

Digital Signal Processing

http://dx.doi.org/10.1036/0071454241

This page intentionally left blank

Digital
Signal

Processing
S I G N A L S

S Y S T E M S
A N D F I L T E R S

Andreas Antoniou
University of Victoria

British Columbia

Canada

McGraw-Hill
New York Chicago San Francisco Lisbon London

Madrid Mexico City Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071454241

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-158904-X

The material in this eBook also appears in the print version of this title: 0-07-145424-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use incorporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT-
ED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and
its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim
or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071454241

http://dx.doi.org/10.1036/0071454241

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071454241

In memory of
my wife Rosemary

my mother Eleni
and my father Antonios

This page intentionally left blank

ABOUT THE AUTHOR

Andreas Antoniou received the B.Sc. (Eng.) and Ph.D. degrees in Electrical Engineering from the
University of London, U.K., in 1963 and 1966, respectively, and is a Fellow of the Institution of
Electrical Engineers and the Institute of Electrical and Electronics Engineers. He taught at Concordia
University from 1970 to 1983 serving as Chair of the Department of Electrical and Computer
Engineering during 1977–83. He served as the founding Chair of the Department of Electrical and
Computer Engineering, University of Victoria, B.C., Canada, from 1983 to 1990, and is now Professor
Emeritus in the same department. His teaching and research interests are in the areas of circuits and
systems and digital signal processing. He is the author of Digital Filters: Analysis, Design, and
Applications (McGraw-Hill), first and second editions, published in 1978 and 1993, respectively,
and the co-author with W.-S Lu of Two-Dimensional Digital Filters (Marcel Dekker, 1992).

Dr. Antoniou served as Associate Editor and Chief Editor for the IEEE Transactions on Circuits
and Systems (CAS) during 1983–85 and 1985–87, respectively; as a Distinguished Lecturer of the
IEEE Signal Processing Society in 2003; and as the General Chair of the 2004 IEEE International
Symposium on Circuits and Systems.

He received the Ambrose Fleming Premium for 1964 from the IEE (best paper award), a CAS
Golden Jubilee Medal from the IEEE Circuits and Systems Society in 2000, the B.C. Science
Council Chairman’s Award for Career Achievement for 2000, the Doctor Honoris Causa degree
from the Metsovio National Technical University of Athens, Greece, in 2002, and the IEEE Circuits
and Systems Society Technical Achievements Award for 2005.

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

TABLE OF CONTENTS

Preface xix

Chapter 1. Introduction to Digital Signal Processing 1

1.1 Introduction 1
1.2 Signals 1
1.3 Frequency-Domain Representation 4
1.4 Notation 7
1.5 Signal Processing 8
1.6 Analog Filters 15
1.7 Applications of Analog Filters 16
1.8 Digital Filters 19
1.9 Two DSP Applications 23

1.9.1 Processing of EKG signals 23
1.9.2 Processing of Stock-Exchange Data 24
References 26

Chapter 2. The Fourier Series and Fourier Transform 29

2.1 Introduction 29
2.2 Fourier Series 29

2.2.1 Definition 30
2.2.2 Particular Forms 31
2.2.3 Theorems and Properties 35

2.3 Fourier Transform 46
2.3.1 Derivation 47
2.3.2 Particular Forms 50
2.3.3 Theorems and Properties 57
References 73
Problems 73

Chapter 3. The z Transform 79

3.1 Introduction 79
3.2 Definition of z Transform 80

For more information about this title, click here

http://dx.doi.org/10.1036/0071454241

x DIGITAL SIGNAL PROCESSING

3.3 Convergence Properties 81
3.4 The z Transform as a Laurent Series 83
3.5 Inverse z Transform 85
3.6 Theorems and Properties 86
3.7 Elementary Discrete-Time Signals 95
3.8 z-Transform Inversion Techniques 101

3.8.1 Use of Binomial Series 103
3.8.2 Use of Convolution Theorem 108
3.8.3 Use of Long Division 110
3.8.4 Use of Initial-Value Theorem 113
3.8.5 Use of Partial Fractions 115

3.9 Spectral Representation of Discrete-Time Signals 119
3.9.1 Frequency Spectrum 119
3.9.2 Periodicity of Frequency Spectrum 120
3.9.3 Interrelations 124
References 126
Problems 126

Chapter 4. Discrete-Time Systems 131

4.1 Introduction 131
4.2 Basic System Properties 132

4.2.1 Linearity 132
4.2.2 Time Invariance 134
4.2.3 Causality 136

4.3 Characterization of Discrete-Time Systems 140
4.3.1 Nonrecursive Systems 140
4.3.2 Recursive Systems 140

4.4 Discrete-Time System Networks 142
4.4.1 Network Analysis 143
4.4.2 Implementation of Discrete-Time Systems 146
4.4.3 Signal Flow-Graph Analysis 147

4.5 Introduction to Time-Domain Analysis 155
4.6 Convolution Summation 163

4.6.1 Graphical Interpretation 166
4.6.2 Alternative Classification 169

4.7 Stability 171
4.8 State-Space Representation 174

4.8.1 Computability 175
4.8.2 Characterization 176
4.8.3 Time-Domain Analysis 184
4.8.4 Applications of State-Space Method 186
References 186
Problems 186

Chapter 5. The Application of the z Transform 201

5.1 Introduction 201
5.2 The Discrete-Time Transfer Function 202

5.2.1 Derivation of H (z) from Difference Equation 202
5.2.2 Derivation of H (z) from System Network 204
5.2.3 Derivation of H (z) from State-Space Characterization 205

TABLE OF CONTENTS xi

5.3 Stability 207
5.3.1 Constraint on Poles 207
5.3.2 Constraint on Eigenvalues 211
5.3.3 Stability Criteria 214
5.3.4 Test for Common Factors 215
5.3.5 Schur-Cohn Stability Criterion 216
5.3.6 Schur-Cohn-Fujiwara Stability Criterion 217
5.3.7 Jury-Marden Stability Criterion 219
5.3.8 Lyapunov Stability Criterion 222

5.4 Time-Domain Analysis 223
5.5 Frequency-Domain Analysis 224

5.5.1 Steady-State Sinusoidal Response 224
5.5.2 Evaluation of Frequency Response 227
5.5.3 Periodicity of Frequency Response 228
5.5.4 Aliasing 229
5.5.5 Frequency Response of Digital Filters 232

5.6 Transfer Functions for Digital Filters 245
5.6.1 First-Order Transfer Functions 246
5.6.2 Second-Order Transfer Functions 246
5.6.3 Higher-Order Transfer Functions 251

5.7 Amplitude and Delay Distortion 251
References 254
Problems 254

Chapter 6. The Sampling Process 261

6.1 Introduction 261
6.2 Fourier Transform Revisited 263

6.2.1 Impulse Functions 263
6.2.2 Periodic Signals 272
6.2.3 Unit-Step Function 274
6.2.4 Generalized Functions 274

6.3 Interrelation Between the Fourier Series and the Fourier Transform 278
6.4 Poisson’s Summation Formula 284
6.5 Impulse-Modulated Signals 286

6.5.1 Interrelation Between the Fourier and z Transforms 288
6.5.2 Spectral Relationship Between Discrete- and Continuous-Time Signals 290

6.6 The Sampling Theorem 294
6.7 Aliasing 296
6.8 Graphical Representation of Interrelations 297
6.9 Processing of Continuous-Time Signals Using Digital Filters 298

6.10 Practical A/D and D/A Converters 303
References 311
Problems 311

Chapter 7. The Discrete Fourier Transform 321

7.1 Introduction 321
7.2 Definition 322
7.3 Inverse DFT 322
7.4 Properties 323

xii DIGITAL SIGNAL PROCESSING

7.4.1 Linearity 323
7.4.2 Periodicity 323
7.4.3 Symmetry 323

7.5 Interrelation Between the DFT and the z Transform 325
7.5.1 Frequency-Domain Sampling Theorem 328
7.5.2 Time-Domain Aliasing 333

7.6 Interrelation Between the DFT and the CFT 333
7.6.1 Time-Domain Aliasing 335

7.7 Interrelation Between the DFT and the Fourier Series 335
7.8 Window Technique 337

7.8.1 Continuous-Time Windows 337
7.8.2 Discrete-Time Windows 350
7.8.3 Periodic Discrete-Time Windows 352
7.8.4 Application of Window Technique 354

7.9 Simplified Notation 358
7.10 Periodic Convolutions 358

7.10.1 Time-Domain Periodic Convolution 359
7.10.2 Frequency-Domain Periodic Convolution 361

7.11 Fast Fourier-Transform Algorithms 362
7.11.1 Decimation-in-Time Algorithm 362
7.11.2 Decimation-in-Frequency Algorithm 370
7.11.3 Inverse DFT 375

7.12 Application of the FFT Approach to Signal Processing 376
7.12.1 Overlap-and-Add Method 377
7.12.2 Overlap-and-Save Method 380
References 381
Problems 382

Chapter 8. Realization of Digital Filters 389

8.1 Introduction 389
8.2 Realization 391

8.2.1 Direct Realization 392
8.2.2 Direct Canonic Realization 395
8.2.3 State-Space Realization 397
8.2.4 Lattice Realization 401
8.2.5 Cascade Realization 404
8.2.6 Parallel Realization 407
8.2.7 Transposition 410

8.3 Implementation 412
8.3.1 Design Considerations 412
8.3.2 Systolic Implementations 412
References 417
Problems 417

Chapter 9. Design of Nonrecursive (FIR) Filters 425

9.1 Introduction 425
9.2 Properties of Constant-Delay Nonrecursive Filters 426

9.2.1 Impulse Response Symmetries 426
9.2.2 Frequency Response 428
9.2.3 Location of Zeros 430

9.3 Design Using the Fourier Series 431

TABLE OF CONTENTS xiii

9.4 Use of Window Functions 434
9.4.1 Rectangular Window 435
9.4.2 von Hann and Hamming Windows 437
9.4.3 Blackman Window 439
9.4.4 Dolph-Chebyshev Window 440
9.4.5 Kaiser Window 445
9.4.6 Prescribed Filter Specifications 445
9.4.7 Other Windows 453

9.5 Design Based on Numerical-Analysis Formulas 453
References 458
Problems 459

Chapter 10. Approximations for Analog Filters 463

10.1 Introduction 463
10.2 Basic Concepts 465

10.2.1 Characterization 465
10.2.2 Laplace Transform 465
10.2.3 The Transfer Function 466
10.2.4 Time-Domain Response 466
10.2.5 Frequency-Domain Analysis 469
10.2.6 Ideal and Practical Filters 471
10.2.7 Realizability Constraints 474

10.3 Butterworth Approximation 475
10.3.1 Derivation 475
10.3.2 Normalized Transfer Function 476
10.3.3 Minimum Filter Order 479

10.4 Chebyshev Approximation 481
10.4.1 Derivation 481
10.4.2 Zeros of Loss Function 485
10.4.3 Normalized Transfer Function 489
10.4.4 Minimum Filter Order 490

10.5 Inverse-Chebyshev Approximation 493
10.5.1 Normalized Transfer Function 493
10.5.2 Minimum Filter Order 494

10.6 Elliptic Approximation 497
10.6.1 Fifth-Order Approximation 497
10.6.2 N th-Order Approximation (n Odd) 504
10.6.3 Zeros and Poles of L(−s2) 504
10.6.4 N th-Order Approximation (n Even) 507
10.6.5 Specification Constraint 508
10.6.6 Normalized Transfer Function 509

10.7 Bessel-Thomson Approximation 513
10.8 Transformations 516

10.8.1 Lowpass-to-Lowpass Transformation 516
10.8.2 Lowpass-to-Bandpass Transformation 516
References 519
Problems 520

Chapter 11. Design of Recursive (IIR) Filters 529

11.1 Introduction 529
11.2 Realizability Constraints 530
11.3 Invariant Impulse-Response Method 530

xiv DIGITAL SIGNAL PROCESSING

11.4 Modified Invariant Impulse-Response Method 534
11.5 Matched-z Transformation Method 538
11.6 Bilinear-Transformation Method 541

11.6.1 Derivation 541
11.6.2 Mapping Properties of Bilinear Transformation 543
11.6.3 The Warping Effect 545

11.7 Digital-Filter Transformations 549
11.7.1 General Transformation 549
11.7.2 Lowpass-to-Lowpass Transformation 551
11.7.3 Lowpass-to-Bandstop Transformation 552
11.7.4 Application 554

11.8 Comparison Between Recursive and Nonrecursive Designs 554
References 555
Problems 556

Chapter 12. Recursive (IIR) Filters Satisfying Prescribed Specifications 563

12.1 Introduction 563
12.2 Design Procedure 564
12.3 Design Formulas 565

12.3.1 Lowpass and Highpass Filters 565
12.3.2 Bandpass and Bandstop Filters 568
12.3.3 Butterworth Filters 573
12.3.4 Chebyshev Filters 575
12.3.5 Inverse-Chebyshev Filters 576
12.3.6 Elliptic Filters 576

12.4 Design Using the Formulas and Tables 577
12.5 Constant Group Delay 586

12.5.1 Delay Equalization 586
12.5.2 Zero-Phase Filters 587

12.6 Amplitude Equalization 588
References 588
Problems 588

Chapter 13. Random Signals 593

13.1 Introduction 593
13.2 Random Variables 593

13.2.1 Probability-Distribution Function 594
13.2.2 Probability-Density Function 594
13.2.3 Uniform Probability Density 594
13.2.4 Gaussian Probability Density 594
13.2.5 Joint Distributions 594
13.2.6 Mean Values and Moments 595

13.3 Random Processes 598
13.3.1 Notation 598

13.4 First- and Second-Order Statistics 599
13.5 Moments and Autocorrelation 602
13.6 Stationary Processes 604
13.7 Frequency-Domain Representation 604
13.8 Discrete-Time Random Processes 609
13.9 Filtering of Discrete-Time Random Signals 610

References 613
Problems 613

TABLE OF CONTENTS xv

Chapter 14. Effects of Finite Word Length in Digital Filters 617

14.1 Introduction 617
14.2 Number Representation 618

14.2.1 Binary System 618
14.2.2 Fixed-Point Arithmetic 620
14.2.3 Floating-Point Arithmetic 623
14.2.4 Number Quantization 625

14.3 Coefficient Quantization 627
14.4 Low-Sensitivity Structures 632

14.4.1 Case I 635
14.4.2 Case II 636

14.5 Product Quantization 638
14.6 Signal Scaling 640

14.6.1 Method A 640
14.6.2 Method B 641
14.6.3 Types of Scaling 643
14.6.4 Application of Scaling 645

14.7 Minimization of Output Roundoff Noise 647
14.8 Application of Error-Spectrum Shaping 651
14.9 Limit-Cycle Oscillations 654

14.9.1 Quantization Limit Cycles 654
14.9.2 Overflow Limit Cycles 659
14.9.3 Elimination of Quantization Limit Cycles 660
14.9.4 Elimination of Overflow Limit Cycles 665
References 667
Problems 668

Chapter 15. Design of Nonrecursive Filters Using Optimization Methods 673

15.1 Introduction 673
15.2 Problem Formulation 674

15.2.1 Lowpass and Highpass Filters 675
15.2.2 Bandpass and Bandstop Filters 676
15.2.3 Alternation Theorem 677

15.3 Remez Exchange Algorithm 678
15.3.1 Initialization of Extremals 679
15.3.2 Location of Maxima of the Error Function 679
15.3.3 Computation of |E(ω)| and Pc(ω) 681
15.3.4 Rejection of Superfluous Potential Extremals 682
15.3.5 Computation of Impulse Response 683

15.4 Improved Search Methods 683
15.4.1 Selective Step-by-Step Search 683
15.4.2 Cubic Interpolation 687
15.4.3 Quadratic Interpolation 689
15.4.4 Improved Formulation 689

15.5 Efficient Remez Exchange Algorithm 691
15.6 Gradient Information 694

15.6.1 Property 1 695
15.6.2 Property 2 695
15.6.3 Property 3 695
15.6.4 Property 4 696
15.6.5 Property 5 696

15.7 Prescribed Specifications 700

xvi DIGITAL SIGNAL PROCESSING

15.8 Generalization 703
15.8.1 Antisymmetrical Impulse Response and Odd Filter Length 703
15.8.2 Even Filter Length 705

15.9 Digital Differentiators 707
15.9.1 Problem Formulation 707
15.9.2 First Derivative 708
15.9.3 Prescribed Specifications 708

15.10 Arbitrary Amplitude Responses 712
15.11 Multiband Filters 712

References 715
Additional References 716
Problems 716

Chapter 16. Design of Recursive Filters Using Optimization Methods 719

16.1 Introduction 719
16.2 Problem Formulation 720
16.3 Newton’s Method 722
16.4 Quasi-Newton Algorithms 726

16.4.1 Basic Quasi-Newton Algorithm 726
16.4.2 Updating Formulas for Matrix Sk+1 729
16.4.3 Inexact Line Searches 730
16.4.4 Practical Quasi-Newton Algorithm 734

16.5 Minimax Algorithms 738
16.6 Improved Minimax Algorithms 741
16.7 Design of Recursive Filters 745

16.7.1 Objective Function 745
16.7.2 Gradient Information 746
16.7.3 Stability 746
16.7.4 Minimum Filter Order 746
16.7.5 Use of Weighting 747

16.8 Design of Recursive Delay Equalizers 753
References 766
Additional References 766
Problems 767

Chapter 17. Wave Digital Filters 773

17.1 Introduction 773
17.2 Sensitivity Considerations 774
17.3 Wave Network Characterization 775
17.4 Element Realizations 777

17.4.1 Impedances 778
17.4.2 Voltage Sources 779
17.4.3 Series Wire Interconnection 780
17.4.4 Parallel Wire Interconnection 782
17.4.5 2-Port Adaptors 783
17.4.6 Transformers 784
17.4.7 Unit Elements 786
17.4.8 Circulators 788
17.4.9 Resonant Circuits 788

17.4.10 Realizability Constraint 791

TABLE OF CONTENTS xvii

17.5 Lattice Wave Digital Filters 791
17.5.1 Analysis 791
17.5.2 Alternative Lattice Configuration 792
17.5.3 Digital Realization 796

17.6 Ladder Wave Digital Filters 798
17.7 Filters Satisfying Prescribed Specifications 802
17.8 Frequency-Domain Analysis 805
17.9 Scaling 807

17.10 Elimination of Limit-Cycle Oscillations 808
17.11 Related Synthesis Methods 810
17.12 A Cascade Synthesis Based on the Wave Characterization 811

17.12.1 Generalized-Immittance Converters 811
17.12.2 Analog G-CGIC Configuration 811
17.12.3 Digital G-CGIC Configuration 812
17.12.4 Cascade Synthesis 814
17.12.5 Signal Scaling 817
17.12.6 Output Noise 818

17.13 Choice of Structure 819
References 820
Problems 822

Chapter 18. Digital Signal Processing Applications 829

18.1 Introduction 829
18.2 Sampling-Frequency Conversion 830

18.2.1 Decimators 830
18.2.2 Interpolators 833
18.2.3 Sampling Frequency Conversion by a Noninteger Factor 839
18.2.4 Design Considerations 839

18.3 Quadrature-Mirror-Image Filter Banks 839
18.3.1 Operation 840
18.3.2 Elimination of Aliasing Errors 844
18.3.3 Design Considerations 846
18.3.4 Perfect Reconstruction 849

18.4 Hilbert Transformers 851
18.4.1 Design of Hilbert Transformers 854
18.4.2 Single-Sideband Modulation 859
18.4.3 Sampling of Bandpassed Signals 861

18.5 Adaptive Digital Filters 862
18.5.1 Wiener Filters 865
18.5.2 Newton Algorithm 867
18.5.3 Steepest-Descent Algorithm 867
18.5.4 Least-Mean-Square Algorithm 870
18.5.5 Recursive Filters 871
18.5.6 Applications 872

18.6 Two-Dimensional Digital Filters 874
18.6.1 Two-Dimensional Convolution 875
18.6.2 Two-Dimensional z Transform 875
18.6.3 Two-Dimensional Transfer Function 875
18.6.4 Stability 876
18.6.5 Frequency-Domain Analysis 877
18.6.6 Types of 2-D Filters 880
18.6.7 Approximations 881
18.6.8 Applications 881

xviii DIGITAL SIGNAL PROCESSING

References 882
Additional References 884
Problems 884

Appendix A. Complex Analysis 891

A.1 Introduction 891
A.2 Complex Numbers 892

A.2.1 Complex Arithmetic 894
A.2.2 De Moivre’s Theorem 894
A.2.3 Euler’s Formula 895
A.2.4 Exponential Form 896
A.2.5 Vector Representation 897
A.2.6 Spherical Representation 898

A.3 Functions of a Complex Variable 899
A.3.1 Polynomials 899
A.3.2 Inverse Algebraic Functions 900
A.3.3 Trigonometric Functions and Their Inverses 900
A.3.4 Hyperbolic Functions and Their Inverses 901
A.3.5 Multi-Valued Functions 902
A.3.6 Periodic Functions 904
A.3.7 Rational Algebraic Functions 905

A.4 Basic Principles of Complex Analysis 906
A.4.1 Limit 906
A.4.2 Differentiability 907
A.4.3 Analyticity 907
A.4.4 Zeros 908
A.4.5 Singularities 908
A.4.6 Zero-Pole Plots 910

A.5 Series 911
A.6 Laurent Theorem 915
A.7 Residue Theorem 919
A.8 Analytic Continuation 920
A.9 Conformal Transformations 921

References 924

Appendix B. Elliptic Functions 925

B.1 Introduction 925
B.2 Elliptic Integral of the First Kind 925
B.3 Elliptic Functions 927
B.4 Imaginary Argument 930
B.5 Formulas 932
B.6 Periodicity 932
B.7 Transformation 934
B.8 Series Representation 936

References 937

Index 939

PREFACE

The great advancements in the design of microchips, digital systems, and computer hardware over
the past 40 years have given birth to digital signal processing (DSP) which has grown over the
years into a ubiquitous, multifaceted, and indispensable subject of study. As such DSP has been
applied in most disciplines ranging from engineering to economics and from astronomy to molecular
biology. Consequently, it would take a multivolume encyclopedia to cover all the facets, aspects, and
ramifications of DSP, and such a treatise would require many authors. This textbook focuses instead
on the fundamentals of DSP, namely, on the representation of signals by mathematical models and
on the processing of signals by discrete-time systems. Various types of processing are possible for
signals but the processing of interest in this volume is almost always linear and it typically involves
reshaping, transforming, or manipulating the frequency spectrum of the signal of interest. Discrete-
time systems that can reshape, transform, or manipulate the spectrum of a signal are known as digital
filters, and these systems will receive very special attention as they did in the author’s previous
textbook Digital Filters: Analysis, Design, and Applications, McGraw-Hill, 1993.

This author considers the processing of continuous- and discrete-time signals to be different
facets of one and the same subject of study without a clear demarcation where the processing of
continuous-time signals by analog systems ends and the processing of discrete-time signals by digital
systems begins. Discrete-time signals sometimes exist as distinct entities that are not derived from
or related to corresponding continuous-time signals. The processing of such a signal would result
in a transformed discrete-time signal, which would be, presumably, an enhanced or in some way
more desirable version of the original signal. Obviously, reference to an underlying continuous-
time signal would be irrelevant in such a case. However, more often than not discrete-time signals
are derived from corresponding continuous-time signals and, as a result, they inherit the spectral
characteristics of the latter. Discrete-time signals of this type are often processed by digital systems
and after that they are converted back to continuous-time signals. A case in point can be found
in the recording industry where music is first sampled to generate a discrete-time signal which is
then recorded on a CD. When the CD is played back, the discrete-time signal is converted into a
continuous-time signal. In order to preserve the spectrum of the underlying continuous-time signal,
e.g., that delightful piece of music, through this series of signal manipulations, special attention must
be paid to the spectral relationships that exist between continuous- and discrete-time signals. These
relationships are examined in great detail in Chapters 6 and 7. In the application just described, part

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

xx DIGITAL SIGNAL PROCESSING

of the processing must be performed by analog filters. As will be shown in Chapter 6, there is often
a need to use a bandlimiting analog filter before sampling and, on the other hand, the continuous-
time signal we hear through our stereo systems is produced by yet another analog filter. Therefore,
knowledge of analog filters is prerequisite if we are called upon to design DSP systems that involve
continuous-time signals in some way. Knowledge of analog filters is crucial in another respect: some
of the better recursive digital filters can be designed only by converting analog into digital filters, as
will be shown in Chapters 10–12 and 17.

The prerequisite knowledge for the book is a typical undergraduate mathematics background
of calculus, complex analysis, and simple differential equations. At certain universities, complex
analysis may not be included in the curriculum. To overcome this difficulty, the basics of complex
analysis are summarized in Appendix A which can also serve as a quick reference or refresher. The
derivation of the elliptic approximation in Section 10.6 requires a basic understanding of elliptic
functions but it can be skipped by most readers. Since elliptic functions are not normally included in
undergraduate curricula, a brief but adequate treatment of these functions is included in Appendix
B for the sake of completeness. Chapter 14 requires a basic understanding of random variables and
processes which may not be part of the curriculum at certain universities. To circumvent this difficulty,
the prerequisite knowledge on random variables and processes is summarized in Chapter 13.

Chapter 1 provides an overview of DSP. It starts with a classification of the types of signals
encountered in DSP. It then introduces in a heuristic way the characterization of signals in terms of
frequency spectrums. The filtering process as a means of transforming or altering the spectrum of
a signal is then described. The second half of the chapter provides a historical perspective of the
evolution of analog and digital filters and their applications. The chapter concludes with two specific
applications that illustrate the scope, diversity, and usefulness of DSP.

Chapter 2 describes the Fourier series and Fourier transform as the principal mathematical
entities for the spectral characterization of continuous-time signals. The Fourier transform is deduced
from the Fourier series through a limiting process whereby the period of a periodic signal is stretched
to infinity.

The most important mathematical tool for the representation of discrete-time signals is the
z transform and this forms the subject matter of Chapter 3. The z transform is viewed as a Laurent
series and that immediately causes the z transform to inherit the mathematical properties of the Lau-
rent series. By this means, the convergence properties of the z transform are more clearly understood
and, furthermore, a host of algebraic techniques become immediately applicable in the inversion
of the z transform. The chapter also deals with the use of the z transform as a tool for the spectral
representation of discrete-time signals.

Chapter 4 deals with the fundamentals of discrete-time systems. Topics considered include
basic system properties such as linearity, time invariance, causality, and stability; characterization of
discrete-time systems by difference equations; representation by networks and signal flow graphs and
analysis by node-elimination techniques. Time-domain analysis is introduced at an elementary level.
The analysis is accomplished by solving the difference equation of the system by using induction.
Although induction is not known for its efficiency, it is an intuitive technique that provides the
newcomer with a clear understanding of the basics of discrete-time systems and how they operate,
e.g., what are initial conditions, what is a transient or steady-state response, what is an impulse
response, and so on. The chapter continues with the representation of discrete-time systems by
convolution summations on the one hand and by state-space characterizations on the other.

PREFACE xxi

The application of the z transform to discrete-time systems is covered in Chapter 5. By applying
the z transform to the convolution summation, a discrete-time system can be represented by a transfer
function that encapsulates all the linear properties of the system, e.g., time-domain response, stability,
steady-state sinusoidal response, and frequency response. The chapter also includes stability criteria
and algorithms that can be used to decide with minimal computational effort whether a discrete-
time system is stable or not. The concepts of amplitude and phase responses and their physical
significance are illustrated by examples as well as by two- and three-dimensional MATLAB plots
that show clearly the true nature of zeros and poles. Chapter 5 also delineates the standard first- and
second-order transfer functions that can be used to design lowpass, highpass, bandpass, bandstop,
and allpass digital filters. The chapter concludes with a discussion on the causes and elimination of
signal distortion in discrete-time systems such as amplitude distortion and delay distortion.

Chapter 6 extends the application of the Fourier transform to impulse and periodic signals.
It also introduces the class of impulse-modulated signals which are, in effect, both sampled and
continuous in time. As such, they share characteristics with both continuous- as well as discrete-time
signals. Therefore, these signals provide a bridge between the analog and digital worlds and thereby
facilitate the DSP practitioner to interrelate the spectral characteristics of discrete-time signals with
those of the continuous-time signals from which they were derived. The chapter also deals with the
sampling process, the use of digital filters for the processing of continuous-time signals, and the
characterization and imperfections of analog-to-digital and digital-to-analog converters.

Chapter 7 presents the discrete Fourier transform (DFT) and the associated fast Fourier-
transform method as mathematical tools for the analysis of signals on the one hand and for the software
implementation of digital filters on the other. The chapter starts with the definition and properties of
the DFT and continues with the interrelations that exist between the DFT and (1) the z transform,
(2) the continuous Fourier transform, and (3) the Fourier series. These interrelations must be thor-
oughly understood, otherwise the user of the fast Fourier-transform method is likely to end up with
inaccurate spectral representations for the signals of interest. The chapter also deals with the window
method in detail, which can facilitate the processing of signals of long or infinity duration.

Chapters 1 to 7 deal, in effect, with the characterization and properties of continuous- and
discrete-time, periodic and nonperiodic signals, and with the general properties of discrete-time
systems in general. Chapters 8 to 18, on the other hand, are concerned with the design of various
types of digital filters. The design process is deemed to comprise four steps, namely, approximation,
realization, implementation, and study of system imperfections brought about by the use of finite
arithmetic. Approximation is the process of generating a transfer function that would satisfy the
required specifications. Realization is the process of converting the transfer function or some other
characterization of the digital filter into a digital network or structure. Implementation can take
two forms, namely, software and hardware. In a software implementation, a difference equation or
state-space representation is converted into a computer program that simulates the performance of
the digital filter, whereas in a hardware implementation a digital network is converted into a piece
of dedicated hardware. System imperfections are almost always related to the use of finite-precision
arithmetic and manifest themselves as numerical errors in filter parameters or the values of the signals
being processed.

Although the design process always starts with the solution of the approximation problem, the
realization process is much easier to deal with and for this reason it is treated first in Chapter 8. As
will be shown, several realization methods are available that lead to a great variety of digital-filter

xxii DIGITAL SIGNAL PROCESSING

structures. Chapter 8 also deals with a special class of structures known as systolic structures which
happen to have some special properties that make them amenable to integrated-circuit implementa-
tion.

Chapter 9 is concerned with closed-form methods that can be used to design nonrecursive
filters. The chapter starts by showing that constant-delay (linear-phase) nonrecursive filters can be
easily designed by forcing certain symmetries on the impulse response. The design of such filters
through the use of the Fourier series in conjunction with the window method is then described. Several
of the standard window functions, including the Dolph-Chebyshev and Kaiser window functions,
and their interrelations are detailed. The chapter includes a step-by-step design procedure based on
the Kaiser window function that can be used to design standard nonrecursive filters that would satisfy
prescribed specifications. It concludes with a method based on the use of classical numerical analysis
formulas which can be used to design specialized nonrecursive filters that can perform interpolation,
differentiation, and integration.

The approximation problem for recursive filters can be solved by using direct or indirect
methods. In direct methods, the discrete-time transfer function is obtained directly in the z do-
main usually through iterative optimization methods. In indirect methods, on the other hand, the
discrete-time transfer function is obtained by converting the continuous-time transfer function of an
appropriate analog filter through a series of transformations. Thus the need arises for the solution of
the approximation problem in analog filters. The basic concepts pertaining to the characterization of
analog filters and the standard approximation methods used to design analog lowpass filters, i.e., the
Butterworth, Chebyshev, inverse-Chebyshev, elliptic, and Bessel-Thomson methods, are described
in detail in Chapter 10. The chapter concludes with certain classical transformations that can be
used to convert a given lowpass approximation into a corresponding highpass, bandpass, or bandstop
approximation.

Chapter 11 deals with the approximation problem for recursive digital filters. Methods are
described by which a given continuous-time transfer function can be transformed into a corresponding
discrete-time transfer function, e.g., the invariant impulse-response, matched-z transformation, and
bilinear-transformation methods. The chapter concludes with certain transformations that can be used
to convert a given lowpass digital filter into a corresponding highpass, bandpass, or bandstop digital
filter. A detailed procedure that can be used to design Butterworth, Chebyshev, inverse-Chebyshev,
and elliptic filters that would satisfy prescribed specifications, with design examples, is found in
Chapter 12.

The basics of random variables and the extension of these principles to random processes as a
means of representing random signals are introduced in Chapter 13. Random variables and signals
arise naturally in digital filters because of the inevitable quantization of filter coefficients and signal
values. The effects of finite word length in digital filters along with relevant up-to-date methods of
analysis are discussed in Chapter 14. The topics considered include coefficient quantization and
methods to reduce its effects; signal scaling; product quantization and methods to reduce its effects;
parasitic and overflow limit-cycle oscillations and methods to eliminate them.

Chapters 15 and 16 deal with the solution of the approximation problem using iterative op-
timization methods. Chapter 15 describes a number of efficient algorithms based on the Remez
exchange algorithm that can be used to design nonrecursive filters of the standard types, e.g., low-
pass, highpass, bandpass, and bandstop filters, and also specialized filters, e.g., filters with arbitrary
amplitude responses, multiband filters, and digital differentiators. Chapter 16, on the other hand,
considers the design of recursive digital filters by optimization. To render this material accessible to

PREFACE xxiii

the reader who has not had the opportunity to study optimization before, a series of progressively
improved but related algorithms is presented starting with the classical Newton algorithm for convex
problems and culminating in a fairly sophisticated, practical, and efficient quasi-Newton algorithm
that can be used to design digital filters with arbitrary frequency responses. Chapter 16 also deals
with the design of recursive equalizers which are often used to achieve a linear phase response in a
recursive filter.

Chapter 17 is in effect a continuation of Chapter 8 and it deals with the realization of digital
filters in the form of wave digital filters. These structures are derived from classical analog filters and,
in consequence, they have certain attractive features, such as low sensitivity to numerical errors, which
make them quite attractive for certain applications. The chapter includes step-by-step procedures by
which wave digital filters satisfying prescribed specifications can be designed either in ladder or
lattice form. The chapter concludes with a list of guidelines that can be used to choose a digital-filter
structure from the numerous possibilities described in Chapters 8 and 12.

Chapter 18 deals with some of the numerous applications of digital filters to digital signal
processing. The applications considered include downsampling and upsampling using decimators
and interpolators, the design of quadrature-mirror-image filters and their application in time-division
to frequency-division multiplex translation, Hilbert transformers and their application in single-
sideband modulation, adaptive filters, and two-dimensional digital filters.

The purpose of Appendix A is twofold. First, it can be regarded as a brief review of complex
analysis for readers who have not had the opportunity to take a course on this important subject.
Second, it can serve as a reference monograph that brings together those principles of complex
analysis that are required for DSP. Appendix B, on the other hand, presents the basic principles of
elliptic integrals and functions and its principal purpose is to facilitate the derivation of the elliptic
approximation in Chapter 10.

The book can serve as a text for undergraduate or graduate courses and various scenarios are
possible depending on the background preparation of the class and the curriculum of the institution.
Some possibilities are as follows:

• Series of Two Undergraduate Courses. First-level course: Chapters 1 to 7, second-level course:
Chapters 8 to 14

• Series of Two Graduate Courses. First-level course: Chapters 5 to 12, second-level course:
Chapters 13 to 18

• One Undergraduate/Graduate Course. Assuming that the students have already taken relevant
courses on signal analysis and system theory, a one-semester course could be offered comprising
Chapters 5 to 12 and parts of Chapter 14.

The book is supported by the author’s DSP software package D-Filter which can be used to
analyze, design, and realize digital filters, and to analyze discrete-time signals. See D-Filter page
at the end of the book for more details. The software can be downloaded from D-Filter’s website:
www.d-filter.com or www.d-filter.ece.uvic.ca. In addition, a detailed Instructor’s Manual and PDF
slides for classroom use are now being prepared, which will be made available to instructors adopting
the book through the author’s website: www.ece.uvic.ca/˜ andreas.

I would like to thank Stuart Bergen, Rajeev Nongpiur, and Wu-Sheng Lu for reviewing the refer-
ence lists of certain chapters and supplying more up-to-date references; Tarek Nasser for checking cer-
tain parts of the manuscript; Randy K. Howell for constructing the plots in Figures 16.12 and 16.13;

www.d-filter.com
www.d-filter.ece.uvic.ca
www.ece.uvic.ca/~andreas

xxiv DIGITAL SIGNAL PROCESSING

Majid Ahmadi for constructive suggestions; Tony Antoniou for suggesting improvements in the de-
sign of the cover and title page of the book and for designing the installation graphics and icons
of D-Filter; David Guindon for designing a new interface for D-Filter; Catherine Chang for pro-
viding help in updating many of the illustrations; Lynne Barrett for helping with the proofreading;
Michelle L. Flomenhoft, Development Editor, Higher Education Division, McGraw-Hill, for her
many contributions to the development of the manuscript and for arranging the reviews; to the re-
viewers of the manuscript for providing useful suggestions and identifying errata, namely, Scott
T. Acton, University of Virginia; Selim Awad, University of Michigan; Vijayakumar Bhagavatula,
Carnegie Mellon University; Subra Ganesan, Oakland University; Martin Haenggi, University of
Notre Dame; Donald Hummels, University of Maine; James S. Kang, California State Polytech-
nic University; Takis Kasparis, University of Central Florida; Preetham B. Kumar, California State
University; Douglas E. Melton, Kettering University; Behrooz Nowrouzian, University of Alberta;
Wayne T. Padgett, Rose-Hulman Institute of Technology; Roland Priemer, University of Illinois,
Chicago; Stanley J. Reeves, Auburn University; Terry E. Riemer, University of New Orleans;
A. David Salvia, Pennsylvania State University; Ravi Sankar, University of South Florida; Avtar
Singh, San Jose State University; Andreas Spanias, Arizona State University; Javier Vega-Pineda,
Instituto Tecnologico de Chihuahua; Hsiao-Chun Wu, Louisiana State University; Henry Yeh,
California State University. Thanks are also due to Micronet, Networks of Centres of Excellence
Program, Canada, the Natural Sciences and Engineering Research Council of Canada, and the Uni-
versity of Victoria, British Columbia, Canada, for supporting the research that led to many of the
author’s contributions to DSP as described in Chapters 12 and 14 to 17. Last but not least, I would like
to express my thanks and appreciation to Mona Tiwary, Project Manager, International Typesetting
and Composition, and Stephen S. Chapman, Editorial Director, Professional Division, McGraw-Hill,
for seeing the project through to a successful conclusion.

Andreas Antoniou

CHAPTER

1
INTRODUCTION TO

DIGITAL SIGNAL
PROCESSING

1.1 INTRODUCTION

The overwhelming advancements in the fabrication of microchips and their application for the design
of efficient digital systems over the past 50 years have led to the emergence of a new discipline that
has come to be known as digital signal processing or DSP.

Through the use of DSP, sophisticated communication systems have evolved, the Internet
emerged, astronomical signals can be distilled into valuable information about the cosmos, seismic
signals can be analyzed to determine the strength of an earthquake or to predict the stability of a
volcano, computer images or photographs can be enhanced, and so on.

This chapter deals with the underlying principles of DSP. It begins by examining the types of
signals that are encountered in nature, science, and engineering and introduces the sampling process
which is the means by which analog signals can be converted to corresponding digital signals. It then
examines the types of processing that can be applied to a signal and the types of systems that are
available for the purpose. The chapter concludes with two introductory applications that illustrate
the nature of DSP for the benefit of the neophyte.

1.2 SIGNALS

Signals arise in almost every field of science and engineering, e.g., in astronomy, acoustics, biology,
communications, seismology, telemetry, and economics to name just a few. Signals arise naturally
through certain physical processes or are man-made. Astronomical signals can be generated by

1

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

2 DIGITAL SIGNAL PROCESSING

huge cosmological explosions called supernovas or by rapidly spinning neutron stars while seismic
signals are the manifestations of earthquakes or volcanos that are about to erupt. Signals also abound in
biology, e.g., the signals produced by the brain or heart, the acoustic signals used by dolphins or whales
to communicate with one another, or those generated by bats to enable them to navigate or catch prey.
Man-made signals, on the other hand, occur in technological systems, as might be expected, like
computers, telephone and radar systems, or the Internet. Even the market place is a source of numerous
vital signals, e.g., the prices of commodities at a stock exchange or the Dow Jones Industrial Average.

We are very interested in natural signals for many reasons. Astronomers can extract important
information from optical signals received from the stars, e.g., their chemical composition, they can de-
cipher the nature of a supernova explosion, or determine the size of a neutron star from the periodicity
of the signal received. Seismologists can determine the strength and center of an earthquake whereas
volcanologists can often predict whether a volcano is about to blow its top. Cardiologists can diagnose
various heart conditions by looking for certain telltale patterns or aberrations in electrocardiographs.

We are very interested in man-made signals for numerous reasons: they make it possible for us
to talk to one another over vast distances, enable the dissemination of huge amounts of information
over the Internet, facilitate the different parts of a computer to interact with one another, instruct
robots how to perform very intricate tasks rapidly, help aircraft to land in poor weather conditions
and low visibility, or warn pilots about loss of separation between aircraft to avoid collisions. On the
other hand, the market indices can help us determine whether it is the right time to invest and, if so,
what type of investment should we go for, equities or bonds.

In the above paragraphs, we have tacitly assumed that a signal is some quantity, property, or
variable that depends on time, for example, the light intensity of a star or the strength of a seismic
signal. Although this is usually the case, signals exist in which the independent parameter is some
quantity other than time, and the number of independent variables can be more than one occasionally.
For example, a photograph or radiograph can be viewed as a two-dimensional signal where the light
intensity depends on the x and y coordinates which happen to be lengths. On the other hand, a
TV image which changes with time can be viewed as a three-dimensional signal with two of the
independent variables being lengths and one being time.

Signals can be classified as

• continuous-time, or

• discrete-time.

Continuous-time signals are defined at each and every instant of time from start to finish. For
example, an electromagnetic wave originating from a distant galaxy or an acoustic wave produced
by a dolphin. On the other hand, discrete-time signals are defined at discrete instants of time, perhaps
every millisecond, second, or day. Examples of this type of signal are the closing price of a particular
commodity at a stock exchange and the daily precipitation as functions of time.

Nature’s signals are usually continuous in time. However, there are some important exceptions
to the rule. For example, in the domain of quantum physics electrons gain or lose energy in discrete
amounts and, presumably, at discrete instants. On the other hand, the DNA of all living things
is constructed from a ladder-like structure whose ranks are made from four fundamental distinct
organic molecules. By assigning distinct numbers to these basic molecules and treating the length of
the ladder-like structure as if it were time, the genome of any living organism can be represented by
a discrete-time signal. Man-made signals can be continuous- or discrete-time and typically the type
of signal depends on whether the system that produced it is analog or digital.

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 3

In mathematical terms, a continuous-time signal can be represented by a function x(t) whose
domain is a range of numbers (t1, t2), where −∞ < t1 and t2 < ∞, as illustrated in Fig. 1.1a.
Similarly, a discrete-time signal can be represented by a function x(nT), where T is the period
between adjacent discrete signal values and n is an integer in the range (n1, n2) where −∞ < n1

and n2 < ∞, as shown in Fig. 1.1b. Discrete-time signals are often generated from corresponding
continuous-time signals through a sampling process and T is, therefore, said to be the sampling
period. Its reciprocal, i.e., fs = 1/T , is known as the sampling frequency.

Signals can also be classified as

• nonquantized, or

• quantized.

A nonquantized signal can assume any value in a specified range, whereas a quantized signal can
assume only discrete values, usually equally spaced. Figure 1.1c and d shows quantized continuous-
time and quantized discrete-time signals, respectively.

Signals are sometimes referred to as analog or digital in the literature. By and large, an analog
signal is deemed to be a continuous-time signal, and vice versa. Similarly, a digital signal is deemed
to be a discrete-time signal, and vice versa. A pulse waveform, like the numerous waveforms found
in a typical digital system, would be regarded as a digital signal if the focus were on its two-level
idealized representation. However, if the exact actual level of the waveform were of interest, then
the pulse waveform would be treated as a continuous-time signal as the signal level can assume an
infinite set of values.

t nT

x(nT)x(t)

x(t)

(a) (b)

nT

x(nT)

(d)(c)

t

Figure 1.1 Types of signals: (a) Nonquantized continuous-time signal, (b) nonquantized discrete-time
signal, (c) quantized continuous-time signal, (d) quantized discrete-time signal.

4 DIGITAL SIGNAL PROCESSING

Encoderx(t)
x(nT) xq(nT)

Quantizer

Clock

nT

Sampler

xq(nT)'

Smoothing
 device

y(nT) y(nT) y(t)
Decoder

^

(b)

(a)

Figure 1.2 Sampling system: (a) A/D interface, (b) D/A interface.

Discrete-time signals are often generated from corresponding continuous-time signals through
the use of an analog-to-digital (A/D) interface and, similarly, continuous-time signals can be obtained
by using a digital-to-analog (D/A) interface. An A/D interface typically comprises three components,
namely, a sampler, a quantizer, and an encoder as depicted in Fig. 1.2a. In the case where the signal
is in the form of a continuous-time voltage or current waveform, the sampler in its bare essentials
is a switch controlled by a clock signal, which closes momentarily every T s thereby transmitting
the level of the input signal x(t) at instant nT , that is, x(nT), to the output. A quantizer is an analog
device that will sense the level of its input and produce as output the nearest available level, say,
xq (nT), from a set of allowed levels, i.e., a quantizer will produce a quantized continuous-time signal
such as that shown in Fig. 1.1c. An encoder is essentially a digital device that will sense the voltage
or current level of its input and produce a corresponding number at the output, i.e., it will convert
a quantized continuous-time signal of the type shown in Fig. 1.1c to a corresponding discrete-time
signal of the type shown in Fig. 1.1d.

The D/A interface comprises two modules, a decoder and a smoothing device as depicted in
Fig. 1.2b. The decoder will convert a discrete-time signal into a corresponding quantized voltage
waveform such as that shown in Fig. 1.1c. The purpose of the smoothing device is to smooth out the
quantized waveform and thus eliminate the inherent discontinuities.

The A/D and D/A interfaces are readily available as off-the-shelf components known as A/D
and D/A converters and many types, such as high-speed, low-cost, and high-precision, are available.

1.3 FREQUENCY-DOMAIN REPRESENTATION

Signals have so far been represented in terms of functions of time, i.e., x(t) or x(nT). In many
situations, it is useful to represent signals in terms of functions of frequency. For example, a

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 5

Table 1.1 Parameters of signal in Eq. (1.1)

k ωk Ak φk

1 1 0.6154 0.0579

2 2 0.7919 0.3529

3 3 0.9218 −0.8132

4 4 0.7382 0.0099

5 5 0.1763 0.1389

6 6 0.4057 −0.2028

7 7 0.9355 0.1987

8 8 0.9169 −0.6038

9 9 0.4103 −0.2722

continuous-time signal made up of a sum of sinusoidal components such as

x(t) =
9∑

k=1

Ak sin(ωk t + φk) (1.1)

can be fully described by two sets,1 say,

A(ω) = {Ak : ω = ωk for k = 1, 2, . . . , 9}

and

φ(ω) = {φk : ω = ωk for k = 1, 2, . . . , 9}

that describe the amplitudes and phase angles of the sinusoidal components present in the signal.
Sets A(ω) and φ(ω) can be referred to as the amplitude spectrum and phase spectrum of the signal,
respectively, for obvious reasons, and can be represented by tables or graphs that give the amplitude
and phase angle associated with each frequency. For example, if Ak and φk in Eq. (1.1) assume the
numerical values given by Table 1.1, then x(t) can be represented in the time domain by the graph
in Fig. 1.3a and in the frequency domain by Table 1.1 or by the graphs in Fig. 1.3b and c.

The usefulness of a frequency-domain or simply spectral representation can be well appre-
ciated by comparing the time- and frequency-domain representations in Fig. 1.3. The time-domain
representation shows that what we have is a noise-like periodic signal. Its periodicity is to be expected
as the signal is made up of a sum of sinusoidal components that are periodic. The frequency-domain
representation, on the other hand, provides a fairly detailed and meaningful description of the indi-
vidual frequency components, namely, their frequencies, amplitudes, and phase angles.

1This representation of a set will be adopted throughout the book.

6 DIGITAL SIGNAL PROCESSING

(b) (c)

(a)

−10 −5 0 5 10 15
−5

0

5

Time, s

x(
t)

0 5 10
0

0.2

0.4

0.6

0.8

1.0
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

Figure 1.3 Time- and frequency-domain representations of the periodic signal represented by Eq. (1.1)
with the parameters given in Table 1.1: (a) Time-domain representation, (b) amplitude spectrum, (c) phase
spectrum.

The representation in Eq. (1.1) is actually the Fourier series of signal x(t) and deriving the
Fourier series of a periodic signal is just one way of obtaining a spectral representation for a signal.
Scientists, mathematicians, and engineers have devised a variety of mathematical tools that can be
used for the spectral representation of different types of signals. Other mathematical tools, in addition
to the Fourier series, are the Fourier transform which is applicable to periodic as well as nonperiodic
continuous-time signals; the z transform which is the tool of choice for discrete-time nonperiodic
signals; and the discrete-Fourier transform which is most suitable for discrete-time periodic signals.

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 7

The Fourier series and Fourier transform will be reviewed in Chap. 2, the z transform will be examined
in detail in Chap. 3, and the discrete-Fourier transform will be treated in Chap. 7.

1.4 NOTATION

The notation introduced in Sec. 1.2 for the representation of discrete-time signals, i.e., x(nT),
preserves the exact relation between a discrete-time signal and the underlying continuous-time signal
x(t) for the case where the former is generated from the latter through the sampling process. The
use of this notation tends to be somewhat cumbersome on account of the numerous Ts that have to
be repeated from one equation to the next. For the sake of simplicity, many authors use x(n) or xn

instead of x(nT). These simplified notations solve one problem but create another. For example, a
discrete-time signal generated from the continuous-time signal

x(t) = eαt sin(ωt)

through the sampling process would naturally be

x(nT) = eαnT sin(ωnT)

If we were to drop the T in x(nT), that is,

x(n) = eαnT sin(ωnT)

then a notation inconsistency is introduced as evaluating x(t) at t = n does not give the correct
expression for the discrete-time signal. This problem tends to propagate into the frequency domain
and, in fact, it causes the spectral representation of the discrete-time signal to be inconsistent with
that of the underlying continuous-time signal.

The complex notation can be avoided while retaining consistency between the continuous-
and discrete-time signals through the use of time normalization. In this process, the time axis of the
continuous-time signal is scaled by replacing t by t/T in x(t), that is,

x(t)|t→t/T = x

(
t

T

)
= eα(t/T) sin

(
ω · t

T

)

If t is now replaced by nT , we get

x(n) = eα(nT/T) sin

(
ω · nT

T

)
= eαn sin(ωn)

In the above time normalization, the sampling period is, in effect, changed from T to 1 s and,
consequently, T disappears from the picture. Time normalization can be reversed by applying time
denormalization by simply replacing n by nT where T is the actual sampling period.

In this book, the full notation x(nT) will be used when dealing with the fundamentals, namely,
in Chaps. 3–6. In later chapters, signals will usually be assumed to be normalized with respect to
time and, in such cases, the simplified notation x(n) will be used. The notation xn will not be used.

It was mentioned earlier that the independent variable can be some quantity other than time,
e.g., length. Nevertheless, the symbol T will be used for these situations as well, for the sake of

8 DIGITAL SIGNAL PROCESSING

a consistent notation. In certain situations, the entity to be processed may well be just a sequence
of numbers that are independent of any physical quantity. In such situations, x(n) is the correct
notation. The theories presented in this book apply equally well to such entities but the notions of
time domain and frequency domain lose their usual physical significance. We are, in effect, dealing
with mathematical transformations.

1.5 SIGNAL PROCESSING

Signal processing is the science of analyzing, synthesizing, sampling, encoding, transforming, de-
coding, enhancing, transporting, archiving, and in general manipulating signals in some way. With
the rapid advances in very-large-scale integrated (VLSI) circuit technology and computer systems,
the subject of signal processing has mushroomed into a multifaceted discipline with each facet de-
serving its own volume. This book is concerned primarily with the branch of signal processing that
entails the spectral characteristics and properties of signals.

The spectral representation and analysis of signals in general are carried out through the
mathematical transforms alluded to in the previous section, e.g., the Fourier series and Fourier
transform. If the processing entails modifying, reshaping, or transforming the spectrum of a signal
in some way, then the processing involved will be referred to as filtering in this book.

Filtering can be used to select one or more desirable and simultaneously reject one or more
undesirable bands of frequency components, or simply frequencies. For example, one could use
lowpass filtering to select a band of preferred low frequencies and reject a band of undesirable high
frequencies from the frequencies present in the signal depicted in Fig. 1.3, as illustrated in Fig. 1.4;
use highpass filtering to select a band of preferred high frequencies and reject a band of undesirable
low frequencies as illustrated in Fig. 1.5; use bandpass filtering to select a band of frequencies and
reject low and high frequencies as illustrated in Fig. 1.6; or use bandstop filtering to reject a band of
frequencies but select low frequencies and high frequencies as illustrated in Fig. 1.7.

In the above types of filtering, one or more undesirable bands of frequencies are rejected or
filtered out and the term filtering is quite appropriate. In some other types of filtering, certain frequency
components are strengthened while others are weakened, i.e., nothing is rejected or filtered out. Yet
these processes transform the spectrum of the signal being processed and, as such, they fall under the
category of filtering in the broader definition of filtering adopted in this book. Take differentiation,
for example. Differentiating the signal in Eq. (1.1) with respect to t gives

dx(t)

dt
=

9∑
k=1

d

dt
[Ak sin(ωk t + φk)] =

9∑
k=1

ωk Ak cos(ωk t + φk)

=
9∑

k=1

ωk Ak sin
(
ωk t + φk + 1

2π
)

The amplitude and phase spectrums of the signal have now become

A(ω) = {ωk Ak : ω = ωk for k = 1, 2, . . . , 9}

and

φ(ω) = {
φk + 1

2π : ω = ωk for k = 1, 2, . . . , 9
}

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 9

0 5 10
0

0.2

0.4

0.6

0.8

1.0
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(b) (c)

(a)

−10 −5 0 5 10 15
−5

0

5

Time, s

x(
t)

Figure 1.4 Lowpass filtering applied to the signal depicted in Fig. 1.3: (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

respectively. The effect of differentiating the signal of Eq. (1.1) is illustrated in Fig. 1.8. As can be
seen by comparing Fig. 1.3b and c with Fig. 1.8b and c, differentiation scales the amplitudes of
the different frequency components by a factor that is proportional to frequency and adds a phase
angle of 1

2π to each value of the phase spectrum. In other words, the amplitudes of low-frequency
components are attenuated, whereas those of high-frequency components are enhanced. In effect,
the process of differentiation is a type of highpass filtering.

10 DIGITAL SIGNAL PROCESSING

(b) (c)

(a)

−10 −5 0 5 10 15
−5

0

5

Time, s

x(
t)

0 5 10
0

0.2

0.4

0.6

0.8

1.0
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

Figure 1.5 Highpass filtering applied to the signal depicted in Fig. 1.3: (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

Integrating x(t) with respect to time, on the other hand, gives

∫
x(t) dt =

9∑
k=1

∫
Ak sin(ωk t + φk) dt =

9∑
k=1

[
− Ak

ωk
cos(ωk t + φk)

]

=
9∑

k=1

Ak

ωk
sin

(
ωk t + φk − 1

2π
)

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 11

(b) (c)

(a)

−10 −5 0 5 10 15
−5

0

5

Time, s

x(
t)

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

Figure 1.6 Bandpass filtering applied to the signal depicted in Fig. 1.3: (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

In this case, the amplitude and phase spectrums become

A(ω) = {Ak/ωk : ω = ωk for k = 1, 2, . . . , 9}

and

φ(ω) = {
φk − 1

2π : ω = ωk for k = 1, 2, . . . , 9
}

12 DIGITAL SIGNAL PROCESSING

(b) (c)

(a)

−10 −5 0 5 10 15
−5

0

5

Time, s

x(
t)

0 5 10
0

0.2

0.4

0.6

0.8

1.0
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

Figure 1.7 Bandstop filtering applied to the signal depicted in Fig. 1.3: (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

respectively, i.e., the amplitudes of the different frequency components are now scaled by a factor that
is inversely proportional to the frequency and a phase angle of 1

2π is subtracted from each value of
the phase spectrum. Thus, integration tends to enhance low-frequency and attenuate high-frequency
components and, in a way, it tends to behave very much like lowpass filtering as illustrated in Fig. 1.9.

In its most general form, filtering is a process that will transform the spectrum of a signal
according to some rule of correspondence. In the case of lowpass filtering, the rule of correspondence

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 13

(b) (c)

(a)

−10 −5 0 5 10 15
−30

−20

−10

0

10

20

Time, s

x(
t)

0 5 10
0

1

2

3

4

5

6

7

8
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−2.5

−2.0

−1.5

−1.0

−0.5

0
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

Figure 1.8 Differentiation applied to the signal depicted in Fig. 1.3: (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

might specify, for example, that the spectrum of the output signal be approximately the same as that of
the input signal for some low-frequency range and approximately zero for some high-frequency range.

Electrical engineers have known about filtering processes for well over 80 years and, through
the years, they invented many types of circuits and systems that can perform filtering, which are
known collectively as filters. Filters can be designed to perform a great variety of filtering tasks, in
addition, to those illustrated in Figs. 1.4–1.9. For example, one could easily design a lowpass filter

14 DIGITAL SIGNAL PROCESSING

(b) (c)

(a)

−10 −5 0 5 10 15
−5

0

5

Time, s

x(
t)

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

0 5 10
−2.5

−2.0

−1.5

−1.0

−0.5

0
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

Figure 1.9 Integration applied to the signal depicted in Fig. 1.3: (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

that would select low frequencies in the range from 0 to ωp and reject high frequencies in the range
from ωa to ∞. In such a filter, the frequency ranges from 0 to ωp and ωa to ∞, are referred to as the
passband and stopband, respectively.

Filters can be classified on the basis of their operating signals as analog or digital. In analog
filters, the input, output, and internal signals are in the form of continuous-time signals, whereas in
digital filters they are in the form of discrete-time signals.

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 15

1.6 ANALOG FILTERS

This book is concerned mainly with DSP and with discrete-time systems that can perform DSP, such
as digital filters. Since digital filters evolved as a natural extension of analog filters and are often
designed through the use of analog-filter methodologies, a brief outline of the historical evolution
and applications of analog filters are worthwhile.

Analog filters were originally invented for use in radio receivers and long-distance telephone
systems and continue to be critical components in all types of communication systems. Various
families of analog filters have evolved over the years, which can be classified as follows on the basis
of their constituent elements and the technology used [1, 2].2

• Passive RLC3 filters

• Discrete active RC filters

• Integrated active RC filters

• Switched-capacitor filters

• Microwave filters

Passive RLC filters began to be used extensively in the early twenties. They are made of
interconnected resistors, inductors, and capacitors and are said to be passive in view of the fact that
they do not require an energy source, like a power supply, to operate. Filtering action is achieved
through the property of electrical resonance which occurs when an inductor and a capacitor are
connected in series or in parallel. The importance of filtering in communications motivated engineers
and mathematicians between the thirties and fifties to develop some very powerful and sophisticated
methods for the design of passive RLC filters.

Discrete active RC filters began to appear during the mid-fifties and were a hot topic of
research during the sixties. They comprise discrete resistors, capacitors, and amplifying electronic
circuits. Inductors are absent and it is this feature that makes active RC filters attractive. Inductors
have always been bulky, expensive, and generally less ideal than resistors and capacitors particularly
for low-frequency applications. Unfortunately, without inductors, electrical resonance cannot be
achieved and with just resistors and capacitors only crude types of filters can be designed. However,
through the clever use of amplifying electronic circuits in RC circuits, it is possible to simulate
resonance-like effects that can be utilized to achieve filtering of high quality. These filters are said to
be active because the amplifying electronic circuits require an energy source in the form of a power
supply.

Integrated-circuit active RC filters operate on the basis of the same principles as their discrete
counterparts except that they are designed directly as complete integrated circuits. Through the use
of high-frequency amplifying circuits and suitable integrated-circuit elements, filters that can operate
at frequencies as high as 15 GHz can be designed [3, 4].4 Interest in these filters has been strong
during the eighties and nineties and research continues.

Switched-capacitor filters evolved during the seventies and eighties. These are essentially
active RC filters except that switches are also utilized along with amplifying devices. In this family

2Numbered references will be found at the end of each chapter.
3 R, L, and C are the symbols used for the electrical properties of resistance, inductance, and capacitance, respectively.
4One GHz equals 109 Hz.

16 DIGITAL SIGNAL PROCESSING

of filters, switches are used to simulate high resistance values which are difficult to implement in
integrated-circuit form. Like integrated active RC filters, switched-capacitors filters are compatible
with integrated-circuit technology.

Microwave filters are built from a variety of microwave components and devices such as
transverse electromagnetic (TEM) transmission lines, waveguides, dielectric resonators, and surface
acoustic devices [5]. They are used in applications where the operating frequencies are in the range
0.5 to 500 GHz.

1.7 APPLICATIONS OF ANALOG FILTERS

Analog filters have found widespread applications over the years. A short but not exhaustive list is
as follows:

• Radios and TVs

• Communication and radar systems

• Telephone systems

• Sampling systems

• Audio equipment

Every time we want to listen to the radio or watch TV, we must first select our favorite radio
station or TV channel. What we are actually doing when we turn the knob on the radio or press the
channel button on the remote control is tuning the radio or TV receiver to the broadcasting frequency
of the radio station or TV channel, and this is accomplished by aligning the frequency of a bandpass
filter inside the receiver with the broadcasting frequency of the radio station or TV channel.

When we tune a radio receiver, we select the frequency of a desirable signal, namely, that of
our favorite radio station. The signals from all the other stations are undesirable and are rejected.
The same principle can be used to prevent a radar signal from interfering with the communication
signals at an airport, for example, or to prevent the communication signals from interfering with the
radar signals.

Signals are often corrupted by spurious signals known collectively as noise. Such signals may
originate from a large number of sources, e.g., lightnings, electrical motors, transformers, and power
lines. Noise signals are characterized by frequency spectrums that stretch over a wide range of
frequencies. They can be eliminated through the use of bandpass filters that would pass the desired
signal but reject everything else, namely, the noise content, as in the case of a radio receiver.

We all talk daily to our friends and relatives through the telephone system. More often than
not, they live in another city or country and the conversation must be carried out through expensive
communication channels. If these channels were to carry just a single voice, as in the days of
Alexander Graham Bell,5 no one would ever be able to afford a telephone call to anyone, even
the very rich. What makes long-distance calls affordable is our ability to transmit thousands of
conversations through one and the same communications channel. And this is achieved through the
use of a so-called frequency-division multiplex (FDM) communications system [6]. A rudimentary

5(1847–1921) Scottish-born scientist and inventor who spent most of his career in the northeast US and Canada. He
invented the telephone between 1874 and 1876.

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 17

Modulator
1

Demodulator
1

Demodulator
2

Demodulator
m

Modulator
2

Modulator
m

ω1

ω2

ωm

ω1

ω2

ωm

Transmitter

Receiver

Bandpass
filters

g(t)

g(t)

(a)

ωm

ω

ω1 ω2

G(ω)

(b)

Figure 1.10 Frequency-division multiplex communications system: (a) Basic system, (b) frequency
spectrum of g(t).

version of this type of system is illustrated in Fig. 1.10a. The operation of an FDM communications
system is as follows:

1. At the transmit end, the different voice signals are superimposed on different carrier frequencies
using a process known as modulation.

2. The different carrier frequencies are combined by using an adder circuit.

3. At the receive end, carrier frequencies are separated using bandpass filters.

4. The voice signals are then extracted from the carrier frequencies through demodulation.

5. The voice signals are distributed to the appropriate persons through the local telephone wires.

18 DIGITAL SIGNAL PROCESSING

What the transmit section does in the above system is to add the frequency of a unique carrier to
the frequencies of each voice signal, thereby shifting its frequency spectrum by the frequency of the
carrier. In this way, the frequency spectrums of the different voice signals are arranged contiguously
one after the other to form the composite signal g(t) which is referred to as a group by telephone
engineers. The frequency spectrum of g(t) is illustrated in Fig. 1.10b. The receive section, on the
other hand, separates the translated voice signals and restores their original spectrums.

As can be seen in Fig. 1.10a, the above system requires as many bandpass filters as there are
voice signals. On top of that, there are as many modulators and demodulators in the system and these
devices, in their turn, need a certain amount of filtering to achieve their proper operation. In short,
communications systems are simply not feasible without filters.

Incidentally, several groups can be further modulated individually and added to form a super-
group as illustrated in Fig. 1.11 to increase the number of voice signals transmitted over an intercity
cable or microwave link, for example. At the receiving end, a supergroup is subdivided into the
individual groups by a bank of bandpass filters which are then, in turn, subdivided into the individual
voice signals by appropriate banks of bandpass filters. Similarly, several supergroups can be com-
bined into a master group, and so on, until the bandwidth capacity of the cable or microwave link is
completely filled.

An important principle to be followed when designing a sampling system like the one illus-
trated in Fig. 1.2 is that the sampling frequency be at least twice the highest frequency present in
the spectrum of the signal by virtue of the sampling theorem (see Chap. 6). In situations where
the sampling frequency is fixed and the highest frequency present in the signal can exceed half

Modulator
1

Demodulator
1

Demodulator
2

Demodulator
k

Modulator
2

Modulator
k

Transmitter

Receiver

Bandpass
filters

11
12

21
22

k1
k2

11
12

21
22

k1
k2

1m

2m

km

1m

2m

km

ω ′
k

ω ′
2

ω ′
1

ω ′
1

ω ′
k

ω ′
2

Figure 1.11 Frequency-division multiplex communications system with two levels of modulation.

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 19

the sampling frequency, it is crucial to bandlimit the signal to be sampled to prevent a certain type of
signal distortion known as aliasing. This bandlimiting process, which amounts to removing signal
components whose frequencies exceed half the sampling frequency, can be carried out through the
use of a lowpass filter.

Discrete-time signals are often converted back to continuous-time signals. For example, the
signal recorded on a compact disk (CD) is actually a discrete-time signal. The function of a CD
player is to reverse the sampling process illustrated in Fig. 1.2, that is, it must read the discrete-time
signal, decode it, and reproduce the original continuous-time audio signal. As will be shown later on
in Chap. 6, the continuous-time signal can be reconstructed through the use of a lowpass filter.

Loudspeaker systems behave very much like filters and, consequently, they tend to change
the spectrum of an audio signal. This is due to the fact that the enclosure or cabinet used can often
exhibit mechanical resonances that are superimposed on the audio signal. In fact, this is one of the
reasons why different makes of loudspeaker systems often produce their own distinct sound which,
in actual fact, is different from the sound recorded on the CD. To compensate for such imperfections,
sound reproduction equipment, such as CD players and stereos, are often equipped with equalizers
that can be used to reshape the spectrum of the audio signal. These subsystems typically incorporate
a number of sliders that can be adjusted to modify the quality of the sound reproduced. One can, for
example, strengthen or weaken the low-frequency or high-frequency content (bass or treble) of the
audio signal. Since an equalizer is a device that can modify the spectrum of a signal, equalizers are
filters in the broader definition adopted earlier. What the sliders do is to alter the parameters of the
filter that performs the equalization. In the same way, one can also compensate for the acoustics of
the room. For example, one might need to boost the treble a bit if there is a thick carpet in the room
because the carpet could absorb a large amount of the high-frequency content.

Transmission lines, telephone wires, and communication channels often behave very much
like filters and, as a result, they tend to reshape the spectrums of the signals transmitted through
them. The local telephone lines are particularly notorious in this respect. We often do not recognize
the voice of the person at the other end only because the spectrum of the signal has been significantly
altered. As in loudspeaker systems, the quality of transmission through communication channels
can be improved by using suitable equalizers. In fact, it is through the use of equalizers that it is
possible to achieve high data transmission rates through local telephone lines. This is achieved by
incorporating sophisticated equalizers in the modems at either end of a telephone line.

1.8 DIGITAL FILTERS

In its most general form, a digital filter is a system that will receive an input in the form of a
discrete-time signal and produce an output again in the form of a discrete-time signal, as illustrated
in Fig. 1.12. There are many types of discrete-time systems that fall under this category such as
digital control systems, encoders, and decoders. What differentiates digital filters from other digital
systems is the nature of the processing involved. As in analog filters, there is a requirement that the
spectrum of the output signal be related to that of the input by some rule of correspondence.

The roots of digital filters go back in history to the 1600s when mathematicians, on the one hand,
were attempting to deduce formulas for the areas of different geometrical shapes, and astronomers,
on the other, were attempting to rationalize and interpret their measurements of planetary orbits.
A need arose in those days for a process that could be used to interpolate a function represented
by numerical data, and a wide range of numerical interpolation formulas were proposed over the

20 DIGITAL SIGNAL PROCESSING

Digital filter

x(nT)

nTnT

x(nT)

y(nT)

y(nT)

Figure 1.12 The digital filter as a discrete-time system.

years by Gregory (1638–1675), Newton (1642–1727), Taylor (1685–1731), Stirling (1692–1770),
Lagrange (1736–1813), Bessel (1784–1846), and others [7, 8]. On the basis of interpolation formulas,
formulas that will perform numerical differentiation or integration on a function represented by
numerical data can be generated. These formulas were put to good use during the seventeenth and
eighteenth centuries in the construction of mathematical, scientific, nautical, astronomical, and a host
of other types of numerical tables. In fact, it was the great need for accurate numerical tables that
prompted Charles Babbage (1791–1871) to embark on his lifelong quest to automate the computation
process through his famous difference and analytical engines [9], and it is on the basis of numerical
formulas that his machines were supposed to perform their computations.

Consider the situation where a numerical algorithm is used to compute the derivative of a
signal x(t) at t = t1, t2, . . . , tK , and assume that the signal is represented by its numerical values
x(t1), x(t2), . . . , x(tM). In such a situation, the algorithm receives a discrete-time signal as input
and produces a discrete-time signal as output, which is a differentiated version of the input signal.
Since differentiation is essentially a filtering process, as was demonstrated earlier on, an algorithm
that performs numerical differentiation is, in fact, a digital filtering process.

Numerical methods have found their perfect niche in the modern digital computer and consid-
erable progress has been achieved through the fifties and sixties in the development of algorithms
that can be used to process signals represented in terms of numerical data. By the late fifties, a cohe-
sive collection of techniques referred to as data smoothing and prediction began to emerge through
the efforts of pioneers such as Blackman, Bode, Shannon, Tukey [10, 11], and others. During the
early sixties, an entity referred to as the digital filter began to appear in the literature to describe
a collection of algorithms that could be used for spectral analysis and data processing [12–17]. In
1965, Blackman described the state of the art in the area of data smoothing and prediction in his
seminal book on the subject [18], and included in this work certain techniques which he referred to
as numerical filtering. Within a year, in 1966, Kaiser authored a landmark chapter, entitled “Digital
Filters” [19] in which he presented a collection of signal processing techniques that could be applied
for the simulation of dynamic systems and analog filters. From the late sixties on, the analysis and
processing of signals in the form of numerical data became known as digital signal processing, and
algorithms, computer programs, or systems that could be used for the processing of these signals
became fully established as digital filters [20–22].

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 21

With the rapid advances in integrated-circuit technology during the sixties, a trend toward
digital technologies began to emerge to take advantage of the classical merits of digital systems in
general, which are as follows:

• Component tolerances are uncritical.

• Accuracy is high.

• Physical size is small.

• Reliability is high.

• Component drift is relatively unimportant.

• The influence of electrical environmental noise is negligible.

Owing to these important features, digital technologies can be used to design cost-effective, reliable,
and versatile systems. Consequently, an uninterrupted evolution, or more appropriately revolution,
began to take place from the early sixties on whereby analog systems were continuously being
replaced by corresponding digital systems. First, the telephone system was digitized through the
use of pulse-code modulation, then came long-distance digital communications, and then the music
industry adopted digital methodologies through the use of compact disks and digital audio tapes.
And more recently, digital radio and high-definition digital TV began to be commercialized. Even
the movie industry has already embarked on large-scale digitization of the production of movies.

Digital filters in hardware form began to appear during the late sixties and two early designs
were reported by Jackson, Kaiser, and McDonald in 1968 [23] and Peled and Liu in 1974 [24].

Research on digital filters continued through the years and a great variety of filter types have
evolved, as follows:

• Nonrecursive filters

• Recursive filters

• Fan filters

• Two-dimensional filters

• Adaptive filters

• Multidimensional filters

• Multirate filters

The applications of digital filters are widespread and include but are not limited to the following:

• Communications systems

• Audio systems such as CD players

• Instrumentation

• Image processing and enhancement

• Processing of seismic and other geophysical signals

• Processing of biological signals

• Artificial cochleas

• Speech synthesis

22 DIGITAL SIGNAL PROCESSING

It is nowadays convenient to consider computer programs and digital hardware that can perform
digital filtering as two different implementations of digital filters, namely,

• software

• hardware.

Software digital filters can be implemented in terms of a high-level language, such as C++ or
MATLAB, on a personal computer or workstation or by using a low-level language on a general-
purpose digital signal-processing chip. At the other extreme, hardware digital filters can be designed
using a number of highly specialized interconnected VLSI chips. Both hardware and software digital
filters can be used to process real-time or nonreal-time (recorded) signals, except that the former are
usually much faster and can deal with real-time signals whose frequency spectrums extend to much
higher frequencies. Occasionally, digital filters are used in so-called quasi-real-time applications
whereby the processing appears to a person to be in real time although, in actual fact, the samples
of the signal are first collected and stored in a digital memory and are then retrieved in blocks and
processed. A familiar, quasi-real-time application involves the transmission of radio signals over
the Internet. These signals are transmitted through data packets in a rather irregular manner. Yet
the music appears to be continuous only because the data packets are first stored and then properly
sequenced. This is why it takes a little while for the transmission to begin.

Hardware digital filters have an important advantage relative to analog filters, in addition to
the classical merits associated with digital systems in general. The parameters of a digital filter are
stored in a computer memory and, consequently, they can be easily changed in real time. This means
that digital filters are more suitable for applications where programmable, time-variable, or adaptive
filters are required. However, they also have certain important limitations. At any instant, say, t = nT ,
a digital filter generates the value of the output signal through a series of computations using some of
the values of the input signal and possibly some of the values of the output signal (see Chap. 4). Once
the sampling frequency, fs , is fixed, the sampling period T = 1/ fs is also fixed and, consequently,
a basic limitation is imposed by the amount of computation that can be performed by the digital
filter during period T . Thus as the sampling frequency is increased, T is reduced, and the amount of
computation that can be performed during period T is reduced. Eventually, at some sufficiently high
sampling frequency, a digital filter will become computation bound and will malfunction. In effect,
digital filters are suitable for low-frequency applications where the operating frequencies are in some
range, say, 0 to ωmax . The upper frequency of applicability, ωmax , is difficult to formalize because it
depends on several factors such as the number-crunching capability and speed of the digital hardware
on the one hand and the complexity of the filtering tasks involved on the other.

Another basic limitation of digital filters comes into play in situations where the signal is in
continuous-time form and a processed version of the signal is required, again in continuous-time
form. In such a case, the signal must be converted into a discrete-time form, processed by the digital
filter, and then converted back to a continuous-time form. The two conversions involved would
necessitate various interfacing devices, e.g., A/D and D/A converters, and a digital-filter solution
could become prohibitive relative to an analog-filter solution. This limitation is, of course, absent if
we are dealing with a digital system to start with in which the signals to be processed are already in
discrete-time form.

Table 1.2 summarizes the frequency range of applicability for the various types of filters [1].
As can be seen, for frequencies less than, say, 20 kHz digital filters are most likely to offer the best

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 23

Table 1.2 Comparison of filter technologies

Type of technology Frequency range

Digital filters 0 to ωmax

Discrete active RC filters 10 Hz to 1 MHz

Switched-capacitor filters 10 Hz to 5 MHz

Passive RLC filters 0.1 MHz to 0.1 GHz

Integrated active RC filters 0.1 MHz to 15 GHz

Microwave filters 0.5 GHz to 500 GHz

engineering solution whereas for frequencies in excess of 0.5 GHz, a microwave filter is the obvious
choice. For frequencies between 20 kHz and 0.5 GHz, the choice of filter technology depends on
many factors and trade-offs and is also critically dependent on the type of application.

To conclude this section, it should be mentioned that software digital filters have no counterpart
in the analog world and, therefore, for nonreal-time applications, they are the only choice.

1.9 TWO DSP APPLICATIONS

In this section, we examine two typical applications of filtering, namely, its use for the processing of
an electrocardiogram (EKG), on the one hand, and the processing of stock exchange data, on the other.

1.9.1 Processing of EKG Signals

The EKG of a healthy individual assumes a fairly well-defined form although significant variations
can occur from one person to the next as in fingerprints. Yet certain telltale patterns of an EKG
enable a cardiologist to diagnose certain cardiac ailments or conditions. An EKG is essentially
a graph representing a low-level electrical signal picked up by a pair of electrodes attached to
certain well-defined points on the body and connected to an electrical instrument known as the
electrocardiograph. These machines are used in clinics and hospitals where a multitude of other
types of electrical machines are utilized such as x-ray machines and electrical motors. All these
machines along with the power lines and transformers that supply them with electricity produce
electrical 60-Hz noise, which may contaminate an EKG waveform. A typical noise-free EKG signal
is shown in Fig. 1.13a. An EKG signal that has been contaminated by electrical 60-Hz noise is
illustrated in Fig. 1.13b. As can be seen, the distinct features of the EKG are all but obliterated in
the contaminated signal and are, therefore, difficult, if not impossible, to discern. A diagnosis based
on such an EKG would be unreliable.

As electrical noise originating from the power supply has a well-defined frequency, i.e., 60 Hz,
one can design a bandstop filter that will reject the electrical noise. Such a filter has been designed
using the methods to be studied in later chapters and was then applied to the contaminated EKG
signal. The filtered signal is shown in Fig. 1.13c and, as can be seen, apart from some transient
artifacts over the interval n = 0 to 100, the filtered signal is a faithful reproduction of the original
noise-free signal. As another experiment, just to illustrate the nature of filtering, the contaminated

24 DIGITAL SIGNAL PROCESSING

0 200 400 600 800 1000
−5

0

5

10

Sample index n

x(
n)

(a)

0 200 400 600 800 1000
–5

0

5

10

Sample index n

x(
n)

(b)

0 200 400 600 800 1000
−5

0

5

Sample index n

x(
n)

(d)

0 200 400 600 800 1000
–5

0

5

10

Sample index n

x(
n)

(c)

Figure 1.13 Processing of EKG waveform: (a) Typical EKG, (b) noisy EKG, (c) noisy EKG processed
with a bandstop filter, (d) noisy EKG waveform processed with a bandpass filter.

EKG signal was passed through a bandpass filter which was designed to select the 60-Hz noise
component. The output of the bandpass filter is illustrated in Fig. 1.13d. After an initial transience
over the interval n = 0 to 150, a steady noise component is isolated by the bandpass filter. This is
actually a sinusoidal waveform. It does not appear to be so because there are only six samples per
cycle with the approximate values of 0, 1.7, 1.7, 0, −1.7, and −1.7.

1.9.2 Processing of Stock-Exchange Data

We are all interested in the health of the market place for various reasons. We would all like, for
example, to put aside some funds for another day and, naturally, we would prefer to invest any such
funds in secure low-risk stocks, bonds, or mutual funds that provide high returns. To make financial
decisions such as these, we read the business section of our daily newspaper or browse the Web for
numerical stock-exchange data. Naturally, we would like to make investments that grow steadily
from year to year at a steady rate and never devalue. However, this is not what happens in real life.
The prices of stocks change rapidly with time and once in a while, for example, when a market
recession occurs, they can actually lose a large proportion of their values.

Typically, there are many economic forces that cause the value of a stock to change. Some of
these forces are of short duration while others reflect long-term economic pressures. As long-term

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 25

investors, we should perhaps ignore the day-to-day variations and focus as far as possible on the
underlying changes in the stock price. An investor with a sharp eye may be able to draw conclusions
by simply comparing the available stock-exchange data of two competing stocks. For most of us this
is not an easy task. However, through the use of DSP the task can be greatly simplified, as will be
demonstrated next.

The price of a company’s stock is a signal and, as such, it possesses a spectrum that can be
manipulated through filtering. Day-to-day variations in a stock constitute the high-frequency part of
the spectrum whereas the underlying trend of the stock is actually the low-frequency part. If we are
interested in the long-term behavior of a stock, then perhaps we should filter out the high-frequency
part of the spectrum. On the other hand, if we cannot tolerate large day-to-day variations, then,
perhaps we should attempt to check the volatility of the stock. Measures of volatility are readily
available, for example, the variance of a stock. Another way to ascertain the volatility would be to
remove the low-frequency and retain the high-frequency content of a stock through a highpass filter.

To illustrate these ideas, two actual mutual funds, a bond fund and a high-tech fund, were chosen
at random for processing. One year’s worth of data were chosen for processing and to facilitate the
comparison, the scaled share prices of the two funds were normalized to unity at the start of the year.
The normalized share prices of the two funds are plotted in Fig. 1.14a. As can be seen, the bond
fund has remained rather stable throughout the year, as may be expected, whereas the high-tech one
was subjected to large variations. The day-to-day variations, i.e., the high-frequency content, in the
two mutual funds can be eliminated through the use of a lowpass filter to obtain the smooth curves
shown in Fig. 1.14b. On the other hand, the underlying trend of the mutual fund or the low-frequency
spectrum can be removed through the use of a highpass filter to obtain the high-frequency content
shown in Fig. 1.14c. In this figure, the filter output is depicted as a percentage of the unit value.

In the plots obtained, certain anomalies are observed during the first 50 or so sample values.
These are due to certain initial transient conditions that exist in all types of systems including
filters, which will be explained in Chap. 4, but they can be avoided in practice by using a suitable
initialization. Ignoring this initial phase, we note that the lowpass-filtered version of the data shown
in Fig. 1.14b provides a less cluttered view of the funds whereas Fig. 1.14c gives a much clearer
picture of their relative volatilities. In this respect, note the 5 to 1 difference in the scale of the y axis
between the two funds.

Quantitative measures of volatility analogous to the variance of a stock can also be deduced
from plots like those in Fig. 1.14c. One could, for example, obtain the mean-square average (MSA)
of y(n) which is defined as

MSA = 1

N

N∑
n=1

[y(n)]2

or the average of |y(n)| or some other norm. The value of the MSA for the bond and high-tech funds
for values of 50 ≤ n ≤ 250 can be readily computed as 0.0214 and 1.2367, respectively, i.e., a ratio
of 1 to 57.7 in favor of the bond fund. Evidently, the message is very clear as to what type of fund
one should buy to avoid sleepless nights.

Another intriguing possibility that deserves a mention is the use of extrapolating filters. Filters
of this type can be used to predict tomorrow’s stock prices but if we pursue the subject any further,
we will find ourselves in the domain of what is known in the business world as technical analysis.

26 DIGITAL SIGNAL PROCESSING

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Day

N
or

m
al

iz
ed

 u
ni

t v
al

ue
Bond
High tech

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Day

y(
n
)

Bond
High tech

(a)

(b)

Figure 1.14 Processing of stock-exchange data: (a) Unit values of bond and high technology mutual funds,
(b) data processed with a lowpass filter.

REFERENCES

[1] R. Schaumann and M. E. Van Valkenburg, Design of Analog Filters, New York: Oxford
University Press, 2001.

[2] K. L. Su, Analog Filters, London: Chapman & Hall, 1996.
[3] C. Rauscher, “Two-branch microwave channelized active bandpass filters,” IEEE

Trans. Microwave Theory Tech., vol. MTT-48, pp. 437–444, Mar. 2000.

INTRODUCTION TO DIGITAL SIGNAL PROCESSING 27

0 50 100 150 200 250
−1.0

−0.5

0

0.5

1.0
Bond fund

y(
n)

,
%

0 50 100 150 200 250
−5

0

5
Hi-tech fund

Day

y(
n)

,
%

(c)

Figure 1.14 Cont’d (c) Processing of stock-exchange data: Data processed with a highpass filter.

[4] C.-H. Lee, S. Han, and J. Laskar, “GaAs MESFET dual-gate mixer with active filter design
for Ku-band applications,” IEEE Radio Frequency Integrated Circuits Symposium,
pp. 203–206, 1999.

[5] I. C. Hunter, Theory and Design of Microwave Filters, London: The Institution of Electrical
Engineers, 2001.

[6] B. P. Lathi, Modern Digital and Analog Communication Systems, New York: Holt, Reinhart
and Winston, 1983.

[7] R. Butler and E. Kerr, An Introduction to Numerical Methods, London: Pitman, 1962.
[8] C.-E. Fröberg, Introduction to Numerical Analysis, 2nd ed., Reading, MA: Addison-Wesley,

1969.
[9] D. D. Swade, “Redeeming Charles Babbage’s mechanical computer,” Scientific American,

vol. 268, pp. 86–91, Feb. 1993.
[10] R. B. Blackman, H. W. Bode, and C. E. Shannon, “Data smoothing and prediction in

fire-control systems,” Summary Technical Report of Division 7, NDRC, vol. 1, pp. 71–160.
Reprinted as Report Series, MGC 12/1 (August 15, 1948), National Military Establishment,
Research and Development Board.

[11] R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra from the Point of View
of Communications Engineering, New York: Dover, 1959.

[12] M. A. Martin, Digital Filters for Data Processing, General Electric Co., Missile and Space
Division, Tech. Inf. Series Report No. 62-SD484, 1962.

[13] K. Steiglitz, The General Theory of Digital Filters with Applications to Spectral Analysis,
AFOSR Report no. 64–1664, New York University, New York, May 1963.

[14] E. B. Anders et al., Digital Filters, NASA Contractor Report CR-136, Dec. 1964.

28 DIGITAL SIGNAL PROCESSING

[15] H. H. Robertson, “Approximate design of digital filters,” Technometrics, vol. 7, pp. 387–403,
Aug. 1965.

[16] J. F. Kaiser, “Some practical considerations in the realization of digital filters,” Proc. Third
Allerton Conf. on Circuits and Systems, pp. 621–633, Oct. 1965.

[17] K. Steiglitz, “The equivalence of digital and analog signal processing,” Information and
Control, vol. 8, pp. 455–467, Oct. 1965.

[18] R. B. Blackman, Data Smoothing and Prediction, Reading, MA: Addison-Wesley, 1965.
[19] F. F. Kuo and J. F. Kaiser, System Analysis by Digital Computer, New York: Wiley, 1966.
[20] B. Gold and C. M. Rader, Digital Signal Processing, New York: McGraw-Hill, 1969.
[21] R. E. Bogner and A. G. Constantinides (eds.), Introduction to Digital Filtering, New York:

Wiley, 1975.
[22] A. Antoniou, Digital Filters: Analysis and Design, New York: McGraw-Hill, 1979.
[23] L. B. Jackson, J. F. Kaiser, and H. S. McDonald, “An approach to the implementation of

digital filters,” IEEE Trans. Audio and Electroacoust., vol. 16, pp. 413–421, Sept. 1968.
[24] A. Peled and B. Liu, “A new hardware realization of digital filters,” IEEE Trans. Acoust.

Speech, Signal Process., vol. 22, pp. 456–462, Dec. 1974.

CHAPTER

2
THE FOURIER

SERIES
AND FOURIER

TRANSFORM

2.1 INTRODUCTION

Spectral analysis has been introduced in a heuristic way in Chap. 1. In the present chapter, the spectral
analysis of continuous-time signals is developed further. The basic mathematical tools required
for the job, namely, the Fourier series and the Fourier transform, are described in some detail.
The Fourier series, which provides spectral representations for periodic continuous-time signals,
is treated first. Then the Fourier transform is derived by applying a limiting process to the Fourier
series. The properties of the Fourier series and the Fourier transform are delineated through a number
of theorems. The chapter also deals with the application of the Fourier series and Fourier transform
to a variety of standard continuous-time signals.

The reader may question the extent of the treatment of the spectral representation of continuous-
time signals in a book that claims to deal with DSP. However, as was emphasized in Chap. 1, most
of the signals occurring in nature are essentially continuous in time, and it is, therefore, reasonable
to expect the spectrums of discrete-time signals to be closely related to those of the continuous-time
signals from which they are derived. This indeed is the case, as will be shown in Chaps. 3, 6, and 7.

2.2 FOURIER SERIES

In Chap. 1, the concept of frequency spectrum of a signal was introduced as an alternative to time-
domain representation. As was demonstrated, a periodic signal that comprises a weighted sum of

29

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

30 DIGITAL SIGNAL PROCESSING

sinusoids such as that in Eq. (1.1) can be represented completely in the frequency domain in terms of
the amplitudes and phase angles of its individual sinusoidal components. Below, we demonstrate that
through the use of the Fourier1 series, the concept of frequency spectrum can be applied to arbitrary
periodic signals.

In the next and subsequent sections, periodic signals are typically represented in terms of
nonperiodic signals. To avoid possible confusion between the two types of signals we will use the
notation x̃(t) for a periodic signal and simply x(t) for a nonperiodic one. Signals will be assumed to
be real unless otherwise stated.

2.2.1 Definition

A periodic continuous-time signal, namely, a signal that satisfies the condition

x̃(t + rτ0) = x̃(t) for |r | = 1, 2, . . . , ∞

where τ0 is a constant called the period of the signal, can be expressed as

x̃(t) =
∞∑

r=−∞
x(t + rτ0) (2.1)

where x(t) is a nonperiodic signal given by

x(t) =
{

x̃(t) for −τ0/2 < t ≤ τ0/2

0 otherwise
(2.2)

The time interval −τ0/2 < t ≤ τ0/2 will be referred to as the base period hereafter.
What the above formulas are saying is this: If a nonperiodic signal x(t) is available that fully

describes the periodic signal x̃(t) with respect to the base period, then the periodic signal x̃(t) can
be generated by creating time-shifted copies of x(t), that is, x(t + rτ0) for r = 1, 2, . . . , ∞ and
r = −1, −2, . . . , −∞, and then adding them up. This replication process occurs frequently in
DSP and it will be referred to as periodic continuation, that is, x̃(t) is the periodic continuation of
x(t) in the present context.

A periodic signal x̃(t) that satisfies certain mathematical requirements as detailed in Theorem
2.1 (see Sec. 2.2.3) can be represented by the Fourier series (see Chap. 7 of Ref. [1] or Chap. 5 of
Ref. [2]). The most general form of this important representation is given by

x̃(t) =
∞∑

k=−∞
Xke jkω0t for −τ0/2 ≤ t ≤ τ0/2 (2.3)

1Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician who was taught by Lagrange and Laplace.
He got himself involved with the French Revolution and in due course joined Napoleon’s army in the invasion of Egypt
as a scientific advisor. The series named after him emerged while Fourier was studying the propagation of heat in solid
bodies after his return from Egypt.

THE FOURIER SERIES AND FOURIER TRANSFORM 31

where ω0 = 2π/τ0. The coefficients2 {Xk} can be deduced by multiplying both sides of Eq. (2.3) by
e− jlω0t and then integrating over the base period −τ0/2 < t ≤ τ0/2. Thus

∫ τ0/2

−τ0/2
x̃(t)e− jlω0t dt =

∫ τ0/2

−τ0/2

∞∑
k=−∞

Xke jkω0t e− jlω0t dt

=
∞∑

k=−∞
Xk

∫ τ0/2

−τ0/2
e j(k−l)ω0t dt

The change in the order of integration and summation between the first and second equations is
allowed for signals that satisfy the conditions in Theorem 2.1. Now

∫ τ0/2

−τ0/2
e j(k−l)ω0t dt =

{
τ0 if l = k

0 if l �= k
(2.4)

(see Prob. 2.1) and as x̃(t) = x(t) over the base period −τ0/2 < t ≤ τ0/2 according to Eq. (2.2), we
have

Xk = 1

τ0

∫ τ0/2

−τ0/2
x(t)e− jkω0t dt (2.5)

As e jkω0t is a complex quantity, coefficients {Xk} are complex in general but can be purely real or
purely imaginary.3 Xk can be represented in terms of its real and imaginary parts or its magnitude
and angle as

Xk = Re Xk + j Im Xk = |Xk |e j arg Xk

where

|Xk | =
√

(Re Xk)2 + (Im Xk)2 and arg Xk = tan−1 Im Xk

Re Xk

2.2.2 Particular Forms

The Fourier series can also be expressed in terms of a sum of sines and cosines, or just sines or just
cosines, as will now be demonstrated. Equation (2.3) can be expanded into a sum of two series plus
a constant as

x̃(t) =
−1∑

k=−∞
Xke jkω0t + X0 +

∞∑
k=1

Xke jkω0t

and by letting4 k → −k in the first summation and then noting that
1∑

k=∞
X−ke− jkω0t ≡

∞∑
k=1

X−ke− jkω0t

2The notation {Xk} is used to represent the set of coefficients Xk for −∞ ≤ k ≤ ∞, which can also be represented
more precisely by the notation {Xk: −∞ ≤ k ≤ ∞}.

3See Appendix A for the basic principles of complex analysis.
4The notation k → −k here and in the subsequent chapters represents two variable transformations carried out in

sequence one after the other, that is, k = −k′ and k′ = k.

32 DIGITAL SIGNAL PROCESSING

we get

x̃(t) =
∞∑

k=1

X−ke− jkω0t + X0 +
∞∑

k=1

Xke jkω0t

= X0 +
∞∑

k=1

X−k(cos kω0t − j sin kω0t)

+
∞∑

k=1

Xk(cos kω0t + j sin kω0t)

= X0 +
∞∑

k=1

(Xk + X−k) cos kω0t +
∞∑

k=1

j(Xk − X−k) sin kω0t (2.6)

Now from Eq. (2.5), we have

X0 = 1

τ0

∫ τ0/2

−τ0/2
x(t) dt (2.7a)

Xk = 1

τ0

∫ τ0/2

−τ0/2
x(t)e− jkω0t dt

= 1

τ0

∫ τ0/2

−τ0/2
x(t)(cos kω0t − j sin kω0t) dt

= 1

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt − j

1

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt (2.7b)

X−k = 1

τ0

∫ τ0/2

−τ0/2
x(t)e jkω0t dt

= 1

τ0

∫ τ0/2

−τ0/2
x(t)(cos kω0t + j sin kω0t) dt

= 1

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt + j

1

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt (2.7c)

and hence Eqs. (2.7b) and (2.7c) give

Xk + X−k = 2

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt (2.8a)

j(Xk − X−k) = 2

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt (2.8b)

X−k = X∗
k (2.8c)

THE FOURIER SERIES AND FOURIER TRANSFORM 33

where X∗
k is the complex conjugate of Xk . On using Eqs. (2.7a), (2.8a), and (2.8b), Eq. (2.6) can also

be expressed as

x̃(t) = 1
2 a0 +

∞∑
k=1

(ak cos kω0t + bk sin kω0t) (2.9)

where

a0 = 2X0 = 2

τ0

∫ τ0/2

−τ0/2
x(t) dt (2.10a)

ak = Xk + X−k = 2

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt (2.10b)

bk = j(Xk − X−k) = 2

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt (2.10c)

The 1/2 in the constant term of Eq. (2.9) is used to make the formula for a0 in Eq. (2.10a) a special
case of the formula for ak in Eq. (2.10b). These equations are often referred to as the Euler or
Euler-Fourier formulas.

Equation (2.9) gives the Fourier series in terms of sines and cosines. As sines can be converted
to cosines and vice versa, a representation of the Fourier series in terms of just sines or just cosines
can be readily obtained. If we let

ak = Ak cos φk and bk = −Ak sin φk (2.11)

then parameters {Ak} and {φk} can be expressed in terms of {ak} and {bk} or {Xk} as

A0 = |a0| = 2|X0| (2.12a)

φ0 =
{

0 if a0 or X0 ≥ 0

−π if a0 or X0 < 0
(2.12b)

Ak =
√

a2
k + b2

k = 2|Xk | (2.12c)

φk = tan−1

(
−bk

ak

)
= arg Xk (2.12d)

(see Prob. 2.2). Now on eliminating coefficients a0, ak , and bk in Eq. (2.9) using Eq. (2.11), the
Fourier series can be put in the form

x̃(t) = 1
2 A0 cos φ0 +

∞∑
k=1

Ak(cos φk cos kω0t − sin φk sin kω0t)

= 1
2 A0 cos φ0 +

∞∑
k=1

Ak(cos kω0t cos φk − sin kω0t sin φk)

= 1
2 A0 cos φ0 +

∞∑
k=1

Ak cos(kω0t + φk) (2.13a)

= 1
2 A0 sin(φ0 + 1

2π) +
∞∑

k=1

Ak sin
(

kω0t + φk + 1
2π

)
(2.13b)

34 DIGITAL SIGNAL PROCESSING

In summary, the Fourier series can be used to express a periodic signal in terms of an infinite
linear combination of exponentials as in Eq. (2.3), in terms of sines and cosines as in Eq. (2.9),
just cosines as in Eq. (2.13a), or just sines as in Eq. (2.13b). Engineers often refer to the sinusoidal
component of frequency ω0 as the fundamental and to those of frequencies kω0 for k = 2, 3, . . . ,

as the harmonics. The terms 1
2 a0 in Eq. (2.9), 1

2 A0 cos φ0 in Eq. (2.13a), and 1
2 A0 sin(φ0 + π/2)

in Eq. (2.13b) are alternative ways of representing the zero frequency component and can assume
positive or negative values.

The set of coefficients {Xk : − ∞ ≤ k ≤ ∞} in Eq. (2.5), the sets of coefficients {ak} and
{bk} in Eq. (2.9), and the corresponding amplitudes and phase angles of the sinusoids in Eq. (2.13b),
that is, {Ak : 0 ≤ k ≤ ∞} and {φk : 0 ≤ k ≤ ∞}, respectively, constitute alternative but complete
descriptions of the frequency spectrum of a periodic signal. The coefficients {Xk} are closely related to
the Fourier transform of the nonperiodic signal x(t), as will be demonstrated in Sec. 2.3.1, and, for this
reason, they will receive preferential treatment in this book, although the alternative representations
in terms of {ak} and {bk} or {Ak} and {φk} will also be used once in a while. The magnitude and phase
angle of Xk , that is, |Xk | and arg Xk , viewed as functions of the discrete frequency variable kω0 for
−∞ < kω0 < ∞, will henceforth be referred to as the amplitude spectrum and phase spectrum,
respectively.

The periodic signal x̃(t) in the above analysis can be symmetrical or antisymmetrical with
respect to the vertical axis. If it is symmetrical, signal x(t) in Eq. (2.2) is an even function of time
since

x(−t) = x(t)

We know that cos ωt is an even and sin ωt is an odd function of time, that is,

cos(−ωt) = cos ωt and sin(−ωt) = −(sin ωt)

and hence x(t) cos kω0t is even and x(t) sin kω0t is odd. Consequently, Eqs. (2.7a)–(2.7c) give

X0 = 1

τ0

∫ τ0/2

−τ0/2
x(t) dt = 2

τ0

∫ τ0/2

0
x(t) dt (2.14a)

Xk = 1

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt − j

1

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt

= 2

τ0

∫ τ0/2

0
x(t) cos kω0t dt for k = 1, 2, . . . (2.14b)

X−k = 1

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt + j

1

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt

= 2

τ0

∫ τ0/2

0
x(t) cos kω0t dt for k = 1, 2, . . . (2.14c)

that is, X−k = Xk for k = 1, 2, . . .

THE FOURIER SERIES AND FOURIER TRANSFORM 35

and from Eqs. (2.10a)–(2.10c), we get

a0 = 2X0 = 4

τ0

∫ τ0/2

0
x(t) dt (2.15a)

ak = Xk + X−k = 4

τ0

∫ τ0/2

0
x(t) cos kω0t dt for k = 1, 2, . . . (2.15b)

bk = j(Xk − X−k) = 0 for k = 1, 2, . . . (2.15c)

On the other hand, if x̃(t) is antisymmetrical about the vertical axis, then x(t) is an odd function and
thus x(t) cos kω0t is an odd function and x(t) sin kω0t is an even function. In this case, Eqs. (2.7a)–
(2.7c) give

X0 = 1

τ0

∫ τ0/2

−τ0/2
x(t) dt = 0 (2.16a)

Xk = 1

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt − j

1

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt

= − j
2

τ0

∫ τ0/2

0
x(t) sin kω0t dt for k = 1, 2, . . . (2.16b)

X−k = 1

τ0

∫ τ0/2

−τ0/2
x(t) cos kω0t dt + j

1

τ0

∫ τ0/2

−τ0/2
x(t) sin kω0t dt

= j
2

τ0

∫ τ0/2

0
x(t) sin kω0t dt for k = 1, 2, . . . (2.16c)

that is, X−k = −Xk for k = 1, 2, . . .

and from Eqs. (2.10a)–(2.10c), we get

a0 = 2X0 = 0 (2.17a)

ak = Xk + X−k = 0 for k = 1, 2, . . . (2.17b)

bk = j(Xk − X−k) = 2 j Xk (2.17c)

= 4

τ0

∫ τ0/2

0
x(t) sin kω0t dt for k = 1, 2, . . . (2.17d)

In effect, if x(t) is antisymmetrical, then the DC component, which is the average value of the
waveform, is zero.

2.2.3 Theorems and Properties

Fourier series have certain theoretical properties that are often of considerable practical interest. A
few of the most important ones are described below in terms of a number of theorems.

To start with, we are quite interested in the circumstances under which the substitution of the
coefficients given by Eq. (2.5) in the Fourier series of Eq. (2.3) would yield the periodic signal x̃(t).

36 DIGITAL SIGNAL PROCESSING

x(td −)

x(td)

x(td+)

x(t)

td

td– td+

t

ε ε

Figure 2.1 A signal x(t) with a discontinuity.

Theorem 2.1 Convergence If x̃(t) is a periodic signal of the form

x̃(t) =
∞∑

r=−∞
x(t + rτ0)

where x(t) is defined by Eq. (2.2), and over the base period −τ0/2 < t ≤ τ0/2 x(t)

• has a finite number of local maxima and minima
• has a finite number of points of discontinuity
• is bounded, that is,

|x(t)| ≤ K < ∞
for some positive K , then the substitution of coefficients {Xk} given by Eq. (2.5) in the Fourier
series of Eq. (2.3) converges to x̃(t) at all points where x(t) is continuous.

At points where x(t) is discontinuous, the Fourier series converges to the average of the
left- and right-hand limits of x(t), namely,

x(td) = 1
2 [x(td−) + x(td+)]

as illustrated in Fig. 2.1 where the left- and right-hand limits of x(t) at t = td are defined as

x(td−) = lim
ε→0

x(td − |ε|) and x(td+) = lim
ε→0

x(td + |ε|)

Proof (See pp. 225–232 of Ref. [3] for proof.) �

The prerequisite conditions for convergence as stated in Theorem 2.1 are known as the
Dirichlet5 conditions (see Ref. [4]).

5Johann Peter Gustave Lejeune Dirichlet (1805–1859) was born in Düren, a town between Aachen and Cologne. In
addition to his work on the Fourier series, he contributed a great deal to differential equations and number theory. He married
one of the two sisters of the composer Felix Mendelssohn.

THE FOURIER SERIES AND FOURIER TRANSFORM 37

In the above analysis, we have tacitly assumed that the periodic signal x̃(t) is real. Nevertheless,
the Fourier series is applicable to complex signals just as well. Furthermore, the variable need not
be time. In fact, the Fourier series is often used to design certain types of digital filters, as will be
demonstrated in Chap. 9, and in that application a function is used, which is periodic with respect
to frequency, that is, the roles of time and frequency are interchanged. In the following theorem,
signal x̃(t) is deemed to be complex but the theorem is, of course, valid for real signals as well. The
theorem provides a relation between the power associated with a periodic signal and the Fourier-series
coefficients of the signal.

Theorem 2.2 Parseval’s Formula for Periodic Signals The mean of the product x̃(t)x̃∗(t),
where x̃∗(t) is the complex conjugate of x̃(t), can be expressed in terms of the Fourier-series
coefficients {Xk} as

x̃(t)x̃∗(t) =
1
τ0

∫ τ0/2

−τ0/2
x̃(t)x̃∗(t) dt =

1
τ0

∫ τ0/2

−τ0/2
|x̃(t)|2 dt

=
∞∑

k=−∞
Xk X∗

k =
∞∑

k=−∞
|Xk|2 (2.18)

See footnote on Parseval6.

Proof The mean of the product x̃(t)x̃∗(t) is defined as

x̃(t)x̃∗(t) = 1

τ0

∫ τ0/2

−τ0/2
x̃(t)x̃∗(t) dt (2.19)

Hence, Eqs. (2.3) and (2.19) give

x̃(t)x̃∗(t) = 1

τ0

∫ τ0/2

−τ0/2

(∞∑
k=−∞

Xke jkω0t

)(∞∑
l=−∞

Xle
jlω0t

)∗
dt

= 1

τ0

∫ τ0/2

−τ0/2

(∞∑
k=−∞

Xke jkω0t

)(∞∑
l=−∞

X∗
l e− jlω0t

)
dt

= 1

τ0

∫ τ0/2

−τ0/2

(∞∑
k=−∞

Xk

∞∑
l=−∞

X∗
l e j(k−l)ω0t

)
dt

For signals that satisfy Theorem 2.1, the order of summation and integration can be interchanged
and thus

x̃(t)x̃∗(t) =
∞∑

k=−∞
Xk

∞∑
l=−∞

X∗
l · 1

τ0

∫ τ0/2

−τ0/2
e j(k−l)ω0t dt

6Marc-Antoine Parseval de Chenes (1755–1836) was a French mathematician of noble birth who lived in Paris during
the French Revolution. He published some poetry against Napoleon’s regime, which nearly got him arrested.

38 DIGITAL SIGNAL PROCESSING

Now the value of the integral is equal to τ0 if l = k and zero otherwise, according to Eq. (2.4).
Therefore,

x̃(t)x̃∗(t) =
∞∑

k=−∞
Xk X∗

k = |Xk |2 �

For a real x̃(t), we have x̃∗(t) = x̃(t) and hence Parseval’s formula in Eq. (2.18) assumes the
simplified form

x̃2(t) = 1

τ0

∫ τ0/2

−τ0/2
x̃2(t) dt =

∞∑
k=−∞

Xk X∗
k =

∞∑
k=−∞

|Xk |2 (2.20)

where x̃2(t) is the mean square value of the periodic signal x̃(t).
If x̃(t) represents a voltage across or a current through a resistor then the mean square of x̃(t)

is proportional to the average power delivered to the resistor. In effect, Parseval’s theorem provides
a formula that can be used to calculate the average power by using the Fourier-series coefficients.

Theorem 2.3 Least-Squares Approximation A truncated Fourier series for a real periodic
signal x̃(t) of the form

x̃′(t) =
N∑

k=−N

Xke jkω0t (2.21)

is a least-squares approximation of x̃(t) independently of the value of N.

Proof Let

ỹ(t) =
N∑

k=−N

Yke jkω0t (2.22)

be an approximation for x̃(t) and assume that e(t) is the error incurred. From (2.3) and (2.22),
we can write

ẽ(t) = x̃(t) − ỹ(t)

=
∞∑

k=−∞
Xke jkω0t −

N∑
k=−N

Yke jkω0t

=
∞∑

k=−∞
Eke jkω0t

(2.23)

where

Ek =
{

Xk − Yk for −N ≤ k ≤ N

Xk for |k| > N

On comparing Eq. (2.23) with Eq. (2.3), we conclude that Eq. (2.23) is the Fourier series of
the approximation error, ẽ(t), and by virtue of Parseval’s theorem (that is, Eq. (2.20)), the

THE FOURIER SERIES AND FOURIER TRANSFORM 39

mean-square error is given by

ẽ2(t) =
∞∑

k=−∞
|Ek |2

=
N∑

k=−N

|Xk − Yk |2 +
∑
|k|>N

|Xk |2 (2.24)

The individual terms at the right-hand side of Eq. (2.24) are all positive and, therefore, e2(t) is
minimized if and only if

Yk = Xk for − N ≤ k ≤ N

that is,

ỹ(t) =
N∑

k=−N

Yke jkω0t =
N∑

k=−N

Xke jkω0t = x̃ ′(t)

That is, the approximation ỹ(t) of x̃(t) that minimizes the mean-square error incurred is the
truncated Fourier series of Eq. (2.21). Such an approximation is said to be a least-squares
approximation. �
Theorem 2.4 Uniqueness If two periodic signals x̃1(t) and x̃2(t) are continuous over the
base period and have the same Fourier-series coefficients, that is, {Xk1} = {Xk2}, then they
must be identical, that is, x̃1(t) = x̃2(t).
Proof (See p. 487 in Ref. [1] for proof.) �

The theorem also applies if the signals have a finite number of discontinuities over the base
period provided that the values of x1(t) or x2(t) at each discontinuity are defined as the average of
the left- and right-hand limits as in Theorem 2.1.

A consequence of the uniqueness property is that an arbitrary linear combination of sines, or
cosines, or both, such as Eq. (1.1), for example, is a unique Fourier series of a corresponding unique
periodic signal.

The application of the Fourier series will now be illustrated by analyzing some typical periodic
waveforms.

Example 2.1 The periodic pulse signal x̃(t) shown in Fig. 2.2a can be represented by Eq. (2.1)
with x(t) given by7

x(t) ≡ pτ (t) =

0 for −τ0/2 < t < −τ/2

1 for −τ/2 ≤ t ≤ τ/2

0 for τ/2 < t ≤ τ0/2

7The values of the pulse function at the points of discontinuity t = −τ/2 and τ/2 should, in theory, be defined to be
1
2 to make the function consistent with Theorem 2.1. However, this more precise but more complicated definition would not
change the Fourier series of the function since the integral in Eq. (2.5) would assume an infinitesimal value when evaluated
over an infinitesimal range of t , ε.

40 DIGITAL SIGNAL PROCESSING

t
τ
2

τ0

2

τ
2

−τ0

2
−

(a)

(b)

|sin (ω0t/2)|

t
τ0

2
τ0

2
−

x(t)~

x(t)~

τ0

Figure 2.2 Periodic signals: (a) Pulse signal, (b) rectified sinusoid.

with τ0 = 2π/ω0. (a) Obtain the Fourier series of x̃(t) in terms of Eq. (2.3). (b) Obtain and
plot the amplitude and phase spectrums.

Solution

As x(t) is symmetrical with respect to the vertical axis, it is an even function of t and
Eqs. (2.14a) and (2.14b) apply. We note that Eq. (2.14a) can be obtained from Eq. (2.14b)
by letting k = 0 and hence, for any k, we have

Xk = 2

τ0

∫ τ0/2

0
x(t) cos kω0t dt = 2

τ0

∫ τ/2

0
cos kω0t dt

= 2

τ0

[
sin kω0t

kω0

]τ/2

0

= τ

τ0

sin kω0τ/2

kω0τ/2
(2.25)

Thus

|Xk | =

τ

τ0
for k = 0∣∣∣∣ τ

τ0

sin kω0τ/2

kω0τ/2

∣∣∣∣ otherwise

THE FOURIER SERIES AND FOURIER TRANSFORM 41

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−50 0 50
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a) (b)

Figure 2.3 Frequency spectrum of periodic pulse signal (Example 2.1): (a) Amplitude
spectrum, (b) phase spectrum.

and

arg Xk =
{

0 if Xk ≥ 0

−π if Xk < 0

The amplitude and phase spectrums of the signal for τ0 = 1 s and τ = τ0/2 are plotted
in Fig. 2.3a and b.

The periodic pulse signal analyzed in the above example is of interest in a number of applica-
tions, for example, in A/D and D/A converters (see Chap. 6).

Example 2.2 The periodic waveform depicted in Fig. 2.2b can be represented by Eq. (2.1)
with x(t) given by

x(t) = ∣∣sin 1
2ω0t

∣∣ for − 1
2τ0 < t ≤ 1

2τ0

42 DIGITAL SIGNAL PROCESSING

and τ0 = 2π/ω0. (a) Obtain its Fourier-series representation in terms of Eq. (2.3). (b) Obtain
and plot the amplitude and phase spectrums of x̃(t). (c) Express the Fourier series obtained in
part (a) as a linear combination of sines.

Solution

(a) As x(t) is an even function of t , Eqs. (2.14a) and (2.14b) give

Xk = 2

τ0

∫ τ0/2

0
x(t) cos kω0t dt = 2

τ0

∫ τ0/2

0
sin 1

2ω0t cos kω0t dt

= 2

τ0

∫ τ0/2

0
cos kω0t sin 1

2ω0t dt

From trigonometry

cos θ sin ψ = 1
2 [sin(θ + ψ) − sin(θ − ψ)]

and hence we obtain

Xk = 1

τ0

∫ τ0/2

0

[
sin

(
k + 1

2

)
ω0t − sin

(
k − 1

2

)
ω0t

]
dt

= 1

τ0

[
− cos

(
k + 1

2

)
ω0t(

k + 1
2

)
ω0

− − cos
(
k − 1

2

)
ω0t(

k − 1
2

)
ω0

]τ0/2

0

On evaluating the limits, straightforward manipulation gives

Xk = 2

π
(
1 − 4k2

)
Thus for any value of k including zero, we have

|Xk | =
∣∣∣∣∣ 2

π
(
1 − 4k2

)
∣∣∣∣∣

and

arg Xk =
{

0 if k = 0

−π otherwise

THE FOURIER SERIES AND FOURIER TRANSFORM 43

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−10 −5 0 5 10
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

− 0.5

0
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a) (b)

Figure 2.4 Frequency spectrum of rectified waveform (Example 2.2): (a) Amplitude
spectrum, (b) phase spectrum.

(b) From Eqs. (2.12a)–(2.12d), we have

Ak = 2|Xk | =
∣∣∣∣∣ 4

π
(
1 − 4k2

)
∣∣∣∣∣ for k ≥ 0

φk = arg Xk =
{

0 if k = 0

−π for k > 0

The amplitude and phase spectrums of the waveform are illustrated in Fig. 2.4 for the
case where ω0 = 1 rad/s.

(c) Now Eq. (2.13b) yields

x̃(t) = 2

π
+

∞∑
k=1

∣∣∣∣∣ 4

π
(
1 − 4k2

)
∣∣∣∣∣ sin

(
kω0t − π + 1

2π
)

= 2
π

+ 4
3π

sin
(
ω0t − 1

2π
)

+ 4
15π

sin
(

2ω0t − 1
2π

)
+ 4

35π
sin

(
3ω0t − 1

2π
)

+ 4
63π

sin
(

4ω0t − 1
2π

)
+ · · ·

44 DIGITAL SIGNAL PROCESSING

The waveform analyzed in Example 2.2 is essentially a sinusoidal waveform with its negative
half cycles reversed and is the type of waveform generated by a so-called full-wave rectifier circuit.
Circuits of this type are found in AC-to-DC adaptors such as those used to power laptop or handheld
computers and modems. The Fourier series obtained shows that an AC supply voltage of amplitude
1 V8 would produce a DC output voltage of 2/π V. Hence, an AC voltage of amplitude 170 V would
produce a DC voltage of 108.23 V. We note also that there would be an infinite number of residual AC
components with frequencies ω0, 2ω0, 3ω0, 4ω0, . . . , namely, the fundamental and harmonics, with
amplitudes, of 72.15, 14.43, 6.18, 3.44 V, . . . , respectively. In good-quality AC-to-DC adaptors, the
amplitudes of the harmonics are reduced to insignificant levels through the use of analog filter circuits.

Example 2.3 (a) Obtain the Fourier series of the periodic signal shown in Fig. 2.5a in terms
of Eq. (2.3). (b) Obtain and plot the amplitude and phase spectrums of x̃(t).

Solution

(a) The signal in Fig. 2.5a can be modeled by using shifted copies of pτ/2(t) for the
representation of signal x(t) in Eq. (2.2), where pτ (t) is the pulse signal of Example 2.1,
that is, we can write

x(t) = pτ/2
(
t + 1

4τ
) − pτ/2

(
t − 1

4τ
)

As x(t) is antisymmetrical with respect to the vertical axis, it is an odd function of time.
Hence, from Eq. (2.16a), we get

X0 = 0

Now from Eq. (2.16b), we have

Xk = − j
2

τ0

∫ τ0/2

0
x(t) sin kω0t dt

= − j
2

τ0

∫ τ0/2

0
pτ/2

(
t − 1

4τ
)

sin kω0t dt

= − j
2

τ0

∫ τ/2

0
− sin kω0t dt

= j
2

τ0

[− cos kω0t

kω0

]τ/2

0

= j
2

τ0

[
1 − cos kω0τ/2

kω0

]

= j
4 sin2 kω0τ/4

kω0τ0
for k = 1, 2, . . .

8The symbol V stands for volts.

THE FOURIER SERIES AND FOURIER TRANSFORM 45

−2 −1

−

0 1 2
−1.5

−1.0

−0.5

0

0.5

1.0

1.5
Time domain

Time, s

x(
t)

−50 0 50
0

0.1

0.2

0.3

0.4
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−50 0 50
−2

−1

0

1

2
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a)

(b) (c)

τ

2

τ

2

Figure 2.5 Frequency spectrum (Example 2.3): (a) Time-domain representation,
(b) amplitude spectrum, (c) phase spectrum.

that is,

Xk =

0 for k = 0

j
4 sin2 kω0τ/4

kω0τ0
for k = 1, 2, . . .

46 DIGITAL SIGNAL PROCESSING

(b) The amplitude and phase spectrums are obtained as

|X0| = 0 and arg X0 = 0

|Xk | =
∣∣∣∣ 2

kπ
sin2 kπτ

2τ0

∣∣∣∣ for k = 1, 2, . . .

arg Xk =

1
2π if k > 0

0 if k = 0

− 1
2π if k < 0

for k = 1, 2, . . .

(See Fig. 2.5b and c for plots.)

Example 2.4 Deduce the Fourier series of the following periodic signal

x̃(t) = sin4 ω0t

in terms of cosines.

Solution

We can write

x̃(t) = (sin2 ω0t)2 = [
1
2 (1 − cos 2ω0t)

]2

= 1
4

(
1 − 2 cos 2ω0t + cos2 2ω0t

)
= 1

4

[
1 − 2 cos 2ω0t + 1

2

(
1 + cos 4ω0t

)]
= 1

4

(
3
2 − 2 cos 2ω0t + 1

2 cos 4ω0t
)

= 3
8 − 1

2 cos 2ω0t + 1
8 cos 4ω0t

The above is a Fourier series and by virtue of Theorem 2.4, it is the unique Fourier series
for the given signal.

2.3 FOURIER TRANSFORM

The Fourier series described in the previous section can deal quite well with periodic signals but,
unfortunately, it is not applicable to nonperiodic signals. Periodic signals occur in a number of
applications but more often than not signals tend to be nonperiodic, e.g., communications, seismic,

THE FOURIER SERIES AND FOURIER TRANSFORM 47

or music signals, and for signals of this type some mathematical technique other than the Fourier
series must be used to obtain useful spectral representations.

A mathematical technique that can deal quite effectively with nonperiodic signals is the Fourier
transform [5]. This can be defined as an independent transformation. Alternatively, it can be deduced
from the Fourier series by treating a nonperiodic signal as if it were periodic and then letting the
period approach infinity [2]. The latter approach provides a fairly accurate physical interpretation of
a somewhat abstract mathematical technique and will, therefore, be pursued.

2.3.1 Derivation

Let us consider the nonperiodic pulse signal of Fig. 2.6a, which comprises just a single pulse. This
signal can, in theory, be deemed to be the special case of the periodic pulse signal x̃(t) shown in
Fig. 2.2a when the period τ0 is increased to infinity, that is,

x(t) = lim
τ0→∞ x̃(t) = pτ (t)

The Fourier series of the periodic pulse signals was obtained in Example 2.1 and its Fourier-series
coefficients {Xk} are given by Eq. (2.25). If we replace kω0 by the continuous variable ω, Eq. (2.25)
assumes the form

Xk = τ

τ0

sin kω0τ/2

kω0τ/2
= τ

τ0

sin ωτ/2

ωτ/2

Let us examine the behavior of the Fourier series as the period τ0 of the waveform is doubled to
2τ0, then doubled again to 4τ0, and so on, assuming that the duration τ of each pulse remains fixed.
Using a simple MATLAB program with τ0 = 1 and τ = 1

2 s, the plots in Fig. 2.6b can be readily
obtained. Two things can be observed in this illustration, namely, the magnitudes of the Fourier-
series coefficients {Xk} are progressively halved because Xk is proportional to τ/τ0, whereas the
number of frequency components is progressively doubled because the spacing between adjacent
harmonics is halved from ω0 to 1

2ω0, then to 1
4ω0, and so on. Evidently, if we were to continue

doubling the period ad infinitum, the coefficients {Xk} would become infinitesimally small whereas
the number of harmonics would become infinitely large and the spacing between adjacent harmonics
would approach zero. In effect, applying the Fourier series to the periodic pulse signal of Fig. 2.2a
and letting τ0 → ∞ would transform the signal in Fig. 2.2a to the nonperiodic pulse signal of
Fig. 2.6a but as Xk → 0, the approach does not yield a meaningful spectral representation for the
nonperiodic pulse signal of Fig. 2.6a. The same problem would arise if one were to apply the Fourier
series to any nonperiodic signal and, therefore, an alternative spectral representation must be sought
for nonperiodic signals.

The previous analysis has shown that as τ0 → ∞, we get ω0 → 0 and Xk → 0. However, the
quantity

X (jω) = lim
τ0→∞ X (jkω0) � lim

τ0→∞
Xk

f0
(2.26)

48 DIGITAL SIGNAL PROCESSING

−40 −30 −20 −10 0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency, rad/s

τ0=1 s
τ0=2 s
τ0=4 s

(b)

τ τ 0

si
n

ω
τ/

2
ω

τ/
2

(a)

–2 –1 0 1 2
0

0.5

1.0

1.5

Time, s

p τ
(t

)

τ

2
τ
2−

Figure 2.6 (a) Pulse function. (b) Fourier-series representation of the pulse signal shown in Fig. 2.2a for
pulse periods of τ0, 2τ0, and 4τ0.

where ω = kω0 and f0 = 1/τ0 = ω0/2π is the frequency between adjacent harmonics in Hz,
assumes a finite value for a large class of signals and, furthermore, it constitutes a physically mean-
ingful spectral representation for nonperiodic signals. As will be shown in Theorem 2.16, |X (jω)|2
is proportional to the energy density of signal x(t) per unit bandwidth in Hz at frequency f =
ω/(2π) in Hz.

THE FOURIER SERIES AND FOURIER TRANSFORM 49

From Eqs. (2.26) and (2.5), we can write

X (jkω0) = Xk

f0
= τ0 Xk

=
∫ τ0/2

−τ0/2
x(t)e− jkω0t dt

and therefore,

X (jω) = lim
τ0→∞ X (jkω0)

or

X (jω) =
∫ ∞

−∞
x(t)e− jωt dt (2.27)

The quantity X (jω) is known universally as the Fourier transform of nonperiodic signal x(t).
If the Fourier-series coefficients of a periodic signal are known, then the signal itself can be

reconstructed by using the formula for the Fourier series given by Eq. (2.3), namely,

x̃(t) =
∞∑

k=−∞
Xke jkω0t for −τ0/2 ≤ t ≤ τ0/2

As before, a nonperiodic signal can be generated from a periodic one by letting τ0 → ∞ in x̃(t), that is,

x(t) = lim
τ0→∞ x̃(t) = lim

τ0→∞

∞∑
k=−∞

Xke jkω0t for −τ0/2 ≤ t ≤ τ0/2 (2.28)

From Eq. (2.26), we have

X (jkω0) = Xk

ω0/2π

or

Xk = X (jkω0)ω0

2π

and hence Eq. (2.28) assumes the form

x(t) = lim
τ0→∞

1

2π

∞∑
k=−∞

X (jkω0)e jkω0tω0 for −τ0/2 ≤ t ≤ τ0/2

50 DIGITAL SIGNAL PROCESSING

If we now let kω0 = ω and ω0 = 	ω, then as τ0 → ∞ the above summation defines an integral.
Therefore,

x(t) = 1

2π

∫ ∞

−∞
X (jω)e jωt dω (2.29)

This is referred to as the inverse Fourier transform of X (jω) because it can be used to recover the
nonperiodic signal from its Fourier transform.

A nonperiodic signal can be represented by a Fourier transform to the extent that the integrals
in Eqs. (2.27) and (2.29) can be evaluated. The conditions that would assure the existence of the
Fourier transform and its inverse are stated in Theorem 2.5 in Sec. 2.3.3.

The Fourier transform and its inverse are often represented in terms of operator notation as

X (jω) = Fx(t) and x(t) = F−1 X (jω)

respectively. An even more economical notation, favored by Papoulis [5], is given by

x(t) ↔ X (jω)

and is interpreted as: X (jω) is the Fourier transform of x(t), which can be obtained by using Eq. (2.27),
and x(t) is the inverse Fourier transform of X (jω), which can be obtained by using Eq. (2.29). The
choice of notation depends, of course, on the circumstances.

Like the Fourier series coefficients of a periodic signal, X (jω) is, in general, complex and it
can be represented in terms of its real and imaginary parts as

X (jω) = Re X (jω) + j Im X (jω)

Alternatively, it can be expressed in terms of its magnitude and angle as

X (jω) = A(ω)e jφ(ω)

where

A(ω) = |X (jω)| =
√

[Re X (jω)]2 + [Im X (jω)]2 (2.30)

and

φ(ω) = arg X (jω) = tan−1 Im X (jω)

Re X (jω)
(2.31)

As physical quantities, the magnitude and angle of the Fourier transform are the amplitude spectrum
and phase spectrum of the signal, respectively, and the two together constitute its frequency spectrum.

A fairly standard practice, is to use lower-case symbols for the time domain and upper-case
symbols for the frequency domain. This convention will as far as possible be adopted throughout
this textbook to avoid confusion.

2.3.2 Particular Forms

In the above analysis, we have implicitly assumed that signal x(t) is real. Although this is typically the
case, there are certain applications where x(t) can be complex. Nevertheless, the Fourier transform

THE FOURIER SERIES AND FOURIER TRANSFORM 51

as defined in the previous section continues to apply (see Ref. [5]), that is,

Fx(t) = F[Re x(t) + j Im x(t)]

=
∫ ∞

−∞
[Re x(t) + j Im x(t)]e− jωt dt

=
∫ ∞

−∞
[Re x(t) + j Im x(t)][cos ωt − j sin ωt] dt

= Re X (jω) + j Im X (jω) (2.32a)

where

Re X (jω) =
∫ ∞

−∞
{Re[x(t)] cos ωt + Im[x(t)] sin ωt} dt (2.32b)

Im X (jω) = −
∫ ∞

−∞
{Re[x(t)] sin ωt − Im[x(t)] cos ωt} dt (2.32c)

If x(t) is real, then Eqs. (2.32b) and (2.32c) assume the forms

Re X (jω) =
∫ ∞

−∞
x(t) cos ωt dt (2.33a)

Im X (jω) = −
∫ ∞

−∞
x(t) sin ωt dt (2.33b)

As the cosine is an even function and the sine is an odd function of frequency, we conclude that the
real part of the Fourier transform of a real signal is an even function and the imaginary part is an odd
function of frequency. Hence,

X (− jω) = Re X (− jω) + j Im X (− jω)

= Re X (jω) − j Im X (jω)

= X∗(jω) (2.34)

that is, X (− jω) is equal to the complex conjugate of X (jω). It also follows that the amplitude
spectrum given by Eq. (2.30) is an even function and the phase spectrum given by Eq. (2.31) is an
odd function of frequency.

For a real x(t), the inverse Fourier transform can be expressed as

x(t) = F−1[Re X (jω) + j Im X (jω)]

= 1

2π

∫ ∞

−∞
[Re X (jω) + j Im X (jω)]e jωt dω

= 1

2π

∫ ∞

−∞
[Re X (jω) + j Im X (jω)][cos ωt + j sin ωt] dω

= 1

2π

∫ ∞

−∞
{Re[X (jω)] cos ωt − Im[X (jω)] sin ωt} dω (2.35a)

52 DIGITAL SIGNAL PROCESSING

since the imaginary part is zero. The product of two odd functions such as Im[X (jω)] sin ωt is an
even function and thus we can write

x(t) = 1

2π

∫ ∞

−∞
Re[X (jω)e jωt] dω

= 1

π
Re

[∫ ∞

0
X (jω)e jωt dω

]
(2.35b)

If the signal is both real and an even function of time, that is, x(−t) = x(t), then Eqs. (2.33a) and
(2.33b) assume the form

Re X (jω) = 2
∫ ∞

0
x(t) cos ωt dt (2.36a)

Im X (jω) = 0 (2.36b)

that is, the Fourier transform is real. As the imaginary part of the Fourier transform is zero in this
case, Eq. (2.35a) assumes the form

x(t) = 1

π

∫ ∞

0
Re[X (jω)] cos ωt dω (2.36c)

The converse is also true, i.e., if the Fourier transform is real, then the signal is an even function of
time.

If the signal is both real and an odd function of time, that is, x(−t) = −x(t), then Eqs. (2.33a)
and (2.33b) assume the form

Re X (jω) = 0 (2.37a)

Im X (jω) = −2
∫ ∞

0
x(t) sin ωt dt (2.37b)

and from Eq. (2.35a), we get

x(t) = − 1

π

∫ ∞

0
Im[X (jω)] sin ωt dω (2.37c)

The above principles can be extended to arbitrary signals that are neither even nor odd with
respect to time. Such signals can be expressed in terms of even and odd components, xe(t) and xo(t),
respectively, as

x(t) = xe(t) + xo(t) (2.38a)

where

xe(t) = 1
2 [x(t) + x(−t)] (2.38b)

xo(t) = 1
2 [x(t) − x(−t)] (2.38c)

THE FOURIER SERIES AND FOURIER TRANSFORM 53

From Eq. (2.38a)

X (jω) = Re X (jω) + j Im X (jω) = Xe(jω) + Xo(jω) (2.39)

and as Xe(jω) is purely real and Xo(jω) is purely imaginary, we have

xe(t) ↔ Re X (jω) (2.40a)

where

Re X (jω) = 2
∫ ∞

0
xe(t) cos ωt dt (2.40b)

xe(t) = 1

π

∫ ∞

0
Re[X (jω)] cos ωt dω (2.40c)

and

xo(t) ↔ j Im X (jω) (2.41a)

where

Im X (jω) = −2
∫ ∞

0
xo(t) sin ωt dt (2.41b)

xo(t) = − 1

π

∫ ∞

0
Im[X (jω)] sin ωt dω (2.41c)

Occasionally, signals are ‘right-sided’ in the sense that their value is zero for negative time,9 that
is, x(t) = 0, for t < 0. For such signals, x(−t) = 0 for t > 0 and hence Eqs. (2.38b) and (2.38c) give

x(t) = 2xe(t) = 2xo(t) (2.42a)

and from Eqs. (2.40c) and (2.41c), we have

x(t) = 2

π

∫ ∞

0
Re[X (jω)] cos ωt dω (2.42b)

= − 2

π

∫ ∞

0
Im[X (jω)] sin ωt dω (2.42c)

For this particular case, the real and imaginary parts of the Fourier transform are dependent on each
other and, in fact, one can readily be obtained from the other. For example, if Re X (jω) is known,
then x(t) can be obtained from Eq. (2.42b) and upon eliminating x(t) in Eq. (2.33b) Im X (jω) can
be obtained.

9Such signals have often been referred to as causal signals in the past but the word is a misnomer. Causality is a system
property as will be shown in Chap. 4.

54 DIGITAL SIGNAL PROCESSING

It should be emphasized here that the relations in Eq. (2.42) are valid only for t > 0. For
the case t = 0, x(t) must be defined as the average of its left- and right-hand limits at t = 0, to
render x(t) consistent with the convergence theorem of the Fourier transform (see Theorem 2.5),
that is,

x(0) = 1
2 [x(0−) + x(0+)] = 1

2 x(0+)

= 1

π

∫ ∞

0
Re[X (jω)] dω

The Fourier transform will now be used to obtain spectral representations for some standard
nonperiodic waveforms.

Example 2.5 (a) Obtain the Fourier transform of the nonperiodic pulse signal shown in
Fig. 2.6a. (b) Obtain and plot the amplitude and phase spectrums of x(t).

Solution

(a) From Fig. 2.6a, the pulse signal can be represented by

x(t) ≡ pτ (t) =
{

1 for −τ/2 ≤ t ≤ τ/2

0 otherwise

Hence

X (jω) =
∫ ∞

−∞
x(t)e− jωt dt =

∫ τ/2

−τ/2
e− jωt dt

=
[

e− jωt

− jω

]τ/2

−τ/2

= 2
(
e jωτ/2 − e− jωτ/2

)
2 jω

= 2 sin ωτ/2

ω

or

pτ (t) ↔ 2 sin ωτ/2

ω

where (2 sin ωτ/2)/ω is often referred to as a sinc function.

THE FOURIER SERIES AND FOURIER TRANSFORM 55

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−50 0 50
−3.5

3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a) (b)

Figure 2.7 Frequency spectrum of pulse (Example 2.5): (a) Amplitude spectrum, (b) phase
spectrum.

(b) The amplitude and phase spectrums are given by

A(ω) = |X (ω)| =
∣∣∣∣2 sin ωτ/2

ω

∣∣∣∣
φ(ω) = arg X (ω) =

0 if
2 sin ωτ/2

ω
≥ 0

−π if
2 sin ωτ/2

ω
< 0

and are illustrated in Fig. 2.7. Note the continuous frequency spectrum of the nonperiodic
pulse signal in contrast to the discrete frequency spectrum of the periodic pulse signal
depicted in Fig. 2.3.

Example 2.6 (a) Obtain the Fourier transform of the decaying exponential signal

x(t) = u(t)e−αt

56 DIGITAL SIGNAL PROCESSING

where α is a positive constant and

u(t) =
{

1 for t ≥ 0

0 for t < 0

is known as the unit-step function. (b) Obtain and plot the amplitude and phase spectrums of
x(t).

Solution

(a) We can write

X (jω) =
∫ ∞

−∞
u(t)e−αt e− jωt dt =

∫ ∞

0
e−(α+ jω)t dt

=
[
−e−(α+ jω)t

α + jω

]∞

0

For α > 0, we note that

lim
t→∞ e−αt → 0

and as a result

lim
t→∞ e(−α− jω)t = lim

t→∞
(
e−αt · e− jωt

) → 0

Thus

X (jω) = 1

α + jω

or

u(t)e−αt ↔ 1

α + jω

(b) The amplitude and phase spectrums of the signal are given by

A(ω) = 1√
α2 + ω2

and φ(ω) = − tan−1 ω

α

respectively. Note that certain ambiguities can arise in the evaluation of the phase spec-
trum as the above equation has an infinite number of solutions due to the periodicity of
the tangent function (see Sec. A.3.7).

(See Fig. 2.8 for plots.)

THE FOURIER SERIES AND FOURIER TRANSFORM 57

−5 0 5 10 15
0

0.2

0.4

0.6

0.8

1.0

1.2
Time domain

Time, s

x(
t)

−5 0 5
0

0.5

1.0

1.5

2.0

2.5

3.0
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−5 0 5
−2

−1

0

1

2
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a)

(b) (c)

Figure 2.8 Frequency spectrum of decaying exponential (Example 2.6 with α = 0.4):
(a) Amplitude spectrum, (b) phase spectrum.

2.3.3 Theorems and Properties

The properties of the Fourier transform, like those of the Fourier series, can be described in terms of
a small number of theorems as detailed below.

58 DIGITAL SIGNAL PROCESSING

Theorem 2.5 Convergence If signal x(t) is piecewise smooth in each finite interval and is,
in addition, absolutely integrable, i.e., it satisfies the inequality∫ ∞

−∞
|x(t)| dt ≤ K < ∞ (2.43)

where K is some positive constant, then the integral in Eq. (2.27) converges. Furthermore,
the substitution of X(jω) in Eq. (2.29) converges to x(t) at points where x(t) is continuous;
at points where x(t) is discontinuous, Eq. (2.29) converges to the average of the left- and
right-hand limits of x(t), namely,

x(t) = 1
2 [x(t+) + x(t−)]

Proof (See pp. 471–473 of [6] for proof.) �

The convergence theorem essentially delineates sufficient conditions for the existence of the
Fourier transform and its inverse and is analogous to the convergence theorem of the Fourier series,
i.e., Theorem 2.1. Note that periodic signals are not absolutely integrable as the area under the graph
of |x̃(t)| over the infinite range −∞ ≤ t ≤ ∞ is infinite, and a similar problem arises in connection
with impulse signals which comprise infinitely tall and infinitesimally thin pulses. The application
of the Fourier transform to signals that do not satisfy the convergence theorem will be examined in
Sec. 6.2.

The following theorems hold if x(t), x1(t), and x2(t) are absolutely integrable, which would
imply that

x(t) ↔ X (jω) x1(t) ↔ X1(jω) x2(t) ↔ X2(jω)

The parameters a, b, t0, and ω0 are arbitrary constants which could be complex in theory.

Theorem 2.6 Linearity The Fourier transform and its inverse are linear operations, that
is,

ax1(t) + bx2(t) ↔ aX1(jω) + bX2(jω)

Proof See Prob. 2.18. �

Theorem 2.7 Symmetry10 Given a Fourier transform pair

x(t) ↔ X(jω)

the Fourier transform pair

X(j t) ↔ 2πx(−ω)

can be generated.

10Also referred to as the duality property.

THE FOURIER SERIES AND FOURIER TRANSFORM 59

Proof By letting t → −t in the inverse Fourier transform of Eq. (2.29), we get

2πx(−t) =
∫ ∞

−∞
X (jω)e− jωt dω

and if we now let t → ω and ω → t , we have

2πx(−ω) =
∫ ∞

−∞
X (j t)e− jωt dt

that is, the Fourier transform of X (j t) is 2πx(−ω) and the inverse Fourier transform of 2πx(−ω)
is X (j t). �

Theorem 2.8 Time Scaling

x(at) ↔ 1
|a| X

(
jω
a

)
Proof Assuming that a > 0, letting t = t ′/a, and then replacing t ′ by t in the definition of the
Fourier transform, we get∫ ∞

−∞
x(at)e− jωt dt = 1

a

∫ ∞

−∞
x(t ′)e− j(ω/a)t ′

dt ′

= 1

a

∫ ∞

−∞
x(t)e− j(ω/a)t dt

= 1

a
X
(

j
ω

a

)
(2.44a)

If a < 0, proceeding as above and noting that the limits of integration are reversed in this case,
we get ∫ ∞

−∞
x(at)e− jωt dt = 1

a

∫ −∞

∞
x(t ′)e− j(ω/a)t ′

dt ′

= −1

a

∫ ∞

−∞
x(t)e− j(ω/a)t dt

= 1

|a| X
(

j
ω

a

)
(2.44b)

Now, if we compare Eqs. (2.44a) and (2.44b), we note that Eq. (2.44b) applies for a < 0 as well
as for a > 0, and hence the theorem is proved. �

One often needs to normalize the time scale of a signal to a more convenient range to avoid
awkward numbers in the representation. For example, the time scale of a signal that extends from 0
to 10−6 s could be scaled to the range 0 to 1 s. Occasionally, the available signal is in terms of a
normalized time scale and it may become necessary to ‘denormalize’ the time scale, say, from the
normalized range 0 to 1 s to the actual range. In either of these situations, time scaling is required,
which changes the Fourier transform of the signal.

60 DIGITAL SIGNAL PROCESSING

Theorem 2.9 Time Shifting

x(t − t0) ↔ e− jωt0 X(jω)

Proof See Prob. 2.19, part (a). �

The time-shifting theorem is handy in situations where a signal is delayed or advanced by
a certain period of time. Evidently, delaying a signal by t0 s amounts to multiplying the Fourier
transform of the signal by the exponential of − jωt0.

Theorem 2.10 Frequency Shifting

e jω0t x(t) ↔ X(jω − jω0)

Proof See Prob. 2.19, part (b). �

The similarity of Theorems 2.9 and 2.10 is a consequence of the similarity between the Fourier
transform and its inverse.

Theorem 2.11 Time Differentiation

dkx(t)
dtk

↔ (jω)k X(jω)

Proof The theorem can be proved by obtaining the kth derivative of both sides in Eq. (2.29)
with respect to t . �

Theorem 2.12 Frequency Differentiation

(− j t)kx(t) ↔ dk X(jω)
dωk

Proof The theorem can be proved by obtaining the kth derivative of both sides in Eq. (2.27)
with respect to ω. �

Theorem 2.13 Moments Theorem For a bounded signal x(t), the relation

(− j)kmk =
dk X(0)

dωk
(2.45)

holds where

mk =
∫ ∞

−∞
tkx(t) dt

is said to be the kth moment of x(t).

Proof See Ref. [5] for proof. �
The moments theorem will be found useful in the derivation of Fourier transforms for Gaussian

functions (see Example 2.11).

THE FOURIER SERIES AND FOURIER TRANSFORM 61

Theorem 2.14 Time Convolution

x1(t) ⊗ x2(t) ↔ X1(jω)X2(jω)

where

x1(t) ⊗ x2(t) =
∫ ∞

−∞
x1(τ)x2(t − τ) dτ (2.46a)

=
∫ ∞

−∞
x1(t − τ)x2(τ) dτ (2.46b)

Proof From Eq. (2.46b) and the definition of the Fourier transform, we have

F[x1(t) ⊗ x2(t)] =
∫ ∞

−∞

[∫ ∞

−∞
x1(t − τ)x2(τ) dτ

]
e− jωt dt

=
∫ ∞

−∞

∫ ∞

−∞
x1(t − τ)x2(τ)e− jωt dτdt

As x1(t) and x2(t) are deemed to be absolutely integrable, they are bounded and hence the order
of integration can be reversed. We can thus write

F[x1(t) ⊗ x2(t)] =
∫ ∞

−∞

∫ ∞

−∞
x1(t − τ)x2(τ)e− jωt dtdτ

=
∫ ∞

−∞
x2(τ)e− jωτ

∫ ∞

−∞
x1(t − τ)e− jω(t−τ) dtdτ

By applying the variable substitution t = t ′ + τ and then replacing t ′ by t , we get

F[x1(t) ⊗ x2(t)] =
∫ ∞

−∞
x2(τ)e− jωτ

[∫ ∞

−∞
x1(t ′)e− jωt ′

dt ′
]

dτ

=
∫ ∞

−∞
x2(τ)e− jωτ

[∫ ∞

−∞
x1(t)e− jωt dt

]
dτ

=
∫ ∞

−∞
x2(τ)e− jωτ X1(jω) dτ

and as X1(jω) is independent of τ , we can write

F[x1(t) ⊗ x2(t)] = X1(jω)
∫ ∞

−∞
x2(τ)e− jωτ dτ

= X1(jω)X2(jω)

The same result can be obtained by starting with Eq. (2.46a) (see Prob. 2.21). �

The above theorem is stating, in effect, that the Fourier transform of the time convolution is
equal to the product of the Fourier transforms of the two signals. Equivalently, the time convolution
is equal to the inverse Fourier transform of the product of the Fourier transforms of the two signals.

62 DIGITAL SIGNAL PROCESSING

Therefore, if a Fourier transform X (jω) can be factorized into two Fourier transforms X1(jω) and
X2(jω), that is,

X (jω) = X1(jω)X2(jω)

whose inverse Fourier transforms x1(t) and x2(t) are known, then the inverse Fourier transform of
the product X (jω) can be deduced by evaluating the time convolution.

Theorem 2.15 Frequency Convolution

x1(t)x2(t) ↔ 1
2π

X1(jω) ⊗ X2(jω)

where

X1(jω) ⊗ X2(jω) =
∫ ∞

−∞
X1(jv)X2(jω − jv) dv (2.47a)

=
∫ ∞

−∞
X1(jω − jv)X2(jv) dv (2.47b)

Proof The proof of this theorem would entail using the definition of the inverse Fourier trans-
form and then reversing the order of integration as in the proof of Theorem 2.14. The second
formula can be obtained from the first through a simple change of variable. (See Prob. 2.22,
part (b).) �

Theorem 2.16 Parseval’s Formula for Nonperiodic Signals∫ ∞

−∞
|x(t)|2 dt =

1
2π

∫ ∞

−∞
|X(jω)|2 dω

Proof From Theorem 2.15,∫ ∞

−∞
x1(t)x2(t)e− jωt dt = 1

2π

∫ ∞

−∞
X1(jv)X2(jω − jv) dv

By letting ω → 0, then replacing v by ω, we have∫ ∞

−∞
x1(t)x2(t) dt = 1

2π

∫ ∞

−∞
X1(jω)X2(− jω) dω

Now if we assume that x1(t) = x(t) and x2(t) = x∗(t), then X2(− jω) = X∗(jω) (see
Prob. 2.23, part (b)). Hence, from the above equation, we obtain∫ ∞

−∞
x(t)x∗(t) dt = 1

2π

∫ ∞

−∞
X (jω)X∗(jω) dω

or ∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X (jω)|2 dω �

THE FOURIER SERIES AND FOURIER TRANSFORM 63

If x(t) represents a voltage or current waveform, the left-hand integral represents the total
energy that would be delivered to a 1-
 resistor, that is,

ET = 1

2π

∫ ∞

−∞
|X (jω)|2 dω (2.48)

and if ω = 2π f then the energy of the signal over a bandwidth of 1 Hz, say, with respect to the
frequency range

f0 − 1

2
< f < f0 + 1

2

can be obtained from Eq. (2.48) as

	ET = 1

2π

∫ (f0+ 1
2)

−(f0− 1
2)

|X (jω)|2 d(2π f)

≈ |X (jω0)|2
∫ (f0+ 1

2)

−(f0− 1
2)

d f = |X (jω0)|2

In effect, the quantity |X (jω)|2 represents the energy density per unit bandwidth (in Hz) of the signal
at frequency f = ω/2π (in Hz) and is often referred to as the energy spectral density. As a function
of ω, |X (jω)|2 is called the energy spectrum of x(t).

Parseval’s formula is the basic tool in obtaining a frequency-domain representation for random
signals, as will be shown in Chap. 13.

The application of the above theorems is illustrated through the following examples.

Example 2.7 Show that

sin � t/2

π t
↔ p� (ω)

where

p� (ω) =
{

1 for |ω| ≤ �/2

0 otherwise

Solution

From Example 2.5, we have

pτ (t) ↔ 2 sin ωτ/2

ω

where

pτ (t) =
{

1 for |t | ≤ τ/2

0 otherwise

64 DIGITAL SIGNAL PROCESSING

By using the symmetry theorem (Theorem 2.7), we get

2 sin τ t/2

t
↔ 2πpτ (−ω)

where

pτ (−ω) =
{

1 for | − ω| ≤ τ/2

0 otherwise

=
{

1 for |ω| ≤ τ/2

0 otherwise

= pτ (ω)

Now if we let τ = � , we get

sin � t/2

π t
↔ p� (ω)

where
p� (ω) =

{
1 for |ω| ≤ �/2

0 otherwise

Example 2.8 Obtain the Fourier transform of the signal shown in Fig. 2.9a.

Solution

From Fig. 2.9a, the given signal can be modeled as

x(t) = pτ/2
(
t + 1

4τ
) − pτ/2

(
t − 1

4τ
)

(2.49)

by using shifted copies of the pulse pτ/2(t) which is obtained by replacing τ by τ/2 in
the pulse of Example 2.5.

On using the linearity and time-shifting theorems, we get

X (jω) = F [
pτ/2

(
t + 1

4τ
) − pτ

(
t − 1

4τ
)]

= F pτ/2
(
t + 1

4τ
) − F pτ/2

(
t − 1

4τ
)

= e jωτ/4F pτ/2(t) − e− jωτ/4F pτ/2(t)

and from Example 2.5, we deduce

X (jω) = (e jωτ/4 − e− jωτ/4)F pτ/2(t) = 4 j sin2 ωτ/4

ω
(2.50)

Hence

pτ/2
(
t + 1

4τ
) − pτ/2

(
t − 1

4τ
) ↔ 4 j sin2 ωτ/4

ω

THE FOURIER SERIES AND FOURIER TRANSFORM 65

and A(ω) =
∣∣∣∣4 sin2 ωτ/4

ω

∣∣∣∣ and φ(ω) =
{

1
2π for ω > 0

− 1
2π for ω < 0

(See Fig. 2.9b and c for plots.)

−2 −1 0 1 2
−1.5

−1.0

−0.5

0

0.5

1.0

1.5
Time domain

Time, s

x(
t)

−50 0 50
0

0.2

0.4

0.6

0.8

1
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−50 0 50
−2

−1

0

1

2
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a)

(b) (c)

τ
2

−

τ
2

Figure 2.9 Frequency spectrum of the function in Eq. (2.49) (Example 2.8 with α = 0.4):
(a) Time-domain representation, (b) amplitude spectrum, (c) phase spectrum.

66 DIGITAL SIGNAL PROCESSING

Example 2.9 Obtain the Fourier transform of the triangular pulse qτ (t) shown in Fig. 2.10a.

Solution

From Fig. 2.10a, we have

qτ (t) =
{

1 − 2|t |
τ

for |t | ≤ τ/2

0 for |t | > τ/2

We note that the given triangular pulse can be generated by performing the integration

qτ (t) =
∫ t

−∞

2x(t)

τ
dt (2.51)

where

x(t) = pτ/2
(
t + 1

4τ
) − pτ/2

(
t − 1

4τ
)

(see Example 2.8). If we differentiate both sides in Eq. (2.51), we get

dqτ (t)

dt
= 2x(t)

τ
(2.52a)

If we apply the time-differentiation theorem (Theorem 2.11) with k = 1 to the left-hand
side of Eq. (2.52a), we have

F
[

dqτ (t)

dt

]
= jωQτ (jω) (2.52b)

On the other hand, if we apply the Fourier transform to the right-hand side of Eq. (2.52a),
we get

F
[

2x(t)

τ

]
= 2X (jω)

τ
(2.52c)

Therefore, from Eqs. (2.52a)–(2.52c)

F
[

dqτ (t)

dt

]
= F

[
2x(t)

τ

]
or

Qτ (jω) = 2X (jω)

jωτ

and from Eq. (2.50), we get

Qτ (jω) = 8 sin2 ωτ/4

ω2τ

THE FOURIER SERIES AND FOURIER TRANSFORM 67

or

qτ (t) ↔ 8 sin2 ωτ/4

ω2τ

The amplitude spectrum is illustrated in Fig. 2.10b. The phase spectrum is zero for
all frequencies since the signal is a real, even function of time (see Eqs. (2.36a) and (2.36b)).

−2 −1 0 1 2
0

0.5

1.0

1.5
Time domain

Time, s

x(
t)

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

(a)

(b)

Figure 2.10 Frequency spectrum of triangular function (Example 2.9 with τ = 1.0):
(a) Time-domain representation, (b) amplitude spectrum.

68 DIGITAL SIGNAL PROCESSING

Example 2.10 Obtain the Fourier transform of the decaying sinusoidal signal

x(t) = u(t)e−αt sin ω0t

(see Fig. 2.11a) where α and ω0 are positive constants.

Solution

We can write

x(t) = u(t)e−αt sin ω0t = u(t)

2 j

(
e jω0t − e− jω0t

)
e−αt

= u(t)

2 j

(
e−(α− jω0)t − e−(α+ jω0)t

)
(2.53a)

From Example 2.6, we have

u(t)e−αt ↔ 1

α + jω

and if we replace α first by α − jω and then by α + jω, we get

u(t)e−(α− jω0)t ↔ 1

α − jω0 + jω
(2.53b)

and

u(t)e−(α+ jω0)t ↔ 1

α + jω0 + jω
(2.53c)

respectively. Now from Eqs. (2.53a)–(2.53c)

u(t)

2 j

(
e−(α− jω0)t − e−(α+ jω0)t

)

↔ 1

2 j

[
1

α − jω0 + jω
− 1

α + jω0 + jω

]
or

u(t)e−αt sin ω0t ↔ ω0

α2 + ω2
0 − ω2 + j2αω

= ω0

(a + jω)2 + ω2
0

Hence, the amplitude and phase spectrums of the decaying sinusoidal

THE FOURIER SERIES AND FOURIER TRANSFORM 69

signal are given by

A(ω) = ω0√
(α2 + ω2

0 − ω2)2 + 4α2ω2

and φ(ω) = − tan−1 2αω

α2 + ω2
0 − ω2

respectively. (See Fig. 2.11b and c for the plots.)

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8
Time domain

Time, s

x(
t)

−5 0 5
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

−5 0 5
−3

−2

−1

0

1

2

3
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a)

(b) (c)

Figure 2.11 Frequency spectrum of continuous-time decaying sinusoidal signal (Example
2.10, a = 0.4, ω0 = 2.0): (a) Time-domain representation, (b) amplitude spectrum, (c) phase
spectrum.

70 DIGITAL SIGNAL PROCESSING

Example 2.11 Obtain the Fourier transform of the Gaussian function x(t) = e−at2
(see

Fig. 2.12a).

Solution

A solution for this example found in Ref. [5] starts with the standard integral

∫ ∞

−∞
e−at2

dt =
√

π

α

which can be obtained from mathematical handbooks, for example, Ref. [7]. On dif-
ferentiating both sides of this equation k times with respect to α, we can show that

∫ ∞

−∞
t2ke−at2

dt = 1 · 3 · · · (2k − 1)

2k

√
π

α2k+1
(2.54a)

On the other hand, if we replace e− jωt by its series representation (see Eq. A.11a) in the
definition of the Fourier transform, we get

X (jω) =
∫ ∞

−∞
x(t)e− jωt dt =

∫ ∞

−∞
x(t)

[∞∑
k=0

(− jωt)k

k!

]
dt

=
∞∑

k=0

(− jω)k

k!

∫ ∞

−∞
t k x(t) dt =

∞∑
k=0

(− jω)k

k!
mk (2.54b)

where

mk =
∫ ∞

−∞
t k x(t) dt

is the kth moment of x(t) (see Theorem 2.13). As x(t) is an even function, the moments
for odd k are zero and hence Eq. (2.54b) can be expressed as

X (jω) = m0 + (− jω)2

2!
m2 + (− jω)4

4!
m4 + · · ·

=
∞∑

k=0

(− jω)2k

(2k)!
m2k

where

m2k =
∫ ∞

−∞
t2ke−αt2

dt = 1 · 3 · · · (2k − 1)

2k

√
π

α2k+1

THE FOURIER SERIES AND FOURIER TRANSFORM 71

−5 0 5
0

0.5

1.0

1.5
Time domain

Time, s

x(
t)

−5 0 5
0

0.5

1.0

1.5

2.0
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

(a)

(b)

Figure 2.12 Frequency spectrum of continuous-time Gaussian function: (Example 2.11,
α = 1.0): (a) Time-domain representation, (b) amplitude spectrum.

according to Eq. (2.54a) or

X (jω) =
∞∑

k=0

(− jω)2k

(2k)!
· 1 · 3 · · · (2k − 1)

2k

√
π

α2k+1

=
√

π

α

∞∑
k=0

1 · 3 · · · (2k − 1)(− jω)2k

(2k)!(2α)k

72 DIGITAL SIGNAL PROCESSING

The summation in the above equation is actually the series of e−ω2/4α , as can be readily
verified and, therefore,

X (jω) =
√

π

α
e−ω2/4α

or

e−at2 ↔
√

π

α
e−ω2/4α

The Gaussian function and its Fourier transform are plotted in Fig. 2.12 and as can
be seen, the frequency-domain function has the same general form as the time-domain
function. (See Eq. (6.26) for another transform pair that has this property.)

The Fourier transform pairs obtained in this chapter are summarized in Table 2.1. We have not
dealt with impulse functions or periodic signals so far because these types of signals require special
attention. It turns out that the applicability of the Fourier transform to periodic signals relies critically
on the definition of impulse functions. Impulse functions and periodic signals are, of course, very
important in DSP and they will be examined in detail in Chap. 6.

Table 2.1 Standard Fourier transforms

x(t) X(jω)

pτ (t) =
{

1 for |t | ≤ τ/2

0 for |t | > τ/2

2 sin ωτ/2

ω

sin � t/2

π t
p� (ω) =

{
1 for |ω| ≤ �/2

0 for |ω| > �/2

qτ (t) =

1 − 2|t |

τ
for |t | ≤ τ/2

0 for |t | > τ/2

8 sin2 ωτ/4

τω2

4 sin2 � t/4

π� t2
q� (ω) =

1 − 2|ω|

�
for |ω| ≤ �/2

0 for |ω| > �/2

e−αt2 √
π
α

e−ω2/4α

1√
4απ

e−t2/4α e−αω2

u(t)e−αt 1

a + jω

u(t)e−αt sin ω0t
ω0

(a + jω)2 + ω2
0

THE FOURIER SERIES AND FOURIER TRANSFORM 73

REFERENCES

[1] W. Kaplan, Operational Methods for Linear Systems, 3rd ed., Reading, MA: Addison-Wesley,
1984.

[2] R. J. Schwarz and B. Friedland, Linear Systems, New York: McGraw-Hill, 1965.
[3] H. S. Carslaw, Fourier Series, New York: Dover, 1930.
[4] C. R. Wylie, Jr. Advance Engineering Mathematics, 3rd ed., New York: McGraw-Hill, 1966.
[5] A. Papoulis, The Fourier Integral and Its Applications, New York: McGraw-Hill, 1962.
[6] W. Kaplan, Advanced Calculus, 3rd ed., Reading, MA: Addison-Wesley, 1962.
[7] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, New York: McGraw-Hill,

1965.

PROBLEMS

2.1. Derive Eq. (2.4).

2.2. Derive Eqs. (2.12c) and (2.12d).

2.3. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

1 for −τ0/2 < t < −τ0/4
2 for −τ0/4 ≤ t < τ0/4
1 for τ0/4 ≤ t < τ0/2

(a) Obtain the Fourier series of x̃(t) in the form of Eq. (2.3).
(b) Express the Fourier series in the form of Eq. (2.9).
(c) Express the Fourier series in the form of Eq. (2.13b).
(d) Obtain the amplitude and phase spectrums of x̃(t).

2.4. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

0 for −τ0/2 < t < −3τ0/8
1 for −3τ0/8 ≤ t < −τ0/4
2 for −τ0/4 ≤ t < τ0/4
1 for τ0/4 ≤ t < 3τ0/8
0 for 3τ0/8 ≤ t ≤ τ0/2

(a) Obtain the Fourier series of x̃(t) in the form of Eq. (2.3).
(b) Express the Fourier series in the form of Eq. (2.9).
(c) Express the Fourier series in the form of Eq. (2.13b).
(d) Obtain the amplitude and phase spectrums of x̃(t).

2.5. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

1 for −τ0/2 < t ≤ −τ/2
0 for −τ/2 < t < τ/2
1 for τ/2 ≤ t ≤ τ0/2

where τ < τ0.
(a) Obtain the Fourier series of x̃(t) in the form of Eq. (2.3).
(b) Express the Fourier series in the form of Eq. (2.9).
(c) Express the Fourier series in the form of Eq. (2.13b).
(d) Obtain the amplitude and phase spectrums of x̃(t).

74 DIGITAL SIGNAL PROCESSING

2.6. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

1 for −τ0/2 < t ≤ −τ/2
0 for −τ/2 < t < τ/2

−1 for τ/2 ≤ t ≤ τ0/2

where τ < τ0.
(a) Obtain the Fourier series of x̃(t) in the form of Eq. (2.3).
(b) Express the Fourier series in the form of Eq. (2.9).
(c) Express the Fourier series in the form of Eq. (2.13b).
(d) Obtain the amplitude and phase spectrums of x̃(t).

2.7. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

0 for −τ0/2 < t < −τ2

1 for −τ2 ≤ t ≤ −τ1

0 for −τ1 < t < τ1

1 for τ1 ≤ t ≤ τ2

0 for τ2 < t ≤ τ0/2

where τ1 < τ2 < τ0/2.
(a) Obtain the Fourier series in the form of Eq. (2.3).
(b) Obtain the amplitude and phase spectrums of x̃(t).

2.8. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

0 for −τ0/2 < t < −τ2

−1 for −τ2 ≤ t ≤ −τ1

0 for −τ1 < t < τ1

1 for τ1 ≤ t ≤ τ2

0 for τ2 < t ≤ τ0/2

where τ1 < τ2 < τ0/2.
(a) Obtain the Fourier series in the form of Eq. (2.3).
(b) Obtain the amplitude and phase spectrums of x̃(t).

2.9. A periodic signal x̃(t) is described by Eq. (2.1) with

x(t) =

1 for −τ0/2 < t < −τ2

0 for −τ2 ≤ t ≤ −τ1

1 for −τ1 < t < τ1

0 for τ1 ≤ t ≤ τ2

1 for τ2 < t ≤ τ0/2

where τ1 < τ2 < τ0/2.
(a) Obtain the Fourier series in the form of Eq. (2.3).
(b) Obtain the amplitude and phase spectrums of x̃(t).

2.10. A periodic signal is given by

x̃(t) = cos2 ωt + cos4 ωt

(a) Obtain the Fourier series of x̃(t) in the form of a linear combination of cosines.
(b) Obtain the amplitude and phase spectrums of x̃(t).

THE FOURIER SERIES AND FOURIER TRANSFORM 75

2.11. A periodic signal is given by

x̃(t) = 1
2 + sin ωt + 1

4 sin2 ωt + cos4 ωt

(a) Obtain the Fourier series of x̃(t) in the form of a linear combination of sines.
(b) Obtain the amplitude and phase spectrums of x̃(t).

2.12. Find the Fourier series of
(a) x(t) = αt for − τ0/2 ≤ t ≤ τ/2

(b) x(t) =
{−αt for −τ0/2 ≤ t < 0

αt for 0 ≤ t ≤ τ0/2

2.13. Find the Fourier series of
(a) x(t) = | cos ω0t | for − τ0/2 ≤ t ≤ τ0/2

where ω0 = 2π/τ0.

(b) x(t) =
{

0 for −τ0/2 ≤ t < 0
| sin ω0t | for 0 ≤ t ≤ τ0/2

where ω0 = 2π/τ0.

2.14. Find the Fourier series of
(a) x(t) = j t for − τ0/2 ≤ |t | ≤ τ0/2
(b) x(t) = j |t | for − τ0/2 ≤ |t | ≤ τ0/2

2.15. Find the Fourier series of
(a) x(t) = t/τ0 + 1/2 for − τ0/2 ≤ t ≤ τ0/2

(b) x(t) =

0 for −τ0/2 ≤ t < −τ0/4
eω0t for −τ0/4 ≤ t < 0
e−ω0t for 0 ≤ t < τ0/4
0 for τ0/4 ≤ t ≤ τ0/2

2.16. Assuming that x(t) is a real signal which can be either an even or odd function of time, show that
(a) X (− jω) = −X∗(jω)
(b) |X (− jω)| = |X (jω)|
(c) arg X (− jω) = − arg X (jω)

2.17. Assuming that x(t) is purely imaginary show that
(a)

Re X (jω) =
∫ ∞

−∞
Im x(t) sin ωt dt and Im X (jω) =

∫ ∞

−∞
Re x(t) cos ωt dt

(b) Assuming that x(t) is purely imaginary and an even function of time, show that Re X (jω) is an odd
function and Im X (jω) is an even function of frequency.

(c) Assuming that x(t) is purely imaginary and an odd function of time, show that Re X (jω) is an even
function and Im X (jω) is an odd function of frequency.

2.18. (a) Prove Theorem 2.6 (linearity) for the Fourier transform.
(b) Repeat part (a) for the inverse Fourier transform.

2.19. (a) Prove Theorem 2.9 (time shifting).
(b) Prove Theorem 2.10 (frequency shifting).

76 DIGITAL SIGNAL PROCESSING

2.20. Show that ∫ ∞

−∞
x1(τ)x2(t − τ) dτ =

∫ ∞

−∞
x1(t − τ)x2(τ) dτ

2.21. Prove Theorem 2.14 (time convolution) starting with Eq. (2.46a).

2.22. (a) Prove Theorem 2.15 (frequency convolution) starting with Eq. (2.47a).
(b) Show that Eq. (2.47b) is equivalent to Eq. (2.47a).

2.23. A complex signal x2(t) is equal to the complex conjugate of signal x(t). Show that
(a) X (jω) = X∗(− jω)
(b) X (− jω) = X∗(jω)

2.24. (a) Find the Fourier transform of x(t) = pτ (t − τ/2) where pτ (t) is a pulse of unity amplitude and
width τ .

(b) Find the Fourier transform of

x(t) =

1 for −τ0/2 ≤ t < −τ0/4
2 for −τ0/4 ≤ t < τ0/4
1 for τ0/4 ≤ t < τ0/2
0 otherwise

(c) Find the amplitude and phase spectrums for the signal in part (b).

2.25. (a) Find the Fourier transform of

x1(t) = [u(t + τ/2) − u(t − τ/2)]

where u(t) is the continuous-time unit-step function defined as

u(t) =
{

1 for t ≥ 0
0 for t < 0

(b) Sketch the waveform of

x2(t) =
∞∑

n=−∞
x1(t − nτ)

(c) Using the result in part (a), find the Fourier transform of x2(t).

2.26. Find the Fourier transform of x(t) = u(t − 4.5T) − u(t − 9.5T).
(b) Obtain the amplitude and phase spectrums of x(t).

2.27. (a) Find the Fourier transform of

x(t) =
{

(1 + cos ω0t)/2 for |t | ≤ τ0/2

0 otherwise

where ω0 = 2π/τ0.
(b) Obtain the amplitude and phase spectrums of x(t).

2.28. (a) Find the Fourier transform of x(t) = u(t)e−at cos ω0t .
(b) Obtain the amplitude and phase spectrums of x(t).

THE FOURIER SERIES AND FOURIER TRANSFORM 77

2.29. (a) Find the Fourier transform of

x(t) =
{

e−at cosh ω0t for 0 ≤ t ≤ 1

0 otherwise

(b) Obtain the amplitude and phase spectrums of x(t).
(See Prob. 2.25 for the definition of u(t).)

2.30. (a) Find the Fourier transform of

x(t) =
{

sin ω0t for −τ0/4 ≤ t ≤ τ0/4
0 otherwise

where ω0 = 2π/τ0
(b) Obtain the amplitude and phase spectrums of x(t).

2.31. (a) Find the Fourier transform of

x(t) =
{

e−at sinh ω0t for −1 ≤ t ≤ 1
0 otherwise

(b) Obtain the amplitude and phase spectrums of x(t).

2.32. Find the Fourier transforms of

(a) x(t) =
{| cos ω0t | for −τ0/2 ≤ t ≤ τ0/2

0 otherwise
where ω0 = 2π/τ0

(b) x(t) =
{| sin ω0t | for 0 ≤ t ≤ τ0/2

0 otherwise
where ω0 = 2π/τ0

2.33. Find the Fourier transforms of

(a) x(t) =

1 for −τ2 ≤ t ≤ −τ1

1 for τ1 ≤ t ≤ τ2

0 otherwise
where τ1 and τ2 are positive constants and τ1 < τ2

(b) x(t) =

eω0t for −τ0/4 ≤ t < 0
e−ω0t for 0 ≤ t < τ0/4
0 otherwise

2.34. (a) Using integration by parts, show that∫
αteβt dt = α(βt − 1)eβt/β2

(b) Using the result in part (a) find the Fourier transform of

x(t) =
{

αt for −τ0/2 ≤ t ≤ τ/2
0 otherwise

(c) Find the Fourier transform of

x(t) =

−αt for −τ0/2 ≤ t < 0
αt for 0 ≤ t ≤ τ0/2
0 otherwise

78 DIGITAL SIGNAL PROCESSING

2.35. Find the Fourier transforms of

(a) x(t) =
{

t/τ0 + 1/2 for −τ0/2 ≤ t ≤ τ0/2
0 otherwise

(b) x(t) =

1 + t for τ0/2 ≤ t < 0
1 − t for 0 ≤ t ≤ τ0/2
0 otherwise

2.36. Find the Fourier transforms of

(a) x(t) =
{

j t for −τ0/2 ≤ |t | ≤ τ0/2
0 otherwise

(b) x(t) =
{

j |t | for −τ0/2 ≤ |t | ≤ τ0/2
0 otherwise

2.37. Obtain the Fourier transforms of the following:
(a) x(t) = e−αt cos2 ω0t

where α > 0
(b) x(t) = cos at2

CHAPTER

3
THE Z

TRANSFORM

3.1 INTRODUCTION

Chapter 2 has dealt with the Fourier series and transform. It has shown that through these mathematical
tools, spectral representations can be obtained for a given periodic or nonperiodic continuous-time
signal in terms of a frequency spectrum, which is composed of the amplitude and phase spectrums.
Analogous spectral representations are also possible for discrete-time signals. The counterpart of the
Fourier transform for discrete-time signals is the z transform [1]. The Fourier transform will convert
a real continuous-time signal into a function of complex variable jω. Similarly, the z transform will
convert a real discrete-time signal into a function of a complex variable z. The transform name is
based on nothing more profound than the consistent use of the letter z for the complex variable
involved over the years.

The z transform, like the Fourier transform, comes along with an inverse transform, namely,
the inverse z transform. As a consequence, a signal can be readily recovered from its z transform. The
availability of an inverse makes the z transform very useful for the representation of digital filters
and discrete-time systems in general. Though the most basic representation of discrete-time systems
is in terms of difference equations, as will be shown in Chap. 4, through the use of the z transform
difference equations can be reduced to algebraic equations which are much easier to handle.

In this chapter, the z transform is first defined as an independent mathematical entity and it is
immediately shown that it is actually a particular type of Laurent series. The inverse z transform is
then introduced as a means of recovering the discrete-time signal from its z transform. This turns out
to be an exercise in constructing Laurent series. The properties of the z transform are then described
through a number of fundamental theorems as was done for the Fourier transform in Chap. 2. The z
transform is then used for the representation of some typical discrete-time signals.

79

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

80 DIGITAL SIGNAL PROCESSING

The chapter concludes with the application of the z transform as a tool for the spectral rep-
resentation of discrete-time signals. The application of the z transform for the representation of
digital filters and discrete-time systems in general will be treated in Chap. 5 and certain fundamental
interrelations between the z transform and the Fourier transform will be investigated in Chap. 6.

3.2 DEFINITION OF Z TRANSFORM

Given an arbitrary discrete-time signal that satisfies the conditions

(i) x(nT) = 0 for n < −N1

(ii) |x(nT)| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT)| ≤ K2rn for n ≥ N2

where N1, N2 are positive integers and K1, K2, and r are positive constants, the infinite series

X (z) =
∞∑

n=−∞
x(nT)z−n (3.1)

can be constructed where z is a complex variable. In mathematical terms, this is a Laurent series (see
Sec. A.6) but in the digital signal processing (DSP) literature it is referred to as the z transform of
x(nT). As will be shown in Sec. 3.4, this turns out to be a unique representation of x(nT) for all the
values of z for which it converges.

Infinite series are not convenient to work with in practice but for most well- behaved discrete-
time signals that can be represented in terms of analytical expressions, the z transform can be
expressed as a rational function of z of the form

X (z) = N (z)

D(z)
=

∑M
i=0 ai zM−i

zN + ∑N
i=1 bi zN−i

(3.2a)

By factorizing the numerator and denominator polynomials, namely, N (z) and D(z), X (z) can be
put in the form

X (z) = N (z)

D(z)
= H0

∏M
i=1(z − zi)∏N
i=1(z − pi)

(3.2b)

where zi and pi are the zeros and poles of X (z). Thus the z transform of a discrete-time signal can
be represented by a zero-pole plot. For example, the z transform

X (z) = (z2 − 4)

z(z2 − 1)(z2 + 4)
= (z − 2)(z + 2)

z(z − 1)(z + 1)(z − j2)(z + j2)
(3.3)

can be represented by the zero-pole plot shown in Fig. 3.1.

THE Z TRANSFORM 81

j2

−2 −1 21

−j2

z plane

j Im z

Re z

Figure 3.1 Zero-pole plot of z transform X (z) in Eq. (3.3).

3.3 CONVERGENCE PROPERTIES

The infinite series in Eq. (3.1) is meaningful if it converges and, as in the case of the Fourier transform,
convergence theorems exist that specify the circumstances under which the series converges. Two
such theorems pertaining to absolute and uniform convergence are examined next. An infinite series
is said to converge absolutely if the sum of the magnitudes of its terms has a finite value. An infinite
series that involves an independent complex variable is said to converge uniformly in a given region
of convergence if it converges absolutely everywhere in that region.

Theorem 3.1 Absolute Convergence If

(i) x(nT) = 0 for n < −N1

(ii) |x(nT)| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT)| ≤ K2rn for n ≥ N2

where N1 and N2 are positive constants and r is the smallest positive constant that will satisfy
condition (iii), then the z transform as defined in Eq. (3.1) exists and converges absolutely
(see Theorem A.2) if and only if

r < |z| < R∞ with R∞ → ∞ (3.4)

Proof If we let z = ρe jθ , we can write

∞∑
n=−∞

|x(nT)z−n| =
∞∑

n=−∞
|x(nT)| · |z−n|

=
∞∑

n=−∞
|x(nT)| · |ρ−ne jnθ |

82 DIGITAL SIGNAL PROCESSING

Noting that the magnitude of ρ−ne jnθ is simply ρ−n (see Eq. (A.13b)) and then substituting
conditions (i) to (iii) of the theorem in the above equation, we get

∞∑
n=−∞

|x(nT)z−n| ≤
N2−1∑

n=−N1

K1ρ
−n +

∞∑
n=N2

K2

(
r

ρ

)n

≤ K1

N2−1∑
n=−N1

ρ−n + K2

∞∑
n=N2

(
r

ρ

)n

(3.5)

The first term at the right-hand side is the sum of a finite number of negative powers of ρ and
since ρ is implicitly assumed to be finite, the first term is finite. The second term is the sum
of a geometric series and if ρ > r , that is, r/ρ < 1, it is finite by virtue of the ratio test (see
Theorem A.3). Hence

∞∑
n=−∞

|x(nT)z−n| ≤ K0

where K0 is finite, i.e., X (z) converges absolutely. If ρ < r , then r/ρ > 1 and (r/ρ)n → ∞ as
n → ∞; consequently, the right-hand summation in Eq. (3.5) becomes infinite. If ρ = r , then
(r/ρ)n = 1 for all n. However, the right-hand summation in Eq. (3.5) entails an infinite number
of ones and again it is infinite. In effect, X (z) converges absolutely if ρ > r and diverges if ρ ≤ r .

There is one more situation that needs to be taken into account before the proof can be
considered complete, namely, the behavior of X (z) as z → ∞. If x(nT) �= 0 for one or more
negative values of n, then

lim
z→∞

∞∑
n=−∞

x(nT)z−n → ∞

That is, X (z) diverges if z = ∞ and, therefore, it converges if and only if

r < |z| < ∞ or r < |z| < R∞ with R∞ → ∞

In terms of the usual mathematical language, this is the necessary and sufficient condition for
absolute convergence. �

Summarizing the essence of the above theorem, if x(nT) is bounded by the shaded region in
Fig. 3.2a, then its z transform converges absolutely if and only if z is located in the shaded region of
the z plane depicted in Fig. 3.2b where R∞ → ∞. The area between the two circles is referred to as
an annulus and the radius of the inner circle, namely, r , as the radius of convergence of the function
since the inner circle separates the regions of convergence and divergence (see Sec. A.5).

Theorem 3.2 Uniform Convergence X(z) converges uniformly and is analytic in the region
defined by Eq. (3.4). �

This theorem follows readily from Theorem 3.1. Since X (z) converges absolutely at any point
in the region defined by Eq. (3.4), it has a limit and a derivative at any point in the region of

THE Z TRANSFORM 83

z plane

(a) (b)

r

Region of
convergence

nT

x(nT)

N2

K1

K1

K2rn

−K2rn

R∞

−N1

Figure 3.2 Convergence of z transform: (a) Bounds in time domain, (b) region of convergence in z domain.

convergence. Therefore, X (z) is analytic in the annulus of Eq. (3.4). In addition, X (z) converges
uniformly in that annulus, which is a way of saying that the convergence X (z) is independent of z
(see Sec. A.5).

3.4 THE Z TRANSFORM AS A LAURENT SERIES

If we compare the series in Eq. (3.1) with the Laurent series in Eq. (A.49), we note that the z transform
is a Laurent series with

X (z) = F(z) x(nT) = an a = 0

Therefore, the z transform inherits properties (a) to (d) in Theorem A.4.
From property (a), if X (z), for example, the function represented by the zero-pole plot in

Fig. 3.3a is analytic on two concentric circles C1 and C2 with center at the origin and in the area
between them as depicted in Fig. 3.3b, then it can be represented by a series of the type shown in
Eq. (3.1) where x(nT) is given by the contour integral

x(nT) = 1

2π j

∮
�

X (z)zn−1 dz (3.6)

The contour of integration � is a closed contour in the counterclockwise sense enclosing all the
singularities of X (z) inside the inner circle, i.e., C1.

From property (b), a Laurent series of X (z) converges and represents X (z) in the open annulus
obtained by continuously increasing the radius of C2 and decreasing the radius of C1 until each of
C2 and C1 reaches one or more singularities of X (z), as shown in Fig. 3.3c.

84 DIGITAL SIGNAL PROCESSING

z plane

Γ
C1

C2

(a)

z plane

Γ
C1

C2

(b)

(c) (d)

z plane

III

R∞

II
IR0

j2

−2 −1 21

−j2

z plane

Figure 3.3 Laurent series of X (z) with center at the origin of the z plane: (a) Zero-pole plot of X (z), (b),
(c), and (d) Properties (a), (b), and (c), respectively, of the Laurent series (see Theorem A.4).

From property (c), X (z) can have several, possibly many, annuli of convergence about
the origin; and from property (d), the Laurent series for a given annulus of convergence is
unique. For example, function X (z) given by Eq. (3.3) has three distinct annuli of convergence,
namely,

AI = {z : R0 < |z| < 1}
AII = {z : 1 < |z| < 2}
AIII = {z : 2 < |z| < R∞}

as illustrated in Fig. 3.3d where R0 → 0 and R∞ → ∞, and a unique Laurent series can be obtained
for each one of them.

THE Z TRANSFORM 85

3.5 INVERSE Z TRANSFORM

According to Theorem 3.1, the z transform of a discrete-time signal is a series that converges in the
annulus defined by Eq. (3.4), that is,

r < |z| < R∞ with R∞ → ∞

where r is specified in condition (iii) of the theorem. On the other hand, the Laurent theorem states
that function X (z) can have several Laurent series, possibly many, about the origin that converge in
different annuli but each one is unique to its annulus of convergence.

The only annulus of convergence that is consistent with the annulus in Eq. (3.4) is the outermost
annulus of X (z), which is defined as

R < |z| < R∞ with R∞ → ∞ (3.7)

where R is the radius of a circle passing through the most distant singularity of X (z) from the origin.
Therefore, we must have r = R, that is, if the pole locations of X (z) are known, the template that
bounds the discrete-time signal in Fig. 3.2a can be constructed and if the template in Fig. 3.2a is
known, then the radius of the most distant pole of X (z) from the origin can be deduced.

