Blockchain
Programming
with Solidity

Write production-ready smart contracts for Ethereum blockchain
with Solidity

‘) www.packt.com
Jitendra Chittoda

Mastering Blockchain
Programming with Solidity

Write production-ready smart contracts for Ethereum
blockchain with Solidity

Jitendra Chittoda

BIRMINGHAM - MUMBAI

Mastering Blockchain Programming with
Solidity

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar

Content Development Editor: Manjusha Mantri
Senior Editor: Afshaan Khan

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Shraddha Falebhai

First published: August 2019
Production reference: 1010819
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83921-826-2

www.packtpub.com

I dedicate this book to my wife Neha, and my two daughters Arshiya and Advika with much
love.

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Foreword

I have known Jitendra Chittoda for a good while. Together, we have audited a significant
number of smart contracts for different blockchain platforms. Some of these contracts have
been widely used, while others handle large amounts of funds.

Prior to working as a smart contract auditor, Jitendra was working as a developer, which
gave him a broader perspective of the field, as he has observed it from a variety of
standpoints. These multiple viewpoints of blockchain, and Ethereum in particular, have
allowed him more general insights.

While many have heard about the power and potential of blockchain and smart contracts, I
believe the blockchain journey is still in its infancy. As with many new technologies, a
number of mistakes have been made. Some mistakes led to exploits, and some exploits
were so large that they made news headlines. One of those attacks was the DAO reentrancy
attack.

Given the novelty of the technology, people require guidance. Such guidance is required on
different levels. Firstly, many people still do not sufficiently understand what blockchain is

really about, what makes it special, and what differentiates it from regular databases. They

don't understand the power of smart contracts—which are sometimes called programmable
money—and their potential impact on future businesses.

Secondly, while other people understand the power of blockchain, they do not see a clear
path to building on top of it. They are not aware of the many small mistakes that can be
made along the way, which range from overly expensive smart contracts to a complete loss
of control. Hence, these people require detailed and explicit technical guidance.

Given Jitendra's background, he can provide a good overview and many technical
recommendations that will not only speed up learning, but can also avoid costly and
potentially project-threatening errors. This book starts off with introductions to blockchain
before diving into Solidity, its details, its common applications, its most useful helpers, and
its security practices.

Hubert Ritzdorf
Chief Technical Officer, ChainSecurity AG

Contributors

About the author

Jitendra Chittoda is a blockchain security engineer at ChainSecurity. His day job is to
perform security audit on smart contracts and expose security vulnerabilities in Solidity
and Scilla contracts. He has also developed a non-custodial, decentralized, P2P lending
contracts for ETHLend. The Solidity contracts that he has developed or audited handle over
$100 million worth of cryptoassets. He also served as a tech and security advisor in various
ICO projects.

Before finding his passion for blockchain, he coded in Java for over 11 years. He is the
founder and leader of Delhi-NCR-JUG, a non-profit meetup group for Java. He holds a
master's degree in computer applications and is regularly invited as a speaker at various
conferences and meetups.

I would like to thank my wife, Neha, for encouraging and supporting me every single
day with writing this book. A big shout-out to Manjusha Mantri, Shriram Shekhar,
Pradeep Sahu, all of the technical reviewers, and the Packt team for their peer review,
suggestions, and full support. I would also like to thank all my mentors and professors
who always helped me in becoming a programmer. Thank you, Mom and Dad. You have
given me the greatest gift: an education.

About the reviewers

Natalie Chin is a blockchain developer, college professor, and technical blogger. She is
currently teaching at George Brown College in Toronto, helping to lead the first blockchain
college program in the world. At STK, she built a level-two scaling solution on Ethereum,
allowing instant cryptocurrency purchases. Natalie won three prizes at ETHSanFrancisco,
2018, where her team, Lending Party, built a decentralized application allowing a CDP
(cryptocurrency loan) to liquidate into a bank account instantly.

She is an avid hackathon organizer, associated with DeltaHacks and Stackathon, where she
inspired new developers to join the blockchain space. Natalie is a Women in Tech
ambassador and is always passionate about spreading knowledge about the blockchain
field.

