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HIGH BREAKDOWN RANK-BASED ESTIMATES
FOR LINEAR MODELS

William H. Chang, Ph.D.

Western Michigan University, 1994

In this dissertation we are concerned with the linear model y  = 2^' + 6;, i = 1,

..., n, where X; is a p-dimensional vector of known constants, is a p-dimensional vector 

of unknown parameters, and e 's are random errors. The least squares estimates fit the 

linear model qifite well, when ê 's are independent and identically distributed with N(0, a~) 

for some a  > 0. Unfortunately, the least squares estimates may be spoiled by small but 

reasonable deviations fi"om normal structure (Huber 1972, Andrews 1974).

In 1983, Sievers proposed the general rank estimates by rninimizing the dispersion

function D (^) = ^  b;j | Zj - ^  | , where weights b  ̂are functions of X . Naranjo and
i<j

Hettmansperger (1990) proved that for appropriate weights, the influence function of the 

Sievers's general rank estimates is bounded in both the X and Y spaces, and the 

breakdown point e* s Vs . The estimates downweight outliers indiscriminately in the X 

space, even if the point may fit the model.

In this dissertation, we extend the work of Sievers (1983) by defining the weights 

as functions of both X and Y . We derived the asymptotic distribution of the estimates. 

A high breakdown point of 50% for the estimates has also been proved.
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CHAPTER I 

INTRODUCTION

Linear model is one of the most popular models used in statistical analysis and 

statistical experimental designs. In this thesis, we are concerned with the following 

linear model

yj = 2Çj'^ + 6i, i = l ,  ...,n, 

where is 2  ̂ a p-dimensional vector of known regression constants, ^  is a p-dimensional 

vector o f unknown parameters, and e 's are random errors. There are two standard 

assumptions for this model: e/s are independent and identical distributed with some F, 

and the F is normally distributed with N( 0 , ) for some a > 0.

The least squares estimates, introduced by Gauss and Legendre (Plackett 1972, 

Stigler 1981), are the most popular estimates. It fits the linear model quite well, when the 

standard assumptions are held. Unfortunately, the least squares estimates may be spoiled 

by small but reasonable deviations from normal structure (Huber 1972, Andrews 1974).

Because real data usually do not completely satisfy the standard assumptions, the 

quality of the statistical analysis based on the least squares estimates can be dramatically 

affected (student 1927, Pearson 1931, Box 1953, and Tukey 1960). Hample, Ronchetti, 

Rousseeuw, and Stahel (1986) thought that routine data contains 1% to 10% gross 

errors.
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Because the standard assumptions are frequently violated in the real world, the 

field of robust statistics has been developing rapidly in recent years. These robust 

estimates are generally highly efficient compared to the least squares estimates on data 

which meet the standard assumptions, but are much less sensitive than the least squares 

estimates for data with outliers.

In 1972, Jaechel proposed the regular rank estimates by minimizing the dispersion 

function defined as

D (P )  = Ê  a( R( Yi - 2̂ ' â )  ) (  Yi -  2Q' â ) ,
i - l

where R(uJ denotes the rank o f û  among Uj, u , , ..., u„ and a(l) < a(2) g ... g a(n) 

is a set of scores such that

Z  a(i) = 0 .
i - l

McKean and Hettmansperger(1976), (1977), (1978), Hettmansperger(1984), 

McKean and Sievers(1989), McKean et al.(1989) further extended Jaechel's approach. 

These estimates are more robust than the least squares estimates. The influence function 

of these estimates are bounded in Y space, but theY are still sensitive to outliers in X 

space.

In 1983, Sievers proposed the general rank estimates which are obtained bY 

minimizing the dispersion function defined as;

D (P )  =  Ê  bjj I Zj -  Zj I ,
i -1

where b̂  are weights which are functions of X , and residual Zj is defined as
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Zi =  y ;  -  X ;' &  .

In 1990, Naranjo and Hettmansperger proved that for appropriate weights, the 

influence function of the Sievers's general rank estimates is bounded in both the X and Y 

spaces. And the breakdown point o f the Sievers's general rank estimates e* < Vs. The 

Sievers's estimates downweight outliers indiscriminately in X space, even if some outliers 

may fit the model.

In general, we can divided the weight functions into three groups. The first group 

consists o f constant weight functions. Specially, when weight functions are equal, the 

dispersion function is equivalent to Jaeckel's dispersion function with Wilcoxon scores 

(Hettmansperger and McKean, 1978). VYith such equal weights, the analysis and 

calculation o f the coefficients can be greatly simplified. Because weight functions are 

constants, the outliers in X space are not able to be downweighted, and the influence 

function of these estimates are not bounded in X space.

In the second group, the weights are functions o f X. With these weight functions, 

we are able to downweight high leverage points, the weights can be chosen so that their 

influence functions are bounded in both the X and Y spaces. Therefore, the estimates 

obtained by models with these weight functions are more robust than ones from the first 

group.

The last group consists of the weights which are functions of both X and Y . 

The weight functions which will be used in this paper belong to this group. Because some 

high leverage points could be good points, using these weight functions we will be able 

to only downweight the bad leverage points and keep the good leverage points. Such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

weight functions provide us a possibility o f obtaining robust estimates with high 

efficiency.

Krasker Welsch(1982) stated: "Any down weighing in X space that does not 

include some consideration for how the y values at these outlying observations fit the 

pattern set by the bulk of the data cannot be efficient." In this paper, we will extend the 

work of Sievers(l983) by defining the weights as a function of both X and Y . The goal 

that we seek to achieve was stated by Yohm and Zamar(1988): One of the goals o f the 

robust r^essio n  estimation is to achieve simultaneously the following three properties: 

a breakdown point o f roughly 50%, a bounded influence function, and a high efficiency 

vs. the least squares estimates when F is Gaussian.

In the following chapters, we will discuss the estimates obtained by minimizing the 

dispersion function with the weights which are functions of both X and Y . We will 

derive the asymptotic distribution o f the estimates. A high breakdown point of 50% for 

the estimates will also be proved.
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CHAPTER n

ESTIMATION OF THE REGRESSION COEFFICIENTS

2.1 Notation

In this thesis, we will discuss the linear model, the estimates of the regression 

coefScients, and some robust properties associated with the estimates. In order to derive 

these robust properties, we first need to state some notations and assumptions which will 

be used through this thesis. The linear model that we will use can be expressed as:

Yi = X i'â  + €i, i = 1,. . . ,  n, 

where y; is an observation, is a p-dimensional vector o f known regression constants, 

and is a pxl vector of unknown parameters, , € 2  . . . ,  €„ are independent and 

identically distributed random variables with density f.

Let X be a nxp design matrix which is defined as

X =

s'.

Let Y beannxl  vector of observations and E be an nx 1 vector of random variables

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which are defined as:

y. «1
>2 2̂

i  - and E. -

. y»

Then, we can express the above linear model in the matrix form;

Y = + E .

As we proceed, we will make further assumptions about the design matrix X and the 

density f  of random variables. If  desired, we can further define the random variable 6; 

as:

6; = a  + T ; ,  i = 1, . . . ,  n, 

where a  is an intercept parameter. In this way, we can take X to be a centered design 

matrix with out loss o f generality. This will be proven convenient later.

2.2 The Geometry o f the Estimation Procedure

Once having the linear model, the next task that we are facing is to find a method 

to estimate the vector of the regression coefficients . In this thesis, we will estimate 

J. by minimizing the dispersion function defined as:

D (P )  =  E  by I Zj -  Zi I ,

where Z; is the residual which is defined as z,- = yj - ^ , and by are the weights

defined as follows:
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Let i|f(t) -  1, t, -1, as t > 1, -1 :< t < 1, t < 1 and define the weights

bjj = ilf
c mj nij

where ^  is an initial estimate o f , the true parameter, m̂  is defined as

mj = Tj;
(X . -  i t . ) '  S ."' (X. -  i t . )

The denominator in m; is a measure of the leverage of the i* observation. and S  are 

location and covariance matrices o f X , respectively. The tuning constants b and c are 

cutoff points for outliers. The parameter a~, which is the variance o f € ;, rescales the 

residuals in the $  fimctioa The variance a~ can be estimated by MAD which is defined 

as:

MAD = 1.483 med | y; - X;' ^  - med ( y; - 25;' ) 1 •

The MAD is a consistent estimate of o~ for normal errors, see Rousseeuw and 

Leroy(1987). In Chapter VI, we will discuss these constants in details.

From now, we assume that we have an initial estimate, and hence a set o f weights 

of the above form. Note that the weights are always between 0 and 1. In order to discuss 

the geometry of our estimation, we first define the function:

IIüIr = E  bij 1 Uj - Uj 1 .

