itself a
good example of what a blueprint can do, as it allows us to set up multiple different
components without having to specify each one of them individually—such as the HDRi
image, the sun position, and others that you can see if you look at the Details panel.

Working inside the material editor

Let's get started with the material editor! This is the place where the magic will happen and
also where we'll spend most of our time during this cookbook. Better get well acquainted
with it then! As with everything inside Unreal, you'll be able to see that this space for
creating materials is a very flexible one—full of customizable panels, rearrangeable
windows, and expandable areas. You can place them however you want!

[14]

Physically Based Rendering Chapter 1

Because of its modular nature, some of the initial questions we need to tackle are the
following ones: how do we start creating materials and where do we look for the most
commonly used parameters? Having different panels means having to look for different
functionalities in each of them, so we'll need to know how to find our way around the
editor. We won't stop there though—the editor is packed with plenty of useful little tools
that will make our jobs as material creators that much easier, and knowing where they live
is one of the first mandatory steps.

So, without further ado, let's use the project we have already set up in the previous recipe
as our starting point and let's start creating our first material!

Getting ready

There's not much we need to do at this point—all thanks to having previously created the
basic blank project. That's the reason we created it in the first place, so we can start working
on our materials straight away. Having set up the studio scene is all we need at this point.

In spite of this, don't feel obliged to use the level we created in the first recipe. Any other
one will do, as long as there are some lights in it that help you visualize your world. That's
the advantage of the PBR workflow, that whatever we create following its principles will
work across different lighting scenarios. Let's jump right in!

How to do it...

It's now time to take a look at how the material editor works, at the same time as we create
our first material. This editor includes many different tools and functionalities within it, so
there are plenty of things to take a look at!

Remember that you can bring the material editor up by just creating a
new material and double-clicking on it.

The first important thing we will be doing is to actually create a material. Of course, this is a
very trivial action and there's not much to explain—just right-click anywhere on the content
browser and select the Create Basic Asset | Material option. What is important is knowing
how to name and organize our contents. Even though keeping the Content Browser
organized is not the main goal of this chapter, I didn't want to pass up on the opportunity
to briefly talk about that.

[15]

Physically Based Rendering Chapter 1

One good way of keeping things tidy is to organize the folder structure in categories
(Materials, Characters, Weapons, Environment...) and naming the different assets using
Unreal's recommended syntax. You can find more about that on several discussion forums
or on Epic Games' wiki:

¢ Unreal Engine 4 style guide: https://github.com/Allar/ued-style—-guide

o Assets naming convention: https://wiki.unrealengine.com/Assets_Naming_
Convention

The second important thing we want to be doing is to make sure that the layout we are
looking at is the default one, just so that the images we will be including later on match
what you'll be seeing in your monitor. To do that, go to Window | Reset Layout, as shown
in the following screenshot:

File Edit Asset | Window | Help
r Aater t < o :
B ® (o - o > h M
A v JF Toolbar . | &7 | |
Save Browse = Viewpo Ip JCOTNEDtoTe) NUVERISVEWE Live Nodes LiveUpdate Stats Platform Stats
I

M_OrangePlastic

O Base Color

Reset Layout/\ S

O Roughness
S a ‘t'e L a ‘)’ 0 LI t O» Emissive Color

® Find in Blueprin:

W proetLauncher Enable Fullscreen

ntal
Localization Dashboard O World Position Offset

O Normal

Save Layout

Enable Fullscreen Jm

Remember that resetting the layout to its default state can still make things not look
perfectly equal between your screen and mine—that's because settings such as the screen
resolution or its aspect ratio can hide panels or make them imperceptibly small. Feel free to
move things around until you reach a layout that works for you!

[16]

Physically Based Rendering Chapter 1

Now that we've made sure that we are looking at the same screen, let's turn our attention to
the material editor itself and the different parts that constitute it. By default, this is what we
should be looking at:

e The first part of the material editor is the Toolbar, a common section that you'll
find in many other places within the engine. It lets you save your progress or
apply any changes that you've made to your materials amongst other things.

e The second panel is the Viewport, where we'll be able to see what our material
looks like. You can rotate the view, zoom in or out, and change the lighting setup
of that window.

¢ The Details panel (3) is a very useful one, for here is where we can start to define
the properties of the materials that we want to create. Its contents vary
depending on what is selected in the main graph editor (the panel numbered 6).

e The Stats and the Find Results panels (4) is where you can take a look at how
costly your materials are or how many textures they are using.