A sincere thank you to Dad, for introducing me to technology at a young age, supporting
me, and perpetually pushing me outside of my comfort zone to grow and be better.

To Zichen Jiang, for always finding the silver lining of situations, and always inspiring
me to embrace everything with wit, strength, and humor.

Finally, I am eternally grateful to my mother-in-law, for embodying what it means to live
a life of curiosity and positivity.

Ben Weinberg is a self-taught computer programmer who started off in iOS development
with Objective-C and Swift, and, eventually, got caught up in the world of blockchain while
working in Jerusalem. He eventually started learning blockchain and web development
simultaneously with the goal of entering the blockchain space as a developer. Ben worked
at the Toronto-based Bitcoin Bay, writing Solidity smart contracts and leading workshops
on Ethereum development and Bitcoin opcodes. He also joined George Brown College,
where he assisted aspiring blockchain developers as a lab monitor for George Brown's new
blockchain development course. At George Brown, he helped teach full-stack web
development, smart contract development, and decentralized application development.

I would like to thank all the mentors who have helped me along the way in my endeavors to
become a programmer. I would like to acknowledge the Toronto and Jerusalem blockchain
communities for being so accessible and welcoming to me as I entered this world without
knowing anyone and with little knowledge of how blockchain works. I would also like to
send my most supreme thanks to my family for all they have done.

Marc Lijour helps organizations strengthen their competitive advantage with technology
such as blockchain and practices such as DevOps. Marc brings consulting experience from
the public sector, Cisco, Savoir-faire Linux, and ConsenSys to executives driving
innovation. He started the Metamesh Group with 30 consultants spanning across 5
continents. He helped George Brown launch the first blockchain development college
program in Canada.

Marc holds degrees in mathematics and computer science, as well as an MBA in technology
and innovation. He serves on the board of several not-for-profit organizations, including
the Information and Communications Technology Council (ICTC), ColliderX,
TechConnex, and the Toronto French Business Network.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1

Section 1: Getting Started with Blockchain,
Ethereum, and Solidity

Chapter 1: Introduction to Blockchain 8
Understanding blockchain 9
Blockchain solves the double-spending problem 10
Properties of blockchain 10
Distributed ledger 11
Fault tolerance 11
Attack resistance 11
Remove intermediaries 11
Consensus protocol 11
Faster settlement 12
Lower transaction fees 12
Transparency 12
Immutability 13
Irreversible transactions 13
Trust in the network 13
Artificial trust 13
Trustless systems 14
Availability 14
Empower individuals 14
Chronological order of transactions 14
Timestamped 14
Sealed with cryptography 15
When to use blockchain 15
When not to use blockchain 15
Blockchain is slow 16
Blockchain depends on off-chain oracles 16
Existing implementations of blockchain 17
Cross-border payments 17
Decentralized cloud storage 18
Decentralized computing 18
Introduction to Ethereum 18
Ethereum is for writing decentralized applications 18
Ethereum architecture 18
P2P networks 19
Nodes 19

Full nodes 20
Lightweight nodes 20

Miners 20

Table of Contents

Blocks
Ethereum Virtual Machine (EVM)
Ether currency
Smallest unit — wei
Gas
Gas limit
Gas price
Formulas
Example
Ethereum accounts
Externally owned accounts
Contract accounts
The difference between an EOA and a contract
Ethereum transaction
Transaction fields
From
To
Value
Gas limit
Gas price
Nonce
Data
Transaction hash
Transaction status
Pending status
Success status
Fail status
Dropped status
Transaction operations
Replace/update
Cancel
Testnets
Smart contracts
Immutable code
Irreversible transactions
Think twice before deploying
Limited storage
Every transaction consumes gas in ether
Playing with ether or tokens
Summary

Questions

Chapter 2: Getting Started with Solidity
Introduction to the Solidity language
The layout of a Solidity source file
Solidity version with pragma
Importing other source files
Structure of a contract
Declaring state variables
Writing function definitions

20
22
22
23
23

24
24
25
27

28
29
30
30
31
31
31
31
31
31
31
32
32
33
33
34
34
35
35
36

36
36
37
37
38
39
39
39
40
41

42
42
44
44
44
45
46
46

[ii]