The function IuIr is a pseudo norm which has the properties listed below.
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Theorem 2 1

For all vectors u , v and scaler k, we have the following properties:

1- i n  + v Ir ^ I u Ir + lyHr .

2.  l i k u i R  =  | k|  IIu Br .

3. BnlR 2: 0 .

4. Dü IIr = 0, then Ui = Uj, for alii and j.

5. il u + k 1 1r = B Ü 1r, for all k e M, 1 is the vector whose components are all ones.

The proof o f these properties is straight forward. In terms of this norm, the 

distance between two vectors ü and y is II u - y  |r . Our estimate of ^  is i .  which

minimizes I Y - X ||r , the distance between Y and column space of X. The 

existence of ^  will be proved in the Theorem 2.3 below.

It is easy to see that the dispersion function D(£.) is the pseudo norm defined 

above. In the next theorem, we will use this pseudo norm and its associated properties 

to prove that this dispersion function D(^) is a continuous and convex function of . 

Theorem 2.2

D(^) is a continuous and convex function of 

Proof.

The convexity of D(^) follows fi'om the follovdng inequality:

D [ t &  +  ( l - t ) ^ J  =  I I Y - X [ t â i +  ( l - t ) & ] l l R  =

= II tY  + ( l - t ) Y - t X &  - ( l - t ) X ^ J I l R  <

 ̂ t | | Y - X â i l l R  +  ( l - t ) l  Y -  X 1 , | | r <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



^ tD (â ,)  + ( l - î )D (â 2 ) ,  

for all t e [0, 1],

So D[ t â ,  + (1 - 1) â . ]  ^ t D(^.) + (I - 1) D (& j, for all t e [0, 1],

By the definition, D(£.) is a convex function of

Because D(^) is sum of absolute value functions, D(^) is continuous. □

The existence of a minimizing value o f the dispersion function D(^) is a 

consequence o f the above theorem. We will state it in the following theorem.

Theorem 2.3

A minimizing value o f D(£.) always exists.

Proof.

Since D(^) is continuous and convex, a minimiâng value of D(^) always exists. □

2.3 The Gradient o f D(^)

Denote the negative gradient o f the dispersion function D(^) by

s m  = - v D c m .

It is more convenient to use the gradient S(^) than the dispersion function D(^) in 

theoretical discussion. Based on the definition above, we can easily prove the next 

theorem.

Theorem 2.4

S(â) = E  bjj sgn( Zj - Z;) ( Xj - & ).

Note that the above gradient can also be expressed as:
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S(£.) = 53 E  bij sgn( Zj - Zj) ( 2̂  - 2S ) .
i - l  j - l

In terms of the gradient, ^  is a solution of S(P_) = 0. These equations are the analogues

of the normal equations which define the least squares estimates.

Corollary 2.5

^  is a solution of -  Q.

Assumption A1

^  is regression and scale equivalent.

Under Assumption A l, ^  is also regression and scale equivalent as the following

theorem shows.

Theorem 2.6 

Let Zj(^) = Yi - 

Then

1. i ( Z a + 0 ) )  = 1 ( Z ( #  + 0 ,  forall 0 eRP.

2. l(cY ) = c 1 (Y ), for all c > 0 .

Proof.

S(fi. +  0) =  E  by S g n { [ (  Yj -  0 )  - X j' ^  ]  -  [ (  Yi -  X j' 0 )  -  X ;' f i .  ] }  (  Xj -  X; )
x j

= 0 . □  

Remark 2.7

The regression equivalence implies that in theoretical discussions, we can assume that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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£. = 0 without loss of generality.
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CHAPTER in

ASYMPTOTIC LINEARITY

In 1983, Sievers proposed a linear model with weights bjj being functions o f X- 

As we discussed early, Naranjo and Hettmansperger(1990) proved that for appropriate 

weights, the influence function of the Sievers's general rank estimates is bounded in both 

the X and Y spaces, and the breakdown point is less than or equal to Va.

Because such weights bjj downweight outliers indiscriminately in X space and 

some leverage points could be good points, we will use the weights which are functions 

of both X and Y in this thesis. With these weights, we will be able to only downweight 

bad leverage points and keep good leverage points. The weight functions also provide 

us the possibility of obtaining robust estimates with high efficiency.

In this chapter, we will discuss the asymptotic linearity with by being function of 

both X and Y . For convenience, we assume that the true parameter = 0 without

loss of generality . It will also be convenient to reparameterize the model as ^
Vn

in this chapter.

As usual, before deriving the asymptotic linearity we first define several notations 

which will be used through rest part of this thesis. These notation will be proven useful 

for our theoretical development later.

12
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Definition 3 1

1. D.  =  { A  : IAJ < c, k =  1 , ,  p }, where c  >  0. 

2

3. R ( A r ' = n ':

4  £ ^ p x p  =  [ C w ] , C u  =  E  Yij bij (  JCjk -  X jj,)  ( X j i  -  Xa ) ,
i<j

where Yÿ = , Bÿ(t) = [ b;j 1(0 < y; - % < t) ] .  The existence of
\ ( .  b;j ) ^

Bÿ'(O) will be proven below.

5. Xg = ( - — J „ ) X ,  where J„ is an n^n matrix o f ones.

6- lull = ^  I Uj 1 , for all u 6 RP, for all p 6 N.
i-1

Before deriving the asymptotic linearity, we first need to show several lemmas. 

These lemmas will be used in the development of the asymptotic linearity later this 

chapter. The next lemma can be found in most calculus text books.

Lemma 3.2

Suppose that functions g(y, t) and g,'(y, t) are continuous on [a, b] x [c, d], and for 

all t e [c, d], we have y = a;(t) e [a, b] and « /(t) exists, i = 1,2.

Then we have the following;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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= &'(y, t) dy + « '2(1) • g[ « 2(1), t ] - a 'i(t) - g [ai(t), t ] .

Further assumptions on the weights and the density function of the random 

variables are needed, and they will be stated below.

Assumption A2

1. bjj are continuous with respect to y; and yj, for all i and j.

2. f  is continuous and bounded.

Recall that in Definition 3.1, we defined;

Bij(t) = Eg [̂ bjj 1(0 < yi - yj < t) ] .

The derivative of B;j(t) is continuous under the above assumption. In the next two 

theorems, we will discuss some properties of Bjj(t). These properties will be proven very 

useful in our theoretical development later.

Theorem 3 .3

Assume A2 holds. Then B;j(t) is continuous, for all t.

Proof.

By A2 and Lemma 3.2. □

Theorem 3.4

Assume A2 holds, and let ty = ( 2  ̂-X;)'  —
Vn

Then

There exists constants Çy such that |5y| < |ty| and E^(byWy) = -tyBy'(Çy). 

Proof.
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Because W;j= 1, -1, 0 as ty < y, - y; < 0, 0 < y,- - y; < t^, otherwise, 

we have the following equation:

Ej^(byWg) = I  b ijf^ d Y - f  b g ^ d Y .
tg<yj-y;<0

When tg > 0,  E^(bgW g) = -Bg(tg) = Bg(0) - Bg(tg) = - t g B g '( ^ .

The result is the same, when tg < 0. □

Followings are assumptions for the design matrix and for the regression constants. 

Recall that in the definition 3.1, we have defined the centered design matrix:

( I .  - - J J X ,n

where J„ is an nxn matrix o f ones.

Assumption A3

There exists a positive definite matrix T such that — X \  X, -  T .
n

Assumption A4

E  (%  -

Noether's condition holds, i.e. — ---------  —  -  ~ , as n -  «  , for all k.
max (Xjj, - Xj.)^
I

Remark 3 .5

1 ^Note that Assumption A3 implies that -  "  M < ~ ,  for some M > 0,
n i-i

for all k. Therefore, by A3 - A4, we have 1  max ( Xĝ - Xu -  0, as n ^ «>, for
n isiiii

all k. Hence, we can conclude that —  max | Xg, - Xj. | -  0, as n ~ , for all k.
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We also need to assume that the initial estimate o f ^  is -Jn- consistent, and it 

will be stated in the next assumption.

Assumption A5

d
- £o ) -  N ( 0 , S ) ,  where ^  is the true parameter and S  is a positive 

definite matrix.

Since the weights are functions o f regression constants, the response variables, 

and the initial estimate o f ^ , it will be convenient to use the notation below in our 

theoretical proving:

bij = g(Xj, 2%, Yi, Yj, = g i j ( ^ ) .

Using the above notation, we have the following lemma.

Lemma 3.6

gij(l^) = %(&) + V gij'(i) • ( ) ,  i  is in between and

Proof.