On the basis of the above discussion, a discrete-time signal x(nT) can be uniquely determined
from its z transform X (z) by simply obtaining the Laurent series that represents X (z) in its outer-
most annulus of convergence as illustrated in Fig. 3.4. This can be accomplished by evaluating the
coefficients of the Laurent series using the contour integral in Eq. (3.6), that is,

x(nT) = 1

2π j

∮
�

X (z)zn−1 dz

where � is a closed contour in the counterclockwise sense enclosing all the singularities of function
X (z)zn−1. Equation (3.6) is, in effect, the formal definition of the inverse z transform.

z plane

Γ
R∞R

Figure 3.4 Evaluation of inverse z transform.

86 DIGITAL SIGNAL PROCESSING

Like the Fourier transform and its inverse, the z transform and its inverse are often represented
in terms of operator format as

X (z) = Zx(nT) and x(nT) = Z−1 X (z)

respectively.
At first sight, the contour integration in Eq. (3.6) may appear to be a formidable task. However,

for most DSP applications, the z transform turns out to be a rational function like the one in Eq. (3.3)
and for such functions the contour integral in Eq. (3.6) can be easily evaluated by using the residue
theorem (see Sec. A.7). According to this theorem,

x(nT) = 1

2π j

∮
�

X (z)zn−1 dz =
P∑

i=1

Res
z→pi

[
X (z)zn−1

]
(3.8)

where Resz→pi

[
X (z)zn−1

]
is the residue of X (z)zn−1 at pole pi . P is the number of poles in

X (z)zn−1. The residue at a pole of order mi is given by

Res
z=pi

[
X (z)zn−1

] = 1

(mi − 1)!
lim

z→pi

dmi −1

dzmi −1

[
(z − pi)

mi X (z)zn−1
]

(3.9a)

which simplifies to

Resz=pi

[
X (z)zn−1

] = lim
z→pi

[
(z − pi)X (z)zn−1

]
(3.9b)

for a simple pole since no differentiation is needed and 0! = 1. Evidently, the residue at a first-order
pole pi can be readily obtained by simply deleting the factor (z − pi) from the denominator of
X (z)zn−1 and then evaluating the remaining part of the function at pole pi .

The above method of inversion is known as the general inversion method for obvious reasons
and its application will be examined in Sec. 3.8.

3.6 THEOREMS AND PROPERTIES

The general properties of the z transform can be described in terms of a small number of theorems,
as detailed below. To facilitate the exposition we assume that

Zx(nT) = X (z) Zx1(nT) = X1(z) Zx2(nT) = X2(z)

The symbols a, b, w, and K represent constants which may be complex.
Most of the z transform theorems are proved by applying simple algebraic manipulation to the

z transform definition in Eq. (3.1).

Theorem 3.3 Linearity

Z[ax1(nT) + bx2(nT)] = aX1(z) + bX2(z)

and

Z−1[aX1(z) + bX2(z)] = ax1(nT) + bx2(nT)

Proof See Prob. 3.5. �

THE Z TRANSFORM 87

Theorem 3.4 Time Shifting For any positive or negative integer m,

Zx(nT + mT) = zm X(z)

Proof From the definition of the z transform

Zx(nT + mT) =
∞∑

n=−∞
x(nT + mT)z−n

= zm
∞∑

n=−∞
x[(n + m)T]z−(n+m)

If we now make the variable substitution n + m = n′ and then replace n′ by n, we have

Zx(nT + mT) = zm
∞∑

n=−∞
x(nT)z−n = zm X (z) �

If m is negative, then x(nT + mT) = x(nT − |m|T) and thus the signal is delayed by |m|T s.
As a consequence, the z transform of a discrete-time signal which is delayed by an integer number
of sampling periods is obtained by simply multiplying its z transform by the appropriate negative
power of z. On the other hand, multiplying the z transform of a signal by a positive power of z causes
the signal to be advanced or shifted to the left with respect to the time axis.

Theorem 3.5 Complex Scale Change For an arbitrary real or complex constant w,

Z[w−nx(nT)] = X(wz)

Proof

Z[w−n x(nT)] =
∞∑

n=−∞
[w−n x(nT)]z−n

=
∞∑

n=−∞
x(nT)(wz)−n

= X (wz)

Evidently, multiplying a discrete-time signal by w−n is equivalent to replacing z by wz in its z
transform. If the signal is multiplied by vn , then we can write vn = (1/v)−n and thus

Z[vn x(nT)] = Z
[(

1

v

)−n

x(nT)

]
= X (z/v) �

Theorem 3.6 Complex Differentiation

Z[nT1x(nT)] = −T1z
d X(z)

dz

88 DIGITAL SIGNAL PROCESSING

Proof

Z[nT1x(nT)] =
∞∑

n=−∞
nT1x(nT)z−n = −T1z

∞∑
n=−∞

x(nT)(−n)z−n−1

= −T1z
∞∑

n=−∞
x(nT)

d

dz
(z−n)

= −T1z
d

dz

[∞∑
n=−∞

x(nT)z−n

]
= −T1z

d X (z)

dz

Changing the order of summation and differentiation is allowed in the last equation for values
of z for which X (z) converges. �

Complex differentiation provides a simple way of obtaining the z transform of a discrete-time
signal that can be expressed as a product nT1x(nT) by simply differentiating the z transform of X (z).

Theorem 3.7 Real Convolution

Z
∞∑

k=−∞
x1(kT)x2(nT − kT) = Z

∞∑
k=−∞

x1(nT − kT)x2(kT)

= X1(z)X2(z)

Proof This theorem can be proved by replacing x(nT) in the definition of the z transform by
either of the above sums, which are known as convolution summations, then changing the order
of summation, and after that applying a simple variable substitution, as follows:

Z
∞∑

k=−∞
x1(kT)x2(nT − kT) =

∞∑
n=−∞

[∞∑
k=−∞

x1(kT)x2(nT − kT)

]
z−n

=
∞∑

k=−∞

∞∑
n=−∞

x1(kT)x2(nT − kT)z−n

=
∞∑

k=−∞
x1(kT)z−k

∞∑
n=−∞

x2(nT − kT)z−(n−k)

=
∞∑

n=−∞
x1(nT)z−n

∞∑
n=−∞

x2(nT)z−n

= X1(z)X2(z)

Changing the order of the two summations in the above proof is valid for all values of z for
which X1(z), and X2(z) converge. �

THE Z TRANSFORM 89

Convolution summations arise naturally in the representation of digital filters and discrete-time
systems as will be shown in Chap. 4. Consequently, the real-convolution theorem can be used to
deduce z-domain representations for these systems, as will be shown in Chap. 5.

Theorem 3.8 Initial-Value Theorem The initial value of x(nT) for a z transform of the
form

X(z) =
N(z)
D(z)

=
∑M

i=0 ai zM−i∑N
i=0 bi zN−i

(3.10)

occurs at

K T = (N − M)T �

and the value of x(nT) at nT = K T is given by

x(K T) = lim
z→∞[zK X(z)] �

Corollary If the degree of the numerator polynomial, N(z), in the z transform of
Eq. (3.10) is equal to or less than the degree of the denominator polynomial D(z), then
we have

x(nT) = 0 for n < 0

i.e., the signal is right sided. �
Proof From the definition of the z transform

X (z) =
∞∑

n=−∞
x(nT)z−n

If the initial value of x(nT) occurs at nT = K T , then

X (z) =
∞∑

n=K

x(nT)z−n = x(K T)z−K + x(K T + T)z−(K+1) + x(K T + 2T)z−(K+2) + · · ·

On dividing both sides by the first term, we have

X (z)

x(K T)z−K
= 1 + x(K T + T)z−(K+1)

x(K T)z−K
+ x(K T + 2T)z−(K+2)

x(K T)z−K
+ · · ·

= 1 + x(K T + T)

x(K T)z
+ x(K T + 2T)

x(K T)z2
+ · · ·

If we take the limit as z → ∞, we have

lim
z→∞

X (z)

x(K T)z−K
= 1

90 DIGITAL SIGNAL PROCESSING

or

x(K T) = lim
z→∞[zK X (z)] (3.11)

and from Eqs. (3.11) and (3.10), we can now write

x(K T) = lim
z→∞ X (z)zK = lim

z→∞

[∑M
i=0 ai zM−i∑N
i=0 bi zN−i

· zK

]

= a0

b0
zM−N · zK

and since the left-hand side of the equation is independent of z, we get

M − N + K = 0

Therefore,

K = N − M �

i.e., the initial value of x(nT) occurs at nT = K T , where K is the difference between the
denominator and numerator degrees in X (z).

With K known, x(K T) can be obtained from Eq. (3.11) as

x(K T) = lim
z→∞[zK X (z)] �

As has been demonstrated in the absolute-convergence theorem (Theorem 3.1), the z transform
will not converge if x(nT) is nonzero at n = −∞. Consequently, a signal must start at some finite
point in time in practice. The starting point of a signal as well as its value at the starting point are
often of interest and Theorem 3.8 provides a means by which they can be determined.

If the denominator degree in X (z) is equal to or exceeds the numerator degree, then the first
nonzero value of x(nT) will occur at K T = (N−M)T and if the condition of the Corollary is satisfied,
i.e., N ≥ M , then K ≥ 0, that is, x(nT) = 0 for n < 0. On the basis of this Corollary, one can deter-
mine by inspection whether a z transform represents a right-sided or two-sided signal. It is also very
useful for checking whether a digital filter or discrete-time system is causal or noncausal (see Chap. 5).

Theorem 3.9 Final Value Theorem The value of x(nT) as n → ∞ is given by

x(∞) = lim
z→1

[(z − 1)X(z)]

Proof From the time-shifting theorem (Theorem 3.4)

Z[x(nT + T) − x(nT)] = zX (z) − X (z) = (z − 1)X (z) (3.12)

Alternatively, we can write

Z[x(nT + T) − x(nT)] = lim
n→∞

n∑
k=−n

[x(K T + T) − x(K T)]z−n

THE Z TRANSFORM 91

and if x(K T) is the first nonzero value of x(nT), we have

Z[x(nT + T) − x(nT)]

= lim
n→∞ [x(K T)z−(K−1) + x(K T + T)z−K − x(K T)z−K

+ · · · + x(nT)z−(n−1) − x(nT − T)z−(n−1) + x(nT + T)z−n − x(nT)z−n]

= lim
n→∞ [(z−(K−1) − z−K)x(K T) + (z−K − z−(K+1))x(K T + T)

+ · · · + (z−(n−1) − z−n)x(nT) + x(nT + T)z−n]

= lim
n→∞

[
(z − 1)

zK
x(K T) + (z − 1)

zK+1
x(K T + T) + · · · + (z − 1)

zn
x(nT) + 1

zn
x(nT + T)

]
(3.13)

Now from Eqs. (3.12) and (3.13), we can write

lim
z→1

(z − 1)X (z)

= lim
z→1

lim
n→∞

[
(z − 1)

zK
x(K T) + · · · + (z − 1)

zn
x(nT) + 1

zn
x(nT + T)

]

= lim
n→∞ lim

z→1

[
(z − 1)

zK
x(K T) + · · · + (z − 1)

zn
x(nT) + 1

zn
x(nT + T)

]
= lim

n→∞ x(nT + T)

Therefore,

x(∞) = lim
z→1

[(z − 1)X (z)] �

The final-value theorem can be used to determine the steady-state value of a signal in the case
where this is finite.

Theorem 3.10 Complex Convolution If the z transforms of two discrete-time signals x1(nT)
and x2(nT) are available, then the z transform of their product, X3(z), can be obtained as

X3(z) = Z[x1(nT)x2(nT)] =
1

2π j

∮
Γ1

X1(v)X2

(z
v

)
v−1 dv (3.14a)

=
1

2π j

∮
Γ2

X1

(z
v

)
X2(v)v−1 dv (3.14b)

where Γ1 (orΓ2) is a contour in the common region of convergence of X1(v) and X2(z/v) (or
X1(z/v) and X2(v)). The two contour integrals in the above equations are equivalent.

92 DIGITAL SIGNAL PROCESSING

Proof From the definition of the z transform and Eq. (3.6), we can write

X3(z) =
∞∑

n=−∞
[x1(nT)x2(nT)]z−n

=
∞∑

n=−∞
x1(nT)

[
1

2π j

∮
�2

X2(v)vn−1 dv

]
z−n

= 1

2π j

∮
�2

[∞∑
n=−∞

x1(nT)
(z

v

)−n
]

X2(v)v−1 dv

= 1

2π j

∮
�2

X1

(z

v

)
X2(v)v−1 dv

The order of integration and summation has been interchanged in the last but one line and this
is, of course, permissible if contour �2 satisfies the condition stated in the theorem. �

The obvious application of Theorem 3.10 is in obtaining the z transform of a product of
discrete-time signals whose z transforms are available. The theorem is also vital in the design of
nonrecursive digital filters, as will be shown in Chap. 9.

Like the contour integral for the inverse z transform, those in Eq. (3.14) appear quite challeng-
ing. However, the most difficult aspect in their evaluation relates to identifying the common region
of convergence alluded to in the theorem. Once this is done, what remains is to find the residues of
X1(z/v)X2(v)v−1 or X1(z/v)X2(v)v−1 at the poles that are encircled by contour �1 or �2, which
can be added to give the complex convolution. The complex convolution can be evaluated through
the following step-by-step technique:

1. Obtain the zero-pole plots of X1(z) and X2(z) and identify the region of convergence for each,
as in Fig. 3.5a and b.

2. Identify which of the two z transforms has the larger radius of convergence. If that of X1(z) is
larger, evaluate the contour integral in Eq. (3.14a); otherwise, evaluate the integral in Eq. (3.14b).
In Fig. 3.5, X1(z) has a larger radius of convergence than X2(z) and hence the appropriate integral
is the one in Eq. (3.14a).

3. Replace z by v in X1(z) and z by z/v in X2(z). Switch over from the z plane to the v plane at
this point and plot the regions of convergence in the v plane. This can be accomplished as in
Fig. 3.5c and d . The region of convergence in Fig. 3.5c is identical with that in Fig. 3.5a since the
only change involved is a change in the name of the variable. In Fig. 3.5d , however, a so-called
conformal mapping (or transformation) (see Sec. A.9) is involved. We note that if v → ∞,
then z/v → 0 and if v → 0, then z/v → ∞; therefore, the region outside (inside) the radius
of convergence in Fig. 3.5b maps onto the region inside (outside) the radius of convergence in
Fig. 3.5d , as shown.

4. Since the radius of convergence in Fig. 3.5b has been assumed to be smaller than that in Fig. 3.5a,
it follows that the radius of the shaded region in Fig. 3.5d is larger than that of the unshaded
region in Fig. 3.5c. The area that appears shaded in both Fig. 3.5c and d, illustrated in Fig. 3.5e,
is the common region of convergence of the product X1(z/v)X2(v)v−1.

THE Z TRANSFORM 93

z planeX2(z)z planeX1(z)

X1(v) v planev plane X2(z/v)

v plane
Common region of
convergence.

(a)

(c)

(b)

(d)

(e)

Figure 3.5 Complex convolution.

5. The integral is found by identifying the poles of X1(z/v)X2(v)v−1 that are located inside the
inner circle in Fig. 3.5e, finding the residues at these poles, and adding them up.

The technique is illustrated by Example 3.2 in Sec. 3.7.

In certain applications, contour �1 or �2 can be a circle in the common region of convergence
and hence we can write v = ρe jθ and z = re jφ . In these applications, the above complex convolution
integrals become real-convolution integrals. For example, Eq. (3.14b) gives

X3(re jφ) = 1

2π

∫ 2π

0
X1

[
r

ρ
e j(φ−θ)

]
X2(ρe jθ) dθ (3.15)

(see Prob. 3.6, part (a)).

94 DIGITAL SIGNAL PROCESSING

Theorem 3.11 Parseval’s Discrete-Time Formula If X(z) is the z transform of a discrete-
time signal x(nT), then

∞∑
n=−∞

|x(nT)|2 =
1
ωs

∫ ωs

0
|X(e jωT)|2 dω (3.16)

where ωs = 2π/T.

Proof Parseval’s discrete-time formula can be derived from the complex-convolution theorem.
Although the discrete-time signal x(nT) has been implicitly assumed to be real so far, the z
transform can be applied to a complex signal x(nT) just as well as long as X (z) converges.
Consider a pair of complex-conjugate signals x1(nT) and x2(nT) such that

x1(nT) = x(nT) (3.17a)

and

x2(nT) = x∗(nT) (3.17b)

We can write

X1(z) = X (z) (3.18a)

and

X2(z) =
∞∑

n=−∞
x∗(nT)z−n =

[∞∑
n=−∞

x(nT)(z−1)−n

]∗

= X∗(z−1) (3.18b)

From the complex-convolution theorem (Eq. (3.14a)) and the definition of the z transform, we get

Z[x1(nT)x2(nT)] = 1

2π j

∮
�1

X1(v)X2

(z

v

)
v−1 dv (3.19)

Equations (3.17)–(3.19) give

∞∑
n=−∞

[x(nT)x∗(nT)]z−n = 1

2π j

∮
�1

X (v)X∗
(v

z

)
v−1 dv (3.20)

and if we let z = 1, we obtain

∞∑
n=−∞

|x(nT)|2 = 1

2π j

∮
�1

|X (v)|2v−1 dv

Now if we let v = e jωT , contour �1 becomes the unit circle and the contour integral becomes a
regular integral whose lower and upper limits of integration become 0 and 2π/T , respectively.
Simplifying, the real integral obtained yields Parseval’s relation.

THE Z TRANSFORM 95

For a normalized signal, namely, for the case where T = 1, ωs = 2π/T = 2π and hence
Parseval’s summation formula assumes the more familiar form

∞∑
n=−∞

|x(n)|2 = 1

2π

∫ 2π

0
|X (e jω)|2 dω �

Note, however, that this formula will give the wrong answer if applied to a signal which
is not normalized. �

Parseval’s formula is often used to solve a problem known as scaling, which is associated with
the design of recursive digital filters in hardware form (see Chap. 14).

3.7 ELEMENTARY DISCRETE-TIME SIGNALS

The analysis of analog systems is facilitated by using several elementary signals such as the unit
impulse and the unit step. Corresponding discrete-time signals can be used for the analysis of
DSP systems. Some of the basic ones are defined in Table 3.1 and are illustrated in Fig. 3.6. The
discrete-time unit step, unit ramp, exponential, and sinusoid are generated by letting t = nT in the
corresponding continuous-time signals. The discrete-time unit impulse δ(nT), however, is generated
by letting t = nT in the unit pulse function of Fig. 2.6a, which can be represented by the equation

pτ (t) =
{

1 for |t | ≤ τ/2 < T

0 otherwise

Note that δ(nT) cannot be obtained from the continuous-time impulse δ(t) which is usually
defined as an infinitely tall and infinitesimally thin pulse (see Sec. 6.2.1). Nevertheless, the discrete-
and continuous-time impulse signals play more or less the same role in the analysis and representation
of discrete- and continuous-time systems, respectively.

Table 3.1 Elementary discrete-time signals

Function Definition

Unit impulse δ(nT) =
{

1 for n = 0

0 for n �= 0

Unit step u(nT) =
{

1 for n ≥ 0

0 for n < 0

Unit ramp r (nT) =
{

nT for n ≥ 0

0 for n < 0

Exponential u(nT)e αnT , (α > 0)

Exponential u(nT)e αnT , (α < 0)

Sinusoid u(nT) sin ωnT

96 DIGITAL SIGNAL PROCESSING

nT

1.0

0 nT

1.0

0

(a) (b)

nT

4T

8T

nT

1.0

0

(c) (d)

nT

1.0

0 nT

1.0

0

(e) (f)

Figure 3.6 Elementary discrete-time functions: (a) Unit impulse, (b) unit step, (c) unit ramp, (d) increasing
exponential, (e) decreasing exponential, (c) sinusoid.

The application of the z transform to the elementary functions as well as to some other discrete-
time signals is illustrated by the following examples.

Example 3.1 Find the z transforms of (a) δ(nT), (b) u(nT), (c) u(nT −kT)K , (d) u(nT)Kwn ,
(e) u(nT)e−αnT , (f) r (nT), and (g) u(nT) sin ωnT (see Table 3.1).

Solution

(a) From the definitions of the z transform and δ(nT), we have

Zδ(nT) = δ(0) + δ(T)z−1 + δ(2T)z−2 + · · · = 1

(b) As in part (a)

Zu(nT) = u(0) + u(T)z−1 + u(2T)z−2 + · · · = 1 + z−1 + z−2 + · · ·

THE Z TRANSFORM 97

The series at the right-hand side is a binomial series of (1 − z−1)−1, (see Eq. (A.47)).
Hence, we have

Zu(nT) = (1 − z−1)−1 = z

z − 1

(c) From the time-shifting theorem (Theorem 3.4) and part (b), we have

Z[u(nT − kT)K] = K z−kZu(nT) = K z−(k−1)

z − 1

(d) From the complex-scale-change theorem (Theorem 3.5) and part (b), we get

Z[u(nT)Kwn] = KZ
[(

1

w

)−n

u(nT)

]

= KZu(nT)|z→z/w = K z

z − w

(e) By letting K = 1 and w = e−αT in part (d), we obtain

Z[u(nT)e−αnT] = z

z − e−αT

(f) From the complex-differentiation theorem (Theorem 3.6) and part (b), we have

Zr (nT) = Z[nT u(nT)] = −T z
d

dz
[Zu(nT)]

= −T z
d

dz

[
z

(z − 1)

]
= T z

(z − 1)2

(g) From part (e), we deduce

Z[u(nT) sin ωnT] = Z
[

u(nT)

2 j

(
e jωnT − e− jωnT

)]

= 1

2 j
Z[u(nT)e jωnT] − 1

2 j
Z[

u(nT)e− jωnT
]

= 1

2 j

(
z

z − e jωT
− z

z − e− jωT

)

= z sin ωT

z2 − 2z cos ωT + 1

98 DIGITAL SIGNAL PROCESSING

Example 3.2 Find the z transform of

x3(nT) = u(nT)e−αnT sin ωnT

where α < 0.

Solution

Evidently, we require the z transform of a product of signals and, therefore, this is a clear
case for the complex convolution of Theorem 3.10. Let

x1(nT) = u(nT) sin ωnT and x2(nT) = u(nT)e−αnT

From Example 3.1, parts (g) and (e), we have

X1(z) = z sin ωT

(z − e jωT)(z − e− jωT)
and X2(z) = z

z − e−αT

We note that X1(z) has a complex-conjugate pair of poles at e± jωT whereas X2(z) has
a real pole at z = e−αT . Since |e± jωT | = 1, the radius of convergence of X1(z) is unity
and with α assumed to be negative, the radius of convergence of X2(z) is less than unity.
Thus, according to the evaluation technique described earlier, the correct formula to use
is that in Eq. (3.14a) and, by a lucky coincidence, the mappings in Fig. 3.5 apply.

Now

X1(v) = v sin ωT

(v − e jωT)(v − e− jωT)

and thus it has poles at v = e± jωT . On the other hand,

X2(z/v) = z

z − e−αT

∣∣∣∣
z→z/v

= z/v

z/v − e−αT
= −zeαT

v − zeαT

and, as a result, it has a pole at v = zeαT . Hence the common region of convergence of
X1(v) and X2(z/v) is the annulus given by

1 < |v| < zeαT

as depicted in Fig. 3.7. Therefore, the complex convolution assumes the form

X3(z) = 1

2π j

∮
�1

X1(v)X2

(z

v

)
v−1dv

= 1

2π j

∮
�1

−zeαT sin ωT

(v − zeαT)(v − e jωT)(v − e− jωT)
dv

THE Z TRANSFORM 99

v plane

ωT

|zeαT|
1

Γ1

Figure 3.7 Complex convolution (Example 3.2).

where �1 is a contour in the annulus of Fig. 3.7. By evaluating the residues of the
integrand at v = e+ jωT and e− jωT , we obtain

X3(z) = −zeαT sin ωT

(v − zeαT)(v − e− jωT)

∣∣∣∣
v=e jωT

+ −zeαT sin ωT

(v − zeαT)(v − e jωT)

∣∣∣∣
v=e− jωT

= ze−αT sin ωT

z2 − 2ze−αT cos ωT + e−2αT

The radius of convergence of X3(z) is equal to the magnitude of the poles, which is given
by the above equation as

√
e−2αT = e−αT . Alternatively, the annulus of convergence in

Fig. 3.7 exists, if |zeαT | > 1, that is, X3(z) converges if |z| > e−αT .

The above approach was used primarily to illustrate the complex-convolution theorem
which happens to be quite important in the design of nonrecursive filters (see Chap. 9).
A simpler approach for the solution of the problem at hand would be to use the complex-
scale-change theorem (Theorem 3.5), as will now be demonstrated. From Example 3.1,
part (g), we have

Z[u(nT) sin ωnT] = z sin ωT

z2 − 2z cos ωT + 1

100 DIGITAL SIGNAL PROCESSING

and from the complex-scale-change theorem, we can write

Z[w−n x(nT)] = X (wz)

Hence

Z[u(nT)w−n sin ωnT] = wz sin ωT

(wz)2 − 2(wz) cos ωT + 1

= zw−1 sin ωT

z2 − 2zw−1 cos ωT + w−2

Now with w = eαT , we deduce

Z[u(nT)e−αnT sin ωnT] = ze−αT sin ωT

z2 − 2ze−αT cos ωT + e−2αT

A list of the common z transforms is given in Table 3.2. A fairly extensive list can be found in
the work of Jury [1].

Table 3.2 Standard z transforms

x(nT) X (z)

δ(nT) 1

u(nT)
z

z − 1

u(nT − kT)K
K z−(k−1)

z − 1

u(nT)Kwn K z

z − w

u(nT − kT)Kwn−1 K (z/w)−(k−1)

z − w

u(nT)e−αnT z

z − e−αT

r (nT)
T z

(z − 1)2

r (nT)e−αnT T e−αT z

(z − e−αT)2

u(nT) sin ωnT
z sin ωT

z2 − 2z cos ωT + 1

u(nT) cos ωnT
z(z − cos ωT)

z2 − 2z cos ωT + 1

u(nT)e−αnT sin ωnT
ze−αT sin ωT

z2 − 2ze−αT cos ωT + e−2αT

u(nT)e−αnT cos ωnT
z(z − e−αT cos ωT)

z2 − 2ze−αT cos ωT + e−2αT

THE Z TRANSFORM 101

3.8 Z -TRANSFORM INVERSION TECHNIQUES

The most fundamental method for the inversion of a z transform is of course the general inversion
method described in Sec. 3.5 since this is part and parcel of the Laurent theorem (Theorem A.4).

If X (z)zn−1 has only first- or second-order poles, the residues are relatively easy to evaluate.
However, certain pitfalls can arise that could cause errors. To start with, if X (z) does not have a
zero at the origin, the presence of zn−1 in X (z)zn−1 will introduce a first-order pole at the origin for
n = 0, and this pole disappears for n > 0. This means that one would need to carry out two sets of
calculations, one set to obtain x(nT) for n = 0 and one set to obtain x(nT) for n > 0. This problem
is illustrated in the following example.

Example 3.3 Using the general inversion method, find the inverse z transforms of

(a) X (z) = (2z − 1)z

2(z − 1)
(
z + 1

2

)
(b) X (z) = 1

2(z − 1)
(
z + 1

2

)
Solution

(a) We can write

X (z)zn−1 = (2z − 1)z · zn−1

2(z − 1)
(
z + 1

2

) = (2z − 1)zn

2(z − 1)
(
z + 1

2

)
We note that X (z)zn−1 has simple poles at z = 1 and − 1

2 . Furthermore, the zero
in X (z) at the origin cancels the pole at the origin introduced by zn−1 for the case
n = 0. Hence for any n ≥ 0, Eq. (3.8) gives

x(nT) = Res
z=1

[
X (z)zn−1

] + Res
z=− 1

2

[
X (z)zn−1

]

= (2z − 1)zn

2
(
z + 1

2

)
∣∣∣∣∣
z=1

+ (2z − 1)zn

2(z − 1)

∣∣∣∣
z=− 1

2

= 1

3
+ 2

3

(
−1

2

)n

Since the numerator degree in X (z) does not exceed the denominator degree, x(nT) is a
one-sided signal, i.e., x(nT) = 0 for n < 0, according to the Corollary of Theorem 3.8.
Therefore, for any value of n, we have

x(nT) = u(nT)
[

1
3 + 2

3

(− 1
2

)n
]

102 DIGITAL SIGNAL PROCESSING

(b) In this z transform, X (z) does not have a zero at the origin and, as a consequence,
zn−1 introduces a pole in X (z)zn−1 at the origin for the case n = 0, which must be
taken into account in the evaluation of x(0). Thus for n = 0, we have

X (z)zn−1
∣∣
n=0 = zn−1

2(z − 1)
(
z + 1

2

)
∣∣∣∣∣
n=0

= 1

2z(z − 1)
(
z + 1

2

)
Hence

x(0) = 1

2(z − 1)
(
z + 1

2

)
∣∣∣∣∣
z=0

+ 1

2z
(
z + 1

2

)
∣∣∣∣∣
z=1

+ 1

2z(z − 1)

∣∣∣∣
z=− 1

2

= −1 + 1
3 + 2

3 = 0

Actually, this work is unnecessary. The initial-value theorem (Theorem 3.8), gives
x(0) = 0 without any calculations.

On the other hand, for n > 0

x(nT) = zn−1

2
(
z + 1

2

)
∣∣∣∣∣
z=1

+ zn−1

2(z − 1)

∣∣∣∣
z=− 1

2

= 1
3 − 1

3

(− 1
2

)n−1

and as in part (a), x(nT) = 0 for n < 0. Thus, for any value of n, we have

x(nT) = u(nT − T)
[

1
3 − 1

3

(− 1
2

)n−1
]

The general inversion method tends to become somewhat impractical for z transforms of two-
sided signals whereby x(nT) is nonzero for negative values of n. For such z transforms, X (z)zn−1 has
a higher-order pole at the origin whose order is increased as n is made more negative. And the residue
of such a pole is more difficult to evaluate since a higher-order derivative of a rational function in
z needs to be calculated. However, the problem can be easily circumvented by using some other
available inversion techniques, as will be shown next.

Owing to the uniqueness of the Laurent series in a given annulus of convergence, any technique
that can be used to generate a power series for X (z) that converges in the outermost annulus of
convergence given by Eq. (3.7) can be used to obtain the inverse z transform. Several such techniques
are available, for example, by

• using binomial series,

• using the convolution theorem,

• performing long division,

• using the initial-value theorem (Theorem 3.8), or

• expanding X (z) into partial fractions.

THE Z TRANSFORM 103

3.8.1 Use of Binomial Series

A factor (1 + b)r , where r is a positive or negative integer, can be expressed in terms of the binomial
series given by Eq. (A.47) and by letting r = −1 in Eq. (A.47), we obtain

(1 + b)−1 = 1 + (−b) + b2 + (−b)3 + · · · (3.21a)

and if we replace b by −b in Eq. (3.21a), we get

(1 − b)−1 = [1 + (−b)]−1 = 1 + b + b2 + b3 + · · · (3.21b)

By applying the ratio test of Theorem A.3, the series in Eqs. (3.21a) and (3.21b) are found to
converge for all values of b such that |b| < 1. Thus if b = w/z, the series converges for all values
of z such that |z| > |w| and if b = z/w, then it converges for all values of z such that |z| < |w|.

By expressing X (z) in terms of factors such as the above with either b = w/z or b = z/w as
appropriate and then replacing the factors by their binomial series representations, all the possible
Laurent series for X (z) centered at the origin can be obtained. If we have b = w/z in all the factors
then the above series as well as the series obtained for X (z) converge in the outermost annulus

|w| ≤ |z| ≤ R∞ for R∞ → ∞
which makes the series a z transform by definition. If we have b = z/w in all the factors, then their
series and the series obtained for X (z) converge in the innermost annulus, namely,

R0 ≤ |z| ≤ |w| for R0 → 0

On the other hand, if we have b = w/z in some factors and b = z/w in others, then the series
obtained for X (z) will converge in one of the in-between annuli of convergence.

Example 3.4 Using binomial series, find the inverse z transform of

X (z) = K zm

(z − w)k

where m and k are integers, and K and w are constants, possibly complex.

Solution

The inverse z transform can be obtained by finding the Laurent series that converges
in the outermost annulus and then identifying the coefficient of zn , which is x(nT) by
definition. Such a series can be obtained by expressing X (z) as

X (z) = K zm−k[1 + (−wz−1)]−k

= K zm−k

[
1 +

(−k

1

)
(−wz−1) +

(−k

2

)
(−wz−1)2

+ · · · +
(−k

n

)
(−wz−1)n + · · ·

]

104 DIGITAL SIGNAL PROCESSING

where (−k

n

)
= −k(−k − 1) . . . (−k − n + 1)

n!

according to Eq. (A.48). Now if we let n = n′ + m − k and then replace n′ by n, we have

X (z) =
∞∑

n=−∞

{
K u[(n + m − k)T]

× (−k)(−k − 1) · · · (−n − m + 1)(−w)n+m−k

(n + m − k)!

}
z−n

Hence the inverse z transform, which is the coefficient of z−n , is obtained as

x(nT) = Z−1

[
K zm

(z − w)k

]
= K u[(n + m − k)T]

× (−k)(−k − 1) · · · (−n − m + 1)(−w)n+m−k

(n + m − k)!

Incidentally, this is a fairly general inverse z transform since seven of the twelve inverse
z transforms in Table 3.2 can be derived from it by choosing suitable values for the
constants k, K , and m.

Example 3.5 (a) Using binomial series, find all the Laurent series of

X (z) = (z2 − 4)

z(z2 − 1)(z2 + 4)
(3.22)

with center at the origin of the z plane. (b) Identify which Laurent series of X (z) is a z transform.

Solution

The zero-pole plot of X (z) depicted in Fig. 3.3a has three distinct annuli of convergence,
namely, AI, AII, and AIII as illustrated in Fig. 3.3d . The radius of the inner circle of annulus
AI can be reduced to zero and that of the outer circle of annulus AIII can be increased to
infinity. Thus three Laurent series can be obtained for this function, one for each annulus.

Annulus AI: To obtain the Laurent series for the innermost annulus of convergence in
Fig. 3.3d, that is, AI, X (z) must be expressed in terms of binomial series that converge
for values of z in the annulus R0 < |z| < 1 where R0 → 0. Equation (3.22) can be

THE Z TRANSFORM 105

expressed as

X (z) = (z2 − 4)

z(z2 − 1)(z2 + 4)

= (z2 − 4)

−4z(1 − z2)(1 + z2/4)

= (z2 − 4)(1 − z2)−1(1 + z2/4)−1

−4z
(3.23)

From Eqs. (3.21b) and (3.21a), we have

(1 − z2)−1 = 1 + z2 + (z2)2 + · · · + (z2)n + · · · (3.24a)

and

(1 + z2/4)−1 = [1 − (−z2/4)]−1

= 1 + (−z2/4) + (−z2/4)2 + · · · + (−z2/4)k + · · · (3.24b)

respectively. Since both of the above series converge and (z2 − 2)/(−4z) is finite for
0 < |z| < 1, the substitution of Eqs. (3.24a) and (3.24b) into Eq. (3.23) will yield a
series representation for X (z) that converges in annulus AI. We can write

X (z) = (z2 − 4)(1 − z2)−1(1 + z2/4)−1

−4z

= (z2 − 4)

−4z
[1 + z2 + · · · + (z2)n + · · ·] · [1 + (−z2/4) + · · · + (−z2/4)k + · · ·]

= z2 − 4

−4z

∞∑
n=0

∞∑
k=0

(z2)n

(
− z2

4

)k

and after some routine algebraic manipulation, the series obtained can be expressed as

X (z) = z−1 +
∞∑

n=1

Cnz2n−1 (3.25)

where

Cn = 1 + 2
n∑

k=1

(− 1
4

)k

106 DIGITAL SIGNAL PROCESSING

The sum in the formula for Cn is a geometric series with a common ratio of −1/4 and
hence it can be readily evaluated as

n∑
k=1

(− 1
4

)k = − 1
5

[
1 − (− 1

4

)n
]

(see Eq. (A.46b)). Thus

Cn = 1
5

[
3 + 2

(− 1
4

)n
]

and on calculating the coefficients, the series in Eq. (3.25) assumes the form

X (z) = · · · + 19
32 z5 + 5

8 z3 + 1
2 z + z−1 (3.26)

Annulus AII (see Fig. 3.3d): A series that converges in annulus AII, that is, 1 < |z| < 2,
can be obtained in the same way. Equation (3.22) can be expressed as

X (z) = (z2 − 4)

z(z2 − 1)(z2 + 4)

= (z2 − 4)

4z3(1 − 1/z2)(1 + z2/4)

= (z2 − 4)(1 − 1/z2)−1(1 + z2/4)−1

4z3
(3.27)

where

(1 − 1/z2)−1 = 1 + (1/z2) + (1/z2)2 + · · · + (1/z2)n + · · · (3.28)

and (1 + z2/4)−1 can be expressed in terms of the binomials series in Eq. (3.24b). The
series in Eqs. (3.24b) and (3.28) converge in the region 1 < |z| < 2, as can be easily
shown by using the ratio test, and since (z2 − 4)/4z3 is finite for |z| > 0, and from
Eq. (3.27) a series representation for X (z) for annulus AII can be obtained as

X (z) = (z2 − 4)(1 − 1/z2)−1(1 + z2/4)−1

4z3

= (z2 − 4)

4z3
[1 + (1/z2) + · · · + (1/z2)n + · · ·]

·[1 + (−z2/4) + · · · + (−z2/4)k + · · ·]

= z2 − 4

4z3

∞∑
n=0

∞∑
k=0

(
1

z2

)n (
− z2

4

)k

THE Z TRANSFORM 107

After some manipulation and some patience, the series obtained can be simplified to

X (z) =
∞∑

n=1

(
Enz2n−3 − 3

5 z−(2n+1)
)

(3.29)

where

En = 2
5

(− 1
4

)n−1

If we calculate the numerical values of the coefficients in Eq. (3.29), we get

X (z) = · · · + 1
40 z3 − 1

10 z + 2
5 z−1 − 3

5 z−3 − 3
5 z−5 − · · · (3.30)

Annulus AIII (see Fig. 3.3d): A series that converges in annulus AIII, that is, 2 < |z| <

R∞, can be obtained by expressing X (z) in Eq. (3.22) as

X (z) = (z2 − 4)

z(z2 − 1)(z2 + 4)

= (z2 − 4)

z5(1 − 1/z2)(1 + 4/z2)

= (z2 − 4)(1 − 1/z2)−1(1 + 4/z2)−1

z5
(3.31)

where

(1 + 4/z2)−1 = [1 − (−4/z2)]−1

= 1 + (−4/z2) + (−4/z2)2 + · · · + (−4/z2)k + · · ·
(3.32)

and (1 − 1/z2)−1 can be represented by the binomial series in Eq. (3.28). The series in
Eqs. (3.28) and (3.32) converge in the region 2 < |z| < ∞ and since (z2 − 4)/z5 is
finite for |z| < ∞, a series representation for X (z) for annulus AIII can be obtained from
Eq. (3.31) as

X (z) = (z2 − 4)(1 − 1/z2)−1(1 + 4/z2)−1

z5

= (z2 − 4)

z5
[1 + (1/z2) + · · · + (1/z2)n + · · ·]

·[1 + (−4/z2) + · · · + (−4/z2)k + · · ·]

= z2 − 4

z5

∞∑
n=0

∞∑
k=0

(
1

z2

)n (
− 4

z2

)k

108 DIGITAL SIGNAL PROCESSING

After quite a bit of algebra, one can show that

X (z) =
∞∑

n=0

Gnz−2n−3 (3.33)

where

Gn = Fn − 4Fn−1

with

Fn =
n∑

k=0

(−4)k = 1
5

[
1 − (−4)n+1

]
Hence

Gn = 1
5

[−3 + 8(−4)n
]

and on evaluating the coefficients in Eq. (3.33), we get

X (z) = z−3 − 7z−6 + 25z−7 − 103z−9 + · · · (3.34)

(b) A comparison of Eqs. (3.26), (3.30), and (3.34) shows that the three Laurent series
obtained for X (z) are all linear combinations of positive and/or negative powers of z and
are, in fact, quite similar to each other. Yet only the last one is a z transform that satisfies
the absolute-convergence theorem (Theorem 3.1) since this is the only Laurent series
that converges in the outermost annulus.

3.8.2 Use of Convolution Theorem

From the real-convolution theorem (Theorem 3.7), we have

Z−1[X1(z)X2(z)] =
∞∑

k=−∞
x1(kT)x2(nT − kT)

Thus, if a z transform can be expressed as a product of two z transforms whose inverses are available,
then performing the convolution summation will yield the desired inverse.

Example 3.6 Using the real-convolution theorem, find the inverse z transforms of

(a) X3(z) = z

(z − 1)2

(b) X4(z) = z

(z − 1)3

THE Z TRANSFORM 109

Solution

(a) Let

X1(z) = z

z − 1
and X2(z) = 1

z − 1

From Table 3.2, we can write

x1(nT) = u(nT) and x2(nT) = u(nT − T)

and hence for n ≥ 0, the real convolution yields

x3(nT) =
∞∑

k=−∞
x1(kT)x2(nT − kT) =

∞∑
k=−∞

u(kT)u(nT − T − kT)

= · · · +
k=−1︷ ︸︸ ︷

u(−T)u(nT) +
k=0︷ ︸︸ ︷

u(0)u(nT − T)

+
k=1︷ ︸︸ ︷

u(T)u(nT − 2T) + · · · +
k=n−1︷ ︸︸ ︷

u(nT − T)u(0)

+
k=n︷ ︸︸ ︷

u(nT)u(−T) + · · · = 0 + 1 + 1 + · · · + 1 + 0 = n

For n < 0, we have

x3(nT) =
∞∑

k=−∞
u(kT)u(nT − T − kT)

= · · · +
k=−1︷ ︸︸ ︷

u(−T)u(nT) +
k=0︷ ︸︸ ︷

u(0)u(nT − T) +
k=1︷ ︸︸ ︷

u(T)u(nT − 2T)

+ · · · +
k=n−1︷ ︸︸ ︷

u(nT − T)u(0) +
k=n︷ ︸︸ ︷

u(nT)u(−T) + · · ·
and since all the terms are zero, we get

x3(nT) = 0

Alternatively, by virtue of the initial-value theorem, we have x3(nT) = 0 since the
numerator degree in X3(z) is less than the denominator degree.

Summarizing the results obtained, for any value of n, we have

x3(nT) = u(nT)n

(b) For this example, we can write

X1(z) = z

(z − 1)2
and X2(z) = 1

z − 1

110 DIGITAL SIGNAL PROCESSING

and from part (a), we have

x1(nT) = u(nT)n and x2(nT) = u(nT − T)

For n ≥ 0, the convolution summation gives

x3(nT) =
∞∑

k=−∞
ku(kT)u(nT − T − kT)

= +
k=0︷ ︸︸ ︷

0 · [u(nT − T)] +
k=1︷ ︸︸ ︷

1 · [u(nT − 2T)] + · · · +
k=n−1︷ ︸︸ ︷

(n − 1)u(0) +
k=n︷ ︸︸ ︷

nu(−T)

= +0 + 1 + 2 + · · · + n − 1 + 0

=
n−1∑
k=1

k

Now by writing the series 1, 2, . . . , n − 1 first in the forward and then in the reverse
order and, subsequently, adding the two series number by number as follows a series of
n − 1 numbers, each of value n, is obtained:

1 2 3 · · · n − 1
n − 1 n − 2 n − 3 · · · 1

n n n n n

Hence, twice the above sum is equal to1 (n − 1) × n and thus

x3(nT) =
n−1∑
k=1

k = 1
2 n(n − 1)

For n < 0, x3(nT) = 0, as in part (a) and, therefore,

x3(nT) =
n−1∑
k=1

k = 1
2 u(nT)n(n − 1)

3.8.3 Use of Long Division

Given a z transform X (z) = N (z)/D(z), a series that converges in the outermost annulus of X (z) can
be readily obtained by arranging the numerator and denominator polynomials in descending powers
of z and then performing polynomial division, also known as long division. The method turns out to

1Gauss is reputed to have astonished his mathematics teacher by obtaining the sum of the numbers 1 to 100 in just a
few seconds by using this technique.

THE Z TRANSFORM 111

be rather convenient for finding the values of x(nT) for negative values of n for the case where the z
transform represents a two-sided signal. However, the method does not yield a closed-form solution
for the inverse z transform but the problem can be easily eliminated by using long division along
with one of the methods that yield closed-form solutions for right-sided signals. The method is best
illustrated by an example.

Example 3.7 Using long division, find the inverse z transform of

X (z) = − 1
4 + 1

2 z − 1
2 z2 − 7

4 z3 + 2z4 + z5

− 1
4 + 1

4 z − z2 + z3

Solution

The numerator and denominator polynomials can be arranged in descending powers of
z as

X (z) = z5 + 2z4 − 7
4 z3 − 1

2 z2 + 1
2 z − 1

4

z3 − z2 + 1
4 z − 1

4

Long division can now be carried out as follows:

z2 + 3z + 1 + z−2 + z−3

z3 − z2 + 1
4 z − 1

4 z5 + 2z4 − 7
4 z3 − 1

2 z2 + 1
2 z − 1

4

∓z5 ± z4 ∓ 1
4 z3 ± 1

4 z2

3z4 − 8
4 z3 − 1

4 z2 + 1
2 z − 1

4

∓3z4 ± 3z3 ∓ 3
4 z2 ± 3

4 z

z3 − z2 + 5
4 z − 1

4

∓z3 ± z2 ∓ 1
4 z ± 1

4

z

∓z ± 1 ∓ 1
4 z−1 ± 1

4 z−2

1 − 1
4 z−1 + 1

4 z−2

∓1 ± z−1 ∓ 1
4 z−2 ± 1

4 z−3

3
4 z−1 + 1

4 z−3

...

112 DIGITAL SIGNAL PROCESSING

Hence

X (z) = z2 + 3z + 1 + z−2 + z−3 + · · ·

and, therefore,

x(−2T) = 1 x(−T) = 3 x(0) = 1 x(T) = 0 x(2T) = 1, . . .

In Example 3.7, one could obtain any number of signal values by continuing the long division
but open-ended solutions such as the one obtained are not very convenient in practice. A better
strategy would be to continue the long division until x(0) is obtained. At that point, X (z) can be
expressed in terms of the quotient plus the remainder as

X (z) = Q(z) + R(z)

where

R(z) = N ′(z)

D(z)

The inverse z transform can then be obtained as

x(nT) = Z−1[Q(z) + R(z)]

= Z−1 Q(z) + Z−1 R(z)

by virtue of the linearity of the inverse z transform. Since R(z) represents a right-sided signal, its
inverse Z−1 R(z) can be readily obtained by using any inversion method that yields a closed-form
solution, for example, the general inversion method.

For the z transform in Example 3.7, we can write

Q(z) = z2 + 3z + 1 and R(z) = z

z3 − z2 + 1
4 z − 1

4

Thus

x(nT) = Z−1 Q(z) + Z−1 R(z)

= Z−1(z2 + 3z + 1) + Z−1

[
z

z3 − z2 + 1
4 z − 1

4

]

As may be recalled, the general inversion method is very convenient for finding x(nT) for n > 0
but runs into certain complications for n ≤ 0. On the other hand, the long division method is quite
straightforward for n ≤ 0 but does not give a closed-form solution for n > 0. A prudent strategy
would, therefore, be to use the hybrid approach just described.

THE Z TRANSFORM 113

It is important to note that if long division is performed with the numerator and denominator
polynomials of X (z) arranged in ascending instead of descending powers of z, a Laurent series is
obtained that converges in the innermost annulus about the origin, i.e., for

R0 ≤ r ≤ R

where R0 → 0 and R is the radius of the circle passing through the pole nearest to the origin. Such
a series is not considered to be a z transform in this textbook, as explained in Sec. 3.5.

3.8.4 Use of Initial-Value Theorem

Theorem 3.8 can be used to find the initial value of x(nT), say, x(K0T). The term x(K0T)z−K0 can
then be subtracted from X (z) to obtain

X ′(z) = X (z) − x(K0T)z−K0

Theorem 3.8 can then be used again to find the initial value of x ′(nT), say, x ′(K1T). The term
x ′(K1T)z−K1 can then be subtracted from X ′(z) to obtain

X ′′(z) = X ′(z) − x ′(K1T)z−K1

and so on. This method, just like the long-division method, is useful for obtaining the values of x(nT)
for negative values of n but, like long division, it does not yield a closed-form solution.

Example 3.8 Find x(nT) for n ≤ 0 for

X (z) = 3z5 + 2z4 − 2z3 − 2z2 − z + 4

z2 − 1

Solution

Since the numerator degree in X (z) exceeds the denominator degree, x(nT) is nonzero for
some negative values of n. From Theorem 3.8, the first nonzero value of x(nT) occurs at

K T = (N − M)T = (2 − 5)T = −3T

i.e., K = −3, and the signal value is given by

x(−3T) = lim
z→∞

X (z)

z3
= 3z5 + 2z4 − 2z3 − 2z2 − z + 4

(z2 − 1)z3

= lim
z→∞

3z5

z5
= 3

114 DIGITAL SIGNAL PROCESSING

Now if we subtract 3z3 from X (z) and then apply Theorem 3.8 again, the second nonzero
value of x(nT) can be deduced. We can write

X (z) − 3z3 = 3z5 + 2z4 − 2z3 − 2z2 − z + 4

z2 − 1
− 3z3

= 3z5 + 2z4 − 2z3 − 2z2 − z + 4 − 3z5 + 3z3

z2 − 1

= 2z4 + z3 − 2z2 − z + 4

z2 − 1

Hence

K T = (N − M)T = (2 − 4)T = −2T

and

x(−2T) = lim
z→∞

[X (z) − 3z3]

z2
= lim

z→∞
2z4 + z3 − 2z2 − z + 4

(z2 − 1)z2

= lim
z→∞

2z4

z4
= 2

Proceeding as before, we can obtain

x(−T) = lim
z→∞

[X (z) − 3z3 − 2z2]

z

= lim
z→∞

(
2z4 + z3 − 2z2 − z + 4

z2 − 1
− 2z2

)
1

z

= lim
z→∞

2z4 + z3 − 2z2 − z + 4 − 2z4 + 2z2

(z2 − 1)z

= lim
z→∞

z3 − z + 4

(z2 − 1)z
= 1

and

x(0) = lim
z→∞

[
X (z) − 3z3 − 2z2 − z

]
= lim

z→∞

[
z3 − z + 4

(z2 − 1)
− z

]

= lim
z→∞

[
z3 − z + 4 − z3 + z

(z2 − 1)

]

= lim
z→∞

[
4

(z2 − 1)

]
= 0

THE Z TRANSFORM 115

3.8.5 Use of Partial Fractions

If the degree of the numerator polynomial in X (z) is equal to or less than the degree of the denominator
polynomial, the inverse of X (z) can very quickly be obtained through the use of partial fractions.
Two techniques are available, as detailed next.
Technique I: The function X (z)/z can be expanded into partial fractions as

X (z)

z
= R0

z
+

P∑
i=1

Ri

z − pi

where P is the number of poles in X (z) and

R0 = lim
z→0

X (z) Ri = Res
z=pi

[
X (z)

z

]

Hence

X (z) = R0 +
P∑

i=1

Ri z

z − pi
(3.35)

and

x(nT) = Z−1

(
R0 +

P∑
i=1

Ri z

z − pi

)
= Z−1 R0 +

P∑
i=1

Z−1 Ri z

z − pi

Now from Table 3.2, we get

x(nT) = R0δ(nT) +
P∑

i=1

u(nT)Ri pn
i

Technique II: An alternative approach is to expand X (z) into partial fractions as

X (z) = R0 +
P∑

i=1

Ri

z − pi
(3.36)

where

R0 = lim
z→∞ X (z) Ri = Res

z=pi

X (z)

and P is the number of poles in X (z) as before. Thus

x(nT) = Z−1

[
R0 +

P∑
i=1

Ri

z − pi

]

= Z−1 R0 +
P∑

i=1

Z−1 Ri

z − pi

116 DIGITAL SIGNAL PROCESSING

and, therefore, Table 3.2 gives

X (nT) = R0δ(nT) +
P∑

i=1

u(nT − T)Ri pn−1
i

Note that in a partial-fraction expansion, complex-conjugate poles give complex-conjugate
residues. Consequently, one need only evaluate one residue for each pair of complex-conjugate poles.
Note also that if the numerator degree in X (z) is equal to the denominator degree, then the constant
R0 must be present in Eqs. (3.35) and (3.36). If the numerator degree exceeds the denominators
degree, one could perform long division until a remainder is obtained in which the numerator degree
is equal to or less than the numerator degree as was done in Sec. 3.8.3. The inversion can then be
completed by expanding the remainder function into partial fractions.

It should be mentioned here that the partial-fraction method just described is very similar to
the general inversion method of Sec. 3.8 in that both methods are actually techniques for obtaining
Laurent series, the difference being that the general inversion method yields a Laurent series for
X (z)zn−1 whereas the partial-fraction method yields a Laurent series of X (z). However, there is a
subtle difference between the two: The general inversion method is complete in itself whereas in the
partial-fraction method it is assumed that the inverse z transforms of

R0
Ri

z − pi

z Ri

z − pi

are known.

Example 3.9 Using the partial-fraction method, find the inverse z transforms of

(a) X (z) = z

z2 + z + 1
2

(b) X (z) = z(
z − 1

2

) (
z − 1

4

)
Solution

(a) On expanding X (z)/z into partial fractions as in Eq. (3.35), we get

X (z)

z
= 1

z2 + z + 1
2

= 1

(z − p1)(z − p2)
= R1

z − p1
+ R2

z − p2
(3.37)

where

p1 = e j3π/4

√
2

and p2 = e− j3π/4

√
2

THE Z TRANSFORM 117

Thus we obtain

R1 = Res
z=p1

[
X (z)

z

]
= − j and R2 = Res

z=p2

[
X (z)

z

]
= j

i.e., complex-conjugate poles give complex-conjugate residues, and so Eq. (3.37) gives

X (z) = − j z

z − p1
+ j z

z − p2

From Table 3.2, we now obtain

x(nT) = u(nT)
(− j pn

1 + j pn
2

)
= (

1
2

)n/2
u(nT)

1

j

(
e j3πn/4 − e− j3πn/4

)
= 2

(
1
2

)n/2
u(nT) sin

3πn

4

Alternatively, we can expand X (z) into partial fractions using Eq. (3.36) as shown in
part (b).

(b) X (z) can be expressed as

X (z) = z(
z − 1

2

) (
z − 1

4

) = R0 + R1

z − 1
2

+ R2

z − 1
4

(3.38)

where

R0 = lim
z→∞ X (z) = lim

z→∞
z(

z − 1
2

) (
z − 1

4

)
= lim

z→∞
1

z
= 0

R1 = Res
z= 1

2

X (z) = z(
z − 1

4

)
∣∣∣∣∣
z= 1

2

= 2

R2 = Res
z= 1

4

X (z) = z(
z − 1

2

)
∣∣∣∣∣
z= 1

4

= −1

Hence Eq. (3.38) gives

X (z) = 2

z − 1
2

+ −1

z − 1
4

118 DIGITAL SIGNAL PROCESSING

and from Table 3.2

x(nT) = 4u(nT − T)
[(

1
2

)n − (
1
4

)n
]

And something to avoid. Given a z transform X (z), one could represent the residues by vari-
ables, then generate a number of equations, and after that solve them for the residues. For example,
given the z transform

X (z) = z2 − 2

(z − 1)(z − 2)
(3.39)

one could write

X (z) = R0 + R1

z − 1
+ R2

z − 2

= R1z − 2R1 + R2z − R2 + R0(z − 1)(z − 2)

(z − 1)(z − 2)

= R1z − 2R1 + R2z − R2 + R0(z2 − 3z + 2)

(z − 1)(z − 2)

= R1z − 2R1 + R2z − R2 + R0z2 − 3R0z + 2R0

(z − 1)(z − 2)

= R0z2 + (R1 + R2 − 3R0)z − 2R1 − R2 + 2R0

(z − 1)(z − 2)
(3.40)

One could then equate coefficients of equal powers of z in Eqs. (3.39) and (3.40) to obtain

z2 : R0 = 1

z1 : −3R0 + R1 + R2 = 0

z0 : 2R0 − 2R1 − R2 = −2 (3.41)

Solving this system of equations would give the correct solution as

R0 = 1 R1 = 1 R2 = 2

For a z transform with six poles, a set of six simultaneous equations with six unknowns would need
to be solved. Obviously, this is a very inefficient method, and it should definitely be avoided. The
quick solution for this example is easily obtained by evaluating the residues individually, as follows:

R0 = z2 − 2

(z − 1)(z − 2)

∣∣∣∣
z=∞

= 1 R1 = z2 − 2

(z − 2)

∣∣∣∣
z=1

= 1 R2 = z2 − 2

(z − 1)

∣∣∣∣
z=2

= 2

THE Z TRANSFORM 119

3.9 SPECTRAL REPRESENTATION
OF DISCRETE-TIME SIGNALS

This section examines the application of the z transform as a tool for the spectral representation of
discrete-time signals.

3.9.1 Frequency Spectrum

A spectral representation for a discrete-time signal x(nT) can be obtained by evaluating its z transform
X (z) at z = e jωT , that is, by letting

X (z)
∣∣
z=e jωT = X (e jωT)

Evidently, this substitution will give a function of the frequency variable ω, which turns out to be
complex. The magnitude and angle of X (e jωT), that is,

A(ω) = |X (e jωT)| and φ(ω) = arg X (e jωT)

define the amplitude spectrum and phase spectrum of the discrete-time signal x(nT), respectively,
and the two together define the frequency spectrum.

The exponential function e jωT is a complex number of magnitude 1 and angle ωT and as ω is
increased from zero to 2π/T , e jωT will trace a circle of radius 1 in the z plane, which is referred to as
the unit circle. Thus evaluating the frequency spectrum of a discrete-time signal at some frequency
ω amounts to evaluating X (z) at some point on the unit circle, say, point B, in Fig. 3.8.

Some geometrical features of the z plane are of significant practical interest. For example,
zero frequency, that is, ω = 0, corresponds to the point z = e jωT |ω=0 = e0 = 1, that is, point A in

ωT A

B

C

z planej Im z

Re z

1

1−1

Figure 3.8 Evaluation of frequency spectrum of a discrete-time signal.

120 DIGITAL SIGNAL PROCESSING

Fig. 3.8; half the sampling frequency, i.e., ωs/2 = π/T , which is known as the Nyquist frequency,
corresponds to the point z = e jωT |ω=π/T = e jπ = −1, that is, point C ; and the sampling frequency
corresponds to the point z = e jωT |ω=2π/T = e j2π = 1, that is, point A, which is also the location for
zero frequency.

The frequency spectrum of a discrete-time signal can be determined very quickly through the
use of MATLAB, the author’s DSP software package D-Filter, or other similar software.

3.9.2 Periodicity of Frequency Spectrum

If frequency ω is changed to ω + kωs where k is an integer, then

e j(ω+kωs)T = e j(ωT +2kπ) = e jωT · e j2kπ

= e jωT (cos 2kπ + j sin 2kπ)

= e jωT

Thus

X (z)
∣∣
z=e j(ω+kωs)T = X (z)

∣∣
z=e jωT

or

X (e j(ω+kωs)T) = X (e jωT)

i.e., the frequency spectrum of a discrete-time signal is a periodic function of frequency with period ωs .
This actually explains why the sampling frequency corresponds to the same point as zero frequency
in the z plane, namely, point A in Fig. 3.8. The frequency range between −ωs/2 and ωs/2 is often
referred to as the baseband.

To consolidate these ideas, let us obtain spectral representations for the discrete-time signals
that can be generated from the continuous-time signals of Examples 2.5 and 2.10 through the sampling
process.

Example 3.10 The pulse signal of Example 2.5 (see Fig. 2.6a) is sampled using a sampling
frequency of 100 rad/s to obtain a corresponding discrete-time signal x(nT). Find the frequency
spectrum of x(nT) assuming that τ = 0.5 s.

Solution

The sampling period is

T = 2π

ωs
= 2π

100
= 0.062832 s

Hence from Fig. 2.6a, we note that there are

int
(τ

T

)
= int

(
0.5

0.062832

)
= 7

THE Z TRANSFORM 121

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Time domain

Time, s

x(
nT

)

(a)

-50 0 50
0

1

2

3

4

5

6

7

8
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

-50 0 50
-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(b) (c)

Figure 3.9 Frequency spectrum of discrete-time pulse signal (Example 3.10):
(a) Discrete-time pulse, (b) amplitude spectrum, (c) phase spectrum.

samples in the range −τ/2 to τ/2, as illustrated in Fig. 3.9a. Thus the required discrete-
time signal can be expressed as

x(nT) =
{

1 for −3 ≤ n ≤ 3

0 otherwise

122 DIGITAL SIGNAL PROCESSING

From the definition of the z transform, we get

X (z) =
∞∑

n=−∞
x(nT)z−n =

3∑
n=−3

z−n

The frequency spectrum of the signal is obtained as

X (e jωT) = 1 + (e jωT + e− jωT) + (e j2ωT + e− j2ωT) + (e j3ωT + e− j3ωT)

= 1 + 2 cos ωT + 2 cos 2ωT + 2 cos 3ωT

Hence the amplitude and phase spectrums of x(nT) are given by

A(ω) = |1 + 2 cos ωT + 2 cos 2ωT + 2 cos 3ωT |

and

φ(ω) =
{

0 if X (e jωT) ≥ 0

−π otherwise

respectively. Their plots are depicted in Fig. 3.9b and c.

Example 3.11 The z transform of the discrete-time signal

x(nT) = u(nT)e−αnT sin ω0nT

(see Example 2.10) where α and ω0 are positive constants and

u(nT) =
{

1 for n ≥ 0

0 for n < 0

is the discrete-time unit-step function can be obtained as

X (z) = ze−αT sin ω0T

z2 − 2ze−αT cos ω0T + e−2αT

(see Table 3.2). Deduce the frequency spectrum.

Solution

The given z transform can be expressed as

X (z) = a1z

z2 + b1z + b0

THE Z TRANSFORM 123

where

a1 = e−αT sin ω0T

b0 = e−2αT

b1 = −2e−αT cos ω0T

The frequency spectrum of x(nT) can be obtained by evaluating X (z) at z = e jωT ,
that is,

X (e jωT) = a1e jωT

e j2ωT + b1e jωT + b0

= a1e jωT

cos 2ωT + j sin 2ωT + b1 cos ωT + jb1 sin ωT + b0

= a1e jωT

b0 + b1 cos ωT + cos 2ωT + j(b1 sin ωT + sin 2ωT)

= A(ω)e jφ(ω)

where

A(ω) = |a1| · |e jωT |
|(b0 + b1 cos ωT + cos 2ωT) + j(b1 sin ωT + sin 2ωT)|

= |a1|√
(b0 + b1 cos ωT + cos 2ωT)2 + (b1 sin ωT + sin 2ωT)2

= |a1|√
1 + b2

0 + b2
1 + 2b1(1 + b0) cos ωT + 2b0 cos 2ωT

(See Eq. (A.32b).) Since T > 0, we have

φ(ω) = arg(a1) + arg e jωT − arg[b0 + b1 cos ωT + cos 2ωT + j(b1 sin ωT + sin 2ωT)]

= arg a1 + ωT − tan−1 b1 sin ωT + sin 2ωT

b0 + b1 cos ωT + cos 2ωT

where

arg a1 =
{

0 if ≥ 0

−π otherwise

(See Eq. (A.32c).) The amplitude and phase spectrums of the discrete-time signal are
illustrated in Fig. 3.10 for the case where α = 0.4 and ω0 = 2.0 rad/s assuming a
sampling frequency ωs = 2π/T = 10 rad/s.

124 DIGITAL SIGNAL PROCESSING

-5 0 5
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

-5 0 5
-4

-3

-2

-1

0

1

2

3

4
Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a) (b)

Figure 3.10 Frequency spectrum of discrete-time decaying sinusoidal signal (Example 3.11,
α = 0.4, ω0 = 2.0 rad/s, and ωs = 10 rad/s): (a) Amplitude spectrum, (b) phase spectrum.

The amplitude and phase spectrums of the discrete-time decaying sinusoidal signal of
Example 3.11 over the frequency range −3ωs/2 to 3ωs/2 with ωs = 20 rad/s are depicted in
Fig. 3.11. As expected, the frequency spectrum is periodic with period ωs = 20 rad/s.

3.9.3 Interrelations

In the two examples presented in the preceding section, we have examined discrete-time signals that
were obtained by sampling the continuous-time signals in Examples 2.5 and 2.10. If we compare
the frequency spectrums of the discrete-time signals with those of the corresponding continuous-
time signals (i.e., Fig. 2.7a and b with Fig. 3.9b and c and Fig. 2.11b and c with Fig. 3.10a and b),
we note a strong resemblance between the two. Since the former are derived from the latter, it is
reasonable to expect that some mathematical relation must exist between the two sets of spectrums.
Such a relation does, indeed, exist but it depends critically on the frequency content of the continuous-
time signal relative to the sampling frequency. If the highest frequency present in the signal is less than
the Nyquist frequency (i.e., ωs/2), then the spectrum of the discrete-time signal over the baseband is
exactly equal to that of the continuous-time signal times 1/T , where T is the sampling period. Under
these circumstances, the continuous-time signal can be recovered completely from the corresponding
discrete-time signal by simply removing all frequency components outside the baseband and then
multiplying by T .

THE Z TRANSFORM 125

-30 -20 -10 0 10 20 30
-4

-3

-2

-1

0

1

2

3

4

Phase spectrum

Frequency, rad/s

Ph
as

e
an

gl
e,

 r
ad

(a)

(b)

-30 -20 -10 0 10 20 30
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Amplitude spectrum

Frequency, rad/s

M
ag

ni
tu

de

Figure 3.11 Frequency spectrum of discrete-time decaying sinusoidal signal (Example 3.11, α = 0.4,
ω0 = 2.0 rad/s, ωs = 20 rad/s): (a) Amplitude spectrum, (b) phase spectrum.

The above discussion can be encapsulated in a neat theorem, known as the sampling theorem,
which states that a continuous-time signal whose frequency spectrum comprises frequencies that are
less than half the sampling frequency (or, alternatively, a continuous-time signal which is sampled
at a rate that is higher than two times the highest frequency present in the signal) can be completely
recovered from its sampled version. The sampling theorem is obviously of crucial importance because
if it is satisfied, then we can sample our signals to obtain corresponding discrete-time signals without
incurring loss of information. The discrete-time signals can then be transmitted or archived using
digital hardware. Since no loss of information is involved, the original continuous-signal can be
recovered at any time. One can go one step further and process the discrete-time signal using a

126 DIGITAL SIGNAL PROCESSING

DSP system. Converting such a processed discrete-time into a continuous-time signal will yield a
processed continuous-time signal, and in this way the processing of continuous-time signals can be
achieved by means of DSP systems.

If the sampling theorem is only approximately satisfied, for example, if there are some low-
level components whose frequencies exceed the Nyquist frequency, then the relation between the
spectrum of the continuous-time signal and that of the discrete-time signal becomes approximate
and as more and more components have frequencies that exceed the Nyquist frequency, the relation
becomes more and more tenuous and eventually it breaks down.

It follows from the above discussion that the sampling theorem and the spectral relationships
that exist between continuous- and discrete-time signals are of considerable importance. They will,
therefore, be examined in much more detail later on in Chap. 6.

REFERENCE

[1] E. I. Jury, Theory and Application of the z-Transform Method, New York: Wiley, 1964.

PROBLEMS

3.1. Construct the zero-pole plots of the following functions, showing the order of the zero or pole where
applicable:

(a) X (z) = z2 + 1

(z2 − 3)2

(b) X (z) = (z2 + 4)2

(z + 1)4

(c) X (z) = z2 + 2z + 1

z2 + 3
4 z + 1

8

3.2. Construct the zero-pole plots of the following functions, showing the order of the zero or pole where
applicable:
(a) X (z) = z2 + z−1

(b) X (z) = z7 + 1

(z2 + 1)3

(c) X (z) = 1

z3 + 6z2 + 11z + 6
3.3. Construct the zero-pole plots of the following functions:

(a) X (z) = π z−5

π z + 1

(b) X (z) = z(z + 1)

z2 − 1.3z + 0.42

(c) X (z) = 216z2 + 162z + 29

(2z + 1)(12z2 + 7z + 1)
3.4. Construct the zero-pole plots of the following functions:

(a) X (z) = 4z−1 + 3z−2 + 2z−3 + z−4 + z−5

(b) X (z) = z6 + 2z2

(z4 + 3z2 + 1)

(c) X (z) = 3z + 2 − 2z−1 − 2z−2 − z−3 − 4z−4

1 − 5
4 z−2 + 1

4 z−4

THE Z TRANSFORM 127

3.5. (a) Prove that the z transform is a linear operation.
(b) Repeat part (a) for the inverse z transform.

3.6. (a) Obtain the real-convolution integral of Eq. (3.15) from the complex convolution given in Eq. (3.14b).
(b) Derive Parseval’s discrete-time formula in Eq. (3.16) starting with the complex-convolution formula

given in Eq. (3.14b).

3.7. For each of the following functions, obtain all Laurent series with center z = 0. Show the region of
convergence and identify which series is a z transform in each case:

(a) X (z) = 1

1 − z2

(b) X (z) = 1

z(z − 1)2

3.8. For each of the following functions, obtain all Laurent series with center z = 0. Show the region of
convergence and identify which series is a z transform in each case:

(a) X (z) = 4z − 1

z4 − 1

(b) X (z) = z2 + 2z + 1

(z − 1)
(
z + 1

2

)
3.9. For each of the following functions, obtain all Laurent series with center z = 0. Show the region of

convergence and identify which series is a z transform in each case:

(a) X (z) = 4z2 + 2z − 4

(z2 + 1)(z2 − 4)

(b) X (z) = 7z2 + 9z − 18

z3 − 9z
3.10. For each of the following functions, obtain all Laurent series with center z = 0. Show the region of

convergence and identify which series is a z transform in each case:

(a) X (z) = 4z2 + 1(
z2 − 1

4

)
(z2 − 1)

(b) X (z) = z5

(z2 − 1)(z2 − 2)(z2 + 3)
3.11. Find the z transforms of the following functions:

(a) u(nT)(2 + 3e−2nT)
(b) u(nT) − δ(nT)
(c) 1

2 u(nT)enr (nT − T)

3.12. Find the z transforms of the following functions:
(a) u(nT)[1 + (−1)n]e−nT

(b) u(nT) sinh αnT
(c) u(nT) sin (ωnT + ψ)
(d) u(nT) cosh αnT

3.13. Find the z transforms of the following functions:
(a) u(nT)nT wn

(b) u(nT)(nT)2

(c) u(nT)(nT)3

(d) u(nT)nT e−4nT

3.14. Find the z transforms of the following discrete-time signals:

(a) x(nT) =
{

1 for 0 ≤ n ≤ k
0 otherwise

128 DIGITAL SIGNAL PROCESSING

(b) x(nT) =
{

nT for 0 ≤ n ≤ 5
0 otherwise

3.15. Find the z transforms of the following discrete-time signals:

(a) x(nT) =

0 for n < 0
1 for 0 ≤ n ≤ 5
2 for 5 < n ≤ 10
3 for n > 10

(b) x(nT) =

0 for n < 0
nT for 0 ≤ n < 5
(n − 5)T for 5 ≤ n < 10
(n − 10)T for n < 10

3.16. Find the z transforms of the following discrete-time signals:

(a) x(nT) =

0 for n < 0
1 for 0 ≤ n ≤ 9
2 for 10 < n ≤ 19

−1 for n ≥ 20

(b) x(nT) =

0 for n ≤ −3
n for −2 ≤ n < 1
1 for 1 ≤ n ≤ 5
2 for n ≥ 6

3.17. Find the z transforms of the following discrete-time signals:

(a) x(nT) =
{

0 for n < 0
2 + nT for 2 + nT

(b) x(nT) =

0 for n < −2
2 for −2 ≤ n ≤ −1
2 − nT for n ≥ 0

3.18. Find the z transforms of the following discrete-time signals:
(a) x(nT) = u(nT)nT (1 + e−αnT)

(b) x(nT) =
{

0 for n ≤ 0
e−αnT

nT for n > 0

(
Note that ln

1

1 − y
=

∞∑
k=1

yk

k

)

3.19. By using the real-convolution theorem (Theorem 3.7), obtain the z transforms of the following:
(a) x(nT) = ∑n

k=0 r (nT − kT)u(kT)

(b) x(nT) = ∑n
k=0 u(nT − kT)u(kT)e−αkT

3.20. Prove that

Z
n∑

k=0

x(kT) = z

z − 1
Zx(nT)

3.21. Find f (0) and f (∞) for the following z transforms:

(a) X (z) = 2z − 1

z − 1

(b) X (z) = (e−αT − 1)z

z2 − (1 + e−αT)z + e−αT

(c) X (z) = T ze−4T

(z − e−4T)2

THE Z TRANSFORM 129

3.22. Find the z transforms of the following:

(a) y(nT) = ∑N
i=0 ai x(nT − iT)

(b) y(nT) = ∑N
i=0 ai x(nT − iT) − ∑N

i=1 bi y(nT − iT)

3.23. Form the z transform of

x(nT) = [u(nT) − u(nT − N T)]W kn

3.24. Find the z transforms of the following:
(a) x(nT) = u(nT) cos2 ωnT
(a) x(nT) = u(nT) sin4 ωnT

3.25. Find the z transforms of the following by using the complex-convolution theorem (Theorem 3.10):
(a) x(nT) = u(nT)e−αnT sin(ωnT + ψ)
(b) x(nT) = r (nT) sin(ωnT + ψ)
(c) x(nT) = r (nT)e−αnT cos(ωnT + ψ)

3.26. Find the inverse z transforms of the following:

(a) X (z) = 2

2z − 1
(b) X (z) = 5

z − e−T

(c) X (z) = 3z

3z + 2
(d) X (z) = 2z

z2 − 2z + 1
3.27. Find the inverse z transforms of the following:

(a) X (z) = z + 2

z2 − 1
4

(b) X (z) = z2(
z − 1

2

)5

(c) X (z) = z(z + 1)

(z − 1)(z2 + 1)
(d) X (z) = z3 + 2z

(z + 1)(z2 + 1)
3.28. Find the inverse z transforms of the following by using the long-division method for n ≤ 0 and the general

inversion method for n > 0 method:

(a) X (z) = 216z3 + 96z2 + 24z + 2

12z2 + 9z + 18

(b) X (z) = 3z4 − z3 − z2

z − 1

(c) X (z) = 3z5 + 2z4 − 2z3 − 2z2 − z + 4

z2 − 1
3.29. Find the inverse z transforms in Prob. 3.28 by using the initial-value theorem (Theorem 3.8) for n ≤ 0

and the partial-fraction method for n > 0 method.

3.30. Find the inverse z transforms of the following by using the general inversion method:

(a) X (z) = z2

z2 + 1
(b) X (z) = 2z2

2z2 − 2z + 1
3.31. Find the inverse z transforms of the following by using the general inversion method:

(a) X (z) = 1(
z − 4

5

)4

(b) X (z) = 6z

(2z2 + 2z + 1)(3z − 1)
3.32. Find the inverse z transforms of the following by using the partial-fraction method:

(a) X (z) = (z − 1)2

z2 − 0.1z − 0.56
(b) X (z) = 4z3

(2z + 1)(2z2 − 2z + 1)

130 DIGITAL SIGNAL PROCESSING

3.33. Find the inverse z transforms of the following by using the real-convolution theorem (Theorem 3.7):

(a) X (z) = z2

z2 − 2z + 1
(b) X (z) = z2

(z − e−T)(z − 1)
3.34. Find the inverse z transform of

X (z) = z(z + 1)

(z − 1)3

3.35. Find the inverse z transform of the following by means of long division:

X (z) = z(z2 + 4z + 1)

(z − 1)4

3.36. (a) Derive expressions for the amplitude and phase spectrums of the signal represented by the z transform

X (z) = z2 − z + 1
2

z2 − 1
2 z + 1

4

(b) Calculate that amplitude and phase spectrums at ω = 0, ωS/4, and ωS/2.

(c) Using MATLAB or a similar software package compute and plot the amplitude and phase spectrums.

3.37. Repeat parts (a) and (b) of Prob. 3.36, for the following z transform

X (z) = 0.086
(z2 − 1.58z + 1)

z2 − 1.77z + 0.81

3.38. Repeat parts (a) and (b) of Prob. 3.36, for the following z transform

X (z) = (12z3 + 6.4z2 + 0.68z)

(z + 0.1)(z2 + 0.8z + 0.15)

3.39. The z transform of a signal is given by

X (z) = z2 + a1z + a0

z2 + b1z + b0

(a) Show that the amplitude spectrum of the signal is given by

X (jω) =
√

1 + a2
0 + a2

1 + 2a1(1 + 2a0) cos ωT + 2a0 cos 2ωT√
1 + b2

0 + b2
1 + 2b1(1 + 2b0) cos ωT + 2b0 cos 2ωT

(b) Obtain an expression for the phase spectrum.

CHAPTER

4
DISCRETE-TIME

SYSTEMS

4.1 INTRODUCTION

Digital-signal processing is carried out by using discrete-time systems. Various types of discrete-time
systems have emerged since the invention of the digital computer such as digital control, robotic, and
image-processing systems. Discrete-time systems that are designed to perform filtering are almost
always referred to as digital filters, and a variety of digital filters have evolved over the years as
detailed in Chap. 1.

A discrete-time system is characterized by a rule of correspondence that describes the rela-
tionship of the output signal produced with respect to the signal applied at the input of the system.
Depending on the rule of correspondence, a discrete-time system can be linear or nonlinear, time
invariant or time dependent, and causal or noncausal.

Discrete-time systems are built from a small set of basic constituent discrete-time elements
that can perform certain elementary operations like addition and multiplication. By interconnecting a
number of these basic elements, discrete-time networks can be formed that can be used to implement
some fairly sophisticated discrete-time systems.

Two types of processes can be applied to discrete-time systems, analysis and design. Analysis
can be used to deduce a mathematical representation for a discrete-time system or to find the output
signal produced by a given input signal. Design, on the other hand, is the process of obtaining through
the use of mathematical principles a discrete-time system that would produce a desired output signal
when a specified signal is applied at the input.

This chapter deals with the analysis of discrete-time systems. First, the fundamental concepts
of linearity, time invariance, and causality as applied to discrete-time systems are discussed and
tests are provided that would enable one to ascertain the properties of a given system from its

131

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

132 DIGITAL SIGNAL PROCESSING

rule of correspondence. The representation of these systems in terms of networks and signal flow
graphs is then examined and analysis methods are presented that can be used to derive mathematical
representations for discrete-time systems in the form of difference equations. Next, an elementary
analysis method based on a mathematical induction technique is presented that can be used to find the
time-domain response of a discrete-time system to a given input signal. An alternative representation
of discrete-time systems known as the state-space representation follows, which provides alternative
methods of analysis and design. The chapter concludes with an introduction to the concept of stability
and outlines a basic test that can be used to establish whether a discrete-time system is stable or not.

The design of discrete-time systems that can perform DSP, e.g., digital filters, will form the
subject matter of several chapters, starting with Chap. 8.

4.2 BASIC SYSTEM PROPERTIES

A discrete-time system can be represented by the block diagram of Fig. 4.1. Input x(nT) and output
y(nT) are the excitation and response of the system, respectively. The response is related to the
excitation by some rule of correspondence. We can indicate this fact notationally as

y(nT) = Rx(nT)

where R is an operator.
Depending on its rule of correspondence, a discrete-time system can be classified as linear or

nonlinear, time invariant or time dependent, and causal or noncausal [1].

4.2.1 Linearity

A discrete-time system is linear if and only if it satisfies the conditions

Rαx(nT) = αRx(nT) (4.1a)

R[x1(nT) + x2(nT)] = Rx1(nT) + Rx2(nT) (4.1b)

x(nT)

nTnT

x(nT)

y(nT)

y(nT)Discrete-time system

Figure 4.1 Discrete-time system.

DISCRETE-TIME SYSTEMS 133

for all possible values of α and all possible excitations x1(nT) and x2(nT). The condition in Eq. (4.1a)
is referred to as the proportionality or homogeneity condition and that in Eq. (4.1b) as the superpo-
sition or additivity condition [1].

On applying first the superposition condition and then the proportionality condition, the re-
sponse of a linear discrete-time system to an excitation αx1(nT) + βx2(nT), where α and β are
arbitrary constants, can be expressed as

y(nT) = R[αx1(nT) + βx2(nT)] = Rαx1(nT) + Rβx2(nT)

= αRx1(nT) + βRx2(nT)

Thus, the two conditions in Eqs. (4.1a) and (4.1b) can be combined into one, namely,

R[αx1(nT) + βx2(nT)] = αRx1(nT) + βRx2(nT) (4.1c)

If this condition is violated for any pair of excitations or any constant α or β, then the system is
nonlinear.

The use of Eq. (4.1c) to check the linearity of a system tends to involve quite a bit of writing. A
simpler approach that works well in a case where the system appears to be nonlinear is to first check
whether the proportionality condition in Eq. (4.1a) is violated. If it is violated, then the work is done
and the system can be classified as nonlinear. Otherwise, the superposition condition in Eq. (4.1b)
must also be checked. Telltale signs of nonlinearity are terms like |x(nT)| or xk(nT) in the rule of
correspondence.

If the proportionality and superposition conditions hold for arbitrary excitations and arbitrary
constants α and β, then the system is linear.

Example 4.1 (a) The response of a discrete-time system is of the form

y(nT) = Rx(nT) = 7x2(nT − T)

Check the system for linearity. (b) Repeat part (a) if

y(nT) = Rx(nT) = (nT)2x(nT + 2T)

Solution

(a) A delayed version of the input signal appears squared in the characterization of the
system and the proportionality condition is most likely violated. For an arbitrary constant
α, we have

Rαx(nT) = 7α2x2(nT − T)

On the other hand,

αRx(nT) = 7αx2(nT − T)

134 DIGITAL SIGNAL PROCESSING

Clearly if α �= 1, then

Rαx(nT) �= αRx(nT)

that is, the proportionality condition is violated and, therefore, the system is non-
linear.
(b) For this case, the proportionality condition is not violated, as can be easily verified, and
so we should use Eq. (4.1c), which combines both the proportionality and superposition
rules. We can write

R[αx1(nT) + βx2(nT)] = (nT)2[αx1(nT + 2T) + βx2(nT + 2T)]

= α(nT)2x1(nT + 2T) + β(nT)2x2(nT + 2T)

= αRx1(nT) + βRx2(nT)

that is, the system is linear.
The squared term (nT)2 may trick a few but it does not affect the linearity of the

system since it is a time-dependent system parameter which is independent of the input
signal.

4.2.2 Time Invariance

A discrete-time system is said to be time invariant if its response to an arbitrary excitation does not
depend on the time of application of the excitation. The response of systems in general depends on
a number of internal system parameters. In time-invariant systems, these parameters do not change
with time.

Before we describe a test that can be used to check a discrete-time system for time invariance,
the notion of a relaxed system needs to be explained. Systems in general have internal storage or
memory elements that can store signal values. Such elements can serve as sources of internal signals
and, consequently, a nonzero response may be produced even if the excitation is zero. If all the
memory elements of a discrete-time system are empty or their contents are set to zero, the system is
said to be relaxed. The response of such a system is zero for all n if the excitation is zero for all n.

Formally, an initially relaxed discrete-time system with excitation x(nT) and response y(nT),
such that x(nT) = y(nT) = 0 for n < 0, is said to be time-invariant if and only if

Rx(nT − kT) = y(nT − kT) (4.2)

for all possible excitations x(nT) and all integers k. In other words, in a time-invariant discrete-time
system, the response produced if the excitation x(nT) is delayed by a period kT is numerically equal
to the original response y(nT) delayed by the same period kT . This must be the case, if the internal
parameters of the system do not change with time. The behavior of a time-invariant discrete-time
system is illustrated in Fig. 4.2. As can be seen, the response of the system to the delayed excitation
shown in Fig. 4.2b is equal to the response shown in Fig. 4.2a delayed by kT .

A discrete-time system that does not satisfy the condition in Eq. (4.2) is said to be time
dependent.

DISCRETE-TIME SYSTEMS 135

nT

y(nT − kT)

nT

x(nT − kT)

nT

x(nT)

nT

y(nT)

(a) (b)

kT

kT

Figure 4.2 Time invariance: (a) Response to an excitation x(nT), (b) response to a delayed excitation
x(nT − kT).

Example 4.2 (a) A discrete-time system is characterized by the equation

y(nT) = Rx(nT) = 2nT x(nT)

Check the system for time invariance. (b) Repeat part (a) if

y(nT) = Rx(nT) = 12x(nT − T) + 11x(nT − 2T)

Solution

(a) The response to a delayed excitation is

Rx(nT − kT) = 2nT x(nT − kT)

The delayed response is

y(nT − kT) = 2(nT − kT)x(nT − kT)

Clearly, for any k �= 0

Rx(nT − kT) �= y(nT − kT)

and, therefore, the system is time dependent.

136 DIGITAL SIGNAL PROCESSING

(b) In this case

Rx(nT − kT) = 12x[(n − k)T − T] + 11x[(n − k)T − 2T]

= y(nT − kT)

for all possible x(nT) and all integers k, and so the system is time invariant.

In practical terms, one would first replace nT by nT − kT in each and every occurrence of
x(nT) in the characterization of the system to obtain the response produced by a delayed excitation.
Then one would replace each and every occurrence of nT by nT −kT to obtain the delayed response.
If the same expression is obtained in both cases, the system is time invariant. Otherwise, it is time
dependent.

4.2.3 Causality

A discrete-time system is said to be causal if its response at a specific instant is independent of
subsequent values of the excitation. More precisely, an initially relaxed discrete-time system in
which x(nT) = y(nT) = 0 for n < 0 is said to be causal if and only if

Rx1(nT) = Rx2(nT) for n ≤ k (4.3a)

for all possible distinct excitations x1(nT) and x2(nT), such that

x1(nT) = x2(nT) for n ≤ k (4.3b)

Conversely, if

Rx1(nT) �= Rx2(nT) for n ≤ k

for at least one pair of distinct excitations x1(nT) and x2(nT) such that

x1(nT) = x2(nT) for n ≤ k

for at least one value of k, then the system is noncausal.
The above causality test can be easily justified. If all possible pairs of excitations x1(nT) and

x2(nT) that satisfy Eq. (4.3b) produce responses that are equal at instants nT ≤ kT , then the system
response must depend only on values of the excitation at instants prior to nT , where x1(nT) and
x2(nT) are specified to be equal, and the system is causal. This possibility is illustrated in Fig. 4.3.
On the other hand, if at least two distinct excitations x1(nT) and x2(nT) that satisfy Eq. (4.3b)
produce responses that are not equal at any instant nT ≤ kT , then the system response must depend
on values of the excitation at instants subsequent to nT , since the differences between x1(nT) and
x2(nT) occur after nT , and the system is noncausal.

DISCRETE-TIME SYSTEMS 137

nT

kT

nT

kT

nT

x1(nT)

kT

nT

Rx1(nT)

kT

x2(nT)

Rx2(nT)

(a) (b)

Figure 4.3 Causality: (a) Response to x1(nT), (b) response to x2(nT).

Example 4.3 (a) A discrete-time system is represented by

y(nT) = Rx(nT) = 3x(nT − 2T) + 3x(nT + 2T)

Check the system for causality. (b) Repeat part (a) if

y(nT) = Rx(nT) = 3x(nT − T) − 3x(nT − 2T)

Solution

(a) Let x1(nT) and x2(nT) be distinct excitations that satisfy Eq. (4.3b) and assume that

x1(nT) �= x2(nT) for n > k

For n = k

Rx1(nT)|n=k = 3x1(kT − 2T) + 3x1(kT + 2T)

Rx2(nT)|n=k = 3x2(kT − 2T) + 3x2(kT + 2T)

and since we have assumed that x1(nT) �= x2(nT) for n > k, it follows that x1(kT +
2T) �= x2(kT + 2T) and thus

3x1(kT + 2T) �= 3x2(kT + 2T)

138 DIGITAL SIGNAL PROCESSING

Therefore,

Rx1(nT) �= Rx2(nT) for n = k

that is, the system is noncausal.
(b) For this case

Rx1(nT) = 3x1(nT − T) − 3x1(nT − 2T)

Rx2(nT) = 3x2(nT − T) − 3x2(nT − 2T)

If n ≤ k, then n − 1, n − 2 < k and so

x1(nT − T) = x2(nT − T) and x1(nT − 2T) = x2(nT − 2T)

for n ≤ k or

Rx1(nT) = Rx2(nT) for n ≤ k

that is, the system is causal.

Noncausality is often recognized by the appearance of one or more terms such as x(nT +|k|T)
in the characterization of the system. In such a case, all one would need to do is to find just one
pair of distinct signals that satisfy Eq. (4.3b) but violate Eq. (4.3a) for just one value of n, as was
done in Example 4.3(a). However, to demonstrate causality one would need to show that Eq. (4.3a)
is satisfied for all possible distinct signals that satisfy Eq. (4.3b) for all possible values of n ≤ k.
Demonstrating that Eq. (4.3a) is satisfied for just one value of n, say, k, is not sufficient.

Note that the presence of one or more terms like x(nT +|k|T) in the system equation is neither
a necessary nor a sufficient condition for causality. This point is illustrated by the following example.

Example 4.4 A discrete-time system is characterized by the following equation

y(nT + 2T) = enT + 5x(nT + 2T)

Check the system for (a) linearity, (b) time invariance, and (c) causality.

Solution

By letting n = n′ − 2 and then replacing n′ by n, the system equation can be expressed
as

y(nT) = Rx(nT) = e(n−2)T + 5x(nT)

DISCRETE-TIME SYSTEMS 139

(a) We note that

R[αx(nT)] = e(n−2)T + 5αx(nT)

On the other hand,

αRx(nT) = α[e(n−2)T + 5x(nT)] = αe(n−2)T + 5αx(nT + 2T)

For α �= 1, we have e(n−2)T �= αe(n−2)T and hence

R[αx(nT)] �= αRx(nT)

Therefore, the proportionality condition is violated and the system is nonlinear.
(b) The response to a delayed excitation is

Rx(nT − kT) = e(n−2)T + 5x(nT − kT)

The delayed response is

y(nT − kT) = enT −2T −kT + 5x(nT − kT)

For any k �= 0, we have e(n−2)T �= enT −2T −kT and hence

y(nT − kT) �= Rx(nT − kT)

Therefore, the system is time dependent.
(c) Let x1(nT) and x2(nT) be two arbitrary distinct excitations that satisfy Eq. (4.3b).
The responses produced by the two signals are given by

Rx1(nT) = e(n−2)T + 5x1(nT)

Rx2(nT) = e(n−2)T + 5x2(nT)

and since

x1(nT) = x2(nT) for n ≤ k

we have

Rx1(nT) = Rx2(nT) for n ≤ k

that is, the condition for causality is satisfied and, therefore, the system is causal.

Discrete-time systems come in all shapes and forms. Systems that operate as digital filters
are almost always linear although there are some highly specialized types of digital filters that are

140 DIGITAL SIGNAL PROCESSING

basically nonlinear. Most of the time, nonlinearity manifests itself as an imperfection that needs to
be eliminated or circumvented.

In continuous-time systems, nine times out of ten, time dependence is an undesirable imperfec-
tion brought about by drifting component values that needs to be obviated. However, in discrete-time
systems it turns out to be a most valuable property. Through the use of time dependence, adaptive
systems such as adaptive filters can be built whose behavior can be changed or optimized online.

Causality is a prerequisite property for real-time systems because the present output cannot
depend on future values of the input, which are not available. However, in nonreal-time applications
no such problem is encountered as the numerical values of the signal to be processed are typically
stored in a computer memory or mass storage device and are, therefore, readily accessible at any
time during the processing. Knowledge of causality is important from another point of view. Certain
design methods for digital filters, for example, those in Chaps. 9 and 15, yield noncausal designs and
for a real-time application, the designer must know how to convert the noncausal filter obtained to a
causal one.

4.3 CHARACTERIZATION OF DISCRETE-TIME SYSTEMS

Continuous-time systems are characterized in terms of differential equations. Discrete-time systems,
on the other hand, are characterized in terms of difference equations. Two types of discrete-time
systems can be identified: nonrecursive and recursive.

4.3.1 Nonrecursive Systems

In a nonrecursive discrete-time system, the output at any instant depends on a set of values of
the input. In the most general case, the response of such a system at instant nT is a function of
x(nT − MT), . . . , x(nT), . . . , x(nT + K T), that is,

y(nT) = f {x(nT − MT), . . . , x(nT), . . . , x(nT + K T)}

where M and K are positive integers. If we assume linearity and time invariance, y(nT) can be
expressed as

y(nT) =
M∑

i=−K

ai x(nT − iT) (4.4)

where ai for i = −K , (−K + 1), . . . , M are constants. If instant nT were taken to be the present,
then the present response would depend on the past M values, the present value, and the future K
values of the excitation. Equation (4.4) is a linear difference equation with constant coefficients of
order M + K , and the system represented by this equation is said to be of the same order.

If K > 0 in Eq. (4.4), then y(nT) would depend on x(nT +T), x(nT +2T), . . . , x(nT + K T)
and, obviously, the deference equation would represent a noncausal system but if K = 0, the
representation of an M th-order causal system would be obtained.

4.3.2 Recursive Systems

A recursive discrete-time system is a system whose output at any instant depends on a set of values
of the input as well as a set of values of the output. The response of a fairly general recursive, linear,

DISCRETE-TIME SYSTEMS 141

time-invariant, discrete-time system is given by

y(nT) =
M∑

i=−K

ai x(nT − iT) −
N∑

i=1

bi y(nT − iT) (4.5)

that is, if instant nT were taken to be the present, then the present response would be a function of
the past M values, the present value, and the future K values of the excitation as well as the past N
values of the response. The dependence of the response on a number of past values of the response
implies that a recursive discrete-time system must involve feedback from the output to the input. The
order of a recursive discrete-time system is the same as the order of its difference equation, as in a
nonrecursive system, and it is the larger of M + K and N + K . The difference equation in Eq. (4.5)
for the case where K = M = N = 2 is illustrated in Fig. 4.4.

nT

nT

x(nT)

y(nT)

a2

a1

a0

a−1

a−2

b2

b1

−1

Figure 4.4 Graphical representation of recursive difference equation.

142 DIGITAL SIGNAL PROCESSING

Note that Eq. (4.5) simplifies to Eq. (4.4) if bi = 0 for 1, 2, . . . , N , and essentially the
nonrecursive discrete-time system is a special case of the recursive one.

4.4 DISCRETE-TIME SYSTEM NETWORKS

The basic elements of discrete-time systems are the adder, the multiplier, and the unit delay. The
characterizations and symbols for these elements are given in Table 4.1. Ideally, the adder produces
the sum of its inputs and the multiplier multiplies its input by a constant instantaneously. The unit
delay, on the other hand, is a memory element that can store just one number. At instant nT , in
response to a synchronizing clock pulse, it delivers its content to the output and then updates its
content with the present input. The device freezes in this state until the next clock pulse. In effect,
on the clock pulse, the unit delay delivers its previous input to the output.

The basic discrete-time elements can be implemented in analog or digital form and many
digital configurations are possible depending on the design methodology, the number system, and the
type of arithmetic used. Although analog discrete-time elements may be used in certain specialized
applications, for example, for the implementation of neural networks, discrete-time systems that
are used for DSP are almost always digital and, therefore, the adder, multiplier, and unit delay are
digital circuits. A practical approach would be to implement adders and multipliers through the use
of parallel combinational circuits and unit delays through the use of delay flip-flops.1 Under ideal

x(nT) y(nT)Unit delay y(nT) = x(nT−T)

y(nT)

xK(nT)

x2(nT)

x1(nT)

Adder y(nT) = Σ xi(nT)
i=1

K

Multiplier y(nT) = mx(nT)

m

x(nT) y(nT)

Symbol Equation

Table 4.1 Elements of discrete-time systems

Element

1Also known as D flip-flops.

DISCRETE-TIME SYSTEMS 143

conditions, the various devices produce their outputs instantaneously, as mentioned above, but in
practice the three types of devices introduce a small delay known as the propagation delay due to
the fact that electrical signals take a certain amount of time to propagate from the input to the output
of the device.

Collections of unit delays, adders, and multipliers can be interconnected to form discrete-time
networks.

4.4.1 Network Analysis

The analysis of a discrete-time network, which is the process of deriving the difference equation
characterizing the network, can be carried out by using the element equations given in Table 4.1.
Network analysis can often be simplified by using the shift operator Er which is defined by

Erx(nT) = x(nT + rT)

The shift operator is one of the basic operators of numerical analysis which will advance or delay a
signal depending on whether r is positive or negative. Its main properties are as follows:

1. Since

Er [a1x1(nT) + a2x2(nT)] = a1x1(nT + rT) + a2x2(nT + rT)

= a1Er x1(nT) + a2Er x2(nT)

we conclude that Er is a linear operator which distributes with respect to a sum of functions of
nT .

2. Since

ErE px(nT) = Er x(nT + pT) = x(nT + rT + pT)

= Er+px(nT)

the shift operator obeys the usual law of exponents.

3. If x2(nT) = Er x1(nT) then E−r x2(nT) = x1(nT) for all x1(nT), and if x1(nT) = E−r x2(nT)
then x2(nT) = Er x1(nT) for all x2(nT). Therefore, E−r is the inverse of Er and vice versa, that
is,

E−rEr = ErE−r = 1

4. A linear combination of powers of E defines a meaningful operator, e.g., if

f (E) = 1 + a1E + a2E2

then

f (E)x(nT) = (1 + a1E + a2E2)x(nT)

= x(nT) + a1x(nT + T) + a2x(nT + 2T)

144 DIGITAL SIGNAL PROCESSING

Further, given an operator f (E) of the above type, an inverse operator f (E)−1 may be defined
such that

f (E)−1x(E) = x(E) f (E)−1 = 1

5. If f1(E), f2(E), and f3(E) are operators that comprise linear combinations of powers of E , then
they satisfy the distributive, commutative, and associative laws of algebra, that is,

f1(E)[f2(E) + f3(E)] = f1(E) f2(E) + f1(E) f3(E)

f1(E) f2(E) = f2(E) f1(E)

f1(E)[f2(E) f3(E)] = [f1(E) f2(E)] f3(E)

The above operators can be used to construct more complicated operators of the form

F(E) = f1(E) f2(E)−1 = f2(E)−1 f1(E)

which may also be expressed as

F(E) = f1(E)

f2(E)

without danger of ambiguity.

Owing to the above properties, the shift operator can be treated like an ordinary algebraic
quantity [2], and operators that are linear combinations of powers of E can be treated as polynomials
which can even be factorized. For example, the difference equation of a recursive system given in
Eq. (4.5) can be expressed as

y(nT) =
(

M∑
i=−K

aiE−i

)
x(nT) −

(
N∑

i=1

biE−i

)
y(nT)

and, therefore, the recursive system can represented in terms of operator notation as

y(nT) = Rx(nT) (4.6)

where R is an operator given by

R =
(∑M

i=−K aiE−i

1 + ∑N
i=1 biE−i

)

The application of the above principles in the analysis of discrete-time networks is illustrated
in Example 4.5(b) below.

DISCRETE-TIME SYSTEMS 145

(b)

Rp

x(nT) y(nT)

Ry
y(nT−T)

py(nT−T)

Multiplier

Adder

B A

(a)

x(nT) y(nT)

p

(c)

x(nT) y(nT)

m1

v1(nT) v2(nT)

v3(nT)

m3

m4

m5

m2

Figure 4.5 Discrete-time networks (Example 4.5): (a) First-order system, (b) implementation of first-order
system, (c) second-order system.

Example 4.5 (a) Analyze the network of Fig. 4.5a. (b) Repeat part (a) for the network of
Fig. 4.5c.

Solution

(a) From Fig. 4.5a, the signals at nodes A and B are y(nT − T) and py(nT − T),
respectively. Thus,

y(nT) = x(nT) + py(nT − T) (4.7)

146 DIGITAL SIGNAL PROCESSING

(b) From Fig. 4.5c, we obtain

v1(nT) = m1x(nT) + m3v2(nT) + m5v3(nT)

v2(nT) = E−1v1(nT) v3(nT) = E−1 y(nT)

y(nT) = m2v2(nT) + m4v3(nT)

and on eliminating v2(nT) and v3(nT) in v1(nT) and y(nT), we have

(1 − m3E−1)v1(nT) = m1x(nT) + m5E−1 y(nT) (4.8)

and

(1 − m4E−1)y(nT) = m2E−1v1(nT) (4.9)

On multiplying both sides of Eq. (4.9) by (1 − m3E−1), we get

(1 − m3E−1)(1 − m4E−1)y(nT) = (1 − m3E−1)m2E−1v1(nT)

= m2E−1(1 − m3E−1)v1(nT)

and on eliminating (1 − m3E−1)v1(nT) using Eq. (4.8), we have

[1 − (m3 + m4)E−1 + m3m4E−2]y(nT) = m1m2E−1x(nT) + m2m5E−2 y(nT)

Therefore,

y(nT) = a1x(nT − T) + b1 y(nT − T) + b2 y(nT − 2T)

where

a1 = m1m2 b1 = m3 + m4 and b2 = m2m5 − m3m4

4.4.2 Implementation of Discrete-Time Systems

The mode of operation of discrete-time systems depends on the implementation of their constituent
elements. A relatively simple paradigm to explain is the case whereby adders and multipliers are
built as parallel combinational digital circuits, and the unit delays are constructed using delay flip-
flops. If the discrete-time system in Fig. 4.5a were implemented according to this paradigm and the
signals and coefficients were assumed to be represented, say, by 4-bit signed binary digits, then an
implementation of the type shown in Fig. 4.5b would be obtained where the unit delay is an array
of four clocked D flip-flops and RP is a read-only register in which the digits of coefficient p are

DISCRETE-TIME SYSTEMS 147

stored. Let us assume that the adder, multiplier, and unit delay have propagation delays τA, τM , and
τUD , respectively.

At a sampling instant nT , a very brief clock pulse triggers the unit delay to deliver its content
y(nT − T) to its output and the content of the unit delay is replaced by the current value of y(nT) in
τUD s. The output of the unit delay will cause the correct product py(nT − T) to appear at the output
of the multiplier in τM s. This product will cause a new sum x(nT) + py(nT − T) to appear at input
of the unit delay and at the output of the system in τA s. By that time, the clock pulse would have
disappeared and the unit delay would be in a dormant state with the previous system output recorded
in its memory and the present output at the input of the unit delay. Obviously, this scheme will work
out in practice only if the outputs of the unit delay, multiplier, and adder reach steady state before
the next clock pulse which will occur at the next sampling instant. This implies that the sampling
period T must be long enough to ensure that T > τM + τA. Otherwise, the unit delay will record an
erroneous value for the output of the adder.

The system in Fig. 4.5c would operate in much the same way. Just before a sampling instant,
signals are deemed to be in steady state throughout the system. When a clock pulse is received
simultaneously by the two unit delays, the unit delays output their contents and their inputs overwrite
their contents after a certain propagation delay. The outputs of the unit delays then propagate through
the multipliers and adders and after as certain propagation delay, new numerical values appear at the
inputs of the unit delays but by then, in the absence of a clock pulse, the unit delays will be dormant.
We note that there are signal paths between the output of each unit delay and its input, between the
output of the left and the input of the right unit delay, and between the output of the right and the
input of the left unit delay. We note also that each of these signal paths involves a multiplier in series
with an adder and thus the sampling period should be long enough to ensure that T > τm + τa , as in
the first-order system of Fig. 4.5a.

This simple analysis has shown that the propagation delays of the multipliers and adders impose
a lower limit on the sampling period T which translates into an upper limit on the sampling frequency
fs = 1/T ; consequently, high sampling frequencies can be used only if fast hardware with short
propagation delays is available, as may be expected.

4.4.3 Signal Flow-Graph Analysis

Given a discrete-time network, a corresponding topologically equivalent signal flow graph can be
readily deduced by marking and labeling all the nodes of the network on a blank sheet of paper and
then replacing

• Each adder by a node with one outgoing branch and as many incoming branches as there are
inputs to the adder

• Each distribution node by a distribution node

• Each multiplier by a directed branch with transmittance equal to the constant of the multiplier

• Each direct transmission path by a directed branch with transmittance equal to unity

• Each unit delay by a directed branch with transmittance equal to the shift operator E−1.

For example, the signal flow graph of the network shown in Fig. 4.6a can be drawn by marking
nodes A, C, F, G, H, D, and E on a sheet of paper and then replacing unit-delays, adders, multipliers,
and signal paths by the appropriate nodes and branches, as depicted in Fig. 4.6b.

148 DIGITAL SIGNAL PROCESSING

x(nT)

a3 −b3

a2 −b2

a1 −b1

a0

y(nT)

(a)

1B

B

1A

A

C

C

 −b1

 −b2

 −b3

D

D

E

E

1a0

a1

a2

a3

F

F

G

G

H

H

(b)

E−1

E−1

E−1

Figure 4.6 (a) Discrete-time network, (b) signal flow graph.

As can be seen in Fig. 4.6b, signal flow graphs provide a compact and easy-to-draw graphical
representation for discrete-time networks and can, in addition, be used to analyze networks through
the use of some well-established signal flow-graph methods [3–5]. Two signal flow-graph methods
that are readily applicable for the analysis of discrete-time networks are the node-elimination method
and Mason’s method.

NODE ELIMINATION METHOD. In the node elimination method, the given signal flow graph is
reduced down to a single branch between the input and output nodes through a sequence of node
eliminations [5] and simplifications, and the transmittance of the last remaining branch is the operator
of the network. From the functional relationship provided by this simplified signal flow graph, the
difference equation of the network can be readily deduced.

Node elimination can be accomplished by applying a small set of rules, as follows:

Rule 1: K branches in series with transmittances T1, T2, . . . , TK can be replaced by a single branch
with transmittance T1T2 . . . TK , as shown in Fig. 4.7a.

DISCRETE-TIME SYSTEMS 149

(b)

(a)

A Z

BA

T1

T2 TK

C Y Z

T1

T2

TK

A Z
T1+ T2+ +TK

A Z
T1T2 TK

I1

I2

IN

TI1 TO1

TO2
TI2

TIN
TOM

O1

O2

OM

I1

I2

IN

O1

O2

OM

TI1TO1

TINTO1

TI1TO2
TI2TO1

TI2TOM

TI2TO2

TINTOM

TINTO2

TI1TOM

(c)

P

(d)

A Z

T1

T2

TK

T1+ T2+ +TK

A Z

(e)

I1

I2

O
M

T
I2

T
I1

T
SL

T
MO

T
MO

I1

I2

O
M

TI1

1−T
SL

TI2

1−T
SL

Figure 4.7 Node elimination rules: (a) Rule 1, (b) Rule 2, (c) Rule 3, (d) Rule 4a, (e) Rule 4b.

Rule 2: K branches in parallel with transmittances T1, T2, . . . , TK can be replaced by a single branch
with transmittance T1 + T2 + · · · + TK , as illustrated in Fig. 4.7b.

Rule 3: A node with N incoming branches with transmittances TI 1, TI 2, . . . , TI N and M outgo-
ing branches with transmittances TO1, TO2, . . . , TO M can be replaced by N × M branches with
transmittances TI 1TO1, TI 1TO2, . . . , TI N TO M as illustrated in Fig. 4.7c.

150 DIGITAL SIGNAL PROCESSING

Rule 4a: K self-loops at a given node with transmittances T1, T2, . . . , TK can be replaced by a single
self-loop with transmittance T1 + T2 + · · · + TK , as illustrated in Fig. 4.7d.

Rule 4b: A self-loop at a given node with transmittance TSL can be eliminated by dividing the
transmittance of each and every incoming branch by 1 − TSL as shown in Fig. 4.7e.

Actually, Rule 4a is a special case of Rule 2 since a self-loop is, in effect, a branch that starts
from and ends on one and the same node.

The above rules constitute a graphical way of doing algebra and, therefore, their validity can be
readily demonstrated by showing that the equations of the simplified flow graph can be obtained from
those of the original flow graph. For example, the equations of the bottom flow graph in Fig. 4.7e
are given by

M = TI 1

1 − TSL
I1 + TI 2

1 − TSL
I2

O = TM O M

and can be obtained from the equations of the top flow graph in Fig. 4.7e, that is,

M = TI 1 I1 + TI 2 I2 + TSL M

O = TM O M

by moving the term TSL M in the first equation to the left-hand side and then dividing both sides by
the factor 1 − TSL .

Example 4.6 Find the difference equation of the discrete-time network shown in Fig. 4.6a
by using the node elimination method.

Solution

Eliminating node H in Fig. 4.6b using Rule 3 yields the signal flow graph of Fig. 4.8a
and on combining parallel branches by using Rule 2, the graph of Fig. 4.8b can be
deduced. Applying Rule 3 to node G in Fig. 4.8b yields the graph in Fig. 4.8c which can
be simplified to the graph in Fig. 4.8d by combining the parallel branches.
Applying Rule 3 to node F in Fig. 4.8d yields the graph of Fig. 4.8e and on combining
the parallel branches and then eliminating node C, the graph Fig. 4.8 f can be obtained.
In Fig. 4.8 f , we note that there is a self-loop at node B and on using Rule 4b the graph
of Fig. 4.8g is deduced, which can be simplified to the graph of Fig. 4.8h using Rule 1.
Hence,

y(nT) =
(

T1

1 − T2

)
x(nT) (4.10)

DISCRETE-TIME SYSTEMS 151

(a)

1B1A C

 −b1

 −b2

D E1a0

a1

a2

a3

F

G

E−1 E−1
 −b3E−1

E−1

(b)

1B1A C

 −b1

 −b2

D E1a0

a1

a2+a3F

G

E−1

E−1 −b3E−1

E−1

(d)

1B1A C D E1a0

F

E−1

−b1 −b2 −b3 E−2E−1 a1+ E−1a2 a3E −2
+

(c)

1B1A C

 −b1

D E1a0

a1

F

E −1

 −b2 −b3E −2E −1 E −1a2 a3E−2+

Figure 4.8 Signal flow graph reduction method (Example 4.6): (a) Elimination of node H,
(b) combining of parallel branches, (c) Elimination of node G, (d) combining of parallel
branches.

152 DIGITAL SIGNAL PROCESSING

(f)

T1

T2

B

B

1A

A

D E

E

1

T1 = a0 a1E −1 + a3E −3E −2+a2+

−b1E −1 −b3 E−3 −b2 E−2T2 =

(g)

(h)

T1

y(nT)x(nT)

1−T2

1

T1
1−T2

1B1A C D E1a0

−b1E−1 −b3 E−3−b2 E−2 a1E−1 + a3E−3E−2+a2

(e)

Figure 4.8 Cont’d (e) elimination of node F, (f) combining of parallel branches and
elimination of node C, (g) elimination of self-loop and node D, (h) combining of series branches.

or

(1 − T2)y(nT) = T1x(nT) (4.11)

Therefore,

y(nT) = T1x(nT) + T2 y(nT) (4.12)

and since

T1 = a0 + a1E−1 + a2E−2 + a3E−3 (4.13)

and

T2 = −[b1E−1 + b2E−2 + b3E−3] (4.14)

we obtain

y(nT) = a0x(nT) + a1x(nT − T) + a2x(nT − 2T) + a3x(nT − 3T)

− b1 y(nT − T) − b2 y(nT − 2T) − b3 y(nT − 3T)

DISCRETE-TIME SYSTEMS 153

TI1 TO1

TO2

TI2 TO3

O1I1

I1

I2

I2

O2

O3

O1

O2

O3

TI1TO1

TI1TO2

TI2TO1
TI2TO2

TI2TO3

TI1TO3

Figure 4.9 (a) Avoidance of node elimination errors.

The amount of work required to simplify a signal flow graph tends to depend on the order in
which nodes are eliminated. It turns out that the required effort is reduced if at any one time one
eliminates the node that would result in the smallest number of new paths. The number of new paths
for a given node is equal to the number of incoming branches times the number of outgoing branches.

The most likely source of errors in signal flow graph simplification is the omission of one or
more of the new paths generated by Rule 3. This problem can be circumvented to a large extent by
drawing strokes on the branches involved as each new path is identified. At the end of the elimination
process, each incoming branch should have as many strokes as there are outgoing branches and
each outgoing branch should have as many strokes as there are incoming branches, as illustrated in
Fig. 4.9. If the strokes do not tally, then the appropriate node elimination needs to be checked.

MASON’S METHOD. An alternative signal flow-graph analysis method is one based on the so-
called Mason’s gain formula [5, 6]. If i and j are arbitrary nodes in a signal flow graph representing
a discrete-time network, then the response at node j produced by an excitation applied at node i is
given by Mason’s gain formula as

y j (nT) =
(

1

	

∑
k

Tk	k

)
xi (nT) (4.15)

154 DIGITAL SIGNAL PROCESSING

Parameter Tk is the transmittance of the kth direct path between nodes i and j , 	 is the determinant
of the flow graph, and 	k is the determinant of the subgraph that does not touch (has no nodes or
branches in common with) the kth direct path between nodes i and j .

The graph determinant 	 is given by

	 = 1 −
∑

u

Lu1 +
∑

v

Pv2 −
∑
w

Pw3 + · · ·

where Lu1 is the loop transmittance of the uth loop, Pv2 is the product of the loop transmittances of
the vth pair of nontouching loops (loops that have neither nodes nor branches in common), Pw3 is
the product of loop transmittances of the wth triplet of nontouching loops, and so on.

The subgraph determinant 	k can be determined by applying the formula for 	 to the subgraph
that does not touch the kth direct path between nodes i and j .

The derivation of Mason’s formula can be found in [6]. Its application is illustrated by the
following example.

Example 4.7 Analyze the discrete-time network of Fig. 4.6a using Mason’s method.

Solution

From Fig. 4.6b, the direct paths of the flow graph are ABCDE, ABCFDE, ABCFGDE,
and ABCFGHDE and hence

T1 = a0 T2 = a1E−1 T3 = a2E−2 T4 = a3E−3

The loops of the graph are BCFB, BCFGB, and BCFGHB and hence

L11 = −b1E−1 L21 = −b2E−2 L31 = −b3E−3

All loops are touching since branch BC is common to all of them, and so

Pv2 = Pw3 = · · · = 0

Hence

	 = 1 + b1E−1 + b2E−2 + b3E−3

The determinants of the subgraphs 	k , k = 1, 2, 3, and 4, can similarly be determined
by identifying each subgraph that does not touch the kth direct path. As can be seen
in Fig. 4.6b, branch BC is common to all direct paths between input and output and,
therefore, it does not appear in any of the subgraphs. Consequently, no loops are present
in the k subgraphs and so

	1 = 	2 = 	3 = 	4 = 1

DISCRETE-TIME SYSTEMS 155

Using Mason’s formula given by Eq. (4.15), we obtain

y(nT) =
(∑3

i=0 aiE−i

1 + ∑3
i=1 biE−i

)
x(nT)

or

y(nT) =
(

3∑
i=0

aiE−i

)
x(nT) −

(
3∑

i=1

biE−i

)
y(nT)

4.5 INTRODUCTION TO TIME-DOMAIN ANALYSIS

The time-domain response of simple discrete-time systems can be determined by solving the differ-
ence equation directly using mathematical induction. Although this approach is somewhat primitive,
it demonstrates the mode by which discrete-time systems operate. The approach needs nothing more
sophisticated than basic algebra as illustrated by the following examples.

Example 4.8 (a) Find the impulse response of the system in Fig. 4.5a. The system is initially
relaxed, that is, y(nT) = 0 for n < 0, and p is a real constant. (b) Find the unit-step response
of the system.

Solution

(a) From Example 4.5(a), the system is characterized by the difference equation

y(nT) = x(nT) + py(nT − T) (4.16)

With x(nT) = δ(nT), we can write

y(0) = 1 + py(−T) = 1

y(T) = 0 + py(0) = p

y(2T) = 0 + py(T) = p2

· ·
y(nT) = pn

and since y(nT) = 0 for n ≤ 0, we have

y(nT) = u(nT)pn (4.17)

156 DIGITAL SIGNAL PROCESSING

nT

y(nT)

nT

y(nT)

nT

y(nT)

p > 1

p = 1

p < 1

Figure 4.10 Impulse response of first-order system (Example 4.8(a)).

The impulse response is plotted in Fig. 4.10 for p < 1, p = 1, and p > 1. We note that
the impulse response diverges if p > 1.
(b) With x(nT) = u(nT), we get

y(0) = 1 + py(−T) = 1

y(T) = 1 + py(0) = 1 + p

y(2T) = 1 + py(T) = 1 + p + p2

· ·

y(nT) = u(nT)
n∑

k=0

pk

DISCRETE-TIME SYSTEMS 157

This is a geometric series with common ratio p and hence we can write

y(nT) − py(nT) = u(nT)(1 − p(n+1))

or

y(nT) = u(nT)
1 − p(n+1)

1 − p
(4.18)

For p < 1, limn→∞ p(n+1) → 0 and hence the steady-state value of the response is
obtained as

lim
n→∞ y(nT) = 1

1 − p

nT

y(nT)

nT

y(nT)

nT

y(nT)

p > 1

p = 1

p < 1

Figure 4.11 Unit-step response of first-order system (Example 4.8(b)).

158 DIGITAL SIGNAL PROCESSING

For p = 1, Eq. (4.18) gives y(nT) = 0/0 but if we apply l’Hôpital’s rule, we obtain

y(nT) = lim
p→1

d(1 − p(n+1))/dp

d(1 − p)/dp
= n + 1

Thus y(nT) → ∞ as n → ∞.
For p > 1, Eq. (4.18) gives

lim
n→∞ y(nT) ≈ pn

p − 1
→ ∞

The unit-step response for the three values of p is illustrated in Fig. 4.11. Evidently, the
response converges if p < 1 and diverges if p ≥ 1.

Example 4.9 (a) Find the response of the system in Fig. 4.5a to the exponential excitation

x(nT) = u(nT)e jωnT

(b) Repeat part (a) for the sinusoidal excitation

x(nT) = u(nT) sin ωnT

(c) Assuming that p < 1, find the response of the system to the sinusoidal excitation in
part (b) as n → ∞.

Solution

(a) With the system initially relaxed, the use of Eq. (4.16) gives

y(0) = e0 + py(−T) = 1

y(T) = e jωT + py(0) = e jωT + p

y(2T) = e j2ωT + py(T) = e j2ωT + pe jωT + p2

· ·

y(nT) = u(nT)(e jωnT + pe jω(n−1)T + · · · + p(n−1)e jωT + pn)

= u(nT)e jωnT (1 + pe− jωT + · · · + pne− jnωT))

= u(nT)e jωnT
n∑

k=0

pke− jkωT

DISCRETE-TIME SYSTEMS 159

This is a geometric series with a common ratio pe− jωT and, as in Example 4.8(b), the
above sum can be obtained in closed form as

y(nT) = u(nT)
e jωnT − p(n+1)e− jωT

1 − pe− jωT
(4.19)

Now consider the function

H (e jωT) = 1

1 − pe− jωT
= e jωT

e jωT − p
(4.20)

and let

H (e jωT) = M(ω)e jθ (ω) (4.21)

where

M(ω) = |H (e jωT)| = 1√
1 + p2 − 2p cos ωT

(4.22a)

and

θ (ω) = argH (e jωT) = ωT − tan−1 sin ωT

cos ωT − p
(4.22b)

as can be easily shown. On using Eqs. (4.19)–(4.21), y(nT) can be expressed as

y(nT) = u(nT)H (e jωT)(e jωnT − p(n+1)e− jωT)

= u(nT)M(ω)(e j[θ (ω)+ωnT] − p(n+1)e j[θ (ω)−ωT]) (4.23)

(b) The system is linear and so

y(nT) = Ru(nT) sin ωnT = Ru(nT)
1

2 j
(e jωnT − e− jωnT)

= 1

2 j
[Ru(nT)e jωnT − Ru(nT)e− jωnT]

= 1

2 j
[y1(nT) − y2(nT)] (4.24)

where

y1(nT) = Ru(nT)e jωnT and y2(nT) = Ru(nT)e− jωnT

160 DIGITAL SIGNAL PROCESSING

Partial response y1(nT) can be immediately obtained from Eq. (4.23) in part (a) as

y1(nT) = u(nT)M(ω)(e j[θ (ω)+ωnT] − p(n+1)e j[θ(ω)−ωT]) (4.25)

and since

y2(nT) = Ru(nT)e jωnT
∣∣
ω→−ω

(4.26)

partial response y2(nT) can be obtained by replacing ω by −ω in y1(nT), that is,

y2(nT) = u(nT)M(−ω)(e j[θ (−ω)−ωnT] − p(n+1)e j[θ (−ω)+ωT]) (4.27)

From Eqs. (4.22a) and (4.22b), we note that M(ω) is an even function and θ (ω) is an
odd function of ω, that is,

M(−ω) = M(ω) and θ (−ω) = −θ (ω)

Hence Eqs. (4.24), (4.25), and (4.27) yield

y(nT) = u(nT)
M(ω)

2 j
(e j[θ(ω)+ωnT] − e− j[θ (ω)+ωnT])

−u(nT)
M(ω)

2 j
p(n+1)(e j[θ (ω)−ωT] − e− j[θ (ω)−ωT])

= u(nT)M(ω) sin [ωnT + θ (ω)]

−u(nT)M(ω)p(n+1) sin [θ (ω) − ωT] (4.28)

We note that the response of the system consists of two components. For a given frequency
ω, the first term is a steady sinusoid of fixed amplitude and the second term is a transient
component whose amplitude is proportional to p(n+1).
(c) If p < 1, then the transient term in Eq. (4.28) reduces to zero as n → ∞ since
limn→∞ p(n+1) → 0 and, therefore, we have

ỹ(nT) = lim
n→∞ y(nT) = M(ω) sin [ωnT + θ (ω)]

This is called the steady-state sinusoidal response and, as can be seen, it is a sinusoid of
amplitude M(ω) displaced by a phase angle θ (ω). Since the input is a sinusoid whose
amplitude and phase angle are unity and zero, respectively, the system has introduced a
gain M(ω) and a phase shift θ (ω), as illustrated in Fig. 4.12.

DISCRETE-TIME SYSTEMS 161

1

1.0

nT

nT

M(ω)

−1.0

x(nT)

y(nT)

θ(ω)

Figure 4.12 Steady-state sinusoidal response of first-order system (Example 4.9b).

The sinusoidal response in the above example turned out to comprise a steady-state and a
transient component. This is a property of discrete-time systems in general, as will be demonstrated
in Chap. 5. Functions M(ω) and θ (ω), which will resurface in Sec. 5.5.1, facilitate one to find the
steady-state sinusoidal response of a system for any specified frequency ω and by virtue of linearity
one can also find the response produced by a signal that comprises an arbitrary linear combination
of sinusoids of different frequencies. Obviously, these are very useful functions and are called the
amplitude response and phase response of the system, respectively.

If p were greater than unity in the above example, then the amplitude of the transient com-
ponent would, in principle, increase indefinitely since limn→∞ p(n+1) → ∞ in such a case. Lack of
convergence in the time-domain response is undesirable in practice and when it can occur for at least
one excitation, the system is said to be unstable. On the basis of the results obtained in Examples 4.8
and 4.9, the system in Fig. 4.5a is unstable if p ≥ 1 since the unit-step response does not converge
for p ≥ 1. The system appears to be stable if p < 1 since the impulse, unit-step, and sinusoidal
responses converge for this case but, at this point, we cannot be certain whether an excitation exists
that would produce an unbounded time-domain response. The circumstances and conditions that
must be satisfied to assure the stability of a discrete-time system will be examined in Sec. 4.7.

162 DIGITAL SIGNAL PROCESSING

The above time-domain analysis method can be easily extended to higher-order systems.
Consider, for example, the general system represented by Eq. (4.6). Assuming that N ≥ M , then
through some simple algebra one can express Eq. (4.6) in the form

y(nT) =
(

R0 +
N∑

i=1

Ri

1 + piE−1

)
x(nT) (4.29)

where pi and Ri are constants, possibly complex. This equation characterizes the equivalent parallel
configuration of Fig. 4.13a where Hi is a first-order system characterized by

y(nT) = Ri

1 + piE−1
x(nT)

The time-domain response of this first-order system can be obtained as in Examples 4.8 and 4.9
and the response of the multiplier in Fig. 4.13a is simply R0x(nT). Therefore, by virtue of linearity,
the response of the parallel configuration, and thus that of the original high-order system, can be
deduced. For example, the impulse response of the first-order system in Fig. 4.13b can be obtained
as

y(nT) = u(nT)Ri pn
i (4.30)

HN

H1

R0

y(nT)x(nT)

(a)

(b)

x(nT) y(nT)

pi

Ri

Figure 4.13 Representation of a high-order system in terms of a set of first-order systems.

DISCRETE-TIME SYSTEMS 163

as in Example 4.8(a) and the impulse response of the multiplier is R0δ(nT). Thus Eqs. (4.29) and
(4.30) give the impulse response of an N -order recursive system as

y(nT) =
(

R0 +
N∑

i=1

Ri

1 + piE−1

)
x(nT)

= R0x(nT) +
N∑

i=1

Ri

1 + piE−1
x(nT)

= R0δ(nT) + u(nT)
N∑

i=1

Ri pn
i

The unit-step or sinusoidal response of the system can similarly be deduced.
Unfortunately, the induction method just described can easily run into serious complications

and lacks both generality and potential. An alternative approach that overcomes some of these
difficulties is the state-space method described in Sec. 4.8. The most frequently used method for time-
domain analysis, however, involves the use of the z transform and is described in detail in Chap. 5.

4.6 CONVOLUTION SUMMATION

The response of a discrete-time system to an arbitrary excitation can be expressed in terms of the
impulse response of the system.

An excitation x(nT) can be expressed as a sum of signals as

x(nT) =
∞∑

k=−∞
xk(nT) (4.31)

where each signal xk(nT) has just one nonzero value equal to the value of x(nT) at n = k, that is,

xk(nT) =
{

x(kT) for n = k

0 otherwise

as illustrated in Fig. 4.14. Each of the signals xk(nT) is actually an impulse signal and can be
represented as

xk(nT) = x(kT)δ(nT − kT) (4.32)

and hence Eqs. (4.31) and (4.32) give

x(nT) =
∞∑

k=−∞
x(kT)δ(nT − kT) (4.33)

Now consider a system characterized by the equation

y(nT) = Rx(nT) (4.34)

164 DIGITAL SIGNAL PROCESSING

nT

nT

nT

x(T)

T 2T 3T

x(nT)

x1(nT)

x2(nT)

x3(nT)

nT

x(0)

x(0)

0

x(2T)

x(T)

x(2T)

=

+

+

Figure 4.14 Convolution summation: decomposition of a discrete-time signal into a sum of impulses.

and let

h(nT) = Rδ(nT) (4.35)

be the impulse response of the system. Assuming that the system is linear and time invariant,
Eqs. (4.33)–(4.35) give

y(nT) = R
∞∑

k=−∞
x(kT)δ(nT − kT) =

∞∑
k=−∞

x(kT)Rδ(nT − kT)

=
∞∑

k=−∞
x(kT)h(nT − kT) (4.36a)

This relation is of considerable importance in the characterization as well as analysis of discrete-time
systems and is known as the convolution summation.

Some special forms of the convolution summation are of particular interest. To start with, by
letting n′ = n − k in Eq. (4.36a) and noting that the limits of the summation do not change, the

DISCRETE-TIME SYSTEMS 165

alternative but equivalent form

y(nT) =
∞∑

k=−∞
h(kT)x(nT − kT) (4.36b)

can be obtained. If the system is causal, h(nT) = 0 for n < 0 and thus Eqs. (4.36a) and (4.36b) give

y(nT) =
n∑

k=−∞
x(kT)h(nT − kT) =

∞∑
k=0

h(kT)x(nT − kT) (4.36c)

h(kT)

(a)

kT

x(kT)

(b)

kT

(c)

kT

(d)

kT

x(kT)h(nT − kT)

(e)

kT

nT

×

=

h(nT − kT)

h(−kT)

}y(nT)

Figure 4.15 Convolution summation: graphical representation.

166 DIGITAL SIGNAL PROCESSING

and if, in addition, x(nT) = 0 for n < 0, then

y(nT) =
n∑

k=0

x(kT)h(nT − kT) =
n∑

k=0

h(kT)x(nT − kT) (4.36d)

The convolution summation plays a critical role in the application of the z transform to discrete-
time systems, as will be demonstrated in Chap. 5, and the assumptions made here in deriving the
convolution summation, namely, that the system is linear and time invariant, become inherited
assumptions for the applicability of the z transform to discrete-time systems.

4.6.1 Graphical Interpretation

The fist convolution summation in Eq. (4.36d) is illustrated in Fig. 4.15. The impulse response h(kT)
is folded over with respect to the y axis, as in Fig. 4.15c, and is then shifted to the right by a time
interval nT , as in Fig. 4.15d , to yield h(nT − kT). Then x(kT) is multiplied by h(nT − kT), as in
Fig. 4.15e. The sum of all values in Fig. 4.15e is the response of the system at instant nT .

Example 4.10 (a) Using the convolution summation, find the unit-step response of the system
in Fig. 4.5a. (b) Hence find the response to the excitation

x(nT) =
{

1 for 0 ≤ n ≤ 4

0 otherwise

Solution

(a) From Example 4.8(a), the impulse response of the system is given by

h(nT) = u(nT)pn

(See Eq. (4.17).) Since the unit step is zero for n < 0, the convolution summation in
Eq. (4.36a) gives

y(nT) = Ru(nT) =
∞∑

k=−∞
u(kT)pku(nT − kT)

= · · · +
k=−1︷ ︸︸ ︷

u(−T)p−1u(nT + T) +
k=0︷ ︸︸ ︷

u(0)p0u(nT) +
k=1︷ ︸︸ ︷

u(T)p1u(nT − T)

+ · · · +
k=n︷ ︸︸ ︷

u(nT)pnu(0) +
k=n+1︷ ︸︸ ︷

u(nT + T)pn+1u(−T) + · · ·

DISCRETE-TIME SYSTEMS 167

For n < 0, we get y(nT) = 0 since all the terms are zero. For n ≥ 0, we obtain

y(nT) = 1 + p1 + p2 + · · · + pn = 1 +
n∑

n=1

pn

This is a geometric series and has a sum

S = 1 − p(n+1)

1 − p

(see Eq. (A.46b)). Hence, the response can be expressed in closed form as

y(nT) = u(nT)
1 − p(n+1)

1 − p

(b) For this part, we observe that

x(nT) = u(nT) − u(nT − 5T) (4.37)

and so

y(nT) = Rx(nT) = Ru(nT) − Ru(nT − 5T) (4.38)

Thus

y(nT) = u(nT)
1 − p(n+1)

1 − p
− u(nT − 5T)

1 − p(n−4)

1 − p

Alternatively, we can write

y(nT) =

u(nT)
1 − p(n+1)

1 − p
for n ≤ 4

p(n−4) − p(n+1)

1 − p
for n > 4

Example 4.11 An initially relaxed causal nonrecursive system was tested with an input

x(nT) =
{

0 for n < 0

n for n ≥ 0

and found to have the response given by the following table:

n 0 1 2 3 4 5 6 7
y(nT) 0 1 4 10 20 30 40 50

168 DIGITAL SIGNAL PROCESSING

(a) Find the impulse response of the system for values of n over the range 0 ≤ n ≤ 5.

(b) Using the result in part (a), find the unit-step response for 0 ≤ n ≤ 5.

Solution

(a) Problems of this type can be easily solved by using the convolution summation. Since
the system is causal and x(nT) = 0 for n < 0, the left-hand convolution summation in
Eq. (4.36d) applies and hence

y(nT) = Rx(nT) =
n∑

k=0

x(kT)h(nT − kT)

or

y(nT) = x(0)h(nT) + x(T)h(nT − T) + · · · + h(0)x(nT)

Evaluating y(nT) for n = 1, 2, . . . , we get

y(T) = x(0)h(T) + x(T)h(0) = 0 · h(T) + 1 · h(0) = 1 or h(0) = 1

y(2T) = x(0)h(2T) + x(T)h(T) + x(2T)h(0)

= 0 · h(2T) + 1 · h(T) + 2 · h(0)

= 0 + h(T) + 2 = 4 or h(T) = 2

y(3T) = x(0)h(3T) + x(T)h(2T) + x(2T)h(T) + x(3T)h(0)

= 0 · h(3T) + 1 · h(2T) + 2 · h(T) + 3 · h(0)

= h(2T) + 2 · 2 + 3 · 1 = 10 or h(2T) = 3

y(4T) = x(0)h(4T) + x(T)h(3T) + x(2T)h(2T) + x(3T)h(T) + x(4T)h(0)

= 0 · h(4T) + 1 · h(3T) + 2 · h(2T) + 3 · h(T) + 4 · h(0)

= h(3T) + 2 · 3 + 3 · 2 + 4 · 1 = 20 or h(3T) = 4

y(5T) = x(0)h(5T) + x(T)h(4T) + x(2T)h(3T) + x(3T)h(2T) + x(4T)h(T)

+ x(5T)h(0)

= 0 · h(5T) + 1 · h(4T) + 2 · h(3T) + 3 · h(2T) + 4 · h(T) + 5 · h(0)

= 0 + h(4T) + 2 · 4 + 3 · 3 + 4 · 2 + 5 · 1 = 30

or h(4T) = 0

DISCRETE-TIME SYSTEMS 169

y(6T) = x(0)h(6T) + x(T)h(5T) + x(2T)h(4T) + x(3T)h(3T) + x(4T)h(2T)

+ x(5T)h(T) + x(6T)h(0)

= 0 · h(6T) + 1 · h(5T) + 2 · h(4T) + 3 · h(3T) + 4 · h(2T) + 5 · h(T) + 6 · h(0)

= h(5T) + 2 · 0 + 3 · 4 + 4 · 3 + 5 · 2 + 6 · 1

= 40 or h(5T) = 0

Thus

h(0) = 1 h(T) = 2 h(2T) = 3 h(3T) = 4

h(4T) = 0 h(5T) = 0

(b) Using the convolution summation again, we obtain the unit-step response as follows:

y(nT) = Rx(nT) =
n∑

k=0

u(kT)h(nT − kT) =
n∑

k=0

h(nT − kT)

Hence

y(0) = h(0) = 1

y(T) = h(T) + h(0) = 2 + 1 = 3

y(2T) = h(2T) + h(T) + h(0) = 3 + 2 + 1 = 6

y(3T) = h(3T) + h(2T) + h(T) + h(0) = 10

y(4T) = h(4T) + h(3T) + h(2T) + h(T) + h(0) = 15

y(5T) = h(5T) + h(4T) + h(3T) + h(2T) + h(T) + h(0) = 21

Thus

y(0) = 1 y(T) = 3 y(2T) = 6 y(3T) = 10

y(4T) = 15 y(5T) = 21

4.6.2 Alternative Classification

Discrete-time systems may also be classified on the basis of the duration of their impulse response
either as finite-duration impulse response (FIR) systems or as infinite-duration impulse response
(IIR) systems.2

2Actually, the acronyms for these systems should be FDIR and IDIR filters since it is the duration that is infinite and not
the response. However, the acronyms FIR and IIR are too entrenched to be changed.

170 DIGITAL SIGNAL PROCESSING

If the impulse response of a causal discrete-time system is of finite duration such that h(nT) = 0
for n < −K and n > M , then the convolution summation in Eq. (4.36b) gives

y(nT) =
M∑

k=−K

h(kT)x(nT − kT)

This equation is of the same form as Eq. (4.4) with a−K = h(−K), a−K+1 = h(−K +1), . . . , aM =
h(MT) and, in effect, such a system is nonrecursive. Conversely, if a nonrecursive system is character-
ized by Eq. (4.4), then its impulse response can be readily shown to be h(−K) = a−K , h(−K +1) =
a−K+1, . . . ,h(MT) = aM and, therefore, it is of finite duration.

In recursive systems, the impulse response is almost always of infinite duration but it can, in the-
ory, be of finite duration, as will now be demonstrated. Consider a nonrecursive system characterized
by the difference equation

y(nT) = x(nT) + 3x(nT − T) (4.39a)

The impulse response of the system is obviously of finite duration since h(0) = 1, h(T) = 3, and
h(kT) = 0 for all values of k �= 0 or 1. If we premultiply both sides of Eq. (4.39a) by the operator
(1 + 4E−1), we get

(1 + 4E−1)y(nT) = (1 + 4E−1)[x(nT) + 3x(nT − T)] (4.39b)

and after simplification, we have

y(nT) = x(nT) + 7x(nT − T) + 12x(nT − 2T) − 4y(nT − T)

Thus, an FIR system can be represented by a recursive difference equation! Evidently, the manipula-
tion has increased the order of the difference equation from one to two but the system response will
not change in any way. Under these circumstances, there is no particular reason in applying such a
manipulation. In fact, there is every reason to identify common factors and cancel them out since
they tend to increase the order of the difference equation and, in turn, the complexity of the system.
On the other hand, an IIR system cannot be nonrecursive and vice versa, as depicted in Fig. 4.16.

An arbitrary recursive system can be represented by an equation of the form

y(nT) = N (E−1)

D(E−1)
x(nT)

and if operator polynomials N (E−1) and D(E−1) are free from common factors, then the recursive
system is also an IIR system. Since common factors are a form of redundancy that must be removed,
then, for all practical purposes, the terms recursive and IIR are exchangeable and so are the terms
nonrecursive and FIR.

In this book, we shall be referring to systems as nonrecursive or recursive if the emphasis is
on the difference equation or network and as FIR or IIR if the emphasis is on the duration of the
impulse response.

DISCRETE-TIME SYSTEMS 171

Nonrecursive Recursive

FIR IIR

Possible but
unnecessary

Impossible

Figure 4.16 Nonrecursive versus FIR and recursive versus IIR systems.

4.7 STABILITY

A continuous- or discrete-time system is said to be stable if and only if any bounded excitation will
result in a bounded response. In mathematical language, a discrete-time system is stable if and only
if any input x(nT) such that

|x(nT)| ≤ P < ∞ for all n (4.40)

will produce an output y(nT) that satisfies the condition

|y(nT)| ≤ Q < ∞ for all n (4.41)

where P and Q are positive constants.
For a linear and time-invariant system, the convolution summation in Eq. (4.36b) gives

|y(nT)| =
∣∣∣∣∣

∞∑
k=−∞

h(kT)x(nT − kT)

∣∣∣∣∣
≤

∞∑
k=−∞

|h(kT)x(nT − kT)|

≤
∞∑

k=−∞
|h(kT)| · |x(nT − kT)| (4.42)

The equal sign in the first equation is replaced by the less than or equal sign in the second and third
equations since some of the terms under the sum may be negative and, consequently, the magnitude

172 DIGITAL SIGNAL PROCESSING

of the sum may be smaller than the sum of the magnitudes, for example, |2 · 2 + 3 · 3 + 7 · (−1)| <

|2 · 2| + |3 · 3| + |7 · (−1)| = |2| · |2| + |3| · |3| + |7| · |(−1)|. The equal sign is retained to take care
of the rare possibility where the terms are all positive.

If the input satisfies the condition in Eq. (4.42), then if we replace |x(nT − kT)| by its largest
possible value as specified in Eq. (4.40), we obtain

|y(nT)| ≤
∞∑

k=−∞
|h(kT)|P

≤ P
∞∑

k=−∞
|h(kT)| (4.43)

Now if the impulse response is absolutely summable, that is,

∞∑
k=−∞

|h(kT)| ≤ R < ∞ (4.44)

then Eqs. (4.43) and (4.44) give

|y(nT)| ≤ Q < ∞ for all n

where Q = P R. Therefore, Eq. (4.44) constitutes a sufficient condition for stability.
A system can be classified as stable only if its response is bounded for all possible bounded

excitations. Consider the bounded excitation

x(nT − kT) =
{

P if h(kT) ≥ 0

−P if h(kT) < 0
(4.45)

where P is a positive constant. From Eq. (4.36b)

|y(nT)| =
∣∣∣∣∣

∞∑
k=−∞

h(kT)x(nT − kT)

∣∣∣∣∣
=

∞∑
k=−∞

P|h(kT)| = P
∞∑

k=−∞
|h(kT)|

since the product h(kT)x(nT − kT) is always positive in this case by virtue of the definition of
x(nT − kT) in Eq. (4.45). Therefore, the condition in Eq. (4.41) will be satisfied if and only if the
impulse response is absolutely summable and, therefore, Eq. (4.44) constitutes both a necessary and
a sufficient condition for stability. Under these circumstances, the system is said to be bounded-input,
bounded-output (or BIBO) stable.

Note that although stability is a crucial requirement for most systems, it should be mentioned
here that there are certain inherently unstable systems which can be useful contrary to popular belief.
Consider, for example, a continuous-time integrator which is a system that would integrate an input
waveform. The response of such a system to a unit-step input would increase with time and would

DISCRETE-TIME SYSTEMS 173

become unbounded as t → ∞ since the area under the unit-step over an infinite period is infinite.
Integrators would be classified as unstable in the above definition, yet they are useful in a number of
DSP applications.3 It should be mentioned, however, that such systems are problematic in practice be-
cause the level of their internal signals can easily become large enough to cause them to operate outside
their linear range. Discrete-time systems also exist that are inherently unstable but which can be use-
ful, for example, discrete-time integrators. These are systems that can perform numerical integration.

In nonrecursive systems, the impulse response is of finite duration and hence Eq. (4.44) is
always satisfied. Consequently, these systems are always stable. This is a great advantage in certain
applications, for example, in adaptive filters which are filters that change their characteristics on line.
Recursive adaptive filters, would need certain recovery mechanisms to prevent them from becoming
unstable.

The stability of a system can be checked by establishing whether the impulse response satisfies
Eq. (4.44). This boils down to checking whether the series is absolutely convergent, and a number of
tests are available at our disposal for this purpose such as the ratio test (see Theorem A.3 in Sec. A.5).

Example 4.12 (a) Check the system of Fig. 4.5a for stability. (b) A discrete-time system has
an impulse response

h(nT) = u(nT)e0.1nT sin
nπ

6

Check the stability of the system.

Solution

(a) The impulse response of the system was obtained in Example 4.8(a) and is given by

h(nT) = u(nT)pn

(See Eq. (4.17)). Hence

∞∑
k=−∞

|h(kT)| = 1 + |p| + · · · + |pk | + · · · (4.46)

This is a geometric series and has a sum

∞∑
k=−∞

|h(kT)| = lim
n→∞

1 − |p|(n+1)

1 − |p|

3They used to build analog computers with them during the 1950s and 1960s.

174 DIGITAL SIGNAL PROCESSING

(see Eq. (A.46b)). If p > 1,

∞∑
k=−∞

|h(kT)| = lim
n→∞

1 − |p|(n+1)

1 − |p| → ∞

and if p = 1,

∞∑
k=−∞

|h(kT)| = 1 + 1 + 1 + · · · = ∞

On the other hand, if p < 1,

∞∑
k=−∞

|h(kT)| = lim
n→∞

1 − |p|(n+1)

1 − |p| → 1

1 − |p| = K < ∞

where K is a positive constant. Therefore, the system in is stable if and only if

|p| < 1

This result explains why the unit-step and sinusoidal responses of the system obtained
in Examples 4.8(b) and 4.9(b) are bounded if |p| < 1 and unbounded if |p| ≥ 1.
(b) We can write

∞∑
k=0

|h(nT)| =
∞∑

k=0

∣∣∣∣u(kT)e0.1kT sin
kπ

6

∣∣∣∣
=

∞∑
k=3,9,15,...

∣∣∣∣u(kT)e0.1kT sin
kπ

6

∣∣∣∣ +
∞∑

k �=3,9,15,...

∣∣∣∣u(kT)e0.1kT sin
kπ

6

∣∣∣∣
=

∞∑
k=3,9,15,...

∣∣e0.1kT
∣∣ +

∞∑
k �=3,9,15,...

∣∣∣∣e0.1kT sin
kπ

6

∣∣∣∣ → ∞

that is, the impulse response is not absolutely summable and, therefore, the system is
unstable.

4.8 STATE-SPACE REPRESENTATION

Systems in general can be represented in terms of equations that involve vectors and matrices.
Characterizations of this type are usually based on so-called state-space methods and, as will be
demonstrated in due course, they have certain inherent advantages. Below we develop a state-space
representation for discrete-time systems.

DISCRETE-TIME SYSTEMS 175

4.8.1 Computability

The state-space representation to be described is based on Mason’s gain formula (see Sec. 4.4.3) but
before we proceed with the representation itself, a prerequisite property of signal flow graphs known
as computability needs to be explained.

Earlier on, we have shown that given a discrete-time network, a corresponding signal flow
graph can be obtained. This process can obviously be reversed and given a signal flow graph, a
discrete-time network can be derived from it. Consider the signal flow graph of Fig. 4.17a and its
equivalent network shown in Fig. 4.17b. We observe that the signal flow graph has a loop that does
not include the shift operator E−1, namely, loop ABCDA. In the network, this loop corresponds to
the delay-free loop shown enclosed in dashed lines. If a signal x(nT) is applied at the input of the
network, the sum

w(nT) = x(nT) − b1v(nT) − b0 y(nT)

will appear at the output of the left-hand adder in τA s, where τA is the propagation delay of the
adder; the product a1w(nT) will then be formed in τM s, where τM is the propagation delay of the

a1

x(nT) y(nT)
w(nT)

−b0

a2

v (nT)

a1
x(nT)

(a)

y(nT)

a2

111

A B C D

1

Delay-free loop

(b)

−b1

−b0

v(nT)

w(nT)

−b1
E −1

Figure 4.17 (a) Noncomputable signal flow graph, (b) equivalent network.

176 DIGITAL SIGNAL PROCESSING

multiplier. Signals a1w(nT) and a2v(nT) will then be added in τA s to produce a new output

y′(nT) = a1w(nT) + a2v(nT)

which will be fed back to the left-hand adder; this will produce the signal

w′(nT) = x(nT) − b1v(nT) − b0 y′(nT)

= x(nT) − b1v(nT) − b0[a1w(nT) + a2v(nT)]

= x(nT) − [b1 + b0a2]v(nT) − a1b0w(nT)

at the output of the left-hand adder in τA s. This chain of events will continue indefinitely and
the end result would be a runaway situation with the output of the network assuming some unpre-
dictable value. Even though the signal flow graph may represent a valid set of algebraic equations,
the presence of a delay-free loop renders the flow graph nonimplementable basically because a
variable depends on itself, namely, w(nT), in the above example. Obviously, flow graphs such as
the above cannot be implemented in terms of practical networks and are, therefore, of no practical
interest. They are said to be noncomputable.

If a unit delay were inserted in the feedback branch in Fig. 4.17b, then signals w(nT) and v(nT)
would propagate as far as the input of that unit delay and in the absence of a clock pulse, action
would stop, the signals would reach steady state, and the runaway situation would not take place.

The above problem cannot occur if each and every loop in a signal flow graph contains at least
one shift operator E−1 in which case the network would have no delay-free loops. Such a signal flow
graph is said to be computable for obvious reasons.

4.8.2 Characterization

Now consider an arbitrary discrete-time network containing N unit delays and assume that its sig-
nal flow graph is computable, i.e., it has no delay-free loops. The network can be drawn as shown
in Fig. 4.18a where Subnetwork A consists exclusively of interconnected adders and multipliers.
Subnetwork A cannot contain any loops since each loop of the network is completed by a unit delay
which is not part of Subnetwork A, i.e., all loops would be broken if the unit delays in Fig. 4.18a
were to be removed as depicted in Fig. 4.18b.

Now let qi (nT), for i = 1, 2, . . . , N , be variables at the outputs of unit delays. These are stored
quantities and can thus be referred to as state variables. The signals at the inputs of the unit delays
can obviously be represented by corresponding variables qi (nT + T).

If all the state variables are assumed to be zero and the input x(nT) is assumed to be nonzero,
then from Mason’s gain formula given in Eq. (4.15), the response at the input of the i th unit delay
can be obtained as

qi (nT + T) =
(

1

	

∑
k

Tk	k

)
x(nT)

DISCRETE-TIME SYSTEMS 177

qi(nT+T)

qi(nT+T)

qi(nT)

qi(nT)

qj(nT+T)

qj(nT+T)

qj(nT)

qj(nT)

qn(nT+T)

qn(nT+T)

qn(nT)

qn(nT)

q
1
(nT+T)

q
1
(nT+T)

q
1
(nT)

q
1
(nT)

x(nT)

x(nT)

y(nT)Subnetwork A

Subnetwork A

(a)

(b)

y(nT)

Figure 4.18 Arbitrary discrete-time network.

where Tk is the transmittance of the kth direct path between input and node i , 	 is the determinant
of the flow graph, and 	k is the determinant of the subgraph that does not touch the kth direct
path between input and node i (see Sec. 4.4.3). Since there are no complete loops in the graph of
Subnetwork A, we have

	 = 	k = 1

Furthermore, since there are no unit delays in Subnetwork A, the transmittances Tk are independent
of the shift operator E−1 and we conclude that

qi (nT + T) = bi x(nT) (4.47)

for i = 1, 2, . . . , N where b1, b2, . . . , bN are constants independent of nT for a time-invariant
discrete-time system.

Similarly, if input x(nT) and all the state variables except the j th state variable are assumed
to be zero, we have

qi (nT + T) = ai j q j (nT) (4.48)

178 DIGITAL SIGNAL PROCESSING

for i = 1, 2, . . . , N where a1 j , a2 j , . . . , aN j are again constants independent of nT for a time-
invariant discrete-time system.

Now if the system is linear, then from the principle of superposition the response at the
input of the i th unit delay is the sum of all the contributions originating from all the state vari-
ables plus the contribution from the input of the system. Hence, from Eqs. (4.47) and (4.48), we
obtain

qi (nT + T) =
N∑

j=1

ai j q j (nT) + bi x(nT) (4.49)

for i = 1, 2, . . . , N . Similarly, the response of the system, y(nT), is made of contributions from
all the state variables plus the input of the system, and for the same reasons as before, we have

y(nT) =
N∑

j=1

c j q j (nT) + d0x(nT) (4.50)

Therefore, from Eqs. (4.49) and (4.50), the discrete-time system can be characterized by the system
of equations

q(nT + T) = Aq(nT) + bx(nT) (4.51a)

y(nT) = cT q(nT) + dx(nT) (4.51b)

where

A =

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

...
aN1 aN2 · · · aN N

 b =

b1

b2
...

bN

cT = [
c1 c2 · · · cN

]
d = d0

and

q(nT) = [q1(nT) q2(nT) · · · qN (nT)]T (4.52)

is a column vector whose elements are the state variables of the discrete-time network. This is referred
to as a state-space characterization.

DISCRETE-TIME SYSTEMS 179

y(nT)

q3(nT)

x(nT)

3
1

2
1

4
1

2

q3(nT+T)

q2(nT)

q2(nT+T)

q1(nT)

q1(nT+T)

Figure 4.19 Parallel discrete-time system (Example 4.13).

Example 4.13 Obtain a state-space representation for the parallel system shown in Fig. 4.19.

Solution

State variables can be assigned to the system as shown in Fig. 4.19. By inspection, we
obtain

q1(nT + T) = 1
2 q1(nT) + x(nT)

q2(nT + T) = 1
3 q2(nT) + x(nT)

q3(nT + T) = 1
4 q3(nT) + x(nT)

and

y(n) = q1(nT) + q2(nT) + 2q3(nT)

180 DIGITAL SIGNAL PROCESSING

Therefore,

q(nT + T) = Aq(nT) + bx(nT)

y(n) = cT q(nT) + dx(nT)

where q(nT) is the state-variable vector and

A =

 1

2 0 0
0 1

3 0
0 0 1

4

 b =

1

1
1

 c =

1

1
2

 d = 0

In a state-space representation, state-variables can be assigned to nodes arbitrarily, e.g., in
Example 4.13, q1(nT) could be assigned to the output of any one of the three unit delays, q2(nT) to
the output of any one of the two remaining unit delays, and q3(nT) to the output of the remaining
unit delay. In each possible assignment, a different representation would be obtained and, in effect,
the state-space approach does not yield a unique representation.

A state-space characterization can also be obtained from a signal flow graph as illustrated by
the following example.

Example 4.14 Obtain a state-space characterization for the system of Fig. 4.6.

Solution

State variables can be assigned to the flow graph of the system as depicted in Fig. 4.20,
where

q1(nT + T) = q2(nT)

q2(nT + T) = q3(nT)

q3(nT + T) = −b3q1(nT) − b2q2(nT) − b1q3(nT) + x(nT)

The output of the system can be expressed as

y(nT) = a3q1(nT) + a2q2(nT) + a1q3(nT) + a0q3(nT + T)

DISCRETE-TIME SYSTEMS 181

11

−b1

−b2

 −b3

1a
0

a1

a2

a3E−1

E −1

E−1

q
3
(nT + T)

q
1
(nT)

x(nT)

q
3
(nT)

q
2
(nT)

y(nT)

Figure 4.20 Assignment of state variables for the discrete-time system of Fig. 4.6.

and on eliminating q3(nT + T), we obtain

y(nT) = (a3 − a0b3)q1(nT) + (a2 − a0b2)q2(nT) + (a1 − a0b1)q3(nT) + a0x(nT)

Hence, the system can be represented by

q(nT + T) = Aq(nT) + bx(nT)

y(nT) = cT q(nT) + dx(nT)

where

A =

 0 1 0

0 0 1
−b3 −b2 −b1

 b =

0

0
1

cT = [(a3 − a0b3) (a2 − a0b2) (a1 − a0b1)] d = a0

and

q(nT) = [q1(nT) q2(nT) q3(nT)]T (4.53)

Note that state variables must always be assigned at the outputs of unit delays but if a signal
flow-graph representation is used, it is sometimes possible to inadvertently assign one or more
state variables to nodes that are not outputs of unit delays. Consider, for example, the discrete-time
network of Fig. 4.21a which can be represented by the signal flow graph of Fig. 4.21b. Assigning
state-variables to nodes 2 and 3 will lead to erroneous results simply because these nodes represent
the outputs of the adders, not of the unit delays.The problem can be avoided by working directly
with the network or by inserting new nodes at the outputs of the unit delays as depicted in Fig. 4.21c.

182 DIGITAL SIGNAL PROCESSING

5

4

x(nT)

y(nT)

q2(nT)q1(nT)

a0

(a)

a1a2

−b2 −b1

3 2 1

x(nT)

a0

y(nT)
12345

1
−b1

a1

a2

−b2

E−1

E −1

(b)

x(nT)

a0

y(nT)
12345

1
−b1

a1

a2

−b2

E −1

(c)

1
1E −1

Figure 4.21 Assignment of state variables.

Example 4.15 A system can be represented by the state-space equations in Eqs. (4.51a) and
(4.51b) with

A =

− 1

2 − 1
3 − 1

4
1 0 0
0 1 0

 b =

2

0
0

 cT = [− 1

4
1
6

1
12

]
d = 2

Deduce the difference equation of the system.

DISCRETE-TIME SYSTEMS 183

Solution

From Eqs. (4.51a) and (4.51b), the state-space equations can be written out as

q1(nT + T) = − 1
2 q1(nT) − 1

3 q2(nT) − 1
4 q3(nT) + 2x(nT) (4.54a)

q2(nT + T) = q1(nT) (4.54b)

q3(nT + T) = q2(nT) (4.54c)

and

y(nT) = − 1
4 q1(nT) + 1

6 q2(nT) + 1
12 q3(nT) + 2x(nT) (4.55)

From Eqs. (4.54b) and (4.54c), we can write

Eq2(nT) = q1(nT) or q2(nT) = E−1q1(nT) (4.56a)

Eq3(nT) = q2(nT) or q3(nT) = E−1q2(nT)

= E−2q1(nT) (4.56b)

Now if we eliminate q2(nT) and q3(nT) in Eq. (4.54a), we get

Eq1(nT) = − 1
2 q1(nT) − 1

3E−1q1(nT) − 1
4E−2q1(nT) + 2x(nT)

and hence [E + 1
2 + 1

3E−1 + 1
4E−2

]
q1(nT) = 2x(nT)

or

q1(nT) = 2

E + 1
2 + 1

3E−1 + 1
4E−2

x(nT) (4.57)

Similarly, if we eliminate q2(nT) and q3(nT) in Eq. (4.55), we get

y(nT) = − 1
4 q1(nT) + 1

6E−1q1(nT) + 1
12E−2q1(nT) + 2x(nT)

= [− 1
4 + 1

6E−1 + 1
12E−2

]
q1(nT) + 2x(nT) (4.58)

If we now eliminate q1(nT) in Eq. (4.58) using Eq. (4.57), we have

y(nT) = 2
[− 1

4 + 1
6E−1 + 1

12E−2
]

E + 1
2 + 1

3E−1 + 1
4E−2

x(nT) + 2x(nT)

=
[
2 + 1

2E−1 + E−2 + 2
3E−3

]
1 + 1

2E−1 + 1
3E−2 + 1

4E−3
x(nT)

184 DIGITAL SIGNAL PROCESSING

Alternatively, we can write

[
1 + 1

2E−1 + 1
3E−2 + 1

4E−3
]

y(nT) =[
2+ 1

2E−1 +E−2 + 2
3E−3

]
x(nT)

or

y(nT) = 2x(nT) + 1
2 x(nT − T) + x(nT − 2T) + 2

3 x(nT − 3T)

− 1
2 y(nT − T) − 1

3 y(nT − 2T) − 1
4 y(nT − 3T)

4.8.3 Time-Domain Analysis

The preceding state-space characterization leads directly to a relatively simple time-domain analysis.
For n = 0, 1, . . . , Eq. (4.51a) gives

q(T) = Aq(0) + bx(0)

q(2T) = Aq(T) + bx(T)

q(3T) = Aq(2T) + bx(2T)

· ·
Hence

q(2T) = A2q(0) + Abx(0) + bx(T)

q(3T) = A3q(0) + A2bx(0) + Abx(T) + bx(2T)

and in general

q(nT) = Anq(0) +
n−1∑
k=0

A(n−1−k)bx(kT)

where A0 is the N × N unity matrix. Therefore, from Eq. (4.51b), we obtain

y(nT) = cT Anq(0) + cT
n−1∑
k=0

A(n−1−k)bx(kT) + dx(nT)

If x(nT) = 0 for all n < 0, then for n = −1 Eq. (4.51a) yields

q(0) = bi x(−T) = 0

Thus for an initially relaxed system

y(nT) = cT
n−1∑
k=0

A(n−1−k)bx(kT) + dx(nT)

DISCRETE-TIME SYSTEMS 185

The impulse response h(nT) of the system is

h(nT) = cT
n−1∑
k=0

A(n−1−k)bδ(kT) + dδ(nT)

For n = 0

h(0) = dδ(nT) = d0

and for n > 0

h(nT) = cT A(n−1)bδ(0) + cT A(n−2)bδ(T) + · · · + dδ(nT)

Therefore,

h(nT) =
{

d0 for n = 0

cT A(n−1)b for n > 0
(4.59)

Similarly, the unit-step response of the system is

y(nT) = cT
n−1∑
k=0

A(n−1−k)bu(kT) + du(nT)

Hence, for n ≥ 0

y(nT) = cT
n−1∑
k=0

A(n−1−k)b + d (4.60)

Example 4.16 An initially relaxed discrete-time system can be represented by the matrices

A =
[

0 1
1
4 − 1

2

]
b =

[
0
1

]
cT = [

7
8

5
4

]
d = 3

2

Find h(17T).

Solution

From Eq. (4.59), we immediately get

h(17T) = cT A16b

By forming the matrices A2, A4, A8, and then A16 through matrix multiplication, we get

h(17T) = [
7
8

5
4

] 610
65,536 − 987

32,768

− 987
131,072

1597
65,536

[

0
1

]
= 1076

262,144

186 DIGITAL SIGNAL PROCESSING

4.8.4 Applications of State-Space Method

The state-space method offers the advantage that systems can be analyzed through the manipulation
of matrices which can be carried out very efficiently using array or vector processors. Another
important advantage of this method is that it can be used to characterize and analyze time-dependent
systems, that is, systems in which one or more of the elements of A, b, and cT and possibly constant
d depend on nT . This advantage follows from the fact that only linearity is a prerequisite property
for the derivation of the state-state representation.

Time-varying systems like adaptive filters are now used quite extensively in a variety of
communications applications. The state-space method can also be used to realize digital filters
that have certain important advantages, e.g., increased signal-to-noise ratio (see Sec. 14.7).

A negative aspect associated with state-space time-domain analysis is the fact that the solutions
are not in closed form in general.

REFERENCES

[1] R. J. Schwarz and B. Friedland, Linear Systems, McGraw-Hill, New York, 1965.
[2] R. Butler and E. Kerr, An Introduction to Numerical Methods, Pitman, London, 1962.
[3] J. R. Abrahams and G. P. Coverley, Signal Flow Analysis, Pergamon, New York, 1965.
[4] B. C. Kuo, Automatic Control Systems, Prentice-Hall, Englewood Cliffs, N.J., 1962.
[5] N. Balabanian and T. A. Bickart, Electrical Network Theory, Wiley, New York, 1969.
[6] S. J. Mason, “Feedback theory—Further properties of signal-flow graphs,” Proc. IRE, Vol. 44,

pp. 920–926, July 1956.

PROBLEMS

4.1. By using appropriate tests, check the systems characterized by the following equations for linearity, time
invariance, and causality:
(a) y(nT) = Rx(nT) = 1.25 + 2.5x(nT) + 5.0(nT + 2T)x(nT − T)

(b) y(nT) = Rx(nT) =
{

6x(nT − 5T) for x(nT) ≤ 6
7x(nT − 5T) for x(nT) > 6

(c) y(nT) = Rx(nT) = (nT + 3T)x(nT − 3T)

4.2. Repeat Prob. 4.1 for the systems characterized by the following equations:
(a) y(nT) = Rx(nT) = 5nT x2(nT)
(b) y(nT) = Rx(nT) = 3x(nT + 3T)
(c) y(nT) = Rx(nT) = x(nT) sin ωnT

4.3. Repeat Prob. 4.1 for the systems characterized by the following equations:
(a) y(nT) = Rx(nT) = nT + K1	x(nT) where 	x(nT) = x(nT + T) − x(nT)
(b) y(nT) = Rx(nT) = 1 + K2∇x(nT) where ∇x(nT) = x(nT) − x(nT − T)
(c) y(nT) = Rx(nT) = x(nT + T)e−nT

4.4. Repeat Prob. 1.1 for the systems characterized by the following equations:
(a) y(nT) = Rx(nT) = x2(nT + T)e−nT sin ωnT

(b) y(nT) = Rx(nT) = 1
3 e−0.01nT

∑1
i=−1 x(nT − iT)

(c) y(nT + T) = Rx(nT) = 	x(nT) − ∇x(nT)

DISCRETE-TIME SYSTEMS 187

4.5. (a) Obtain the difference equation of the discrete-time network shown in Fig. P4.5a.
(b) Repeat part(a) for the network of Fig. P4.5b.

y(nT)x(nT)

1
2

−

Figure P4.5a

x(nT) y(nT)

1
2

−

Figure P4.5b

4.6. (a) Obtain the difference equation of the network shown in Fig. P4.6a.
(b) Repeat part(a) for the network of Fig. P4.6b.

x(nT) y(nT)

a2

a1 −b1

 −b2

Figure P4.6a

188 DIGITAL SIGNAL PROCESSING

x(nT) y(nT)

a2

a1 −b1

 −b2

Figure P4.6b

4.7. Two second-order system sections of the type shown in Fig. P4.6a are connected in cascade as in Fig. P4.7.
The parameters of the two sections are a11, a21, −b11, −b21 and a12, a22, −b12, −b22, respectively. Deduce
the characterization of the combined system.

x(nT) y(nT)

Figure P4.7

4.8. Two second-order systems of the type shown in Fig. P4.6a are connected in parallel as in Fig. P4.8.
Obtain the difference equation of the combined system.

x(nT) y(nT)

Figure P4.8

4.9. Fig. P4.9 shows a network with three inputs and three outputs.
(a) Derive a set of equations characterizing the network.
(b) Express the equations obtained in part (a) in the form

y = Mx

where y and x are column vectors given by [y1(nT) y2(nT) y3(nT)]T and [x1(nT) x2(nT) x3(nT)]T ,
respectively, and M is a 3 × 3 matrix.

DISCRETE-TIME SYSTEMS 189

x3(nT)

x2(nT)

x1(nT)

y3(nT)

y2(nT)

y1(nT)

m2m1

−1

Figure P4.9

4.10. The network of Fig. P4.10 can be characterized by the equation

b = Ca

where b = [b1 b2 b3]T and a = [a1 a2 a3]T are column vectors and C is a 3 × 3 matrix. Obtain C.

a1 b2

b1 a2

−1

a3 b3

m2 −1

m1 −1

Figure P4.10

190 DIGITAL SIGNAL PROCESSING

4.11. By using appropriate tests, check the systems of Fig. P4.11a to c for linearity, time invariance, and
causality.
(a) The system of Fig. P4.11a uses a device N whose response is given by

Rx(nT) = |x(nT)|

(b) The system of Fig. P4.11b uses a multiplier M whose parameter is given by

m = 0.1x(nT)

(c) The system of Fig. P4.11c uses a multiplier M whose parameter is given by

m = 0.1v(nT)

where v(nT) is an independent control signal.

y(nT)x(nT)

N

Figure P4.11a

Mx(nT) y(nT)

0.1

m

Figure P4.11b

Mv(nT)

x(nT)

y(nT)

0.1

m

Figure P4.11c

4.12. An initially relaxed discrete-time system employs a device D, as shown in Fig. P4.12, which is charac-
terized by the equation

w(nT) = 2(−1)n|v(nT)|

DISCRETE-TIME SYSTEMS 191

x(nT)

v(nT) w(nT)

y(nT)

2

3

D

Figure P4.12

(a) Deduce the difference equation.
(b) By using appropriate tests, check the system for linearity, time invariance, and causality.
(c) Evaluate the time-domain response for the period 0 to 10T if the input signal is given by

x(nT) = u(nT) − 2u(nT − 4T)

where u(nT) is the unit step.
(d) What is the order of the system?

4.13. The discrete-time system of Fig. P4.13 uses a device D whose response to an input w(nT) is d0+d1w(nT),
where d0 and d1 are nonzero constants. By using appropriate tests, check the system for linearity, time
invariance, and stability.

x(nT) y(nT)

m1

m2

w(nT)
D

Figure P4.13

4.14. A discrete-time system is characterized by the equation

y(nT) = Rx(nT)

= a0x(nT) + a1x(nT − T) + nT x(nT)x(nT − T) + a0a1x(nT − 2T)

(a) By using appropriate tests, check the system for linearity, time invariance, and stability.
(b) Find the unit-step response at t = 5T if a0 = 2, a1 = 3, and T = 1 assuming that the system is

initially relaxed.

192 DIGITAL SIGNAL PROCESSING

4.15. The system of Fig. P4.15 is initially relaxed. Find the time-domain response for the period nT = 0
to 6T , if

x(nT) =
{

sin ωnT for n ≥ 0

0 otherwise

where ω = π/6T and T = 1.

r(nT)

x(nT)

y(nT)

3
m

Figure P4.15

4.16. (a) Obtain the signal flow graph of the system shown in Fig. P4.16.
(b) Deduce the difference equation by using the node elimination method.

m22
m12

y(nT)

m21

x(nT)

m11

Figure P4.16

4.17. (a) Obtain the signal flow graph of the system shown in Fig. P4.17.
(b) Deduce the difference equation by using the node elimination method.

b1
a1

x(nT) y(nT)

a0

b2
a3

a2

Figure P4.17

DISCRETE-TIME SYSTEMS 193

4.18. (a) Obtain the signal flow graph of the system shown in Fig. P4.6a.
(b) Deduce the difference equation by using the node elimination method.

4.19. Deduce the difference equation of the system shown in Fig. 4.19 by using the node elimination method.

4.20. Derive a closed-form expression for the response of the system in Fig. 4.5a to an excitation

x(nT) =
{

1 for 0 ≤ n ≤ 3

0 otherwise

The system is initially relaxed and p = 1
2 .

4.21. (a) Show that

r (nT) =
{

0 for n ≤ 0

T
∑n

k=1 u(nT − kT) otherwise

(b) By using this relation obtain the unit-ramp response of the system shown in Fig. 4.5a in closed form.
The system is initially relaxed.

(c) Sketch the response for α > 0, α = 0, and α < 0.

4.22. The excitation in the first-order system of Fig. 4.5a is

x(nT) =

1 for 0 ≤ n ≤ 4
2 for n > 4
0 for n < 0

Find the response in closed form.

4.23. Repeat Prob. 4.22 for an excitation

x(nT) =

1 for n = 0
0 for n < 0, n = 1, 2, 3, 4
1 for n > 4

4.24. Fig. P4.24 shows a second-order recursive system. Using MATLAB or similar software, compute and
plot the unit-step response for 0 ≤ n ≤ 15 if

(a) α = 1 β = − 1
2

(b) α = 1
2 β = − 1

8

(c) α = 5
4 β = − 25

32

Compare the three responses and determine the frequency of the transient oscillation in terms of T where
possible.

β

α

x(nT) y(nT)

1
2

Figure P4.24

194 DIGITAL SIGNAL PROCESSING

4.25. Fig. P4.25 shows a system comprising a cascade of two first-order sections. The input signal is

x(nT) =
{

sin ωnT for n ≥ 0

0 otherwise

y (nT)x(nT)

0.8 0.6

Figure P4.25

and T = 1 ms.
(a) Assuming that the two sections are linear, give an expression for the overall steady-state sinusoidal

response.
(b) Compute the gain and phase shift of the system for a frequency ω = 20π rad/s. Repeat for ω =

200π rad/s.

4.26. Fig. P4.26 shows a linear first-order system.
(a) Assuming a sinusoidal excitation, derive an expression for the steady-state gain of the system.
(b) Using MATLAB, compute and plot the gain in decibels (dB), that is, 20 log M(ω), versus log ω for

ω = 0 to 6 krad/s if T = 1 ms.
(c) Determine the lowest frequency at which the gain is reduced by 3 dB relative to the gain at zero

frequency.

y(nT)x(nT)

1
2

1
2

Figure P4.26

4.27. Two first-order systems of the type shown in Fig. 4.5a are connected in parallel as in Fig. P4.8. The
multiplier constants for the two systems are m1 = e0.6 and m2 = e0.7. Find the unit-step response of the
combined network in closed form.

4.28. The unit-step response of a system is

y(nT) =
{

nT for n ≥ 0
0 for n < 0

(a) Using the convolution summation, find the unit-ramp response.
(b) Check the system for stability.

DISCRETE-TIME SYSTEMS 195

4.29. A nonrecursive system has an impulse response

h(nT) =

nT for 0 ≤ n ≤ 4

(8 − n)T for 5 ≤ n ≤ 8

0 otherwise

The sampling frequency is 2π rad/s.
(a) Deduce the network of the system.
(b) By using the convolution summation, determine the response y(nT) at nT = 4T if the input signal

is given by

x(nT) = u(nT − T)e−nT

(c) Illustrate the solution in part (b) by a graphical construction.

4.30. An initially relaxed nonrecursive causal system was tested with the input signal

x(nT) = u(nT) + u(nT − 2T)

and its response was found to be as shown in the following table:

n 0 1 2 3 4 5 · · · 100 · · ·
y(nT) 3 5 9 11 12 12 · · · 12 · · ·

(a) Find the impulse response for the period 0 to 5T .
(b) Find the response for the period 0 to 5T if the input is changed to

x(nT) = u(nT) − u(nT − 2T)

4.31. The response of an initially relaxed fifth-order causal nonrecursive system to the excitation

x(nT) = u(nT)n

is given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
y(nT) 0 1 3 7 14 25 41 57 73 89 105 · · ·

(a) Find the impulse response.
(b) Obtain the difference equation.

4.32. A discrete-time system has an impulse response

h(nT) = u(nT)nT

(a) Using the convolution summation, find the response y(nT) for an excitation

x(nT) = u(nT) sin 2nT

at nT = 4T . The sampling frequency is ωs = 16 rad/s.
(b) Illustrate graphically the steps involved in the solution of part (a).

196 DIGITAL SIGNAL PROCESSING

4.33. An initially relaxed nonrecursive system was tested with the input signal

x(nT) = 2u(nT)

and found to have the response given in the following table:

n 0 1 2 3 4 5 · · · 100 · · ·
y(nT) 2 6 12 20 30 30 · · · 30 · · ·

(a) Deduce the difference equation.
(b) Construct a possible network for the system.

4.34. The unit-step response of an initially relaxed nonrecursive causal system is given in the following table:

n 0 1 2 3 4 5 · · ·
y(nT) 0 1 9 36 100 225 · · ·

(a) Find the impulse response for 0 ≤ nT ≤ 5T using the convolution summation.
(b) Assuming that the general pattern of the impulse response continues in subsequent values of nT ,

write a closed-form expression for the impulse response.
(c) Is the system stable or unstable? Justify your answer.

4.35. (a) A discrete-time system has an impulse response

h(nT) = u(nT − T)
1

n

By using an appropriate test, check the system for stability.
(b) Repeat part (a) for the system characterized by

h(nT) = u(nT − T)
1

n!
4.36. Check the systems represented by the following impulse responses for stability:

(a) h(nT) = u(nT)n

2n

(b) h(nT) = u(nT)n

n + 1

(c) h(nT) = u(nT − T)
(n + 1)

n2

4.37. (a) Check the system of Fig. P4.37a for stability.
(b) Repeat part (a) for the system of Fig. P4.37b.

y(nT)x(nT)

2

2

Figure P4.37a

DISCRETE-TIME SYSTEMS 197

a2

y(nT)

x(nT)

a1a0 a3

Figure P4.37b

4.38. (a) Derive a state-space representation for the system of Fig. P4.38.
(b) Calculate the response y(nT) at nT = 3T for an excitation

x(nT) = 2δ(nT) + u(nT)

if m1 = 1
2 and m2 = 1

4 .

x(nT) y(nT)

m2

m1

Figure P4.38

4.39. Derive a state-space representation for the system of Fig. P4.5a.

4.40. Derive a state-space representation for the system of Fig. P4.6a.

4.41. Derive a state-space representation for the system of Fig. P4.17.

4.42. Derive a state-space representation for the system of Fig. 4.21a.

4.43. Derive a state-space representation for the system of Fig. P4.43.

x(nT)

m1 m2

y(nT)

Figure P4.43

198 DIGITAL SIGNAL PROCESSING

4.44. Derive a state-space representation for the system of Fig. P4.44.

x(nT) y(nT)

1
2

− 1
4

− 1
5

−1
3

−

Figure P4.44

4.45. The system in Fig. 4.5c is initially relaxed.
(a) Derive a state-space representation.
(b) Give an expression for the response of the system at nT = 5T if

x(nT) = u(nT) sin ωnT

4.46. Derive a state-space representation for the system of Fig. P4.46.

x(nT) y(nT)

−0.5

−0.25

−0.125

2

3

Figure P4.46

4.47. An initially relaxed discrete-time system is characterized by the state-space equations with

A =
[

0 1

− 5
16 −1

]
b =

[
0
1

]
cT = [

11
8 2

]
d = 2

(a) Calculate the impulse response for the period nT = 0 to 5T and for nT = 17T using the state-space
method.

(b) Calculate the unit-step response for nT = 5T .

4.48. (a) Deduce the difference equation of the system in Prob. 4.47.
(b) Calculate the impulse response for the period nT = 0 to 5T by using the difference equation.
(c) Calculate the unit-step response for nT = 5T by using the difference equation.

4.49. A discrete-time system is characterized by the state-space equations with

A =
[

0 1

− 1
4

1
2

]
b =

[
0
1

]
cT = [− 1

4
3
2

]
d = 1

DISCRETE-TIME SYSTEMS 199

(a) Assuming that y(nT) = 0 for n < 0, find y(nT) for the period nT = 0 to 5T if x(nT) = δ(nT).
(b) Repeat part (a) if x(nT) = u(nT)
(c) Derive a network for the system.

4.50. A signal

x(nT) = 3u(nT) cos ωnT

is applied at the input of the system in Prob. 4.47. Find the response at instant 5T if ω = 1/10T by using
the convolution summation.

4.51. Find the response of the system in Prob. 4.47 at nT = 5T if the excitation is

x(nT) = u(nT − T)e−nT

4.52. Find the response of the system in Prob. 4.49 at nT = 5T if the excitation is

x(nT) = u(nT) + u(nT − 2T)

This page intentionally left blank

CHAPTER

5
THE APPLICATION

OF THE Z
TRANSFORM

5.1 INTRODUCTION

Through the use of the z transform, a discrete-time system can be characterized in terms of a so-called
discrete-time transfer function, which is a complete representation of the system in the z domain.
The transfer function can be used to find the response of a given system to an arbitrary time-domain
excitation, to find its frequency response, and to ascertain whether the system is stable or unstable.
Also, as will be shown in later chapters, the transfer function serves as the stepping stone between
desired specifications and system design.

In this chapter, the discrete-time transfer function is defined and its properties are examined. It
is then used as a tool for the stability, time-domain, and frequency-domain analysis of discrete-time
systems. In Sec. 5.2, it is shown that the transfer function is a ratio of polynomials in complex
variable z and, as a result, a discrete-time system can be represented by a set of zeros and poles.
In Sec. 5.3, it is shown that the stability of a system is closely linked to the location of its poles.
Several stability criteria are then presented, which are simple algorithms that enable one to determine
with minimal computational effort whether a system is stable or unstable. Sections 5.4 and 5.5 deal
with general time-domain and frequency-domain methods, respectively, that can be used to analyze
systems of arbitrary order and complexity. The chapter concludes by introducing two types of system
imperfection, known as amplitude distortion and delay (or phase) distortion, which can compromise
the quality of the signal being processed.

201

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

202 DIGITAL SIGNAL PROCESSING

5.2 THE DISCRETE-TIME TRANSFER FUNCTION

The transfer function of a discrete-time system is defined as the ratio of the z transform of the
response to the z transform of the excitation.

Consider a linear, time-invariant, discrete-time system, and let x(nT), y(nT), and h(nT) be
the excitation, response, and impulse response, respectively. From the convolution summation in
Eq. (4.36a), we have

y(nT) =
∞∑

k=−∞
x(kT)h(nT − kT)

and, therefore, from the real-convolution theorem (Theorem 3.7),

Z y(nT) = Zh(nT)Zx(nT)

or Y (z) = H (z)X (z)

In effect, the transfer function of a discrete-time system is the z transform of the impulse response.
Continuous-time systems can also be characterized in terms of transfer functions. In later

chapters we shall be dealing with analog filters, which are continuous-time systems, and with digital
filters, which are discrete-time systems, at the same time. To avoid possible confusion, we refer to the
transfer functions of analog systems as continuous-time and those of digital systems as discrete-time.