Table of Contents

Creating a custom modifier using function modifiers
Using events for logging and callback
Custom data types with struct
Custom types for constants with enum
Solidity data types
Understanding Solidity value types
Integer value type
Boolean value type
Address value type
Reading a contract's ether balance
Sending ether using transfer
Sending ether using send
Understanding call and delegatecall functions
Understanding the staticcall function
Adjust gas for a transaction using gas
Forwarding ether to another contract
Changes in Solidity version 0.5.0
Fixed size byte arrays
Dynamically sized byte arrays
Understanding the bytes data type
Understanding the string type
Passing functions using function types
Get a function type with function selector
Using internal function types
Using external function types
Solidity reference types
Understanding variables' data locations in Solidity
Using arrays in Solidity
Creating a key value map using mapping
Resetting variables using the delete keyword
Assigning variables with units
Specifying ether amounts using ether units
Supported units for time
Global special variables and functions
Using block and transaction properties
Getting block information using the block variable
Getting sender transaction info using the msg variable
Getting the current time using the now variable
Getting transaction info using the tx variable
Special functions
Application Binary Interface encoding functions
Error handling in Solidity
Cryptographic functions
Contract-related functions
Get the contract address using this keyword
Destroying contracts using the selfdestruct function
Destroying contracts using the suicide function
Topics for self-study

Summary

47
48
48
49
50
51
51
52
53
54
55
55
55
57
58
58
59
60
61
61
62
62
63
63
64
66
66
67
68
69
69
70
70
71
71
71
72
72
72
73
73
74
76
76
76
77
77

78
78

[iii]

Table of Contents

Questions 79
Further reading 79
Chapter 3: Control Structures and Contracts 80
Understanding Solidity control structures 80
Returning multiple values from function 82
Expression evaluation order 82
Solidity contracts 84
Creating contracts 85
Creating child contracts using the new keyword 85
Using variable and function visibility 87
Getter functions for state variables 90
Creating custom function modifiers 91
Creating constant state variables 92
Understanding types of Solidity functions 92
Using view functions to read state variables 93
Using pure functions to perform calculations 95
Using the default fallback function 96
Overloading functions 97
Overriding function definition 98
Using emit and events for event logging 99
Inheriting contracts 100
Passing arguments for the base constructor 103
Understanding inheritance linearization 104
Creating abstract contracts 104
Creating interfaces 106
Creating custom reusable libraries 107
Using libraries with — using...for directive 108
Summary 110
Questions 110
Section 2: Deep Dive into Development Tools
Chapter 4: Learning MetaMask and Remix 112
Technical requirements 112
Using the MetaMask plugin 113
Installing and setting up the MetaMask plugin 114
Connecting to different Ethereum networks 119
Getting test ether from faucets 120
Other features of the MetaMask plugin 120
Using the Remix Solidity IDE 120
The Remix IDE overview 121
Compiler tools present under the Compile tab 122
Understanding the Run tab 122
Selecting the environment to connect with 124

[iv]

Table of Contents

Choosing different wallet accounts

Transaction parameters

Selecting the contract to use

Using deploy and attach
Deploying a contract

Initiating a transaction to execute the function
Initiating a call to a view function and state variables

Connecting the contract folder using remixd
Setting up a local instance of the Remix IDE

Using the blockchain explorer at etherscan.io

Ethereum wallet software
Using myetherwallet.com
Summary
Questions

Chapter 5: Using Ganache and the Truffle Framework

Technical requirements
Local blockchain with Ganache
Starting a local blockchain
Creating workspaces for projects
Ganache advance configuration
The command-line version of Ganache
Understanding Truffle framework
Setting up a Truffle project
Truffle configuration files
Configuring the Solidity compiler
Configuring networks
Choosing which blockchain client to use
Personal blockchain client
Running blockchain nodes
Using Infura
Writing contract migration scripts
Trigger migration using the migrate option
Sample migration script