By Mean-Value Theorem (P.355 of Apostol, 1974). □

Assumption A6

-  E  I %  - xj,| = 0 (1 ) , for all k.
n  i -1

In the next three lemmas. Lemma 3.7 through Lemma 3.9, we will discuss several 

expected values which will be used in our development of the asymptotic linearity in 

Theorem 3.10 later.
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Lemma 3.7

Assume A2 - A4 hold, and let tjj = ( Xj - 2̂  .
v/n

Then

1. For all e > 0, there exists an N, such that | E( gj gu ) | < e , for all n > Nj.

2. For all e > 0, there exists an N, such that | E (g j Wg)] < e ,  for all n > N 2 .

Proof.

Without loss o f generality, we assume that; tÿ > 0 and t̂  > 0, where indices i , 

j , 1 are all different. Then we have:

I E (  g j  g u  W j j  W J  I =

= I E[ gj gE I( 0 < yj - y; < tjj ) I( 0 < Yi - y, < tu ) ] I <

< I E[ I( 0 < yj - y  < tjj ) I( 0 < y; - y, < tu ) ] I =

.» Yi yytij
= f  f  f  dyjdyi d y .

-» yi-ts y;

Therefore by A2 - A4, for all s > 0, there exists an Nj such that for all n > N j ,

1 E( gj Eh Wjj Wu ) 1 < e. Hence the first condition is true.

For the second condition, we can again assume without loss of generality that tÿ> 0 .

Then we have the following inequality;

I E( gj Wjj ) I = I E[ gj I( 0 < y  - y  < tjj ) ] I <

< I E[ I( 0 < y  - y  < tjj ) ] I =

.00 yr'ij
= /  /  f if jd y d y .
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So once again by A2 - A4, for all s > 0, there exists an N2 such that 

I E( gÿ ) 1 < e , for all n > Nj. Hence the second condition is true. □

Lemma 3.8

Assume A2 - A5 hold. Let tÿ = ( 2̂  - Xj )' —  , and
A

Uij = V g i/i) ' • ^  - & )

Then

1. For all e > 0, there exists an Nj such that for all n > N j ,

n  ̂ E  E  E  E  c Xjt - Xj, ) ( ) E(  Uÿ gj„ Wÿ )
i - l  j" l  1-1 %n-l

( i . j ) » C 1 , m )

2. For all e > 0, there exists an N, such that for all n > N j ,

n '  ÊÊÊÉ ( Xjfc -  Xj^ ) ( x ^  -  X ,. ) E(  Uÿ Wÿ ) E(  )
i“l j»l 1*1 in*l 

( i , j ) » ( 1 . n  )

< e .

< s .

Proof.

1. Without loss of generality, we assume that tÿ > 0 and t̂ n > 0 , where indices 

i ,  j ,  1, m are all different. Define B ÿ ^ ti j , t i„ )  = E( û j g,„ Wÿ W^, ) , then 

E ( U ÿ g t a W ÿ W t a , )  =  E [ U j j g ^  l ( 0 < y j - y ; < t ÿ )  I (  0  < y „  -  y ,  <  t b„ )  ]  =

"  ® /  /  /  /  ^jSin.^fi^fmdyjdyidy„dy, = tÿ , t^, ) =

^  Bÿ w( ÿ̂ , ) , l îjl S 1 tÿl and |  ̂ |tlml •

The last statement holds, since V Bÿkn( Çÿ, Cim ) is continuous with 

V Bÿ i^( 0 , 0 )  = 0 . Therefore by A3 - A4, we obtain the conclusion.
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2. Without loss of generality, we assume that tjj>0, where indices i ,  j are different. 

Define BUy(tjj) = E(UijWjj), then 

E( Ujj Wij ) = E[Uij I( 0 < Yj - y; < tij ) ] =

— TrSi
= E I  J  Ujj ^ ^ dyj dy; =

— y;

= BUij(tjj) = tjj BUij'(^ij), where |?;j| < | t;j| .

The above statement holds because u  ̂= V  g;j'(£) • Vn ( - &  ) . Therefore

BUij'(^ij) is bounded by A5.

Similarly without loss of generality, we assume that t,„>0, where indices I and m 

are different. Define BG^O J  = E( ĝ ,, W^, ) , then 

E( gta Wto, ) = E[ gte I( 0 < y„ - y, < tfa, ) ] =

= I  g tafj4dy„dy, =
>’i

= B G J t J  = tta BGta'(^im), where ^ I timl •

Note that we used 0 ^ g^, < 1. Therefore, BG',m(W is bounded.

Hence the result follows from Assumption A3-A4. □

Lemma 3.9

Assume A2 - A5. Let tÿ = ( 2^ - 2̂  , and
\/n

Uij = V gÿ 'd) • - âo ) ■

Then

1. For all e > 0, there exists an N, such that | E( Uÿ U[„ Wÿ ) | < e ,
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for all n > N i .

2. For all e > 0 , there exists an N, such that | E(UjjWÿ ) | < e, for all n > N ,.  

Proof.

1. Without loss o f generality, we assume that t̂  > 0 and th, > 0 , where indices 

i , j , 1, m are all different.

Then |E(u^U h.W gW h.)| =

=  I E [ U i j U b n  l ( 0 < y j - y i < t i j )  l ( 0 < y ^ - y , < t ^ n ) ]  | =

=  I E /  /  /  /  ^üUhn^^^Ldymdy,dyjdyi | . 
— y, -- j’l

So the result holds by A5.

2. Without loss o f generality, we assume that t  ̂> 0, where indices i and j are 

different.

Then | E(u^j W^) | = | E[Ujj l ( 0 < y j-y ;< tg )  ] |  =

= I E J  J  Uij ^ ^ dy, dy; | .
-» }'i

By A5, the result holds. □

Now, we are ready to derive our main result of this chapter, the asymptotic 

linearity, in the next theorem. Recall the definition o f R(A) in the beginning of this 

chapter, we can rewrite the process R(A) as:

R ( A r  =  E  b j j ( X j  -  X i ) W i j  +  E  C n  ^  .

It is easy to see that the first term is a function of S(A), and the second term is a linear
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function of —  . If we can show that || R(A) 1 - 0 as n - « ,  then the first term is
v/n

approximately equal to the second term, the linear function of —  , when n is sufiBciently
Vn

large.

Theorem 3 .10

Assume A2-A6 hold. Let 6 = —  .
v/ï

Then

sup I E ( A )  II -  0  •
A. CD;

Proof.

Let tÿ(A) = (2^ - 2Çi)' —  , then for all k,
v/n

R k ( A )  =  n  M  E  bij (  Xjk -  ^  )  W ÿ  +  E  Yij bÿ  (  XjT- -  Xik )  tjj ]  =
i < j  i < j

=   ̂ E E  (Xjlc -  +  Y i j t i j b i ) .
i -1 j  -1

First, we will show that for all s > 0, there exists an N such that for all n > N,

Eg (̂Rk) < s , for all A  6 Dg and for all k.

_2
For all k, E^(Rk) = n '  £  ( Xj, - x̂ , ) [ E^( Wy ) + yy ty E^( bjj ) ] =

= E  ( Xj, - Xi, ) ty [ By'(O) - By'(Çy) ] <
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< n E  ( Xjt - Ÿ  .
i<j A

E  sop I B j j '(O )  -  B i j '( ^ i j )  I , by Cauchy inequality.
j<j i<j

Because Z  - %&) = n E  (x& - x J - , ^  t;/ = A' X ', X, A (3.1)
»<j i-1 »<J

and for all e* > 0 , sq> | Bg'(O) - B ÿ '(Ç jj)  I < s* ,
»<j

for all A  Ç Dc J for o sufBciently large.

Therefore for all e > 0, there exists an N  such that for all n > N,

IE^CR^I <
i-1  \

E  sup \ B i / ( 0 )  -  B g '( ^ g )  I <  8 .
i-1 i< j

So for all 8 > 0, there exists an N such that for all n > N, E(RJ < 8 , for all 

A  s  Dg, by A2 - A3 and Theorem 3.3.

Next, we will show that for all 8 > 0, there exists an N such that for all n > N, 

Var^(Rj.) < 8 , for all A  G Dg, for all k.

