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Foreword

I have known Jitendra Chittoda for a good while. Together, we have audited a significant
number of smart contracts for different blockchain platforms. Some of these contracts have
been widely used, while others handle large amounts of funds.

Prior to working as a smart contract auditor, Jitendra was working as a developer, which
gave him a broader perspective of the field, as he has observed it from a variety of
standpoints. These multiple viewpoints of blockchain, and Ethereum in particular, have
allowed him more general insights.

While many have heard about the power and potential of blockchain and smart contracts, I
believe the blockchain journey is still in its infancy. As with many new technologies, a
number of mistakes have been made. Some mistakes led to exploits, and some exploits
were so large that they made news headlines. One of those attacks was the DAO reentrancy
attack.

Given the novelty of the technology, people require guidance. Such guidance is required on
different levels. Firstly, many people still do not sufficiently understand what blockchain is

really about, what makes it special, and what differentiates it from regular databases. They

don't understand the power of smart contracts—which are sometimes called programmable
money—and their potential impact on future businesses.

Secondly, while other people understand the power of blockchain, they do not see a clear
path to building on top of it. They are not aware of the many small mistakes that can be
made along the way, which range from overly expensive smart contracts to a complete loss
of control. Hence, these people require detailed and explicit technical guidance.

Given Jitendra's background, he can provide a good overview and many technical
recommendations that will not only speed up learning, but can also avoid costly and
potentially project-threatening errors. This book starts off with introductions to blockchain
before diving into Solidity, its details, its common applications, its most useful helpers, and
its security practices.

Hubert Ritzdorf
Chief Technical Officer, ChainSecurity AG
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Preface

Blockchain technology is at its nascent stage. However, technology is slowly moving
forward and new developments using blockchain are emerging. This technology has the
power to replace trusted third parties with trusted blockchain networks. Bitcoin was the
birth of blockchain technology and has shown the world a new peer-to-peer payment
system without needing intermediaries. You could say that Bitcoin was the first generation
of blockchain technology. However, Ethereum took this innovative technology to the next
level—you could call it blockchain generation two—where you can write decentralized
applications using smart contracts. Solidity is the most widely used and popular language
for writing smart contracts for decentralized applications.

The book starts with explaining blockchain, Ethereum, and Solidity. It mostly focuses on
writing production-ready smart contracts in the Solidity language for Ethereum blockchain.
It covers basic Solidity language syntax and control structures, and moves on to writing
your own contract. It also deep dives into different libraries that you can use while writing
contracts. Later on, it covers tools and techniques to write secure, production-ready smart
contracts.

Who this book is for

This book is for professional software developers who have started learning blockchain,
Ethereum, and the Solidity language and who want to make a career in writing production-
ready smart contracts. This book is also aimed at developers who are interested in building
decentralized applications over Ethereum blockchain. This book will help you learn the
Solidity language for building smart contracts from scratch and make you proficient in
building production-ready smart contracts for decentralized applications.

What this book covers

Chapter 1, Introduction to Blockchain, starts with how blockchain technology came into
existence through the innovation of Bitcoin. This chapter discusses the different properties
of a blockchain. It also introduces Ethereum and how it is different from the Bitcoin
blockchain. Later, this chapter introduces smart contracts.
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Chapter 2, Getting Started with Solidity, starts with the basic Solidity language syntaxes and
the structure of a contract. You will learn about the different data types available in
Solidity. This chapter also discusses globally available variables present in the Solidity
language that you can use while writing your smart contract.

Chapter 3, Control Structures and Contracts, deep dives into the control structures of Solidity
contracts, the different types of functions supported, contract inheritance, and event

logging.

Chapter 4, Learning MetaMask and Remix, discusses setting up your MetaMask plugin and
creating wallets using it. This chapter also discusses using the online Remix IDE to create,
compile, deploy, and interact with your Solidity contracts.

Chapter 5, Using Ganache and the Truffle Framework, discusses installing and setting up your
local blockchain instance using Ganache. This chapter also discusses installing and setting
up the Truffle framework, learning how to use its commands, setting up your new Truffle
project, writing migration scripts for the Truffle framework, and adding test cases to a
project.

Chapter 6, Taking Advantage of Code Quality Tools, discusses improving the quality of your
contracts by using open source tools such as surya, which helps in generating different
kinds of reports. This chapter also discusses using Solidity linters to lint your code and fix
common issues present in your contracts, as well as running Solidity coverage tools to
generate code coverage reports.