Using artifacts.require() to get the contract instance

Using module.exports
Deployer
Network considerations
Available accounts

Writing test cases

Writing test cases in JavaScript using Mocha

Writing test cases in Solidity
Debug transactions
Summary
Questions

Chapter 6: Taking Advantage of Code Quality Tools

124
125
125
125
126
130
131
132
134
134
135
136
137
137

138
139
139
141
143
143
144
147
148
149
149
151
152
153
153
154
154
154
155
155
156
156

157
157

158
158
160
161
163

163
164

[v]

Table of Contents

Technical requirements 165
Using the surya tool 165
Installing surya 165
Using surya describe 167
Generating an inheritance graph 168
Generating a function call graph 170
Parsing contracts 171
Generating function traces 172
Listing inheritance dependencies 173
Generating the markdown report 175
Understanding Solidity linters 177
Using the solhint linter 177
Installing the solhint linter 178
Using solhint 178
Using the ethlint linter 180
Installing ethlint 180
Using solium 181
The solidity-coverage tool 183
Installing solidity-coverage 183
Using solidity-coverage 184
Summary 186
Questions 186
Section 3: Mastering ERC Standards and Libraries
Chapter 7: ERC20 Token Standard 188
Technical requirements 188
Overview of the ERC20 token standard 189
Use of ERC20 in crowdfunding 190
The motivation behind the ERC20 standard 191
ERC20 standard API 191
ERC20 implementation 192
Contract state variables 193
The balances variable stores account balance 193
The allowed variable stores approved balances 194
The totalSupply variable stores the total token supply 195
The transfer function 196
Difference between the ether and token transfer functions 197
Token transfer does not notify the contact 198
Tokens can be locked 198
The transfer transaction details 199
The approve function 201
Front-running attack on the approve function 202
Preventing a front-running attack 203
The transferFrom function 203
Two-step process for contracts 205

[vi]

Table of Contents

The allowance function

The balanceOf function

The totalSupply function
Events

The Transfer event

The Approval event
Optional functions

The name function

The symbol function

The decimals function
Advanced functions

The increaseApproval function

The decreaseApproval function
Summary
Questions

Chapter 8: ERC721 Non-Fungible Token Standard
Technical requirements
Overview of the ERC721 NFT standard
The ERC721 NFT standard API interface
Understanding the ERC721 implementation
ERC721 inherits from IERC721 and ERC165
ERC721 inherits from ERC165
ERC721 inherits from IERC721
Understanding ERC721 state variables
Token owner mapping kept in _tokenOwner
Approved address mapping kept in _tokenApprovals
The number of tokens per owner kept in _ownedTokensCount
Operator approvals kept in _operatorApprovals
The ERC165 interface code for the ERC721, INTERFACE_ID_ERC721
The ERC165 interface code for the ERC721Receiver, ERC721 RECEIVED
The constructor of ERC721
The balanceOf function
The ownerOf function
The approve function
The getApproved function
The setApprovalForAll function
The isApprovedForAll function
The transferFrom function
The safeTransferFrom function
Another safeTransferFrom function
The _exists internal function
The _isApprovedOrOwner internal function
The _mint internal function
The _burn internal function
Another _burn internal function

206
207
207
208
208
209
209
210
210
210
21
211
212
213
214

215
216
216
217
219
219
220
221
221
222
222
223
223
224
225
225
226
226
227
228
228
229
229
230
231
231
232
233
233
234

[vii]