The exact form of H (z) can be derived (i) from the difference equation characterizing the
system, (ii) from a network representation of the system, or (iii) from a state-space characterization,
if one is available.

5.2.1 Derivation of H(z) from Difference Equation

A noncausal, linear, time-invariant, recursive discrete-time system can be represented by the differ-
ence equation

y(nT) =
N∑

i=−M

ai x(nT − iT) −
N∑

i=1

bi y(nT − iT)

where M and N are positive integers. On applying the z transform to both sides of the difference
equation, we get

Z y(nT) = Z
N∑

i=−M

ai x(nT − iT) − Z
N∑

i=1

bi y(nT − iT)

If we use the linearity and time-shifting theorems of the z transform, we obtain

Y (z) = Z y(nT) =
N∑

i=−M

ai z
−iZx(nT) −

N∑
i=1

bi z
−iZ y(nT)

=
N∑

i=−M

ai z
−i X (z) −

N∑
i=1

bi z
−i Y (z)

THE APPLICATION OF THE Z TRANSFORM 203

Now if we solve for Y (z)/X (z) and then multiply the numerator and denominator polynomials by
zN , we get

H (z) = Y (z)

X (z)
=

∑N
i=−M ai z−i

1 + ∑N
i=1 bi z−i

=
∑N

i=−M ai zN−i

zN + ∑N
i=1 bi zN−i

= a(−M)zM+N + a(−M+1)zM+N−1 + · · · + aN

zN + b1zN−1 + · · · + bN
(5.1)

For example, if M = N = 2 we have

H (z) = N (z)

D(z)
= a(−2)z4 + a(−1)z3 + a0z2 + a1z + a2

z2 + b1z + b2

For a causal, linear, time-invariant system, we have M = 0 and hence the transfer function
assumes the form

H (z) =
∑N

i=0 ai zN−i

zN + ∑N
i=1 bi zN−i

= a0zN + a1zN−1 + · · · + aN

zN + b1zN−1 + · · · + bN
(5.2)

If we compare Eqs. (5.1) and (5.2), we note that in a noncausal recursive system, the degree of the
numerator polynomial is greater than that of the denominator polynomial.

In a nonrecursive system, coefficients bi are all zero and hence the above analysis gives

H (z) = a(−M)z
M + a(−M+1)z

M−1 + · · · + aN z−N

= a(−M)zM+N + a(−M+1)zM+N−1 + · · · + aN

zN
(5.3)

The order of a discrete-time transfer function, which is also the order of the system, is the order
of N (z) or D(z), whichever is larger, i.e., M + N , if the system is noncausal or N if it is causal.

By factorizing the numerator and denominator polynomials, the transfer function of an arbitrary
discrete-time system can be put in the form

H (z) = N (z)

D(z)
= H0

∏Z
i=1(z − zi)mi∏P

i=1(z − pi)ni
(5.4)

where

z1, z2, . . . , zZ are the zeros and p1, p2, . . . , pN are the poles of H (z),
mi and ni are the orders of zero zi and pole pi , respectively,
M + N = ∑Z

i=1 mi is the order of the numerator polynomial N (z),
N = ∑P

i=1 ni is the order of the denominator polynomial D(z), and
H0 is a multiplier constant.

Thus a discrete-time system can be represented by a zero-pole plot such as the one in Fig. 5.1. From
Eq. (5.3), we note that all the poles of a nonrecursive system are located at the origin of the z plane.

204 DIGITAL SIGNAL PROCESSING

z plane

Re z

jIm z

Figure 5.1 Typical zero-pole plot for H (z).

5.2.2 Derivation of H(z) from System Network

The z-domain characterizations of the unit delay, the adder, and the multiplier are obtained from
Table 4.1 as

Y (z) = z−1 X (z) Y (z) =
K∑

i=1

Xi (z) and Y (z) = m X (z)

respectively. By using these relations, H (z) can be derived directly from a network representation
as illustrated in the following example.

Example 5.1 Find the transfer function of the system shown in Fig. 5.2.

Solution

From Fig. 5.2, we can write

W (z) = X (z) + 1
2 z−1W (z) − 1

4 z−2W (z)

Y (z) = W (z) + z−1W (z)

Hence

W (z) = X (z)

1 − 1
2 z−1 + 1

4 z−2
and Y (z) = (1 + z−1)W (z)

Therefore,

Y (z)

X (z)
= H (z) = z(z + 1)

z2 − 1
2 z + 1

4

THE APPLICATION OF THE Z TRANSFORM 205

Y(z)
W(z)

X(z)

1
2

1
4

−

Figure 5.2 Second-order recursive system (Example 5.1).

5.2.3 Derivation of H(z) from State-Space Characterization

Alternatively, H (z) can be deduced from a state-space characterization. As was shown in Sec. 4.8.2,
an arbitrary discrete-time system can be represented by the equations

q(nT + T) = Aq(nT) + bx(nT) (5.5a)

y(nT) = cT q(nT) + dx(nT) (5.5b)

(see Eqs. (4.51a) and (4.51b)). By applying the z transform to Eq. (5.5a), we obtain

Zq(nT + T) = AZq(nT) + bZx(nT) = AQ(z) + bX (z) (5.6)

and since

Zq(nT + T) = zZq(nT) = zQ(z) (5.7)

Equations (5.6) and (5.7) give

zQ(z) = AQ(z) + bX (z)

or Q(z) = (zI − A)−1bX (z) (5.8)

where I is the N × N identity matrix. Now on applying the z transform to Eq. (5.5b), we have

Y (z) = cT Q(z) + d X (z)

and on eliminating Q(z) using Eq. (5.8), we get

Y (z)

X (z)
= H (z) = N (z)

D(z)
= cT (zI − A)−1b + d (5.9)

206 DIGITAL SIGNAL PROCESSING

Example 5.2 A discrete-time system can be represented by the state-space equations in
Eq. (5.5) with

A =
[− 1

2 − 1
3

1 0

]
b =

[
2
0

]
cT = [− 1

4
1
6

]
d = 2

Deduce the transfer function of the system.

Solution

The problem can be solved by evaluating the inverse of matrix

(zI − A) =
[

z + 1
2

1
3−1 z

]
(5.10)

and then using Eq. (5.9).

The inverse of an n × n matrix

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

is given by [1, 2]

A−1 = 1

det A

A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · · ...
An1 An2 · · · Ann

T

(5.11a)

where det A is the determinant of A,

Ai j = (−1)i+ j det Mi j

and Mi j represents matrix A with its i th row and j th column deleted. Ai j and det Mi j are
known as the cofactor and minor determinant of element ai j , respectively. For a 2 × 2
matrix, we have

A−1 = 1

det A

[
A11 A12

A21 A22

]T

= 1

det A

[
a22 −a21

−a12 a11

]T

= 1

det A

[
a22 −a12

−a21 a11

]
(5.11b)

THE APPLICATION OF THE Z TRANSFORM 207

Now from Eqs. (5.10) and (5.11b), we obtain

(zI − A)−1 = 1

(z + 1
2)z + 1

3

[
z − 1

3
1 z + 1

2

]
(5.12)

and from Eqs. (5.9) and (5.12), we have

H (z) = cT (zI − A)−1b + d

= 1

(z + 1
2)z + 1

3

[− 1
4

1
6

] [z − 1
3

1 z + 1
2

] [
2
0

]
+ 2

= 1

z2 + 1
2 z + 1

3

[− 1
4

1
6

] [2z
2

]
+ 2

= − 1
2 z + 1

3 + 2z2 + z + 2
3

z2 + 1
2 z + 1

3

= 2z2 + 1
2 z + 1

z2 + 1
2 z + 1

3

5.3 STABILITY

As can be seen in Eq. (5.1), the discrete-time transfer function is a rational function of z with real
coefficients, and for causal systems the degree of the numerator polynomial is equal to or less than
that of the denominator polynomial. We shall now show that the poles of the transfer function or,
alternatively, the eigenvalues of matrix A in a state-space characterization, determine whether the
system is stable or unstable.

5.3.1 Constraint on Poles

Consider a causal system with simple poles characterized by the transfer function

H (z) = N (z)

D(z)
= H0

∑M
i=0 ai zM−i∏N

i=1(z − pi)
(5.13)

where N ≥ M and assume that the numerator and denominator polynomials N (z) and D(z) have
no common factors that are not constants, i.e., they are relatively prime. Since such common factors
can be canceled out at any time, they have no effect on the response of the system and, therefore,
cannot affect its stability. The impulse response of such a system is given by

h(nT) = Z−1 H (z) = 1

2π j

∮
�

H (z)zn−1 dz

and from Eq. (3.8), we get

h(0) = R0 +
N∑

i=1

Resz=pi [z
−1 H (z)] (5.14a)

208 DIGITAL SIGNAL PROCESSING

where

R0 =
{

Resz=0
[H (z)

z

]
if H (z)/z has a pole at the origin

0 otherwise

and

h(nT) =
N∑

i=1

Res
z=pi

[H (z)zn−1] (5.14b)

for all n > 0.
Now if an arbitrary function F(z) has a simple pole at z = pi and a function G(z) is analytic

at z = pi , then it can be easily shown that

Res
z=pi

[F(z)G(z)] = G(pi) Res
z=pi

F(z) (5.14c)

(see Prob. 5.9). Thus Eqs. (5.14a)–(5.14c) give

h(nT) =

R0 + ∑N

i=1 p−1
i Resz=pi H (z) for n = 0∑N

i=1 pn−1
i Resz=pi H (z) for n > 0

where the i th term in the summations is the contribution to the impulse response due to pole pi . If
we let

pi = ri e
jψi

then the impulse response can be expressed as

h(nT) =

R0 + ∑N

i=1 r−1
i e− jψi Resz=pi H (z) for n = 0∑N

i=1 rn−1
i e j(n−1)ψi Resz=pi H (z) for n > 0

(5.15)

At this point, let us assume that all the poles are on or inside a circle of radius rmax, that is,

ri ≤ rmax for i = 1, 2, . . . , N (5.16)

where rmax is the radius of the most distant pole from the origin. From Eq. (5.15), we can write

∞∑
n=0

|h(nT)| =
∣∣∣∣∣R0 +

N∑
i=1

r−1
i e− jψi Res

z=pi

H (z)

∣∣∣∣∣ +
∞∑

n=1

∣∣∣∣∣
N∑

i=1

rn−1
i e j(n−1)ψi Res

z=pi

H (z)

∣∣∣∣∣
and since |e jθ | = 1 and the magnitude of a sum of complex numbers is always equal to or less than
the sum of the magnitudes of the complex numbers (see Eq. (A.18)), we have

∞∑
n=0

|h(nT)| ≤ |R0| +
N∑

i=1

r−1
i | Res

z=pi

H (z)| +
∞∑

n=1

N∑
i=1

rn−1
i | Res

z=pi

H (z)| (5.17)

THE APPLICATION OF THE Z TRANSFORM 209

From the basics of complex analysis, if pk is a simple pole of some function F(z), then function
(z − pk)F(z) is analytic at z = pk since the factor (z − pk) will cancel out the same factor in the
denominator of F(z) and will thereby remove pole pk from F(z). Hence, the residue of F(z) at
z = pk is a finite complex number in general. For this reason, R0 as well as all the residues of H (z)
are finite and so

| Res
z=pi

H (z)| ≤ Rmax for i = 1, 2, . . . , N

where Rmax is the largest residue magnitude. If we replace the residue magnitudes by Rmax and the
radii of the poles by the largest pole radius rmax in Eq. (5.17), the inequality will continue to hold
and thus

∞∑
n=0

|h(nT)| ≤ |R0| + N Rmaxrmax + N Rmax

rmax

∞∑
n=1

rn
max

The sum at the right-hand side is a geometric series and if

rmax < 1

the series converges and, therefore, we conclude that

∞∑
n=0

|h(nT)| ≤ K < ∞

where K is a finite constant. In effect, if all the poles are inside the unit circle of the z plane, then
the impulse response is absolutely summable.

Let us now examine the situation where just a single pole of H (z), let us say pole pk , is located
on or outside the unit circle. In such a case, as n → ∞ the contributions to the impulse response
due to all the poles other than pole pk tend to zero since ri < 1 and rn−1

i → 0 for i �= k, whereas
the contribution due to pole pk either remains constant if rk = 1 or tends to get larger and larger if
rk > 1 since rn−1

k is increased as n is increased. Hence for a sufficiently large value of n, Eq. (5.15)
can be approximated as

h(nT) ≈ rn−1
k e j(n−1)ψk Res

z=pk

H (z)

and thus Eq. (5.17) gives

∞∑
n=0

|h(nT)| ≈ | Res
z=pk

H (z)|
∞∑

n=0

rn−1
k (5.18)

Since rk ≥ 1, the above geometric series diverges and as a consequence

∞∑
n=0

|h(nT)| → ∞

210 DIGITAL SIGNAL PROCESSING

z plane

Region of
stability

Regions of
instability

1

Re z

jIm z

Figure 5.3 Permissible z-plane region for the location of the poles of H (z).

That is, if at least one pole is on or outside the unit circle, then the impulse response is not absolutely
summable.

From the above analysis, we conclude that the impulse response is absolutely summable, if
and only if all the poles are inside the unit circle. Since the absolute summability of the impulse
response is a necessary and sufficient condition for system stability, the inequality in Eq. (5.16) with
rmax < 1, that is,

|pi | < 1 for i = 1, 2, . . . , N

is also a necessary and sufficient condition for stability. The permissible region for the location of
poles is illustrated in Fig. 5.3.

The above stability constraint has been deduced on the assumption that all the poles of the
system are simple. However, the constraint applies equally well to the case where the system has
one or more higher-order poles (see Prob. 5.10).

In Sec. 4.6.2, we found out that in nonrecursive systems the impulse response is always of
finite duration and that assures its absolute summability and, in turn, the stability of these systems.
This result is confirmed here by noting that the poles of these systems are always located at the origin
of the z plane, right at the center of the region of stability, as can be seen in Eq. (5.3).

Example 5.3 Check the system of Fig. 5.4 for stability.

Solution

The transfer function of the system is

H (z) = z2 − z + 1

z2 − z + 1
2

= z2 − z + 1

(z − p1)(z − p2)

THE APPLICATION OF THE Z TRANSFORM 211

−1

− 1
2

Y(z)X(z)

Figure 5.4 Second-order recursive system (Example 5.3).

where

p1, p2 = 1
2 ± j 1

2

since

|p1|, |p2| < 1

the system is stable.

5.3.2 Constraint on Eigenvalues

The poles of H (z) are the values of z for which D(z), the denominator polynomial of H (z), becomes
zero. The inverse of a matrix is given by the adjoint of the matrix divided by its determinant (see
Eq. (5.11a)). Hence, D(z) can be obtained from Eqs. (5.9) and (5.11a) as

D(z) = det(zI − A)

(see Example 5.4 below). Consequently, D(z) is zero if and only if

det(zI − A) = 0

Now the determinant of (zI − A) is the characteristic polynomial of matrix A [1, 2] and, conse-
quently, the poles of an N th-order transfer function H (z) are numerically equal to the N eigenvalues
λ1, λ2, . . . , λN of matrix A. Therefore, a system characterized by the state-space equations in Eq. (5.5)
is stable if and only if

|λi | < 1 for i = 1, 2, . . . , N

212 DIGITAL SIGNAL PROCESSING

Example 5.4 A discrete-time system is characterized by the state-space equations in Eq. (5.5)
with

A =

− 1

2 − 1
3 − 1

4
1 0 0
0 1 0

 b =

2

0
0

 cT = [− 1

4
1
6

1
12

]
d = 2

Check the system for stability.

Solution

One approach to the problem would be to find the denominator of the transfer function
D(z) and then find the zeros of D(z), which are the poles of the transfer function. We
can write

zI − A =

z + 1

2
1
3

1
4−1 z 0

0 −1 z

and from Eq. (5.11a), we obtain

(zI − A)−1 = 1

det(zI − A)

 z2 −z 1

1
3 z + 1

4 (z + 1
2)z −(z + 1

2)
− 1

4 z 1
4 (z + 1

2)z + 1
3

T

Hence Eq. (5.9) yields

Y (z)

X (z)
= H (z) = N (z)

D(z)
= cT (zI − A)−1b + d

= 1

det(zI − A)

[− 1
4

1
6

1
12

] z2 1
3 z + 1

4 − 1
4 z

−z (z + 1
2)z 1

4
1 −(z + 1

2) (z + 1
2)z + 1

3

2

0
0

 + 2

= 1

det(zI − A)

[− 1
4

1
6

1
12

] 2z2

−2z
2

 + 2

Thus polynomials N (z) and D(z) can be deduced as

N (z) = [− 1
4

1
6

1
12

] 2z2

−2z
2

 + 2 det(zI − A) (5.19a)

and

D(z) = det(zI − A) (5.19b)

THE APPLICATION OF THE Z TRANSFORM 213

respectively. Since N (z) has nothing to do with stability, all we need to do is to find the
determinant of matrix zI − A.

The determinant of a 3 × 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

can be readily obtained by writing two copies of the matrix side by side as follows

| a11 a12 a13 | a11 a12 a13 |
| ↘ ↘ ↘ |
| a21 a22 a23 | a21 a22 a23 |
| ↘ ↘ ↘ |
| a31 a32 a33 | a31 a32 a33 |

The sum of element products along the south-east diagonals shown form the positive
part of the determinant,

D+ = a11a22a33 + a12a23a31 + a13a21a32

On the other hand, the sum of the products along the south-west diagonals shown below

| a11 a12 a13 | a11 a12 a13 |
| ↙ ↙ ↙ |
| a21 a22 a23 | a21 a22 a23 |
| ↙ ↙ ↙ |
| a31 a32 a33 | a31 a32 a33 |

form the negative part of the determinant,

D− = a11a23a32 + a12a21a33 + a13a22a31

The determinant of A is given by

det A = D+ − D−

= (a11a22a33 + a12a23a31 + a13a21a32)

−(a11a23a32 + a12a21a33 + a13a22a31) (5.20)

Thus from Eq. (5.19b) and the above arrays (or from Eq. (5.20)), we obtain

D(z) = det(zI − A) = [
(z + 1

2)z2 + 1
4

] − (− 1
3 z
)

= z3 + 1
2 z2 + 1

3 z + 1
4

214 DIGITAL SIGNAL PROCESSING

Using function roots of MATLAB, the poles of the system can be obtained as

p0 = −0.6168 or |p0| = 0.6168

p1, p2 = 0.0584 ± j0.6340 or |p1| = |p2| = 0.6367

and since |pi | < 1 for i = 0, 1, and 2, the system is stable.
If the pole positions are not required, then the stability of the system can be easily

ascertained by applying the Jury-Marden stability criterion (see Sec. 5.3.7).

5.3.3 Stability Criteria

The stability of a system can be checked by finding the roots of polynomial D(z) or the eigenvalues
of matrix A in a state-space representation. For a second- or third-order system, this is easily accom-
plished. For higher-order systems, however, the use of a computer program1 is necessary. In certain
applications, the designer may simply need to know whether a system is stable or unstable and the
values of the poles of the transfer function may not be required. In such applications, the stability of
the system can be checked quickly through the use of one of several available stability tests or criteria
like the Schur-Cohn and Jury-Marden criteria [3]. Typically, these criteria are simple algorithms that
involve an insignificant amount of computation relative to that required to find the roots of D(z).

Some of the more important stability criteria will now be described. Derivations and proofs
are omitted for the sake of brevity but the interested reader may consult the references at the end of
the chapter.

Consider a system characterized by the transfer function

H (z) = N (z)

D(z)
(5.21)

where

N (z) =
M∑

i=0

ai z
M−i (5.22a)

and D(z) =
N∑

i=0

bi z
N−i (5.22b)

and assume that b0 > 0. This assumption simplifies the exposition of the stability criteria quite a bit.
If b0 happens to be negative, a positive b0 can be obtained by simply replacing all the coefficients in
D(z) by their negatives. This modification amounts to multiplying the numerator and denominator
of the transfer function by −1 and since such a manipulation does not change the response of the
system, it does not affect its stability. Assume also that N (z) and D(z) have no common factors that
are not constants. If there are such common factors in these polynomials, they must be identified and

1For example, function roots of MATLAB.

THE APPLICATION OF THE Z TRANSFORM 215

canceled out before the application of one of the stability criteria. Otherwise, a false result may be
obtained, for example, if a common factor has a root inside the unit circle. In such a case, the transfer
function will have a pole inside the unit circle that has nothing to do with the stability of the system.

5.3.4 Test for Common Factors

The presence of common factors in N (z) and D(z) can be checked by applying the following test.
The coefficients of N (z) and D(z) are used to construct the N × (N + M) and M × (N + M) matrices

RN =

a0 a1 a2 · · · aM 0 · · · 0 0
0 a0 a1 · · · aM−1 aM · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · a0 a1 · · · aM−1 aM

and

RM =

0 0 0 · · · 0 0 0 b0 · · · bN−1 bN
...

...
...

...
...

...
...

...
...

...
0 b0 b1 · · · bN · · · 0 0 0
b0 b1 b2 · · · bN 0 0 · · · 0 0 0

respectively. Then the (N + M) × (N + M) matrix

R =
[

RN

RM

]

is formed and its determinant is computed. If

det R �= 0

then N (z) and D(z) do not have a common factor that is not a constant, i.e., the two polynomials are
relatively prime [4, 5]. Otherwise, if

det R = 0

the two polynomials are not relatively prime.
In most practical situations, for example, in the transfer functions obtained through the design

processes to be described in later chapters, polynomials N (z) and D(z) are almost always relatively
prime but the possibility that they might not be should not be totally ignored.

Example 5.5 Check the numerator and denominator polynomials of the transfer function

H (z) = N (z)

D(z)
= z2 + 3z + 2

3z3 + 5z2 + 3z + 1

for common factors.

216 DIGITAL SIGNAL PROCESSING

Solution

Matrix R can be formed as

R =

1 3 2 0 0
0 1 3 2 0
0 0 1 3 2
0 3 5 3 1
3 5 3 1 0

Through the use of MATLAB, we find that det R = 0. Therefore, N (z) and D(z) have a
common factor that is not a constant. In actual fact

H (z) = (z + 1)(z + 2)

(z + 1)(3z2 + 2z + 1)

5.3.5 Schur-Cohn Stability Criterion

The Schur-Cohn stability criterion was established during the early twenties [3], long before the era
of digital systems, and its main application at that time was as a mathematical tool for the purpose of
establishing whether or not a general polynomial of z has zeros inside the unit circle of the z plane.
This criterion has been superseded in recent years by other more efficient criteria and is rarely used
nowadays. Nevertheless, it is of interest as it is the basis of some of the modern criteria.

The Schur-Cohn criterion states that a polynomial D(z) of the type given in Eq. (5.22b), whose
coefficients may be complex, has roots inside the unit circle of the z plane if and only if

det S

{
< 0 if k is odd

> 0 if k is even

for k = 1, 2, . . . , N where Sk is a 2k × 2k matrix given by

Sk =
[

Ak

BT
k

Bk

AT
k

]

with

Ak =

bN 0 0 · · · 0
bN−1 bN 0 · · · 0

...
...

...
...

...
bN−k+1 bN−k+2 bN−k+3 · · · bN

THE APPLICATION OF THE Z TRANSFORM 217

and

Bk =

b0 b1 b2 · · · bk−1

0 b0 b1 · · · bk−2
...

...
...

...
...

0 0 0 · · · b0

The polynomial coefficients b0, b1, . . . , bN can, in general, be complex. Polynomials whose roots
are inside the unit circle are sometimes referred to as Schur polynomials [5].

The Schur-Cohn criterion involves the evaluation of the determinants of N matrices of dimen-
sions ranging from 2 × 2 to 2N × 2N , which would require a large amount of computation.

5.3.6 Schur-Cohn-Fujiwara Stability Criterion

A more efficient stability criterion was developed by Fujiwara during the mid-twenties [3]. This is
actually a modified version of the Schur-Cohn criterion and for this reason it is usually referred to as
the Schur-Cohn-Fujiwara criterion. In this criterion, the coefficients of D(z), which can be complex,
are used to construct the N × N matrix

F =

 f11 · · · f1N

...
...

...
fN1 · · · fN N

where

fi j =
min (i, j)∑

k=1

(bi−k b j−k − bN−i+k bN− j+k) (5.23)

The Schur-Cohn-Fujiwara criterion states that the zeros of D(z) are located inside the unit circle if
and only if F is a positive definite matrix.

An N × N matrix F is said to be positive definite if the quadratic form xT Fx is a positive
quantity for every nonzero column vector xT of dimension N . Matrix F is positive definite if and
only if its principal minor determinants (or simply minors) are positive [1, 2], that is,

| f11| > 0

∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ > 0

∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣ > 0 . . .

∣∣∣∣∣∣∣
f11 · · · f1N
...

...
...

fN1 · · · fN N

∣∣∣∣∣∣∣ > 0

Evidently, like the original Schur-Cohn criterion, this criterion involves the evaluation of N deter-
minants. However, the dimensions of the matrices involved now range from 1 × 1 to N × N and,
therefore, the amount of computation is significantly reduced.

It should be mentioned that matrix F is symmetrical with respect to both the main and cross
diagonals, i.e.,

fi j = f ji = f(N+1−i)(N+1− j) = f(N+1− j)(N+1−i)

218 DIGITAL SIGNAL PROCESSING

As a result, only the elements with subscripts i = 1 to K and j = i, i + 1, . . . , N + 1 − i need to
be computed where

K =
{

(N + 1)/2 for N odd

N/2 for N even

These are the elements covered by the triangle formed by three lines drawn through the first row, the
main diagonal, and the cross diagonal.

Example 5.6 (a) A digital system is characterized by the transfer function

H (z) = z4

4z4 + 3z3 + 2z2 + z + 1

Check the system for stability using the Schur-Cohn-Fujiwara criterion. (b) Repeat part (a) if

H (z) = z2 + 2z + 1

z4 + 6z3 + 3z2 + 4z + 5

Solution

(a) The denominator polynomial of the transfer function is given by

D(z) = 4z4 + 3z3 + 2z2 + z + 1

Using Eq. (5.23), the Fujiwara matrix can be constructed as

F =

15 11 6 1
11 23 15 6
6 15 23 11
1 6 11 15

The principal minors can be obtained as

|15| = 15

∣∣∣∣15 11
11 23

∣∣∣∣ = 224

∣∣∣∣∣∣
15 11 6
11 23 15
6 15 23

∣∣∣∣∣∣ = 2929

∣∣∣∣∣∣∣∣
15 11 6 1
11 23 15 6
6 15 23 11
1 6 11 15

∣∣∣∣∣∣∣∣ = 27,753

and since they are all positive, the system is stable.
(b) In this case

D(z) = z4 + 6z3 + 3z2 + 4z + 5

THE APPLICATION OF THE Z TRANSFORM 219

and hence Eq. (5.23) gives

| f11| = b2
0 − b2

4 = −24

i.e., the principal minor of order 1 is negative, and the system can be classified as unstable.
There is no need to compute the remaining principal minors because a matrix cannot be
positive definite if any one of its principal minors is zero or negative.

A simplified version of the Schur-Cohn stability criterion was described by Jury in 1962 [6]
(see also Chap. 3 of Ref. [3]) and a simplified version of the Schur-Cohn-Fujiwara criterion was
described by Anderson and Jury in 1973 [7].

5.3.7 Jury-Marden Stability Criterion

A stability criterion that has been applied widely through the years is one developed by Jury during
the early sixties [3] using a relation due to Marden [8] that gives the Schur-Cohn determinants in terms
of second-order determinants. This criterion is often referred to as the Jury-Marden criterion and,
as is demonstrated below, it is both very efficient and easy to apply. In this criterion, the coefficients
of D(z), which are assumed to be real, are used to construct an array of numbers known as the Jury-
Marden array, as in Table 5.1. The first two rows of the array are formed by entering the coefficients
of D(z) directly in ascending order for the first row and in descending order for the second. The
elements of the third and fourth rows are computed as

ci =
∣∣∣∣ bi bN

bN−i b0

∣∣∣∣ = bi b0 − bN−i bN for i = 0, 1, . . . , N − 1

Table 5.1 The Jury-Marden array

Row Coefficients

1 b0 b1 b2 b3 · · · bN

2 bN bN−1 bN−2 bN−3 · · · b0

3 c0 c1 c2 · · · cN−1

4 cN−1 cN−2 cN−3 · · · c0

5 d0 d1 · · · dN−2

6 dN−2 dN−3 · · · d0

...
... · · ·

2N − 3 r0 r1 r2

220 DIGITAL SIGNAL PROCESSING

those of the fifth and sixth rows as

di =
∣∣∣∣ ci cN−1

cN−1−i c0

∣∣∣∣ = ci c0 − cN−1−i cN−1 for i = 0, 1, . . . , N − 2

and so on until 2N − 3 rows are obtained. The last row comprises three elements, say, r0, r1, and r2.
The Jury-Marden criterion states that polynomial D(z) has roots inside the unit circle of the z

plane if and only if the following conditions are satisfied:

(i) D(1) > 0

(ii) (−1)N D(−1) > 0

(iii) b0 > |bN |
|c0| > |cN−1|
|d0| > |dN−2|
· · · · · · · · · · · ·
|r0| > |r2|

As can be seen, the Jury-Marden criterion involves determinants of 2 × 2 matrices and is easy to
apply even without the use of a computer. Note that all three of the preceding three conditions must
be satisfied for the system to be stable. Therefore, the Jury-Marden array need not be constructed
if either of conditions (i) or (ii) is violated. If these conditions are satisfied, then one can begin
evaluating the elements of the Jury-Marden array. If a row is encountered where the magnitude of
the first coefficient is equal to or less than the magnitude of the last coefficient, then the construction
of the array can be terminated and the system declared unstable.

Thus to save unnecessary effort, conditions (i) and (ii) should be checked first. If they are
satisfied, then one can proceed with the Jury-Marden array.

Example 5.7 Check the systems of Example 5.6, parts (a) and (b), for stability using the
Jury-Marden criterion.

Solution

(a) We have

D(1) = 11 (−1)4 D(−1) = 3

and thus conditions (i) and (ii) are satisfied. The Jury-Marden array can be constructed
as shown in Table 5.2 and since b0 > |b4|, |c0| > |c3|, |d0| > |d2|, condition (iii) is also
satisfied and the system is stable.
(b) In this case

(−1)4 D(−1) = −1

i.e., condition (ii) is violated and the system is unstable.

THE APPLICATION OF THE Z TRANSFORM 221

Table 5.2 Jury-Marden array for Example 5.7

Row Coefficients

1 4 3 2 1 1
2 1 1 2 3 4

3 15 11 6 1
4 1 6 11 15

5 224 159 79

Example 5.8 A discrete-time system is characterized by the transfer function

H (z) = z4

7z4 + 3z3 + mz2 + 2z + 1

Find the range of m that will result in a stable system.

Solution

The transfer function can be expressed as

H (z) = N (z)

D(z)

where

D(z) = 7z4 + 3z3 + mz2 + 2z + 1

The stability problem can be solved by finding the range of m that satisfies all the
conditions imposed by the Jury-Marden stability criterion.
Condition (i) gives

D(1) = 7 + 3 + m + 2 + 1 > 0

or m > −13 (5.24)

From condition (ii), we have

(−1)4 D(−1) = 7 − 3 + m − 2 + 1 > 0

222 DIGITAL SIGNAL PROCESSING

Table 5.3 Jury-Marden array for Example 5.8

Row Coefficients

1 7 3 m 2 1

2 1 2 m 3 7

3 48 19 6m 11

4 11 6m 19 48

5 2183 912 − 66m 288m − 209

or m > −3 (5.25)

The Jury-Marden array can be constructed as shown in Table 5.3.
Hence for stability, the conditions

7 > 1 |48| > |11| |2183| > |288m − 209|

must be satisfied. The third condition is satisfied if

2183 > ±(288m − 209)

i.e.,

m > −2183 − 209

288
or m <

2183 + 209

288

which implies that

m > −6.8542 or m < 8.3056 (5.26)

Now for stability all the Jury-Marden conditions must be satisfied and thus from Eqs. (5.24)–
(5.26), the allowable range of m is obtained as

−3 < m < 8.3056

5.3.8 Lyapunov Stability Criterion

Another stability criterion states that a discrete-time systems characterized by a state-space repre-
sentation is stable if and only if for any positive definite matrix Q, there exists a unique positive
definite matrix P that satisfies the Lyapunov equation [9]

AT PA − P = −Q

THE APPLICATION OF THE Z TRANSFORM 223

In this criterion, a positive definite matrix Q is assumed, say Q = I, and the Lyapunov equation is
solved for P [10]. If P is found to be positive definite, the system is classified as stable. This criterion
is less practical to apply than the Jury-Marden criterion and, as a consequence, it is not used for
routine analysis. Nevertheless, it has some special features that make it suitable for the study of
certain parasitic oscillations that can occur in digital filters (see Sec. 14.9).

5.4 TIME-DOMAIN ANALYSIS

The time-domain response of a discrete-time system to any excitation x(nT) can be readily obtained
from Eq. (5.1) as

y(nT) = Z−1[H (z)X (z)]

Any one of the inversion techniques described in Sec. 3.8 can be used.

Example 5.9 Find the unit-step response of the system shown in Fig. 5.4.

Solution

From Example 5.3

H (z) = z2 − z + 1

(z − p1)(z − p2)

where

p1 = 1
2 − j 1

2 = e− jπ/4

√
2

and p2 = 1
2 + j 1

2 = e jπ/4

√
2

and from Table 3.2

X (z) = z

z − 1

On expanding H (z)X (z)/z into partial fractions, we have

H (z)X (z) = R0z

z − 1
+ R1z

z − p1
+ R2z

z − p2

where

R0 = 2 R1 = e j5π/4

√
2

and R2 = R∗
1 = e− j5π/4

√
2

224 DIGITAL SIGNAL PROCESSING

Hence

y(nT) = Z−1[H (z)X (z)]

= 2u(nT) + 1

(
√

2)n+1
u(nT)(e j(n−5)π/4 + e− j(n−5)π/4)

= 2u(nT) + 1

(
√

2)n−1
u(nT) cos

[
(n − 5)

π

4

]
The unit-step response of the system is plotted in Fig. 5.5.

nT

0.6

0

1.2

1.8

2.4

y(nT)

Figure 5.5 Unit-step response (Example 5.9).

5.5 FREQUENCY-DOMAIN ANALYSIS

The response of a first-order discrete-time system to a sinusoidal excitation was examined in Sec. 4.5
and it was found to comprise two components, a transient and a steady-state sinusoidal compo-
nent. We will now show that the same is also true for the response of a system of arbitrary
order. If the system is stable, the transient component tends to diminish rapidly to zero as time
advances and in due course only the sinusoidal component prevails. The amplitude and phase an-
gle of the sinusoidal output waveform produced by a sinusoidal waveform of unit amplitude and
zero phase angle turn out to be functions of frequency. Together they enable one to determine the
steady-state response of a system to a sinusoidal waveform of arbitrary frequency or the response
produced by arbitrary linear combinations of sinusoidal waveforms, and can be used, in addition, to
find the responses produced by complex waveforms.

5.5.1 Steady-State Sinusoidal Response

Let us consider a causal system characterized by the transfer function of Eq. (5.13). The sinusoidal
response of such a system is

y(nT) = Z−1[H (z)X (z)]

where X (z) = Z[u(nT) sin ωnT] = z sin ωT

(z − e jωT)(z − e− jωT)
(5.27)

THE APPLICATION OF THE Z TRANSFORM 225

or

y(nT) = 1

2π j

∮
�

H (z)X (z)zn−1 dz

=
∑

All poles

Res[H (z)X (z)zn−1] (5.28a)

Assuming that the poles of the system are simple, then for n > 0 Eqs. (5.27) and (5.28a) yield

y(nT) = Res
z=e jωT

[H (z)X (z)zn−1] + Res
z=e− jωT

[H (z)X (z)zn−1] +
N∑

i=1

Res
z=pi

[H (z)X (z)zn−1]

= 1

2 j
[H (e jωT)e jωnT − H (e− jωT)e− jωnT] +

N∑
i=1

Res
z=pi

[H (z)X (z)zn−1] (5.28b)

and if we let pi = ri e jψi , the summation part in the above equation can be expressed as

N∑
i=1

Res
z=pi

[H (z)X (z)zn−1] =
N∑

i=1

X (pi)pn−1
i Res

z=pi

H (z)

(see Prob. 5.9). Now if the system is stable, then |pi | = ri < 1 for i = 1, 2, . . . , N and hence as
n → ∞, we have rn−1

i → 0. Thus pn−1
i = rn−1

i e j(n−1)ψi → 0 and, therefore,

lim
n→∞

N∑
i=1

Res
z=pi

[H (z)X (z)zn−1] = lim
n→∞

N∑
i=1

X (pi)pn−1
i Res

z=pi

H (z) → 0 (5.28c)

Hence, Eqs. (5.28b) and (5.28c) give the steady-state sinusoidal response of the system as

ỹ(nT) = lim
n→∞ y(nT) = 1

2 j

[
H (e jωT)e jωnT − H (e− jωT)e− jωnT

]
(5.28d)

This result also holds true for systems that have one or more higher-order poles (see Prob. 5.28)
as well as for noncausal systems as can be easily demonstrated.

From the linearity of complex conjugation, the sum of a number of complex conjugates is equal
to the complex conjugate of the sum, and if we use the z transform, we obtain

H (e− jωT) =
∞∑

n=−∞
h(nT)e jωnT =

[∞∑
n=−∞

h(nT)e− jωnT

]∗
= H∗(e jωT) (5.28e)

If we let

H (e jωT) = M(ω)e jθ (ω)

where M(ω) = |H (e jωT)| and θ(ω) = arg H (e jωT) (5.29)

226 DIGITAL SIGNAL PROCESSING

1

1.0

nT

nT

M(ω)

 −1.0

x(nT)

y(nT)

θ(ω)

Figure 5.6 Sinusoidal response of an arbitrary system.

then from Eqs. (5.28d) and (5.28e), the steady-state response of the system can be expressed as

ỹ(nT) = 1

2 j

[
H (e jωT)e jωnT − H∗(e jωT)e− jωnT

]
= 1

2 j

[
M(ω)e j[ωnT +θ (ω)] − M(ω)e− j[ωnT +θ(ω)]

]
= M(ω) sin[ωnT + θ (ω)] (5.30)

Clearly, the effect of a system on a sinusoidal excitation is to introduce a gain M(ω) and a phase
shift θ (ω), as illustrated in Fig. 5.6. As functions of frequency, M(ω) and θ (ω) are known as the
amplitude and phase responses and function H (e jωT) from which they are derived is referred to as
the frequency response of the system.2

As may be recalled from Sec. 3.9.1, the frequency spectrum of a discrete-time signal is the z
transform of the signal evaluated on the unit circle of the z plane. Since H (z) is the z transform of the
impulse response, it follows that H (e jωT) is also the frequency spectrum of the impulse response.

2Some people refer to M(ω) as the magnitude response for obvious reasons.

THE APPLICATION OF THE Z TRANSFORM 227

That is, function H (e jωT) has a dual physical interpretation, namely, it is the frequency response of
the system or the frequency spectrum of the impulse response.

In digital filters, the gain often varies over several orders of magnitude as the frequency is varied
and to facilitate the plotting of the amplitude response, the gain is usually measured in decibels (dB) as

Gain = 20 log10 M(ω)

The gain in filters is typically equal to or less than unity and it is usually convenient to work
with the reciprocal of the gain, which is known as attenuation. Like the gain, the attenuation can be
expressed in dB as

Attenuation = 20 log10
1

M(ω)
= −20 log10 M(ω)

The phase shift is measured either in degrees or in radians.

5.5.2 Evaluation of Frequency Response

The above analysis has shown that the amplitude and phase responses of a system can be obtained
by evaluating the transfer function H (z) on the unit circle |z| = 1 of the z plane, which is very much
what we do to find the amplitude and phase spectrums of a discrete-time signal. This can be done
very efficiently by using MATLAB or other similar digital signal processing (DSP) software. It can
also be done by using a graphical method as will be demonstrated below. The method is inefficient
and is unlikely to be used in practice, yet it merits consideration because it reveals some of the basic
properties of discrete-time systems and provides, in addition, intuitive appreciation of the influence
of the zero and pole locations on the amplitude response of a system.

Let us consider a general transfer function expressed in terms of its zeros and poles as in
Eq. (5.4). The frequency response of the system at some frequency ω, can be obtained as

H (z) |z→e jωT = H (e jωT) = M(ω)e jθ (ω) (5.31)

= H0
∏Z

i=1(e jωT − zi)mi∏P
i=1(e jωT − pi)ni

(5.32)

and by letting

e jωT − zi = Mzi e
jψzi (5.33a)

e jωT − pi = Mpi e
jψpi (5.33b)

we obtain

M(ω) = |H0|
∏Z

i=1 Mmi
zi∏P

i=1 Mni
pi

(5.34)

θ (ω) = arg H0 +
Z∑

i=1

miψzi −
P∑

i=1

niψpi (5.35)

228 DIGITAL SIGNAL PROCESSING

ωT

z1

A

ψz1

Mz1

Mz2

B

C

z plane

Mp1

Mp2

p1

ψp1

p2

ψp2

z2

ψz2

1

Re z

jIm z

Figure 5.7 Graphical evaluation of frequency response of a discrete-time system.

where arg H0 = π if H0 is negative. Thus M(ω) and θ (ω) can be determined graphically through
the following procedure:

1. Mark the zeros and poles of the system in the z plane.

2. Draw the unit circle z = 1.

3. Draw complex number (or vector) e jωT where ω is the frequency of interest.

4. Draw mi complex numbers of the type given by Eq. (5.33a) for each zero of H (z) of order mi .

5. Draw ni complex numbers of the type given by Eq. (5.33b) for each pole of order ni .

6. Measure the magnitudes and angles of the complex numbers in Steps 4 and 5 and use Eqs. (5.34)
and (5.35) to calculate the gain M(ω) and phase shift θ (ω), respectively.

The procedure is illustrated in Fig. 5.7 for the case of a second-order discrete-time system with
simple zeros and poles. The amplitude and phase responses of a system can be obtained by repeating
the above procedure for a number of frequencies in the range of interest.

5.5.3 Periodicity of Frequency Response

Point A in Fig. 5.7 corresponds to zero frequency, point C corresponds to half the sampling frequency,
i.e., ωs/2 = π/T , which is often referred to as the Nyquist frequency, and one complete revolution of
vector e jωT about the origin corresponds to an increase in frequency equal to the sampling frequency
ωs = 2π/T rad/s.

If vector e jωT in Fig. 5.7 is rotated k complete revolutions, the vector will return to its original
position and the values of M(ω) and θ (ω) will obviously remain the same as before. As a result

H (e j(ω+kωs)T) = H (e jωT)

THE APPLICATION OF THE Z TRANSFORM 229

We conclude, therefore, that the frequency response is a periodic function of frequency with a
period ωs .

5.5.4 Aliasing

The periodicity of the frequency response can be viewed from a different perspective by examining
the discrete-time sinusoidal signal given by

x(nT) = sin[(ω + kωs)nT]

Using the appropriate trigonometric identity, we can write

x(nT) = sin ωnT cos kωsnT + cos ωnT sin kωsnT

= sin ωnT cos

(
k · 2π

T
· nT

)
+ cos ωnT sin

(
k · 2π

T
· nT

)
= sin ωnT cos 2knπ + cos ωnT sin 2knπ

= sin ωnT

We conclude that discrete-time signals sin(ω + kωs)nT and sin ωnT are numerically identical for
any value of k as illustrated in Fig. 5.8. Consequently, if signal sin(ω+kωs)t is sampled at a sampling
rate of ωs , the sampled version of sin ωt will be obtained and the frequency of the signal will appear
to have changed from ω + kωs to ω. This effect is known as aliasing since frequency ω + kωs is
impersonating frequency ω. Now if the frequency of the sinusoidal input of a discrete-time system
is increased from ω to ω + kωs , the system will obviously produce the same output as before since
the two input signals will, after all, be numerically identical.

Another facet of aliasing can be explored by considering a sinusoidal signal whose frequency
is in the range (k − 1

2)ωs to kωs where k is an integer, say, frequency kωs −ω, where 0 < ω ≤ ωs/2.

sin ωnT

2T

4T 5T

T

sin[(ω+ωs)nT]

nT

3T

Figure 5.8 Plots of sin(ωnT) and sin[(ω + ωs)nT] versus nT .

230 DIGITAL SIGNAL PROCESSING

In this case, the signal can be expressed as

x(nT) = sin(kωs − ω)nT

= sin kωsnT cos ωnT − cos kωsnT sin ωnT

= sin

(
k · 2π

T
· nT

)
cos ωnT − cos

(
k · 2π

T
· nT

)
sin ωnT

= sin 2knπ cos ωnT − cos 2knπ sin ωnT

= − sin ωnT = sin(−ωnT)

Consequently, a positive frequency kωs − ω in the range (k − 1
2)ωs to kωs will be aliased to the

negative frequency −ω.
The above analysis demonstrates that the highest frequency that can be present in a discrete-time

sinusoidal signal is ωs/2. If a continuous-time signal has sinusoidal components whose frequencies
exceed ωs/2, then the frequencies of any such components will be aliased. This can cause some
serious problems as will be demonstrated in Chap. 6.

The effects of aliasing can be demonstrated in a different setting that is very familiar to movie
fans. As the cowboy wagon accelerates into the sunset, the wheels of the wagon appear to accelerate in
the forward direction, then reverse, slow down, stop momentarily, and after that they accelerate again
in the forward direction. This series of events happen in the reverse order if the wagon decelerates.
Actually, this is exactly what we should see, it is not an illusion, and it has to do with the fact that
the image we see on the screen is a series of still photographs which constitute a sampled signal.
The phenomenon is easily explained by the illustrations in Fig. 5.9. In this context, the sampling
frequency ωs is the number of film frames per second as taken by the movie camera and the number
of wheel revolutions per second defines the frequency of a signal component. Let us examine what
happens as the number of wheel revolutions is increased from 0 to 5ωs/4. In Fig. 5.9a, the wheel
revolves at a speed ωs/4 and the marker will thus move a quarter revolution before the next frame.
The wheel appears to be rotating in the clockwise direction. In Fig. 5.9b, the wheel revolves at a
speed ωs/2 and the marker will thus move half a revolution before the next frame. If this speed were
maintained, the viewer would have difficulty discerning the direction of rotation since the marker
on the wheel would alternate between the top and bottom. In Fig. 5.9c, the wheel revolves at a
speed 3ωs/4 and the marker will thus move three-quarters of a revolution before the next frame.
Miraculously, the wheel will appear to turn in the counterclockwise direction at ωs/4 revolutions per
second. This is analogous to the situation where a frequency of a sinusoidal signal in the range ωs/2
to ωs is aliased to a negative frequency. Increasing the rotation speed to, say, 7ωs/8 as in Fig. 5.9d,
the wheel will appear to rotate slowly in the reverse direction and if the rotation speed is exactly ωs ,
the wheel will appear to stop as can be seen in Fig. 5.9e, that is, the sampling frequency will appear
to behave very much like zero frequency.3 If the speed of the wheel is increased a bit more, say, to
9ωs/8, then the wheel will appear to move slowly in the forward direction, as depicted in Fig. 5.9 f ,

3This is actually the basis of the stroboscope which is an instrument that can be used to measure the speed in motors
and other machinery.

THE APPLICATION OF THE Z TRANSFORM 231

(a)

(b)

(c)

(d)

(e)

(f)

ωs /4

ωs /2

3ωs/4

0.9ωs

ωs

1.1ωs

Figure 5.9 Aliasing at the movies.

and at a speed of 5ωs/4 the wheel will appear to rotate at the rate of ωs/4 revolutions per second as
depicted in Fig. 5.9a, that is, back to square one. This analogy provides a visual demonstration as
to why the signals sin(ω + kωs)nT and sin ωnT cannot be distinguished, on the one hand, and why
the highest frequency in a discrete-time signal cannot exceed ωs/2.

232 DIGITAL SIGNAL PROCESSING

5.5.5 Frequency Response of Digital Filters

In view of the periodicity of the frequency response, a discrete-time system is completely specified
in the frequency domain by its frequency response over the frequency range −ωs/2 ≤ ω ≤ ωs/2
which is known as the baseband. In Chap. 1, four types of filters were described, namely, lowpass,
highpass, bandpass, and bandstop, depending on the range of frequencies selected or rejected. In
discrete-time systems such as digital filters, these terms are applied with respect to the positive half of
the baseband, e.g., a highpass filter is one that will select frequencies is some range ωp ≤ ω ≤ ωs/2
and reject frequencies in some range 0 ≤ ω ≤ ωa , where ωa < ωp.

The magnitude of H (z) is a surface over the z plane. From Eq. (5.4), since z → zi , |H (z)| → 0
since (z − zi) → 0. On the other hand, as z → pi , |H (z)| → ∞ since (z − pi) → 0. After all, zi is a
zero and pi is a pole. So if a zero zi = rzi e

jφzi is located close to the unit circle, then the gain of the
system at frequencies close to φzi /T will be very small. On the other hand, if a pole pi = rpi e

jφpi is
located close to the unit circle, then the gain of the system will be large at frequencies close to φpi /T .
On the basis of these observations, one can easily visualize the amplitude response of a system by
simply inspecting its zero-pole plot. If the poles are clustered in the region near the point (1, 0) and
the zeros are clustered near the point (−1, 0), then the system is a lowpass filter. More precisely, a
system is a lowpass filter if the poles and zeros are enclosed in the sectors −�p ≤ φpi ≤ �p and
−�z ≥ φzi ≥ �z , respectively, where �z and �p are positive angles such that �p < �z < π . On
the basis of these principles, the system represented by the zero-pole plot of Fig. 5.10a should be a
lowpass filter and this, indeed, is the case as can be seen in the 3-D plot of Fig. 5.10b.

The angle of H (z) is also a surface over the z plane but, unfortunately, this is usually far too
convoluted to be correlated to the zero-pole plot. See, for example, the 3-D plot of Fig. 5.10c, which
represents the angle of H (z) for the lowpass filter under consideration.

The amplitude and phase responses could be displayed in terms of 3-D plots, as depicted in
Fig. 5.10d and e, by evaluating the magnitude and angle of H (z) on the unit circle, i.e., by letting
z = e jωT . If the surfaces in Fig. 5.10b and c were deemed to represent solid objects, say, made of
wax, then the amplitude and phase responses would be the profiles of the cores punched through
these objects by a cylindrical corer tool of radius 1. Three-dimensional plots such as these are both
difficult to plot as well as visualize, particularly, the one for the phase response. For these reasons,
the amplitude and phase responses are usually plotted in terms of 2-D plots of 20 log M(ω) and θ (ω),
respectively, as illustrated in Fig. 5.10 f and g. To continue the geometrical interpretation, these 2-D
plots can be obtained by spreading ink over the surfaces of the wax cores obtained before and then
rolling them over a white sheet of paper.

It should be mentioned here that ambiguities can arise in the evaluation of the phase response
owing to the fact that θ = tan−1 µ is a multivalued function of µ (see Sec. A.3.7). Typically, one
would evaluate the phase response of a system by finding the real and imaginary parts of the frequency
response, i.e.,

H (e jωT) = Re H (e jωT) + j Im H (e jωT)

and then compute the phase response as

θ (ω) = tan−1 Im H (e jωT)

Re H (e jωT)

THE APPLICATION OF THE Z TRANSFORM 233

−2
−1

0
1

2

(b)

−2
−1

0
1

2
−60

−40

−20

0

20

40

60

|H
(z

)|,
 d

B

Re zjIm z

−2 −1 0

(a)

1 2
−2

−1

0

1

2

Re z

jI
m

z

−4

−2

0

2

4

ar
g

H
(z

),
 r

ad

Re z
jIm z

−2
−1

0
1

2

−2
−1

(c)

0
1

2

Figure 5.10 Frequency response of lowpass filter: (a) Zero-pole plot, (b) plot of 20 log |H (z)| versus
z = Re z + j Im z, (c) plot of arg H (z) versus z.

234 DIGITAL SIGNAL PROCESSING

−60

−50

−40

−30

−20

−10

0

G
ai

n,
 d

B

Re z
jIm z

−2

−1

0

1
2

−2
−1

0
1

2

(d)

(e)

−4

−2

0

2

4

Ph
as

e
sh

if
t,

ra
d

Re z
jIm z

−2
−1

0
1

2

−2
−1

0
1

2

Figure 5.10 Cont’d Frequency response of lowpass filter: (d) Plot of 20 log |H (e jωT)| versus z, (e) plot of
arg H (e jωT) versus z.

Things would work out perfectly if −π < θ (ω) < π . However, if the value of θ (ω) is outside this
range, the phase response computed by the typical DSP software, including MATLAB, would be
wrong. The phase response of causal systems is a decreasing function of frequency because of certain
physical reasons to be explained shortly and at some frequency it will decrease below −π . When this
happens, the typical DSP software will yield a positive angle in the range 0 to π instead of the correct
negative value, i.e., an angle π − ε will be computed instead of the correct angle of −π − ε; thus
an abrupt discontinuity of +2π will be introduced as an artifact. This problem can be corrected by

THE APPLICATION OF THE Z TRANSFORM 235

−10 −5 0

(f)

5 10
−60

−50

−40

−30

−20

−10

0

Frequency, rad/s

G
ai

n,
 d

B

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Frequency, rad/s

(g)

Ph
as

e
sh

if
t,

ra
d

Figure 5.10 Cont’d Frequency response of lowpass filter: (f) Plot of 20 log M(ω) versus ω, (g) plot of
θ (ω) versus ω.

monitoring the change in the phase response as the frequency is increased and whenever a sign change
is observed in the phase response from a negative to a positive value, which corresponds to a crossing
of the negative real axis, to subtract an angle of 2π from the phase response at that frequency as well
as all the subsequent frequencies (see Sec. A.3.7). This problem is quite apparent in the 3-D and 2-D
plots of Fig. 5.10e and g, which were computed with MATLAB using function atan2. The corrected
phase responses are depicted in Fig. 5.10h and i . Incidentally, the phase response continues to have
discontinuities after correction but these are legitimate. They are caused by the zeros in Fig. 5.10a.

236 DIGITAL SIGNAL PROCESSING

(h)

−2 −1 0 1 2−2

0
2

−30

−25

−20

−15

−10

−5

0

5
Ph

as
e

sh
if

t,
ra

d

Re z

jIm z

−10 −5 0

(i)

5 10
−30

−25

−20

−15

−10

−5

0

5

Frequency, rad/s

Ph
as

e
sh

if
t,

ra
d

Figure 5.10 Cont’d Frequency response of lowpass filter: (h) Corrected plot of arg H (e jωT) versus z, (i)
corrected plot of θ (ω) versus ω.

Example 5.10 The discrete-time system shown in Fig. 5.11 is a nonrecursive filter. The
multiplier constants are

A0 = 0.3352 A1 = 0.2540 A2 = 0.0784

THE APPLICATION OF THE Z TRANSFORM 237

A2

A2

A0

A1

A1

Y(z)X(z)

Figure 5.11 Fourth-order, nonrecursive filter (Example 5.10).

and the sampling frequency is ωs = 20 rad/s. (a) Construct the zero-pole plot of the filter.
(b) Plot the surface |H (z)| as a function of z = Re z + j Im z. (c) Obtain expressions for the
amplitude and phase responses. (d) Plot the amplitude and phase responses first in terms of
3-D plots and then in terms of 2-D plots.

Solution

(a) The transfer function of the filter can be readily obtained by inspection as

H (z) = A2 + A1z−1 + A0z−2 + A1z−3 + A2z−4 (5.36a)

= A2z2 + A1z + A0 + A1z−1 + A2z−2

z2
(5.36b)

= A2z4 + A1z3 + A0z2 + A1z + A2

z4
(5.36c)

From Eq. (5.36c), we note that the filter has four zeros and a fourth-order pole at the
origin. Using MATLAB, the zeros can be obtained as

z1 = −1.5756 z2 = −0.6347 z3, z4 = −0.5148 ± j0.8573

Hence the zero-pole plot of Fig. 5.12a can be obtained. We note that the high-order
pole at the origin tends to create high gain at low frequencies, whereas the zeros tend to
produce low gain at high frequencies. Thus, the system must be a lowpass filter.

238 DIGITAL SIGNAL PROCESSING

−2 −1 0

(a)

1 2
−2

−1

0

1

2

Re z

jI
m

z

−50

0

50

100

|H
(z

)|,
 d

B

Re z
jIm z

−2
−1

0

1
2

−2

(b)

−1
0

1
2

Figure 5.12 Frequency response of lowpass filter (Example 5.10): (a) Zero-pole plot, (b) plot
of 20 log |H (z)| versus z = Re z + j Im z.

(b) The 3-D plot of 20 log |H (z)| versus z is shown in Fig. 5.12b.

(c) From Eq. (5.36b), we have

H (e jωT) = A2(e j2ωT + e− j2ωT) + A1(e jωT + e− jωT) + A0

e j2ωT

= 2A2 cos 2ωT + 2A1 cos ωT + A0

e j2ωT

THE APPLICATION OF THE Z TRANSFORM 239

−60

−50

−40

−30

−20

−10

0
G

ai
n,

 d
B

Re z
jIm z

−2

−1
0

1
2

−2
−1

0

(c)

1
2

−20

−15

−10

−5

0

5

Ph
as

e
sh

if
t,

ra
d

Re z
jIm z

−2

−1

0

(d)

1
2

−2
−1

0
1

2

Figure 5.12 Cont’d Frequency response of lowpass filter (Example 5.10): (c) Plot of
20 log |H (e jωT)| versus z, (d) corrected plot of arg H (e jωT) versus z .

240 DIGITAL SIGNAL PROCESSING

−10 −5 0

(e)

5 10
−60

−50

−40

−30

−20

−10

0

Frequency, rad/s

G
ai

n,
 d

B

−10 −5 0

(f)

5 10
−20

−15

−10

−5

0

5

Frequency, rad/s

Ph
as

e
sh

if
t,

ra
d

Figure 5.12 Cont’d Frequency response of lowpass filter (Example 5.10): (e) Plot of
20 log M(ω) versus ω, (f) corrected plot of θ (ω) versus ω.

THE APPLICATION OF THE Z TRANSFORM 241

and so

M(ω) = |2A2 cos 2ωT + 2A1 cos ωT + A0|
θ(ω) = θN − 2ωT

where

θN =
{

0 if 2A2 cos 2ωT + 2A1 cos ωT + A0 ≥ 0
π otherwise

(d) The amplitude and phase responses are depicted in Fig. 5.12c and d as 3-D plots and
in Fig. 5.12e and f as 2-D plots.

An interesting property of nonrecursive filters is that they can have a linear phase response, as
can be seen in Fig. 5.12 f . This is an important feature that makes nonrecursive filters attractive in a
number of applications.

Example 5.11 A recursive digital filter is characterized by the transfer function

H (z) = H0

3∏
i=1

Hi (z)

where

Hi (z) = a0i + a1i z + z2

b0i + b1i z + z2

and the numerical values of the coefficients are given in Table 5.4. The sampling frequency is
20 rad/s. (a) Construct the zero-pole plot of the filter. (b) Plot the surface |H (z)| as a function
of z = Re z + j Im z. (c) Obtain expressions for the amplitude and phase responses. (d) Plot
the amplitude and phase responses first in terms of 3-D plots and then in terms of 2-D plots.

Table 5.4 Transfer-function coefficients for Example 5.11

i a0i a1i b0i b1i

1 −1.0 0.0 8.131800E−1 7.870090E−8
2 1.0 −1.275258 9.211099E−1 5.484026E−1
3 1.0 1.275258 9.211097E−1 −5.484024E−1

H0 = 1.763161E − 2

242 DIGITAL SIGNAL PROCESSING

Solution

(a) The zeros and poles of the transfer function can be readily obtained as

z1, z2 = ±1 z3, z4 = 0.6376 ± j0.7703

z5, z6 = −0.6376 ± j0.7703

and

p1, p2 = ± j0.9018 p3, p4 = 0.2742 ± j0.7703

p5, p6 = −0.2742 ± j0.7703

respectively. Hence the zero-pole plot depicted in Fig. 5.13a can be readily constructed.
Since there is a cluster of poles close to the unit circle at ωT ≈ π/2 and zeros at (1, 0)
and (−1, 0), the recursive filter must be a bandpass filter which will select frequencies
closed to ω = π/2T .

(b) The 3-D plot of 20 log |H (z)| versus z depicted in Fig. 5.13b demonstrates clearly
that this is a bandpass filter.

(c) The frequency response of the filter can be obtained as

H (z) |z→e jωT = H (e jωT) = M(ω)e jθ(ω)

with

M(ω) = |H0|
3∏

i=1

∣∣Hi (e
jωT)

∣∣ = |H0|
3∏

i=1

Mi (ω)

and

θ (ω) = arg H0 +
3∑

i=1

arg Hi (e
jωT) =

3∑
i=1

θi (ω)

where

Mi (ω) = ∣∣Hi (e
jωT)

∣∣ =
∣∣∣∣a0i + a1i e jωT + e j2ωT

b0i + b1i e jωT + e j2ωT

∣∣∣∣
=

∣∣∣∣ (a0i + a1i cos ωT + cos 2ωT) + j(a1i sin ωT + sin 2ωT)

(b0i + b1i cos ωT + cos 2ωT) + j(b1i sin ωT + sin 2ωT)

∣∣∣∣
=

[
(a0i + a1i cos ωT + cos 2ωT)2 + (a1i sin ωT + sin 2ωT)2

(b0i + b1i cos ωT + cos 2ωT)2 + (b1i sin ωT + sin 2ωT)2

] 1
2

=
[

1 + a2
0i + a2

1i + 2(1 + a0i)a1i cos ωT + 2a0i cos 2ωT

1 + b2
0i + b2

1i + 2(1 + b0i)b1i cos ωT + 2b0i cos 2ωT

] 1
2

THE APPLICATION OF THE Z TRANSFORM 243

−2 −1 0

(a)

1 2
−2

−1

0

1

2

Re z

jI
m

z

−60

−40

−20

0

20

40

|H
(z

) |,
 d

B

Re z
jIm z

−2

−1

0

1
2

−2
−1

0

(b)

1
2

Figure 5.13 Frequency response of bandpass filter (Example 5.11): (a) Zero-pole plot,
(b) plot of 20 log |H (z)| versus z = Re z + j Im z.

and

θi (ω) = arg Hi (e
jωT)

= arg
a0i + a1i e jωT + e j2ωT

b0i + b1i e jωT + e j2ωT

= arg
(a0i + a1i cos ωT + cos 2ωT) + j(a1i sin ωT + sin 2ωT)

(b0i + b1i cos ωT + cos 2ωT) + j(b1i sin ωT + sin 2ωT)

244 DIGITAL SIGNAL PROCESSING

−60

−50

−40

−30

−20

−10

0
M

(ω
),

 d
B

Re z
jIm z

−2
−1

0

1
2

−2
−1

0

(c)

1
2

−30

−20

−10

0

θ(
ω

)

Re zjIm z
−2

−1
0

1
2

−2
−1

0
1

2

(d)

Figure 5.13 Cont’d Frequency response of bandpass filter (Example 5.11): (c) Plot of
20 log |H (e jωT)| versus z, (d) corrected plot of arg |H (e jωT)| versus z.

= tan−1 a1i sin ωT + sin 2ωT

a0i + a1i cos ωT + cos 2ωT

− tan−1 b1i sin ωT + sin 2ωT

b0i + b1i cos ωT + cos 2ωT

The 3-D plots for the amplitude and phase responses are depicted in Fig. 5.13c and
d and the corresponding 2-D plots can be readily obtained from the above expressions as
shown in Fig. 5.13e and f . As can be seen from these plots, the system being analyzed
is definitely a bandpass filter.

THE APPLICATION OF THE Z TRANSFORM 245

−10 −5 0

(f)

5 10
−35

−30

−25

−20

−15

−10

−5

0

5

Frequency, rad/s

θ
(ω

),
 r

ad

−10 −5 0

(e)

5 10
−60

−50

−40

−30

−20

−10

0

Frequency, rad/s

M
(ω

),
 d

B

Figure 5.13 Cont’d Frequency response of bandpass filter (Example 5.11): (e) Plot of
20 log M(ω) versus ω, (f) corrected plot of θ (ω) versus ω.

5.6 TRANSFER FUNCTIONS FOR DIGITAL FILTERS

In the previous section, we have demonstrated that the filtering action of a discrete-time system
depends critically on the patterns formed by the zeros and poles of the transfer function in the z
plane. In this section, we show that a set of standard low-order transfer functions can be derived
through the judicious choice of the zero/pole locations.

246 DIGITAL SIGNAL PROCESSING

5.6.1 First-Order Transfer Function

A first-order transfer function can only have a real zero and a real pole, i.e. it must be of the form

H (z) = z − z0

z − p0

and to ensure that the system is stable, the pole must satisfy the condition −1 < p0 < 1. The zero
can be anywhere on the real axis of the z plane. If the pole is close to point (1, 0) and the zero is close
to or at point (−1, 0), then we have a lowpass filter; if the zero and pole positions are interchanged,
then we get a highpass filter.

Certain applications call for discrete-time systems that have a constant amplitude response and
a varying phase response. Such systems can be constructed by using allpass transfer functions. A
first-order allpass transfer function is of the form

H (z) = p0z − 1

z − p0
= p0

z − 1/p0

z − p0

where the zero is the reciprocal of the pole. The frequency response of a system characterized by
H (z) is given by

H (e jωT) = p0e jωT − 1

e jωT − p0
= p0 cos ωT + j p0 sin ωT − 1

cos ωT + j sin ωT − p0

and hence the amplitude and phase responses can be obtained as

M(ω) =
∣∣∣∣ p0 cos ωT − 1 + j p0 sin ωT

cos ωT − p0 + j sin ωT

∣∣∣∣
=

[
(p0 cos ωT − 1)2 + (p0 sin ωT)2

(cos ωT − p0)2 + (sin ωT)2

] 1
2

= 1

and

θ (ω) = tan−1 p0 sin ωT

p0 cos ωT − 1
− tan−1 sin ωT

cos ωT − p0

respectively.

5.6.2 Second-Order Transfer Functions

LOWPASS TRANSFER FUNCTION. As was shown earlier, a system whose poles and zeros are
located in the sectors −�p ≤ φpi ≤ �p and −�z ≥ φzi ≥ �z , respectively, where �p and �z

are positive angles such that �z > �p is a lowpass filter. Hence a lowpass second-order transfer
function can be constructed by placing a complex-conjugate pair of poles anywhere inside the unit
circle and a pair of zeros at the Nyquist point, as shown in Fig. 5.14a. Such a transfer function can

THE APPLICATION OF THE Z TRANSFORM 247

−2 −1

−1

0

(a)

1 2
−2

0

1

2

Re z

jI
m

z

0 5 10
−30

−20

−10

0

10

20

30

40

50

r = 0.50

r = 0.99

Frequency, rad/s

G
ai

n,
 d

B

0 5 10
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0

(b)

r = 0.50

r = 0.99

Frequency, rad/s

Ph
as

e
sh

if
t,

ra
d

Figure 5.14 Frequency response of second-order lowpass filter: (a) Zero-pole plot, (b) amplitude and phase
responses.

be constructed as

HL P (z) = (z + 1)2

(z − re jφ)(z − re− jφ)
= z2 + 2z + 1

z2 − 2r (cos φ)z + r2
(5.37)

where 0 < r < 1. As the poles move closer to the unit circle, the amplitude response develops a peak
at frequency ω = φ/T while the slope of the phase response tends to become steeper and steeper at
that frequency, as illustrated in Fig. 5.14b.

248 DIGITAL SIGNAL PROCESSING

HIGHPASS TRANSFER FUNCTION. If the zeros and poles of a system are located in the sectors
−�z ≤ φzi ≤ �z and −�p ≥ φpi ≥ �p, where �z and �p are positive angles such that �p > �z ,
then the system is a highpass filter. A highpass transfer function can be readily obtained form
Eq. (5.37) by simply moving the zeros from point (−1, 0) to (1, 0) as in Fig. 5.15a, that is,

HH P (z) = (z − 1)2

z2 − 2r (cos φ)z + r2
= (z2 − 2z + 1)

z2 − 2r (cos φ)z + r2
(5.38)

The amplitude and phase responses obtained are shown in Fig. 5.15b.

−2 −1 0

(a)

1 2
−2

−1

0

1

2

Re z

jI
m

z

0 5 10
−30

−20

−10

0

10

20

30

40

50

r = 0.50

r = 0.99

Frequency, rad/s

G
ai

n,
 d

B

0 5 10
0

(b)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r = 0.50

r = 0.99

Frequency, rad/s

Ph
as

e
sh

if
t,

ra
d

Figure 5.15 Frequency response of second-order highpass filter: (a) Zero-pole plot, (b) amplitude and
phase responses.

THE APPLICATION OF THE Z TRANSFORM 249

BANDPASS TRANSFER FUNCTION. In a bandpass system, a cluster of poles is sandwiched between
clusters of zeros in the neighborhoods of points (1, 0) and (−1, 0). A second-order bandpass transfer
function can be obtained from the lowpass transfer function of Eq. (5.37) by moving one zero from
point (−1, 0) to (1, 0), as shown in Fig. 5.16a. The transfer function assumes the form

HB P (z) = z2 − 1

z2 − 2r (cos φ)z + r2
(5.39)

and some typical amplitude and phase responses are shown in Fig. 5.16b.

−2 −1 0

(a)

1 2
−2

−1

0

1

2

Re z

jI
m

z

0 5 10

(b)

−30

−20

−10

0

10

20

30

40

r = 0.50

r = 0.99

Frequency, rad/s

G
ai

n,
 d

B

0 5 10
−2

−1

0

1

2

r = 0.50

r = 0.99

Frequency, rad/s

Ph
as

e
sh

if
t,

ra
d

Figure 5.16 Frequency response of second-order bandpass filter: (a) Zero-pole plot, (b) amplitude and
phase responses.

250 DIGITAL SIGNAL PROCESSING

NOTCH TRANSFER FUNCTION. A notch system is one that has a notch in its amplitude response,
as may be expected, and such a response can be achieved by placing a complex-conjugate pair of
zeros on the unit circle, as illustrated in Fig. 5.17a. The transfer function of such a system assumes
the form

HN (z) = z2 − 2(cos ψ)z + 1

z2 − 2r (cos φ)z + r2
(5.40)

and as can be seen in Fig. 5.17b three types of behavior can be achieved depending on the relative
location of the zeros in relation to the poles. If ψ > φ, then a lowpass notch filter is obtained and if φ >

ψ , then a highpass notch is the outcome. The case, φ = ψ will yield a filter that will reject frequencies
in the neighborhood of ω = φ/T , and such a filter is usually referred to as a bandstop filter.

−1 0 1

−1

0

1

−1 0

(a)

1

−1

0

1

−1 0 1

−1

0

1

Re z

jI
m

z

0 5 10
−30

−20

−10

0

10

20

30

Frequency, rad/s

G
ai

n,
 d

B

ψ = π/4
ψ = π

ψ = 3π/4

0 5 10
−4

−3

−1

0

1

2

(b)

3

4

Frequency, rad/s

Ph
as

e
sh

if
t,

ra
d

−2

Figure 5.17 Frequency response of second-order notch filter (φ = π/2): (a) Zero-pole plots, (b) amplitude
and phase responses.

THE APPLICATION OF THE Z TRANSFORM 251

ALLPASS TRANSFER FUNCTION. An N th-order allpass transfer function with a denominator
polynomial b0 + b1z + · · · + bN−1zN−1 + bN zN can be obtained by constructing a corresponding
numerator polynomial bN + bN−1z + · · · + b1zN−1 + b0zN by simply reversing the order of the
coefficients. Hence a second-order allpass transfer function can be obtained as

HAP (z) = r2z2 − 2(cos φ)z + 1

z2 − 2r (cos φ)z + r2
(5.41)

As in the first-order allpass transfer function, the zeros of the second-order allpass transfer function
are the reciprocals of the poles (see Prob. 5.31). To demonstrate that this is indeed an allpass transfer
function, we note that

MAP (ω) = |HAP (e jωT)| = [
HAP (e jωT) · H∗

AP (e jωT)
] 1

2

= [
HAP (e jωT) · HAP (e− jωT)

] 1
2

and hence

MAP (ω) =
{ [

HAP (z) · HAP (z−1)
]

z=e jωT

} 1
2

=
{[

r2z2 + 2(cos φ)z + 1

z2 + 2r (cos φ)z + r2
· r2z−2 + 2(cos φ)z−1 + 1

z−2 + 2r (cos φ)z−1 + r2

]
z=e jωT

} 1
2

=
{[

r2z2 + 2(cos φ)z + 1

z2 + 2r (cos φ)z + r2
· r2 + 2(cos φ)z + z2

1 + 2r (cos φ)z + z2r2

]
z=e jωT

} 1
2

= 1

As in the first-order allpass transfer function, the zeros of a second-order (also an N th-order) transfer
function are the reciprocals of corresponding poles.

As will be shown in the next section, a nonlinear phase response in a filter would lead to phase
distortion which is undesirable in certain applications. Some of the design methods for recursive
filters to be explored later on in Chap. 11 tend to yield filters with nonlinear phase responses. The
phase responses of these filters can be linearized through the use of allpass systems known as delay
equalizers (see Sec. 16.8).

5.6.3 Higher-Order Transfer Functions

Higher-order transfer functions can be obtained by forming products or sums of first- and/or second-
order transfer functions. Methods for obtaining transfer functions that will yield specified frequency
responses will be explored in later chapters.

5.7 AMPLITUDE AND DELAY DISTORTION

In practice, a discrete-time system can distort the information content of a signal to be processed as
will now be demonstrated.

252 DIGITAL SIGNAL PROCESSING

Consider an application where a digital filter characterized by a transfer function H (z) is to be
used to select a specific signal xk(nT) from a sum of signals

x(nT) =
m∑

i=1

xi (nT)

Let the amplitude and phase responses of the filter be M(ω) and θ (ω), respectively. Two parameters
associated with the phase response are the absolute delay τa(ω) and the group delay τg(ω) which are
defined as

τa(ω) = θ (ω)

ω
(5.42a)

τg(ω) = dθ(ω)

dω
(5.42b)

As functions of frequency, τa(ω) and τg(ω) are known as the absolute-delay and group-delay char-
acteristics.

Now assume that the amplitude spectrum of signal xk(nT) is concentrated in frequency band
B given by

B = {ω : ωL ≤ ω ≤ ωH }

as illustrated in Fig. 5.18. Also assume that the filter has amplitude and phase responses

M(ω) =
{

G0 for ω ∈ B

0 otherwise
(5.43)

and

θ(ω) = −τgω + θ0 for ω ∈ B (5.44)

respectively, where G0 and τg are constants. The z transform of the output of the filter is given by

Y (z) = H (z)X (z) = H (z)
m∑

i=1

Xi (z) =
m∑

i=1

H (z)Xi (z)

ωL ωH

G(ω)

B

(e)

ω

Figure 5.18 Amplitude spectrum of a sum of signals.

THE APPLICATION OF THE Z TRANSFORM 253

and thus the frequency spectrum of the output signal is obtained as

Y (e jωT) =
m∑

i=1

H (e jωT)Xi (e
jωT)

=
m∑

i=1

M(ω)e jθ (ω) Xi (e
jωT) (5.45)

Hence from Eqs. (5.43)–(5.45), we have

Y (e jωT) = G0e− jωτg+ jθ0 Xk(e jωT)

since all signal spectrums except Xk(e jωT) will be multiplied by zero. If we let τg = mT where m
is a constant, we can write

Y (z) = G0e jθ0 z−m Xk(z)

Therefore, from the time-shifting theorem of the z transform (Theorem 3.4), we deduce the output
of the filter as

y(nT) = G0e jθ0 xk(nT − mT)

That is, if the amplitude response of the filter is constant with respect to frequency band B and zero
elsewhere and its phase response is a linear function of ω, that is, the group delay is constant in
frequency band B, then the output signal is a delayed replica of signal xk(nT) except that a constant
multiplier G0e jθ0 is introduced.

If the amplitude response of the system is not constant in frequency band B, then the so-called
amplitude distortion will be introduced since different frequency components of the signal will
be amplified by different amounts. On the other hand, if the group delay is not constant in band B,
different frequency components will be delayed by different amounts, and delay (or phase) distortion
will be introduced. Amplitude distortion can be quite objectionable in practice. Consequently, the
amplitude response is required to be flat to within a prescribed tolerance in each frequency band
that carries information. If the ultimate receiver of the signal is the human ear, e.g., when a speech
or music signal is to be processed, delay distortion turns out to be quite tolerable. However, in
other applications it can be as objectionable as amplitude distortion, and the delay characteristic is
required to be fairly flat. Applications of this type include data transmission where the signal is to
be interpreted by digital hardware and image processing where the signal is used to reconstruct an
image which is to be interpreted eventually by the human eye.

From Eq. (5.42a), we note that the absolute delay τa(ω) is constant if the phase response is
linear at all frequencies. In such a case, the group delay is also constant and, therefore, delay distortion
can also be avoided by ensuring that the absolute delay is constant. However, a constant absolute
delay is far more difficult to achieve in practice since the phase response would need to be linear at
all frequencies.4

4This is why the absolute delay is hardly ever mentioned in DSP and communications textbooks.

254 DIGITAL SIGNAL PROCESSING

REFERENCES

[1] G. Strang, Introduction to Linear Algebra, 3rd ed., MA: Wellesley-Cambridge Press, 2003.
[2] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., New York: Academic,

1985.
[3] E. I. Jury, Theory and Application of the Z-Transform Method, New York: Wiley, 1964.
[4] E. I. Jury, Inners and Stability of Dynamical Systems, New York: Wiley-Interscience, 1974.
[5] N. K. Bose, Digital Filters, New York: North-Holland, 1985.
[6] E. I. Jury, “A simplified stability criterion for linear discrete systems,” Proc. IRE, vol. 50,

pp. 1493–1500, June 1962.
[7] B. D. O. Anderson and E. I. Jury, “A simplified Schur-Cohn test,” IEEE Trans. Automatic

Control, vol. 18, pp. 157–163, Apr. 1973.
[8] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, New York:

Amer. Math. Soc., pp. 152–157, 1949.
[9] H. Freeman, Discrete-Time Systems, New York: Wiley, 1965.

[10] S. J. Hammarling, “Numerical solution of the stable, non-negative definite Lyapunov
equation,” IMA J. Numer. Anal., vol. 2, pp. 303–323, 1982.

PROBLEMS

5.1. Derive the transfer functions of the systems in Fig. P4.5a and b.

5.2. Derive the transfer functions of the systems in Fig. P4.6a and b.

5.3. Derive the transfer functions of the systems in Fig. P4.7 and P4.8.

5.4. A recursive system is characterized by the equations

y(nT) = y1(nT) + 7
4 y(nT − T) − 49

32 y(nT − 2T)

y1(nT) = x(nT) + 1
2 y1(nT − T)

Obtain its transfer function.

5.5. A system is represented by the state-space equations

q(nT + T) = Aq(nT) + bx(nT)

y(nT) = cT q(nT) + dx(nT)

where

A =

 0 1 0

0 0 1
− 1

2 − 1
2

1
2

 b =

[
0
0
1

]
cT = [

7
2

5
2

5
2

]
d = 1

Deduce its transfer function.

5.6. Show that

H (z) =
∑M

i=0 ai zM−i

zN + ∑N
i=1 bi zN−i

represents a causal system only if M ≤ N .

5.7. (a) Find the impulse response of the system shown in Fig. 5.2.
(b) Repeat part (a) for the system of Fig. 5.4.

5.8. Obtain the impulse response of the system in Prob. 5.4. Sketch the response.

THE APPLICATION OF THE Z TRANSFORM 255

5.9. At z = pi , F(z) is analytic and G(z) has a simple pole. Show that

Res
z=pi

[F(z)G(z)] = F(pi) Res
z=pi

G(z)

5.10. (a) In Sec. 5.3.1, it was shown that a system with simple poles is stable if and only if its poles are inside
the unit circle of the z plane. Show that this constraint applies equally well to a system that has one
or more second-order poles.

(b) Indicate how you would proceed to confirm the validity of the stability constraint in part (a) for the
case where the system has one or more poles of order higher than two.

5.11. Starting from first principles, show that

H (z) = z(
z − 1

4

)4

represents a stable system.

5.12. (a) A recursive system is represented by

H (z) = z6

6z6 + 5z5 + 4z4 + 3z3 + 2z2 + z + 1

Check the system for stability.
(b) Repeat part (a) if

H (z) = (z + 2)2

6z6 + 5z5 − 4z4 + 3z3 + 2z2 + z + 1

5.13. (a) Check the system of Fig. P5.13a for stability.
(b) Check the system of Fig. P5.13b for stability.

x(nT)

2 4 5

y(nT)

(a)

3

x(nT)

−4

2−3

2−2

y(nT)

(b)

Figure P5.13a and b

256 DIGITAL SIGNAL PROCESSING

5.14. (a) A system is characterized by the difference equation

y(nT) = x(nT) − 1
2 x(nT − T) − 1

3 x(nT − 2T) − 1
4 x(nT − 3T) − 1

5 x(nT − 4T)

By using appropriate tests, check the stability of the system.
(b) Repeat part (a) for the system represented by the equation

y(nT) = x(nT) − 1
2 y(nT − T) − 1

3 y(nT − 2T) − 1
4 y(nT − 3T) − 1

5 y(nT − 4T)

5.15. Obtain (a) the transfer function, (b) the impulse response, and (c) the necessary condition for stability
for the system of Fig. P5.15. The constants m1 and m2 are given by

m1 = 2r cos θ and m2 = −r 2

x(nT)

y(nT)

m2

m1

Figure P5.15

5.16. A system is characterized by the transfer function

H (z) = z4

4z4 + 3z3 + mz2 + z + 1

Find the range of m that will result in a stable system.

5.17. Find the permissible range for m in Fig. P5.17 if the system is to be stable.

x(nT) y(nT)

−2

−m

− 1
2

Figure P5.17

THE APPLICATION OF THE Z TRANSFORM 257

5.18. A system is characterized by the transfer function

H (z) = 1

z2 + 1
4

Derive an expression for its unit-step response.
5.19. A system is characterized by the transfer function

H (z) = 32z

z − 1
2

(a) Find the response of the system at t = 4T using the convolution summation if the excitation is

x(nT) = (5 + n)u(nT)

(b) Give a graphical construction for the convolution in part (a) indicating relevant quantities.

5.20. Repeat part (a) of Prob. 5.19 using the general inversion formula in Eq. (3.8).

5.21. A system is characterized by the transfer function

H (z) = z2 − z + 1

z2 − z + 0.5

Obtain its unit-step response.

5.22. Find the unit-step response of the system shown in Fig. 5.2.

5.23. Find the unit-ramp response of the system shown in Fig. 5.4 if T = 1 s.

5.24. The input excitation in Fig. 5.2 is

x(nT) =

n for 0 ≤ n ≤ 2
4 − n for 2 < n ≤ 4
0 for n > 4.

Determine the response for 0 ≤ n ≤ 5 by using the z transform.

5.25. Repeat Prob. 4.24 by using the z transform. For each of the three cases deduce the exact frequency of the
transient oscillation and also the steady-state value of the response if T = 1 s.

5.26. A system has a transfer function

H (z) = 1

z2 + 1
4

(a) Find the response if

x(nT) = u(nT) sin ωnT

(b) Deduce the steady-state sinusoidal response.

5.27. A system is characterized by

H (z) = 1

(z − r)2

258 DIGITAL SIGNAL PROCESSING

2 3 2

y(nT)

x(nT)

Figure P5.29

where |r | < 1. Show that the steady-state sinusoidal response is given by

y(nT) = M(ω) sin[ωnT + θ (ω)]

where

M(ω) = |H (e jωT)| and θ (ω) = arg H (e jωT)

5.28. (a) In Sec. 5.5.1 it was shown that the steady-state sinusoidal response of a system with simple poles is
given by Eq. (5.30). Show that this equation is also valid for a system with one or more second-order
poles.

(b) Indicate how you would proceed to show that Eq. (5.30) applies equally well to a system with one or
more poles of order higher than two.

5.29. Figure P5.29 depicts a nonrecursive system.
(a) Derive an expression for its amplitude response.
(b) Derive an expression for its phase response.
(c) Calculate the gain in dB at ω = 0, ωs/4, and ωs/2 (ωs is the sampling frequency in rad/s).
(d) Calculate the phase-shift in degrees at ω = 0, ωs/4, and ωs/2.

5.30. The discrete-time signal

x(nT) = u(nT) sin ωnT

is applied to the input of the system in Fig. P5.30.
(a) Give the steady-state time-domain response of the system.
(b) Derive an expression for the amplitude response.
(c) Derive an expression for the phase response.
(d) Calculate the gain and phase shift for ω = π/4T rad/s.

x(nT) y(nT)

2

0.5

Figure P5.30

5.31. Show that the poles of the allpass transfer function in Eq. (5.41) are the reciprocals of the zeros.

5.32. Figure P5.32 shows a nonrecursive system.
(a) Derive expressions for the amplitude and phase responses.
(b) Determine the transmission zeros of the system, i.e., zero-gain frequencies.

THE APPLICATION OF THE Z TRANSFORM 259

(c) Sketch the amplitude and phase responses.

x(nT) y(nT)

−2 cos ω0T

Figure P5.32

5.33. Show that the equation

y(nT) = x(nT) + 2x(nT − T) + 3x(nT − 2T) + 4x(nT − 3T) + 3x(nT − 4T)

+ 2x(nT − 5T) + x(nT − 6T)

represents a constant-delay system.

5.34. Derive expressions for the amplitude and phase responses of the system shown in Fig. 5.4.

5.35. Table P5.35 gives the transfer function coefficients of four digital filters labeled A to D. Using MATLAB,
compute and plot 20 log M(ω) versus ω in the range 0 to 5.0 rad/s. On the basis of the plots obtained,
identify a lowpass, a highpass, bandpass, and a bandstop filter. Each filter has a transfer function of the form

H (z) = H0

2∏
i=1

a0i + a1i z + a0i z2

b0i + b1i z + z2

and the sampling frequency is 10 rad/s in each case.

Table P5.35 Transfer-function coefficients for Prob. 5.35

Filter i a0i a1i b0i b1i

1 2.222545E − 1 −4.445091E − 1 4.520149E − 2 1.561833E − 1

A 2 3.085386E − 1 −6.170772E − 1 4.509715E − 1 2.168171E − 1

H0 = 1.0

1 5.490566 9.752955 7.226400E − 1 4.944635E − 1

B 2 5.871082E − 1 −1.042887 7.226400E − 1 −4.944634E − 1

H0 = 2.816456E − 2

1 1.747744E − 1 1.517270E − 8 5.741567E − 1 1.224608

C 2 1.399382 1.214846E − 7 5.741567E − 1 −1.224608

H0 = 8.912509E − 1

1 9.208915 1.561801E + 1 5.087094E − 1 −1.291110

D 2 2.300089 1.721670 8.092186E − 1 −1.069291

H0 = 6.669086E − 4

5.36. Show that the gain and phase shift in a digital filter satisfy the relations

M(ωs − ω) = M(ω) and θ(ωs − ω) = −θ (ω)

This page intentionally left blank

CHAPTER

6
THE SAMPLING

PROCESS

6.1 INTRODUCTION

The sampling process was briefly reviewed in Chap. 1 and there was reason to refer to it in Sec. 3.9.3.
In this chapter, it is treated in some detail both from a theoretical as well as practical point of view.
The sampling process involves several aspects that need to be addressed in detail, as follows:

• The constituent components of a sampling system

• The underlying principles that make the sampling process possible

• The applications of the sampling process

• The imperfections introduced through the use of practical components

The sampling process requires several components. Converting a continuous- to a discrete-
time signal would require some sort of a switch. However, a sampling system that uses just a simple
switch would introduce a certain kind of signal distortion known as aliasing if the signal is not
bandlimited. Continuous-time signals, man-made or otherwise, are only approximately bandlimited,
at best, and almost always they must be preprocessed by suitable analog lowpass filters to render
them bandlimited so as to prevent aliasing. At some point, a discrete-time signal would need to
be converted back to a continuous-time signal and this conversion requires some sort of a sample-
and-hold device. In practice, devices of this type tend to produce a noisy version of the required
continuous-time signal and once again a suitable analog lowpass filter would be required to remove
the noise introduced.

261

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

262 DIGITAL SIGNAL PROCESSING

The one mathematical principle that makes the sampling process workable is the sampling
theorem. The validity of this theorem can be demonstrated by examining the relationships that
exist between the spectrums of continuous- and discrete-time signals. A most important relation in
this respect is the so-called Poisson’s summation formula which gives the frequency spectrum of a
discrete-time signal in terms of the spectrum of the underlying continuous-time signal.

The connection between the spectral properties of discrete- and continuous-time signals is
made by examining a class of signals referred to here as impulse-modulated signals. These are
both sampled as well as continuous in time and, therefore, they share common characteristics
with discrete-time signals on the one hand and continuous-time signals on the other. Consequently,
they serve as a bridge between the discrete- and continuous-time worlds. The dual personality of
impulse-modulated signals allows them to possess both a Fourier and a z transform and by exam-
ining the properties of these signals, some fundamental relations can be established between these
transforms. From this link follow the spectral relationships between discrete- and continuous-time
signals.

The study of impulse-modulated signals requires a clear understanding of what are impulse
functions and what are their spectral characteristics. This subject has received considerable attention
throughout most of the twentieth century and some very rigorous theories have been proposed, for
example, the treatment of impulse functions as generalized functions [1]. What these theories offer in
rigor, they lack in practicality and, in consequence, they have not received the attention they deserve.
At the other extreme, authors often define impulse functions in terms of thin tall pulses which are
easy to reproduce in the lab but which lack the mathematical sophistication of generalized functions.
In order to obtain a true impulse function, the duration of the pulse must be made infinitesimally
small and its amplitude must be made infinitely large but this limiting operation is fraught with perils
and pitfalls. In this chapter, a somewhat new way of looking at impulse functions is proposed which
provides practical solutions to the classical DSP problems without compromising mathematical
principles.

Through the sampling process, digital filters can be used to process continuous-time signals.
The continuous-time signal is first converted to a discrete-time signal, which is then processed by a
digital filter. Subsequently, the processed discrete-time signal is converted back to a continuous-time
signal. Once we establish a relation between analog and digital filters, in addition to our being able to
use digital filters to perform analog-filter functions we can also design digital filters by using analog
filter methodologies. In fact, some of the better infinite-duration impulse response (IIR) digital filters
are designed by transforming analog into digital filters.

In addition to analog filters, switches, and sample-and-hold devices, a sampling system also
uses quantizers and encoders. All these components have imperfections that need to be examined
carefully.

In this chapter, the Fourier transform theory of Chap. 2 is first extended to impulse functions
and then to periodic and impulse-modulated signals. On the basis of these principles, Poisson’s sum-
mation formula is derived in a rather practical way. From this formula, the crucial interrelations that
exist between the spectrums of continuous- and discrete-time signals are established. From these
interrelations, the conditions that must be satisfied for a discrete-time signal to be a true representa-
tion of the underlying continuous-time signal become immediately obvious and the validity of the
sampling theorem can be easily established. The chapter concludes by examining the imperfections
introduced by the various components of the sampling system.

THE SAMPLING PROCESS 263

6.2 FOURIER TRANSFORM REVISITED

6.2.1 Impulse Functions

The properties and theorems of the Fourier transform described in Sec. 2.3.3 apply to the extent that
the convergence theorem (Theorem 2.5) is satisfied. In practice, a number of important signals are
not absolutely integrable and, therefore, two situations can arise: Either the integral in Eq. (2.27) or
that in Eq. (2.29) does not converge. Signals of this category include impulse signals and the entire
class of periodic signals. We will show in this section that many of the mathematical difficulties
associated with these signals can be circumvented by paying particular attention to the definition of
impulse functions.

Impulse signals are used in many applications and are part and parcel of the sampling process,
as will be demonstrated later on in this chapter; consequently, their properties, spectral or otherwise,
must be clearly understood by the DSP practitioner. Such signals can be modeled in terms of impulse
functions. A unit impulse function that has been used for many years can be generated by scaling the
amplitude of the pulse signal in Example 2.5a from unity to 1/τ , that is,

p̄τ (t) = 1

τ
pτ (t) =

{
1
τ

for |t | ≤ τ/2

0 otherwise
(6.1)

The Fourier transform of this pulse is obtained from Example 2.5a as

F p̄τ (t) = 1

τ
F pτ (t) = 2 sin ωτ/2

ωτ
(6.2)

Evidently, as τ approaches zero, the pulse in Eq. (6.1) becomes very thin and very tall, as can be
seen in Fig. 6.1a but the area of the pulse remains constant and equal to unity. As long as τ is finite,
the absolute integrability of the signal is assured and, therefore, it would satisfy Theorem 2.5. If we
now attempt to find the Fourier transform of the pulse as τ → 0, we get

F lim
τ→0

p̄τ (t) =
∫ ∞

−∞
lim
τ→0

p̄τ (t)e− jωt dt =
∫ τ/2

−τ/2
lim
τ→0

p̄τ (t)e− jωt dt

If we now attempt to evaluate the limit limτ→0[p̄τ (t)e− jωt], we find that it becomes unbounded at
τ = 0 and, therefore, the above integral cannot be evaluated. More formally, the integral does not
exist in the Riemann sense of a definite integral (see pp. 217–221 of Kaplan [2]). However, since the
definite integral of a real function of t would give the area bounded by the graph of the function and
the t axis, we might be tempted to write

F lim
τ→0

p̄τ (t) =
∫ τ/2

−τ/2
lim
τ→0

p̄τ (t)e− jωt dt

≈
∫ τ/2

−τ/2
lim
τ→0

p̄τ (t) dt = 1

264 DIGITAL SIGNAL PROCESSING

−40 −30 −20 −10 0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

si
n

(ω
ε/

2)
/(
ω
ε/

2)

ε = 0.50
ε = 0.10
ε = 0.05

−1 0 1
0

5

10

15

20

25

t

ε = 0.50
ε = 0.10
ε = 0.05

(a)

(b)

dω∞

w

p ε
(t

)
 -

ω∞
2−ω∞

2

Figure 6.1 Impulse function: (a) Pulse function for three values of ε, (b) corresponding Fourier transform.

since e− jωt → 1 for −τ/2 ≤ t ≤ τ/2 with τ → 0 and the area of the pulse p̄τ (t) is equal to unity
and remains unity as τ → 0. Many authors have taken this approach in the past [3]. Interestingly, the
Fourier transform obtained in the above analysis is consistent with the limit of the Fourier transform
of the pulse given by Eq. (6.2), that is,

lim
τ→0

F p̄τ (t) = lim
τ→0

2 sin ωτ/2

ωτ
= 1

THE SAMPLING PROCESS 265

Now, if we attempt to find the inverse Fourier transform of 1, we run into certain mathematical
difficulties. From Eq. (2.29), we have

F−11 = 1

2π

∫ ∞

−∞
e jωt dω

= 1

2π

[∫ ∞

−∞
cos ωt dω + j

∫ ∞

−∞
sin ωt dω

]

Mathematicians will tell us that these integrals do not converge or do not exist1 and, therefore, we
conclude that the inverse Fourier transform of 1 does not satisfy Eq. (2.29).

Defining a unit impulse function in terms of an infinitesimally thin, infinitely tall pulse is
obviously problematic. However, there are certain important practical advantages as well in using a
thin, tall pulse. Specifically, pulses are very easy to create in terms of electrical voltage or current
waveforms and, in fact, we will use them later on in this chapter in the implementation of sampling
systems. For this reason, we would like to define the unit impulse function in terms of a thin, tall
pulse but at the same time we would like to find a way to avoid the above mathematical pitfalls.

The above difficulties can be circumvented in a practical way by defining impulse functions
in terms of the way they interact with other functions under integration while adopting a somewhat
practical interpretation of the limit of a function. In this approach, a function γ (t) is said to be a unit
impulse function if for a function x(t) which is continuous for |t | < ε, we have∫ ∞

−∞
γ (t)x(t) dt � x(0) (6.3)

where the symbol � is used to indicate that the relation is approximate in the very special sense that
the integral at the left-hand side can be made to approach the value of x(0) to any desired degree of
precision. Now consider the pulse function

p̄ε(t) = lim
τ→ε

p̄τ (t) =
{

1
ε

for |t | ≤ ε/2

0 otherwise
with ε �= 0 (6.4)

where ε is a small but finite constant. If we let

γ (t) = p̄ε(t)

then Eqs. (6.3) and (6.4) yield

∫ ∞

−∞
lim
τ→ε

p̄τ (t)x(t) dt =
∫ ε/2

−ε/2

1

ε
x(t) dt � 1

ε
x(0)

∫ ε/2

−ε/2
dt

� x(0)

1Presumably the values of these integrals would depend on the limiting behavior of the sine and cosine functions at
infinity but nobody seems to have come up with a reasonable answer for that so far!

266 DIGITAL SIGNAL PROCESSING

and by making ε smaller and smaller the integral at the left-hand can be made to approach the value
x(0) as closely as desired. In other words, the pulse function of Eq. (6.4) satisfies Eq. (6.3) and it is,
therefore, an impulse function that can be represented, say, by δ(t).

From Eq. (6.4) and Table 2.1, we have

lim
τ→ε

p̄τ (t) ↔ lim
τ→ε

2 sin ωτ/2

ωτ
(6.5)

As τ is reduced, the pulse at the left-hand side tends to become thinner and taller whereas the so-
called sinc function at the right-hand side tends to be flattened out as depicted in Fig. 6.1b. For some
small value of ε, the sinc function will be equal to unity to within an error δω∞ over a bandwidth
−ω∞/2 ≤ ω ≤ ω∞/2 as shown in Fig. 6.1b where ω∞ is inversely related to ε, i.e., the smaller the
ε the larger the ω∞. Evidently, for some sufficiently small but finite ε, the sinc function would be
approximately equal to unity over the frequency range −ω∞/2 to ω∞/2 which could include all the
frequencies of practical interest. Therefore, from Eq. (6.5), we can write

δ(t) = p̄ε(t) ↔ 2 sin ωε/2

ωε
= i(ω) (6.6)

and since

i(ω) = 2 sin ωε/2

ωε
� 1 for |ω| < ω∞/2

function i(ω) may be referred to as a frequency-domain unity function.
Let us now examine the sinc function

sinc� (t) = sin � t/2

π t

This is, of course, a pulse-like function that tends to become thinner and taller as � is increased,
very much like the pulse in Fig. 6.1a, as can be seen in Fig. 6.2a. Now let us consider the function

sincω∞/2(t) = lim
�→ω∞/2

sin � t/2

π t
= sin ω∞t/4

π t
(6.7)

where ω∞ is a large but finite constant. If we let

γ (t) = sincω∞/2(t)

then Eqs. (6.3) and (6.7) yield∫ ∞

−∞
sincω∞/2(t)x(t) dt =

∫ ∞

−∞

sin ω∞t/4

π t
x(t) dt

=
∫ −ε/2

−∞

sin ω∞t/4

π t
x(t) dt +

∫ ε/2

−ε/2

sin ω∞t/4

π t
x(t) dt

+
∫ ∞

ε/2

sin ω∞t/4

π t
x(t) dt (6.8a)

THE SAMPLING PROCESS 267

−6 −4 −2 0 2 4 6
0

0.5

1.0

1.5

ω

p �
(ω

)

−20 −10 0 10 20
−0.2

0

0.2

0.4

0.6

0.8

t
(a)

si
nc

�
(t

)

(b)

� =1
� =2
� =4

� =1
� =2
� =4

Figure 6.2 Impulse function: (a) Sinc function for three values of � , (b) corresponding Fourier transforms.

If φ(x) is an absolutely integrable function and a and b are finite or infinite constants, then

lim
ω→∞

∫ b

a
sin(ωt)φ(t) dt = 0 (6.8b)

according to the Riemann-Lebesque lemma [4]. Thus if x(t)/t is absolutely integrable, the first and
the last integrals at the right-hand side in Eq. (6.8a) approach zero. Since

x(t) � x(0)|t | ≤ ε/2 (6.8c)

268 DIGITAL SIGNAL PROCESSING

Eqs. (6.8a)–(6.8c) give give2

∫ ∞

−∞
sincω∞/2(t)x(t) dt �

∫ ε/2

−ε/2

sin ω∞t/4

π t
x(t) dt

� x(0)
∫ ε/2

−ε/2

sin ω∞t/4

π t
dt (6.8d)

Now for a large ω∞, it is known that∫ ε/2

−ε/2

sin ω∞t/4

π t
�

∫ ∞

−∞

sin ω∞t/4

π t
dt = 1 (6.8e)

(see pp. 280–281 of Ref. [4]) and, therefore, Eqs. (6.8d) and (6.8e) give∫ ∞

−∞
sincω∞/2(t)x(t) dt � x(0)

In effect, the sinc function of Eq. (6.7) satisfies Eq. (6.3) and we conclude, therefore, that sincω∞/2(t)
is another impulse function that could be represented, say, by δ′(t).

From Example 2.7, we have

sin � t/2

π t
↔ p� (ω) (6.9)

where

p� (ω) =
{

1 for |ω| ≤ �/2

0 otherwise

and hence from Eq. (6.9), we can write

δ′(t) = sin ω∞t/2

π t
↔ pω∞ (ω) = i ′(ω) (6.10)

where

i ′(ω) = 1 for |ω| ≤ ω∞/2

Like function i(ω), function i ′(ω) behaves as a frequency-domain unity function as can be seen in
Fig. 6.2b.

In the above analysis, we have identified two distinct impulse functions, namely, δ(t) and δ′(t)
and we have demonstrated that their Fourier transforms are unity functions, as shown in Table 6.1.
In fact, there are other Fourier transform pairs with these properties but the above two are entirely
sufficient for the purposes of this textbook. Since the two impulse functions have the same properties,
they are alternative but equivalent forms and each of the two transform pairs in Eqs. (6.6) and (6.10)
can be represented by

δ(t) ↔ i(ω)

2See 278281 of Ref. [4] for a relevant discussion.

THE SAMPLING PROCESS 269

Table 6.1 Impulse and unity functions

δ(t) i(ω)

p̄ε(t) 2 sin ωε/2
ωε

sin ω∞t/2
π t pω∞ (ω)

or even by the symbolic notation

δ(t) � 1 (6.11)

where the wavy, two-way arrow � signifies that the relation is approximate with the understanding
that it can be made as exact as desired by making ε in Eq. (6.6) small enough or ω∞ in Eq. (6.7)
large enough. Symbolic graphs for the impulse and unity functions are shown in Fig. 6.3a.

Some important properties of impulse functions, which will be found very useful in establish-
ing the relationships between continuous- and discrete-time signals, can be stated in terms of the
following theorem:

Theorem 6.1A Properties of Time-Domain Impulse Functions Assuming that x(t) is a
continuous function of t for |t|<ε, the following relations hold:

(a)
∫ ∞

−∞
δ(t − τ)x(t) dt =

∫ ∞

−∞
δ(−t + τ)x(t) dt � x(τ)

(b) δ(t − τ)x(t) = δ(−t + τ)x(t) � δ(t − τ)x(τ)

(c) δ(t)x(t) = δ(−t)x(t) � δ(t)x(0)

δ(t)

t ω

1

i(t)
1

t ω

δ(ω)

i(ω)

(a)

(b)

1

2π

Figure 6.3 Fourier transforms of impulse and unity function: (a) δ(t) ↔ i(ω), (b) i(t) ↔ 2πδ(ω).

270 DIGITAL SIGNAL PROCESSING

Proof

(a) From Eq. (6.6), we can write∫ ∞

−∞
δ(t − τ)x(t) dt =

∫ ∞

−∞
p̄ε(t − τ)x(t) dt

� 1

ε
x(τ)

∫ τ+ε/2

τ−ε/2
dt � x(τ) �

(b) Let x(t) and ξ (t) be continuous functions of t for |t | < ε. We can write∫ ∞

−∞
δ(t − τ)x(t)ξ (t) dt =

∫ ∞

−∞
p̄ε(t − τ)x(t)ξ (t) dt

� 1

ε
x(τ)ξ (τ)

∫ τ+ε/2

τ−ε/2
dt

� x(τ)ξ (τ) (6.13a)

On the other hand,∫ ∞

−∞
δ(t − τ)x(τ)ξ (t) dt =

∫ ∞

−∞
p̂ε(t − τ)x(τ)ξ (t) dt

� 1

ε
x(τ)ξ (τ)

∫ τ+ε/2

τ−ε/2
dt

� x(τ)ξ (τ) (6.13b)

From Eqs. (6.13a) and (6.13b), we have∫ ∞

−∞
δ(t − τ)x(t)ξ (t) dt �

∫ ∞

−∞
δ(t − τ)x(τ)ξ (t) dt

and, therefore,

δ(t − τ)x(t) � δ(t − τ)x(τ) (6.14a)

Since impulse functions, as defined above, are even functions of t , we have

δ(−t) = δ(t) and δ(−t + τ) = δ(t − τ) (6.14b)

and hence Eqs. (6.14a) and (6.14b) yield

δ(t − τ)x(t) = δ(−t + τ)x(t) � δ(t − τ)x(τ) �

(c) Part (c) follows readily from part (b) by letting τ = 0. �

THE SAMPLING PROCESS 271

In words, part (a) of the theorem is saying that integrating an impulse function times a contin-
uous function causes the integral to assume the value of the continuous function at the location of
the impulse function. Similarly, parts (b) and (c) are saying that multiplying a continuous function
by an impulse function yields a product of the impulse function times the value of the continuous
function at the location of the impulse.

The above theorem applies also to the impulse function in Eq. (6.10). The theorem is essentially
a generalization of the definition of impulse functions and, in fact, any distinct functions that satisfy
it may be deemed to be equivalent impulse functions. The theorem is of considerable practical
importance as will be found out later on in this chapter.

In the above analysis, time-domain impulse functions have been examined whose Fourier
transforms are unity functions in the frequency domain. Occasionally, frequency-domain impulse
functions are required whose inverse Fourier transforms are unity functions in the time domain. Such
functions can be readily obtained from the impulse and unity functions examined already and, as
will be shown below, they are required for the spectral representation of periodic signals. Consider
the Fourier transform pair in Eq. (6.6), namely,

δ(t) = p̄ε(t) ↔ 2 sin ωε/2

ωε
= i(ω)

By applying the symmetry theorem (Theorem 2.7), we can write

i(t) ↔ 2πδ(−ω) (6.15a)

where

i(t) = 2 sin tε/2

tε
� 1 for |t | < t∞ (6.15b)

and

δ(−ω) = lim
�→ε

p̄� (−ω) = lim
�→ε

p̄� (ω) = δ(ω) (6.15c)

where t∞ is a positive constant that defines the range of t over which i(t) � 1 and is inversely related
to ε. Therefore, from Eqs. (6.15a)–(6.15c), we can write

i(t) ↔ 2πδ(ω) (6.16a)

or

1 � 2πδ(ω) (6.16b)

where i(t) and δ(ω) may be referred to as time-domain unity function and frequency-domain unit
impulse function, respectively, by analogy with the frequency-domain unity function and time-
domain impulse function, respectively. These functions can be represented by the symbolic graphs
of Fig. 6.3b.

The properties of time-domain impulse functions apply equally well to frequency-domain
impulse functions as summarized by Theorem 6.1B below.

272 DIGITAL SIGNAL PROCESSING

Theorem 6.1B Properties of Frequency-Domain Impulse Functions Assuming that X(jω)
is a continuous function of ω for |ω| < ε , the following relations hold:

(a)
∫ ∞

−∞
δ(ω − �)X(jω) dω =

∫ ∞

−∞
δ(−ω + �)X(jω) dω � X(j�)

(b) δ(ω − �)X(jω) = δ(−ω + �)X(jω) � δ(ω − �)X(j�)

(c) δ(ω)X(jω) = δ(−ω)X(jω) � δ(ω)X(0) �

6.2.2 Periodic Signals

The above approach circumvents the problem of impulse functions in a practical way. However, a
similar problem arises if we attempt to find the Fourier transform of a periodic signal. Consider, for
example, x(t) = cos ω0t . We can write

Fx(t) =
∫ ∞

−∞
(cos ω0t)e− jωt dt =

∫ ∞

−∞
1
2

[
e jω0t + e− jω0t

]
e− jωt dt

=
∫ ∞

−∞
1
2

[
e j(ω0−ω)t + e− j(ω0+ω)t

]
dt

=
∫ ∞

−∞
1
2 {cos[(ω0 − ω)t] + j sin[(ω0 − ω)t]

+ cos[(ω0 + ω)t] − j sin[(ω0 + ω)t]} dt

As can be seen, we have run into the same difficulty as before, that is, we are attempting to evaluate
integrals of sines and cosines over the infinite range −∞ ≤ t ≤ ∞ and, therefore, Fx(t) does not
exist. However, this problem can also be circumvented in a practical way by simply using the
transform pair in Eq. (6.16a). On applying the frequency shifting theorem (Theorem 2.10), we can
write

i(t)e jω0t ↔ 2πδ(ω − ω0) (6.18a)

and

i(t)e− jω0t ↔ 2πδ(ω + ω0) (6.18b)

and since i(t) � 1, we have

e j±ω0t � 2πδ(ω ∓ ω0) (6.18c)

If we add Eqs. (6.18a) and (6.18b), we deduce

i(t)[e jω0t + e− jω0t] ↔ 2π [δ(ω − ω0) + δ(ω + ω0)]

THE SAMPLING PROCESS 273

x(t)

t

X(jω)

−ω0 ω0 ω

π

Figure 6.4 Fourier transform of cosine function: x(t) ↔ X (jω) where x(t) = cos ω0t and X (jω) =
π[δ(ω − ω0) + δ(ω − ω0)].

and hence

i(t) cos ω0t ↔ π [δ(ω + ω0) + δ(ω − ω0)]

Since i(t) � 1 for |t | < t∞ (see Eq. (6.15b)), we may write

cos ω0t � π [δ(ω + ω0) + δ(ω − ω0)] (6.19)

The Fourier transform of a cosine function can thus be represented by the symbolic graph of Fig. 6.4.
If we now subtract Eq. (6.18b) from Eq. (6.18a), we obtain

i(t)[e jω0t − e− jω0t] ↔ 2π [δ(ω − ω0) − δ(ω + ω0)]

and hence

i(t) sin ω0t ↔ jπ [δ(ω + ω0) − δ(ω − ω0)]

or

sin ω0t � jπ [δ(ω + ω0) − δ(ω − ω0)] (6.20)

With Fourier transforms available for exponentials, sines, and cosines, Fourier transforms of
arbitrary periodic signals that satisfy the Dirichlet conditions in Theorem 2.1 can be readily obtained.
From Eq. (6.18a), we can write

i(t)Xke jkω0t ↔ 2π Xkδ(ω − kω0) (6.21)

Therefore, Eq. (2.3) gives

i(t)
∞∑

k=−∞
Xke jkω0t ↔ 2π

∞∑
k=−∞

Xkδ(ω − kω0)

274 DIGITAL SIGNAL PROCESSING

or

x̃(t) =
∞∑

k=−∞
Xke jkω0t � 2π

∞∑
k=−∞

Xkδ(ω − kω0) (6.22)

In effect, the frequency spectrum obtained by applying the Fourier transform to a periodic signal
comprises a sequence of frequency-domain impulses whose strengths are equal to 2π times the
Fourier series coefficients {Xk}.

6.2.3 Unit-Step Function

Another time function that poses difficulties is the unit step u(t) as can be easily shown. However,
by defining the unit step in terms of a function that is absolutely integrable, the problem can be
circumvented in the same way as before. We can define

u(t) = lim
α→ε

{
e−αt for t > 0

0 for t < 0

where ε is a very small but finite constant. The Fourier transform for the unit step can be obtained
from Example 2.6a, as

U (jω) = lim
α→ε

1

jω + α

or

u(t) � 1

jω
(6.23)

The Fourier transform pairs obtained in this chapter along with those obtained in Chap. 2
are summarized in Table 6.2 for the sake of easy reference. For impulses and periodic signals, the
transforms are approximate, as has been pointed out earlier, but can be made to approach any desired
degree of precision by making ε in Eq. (6.6) smaller and ω∞ in Eq. (6.10) or t∞ in Eq. (6.15b) larger.
Note that the impulse functions in Eqs. (6.6) and (6.10) would break down if we were to make ε zero
in the first case and ω∞ infinite in the second case but in practice there is very little to be gained in
doing so. After all pulses of infinite amplitude cannot be created in the laboratory.

6.2.4 Generalized Functions

Analogous but exact Fourier transform pairs to those given by Eqs. (6.11), (6.16b), (6.18c), (6.19),
(6.22), and (6.23) can be obtained but a more sophisticated definition of impulse functions is required
in terms of generalized functions3 as detailed by Lighthill [1]. In that approach, impulse and unity
functions are defined in terms of well-behaved functions that can be differentiated any number of

3See Ref. [5] for a brief introduction to generalized functions.

THE SAMPLING PROCESS 275

Table 6.2 Standard Fourier transforms

x(t) X(jω)

δ(t) 1

1 2πδ(ω)

δ(t − t0) e− jωt0

e jω0t 2πδ(ω − ω0)

cos ω0t π[δ(ω + ω0) + δ(ω − ω0)]

sin ω0t jπ [δ(ω + ω0) − δ(ω − ω0)]

pτ (t) =
{

1 for |t | ≤ τ/2

0 for |t | > τ/2

2 sin ωτ/2

ω

sin � t/2

π t
p� (ω) =

{
1 for |ω| ≤ �/2

0 for |ω| > �/2

qτ (t) =

1 − 2|t |

τ
for |t | ≤ τ/2

0 for |t | > τ/2

8 sin2 ωτ/4

τω2

4 sin2 � t/4

π� t2
q� (ω) =

1 − 2|ω|

�
for |ω| ≤ �/2

0 for |ω| > �/2

e−αt2
√

π
α

e−ω2/4α

1√
4απ

e−t2/4α e−αω2

u(t)
1

jω

u(t)e−αt 1

a + jω

u(t)e−αt sin ω0t
ω0

(a + jω)2 + ω2
0

times, for example, in terms of exponential functions such as
√

(n/π)e−nt2
and e−t2/4n , respectively

(see Example 2.11). It turns out that generalized functions solve one problem, namely, the limiting
behavior of impulse functions, but create another: Apart from being of a somewhat abstract nature,
generalized functions are also difficult, if not impossible, to realize in terms of voltage or current
waveforms in the laboratory. In the practical definitions of impulse and unity functions defined in
Sec. 6.2.1, the transform pairs are approximate but as parameter ε in Eq. (6.6) is reduced and pa-
rameter ω∞ in Eq. (6.15c) is increased, the inexact transform pairs tend to approach their exact
counterparts. In effect, the approximate transform pairs are for all practical purposes equivalent to
their exact counterparts. In subsequent sections of this chapter and later on in the book the special
symbols � and � will sometimes be replaced by the standard two-way arrow and equal to sign,

276 DIGITAL SIGNAL PROCESSING

respectively, for the sake of consistency with the literature but with the clear understanding that an
approximation is involved as to what constitutes an impulse function.

Example 6.1 (a) Find the Fourier transform of the periodic signal

x(t) = cos4 ω0t

(b) Repeat part (a) for the periodic signal

x̃(t) =
∞∑

n=−∞
x(t + nT)

where

x(t) =
{

sin ω0t for 0 ≤ t ≤ τ0/2

0 for −τ0/2 ≤ t ≤ 0

where ω0 = 2π/τ0.

Solution

(a) We can write

x(t) = (cos2 ω0t)(cos2 ω0t)

= 1
4 (cos 2ω0t + 1)(cos 2ω0t + 1)

= 1
4 (cos2 2ω0t + 2 cos 2ω0t + 1)

= 1
4

[
1
2 (cos 4ω0t + 1) + 2 cos 2ω0t + 1

]
= 1

8 cos 4ω0t + 1
2 cos 2ω0t + 3

8

Now from Table 6.2, we get

X (jω) = π
{

1
8 [δ(ω + 4ω0) + δ(ω − 4ω0)] + 1

2 [δ(ω + 2ω0) + δ(ω − 2ω0)] + 3
4δ(ω)

}
(b) The Fourier series of periodic signal x̃(t) is given by Eqs. (2.3) and (2.5) where

Xn = 1

τ0

∫ τ0/2

−τ0/2
[u(t) sin ω0t]e− jnω0t dt

= 1

τ0

∫ τ0/2

0
sin ω0t [cos nω0t − j sin nω0t] dt

= 1

τ0

∫ τ0/2

0
[cos nω0t sin ω0t − j sin nω0t sin ω0t] dt

THE SAMPLING PROCESS 277

= 1

2τ0

∫ τ0/2

0

{
[sin(n + 1)ω0t − sin(n − 1)ω0t] − j[cos(n − 1)ω0t + cos(n + 1)ω0t]

}
dt

= 1

2τ0

[− cos(n + 1)ω0t

(n + 1)ω0
+ cos(n − 1)ω0t

(n − 1)ω0
− j

sin(n − 1)ω0t

(n − 1)ω0
+ j

sin(n + 1)ω0t

(n + 1)ω0

]τ0/2

0

= 1

4π

[
cos(n − 1)π − 1

n − 1
− cos(n + 1)π − 1

n + 1
− j

sin(n − 1)π

n − 1
+ j

sin(n + 1)π

n + 1

]

= 1

4π

[− cos nπ − 1

n − 1
− − cos nπ − 1

n + 1
+ j

sin nπ

n − 1
− j

sin nπ

n + 1

]

= −
[

cos nπ + 1 − j sin nπ

2π (n2 − 1)

]

Evaluating Xn and noting that l’Hôpital’s rule is required for the cases n = ±1, the
following values of Xn can be obtained:

X0 = 1

π
X1 = −X−1 = − j

4
X2 = X−2 = − 1

3π

X3 = X−3 = 0 X4 = X−4 = − 1

15π
X5 = X−5 = 0

X6 = X−6 = − 1

35π
, . . .

On using Eqs. (2.9) and (2.10), the Fourier series of x̃(t) can be deduced as

x̃(t) = 1
2 a0 +

∞∑
n=1

an cos nω0t +
∞∑

n=1

bn sin nω0t (6.24)

where

a0 = 2X0 an = Xn + X−n bn = j(Xn − X−n)

or

a0 = 2

π
a1 = 0 a2 = − 2

3π
a3 = 0 a4 = − 2

15π

a5 = 0 a6 = − 2

35π
a7 = 0, · · ·

b1 = 1

2
b2 = 0 b3 = 0 b4 = 0 b5 = 0 b6 = 0, · · ·

278 DIGITAL SIGNAL PROCESSING

Now from Table 6.2, we get

F x̃(t) = a0πδ(ω) +
∞∑

k=1

anπ [δ(ω + nω0) + δ(ω − nω0)]

+
∞∑

k=1

jbnπ [δ(ω + nω0) − δ(ω − nω0)] (6.25)

6.3 INTERRELATION BETWEEN THE FOURIER SERIES
AND THE FOURIER TRANSFORM

Discrete-time signals are usually sampled versions of continuous-time signals and, therefore, it stands
to reason that they inherit their spectral characteristics from the continuous-time signals from which
they are derived. Specifically, if the frequency spectrum of the underlying continuous-time signal is
known, then that of the discrete-time signal can be deduced by using Poisson’s summation formula.
The following theorem is prerequisite for the derivation of this most important formula.

Theorem 6.2 Fourier-Series Kernel Theorem

∞∑
n=−∞

δ(t − nT) ↔ ωs

∞∑
n=−∞

δ(ω − nωs) (6.26)

where ωs = 2π/T.

The relation in Eq. (6.26) can be demonstrated to be valid on the basis of the principles
developed in Sec. 6.2. To start with, on applying the inverse Fourier transform to the right-hand side
of Eq. (6.26), we get

F−1

[
ωs

∞∑
n=−∞

δ(ω − nωs)

]
= 1

2π

∫ ∞

−∞

[
ωs

∞∑
n=−∞

δ(ω − nωs)

]
e jωt dω

= 1

T

∞∑
n=−∞

∫ ∞

−∞
δ(ω − nωs)e jωt dω

and from Theorem 6.1B, part (a), we have

F−1

[
ωs

∞∑
n=−∞

δ(ω − nωs)

]
� 1

T

∞∑
n=−∞

e jnωs t (6.27)

Consider the so-called Fourier-series kernel (see Papoulis [4], pp. 42–45), which is defined as

kN∞ (t) = 1

T

N∞∑
n=−N∞

e jnωs t (6.28)

THE SAMPLING PROCESS 279

where N∞ is a finite integer. Since this is a geometric series with common ratio e jωs t , its sum can be
obtained as

kN∞ (t) = 1

T

N∞∑
n=−N∞

e jnωs t = 1

T

e j(N∞+1)ωs t − e− j N∞ωs t

e jωs t − 1

= 1

T

e j(2N∞+1)ωs t/2 − e− j(2N∞+1)ωs t/2

e jωs t/2 − e− jωs t/2

= 1

T

sin[(2N∞ + 1)ωs t/2]

sin(ωs t/2)

(see Eq. (A.46b)). We can write

kN∞ (t) = 1

T

π t

sin(ωs t/2)
· sin[(2N∞ + 1)ωs t/2]

π t

and if we let (2N∞ + 1)ωs = ω∞, then

kN∞ (t) = 1

T

π t

sin(ωs t/2)
· sin ω∞t/2

π t

If N∞ ≫ 1, (sin ω∞t/2)/π t behaves as a time-domain impulse function (see Table 6.1) and hence
for −T/2 < t < T/2, kN∞ (t) can be expressed as

kN∞ (t) = ξ (t)δ(t)

where function

ξ (t) = 1

T

π t

sin(ωs t/2)

is continuous and assumes the value of unity at t = 0. Now from Theorem 6.1A, part (c), we get

kN∞ (t) = ξ (t)δ(t) � ξ (0)δ(t) = δ(t)

At this point, if we let t = t + nT in kN∞(t), we can easily verify that the Fourier-series kernel is
periodic with period T , as illustrated in Fig. 6.5 (see Prob. 6.14, part (a)). Therefore, for N∞ ≫ 1,
it behaves as an infinite series of impulse functions located at t = 0, ±T, ±2T , . . . , ±nT, . . . and
from Eq. (6.28), we can write

kN∞ (t) = 1

T

N∞∑
n=−N∞

e jnωs t �
∞∑

n=−∞
δ(t − nT) (6.29)

280 DIGITAL SIGNAL PROCESSING

6.0

9.0

−3.0

T−T

t

kN (t)

−1.5−3.0

3.0

1.5 3.0

Figure 6.5 Fourier-series kernel.

Since N∞ ≫ 1, Eqs. (6.27)–(6.29) yield

F−1

[
ωs

∞∑
n=−∞

δ(ω − nωs)

]
� 1

T

∞∑
n=−∞

e jnωs t � 1

T

N∞∑
n=−N∞

e jnωs t

�
∞∑

n=−∞
δ(t − nT)

Impulse functions as defined in Sec. 6.2.1 are absolutely integrable and hence they satisfy the
convergence theorem of the Fourier transform (Theorem 2.5). We thus conclude that

∞∑
n=−∞

δ(t − nT) � ωs

∞∑
n=−∞

δ(ω − nωs) �

An exact version of the above result can be obtained through the use of generalized functions
[5].

The Fourier-series kernel theorem (Theorem 6.2) leads to a direct relationship between the
Fourier series and the Fourier transform. This relationship is stated in the following theorem:

Theorem 6.3 Interrelation Between the Fourier Series and the Fourier Transform Given
a nonperiodic signal x(t) with a Fourier transform X(jω), a periodic signal with period T
can be constructed as

x̃(t) =
∞∑

n=−∞
x(t + nT) (6.30)

THE SAMPLING PROCESS 281

−1.0

−0.5

0

0.5

1.0
x(

t)

0 T 2T 3T 4T 5T
−1.0

−0.5

0

0.5

1.0

t

0 T 2T 3T 4T 5T

x∼(t) x(t–T) x(t−4T)

x(t+T)

x
(t

),
x(

t–
nT

)
∼

Figure 6.6 Generation of periodic signal x̃(t) through the addition of an infinite number of shifted copies of
x(t) over the range −∞ < t < ∞.

(see Fig. 6.6 and Prob. 6.14, part (b)). The Fourier series coefficients of x̃(t) are given by

Xn =
X(jnωs)

T
� (6.31)

where

X(jω) = Fx(t)

The above theorem states, in effect, that the Fourier series coefficient of the nth harmonic of
periodic signal x̃(t) is numerically equal to the Fourier transform of x(t) evaluated at the frequency
of the harmonic divided by T .

The validity of the relationship in Eq. (6.31) can be demonstrated by using our practical
approach to impulse and unity functions as described in Sec. 6.2.1. From Eq. (6.22), the Fourier
transform of a periodic signal x̃(t) is given by

X̃ (jω) � 2π

∞∑
n=−∞

Xnδ(ω − nωs) (6.32)

282 DIGITAL SIGNAL PROCESSING

From Theorem 6.1A, part (a), Eq. (6.30) can be expressed as

x̃(t) =
∞∑

n=−∞
x(t + nT)

�
∞∑

n=−∞

∫ ∞

−∞
x(τ)δ(t − τ + nT) dτ

�
∫ ∞

−∞
x(τ)

∞∑
n=−∞

δ(t − τ + nT) dτ

� x(t) ⊗
∞∑

n=−∞
δ(t − nT) (6.33)

where the last two lines represent time convolution (see Theorem 2.14), and on using Theorem 6.2
and Eq. (6.33), we obtain

X̃ (jω) � Fx(t) · F
∞∑

n=−∞
δ(t − nT)

� X (jω) · ωs

∞∑
n=−∞

δ(ω − nωs)

� 2π

∞∑
n=−∞

X (jω)

T
δ(ω − nωs) (6.34)

If we now use Theorem 6.1B, part (b), Eq. (6.34) yields

X̃ (jω) � 2π

∞∑
n=−∞

X (jnωs)

T
δ(ω − nωs) (6.35)

and on comparing Eqs. (6.32) and (6.35), we deduce

Xn � X (jnωs)

T
�

It should be mentioned at this point that Eq. (6.31) holds independently of the values of x(t)
for |t | > T/2. If x(t) = 0 for |t | > T/2, the shifted copies of x(t) do not overlap and

x̃(t) = x(t) for |t | < T/2

whereas if x(t) �= 0 for |t | > T/2, they do overlap and so

x̃(t) �= x(t) for |t | < T/2

THE SAMPLING PROCESS 283

In the latter case, x̃(t) is said to be an aliased version of x(t). For the nonaliased case, the Fourier
series coefficients give one spectral representation for a periodic signal and the Fourier transform
gives another, which are interrelated through Eq. (6.31).

Example 6.2 Given the nonperiodic signal

x(t) = pτ/2
(
t + 1

4τ
) − pτ/2

(
t − 1

4τ
)

where

pτ/2 =
{

1 for |t | < τ/4

0 otherwise

a periodic signal x̃(t) with period T such as that in Eq. (6.30) can be constructed. Show that
the Fourier series coefficients of x̃(t) are related to the Fourier transform of x(t) through the
relation in Eq. (6.31).

Solution

The Fourier series coefficients of x̃(t) can be obtained from Example 2.3 as

Xn =

0 for n = 0

j
4 sin2 nωsτ/4

nωs T
for n = 1, 2, . . .

(6.36)

by noting that k = n, τ0 = T , and ω0 = ωs = 2π/T in the present context. From the
definition of the Fourier transform, we can write

X (jω) =
∫ ∞

−∞
x(t)e− jωt dt

and since x(t) is an odd function of t , Eqs. (2.37a)–(2.37b) give

X (jω) = Re X (jω) + j Im X (jω) (6.37a)

where

Re X (jω) = 0 (6.37b)

284 DIGITAL SIGNAL PROCESSING

and

Im X (jω) = −2
∫ ∞

0
x(t) sin ωt dt

= −2
∫ τ/2

0
− sin ωt dt

= 2

[
cos ωt

ω

]τ/2

0

= 2

[− cos ωτ/2 + 1

ω

]τ/2

0

= 4 sin2 ωτ/4

ω
(6.37c)

Hence Eqs. (6.37a) and (6.37c) give

X (jω) = j
4 sin2 ωτ/4

ω

where X (0) = 0 as can be readily verified. If we let ω = nωs , we get

X (jnωs) =

0 for n = 0

j
4 sin2 nωsτ/4

nωs
for n = 1, 2, . . .

(6.38)

Now on comparing Eqs. (6.36) and (6.38), we note that Theorem 6.3 is satisfied.

6.4 POISSON’S SUMMATION FORMULA

Given an arbitrary nonperiodic signal x(t) that has a Fourier transform, the periodic signal in Eq. (6.30)
can be immediately constructed. Such a signal has a Fourier series of the form

x̃(t) =
∞∑

n=−∞
x(t + nT) =

∞∑
n=−∞

Xne jnωs t (6.39)

Now from Eqs. (6.31) and (6.39), we obtain

∞∑
n=−∞

x(t + nT) = 1

T

∞∑
n=−∞

X (jnωs)e jωs t (6.40)

This relationship is known as Poisson’s summation formula and as will be shown below, it provides
a crucial link between the frequency spectrum of a discrete-time signal and that of the underlying
continuous-time signal.

THE SAMPLING PROCESS 285

Two special cases of Poisson’s formula are of interest. If x(t) assumes nonzero values for
t < 0, then if we let t = 0 in Eq. (6.40), we obtain

∞∑
n=−∞

x(nT) = 1

T

∞∑
n=−∞

X (jnωs) (6.41a)

On the other hand, if x(t) = 0 for t < 0, then

lim
t→0

x(t) +
∞∑

n=1

x(nT) = 1

T

∞∑
n=−∞

X (jnωs) (6.41b)

Now the Fourier series also holds at a discontinuity provided that the value of the periodic signal at
the discontinuity is deemed to be

lim
t→0

x(t) = x(0−) + x(0+)

2

(see Theorem 2.1) and since x(0−) = 0 in the present case, Eq. (6.41b) assumes the form

x(0+)

2
+

∞∑
n=1

x(nT) = 1

T

∞∑
n=−∞

X (jnωs)

or

∞∑
n=0

x(nT) = x(0+)

2
+ 1

T

∞∑
n=−∞

X (jnωs) (6.41c)

where x(0) ≡ x(0+).
Poisson’s summation formula is illustrated in Fig. 6.7 for the signal

x(t) = u(t)e−at sin ωt

with a = 0.35 and ω = 2.6. This important formula states, in effect, that the sum of the signal values
of x(t) at t = nT in Fig. 6.7a over the range −∞ < t < ∞ is equal to the sum of the complex
values

X (jnωs) = |X (jnωs)|e j arg X (jnωs)

in Fig. 6.7b for −∞ < n < ∞ divided by the sampling period T .
As an aside, note that there is only one term in the time-domain summations in Eqs. (6.41a)

and (6.41c) if x(t) = 0 for |t | > T/2, and hence we have

x(0) =
{

1
T

∑∞
n=−∞ X (jnωs) if x(t) = 0 for t < −T/2 and t > T/2

x(0+)
2 + 1

T

∑∞
n=−∞ X (jnωs) if x(t) = 0 for t < 0 and t > T/2

286 DIGITAL SIGNAL PROCESSING

ω

ω

ωs−ωs

−ωs ωs

2ωs−2ωs

−2ωs 2ωs

3ωs−3ωs

−3ωs 3ωs

|X
(j

ω
)|

ar
g

x(
jω

),
 r

ad
/s

0

0

(a)

(b)

−1.0

1.5

1.0

0.5

−0.5

0

0.5

1.0
x(

t)

0 T 2T 3T 4T 5T

−4.0

−2.0

0

2.0

4.0

0

Figure 6.7 Poisson summation formula for the case where x(t) is defined over the range −∞ < t < ∞:
(a) Time domain, (b) frequency domain.

6.5 IMPULSE-MODULATED SIGNALS

An impulse-modulated signal, denoted as x̂(t), can be generated by sampling a continuous-time signal
x(t) using an impulse modulator as illustrated in Fig. 6.8a. An impulse modulator is essentially a
subsystem whose response to an input x(t) is given by

x̂(t) = c(t)x(t) (6.42a)

where c(t) is a carrier signal of the form

c(t) =
∞∑

n=−∞
δ(t − nT) (6.42b)

THE SAMPLING PROCESS 287

x(nT)

kT
nT

x(kT)
(e)

c(t)×

c(t)

x(t)

Impulse modulator

x(t)ˆ

(d)

kT
t

x(kT)

= x(t)ˆ

(b)

(c)

(a)

t
kT

1

x(t)

x(kT)

kT
t

Figure 6.8 Generation of an impulse-modulated signal: (a) Ideal impulse modulator, (b) continuous-time
signal, (c) impulse-modulated carrier, (d) impulse-modulated signal x̂(t), (d) discrete-time signal x(nT).

(see Fig. 6.8c). From Eqs. (6.42a) and (6.42b), we have

x̂(t) = x(t)
∞∑

n=−∞
δ(t − nT)

=
∞∑

n=−∞
x(t)δ(t − nT) (6.42c)

288 DIGITAL SIGNAL PROCESSING

and if we apply Theorem 6.1A, part (b), to Eq. (6.42c), we obtain

x̂(t) =
∞∑

n=−∞
x(nT)δ(t − nT) (6.42d)

Often x(t) = 0 for t ≤ 0−. In such a case Eq. (6.42d) assumes the form

x̂(t) =
∞∑

n=0

x(nT)δ(t − nT) (6.42e)

In effect, an impulse-modulated signal is a sequence of continuous-time impulses, like that
illustrated in Fig. 6.8d . A signal of this type can be converted into a discrete-time signal by simply
replacing each impulse of strength x(nT) by a number x(nT) as shown in Fig. 6.8e.

6.5.1 Interrelation Between Fourier and z Transforms

Observe that an impulse-modulated signal is both a sampled as well as a continuous-time signal and
this dual personality will immediately prove very useful. To start with, since it is continuous in time,
it has a Fourier transform, that is,

X̂ (jω) = F
∞∑

n=−∞
x(nT)δ(t − nT) =

∞∑
n=−∞

x(nT)Fδ(t − nT) (6.43a)

Clearly

X̂ (jω) =
∞∑

n=−∞
x(nT)e− jωnT = X D(z)

∣∣∣
z=e jωT

(6.43b)

where

X D(z) = Zx(nT)

For a right-sided signal, Eq. (6.43b) assumes the form

X̂ (jω) =
∞∑

n=0

x(nT)e− jωnT = X D(z)
∣∣∣
z=e jωT

(6.43c)

The above analysis has shown that the Fourier transform of an impulse-modulated signal x̂(t)
is numerically equal to the z transform of the corresponding discrete-time signal x(nT) evaluated
on the unit circle |z| = 1. In other words, the frequency spectrum of x̂(t) is equal to that of x(nT).

THE SAMPLING PROCESS 289

Example 6.3 (a) The continuous-time signal

x(t) =

0 for t < 3.5 s

1 for −3.5 ≤ t < −2.5

2 for −2.5 ≤ t < 2.5

1 for 2.5 ≤ t ≤ 3.5

0 for t > 3.5

is subjected to impulse modulation. Find the frequency spectrum of x̂(t) in closed form as-
suming a sampling frequency of 2π rad/s. (b) Repeat part (a) for the signal

x(t) = u(t)e−t sin 2t

assuming a sampling frequency of 2π rad/s.

Solution

(a) The frequency spectrum of an impulse-modulated signal, x̂(t), can be readily obtained
by evaluating the z transform of x(nT) on the unit circle of the z plane. The impulse-
modulated version of x(t) can be expressed as

x̂(t) = δ(t + 3T) + 2δ(t + 2T) + 2δ(t + T) + 2δ(0)

+2δ(t − T) + 2δ(t − 2T) + δ(t − 3T)

where T = 1 s. A corresponding discrete-time signal can be obtained by replacing
impulses by numbers as

x(nT) = δ(nT + 3T) + 2δ(nT + 2T) + 2δ(nT + T) + 2δ(0)

+2δ(nT − T) + 2δ(nT − 2T) + δ(nT − 3T)

Hence

X D(z) = Zx(t) = z3 + 2z2 + 2z1 + 2 + 2z−1 + 2z−2 + z−3

and, therefore, from Eq. (6.43b)

X̂ (jω) = X D(e jωT) = (e j3ωT + e− j3ωT) + 2(e j2ωT + e− j2ωT)

+ 2(e jωT + e− jωT) + 2

= 2 cos 3ωT + 4 cos 2ωT + 4 cos ωT + 2

290 DIGITAL SIGNAL PROCESSING

(b) A discrete-time signal can be readily derived from x(t) by replacing t by nT as

x(nT) = u(nT)e−nT sin 2nT = u(nT)e−nT × 1

2 j

(
e j2nT − e− j2nT

)
= u(nT)

1

2 j

(
enT (−1+ j2) − enT (−1− j2)

)
Since T = 2π/ωs = 1 s, Table 3.2 gives

X D(z) = 1

2 j

(
z

z − e−1+ j2
− z

z − e−1− j2

)

and after some manipulation

X D(z) = ze−1 sin 2

z2 − 2ze−1 cos 2 + e−2

Therefore, the frequency spectrum of the impulse-modulated signal is given by

X̂ (jω) = X D(e jωT) = e jω−1 sin 2

e2 jω − 2e jω−1 cos 2 + e−2

6.5.2 Spectral Interrelation Between Discrete- and
Continuous-Time Signals

Let X (jω) be the Fourier transform of x(t). From the frequency-shifting theorem of the Fourier
transform (Theorem 2.10), the transform pair

x(t)e− jω0t ↔ X (jω0 + jω)

can be formed. On using Poisson’s summation formula given by Eq. (6.41a), we get

∞∑
n=−∞

x(nT)e− jω0nT = 1

T

∞∑
n=−∞

X (jω0 + jnωs)

where ωs = 2π/T and if we now replace ω0 by ω, we obtain

∞∑
n=−∞

x(nT)e− jωnT = 1

T

∞∑
n=−∞

X (jω + jnωs) (6.44)

THE SAMPLING PROCESS 291

Therefore, from Eqs. (6.43b) and (6.44), we deduce

X̂ (jω) = X D(e jωT) = 1

T

∞∑
n=−∞

X (jω + jnωs) (6.45a)

Similarly, for a right-sided signal, the use of Eq. (6.41c) in the above analysis along with Eq. (6.43c)
gives

X̂ (jω) = X D(e jωT) = x(0+)

2
+ 1

T

∞∑
n=−∞

X (jω + jnωs) (6.45b)

that is, the frequency spectrum of the impulse-modulated signal x̂(t) is equal to the frequency spectrum
of discrete-time signal x(nT) and the two can be uniquely determined from the frequency spectrum
of the continuous-time signal x(t), namely, X (jω).

As is to be expected, X̂ (jω) is a periodic function of ω with period ωs since the frequency
spectrum of discrete-time signals is periodic as shown in Sec. 3.9.2. Indeed, if we replace jω by
jω + jmωs in Eq. (6.45a), we get

X̂ (jω + jmωs) = 1

T

∞∑
n=−∞

X [jω + j(m + n)ωs]

= 1

T

∞∑
n′=−∞

X (jω + jn′ωs)

= X̂ (jω)

The above relationships can be extended to the s domain. By virtue of a principle of complex
analysis known as analytic continuation (see Sec. A.8), given a Fourier transform F(jω), the Laplace
transform F(s) can be obtained by replacing jω by s in F(jω), that is,

F(s) = F(jω)
∣∣∣

jω=s

(See Sec. 10.2.2 for a more detailed description of the Laplace transform.) Thus if we let jω = s
and esT = z, Eqs. (6.45a) and (6.45b) assume the forms

X̂ (s) = X D(z) = 1

T

∞∑
n=−∞

X (s + jnωs) (6.46a)

292 DIGITAL SIGNAL PROCESSING

and

X̂ (s) = X D(z) = x(0+)

2
+ 1

T

∞∑
n=−∞

X (s + jnωs) (6.46b)

where X (s) and X̂ (s) are the Laplace transforms of x(t) and x̂(t), respectively. If the value of x(0+)
is not available, it can be deduced from X (s) as

x(0+) = lim
s→∞[s X (s)]

by using the initial-value theorem of the one-sided Laplace transform [3] (see Sec. 10.2.4).
The relationship in Eq. (6.46b) turns out to be of significant practical importance. It will be

used in Sec. 6.9 to establish a relationship between analog and digital filters. This relationship is the
basis of the so-called invariant impulse-response method for the design of IIR filters described in
Chap. 11.

Example 6.4 (a) Using Poisson’s summation formula, obtain X̂ (jω) if x(t) = cos ω0t .
(b) Repeat part (a) for x(t) = u(t)e−t .

Solution

(a) From Table 6.2

X (jω) = F cos ω0t = π [δ(ω + ω0) + δ(ω − ω0)]

Hence Eq. (6.45a) gives

X̂ (jω) = π

T

∞∑
n=−∞

[δ(ω + nωs + ω0) + δ(ω + nωs − ω0)]

The amplitude spectrum of x̂(t) is illustrated in Fig. 6.9a.

(b) From Table 6.2, we have

X (jω) = F[u(t)e−t] = 1

1 + jω

Since

x(0+) = lim
t→0

[u(t)e−t] = 1

THE SAMPLING PROCESS 293

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1.0

−30 −20 −10 0 10 20 30
0

1

2

3

(b)

|X(jω)|

ω

|X(jω)||X(jω+ jωs)|T
1

T
1

|X(jω− jωs)|T
1

|X(jω)|^

ωs−ωs
ωs

2
ωs−
2

|X(jω)|

−2ωs −ωs −ω0 ω0 ωs 2ωs

(a)

^

Figure 6.9 Amplitude spectrum of x̂(t): (a) Example 6.4a, (b) Example 6.4b.

Eq. (6.45b) gives

X̂ (jω) = 1

2
+ 1

T

∞∑
n=−∞

1

1 + j(ω + nωs)

The amplitude spectrum of x̂(t) is plotted in Fig. 6.9b for a sampling frequency ωs =
15 rad/s.

294 DIGITAL SIGNAL PROCESSING

6.6 THE SAMPLING THEOREM

The application of digital filters for the processing of continuous-time signals is made possible by
the sampling theorem4 which is as follows:

Theorem 6.4 Sampling Theorem A bandlimited signal x(t) for which

X(jω) = 0 for |ω| ≥ ωs

2
(6.47)

where ωs = 2π/T, can be uniquely determined from its values x(nT). �

The validity of the sampling theorem can be demonstrated by showing that a bandlimited
signal x(t) can be recovered from an impulse-modulated version of the signal, x̂(t), by using an ideal
lowpass filter as depicted in Fig. 6.10.5

Assume that x(t) is bandlimited and that the sampling frequency ωs is high enough to ensure
that the condition in Eq. (6.47) is satisfied. The frequency spectrum of such a signal could assume
the form depicted in Fig. 6.11a. Poisson’s summation formula in Eq. (6.45a) gives the frequency
spectrum of the impulse modulated signal x̂(t) as

X̂ (jω) = 1

T

∞∑
n=−∞

X (jω + jnωs)

Evidently, the spectrum of x̂(t) can be derived from that of x(t) through a process of periodic
continuation whereby exact copies of the spectrum of x(t)/T are shifted by frequencies {· · · , −2ωs,

−ωs, ωs, 2ωs, · · · } and are then added. If x(t) satisfies the condition in Eq. (6.47), then the shifted
copies of the spectrum, often referred to as sidebands, would not overlap and, consequently, the
spectrum of x̂(t) would assume the form depicted in Fig. 6.11b. If the impulse-modulated signal
is now passed through an ideal lowpass filter with cutoff frequencies at ±ωs/2 as illustrated in
Fig. 6.11c, all the sidebands would be rejected and the spectrum of the filter output would be an

y(t)Lowpass filter
x(t)

c(t)

x(t)

Impulse modulator

^

Figure 6.10 Sampling theorem: Derivation of x(t) from x̂(t) by using a lowpass filter.

4The sampling theorem is attributed to Nyquist, Shannon, or both, depending on what one reads. In actual fact, the
historical record shows that both of these individuals made a significant contribution to the sampling theorem. Nyquist
provided an intuitive derivation of the sampling theorem as early as 1928 in Ref. [6] whereas Shannon provided a rigorous
proof for it in Ref. [7].

5See Sec. 10.2 for a brief summary of the basics of analog filters.

THE SAMPLING PROCESS 295

X(jω)
^

T X(jω)
^

H(jω)

X(jω)

T

ω

ω

ω

=

X(jω)

ωs
2

−

ωs
2

−
ωs
2

ωs
2

−
ωs
2

ωs
2

−
ωs
2

ωs
2

ω

(b)

(a)

(c)

(d)

X(jω)T
1

X(jω+ jωs)T
1 X(jω–jωs)T

1

ωs−ωs

Figure 6.11 Sampling theorem—derivation of x(t) from x̂(t) by using a lowpass filter: (a) X (jω),
(b) X̂ (jω), (c) frequency response of ideal lowpass filter, (d) lowpass-filtered version of X̂ (jω).

exact copy of the spectrum of the continuous-time signal, that is, the continuous-time signal will be
recovered, as shown in Fig. 6.11d.

The above thought experiment can be repeated through analysis. Consider a lowpass filter with
a frequency response

H (jω) =
{

T for |ω| < ωs/2

0 for |ω| ≥ ωs/2

such as that illustrated in Fig. 6.11c. The frequency spectrum of the filter output is given by

X (jω) = H (jω)X̂ (jω) (6.48)

296 DIGITAL SIGNAL PROCESSING

(see Eq. (10.6a)). Thus from Eqs. (6.43b) and (6.48), we can write

X (jω) = H (jω)
∞∑

n=−∞
x(nT)e− jωnT

and hence

x(t) = F−1

[
H (jω)

∞∑
n=−∞

x(nT)e− jωnT

]

=
∞∑

n=−∞
x(nT)F−1[H (jω)e− jωnT] (6.49)

The frequency response of the lowpass filter is actually a frequency-domain pulse of height T and
base ωs , that is, H (jω) = T pωs (ω) as shown in Fig. 6.11c and hence from Table 6.2, we have

T sin(ωs t/2)

π t
↔ H (jω)

and from the time-shifting theorem of the Fourier transform (Theorem 2.9), we obtain

T sin[ωs(t − nT)/2]

π (t − nT)
↔ H (jω)e− jωnT (6.50)

Therefore, from Eqs. (6.49) and (6.50), we conclude that

x(t) =
∞∑

n=−∞
x(nT)

sin[ωs(t − nT)/2]

ωs(t − nT)/2
(6.51)

For an ideal lowpass filter, the frequency spectrum in Fig. 6.11d is exactly the same as that in
Fig. 6.11a and thus the output of the ideal filter in Fig. 6.10 must be x(t). In effect, Eq. (6.51) is
an interpolation formula that can be used to determine signal x(t) from its values x(nT). That this,
indeed, is the case, we note that the right-hand side in Eq. (6.51) assumes the values of x(t) for
−∞ ≤ n ≤ ∞ if t = nT since limx→0 sin x/x = 1.

Note that the above analysis provides the standard method for the reconstruction of the original
signal from an impulse-modulated version of the signal and, as will be shown below, it can also be
used to reconstruct the continuous-time signal from a discrete-time version.

6.7 ALIASING

If

X (jω) �= 0 for |ω| ≥ ωs

2

as in Fig. 6.12a, for example, frequencies pertaining to the shifted copies will move into the baseband
of X (jω) as depicted in Fig. 6.12b. As a result, X̂ (jω) (dashed curve in Fig. 6.12b) will no longer be

THE SAMPLING PROCESS 297

−30 −20 −10 0 10 20 30
0

0.1

0.2

−30 −20 −10 0 10 20 30
0

0.2

0.4

−30 −20 −10 0 10 20 30
0

0.1

0.2
TX(jω)^

X(jω)^

X(jω)T
1

X(jω+ jωs)T
1 X(jω– jωs)T

1

(a)

X(jω)

ωs

ω

ω

ω

ωs−
2

−ωs
ωs

2

(b)

(c)

Figure 6.12 Aliasing of an impulse-modulated signal: (a) X (jω), (b) shifted copies of X (jω)/T and
X̂ (jω), (c) lowpass-filtered version of X̂ (jω).

equal to X (jω) over the baseband, and the use of an ideal lowpass filter will at best yield a distorted
version of x(t), as illustrated in Fig. 6.12c. The cause of the problem is aliasing, which was explained
in some detail in Sec. 5.5.4.

6.8 GRAPHICAL REPRESENTATION OF INTERRELATIONS

Various important interrelations have been established in the preceding sections among continuous-
time, impulse-modulated, and discrete-time signals. These are illustrated pictorially in Fig. 6.13.
The two-directional paths between x̂(t) and x(nT) and between X̂ (jω) and X D(z) render the Fourier
transform applicable to DSP. The two-directional paths between x(t) and x(nT) and between X (jω)
and X D(z) will allow us to use digital filters for the processing of continuous-time signals. And the
path between X (s) and X D(z) will allow us to design digital filters by using analog-filter method-
ologies.

298 DIGITAL SIGNAL PROCESSING

X(s)

x(t) X(jω)

x(nT) XD(z)

x(t)

L

F

jω → s

s → jω

F

Z

Eq. (6.51)
Eq. (6.42d)
or (6.42e)

Replace
impulses by
numbers

Replace
numbers by
impulses

Eq. (6.48)
Eq. (6.45a)
or (6.45b)

z → e jωT

Z −1

L −1

F −1

F −1

jω → ln z1
T

X(jω)ˆˆ

Figure 6.13 Interrelations between continuous-time, impulse-modulated, and discrete-time signals.

6.9 PROCESSING OF CONTINUOUS-TIME SIGNALS USING
DIGITAL FILTERS

Consider the filtering scheme of Fig. 6.14a where S1 and S2 are impulse modulators and FA and FLP

are analog filters characterized by transfer functions HA(s) and HLP(s), respectively, and assume that
FLP is an ideal lowpass filter with a frequency response

HLP(jω) =
{

T 2 for |ω| < ωs/2

0 otherwise
(6.52)

Filter FA in cascade with impulse modulator S2 constitute a so-called impulse-modulated filter F̂ A.

THE SAMPLING PROCESS 299

x(t)

S1

c(t)

S2

FA

c(t)

FLP y(t)

(a)

(b)

x(t) x(nT) y (nT) y(t)

c(t)

FLP A/D DF D/A FLP
1 2 3 4 5 6 7

x(t)ˆ y(t)ˆ

FA

y(t)ˆx(t)ˆ

ˆ

Figure 6.14 The processing of continuous-time signals: (a) Using an impulse-modulated filter, (b) using a
digital filter.

By analogy with Eqs. (6.42e) and (6.46b), the impulse response and transfer function of filter
F̂ A can be expressed as

ĥ A(t) =
∞∑

n=0

h A(nT)δ(t − nT) (6.53a)

and

Ĥ A(s) = HD(z) = h A(0+)

2
+ 1

T

∞∑
n=−∞

HA(s + jnωs) (6.53b)

respectively, where

h A(t) = L−1 HA(s) h A(0+) = lim
s→∞[s HA(s)]

HD(z) = Zh A(nT) z = esT

The transfer function of the cascade arrangement of the impulse-modulated filter and the
lowpass filter is simply the product of their individual transfer functions, that is, Ĥ A(s)HL P (s), and
hence the Laplace transform of y(t) can be obtained as

Y (s) = Ĥ A(s)HL P (s)X̂ (s)

Therefore, the Fourier transform of y(t) in Fig. 6.14a is

Y (jω) = Ĥ A(jω)HL P (jω)X̂ (jω) (6.54)

300 DIGITAL SIGNAL PROCESSING

and if

x(0+) = h A(0+) = 0 (6.55a)

and

X (jω) = HA(jω) = 0 for |ω| ≥ ωs/2 (6.55b)

then X̂ (jω) and Ĥ A(jω) are periodic continuations of X (jω)/T and HA(jω)/T , respectively, and
thus Eqs. (6.45a), (6.53b), (6.55a), and (6.55b) give

X̂ (jω) = 1

T
X (jω) and Ĥ A(jω) = 1

T
HA(jω) for |ω| <

ωs

2
(6.56)

Hence Eqs. (6.54), (6.52), and (6.56) give

Y (jω) = 1

T
HA(jω) · T 2 · 1

T
X (jω) = HA(jω)X (jω) for |ω| < ωs/2 (6.57a)

and

Y (jω) = 0 for |ω| ≥ ωs/2 (6.57b)

Now from the assumptions made in Eqs. (6.55a) and (6.55b), HA(jω)X (jω) = 0 for |ω| ≥ ωs/2
and thus Eq. (6.57b) is redundant, i.e., Eq. (6.57a) holds for all frequencies. On replacing jω by s in
Eq. (6.57a), the s-domain representation of the impulse-modulated filter can be obtained as

Y (s) = HA(s)X (s)

After much science and some extravagant use of components, we have managed to construct
an impulse-modulated filter that operates exactly like analog filter FA in Fig. 6.14a. At first sight,
this appears to be an unnecessarily complicated and highly redundant design of an analog filter
that would certainly not excite the market place if offered as a commercial product! However, an
important feat has been achieved in the process as will now be demonstrated. From Eq. (6.53b), we
note that, just like a digital filter, an impulse-modulated filter can be characterized by a discrete-time
transfer function and by replacing the impulse-modulated filter in Fig. 6.14a by an equivalent digital
filter, the filtering of continuous-time signals by means of digital filters can be achieved. On the other
hand, given an analog filter whose transfer function, HA(s), satisfies the conditions

h A(0+) = 0 and HA(jω) ≈ 0 for |ω| ≥ ωs/2

a corresponding impulse-modulated filter can be obtained and from that an equivalent digital filter
can be deduced that has approximately the same frequency response as the analog filter. Therefore,
digital filters can be designed by using analog-filter methodologies. This possibility will be explored
further in Chap. 11.

A digital-filter implementation of Fig. 6.14a can be obtained by replacing the impulse-
modulated filter by a digital filter together with suitable interfacing devices, as shown in Fig. 6.14b.

THE SAMPLING PROCESS 301

The analog-to-digital and digital-to-analog converters are required to convert impulses into num-
bers and numbers into impulses. The input lowpass filter is used to bandlimit x(t) (if it is not already
bandlimited) to prevent aliasing errors. The detailed operation of such a filtering scheme is illustrated
by the following example.

Example 6.5 The configuration of Fig. 6.14b is used to filter a periodic signal given by

x̃(t) =
∞∑

n=−∞
x(t + nτ0) where x(t) =

{
sin ω0t for 0 ≤ t ≤ τ0/2

0 for −τ0/2 ≤ t ≤ 0

where ω0 = 2π/τ0. The lowpass filters are characterized by

HLP(jω) =
{

1 for 0 ≤ |ω| < 6ω0

0 otherwise

and the digital filter has a baseband response

HD(e jωT) =
{

T for 0.95ω0 < |ω| < 1.05ω0

0 otherwise

Assuming that ωs = 12ω0, find the time- and frequency-domain representations of the signals
at nodes 1, 2, . . . , 7.

Solution

Node 1 From Example 6.1, part (b), the Fourier series of the signal can be expressed as

x1(t) = 1
2 a0 +

∞∑
n=1

an cos nω0t +
∞∑

n=1

bn sin nω0t (6.58)

where

a0 = 2

π
a1 = 0 a2 = − 2

3π
a3 = 0 a4 = − 2

15π

a5 = 0 a6 = − 2

35π
a7 = 0 · · ·

b1 = 1

2
b2 = 0 b3 = 0 b4 = 0 b5 = 0 b6 = 0, · · ·

and from Table 6.2, the Fourier transform of x1(t) can be obtained as

X1(jω) = Fx1(t) = a0πδ(ω) +
∞∑

k=1

anπ [δ(ω + nω0) + δ(ω − nω0)]

+
∞∑

k=1

jbnπ[δ(ω + nω0) − δ(ω − nω0)] (6.59)

302 DIGITAL SIGNAL PROCESSING

Node 2 The bandlimiting filter will remove all frequencies equal to or greater than 6ω0

and hence Eq. (6.58) gives

x2(t) = 1
2 a0 +

4∑
n=1

an cos nω0t +
4∑

n=1

bn sin nω0t

= 1

π
+ 1

2
sin ω0t − 2

3π
cos 2ω0t − 2

15π
cos 4ω0t

and

X2(jω) = Fx2(t)

= 2δ(ω) + j
π

2
[δ(ω + ω0) − δ(ω − ω0)] − 2

3
[δ(ω + 2ω0)

+δ(ω − 2ω0)] − 2

15
[δ(ω + 4ω0) + δ(ω − 4ω0)]

Nodes 3 and 4 The output of the impulse modulator is obtained from Eq. (6.42d) as

x̂3(t) =
∞∑

n=−∞
x(nT)δ(t − nT)

=
∞∑

n=−∞

(
1

π
+ 1

2
sin ω0nT − 2

3π
cos 2ω0nT − 2

15π
cos 4ω0nT

)
δ(t − nT)

Thus

x4(nT) = 1

π
+ 1

2
sin ω0nT − 2

3π
cos 2ω0nT − 2

15π
cos 4ω0nT

and from Eq. (6.45a), we have

X̂3(jω) = X4(e jωT) = 1

T

∞∑
n=−∞

X2(jω + jnω0)

= 1

T

∞∑
n=−∞

{
2δ(ω + nωs) + j

π

2
[δ(ω + nωs + ω0) − δ(ω + nωs − ω0)]

−2

3
[δ(ω + nωs + 2ω0) + δ(ω + nωs − 2ω0)]

− 2

15
[δ(ω + nωs + 4ω0) + δ(ω + nωs − 4ω0)]

}

THE SAMPLING PROCESS 303

Nodes 5 and 6 The bandpass digital filter will reject all components except those with
frequencies ±ω0 ± nωs and it will also provide a gain of T , and so

X5(e jωT) = X̂6(jω)

=
∞∑

n=−∞
j
π

2
[δ(ω + nωs + ω0) − δ(ω + nωs − ω0)]

Thus, from Table 6.2, we get

x5(nT) = 1
2 sin ω0nT

and

x̂6(t) = 1

2

∞∑
n=−∞

(sin ω0nT)δ(t − nT)

Node 7 Finally, the lowpass filter at the output will reject all components with frequencies
outside the baseband, and as a result

X7(jω) =
(

jπ

2

)
[δ(ω + ω0) − δ(ω − ω0)]

and

x7(t) = 1
2 sin ω0t

The various signal waveforms and amplitude spectrums are illustrated in Fig. 6.15a and
b, respectively.

6.10 PRACTICAL A/D AND D/A CONVERTERS

A practical implementation of the analog-to-digital interface is shown in Fig. 6.16a. The function
of the sample-and-hold device is to generate a signal of the form

x̃(t) =
∞∑

n=−∞
x(nT)pT (t − nT)

such as that illustrated in Fig. 6.16b. The function of the encoder, on the other hand, is to convert
each signal level x(nT) into a corresponding binary number. Since the number of bits in the binary
representation must be finite, the response of the encoder denoted by xq (nT) can assume only a finite
number of discrete levels; that is, xq (nT) will be a quantized signal. Assuming that the encoder is
designed such that each value of x(nT) is rounded to the nearest discrete level, the response of the
encoder will be of the form depicted in Fig. 6.16c. We can write

xq (nT) = x(nT) − e(nT)

(b)

A3,4(ω)

DF

FLP

A7(ω)

6ω0 12ω0 18ω0

A5,6(ω)

1

T

FLP
1

A1(ω)

6ω0 12ω0 18ω0
ω

A2(ω)

(a)

x1(t)

x2(t)

x4(nT)

x5(nT)

x7(t)

t

t

t

nT

nT

t

t

x3(t)ˆ

x6(t)ˆ

ω

Figure 6.15 Example 6.5: (a) Time-domain representations of signals at nodes 1, 2, . . . , 7, (b) amplitude spectrums of
signals at nodes 1, 2, . . . , 7.

304

THE SAMPLING PROCESS 305

Sample
and hold
device

Practical A/D converter

Encoder

Ideal
A/D

x(kT)

x(t) xq(nT)

xq(nT)

xq(nT)

−e(nT)

kT

t
nT

x(t)˜

x(t)˜

00 2T−T−T 4T 6T 8T 10T10T

x(t)

x(t)

(a)

(b) (c)

(d)

x(nT)

Figure 6.16 Analog-to-digital interface: (a) Practical A/D converter, (b) response of a practical A/D
converter, (c) output of encoder, (d) model for a practical A/D converter.

where e(nT) is the quantization error. Hence a practical A/D converter can be represented by the
model of Fig. 6.16d , where −e(nT) can be regarded as a noise source. The effect of this noise source
on the filter response will be considered in Sec. 14.5.

The purpose of the D/A converter in Fig. 6.14b is to generate an impulse-modulated signal
ŷ(t) like the one shown in Fig. 6.17a where the impulse functions are very thin and very tall pulses
as defined in Sec. 6.2.1. However, a practical D/A converter will produce a waveform of the form
illustrated in Fig. 6.17b where the pulses may not be very thin or very tall. Such a waveform can be
represented by the equation

ỹ(t) =
∞∑

n=−∞
y(nT)pτ (t − nT)

(d)

(a)
kT

τ t

y(kT)

y(t)˜

(b)
kT

T

y(kT)

y(t)ˆ

t

Ideal D/A
converter

y(t)˜y(nT)
ŷ(t)

(c)

Practical D/A converter

Fp

|Hp(jω)|

τ

τ
2π

τ
4π

ω

Figure 6.17 Digital-to-analog interface: (a) Response of an ideal D/A converter, (b) response of a practical D/A converter,
(c) model for a practical D/A converter, (d) amplitude response of fictitious filter Fp .

306

THE SAMPLING PROCESS 307

From Table 6.2

F pτ (t) = 2 sin(ωτ/2)

ω

and by using the time-shifting theorem (Theorem 2.9), we obtain

F pτ (t − nT) = 2 sin(ωτ/2)

ω
e− jωnT

Hence the Fourier transform of ỹ(t) can be obtained as

Ỹ (jω) =
∞∑

n=−∞
y(nT)F pτ (t − nT)

= 2 sin(ωτ/2)

ω

∞∑
n=−∞

y(nT)e− jωnT

The above equation can be expressed as

Ỹ (jω) = Hp(jω)Ŷ (jω)

where Hp(jω) = τ sin(ωτ/2)

ωτ/2
and Ŷ (jω) =

∞∑
n=−∞

y(nT)e− jωnT

By analogy with Eq. (6.43a), we can write

Ŷ (jω) =
∞∑

n=−∞
y(nT)e− jωnT = F

∞∑
n=−∞

y(nT)δ(t − nT) = F ŷ(t)

where ŷ(t) is an impulse-modulated signal of the type that would be produced by an ideal D/A
converted. Therefore, a practical D/A converter can be modeled in terms of an ideal D/A converter
followed by a fictitious filter Fp, as depicted in Fig. 6.17c, with a frequency response Hp(jω). The
amplitude response of this filter is given by

|Hp(jω)| = τ

∣∣∣∣ sin (ωτ/2)

ωτ/2

∣∣∣∣ (6.60)

and is sketched in Fig. 6.17d . Clearly, a practical D/A converter will introduce distortion in the
overall amplitude response often referred to as sinc distortion which is actually a form of amplitude
distortion (see Sec. 5.7).

The effect of sinc distortion can be easily illustrated if we assume that the digital filter in
Fig. 6.14b is a bandpass filter with an ideal amplitude response such as that in Fig. 6.18a. Due to
sinc distortion, the amplitude response of the D/A converter will assume the form in Fig. 6.18b and
thus the overall amplitude response of the bandpass filter in cascade with the D/A converter will

308 DIGITAL SIGNAL PROCESSING

Gain

Gain

|Hp(jω)|

2π
τ

ω

ω

ω

(a)

(b)

(c)

Figure 6.18 Effect of sinc distortion: (a) Amplitude response of an ideal bandpass filter, (b) response of a
practical D/A converter, (c) overall response of bandpass filter in cascade with D/A converter.

be the product of the amplitude responses in Fig. 6.18a and b, as depicted in Fig. 6.18c. Evidently,
the D/A converter will introduce a reduction in the overall gain, which would tend to increase with
frequency.

Sinc distortion can be reduced in a number of ways. One possibility would be to make the
pulse width τ as small as possible which would move the notch at ω = 2π/τ to a higher frequency.
Another possibility would be to design the output lowpass filter in Fig. 6.14b such that

|Hp(jω)HLP(jω)| ≈
{

1 for |ω| ≤ ωs/2

0 otherwise

On the other hand, in an application like that in Example 6.5 it is sometimes possible to design the
digital filter such that the digital filter in cascade with the D/A converter satisfies the desired filtering
specifications. For example, the amplitude response of the bandpass filter can be designed to increase
as the frequency is increased so as to compensate for the reduction in the amplitude response of the
D/A converter, as illustrated in Fig. 6.19. Such a design would necessitate the use of optimization
and an actual design of this type can be found in Sec, 16.7 (see Example 16.3).

THE SAMPLING PROCESS 309

Gain

Gain

|Hp(jω)|

2π
τ

ω

ω

ω

(a)

(b)

(c)

Figure 6.19 Compensation for sinc distortion: (a) Amplitude response an ideal bandpass filter, (b) response
of a practical D/A converter, (c) overall response of bandpass filter and D/A converter.

Example 6.6 A bandpass digital filter with an idealized amplitude response

MB P (ω)

≤ 10−3 for 0 ≤ ω ≤ 1200 rad/s

= 1 for 1500 ≤ ω ≤ 3000 rad/s

≤ 10−3 for 3300 ≤ ω ≤ 5000 rad/s

is used in the DSP scheme shown in Fig. 6.14b. The output lowpass filter is ideal with a
constant passband gain of 1/τ and the D/A converter will produce an output waveform of the
type shown in Fig. 6.17b with a pulse width τ = 0.3 ms. (a) Find the maximum passband
loss introduced by the D/A converter in dB if the sampling frequency is ωs = 104 rad/s.
(b) Find the minimum sampling frequency that would keep the maximum passband loss to a
value equal to or less than 0.1 dB.

310 DIGITAL SIGNAL PROCESSING

Solution

(a) The overall amplitude response of the DSP system is given by

M(ω) = MB P (ω) · |Hp(jω)| · |HL P (jω)|

and from Eq. (6.60), we have

M(ω) = MB P (ω) · τ

∣∣∣∣ sin(ωτ/2)

ωτ/2

∣∣∣∣ · 1

τ

= MB P (ω) ·
∣∣∣∣ sin(ωτ/2)

ωτ/2

∣∣∣∣
Thus the D/A converter will introduce a loss which increases with frequency. The maxi-
mum passband loss will occur at the upper edge of the passband, i.e., at ω = 3000 rad/s,
and hence

Gain = M(3000) =
∣∣∣∣ sin(3000 × 0.3 × 10−3/2)

3000 × 0.3 × 10−3/2

∣∣∣∣ = 0.9666

or

Loss = 20 log
1

0.9666
= 0.2951 dB

(b) The loss will be equal to or less than 0.1 dB at ω = 3000 if

Loss = 20 log
ωτ/2

sin(ωτ/2)
≤ 0.1

= 20 log
3000τ/2

sin(3000τ/2)
≤ 0.1

Hence we require

3000τ/2

sin(3000τ/2)
≤ 100.1/20 = 1.011579

A short MATLAB program will reveal that

3000τ/2 ≤ 1.011579 sin(3000τ/2)

if τ ≤ 1.7525×10−4 and, therefore, ωs ≥ 2π/(1.7525×10−4) = 3.5853×104 rad/s.

THE SAMPLING PROCESS 311

REFERENCES

[1] M. J. Lighthill, Introduction to Fourier Analysis and Generalised Functions, Cambridge:
Cambridge University Press, 1958.

[2] W. Kaplan, Advanced Calculus, 3rd ed., Reading, MA: Addison-Wesley, 1962.
[3] R. J. Schwarz and B. Friedland, Linear Systems, New York: McGraw-Hill, 1965.
[4] A. Papoulis, The Fourier Integral and Its Applications, New York: McGraw-Hill, 1962.
[5] A. Antoniou, Digital Filters: Analysis, Design, and Applications, 2nd ed., New York:

McGraw-Hill, 1993.
[6] H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. A.I.E.E, pp. 617–644,

Feb. 1928. (See also Proc. IEEE, vol. 90, pp. 280–305, Feb. 2002.)
[7] C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, pp. 10–21,

Jan. 1949. (See also Proc. IEEE, vol. 86, pp. 447–457, Feb. 1998.)

PROBLEMS

6.1. (a) Assuming that

δ(ω) = lim
�→ε

p̄� (ω)

where

p� (ω) =
{

1 for |ω| ≤ �/2
0 otherwise

and ε is a very small but finite constant, show that δ(ω) is an even function of ω, that is,

δ(−ω) = δ(ω)

(b) Using the above definition, prove part (a) of Theorem 6.1B.
(c) Prove part (b) of Theorem 6.1B.
(d) Prove part (c) of Theorem 6.1B.

6.2. (a) A periodic signal x̃(t) can be represented by Eq. (6.30) with

x(t) ≡ pτ (t) =
{

1 for −τ/2 ≤ t ≤ τ/2
0 otherwise

Obtain the Fourier transform of x̃(t).
(b) Repeat part (a) if

x(t) = pτ/2

(
t + 1

4 τ
) − pτ/2

(
t − 1

4 τ
)

6.3. (a) A periodic signal x̃(t) can be represented by Eq. (6.30) with

x(t) =

1 for −τ/2 ≤ t < −τ/4
2 for −τ/4 ≤ t < τ/4
1 for τ/4 ≤ t < τ/2
0 otherwise

Obtain the Fourier transform of x̃(t).

312 DIGITAL SIGNAL PROCESSING

(b) Repeat part (a) if

x(t) =

1 for −3τ/8 ≤ t < −τ/4
−2 for −τ/4 ≤ t < τ/4

1 for τ/4 ≤ t ≤ 3τ/8
0 otherwise

6.4. (a) A periodic signal x̃(t) can be represented by Eq. (6.30) with

x(t) =

1 for −τ/2 ≤ t ≤ −τ1/2
1 for τ1/2 ≤ t ≤ τ/2
0 otherwise

where τ > τ1. Obtain the Fourier transform of x̃(t).
(b) Repeat part (a) if

x(t) =

1 for −τ/2 ≤ t ≤ −τ1/2
−1 for τ1/2 ≤ t ≤ τ/2

0 otherwise

where τ > τ1.

6.5. (a) A periodic signal x̃(t) can be represented by Eq. (6.30) with

x(t) =

1 for −τ/2 ≤ t ≤ −τ2/2
1 for −τ1/2 ≤ t ≤ τ1/2
1 for τ2/2 ≤ t ≤ τ/2
0 otherwise

where τ > τ2 > τ1. Obtain the Fourier transform of x̃(t).
(b) Repeat part (a) if

x(t) =

1 for −τ/2 ≤ t ≤ −τ2/2
−1 for −τ1/2 < t < τ1/2

1 for τ2/2 ≤ t ≤ τ/2
0 otherwise

where τ > τ2 > τ1.

6.6. (a) A periodic signal x̃(t) can be represented by Eq. (6.30) with

x(t) =
{

sin ω0t for 0 ≤ t ≤ τ0/4
0 otherwise

where ω0 = 2π/τ0. Obtain the Fourier transform of x̃(t).
(b) Repeat part (a) if

x(t) =
{

cos ω0t for 0 ≤ t ≤ τ0/4
0 otherwise

where ω0 = 2π/τ0.

6.7. (a) A periodic signal x̃(t) can be represented by Eq. (6.30) with

x(t) =
{

sinh αt for −τ/2 ≤ t ≤ τ/2
0 otherwise

Obtain the Fourier transform of x̃(t).

THE SAMPLING PROCESS 313

(b) Repeat part (a) if

x(t) =
{

cosh αt for −τ/2 ≤ t ≤ τ/2
0 otherwise

6.8. (a) Find the Fourier transform of the periodic signal shown in Fig. P6.8a where ω0 = 2π/τ0. Sketch the
amplitude spectrum of the signal.

(b) Repeat part(a) for the signal shown in Fig. P6.8b.

|sin (ω0t/2)|

tτ0

tτ0

(a)

(b)

Figure P6.8a and b

6.9. (a) Find the Fourier transform of the periodic signal shown in Fig. P6.9a. Sketch the amplitude spectrum.
(b) Repeat part (a) for the signal shown in Fig. P6.9b.

tτ0

(a)

t

(b)

τ0
2

1

1

τ0
2−

Figure P6.9a and b

314 DIGITAL SIGNAL PROCESSING

6.10. (a) Find the Fourier transform of the periodic signal shown in Fig. P6.10a. Sketch the amplitude spectrum.
(b) Repeat part (a) for the signal shown in Fig. P6.10b.

tτ0

(a)

t

(b)

τ0
2

τ0
2−

Figure P6.10a and b

6.11. (a) Find the Fourier transform of the periodic signals shown in Fig. P6.11a. Sketch the amplitude
spectrum.

(b) Repeat part (a) for the signal shown in Fig. P6.11b.

t

(a)

τ0
2−

τ0
2

0.5

−0.5

t

(b)

τ0

0.5

−0.5

0

Figure P6.11a and b

THE SAMPLING PROCESS 315

6.12. Find the Fourier transforms of the periodic signals
(a)

x̃(t) = cos2 ω0t + cos4 ω0t

(b)

x̃(t) = 1
2 + sin ω0t + 1

4 sin2 ω0t + cos4 ω0t

6.13. Find the Fourier transforms of the periodic signals
(a)

x̃(t) = (sin 5ω0t cos ω0t)2

(b)

x̃(t) = (cos 3ω0t cos 2ω0t)2

(c)

x̃(t) = (cos ω0t + j sin ω0t)n

6.14. (a) Show that the Fourier series kernel in Eq. (6.28) is periodic with period T .
(b) Show that the signal in Eq. (6.30) is periodic with period T .

6.15. (a) Show that the periodic signal in Prob. 6.2, part (a), satisfies Theorem 6.3.
(b) Repeat part (a) for the periodic signal in Prob. 6.2, part (b).

6.16. (a) Show that the periodic signal in Prob. 6.3, part (a), satisfies Theorem 6.3.
(b) Repeat part (a) for the periodic signal in Prob. 6.4, part (a).

6.17. (a) Show that the periodic signal in Prob. 6.7, part (a), satisfies Theorem 6.3.
(b) Repeat part (a) for the periodic signal in Prob. 6.8, part (b).

6.18. (a) Signal x̂(t) is obtained by applying impulse modulation to the nonperiodic signal in Prob. 6.3, part (a).
Obtain the Fourier transform of x̂(t) in closed form if τ = 5T .

(b) Repeat part (a) if τ = 6T .

6.19. (a) Signal x̂(t) is obtained by applying impulse modulation to the nonperiodic signal in Prob. 6.4, part (a).
Obtain the Fourier transform of x̂(t) in closed form if τ = 6T and τ1 = T .

(b) Repeat part (a) if τ = 7T and τ1 = 1.5T .

6.20. (a) Signal x̂(t) is obtained by applying impulse modulation to the nonperiodic signal in Prob. 6.7, part (a).
Obtain the Fourier transform of x̂(t) in closed form if ωs = 2π/T = 18 rad/s and τ = 1.0 s.

(b) Repeat part (a) if ωs = 2π/T = 20 rad/s.

6.21. (a) Find the Fourier transform of

x(t) = pτ (t − 2T)

where τ = (N − 1)T/2 and N is odd. The sampling frequency is ωs = 2π/T .
(b) Find the Fourier transform of the impulse-modulated signal x̂(t) in closed form.
(c) Find the Fourier transform of x̂(t) using Poisson’s summation formula.

6.22. Repeat parts (a), (b), and (c) of Prob. 6.21 if

x(t) =
{

α + (1 − α) cos
π t

τ
for |t | ≤ τ

0 otherwise

assuming that ωs = 2π/T .

6.23. (a) Find the Fourier transform of

x(t) = u(t)2e−0.5t+0.1

The sampling frequency is ωs = 2π/T .

316 DIGITAL SIGNAL PROCESSING

(b) Find the Fourier transform of x̂(t) in closed form.
(c) Find the Fourier transform of x̂(t) using Poisson’s summation formula.

6.24. The signal

x(t) = u(t)e−t cos 2t

is sampled at a rate of 2π rad/s.
(a) Find the Fourier transform of x(t).
(b) Find the Fourier transform of x̂(t) in closed form.
(c) Show that

X̂ (jω) = X D(e jωT) = 1

2
+

∞∑
k=−∞

1 + j(ω + 2πk)

[1 + j(ω + 2πk)]2 + 4

(d) By evaluating the left- and right-hand sides for a number of frequencies in the range 0 ≤ ω ≤ ωs/2,
demonstrate that the relation in part (c) holds true. (Hint: The left-hand side is the z transform of
x(nT) evaluated on the unit circle |z| = 1. The right-hand side is, as can be seen, an infinite series
but the magnitudes of its terms tend to diminish rapidly and eventually become negligible as |k|
increases.)

6.25. (a) Find the Fourier transform of

x(t) = u(t)e−0.01t sin 2π t

(b) Find the Fourier transform of x̂(t) in closed form assuming a sampling frequency ωs = 10π rad/s.
(c) Repeat part (b) using Poisson’s summation formula.

6.26. A nonperiodic pulse signal x(t) assumes the form depicted in Fig. P6.26.
(a) Obtain a representation for x(t) in the form of a summation.
(b) Find the Fourier transform of x(t).
(c) Obtain the Fourier transform of impulse-modulated signal x̂(t) in the form of an infinite summation.

kT

τ t

x(kT)

x(t)

Figure P6.26

THE SAMPLING PROCESS 317

6.27. (a) Obtain the Fourier of

x(t) =
{

1 − |t |
τ

for |t | ≤ τ

0 otherwise

where τ = (N − 1)T/2 and T = 2π/ωs .
(b) Using Poisson’s summation formula, show that

X̂ (jω) ≈ 8

ω2(N − 1)T 2
sin2 ω(N − 1)T

4
for |ω| <

ωs

2

if ωs � 16/π N . (Hint: Note that X (jω) → 0 if ωs � 16/π N .)

6.28. The filtering scheme of Example 6.5 is used to process the signal of Fig. P6.8b.
(a) Assuming that ω0 = 2π/τ0, find the time- and frequency-domain representations of the signals at

nodes 1, 2, . . . , 7.
(b) Sketch the various waveforms and amplitude spectrums.