For all k, Var^(RJ = n^ Var^[ E  E  (Xjk - Xfc) ( bjj Wij + Yij tjj bjj ) ] =

=  E  E  (  -  Xt)“ Var^( bij Wij +  Yij % bij ) +

n n n n
+ n ' E E E E  - x , ) ( x ^ -  X, ) -

1 — 1 in - 1 
( i . j ) • ( : , la )

Cov( bij Wij + Yij tij b i j ,  bk^ W|^ + Ybn t ta  b ta  )  =

= n " E E ( X j k  - X,)' [ Var( by Wy ) + Yij" ty- Var( by) +
i - 1 j - 1

+  2  Yij ty COV( by W y , b y ) ]  +

22
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+  E E E E  (Xjk -  -  x J [ C o v ( b y W y .  b ^ W ^ )  +
i-1 j-I 1-1 m-1 
( i . j ) # ( 1 . m )

+  Y im tta C o v (b ijW ÿ ,  b ta )  +  Yij tij C o v (  bjj, b h . W b , )  +

+ ïijïlmtijtlmCOV(b.j,bta)].

For the first part, we have:

Because Var(bij Wjj), Var( bjj ), and Cov( bjj W^, bÿ) are bounded, therefore for all 

e* > 0, there exists an N  such that for all n > N,

l^ term  =  n ^ ^ ^  - xJ^VarCby W - )  <  e * ,
i »lj -1

2""term = n ^ Ê Ê ( ^ -  x j - Yf tĝ  Var(b.j) ^
i ■ 1J -1

s  n ' - m a x [  Y i j ^ t / V a r ( b i j ) ]  E  (Xj^ -  <  s * ,
:'j i-1

a  a2̂  ̂f ^  *-”3
3 ' "  t e r m  =  n ^ E E  ( X j k  -  x , ) ’- 2  Yij tjj C o v (  ^  W j j  ,  b ^ ) ]  ^

i - 1 j - 1

^ 2 n max I Yij tjj Cov( bg , ^  ) | E  ( T̂c '  x j "  < 8*.
i . j  j - 1

For the second part, we will use Lemma 3.6 in the following proof:

F o r  t h e  t e r m  E E E  E  -  x , ) ( x ^  -  x j  C o v ( b y W y ,  b ^ ^ W , ^ )  =
i - 1 j - 1  1-1 XD-1 
( i , j )  » ( 1 , m )

= n-^ E E E E  (Xp: - X j ( x ^  -  x , ) ( C o v [ g i j ( & ) W i j ,  g J & ) W i ^ ]  +
i -1  j - 1  1-1 ai-1 
( i . j ) » (  1 , m )

+  C o v [ V g / ( 0  ■ ( f i ,  -  â o l W j ,  g « ( & ) W ^ ]  

+  C o v [ % ( & ) W ; .  V g ^ U )  • ( â ,  -  & ) W ^ ]
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— „-3l^^term = n'  ̂ E E E E  (x» - x , ) ( x ^  - V  Cov[gg(&)W ^, g J & ,)W ^ ] .
1*1 Q*1

( i . j )  ,  ( l . m )

Cov[ âj(âo) W;j, gkn(&) w,^ ] = 0 , when indices i , j , 1, m are all different.

If at least two indices are the same, for example, i = m, then

r te r m  = n ^ E E E  (x,-, - %J(x& - xJC ov[gg(& JW g, g a W W J  <
i * 1 j  " 1 1*1 

j '  1

<  m a x  i Cov[ g i j ( & )  W j j ,  g s ( & , )  W h  ]  I ( n ^  Ê  I X j k  -  x ^ l  ) ' -

i . j . I  i-1

Because Cov[ g ; /^ )  , gu(&)) Wg ] =

= E (gg& W gW J - E (g ijW ;j)E (& W J,

according to Lemma 3.7, A2 - A4 and A6, for all e’ > 0, there exists an N* such that 

l**term < e* for all n> N * .

Similarly, it can be shown that T'term < e* in other cases.

By A5, letting -lii = V gjj'(i) ' ( - âo ) ,  then
yfa

2 " 'term = E E E E  ( %  '  Cov[uyW;j, g U & )W ^ ] =
i * l j * l  l* l i n * l
( i . j > '  C I . a> )

-  n  ̂ E E E  E  ( Xjk - Xfc) ( X ^  - x j  [ E (  Ujj g,„ Wjj W ta ) -
i * 1 j * 1 1 " 1 IB * 1 
( i , j ) * ( 1 . m )

-  E ( U y W y ) E ( g , „ W ^ ) ] .

By Lemma 3.8, for all e*>0, there exists an N* such that 2'’‘*term<e* for all 

n> N *.
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Similarly, we can show that 3'̂ '' term < e* .

4"^tenn = n - ' È Ê Ê Î :  ( x > -  - x j  C o v ( ^ W . ,  ^ W ^ )  =
i - 1  j - 1 1-1 m - 1 V n  V n
C i . j )  '  ( 1 . 0 )  ^  ^

= ^ ' * t é è é  (:9k - x j ( x ^  - x J[E (ugU h .W gW ^) -
i - l j - 1  1-1 a - 1  
( i . j ) ' ‘ ( l . m )

-  E ( u y W g ) E ( u ^ W y , ) ] .

By Lemma 3.9, for all e*>0, there exists an N* such that 4*term <e* for all 

n>N*.

Hence by the proof above, for all e’*>0, there exists an N** such that for all 

n>N *‘, the term

n " E E E E  (Xjk -  -  x , ) C o v ( b i j W g ,  b ^ W f e )  <  £*•.
i - l j - 1  1—1 S3—1 
( i . j > » C 1 . m )

Similar to the proof above, we can also show that;

For all e*>0, there exists an N* such that for all n>N*, the term

n   ̂ Ê Ê E  E  ( Xjk ■ %k) (  Xmk -  x j  Yhn t t a  C o v (  bjj , b ^  ) =
i - l j - 1  1-1 S3-1 
( i . j  ) » ( 1 . m )

=  Ê Ê Ê Ê ( Xjk -  Xfc) (  Xink -  Xfc) Yim tbn [ C o v (  W ;j , gfe, )  +
i - l j - 1  1-1 S3- 1 
{ i , j ) » ( 1 . m )

+  J -  C o v (  gij  W i j , U ,„  )  +  - L  C o v (  Uij W g ,  g h , )  +  -  C o v (  Uij W j j ,  u ^ , )  <  
\/n n

< e*.

Next, we look at the term:
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n n n n
-̂3

n  E E E E  ( Xjk -  X J  (  -  x j  Yij Yhn tij îlm C o v (  b;j , b ^ ) .
i * l j * l  1*1 xs*l
( i . j  ) '  ( 1.  Œ )

Because Cov( bjj, b̂  ̂) =

= Cov( gg , gim ) + —  Cov( gj , Ujjn ) + -E  Cov( gj , gtn ) + — Cov( gj , Û „ ) ,
/n  /n  ^

therefore by A3, for all e*>0, there exists an N* such that the above term < e* for

all n>N *.

Hence for all e > 0, there exists an N  such that Var(RJ < e , for all n > N, for all 

for all k.

By the proof above, || || -  0 ,  for all A  e , for all k.

Therefore siq> | R( A) | 5  p siç | R,, || -  0 . □
AeD; A.eDj

k

Remark 3 .11

_3
The Theorem 3.10 implies that n * [_S(0) - 2 Cn .& ] is a linear approximation of 

_2
n '  for A in a local neighborhood o f 0 . Thus we have obtained an asymptotic 

linearity result.

The Remark 3.11 is the key result o f this chapter. Since S(A) is a complicated 

function of A , it is not easy to derive properties o f A based on 5(A)- On the other

3

end, [_S(Q) - 2 A ] is a linear approximation of n - 5(A) for A in a local 

neighborhood of 0 . As we will see in the next chapter, we will use this asymptotic
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linearity to derive the asymptotic properties o f ^  .
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CHAPTER IV

ASYMPTOTIC DISTRIBUTION OF

In last chapter, we discussed the linear appro>dmation of the gradient S(.P). 

Based on this linear approximation, we will derive the asymptotic distribution of ^  , the

estimates of the regression coefficients. The asymptotic distribution will play a very 

important role in the theoretical development of the testing and confidence regions for the

estimates. Ifwe assume the true parameter ^  = 0 ,  and , then we have the
v/n

following approximation:

n 'M S ffi) - 2 £ ,  A )  .  m 'l A )
i/n /n

according to Theorem 3.10, when n is sufficiently large.

Because the process S(— ) is approximately linear, it would seem then that the
/̂n

dispersion function D( —  ) should be approximately a quadratic function. To see this, 
vÆ

we let

= - p [ 2 £ . ^  - S (0 )] , I ^ d ( A )  . s ( ^ ) .

and define:

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

= 1  _ g _ Q (A ) £ £ 3 ^  = i  J _ D ( A )
a A. n d é .  ^  ’ a A. n. d é .  ^

Then we have a quadratic function:

Q i— ) ~ —  Cn —  - 12 hg sgn( Yj - Yi ) ( >̂  - 2Ç; )' —  + D(0)
y/n yn y/n Vn

and

D U )  = -  D( A ) , Q U )  = 1  Q( A ) .