Table of Contents

The _transferFrom internal function 235
The _checkOnERC721Received internal function 236
The _clearApproval internal function 237
Events 238
The Transfer event 238
The Approval event 239
The ApprovalForAll event 240
The ERC721TokenReceiver interface 240
The ERC721Metadata interface 241
The ERC721 enumerable 242
The ERC721 full implementation 243
Summary 243
Questions 244
Chapter 9: Deep Dive into the OpenZeppelin Library 245
Technical requirements 246
The OpenZeppelin project 246
Installation 249
Usage 249
Contract ownership 250
Contract ownership using Ownable.sol 251
Claimable ownership using Claimable.sol 253
Roles library 254
Managing roles using Roles.sol 255
Manage PauserRole using PauserRole.sol 256
Other roles 258
Life cycle contracts 259
Pause/unpause functions using Pausable.sol 259
The ERC20 token standard library 261
ERC20 interface — IERC20.sol 262
Full ERC20 implementation using ERC20.sol 263
Perform safe ERC20 function calls using SafeERC20.sol 265
Create tokens with metadata using DetailedERC20.sol 267
Create mintable tokens using ERC20Mintable.sol 269
Allow token burning using ERC20Burnable.sol 269
Create pausable tokens using ERC20Pausable.sol 270
Math-related libraries 272
Aggregation functions using Math.sol 272
Arithmetic calculation using SafeMath.sol 273
Crowdsale 275
Create crowdsale using Crowdsale.sol 276
Create whitelisted crowdsale using WhitelistCrowdsale.sol 278
Other crowdsale contracts 279
Utility contracts 280
Check for contracts using Address.sol 280

[viii]

Table of Contents

Prevent reentrancy attacks using ReentrancyGuard.sol
Summary
Questions

Chapter 10: Using Multisig Wallets
Technical requirements
Understanding multisig wallets
Benefits of using multisig wallets
Precautions when using multisig wallets
Learning ConsenSys multisig implementation
Setting up your own multisig wallet

Deploying your multisig wallet contract

Sending ETH from a multisig contract
Controlling contracts with multisig
Summary
Questions

Chapter 11: Upgradable Contracts Using ZeppelinOS
Technical requirements
Understanding upgradable contracts
Introduction to ZeppelinOS
Creating a ZeppelinOS project
Deploying the StableToken contract
Upgrading the contract
ZeppelinOS commands
Precautions while using ZeppelinOS
Precautions for state variables
Avoid changing the variable declaration order
Avoid changing variable data types
Avoid adding new variables before existing variables
Avoid removing existing state variables
Always add new variables at the end
Precautions when changing variable names
Avoid initial values in the field declaration
Precautions for contract inheritance
Avoid changing the inheritance order
Avoid adding new state variables in base contracts
Summary
Questions

Chapter 12: Building Your Own Token
Technical requirements
Features of our token
Contract architecture design
Designing an ERC20 MST token
Designing an MST crowdsale contract

281
282
283

284
284
285
288
288
289
293
295
300
306
314
315

316
317
317
318
321
323
326
331
333
333
334
334
334
335
335
335
336
336
337
337
338
338

339
339
340
341
342
344

[ix]

Table of Contents

Setting up the Truffle project 345
Updating configuration 346
Creating Solidity contracts 347
The MSTToken.sol contract 347
The MSTCrowdsale.sol contract 348
Compiling contracts 350
Writing a migration script 351
Running Ganache 353
Running migration scripts 353
Writing test cases 355
Deploying contracts on testnet 357
Infura APls 357
Updating the configuration 358
Setting up wallet mnemonics 360
Installing dependencies 360
Deploying contracts on testnet 361
Summary 363
Questions 363
Section 4: Design Patterns and Best Practices
Chapter 13: Solidity Design Patterns 365
Security patterns 366
Withdrawal pattern 366
Applicability 368
Access restriction pattern 368
Applicability 370
Emergency stop pattern 370
Applicability 372
Creational patterns 372
Factory contract pattern 373
Applicability 374
Behavioral patterns 374
State machine pattern 375
Applicability 377
Iterable map pattern 377
Applicability 378
Indexed map pattern 378
Applicability 380
Address list pattern 380
Applicability 381
Subscription pattern 381
Applicability 383
Gas economic patterns 383
String equality comparison pattern 384
Applicability 384

[x]

Table of Contents

Tight variable packing pattern
Applicability
Life cycle patterns
Mortal pattern
Applicability
Auto deprecate pattern
Applicability
Summary
Questions