6.29. The DSP system of Fig. 6.14b employs a bandpass digital filter with an amplitude response like that
depicted in Fig. P6.29. The output of the D/A converter is of the form shown in Fig. 6.17b, where
τ = 3.0 ms and the sampling frequency is 1000 rad/s.
(a) Assuming an ideal output lowpass filter with a constant passband gain of 1/τ , sketch the overall

amplitude response of the configuration indicating relevant quantities.
(b) The gain at ω = 300 rad/s is required to be equal to or greater than 0.99 times the gain at ω =

200 rad/s. Find the maximum permissible value of τ . Hence, calculate the lowest sampling frequency.

0.1

1.0

Gain

200 300 500
ω, rad/s

Figure P6.29

6.30. A digital filter is connected in cascade with a practical D/A converter as shown in Fig. 6.14b. The amplitude
response of the filter is illustrated in Fig. P6.30a and the time-domain response of the D/A converter is a
staircase waveform of the type shown in Fig. P6.30b. The sampling frequency is ωs = 8 rad/s.
(a) Calculate the overall gain of the cascade arrangement for ω = 0, 2 − ε, 2 + ε, 3 − ε, 3 + ε, and

4 rad/s (ε is a small positive constant, say less than 0.0001).

318 DIGITAL SIGNAL PROCESSING

(b) Sketch the amplitude response of the arrangement, indicating relevant quantities.

(b)
t

T

y(t)

0.2

0.4

0.6

0.8

1.0

1.0
0

0 2.0 3.0 4.0 ω, rad/s
(a)

Gain

~

Figure P6.30

6.31. The DSP system of Fig. 6.14b uses a bandpass filter characterized by the transfer function

H (z) = H0

3∏
j=1

a0 j + a1 j z + z2

b0 j + b1 j z + z2

and has a passband ripple6 of 1 dB. The sampling frequency is 20 rad/s. The output lowpass filter is ideal
with a constant passband gain of 1/τ and the D/A converter will produce an output waveform of the type
shown in Fig. 6.17b.
(a) Find the amplitude response of the system, including the effect of the D/A converter, assuming a

pulse duration τ = T/100 in the waveform of Fig. 6.17b .
(b) Repeat part (a) if τ = T .
(c) Find the lowest sampling frequency that would assure a maximum passband ripple that does not

exceed 1.2 dB over the passband range 4.0 to 6.0 rad/s.

6This is the difference between the maximum and minimum passband gain in dB.

THE SAMPLING PROCESS 319

Table P6.31 Coefficients of H(z) (Prob. 6.31)

j a0 j a1 j b0 j b1 j

1 −1.0 0.0 7.190253E − 1 7.461412E − 8
2 1.0 −1.691081 8.670819E − 1 5.623427E − 1
3 1.0 1.691082 8.670819E − 1 −5.623425E − 1

H0 = 1.640287E − 2

This page intentionally left blank

CHAPTER

7
THE DISCRETE

FOURIER
TRANSFORM

7.1 INTRODUCTION

Given a finite-duration discrete-time signal, a corresponding periodic discrete-time signal can be
generated which has a discrete Fourier transform (DFT) that happens to be a discrete-frequency
spectrum. Thus given a signal that can be represented by a sequence of numbers a spectral charac-
terization of the signal can be obtained, which can also be represented by a sequence of numbers.
Consequently, the DFT is highly amenable to processing by computers and digital signal processors.
The DFT turns out to be a sampled version of the frequency spectrum of the original finite-duration
nonperiodic signal and, therefore, it is a very important tool for digital signal processing (DSP).

In a landmark paper published in 1965, Cooley and Tukey demonstrated that the direct eval-
uation of the DFT entails a considerable amount of redundancy and through an ingenious method
that has come to be known as the fast Fourier transform (FFT), these authors and others [1–4] have
shown that a huge amount of computation can be eliminated without degrading the precision of the
DFT in any way. The FFT approach renders a highly amenable tool for computation also a very
efficient one and for these reasons the DFT has found widespread applications over the years.

By analogy with the convolution summation described in Sec. 4.6, periodic convolutions can
be constructed, which can also benefit greatly through the application of the FFT [5]. Through the
periodic convolutions, some highly efficient implementations of finite-duration impulse response
(FIR) filters can be achieved.

321

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

322 DIGITAL SIGNAL PROCESSING

nT

x(nT)˜

NT−NT 2NT 3NT0

Figure 7.1 A periodic discrete-time signal.

This chapter deals with the definition of the DFT and inverse-DFT and their properties. The
relations between the DFT and the z transform, the continuous-time Fourier transform (CFT), and
Fourier series are then established. The chapter also deals with a technique known as the window
technique which enables the processing of long- or infinite-duration signals through the use of the
FFT method. Periodic convolutions and their efficient computation through the use of FFTs are then
discussed.

7.2 DEFINITION

A discrete-time signal x̃(nT) is periodic if it satisfies the condition

x̃(nT + r N T) = x̃(nT) for 1, 2, . . . ,∞
where N is an integer and N T is said to be the period of the signal. A periodic discrete-time signal
is illustrated in Fig. 7.1.

The DFT of a periodic signal x̃(nT) is defined as

X̃ (jk
) =
N−1∑
n=0

x̃(nT)W −kn = Dx̃(nT) (7.1)

where W = e j2π/N
 = ωs

N
and ωs = 2π

T

In general, X̃ (jk
) is complex and can be put in the form

X̃ (jk
) = A(k
)e jφ(k
)

where A(k
) = |X̃ (jk
)| and φ(k
) = arg X̃ (jk
)

are discrete-frequency functions. The functions A(k
) and φ(k
) are referred to as the amplitude
spectrum and phase spectrum of x̃(nT), respectively. They are entirely analogous to the corresponding
spectrums of continuous-time and nonperiodic discrete-time signals.

7.3 INVERSE DFT

The function x̃(nT) is said to be the inverse DFT (IDFT) of X̃ (jk
) and is given by

x̃(nT) = 1

N

N−1∑
k=0

X̃ (jk
)W kn = D−1 X̃ (jk
) (7.2)

THE DISCRETE FOURIER TRANSFORM 323

The validity of the inverse DFT can be demonstrated by eliminating the DFT in Eq. (7.2) using
Eq. (7.1). We can write

1

N

N−1∑
k=0

X̃ (jk
)W kn = 1

N

N−1∑
k=0

[
N−1∑
m=0

x̃(mT)W −km

]
W kn

= 1

N

N−1∑
m=0

x̃(mT)
N−1∑
k=0

W k(n−m)

where one can show that

N−1∑
k=0

W k(n−m) =
{

N for m = n

0 otherwise

(see Prob. 7.1). Therefore
1

N

N−1∑
k=0

X̃ (jk
)W kn = x̃(nT)

7.4 PROPERTIES

7.4.1 Linearity

The DFT obeys the law of linearity; that is, for any two constants a and b,

D[ax̃(nT) + bỹ(nT)] = a X̃ (jk
) + bỸ (jk
)

7.4.2 Periodicity

From Eq. (7.2)

X̃ [j(k + r N)
] =
N−1∑
n=0

x̃(nT)W −(k+r N)n =
N−1∑
n=0

x̃(nT)W −kn

= X̃ (jk
)

since W −rnN = 1. In effect, X̃ (jk
) is a periodic function of k
 with period N
 (= ωs).

7.4.3 Symmetry

The DFT has certain symmetry properties that are often useful. For example, assuming that x̃(nT) is
real, we have

X̃ [j(N − k)
] =
N−1∑
n=0

x̃(nT)W −(N−k)n =
N−1∑
n=0

x̃(nT)W kn

=
[

N−1∑
n=0

x̃(nT)W −kn

]∗

= X̃∗(jk
)

324 DIGITAL SIGNAL PROCESSING

and as a result

Re X̃ [j(N − k)
] = Re X̃ (jk
) Im X̃ [j(N − k)
] = − Im X̃ (jk
)

A[(N − k)
] = A(k
) φ[(N − k)
] = −φ(k
) + 2πr

where r is any integer. If x̃(nT) is real and, in addition,

x̃(nT) = ±x̃[(N − n)T]

we obtain

X̃ (jk
) = ±
N−1∑
n=0

x̃[(N − n)T]W −kn = ±
N−1∑
m=0

x̃(mT)W −k(N−m)

= ±
[

N−1∑
n=0

x̃(nT)W −kn

]∗

= ±X̃∗(jk
)

Thus if

x̃(nT) = x̃[(N − n)T]

we have

Im X̃ (jk
) = 0

and if

x̃(nT) = −x̃[(N − n)T]

then Re X̃ (jk
) = 0

Example 7.1 Find the DFT of x̃(nT) if

x̃(nT) =
{

1 for 2 ≤ n ≤ 6

0 for n = 0, 1, 7, 8, 9

assuming that N = 10.

THE DISCRETE FOURIER TRANSFORM 325

Solution

By noting that the DFT is a geometric series (see Sec. A.5) with a common ratio W −k ,
Eq. (7.1) gives

X̃ (jk
) =
6∑

n=2

W −kn = W −2k − W −7k

1 − W −k

= e− j4πk/5 sin(πk/2)

sin(πk/10)

The amplitude and phase spectrums of x̃(nT) can be obtained as

A(k
) =
∣∣∣∣ sin(πk/2)

sin(πk/10)

∣∣∣∣
and

φ(k
) = Cπ − 4πk

5
where C =

1 if

sin(πk/2)

sin(πk/10)
< 0

0 otherwise

and are plotted in Fig. 7.2.

7.5 INTERRELATION BETWEEN THE DFT
AND THE Z TRANSFORM

The DFT is defined in Sec. 7.2 in terms of periodic discrete-time signals. Nevertheless, it can also
be applied for the analysis of nonperiodic discrete-time signals as long as they are of finite duration.
Given an arbitrary finite-duration discrete-time nonperiodic signal x(nT) such that

x(nT) = 0 for n < 0 and n > M

where M < N , then a corresponding periodic signal x̃(nT) with period N T can be readily formed
as

x̃(nT) =
∞∑

r=−∞
x(nT + r N T) (7.3)

by analogy with Eq. (2.1). Since x̃(nT) can be derived from x(nT), the DFT of x̃(nT) must be related
to the frequency spectrum and, in turn, to the z transform of x(nT) as will now be demonstrated.

From Eqs. (7.1) and (7.3), we can write

X̃ (jk
) =
N−1∑
n=0

∞∑
r=−∞

x(nT + r N T)W −kn =
∞∑

r=−∞

N−1∑
n=0

x(nT + r N T)W −kn

326 DIGITAL SIGNAL PROCESSING

0

0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
−30

−20

−10

0

0 2 4 6 8 10 12 14 16 18 20

1.0

1.5

nT
2NTNT

x(nT)

A(kΩ)

φ(kΩ)

kΩ
NΩ 2NΩ

kΩ

(a)

(b)

(c)

2NΩNΩ

~

Figure 7.2 DFT of x̃(nT) (Example 7.1): (a) Periodic discrete-time signal, (b) amplitude spectrum,
(c) phase spectrum.

and by letting n = m − r N , we have

X̃ (jk
) =
∞∑

r=−∞

r N+N−1∑
m=r N

x(mT)W −k(m−r N)

= · · · +
−1∑

m=−N

x(mT)W −km +
N−1∑
m=0

x(mT)W −km +
2N−1∑
m=N

x(mT)W −km + · · ·

=
∞∑

m=−∞
x(mT)W −km

THE DISCRETE FOURIER TRANSFORM 327

Alternatively, on replacing W by e j2π/N and m by n we have

X̃ (jk
) =
∞∑

n=−∞
x(nT)e− jk
nT

and, therefore, X̃ (jk
) = X D(e jk
T) (7.4)

where X D(z) = Zx(nT)

In effect, the DFT of a periodic signal x̃(nT) is a sampled version of the frequency spectrum of the
nonperiodic signal x(nT), which is obtained by evaluating the z transform of x(nT) on the unit circle
|z| = 1, as shown in Fig. 7.3.

Through a technique known as zero padding, the above interrelationship can be used to facilitate
the computation of the frequency spectrum of a finite-duration discrete-time signal to any desired
resolution, as will now be demonstrated.

Consider a nonperiodic signal x(nT) which is zero outside the interval 0 to (L − 1)T . Such a
signal has a frequency spectrum

X D(e jωT) =
∞∑

n=−∞
x(nT)z−n

∣∣∣
z=e jωT

=
L−1∑
n=0

x(nT)e− jnωT

If we let ω = kωs/N = 2πk/N T , we get

X D(e jkωs/N) =
L−1∑
n=0

x(nT)e− j2πkn/N (7.5)

1

2
3

4

N − 1

N = 12

z plane

kT

Figure 7.3 Relation between X̃ (jk
) and X D(e jk
T).

328 DIGITAL SIGNAL PROCESSING

Let us construct a periodic signal x̃(nT) with period N T such that

x̃(nT) =
{

x(nT) for 0 ≤ n ≤ L − 1

0 for L ≤ n ≤ N − 1
(7.6)

through periodic continuation (see Eq. (7.3)). From the definition of the DFT, we have

X̃ (jk
) =
N−1∑
n=0

x̃(nT)W −kn

=
L−1∑
n=0

x(nT)e− j2πkn/N (7.7)

If we now compare Eqs. (7.5) and (7.7), we conclude that

X D(e jkωs/N) = X̃ (jk
) (7.8)

As was shown earlier, the DFT gives a sampled version of the frequency spectrum of a discrete-time
signal and by increasing the number of zeros in Eq. (7.6),
 = ωs/N is reduced and, consequently,
a higher density of sample points can be achieved.

The zero padding technique is illustrated in Fig. 7.4 which shows the DFT of Example 7.1
with the value of N increased from 10 to 20. As can be seen by comparing Fig. 7.4b and c with
Fig. 7.2b and c, the density of samples in the amplitude and phase spectrums is doubled.

7.5.1 Frequency-Domain Sampling Theorem

The application of the DFT to DSP is made possible by the frequency-domain sampling theorem
which is analogous to the time-domain sampling theorem considered in Sec. 6.6 except that the roles
of time and frequency are interchanged.

Theorem 7.1 Frequency-Domain Sampling Theorem A z transform XD(z) whose inverse
satisfies the finite-duration condition

x(nT) = Z−1 XD(z) = 0 for n < 0 and n ≥ N (7.9)

can be uniquely determined from its values XD(e jkΩT) or, equivalently, from the values of the
DFT of x̃(nT), X̃(jkΩ), by virtue of Eq. (7.4). �

The validity of Theorem 7.1 can be easily demonstrated. If the condition in Eq. (7.9) is satisfied,
then x̃(nT) as given by Eq. (7.3) is a periodic continuation of x(nT) and x(nT) can be isolated by
multiplying x̃(nT) by a discrete-time pulse as illustrated in Fig. 7.5. We can write

x(nT) = [u(nT) − u(nT − N T)]x̃(nT) (7.10)

and so

X D(z) = Z{[u(nT) − u(nT − N T)]x̃(nT)}

THE DISCRETE FOURIER TRANSFORM 329

0 5 10 15 20 25 30 35 40
0

2

4

6

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

−30

−20

−10

0

NΩ

0

0.5

1.0

1.5

2NTNT

A(kΩ)

φ(kΩ)

kΩ
2NΩ

kΩ 2NΩNΩ

nT

x(nT)~

(a)

(b)

(c)

Figure 7.4 Effect of zero padding: (a) Periodic discrete-time signal of Example 7.1 with zero padding,
(b) amplitude spectrum, (c) phase spectrum.

Now

x̃(nT) = D−1 X̃ (jk
) where X̃ (jk
) = X D(e jk
T)

and from Eq. (7.2)

X D(z) = Z
{

[u(nT) − u(nT − N T)]
1

N

N−1∑
k=0

X̃ (jk
)W kn

}

= 1

N

N−1∑
k=0

X̃ (jk
)Z{[u(nT) − u(nT − N T)]W kn}

330 DIGITAL SIGNAL PROCESSING

nT

nT

nT

u(nT)−u(nT−NT)

NT

NT

2NT

NT

−NT

x(nT)

x(nT)˜

Figure 7.5 Derivation of x(nT) from x̃(nT).

The z transform of the unit-step is given by

Zu(nT) = z

z − 1

Therefore, from the time-shifting and complex-scale-change theorems (Theorems 3.4 and 3.5), we
have

X D(z) = 1

N

N−1∑
k=0

X̃ (jk
)
1 − z−N

1 − W k z−1
(7.11)

since W −k N = 1.
In summary, if the nonperiodic signal x(nT) is zero outside the range 0 ≤ nT ≤ (N − 1)T ,

then the periodic signal x̃(nT) and its DFT X̃ (jk
) can be obtained from x(nT) and X D(z) by using
Eqs. (7.3) and (7.4), respectively. Conversely, x(nT) and X D(z) can be obtained from x̃(nT) and
X̃ (jk
) by using Eqs. (7.10) and (7.11), respectively, as illustrated in Fig. 7.6. Therefore, x(nT)
can be represented by the DFT of x̃(nT). As a result, any finite-duration discrete-time signal can be

x(nT)

|XD(ejωT)|

NT

nT 0
−ωs ωs

Z

Z−1

D

D−1

Eq. (7.3) Eq. (7.10) Eq. (7.4) Eq. (7.11)

NT

nT

−N

0 k

N

x(nT)˜ |X(jk)|˜

Figure 7.6 Interrelations between the DFT and the z transform.

331

Z

Z−1

D

D−1

Eq. (7.3) Eq. (7.4)

NT −ωs ωs

−N N2NTNT

x(nT)
|XD(ejωT)|

nT 0

0 knT

ω

x(nT)˜ |X(jk)|˜

Figure 7.7 Time-domain aliasing.

332

THE DISCRETE FOURIER TRANSFORM 333

processed by employing the FFT algorithms to be described in Sec. 7.11 provided that a sufficiently
large value of N is chosen.

7.5.2 Time-Domain Aliasing

If

x(nT) �= 0 for n < 0 or n ≥ N

then parts of one or more of the shifted signal copies x(nT ± N T), x(nT ±2N T), . . . in Eq. (7.3) will
contribute to the value of x̃(nT) in the range 0 ≤ t < N T thereby causing so-called time-domain
aliasing which is analogous to the frequency-domain aliasing encountered in Sec. 6.7. Consequently,
x̃(nT) will not be a periodic continuation of x(nT), as illustrated in Fig. 7.7. Nevertheless, the peri-
odic signal x̃(nT) and its DFT X̃ (jk
) can again be obtained from the nonperiodic signal x(nT) and
its z transform X D(z), respectively, by using Eqs. (7.3) and (7.4), as illustrated in Fig. 7.7. However,
in such a case, x(nT) cannot be recovered from x̃(nT) by using Eq. (7.10), because of the signal
distortion introduced by time-domain aliasing, and so Eq. (7.11) will not yield the z transform of
x(nT). Under these circumstances, the DFT of x̃(nT) is at best a distorted representation for x(nT).

7.6 INTERRELATION BETWEEN THE DFT AND THE CFT

The frequency spectrum of a nonperiodic discrete-time signal x(nT) is related to that of the underlying
continuous-time signal x(t), as was shown in Sec. 6.5.2. On the other hand, given a finite-duration
discrete-time signal x(nT), a corresponding periodic discrete-time signal x̃(nT) can be generated by
using Eq. (7.3), which has a DFT. Consequently, a direct interrelation exists between the DFT of x̃(nT)
and the CFT [5] of x(t). This can be readily established by using the results of Secs. 6.5.2 and 7.5.

Let X (jω) and X̂ (jω) be the CFTs of x(t) and x̂(t), respectively, where x̂(t) is the impulse-
modulated version of x(t). From Eqs. (7.4) and (6.45a), we have

X̂ (jk
) = X D(e jk
T) = X̃ (jk
) = 1

T

∞∑
r=−∞

X (jk
 + jrωs) (7.12a)

and, therefore, from Eqs. (7.3) and (7.12a)

D
∞∑

r=−∞
x(nT + r N T) = 1

T

∞∑
r=−∞

X (jk
 + jrωs) (7.12b)

Now if

x(t) = 0 for t < 0 and t ≥ N T (7.13)

and X (jω) = 0 for |ω| ≥ ωs

2
(7.14)

D

D−1

Z

Z−1

F

F−1

t = nT Eq. (6.51)

Eq. (6.48)

Eq. (7.4) Eq. (7.11)

Eq. (7.3) Eq. (7.10)

x(t)

x(nT)

|X(jω)|

|XD(ejωT)|

NT −ωs

t 0
ωs

ω

nT ω

−ωs ωs

NT −N N

knT

Eq. (6.45a)
or (6.45b)

x(nT)˜

|X(jk)|˜

Figure 7.8 Interrelations between the DFT and the CFT.

334

THE DISCRETE FOURIER TRANSFORM 335

the left- and right-hand summations in Eq. (7.12b) become periodic continuations of x(nT) and
X (jω), respectively, and as a result

x̃(nT) = x(nT) for 0 ≤ nT ≤ (N − 1)T

X̃ (jk
) = 1

T
X (jk
) for |k
| <

ωs

2

Hence the periodic signal x̃(nT) and its DFT X̃ (jk
) can be obtained from the continuous-time
signal x(t) and its CFT X (jω), respectively, and conversely, as depicted in Fig. 7.8. That is, a
continuous-time signal x(t) can be represented by a DFT and, accordingly, it can be processed by
using the FFT method.

7.6.1 Time-Domain Aliasing

If Eq. (7.13) is violated, then parts of one or more of the shifted signal copies x(t ± N T), x(t ±2N T),
. . . will contribute to the value of x(t) in the range 0 ≤ t < N T thereby causing time-domain aliasing
and, as in the case of discrete-time signals described in Sec. 7.5.2, x(t) cannot be recovered from x̃(t).
On the other hand, if the spectrum of x(t) does not satisfy the bandlimiting condition in Eq. (7.14),
then X (jω) cannot be recovered from the DFT of x̃(t).

7.7 INTERRELATION BETWEEN THE DFT
AND THE FOURIER SERIES

The results of the previous section lead directly to a relationship between the DFT and the Fourier
series [5].

A periodic signal x̃(t) with a period τ0 can be expressed as

x̃(t) =
∞∑

r=−∞
x(t + rτ0) (7.15)

where x(t) = 0 for t < 0 and t ≥ τ0
1. Alternatively, by using the Fourier series (see Eqs. (2.3) and

(2.5)), we have

x̃(t) =
∞∑

k=−∞
Xke jkω0t

where ω0 = 2π/τ0 and

Xk = 1

τ0

∫ τ0

0
x(t)e− jkω0t dt

1Note that x(t) is defined to be zero for t ≤ −τ0/2 and t > τ0/2 in Chap. 2 but the two definitions are equivalent.

336 DIGITAL SIGNAL PROCESSING

Now with t = nT and τ0 = N T , Eq. (7.15) becomes

x̃(nT) =
∞∑

r=−∞
x(nT + r N T)

and, consequently, Eq. (7.12a) yields

X̃ (jk
) = 1

T

∞∑
r=−∞

X (jk
 + jrωs) (7.16)

where X (jk
) = Fx(t)
∣∣∣
ω=k

=
∫ τ0

0
x(t)e− jk
t dt

or X (jk
) =
∫ τ0

0
x(t)e− jkω0t dt

since
 = ωs/N = 2π/N T = 2π/τ0 = ω0. Evidently

X (jk
) = τ0 Xk

and since τ0 = N T , Eq. (7.16) can be put in the form

X̃ (jk
) = 1

T

∞∑
r=−∞

X [j(k + r N)
] = N
∞∑

r=−∞
Xk+r N (7.17)

In effect, the DFT of x̃(nT) can be expressed in terms of the Fourier-series coefficients of x̃(t).
Now with

Xk ≈ 0 for |k| ≥ N

2

Eq. (7.17) gives

X̃ (jk
) ≈ N Xk for |k| <
N

2

or Xk ≈ 1

N
X̃ (jk
) for |k| <

N

2

Thus the Fourier-series coefficients of x̃(t) can be efficiently computed by using the FFT method.

THE DISCRETE FOURIER TRANSFORM 337

7.8 WINDOW TECHNIQUE

As was demonstrated in Secs. 7.5 and 7.6, in order to process a discrete- or continuous-time signal,
say, x(nT) or x(t), through the FFT method, a corresponding periodic discrete-time signal

x̃(nT) =
∞∑

r=−∞
x(nT + rT)

must first be generated through periodic continuation. If x(nT) �= 0 or x(t) �= 0 outside the time range
0 to (N − 1)T , then time-domain aliasing will be introduced, as was shown in Secs. 7.5.2 and 7.6.1,
which will distort the signal over the period 0 to (N − 1)T . The effects of time-domain aliasing can
be reduced by forcing the signal to become zero outside the time range 0 to (N − 1)T in such a way
so as to as far as possible preserve the signal’s frequency spectrum. This can be done through the
use of the so-called window technique.

The window technique entails the use of a class of functions known collectively as window
functions (or simply as windows) [6, 7]. The underlying windows are continuous-time functions but
they are usually applied in their nonperiodic or periodic discrete-time form. Discrete-time windows
inherit their characteristics from their continuous-time counterparts. Consequently, it is worthwhile
to study the basic principles associated with continuous-time windows before we proceed to the
properties and application of discrete-time windows. For the sake of simplicity, we consider the
case of two-sided windows that are defined over the range −∞ ≤ t ≤ ∞ but the principles involved
are also valid for right-sided windows that are defined over the range 0 ≤ t ≤ ∞.

7.8.1 Continuous-Time Windows

Two-sided window functions share two fundamental properties:

1. They are defined to be zero outside some interval −τ ≤ t ≤ τ , that is,

w(t) =
{

w0(t) for −τ ≤ t ≤ τ

0 otherwise

where w0(t) is normally an even function of t .

2. Their spectral energy2 is concentrated in a narrow frequency range −ωm ≤ ω ≤ ωm and is zero
outside this range.

The most basic window is the rectangular window which is defined as

wR(t) =
{

1 for −τ ≤ t ≤ τ

0 otherwise
(7.18)

2The spectral energy of a signal with respect to a range of frequencies ω1 to ω2 is proportional to the integral of the
square of the amplitude spectrum of the signal over the given frequency range.

338 DIGITAL SIGNAL PROCESSING

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0
−10

−5

0

5

10

15

20

25

30

35

40

ω, rad/s

W
R

(j
ω

)

AML

Main-lobe width

Amax

Figure 7.9 Spectrum of rectangular window (τ = 15.0 s).

The frequency spectrum of the rectangular window is given by the Fourier transform of the pulse
function pτ (t) (see Table 6.2) as

WR(jω) = 2 sin ωτ

ω
(7.19)

and is illustrated in Fig. 7.9.
Windows are characterized by their main-lobe width BM L , which is the bandwidth between

the first negative and the first positive zero crossings, and by their ripple ratio r which is defined as

r = 100
Amax

AML
% or R = 20 log

Amax

AML
dB

where Amax and AML are the maximum side-lobe and main-lobe amplitudes, respectively (see
Fig. 7.9).

From Eq. (7.19), we note that the frequency spectrum of the rectangular window has zero
crossings when ωτ = ±mπ for m = 1, 2,. . . and hence BML = 2π/τ . On the other hand, the ripple
ratio can be plotted as a function of τ as shown in Fig. 7.10. Evidently, the ripple ratio assumes a
value of about −13.26 dB which is practically independent of the window length τ . This is a fairly
large ripple ratio which tends to limit the usefulness of the rectangular window.

The window technique entails multiplying the signal to be processed by the window function,
i.e.,

xw(t) = w(t)x(t)

THE DISCRETE FOURIER TRANSFORM 339

0 10 20 30 40 50 60 70 80 90 100
−13.50

−13.45

−13.40

−13.35

−13.30

−13.25

−13.20

−13.15

−13.10

τ

R
ip

pl
e

ra
tio

, d
B

, s

Figure 7.10 Ripple ratio of rectangular window versus window length τ .

In order to examine the effect of a window on the frequency spectrum of a signal, consider a signal
that has a uniform real spectrum over the frequency range −ωc < ω < −ωc, that is,

X (jω) =
{

1 for |ω| < ωc

0 otherwise

as shown in Fig. 7.11a and assume that the spectrum of w(t) is concentrated in the range −ωm ≤
ω ≤ ωm and is zero outside this range, i.e.,

W (jω) =
{

W0(ω) for |ω| ≤ ωm

0 otherwise

where W0(ω) is an even real function of ω as depicted in Fig. 7.11b. For the sake of convenience and
without loss of generality, assume that the area under the graph of W (jω) is equal to 2π . The reason
for this will become evident below.

Since xw(t) is the product of two time-domain functions, the spectrum of the modified signal
can be obtained by using the frequency convolution of the Fourier transform (Theorem 2.15) as

Xw(jω) = 1

2π

∫ ∞

−∞
W (j�)X (jω − j�) d� (7.20a)

= 1

2π

∫ ∞

−∞
X (j�)W (jω − j�) d� (7.20b)

340 DIGITAL SIGNAL PROCESSING

1

−ωc

ωm−ωm

X(jω)

W (jω)

ω

ω

(a)

(b)

ωc

2π

Figure 7.11 Frequency spectrums of x(t) and w(t).

Using Eq. (7.20b), the spectrum of xw(t) at some arbitrary frequency ω can be obtained through the
following graphical construction:

1. Replace the frequency variable ω in X (jω) and W (jω) by variable � to obtain X (j�) and
W (j�), respectively, as shown in Fig. 7.12a and b.

2. Replace � in W (j�) by −� in Fig. 7.12b, that is, turn over the spectrum of w(t) end-to-end
with respect to the � axis, to obtain W (− j�). This step would have no effect in the present
application because the spectrum of the window has been assumed to be an even function of ω

and it is, therefore, symmetrical about the y axis.

3. Shift W (− j�) to the right by ω to obtain W (jω − j�) as shown in Fig. 7.12c.

4. Form the product X (j�)W (jω − j�) as shown in Fig. 7.12d.

5. Area A(jω) in Fig. 7.12d is given by

A(jω) =
∫ ∞

−∞
X (j�)W (jω − j�) d�

and from Eq. (7.20b) we note that Xw(jω) = A(jω)/2π . Since the area under the graph W (j�)
has been assumed to be equal to 2π , A(jω) would be equal to 2π in the frequency range 0 to
ωc −ωm and a fraction of that amount in the range ωc −ωm to ωc +ωm . In effect, Xw(jω) would
assume the value of unity for frequencies in the range 0 to ωc − ωm and a fraction between 1
and 0 in the range ωc − ωm to ωc + ωm .

THE DISCRETE FOURIER TRANSFORM 341

1

A(jω)

−ωc

ωm−ωm

ω

X(j�)W(jω−j�)

X(j�)

(d)

W(jω−j�)

W(j�)

�

�

�

�

ω

(a)

(b)

(c)

ωc

2π

Figure 7.12 Evaluation of convolution integral.

If ω is varied in the range ω1 to ω5 through the point of discontinuity ω = ωc, the above
graphical construction will give Fig. 7.13c to f and by multiplying each of the areas A(jω1),
A(jω2),. . . by the factor 1/2π , the frequency spectrum of the modified signal can be obtained as
illustrated in Fig. 7.13g. Since the areas A(jω1), A(jω2), . . . assume values in the range 2π to 0,
it follows that Xw(jω) will assume values in the range 1 to 0. As can be seen in Fig. 7.13g, the
spectrum of the modified signal is the same as that of the original signal except that a transition band
has been introduced at the point of discontinuity ω = ωc. The same would also happen at any other
discontinuity.

From Fig. 7.13g, we observe that the width of the transition band introduced is equal to 2ωm ,
which is the main-lobe width of the window. Therefore, the main-lobe width should, in practice, be
as small as possible.

The window considered in the above demonstration is actually an idealization. In practice, the
window has side lobes and, therefore, the spectral energy outside the main lobe is never zero. If an

342 DIGITAL SIGNAL PROCESSING

X(j�)

�

Xw(jω)

�

�

�

�

�

ω

W(jω-j�)

A(jω2)

××
×
××

(a)

(b)

(c)

(d)

(e)

(f)

(g)

A(jω1)

ω1

ωc+ωmωc−ωm ωc

ω4

ω1 ω5

ω3

ω2

Figure 7.13 Effect of an idealized window on the spectrum of a signal.

actual window were to be used in the graphical construction of Fig. 7.13, as illustrated in Fig. 7.14,
then the areas under the graphs in Fig. 7.14d and e, namely, A(jω0) and A(jω6), respectively, would
be slightly different from 2π in the first case and from zero in the second case due to the area of the
side lobes. Similarly, the spectrum of xw(t) would be slightly different from unity and 0 at frequencies
ω0 and ω6, respectively, as shown in Fig. 7.14 f . Now as ω is varied, the area of the side ripples that
happen to fall in the range 0 < ω < ωc will vary and, consequently, the spectrum of the modified
signal will exhibit oscillations whose amplitude would be directly related to the amplitude of the
window side ripples. We conclude, therefore, that the amplitude of side lobes should, in practice, be

THE DISCRETE FOURIER TRANSFORM 343

X(j�)

W(jω–j�)

A(jω0)

A(jω6)

ωc

×
Xw(jω)

ω

××
×
×

ω0

ω6

ω6

×

(a)

(b)

(c)

(d)

(e)

(f)

ω0

0 �

�

�

�

�

Figure 7.14 Effect of window side lobes.

as small as possible in relation to the amplitude of the main lobe, i.e., the ripple ratio should be as
small as possible.

Example 7.2 The infinite-duration signal

x(t) = sin ωct

π t

where ωc = 1 rad/s, is to be converted into a corresponding finite-duration signal xw(t) by
using the rectangular window defined in Eq. (7.18) with τ = 15.0 s. (a) Obtain X (jω), the
frequency spectrum of x(t). (b) Repeat part (a) for the modified signal xw(t). (c) Plot the
difference between X (jω) and Xw(jω).

344 DIGITAL SIGNAL PROCESSING

Solution

(a) From Table 6.2, we have

X (jω) = p2ωc (ω) (7.21)

where

p2ωc (ω) =
{

1 for |ω| < ωc

0 otherwise

(b) From Eqs. (7.19), (7.20b), and (7.21), the frequency spectrum of the modified signal
is obtained as

Xw(jω) = 1

2π

∫ ∞

−∞
X (j�)WR(jω − j�) d�

= 1

π

∫ ∞

−∞
p2ωc (�)

sin(ω − �)τ

ω − �
d�

= 1

π

∫ ωc

−ωc

sin(ω − �)τ

ω − �
d� (7.22)

The real integral in Eq. (7.22) can be evaluated by means of some numerical formula,
for example, Simpson’s one-third rule (see p. 381 of Ref. [11]) given by

∫ xm+1

x1

f (x) dx = 	x

3

(
y1 + 4

m∑
i even

yi + 2
m−1∑
i odd

yi + ym+1

)
(7.23)

where m is assumed to be an even integer.
The graphical construction for the convolution integral of Eq. (7.22) for τ = 15.0 s

and ωc = 1 rad/s is illustrated in Fig. 7.15. The spectrum of xw(t), that is, Xm(jω) is
illustrated in Fig. 7.15e.

(c) The difference between Xw(ω) and X (ω), which is plotted in Fig. 7.15 f , is seen to
oscillate about zero and becomes significantly larger at frequencies close to the band
edges ±ωc. The oscillations in Xw(ω) are caused by the side lobes in the spectrum of the
window, as was anticipated earlier. The larger difference near the band edges is due to
the finite main-lobe width and it is caused by the fact that convolution tends to smooth
the value of the function in the region of a discontinuity. If the ripple ratio and main-lobe
width of the window function were decreased, the spectrum of the finite-duration signal
xw(t) would tend to approach that of the infinite-duration signal x(t).

THE DISCRETE FOURIER TRANSFORM 345

−20

0

20

40

0

0.5

1.0

1.5

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0�

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0�

W
(j
ω

−
j�

)
X

m
(j

�
)

(c)

(d)

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0
−20

0

20

40

X
(j
�

)
W

(j
ω

−
j�

)

�

�

(a)

(b)

−1

0

1

2

−1.0

−0.5

0

0.5

1.0

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0ω

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0ω

X
m

(j
ω

)
E

rr
or

(e)

(f)

Figure 7.15 Use of rectangular window (Example 7.2): (a) Spectrum of original signal,
(b) shifted spectrum of window, (c) truncated spectrum of window, (d) area under the curve in
plot (c), (e) modified spectrum of signal, (f) difference between the spectrums of the original
and modified signals.

346 DIGITAL SIGNAL PROCESSING

KAISER WINDOW. For a fixed value of τ , the rectangular window has a fairly narrow main lobe
relative to that in other windows, which is an advantage because it tends to introduce narrow transition
bands at signal discontinuities. Its main disadvantage is that it has a high ripple ratio which causes
a large in-band error (see Fig. 7.15e). Since the main-lobe width of the rectangular window is given
by Bw = 2π/τ , it can be controlled by choosing parameter τ but as was found out, the ripple ratio
of the rectangular window is practically independent of τ and cannot be controlled (see Fig. 7.10).
The alternative is to use more sophisticated windows, such as the Kaiser and Dolph-Chebyshev
windows [6, 8] which offer two degrees of freedom, namely, τ and some other parameter. An even
more advanced window is the so-called ultraspherical window [9, 10] which offers three degrees of
freedom, namely, τ and two other parameters. In these parametric windows the available degrees of
freedom can be used to adjust the main-lobe width and/or the ripple ratio. An important feature
of known windows is that the main-lobe width is always inversely proportional to the window
length τ .

The Kaiser window is a fairly flexible and easy to compute window and it is, therefore, used
widely. It is given by

wK (t) =

I0(β)

I0(α)
for −τ ≤ t ≤ τ

0 otherwise
(7.24)

where α is an independent parameter and

β = α

√
1 −

(
t

τ

)2

(7.25)

Function I0(x) is the zeroth-order modified Bessel function of the first kind.3 It can be computed to
any degree of precision by using the rapidly converging series

I0(x) = 1 +
∞∑

k=1

[
1

k!

(x

2

)k
]2

(7.26)

The frequency spectrum of the Kaiser window is given by [6]

WK (jω) = 2

I0(α)

sin
(
τ
√

ω2 − ω2
a

)
√

ω2 − ω2
a

(7.27)

where ωa = α/τ . The Kaiser window and its frequency spectrum are plotted in Fig. 7.16a and b for
τ = 15.0 s.

Using Eq. (7.27), the ripple ratio and main-lobe width of the Kaiser window can be plotted as
functions of α as depicted in Fig. 7.17a and b. The ripple ratio decreases rapidly as α is increased but
it is practically independent of the window length. On the other hand, the main-lobe width increases

3Function besseli(0,x) in MATLAB.

THE DISCRETE FOURIER TRANSFORM 347

−15 −10 −5 0 5 10 15
0

0.5

1.0

1.5

−2 −1 0 1 2
−10

0

10

20

30

t

w
K

(t
)

W
K

(j
ω

)

ω

(a)

(b)

Figure 7.16 Kaiser window (α = 3.0, τ = 15.0 s): (a) Time domain, (b) frequency domain.

with increasing values of α but, as in other windows, it is inversely proportional to the window
length.

Example 7.3 (a) Solve the problem of Example 7.2 using the Kaiser window with α = 3.0
and τ = 15.0 s and compare the results with those obtained with the rectangular window in
Example 7.2. (b) Repeat for τ = 63.0 s.

Solution

(a) For this example,

Xw(jω) = 1

2π

∫ ∞

−∞
X (j�)WK (jω − j�) d�

where X (jω) and WK (jω) are given by Eqs. (7.21) and (7.27), respectively. Evaluating
the above integral with α = 3.0 and τ = 15.0 s using the formula in Eq. (7.23), as in
Example 7.2, the frequency spectrum of xw(t) shown in Fig. 7.18a can be obtained. The
difference between the spectrums of x(t) and xw(t) is plotted in Fig. 7.18b.

(b) The spectrum of xw(t) for α = 3.0 and τ = 63.0 s is obtained, as shown in Fig. 7.18c,
as in part (a). The difference between the spectrums of x(t) and xw(t) is plotted in
Fig. 7.18d .

348 DIGITAL SIGNAL PROCESSING

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1.0

1.5

2.0

2.5

α

M
ai

n-
lo

be
 w

id
th

, B
m

τ=31

τ=21

τ=61

(b)

0 1 2 3 4 5 6 7 8 9 10
−80

−70

−60

−50

−40

−30

−20

−10

α

R
ip

pl
e

R
at

io
, d

B

(a)

Figure 7.17 Characteristics of Kaiser window : (a) Ripple ratio in dB versus α for τ = 21 s,
(b) main-lobe width versus α for different window lengths.

A comparison of Fig. 7.15e and 7.18a shows that the rectangular window offers nar-
rower transition bands whereas the Kaiser window offers a reduced ripple amplitude. By
increasing τ in the Kaiser window, which amounts to reducing the main-lobe width, the
width of the transition bands can be reduced, as can be seen by comparing Fig. 7.18a and c,
while maintaining a reduced ripple amplitude.

THE DISCRETE FOURIER TRANSFORM 349

E
rr

or

−1

0

1

2

−1.0

−0.5

0

0.5

1.0

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0ω

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0ω

X
m

(j
ω

)

(c)

(d)

−1

0

1

2

−1.0

−0.5

0

0.5

1.0

E
rr

or

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0ω

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0ω

X
m

(j
ω

)

(a)

(b)

Figure 7.18 Use of Kaiser window (Example 7.3): (a) Spectrum of modified signal for
α = 3.0 and τ = 15.0 s, (b) difference between the spectrums of the original and modified
signals, (c) spectrum of modified signal for α = 3.0 and τ = 63.0 s, (d) difference between the
spectrums of the original and modified signals.

350 DIGITAL SIGNAL PROCESSING

7.8.2 Discrete-Time Windows

Given a continuous-time window, two corresponding discrete-time windows can be derived, namely,
odd- and even-length windows. These are obtained by sampling the continuous-time window function
at nT = 0, ±T , ±2T , . . . , ±(Nw − 1)T/2 for an odd-length window or at nT = ± 1

2 T , ± 3
2 T , . . . ,

±(Nw − 1)T/2 for an even-length window. Typically an odd window length is preferred although
even-length windows are sometimes required for certain specialized applications (see, for example,
Sec. 18.4.1).

A rectangular discrete-time window of odd length can be readily obtained by letting t = nT
and τ = [(Nw − 1)T]/2 in Eq. (7.18), that is,

wR(nT) =
{

1 for −[(Nw − 1)T]/2 ≤ nT ≤ [(Nw − 1)T]/2

0 otherwise

Its z transform is given by

WR(z) =
(Nw−1)/2∑

n=−(Nw−1)/2

z−n

and since the above sum is a geometric series, a closed-form expression can be obtained as

WR(z) = z(Nw−1)/2 − z−(Nw+1)/2

1 − z−1

= zNw/2 − z−Nw/2

z1/2 − z−1/2

By evaluating the z transform on the unit circle, the frequency spectrum of the rectangular window
can be obtained as

WR(e jωT) = e jωNwT/2 − e− jωNwT/2

e jωT/2 − e− jωT/2
= sin(ωNwT/2)

sin(ωT/2)

Similarly, a Kaiser discrete-time window of odd length can be derived from Eqs. (7.24) and
(7.25) as

wK (nT) =

I0(β)

I0(α)
for −(Nw − 1)T/2 ≤ nT ≤ (Nw − 1)T/2

0 otherwise
(7.28)

where α is an independent parameter and

β = α

√
1 −

(
2n

Nw − 1

)2

(7.29)

THE DISCRETE FOURIER TRANSFORM 351

(see Prob. 7.13, part (a)). The z transform of wK (nT) is given by

WK (z) =
(Nw−1)/2∑

n=−(Nw−1)/2

wK (nT)z−n

and hence the frequency spectrum of the Kaiser window can be obtained as

WK (e jωT) =
(Nw−1)/2∑

n=−(Nw−1)/2

wK (nT)e− jωT

An approximate but closed-form expression for the spectrum of the discrete-time Kaiser win-
dow can be deduced by noting that the spectral energy of the continuous-time Kaiser window is
concentrated at low frequencies (see Fig. 7.16b) and, therefore, for a sufficiently large sampling
frequency ωs , we have

WK (jω) ≈ 0 for |ω| ≥ ωs

2
(7.30)

Consequently, the spectrum of impulse-modulated signal ŵK (t) and, equivalently, the spectrum of
wK (nT) can be expressed as

ŴK (jω) = WK (e jωT) ≈ 1

T
WK (jω) for 0 ≤ |ω| <

ωs

2
(7.31)

according to Eq. (6.45a). Hence Eqs. (7.27), (7.30), and (7.31) give

WK (e jωT) ≈ Nw − 1

α I0(α)
·

sin
[
α
√

(ω/ωa)2 − 1
]

√
(ω/ωa)2 − 1

(7.32)

where

ωa = 2α

(Nw − 1)T

(see Prob. 7.13, part (b)). The application of the window technique to discrete-time signals involves
the same steps as in the continuous-time case although some subtle differences should be noted for
its successful application. The modified discrete-time signal is obtained by multiplying the signal by
a suitable discrete-time window, i.e.,

xw(nT) = w(nT)x(nT)

The frequency spectrum of the modified signal xw(nT) can be obtained by finding the z
transform of xw(nT) and then evaluating it on the unit circle. Since the z transform of a product of
discrete-time functions can be obtained by using the complex-convolution theorem (Theorem 3.10),

352 DIGITAL SIGNAL PROCESSING

we can write

Zxw(nT) = Xw(z) = 1

2π j

∮
�

X (v)W
(z

v

)
v−1 dv (7.33a)

= 1

2π j

∮
�

X
(z

v

)
W (v)v−1 dv (7.33b)

where X (z) is the z transform of x(nT) and � represents a contour in the common region of conver-
gence of X (v) and W (z/v). With

v = e j� T and z = e jωT

and X (v) as well as W (z/v) convergent on the unit circle of the v plane, Eqs. (7.33a) and (7.33b)
give the frequency spectrum of xw(t) as

Xw(e jωT) = T

2π

∫ 2π/T

0
X (e j� T)W (e j(ω−�)T) d� (7.34a)

= T

2π

∫ 2π/T

0
X (e j(ω−�)T)W (e j� T) d� (7.34b)

These formulas are essentially convolution integrals of the type given by Eqs. (7.20a) and (7.20b)
except that the integration is carried out over the finite frequency range 0 ≤ � ≤ 2π/T . Thus the ef-
fects of a discrete-time window on a discrete-time signal are entirely analogous to those encountered
in the continuous-time case. The side lobes of the window function tend to introduce oscillations
in the amplitude spectrum of the signal whose amplitude tends to decrease as the ripple ratio of
the window is decreased. The main-lobe width tends to even out abrupt changes in the amplitude
spectrum and, as a consequence, it tends to introduce transition bands at discontinuities. To minimize
this effect, the main-lobe width should be as small as possible. As in the continuous-time case, the
main-lobe width can be reduced by increasing the length of the window.

7.8.3 Periodic Discrete-Time Windows

The application of the window technique to periodic discrete-time signals involves one more wrinkle.
Since the values of a periodic signal x̃(nT) are normally defined at 0, T, . . . , (N − 1)T and N is
usually a power of 2, to facilitate the application of the FFT method N must be even. As may be
recalled from Sec. 7.8.2, the values of a window of odd-length Nw occur at 0, ±T, . . . , ±(Nw −1)/2
whereas those of an even-length window occur at ±T/2, ±3T/2, . . . , ±(Nw − 1)/2. Consequently,
a window of odd length is easier to apply. Therefore, the window length Nw should not exceed N −1.

A periodic window w̃(nT) with a period N T can be readily obtained from a nonperiodic win-
dow w(nT) through periodic continuation whereby shifted copies of w(nT), namely, w(nT + r N T)
for . . . , −2, −1, 0, 1, 2, . . . are added up according to Eq. (7.3). Now the DFT is normally computed
with respect to the period 0 to (N −1)T whereas nonperiodic windows of odd length Nw are defined
with respect to the period −[(Nw − 1)T]/2 to [(Nw − 1)T]/2. This discrepancy can be easily cir-
cumvented by constructing a right-sided discrete-time window before converting it into a periodic
window through periodic continuation. For example, a right-side discrete-time Kaiser window can

THE DISCRETE FOURIER TRANSFORM 353

be readily obtained as

→
wK (nT) = wK [nT − (Nw − 1)T/2] (7.35a)

and a corresponding periodic version can be constructed as

w̃K (nT) =
∞∑

r=−∞

→
wK (nT + r N T) (7.35b)

as illustrated in Fig. 7.19b. An alternative but equivalent possibility would be to apply periodic
continuation to the two-sided window as

w̃(nT) =

wK (0) for n = 0

wK (nT) for 1 ≤ n ≤ (Nw − 1)/2

0 for [(Nw − 1)/2 + 1] ≤ n ≤ [N − (Nw + 1)/2]

wK [(n − N)T] for [N − (Nw − 1)/2] ≤ n ≤ (N − 1)

(7.35c)

This possibility is illustrated in Fig. 7.19c.

NNw

N

2N

2N

(a)

(b)

(c)

(Nw−1)/2

(Nw−1)/2

−(Nw−1)/2

Figure 7.19 Generation of a periodic window function: (a) Nonperiodic window, (b) periodic window of
Eq. (7.35b), (c) periodic window of Eq. (7.35c).

354 DIGITAL SIGNAL PROCESSING

Example 7.4 (a) Obtain a periodic Kaiser window of length 13 for a 16-point DFT using
Eq. (7.35b). (b) Repeat part (a) using Eq. (7.35c).

Solution

From Eqs. (7.35b) and (7.35c), the values shown in columns 2 and 3 of Table 7.1
can be obtained. The numerical values of the Kaiser window can be calculated using
Eqs. (7.28) and (7.29) where I0(x) is given by Eq. (7.26).

Table 7.1 Values of periodic Kaiser window
of length 13 (Example 7.4)

w̃K (nT) Eq. (7.35b) Eq. (7.35c)

w̃K (0) wK (−6T) wK (0)
w̃K (T) wK (−5T) wK (T)
w̃K (2T) wK (−4T) wK (2T)
w̃K (3T) wK (−3T) wK (3T)
w̃K (4T) wK (−2T) wK (4T)
w̃K (5T) wK (−T) wK (5T)
w̃K (6T) wK (0) wK (6T)
w̃K (7T) wK (T) 0
w̃K (8T) wK (2T) 0
w̃K (9T) wK (3T) 0
w̃K (10T) wK (4T) wK (−6T)
w̃K (11T) wK (5T) wK (−5T)
w̃K (12T) wK (6T) wK (−4T)
w̃K (13T) 0 wK (−3T)
w̃K (14T) 0 wK (−2T)
w̃K (15T) 0 wK (−T)

7.8.4 Application of Window Technique

The window technique can be applied to continuous- and discrete-time nonperiodic or periodic sig-
nals. If the signal to be processed is a nonperiodic continuous-time signal, then it must be subjected
to three processes before it can be processed, namely, sampling, windowing, and periodic continua-
tion. Depending on the order of these operations, three options are available to us, namely, to apply
windowing to the continuous-time signal, to the discrete-time signal, or to the periodic discrete-time
signal. The three possibilities are, of course, equivalent but the first is the easiest to explain.

A given continuous-time signal x(t) of arbitrary length with a frequency spectrum X (jω) can
be forced to assume zero values outside the range 0 ≤ t < NwT through windowing such that

xw(t) = 0 for t < 0 and t ≥ NwT (7.36)

as illustrated in Fig. 7.20c. By choosing a window with sufficiently small main-lobe width and ripple
ratio, the spectrum of the modified signal can be made to approach the spectrum of the original signal
so that Xw(jω) ≈ X (jω) as shown in Fig. 7.20c.

(Nw − 1)T

x(t)

w(t)

xw(t)

t

t

t

k

ω

ω

ω

|X(jω)|

|W(jω)|

|Xw(jω)|

xw(nT)~

|Xw(jk)|˜

nT

N 2N

(a)

(b)

(c)

(d)
D

D−1

Z

Z−1

F

F−1

F

F−1

Figure 7.20 The use of window functions.

355

356 DIGITAL SIGNAL PROCESSING

If the frequency spectrum of xw(t), is bandlimited and a sufficiently high sampling frequency
ωs is used, we have

Xw(j
) ≈ 0 for |
| >
ωs

2
(7.37)

in which case Eq. (7.12b) would assume the form

D
∞∑

r=−∞
xw(nT + r N T) ≈ 1

T

∞∑
r=−∞

Xw(jk
 + jrωs)

as illustrated in Fig. 7.20d . Unfortunately, the frequency spectrum of the signal is usually not known
a priori and, therefore, the sampling frequency that would satisfy Eq. (7.37) is also not known.
One way of estimating the correct sampling frequency would be to compute the DFT of xw(nT)
for progressively larger sampling frequencies (smaller sampling periods) until two successive DFT
evaluations yield approximately the same DFT values. When that happens, the reduction in aliasing
brought about by the last sampling frequency can be deemed to be negligible and the last but one
sampling frequency can be taken to be the lowest acceptable sampling frequency for the application
at hand. One possibility would be to start with some low sampling frequency, say ωs , and then carry
out DFT evaluations for sampling frequencies 2ωs , 4ωs , Since the sampling frequency for each
new DFT evaluation is twice the previous value, the number of points N must also be doubled to
maintain a constant resolution for the DFT, i.e.,
 = ωs/N . This technique is illustrated by the
following example.

Example 7.5 An infinite-duration right-sided discrete-time signal x(nT) is obtained by
sampling the continuous-time signal

x(t) = u(t)
[

A0ep0t + 2M1eσ1t cos(ω1t + θ1)
]

where A0 = 4.532, M1 = 2.350, θ1 = −2.873 rad, p0 = −2.322, σ1 = −1.839, and
ω1 = 1.754 rad/s. A finite duration signal can be obtained by applying the discrete-time
Kaiser window with α = 1.0. Using the above technique, find the lowest sampling frequency
(largest sampling period) that would result in negligible aliasing.

Solution

A problem of this type can be solved by obtaining the DFT of the signal for several
increasing sampling frequencies until two successive DFTs differ from one another by
an error that is considered acceptable for the application at hand. The last DFT can be
deemed to be free of aliasing and the sampling frequency used in the last evaluation can
be taken to be the required one.

THE DISCRETE FOURIER TRANSFORM 357

Table 7.2 Values of N, T, and ωs

for Example 7.5

N T, s ωs, rad/s
16 1.6 3.9264
32 0.8 7.8528
64 0.4 15.7056

128 0.2 31.4112

In order to be able to compare successive DFTs of the same signal, it is important to keep
the discrete-frequency parameter
 fixed. From the definition of the DFT in Sec. 7.2,
we have

 = ωs

N
= 2π

N T

and by selecting the values of N and T shown in Table 7.2, a constant value of
 equal
to 0.2454 rad/s can be achieved. The corresponding values of ωs for N = 16, 32, 64,
and 128 are given by the product N
 and are listed in column 3 of Table 7.2.

A periodic Kaiser window function can be constructed as

w̃(nT) =
∞∑

r=−∞
w(nT + N T)

where

w(nT) = wK (nT) for − (N − 2)/2 ≤ n < (N − 2)/2

is a nonperiodic window function of odd length. Assuming a window length Nw = N −1,
Eq. (7.35b) gives

w̃(nT) =

wK (nT) for 0 ≤ n ≤ (N − 2)/2

0 for n = N/2

wK [(n − N)] for (N + 2)/2 ≤ n ≤ (N − 1)

The values of wK (nT) can be determined by using Eqs. (7.28) and (7.29) where I0(x) is
given by Eq. (7.26).

On obtaining the DFT of x̃w(nT) for the four sets of parameters shown in Table 7.2,
the results plotted in Fig. 7.21 can be obtained. As can be seen, the difference be-
tween the DFTs for the last and last-but-one cases is barely noticeable and we conclude,
therefore, that the use of the sampling frequency 15.7056 rad/s would entail negligible
aliasing.

358 DIGITAL SIGNAL PROCESSING

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
(ω

)

ω, rad/s

T = 1.6 s
T = 0.8 s
T = 0.4 s
T = 0.2 s

Figure 7.21 Amplitude spectrum of x̃(t) for different sampling frequencies (Example 7.5).

Discrete-time windows are also used in the design of FIR digital filters and a good collection
of such functions, including the Dolph-Chebyshev window, can be found in Sec. 9.4.

7.9 SIMPLIFIED NOTATION

The preceding somewhat complicated notation for the DFT was adopted in order to eliminate possible
confusion between the various transforms. As we shall be dealing exclusively with the DFT for the
rest of this chapter, we can write

X (k) =
N−1∑
n=0

x(n)W −kn x(n) = 1

N

N−1∑
k=0

X (k)W kn

where

x(n) ≡ x̃(nT) X (k) ≡ X̃ (jk
)

i.e., x(n) and X (k) are implicitly assumed to be periodic. Furthermore, signals and their frequency
spectrums are deemed to be normalized with respect to time and frequency whereby the discrete time
and frequency variables T and
 are assumed to be 1 s and 2π/N rad/s, respectively (see Sec. 1.4).

7.10 PERIODIC CONVOLUTIONS

The convolutions of the CFT and the z transform find numerous applications in signal processing.
Analogous and equally useful convolutions exist for the DFT. These are usually referred to as periodic
or cyclic convolutions.

THE DISCRETE FOURIER TRANSFORM 359

7.10.1 Time-Domain Periodic Convolution

The time-domain convolution of two periodic signals x(n) and h(n), each with period N , is defined
as

y(n) =
N−1∑
m=0

x(m)h(n − m) (7.38a)

=
N−1∑
m=0

x(n − m)h(m) (7.38b)

Like x(n) or h(n), y(n) is a periodic function of n with period N .
The periodic time-domain convolution can be illustrated by a graphical construction which is

very similar to that used for the convolution summation described in Sec. 4.6.1; the main difference
being the periodicity of the signals involved in the present convolution. The time-domain convolution
is illustrated by the following example.

Example 7.6 Each of the signals

x(n) = e−αn for 0 ≤ n ≤ 9

and

h(n) =

1 for 3 ≤ n ≤ 6
0 for 0 ≤ n ≤ 2
0 for 7 ≤ n ≤ 9

is periodic with period N = 10. Find the periodic convolution of the two signals at n = 5.

Solution

A graphical construction for the time-domain convolution can be obtained as follows:

1. Replace variable n by m in both h(n) and x(n) to obtain x(m) and h(m).

2. Turn signal x(m) over end-to-end to obtain x(−m).

3. Shift x(−m) to the right by 5 s as shown in Fig. 7.22a which can be drawn as shown
in Fig. 7.22b.

4. Noting the periodicity of x(m), construct the equivalent graph shown in Fig. 7.22c.

5. Form all the possible products h(m)x(5 − m) in Fig. 7.22c.

6. Add all the nonzero products in Fig. 7.22c to obtain the time-convolution.

From Fig. 7.22c, we have

y(5) = 1 + e−α + e−2α + e−9α

360 DIGITAL SIGNAL PROCESSING

h(m)
1

m

m

m

x(5−m)

N−1

h(m) 1

5

5

(a)

(b)

(c)

h(m) 1

5

9

 5

0

x(0)

x(0)

x(9)

x(9)

0

N−1

0

x(5−m)

Figure 7.22 Time-domain, periodic convolution (Example 7.6).

Alternatively, from the time-domain convolution of Eq. (7.38b), we have

y(k) = x(k)h(0) + x(k − 1)h(1) + · · · + x(k)h(0) + x(k + 1)h(−1)

+ · · · + x(k − N + 1)h(N − 1)

THE DISCRETE FOURIER TRANSFORM 361

Hence

y(5) = x(5)h(0) + x(4)h(1) + x(3)h(2) + x(2)h(3) + x(1)h(4)

+h(5)x(0) + h(6)x(−1) + h(7)x(−2) + h(8)x(−3)

+h(9)x(−4)

= x(5)h(0) + x(4)h(1) + x(3)h(2) + x(2)h(3) + x(1)h(4)

+x(0)h(5) + x(9)h(6) + x(8)h(7) + x(7)h(8) + x(6)h(9)

= x(2)h(3) + x(1)h(4) + x(0)h(5) + x(9)h(6)

= x(0) + x(1) + x(2) + x(9)

= 1 + e−α + e−2α + e−9α

Theorem 7.2A Time-Domain Periodic Convolution If h(n) and x(n) are two periodic
discrete-time functions, each with period N, with DFTs H(k) and X(k), respectively, then the
DFT of the time-domain convolution of h(n) and x(n) is given by

Y(k) = H(k)X(k)

Proof The DFT of y(n) can be obtained from the definition in Sec. 7.2 as

Y (k) =
N−1∑
n=0

[
N−1∑
m=0

h(m)x(n − m)

]
W −kn

=
N−1∑
m=0

h(m)W −km
N−1∑
n=0

x(n − m)W −k(n−m)

=
N−1∑
n=0

h(n)W −kn
N−1∑
n=0

x(n)W −kn

and, therefore,

Y (k) = H (k)X (k) � (7.39)

7.10.2 Frequency-Domain Periodic Convolution

The frequency-domain convolution of two DFTs H (k) and X (k) is defined as

Y (k) = 1

N

N−1∑
m=0

X (m)H (k − m) (7.40a)

= 1

N

N−1∑
m=0

X (k − m)H (m) (7.40b)

362 DIGITAL SIGNAL PROCESSING

Theorem 7.2B Frequency-Domain Periodic Convolution The IDFT of the frequency-
domain periodic convolution of H(k) and X(k) is given by

y(n) = h(n)x(n) � (7.41)

The proof is left as an exercise (see Prob. 7.23).

7.11 FAST FOURIER-TRANSFORM ALGORITHMS

The direct evaluation of the DFT involves N complex multiplications and N − 1 complex additions
for each value of X (k), and since there are N values to determine, N 2 multiplications and N (N − 1)
additions are necessary. Consequently, for large values of N , say in excess of 1000, direct evaluation
involves a considerable amount of computation.

It turns out that the direct evaluation of the DFT on the basis of its definition entails a large
amount of redundancy and through some clever strategies, a huge reduction in the amount of compu-
tation can be achieved. These strategies have come to be known collectively as fast Fourier transforms
(FFTs) although, to be precise, these methods have nothing to do with transforms in the true sense
of the word.

We describe here two FFTs, the so-called decimation-in-time and decimation-in-frequency
algorithms.

7.11.1 Decimation-in-Time Algorithm

Let the desired DFT be

X (k) =
N−1∑
n=0

x(n)W −kn
N where WN = e j2π/N

and assume that

N = 2r

where r is an integer. The above summation can be split into two parts as

X (k) =
N−1∑
n=0

n even

x(n)W −kn
N +

N−1∑
n=0
n odd

x(n)W −kn
N

Alternatively

X (k) =
N/2−1∑

n=0

x10(n)W −2kn
N + W −k

N

N/2−1∑
n=0

x11(n)W −2kn
N (7.42)

where

x10(n) = x(2n) (7.43a)

x11(n) = x(2n + 1) (7.43b)

THE DISCRETE FOURIER TRANSFORM 363

for 0 ≤ n ≤ N/2 − 1. Since

W −2kn
N = e− j4knπ/N = e− j2knπ/(N/2) = W −kn

N/2

Eq. (7.42) can be expressed as

X (k) =
N/2−1∑

n=0

x10(n)W −kn
N/2 + W −k

N

N/2−1∑
n=0

x11(n)W −kn
N/2

Clearly

X (k) = X10(k) + W −k
N X11(k) (7.44)

and since X10(k) and X11(k) are periodic, each with period N/2, we have

X

(
k + N

2

)
= X10

(
k + N

2

)
+ W −(k+N/2)

N X11

(
k + N

2

)
= X10(k) − W −k

N X11(k) (7.45)

Equations (7.44) and (7.45) can be represented by the signal flow graph of Fig. 7.23a, where
the minus sign in ±W −k

N is pertinent in the computation of X (k + N/2). Since the graph looks
very much like a butterfly, it has come to be known as a butterfly and it is often represented by the
simplified diagram of Fig. 7.23b for convenience.

X10(k)

X11(k)

X(k)

X(k)X10(k)

X11(k)

X(k+)2
N

X(k+)2
N

1 1

1

k

W−k+−

(a)

(b)

Figure 7.23 (a) Butterfly flow graph, (b) simplified diagram.

364 DIGITAL SIGNAL PROCESSING

What we have accomplished so far is to express the desired N -element DFT as a function of two
(N/2)-element DFTs. Assuming that the values of X10(k) and X11(k) are available in corresponding
arrays, the values of X (k) can be readily computed as depicted in Fig. 7.24a.

X10(k) and X11(k) can now be expressed in terms of (N/4)-element DFTs by repeating the
above cycle of activities. For X10(k), we can write

X10(k) =
N/2−1∑

n=0

x10(n)W −kn
N/2

=
N/4−1∑

n=0

x10(2n)W −2kn
N/2 +

N/4−1∑
n=0

x10(2n + 1)W −k(2n+1)
N/2

=
N/4−1∑

n=0

x20(n)W −kn
N/4 + W −2k

N

N/4−1∑
n=0

x21(n)W −kn
N/4 (7.46a)

and, similarly, for X11(k)

X11(k) =
N/2−1∑

n=0

x11(n)W −kn
N/2

=
N/4−1∑

n=0

x22(n)W −kn
N/4 + W −2k

N

N/4−1∑
n=0

x23(n)W −kn
N/4 (7.46b)

where

x20(n) = x10(2n) (7.47a)

x21(n) = x10(2n + 1) (7.47b)

x22(n) = x11(2n) (7.47c)

x23(n) = x11(2n + 1) (7.47d)

for 0 ≤ n ≤ N/4 − 1. Consequently, from Eqs. (7.46a) and (7.46b), we have

X10(k) = X20(k) + W −2k
N X21(k)

X10

(
k + N

4

)
= X20(k) − W −2k

N X21(k)

X11(k) = X22(k) + W −2k
N X23(k)

X11

(
k + N

4

)
= X22(k) − W −2k

N X23(k)

THE DISCRETE FOURIER TRANSFORM 365

X20(k)

X10(k)X2i(k) X(k)

X11(k)

X21(k)

X22(k)

X23(k)

−1
4
N

−1
4
N

−1
4
N

−1
4
N −1

2
N

−1
2
N

2
N

N−1

2
Nk+

4
Nk+

4
Nk+

0

0

0 0

(a)

k

k

0 0

k k

0

k

k k

k

2k

2k

−1
2
N

Figure 7.24 Decimation-in-time FFT algorithm: (a) First and second cycles.

366 DIGITAL SIGNAL PROCESSING

Thus if the values of X20(k), X21(k), X22(k), and X23(k) are available, those of X10(k) and X11(k)
and in turn those of X (k) can be computed, as illustrated in Fig. 7.24a.

In exactly the same way, the mth cycle of the above procedure would yield

X (m−1)0(k) = Xm0(k) + W −2m−1k
N Xm1(k)

X (m−1)0

(
k + N

2m

)
= Xm0(k) − W −2m−1k

N Xm1(k)

X (m−1)1(k) = Xm2(k) + W −2m−1k
N Xm3(k)

X (m−1)1

(
k + N

2m

)
= Xm2(k) − W −2m−1k

N Xm3(k)

· · · · · ·· ·

where

xm0(n) = x(m−1)0(2n) (7.48a)

xm1(n) = x(m−1)0(2n + 1) (7.48b)

xm2(n) = x(m−1)1(2n) (7.48c)

xm3(n) = x(m−1)1(2n + 1) (7.48d)

. .

for 0 ≤ n ≤ N/2m − 1. Clearly, the procedure would terminate with the r th cycle (N = 2r) since
xr0(n), xr1(n), . . . reduce the one-element sequences, in which case

Xri (0) = xri (0) for i = 0, 1, . . . , N − 1

The values of the penultimate DFTs can be obtained from the above equations as

X (r−1)0(0) = xr0(0) + W 0
N xr1(0)

X (r−1)0(1) = xr0(0) − W 0
N xr1(0)

X (r−1)1(0) = xr2(0) + W 0
N xr3(0)

X (r−1)1(1) = xr2(0) − W 0
N xr3(0)

· ·

Assuming that the sequence {xr0(0), xr1(0), . . . } is available in an array, the values of X (r−1)i (k) for
i = 0, 1, . . . can be computed as in Fig. 7.24b. Then the values of X (r−2)i (k), X (r−3)i (k), . . . can be
computed in sequence, and ultimately the values of X (k) can be obtained.

THE DISCRETE FOURIER TRANSFORM 367

x(0)

xr1(0)

X(r−1)0

X(r−1)1

X(r−1)2

X(r−1)3

x(1)

xr0(0)

xr2(0)

x(7)

xr3(0)

xr4(0)

xr5(0)

xr6(0)

xr7(0)

1

1

1

1

0

0

0

0

0

0

0

0

(b)

Xri(0) X(r–1)i(k)

Figure 7.24 Cont’d Decimation-in-time FFT algorithm: (b) r th cycle.

The only remaining task at this point is to identify elements xr0(0), xr1(0), Fortunately,
this turns out to be easy. It can be shown that xr p(0) is given by

xr p(0) = x(
←
p) (7.49)

where
←
p is the r -bit binary representation of p reversed in decimal form. For example, if N =

16, r = 4 and hence we have

x40(0) = x(
←
0) → 0000 → 0000 → x(0)

x41(0) = x(
←
1) → 0001 → 1000 → x(8)

x42(0) = x(
←
2) → 0010 → 0100 → x(4)

...
...

...
...

x4(15)(0) = x(
←
15) → 1111 → 1111 → x(15)

368 DIGITAL SIGNAL PROCESSING

In effect, sequence {xr0(0), xr1(0), . . . } is a reordered version of sequence {x(0), x(1), . . . }, namely,
{x(

←
0), x(

←
1), . . . } or {x(0), x(8), . . . }. Entering the time sequence, properly reordered in the left-

hand array in Fig. 7.24b and performing the computations involved in the signal flow graphs of
Fig. 7.24b and a will produce the DFT of the given time sequence in the right-hand array of Fig. 7.24a
properly ordered as illustrated.

In the above discussion, N has been assumed to be a power of 2. Nevertheless, the algorithm
can be applied to any other finite-duration time sequence by including a number of trailing zero
elements in the given sequence. This would amount to zero padding and, as may be recalled from
Sec. 7.5, including trailing zeros improves the resolution of the frequency spectrum of the discrete-
time signal.

Example 7.7 Construct the decimation-in-time algorithm for N = 8.

Solution

From Eqs. (7.43a) and (7.43b), we have

x10(n) = x(2n) x11(n) = x(2n + 1)

for n = 0, 1, 2, 3. Hence

x10(n) = {x(0), x(2), x(4), x(6)} (7.50a)

x11(n) = {x(1), x(3), x(5), x(7)} (7.50b)

Now from Eqs. (7.47a)–(7.47d), we obtain

x20(n) = x10(2n) x21(n) = x10(2n + 1)

x22(n) = x11(2n) x23(n) = x11(2n + 1)

for n = 0, 1. Thus Eqs. (7.50a) and (7.50b), give

x20(n) = {x(0), x(4)} x21(n) = {x(2), x(6)} (7.51a)

x22(n) = {x(1), x(5)} x23(n) = {x(3), x(7)} (7.51b)

Finally, from Eqs. (7.48a)–(7.48d), the elements of the third cycle can be generated by
replacing k in the second cycle first by 2k and then by 2k + 1,

x30(n) = x20(2n) x31(n) = x20(2n + 1)

x32(n) = x21(2n) x33(n) = x21(2n + 1)

x34(n) = x22(2n) x35(n) = x22(2n + 1)

x36(n) = x23(2n) x37(n) = x23(2n + 1)]

THE DISCRETE FOURIER TRANSFORM 369

X3i(k) X2i(k) X1i(k) X(k)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

0

1

0

1

0

1

0

1

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7
0

0

0

0

2 3

2

1

0

0

2

0

Figure 7.25 Decimation-in-time FFT algorithm for N = 8 (Example 7.7).

for k = 0. Hence from Eqs. (7.51a) and (7.51b), we obtain

x30(0) = x(0) = X (0) x31(0) = x(4) = X (4)

x32(0) = x(2) = X (2) x33(0) = x(6) = X (6)

x34(0) = x(1) = X (1) x35(0) = x(5) = X (5)

x36(0) = x(3) = X (3) x37(0) = x(7) = X (7)

The complete algorithm is illustrated in Fig. 7.25.

The algorithm can be easily programmed as computations can be carried out in place in a single
array. As can be observed in Fig. 7.25, once the outputs of each input butterfly are computed, the
input elements are no longer needed for further processing and can be replaced by the corresponding
outputs. When we proceed in the same way from left to right, at the end of computation the input
array will contain the elements of the desired DFT properly ordered. The input elements can be
entered in the appropriate array locations by using a simple reordering subroutine.

In general, each cycle of the algorithm involves N/2 butterflies, as can be seen in Fig. 7.25,
and each butterfly requires one (complex) multiplication. Since there are r cycles of computation
and r = log2 N , the total number of multiplications is (N/2) log2 N as opposed to N 2 in the case of
direct evaluation. This constitutes a huge saving in computation. For example, if N ≥ 512, then the
number of multiplications is reduced to a fraction of 1 percent of that required by direct evaluation.

370 DIGITAL SIGNAL PROCESSING

7.11.2 Decimation-in-Frequency Algorithm

In the decimation-in-time algorithm, the given time sequence is split in two by separating the even-
and odd-index elements. The same procedure is then applied repeatedly on each new sequence
until one-element sequences are obtained. The decimation-in-frequency algorithm can be developed
by splitting the given sequence about its midpoint and then repeating the same for each resulting
sequence until one-element sequences are obtained. We can write

X (k) =
N/2−1∑

n=0

x(n)W −kn
N +

N−1∑
n=N/2

x(n)W −kn
N

=
N/2−1∑

n=0

[
x(n) + W −k N/2

N x

(
n + N

2

)]
W −kn

N

and on replacing k first by 2k and then by 2k + 1, we obtain

X (2k) =
N/2−1∑

n=0

x10(n)W −kn
N/2 = X10(k) (7.52a)

X (2k + 1) =
N/2−1∑

n=0

x11(n)W −kn
N/2 = X11(k) (7.52b)

where

x10(n) = x(n) + x

(
n + N

2

)
(7.53a)

x11(n) =
[

x(n) − x

(
n + N

2

)]
W −n

N (7.53b)

for 0 ≤ n ≤ N/2 − 1. Thus the even- and odd-index values of X (k) are given by the DFTs of x10(n)
and x11(n), respectively. Assuming that the values of x(n) are stored sequentially in an array, the
values of x10(n) and x11(n) can be computed as illustrated in Fig. 7.26a, where the left-hand butterfly
represents Eqs. (7.53a) and (7.53b).

The same cycle of activities can now be applied to x10(n) and x11(n). For x10(n), we can write

X (2k) =
N/4−1∑

n=0

[
x10(n) + W −k N/2

N x10

(
n + N

4

)]
W −kn

N/2

and, similarly, for x11(n)

X (2k + 1) =
N/4−1∑

n=0

[
x11(n) + W −k N/2

N x11

(
n + N

4

)]
W −kn

N/2

THE DISCRETE FOURIER TRANSFORM 371

x20(n)

x21(n)

x22(n)

x23(n)

(a)

x(n)

−1
2
N

2
N

N−1

2
Nn+

0

n

−1
4
N

−1
4
N

−1
4
N

−1
4
N

0

0

n

n

0

n

0

n

x10(n)

x11(n)

−1
2
N

−1
2
N

4
Nn+

4
Nn+

0

0

n

n

n

2n

2n

x2i(n)

Figure 7.26 Decimation-in-frequency FFT algorithm: (a) First and second cycles.

372 DIGITAL SIGNAL PROCESSING

Hence with k replaced first by 2k and then by 2k + 1, we have

X (4k) =
N/4−1∑

n=0

x20(n)W −kn
N/4 = X20(k) (7.54a)

X (4k + 2) =
N/4−1∑

n=0

x21(n)W −kn
N/4 = X21(k) (7.54b)

X (4k + 1) =
N/4−1∑

n=0

x22(n)W −kn
N/4 = X22(k) (7.54c)

X (4k + 3) =
N/4−1∑

n=0

x23(n)W −kn
N/4 = X23(k) (7.54d)

where

x20(n) = x10(n) + x10

(
n + N

4

)
(7.55a)

x21(n) =
[

x10(n) − x10

(
n + N

4

)]
W −2n (7.55b)

x22(n) = x11(n) + x11

(
n + N

4

)
(7.55c)

x23(n) =
[

x11(n) − x11

(
n + N

4

)]
W −2n (7.55d)

for 0 ≤ n ≤ (N/4−1). The values of x20(n), x21(n), . . . can be computed as in Fig. 7.26a. The DFT
of each of these sequences gives one-quarter of the values of X (k).

Similarly, the mth cycle of the above procedures would yield

X (2mk) =
N1−1∑
n=0

xm0(n)W −kn
N1

= Xm0(k) (7.56a)

X (2mk + 2m−1) =
N1−1∑
n=0

xm1(n)W −kn
N1

= Xm1(k) (7.56b)

· ·
where N1 = N/2m and

xm0(n) = x(m−1)0(n) + x(m−1)0

(
n + N

2m

)

xm1(n) =
[

x(m−1)0(n) − x(m−1)0

(
n + N

2m

)]
W −2m−1n

N

· ·
for 0 ≤ n ≤ N/2m − 1.

THE DISCRETE FOURIER TRANSFORM 373

As for the decimation-in-time algorithm, the procedure terminates with the r th cycle at which
point xr0(n), xr1(n), . . . reduce the one-element sequences each giving one value of the desired DFT
except that the elements of the DFT are not properly ordered. What we get instead is the sequence

X (
←
0) = xr0(0) (7.57a)

X (
←
1) = xr1(0) (7.57b)

...

X (
←
p) = xr p(0) (7.57c)

...

X (
←

N − 1) = xr (N−1)(0) (7.57d)

where
←
p is the r -bit binary representation of p reversed in decimal form as in the decimation-in-time

algorithm. The last two cycles of the algorithm are illustrated in Fig. 7.26b. Note that the elements
of the DFT can be put in the right order by simply reversing the r -bit binary representation of the
location index at the end of the computation, as is done for the input sequence in the case of the
decimation-in-time algorithm. The advantage of this algorithm is that the values of x(n) are entered
in the input array sequentially.

X(0)

xr1(0) X(1)

xr0(0)

x(r–1)i(n) xri(n)

xr2(0)

X(7)

xr3(0)

xr4(0)

xr5(0)

xr6(0)

xr7(0)

0

0

0

01

0

1

0

1

0

1

0

(b)

Figure 7.26 Cont’d Decimation-in-frequency FFT algorithm: (b) r th cycle.

374 DIGITAL SIGNAL PROCESSING

Example 7.8 Construct the decimation-in-frequency algorithm for N = 8.

Solution

From Eqs. (7.52a) and (7.52b), we have

X10(k) = X (2k) and X11(k) = X (2k + 1)

for k = 0, 1, 2, 3. Hence

X10(k) = {X (0), X (2), X (4), X (6)} (7.58a)

X11(k) = {X (1), X (3), X (5), X (7)} (7.58b)

From Eqs. (7.54a)–(7.54d), we have

X20(k) = X (4k) X21(k) = X (4k + 2)

X22(k) = X (4k + 1) X23(k) = X (4k + 3)

for k = 0, 1. Thus Eqs. (7.58a) and (7.58b), give

X20(k) = {X (0), X (4)} X21(k) = {X (2), X (6)} (7.59a)

X22(k) = {X (1), X (5)} X23(k) = {X (3), X (7)} (7.59b)

Finally, from Eqs. (7.56a) and (7.56b) or Eqs. (7.57a)–(7.57c), the elements of the 3rd
cycle can be generated by replacing k in the 2nd cycle first by 2k and then by 2k + 1,
that is,

X30(k) = X [4(2k)] X31(k) = X [4(2k + 1)]

X32(k) = X [4(2k) + 2)] X33(k) = X [4(2k + 1) + 2]

X34(k) = X [4(2k) + 1] X35(k) = X [4(2k + 1) + 1]

X36(k) = X [4(2k) + 3] X37(k) = X [4(2k + 1) + 3]

for k = 0. Hence from Eqs. (7.59a) and (7.59b), we obtain

X30(0) = X (0) = x(0) X31(0) = X (4) = x(4)

X32(0) = X (2) = x(2) X33(0) = X (6) = x(6)

X34(0) = X (1) = x(1) X35(0) = X (5) = x(5)

X36(0) = X (3) = x(3) X37(0) = X (7) = x(7)

The complete algorithm is illustrated in Fig. 7.27.

THE DISCRETE FOURIER TRANSFORM 375

X3i(k)X1i(k) X2i(k)X(k)

x(0) X(0)

x(4) X(4)

x(2) X(2)

x(6) X(6)

x(1) X(1)

x(5) X(5)

x(3) X(3)

x(7) X(7)

0

1

0

1

0

1

0

1

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7
0

0

0

0

23

2

1

0

0

2

0

Figure 7.27 Decimation-in-frequency FFT algorithm for N = 8 (Example 7.8).

7.11.3 Inverse DFT

Owing to the similarity between Eqs. (7.1) and (7.2), the preceding two algorithms can be readily
employed for the computation of the IDFT. Equation (7.2) can be put in the form

x∗(n) =
[

1

N

N−1∑
k=0

X (k)W kn

]∗

= 1

N

N−1∑
k=0

X∗(k)W −kn

or

x∗(n) = D
[

1

N
X∗(k)

]

Therefore,

x(n) =
{
D

[
1

N
X∗(k)

]}∗

Thus if a computer program is available that can be used to compute the DFT of a complex signal
x(n), then exactly the same program can be used to compute the inverse DFT, i.e., x(n), by entering
the complex conjugate of X (k)/N as input and then taking the complex conjugate of the output.

376 DIGITAL SIGNAL PROCESSING

7.12 APPLICATION OF THE FFT APPROACH
TO SIGNAL PROCESSING

The processing of discrete-time signals can be carried out through the use of a digital filters in the
form of software or hardware. Alternatively, one can simulate the action of a digital filter through
the use of the convolution summation.

The response of an FIR filter to an excitation x(n) is given by

y(n) =
∞∑

m=−∞
x(n − m)h(m)

and if

h(n) = 0 for n < 0 and n > N − 1

x(n) = 0 for n < 0 and n > L − 1

then we have

y(n) =
N−1∑
m=0

x(n − m)h(m) for 0 ≤ n ≤ N + L − 2 (7.60)

A software implementation for the filter can be readily obtained by programming Eq. (7.60) directly.
However, this approach can involve a large amount of computation since N multiplications are
necessary for each sample of the response. The alternative is to use the FFT method [12].

Let us define (L + N − 1)-element DFTs for h(n), x(n), and y(n), as in Sec. 7.2, which we
can designate as H (k), X (k), and Y (k), respectively. From Eqs. (7.39) and (7.60), we have

Y (k) = H (k)X (k)

and hence

y(n) = D−1[H (k)X (k)]

Therefore, an arbitrary finite-duration signal can be processed through the following procedure:

1. Compute the DFTs of h(n) and x(n) using an FFT algorithm.

2. Compute the product H (k)X (k) for k = 0, 1,

3. Compute the IDFT of Y (k) using an FFT algorithm.

The evaluation of H (k), X (k), or y(n) requires [(L + N −1)/2] log2(L + N −1) complex multiplica-
tions, and step 2 above entails L + N −1 of the same. Since one complex multiplication corresponds
to four real ones, the total number of real multiplications per output sample is 6 log2(L + N −1)+4,

THE DISCRETE FOURIER TRANSFORM 377

as opposed to N in the case of direct evaluation using Eq. (7.60). Clearly, for large values of N , the
FFT approach is much more efficient. For example, if N = L = 512, the number of multiplications
would be reduced to 12.5 percent of that required by direct evaluation.

The above convolution method of implementing digital filters can also be applied to IIR digital
filters but only if the frequency response of the filter is bandlimited. In such a case, an impulse
response of finite duration can be obtained through the use of a suitable window function.

In the convolution method for the implementation of digital filters, the entire input sequence
must be available before the processing can start. Consequently, if the input sequence is long, a
long delay known as latency will be introduced, which is usually objectionable in real-time or even
quasi-real-time applications. For such applications, the input sequence is usually broken down into
small blocks or segments that can be processed individually. In this way, the processing can begin as
soon as the first segment is received and the processed signal begins to become available soon after.
Simultaneously, new segments of the input continue to be received while the processing continues.

Two segmentation techniques have evolved for the processing of signals, as follows:

1. Overlap-and-add method

2. Overlap-and-save method

These are two somewhat different schemes of dealing with the fact that the periodic convolution
produces a longer sequence than the length of either the signal x(n) or the impulse response h(n) of
the filter being simulated.

7.12.1 Overlap-and-Add Method

In the overlap-and-add method, successive convolution summations produce consecutive processed
segments of the signal that are overlapped to give the overall processed signal as will be shown
below.

The input signal can be expressed as a sum of signal segments xi (n) for i = 1, 2, . . . , q,
each comprising L samples, such that

x(n) =
q∑

i=0

xi (n)

for 0 ≤ n ≤ q L − 1, where

xi (n) =
{

x(n) for i L ≤ n ≤ (i + 1)L − 1

0 otherwise
(7.61)

as illustrated in Fig. 7.28. With this manipulation, Eq. (7.60) assumes the form

y(n) =
N−1∑
m=0

q∑
i=0

xi (n − m)h(m)

378 DIGITAL SIGNAL PROCESSING

n

x0(n)

x1(n)

x2(n)

L

L−1

2L−1

2L 3L

n

n

n

2L 3L−1

x(n)

L

+

=

+

0

0

0

0

Figure 7.28 Segmentation of input sequence.

and on interchanging the order of summation, we get

y(n) =
q∑

i=0

ci (7.62)

where

ci (n) =
N−1∑
m=0

xi (n − m)h(m) (7.63)

In this way, y(n) can be computed by evaluating a number of partial convolutions.

THE DISCRETE FOURIER TRANSFORM 379

For i L − 1 ≤ n ≤ (i + 1)L + N − 1, Eqs. (7.63) and (7.61) give

ci (i L − 1) = 0

ci (i L) = x(i L)h(0)

ci (i L + 1) = x(i L + 1)h(0) + x(i L)h(1)

. .

ci [(i + 1)L + N − 2] = x[(i + 1)L − 1]h(N − 1)

ci [(i + 1)L + N − 1] = 0

Evidently, the i th partial-convolution sequence has L + N −1 nonzero elements which can be stored
in an array Ci , as demonstrated in Fig. 7.29. From Eq. (7.63), the elements of Ci can be computed as

ci (n) = D−1[H (k)Xi (k)]

Now from Eq. (7.62), an array Y containing the values of y(n) can be readily formed, as illustrated
in Fig. 7.29, by entering the elements of nonoverlapping segments in C0, C1, . . . and then adding

C0

L0 L+N−2
+

C1

2L

2L

2L

3L

3LL

L

0

2L+N−2

C2

3L+N−2

+

=

Y

Overlap

Figure 7.29 Overlap-and-add implementation.

380 DIGITAL SIGNAL PROCESSING

the elements in overlapping adjacent segments. As can be seen, processing can start as soon as L
input samples are received, and the first batch of L output samples is available as soon as the first
input segment is processed. Evidently, a certain amount of latency is still present but through the
overlap-and-add method, this is reduced from (q L − 1)T to (L − 1)T s where T is the sampling
period.

7.12.2 Overlap-and-Save Method

If x(n) = 0 for n < 0 as before, then the first L elements of convolution summation c0(n), namely,
elements 0 to L −1, are equal to the corresponding L elements of y(n). However, this does not apply
to the last N − 1 elements of c0(n), i.e., elements L to L + N − 2, owing to the overlap between
convolutions c0(n) and c1(n) as can be seen in Fig. 7.29. This problem can be avoided through the
following scheme.

If we define x̄1(n) such that

x̄1(n) =
{

x(n) for L − (N − 1) ≤ n ≤ 2L − (N − 1) − 1

0 otherwise

as illustrated in Fig. 7.30, then the convolution of x̄1(n) with h(n) would assume the form

c̄1(n) =
N−1∑
m=0

x̄1(n − m)h(m) for L − (N − 1) ≤ n ≤ 2L − 1

Straightforward evaluation of c̄1(n) for n = L , L + N − 2, and 2L − (N − 1) − 1 gives

c̄1(L) = x̄1(L)h(0) + x̄1(L − 1)h(1) + · · · + x̄1(L − N + 1)h(N − 1)

= c0(L) + c1(L) = y(L)

c̄1(L + N − 2) = x̄1(L + N − 2)h(0) + x̄1(L + N − 3)h(1) + · · ·
+x̄1(L − 1)h(N − 1)

= c0(L + N − 2) + c1(L + N − 2) = y(L + N − 2)

c̄1[2L − (N − 1) − 1] = x̄1(2L − N)h(0) + x̄1(2L − N − 1)h(1) + · · ·
+x̄1(2L − 2N + 1)h(N − 1)

= c1[2L − (N − 1) − 1] = y[2L − (N − 1) − 1]

where ci (n) for i = 0, 1 are given by Eq. (7.63) and L is assumed to be greater than 2(N − 1) for
the sake of convenience. Evidently,

c̄1(n) =
N−1∑
m=0

x(n − m)h(m) = y(n) for L ≤ n ≤ 2L − (N − 1) − 1

that is, c̄1(n) gives elements L to 2L − (N − 1) − 1 of the required output, which can be stored in
the unshaded part of array C1 in Fig. 7.31.

THE DISCRETE FOURIER TRANSFORM 381

x(n)

0 n

L 2L 3L

x0(n)

0 n

L−1

0

x1(n)

n

L−(N−1)

x2(n)

0 n

2L−(N−1)−1

2L−2(N−1) 3L−2(N−1)−1

Figure 7.30 Alternative segmentation of input sequence.

Similarly, by letting

x̄i (n) =
{

x(n) for i L − (i − 1)(N − 1) ≤ n ≤ (i + 1)L − i(N − 1) − 1

0 otherwise

one can easily show that for i L − (i − 1)(N − 1) ≤ n ≤ (i + 1)L − i(N − 1) − 1

c̄i (n) = y(n) (7.64)

for i = 2, 3, . . . (see Prob. 7.34). In effect, the processed signal can be evaluated by computing the
first L elements of c0(n) and elements i L − (i − 1)(N − 1) to (i + 1)L − i(N − 1) − 1 of the partial
convolutions c̄i (n) for i = 1, 2, . . . , and then concatenating the sequences obtained as shown in
Fig. 7.31.

In the scheme just described, the input sequences rather than the output sequences are over-
lapped, as can be seen in Fig. 7.30, and the last N − 1 elements of each input sequence are saved

382 DIGITAL SIGNAL PROCESSING

C0

0 L L + N−2

C2

3L−(N−1)−1
2L−2(N−1)

2L−(N−1)
3L−2(N−1)−1

0 N−1 L−1

C3C2C1C0

Y

C1

L−(N−1) 2L−1L 2L−(N−1)−1

Figure 7.31 Overlap-and-save implementation.

to be re-used for the computation of the next partial convolution. For these reasons, the scheme is
known as the overlap-and-save method.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier
series,” Math Comp., vol. 19, pp. 297–301, Apr. 1965.

[2] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C.
Maling, D. E. Nelson, C. M. Rader, and P. D. Welch, “What is the fast Fourier transform?”
IEEE Trans. Audio Electroacoust., vol. 15, pp. 45–55, June 1967.

[3] G. D. Bergland, “A guided tour of the fast Fourier transform,” IEEE Spectrum, vol. 6,
pp. 41–52, July 1969.

[4] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “Historical notes on the fast Fourier
transform,” IEEE Trans. Audio Electroacoust., vol. 15, pp. 76–79, June 1967.

[5] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “Application of the Fast Fourier transform to
computation of Fourier integrals, Fourier series and convolution integrals,” IEEE Trans.
Audio Electroacoust., vol. 15, pp. 79–84, June 1967.

[6] J. F. Kaiser, “Nonrecursive digital filter design using the I0-sinh window function,” IEEE Int.
Symp. Circuit Theory, pp. 20–23, 1974.

[7] H. Babic and G. C. Temes, “Optimum low-order windows for discrete Fourier transform
systems,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, pp. 512–517, Dec. 1976.

THE DISCRETE FOURIER TRANSFORM 383

[8] C. L. Dolph, “A current distribution for broadside arrays which optimizes the relationship
between beamwidth and side-lobe level,” Proc. IRE, vol. 34, pp. 335–348, June 1946.

[9] R. L. Streit, “A two-parameter family of weights for nonrecursive digital filters and
antennas,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, pp. 108–118, Feb. 1984.

[10] S. W. A. Bergen and A. Antoniou, “Design of ultraspherical window functions with
prescribed spectral characteristics,” Applied Journal of Signal Processing, vol. 13,
pp. 2053–2065, 2004.

[11] M. L. James, G. M. Smith, and J. C. Wolford Applied Numerical Methods for Digital
Computation, 3rd ed., New York: Harper & Row, 1985.

[12] H. D. Helms, “Fast Fourier transform method of computing difference equations and
simulating filters,” IEEE Trans. Audio Electroacoust., vol. 15, pp. 85–90, June 1967.

PROBLEMS

7.1. Show that

N−1∑
k=0

W k(n−m) =
{

N for m = n
0 otherwise

7.2. Show that
(a) Dx̃(nT + mT) = W km X̃ (jk
)
(b) D−1 X̃ (jk
 + jl
) = W −nl x̃(nT)

7.3. The definition of the DFT can be extended to include complex discrete-time signals. Show that

(a) Dx̃∗(nT) = X̃∗(− jk
)
(b) D−1 X̃∗(jk
) = x̃∗(−nT)

7.4. (a) A complex discrete-time signal is given by

x̃(nT) = x̃1(nT) + j x̃2(nT)

where x̃1(nT) and x̃2(nT) are real. Show that

Re X̃1(jk
) = 1
2 {Re X̃ (jk
) + Re X̃ [j(N − k)
]}

Im X̃1(jk
) = 1
2 {Im X̃ (jk
) − Im X̃ [j(N − k)
]}

Re X̃2(jk
) = 1
2 {Im X̃ (jk
) + Im X̃ [j(N − k)
]}

Im X̃2(jk
) = − 1
2 {Re X̃ (jk
) − Re X̃ [j(N − k)
]}

(b) A DFT is given by

X̃ (jk
) = X̃1(jk
) + j X̃2(jk
)

where X̃1(jk
) and X̃2(jk
) are real DFTs. Show that

Re x̃1(nT) = 1
2 {Re x̃(nT) + Re x̃[(N − n)T]}

Im x̃1(nT) = 1
2 {Im x̃(nT) − Im x̃[(N − n)T]}

Re x̃2(nT) = 1
2 {Im x̃(nT) + Im x̃[(N − n)T]}

Im x̃2(nT) = − 1
2 {Re x̃(nT) − Re x̃[(N − n)T]}

384 DIGITAL SIGNAL PROCESSING

7.5. Figure P7.5 shows four real discrete-time signals. Classify their DFTs as real, imaginary, or complex.
Assume that N = 10 in each case.

(a)

(b)

(c)

(d)

10

100

0

10

10

20

20

20

20nT

nT

nT

nT

x(nT)˜

x(nT)˜

x(nT)˜

x(nT)˜

Figure P7.5

7.6. Find the DFTs of the following periodic signals:

(a) x̃(nT) =
{

1 for n = 3, 7
0 for n = 0, 1, 2, 4, 5, 6, 8, 9

(b) x̃(nT) =
{

1 for 0 ≤ n ≤ 5
2 for 6 ≤ n ≤ 9

7.7. Find the DFTs of the following periodic signals:

(a) x̃(nT) =
{

2e−an for 0 ≤ n ≤ 5
0 for 6 ≤ n ≤ 9

The period is 10 in each case.

THE DISCRETE FOURIER TRANSFORM 385

(b) x̃(nT) =

n for 0 ≤ n ≤ 2
0 for 3 ≤ n ≤ 7

−(10 − n) for n = 8, 9
The period is 10 in each case.

7.8. Find the DFTs of the following periodic signals in closed form:
(a) x(n) = e−βn for 0 ≤ n ≤ 31 if N = 32.
(b) Repeat part (a) for x(n) = e−γ n/2ε for 0 ≤ n ≤ 31 if N = 32.

7.9. A periodic signal is given by

x̃(nT) =
∞∑

r=−∞
wH(nT + r N T)

where

wH(nT) =

α + (1 − α) cos

2πn

N − 1
for |n| ≤ N − 1

2
0 otherwise

Find X̃ (jk
).

7.10. Obtain the IDFTs of the following:

(a) X̃ (jk
) = (−1)k

(
1 + 2 cos

2πk

10

)

(b) X̃ (jk
) = 1 + 2 j(−1)k

(
sin

3kπ

5
+ sin

4kπ

5

)
The value of N is 10.

7.11. (a) Find the z transform of x(nT) for the DFTs of Prob. 7.10. Assume that x(nT) = 0 outside the range
0 ≤ n ≤ 9 in each case.

7.12. (a) Working from first principles, derive an expression for the frequency spectrum of the rectangular
window of length 31 in closed form.

(b) Repeat part (a) for a window length of 32.

7.13. (a) Starting with Eq. (7.25), derive Eq. (7.29).
(b) Starting with Eq. (7.27), derive Eq. (7.32).

7.14. Show that the Kaiser window includes the rectangular window as a special case.

7.15. Compute the values of the Kaiser window of length Nw = 7 and α = 3.0.

7.16. Construct Table 7.1 for a Kaiser length of length 31.

7.17. Function wH(nT) in Prob. 7.9 with α = 0.54 is known as the Hamming window. Obtain a closed-form
expression for the frequency spectrum of the window.

7.18. Using MATLAB or similar software, plot the ripple ratio and main-lobe width of the Hamming window
described in Prob. 7.17 as a function of the window length.

7.19. The triangular window 4 is given by

wTR(nT) =

1 − 2|n|

N − 1
for |n| ≤ N − 1

2
0 otherwise

4This is also known as the Bartlett window.

386 DIGITAL SIGNAL PROCESSING

(a) Assuming that wTR(t) is bandlimited, obtain an approximate expression for WTR(e jωT).
(b) Estimate the main-lobe width if N � 1.
(c) Estimate the ripple ratio if N � 1.

(Hint: See Prob. 6.27.)

7.20. An infinite-duration discrete-time signal is described by

x(nT) = u(nT)
[

A0ep0nT + 2M1eσ1t cos(ω1nT + θ1)
]

where A0 = 4.532, M1 = 2.350, θ1 = −2.873 rad, p0 = −2.322, σ1 = −1.839, and ω1 = 1.754 rad/s.
(a) Obtain an expression for the frequency spectrum of the signal.
(b) Plot the frequency spectrum over the range 0 ≤ ω ≤ ωs/2 assuming a sampling frequency ωs =

10 rad/s.
(c) Repeat part (b) if the signal is modified through the use of a rectangular window of length 21.
(d) Repeat part (b) if the signal is modified through the use of a Kaiser window of length 21 and α = 1.0.
(e) Compare the results obtained in parts (c) and (d).

7.21. An infinite-duration right-sided discrete-time signal x(nT) is obtained by sampling the continuous-time
signal

x(t) = u(t)[A0ep0t + 2M1eσ1t cos(ω1t + θ1)]

where A0 = 5.0, M1 = 2.0, θ1 = −3.0 rad, p0 = −2.0, σ1 = −1.5, and ω1 = 2.5 rad/s. A finite
duration signal can be obtained by applying the discrete-time Kaiser window with α = 2.0. Following
the approach in Example 7.5, find the lowest sampling frequency that would result in negligible aliasing
error.

7.22. Repeat Prob. 7.21 if A0 = 4.0, M1 = 3.0, θ1 = −2.0 rad, p0 = −3.0, σ1 = −2.0, ω1 = 1.5 rad/s, and
α = 1.5.

7.23. Prove Theorem 6.2B.

7.24. (a) Periodic signals x(n) and h(n) are given by

x(n) =
{

1 for 0 ≤ n ≤ 4
2 for 5 ≤ n ≤ 9

h(n) = n for 0 ≤ n ≤ 9

Find the time-domain convolution

y(n) =
9∑

m=0

x(m)h(n − m)

at n = 4 assuming a period N = 10.
(b) Repeat part (a) if

x(n) = u(n − 4)e−αn for 0 ≤ n ≤ 9 h(n) =
{

1 n = 0, 1, 8, 9
0 otherwise

7.25. Two periodic signals are given by

x(n) = cos nπ/9 and h(n) = u(n − 4) for 0 ≤ n ≤ 9

Find the time-domain convolution y(n) at n = 5 assuming that N = 10.

THE DISCRETE FOURIER TRANSFORM 387

(b) Repeat part (a) if

x(n) = cos nπ/9 and h(n) =
{

e−βn for 0 ≤ n ≤ 3
0 otherwise

7.26. Show that

D [x(n)h(n)] = 1

N

N−1∑
m=0

X (m)H (k − m)

where X (k) = Dx(n) and H (k) = Dh(n).

7.27. Construct the flow graph for a 16-element decimation-in-time FFT algorithm.

7.28. Construct the flow graph for a 16-element decimation-in-frequency FFT algorithm.

7.29. (a) Compute the Fourier-series coefficients for the periodic signal depicted in Fig. P7.29 by using a
32-element FFT algorithm.

(b) Repeat part (a) using a 64-element FFT algorithm.
(c) Repeat part (a) using an analytical method.
(d) Compare the results obtained.

t

x(t)˜

Figure P7.29

7.30. Repeat Prob. 7.29 for the signal of Fig. P7.30.

0

|sin t|

tπ 2π−π

x(t)˜

Figure P7.30

7.31. (a) Compute the Fourier transform of

x(t) =
{

1
2 (1 + cos t) for 0 ≤ |t | ≤ π

0 otherwise

by using a 64-element FFT algorithm. The desired resolution in the frequency domain is 0.5 rad/s.
(b) Repeat part (a) for a frequency domain resolution of 0.25 rad/s.
(c) Repeat part (a) by using an analytical method.
(d) Compare the results in parts (a) to (c).

388 DIGITAL SIGNAL PROCESSING

7.32. Repeat Prob. 7.31 for the signal

x(t) =
{

1 − |t | for |t | < 1
0 otherwise

The desired frequency-domain resolutions for parts (a) and (b) are π/4 and π/8 rad/s, respectively.

7.33. An FFT program is available which allows for a maximum of 64 complex input elements. Show that this
program can be used to process a real 128-element sequence.

7.34. Demonstrate the validity of Eq. (7.64).

CHAPTER

8
REALIZATION

OF DIGITAL
FILTERS

8.1 INTRODUCTION

The previous chapters considered the basics of signal analysis and the characterization and analysis
of discrete-time systems. From this chapter onward, the design of discrete-time systems that can
be used in DSP will be examined in great detail. Discrete-time systems come in all shapes and
forms. However, this textbook is concerned with discrete-time systems that can be used to reshape
the spectral characteristics of discrete-time signals, and such systems are of course digital filters be
it nonrecursive or recursive, FIR or IIR filters, one- or two-dimensional, single-rate or multirate,
adaptive or fixed.

In broad terms, the design of digital filters encompasses all the activities that need to be
undertaken from the point where a need for a specific type of digital filter is identified to the point
where a prototype is constructed, tested, and approved. The compendium of activities that need to
be undertaken to obtain a design can be packaged into four basic steps, as follows:

1. Approximation

2. Realization

3. Study of arithmetic errors

4. Implementation

When performed successfully, these steps would lead to the implementation of a digital filter that
would satisfy a set of prescribed specifications which would depend on the application at hand.

389

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

390 DIGITAL SIGNAL PROCESSING

The approximation step is the process of generating a transfer function that would satisfy the
desired specifications, which may concern the amplitude or phase response or even the time-domain
response of the filter. The available methods for the solution of the approximation problem can be
classified as direct or indirect. In direct methods, the problem is solved directly in the z domain.
In indirect methods, a continuous-time transfer function is first obtained and then converted into
a corresponding discrete-time transfer function. Nonrecursive filters are always designed through
direct methods whereas recursive filters can be designed either through direct or indirect methods.
Approximation methods can also be classified as closed-form or iterative. In closed-form methods,
the problem is solved through a small number of design steps using a set of closed-form formulas. In
iterative methods, an initial solution is assumed and, through the application of optimization methods,
a series of progressively improved solutions are obtained until some design criterion is satisfied. In
general, the designer is interested in approximation methods that

• are simple,

• are reliable,

• yield precise designs,

• require minimal computation effort, and so on.

The realization or synthesis of a digital filter is the process of generating a digital-filter network
or structure from the transfer function or some other characterization of the filter. The network ob-
tained is said to be the realization of the transfer function. As for approximation methods, realization
methods can be classified as direct or indirect. In direct methods the realization is obtained directly
from a given discrete-time transfer function whereas in indirect realizations, the filter structure is
obtained indirectly from an equivalent prototype analog filter. Many realization methods have been
proposed in the past that lead to digital-filter structures of varying complexity and properties. The
designer is usually interested in realizations that

• are easy to implement in very-large-scale integrated (VLSI) circuit form,

• require the minimum number of unit delays, adders, and multipliers,

• are not seriously affected by the use of finite-precision arithmetic in the implementation, and so
on.

Designs of all types from that of a refrigerator or an electrical drill to that of a microwave com-
munications channel entail imperfections of various sorts brought about by modeling inaccuracies,
component tolerances, unusual or unexpected nonlinear effects, and so on. A design will be approved
to the extent that design imperfections do not violate the desired specifications. In digital filters and
digital systems in general, most imperfections are caused by numerical imprecision of some form
and studying the ways in which numerical imprecision will manifest itself needs to be undertaken.
During the approximation step, the coefficients of the transfer function are determined to a high
degree of precision. In practice, however, digital hardware have finite precision that depends on the
length of registers used to store numbers; the type of number system used (e.g., signed-magnitude,
two’s complement); the type of arithmetic used (e.g., fixed-point or floating-point), and so on. Con-
sequently, filter coefficients must be quantized (e.g., rounded or truncated) before they can be stored
in registers. When the transfer function coefficients are quantized, errors are introduced in the ampli-
tude and phase responses of the filter, which are commonly referred to as quantization errors. Such
errors can cause the digital filter to violate the required specifications and in extreme cases even to
become unstable. Similarly, the signals to be processed as well as the internal signals of a digital

REALIZATION OF DIGITAL FILTERS 391

filter (e.g., the products generated by multipliers) must be quantized. Since errors introduced by the
quantization of signals are actually sources of noise (see Sec. 14.5), they can have a dramatic effect
on the performance of the filter. Under these circumstances, the design process cannot be deemed
to be complete until the effects of arithmetic errors on the performance of the filter are investigated
and ways are found to mitigate any problems associated with numerical imprecision.

The implementation of a digital filter can assume two forms, namely, software or hardware,
as detailed in Sec. 1.8. In the first case, implementation involves the simulation of the filter network
on a general-purpose digital computer, workstation, or DSP chip. In the second case, it involves the
conversion of the filter network into a dedicated piece of hardware. The choice of implementation is
usually critically dependent on the application at hand. In nonreal-time applications where a record of
the data to be processed is available, a software implementation may be entirely satisfactory. In real-
time applications, however, where data must be processed at a very high rate (e.g., in communication
systems), a hardware implementation is mandatory. Often the best engineering solution might be
partially in terms of software and partially in terms of hardware since software and hardware are
highly exchangeable nowadays.

The design of digital filters may often involve other steps that do not appear explicitly in the
above list. For example, if a digital filter is required to process continuous-time signals, the effects
of the interfacing devices (e.g., analog-to-digital and digital-to-analog converters) on the accuracy
of processing must be investigated.

The natural order of the four basic design steps is as stated in the preceding discussion, namely,
approximation, realization, study of imperfections, and implementation. However, realization is that
much easier to learn than the approximation process and for this reason it will be treated first,
in this chapter, along with some implementation aspects. The approximation step is a multifaceted
activity that involves a diverse range of principles since there are many types of digital filters and many
methodologies to choose from. It even necessitates on occasion the design of analog filters since some
of the best IIR filters can be derived only from analog filters. The approximation step for FIR filters
is considered in Chap. 9, for analog filters in Chap. 10, for IIR filters in Chaps. 11 and 12. Chapters
13 and 14 have to do with the study of numerical errors associated with the use of finite word length
in digital hardware. Some more advanced, optimization-based, approximation methods for FIR and
IIR filters can be found in Chaps. 15 and 16. Chapter 17 deals with a fairly advanced class of digital
filters, namely, the class of wave digital filters which are known to possess certain highly desirable
properties, and Chap. 18 which concludes the book deals with a variety of digital-filter applications.

8.2 REALIZATION

As stated in the introduction, two types of realization methods have evolved over the past 30 to
40 years, namely, direct and indirect. In direct methods, the transfer function is put in some form
that enables the identification of an interconnection of elemental digital-filter subnetworks. The most
frequently used direct realization methods of this class are [1–4], as follows:

1. Direct

2. Direct canonic

3. State-space

4. Lattice

5. Parallel

6. Cascade

392 DIGITAL SIGNAL PROCESSING

In indirect methods, on the other hand, a given analog-filter network is represented by the so-called
wave characterization, which is normally used to represent microwave circuits and systems, and
through the use of a certain transformation the analog-filter network is converted into a topologically
related digital-filter network [5–8].

8.2.1 Direct Realization

A filter characterized by the N th-order transfer function

H (z) = N (z)

D(z)
=

∑N
i=0 ai z−i

1 + ∑N
i=1 bi z−i

(8.1a)

can be represented by the equation

Y (z)

X (z)
= H (z) = N (z)

D(z)
= N (z)

1 + D′(z)
(8.1b)

where N (z) =
N∑

i=0

ai z
−i (8.2a)

and D′(z) =
N∑

i=1

bi z
−i (8.2b)

From Eq. (8.1b), we can write

Y (z) = N (z)X (z) − D′(z)Y (z)

or Y (z) = U1(z) + U2(z)

where U1(z) = N (z)X (z) (8.3a)

and U2(z) = −D′(z)Y (z) (8.3b)

and hence the realization of H (z) can be broken down into the realization of two simpler transfer
functions, N (z) and −D′(z), as illustrated in Fig. 8.1.

Consider the realization of N (z). From Eqs. (8.2a) and (8.3a)

U1(z) = [a0 + z−1 N1(z)]X (z)

where N1(z) =
N∑

i=1

ai z
−i+1

REALIZATION OF DIGITAL FILTERS 393

X(z) Y(z)
U1(z)

U2(z)

N(z)

−D (z)¢

Figure 8.1 Decomposition of H (z) into two simpler transfer functions.

and thus N (z) can be realized by using a multiplier with a constant a0 in parallel with a network
characterized by z−1 N1(z). In turn, z−1 N1(z) can be realized by using a unit delay in cascade with a
network characterized by N1(z). Since the unit delay can precede or follow the realization of N1(z),
two possibilities exist for N (z), as depicted in Fig. 8.2.

The above procedure can now be applied to N1(z). That is, N1(z) can be expressed as

N1(z) = a1 + z−1 N2(z) where N2(z) =
N∑

i=2

ai z
−i+2

and as before two networks can be obtained for N1(z). Clearly, there are four networks for N (z).
Two of them are shown in Fig. 8.3.

U1(z)X(z)

U1(z)
X(z)

N1(z)

N1(z)

a0

a0

Figure 8.2 Two realizations of N (z).

394 DIGITAL SIGNAL PROCESSING

U1(z)X(z)

N2(z)

a0

a1

U1(z)X(z)

a0

a1

N2(z)

Figure 8.3 Two of four possible realizations of N (z).

The above cycle of activities can be repeated N times whereupon NN (z) will reduce to a single
multiplier. In each cycle of the procedure there are two possibilities, and since there are N cycles,
a total of 2N distinct networks can be deduced for N (z). Three of the possibilities are depicted in
Fig. 8.4a to c. These structures are obtained by placing the unit delays consistently at the left in
the first case, consistently at the right in the second case, and alternately at the left and right in the
third case. Note that in the realization of Fig. 8.4a, the adders accumulate the products generated
by the multipliers from the top to the bottom of the realization. If they are added from the bottom
to the top, the structure of Fig. 8.4d is obtained, which can form the basis of systolic structures
(see Sec. 8.3.2).

−D′(z) can be realized in exactly the same way by using Eqs. (8.2b) and (8.3b) instead of
Eqs. (8.2a) and (8.3a) the only differences being the negative sign in −D′(z) and the fact that the
first term in D′(z) is b1 not b0. Thus a network for −D′(z) can be readily obtained by replacing
a0, a1, a2, . . . in Fig. 8.4a by 0, −b1, −b2,

Finally, the realization of H (z) can be accomplished by interconnecting the realizations of
N (z) and −D′(z) as in Fig. 8.1.

REALIZATION OF DIGITAL FILTERS 395

a0a1aN−1aN

(b)

a0

a1

aN−1 aN

(a)

Figure 8.4 Four possible realizations of N (z).

Example 8.1 Realize the transfer function

H (z) = a0 + a1z−1 + a2z−2

1 + b1z−1 + b2z−2

Solution

Two realizations of H (z) can be readily obtained from Fig. 8.4a and b, as shown in
Fig. 8.5a and b.

8.2.2 Direct Canonic Realization

The smallest number of unit delays required to realize an N th-order transfer function is N . An
N th-order discrete-time network that employs just N unit delays is said to be canonic with respect
to the number of unit delays. The direct realization of the previous section does not yield canonic
structures but through the use of a specific nonrecursive realization from those obtained through the
direct realization it is possible to eliminate half of the unit delays, as will now be shown.

396 DIGITAL SIGNAL PROCESSING

a0 a1 aN−1 aN

(d)

a0

a1

a2

a3

aN

(c)

Figure 8.4 Cont’d Four possible realizations of N (z).

Equation (8.1b) can be expressed as

Y (z) = N (z)Y ′(z)

where

Y ′(z) = X (z)

1 + D′(z)
or Y ′(z) = X (z) − D′(z)Y ′(z)

With this manipulation, H (z) can be realized as shown by the block diagram in Fig. 8.6a. On using the
nonrecursive network of Fig. 8.4a for both N (z) and −D′(z) in Fig. 8.6a, the realization of Fig. 8.6b
can be obtained after replacing 2-input by multiinput adders. As can be observed in Fig. 8.6b, the
signals at nodes A′, B ′, . . . are equal to the corresponding signals at nodes A, B, Therefore,
nodes A′, B ′, . . . can be merged with nodes A, B, . . . , respectively, and one set of unit delays can
be eliminated to yield a more economical canonic realization.

REALIZATION OF DIGITAL FILTERS 397

a1

a2

−b2

−b1

a0

(a)

a1a2 a0

−b2−b1

(b)

Figure 8.5 Two possible realizations of H (z) (Example 8.1): (a) Using the structure in Fig. 8.4a, (b) using
the structure in Fig. 8.4b.

8.2.3 State-Space Realization

Another approach to the realization of digital filters is to start with the state-space characterization

q(nT + T) = Aq(nT) + bx(nT) (8.4a)

y(nT) = cT q(nT) + dx(nT) (8.4b)

398 DIGITAL SIGNAL PROCESSING

a0

a1

a2

aN

−b1

−b2

−bN

X(z) Y(z)
Y (z)

A A

B B

X(z) Y(z)N(z)

−D (z)

Y (z)

(a)

(b)

¢

¢

¢

¢

¢

Figure 8.6 Derivation of the canonic realization of H (z): (a) Block diagram, (b) possible realization.

For an N th-order filter, Eqs. (8.4a) and (8.4b) give

qi (nT + T) =
N∑

j=1

ai j q j (nT) + bi x(nT) for i = 1, 2, . . . , N (8.5)

and

y(nT) =
N∑

j=1

c j q j (nT) + d0x(nT) (8.6)

respectively. By assigning nodes to x(nT), y(nT), qi (nT), and qi (nT + T) for i = 1, 2, . . . , N ,
the state-space signal flow graph of Fig. 8.7 can be obtained, which can be readily converted into a
network.

REALIZATION OF DIGITAL FILTERS 399

d0

E−1

E−1

E−1

x(nT) y(nT)

qN(nT)qN(nT + T)

aNN

aN2

aN1

bN cN

a2N

a22

a21

q2(nT + T)

q1(nT + T)

b2

a11

a1N

a12

b1

q2(nT)

q1(nT)

c2

c1

Figure 8.7 State-space signal flow graph.

Example 8.2 A digital filter is characterized by the state-space equations in Eqs. (8.4a) and
(8.4b) with

A =

− 1
2 − 1

3 − 1
4

1 0 0

0 1 0

 b =

2

0

0

 cT = [− 1

4
1
6

1
12

]
d = 2

Obtain a direct canonic realization.

Solution

In order to obtain a direct canonic realization, we need to deduce the transfer function
of the filter. From Eq. (5.9) and Example 5.4, we have

Y (z)

X (z)
= H (z) = N (z)

D(z)
= cT (zI − A)−1b + d

= 1

det(zI − A)

[− 1
4

1
6

1
12

] z2 1
3 z + 1

4 − 1
4 z

−z
(
z + 1

2

)
z 1

4

1 −(
z + 1

2

) (
z + 1

2

)
z + 1

3

2

0
0

 + 2

= 1

det(zI − A)

[− 1
4

1
6

1
12

] 2z2

−2z
2

 + 2

400 DIGITAL SIGNAL PROCESSING

where

det(zI − A) = z3 + 1
2 z2 + 1

3 z + 1
4

Thus polynomials N (z) and D(z) can be deduced as

N (z) = [− 1
4

1
6

1
12

] 2z2

−2z
2

 + 2 det(zI − A)

= 2z3 + 1
2 z2 + 1

3 z + 2
3

and

D(z) = det(zI − A) = z3 + 1
2 z2 + 1

3 z + 1
4

respectively. Therefore,

H (z) = 2z3 + 1
2 z2 + 1

3 z + 2
3

z3 + 1
2 z2 + 1

3 z + 1
4

= 2 + 1
2 z−1 + 1

3 z−2 + 2
3 z−3

1 + 1
2 z−1 + 1

3 z−2 + 1
4 z−3

The required realization is shown in Fig. 8.8 where

a0 = 2 a1 = 1
2 a2 = 1

3 a3 = 2
3

b1 = 1
2 b2 = 1

3 b3 = 1
4

x(nT)

a3 −b3

a2 −b2

a1 −b1

a0

y(nT)

Figure 8.8 Canonic realization (Example 8.2).

REALIZATION OF DIGITAL FILTERS 401

8.2.4 Lattice Realization

Yet another method is the so-called lattice realization method of Gray and Markel [4]. This is based
on the configuration depicted in Fig. 8.9a. The networks represented by the blocks in Fig. 8.9a
can assume a number of distinct forms. The most basic section is the 2-multiplier first-order lattice
section depicted in Fig. 8.9b.

A transfer function of the type given by Eq. (8.1a) can be realized by obtaining values for the
multiplier constants ν0, ν1, . . . , νN and µ1, µ2, . . . , µN in Fig. 8.9a using the transfer function coef-
ficients a0, a1, . . . , aN and 1, b1, . . . , bN . The realization can be accomplished by using a recursive
algorithm comprising N iterations whereby polynomials of the form

N j (z) =
j∑

i=0

α j i z
−i D j (z) =

j∑
i=0

β j i z
−i

are generated for j = N , N − 1, . . . , 0, and for each value of j the multiplier constants ν j and
µ j are evaluated using coefficients α j j and β j j in the above polynomials. The steps involved are
detailed below.

Step 1: Let N j (z) = N (z) and D j (z) = D(z) and assume that j = N , that is

NN (z) =
j∑

i=0

α j i z
−i =

N∑
i=0

ai z
−i (8.7a)

DN (z) =
j∑

i=0

β j i z
−i =

N∑
i=0

bi z
−i with b0 = 1 (8.7b)

LN

vj

Lj

v1

L1

v0vN

Y(z)

X(z)

(a)

−µj

µj

(b)

Figure 8.9 (a) General lattice configuration, (b) j th lattice section.

402 DIGITAL SIGNAL PROCESSING

Step 2: Obtain ν j , µ j , N j−1(z), and D j−1(z) for j = N , N − 1, . . . , 2 using the following recursive
relations:

ν j = α j j µ j = β j j (8.8a)

Pj (z) = D j

(
1

z

)
z− j =

j∑
i=0

β j i z
i− j (8.8b)

N j−1(z) = N j (z) − ν j Pj (z) =
j−1∑
i=0

α j i z
−i (8.8c)

D j−1(z) = D j (z) − µ j Pj (z)

1 − µ2
j

=
j−1∑
i=0

β j i z
−i (8.8d)

Step 3: Let j = 1 in Eqs. (8.8a)–(8.8d) and obtain ν1, µ1, and N0(z) as follows:

ν1 = α11 µ1 = β11 (8.9a)

P1(z) = D1

(
1

z

)
z−1 = β10z−1 + β11 (8.9b)

N0(z) = N1(z) − ν1 P1(z) = α00 (8.9c)

Step 4: Complete the realization by letting

ν0 = α00

The above lattice realization procedure is illustrated in the following example by obtaining a general
second-order lattice structure.

Example 8.3 Realize the transfer function of Example 8.1 using the lattice method.

Solution

From Eqs. (8.7a) and (8.7b), we can write

N2(z) = α20 + α21z−1 + α22z−2 = a0 + a1z−1 + a2z−2

D2(z) = β20 + β21z−1 + β22z−2 = 1 + b1z−1 + b2z−2

For j = 2, Eqs. (8.8a)–(8.8d) yield

ν2 = α22 = a2 µ2 = β22 = b2

P2(z) = D2

(
1

z

)
z−2 = z−2 + b1z−1 + b2 = β20z−2 + β21z−1 + β22

N1(z) = N2(z) − ν2 P2(z) = a0 + a1z−1 + a2z−2 − ν2(z−2 + b1z−1 + b2)

= α10 + α11z−1

D1(z) = D2(z) − µ2 P2(z)

1 − µ2
2

= 1 + b1z−1 + b2z−2 − µ2(z−2 + b1z−1 + b2)

1 − µ2
2

= β10 + β11z−1

REALIZATION OF DIGITAL FILTERS 403

where

α10 = a0 − a2b2 α11 = a1 − a2b1

β10 = 1 β11 = b1

1 + b2

Similarly, from Eqs. (8.9a)–(8.9c), we have

ν1 = α11 = a1 − a2b1 µ1 = β11 = b1

1 + b2

P1(z) = D1

(
1

z

)
z−1 = β10z−1 + β11

N0(z) = N1(z) − ν1 P1(z) = α10 + α11z−1 − ν1(β10z−1 + β11) = α00

where

α00 = (a0 − a2b2) − (a1 − a2b1)b1

1 + b2

and from step 4, we have

ν0 = α00

Summarizing, the multiplier constants for a general second-order lattice realization are
as follows:

ν0 = (a0 − a2b2) − (a1 − a2b1)b1

1 + b2

ν1 = a1 − a2b1 ν2 = a2

µ1 = b1

1 + b2
µ2 = b2

The 2-multiplier section of Fig. 8.9b yields structures that are canonic with respect to the
number of unit delays. However, the number of multipliers can be quite large, as can be seen
in Example 8.3. More economical realizations can be obtained by using 1-multiplier first-order
sections of the type shown in Fig. 8.10. Such realizations can be obtained by first realizing the
transfer function in terms of 2-multiplier sections as described above and then replacing each of the
2-multiplier sections by either of the 1-multiplier sections of Fig. 8.10. The denominator multiplier
constants µ1, µ2, . . . , µN remain the same as before. However, the numerator multiplier constants
ν0, ν1, . . . , νN must be modified as

ν̃ j = ν j

ξ j

where

ξ j =
{

1 for j = N∏N−1
i= j (1 + εiµi+1) for j = 0, 1, . . . , N − 1

404 DIGITAL SIGNAL PROCESSING

(b)

−1µj

−1

(a)

µj

Figure 8.10 1-multiplier section: (a) For case where εi = +1, (b) for case where εi = −1.

Each parameter εi is a constant which is equal to +1 or −1 depending on whether the i th 2-multiplier
section is replaced by the 1-multiplier section of Fig. 8.10a or that of Fig. 8.10b. The choice between
the two types of sections is, in theory, arbitrary; however, in practice, it can be used to improve the
performance of the structure in some respect. For example, by choosing the types of sections such
that the signal levels at the internal nodes of the filter are maximized, an improved signal-to-noise
ratio can be achieved (see Ref. [4] and Chap. 14).

8.2.5 Cascade Realization

When the transfer function coefficients are quantized, errors are introduced in the amplitude and
phase responses of the filter. It turns out that when a transfer function is realized directly in terms
of a single N th-order network using any one of the methods described so far, the sensitivity of
the structure to coefficient quantization increases rapidly with N . Consequently, small errors intro-
duced by coefficient quantization give rise to large errors in the amplitude and phase responses.
This problem can to some extent be overcome by realizing high-order filters as interconnections of
first- and second-order networks. In this and the next section, it is shown that an arbitrary transfer

REALIZATION OF DIGITAL FILTERS 405

xi(nT)

a2i−b2i

a1i−b1i

yi(nT)

(b)

(a)

H1(z) H2(z) HM(z)

a0i

X1(z) Y1(z) X2(z) XM(z)Y2(z) YM(z)

Y(z)X(z)

Figure 8.11 (a) Cascade realization of H (z), (b) canonic second-order section.

function can be realized by connecting a number of first- and second-order structures in cascade
or in parallel. Another approach to the reduction of coefficient quantization effects is to use the
wave realization method, which is known to yield low-sensitivity structures. This possibility will be
examined in Chap. 17.

Consider an arbitrary number of filter sections connected in cascade as shown in Fig. 8.11a
and assume that the i th section is characterized by

Yi (z) = Hi (z)Xi (z) (8.10)

From Fig. 8.11a, we note that

Y1(z) = H1(z)X1(z) = H1(z)X (z)

Y2(z) = H2(z)X2(z) = H2(z)Y1(z) = H1(z)H2(z)X (z)

Y3(z) = H3(z)X3(z) = H3(z)Y2(z) = H1(z)H2(z)H3(z)X (z)

· ·
Y (z) = YM (z) = HM (z)YM−1(z) = H1(z)H2(z) · · · HM (z)X (z)

Therefore, the overall transfer function of a cascade arrangement of filter sections is equal to the
product of the individual transfer functions, that is,

H (z) =
M∏

i=1

Hi (z)

406 DIGITAL SIGNAL PROCESSING

An N th-order transfer function can be factorized into a product of first- and second-order transfer
functions of the form

Hi (z) = a0i + a1i z−1

1 + b1i z−1
(8.11a)

and

Hi (z) = a0i + a1i z−1 + a2i z−2

1 + b1i z−1 + b2i z−2
(8.11b)

respectively. Now the individual first- and second-order transfer functions can be realized using any
one of the methods described so far. Connecting the filter sections obtained in cascade would realize
the required transfer function. For example, one could use the canonic section of Fig. 8.11b with
a2i = b2i = 0 for a first-order transfer function to obtain a cascade canonic realization.

Example 8.4 Obtain a cascade realization of the transfer function

H (z) = 216z3 + 96z2 + 24z

(2z + 1)(12z2 + 7z + 1)

using canonic sections.

Solution

The transfer function can be expressed as

H (z) = 9 × z

z + 1
2

× z2 + 4
9 z + 1

9

z2 + 7
12 z + 1

12

= 9 × 1

1 + 1
2 z−1

× 1 + 4
9 z−1 + 1

9 z−2

1 + 7
12 z−1 + 1

12
−2

Hence, the cascade canonic realization shown in Fig. 8.12 can be readily obtained.

Y(z)X(z)

2
1

9
1

9
4− 12

7−

12
1−

9

Figure 8.12 Cascade realization of H (z) (Example 8.4).

REALIZATION OF DIGITAL FILTERS 407

8.2.6 Parallel Realization

Another realization comprising first- and second-order filter sections is based on the parallel config-
uration of Fig. 8.13. Assuming that the i th section in Fig. 8.13 can be represented by Eq. (8.10) and
noting that X1(z) = X2(z) = · · · = X M (z) = X (z), we can write

Y (z) = Y1(z) + Y2(z) + · · · + YM (z)

= H1(z)X1(z) + H2(z)X2(z) + · · · + HM (z)X M (z)

= H1(z)X (z) + H2(z)X (z) + · · · + HM (z)X (z)

= [H1(z) + H2(z) + · · · + HM (z)]X (z)

= H (z)X (z)

where

H (z) =
M∑

i=1

Hi (z)

Through the use of partial fractions, an N -order transfer function H (z) can be expressed
as a sum of first- and second-order transfer functions just like those in Eqs. (8.11a) and (8.11b).
Connecting the sections obtained in parallel as in Fig. 8.13 would result in a parallel realization.

An alternative parallel realization can be readily obtained by expanding H (z)/z instead of
H (z) into partial fractions.

HM(z)

H2(z)

H1(z)
Y1(z)

Y2(z)
Y(z)

YM(z)

X1(z)

X2(z)
X(z)

XM(z)

Figure 8.13 Parallel realization of H (z).

408 DIGITAL SIGNAL PROCESSING

Example 8.5 Obtain a parallel realization of the transfer function

H (z) = 10z4 − 3.7z3 − 1.28z2 + 0.99z

(z2 + z + 0.34)(z2 + 0.9z + 0.2)

using canonic sections.

Solution

We first need to find the poles of the transfer function. We have

H (z) = 10z4 − 3.7z3 − 1.28z2 + 0.99z

(z − p1)(z − p2)(z − p3)(z − p4)

where

p1, p2 = 0.5 ∓ j0.3

p3 = −0.4

p4 = −0.5

If we expand H (z)/z into partial fractions, we get

H (z)

z
= R1

z − 0.5 + j0.3
+ R2

z − 0.5 − j0.3
+ R3

z + 0.4
+ R4

z + 0.5

The i th residue of H (z)/z is given by

Ri = (z − pi)H (z)

z

∣∣∣
z=pi

and through routine arithmetic or through the use of MATLAB, we get

R1 = (10z4 − 3.7z3 − 1.28z2 + 0.99z)

z(z − p2)(z − p3)(z − p4)

∣∣∣
z=p1

= (10z3 − 3.7z2 − 1.28z + 0.99)

(z − p2)(z − p3)(z − p4)

∣∣∣
z=p1

= 1.0

Similarly,

R2 = 1 R3 = 3 R4 = 5

and thus

H (z) = z

z − 0.5 + j0.3
+ z

z − 0.5 − j0.3
+ 3z

z + 0.4
+ 5z

z + 0.5

REALIZATION OF DIGITAL FILTERS 409

3.5

 8

−0.2

−0.9

−1

 2

−0.34
H1(z)

H2(z)

Figure 8.14 Parallel realization of H (z) (Example 8.5).

Now, if we combine the first two and the last two partial fractions into second-order
transfer functions, we get

H (z) = 2z2 − z

z2 − z + 0.34
+ 8z2 + 3.5z

z2 + 0.9z + 0.2
or

H (z) = H1(z) + H2(z)

where

H1(z) = 2 − z−1

1 − z−1 + 0.34z−2
and H2(z) = 8 + 3.5z−1

1 + 0.9z−1 + 0.2z−2

Using canonic sections, the parallel realization shown in Fig. 8.14 can be obtained.

410 DIGITAL SIGNAL PROCESSING

Signal flow graph

1 2 K

1 2 J

1 2 K

1 2 J

Transpose

Figure 8.15 Transposition.

8.2.7 Transposition

Given a signal flow graph with inputs j = 1, 2, . . . , J and outputs k = 1, 2, . . . , K , a corresponding
signal flow graph can be derived by reversing the direction in each and every branch such that the
J input nodes become output nodes and the K output nodes become input nodes, as illustrated in
Fig. 8.15. The signal flow graph so derived, is said to be the transpose (or adjoint) of the original
signal flow graph [9] (see also Chap. 4 of Ref. [10]). An interesting property of transposition is
summarized in terms of the following theorem.

Theorem 8.1 Transposition If a signal flow graph and its transpose are characterized by
transfer functions Hjk(z) and Hkj (z), respectively, then

Hjk(z) = Hkj (z)

Proof See Ref. [9] or [10] for the proof. �

The transposition property can be used as a tool in the realization process since given an
arbitrary digital network obtain through anyone of the realization procedures described in this chapter,
an alternative realization can be derived through transposition.

Example 8.6 Obtain the transpose of the canonic network of Fig. 8.16a.

Solution

The signal flow graph of the canonic section of Fig. 8.16a can be readily obtained as
shown in Fig. 8.16b. The transpose of the signal flow graph is shown in Fig. 8.16c and
the transpose network is shown in Fig. 8.16d .

REALIZATION OF DIGITAL FILTERS 411

x(n)
1 2

1

3 4 5a2

E−1

y(n)

a0

a1

−b1

−b2

(b)

E−1

(c)

(d)

1 2 3 4 5a2

1

−b2

−b1

a1

a0

5

a2

−b2

a1

−b1

a0

4 3 2 1

E−1

E−1

x�(n)

x�(n)

y�(n)

y�(n)

x(nT)

a2−b2

a1−b1

y(nT)

(a)

a0

Figure 8.16 Transpose realization (Example 8.6): (a) Original realization, (b) signal flow
graph of original realization, (c) transpose signal flow graph, (d) transpose realization.

412 DIGITAL SIGNAL PROCESSING

8.3 IMPLEMENTATION

As was stated in Sec. 1.8, the implementation of digital filters can assume two forms, namely, software
and hardware. This classification is somewhat artificial, however, since software and hardware are
highly interchangeable nowadays. In nonreal-time applications, usually speed is not of considerable
importance and the implementation might assume the form of a computer program on a general-
purpose computer or DSP chip, which will emulate the operation of the digital filter. Such an
implementation would be based on the difference equations characterizing one of the digital-filter
structures described in the previous sections. On the other hand, if a digital filter is to be used
in some communications system, speed is of the essence and the implementation would assume
the form of a dedicated, highly specialized, piece of hardware. Depending on the application, a
hardware implementation may comprise one or several interconnected VLSI circuit chips depending
on the complexity of the required digital filter. Progress continues to be made in this technology in
accordance with Moore’s Law and as more and more functions can be accommodated on a VLSI
chip, on the one hand, more complicated digital filters can be accommodated on a single chip and,
on the other, fewer chips are needed to implement digital filters of high complexity.

8.3.1 Design Considerations

In practice, fabrication costs may be classified as recurring, e.g., the cost of parts, and nonrecurring,
e.g., the design costs. For special-purpose systems like digital filters, demand is usually relatively
small. Consequently, the design costs predominate over other costs and should be kept as low as
possible. If the realization of the digital filter can be decomposed into a few types of basic building
blocks that can be simply interconnected repetitively in a highly regular fashion, considerable savings
in the design costs can be achieved. The reason is that the few types of building blocks need to be
designed only once. A modular design of this type offers another advantage which can lead to cost
reductions. By simply varying the number of modules used in a chip, a large selection of different
digital filters can be easily designed that meet a variety of performance criteria or specifications. In
this way, the nonrecurring design costs can be spread over a larger number of units fabricated and,
therefore, the cost per unit can be reduced.

In certain real-time applications, high-order filters are required to operate at very high sampling
rates. In such applications, a very large amount of computation needs to be carried out during each
sampling period and the implementation must be very fast. While progress continues to be made
in increasing the speed of gates and reducing the propagation delays by reducing the lengths of
interconnection wires, progress is slowing down in these areas and the returns are slowly diminishing.
Therefore, any major improvement in the speed of computation must of necessity be achieved through
the concurrent use of many processing elements. It turns out that the degree of concurrency is an
underlying property of the digital-filter realization. For example, realizations that comprise parallel
substructures allow a high degree of concurrency and, therefore, lead to fast implementations. When a
large number of processing elements must operate simultaneously, communication among processing
elements becomes critical. Since the cost, performance, and speed of the chip depend heavily on the
delay and area of the interconnection network, a high degree of concurrency should be achieved in
conjunction with simple, short, and regular communication paths among processing elements.

8.3.2 Systolic Implementations

VLSI chip designers have been well aware of the merits of simplicity of form, regularity, and
concurrency for a number of years and have developed special VLSI structures that offer many of

REALIZATION OF DIGITAL FILTERS 413

these advantages. A family of such structures is the family of systolic arrays which are highly regular
VLSI networks of simply connected processing elements that rhythmically process and pass data
from one element to the next [11, 12]. The operation of these arrays is analogous to the rhythmical
systolic operation of the heart and arteries by which blood is pumped forward from one artery to the
next. Evidently, systolic realizations satisfy the design requirements alluded to earlier and are, as a
consequence, highly suitable for the implementation of digital filters.

Close examination of the types of structures considered so far reveals that most of them are
not suitable for systolic implementation. However, some of them can be made suitable by simple
modifications, as will be demonstrated below. A useful technique in this process is known as pipelin-
ing. In this technique, the computation is partitioned into smaller parcels that can be assigned to a
series of different concurrent processing elements in such a way as to achieve a speed advantage. A
pipeline in the present context is, in a way, analogous to a modern assembly line of cars whereby the
task of building a car is partitioned into a set of small subtasks carried out by concurrent workers (or
robots) working at different stations along the assembly line. Pipelining will introduce some delay
in the system, but once the pipeline is filled, a car will roll off the assembly line every few minutes.
This sort of efficiency cannot be achieved by having all the workers working concurrently on one
car for obvious reasons.

Consider the realization of

y(nT) =
N∑

i=0

ai x(nT − iT)

shown in Fig. 8.17a, and assume that each addition and multiplication can be performed in τa and
τm seconds, respectively. This structure can be readily obtained from Fig. 8.4d . Processing elements
can be readily identified, as illustrated by the dashed lines. The additional unit delay at the right and
the adder at the left with zero input are used as place holders in order to improve the regularity of the
structure; they serve no other purpose. A basic disadvantage associated with this implementation is
that the processing rate, which is the maximum sampling rate allowed by the structure, is limited. The
processing rate of an implementation is the reciprocal of the time taken to perform all the required
arithmetic operations between two successive samples. While the multiplications in Fig. 8.17a can
be carried out concurrently, the N + 1 additions must be carried out sequentially from left to right.
Therefore, a processing time of τm + (N + 1)τa seconds is required, which can be large in practice
since N can be large.

The processing rate in the structure of Fig. 8.17a can be increased by using faster adders. A
more efficient approach, however, is to increase the degree of concurrency through the application
of pipelining. Consider the possibility of adding unit delays between processing elements, as de-
picted in Fig. 8.17b. Since the top and bottom outputs of each processing element are delayed by
the same amount by the additional unit delays, the two signals are not shifted relative to each other,
and the operation of the structure is not destroyed. The only effect is that the overall output will be
delayed by N T seconds, since there are N additional delays between processing elements. Indeed,
straightforward analysis gives the output of the modified structure as

yp(nT) =
N∑

i=0

ai x(nT − iT − N T)

414 DIGITAL SIGNAL PROCESSING

a0 a1

0

x(nT)

aN−1 aN

y(nT)

(a)

a0

x(nT)

0

a1 aN

y(nT)

(b)

ak

(c)

Figure 8.17 (a) Realization of Nth-order nonrecursive filter, (b) corresponding systolic realization,
(c) typical processing element.

that is,

yp(nT) = y(nT − N T)

where y(nT) is the output of the original structure. The delay N T is said to be the latency of the
structure. In the modified structure, only one multiplication and one addition is required per digital-
filter cycle and, therefore, the processing rate is 1/(τm + τa). In effect, the processing rate does not,
in this case, decrease as the value of N is increased. The additional unit delays in Fig. 8.17b may be
absorbed into the processing elements, as depicted in Fig. 8.17c.

An alternative structure that is amenable to a systolic implementation is depicted in Fig. 8.18a.
This is obtained from the structure of Fig. 8.4b. As can be seen, only one multiplication and one

aN

(b)

aN−1 a0

aN

(a)

aN−1 a0

Figure 8.18 (a) Alternative realization of N th-order nonrecursive filter, (b) corresponding systolic realization.

415

416 DIGITAL SIGNAL PROCESSING

addition are required per digital-filter cycle, and so the processing rate is 1/(τm + τa). The basic
disadvantage of this structure is that the input signal has to be communicated directly to all the
processing elements simultaneously. Consequently, for large values of N , wires become long and
the associated propagation delays are large, thereby imposing an upper limit on the sampling rate.
The problem can be easily overcome by using padding delays, as in Fig. 8.18b.

Example 8.7 A DSP chip that realizes the nonrecursive filter shown in Fig. 8.19 is readily
available as an off-the-shelf component. The chip is fitted with registers for coefficients m0 to
m3, which can accommodate arbitrary multiplier constants. Realize the transfer function

H (z) = 216z3 + 96z2 + 24z + 2

(2z + 1)(12z2 + 7z + 1)

using two of these DSP chips along with any necessary interfacing devices.

Solution

The transfer function can be expressed as

H (z) = Y (z)

X (z)
=

216
24 + 96

24 z−1 + z−2 + 2
24 z−3

1 + 26
24 z−1 + 9

24 z−2 + 1
24 z−3

or as

Y (z) = N (z)

1 + D′(z)
X (z)

where

N (z) = 9 + 4z−1 + z−2 + 1
12 z−3

D′(z) = 26
24 z−1 + 9

24 z−2 + 1
24 z−3

Hence

Y (z) = N (z)X (z) − Y (z)D′(z)

This equation can be realized using two nonrecursive filters with transfer functions N (z)
and −D′(z) as shown in Fig. 8.1. N (z) can be realized by the structure in Fig. 8.19
if m0 = 9, m1 = 4, m2 = 1, m3 = 1/12. On the other hand, −D′(z) can be re-
alized by the structure in Fig. 8.19 if m0 = 0, m1 = −26/24, m2 = −9/24, and
m3 = −1/24.

REALIZATION OF DIGITAL FILTERS 417

m0 m1 m2 m3

Figure 8.19 (a) Nonrecursive filter (Example 8.7).

REFERENCES

[1] B. Gold and C. M. Rader, Digital Processing of Signals, New York: McGraw-Hill, 1969.
[2] A. Antoniou, “Realization of digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-20,

pp. 95–97, Mar. 1972.
[3] L. B. Jackson, A. G. Lindgren, and Y. Kim, “Synthesis of state-space digital filters with low

roundoff noise and coefficient sensitivity,” in Proc. IEEE Int. Symp. Circuits and Systems,
1977, pp. 41–44.

[4] A. H. Gray, Jr. and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans.
Audio Electroacoust., vol. AU-21, pp. 491–500, Dec. 1973.

[5] A. Fettweis, “Digital filter structures related to classical filter networks,” Arch. Elektron.
Übertrag., vol. 25, pp. 79–89, 1971.

[6] A. Sedlmeyer and A. Fettweis, “Digital filters with true ladder configuration,” Int. J. Circuit
Theory Appl., vol. 1, pp. 5–10, Mar. 1973.

[7] L. T. Bruton, “Low-sensitivity digital ladder filters,” IEEE Trans. Circuits Syst.,
vol. CAS-22, pp. 168–176, Mar. 1975.

[8] A. Antoniou and M. G. Rezk, “Digital-filter synthesis using concept of generalized-
immittance convertor,” IEE J. Electron. Circuits Syst., vol. 1, pp. 207–216, Nov. 1977.

[9] A. Fettweis, “A general theorem for signal-flow networks with applications,” Arch. Elektron.
Übertrag., vol. 25, pp. 557–561, 1971.

[10] A. Antoniou, Digital Filters: Analysis, Design, and Applications, New York: McGraw-Hill,
1993.

[11] H. T. Kung, “Why systolic architectures,” IEEE Computer, vol. 15, pp. 37–46, Jan. 1982.
[12] S. Y. Kung, “VLSI array processors,” IEEE ASSP Magazine, vol. 2, pp. 4–22, July 1985.

PROBLEMS

8.1. (a) Obtain the signal flow graph of the digital filter shown in Fig. P8.1.
(b) Deduce the transfer function of the filter using the node elimination method.

418 DIGITAL SIGNAL PROCESSING

0.09

−0.8

1.4

1.8

0.09

Figure P8.1

8.2. (a) The flow graph of Fig. P8.2a represents a recursive filter. Deduce the transfer function.
(b) Repeat part (a) for the flow graph of Fig. P8.2b.

1

1

1
1

2

X(z) Y(z)

z−1

z−1

z−1

z−1

1
2

−

Figure P8.2a

1 1

1 1

−1

−2

X(z)

Y(z)
z−1 z−1

z−1 z−11
2

−

Figure P8.2b

REALIZATION OF DIGITAL FILTERS 419

8.3. (a) Convert the flow graph of Fig. P8.3 into a topologically equivalent network.
(b) Obtain an alternative realization by using the direct canonic method.

1

1

1 1

1

1 1

1

1

−1

X(z) Y(z)
m1

m2

1
z−1 z−1

Figure P8.3

8.4. (a) Derive flow-graph representations for the filter of Fig. 8.5b.
(b) Repeat part (a) for the filter of Fig. 8.14.

8.5. A flow graph is said to be computable if there are no closed delay-free loops (see Sec. 4.8.1).
(a) Check the flow graphs of Fig. P8.5a for computability.
(b) Repeat part (a) for the filter of Fig. P8.5b.

1 1

−a

X(z) Y(z)

z−1 z−1

a

b

b

Figure P8.5a

1 1 2

2

2

4 8

3

4

1

1

X(z) Y(z)

z−1

z−1

Figure P8.5b

420 DIGITAL SIGNAL PROCESSING

8.6. By using first the direct and then the direct canonic method, realize the following transfer functions:

(a) H (z) = 4(z − 1)4

4z4 + 3z3 + 2z2 + z + 1
(b) H (z) = (z + 1)2

4z3 − 2z2 + 1

8.7. A digital filter is characterized by the state-space equations

q(nT + T) = Aq(nT) + bx(nT)

y(nT) = cT q(nT) + dx(nT)

where

A =
[

0 1
− 5

16 −1

]
b =

[
0
1

]
cT = [− 11

8 2
]

d = 2

(a) Obtain a state-space realization.
(b) Obtain a corresponding direct canonic realization.
(c) Compare the realizations in parts (a) and (b).

8.8. Repeat Prob. 8.7 if

A =
[−0.1 −0.5

1.1 −0.2

]
b =

[
0.7
2.0

]
cT =

[
8.8

−0.6

]
d = 8.0

8.9. Repeat Prob. 8.7 if

A =
[0 1 0

0 0 1
25
64 − 29

32
3
4

]
b =

[
0
0
1

]
cT = [

25
64

3
32

11
4

]
d = 1

8.10. (a) Realize the transfer function

H (z) = z(z + 1)

z2 − 1
2 z + 1

4

using a lattice structure.
(b) Repeat part (a) for the transfer function

H (z) = z2 + 2z + 1

z2 + 0.5z + 0.3

8.11. Realize the transfer function

H (z) = 0.0154z3 + 0.0462z2 + 0.0462z + 0.0154

z3 − 1.990z2 + 1.572z − 0.4582

using the lattice method.

8.12. A recursive digital filter is characterized by the state-space equations in Prob. 8.7 with

A =
[0 1 0

0 0 1
− 1

2 −m −2

]
b =

[
0
0
1

]
cT = [

1 2 −1
]

d = 1

(a) Determine the range of m for which the filter is stable.
(b) Obtain a state-space realization for the filter.

REALIZATION OF DIGITAL FILTERS 421

(c) Obtain a lattice realization.
(d) Compare the realizations in parts (b) and (c).

8.13. (a) Realize the transfer function

H (z) = 6z

(6z3 + 6z2 + 3z)(3z − 1)

using direct canonic sections in cascade.
(b) Repeat part (a) using direct canonic sections in parallel.

8.14. (a) Realize the transfer function

H (z) = 216z3 + 168z2 + 48z

24(z + 1
2)(z2 + 1

16)

using low-order direct canonic sections in cascade.
(b) Repeat part (a) using direct canonic sections in parallel.

8.15. (a) Obtain a cascade realization for the transfer function

H (z) = 4(z − 1)(z + 1)2

(2z + 1)(2z2 − 2z + 1)

using canonic sections.
(b) Obtain a parallel realization of the transfer function in part (a) using canonic sections.

8.16. (a) Obtain a cascade realization for the transfer function

H (z) = 12z3 + 6.4z2 + 0.68z

(z + 0.1)(z2 + 0.8z + 0.15)

using canonic sections.
(b) Obtain a parallel realization of the transfer function in part (a) using canonic sections.

8.17. (a) Obtain a realization of the transfer function

H (z) = 96z2 − 72z + 13

24(z − 1
2)(z − 1

3)(z − 1
4)

using a canonic first-order and a canonic second-order section in cascade.
(b) Obtain a parallel realization of the transfer function in part (a) using canonic first-order sections.

8.18. (a) Realize the transfer function

H (z) = 16(z + 1)z2

(4z + 3)(4z2 − 2z + 1)

using canonic sections in cascade.
(b) Repeat part (a) using canonic sections in parallel.

8.19. First-order filter sections of the type depicted in Fig. P8.19 are available. Using sections of this type,
obtain a parallel realization of the transfer function

H (z) = 216z2 + 162z + 29

(2z + 1)(3z + 1)(4z + 1)

422 DIGITAL SIGNAL PROCESSING

b

a

Y(z)X(z)

Figure P8.19

8.20. (a) Construct a flow chart for the software implementation of an N -section cascade filter assuming
second-order filter sections.

(b) Write a computer program that will emulate the cascade filter in part (a).

8.21. (a) Construct a flow chart for the software implementation of an N -section parallel filter assuming
second-order filter sections.

(b) Write a computer program that will emulate the parallel filter in part (a).

8.22. (a) Construct a flow chart for the software implementation of an N th-order state-space filter.
(b) Write a computer program that will emulate the state-space filter of part (a).

8.23. (a) Construct a flow chart for the software implementation of an 2nd-order lattice filter.
(b) Write a computer program that will emulate the lattice filter of part (a).

8.24. (a) Obtain the transpose of the network of Fig. 5.2.
(b) Repeat part (a) for the network of Fig. 5.11.

8.25. (a) Obtain the transpose of the network shown in Fig. 8.5b.
(b) Repeat part (a) for the network of Fig. 8.14.

8.26. A digital-filter network that has a constant gain at all frequencies is said to be an allpass network.
(a) Show that the network depicted in Fig. P8.26 is an allpass network.
(b) Obtain an alternative allpass network using transposition.
(c) Show that the transpose network has the same transfer function as the original network.

a

b

−1

−b

Figure P8.26

REALIZATION OF DIGITAL FILTERS 423

8.27. DSP VLSI chips that realize the module shown in Fig. P8.27a and the adder shown in Fig. P8.27b
are readily available as off-the-shelf components. The chip in Fig. P8.27a is fitted with a register for
coefficient ak , which can accommodate an arbitrary multiplier constant. Using as many chips as necessary
of the type shown in Fig. P8.27a plus an adder of the type shown in Fig. P8.27b, realize the transfer
function

H (z) = 1.1z2 − 2.2z + 1.1

z2 − 0.4z + 0.3

(a) (b)

+

ak

Figure P8.27

8.28. Realize the transfer function

H (z) = z2 − 1
2 z + 1

3

z3 − 1
2 z2 + 1

4 z + 1
8

using the VLSI chip of Prob. 8.27.

8.29. A DSP chip that realizes the nonrecursive filter shown in Fig. P8.29a is readily available as an off-the-shelf
component. The chip is fitted with registers for coefficients m0 to m3, which can accommodate arbitrary
multiplier constants. Realize the transfer function

H (z) = 216z3 + 96z2 + 24z + 2

(2z + 1)(12z2 + 7z + 1)

using two of these chips along with a 2-input adder such as that in Fig. P8.29b.

424 DIGITAL SIGNAL PROCESSING

y(nT)

x(nT)

m0 m1 m3m2

(a)

(b)

Figure P8.29

8.30. A DSP chip that realizes the recursive filter shown in Fig. 8.16d is readily available as an off-the-shelf
component. The chip is fitted with registers that can accommodate the coefficients a0, a1, a2, b1, and b2.
Realize the transfer function

H (z) = 48(z + 0.138)(z2 + 0.312z + 0.0694)

(2z + 1)(12z2 + 7z + 1)

using exactly two of these DSP chips, i.e., no other types of components are available. Show the config-
uration chosen and give suitable values to the various coefficients.

CHAPTER

9
DESIGN OF

NONRECURSIVE
(FIR) FILTERS

9.1 INTRODUCTION

The preceding chapter has dealt with the realization of digital filters whereby given an arbitrary
transfer function or state-space characterization, a digital-filter network or structure is deduced. This
and several of the subsequent chapters will deal with the approximation process whereby given some
desirable filter characteristics or specifications, a suitable transfer function is derived.

As was mentioned in the introduction of Chap. 8, approximation methods can be classified
as direct or indirect. In direct methods the discrete-time transfer function is generated directly in
the z domain whereas in indirect methods it is derived from a continuous-time transfer function.
Approximations can also be classified as noniterative or iterative. The former usually entail a set
of formulas and transformations that yield designs of high precision with minimal computational
effort. Iterative methods, on the other hand, are based on optimization algorithms. In these methods
an initial design is assumed and is progressively improved until a discrete-time transfer function
is obtained that satisfies the prerequisite specifications. These methods are very versatile and can,
therefore, be used to obtain solutions to problems that are intractable with noniterative methods
although they usually require a large amount of computation.

Approximation methods for the design of nonrecursive filters differ quite significantly from
those used for the design of recursive filters. The basic reason for this is that in nonrecursive filters
the transfer function is a polynomial in z−1 whereas in recursive filters it is ratio of polynomials in z.

425

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

426 DIGITAL SIGNAL PROCESSING

Nonrecursive filters are designed by using direct noniterative or iterative methods whereas recursive
filters are designed by using indirect noniterative methods or direct iterative methods.

The approximation problem for nonrecursive filters can be solved by applying the Fourier series
or through the use of numerical analysis formulas. These methods provide closed-form solutions and,
as a result, they are easy to apply and involve only a minimal amount of computation. Unfortunately,
the designs obtained are suboptimal with respect to filter complexity whereby a filter design is said
to be optimal if the filter order is the lowest that can be achieved for the required specifications.
Another approach to the design of nonrecursive filters is to use a powerful multivariable optimization
algorithm known as the Remez exchange algorithm as will be shown in Chap. 15. The Remez approach
yields optimal designs but, unfortunately, a huge amount of computation is required to complete a
design, which renders the approach unsuitable for applications where nonrecursive filters have to be
designed in real or quasi-real time.

This chapter begins by examining the basic properties of nonrecursive filters. Then the use of the
Fourier series as a tool in the design of nonrecursive filters is examined. It turns out that the use of the
Fourier series by itself does not yield good designs but by applying the window technique described
in Sec. 7.8 in conjunction with the Fourier series some moderately successful approximations can be
obtained. The chapter concludes with the application of some classical numerical analysis formulas
for the design of nonrecursive filters that can perform numerical interpolation, differentiation, or
integration.

9.2 PROPERTIES OF CONSTANT-DELAY
NONRECURSIVE FILTERS

Nonrecursive filters can be designed to have linear or nonlinear phase responses. However, linear-
phase designs are typically preferred. In this section, it is shown that linear phase (or constant delay)
can be achieved by ensuring that the impulse response has certain symmetries about its center point.

9.2.1 Impulse Response Symmetries

A nonrecursive causal filter of length N can be characterized by the transfer function

H (z) =
N−1∑
n=0

h(nT)z−n (9.1)

Its frequency response is given by

H (e jωT) = M(ω)e jθ (ω) =
N−1∑
n=0

h(nT)e− jωnT (9.2)

where

M(ω) = |H (e jωT)|
and θ (ω) = arg H (e jωT) (9.3)

The phase (or absolute) and group delays of a filter are given by

τp = −θ (ω)

ω
and τg = −dθ (ω)

dω
respectively (see Sec. 5.7).

DESIGN OF NONRECURSIVE (FIR) FILTERS 427

For constant phase and group delays, the phase response must be linear, i.e.,

θ(ω) = −τω

and thus from Eqs. (9.2) and (9.3), we have

θ (ω) = −τω = tan−1 −∑N−1
n=0 h(nT) sin ωnT∑N−1

n=0 h(nT) cos ωnT

Consequently,

tan ωτ =
∑N−1

n=0 h(nT) sin ωnT∑N−1
n=0 h(nT) cos ωnT

and accordingly

N−1∑
n=0

h(nT)(cos ωnT sin ωτ − sin ωnT cos ωτ) = 0

or
N−1∑
n=0

h(nT) sin(ωτ − ωnT) = 0

The solution of this equation is

τ = (N − 1)T

2
(9.4a)

h(nT) = h[(N − 1 − n)T] for 0 ≤ n ≤ N − 1 (9.4b)

as can be easily verified. Therefore, a nonrecursive filter can have constant phase and group delays
over the entire baseband. It is only necessary for the impulse response to be symmetrical about the
midpoint between samples (N − 2)/2 and N/2 for even N or about sample (N − 1)/2 for odd N .
The required symmetry is illustrated in Fig. 9.1 for N = 10 and 11.

In contrast, recursive filters with constant phase or group delay are not easy to design as will
be found out in Chaps. 11 and 12.

In most applications only the group delay needs to be constant in which case the phase response
can have the form

θ (ω) = θ0 − τω

where θ0 is a constant. On assuming that θ0 = ±π/2, the above procedure yields a second class of
constant-delay nonrecursive filters where

τ = (N − 1)T

2
(9.5a)

h(nT) = −h[(N − 1 − n)T] (9.5b)

In this case, the impulse response is antisymmetrical about the midpoint between samples (N −2)/2
and N/2 for even N or about sample (N − 1)/2 for odd N , as illustrated in Fig. 9.2.

428 DIGITAL SIGNAL PROCESSING

nT = 9T

nT

Center of symmetry

N = 10

1.0

−1.0

h(nT)

(a)

nT = 10T

nT

Center of symmetry

N = 11

1.0

−1.0

h(nT)

(b)

Figure 9.1 Impulse response for constant phase and group delays: (a) Even N , (b) odd N .

9.2.2 Frequency Response

The symmetries in the impulse response in Eqs. (9.4b) and (9.5b) lead to some simple expressions
for the frequency response of nonrecursive filters as will now be demonstrated. For a symmetrical
impulse response with N odd, Eq. (9.2) can be expressed as

H (e jωT) =
(N−3)/2∑

n=0

h(nT)e− jωnT + h

[
(N − 1)T

2

]
e− jω(N−1)T/2 +

N−1∑
n=(N+1)/2

h(nT)e− jωnT (9.6)

By using Eq. (9.4b) and then letting N − 1 − n = m and m = n, the last summation in Eq. (9.6) can
be expressed as

N−1∑
n=(N+1)/2

h(nT)e− jωnT =
N−1∑

n=(N+1)/2

h[(N − 1 − n)T]e− jωnT

=
(N−3)/2∑

n=0

h(nT)e− jω(N−1−n)T (9.7)

DESIGN OF NONRECURSIVE (FIR) FILTERS 429

Center of symmetry

N = 10

1.0

−1.0

h(nT)

(a)

nT

Center of symmetry

N = 11

1.0

−1.0

h(nT)

(b)

nT = 9T

nT = 10T

nT

Figure 9.2 Alternative impulse response for constant group delay: (a) Even N , (b) odd N .

Now from Eqs. (9.6) and (9.7)

H (e jωT) = e− jω(N−1)T/2

{
h

[
(N − 1)T

2

]
+

(N−3)/2∑
n=0

2h(nT) cos

[
ω

(
N − 1

2
− n

)
T

]}

and with (N − 1)/2 − n = k, we have

H (e jωT) = e− jω(N−1)T/2
(N−1)/2∑

k=0

ak cos ωkT

where a0 = h

[
(N − 1)T

2

]
(9.8a)

ak = 2h

[(
N − 1

2
− k

)
T

]
(9.8b)

Similarly, the frequency responses for the case of symmetrical impulse response with N
even and for the two cases of antisymmetrical response simplify to the expressions summarized in
Table 9.1.

430 DIGITAL SIGNAL PROCESSING

Table 9.1 Frequency response of constant-delay nonrecursive filters

h(nT) N H(e jωT)

Symmetrical Odd e− jω(N−1)T/2 ∑(N−1)/2
k=0 ak cos ωkT

Even e− jω(N−1)T/2 ∑N/2
k=1 bk cos[ω(k − 1

2)T]

Antisymmetrical Odd e− j[ω(N−1)T/2−π/2] ∑(N−1)/2
k=1 ak sin ωkT

Even e− j[ω(N−1)T/2−π/2] ∑N/2
k=1 bk sin[ω(k − 1

2)T]

where a0 = h
[(N−1)T

2

]
ak = 2h

[(
N−1

2 − k
)

T
]

bk = 2h
[(

N
2 − k

)
T
]

9.2.3 Location of Zeros

The impulse response constraints of Eqs. (9.4) and (9.5) impose certain restrictions on the zeros of
H (z). For odd N , Eqs. (9.1), (9.4b), and (9.5b) yield

H (z) = 1

z(N−1)/2

{
(N−3)/2∑

n=0

h(nT)
(
z(N−1)/2−n ± z−[(N−1)/2−n]

) + 1

2
h

[
(N − 1)T

2

]
(z0 ± z0)

}

(9.9)

where the negative sign applies to the case of antisymmetrical impulse response. With (N−1)/2−n =
k, Eq. (9.9) can be put in the form

H (z) = N (z)

D(z)
= 1

z(N−1)/2

(N−1)/2∑
k=0

ak

2
(zk ± z−k)

where a0 and ak are given by Eqs. (9.8a) and (9.8b).
The zeros of H (z) are the roots of

N (z) =
(N−1)/2∑

k=0

ak(zk ± z−k)

If z is replaced by z−1 in N (z), we have

N (z−1) =
(N−1)/2∑

k=0

ak(z−k ± zk)

= ±
(N−1)/2∑

k=0

ak(zk ± z−k) = ±N (z)

DESIGN OF NONRECURSIVE (FIR) FILTERS 431

N−1
poles

z5
*

z3
*

z2

z3

z1z4

z5

1/z5

1/z5
*

1/z4

z plane

Figure 9.3 Typical zero-pole plot for a constant-delay nonrecursive filter.

The same relation holds for even N, as can be easily shown, and therefore if zi = ri e jψi is a zero of
H (z), then z−1

i = e− jψi /ri must also be a zero of H (z). This has the following implications on the
zero locations:

1. An arbitrary number of zeros can be located at zi = ±1 since z−1
i = ±1.

2. An arbitrary number of complex-conjugate pairs of zeros can be located on the unit circle since

(z − zi)
(
z − z∗

i

) = (z − e jψi)(z − e− jψi) =
(

z − 1

z∗
i

)(
z − 1

zi

)
3. Real zeros off the unit circle must occur in reciprocal pairs.

4. Complex zeros off the unit circle must occur in groups of four, namely, zi , z∗
i , and their recip-

rocals.

Polynomials with the above properties are often called mirror-image polynomials. A typical
zero-pole plot for a constant-delay nonrecursive filter is shown in Fig. 9.3.

9.3 DESIGN USING THE FOURIER SERIES

Since the frequency response of a nonrecursive filter is a periodic function of ω with period ωs , it
can be expressed as a Fourier series (see Sec. 2.2). We can write

H (e jωT) =
∞∑

n=−∞
h(nT)e− jωnT (9.10)

where h(nT) = 1

ωs

∫ ωs/2

−ωs/2
H (e jωT)e jωnT dω (9.11)

and ωs = 2π/T . In Chap. 2, the Fourier series was applied for the time-domain representation of
signals but in the present application it is applied for the frequency-domain representation of filters.

432 DIGITAL SIGNAL PROCESSING

In effect, the roles of time and frequency are interchanged. If we let e jωT = z in Eq. (9.10)1, we
obtain

H (z) =
∞∑

n=−∞
h(nT)z−n (9.12)

Hence with an analytic representation for a required frequency response available, a corresponding
transfer function can be readily derived. Unfortunately, however, this is noncausal and of infinite
order since h(nT) is defined over the range −∞ < n < ∞ according to Eq. (9.12). In order to
achieve a finite-order transfer function, the series in Eq. (9.12) can be truncated by assigning

h(nT) = 0 for |n| >
N − 1

2
in which case

H (z) = h(0) +
(N−1)/2∑

n=1

[h(−nT)zn + h(nT)z−n] (9.13)

Causality can be brought about by delaying the impulse response by (N − 1)T/2 s, which
translates into multiplying H (z) by z−(N−1)/2 by virtue of the time-shifting theorem of the z transform
(Theorem 3.4), so that

H ′(z) = z−(N−1)/2 H (z) (9.14)

Since |z−(N−1)/2| = 1 if z = e jωT , the above modification does not change the amplitude response
of the derived filter.

Note that if H (e jω T) in Eq. (9.10) is an even function of ω, then the impulse response obtained
is symmetrical about n = 0, and hence the filter has zero group delay. Consequently, the filter
represented by the transfer function of Eq. (9.14) has constant group delay equal to (N − 1)T/2.

The design approach just described is illustrated by the following example.

Example 9.1 Design a lowpass filter with a frequency response

H (e jωT) ≈
{

1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

where ωs is the sampling frequency.

Solution

From Eq. (9.11)

h(nT) = 1

ωs

∫ ωc

−ωc

e jωnT dω = 1

ωs

[
e jωnT

jnT

]ωc

−ωc

= 1

nπ

(e jωcnT − e− jωcnT)

2 j
= 1

nπ
sin ωcnT

1This substitution is allowed by virtue of analytic continuation (see Sec. A.8).

DESIGN OF NONRECURSIVE (FIR) FILTERS 433

0 2 4 6 8 10
−50

−40

−30

−20

−1.0

0

1.0

ω, rad/s

G
ai

n,
 d

B

N = 11 N = 41

Figure 9.4 Amplitude response of lowpass filter (Example 9.1).

Hence Eqs. (9.13) and (9.14) yield

H (z) = z−(N−1)/2
(N−1)/2∑

n=0

an

2
(zn + z−n)

where a0 = h(0) an = 2h(nT)

The amplitude response of the lowpass filter obtained in Example 9.1 with ωc and ωs assumed
to be 4 and 20 rad/s, respectively, is plotted in Fig. 9.4 for N = 11 and 41. The passband and
stopband oscillations observed are due to slow convergence in the Fourier series, which in turn,
is caused by the discontinuity at ωc = 4 rad/s. These are known as Gibbs’ oscillations. As N is
increased, the frequency of these oscillations is seen to increase, and at both low and high frequencies
their amplitude is decreased. Also the transition between passband and stopband becomes steeper.
However, the amplitudes of the passband and stopband ripples closest to the passband edge remain
virtually unchanged as can be see in Fig. 9.4. Consequently, the quality of the filter obtained is not
very good and ways must be found for the reduction of Gibbs’ oscillations.

A rudimentary method is to avoid discontinuities in the idealized frequency response by in-
troducing transition bands between passbands and stopbands [1]. For example, the response of the

434 DIGITAL SIGNAL PROCESSING

above lowpass filter could be redefined as

H (e jωT) ≈

1 for |ω| ≤ ωp

− ω − ωa

ωa − ωp
for ωp < |ω| < ωa

0 for ωa ≤ |ω| ≤ ωs/2

9.4 USE OF WINDOW FUNCTIONS

An alternative and easy-to-apply technique for the reduction of Gibbs’ oscillations is to truncate
the infinite-duration impulse response h(nT) given by Eq. (9.11) through the use of a discrete-time
window function w(nT) such as those encountered in Sec. 7.8.2. If we let

hw(nT) = w(nT)h(nT)

then the complex-convolution theorem (Theorem 3.10) gives

Hw(z) = Z[w(nT)h(nT)] = 1

2π j

∮
�

H (v)W
(z

v

)
v−1 dv (9.15)

where � represents a contour in the common region of convergence of H (v) and W (z/v) and

H (z) = Zh(nT) =
∞∑

n=−∞
h(nT)z−n (9.16a)

W (z) = Zw(nT) =
∞∑

n=−∞
w(nT)z−n (9.16b)

If we let

v = e j� T and z = e jωT

and assume that H (v) and W (z/v) converge on the unit circle of the v plane, Eq. (9.15) can be
expressed as

Hw(e jωT) = T

2π

∫ 2π/T

0
H (e j� T)W

(
e j(ω−�)T

)
d� (9.17)

This is, of course, a convolution integral like the one in Eq. (7.20) and the effect of the window
spectrum on the frequency response of the nonrecursive filter is very much analogous to the effect
of the frequency spectrum of a nonperiodic continuous-time window on the frequency spectrum of
the truncated continuous-time signal in Sec. 7.8.1.

Assuming that a lowpass filter with an idealized frequency response

H (e jωT) =
{

1 for 0 ≤ |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

DESIGN OF NONRECURSIVE (FIR) FILTERS 435

is required, the graphical construction for the convolution integral assumes the form illustrated in
Fig. 9.5. This is very similar to the graphical construction in Fig. 7.14 except for the fact that the
frequency response of the filter and the frequency spectrum of the window function are periodic in the
present application. As may be easily deduced following the steps in Sec. 7.8.1, the main-lobe width
of the window will introduce transition bands at frequency points where the frequency response of
the filter has discontinuities, i.e., at passband edges. On the other hand, the side ripples of the window
will introduce ripples in the passband(s) of the filter whose amplitudes are directly related to the
ripple ratio of the window function used.

A variety of window functions have been described in the literature in recent years and some
of them are as follows [1, 2]:

1. Rectangular

2. von Hann2

3. Hamming

4. Blackman

5. Dolph-Chebyshev

6. Kaiser

The first four windows have only one adjustable parameter, the window length N . The last two,
namely, the Dolph-Chebyshev and the Kaiser windows, have two parameters, the window length and
one other parameter.

9.4.1 Rectangular Window

The rectangular window is given by

wR(nT) =

1 for |n| ≤ N − 1

2
0 otherwise

(9.18)

and its frequency spectrum has been deduced in Sec. 7.8.2 as

WR(e jωT) = sin(ωN T/2)

sin(ωT/2)
(9.19)

Its main-lobe width is 2ωs/N and its ripple ratio remains relatively independent of N at approximately
22 percent for values of N in the range 11 to 101.

The rectangular window corresponds, of course, to the direct truncation of the Fourier series
and the effect of direct truncation on H (e jωT) is quite evident in Fig. 9.4. As N is increased the
transition width between passband and stopband is decreased, an effect that is common in all windows.
However, the amplitudes of the last passband and first stopband ripples remain virtually unchanged
with increasing values of N , and this is a direct consequence of the fact that the ripple ratio of the
rectangular window is virtually independent of N (see Fig. 7.10).

2Due to Julius von Hann and often referred to inaccurately as the Hanning window function.

436 DIGITAL SIGNAL PROCESSING

1

Hw(e jωT)

−ωc
T
π

T
2π

T
2π

ω

H(e j�T)W(e j(ω−�)T)

H(e j�T)

(d)

W(e j(ω−�)T)

W(e j�T)

T
2π

T
2π

T
π

T
π

T
πω

(a)

(b)

(c)

ωc

Hw(e jωT)

−ωc
T
π

T
2π

(e)

ωc

ω

�

�

�

�

Figure 9.5 Convolution integral of Eq. (9.17).

DESIGN OF NONRECURSIVE (FIR) FILTERS 437

9.4.2 von Hann and Hamming Windows

The von Hann and Hamming windows are essentially one and the same and are both given by the
raised-cosine function

wH (nT) =

α + (1 − α) cos

2πn

N − 1
for |n| ≤ N − 1

2
0 otherwise

(9.20)

where α = 0.5 in the von Hann window and α = 0.54 in the Hamming window. The small increase
in the value of α from 0.5 to 0.54 in the latter window has a beneficial effect, namely, it reduces the
ripple ratio by about 50 percent (see Table 9.2 below).

The spectrums of these windows can be related to that of the rectangular window. Equation
(9.20) can be expressed as

wH (nT) = wR(nT)

[
α + (1 − α) cos

2πn

N − 1

]

= αwR(nT) + 1 − α

2
wR(nT)

(
e j2πn/(N−1) + e− j2πn/(N−1)

)
and on using the time-shifting theorem of the z transform (Theorem 3.4), we have

WH (e jωT) = Z[wH (nT)]
∣∣∣
z=e jωT

= αWR(e jωT) + 1 − α

2
WR

(
e j[ωT −2π/(N−1)]

)
+1 − α

2
WR

(
e j[ωT +2π/(N−1)]

)
(9.21a)

Table 9.2 Summary of window parameters

Ripple ratio, %
Main-lobe

Type of window width N = 11 N = 21 N = 101

Rectangular
2ωs

N
22.34 21.89 21.70

von Hann
4ωs

N
2.62 2.67 2.67

Hamming
4ωs

N
1.47 0.93 0.74

Blackman
6ωs

N
0.08 0.12 0.12

438 DIGITAL SIGNAL PROCESSING

2.0

4.0

6.0

0

−3.0

−2.0 −1.0 1.0 2.0

3.0

ω, rad/s

WH (e jωT)

2.0

4.0

6.0

First term

Second termThird term

Figure 9.6 Spectrum of von Hann or Hamming window.

Now from Eqs. (9.19) and (9.21a), we get

WH (e jωT) = α sin(ωN T/2)

sin(ωT/2)
+ 1 − α

2
· sin[ωN T/2 − Nπ/(N − 1)]

sin[ωT/2 − π/(N − 1)]

+1 − α

2
· sin[ωN T/2 + Nπ/(N − 1)]

sin[ωT/2 + π/(N − 1)]
(9.21b)

Consequently, the spectrums for the von Hann and Hamming windows can be formed by simply
shifting WR(e jωT) first to the right and then to the left by 2π/(N − 1)T and after that adding the
three spectral components in Eq. (9.21b) as illustrated in Fig. 9.6. As can be observed, the second
and third terms tend to cancel the first right and first left side lobes in αWR(e jωT), and as a result both
the von Hann and Hamming windows have reduced side lobe amplitudes compared with those of the
rectangular window. For N = 11 and ωs = 10 rad/s, the ripple ratios for the two windows are 2.62
and 1.47 percent and change to 2.67 and 0.74 percent, respectively, for N = 101 (see Table 9.2).

DESIGN OF NONRECURSIVE (FIR) FILTERS 439

The first term in Eq. (9.21b) is zero if

ω = mωs

N

and, similarly, the second and third terms are zero if

ω =
(

m + N

N − 1

)
ωs

N
and ω =

(
m − N

N − 1

)
ωs

N

respectively, for m = ±1, ±2, If N � 1, all three terms in Eq. (9.21b) have their first common
zero at |ω| ≈ 2ωs/N , and hence the main-lobe width for the von Hann and Hamming windows is
approximately 4ωs/N .

9.4.3 Blackman Window

The Blackman window is similar to the preceding two and is given by

wB(nT) =

0.42 + 0.5 cos

2πn

N − 1
+ 0.08 cos

4πn

N − 1
for |n| ≤ N − 1

2
0 otherwise

The additional cosine term leads to a further reduction in the amplitude of Gibbs’ oscillations. The
ripple ratio for N = 11 and ωs = 10 rad/s is 0.08 percent and changes to 0.12 percent for N = 101.
The main-lobe width, however, is increased to about 6ωs/N (see Table 9.2).

As can be seen in Table 9.2, as the ripple ratio is decreased from one window to the next one,
the main-lobe width is increased. This happens to be a fairly general trade-off among windows.

Example 9.2 Redesign the lowpass filter of Example 9.1 using the von Hann, Hamming, and
Blackman windows.

Solution

The impulse response is the same as in Example 9.1, that is,

h(nT) = 1

nπ
sin ωcnT

On multiplying h(nT) by the appropriate window function and then using Eqs. (9.15)
and (9.14), in this order, we obtain

H ′
w(z) = z−(N−1)/2

(N−1)/2∑
n=0

a′
n

2
(zn + z−n)

where a′
0 = w(0)h(0) and a′

n = 2w(nT)h(nT)

440 DIGITAL SIGNAL PROCESSING

−100

−80

−60

−40

0
G

ai
n,

 d
B

von HannHamming

Blackman

0.1

−0.1

1.0 2.0 3.0 4.0 5.00
ω, rad/s

Figure 9.7 Amplitude response of lowpass filter (Example 9.2).

The amplitude responses of the three filters are given by

M(ω) =
∣∣∣∣∣
(N−1)/2∑

n=0

a′
n cos ωnT

∣∣∣∣∣
These are plotted in Fig. 9.7 for N = 21 and ωs = 10 rad/s. As expected, the amplitude
of the passband ripple is reduced, and the minimum stopband attenuation as well as the
transition width are increased progressively from the von Hann to the Hamming to the
Blackman window.

9.4.4 Dolph-Chebyshev Window

The windows considered so far have a ripple ratio which is practically independent of N , as can be
seen in Table 9.2, and as a result the usefulness of these windows is limited. A more versatile window
is the so-called Dolph-Chebyshev window [3]. This window is given by

wDC (nT) = 1

N

[
1

r
+ 2

(N−1)/2∑
i=1

TN−1

(
x0 cos

iπ

N

)
cos

2nπ i

N

]
(9.22)

for n = 0, 1, 2, . . . , (N − 1)/2 where r is the required ripple ratio as a fraction and

x0 = cosh

(
1

N − 1
cosh−1 1

r

)

DESIGN OF NONRECURSIVE (FIR) FILTERS 441

Function Tk(x) is the kth-order Chebyshev polynomial associated with the Chebyshev approximation
for recursive filters (see Sec. 10.4.1) and is given by

Tk(x) =
{

cos(k cos−1 x) for |x | ≤ 1

cosh(cosh−1 x) for |x | > 1

Evidently, an arbitrary ripple ratio can be achieved with this window and, as in other windows, the
main-lobe width can be controlled by choosing the value of N .

The Dolph-Chebyshev window has two additional properties of interest. First, with N fixed,
the main-lobe width is the smallest that can be achieved for a given ripple ratio; second, all the
side lobes have the same amplitude, as can be seen in Fig. 9.8, that is, its amplitude spectrum is
equiripple. A consequence of the first property is that filters designed by using this window have a
narrow transition band. A consequence of the second property is that the approximation error tends
to be somewhat more uniformly distributed with respect to frequency.

There is a practical issue in connection with most windows, including the Dolph-Chebyshev
window, which needs to be addressed. We have assumed an ideal passband amplitude response of
unity in the filters considered so far and typically the response of the designed filter is required to oscil-
late about unity. The value of the filter gain at any given frequency depends on the area of the window
spectrum, as can be seen in Fig. 9.5, and if the passband gain is required to be approximately equal to
unity, then the area of the window spectrum should be approximately equal to 2π/T to cancel out the
factor T/(2π) in the convolution integral of Eq. (9.17). For the Kaiser window, this turns out to be the
case. However, in the case of the Dolph-Chebyshev window, the area of the window spectrum tends to

−10 −5 0 5 10
−10

−5

0

5

10

15

20

25

ω, rad/s

|W
(e

jω
T
) |,

 d
B

Figure 9.8 Amplitude spectrum for Dolph-Chebyshev window (N = 21, ripple ratio = −20 dB).