Consequentially, we have the definition below.

Definition 4.1

Q U )  = n - U 'C .A  - n '^ E b ÿ S g n (y j - y J (X j - % ) ' A  + n'» D (0).
j< j

We will state the following obvious conclusions as a lemma.

Lemma 4.2

1. Â. minimizes D*(A) if and only if Â. minimizes D ( A ) .
Vn

2. Â. minimizes Q*(A) if and only if Â. minimizes Q( A ) .
v/n

Note that Â. is not an estimate. It depends, as does Q, on the true parameter.

However, it is a convenient tool for obtaining our results. The next theorem yields an 

asymptotic quadratic result for our dispersion function. It will eventually allow us to 

obtain the asymptotic distribution theory for Â.. We will use the technique of

Hettmansperger(1984) to prove the next theorem.
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Theorem 4 3 

Assume A 2-A 6 hold.

Then

P( sjq> I Q*(A) - D*(A) I ^ e ) -  0 , for all e > 0, and for all c > 0.
A.eD;

Proof.

Assume the true parameter A) -  Ü, and let = —  •

Because ^  ^  = 2 [ E  ^ (X j - X;)Wg + C. A  ] = 2R (A ),
3A dA. i<i ^

by Theorem 3.10, for all s > 0, we have:

P ( ^  (4.1)
dA. dA. pc

Let A  = t A , for all t 6 [0, 1], then

at t-i

According to (4.1) above, with high probability and for large n, we have;

s II A II sup II —5— - —  II II A II —  ^ £ , a.e. 
AâDj a A  @A pc

Next, we define h(t) = Q*(AJ - D*(A) , hence h(t) is differentiable almost 

everywhere, and by the last result we have | h'(t) | < e .

I
Hence | h(l) - h(0) | ^ y | h'(t) | d t .

0

Because h(0) = 0, and | h'(t) | < e , for all t, 0 < t < 1 ,
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we have | h(l) | < e .

So P( 1 Q*(A) - D*(A) I k e ) -  0 , for all A 6 D ,.

So P(sop I Q*(A) -D*(A) I s 8 ) -  0 . □
A.eDc

Because Q* is a quadratic function of A  , by differentiating, we are able to 

easily to obtain Â. which is a minimizing value o f Q*. For future reference, we will

state the result in the following corollary.

Corollary 4.4

Assume A2 - A6 hold, then

i - =  ^  v/̂  C.-J E  bjj sgn(yj-yi)(2^.-X i).
2  K j

We defined A, as an nxn matrix:

An = [ % ] ,  = -  Yij bij, E Y ik b i as i # j ,  i = j
k-1 
k # i

Based on the notation above, we can define the matrix as:

Q, =

Assumption A6

p
There exists a nonsingular Q such that — Q, - £  •

This assumption is the analogue in the regular R estimates case if — X' X
n

converging to a positive definite matrix. We will use the above assumption in deriving 

our asymptotic distribution.

The following theorem will yield the projection of the negative of the gradient of
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Q'(0) and hence of Â. ■ We will see that the projection of Â. is a linear function of

independent random variables. This result will greatly simplify the theoretical 

development of the asymptotic distribution later.

Theorem 4.5

1. h(Y) = n - E  ( 2%-2Q )bijSgn(yj-y;).
i < j

2- hp(Y) = E M h œ i y , ) .
k-l ^

Then

1. hp(Y) = n - ' t ' t  (Xj-Xi) Eft [bijSgn(yj-yi) | y J  .
i-1 j-1 ~

2. E[h(Y)-hp(Y)]^ -  0 .

Proof.

Assume the true parameter ^  = 0 .

_3
Because h(Y) = n  ̂ ( 2^ -g ;)b g S g n (y ;-y ;) ,

and let = E^(h(Y) | y J ,

then we have h^, = n "  E  (2^-2^) £« [ by sgn( y j - y j  | y J  .
i < j  ^

Eg [̂ bjj sgn( yj - yj ) | y  ̂] can be divided into following three cases;

Case 1 : k = i

\ [  bij sgn( yj - y; ) I ŷ  ] = E^[ \  sgn( y j - y J  | y J .

Case 2: k = j
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\ [  b i j  sgn( Y j  -  Y i  ) I Y k  ] = -  E^[b& sgn( Y i  - Y k  )  i Y k  ]  • 

Case 3: k * i and k j

bq sgn( Yj - Yi ) I Yk ] •

_3
So hpk = n 2 { jg  ( 2^ - Xk ) E^[ bjk sgn( Yj - Yk ) I Yk ] +

+  E  ( 2 Q - 2 ( k )  E «  [  bik s g n (  Yi -  Yk )  i Yk ]  +
i <k  ^

+  E  (  2 % - % : )  E r [ b i j S g n ( Y j - Y i )  1 Y k ]  } =

=  M  E  ( 2̂ - % k )  E «  [ b j k S g n ( Y j - Y k )  I Y k ]  +
j>k ^

+  E  (  2 ^ - % = )  \ [  bjk s g n (  Yj -  Yk )  I Yk ] } =

n
=  n : ^  ( Xj-Xk) E^[bjkSgn(Yj-Yk) I Yk] }

So hp(Y) = è h p k =  a :  Ê E  (2%-Xk)E.[bjkSgn(Yj-Yk) I Yk].
k - l  k-l j-1 ^

Next, we will show that E( h(Y) - hp(Y) )“ ^ 0 .

It is easY to see that E( h(Y) - i^(Y) ) = 0 .

Now, we are trying to show that for all s > 0, there exists an N such that for all 

n > N ,  E (hJX ) - V œ ) '  < G , for all k.

Since h,(Y) - h^,(Y) =

“  “ ^ E  E  ( %  ■ ^  )( 7  bjj sgn( Yj - Yi ) - E[ b  ̂sgn( Yj ■ Yi ) I Yi ]}  ~
i-1 i-1 2
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_ 3

= n '  E  (Xjk-Xik){bijSgn(yj-yi) - E[ ^  sgn( ŷ  - y; ) | y J  +

+  E[ bjj sgn( % - y; ) I yj ] } .

Therefore E( =

= n '"  E  (^ -x & y E { b ijS g n (y ,-y ;)  -

- E[ bij sgn( yj - y; ) | y;] + E[ bjj sgn( yj - yj ) | y,] f  +

+ E E  ( )( Xmk - %  ) E { bij sgn( % - y; ) -
i<i l<xa (i.j)f(l.a)

- E[ bij sgn( y, - yi ) I yi ] + E[b„ sgn( yj - yi ) | yj ]} •

• {btaSgn(y„-y ,) - E[ b^, sgn( y„ - y, ) | y,] + E[ b^, sgn( y„ - y, ) [ y„] } .

It is easy to show that;

For all e* > 0, there exists N* such that for all n > N*, the 1“ part < e*.

The 2"** part =

= E E  ( Xjk - x& )( Xmk - ) E{ bij sgn( yj - yi ) -
i<j l<m 

(i.j)f(l.m)

- E[ bij sgn( yj - yi ) I yi ] + E[ ^  sgn( % -y i) | %]) •

• {bta,sgn(y„-y,) - E[ b^ sgn( y„ - y, ) | y, ] + E[ b,„ sgn( y„ - y,) | y^] } =

= >1'' E E  (X jk-Xik)(X :nk-% )E{bijSgn(yj-yi)bi^sgn(y^-y,) -
i<j Km 

(i.j)'(l.m)

- bij sgn( yj - yi ) E[ b^ sgn( y„ - y, ) | y, ] +

+ bij sgn( yj - yi ) E[ b^, sgn( y„ - y, ) | y„ ] -

- E[ bij sgn( yj - yi ) I yi ] btn sgn( y . - y, ) +

+ E[ bjj sgn( yj - yi ) I yi ] E[ b,^ sgn( y„ - y, ) | y, ] -
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- E [ b j j S g n ( y j - y i )  I y i ] E [ b b „ s g n ( y „ - y , )  j y „ ]  +

+  E [ b i j S g n ( y j - y i )  1 y j ] b t a S g n ( y „ - y , )  -

- E[bijSgn(yj-y;) | yj ] E[ b̂  ̂sgn( y„ - yj ) | y J  + 

+ E[bijSgn(yj-yj) | yj ] E [b^  sgn(y„- y, ) | y„] } .

For the 2'“’ part, we will divide it into two cases:

Case 1: Four indices are all different, the 2°  ̂ part = 0.

Case 2: Tree indices are different.