Chapter 14: Tips, Tricks, and Security Best Practices
Technical requirements
Smart contracts best practices
Avoiding floating pragma
Avoid sharing a secret on-chain
The commit-and-reveal scheme
Be careful while using loops
Avoid using tx.origin for authorization
Preventing an attack
The timestamp can be manipulated by miners
The 15-second blocktime rule
Carefully making external function calls
Avoid dependency on untrusted external calls
Avoid using delegatecall to untrusted contract code
Rounding errors with division
Using assert(), require(), and revert() properly
Gas consumption
Known attack patterns
Front-running attacks
Example of an ERC20 approve function
Preventing an attack on the approve function
Other front-running attacks
Reentrancy attacks
Preventing a reentrancy attack
Replay attack
Signature replay attacks
Preventing a signature replay attack
Integer overflow and underflow attacks
Ether can be sent forcibly to a contract
Prevention and precaution
Security analysis tools
Using the Securify tool
Summary
Questions

Assessments

385
388
388
388
389
389
390
391

391

392
393
393
394
394
396
397
399
401
402
402
403
404
404
405
406
406
406
407
408
410
411
412
414
415
415
416
418
419
420
421
421
424

425
426

[xil

Table of Contents

Other Books You May Enjoy 440

Index 443

[xii]

Preface

Blockchain technology is at its nascent stage. However, technology is slowly moving
forward and new developments using blockchain are emerging. This technology has the
power to replace trusted third parties with trusted blockchain networks. Bitcoin was the
birth of blockchain technology and has shown the world a new peer-to-peer payment
system without needing intermediaries. You could say that Bitcoin was the first generation
of blockchain technology. However, Ethereum took this innovative technology to the next
level—you could call it blockchain generation two—where you can write decentralized
applications using smart contracts. Solidity is the most widely used and popular language
for writing smart contracts for decentralized applications.

The book starts with explaining blockchain, Ethereum, and Solidity. It mostly focuses on
writing production-ready smart contracts in the Solidity language for Ethereum blockchain.
It covers basic Solidity language syntax and control structures, and moves on to writing
your own contract. It also deep dives into different libraries that you can use while writing
contracts. Later on, it covers tools and techniques to write secure, production-ready smart
contracts.

Who this book is for

This book is for professional software developers who have started learning blockchain,
Ethereum, and the Solidity language and who want to make a career in writing production-
ready smart contracts. This book is also aimed at developers who are interested in building
decentralized applications over Ethereum blockchain. This book will help you learn the
Solidity language for building smart contracts from scratch and make you proficient in
building production-ready smart contracts for decentralized applications.

What this book covers

Chapter 1, Introduction to Blockchain, starts with how blockchain technology came into
existence through the innovation of Bitcoin. This chapter discusses the different properties
of a blockchain. It also introduces Ethereum and how it is different from the Bitcoin
blockchain. Later, this chapter introduces smart contracts.

Preface

Chapter 2, Getting Started with Solidity, starts with the basic Solidity language syntaxes and
the structure of a contract. You will learn about the different data types available in
Solidity. This chapter also discusses globally available variables present in the Solidity
language that you can use while writing your smart contract.

Chapter 3, Control Structures and Contracts, deep dives into the control structures of Solidity
contracts, the different types of functions supported, contract inheritance, and event

logging.

Chapter 4, Learning MetaMask and Remix, discusses setting up your MetaMask plugin and
creating wallets using it. This chapter also discusses using the online Remix IDE to create,
compile, deploy, and interact with your Solidity contracts.

Chapter 5, Using Ganache and the Truffle Framework, discusses installing and setting up your
local blockchain instance using Ganache. This chapter also discusses installing and setting
up the Truffle framework, learning how to use its commands, setting up your new Truffle
project, writing migration scripts for the Truffle framework, and adding test cases to a
project.

Chapter 6, Taking Advantage of Code Quality Tools, discusses improving the quality of your
contracts by using open source tools such as surya, which helps in generating different
kinds of reports. This chapter also discusses using Solidity linters to lint your code and fix
common issues present in your contracts, as well as running Solidity coverage tools to
generate code coverage reports.

Chapter 7, ERC20 Token Standard, covers the introduction of the ERC20 token standard.
This chapter deep dives into its full implementation details, provides an in-depth study of
each function of the standard, and covers different events, optional functions, and a
number of advanced functions.