¢ The material node Palette (5) is a library of different nodes and functions that
we'll use to modify the materials we create.

¢ The main graph editor (6) is where the action happens, and where most of the
functionality that you want to include in your materials needs to be visually
scripted.

[17]

Physically Based Rendering Chapter 1

Now that we've taken a look at the different parts that make up the material editor in
Unreal, we can start creating our own first simple material—a plastic. I find plastics to be a
very straightforward type—even though we could make them as complicated as we want
to. So, let's explore how we would go about at creating it:

1. Take alook at the main graph. By default, every time you create a new material,
you should be looking at a central main node. You will see multiple pins, which
are the elements where we want to connect the different elements we will be
creating.

2. Right-click on the main graph, preferably to the left of the main material node,
and start typing constant. As you start to write, notice how the auto-completion
system starts to show several options: Constant,

Constant2Vector, Constant3Vector, and so on. Select Constant3Vector, as shown
in the following screenshot:

e

cons
4Constants
Constant
Constant2Vector

Constant3Vector k

Constant4Vector

DistanceCullFade

[18]

Physically Based Rendering Chapter 1

3. Having chosen that option, you will be able to see that a new node has now
appeared. You can now connect it to the Base Color of the material node. If you
are on the constant node, take a look at the Details panel and you'll be able to see
that there are a couple settings that you can tweak. Since we want to move away
from the default blackish appearance that the material now has, click on the black
rectangle to the right of where it says Constant and use the color wheel to change
its current value. I'm going to go with orange:

Color Picker s Q|

Drag & drop colors here to save ﬂ SRGB Preview
]

4 Advanced

4] 311949991

Hex Linear (0]
L&) FFC10000

[o [coree |

There's more to the base color property than meets the eye! Apart from
the different options that are available to select a color, you might be
interested to know that the actual value that gets connected to the material
slot matters beyond the color choice. Certain materials have a measured
intensity to them, and you can check that out on the following

website: https://docs.unrealengine.com/en-us/Engine/Rendering/Mat
erials/PhysicallyBased.

It's not something that you should concern yourself with at this stage, but can
come in handy in the future!

[19]

Physically Based Rendering Chapter 1

At the moment, we can see that we have managed to modify the color of our
material. We can now change how sharp the reflections are, as we want to go for a
plastic look. In order to do so, we need to modify the Roughness parameter with
another different constant. Instead of right-clicking and typing, let's choose it
from the palette menu instead.

4. Navigate to the Palette section, and look for the Constant category. We want to
select the first option in there, aptly named like this subsection itself.
Alternatively, you can type its name in the search box at the top of the panel:

N il

4 Constants
Constant
Constant2Vector Adds a Constant node here
Constant3Vector ~
Constant4Vector

DistanceCullFade
ParticleColor
ParticleDirection
ParticleMotionBlurFade
ParticleRadius

5. A new, smaller node should have now appeared. Unlike the previous one, we
don't have the option to select a color—we need to type in a value. Let's go with
something low, about 0.2. Connect it to the Roughness pin.

If you look at the preview viewport, you will notice that the appearance of the material has
now changed. It looks like the reflections from the environment are much sharper than
before. This is happening thanks to the previously created constant pin, which, using a
value closer to 0 (or black), makes the reflections stand out that much more. Whiter values
decrease the sharpness of those reflections or, in other words, make the surface appear
much more rough.

[20]

Physically Based Rendering Chapter 1

Having done so, we are now in a position where we can finally apply this material to a
model inside of our scene. Let's go back to the main level and look at the Modes panel,
particularly to the Basic section. Drag and drop a cube into the main level, and assign it the
following values inside of the Details panel just so we are looking at the same:

Volumes

AllClasses

Reducing the size of the cube will make it fit better into our scene. Now head over to the
Materials section of the Details panel, and click on the drop-down menu. Look for the
newly created material and assign it to our cube. Finally, click on the Build icon located on
the toolbar as follows:

[21]

Physically Based Rendering Chapter 1

And there it is! We now have our material applied to a simple model, being displayed on
the scene we had previously created. Even though this has served as a small introduction to
a much bigger world, we've now gone over most of the panels and tools that we'll be using
in the material editor. See you in the next recipe!

How it works...

We've used the present recipe to learn about the material editor and we've also created our
first material. Knowing what each section does within the editor will help a lot in the
immediate future, as what we've just done is but a prelude to our real target—creating a
physically based material. Now we are in a much better position to tackle that goal, so let's
look at it in the next recipe!