According to Lemma 3.6, we have the following:

bij = gij(^) = gij(âo) + % j'( I )  • ( - âo ) ,  i  is in between % and

By A3, we can assume that -S- = Vgj'(|.) ■ ( - £o ) •

So we only need to show that:

For all 8*> 0 , there exists an N* such that for all n > N * ,

( Xjk-  % ) ( Xmk -  % )  E{ g;j s g n ( % - y; )  gta s g n ( y . - y , )  -
i<j l<m

-  g i j S g n ( y j - y i ) E [ g t a S g n ( y „ - y , )  I y , ]  +

+  g i j S g n ( y j - y i ) E [ g t a , s g n ( y ^ - y , )  I y ^ ]  -

- E [  gij sgn( yj - y; ) I y; ] gta sgn( y„ - y, ) +

+ E [ gj sgn( yj - y; ) I y; ] E [ g^ sgn( y„ - y, ) 1 y, ] -

- E [  g j  sgn( yj - yi ) I yi ] E [ g^ sgn( y„ - yj ) | y „  ] +

+ E [ g j  sgn( yj - y; ) ! yj ] gta sgn( y„ - y, ) -

- E [  g j sgn( yj -  yi ) I yj ] E [  g ^  sgn ( y„ - y, ) | y, ] +
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+ E[ gij sgn( Yj - Y: ) I Yj ] E[ sgn( y„ - y, ) I y„ ] } < s ' .

When three indices are different with i = l, we have;

E E  E  ( - Xik )( - x& ) E { gij sgn( % - Yi ) gi^ sgn( y^ - Yi ) -
i j>i m>i 

j # m

- SijSgn(Yj-Yi)E[gi„sgn(Y„-Yi) 1 Yi] +

+ gijSgn(Yj-Yi)E[gi„sgn(Y„-Yi) I Y„j -

- E[gijSgn(Yj-Yi) I Yi]gi„sgn(Y„-Yi) +

+ E[ gij sgn( Yj - Yi ) 1 Yi ] E[ gi„ sgn( Y„ - Yi ) I Yi ] -

- E[gijSgn(Yj-Yi) 1 Y i]E[gi^sgn(y^-Y i) | y^] +

+ E[gijSgn(Yj-Yi) I Yj]gi„sgn(Y„-Yi) -

- E[ gij sgn( Yj - Yi ) I Yi ] E[ gi^ sgn( Ŷ  - Yi ) I Yi ] +

+ E[ gij sgn( Yj - Yi ) I Yj ] E[ g^. sgn( y^ - Yi ) | Ym ] =

= E E  E  ( Xjk - x& )( x̂ nk - x& ) E { gj sgn( Yj - Yi ) gi^ sgn( Y  ̂- Yi )
i j>i m>i 

j • m

- gijSgn(Yj-Yi)E[gi„sgn(Y„-Yi) I Yi] -

- E[gjsgn(Y j-Y i) I Yi]gm.sgn(y.-Y;) +

+ E[ gj sgn( Yi - Yi ) I Yi ] E[ g^ sgn( Ŷ  - Yi ) I Yi ] } =

= E E  E  (% -x & )(x ^ -X ik ) -
i j>i m>i j # m

• { E[ E( gj sgn( Yi - Yi ) gm sgn( Ym - Yi ) I Yi ) ] -

- E[ E[ gj sgn( Yj - Yi ) E( g™ sgn( Y„ - Yi ) i Yi ) I Yi ] ] -

- E[ E[ E( gj sgn( Yi - Yi ) I Yi ) gim sgn( Ym - Yi ) 1 Yi ] ] +

+ E[ E( gj sgn( Yj - Yi ) I Yi ) E( g .  sgn( Ym - Yi ) I Yi ) ] } = 0 .
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The proof is similar, when tree indices are different with i = m , j = l ,  o r j  = m.

By the proof above, we have: for all e* > 0, three exists an N* such that 

E(h,(Y) - hp,,(Y))“ < 8*, for all n>hT , for all k.

Hence E(h(Y) - h ,(Y ))' -  0 . □

According to Theorem 4.5 above, we immediately have the following corollary.

Corollary 4.6

M X )  -  hp(X) -  0 .

3

The above theorem showed the projection o f n  ̂ S (0 ). This projection is a

linear function o f independent random variables. The theorem also proved that the 

projection has the same asymptotic distribution of the original function. This allows us 

to derive the asymptotic distribution based on the projection.

The following lemma is a multivariate extension o f Lindeberg-Feller Theorem 

given by Rao(l973).

Lemma 4.7

1. { Ui } are independent with means { 0 } and covariance matrices { Sj }.

2. i  E  2; -  S ^ 0 .n i-1

3. -  E  E[ iiE.llz I( im.ij > e Vn ) ] "  0 , for all e > 0 .
n j-1 

Then

^ E U  ’ N (0 ,S ) .  
Vn i-1
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We will utilize this lemma to derive the asymptotic distribution later this chapter. 

In the rest part o f this chapter, we will let:

( 2%-2Q) E^(bijsgn(Yj- Yi) I Yi).

Then we have:

bpOO = and V ar(H i) = ^  =
y/n

= Var[ — Y, (2%-2Q) Er ( bjj sgn( Yj- Yi) I Vi)  ] = 
n j - 1  ^

^  Var[ j è  (  2̂ . -  2  ̂)  ( bij sgn(  Yj -  Yi )  I Yi )  ]  =
_ 1

= “7  è  E  (2^-2^)(2^-X i)' •
j - i  k - i

■ \(b ÿ S g n (Y j-Y i) i Yi), E£^(bgcsgn(y^- Yi) i Y;) ]  • 

Hence —5 ^ 2 ,  = -7 E E E  ( 2%- 2Q)( 2^ - 2Q)' '
n i-i n i- ij.j k-i

• Cov[ E^(bijSgn(Yj-Yi) I Yi),  Eg^Cb&sgnCYk-yJ | y j ] . 

Because Cov[ b y sg n (y j-y j | y^),  e^ ( bg,sgn(Yk-yJ | y, ) ]  

= E^(bijSgn(Yj-Yi) I Yi) E^( bg, sgn( y  ̂- y; ) | Y; ) ] -

- \ [ \ ( b ü S g n ( Y j - Y ; )  lY:)]  E^[ E^(b;,sgn(Y ,-Y i) ] Y;)] 

= Eg [̂ Eg (̂ by sgn( Yi - Y; ) I Yi ) e^ (  bg, sgn( ŷ  - y ) | Y; ) ] -

- E^( by sgn( Yj - Yi ) ) E^( bg, sgn( Yk - Yi ) ) =
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= bjj sgn( y, - y; ) I Yi ) Eg (̂ b& sgn( - y; ) | y; ) ] .

Therefore, 1  Ê  ^  ^  E  E  Ê  (>^-Xi)( 2̂ - Xi ) '  ’
n i-i n i-i j-ik. i

■ sgn( Yj - Yi ) I Yi ) B^( b& sgn( ŷ  - Yi ) I Yi ) ] •

By the discussion above, it is reasonable to make the following assumption. The 

assumption will be used in our theoretical proof later.

Assumption AS

- n p
Let ^  = Var( IJj ) ,  then there exists 2.5  ̂0 such that — E  ^  -  2..

n i-i

Based on assumption A8, the projection, hp(Y), has the asYmptotic normal 

distribution. It will be showed in the next theorem.

Theorem 4 8 

Assume A8 holds.

Then

hp(Y) - N ( 0 , 2 ) .

Proof.

Without loss of generalitY, we assume the true parameter ^  = 0 .

Because Li = -  ̂E  (2^ - Xj ) b;; sgn( Yj - Yi ) I Yi ) ,

therefore n n . =

n n

= n '  E  E  ( 2̂ -Xi ) '  E„ ( bij sgn( Yj - Yi ) I Yi ) E. ( b& sgn( Yk - Yi ) I Yi )
j - l  k-l ^  “
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Since n n . is bounded and —  1 U; || -  0 ,
A

hence, i II. I( m  1 > e v t ) ] -* 0 , for all e > 0.

By Lemma 4.7 and AS, hp(Y) -  N ( 0 , ^ ) .  □

Lemma 4.9

Assume and -  i ? " '.

Then

dŶ pxp _ ypxp jgjpxi

Now we are ready to develop the asymptotic distribution o f Â. ■

Theorem 4.10

Assume A2 - AS hold, and the true parameter ^  = 0 .

Then

i .  -  N(0 , 1  2  £-• ) .
4

Proof.

According to Corollary 4.4 and Theorem 4.5, Â. = .1 ( n- ) h (Y ).

By Theorem 4.5, Theorem 4.8, Lemma 4.9, A2-AS, we obtain the conclusion. □  

Our key result of this chapter is the asymptotic distribution theory of i . . As the

next theorem shows, that follows the above results. The proof o f the theorem below is 

similar to the proof in Jaeckel(1972), see Hettmansperger(1984) also.
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Theorem 4.11

Assume A2 - A8 hold, and the true parameter ^  = 0 .