442 DIGITAL SIGNAL PROCESSING

depend on the ripple ratio and, consequently, the passband gain will oscillate about some value other
than unity. The problem can be easily circumvented by simply scaling the values of the impulse
response by a suitable factor after the design is completed. This amounts to scaling the amplitude
response by the same factor as can be readily verified. Depending on the application at hand, one
may want the amplitude response to have a maximum value of unity (or 0 dB), or to oscillate about
unity, or to do something else. In the first case, one would need to find the maximum value of the
passband amplitude response as a ratio, say, Mmax and then divide all the values of the modified
impulse response by Mmax, that is,

h′
w(nT) = hw(nT)

Mmax
for − (N − 1)/2 ≤ n ≤ (N − 1)/2

On the other hand, if the passband amplitude response is required to oscillate about unity, then one
would need to scale the impulse response values with respect to the average passband response by
letting

h′
w(nT) = hw(nT)

MAV
where MAV = 1

2 (Mmax + Mmin) (9.23)

and Mmin is the minimum of the passband amplitude response. This scaling technique, which is also
known as normalization of the amplitude response, is illustrated in the following example.

Example 9.3 (a) Using the Fourier-series method along with the Dolph-Chebyshev window,
design a nonrecursive highpass filter assuming the idealized frequency response

H (e jωT) =

1 for −ωs/2 < ω < −ωc

1 for ωc < ω < ωs/2

0 otherwise

The required filter parameters are as follows:

• Ripple ratio: −20 dB

• ωc : 6.0 rad/s

• ωs : 20 rad/s

• N = 21

(b) Assuming that the passband of the filter extends from 6.8 to 10 rad/s, normalize the design
obtained in part (a) so as to achieve an amplitude response that oscillates about unity. (c) Find
the passband peak-to-peak ripple Ap in dB. (d) Assuming that the stopband extends from 0 to
5.5 rad/s, find the minimum stopband attenuation Aa in dB.

DESIGN OF NONRECURSIVE (FIR) FILTERS 443

Solution

(a) From Eq. (9.11), we have

h(nT) = 1

ωs

[∫ −ωc

−ωs/2
e jωnT dω +

∫ ωs/2

ωc

e jωnT dω

]

= 1

ωs

{[
e jωnT

jnT

]−ωc

−ωs/2

+
[

e jωnT

jnT

]ωs/2

ωc

}

= 1

nπ
[sin ωsnT/2 − sin ωcnT]

= 1

nπ
[sin nπ − sin ωcnT]

We note that (sin nπ)/nπ is always zero except for n = 0 and hence we get

h(nT) =

1 − 1

nπ
sin ωcnT for n = 0

− 1
nπ

sin ωcnT otherwise
(9.24)

The ripple ratio in dB is given by 20 log r and hence

20 log r = −20 or r = 10−1 = 0.1

On using Eqs. (9.22) and (9.24), the design of Table 9.3 where hw(nT) = wDC (nT)h(nT)
can be obtained.

(b) The amplitude response can be computed by using the formula for a symmetri-
cal impulse response of odd length in Table 9.1. Through a simple MATLAB m-file
the maximum and minimum values of the passband amplitude response can be

Table 9.3 Numerical values of h(nT)
and wDC (nT)h(nT) (Example 9.3)

n h(nT) = h(−nT) hw(nT) = hw(−nT)

0 4.000000E − 1 2.343525E − 1
1 −3.027307E − 1 −1.758746E − 1
2 9.354893E − 2 5.298466E − 2
3 6.236595E − 2 3.384614E − 2
4 −7.568267E − 2 −3.865863E − 2
5 0.0 0.0
6 5.045512E − 2 2.155795E − 2
7 −2.672827E − 2 −1.012015E − 2
8 −2.338723E − 2 −7.661656E − 3
9 3.363674E − 2 9.278868E − 3

10 0.0 0.0

444 DIGITAL SIGNAL PROCESSING

0 2 4 6 8 10
−60

−50

−40

−30

−20

−0.5

0

0.5

ω, rad/s

G
ai

n,
 d

B

Ap

Aa

Figure 9.9 Amplitude response of lowpass filter (Example 9.3).

obtained as

Mmax = 0.6031 and Mmin = 0.5737

Hence the required scaling factor to normalize the passband amplitude response to unity
is obtained from Eq. (9.23) as MAV = 0.5884. The amplitude response of the filter is
plotted in Fig. 9.9.

(c) The peak-to-peak passband ripple in dB can be obtained as

Ap = 20 log Mmax − 20 log Mmin = 20 log
Mmax

Mmin
= 0.43 dB

(d) The minimum stopband attenuation Aa is defined as the negative of the maximum
stopband gain and it can be computed as 0.01549. Hence we have

Aa = −20 log 0.01549 = 20 log
1

0.01549
= 36.2 dB

In view of the equiripple amplitude spectrum of the Dolph-Chebyshev window, one could
expect to obtain an equiripple amplitude response for the filter. However, it does not work out that
way because the relation between the amplitudes of the ripples in the filter response and those in the
window spectrum is nonlinear. The nonlinear nature of this relation can be verified by examining the
graphical construction of the convolution integral in Fig. 9.5.

DESIGN OF NONRECURSIVE (FIR) FILTERS 445

9.4.5 Kaiser Window

The Kaiser window [4] and its properties have been described in Sec. 7.8.1. As will be shown below,
this window can be used to design nonrecursive filters that satisfy prescribed specifications and it is,
therefore, used widely. For this reason, its main characteristics are repeated here for easy reference.
The window function is given by

wK (nT) =

I0(β)

I0(α)
for |n| ≤ N − 1

2
0 otherwise

(9.25)

where α is an independent parameter and

β = α

√
1 −

(
2n

N − 1

)2

I0(x) = 1 +
∞∑

k=1

[
1

k!

(x

2

)k
]2

The exact spectrum of wK (nT) can be readily obtained from Eq. (9.16b) as

WK (e jωT) = wK (0) + 2
(N−1)/2∑

n=1

wK (nT) cos ωnT

and an approximate but closed-form formula was given in Sec. 7.8.2 (see Eq. (7.32)).
The ripple ratio can be varied continuously from the low value in the Blackman window to the

high value in the rectangular window by simply varying the parameter α. Also, as in other windows,
the main-lobe width, designated as Bm , can be adjusted by varying N . The influence of α on the
ripple ratio and main-lobe width is illustrated in Fig. 7.17a and b.

An important advantage of the Kaiser window is that a method is available that can be used to
design filters that will satisfy prescribed specifications [4]. The design method is based on the fact
that while the ripple ratio affects both the passband ripple and the transition width between passband
and stopband, the window length N affects only the transition width. Consequently, one can choose
the α of the window through some empirical formulas to achieve the required passband or stopband
ripple and then through another empirical formula one can choose the window length to achieve the
desired transition width. The nuts and bolts of the method are as follows:

9.4.6 Prescribed Filter Specifications

In a filter designed through the use of the Kaiser window, the passband amplitude response oscillates
between 1 − δ and 1 + δ whereas the stopband amplitude response oscillates between 0 and δ where
δ is the amplitude of the largest passband ripple, which happens to be the same as the amplitude
of the largest stopband ripple. Hence the vital characteristics of a lowpass filter can be completely
specified as illustrated in Fig. 9.10a where 0 to ωp and ωa to ωs/2 define the passband and stopband,
respectively. A prescribed set of specifications δ, ωp, and ωa can be achieved for some specified
sampling frequency ωs by choosing the parameter α and the length N of the Kaiser window such
that the amplitude response never crosses into the shaded areas in Fig. 9.10a.

Typically in practice, the required filter characteristics are specified in terms of the peak-to-
peak passband ripple Ap and the minimum stopband attenuation Aa in dB as defined in the solution

446 DIGITAL SIGNAL PROCESSING

G
ai

n

ω

ω

δ

1+δ

1−δ

ωc

ωc

ωp

ωp

ωa

ωa

1.0

G
ai

n

δ

1+δ

1−δ

1.0

(a)

(b)

ωs
2

ωs
2

Figure 9.10 Idealized frequency responses: (a) Lowpass filter, (b) highpass filter.

of Example 9.3. For a lowpass filter specified by Fig. 9.10a, we have

Ap = 20 log
1 + δ

1 − δ
(9.26)

and Aa = −20 log δ (9.27)

respectively, and the transition width is given by

Bt = ωa − ωp

Given some arbitrary passband ripple and minimum stopband attenuation, say, Ã p and Ãa , respec-
tively, it may or may not be possible to achieve the required specifications exactly. If it is possible,
that would be just fine. If it is not possible to get the exact specifications, the next best thing is to
design a filter such that

Ap ≤ Ã p for 0 ≤ ω ≤ ωp

DESIGN OF NONRECURSIVE (FIR) FILTERS 447

and

Aa ≥ Ãa for ωa ≤ ω ≤ ωs/2

i.e., design a filter that would oversatisfy one or both specifications. This is a recurring theme in the
design of filters both for nonrecursive as well as recursive.

A filter with a passband ripple equal to or less than Ã p, a minimum stopband attenuation
equal to or greater than Ãa , and a transition width Bt can be readily designed by using the following
procedure [4]:

1. Determine h(nT) using the Fourier-series approach of Sec. 9.3 assuming an idealized frequency
response

H (e jωT) =
{

1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ ωs/2

(dashed line in Fig. 9.10a) where

ωc = 1
2 (ωp + ωa)

2. Choose δ in Eqs. (9.26) and (9.27) such that Ap ≤ Ã p and Aa ≥ Ãa . A suitable value is

δ = min(δ̃p, δ̃a)

where δ̃p = 100.05 Ã p − 1

100.05 Ã p + 1
and δ̃a = 10−0.05 Ãa

3. With the required δ defined, the actual stopband loss Aa in dB can be calculated using Eq. (9.27).

4. Choose parameter α as

α =

0 for Aa ≤ 21 dB

0.5842(Aa − 21)0.4 + 0.07886(Aa − 21) for 21 < Aa ≤ 50 dB

0.1102(Aa − 8.7) for Aa > 50 dB

5. Choose parameter D as

D =

0.9222 for Aa ≤ 21 dB

Aa − 7.95

14.36
for Aa > 21 dB

Then select the lowest odd value of N that would satisfy the inequality

N ≥ ωs D

Bt
+ 1

6. Form wK (nT) using Eq. (9.25).

7. Form

H ′
w(z) = z−(N−1)/2 Hw(z) where Hw(z) = Z[wK (nT)h(nT)]

448 DIGITAL SIGNAL PROCESSING

Example 9.4 Design a lowpass filter that would satisfy the following specifications:

• Maximum passband ripple in frequency range 0 to 1.5 rad/s: 0.1 dB

• Minimum stopband attenuation in frequency range 2.5 to 5.0 rad/s: 40 dB

• Sampling frequency: 10 rad/s

Solution

From step 1 and Example 9.1

h(nT) = 1

nπ
sin ωcnT where ωc = 1

2 (1.5 + 2.5) = 2.0 rad/s

Step 2 gives

δ̃p = 100.05(0.1) − 1

100.05(0.1) + 1
= 5.7564 × 10−3

δ̃a = 10−0.05(40) = 0.01

Hence δ = 5.7564 × 10−3

and from step 3

Aa = 44.797 dB

Steps 4 and 5 yield

α = 3.9524 D = 2.5660

Hence N ≥ 10(2.566)

1
+ 1 = 26.66

or N = 27

Finally steps 6 and 7 give

H ′
w(z) = z−(N−1)/2

(N−1)/2∑
n=0

hw(nT)(zn + z−n)

where hw(nT) = wK (nT)h(nT)

The numerical values of h(nT) and wK (nT)h(nT) are given in Table 9.4, and the ampli-
tude response achieved is plotted in Fig. 9.11. This satisfies the prescribed specifications.

DESIGN OF NONRECURSIVE (FIR) FILTERS 449

Table 9.4 Numerical values of h(nT)
and wK (nT)h(nT) (Example 9.4)

n h(nT) = h(−nT) hw(nT) = hw(−nT)

0 4.000000E − 1 4.000000E − 1
1 3.027307E − 1 2.996921E − 1
2 9.354893E − 2 8.983587E − 2
3 −6.236595E − 2 −5.690178E − 2
4 −7.568267E − 2 −6.420517E − 2
5 0.0 0.0
6 5.045512E − 2 3.450028E − 2
7 2.672827E − 2 1.577694E − 2
8 −2.338723E − 2 −1.155982E − 2
9 −3.363674E − 2 −1.343734E − 2

10 0.0 0.0
11 2.752097E − 2 6.235046E − 3
12 1.559149E − 2 2.395736E − 3
13 −1.439214E − 2 −1.326848E − 3

0 2 4 6 8 10
−70

−60

−50

−40

−30

−20

−0.1

0

0.1

ω, rad/s

G
ai

n,
 d

B

Figure 9.11 Amplitude response of lowpass filter (Example 9.4).

450 DIGITAL SIGNAL PROCESSING

The above design procedure can be readily used for the design of highpass filters. For the
specifications of Fig. 9.10b, the transition width and idealized frequency response in step 1 can be
taken as

Bt = ωp − ωa and H (e jωT) =

1 for −ωs/2 ≤ ω ≤ −ωc

1 for ωc ≤ ω ≤ ωs/2

0 otherwise

where ωc = 1
2 (ωa + ωp)

The remaining steps apply without modification.
The procedure can also be extended to the design of multiband filters such as bandpass and

bandstop filters. This is possible on account of the fact that the amplitudes of the passband and
stopband ripples and the transition widths between passbands and stopbands depend directly on the
ripple ratio of the window and its length and are independent of the number of filter bands. Thus all
one needs to do for a multiband filter is to design the filter on the basis of the narrowest transition
width.

For the bandpass specifications of Fig. 9.12a, the design must be based on the narrower of the
two transition bands, i.e.,

Bt = min[(ωp1 − ωa1), (ωa2 − ωp2)] (9.28)

Hence

H (e jωT) =

1 for −ωc2 ≤ ω ≤ −ωc1

1 for ωc1 ≤ ω ≤ ωc2

0 otherwise

(9.29)

where ωc1 = ωp1 − Bt

2
ωc2 = ωp2 + Bt

2
(9.30)

Similarly, for the bandstop specifications of Fig. 9.12b, we let

Bt = min [(ωa1 − ωp1), (ωp2 − ωa2)]

and H (e jωT) =

1 for 0 ≤ |ω| ≤ ωc1

0 for ωc1 < |ω| < ωc2

1 for ωc2 ≤ |ω| ≤ ωs/2

where

ωc1 = ωp1 + Bt

2
ωc2 = ωp2 − Bt

2

DESIGN OF NONRECURSIVE (FIR) FILTERS 451

G
ai

n

ω

δ

1+δ

1−δ

ωc1 ωc2

ωp1 ωp2
ωa1

ωa2

1.0

(a)

G
ai

n

1+δ

1−δ

1.0

δ

(b)

ω

ωc1 ωc2

ωp1 ωp2ωa1 ωa2

ωs
2

ωs
2

Figure 9.12 Idealized frequency responses: (a) Bandpass filter, (b) bandstop filter.

Example 9.5 Design a bandpass filter that would satisfy the following specifications:

• Minimum attenuation for 0 ≤ ω ≤ 200: 45 dB

• Maximum passband ripple for 400 < ω < 600: 0.2 dB

• Minimum attenuation for 700 ≤ ω ≤ 1000: 45 dB

• Sampling frequency: 2000 rad/s

452 DIGITAL SIGNAL PROCESSING

Solution

From Eq. (9.28)

Bt = min [(400 − 200), (700 − 600)] = 100

Hence from Eq. (9.30)

ωc1 = 400 − 50 = 350 rad/s ωc2 = 600 + 50 = 650 rad/s

Step 1 of the design procedure yields

h(nT) = 1

ωs

∫ ωs/2

−ωs/2
H (e jωT)e jωnT dω

and from Eq. (9.29), we get

h(nT) = 1

ωs

[∫ −ωc1

−ωc2

e jωnT dω +
∫ ωc2

ωc1

e jωnT dω

]

= 1

ωs

[
e− jωc1nT

jnT
− e− jωc2nT

jnT
+ e jωc2nT

jnT
− e jωc1nT

jnT

]

= 1

nπ

[
e jωc2nT − e− jωc2nT

2 j
− e jωc1nT − e− jωc2nT

2 j

]

h(nT) = 1

nπ
(sin ωc2nT − sin ωc1nT)

Now according to step 2,

δ̃p = 100.05(0.2) − 1

100.05(0.2) + 1
= 1.1512 × 10−2

δ̃a = 10−0.05(45) = 5.6234 × 10−3

and δ = 5.6234 × 10−3

Thus from Eq. (9.27), we obtain

Aa = 45 dB

The design can be completed as in Example 9.4. The resulting values for α, D, and N
are

α = 3.9754 D = 2.580 and N = 53

The amplitude response achieved is plotted in Fig. 9.13.

Note that if we let ωc1 = 0 and ωc2 = ωc or ωc1 = ωc and ωc2 = ωs/2 in the above
expression for h(nT), we get the impulse response for a lowpass or highpass filter, as
may be expected (see Examples 9.1 and 9.3). Thus a computer program that can design
bandpass filters can also be used to design lowpass and highpass filters.

DESIGN OF NONRECURSIVE (FIR) FILTERS 453

0 200 400 600 800 1000
−70

−60

−50

−40

−30

−20

0

ω, rad/s

G
ai

n,
 d

B

−0.01

0.01

Figure 9.13 Amplitude response of bandpass filter (Example 9.5).

9.4.7 Other Windows

There are several other window functions in the literature that can be applied in the design of nonre-
cursive filters such as the Saramäki and ultraspherical windows [5, 6]. Like the Dolph-Chebyshev and
Kaiser windows, the Saramäki window offers an independent parameter in addition to the window
length. The ultraspherical window is more flexible than the others because it offers two independent
parameters in addition to the window length. Consequently, it is possible to achieve a great variety
of spectral characteristics with it [7], even to design better quality or more economical filters. The
ultraspherical window includes the Dolph-Chebyshev and Saramäki windows as special cases and
it is also closely related to the Kaiser window.

9.5 DESIGN BASED ON NUMERICAL-ANALYSIS FORMULAS

In signal processing, a continuous-time signal often needs to be interpolated, extrapolated, differen-
tiated at some instant t = t1, or integrated between two distinct instants t1 and t2. Such mathematical
operations can be performed by using the many classical numerical-analysis formulas [8, 9, 10].
Formulas of this type, which are derived from the Taylor series, can be readily used for the design
of nonrecursive filters.

The most fundamental numerical formulas are the formulas for interpolation since they form
the basis of many other formulas, including formulas for differentiation and integration. The most
commonly used interpolation formulas are the Gregory-Newton, Bessel, Everett, Stirling, and Gauss
interpolation formulas. The value of x(t) at t = nT + pT , where 0 ≤ p < 1, is given by the

454 DIGITAL SIGNAL PROCESSING

Gregory-Newton formulas as

x(nT + pT) = (1 +)px(nT) =
[

1 + p	 + p(p − 1)

2!
	2 + · · ·

]
x(nT)

and

x(nT + pT) = (1 − ∇)−px(nT) =
[

1 + p∇ + p(p + 1)

2!
∇2 + · · ·

]
x(nT)

where

	x(nT) = x(nT + T) − x(nT) and ∇x(nT) = x(nT) − x(nT − T)

are commonly referred to as the forward and backward differences, respectively. On the other hand,
the Stirling formula yields

x(nT + pT) =
[

1 + p2

2!
δ2 + p2(p2 − 1)

4!
δ4 + · · ·

]
x(nT)

+ p

2

[
δx

(
nT − 1

2 T
) + δx

(
nT + 1

2 T
)]

+ p(p2 − 1)

2(3!)

[
δ3x

(
nT − 1

2 T
) + δ3x

(
nT + 1

2 T
)]

+ p(p2 − 1)(p2 − 22)

2(5!)

[
δ5x

(
nT − 1

2 T
) + δ5x

(
nT + 1

2 T
)] + · · ·

(9.31)

where

δx
(
nT + 1

2 T
) = x(nT + T) − x(nT) (9.32)

is known as the central difference.
The forward, backward, and central difference operators are, of course, linear and, therefore,

higher-order differences can be readily obtained. For example,

δ3x
(
nT + 1

2 T
) = δ2

[
δx

(
nT + 1

2 T
)]

= δ2[x(nT + T) − x(nT)]

= δ[δx(nT + T) − δx(nT)]

= δ
{

x
(
nT + 3

2 T
) − x

(
nT + 1

2 T
)

− [
x
(
nT + 1

2 T
) − x

(
nT − 1

2 T
)]}

= δx
(
nT + 3

2 T
) − 2δx

(
nT + 1

2 T
) + δx

(
nT − 1

2 T
)

= [x(nT + 2T) − x(nT + T)] − 2[x(nT + T) − x(nT)]

+[x(nT) − x(nT − T)]

= x(nT + 2T) − 3x(nT + T) + 3x(nT) − x(nT − T)

DESIGN OF NONRECURSIVE (FIR) FILTERS 455

The first derivative of x(t) with respect to time at t = nT + pT can be expressed as

dx(t)

dt

∣∣∣∣
t=nT +pT

= dx(nT + pT)

dp
× dp

dt

= 1

T

dx(nT + pT)

dp
(9.33)

and, therefore, the above interpolation formulas lead directly to corresponding differentiation
formulas. Similarly, integration formulas can be derived by writing

∫ t2

nT
x(t) dt = T

∫ p2

0
x(nT + pT) dp

where nT < t2 ≤ nT + T and p2 = t2 − nT

T

that is, 0 < p2 ≤ 1.
A nonrecursive filter that can perform interpolation, differentiation, or integration can now be

obtained by expressing one of the above numerical formulas in the form of a difference equation.
Let x(nT) and y(nT) be the input and output in a nonrecursive filter and assume that y(nT) is equal
to the desired function of x(t), that is,

y(nT) = f [x(t)] (9.34)

For example, if y(nT) is required to be the first derivative of x(t) at t = nT + pT , where 0 ≤ p ≤ 1,
we can write

y(nT) = dx(t)

dt

∣∣∣
t=nT +pT

(9.35)

By choosing an appropriate formula for f [x(t)] and then eliminating all the difference operators
using their definitions, Eq. (9.34) can be put in the form

y(nT) =
M∑

i=−K

ai x(nT − iT)

Thus the desired transfer function can be obtained as

H (z) =
M∑

n=−K

h(nT)z−n

For the case of a forward- or central-difference formula, H (z) is noncausal. Hence for real-time
applications it will be necessary to multiply H (z) by an appropriate negative power of z, which
would convert a noncausal into a causal design.

456 DIGITAL SIGNAL PROCESSING

Example 9.6 A signal x(t) is sampled at a rate of 1/T Hz. Design a sixth-order differentiator
with a time-domain response

y(nT) = dx(t)

dt

∣∣∣
t=nT

Use the Stirling formula.

Solution

From Eqs. (9.31) and (9.33)

y(nT) = dx(t)

dt

∣∣∣∣
t=nT

= 1

2T

[
δx

(
nT − 1

2 T
) + δx

(
nT + 1

2 T
)]

− 1

12T

[
δ3x

(
nT − 1

2 T
) + δ3x

(
nT + 1

2 T
)]

+ 1

60T

[
δ5x

(
nT − 1

2 T
) + δ5x

(
nT + 1

2 T
)] + · · ·

Now, on using Eq. (9.32)

δx
(
nT − 1

2 T
) + δx

(
nT + 1

2 T
) = x(nT + T) − x(nT − T)

δ3x
(
nT − 1

2 T
) + δ3x

(
nT + 1

2 T
) = x(nT + 2T) − 2x(nT + T)

+ 2x(nT − T) − x(nT − 2T)

δ5x
(
nT − 1

2 T
) + δ5x

(
nT + 1

2 T
) = x(nT + 3T) − 4x(nT + 2T)

+ 5x(nT + T) − 5x(nT − T)

+ 4x(nT − 2T) − x(nT − 3T)

Hence

y(nT) = 1

60T
[x(nT + 3T) − 9x(nT + 2T) + 45x(nT + T)

−45x(nT − T) + 9x(nT − 2T) − x(nT − 3T)]

and, therefore

H (z) = 1

60T
(z3 − 9z2 + 45z − 45z−1 + 9z−2 − z−3)

Note that the differentiator has an antisymmetrical impulse response, i.e., it has a constant
group delay, and it is also noncausal. A causal filter can be obtained by multiplying H (z)
by z−3. The amplitude response of the differentiator is plotted in Fig. 9.14 for ωs = 2π .

DESIGN OF NONRECURSIVE (FIR) FILTERS 457

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ω, rad/s

G
ai

n

Stirling
formula

Kaiser
window

Rectangular
window

Ideal

Figure 9.14 Amplitude response of digital differentiators (Examples 9.6 and 9.7).

Differentiators can also be designed by employing the Fourier series method of Sec. 9.3. An
analog differentiator is characterized by the continuous-time transfer function

H (s) = s

Hence a corresponding digital differentiator can be designed by assigning

H (e jωT) = jω for 0 ≤ |ω| < ωs/2 (9.36)

Then on assuming a periodic frequency response, the appropriate impulse response can be determined
by using Eq. (9.11). Gibbs’ oscillations due to the transition in H (e jωT) at ω = ωs/2 can be reduced,
as before, by using the window technique.

Example 9.7 Redesign the differentiator of Example 9.6 by employing the Fourier-series
method. Use (a) a rectangular window and (b) the Kaiser window with α = 3.0.

Solution

(a) From Eqs. (9.36) and (9.11), we have

h(nT) = 1

ωs

∫ ωs/2

−ωs/2
jωe jωnT dω = − 1

ωs

∫ ωs/2

0
2ω sin(ωnT) dω

458 DIGITAL SIGNAL PROCESSING

On integrating by parts, we get

h(nT) = 1

nT
cos πn − 1

n2πT
sin πn

or h(nT) =

0 for n = 0
1

nT
cos πn otherwise

Now if we use the rectangular window with N = 7, we deduce

Hw(z) = 1

6T
(2z3 − 3z2 + 6z − 6z−1 + 3z−2 − 2z−3)

(b) Similarly, the Kaiser window yields

Hw(z) =
3∑

n=−3

wK (nT)h(nT)z−n

where wK (nT) can be computed using Eq. (9.25). The amplitude responses of the two
differentiators are compared in Fig. 9.14 with the response of the differentiator obtained
in Example 9.6.

As before, the parameter α in the Kaiser window can be increased to increase the in-band
accuracy or decreased to increase the bandwidth. Thus the differentiator obtained with the Kaiser
window has the important advantage that it can be adjusted to suit the application. The design of
digital differentiators satisfying prescribed specifications is considered in Refs. [11, 12] (see also
Sec. 15.9.3).

REFERENCES

[1] F. F. Kuo and J. F. Kaiser, System Analysis by Digital Computer, Chap. 7, New York: Wiley,
1966.

[2] R. B. Blackman, Data Smoothing and Prediction, Reading, MA: Addison-Wesley, 1965.
[3] C. L. Dolph, “A current distribution for broadside arrays which optimizes the relationship

between beamwidth and side-lobe level,” Proc. IRE, vol. 34, pp. 335–348, June 1946.
[4] J. F. Kaiser, “Nonrecursive digital filter design using the I0-sinh window function,” in

Proc. IEEE Int. Symp. Circuit Theory, 1974, pp. 20–23.
[5] T. Saramäki, “Adjustable windows for the design of FIR filters—A tutorial,” 6th

Mediterranean Electrotechnical Conference, vol. 1, pp. 28–33, May 1991.
[6] R. L. Streit, “A two-parameter family of weights for nonrecursive digital filters and

antennas,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, pp. 108–118, Feb. 1984.
[7] S. W. A. Bergen and A. Antoniou, “Design of Ultraspherical Window Functions with

Prescribed Spectral Characteristics,” Applied Journal of Signal Processing, vol. 13,
pp. 2053–2065, 2004.

DESIGN OF NONRECURSIVE (FIR) FILTERS 459

[8] R. Butler and E. Kerr, An Introduction to Numerical Methods, London: Pitman, 1962.
[9] C. E. Fröberg, Introduction to Numerical Analysis, Reading, MA: Addison-Wesley, 1965.

[10] M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital
Computation, New York: Harper & Row, 1985.

[11] A. Antoniou, “Design of digital differentiators satisfying prescribed specifications,” Proc.
Inst. Elect. Eng., Part E, vol. 127, pp. 24–30, Jan. 1980.

[12] A. Antoniou and C. Charalambous, “Improved design method for Kaiser differentiators and
comparison with equiripple method,” Proc. Inst. Elect. Eng., Part E, vol. 128, pp. 190–196,
Sept. 1981.

PROBLEMS

9.1. (a) A nonrecursive filter is characterized by the transfer function

H (z) = 1 + 2z + 3z2 + 4z3 + 3z4 + 2z5 + z6

z6

Find the group delay.
(b) Repeat part (a) if

H (z) = 1 − 2z + 3z2 − 4z3 + 3z4 − 2z5 + z6

z6

9.2. Figure P9.2 shows the zero-pole plots of two nonrecursive filters. Check each filter for phase-response
linearity.

z plane z plane

5 poles 7 poles

(a) (b)

z1 z1

z2

z1
* z1

*

z2
*

z2
z3

z1

1
z1

1

z1
*

1
z1

*
1

Figure P9.2

9.3. A nonrecursive bandstop digital filter can be designed by applying the Fourier series method to the
idealized frequency response:

H (e jωT) =

1 for |ω| ≤ ωc1

0 for ωc1 < |ω| < ωc2

1 for ωc2 ≤ |ω| ≤ ωs/2

(a) Obtain an expression for the impulse response of the filter.
(a) Obtain a causal transfer function assuming a filter length N = 11.

460 DIGITAL SIGNAL PROCESSING

9.4. A nonrecursive digital filter can be designed by applying the Fourier series method to the idealized
frequency response:

H (e jωT) ≈

0 for |ω| < ωc1 rad/s
1 for ωc1 ≤ |ω| ≤ ωc2 rad/s
0 for ωc2 < |ω| < ωc3 rad/s
1 for ωc3 ≤ |ω| ≤ ωc4 rad/s
0 for ωc4 < |ω| ≤ ωs/2 rad/s

(a) Obtain an expression for the impulse response of the filter using the Fourier-series method.
(a) Obtain a causal transfer function assuming a filter length N = 15.

9.5. (a) Derive an exact expression for the spectrum of the Blackman window.
(b) Using the result in part (a) and assuming that N � 1, show that the main-lobe width for the Blackman

window is approximately 6ωs/N .

9.6. (a) Design a nonrecursive highpass filter in which

H (e jωT) ≈
{

1 for 2.5 ≤ |ω| ≤ 5.0 rad/s
0 for |ω| < 2.5 rad/s

Use the rectangular window and assume that ωs = 10 rad/s and N = 11.
(b) Repeat part (a) with N = 21 and N = 31. Compare the three designs.

9.7. Redesign the filter of Prob. 9.6 using the von Hann, Hamming, and Blackman windows in turn. Assume
that N = 21. Compare the three designs.

9.8. Design a nonrecursive bandpass filter in which

H (e jωT) ≈

0 for |ω| < 400 rad/s
1 for 400 ≤ |ω| ≤ 600 rad/s
0 for 600 < |ω| ≤ 1000 rad/s

Use the von Hann window and assume that ωs = 2000 rad/s and N = 21. Check your design by plotting
the amplitude response over the frequency range 0 to 1000 rad/s.

9.9. Design a nonrecursive bandstop filter with a frequency response

H (e jωT) ≈

1 for |ω| ≤ 300 rad/s
0 for 300 < |ω| < 700 rad/s
1 for 700 ≤ |ω| ≤ 1000 rad/s

Use the Hamming window and assume that ωs = 2000 rad/s and N = 21. Check your design by plotting
the amplitude response over the frequency range 0 to 1000 rad/s.

9.10. A digital filter is required with a frequency response like that depicted in Fig. P9.10.
(a) Obtain a nonrecursive design using the rectangular window assuming that ωs = 10 rad/s and N = 21.
(b) Repeat part (a) using a Dolph-Chebyshev window with a ripple ratio of −30 dB.
(c) Repeat part (a) using a Kaiser window with an α of 3.0.
(d) Compare the designs obtained in parts (a) to (c).

DESIGN OF NONRECURSIVE (FIR) FILTERS 461

ω

ωs−ωs 2ωs
ωs
2

3ωs
2

ωs
2

−

1

H(e jωT)

Figure P9.10

9.11. A digital filter with a frequency response like that depicted in Fig. P9.11 is required.
(a) Obtain a nonrecursive design using a rectangular window assuming that ωs = 10 rad/s and N = 21.
(b) Repeat part (a) using a Dolph-Chebyshev window with a ripple ratio of −20 dB.
(c) Repeat part (a) using a Kaiser window with an α of 2.0.
(d) Compare the designs obtained in parts (a) to (c).

|sin(πω/ωs)|
1

ω

ωs−ωs 2ωsωs
2

3ωs
2

ωs
2

−

H(e jωT)

Figure P9.11

9.12. (a) Using the idealized amplitude response in Example 9.5, design a bandpass filter using the Dolph-
Chebyshev window. The required filter specifications are as follows:

• Ripple ratio: −20 dB
• ωc1 = 3.0, ωc2 = 7.0 rad/s
• N = 21
• ωs = 20 rad/s

(b) Assuming that the passband extends from 3.8 to 6.8 modify the design in part (a) so as to achieve an
amplitude response that oscillates about unity.

(c) Find the passband peak-to-peak ripple Ap in dB.
(d) Assuming that the lower and upper stopbands extend from 0 to 2.1 and 7.9 to 10 rad/s, respectively,

find the minimum stopband attenuation.

9.13. (a) Repeat Prob. 9.12 assuming a ripple ratio of −25 dB.
(b) Compare the design of this problem with that of Prob. 9.12.

9.14. Show that the Kaiser window includes the rectangular window as a special case.

9.15. (a) Repeat Prob. 9.12 using a Kaiser window with α = 1.0.
(b) Repeat Prob. 9.12 using a Kaiser window with α = 4.0.
(c) Compare the designs in parts (a) and (b).

462 DIGITAL SIGNAL PROCESSING

9.16. Design a nonrecursive lowpass filter that would satisfy the following specifications:

Ap ≤ 0.1 dB Aa ≥ 44.0 dB

ωp = 20 rad/s ωa = 30 rad/s ωs = 100 rad/s

9.17. Design a nonrecursive highpass filter that would satisfy the following specifications:

Ap ≤ 0.3 dB Aa ≥ 45.0 dB

ωp = 3 rad/s ωa = 2 rad/s ωs = 10 rad/s

9.18. Design a nonrecursive bandpass filter that would satisfy the following specifications:

Ap ≤ 0.5 dB Aa ≥ 35.0 dB ωp1 = 40 rad/s ωp2 = 60 rad/s

ωa1 = 20 rad/s ωa2 = 80 rad/s ωs = 200 rad/s

9.19. Design a nonrecursive bandstop filter that would satisfy the following specifications:

Ap ≤ 0.2 dB Aa ≥ 40 dB ωp1 = 1000 rad/s ωp2 = 4000 rad/s

ωa1 = 2000 rad/s ωa2 = 3000 rad/s ωs = 10,000 rad/s

9.20. (a) Show that

Z∇k x(nT) = (1 − z−1)k X (z)

(b) A signal x(t) is sampled at a rate of 2π rad/s. Design a sixth-order differentiator in which

y(nT) ≈ dx(t)

dt

∣∣∣∣
t=nT

Use the Gregory-Newton backward-difference formula.
(c) Repeat part (b) using the Stirling central-difference formula.

9.21. The phase response θ (ω) of a digital filter is sampled at ω = n
 for n = 0, 1, 2, Design a sixth-order
digital differentiator that can be used to generate the group delay of the digital filter. Use the Stirling
formula.

9.22. A signal x(t) is sampled at a rate of 2π rad/s. Design a sixth-order integrator filter in which

y(nT) ≈
∫ (n+1)T

nT
x(t) dt

Use the Gregory-Newton backward-difference formula.

9.23. Two digital filters are to be cascaded. The sampling frequency in the first filter is 2π rad/s, and that in
the second is 4π rad/s. Design a sixth-order interface using the Gregory-Newton backward-difference
formula. Hint: Design an interpolating filter.

CHAPTER

10
APPROXIMATIONS

FOR ANALOG
FILTERS

10.1 INTRODUCTION

As mentioned in the introduction of Chap. 8, the available approximation methods for recursive dig-
ital filters can be classified as indirect or direct. Alternatively, they can be classified as noniterative
or iterative. In indirect methods a discrete-time transfer function that would satisfy certain required
specifications is deduced from a corresponding continuous-time transfer function through the appli-
cation of certain transformations. In effect, indirect methods entail a closed-form formulation and
they are, therefore, noniterative. The continuous-time transfer function is obtained by using one of
several classical approximation methods for analog filters. On the other hand, in direct methods, a
discrete-time transfer function is generated directly in the z domain usually using an optimization
algorithm of some kind, i.e., direct methods are also iterative most of the time.

Indirect methods have a historical basis. As detailed in Chap. 1, analog filters began to emerge
around 1915 and during the first half of the 20th century some really powerful analog-filter approx-
imation methods were invented [1–5]. When digital filters appeared on the scene during the 1960s,
it was quite natural for engineers to attempt to obtain digital-filter approximations by adapting,
modifying, or transforming well-established analog-filter approximations. It is now clear, that these
indirect methods have passed the test of time and are, as a consequence, very much a part of a modern
DSP designer’s tool kit. This hypothesis can be verified by counting the analog-filter approximation
methods found in MATLAB, for example.

This chapter considers in some detail several analog-filter approximation methods that are
suitable for the design of filters with piecewise-constant amplitude responses, i.e., filters whose

463

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

464 DIGITAL SIGNAL PROCESSING

passband and stopband gains are constant and zero, respectively, to within prescribed tolerances.
The most frequently used approximation methods of this type are as follows:

1. Butterworth

2. Chebyshev

3. Inverse-Chebyshev

4. Elliptic

5. Bessel-Thomson

In the first four methods, attention is focused on deriving a continuous-time transfer function
that would yield a specified amplitude response (or loss characteristic) and no particular attention
is paid to the associated phase response. This is in contrast with the design of nonrecursive filters
whereby the linearity of the phase response is imposed at the outset, as may be recalled from Chap. 9.
In consequence, the phase response achieved through these analog-filter approximations turns out to
be nonlinear and, as a result, the group delay tends to vary with frequency. This may present a problem
in applications where phase distortion is undesirable (see Sec. 5.7). In the fifth approximation method,
namely, the Bessel-Thomson [6] method, a constraint is imposed on the group delay associated with
the transfer function, which results in a fairly linear phase response over a certain frequency range.

The chapter begins with an introductory section dealing with the terminology and charac-
terization of analog filters. While digital-filter designers talk about amplitude responses and gains,
their analog-filter counterparts are more inclined to deal with loss characteristics and losses. This
is because passive RLC analog filters, the forefathers of all filters, can provide only loss which can
vary from zero to some large positive value. However, there is also a practical reason in describing
analog filters in terms of loss characteristics. The derivations of the necessary formulas for the various
approximations are that much easier to handle. The treatment of the basics provided is somewhat
cursory and it is intended as a refresher. The interested reader is referred to Refs. [1–5] and also to a
survey article written by the author in Ref. [7] for a more detailed exposition.

The derivations provided deal with lowpass approximations since other types of approximations
can be readily obtained through the application of transformations. Suitable transformations for the
design of highpass, bandpass, and bandstop filters are described at the end of the chapter.

It should be mentioned that the derivation of the formulas for the elliptic approximation is
quite demanding as it entails a basic understanding of elliptic functions. Fortunately, however, the
formulas that give the transfer-function coefficients can be put in a fairly simple form that is easy to
apply even for the uninitiated. The elliptic approximation is treated in detail here because it yields
the lowest-order transfer function for filters that are required to have prescribed piecewise-constant
loss specifications, which makes it the optimal approximation for such applications. The reader who
is interested in the application of the method may skip the derivations and proceed to Sec. 10.6.6
for a step-by-step procedure for the design. The reader who is also interested in the derivation of
this very important method may start by reading Appendix B which provides a brief review of the
fundamentals of elliptic functions.

The application of analog-filter approximations in the design of recursive digital filters will be
considered in Chaps. 11 and 12. Chapter 12 considers, in addition, a delay-equalization technique that
can be used in conjunction with the above methods for the design of digital filters with approximately
linear phase response. Optimization methods that can be used to design recursive filters and equalizers
can be found in Chap. 16.

APPROXIMATIONS FOR ANALOG FILTERS 465

10.2 BASIC CONCEPTS

The basics of analog filters bear a one-to-one correspondence with the basics of digital filters, i.e.,
characterization, time-domain analysis, stability, frequency-domain analysis, and so on.

10.2.1 Characterization

An nth-order linear causal analog filter with input vi (t) and output vo(t) such as that in Fig. 10.1 can
be characterized by a differential equation of the form

bn
dnvo(t)

dtn
+ bn−1

dn−1vo(t)

dtn−1
+ · · · + b0vo(t) = an

dnvi (t)

dtn
+ an−1

dn−1vi (t)

dtn−1
+ · · · + a0vi (t)

(10.1)

The coefficients a0, a1, . . . , an and b0, b1, . . . , bn are functions of the element values and are real
since the parameters of the filter (e.g., resistances, inductances, and so on) are real. The element
values can be time-dependent in real life but are assumed to be time-invariant in theory.

10.2.2 Laplace Transform

The representation and analysis of discrete-time systems is facilitated through the use of the z
transform. The transform of choice for analog filters and continuous-time systems in general is, of
course, the Laplace transform which has already been encountered in Sec. 6.5.2. It is defined as

X (s) =
∫ ∞

−∞
x(t)e−st dt (10.2)

where s is a complex variable of the form s = σ + jω. Signal x(t) can be recovered from X (s) by
applying the inverse Laplace transform which is given by

x(t) = 1

2π j

∫ C+ j∞

C− j∞
X (s)est ds (10.3)

where C is a positive constant.

R2

R1

L
2

C2
C1 C3vi(t)

vo(t)

Figure 10.1 Passive RLC analog filter.

466 DIGITAL SIGNAL PROCESSING

The Laplace transform can be obtained by letting jω → s in the Fourier transform (see
Fig. 6.13) and, therefore, it is an analytic continuation of the latter transform (see Sec. A.8). As for
the Fourier and z transforms, short-hand notations can be used for the Laplace transform, i.e.,

X (s) = Lx(t) and x(t) = L−1 X (s) or X (s) ↔ x(t)

10.2.3 The Transfer Function

The Laplace transform of the kth derivative of some function of time x(t) is given by

L
[

dk x(t)

dtk

]
= sk X (s) − sk−1x(0) − sk−2 dx(t)

dt

∣∣∣∣
t=0

− · · · − dk−1x(t)

dtk−1

∣∣∣∣
t=0

where

x(0)
dx(t)

dt

∣∣∣∣
t=0

· · · dk−1x(t)

dtk−1

∣∣∣∣
t=0

are said to be the initial conditions of x(t). In an analog filter, initial conditions are associated with
the presence of charges in capacitors and inductors. In the present context, the analog filter can be
safely assumed to be initially relaxed and thus all initial conditions can be deemed to be zero. On
applying the Laplace transform to the differential equation in Eq. (10.1), we obtain

(bnsn + bn−1sn−1 + · · · + b0)Vo(s) = (ansn + an−1sn−1 + · · · + a0)Vi (s)

and thus

Vo(s)

Vi (s)
=

∑n
i=0 ai si∑n
i=0 bi si

= H (s) (10.4)

This equation defines the transfer function of the filter, H (s), which can also be expressed in terms
of its zeros and poles as

H (s) = N (s)

D(s)
= H0

∏n
i=1(s − zi)∏n
i=1(s − pi)

(10.5)

The transfer function of a continuous-time system plays the same key role as that of a discrete-
time system. It provides a complete description of the filter both in the time and frequency domains.

10.2.4 Time-Domain Response

The time-domain response of an analog filter can be expressed in terms of the time convolution as

vo(t) =
∫ ∞

−∞
h(τ)vi (t − τ) dτ

APPROXIMATIONS FOR ANALOG FILTERS 467

where h(t) is the response of the filter to the continuous-time impulse function δ(t). Now from the
time-convolution theorem of the Fourier transform (Theorem 2.14), we can write

Vo(jω) = H (jω)Vi (jω) (10.6a)

that is, the Fourier transform (or frequency spectrum) of the output signal is equal to the Fourier
transform of the impulse response times the Fourier transform of the input signal. If we now let
jω = s, we obtain

Vo(s) = H (s)Vi (s) (10.6b)

or

H (s) = Vo(s)

Vi (s)
(10.6c)

Eq. (10.6c) is essentially the same as Eq. (10.4) and, in effect, the transfer function of an analog filter
is one and the same as the Laplace transform of the impulse response.

The response of an analog filter to an arbitrary excitation can be deduced by obtaining the
inverse Laplace transform of Vo(s) and from Eq. (10.6b), we have

vo(t) = L−1[H (s)Vi (s)]

If (i) the singularities of Vo(s) in the finite plane are poles, and (ii) Vo(s) → 0 uniformly with respect
to the angle of s as |s| → ∞ with σ ≤ C , where C is a positive constant, then [8]

vo(t) =

0 for t < 0
1

2π j

∫
�

Vo(s)est ds for t ≥ 0
(10.7)

where � is a contour in the counterclockwise sense made up of the part of the circle s = Re jθ to the
left of line s = C and the segment of the line s = C that overlaps the circle, as depicted in Fig. 10.2,
and C and R are sufficiently large to ensure that � encloses all the finite poles of Vo(s).

From the residue theorem (see Sec. A.7), the contour integral in Eq. (10.7) can be evaluated as

1

2π j

∫
�

Vo(s)est ds =
P∑

i=1

Res
s=pi

[Vo(s)est] (10.8)

where P is the number of poles in Vo(s).
Note that if the numerator degree of the transfer function is equal to the denominator degree,

then condition (ii) above is violated and the inversion technique described cannot be applied. However,
the problem can be readily circumvented by expressing Vo(s) as

Vo(s) = R∞ + V ′
o(s)

where

R∞ = lim
s→∞ Y (s)

468 DIGITAL SIGNAL PROCESSING

C

R
Γ

s plane

R ∞→

jω

σ

Figure 10.2 Contour � for the evaluation of the inverse Laplace transform.

As can be readily verified, in such a case

V ′
o(s) = Vo(s) − R∞

would satisfy conditions (i) and (ii) above and thus the inverse Laplace transform of Y (s) can be
obtained as

vo(t) = R∞δ(t) + L−1V ′
o(s)

The simplest way to obtain the time-domain response of a filter is to express H (s)Vi (s) as a partial-
fraction expansion and then invert the resulting fractions individually. If Vo(s) has simple poles, we
can write

Vo(s) = R∞ +
P∑

i=1

Ri

s − pi
(10.9)

where R∞ is a constant and

Ri = lim
s→pi

[(s − pi) Vo(s)]

APPROXIMATIONS FOR ANALOG FILTERS 469

is the residue of pole s = pi . On applying the inversion formula in Eq. (10.7) to each partial fraction,
we obtain

vo(t) = R∞δ(t) + u(t)
P∑

i=1

Ri e
pi t (10.10)

where δ(t) and u(t) are the impulse function and unit step, respectively.
The impulse response h(t) of an analog system, that is, L−1 H (s), is of as much importance

as the impulse response of a discrete-time system since its absolute integrability is a necessary and
sufficient condition for the stability of the system. In discrete-time systems, the absolute summability
of the impulse response imposes the condition that the poles of the transfer function be located inside
the unit circle. Similarly, the absolute integrability of the impulse response in analog systems imposes
the condition that the poles of the transfer function be located in the left-half s plane.

Sometimes the unit-step response of an analog system may be required (see Prob. 11.9, for
example). The Laplace transform of the unit step, u(t), is 1/s. Hence the unit-step response is obtained
as

vo(t) = Ru(t) = L−1 H (s)

s

In certain applications, it may be necessary to deduce the initial or final value of a signal from
its Laplace transform (see Sec. 11.3, for example). Given the Laplace transform X (s) of a right-sided
signal x(t), the initial and final values of the signal can be obtained as

x(0+) = lim
s→∞[s X (s)]

and

lim
t→∞ x(t) = lim

s→0
[s X (s)]

10.2.5 Frequency-Domain Analysis

The sinusoidal response of an analog filter can be obtained

vo(t) = L−1[H (s)Vi (s)]

where

X (s) = L[u(t) sin ωt] = ω

(s + jω)(s − jω)

Through an analysis similar to that found in Sec. 5.5.1, it can be shown that the sinusoidal
response of an analog filter comprises a transient and a steady-state component (see Prob. 10.1). If the
analog filter is stable,1 i.e., the poles of the transfer function are in the left-half s plane, the transient

1Of course passive RLC analog filters cannot be unstable for the same reason that a piano note cannot persist forever
but there are active analog filters that can become unstable.

470 DIGITAL SIGNAL PROCESSING

component approaches zero as t is increased and eventually the response of the filter assumes a
steady state of the form

vo(t) = M(ω) sin[ωt + θ (ω)] (10.11)

where

M(ω) = |H (jω)| and θ (ω) = arg H (jω)

are the gain and phase shift of the filter. As functions of frequency M(ω) and θ (ω) are the amplitude
and phase response, respectively, and function

H (jω) = M(ω)e jθ (ω)

which includes both the amplitude and phase responses, defines the frequency response.
Given an arbitrary filter characterized by a transfer function such as that in Eq. (10.5) with M

simple zeros and N simple poles, we can write

H (jω) = M(ω)e jθ (ω) = H0
∏M

i=1(jω − zi)∏N
i=1(jω − pi)

(10.12)

By letting

jω − zi = Mzi e
jψzi and jω − pi = Mpi e

jψpi

we obtain

M(ω) = |H0|
∏M

i=1 Mzi∏N
i=1 Mpi

(10.13)

and

θ (ω) = arg H0 +
M∑

i=1

ψzi −
N∑

i=1

ψpi (10.14)

where arg H0 = π if H0 is negative. Thus the amplitude and phase responses of an analog filter can
be determined by evaluating the transfer function on the imaginary axis of the s plane, as illustrated
in Fig. 10.3.

As in discrete-time systems the group delay is defined as

τ (ω) = −dθ(ω)

dω

and as a function of frequency τ (ω) is said to be the delay characteristic.
The approximation methods to be presented in this chapter have evolved hand in hand with

realization methods for passive RLC analog filters such as that in Fig. 10.1. On the basis of energy
considerations, M(ω) is always equal to or less than unity in these filters and thus the gain in dB
is always equal to or less than zero. For this reason, the past literature on passive analog filters has
been almost entirely in terms of the loss (or attenuation) A(ω) which is always equal to or greater

APPROXIMATIONS FOR ANALOG FILTERS 471

σ

p1

jω

jωi−z1=Mz1
e jψz1

jωi−p1=Mp1
e jψp1

z2

z1

ψz1

ψz2

ψp2

ψp3

ψp1

p3

p2

jωi

s plane

Mz2

Mp2

Mp3

Figure 10.3 Evaluation of frequency response.

than zero since it is defined as the reciprocal of the gain in dB. The loss can be expressed as

A(ω) = 20 log

∣∣∣∣ Vi (jω)

Vo(jω)

∣∣∣∣ = 20 log
1

|H (jω)| = 10 log L(ω2)

where L(ω2) = 1

H (jω)H (− jω)
(10.15)

A plot of A(ω) versus ω is often referred to as a loss characteristic.

With ω = s/j in Eq. (10.15), the function

L(−s2) = D(s)D(−s)

N (s)N (−s)

can be formed. This is called the loss function of the filter, and, as can be easily verified, its zeros
are the poles of H (s) and their negatives, whereas its poles are the zeros of H (s) and their negatives.
Typical zero-pole plots for H (s) and L(−s2) are shown in Fig. 10.4.

10.2.6 Ideal and Practical Filters

The solution of the approximation problem for analog filters is facilitated by stipulating the existence
of a set of idealized filters that can serve as models. An ideal lowpass filter is one that will pass

472 DIGITAL SIGNAL PROCESSING

s plane s plane

H(s)

2

2

2

2

σ σ

jω jω L(−s2)

Figure 10.4 Typical zero-pole plots for H (s) and L(−s2).

only low-frequency and reject high-frequency components. Such a filter would have zero loss in
its passband and infinite loss in its stopband as depicted in Fig. 10.5a. The boundary between the
passband and stopband, namely, ωc, can be referred to as the cutoff frequency. Highpass, bandpass,
and bandstop filters with loss characteristics like those depicted in Fig. 10.5b to d can similarly be
defined.

ω ω

ωc

A(ω)

(a) (b)

(d)

A(ω)

A(ω) A(ω)

ωc

ωc1 ωc2 ωc2ωc1

(c)

ω ω

Figure 10.5 Ideal loss characteristics: (a) Lowpass, (b) highpass, (c) bandpass, (d) bandstop.

APPROXIMATIONS FOR ANALOG FILTERS 473

A practical lowpass filter differs from an ideal one in that the passband loss is not zero, the
stopband loss is not infinite, and the transition between passband and stopband is gradual. The loss
characteristic might assume the form shown in Fig. 10.6a where ωp is the passband edge, ωa is the
stopband edge, Ap is the maximum passband loss, and Aa is the minimum stopband loss. The cutoff
frequency ωc is usually a loose demarcation boundary between passband and stopband, which can
vary from the one type of approximation to the next usually on the basis of convenience. For example,
it is often used to refer to the 3-dB frequency in Butterworth filters or the square root of ωpωa in the
case of elliptic filters. Typical characteristics for practical highpass, bandpass, and bandstop filters
are shown in Fig. 10.6b to d .

ω

(a)

(b)

ωa

ωa

ωp

ωp

Ap

Aa

Aa

Ap

ωc

ωc

ω

A(ω)

A(ω)

Figure 10.6 Nonideal loss characteristics: (a) Lowpass, (b) highpass.

474 DIGITAL SIGNAL PROCESSING

(c)

(d)

ω

ωa2ωa1
ωp1 ωp2

ω

ωa2ωa1

ωp1 ωp2

Ap Ap

Aa

Aa Aa

Ap

A(ω)

A(ω)

Figure 10.6 Cont’d Nonideal loss characteristics: (c) Bandpass, (d) bandstop.

10.2.7 Realizability Constraints

An analog-filter approximation is a realizable continuous-time transfer function such that the loss
characteristic approaches one of the idealized characteristics in Fig. 10.5. A continuous-time transfer
function is said to be realizable if it characterizes a stable and causal network. Such a transfer function
is required to satisfy the following constraints:

1. It must be a rational function of s with real coefficients.

2. Its poles must lie in the left-half s plane.

3. The degree of the numerator polynomial must be equal to or less than that of the denominator
polynomial.

APPROXIMATIONS FOR ANALOG FILTERS 475

In the following four sections, we focus our attention on normalized lowpass approximations;
namely, Butterworth approximations in which the 3-dB cutoff frequency ωc is equal to 1 rad/s,
Chebyshev approximations in which the passband edge ωp is equal to 1 rad/s, inverse-Chebyshev
approximations in which the stopband edge ωa is equal to 1 rad/s, elliptic approximations in which
the cutoff frequency ωc = √

(ωpωa) is equal to 1 rad/s, and Bessel-Thomson approximations in
which the group delay as ω → 0 is equal to 1 s. Normalization keeps the sizes of numbers around
unity which are easier to manage. Approximations for real-life practical filters can be obtained from
the normalized ones through the use of transformations as described in Sec. 10.8. Approximations
so obtained are sometimes said to be denormalized.

10.3 BUTTERWORTH APPROXIMATION

The simplest lowpass approximation, the Butterworth approximation, is derived by assuming that
L(ω2) is a polynomial of the form

L(ω2) = b0 + b1ω
2 + · · · + bnω

2n (10.16)

such that

lim
ω2→0

L(ω2) = 1

in a maximally flat sense.

10.3.1 Derivation

The Taylor series of L(x + h), where x = ω2, is

L(x + h) = L(x) + h
d L(x)

dx
+ · · · + hk

k!

dk L(x)

dxk

The polynomial L(x) approaches unity in a maximally flat sense as x → 0 if its first n −1 derivatives
are zero at x = 0. We may, therefore, assign

L(0) = 1

dk L(x)

dxk

∣∣∣
x=0

= 0 for k ≤ n − 1

Thus from Eq. (10.16), we have

b0 = 1 and b1 = b2 = · · · = bn−1 = 0

or L(ω2) = 1 + bnω
2n

Now, for a normalized approximation in which

L(1) = 2

that is, A(ω) ≈ 3dB at ω = 1 rad/s, bn = 1 and

L(ω2) = 1 + ω2n (10.17)

476 DIGITAL SIGNAL PROCESSING

0 0.5 1.0 1.5

10

5

0

15

20

25

30
A

(ω
),

 d
B

ω, rad/s

n = 3

n = 6

n = 9

Figure 10.7 Typical Butterworth loss characteristics (n = 3, 6, 9).

Hence, the loss in a normalized lowpass Butterworth approximation is

A(ω) = 10 log(1 + ω2n) (10.18)

This is plotted in Fig. 10.7 for n = 3, 6, 9.

10.3.2 Normalized Transfer Function

With ω = s/j in Eq. (10.17), we have

L(−s2) = 1 + (−s2)n =
2n∏

i=1

(s − zi)

zi =
{

e j(2i−1)π/2n for even n

e j(i−1)π/n for odd n
(10.19)

and since |zk | = 1, the zeros of L(−s2) are located on the unit circle |s| = 1.
The normalized transfer function can be formed as

HN (s) = 1∏n
i=1(s − pi)

where pi for i = 1, 2, . . . , n are the left-half s-plane zeros of L(−s2).

APPROXIMATIONS FOR ANALOG FILTERS 477

Example 10.1 Using the Butterworth approximation, find HN (s) for (a) n = 5 and (b) n = 6.

Solution

(a) For n = 5, Eq. (10.19) gives

zi = e j(i−1)π/5

= cos
(i − 1)π

5
+ j sin

(i − 1)π

5

Hence, the zeros of the loss function are as follows:

z1 = 1.0 z2 = 0.809017 + j0.587785

z3 = 0.309017 + j0.951057 z4 = −0.309017 + j0.951057

z5 = −0.809017 + j0.587785 z6 = −1.0

z7 = −0.809017 − j0.587785 z8 = −0.309017 − j0.951057

z9 = 0.309017 − j0.951057 z10 = 0.809017 − j0.587785

Dropping the right-hand s plane zeros of the loss function, we get

z4 = −0.309017 + j0.951057 z5 = −0.809017 + j0.587785

z6 = −1.0 z7 = −0.809017 − j0.587785

z8 = −0.309017 − j0.951057

Now if we combine complex conjugate pairs of poles into factors, we obtain

H (s)= 1

(s + 1)
· 1

(s + 0.309017 − j0.951057)(s + 0.309017 + j0.951057)

· 1

(s + 0.809017 − j0.587785)(s + 0.809017 + j0.587785)

= 1

(s + 1)
· 1

(s2 + 0.618034s + 1)
· 1

(s2 + 1.618034s + 1)

(b) Similarly, for n = 6, we have

zi = e j(2i−1)π/2n

= cos
(2i − 1)π

12
+ j sin

(2i − 1)π

12

Hence

z1 = 0.965928 + j0.258819 z2 = 0.707107 + j0.707107

z3 = 0.258819 + j0.965926 z4 = −0.258819 + j0.965926

478 DIGITAL SIGNAL PROCESSING

z5 = −0.707107 + j0.707107 z6 = −0.965928 + j0.258819

z7 = −0.965928 − j0.258819 z8 = −0.707107 − j0.707107

z9 = −0.258819 − j0.965926 z10 = 0.258819 − j0.965926

z11 = 0.707107 − j0.707107 z12 = 0.965928 − j0.258819

Dropping the right-hand s plane zeros of the loss function, we get

z4 = −0.258819 + j0.965926 z5 = −0.707107 + j0.707107

z6 = −0.965928 + j0.258819 z7 = −0.965928 − j0.258819

z8 = −0.707107 − j0.707107 z9 = −0.258819 − j0.965926

Now if we combine complex conjugate pairs of poles into factors, we obtain

H (s) = 1

(s + 0.258819 − j0.965926)(s + 0.258819 + j0.965926)

· 1

(s + 0.707107 − j0.707107)(s + 0.707107 + j0.707107)

· 1

(s + 0.965928 − j0.258819)(s + 0.965928 + j0.258819)

= 1

(s2 + 0.517638s + 1)
· 1

(s2 + 1.414214s + 1)

· 1

(s2 + 1.931852s + 1)

The zero-pole plots of the loss function for the two examples are shown in Fig. 10.8.

s planen = 6s planen = 5

(a) (b)

Re s

jI
m

 s

Re s

jI
m

 s

Figure 10.8 Zero-pole plots of loss function L(−s2) (Example 10.1).

APPROXIMATIONS FOR ANALOG FILTERS 479

10.3.3 Minimum Filter Order

Typically in practice, the required filter order is unknown. However, for Butterworth, Chebyshev,
inverse-Chebyshev, and elliptic filters it can by easily deduced if the required specifications are
known.

Let us assume that we need a Butterworth filter with a maximum passband loss Ap, minimum
stopband loss Aa , passband edge ωp, and stopband edge ωa . As can be seen in Fig. 10.7, the loss in
the Butterworth approximation is a monotonic increasing function, and thus the maximum passband
loss occurs at the passband edge. Hence, we have

A(ωp) = 10 log(1 + ω2n
p) ≤ Ap

Thus

1 + ω2n
p ≤ 10Ap/10

ω2n
p ≤ 100.1Ap − 1

2n log ωp ≤ log(100.1Ap − 1)

For ωp < 1 and Ap < 3.01 dB, both sides in the above inequality are negative and if we express the
above relation as

−2n log ωp ≥ − log(100.1Ap − 1)

both sides will be positive. Solving for n, we get

n ≥ [− log(100.1Ap − 1)]

(−2 log ωp)
(10.20)

Similarly, the minimum stopband loss occurs at the stopband edge. Hence, n must be large enough
to ensure that

A(ωa) = 10 log
(
1 + ω2n

a

) ≥ Aa

Solving for n, we get

n ≥ log(100.1Aa − 1)

2 log ωa
(10.21)

In practice, we must, of course, satisfy both the passband and stopband specifications and, therefore,
n must be chosen large enough to satisfy both Eq. (10.20) as well as Eq. (10.21).

It should be mentioned here that Eqs. (10.20) and (10.21) will not normally yield an integer
but since the filter order must be an integer, the outcome of Eqs. (10.20) and (10.21) must be rounded
up to the nearest integer. As a result of this rounding-up operation, the required specifications will
be slightly oversatisfied. The actual maximum passband loss and actual minimum stopband loss
can be found by evaluating the loss of the filter at the specified passband and stopband edges using
Eq. (10.18).

480 DIGITAL SIGNAL PROCESSING

Example 10.2 In an application a normalized Butterworth lowpass filter is required that would
satisfy the following specification:

• Passband edge ωp: 0.7 rad/s

• Stopband edge ωa : 2.0 rad/s

• Maximum passband loss Ap: 0.5 dB

• Minimum stopband loss Aa : 30.0 dB

(a) Find the minimum filter order that would satisfy the specifications. (b) Calculate the actual
maximum passband loss and minimum stopband loss. (c) Obtain the required transfer function.

Solution

(a) To ensure that the passband loss is equal to or greater than Ap = 0.5 dB the inequality
in Eq. (10.20) must be satisfied, i.e.,

n ≥ [− log(100.1Ap − 1)]

(−2 log ωp)

≥ [− log(100.1∗0.5 − 1)]

(−2 log 0.7)

≥ 2.9489 → 3

To ensure that the stopband loss is equal to or greater than Aa = 30.0 dB, Eq. (10.21)
must be satisfied, i.e.,

n ≥ log(100.1Aa − 1)

2 log ωa

≥ log(100.1∗30 − 1)

2 log 2.0

≥ 4.9822 → 5

In order to satisfy the passband as well as the stopband specifications, we choose the
order n to be the larger of 3 and 5, that is, n = 5.

(b) Because of the monotonic increasing nature of the loss of the Butterworth approxima-
tion, the actual maximum passband loss occurs at the passband edge. Hence, Eq. (10.18)
gives

A(ωp) = 10 log
(
1 + ω2n

p

) = 10 log(1 + 0.710) = 0.1210 dB

Similarly, the actual minimum stopband loss occurs at the stopband edge and thus

A(ωa) = 10 log
(
1 + ω2n

a

) = 10 log(1 + 2.010) = 30.11 dB

APPROXIMATIONS FOR ANALOG FILTERS 481

The Butterworth method, like the Bessel-Thomson method to follow, yields only one
approximation for each filter order and, therefore, the required transfer function is the
one found in Example 10.1, part (a).

10.4 CHEBYSHEV APPROXIMATION

In the Butterworth approximation, the loss is an increasing monotonic function of ω, and as a result
the passband characteristic is lopsided, as can be seen in Fig. 10.7. A more balanced characteristic
can be achieved by employing the Chebyshev2 approximation in which the passband loss oscillates
between zero and a prescribed maximum Ap. In effect, the Chebyshev approximation leads to a
so-called equiripple solution.

10.4.1 Derivation

The loss characteristic in a fourth-order normalized Chebyshev approximation is of the form illus-
trated in Fig. 10.9, where ωp = 1. The loss is given by

A(ω) = 10 log L(ω2) (10.22a)

0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
(ω

),
 d

B

ω, rad/s

Ω1
ˆ

Ap

Ω01 Ω02
ωp

Figure 10.9 Loss characteristic of a fourth-order normalized Chebyshev filter.

2Pafnuty Lvovitch Chebyshev (1821–1894) was a Russian mathematician who was born in Okatovo, a small town west
of Moscow. In addition to his famous contribution to approximation theory, he contributed to number theory, integration, and
probability theory, and studied the convergence of the Taylor series.

482 DIGITAL SIGNAL PROCESSING

where

L(ω2) = 1 + ε2 F2(ω) (10.22b)

and

ε2 = 100.1Ap − 1 (10.23)

F(ω), L(ω2), and in turn L(−s2) are polynomials, and hence the normalized transfer function is of
the form

HN (s) = H0

D(s)

where H0 is a constant.
The derivation of HN (s) involves three general steps:

1. The exact form of F(ω) is deduced such that the desired loss characteristic is achieved.

2. The exact form of L(ω2) is obtained.

3. The zeros of L(−s2) and, in turn, the poles of HN (s) are found.

Close examination of the Chebyshev loss characteristic depicted in Fig. 10.9 reveals that F(ω)
and L(ω2) must have the following properties:

Property 1: F(ω) = 0 if ω = ±
01, ±
02

Property 2: F2(ω) = 1 if ω = 0, ±
̂1, ±1

Property 3:
d L(ω2)

dω
= 0 if ω = 0, ±
01, ±
̂1, ±
02

From Property 1, F(ω) must be a polynomial of the form

F(ω) = M1
(
ω2 −
2

01

)(
ω2 −
2

02

)
(M1, M2, . . . , M7 represent miscellaneous constants in this analysis.) From Property 2, 1 − F2(ω)
has zeros at ω = 0, ±
̂1, ±1. Furthermore, the derivative of 1 − F2(ω) with respect to ω, namely,

d

dω
[1 − F2(ω)] = −2F(ω)

dF(ω)

dω
= − 1

ε2

dL(ω2)

dω
(10.24)

has zeros at ω = 0, ±
01, ±
̂1, ±
02, according to Property 3. Consequently, 1− F2(ω) must have
at least double zeros at ω = 0, ±
̂1. Therefore, we can write

1 − F2(ω) = M2ω
2
(
ω2 −
̂2

1

)2
(ω2 − 1)

APPROXIMATIONS FOR ANALOG FILTERS 483

Now from Eq. (10.24) and Properties 1 and 3, we get

dF(ω)

dω
= 1

2ε2 F(ω)

dL(ω2)

dω
= M3ω

(
ω2 −
̂2

1

)
By combining the above results, we can form the differential equation[

dF(ω)

dω

]2

= M4[1 − F2(ω)]

1 − ω2
(10.25)

which is the basis of the fourth-order Chebyshev approximation.
The reader who is more interested in applying the Chebyshev approximation and less in its

derivation can proceed to Sec. 10.4.3 where the general formulas for the nth-order Chebyshev
approximation can be found.

To continue with the derivation, Eq. (10.25) can be expressed in terms of definite integrals as

M5

∫ F

0

dx√
1 − x2

+ M6 =
∫ ω

0

dy√
1 − y2

Hence, F and ω are interrelated by the equation

M5 cos−1 F + M7 = cos−1 ω = θ (10.26)

i.e., for a given value of θ

ω = cos θ and F = cos

(
θ

M5
− M7

M5

)

What remains to be done is to determine constants M5 and M7. If ω = 0, then θ = π/2; and
if ω = 1, then θ = 0, as depicted in Fig. 10.10. Now, F will correspond to F(ω) only if it has two
zeros in the range 0 ≤ θ ≤ π/2 (Property 1), and its magnitude is unity if θ = 0, π/2 (Property 2).
Thus F must be of the form illustrated in Fig. 10.10. As can be seen, for θ = 0

F = cos

(
− M7

M5

)
= 1

or M7 = 0. In addition, one period of F must be equal to one-quarter period of ω, that is,

2π M5 = π

2
or M5 = 1

4

Therefore, the exact form of F(ω) can be obtained from Eq. (10.26) as

F(ω) = cos(4 cos−1 ω)

Alternatively, by expressing cos 4θ in terms of cos θ, F(ω) can be put in the form

F(ω) = 1 − 8ω2 + 8ω4

484 DIGITAL SIGNAL PROCESSING

ω, F

Ω02

Ω01

1.0

0

−1.0

4
π

2
π

ω

θ

F

Figure 10.10 Plots of ω and F versus θ .

This polynomial is the fourth-order Chebyshev polynomial and is often designated as T4(ω).3

Similarly, for an nth-order Chebyshev approximation, one can show that

F(ω) = Tn(ω) = cos(n cos−1 ω)

and hence from Eq. (10.22b)

L(ω2) = 1 + ε2[cos(n cos−1 ω)]2 (10.27)

This relation gives the loss characteristic for |ω| ≤ 1. For |ω| > 1, the quantity cos−1 ω becomes
complex, i.e.,

cos−1 ω = jθ (10.28)

and since

ω = cos jθ = 1

2
(e j(jθ) + e− j(jθ)) = cosh θ

we have

θ = cosh−1 ω

3The use of Tn for the representation of Chebyshev polynomials has to do with the German spelling of the great
mathematician’s name, i.e., Tchebyscheff [2], which does not appear to be in use nowadays.

APPROXIMATIONS FOR ANALOG FILTERS 485

Now from Eq. (10.28)

cos−1 ω = j cosh−1 ω

and

cos(n cos−1 ω) = cos(jn cosh−1 ω) = cosh(n cosh−1 ω)

Thus for |ω| > 1, Eq. (10.27) becomes

L(ω2) = 1 + ε2[cosh(n cosh−1 ω)]2 (10.29)

In summary, the loss in a normalized lowpass Chebyshev approximation is given by

A(ω) = 10 log
[
1 + ε2T 2

n (ω)
]

(10.30)

where

Tn(ω) =
{

cos(n cos−1 ω) for |ω| ≤ 1

cosh(n cosh−1 ω) for |ω| > 1

The loss characteristics for n = 4, Ap = 1 dB and n = 7, Ap = 0.5 dB are plotted in
Fig. 10.11a. As can be seen

A(0) =
{

Ap for even n
0 for odd n

as is generally the case in the Chebyshev approximation.
As an aside, note that in Fig. 10.11a the number of stationary points is exactly equal to the order

of the approximation, that is, 4 or 7 for a fourth- or seventh-order approximation. This is a general
property of the Chebyshev approximation which is imposed by the formulation of the approximation
problem.

10.4.2 Zeros of Loss Function

With ω = s/j , Eq. (10.29) becomes

L(−s2) = 1 + ε2

[
cosh

(
n cosh−1 s

j

)]2

and if si = σi + jωi is a zero of L(−s2), we can write

ui + jvi = cosh−1(− jσi + ωi) (10.31a)

cosh[n(ui + jvi)] = ± j

ε
(10.31b)

From Eq. (10.31a)

− jσi + ωi = cosh(ui + jvi) = cosh ui cos vi + j sinh ui sin vi

486 DIGITAL SIGNAL PROCESSING

1.0

0 0
0

L
os

s,
 d

B

1.6
ω, rad/s

L
os

s,
 d

B

(a)

1.20.80.4

10

20

30

n = 4

n = 7

1.0

0
0

L
os

s,
 d

B

0.2 0.4 1.0 2.0 4.0 10.0
ω, rad/s

20

40

60

n = 4

L
os

s,
 d

B

n = 7

0

(b)

Figure 10.11 (a) Typical loss characteristics for Chebyshev filters (n = 4, Ap = 1.0 dB and n = 7,
Ap = 0.5 dB), (b) typical loss characteristics for inverse-Chebyshev filters (n = 4, Aa = 40 dB and n = 7,
Aa = 50 dB).

APPROXIMATIONS FOR ANALOG FILTERS 487

or

σi = − sinh ui sin vi (10.32)

and

ωi = cosh ui cos vi (10.33)

Similarly, from Eq. (10.31b)

cosh nui cos nvi + j sinh nui sin nvi = ± j

ε

or

cosh nui cos nvi = 0 (10.34a)

and

sinh nui sin nvi = ±1

ε
(10.34b)

The solution of Eq. (10.34a) is

vi = (2i − 1)π

2n
for i = 1, 2, . . . , n (10.35a)

and since sin(nvi) = ±1, Eq. (10.34b) yields

ui = u = ±1

n
sinh−1 1

ε
(10.35b)

Therefore, from Eqs. (10.32), (10.33), (10.35a), and (10.35b)

σi = ± sinh

(
1

n
sinh−1 1

ε

)
sin

(2i − 1)π

2n
(10.36a)

ωi = cosh

(
1

n
sinh−1 1

ε

)
cos

(2i − 1)π

2n
(10.36b)

for i = 1, 2, . . . , n. Evidently,

σ 2
i

sinh2 u
+ ω2

i

cosh2 u
= 1

i.e., the zeros of L(−s2) are located on an ellipse, as depicted in Fig. 10.12.

488 DIGITAL SIGNAL PROCESSING

−0.5
−1.2

−1.2

0 0.5

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

Re s

jI
m

 s

(a)

−0.5 0 0.5

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

Re s

jI
m

 s

(b)

Figure 10.12 Zero-pole plot of L(−s2) for Chebyshev filter: (a) n = 5, Ap = 1 dB, (b) n = 6, Ap = 1 dB.

APPROXIMATIONS FOR ANALOG FILTERS 489

10.4.3 Normalized Transfer Function

The normalized transfer function HN (s) can at this point be formed by identifying the left-half
s-plane zeros of the loss function, which happen to be the poles of the transfer function, as

HN (s) = H0

D(s)
∏r

i (s − pi)(s − p∗
i)

(10.37a)

= H0

D(s)
∏r

i [s2 − 2 Re(pi)s + |pi |2]
(10.37b)

where

r =

n − 1

2
for odd n

n

2
for even n

and D0(s) =
{

s − p0 for odd n

1 for even n

The poles and multiplier constant, H0, can be calculated by using the following formulas in sequence:

ε =
√

100.1Ap − 1 (10.38)

p0 = σ(n+1)/2 (10.39)

with σ(n+1)/2 = − sinh

(
1

n
sinh−1 1

ε

)
(10.40)

pi = σi + jωi for i = 1, 2, . . . , r (10.41)

with σi = − sinh

(
1

n
sinh−1 1

ε

)
sin

(2i − 1)π

2n
(10.42a)

ωi = cosh

(
1

n
sinh−1 1

ε

)
cos

(2i − 1)π

2n
(10.42b)

and

H0 =
{

−p0
∏r

i=1 |pi |2 for odd n

10−0.05Ap
∏r

i=1 |pi |2 for even n
(10.43)

In the above formulation, constant H0 is chosen to yield zero minimum passband loss. Formulas
for the required hyperbolic functions and their inverses can be found in Sec. A.3.4.

490 DIGITAL SIGNAL PROCESSING

Example 10.3 Obtain a fourth-order normalized Chebyshev approximation assuming a max-
imum passband loss of Ap = 1.0 dB.

Solution

From Eq. (10.23)

1

ε
= x = 1√

100.1 − 1
= 1.965227

and sinh−1 1

ε
= ln(x +

√
x2 + 1) = 1.427975

Hence, Eqs. (10.42a) and (10.42b) give

σi = −0.364625 sin
(2i − 1)π

8

ωi = 1.064402 cos
(2i − 1)π

8

and from Eqs. (10.41) and (10.43), the poles and multiplier constant can be obtained as

p1, p∗
1 = −0.139536 ± j0.983379

p2, p∗
2 = −0.336870 ± j0.407329

H0 = 10−0.05×1
2∏

i=1

|pi |2 = 0.245653

Since D0(s) = 1 for an even-order Chebyshev approximation, Eq. (10.37b) gives the
required transfer function as

HN (s) = H0

2∏
i=1

1

s2 + b1i s + b0i

where

b01 = 0.986505 b11 = 0.279072

b02 = 0.279398 b12 = 0.673740

10.4.4 Minimum Filter Order

In a normalized lowpass Chebyshev transfer function, the passband edge is fixed at ωp = 1 rad/s and
an arbitrary maximum passband loss Ap dB can be achieved. Since the stopband loss is an increasing
monotonic function of frequency as can be seen in Fig. 10.11a, the minimum stopband loss occurs

APPROXIMATIONS FOR ANALOG FILTERS 491

at the stopband edge. From Eq. (10.30), we have

A(ωa) = 10 log
[
1 + ε2T 2

n (ωa)
]

= 10 log
{

1 + ε2
[

cosh
(
n cosh−1 ωa

)]2}
(10.44)

Since the minimum stopband loss must be equal to or exceed Aa , we have

10 log{1 + ε2[cosh(n cosh−1 ωa)]2} ≥ Aa

1 + ε2[cosh(n cosh−1 ωa)]2 ≥ 100.1Aa

cosh(n cosh−1 ωa) ≥
√

100.1Aa − 1

ε

and on eliminating ε using Eq. (10.23) and then solving for n, we obtain

n ≥ cosh−1
√

D

cosh−1 ωa
(10.45a)

where

D = 100.1Aa − 1

100.1Ap − 1
(10.45b)

The required filter order is the lowest integer that would satisfy the above inequality. Once the filter
order is determined, the actual minimum stopband loss can be obtained by substituting back the filter
order in Eq. (10.44).

Example 10.4 An application calls for a normalized lowpass Chebyshev filter that would
satisfy the following specifications:

• Passband edge ωp: 1.0 rad/s

• Stopband edge ωa : 2.0 rad/s

• Maximum passband loss Ap: 0.1 dB

• Minimum stopband loss Aa : 34.0 dB

(a) Find the minimum filter order. (b) Obtain the required transfer function. (c) Calculate the
actual minimum stopband loss.

Solution

(a) From Eq. (10.45b)

D = 100.1×34 − 1

100.1×0.1 − 1
= 1.077958 × 105

Hence, Eq. (10.45a) gives

n ≥ cosh−1
√

1.077958 × 105

cosh−1 2.0
= 4.93 → 5

492 DIGITAL SIGNAL PROCESSING

(b) From Eq. (10.38), we have

ε =
√

100.1×0.1 − 1 = 0.152620 or
1

ε
= x = 6.552203

and sinh−1 1

ε
= ln(x +

√
x2 + 1) = 2.578722

From Eqs. (10.40) and (10.41), we get

σ3 = −0.538914

and

σi = −0.5389143 sin
(2i − 1)π

10

ωi = 1.135970 cos
(2i − 1)π

10

Thus Eqs. (10.39), (10.41), and (10.43) give the poles and multiplier constant as

p0 = −0.538914

p1, p∗
1 = −0.166534 ± j1.080372

p2, p∗
2 = −0.435991 ± j0.667707

H0 = −p0

2∏
i=1

|pi |2 = 0.409513

Therefore, from Eq. (10.37b) the required transfer function is obtained as

HN (s) = H0

s + b00

2∏
i=1

1

s2 + b1i s + b0i

where

b00 = 0.538914

b01 = 1.194937 b11 = 0.333067

b02 = 0.635920 b12 = 0.871982

(c) The actual minimum stopband loss can be obtained by evaluating the stopband loss
at the stopband edge using the actual filter order. From Eq. (10.44), we get

A(ωa) = 10 log{1 + (0.152620)2[cosh(5 cosh−1 2.0)]2} = 34.85 dB

APPROXIMATIONS FOR ANALOG FILTERS 493

10.5 INVERSE-CHEBYSHEV APPROXIMATION

A closely related approximation to the above is the inverse-Chebyshev approximation. This can
actually be derived from the Chebyshev approximation but the derivation is left as an exercise to the
reader (see Prob. 10.12). The passband loss in the inverse-Chebyshev is very similar to that of the
Butterworth approximation, i.e., it is an increasing monotonic function of ω, while the stopband loss
oscillates between infinity and a prescribed minimum loss Aa , as depicted in Fig. 10.11b. The loss
is given by

A(ω) = 10 log

[
1 + 1

δ2T 2
n (1/ω)

]
(10.46)

where

δ2 = 1

100.1Aa − 1
(10.47)

and the stopband extends from ω = 1 to ∞.

10.5.1 Normalized Transfer Function

The normalized transfer function has a number of zeros on the jω axis in this case and is given by

HN (s) = H0

D0(s)

r∏
i=1

(s − 1/zi)(s − 1/z∗
i)

(s − 1/pi)(s − 1/p∗
i)

(10.48a)

= H0

D0(s)

r∏
i=1

s2 − 2 Re
(

1
zi

)
s + 1

|zi |2

s2 − 2 Re
(

1
pi

)
s + 1

|pi |2
(10.48b)

= H0

D0(s)

r∏
i=1

s2 + 1
|zi |2

s2 − 2 Re
(

1
pi

)
s + 1

|pi |2
(10.48c)

where

r =
{

n−1
2 for odd n

n
2 for even n

(10.48d)

and

D0(s) =
{

s − 1
p0

for odd n

1 for even n
(10.48e)

If the filter order n and minimum stopband loss Aa are known, the multiplier constant H0 and
zeros and poles or transfer function coefficient can be obtained by using the following formulas in
sequence:

δ = 1√
100.1Aa − 1

(10.49)

494 DIGITAL SIGNAL PROCESSING

zi = j cos
(2i − 1)π

2n
for 1, 2, . . . , r (10.50)

p0 = σ(n+1)/2 (10.51)

with σ(n+1)/2 = − sinh

(
1

n
sinh−1 1

δ

)
(10.52)

pi = σi + jωi for 1, 2, . . . , r (10.53)

with σi = − sinh

(
1

n
sinh−1 1

δ

)
sin

(2i − 1)π

2n
(10.54a)

ωi = cosh

(
1

n
sinh−1 1

δ

)
cos

(2i − 1)π

2n
(10.54b)

and

H0 =

1
−p0

∏r
i=1

|zi |2
|pi |2 for odd n

∏r
i=1

|zi |2
|pi |2 for even n

(10.55)

The derivation of HN (s) is left as an exercise for the reader (see Prob. 10.9).

10.5.2 Minimum Filter Order

In a normalized lowpass inverse-Chebyshev transfer function, the stopband edge is fixed at ωa = 1
rad/s and an arbitrary minimum stopband loss Aa dB can be achieved for any given order. The min-
imum filter order is thus determined by the maximum loss allowed in the passband, namely, Ap dB.

The highest passband loss occurs at the passband edge and from Eq. (10.46)

A(ωp) = 10 log

[
1 + 1

δ2T 2
n (1/ωp)

]

= 10 log

[
1 + 1

δ2[cosh(n cosh−1 1/ωp)]2

]
(10.56)

Hence, the minimum filter order must satisfy the inequality

10 log

[
1 + 1

δ2[cosh(n cosh−1 1/ωp)]2

]
≤ Ap

and if we solve for n, we obtain

n ≥ cosh−1
√

D

cosh−1(1/ωp)
(10.57a)

where

D = 100.1Aa − 1

100.1Ap − 1
(10.57b)

The minimum filter order is the lowest integer that would satisfy the above inequality. The actual
maximum passband loss can be obtained by substituting the filter order obtained back in Eq. (10.56).

APPROXIMATIONS FOR ANALOG FILTERS 495

Example 10.5 An application requires a normalized lowpass inverse-Chebyshev filter that
would satisfy the following specifications:

• Passband edge ωp: 0.6 rad/s

• Stopband edge ωa : 1.0 rad/s

• Maximum passband loss Ap: 1.0 dB

• Minimum stopband loss Aa : 35.0 dB

(a) Find the minimum filter order. (b) Obtain the required transfer function. (c) Calculate
the actual maximum passband loss.

Solution

(a) From Eq. (10.57b)

D = 100.1×35.0 − 1

100.1×1.0 − 1
= 1.2209 × 104

Hence, Eq. (10.57a) yields

n ≥ cosh−1
√

1.2209 × 104

cosh−1
(

1
0.6

) = 5.3981

1.0986
= 4.9136 → 5

(b) From Eqs. (10.48d) and (10.48e), we have

r = (n − 1)/2 = 2 and D0(s) = s − 1/p0

and from Eqs. (10.49)–(10.55), we get

δ = 1√
100.1×35.0 − 1

= 0.017786

σ3 = − sinh

(
1

5
sinh−1 1

0.017786

)
= −1.091354

zi = j cos
(2i − 1)π

10

σi = − sinh

(
1

5
sinh−1 1

0.017786

)
sin

(2i − 1)π

10

= −1.091354 sin
(2i − 1)π

10

ωi = cosh

(
1

5
sinh−1 1

0.017786

)
cos

(2i − 1)π

2n

= 1.480221 cos
(2i − 1)π

10

496 DIGITAL SIGNAL PROCESSING

Hence,

p0 = σ3 = −1.091354

z1 = j cos
π

10
= j0.951057

z2 = j cos
3π

10
= j0.587785

p1 = −1.091354 sin
π

10
+ j1.480221 cos

π

10
= −0.337247 + j1.407774

p2 = −1.091354 sin
3π

10
+ j1.480221 cos

3π

10
= −0.882924 + j0.870052

Therefore, the transfer function in Eq. (10.48c) assumes the form

HN (s) =
H0

(
s2 + 1

|z1|2
)(

s2 + 1
|z2|2

)
(
s − 1

σ3

)[
s2 − 2 Re

(
1
p1

)
s + 1

|p1|2
][

s2 − 2 Re
(

1
p2

)
s + 1

|p2|2
]

= H0(s2 + a01)(s2 + a02)

(s + b00)(s2 + b11s + b01)(s2 + b12s + b02)

where

a01 = 1

|z1|2 = 1.105573 a02 = 1

|z2|2 = 2.894427

b00 = − 1

σ3
= 0.916293

b01 = 1

|p1|2 = 0.477199 b11 = −2 Re

(
1

p1

)
= 0.321868

b02 = 1

|p2|2 = 0.650811 b12 = −2 Re

(
1

p2

)
= 1.149232

H0 = 1

−p0

2∏
i=1

|zi |2
|pi |2

= 0.088928

(c) From Eq. (10.56), the maximum passband loss can be determined by evaluating the
loss at the passband edge as

A(ωp) = 10 log

{
1 + 1

0.0177862
[

cosh
(
5 cosh−1 1

0.6

)]2

}

= 0.8427 dB

APPROXIMATIONS FOR ANALOG FILTERS 497

10.6 ELLIPTIC APPROXIMATION

The Chebyshev approximation yields a much better passband characteristic and the inverse-
Chebyshev approximation yields a much better stopband characteristic than the Butterworth ap-
proximation. A filter with an improved passband as well as an improved stopband loss characteristic
can be obtained by using the elliptic approximation in which the passband loss oscillates between
zero and a prescribed maximum Ap and the stopband loss oscillates between infinity and a prescribed
minimum Aa .

The elliptic approximation is more efficient than the preceding two in that the transition between
passband and stopband is steeper for a given approximation order.

Our approach to this approximation follows the formulation of Grossman [9], which, although
involved, is probably the simplest available. The approach taken is first to deduce the fifth-order
approximation and then generalize the results obtained to the nth odd-order approximation. After
that the nth even-order approximation is given without the derivation. The section concludes with
a practical procedure for obtaining elliptic transfer functions that would satisfy prescribed filter
specifications.

10.6.1 Fifth-Order Approximation

The loss characteristic in a fifth-order normalized elliptic approximation is of the form depicted in
Fig. 10.13, where

ωp =
√

k ωa = 1√
k

ωc = √
ωaωp = 1

The constants k and k1 given by

k = ωp

ωa

and

k1 =
(

100.1Ap − 1

100.1Aa − 1

)1/2

(10.58)

are the selectivity factor and discrimination factor, respectively. The loss is given by

A(ω) = 10 log L(ω2)

where

L(ω2) = 1 + ε2 F2(ω) (10.59)

and

ε2 = 100.1Ap − 1 (10.60)

Function F(ω) and in turn L(ω2), L(−s2), and H (s), which are polynomials in the Chebyshev
approximation, are ratios of polynomials in the case of the elliptic approximation.

According to the elliptic loss characteristic of Fig. 10.13, the prerequisite properties of F(ω)
and L(ω2) are as follows:

498 DIGITAL SIGNAL PROCESSING

A
(ω

)

ω

Aa

Ap

Ω1
ˆ

Ω2
ˆ

Ω1
ˇ

Ω2
ˇ

ωp ωa

Ω∞1Ω01

Ω∞2
Ω02

Figure 10.13 Loss characteristic of a fifth-order elliptic filter.

Property 1: F(ω) = 0 if ω = 0, ±
01, ±
02

Property 2: F(ω) = ∞ if ω = ∞, ±
∞1, ±
∞2

Property 3: F2(ω) = 1 if ω = ±
̂1, ±
̂2, ±
√

k

Property 4: F2(ω) = 1

k2
1

if ω = ±
̌1, ±
̌2, ± 1√
k

Property 5:
dL(ω2)

dω
= 0 if ω = ±
̂1, ±
̂2, ±
̌1, ±
̌2

By using each and every one of these properties we shall attempt to derive the exact form of F(ω).
The approach is analogous to that used earlier in the Chebyshev approximation.4

From Properties 1 and 2, we obtain

F(ω) = M1ω
(
ω2 −
2

01

)(
ω2 −
2

02

)(
ω2 −
2

∞1

)(
ω2 −
2

∞2

) (10.61)

4The DSP practitioner who is more interested in applying the elliptic approximation and less so in its derivation may
proceed to Sec. 10.6.6 for the outcome of this exercise in mathematics.

APPROXIMATIONS FOR ANALOG FILTERS 499

(M1 to M7 represent miscellaneous unknown constants that arise in the formulation of the problem
at hand). Similarly, from Properties 2 and 3, we can write

1 − F2(ω) = M2
(
ω2 −
̂2

1

)2(
ω2 −
̂2

2

)2
(ω2 − k)(

ω2 −
2
∞1

)2(
ω2 −
2

∞2

)2

where the double zeros at ω = ±
̂1, ±
̂2 are due to Property 5 (see Sec. 10.4.1). Similarly, from
Properties 2, 4, and 5

1 − k2
1 F2(ω) = M3

(
ω2 −
̌2

1

)2(
ω2 −
̌2

2

)2
(ω2 − 1/k)(

ω2 −
2
∞1

)2(
ω2 −
2

∞2

)2

and from Property 5

dF(ω)

dω
= M4

(
ω2 −
̂2

1

)(
ω2 −
̂2

2

)(
ω2 −
̌2

1

)(
ω2 −
̌2

2

)
(
ω2 −
2

∞1

)2(
ω2 −
2

∞2

)2

By combining the above results, we can form the important relation

[
dF(ω)

dω

]2

= M5[1 − F2(ω)][1 − k2
1 F2(ω)]

(1 − ω2/k)(1 − kω2)
(10.62)

Alternatively, we can write

∫ F

0

dx√
(1 − x2)

(
1 − k2

1 x2
) =

√
M5

∫ ω

0

dy√
(1 − y2/k)(1 − ky2)

+ M7

and if y = √
ky′, y′ = y

∫ F

0

dx√
(1 − x2)(1 − k2

1 x2)
= M6

∫ ω/
√

k

0

dy√
(1 − y2)(1 − k2 y2)

+ M7

These are elliptic integrals of the first kind, and they can be put in the more convenient form

∫ φ1

0

dθ1√
1 − k2

1 sin2 θ1

= M6

∫ φ

0

dθ√
1 − k2 sin2 θ

+ M7

by using the transformations

x = sin θ1 F = sin φ1 y = sin θ
ω√

k
= sin φ

500 DIGITAL SIGNAL PROCESSING

The above two integrals can assume complex values if complex values are allowed for φ1 and φ. By
letting ∫ φ

0

dθ√
1 − k2 sin2 θ

= z where z = u + jv

the solution of the differential equation in Eq. (10.62) can be expressed in terms of a pair of simul-
taneous equations as

ω√
k

= sin φ = sn(z, k) (10.63)

F = sin φ1 = sn(M6z + M7, k1) (10.64)

The entities at the right-hand side are elliptic functions.
Further progress in this analysis can be made by using the properties of elliptic functions as

detailed in Appendix B.
As demonstrated in Sec. B.7, Eq. (10.63) is a transformation that maps trajectory ABC D in

Fig. 10.14a onto the positive real axis of the ω plane, as depicted in Fig. 10.14b. Since the behavior

jv

jK'

A B

CD

z plane

A' B' C' D'

u4K
5

2K
5

(a)

j Imω

Re ω

ω plane

(b)

1

Ω01 Ω02 Ω∞2 Ω∞1

∞

K

÷k 1
÷k

Figure 10.14 Mapping properties of Eq. (10.63).

APPROXIMATIONS FOR ANALOG FILTERS 501

of F(ω) is known for all real values of ω, constants M6 and M7 can be determined. In turn, the exact
form of F(ω) can be derived.

If z = u and 0 ≤ u ≤ K (domain 1 in Sec. B.7), Eqs. (10.63) and (10.64) become

ω =
√

k sn(u, k) (10.65)

F = sn(M6u + M7, k1) (10.66)

where ω and F have real periods of 4K and 4K1/M6, respectively (see Sec. B.6). If ω = 0, then
u = 0; and if ω = √

k, then u = K , as illustrated in Fig. 10.15. Now, F will correspond to F(ω) if it
has zeros at u = 0 and at two other points in the range 0 < u ≤ K (Property 1), and its magnitude is
unity at u = K (Property 3). Consequently, F must be of the form illustrated in Fig. 10.15. Clearly,
for u = 0

F = sn(M7, k1) = 0

or M7 = 0. Furthermore, five quarter periods of F must be equal to one quarter period of ω, that is,

M6 = 5K1

K

K
5

3K
5

Ω02

Ω01

ω, F

ω

K

F

0

0.5

1.0

−0.5

−1.0

u

÷k

Figure 10.15 Plots of ω and F versus u.

502 DIGITAL SIGNAL PROCESSING

and so from Eq. (10.66)

F = sn

(
5K1u

K
, k1

)

Now F has z-plane zeros at

u = 2K i

5
for i = 0, 1, 2

and, therefore, F(ω) must have ω-plane zeros (zero-loss frequencies) at

0i =
√

k sn

(
2K i

5
, k

)
for i = 0, 1, 2

according to Eq. (10.65) (see Fig. 10.14).
If z = u + j K ′ and 0 ≤ u ≤ K (domain 3 in Sec. B.7), Eqs. (10.63) and (10.64) assume the

form

ω = 1√
k sn(u, k)

(10.67)

F = sn

[
5K1(u + j K ′)

K
, k1

]
(10.68)

If ω = ∞, u = 0 and F must be infinite (Property 2), that is,

F = sn

(
j5K1 K ′

K
, k1

)
= ∞

and from Eq. (B.19)

F = j sn(5K1 K ′/K , k ′
1)

cn(5K1 K ′/K , k ′
1)

= ∞ where k ′
1 =

√
1 − k2

1

Hence, it is necessary that

cn

(
5K1 K ′

K
, k ′

1

)
= 0

and, therefore, the relation

5K ′

K
= K ′

1

K1
(10.69)

must hold. The quantities K , K ′ are functions of k, and similarly K1, K ′
1 are functions of k1; in turn,

k1 is a function of Ap and Aa by definition. In effect, Eq. (10.69) constitutes an implicit constraint
among filter specifications. We shall assume here that Eq. (10.69) holds. The implications of this
assumption will be examined at a later point.

APPROXIMATIONS FOR ANALOG FILTERS 503

With Eq. (10.69) satisfied, Eq. (10.68) becomes

F = sn

(
5K1

K
u + j K ′

1, k1

)

and after some manipulation

F = 1

k1 sn(5K1u/K , k1)

Evidently, F = ∞ if

u = 2K i/5 for i = 0, 1, 2 (10.70)

that is, F has poles at

z = 2K i

5
+ jK ′ for i = 0, 1, 2

as depicted in Fig. 10.14, and since line CD maps onto line C ′ D′, F corresponds to F(ω). That is,
F(ω) has two poles in the range 1/

√
k ≤ ω < ∞ and one at ω = ∞ (Property 2). The poles of F(ω)

(infinite-loss frequencies) can be obtained from Eqs. (10.67) and (10.70) as

∞i = 1√
k sn(2K i/5, k)

for i = 0, 1, 2

Therefore, the infinite-loss frequencies are the reciprocals of the zero-loss frequencies, i.e.,

∞i = 1

0i

and by eliminating
∞i in Eq. (10.61), we have

F(ω) = M ′
1ω

(
ω2 −
2

01

)(
ω2 −
2

02

)(
1 − ω2
2

01

)(
1 − ω2
2

02

) (10.71)

The only unknown at this point is constant M ′
1. With z = K + jv and 0 ≤ v ≤ K ′ (domain 2

in Sec. B.7), Eqs. (10.63) and (10.64) can be put in the form

ω =
√

k

dn(v, k ′)
and F = sn

[
5K1(K + jv)

K
, k1

]

If ω = 1, then v = K ′/2 and F(1) = M ′
1, according to Eq. (10.71). Hence,

M ′
1 = sn

(
5K1 + j

5K ′K1

2K
, k1

)
or M ′

1 = sn

(
K1 + jK ′

1

2
, k1

)

504 DIGITAL SIGNAL PROCESSING

according to Eqs. (10.69) and (B.8) and after some manipulation, we get

M ′
1 = 1

dn(K ′
1/2, k ′

1)
= 1√

k1

10.6.2 Nth-Order Approximation (n Odd)

For an nth-order approximation with n odd, constant M7 in Eq. (10.64) is zero, and n quarter periods
of F must correspond to one quarter period of ω, that is,

M6 = nK1

K

Therefore, Eq. (10.64) assumes the form

F = sn

(
nK1z

K
, k1

)
(10.72)

where the relation

nK ′

K
= K ′

1

K1

must hold. The expression for F(ω) can be shown to be

F(ω) = (−1)rω√
k1

r∏
i=1

ω2 −
2
i

1 − ω2
2
i

where

r = n − 1

2

and
i =
√

k sn

(
2K i

n
, k

)
for i = 1, 2, . . . , r

10.6.3 Zeros and Poles of L(−s2)

The next task is to determine the zeros and poles of L(−s2). From Eqns. (10.59) and (10.72), the
z-domain representation of the loss function can be expressed as

L(z) = 1 + ε2 sn2

(
nK1z

K
, k1

)

and by factorizing

L(z) =
[

1 + jε sn

(
nK1z

K
, k1

)][
1 − jε sn

(
nK1z

K
, k1

)]

APPROXIMATIONS FOR ANALOG FILTERS 505

If z1 is a root of the first factor, −z1 must be a root of the second factor since the elliptic sine is an
odd function of z. Consequently, the zeros of L(z) can be determined by solving the equation

sn

(
nK1z

K
, k1

)
= j

ε

In practice, the value of k1 is very small. For example, k1 ≤ 0.0161 if Ap ≤ 1 dB and
Aa ≥ 30 dB and decreases further if Ap is reduced or Aa is increased. We can thus assume that
k1 = 0, in which case

sn

(
nK1z

K
, 0

)
= sin

nK1z

K
= j

ε

where K1 = π/2, according to Eq. (B.2). Alternatively,

− j
nπ z

2K
= sinh−1 1

ε

and on using the identity

sinh−1 x = ln(x +
√

x2 + 1)

and Eq. (10.60), we obtain one zero of L(z) as

z0 = jv0

where

v0 = K

nπ
ln

100.05Ap + 1

100.05Ap − 1

Now sn (nK1z/K , k1) has a real period of 4K/n, and as a result all zi given by

zi = z0 + 4K i

n
for i = 0, 1, 2, . . .

must also be zeros of L(z).
The zeros of L(ω2) can be deduced by using the transformation between the z and ω planes,

namely, Eq. (10.63). In turn, the zeros of L(−s2) can be obtained by letting ω = s/j . For i = 0,
there is a real zero of L(−s2) at s = σ0, where

σ0 = j
√

k sn(jv0, k) (10.73)

and for i = 1, 2, . . . , n − 1 there are n − 1 distinct complex zeros at s = σi + jωi , where

σi + jωi = j
√

k sn

(
jv0 + 4K i

n
, k

)
(10.74)

506 DIGITAL SIGNAL PROCESSING

The remaining n zeros are negatives of zeros already determined.
For n = 5, the required values of the elliptic sine are

sn

(
jv0 + 4K

5

)

sn

(
jv0 + 8K

5

)
= sn

(
jv0 + 2K − 2K

5

)
= −sn

(
jv0 − 2K

5

)

sn

(
jv0 + 12K

5

)
= sn

(
jv0 + 2K + 2K

5

)
= −sn

(
jv0 + 2K

5

)

sn

(
jv0 + 16K

5

)
= sn

(
jv0 + 4K − 4K

5

)
= sn

(
jv0 − 4K

5

)

Hence, Eq. (10.74) can be put in the form

σi + jωi = j
√

k(−1)i sn

(
jv0 ± 2K i

5
, k

)
for i = 1, 2

Similarly, for any odd value of n

σi + jωi = j
√

k(−1)i sn

(
jv0 ± 2K i

n
, k

)
for i = 1, 2, . . . ,

n − 1

2

Now with the aid of the addition formula (see Sec. B.5) we can show that

σi + jωi = (−1)iσ0Vi ± j
i W

1 + σ 2
0
2

i

for i = 1, 2, . . . ,
n − 1

2

where

W =
√(

1 + kσ 2
0

)(
1 + σ 2

0

k

)
(10.75)

Vi =
√(

1 − k
2
i

)(
1 −
2

i

k

)
(10.76)

i =
√

k sn

(
2K i

n
, k

)
(10.77)

A complete description of L(−s2) is available at this point. It has zeros at s = ±σ0, ±(σi + jωi)
and double poles at s = ± j/
i , which can be evaluated by using the series representation of elliptic
functions given in Sec. B.8. From Eq. (10.73) and (B.30), we have

σ0 = −2q1/4 ∑∞
m=0(−1)mqm(m+1) sinh[(2m + 1)�]

1 + 2
∑∞

m=1(−1)mqm2 cosh 2m�
(10.78)

APPROXIMATIONS FOR ANALOG FILTERS 507

where

� = 1

2n
ln

100.05Ap + 1

100.05Ap − 1

The parameter q , which is known as the modular constant, is given by

q = e−π K ′/K (10.79)

Similarly, from Eqs. (10.77) and (B.30)

i = 2q1/4 ∑∞
m=0(−1)mqm(m+1) sin (2m+1)π i

n

1 + 2
∑∞

m=1(−1)mqm2 cos 2mπ i
n

(10.80)

for i = 1, 2, . . . , (n − 1)/2. The modular constant q can be determined by evaluating K and K ′

numerically. A quicker method, however, is to use the following procedure.
Since dn(0, k) = 1, Eq. (B.32) gives

√
k ′ = 1 − 2q + 2q4 − 2q9 + · · ·

1 + 2q + 2q4 + 2q9 + · · · (10.81)

Now, q < 1 since K , K ′ > 0, and hence a first approximation for q is

q0 = 1

2

(
1 − √

k ′

1 + √
k ′

)

By eliminating
√

k ′ using Eq. (10.81), rationalizing, and then performing long division we have

q ≈ q0 + 2q5 − 5q9 + 10q13

Thus, if qm−1 is an approximation for q

qm ≈ q0 + 2q5
m−1 − 5q9

m−1 + 10q13
m−1

is a better approximation. By using this recursive relation repeatedly we can show that

q ≈ q0 + 2q5
0 + 15q9

0 + 150q13
0

Since k is known, the quantities k ′, q0, q, σ0,
i , σi , and ωi can be evaluated. Subsequently, the
normalized transfer function HN (s) can be formed.

10.6.4 Nth-Order Approximation (n Even)

So far we have been concerned with odd-order approximations. However, the results can be easily
extended to the case of even n.

Function F is of the form

F = sn

(
nK1

K
z + K1, k1

)

508 DIGITAL SIGNAL PROCESSING

where the relation

nK ′

K
= K ′

1

K1

must again hold. The expression for F(ω) in this case is given by

F(ω) = (−1)r

√
k1

r∏
i=1

ω2 −
2
i

1 − ω2
2
i

where

r = n

2
and
i =

√
k sn

[
(2i − 1)K

n
, k

]
for i = 1, 2, . . . , r

The zeros of L(−s2) are

si = ±(σi + jωi)

where

σi + jωi = ±[σ0Vi + j(−1)i
i W]

1 + σ 2
0
2

i

The parameters W, Vi , and σ0 are given by Eqs. (10.75), (10.76), and (10.78), as in the case of odd
n, and the values of
i can be computed by replacing i by i − 1

2 in the right-hand side of Eq. (10.80).

10.6.5 Specification Constraint

The results of the preceding sections are based on the assumption that the relation

nK ′

K
= K ′

1

K1
(10.82)

holds. As pointed out earlier, this equation constitutes a constraint among filter specifications of the
form

f1(n, k) = f2(Ap, Aa)

Consequently, if three of the four parameters are specified, the fourth is automatically fixed. It is thus
of interest to put Eq. (10.82) in a more useful form that can be used to evaluate the corresponding
fourth parameter.

From the definition of the elliptic sine sn(K1, k1) = 1 and from Eq. (B.30)

k1 = 4
√

q1

(
1 + q2

1 + q6
1 + · · ·

1 + 2q1 + 2q4
1 + · · ·

)2

where q1 = e−π K ′
1/K1

APPROXIMATIONS FOR ANALOG FILTERS 509

In practice, k1 is close to zero, k ′
1 is close to unity, K ′

1/K1 is large, and, as a result, q1 � 1. Hence,
we can assume that

k1 ≈ 4
√

q1 or k2
1 = 16q1 = 16e−π K ′

1/K1

By eliminating K ′
1/K1, using Eq. (10.82), we have

k2
1 = 16e−πnK ′/K

and from Eq. (10.79)

k2
1 = 16qn

Therefore, from Eq. (10.58) the desired formula is

100.1Ap − 1

100.1Aa − 1
= 16qn (10.83)

If n, k, and Ap are specified, the resulting minimum stopband loss is given by

Aa = 10 log

(
100.1Ap − 1

16qn
+ 1

)
(10.84)

The minimum stopband loss Aa is plotted versus k in Fig. 10.16a for various values of Ap in
the range 0.125 ≤ Ap ≤ 5 dB. On the other hand, Fig. 10.16b shows Aa versus k for various values
of n in the range 2 ≤ n ≤ 10. We note in Fig. 10.16a and b that for a fixed maximum passband loss
or a fixed filter order, the minimum stopband loss is reduced if we attempt to increase the selectivity,
i.e., make the transition characteristic between the passband and stopband steeper.

Alternatively, if k, Aa , and Ap are specified, the required approximation order must satisfy the
inequality

n ≥ log 16D

log(1/q)
where D = 100.1Aa − 1

100.1Ap − 1

10.6.6 Normalized Transfer Function

The results obtained through the previous mathematical roller coaster can now be summarized in
layman’s language for the DSP practitioner.

An elliptic normalized lowpass filter with a selectivity factor k, a maximum passband loss of
Ap dB, and a minimum stopband loss equal to or in excess of Aa dB has a transfer function of the
form

HN (s) = H0

D0(s)

r∏
i=1

s2 + a0i

s2 + b1i s + b0i
(10.85)

510 DIGITAL SIGNAL PROCESSING

0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70

80
A

a,
 d

B

k

0.25Ap = 0.125
0.5 1.0 2.0 dB

(a)

n = 5

0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

120

140

A
a,

 d
B

k

Ap = 0.5 dB

n = 2

n = 4

n = 6

n = 8

n = 10

(b)

Figure 10.16 Plots of Aa versus k: (a) n = 5, Ap = 0.125, 0.25, 0.5, 1.0, 2.0 dB, (b) Ap = 0.5 dB, n = 2,
4, 6, 8, 10.

APPROXIMATIONS FOR ANALOG FILTERS 511

where r =

n − 1

2
for odd n

n

2
for even n

and D0(s) =
{

s + σ0 for odd n

1 for even n

The transfer-function coefficients and multiplier constant H0 can be computed by using the
following formulas in sequence:

k ′ =
√

1 − k2 (10.86)

q0 = 1

2

(
1 − √

k ′

1 + √
k ′

)
(10.87)

q = q0 + 2q5
0 + 15q9

0 + 150q13
0 (10.88)

D = 100.1Aa − 1

100.1Ap − 1
(10.89)

n ≥ log 16D

log(1/q)
(10.90)

� = 1

2n
ln

100.05Ap + 1

100.05Ap − 1
(10.91)

σ0 =
∣∣∣∣2q1/4 ∑∞

m=0(−1)mqm(m+1) sinh[(2m + 1)�]

1 + 2
∑∞

m=1(−1)mqm2 cosh 2m�

∣∣∣∣ (10.92)

W =
√(

1 + kσ 2
0

)(
1 + σ 2

0

k

)
(10.93)

i = 2q1/4 ∑∞
m=0(−1)mqm(m+1) sin (2m+1)πµ

n

1 + 2
∑∞

m=1(−1)mqm2 cos 2mπµ

n

(10.94)

where

µ =
{

i for odd n
i − 1

2 for even n
i = 1, 2, . . . , r

Vi =
√(

1 − k
2
i

)(
1 −
2

i

k

)
(10.95)

a0i = 1

2
i

(10.96)

b0i = (σ0Vi)2 + (
i W)2(
1 + σ 2

0
2
i

)2 (10.97)

512 DIGITAL SIGNAL PROCESSING

b1i = 2σ0Vi

1 + σ 2
0
2

i

(10.98)

H0 =

σ0
∏r

i=1

b0i

a0i
for odd n

10−0.05Ap
∏r

i=1

b0i

a0i
for even n

(10.99)

The actual minimum stopband loss is given by Eq. (10.84). The series in Eqs. (10.92) and
(10.94) converge rapidly, and three or four terms are sufficient for most purposes.

Example 10.6 An elliptic filter is required satisfying the following specifications:

• Passband edge ωp:
√

0.9 rad/s

• Stopband edge ωa : 1/
√

0.9 rad/s

• Maximum passband loss Ap: 0.1 dB

• Minimum stopband loss Aa : 50.0 dB

Form HN (s).

Solution

From Eqs. (10.86)–(10.90)

k = 0.9 k ′ = 0.435890 q0 = 0.102330

q = 0.102352 D = 4,293,090 n ≥ 7.92 or n = 8

From Eqs. (10.91)–(10.99) the transfer-function coefficients in Table 10.1 can be ob-
tained. The corresponding loss characteristic is plotted in Fig. 10.17. The actual value
of Aa is 50.82 dB according to Eq. (10.84).

Table 10.1 Coefficients of HN(s) (Example 10.6)

i a0i b0i b1i

1 1.434825E + 1 2.914919E − 1 8.711574E − 1
2 2.231643 6.123726E − 1 4.729136E − 1
3 1.320447 8.397386E − 1 1.825141E − 1
4 1.128832 9.264592E − 1 4.471442E − 2

H0 = 2.876332E − 3

APPROXIMATIONS FOR ANALOG FILTERS 513

0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.1

20

30

40

50

60

A
(ω

),
 d

B

ω, rad/s

Figure 10.17 Loss characteristic of an eighth-order, elliptic filter (Example 10.6).

10.7 BESSEL-THOMSON APPROXIMATION

Ideally, the group delay of a filter should be independent of frequency, or, equivalently, the phase
shift should be a linear function of frequency to minimize delay distortion (see Sec. 5.7). Since the
only objective in the preceding three approximations is to achieve a specific loss characteristic, there
is no reason for the phase characteristic to turn out to be linear. In fact, it turns out to be nonlinear as
one might expect. Consequently, the delay tends to vary with frequency, in particular in the elliptic
approximation.

Consider the transfer function

H (s) = b0∑n
i=0 bi si

= b0

sn B(1/s)
(10.100)

where bi = (2n − i)!

2n−i i!(n − i)!
(10.101)

Function B(s) is a Bessel polynomial, and sn B(1/s) can be shown to have zeros in the left-half s
plane. B(1/jω) can be expressed in terms of Bessel functions [2, 10] as

B

(
1

jω

)
= 1

j n

√
πω

2
[(−1)n J−v(ω) − j Jv(ω)]e jω

514 DIGITAL SIGNAL PROCESSING

where v = n + 1
2 and

Jv(ω) = ωv

∞∑
i=0

(−1)iω2i

22i+vi!�(v + i + 1)
(10.102)

(�(·) is the gamma function). Hence, from Eq. (10.100)

|H (jω)|2 = 2b2
0

πω2n+1
[

J 2−v(ω) + J 2
v (ω)

]
θ (ω) = −ω + tan−1 (−1)n Jv(ω)

J−v(ω)

τ (ω) = −dθ (ω)

dω
= 1 − (−1)n

(
J−v J ′

v − Jv J ′
−v

)
J 2−v(ω) + J 2

v (ω)

Alternatively, from the properties of Bessel functions and Eq. (10.102) [2]

|H (jω)|2 = 1 − ω2

2n − 1
+ 2(n − 1)ω4

(2n − 1)2(2n − 3)
+ · · · (10.103)

τ (ω) = 1 − ω2n

b2
0

|H (jω)|2 (10.104)

Clearly, as ω → 0, |H (jω)| → 1 and τ (ω) → 1. Furthermore, the first n − 1 derivatives of τ (ω)
with respect to ω2 are zero if ω = 0, which makes the approximation maximally flat at the origin.
This means that there is some frequency range 0 ≤ ω < ωp for which the delay is approximately
constant. On the other hand, if ω → ∞, |H (jω)| → 1/(jω)n → 0 and, therefore, H (s) is a lowpass
constant-delay approximation. This is sometimes referred to as the Bessel approximation since it
uses a Bessel function. However, the possibility of using the function in Eq. (10.100) as a normalized
lowpass approximation with a maximally flat group delay at he origin was proposed by Thomson
[6] and its correct name should, therefore, be the Bessel-Thomson approximation.

Note that the formulas in Eqs. (10.103) and (10.104) are used here to demonstrate the maximally
flat property of the group delay and have no other practical usefulness. For any other purpose, the
amplitude and phase responses or the loss and delay characteristics should be obtained by using the
transfer function in Eq. (10.100).

The Bessel-Thomson approximation has a normalized group delay of 1 s. However, any
other delay can be achieved by replacing s by τ0s in Eq. (10.100). Typical loss and group-delay
characteristics for the Bessel-Thomson approximation are plotted in Fig. 10.18 and 10.19, respec-
tively.

APPROXIMATIONS FOR ANALOG FILTERS 515

0 1 2 3 4 5 6
0

5

10

15

20

25

30

L
os

s,
 d

B

ω, rad/s

n = 3

n = 6

n = 9

Figure 10.18 Loss characteristics of normalized Bessel-Thomson lowpass filters: n = 3, 6, 9.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1.0

1.2

τ,
 s

ω, rad/s

n = 3

n = 6

n = 9

Figure 10.19 Delay characteristics of normalized Bessel-Thomson lowpass filters: n = 3, 6, 9.

516 DIGITAL SIGNAL PROCESSING

Example 10.7 Form the Bessel-Thomson transfer function for n = 6.

Solution

From Eqs. (10.100) and (10.101), we obtain

H (s) = 10, 395

10, 395 + 10, 395s + 4725s2 + 1260s3 + 210s4 + 21s5 + s6

(See Fig. 10.18 and 10.19 for the loss and delay characteristics).

10.8 TRANSFORMATIONS

In the preceding sections, only normalized lowpass approximations have been considered. The rea-
son is that denormalized lowpass, highpass, bandpass, and bandstop approximations can be easily
derived by using transformations of the form

s = f (s̄)

10.8.1 Lowpass-to-Lowpass Transformation

Consider a normalized lowpass transfer function HN (s) with passband and stopband edges ωp and
ωa , and let

s = λs̄ (10.105)

in HN (s). If s = jω, we have s̄ = jω/λ and hence Eq. (10.105) maps the j axis of the s plane onto
the j axis of the s̄ plane. In particular, ranges 0 to jωp and jωa to j∞ map onto ranges 0 to jωp/λ

and jωa/λ to j∞, respectively, as depicted in Fig. 10.20. Therefore,

HLP(s̄) = HN (s)

∣∣∣∣
s=λs̄

constitutes a denormalized lowpass approximation with passband and stopband edges ωp/λ and
ωa/λ, respectively. A graphical illustration of the lowpass-to-lowpass transformation is shown in
Fig. 10.21.

10.8.2 Lowpass-to-Bandpass Transformation

Now let

s = 1

B

(
s̄ + ω2

0

s̄

)

in HN (s), where B and ω0 are constants. If s = jω and s̄ = jω̄, we have

jω = j

B

(
ω̄ − ω2

0

ω̄

)
or jω̄ = j

ωB

2
±

√
ω2

0 +
(

ωB

2

)2

APPROXIMATIONS FOR ANALOG FILTERS 517

s plane

jωp

λ

jωa

λ

jωp

jω
_

jω

jωa

−jωp

−jωa

s plane-

λ

jωp−

λ

jωa−

Figure 10.20 Lowpass-to-lowpass transformation: Mapping.

slope = λ

ωp

ωa

ω
Aa

Aa

ωaωp ω

Ap

Ap

A(ω)

A(ω)

ω = λω

ω

Figure 10.21 Lowpass-to-lowpass transformation: Graphical interpretation.

518 DIGITAL SIGNAL PROCESSING

_
jωa2

_−jωa2

_
jω

_
jωa1

_−jωa1

_
jωp1

_−jωp1

_
jωp2

_−jωp2

s plane-

s plane

jωp

jω

jωa

−jωp

−jωa

Figure 10.22 Lowpass-to-bandpass transformation: Mapping.

Table 10.2 Analog-filter transformations

Type Transformation

LP to LP s = λs̄

LP to HP s = λ

s̄

LP to BP s = 1

B

(
s̄ + ω2

0

s̄

)

LP to BS s = Bs̄

s̄2 + ω2
0

Hence

ω̄ =

ω0 if ω = 0
±ω̄p1, ±ω̄p2 if ω = ±ωp

±ω̄a1, ±ω̄a2 if ω = ±ωa

where

ω̄p1, ω̄p2 = ∓ωp B

2
+

√
ω2

0 +
(

ωp B

2

)2

ω̄a1, ω̄a2 = ∓ωa B

2
+

√
ω2

0 +
(

ωa B

2

)2

APPROXIMATIONS FOR ANALOG FILTERS 519

ωp

ωa

ωAa

Aa

ω

ωp1

ωa1 ωa2

Ap

Ap

A(ω)

A(ω)

ωp2

slope =
1
B

ω0

ω0ω =
ω

ω2 ω0
2−)(1

B

ω

Figure 10.23 Lowpass-to-bandpass transformation: Graphical interpretation.

The mapping for s = jω is thus of the form illustrated in Fig. 10.22, and consequently

HBP (s̄) = HN (s)

∣∣∣∣
s= 1

B

(
s̄ + ω2

0

s̄

)
is a bandpass approximation with passband edges ωp1, ωp2 and stopband edges ωa1, ωa2. A graphical
illustration of the lowpass-to-bandpass transformation is shown in Fig. 10.23.

Similarly, the transformations in the second and fourth rows of Table 10.2 yield highpass and
bandstop approximations.

REFERENCES

[1] E. A. Guillemin, Synthesis of Passive Networks, New York: Wiley, 1957.
[2] N. Balabanian, Network Synthesis, Englewood Cliffs, NJ: Prentice-Hall, 1958.

520 DIGITAL SIGNAL PROCESSING

[3] L. Weinberg, Network Analysis and Synthesis, New York: McGraw-Hill, 1962.
[4] J. K. Skwirzynski, Design Theory and Data for Electrical Filters, London: Van Nostrand,

1965.
[5] R. W. Daniels, Approximation Methods for Electronic Filter Design, New York:

McGraw-Hill, 1974.
[6] W. E. Thomson, “Delay networks having maximally flat frequency characteristics,” Proc.

Inst. Elect. Eng., pt. 3, vol. 96, pp. 487–490, 1949.
[7] A. Antoniou, General Characteristics of Filters in The Circuits and Systems Handbook,

ed. W.-K. Chen, Portland, OR: Book News, Inc., 2004.
[8] R. J. Schwarz and B. Friedland, Linear Systems, New York: McGraw-Hill, 1965.
[9] A. J. Grossman, “Synthesis of Tchebyscheff parameter symmetrical filters,” Proc. IRE,

vol. 45, pp. 454–473, Apr. 1957.
[10] G. N. Watson, A Treatise on the Theory of Bessel Functions, London: Cambridge University

Press, 1948.

PROBLEMS

10.1. A stable analog system is characterized by the transfer function in Eq. (10.5). Show that the steady-state
sinusoidal response of the system is given by Eq. (10.11).

10.2. A fourth-order lowpass Butterworth filter 5 is required.
(a) Obtain the normalized transfer function HN (s).
(b) Derive expressions for the loss and phase shift.
(c) Calculate the loss and phase shift at ω = 0.5 rad/s.
(d) Obtain a corresponding denormalized transfer function HD(s) with a 3-dB cutoff frequency at

1000 rad/s.

10.3. A fifth-order Butterworth filter is required.
(a) Form H (s).
(b) Plot the loss characteristic.

10.4. Filter specifications are often described pictorially as in Fig. P10.4, where ωp and ωa are desired passband
and stopband edges, respectively, Ap is the maximum passband loss, and Aa is the minimum stopband
loss. Find n and, in turn, form H (s), if ωp = 1, ωa = 3 rad/s, Ap = 3.0, Aa ≥ 45 dB. Use the
Butterworth approximation.

10.5. In an application a normalized Butterworth lowpass filter is required that would satisfy the following
specification:

• Passband edge ωp: 0.6 rad/s
• Stopband edge ωa : 2.5 rad/s
• Maximum passband loss Ap: 1.0 dB
• Minimum stopband loss Aa : 40.0 dB

(a) Find the minimum filter order that would satisfy the specifications.
(b) Calculate the actual maximum passband loss and minimum stopband loss.
(c) Obtain the required transfer function.

10.6. A third-order lowpass filter with passband edge ωp = 1 rad/s and passband ripple Ap = 1.0 dB
is required. Obtain the poles and multiplier constant of the transfer function assuming a Chebyshev
approximation.

5The filters considered in this problem section are all analog filters.

APPROXIMATIONS FOR ANALOG FILTERS 521

Ap

Aa

ωp ωa

L
os

s,
 d

B

ω, rad/s

Figure P10.4

10.7. A fifth-order normalized lowpass Chebyshev filter is required.
(a) Form H (s) if Ap = 0.1 dB.
(b) Plot the loss characteristic.

10.8. A Chebyshev filter that would satisfy the specifications of Fig. P10.8 is required. Find n and, in turn,
form H (s).

0.5

1.0 3.0 4.0

30

45L
os

s,
 d

B

ω, rad/s

Figure P10.8

522 DIGITAL SIGNAL PROCESSING

10.9. An application calls for a normalized Chebyshev lowpass filter that would satisfy the following specifi-
cation:

• Passband edge ωp: 1.0 rad/s
• Stopband edge ωa : 2.2 rad/s
• Maximum passband loss Ap: 0.2 dB
• Minimum stopband loss Aa : 40.0 dB

(a) Find the minimum filter order that would satisfy the specifications.
(b) Calculate the actual maximum passband loss and minimum stopband loss.
(c) Obtain the required transfer function.

10.10. (a) Show that

Tn+1(ω) = 2ωTn(ω) − Tn−1(ω)

(b) Hence demonstrate that the following relation [5] holds:

Tn(ω) = n

2

K∑
r=0

(−1)r (n − r − 1)!

r !(n − 2r)!
(2ω)n−2r where K = Int

(n

2

)

(c) Obtain T10(ω).

10.11. (a) Find A(ω) for the normalized lowpass Butterworth and Chebyshev approximations if ω � 1.
(b) Show that A(ω) increases at the rate of 20n dB/decade in both cases.

10.12. The inverse-Chebyshev approximation can be derived by considering the loss function

A(ω) = 10 log

[
1 + 1

δ2T 2
n (ω)

]

where

δ2 = 1

100.1Aa − 1

(a) Show that A(ω) represents a highpass filter with an equiripple stopband loss, a monotonic increasing
passband loss, and a stopband edge ωa = 1 rad/s.

(b) Show that the filter represented by A(ω) has a transfer function of the form

HHP (s) =
∏n

i=1(s − zi)∏n
i=1(s − pi)

where zi and pi for i = 1, 2, . . . , n are given by Eqs. (10.50), (10.51), and (10.53), respectively.
(c) Show that HN (s) = HHP (1/s) is the normalized lowpass transfer function for the inverse-

Chebyshev approximation.

10.13. A fourth-order inverse-Chebyshev filter with a minimum stopband loss of 40 dB is required.
(a) Obtain the required transfer function.
(b) Find the 3-dB cutoff frequency.

APPROXIMATIONS FOR ANALOG FILTERS 523

10.14. An application requires a normalized inverse-Chebyshev lowpass filter that would satisfy the following
specifications:

• Passband edge ωp: 0.5 rad/s
• Stopband edge ωa : 1.0 rad/s
• Maximum passband loss Ap: 0.5 dB
• Minimum stopband loss Aa : 30.0 dB

(a) Find the minimum filter order that would satisfy the specifications.
(b) Obtain the required transfer function.
(c) Calculate the actual maximum passband loss and minimum stopband loss.

10.15. (a) Write a MATLAB m-file that can be used to obtain the normalized elliptic transfer function for
an arbitrary set of given specifications {k, Ap, Aa} where k is the selectivity, Ap is maximum
passband loss, and Aa is the minimum stopband loss. Your program should also compute the actual
stopband loss.

(b) Use the program in part (a) to obtain elliptic transfer functions for two different sets of specifications
that would result in an even- and an odd-order transfer function of order greater than 3.

(c) Plot the loss characteristics associated with the transfer functions obtained.

10.16. (a) A lowpass elliptic filter is required that would satisfy the specifications

n = 4 Ap = 1.0 dB k = 0.7

Form H (s).
(b) Determine the corresponding minimum stopband loss.
(c) Plot the loss characteristic.

10.17. In a particular application an elliptic lowpass filter is required. The specifications are

• Selectivity k: 0.6
• Maximum passband loss Ap: 0.5 dB
• Minimum stopband loss Aa : 40.0 dB

10.18. An elliptic lowpass filter that would satisfy the specifications

• Selectivity k: 0.95
• Maximum passband loss Ap: 0.3 dB
• Minimum stopband loss Aa : 60.0 dB

is required.

(a) Determine the order of the transfer function.
(b) Determine the actual loss.
(c) Obtain the transfer function.

10.19. (a) Obtain the normalized transfer function H (s) for the eighth-order Bessel-Thomson approximation.
(b) Plot the corresponding phase characteristic.

10.20. (a) Obtain the normalized transfer function H (s) for the ninth-order Bessel-Thomson approximation.
(b) Using the transfer function in part (a), obtain expressions (i) for the loss characteristic, (ii) for the

phase response, and (iii) for the group delay characteristic.
(c) Using MATLAB or similar software, plot (i) the loss characteristic, (ii) the phase response, and

(iii) the delay characteristic for the frequency range 0 to 6 rad/s.

524 DIGITAL SIGNAL PROCESSING

10.21. Show that

H (s) =
∑n

i=0 bi (−s)i∑n
i=0 bi si

where

bi = (2n − i)!

2n−i i!(n − i)!

is a constant-delay, allpass transfer function.
10.22. A constant-delay lowpass filter is required with a group delay of 1 ms. Form H (s) using the sixth-order

Bessel-Thomson approximation.

10.23. An normalized inverse-Chebyshev lowpass filter has a transfer function

HN (s) = H0

s + b00

2∏
i=1

s2 + a0i

s2 + b1i s + b0i

where

H0 = 1.581147E − 2 b00 = 5.957330E − 1

a01 = 2.894427 b01 = 3.161351E − 1 b11 = 8.586353E − 1

a02 = 1.105573 b02 = 2.686568E − 1 b12 = 2.787138E − 1

(a) By using the lowpass-to-lowpass transformation, obtain a lowpass transfer function that would
result in a stopband edge of 1000 Hz.

(b) By using MATLAB or similar software, find the passband edge of the transformed filter assuming
a maximum passband loss of 1.0 dB.

10.24. A normalized lowpass Chebyshev filter has a transfer function

HN (s) = H0

s + b00

2∏
i=1

1

s2 + b1i s + b0i

where

H0 = 0.287898 b00 = 0.461411

b01 = 1.117408 b11 = 0.285167

b02 = 0.558391 b12 = 0.746578

(a) By using the lowpass-to-highpass transformation, obtain a highpass transfer function that would
result in a passband edge of 10,000 Hz.

(b) By using MATLAB or similar software, find (i) the maximum passband loss and (ii) the minimum
stopband loss of the highpass filter assuming a stopband edge of 5800 Hz.

10.25. A normalized elliptic transfer function for which k = 0.8 and Ap = 0.1 dB is subjected to the
lowpass-to-bandpass transformation. Find the passband and stopband edges of the bandpass filter if
B = 200, ω0 = 1000 rad/s.

10.26. A normalized elliptic transfer function for which k = 0.7 and Ap = 0.5 dB is subjected to the
lowpass-to-bandstop transformation. Find the passband and stopband edges of the bandstop filter if
B = 100, ω0 = 2000 rad/s.

APPROXIMATIONS FOR ANALOG FILTERS 525

10.27. A normalized, third-order, elliptic, lowpass filter is characterized by the transfer function

HN (s) = H0
s2 + a01

(s + b00)(s2 + b11s + b01)

where

H0 = 6.710103E − 2

b00 = 3.715896E − 1 a01 = 2.687292

b11 = 3.044886E − 1 b01 = 4.852666E − 1

(a) Obtain a bandpass elliptic transfer function by applying the lowpass-to-bandpass transformation
assuming that B0 = 1.153776E + 3 and ω0 = 1.445683E + 3.

(b) By plotting the loss characteristic of the bandpass filter over the frequency range 0 to 4000 rad/s,
find the maximum passband loss, the minimum stopband loss, the passband edges, and stopband
edges of the filter.

10.28. A normalized, third-order, elliptic, lowpass filter is characterized by the transfer function

HN (s) = H0
s2 + a01

(s + b00)(s2 + b11s + b01)

where

H0 = 4.994427E − 2

b00 = 3.461194E − 1 a01 = 3.011577

b11 = 2.961751E − 1 b01 = 4.345639E − 1

(a) Obtain a bandstop elliptic transfer function by applying the lowpass-to-bandpass transforma-
tion assuming that B0 = 8.0E + 2 and ω0 = 7.885545E + 02.

(b) By plotting the loss characteristic of the filter over the frequency range 0 to 2000 rad/s, find the
maximum passband loss, the minimum stopband loss, the passband edges, and stopband edges of
the bandstop filter.

10.29. A lowpass filter is required that would satisfy the following specifications:

• Passband edge ωp: 2000 rad/s
• Stopband edge ωa : 7000 rad/s
• Maximum passband loss Ap: 0.4 dB
• Minimum stopband loss Aa : 45.0 dB

(a) Assuming a Butterworth approximation, find the required order n and the value of the transforma-
tion parameter λ.

(b) Form H (s).

10.30. Repeat Prob. 10.29 for the case of a Chebyshev approximation and compare the design obtained with
that obtained in Prob. 10.29.

10.31. Repeat Prob. 10.29 for the case of an inverse-Chebyshev approximation and compare the design
obtained with that obtained in Prob. 10.29.

10.32. Repeat Prob. 10.29 for the case of an elliptic approximation and compare the design obtained with that
obtained in Prob. 10.29.

10.33. A highpass filter is required that would satisfy the following specifications:

• Passband edge ωp: 2000 rad/s
• Stopband edge ωa : 1000 rad/s

526 DIGITAL SIGNAL PROCESSING

• Maximum passband loss Ap: 0.5 dB
• Minimum stopband loss Aa : 40.0 dB

(a) Assuming a Butterworth approximation, find the required order n and the value of the transforma-
tion parameter λ.

(b) Form H (s).

10.34. Repeat Prob. 10.33 for the case of a Chebyshev approximation and compare the design obtained with
that obtained in Prob. 10.33.

10.35. Repeat Prob. 10.33 for the case of an inverse-Chebyshev approximation and compare the design
obtained with that obtained in Prob. 10.33.

10.36. Repeat Prob. 10.33 for the case of an elliptic approximation and compare the design obtained with that
obtained in Prob. 10.33.

10.37. A bandpass filter is required that would satisfy the specifications depicted in Fig. P10.37. Assuming
that the elliptic approximation is to be employed, find suitable values for ω0, k, B, and n.

0.3

625 900 1600 2304

60 60L
os

s,
 d

B

ω, rad/s

Figure P10.37

10.38. A bandpass filter is required that would satisfy the following specifications:

• Lower passband edge ωp1: 9500 rad/s
• Upper passband edge ωp2: 10,500 rad/s
• Lower stopband edge ωa1: 5000 rad/s
• Lower stopband edge ωa2: 15,000 rad/s
• Maximum passband loss Ap: 1.0 dB
• Minimum stopband loss Aa : 50.0 dB

(a) Assuming a Butterworth approximation, find the required order n and the value of the transforma-
tion parameters B and ω0.

(b) Form H (s).

APPROXIMATIONS FOR ANALOG FILTERS 527

10.39. Repeat Prob. 10.38 for the case of a Chebyshev approximation and compare the design obtained with
that obtained in Prob. 10.38.

10.40. Repeat Prob. 10.38 for the case of an inverse-Chebyshev approximation and compare the design
obtained with that obtained in Prob. 10.38.

10.41. Repeat Prob. 10.38 for the case of an elliptic approximation and compare the design obtained with that
obtained in Prob. 10.38.

10.42. A bandstop filter is required that would satisfy the specifications depicted in Fig. P10.42. Assuming
that the elliptic approximation is to be employed, find suitable values for ω0, k, B, and n.

0.1

800 900 1100 1200

35

L
os

s,
 d

B

ω, rad/s

0.1

Figure P10.42

10.43. A bandstop filter is required that would satisfy the following specifications:

• Lower passband edge ωp1: 20 rad/s
• Upper passband edge ωp2: 80 rad/s
• Lower stopband edge ωa1: 48 rad/s
• Lower stopband edge ωa2: 52 rad/s
• Maximum passband loss Ap: 1.0 dB
• Minimum stopband loss Aa : 25.0 dB

(a) Assuming a Butterworth approximation, find the required order n and the value of the transforma-
tion parameters B and ω0.

(b) Form H (s).

10.44. Repeat Prob. 10.43 for the case of a Chebyshev approximation and compare the design obtained with
that obtained in Prob. 10.43.

10.45. Repeat Prob. 10.43 for the case of an inverse-Chebyshev approximation and compare the design
obtained with that obtained in Prob. 10.43.

528 DIGITAL SIGNAL PROCESSING

10.46. Repeat Prob. 10.43 for the case of an elliptic approximation and compare the design obtained with that
obtained in Prob. 10.43.

R

R

L1

C1

L2

Figure P10.47

10.47. Figure P10.47 shows an LC filter.
(a) Derive a highpass LC filter.
(b) Derive a bandpass LC filter.
(c) Derive a bandstop LC filter.

CHAPTER

11
DESIGN OF

RECURSIVE
(IIR) FILTERS

11.1 INTRODUCTION

Approximation methods for the design of recursive (IIR) filters differ quite significantly from those
used for the design of nonrecursive filters. The basic reason is that in the first case the transfer
function is a ratio of polynomials of z whereas in the second case it is a polynomial of z−1.

In recursive filters, the approximation problem is usually solved through indirect methods.
First, a continuous-time transfer function that satisfies certain specifications is obtained using one of
the standard analog-filter approximations described in Chap. 10. Then a corresponding discrete-time
transfer function is obtained using one of the following methods [1–9]:

1. Invariant impulse-response method

2. Modified version of method 1

3. Matched-z transformation

4. Bilinear transformation

This chapter is concerned with the indirect approach to the design of recursive filters. It starts
with the realizability constraints that must be satisfied by the discrete-time transfer function and then
deals with the details of the aforementioned approximation methods. The chapter also describes a
set of z-domain transformations that can be used to derive transformed lowpass, highpass, bandpass,
or bandstop discrete-time transfer functions from a given lowpass discrete-time transfer function. It
concludes with a general discussion on the choice between recursive and nonrecursive designs.

529

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

530 DIGITAL SIGNAL PROCESSING

Iterative methods that are suitable for the design of nonrecursive and recursive filters are
considered in Chaps. 15 and 16, respectively.

11.2 REALIZABILITY CONSTRAINTS

In order to be realizable by a recursive filter, a transfer function must satisfy the following constraints:

1. It must be a rational function of z with real coefficients.

2. Its poles must lie within the unit circle of the z plane.

3. The degree of the numerator polynomial must be equal to or less than that of the denominator
polynomial.

The first constraint is actually artificial and is imposed by our assumption in Chaps. 1 and 4
that signals are real and that the constituent elements of a digital filter perform real arithmetic. If
unit delays, adders, and multipliers are defined for complex signals in terms of complex arithmetic,
then transfer functions with complex coefficients can be considered to be realizable [10, 11]. The
second and third constraints will assure a stable and causal filter, respectively (see Secs. 5.3 and 5.2,
respectively).

11.3 INVARIANT IMPULSE-RESPONSE METHOD

Consider the impulse modulated filter F̂A of Fig. 11.1, where S is an ideal impulse modulator and
FA is an analog filter characterized by HA(s). F̂A can be represented by a continuous-time transfer
function ĤA(s) or, equivalently, by a discrete-time transfer function HD(z), as shown in Sec. 6.9.
From Eq. (6.53b)

ĤA(jω) = HD(e jωT) = h A(0+)

2
+ 1

T

∞∑
k=−∞

HA(jω + jkωs) (11.1)

where ωs = 2π/T is the sampling frequency and

h A(t) = L−1 HA(s)

h A(0+) = lim
s→∞[s HA(s)] (11.2)

HD(z) = Zh A(nT)

FA

S

FA
^

Figure 11.1 Impulse modulated filter.

DESIGN OF RECURSIVE (IIR) FILTERS 531

Therefore, given an analog filter FA, a corresponding digital filter, represented by HD(z), can be
derived by using the following procedure:

1. Deduce h A(t), the impulse response of the analog filter.

2. Replace t by nT in h A(t).

3. Form the z transform of h A(nT).

If

HA(jω) ≈ 0 for |ω| ≥ ωs

2
(11.3a)

then
∞∑

k=−∞
k �=0

HA(jω + jkωs) ≈ 0 for |ω| <
ωs

2
(11.3b)

If, in addition,

h A(0+) = 0 (11.4)

Eqs. (11.1), (11.3b), and (11.4) yield

Ĥ A(jω) = HD(e jωT) ≈ 1

T
HA(jω) for |ω| <

ωs

2
(11.5)

i.e., if HA(jω) is bandlimited, the baseband frequency response of the derived digital filter is ap-
proximately the same as that of the analog filter except that the gain of the digital filter is multiplied
by the constant 1/T . This constant can be eliminated by multiplying the numerator coefficients of
HD(z) by T .

If the denominator degree in HA(s) exceeds the numerator degree by at least 2, the basic
assumptions in Eqs. (11.3a) and (11.4) hold for some sufficiently high value of ωs . If, in addition,
the poles of HA(s) are simple, we can write

HA(s) =
N∑

i=1

Ri

s − pi
(11.6)

Hence from steps 1 and 2 above

h A(t) = L−1 HA(s) =
N∑

i=1

Ri e
pi t and h A(nT) =

N∑
i=1

Ri e
pi nT

(see Sec. 10.2.4). Subsequently, from step 3

HD(z) = Zh A(nT) =
N∑

i=1

Ri z

z − eT pi
(11.7)

Since complex-conjugate pairs of poles in HA(s) yield complex-conjugate values of Ri and
eT pi , the coefficients in HD(z) are real. Pole pi = σi + jωi gives rise to a pole p̃i in HD(z), where

p̃i = eT pi = eT (σi + jωi)

532 DIGITAL SIGNAL PROCESSING

and for σi < 0, | p̃i | < 1. Hence a stable analog filter yields a stable digital filter. Also the numerator
degree in HD(z) cannot exceed the denominator degree as can be easily verified, and HD(z) is
therefore realizable.

The method described, which is known as the invariant impulse-response method, yields good
results for Butterworth, Bessel-Thomson, or Chebyshev lowpass and bandpass filters for which the
basic assumptions of Eqs. (11.3a) and (11.4) hold. An advantage of the method is that it preserves
the phase response as well as the loss characteristic of the analog filter.

Example 11.1 Design a digital filter by applying the invariant impulse-response method to
the Bessel-Thomson transfer function

HA(s) = 105

105 + 105s + 45s2 + 10s3 + s4

(see Sec. 10.7). Employ a sampling frequency ωs = 8 rad/s; repeat with ωs = 16 rad/s.

Solution

The poles of HA(s) and the residues in Eq. (11.6) are

p1, p∗
1 = −2.896211 ± j0.8672341

p2, p∗
2 = −2.103789 ± j2.657418

R1, R∗
1 = 1.663392 ∓ j8.396299

R2, R∗
2 = −1.663392 ± j2.244076

Hence from Eq. (11.7)

THD(z) =
2∑

j=1

a1 j z + a2 j z2

b0 j + b1 j z + z2

where coefficients ai j and bi j are given in Table 11.1. The transfer function is multiplied
by T to eliminate the effect of constant 1/T in Eq. (11.5).

Table 11.1 Coefficients of THD(z) (Example 11.1)

ωs j a1 j a2 j b0 j b1 j

1 6.452333E − 1 2.612851 1.057399E − 2 −1.597700E − 1
8

2 −8.345233E − 1 −2.612851 3.671301E − 2 1.891907E − 1

1 3.114550E − 1 1.306425 1.028299E − 1 −6.045080E − 1
16

2 −3.790011E − 1 −1.306425 1.916064E − 1 −4.404794E − 1

DESIGN OF RECURSIVE (IIR) FILTERS 533

The loss and delay characteristics obtained are plotted in Fig. 11.2a and b, respec-
tively. The higher sampling frequency gives better results because aliasing errors are less
pronounced.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−2

0

2

4

6

8

10

12

14

ω, rad/s

L
os

s,
 d

B

Digital filter
ωs = 8 rad/s

Digital filter
ωs = 16 rad/s

Analog filter

(a)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.2

0.4

0.6

0.8

1.0

D
el

ay
, s

ω, rad/s

Digital filter
ωs = 8 rad/s

Digital filter
ωs = 16 rad/s

Analog filter

(b)

Figure 11.2 Example 11.1: (a) Loss characteristics, (b) delay characteristics.

534 DIGITAL SIGNAL PROCESSING

11.4 MODIFIED INVARIANT IMPULSE-RESPONSE METHOD

Aliasing errors tend to restrict the application of the invariant impulse-response method to the
design of allpole filters.1 However, a modified version of the method is available, as will now be
demonstrated, which can be applied to filters that also have zeros in the finite s plane.

Consider the transfer function

HA(s) = H0 N (s)

D(s)
= H0

∏M
i=1(s − zi)∏N

i=1(s − pi)
(11.8)

where M can be as high as N . We can write

HA(s) = H0 HA1(s)

HA2(s)

where
(11.9)

HA1(s) = 1

D(s)

HA2(s) = 1

N (s)
(11.10)

Clearly, with M, N ≥ 2 Eq. (11.2) yields

h A1(0+) = 0 h A2(0+) = 0

and furthermore HA1(jω) ≈ 0

HA2(jω) ≈ 0

}
for |ω| ≥ ωs

2

for some sufficiently high value of ωs . Consequently, from Eq. (11.1) we can write

Ĥ A1(jω) = HD1(e jωT) ≈ 1

T
HA1(jω)

Ĥ A2(jω) = HD2(e jωT) ≈ 1

T
HA2(jω)

 for |ω| <

ωs

2

Therefore, we can form

HD(z) = H0 HD1(z)

HD2(z)
(11.11)

such that

HD(e jωT) = H0 HD1(e jωT)

HD2(e jωT)
≈ HA(jω) for |ω| <

ωs

2
If the zeros and poles of HA(s) are simple, Eq. (11.7) gives

HD1(z) =
N∑

i=1

Ai z

z − eT pi
= N1(z)

D1(z)
(11.12)

HD2(z) =
M∑

i=1

Bi z

z − eT zi
= N2(z)

D2(z)
(11.13)

1These are filters that have only poles in the finite s plane.

DESIGN OF RECURSIVE (IIR) FILTERS 535

Thus from Eqs. (11.11)–(11.13)

HD(z) = H0 N1(z)D2(z)

N2(z)D1(z)
(11.14)

The derived filter can be unstable since some of the zeros of N2(z) may be located on or outside
the unit circle of the z plane, but the problem can be easily overcome. For an arbitrary pole of HD(z),
say, pi , we can write

|(e jωT − pi)| =
∣∣∣∣−e jωT pi

(
e− jωT − 1

pi

)∣∣∣∣
= |pi |

∣∣∣∣
(

e jωT − 1

p∗
i

)∗∣∣∣∣
= |pi |

∣∣∣∣
(

e jωT − 1

p∗
i

)∣∣∣∣
If pi is real, we have

|(e jωT − pi)| = |pi |
∣∣∣∣
(

e jωT − 1

pi

)∣∣∣∣
and if pi and p∗

i are a complex-conjugate pair of poles, then

|(e jωT − pi)(e
jωT − p∗

i)| = |pi |2
∣∣∣∣
(

e jωT − 1

pi

)(
e jωT − 1

p∗
i

)∣∣∣∣
Hence any poles of HD(z) located outside the unit circle can be replaced by their reciprocals without
changing the shape of the loss characteristic. This will introduce a constant vertical shift in the loss
characteristic but the problem can be easily eliminated by adjusting H0, the multiplier constant of
the transfer function.

The method yields excellent results for elliptic filters. For this class of filters, polynomial N2(z)
turns out to be a mirror-image polynomial with roots on the negative real axis (see Sec. 9.2.3) and, in
effect, its roots occur in reciprocal pairs. This means that half of the roots of N2(z) would be located
outside the unit circle of the z plane and since these roots are poles in the derived transfer function
given by Eq. (11.14), the filter obtained would be unstable. However, the problem can be easily
eliminated by applying the above stabilization technique. If N2(z) has K roots pi that are located
outside the unit circle, a stable filter can be obtained by replacing each pi by 1/pi and then dividing
the multiplier constant H0 in Eq. (11.14) by

∏K
1 |pi |.

The main problem with the modified invariant impulse-response method has to do with the
order of the filter obtained. Unfortunately, polynomials N1(z) and N2(z) tend to increase the order
of HD(z), as can be seen in Eq. (11.14), and that makes the method uneconomical. The method is
described in some detail here only because it provides a theoretical foundation for the matched-z
transformation method as will be demonstrated in Sec. 11.5.

536 DIGITAL SIGNAL PROCESSING

Example 11.2 The transfer function

HA(s) = H0

3∏
j=1

a0 j + s2

b0 j + b1 j s + s2

where H0, a0 j , and b1 j are given in Table 11.2, represents a lowpass elliptic filter satisfying
the following specifications:

• Passband ripple: 0.1 dB

• Minimum stopband loss: 43.46 dB

• Passband edge:
√

0.8 rad/s

• Stopband edge: 1/
√

0.8 rad/s

Employing the modified invariant impulse-response method, design a corresponding digital
filter. Use ωs = 7.5 rad/s.

Table 11.2 Coefficients of HA(s) (Example 11.2)

j a0 j b0 j b1 j

1 1.199341E + 1 3.581929E − 1 9.508335E − 1
2 2.000130 6.860742E − 1 4.423164E − 1
3 1.302358 8.633304E − 1 1.088749E − 1

H0 = 6.713267E − 3

Solution

From Eqs. (11.9) and (11.10)

HA1(s) =
3∏

j=1

1

b0 j + b1 j s + s2

HA2(s) =
3∏

j=1

1

a0 j + s2

The design can be accomplished by using the following procedure:

1. Find the poles and residues of HA1(s) and HA2(s).

2. Form HD1(z) and HD2(z) using Eqs. (11.12) and (11.13).

3. Replace zeros of N2(z) outside the unit circle by their reciprocals.

4. Adjust constant H0 to achieve zero minimum passband loss.

DESIGN OF RECURSIVE (IIR) FILTERS 537

Table 11.3 Coefficients of HD(z) (Example 11.2)

j a0 j a1 j b0 j b1 j

1 1.0 1.942528 4.508735E − 1 −1.281134
2 1.0 −7.530225E − 1 6.903732E − 1 −1.303838
3 1.0 −1.153491 9.128252E − 1 −1.362371
4 3.248990E + 1 1.955491E + 1 5.611278E − 2 7.751650E − 1
5 1.331746E − 2 3.971465E − 1 5.611278E − 2 7.751650E − 1

H0 = 3.847141E − 4

With this procedure HD(z) can be deduced as

HD(z) = H0

5∏
j=1

a0 j + a1 j z + z2

b0 j + b1 j z + z2

where H0, ai j , and bi j are given in Table 11.3.
The loss characteristic achieved, plotted in Fig. 11.3a and b, is seen to be a faithful

reproduction of the analog loss characteristic. For this filter, the conventional invari-
ant impulse-response method gives unsatisfactory results because the assumptions of
Eqs. (11.3a) and (11.4) are violated.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

10

20

30

40

50

60

L
os

s,
 d

B

ω, rad/s

(a)

Figure 11.3 Examples 11.2 and 11.4: (a) Stopband characteristics.
——— Analog filter; ◦ ◦ ◦ modified impulse-invariant response method;
- - - - - matched-z transformation method.

538 DIGITAL SIGNAL PROCESSING

0 0.2 0.4 0.6 0.8 1.0
−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

L
os

s,
 d

B

ω, rad/s
(b)

Figure 11.3 Cont’d Examples 11.2 and 11.4: (b) Passband characteristics.
——— Analog filter; ◦ ◦ ◦ modified impulse-invariant response method;
- - - - - matched-z transformation method.

11.5 MATCHED-Z TRANSFORMATION METHOD

An alternative approximation method for the design of recursive filters is the so-called matched-z
transformation method [5, 9]. In this method, given a continuous-time transfer function like that in
Eq. (11.8), a corresponding discrete-time transfer function can be formed as

HD(z) = (z + 1)L H0
∏M

i=1(z − ezi T)∏N
i=1(z − epi T)

(11.15)

where L is an integer. The value of L is equal to the number of zeros at s = ∞ in HA(s). Typical
values for L are given in Table 11.4.

The matched-z transformation method had little or no theoretical foundation when it first found
its way into the technical literature. It was probably observed that in the invariant impulse-response
method, the i th pole of the digital filter, p′

i , is related to the i th pole of the analog filter, pi , through
the relation

p′
i = epi T

It did not take too long for someone to attempt to map the zeros of the analog filter in the same way
by letting

z′
i = ezi T

DESIGN OF RECURSIVE (IIR) FILTERS 539

Table 11.4 Typical values of L in Eq. (11.15)

Type of filter Lowpass Highpass Bandpass Bandstop

Butterworth N 0 N/2 0
Chebyshev N 0 N/2 0
Inverse-Chebyshev,

N odd 1 0 N/A N/A
N even 0 0 1 for N/2 odd 0

0 for N/2 even
Elliptic,

N odd 1 0 N/A N/A
N even 0 0 1 for N/2 odd 0

0 for N/2 even

This matched-z transformation seemed to work for highpass and bandstop filters and to make the
method work for lowpass and bandpass filters as well the ‘fi ddle factor’ (z + 1)L was introduced,
which improved the situation.

If we now compare Eqs. (11.14) and (11.15), we note that the only difference between the
transfer function of the modified invariant impulse-response method and the matched-z transforma-
tion method is that the ratio of polynomials, N1(z)/N2(z), in Eq. (11.14) is replaced by the factor
(z + 1)L . For the standard filter approximations, it turns out that

N1(z)

N2(z)
≈ (z + 1)L

and this is why the matched-z transformation method works as well as it does.
Note that the matched-z transformation method cannot control the level of the amplitude

response, i.e., if one starts with an analog filter that has a maximum passband gain of unity, the
maximum passband gain in the derived digital filter is always something other than unity and,
therefore, a correction is necessary after the design is completed to restore the maximum passband
gain to unity. This can be easily achieved by finding the maximum passband gain of the derived digital
filter, say, Mmax, and then changing the multiplier constant in Eq. 11.15 from H0 to H ′

0 = H0/Mmax.
The method is fairly simple to apply and gives reasonable results provided that a sufficiently

large sampling frequency is used. Its main disadvantage is that it introduces a relatively large error
in the passband loss as will be seen in the following example.

Example 11.3 The transfer function

HA(s) = H0s4∏2
j=1(s − p j)(s − p∗

j)

where

H0 = 0.9885531 p1, p∗
1 = −2.047535 ± j1.492958

p2, p∗
2 = −0.3972182 ± j1.688095

540 DIGITAL SIGNAL PROCESSING

represents a highpass Chebyshev filter with a passband edge of 2 rad/s and a passband ripple
of 0.1 dB. Obtain a corresponding discrete-time transfer function employing the matched-z
transformation method. Use a sampling frequency of 10 rad/s.

Solution

The value of L in Eq. (11.15) is generally zero for highpass filters, according to Table
11.4. Hence HD(z) can be readily formed as

HD(z) = H0
(1 − 2z + z2)2∏2

j=1(b0 j + b1 j z + z2)

where

b01 = 7.630567 × 10−2 b11 = −3.267079 × 10−1

b02 = 6.070409 × 10−1 b12 = −7.608887 × 10−1

H0 = 2.076398 × 10−1

The above value of H0 was chosen to give a maximum passband gain of unity, which
corresponds to a minimum passband loss of zero dB. The loss characteristic of the derived
filter is compared with that of the analog filter in Fig. 11.4.

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

L
os

s,
 d

B

ω, rad/s

Analog
filter

Digital
filter

Figure 11.4 Loss characteristic (Example 11.3).

DESIGN OF RECURSIVE (IIR) FILTERS 541

Example 11.4 Redesign the lowpass filter of Example 11.2 employing the matched-z trans-
formation method.

Solution

From Eq. (11.15) HD(z) can be formed as

HD(z) = H0

3∏
j=1

a0 j + a1 j z + z2

b0 j + b1 j z + z2

where a1 j and b1 j are given by the first three rows in Table 11.3. For zero minimum
passband loss, H0 is given by

H0 = 8.605074 × 10−3

The loss characteristic achieved is shown in Fig. 11.3 (dashed curve). As can be
seen, it is significantly inferior to the loss characteristic obtained by using the modified
invariant impulse-response method. However, as was mentioned earlier, the latter method
leads to a higher-order transfer function which is more uneconomical.

11.6 BILINEAR-TRANSFORMATION METHOD

In the approximation method of Sec. 11.3, the derived digital filter has exactly the same impulse
response as the original analog filter for t = nT . An approximation method will now be described
whereby a digital filter is derived that has approximately the same time-domain response as the
original analog filter for any excitation.

11.6.1 Derivation

Consider an analog integrator characterized by the transfer function

HAI (s) = 1

s
(11.16)

and assume that its response to an excitation x(t) is y(t), as depicted in Fig. 11.5.
The impulse response of the integrator is given by

L−1 HI (s) = hI (t) =
{

1 for t ≥ 0+
0 for t ≤ 0−

Analog integratorx(t) y(t)

Figure 11.5 Analog integrator.

542 DIGITAL SIGNAL PROCESSING

and its response at instant t to an arbitrary right-sided excitation x(t), i.e., x(t) = 0 for t < 0, is
given by the convolution integral (see Theorem 2.14)

y(t) =
∫ t

0
x(τ)hI (t − τ) dτ

(see Sec. 10.2.4). If 0+ < t1 < t2, we can write

y(t2) − y(t1) =
∫ t2

0
x(τ)hI (t2 − τ) dτ −

∫ t1

0
x(τ)hI (t1 − τ) dτ (11.17)

For 0+ < τ ≤ t1, t2
hI (t2 − τ) = hI (t1 − τ) = 1

and thus Eq. (11.17) simplifies to

y(t2) − y(t1) =
∫ t2

t1

x(τ) dτ

As t1 → t2, from Fig. 11.6

y(t2) − y(t1) ≈ t2 − t1
2

[x(t1) + x(t2)]

and on letting t1 = nT − T and t2 = nT the difference equation

y(nT) − y(nT − T) = T

2
[x(nT − T) + x(nT)]

can be formed. This equation represents a ‘digital integrator’ that has approximately the same time-
domain response as the analog integrator for any excitation. By applying the z transform, we obtain

Y (z) − z−1Y (z) = T

2
[z−1 X (z) + X (z)]

and hence the transfer function of the digital integrator can be derived as

HDI (z) = Y (z)

X (z)
= T

2

(
z + 1

z − 1

)
The above equation can be expressed as

HDI (z) = 1

s

∣∣∣∣
s= 2

T

(
z − 1

z + 1

) (11.18)

t1 t2

τ

x(τ)

Figure 11.6 Response of analog integrator.

DESIGN OF RECURSIVE (IIR) FILTERS 543

and, therefore, from Eqs. (11.16) and (11.18), we have

HDI (z) = HAI (s)

∣∣∣∣
s= 2

T

(
z − 1

z + 1

)
In effect, a digital integrator can be obtained from an analog integrator by simply applying the bilinear
transformation2

s = 2

T

(
z − 1

z + 1

)
(11.19)

to the transfer function of the analog integrator. As T →0, the shaded area in Fig. 11.6 would tend
to approach the area under the curve and, consequently, the time-domain response of the digital
integrator would tend to approach that of the analog integrator, as may be expected.

Applying the bilinear transformation to the transfer function of an arbitrary analog filter will
yield a digital filter characterized by the discrete-time transfer function

HD(z) = HA(s)

∣∣∣∣
s= 2

T

(
z − 1

z + 1

) (11.20)

The digital filter so obtained will produce approximately the same time-domain response as the
analog filter from which it is derived for any excitation. Furthermore, the time-domain response of
the digital filter would tend to approach that of the analog filter as T → 0.

The above time-domain analysis led to a transformation that can be used to obtain a digital
filter from an analog one. All we know at this point is the relationship between the time-domain
response of the digital filter with that of the analog filter. To make further progress, we must deduce
the relationship between the frequency-domain response of the digital filter with that of the analog
filter, and to do that we must examine the mapping properties of the bilinear transformation.

11.6.2 Mapping Properties of Bilinear Transformation

Equation (11.19) can be put in the form

z = 2/T + s

2/T − s

and with s = σ + jω we have

z = re jθ

where

r =
[(

2
T + σ

)2 + ω2(
2
T − σ

)2 + ω2

]1/2

and

θ = tan−1 ω

2/T + σ
+ tan−1 ω

2/T − σ
(11.21)

2The bilinear transformation is one of the standard conformal transformations (see Sec. A.9).

544 DIGITAL SIGNAL PROCESSING

Clearly
if σ > 0 then r > 1

if σ = 0 then r = 1

if σ < 0 then r < 1
i.e., the bilinear transformation maps

1) the open right-half s plane onto the region exterior to the unit circle |z| = 1 of the z plane,

2) the j axis of the s plane onto the unit circle |z| = 1, and

3) the open left-half s plane onto the interior of the unit circle |z| = 1.

For σ = 0, we have r = 1, and from Eq. (11.21) θ = 2 tan−1(ωT/2). Hence

if ω = 0 then θ = 0

if ω → +∞ then θ → +π

if ω → −∞ then θ → −π

i.e., the origin of the s plane maps onto point (1, 0) of the z plane and the positive and negative j axes
of the s plane map onto the upper and lower semicircles |z| = 1, respectively. The transformation is
illustrated in Fig. 11.7a and b.

From Property 2 above it follows that the maxima and minima of |HA(jω)| will be preserved
in |HD(e j
T)|. Also if

M1 ≤ |HA(jω)| ≤ M2

for some frequency range ω1 ≤ ω ≤ ω2, then

M1 ≤ |HD(e j
T)| ≤ M2

for a corresponding frequency range
1 ≤
 ≤
2. Consequently, passbands or stopbands in the
analog filter translate into passbands or stopbands in the digital filter.

s plane z plane jω

σ

(a)

 = 0 s= j∞
s=−j∞

s

Figure 11.7 Bilinear transformation: (a) Mapping from s to z plane.

DESIGN OF RECURSIVE (IIR) FILTERS 545

−1

0

1

−20
−10 0

10
20

−60

−50

−40

−30

−20

−10

0

M
(ω

),
 d

B

−2
−1

0
1

2

−2
−1

0
1

2
−60

−50

−40

−30

−20

−10

0

M
(ω

),
 d

B

Re s
jIm s

Re z
jIm z

Ap

Ap

Aa

Aa

(b)

s plane

z plane

Figure 11.7 Cont’d Bilinear transformation: (b) Mapping of amplitude response of analog filter to the z
domain.

From Property 3 it follows that a stable analog filter will yield a stable digital filter, and since the
transformation has real coefficients, HD(z) will have real coefficients. Finally, the numerator degree
in HD(z) cannot exceed the denominator degree and, therefore, HD(z) is a realizable transfer function.

11.6.3 The Warping Effect

Let ω and
 represent the frequency variable in the analog filter and the derived digital filter,
respectively. From Eq. (11.20)

HD(e j
T) = HA(jω)

546 DIGITAL SIGNAL PROCESSING

provided that

ω = 2

T
tan

T

2
(11.22)

For
 < 0.3/T

ω ≈

and, as a result, the digital filter has the same frequency response as the analog filter. For higher
frequencies, however, the relation between ω and
 becomes nonlinear, as illustrated in Fig. 11.8,
and distortion is introduced in the frequency scale of the digital filter relative to that of the analog
filter. This is known as the warping effect [2, 5].

The influence of the warping effect on the amplitude response can be demonstrated by consid-
ering an analog filter with a number of uniformly spaced passbands centered at regular intervals, as
in Fig. 11.8. The derived digital filter has the same number of passbands, but the center frequencies
and bandwidths of higher-frequency passbands tend to be reduced disproportionately, as shown in
Fig. 11.8.

If only the amplitude response is of concern, the warping effect can for all practical purposes
be eliminated by prewarping the analog filter [2, 5]. Let ω1, ω2, . . . , ωi , . . . be the passband and
stopband edges in the analog filter. The corresponding passband and stopband edges in the digital

0.1π 0.2π 0.5π

6.0

T = 2 s

ω

|HD(e jΩT)|

|HA(jω)|
Ω, rad/s

4.0

2.0

0 0.3π 0.4π

Figure 11.8 Influence of the warping effect on the amplitude response.

DESIGN OF RECURSIVE (IIR) FILTERS 547

filter are given by Eq. (11.22) as

i = 2

T
tan−1 ωi T

2
for i = 1, 2, . . . (11.23)

Consequently, if prescribed passband and stopband edges
̃1,
̃2, . . . ,
̃i , . . . are to be achieved in
the digital filter, the analog filter must be prewarped before application of the bilinear transformation
to ensure that

ωi = 2

T
tan

̃i T

2
(11.24)

Under these circumstances

i =
̃i

according to Eqs. (11.23) and (11.24), as required.
The bilinear transformation together with the prewarping technique is used in Chap. 12 to

develop a detailed procedure for the design of Butterworth, Chebyshev, inverse-Chebyshev, and
elliptic filters satisfying prescribed loss specifications.

The influence of the warping effect on the phase response can be demonstrated by considering
an analog filter with linear phase response. As illustrated in Fig. 11.9, the phase response of the
derived digital filter is nonlinear. Furthermore, little can be done to linearize it except by employing
delay equalization (see Sec. 12.5.1). Consequently, if it is mandatory to preserve a linear phase
response, the alternative methods of Secs. 11.3–11.4 should be considered.

Example 11.5 The transfer function

HA(s) =
3∏

j=1

a0 j + s2

b0 j + b1 j s + s2

where a0 j and bi j are given in Table 11.5, represents an elliptic bandstop filter with a passband
ripple of 1 dB and a minimum stopband loss of 34.45 dB. Use the bilinear transformation to
obtain a corresponding digital filter. Assume a sampling frequency of 10 rad/s.

Table 11.5 Coefficients of HA(s) (Example 11.5)

j a0 j b0 j b1 j

1 6.250000 6.250000 2.618910
2 8.013554 1.076433E + 1 3.843113E − 1
3 4.874554 3.628885 2.231394E − 1

548 DIGITAL SIGNAL PROCESSING

0 0.1π 0.2π 0.3π 0.4π 0.5π

2.0

4.0

6.0

ωω

T = 2 s

arg HD(e jΩT)

arg HA(jω)
Ω, rad/s

Ω

Figure 11.9 Influence of the warping effect on the phase response.

Solution

From Eq. (11.20), one can show that

HD(z) =
3∏

j=1

a′
0 j + a′

1 j z + a′
0 j z

2

b′
0 j + b′

1 j z + z2

where

a′
0 j = a0 j + 4/T 2

c j
a′

1 j = 2(a0 j − 4/T 2)

c j

b′
0 j = b0 j − 2b1 j/T + 4/T 2

c j
b′

1 j = 2(b0 j − 4/T 2)

c j

c j = b0 j + 2b1 j

T
+ 4

T 2

DESIGN OF RECURSIVE (IIR) FILTERS 549

The numerical values of a′
i j and b′

i j are given in Table 11.6. The loss characteristic of the
derived digital filter is compared with that of the analog filter in Fig. 11.10. The expected
lateral displacement in the characteristic of the digital filter is evident.

Table 11.6 Coefficients of HD(z) (Example 11.5)

j a′
0 j a′

1 j b′
0 j b′

1 j

1 6.627508E − 1 −3.141080E − 1 3.255016E − 1 −3.141080E − 1
2 8.203382E − 1 −1.915542E − 1 8.893929E − 1 5.716237E − 2
3 1.036997 −7.266206E − 1 9.018366E − 1 −8.987781E − 1

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

L
os

s,
 d

B

ω, rad/s

Analog
filter

Digital
filter

Figure 11.10 Loss characteristic (Example 11.5).

11.7 DIGITAL-FILTER TRANSFORMATIONS

A normalized lowpass analog filter can be transformed into a denormalized lowpass, highpass, band-
pass, or bandstop filter by employing the transformations described in Sec. 10.8. Analogous transfor-
mations can be derived for digital filters as we shall now show. These are due to Constantinides [12].

11.7.1 General Transformation

Consider the transformation

z = f (z̄) = e jζπ

m∏
i=1

z̄ − a∗
i

1 − ai z̄
(11.25)

550 DIGITAL SIGNAL PROCESSING

where ζ and m are integers and a∗
i is the complex conjugate of ai . With z = Re j
T , z̄ = re jωT , and

ai = ci e jψi , Eq. (11.25) becomes

Re j
T = e jζπ

m∏
i=1

re jωT − ci e− jψi

1 − rci e j(ωT +ψi)

and hence

R2 =
m∏

i=1

r2 + c2
i − 2rci cos(ωT + ψi)

1 + (rci)2 − 2rci cos(ωT + ψi)
(11.26)

Evidently,

if R > 1 then r2 + c2
i > 1 + (rci)

2 or r > 1

if R = 1 then r2 + c2
i = 1 + (rci)

2 or r = 1

if R < 1 then r2 + c2
i < 1 + (rci)

2 or r < 1

In effect, Eq. (11.26) maps

1. the unit circle |z| = 1 onto the unit circle |z̄| = 1,

2. the interior of |z| = 1 onto the interior of |z̄| = 1, and

3. the exterior of |z| = 1 onto the exterior of |z̄| = 1

as illustrated in Fig. 11.11.
Now consider a normalized lowpass filter characterized by HN (z) with a passband extending

from 0 to
p. On applying the above transformation we can form

H (z̄) = HN (z)

∣∣∣∣
z= f (z̄)

(11.27)

With the poles of HN (z), located inside the unit circle |z| = 1, those of H (z̄) will be located inside
the unit circle |z̄| = 1; that is, H (z̄) will represent a stable filter. Furthermore, from item 1, if

M1 ≤ |HN (e j
T)| ≤ M2

z plane

Re jΩT re jωT

z plane-

Figure 11.11 General z-domain transformation.

DESIGN OF RECURSIVE (IIR) FILTERS 551

for some frequency range
1 ≤
 ≤
2, then

M1 ≤ |H (e jωT)| ≤ M2

for one or more corresponding ranges of ω; that is, the passband (stopband) in HN (z) will translate
into one or more passbands (stopbands) in H (z̄). Therefore, the above transformation can form the
basis of a set of transformations that can be used to derive transformed lowpass, highpass, bandpass,
and bandstop digital filters from a given lowpass digital filter.

11.7.2 Lowpass-to-Lowpass Transformation

The appropriate values for ζ, m, and ai in Eq. (11.25) can be determined by examining the details of
the necessary mapping. If H (z̄) is to represent a lowpass filter with a passband edge ωp, the mapping
must be of the form shown in Fig. 11.12a, where solid lines denote passbands. As complex number
e j
T traces the unit circle in the z plane once, e jωT must trace the unit circle in the z̄ plane once in
the same sense. The transformation must thus be bilinear (m = 1) of the form

z = e jζπ z̄ − a∗

1 − az̄
(11.28)

At points A and A′, z = z̄ = 1, and at C and C ′, z = z̄ = −1 Hence Eq. (11.28) gives

1 = e jζπ 1 − a∗

1 − a
and 1 = e jζπ 1 + a∗

1 + a

C A

z plane

D

Ωp

−Ωp

ωp

−ωp

ωp2
ωp1

−ωp1
−ωp2

B

(a)

(b)

C'

C'

A'

A'

D'

D'

B'

B'

C''

A''

D''

B''

C A

z plane

D

Ωp

−Ωp

B

z plane-

z plane-

Figure 11.12 (a) Lowpass-to-lowpass transformation, (b) lowpass-to-bandstop transformation.

552 DIGITAL SIGNAL PROCESSING

By solving these equations, we obtain

a = a∗ ≡ α ζ = 0

where α is a real constant. Thus Eq. (11.28) becomes

z = z̄ − α

1 − αz̄

The necessary value for α can be determined by noting that at points B and B ′, we have
 =
p

and ω = ωp, in which case

e j
p T = e jωp T − α

1 − αe jωp T

or α = sin[(
p − ωp)T/2]

sin[(
p + ωp)T/2]

11.7.3 Lowpass-to-Bandstop Transformation

If a bandstop filter is required with passband edges ωp1 and ωp2, the mapping must have the form
shown in Fig. 11.12b. In order to introduce an upper passband in H (z̄), e j
T must trace the unit
circle of the z plane twice for each revolution of e jωT in the z̄ plane. Consequently, in this case, the
transformation must be biquadratic (m = 2) of the form

z = e jζπ z̄2 + β z̄ + γ

1 + β z̄ + γ z̄2

where β and γ are real constants. At points A and A′, z = z̄ = 1 and

e jζπ = 1

so that

z = z̄2 + β z̄ + γ

1 + β z̄ + γ z̄2

With z = e j
T and z̄ = e jωT

e j
T = e j2ωT + βe jωT + γ

e j2ωT (e− j2ωT + βe− jωT + γ)

Hence

T

2
= tan−1 sin 2ωT + β sin ωT

cos 2ωT + β cos ωT + γ
− ωT

and after some manipulation

tan

T

2
= (1 − γ) sin ωT

(1 + γ) cos ωT + β

DESIGN OF RECURSIVE (IIR) FILTERS 553

At points B and B ′,
 =
p and ω = ωp1, respectively, and as a result

tan

pT

2
= (1 − γ) sin ωp1T

(1 + γ) cos ωp1T + β
(11.29)

Likewise, at points D and D′,
 = −
p and ω = ωp2, respectively, so that

tan
−
pT

2
= (1 − γ) sin ωp2T

(1 + γ) cos ωp2T + β
(11.30)

Now by solving Eqs. (11.29) and (11.30), β and γ can be deduced as

β = − 2α

1 + k
γ = 1 − k

1 + k

where

α = cos[(ωp2 + ωp1)T/2]

cos[(ωp2 − ωp1)T/2]
and k = tan

pT

2
tan

(ωp2 − ωp1)T

2

Lowpass-to-highpass and lowpass-to-bandpass transformations can similarly be derived. The
complete set of transformations is summarized in Table 11.7.

Table 11.7 Constantinides transformations

Type Transformation α, k

LP to LP z = z̄ − α

1 − αz̄
α = sin[(
p − ωp)T/2]

sin[(
p + ωp)T/2]

LP to HP z = − z̄ − α

1 − αz̄
α = cos[(
p − ωp)T/2]

cos[(
p + ωp)T/2]

LP to BP z = −
z̄2 − 2αk

k + 1
z̄ + k − 1

k + 1

1 − 2αk

k + 1
z̄ + k − 1

k + 1
z̄2

α = cos[(ωp2 + ωp1)T/2]

cos[(ωp2 − ωp1)T/2]

k = tan

pT

2
cot

(ωp2 − ωp1)T

2

LP to BS z =
z̄2 − 2α

1 + k
z̄ + 1 − k

1 + k

1 − 2α

1 + k
z̄ + 1 − k

1 + k
z̄2

α = cos[(ωp2 + ωp1)T/2]

cos[(ωp2 − ωp1)T/2]

k = tan

pT

2
tan

(ωp2 − ωp1)T

2

554 DIGITAL SIGNAL PROCESSING

11.7.4 Application

The Constantinides transformations can be readily applied to design filters with prescribed passband
edges. The following procedure can be employed:

1. Obtain a lowpass transfer function HN (z) using any approximation method.

2. Determine the passband edge
p in HN (z).

3. Form H (z̄) according to Eq. (11.27) using the appropriate transformation.

An important feature of filters designed by using this procedure is that the passband edge in
lowpass or highpass filters can be varied by varying a single parameter, namely, α. Similarly, both
the lower and upper passband edges in bandpass or bandstop filters can be varied by varying only a
pair of parameters, namely, α and k [13].

An alternative design procedure by which prescribed passband as well as stopband edges can
be achieved is described in Chap. 12.

11.8 COMPARISON BETWEEN RECURSIVE AND
NONRECURSIVE DESIGNS

Before a solution is sought for the approximation problem, a choice must be made between a recursive
and a nonrecursive design [14]. In recursive filters the poles of the transfer function can be placed
anywhere inside the unit circle. A consequence of this degree of freedom is that high selectivity
(i.e., narrow transition bands) can easily be achieved with low-order transfer functions. In nonrecur-
sive filters, on the other hand, with the poles fixed at the origin, high selectivity can be achieved only
by using a relatively high order for the transfer function. For the same filter specification the required
order in a nonrecursive design can be as high as 5 to 10 times that in a recursive design. For example,
the bandpass-filter specification in Example 9.5 can be met using a nonrecursive filter of order 52
or a recursive elliptic filter of order 8. In practice, the cost of a digital filter tends to increase and its
speed tends to decrease as the order of the transfer function is increased. Hence, for high-selectivity
applications where the delay characteristic is of secondary importance, the choice is expected to be
a recursive design.

Constant group delay is mandatory for certain applications, e.g., in data transmission and
image processing (see Sec. 5.7). For such applications, the choice is between a nonrecursive design
and an equalized recursive design. If computational efficiency is unimportant (e.g., if the amount of
data to be processed is small), a nonrecursive design based on the methods considered in Chap. 9
may be entirely acceptable. However, if computational efficiency is of prime importance (e.g., in
real-time applications or in applications where massive amounts of data are to be processed), an
optimal nonrecursive design based on the Remez exchange algorithm described in Chap. 15 or an
equalized recursive design based on the method of Sec. 16.8 must be selected. Optimal nonrecursive
designs are easier to obtain than equalized recursive designs. However, computational efficiency is
significantly better in equalized recursive designs, particularly if a high selectivity is required.

Nonrecursive filters are naturally suited for certain applications, e.g., to perform numerical
operations like interpolation, extrapolation, differentiation and integration. Further, owing to the fact
that their impulse response is of finite duration, nonrecursive filters can be implemented in terms of
fast-Fourier transforms without the need for a window function (see Sec. 7.8.).

DESIGN OF RECURSIVE (IIR) FILTERS 555

In certain applications, the choice between a nonrecursive and a recursive design may be
determined by other factors. For example, nonrecursive filters are always stable, owing to the absence
of feedback, and this feature alone makes them the filters of choice for the implementation of adaptive
filters (see Sec. 18.5). In these applications, the characteristics of the adaptive filter change with
time on-line and if it is possible for the filter to become unstable, it will at some point. Recursive
filters can also be used as adaptive filters but a special mechanism has to be incorporated in the
filter implementation to prevent instability from arising. Nonrecursive filters tend to be relatively
insensitive to quantization errors. In addition, their realizations are simple and regular and are highly
attractive for very-large-scale integrated circuit implementation (see Sec. 8.3).

REFERENCES

[1] J. F. Kaiser, “Design methods for sampled data filters,” Proc. 1st Allerton Conf. Circuit
Syst. Theory, pp. 221–236, Nov. 1963.

[2] R. M. Golden and J. F. Kaiser, “Design of wideband sampled-data filters,” Bell Syst. Tech. J.,
vol. 43, pp. 1533–1546, July 1964.

[3] C. M. Rader and B. Gold, “Digital filter design techniques in the frequency domain,”
Proc. IEEE, vol. 55, pp. 149–171, Feb. 1967.

[4] D. J. Nowak and P. E. Schmid, “Introduction to digital filters,” IEEE Trans. Electromagn.
Compat., vol. 10, pp. 210–220, June 1968.

[5] R. M. Golden, “Digital filter synthesis by sampled-data transformation,” IEEE Trans. Audio
Electroacoust., vol. 16, pp. 321–329, Sept. 1968.

[6] A. J. Gibbs, “An introduction to digital filters,” Aust. Telecommun. Res., vol. 3, pp. 3–14,
Nov. 1969.

[7] A. J. Gibbs, “The design of digital filters,” Aust. Telecommun. Res., vol. 4, pp. 29–34,
Mar. 1970.

[8] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Englewood
Cliffs, NJ: Prentice-Hall, 1975.

[9] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1989.