Chapter 8, ERC721 Non-Fungible Token Standard, starts with an introduction to the ERC721
standard and the difference between the ERC20 and ERC721 standards. This chapter deep
dives into each of the state variables, functions, and events associated with ERC721

implementation. This chapter also discusses some other optional contracts that can be used
with the ERC721 standard.

Chapter 9, Deep Dive into the OpenZeppelin Library, starts with an introduction to
OpenZeppelin library contracts. This chapter will help you learn how to install and use
OpenZeppelin library contracts in your Truffle project. It also provides in-depth studies of
library contracts such as Ownable, Claimable, Roles, PauserRole, Pausable, ERC20,
SafeERC20, DetailedERC20, ERC20Mintable, ERC20Burnable, ERC20Pausable, Math,
SafeMath, Crowdsale, Address, and ReentrancyGuard.

[2]

Preface

Chapter 10, Using Multisig Wallets, The multisig wallets are special contracts that require
multiple signatures to execute a transaction. This chapter provides an introduction to
multisig contracts and their usage. This chapter also covers installing, creating, and setting
up your own multisig wallet, as well as how to use and control it.

Chapter 11, Upgradable Contracts Using ZeppelinOS, provides an introduction to the
ZeppelinOS development platform. Topics covered include creating a new project using
zos commands, creating an upgradable contract, deploying, re-deploying to upgrade the
contract, and some precautions to take when using ZeppelinOS for writing upgradable
contracts.

Chapter 12, Building Your Own Token, helps you learn how to create your own ERC20 token
contract from scratch. You will learn how to draft the specification of a contract, set up a
Truffle project, create a contract, choose which OpenZeppelin libraries to use, write
migration scripts, write test cases, execute migration scripts and test cases in Ganache, and
finally, test your contracts on a testnet such as Rinkeby.

Chapter 13, Solidity Design Patterns, introduces different Solidity design patterns. These are
divided into five categories: Security patterns: Withdrawal, Access restriction, and
Emergency stop; Creational patterns: Factory pattern; Behavioral patterns: State machine,
Iterable map, Indexed map, Address list, and Subscription; Gas economic patters: String
comparison and Tight variable packing; and Life cycle patterns: Mortal and Auto deprecate
pattern.

Chapter 14, Tips, Tricks, and Security Best Practices, helps you to learn different Solidity
smart contract best practices, such as avoiding floating pragma, the 15-second blocktime
rule, rounding errors, and gas consumption. It also helps you to learn about different
security attacks, such as front-running, reentrancy, signature replay, integer overflow and
underflow, and how to prevent these attack patterns.

To get the most out of this book

You should have knowledge of any of the existing programming languages. Solidity
language syntaxes are very similar to Java, JavaScript, and Python syntaxes. A developer
who has created projects using Java, JavaScript, or Python can pick up and learn Solidity
very easily. You should also have some basic knowledge of OOPS concepts, blockchain,
wallets, private key, public key, consensus algorithms, and exchanges.

[3]

Preface

One very important thing to note here is that, in order to write smart contracts for
decentralized applications, you need to have a completely new mindset. Up until now, you
have probably been building applications using Java, JS, or another language in which you
can fix bugs later on, even in the production environment when something goes wrong.
However, smart contracts are immutable. If your contract is deployed in production, you
are done. If there is a bug left in the contract, you will be unable to fix it. Hence, you need to
ensure that all your smart contracts are well-tested and have no bugs present in them.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www .packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest versions of the following:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Blockchain-Programming-with-Solidity. If there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it at https://static.packt-cdn.com/downloads/9781839218262_
ColorImages.pdf.

[4]

Preface

Code in action

To see the code being executed please visit the following link: http://bit.1ly/2Yv6kpm.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Solidity supports different data types, including uint, int, address, and many
more."

A block of code is set as follows:

contract VariableStorage {
uint storeUint; //uint256 storage variable
/] ...
3

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

contract VariableStorage {
uint storeUint; //uint256 storage variable
VA

}

Any command-line input or output is written as follows:

$ npm install -g ganache-cli

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"As mentioned earlier, you can start a local Ganache blockchain instance by just clicking on
the QUICKSTART button."

Warnings or important notes appear like this.

[5]