Then

L  -  N(0, S £ ■ ').
4

Proof.

By Theorem 4.10, for all ô > 0, there exists c > 0 such that for sufiSciently large n, 

P(lli.ll ^ p c )  < . (4.2)

Define V = min{ Q'(A) ; I A  - i .  II = e } - Q *(i.), for all e > 0.

Then fi-om the definition above, V ^ 0.

By Theorem 4.3, we have that for all e > 0,

P( sap I Q*(A)- D*(A) I ^  ^  . (4.3)|A.|£pc>e 2 2

By (4.2) and (4.3) above, for large n, with probability greater than 1 - ô ,

IliLlI < p c , and for all e > 0, for all DAI ^ pc + e ,

D*(A) < Q’(A) + ^  . (4.4)

So for all A  such that I A  - i .  1 = s , |A11  ̂II A  - i .  I + l l l l  < e + pc,

and by (4.3), | Q*(A) - D*(A) I < ,

D*(A) > Q*(A) - ^  > min{ Q*(A) : 1 A  - 1 II = e } - ^  =

= V + Q*(i.) - ^  = Q *(l) + ^ D * ( l) ,  by (4.4).
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So for all A  such that I A  - i .  i = s , D*(A) > D*(i.) .

By Theorem 2.2, D*(A) is a convex function.

So D*(A) > D *(i-), for all A  such that I A  - i .  I s e .

So D*(A) > min D*(A) = D * ( l ) .

So 1 Â. - i .  1 < e.

So for large n, with high probability, 1 i .  - i .  1 < e.

So Â. and Â. have the same liimting distribution. □

Next theorem, the most important theorem of this chapter, is a consequence of 

Theorem 4.10 and Theorem 4.11.

Theorem 4.12

Assume A1 - A8 hold, then /n  ( ^  - A ) -  N(0 , — C ' .2 ) .
4

Proof.

By Theorem 2.6, Theorem 4.10, and Theorem 4.11. □

Theorem 4.12 showed us that the estimate o f A has an asymptotic normal

distribution with variance-covariance matrix -î- S  . This result will enable us to
4

develop theories o f testing and confidence regions for the estimates.
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CHAPTER V 

ROBUST PROPERTIES OF THE ESTIMATION &

5.1 The Breakdown Point

Let F be the cdf o f C;, Fj be the cdf of y ;, and ô be the cdf of a point mass

at Yo . Define Ft = (1 - 1) F + t ô , and bias(t) = | ^ (F J - ^(F) H, where t = — ,
n

n is the sample size, and m is the number of y^'s.

The following definition is given by Naranjo and Hettmansperger(1992) which is 

a special case of the more general definition given by Hample(1968).

Definition 5.1

The breakdown point = sup{ t < : bias(t) < “  } .

In the above definition, we have the estimates ^  = argminD(£.). I f  we let

D**(â) = ^ D ( â ) ,
n

then ^  = arg min D(^) if and only if ^  = arg min D**(^) . Therefore, we can use

D**(^) instead of D(£) in our theoretical development.

In the following, we will use the technique that Ola Hossjer(1993) used in his

paper.

43
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Lemma 5.2

1 . a  =  sup { bij I Yj -  Yi -  (  Xj -  2Çj ) '  £ .  I }.

2 .  D * * (â )  =  b y l Y j  -  Yi -  (2% -  X i ) ' â
i < j

Then
1. i a   ̂ D**(^) < a .

The next is a quite mild assumption. Based on this assumption, we will develop 

a theorem of breakdown point for our estimates.

Assumption A9

There exists an M  > 0 such that inf { sup { by ( X; - 2̂  )' .& } =  M .141-1 i.j

Based on the discussions above, we will show there is a bounded estimates of 

in the next theorem. The theorem will lead us to prove that our estimates has a high 

breakdown point o f 50%.

Theorem 5 .3

Assume A9 hold, then there exists

^  ^  ^  I  %  -  Y i  I }

such that ^  = arg min D” ( ^ ) .

Proof.

According to Lemma 5.2, D**(£.) ^ — a =

=  sup { by I Yj -  Yi - (  2Çj -  X; ) ' £ . I } ^
n  i . j
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> ( lâl M - sr^ { bjj 1 - y; I } ) .
I.j

Because i -  ( |£.| M - siç { bjj | y- - y; | } ) ^
I.j

^ 2  sup { bjj I yj -  y; I } ,
i j

w h en  1^1 ^ ( 1 +  2n “ ) sup { ^  | yj -  y; | } .M x.j

T h e re fo re  D ’* (^ ) ^  2  siq> { bjj | yj -  y; | } , (5 .1 )
i.j

w h en  1^1 2: ^  (  1 +  2n->  siç> { bjj j yj -  y; I } .
M i j

Also according to Lemma 5.2, D**(^) < a = si^ { bjj | yj - y  - ( ^  | .
itj

So D**(^) < SIÇ { bjj I y  - y  i }. (5.2)
I.j

By Theorem 2.2, (5.1), and (5.2), we obtain the conclusion. □

According to the result of Theorem 5.3, we will show that the estimate o f ^  has 

a high breakdown point if we choose an appropriate initial estimate.

Theorem 5.4

Assume A9 hold, and initial estimate ^  has a breakdown point o f = — .

Then

1  has the same breakdown point of .

Proof.

By the definition of ^ , we have sup { ^  | y  - y  | } < ~ .
i . j
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So by the proof of Theorem 5.3, there exists ^  , for all Yq and for all m, where

m is the number of y^'s .

So by the Definition 5.1, we have = min{ i  } . □

5.2 The Influence Function

In the last chapter, we have proven that our estimats has a high breakdown point 

o f 50%. The breakdown point is an important property of the estimates. It measures the 

globe stability o f estimates to the effect of point-mass perturbations of the underlying 

distribution. On the other end, the influence function measures the local stability of 

estimates to the effect of point-mass perturbations of the underlying distribution.

Similar to the assumptions Naranjo and Hettmansperger(1994) used in their paper, 

we let H be the cdf of (x , y ) , M be the marginal cdf of x , F be the conditional cdf o f 

y gven x , ô g be the cdf o f a point-mass at , y^), and H, be the contaminated cdf 

o f (x , y) with H, = (1 - 1) H + t ôg .

Definition 5.5

The influence function of £. at (x , y) is defined as:

lF(i) - iixHJI,...
at

Based on the definition above and the discussions in the previous chapters, the 

influence function of our estimates £. is bounded in both the X and Y spaces.
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CHAPTER VI 

IMPLEMENTATION

6.1 Parameters

In the previous chapters, we have derived the asymptotic linearity, the asymptotic 

distribution, and some robust properties of our estimates. In this section, we will discuss 

a practical issue, the choice o f parameters.

As stated early, we estimate the regression coefiBcients ^  by minimizing the 

dispersion function with weights b  ̂ being defined as:

by = $
CO nij m.

where T|j(t)= 1, t, -1, as t > 1, -1 ^ t < 1, t < 1, ^  is an initial estimate of ^ ,

the true parameter. The tuning constant c is the cutoff point for outlier, and 6^ is the 

variance of errors 6; which rescales the residuals in the i)j function. The residual 

Zi(è^) = y  - Xi' . nii is defined as:

( X .  -  a . ; ) '  a .  -  )L .)

Uj and S are location and covariance matrices of X, respectively, b is a tuning 

constant. The denominator in m̂  is a measure o f the leverage of the i* observation.

47
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We may use the Least Median of Squares estimator (Rousseeuw & Leroy, 1987) 

to estimate Uj and use the Minimum Volume Ellipsoid estimator (MVE) (Rousseeuw & 

Leroy, 1987) to estimate 5  •

The initial estimates ^  may be estimated by using the Least Trimmed of Squares

estimates (LTS) (Rousseeuw & Leroy, 1987). Recall that in the previous chapters, we 

assume that the initial estimate of has a convergence rate of \/n and a high breakdown 

point of 50%. The LTS estimates meets both o f the requirements.

The parameter o~, wltich is the variance of the random errors €; , rescales the 

residuals in the ijj function. We can estimate o" by MAD which is defined as;

MAD = 1.483 med | y; - X;' ^  - med ( y; - X;' ^  ) | .

The MAD is a consistent estimate o f for normal errors, see Rousseeuw & Leroy 

(1987).

There are several algorithms which can be used to find a minimizing value of 

D (^) . In this thesis, we vrill use the Newton step algorithm. This algorithm uses the 

asymptotic quadratics of D(^) to form the step. It is similar to the algorithm discussed 

by Kapenga, McKean, and Vidmar (1988).