Before moving on though, let's check the nodes that we have used to create this simple
material. From an artist's point of view, the names that the engine has given to something
like a color value or a grayscale value can seem a bit confusing. It might be difficult to
establish a connection between the name of the Constant3vector node and our idea of a
color. But there is a reason for all of this!

[22]

Physically Based Rendering Chapter 1

The idea behind that naming convention is that these nodes can be used beyond the color
values we have just assigned them. At the end of the day, a simple constant can be used in
many different scenarios—such as depicting a grayscale value, using it as a brightness
multiplier, or as a parameter inside a material function. Don't worry if you haven't seen
these other uses yet, we will—the point is, the names that these nodes were given tell us
that there are more uses beyond the ones we've seen.

With that in mind, it might be better to think of those elements we've been using in more
mathematical terms. For instance, think of a color as an Red Green Blue (RGB) value,
which is what we are defining with that previous Constant3vector node. If you want to
use an RGB value alongside an alpha one, why not use the Constant4vector, which
allows for a fourth input? Even though we are at a very early stage, it is always good to
familiarize ourselves with the different expressions the engine uses.

Our first physically based material

PBR is, at its core, a principle that several graphic engines try to follow. Instead of being a
strict set of rules that every rendering program needs to abide by, it is more of an idea—one
that dictates that what we see on our screens is the result of a study on how light behaves
when it interacts with certain surfaces.

As a direct consequence, the so-called PBR workflow varies from one rendering solution to
the next, depending on how the creators of the software have decided to program the
system. For our case, what we are going to be looking at is the implementation that Epic
Games has chosen for their Unreal Engine 4 real-time renderer.

However, we are going to do so in our already established recipe process, that is, by
creating real examples of materials that follow the PBR workflow rather than just talking in
a general way. Let's get to it!

Getting ready

We don't need a lot in order to start working on this recipe—just the project we have
previously created so we don't have to start from scratch. You can continue using the
previous section's materials or create new ones, whatever works best for you! Something
that would be helpful to have is the scene from the previous recipe open, for instance—that
way we already have a 3D model in it that we can use to show our materials on.

[23]

Physically Based Rendering Chapter 1

We are going to be creating multiple materials in this section, so
duplicating and modifying an already existing asset is going to be faster
than creating several ones from scratch. To do this, just select any material
that you want to duplicate on the content browser and press Ctrl + W.

How to do it...

Let's start our journey into the PBR pipeline by creating a new material and looking at the
different attributes that define it:

1. Right-click anywhere inside of the Content Browser and select the material
option in the Create Basic Asset section. Name it whatever you want—I'll go
with M_PBR_Metal for this particular instance. Double-click on the newly created
material to open up the material editor.

2. With the Material editor now open, we can start taking a look at the PBR
workflow. The first material we are going to create is a metallic one, a particular
type that uses most of the attributes associated to this pipeline. With that said,
let's focus our attention on the following two different places—the Details panel
and the main Material node itself:

5 Details 5) Parameter Defaults

EY - [o -

4 Physical Material

Phys Material

4 Material

Material Domain m

Decal Blend Mode

Shading Model Default Lit v
Two Sided .

Use Material Attribute [}

Subsurface Profile

4 Translucency

[24]

Physically Based Rendering Chapter 1

The settings you see here are the default ones for most materials in Unreal, and
they follow the PBR pipeline very closely. The first option, the Material Domain,
is currently set to Surface. That tells us that the material we are creating is meant
to be used on a 3D model. Blend Mode, which has a value of Opaque, indicates
that it is not a translucent material like glass. Finally, the shading model is set to
Default Lit, which is the default one for most materials.

This configuration is the default one for most common materials, and the one that
we'll need to use to define materials such as metal, plastic, wood, or concrete, to
name a few.

3. With that bit of theory out of the way, let's create a Constant3Vector node
anywhere in the graph and plug it into the Base Color input pin of our material.
We've used the Base Color attribute in the previous recipe, and as we saw, this is
the node where the overall color of a material should be plugged into.

4. The next item we will be creating is a Constant. You can do so by holding the 1
key on your keyboard and clicking anywhere within the material editor graph.
Give it a value of 1 and plug it into the Metallic attribute of our material.

