Name \qquad Date: \qquad Section: \qquad

CONSTRUCTION OF A SQUARE INSCRIBED IN A CIRCLE

Key Idea: Diagonals of a square are \qquad other.

Steps:

1) Draw a \qquad .
2) \qquad the diameter.
3) Connect the four points on the circle to make the \qquad of the square.

REVIEW PACKET

For each question make sure to write all formulas, substitutions, and show all work. Clearly label your work and clearly identify your answers.

1. If $\overline{I G}$ is translated such that I maps to H , which type of quadrilateral will be formed? \qquad
a. Explain your reasoning:

b. What will be the slope of $\overline{H G^{\prime}}$? \qquad
2. Name the type of quadrilateral that will be formed by reflecting the following triangles into the line:
a. \qquad

b. \qquad

3. $T V W X$ is a rhombus. Find the following:

- TV
- $\mathrm{m} \angle \mathrm{VTZ}$

- $m \angle X W V$
- $\mathrm{m} \angle \mathrm{ZVW}$

4. Write the equation of the line that contains the diagonal $\overline{R Y}$ of rhombus GRAY with $\mathrm{G}(0,9)$ and $\mathrm{A}(4,-3)$:

5. Given $\square A B C D$, determine the value of y .

6. Given ABCD is a rectangle with $m \Varangle D A C=67^{\circ}$ and $m \Varangle F E B=34^{\circ}$, find $m \Varangle A F E$.

7. Rhombus PNWL, $N W=12$, and $\mathrm{m} \angle W L P=144^{\circ}$. Find $P N, \mathrm{~m} \angle \mathrm{LWP}$ and $\mathrm{m} \angle \mathrm{PNW}$. Draw and label a diagram to help justify your answer.
8. A quadrilateral has vertices with coordinates $B(-3,1), S(0,3)$, $\mathrm{P}(5,2)$, and $\mathrm{A}(-1,-2)$. Classify the quadrilateral using coordinate geometry and explain your reasoning.

What would you calculate to prove BSPA is not an isosceles trapezoid? Give two options:

1. \qquad 2. \qquad
2. In rectangle ABCD with the diagonals intersecting at E , find the length of AE when $\mathrm{AC}=8 x-3$ and $\mathrm{BD}=4 x+17$. Be sure to draw a diagram first!
3. The diagonals of a rhombus measure 8 inches and 16 inches, respectively. What is the perimeter of the rhombus? Write your answer in simplest radical form.
(Draw and label a diagram to justify your answer.)
4. In parallelogram ABCD , the diagonals $\overline{A C}$ and $\overline{D B}$ intersect at E . Draw a picture and determine which statement must be true:
5. $\overline{A C} \cong \overline{D B}$
6. $\angle A B D \cong \angle C B D$
7. $\triangle A E D \cong \triangle C E B$
8. $\triangle D C E \cong \triangle B C E$
9. In the diagram of trapezoid $\mathrm{ABCD}, \overline{A B} \| \overline{D C}, \overline{A D} \cong \overline{B C}$. If $m \nsucceq A=(4 x+20)^{\circ}$ and $m \Varangle C=(3 x-15)^{\circ}$, find $m \nsucceq D$.

10. Find the value(s) of x so that ABCD is an isosceles trapezoid with bases $\overline{A D}$ and $\overline{B C}$.

11. $\overline{X Y}$ is the midsegment of the trapezoid. Find the value of x.