6.2 Examples

In this section, we will discuss three data sets and several estimates which fit these 

data sets. We will compute the least squares estimates (LS), the Wilcoxon rand based 

estimates (Wilcoxon), the rank based high breakdown estimates (RHB) (the estimates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

proposed in this dissertation), the rank based bounded influence estimates with high 

breakdown weights (RBI) (Naranjo & Hettmansperger, 1990), and the least median of 

squares (LMS) (Rousseeuw & Leroy, 1987) for these data sets.

The first data set, the Hertzprung-Russell diagram o f the star cluster CYG OB 1, 

consists of 47 stars in the direction of Cygnus (Rousseeuw & Leroy, 1987). In this data 

set, the regression coefficients x is the logarithm o f the effective temperature at the 

surface o f the star, and the observations y is the logarithm of its light intensity. Several 

estimates for this data set are calculated and listed in Table 1 below. We also plot the 

data set with these fits on Figure 1 through Figure 7.

Table 1

Estimated Coefficients o f the Linear Model for the Hertzprung- 
Russell Data Set (Rousseeuw & Leroy, 1987)

Estimates Intercepts Slope

LS 0.679347E+01 -0.413304E+00

Wilcoxon 0.720290E+01 -0.476636E+00

RHB -0.608166E+01 0.252660E+01

RBI -0.608023E+01 0.252624E+01

Figure 1 and Figure 2 below showed the least squares and the Wilcoxon rank 

based fits. From these two figures, we can see that both the least squares and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

CO

tnc
2c

o>o

o

3.6 3.8 4.0 4.2 4.4 4.6

Log Temperature

Figure 1. The Hertzprung-Russell Data Set (Rousseeuw & Leroy, 1987) and the 
Least Squares (LS) Fit.

Wilcoxon fits are fooled by the four outliers. They fit the data set badly. From Figure 

5 through Figure 7, the fits with the RHB and the RBI are about the same. They are 

robust and not fooled by the outliers. The plot of the RBI fit goes through the heart of 

the data.

The least median of squares (LMS) and the least trimmed of squares (LTS) fits 

are also quite good on Figure 3, Figure 4, and Figure 7.

The second data set is a artificial data set which is generated by the model of a 

quadratic polynomial. The design of this model was used in a simulation study found in 

Naranjo, McKean, Sheather and Hettmansperger( 1994). The estimates fitting this data 

set are listed in Table 2.
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Figure 2. The Herzprung-Russell Data Set (Rousseeuw & Leroy, 1987) and the 
Wilcoxon Rank Based Fit.

From Figure 8, we can see that the LMS fit is very poor. It misses the right side 

of the data set altogether. The RBI fit is also poor. It turns down long before it should. 

The Wilcoxon fit is quite good, as is the LS fit. The RHB fit while not as good as the 

Wilcoxon is an improvement over the LMS and the RBI fits. What spoils the above LMS 

and RBI and to a much less degree the RHB fit is that the curvature in the model is near 

the edge of factor space.

The last data set, the Hawkins-Bradu-Kass data set (Rousseeuw & Leroy, 1987), 

is an artificial data set containing 75 observations. The first 10 data points of this data set 

are outliers in factor space that do not follow the model. Hence, these points are bad.
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4.4 4.6

Figure 3. The Hertzprung-Russell Data Set (Rousseeuw & Leroy, 1987) and the 
Least Median of Squares (LMS) (Rousseeuw & Leroy, 1987) Fit.

The next four data points are outliers in factor space which do follow the model.

Several estimates fitting this data set are listed in Table 3. The Least Squares (LS) 

residual, the Wilcoxon residual, the GR residual, the Rank Based High Breakdown (RHB) 

residual, and the Rank Based Bounded Influence (RHI) residual plots for this data set will 

also be present in Figure 9 through Fighre 13 later this section.

From these residual plots, we can easily see that the LS fit and the Wilcoxon fit 

are both fooled by the outliers. They both flag the 4 good points instead of the 10 bad 

points. On the other hand, the RHB and the RBI fits flag the 10 outliers and show that 

points 11-14 follow the model.
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Figure 4. The Hertzprung-Russell Data Set (Rousseeuw & Leroy, 1987) and the 
Least Trimmed of Squares (LTS) (Rousseeuw & Leroy, 1987) Fit.
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Figure 5. The Hertzprung-Russell Data Set (Rousseeuw & Leroy, 1987) and the Rank 
Based Bounded Influence (RHI) (Naranjo & Hettmansperger, 1990) Fit.
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Figure 6. The Herzprung-Russell Data Set (Rousseeuw & Leroy, 1987) and the 
Rank Based High Breakdown (RHB) Fit.
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Figure 7. The Hertzprung-Russell Data Set (Rousseeuw & Leroy, 1987) With the 
LS, Wilcoxon, RHB, and RHI Fits.
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Figure 8. RunS Data Set (Naranjo, McKean, Sheather, & Hettmansperger, 1994) With 
the Wilcoxon, RHB, RHI, and LMS Fits.
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Table 2

Estimated Coefficients o f the Linear Model for 
the Simulation Data Set (Naranjo et al. 1994)

Estimates Intercept First Degree Second Degree

LS -0.522891E+00 0.597353E+01 -0.655613E+00

Wilcoxon -0.665088E+00 0.594695E+01 -0.652523E+00

RHB -0.587292E-01 0.564280E+0I -0.658240E+00

RBI -0.253217E+00 0.647073E+01 -0.109226E+01

LMS -1.21 3.637 -0.137

Note:

LS - Least Squares Estimates.

Wilcoxon - Wilcoxon rank based estimates (weights identically equal to one).

RHB - Rank based high breakdown estimates (the estimates proposed in this thesis).

RBI - Rank based bounded influence estimates with high breakdown weights (Naranjo 
& Hettmansperger, 1990).

LMS - Least median of squares (Rousseeuw & Leroy, 1987).
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Table 3

Estimated CoefiBcients o f the Linear Model For 
the Hawkins Data Set ( Rousseeuw & Leroy, 1987)

Estimates Intercept P: Pz Ps

LS -0.38755 lE+00 0.239186E+00 -0.334548E+00 0.383340E+00

Wilcoxon -0.772071E+00 0.167505E+00 0.177696E-01 0.269268E+00

RHB -0.247966E+01 0.102009E+00 0.593009E-01 -0.407682E-01

RBI -0.177052E+00 0.827448E-01 0.525008E-01 -0.443230E-01

Note;

LS - Least Squares Estimates.

Wilcoxon - Wilcoxon rank based estimates (weights identically equal to one).

RHB - Rank based high breakdown estimates (the estimates proposed in this 
dissertation).

RBI - Rank based bounded influence estimates with high breakdown weights (Naranjo 
& Hettmansperger, 1990).
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Figure 9. The Hawkins Data Set (Rousseeuw & Leroy, 1987) and the Least Squares Fit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

OJ

»•

OJ _

CO3JOc/3O
c
s
s CO _

5

o

CM

122 8 100 4 6

Wilcoxon fit

Figure 10. The Hawkins Data Set (Rousseeuw & Leroy, 1987) and the Wilcoxon Rank 
Based Fit.
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Figure 11. The Hawkins Data Set (Rousseeuw & Leroy, 1987) and the GR Fit.
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Figure 12. The Hawkins Data Set (Rousseeuw & Leroy, 1987) and the Rank Based High 
Breakdown (RHB) Fit.
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Figure 13. The Hawkins Data Set (Rousseeuw & Leroy, 1987) and the Rank Based 
Bounded Influence (RHI) (Naranjo & Hettmansperger, 1990) Fit.
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CHAPTER V n

CONCLUSION

In this dissertation, we have discussed the linear model;

Yi = Xi'£. + Si, i = l , , n, 

where 2&' is the i* row of 2̂ *’“'’, ê 's are independent and identically distributed with 

density £ We estimate the parameter §, by minimizing the dispersion function D(^) 

defined as:

D (â )  =  E ^ i j  I Z j - Z i  I ,

t<j

where Z; = ŷ  - X;' ^ , i|i(t) = 1, t, -1, as t>  1, -1 t < 1, t < 1, and the weight

function by are defined as:

by =
c nij nij

In the previous chapters, we have derived the asymptotic linearity and asymptotic 

normal distribution o f the estimates. The high breakdown point of 50% and the bounded 

influence function o f the estimates have also been proved. In the last part of this thesis, 

we discussed three data sets with several estimates. The next step, we will try to develop 

theories of testing and confidence regions for the estimates. Also, we will try to find the 

efficiency of the estimates.
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