The Metallic attribute defines whether we are creating a metal or a non-metal
material. We should use a value of 1 to define metallic surfaces and a value of 0
for non-metals—or we can leave this attribute unconnected, which would be the
same as using a zero. Values between 0 and 1 should only be used in special
circumstances, such as when dealing with metals that have been
treated—corroded or painted metals and the like.

5. For our next step, let's replicate what we have just done—start by creating
another constant and plugging it into the Roughness slot. This time, let's not give
it a value of 1, but something like 0. 2 instead. The final material graph should
look something like this:

[25]

Physically Based Rendering Chapter 1

6.

7.

Ld - - —
(- Y- pespectve] @ 11| show = N
§ @ Base Color
» @ Metallic
O Specular
\ @ Roughness
O Emissive Color
i
-

O Normal
O World Position Offset

O Ambient Occlusion

The attribute we are controlling through the previous constant defines how rough
the surface of a given material should be. Higher values, such as 1, simulate the
micro details that make light scatter in all directions—which means we are
looking at a matte surface where reflections are not clear. Values closer to zero
result in those imperfections being removed, allowing a clear reflection of the
incoming light rays and a much clearer reflected image.

Through the previous steps, we have taken a look at some of the most important
material attributes used to define a PBR material. We've done so by creating a
metal, which can be a good example for some of the previous properties.
However, it will be good to create another quick material that is not a metallic
one—this is because some of the other properties of the PBR workflow, like the
specular material attribute, are meant to be used in such cases.

Create another material, which we can name M_PBR_Wood, and open the material
editor for that asset.

Let's plug something into the Base Color material attribute—but instead of using
a plain value, let's go with an image this time. The Starter Content provides
multiple textures that can be used for this very purpose, so let's make use of one
of those resources.

[26]

Physically Based Rendering Chapter 1

Right-click anywhere inside of the main graph for our newly created material and
search for TextureSample, like in the next screenshot:

I Reflections

P Render To Texture

I Shading

I Speed Tree

4Texture
FontSample
FontSampleParameter
ParticleSubuv
SceneColor
SceneTexture
SpriteTextureSampler
TextureObject
TextureObjectParameter
TextureProperty
TextureSample
TextureSampleParameter2D
TextureSampleParameterCube
TextureSampleParameterSubUV

D Texturing

D User Interface

b Utility

8. With that new node on our graph, click on it to access the options in the Details
panel. Click again on the drop-down menu found in the Material Expression
Texture Base | Texture slot and type wood. Select the T_Wood_ Floor_ Walnut_
D asset and connect the Texture Sample node into the Base Color material
attribute as follows:

[27]

Physically Based Rendering Chapter 1

== Content Browser 2 MPER,WMJ

File Edit

-e

Save Browse Search

¥ Canvas Render Target
@ Cube Render Target
&y Curve Atlas

@’ Media Texture

* Render Target
O Volume Texture

Edit
Copy

ts &

- ifl Depth Offset
|_WoodenbedroommMirror_UvMask

@, parameter Default: exture

of = B3 = T_WoodFloor_Colour

4 Material Expression Texture Sample T -
MipValueMode | T_WoodFloor_Normal

T_WoodFloor_SpecRough

“ge= T_Wood_Floor_Walnut_M

T_Wood!Fioor Walnut (= exture

€ 0 MaterialEditor_Stats — T WOO(-i Floor Walnut_N

I
.

Sampl ype

Is Default Meshpain [}

4 Material Expression 251 items (1 selected) @ View Options v

If you want to get hold of more textures online, feel free to browse the
internet for more of them. A good place where I like to search for these
types of resources is www. textures.com, which allows you to download
several samples a day once you create a free account.

With that done, it's time to be looking at another material attribute—the Specular
parameter. Unlike roughness, this node controls how much light is being reflected
by the material and not how clear those reflections are. We therefore tend to
modify the specular level when we have small-scale occlusion or small shadows
happening across a surface, similar to what would be happening for the texture
that we chose before.

[28]

Physically Based Rendering Chapter 1

9. The seams in between the wood boards are a good place to use a specular map,
as those areas will reflect less light. In Unreal, such places are described with
values close to 0 (black). Knowing that, drag a pin from the red channel of the
previously created Texture Sample node into the Specular attribute of the main
material node.