Chapter 7, ERC20 Token Standard, covers the introduction of the ERC20 token standard.
This chapter deep dives into its full implementation details, provides an in-depth study of
each function of the standard, and covers different events, optional functions, and a
number of advanced functions.

Chapter 8, ERC721 Non-Fungible Token Standard, starts with an introduction to the ERC721
standard and the difference between the ERC20 and ERC721 standards. This chapter deep
dives into each of the state variables, functions, and events associated with ERC721

implementation. This chapter also discusses some other optional contracts that can be used
with the ERC721 standard.

Chapter 9, Deep Dive into the OpenZeppelin Library, starts with an introduction to
OpenZeppelin library contracts. This chapter will help you learn how to install and use
OpenZeppelin library contracts in your Truffle project. It also provides in-depth studies of
library contracts such as Ownable, Claimable, Roles, PauserRole, Pausable, ERC20,
SafeERC20, DetailedERC20, ERC20Mintable, ERC20Burnable, ERC20Pausable, Math,
SafeMath, Crowdsale, Address, and ReentrancyGuard.

[2]
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Chapter 10, Using Multisig Wallets, The multisig wallets are special contracts that require
multiple signatures to execute a transaction. This chapter provides an introduction to
multisig contracts and their usage. This chapter also covers installing, creating, and setting
up your own multisig wallet, as well as how to use and control it.

Chapter 11, Upgradable Contracts Using ZeppelinOS, provides an introduction to the
ZeppelinOS development platform. Topics covered include creating a new project using
zos commands, creating an upgradable contract, deploying, re-deploying to upgrade the
contract, and some precautions to take when using ZeppelinOS for writing upgradable
contracts.

Chapter 12, Building Your Own Token, helps you learn how to create your own ERC20 token
contract from scratch. You will learn how to draft the specification of a contract, set up a
Truffle project, create a contract, choose which OpenZeppelin libraries to use, write
migration scripts, write test cases, execute migration scripts and test cases in Ganache, and
finally, test your contracts on a testnet such as Rinkeby.

Chapter 13, Solidity Design Patterns, introduces different Solidity design patterns. These are
divided into five categories: Security patterns: Withdrawal, Access restriction, and
Emergency stop; Creational patterns: Factory pattern; Behavioral patterns: State machine,
Iterable map, Indexed map, Address list, and Subscription; Gas economic patters: String
comparison and Tight variable packing; and Life cycle patterns: Mortal and Auto deprecate
pattern.

Chapter 14, Tips, Tricks, and Security Best Practices, helps you to learn different Solidity
smart contract best practices, such as avoiding floating pragma, the 15-second blocktime
rule, rounding errors, and gas consumption. It also helps you to learn about different
security attacks, such as front-running, reentrancy, signature replay, integer overflow and
underflow, and how to prevent these attack patterns.

To get the most out of this book

You should have knowledge of any of the existing programming languages. Solidity
language syntaxes are very similar to Java, JavaScript, and Python syntaxes. A developer
who has created projects using Java, JavaScript, or Python can pick up and learn Solidity
very easily. You should also have some basic knowledge of OOPS concepts, blockchain,
wallets, private key, public key, consensus algorithms, and exchanges.

[3]
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One very important thing to note here is that, in order to write smart contracts for
decentralized applications, you need to have a completely new mindset. Up until now, you
have probably been building applications using Java, JS, or another language in which you
can fix bugs later on, even in the production environment when something goes wrong.
However, smart contracts are immutable. If your contract is deployed in production, you
are done. If there is a bug left in the contract, you will be unable to fix it. Hence, you need to
ensure that all your smart contracts are well-tested and have no bugs present in them.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www .packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest versions of the following:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Blockchain-Programming-with-Solidity. If there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it at https://static.packt-cdn.com/downloads/9781839218262_
ColorImages.pdf.
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Code in action

To see the code being executed please visit the following link: http://bit.1ly/2Yv6kpm.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Solidity supports different data types, including uint, int, address, and many
more."

A block of code is set as follows:

contract VariableStorage {
uint storeUint; //uint256 storage variable
/] ...
3

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

contract VariableStorage {
uint storeUint; //uint256 storage variable
VA

}

Any command-line input or output is written as follows:

$ npm install -g ganache-cli

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"As mentioned earlier, you can start a local Ganache blockchain instance by just clicking on
the QUICKSTART button."

Warnings or important notes appear like this.
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