[10] T. H. Crystal and L. Ehrman, “The design and applications of digital filters with complex
coefficients,” IEEE Trans. Audio Electroacoust., vol. 16, pp. 315–320, Sept. 1968.

[11] P. A. Regalia, S. K. Mitra, and J. Fadavi-Ardekani, “Implementation of real coefficient
digital filters using complex arithmetic,” IEEE Trans. Circuits Syst., vol. 34, pp. 345–353,
Apr. 1987.

[12] A. G. Constantinides, “Spectral transformations for digital filters,” Proc. Inst. Elect. Eng.,
vol. 117, pp. 1585–1590, Aug. 1970.

[13] R. E. Crochiere and P. Penfield, Jr., “On the efficient design of bandpass digital filter
structures,” IEEE Trans. Acoust., Speech, Signal Process., vol. 23, pp. 380–381, Aug. 1975.

[14] Rabiner, L. R., J. F. Kaiser, O. Herrmann, and M. T. Dolan, “Some comparisons between
FIR and IIR digital filters,” Bell Syst. Tech. J., vol. 53, pp. 305–331, Feb. 1974.

[15] S. S. Haykin and R. Carnegie, “New method of synthesising linear digital filters based on
convolution integral,” Proc. Inst. Elect. Eng., vol. 117, pp. 1063–1072, June 1970.

[16] S. A. White, “New method of synthesising linear digital filters based on convolution
integral,” Proc. Inst. Elect. Eng., vol. 118, p. 348, Feb. 1971.

556 DIGITAL SIGNAL PROCESSING

[17] A. Antoniou and C. Shekher, “Invariant sinusoid approximation method for recursive digital
filters,” Electron. Lett., vol. 9, pp. 498–500, Oct. 1973.

PROBLEMS

11.1. By using the invariant impulse-response method, derive a discrete-time transfer function from the
continuous-time transfer function

HA(s) = 1

(s + 1)(s2 + s + 1)

The sampling frequency is 10 rad/s.

11.2. A continuous-time system is characterized by the transfer function

HA(s) = 1

s3 + 6s2 + 11s + 6
By using the invariant impulse-response method, obtain the transfer function of a corresponding discrete-
time system. The sampling frequency is 6π .

11.3. A continuous-time system has a transfer function

HA(s) = 5.0

s + 2.5
− 5s + 13

s2 + 4s + 25
4

Using the invariant impulse-response method, obtain the transfer function of a corresponding discrete-
time system. The sampling frequency is 20 rad/s.

11.4. A Bessel-Thomson normalized lowpass filter has a transfer function

HA(s) = R0

s − p0
+ R1

s − p1
+ R∗

1

s − p∗
1

where

R0 = 4.53, p0 = −2.32

R1 = −2.26 − j6.24, p1 = −1.84 + j1.75

(a) Using the invariant impulse-response method, obtain the transfer function of a corresponding digital
filter. The sampling frequency is 20 rad/s.

(b) Give an approximate expression for the frequency response of the digital filter in terms of the
frequency response of the analog filter, HA(jω), and state what determines the accuracy of your
expression.

11.5. The sixth-order normalized Bessel-Thomson transfer function can be expressed as

HA(s) =
3∑

i=1

(
Ri

s − pi
+ R∗

i

s − p∗
i

)
where Ri and pi are given in Table P11.5.
(a) Design a digital filter by using the invariant impulse-response method, assuming a sampling fre-

quency of 10 rad/s.
(b) Plot the phase response of the digital filter.

Table P11.5

i pi Ri

1 −4.248359 + j0.867510 10.95923 − j39.42517
2 −3.735708 + j2.626272 −14.12677 + j12.70117
3 −2.515932 + j4.492673 3.16754 − j0.202460

DESIGN OF RECURSIVE (IIR) FILTERS 557

11.6. A continuous-time system has a transfer function

HA(s) = s2 − 3s + 3

s2 + 3s + 3
(a) Find the amplitude response.
(b) Can one design a corresponding discrete-time system by using the invariant impulse-response

method? If so, carry out the design employing a sampling frequency of 10 rad/s. Otherwise, explain
the reasons for the failure of the method.

11.7. A lowpass digital filter that would satisfy the specifications of Fig. P11.7 is required.
(a) Obtain a design by applying the invariant impulse-response method to an appropriate Chebyshev

approximation. The sampling frequency is 20,000 rad/s.
(b) Check your design by plotting the amplitude responses of the original analog filter and the designed

digital filter.

L
os

s,
 d

B

ω, rad/s

0.5

1000 2000

30

Figure P11.7

11.8. A bandpass filter is required with passband edges of 900 and 1600 rad/s and a maximum passband loss of
1.0 dB. Obtain a design by employing the invariant impulse-response method. Start with a second-order
normalized lowpass Chebyshev approximation and neglect the effects of aliasing. A suitable sampling
frequency is 10,000 rad/s.

11.9. Given an analog filter characterized by

HA(s) =
N∑

i=1

Ri

s − pi

a corresponding digital filter characterized by HD(z) can be derived such that

RAu(t)
∣∣∣

t=nT
= RDu(nT)

This is called the invariant unit-step-response approximation method [15, 16].

558 DIGITAL SIGNAL PROCESSING

(a) Show that

HD(e jωT) ≈ HA(jω) for |ω| <
ωs

2
if ω � 1/T and

HA(jω)

jω
≈ 0 for |ω| ≥ ωs

2

(b) Show that

HD(z) =
N∑

i=1

R′
i

z − epi T
where R′

i = (epi T − 1)Ri

pi

11.10. (a) Design a third-order digital filter by applying the invariant unit-step-response method (see Prob. 11.9)
to the transfer function in Prob. 11.1. Assume that ωs = 10 rad/s.

(b) Compare the design with that obtained in Prob. 11.1.

11.11. Given an analog filter characterized by

HA(s) = H0 +
N∑

i=1

Ri

s − pi

a corresponding digital filter characterized by HD(z) can be derived such that

RAu(t) sin ω0t
∣∣∣

t=nT
= RDu(nT) sin ω0nT

This is the so-called invariant sinusoid-response approximation method [17].
(a) Show that

HD(e jωT) ≈ 2ω0(cos ωT − cos ω0T)

(ω2
0 − ω2)T sin ω0T

HA(jω) for |ω| <
ωs

2

if ω � 1/T and
ω0 HA(jω)

ω2
0 − ω2

≈ 0 for |ω| ≥ ωs

2
(b) Show that

HD(z) = H0 +
N∑

i=1

Ui z + Vi

z − epi T

where

Ui = (ω0epi T − pi sin ω0T − ω0 cos ω0T)R′
i

Vi = [epi T (pi sin ω0T − ω0 cos ω0T) + ω0]R′
i

R′
i = Ri

(p2
i + ω2

0) sin ω0T

11.12. (a) Redesign the filter of Prob. 11.1 by employing the invariant sinusoid-response method (see
Prob. 11.11). The value of ω0 may be assumed to be 1 rad/s.

(b) Plot the resulting phase response.

11.13. Design a lowpass filter that would satisfy specifications of Fig. P11.7 by applying the modified invariant
impulse-response method to a suitable elliptic approximation. The sampling frequency is 20,000 rad/s.

DESIGN OF RECURSIVE (IIR) FILTERS 559

11.14. A given third-order lowpass Chebyshev filter has a transfer function

H (s) = H0

(s − p0)(s − p1)(s − p∗
1)

where H0 = 0.49, p0 = −0.494, p1 = −0.247 + j0.966, and p∗
1 is the complex conjugate of p1.

(a) Obtain a corresponding discrete-time transfer function using the matched-z transformation method
assuming a sampling frequency of 20 rad/s.

(b) What are the advantages and disadvantages of the matched-z transformation method and the invariant
impulse-response method?

11.15. (a) Design a digital filter by applying the matched-z transformation method to the inverse-Chebyshev
filter of Example 10.5 assuming a sampling frequency of 20 rad/s.

(b) Check your design by plotting the amplitude responses of the original analog filter and the designed
digital filter.

11.16. An analog elliptic lowpass filter with a passband edge ωp = 0.7075 rad/s has a transfer function of the
form

H (s) = 0.07488(s2 + 2.577)

(s + 0.3818)(s2 + 0.3069s + 0.5053)

(a) Obtain a continuous-time highpass transfer function with the same passband edge.
(b) Obtain a corresponding discrete-time highpass transfer function using the matched-z transformation

method. The sampling frequency is 20 rad/s.

11.17. Design a lowpass filter that would satisfy the specifications of Fig. P11.7 by applying the matched-
z transformation method to an appropriate Chebyshev approximation. The sampling frequency is
20,000 rad/s.

11.18. Design a highpass filter that would satisfy the specifications of Fig. P11.18. Use the matched-z trans-
formation method along with an elliptic approximation. Assume that ωs = 6000 rad/s.

L
os

s,
 d

B

ω, rad/s

0.1

400 800

40

Figure P11.18

560 DIGITAL SIGNAL PROCESSING

11.19. (a) Obtain a digital-filter network by applying the bilinear transformation to the transfer function

HA(s) = s2

s2 + √
2s + 1

(b) Evaluate the gain of the filter for ω = 0 and ω = π/T .

11.20. (a) Obtain a discrete-time transfer function by applying the bilinear transformation of the transfer
function of Prob. 11.1. The sampling frequency is 4π rad/s.

(b) Determine the gain and phase-shift of the filter at ω = 0 and ω = π rad/s.

11.21. Design a digital filter by applying the bilinear transformation to the Chebyshev transfer function of
Example 10.3. The sampling frequency is 10 rad/s.

11.22. Design a digital filter by applying the bilinear transformation to the inverse-Chebyshev transfer function
of Example 10.5. The sampling frequency is 20 rad/s.

11.23. The lowpass transfer function of Example 10.6 is subjected to the bilinear transformation.
(a) Assuming that ωs = 10 rad/s, find the resulting passband and stopband edges and also the infinite-

loss frequencies.
(b) Determine the effective selectivity factor3 for the digital filter designed.
(c) Find the minimum value of ωs if the passband and stopband edges in the digital filter are to be within

±1 percent of the corresponding values in the analog filter.

11.24. Redesign the highpass filter in Prob. 11.16, part (a), using the bilinear transformation.

11.25. An analog elliptic lowpass filter has the following specifications:

• Passband edge ωp = 0.6325 rad/s
• Stopband edge ωa = 1.5811 rad/s
• Maximum passband loss = 0.5 dB
• Minimum stopband loss = 37.7 dB

The filter is characterized by the transfer function

H (s) = 0.05917(s2 + 3.2634)

(s + 0.4209)(s2 + 0.3618s + 0.4587)

(a) Design a corresponding lowpass digital filter using the bilinear-transformation method assuming a
sampling frequency of 2π rad/s.

(b) Find the passband and stopband edges of the digital filter.
(c) Find the maximum passband loss and minimum stopband loss of the digital filter.

11.26. (a) Obtain a continuous-time fourth-order highpass transfer function with a 3-dB cutoff frequency at
1 rad/s using the Butterworth approximation.

(b) Obtain a corresponding discrete-time transfer function using the bilinear transformation. Assume a
sampling frequency of 10 rad/s.

(c) Determine the exact 3-dB cutoff frequency of the digital filter.
11.27. Derive the lowpass-to-highpass transformation of Table 11.7.
11.28. Derive the lowpass-to-bandpass transformation of Table 11.7.
11.29. HD(z) represents a lowpass filter with a passband edge
p . Show that HD(−z) represents a highpass

filter with a passband edge
p − ωs/2.
11.30. The transfer function

H (z) = H0

2∏
j=1

a0 j + a1 j z + a0 j z2

b0 j + b1 j z + z2

3This is the ratio of the actual passband edge to the actual stopband edge.

DESIGN OF RECURSIVE (IIR) FILTERS 561

where ai j and bi j are given in Table P11.30, represents a lowpass digital filter with a passband edge
of 1 rad/s if ωs = 2π rad/s. By using the lowpass-to-highpass transformation in Table 11.7, design a
highpass filter with a passband edge of 2 rad/s if ωs = 2π rad/s.

Table P11.30

j a0 j a1 j b0 j b1 j

1 1.722415E − 1 3.444829E − 1 4.928309E − 1 −1.263032
2 1.727860E − 1 3.455720E − 1 7.892595E − 1 −9.753164E − 1

H0 = 3.500865E − 1

11.31. By using the transfer function of Prob. 11.30 obtain a lowpass cascade canonic structure whose passband
edge can be varied by varying a single parameter.

This page intentionally left blank

CHAPTER

12
RECURSIVE

(IIR) FILTERS
SATISFYING

PRESCRIBED
SPECIFICATIONS

12.1 INTRODUCTION

The previous chapter has shown that given an analog filter, a corresponding digital filter can be
readily obtained by using the bilinear transformation. This design method preserves the maxima and
minima of the amplitude response and, as a consequence, passbands and stopbands in the analog filter
translate into corresponding passbands and stopbands in the digital filter; furthermore, the passband
ripple and minimum stopband attenuation in the analog filter are preserved in the digital filter, and the
latter filter is stable if the former is stable. Owing to these important advantages, the bilinear transfor-
mation method is one of the most important methods for the design of digital filters, if not the most
important. As was demonstrated in Chap. 11, the main problem with the method is the so-called warp-
ing effect which introduces frequency-scale distortion. If ω1, ω2, . . . , ωi , . . . are the passband and
stopband edges in the analog filter, then, according to Eq. (11.23), the corresponding passband and
stopband edges in the derived digital filter are given by

i = 2

T
tan−1 ωi T

2
i = 1, 2, . . .

563

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

564 DIGITAL SIGNAL PROCESSING

Consequently, if prescribed passband and stopband edges
̃1,
̃2, . . . ,
̃i , . . . are to be achieved,
the analog filter must be prewarped before the application of the bilinear transformation to ensure
that its band edges are given by

ωi = 2

T
tan

̃i T

2

If this could be accomplished, then the band edges of the digital filter would assume their prescribed
values
i since

i = 2

T
tan−1 ωi T

2

= 2

T
tan−1

(
T

2
· 2

T
tan

̃i T

2

)
=
̃i for i = 1, 2, . . .

The design of lowpass, highpass, bandpass, and bandstop filters is usually accomplished in
two steps. First a normalized continuous-time lowpass transfer function is transformed into a denor-
malized lowpass, highpass, bandpass, or bandstop transfer function employing one of the standard
analog-filter transformations described in Sec. 10.8. Then the bilinear transformation is applied.
Prewarping can be effected by choosing the parameters in the analog-filter transformations appro-
priately.

This chapter considers the details of the above design procedure. Formulas are derived for the
parameters of the analog-filter transformations for Butterworth, Chebyshev, inverse-Chebyshev, and
elliptic filters, which simplify the design of digital filters satisfying prescribed specifications [1].

12.2 DESIGN PROCEDURE

Consider a normalized analog lowpass filter characterized by HN (s) with a loss

AN (ω) = 20 log
1

|HN (jω)|
and assume that

0 ≤ AN (ω) ≤ Ap for 0 ≤ |ω| ≤ ωp

AN (ω) ≥ Aa for ωa ≤ |ω| ≤ ∞

as illustrated in Fig. 12.1. A corresponding denormalized lowpass (LP), highpass (HP), bandpass
(BP), or bandstop (BS) digital filter with the same passband ripple and the same minimum stopband
loss can be derived by using the following steps:

1. Form

HX (s̄) = HN (s)
∣∣∣
s= fX (s̄)

(12.1)

where fX (s̄) is one of the transformations given in Table 12.1 (see Sec. 10.8).

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 565

ω

ωaωp

Ap

Aa

ωc

A(ω)

Figure 12.1 Loss characteristic of normalized LP analog filter.

2. Apply the bilinear transformation to HX (s̄), that is,

HD(z) = HX (s̄)
∣∣∣
s̄= 2

T

(
z − 1

z + 1

) (12.2)

If the derived filter is to have prescribed passband and stopband edges, the parameters λ, ω0, and B
in Table 12.1 and the order of HN (s) must be chosen appropriately. Formulas for these parameters
for the various standard types of analog-filter approximations are derived in the following section.

12.3 DESIGN FORMULAS

12.3.1 Lowpass and Highpass Filters

Consider the lowpass-filter specifications of Fig. 12.2, where
̃p and
̃a are the desired passband
and stopband edges, and assume that the above design procedure yields a transfer function HD(z)
such that

AD(
) = 20 log 1
|HD (e j
T)|

Table 12.1 Standard forms of f X(s̄)

X f X(s̄)

LP λs̄

HP
λ

s̄

BP
1

B

(
s̄ + ω2

0

s̄

)

BS
Bs̄

s̄2 + ω2
0

566 DIGITAL SIGNAL PROCESSING

Ap

Aa

A(Ω)

ΩaΩp

Ω

Ωa
~

Ωp
~

Figure 12.2 Loss characteristic of LP digital filter.

where 0 ≤ AD(
) ≤ Ap for 0 ≤ |
| ≤
p

AD(
) ≥ Aa for
a ≤ |
| ≤ ωs/2

as shown in Fig. 12.2.
If we let s = jω and s̄ = jω̄ in Eq. (12.1), then from Table 12.1

|HLP(jω̄)| = |HN (jω)|
provided that ω = λω̄

Hence ωp = λω̄p (12.3)

ωa = λω̄a (12.4)

where ω̄p and ω̄a denote the passband and stopband edges, respectively, in HLP(s̄). If we now let
z = e j
T and s̄ = jω̄ in Eq. (12.2), we get

|HD(e j
T)| = |HLP(jω̄)|

provided that ω̄ = 2

T
tan

T

2

Thus ω̄p = 2

T
tan

pT

2
(12.5)

ω̄a = 2

T
tan

a T

2
(12.6)

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 567

and from Eqs. (12.3)–(12.6), we obtain

ωp = 2

T
λ tan

pT

2
(12.7)

ωa = 2

T
λ tan

a T

2
(12.8)

From Eqs. (12.7) and (12.8), parameter λ of the lowpass-to-lowpass (LP-to-LP) transformation and
the selectivity of the normalized analog LP filter can be deduced as

λ = T ωp

2 tan (
pT/2)
(12.9)

and

ωp

ωa
= tan (
pT/2)

tan (
a T/2)
(12.10)

respectively.
The digital LP filter will satisfy the prescribed specifications if we force the actual passband

and stopband edges
p and
a to be equal to the prescribed passband and stopband edges
̃p and

̃a , respectively, but, in practice, it is usually difficult to fix both the passband and stopband edges at
the prescribed values. A feasible alternative is to fix the passband edge at the prescribed value and to
make the stopband edge equal to or less than the prescribed stopband edge. This can be accomplished
by assigning

p =
̃p and
a ≤
̃a

In this way, the loss at
 =
̃p will be exactly equal to the minimum value specified and the loss at

 =
̃a will be equal to or exceed the minimum value specified as can be seen in Fig. 12.2.

With the above assignment, Eq. (12.9) gives the required value of the LP-to-LP transformation
as

λ = T ωp

2 tan (
̃pT/2)

On the other hand, Eq. (12.10) gives

ωp

ωa
= tan (
pT/2)

tan (
a T/2)
≥ tan (
̃pT/2)

tan (
̃a T/2)
(12.11)

or
ωp

ωa
≥ K0 where K0 = tan (
̃pT/2)

tan (
̃a T/2)

The inequality in Eq. (12.11) can be justified by noting that
a and
̃a are both less than the
Nyquist frequency, ωs/2, and hence the values of
a T/2 and
̃a T/2 are in the range 0 to π/2.
Since tan (
T/2) is a monotonic increasing function of
 over the range 0 <
T/2 < π/2 or

568 DIGITAL SIGNAL PROCESSING

Table 12.2 Lowpass and highpass filters

ωp

ωa
≥ K0

LP

λ = ωpT

2 tan (
̃pT/2)

ωp

ωa
≥ 1

K0
HP

λ = 2ωp tan (
̃pT/2)

T

where K0 = tan (
̃pT/2)

tan (
̃a T/2)

0 <
 < ωs/2 and
̃a ≥
a , according to the above assignment, it follows that tan (
̃a T/2) ≥
tan (
a T/2). This inequality states, in effect, that the selectivity of the normalized analog LP filter,
ωp/ωa , must be greater than or equal to constant K0, and this constraint imposes a lower limit on
the order of HN (s), as will be shown later.

The preceding approach can be readily extended to highpass filters. The formulas for λ and
ωp/ωa for LP and HP filters are summarized in Table 12.2.

12.3.2 Bandpass and Bandstop Filters

Now consider the bandpass-filter specifications of Fig. 12.3, where
̃p1,
̃p2 and
̃a1,
̃a2 represent
the desired passband and stopband edges, respectively, and assume that the derived filter satisfies the

A(Ω)

Ap

Ωa1

Ωp1Ωa1
~

Ωp1
~ Ωa2

Ωp2 Ωa2
~

Ω

Ωp2
~

AaAa

Figure 12.3 Loss characteristic of bandpass digital filter.

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 569

conditions

0 ≤ AD(
) ≤ Ap for
p1 ≤ |
| ≤
p2

AD(
) ≥ Aa for 0 ≤ |
| ≤
a1 and
a2 ≤ |
| ≤ ωs/2

as shown in Fig. 12.3.
From Eq. (12.1) and Table 12.1

|HBP(jω̄)| = |HN (jω)|

provided that

ω = 1

B

(
ω̄ − ω2

0

ω̄

)

and by solving for ω̄, we obtain

ω̄ = ωB

2
±

√
ω2

0 +
(

ωB

2

)2

(12.12)

With ω = ±ωp or ± ωa

the positive passband and stopband edges in HBP(s̄) can be deduced from Eq. (12.12) as

ω̄p1, ω̄p2 = ∓ωp B

2
+

√
ω2

0 + ω2
p

(
B

2

)2

and ω̄a1, ω̄a2 = ∓ωa B

2
+

√
ω2

0 + ω2
a

(
B

2

)2

respectively. As can be readily verified

ω̄p1ω̄p2 = ω2
0 (12.13)

ω̄a1ω̄a2 = ω2
0 (12.14)

ω̄p2 − ω̄p1 = ωp B (12.15)

ω̄a2 − ω̄a1 = ωa B (12.16)

From Eq. (12.2)

|HD(e j
T)| = |HBP(jω̄)|

if ω̄ = 2

T
tan

T

2

570 DIGITAL SIGNAL PROCESSING

and hence

ω̄p1 = 2

T
tan

p1T

2
(12.17)

ω̄p2 = 2

T
tan

p2T

2
(12.18)

ω̄a1 = 2

T
tan

a1T

2
(12.19)

ω̄a2 = 2

T
tan

a2T

2
(12.20)

We can now assign

p1 =
̃p1 and
p2 =
̃p2 (12.21)

From Eqs. (12.15), (12.17), and (12.18), we obtain

B = 2K A

T ωp
(12.22)

where K A = tan

̃p2T

2
− tan

̃p1T

2
(12.23)

Similarly, from Eqs. (12.13), (12.17), and (12.18)

ω0 = 2
√

K B

T
(12.24)

where K B = tan

̃p1T

2
tan

̃p2T

2
(12.25)

With the passband edge of the normalized LP filter, ωp, the sampling period T (= 2π/ωs), and
the specified passband edges for the digital filter,
̃p1 and
̃p2, known, parameters B and ω0 of the
LP-to-BP transformation can be determined.

In order to determine the minimum order of the normalized LP filter that would satisfy the
specifications, we need to derive an expression for the selectivity of the LP filter as was done in the
case of lowpass filters in the previous section. From Eqs. (12.13) and (12.14), we have

ω̄a1ω̄a2 = ω̄p1ω̄p2

and from Eqs. (12.17)–(12.20)

tan

a1T

2
tan

a2T

2
= tan

p1T

2
tan

p2T

2

but since the passband edges of the BP digital filter,
p1 and
p2, have already been fixed (see
Eq. (12.21)), the right-hand side of the above equation has also been fixed and, therefore, it is not in

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 571

general possible to also fix the stopband edges,
a1 and
a2, at the prescribed values. The alternative
is to find suitable values for
a1 and
a2 such that

a1 ≥
̃a1 and
a2 ≤
̃a2

without violating Eqs. (12.14) and (12.16). In this way, the loss at
 =
̃a1 and
̃a2 will be equal
to or exceed the minimum specified values as can be seen in Fig. 12.3.

If

a1 ≥
̃a1

then Eq. (12.19) gives

ω̄a1 = 2

T
tan

a1T

2
≥ 2

T
tan

̃a1T

2
(12.26)

since tan(
T/2) is a monotonic increasing function over the range 0 to ωs/2, as was shown in the
case of LP filters. Let us assume that
a2 is chosen such that Eqs. (12.14) and (12.16) are satisfied.
If we eliminate ω̄a2 in Eq. (12.16) using Eq. (12.14) and then eliminate ω̄a1 using Eq. (12.19), we
get

ωa = ω2
0 − ω̄2

a1

Bω̄a1

= ω2
0 − (2/T)2 tan2 (
a1T/2)

(2B/T) tan (
a1T/2)
(12.27)

Therefore, from Eqs. (12.26) and (12.27), we have

ωa ≤ ω2
0 − (2/T)2 tan2 (
̃a1T/2)

(2B/T) tan (
̃a1T/2)

and on eliminating ω0 and B using Eqs. (12.24) and (12.22), we deduce

ωp

ωa
≥ K1

where

K1 = K A tan (
̃a1T/2)

K B − tan2 (
̃a1T/2)
(12.28)

and constants K A and K B are given by Eqs. (12.23) and (12.25), respectively. In other words, in
order to satisfy the required specifications at the lower stopband edge,
a1, the selectivity of the
normalized analog LP filter must be equal to or exceed constant K1.

On the other hand, if

a2 ≤
̃a2

572 DIGITAL SIGNAL PROCESSING

then from Eq. (12.20)

ω̄a2 = 2

T
tan

a2T

2
≤ 2

T
tan

̃a2T

2
(12.29)

since
a2 ≤
̃a2 and tan
T/2 is a monotonic increasing function over the range 0 <
 < ωs/2.
Let us assume that
a1 is chosen such that Eqs. (12.14) and (12.16) are satisfied. If we eliminate ω̄a1

in Eq. (12.16) using Eq. (12.14) and then eliminate ω̄a2 using Eq. (12.20), we get

ωa = ω̄2
a2 − ω2

0

Bω̄a2

= (2/T)2 tan2 (
a2T/2) − ω2
0

(2B/T) tan (
a2T/2)
(12.30)

Therefore, from Eqs. (12.29) and (12.30), we have

ωa ≤ (2/T)2 tan2 (
̃a2T/2) − ω2
0

(2B/T) tan (
̃a2T/2)

and on eliminating ω0 and B, we conclude that

ωp

ωp
≥ K2

where

K2 = K A tan (
̃a2T/2)

tan2 (
̃a2T/2) − K B
(12.31)

That is, in order to satisfy the required specifications at the upper stopband edge,
a2, the selectivity
of the normalized analog LP filter must be equal to or exceed constant K2.

Summarizing, if
a1 ≥
̃a1 and
a2 is assumed to satisfy the required constraints, then
ωp/ωa ≥ K1; and if
a2 ≤
̃a2 and
a1 is assumed to satisfy the required constraints, then
ωp/ωa ≥ K2. These relations also hold in the reverse order, that is, if ωp/ωa ≥ K1 then
a1 ≥
a1

and if ωp/ωa ≥ K2 then
a2 ≤
̃a2. Therefore, if we ensure that

ωp

ωa
≥ K where K = max(K1, K2)

then
a1 ≥
̃a1 and
a2 ≤
̃a2

as required. In words, in order to satisfy the specifications at the lower stopband edge, we need a
selectivity of at least K1 for the normalized LP filter and to satisfy the specifications at the upper
stopband edge, we need a selectivity of at least K2. Therefore, choosing the larger value of the
selectivity would ensure that the specifications are satisfied at both stopband edges.

The appropriate value for K is easily deduced from Eqs. (12.28) and (12.31) as

K =
{

K1 if KC ≥ K B

K2 if KC < K B

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 573

Table 12.3 Bandpass and bandstop filters

ω0 = 2
√

K B

T

BP
ωp

ωa
≥

{
K1 if KC ≥ K B

K2 if KC < K B

B = 2K A

T ωp

ω0 = 2
√

K B

T

BS
ωp

ωa
≥

1

K2
if KC ≥ K B

1

K1
if KC < K B

B = 2K Aωp

T

where K A = tan

̃p2T

2
− tan

̃p1T

2
K B = tan

̃p1T

2
tan

̃p2T

2

KC = tan

̃a1T

2
tan

̃a2T

2
K1 = K A tan (
̃a1T/2)

K B − tan2 (
̃a1T/2)

K2 = K A tan (
̃a2T/2)

tan2 (
̃a2T/2) − K B

where

KC = tan

̃a1T

2
tan

̃a2T

2

The same approach can also be applied to deduce appropriate formulas for bandstop filters. The
required design formulas for BP and BS filters are summarized in Table 12.3.

The formulas derived so far are very general and apply to any normalized LP filter that has a
loss characteristic of a form illustrated in Fig. 12.1. Specific formulas for Butterworth, Chebyshev,
inverse-Chebyshev, and elliptic filters can fairly easily be obtained as will now be demonstrated.

12.3.3 Butterworth Filters

The loss in a normalized Butterworth filter is given by

AN (ω) = 10 log (1 + ω2n)

574 DIGITAL SIGNAL PROCESSING

(see Sec. 10.3) where n is the order of the transfer function. Evaluating AN (ω) for ω = ωp and ωa ,
we get

AN (ωp) = Ap = 10 log
(
1 + ω2n

p

)
and AN (ωa) = Aa = 10 log

(
1 + ω2n

a

)
Solving for ωp and ωa , we obtain

ωp = (100.1Ap − 1)1/2n and ωa = (100.1Aa − 1)1/2n (12.32)

Hence from Eq. (12.32) and Tables 12.2 and 12.3, we have

ωp

ωa
=

(
100.1Ap − 1

100.1Aa − 1

)1/2n

≥ K

where K depends on the type of filter and is given in terms of constants K0, K1, and K2 in Table 12.4.
Solving for n, we obtain

n ≥ log D

2 log (1/K)

where

D = 100.1Aa − 1

100.1Ap − 1
(12.33)

The smallest integer that would satisfy the above equation is the minimum filter order that would
satisfy the required specifications.

Table 12.4 Butterworth filters

LP K = K0

HP K = 1

K0

BP K =
{

K1 if KC ≥ K B

K2 if KC < K B

BS K =

1

K2
if KC ≥ K B

1

K1
if KC < K B

n ≥ log D

2 log (1/K)
D = 100.1Aa − 1

100.1Ap − 1

ωp = (100.1Ap − 1)1/2n

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 575

12.3.4 Chebyshev Filters

In normalized Chebyshev filters, we have

AN (ω) = 10 log [1 + ε2T 2
n (ω)]

where Tn(ω) = cosh (n cosh−1 ω) for ωp ≤ ω < ∞
with ε2 = 100.1Ap − 1

and ωp = 1 (12.34)

(see Sec. 10.4). For ω = ωa

AN (ωa) = Aa = 10 log {1 + (100.1Ap − 1)[cosh (n cosh−1 ωa)]2}

or ωa = cosh

(
1

n
cosh−1

√
D

)
(12.35)

Thus from Eqs. (12.34) and (12.35) and Tables 12.2 and 12.3, we obtain

ωp

ωa
= 1

cosh
(

1
n cosh−1

√
D
) ≥ K

where K is given in terms of constants K0, K1, and K2 in Table 12.5. Solving for n, the order of the
normalized LP filter that would satisfy the specifications must satisfy the inequality

n ≥ cosh−1
√

D

cosh−1(1/K)

Table 12.5 Chebyshev filters

LP K = K0

HP K = 1

K0

BP K =
{

K1 if KC ≥ K B

K2 if KC < K B

BS K =

1

K2
if KC ≥ K B

1

K1
if KC < K B

n ≥ cosh−1
√

D

cosh−1(1/K)
D = 100.1Aa − 1

100.1Ap − 1

ωp = 1

576 DIGITAL SIGNAL PROCESSING

where cosh−1 x can be evaluated using the identity

cosh−1 x = ln (x +
√

x2 − 1)

12.3.5 Inverse-Chebyshev Filters

In normalized inverse-Chebyshev filters, the loss is given by

AN (ω) = 10 log

[
1 + 1

δ2T 2
n (1/ω)

]

where Tn(1/ω) = cosh [n cosh−1(1/ω)] for 0 < ω < ωa

with δ2 = 1

100.1Aa − 1

and ωa = 1 (12.36)

(see Sec. 10.5). For ω = ωp, we can write

AN (ωp) = 10 log

[
1 + 1

δ2T 2
n (1/ωp)

]

Now solving for ωp, we obtain

ωp = 1

cosh
(

1
n cosh−1

√
D
) (12.37)

and from Eqs. (12.36) and (12.37)

ωp

ωa
= 1

cosh
(

1
n cosh−1

√
D
) ≥ K

Therefore, the order of the normalized LP filter must satisfy the inequality

n ≥ cosh−1
√

D

cosh−1(1/K)

where K in terms of constants K0, K1, and K2 is given in Table 12.5. Evidently, the formula for n
is the same as for Chebyshev filters and thus inverse-Chebyshev filters can be designed in the same
way as Chebyshev ones using the parameters in Table 12.5 except that the value for ωp given by
Eq. (12.37) should be used instead of unity.

12.3.6 Elliptic Filters

In elliptic filters, the selectivity factor is defined as

k = ωp

ωa

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 577

Table 12.6 Elliptic filters

k ω p

LP K0
√

K0

HP
1

K0

1√
K0

BP
K1 if KC ≥ K B

K2 if KC < K B

√
K1√
K2

BS

1

K2
if KC ≥ K B

1

K1
if KC < K B

1√
K2

1√
K1

n ≥ log 16D

log(1/q)
D = 100.1Aa − 1

100.1Ap − 1

(see Sec. 10.6) and from Tables 12.2 and 12.3, we have

k ≥ K

where K = K0, 1/K0, Since any value in the range 0 to 1, except for unity, is a permissible
value for k, we can assign the lowest acceptable value, namely,

k = K

as in Table 12.6, which will lead to the lowest order normalized LP analog filter.
With k chosen, the value of ωp is also fixed, that is,

ωp =
√

k

Finally, with k, Ap, and Aa known the necessary value for n can be computed by using the formula
in Table 12.6 (see Sec. 10.6.5).

12.4 DESIGN USING THE FORMULAS
AND TABLES

The formulas and tables developed in the preceding section lead to the following simple design
procedure:

1. Using the prescribed specifications, determine n and ωp, and for elliptic filters also k, from
Tables 12.4 to 12.6 (use Eq. (12.37) to calculate ωp for inverse-Chebyshev filters).

2. Determine λ for LP and HP filters using Table 12.2 or B and ω0 for BP and BS filters using
Table 12.3.

578 DIGITAL SIGNAL PROCESSING

3. Form the normalized transfer function (see Chap. 10).

4. Apply the analog-filter transformation in Eq. (12.1).

5. Apply the bilinear transformation in Eq. (12.2).

The procedure yields LP and HP filters that satisfy the specifications exactly at the passband
edge and oversatisfy the specifications at the stopband edge. In the case of bandpass and bandstop
filters, the specifications are satisfied exactly at the two passband edges and are oversatisfied at the
stopband edges.

Example 12.1 Design a highpass filter that would satisfy the following specifications:

Ap = 1 dB Aa = 45 dB
̃p = 3.5 rad/s

̃a = 1.5 rad/s ωs = 10 rad/s

Use a Butterworth, a Chebyshev, and then an elliptic approximation.

Solution

Butterworth filter: The sampling period is

T = 2π

ωs
= 2π

10

From Table 12.2

K0 = tan(3.5π/10)

tan(1.5π/10)
= 3.851840

Hence from Table 12.4

D = 104.5 − 1

100.1 − 1
= 1.221270 × 105

n ≥ log D

2 log K0
≈ 4.34 → 5

ωp = (100.1 − 1)0.1 = 8.736097 × 10−1

Now from Table 12.2

λ = 2

T
ωp tan

̃pT

2
= 5.457600

Chebyshev filter: From Table 12.5

n ≥ cosh−1
√

D

cosh−1 K0
=

ln
(√

D + √
D − 1

)
ln
(

K0 +
√

K 2
0 − 1

) ≈ 3.24 → 4

ωp = 1

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 579

Hence from Table 12.2

λ = 6.247183

Elliptic filter: From Table 12.6

k = 1

K0
= 2.596162 × 10−1

Now, from Eqs. (10.86)–(10.88), we obtain

k ′ =
√

1 − k2 = 9.657119 × 10−1

q0 = 1

2

(
1 − √

k ′

1 + √
k ′

)
= 4.361108 × 10−3

q = q0 + 2q5
0 + · · · ≈ q0

Hence from Table 12.6

n ≥ log 16D

log (1/q)
≈ 2.67 → 3

ωp =
√

k = 5.095255 × 10−1

and from Table 12.2

λ = 3.183099

At this point the normalized LP Butterworth, Chebyshev, and elliptic approximations
can be obtained (see Chap. 10). The designs can be completed by applying the LP-
to-HP transformation and after that the bilinear transformation to each of the three
approximations.

The transfer functions HN (s), HH P (s̄), and HD(z) can be put in the form

H0

J∏
j=1

a0 j + a1 jw + a2 jw
2

b0 j + b1 jw + b2 jw2

where H0 is a multiplier constant and w = s, s̄, or z. The coefficients of HN (s) can be
computed as in Table 12.7, those of HHP(s̄) as in Table 12.8, and those of HD(z) as in
Table 12.9.

The loss characteristics of the three filters are plotted in Fig. 12.4. The actual
minimum stopband loss for the Butterworth, Chebyshev, and elliptic filter are 52.70,
58.45, and 52.90 dB, respectively.

580 DIGITAL SIGNAL PROCESSING

Table 12.7 Coefficients of HN(s) (Example 12.1)

j a0 j a1 j a2 j b0 j b1 j b2 j

Butterworth 1 1 0 0 1 1.0 0
2 1 0 0 1 1.618034 1
3 1 0 0 1 6.180340E − 1 1

H0 = 1.0

Chebyshev 1 1 0 0 2.793981E − 1 6.737394E − 1 1
2 1 0 0 9.865049E − 1 2.790720E − 1 1

H0 = 2.456533E − 1

Elliptic 1 1.0 0 0 2.573050E − 1 1.0 0
2 5.091668 0 1 2.592344E − 1 2.442048E − 1 1

H0 = 1.310029E − 2

Table 12.8 Coefficients of HHP (s̄) (Example 12.1)

j a0 j a1 j a2 j b0 j b1 j b2 j

Butterworth 1 0 1 0 5.457600 1.0 0
2 0 0 1 2.978540E + 1 8.830582 1
3 0 0 1 2.978540E + 1 3.372982 1

H0 = 1.0

Chebyshev 1 0 0 1 1.396835E + 2 1.506443E + 1 1
2 0 0 1 3.956118E + 1 1.767263 1

H0 = 8.912509E − 1

Elliptic 1 0.0 1 0 1.237091E + 1 1.0 0
2 1.989941 0 1 3.908478E + 1 2.998552 1

H0 = 1.0

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 581

Table 12.9 Coefficients of HD(z) (Example 12.1)

j a0 j a1 j a2 j b0 j b1 j b2 j

Butterworth 1 −1 1 0 2.632312E −1 1.0 0
2 1 −2 1 1.735936E −1 5.778156E −1 1
3 1 −2 1 5.760838E −1 7.759805E −1 1

H0 = 1.097518E − 2

Chebyshev 1 1 −2 1 5.150704E −1 1.310140 1
2 1 −2 1 7.966193E −1 1.063983 1

H0 = 8.363241E − 3

Elliptic 1 −1 1.0 0 5.907039E −1 1.0 0
2 1 −1.343365 1 6.751385E −1 9.854281E − 1 1

H0 = 4.221731E − 2

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Ω, rad/s

L
os

s,
 d

B

Butterworth
(n = 5)

Elliptic
(n = 3)

Chebyshev
(n = 4)

1.0

Pa
ss

ba
nd

 lo
ss

, d
B

3.51.5

Figure 12.4 Loss characteristics of highpass filters (Example 12.1).

582 DIGITAL SIGNAL PROCESSING

Example 12.2 Design an elliptic bandpass filter that would satisfy the following specifica-
tions:

Ap = 1 dB Aa = 45 dB
̃p1 = 900 rad/s
̃p2 = 1100 rad/s

̃a1 = 800 rad/s
̃a2 = 1200 rad/s ωs = 6000 rad/s

Solution

From Table 12.3

K A = tan
1100π

6000
− tan

900π

6000
= 1.398821 × 10−1

K B = tan
900π

6000
tan

1100π

6000
= 3.308897 × 10−1

KC = tan
800π

6000
tan

1200π

6000
= 3.234776 × 10−1

Hence KC < K B and from Table 12.6, we get

k = K2 = K A tan (
̃a2T/2)

tan2 (
̃a2T/2) − K B
= 5.159570 × 10−1

ωp =
√

K2 = 7.183016 × 10−1

D is the same as in Example 12.1, that is, D = 1.221270 × 105, and from Eqs. (10.86)–
(10.88), we have

k ′ =
√

1 − k2 = 8.566144 × 10−1

q0 = 1

2

(
1 − √

k ′

1 + √
k ′

)
= 1.933628 × 10−2

q = q0 + 2q5
0 + · · · ≈ 1.933629 × 10−2

Hence n ≥ log 16D

log (1/q)
≈ 3.67 → 4

Now, from Table 12.3

ω0 = 2
√

K B

T
= 1.098609 × 103 and B = 2KA

T ωp
= 3.719263 × 102

The parameters of the elliptic approximation and the LP-to-BP transformation are, at
this point, available. Hence the elliptic approximation can be obtained (see Sec. 10.6.6).

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 583

Table 12.10 Coefficients of HD(z) (Example 12.2)

j a0 j a1 j b0 j b1 j

1 1.0 −1.602667 9.268668E − 1 −8.886598E − 1
2 1.0 −7.283103E − 3 9.306057E − 1 −1.046605
3 1.0 −1.331115 9.738539E − 1 −8.048914E − 1
4 1.0 −5.885571E − 1 9.767824E − 1 −1.160308

H0 = 3.444154E − 3

Applying the LP-to-BP transformation followed by the bilinear transformation yields
the transfer function of the required filter as

HD(z) = H0

4∏
j=1

a0 j + a1 j z + z2

b0 j + b1 j z + z2

The numerical values of the coefficients are given in Table 12.10. The loss characteristic
of the filter is plotted in Fig. 12.5. The actual minimum stopband loss is 50.64 dB.

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

Ω, rad/s

L
os

s,
 d

B

Pa
ss

ba
nd

 lo
ss

, d
B

1.0

800 900 12001100

Figure 12.5 Loss characteristic of elliptic bandpass filter (Example 12.2).

584 DIGITAL SIGNAL PROCESSING

Example 12.3 Design a Chebyshev bandstop filter that would satisfy the following specifi-
cations:

Ap = 0.5 dB Aa = 40 dB
̃p1 = 350 rad/s
̃p2 = 700 rad/s

̃a1 = 430 rad/s
̃a2 = 600 rad/s ωs = 3000 rad/s

Solution

The sampling period is given by

T = 2π

ωs
= 2π

3000

Hence

̃p1T

2
= 35π

300

̃p2T

2
= 70π

300

̃a1T

2
= 43π

300

̃a2T

2
= 60π

300
From Table 12.3, we have

K A = tan
70π

300
− tan

35π

300
= 5.165400 × 10−1

K B = tan
35π

300
tan

70π

300
= 3.456327 × 10−1

KC = tan
43π

300
tan

60π

300
= 3.512244 × 10−1

Since KC > K B , according to Table 12.5, we need to compute K = 1/K2, that is,

K = 1

K2
= tan2 (
̃a2T/2) − K B

K A tan (
̃a2T/2)
= 4.855769 × 10−1

From Table 12.5,

D = 104.0 − 1

100.05 − 1
= 8.194662 × 104

n = cosh−1
√

D

cosh−1 1/K
= 4.70 → 5

ωp = 1

Now from Table 12.3, the parameters of the LP-to-BS transformation can be obtained
as

ω0 = 2
√

K B

T
= 5.614083 × 102

B = 2K Aωp

T
= 4.932594 × 102

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 585

Table 12.11 Coefficients of HD(z) (Example 12.3)

j a0 j a1 j b0 j b1 j

1 1.0 −9.725792E − 1 −2.887281E − 2 −4.722491E − 1
2 1.0 −9.725792E − 1 6.230100E − 1 5.028889E − 2
3 1.0 −9.725792E − 1 7.543570E − 1 −1.400163
4 1.0 −9.725792E − 1 9.168994E − 1 −2.175109E − 1
5 1.0 −9.725792E − 1 9.428927E − 1 −1.435926

H0 = 2.225052E − 1

By obtaining the appropriate Chebyshev approximation (see Sec. 10.4.3) and then ap-
plying the LP-to-BS transformation followed by the bilinear transformation the transfer
function is of the required digital filter can be obtained as

HD(z) = H0

5∏
j=1

a0 j + a1 j z + z2

b0 j + b1 j z + z2

where the coefficients ai j and bi j are given in Table 12.11. The loss characteristic of the
filter is plotted in Fig. 12.6. The actual minimum stopband loss is 43.50 dB.

0 200 400

600

800 1000
0

10

20

30

40

50

60

Ω, rad/s

L
os

s,
 d

B

0.5

Pa
ss

ba
nd

 lo
ss

, d
B

350 430 700

Figure 12.6 Loss characteristic of Chebyshev bandstop filter (Example 12.3).

586 DIGITAL SIGNAL PROCESSING

12.5 CONSTANT GROUP DELAY

The phase response in filters designed by using the method described in this chapter is in general
quite nonlinear because of two reasons. First, the Butterworth, Chebyshev, inverse-Chebyshev, and
elliptic approximations are inherently nonlinear-phase approximations. Second, the warping effect
tends to increase the nonlinearity of the phase response. As a consequence, the group delay tends
to vary with frequency and the application of these filters tends to introduce delay distortion (see
Sec. 5.7).

Constant group-delay filters can sometimes be designed by using constant-delay approxima-
tions such as the Bessel-Thomson approximation with design methods that preserve the linearity
in the phase response of the analog filter, e.g., the invariant impulse-response method. However,
a constant delay and prescribed loss specifications are usually difficult to achieve simultaneously,
particularly if bandpass or bandstop high-selectivity filters are desired.

12.5.1 Delay Equalization

The design of constant-delay analog filters satisfying prescribed loss specifications is almost invari-
ably accomplished in two steps. First a filter is designed satisfying the loss specifications ignoring
the group delay. Then a delay equalizer is designed which can be used in cascade with the filter to
compensate for variations in the group delay of the filter. The same technique can also be used in
digital filters.

Let HF (z) and HE (z) be the transfer functions of the filter and equalizer, respectively. The
group delays of the filter and equalizer are given by

τF (ω) = −dθF (ω)

dω
and τE (ω) = −dθE (ω)

dω

respectively, where

θF (ω) = arg HF (e jωT) and θE (ω) = arg HE (e jωT)

The overall transfer function of the filter-equalizer combination is

HFE (z) = HF (z)HE (z)

Hence |HFE (e jωT)| = |HF (e jωT)||HE (e jωT)|

and θFE (ω) = θF (ω) + θE (ω) (12.38)

Now from Eq. (12.38), the overall group delay of the filter-equalizer combination can be obtained as

τFE (ω) = τF (ω) + τE (ω)

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 587

Therefore, a digital filter that satisfies prescribed loss specifications and has constant group delay
with respect to some passband ωp1 ≤ ω ≤ ωp2 can be designed using the following steps:

1. Design a filter satisfying the loss specifications using the procedure in Sec. 12.4.

2. Design an equalizer with

|HE (e jωT)| = 1 for 0 ≤ ω ≤ ωs/2

and τE (ω) = τ − τF (ω) for ωp1 ≤ ω ≤ ωp2 (12.39)

where τ is a constant.

From step 2, HE (z) must be an allpass transfer function of the form

HE (z) =
M∏

j=1

1 + c1 j z + c0 j z2

c0 j + c1 j z + z2
(12.40)

The equalizer can be designed by finding a set of values for c0 j , c1 j , τ , and M such that (a) Eq. (12.39)
is satisfied to within a prescribed error in order to achieve approximately constant group delay with
respect to the passband, and (b) the poles of HE (z) are inside the unit circle of the z plane to ensure
that the equalizer is stable. Equalizers can be designed by using optimization methods as will be
demonstrated in Sec. 16.8.

Note that delay equalization is unnecessary for stopbands since signals that pass through
stopbands are normally deemed to be noise and delay distortion in noise is of no concert.

12.5.2 Zero-Phase Filters

In nonreal-time applications, the problem of delay distortion can be eliminated in a fairly simple man-
ner by designing the filter as a cascade arrangement of two filters characterized by H (z) and H (z−1),
as depicted in Fig. 12.7a. Since H (e− jω T) is the complex conjugate of H (e jω T), the frequency
response of the cascade arrangement can be expressed as

H0(e jω T) = H (e jω T)H (e− jω T) = |H (e jω T)|2

H(z−1)H(z)

(a)

(b)

H(z)H(z) RR

Figure 12.7 (a) Zero-phase filter, (b) implementation.

588 DIGITAL SIGNAL PROCESSING

In other words, the frequency response of the arrangement is real and, as a result, the filter has
zero phase response and, therefore, it would introduce zero delay. If a filter with passband ripple
Ap and minimum stopband loss Aa is required, the design can be readily completed by obtaining a
transfer function with passband ripple Ap/2 and minimum stopband loss Aa/2, since the two filters
in Fig. 12.7a have identical amplitude responses.

If the impulse response of the first filter is h(nT), then that of the second filter is h(−nT), as can
be readily demonstrated (see Prob. 12.20), and if the first filter is causal, the second one is noncausal.
Hence the cascade of Fig. 12.7a can be implemented, as depicted in Fig. 12.7b, where devices R are
used to reverse the signals at the input and output of the second filter. In this arrangement, the first
filter introduces a certain delay, which depends on the frequency, and thus a certain amount of delay
distortion is introduced. The second filter introduces exactly the same delay as the first, but, since
the signal is fed backward, the delay is actually a time advance and, therefore, cancels the delay of
the first filter.

The scheme of Fig. 12.7 is suitable for nonreal-time applications since it uses a noncausal
filter. An alternative approach for the design of constant-delay filters that can be used for nonreal- or
real-time applications is to use nonrecursive approximations which are explored in Chaps. 9 and 15.

12.6 AMPLITUDE EQUALIZATION

In many applications, a filter is required to operate in cascade with a channel or system that does
not have a constant amplitude response (e.g., a D/A converter, Fig. 6.17d). If the transfer function
of such a channel is HC (z) and the passband of the channel-filter combination extends from ωp1 to
ωp2, then the transfer function of the filter must be chosen such that

|HC (e jω T)HF (e jω T)| = 1 for ωp1 ≤ ω ≤ ωp2

to within a prescribed tolerance in order to keep the amplitude distortion to an acceptable level (see
Sec. 5.7). If the variation in the amplitude response of the channel is small, it may be possible to solve
the problem by taking the channel loss into account when the filter specifications are formulated.
Alternatively, if the variation of the amplitude response of the channel is large, then the filter may
have to be tuned or redesigned using one of the optimization methods described in Chap. 16 (e.g.,
see Example 16.3).

REFERENCES

[1] A. Antoniou, “Design of elliptic digital filters: Prescribed specifications,” Proc. Inst. Elect.
Eng., Part G, vol. 124, pp. 341–344, Apr. 1977 (see vol. 125, p. 504, June 1978 for errata).

PROBLEMS

12.1. Design a lowpass digital filter that would satisfy the specifications of Fig. P12.1. Use a Butterworth
approximation.

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 589

ωs = 5000 rad/s
L

os
s,

 d
B

ω, rad/s

0.5

800 1600

45

Figure P12.1

12.2. Redesign the filter of Prob. 12.1 using a Chebyshev approximation.

12.3. Redesign the filter of Prob. 12.1 using an inverse-Chebyshev approximation.

12.4. Redesign the filter of Prob. 12.1 using an elliptic approximation.

12.5. Design a highpass digital filter that would satisfy the specifications of Fig. P12.5. Use a Butterworth
approximation.

12.6. Redesign the filter of Prob. 12.5 using a Chebyshev approximation.

12.7. Redesign the filter of Prob. 12.5 using an inverse-Chebyshev approximation.

12.8. Redesign the filter of Prob. 12.5 using an elliptic approximation.

12.9. Design a bandpass digital filter that would satisfy the specifications of Fig. P12.9. Use a Butterworth
approximation.

12.10. Redesign the filter of Prob. 12.9 using a Chebyshev approximation.

12.11. Redesign the filter of Prob. 12.9 using an inverse-Chebyshev approximation.

12.12. Redesign the filter of Prob. 12.9 using an elliptic approximation.

12.13. Design a bandstop digital filter that would satisfy the specifications of Fig. P12.13. Use a Butterworth
approximation.

12.14. Redesign the filter of Prob. 12.13 using a Chebyshev approximation.

12.15. Redesign the filter of Prob. 12.13 using an inverse-Chebyshev approximation.

12.16. Redesign the filter of Prob. 12.13 using an elliptic approximation.

590 DIGITAL SIGNAL PROCESSING

ωs = 10,000 rad/s
L

os
s,

 d
B

ω, rad/s

0.1

1600 3200

40

Figure P12.5

1.0

10 3020 40

L
os

s,
 d

B

ω, rad/s

ωs = 100 rad/s

30 30

Figure P12.9

RECURSIVE (IIR) FILTERS SATISFYING PRESCRIBED SPECIFICATIONS 591

0.30.3

100 400200 700

L
os

s,
 d

B

ω, rad/s

ωs = 3,000 rad/s

35

Figure P12.13

12.17. Derive the formulas of Table 12.2 for highpass filters.

12.18. Derive the formulas of Table 12.3 for bandstop filters.

12.19. Shaw that the transfer function of Eq. (12.40) is an allpass transfer function.

12.20. A digital filter with an impulse response h(nT) has a transfer function H (z). Show that a filter with a
transfer function H (z−1) has an impulse response h(−nT).

This page intentionally left blank

CHAPTER

13
RANDOM
SIGNALS

13.1 INTRODUCTION

The methods of analysis considered so far assume deterministic signals. Frequently in digital filters
and communication systems in general random signals are encountered, e.g., the noise generated
by an analog-to-digital (A/D) converter or the noise generated by an amplifier. Signals of this type
can assume an infinite number of waveforms, and measurement will at best yield a set of typical
waveforms. Despite the lack of a complete description, many statistical attributes of a random signal
can be determined from a statistical description of the signal.

The time- and frequency-domain statistical attributes of random signals as well as the effect
of filtering on such signals can be studied by using the concept of a random process.

This chapter provides a brief description of random processes. The main results are presented
in terms of continuous-time random signals and are then extended to discrete-time signals by using
the interrelation between the Fourier and z transforms. The chapter begins with a brief summary of
the essential features of random variables. Detailed discussions of random variables and processes
can be found in [1–5].

13.2 RANDOM VARIABLES

Consider an experiment which may have a finite or infinite number of random outcomes, and let ζ1,
ζ2, . . . be the possible outcomes. A set S comprising all the possible ζ can be constructed, and a
number x(ζ) can be assigned to each ζ according to some rule. The function x(ζ), or simply x, whose
domain is set S and whose range is a set of numbers is called a random variable. Typical random
variables are the coordinates of the hit position in an experiment of target practice or the speed and

593

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

594 DIGITAL SIGNAL PROCESSING

direction of the wind at some specified instant in a given region or at some specified location over
a period of time. Specific random variables that will be studied in some detail in Chap. 14 are the
errors introduced by the quantization of signals and filter coefficients.

13.2.1 Probability-Distribution Function

A random variable x may assume values in a certain range (x1, x2), where x1 can be as low as −∞
and x2 as high as +∞. The probability of observing random variable x below or at value x is referred
to as the probability-distribution function of x and is denoted as

Px(x) = Pr [x ≤ x]

13.2.2 Probability-Density Function

The derivative of Px(x) with respect to x is called the probability-density function of x and is denoted
as

px(x) = d Px(x)

dx

A fundamental property of px(x) is ∫ ∞

−∞
px(x) dx = 1

since the range (−∞, +∞) must necessarily include the value of x. Also

Px[x1 ≤ x ≤ x2] =
∫ x2

x1

px(x) dx

13.2.3 Uniform Probability Density

In many situations there is no preferred value or range for the random variable. In such a case, the
probability density is said to be uniform and is given by

px(x) =

1

x2 − x1
for x1 ≤ x ≤ x2

0 otherwise

13.2.4 Gaussian Probability Density

Very common in nature is the Gaussian probability density given by

px(x) = 1

σ
√

2π
e−(x−η)2/2σ 2

for −∞ ≤ x ≤ ∞ (13.1)

The parameters σ and η are constants.
There are many other important probability-density functions, e.g., binomial, Poisson, and

Rayleigh [1], but these are beyond the scope of this book.

13.2.5 Joint Distributions

An experiment may have two sets of random outcomes, say, ζx1, ζx2, . . . and ζy1, ζy2, For
example, in an experiment of target practice, the hit position can be described in terms of two

RANDOM SIGNALS 595

coordinates. Experiments of this type necessitate two random variables, say, x and y. The probability
of observing x and y below or at x and y, respectively, is said to be the joint distribution function of
x and y and is denoted as

Pxy(x, y) = Pr [x ≤ x, y ≤ y]

The joint probability-density function of x and y is defined as

pxy(x, y) = ∂2 Pxy(x, y)

∂x∂y

The range (−∞, ∞) must include the values of x and y, and hence∫ ∞

−∞

∫ ∞

−∞
pxy(x, y) dx dy = 1

The probability of observing x and y in the ranges x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2, respectively, is
given by

Pr [x1 ≤ x ≤ x2, y1 ≤ y ≤ y2] =
∫ y2

y1

∫ x2

x1

pxy(x, y) dx dy

Two random variables x and y representing outcomes ζx1, ζx2, . . . and ζy1, ζy2, . . . of an exper-
iment are said to be statistically independent if the occurrence of any outcome ζx does not influence
the occurrence of any outcome ζy and vice versa. A necessary and sufficient condition for statistical
independence is

pxy(x, y) = px(x)py(y) (13.2)

13.2.6 Mean Values and Moments

The mean or expected value of random variable x is defined as

E{x} =
∫ ∞

−∞
xpx(x) dx

Similarly, if a random variable z is a function of two other random variables x and y, that is,

z = f (x, y)

then
E{z} =

∫ ∞

−∞
zpz(z) dz (13.3)

If z is a single-valued function of x and y and x ≤ x ≤ x +dx, y ≤ y ≤ y +dy, then z ≤ z ≤ z +dz.
Hence

Pr [z ≤ z ≤ z + dz] = Pr [x ≤ x ≤ x + dx, y ≤ y ≤ y + dy]

596 DIGITAL SIGNAL PROCESSING

or pz(z)dz = pxy(x, y)dx dy

and from Eq. (13.3)

E{z} =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)pxy(x, y) dx dy

Actually this is a general relation that holds for multivalued functions as well [1]. For

z = xy

we have

E{xy} =
∫ ∞

−∞

∫ ∞

−∞
xypxy(x, y) dx dy

and if variables x and y are statistically independent, then the use of Eq. (13.2) yields

E{xy} =
∫ ∞

−∞
xpx(x) dx

∫ ∞

−∞
ypy(y) dy = E{x}E{y} (13.4)

The nth moment of x is defined as

E{xn} =
∫ ∞

−∞
xn px(x) dx

The second moment is usually referred to as the mean square of x.
The nth central moment of x is defined as

E{(x − E{x})n} =
∫ ∞

−∞
(x − E{x})n px(x) dx (13.5)

The second central moment is commonly referred to as the variance and is given by

σ 2
x = E{(x − E{x})2}

= E{x2 − 2xE{x} + (E{x})2}
= E{x2} − (E{x})2 (13.6)

If

z = a1x1 + a2x2

where a1, a2 are constants and x1, x2 are statistically independent random variables, then from
Eqs. (13.4) and (13.5), we have

σ 2
z = a2

1σ
2
x1

+ a2
2σ

2
x2

RANDOM SIGNALS 597

In general, if

z =
n∑

i=1

ai xi

and variables x1, x2, . . . , xn are statistically independent, then

σ 2
z =

n∑
i=1

a2
i σ

2
xi

(13.7)

Example 13.1 (a) Find the mean and variance for a random variable with a uniform probability
density given by

px(x) =

1

x2 − x1
for x1 ≤ x ≤ x2

0 otherwise

(b) Repeat part (a) for a random variable with a Gaussian probability density

px(x) = 1

σ
√

2π
e−(x−η)2/2σ 2

for −∞ ≤ x ≤ ∞

Solution

(a) From the definition of the mean, we have

E{x} =
∫ x2

x1

x

x2 − x1
dx = 1

2
(x1 + x2) (13.8)

Similarly, the mean square can be deduced as

E{x2} =
∫ x2

x1

x2

x2 − x1
dx = x3

2 − x3
1

3(x2 − x1)
(13.9)

and from Eq. (13.6), we obtain

σ 2
x = (x2 − x1)2

12
(13.10)

(b) In this case, we can write

E{x} = 1

σ
√

2π

∫ ∞

−∞
xe−(x−η)2/2σ 2

dx

598 DIGITAL SIGNAL PROCESSING

and with x = y + η

E{x} = 1

σ
√

2π

(∫ ∞

−∞
ye−y2/2σ 2

dy + η

∫ ∞

−∞
e−y2/2σ 2

dy

)

The first integral is zero because the integrand is an odd function of y whereas the second
integral is equal to σ

√
2π according to standard tables of integrals. Hence

E{x} = η

Now

E{x2} = 1

σ
√

2π

∫ ∞

−∞
x2e−(x−η)2/2σ 2

dx

and, as before,

E{x2} = σ 2 + η2 or σ 2
x = σ 2

13.3 RANDOM PROCESSES

A random process is an extension of the concept of a random variable. Consider an experiment with
possible random outcomes ζ1, ζ2, A set S comprising all ζ can be constructed and a waveform
x(t, ζ) can be assigned to each ζ according to some rule. The set of waveforms obtained is called an
ensemble, and each individual waveform is said to be a sample function. Set S, the ensemble, and
the probability description associated with S constitute a random process.

The concept of a random process can be illustrated by an example. Suppose that a large number
of radio receivers of a particular model are receiving a carrier signal transmitted by a broadcasting
station. With the receivers located at different distances from the broadcasting station, the amplitude
and phase of the received carrier will be different at each receiver. As a result, the set of the received
waveforms, illustrated in Fig. 13.1, can be described by

x(t, ζ) = z cos(ωct + y)

where z and y are random variables and ζ = ζ1, ζ2, The set of all possible waveforms that might
be received constitutes an ensemble and the ensemble together with the probability densities of z
and y constitutes a random process.

13.3.1 Notation

A random process can be represented by x(t, ζ) or in a simplified notation by x(t). Depending on
the circumstances, x(t, ζ) can represent one of four things as follows:

1. The ensemble, if t and ζ are variables.

2. A sample function, if t is variable and ζ is fixed.

RANDOM SIGNALS 599

t

t

t

t
x(t, zn)

x(t, z1)

x(t, z2)

x(t, z3)

Figure 13.1 A random process.

3. A random variable, if t is fixed and ζ is variable.

4. A single number, if t and ζ are fixed.

13.4 FIRST- AND SECOND-ORDER STATISTICS

For a fixed value of t, x(t) is a random variable representing the instantaneous values of the various
sample functions over the ensemble. The probability distribution and probability density of x(t) are
denoted as

P(x ; t) = Pr [x(t) ≤ x] and p(x ; t) = ∂ P(x ; t)

∂x

respectively. These two equations constitute the first-order statistics of the random process.

600 DIGITAL SIGNAL PROCESSING

At any two instants t1 and t2, x(t1) and x(t2) are distinct random variables. Their joint probability
distribution and joint probability density depend on t1 and t2 in general, and are denoted as

P(x1, x2; t1, t2) = Pr [x(t1) ≤ x1, x(t2) ≤ x2]

and p(x1, x2; t1, t2) = ∂2 P(x1, x2; t1, t2)

∂x1∂x2

respectively. These two equations constitute the second-order statistics of the random process.
Similarly, at any k instants t1, t2, . . . , tk , the quantities x1, x2, . . . , and xk are distinct random

variables. Their joint probability distribution and joint probability density depend on t1, t2, . . . , tk and
can be defined as before. These quantities constitute the kth-order statistics of the random process.

Example 13.2 Find the first-order probability density p(x ; t) for random process

x(t) = yt − 2

where y is a random variable with a probability density

py(y) = 1√
2π

e−y2/2 for −∞ ≤ y ≤ ∞

Solution

If x and y are possible values of x(t) and y, then

x = yt − 2 or y = 1

t
(x + 2)

From Fig. 13.2

Pr [x ≤ x ≤ x + |dx |] = Pr [y ≤ y ≤ y + |dy|]

i.e.,

px(x)|dx | = py(y)|dy| or px(x) = py(y)

|dx/dy|
Since

dx

dy
= t

we obtain

p(x ; t) = px(x) = 1

|t |√2π
e−(x+2)2/2t2

for −∞ ≤ x ≤ ∞

RANDOM SIGNALS 601

dy

dx

x

y

Figure 13.2 Function x = yt − 2 (Example 13.2).

Example 13.3 Find the first-order probability density p(x ; t) of the random process

x(t) = cos(ωct + y)

where y is a random variable with probability density

py(y) =

1

2π
for 0 ≤ y ≤ 2π

0 otherwise

Solution

If x and y are possible values of x(t) and y, then

x = cos(ωct + y)

and from Fig. 13.3, we get

dy1 dy2

dx

x

y
2p

1

−1

Figure 13.3 Function x = cos (ωct + y) (Example 13.3).

602 DIGITAL SIGNAL PROCESSING

Pr [x ≤ x ≤ x + |dx |] = Pr [y1 ≤ y ≤ y1 + |dy1|]
+Pr [y2 ≤ y ≤ y2 + |dy2|]

or px(x)|dx | = py(y1)|dy1| + py(y2)|dy2|

Hence px(x) = py(y1)

|x ′(y1)| + py(y2)

|x ′(y2)|

where x ′(y) = dx

dy
= − sin (ωct + y) = −

√
1 − x2

Since

py(y1) = py(y2) = py(y) and |x ′(y1)| = |x ′(y2)| = |x ′(y)|

we obtain

p(x ; t) = px(t) =
{

1
π
√

1 − x2
for |x | < 1

0 otherwise

13.5 MOMENTS AND AUTOCORRELATION

The first-order statistics give the mean, mean square, and other moments of a random process at any
instant t . From Sec. 13.2.6

E{x(t)} =
∫ ∞

−∞
xp(x ; t) dx

E{x2(t)} =
∫ ∞

−∞
x2 p(x ; t) dx

The second-order statistics give the autocorrelation function of a random process, which is
defined as

rx(t1, t2) = E{x(t1)x(t2)} =
∫ ∞

−∞

∫ ∞

−∞
x1x2 p(x1, x2; t1, t2) dx1 dx2

The autocorrelation is a measure of the interdependence between the instantaneous signal values at
t = t1 and those at t = t2. This is the most important attribute of a random process, as it leads to a
frequency-domain description of the process.

RANDOM SIGNALS 603

Example 13.4 (a) Find the mean, mean square, and autocorrelation for the random process
in Example 13.2. (b) Repeat part (a) for the process of Example 13.3.

Solution

(a) The probability density of x(t) has been obtained in Example 13.2 as

p(x ; t) = px(x) = 1

|t |√2π
e−(x+2)2/2t2

for −∞ ≤ x ≤ ∞

Now the mean and mean square of a random variable x with a Gaussian probability
density

px(x) = 1

σ
√

2π
e−(x−η)2/2σ 2

for −∞ ≤ x ≤ ∞

have been obtained in Example 13.1 as

E{x} = η and E{x2} = σ 2 + η2

respectively. Thus, by comparison, the mean and mean square of x(t) can be readily
obtained as

E{x(t)} = −2 and E{x2(t)} = t2 + 4

The autocorrelation is given by

rx(t1, t2) = E{(yt1 − 2)(yt2 − 2)} = t1t2 E{y2} − 2(t1 + t2)E{y} + 4

and since y is a random variable with a probability density

py(y) = 1√
2π

e−y2/2 for −∞ ≤ y ≤ ∞

(see Example 13.2), we have

E{y} = 0 and E{y2} = 1

and

rx(t1, t2) = t1t2 + 4

(b) The probability density of x(t) was obtained in Example 13.3 as

p(x ; t) = px(t) =
{

1
π
√

1 − x2
for |x | < 1

0 otherwise

604 DIGITAL SIGNAL PROCESSING

Thus the mean and mean square of x(t) can be readily obtained as

E{x(t)} = 1

π

∫ 1

−1

x√
1 − x2

dx = 0 (13.11)

E{x2(t)} = 1

π

∫ 1

−1

x2

√
1 − x2

dx = 1
2

The autocorrelation can be expressed as

rx(t1, t2) = E{cos (ωct1 + y) cos (ωct2 + y)}
= 1

2 cos (ωct1 − ωct2) + 1
2 E{cos (ωct1 + ωct2 + 2y)}

Now

x̄(t) = cos (ωct1 + ωct2 + 2y)

is a random variable of the same type as x(t) in Example 13.3, whose probability density
can be obtained as

p(x̄ ; t) = px̄(t) =
{

1
π
√

1 − x̄2
for |x̄ | < 1

0 otherwise

(see Example 13.3), and hence Ex̄(t) = 0. Therefore,

rx(t1, t2) = 1
2 cos ωcτ where τ = t1 − t2 (13.12)

13.6 STATIONARY PROCESSES

A random process is said to be strictly stationary if x(t) and x(t + T) have the same statistics (all
orders) for any value of T . If the mean of x(t) is constant and its autocorrelation depends only on
t2 − t1, that is,

E{x(t)} = constant E{x(t1)x(t2)} = rx(t2 − t1)

the process is called wide-sense stationary. A strictly stationary process is also stationary in the
wide sense; however, the converse is not necessarily true. The process of Example 13.4, part (a), is
wide-sense stationary; however, that of Example 13.4, part (b), is not stationary.

13.7 FREQUENCY-DOMAIN REPRESENTATION

The frequency-domain representation of deterministic signals is normally in terms of amplitude,
phase, and energy-density spectrums (see Chap. 2). Although such representations are possible for
random processes [1], they are avoided in practice because of the mathematical difficulties associated

RANDOM SIGNALS 605

with infinite-energy signals (see Sec. 6.2). Usually, random processes are represented in terms of
power-density spectra.

Consider a signal x(t) and let

xT0 (t) =
{

x(t) for |t | ≤ T0

0 otherwise

The average power of x(t) over the interval [−T0, T0] is

PT0 = 1

2T0

∫ T0

−T0

x2(t) dt = 1

2T0

∫ ∞

−∞
x2

T0
(t) dt

and by virtue of Parseval’s formula (see Theorem 2.16)

PT0 =
∫ ∞

−∞

|XT0 (jω)|2
2T0

dω

2π

where

XT0 (jω) = FxT0 (t)

Evidently, the elemental area in the above integral, namely,

|XT0 (jω)|2
2T0

dω

2π
= |XT0 (jω)|2

2T0
d f

represents average power (f is the frequency in hertz). Therefore, the quantity

|XT0 (jω)|2
2T0

represents the average power per unit bandwidth (in hertz) and can be referred to as the power
spectral density (PSD) of xT0 (t). If xT0 (t) and x(t) are sample functions of random processes xT0 (t)
and x(t), respectively, we can define

PSD of xT0 (t) = E

{ |XT0 (jω)|2
2T0

}

and since xT0 (t) → x(t) as T0 → ∞, we obtain

PSD of x(t) = Sx(ω) = lim
T0→∞

E

{ |XT0 (jω)|2
2T0

}
(13.13)

The function Sx(ω) is said to be the power-density spectrum of the process.

606 DIGITAL SIGNAL PROCESSING

For stationary processes, the PSD is the Fourier transform of the autocorrelation function, as
we shall now demonstrate. From Eq. (13.13)

Sx(ω) = lim
T0→∞

E

{
XT0 (jω)X∗

T0
(jω)

2T0

}

= lim
T0→∞

1

2T0
E

{∫ T0

−T0

x(t2)e− jω t2 dt2

∫ T0

−T0

x(t1)e jω t1 dt1

}

= lim
T0→∞

1

2T0

∫ T0

−T0

∫ T0

−T0

E{x(t1)x(t2)}e− jω (t2−t1) dt1 dt2

For a wide-sense-stationary process, we have

E{x(t1)x(t2)} = rx(t2 − t1)

and hence we can write

Sx(ω) = lim
T0→∞

1

2T0

∫ T0

−T0

∫ T0

−T0

f (t2 − t1) dt1 dt2 (13.14)

where

f (t2 − t1) = rx(t2 − t1)e− jω (t2−t1) (13.15)

The preceding double integral represents the volume under the surface y = f (t2 − t1) and above
the square region in Fig. 13.4. Since f (t2 − t1) is constant on any line of the form

t2 = t1 + c

the volume over the elemental area bounded by the square region and the lines

t2 = t1 + τ and t2 = t1 + τ + dτ

is approximately constant. From the geometry of Fig. 13.4, we note that the elemental area d A is the
difference between the areas of two overlapping equilateral right-angled triangles. For τ ≥ 0, the
sides of the larger and smaller triangles are 2T0 − τ and 2T0 − (τ + dτ), respectively, and hence

d A = 1

2
(2T0 − τ)2 − 1

2
[2T0 − (τ + dτ)]2

= (2T0 − τ)dτ + 1

2
(dτ)2

≈ (2T0 − τ)dτ

Similarly, for τ < 0, we get

d A ≈ (2T0 + τ)dτ

RANDOM SIGNALS 607

t

t

dA

−T0

T0

2T0

−2T0

−T0 T0 t1

t2

dt

Figure 13.4 Domain of y = f (t2 − t1).

and in general, as dτ → 0, we can write

d A = (2T0 − |τ |)dτ

Hence the elemental volume for t2 − t1 = τ is

dV = f (τ)(2T0 − |τ |) dτ

In order to obtain the entire volume under the surface y = f (t2 − t1) and above the square region in
Fig. 13.4, τ must be increased from −2T0 to +2T0; thus Eq. (13.14) can be expressed as

Sx(ω) = lim
T0→∞

1

2T0

∫ 2T 0

−2T0

f (τ)(2T0 − |τ |) dτ

=
∫ ∞

−∞
f (τ) lim

T0→∞

(
1 − |τ |

2T0

)
dτ =

∫ ∞

−∞
f (τ) dτ

Therefore, from Eq. (13.15)

Sx(ω) =
∫ ∞

−∞
rx(τ)e− jωτ dτ (13.16)

608 DIGITAL SIGNAL PROCESSING

and if ∫ ∞

−∞
|rx(τ)| dτ < ∞

we can write

rx(τ) = E{x(t)x(t + τ)} = 1

2π

∫ ∞

−∞
Sx(ω)e jωτ dω (13.17)

i.e.,

rx(τ) ↔ Sx(ω)

by virtue of the convergence theorem of the Fourier transform (Theorem 2.5). The formula in
Eq. (13.16) is known as the Wiener-Khinchine relation.

Example 13.5 Find the PSD of the process in Example 13.3.

Solution

The autocorrelation of the process was obtained in Example 13.4, part (b), as

r (τ) = 1
2 cos ωcτ

(see Eq. (13.12)). Hence from Eq. (13.16) and Table 6.2

Sx(ω) = Fr (τ) = π

2
[δ(ω + ωc) + δ(ω − ωc)]

The autocorrelation is an even function of τ , that is,

rx(τ) = rx(−τ)

as can be easily shown, and Sx(ω) is an even function of ω by definition. Equations (13.16) and
(13.17) can thus be written as

Sx(ω) =
∫ ∞

−∞
rx(τ) cos(ωτ) dτ

rx(τ) = 1

2π

∫ ∞

−∞
Sx(ω) cos(ωτ) dω

i.e., Sx(ω) is real. If ω = 0, then

Sx(0) =
∫ ∞

−∞
rx(τ) dτ

RANDOM SIGNALS 609

i.e., the total area under the autocorrelation function equals the PSD at zero frequency. The average
power of x(t) is given by

Average power = E{x2(t)} = rx(0) =
∫ ∞

−∞
Sx(ω)

dω

2π

as is to be expected.
A random process whose PSD is constant at all frequencies is said to be a white-noise process.

If

Sx(ω) = K

we have

rx(τ) = K δ(τ)

i.e., the autocorrelation of a white-noise process is an impulse at the origin.

13.8 DISCRETE-TIME RANDOM PROCESSES

The concept of a random process can be readily extended to discrete-time random signals by simply
assigning discrete-time waveforms to the possible outcomes of an experiment. The mean, mean
square, and autocorrelation of a discrete-time process x(nT) can be expressed as

E{x(nT)} =
∫ ∞

−∞
xp(x ; nT) dx

E{x2(nT)} =
∫ ∞

−∞
x2 p(x ; nT) dx

rx(kT) = E{x(nT)x(nT + kT)}

A frequency-domain representation for a discrete-time process can be deduced by using the
interrelations between the z transform and the Fourier transform (see Sec. 6.5.1). We can write

Zrx(kT) =
∞∑

k=−∞
r (kT)z−k = Rx(z)

and from Eq. (6.43c)

Rx(e jωT) =
∞∑

k=−∞
r (kT)e− jωk = F r̂x(τ) = Ŝx(ω) (13.18)

610 DIGITAL SIGNAL PROCESSING

where

r̂x(τ) = E{x̂(t)x̂(t + τ)}

x̂(t) =
∞∑

n=−∞
x(nT)δ(t − nT)

τ = kT

(see Sec. 6.5). Therefore, from Eqs. (13.13) and (13.18)

Rx(e jωT) = lim
T0→∞

E

{
|X̂ T0 (jω)|2

2T0

}

and

X̂ T0 (jω) = F x̂T0 (t)

and

x̂T0 (t) =
{

x̂(t) for |t | ≤ T0

0 otherwise

In effect, the z transform of the autocorrelation of discrete-time process x(nT) evaluated on the unit
circle |z| = 1 is numerically equal to the PSD of the impulse-modulated process x̂(t). This quantity
can be referred to as the PSD of discrete-time process x(nT) and can be represented by Sx(e jωT) by
analogy with the PSD of continuous-time process x(t) which is represented by Sx(ω). Consequently,
we can write

Zrx(kT) = Sx(z)

where

rx(kT) = 1

2π j

∮
�

Sx(z)zk−1 dz (13.19a)

by virtue of Eq. (3.6). If x(t) were a voltage or current waveform, then E{x2(t)} would represent the
average energy that would be delivered in a 1-
 resistor. Consequently, the quantity E{x2(nT)} is
said to be the power in x(nT). It can be obtained by evaluating the autocorrelation function at k = 0,
that is,

E{x2(nT)} = rx(0) = 1

2π j

∮
�

Sx(z)z−1 dz (13.19b)

13.9 FILTERING OF DISCRETE-TIME RANDOM SIGNALS

If a discrete-time random signal is processed by a digital filter, we expect the PSD of the output
signal to be related to that of the input signal. This indeed is the case, as will now be shown.

RANDOM SIGNALS 611

Consider a filter characterized by H (z), and let x(n) and y(n) be the input and output processes,
respectively. From the convolution summation (see Eq. (4.36b))

y(i) =
∞∑

p=−∞
h(p)x(i − p) y(j) =

∞∑
q=−∞

h(q)x(j − q)

and hence

E{y(i)y(j)} = E

{ ∞∑
q=−∞

∞∑
p=−∞

h(p)h(q)x(i − p)x(j − q)

}

With j = i + k and q = p + n, we have

ry(k) =
∞∑

n=−∞

∞∑
p=−∞

h(p)h(p + n)E{x(i − p)x(i − p + k − n)}

or ry(k) =
∞∑

n=−∞
g(n)rx(k − n)

where g(n) =
∞∑

p=−∞
h(p)h(p + n)

The use of the real-convolution theorem of the z transform (Theorem 3.7) gives

Sy(z) = Zry(k) = Zg(k)Zrx(k) = G(z)Sx(z) (13.20)

Now

G(z) = Z
∞∑

p=−∞
h(p)h(p + n) =

∞∑
n=−∞

∞∑
p=−∞

h(p)h(p + n)z−n

and with n = k − p

G(z) =
∞∑

k=−∞
h(k)z−k

∞∑
p=−∞

h(p)(z−1)−p = H (z)H (z−1) (13.21)

Therefore, from Eqs. (13.20) and (13.21) we get

Sy(z) = H (z)H (z−1)Sx(z) (13.22)

or Sy(e jωT) = |H (e jωT)|2Sx(e jωT)

i.e., the PSD of the output process is equal to the squared amplitude response of the filter times the
PSD of the input process.

612 DIGITAL SIGNAL PROCESSING

Example 13.6 The output of a digital filter is given by

y(n) = x(n) + 0.8y(n − 1)

The input of the filter is a random signal with zero mean and variance σ 2
x ; successive values

of x(n) are statistically independent. (a) Find the output PSD. (b) Obtain an expression for the
average output power.

Solution

(a) The autocorrelation of the input signal is

rx(k) = E{x(n)x(n + k)}

For k = 0

rx(k) = E{x2(n)} = σ 2
x

For k �= 0, the use of Eq. (13.4) gives

rx(k) = E{x(n)}E{x(n + k)} = 0

Hence rx(k) = σ 2
x δ(k) and Sx(z) = σ 2

x

Now from Eq. (13.22)

Sy(z) = σ 2
x H (z)H (z−1)

where H (z) = z

z − 0.8

(b) From Eq. (13.19b)

Output power = E{y2(n)} = ry(0) = 1

2π j

∮
�

σ 2
x H (z)H (z−1)z−1 dz

and if � is taken to be the unit circle |z| = 1 we can let z = e jωT , in which case

Output power = 1

ωs

∫ ωs

0
σ 2

x H (e jωT)H (e− jωT) dω

A simple numerical method for the evaluation of the output power can be found in Ref. [6].

RANDOM SIGNALS 613

REFERENCES

[1] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill, 1991.

[2] W. B. Davenport, Jr., and W. L. Root, Random Signals and Noise, New York: McGraw-Hill,
1958.

[3] B. P. Lathi, An Introduction to Random Signals and Communication Theory, Scranton:
International Textbook, 1968.

[4] G. R. Cooper and C. D. McGillem, Probabilistic Methods of Signal and System Analysis,
New York: Holt, Reinhart and Winston, 1971.

[5] H. Stark and J. W. Woods, Probability and Random Processes with Applications to Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 2002.

[6] K. J. Åström, E. I. Jury, and R. G. Agniel, “A numerical method for the evaluation of complex
integrals,” IEEE Trans. Automatic Control, vol. 15, pp. 468–471, Aug. 1970.

PROBLEMS

13.1. A random variable x has a probability-density function

px(x) =
{

K e−x for 1 ≤ x ≤ ∞
0 otherwise

(a) Find K .
(b) Find Pr [0 ≤ x ≤ 2].

13.2. A random variable x has a probability-density function

px(x) =

1

q
for 0 ≤ x ≤ q

0 otherwise

Find its mean, mean square, and variance.

13.3. Find the mean, mean square, and variance for the random variable of Prob. 13.1.

13.4. Demonstrate the validity of Eq. (13.7).

13.5. A Gaussian random variable x has a mean η and a variance σ 2. Show that

Px(x1 − η) = 1 − Px(η − x1)

where Px(x) is the probability-distribution function of a Gaussian random variable with zero mean.

13.6. A Gaussian random variable x has η = 0 and σ = 2.
(a) Find Pr [x ≥ 2].
(b) Find Pr [|x| ≥ 2].
(c) Find x1 if Pr [|x| ≤ x1] = 0.95.

13.7. The random variable of Prob. 13.5 satisfies the relations

Pr [x ≤ 60] = 0.2 Pr [x ≥ 90] = 0.1

Find η and σ 2.

614 DIGITAL SIGNAL PROCESSING

13.8. A random variable x has a Rayleigh probability-density function given by

px(x) =

xe−x2/2α2

α2
for 0 ≤ x ≤ ∞

0 otherwise

Show that

(a) E{x} = α

√
π

2
(b) E{x2} = 2α2

(c) σ 2
x =

(
2 − π

2

)
α2

13.9. A random process is given by

x(t) = ye−t u(t − z)

where y and z are random variables uniformly distributed in the range (−1, 1). Sketch five sample
functions.

13.10. A random process is given by

x(t) = 2 + yt√
2

where y is a random variable with a probability-density function

py(y) = 1√
2π

e−y2/2 for −∞ ≤ y ≤ ∞

Find the first-order probability-density function of x(t).

13.11. A random process is given by

x(t) = z cos(ω0t + y)

Find the first-order probability-density function of x(t).
(a) If z is a random variable distributed uniformly in the range (−1, 1) and y is a constant.
(b) If y is a random variable distributed uniformly in the range (−π, π) and z is a constant.

13.12. Find the mean, mean square, and autocorrelation for the process in Prob. 13.10. Is the process stationary?

13.13. Repeat Prob. 13.12 for the processes in Prob. 13.11.

13.14. A stationary discrete-time random process is given by

x(nT) = E{x(nT)} + x0(nT)

where x0(nT) is a zero-mean process. Show that
(a) rx(0) = E{x2(nT)}
(b) rx(−kT) = rx(kT)
(c) rx(0) ≥ |rx(kT)|
(d) rx(kT) = [E{x(nT)}]2 + rx0 (kT)

13.15. Explain the physical significance of
(a) E{x(nT)}
(b) E2{x(nT)}
(c) E{x2(nT)}
(d) σ 2

x = E{x2(nT)} − [E{x(nT)}]2

13.16. A discrete-time random process is given by

x(nT) = 3 + 4nT y

RANDOM SIGNALS 615

where y is a random variable with a probability-density function

py(y) = 1

2
√

2π
e−(y−4)2/8 for −∞ ≤ y ≤ ∞

Find its mean, mean square, and autocorrelation.

13.17. A discrete-time random process is given by

x(nT) = z cos
(
ω0nT + π

8

)
where z is a random variable distributed uniformly in the range (0, 1). Find the mean, mean square, and
autocorrelation of x(nT). Is the process stationary?

13.18. A discrete-time random process is given by

x(nT) =
√

2 cos(ω0nT + y)

where y is a random variable uniformly distributed in the range (−π, π).
(a) Find the mean, mean square, and autocorrelation of x(nT).
(b) Show that the process is wide-sense stationary.
(c) Find the PSD of x(nT).

13.19. The random process of Prob. 13.18 is processed by a digital filter characterized by

H (e jωT) =
{

1 for |ω| ≤ ωc

0 otherwise

Sketch the input and output power-density spectrums if ω0 ≤ ωc.

13.20. A random process x(nT) with a probability-density function

px(x ; nT) =
{

1 for 1
2 ≤ x ≤ 1

2
0 otherwise

is applied at the input of the filter depicted in Fig. P13.20. Find the output PSD if x(nT) and x(kT)
(n �= k) are statistically independent.

−2cos w0T

x(nT) y(nT)

Figure P13.20

This page intentionally left blank

CHAPTER

14
EFFECTS

OF FINITE
WORD

LENGTH IN
DIGITAL
FILTERS

14.1 INTRODUCTION

In software as well as hardware digital-filter implementations, numbers are stored in finite-length
registers. Consequently, if coefficients and signal values cannot be accommodated in the available
registers, they must be quantized before they can be stored. Number quantization gives rise to three
types of errors:

1. Coefficient-quantization errors
2. Product-quantization errors
3. Input-quantization errors

The transfer-function coefficients are normally evaluated to a high degree of precision during
the approximation step. If coefficient quantization is applied, the frequency response of the resulting
filter may differ appreciably from the desired response, and if the quantization step is coarse, the
filter may actually fail to meet the desired specifications.

617

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

618 DIGITAL SIGNAL PROCESSING

Product-quantization errors arise at the outputs of multipliers. Each time a signal represented
by b1 digits is multiplied by a coefficient represented by b2 digits, a product having as many as b1 +b2

digits is generated. Since a uniform register length must, in practice, be used throughout the filter,
each multiplier output must be rounded or truncated before processing can continue. These errors
tend to propagate through the filter and give rise to output noise commonly referred to as output
roundoff noise.

Input-quantization errors arise in applications where digital filters are used to process
continuous-time signals. These are the errors inherent in the analog-to-digital conversion process
(see Sec. 6.9).

This chapter begins with a review of the various number systems and types of arithmetic that can
be used in digital-filter implementations. It then describes various methods of analysis and design that
can be applied to quantify and minimize the effects of quantization. Section 14.3 deals with a method
of analysis that can be used to evaluate the effect of coefficient quantization and Sec. 14.4 describes
two families of filter structures that are relatively insensitive to coefficient quantization. Section 14.5
deals with methods by which roundoff noise caused by product quantization can be evaluated, and
Secs. 14.6–14.8 describe methods by which roundoff noise can be reduced or minimized. In Sec. 14.9,
two types of parasitic oscillations known as quantization and overflow limit cycles are considered in
some detail and methods for their elimination are described.

14.2 NUMBER REPRESENTATION

The hardware implementation of digital filters, like the implementation of other digital hardware, is
based on the binary-number representation.

14.2.1 Binary System

In general, any number N can be expressed as

N =
n∑

i=−m

bir
i (14.1)

where 0 ≤ bi ≤ r − 1

If distinct symbols are assigned to the permissible values of bi , the number N can be represented by
the notation

N = (bnbn−1 · · · b0.b−1 · · · b−m)r (14.2)

The parameter r is said to be the radix of the representation, and the point separating N into two
parts is called the radix point.

If r = 10, Eq. (14.2) becomes the decimal representation of N and the radix point is the
decimal point. Similarly, if r = 2 Eq. (14.2) becomes the binary representation of N and the radix
point is referred to as the binary point. The common symbols used to represent the two permissible
values of bi are 0 and 1. These are called bits.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 619

A mixed decimal number can be converted into a binary number through the following steps:

1. Divide the integer part by 2 repeatedly and arrange the resulting remainders in the reverse order.

2. Multiply the fraction part by 2 and remove the resulting integer part; repeat as many times as
necessary, and then arrange the integers obtained in the forward order.

A binary number can be converted into a decimal number by using Eq. (14.1).

Example 14.1 (a) Form the binary representation of N = 18.37510. (b) Form the decimal
representation of N = 11.1012.

Solution

(a) The binary representation can be carried out as follows:

0 1

12 0

22 0

42 1

92 0

182

0

1

1

0 2 × 0.375 = 0.75

2 × 0.75 = 1.5

2 × 0.5 = 1.0

2 × 0 = 0

Hence, we get

18.37510 = 10010.0112

(b) From Eq. (14.1)

11.1012 = 1(21) + 1(20) + 1(2−1) + 0(2−2) + 1(2−3) = 3.62510

The most basic electronic memory device is the flip-flop which can be either in a low or a high
state. By assigning a 0 to the low state and a 1 to the high state, a single-bit binary number can be
stored. By arranging n flip-flops in juxtaposition, as in Fig. 14.1a, a register can be formed that will
store an n-bit number.

A rudimentary 4-bit digital-filter implementation is shown in Fig. 14.1b. Registers Ry and Rp

are used to store the past output y(n − 1) and the multiplier coefficient p, respectively. The output
of the multiplier at steady state is by(n − 1). Once a new input sample is received, the adder goes
into action to form the new output y(n), which is then used to update register Ry . Subsequently, the
multiplier is triggered into operation and the product by(n −1) is formed. The cycle is repeated when
a new input sample is received.

620 DIGITAL SIGNAL PROCESSING

(a)

(b)

Rp

x(n) y(n)

Ry

y(n−1)

py(n−1)

Multiplier

Adder

x(n) y(n)

p

Figure 14.1 (a) Register, (b) rudimentary digital-filter implementation.

A filter implementation like that in Fig. 14.1b can assume many forms, depending on the type
of machine arithmetic used. The arithmetic can be of the fixed-point or floating-point type and in
each case various conventions can be used for the representation of negative numbers. The two types
of arithmetic differ in the way numbers are stored in registers and in the way by which they are
manipulated by the digital hardware.

14.2.2 Fixed-Point Arithmetic

In fixed-point arithmetic, the numbers are usually assumed to be proper fractions. Integers and mixed
numbers are avoided because (1) the number of bits representing an integer cannot be reduced by
rounding or truncation without destroying the number and (2) mixed numbers are more difficult to
multiply. For these reasons, the binary point is usually set between the first and second bit positions
in the register, as depicted in Fig. 14.2a. The first position is reserved for the sign of the number.

Depending on the representation of negative numbers, fixed-point arithmetic can assume three
forms:

1. Signed magnitude

2. One’s complement

3. Two’s complement

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 621

(a)

(b)

Sign bit

L

Binary point

Signed mantissa Signed exponent

Figure 14.2 Storage of (a) fixed-point numbers, (b) floating-point numbers.

In the signed-magnitude arithmetic a fractional number

N = ±0.b−1b−2 · · · b−m

is represented as

Nsm =
{

0.b−1b−2 · · · b−m for N ≥ 0

1.b−1b−2 · · · b−m for N ≤ 0

The most significant bit is said to be the sign bit; e.g., if N = +0.1101 or−0.1001, then Nsm = 0.1101
or 1.1001.

The one’s-complement representation of a number N is defined as

N1 =
{

N for N ≥ 0

2 − 2−L − |N | for N ≤ 0
(14.3)

where L , referred to as the word length, is the number of bit locations in the register to the right of
the binary point. The binary form of 2−2−L is a string of 1s filling the L +1 locations of the register.
Thus, the one’s complement of a negative number can be deduced by representing the number by
L + 1 bits, including zeros if necessary, and then complementing (changing 0s into 1s and 1s into
0s) all bits; e.g., if N = −0.11010, then N1 = 1.00101 for L = 5 and N1 = 1.00101111 for L = 8.

The two’s-complement representation is similar. We now have

N2 =
{

N for N ≥ 0

2 − |N | for N < 0

622 DIGITAL SIGNAL PROCESSING

The two’s complement of a negative number can be formed by adding 1 at the least significant
position of the one’s complement. Similarly, a negative number can be recovered from its two’s
complement by complementing and then adding 1 at the least significant position.

The possible numbers that can be stored in a 4-bit register together with their decimal equiv-
alents are listed in Table 14.1. Some peculiarities of the three systems are evident. The signed-
magnitude and the one’s-complement systems have two representations for zero whereas the two’s-
complement system has only one. On the other hand, −1 is represented in the two’s-complement
system but not in the other two.

The merits and demerits of the three types of arithmetic can be envisaged by examining how
arithmetic operations are performed in each case.

One’s-complement addition of any two numbers is carried out by simply adding their one’s
complements bit by bit. A carry bit at the most significant position, if one is generated, is added at the
least significant position (end-around carry). Two’s-complement addition is exactly the same except
that a carry bit at the most significant position is ignored. Signed-magnitude addition, on the other
hand, is much more complicated as it involves sign checks as well as complementing and end-around
carry [1].

In the one’s- or two’s-complement arithmetic, direct multiplication of the complements does
not always yield the product, and as a consequence special algorithms must be employed. By contrast,
signed-magnitude multiplication is accomplished by simply multiplying the magnitudes of the two
numbers bit by bit and then adjusting the sign bit of the product.

Table 14.1 Decimal equivalents of numbers 0.000 to 1.111

Decimal equivalent (eighths)
Binary
number Signed magnitude One’s complement Two’s complement

0.000 0 0 0
0.001 1 1 1
0.010 2 2 2
0.011 3 3 3
0.100 4 4 4
0.101 5 5 5
0.110 6 6 6
0.111 7 7 7
1.000 −0 −7 −8
1.001 −1 −6 −7
1.010 −2 −5 −6
1.011 −3 −4 −5
1.100 −4 −3 −4
1.101 −5 −2 −3
1.110 −6 −1 −2
1.111 −7 −0 −1

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 623

Example 14.2 Form the sum 0.53125 + (−0.40625) using the one’s- and two’s-complement
additions assuming a word length of 5 bits.

Solution

0.5312510 = 0.100012

0.4062510 = 0.011012

One’s complement Two’s complement

0.53125 0.10001 0.10001
−0.40625 1.10010 1.10011

0.12500 ↓ 0.00011 1 ← 0.00100
−→ 1

0.00100

An important feature of the one’s- or two’s-complement addition is that a machine-representable
sum S = n1 + n2 + · · · + ni + · · · will always be evaluated correctly, even if overflow does occur
in the evaluation of partial sums.

Example 14.3 Form the sum 7
8 + 4

8 + (− 6
8) using the two’s-complement addition. Assume

L = 3.

Solution

From Table 14.1

7/8 0.111
+ 4/8 0.100

11/8 1.011 incorrect partial sum

− 6/8 + 1.010

5/8 0.101 correct sum

14.2.3 Floating-Point Arithmetic

There are two basic disadvantages in a fixed-point arithmetic: (1) The range of numbers that can be
handled is small; e.g., in the two’s-complement representation the smallest number is −1 and the

624 DIGITAL SIGNAL PROCESSING

largest is 1 − 2−L . (2) The percentage error produced by truncation or rounding tends to increase as
the magnitude of the number is decreased. For example, if numbers 0.11011010 and 0.000110101
are both truncated such that only 4 bits are retained to the right of the binary point, the respective
errors will be 4.59 and 39.6 percent.

These problems can be alleviated to a large extent by using a floating-point arithmetic. In this
type of arithmetic, a number N is expressed as

N = M × 2e (14.4)

where e is an integer and

1

2
≤ M < 1

M and e are referred to as the mantissa and exponent, respectively. For example, numbers 0.00110101
and 1001.11 are represented by 0.110101 × 2−2 and 0.100111 × 24, respectively. Negative numbers
are handled in the same way as in fixed-point arithmetic.

Floating-point numbers are stored in registers, as depicted in Fig. 14.2b. The register is subdi-
vided into two segments, one for the signed mantissa and one for the signed exponent.

Floating-point addition is carried out by shifting the mantissa of the smaller number to the
right and increasing the exponent until the exponents of the two numbers are equal. The mantissas
are then added to form the sum, which is subsequently put back into the normalized representation
of Eq. (14.4). Multiplication is accomplished by multiplying mantissas, adding exponents, and then
readjusting the product.

It should be mentioned that the above scheme is just one of many. Nowadays most computers
and digital hardware are designed to work with the IEEE floating-point representation format known
as the ANSI/IEEE Standard 754-1985, which is, in effect, a variation of the above scheme. In the
IEEE format, an arbitrary number N is represented as

N = S × 2e+bias

where S is a signed mixed number in the range 1 to 2−2−L where L is the number of significant bits
allowed in the fractional part of S and bias is an integer. S is commonly referred to as the significand
[1].

The two obvious differences between the IEEE representation and the generic one in Eq. (14.4)
is that, first, S has an integer part and, second, a biased representation is used for the exponent.

Normalizing numbers to the range 1 to 2 − 2−L , that is, 1.000 · · · 000 to 1.111 · · · 111, would
cause the integer part of all numbers to be unity and, as a consequence, it would not need to be
stored. Thus number precision can be increased by one bit without increasing the cost of hardware.
The missing unity can be assumed by the software or hardware implementation.

The use of a biased exponent eliminates the need to deal with negative numbers, which simpli-
fies the arithmetic a great deal, but it introduces another problem. If the exponent in some application
is allowed to assume values, say, between −256 to +256, a bias of 256 can be added to all expo-
nents to achieve an exponent range of 0 to 512. In such a scheme, exponents e1 and e2 would be
represented by e1 + bias and e2 + bias. In the case of floating-point multiplication, the exponents
would need to be added in which case a sum of e1 + e2 + 2bias would be produced. Evidently, in

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 625

order to achieve a ‘biased’ sum, an amount bias would need to be subtracted from the sum. In the
case of floating-point division, an exponent e2 would need to be subtracted from an exponent e1 and,
consequently, a difference e1 −e2 would be produced. In effect, in the case of subtraction, an amount
bias would need to be added to get a biased representation. Multiplication and division of biased
numbers would, of course, need much more attention, as can be readily verified, but, fortunately,
these operations are not needed when dealing with the exponents in floating-point arithmetic.

Summarizing, the use of a biased representation eliminates the need to deal with negative
exponents but it introduces the problem of keeping taps on the flow of the bias and the question
remains as to whether a biased representation is more cost effective. It turns out that if a bias which is
a power of two minus 1 is used, i.e., bias = 2Le − 1 where Le is an integer, correcting for the bias is
greatly simplified and the IEEE format becomes the floating-point representation of choice. Further
details about the IEEE format as well as more information on computer arithmetic in general can be
found in Parhami [1].

Floating-point arithmetic leads to increased dynamic range and improved precision of pro-
cessing. Unfortunately, it also leads to increased cost of hardware (or more complicated software)
and to reduced speed of processing. The reason is that more software/hardware is needed since
both the significand (or mantissa) and exponent have to be manipulated. For software non-real-time
implementations on general purpose digital computers, floating-point arithmetic is always preferred
since neither the cost of hardware nor the speed of processing is a significant factor.

14.2.4 Number Quantization

Once the register length in a fixed-point implementation is assigned, the set of machine representable
numbers is fixed. If the word length is L bits (excluding the sign bit), the smallest number variation
that can be represented is a 1 at the least significant register position, which corresponds to 2−L .
Therefore, any number consisting of B bits (excluding the sign bit), where B > L , must be quantized.
This can be accomplished (1) by truncating all bits that cannot be accommodated in the register, and
(2) by rounding the number to the nearest machine-representable number.

Obviously, if a number x is quantized, an error ε will be introduced given by

ε = x − Q[x] (14.5)

where Q[x] denotes the quantized value of x . The range of ε tends to depend on the type of number
representation and also on the type of quantization. Let us examine the various possibilities, starting
with truncation.

As can be seen in Table 14.1, the representation of positive numbers is identical in all three
fixed-point representations. Since truncation can only reduce a positive number, ε is positive. Its
maximum value occurs when all disregarded bits are 1s, in which case

0 ≤ εT ≤ 2−L − 2−B for x ≥ 0

For negative numbers the three representations must be considered individually. For the signed-
magnitude representation, truncation will decrease the magnitude of the number or increase its signed
value, and hence Q[x] > x or

−(2−L − 2−B) ≤ εT ≤ 0 for x < 0

626 DIGITAL SIGNAL PROCESSING

The one’s-complement representation of a negative number

x = −
B∑

i=1

b−i 2
−i (14.6)

(where b−i = 0 or 1) is obtained from Eq. (14.3) as

x1 = 2 − 2−L −
B∑

i=1

b−i 2
−i

If all the disregarded bits are 0s, obviously ε = 0. At the other extreme if all the disregarded bits are
1s, we have

Q[x1] = 2 − 2−L −
B∑

i=1

b−i 2
−i − (2−L − 2−B)

Consequently, the decimal equivalent of Q[x1] is

Q[x] = −
[

B∑
i=1

b−i 2
−i + (2−L − 2−B)

]
(14.7)

and, therefore, from Eqs. (14.5)–(14.7)

0 ≤ εT ≤ 2−L − 2−B for x < 0

The same inequality holds for two’s-complement numbers, as can easily be shown. In summary, for
signed-magnitude numbers

−q < εT < q

where q = 2−L is the quantization step, whereas for one’s- or two’s-complement numbers

0 ≤ εT < q

Evidently, quantization errors can be kept as low as desired by using a sufficiently large value of L .
For rounding, the quantization error can be positive as well as negative by definition, and its

maximum value is q/2. If numbers lying halfway between quantization levels are rounded up, we
have

−q

2
≤ εR <

q

2
(14.8)

Rounding can be effected, in practice, by adding 1 at position L + 1 and then truncating the number
to L bits.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 627

Truncation
Signed magnitude

x

q

Q(x)

(b)

Rounding
all systems

x

Q(x)

(d)(c)

Truncation
One’s complement
Two’s complement

x

q

Q(x)

x Q(x)

(a)

Quantizer

Figure 14.3 Number quantization: (a) Quantizer, (b) to (d) Q(x) versus x .

A convenient way of visualizing the process of quantization is to imagine a quantizer with
input x and output Q[x]. Depending on the type of quantization, the transfer characteristic of the
device can assume one of the forms illustrated in Fig. 14.3.

The range of quantization error in floating-point arithmetic can be evaluated by using a similar
approach.

14.3 COEFFICIENT QUANTIZATION

Coefficient-quantization errors introduce perturbations in the zeros and poles of the transfer function,
which in turn manifest themselves as errors in the frequency response. Product-quantization errors,
on the other hand, can be regarded as noise sources that give rise to output roundoff noise. Since
the importance of the two types of errors can vary considerably from application to application, it is
frequently advantageous to use different word lengths for the coefficient and signal values. The co-
efficient word length can be chosen to satisfy prescribed frequency-response specifications, whereas
the signal word length can be chosen to satisfy a signal-to-noise ratio specification.

628 DIGITAL SIGNAL PROCESSING

ω

ωp

δp

MQ(ω)

M(ω)

δa

δp

ωa

MI(ω)

Figure 14.4 Coefficient quantization.

Consider a digital filter characterized by H (z) and let

M(ω) = |H (e jωT)| = amplitude response without quantization

MQ(ω) = amplitude response with quantization

MI (ω) = ideal amplitude response

δp (δa) = passband (stopband) tolerance on amplitude response

These quantities are illustrated in Fig. 14.4.
The effect of coefficient quantization is to introduce an error 	M in M(ω) given by

	M = M(ω) − MQ(ω)

The maximum permissible value of |	M |, denoted by 	Mmax(ω), can be deduced from Fig. 14.4 as

	Mmax(ω) =
{

δp − |M(ω) − MI (ω)| for ω ≤ ωp

δa − |M(ω) − MI (ω)| for ω ≥ ωa

and if

|	M | ≤ 	Mmax(ω) (14.9)

for 0 ≤ ω ≤ ωp and ωa ≤ ω ≤ ωs/2, the desired specification will be met. The optimum word length
can thus be determined exactly by evaluating |	M | as a function of frequency for successively larger
values of the word length until Eq. (14.9) is satisfied. Evidently, this is a trial-and-error approach
and may entail considerable computation.

An alternative approach is to employ a statistical method proposed by Avenhaus [2] and later
modified by Crochiere [3]. This method yields a fairly accurate estimate of the required word length
and is, in general, more efficient than the exact method described. Its details follow.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 629

Consider a fixed-point implementation and assume that quantization is carried out by rounding.
From Eq. (14.8) the error in coefficient ci (i = 1, 2, . . . , m), denoted as 	ci , can assume any value
in the range −q/2 to +q/2; that is, 	ci is a random variable. If the probability density of 	ci is
assumed to be uniform, that is,

p(ci) =
{

1
q for − q

2 ≤ 	ci ≤ q
2

0 otherwise

then from Eqs. (13.8) and (13.10)

E{	ci } = 0 (14.10)

σ 2
	ci

= q2

12
(14.11)

The variation 	M in M(ω) is also a random variable. By virtue of Taylor’s theorem we can
write

	M =
m∑

i=1

	ci SM
ci

where the quantity

SM
ci

= ∂ M(ω)

∂ci

is known as the sensitivity of the amplitude response M(ω) with respect to variations in coefficient ci .
Evidently,

E{	M} =
m∑

i=1

SM
ci

E{	ci } = 0

according to Eq. (14.10). If 	ci and 	c j (i �= j) are assumed to be statistically independent, then
from Eq. (13.7)

σ 2
	M =

m∑
i=1

σ 2
	ci

(
SM

ci

)2

and, therefore, from Eq. (14.11)

σ 2
	M = q2S2

T

12
(14.12)

where

S2
T =

m∑
i=1

(
SM

ci

)2
(14.13)

630 DIGITAL SIGNAL PROCESSING

For a large value of m, 	M is approximately Gaussian by virtue of the central-limit theorem
[4], and since E{	M} = 0, Eq. (13.1) gives

p(M) = 1

σ	M

√
2π

e−	M2/2σ 2
	M for −∞ ≤ 	M ≤ ∞

Consequently, 	M will be in some range −	M1 ≤ 	M ≤ 	M1 with a probability y given by

y = Pr [|	M | ≤ 	M1] = 2

σ	M

√
2π

∫ 	M1

0
e−	M2/2σ 2

	M d(M) (14.14)

With the variable transformation

	M = xσ	M 	M1 = x1σ	M (14.15)

Equation (14.14) can be put in the standard form

y = 2√
2π

∫ x1

0
e−x2/2 dx

Once an acceptable confidence factor y is selected, the corresponding value of x1 can be obtained
from published tables or by using a numerical method. The quantity 	M1 is essentially a statistical
bound on 	M , and if the word length is chosen such that

	M1 ≤ 	Mmax(ω) (14.16)

the desired specifications will be satisfied to within a confidence factor y. The resulting word length
can be referred to as the statistical word length. A statistical bound on the quantization step can be
deduced from Eqs. (14.12), (14.15), and (14.16) as

q ≤
√

12	Mmax(ω)

x1ST
(14.17)

The register length should be sufficiently large to accommodate the quantized value of the
largest coefficient; so let

Q[max ci] =
J∑

i=−K

bi 2
i

where bJ and b−K �= 0. The required word length must be

L = 1 + J + K (14.18)

and since q = 2−K or

K = log2
1

q
(14.19)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 631

Eqs. (14.17)–(14.19) now give the desired result as

L ≥ L(ω) = 1 + J + log2
x1ST√

12	Mmax(ω)

A reasonable agreement between the statistical and exact word lengths is achieved by using
x1 = 2 [3, 5]. This value of x1 corresponds to a confidence factor of 0.95.

The amplitude-response sensitivities SM
ci

in Eq. (14.13) can be efficiently computed as follows.
The sensitivity of the frequency response with respect to a multiplier coefficient c can be expressed
as

SH
c (e jωT) = ∂ H (e jωT)

∂c
= Re

[
SH

c (e jωT)
] + jIm

[
SH

c (e jωT)
]

and if

H (e jωT) = M(ω)e jθ (ω)

we can show that

Re
[
SH

c (e jωT)
] = [cos θ (ω)]

∂ M(ω)

∂c
− M(ω)[sin θ (ω)]

∂θ (ω)

∂c

Im
[
SH

c (e jωT)
] = [sin θ (ω)]

∂ M(ω)

∂c
+ M(ω)[cos θ (ω)]

∂θ (ω)

∂c

Therefore,

SM
c = ∂ M(ω)

∂c
= [cos θ (ω)] Re SH

c (e jωT) + [sin θ(ω)] Im SH
c (e jωT)

and

Sθ
c = ∂θ (ω)

∂c
= 1

M(ω)
{[cos θ (ω)] Im SH

c (e jωT) − [sin θ (ω)] Re SH
c (e jωT)}

where Sθ
c is the sensitivity of the phase response θ(ω) with respect to coefficient c. Now given an

arbitrary digital-filter network incorporating a multiplier with a coefficient c, the sensitivity of the
transfer function of the network can be obtained by using the transpose approach as

SH
c = ∂ H (z)

∂c
= H12(z)H34(z)

where H12(z) and H34(z) are the transfer functions form the input of the network to the input of
the multiplier and from the output of the multiplier to the output of the network, respectively (see
pp. 125–128 of [6]).

With the transfer function sensitivities known, the amplitude-response sensitivities SM
ci

can be
deduced and thus ST , q , and K can be evaluated using Eqs. (14.13), (14.17), and (14.19), respectively.
In turn, the statistical word length in Eq. (14.18) can be obtained.

632 DIGITAL SIGNAL PROCESSING

The statistical word length is a convenient figure of merit of a specific filter structure. It can
serve as a sensitivity measure in studies where a general comparison of various structures is desired.
It can also be used as an objective function in word-length optimization algorithms [3].

A different approach for the study of quantization effects was proposed by Jenkins and Leon
[7]. In this approach a computer-aided analysis scheme is used to generate confidence-interval error
bounds on the time-domain response of the filter. The method can be used to study the effects of
coefficient or product quantization in fixed-point or floating-point implementations. Furthermore,
the quantization can be by rounding or truncation.

14.4 LOW-SENSITIVITY STRUCTURES

The effects of coefficient quantization are most serious in applications where the poles of the transfer
function are located close to the unit circle |z| = 1. In such applications, small changes in the
coefficients can cause large changes in the frequency response of the filter, and in extreme cases
they can actually cause the filter to become unstable. In this section, we show that second-order
structures can be derived whose sensitivity to coefficient quantization is much lower than that of
the standard direct realizations described in Chap. 8. These structures can be used in the cascade or
parallel realizations for the design of high-selectivity or narrow-band filters.

Let M(ω) be the amplitude response of a digital-filter structure and assume that b is a multiplier
constant. Now let 	M(ω) be the change in M(ω) due to a quantization error 	b in b. The normalized
sensitivity of M(ω) with respect to b is defined as

S̄M
b = lim

	b→0

	M(ω)

M(ω)
	b

b

= b

M(ω)

∂ M(ω)

∂b
(14.20)

and for small values of 	b, we have

	M(ω)

M(ω)
≈ 	b

b
S̄M

b (14.21)

The normalized sensitivity can be used to compare different structures.
Consider the direct realization of Fig. 14.5a. Straightforward analysis gives the transfer function

H (z) = 1

z2 + b1z + b0

and hence the amplitude response of the realization can be readily obtained as

M(ω) = 1[
1 + b2

0 + b2
1 + 2b1(1 + b0) cos ωT + 2b0 cos 2ωT

]1/2 (14.22)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 633

x(n) y(n)

−b1

−b0

(a)

x(n) y(n)

2

−1

−β1

−β0

(b)

Figure 14.5 (a) Second-order direct realization, (b) corresponding low-sensitivity realization.

Using Eqs. (14.20) and (14.22), the normalized sensitivities of M(ω) with respect to b0 and b1

can be obtained as

S̄M
b0

= −b0(b0 + b1 cos ωT + cos 2ωT)[M(ω)]2

S̄M
b1

= −b1[b1 + (1 + b0) cos ωT][M(ω)]2

A modified version of the structure in Fig. 14.5a can be obtained by replacing each of the
multipliers by two multipliers in parallel, as shown in Fig. 14.5b, as suggested by Agarwal and
Burrus [8]. The transfer function of the original structure will be maintained in the new structure if

b0 = 1 + β0 and b1 = β1 − 2

634 DIGITAL SIGNAL PROCESSING

and from Eq. (14.20)

S̄M
β0

= β0

M(ω)

∂ M(ω)

∂β0
= β0

b0

∂b0

∂β0
× b0

M(ω)

∂ M(ω)

∂b0

= β0

1 + β0
S̄M

b0
(14.23)

and

S̄M
β1

= β1

M(ω)

∂ M(ω)

∂β1
= β1

b1

∂b1

∂β1
× b1

M(ω)

∂ M(ω)

∂b1

= β1

β1 − 2
S̄M

b1
(14.24)

Now if the poles of the transfer function are located close to the point z = 1, as may be the case in a
narrow-band lowpass filter of high selectivity, then b0 ≈ 1 and b1 ≈ −2. As a consequence, β0 and
β1 will be small and, therefore, from Eqs. (14.23) and (14.24)

|S̄M
β0

| � |S̄M
b0

| and |S̄M
β1

| � |S̄M
b1

|

In effect, if coefficients β0 and β1 are represented to the same degree of precision as coefficients b0

and b1, then the use of the structure in Fig. 14.5b instead of that in Fig. 14.5a leads to a significant
reduction in the sensitivity to quantization errors, as can be seen from Eq. (14.21). The same degree
of precision in the representation of the coefficients can be achieved by using either floating-point or
fixed-point arithmetic. In the latter case, each multiplier coefficient should be scaled up to eliminate
any zeros between the binary point and the most significant nonzero bit and the product scaled down
by a corresponding shift operation.

The structure of Fig. 14.5b, like other structures in which all the outputs of multipliers are
inputs to one and the same adder, has the advantage that the quantization of products can be carried
out using one quantizer at the output of the adder instead of one quantizer at the output of each
multiplier. Structures of this type are suitable for the application of error-spectrum shaping, which
is a technique for the reduction of roundoff noise (see Sec. 14.8).

The disadvantage of the structure of Fig. 14.5b is that the low-sensitivity property can be
achieved only if the poles of the transfer function are close to point z = 1. A family of structures that
are suitable for the application of error-spectrum shaping and simultaneously lead to low sensitivity
for a variety of pole locations close to the unit circle |z| = 1 can be obtained from the general
second-order configuration depicted in Fig. 14.6 by using a method reported by Diniz and Antoniou
[9]. In this configuration, branches A, B, C, D, and E represent unit delays or machine-representable
multiplier constants, such as, 0, ±1, or ±2.

The structure of Fig. 14.6 realizes the transfer function

H (z) = N (z)

D(z)
(14.25)

where N (z) depends on the choice of multiplier coefficients c0 to c2 and

D(z) = z2(1 − BD − AC − m1 A + ABE + m2 AB + ABCD + m1 ABD) (14.26)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 635

x(n)

y(n)

A

m1

−m2

−E

C D

B

c0c1c2

Figure 14.6 General second-order direct realization.

Assuming that H (z) is of the form

H (z) = a2z2 + a1z + a0

z2 + b1z + b0
(14.27)

and then comparing Eq. (14.25) with Eq. (14.27), a number of second-order structures can be deduced.
In order to avoid delay-free loops (see Sec. 4.8.1) and keep the number of delays to the minimum of
two, the constraints

A = z−1 and B or D = z−1

must be satisfied. Therefore, two cases are possible, namely, Case I where A = B = z−1 and Case
II where A = D = z−1.

14.4.1 Case I

For Case I, polynomial D(z) of Eq. (14.26) assumes the form

D(z) = z2 − z(C + D + m1) + CD + m1 D + m2 + E

and to achieve low sensitivity, multipliers C, D, and E must be chosen as

C + D = IR[−b1] and E = IR[b0 + b1 D + D2] (14.28)

636 DIGITAL SIGNAL PROCESSING

where IR[x] is the closest integer to x . Equation (14.28) forces the values of m1 and m2 to be as low
as possible and, as in the structure of Fig. 14.5b, low sensitivity is assured.

If the poles are close to point z = 1, then b1 ≈ −2 and b0 ≈ 1, and so

C + D = 2

We can thus assign

C = 1 D = 1 and E = 0

This choice of coefficients gives the structure of Fig. 14.5b, which is suitable for values of b1 in
the range −2.0 < b1 < −1.5. Proceeding in the same way, the 15 structures in Table 14.2 can be
deduced [9]. Structure I-2, like I-1, was reported in [8].

14.4.2 Case II

For Case II, polynomial D(z) of Eq. (14.26) assumes the form

D(z) = z2 − z(B + C + m1 − m2 B − BE) + BC + m1 B

Table 14.2 Structures for Case I

Structure C D E Range of b1

I-1 1 1 0 −2.0 < b1 < −1.5
I-2 2 0 1

I-3 0 2 1 −2.0 < b1 < −1.75

I-4 0 2 2 −1.75 < b1 < −1.5

I-5 1 0 1 −1.5 < b1 < −0.5
I-6 0 1 1

I-7 0 0 1
I-8 −1 1 2 −0.5 < b1 < 0.5
I-9 1 −1 2

I-10 −1 0 1
0.5 < b1 < 1.5

I-11 0 −1 1

I-12 0 −2 2 1.5 < b1 < 1.75

I-13 −2 0 1
1.5 < b1 < 2.0

I-14 −1 −1 0

I-15 0 −2 1 1.75 < b1 < 2.0

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 637

Table 14.3 Structures for Case II

Structure B C E Range of b1

II-1 1 1 0 −2.0 < b1 < −1.5

II-2 1 1 1 −1.5 < b1 < −0.5

II-3 1 1 2 −0.5 < b1 < 0

II-4 −1 −1 2 0 < b1 < 0.5

II-5 −1 −1 1 0.5 < b1 < 1.5

II-6 −1 −1 0 1.5 < b1 < 2.0

and to achieve low sensitivity, constants B, C, and E must be chosen as

B = 1 C = 1 and E = IR[b1 + b0 + 1] (14.29)

for poles with positive real part, and

B = −1 C = −1 and E = −IR[b1 − b0 − 1] (14.30)

for poles with negative real part. Using Eqs. (14.29) and (14.30), the structures of Table 14.3 can be
deduced [9]. Structure II-1 was reported by Nishimura, Hirano, and Pal [10].

Different biquadratic transfer functions can be realized by using the formulas in Table 14.4.
In the above approach, the poles of the transfer function have been assumed to be close to the

unit circle of the z plane. An alternative approach for selecting the optimum structure for a given
transfer function, which is applicable for any pair of poles in the unit circle, was described by Ramana
Rao and Eswaran [11].

Table 14.4 Realization of biquadratic transfer functions

Multiplier constant Case I Case II

c0 a0 + a1 D + a2 D2 a2 + a1

B
+ a0

B2

c1 a1 + a2 D −a0

B

c2 a2 a2

m1 −b1 − C − D
b0

B
− C

m2 b0 + b1 D + D2 − E 1 + b1

B
+ b0

B2
− E

638 DIGITAL SIGNAL PROCESSING

14.5 PRODUCT QUANTIZATION

The output of a finite-word-length multiplier can be expressed as

Q[ci x(n)] = ci x(n) + e(n)

where ci x(n) and e(n) are the exact product and quantization error, respectively. A machine multiplier
can thus be represented by the model depicted in Fig. 14.7a, where e(n) is a noise source.

Consider the filter structure of Fig. 14.7b and assume a fixed-point implementation. Each
multiplier can be replaced by the model of Fig. 14.7a, as in Fig. 14.7c. If product quantization is
carried out by rounding, each noise signal ei (n) can be regarded as a random process with uniform
probability density, that is,

p(ei ; n) =
{

1
q for − q

2 ≤ ei (n) ≤ q
2

0 otherwise

Hence, from Eqs. (13.8) and (13.9) and Sec. 13.8, we have

E{ei (n)} = 0 (14.31)

E
{

e2
i (n)

} = q2

12
(14.32)

rei (k) = E{ei (n)ei (n + k)} (14.33)

If the signal levels throughout the filter are much larger than q , the following reasonable
assumptions can be made: (1) ei (n) and ei (n + k) are statistically independent for any value of
n (k �= 0), and (2) ei (n) and e j (n+k) are statistically independent for any value of n or k (i �= j). Let us
examine the implications of these assumptions starting with the first assumption. From Eqs. (14.31)–
(14.33) and Eq. (13.4)

rei (0) = E
{

e2
i (n)

} = q2

12

and rei (k)
∣∣∣
k �=0

= E{ei (n)}E{ei (n + k)} = 0

i.e., rei (k) = q2

12
δ(k)

where δ(k) is the impulse function. Therefore, the power spectral density (PSD) of ei (n) is

Sei (z) = Zrei (k) = q2

12
(14.34)

that is, ei (n) is a white-noise process.
Let us now consider the implications of the second assumption. The autocorrelation of sum

ei (n) + e j (n) is

rei +e j (k) = E{[ei (n) + e j (n)][ei (n + k) + e j (n + k)]}
= E{ei (n)ei (n + k)} + E{ei (n)}E{e j (n + k)} + E{e j (n)}E{ei (n + k)}

+ E{e j (n)e j (n + k)}
or rei +e j (k) = rei (k) + re j (k)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 639

(b)

e(n)

x(n) Qci [x(n)]

(a)

y (n)x(n)

a0

a1

a2

−b1

−b2

ci

e1(n) e2(n) e3(n)

e4(n)
e5(n)

(c)

y(n)x(n)

a0

a1

a2

–b1

–b2

Figure 14.7 Product quantization: (a) Noise model for a multiplier, (b) second-order canonic section, (c)
noise model for a second-order canonic section.

Therefore

Sei +e j (z) = Z[rei (k) + re j (k)] = Sei (z) + Se j (z)

i.e., the PSD of a sum of two statistically independent processes is equal to the sum of their respective
PSDs. In effect, superposition can be employed.

640 DIGITAL SIGNAL PROCESSING

Now from Fig. 14.7c and Eq. (13.22)

Sy(z) = H (z)H (z−1)
2∑

i=1

Sei (z) +
5∑

i=3

Sei (z)

where H (z) is the transfer function of the filter, and hence from Eq. (14.34) the output PSD is given
by

Sy(z) = q2

6
H (z)H (z−1) + q2

4
The above approach is applicable to any filter structure. Furthermore, it can be used to study

the effects of input quantization.

14.6 SIGNAL SCALING

If the amplitude of any internal signal in a fixed-point implementation is allowed to exceed the
dynamic range, overflow will occur and the output signal will be severely distorted. On the other
hand, if all the signal amplitudes throughout the filter are unduly low, the filter will be operating
inefficiently and the signal-to-noise ratio will be poor. Therefore, for optimum filter performance
suitable signal scaling must be employed to adjust the various signal levels.

A scaling technique applicable to one’s- or two’s-complement implementations was proposed
by Jackson [12]. In this technique a scaling multiplier is used at the input of a filter section, as in
Fig. 14.8, with its constant λ chosen such that amplitudes of multiplier inputs are bounded by M if
|x(n)| ≤ M . Under these circumstances, adder outputs are also bounded by M and cannot overflow.
This is due to the fact that a machine-representable sum is always evaluated correctly in one’s- or
two’s-complement arithmetic, even if overflow does occur in one of the partial sums (see Example
14.3). There are two methods for the determination of λ, as follows.

14.6.1 Method A

Consider the filter section of Fig. 14.8, where v(n) is a multiplier input. The transfer function between
nodes 1 and 2 can be denoted by F(z). From the convolution summation

v(n) =
∞∑

k=0

λ f (k)x(n − k) (14.35)

λ

v(n)

x(n)

b

1

2

Figure 14.8 Signal scaling.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 641

where f (n) = Z−1 F(z)

Evidently

|v(n)| ≤
∞∑

k=0

|λ f (k)| · |x(n − k)|

and if

|x(n)| ≤ M

then |v(n)| ≤ M
∞∑

k=0

|λ f (k)|

Thus a sufficient condition for |v(n)| ≤ M is

∞∑
k=0

|λ f (k)| ≤ 1

or λ ≤ 1∑∞
k=0 | f (k)| (14.36)

Now consider the specific signal

x(n − k) =
{

M for λ f (k) > 0

−M for λ f (k) < 0

where M > 0. From Eq. (14.35)

v(n) = M
∞∑

k=0

|λ f (k)|

and, therefore, |v(n)| ≤ M if and only if Eq. (14.36) holds. Signal scaling can be applied by
calculating the infinite sum of the magnitude of the impulse response from the input of the filter to
the input of each multiplier and then evaluating λ using the largest sum so obtained in Eq. (14.36).

The above method guarantees that overflow will never occur as long as the input is bounded
as prescribed. Unfortunately, the signal levels at the various nodes can be quite low and since
quantization errors are independent of the signal level, a reduced signal-to-noise ratio may result. In
addition, the computation of the sum in Eq. (14.36) is not usually straightforward.

14.6.2 Method B

The second and more efficient method for the evaluation of λ is based on L p-norm notation. The L p

norm of an arbitrary periodic function A(e jωT) with period ωs is defined as

‖A‖p =
[

1

ωs

∫ ωs

0
|A(e jωT)|p dω

]1/p

642 DIGITAL SIGNAL PROCESSING

where p ≥ 1. It exists if ∫ ωs

0
|A(e jωT)|p dω < ∞

and if A(e jωT) is continuous, then the limit

lim
p→∞ ‖A‖p = ‖A‖∞ = max

0≤ω≤ωs

|A(e jωT)| (14.37)

exists, as can be easily demonstrated (see Prob. 14.22). Usually, A(e jωT) is obtained by evaluating
function A(z) on the unit circle z = e jωT and ‖A‖p is often referred to as the L p norm of either
A(e jωT) or A(z).

Now let

X (z) =
∞∑

n=−∞
x(n)z−n with a < |z| < b

F(z) =
∞∑

n=−∞
f (n)z−n with c < |z| < b

where c < 1 for a stable filter and b > 1. From Eq. (14.35)

V (z) = λF(z)X (z) with d < |z| < b

where d = max (a, c). The inverse z transform of V (z) is

v(n) = 1

2π j

∮
�

λF(z)X (z)zn−1 dz (14.38)

where � is a contour in the annulus of convergence. If a < 1, � can be taken to be the unit circle
|z| = 1. With z = e jωT Eq. (14.38) becomes

v(n) = 1

ωs

∫ ωs

0
λF(e jωT)X (e jωT)e jnωT dω

We can thus write

|v(n)| ≤
[

max
0≤ω≤ωs

|X (e jωT)|
] 1

ωs

∫ ωs

0
|λF(e jωT)| dω (14.39)

or |v(n)| ≤
[

max
0≤ω≤ωs

|λF(e jωT)|
] 1

ωs

∫ ωs

0
|X (e jωT)| dω (14.40)

and by virtue of the Schwarz inequality [12], we can write

|v(n)| ≤
[

1

ωs

∫ ωs

0
|λF(e jωT)|2dω

]1/2 [1

ωs

∫ ωs

0
|X (e j
T)|2 d

]1/2

(14.41)

If L p-norm notation is used, Eqs. (14.39)–(14.41) can be put in the compact form

|v(n)| ≤ ‖X‖∞‖λF‖1 |v(n)| ≤ ‖X‖1‖λF‖∞ |v(n)| ≤ ‖X‖2‖λF‖2

In fact, these inequalities are particular cases of the Holder inequality [12, 13]

|v(n)| ≤ ‖X‖q‖λF‖p (14.42)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 643

where the relation

p = q

q − 1
(14.43)

must hold.
Equation (14.42) is valid for any transfer function λF(z) including λF(z) = 1, in which case

v(n) = x(n) and ‖1‖p = 1 for all p ≥ 1. Consequently, from Eq. (14.42)

|x(n)| ≤ ‖X‖q for all q ≥ 1

Now if

|x(n)| ≤ ‖X‖q ≤ M

Eq. (14.42) gives

|v(n)| ≤ M‖λF‖p

Therefore, |v(n)| ≤ M

provided that

‖λF‖p ≤ 1

or λ ≤ 1

‖F‖p
for ‖X‖q ≤ M (14.44)

where Eq. (14.43) must hold.

14.6.3 Types of Scaling

Depending on the values of p and q , two types of scaling can be identified, namely, L2 scaling if
p = q = 2 and L∞ scaling if p = ∞ and q = 1.

From the definition of the L p norm and Eq. (14.37), we have

‖F‖2 =
[

1

ωs

∫ ωs

0
|F(e jωT)|2dω

]1/2

≤
{

1

ωs

∫ ωs

0

[
max

0≤ω≤ωs

|F(e jωT)|
]2

dω

}1/2

≤
(

1

ωs

∫ ωs

0
‖F‖2

∞ dω

)1/2

≤ ‖F‖∞

or

1

‖F‖2
≥ 1

‖F‖∞

As a consequence, L2 scaling usually yields larger scaling constants than L∞ scaling. This means that
the signal levels at the various nodes are usually larger, and thus a better signal-to-noise ratio can be
achieved. However, L2 scaling is more likely to cause overflow than L∞ scaling. The circumstances
in which these two types of scaling are applicable are examined next.

644 DIGITAL SIGNAL PROCESSING

If x(n) is obtained by sampling a random or deterministic, finite-energy, bandlimited,
continuous-time signal x(t) such that

X A(jω) = Fx(t) = 0 for |ω| ≥ ωs/2 (14.45)

we can write

‖X‖2 =
[

1

ωs

∫ ωs

0
|X (e jωT)|2 dω

]1/2

=
[

1

ωs

∫ ωs/2

−ωs/2
|X (e jωT)|2 dω

]1/2

where X (z) = Zx(n). From Eq. (6.46a), we have

X (e jωT) = 1

T
X A(jω) for |ω| < ωs/2

and hence

‖X‖2 =
[

1

2πT

∫ ωs/2

−ωs/2
|X A(jω)|2 dω

]1/2

=
[

1

2πT

∫ ∞

−∞
|X A(jω)|2 dω

]1/2

On using Parseval’s formula (see Theorem 2.16), we obtain

‖X‖2 =
[

1

T

∫ ∞

−∞
|x(t)|2 dt

]1/2

(14.46)

For a finite-energy signal, the above integral converges. Therefore, Eq. (14.42) holds with p = 2
and q = 2, and L2 scaling is applicable.

If x(n) is obtained by sampling a continuous-time signal x(t) whose energy content is not
finite (e.g., a sinusoidal signal) the integral in Eq. (14.46) does not converge, ‖X‖2 does not exist,
and L2 scaling is not applicable; therefore, if such a signal is applied to a structure incorporating L2

scaling, then signal overflow may occur. If x(t) is bounded and bandlimited, Eq. (14.45) is satisfied,
and hence we can write

‖X‖1 = 1

ωs

∫ ωs/2

−ωs/2
|X (e jωT)| dω

= 1

2π

∫ ωs/2

−ωs/2
|X A(jω)| dω (14.47)

i.e., ‖X‖1 exists and Eq. (14.42) holds with p = ∞ and q = 1, and L∞ scaling is applicable. The
amplitude spectrum of x(t) may become unbounded if x(t) is a sinusoidal signal, in which case
X A(jω) has poles on the jω axis, or if x(t) is constant, in which case X A(jω) is an impulse function.
However, in both of these cases ‖X‖1 exists, as will now be demonstrated.

If x(t) = M cos ω0nT where 0 ≤ ω0 ≤ ωs/2, we have

X A(jω) = π M[δ(ω − ω0) + δ(ω + ω0)]

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 645

and Eq. (14.47) gives

‖X‖1 = 1

2π

∫ ωs/2

−ωs/2
|π M[δ(ω − ω0) + δ(ω + ω0)]| dω

= M

On the other hand, if x(t) = M , then

X A(jω) = 2π Mδ(ω)

and

‖X‖1 = 1

2π

∫ ωs/2

−ωs/2
|2π Mδ(ω)| dω = M

Therefore, if we select λ such that

‖λF‖∞ = max
0≤ω≤ωs

|λF(e jωT)| ≤ 1

then

v(n) ≤ M

This result is to be expected. With a sinusoidal input and the gain between the input and node 2 in
Fig. 14.8 equal to or less than unity, the signal at node 2 will be a sinusoid with an amplitude equal
to or less than M .

14.6.4 Application of Scaling

If there are m multipliers in the filter of Fig. 14.8, then |vi (n)| ≤ M provided that

λi ≤ 1

‖Fi‖p

for i = 1, 2, . . . , m. Therefore, in order to ensure that all multiplier inputs are bounded by M we
must assign

λ = min (λ1, λ2, . . . , λm)

or λ = 1

max (‖F1‖p, ‖F2‖p, . . . , ‖Fm‖p)
(14.48)

In the case of parallel or cascade realizations, efficient scaling can be accomplished by using
one scaling multiplier per section.

Example 14.4 Deduce the scaling formulation for the cascade filter of Fig. 14.9a assuming
that p = ∞ and q = 1.

Solution

The only critical signals are y′
j (n) and y j (n) since the inputs of the feedback multipliers

are delayed versions of y′
j (n). The filter can be represented by the signal flow graph of

646 DIGITAL SIGNAL PROCESSING

Fig. 14.9b, where

F ′
j (z) = z2

z2 + b1 j z + b2 j
Fj (z) = (z + 1)2

z2 + b1 j z + b2 j

By using Eq. (14.48), we obtain

λ0 = 1

max (‖F ′
1‖∞, ‖F1‖∞)

λ1 = 1

λ0 max (‖F1 F ′
2‖∞, ‖F1 F2‖∞)

λ2 = 1

λ0λ1 max (‖F1 F2 F ′
3‖∞, ‖F1 F2 F3‖∞)

The scaling constants can be evaluated by noting that

‖�Fi‖∞ = max
0≤ω≤ωs

|�Fi (e
jωT)|

according to Eq. (14.37).

λ0 λ1 λ2 λ3

y1�(n) y2�(n)

F2�(z)

y2(n)F2(z)y1(n)
y3(n)

y3�(n)

y(n)

x(n)

x(n)

(b)

(a)

yj-1(n)

λj-1

yj�(n)

yj(n)

−b1j

−b2j

F1(z) F2(z) F3(z)

λ0 λ1 λ3λ2

Figure 14.9 (a) Cascade filter, (b) signal flow-graph representation.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 647

The scaling constants are usually chosen to be the nearest powers of 2 satisfying the overflow
constraints. In this way, scaling multiplications can be reduced to simple data shifts.

In cascade filters, the ordering of sections has an influence on scaling, which in turn has an
influence on the output noise. Analytical techniques for determining the optimum sequential ordering
have not yet been devised. Nevertheless, some guidelines suggested by Jackson [14] lead to a good
ordering.

14.7 MINIMIZATION OF OUTPUT ROUNDOFF NOISE

The level of output roundoff noise in fixed-point implementations can be reduced by increasing
the word length. An alternative approach is to assume a general structure and vary its topology or
parameters in such a way as to minimize the output roundoff noise. A method of this type that leads
to optimal state-space structures was proposed by Mullis and Roberts [15]. The method is based
on a state-space noise formulation reported by these authors and Hwang [16] at approximately the
same time, and the principles involved are detailed below. The method is applicable to the general
N th-order realization but for the sake of simplicity it will be presented in terms of the second-order
case.

A second-order state-space realization can be represented by the signal flow graph in Fig. 14.10
where ei (n) for i = 1, 2, and 3 are noise sources due to the quantization of products. From Sec. 4.8.2,
the filter can be represented by the equations

q(n + 1) = Aq(n) + bx(n) + e(n) (14.49a)

y(n) = cT q(n) + dx(n) + e3(n) (14.49b)

where eT (n) = [e1(n) e2(n)]. Let F1(z), F2(z) and G1(z), G2(z) be the transfer functions from the
input to nodes q1(n), q2(n) and from nodes e1(n), e2(n) to the output, respectively. In terms of this
notation, the column vectors f(z) and g(z) can be formed as

fT (z) = [F1(z) F2(z)] and gT (z) = [G1(z) G2(z)] (14.50)

b1

c1

c2

b2

a12

a21

x(n)
d

e2(n)
1

1

e1(n)
1 E−1

E−1

1
y(n)

a22

a11

q1(n)

q2(n)

e3(n)

1

Figure 14.10 Second-order state-space realization.

648 DIGITAL SIGNAL PROCESSING

and from Eq. (14.49), we obtain

f(z) = (zI − A)−1b and g(z) = (zI − AT)−1c (14.51)

(see Prob. 14.23).
Now if the realization of Fig. 14.10 is represented by the set {A, b,cT , d} and the state vector

q(n) is subjected to a transformation of the form q̃(n) = Tq(n), a new realization

{Ã, b̃, c̃T , d̃}

is obtained where

Ã = TAT−1 b̃ = Tb c̃T = cT T−1 d̃ = d (14.52)

and from Eq. (14.49), one can show that

f̃(z) = Tf(z) and g̃(z) = T−1g(z) (14.53)

(see Prob. 14.24). The realization {Ã, b̃, c̃T , d̃} has minimum output roundoff noise subject to L2-
norm scaling if and only if

W̃ = DK̃D (14.54)

and

K̃ ii W̃ ii = K̃ j j W̃ j j for all i, j (14.55)

where D is a diagonal matrix and K̃ = {K̃i j } and W̃ = {W̃i j } are the matrices given by

K̃ = 1

2π j

∮
�

f̃(z)f̃T (z−1)z−1 dz (14.56)

and

W̃ = 1

2π j

∮
�

g̃(z)g̃T (z−1)z−1 dz (14.57)

respectively [15]. Matrices K and W are known as the reachability and observability gramians,
respectively.

From Eq. (14.44), L2 scaling can be applied by ensuring that

‖F̃ i‖2 = 1 for all i (14.58)

and from Eqs. (14.56) and (14.58), we have

K̃ii = 1

2π j

∮
�

F̃ i (z)F̃ i (z
−1)z−1 dz

= 1

ωs

∫ ωs

0
|F̃ i (e

jωT)|2 dω

= ‖F̃ i‖2
2 = 1 (14.59)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 649

Therefore, the condition for minimum output roundoff noise in Eq. (14.55) assumes the form

W̃ii = W̃ j j for all i, j (14.60)

and from Eq. (14.57), we have

‖G̃i‖2
2 = ‖G̃ j‖2

2 for all i, j

In effect, the output noise is minimum if the individual contributions due to the different noise sources
are all equal, as may be expected.

The application of the above method to the N th-order general state-space realization would
require N 2 + 2N + 1 multipliers, as opposed to 2N + 1 in parallel or cascade canonic structures.
That is, the method is uneconomical. Recognizing this problem, Mullis and Roberts applied their
methodology to obtain so-called block-optimal parallel and cascade structures that require only
4N + 1 and 9N/2 multipliers, respectively. Unfortunately, in both cases the realization process is
relatively complicated; in addition, in the latter case the pairing of zeros and poles into biquadratic
transfer functions and the ordering of second-order sections are not optimized, and to be able to
obtain a structure that is fully optimized the designer must undertake a large number of designs. A
practical approach to this problem is to obtain second-order sections that are individually optimized
and then use sections of this type in parallel or cascade for the realization of N th-order transfer
functions. Realizations so obtained are said to be section-optimal. This approach gives optimal
parallel structures since in this case the output noise is independent of the pairing of zeros and
poles and the ordering of sections; furthermore, as was shown by Jackson, Lindgren, and Kim [17],
with some experience the approach gives suboptimal cascade structures that are nearly as good as
corresponding block-optimal cascade structures.

Optimized second-order sections can be obtained by noting that Eq. (14.54) is satisfied if and
only if D = ρI, according to Eqs. (14.59) and (14.60); hence, Eq. (14.54) can be expressed as

W̃ = ρ2K̃ (14.61)

Since W̃ and K̃ are symmetric matrices with equal diagonal elements, Eq. (14.61) assumes the form

W̃ = ρ2JK̃J (14.62)

where

J =
[

0 1
1 0

]
for a second-order realization. Eq. (14.62) is satisfied by a network in which

ÃT = JÃJ

and

c̃ = ρJb̃

If Ã = {ãi j }, b̃ = {b̃i }, and c̃T = {c̃i }, then the preceding conditions yield

ã11 = ã22

650 DIGITAL SIGNAL PROCESSING

and

b̃1

b̃2
= c̃2

c̃1

If {Â, b̂, ĉT , d̂} represents a specific realization that satisfies these conditions, then applying the
scaling transformation

T =
[‖F̂1‖−1

2 0
0 ‖F̂2‖−1

2

]
(14.63)

results in a structure that satisfies Eqs. (14.54), (14.59), and (14.60) simultaneously and, therefore,
is optimal for L2 scaling. It should be mentioned that if the transformation

T =
[‖F̂1‖−1

∞ 0
0 ‖F̂2‖−1

∞

]
(14.64)

is used instead, the structure obtained is not optimal for L∞ scaling, although good results are usually
obtained.

A biquadratic second-order transfer function with complex-conjugate poles can be expressed
as

H (z) = γ1z + γ0

z2 + β1z + β0
+ δ (14.65)

and on the basis of the above principles, Jackson et al. [17] obtained the following optimal state-space
realization:

â11 = â22 = −β1/2 (14.66a)

â12 = (1 + γ0)(K1 ± K2)/γ 2
1 (14.66b)

â21 = [K1 ∓ K2]2/(1 + γ0) (14.66c)

b̂1 = 1

2
(1 + γ0) b̂2 = 1

2
γ1 (14.66d)

ĉ1 = γ1

1 + γ0
ĉ2 = 1 (14.66e)

d̂ = δ (14.66f)

K1 = γ0 − 1

2
β1γ1

K2 =
√(

γ 2
0 − γ0γ1β1 + β0γ

2
1

)
An arbitrary parallel or cascade design can be obtained by expressing the individual biquadratic

transfer functions as in Eq. (14.65) and then using the scaling transformation

T =
[‖F̂1i‖−1

p 0
0 ‖F̂2i‖−1

p

]
with p = 2 or ∞ for each section, where F1i (z) and F2i (z) are the transfer functions between the
input of the filter and the state-variable nodes 1 and 2, respectively, of the i th section.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 651

14.8 APPLICATION OF ERROR-SPECTRUM SHAPING

An alternative approach for the reduction of output roundoff noise is through the application of
a technique known as error-spectrum shaping [18, 19]. This technique involves the generation of
a roundoff-error signal and the application of local feedback for the purpose of controlling and
manipulating the output roundoff noise. The technique entails additional hardware which increases
in direct proportion to the number of adders in the structure. Consequently, only structures in which
the outputs of all multipliers are inputs to one and the same adder are suitable for the application of
error-spectrum shaping. The most well-known structure of this type is the classical direct realization.
Other structures of this type are the low-sensitivity structures described in Sec. 14.4.

The application of error-spectrum shaping to the direct realization of Fig. 14.11a is illustrated
in Fig. 14.11b. Signals and coefficients are assumed to be in fixed-point format using L bits for the
magnitude and one bit for the sign, and each of the two adders A1 and A2 can add products of 2L bits
to produce a sum of 2L bits. Quantizer Q1 rounds the output of adder A1 to L bits and simultaneously
generates a scaled-up version of the quantization error which is fed back to adder A1 through the β

subnetwork. Quantizer Q2, on the other hand, scales down and rounds the output of adder A2 to 2L
bits. A suitable scaling factor for the β subnetwork is 2L since the leading L bits of the quantization
error are zeros. Constant λ is used to scale the input of quantizer Q1. Assuming L2 signal scaling,
then

λ = 1

‖H‖2
(14.67)

where H (z) is the transfer function of the structure in Fig. 14.11a.
A noise model for the configuration in Fig. 14.11b can be readily obtained as shown in

Fig. 14.11c, where −qi/2 ≤ ei (n) ≤ qi/2 with q1 = 2−L and q2 = 2−2L . Hence, the PSDs of
signals e1(n) and e2(n) are given by

Sei (z) = σ 2
ei

= q2
i

12

As in Sec. 14.5, the PSD of the output noise can be obtained as

Sn(z) =
2∑

i=1

q2
i

12
Hi (z)Hi (z

−1) (14.68)

where

H1(z) = 1

λ

(
z2 + β1z + β0

z2 + b1z + b0

)
(14.69)

and

H2(z) = 1

λ(z2 + b1z + b0)
(14.70)

are the transfer functions from noise sources e1(n) and e2(n) to the output, respectively. The output
noise power is numerically equal to the autocorrelation of the output noise evaluated at k = 0 and

652 DIGITAL SIGNAL PROCESSING

Q2

−b1

−b0

β1

Q1

A1

A2

β0

λa1

λa0

λa2

(b)

a1

a0

a2

−b1

−b0

(a)

1
λ

Figure 14.11 (a) Second-order direct realization, (b) application of error-spectrum shaping.

from Eqs. (13.19a) and (14.68), we obtain

rn(0) = σ 2
n = 1

2π j

∮
�

Sn(z)z−1 dz

= 1

2π j

∮
�

2∑
i=1

q2
i

12
Hi (z)Hi (z

−1)z−1 dz

=
2∑

i=1

q2
i

12
‖Hi‖2

2 (14.71)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 653

−b1

−b0

β1

β0

λa1

λa0

(c)

2−L 2L

e2(n)

−1
e1(n)

λa2
1
λ

Figure 14.11 Cont’d (c) Noise model.

For a random input signal whose amplitude is uniformly distributed in the range (−1, 1), we have
rx (k) = σ 2

x = 1/3; hence the output power due to the signal is given by

ry(0) = σ 2
y = 1

3
‖H‖2

2 (14.72)

Now from Eq. (14.67) and Eqs. (14.69)–(14.72), the signal-to-noise ratio can be obtained as

SNR = σ 2
y

σ 2
n

= 4 × 22L∣∣∣∣
∣∣∣∣ z2 + β1z + β0

z2 + b1z + b0

∣∣∣∣
∣∣∣∣2
2

+ 2−2L

∣∣∣∣
∣∣∣∣ 1

z2 + b1z + b0

∣∣∣∣
∣∣∣∣2
2

If the parameters β1 and β2 are chosen to be equal to b1 and b2, respectively, then the signal-to-noise
ratio is maximized, as demonstrated by Higgins and Munson [19].

654 DIGITAL SIGNAL PROCESSING

Expressions for the coefficients of the error-spectrum shaping network for the case of cascade
structures have been derived in [20].

14.9 LIMIT-CYCLE OSCILLATIONS

In the methods of analysis presented in Sec. 14.5, we made the fundamental assumption that signal
levels are much larger than the quantization step throughout the filter. This allowed us to assume
statistically independent noise signals from sample to sample and from source to source. On many
occasions, signal levels can become very low or constant, at least for short periods of time, e.g.,
during pauses in speech and music signals. Under such circumstances, quantization errors tend to
become highly correlated and can actually cause a filter to lock in an unstable mode whereby a
steady output oscillation is generated. This phenomenon is known as the deadband effect, and the
oscillation generated is commonly referred to as quantization or granularity limit cycle.

Quantization limit cycles are low-level oscillations whose amplitudes can be reduced by in-
creasing the word length of the implementation. Another type of oscillation that can cause serious
problems is sometimes brought about by overflow in the arithmetic devices used. Oscillations of this
type are known as overflow limit cycles and their amplitudes can be quite large, sometimes as large
as the maximum signal handling capacity of the hardware.

In this section, we examine the mechanisms by which quantization and overflow limit cycles
can be generated and present methods for their elimination.

14.9.1 Quantization Limit Cycles

The deadband effect can be studied by using a technique developed by Jackson [21]. Consider the
first-order filter of Fig. 14.12a. The transfer function and difference equation of the filter are given
by

H (z) = H0z

z − b

and

y(n) = H0x(n) + by(n − 1) (14.73)

respectively. The impulse response is

h(n) = H0(b)n

If b = 1 or −1, the filter is unstable and has an impulse response

h(n) =
{

H0 for b = 1

H0(−1)n for b = −1

With H0 = 10.0 and b = −0.9, the exact impulse response given in the second column of Table 14.5
can be obtained.

Now, assume that the filter is implemented using fixed-point decimal arithmetic, where each
product by(n − 1) is rounded to the nearest integer according to the rule

Q[|by(n − 1)|] = Int [|by(n − 1)| + 0.5] (14.74)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 655

y(n)x(n)

−b1

−b2

(a)

(b)

y(n)x(n)

H0

b

Figure 14.12 (a) First-order filter, (b) second-order filter.

With H0 = 10.0 and b = −0.9, the response in the third column of Table 14.5 is obtained. As can be
seen, for n ≥ 5 the response oscillates between +5 and −5 and, in a sense, quantization has rendered
the filter unstable.

If Eq. (14.73) is assumed to hold during the unstable mode, the effective value of b must be 1
for b > 0 or −1 for b < 0. If this is the case

Q[|by(n − 1)|] = |y(n − 1)|
and from Eq. (14.74)

Int [|b| · |y(n − 1)| + 0.5] = |y(n − 1)|
or Int [|y(n − 1)| − (1 − |b|)|y(n − 1)| + 0.5] = |y(n − 1)|
This equation can be satisfied if

0 ≤ −(1 − |b|)|y(n − 1)| + 0.5 < 1

and by using the left-hand inequality, we conclude that

|y(n − 1)| ≤ 0.5

1 − |b| = k

Since y(n − 1) is an integer, instability cannot arise if |b| < 0.5. On the other hand, if |b| ≥ 0.5, the
response will tend to decay to zero once the input is removed, and eventually y(n − 1) will assume

656 DIGITAL SIGNAL PROCESSING

Table 14.5 Impulse response of first-order filter

n h(n) Q[h(n)]

0 10.0 10.0
1 −9.0 −9.0
2 8.1 8.0
3 −7.29 −7.0
4 6.561 6.0
5 −5.9049 −5.0
6 5.31441 5.0
7 −4.782969 −5.0
...

...
...

100 2.65614 × 10−4 5.0

values in the so-called deadband range [−k, k]. When this happens, the filter will become unstable.
Any tendency of |y(n − 1)| to exceed k will restore stability, but in the absence of an input signal the
response will again decay to a value within the deadband. Thus the filter will lock into a limit cycle
of amplitude equal to or less than k. Since the effective value of b is +1 for 0.5 ≤ b < 1 or −1 for
−1 < b ≤ −0.5, the frequency of the limit cycle will be 0 or ωs/2.

For the second-order filter of Fig. 14.12b, we have

H (z) = z2

z2 + b1z + b0

and

y(n) = x(n) − b1 y(n − 1) − b0 y(n − 2) (14.75)

If the poles are complex, then

h(n) = rn

sin θ
sin [(n + 1)θ]

where

r =
√

b0

and

θ = cos−1 − b

2
√

b0

For b0 = 1, the impulse response is a sinusoid with constant amplitude and frequency

ω0 = 1

T
cos−1 −b1

2
(14.76)

This is sometimes referred to as the resonant frequency of the filter.
In second-order filters, there are two distinct limit-cycle modes. In one mode, a limit cycle

with frequency 0 or ωs/2 is generated, and a limit cycle whose frequency is related to the resonant
frequency ω0 is generated in the other.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 657

If the filter is implemented using fixed-point decimal arithmetic and each of the products
b1 y(n − 1) and b0 y(n − 2) is rounded to the nearest integer according to the rule in Eq. (14.74), then
Eq. (14.75) yields

y(n) = x(n) − Q[b1 y(n − 1)] − Q[b0 y(n − 2)]

The filter can sustain a zero-input limit cycle of amplitude y0 (y0 > 0) and frequency 0 or ωs/2 if

y0 = ±Q[b1 y0] − Q[b0 y0] (14.77)

where the plus sign applies for limit cycles of frequency ωs/2 (see Prob. 14.29). Regions of the
(b0, b1) plane that satisfy this equation and the corresponding values of y0 are shown in Fig. 14.13a.
The domain inside the triangle represents stable filters, as can be easily shown (see Eqs. (14.91a)
and (14.91c)).

b0

b1

y0 = 1

y0 = 2

y0 = 4

(a)

Figure 14.13 Regions of the (b0, b1) plane that yield quantization limit cycles: (a) Regions that satisfy
Eq. (14.77).

658 DIGITAL SIGNAL PROCESSING

b0

b1

y0 = 1

y0 = 2

y0 = 4

(b)

Figure 14.13 Cont’d Regions of the (b0, b1) plane that yield quantization limit cycles: (b) Regions that
satisfy Eqs. (14.77) and (14.78).

If e1(n) and e2(n) are the quantization errors in products b1 y0 and b0 y0, respectively, then
Eq. (14.77) gives

±b1 = y0 ± e1(n) ± e2(n)

y0
+ b0

and since −0.5 < ei (n) ≤ 0.5, a necessary but not sufficient condition for the existence of a limit
cycle of frequency 0 or ωs/2 is obtained as

|b1| ≥ y0 − 1

y0
+ b0

The second limit-cycle mode involves the quantization of product b0 y(n − 2). If

Q[|b0 y(n − 2)|] = |y(n − 2)|
then the effective value of b0 is unity and, as in the first-order case, a condition for the existence of
limit cycles can be deduced as

|y(n − 2)| ≤ 0.5

1 − |b0| = k (14.78)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 659

With k an integer, values of b0 in the ranges

0.5 ≤ |b0| < 0.75

0.75 < |b0| < 0.833

.

2k − 1

2k
≤ |b0| <

2k + 1

2(k + 1)
. .

will yield deadbands [−1, 1], [−2, 2], . . . , [−k, k], . . . , respectively. Regions of the (b0, b1) plane
that satisfy both Eqs. (14.77) and (14.78) are depicted in Fig. 14.13b.

If the poles are close to the unit circle, the limit cycle is approximately sinusoidal with a
frequency close to the resonant frequency given by Eq. (14.76).

For signed-magnitude binary arithmetic, Eq. (14.78) becomes

|y(n − 2)| ≤ q

2(1 − |b0|)
where q is the quantization step.

14.9.2 Overflow Limit Cycles

In one’s- or two’s- complement fixed-point implementations, the transfer characteristic of adders is
periodic, as illustrated in Fig. 14.14a; as a consequence, if the inputs to an adder are sufficiently

M

−M

−M M

Q[x]

x

(a)

M

−M

−M M

Q[x]

x

(b)

Figure 14.14 (a) Transfer characteristic of one’s- or two’s-complement fixed-point adder, (b) transfer
characteristic of adder incorporating saturation mechanism.

660 DIGITAL SIGNAL PROCESSING

large to cause overflow, unexpected results can occur. Under certain circumstances, oscillations of
large amplitude can be sustained, which are known as overflow limit-cycle oscillations. These were
identified and studied quite early in the development of digital filters by Ebert, Mazo, and Taylor
[22]. The generation of overflow limit cycles is demonstrated by the following example.

Example 14.5 A second-order digital filter characterized by Eq. (14.75) with b1 = −1.375
and b0 = 0.625 is implemented in terms of two’s-complement fixed-point arithmetic using a
word length of 6 bits, excluding the sign bit. The quantization of products is carried out by
rounding. Show that if x(n) = 0, y(−2) = −43/64, and y(−1) = 43/64, the filter will sustain
an overflow limit cycle.

Solution

Using the difference equation, output y(n) given in column 2 of Table 14.6 can be readily
computed. Evidently, y(4) = y(−2) and y(5) = y(−1) and, therefore, a sustained
oscillation of amplitude 43/64 and frequency ωs/2 will be generated.

Table 14.6 Overflow limit cycle
in second-order filter

n 64y(n) 64ỹ(n)

−2 −43 −43
−1 43 43

0 −42 63
1 43 60
2 −43 44
3 42 23
4 −43 4
5 43 − 8
6 −42 −14
7 43 −14
8 −43 −10
9 42 − 5

10 −43 − 3
11 43 − 1
12 −42 1
13 43 2
14 −43 2
15 42 2

14.9.3 Elimination of Quantization Limit Cycles

Quantization limit-cycle oscillations received considerable attention from researchers in the past,
and two general approaches for minimizing or eliminating their effects have evolved. One approach

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 661

entails the use of a sufficiently large signal word length to ensure that the amplitude of the limit-cycle
is small enough to meet some system specification imposed by the application. Bounds on the limit-
cycle amplitude that can be used in this approach have been deduced by Sandberg and Kaiser [23],
Long and Trick [24], and Green and Turner [25]. The other approach entails the elimination of limit
cycles altogether. Quantization limit cycles can be eliminated by using appropriate signal quantiza-
tion schemes in specific structures, whereas overflow limit cycles can be eliminated by incorporating
suitable saturation mechanisms in arithmetic devices.

An important method for the elimination of zero-input limit cycles was proposed by Meerkötter
[26] and was later used by Mills, Mullis, and Roberts [27], and Vaidyanathan and Liu [28] to show that
there are several realizations that support the elimination of limit-cycle oscillations. In this method,
a Lyapunov function related to the stored power is constructed and is then used to demonstrate that
under certain conditions limit cycles cannot be sustained. The principles involved are as follows.

Consider the digital filter shown in Fig. 14.15 and assume that block A is a linear subnetwork
containing adders, multipliers, and interconnections but no unit delays. Further, assume that signal
quantization and overflow control are carried out by quantizers Qk for k = 1, 2, . . . , N placed at the
inputs of the unit delays as shown. The state-space characterization of the filter can be expressed as

v(n) = Aq(n) + bx(n)

y(n) = cT q(n) + dx(n)

and if x(n) = 0, we can write

v(n) = Aq(n) (14.79)

q(n + 1) = ṽ(n) (14.80)

where A = {ai j } and ṽk(n) is related to vk(n) by some nonlinear and possibly time-varying functional
relation of the form

ṽk(n) = Qk[vk(n)] for k = 1, 2, . . . , N (14.81)

The quadratic form

p[q(n)] = qT (n)Dq(n) (14.82)

where D is an N × N positive definite diagonal matrix, is related to the power stored in the unit
delays at instant nT , and changes in this quantity can provide information about the stability of the

q1(n)v1(n)

x(n) y(n)Subnetwork A

Q1

v1(n)˜ qN(n)vN(n)
QN

vN (n)˜

Figure 14.15 N th-order digital filter incorporating nonlinearities.

662 DIGITAL SIGNAL PROCESSING

filter under zero-input conditions. The increase in p[q(n)] in one filter cycle can be expressed as

	p[q(n)] = p[q(n + 1)] − p[q(n)] (14.83)

and from Eqs. (14.80), (14.82), and (14.83), we have

	p[q(n)] = −qT (n)Dq(n) + ṽT (n)Dṽ(n) (14.84)

Hence, Eqs. (14.79) and (14.84) yield

	p[q(n)] = −qT (n)Dq(n) + ṽT (n)Dṽ(n) + [Aq(n)]T D[Aq(n)] − vT (n)Dv(n)

= −qT (n)(D − AT DA)q(n) −
N∑

k=1

[v2
k (n) − ṽ2

k (n)]dkk (14.85)

where dkk for k = 1, 2, . . . , N are the diagonal elements of D.
Now if

qT (n)(D − AT DA)q(n) ≥ 0 (14.86)

and signals vk(n) are quantized such that

|ṽk(n)| ≤ |vk(n)| for k = 1, 2, . . . , N (14.87)

then Eq. (14.85) yields

	p[q(n)] ≤ 0 (14.88)

that is, the power stored in the unit delays cannot increase. Since a digital filter is a finite-state
machine, signals qk(n) must after a finite number of filter cycles either become permanently zero
or oscillate periodically. In the first case, there are no limit cycle oscillations. In the second case,
at least one qk(n), say ql(n), must oscillate periodically. However, from Eq. (14.88), we conclude
that the amplitude of the oscillation must decrease with each filter cycle by some fixed amount until
ql(n) becomes permanently zero after a finite number of filter cycles. Therefore, Eq. (14.86) and the
conditions in Eq. (14.87) constitute a sufficient set of conditions for the elimination of limit cycles.
A realization satisfying Eq. (14.86) is said to support the elimination of zero-input limit cycles.
The conditions in Eq. (14.87) can be imposed by quantizing the state variables using magnitude
truncation.

For a stable filter, the magnitudes of the eigenvalues of A are less than unity and Eq. (14.86) is
satisfied if a positive definite diagonal matrix D can be found such that matrix D − AT DA is positive
semidefinite [27, 28]. For second-order filters, this condition is satisfied if

a12a21 ≥ 0 (14.89a)

or

a12a21 < 0 and |a11 − a22| + det (A) ≤ 1 (14.89b)

There are quite a few realizations that support the elimination of zero-input limit cycles. Some
examples are: normal state-space structures in which

A =
[

α −β

−β α

]

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 663

with β > 0 [29–31]; realizations that minimize the output roundoff noise such as those in [15, 17]
(see Sec. 14.7); and lattice realizations [28, 31, 32].

Example 14.6 The structure shown in Fig. 14.16 realizes the biquadratic transfer function

H (z) = z2 + a1z + a0

z2 + b1z + b0

where

a1 = −(α1 + α2) (14.90a)

a0 = 1 + α1 − α2 (14.90b)

b1 = −(β1 + β2) (14.90c)

b0 = 1 + β1 − β2 (14.90d)

−α1 β1

q1(n)q1(n + 1)

−1

x(n)

−α2 β2

q2(n)q2(n + 1)

y(n)

Figure 14.16 Biquadratic realization due to Meerkötter.

664 DIGITAL SIGNAL PROCESSING

and is due to Meerkötter [26]. Show that the structure supports the elimination of zero-input
limit cycles.

Solution

Straightforward analysis gives the state-space characterization of the structure as

q(n + 1) = Aq(n) + bx(n)

y(n) = cT q(n) + dx(n)

where

A =
[

a11 a12

a21 a22

]
=

[
β1 (β1 + 1)
(β2 − 1) β2

]

b =
[

(β1 − α1)
(β2 − α2)

]
c =

[
1
1

]
and d = 1

The filter is stable if and only if

1 − b0 > 0 (14.91a)

1 + b1 + b0 > 0 (14.91b)

1 − b1 + b0 > 0 (14.91c)

as can be easily shown by using the Jury-Marden stability criterion (see Sec. 5.3.7. From
Eq. (14.90), we can show that

a12a21 = (β1 + 1)(β2 − 1) = 1

4

[
b2

1 − (1 + b0)2
]

and since 1 + b0 > b1, according to Eq. (14.91c), we conclude that a12a21 < 0. Hence,
zero-input limit cycles can be eliminated by using magnitude truncation only if the
condition in Eq. (14.89b) is satisfied. Simple manipulation now yields

|a11 − a22| + det (A) = |b0 − 1| + b0 − 1 + 1 = 1

since b0 − 1 is negative according to Eq. (14.91a); that is, Eq. (14.89b) is satisfied with
the equal sign and, therefore, the structure supports the elimination of zero-input limit
cycles.

Limit cycles can also be generated if the input assumes a constant value for a certain period of
time. Limit cycles of this type, which include zero-input limit cycles as a special case, are referred
to as constant-input limit cycles; they can be eliminated by using techniques described by Verkroost
[33], Turner [34], and Diniz and Antoniou [35]. A state-space realization of the transfer function
in Eq. (14.65) that supports the elimination of zero- and constant-input limit cycles is illustrated in

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 665

c1

c2

a12

x(n)
d 1

y(n)

q1(n)

q2(n)

1a11

1

1

1

a21

a22

E−1

E−1

−1

−1

Figure 14.17 Second-order state-space realization that supports the elimination of zero- and constant-input
limit cycles.

Fig. 14.17, where

a11 = a22 = −β1/2 (14.92a)

a12 = −ζ/σ a21 = σζ (14.92b)

c1 = γ1 + γ0

1 + β1 + β0
c2 = (2 + β1)γ0 − (β1 + 2β0)γ1

2σζ (1 + β1 + β0)
(14.92c)

d = δ (14.92d)

ζ =
√(

β0 − β2
1

4

)
Constant σ can be used to achieve optimal scaling. This structure is optimal or nearly optimal with
respect to roundoff noise and is, in addition, slightly more economical than the state-space realization
given by Eqs. (14.66a)–(14.66f) (see [35] for more details).

14.9.4 Elimination of Overflow Limit Cycles

Overflow limit cycles can be avoided to a large extent by applying strict scaling rules, e.g., using
scaling method A in Sec. 14.6.1, to as far as possible prevent overflow from occurring. The problem
with this approach is that signal levels throughout the filter are low; as a result, a poor signal-to-noise
ratio is achieved. The preferred solution is to allow overflow on occasion but prevent the limit-cycle
oscillations from occurring. A solution of this type reported in [22] involves incorporating a saturation
mechanism in the design of adders so as to achieve a transfer characteristic of the type depicted in
Fig. 14.14b where

Q[x] =
{

x if |x | < M

M if |x | ≥ M

666 DIGITAL SIGNAL PROCESSING

If this type of adder is used in the filter of Example 14.5, output ỹ(n) given in column 3 of
Table 14.6 will be obtained. Evidently, the overflow limit cycle will be eliminated but a quanti-
zation limit cycle of amplitude 2/64 and frequency 0 will be present. This is due to the fact that this
amplitude satisfies Eq. (14.77), as can be easily verified.

A concept that is closely related to overflow oscillations is the stability of the forced response
of a nonlinear system or filter. If ṽ(n) and v(n) are the state variables in Fig. 14.15, first with and
then without the quantizers installed, the forced response of the filter is said to be stable if

lim
n→∞[ṽ(n) − v(n)] = 0

In practical terms, the stability of the forced response implies that transients due to overflow effects
tend to die out once the cause of the overflow has been removed.

Claasen, Mecklenbräuker, and Peek [36] have shown that if a filter incorporating certain
nonlinearities, e.g., overflow nonlinearities, is stable under zero-input conditions, then the forced
response is also stable with respect to a corresponding set of nonlinearities. On the basis of this
equivalence, if a digital filter of the type shown in Fig. 14.15 is stable under zero-input conditions,
i.e., it satisfies Eq. (14.86) subject to the conditions in Eq. (14.87), then the forced response is also
stable provided that the nonlinearities in Eq. (14.81) satisfy the conditions

2 − x < Qk[x] ≤ 1 for 1 < x < 3

−2 − x > Qk[x] ≥ −1 for − 3 < x < −1

−1 ≤ Qk[x] ≤ 1 for | x | ≥ 3

for k = 1, 2, . . . , N , as illustrated in Fig. 14.18.
The stability of the forced response implies freedom from overflow limit cycles. It should be

mentioned, however, that Claasen et al. deduced the above equivalence on the assumption that there
is an infinite time separation between successive occurrences of overflow. Consequently, the above
conditions may not guarantee the absence of overflow limit cycles if overflow occurs while the filter
is recovering from a previous overflow.

1

1

1 21 x

Q[x]

33 2

Figure 14.18 Transfer characteristic that guarantees the stability of the forced response.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 667

REFERENCES

[1] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, New York: Oxford
University Press, 2000.

[2] E. Avenhaus, “On the design of digital filters with coefficients of limited word length,” IEEE
Trans. Audio Electroacoust., vol. 20, pp. 206–212, Aug. 1972.

[3] R. E. Crochiere, “A new statistical approach to the coefficient word length problem for
digital filters,” IEEE Trans. Circuits Syst., vol. 22, pp. 190–196, Mar. 1975.

[4] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York:
McGraw-Hill, 1991.

[5] R. E. Crochiere and A. V. Oppenheim, “Analysis of linear digital networks,” Proc. IEEE,
vol. 63, pp. 581–595, Apr. 1975.

[6] A. Antoniou, Digital Filters: Analysis, Design, and Applications, New York: McGraw-Hill,
1993.

[7] W. K. Jenkins and B. J. Leon, “An analysis of quantization error in digital filters based on
interval algebras,” IEEE Trans. Circuits Syst., vol. 22, pp. 223–232, Mar. 1975.

[8] R. C. Agarwal and C. S. Burrus, “New recursive digital filter structures having very low
sensitivity and roundoff noise,” IEEE Trans. Circuits Syst., vol. 22, pp. 921–927, Dec. 1975.

[9] P. S. R. Diniz and A. Antoniou, “Low-sensitivity digital-filter structures which are amenable
to error-spectrum shaping,” IEEE Trans. Circuits Syst., vol. 32, pp. 1000–1007, Oct. 1985.

[10] S. Nishimura, K. Hirano, and R. N. Pal, “A new class of very low sensitivity and low
roundoff noise recursive digital filter structures,” IEEE Trans. Circuits Syst., vol. 28,
pp. 1152–1158, Dec. 1981.

[11] Y. V. Ramana Rao and C. Eswaran, “A pole-sensitivity based method for the design of
digital filters for error-spectrum shaping,” IEEE Trans. Circuits Syst., vol. 36,
pp. 1017–1020, July 1989.

[12] L. B. Jackson, “On the interaction of roundoff noise and dynamic range in digital filters,”
Bell Syst. Tech. J., vol. 49, pp. 159–184, Feb. 1970.

[13] G. Bachman and L. Naria, Functional Analysis, New York: Academic, 1966.
[14] L. B. Jackson, “Roundoff-noise analysis for fixed-point digital filters realized in cascade or

parallel form,” IEEE Trans. Audio Electroacoust., vol. 18, pp. 107–122, June 1970.
[15] C. T. Mullis and R. A. Roberts, “Synthesis of minimum roundoff noise fixed point digital

filters,” IEEE Trans. Circuits Syst., vol. 23, pp. 551–562, Sept. 1976.
[16] S. Y. Hwang, “Roundoff noise in state-space digital filtering: A general analysis,” IEEE

Trans. Acoust., Speech, Signal Process., vol. 24, pp. 256–262, June 1976.
[17] L. B. Jackson, A. G. Lindgren, and Y. Kim, “Optimal synthesis of second-order state-space

structures for digital filters,” IEEE Trans. Circuits Syst., vol. 26, pp. 149–153, Mar. 1979.
[18] T. Thong and B. Liu, “Error spectrum shaping in narrow-band recursive filters,” IEEE Trans.

Acoust., Speech, Signal Process., vol. 25, pp. 200–203, Apr. 1977.
[19] W. E. Higgins and D. C. Munson, Jr., “Noise reduction strategies for digital filters: Error

spectrum shaping versus the optimal linear state-space formulation,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 30, pp. 963–973, Dec. 1982.

[20] W. E. Higgins and D. C. Munson, Jr., “Optimal and suboptimal error spectrum shaping
for cascade-form digital filters,” IEEE Trans. Circuits Syst., vol. 31, pp. 429–437,
May 1984.

668 DIGITAL SIGNAL PROCESSING

[21] L. B. Jackson, “An analysis of limit cycles due to multiplication rounding in recursive digital
filters,” Proc. 7th Annu. Allerton Conf. Circuit Syst. Theory, pp. 69–78, 1969.

[22] P. M. Ebert, J. E. Mazo, and M. G. Taylor, “Overflow oscillations in digital filters,” Bell
Syst. Tech. J., vol. 48, pp. 2999–3020, Nov. 1969.

[23] I. W. Sandberg and J. F. Kaiser, “A bound on limit cycles in fixed-point implementations of
digital filters,” IEEE Trans. Audio Electroacoust., vol. 20, pp. 110–114, June 1972.

[24] J. L. Long and T. N. Trick, “An absolute bound on limit cycles due to roundoff errors in
digital filters,” IEEE Trans. Audio Electroacoust., vol. 21, pp. 27–30, Feb. 1973.

[25] B. D. Green and L. E. Turner, “New limit cycle bounds for digital filters,” IEEE Trans.
Circuits Syst., vol. 35, pp. 365–374, Apr. 1988.

[26] K. Meerkötter, “Realization of limit cycle-free second-order digital filters,” in Proc. IEEE
Int. Symp. Circuits and Systems, 1976, pp. 295–298.

[27] W. L. Mills, C. T. Mullis, and R. A. Roberts, “Digital filter realizations without overflow
oscillations,” IEEE Trans. Acoust., Speech, Signal Process., vol. 26, pp. 334–338, Aug. 1978.

[28] P. P. Vaidyanathan and V. Liu, “An improved sufficient condition for absence of limit cycles
in digital filters,” IEEE Trans. Circuits Syst., vol. 34, pp. 319–322, Mar. 1987.

[29] C. M. Rader and B. Gold, “Effects of parameter quantization on the poles of a digital filter,”
Proc. IEEE, vol. 55, pp. 688–689, May 1967.

[30] C. W. Barnes and A. T. Fam, “Minimum norm recursive digital filters that are free of
overflow limit cycles,” IEEE Trans. Circuits Syst., vol. 24, pp. 569–574, Oct. 1977.

[31] A. H. Gray, Jr. and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans.
Audio Electroacoust., vol. 21, pp. 491–500, Dec. 1973.

[32] A. H. Gray, Jr., “Passive cascaded lattice digital filters,” IEEE Trans. Circuits Syst., vol. 27,
pp. 337–344, May 1980.

[33] G. Verkroost, “A general second-order digital filter with controlled rounding to exclude limit
cycles for constant input signals,” IEEE Trans. Circuits Syst., vol. 24, pp. 428–431,
Aug. 1977.

[34] L. E. Turner, “Elimination of constant-input limit cycles in recursive digital filters using a
generalised minimum norm,” Proc. Inst. Elect. Eng., Part G, vol. 130, pp. 69–77, June 1983.

[35] P. S. R. Diniz and A. Antoniou, “More economical state-space digital-filter structures which
are free of constant-input limit cycles,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 34, pp. 807–815, Aug. 1986.

[36] T. A. C. M. Claasen, W. F. G. Mecklenbräuker, and J. B. H. Peek, “On the stability of the
forced response of digital filters with overflow nonlinearities,” IEEE Trans. Circuits Syst.,
vol. 22, pp. 692–696, Aug. 1975.

PROBLEMS

14.1. (a) Convert the decimal numbers

730.796875 and − 3521.8828125

into binary representation.
(b) Convert the binary numbers

11011101.011101 and − 100011100.1001101

into decimal representation.

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 669

14.2. Deduce the signed-magnitude, one’s-complement, and two’s-complement representations of
(a) 0.810546875 and (b) −0.9462890625. Assume a word length L = 10.

14.3. The two’s complement of a number x can be designated as

x̃ = x0.x1x2 · · · xL

(a) Show that

x = −x0 +
L∑

i=1

xi 2
−i

(b) Find x if x̃ = 0.1110001011.
(c) Find x if x̃ = 1.1001110010.

14.4. Assuming that L = 7, perform the following operations by using one’s- and two’s-complement additions.
(a) 0.6015625 − 0.4218750
(b) −0.359375 + (−0.218750)

14.5. The two’s complement of x is given by

x̃ = x0.x1x2 · · · xL

(a) Show that

Two’s complement (2−1x) =
{

2−1 x̃ if x0 = 0
1 + 2−1 x̃ if x0 = 1

(b) Find the two’s complement of 2−4x if x̃ = 1.00110.

14.6. (a) The register length in a fixed-point digital-filter implementation is 9 bits (including the sign bit), and
the arithmetic is of the two’s-complement type. Find the largest and smallest machine-representable
decimal numbers.

(b) Show that the addition 0.8125 + 0.65625 will cause overflow.
(c) Show that the addition 0.8125 + 0.65625 + (−0.890625) will be evaluated correctly despite the

overflow in the first partial sum.

14.7. The mantissa and exponent register segments in a floating-point implementation are 8 and 4 bits long,
respectively.
(a) Deduce the register contents for −0.0234375, −5.0, 0.359375, and 11.5.
(b) Determine the dynamic range of the implementation.

Both mantissa and exponent are stored in signed-magnitude form.

14.8. A floating-point number

x = M × 2e where M =
B∑

i=1

b−i 2
−i

is to be stored in a register whose mantissa and exponent segments comprise L + 1 and e + 1 bits,
respectively. Assuming signed-magnitude representation and quantization by rounding, find the range
of the quantization error.

14.9. A filter section is characterized by the transfer function

H (z) = H0
(z + 1)2

z2 + b1z + b0

where

H0 = −0.01903425 b0 = 0.8638557 b1 = −0.5596596

(a) Find the quantization error for each coefficient if signed-magnitude fixed-point arithmetic is to be
used. Assume quantization by truncation and a word length L = 6 bits.

(b) Repeat part (a) if the quantization is to be by rounding.

670 DIGITAL SIGNAL PROCESSING

14.10. (a) Realize the transfer function of Prob. 14.9 by using a canonic structure.
(b) The filter obtained in part (a) is implemented by using the arithmetic described in Prob. 14.9a. Plot

the amplitude-response error versus frequency for 10 ≤ ω ≤ 30 rad/s. The sampling frequency is
100 rad/s.

(c) Repeat part (b), assuming quantization by rounding.
(d) Compare the results obtained in parts (b) and (c).

14.11. (a) The transfer function

H (z) = z2 + 2z + 1

z2 + b1z + b0
where b1 = −r

√
2 and b0 = r 2

is to be realized by using the canonic structure of Fig. 14.7b. Find the sensitivities SH
b1

(z) and SH
b0

(z).

(b) The section is to be implemented by using fixed-point arithmetic, and the coefficient quantization
is to be by rounding. Compute the statistical word length L(ω) for 0.7 ≤ r ≤ 0.95 in steps of 0.05.
Assume that 	Mmax(ω) = 0.02, x1 = 2 (see Sec. 14.3).