You might be wondering why we are using the red channel of the wood texture
to drive the specular parameter. The simple answer is that even though we could
create a custom black and white image to achieve the same effect, any of the
original textures' channels are black and white values that contain the information
that we are after. Because seams are going to contain darker pixels than other
areas, the end result we achieve is still very similar if we use the red channel of
the original texture. You can see in the next image our source asset and the red
channel by its side:

10. Copy the Texture Sample node twice, since we are going to use more textures for
the roughness and the normal material attribute slots.

11. Just as we did previously, select the T_ Wood_ Floor_ Walnut_ M and the T_
Wood_ Floor Walnut_ N assets on each of the new nodes. Connect the first one
to the Roughness slot and the second one to the Normal node. Save the material
and click on the button that says Apply. Your material node graph should look
something like this:

[29]

Physically Based Rendering

Chapter 1

5\ Details

4 Physical Material

Phys Material

b Material

D Translucency

Texture Sample

UVs
Tex

View MipBias

Texture Sample
UVs
Tex

View MipBias

B~

Parameter Default:

D Ho-

Texture Sample

M_PBR_Wood
@ Base Color
OiMetallic
@ Specular
@ Roughness

O Emissive Color

@ Normal
O World Position Offset

@ Ambient Occlusion

O Pixel Depth Offset

12. Navigate back to the main level, and select the floor plane. In the Details panel,
scroll down to the Materials section and assign the M_PBR_Wood material we
have just created. Take a look at what our scene looks like now:

[30]

Physically Based Rendering Chapter 1

Nice job, right? The new nodes we've used, both the specular and the normal ones,
contribute to the added details we can see in the preceding screenshot. The specular node
diminishes the light that is being reflected in the seams between the wood planks, and the
normal map modifies the direction in which the light bounces from the surface. The
combined effect is that our model, a flat plane, looks as if it has much more geometrical
detail than it really has.

How it works...

Remember how we were talking about each renderer having its own implementation of a
PBR workflow? Well, we have just taken a look at how Epic has chosen to set up theirs!

As we have already said, efficiency and speed are at the heart of any real-time application.
These are two factors that have heavily influenced the path that the engineers at Epic have
chosen when coding their physical approach at rendering. That being the case, the
parameters that we have tweaked are the most important ones when it comes to how
Unreal deals with the interaction between light and 3D models. The base color gives us the
overall appearance of the material, whilst roughness indicates how sharp or blurry the
reflections are. Metallic enables us to specify whether an object is made out of metal, and
the specular node lets us influence how intense those reflections are. Finally, using normal
maps allows for the modification of the direction in which the light gets reflected—a useful
technique for adding details without actually using more polygons.

The previous parameters are quite common in real-time renderers, but not every program
uses the same ones. For instance, offline suites such as VRay use other types of calculations
to generate the final output—physically based in their nature, but using other techniques.
This shows us that, at the end of the day, the PBR workflow that Epic uses is specific to the
engine and we need to be aware of its possibilities and the limitations.

Throughout the current recipe, we have managed to take a look at some of the most
important nodes that affect how the physically based rendering gets tackled in Unreal
Engine 4. Base color, roughness, specularity, ambient occlusion, normal maps, and the
metallic attribute all constitute the basics of the PBR workflow.

Having seen all of them, we are now ready to start looking into how to build more complex
materials and effects. And even though we still need to understand some of the other areas
that affect our pipeline, we can do so with the certainty that the basics are covered.

[31]

Physically Based Rendering Chapter 1

Creating some simple glass with the
translucent blend mode

In the previous section, we had the opportunity to create a basic material that followed the
physically based approach that Unreal Engine uses to render elements into our screens. By
using nodes and expressions that affected the roughness or the metallic attributes of a
material, we saw how we could potentially create endless combinations—going from
plastics to concrete, metal, or wood.

Those previous examples can be considered simple ones—for they use the same shading
model to calculate how each element needs to be rendered. Most of the materials that we
experience in our daily lives fall into that category, and they can be described using the
attributes we have previously tweaked. In spite of that, there are always examples that can't
be exactly covered with one unique shading model. The way that light behaves when it
touches glass, for example, needs to be redefined in those cases. The same applies to other
elements, such as human skin or foliage, where light distribution varies from that of a
wooden material.

With that in mind, we are going to create several small examples of materials that deviate
from the standard shading model—starting with some simple glass. This will work as an
introductory level, just so we can create more complex examples at a later stage. Buckle up
and let's dive right in!