12. Quadrilateral ABCD has diagonals $\overline{A C}$ and $\overline{D B}$. What information is not sufficient to prove ABCD is a parallelogram?
A. $\overline{A C}$ and $\overline{D B}$ bisect each other
B. $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
C. $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
D. $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
13. In quadrilateral ABCD , the diagonals bisect its angles. If the diagonals are not congruent, quadrilateral ABCD must be a
A. Square
B. Rectangle
C. Rhombus
D. Trapezoid
14. Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?
15. $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
16. $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
17. $\overline{P^{\prime} M^{\prime}}$ and $\overline{Q^{\prime} P^{\prime}}$
18. $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
19. When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?
A. Congruence
B. Orientation
C. Parallelism
D. Perpendicularity
20. If the diagonals of a quadrilateral are congruent but do not bisect each other, the quadrilateral may be a(n):
A. Rectangle
B. Isosceles Trapezoid
C. Rhombus
D. Square
21. In quadrilateral ABCD , each diagonal bisects opposite angles. If the $m \measuredangle D A B=70^{\circ}$, then ABCD must be a
A. Rectangle
B. Trapezoid
C. Rhombus
D. Square
22. In rhombus ABCD , diagonals $\overline{A C}$ and $\overline{D B}$ intersect at E . What kind of angle is $\measuredangle D A E$?
A. Acute
B. Straight
C. Right
D. Obtuse
23. Three vertices of parallelogram DFGH are $\mathrm{D}(-9,4), \mathrm{F}(-1,5)$ and $\mathrm{G}(2,0)$.
A. Write the equation of the line that contains the side of the parallelogram through vertex H.
B. State the coordinates of vertex H .
24. State the coordinates of vertices H and P of square HAPY given $\mathrm{A}(0,5)$ and $\mathrm{Y}(-10,-1)$.

25. Prove quadrilateral ABCD with vertices $\mathrm{A}(-3,2), \mathrm{B}(-1,4)$, $C(8,-5)$, and $D(6,-7)$ is a rectangle. Make sure to show all of your work including formulas, substitutions, etc. Clearly label your work.
26. Given quadrilateral ABCD and its image EFGH
A. Describe a sequence of rigid motions that maps ABCD onto EFGH. Be specific.
B. List the properties that are preserved under all rigid motions:
27. \qquad
28. \qquad
29. \qquad
C. Fill in the blanks:

- $\Varangle A \cong$ \qquad
- If $\overline{A B} \cong \overline{B C}$, then $\overline{E F} \cong$ \qquad .
- If $\overline{A B} \| \overline{D C}$, then $\overline{E F} \|$ \qquad .

26. Given: $\overline{D B}$ bisects $\overline{A C}$. $\Varangle 1 \cong \Varangle 2$.

Prove: ABCD is a parallelogram
Hint: first prove $\triangle A D E \cong \triangle C B E$ and use $C P C T C$

27. Given: ABCD is a parallelogram
$\overline{F G}$ bisects $\overline{D B}$
Prove: $\overline{F E} \cong \overline{G E}$
Hint: first prove $\triangle D E F \cong \triangle B E G$ then use CPCTC

Review Packet Unit 6 Answer Key

1. Parallelogram a. Translations preserve distance and slope so $\overline{I G} \cong \overline{H G^{\prime}} \& \overline{I G} \| \overline{H G^{\prime}}$. A quad w/1 pair of opp sides parallel \& congruent is a parallelogram. (Could also use parallel and congruent translation vectors) b. the same slope as $\overline{I G}$
2. a. Rhombus (4 congruent sides and perpendicular diagonals).
b. Square (4 congruent sides \rightarrow parallelogram and rhombus, 1 right angle \rightarrow rectangle)

$\text { 3. } \begin{aligned} & T V=7.9 \\ & m \measuredangle V T Z=20^{\circ} \\ & m \measuredangle X W V=40^{\circ} \\ & m \measuredangle Z V W=70^{\circ} \end{aligned}$	4. $y-3=\frac{1}{3}(x-2)$	6. $m \Varangle A F E=57^{\circ}$	8. BSPA is a trapezoid since one set of opposite sides are parallel ($\overline{B S} \\| \overline{P A}$); 1. $\overline{B P} \cong \overline{S A}$ (congruent diagonals) or 2. $\overline{S P} \cong \overline{B A}$ (congruent legs)
	5. $\mathrm{y}=5$	$\begin{aligned} & \text { 7. } \mathrm{PN}=12 \\ & m \measuredangle L W P=18^{\circ} \\ & m \measuredangle P N W=144^{\circ} \end{aligned}$	
9. $A E=18.5(x=5)$	10. Perimeter $=$ $16 \sqrt{5}$ inches	$\text { 12. } \begin{aligned} m \nsucceq D & =60^{\circ} \\ & (x=25) \end{aligned}$	14. $x=3$
	11.3	13. $x=8$ or $x=-2$ (Both check)	15. D
16. C	18. B	20. C	\|
17.1	19. B	21. A	$\\|$ to $\overline{F G}: \mathrm{y}-4=-\frac{5}{3}(\mathrm{x}+9)$ B) $\mathrm{H}(-6,-1)$