(c) Plot the statistical word length versus r and discuss the results achieved.

14.12. (a) Using Tables 14.2 and 14.3, obtain all possible low-sensitivity direct realizations of the transfer
function in Prob. 14.9.

(b) The realizations in part (a) are to be implemented in terms of signed-magnitude fixed-point arithmetic
using a word length L = 6, and quantization is to be by rounding. The sampling frequency is
100 rad/s. Plot the amplitude-response error versus frequency for 10 ≤ ω ≤ 30 rad/s for each
realization.

(c) On the basis of the results in part (b), select the least sensitive of the possible realizations.
(d) Compare the realization selected in part (c) with the canonic realization obtained in Prob. 14.10.

14.13. The transfer function

H (z) = H0

3∏
i=1

(z + 1)2

z2 + b1i z + b0i

where ai , b0i , and b1i are given in Table P14.13, represents a lowpass Butterworth filter.

Table P14.13

i b0i b1i

1 2.342170E − 1 −9.459200E − 1
2 3.753184E − 1 −1.054062
3 7.148954E − 1 −1.314318

H0 = 5.796931E − 4

(a) Realize the transfer function using three canonic sections in cascade.
(b) The realization in part (a) is to be implemented in terms of fixed-point signed-magnitude arithmetic

using a word length L = 8 bits, and coefficient quantization is to be by rounding. The sampling
frequency is 104 rad/s. Plot the amplitude-response error versus frequency for 0 ≤ ω ≤ 103 rad/s.

14.14. (a) Realize the transfer function in Prob. 14.13 using structure II-2 of Table 14.3.
(b) The realization in part (a) is to be implemented as in part (b) of Prob. 14.13. Plot the amplitude-

response error versus frequency for 0 ≤ ω ≤ 103 rad/s.
(c) Compare the realization in part (a) with the cascade canonic realization of Prob. 14.13 with respect

to sensitivity and the number of arithmetic operations.

14.15. The response of an A/D converter to a signal x(t) is given by

y(n) = x(n) + e(n)

EFFECTS OF FINITE WORD LENGTH IN DIGITAL FILTERS 671

where x(n) and e(n) are random variables uniformly distributed in the ranges −1 ≤ x(n) ≤ 1 and
−2−(L+1) ≤ e(n) ≤ 2−(L+1), respectively.
(a) Find the signal-to-noise ratio. This is defined as

SNR = 10 log
average signal power

average noise power

(b) Find the PSD of y(n) if x(n), e(n), x(k), and e(k) are statistically independent.

14.16. The filter section of Prob. 14.9 is to be scaled using the scheme in Fig. 14.8.
(a) Find λ for L∞ scaling.
(b) Find λ for L2 scaling using a frequency-domain method.
(c) Find λ for L2 scaling using a time-domain method. (Hint: Use Parceval’s discrete-time formula

(Theorem 3.11))
(d) Compare the methods in parts (b) and (c).
(e) Compare the values of λ obtained with L∞ and L2 scaling and comment on the advantages and

disadvantages of the two types of scaling.

14.17. The canonic realization of Prob. 14.13 is to be scaled according to the scheme in Fig. 14.9 using the L∞
norm.
(a) Find the scaling constants λ0, λ1, and λ2.
(b) The scaled realization is to be implemented in terms of fixed-point arithmetic and product quanti-

zation is to be by rounding. Plot the relative, output-noise PSD versus frequency. This is defined
as

RPSD = 10 log
Sy(e jωT)

Se(e jωT)

where Sy(e jωT) is the PSD of output noise and Se(e jωT) is the PSD of a single noise source. The
sampling frequency is 104 rad/s.

14.18. Repeat Prob. 14.17 using L2 scaling and compare the results with those obtained in Prob. 14.17.

14.19. The low-sensitivity realization of Prob. 14.14 is to be scaled according to the scheme in Fig. 14.9 using
the L2 norm.
(a) Find the scaling constants λ0, λ1, and λ2.
(b) The scaled realization is to be implemented in terms of fixed-point arithmetic and product quanti-

zation is to be by rounding. Plot the relative, output-noise PSD versus frequency.

14.20. The transfer function

H (z) =
3∏

i=1

a0i z2 + a1i z + a0i

z2 + b1i z + b0i

where a0i , a1i , b0i and b1i are given in Table P14.16 represents a bandstop elliptic filter.

Table P14.16

i a0i a1i b0i b1i

1 4.623281E − 1 7.859900E − 9 −7.534381E − 2 7.859900E − 9
2 4.879171E − 1 5.904108E − 2 8.051571E − 1 8.883641E − 1
3 1.269926 −1.536691E − 1 8.051571E − 1 −8.883640E − 1

(a) Realize the transfer function using three canonic sections in cascade.
(b) Determine the scaling constants. Assume the section order implied by the transfer function and use

L∞ scaling. The sampling frequency is 18 rad/s.
(c) Plot the relative output-noise PSD versus frequency.

672 DIGITAL SIGNAL PROCESSING

14.21. The transfer function

H (z) =
3∏

i=1

a0i z2 + a1i z + 1

z2 + a1i z + a0i

where a0i and a1i are given in Table P14.17, represents a digital equalizer. Repeat parts (a) to (c) of
Prob. 14.16. The sampling frequency is 2.4π rad/s.

Table P14.17

i a0i a1i

1 0.973061 −1.323711
2 0.979157 −1.316309
3 0.981551 −1.345605

14.22. Demonstrate the validity of Eq. (14.37).

14.23. Show that the column vectors f(z) and g(z) defined in Eq. (14.50) are given by the expressions in
Eq. (14.51).

14.24. The vector q(n) in the state-space realization {A,b,cT , d} is subjected to the transformation q̃(n) =
Tq(n).

(a) Show that the transformed realization {Ã, b̃, c̃T , d̃} is given by Eq. (14.52.)
(b) Show that the transformed vectors f̃(z) and g̃(z) are given by Eq. (14.53).

14.25. (a) Obtain a state-space section-optimal realization of the lowpass filter in Prob. 14.13.
(b) Apply L2 scaling to the realization.
(c) The scaled realization is to be implemented in terms of fixed-point arithmetic and product quanti-

zation is to be by rounding. Plot the relative, output-noise PSD versus frequency.
(d) Compare the results with those obtained in the case of the direct canonic realization in Prob. 14.18.

14.26. (a) Apply error-spectrum shaping to the scaled cascade canonic realization obtained in Prob. 11.13.
(b) The modified realization is to be implemented in terms of fixed-point arithmetic and product quan-

tization is to be by rounding. Compute and plot the relative output-noise PSD versus frequency
assuming the L2 scaling obtained in Prob. 11.18.

(c) Compare the results with those obtained without error-spectrum shaping in Prob. 11.18.

14.27. A second-order filter characterized by Eq. (14.75) with b1 = −1.343503 and b0 = 0.9025 is to be
implemented using signed-magnitude decimal arithmetic. Quantization is to be performed by rounding
each product to the nearest integer, and ωs = 2π rad/s.
(a) Estimate the peak-to-peak amplitude and frequency of the limit cycle by using Jackson’s approach.
(b) Determine the actual amplitude and frequency of the limit cycle by simulation.
(c) Compare the results obtained in parts (a) and (b).

14.28. Repeat Prob. 14.27 for the coefficients b1 = −1.8 and b0 = 0.99.

14.29. A second-order filter represented by Eq. (14.75) is implemented in terms of fixed-point decimal arith-
metic.
(a) Show that the filter can sustain zero-input limit cycles of amplitude y0 (y0 > 0) and frequency 0 or

ωs/2 if Eq. (14.77) is satisfied.
(b) Find y0 if b1 = −1.375 and b0 = 0.625.

14.30. The second-order realization shown in Fig. 4.5c can under certain conditions support the elimination of
zero-input limit cycles. Deduce these conditions.

14.31. Show that the state-space realization of Eqs. (14.92a)–(14.92d) supports the elimination of zero-input
limit cycles.

14.32. Realize the lowpass filter of Prob. 14.13 using Meerkötter’s structure shown in Fig. 14.16.

14.33. Design a sinusoidal oscillator by using a digital filter in cascade with a bandpass filter. The frequency
of oscillation is required to be ωs/10.

CHAPTER

15
DESIGN OF

NONRECURSIVE
FILTERS USING
OPTIMIZATION

METHODS

15.1 INTRODUCTION

The window method for the design of nonrecursive filters described in Chap. 9 is based on a closed-
form solution and, as a result, it is easy to apply and entails a relatively insignificant amount of
computation. Unfortunately, it usually leads to suboptimal designs whereby the filter order required
to satisfy a set of given specifications is not the lowest that can be achieved. Consequently, the
number of arithmetic operations required per output sample is not minimum, and the computational
efficiency and speed of operation of the filter are not as high as could be.

This chapter deals with a method for the design of nonrecursive filters known as the weighted-
Chebyshev method. In this method, an error function is formulated for the desired filter in terms of a
linear combination of cosine functions and is then minimized by using a very efficient multivariable
optimization algorithm known as the Remez exchange algorithm. When convergence is achieved,
the error function becomes equiripple as in other types of Chebyshev solutions (see Sec. 10.4). The
amplitude of the error in different frequency bands of interest is controlled by applying weighting to
the error function.

The weighted-Chebyshev method is very flexible and can be used to obtain optimal solutions
for most types of nonrecursive filters, e.g., digital differentiators, Hilbert transformers, and lowpass,

673

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

674 DIGITAL SIGNAL PROCESSING

highpass, bandpass, bandstop, and multiband filters with piecewise-constant amplitude responses.
Furthermore, like the methods of Chaps. 12 and 16, it can be used to design filters with arbitrary
amplitude responses. In common with other optimization methods, the weighted-Chebyshev method
requires a large amount of computation; however, as the cost of computation is becoming progres-
sively cheaper and cheaper with time, this disadvantage is not a very serious one.

The development of the weighted-Chebyshev method began with a paper by Herrmann published
in 1970 [1], which was followed soon after by a paper by Hofstetter, Oppenheim, and Siegel [2].
These contributions were followed by a series of papers, during the seventies, by Parks, McClellan,
Rabiner, and Herrmann [3–8]. These developments led, in turn, to the well-known McClellan-Parks-
Rabiner computer program for the design of nonrecursive filters, documented in [9], which has found
widespread applications. The approach to weighted-Chebyshev filters presented in this chapter is
based on that reported in Refs. [3, 6, 8], and includes several enhancements proposed by the author
in Refs. [10, 11].

15.2 PROBLEM FORMULATION

Consider a nonrecursive filter characterized by the transfer function

H (z) =
N−1∑
n=0

h(nT)z−n (15.1)

and assume that N is odd, the impulse response is symmetrical, and ωs = 2π . Since T = 2π/ωs = 1
s, the frequency response of the filter can be expressed as

H (e jωT) = e− jcω Pc(ω)

where

Pc(ω) =
c∑

k=0

ak cos kω (15.2)

a0 = h(c)

ak = 2h(c − k) for k = 1, 2, . . . , c

c = (N − 1)/2

(see Table 9.1).
If e− jcω D(ω) is the desired frequency response and W (ω) is a weighting function, an error

function E(ω) can be constructed as

E(ω) = W (ω)[D(ω) − Pc(ω)] (15.3)

If |E(ω)| is minimized such that

|E(ω)| ≤ δp

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 675

with respect to some compact subset of the frequency interval [0, π], say, Ω, a filter can be obtained
in which

|E0(ω)| = |D(ω) − Pc(ω)| ≤ δp

|W (ω)| for ω ∈ Ω (15.4)

15.2.1 Lowpass and Highpass Filters

The amplitude response of an equiripple lowpass filter is of the form illustrated in Fig. 15.1, where
δp and δa are the amplitudes of the passband and stopband ripples, and ωp and ωa are the passband
and stopband edges, respectively. Hence, we require

D(ω) =
{

1 for 0 ≤ ω ≤ ωp

0 for ωa ≤ ω ≤ π
(15.5a)

with

|E0(ω)| ≤
{

δp for 0 ≤ ω ≤ ωp

δa for ωa ≤ ω ≤ π
(15.5b)

Therefore, from Eqs. (15.4) and (15.5b), we can deduce the weighting function as

W (ω) =
{

1 for 0 ≤ ω ≤ ωp

δp/δa for ωa ≤ ω ≤ π
(15.6)

Similarly, for highpass filters, we obtain

D(ω) =
{

0 for 0 ≤ ω ≤ ωa

1 for ωp ≤ ω ≤ π

ω

ωaωp

δa

1 − δp

1.0

1 + δp

G
ai

n

Figure 15.1 Amplitude response of an equiripple lowpass filter.

676 DIGITAL SIGNAL PROCESSING

and

W (ω) =
{

δp/δa for 0 ≤ ω ≤ ωa

1 for ωp ≤ ω ≤ π
(15.7)

15.2.2 Bandpass and Bandstop Filters

The amplitude responses of equiripple bandpass and bandstop filters assume the forms illustrated in
Fig. 15.2a and b, respectively, where δp and δa are the passband and stopband ripples, respectively,

π

ωa2ωp2ωp1ωa1

ω

δa

1 − δp

1.0

1 + δp

G
ai

n

(a)

π

ωp2ωa2

ω

δa

1− δp

1.0

1 + δp

ωa1ωp1

G
ai

n

(b)

Figure 15.2 Amplitude responses of equiripple filters: (a) Bandpass filter, (b) bandstop filter.

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 677

ωp1 and ωp2 are the passband edges, and ωa1 and ωa2 are the stopband edges. For bandpass filters

D(ω) =

0 for 0 ≤ ω ≤ ωa1

1 for ωp1 ≤ ω ≤ ωp2

0 for ωa2 ≤ ω ≤ π

W (ω) =

δp/δa for 0 ≤ ω ≤ ωa1

1 for ωp1 ≤ ω ≤ ωp2

δp/δa for ωa2 ≤ ω ≤ π

(15.8)

and for bandstop filters

D(ω) =

1 for 0 ≤ ω ≤ ωp1

0 for ωa1 ≤ ω ≤ ωa2

1 for ωp2 ≤ ω ≤ π

W (ω) =

1 for 0 ≤ ω ≤ ωp1

δp/δa for ωa1 ≤ ω ≤ ωa2

1 for ωp2 ≤ ω ≤ π

(15.9)

15.2.3 Alternation Theorem

An effective approach for the solution of the optimization problem at hand is to solve the minimax
problem

minimize
x

{max
ω

|E(ω)|} (15.10)

where

x = [a0 a1 . . . ac]T

The solution of this problem exists by virtue of the so-called alternation theorem [12] which is as
follows:

Theorem 15.1 Alternation Theorem If Pc(ω) is a linear combination of r = c + 1 cosine
functions of the form

Pc(ω) =
c∑

k=0

ak cos kω

then a necessary and sufficient condition that Pc(ω) be the unique, best, weighted-Chebyshev
approximation to a continuous function D(ω) on Ω, where Ω is a compact subset of the
frequency interval [0, π], is that the weighted error function E(ω) exhibits at least r + 1

678 DIGITAL SIGNAL PROCESSING

extremal frequencies in Ω, that is, there must exist at least r + 1 points ω̂i in Ω such that

ω̂0 < ω̂1 < . . . < ω̂r

E(ω̂i) = −E(ω̂i+1) for i = 0, 1, . . . , r − 1

and

|E(ω̂i)| = max
ω∈Ω

|E(ω)| for i = 0, 1, . . . , r �

From the alternation theorem and Eq. (15.3), we can write

E(ω̂i) = W (ω̂i)[D(ω̂i) − Pc(ω̂i)] = (−1)iδ (15.11)

for i = 0, 1, . . . , r , where δ is a constant. This system of equations can be put in matrix form as

1 cos ω̂0 cos 2ω̂0 · · · cos cω̂0
1

W (ω̂0)

1 cos ω̂1 cos 2ω̂1 · · · cos cω̂1
−1

W (ω̂1)
...

...
...

...
...

1 cos ω̂r cos 2ω̂r · · · cos cω̂r
(−1)r

W (ω̂r)

a0

a1
...

ac

δ

 =

D(ω̂0)
D(ω̂1)

...
D(ω̂r)

 (15.12)

If the extremal frequencies (or extremals for short) were known, coefficients ak and, in turn, the
frequency response of the filter could be computed using Eq. (15.2). The solution of this system of
equations exists since the above (r + 1) × (r + 1) matrix is known to be nonsingular [12].

15.3 REMEZ EXCHANGE ALGORITHM

The Remez exchange algorithm is an iterative multivariable algorithm which is naturally suited for
the solution of the minimax problem in Eq. (15.10). It is based on the second optimization method
of Remez [13] and involves the following basic steps:

Algorithm 1: Basic Remez exchange algorithm

1. Initialize extremals ω̂0, ω̂1, . . . , ω̂r and ensure that an extremal is assigned at each band edge.

2. Locate the frequencies �
ω0,

�
ω1, . . . ,

�
ωρ at which |E(ω)| is maximum and |E(�

ωi)| ≥ δ. These fre-
quencies are potential extremals for the next iteration.

3. Compute the convergence parameter

Q = max |E(�
ωi)| − min |E(�

ωi)|
max |E(�

ωi)|
(15.13)

where i = 0, 1, . . . , ρ.

4. Reject ρ − r superfluous potential extremals �
ωi according to an appropriate rejection criterion and

renumber the remaining �
ωi sequentially; then set ω̂i = �

ωi for i = 0, 1, . . . , r .

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 679

5. If Q > ε, where ε is a convergence tolerance (say ε = 0.01), repeat from step 2; otherwise continue
to step 6.

6. Compute Pc(ω) using the last set of extremals; then deduce h(n), the impulse response of the required
filter, and stop. �

The amount of computation required by the algorithm tends to depend quite heavily on the
initialization scheme used in step 1, the search method used for the location of the maxima of the
error function in step 2, and the criterion used to reject superfluous frequencies �

ωi in step 4.

15.3.1 Initialization of Extremals

The simplest scheme for the initialization of extremals ω̂i for i = 0, 1, . . . , r is to assume that they
are uniformly spaced in the frequency bands of interest. If there are J distinct bands in the required
filter of widths B1, B2, . . . , BJ and extremals are to be located at the left-hand and right-hand band
edges of each band, the total bandwidth, that is, B1 + B2 +· · ·+ BJ , should be divided into r +1− J
intervals. Under these circumstances, the average interval between adjacent extremals is

W0 = 1

r + 1 − J

J∑
j=1

B j

Since the quantities B j/W0 need not be integers, the use of W0 for the generation of the extremals will
almost always result in a fractional interval in each band. This problem can be avoided by rounding
the number of intervals B j/W0 to the nearest integer and then readjusting the frequency interval
for the corresponding band accordingly. This can be achieved by letting the numbers of intervals in
bands j and J be

m j = Int

(
B j

W0
+ 0.5

)
for j = 1, 2, . . . , J − 1 (15.14a)

and

m J = r −
J−1∑
j=1

(m j + 1) (15.14b)

respectively, and then recalculating the frequency intervals for the various bands as

W j = B j

m j
for j = 1, 2, . . . , J (15.15)

A more sophisticated initialization scheme which was found to give good results is described in
Ref. [14].

15.3.2 Location of Maxima of the Error Function

The frequencies �
ωi , which must include maxima at band edges if |E(�

ωi)| ≥ |δ|, can be located
by simply evaluating |E(ω)| over a dense set of frequencies. A reasonable number of frequency
points that yields sufficient accuracy in the determination of the frequencies �

ωi is 8(N + 1). This

680 DIGITAL SIGNAL PROCESSING

corresponds to about 16 frequency points per ripple of |E(ω)|. A suitable frequency interval for the
j th band is w j = W j/S with S = 16.

The above exhaustive step-by-step search can be implemented in terms of Algorithm 2 below
where ωL j and ωR j are the left-hand and right-hand edges in band j ; W j is the interval between
adjacent extremals and m j is the number of intervals W j in band j ; w j is the interval between
successive samples of |E(ω)| in interval W j and S is the number of intervals w j in each interval W j ;
N j is the total number of intervals w j in band j ; and J is the number of bands.

Algorithm 2: Exhaustive step-by-step search

1. Set N j = m j S, w j = Bj/N j , and e = 0.

2. For each of bands 1, 2, . . . , j, . . . , J do:

For each of frequencies ω1 j = ωL j , ω2 j = ωL j + w j , . . . , ωi j = ωL j + (i − 1)w j , . . . , ω(N j +1) j =
ωR j , set �

ωe = ωi j and e = e + 1 provided that |E(ωi j)| ≥ |δ| and one of the following conditions
holds:

(a) Case ωi j = ωL j : if |E(ωi j)| is maximum at ωi j = ωL j (i.e., |E(ωL j)| > |E(ωL j + ε)|);
(b) Case ωL j < ωi j < ωR j : if |E(ω)| is maximum at ω = ωi j (i.e., |E(ωi j − w j)| < |E(ωi j)| >

|E(ωi j + w j)|);
(c) Case ωi j = ωR j : if |E(ωi j)| is maximum at ωi j = ωR j (i.e., |E(ωR j)| > |E(ωR j − ε)|. �

The parameter ε in steps 2(a) and 2(c) is a small positive constant and a value 10−2w j was found
to yield satisfactory results.

In practice, |E(ω)| is maximum at an interior left-hand band edge1 if its first derivative at the
band edge is negative, and a mirror-image situation applies at an interior right-hand band edge. In
such cases, |E(ω)| has a zero immediately to the right or left of the band edge and the inequality in
step 2(a) or 2(c) may sometimes fail to identify a maximum. However, the problem can be avoided
by using the inequality |E(ωL j − ε)| > |E(ωL j)| in step 2(a) and |E(ωR j)| < |E(ωR j + ε)| in step
2(c) for interior band edges. An alternative approach to the problem is to use gradient information
based on the formulas given in Sec. 15.6.

In rare circumstances, a maximum of |E(ω)| may occur between a band edge and the first sample
point. Such a maximum may be missed by Algorithm 2 but the problem can be easily identified since
the number of potential extremals will then be less than the minimum. The remedy is to check the
number of potential extremals at the end of each iteration and if it is found to be less than r + 1,
the density of sample points, i.e., S, is doubled and the iteration is repeated. If the problem persists,
the process is repeated until the required number of potential extremals is obtained. If a value of S
equal to or less than 256 does not resolve the problem, the loss of potential extremals is most likely
due to some other reason.

An important precaution in the implementation of the preceding as well as the subsequent search
methods is to ensure that extremals belong to the dense set of frequency points to avoid numerical
ill-conditioning in the computation of E(ω) (see Eqs. (15.11) and (15.17)). In addition, the condition
|E(ωi j)| ≥ |δ| should be replaced by |E(ωi j)| > |δ| − ε1, where ε1 is a small positive constant, say,
10−6, to ensure that no maxima are missed owing to roundoff errors.

1An interior band edge is one in the range 0 < ω < π , that is, not at ω = 0 or π .

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 681

The search method is very reliable and its use in Algorithm 1 leads to a robust algorithm since
the entire frequency axis is searched using a dense set of frequency points. Its disadvantage is that
it requires a considerable amount of computation and is, therefore, inefficient. Improved search
methods will be considered in Sec. 15.4.

A more efficient version of Algorithm 2 is obtained by maintaining all the interior band edges
as extremals throughout the optimization independently of the behavior of the error function at the
band edges. However, the algorithm obtained tends to fail more frequently than Algorithm 2.

15.3.3 Computation of |E(ω)| and Pc(ω)

In steps 2 and 6 of the basic Remez algorithm (Algorithm 1), |E(ω)| and Pc(ω) need to be evaluated.
This can be done by determining coefficients ak by inverting the matrix in Eq. (15.12). This approach
is inefficient and may be subject to numerical ill-conditioning, in particular, if δ is small and N is
large. An alternative and more efficient approach is to deduce δ analytically and then interpolate
Pc(ω) on the r frequency points using the barycentric form of the Lagrange interpolation formula.
The necessary formulation is as follows.

Parameter δ can be deduced as

δ =
∑r

k=0 αk D(ω̂k)∑r
k=0

(−1)kαk
W (ω̂k)

(15.16)

and Pc(ω) is given by

Pc(ω) =

Ck for ω = ω̂0, ω̂1, . . . , ω̂r−1∑r−1
k=0

βk Ck

x−xk∑r−1
k=0

βk

x−xk

otherwise
(15.17)

where

αk =
r∏

i=0, i �=k

1

xk − xi
(15.18)

Ck = D(ω̂k) − (−1)k δ

W (ω̂k)
(15.19)

βk =
r−1∏

i=0, i �=k

1

xk − xi
(15.20)

with

x = cos ω and xi = cos ω̂i for i = 0, 1, 2, . . . , r

In step 2 of the Remez algorithm, |E(ω)| often needs to be evaluated at a frequency that was an
extremal in the previous iteration. For these cases, the magnitude of the error function is simply |δ|,
according to Eq. (15.11), and need not be evaluated.

682 DIGITAL SIGNAL PROCESSING

15.3.4 Rejection of Superfluous Potential Extremals

The solution of Eq. (15.12) can be obtained only if precisely r + 1 extremals are available. By
differentiating E(ω), one can show that in a filter with one frequency band of interest (e.g., a digital
differentiator) the number of maxima in |E(ω)| (potential extremals in step 2 of Algorithm 1) is r +1.
In the weighted-Chebyshev method, band edges at which |E(ω)| is maximum and |E(ω)| ≥ |δ| are
treated as potential extremals (see Algorithm 2). Therefore, whenever the number of frequency bands
is increased by one, the number of potential extremals is increased by 2, that is, for a filter with J
bands there can be as many as r + 2J − 1 frequencies �

ωi and a maximum of 2J − 2 superfluous �
ωi

may occur. This problem is overcome by rejecting ρ − r of the potential extremals �
ωi , if ρ > r , in

step 4 of the algorithm.
A simple rejection scheme is to reject the ρ − r frequencies �

ωi that yield the lowest |E(�
ωi)|

and then renumber the remaining �
ωi from 0 to r [8]. This strategy is based on the well-known fact

that the magnitude of the error in a given band is inversely related to the density of extremals in that
band, i.e., a low density of extremals results in a large error and a high density results in a small error.
Conversely, a low band error is indicative of a high density of extremals, and rejecting superfluous
�
ωi in such a band is the appropriate course of action.

A problem with the above scheme is that whenever a frequency remains an extremal in two
successive iterations, |E(ω)| assumes the value of |δ| in the second iteration by virtue of Eq. (15.11).
In practice, there are almost always several frequencies that remain extremals from one iteration to
the next, and the value of |E(ω)| at these frequencies will be the same. Consequently, the rejection of
potential extremals on the basis of the magnitude of the error can become arbitrary and may lead to the
rejection of potential extremals in bands where the density of extremals is low. This tends to increase
the number of iterations, and it may even prevent the algorithm from converging on occasion. This
problem can to some extent be alleviated by rejecting only potential extremals that are not band edges.

An alternative rejection scheme based on the above strategy, which was found to give excellent
results for 2-band and 3-band filters, involves ranking the frequency bands in the order of lowest
average band error, dropping the band with the highest average error from the list, and then rejecting
potential extremals, one per band, in a cyclic manner starting with the band with the lowest average
error [11]. The steps involved are as follows:

Algorithm 3: Alternative rejection scheme for superfluous potential extremals
1. Compute the average band errors

E j = 1

ν j

∑
�
ω i ∈Ω j

|E(�
ωi)| for j = 1, 2, . . . , J

where Ω j is the set of potential extremals in band j given by

 j = { �
ωi : ωL j ≤ �

ωi ≤ ωR j }

ν j is the number of potential extremals in band j, and J is the number of bands.

2. Rank the J bands in the order of lowest average error and let l1, l2, . . . , lJ be the ranked list obtained,
i.e., l1 and lJ are the bands with the lowest and highest average error, respectively.

3. Reject one �
ωi in each of bands l1, l2, . . . , lJ−1, l1, l2, . . . until ρ − r superfluous �

ωi are rejected. In
each case, reject the �

ωi , other than a band edge, that yields the lowest |E(�
ωi)| in the band. �

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 683

For example, if J = 3, ρ − r = 3, and the average errors for bands 1, 2, and 3 are 0.05, 0.08,
and 0.02, then �

ωi are rejected in bands 3, 1, and 3. Note that potential extremals are not rejected in
band 2, which is the band of highest average error.

15.3.5 Computation of Impulse Response

The impulse response in step 6 of Algorithm 1 can be determined by noting that function Pc(ω)
is the frequency response of a noncausal version of the required filter. The impulse response of
this filter, represented by h0(n) for −c ≤ n ≤ c, can be determined by computing Pc(k
) for
k = 0, 1, 2, . . . , c, where
 = 2π/N , and then using the inverse discrete Fourier transform. It can
be shown that

h0(n) = h0(−n) = 1

N

[
Pc(0) +

c∑
k=1

2Pc(k
) cos

(
2πkn

N

)]
(15.21)

for n = 0, 1, 2, . . . , c (see Prob. 15.1). Therefore, the impulse response of the required causal filter
is given by

h(n) = h0(n − c)

for n = 0, 1, 2, . . . , N − 1.

15.4 IMPROVED SEARCH METHODS

For a filter of length N , with the number of intervals w j in each interval W j equal to S, the exhaustive
step-by-step search of Sec. 15.3.2 (Algorithm 2) requires about S × (N + 1)/2 function evaluations,
where each function evaluation entails N − 1 additions, (N + 1)/2 multiplications, and (N + 1)/2
divisions (see Eq. (15.17)). A Remez optimization usually requires four to eight iterations for lowpass
or highpass filters, 6 to 10 iterations for bandpass filters, and 8 to 12 iterations for bandstop filters.
Further, if prescribed specifications are to be achieved and the appropriate value of N is unknown,
typically two to four Remez optimizations have to be performed (see Sec. 15.7). For example, if
N = 101, S = 16, number of Remez optimizations = 4, iterations per optimization = 6, the
design would entail 24 iterations, 19,200 function evaluations, 1.92 × 106 additions, 0.979 × 106

multiplications, and 0.979 × 106 divisions. This is in addition to the computation required for the
evaluation of δ and coefficients αk , Ck , and βk once per iteration. In effect, the amount of computation
required to complete a design is quite substantial. In this section, alternative search techniques which
reduce the amount of computation to a fraction of that required by the exhaustive search described
in the previous section, are described.

15.4.1 Selective Step-by-Step Search

When Eq. (15.12) is solved, the error function |E(ω)| is forced to satisfy the alternation theorem of
Sec. 15.2.3. This theorem can be satisfied in several ways. The most likely possibility is illustrated
in Fig. 15.3a, where ωL j and ωR j are the left-hand and right-hand edges, respectively, of the j th
frequency band. In this case, ωL j and ωR j are extremal frequencies and there is strict alternation

684 DIGITAL SIGNAL PROCESSING

between maxima and zeros of |E(ω)|. Additional maxima of |E(ω)| can be introduced under the
following circumstances:

1. To the right of ω = 0 (first band), if there is an extremal and |E(ω)| has a minimum at ω = 0,
as depicted in Fig. 15.3b (see properties of |Pc(ω)| in Sec. 15.6);

2. To the left of ω = π (last band), if there is an extremal and |E(ω)| has a minimum at ω = π , as
depicted in Fig. 15.3c (see Sec. 15.6);

3. At ω = 0, if there is no extremal at ω = 0, as depicted in Fig. 15.3d;

4. At ω = π , if there is no extremal at ω = π , as depicted in Fig. 15.3e;

5. To the right of an interior left-hand edge, as depicted in Fig. 15.3 f ;

6. To the left of an interior right-hand edge, as depicted in Fig. 15.3g;

7. At ω = ωL j , if there is no extremal at ω = ωL j , as depicted in Fig. 15.3h;

8. At ω = ωR j , if there is no extremal at ω = ωR j , as depicted in Fig. 15.3i ;

9. Two consecutive new maxima at the interior of a band between two adjacent extremals, as
depicted in Fig. 15.3 j .

The maxima in Fig. 15.3a can be located by searching in the neighborhood of each extremal
frequency using gradient information since there is a one-to-one correspondence between extremals
and maxima of |E(ω)|. If the first derivative is positive (negative), there is a maximum of |E(ω)| to
the right (left) of the extremal, which can be readily located by increasing (decreasing) the frequency
in steps w j until |E(ω)| begins to decrease. The maxima in items (1) and (2) in the above list can
be found by searching to the right of ω = 0 in the first case or to the left of ω = π in the second
case, if the second derivative is positive at ω = 0 or π . Similarly, the maxima in (3) and (4) can be
identified by checking whether |E(ω)| has a maximum and |E(ω)| ≥ |δ| at ω = 0 in the first case or
at ω = π in the second case. The maxima in (5) and (6) can be found by searching to the right of
an interior left-hand edge if the first derivative is positive or to the left of a right-hand interior edge
if the first derivative is negative. Similarly, the maxima in (7) and (8) can be identified by checking
whether the first derivative is negative at ω = ωL j in the first case and positive at ω = ωR j in the
second case, and |E(ω)| ≥ |δ| in each of the two cases.

If a selective step-by-step search based on the above principles is used in Algorithm 1, then at the
start of the optimization the distance between a typical extremal ω̂i and the nearby maximum point �

ωi

will be less than half the period of the corresponding ripple of |E(ω)|, owing to the relative symmetry
of the ripples of the error function. In effect, in the first iteration only half of the combined width of the
different bands needs to be searched. This will reduce the number of function evaluations by more than
50 percent relative to that required by the exhaustive search of Sec. 15.3.2 without degrading the ac-
curacy of the optimization in any way. As the optimization progresses and the solution is approached,
extremal ω̂i and maximum point �

ωi tend to coincide and, therefore, the cumulative length of the fre-
quency range that has to be searched is progressively reduced, thereby resulting in further economies
in the number of function evaluations. In the last iteration, only two or three function evaluations are
needed (including derivatives) per ripple. As a result, the total number of function evaluations can
be reduced by 65 to 70 percent relative to that required by the exhaustive search [10].

A selective search of the type just described will miss maxima of the type in item (9) of
the above list and the algorithm will fail. However, the problem can be overcome relatively easily.
Maxima of the type in (9) can sometimes occur in the stopbands of bandstop filters, and it was found

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 685

ω4j

+

ω3j

−

ω5j

−

ω6j

+

ω2j

+ −−

ω7j

ωRj

ω1j
^

ωLj

|δ|

|E(ω)|

(a)

ωµjJ
ω(µj−1)J
^

ωµjJ

π

ω(µj−1)J

0

ω2j

|δ|

|E(ω)|

|δ|

π0

(b) (c)

ω

ω1j
^

ω2j

(d) (e)

ω1j

ω

^^ ^ ^ ^

^

^ ^ ^

^
^

^

Figure 15.3 Types of maxima in |E(ω)|.

686 DIGITAL SIGNAL PROCESSING

|δ|

|E(ω)|

(f)

ωLj
ωRj

ωµj j
ω(µj−1)j

(g)

ω1j ω2j ω3j

ω2j

|δ|

(h)

ωLj
ωRj

ω(µj−1)j

(i)

(j)

ω1j
^ ωµj j

^ ^ ^

^ ^ ^ ^ ^

|δ|
+ −−

|E(ω)|

+ −

ωωLj

ω1jˆ

ωRj

ω5jˆω4jˆω3jˆω2jˆ

Figure 15.3 Cont’d Types of maxima in |E(ω)|.

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 687

possible to reduce the number of failures by increasing somewhat the density of extremals in the
stopband relative to the density of extremals in the passbands [11]. An alternative approach, which
was found to give good results, is to check the distance between adjacent potential extremals at
the end of the search; if the difference exceeds the initial difference by a significant amount (say if
(�
ω(k+1) − �

ωk) > RW j for some k, where R is a constant in the range 1.5 to 2.0), then an exhaustive
search is undertaken between �

ωk and �
ω(k+1) to locate any missed maxima.

15.4.2 Cubic Interpolation

This section deals with yet another search method that can further increase the computational effi-
ciency of the Remez algorithm. The method is based on cubic interpolation [11].

Assume that the error function, depicted in Fig. 15.4, can be represented by the third-order
polynomial

|E(ω)| = M = a + bω + cω2 + dω3 (15.22)

where a, b, c, and d are constants. The first derivative of M with respect to ω is obtained from
Eq. (15.22) as

d M

dω
= G = b + 2cω + 3dω2

Hence, the frequencies at which M has stationary points are given by

ω̄ = 1

3d

[
−c ±

√
(c2 − 3bd)

]
(15.23)

ω1 ω2 ω3

ω

~ ~ ~
ω

|E(ω)|

)

Figure 15.4 Frequency points for cubic interpolation.

688 DIGITAL SIGNAL PROCESSING

Assuming that d �= 0, the stationary point that corresponds to a maximum point, designated as �
ω,

can be selected by noting that M is maximum when

d2 M

dω2
= 2c + 6d

�
ω < 0

or

�
ω < − c

3d
(15.24)

Evidently, if constants b, c, and d are known, �
ω can be readily determined. If we assume that ω̃1,

ω̃2, and ω̃3 are distinct frequencies, we can write

M
∣∣∣
ω=ω̃k

= Mk = a + bω̃k + c(ω̃k)2 + d(ω̃k)3

for k = 1, 2, and 3 and

G
∣∣∣
ω=ω̃1

= G1 = b + 2cω̃1 + 3d(ω̃1)2

By solving this system of simultaneous equations, we can show that

d = β − γ

θ − ψ
(15.25)

c = β − θd (15.26)

b = G1 − 2cω̃1 − 3d(ω̃1)2 (15.27)

where

β = (M2 − M1) + G1(ω̃1 − ω̃2)

(ω̃1 − ω̃2)2
(15.28)

γ = (M3 − M1) + G1(ω̃1 − ω̃3)

(ω̃1 − ω̃3)2
(15.29)

θ = 2(ω̃1)2 − ω̃2(ω̃1 + ω̃2)

(ω̃1 − ω̃2)
(15.30)

ψ = 2(ω̃1)2 − ω̃3(ω̃1 + ω̃3)

(ω̃1 − ω̃3)
(15.31)

By evaluating constants β, γ, θ, ψ, d, c, and b and then using Eqs. (15.23) and (15.24), �
ω can be

determined.
The search just described entails four function evaluations, three for M1, M2, M3, and one for

G1, per external. The method is useful as a possible replacement of the selective search only if it
gives a fairly accurate estimate of �

ω. To achieve this goal, the cubic interpolation should not be used
near band edges where |E(ω)| is not well behaved (see Fig. 15.3).

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 689

If the above cubic interpolation is to be used to find the maximum of |E(ω)| in the neighborhood
of extremal ω̂i , the most suitable value for frequency ω̃1 is the extremal itself since the value of M
is known at this frequency and need not be computed. It is given by Eq. (15.11) as

M |ω=ω̂i
= |δ|

The frequency ω̃3 should bracket the required maximum point �
ωi , that is, |ω̂i | < | �

ωi | < |ω̃3|, but
it should not bracket the adjacent zero of the error function. It should be recalled at this point that
as the solution is approached, �

ωi tends to move closer to ω̂i . Therefore, the accuracy of the cubic
interpolation can be improved by reducing the interval ω̃3 − ω̃1 as the solution is approached. Such
an adjustable bracket can be formed by using the convergence parameter Q of Eq. (15.13), which
is known to reduce from 1 to 0 as the solution is approached. A formula for ω̃3, which was found to
give good results [11] is

ω̃3 =

ω̂i + Q

2
(ω̂i+1 − ω̂i) for G1 > 0

ω̂i − Q

2
(ω̂i − ω̂i−1) for G1 < 0

(15.32)

Frequency ω̃2 can be placed at the center of the frequency range ω̃1 to ω̃3, that is,

ω̃2 = 1
2 (ω̃1 + ω̃3) (15.33)

The computational efficiency of the cubic-interpolation method described remains constant
from iteration to iteration since the number of function evaluations required to perform an interpola-
tion is constant. At the start of the optimization, the cubic-interpolation search is more efficient than
the selective step-by-step method. However, as the solution is approached the number of function
evaluations required by the selective search is progressively reduced, as was stated earlier, and at
some point the selective search becomes more efficient. A prudent strategy under these circum-
stances is to use the cubic-interpolation search at the start of the optimization and switch over to the
selective step-by-step search when some suitable criterion is satisfied. Extensive experimental results
have shown that computational advantage can be gained by using the cubic-interpolation search if
Q > 0.65, and the selective search otherwise [11]. The use of the cubic interpolation search along
with the selective step-by-step search of the preceding section can reduce the number of function
evaluations by 70 to 75 percent relative to that required by the exhaustive search.

15.4.3 Quadratic Interpolation

An alternative method for the location of the maxima of |E(ω)| that was found to work well is
based on a two-stage quadratic interpolation search. However, the computational efficiency that can
be achieved with this approach was found to be somewhat inferior relative to the above one-stage
cubic-interpolation search.

15.4.4 Improved Formulation

In the problem formulation considered so far, the extremals ω̂0, ω̂1, . . . , ω̂r are treated as a 1-D
array and are numbered sequentially from 0 to r . Through the rejection of superfluous extremals, as

690 DIGITAL SIGNAL PROCESSING

detailed in the previous sections, the distribution of extremals can change from iteration to iteration.
In order to evaluate δ and coefficients Ck in Eqs. (15.16) and (15.19) correctly, it is necessary to
monitor and track the indices of the first and last extremal of each band throughout the optimization.
This tends to complicate the implementation of the Remez algorithm quite significantly. The problem
can be eliminated by representing the extremals in terms of a 2-D array of the form

Ω̂ =

ω̂11 ω̂12 · · · ω̂1 j · · · ω̂1 J

ω̂21 ω̂22 · · · ω̂2 j · · · ω̂2 J
...

... · · · ... · · · ...
ω̂µ11 ω̂µ22 · · · ω̂µ j j · · · ω̂µJ J

where the j th column represents the extremals of the j th band, µ j is the number of extremals in the
j th band, and J is the number of bands. The use of this notation necessitates that the formulas for δ

and Pc(ω) be modified accordingly. From Eqs. (15.16)–(15.20) one can show that (see Probs. 15.2
and 15.3)

δ =
∑

{k, m}∈Kr
αkm D(ω̂km)∑

{k, m}∈Kr

(−1)qαkm
W (ω̂km)

(15.34)

and

Pc(ω) =

Ckm for ω ∈ Ω̂∑
{k, m}∈Kr−1

βkm Ckm

x−xkm∑
{k, m}∈Kr−1

βkm

x−xkm

otherwise
(15.35)

where

βkm =
∏

{i, j}∈Ir−1

1

xkm − xi j
(15.36)

αkm =

βkm if k = µJ and m = J

βkm

xkm − xµJ J
otherwise

(15.37)

Ckm = D(ω̂km) − (−1)q δ

W (ω̂km)
(15.38)

with

q =
{

k − 1 if m = 1

k − 1 + ∑m−1
j=1 µ j if m ≥ 2

(15.39)

and

x = cos ω xi j = cos ω̂i j for {i, j} ∈ Ir

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 691

In the above formulation, Kr , Kr−1, Ir , and Ir−1 are sets given by

Kr = {{k, m} : (1 ≤ k ≤ µm) and (1 ≤ m ≤ J)} (15.40)

Kr−1 = {{k, m} : (1 ≤ k ≤ l) and (1 ≤ m ≤ J)} (15.41)

Ir = {{i, j} : (1 ≤ i ≤ µ j) and (1 ≤ j ≤ J)} (15.42)

and

Ir−1 = {{i, j} : (1 ≤ i ≤ h) and (1 ≤ j ≤ J) and (i �= k or j �= m)} (15.43)

with

l =
{

µJ − 1 for m = J

µm otherwise

and

h =
{

µJ − 1 for j = J

µ j otherwise

15.5 EFFICIENT REMEZ EXCHANGE ALGORITHM

The above principles will now be used to construct an efficient Remez exchange algorithm. As in
Algorithm 2, ωL j and ωR j are the left- and right-hand edges in band j ; W j is the interval between
adjacent extremals and m j is the number of intervals W j in band j ; w j is the interval between
successive samples in interval W j , and S is the number of intervals w j in each interval W j ; N j

is the total number of intervals w j in band j ; and J is the number of bands. The frequencies
ω̂1 j , ω̂2 j , . . . , ω̂µ j j are the current extremals and �

ω1 j ,
�
ω2 j , . . . ,

�
ων j j are the potential extremals for

the next iteration in band j . The magnitude of the error function and its first and second derivatives
with respect to ω are denoted as

M = |E(ω)| G1 = d|E(ω)|
dω

G2 = d2|E(ω)|
dω2

The improved algorithm consists of a main part called MAIN which calls routines EXTRE-
MALS, SELECTIVE, and CUBIC. The steps involved are detailed below.

Algorithm 4: Efficient Remez exchange algorithm

MAIN

M1.
(a) Initialize S, say, S = 16, and set Q = 1.
(b) For j = 1, 2, . . . , J do:

Compute m j and W j for j = 1, 2, . . . , J using Eqs. (15.14) and (15.15), respectively.
Initialize extremals by letting ω̂1 j = ωL j , . . . , ω̂i j = ωL j + (i −1)W j , . . . , ω̂µ j j = ωR j=
ωL j + m j W j .
Set N j = m j S and w j = Bj/N j .

692 DIGITAL SIGNAL PROCESSING

M2.
(a) Compute coefficients βk j , αk j , and Ckj for j = 1, 2, . . . , J using Eqs. (15.36)–(15.38).
(b) Compute δ using Eq. (15.34).

M3. Call EXTREMALS.
M4.

(a) Set ρ = ν1 + ν2 + . . . νJ .
(b) Reject ρ−(r +1) superfluous potential extremals2 using Algorithm 3, renumber the remaining

�
ωi j sequentially, and update µ j if necessary.

(c) Update extremals by letting ω̂i j = �
ωi j for i = 1, 2, . . . , µ j and j = 1, 2, . . . , J .

M5.
(a) Compute Q using Eq. (15.13).
(b) If Q > 0.01, go to step M2.

M6.
(a) Compute Pc(k
) for k = 0, 1, . . . , r − 1 using Eq. (15.35).
(b) Compute h(n) using Eq. (15.21).
(c) Stop.

EXTREMALS

E1. For each of bands 1, 2, . . . , j, . . . , J do:
(A) Set e = 0.
(B) For each of extremals ω̂1 j , ω̂2 j , . . . , ω̂i j , . . . , ω̂µ j j do:

(a) Case ω̂i j = ω̂1 j :
If ω̂i j = ωL j , then do:

Case j = 1 (first band):
If G2 < 0, then set e = e + 1 and �

ωej = ω̂i j ; otherwise call SELECTIVE.
Case j �= 1 (other bands):
If G1 > 0, then call SELECTIVE; otherwise set e = e + 1 and �

ωej = ω̂i j .
If ω̂i j �= ωL j , then call SELECTIVE.

(b) Case ω̂1 j < ω̂i j < ω̂µ j j :
If Q < 0.65, then call SELECTIVE; otherwise call CUBIC.
If flag 0 = 1 (CUBIC was unsuccessful in generating a good estimate of the maximum
point), then call SELECTIVE.

(c) Case ω̂i j = ω̂µ j j :
If ω̂i j = ωR j , then do:

Case j = J (last band):
If G2 < 0, then set e = e + 1 and �

ωej = ω̂i j ; otherwise call SELECTIVE.
Case j �= J (other bands):
If G1 < 0, then call SELECTIVE; otherwise set e = e + 1 and �

ωej = ω̂i j .
If ω̂i j �= ωR j , then call SELECTIVE.

(C) Check for an additional potential extremal at the left-hand edge of band j : If ω̂1 j and �
ω1 j �=

ωL j , |E(ωL j)| > |E(ωL j + w j)|, and |E(ωL j)| ≥ |δ|, then set e = e + 1 and insert new
potential extremal at ω = ωL j .

2The difference between the number of superfluous extremals in step 4 of Algorithm 1 and step M4(b) of Algorithm 4 is
due to the fact that the count of potential extremals starts with 0 in Algorithm 1 and with 1 in Algorithm 4.

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 693

(D) Check for an additional potential extremal at the right-hand edge of band j : If ω̂µ j j and
�
ωe j �= ωR j , |E(ωR j − w j)| < |E(ωR j)|, and |E(ωR j)| ≥ |δ|, then insert new potential
extremal at ω = ωR j and set e = e + 1.

(E) Check for additional potential extremals in band j :
(a) For k = 1, 2, . . . , e − 1 check if

�
ω(k+1) j − �

ωk j > RW j

For each value of k for which the inequality is satisfied, use an exhaustive search between
frequencies �

ωk j and �
ω(k+1) j (see Algorithm 2). For each new maximum of M such that

|E(ω)| ≥ |δ|, insert a new potential extremal sequentially between �
ωk j and �

ω(k+1) j and
set e = e + 1 (R is a constant in the range 1.5 to 2.0).

(b) If there is a large gap (larger than RW j) between the left-hand edge and the first potential
extremal, check for additional potential extremals in the range ωL j < ω <

�
ω1 j ; for

each new maximum such that |E(ω)| ≥ |δ|, insert a new potential extremal sequentially
between ωL j and �

ω1 j and set e = e + 1.
(c) If there is a large gap (larger than RW j) between the last potential extremal and the right-

hand edge, check for additional potential extremals in the range �
ωej < ω < ωR j ; for

each new maximum such that |E(ω)| ≥ |δ|, insert a new potential extremal sequentially
between �

ωej and ωR j and set e = e + 1.
(F) Set ν j = e.

E2. Return.

SELECTIVE

S1. If (G1 > 0 and ω̂i j �= 0) or (G2 > 0 and ω̂i j = 0), then increase ω in steps w j until a maximum
of M is located. Set e = e+1 and assign the frequency of this maximum to �

ωe. If no maximum is located
in the frequency range ω̂i j ≤ ω < (ω̂(i+1) j or ωR j), discontinue the search.

S2. If (G1 < 0 and ω̂i j �= π) or (G2 > 0 and ω̂i j = π), then decrease ω in steps w j until
a maximum of M is located. Set e = e + 1 and assign the frequency of this maximum to �

ωe. If no
maximum is located in the frequency range (ωL j or ω̂(i−1) j) ≤ ω < ω̂i j , discontinue the search.

S3. Return.

CUBIC

C1. Set f lag0 = 0.

C2. Set ω̃1 = ω̂i j and compute frequencies ω̃3 and ω̃2 using Eqs. (15.32) and (15.33).

C3. Compute constants β, γ, θ, and ψ using Eqs. (15.28)–(15.31).

C4. Compute constants d, c, and b using Eqs. (15.25)–(15.27). If 3bd > c2 (third-order polynomial
has no maximum), then set f lag0 = 1 and return.

C5. Compute �
ω using Eqs. (15.23) and (15.24). If frequency �

ω is outside the interval [ω̃1, ω̃3]
(estimate of the maximum point is unreliable), then set f lag0 = 1 and return.

C6. Set �
ω = w j × Int (�

ω/w j + 0.5).

C7. Set e = e + 1 and �
ωej = �

ω.

C8. Return. �

Step E1(B)(a) checks for maxima at or near the left-hand edge of each band for the cases
illustrated in Fig. 15.3a, b, d, f, and h. Step E1(B)(b) locates the interior maxima in Fig. 15.3a that

694 DIGITAL SIGNAL PROCESSING

correspond to extremals ω̂2 j to ω̂(µ j −1) j . Step E1(B)(c) checks for maxima at or near the right-
hand edge of each band for the cases illustrated in Fig. 15.3a, c, e, g, and i . Step E1(C) checks
for a new maximum at left-hand edge ωL j in the special case where there is no extremal and a
maximum has not been picked up already at this frequency by step E1(B)(a). Such a situation
can arise as shown in Fig. 15.3d where step E1(B)(a) will pick up the maximum at the right of
point ω = ω̂1 j , since G1 > 0, but miss the maximum at ω = 0. A similar situation can arise
as illustrated in Fig. 15.3h. Step E1(D) checks for a new maximum at right-hand edge ωR j for
the case where there is no extremal and a maximum has not been picked up already at this frequency
by step E1(B)(c). Such a situation can arise as shown in Fig. 15.3e where step E1(B)(c) will pick up
the maximum at the left of point ω=ω̂µ J J , since G1<0, but miss the maximum at ω=π . A similar
situation can arise as illustrated in Fig. 15.3i . Steps E1(E)(a) to E1(E)(c) check for any missed max-
ima, like the maxima between ω̂1 j and ω̂2 j in Fig. 15.3 j , in cases where the interval between any two
adjacent maxima, between the left-hand edge and the first maximum, or between the last maximum
and the right-hand edge is significantly larger than the average interval between adjacent extremals.

When the ripple of the error function is seriously skewed (e.g., near band edges in the first
or second iteration) routine CUBIC may yield a poor estimate of the maximum point, and on rare
occasions the third-order polynomial may not have a maximum. If either of these cases is detected,
CUBIC is aborted and SELECTIVE is called in its place. CUBIC will almost always yield a value of
�
ω between two adjacent sample points. In order to ensure that each potential extremal is a member
of the set of sample points, �

ω is rounded to the nearest sample point in step C6. This makes the esti-
mate produced by CUBIC compatible with that produced by SELECTIVE and prevents numerical
ill-conditioning in the evaluation of E(ω), G1, and G2. The CUBIC interpolation routine may be
disabled by modifying step E1(B)(b).

Extensive experimentation by the author has shown the above algorithm to be quite robust.
It never failed in the design of 81 2-band filters chosen at random, it failed twice in the design of
67 3-band filters, three times in the design of 50 4-band filters, and three times in the design of 33
5-band filters. Lack of convergence is usually brought about by a cyclic pattern of rejected potential
extremals, but the problem can be easily overcome by changing one of the specified filter parameters
slightly, e.g., a passband or stopband edge or the order of the filter.

15.6 GRADIENT INFORMATION

Routines SELECTIVE and CUBIC in the above algorithm rely heavily on the first and second
derivatives of |E(ω)| with respect to ω. From Eq. (15.3), we have

d|E(ω)|
dω

= sgn [D(ω) − Pc(ω)]

[
d D(ω)

dω
− d Pc(ω)

dω

]
(15.44)

and

d2|E(ω)|
dω2

= sgn [D(ω) − Pc(ω)]

[
d2 D(ω)

dω2
− d2 Pc(ω)

dω2

]
(15.45)

where

sgn (x) =
{

1 for x ≥ 0

−1 for x < 0.

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 695

The first and second derivatives of |E(ω)| under different circumstances can be obtained from the
following properties of |Pc(ω)| [10].

15.6.1 Property 1

For any frequency including extremal ω̂µJ J (last extremal of last band) but excluding all other
extremals,

d Pc(ω)

dω
= d(ω)n1(ω) − d1(ω)n(ω)

d2(ω)
(15.46)

where

n(ω) =
∑

{k, m}∈Kr−1

βkmCkm

x − xkm

d(ω) =
∑

{k, m}∈Kr−1

βkm

x − xkm

n1(ω) = sin ω
∑

{k, m}∈Kr−1

βkmCkm

(x − xkm)2

d1(ω) = sin ω
∑

{k, m}∈Kr−1

βkm

(x − xkm)2

and Kr−1 is given by Eq. (15.41).

15.6.2 Property 2

For all extremal frequencies except ω̂µJ J ,

d Pc(ω)

dω

∣∣∣∣
ω=ω̂i j

= sin (ω̂i j)

βi j

∑
{k, m}∈Ki j

r−1

βkm(Ci j − Ckm)

xi j − xkm
(15.47)

where

Ki j
r−1 = {{k, m} : (1 ≤ k ≤ l) and (1 ≤ m ≤ J) and (k �= i or m �= j)}

with

l =
{

µJ − 1 for m = J

µm otherwise

15.6.3 Property 3

For ω = 0 or π , it follows from properties 1 and 2 that

d Pc(ω)

dω
= 0 (15.48)

696 DIGITAL SIGNAL PROCESSING

15.6.4 Property 4

For ω = 0 if no extremal occurs at zero or for ω = π under all circumstances,

d2 Pc(ω)

dω2
= d(ω)n2(ω) − d2(ω)n(ω)

d2(ω)
(15.49)

where

n2(ω) = cos ω
∑

{k, m}∈Kr−1

βkmCkm

(x − xkm)2

d2(ω) = cos ω
∑

{k, m}∈Kr−1

βkm

(x − xkm)2

15.6.5 Property 5

If there is an extremal at ω = 0, then

d2 Pc(ω)

dω2

∣∣∣
ω=0

= 1

β11

∑
{k, m}∈K11

r−1

βkm(C11 − Ckm)

x − xkm
(15.50)

where K11
r−1 = Ki j

r−1 with i = j = 1.

Example 15.1 Design a nonrecursive equiripple highpass filter using the Remez algorithm
(a) with the exhaustive search of Sec. 15.3.2, (b) with the selective step-by-step search of
Sec. 15.4.1, and (c) with the selective step-by-step search in conjunction with the cubic-
interpolation search of Sec. 15.4.2. Compare the results obtained. The required specifications
are as follows:

• Filter length N : 21

• Passband edge ωp : 2.0 rad/s

• Stopband edge ωa : 1.0 rad/s

• Ratio δp/δa : 18.0

• Sampling frequency ωs : 2π rad/s

Solution

The design in (a) was carried out using Algorithm 1 in conjunction with Algorithms 2
and 3, whereas the designs in (b) and (c) were carried out using Algorithm 4, first without
and then with routine CUBIC, respectively. The progress of the design is illustrated in
Table 15.1. As can be seen, the exhaustive and selective search methods required four iter-
ations each, whereas the selective search in conjunction with cubic interpolation required
five iterations. However, the number of function evaluations (evaluations of Pc(ω) using

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 697

Table 15.1 Progress in design of highpass filter
(Example 15.1)

Iter. No. Exhaustive Selective Sel. with cub.
search search interpolation

Q FE’s Q FE’s Q FE’s

1 0.9379 154 0.9379 70 0.9379 49
2 0.5792 154 0.5792 48 0.6519 28
3 0.0846 154 0.0846 29 0.0756 28
4 0.0000 154 0.0000 20 0.0309 22
5 — — — — 0.0000 20

Total FE’s 616 167 147

Eq. (15.35) plus evaluations of G1 and G2 using Eqs. (15.44) and (15.45), respectively)
decreased from 616 in the first method to 167 in the second and to 147 in the third. In the
Remez algorithm, approximately 80 to 90 percent of the computational effort involves
function evaluations. In effect, relative to that required by the exhaustive search, the
use of the selective step-by-step search reduced the amount of computation by about
73 percent, and the use of the selective step-by-step search in conjunction with the
cubic-interpolation search reduced the amount of computation by about 76 percent.

The three methods resulted in approximately the same impulse responses, as can be
seen in Table 15.2, and the passband ripple and minimum stopband attenuation obtained
in each case were 0.073 dB and 72.6 dB, respectively. The amplitude response of the
filter is illustrated in Fig. 15.5.

Table 15.2 Impulse response of highpass filter
(Example 15.1)

n h0(n) = h0(−n)

Exhaustive or selective Selective with cubic
search interpolation

0 4.976192E − 1 4.976160E − 1
1 −3.120628E − 1 −3.120636E − 1
2 2.462999E − 3 2.466692E − 3
3 8.853907E − 2 8.854032E − 2
4 −2.605336E − 3 −2.609410E − 3
5 −3.790087E − 2 −3.790082E − 2
6 2.553469E − 3 2.555600E − 3
7 1.553835E − 2 1.553849E − 2
8 −2.126568E − 3 −2.127674E − 3
9 −5.222708E − 3 −5.222820E − 3

10 1.898114E − 3 1.898558E − 3

698 DIGITAL SIGNAL PROCESSING

0.7850 1.571 2.356 3.142

−70.0

−40.0

−10.0

20.0

ω, rad/s

G
ai

n,
 d

B

−100.0

Figure 15.5 Amplitude response of equiripple highpass filter (Example 15.1) (the passband
gain is multiplied by the factor 200 to show the passband ripple).

Example 15.2 Design a nonrecursive equiripple bandpass filter using the Remez algorithm
(a) with the exhaustive search, (b) with the selective step-by-step search, and (c) with the
selective step-by-step search in conjunction with the cubic-interpolation search. Compare the
results obtained. The required specifications are as follows:

• Filter length N : 33

• Lower passband edge ωp1 : 1.00 rad/s

• Upper passband edge ωp2 : 2.00 rad/s

• Lower stopband edge ωa1 : 0.63 rad/s

• Upper stopband edge ωa2 : 2.40 rad/s

• Ratio δp/δa : 23.0

• Sampling frequency ωs : 2π rad/s

Solution

As in Example 15.1, the design in (a) was carried out using Algorithm 1 in conjunc-
tion with Algorithms 2 and 3, whereas the designs in (b) and (c) were carried out
using Algorithm 4 first without and then with routine CUBIC. The progress of the de-
sign is illustrated in Table 15.3. In this example, each of the three methods required
eight iterations, and in each case there was a superfluous maximum at the end of the
fourth iteration. The problem was eliminated by rejecting the second maximum of the
third band, using the rejection method detailed in Sec. 15.3.4 (see Algorithm 3). As can

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 699

Table 15.3 Progress in design of bandpass filter
(Example 15.2)

Iter. No. Exhaustive Selective Selective with cubic
search search interpolation

Q FE’s Q FE’s Q FE’s

1 0.8970 231 0.8970 99 0.8906 42
2 0.6109 231 0.6109 63 0.6098 42
3 0.4556 231 0.4556 54 0.3940 59
4 0.2975 231 0.2975 40 0.2924 41

�
ω23 rejected

5 0.6329 231 0.6329 45 0.6342 45
6 0.4035 231 0.4035 44 0.4019 44
7 0.1268 231 0.1268 40 0.1293 40
8 0.0063 231 0.0063 32 0.0078 32

Total FE’s 1848 417 345

be seen in Table 15.3, the number of function evaluations decreased from 1848 in the
first method to 417 in the second method to 345 in the third method. In effect, the use
of the selective step-by-step search reduced the amount of computation by about 77
percent, and the use of the selective step-by-step search in conjunction with the cubic-
interpolation search reduced the amount of computation by about 81 percent, relative to
that required by the exhaustive search.

The three methods resulted in approximately the same impulse responses, as can
be seen in Table 15.4. The amplitude response of the filter is illustrated in Fig. 15.6;

0.7850 1.571 2.356 3.142

−55.0

−30.0

−5.0

20.0

ω, rad/s

G
ai

n,
 d

B

−80.0

Figure 15.6 Amplitude response of equiripple bandpass filter (Example 15.2) (the passband
gain is multiplied by the factor 20 to show the passband ripple).

700 DIGITAL SIGNAL PROCESSING

the passband ripple and minimum stopband attenuation obtained in each case were
0.934 dB and 52.6 dB, respectively.

Table 15.4 Impulse response of bandpass filter
(Example 15.2)

n h0(n) = h0(−n)

Exhaustive or selective Selective with cubic
search interpolation

0 4.095939E − 1 4.095922E − 1

1 2.529508E − 2 2.529615E − 2

2 −2.978313E − 1 −2.978309E − 1

3 −3.828648E − 2 −3.828785E − 2

4 7.734350E − 2 7.734476E − 2

5 −1.885007E − 3 −1.885265E − 3

6 5.491991E − 2 5.491921E − 2

7 3.246312E − 2 3.246380E − 2

8 −4.740273E − 2 −4.740238E − 2

9 −1.517104E − 2 −1.517257E − 2

10 −4.296619E − 3 −4.294720E − 3

11 −1.645571E − 2 −1.645695E − 2

12 2.126770E − 2 2.126769E − 2

13 2.137354E − 2 2.137482E − 2

14 −8.758516E − 3 −8.760408E − 3

15 −8.493829E − 3 −8.492478E − 3

16 −3.891420E − 5 −3.931393E − 5

15.7 PRESCRIBED SPECIFICATIONS

Given a filter length N, a set of passband and stopband edges, and a ratio δp/δa , a nonrecursive filter
with approximately piecewise-constant amplitude-response specifications can be readily designed.
While the filter obtained will have passband and stopband edges at the correct locations and the ratio
δp/δa will be as required, the amplitudes of the passband and stopband ripples are highly unlikely
to be precisely as specified. An acceptable design can be obtained by predicting the value of N on

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 701

the basis of the required specifications and then designing filters for increasing or decreasing values
of N until the lowest value of N that satisfies the specifications is found.

A reasonably accurate empirical formula for the prediction of N for the case of lowpass and
highpass filters, due to Herrmann, Rabiner, and Chan [15], is

N = Int

[
(D − F B2)

B
+ 1.5

]
(15.51)

where

B = |ωa − ωp|/2π

D = [0.005309(log δp)2 + 0.07114 log δp − 0.4761] log δa

−[0.00266(log δp)2 + 0.5941 log δp + 0.4278]

F = 0.51244(log δp − log δa) + 11.012

This formula can also be used to predict the filter length in the design of bandpass, bandstop, and
multiband filters in general. In these filters, a value of N is computed for each transition band between
a passband and stopband or a stopband and passband using Eq. (15.51) and the largest value of N
so obtained is taken to be the predicted filter length. Prescribed specifications can be achieved by
using the following design algorithm:

Algorithm 5: Design of filters satisfying prescribed specifications

1. Compute N using Eq. (15.51); if N is even, set N = N + 1.

2. Design a filter of length N using Algorithm 4 and determine the minimum value of δ, say
�

δ .

(A) If
�

δ > δp , then do:

(a) Set N = N + 2, design a filter of length N using Algorithm 4, and find
�

δ ;

(b) If
�

δ ≤ δp , then go to step 3; else, go to step 2(A)(a).

(B) If
�

δ < δp , then do:

(a) Set N = N − 2, design a filter of length N using Algorithm 4, and find
�

δ ;

(b) If
�

δ > δp , then go to step 4; else, go to step 2(B)(a).

3. Use the last set of extremals and the corresponding value of N to obtain the impulse response of the
required filter and stop.

4. Use the last but one set of extremals and the corresponding value of N to obtain the impulse response
of the required filter and stop. �

Example 15.3 In an application, a nonrecursive equiripple bandstop filter is required, which
should satisfy the following specifications:

• Odd filter length

• Maximum passband ripple Ap : 0.5 dB

• Minimum stopband attenuation Aa : 50.0 dB

702 DIGITAL SIGNAL PROCESSING

• Lower passband edge ωp1 : 0.8 rad/s

• Upper passband edge ωp2 : 2.2 rad/s

• Lower stopband edge ωa1 : 1.2 rad/s

• Upper stopband edge ωa2 : 1.8 rad/s

• Sampling frequency ωs : 2π rad/s

Design the lowest-order filter that will satisfy the specifications.

Solution

The use of Algorithm 4 in conjunction with Algorithm 5 gave a filter of length 35. The
progress of the design is illustrated in Table 15.5. The impulse response of the filter
obtained is given in Table 15.6. The corresponding amplitude response is depicted in
Fig. 15.7; the passband ripple and minimum stopband attenuation achieved are 0.4342
and 51.23 dB, respectively, and are within the specified limits.

Table 15.5 Progress in design of bandstop filter
(Example 15.3)

N Iters. FE’s Ap, dB Aa , dB

31 10 582 0.5055 49.91
33 7 376 0.5037 49.94
35 9 545 0.4342 51.23

Table 15.6 Impulse response of bandstop filter
(Example 15.3)

n h0(n) = h0(−n) n h0(n) = h0(−n)

0 6.606345E − 1 9 2.806340E − 2
1 −2.307038E − 2 10 −2.276572E − 2
2 2.711461E − 1 11 −9.924812E − 3
3 4.306831E − 2 12 −1.047638E − 3
4 −1.198723E − 1 13 −1.412229E − 2
5 −1.829974E − 2 14 1.284774E − 2
6 −4.974998E − 3 15 1.096745E − 2
7 −2.016415E − 2 16 8.260758E − 4
8 4.593774E − 2 17 3.482212E − 3

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 703

0.7850 1.571 2.356 3.142

−55.0

−30.0

−5.0

20.0

ω, rad/s

G
ai

n,
 d

B

−80.0

Figure 15.7 Amplitude response of equiripple bandstop filter (Example 15.3) (the passband
gain is multiplied by the factor 40 to show the passband ripple).

15.8 GENERALIZATION

As was demonstrated in Chap. 9, there are four types of constant-delay nonrecursive filters. The
impulse response can be symmetrical or antisymmetrical, and the filter length can be odd or even. In
the preceding sections, we considered the design of filters with symmetrical impulse response and
odd length. In this section, we show that the Remez algorithm can also be applied for the design of
the three other types of filters.

15.8.1 Antisymmetrical Impulse Response and Odd Filter Length

Assuming that ωs = 2π , the frequency response of a nonrecursive filter with antisymmetrical impulse
response and odd length can be expressed as

H (e jωT) = e− jcω j P ′
c(ω)

where

P ′
c(ω) =

c∑
k=1

ak sin kω (15.52)

ak = 2h(c − k) for k = 1, 2, . . . , c

c = (N − 1)/2

(see Table 9.1).

704 DIGITAL SIGNAL PROCESSING

A filter with a desired frequency response e− jcω j D(ω) can be designed by constructing the
error function

E(ω) = W (ω)[D(ω) − P ′
c(ω)] (15.53)

and then minimizing |E(ω)| with respect to some compact subset of the frequency interval [0, π].
From Eq. (15.52), P ′

c(ω) can be expressed as [6]

P ′
c(ω) = sin ω Pc−1(ω) (15.54)

where

Pc−1(ω) =
c−1∑
k=0

c̃k cos kω (15.55a)

and

a1 = c̃0 − 1
2 c̃2 (15.55b)

ak = 1
2 (c̃k−1 − c̃k+1) for k = 2, 3, . . . , c − 2 (15.55c)

ac−1 = 1
2 c̃c−2 (15.55d)

ac = 1
2 c̃c−1 (15.55e)

Hence Eq. (15.53) can be put in the form

E(ω) = W̃ (ω)[D̃(ω) − P̃(ω)] (15.56)

where

W̃ (ω) = Q(ω)W (ω)

D̃(ω) = D(ω)/Q(ω)

P̃(ω) = Pc−1(ω)

Q(ω) = sin ω

Evidently, Eq. (15.56) is of the same form as Eq. (15.3), and on proceeding as in Sec. 15.2 one can
obtain the system of equations

1 cos ω̂0 cos 2ω̂0 · · · cos (c − 1)ω̂0
1

W̃ (ω̂0)

1 cos ω̂1 cos 2ω̂1 · · · cos (c − 1)ω̂1
−1

W̃ (ω̂1)
...

...
...

...
...

1 cos ω̂r cos 2ω̂r · · · cos (c − 1)ω̂r
(−1)r

W̃ (ω̂r)

a0

a1
...

ac−1

δ

 =

D̃(ω̂0)
D̃(ω̂1)

...
D̃(ω̂r)

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 705

where r = c is the number of cosine functions in Pc−1(ω). This system of equations is the same as
that in Eq. (15.12) except that the number of extremals has been reduced from c+2 to c+1; therefore,
the application of the Remez algorithm follows the methodology detailed in Secs. 15.2 and 15.3.

The use of Algorithm 1 or 4 yields the optimum Pc−1(ω) and from Eq. (15.54), the cosine
function P ′

c(ω) can be formed. Now j P ′
c(ω) is the frequency response of a noncausal version of the

required filter. The impulse response of this filter can be obtained as

h0(n) = −h0(−n) = − 1

N

[
c∑

k=1

2P ′
c(k
) sin

(
2πkn

N

)]
(15.57)

for n = 0, 1, 2, . . . , c, where
 = 2π/N , by using the inverse discrete Fourier transform. The
impulse response of the corresponding causal filter is given by

h(n) = h0(n − c)

for n = 0, 1, 2, . . . , N − 1.

15.8.2 Even Filter Length

The frequency response of a filter with symmetrical impulse response and even length is given by

H (e jωT) = e− jcω Pd (ω)

where

Pd (ω) =
d∑

k=1

bk cos

(
k − 1

2

)
ω

bk = 2h(d − k) for k = 1, 2, . . . , d

d = N/2

(see Table 9.1). Pd (ω) can be expressed as

Pd (ω) = cos
ω

2
Pd−1(ω)

where

Pd−1(ω) =
d−1∑
k=0

b̃k cos kω (15.58a)

and

b1 = b̃0 + 1
2 b̃1 (15.58b)

bk = 1

2
(b̃k−1 + b̃k) for k = 2, 3, . . . , d − 1 (15.58c)

bd = 1
2 b̃d−1 (15.58d)

706 DIGITAL SIGNAL PROCESSING

Proceeding as in the case of antisymmetrical impulse response, an error function of the form given
in Eq. (15.56) can be constructed with

P̃(ω) = Pd−1(ω)

and

Q(ω) = cos
ω

2

Similarly, if the impulse response is antisymmetrical and the filter length is even, we have

H (e jωT) = e− jcω j P ′
d (ω)

where

P ′
d (ω) =

d∑
k=1

bk sin
(
k − 1

2

)
ω

bk = 2h(d − k) for k = 1, 2, . . . , d

d = N/2

P ′
d (ω) can now be expressed as

P ′
d (ω) = sin

ω

2
Pd−1(ω)

where

Pd−1(ω) =
d−1∑
k=0

d̃k cos kω (15.59a)

and

b1 = d̃0 − 1
2 d̃1 (15.59b)

bk = 1
2 (d̃k−1 − d̃k) for k = 2, 3, . . . , d − 1 (15.59c)

bd = 1
2 d̃d−1 (15.59d)

As in the previous case, an error function of the form given in Eq. (15.56) can be obtained with

P̃(ω) = Pd−1(ω)

and

Q(ω) = sin
ω

2

The various polynomials for the four types of nonrecursive filters are summarized in
Table 15.7.

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 707

Table 15.7 Functions H(e jωT), Q(ω), and P̃(ω) for the various
types of nonrecursive filters

h(n) N H(e jωT) Q(ω) P̃(ω)

Symmetrical odd e− jcω Pc(ω) 1 Pc(ω) = ∑c
k=0 ak cos kω

even e− jcω Pd (ω) cos ω
2 Pd−1(ω) = ∑d−1

k=0 b̃k cos kω

Pd (ω) = ∑d
k=1 bk cos

(
k − 1

2

)
ω

Antisymmetrical odd e− jcω j P ′
c(ω) sin ω Pc−1(ω) = ∑c−1

k=0 c̃k cos kω

P ′
c(ω) = ∑c

k=1 ak sin kω

even e− jcω j P ′
d (ω) sin

ω

2
Pd−1(ω) = ∑d−1

k=0 d̃k cos kω

P ′
d (ω) = ∑d

k=1 bk sin
(
k − 1

2

)
ω

a0 = h(c) ak = 2h(c − k) c = (N − 1)/2
bk = 2h(d − k) d = N/2

15.9 DIGITAL DIFFERENTIATORS

The Remez algorithm can be easily applied for the design of equiripple digital differentiators. The
ideal frequency response of a causal differentiator is of the form e− jcω j D(ω) where

D(ω) = ω for 0 < |ω| < π (15.60)

and c = (N − 1)/2 (see Sec. 9.5). From Table 15.7, we note that differentiators can be designed in
terms of filters with antisymmetrical impulse response of either odd or even length.

15.9.1 Problem Formulation

Assuming odd filter length, Eqs. (15.53) and (15.60) give the error function

E(ω) = W (ω)[ω − P ′
c(ω)] for 0 < ω ≤ ωp

where ωp is the required bandwidth. Constant absolute or relative error may be required, depending
on the application at hand. Hence W (ω) can be chosen to be either unity or 1/ω. In the latter case,
E(ω) can be expressed as

E(ω) = 1 − 1

ω
P ′

c(ω) for 0 < ω ≤ ωp

and from Eq. (15.54)

E(ω) = 1 − sin ω

ω
Pc−1(ω) for 0 < ω ≤ ωp (15.61)

708 DIGITAL SIGNAL PROCESSING

Therefore, the error function can be expressed as in Eq. (15.56) with

W̃ (ω) = 1

D̃(ω)
= sin ω

ω

P̃(ω) = Pc−1(ω)

15.9.2 First Derivative

In Algorithm 4, the first derivative of |E(ω)| with respect to ω is required. From Eq. (15.61), one can
show that

d|E(ω)|
dω

= sgn

[
1 − sin ω

ω
Pc−1(ω)

]
×

[
sin ω − ω cos ω

ω2
Pc−1(ω)

− sin ω

ω

d Pc−1(ω)

dω

]
(15.62)

The first derivative of Pc−1(ω) can be computed by using the formulas in Sec. 15.6, except that the
number of extremals is reduced from c + 2 to c + 1. The value of Pc−1(ω) can be computed by using
Eq. (15.35) with c replaced by c − 1. If ω̂i is an extremal, then Eq. (15.61) yields

Pc−1(ω̂i) = [1 − (−1)iδ]
ω̂i

sin ω̂i

since E(ω̂i) = (−1)iδ.
In Algorithm 4, the second derivative of |E(ω)| with respect to ω is used to determine whether

there is a maximum or minimum at ω = 0. For differentiators, this information is more easily
determined by computing the quantity

G ′
2 = |E(w1)| − |E(0)|

where w1 is the interval between successive samples. Depending on whether G ′
2 is positive or

negative, |E(ω)| has a minimum or maximum at ω = 0.

15.9.3 Prescribed Specifications

A digital differentiator is fully specified by the constraint

|E(ω)| ≤ δp for 0 < ω ≤ ωp

where δp is the maximum passband error and ωp is the bandwidth of the differentiator.
The differentiator length N that will just satisfy the required specifications is not normally

known a priori and, although it may be determined on a hit and miss basis, a large number of designs
may need to be carried out. In filters with approximately piecewise-constant amplitude responses,
N can be predicted using the empirical formula of Eq. (15.51). In the case of differentiators, N
can be predicted by noting a useful property of digital differentiators. If δ and δ1 are the maximum
passband errors in differentiators of lengths N and N1, respectively, then the quantity ln (δ/δ1) is

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 709

approximately linear with respect to N − N1 for a wide range of values of N1 and ωp, as illustrated
in Fig. 15.8. Assuming linearity, we can show that [16]

N = N1 + ln (δ/δ1)

ln (δ2/δ1)
(N2 − N1) (15.63)

where δ2 is the maximum passband error in a differentiator of length N2.

−16.0

ln
 (
δ/

δ 1
)

−12.0

−8.0

−4.0

0
0 40 80

ωp = 3.05 rad/s

2.90

2.75

2.40

3.00

N − N1

Figure 15.8 Variation of ln (δ/δ1) versus N − N1 for different values of ωp and N1 = 11.

710 DIGITAL SIGNAL PROCESSING

By designing two low-order differentiators, a fairly accurate prediction of the required value
of N can be obtained by using Eq. (15.63). A design algorithm based on this formula is as follows:

Algorithm 6: Design of digital differentiators satisfying prescribed specifications

1. Design a differentiator of length N1, and find δ1.

2. Design a differentiator of length N2 = N1 + 2 and find δ2.

3. If δ2 ≤ δp < δ1, go to step 7.

4. Set δ = δp and compute N using Eq. (15.63); set N3 = Int (N +0.5); if N3 is even and a differentiator
of odd length is required, then set N3 = N3 + 1.

5. Design a differentiator of length N3 and find δ3.

(A) If δ3 > δp , then do:

(a) Set N3 = N3 + 2, design a differentiator of length N3, and find δ3;

(b) If δ3 ≤ δp , then go to step 6; else, go to step 5(A)(a).

(B) If δ3 < δp , then do:

(a) Set N3 = N3 − 2, design a differentiator of length N3, and find δ3;

(a) If δ3 > δp , then go to step 7; else, go to step 5(B)(a).

6. Use the last set of extremals and the corresponding value of N to obtain the impulse response of the
required differentiator and stop.

7. Use the last but one set of extremals and the corresponding value of N to obtain the impulse response
of the required differentiator and stop. �

Example 15.4 In an application, a digital differentiator is required which should satisfy the
following specifications:

• Odd differentiator length

• Bandwidth ωp: 2.5 rad/s

• Maximum passband ripple δp: 1.0 × 10−6

• Sampling frequency ωs : 2π rad/s
Design the lowest-order differentiator that will satisfy the specifications.

Solution

The design was carried out using Algorithm 6 in conjunction with Algorithm 4; in Al-
gorithm 4 the relative error of Eq. (15.61) was minimized. The progress of the design is
illustrated in Table 15.8. First, differentiators of lengths 21 and 23 were designed and the

Table 15.8 Progress in design of digital
(differentiator Example 15.4)

N Iters. FE’s δp

21 4 141 7.649E − 4

23 5 187 3.786E − 4

43 5 616 4.078E − 7

41 6 538 8.069E − 7

39 6 500 1.582E − 6

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 711

required N to satisfy the specifications was predicted to be 43 using Eq. (15.63). This
differentiator length was found to oversatisfy the specifications, and designs for lengths
41 and 39 were then carried out. The design for N = 39 violates the specifications,
as can be seen in Table 15.8; therefore, the optimum differentiator length is 41. The
impulse response of this differentiator is given in Table 15.9. The amplitude response
and passband relative error of the differentiator are plotted in Fig. 15.9a and b.

0.7850 1.571 2.356 3.142

0.75

1.50

2.25

3.00

ω, rad/s

(a)

G
ai

n

0

0.6250 1.250 1.875 2.500

0.375

0.750

1.125

1.500

ω, rad/s

|E
(ω

) |

×10−6

0

(b)

Figure 15.9 Design of digital differentiator (Example 15.4): (a) Amplitude response,
(b) passband relative error.

712 DIGITAL SIGNAL PROCESSING

Table 15.9 Impulse response of digital differentiator
(Example 15.4)

n h0(n) = −h0(−n) n h0(n) = −h0(−n)

0 0.0 11 −1.305326E − 2

1 −9.852395E − 1 12 7.955151E − 3

2 4.710789E − 1 13 −4.626299E − 3

3 −2.914014E − 1 14 2.544983E − 3

4 1.966634E − 1 15 −1.309224E − 3

5 −1.371947E − 1 16 6.197315E − 4

6 9.651420E − 2 17 −2.633737E − 4

7 −6.751749E − 2 18 9.638584E − 5

8 4.653727E − 2 19 −2.795288E − 5

9 −3.138375E − 2 20 4.916591E − 6

10 2.058332E − 2

15.10 ARBITRARY AMPLITUDE RESPONSES

Very frequently nonrecursive filters are required whose amplitude responses cannot be described by
analytical functions. For example, in the design of two-dimensional filters (see Sec. 18.6) through the
singular-value decomposition [17, 18], the required two-dimensional filter is obtained by designing
a set of one-dimensional digital filters whose amplitude responses turn out to have arbitrary shapes.
In these applications, the desired amplitude response D(ω) is specified in terms of a table that lists a
prescribed set of frequencies and the corresponding values of the required filter gain. Filters of this
class can be readily designed by employing some interpolation scheme that can be used to evaluate
D(ω) and its first derivative with respect to ω at any ω. A suitable scheme is to fit a set of third-order
polynomials to the prescribed amplitude response. An interpolation scheme of this type is used in
the design of recursive filters in the next chapter and is described in detail in Sec. 16.6.

15.11 MULTIBAND FILTERS

The algorithms presented in the previous sections can also be used to design multiband filters. While
there is no theoretical upper limit on the number of bands, in practice, the design tends to become
more and more difficult as the number of bands is increased. The reason is that the difference between
the number of possible maxima in the error function and the number of extremals increases linearly
with the number of bands, e.g., if the number of bands is 8, then the difference is 14 (see Sec. 15.3.4).
As a consequence, the number of potential extremals that need to be rejected is large and the available

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 713

rejection techniques become somewhat inefficient. The end result is that the number of iterations is
increased quite significantly, and convergence is slow and sometimes impossible.

In mathematical terms, the problem discussed in the previous paragraph is attributed to the fact
that, in the weighted-Chebyshev methods considered in this chapter, the approximating polynomial
becomes seriously underdetermined if the number of bands exceeds three. The problem can be
overcome by using the generalized Remez method described in Ref. [14]. This method is based on
a different formulation of the design problem and leads to three types of equiripple filters, namely,
maximal-ripple, extra-ripple, and weighted-Chebyshev filters. In the case of maximal-ripple filters,
the approximating polynomial is fully determined; in the extra-ripple case, it is less underdetermined
than the approximating polynomial in the methods described. Therefore, for filters with more than
five bands, the method in Ref. [14] is preferred.

Example 15.5 In an application, a nonrecursive equiripple 5-band filter is required which
should satisfy the specifications in Table 15.10. The sampling frequency is 2π . Design the
lowest-order filter that will satisfy the specifications.

Table 15.10 Specifications of 5-band filter
(Example 15.5)

Band: 1 2 3 4 5

D(ω) 1.00 0.00 1.00 0.00 1.00
Ap, dB 0.50 — 0.75 — 1.00
Aa , dB — 50.00 — 30.00 —
ωL , rad/s 0.00 0.80 1.50 2.10 2.80
ωR , rad/s 0.60 1.25 1.90 2.60 π

Solution

The use of Algorithm 4 in conjunction with Algorithm 5 gave a filter of length 61. The
progress of the design is illustrated in Table 15.11. The impulse response of the filter
obtained is given in Table 15.12, and the corresponding amplitude response is plotted in
Fig. 15.10. As can be seen, the required specifications are satisfied.

Table 15.11 Progress in design of 5-band filter
(Example 15.5)

N Iters. FE’s Ap1, dB Aa2, dB Ap3, dB Aa4, dB Ap5, dB

61 9 913 0.453 50.46 0.679 30.86 0.905
59 19 2219 0.539 49.35 0.808 29.35 1.077

714 DIGITAL SIGNAL PROCESSING

Table 15.12 Impulse response of 5-band filter
(Example 15.5)

n h0(n) = h0(−n) n h0(n) = h0(−n)

0 5.608208E − 1 16 −8.164458E − 4
1 4.013174E − 2 17 −3.884179E − 4
2 1.006767E − 1 18 2.625242E − 3
3 4.198731E − 2 19 −1.130791E − 2
4 2.414087E − 1 20 9.190432E − 3
5 −1.248415E − 1 21 8.761118E − 3
6 −1.019101E − 1 22 6.476604E − 3
7 6.608448E − 3 23 9.610168E − 3
8 −1.355327E − 2 24 −1.976094E − 2
9 4.780217E − 3 25 −1.075689E − 2

10 −1.549769E − 2 26 3.013727E − 3
11 3.468520E − 2 27 −2.707701E − 3
12 −8.299265E − 4 28 −2.549441E − 3
13 4.694733E − 2 29 −9.605488E − 3
14 2.641761E − 3 30 1.495353E − 2
15 −5.336269E − 2 − −

0.7850 1.571 2.356 3.142

−50.0

−30.0

−10.0

10.0

ω, rad/s

G
ai

n,
 d

B

−70.0

Figure 15.10 Amplitude response of equiripple 5-band filter (Example 15.5) (the passband
gain is multiplied by the factor 10 to show the passband ripple).

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 715

The required filter order for multiband filters can be predicted by using the formula in
Eq. (15.51), as was stated earlier. A generalized version of this formula, which gives improved
results, can be found in Ref. [14].

REFERENCES

[1] O. Herrmann, “Design of nonrecursive digital filters with linear phase,” Electron. Lett.,
vol. 6, pp. 182–184, May 1970.

[2] E. Hofstetter, A. Oppenheim, and J. Siegel, “A new technique for the design of non-recursive
digital filters,” 5th Annual Princeton Conf. Information Sciences and Systems, pp. 64–72,
Mar. 1971.

[3] T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonrecursive digital filters
with linear phase,” IEEE Trans. Circuit Theory, vol. 19, pp. 189–194, Mar. 1972.

[4] T. W. Parks and J. H. McClellan, “A program for the design of linear phase finite impulse
response digital filters,” IEEE Trans. Audio Electroacoust., vol. 20, pp. 195–199, Aug. 1972.

[5] L. R. Rabiner and O. Herrmann, “On the design of optimum FIR low-pass filters with even
impulse response duration,” IEEE Trans. Audio Electroacoust., vol. 21, pp. 329–336,
Aug. 1973.

[6] J. H. McClellan and T. W. Parks, “A unified approach to the design of optimum FIR
linear-phase digital filters,” IEEE Trans. Circuit Theory, vol. 20, pp. 697–701, Nov. 1973.

[7] J. H. McClellan, T. W. Parks, and L. R. Rabiner, “A computer program for designing
optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust., vol. 21,
pp. 506–526, Dec. 1973.

[8] L. R. Rabiner, J. H. McClellan, and T. W. Parks, “FIR digital filter design techniques using
weighted Chebyshev approximation,” Proc. IEEE, vol. 63, pp. 595–610, Apr. 1975.

[9] J. H. McClellan, T. W. Parks, and L. R. Rabiner, “FIR linear phase filter design program,”
Programs for Digital Signal Processing, New York: IEEE Press, pp. 5.1-1–5.1-13, 1979.

[10] A. Antoniou, “Accelerated procedure for the design of equiripple nonrecursive digital
filters,” Proc. Inst. Elect. Eng., Part G, vol. 129, pp. 1–10, Feb. 1982 (see vol. 129, p. 107,
June 1982 for errata).

[11] A. Antoniou, “New improved method for the design of weighted-Chebyshev, nonrecursive,
digital filters,” IEEE Trans. Circuits Syst., vol. 30, pp. 740–750, Oct. 1983.

[12] E. W. Cheney, Introduction to Approximation Theory, New York: McGraw-Hill, pp. 72–100,
1996.

[13] E. Ya. Remes, General Computational Methods for Tchebycheff Approximation, Kiev, 1957
(Atomic Energy Commission Translation 4491, pp. 1–85).

[14] D. J. Shpak and A. Antoniou, “A generalized Reméz method for the design of FIR digital
filters,” IEEE Trans. Circuits Syst., vol. 37, pp. 161–174, Feb. 1990.

[15] O. Herrmann, L. R. Rabiner, and D. S. K. Chan, “Practical design rules for optimum finite
impulse response low-pass digital filters,” Bell Syst. Tech. J., vol. 52, pp. 769–799,
Jul.-Aug. 1973.

[16] A. Antoniou and C. Charalambous, “Improved design method for Kaiser differentiators and
comparison with equiripple method,” Proc. Inst. Elect. Eng., Part E, vol. 128, pp. 190–196,
Sept. 1981.

[17] A. Antoniou and W.-S. Lu, “Design of two-dimensional digital filters by using the singular
value decomposition,” IEEE Trans. Circuits Syst., vol. 34, pp. 1191–1198, Oct. 1987.

716 DIGITAL SIGNAL PROCESSING

[18] W.-S. Lu, H.-P. Wang, and A. Antoniou, “Design of two-dimensional FIR digital filters using
the singular-value decomposition,” IEEE Trans. Circuits Syst., vol. 37, pp. 35–46, Jan. 1990.

ADDITIONAL REFERENCES

Adams, J. W., “FIR digital filters with least-squares stopbands subject to peak-gain constraints,”
IEEE Trans. Circuits Syst., vol. 39, pp. 376–388, Apr. 1991.

Karam, L. J. and J. H. McClellan,“Complex Chebyshev approximation for FIR filter design,” IEEE
Trans. Circuits Syst.-II, vol. 42, pp. 207–216, Mar. 1995.

W.-S. Lu, “Design of FIR filters with discrete coefficients: A semidefinite programming relaxation
approach,” in Proc. IEEE Int. Symp. Circuits and Systems, 2001, vol. 2, pp. 297–300, Sydney,
Australia, May 2001.

PROBLEMS

15.1. A noncausal nonrecursive filter has a frequency response Pc(ω). The filter has a symmetrical impulse
response represented by h0(n) for −c ≤ n ≤ c, where c = (N −1)/2. Using the inverse discrete Fourier
transform, show that the impulse response of the filter is given by Eq. (15.21).

15.2. Show that δ and Pc(ω) given by Eqs. (15.16) and (15.17) can be expressed as in Eqs. (15.34) and (15.35),
respectively.

15.3. Show that coefficients βkm , αkm , and Ckm , which are used to compute δ and Pc(ω), can be expressed as
in Eqs. (15.36)–(15.38).

15.4. Write a computer program based on the Remez algorithm (Algorithm 1) that can be used for the design
of filters. Use the exhaustive step-by-step search method in Algorithm 2 in conjunction with the scheme
in Algorithm 3 for the rejection of superfluous potential extremals. Then use a routine that will reject
the ρ − r superfluous potential extremals �

ωi on the basis of the lowest error |E(�
ωi)| (see Sec. 15.3.4)

as an alternative rejection scheme and check whether there is a change in the computational efficiency
of the program.

15.5. Show that for any frequency including the last extremal of the last band but excluding all other extremals,
the first derivative of Pc(ω) with respect to ω is given by the formula in Eq. (15.46).

15.6. Show that for all extremals other than the last extremal of the last band, the first derivative of Pc(ω) with
respect to ω is given by the formula in Eq. (15.47).

15.7. Show that the first derivative of Pc(ω) with respect to ω is zero at ω = 0 and ω = π (see Eq. (15.48)).
Hence show that |E(ω)| has a local maximum or minimum at these frequencies.

15.8. Show that for ω = 0 if no extremal occurs at zero or for ω = π under all circumstances, the second
derivative of Pc(ω) with respect to ω is given by Eq. (15.49).

15.9. Show that if there is an extremal at ω = 0, then the second derivative of Pc(ω) with respect to ω at ω = 0
is given by Eq. (15.50).

15.10. Write a computer program based on the Remez algorithm that can be used for the design of filters. Use
the selective step-by-step search method of Sec. 15.4.1.

15.11. The cubic-interpolation search of Sec. 15.4.2 requires the evaluation of constants d, c, b, β, γ , θ , and ψ
given by Eqs. (15.25)–(15.31). Derive the formulas for these constants.

15.12. Modify the program of Prob. 15.10 to include the cubic-interpolation search of Sec. 15.4.2 (see Algorithm
4).

15.13. Design a nonrecursive equiripple lowpass filter using the Remez algorithm (a) with the exhaustive
search of Sec. 15.3.2, (b) with the selective step-by-step search of Sec. 15.4.1, and (c) with the selective
step-by-step search in conjunction with the cubic-interpolation search of Sec. 15.4.2. Compare the

DESIGN OF NONRECURSIVE FILTERS USING OPTIMIZATION METHODS 717

results obtained. The required specifications are as follows:

• Filter length N : 21
• Passband edge ωp: 1.0 rad/s
• Stopband edge ωa : 1.5 rad/s
• Ratio δp/δa : 18.0
• Sampling frequency ωs : 2π rad/s

15.14. Design a nonrecursive equiripple bandstop filter using the Remez algorithm (a) with the exhaustive
search, (b) with the selective step-by-step search, and (c) with the selective step-by-step search in con-
junction with the cubic-interpolation search. Compare the results obtained. The required specifications
are as follows:

• Filter length N : 33
• Lower passband edge ωp1: 0.8 rad/s
• Upper passband edge ωp2: 2.1 rad/s
• Lower stopband edge ωa1: 1.2 rad/s
• Upper stopband edge ωa2: 1.8 rad/s
• Ratio δp/δa : 23.0
• Sampling frequency ωs : 2π rad/s

15.15. Modify the program in Prob. 15.10 to include an option for the design of filters satisfying prescribed
specifications. Use Algorithm 5.

15.16. In an application, a nonrecursive equiripple highpass filter is required, which should satisfy the following
specifications:

• Odd filter length
• Maximum passband ripple Ap: 0.1 dB
• Minimum stopband attenuation Aa : 50.0 dB
• Passband edge ωp: 1.8 rad/s
• Stopband edge ωa : 1.0 rad/s
• Sampling frequency ωs : 2π rad/s

Design the lowest-order filter that will satisfy the specifications.

15.17. In an application, a nonrecursive equiripple bandpass filter is required, which should satisfy the following
specifications:

• Odd filter length
• Maximum passband ripple Ap: 0.1 dB
• Minimum stopband attenuation Aa : 60.0 dB
• Lower passband edge ωp1: 1.0 rad/s
• Upper passband edge ωp2: 1.6 rad/s
• Lower stopband edge ωa1: 0.6 rad/s
• Upper stopband edge ωa2: 2.0 rad/s
• Sampling frequency ωs : 2π rad/s

Design the lowest-order filter that will satisfy the specifications.
15.18. Show that the sine polynomial P ′

c(ω) of Eq. (15.52) can be expressed as in Eq. (15.54) where Pc−1(ω)
is given by Eq. (15.55a).

15.19. A noncausal nonrecursive filter has a frequency response j Pc(ω). The filter has an antisymmetrical
impulse response represented by h0(n) for −c ≤ n ≤ c, where c = (N − 1)/2. Using the inverse
discrete Fourier transform, show that the impulse response of the filter is given by Eq. (15.57).

15.20. The relative error in the design of digital differentiators is given by Eq. (15.61). Show that the first
derivative of |E(ω)| with respect to ω is given by Eq. (15.62).

718 DIGITAL SIGNAL PROCESSING

15.21. Write a computer program based on the Remez algorithm that can be used for the design of digital
differentiators. Use the selective step-by-step search method in conjunction with the cubic-interpolation
search.

15.22. Using the program in Prob. 15.21, design a digital differentiator of length N = 41 and bandwidth
ωp = 3.0 rad/s. The sampling frequency is 2π rad/s.

15.23. If δ and δ1 are the maximum passband errors in digital differentiators of lengths N and N1, respectively,
then the quantity ln (δ/δ1) is approximately linear with respect to N − N1, as can be seen in Fig. 15.8.
Assuming linearity, derive the prediction formula of Eq. (15.63).

15.24. Modify the program in Prob. 15.21 to include an option for the design of digital differentiators satisfying
prescribed specifications. Use Algorithm 6.

15.25. In an application, a digital differentiator is required, which should satisfy the following specifications:

• Odd differentiator length
• Bandwidth ωp: 2.75 rad/s
• Maximum passband ripple δp: 1.0 × 10−4

• Sampling frequency ωs : 2π rad/s

Design the lowest-order differentiator that will satisfy the specifications.

15.26. In an application, a nonrecursive equiripple 4-band filter is required, which should satisfy the specifica-
tions in Table P15.26. The sampling frequency is 2π . Design the lowest-order filter that will satisfy the
specifications.

Table P15.26

Band: 1 2 3 4

D(ω) 0.0 1.0 0.0 1.0
Ap , dB — 0.1 — 0.4
Aa , dB 50.0 — 55.0 —
ωL , rad/s 0.0 1.2 2.0 2.8
ωR , rad/s 0.8 1.6 2.4 π

15.27. In an application, a nonrecursive equiripple 5-band filter is required, which should satisfy the specifi-
cations in Table P15.27. The sampling frequency is ωs = 2π . Design the lowest-order filter that will
satisfy the specifications.

Table P15.27

Band: 1 2 3 4 5

D(ω) 1.0 0.0 1.0 0.0 1.0
Ap , dB 0.8 — 0.4 — 1.0
Aa , dB — 50.0 — 30.0 —
ωL , rad/s 0.0 0.8 1.6 2.2 2.9
ωR , rad/s 0.4 1.2 1.9 2.6 π

CHAPTER

16
DESIGN OF

RECURSIVE
FILTERS USING
OPTIMIZATION

METHODS

16.1 INTRODUCTION

In Chaps. 11 and 12, several methods for the solution of the approximation problem in recursive
filters have been described. These methods lead to a complete description of the transfer function in
closed form, either in terms of its zeros and poles or its coefficients. They are, as a consequence, very
efficient and lead to very precise designs. Their main disadvantage is that they are applicable only
for the design of filters with piecewise-constant amplitude responses, i.e., filters whose passband and
stopband gains are constant and zero, respectively, to within prescribed tolerances.

An alternative approach for the solution of the approximation problem in digital filters is
through the application of optimization methods [1–5]. In these methods, a discrete-time transfer
function is assumed and an error function is formulated on the basis of some desired amplitude and/or
phase response. A norm of the error function is then minimized with respect to the transfer-function
coefficients. As the value of the norm approaches zero, the resulting amplitude or phase response
approaches the desired amplitude or phase response. These methods are iterative and, as a result, they
usually involve a large amount of computation. However, unlike the closed-form methods of Chaps.
11 and 12, they are suitable for the design of filters having arbitrary amplitude or phase responses.
Furthermore, they often yield superior designs.

719

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

720 DIGITAL SIGNAL PROCESSING

In this chapter, the application of optimization methods for the design of recursive digital filters
is considered. The chapter begins with an introductory section that deals with the formulation of the
design problem as an optimization problem, and then proceeds with fairly detailed descriptions of
algorithms that can be used to solve the optimization problem. The algorithms presented are based on
the so-called quasi-Newton method which has been explored by Davidon, Fletcher, Powell, Broyden,
and others. The exposition of the material begins with algorithms that are primarily of conceptual
value and gradually proceeds to algorithms of increasing complexity and scope. It concludes with
some highly sophisticated algorithms that are practical, flexible, efficient, and reliable. Throughout
the chapter, emphasis is placed on the application of the algorithms rather than their theoretical
foundation and convergence properties. Readers who are interested in a more mathematical treatment
of the subject may consult one of the standard textbooks on optimization theory and practice [6–10].

16.2 PROBLEM FORMULATION

Assume that the amplitude response of a recursive filter is required to approach some specified
amplitude response as closely as possible. Such a filter can be designed in two general steps, as
follows:

1. An objective function which is dependent on the difference between the actual and specified
amplitude response is formulated.

2. The objective function obtained is minimized with respect to the transfer-function coefficients.

An Nth-order recursive filter with N even can be represented by the transfer function

H (z) = H0

J∏
j=1

a0 j + a1 j z + z2

b0 j + b1 j z + z2
(16.1)

where ai j and bi j are real coefficients, J = N/2, and H0 is a positive multiplier constant. The
amplitude response of the filter can be expressed as

M(x, ω) = |H (e jωT)| (16.2)

where

x = [a01 a11 b01 b11 · · · b1J H0]T

is a column vector with 4J + 1 elements and ω is the frequency.
Let M0(ω) be the specified amplitude response and, for the sake of exposition, assume that it

is piecewise continuous, as illustrated in Fig. 16.1. The difference between M(x, ω) and M0(ω) is,
in effect, the approximation error and can be expressed as

e(x, ω) = M(x, ω) − M0(ω) (16.3)

By sampling e(x, ω) at frequencies ω1, ω2, . . . , ωK , as depicted in Fig. 16.1, the column vector

E(x) = [e1(x) e2(x) . . . eK (x)]T

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 721

G
ai

n

ω1 ω2 ωK

M(x, ω)

M0(ω)

e(x, ω)

ω, rad/s

Figure 16.1 Formulation of error function.

can be formed where

ei (x) = e(x, ωi) (16.4)

for i = 1, 2, . . . , K .
The approximation problem at hand can be solved by finding a point x = �x such that

ei (
�x) ≈ 0

for i = 1, 2, . . . , K . Assuming that a solution exists, a suitable objective function must first be
formed which should satisfy a number of fundamental requirements. It should be a scalar quantity,
and its minimization with respect to x should lead to the minimization of all the elements of E(x) in
some sense. Further, it is highly desirable that it be differentiable. An objective function satisfying
these requirements can be defined in terms of the L p norm of E(x) as

!(x) = L p = ||E(x)||p =
[

K∑
i=1

|ei (x)|p

]1/p

where p is an integer.
Several special cases of the L p norm are of particular interest. The L1 norm, namely,

L1 =
K∑

i=1

|ei (x)|

722 DIGITAL SIGNAL PROCESSING

is the sum of the magnitudes of the elements of E(x); the L2 norm given by

L2 =
[

K∑
i=1

|ei (x)|2
]1/2

is the well-known Euclidean norm; and L2
2 is the sum of the squares of the elements of E(x). In the

case where p = ∞ and

�

E(x) = max
1≤i≤K

|ei (x)| �= 0

we can write

L∞ = lim
p→∞

{
K∑

i=1

|ei (x)|p

}1/p

= �

E(x) lim
p→∞

{
K∑

i=1

[
|ei (x)|

�

E(x)

]p}1/p

(16.5)

Since each of the terms in the above summation is equal to or less than unity, we have

L∞ = �

E(x)

With an objective function available, the required design can be obtained by solving the
optimization problem

minimize
x

!(x) (16.6)

If !(x) is defined in terms of L2
2, a least-squares solution is obtained; if the L∞ norm is used,

a so-called minimax solution is obtained, since in this case the largest element in E(x) is minimized.
In digital filters, the magnitude of the largest amplitude-response error is usually required to

be as small as possible and, therefore, minimax solutions are preferred.

16.3 NEWTON’S METHOD

The optimization problem of Eq. (16.6) can be solved by using an unconstrained optimization al-
gorithm. Various classes of these algorithms have been developed in recent years, ranging from
steepest-descent to conjugate-direction algorithms [6–10]. An important class of optimization al-
gorithms that have been found to be very effective for the design of digital filters is the class of
quasi-Newton algorithms. These are based on Newton’s method for finding the minimum in quadratic
convex functions.1

Consider a function f (x) of n variables, where x = [x1 x2 · · · xn]T is a column vector, and let
δ = [δ1 δ2 · · · δn]T be a change in x. If f (x) ∈ C2, that is, f (x) has continuous second derivatives,

1A two-variable convex function is one that represents a surface whose shape resembles a punch bowl.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 723

its Taylor series at point x + δ is given by

f (x + δ) = f (x) +
n∑

i=1

∂ f (x)

∂xi
δi

+ 1

2

n∑
i=1

n∑
j=1

∂
2

f (x)

∂xi∂x j
δiδ j + o

(||δ||22
)

(16.7)

where the remainder o(||δ||22) approaches zero faster than ||δ||22. If the remainder is negligible and a
stationary point exists in the neighborhood of some point x, it can be determined by differentiating
f (x + δ) with respect to elements δk for k = 1, 2, . . . , n, and setting the result to zero. From
Eq. (16.7), we obtain

∂ f (x + δ)

∂δk
= ∂ f (x)

∂xk
+

n∑
i=1

∂
2

f (x)

∂xi∂xk
δi = 0

for k = 1, 2, . . . , n. This equation can be expressed in matrix form as

g = −Hδ (16.8)

where

g = ∇ f (x) =
[
∂ f (x)

∂x1

∂ f (x)

∂x2
· · · ∂ f (x)

∂xn

]T

and

H =

∂
2

f (x)

∂x2
1

∂
2

f (x)

∂x1∂x2
· · · ∂

2
f (x)

∂x1∂xn

∂
2

f (x)

∂x2∂x1

∂
2

f (x)

∂x2
2

· · · ∂
2

f (x)

∂x2∂xn
...

...
...

∂
2

f (x)

∂xn∂x1

∂
2

f (x)

∂xn∂x2
· · · ∂

2
f (x)

∂x2
n

are the gradient vector and Hessian matrix (or simply the gradient and Hessian) of f (x), respectively.
Therefore, the value of δ that yields the stationary point of f (x) can be obtained from Eq. (16.8) as

δ = −H−1g (16.9)

This equation will give the solution if and only if the following two conditions hold:

(i) The remainder o(||δ||22) in Eq. (16.7) can be neglected.

(ii) The Hessian is nonsingular.

724 DIGITAL SIGNAL PROCESSING

If f (x) is a quadratic function, its second partial derivatives are constants, i.e., H is a constant
symmetric matrix, and its third and higher derivatives are zero. Therefore, condition (i) holds. If f (x)
has a stationary point and the sufficiency conditions for a minimum hold at the stationary point, then
the Hessian matrix is positive definite and, therefore, nonsingular. Under these circumstances, given
an arbitrary point x ∈ En ,2 the minimum point can be obtained as

�x = x + δ by using Eq. (16.9).
If f (x) is a general nonquadratic convex function that has a minimum at point

�x, then in the
neighborhood ||x − �x||2 < ε the remainder in Eq. (16.7) becomes negligible and the second partial
derivatives of f (x) become approximately constant. As a result, in this domain function f (x) behaves
as if it were a quadratic function and conditions (i) and (ii) are again satisfied. Therefore, for any
point x such that ||x − �x||2 < ε, the use of Eq. (16.9) will yield an accurate estimate of the minimum
point.

If a general function f (x) is to be minimized and an arbitrary point x ∈ En is assumed, condition
(i) and/or condition (ii) may be violated. If condition (i) is violated, then the use of Eq. (16.9) will not
give the solution; if condition (ii) is violated, then Eq. (16.9) either has an infinite number of solutions
or has no solutions at all. These problems can be overcome by using an iterative procedure in which
the value of the function is progressively reduced by applying a series of corrections to x until a
point in the neighborhood of the solution is obtained. When the remainder in Eq. (16.7) becomes
negligible, an accurate estimate of the solution can be obtained by using Eq. (16.9). A suitable
strategy to achieve this goal is based on the fundamental property that if H is positive definite, then
H−1 is also positive definite. Furthermore, in such a case it can be shown through the use of the Taylor
series that the direction pointed by the vector −H−1g of Eq. (16.9), which is known as the Newton
direction, is a descent direction of f (x). As a consequence, if at some initial point x, H is positive
definite, a reduction can be achieved in f (x) by simply applying a correction of the form δ = αd to x,
where α is a positive factor and d = −H−1g. On the other hand, if H is not positive definite, it can be
forced to become positive definite by means of some algebraic manipulation (e.g., it can be changed
to the unity matrix) and, as before, a reduction can be achieved in f (x). In either case, the largest
possible reduction in f (x) with respect to the direction d can be achieved by choosing variable α

such that f (x+αd) is minimized. This can be done by using one of many available one-dimensional
minimization algorithms (also known as line searches) [6–10]. Repeating these steps a number of
times will yield a value of x in the neighborhood of the solution and eventually the solution itself.
An algorithm based on these principles, known as the Newton algorithm, is as follows:

Algorithm 1: Basic Newton algorithm

1. Input x0 and ε. Set k = 0.

2. Compute the gradient gk and Hessian Hk . If Hk is not positive definite, force it to become positive
definite.

3. Compute H−1
k and dk = −H−1

k gk .

4. Find αk , the value of α that minimizes f (xk + α dk), using a line search.

5. Set xk+1 = xk + δk , where δk = αkdk , and compute fk+1 = f (xk+1).

6. If ||αkdk ||2 < ε, then output
�x = xk+1, f (

�x) = fk+1, and stop.

Otherwise, set k = k + 1 and repeat from step 2. �

2 En represents the n-dimensional Euclidean space.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 725

The algorithm is terminated if the L2 norm of αkdk , i.e., the magnitude of the change in x, is less
than ε. The parameter ε is said to be the termination tolerance and is a small positive constant whose
value is determined by the application under consideration.3 In certain applications, a termination
tolerance on the objective function itself, e.g., | fk+1 − fk | < ε, may be preferable and sometimes
termination tolerances may be imposed on the magnitudes of both the changes in x and the objective
function.

So far, we have tacitly assumed that the optimization problem under consideration has a unique
or global minimum. In practice, the problem may have more than one local minimum, sometimes
a large number of minima, and on occasion a well-defined minimum may not even exist. We must,
therefore, abandon the expectation that we shall always be able to obtain the best solution available.
The best we can hope for is a solution that satisfies a number of the required specifications.

Example 16.1 (a) Show that the function

f (x) = x2
1 + 2x1x2 + 2x2

2 + 2x1 + x2

has a minimum. (b) Find the minimum of the function using Algorithm 1 with x0 = [0 0]T as
initial point.

Solution

(a) From basic calculus, the stationary points of a function are the points at which the
gradient is equal to zero. If the Hessian at a specific stationary point is positive definite,
negative definite, or indefinite, then the stationary point is a minimum, maximum, or
saddle point; alternatively, if the Hessian is positive or negative semidefinite, then the
stationary point can be either a maximum or a minimum point.

The partial derivatives of f (x) are given by

∂ f

∂x1
= 2x1 + 2x2 + 2 and

∂ f

∂x2
= 2x1 + 4x2 + 1

At a stationary point x̃, the gradient g is zero; hence, we obtain x̃ = [−1.5 0.5]T .
The Hessian can be deduced as

H =
[

2 2
2 4

]

Since the principal minor determinants of H are positive, the Hessian is positive definite
(see Sec. 5.3.6), and so x̃ is a minimum point.
(b) The gradient at xT

0 = [0 0] is g0 = [2 1]T . The inverse of H0 is given by

H−1
0 =

[
1 −0.5

−0.5 0.5

]

3Parameters ε, ε1, and ε2 represent termination tolerances throughout the chapter.

726 DIGITAL SIGNAL PROCESSING

and hence the Newton direction can be obtained from step 3 of Algorithm 1 as d0=
−H−1

0 g0 = [−1.5 0.5]T . The function under consideration is quadratic and the solution
can be obtained with α0 = 1. From step 5, x1 = �x = [−1.5 0.5]T and f (

�x) = f1 =
−1.25. Note that Algorithm 1 will need two iterations to stop since the termination test
in step 6 will not be satisfied until the second iteration.

16.4 QUASI-NEWTON ALGORITHMS

The Newton algorithm described in the preceding section has three major disadvantages. First,
both the first and second partial derivatives of f (x) must be computed in each iteration in order
to construct the gradient and Hessian, respectively. Second, in each iteration the Hessian must be
checked for positive definiteness and, if it is found to be nonpositive definite, it must be forced
to become positive definite. Third, matrix inversion is required in each iteration. By contrast, in
quasi-Newton algorithms only the first derivatives need to be computed, and it is unnecessary to
manipulate or invert the Hessian. Consequently, for general problems other than convex quadratic
problems, quasi-Newton algorithms are much more efficient and are preferred.

Quasi-Newton algorithms, like the Newton algorithm, are developed for the convex quadratic
problem and are then extended to the general problem. The fundamental principle in these algorithms
is that the direction of search is based on an n ×n matrix S that serves the same purpose as the inverse
Hessian in the Newton algorithm. This matrix is constructed using available data and is contrived
to be an approximation of H−1. Furthermore, as the number of iterations is increased, S becomes
progressively a more and more accurate representation of H−1. For convex quadratic objective
functions, S becomes identical to H−1 in n + 1 iterations where n is the number of variables.

16.4.1 Basic Quasi-Newton Algorithm

Let the gradients of f (x) at points xk and xk+1 be gk and gk+1, respectively. If

xk+1 = xk + δk

then the Taylor series gives the elements of gk+1 as

g(k+1)m = gkm +
n∑

i=1

∂gkm

∂xk i
δk i + 1

2

n∑
i=1

n∑
j=1

∂2gkm

∂xk i∂xk j
δk iδk j + o

(||δ||22
)

for m = 1, 2, . . . , n. Now if f (x) is quadratic, the second and higher derivatives of f (x) are constant
and zero, respectively, and as a result the second and higher derivatives of gkm are zero. Thus

g(k+1)m = gkm +
n∑

i=1

∂gkm

∂xk i
δk i

and since

gkm = ∂ fk

∂xkm

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 727

we have

g(k+1)m = gkm +
n∑

i=1

∂2 fk

∂xk i∂xkm
δk i

for m = 1, 2, . . . , n. Therefore, gk+1 is given by

gk+1 = gk + Hδk

where H is the Hessian of f (x). Alternatively, we can write

γk = Hδk (16.10)

where

δk = xk+1 − xk

and
γk = gk+1 − gk

The above analysis has shown that, if the gradient of f (x) is known at two points xk and xk+1, a
relation can be deduced that provides a certain amount of information about H, namely, Eq. (16.10).
Since H is a real symmetric matrix with n × (n + 1)/2 unknowns and Eq. (16.10) provides only n
equations, H cannot be determined uniquely through the use of Eq. (16.10). This problem can be
overcome by evaluating the gradient sequentially at n + 1 points, say at x0, x1, . . . , xn , such that
the changes in x, namely,

δ0 = x1 − x0

δ1 = x2 − x1
...

...
δn−1 = xn − xn−1

form a set of linearly independent vectors. Under these circumstances, Eq. (16.10) yields[
γ0 γ1 . . . γn−1

] = H
[
δ0 δ1 · · · δn−1

]
Therefore, H can be uniquely determined as

H = [
γ0 γ1 · · · γn−1

][
δ0 δ1 · · · δn−1

]−1
(16.11)

The above principles lead to the following algorithm:

Algorithm 2: Alternative Newton algorithm

1. Input x00 and ε. Input a set of n linearly independent vectors δ0, δ1, . . . , δn−1. Set k = 0.

2. Compute gk0.

3. For i = 0 to n − 1 do:
a. Set xk(i+1) = xk i + δi .
b. Compute gk(i+1).
c. Set γk i = gk(i+1) − gk i .

4. Compute Hk using Eq. (16.11). If Hk is not positive definite, force it to become positive definite.

5. Determine Sk = H−1
k .

728 DIGITAL SIGNAL PROCESSING

6. Set dk = −Skgk0 and find αk , the value of α that minimizes f (xk0 + α dk), using a line search.

7. Set x(k+1)0 = xk0 + αkdk and compute f(k+1)0 = f (x(k+1)0).

8. If ‖αkdk‖2 < ε, then output
�x = x(k+1)0, f (

�x) = f(k+1)0, and stop.

Otherwise, set k = k + 1 and repeat from step 2. �

Algorithm 2 is essentially an alternative implementation of the Newton method in which the
generation of H−1 is accomplished using computed data instead of the second derivatives. However,
as in Algorithm 1, for the general nonquadratic problem it is necessary to check, manipulate, and
invert the Hessian in every iteration. In addition, we now need to provide a set of linearly independent
vectors to the algorithm, namely, δ0, δ1, . . . , δn−1. In other words, though of considerable conceptual
value, the algorithm is of little practical usefulness.

Further progress toward the development of the quasi-Newton method can be made by generat-
ing the matrix H−1 from computed data using a set of linearly independent vectors δ0, δ1, . . . , δn−1

that are themselves generated from available data. This objective can be accomplished by generating
the vectors

δk = −Skgk (16.12)

xk+1 = xk + δk (16.13)

and

γk = gk+1 − gk

and then making an additive correction to Sk of the form

Sk+1 = Sk + Ck (16.14)

for k = 0, 1, . . . , n − 1. If a correction matrix Ck can be found such that the conditions

Sk+1γ i = δi for 0 ≤ i ≤ k (16.15)

are satisfied and the vectors δ0, δ1, . . . , δn−1 and γ0,γ1, . . . ,γn−1 generated by this process are
linearly independent, then for the case k = n − 1 we can write

Sn
[
γ0 γ1 . . . γn−1

] = [
δ0 δ1 . . . δn−1

]
or

Sn = [
δ0 δ1 . . . δn−1

][
γ0 γ1 . . . γn−1

]−1
(16.16)

Now from Eqs. (16.11) and (16.16), we have

Sn = H−1 (16.17)

and if k = n, Eqs. (16.12) and (16.17) yield the Newton direction

δn = −H−1gn (16.18)

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 729

Therefore, subject to conditions (i) and (ii) stated earlier, the solution of a convex quadratic problem
can be obtained from Eqs. (16.13) and (16.18) as

�x = xn+1 = xn − H−1gn

The above principles lead to the basic quasi-Newton algorithm which is as follows:

Algorithm 3: Basic quasi-Newton algorithm

1. Input x0 and ε. Set S0 = In and k = 0. Compute g0.

2. Set dk = −Skgk and find αk , the value of α that minimizes f (xk + α dk), using a line search.

3. Set δk = α kdk and xk+1 = xk + δk , and compute fk+1 = f (xk+1).

4. If ‖δk‖2 < ε, then output
�x = xk+1, f (

�x) = fk+1 and stop.

5. Compute gk+1 and set γk = gk+1 − gk .

6. Compute Sk+1 = Sk + Ck .

7. Check Sk+1 for positive definiteness and if it is found to be nonpositive definite force it to become
positive definite.

8. Set k = k + 1 and go to step 2. �

In step 2, the vector −Skgk is denoted as dk , instead of δk as in Eq. (16.12), and f (xk + αdk)
is minimized with respect to α. The purpose of this modification is to make the algorithm applicable
to the general nonquadratic problem where −Skgk may not be the Newton direction. Matrix Sk is
required to be positive definite for each k to ensure that vector dk is a descent direction in each
iteration. To obtain a descent direction in the first iteration, S0 is assumed to be the n ×n unity matrix
in step 1. Vector γk in step 5 is required for the computation of correction matrix Ck in step 6, as
will be demonstrated in Sec. 16.4.2 below.

Algorithm 3 eliminates the need to input a set of linearly independent vectors δ0, δ1, . . . , δn−1

and, in addition, the inversion of Hk is replaced by an additive correction to Sk . However, matrices
S1, S2, . . . need to be checked for positive definiteness and may need to be manipulated. This can be
easily done in practice by diagonalizing Sk+1 and then replacing any nonpositive diagonal elements by
corresponding positive ones. However, this would increase the computational load quite significantly.

16.4.2 Updating Formulas for Matrix Sk +1

The updating formula for matrix Sk+1 of Eq. (16.14) must satisfy strict requirements to be useful
in Algorithm 3. As was stated earlier, for a convex quadratic problem, Eq. (16.15) must be satisfied
and the vectors δ0, δ1, . . . , δn−1 and γ0,γ1, . . . ,γn−1 must be linearly independent. The deriva-
tion and properties of updating formulas of this type have received considerable attention during
the past 30 years or so, and several distinct formulas have appeared in the literature. Early in the
development of the subject, the so-called rank-one formula was proposed, in which the correction
matrix Ck is of rank one. This has largely been replaced in recent years by rank-two formulas, like
the Davidon-Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formulas
[6–10]. A very important property of these two formulas is that a positive definite matrix Sk yields a
positive definite Sk+1 not only for convex quadratic problems but also for the general nonquadratic
problem, provided that the line search in step 2 of the algorithm is exact (see Fletcher [6] for proof).
This property also holds in the case where an inexact line search is used in step 2, except that a scalar

730 DIGITAL SIGNAL PROCESSING

quantity inherent in the computation of Ck must be forced to remain positive. The usefulness of this
property in Algorithm 3 is obvious: the checking and manipulation of Sk+1 in step 7 of the algorithm
become unnecessary, and hence a considerable amount of computation can be avoided.

The DFP and BFGS updating formulas are given by

Sk+1 = Sk + δkδ
T
k

γT
k δk

− Skγkγ
T
k Sk

γT
k Skγk

(16.19)

and

Sk+1 = Sk +
(

1 + γT
k Skγk

γT
k δk

)
δkδ

T
k

γT
k δk

−
(
δkγ

T
k Sk + Skγkδ

T
k

)
γT

k δk
(16.20)

respectively. A condition that guarantees the positive definiteness of Sk+1 in both formulas is

δT
k γk = δT

k gk+1 − δT
k gk > 0 (16.21)

This will be put to good use in Algorithm 5.

16.4.3 Inexact Line Searches

In optimization algorithms in general, the bulk of the computational effort is spent executing line
searches. Consequently, the amount of computation required to solve a problem tends to depend
critically on the efficiency and precision of the line search used. If a high-precision line search is
mandatory in a certain algorithm, then the algorithm can spend a considerable amount of computa-
tional effort minimizing the objective function with respect to scalar α. For this reason, low-precision
or inexact line searches are usually preferable, provided of course that their use does not affect the
convergence properties of the algorithm. Quasi-Newton algorithms have been found to be quite tol-
erant to line-search imprecision. As a result, inexact line searches are almost always used in these
algorithms. An important line search of this type will now be examined.

Let
xk+1 = xk + α dk

where dk is a given descent direction vector and α is an independent variable, and assume that f (xk+1)
is a unimodal function4 of α, with a minimum at some point α = �

α where �
α > 0, as depicted in

Fig. 16.2a. The linear approximation of the Taylor series for f (xk+1) is of the form

f (xk+1) = f (xk) + α gT
k dk (16.22)

where

gT
k dk = d f (xk + α dk)

dα

∣∣∣∣
α=0

is the slope at the origin of f (xk + α dk) as a function of α. Eq. (16.22) represents line A depicted
in Fig. 16.2a. Similarly, the equation

f (xk+1) = f (xk) + ρ α gT
k dk (16.23)

4A unimodal function is one that has only one minimum.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 731

α1 α0 α20

α

f (xk)

f (xk+1)

(a)

B

C

A

α0α20

α

f (xk)

f (xk+1)

(b)

α

(

α

(

Figure 16.2 Inexact line search: (a) Case where the conditions in Eqs. (16.25) and (16.26) are both satisfied,
(b) case where the condition in Eq. (16.25) is violated.

where 0 ≤ ρ ≤ 0.5 represents a line (line B in Fig. 16.2a) whose slope ranges from 0 to 0.5gT
k dk ,

depending on the value of ρ. Let us assume that this line intersects the curve in Fig. 16.2a at point
α = α2. On the other hand, the equation

gT
k+1dk = σ gT

k dk (16.24)

732 DIGITAL SIGNAL PROCESSING

0

α

f (xk)

f (xk+1)

(c)

α1α0 α

(

Figure 16.2 Cont’d Inexact line search: (c) Case where the condition in Eq. (16.26) is violated.

where 0 < σ < 1, and σ ≥ ρ relates the derivative of f (xk+1) at some point α = α1 to the derivative
of the function at α = 0 and represents line C in Fig. 16.2a. Since 0 < σ < 1, we have 0 < α1 <

�
α.

Equations (16.23) and (16.24) define an interval [α1, α2] that brackets the minimum point.
Consequently, the two equations can be used as a termination criterion in a line search, much like
the use of a termination tolerance on x or f (x) in Algorithms 1 to 3. This possibility will now be
examined.

Let us assume that a mechanism is available by which an estimate of �
α, say α0, can be generated.

If the actual value of f (xk+1) at α = α0 is less than the value predicted by the linear approximation
of Eq. (16.23), that is,

f (xk+1) ≤ f (xk) + ρ α0gT
k dk (16.25)

then α0 ≤ α2. On the other hand, if the actual slope at α = α0 is less negative (more positive) than
the slope of the line in Eq. (16.24), that is,

gT
k+1dk ≥ σ gT

k dk (16.26)

then α1 ≤ α0. Under these circumstances, we have α1 ≤ α0 ≤ α2, as depicted in Fig. 16.2a, and a
certain reduction in f (xk+1) is achieved, which can be considered to be acceptable. In other words,
if both Eqs. (16.25) and (16.26) are satisfied, then α0 can be accepted as a reasonable approximation
of �

α.
If either of the conditions in Eqs. (16.25) and (16.26) is violated, then α0 is outside the interval

[α1, α2] and the reduction in f (xk+1) can be considered to be unacceptable. If the condition in
Eq. (16.25) is violated, then α0 > α2, as depicted in Fig. 16.2b; since 0 <

�
α < α0, a better estimate

for �
α (say �

α0) can be deduced by using some interpolation formula. If the condition in Eq. (16.26)
is violated, then 0 < α0 < α1, as depicted in Fig. 16.2c; in this case, a better estimate �

α0 can be
deduced by using some extrapolation formula. With a new estimate for �

α available, the conditions

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 733

in Eqs. (16.25) and (16.26) can be checked again and, if either of the two is not satisfied, the process
is repeated. When an estimate of �

α is found that satisfies both Eqs. (16.25) and (16.26), the search
is terminated. The precision of such a line search can be controlled by choosing the values of ρ and
σ since these parameters control the length of interval [α1, α2].

Interpolation and extrapolation formulas that can be used in the above approach can be readily
deduced by assuming a quadratic representation for f (xk + α dk). If the value of this function and
its derivative with respect to α are known at two points, say, at α = αL and α = α0 where αL < α0,
then for α0 > α2 we can show that

�
α0 = αL + (α0 − αL)2 f ′

L

2[fL − f0 + (α0 − αL) f ′
L]

(16.27)

and for α0 < α1

�
α0 = α0 + (α0 − αL) f ′

0

(f ′
L − f ′

0)
(16.28)

where

fL = f (xk + αLdk)

f ′
L = f ′(xk + αLdk) = g(xk + αLdk)T dk

f0 = f (xk + α0dk)

f ′
0 = f ′(xk + α0dk) = g(xk + α0dk)T dk

An inexact line search due to Fletcher [6] based on the above principles is as follows:

Algorithm 4: Fletcher inexact line search

1. Input xk and dk . Initialize algorithm parameters ρ, σ , τ , and χ . Set αL = 0 and αU = 1099. Compute
gk .

2. Compute fL = f (xk + αL dk) and f ′
L = g(xk + αL dk)T dk .

3. Initialize α0, say α0 = 1 .

4. Compute f0 = f (xk + α0dk).

5. (Interpolation)
If f0 > fL + ρ (α0 − αL) f ′

L , then do:

a. If α0 < αU , then set αU = α0.
b. Compute �

α0 using Eq. (16.27).
c. Compute �

α0L = αL + τ (αU − αL); if �
α0 <

�
α0L , then set �

α0 = �
α0L .

d. Compute �
α0U = αU − τ (αU − αL); if �

α0 >
�
α0U , then set �

α0 = �
α0U .

e. Set α0 = �
α0 and go to step 4.

6. Compute f ′
0 = g(xk + α0dk)T dk .

7. (Extrapolation)

If f ′
0 < σ f ′

L , then do:

a. Compute 	α0 = (α0 − αL) f ′
0/(f ′

L − f ′
0) (see Eq. (16.28)).

b. If 	α0 < τ (α0 − αL), then set 	α0 = τ (α0 − αL).
c. If 	α0 > χ (α0 − αL), then set 	α0 = χ (α0 − αL).
d. Compute �

α0 = α0 + 	α0.
e. Set αL = α0, α0 = �

α0, fL = f0, f ′
L = f ′

0 and go to step 4.

8. Output α0 and f0, and stop. �

734 DIGITAL SIGNAL PROCESSING

Assuming that dk is a descent direction of f (x) at point xk , the algorithm will carry out
interpolations and/or extrapolations as necessary, which will progressively reduce the value of f (xk +
α dk). When the conditions in Eqs. (16.25) and (16.26) are simultaneously satisfied, the algorithm
terminates. The algorithm maintains a running bracket [αL , αU] on the minimum point such that
αL ≤ �

α0 ≤ αU ; if the interpolation formula yields a value of �
α0 outside this interval or very close to the

lower or upper limit, a more reasonable value is assigned to �
α0 in step 5c or 5d. Similarly, if the value

of 	α0 predicted in step 7a is negative, very small or very large, a more reasonable value is assigned
to 	α0 in step 7b or 7c. The precision of the line search depends on the values of ρ and σ . Small values
like ρ = σ = 0.1 yield a high-precision line search, whereas the values ρ = 0.15 and σ = 0.9 yield a
somewhat imprecise one. Suitable values for τ and χ are 0.1 and 9, respectively. Further details about
this line search can be found in the first edition of Fletcher [6]. A closely related inexact line search
proposed by Al-Baali and Fletcher can be found in Ref. [11] (see also second edition of Fletcher [6]).

16.4.4 Practical Quasi-Newton Algorithm

A practical quasi-Newton algorithm that eliminates the problems associated with Algorithms 1 to 3
is detailed below. This is based on Algorithm 3 and uses a slightly modified version of Algorithm 4
as inexact line search. The algorithm is flexible, efficient, and very reliable, and is readily applicable
for the design of digital filters and equalizers, as will be shown in Secs. 16.7 and 16.8.

Algorithm 5: Practical quasi-Newton algorithm

1. (Initialize algorithm)

a. Input x0 and ε1.
b. Set k = m = 0.
c. Set ρ = 0.1, σ = 0.7, τ = 0.1, χ = 0.75,

�

M = 600, and ε2 = 10−10.
d. Set S0 = In .
e. Compute f0 and g0, and set m = m + 2. Set f00 = f0 and 	 f0 = f0.

2. (Initialize line search)

a. Set dk = −Skgk .
b. Set αL = 0 and αU = 1099.
c. Set fL = f0 and compute f ′

L = g(xk + αL dk)T dk .
d. (Estimate α0)

If | f ′
L | > ε2, then compute α0 = −2	 f0/ f ′

L ; otherwise, set α0 = 1.
If α0 ≤ 0 or α0 > 1, then set α0 = 1.

3. Set δk = α0dk and compute f0 = f (xk + δk).

Set m = m + 1.

4. (Interpolation)

If f0 > fL + ρ (α0 − αL) f ′
L and |(fL − f0)| > ε2 and m <

�

M , then do:

a. If α0 < αU , then set αU = α0.
b. Compute �

α0 using Eq. (16.27).
c. Compute �

α0L = αL + τ (αU − αL); if �
α0 <

�
α0L , then set �

α0 = �
α0L .

d. Compute �
α0U = αU − τ (αU − αL); if �

α0 >
�
α0U , then set �

α0 = �
α0U .

e. Set α0 = �
α0 and go to step 3.

5. Compute f ′
0 = g(xk + α0dk)T dk and set m = m + 1.

6. (Extrapolation)

If f ′
0 < σ f ′

L and |(fL − f0)| > ε2 and m <
�

M , then do:

a. Compute 	α0 = (α0 − αL) f ′
0/(f ′

L − f ′
0) (see Eq. (16.28)).

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 735

b. If 	α0 ≤ 0, then set �
α0 = 2α0; otherwise, set �

α0 = α0 + 	α0.
c. Compute �

α0U = α0 + χ (αU − α0); if �
α0 >

�
α0U , then set �

α0 = �
α0U .

d. Set αL = α0, α0 = �
α0, fL = f0, f ′

L = f ′
0 and go to step 3.

7. (Check termination criteria and output results)
a. Set xk+1 = xk + δk .
b. Set 	 f0 = f00 − f0.
c. If (‖δk‖2 < ε1 and |	 f0| < ε1) or m ≥ �

M , then output
�x = xk+1, f (

�x) = fk+1, and stop.
d. Set f00 = f0.

8. (Prepare for next iteration)
a. Compute gk+1 and set γk = gk+1 − gk .
b. Compute D = δT

k γk ; if D ≤ 0, then set Sk+1 = In ; otherwise, compute Sk+1using Eq. (16.19)
or Eq. (16.20).

c. Set k = k + 1 and go to step 2. �

Index m maintains a count of the number of function evaluations and is increased by one for
each evaluation of f0 or f ′

0 in step 3 or 5, and
�

M is the maximum number of function evaluations
allowed. When m becomes greater than

�

M , the algorithm stops.
The estimate of α0 in step 2d can be obtained by assuming that the function f (xk + α dk) can

be represented by a quadratic polynomial of α and that the reduction achieved in f (xk + α dk) by
changing α from 0 to α0 is equal to 	 f0, the total reduction achieved in the previous iteration (see
Prob. 16.11). This estimate can sometimes be quite inaccurate and may in certain circumstances
become negative due to numerical ill-conditioning. For these reasons, if the estimate is equal to or
less than zero or greater than unity, it is replaced by unity.

The quadratic extrapolation in step 6 of the algorithm may sometimes predict a maximum point
at some negative value of α instead of a minimum point at some positive value of α (see Prob. 16.12).
If such a case is identified in step 6b, the value of 2α0 is assigned to �

α0 to ensure that α is changed
in the direction of descent. If αU is fixed by the interpolation, the minimum point cannot exceed this
value; and, if extrapolation results in an unreasonably large value of �

α0, it is replaced by the value
�
α0U computed in step 6c.

While a positive definite matrix Sk will ensure that dk is a direction of descent of function f (x)
at point xk , in some rare occasions the function f (xk + α dk) may not have a well-defined minimum
point. On the other hand, when the value of the function is very small, numerical ill-conditioning may
arise occasionally due to roundoff errors. To avoid these problems, interpolation or extrapolation is
carried out only if the expected reduction in the function f (xk + α dk) is larger than ε2 and an upper
limit in the number of function evaluations has not been exceeded.

If the DFP or BFGS updating formula is used in step 8b and the condition in Eq. (16.21)
is satisfied, then a positive definite matrix Sk will result in a positive definite Sk+1, as was stated
earlier. We will now demonstrate that if the Fletcher inexact line search is used and the search is
not terminated until the inequality in Eq. (16.26) is satisfied, then Eq. (16.21) is, indeed, satisfied.
When the search is terminated in the kth iteration, we have α0 ≡ αk and from step 3 of the algorithm
δk = αkdk . Now from Eqs. (16.21) and (16.26), we obtain

δT
k γk = δT

k gk+1 − δT
k gk

= αk
(
gT

k+1dk − gT
k dk

)
≥ αk(σ − 1)gT

k dk

736 DIGITAL SIGNAL PROCESSING

If dk is a descent direction, then gT
k dk < 0 and αk > 0. Since σ < 1, we conclude that

δT
k γk > 0

Under these circumstances, the positive definiteness of Sk is assured. In exceptional circumstances,
the inexact line search in Algorithm 5 may not force the condition in Eq. (16.26) if the quantity
|(fL − f0)| is less than ε2, and a nonpositive definite Sk+1 matrix may on rare occasions arise. To
safeguard against this possibility and ensure that a descent direction is achieved in every iteration,
the quantity δT

k γk is checked in step 8b and if it is found to be negative or zero, the unity matrix In

is assigned to Sk+1.
The DFP and BFGS updating formulas are very similar, and there are no clear theoretical

advantages that apply to one and not the other. Indeed, the two formulas are interrelated in terms of a
mathematical principle known as duality, which allows each of the two formulas to be derived from
the other by simple algebraic manipulation. Nevertheless, extensive experimental results reported
by Fletcher [6] show that the use of the BFGS formula tends to yield algorithms that are somewhat
more tolerant to line-search imprecision. As a consequence, algorithms based on the BFGS formula
are somewhat more efficient.

Example 16.2 In an application, the piecewise-continuous function

D(ω) =

2ω for 0 ≤ ω < 6

12 for 6 ≤ ω < 12

−ω + 24 for 12 ≤ ω < 16

8 for 16 ≤ ω < 22

5.50.0 11.0 16.5 22.0
0.0

3.5

7.0

10.5

14.0

ω, rad/s

G
ai

n

Figure 16.3 Plots of D(ω) and P(ω) (Example 16.2).
————– D(ω); − − − − − P(ω).

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 737

(see Fig. 16.3) has to be approximated by a polynomial of the form

P(ω) =
5∑

k=0

akω
k

Using Algorithm 5, obtain a set of coefficients ak for k = 0, 1, . . . , 5 that minimizes the
difference between D(ω) and P(ω) in the range 0 ≤ ω ≤ 22 in a least-squares sense.

Solution

A suitable objective function can be constructed as

!(x) = 1

2
L2

2 = 1

2

12∑
i=1

[D(ωi) − P(ωi)]
2

where ωi = 2i − 2 and

x = [x1 x2 · · · x6]T = [a0 a1 · · · a5]T

by sampling the error D(ω) − P(ω) at 12 points. The first partial derivatives of !(x) can
be readily determined as

∂!(x)

∂xk
= −

12∑
i=1

[D(ωi) − P(ωi)]ω
k
i

for k = 1, 2, . . . , 6. Using Algorithm 5 with an initial point x0 = [0 0 · · · 0]T and
a termination tolerance ε1 = 10−6, the coefficients in Table 16.1 were obtained. The
progress of the algorithm is illustrated in Table 16.2. The number of function evaluations
is equal to the number of evaluations of the objective function !(x) plus the number of
evaluations of the partial derivative function ∂!(x)/∂xk . The polynomial P(ω) is com-
pared with D(ω) in Fig. 16.3 and the error between the two is plotted versus frequency

Table 16.1 Coefficients of P(ω)
(Example 16.2)

Coefficient Value

a0 −7.626758E − 2
a1 1.801233
a2 2.389372E − 1
a3 −5.286809E − 2
a4 2.829081E − 3
a5 −4.791669E − 5

738 DIGITAL SIGNAL PROCESSING

Table 16.2 Progress of algorithm
(Example 16.2)

k Funct. evals. Ψ(x)

0 7 5.060000E+2
5 44 3.104894

10 87 1.017671
13 114 1.016952

5.50.0 11.0 16.5 22.0
0.0

0.2

0.4

0.6

0.8

ω, rad/s

 |e
(x

,ω
)|

Figure 16.4 Error |e(x, ω)| versus ω (Example 16.2).

in Fig. 16.4. Note that the error is unevenly distributed with respect to the frequency.
This is a common feature of least-squares solutions and is sometimes of concern.

16.5 MINIMAX ALGORITHMS

The design of digital filters can be accomplished by minimizing one of the norms described in
Sec. 16.2. If the L1 or L2

2 norm is minimized, then the sum of the magnitudes or the sum of the squares
of the elemental errors is minimized. The minimum error achieved usually turns out to be unevenly
distributed with respect to the frequency and may exhibit large peaks (e.g., see the error achieved for
Example 16.2 depicted in Fig. 16.4) which are often objectionable. If prescribed amplitude response
specifications are to be met, the magnitude of the largest elemental error should be minimized and,
therefore, the L∞ norm of the error function should be used. Algorithms developed specifically for
the minimization of the L∞ norm are known as minimax algorithms and lead to designs in which the

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 739

error is uniformly distributed with respect to frequency. The solutions obtained tend to be equiripple,
much like the solutions obtained by using the elliptic approximation of Chap. 10, which is, in effect,
the minimax solution for filters with piecewise-constant amplitude responses.

The most fundamental minimax algorithm is the so-called least-pth algorithm, which involves
minimizing an objective function of the type given in Eq. (16.5) for increasing values of p, say
p = 2, 4, 8, . . . , and is as follows [12].

Algorithm 6: Least-pth minimax algorithm

1. Input
�x0 and ε1. Set k = 1, p = 2, µ = 2,

�

E 0 = 1099.

2. Initialize frequencies ω1, ω2, . . . , ωK .

3. Using
�x k−1 as initial value, minimize

!k(x) = �

E (x)

{
K∑

i=1

[
|ei (x)|

�

E (x)

]p}1/p

(16.29)

where
�

E (x) = max
1≤i≤K

|ei (x)|

with respect to x, to obtain
�x k . Set

�

E k = �

E (
�x).

4. If | �

E k−1 − �

E k | < ε1, then output
�x k and

�

E k , and stop. Otherwise, set p = µp, k = k + 1 and go to
step 3. �

The underlying principle for Algorithm 6 is that the minimax problem is solved by solving a
sequence of closely related problems whereby the solution of one renders the solution of the next
one more tractable. Parameter µ in step 1, which must obviously be an integer, should not be too
large in order to avoid numerical ill-conditioning. A value of 2 was found to give good results.

The minimization in step 3 can be carried out by using any unconstrained optimization algo-
rithm, for example, Algorithm 5 described in the previous section. The gradient of !k(x) is given by
[12]

∇!k(x) =
{

K∑
i=1

[
|ei (x)|

�

E(x)

]p}(1/p)−1 K∑
i=1

[
|ei (x)|

�

E(x)

]p−1

∇|ei (x)| (16.30)

The preceding algorithm works very well, except that it requires a considerable amount of
computation. An alternative and much more efficient minimax algorithm is one described in [13, 14].
This algorithm is based on principles developed by Charalambous [15] and involves the minimization
of the objective function

!(x,λ, ξ) =
∑
i∈I1

1

2
λi [φi (x, ξ)]2 +

∑
i∈I2

1

2
[φi (x, ξ)]2 (16.31)

740 DIGITAL SIGNAL PROCESSING

where ξ and λi for i = 1, 2, . . . , K are constants

φi (x, ξ) = |ei (x)| − ξ

I1 = {i : φi (x, ξ) > 0 and λi > 0} (16.32)

and

I2 = {i : φi (x, ξ) > 0 and λi = 0} (16.33)

The halves in Eq. (16.31) are included for the purpose of simplifying the gradient (see Eq. (16.34)).
If

(a) the second-order sufficiency conditions for a minimum of
�

E(x) hold at
�x,

(b) λi = �

λi for i = 1, 2, . . . , K where
�

λi are the minimax multipliers corresponding to the
minimum point

�x of
�

E(x), and

(c)
�

E(
�x) − ξ is sufficiently small

then it can be proved that
�x is a strong local minimum point of function !(x,λ, ξ) given by

Eq. (16.31) (see [15] for details). In practice, the conditions in (a) are satisfied for most practical
problems. Consequently, if multipliers λi are forced to approach the minimax multipliers

�

λi and
ξ is forced to approach

�

E(
�x), then the minimization of

�

E(x) can be accomplished by minimizing
!(x,λ, ξ) with respect to x. A minimax algorithm based on these principles is as follows:

Algorithm 7: Charalambous minimax algorithm

1. Input
�x0 and ε1. Set k = 1, ξ1 = 0, λ11 = λ12 = . . . = λ1K = 1,

�

E 0 = 1099.

2. Initialize frequencies ω1, ω2, . . . , ωK .

3. Using
�x k−1 as initial value, minimize !(x,λk, ξk) with respect to x to obtain

�x k . Set
�

E k = �

E (
�x k) = max

1≤i≤K
|ei (

�x k)|

4. Compute

�k =
∑
i∈I1

λkiφi (
�x k, ξk) +

∑
i∈I2

φi (
�x k, ξk)

and update

λ(k+1)i =

λkiφi (
�x k, ξk)/�k for i ∈ I1

φi (
�x k, ξk)/�k for i ∈ I2

0 for i ∈ I3

for i = 1, 2, . . . , K where

I1 = {i : φi (
�x k, ξk) > 0 and λki > 0}

I2 = {i : φi (
�x k, ξk) > 0 and λki = 0}

and

I3 = {i : φi (
�x k, ξk) ≤ 0}

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 741

5. Compute

ξk+1 =
K∑

i=1

λ(k+1)i |ei (
�x)|

6. If | �

E k−1 − �

E k | < ε1, then output
�x k and

�

E k , and stop. Otherwise, set k = k + 1 and go to
step 3. �

The gradient of !(x,λk, ξk), which is required in step 3 of the algorithm, is given by

∇!(x,λk, ξk) =
∑
i∈I1

λkiφi (x, ξk)∇|ei (x)|

+
∑
i∈I2

φi (x, ξk)∇|ei (x)| (16.34)

Constant ξ is a lower bound of the minimum of
�

E(x) and as the algorithm progresses, it
approaches

�

E(
�x) from below. Consequently, the number of functions φi (x, ξ) that do not satisfy

either Eq. (16.32) or Eq. (16.33) increases rapidly with the number of iterations. Since the derivatives
of these functions are unnecessary in the minimization of !(x,λ, ξ), they need not be evaluated.
This increases the efficiency of the algorithm quite significantly.

As in Algorithm 6, the minimization in step 3 of Algorithm 7 can be carried out by using
Algorithm 5.

16.6 IMPROVED MINIMAX ALGORITHMS

To achieve good results in the above minimax algorithms, the sampling of e(x,ω) with respect to ω

must be dense; otherwise, the error function may develop spikes in the intervals between sampling
points during the minimization. This problem is usually overcome by using a fairly large value of
K of the order of three to six times the number of variables, e.g., if an eighth-order digital filter is
to be designed, a value as high as 100 may be required. In such a case, each function evaluation in
the minimization of the objective function would involve computing the gain of the filter as many
as 100 times. A single optimization may sometimes necessitate 300 to 600 function evaluations,
and a minimax algorithm like Algorithm 6 or 7 may require 5 to 10 unconstrained optimizations to
converge. Consequently, the amount of computation required to complete a design is considerable.

A technique will now be described that can be used to suppress spikes in the error function
without using a large value of K [16]. The technique entails the application of nonuniform variable
sampling and involves the following steps:

1. Evaluate the error function in Eq. (16.3) with respect to a dense set of uniformly spaced fre-
quencies that span the frequency band of interest, say ω̄1, ω̄2, . . . , ω̄L , where L is fairly large,
of the order of 10 × K .

2. Segment the frequency band of interest into K intervals.

3. For each of the K intervals, find the frequency that yields maximum error. Let these frequencies
be �

ωi for i = 1, 2, . . . , K .

4. Use frequencies �
ωi as sample frequencies in the evaluation of the objective function, i.e., set

ωi = �
ωi for i = 1, 2, . . . , K .

742 DIGITAL SIGNAL PROCESSING

By applying the above nonuniform sampling technique before the start of the second and
subsequent optimizations, frequency points at which spikes are beginning to form are located and
are used as sample points in the next optimization. In this way, the error at these frequencies is
reduced and the formation of spikes is suppressed.

Assume that a digital filter is required to have a specified amplitude response with respect
to a frequency band B that extends from ω̄1 to ω̄L , and let ω̄1, ω̄2, . . . , ω̄L be uniformly-spaced
frequencies such that

ω̄i = ω̄i−1 + 	ω

for i = 2, 3, . . . , L where

	ω = ω̄L − ω̄1

L − 1
(16.35)

These frequency points may be referred to as virtual sample points. Band B can be segmented into
K intervals, say
1 to
K such that
1 and
K are of width 	ω/2,
2 and
K−1 are of width l	ω,
and
i for i = 3, 4, . . . , K − 2 are of width 2l	ω where l is an integer. These requirements can be
satisfied by letting

1 =
{

ω : ω̄1 ≤ ω < ω̄1 + 1

2
	ω

}

2 =
{

ω : ω̄1 + 1

2
	ω ≤ ω < ω̄1 +

(
l + 1

2

)
	ω

}

i =
{

ω : ω̄1 +
[

(2i − 5)l + 1

2

]
	ω ≤ ω < ω̄1 +

[
(2i − 3)l + 1

2

]
	ω

}

for i = 3, 4, . . . , K − 2

K−1 =
{

ω : ω̄1 +
[

(2K − 7)l + 1

2

]
	ω ≤ ω < ω̄1 +

[
(2K − 6)l + 1

2

]
	ω

}

and

K =
{

ω : ω̄1 +
[

(2K − 6)l + 1

2

]
	ω ≤ ω ≤ ω̄L

}

where

ω̄L = ω̄1 + [(2K − 6)l + 1]	ω (16.36)

The scheme is feasible if

L = (2K − 6)l + 2 (16.37)

according to Eqs. (16.35) and (16.36), and is illustrated in Fig. 16.5 for the case where K = 8 and
l = 5.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 743

Ω1

Ω2 Ω3

ΩK−2

ΩK∆ω

ω1 ω2 ω3

ωK−2 ωK−1 ωK

ΩK−1

ω5
 _

ω1
 _

ω9
 _

ω13
 _

ωL−12
 _

ωL−8
 _

ωL−4
 _

ωL
 _

Figure 16.5 Segmentation of frequency axis.

In the above segmentation scheme, there is only one sample in each of intervals
1 and
K , l
samples in each of intervals
2 and
K−1, and 2l samples in each of intervals
3,
4, . . . ,
K−2, as
can be seen in Fig. 16.5. Thus step 3 of the technique will yield �

ω1 = ω̄1 and �
ωK = ω̄L , that is, the

lower and upper band edges are forced to remain sample frequencies throughout the optimization.
This strategy leads to two advantages: (a) the error at the band edges is always minimized, and (b) a
somewhat higher sampling density is maintained near the band edges where spikes are more likely
to occur.

In the above technique, the required amplitude response needs to be specified with respect to
a dense set of frequency points. This problem can be overcome through the use of interpolation.
Let us assume that the amplitude response is specified at frequencies ω̃1 to ω̃S , where ω̃1 = ω̄1 and
ω̃S = ω̄L . The required amplitude response for any frequency interval spanned by four successive
specification points, say ω̃ j ≤ ω ≤ ω̃ j+3, can be represented by a third-order polynomial of ω of the
form

M0(ω) = a0 j + a1 jω + a2 jω
2 + a3 jω

3 (16.38)

and by varying j from 1 to S − 3, a set of S − 3 third-order polynomials can be obtained which
can be used to interpolate the amplitude response to any desired degree of resolution. To achieve
maximum interpolation accuracy, each of these polynomials should as far as possible be used only
in the center of its frequency range of validity. Hence, the first and last polynomials should be used
for frequency ranges ω̃1 ≤ ω < ω̃3 and ω̃S−2 ≤ ω ≤ ω̃S , respectively, and the j th polynomial for
2 ≤ j ≤ S − 4 should be used for the frequency range ω̃ j+1 ≤ ω < ω̃ j+2.

Coefficients ai j for i = 0, 1, . . . , 3 and j = 1 to S − 3 can be determined by computing
ω̃m, (ω̃m)2, and (ω̃m)3 for m = j, j +1, . . . , j +3, and then constructing the system of simultaneous
equations

Ω̃ j a j = M0 j (16.39)

where

a j = [
a0 j · · · a3 j

]
and M0 j = [

M0(ω̃ j) · · · M0(ω̃ j+3)
]T

744 DIGITAL SIGNAL PROCESSING

are column vectors and Ω j is the 4 × 4 matrix given by

Ω̃ j =

1 ω̃ j (ω̃ j)2 (ω̃ j)3

1 ω̃ j+1 (ω̃ j+1)2 (ω̃ j+1)3

1 ω̃ j+2 (ω̃ j+2)2 (ω̃ j+2)3

1 ω̃ j+3 (ω̃ j+3)2 (ω̃ j+3)3

Therefore, from Eq. (16.39) we have

a j = Ω̃−1
j M0 j (16.40)

The above nonuniform sampling technique can be incorporated in Algorithm 6 by replacing
steps 1, 2, and 4 by the modified steps 1A, 2A, and 4A listed below. The filter to be designed is
assumed to be a single-band filter, for the sake of simplicity, although the technique is applicable to
filters with an arbitrary number of bands.

1A. a. Input
�x0 and ε1. Set k = 1, p = 2, µ = 2,

�

E0 = 1099. Initialize K .
b. Input the required amplitude response M0(ω̃m) for m = 1, 2, . . . , S.
c. Compute L and 	ω using Eqs. (16.37) and (16.35), respectively.
d. Compute coefficients ai j for i = 0, 1, . . . , 3 and j = 1 to S − 3 using Eq. (16.40).
e. Compute the required amplitude response for ω̄1, ω̄2, . . . , ω̄L using Eq. (16.38).

2A. Set ω1 = ω̄1, ω2 = ω̄1+l , ωi = ω̄2(i−2)l+1 for i = 3, 4, . . . , K − 2, ωK−1 = ω̄L−l , and
ωK = ω̄L .

4A. a. Compute |ei (
�xk)| for i = 1, 2, . . . , L using Eqs. (16.3) and (16.4).

b. Determine frequencies �
ωi for i = 1, 2, . . . , K and

�

Pk = �

P(
�xk) = max

1≤i≤L
|ei (

�xk)|

c. Set ωi = �
ωi for i = 1, 2, . . . , K .

d. If | �

Ek−1 − �

Ek | < ε1 and | �

Pk − �

Ek | < ε1, then output
�xk and

�

Ek , and stop. Otherwise, set
p = µp, k = k + 1 and go to step 3.

Similarly, the technique can be applied to Algorithm 7, by replacing steps 1, 2, and 6 by the
following modified steps:

1A. a. Input
�x0 and ε1. Set k = 1, ξ1 = 0, λ11 = λ12 = . . . = λ1K = 1,

�

E0 = 1099. Initialize K .
b. Input the required amplitude response M0(ω̃m) for m = 1, 2, . . . , S.
c. Compute L and 	ω using Eqs. (16.37) and (16.35), respectively.
d. Compute coefficients ai j for i = 0, 1, . . . , 3 and j = 1 to S − 3 using Eq. (16.40).
e. Compute the required amplitude response for ω̄1, ω̄2, . . . , ω̄L using Eq. (16.38).

2A. Set ω1 = ω̄1, ω2 = ω̄1+l , ωi = ω̄2(i−2)l+1 for i = 3, 4, . . . , K − 2, ωK−1 = ω̄L−l , and
ωK = ω̄L .

6A. a. Compute |ei (
�xk)| for i = 1, 2, . . . , L using Eqs. (16.3) and (16.4).

b. Determine frequencies �
ωi for i = 1, 2, . . . , K and

�

Pk = �

P(
�xk) = max

1≤i≤L
|ei (

�xk)|
c. Set ωi = �

ωi for i = 1, 2, . . . , K .

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 745

d . If | �

Ek−1 − �

Ek | < ε1 and | �

Pk − �

Ek | < ε1, then output
�xk and

�

Ek , and stop. Otherwise, set
k = k + 1 and go to step 3.

In step 2A, the initial sample frequencies ω1 and ωK are assumed to be at the left-hand and
right-hand band edges, respectively; ω2 and ωK−1 are taken to be the last and first frequencies in
intervals
2 and
K−1, respectively; and each of frequencies ω3, ω4, . . . , ωK−2 is set near the center
of each of intervals
3,
4, . . . ,
K−2. This assignment is illustrated in Fig. 16.5 for the case where
K = 8 and l = 5.

Without the nonuniform sampling technique, the number of samples K should be chosen to
be of the order of three to six times the number of variables, depending on the selectivity of the
filter. While a value of 50 may be entirely satisfactory for an eighth-order lowpass filter with a wide
transition band, a value of 100 may not be adequate for a highly selective narrow-band bandpass filter
of the same order. With the technique, the number of virtual samples is approximately equal to 2l×K ,
according to Eq. (16.37). As l is increased above unity, the frequencies of maximum error �

ωi become
progressively more precise, owing to the increased resolution; however, the amount of computation
required in step 4A of Algorithm 6 or step 6A of Algorithm 7 is proportionally increased. Eventually,
a situation of diminishing returns is reached whereby further increases in l bring about only slight
improvements in the precision of the �

ωi ’s. The values K = 35 and l = 5, which correspond to
35 actual and 322 virtual sample points, were found to give excellent results for a diverse range of
designs, including some complex 28th-order phase-equalizer designs (see Sec. 16.8).

16.7 DESIGN OF RECURSIVE FILTERS

The application of Algorithms 6 and 7 for the design of recursive digital filters can be readily
accomplished by obtaining expressions for the objective functions !k(x) and !(x,λk, ξk) and their
gradients.

16.7.1 Objective Function

The amplitude response of an N th-order filter is given by Eqs. (16.1) and (16.2) as

M(x, ω) = H0

J∏
j=1

N j (ω)

D j (ω)

where

N j (ω) = [
1 + a2

0 j + a2
1 j + 2a1 j (1 + a0 j) cos ωT + 2a0 j cos 2ωT

] 1
2

and

D j (ω) = [
1 + b2

0 j + b2
1 j + 2b1 j (1 + b0 j) cos ωT + 2b0 j cos 2ωT

] 1
2

for j = 1, 2, . . . , J . Hence, Eqs. (16.3) and (16.4) yield

ei (x) = M(x, ωi) − M0(ωi)

and from Eqs. (16.29) and (16.31), !k(x) and !(x,λk, ξk) can be formed.

746 DIGITAL SIGNAL PROCESSING

16.7.2 Gradient Information

Since M0(ωi) in the formula for the error function is a constant, we obtain

∂ei (x)

∂a0l
= a0l + a1l cos ωi T + cos 2ωi T

[Nl(ωi)]2
· M(x, ωi)

∂ei (x)

∂a1l
= a1l + (1 + a0l) cos ωi T

[Nl(ωi)]2
· M(x, ωi)

∂ei (x)

∂b0l
= −b0l + b1l cos ωi T + cos 2ωi T

[Dl(ωi)]2
· M(x, ωi)

∂ei (x)

∂b1l
= −b1l + (1 + b0l) cos ωi T

[Dl(ωi)]2
· M(x, ωi)

∂ei (x)

∂ H0
= 1

H0
· M(x, ωi)

for l = 1, 2, . . . , J and i = 1, 2, . . . , K . Hence the gradient of ei (x), namely, ∇ei (x), can be formed,
and since

∇|ei (x)| = sgn ei (x)∇ei (x)

where

sgn ei (x) =
{

1 if ei (x) ≥ 0
−1 otherwise

∇!k(x) and ∇!(x,λk, ξk) can be evaluated using Eqs. (16.30) and (16.34), respectively.

16.7.3 Stability

The minimax algorithms considered will yield filters which may or may not be stable since the transfer
function obtained may have poles outside the unit circle of the z plane. However, the problem can be
easily eliminated by replacing the offending poles by their reciprocals and simultaneously adjusting
the multiplier constant H0 so as to compensate for the change in gain. This stabilization technique
is described in Sec. 11.4.

16.7.4 Minimum Filter Order

A problem associated with the design of filters with arbitrary amplitude and/or phase responses is
that there are no known methods for the prediction of the filter order that will limit the approximation
error to within prescribed bounds. However, satisfactory results can often be achieved on a cut-and-
try basis by designing filters of increasing orders until the error is sufficiently small to satisfy the
requirements.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 747

16.7.5 Use of Weighting

If x = �x is a solution in the design of a recursive M-band filter, then the error at convergence, namely,

e(
�x, ω) = M(

�x, ω) − M0(ω)

would tend to be uniformly distributed in the passband(s) and stopband(s) such that −δ ≤ e(
�x, ω) ≤ δ

in each and every band, where δ is some positive constant. In such a design, the maximum passband
ripple and minimum stopband attenuation would be given by

Ap = 20 log
1 + δ

1 − δ
dB and Aa = −20 log δ dB

respectively (see Sec. 9.4.6). In effect, the passband ripple would be correlated to the minimum
stopband attenuation and a small or large passband ripple would be associated with a small or
large minimum stopband attenuation. If the required specifications call for a passband ripple that
is different from the stopband ripple, then by using a sufficiently large filter order one would be
able to obtain a filter that just satisfies the required specifications with respect to the most critical
band specification and oversatisfies the specifications in all the other bands. Such a design would, of
course, be suboptimal with respect to the required specifications.

The above problem can be circumvented through the use of weighting as was done in Chap. 15
for the case of equiripple nonrecursive filters. The discretized error can be formulated as

ei (x) = wm[M(x, ωi) − M0(ωi)]

where m = 1, 2, . . . , M and from Eq. (16.29) or Eq. (16.31) a weighted objective function can
be obtained. Minimization of the weighted objective function will result in a uniformly distributed
weighted error such that −δ ≤ e(

�x, ω) ≤ δ and, therefore, the actual error in the various bands will
be

[M(
�x, ωi) − M0(ωi)] = δ

wm

for m = 1, 2, . . . , M . Thus if a band weighting constant wm is larger or smaller than unity, the actual
band error will be reduced or increased relative to the value achieved without weighting.

The required filter specifications can be readily used to calculate the required band errors
δ1, δ2, . . . , δM and if we assume that an equiripple solution exists such that −δ ≤ e(

�x, ω) ≤ δ, then
at convergence we would have

δ1 = δ

w1
δ2 = δ

w2
. . . δM = δ

wM

If we assume that a solution exists that would satisfy the required specification in the first band with
a weighting constant w1 = 1, then the required weighting constants for the remaining bands can be
deduced as

w2 = δ1

δ2
w3 = δ1

δ3
. . . wM = δ1

δM

The use of this weighting scheme will result in a filter in which the band errors are in the correct
proportion with respect to the specifications, and by using a sufficiently high filter order, all the
specifications will be uniformly satisfied. In this way, it may be possible to find a lower-order

748 DIGITAL SIGNAL PROCESSING

approximation that would satisfy the required specifications, which would translate into a more
economical design.

Example 16.3 A lowpass digital filter is to be used in cascade with a D/A converter. The
overall amplitude response from the input of the filter to the output of the D/A converter is
required to be

M(ω) =
{

1.0 for 0 ≤ ω ≤ 4 × 104rad/s
0.01 for 4.5 × 104 ≤ ω ≤ 105

and the amplitude response of the D/A converter is given by

φ(ω) =
∣∣∣∣ sin(ωτ/2)

ωτ/2

∣∣∣∣
where τ is the pulse duration at the output of the D/A converter (see Sec. 6.10). Design the
lowpass filter using Algorithm 7 first without and then with the nonuniform sampling technique
of Sec. 16.6 and compare the results obtained. Use an eighth-order transfer function and assume
that ωs = 2 × 105 rad/s and τ = T .

Solution

The amplitude response of the filter must be modified as [17]

M̃(ω) =
{

1.0/φ(ω) for 0 ≤ ω ≤ 4 × 104 rad/s

0.01/φ(ω) for 4.5 × 104 ≤ ω ≤ 105

to achieve the required amplitude response between the input of the filter and the output
of the D/A converter.

The amount of computation required by optimization methods in general and the
quality of the solution obtained tend to depend heavily on the initial solution assumed.
If the initial point is close to the actual solution, the amount of computation tends to be
low and the precision of the solution tends to be high. In this example, a good initial
estimate of the solution can be obtained by designing an eighth-order lowpass filter with
passband ripple Ap = 0.1 dB, minimum stopband attenuation Aa = 59.5 dB, passband
edge ωp = 4.0×104 rad/s, and stopband edge ωa = 4.5×104 rad/s. A lowpass filter that
would satisfy these specifications can be readily designed using the method of Chap. 12.
The transfer-function coefficients of a design based on the elliptic approximation are
given in Table 16.3.

Using Algorithm 7 with K = 40 (25 sample points in the passband and 15 in
the stopband) first without and then with the technique of Sec. 16.6, designs A and B
of Table 16.3 were obtained. The progress of the algorithm is illustrated in Table 16.4.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 749

Table 16.3 Coefficients of H(z) (Example 16.3)

j a0 j a1 j b0 j b1 j

1 1.0 1.663591 2.964920E − 1 −9.685886E − 1
Initial filter 2 1.0 4.646911E − 1 5.578139E − 1 −7.881536E − 1

3 1.0 −1.082131E − 1 7.999954E − 1 −6.314471E − 1
4 1.0 −2.936755E − 1 9.452177E − 1 −5.696838E − 1

H0 = 1.375814E − 2

1 1.201422 1.802335 1.826366E − 1 −7.094977E − 1
2 1.023690 5.173944E − 1 4.754965E − 1 −6.411708E − 1

Design A 3 9.871557E − 1 −9.208725E − 2 7.562144E − 1 −5.689563E − 1
4 9.970934E − 1 −2.981699E − 1 9.334971E − 1 −5.428448E − 1

H0 = 1.987973E − 2

1 1.255164 1.822823 1.916731E − 1 −7.257967E − 1
2 1.048624 4.620755E − 1 4.905558E − 1 −6.448195E − 1

Design B 3 1.003053 −1.109377E − 1 7.657275E − 1 −5.639906E − 1
4 1.000126 −2.939426E − 1 9.349386E − 1 −5.365697E − 1

H0 = 2.000669E − 2

The magnitude of the error function for each of the two designs is plotted in Fig. 16.6a
and b. As can be seen, spikes are present in the error function of design A but are entirely
eliminated in design B through the use of the technique in Sec. 16.6. The amplitude
response achieved in design B is illustrated in Fig. 16.7.

Table 16.4 Progress of algorithm (Example 16.3)

Design A Design B

k ξ Ψ(x, λk, ξk) ξ Ψ(x, λk, ξk)

1 0.0 7.509080E − 6 0.0 7.509080E − 6
2 7.510177E − 4 5.098063E − 9 7.510177E − 4 6.274917E − 8
3 8.854903E − 4 6.874848E − 11 1.158158E − 3 3.401966E − 9
4 9.013783E − 4 2.732611E − 13 1.250634E − 3 3.311865E − 11
5 9.023167E − 4 2.371856E − 15 1.260096E − 3 4.468298E − 14

750 DIGITAL SIGNAL PROCESSING

0.250 0.50 0.75 1.00

1.5

0

3.0

4.5

6.0

ω, rad/s

|e
(x

,ω
)|

×10−3

×105

(a)

0.250 0.50 0.75 1.00

1.5

0

3.0

4.5

6.0

ω, rad/s

|e
(x

,ω
)|

×10−3

×105

(b)

Figure 16.6 Error |e(x, ω)| versus ω (Example 16.3): (a) Without the technique of Sec. 16.6,
(b) with the technique of Sec. 16.6.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 751

0.250 0.50 0.75 1.00

−53.5

−35.0

−16.5

2.0

ω, rad/s

(a)

G
ai

n,
 d

B

×105

−72.0

1.0250 2.050 3.075 4.100

−0.805

−0.305

0.195

0.695

ω, rad/s

G
ai

n,
 d

B

×104

−1.305

(b)

Figure 16.7 Amplitude response of lowpass filter (Example 16.3): (a) For 0 ≤ ω ≤ 105,
(b) for 0 ≤ ω ≤ 4.1 × 104.

752 DIGITAL SIGNAL PROCESSING

Example 16.4 Through the application of the singular-value decomposition, the problem of
designing two-dimensional digital filters (see Sec. 18.6) can be broken down into a problem
of designing a set of one-dimensional digital filters [18]. The amplitude responses of the one-
dimensional filters so obtained turn out to be quite irregular and, consequently, their design
can be accomplished only through the use of optimization methods. The amplitude response
of such a filter is specified at 21 frequency points, as in Table 16.5, and ωs = 2 rad/s. Obtain
eighth-order designs using Algorithms 6 and 7 in conjunction with the nonuniform sampling
technique of Sec. 16.6 in each case, and compare the results obtained. Assume that K = 35.

Table 16.5 Specified amplitude response (Example 16.4)

ω Gain ω Gain ω Gain

0.00 1.0770 0.35 0.0304 0.70 0.7950
0.05 0.9863 0.40 0.1665 0.75 0.7950
0.10 0.9866 0.45 0.4402 0.80 0.7950
0.15 0.8428 0.50 0.6231 0.85 0.7950
0.20 0.8436 0.55 0.7471 0.90 0.7950
0.25 0.6466 0.60 0.7950 0.95 0.7950
0.30 0.3955 0.65 0.7950 1.00 0.7950

Solution

Using an initial point

x = [1 1 0.75 1 1 1 0.75 1 1 −1 0.75 −1 1 −1 0.75 −1 1]T

designs A and B of Table 16.6 were obtained. The progress of each algorithm is
illustrated in Table 16.7. The maximum amplitude-response errors in designs A and
B were 3.2675 × 10−2 and 3.5292 × 10−2. Evidently, Algorithm 6 gave a somewhat
better design although the amount of computation time was nearly twice that required
by Algorithm 7 in terms of function evaluations. The amplitude response achieved in
design A is illustrated in Fig. 16.8.

Table 16.6 Coefficients of H(z) (Example 16.4)

j a0 j a1 j b0 j b1 j

1 1.002238 2.482808 −4.716961E − 2 −9.493371E − 1
2 −1.973023E + 1 1.880026E + 1 −2.123562E − 1 3.655407E − 1

Design A 3 1.000000 −8.468213E − 1 1.496466E − 1 1.873191E − 2
4 1.830361 −2.033032 6.498825E − 1 −1.155793

H0 = 8.425338E − 3

1 −1.260454E + 1 3.977791E + 1 4.318101E − 1 −1.055599
2 2.377913 −2.490881 −1.831163E − 2 −5.216264E − 1

Design B 3 9.849419E − 1 −8.325620E − 1 3.616646E − 1 −2.230790E − 1
4 5.511632E − 1 −9.021266E − 1 6.733342E − 1 −1.088983

H0 = 6.418782E − 3

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 753

Table 16.7 Progress of algorithms
(Example 16.4)

Design A Design B

k p Ψ(x) ξ Ψ(x, λk, ξk)

1 2 7.106816E − 2 0.0 2.893164E − 4
2 4 3.726389E − 2 2.229626E − 2 4.092217E − 5
3 8 3.329217E − 2 3.397612E − 2 5.915443E − 7
4 16 3.757264E − 2 3.527249E − 2 6.184436E − 20
5 32 3.472619E − 2 3.174503E − 2 4.251311E − 5
6 64 3.359927E − 2 − −
7 128 3.304717E − 2 − −

0.250 0.50 0.75 1.00

0.27

0.57

0.87

1.17

ω, rad/s

G
ai

n

−0.03

Figure 16.8 Amplitude response of one-dimensional digital filter (Design A,
Example 16.4).

16.8 DESIGN OF RECURSIVE DELAY EQUALIZERS

The minimax algorithms described can also be applied for the design of recursive delay equalizers,
as will now be demonstrated. Consider a filter characterized by the transfer function

HF (z) = H0

J∏
j=1

a0 j + a1 j z + a2 j z2

b0 j + b1 j z + b2 j z2
(16.41)

754 DIGITAL SIGNAL PROCESSING

The group delay of the filter is given by

τF (ω) = −dθF (ω)

dω
(16.42)

where

θF (ω) = arg HF (e jωT) (16.43)

From Eqs. (16.41) and (16.42), we can show that

τF (ω) = −T
J∑

j=1

Ñ j (ω)

N j (ω)
+ T

J∑
j=1

D̃ j (ω)

D j (ω)
(16.44)

where

Ñ j (ω) = a2
2 j − a2

0 j + a1 j (a2 j − a0 j) cos ωT

N j (ω) = (a2 j − a0 j)
2 + a2

1 j + 2a1 j (a2 j + a0 j) cos ωT + 4a0 j a2 j cos2 ωT

D̃ j (ω) = b2
2 j − b2

0 j + b1 j (b2 j − b0 j) cos ωT

D j (ω) = (b2 j − b0 j)
2 + b2

1 j + 2b1 j (b2 j + b0 j) cos ωT + 4b0 j b2 j cos2 ωT

The group delay of the filter can be equalized with respect to a frequency range ω1 ≤ ω ≤ ωL

by connecting an allpass delay equalizer in cascade with the filter, as described in Sec. 12.5.1. Let
the transfer function of the equalizer be

HE (z) =
M∏

j=1

1 + c1 j z + c0 j z2

c0 j + c1 j z + z2

The group delay of the equalizer can be obtained as

τE (c, ω) = −dθE (ω)

dω

where

θE (c, ω) = arg HE (e jωT)

Hence

τE (c, ω) = 2T
M∑

j=1

C̃ j (ω)

C j (ω)
(16.45)

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 755

where

C̃ j (ω) = 1 − c2
0 j + c1 j (1 − c0 j) cos ωT

C j (ω) = (1 − c0 j)
2 + c2

1 j + 2c1 j (1 + c0 j) cos ωT + 4c0 j cos2 ωT

and

c = [c01 c11 c02 c12 . . . c1M]T

The equalizer is stable if and only if the transfer function coefficients satisfy the relations

c0 j < 1 c1 j − c0 j < 1 c1 j + c0 j > −1

for j = 1, 2, . . . , M as can be shown by using the Jury-Marden stability criterion (see Sec. 5.3.7).
The region of stability in the (c0, c1) plane is illustrated in Fig. 16.9. This may be referred to as the
feasible region of the parameter space.

−1.0

−1.0

−2.0

1.0

2.0

1.0 c0

c1

Feasible region

Figure 16.9 Feasible region of (c0, c1) plane.

756 DIGITAL SIGNAL PROCESSING

The group delay of the filter-equalizer combination can be expressed as

τFE (c, ω) = τF (ω) + τE (c, ω)

where τF (ω) and τE (c, ω) are given by Eqs. (16.44) and (16.45), respectively.
The required equalizer can be designed by solving the optimization problem [13]

minimize
x

�

E(x)

where

�

E(x) = max
1≤i≤K

|ei (x)|

ei (x) = 1

T
τFE (x, ωi) − τ0

x = [
cT τ0

]T
τ0 = τ

T

and

ω1 ≤ ω ≤ ωL

The problem can be readily solved by using Algorithm 6 or 7. As the solution is approached, variable
τ0 approaches the average of τFE/T with respect to the frequency band of interest, i.e., τ approaches
the average of τFE .

The gradient of |ei (x)|, which is required for the evaluation of ∇!(x,λk, ξk), can be obtained,
as in Sec. 16.7.2, by using the derivatives of ei (x), namely,

∂ei (x)

∂c0l
= U0l + U1l cos ωi T + U2l cos2 ωi T + U3l cos3 ωi T

[Cl(ωi)]2

∂ei (x)

∂c1l
= V0l + V1l cos ωi T + V2l cos2 ωi T + V3l cos3 ωi T

[Cl(ωi)]2

∂ei (x)

∂τ0
= −1

for l = 1, 2, . . . , M and i = 1, 2, . . . , K , where

U0l = 4
[
(1 − c0l)

2 − c0l c
2
1l

]
U1l = −2c1l

(
1 + 6c0l + c2

0l + c2
1l

)
U2l = −8

(
1 + c2

0l + c2
1l

)
U3l = −8c1l

V0l = −4c1l(1 − c0l)(1 + c0l) V1l = −2(1 − c0l)
(
1 + 6c0l + c2

0l + c2
1l

)
V2l = 0 V3l = 8(1 − c0l)c0l

The quality of an equalizer is inversely related to the maximum variation of τFE over the
frequency band of interest. A measure that can be used to assess the quality of an equalizer design

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 757

can, therefore, be defined as

Q = 100(�
τ FE − �

τ FE)

2τ̃FE
(16.46)

where
�
τ FE = max

ω1≤ω≤ωL

τFE

�
τ FE = min

ω1≤ω≤ωL

τFE

and

τ̃FE = 1

2
(�
τ FE + �

τ FE) (16.47)

Alternatively, from Eqs. (16.46) and (16.47))

Q = 100(�
τ FE − �

τ FE)

(�
τ FE + �

τ FE)
(16.48)

As in the design of recursive filters, the application of Algorithm 6 or 7 for the design of
equalizers may yield an unstable design. While it is possible to restore stability in such a design by
replacing poles that are outside the unit circle of the z plane by their reciprocals, the group-delay
characteristic of the equalizer will be changed and the resulting design will not be useful. A brute
force approach to overcome this problem is to carry out several designs using different starting points,
and then select the best design from the set of stable designs. An alternative and more methodical
approach, which was found to give good results, is based on the following algorithm:

Algorithm 8: Design of equalizers

1. Compute τ̃F = (�
τ F + �

τ F)/2, where �
τ F and �

τ F are the maximum and minimum of the filter group
delay, respectively. Assume a 1-section equalizer, and set j = 1 and τ01 = (1 + k1)τ̃F/T , where k1

is a constant in the range 0 ≤ k1 ≤ 0.5. Carry out designs using points 1 to 8 in Table 16.8 for the
initialization of the equalizer coefficients until a stable design is obtained; let the coefficients of the
stable design be c̄01 and c̄11. Compute τ̃F E1 using Eq. (16.47).

Table 16.8 Initialization points in the feasible region of the (c0, c1) plane

No. Point No. Point No. Point

1 (0.3, 0.3) 1A (0.25, 0.50) 1B (0.50, 0.25)
2 (0.7, 0.7) 2A (0.50, 0.75) 2B (0.75, 0.50)
3 (0.7, 1.3) 3A (0.50, 1.25) 3B (0.75, 1.50)
4 (−0.3, 0.3) 4A (−0.25, 0.50) 4B (−0.50, 0.25)
5 (0.3, −0.3) 5A (0.25, −0.50) 5B (0.50, −0.25)
6 (0.7, −0.7) 6A (0.50, −0.75) 6B (0.75, −0.50)
7 (0.7, −1.3) 7A (0.50, −1.25) 7B (0.75, −1.50)
8 (−0.3, −0.3) 8A (−0.25, −0.50) 8B (−0.50, −0.25)

758 DIGITAL SIGNAL PROCESSING

2. a. Increase the number of equalizer sections to two; set j = j + 1 and τ02 = τ̃F E1/T .5

b. Carry out designs using point (c̄01, c̄11) for the initialization of the first section and each of the
points

P12 = [(1 − ε1)c̄01, (1 − ε1)c̄11]

P22 = [(1 + ε1)c̄01, (1 − ε1)c̄11]

P32 = [(1 + ε1)c̄01, (1 + ε1)c̄11]

P42 = [(1 − ε1)c̄01, (1 + ε1)c̄11]

in turn for the initialization of the second section (ε1 is a small positive constant).
c. Compute parameter Q using Eq. (16.48).
d. If the design obtained is successful, i.e., it is stable and has a Q which is significantly lower than

that of the 1-section design, compute τ̃F E2 and continue with step 3; otherwise, change ε1 and
repeat from step 2b.