Getting ready

In order to start this recipe, you are not going to need a lot of anything. The sample Unreal
project we have previously created will serve us fine, but feel free to create a new one if you
are starting in this section of the book. It is completely fine to use standard assets, such as
the ones included with the engine, but I've also prepared a few of them that you can
download if you want to closely follow this book.

[32]

Physically Based Rendering

Chapter 1

How to do it...

The first example that we are going to create is going to be some simple glass. As before,
right-click in the appropriate subfolder of your Content Browser and create a new material.

Here's how we go about it:

1.

2.

AL/ Utied

File Edit As:

e

Let's name it with a pertinent name, something like M_sampleGlass, as that's

what we'll be creating!

Open up the material editor, and focus on the Details panel. That's the first area
we are going to operate on. Make sure you have the main material node
selected—if you haven't created anything else, that's the only element that should

exist on the main editor graph:

& WiOrngerIaeto =V

S ProEstsattnge = ContentBroweer

s ¥ 8

Coiestore| (VERTETe)

3. Having the main node selected, you'll be able to see that the second editable
attribute under the Material section of the Details panel is the Blend Mode. Let's

change that from the default value of Opaque to the more appropriate
Translucent one as follows:

[33]

Physically Based Rendering Chapter 1

4.

5.

6.

4 Material

Material Domain m

Opaque
Decal Blend Mode p45sked
Shading Model

Two Sided

Use Material Attribu [}

After this change has happened, you'll note that several options have been
grayed out inside of the main material node. We'll come back to this shortly.
Without leaving the Details panel, you can now scroll down to the
Translucency section of the main material node. You should be able to find a
drop-down menu named Lighting Mode, which we'll need to change from the
default value of Volumetric NonDirectional to the one named Surface
Translucency Volume, as shown in the following screenshot:

4 Translucency
Screen Space Reflec [
Contact Shadows .

Lighting Mode Surface TranslucencyVolume v sl

Directional Lighting

Apply Fogging

Volumetr
R L gl urface TranslucencyVolume N
Surface ForwardShading
v

If you hover over each of the options inside of the Lighting Mode drop-down
menu, you should be able to take a look at their description. You'll note that some
of the options are meant to be used with particles, while others are meant for 3D
models. That's the reason why some of the material attributes were previously
grayed out— some options don't make sense to be used if we are going to be
applying the material to a particle, for example, so these are left out.

With that out of the way, let's now attach a Constant4Vector to the Base Color
node and give it an interesting value. I'm going with a bluish tone, as we'll be
creating a glass and they usually have that kind of tint.

[34]

Physically Based Rendering Chapter 1

Why a Constant4Vector and not a Constant3Vector, as we used last time?
This new type that we are using includes a fourth parameter, which can
be used as an alpha value, something very useful for glass-like materials
as you'll see for yourself in a moment.

7. Without leaving the Constant4Vector behind, set the alpha value to something like
0.5. Don't go all the way with this parameter! Setting it either as a 0 or a 1 would
make our future material fully transparent or opaque, so choose something in
between. Plug the value into the Base Color material node as follows:

Color Picker X

Drag & drop colors here to save n [sRGB Preview
Old

New
Q)

4 Advanced

R 285067 3] 192528309

fey 0747693 m-
A 0.869792
Y 0.869792

Hex Linear [EElsIgv s

OE{EY G2E1FO7F

8. Now it's time to plug in the alpha value of our Constant4Vector into the Opacity
slot of our material. Drag from the pin of the Constant4Vector into an empty
space in the main graph and release the left mouse button. A contextual menu
should now appear, and you want to type mask. Selecting ComponentMask is
what we want to be doing now!

[35]

Physically Based Rendering Chapter 1

9. With the component mask selected, let's take a look at the details panel. In there
you'll be able to select which of the four components from the Constant4Vector
node you want to use. For our case, as we'll be driving the opacity through the
alpha, let's just tick the last option.

10. Finally, connect the mask to the Opacity pin. Click on the Apply button and save
the material. The preview window may take a moment to update itself, but once
it does we should be looking at a translucent material like the following:

0.29,0.75,0.87,0.5 A (“M_sampleGlass
® @ Base Color
O Metallic
O Specular
O Roughness

Mask (A) ¥ ' O Emissive Color

® ® —— @ Opacity

O Normal

O World Position Offset

o"ees

5 Details 1) Parameter Default:

4 Material Expression Component Mask

Search Details = .

4 Material Expression Component Mask
i O
G
. O
A

+ =

4 Material Expression

pese ——

[36]