23. H and P are located at $(-8,7)$ and $(-2,-3)$ (note, they are interchangeable)
24. Answers will vary depending on method chosen to prove parallelogram and then rectangle. Examples:

- $\underline{1 s t}^{\text {st }}$ prove parallelogram:
- Since the slopes of $\overline{A B} \& \overline{C D}=-1$ and the slopes of $\overline{B C} \& \overline{A D}=1$, then $\overline{A B} \| \overline{C D}$ and $\overline{B C} \| \overline{A D}$. Since both sets of opposite sides are $\|$, then quadrilateral $A B C D$ is a parallelogram.
- Since $\mathrm{AB}=2 \sqrt{2}=\mathrm{CD}$ and $\mathrm{BC}=9 \sqrt{2}=\mathrm{AD}$, then $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$. Since both sets of opposite sides are congruent, then quadrilateral $A B C D$ is a parallelogram.
- Since the midpoints of $\overline{B D} \& \overline{A C}$ are both $(2.5,-1.5)$, then the diagonals bisect each other so quad ABCD is a \square.
- $\quad 2^{\text {nd }}$ prove rectangle:
- Since the slopes of $\overline{A B}=1 \& \overline{B C}=-1$ are opposite reciprocals, then $\overline{A B} \perp \overline{B C}$. Since $\measuredangle B$ is a right \measuredangle, then parallelogram $A B C D$ is a rectangle.
- Since $A C=\sqrt{170}=B D$, then $\overline{A C} \cong \overline{B D}$. Since the diagonals are congruent, then parallelogram $A B C D$ is a rectangle.

25. A. Examples:

Line reflection over the y-axis followed by a translation $<0,-4>$ (down 4);
Translation of $\langle-4,-4>$ followed by a reflection over the line $x=-2$
B. Angle Measure,
C. $\Varangle E^{\prime \prime}$
Distance,
Parallelism,
$\overline{F G}$
HG

Perpendicularity
15. Prove $A B C D$ is a parallelogram

1. $\measuredangle 1 \cong \measuredangle 2$
2. $\overline{\mathrm{AD}} \| \overline{\mathrm{CB}}$
3. $\overline{D B}$ bisects $\overline{A C}$
4. $\overline{\mathrm{EA}} \cong \overline{\mathrm{EC}}$
5. $\measuredangle 3 \cong \measuredangle 4$
6. $\triangle A D E \cong \triangle C B E$
7. $\overline{\mathrm{AD}} \cong \overline{\mathrm{CB}}$
8. $A B C D$ is a parallelogram
9. Given
10. \cong alt int $\measuredangle^{\prime} s \rightarrow \|$ lines
11. Given

12. Segment bisector $\rightarrow 2$ congruent segments
13. Vertical angles are congruent
14. $A S A \cong A S A \rightarrow \cong \Delta^{\prime} s(1,5,7)$

Note: could also use CPCTC to get diagonals bisect each other using $\overline{\mathrm{DE}} \cong \overline{\mathrm{BE}}$.
7. CPCTC
(steps 7\&2)
8. Quadrilateral w/1 set of opposite sides $\cong \& \| \rightarrow \square$
16. Prove $F E \cong G E$

1. $A B C D$ is a parallelogram
2. $\overline{D C} \| \overline{A B}$
3. $\measuredangle 1 \cong \measuredangle 2 ; \measuredangle 3 \cong \measuredangle 4$
4. $\overline{F G}$ bisects $\overline{D B}$
5. $\overline{\mathrm{DE}} \cong \overline{\mathrm{BE}}$
6. $\triangle D E F \cong \triangle B E G$
7. $\overline{F E} \cong \overline{G E}$
8. Given
9. $\square \rightarrow$ opposite sides \|
10. || lines \rightarrow alt int $\measuredangle ' s \cong$

11. Given
12. Segment bisector $\rightarrow 2$ congruent segments
13. $\mathrm{AAS} \cong \mathrm{AAS}(4,4,6)$

Note: could instead use vertical angles and $\mathrm{ASA} \cong$.