3. a. Increase the number of equalizer sections by one. Set j = j +1 and τ0 j = τ̃F E(j−1)/T , and carry
out designs using the most recent successful design for the initialization of sections 1, 2, . . . , j−1
and point

P0 j =
[

1

2
(

�
c 0(j−1) + �

c 0(j−1)),
1

2
(

�
c 1(j−1) + �

c 1(j−1))

]

for the initialization of the j th section where
�
c 0(j−1) and

�
c 0(j−1) are the largest and smallest c0

coefficients and
�
c 1(j−1) and

�
c 1(j−1) are the largest and smallest c1 coefficients in the most recent

successful design.
b. If the design obtained in step 3a is unsuccessful, carry out designs using the most recent successful

design for the initialization of sections 1, 2, . . . , j − 1, and each of the points

P1 j = (
�
c 0(j−1),

�
c 1(j−1))

P2 j = (
�
c 0(j−1),

�
c 1(j−1))

P3 j = (
�
c 0(j−1),

�
c 1(j−1))

P4 j = (
�
c 0(j−1),

�
c 1(j−1))

in turn for the initialization of the j th section. If a successful design is obtained, compute τF E j

and proceed to step 4; otherwise, stop.

4. Compute Q; if Q ≤ Qmax, stop; otherwise, go to step 3a. �

Extensive experimentation with Algorithm 8 has shown that for a given filter the solution
points (c0 j , c1 j) tend to form a cluster in the (c0, c1) plane. Hence, once a stable 1-section design is
obtained in step 1, the general domain of a multisection stable design is located. Consequently, as new
sections are added in steps 2 and 3 one by one, a sequence of progressively improved stable designs
are obtained. The logarithm of Q tends to decrease almost linearly with the number of equalizer

5The amount of computation can be reduced by using τ̃F E j /T instead of τ̃F E(j−1)/T for τ0 j in steps 2 and 3; this
modification can be readily incorporated in the algorithm by including the j th equalizer section in the calculation of τ̃FE

using the initial coefficient values for the j th section.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 759

sections at a rate that depends on the selectivity and passband width of the filter. In some examples,
Q was found to reach a lower bound at some value less than 5 percent but the cause has not been
identified.

The optimizations required in steps 1 to 3 can, in principle, be carried out by using either
Algorithm 6 or Algorithm 7. As in the design of recursive filters, Algorithm 7 tends to be much more
efficient, while Algorithm 6 tends to yield better local minima (see Example 16.4). The advantages of
the two algorithms can be combined by using Algorithm 6 in step 1, where a better design is highly
desirable, and Algorithm 7 in steps 2 and 3, where computational efficiency is more important.
Should Algorithm 7 fail to give a successful design in step 2 or 3, Algorithm 6 can be tried as an
alternative.

At the solution, parameter τ0 tends to approach the average of τFE/T . A fairly good estimate
of this quantity for the 1-section design, which can be used to initialize τ01, is obtained by letting
k1 = 0.50 in step 1. This value of k1 was found to give good results.

For lowpass and highpass filters, points (c0 j , c1 j) tend to form clusters in the fourth and first
quadrant of the feasible region, respectively. Hence, only points 5 to 8 of Table 16.8 need be tried
for lowpass filters and only points 1 to 4 need be tried for highpass filters. In the unlikely situation
where none of these points gives a solution, points 1A to 8A and 1B to 8B of Table 16.8 may be
tried.

For filters with moderate or high selectivity, the value of ε1 should be of the order of 0.01 or
less; on the other hand, if the selectivity of the filter is low, a value as high as 0.1 may be necessary.

In steps 2b and 3b, a rectangular domain is established in the parameter space, which encloses
points (c0i , c1i) for i = 1, 2, . . . j − 1, and each of the corner points P1 j to P4 j is used for the
initialization of the j th section. Occasionally, one or two of these points may be located outside the
feasible region of the parameter space and should not be used.

Qmax in step 4 is the maximum allowable value of Q for the application at hand. If the number
of sections is sufficient to reduce Q below Qmax, the algorithm is terminated.

Example 16.5 The coefficients in Table 16.9 represent an elliptic highpass filter satisfying
the following specifications:

• Passband ripple Ap: 0.5 dB

• Minimum stopband attenuation Aa : 50 dB

• Passband edge ωp: 0.75 rad/s

• Stopband edge ωa : 0.64 rad/s

• Sampling frequency ωs : 2.0 rad/s

Table 16.9 Coefficients of HF(z) (Example 16.5)

j a0 j a1 j a2 j b0 j b1 j b2 j

1 −1.0 1.0 0.0 7.022673E − 1 1.0 0.0
2 1.0 1.765666E − 2 1.0 6.452156E − 1 1.351877 1.0
3 1.0 7.880299E − 1 1.0 8.893343E − 1 1.320853 1.0

H0 = 1.033262E − 2

760 DIGITAL SIGNAL PROCESSING

Design a delay equalizer that will reduce the Q of the filter-equalizer combination to a value
less than 1.0 percent.

Solution

The design was carried out using Algorithm 6 for step 1 and Algorithm 7 for steps 2 and 3,
along with the nonuniform variable sampling technique of Sec. 16.6 in each case. In order
to achieve the desired degree of flatness in the delay characteristic, it was found necessary
to increase the number of equalizer sections to five. The progress of the design is illus-
trated in Table 16.10. The transfer-function coefficients for the successive equalizers are
given in Table 16.11. The delay characteristics of the filter-equalizer combination with
no equalizer, a 2-section equalizer, and a 5-section equalizer are illustrated in Fig. 16.10.

Table 16.10 Progress of design
(Example 16.5)

j (c0 j , c1 j) τ̃FEj/T Q

0 — 11.76 66.38
1 (0.3, 0.3) 16.21 34.41
2 (0.6097, 1.482) 20.16 19.79
3 (0.7582, 1.610) 26.47 8.05
4 (0.7690, 1.579) 32.85 2.72
5 (0.7803, 1.567) 39.08 0.83

Table 16.11 Coefficients of HE(z)
(Example 16.5)

Sections j c0 j c1 j

1 1 6.158622E − 1 1.496936

2 1 7.549257E − 1 1.715040
2 7.614137E − 1 1.504945

1 7.552047E − 1 1.726392
3 2 7.826521E − 1 1.431156

3 7.668681E − 1 1.634637

1 7.703755E − 1 1.681226
4 2 7.671458E − 1 1.551901

3 7.945904E − 1 1.391108
4 7.659007E − 1 1.741710

1 7.593030E − 1 1.692920
2 7.602346E − 1 1.483221

5 3 7.985100E − 1 1.365123
4 7.551977E − 1 1.732325
5 7.607868E − 1 1.610131

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 761

0.8130.750 0.875 0.938 1.000

0.53

0.98

1.33

1.68

ω, rad/s

0.28

τ F
E

/τ
F

E
~

Figure 16.10 Delay characteristics of filter-equalizer combination (Example 16.5):
——- no equalizer, − − − 2-section equalizer, · · · · · · 5-section equalizer.

Example 16.6 The coefficients in Table 16.12 represent an elliptic bandpass filter satisfying
the following specifications:

• Maximum Passband ripple Ap: 1.0 dB

• Minimum stopband attenuation Aa : 40 dB

• Low passband edge ωp1: 0.3 rad/s

• High passband edge ωp2: 0.5 rad/s

• Low stopband edge ωa1: 0.2 rad/s

• High stopband edge ωa2: 0.7 rad/s

• Sampling frequency ωs : 2.0 rad/s

Design a delay equalizer that will reduce the Q of the filter-equalizer combination to a value
less than 2.0 percent.

Table 16.12 Coefficients of HF(z) (Example 16.6)

j a0 j a1 j a2 j b0 j b1 j b2 j

1 −1.0 0.0 1.0 7.105797E − 1 −5.558010E − 1 1.0
2 1.0 −1.676442 1.0 8.610875E − 1 −1.312559E − 2 1.0
3 1.0 9.873155E − 1 1.0 8.856595E − 1 −1.099622 1.0

H0 = 2.602536E − 2

762 DIGITAL SIGNAL PROCESSING

Solution

The design was carried out as in Example 16.5. In order to achieve the desired de-
gree of flatness in the delay characteristic, it was found necessary to increase the
number of equalizer sections to four. The progress of the design is illustrated in Ta-
ble 16.13. The transfer-function coefficients for the successive equalizers are given in
Table 16.14. The delay characteristics of the filter-equalizer combination with no equal-
izer, a 2-section equalizer, and a 4-section equalizer are illustrated in Fig. 16.11.

Table 16.13 Progress of design
(Example 16.6)

j (c0 j , c1 j) τ̃FEj/T Q

0 − 11.95 52.22
1 (0.3, 0.3) 16.38 27.78
2 (0.7332, −0.5297) 23.19 9.36
3 (0.7783, −0.7739) 29.13 3.31
4 (0.7469, −0.1775) 32.44 1.96

Table 16.14 Coefficients of HE(z)
(Example 16.6)

Sections j c0 j c1 j

1 1 7.405829E − 1 −5.245374E − 1

2 1 7.814228E − 1 −7.738830E − 1
2 7.783450E − 1 −2.892557E − 1

1 7.621367E − 1 −1.775013E − 1
3 2 7.468771E − 1 −4.845243E − 1

3 7.925267E − 1 −8.497135E − 1

1 7.748554E − 1 −2.501149E − 1
2 7.393927E − 1 −5.571269E − 1

4 3 7.930800E − 1 −8.709362E − 1
4 5.866017E − 1 1.566691E − 1

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 763

0.350.30 0.40 0.45 0.50

0.72

1.32

1.62

ω, rad/s

0.42

1.02

τ F
E
/τ

F
E

~

Figure 16.11 Delay characteristics of filter-equalizer combination (Example 16.6):
——- no equalizer,− − − 2-section equalizer, · · · · · · 4-section equalizer.

The mechanism by which Algorithm 8 leads to a series of progressively improved
stable designs is illustrated in Figs. 16.12 and 16.13. As can be seen in Figs. 16.12a
and 16.13a, the error surface for the 1-section equalizer has a well-defined depres-
sion in the feasible region of the parameter space which tends to be maintained as
the number of equalizer sections is increased; see, for example, the error surface for
the 4-section equalizer illustrated in Figs. 16.12b and 16.13b In effect, a natural bar-
rier is formed around the solution that assures the stability of successive equalizer
sections.

764 DIGITAL SIGNAL PROCESSING

c01

c11

−2−2

2

2

(a)

c04

c14

−2−2

2
2

(b)

Figure 16.12 3-D plots of error function (Example 16.6): (a) 1-section equalizer, (b) 4-section
equalizer (the coefficients of the first three sections have been assumed to have the optimized
values achieved in the 3-section equalizer).

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 765

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
c01

c 1
1

(a)

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
c04

c 1
4

(b)

Figure 16.13 Contour plots of error function (Example 16.6): (a) 1-section equalizer, (b)
4-section equalizer (the coefficients of the first three sections have been assumed to have the
optimized values achieved in the 3-section equalizer).

766 DIGITAL SIGNAL PROCESSING

REFERENCES

[1] K. Steiglitz, “Computer-aided design of recursive digital filters,” IEEE Trans. Audio
Electroacoust., vol. 18, pp. 123–129, June 1970.

[2] A. G. Deczky, “Synthesis of recursive digital filters using the minimum p-error criterion,”
IEEE Trans. Audio Electroacoust., vol. 20, pp. 257–263, Oct. 1972.

[3] J. W. Bandler and B. L. Bardakjian, “Least pth optimization of recursive digital filters,”
IEEE Trans. Audio Electroacoust., vol. 21, pp. 460–470, Oct. 1973.

[4] C. Charalambous, “Minimax design of recursive digital filters,” Computer Aided Design,
vol. 6, pp. 73–81, Apr. 1974.

[5] C. Charalambous, “Minimax optimization of recursive digital filters using recent minimax
results,” IEEE Trans. Acoust., Speech, Signal Process., vol. 23, pp. 333–345, Aug. 1975.

[6] R. Fletcher, Practical Methods of Optimization, Unconstrained Optimization, vol. 1, New
York: Wiley, 1980. (See also R. Fletcher, Practical Methods of Optimization, 2nd ed., New
York: Wiley, 1990.)

[7] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Reading, MA:
Addison-Wesley, 1984.

[8] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, New York: Academic,
1981.

[9] D. M. Himmelblau, Applied Nonlinear Programming, New York: McGraw-Hill, 1972.
[10] B. D. Bunday, Basic Optimisation Methods, London: Edward Arnold, 1984.
[11] M. Al-Baali and R. Fletcher, “An efficient line search for nonlinear least squares,” J. Opt.

Theo. Applns., vol. 48, pp. 359–378, 1986.
[12] C. Charalambous, “A unified review of optimization,” IEEE Trans. Microwave Theory and

Techniques, vol. MTT-22, pp. 289–300, Mar. 1974.
[13] C. Charalambous and A. Antoniou, “Equalisation of recursive digital filters,” Proc. Inst.

Elect. Eng., Part G, vol. 127, pp. 219–225, Oct. 1980.
[14] C. Charalambous, “Design of 2-dimensional circularly-symmetric digital filters,” Proc. Inst.

Elect. Eng., part G, vol. 129, pp. 47–54, Apr. 1982.
[15] C. Charalambous, “Acceleration of the least pth algorithm for minimax optimization with

engineering applications,” Mathematical Programming, vol. 17, pp. 270–297, 1979.
[16] A. Antoniou, “Improved minimax optimisation algorithms and their application in the design

of recursive digital filters,” Proc. Inst. Elect. Eng., part G, vol. 138, pp. 724–730, Dec. 1991.
[17] A. Antoniou, M. Degano, and C. Charalambous, “Compensation for the effects of the D/A

convertor in recursive digital filters,” Proc. Inst. Elect. Eng., part G, vol. 129, pp. 273–279,
Dec. 1982.

[18] A. Antoniou and W.-S. Lu, “Design of two-dimensional digital filters by using the singular
value decomposition,” IEEE Trans. Circuits Syst., vol. 34, pp. 1191–1198, Oct. 1987.

ADDITIONAL REFERENCES

Charalambous, C., “A new approach to multicriterion optimization problem and its application to
the design of 1-D digital filters,” IEEE Trans. Circuits Syst., vol. 36, pp. 773–784, June 1989.

Chottera A. T. and G. A. Jullien, “A linear programming approach to recursive digital filter design
with linear phase,” IEEE Trans. Circuits Syst., vol. 29, pp. 139–149, Mar. 1982.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 767

Lang, M.C., “Least-squares design of IIR filters with prescribed magnitude and phase response and
a pole radius constraint,” IEEE Trans. Signal Processing, vol. 48, pp. 3109–3126, Nov. 2001.

Lim, Y. C., J. H. Lee, C. K. Chen, and R.-H. Yang, “A weighted least-squares approximation for
quasi-equiripple FIR and IIR digital filter design,” IEEE Trans. Signal Processing, vol. 40,
pp. 551–558, Mar. 1992.

Lu, W.-S., S.-C. Pei, and C.-C. Tseng, “A weighted least-squares method for the design of 1-D and
2-D IIR digital filters,” IEEE Trans. Signal Processing, vol. 46, pp. 1–10, Jan. 1998.

Lu, W.-S. and A. Antoniou, “Design of digital filters and filter banks by optimization: A state of the
art review,” in Proc. 2000 European Signal Processing Conference, vol. 1, pp. 351–354,
Tampere, Finland, Sept. 2000.

W.-S. Lu and T. Hinamoto, “Optimal design of IIR digital filters with robust stability using
conic-quadratic-programming updates,” IEEE Trans. Signal Processing, vol. 51, pp.
1581–1592, June 2003.

PROBLEMS

16.1. The step response y(t) of a digital filter is required to approximate the ideal step response

y0(t) =

t for 0 ≤ t < 2
2 for 2 ≤ t < 3

−t + 5 for 3 ≤ t < 4
1 for 4 ≤ t < 5

where t = nT . Formulate a least-squares objective function for the solution of the problem.

16.2. The quantity y should in theory be related to parameters x1 and x2 by a formula of the form

y = a0x1

1 + a1x1 + a2x2

In a specific experiment, the data in Table P16.2 were collected. Construct an objective function that can
be used to find coefficients a0 to a2 such that the maximum difference between y and y0 is minimized.

Table P16.2

x1 x2 y0

1 1 0.1265
2 1 0.2193
1 2 0.0075
2 2 0.1262

0.1 0 0.1859

16.3. Obtain an objective function that can be used to find approximate values of x1 and x2 that satisfy the
relations

x1 = x2
2 − 3 log x1

x2 = (
2x2

1 − 5x1 + 1
)
/x1

16.4. The so-called Rosenbrock function

f (x) = 100
(
x2 − x2

1

)2 + (1 − x1)2

768 DIGITAL SIGNAL PROCESSING

represents a highly nonlinear surface in the shape of a narrow curved falling valley. It is often used to
test the ability of algorithms to maneuver around curved valleys. Show that f (x) has a minimum at point
[1 1]T .

16.5. Find and classify the stationary points of function

f (x) = x2
1 − x2

2 + x2
3 − 2x1x3 − x2x3 + 4x1 + 12

16.6. (a) Show that the function

f (x) = 2x2
1 − 2x1x2 + x2

2 + 2x1 − 2x2

has a minimum.
(b) Find the minimum of the function using Algorithm 1 with x0 = [0 0]T as initial point.

16.7. Repeat Prob. 16.6 for the function

f (x) = x2
1 + 2x2

2 + 4x1 + 4x2

16.8. Show that at point [1 + ε1, 1 + ε2], where |ε1| � 1 and |ε2| � 1, the Rosenbrock function given in
Prob. 16.4 can be approximated by a quadratic function.

16.9. Derive Eq. (16.27).

16.10. Derive Eq. (16.28).

16.11. (a) Show that the estimate of α0 used in step 2d of Algorithm 5 (practical quasi-Newton algorithm),
can be derived by using Eq. (16.27).

(b) Justify the use of α0 = 1, if the estimate in part (a) is unreasonable.

16.12. (a) Show that the extrapolation in step 6 of Algorithm 5 can yield a negative �
α0.

(b) How is the problem in part (a) avoided.
(c) In the interpolation as well as extrapolation routines of Algorithm 5, the search is aborted if the

number of function evaluations exceeds a certain maximum. Why is it advisable to include such a
termination criterion in optimization algorithms?

(d) Explain the purpose of steps 4c, 4d, and 6c in Algorithm 5.

16.13. Write a computer program for Algorithm 5 using the BFGS updating formula.
(a) Use the program to obtain a least-squares solution of the problem in Prob. 16.1.
(b) Repeat part (a) for the problem in Prob. 16.2.
(c) Repeat part (a) for the problem in Prob. 16.3.

16.14. (a) Use the program in Prob. 16.13 to minimize Rosenbrock’s function given in Prob. 16.4.
(b) Repeat part (a) for the function

f (x) = 100[(x3 − 10θ)2 + (r − 1)2] + x2
3

where

θ =

1

2π
tan−1

(
x2

x1

)
for x1 > 0

0.25 for x1 = 0

0.5 + 1

2π
tan−1

(
x2

x1

)
for x1 < 0

and

r =
√

(x2
1 + x2

2)

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 769

16.15. Use the computer program of Prob. 16.13 to minimize the following functions
(a)

f (x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 100(x1 − x4)4

(b)

f (x) =
5∑

i=2

[
100

(
xi − x2

i−1

)2 + (1 − xi)
2
]

16.16. Write a computer program for Algorithm 5 using the DFP updating formula.
(a) Use the program to obtain a least-squares solution of the problem in Prob. 16.1.
(b) Repeat part (a) for the problem in Prob. 16.2.
(c) Repeat part (a) for the problem in Prob. 16.3.

16.17. (a) Run the computer program in Prob. 16.13 (BFGS version) with the function of Prob. 16.4 using
10 different initial points and find the average number of function evaluations. Count one function
evaluation for each evaluation of f (x) and one for each partial derivative of f (x). Repeat this process
using the program in Prob. 16.16 (DFP version). Compare the results obtained.

(b) Repeat part (a) with the function in part (b) of Prob. 16.15.

16.18. Replace the line search in the computer program of Prob. 16.13 (BFGS version) by the line search
described in Ref. [11] (see also second edition of Fletcher [6], pp. 34–35).
(a) Use the program to obtain a least-squares solution of the problem in Prob. 16.1.
(b) Repeat part (a) for the problem in Prob. 16.2.
(c) Repeat part (a) for the problem in Prob. 16.3.

16.19. (a) Run the computer program in Prob. 16.18 (different line search) with the function in Prob. 16.4
using 10 different initial points and find the average number of function evaluations. Count one
function evaluation for each evaluation of f (x) and one for each partial derivative of f (x). Repeat
this process using the program in Prob. 16.13. Compare the results obtained.

(b) Repeat part (a) with the function in part (b) of Prob. 16.15.

16.20. Write a computer program for Algorithm 6 (least-pth minimax algorithm) using the BFGS updating
formula.
(a) Use the program to obtain a minimax solution of the problem in Prob. 16.1.
(b) Repeat part (a) for the problem in Prob. 16.2.
(c) Repeat part (a) for the problem in Prob. 16.3.
(d) Compare the minimax solutions obtained in parts (a) to (c) with the corresponding least-squares

solutions obtained in Prob. 16.13 with respect to the minimum error achieved and the amount of
computation required.

16.21. Write a computer program for Algorithm 7 (Charalambous minimax algorithm) using the BFGS updating
formula.
(a) Use the program to obtain a minimax solution of the problem in Prob. 16.1.
(b) Repeat part (a) for the problem in Prob. 16.2.
(c) Repeat part (a) for the problem in Prob. 16.3.
(d) Compare the minimax solutions obtained with Algorithm 7 with the corresponding solutions

obtained with Algorithm 6 in Prob. 16.20.

16.22. (a) Using the computer program in Prob. 16.20, design a fourth-order highpass digital filter with pass-
band and stopband edges of 3.5 and 1.5 rad/s, respectively. The sampling frequency is required to
be 10 rad/s.

(b) Repeat part (a) with the program in Prob. 16.21.

770 DIGITAL SIGNAL PROCESSING

(c) Design an elliptic highpass filter that would satisfy the same specifications as the filter obtained
in part (a) (i.e., same maximum passband ripple, minimum stopband attenuation, passband and
stopband edges) using the closed-form method of Chap. 12.

(d) Compare the designs obtained in parts (a) and (b), and (a) and (c).

16.23. (a) Using the computer program in Prob. 16.20, design a sixth-order bandpass digital filter with passband
edges 900 and 1100 rad/s, and stopband edges 800 and 1200 rad/s. The sampling frequency is required
to be 6000 rad/s.

(b) Repeat part (a) with the program in Prob. 16.21.
(c) Design an elliptic bandpass filter that would satisfy the same specifications as the filter obtained

in part (a) (i.e., same maximum passband ripple, minimum stopband attenuation, passband and
stopband edges) using the closed-form method of Chap. 12.

(d) Compare the designs obtained in parts (a) and (b), and (a) and (c).

16.24. Modify the computer program in Prob. 16.20 using the nonuniform sampling technique in Sec. 16.6. Then
use the program obtained to design a sixth-order lowpass filter with the idealized piecewise-continuous
amplitude response

M0(ω) =
{

0.545455ω + 1.0 for 0 ≤ ω ≤ 0.55
0.75ω − 0.45 for 0.60 ≤ ω ≤ 1.0

The frequency range 0.55 to 0.60 rad/s represents a transition band in which the amplitude response is
undefined. The sampling frequency is 2.0 rad/s.

16.25. Modify the computer program in Prob. 16.21 using the nonuniform sampling technique in Sec. 16.6.
(a) Use the program obtained to design the lowpass filter described in Prob. 16.24.
(b) Compare the results with those obtained in Prob. 16.24.

16.26. (a) Using the method in Chap. 12, design an elliptic bandpass filter that would satisfy the following
specifications:

• Maximum passband ripple Ap : 1.0 dB
• Minimum stopband attenuation Aa : 30 dB
• Low passband edge ωp1: 0.15 rad/s
• High passband edge ωp2: 0.20 rad/s
• Low stopband edge ωa1: 0.40 rad/s
• High stopband edge ωa2: 0.50 rad/s
• Sampling frequency ωs : 2.0 rad/s

(b) Design a bandpass filter with the same order and band edges as for the filter in part (a) by using the
program in Prob. 16.24. The ideal passband and stopband gains can be assumed to be 1.0 and 0.01,
respectively.

(c) The bandpass filter in part (b) is to be used in cascade with a D/A converter. The amplitude response
of the D/A converter φ(ω) is of the form given in Example 16.3 with τ = T . Using the program in
Prob. 16.24, redesign the filter taking into consideration the amplitude response of the D/A converter.
Use the coefficients of the filter in part (a) for the initialization of the algorithm.

(d) Repeat part (c) with the program in Prob. 16.25.

16.27. (a) The amplitude response of a recursive filter is specified at 21 frequency points as in Table P16.27
and ωs = 2 rad/s. Obtain an eighth-order design using the program in Prob. 16.24.

DESIGN OF RECURSIVE FILTERS USING OPTIMIZATION METHODS 771

Table P16.27 Specified amplitude response

ω Gain ω Gain ω Gain

0.00 0.9135 0.35 0.6232 0.70 0.5681
0.05 0.7080 0.40 0.7986 0.75 0.5725
0.10 0.6939 0.45 0.8186 0.80 0.5758
0.15 0.4062 0.50 0.7808 0.85 0.5780
0.20 0.3872 0.55 0.6598 0.90 0.5794
0.25 0.0070 0.60 0.5544 0.95 0.5802
0.30 0.2888 0.65 0.5623 1.00 0.5805

(b) Design the filter in part (a) using the program in Prob. 16.25.

16.28. (a) Using the method in Chap. 12, design an elliptic lowpass filter that would satisfy the following
specifications:

• Passband ripple Ap: 1.0 dB
• Minimum stopband attenuation Aa : 40 dB
• Passband edge ωp: 0.10 rad/s
• Stopband edge ωa : 0.15 rad/s
• Sampling frequency ωs : 2.0 rad/s

(b) Design a delay equalizer that will reduce the Q of the filter-equalizer combination to a value less
than 5.0 percent using the computer program in Prob. 16.24.

(c) Repeat part (b) using the program in Prob. 16.25.

16.29. (a) Using the method in Chap. 12, design an elliptic highpass filter that would satisfy the following
specifications:

• Passband ripple Ap: 1.0 dB
• Minimum stopband attenuation Aa : 60 dB
• Passband edge ωp: 0.90 rad/s
• Stopband edge ωa : 0.85 rad/s
• Sampling frequency ωs : 2.0 rad/s

(b) Design a delay equalizer that will reduce the Q of the filter-equalizer combination to a value less
than 5.0 percent using the computer program in Prob. 16.24.

(c) Repeat part (b) using the program in Prob. 16.25.

16.30. (a) Design a delay equalizer for the filter in Prob. 16.26a that will reduce the Q of the filter-equalizer
combination to a value less than 5.0 percent using the computer program in Prob. 16.24.

(b) Repeat part (a) using the program in Prob. 16.25.

This page intentionally left blank

CHAPTER

17
WAVE

DIGITAL
FILTERS

17.1 INTRODUCTION

The effects of coefficient quantization in digital filters can be kept small by realizing the transfer
function in terms of a cascade or parallel arrangement of second-order filter sections of the type
described in Sec. 14.4.

Alternative low-sensitivity structures can be obtained by using a synthesis methodology ad-
vanced by Fettweis [1, 3] and developed further by Fettweis, Sedlmeyer, and others [4, 6]. In this
approach, an equally terminated LC filter that would satisfy prescribed specifications is first designed.
Then by replacing analog elements by appropriate digital realizations, the LC filter is transformed
into a topologically equivalent digital filter. The synthesis is based on the wave network characteri-
zation, and for this reason the resulting structures are referred to collectively as wave digital filters.
The low sensitivity comes about because equally terminated LC filters are inherently low-sensitivity
structures.

The chapter begins with a qualitative justification of the low-sensitivity attribute of equally
terminated LC filters. It then proceeds to the derivation of digital realizations for the various analog
elements and then to the design and analysis details of structures based on LC lattice and ladder
filters. An important advantage of wave digital filters is that they can be designed to be free of
zero-input and overflow limit-cycle oscillations. This property of wave digital filters is demonstrated
in Sec. 17.10. Later, in Sec. 17.12, an alternative cascade realization is developed by using the
concept of the generalized-immittance converter. This approach yields filters with improved in-band

773

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

774 DIGITAL SIGNAL PROCESSING

signal-to-noise ratio and leads to digital biquadratic multiple-output realizations that are amenable
to very-large-scale integrated (VLSI) circuit implementation.

17.2 SENSITIVITY CONSIDERATIONS

An equally terminated LC filter like that in Fig. 17.1a can be characterized in terms of its insertion
loss which is defined as

L(ω) = 10 log
Pm(ω)

P(ω)

L(ωi)

ω1 ω2 ω3 ω

L(ω)

(a)

(b)

(c)

xjxj
^

~ LC R

R

Figure 17.1 (a) Equally terminated LC filter, (b) equiripple loss characteristic, (c) L(ωi) versus x j .

WAVE DIGITAL FILTERS 775

P(ω) is the actual output power and Pm(ω) is the maximum output power under perfect matching
conditions. Since the LC 2-port network (or 2-port for short) is a passive lossless network, P(ω) ≤
Pm(ω) and thus L(ω) ≥ 0. Now let us assume that L(ωi) = 0 for i = 1, 2, . . . , as depicted in
Fig. 17.1b, as in the case of an elliptic characteristic. At frequency ωi the filter delivers the maximum
available power, and if any lossless element x j is increased above or decreased below its nominal
value x̂ j , L(ωi) must necessarily increase above zero as illustrated in Fig. 17.1c. Clearly

lim
x j →x̂ j

	L(ωi)

	x j
= d L(ωi)

dx j
= 0

for i = 1, 2, . . . and j = 1, 2, . . . independently of the order of the filter [7]. Consequently, the
sensitivity of the passband loss to element variations in equally terminated LC elliptic filters is
inherently low. Therefore, by simulating filters of this type digitally, low-sensitivity digital-filter
structures can be obtained.

In Sec. 11.6, we have shown that a discrete-time transfer function HD(z) can be readily obtained
by applying the bilinear transformation

s = 2

T

(
z − 1

z + 1

)

to a continuous-time transfer function HA(s). It would, therefore, appear that one should be able
to obtain low-sensitivity digital structures by simply applying the bilinear transformation to signal
flow graphs of equally terminated LC filters. Unfortunately, this approach leads to flow graphs with
delay-free loops which are not realizable (see Sec. 4.8.1). The problem is due to the fact that any
realization of the bilinear transformation has a direct delay-free path between input and output.

The problem of delay-free loops can be avoided in a somewhat circuitous manner by using the
wave network characterization, as will be demonstrated in the next and subsequent sections.

17.3 WAVE NETWORK CHARACTERIZATION

An analog N -port network of the form shown in Fig. 17.2a can be represented by the set of equations

Ak = Vk + Ik Rk

Bk = Vk − Ik Rk

}
for k = 1, 2, . . . , N (17.1)

The parameters Ak and Bk are referred to as the incident and reflected wave quantities, respectively,
and Rk is the port resistance. The representation can be either in the time or frequency domain except
that lower-case symbols are usually used for the time-domain representation.

If two N -ports are cascaded as in Fig. 17.2b, it is necessary to assign

R j = Rk

776 DIGITAL SIGNAL PROCESSING

V2

2

1

N

B2 A2

R2

VN

RN

AN BN

I2

IN

(a)

I1

R1

A1

B1

V1

Ak

Bk

Bj

Aj

Rj Rkj k

(b)

Figure 17.2 (a) Analog N -port network, (b) interconnected N -ports.

so that

Ak = B j and A j = Bk

i.e., a common resistance must be assigned to two interconnected ports to maintain continuity in the
wave flow. Otherwise, Rk can be assigned on an arbitrary basis.

An LC filter can be regarded as a conglomerate of a number of impedances (R, sL , or 1/sC),
a source (voltage or current), and a number of 3-port series and parallel wire interconnections
as illustrated in Fig. 7.3. By realizing these elements digitally and subsequently replacing analog
elements in LC filters by their digital realizations, wave digital filters can be synthesized.

WAVE DIGITAL FILTERS 777

(c)

(d)

(a) (b)

~

A

B

R

II

B

R

A

V VVi

V1 V2

V3

I1

I2

I3

R2

R3

R1

A1

A2

A3

B1

B2

B3

Z(s)

Z(s)

V1 V2

V3

I1 I2

I3

G2

G3

G1

A1 A2

A3

B1 B2

B3

Figure 17.3 (a) Impedance, (b) voltage source, (c) series wire interconnection, (d) parallel wire
interconnection.

17.4 ELEMENT REALIZATIONS

Digital realizations for analog elements can be derived by using the following procedure:

1. Represent the element in terms of the wave characterization.

2. Eliminate variables Vk, Ik, and s, using the loop and node equations and the bilinear transfor-
mation

s = 2

T

(
z − 1

z + 1

)

778 DIGITAL SIGNAL PROCESSING

3. Express the reflected wave quantities as functions of the incident wave quantities.

4. Realize the resulting set of equations using unit delays, adders, inverters, and multipliers.

17.4.1 Impedances

Consider an impedance

Z (s) = sλ Rx (17.2)

where Rx is a positive constant and λ = − 1 for a capacitance, λ = 0 for a resistance, and λ = 1 for
an inductance. From Eq. (17.1) and Fig. 17.3a

A = V + IR (17.3a)

B = V − IR (17.3b)

where

V = IZ (s)

and if the bilinear transformation is applied to continuous-time variables A, B, V, and I , that is,

Q
∣∣∣
s= 2

T

(
z − 1

z + 1

) → Q (17.4)

for Q = A, B, V, and I , we obtain

B = f (z)A (17.5)

where f (z) = Z (s) − R

Z (s) + R

∣∣∣∣
s= 2

T

(
z − 1

z + 1

) (17.6)

Now on choosing

R =
(

2

T

)λ

Rx (17.7)

and then using Eqs. (17.2) and (17.6) we have

f (z) =

z−1 for λ = −1

0 for λ = 0

−z−1 for λ = 1

Hence Eq. (17.5) results in the element realizations of Fig. 17.4; that is, a resistance translates into
a digital sink, a capacitance into a unit delay, and an inductance into a unit delay in cascade with an
inverter.

WAVE DIGITAL FILTERS 779

R R

R

C

L

A

B

A

B

AA

A

B

C

A

B

L

Element Realization Symbol

T
2C

T
2L

−1

Figure 17.4 Digital realization of impedances.

17.4.2 Voltage Sources

For the voltage source of Fig. 17.3b, where

Z (s) = sλ Rx

we can write

A = V + IR B = V − IR V = IZ (s) + Vi

and on eliminating V , I , and s we deduce

B = f1(z)Vi + f2(z)A (17.8)

where f1(z) = 2R

R + Z (s)

∣∣∣∣
s= 2

T

(
z − 1

z + 1

) and f2(z) = Z (s) − R

Z (s) + R

∣∣∣∣
s= 2

T

(
z − 1

z + 1

)

780 DIGITAL SIGNAL PROCESSING

With

R =
(

2

T

)λ

Rx

f1(z) and f2(z) simplify to

f1(z) =

1 − z−1 for λ = −1

1 for λ = 0

1 + z−1 for λ = 1

and f2(z) =

z−1 for λ = −1

0 for λ = 0

−z−1 for λ = 1

Hence Eq. (17.8) yields realizations for capacitive, resistive, and inductive sources, as depicted in
Fig. 17.5.

17.4.3 Series Wire Interconnection

The preceding approach can be readily extended to the realization of wire interconnections. For the
series interconnection of Fig. 17.3c

I1 = I2 = I3 V1 + V2 + V3 = 0

and on eliminating voltages and currents in Eq. (17.1), we can show that

B = (I − Ms)A (17.9)

where I is the 3 × 3 unity matrix, A and B are column vectors

Ms =

ms1 ms1 ms1

ms2 ms2 ms2

ms3 ms3 ms3

 where ms3 = 2 − ms1 − ms2

and msk = 2Rk

R1 + R2 + R3
for k = 1, 2 (17.10)

A realization of Eq. (17.9) is shown in Fig. 17.6a. This can be referred to as type S2 adaptor, i.e.,
series 2-multiplier adaptor.

With R2 unspecified, one can choose

R2 = R1 + R3

so that

ms1 = R1

R2
ms2 = 1

R

RSource Realization Symbol

T
2C

T
2L

R

~ Vi

C
~ Vi

A

B

CVi

BViBVi

A

B

LVi

L

~ Vi

A

−1

BVi

A−1

BVi

Figure 17.5 Digital realization of voltage sources.

781

782 DIGITAL SIGNAL PROCESSING

(a)

1 2

3

A1

A2

A3

B2

B1

B3

−1

−ms1 −ms2

Figure 17.6 Series adaptors: (a) Type S2 adaptor.

according to Eq. (17.10). As a consequence, the above adaptor can be simplified to the series
1-multiplier adaptor (type S1) of Fig. 17.6b.

17.4.4 Parallel Wire Interconnection

Similarly, for the parallel wire interconnection of Fig. 17.3d , we have

V1 = V2 = V3 and I1 + I2 + I3 = 0

and from Eq. (17.1)

B = (Mp − I)A (17.11)

where Mp =

m p1 m p2 m p3

m p1 m p2 m p3

m p1 m p2 m p3

 with m p3 = 2 − m p1 − m p2

m pk = 2Gk

G1 + G2 + G3
for k = 1, 2 (17.12)

WAVE DIGITAL FILTERS 783

(b)

1 2

3

A1

A2

A3

B2

B1

B3

−1

−1 −1

ms1

Figure 17.6 Cont’d Series adaptors: (b) Type S1 adaptor.

and Gk is the port conductance. A realization of Eq. (17.11), referred to here as type P2 adaptor, is
shown in Fig. 17.7a. The corresponding 1-multiplier realization (type P1 adaptor) shown in Fig. 17.7b
is obtained by choosing the conductance at port 2 as

G2 = G1 + G3

so that

m p1 = G1

G2
m p2 = 1

Adaptors S2 and P2 are said to be unconstrained since their port resistances can be assigned
arbitrary values.

17.4.5 2-Port Adaptors

Unconstrained 2-port adaptors can be obtained by modifying series or parallel 3-port adaptors. By
letting A3 = G3 = 0 and deleting the terminal for B3 in the parallel adaptor of Fig. 17.7a, the 2-port

784 DIGITAL SIGNAL PROCESSING

(a)

1 2

3

A1

A2

A3

B2

B1

−1

mp1−1

mp2−1

B3

Figure 17.7 Parallel adaptors: (a) Type P2 adaptor.

adaptor depicted in Fig. 17.8a can be obtained. From Eq. (17.12)

m p1 − 1 = −(m p2 − 1)

and hence the number of multipliers in the adaptor can be reduced to one, as shown in Fig. 17.8b.
The value of multiplier constant µ is given by

µ = m p2 − 1 = G2 − G1

G2 + G1

Alternative adaptor configurations can be found in [8, 9].

17.4.6 Transformers

The above principles can be used for the derivation of digital equivalent networks for 2-port devices
such as transformers, gyrators, and circulators. For example, the ideal transformer of Fig. 17.9a can

WAVE DIGITAL FILTERS 785

(b)

1 2

3

A1

A2

A3

B2

B1

−1

mp1−1

B3

Figure 17.7 Cont’d Parallel adaptors: (b) Type P1 adaptor.

be represented by the relations

V2 = kV1 I2 = −I1/k

where k is the turns ratio. On assigning resistances R1 and R2 to ports 1 and 2, respectively, we can
show that

B = MT A (17.13)

where

MT =
[

m11 m12

m21 m22

]

786 DIGITAL SIGNAL PROCESSING

(a)

(b)

A1 B2

−1

B1 A2

µ

A1 B2

mp1−1

mp2−1

B1 A2

Figure 17.8 (a) 2-port adaptor, (b) 1-multiplier version.

with

m11 = R2 − k2 R1

R2 + k2 R1
m12 = 2k R1

R2 + k2 R1

m21 = 2k R2

R2 + k2 R1
m22 = − R2 − k2 R1

R2 + k2 R1

A realization of Eq. (17.13) is shown in Fig. 17.9b. If we assign R2 = k2 R1, then m11 = 0,
m12 = 1/k, m21 = k, and m22 = 0 and the simplified realization of Fig. 17.9c is obtained.

17.4.7 Unit Elements

Another 2-port element which is often quite useful is the so-called unit element. This device simulates
a transmission line of delay T/2 and characteristic impedance R, and it has been used extensively in
the design of microwave filters. It can be represented by the symbol of Fig. 17.10a and is characterized

WAVE DIGITAL FILTERS 787

I1 1

RV1

B1

A1

I2

R V2

A2

B2

k:

(a)

A1 B2

B1 A2

m22m11

m21

m12

(b)

A1 B2

B1 A2

k

1/k

(c)

Figure 17.9 (a) Ideal transformer, (b) digital realization, (c) simplified version.

by the equations
V1 = k11V2 − k12 I2 (17.14a)

I1 = k21V2 − k22 I2 (17.14b)

where

K =
[

k11 k12

k21 k22

]
= 1√

1 − ŝ 2

[
1 ŝ R

ŝ/R 1

]
(17.15)

with ŝ = sT/2. K is said to be the chain matrix of the 2-port. On assigning port resistances

R1 = R2 = R

788 DIGITAL SIGNAL PROCESSING

V1

B1

A1

V2

A2

B2

(a)

R R2R1

A1 B2

B1 A2

(b)

T/2

T/2

R R

Figure 17.10 (a) Unit element, (b) digital realization.

and then expressing B1 and B2 in terms of A1 and A2 using Eqs. (17.1), (17.4), and (17.14), we
obtain

B1 = z− 1
2 A2

B2 = z− 1
2 A1

Therefore, a digital realization of the unit element can be obtained as shown in Fig. 17.10b.

17.4.8 Circulators

Circulators are N -port devices with N ≥ 3 in which the reflected wave at a given port is equal to
the incident wave at the adjacent port, say, in the counterclockwise direction, i.e.,

B1 = AN B2 = A1 · · · BN = AN−1

A 3-port circulator and its digital realization are illustrated in Fig. 17.11a and 17.11b. Circulators,
like unit elements, are used in the design of microwave circuits and filters but, as will be shown in
Sec. 17.5, they can also be used in the design of an important class of wave digital filters known as
lattice wave digital filters.

17.4.9 Resonant Circuits

Wave digital filters are sometimes designed as simple interconnections of series or parallel resonant
circuits. Digital realizations for circuits of this type can be readily obtained by using the principles
described so far. For example, a series resonant circuit comprising a capacitor C and an inductor L
can be drawn as shown in Fig. 17.12a and on assigning the port resistances

R1 = R R2 = T/2C and R3 = 2L/T

WAVE DIGITAL FILTERS 789

V1 V3

(a)

RR

I1

I3

R

V2

I2

B1 A3

(b)

A1 B3

A2B2

R

Figure 17.11 (a) 3-port circulator, (b) digital realization.

(a)

(b)

3

21

L

C

3

21

L

C

Figure 17.12 (a) Series resonant circuit, (b) digital realization using a 3-port adaptor.

790 DIGITAL SIGNAL PROCESSING

21 C0R0

(a)

(b)

R0 21

Figure 17.13 (a) Series resonant circuit using a unit element and a capacitor, (b) digital realization.

the digital realization of Fig. 17.12b is obtained.
An alternative realization of a series resonant circuit can be derived by using a unit element

terminated by a capacitor, as depicted in Fig. 17.13a. From Eqs. (17.14) and (17.15), the input
impedance of the circuit can be deduced as

Zi = 1

K3

(
sK1 + 1

sK2

)
(17.16)

where

K1 = 1

2
R0T K2 = C0 and K3 = 1 + T

2R0C0

Now if we assign

R0 = 4LC + T 2

2T C
and C0 = 4LC2

4LC + T 2

Eq. (17.16) assumes the form

Zi = sL + 1

sC

i.e., the network realizes a series resonant circuit. On assigning conductances G1 = 1/R0 and
G2 = 2C0/T to ports 1 and 2 of the wire interconnection and then replacing the analog elements by

WAVE DIGITAL FILTERS 791

their digital counterparts, the digital realization of Fig. 17.13b is obtained; the multiplier constant of
the 2-port adaptor can be expressed as

µ = G2 − G1

G2 + G1
= 4LC − T 2

4LC + T 2

17.4.10 Realizability Constraint

Digital networks containing delay-free loops are said to be unrealizable because certain node signals
in such networks cannot be computed (see Sec. 4.8.1). The networks derived so far do not contain
delay-free loops. However, such can arise if adaptor ports with direct paths are interconnected.
The only adaptor port without direct paths is port 2 in adaptors S1 and P1, as can be seen in
Figs. 17.6b and 17.7b. Therefore, for the sake of realizability, every direct connection between
adaptor ports must necessarily involve port 2 of either an S1 or a P1 adaptor.

17.5 LATTICE WAVE DIGITAL FILTERS

With digital realizations available for the various analog elements, several families of wave digital
filters can be obtained by converting classical lattice, ladder, microwave, active, and other types
of analog filters into digital filters [1], [4–6], [9–12]. In this and the next section, we examine the
realization of lattice and ladder digital filters.

The class of wave lattice digital filters is based on the lattice network shown in Fig. 17.14a
where Z A and Z B are usually canonic, lossless, LC impedances (see Refs. [1–3] of Chap. 10).

17.5.1 Analysis

Like any other 2-port network, the lattice network of Fig. 17.14a can be represented by the wave
characterization of Eq. (17.1). Applying Kirchhoff’s laws to the network yields

I1 = 1

Z B
(V1 + V2) − I2

I2 = 2V2 + (Z A − Z B)I1

Z A + Z B

and on assigning port resistances R1 = R2 = R and then eliminating I1, I2, V1, and V2 in Eq. (17.1),
we obtain

B = SA (17.17)

where

S =
[

S11 S12

S21 S22

]
(17.18)

with

S11 = S22 = (SB + SA)/2 (17.19a)

S12 = S21 = (SB − SA)/2 (17.19b)

792 DIGITAL SIGNAL PROCESSING

(a)

(b)

V2 R

I2ZA

ZA

ZB

ZB

I1R

V1~Vi

NA

A1

−1

NB

A2

B1

−1

B2

1
2

1
2

Figure 17.14 (a) Analog lattice network, (b) alternative realization based on wave characterization.

SA = Z A − R

Z A + R
(17.20a)

SB = Z B − R

Z B + R
(17.20b)

17.5.2 Alternative Lattice Configuration

From Eqs. (17.17)–(17.19), we can write

B1 = 1

2
[SA(A1 − A2) + SB(A1 + A2)]

B2 = 1

2
[SA(A2 − A1) + SB(A1 + A2)]

Thus an alternative analog realization for the lattice network can be derived, as depicted in Fig. 17.14b,
where networks NA and NB realize SA and SB , respectively. With port 2 of the network in Fig. 17.14a

WAVE DIGITAL FILTERS 793

(c)

NB

−1

B2

1
2

B1

1
2

NA

A1
−1

Figure 17.14 Cont’d (c) Simplified configuration.

terminated by a resistance R, we have A2 = 0 and hence, the simplified configuration of Fig. 17.14c
is obtained. The transfer functions of the configuration from input to outputs B1 and B2 are given by

H̃ A(s) = B1

A1
= S11 = 1

2
(SB + SA) (17.21a)

HA(s) = B2

A1
= S21 = 1

2
(SB − SA) (17.21b)

If Z A and Z B are assumed to be lossless LC impedances in order to achieve the low-sensitivity
property described in Sec. 17.2, then for s = jω they assume imaginary values and, therefore, from
Eq. (17.20)

|SA| = |SB | = 1 for all ω

i.e., SA and SB are allpass transfer functions.
A lattice analog filter can be designed by expressing its transfer function as the difference of

allpass transfer functions SA and SB , as in Eq. (17.21b), and then realizing these transfer functions.
We shall now consider these tasks in the reverse order.

An allpass transfer function of the form

S = B

A
= Z (s) − R

Z (s) + R

can be realized either directly as an allpass network or indirectly by realizing impedance Z (s) and
then applying the wave characterization, as can be seen from Eq. (17.3). An arbitrary LC impedance
can be realized in terms of the classical Foster or Cauer forms (see Refs. [1–3] of Chap. 10) or a
combination of the two or by a cascade arrangement of unit elements [9]. Consequently, a large
variety of realizations are possible for SA and SB .

The design effort can be kept to a minimum by realizing SA and SB in terms of cascade
arrangements of first- and second-order allpass sections which can be realized by simple reactances

794 DIGITAL SIGNAL PROCESSING

or resonant circuits. Thus, an arbitrary allpass network represented by

S =
K∏

i=1

Si

can be realized by the cascade arrangement illustrated in Fig. 17.15a. Now if the return path from A2

to B1 is included as shown and the port resistances are assumed to be R throughout, an LC network
realizing S can be obtained as illustrated in Fig. 17.15b.

Let us now consider the decomposition of the required transfer function into a difference of
two allpass transfer functions, as in Eq. (17.21b). If we let

SA = −dA(−s)

dA(s)
(17.22a)

SB = dB(−s)

dB(s)
(17.22b)

S11 = 1

2
(SB + SA) = M(s)

D(s)
(17.23a)

S21 = 1

2
(SB − SA) = N (s)

D(s)
(17.23b)

where dA(s) and dB(s) are Hurwitz polynomials (see Refs. [1–3] of Chap. 10) of degree N1 and N2,
respectively, with N1 odd and N2 even, then Eqs. (17.22) and (17.23) give

D(s) = dA(s)dB(s)

1

2
[dA(s)dB(−s) − dA(−s)dB(s)] = M(s)

and

1

2
[dA(s)dB(−s) + dA(−s)dB(s)] = N (s)

where D(s) is of degree N with N odd. Hence

dA(s)dB(−s) = M(s) + N (s) (17.24)

For Butterworth, Chebyshev, inverse-Chebyshev, and elliptic lowpass filters, the factorization
of Eq. (17.24) exists. Furthermore, it can be easily obtained by using a technique due to Rhodes [13],
as will now be shown. If the denominator of the transfer function is expressed as

D(s) = (s + p1)
(N+1)/2∏

i=2

(s + pi)(s + p∗
i)

where p1 is real and Im pi > Im pi−1 > 0 for i = 2, 3, . . . , (N + 1)/2, then the factorization in
Eq. (17.24) can be carried out by assigning poles with odd index to dA(s) and poles with even index

WAVE DIGITAL FILTERS 795

(a)

R

C2

L2

R R R

C1 CK

LK

~ R

(b)

R

S1 S2 SK

RA1 B2R

B1 A2

R R

(c) (d)

1

1

2

Figure 17.15 (a) Realization of transfer function S, (b) corresponding LC network, (c) digital realization of
first-order allpass network, (d) digital realization of second-order allpass network.

796 DIGITAL SIGNAL PROCESSING

to dB(s), that is,

dA(s) = (s + p1)(s + p3)(s + p∗
3) · · · (17.25a)

dB(s) = (s + p2)(s + p∗
2)(s + p4)(s + p∗

4) · · · (17.25b)

For the aforementioned types of filters, the transfer functions H̃ A(s) and HA(s) satisfy the
so-called Feldkeller equation [10] given by

|H̃ A(jω)|2 + |HA(jω)|2 = 1

Consequently, if H̃ A(s) represents a lowpass filter such that

H̃ A(e jω T) ≈
{

1 for 0 < |ω| < ωp

0 otherwise

then

HA(e jω T) ≈
{

1 for ωp < |ω| < ωs/2

0 otherwise
(17.26)

and vice versa. In effect, the configuration of Fig. 17.14c realizes simultaneously a lowpass and a
highpass filter whose frequency responses are complementary. The structure finds applications in
the design of quadrature mirror-image filter banks (see Sec. 18.3).

17.5.3 Digital Realization

Given a lowpass transfer function of the form

HA(s) = N (s)

(s + b01)
∏(N+1)/2

i=2 (s2 + b1i s + b0i)
(17.27)

allpass sections characterized by

H1(s) = −s + b01

s + b01
and Hi (s) = s2 − b1i s + b0i

s2 + b1i s + b0i

are required. H1(s) can be expressed as

H1(s) = Z (s) − R

Z (s) + R
(17.28)

where Z (s) = Rb01/s is the impedance of a capacitor. It can, therefore, be realized by a 2-port
adaptor with a multiplier constant

µ11 = 2 − T b01

2 + T b01
(17.29)

WAVE DIGITAL FILTERS 797

terminated by a unit delay, as depicted in Fig. 17.15c. Similarly, Hi (s) can be put in the form of
Eq. (17.28) with

Z (s) = Rs

b1i
+ Rb0i

sb1i

In this case, Z (s) represents a series resonant circuit with L = R/b1i and C = b1i/Rb0i . A realization
of Hi (s) can, therefore, be obtained as shown in Fig. 17.15d by using the structure of Fig. 17.13b.
The bottom adaptor is used to match the port resistance of the resonant circuit to that of the circulator.
The multiplier constants of the two adaptors are given by

µ1i = 4 − T 2b0i

4 + T 2b0i
(17.30a)

and

µ2i = 2T b1i − T 2b0i − 4

2T b1i + T 2b0i + 4
(17.30b)

for i = 2, 3, . . . , (N + 1)/2.
A transfer function of the form given by Eq. (17.27) can be realized in terms of a wave lattice

structure by using the following procedure:

1. Carry out the decomposition in Eq. (17.24) as in Eq. (17.25) using the technique described.

2. Form the allpass transfer functions SA and SB as in Eq. (17.22).

3. Realize the allpass sections obtained in (2) using the structure in Fig. 17.15c for the first-order
section and the structure of Fig. 17.15d for second-order sections.

4. Form the digital realizations of networks NA and NB and connect them as in Fig. 17.14c.

The transfer function of the digital filter obtained is given by Eq. (17.21b) as

HD(z) = HA(s)
∣∣∣
s= 2

T

(
z − 1

z + 1

)

Example 17.1 Obtain a lattice realization for the fifth-order Butterworth lowpass transfer
function

HA(s) = 1

(s + 1)(s2 + 0.618034s + 1)(s2 + 1.618034s + 1)

Assume that ωs = 2π .

798 DIGITAL SIGNAL PROCESSING

Solution

The polynomials dA(s) and dB(s) are given by

dA(s) = (s + 1)(s2 + 0.618034s + 1)

dB(s) = s2 + 1.618034s + 1

Hence

SA(s) = − (−s + 1)(s2 − 0.618034s + 1)

(s + 1)(s2 + 0.618034s + 1)

SB(s) = s2 − 1.618034s + 1

s2 + 1.618034s + 1

With ωs = 2π , we have T = 1s; on using Eqs. (17.28)–(17.30), the multiplier constants
of the adaptors can be computed as µ11 = 0.333333, µ12 = 0.60, µ22 = − 0.214172,
µ13 = 0.60, and µ23 = −0.603575. The realization obtained is shown in Fig. 17.16.

11

12

13

23

−1

1
2

B2A1

22

Figure 17.16 Lattice realization of Butterworth lowpass filter (Example 17.1).

17.6 LADDER WAVE DIGITAL FILTERS

Although lattice filters are easy to design and have low sensitivity to coefficient quantization at
passband frequencies, the sensitivity at stopband frequencies can be quite high. This is due to the
fact that transmission zeros (frequencies of zero gain) are achieved by the exact cancellation of the

WAVE DIGITAL FILTERS 799

signals through networks NA and NB . A class of wave digital filters in which the sensitivity is low
at passband as well as stopband frequencies can be obtained by realizing the 2-port in Fig. 17.1a in
terms of an LC ladder network [13–17] and then applying the wave characterization. The following
design procedure can be employed.

1. Identify the various series and parallel wire interconnections in the LC filter and number the
ports such that every direct connection between wire-interconnection ports involves a port 2.

2. Assign port resistances to the wire-interconnection ports. For a port terminated by an impedance
sλ Rx or by a voltage source with an internal impedance sλ Rx assign a port resistance (2/T)λ Rx .
Then choose the unspecified port resistances to give as far as possible type S1 and P1 adaptors,
ensuring that a common resistance is assigned to any two interconnected ports.

3. Calculate the multiplier constants for the various adaptors.

4. Replace each analog element in the LC filter by its digital realization.

The transfer function of the filter obtained is given by

HD(z) = B2

A1
= Ao

Bi
(17.31)

where Ao is the incident wave quantity for the output resistance and Bi is the reflected wave quantity
for the input source. From Eqs. (17.3)–(17.6), and (17.8), we obtain Bi = Vi and Ao = 2Vo and so
Eq. (17.31) yields

HD(z) = 2HA(s)
∣∣∣
s= 2

T

(
z − 1

z + 1

)
where HA(s) is the transfer function of the analog filter.

Example 17.2 Figure 17.17a represents an elliptic lowpass filter satisfying the following
specifications:

• Maximum passband loss: 1.0 dB

• Minimum stopband loss: 34.5 dB

• Passband edge:
√

0.5 rad/s

• Stopband edge: 1/
√

0.5 rad/s

The element values of the filter are

C1 = C3 = 2.6189 F C2 = 0.31946 F L2 = 1.2149 H R = 1

Derive a corresponding wave digital filter using a sampling frequency of 10 rad/s.

Solution

The wire interconnections can be identified as illustrated in Fig. 17.17b. Let G jk (R jk)
represent the port conductance (resistance) assigned to the j th port of the kth wire
interconnection. From step 2 of the above procedure the following assignments can be
made:

800 DIGITAL SIGNAL PROCESSING

(a)

(b)

R

RC1 C2

L2

C3~Vi
Vo

R

R~Vi Vo

2

3

4

1

C1

C2

L2

C3

1 2

3

1

2
3

1 2
3

1 2
3

Figure 17.17 (a) Elliptic lowpass filter (Example 17.2), (b) identification of wire
interconnections.

Interconnection 1:

G11 = 1

R
G31 = 2C1

T
G21 = G11 + G31 m p1 = 0.107110

Interconnection 4:

G14 = T

2L2
G34 = 2C2

T
G24 = G14 + G34 m p1 = 0.202741

Interconnection 2:

R12 = 1

G21
R32 = 1

G24
R22 = R12 + R32 ms1 = 0.120194

WAVE DIGITAL FILTERS 801

(c)

2

3

4

1

1 2

3

1 2

3

1

2

3

AoBi

1 2

3

C

C

C

L

Figure 17.17 Cont’d (c) Wave digital filter.

Interconnection 3:

G13 = 1

R22
G23 = 1

R
G33 = 2C3

T

m p1 = 0.214595 m p2 = 0.191234

Interconnections 1, 2, 3, and 4 result in P1, S1, P2, and P1 adaptors, respecti-
vely, as depicted in Fig. 17.17c. The multiplier coefficients can be computed by using
Eqs. (17.10)–(17.12).

The realization of Fig. 17.17c is one of a large number of possibilities since the assignment of
port resistances to wire interconnections is not unique and one may realize the resonant circuits using
unit elements and capacitors or inductors instead of 3-port adaptors, capacitors, and inductors (see
Figs. 17.12 and 17.13). Furthermore, alternative realizations can be obtained by viewing the 2-port
ladder network as a cascade connection of elemental 2-ports which can be realized individually
[18, 19]. While many of these structures may appear to be equivalent in terms of computational
complexity, frequently there are important practical considerations that may favor one or the other
type of structure, depending on the application at hand. Topological constraints necessitate that one
of the adaptors in a ladder digital filter be of the unconstrained type (i.e., of type S2 or P2). Increased
speed of operation and signal-to-noise ratio can often be achieved by assigning port resistances such
that an unconstrained adaptor is obtained at the center of the structure, e.g., for interconnection 2 of
the filter in Fig. 17.17b. There are many other issues involved in the design of wave digital filters, like

802 DIGITAL SIGNAL PROCESSING

their VLSI implementation and the compensation for parasitic delays that arise in practical circuits.
These issues and many others are considered in some detail by Fettweis [9].1

It should be mentioned that the numbers of delays and adders in ladder wave digital filters can
sometimes be reduced somewhat by employing a pair of impedance transformations first used by
Bruton [20] in the domain of active filters. In these transformations, each impedance Z (s) in the analog
filter is replaced by s Z (s) or Z (s)/s. In the first case, impedances Rx , Rx/s, and s Rx are replaced
by impedances s Rx , Rx , and s2 Rx , that is, resistances translate into inductances, capacitances into
resistances, and inductances into s2-impedance elements. With s= jω, we have s2 =−ω2, that is, an
s2-impedance element behaves as a frequency-dependent negative resistance (FDNR) and for this
reason the transformed network is often referred to as an FDNR network. With this transformation,
filters with a large number of capacitances and a small number of inductances, e.g., minimum
inductance lowpass and highpass filters, translate into filters with a large number of resistances and
a small number of s2-impedance elements. Since the digital equivalents of resistances are simple
sinks, the FDNR filter leads to a somewhat more economical digital design [21].

17.7 FILTERS SATISFYING PRESCRIBED SPECIFICATIONS

In lattice as well as ladder digital filters, the wave quantities are transformed using the bilinear
transformation (see Eq. (17.4)) and, therefore, the filters obtained, like other filters based on the
bilinear transformation, are subject to the warping effect discussed in Sec. 11.6.3.

Wave digital filters that would satisfy prescribed specifications can be designed by using the
prewarping techniques of Chap. 12. A detailed design procedure is as follows:

1. Using the specifications, derive an appropriate normalized lowpass transfer function according
to steps 1 to 3 in Sec. 12.4.

2. Realize the transfer function derived in step 1 as an equally terminated LC lattice or ladder filter.

3. Transform the lowpass filter realized in step 2 using the appropriate formula in Table 12.1.

4. Form the desired digital filter using the procedure in Sec. 17.5 or 17.6.

For the case of ladder filters, step 2 can be carried out by using filter-design tables like those
found in Skwirzynski [14], Saal [15], and Zverev [16] or by using one of several available filter-design
software.2

Example 17.3 Design a wave bandpass digital filter that would satisfy the following specifi-
cations:

• Maximum passband loss: 1.0 dB

• Minimum stopband loss: 35.0 dB

• Lower and upper passband edges: 2.0 and 3.0 rad/s

• Lower and upper stopband edges: 1.5 and 3.5 rad/s

• Sampling frequency: 10 rad/s

1This paper includes,in addition, a fairly long list of references on the subject.
2See Circuit Sage at http://www.circuitsage.com/filter.html.

http://www.circuitsage.com/filter.html

WAVE DIGITAL FILTERS 803

Solution

On choosing an elliptic approximation and then using the procedure in Sec. 12.4, we
obtain

n = 3 k = 0.4472136 ω0 = 3.183099 B = 3.093133

where n and k are the order and selectivity factor of the normalized lowpass filter,
respectively, and ω0 and B are the parameters in the transformation

s = 1

B

(
s̄ + ω2

0

s̄

)

A normalized lowpass LC filter with n = 3 and k = 0.45 can be obtained from
Ref. [14] as depicted in Fig. 17.17a, where we now have

C1 = C3 = 2.8130 F C2 = 0.26242 F L2 = 1.3217 H R = 1

On applying the above lowpass-to-bandpass transformation, the bandpass filter of
Fig. 17.18a can be formed, where

L ′
1 = L ′

4 = 0.108525 H C ′
1 = C ′

4 = 0.909434 F

L ′
2 = 0.427301 H C ′

2 = 0.230975 F

L ′
3 = 1.16333 H C ′

3 = 0.0848396 F

R = 1

Table 17.1 Multiplier constants
(Example 17.3)

Adaptor Type k mpk or msk

1 P1 1 0.256751
2 P1 1 0.573642
3 S1 1 0.117926
4 P1 1 0.216662
5 P2 1 0.973738

2 0.263494
6 P1 1 0.702492
7 P1 1 0.576495
8 S1 1 0.500000

804 DIGITAL SIGNAL PROCESSING

(b)

(a)

C

2

3

41

8

7

6

5

1 2

3

1 2

3

1

2

3

1 2

3

L

1 2

3

C

1

2

3C

1

2

3C

1

2

3

L

1 2

3

C

L

L

R

~ R

C¢3

C¢4

C¢2

C¢1

L¢2

L¢1 L¢3
L¢4

Figure 17.18 (a) Bandpass elliptic filter (Example 17.3), (b) wave digital filter.

Subsequently, on using the procedure of Sec. 17.6, the wave digital filter of Fig.
17.18b can be derived. The resulting multiplier constants are given in Table 17.1. The
loss characteristic achieved is plotted in Fig. 17.19.

WAVE DIGITAL FILTERS 805

0 1 2 3 4 5

L
os

s,
 d

B

ω, rad/s

0

0.5

1.0

15

20

25

30

35

40

45

50

Figure 17.19 Loss characteristic of a bandpass filter (Example 17.3).

17.8 FREQUENCY-DOMAIN ANALYSIS

Once a wave digital filter is designed, a frequency-domain analysis is often necessary to study
quantization effects or simply to verify the design. Such an analysis will now be described.

Consider the network in Fig. 17.20a, where adaptor q is terminated by subnetworks Np, Nr ,
and Ns . Adaptor q can be characterized by

Hq (z) = B2q

A1q
F1q = B1q

A1q
F2q = B2q

A2q

Hq (z) is the transfer function of the terminated adaptor, and F1q and F2q are its input functions at
ports 1 and 2, respectively. Similarly, subnetworks Np, Nr , and Ns can be characterized by the input
functions

Fp = Bp

Ap
= A1q

B1q
Fr = Br

Ar
= A2q

B2q
Fs = Bs

As
= A3q

B3q

Expressions for Hq (z), F1q , and F2q in terms of Fp, Fr , and Fs for series and parallel adaptors
can be derived from Eqs. (17.9) and (17.11). For the S2 adaptor we have

Hq (z) = ms2(Fs − 1)

D1
F1q = −C1 + C3 Fr − C2 Fs − Fr Fs

D1

F2q = −C2 + C3 Fp − C1 Fs − Fp Fs

D2

806 DIGITAL SIGNAL PROCESSING

(b)

(a)

A1q

B1q

As Bs

Ar

Br

Ap

Bp

A2q

B2q

B3q A3q

q

Ns

Np Nr1

2

3

B2n

N1 N2

1 2 3 4 n

A11

Figure 17.20 Analysis of wave digital filters: (a) Embedded adaptor, (b) block diagram.

where

D1 = 1 + C2 Fr − C3 Fs + C1 Fr Fs D2 = 1 + C1 Fp − C3 Fs + C2 Fp Fs

C1 = ms1 − 1 C2 = ms2 − 1 C3 = ms1 + ms2 − 1

Similarly, for the P2 adaptor

Hq (z) = m p1(1 + Fs)

D1
F1q = C1 + C3 Fr − C2 Fs + Fr Fs

D1

F2q = C2 + C3 Fp − C1 Fs + Fp Fs

D2

WAVE DIGITAL FILTERS 807

where

D1 = 1 − C2 Fr + C3 Fs + C1 Fr Fs D2 = 1 − C1 Fp + C3 Fs + C2 Fp Fs

C1 = m p1 − 1 C2 = m p2 − 1 C3 = m p1 + m p2 − 1

These relations apply to S1 and P1 adaptors except that ms2 = 1 and m p2 = 1.
Now consider the filter of Fig. 17.20b and assume that the adaptors of the main path are

numbered consecutively from input to output. The overall transfer function of the filter is

H (z) = B2n

A11

Since the reflected and incident wave quantities at the output of adaptor q become the incident and
reflected wave quantities at the input of adaptor q + 1, respectively, we can write

H (z) = B21

A11

B22

B21
· · · B2n

B2(n−1)

= B21

A11

B22

A12
· · · B2n

A1n

Therefore

H (z) =
n∏

q=1

Hq (z) (17.32)

For the connection of Fig. 17.20a, Hq (z) and F1q depend on Fs and Fr , as was shown earlier.
If Ns (Nr) comprises a cascade of adaptors, Fs (Fr) will depend on the input function of the second
adaptor in the cascade, which will in turn depend on the input function of the third adaptor, and
so on. Consequently, for the filter in Fig. 17.20b, the input functions of branches N1, N2, . . . must
be evaluated first, starting with the last adaptor and proceeding to the branch input in each case.
Subsequently, the main-path adaptors should be analyzed, starting with the output adaptor and
proceeding to the filter input. With the frequency responses of the individual main-path adaptors
known, the overall response of the filter can be evaluated by using Eq. (17.32).

17.9 SCALING

The signal-to-noise ratio in wave digital filters can be improved by applying signal scaling, as in
other types of digital filters. This can be achieved by scaling the incident and reflected wave quan-
tities at port 1 of the i th adaptor by factors λi and 1/λi , respectively, as depicted in Fig. 17.21. The
first multiplier scales down the inputs of adaptor multipliers in order to avoid overflow, whereas the
second one ensures that the input functions at ports 1 and 2 of the adaptor remain unchanged after
the application of signal scaling. Note that the two multipliers form a 2-port that is equivalent to an
ideal transformer in the analog network with a turns ratio of λ, as can be seen in Fig. 17.9c.

If the top and bottom multiplier constants are not exactly the reciprocal of each other, then
frequency-response errors similar to coefficient-quantization errors will occur. This problem can be

808 DIGITAL SIGNAL PROCESSING

2

3

1

3

λ3

3

21 1

1
λ3

λ1 λ2

3

21 2

1
λ1

1
λ2

Figure 17.21 Application of signal scaling to wave digital filters.

avoided in practice by choosing λ to be a power of 2. This choice of constant has the additional
advantage that both scaling multiplications become simple data shifts which are easy to implement.
Unfortunately, however, with this choice of λ the signal-to-noise ratio cannot be optimal.

17.10 ELIMINATION OF LIMIT-CYCLE OSCILLATIONS

In Sec. 14.9.3, it was shown that in certain second-order structures zero-input limit-cycle oscillations
can be eliminated by carrying out the quantization of signals in terms of magnitude truncation. A
similar approach is applicable for the class of wave digital filters, as was demonstrated by Fettweis
and Meerkötter [22]. The details of this approach are as follows.

Consider the wave digital filter of Fig. 17.22, where block B is a linear subnetwork containing
adders, multipliers, and interconnections but no unit delays or delay-free loops. Further, assume that
signal quantization is carried out by using quantizers Qk for k = 3, 4, . . . , N , as shown, and let the
block enclosed by dashed lines be referred to as block B̃. The quantity

pk(n) = Gka2
k (n)

where Gk is the conductance assigned to the kth port, represents the power3 stored in the kth unit
delay at instant nT . Since port conductances can be assigned on an arbitrary basis as long as pairs
of interconnected ports are assigned the same conductances (see Sec. 17.3), Gk for k = 3, 4, . . . , N
can be assumed to be positive without any loss of generality. Hence the total power stored in all the

3Fettweis refers to this quantity as pseudopower to distinguish it from its analog counterpart which is actual power.

WAVE DIGITAL FILTERS 809

a3(n)

B

aN(n)b3(n)
~

bN(n)
~

Q

b3(n)

Q

bN(n)

a1(n)

b1(n)
1

3

2

N b2(n)

a2(n)

B
~

Figure 17.22 Elimination of zero-input limit-cycle oscillations in wave digital filters.

unit delays at instant nT can be obtained as

pD(n) =
N∑

k=3

Gka2
k (n)

The increase in pD(n) after one filter cycle is given by

	pD(n) = pD(n + 1) − pD(n)

=
N∑

k=3

Gk
[
a2

k (n + 1) − a2
k (n)

]
and since

ak(n + 1) = b̃k(n)

we have

	pD(n) =
N∑

k=3

Gk
[
b̃

2
k(n) − a2

k (n)
]

(17.33)

The total power absorbed by block B̃ at instant nT is given by

p̃N (n) =
2∑

k=1

Gk
[
a2

k (n) − b2
k (n)

] +
N∑

k=3

Gk
[
a2

k (n) − b̃ 2
k(n)

]
(17.34)

(see Ref. [3]). Hence, Eqs. (17.33) and (17.34) give

810 DIGITAL SIGNAL PROCESSING

	pD(n) = − p̃N (n) +
2∑

k=1

Gk
[
a2

k (n) − b2
k (n)

]
and under zero-input conditions such that a1(n) = a2(n) = 0, we have

	pD(n) = − p̃N (n) − G1b2
1(n) − G2b2

2(n) (17.35)

If the reflected quantities at ports 3 to N are quantized such that

|b̃k(n)| ≤ |bk(n)| for k = 3, 4, . . . , N (17.36)

then from Eqs. (17.35) and (17.36), the power absorbed by block B̃ can be expressed as

p̃N (n) =
2∑

k=1

Gk
[
a2

k (n) − b2
k (n)

] +
N∑

k=3

Gk
[
a2

k (n) − b̃ 2
k(n)

]

≥
N∑

k=1

Gk
[
a2

k (n) − b2
k (n)

] = pN (n) (17.37)

where pN (n) is the power absorbed by block B. Now if block B represents a wave digital filter
derived from a passive network, we have [3]

pN (n) ≥ 0 (17.38)

and from Eqs. (17.37) and (17.38), we conclude that

p̃N (n) ≥ 0

Hence Eq. (17.35) yields

	pD(n) ≤ 0

Under these circumstances, the total power stored in the unit delays cannot increase and, for the rea-
sons stated immediately after Eq. (14.88), the wave digital filter cannot sustain zero-input limit-cycle
oscillations. Therefore, wave digital filters obtained from passive networks support the elimination
of zero-input limit cycles.

Overflow oscillations can be eliminated as in other realizations that support the elimination of
zero-input limit cycles, as described in Sec. 14.9.4 (see Ref. [36] of Chap. 14).

17.11 RELATED SYNTHESIS METHODS

An alternative but closely related methodology for the design of low-sensitivity digital filters has been
developed by Vaidyanathan and Mitra and others [23, 24]. This methodology encompasses concepts
that are analogous to those found in classical network synthesis (such as, passivity, positive real

WAVE DIGITAL FILTERS 811

functions, 2-port networks, and extraction of elements) and provides a framework for the realization
to be carried out entirely in the z domain without recourse to LC prototype filters. The methodology
can be used for the realization of a variety of types of filters, including wave ladder and lattice filters
as well as low-sensitivity nonrecursive filters.

Yet another class of low-sensitivity filters is the class of lossless-discrete-integrator (LDI)
ladder filters, proposed by Bruton [25] and developed further by Bruton and Vaughan-Pope, and
others [26–28]. As in wave digital filters, low sensitivity is achieved by emulating analog LC filters.
In this approach, the problem of delay-free loops is avoided by replacing the bilinear transformation
by the transformation

s = 1

T

(
z − 1

z
1
2

)

In this way, the required digital filter is obtained directly from the analog filter without recourse
to the wave characterization. The penalty paid is that the one-to-one correspondence between the
imaginary axis of the s plane and the unit circle of the z plane is lost and, as a consequence, various
techniques must be used to correct the distortion introduced in the amplitude response.

17.12 A CASCADE SYNTHESIS BASED ON THE WAVE
CHARACTERIZATION

The wave characterization along with the concept of the generalized-immittance converter (GIC)
[29] can be used to develop an alternative to the cascade realization of Sec. 8.2.5 [11, 30]. The details
of this approach are as follows.

17.12.1 Generalized-Immittance Converters

A GIC is a 2-port whose input admittance Yi is related to the load admittance YL by

Yi = h(s)YL

where h(s) is the admittance conversion function of the device. Two specific types of GIC can be
identified, namely, voltage- and current-conversion GICs. The current-conversion GIC (CGIC) is
characterized by the terminal relations

V1 = V2 I1 = −h(s)I2 (17.39)

This is usually represented by the symbol of Fig. 17.23a.

17.12.2 Analog G-CGIC Configuration

By interconnecting three conductances and two CGICs, we can construct the G-CGIC configuration
of Fig. 17.24a [31]. If each CGIC is assumed to have a conversion function h(s) = s, straightforward
analysis yields

Vo

Vi
= k0G0 + k1G1s + k2G2s2

G0 + G1s + G2s2

812 DIGITAL SIGNAL PROCESSING

(b)

(a)

A2

V2

A1

B2B1

I2I1

V1 G1 G2

h(s) : 1

A1

A2

B2

B1

−1

Figure 17.23 (a) Current-conversion generalized-immittance converter, (b) digital realization.

and if Gr = br and kr = ar/br for r = 0, 1, 2, the network realizes the transfer function

H (s) = a0 + a1s + a2s2

b0 + b1s + b2s2
(17.40)

By cascading a number of sections like the above any stable continuous-time transfer function can
be realized.

17.12.3 Digital G-CGIC Configuration

Like an LC network, the G-CGIC network of Fig. 17.24a can be readily simulated by digital elements.
We need only develop a digital realization for the CGIC by using the procedure outlined in Sec. 17.4.

WAVE DIGITAL FILTERS 813

A2

Vo

k0Vi

G1G0 G2

G2

k2Vik1Vi

k1Vi

k2Vi

s : 1 s : 1

(c)

(a)

Ai

Bo

k2k1k0

B2

~ ~ ~

Vo
k0Vi G1A G2A

G3AG1

G0

G0

G2

(b)

~
~

~

1 2

1 2

3

3

Figure 17.24 (a) Analog G-CGIC configuration, (b) identification of N -ports, (c) digital realization.

On assigning wave quantities and conductances to the CGIC ports as illustrated in Fig. 17.23a,
and then using Eqs. (17.1), (17.4), and (17.39), we can show that

B1 = A2 + (A1 − A2)F(z) B2 = A1 + (A1 − A2)F(z)

where F(z) = G1 − G2h(z)

G1 + G2h(z)
(17.41)

h(z) = h(s)

∣∣∣∣
s= 2

T

(
z − 1

z + 1

)

814 DIGITAL SIGNAL PROCESSING

Hence with h(s) = s and G1 = 2G2/T , Eq. (17.41) reduces to

F(z) = z−1

Therefore, a digital realization for the CGIC can be obtained, as depicted in Fig. 17.23b.
The individual N -ports of the G-CGIC configuration can now be identified, as indicated in

Fig. 17.24b. On assigning the port conductances

G1A = T G0

2
G2A = 2G2

T
G3A = G1

the general second-order digital section of Fig. 17.24c can be derived. An output proportional to Vo

can be formed by using an adder at the input or output of any one of the CGICs, as in Fig. 17.24c,
or at port 3 of the adaptor. This is permissible by virtue of Eq. (17.39).

The transfer function of the derived structure can be obtained from Eqs. (17.1) and (17.4) as

HD(z) = Bo

Ai
= B2 + A2

Ai
= 2Vo

Vi
= 2H (s)

∣∣∣∣
s= 2

T

(
z − 1

z + 1

)
17.12.4 Cascade Synthesis

Almost invariably recursive filters are designed by using Butterworth, Chebyshev, Bessel-Thomson,
or elliptic transfer functions which have zeros at the origin of the s plane, on the imaginary axis, or
at infinity (see Chap. 10). Hence the continuous-time transfer function can be realized as a cascade
connection of second-order sections characterized by transfer functions of the type

HA(s) = NA(s)

b0 + b1s + s2

where NA(s) can take the form b0, s2, b1s, or a0 + s2 for a lowpass (LP), highpass (HP), bandpass
(BP), or notch (N) section, respectively. On the other hand, delay equalizers are designed by using
allpass (AP) sections, in which

HA(s) = b0 − b1s + s2

b0 + b1s + s2

(see Sec. 5.6.2).
Evidently, the above transfer functions are special cases of the transfer function in Eq. (17.40),

and, therefore, they can all be readily realized by using the digital structure of Fig. 17.24c. The
resulting structures are shown in Fig. 17.25, where

k0 = a0

b0
(17.42)

m1 = b0 − (2/T)b1 − (2/T)2

b0 + (2/T)b1 + (2/T)2
(17.43)

m2 = −b0 + (2/T)b1 − (2/T)2

b0 + (2/T)b1 + (2/T)2
(17.44)

in each case.

WAVE DIGITAL FILTERS 815

(a)

(b)

A

B

E D

−1

m2

m1

A

B

E D

−1

m1

m2

−1

Figure 17.25 Universal second-order CGIC sections: (a) Lowpass, (b) highpass.

With a set of universal sections available, any Butterworth, Chebyshev, Bessel-Thomson, or
elliptic digital filter satisfying prescribed specifications can be designed by using the following
procedure:

1. Using the specifications, derive the appropriate normalized lowpass transfer function according
to steps 1 to 3 in Sec. 12.4.

2. Apply the transformation in Eq. (12.1).

3. Select suitable sections from Fig. 17.25.

4. Calculate the multiplier constants using Eqs. (17.42)–(17.44).

5. Connect the various sections in cascade.

816 DIGITAL SIGNAL PROCESSING

(c)

A

B

E D

−1

−1

m2

m1

(d)

A

B

E

D

−1

m2

m1

F

k0

−1

Figure 17.25 Cont’d Universal second-order CGIC sections: (c) Bandpass, (d) notch.

Example 17.4 A Butterworth lowpass filter is characterized by

H (s) =
3∏

j=1

b0 j

b0 j + b1 j s + s2

where coefficients bi j are given in Table 17.2. Design a corresponding digital filter by using
the CGIC cascade synthesis. The sampling frequency is 104 rad/s.

WAVE DIGITAL FILTERS 817

(e)

A

B

E

D

−1

m2

m1

−1

Figure 17.25 Cont’d Universal second-order CGIC sections: (e) Allpass.

Solution

The filter can be designed by cascading three LP sections of the type shown in Fig. 17.25a.
The values of the multiplier constants can be readily evaluated as in columns 4 and 5 of
Table 17.2.

Table 17.2 Lowpass-filter parameters (Example 17.4)

j b0 j b1 j m1 j m2 j

1 1.069676E + 6 5.353680E + 2 −8.342350E − 1 5.701500E − 1
2 1.069676E + 6 1.462653E + 3 −8.650900E − 1 2.778910E − 1
3 1.069676E + 6 1.998021E + 3 −8.781810E − 1 1.538890E − 1

17.12.5 Signal Scaling

Assuming a fixed-point implementation, the CGIC sections of Fig. 17.25 can be scaled by using
Jackson’s technique (see Sec. 14.6.2). For this purpose each of the five sections can be represented
by the signal flow graph of Fig. 17.26a, where

HA(z) = NA(z)

D(z)
HB(z) = NB(z)

D(z)
and HD(z) = ND(z)

D(z)

818 DIGITAL SIGNAL PROCESSING

(a)

(b)

D

E

F

x(n)
HD(z)

HE (z)

HF (z)

y(n)

e(n)

e(n)

2e(n)

1

λ

A

B

D
x(n)

x(n) y(n)

HA(z)

HB(z)

HD(z)

yA(n)

yB(n)

yD(n)

HD(z)

λ

λ

Figure 17.26 Universal CGIC sections: (a) Scaling model, (b) noise model.

are the transfer functions between section input and nodes A, B, and D, respectively. The above
polynomials are given in Table 17.3. The optimum value of λ, for L∞ scaling, is given by

λ = 1

max [‖HA(e jωT)‖∞, ‖HB(e jωT)‖∞, ‖HD(e jωT)‖∞]

17.12.6 Output Noise

For the purpose of noise analysis, the five CGIC sections can be represented by the model of
Fig. 17.26b, where e(n) is the noise component generated by one multiplier and

HE (z) = (z + 1)(z − 1)

D(z)
HF (z) = (1 + m1)(z + 1)2

D(z)

are the transfer functions between nodes E and F and section output. The dotted line in Fig. 17.26b
applies to the N section only.

WAVE DIGITAL FILTERS 819

Table 17.3 Polynomials in CGIC sections

Type NA(s) ND(z) NA(z) NB(z)

LP b0 (1 + m1)(z + 1)2 (z − m2)(z + 1) (1 + m1)(z + 1)

HP s2 (1 + m2)(z − 1)2 (z + m1)(z − 1) −(1 + m2)(z − 1)

BP b1s (m1 + m2)(1 − z2) −(z2 − 2m2z + 1) −(z2 + 2m1z + 1)

N a0 + s2 k0(1 + m1)(z + 1)2 k0(z − m2)(z + 1) k0(1 + m1)(z + 1)
+(1 + m2)(z − 1)2 −(1 + m2)(z − 1) +(z + m1)(z − 1)

AP b0 − b1s + s2 2[(1 + m1 + m2)z2 2(z2 − 2m2z + 1) 2(z2 + 2m1z + 1)
+(m1 − m2)z + 1]

D(z) = z2 + (m1 − m2)z + (1 + m1 + m2)

On using the approach of Sec. 14.5 the power spectral density (PSD) of the output noise can
be deduced as

So(e jωT) = [|HD(e jωT)|2 + 2|HE (e jωT)|2 + |HF (e jωT)|2]Se(e jωT)

where Se(e jωT) = q2

12
and HF (e jωT) = 0

in all sections except for the N section in which

HF (e jωT) �= 0

A useful property of the CGIC sections can be identified at this point. HE (z) is a bandpass
transfer function in each of the five sections. As a consequence, noise generated by multipliers m1

and m2 will be attenuated at low as well as high frequencies, becoming zero at ω = 0 as well
as at ω = ωs/2. By contrast, in the conventional canonic sections noise due to the multipliers is
subjected to the same transfer function as the signal; e.g., in a lowpass section, the quantization noise
is subjected to a lowpass transfer function. Because of this property, the CGIC synthesis tends to yield
lowpass, highpass, and bandstop filters and also equalizers with improved in-band signal-to-noise
ratio [11, 30]. In addition, like wave structures derived from passive networks, CGIC structures can
be designed to be free of zero-input and overflow limit-cycle oscillations, as was demonstrated by
Eswaran and Ganapathy [32].

17.13 CHOICE OF STRUCTURE

This chapter, like Chap. 8, has demonstrated that many distinct structures are possible for a given
set of filter specifications. Hence one of the initial tasks of the filter designer is to choose a structure.
The principal factors in this task are the sensitivity of the structure to coefficient quantization, the
level of output roundoff noise, and the computational efficiency of the structure. As may be expected,
these factors tend to depend to a large extent on the desired specifications; on the type of filter, i.e.,

820 DIGITAL SIGNAL PROCESSING

lowpass, bandpass, etc.; on the type of approximation used, i.e., Butterworth, elliptic, etc.; on the type
of arithmetic, i.e., fixed-point or floating-point; on the number system used, i.e., two’s-complement,
signed-magnitude, etc.; on the scaling norm used, i.e., L2 or L∞; and, in cascade structures, on the
pairing of zeros and poles into second-order transfer functions, on the ordering of sections, and so on.
Consequently, categorical statements about one or the other type of structure are difficult to make.
Nevertheless, certain tendencies have been noted by researchers in the field, as follows:

1. High-order direct structures are very sensitive to coefficient quantization and also generate a
high level of roundoff noise [33–35].

2. Cascade, parallel, and wave structures tend to have similar sensitivities for fixed-point arithmetic
[30], [33–35].

3. Parallel structures tend to generate a lower level of roundoff noise than cascade structures
[34, 38, 39]. However, they tend to be more sensitive to coefficient quantization at stopband
frequencies because the zeros can wander off the unit circle.

4. For filters with zeros on the unit circle of the z plane, cascade canonic structures involve the
lowest number of arithmetic operations.

5. The direct second-order structures described in Sec. 14.4 lead to low sensitivity and are, in
addition, suitable for the application of error-spectrum shaping which can reduce the level of
output roundoff noise quite significantly. However, signals must be scaled before and after each
multiplication (see Ref. [9] of Chap. 14).

6. State-space structures can be designed to have minimum roundoff noise but require a large
number of multiplications (see Refs. [15, 17] of Chap. 14).

7. Wave structures are significantly less sensitive than cascade structures for floating-point arith-
metic [36, 37]. Similar results are expected for fixed-point arithmetic provided that scaling is
applied before and after each multiplication. However, if the signal scaling constants are not
powers of two, mismatch can arise at the inputs of adaptors, which can increase the sensitivity.

8. Lattice wave structures tend to be more sensitive to coefficient quantization at stopband frequen-
cies than ladder wave structures.

9. CGIC cascade structures tend to yield improved in-band signal-to-noise ratio [11, 30].

10. State-space, wave, and CGIC structures can be designed to be free of limit-cycle oscillations.

It should be mentioned that the choice of structure involves many other issues besides the
above, e.g., the suitability of the structure to the application at hand, the amenability of the structure
to VLSI implementation (see Sec. 8.3), and the cost of the hardware. Also, in applications where
very high sampling rates are employed, the degree of parallelism inherent in the various structures
should be considered. In canonic structures, all multiplications can be performed simultaneously
and, as a consequence, the time taken to complete the processing for one filter cycle can be nearly
as short as the time taken to perform one multiplication. In wave structures, multiplications must be
performed in sequence according to a certain hierarchy because of topological constraints, and hence
the minimum time required to do the processing for one filter cycle can be much longer [30, 33].

REFERENCES

[1] A. Fettweis, “Digital filter structures related to classical filter networks,” Arch. Elektron.
Übertrag., vol. 25, pp. 79–89, 1971.

WAVE DIGITAL FILTERS 821

[2] A. Fettweis, “Some principles of designing digital filters imitating classical filter structures,”
IEEE Trans. Circuit Theory, vol. 18, pp. 314–316, Mar. 1971.

[3] A. Fettweis, “Pseudopassivity, sensitivity, and stability of wave-digital filters,” IEEE Trans.
Circuit Theory, vol. 19, pp. 668–673, Nov. 1972.

[4] A. Sedlmeyer and A. Fettweis, “Digital filters with true ladder configuration,” Int. J. Circuit
Theory Appl., vol. 1, pp. 5–10, Mar. 1973.

[5] R. Nouta, “The Jaumann structure in wave-digital filters,” Int. J. Circuit Theory Appl., vol. 2,
pp. 163–174, June 1974.

[6] A. Fettweis, H. Levin, and A. Sedlmeyer, “Wave digital lattice filters,” Int. J. Circuit Theory
Appl., vol. 2, pp. 203–211, June 1974.

[7] H. J. Orchard, “Inductorless filters,” Electron. Lett., vol. 2, pp. 224–225, June 1966.
[8] A. Fettweis and K. Meerkötter, “On adaptors for wave digital filters,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 23, pp. 516–525, Dec. 1975.
[9] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE, vol. 74, pp. 270–327,

Feb. 1986.
[10] L. Gazsi, “Explicit formulas for lattice wave digital filters,” IEEE Trans. Circuits Syst.,

vol. 32, pp. 68–88, Jan. 1985.
[11] A. Antoniou and M. G. Rezk, “Digital-filter synthesis using concept of generalized-

immittance convertor,” IEE J. Electron. Circuits Syst., vol. 1, pp. 207–216, Nov. 1977 (see
vol. 2, p. 88, May 1978 for errata).

[12] C. Eswaran, V. Ganapathy, and A. Antoniou, “Wave digital biquads derived from RC-active
configurations,” IEEE Trans. Circuits Syst., vol. 31, pp. 779–787, Sept. 1984.

[13] J. D. Rhodes, Theory of Electrical Filters, New York: Wiley, 1976.
[14] J. K. Skwirzynski, Design Theory and Data for Electrical Filters, London: Van Nostrand,

1965.
[15] R. Saal, Handbook of Filter Design, Backnang: AEG Telefunken, 1979.
[16] A. I. Zverev, Handbook of Filter Synthesis, New York: Wiley, 1967.
[17] E. Chirlian, LC Filters: Design, Testing, and Manufacturing, New York: Wiley, 1983.
[18] A. G. Constantinides, “Alternative approach to design of wave digital filters,” Electron. Lett.,

vol. 10, pp. 59–60, Mar. 1974. (See also Proc. Inst. Elect. Eng., vol. 123, pp. 1307–1312,
Dec. 1976.)

[19] M. N. S. Swamy and K. S. Thyagarajan, “A new type of wave digital filter,” J. Franklin Inst.,
vol. 300, pp. 41–58, July 1975.

[20] L. T. Bruton, “Network transfer functions using concept of frequency-dependent negative
resistance,” IEEE Trans. Circuit Theory, vol. 16, pp. 406–408, Aug. 1969.

[21] A. Fettweis, “Wave digital filters with reduced number of delays,” Int. J. Circuit Theory
Appl., vol. 2, pp. 319–330, Dec. 1974.

[22] A. Fettweis and K. Meerkötter, “Suppression of parasitic oscillations in wave digital filters,”
IEEE Trans. Circuits Syst., vol. 22, pp. 239–246, Mar. 1975.

[23] P. P. Vaidyanathan and S. K. Mitra, “Low passband sensitivity digital filters: A generalized
viewpoint and synthesis procedures,” Proc. IEEE, vol. 72, pp. 404–423, Apr. 1984.

[24] P. P. Vaidyanathan, “A unified approach to orthogonal digital filters and wave digital filters,
based on LBR two-pair extraction,” IEEE Trans. Circuits Syst., vol. 32, pp. 673–686, July
1985.

[25] L. T. Bruton, “Low-sensitivity digital ladder filters,” IEEE Trans. Circuits Syst., vol. 22,
pp. 168–176, Mar. 1975.

822 DIGITAL SIGNAL PROCESSING

[26] L. T. Bruton and D. A. Vaughan-Pope, “Synthesis of digital ladder filters from LC filters,”
IEEE Trans. Circuits Syst., vol. 23, pp. 395–402, June 1976.

[27] E. S. K. Liu, L. E. Turner, and L. T. Bruton, “Exact synthesis of LDI and LDD ladder
filters,” IEEE Trans. Circuits Syst., vol. 31, pp. 369–381, Apr. 1984.

[28] B. D. Green and L. E. Turner, “Digital LDI filters using lattice equivalents and wave
concepts,” IEEE Trans. Circuits Syst., vol. 37, pp. 133–135, Jan. 1990.

[29] A. Antoniou, “Realisation of gyrators using operational amplifiers, and their use in
RC-active-network synthesis,” Proc. Inst. Elect. Eng., vol. 116, pp. 1838–1850, Nov. 1969.

[30] A. Antoniou and M. G. Rezk, “A comparison of cascade and wave fixed-point digital-filter
structures,” IEEE Trans. Circuits Syst., vol. 27, pp. 1184–1194, Dec. 1980.

[31] A. Antoniou, “Novel RC-active-network synthesis using generalized-immittance
converters,” IEEE Trans. Circuit Theory, vol. 17, pp. 212–217, May 1970.

[32] C. Eswaran and V. Ganapathy, “On the stability of digital filters designed using the concept
of generalized-immittance convertor,” IEEE Trans. Circuits Syst., vol. 28, pp. 745–747, July
1981.

[33] R. E. Crochiere and A. V. Oppenheim, “Analysis of linear digital networks,” Proc. IEEE,
vol. 63, pp. 581–595, Apr. 1975.

[34] W. K. Jenkins and B. J. Leon, “An analysis of quantization error in digital filters based on
interval algebras,” IEEE Trans. Circuits Syst., vol. 22, pp. 223–232, Mar. 1975.

[35] J. L. Long and T. N. Trick, “Sensitivity and noise comparison of some fixed-point recursive
digital filter structures,” in Proc. IEEE Int. Symp. Circuits and Systems, pp. 56–59, 1975.

[36] R. E. Crochiere, “Digital ladder structures and coefficient sensitivity,” IEEE Trans. Audio
Electroacoust., vol. 20, pp. 240–246, Oct. 1972.

[37] W. H. Ku and S.-M. Ng, “Floating-point coefficient sensitivity and roundoff noise of
recursive digital filters realized in ladder structures,” IEEE Trans. Circuits Syst., vol. 22,
pp. 927–936, Dec. 1975.

[38] L. B. Jackson, “Roundoff-noise analysis for fixed-point digital filters realized in cascade or
parallel form,” IEEE Trans. Audio Electroacoust., vol. 18, pp. 107–122, June 1970.

[39] L. B. Jackson, “Roundoff noise bounds derived from coefficient sensitivities for digital
filters,” IEEE Trans. Circuits Syst., vol. 23, pp. 481–485, Aug. 1976.

PROBLEMS

17.1. Figure P17.1 depicts an equally terminated LC filter.
(a) Obtain a signal flow graph for the filter by applying Kirchhoff’s voltage and current laws.

Vo R

R

~

I3
L3L1

L2

C2

I1

I2

Vi

Figure P17.1

(b) Show that the application of the bilinear transformation to the signal flow graph of part (a) leads to
at least one delay-free loop.

WAVE DIGITAL FILTERS 823

17.2. Figure P17.2 represents an independent current source with an internal impedance Z (s) = sλ Rx . Obtain
digital realizations for λ = −1, 0, and 1 if R = (2/T)λ Rx .

V

I

Z(s)Ii

A

B

R

Figure P17.2

17.3. Analyze the series adaptors of Fig. 17.6a and b.

17.4. Analyze the parallel adaptors of Fig. 17.7a and b.

17.5. Show that a 2-port series adaptor and a 2-port parallel adaptor are interrelated by the equivalence of
Fig. P17.5.

−1

−1

Figure P17.5

17.6. (a) Analyze the 2-port parallel adaptor of Fig. 17.8b.
(b) Obtain an alternative 1-multiplier 2-port parallel adaptor.

17.7. Show that a 2-port parallel adaptor is equivalent to the realization of a transformer with a turns ratio
k = 1.

17.8. The 2-port of Fig. P17.8, where V1 = −RI2 and V2 = RI1, represents a gyrator circuit. Obtain a
corresponding digital realization.

R R

A2

V2

A1 B2

B1

I2I1

V1

Figure P17.8

17.9. A 2-port in which the input impedance Zi is related to the load impedance ZL by Zi = −k ZL is said to
be a negative-impedance converter (NIC). The parameter k is referred to as the impedance-conversion

824 DIGITAL SIGNAL PROCESSING

factor of the device. Two types of NICs can be identified, namely, voltage-conversion NICs, in which

V1 = −kV2 I1 = −I2

and current-conversion NICs, in which

V1 = V2 I1 = k I2

Derive digital realizations for each case if port resistances R1 and R2 are assigned to the input and output
ports, respectively.

17.10. (a) Obtain a digital realization of the parallel resonant circuit of Fig. P17.10a using a parallel adaptor.
(b) Show that the resonant circuit of Fig. P17.10a can be realized by a unit element terminated by an

inductance L0 as depicted in Fig. P17.10b. Obtain expressions for R0 and L0.
(c) Obtain a digital realization of the resonant circuit in part (b).

(a)

(b)

R0 L0

C L

Figure P17.10

17.11. Obtain a digital realization for the transfer function

H (s) = 24s4 − 24s3 + 20s2 − 2s + 1

24s4 + 24s3 + 20s2 + 2s + 1

17.12. Derive the wave characterization of the lattice network given in Fig. 17.14a.

17.13. A fifth-order Chebyshev lowpass filter with passband edge ωp = 1 rad/s and passband ripple 1 dB is
characterized by the transfer function

H (s) = 0.1228

(s + 0.2895)(s2 + 0.4684s + 0.4293)(s2 + 0.1789s + 0.9883)

Assuming a sampling frequency of 8 rad/s, obtain a lattice realization for the filter.

17.14. An application calls for a highpass digital filter that would satisfy the following specifications:

Ap = 1.0 dB Aa = 45.0 dB
̃p = 3.5 rad/s
̃a = 1.5 rad/s

The sampling frequency ωs is to be 10 rad/s.

WAVE DIGITAL FILTERS 825

(a) Obtain the required transfer function using a Butterworth approximation.
(b) Realize the transfer function obtained in part (a) using a wave lattice structure.

17.15. Repeat parts (a) and (b) of Prob. 17.14 using an elliptic approximation.

17.16. Figure P17.16 shows an elliptic lowpass filter. Obtain a corresponding wave structure, assuming a
sampling frequency ωs = 10 rad/s.

R

R

C2

L2
~

L3L1

Figure P17.16 L1 = L3 = 3.0316 H L2 = 0.21286 H C2 = 1.4396 F R = 1

17.17. Figure P17.17 shows an elliptic highpass filter satisfying the following specifications:

Ap = 0.5 dB Aa = 31.2 dB ωp = 1/
√

0.5 rad/s ωa =
√

0.5 rad/s

(a) Obtain a corresponding wave digital filter, assuming that ωs = 10 rad/s.
(b) Determine the resulting passband and stopband edges.

R

R

L1

L2

L3
C2~

Figure P17.17 L1 = L3 = 0.48948 H L2 = 3.4132 H C2 = 0.75489 F R = 1

17.18. An analog bandpass filter can be obtained by applying the lowpass-to-bandpass transformation

s = 1

10

(
s̄ + 625

s̄

)

to the lowpass filter of Fig. P17.16. Derive a corresponding wave digital filter if ωs = 250 rad/s.

17.19. Design a lowpass digital filter that would satisfy the specifications

Ap = 1.0 dB Aa ≥ 60.0 dB
̃p ≈ 100 rad/s
̃a ≈ 200 rad/s

assuming a sampling frequency of 1000 rad/s. Use an elliptic approximation and a wave ladder realization.
(Hint: Use the tables in Ref. [14] or one of the available filter-design software packages.)

17.20. By applying the impedance transformation Z (s) → Z (s)/s to the filter of Fig. P17.16, derive a corre-
sponding FDNR wave digital filter.

17.21. Repeat Prob. 17.20 using the highpass filter of Fig. P17.17 as a prototype.

826 DIGITAL SIGNAL PROCESSING

17.22. The multiplier constants for the filter of Fig. 17.17c are given in Table P17.22. Compute the amplitude
response of the filter if ωs = 10 rad/s.

Table P17.22

Adaptor Multiplier constants

1 m p1 = 1.341381E − 1
m p2 = 1.0

2 ms1 = 9.615504E − 2
ms2 = 1.0

3 m p1 = 1.720167E − 1
m p2 = 2.399664E − 1

4 m p1 = 2.436145E − 1
m p2 = 1.0

17.23. Compute the amplitude response of the digital filter depicted in Fig. P17.23, assuming that ωs =
10 rad/s. The values of the multiplier constants are given in Table P17.23.

2

3

4

1

1 2

3

AoBi

1 2

3

1 2

3

1

2

3

C C

C

L

Figure P17.23

Table P17.23

Adaptor Multiplier constants

1 ms1 = 5.846557E − 1
ms2 = 1.0

2 m p1 = 4.307685E − 1
m p2 = 1.0

3 ms1 = 6.021498E − 1
ms2 = 8.172611E − 1

4 ms1 = 1.466151E − 2
ms2 = 1.0

WAVE DIGITAL FILTERS 827

17.24. Obtain a digital realization for a general 2-port represented by Eqs. (17.14a) and (17.14b).

17.25. (a) Obtain a digital realization for the 2-port of Fig. P17.25a, assuming that R1 = R2 + L and ωs = π
rad/s.
(b) Repeat part (a) for the 2-port of Fig. P17.25b if G1 = G2 + C and ωs = π rad/s.

(a) (b)

R2

L

R1 CG1 G2

Figure P17.25

17.26. (a) Show that the analog filter of Fig. P17.26, where R = 1
, C = 1 F, and L = 2 H, represents a
3rd-order Butterworth filter.

(b) Derive a corresponding digital filter using the realizations of the inductor and capacitor obtained in
Prob. 17.25.

R

R L

CC~ VoVi

Figure P17.26

17.27. Analyze the configuration of Fig. 17.24a.

17.28. (a) Derive the lowpass section of Fig. 17.25a.
(b) Derive the highpass section of Fig. 17.25b.

17.29. An analog highpass filter is characterized by

H (s) =
3∏

j=1

s2

b0 j + b1 j s + s2

where b01 = b02 = b03 = 31.15762 b11 = 10.78340

b12 = 7.8940 b13 = 2.889405

Obtain a corresponding digital filter by using the CGIC synthesis, assuming that ωs = 10 rad/s.

17.30. Design a CGIC digital lowpass filter satisfying the following specifications:

Ap = 0.5 dB Aa = 65 dB
̃p = 200 rad/s

̃a = 300 rad/s ωs = 1000 rad/s

Use an elliptic approximation.

This page intentionally left blank

CHAPTER

18
DIGITAL SIGNAL

PROCESSING
APPLICATIONS

18.1 INTRODUCTION

In the past several chapters, some sophisticated design methods have been described in detail. In
this chapter, we consider a number of extensions of these methods and some of their numerous
applications to digital signal processing.

The chapter begins with the underlying principles involved when the sampling frequency is
changed from one value to another, and devices that can be used for the conversion, known as
decimators and interpolators, are described [1]. The application of decimators and interpolators in
the design of filter banks [2–4] is then considered. These subsystems find widespread applications
in communications systems, spectrum analyzers, and speech synthesis. The principles involved are
examined and a specific type of filter bank, the so-called quadrature-mirror-image filter bank, is
examined in some detail. Another useful device for communications applications is the Hilbert
transformer. Its theoretical basis, design principles, and applications to the sampling of bandpassed
signals and to single-sideband modulation are described in Sec. 18.4.

Another topic that is receiving considerable attention these days is the design and applications
of adaptive filters. These are filters that have an adaptation mechanism which allows them to change
their characteristics with time in order to satisfy some performance requirement. The topic is a field in
its own right, and several textbooks have been written on the theory and design of these filters [5–8].
In Sec. 18.5, we examine some of the fundamentals involved and consider some of the algorithms
that are being used as adaptation algorithms.

829

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

830 DIGITAL SIGNAL PROCESSING

In many applications, the signal to be processed is a function of two discrete variables. Signals
of this type can be processed by two-dimensional (2-D) digital filters. The methods involved are
usually extensions of their one-dimensional (1-D) counterparts, but once in a while there are marked
differences. As in the case of adaptive filters, the topic of 2-D digital filters is emerging as an important
field of study, and some textbooks have already been written on the subject [9–11]. For the sake of
completeness, we conclude this chapter by examining some of the basic principles involved in the
analysis and design of these filters.

18.2 SAMPLING-FREQUENCY CONVERSION

For various technical reasons, it may be preferable to store or record a discrete-time signal using one
sampling frequency but process or transmit it using another sampling frequency. The conversion of the
sampling frequency from one value to another can be accomplished in an indirect way by converting
a discrete-time signal back to a continuous-time using a D/A converter then sampling the latter at a
different rate using an A/D converter. However, each such conversion introduces quantization noise
and sin ω/ω distortion, as well as other problems. An alternative and more satisfactory approach
is to carry out the conversion in the discrete-time domain using a class of digital filters known as
decimators and interpolators.

Decimators can be used to reduce the sampling frequency, whereas interpolators can be used to
increase it. This section deals with the underlying principles involved in connection with sampling-
frequency conversion in the discrete-time domain and highlights some design aspects concerning
decimators and interpolators.

18.2.1 Decimators

Let us first examine the situation where the sampling frequency of a discrete-time signal x(nT) is to
be reduced.

If x(nT) is deemed to have been obtained by sampling a continuous-time signal x(t) using
a sampling frequency ωs , then the frequency spectrum of x(nT) can be readily obtained from
Eq. (6.45a) as1

X (e jωT) = 1

T

∞∑
n=−∞

Xc[j(ω − nωs)] (18.1)

where

Xc(jω) = Fx(t) and X (z) = Zx(nT)

Let the new sampling frequency be ω′
s = ωs/M where M is an integer greater than unity. Since the

sampling period is increased from T to T ′ = MT , a signal xd (nT ′) is obtained which is related to

1The notation has been changed somewhat for the sake of convenience.

DIGITAL SIGNAL PROCESSING APPLICATIONS 831

x(nT) by the equation

xd (nT ′) ≡ x(nT ′) = x(nMT)

That is, xd (nT ′) is obtained by retaining only samples . . . , −2M, −M, 0, M, 2M, . . . of discrete-
time signal x(nT) as shown in Fig. 18.1 for the case where M = 3. This process has been referred
to in the past as downsampling, sampling-frequency compression, or discrete-time sampling [1]. A
device that can perform this operation is said to be a downsampler, sampling-frequency compressor,
or simply compressor and is often represented by the block diagram depicted in Fig. 18.2a.

(a)

x(t)

(b)

x(nT)

0 3T 6T 9T 12T 15T 18T 21T
nT

t

(c)

xd(nT')

0 T' 2T' 3T' 4T' 5T' 6T' 7T'
nT'

T

T'

Figure 18.1 The process of downsampling.

832 DIGITAL SIGNAL PROCESSING

x(nT) xd(nT')

(a)

xd(nT')

(b)

x(nT)
Lowpass

filter
ωc = ωs/2M

M

M

Figure 18.2 (a) Downsampler, (b) decimator.

By analogy with Eq. (18.1), the spectrum of signal xd (nT ′) can be readily expressed as

Xd (e jωT ′
) = 1

T ′

∞∑
n=−∞

Xc[j(ω − nω′
s)]

= 1

MT

∞∑
n=−∞

Xc

[
j
(
ω − n

ωs

M

)]
(18.2)

i.e., the spectrum of xd (nT ′) can be regarded as an infinite sum of shifted copies of the spectrum of
x(t) divided by MT , where each copy is shifted by a multiple of ωs/M . Alternatively, Eq. (18.2) can
be expressed as

Xd (e jωT ′
) = 1

MT

∞∑
n=−∞

M−1∑
m=0

Xc

[
j
(
ω − nωs − m

ωs

M

)]

since Xd (e jωT ′
) can be considered to be periodic with period ωs , and hence

Xd (e jωT ′
) = 1

M

M−1∑
m=0

{
1

T

∞∑
n=−∞

Xc

[
j
(
ω − nωs − m

ωs

M

)]}

= 1

M

M−1∑
m=0

X (e j(ω−mωs/M)T) (18.3)

According to this representation, the spectrum of xd (nT) may be deemed to be the sum of M copies
of the spectrum of x(nT) divided by M , where each copy is shifted by a multiple of ωs/M .

The above conversion process is illustrated in Fig. 18.3 for the case where M = 3 and Xc(jω)
is real. As can be seen, if Xc(jω) = 0 for |ω| ≥ ωs/2M , then the copies of the spectrum of x(nT)
produced by downsampling do not overlap and, as a consequence, x(t) can be recovered by using
an ideal lowpass filter with cutoff frequency ωs/2M . If the aforementioned requirement is violated,
then aliasing will be introduced, as detailed in Sec. 6.7. To avoid this possibility, a bandlimiting filter
with cutoff frequency ωc = ωs/2M is usually used at the input of the downsampler, as depicted in
Fig. 18.2b. The configuration obtained is said to be a decimator.

DIGITAL SIGNAL PROCESSING APPLICATIONS 833

(c)

(b)

(a)

1Xc(jω)

ωs

2M

ω
0

1
T

X(e jωT)

ω0 ωsωs

2

1
MTXd(e jωT')

ω¢s =
ωs

M

ω0

0 1 M − 1 = 2

 −ω¢s

3ω¢s =
3ωs

M
= ωs2ω¢s =

2ωs

M

Figure 18.3 Operation of downsampler.

18.2.2 Interpolators

The preceding section has shown that sampling-frequency reduction can be achieved by applying
downsampling which is analogous to the sampling of a continuous-time signal. We now show that
a sampling-frequency increase can be achieved through a process which is analogous to converting
a discrete-time signal into a continuous-time signal.

A sampling-frequency increase from ωs to Lωs , where L is an integer, can be achieved by using
a device known as an upsampler, sampling-frequency expander, or simply expander in conjunction
with a lowpass filter [1]. An upsampler is usually represented by the block diagram depicted in
Fig. 18.4a, and its response to an excitation x(nT), designated as xu(nT), can be expressed as

xu(nT ′) =
{

x(nT/L) for n = 0, ±L , ±2L , . . .

0 otherwise
(18.4)

834 DIGITAL SIGNAL PROCESSING

x(nT) xu(nT ′)

(a)

xi(nT ′)

(b)

x(nT)
Lowpass

filter
ωc = ωs/2L

L

L

xu(nT ′)

′

Figure 18.4 (a) Upsampler, (b) interpolator.

where T ′ = T/L . This process is illustrated in Fig. 18.5 for the case where L = 3. Equation (18.4)
can be written as

xu(nT ′) =
∞∑

k=−∞
x(kT)δ(nT − kLT)

and by applying the z transform, we obtain

Xu(e jω T ′
) =

∞∑
n=−∞

[∞∑
k=−∞

x(kT)δ(nT − kLT)

]
e− jω nT ′

=
∞∑

k=−∞

∞∑
n=−∞

x(kT)[δ(nT − kLT)e− jω nT/L]

=
∞∑

k=−∞
x(kT)e− jω kT = X (e jω T) (18.5)

In effect, the frequency spectrums of xu(nT ′) and x(nT) are identical, as illustrated in Fig. 18.6a
and b for the case where L = 3. Since T ′ = T/L , or ω′

s = Lωs , there are L images of the signal
in the baseband −ω′

s/2 ≤ ω ≤ ω′
s/2, that is, upsampling will simply change the location of the

sampling frequency as shown.
A discrete-time version of x(nT), sampled at the increased rate of ω′

s = Lωs , can now be
generated by filtering signal xu(nT ′) using an ideal lowpass digital filter with a frequency response

H (e jω T ′
) =

{
L for 0 < |ω| < ωc

0 otherwise
(18.6a)

DIGITAL SIGNAL PROCESSING APPLICATIONS 835

x(nT)

(a)

0 T 2T 3T 4T 5T 6T 7T
nT

T

xu(nT')

(b)
0 3T' 6T' 9T' 12T' 15T' 18T' 21T'

nT'

xi(nT')

(c)

0 3T' 6T' 9T' 12T' 15T' 18T' 21T'
nT'

T'

Figure 18.5 The process of upsampling.

where ωc = ω′
s/2L , as illustrated in Fig. 18.4b. This filter will reject unnecessary images and yield

a discrete-time signal xi (nT ′) = x(nT ′), as illustrated in Fig. 18.6c and d. The configuration of
Fig. 18.4b is said to be an interpolator.

The output of the lowpass filter in Fig. 18.4b can be shown to be an interpolated version of
x(nT) by finding the time-domain response of the ideal lowpass filter. We can write,

Xi (z) = H (z)Xu(z) (18.6b)

836 DIGITAL SIGNAL PROCESSING

Xi(e
jωT′

)

ω

(d)

H(ejωT′
)

ω

(c)

0− ωs
′

2

Xu(ejωT ′
)

ωs
′

2L

ω

(b)

0

0 1 L − 1 = 2

6ωs
′

2L
= ωs

′

X(ejωT)

ω

(a)

0−ωs 2ωs
Lωs = 3ωs

ωs
2

ωs

3ωs
′

2L
5ωs

′

2L

ωs
′ωs

′

2L
ωs

′

2L

0 ωs
′

2
ωs

′

ωs
′

2L
3ωs

′

2L
−−

L

Figure 18.6 Operation of upsampler and interpolator.

DIGITAL SIGNAL PROCESSING APPLICATIONS 837

where H (z) is the transfer function of the lowpass filter and since T = LT ′. From Eq. (18.5), we
have

Xu(z) = Zxu(nT ′)

=
∞∑

k=−∞
x(kT)e− jω kLT ′

∣∣∣∣∣
e jω T ′ =z

=
∞∑

k=−∞
x(kT)z−kL (18.6c)

and hence Eq. (18.6b) yields

xi (nT ′) = Z−1[H (z)Xu(z)]

= Z−1

[
H (z)

∞∑
k=−∞

x(kT)z−kL

]

=
∞∑

k=−∞
x(kT)Z−1[H (z)z−kL] (18.7)

Now a digital filter with a frequency response H (e jω T ′
) as defined in Eq. (18.6a) has an impulse

response

h(nT ′) = L

nπ
sin ωcnT ′ = L

nπ
sin

ω′
snT ′

2L

= sin πn/2L

πn/2L

(see Example 9.1) and from Eq. (18.7) and the complex-convolution theorem (Theorem 3.10),
xi (nT ′) can be expressed as

xi (nT ′) =
∞∑

k=−∞
x(kT)h[(n − kL)T ′]

=
∞∑

k=−∞
x(kT)

sin[π (n − kL)/L]

π (n − kL)/L
(18.8)

Therefore,

xi (nT ′) =
{

x(nT) if k = n

0 otherwise

838 DIGITAL SIGNAL PROCESSING

since

sin[π (n − kL)/L]

π (n − kL)/L
=

{
1 if k = n

0 otherwise

The above analysis is analogous to the use of a lowpass filter to recover a continuous-time
signal from an impulse-modulated signal as discussed in Sec. 6.6, that is, the relation in Eq. (18.8)
is analogous to the interpolation formula in Eq. (6.51).

Example 18.1 Show that the use of a digital filter characterized by the impulse response

h(nT ′) =
{

1 − |n|/L for |n| < L

0 otherwise
(18.9)

in the scheme of Fig. 18.4b will result in a system that can perform linear interpolation.

Solution

The response of the filter at nT ′ to an excitation xu(nT ′) is given by the convolution
summation as

xi (n) =
∞∑

k=−∞
xu(k)h(n − k)

where period T ′ is dropped for the sake of brevity. The response at (mL + λ)T ′, where
λ is an integer in the range 0 ≤ λ ≤ L , is given by

xi (mL + λ) =
∞∑

k=−∞
xu(k)h(mL + λ − k)

= · · · + xu(mL − 1)h(1 + λ) + xu(mL)h(λ)

+xu(mL + 1)h(λ − 1) + · · ·
+xu[(m + 1)L − 1]h[λ − (L − 1)]

+xu[(m + 1)L]h(λ − L)

+xu[(m + 1)L + 1]h[λ − (L + 1)] + · · · (18.10)

DIGITAL SIGNAL PROCESSING APPLICATIONS 839

From Eq. (18.4), xu(n) = 0 if n is not a multiple of L; therefore, for 0 < λ < L ,
Eqs. (18.9) and (18.10) yield

xi (mL + λ) = xu(mL)h(λ) + xu[(m + 1)L]h(λ − L)

=
(

1 − λ

L

)
xu(mL) + λ

L
xu[(m + 1)L]

which is the linear interpolation between samples mL and (m + 1)L .

18.2.3 Sampling-Frequency Conversion
by a Noninteger Factor

Through the use of an interpolator, the sampling frequency can be increased from ωs to ω′
s = Lωs .

On the other hand, through the use of a decimator, the sampling frequency can be decreased from ω′
s

to ω′′
s = ω′

s/M . By cascading an interpolator and a decimator, as depicted in Fig. 18.7, a sampling
frequency ω′′

s = Lωs/M can be obtained, where L/M is a ratio of integers. By this means, arbitrary
conversion factors can be achieved. In Fig. 18.7, the interpolator necessitates a lowpass filter with
a cutoff frequency ω′

s/2L , while in the decimator a lowpass filter with a cutoff frequency ω′
s/2M

is needed. One of the two filters, namely, the one with the higher cutoff frequency, is obviously
redundant and can be eliminated.

18.2.4 Design Considerations

The design of interpolators and decimators is straightforward, and perhaps the most complicated
part of the design involves the design of the required filters. Depending on the system requirements,
a recursive or nonrecursive filter may be more appropriate, and any one of the methods described
in Chaps. 9, 12, 15, and 16 can be used. Furthermore, a large variety of filter structures can be
employed. A comparison between recursive and nonrecursive designs can be found in Sec. 11.8. The
merits and demerits of the various types of structures can be found in Sec. 17.13.

18.3 QUADRATURE-MIRROR-IMAGE FILTER BANKS

Filter banks find applications in many areas of science and engineering and are used for time-division
to frequency-division multiplex translation, subband speech coding, bandwidth compression, and
many other types of signal processing [1, 2, 4]. In these systems, a given signal is decomposed

Lowpass
filter

ωc = ωs
′/2L

L
Lowpass

filter
ωc = ωs

′/2M
M

Figure 18.7 Sampling-frequency conversion by noninteger factor.

840 DIGITAL SIGNAL PROCESSING

into consecutive subbands that are processed independently. The subbands obtained are then used to
synthesize a processed version of the signal.

The motivation behind this roundabout way of processing a signal is usually to achieve some
economical advantage, e.g., increased utilization of equipment or improved signal-to-noise ratio, but
on occasion a filter bank is used to carry out some type of processing that cannot be carried out by
any other means. Time-division to frequency-division multiplex translation is used quite extensively
in communications systems in order to achieve increased channel capacity [12]. In subband speech
coding, the signal is decomposed into several bands that are coded individually, taking advantage of
certain perceptive properties of the human ear. In this way, improved signal quality can be achieved
without increasing the bit rate [13].

In its most general form, a filter bank consists of a decomposition or analysis section and
a reconstruction or synthesis section, as depicted in Fig. 18.8. Depending on the application, (1)
the spectrums of x0(nT), x1(nT), . . . , xK (nT) should not overlap, may overlap somewhat, or can
overlap extensively; (2) the processed signal y(nT) must be a faithful reproduction of x(nT) or it may
be a transformed version that bears little resemblance; and (3) the subband widths may be uniform,
irregular, or fixed by some logarithmic relation.

In this section, we consider a specific type of filter bank, the so-called quadrature-mirror-image
filter (QMF) bank.

18.3.1 Operation

A 2-band QMF bank is illustrated in Fig. 18.9. The analysis section of the bank consists of a lowpass
and a highpass filter which decompose the input signal x(nT) into two components x0(nT) and

Analysis
filter bank

x(nT)

x0(nT)

x1(nT)

xK(nT)

(a)

Synthesis
filter bank

(b)

x0(nT)

x1(nT)

xK(nT)

y(nT) = x(nT)

Figure 18.8 Filter bank: (a) Analysis section, (b) synthesis section.

DIGITAL SIGNAL PROCESSING APPLICATIONS 841

x0(nT) x0d(nT ′)

y0(nT)

y1(nT)

+ y(nT)x(nT)

H0(z) 2 2 F0(z)

H1(z) 2 2 F1(z)

x0du(nT ′′)

x1(nT) x1d(nT ′) x1du(nT ′′)

Figure 18.9 2-band QMF bank.

x1(nT). Ideally, the lowpass and highpass filters should have the frequency responses

H0(e jω T) =
{

1 for 0 < |ω| < ωs/4

0 otherwise
(18.11)

and

H1(e jω T) =
{

1 for ωs/4 < |ω| < ωs/2

0 otherwise
(18.12)

respectively. The operation of the filter bank is illustrated in Fig. 18.10 and 18.11. Downsampling by
a factor M = 2 will produce shifted copies of the lowpassed and highpassed spectrums, as depicted
in Fig. 18.10g and h and upsampling by a factor L = 2 will change the location of the sampling
frequency, as shown in Fig. 18.11a and b (see Sec. 18.2.2); that is, one image of each of the lowpassed
and highpassed spectrums will be introduced in the baseband, as in Fig. 18.11a and b by analogy
with Fig. 18.3. At the output, the synthesis lowpass and highpass filters, which should in principle
be identical to the corresponding analysis filters, will regenerate x0(nT) and x1(nT), respectively, as
shown in Fig. 18.11e and f . Hence the output of the adder will be the required signal, as depicted in
Fig. 18.11g.

In practical filters, the passband gain is not unity, the stopband loss is not infinite, and transitions
between passbands and stopbands are gradual. Hence amplitude and phase distortion as well as
aliasing will be introduced, as can be seen in Fig. 18.12. While the effects of these imperfections
can be reduced by designing filters of better quality, these problems can largely be eliminated in a
much simpler way by using lowpass and highpass filters whose frequency responses have certain
symmetry properties. This possibility will now be examined.

842 DIGITAL SIGNAL PROCESSING

H1(e jωT)

ωs

2

(d)

H0(e jωT)

(c)

X(e jωT)

ωsωs

2

(b)

Xc(jω)

(a)

ω

ω

X0(e jωT)

ωs

ωs

ω

ω

ω

ω

ω

(e)

X0d(e jωT′
)

2ωs
′ = ωsωs

′ =
ωs

2

(g)

X1d(e jωT′
)

0

(h)

ω

X1(e jωT)

(f)

Figure 18.10 Operation of analysis section of 2-band QMF bank.

DIGITAL SIGNAL PROCESSING APPLICATIONS 843

F1(e jωT)

Y0(e jωT)

Y1(e jωT)

ωs

2

Y(e jωT)

ωs
ωs

2

0

(g)

(f)

(e)

(d)

F0(e jωT)

X0du(e jωT)

X1du(e jωT)

ωs
′′ = 2ωs

′ = ωs

ωs
′′

2

(c)

(b)

(a)

ω

ω

ω

ω

ω

ω

ω

Figure 18.11 Operation of synthesis section of 2-band QMF bank.

844 DIGITAL SIGNAL PROCESSING

X1(e jωT)

ωs
ωωs

2

0

X0(e jωT)

ωs

2

H1(e jωT)

H0(e jωT)

ωs

ωs

ωs

X(e jωT)

ωs

2

(a)

(c)

(d)

(e)

(b)

ω

ω

ω

ωs
ω

Figure 18.12 Effects of filter imperfections in 2-band QMF bank.

18.3.2 Elimination of Aliasing Errors

Let T ′ = 2T and T ′′ = T ′/2 = T . From Eq. (18.3), the frequency spectrum at the output of the top
down-sampler in Fig. 18.9 can be expressed as

X0d (e jωT ′
) = 1

2 [X (e jωT ′/2)H0(e jωT ′/2) + X (e j(ωT ′/2−π))H0(e j(ωT ′/2−π))] (18.13)

DIGITAL SIGNAL PROCESSING APPLICATIONS 845

On the other hand, the frequency spectrum at the output of the top upsampler is given by Eq. (18.5)
as

X0du(e jω T ′′
) = X0du(e jω T ′/2) = X0d (e jω T ′

) (18.14)

and from Fig. 18.9

Y0(e jωT ′′
) = X0du(e jωT ′′

)F0(e jωT ′′
) (18.15)

Now Eqs. (18.13)–(18.15) give

Y0(e jωT ′′
) = 1

2 [X (e jωT ′/2)H0(e jωT ′/2)

+X (e j(ωT ′/2−π))H0(e j(ωT ′/2−π))]F0(e jωT ′′
)

and on eliminating T ′ and T ′′, we have

Y0(e jωT) = 1
2 [X (e jωT)H0(e jωT) + X (e j(ωT −π))H0(e j(ωT −π))]F0(e jωT)

Similarly,

Y1(e jωT) = 1
2 [X (e jωT)H1(e jωT) + X (e j(ωT −π))H1(e j(ωT −π))]F1(e jωT)

and, therefore,

Y (e jωT) = Y0(e jωT) + Y1(e jωT)

= 1
2 [H0(e jωT)F0(e jωT) + H1(e jωT)F1(e jωT)]X (e jωT)

+ 1
2 [H0(e j(ωT −π))F0(e jωT)

+H1(e j(ωT −π))F1(e jωT)]X (e j(ωT −π)) (18.16)

The first term in the above relation represents the required signal, whereas the second term
represents spurious components due to aliasing. If the filters are designed such that

H0(e j(ωT −π))F0(e jωT) + H1(e j(ωT −π))F1(e jωT) = 0 (18.17)

then the aliasing produced by the lowpass filters will be canceled exactly by the aliasing produced
by the highpass filters even if the quality of these filters is not particularly good. This relation can be
satisfied by designing the analysis and synthesis filters such that

F0(e jωT) = 2H1(e j(ωT −π))

and

F1(e jωT) = −2H0(e j(ωT −π))

The factor 2 is required to compensate for the factor 1/2 introduced by the downsampling (see
Fig. 18.3c).

846 DIGITAL SIGNAL PROCESSING

With Eq. (18.17) satisfied, the output of a 2-band QMF bank is given by Eq. (18.16) as

Y (e jωT) = T (e jωT)X (e jωT)

where

T (e jωT) = H0(e jωT)H1(e j(ωT −π)) − H1(e jωT)H0(e j(ωT −π)) (18.18)

is the overall frequency response of the QMF bank. If we assume that the lowpass and highpass filters
have frequency responses that are mirror-image symmetric with respect to frequency ω = ωs/4, then

H1(e jωT) = H0(e j(ωT −π)) (18.19a)

or

H1(e j(ωT −π)) = H0(e jωT) (18.19b)

Hence Eq. (18.18) can be expressed as

T (e jωT) = H 2
0 (e jωT) − H 2

0 (e j(ωT −π)) (18.20)

= M(ω)e jθ (ω)

where M(ω) and θ (ω) are the overall amplitude and phase responses of the QMF bank. In practice,
M(ω) should as far as possible be constant and θ (ω) should be a linear function of ω to avoid
amplitude and phase distortion in the reconstruction process (see Sec. 5.7).

A transfer function that characterizes the QMF bank can be formed as

T (z) = H0(z)H1(−z) − H1(z)H0(−z) (18.21)

by letting e jωT = z in Eq. (18.18).

18.3.3 Design Considerations

QMF banks can be designed in terms of nonrecursive or recursive filters. Let us consider the first
case.

On assuming that the impulse response of the analysis lowpass filter is symmetrical, its fre-
quency response can be expressed as

H0(e jω T) = e jω(N−1)T/2|H0(e jω T)| (18.22)

(see Table 9.1), where N is the filter length. From Eqs. (18.20) and (18.22), we can write

T (e jωT) = [|H0(e jωT)|2 ± |H0(e j(ωT −π))|2]e jω(N−1)T

where the plus sign applies in the case where N is even and the minus sign applies in the case where
N is odd. In effect, linear phase response is achieved, i.e., the design has zero phase distortion. If the

DIGITAL SIGNAL PROCESSING APPLICATIONS 847

required mirror-image symmetry is assumed, the overall frequency response becomes zero at ω =
ωs/4 if N is odd. Since T (e jωT) is required to be an allpass function, we conclude that N must be even.

A nonrecursive filter can at this point be designed on the basis of the idealized frequency
response in Eq. (18.11) such that the constraint

|H0(e jωT)|2 + |H0(e j(ωT −π))|2 = 1 for 0 ≤ ω ≤ ωs/2

is satisfied. Designs of this type can be obtained by using the window technique [14].
Nonrecursive QMF banks can also be designed by using optimization methods, as described

in [15, 16]. One of many possibilities is to construct an error function of the form

E(x) = E1(x) + αE2(x)

where x is a column vector whose elements are the transfer function coefficients and

E1(x) =
∫ ωs/2

ωs/4
|H0(e jωT)|2 dω

E2(x) =
∫ ωs/2

ωs/4
[|H0(e jωT)|2 + |H0(e j(ωT −π))|2 − 1]2 dω

Minimizing E(x) with respect to the transfer-function coefficients using one of the quasi-Newton
algorithms described in Chap. 16 will minimize the stopband error in the lowpass filter and force the
overall amplitude response to approach unity in a least-squares sense. Parameter α can be used to
emphasize or de-emphasize the error in the overall amplitude response relative to the stopband error
of the lowpass filter.

In certain types of recursive filters, it is quite easy to design a pair of complementary filters
whose amplitude responses assume the form

H0(e jωT) = 1
2 [A0(e jωT) + A1(e jωT)] (18.23)

and

H1(e jωT) = 1
2 [A0(e jωT) − A1(e jωT)] (18.24)

where A0(e jωT) and A1(e jωT) are allpass functions. With these methods, arbitrary amplitude response
specifications can be obtained and the required symmetry about the frequency ωs/4 can be easily
achieved. From Eqs. (18.18) and (18.19), the overall frequency response can be put in the form

T (e jωT) = H 2
0 (e jωT) − H 2

1 (e jωT)

and from Eqs. (18.23) and (18.24)

T (e jωT) = A0(e jωT)A1(e jωT)

In effect, the overall frequency response of the QMF bank is an allpass function; that is, the design
obtained has zero amplitude distortion. However, a certain amount of phase distortion will be present,

848 DIGITAL SIGNAL PROCESSING

which may or may not be objectionable depending on the application. Such filters can be designed
as wave lattice filters, as described by Gazsi (see Sec. 17.5 and Ref. [10] of Chap. 17).

Example 18.2 Design a 2-band QMF bank as a wave lattice filter using the method described
in Sec. 17.5 along with an elliptic approximation.2 The specifications of the lowpass filter are
as follows:

Ap = 1.0 dB Aa = 48.3 dB
̃p = 4,500 rad/s

̃a = 5,500 rad/s ωs = 2.0 × 104 rad/s

Solution

Using the formulas in Tables 12.2 and 12.6, the required selectivity factor is found to
be k = 0.729454. The minimum filter order that will satisfy the required specifications
is n = 5, according to Eqs. (10.86)–(10.90). The value of λ in the lowpass-to-lowpass
transformation (see Table 12.1) that will compensate for the warping effect introduced by
the bilinear transformation can be determined as λ = 1.570796×10−4. On using the for-
mulas in Eqs. (10.91)–(10.99) and then applying the lowpass-to-lowpass transformation,
the denormalized transfer function is obtained as

HA(s) = 1

s + b01

3∏
j=2

s2 + a0 j

s2 + b1 j s + b0 j

where coefficients ai j and bi j are given in Table 18.1.
Now from Eqs. (17.25a) and (17.25b), polynomials dA(s) and dB(s) can be deduced

as

dA(s) = (s + b01)(s2 + b13s + b03) (18.25)

and

dB(s) = s2 + b12s + b02 (18.26)

Table 18.1 Coefficients of HA(s) (Example 18.2)

j a0 j b0 j b1 j

1 − 1.918343E + 3 −
2 1.279580E + 8 1.605501E + 7 2.459931E + 3
3 5.951444E + 7 2.945786E + 7 6.607256E + 2

H0 = 1.191374E + 2

2See Sec. VI of Ref. [17] for a related design example.

DIGITAL SIGNAL PROCESSING APPLICATIONS 849

Digital realizations for networks NA and NB shown in Fig. 17.14b can be obtained
as depicted in Fig. 18.13 by using the approach described in Sec. 17.5. The multiplier
constants of the adaptors can be calculated from Eqs. (17.29) and (17.30) as follows:
µ11 = 0.536886, µ12 = 0.432520, µ22 = −0.566457, µ13 = 0.158183, and µ23 =
−0.886611.

The configuration obtained will operate as a halfband lowpass filter with respect
to output B2 and as a halfband highpass filter with respect to output B1 by virtue of the
Feldkeller equation (see Sec. 17.5.2).

11

12

13

23

−1A1

22 1
2

B2

1
2

B1

−1

Figure 18.13 Lattice wave digital filter realizing 2-band QMF bank (Example 18.2).

18.3.4 Perfect Reconstruction

In the preceding section, it has been shown that designs with zero phase distortion can be easily ob-
tained by using linear-phase nonrecursive filters whereas zero amplitude distortion can be achieved
by using recursive wave digital filters. In the case of nonrecursive filters, amplitude distortion can be
rendered insignificant by using a high-order filter to achieve small passband and stopband ripples.
On the other hand, in the case of recursive filters, phase distortion can be rendered insignificant
through the use of phase equalization (see Sec. 16.8). In this section, a scheme proposed by Smith
and Barnwell [18] is described by which zero phase distortion as well as zero amplitude distortion
can be achieved simultaneously independently of the quality of the filters used.

850 DIGITAL SIGNAL PROCESSING

1 + 2δ

1

2δ

H0(ejωT)

ωs

4

(a)

−δ

1

1 + δ

1 − δ

δ

H(ejωT)

ω

ωs

4
ωs

2

(b)

ωs

4
ωs

2

(c)

H0(ej(ωT−π))

Figure 18.14 Required amplitude-response symmetry for perfect reconstruction.

DIGITAL SIGNAL PROCESSING APPLICATIONS 851

Let H (z) be a linear-phase, lowpass, nonrecursive transfer function and assume that the pass-
band and stopband errors satisfy the symmetry property

||H (e jωT)| − 1| = |H (e j(ωs/2−ω)T)| ≤ δ (18.27)

as illustrated in Fig. 18.14a. Using H (z), a modified transfer function

H0(z) = H (z) + δz−(N−1)/2

can be formed, where N is the length of the filter. From the above symmetry property, we can write

|H0(e jωT)|2 + |H0(e j(ωT −π))|2 = G = 1 + 2δ (18.28)

where G is a constant, i.e., changes in the two functions cancel each other out exactly, as demonstrated
in Fig. 18.14a to c.

A linear-phase transfer function with the amplitude response given by Eq. (18.28) can now be
constructed as

T (z) = −H0(z)H0(z−1)z−(N−1) − [−H0(−z−1)(−z)−(N−1)]H0(−z) (18.29)

(see Prob. 18.6), where N is even. On comparing Eqs. (18.21) and (18.29), the assignment

H1(z) = z−(N−1) H0(−z−1)

can be made and if we let

F0(z) = 2H1(−z) and F1(z) = −2H0(−z)

a realization of the QMF bank is obtained in which both the amplitude and phase distortions are zero
at the same time. Realizations of this type are said to have the perfect reconstruction property.

Halfband filters with the symmetry property of Eq. (18.27) can be designed by using the
methods described in Chap. 15.

The above principles can be extended to the design of QMF banks with multiple bands.

18.4 HILBERT TRANSFORMERS

In certain digital signal processing applications, it is necessary to form a special version of a given
signal x(nT), designated as x̃(nT), with the special property that its frequency spectrum is equal to
that of x(nT) for the positive Nyquist interval and zero for the negative Nyquist interval, i.e.,3

X̃ (e jω T) =
{

X (e jω T) for 0 < ω < ωs/2

0 for −ωs/2 ≤ ω < 0
(18.30)

3Alternatively, the spectrum of x̃(nT) may be taken to be equal to that of x(nT) for the negative Nyquist interval and
zero for the positive Nyquist interval.

852 DIGITAL SIGNAL PROCESSING

Signals with this property have been referred to as analytic signals in the past [19, 20] and are useful in
a number of applications, for example, in single-sideband modulation in frequency-division multiplex
systems. The motivation for eliminating the spectrum of a signal over the negative Nyquist interval
is that it is the mirror image of the spectrum over the positive Nyquist interval, i.e., it contains
the same information, and its elimination reduces the required bandwidth for the processing and/or
transmission of the signal by half.

An essential property of real continuous-time signals is that their amplitude spectrums are even,
and their phase spectrums are odd functions of ω (see Prob. 2.16). Since analytic signals violate these
requirements, they must necessarily be complex of the form

x̃(nT) = xr (nT) + j xi (nT) (18.31)

where xr (nT) and xi (nT) are real sequences. If the spectrum of an analytic signal x̃(nT) is known,
the spectrums of xr (nT) and xi (nT) can be readily deduced as

Xr (e jω T) = 1
2 [X̃ (e jω T) + X̃∗(e− jω T)] (18.32)

and

j Xi (e
jω T) = 1

2 [X̃ (e jω T) − X̃∗(e− jω T)] (18.33)

where X̃∗ is the complex conjugate of X̃ . These relations are illustrated in Fig. 18.15.
From Eqs. (18.32) and (18.33), we obtain

X̃ (e jω T) = 2Xr (e jω T) − X̃∗(e− jω T) (18.34)

and

X̃ (e jω T) = 2 j Xi (e
jω T) + X̃∗(e− jω T) (18.35)

and since X̃∗(e− jω T) = 0 for 0 < ω < ωs/2 (see Fig. 18.15b), Eqs. (18.30), (18.34), and (18.35)
give

X̃ (e jω T) =
{

2Xr (e jω T) for 0 < ω < ωs/2

0 for −ωs/2 ≤ ω < 0

and

X̃ (e jω T) =
{

2 j Xi (e jω T) for 0 < ω < ωs/2

0 for −ωs/2 ≤ ω < 0

Thus

Xi (e
jω T) = − j Xr (e jω T) for 0 < ω < ωs/2 (18.36)

On the other hand, from Eq. (18.31)

X̃ (e jω T) = Xr (e jω T) + j Xi (e
jω T)

DIGITAL SIGNAL PROCESSING APPLICATIONS 853

Xi(e
jωT)

ωs

2
−

−ωs ωs

ω

Xr(e
jωT)

ωs

2
−−ωs ωs

2

ωs
ω

(d)

(c)

X*(e−jωT)
~

ωs

2
−−ωs ωs

2

ωs
ω

(b)

X(e jωT)
~

ωs

2
−−ωs ωs

2

ωs
ω

(a)

ωs

2

Figure 18.15 Derivation of xr (nT) and xi (nT) from x̃(nT) (solid curves represent real parts and dashed
curves represent imaginary parts).

and since X̃ (e jω T) = 0 for −ωs/2 ≤ ω < 0, we have

Xi (e
jω T) = j Xr (e jω T) for − ωs/2 ≤ ω < 0 (18.37)

Therefore, Eqs. (18.36) and (18.37) can be expressed as

Xi (e
jω T) =

{
− j Xr (e jω T) for 0 < ω < ωs/2

j Xr (e jω T) for −ωs/2 ≤ ω < 0

854 DIGITAL SIGNAL PROCESSING

Hilbert
transformer

j

jxi(n)

xr(n)

xr(n) x(n)~

Figure 18.16 Synthesis of an analytic signal using a Hilbert transformer.

or

Xi (e
jω T) = H (e jω T)Xr (e jω T) (18.38)

where

H (e jω T) =
{

− j for 0 < ω < ωs/2

j for −ωs/2 < ω < 0
(18.39)

These results show that the real and imaginary parts of an analytic signal are interrelated and the
imaginary part can be obtained from the real part by using Eq. (18.38). This relation may be deemed
to represent a filter with input xr (nT), output xi (nT), and frequency response H (e jω T). A filter of
this type is commonly referred to as a Hilbert transformer. Its output xi (nT) is said to be the Hilbert
transform of xr (nT).

On the basis of these principles, given a real sequence xr (nT), a corresponding analytic signal
x̃(nT) can be synthesized by using the configuration depicted in Fig. 18.16. The operation of this
scheme is illustrated in Fig. 18.17. As can be seen, if xr (nT) is a real sequence and xi (nT) is generated
by using a Hilbert transformer, then xr (nT)+ j xi (nT) is an analytic signal, as shown in Fig. 18.17d .

18.4.1 Design of Hilbert Transformers

Hilbert transformers can be designed either in terms of nonrecursive or recursive filters. In the former
case, either the Fourier series method of Chap. 9 or the weighted-Chebyshev method of Chap. 15
can be used.

Using the Fourier series method of Sec. 9.3, the impulse response of a Hilbert transformer can
be obtained as

h(nT) = T

2π

(∫ 0

−ωs/2
je jω nT dω −

∫ −ωs/2

0
je jω nT dω

)

=

2

nπ
sin2 nπ

2
for n �= 0

0 for n = 0
(18.40)

DIGITAL SIGNAL PROCESSING APPLICATIONS 855

Xr(e
jωT)

ωs

2
−−ωs

ωs

2

ωs
ω

(a)

Xi(e
jωT)

ωs

2
−

−ωs ωs

(b)

ωs

2

jXi(e
jωT)

ωs

2
−

−ωs
ωs

(c)

ωs

2

X(e jωT)
~

ωs

2
−−ωs

ωs

2
ωs

ω

(d)

Figure 18.17 Operation of configuration in Fig. 18.16 (solid curves represent real parts and dashed curves
represent imaginary parts).

Evidently, a Hilbert transformer, like a digital differentiator, has an antisymmetrical impulse response
and can be designed either with an odd or even filter length N using the window technique described
in Sec. 9.4. From Table 9.1, we note that for odd N , the amplitude response is zero for ω = 0 and
ω = ωs/2. Hence the useful bandwidth that can be achieved is restricted to some range 0 < ωL ≤
ω ≤ ωH < ωs/2 where ωL and ωH can be made to approach 0 and ωs/2, respectively, as closely
as desired by increasing N . On the other hand, for even N , the amplitude response need not be zero
at ω = ωs/2, as can be seen in Table 9.1, and, in this case, Hilbert transformers can be designed in
which ωH = ωs/2.

856 DIGITAL SIGNAL PROCESSING

The ideal response of a causal Hilbert transformer can be expressed in the form e− jω c j D(ω)
where

D(ω) =
{

−1 for 0 < ω < ωs/2

1 for −ωs/2 < ω < 0

and c = (N − 1)/2. From Table 15.7, we conclude that a Hilbert transformer can be designed using
the weighted-Chebyshev algorithm. The problem formulation is similar to that used for the design
of digital differentiators in Sec. 15.9 and is left as an exercise to the reader (see Prob. 18.19).

Example 18.3 (a) Design a Hilbert transformer of length N = 21 using the Kaiser window
with α = 3.0, assuming a sampling frequency of 10 rad/s. (b) Repeat part (a) with N = 22
and compare the results obtained in the two cases.

Solution

(a) Using Eq. (18.40), the impulse response of the Hilbert transformer, h(n), can be
computed as shown in column 2 of Table 18.2a. The modified impulse response assumes

the form

hw(n) = wK (n)h(n) (18.41)

where wK (n) is the Kaiser window. With α = 3.0, Eqs. (9.25) and (18.41) give the
impulse response in column 3 of Table 18.2a. The amplitude response of the Hilbert
transformer is depicted in Fig. 18.18a; the maximum passband error is 1.44 percent of
the passband gain.

(b) For even N , the impulse response must be antisymmetrical about the midpoint be-
tween samples (N −2)/2 and N/2, that is, samples 10 and 11 for N = 22 (see Sec. 9.2.1).

Table 18.2a Impulse response of Hilbert
transformer (Example 18.3, part (a))

n h(n) = −h(−n) hw(n)

0 0.0 0.0
1 6.366198E − 1 6.289178E − 1
2 0.0 0.0
3 2.122066E − 1 1.898748E − 1
4 0.0 0.0
5 1.273240E − 1 9.255503E − 2
6 0.0 0.0
7 9.094568E − 2 4.698992E − 2
8 0.0 0.0
9 7.073553E − 2 2.138270E − 2

10 0.0 0.0

DIGITAL SIGNAL PROCESSING APPLICATIONS 857

Consequently, in a noncausal Hilbert transformer, the impulse response is defined at n′ =
±(n − 0.5) with n = 1, 2, . . . , N/2. Such a design can be obtained by first converting
the impulse response in Eq. (18.40) into a continuous-time function by letting nT = t
in h(nT) and then resampling h(t) at t = (n − 0.5)T for −N T/2 ≤ t ≤ N T/2 where

1.250 2.50 3.75 5.00

0.3

0

0

0.6

0.9

1.2

ω, rad/s

G
ai

n

(a)

1.250 2.50 3.75 5.00

0.3

0.6

0.9

1.2

ω, rad/s

G
ai

n

(b)

Figure 18.18 Amplitude response of Hilbert transformer (Example 18.3): (a) N = 21,
(b) N = 22.

858 DIGITAL SIGNAL PROCESSING

Table 18.2b Impulse response of Hilbert
transformer (Example 18.3, part (b))

n h(n) = −h(−n) hw(n)

0.5 6.366198E − 1 6.302499E − 1
1.5 2.122066E − 1 2.038026E − 1
2.5 1.273240E − 1 1.161765E − 1
3.5 9.094568E − 2 7.713458E − 2
4.5 7.073553E − 2 5.447434E − 2
5.5 5.787452E − 2 3.944281E − 2
6.5 4.897075E − 2 2.869059E − 2
7.5 4.244132E − 2 2.066188E − 2
8.5 3.744822E − 2 1.453254E − 2
9.5 3.350630E − 2 9.818996E − 3

10.5 3.031523E − 2 6.211128E − 3

N is the required even integer. On applying this simple transformation to Eq. (18.40),
we obtain the required impulse response as

h(n − 0.5) = −h(−n + 0.5)

= 2

(n − 0.5)π
sin2

[
(n − 0.5)π

2

]
for n = 1, 2, . . . , N/2 (18.42)

Similarly, by sampling the continuous-time Kaiser window at t = (n − 0.5)T
for −N T/2 ≤ t ≤ N T/2 with N = 22 using Eqs. (7.24) and (7.25), the values of
wK (n − 0.5) = wK (−n + 0.5) can be computed, and from Eqs. (18.41) and (18.42) the
design in Table 18.2b can be readily obtained. The amplitude response for this case is
depicted in Fig. 18.18b; the maximum passband error in this case is 0.36 percent of the
passband gain. We note that for odd N , several values of the impulse response are zero,
which renders the design more economical. However, the design for even N provides a
wider bandwidth and the approximation error is much smaller.

A feature of the latter design, which may be a problem in certain applications,
is that the impulse response must be shifted by a noninteger multiple of the sampling
period in order to achieve a causal design.

The frequency response of a Hilbert transformer can also be expressed as

H (e jω T) = M(ω)e jθ (ω)

where

M(ω) = 1 and θ (ω) =
{

−π/2 for 0 < ω < ωs/2

π/2 for −ωs/2 < ω < 0

according to Eq. (18.39). Hence Hilbert transformers can also be designed as recursive filters by
assuming a set of cascaded allpass sections, as in Sec. 16.8, and then forcing the overall phase response

DIGITAL SIGNAL PROCESSING APPLICATIONS 859

to approach −90◦ for the range 0 < ω < ωs/2 and 90◦ for the range −ωs/2 < ω < 0 to within a
prescribed tolerance. This can be done by using the optimization methods described in Chap. 16.

18.4.2 Single-Sideband Modulation

One of the important applications of Hilbert transformers is concerned with single-sideband modula-
tion. This process involves two steps: first, an analytic version of a real signal is generated; second, it
is used to modulate a sinusoidal carrier of frequency ωc. Single-sideband modulation can be carried
out by using the scheme depicted in Fig. 18.19, as will now be demonstrated.

The signals at nodes A and B in Fig. 18.19a constitute an analytic signal given by

x̃(nT) = xr (nT) + j xi (nT)

= A(nT)e jφ(nT) (18.43)

Hilbert
transformer

j

xr(n)

cos ωcnT

B

A

cos ωcnT

yr(n)

(a)

Hilbert
transformer

j

xr(n)

sin ωcnT

B

A

sin ωcnT

yi(n)

(b)

Figure 18.19 Single-sideband modulation: (a) Generation of real sequence, (b) generation of imaginary
sequence.

860 DIGITAL SIGNAL PROCESSING

where

A(nT) = [
x2

r (nT) + x2
i (nT)

]1/2
and φ(nT) = tan−1 xi (nT)

xr (nT)

Hence the outputs of the top and bottom structures are given by

yr (n) = A(nT) cos[ωcnT + φ(nT)]

and

yi (n) = A(nT) sin[ωcnT + φ(nT)]

respectively. Therefore,

ỹ(nT) = yr (n) + j yi (n)

= A(nT)e j[ωcnT +φ(nT)]

and, if the spectrum of x̃(nT) (see Eq. (18.30)) is assumed to be zero for ωm ≤ ω ≤ ωs/2 and
ωc + ωm < ωs/2, then the spectrum of ỹ(nT) is given by

Ỹ (e jω T) = X̃ (e j(ω−ωc)T) for 0 < ω < ωs/2 (18.44)

(see Prob. 18.20). In effect, ỹ(nT) represents a carrier modulated by the upper sideband of signal
xr (nT). The operation of the modulator is illustrated in Fig. 18.20. A simplified realization of the
modulator can be easily obtained from Fig. 18.19, as depicted in Fig. 18.21.

X(ejωT)
~

ωs

2
−−ωs ωs

2
ωs

ω

(a)

ωm

Y(ejωT)
~

ωs

2
−−ωs ωs

2

ωs
ω

(b)

ωc + ωm

ωc

Figure 18.20 Operation of single-sideband modulator (solid curves represent real parts and dashed curves
represent imaginary parts).

DIGITAL SIGNAL PROCESSING APPLICATIONS 861

Hilbert
transformer

−sin ωcnT

xr(n)

cos ωcnT

sin ωcnT

yi(n)

cos ωcnT

yr(n)

Figure 18.21 Simplified single-sideband modulator.

18.4.3 Sampling of Bandpassed Signals

In certain applications, it is necessary to sample a signal x(t) whose spectrum occupies a frequency
interval ωL ≤ ω ≤ ωH . Signals of this type are often generated through the use of bandpass filters
and can be referred to as bandpassed4 signals. The processing of such signals would necessitate a
minimum sampling frequency ωs = 2ωH , according to the sampling theorem. However, through the
use of a Hilbert transformer and a pair of decimators, it is possible to generate a downsampled version
of the signal that can be processed at a much lower sampling frequency. Such a scheme is shown in
Fig. 18.22a, and its mode of operation is illustrated by the frequency spectrums of Fig. 18.23.

The signal components at nodes A and B in Fig. 18.22a represent an analytic signal x̃(nT) with
the frequency spectrum depicted in Fig. 18.23b, as demonstrated earlier. Now if M = Int (ωs/B),
where B = (ωH − ωL), the downsamplers will produce exactly M copies of the spectrum of x̃(nT)
in the interval −ωs/2 ≤ ω ≤ ωs/2, as illustrated in Fig. 18.23c for the case M = 8. As can be seen,
the information content of the signal now occupies the interval −B/2 ≤ ω ≤ B/2 and the signal
can be processed using a sampling frequency B. For a narrowband signal, we have B � 2ωH and,
therefore, the necessary speed of operation of the hardware is significantly reduced.

The processed bandpassed signal can be recovered by reversing the above procedure using the
configuration of Fig. 18.22b, where the bandpass filter is a complex bandpass filter with a frequency
response

H (e jω T) =
{

M for ωL ≤ ω ≤ ωH

0 otherwise

4Some authors refer to such signals as bandpass signals but “bandpass” is normally used to qualify filters or systems.

862 DIGITAL SIGNAL PROCESSING

xd(nT')

Hilbert
transformer

j

x(nT)

B

(a)

A

x(nT)~ xd(nT')~

xdu(nT'')

xi(nT'') = x(nT)~ ~

M

M

M

M

~
Complex
bandpass

filter

(b)

~

Figure 18.22 Processing of bandpassed signals: (a) Sampling, (b) reconstruction.

The operation of this scheme is illustrated by the frequency spectrums in Fig. 18.24. Upsampling
will produce M −1 images of the spectrum of x̃(nT), as shown in Fig. 18.24b, and the desired image
can be selected by the bandpass filter, as depicted in Fig. 18.24d .

18.5 ADAPTIVE DIGITAL FILTERS

In many applications, time-variable filters whose characteristics can be varied with time are required.
Filters of this type can be obtained by using multipliers with time-variable coefficients. A time-
variable filter that incorporates some adaptation mechanism by which the multiplier coefficients can
be adjusted on line so as to optimize some performance criterion is said to be an adaptive filter
[5–8]. The adaptation mechanism usually incorporates an optimization algorithm that evaluates the
instantaneous values of the multiplier coefficients such that some norm of an error function of the form

e(n) = d(n) − y(n) (18.45)

is minimized, where d(n) is some desired reference signal and y(n) is the filter output. A typical
adaptive-filter configuration is illustrated in Fig. 18.25.

The design of adaptive filters involves the choice of filter structure, the specific error norm to
be used as objective function, and the type of adaptation algorithm [21–27]. The structure can be
nonrecursive or recursive; the objective function may involve the expected amplitude or square of the

DIGITAL SIGNAL PROCESSING APPLICATIONS 863

1

X(e jωT)

ωs

(a)

0ωs

2
−

ωs

2
ωH =

1
T

X(ejωT)

ωs

(b)

0ωs

2
− ωs

2

~

1
MT

Xd(e jωT ′
)

8ωs
′ = ωs

(c)

0−4ωs
′ 4ωs

′

~

B

ω

ω

ωL

ω

Figure 18.23 Operation of scheme in Fig. 18.22a.

error and possibly the expected value of some higher power or the maximum of the error; similarly,
the adaptation algorithm can be one of several possibilities. Like other filters, adaptive filters are
required to be economical, fast, and insensitive to finite word-length effects; in addition, they should
adapt in a short period of time, and the residual error after adaptation should be as small as possible.
Hence, the performance criteria for these filters are the simplicity and properties of the structure, and
the flexibility, reliability, computational complexity, and convergence properties of the adaptation
algorithm employed.

Usually, the most well behaved of the possible objective functions involves the square of the
error (e.g., the mean-square error), which can be minimized very quickly using some relatively
simple optimization algorithms. As a consequence, this objective function is preferred, although a
mean-square solution may not be the most appropriate in certain applications.

864 DIGITAL SIGNAL PROCESSING

1
MT

−4ωs
¢

8ωs
¢ = ωsωH =

(a)

ωL ωs

2

1
MT

ωs
¢¢

2
−

ωs
¢¢= 8ωs

¢ = ωs

(b)

= 4ωs
¢ωs

¢¢

2

ωs

(d)

ωs

2
− ωs

2

M

0

H(e jωT)

ωs

(c)

ωs

2
−

ωH =
ωs

2

ωL

1
T

Xd(e jωT¢)
~

Xdu(e jωT¢¢)
~

ω

ω

Xi(e
jωT¢¢) = X(e jωT)

~ ~

Figure 18.24 Operation of scheme in Fig. 18.22b.

DIGITAL SIGNAL PROCESSING APPLICATIONS 865

Adaptive
filter y(n)

e(n)x (n)

−1
d(n)

Adaptation
algorithm

Figure 18.25 Typical adaptive-filter configuration.

In the next section we examine an optimal class of digital filters that are designed by choosing
the transfer-function coefficients such that the mean-square value of an error function of the type
given in Eq. (18.45) is minimized for some desired response d(n). Filters so designed are commonly
referred to as Wiener filters, and optimization algorithms that can be used for their design can often
be implemented as adaptation algorithms.

18.5.1 Wiener Filters

The simplest structure that can be used for adaptive filters is the direct nonrecursive structure of
Fig. 18.26. The output of this configuration is given by

y(n) =
N−1∑
i=0

ai (n)x(n − i) = aT
n xn (18.46)

y(n)
e(n)

x(n)

−1
d(n)aN−1a1a0

Adaptation
algorithm

Figure 18.26 Nonrecursive adaptive-filter configuration.

866 DIGITAL SIGNAL PROCESSING

where

xn = [x(n) x(n − 1) · · · x[n − (N − 1)]]T

and

an = [a0(n) a1(n) · · · aN−1(n)]T

are the input signal and coefficient vectors, respectively, at instant nT .
The mean-square error (MSE) is defined as

Ψ(an) = E[e2(n)] (18.47)

where E[·] is the expected value of [·]. From Eqs. (18.47), (18.45), and (18.46), we can write

Ψ(an) = E[d2(n) − 2d(n)y(n) + y2(n)]

= E
[
d2(n) − 2d(n)aT

n xn + aT
n xnxT

n an
]

= E
[
d2(n)

] − 2E
[
d(n)aT

n xn
] + E

[
aT

n xnxT
n an

]
For a filter with fixed coefficients, the MSE function is given by

Ψ(an) = E[d2(n)] − 2aT
n pn + aT

n Rnan (18.48)

where

pn = E[d(n)xn]

and

Rn = E
[
xnxT

n

]
are the cross correlation between the desired and input signals and the correlation matrix of the
input signal, respectively, at instant nT . In effect, the objective function in Eq. (18.47) is a quadratic
function of the filter coefficients a0(n), a1(n), . . . , aN−1(n).

The gradient vector of the MSE function can be readily expressed as

gn = ∇Ψ(an) =
[
∂Ψ(an)

∂a0(n)

∂Ψ(an)

∂a1(n)
· · · ∂Ψ(an)

∂aN−1(n)

]T

(18.49)

and from Eqs. (18.48) and (18.49)

gn = −2pn + 2Rnan (18.50)

Now on equating the elements of the gradient vector to zero, the coefficient vector that minimizes
the MSE function, say

�a, can be deduced as

�a = R−1
n pn

DIGITAL SIGNAL PROCESSING APPLICATIONS 867

Evidently, if pn and Rn are known the Wiener solution can be readily obtained. In practice, accurate
estimates of pn and Rn are not always available, but time averages may be used for their estimation if
d(n) and x(n) are stationary and ergodic signals. In such applications, pn and Rn represent a constant
vector and a constant matrix, respectively, and the subscript n can be dropped.

Many of the available adaptation algorithms are practical algorithms that lead to the Wiener
solution and are borrowed from the field of optimization. Commonly used algorithms are based on
the Newton and steepest-descent algorithms.

18.5.2 Newton Algorithm

The Hessian matrix of Ψ(an) can be obtained from Eq. (18.50) as Hn = 2Rn and, therefore, the
Newton direction (see Sec. 16.3) can be determined as R−1

n gn/2. The Wiener solution can, therefore,
be approached by obtaining estimates of an+1 such that

an+1 = an − α R−1
n g̃n (18.51)

for n = 0, 1, . . . , where α is a constant, g̃n is an estimate of gn , and a0 is an initial estimate of
the transfer-function coefficients. The algorithm is terminated when some convergence criterion is
satisfied. This algorithm is essentially the basic Newton algorithm described in detail in Sec. 16.3
except that no line search is used. The constant α, which is sometimes called the convergence factor,
is chosen to achieve fast convergence for the type of application under consideration. Line searches
have not been used in the past owing to the additional amount of computation required, but certain
related techniques are likely to be employed in the future.

If g̃n in Eq. (18.51) is the exact gradient, matrix Rn is a well-behaved positive-definite matrix,
and α = 1/2, then the Newton algorithm gives the required solution in one iteration, as was demon-
strated in Sec. 16.3. However, if g̃n is an approximate estimate of the gradient, a number of iterations
is required.

In practice, the Newton algorithm is characterized by a very small number of iterations, but
the amount of computation required per iteration is quite large since the inversion of matrix Rn is
required. If Rn is nearly nonsingular or ill-conditioned, the algorithm can become quite inefficient.

18.5.3 Steepest-Descent Algorithm

If matrix Rn is assumed to be the N × N unity matrix, then the updating formula in Eq. (18.51)
assumes the form

an+1 = an − α g̃n (18.52)

If the negative of the gradient vector, namely, −gn , is drawn through point an , it points in the direction
of steepest descent, as can be easily shown, and for this reason the use of Eq. (18.52) as updating
formula leads to the so-called steepest-descent algorithm.

This algorithm is very simple to implement since the Hessian matrix and its inversion are not
required. At the start of the adaptation, the algorithm leads to a large reduction in the error function
per iteration. However, as the solution is approached, the elements of the gradient become smaller
and smaller and progress in the adaptation process tends to slow down considerably; in particular, if

868 DIGITAL SIGNAL PROCESSING

the minimum point is located in the middle of a relatively flat valley. Overall, the steepest-descent
algorithm is usually less efficient than the Newton algorithm, but the amount of computation per
iteration is much smaller. This makes the steepest-descent algorithm more suitable for real-time
applications.

If the ratio of the largest to the smallest eigenvalue of matrix Rn is large, then the solution point
tends to follow a zig-zag trajectory in the parameter space and the performance of the algorithm
tends to deteriorate. Under certain circumstances, the algorithm can actually become unstable, as
demonstrated by the following example.

Example 18.4 (a) Show that the steepest-descent algorithm can be treated as an N -input,
N -output, first-order digital filter. (b) Using the filter obtained, find a necessary and sufficient
condition for the stability of the algorithm.

Solution

(a) From Eqs. (18.52) and (18.50)

an+1 = R̃nan + 2α pn (18.53)

where

R̃n = I − 2α Rn

Matrix R̃n can be expressed as

R̃n = QΛ̃QT

where Q is a unitary matrix whose columns comprise an orthogonal set of eigenvectors
associated with the eigenvalues of R̃n and Λ̃ is a diagonal matrix whose diagonal elements
are the eigenvalues of R̃n . Hence Eq. (18.53) can be put in the form

an+1 = QΛ̃QT an + 2α pn

and on premultiplying both sides by QT and letting

a′
n+1 = QT an+1 and p′

n = 2α QT pn

we obtain

a′
n+1 = Λ̃a′

n + p′
n (18.54)

DIGITAL SIGNAL PROCESSING APPLICATIONS 869

N-input N-output
first-order

digital filter
ynxn

a'n+1a'n

Figure 18.27 N -input, N -output, first-order digital filter (Example 18.4).

This equation represents an N -input, N -output, first-order digital filter with input xn = p′
n

and output yn = a′
n+1, as shown in Fig. 18.27.

(b) The algorithm is stable if and only if each of the elements of the impulse res-
ponse vector hn of the filter in Fig. 18.27 is absolutely summable (see Sec. 4.7). From
Eq. (18.54)

h0 = a′
1 = Λ̃a′

0 + δ0

h1 = a′
2 = Λ̃a′

1 + 0 = Λ̃ 2a′
0 + Λ̃δ0

h2 = a′
3 = Λ̃a′

2 + 0 = Λ̃ 3a′
0 + Λ̃ 2δ0

· ·
hn = a′

n+1 = Λ̃ n+1a′
0 + Λ̃ nδ0

Without loss of generality, we can assume that a0 = 0 or a′
0 = 0 and hence

hn = Λ̃ nδ0

Thus, the i th element of the impulse response vector hn is obtained as

hi (n) = λ̃n
i (18.55)

870 DIGITAL SIGNAL PROCESSING

The filter is stable if and only if

∞∑
n=0

|hi (n)| < ∞ for i = 1, 2, . . . , N (18.56)

and, therefore, a necessary and sufficient condition for stability can be obtained from
Eqs. (18.55) and (18.56) as

|λ̃i | < 1 for i = 1, 2, . . . , N (18.57)

Now the eigenvalues of R̃n are related to those of Rn by the equation

λ̃i = 1 − 2α λi

(see Prob. 18.21) and hence the inequality in Eq. (18.57) can be expressed as

|1 − 2αλi | < 1 for i = 1, 2, . . . , N

Since the eigenvalues of Rn are real and positive, the steepest-descent algorithm is stable
if and only if

0 < α < 1/λ̂

where λ̂ is the largest eigenvalue of Rn .

Improved performance can often be achieved, in practice, by starting the adaptation process
with the steepest-descent algorithm and, when certain progress has been achieved, switching over
to the Newton algorithm, which is more efficient at points in the neighborhood of the solution
point.

18.5.4 Least-Mean-Square Algorithm

As can be seen in Eq. (18.50), the gradient depends on vector pn and matrix Rn , which are not in
general available. Nevertheless, an estimate of the gradient g̃n can be deduced by letting

p̃n = d(n)xn (18.58)

and

R̃n = xnxT
n (18.59)

DIGITAL SIGNAL PROCESSING APPLICATIONS 871

be estimates of p and R, respectively. From Eqs (18.50), (18.58), (18.59), (18.45), and (18.46), we
can write

g̃n = −2d(n)xn + 2xnxT
n an

= −2
[
d(n) − xT

n an
]
xn

= −2e(n)xn (18.60)

On using this estimate of the gradient in the updating formula of the steepest-descent algorithm given
in Eq. (18.52), we obtain

an+1 = an + 2α e(n)xn (18.61)

The use of this formula yields the so-called least-mean-square (LMS) algorithm. The convergence
factor α is chosen in the range

0 < α <
1

NE[x2(n)]
(18.62)

in order to guarantee the convergence of the algorithm (see Prob. 18.23). The quantity E[x2(n)]
represents the average input power and is usually easy to estimate.

Note that

∇e2(n) = 2e(n)

[
∂e(n)

∂a0(n)

∂e(n)

∂a1(n)
· · · ∂e(n)

∂aN−1(n)

]T

and from Eqs. (18.45), (18.46), and (18.60)

∇e2(n) = −2e(n)xn = g̃n

that is, g̃n is the exact gradient of e2(n) and thus the LMS algorithm minimizes the instantaneous
power of the error signal.

Further details on the above algorithms as well as some others can be found in [5–8].

18.5.5 Recursive Filters

In applications where high selectivity is required, a nonrecursive design would necessitate a transfer
function of high order, which may entail a high computational complexity. For such applications,
a recursive design may be the only possible solution. Unfortunately, however, the use of recursive
structures introduces several new problems. First, the coefficients of the denominator polynomial of
the transfer function may assume values in the unstable region of the coefficient space and, if this
happens, the adaptive filter will become unstable. Second, the objective function becomes highly
nonlinear and may have several local minima, some of them quite shallow. Hence the adaptation
algorithm may easily converge to some unsatisfactory solution.

The problem of instability can be overcome by incorporating checks in the adaptation algorithm
that can detect an unstable solution and restore stability by making a suitable adjustment to the current

872 DIGITAL SIGNAL PROCESSING

coefficient values. For example, the coefficients can be adjusted in such a way as to replace any poles
outside the unit circle of the z plane by their reciprocals (see Sec. 11.4). The problem of several local
minima, which is quite difficult to solve, can be eased to some extent by selecting a well-behaved
objective function and by using a good estimate of the solution for the initialization of a0. For
most practical problems, the objective function is well behaved in the neighborhood of the optimum
solution, and an initial point in this domain will cause the adaptation algorithm to converge to the
optimum solution.

The design of adaptive filters based on recursive structures has been studied by a number of
researchers in recent years [26–27] and more work is anticipated in the future.

18.5.6 Applications

The applications of adaptive filters are numerous and include system identification, channel equal-
ization, signal enhancement, and signal prediction.

In a system identification application, a broadband signal, usually white noise, is applied si-
multaneously at the inputs of an unknown system and an adaptive filter, and an error signal is formed
by subtracting the output of the adaptive filter from that of the unknown system, as depicted in
Fig. 18.28. If the error signal obtained is minimized, the adaptive filter becomes a model for the
unknown system.

The transmission of a signal through an imperfect channel entails amplitude and phase distor-
tion, as was shown in Sec. 5.7. If the frequency response of the channel is known, it can be equalized
using a fixed filter, as described in Secs. 12.5.1 and 12.6. However, if the channel response is vari-
able, equalization by means of an adaptive filter is more appropriate. A variable channel response
can occur in telephony where the physical wire path between any two subscribers depends not only
on the locations of the two subscribers but also on the time of the call. Channel equalization can

x(n)

−1

Adaptation
algorithm

e(n)

d(n)

Adaptive
filter

Unknown
system

Figure 18.28 Use of adaptive filters for system identification.

DIGITAL SIGNAL PROCESSING APPLICATIONS 873

x(n)

−1

Adaptation
algorithm

e(n)

d(n)

Adaptive
filterChannel

Delay

Figure 18.29 Use of adaptive filters for channel equalization.

be achieved by connecting an adaptive filter in cascade with the channel and comparing the output
of the cascade arrangement with a delayed version of the input signal, as illustrated in Fig. 18.29.
In this application, the reference signal is a training signal and is known at the receiving end, i.e., it
need not be transmitted.

In signal enhancement applications, a signal x(n) corrupted by a noise component n1(n),
namely,

d(n) = x(n) + n1(n)

is used as a reference signal, and a signal n2(n) that is correlated to the noise component n1(n) is
applied to the input of an adaptive filter, as depicted in Fig. 18.30. After adaptation, the error signal
e(n) will represent an enhanced version of the signal x(n) in which a significant amount of noise has
been removed.

In signal prediction applications, the signal of interest is used as the reference signal and a
delayed version is applied to the input of an adaptive filter. The error signal is generated by subtracting
the output of the adaptive filter from the reference signal, as shown in Fig. 18.31. After convergence,

n2(n)

−1

Adaptation
algorithm

e(n)
Adaptive

filter

d(n)

Figure 18.30 Use of adaptive filters for signal enhancement.

874 DIGITAL SIGNAL PROCESSING

x(n)

−1

Adaptation
algorithm

Adaptive
filterDelay

d(n)

e(n)

Figure 18.31 Use of adaptive filters for signal prediction.

the filter coefficients are adjusted in response to the past signal values and can, therefore, be used
to reconstruct or extrapolate the input signal. Signal prediction is used in speech coding, where a
model of the signal rather than the signal itself is encoded and transmitted.

18.6 TWO-DIMENSIONAL DIGITAL FILTERS

In many applications, continuous signals are encountered that are functions of two independent
variables, say, t1 and t2. Two-dimensional signals of this type can be represented by functions of the
form x(t1, t2). Each of the two variables can represent an arbitrary physical quantity such as time,
length, velocity, acceleration, and temperature. An example of a 2-D continuous signal is the light
intensity in an image as a function of the x and y coordinates.

Two-dimensional continuous signals, like their 1-D counterparts, can be represented by fre-
quency spectrums. Furthermore, they can be sampled at discrete points (t1, t2) = (n1T1, n2T2) to
yield discrete5 signals x(n1T1, n2T2). Signals of this type have frequency spectrums that are peri-
odic with respect to frequencies ω1 and ω2 with a 2-D period (ωs1, ωs2), where ωs1 = 2π/T1 and
ωs2 = 2π/T2.

Two-dimensional discrete signals can be processed by 2-D digital filters whose operation and
properties are analogous to those of their 1-D counterparts, that is, they can be time invariant or
time dependent, causal or noncausal, and linear or nonlinear. Since neither of the two independent
variables needs to be time, causality does not have the usual physical interpretation.

The theory, analysis, and design methods, and applications of 2-D digital filters are quite
extensive but are largely beyond the scope of this book. Below, we present some of the basic
principles involved and some of the straightforward extensions of 1-D methods and techniques for
the sake of completeness. The reader with more than a casual interest in the analysis and design
of 2-D digital filters is referred to the more specialized books on the subject cited earlier, namely,
Refs. [9–11].

A 2-D causal recursive (or IIR) digital filter with excitation x(n1, n2) and response y(n1, n2)
can be represented by a difference equation in two variables of the form

y(n1, n2) =
N1∑

i=0

N2∑
j=0

ai j x(n1 − i, n2 − j) −
N1∑

i=0

N2∑
j=0

bi j y(n1 − i, n2 − j)

5Discrete-time is changed to discrete since neither of the two variables needs to be time.

DIGITAL SIGNAL PROCESSING APPLICATIONS 875

where b00 = 0. If bi j = 0 for 0 ≤ i ≤ N1 and 0 ≤ j ≤ N2, the representation of a 2-D nonrecursive
(or FIR) filter is obtained. The pair (N1, N2) is the order of the filter.

18.6.1 Two-Dimensional Convolution

If the impulse response of a 2-D filter h(n1,n2) is known, then its response y(n1, n2) to an arbitrary
excitation x(n1, n2) can be determined by using the 2-D convolution. If h(n1, n2) = x(n1, n2) = 0
for n1 < 0 or n2 < 0, then

y(n1, n2) =
n1∑

i=0

n2∑
j=0

x(i, j)h(n1 − i, n2 − j)

=
n1∑

i=0

n2∑
j=0

h(i, j)x(n1 − i, n2 − j)

This formula can be derived by following the approach of Sec. 4.6.

18.6.2 Two-Dimensional z Transform

The most important mathematical tool for the analysis and design of 2-D digital filters is the 2-D
z transform, which is a straightforward extension of its 1-D counterpart. The 2-D z transform of a
function f (n1, n2) is defined as

F(z1, z2) =
∞∑

n1=−∞

∞∑
n2=−∞

f (n1, n2)z−n1
1 z−n2

2

for all (z1, z2) for which the double summation converges. Function f (n1, n2) is the 2-D inverse z
transform of F(z1, z2) and is given by

f (n1, n2) = 1

(2π j)2

∮
�2

∮
�1

F(z1, z2)zn1−1
1 zn2−1

2 dz1 dz2 (18.63)

where the two integrals are evaluated in the counterclockwise sense over contours �1 and �2 that are
in the region of convergence of F(z1, z2) .

18.6.3 Two-Dimensional Transfer Function

The transfer function of a 2-D digital filter is the z transform of the impulse response, as can be
shown by applying the z transform to the convolution summation. It can be expressed as

H (z1, z2) = N (z1, z2)

D(z1, z2)
=

∑N1
i=0

∑N2
j=0 ai j z

N1− i
1 zN2− j

2

zN1
1 zN2

2 + ∑N1
i=0

∑N2
j=0 bi j z

N1− i
1 zN2− j

2

where b00 = 0. The transfer function can be used to find the response of the filter to an arbitrary
excitation and its frequency-domain response; furthermore, it contains all the necessary information
to determine whether the filter is stable or unstable.

876 DIGITAL SIGNAL PROCESSING

18.6.4 Stability

The stability of a 2-D digital filter is closely linked with the singularities of the transfer function, as
in 1-D filters. Unfortunately, in 2-D digital filters the singularities are not in general isolated and,
as a result, stability analysis is much more complicated. A sufficient condition for the stability of a
2-D filter due to Shanks [28, 29] is that all the singularities of the transfer function are located on
the open unit bidisc defined by the set

U 2 = {(z1, z2) : |z1| < 1, |z2| < 1}
i.e.,

D(z1, z2) �= 0 for (z1, z2) /∈ U 2 (18.64)

where

D(z1, z2) = zN1
1 zN2

2 +
N1∑

i=0

N2∑
j=0

bi j z
N1− i
1 zN2− j

2

with b00 = 0.

Example 18.5 A 2-D digital filter is characterized by the transfer function

H (z1, z2) = N (z1, z2)

D(z1, z2)

where

N (z1, z2) = 512(z1 + 1)2(z2 + 1)2

and

D(z1, z2) = 512z2
1z2

2 − 128z1z2
2 + 256z2

1z2 − 192z2
2 − 40z2

1 − 64z1z2

+10z1 − 96z2 + 15

Check the stability of the filter.

Solution

The transfer function can be expressed as

H (z1, z2) = N ′(z1, z2)

D′(z1, z2)

where

N ′(z1, z2) = (z1 + 1)2(z2 + 1)2

DIGITAL SIGNAL PROCESSING APPLICATIONS 877

and

D′(z1, z2) = z2
1z2

2 − 1
4 z1z2

2 + 1
2 z2

1z2 − 3
8 z2

2 − 5
64 z2

1 − 1
8 z1z2 + 5

256 z1 − 3
16 z2 + 15

512

The denominator polynomial D′(z1, z2) can now be put in the form

D′(z1, z2) = (
z2

2 + 1
2 z2 − 5

64

)
z2

1 − (
1
4 z2

2 + 1
8 z2 − 5

256

)
z1 − (

3
8 z2

2 + 3
16 z2 − 15

512

)
= (

z2
1 − 1

4 z1 − 3
8

) (
z2

2 + 1
2 z2 − 5

64

)
= (

z1 + 1
2

) (
z1 − 3

4

) (
z2 + 5

8

) (
z2 − 1

8

)

Hence the transfer function H (z1, z2) is singular only at points

(z1, z2) =
{(− 1

2 , z2
) (

z1, − 5
8

)(
3
4 , z2

) (
z1,

1
8

)
Therefore, D(z1, z2) satisfies Eq. (18.64) and as a consequence the filter is stable.

If the denominator of the transfer function can be factorized into a product of polynomials
of the form D1(z1)D2(z2) where D1(z1) and D2(z2) are polynomials in z1 and z2, respectively, as
in the above example, the stability of the filter can be easily checked by using the stability criteria
of Sec. 5.3.3, for example, by applying the Jury-Marden stability criterion. However, if D(z1, z2)
cannot be factorized, the stability analysis can be quite involved (see Chap. 5 of Ref. [11]).

18.6.5 Frequency-Domain Analysis

The frequency response of a 2-D filter is given by

H (e jω1T1 , e jω2T2) = M(ω1, ω2)e jθ (ω1,ω2)

where

M(ω1, ω2) = |H (e jω1T1 , e jω2T2)| (18.65)

and

θ (ω1, ω2) = arg H (e jω1T1 , e jω2T2) (18.66)

are the amplitude and phase response, respectively. A pair of parameters that are sometimes of interest
in 2-D digital filters are the group delays. These are defined as

τ1 = −∂θ(ω1, ω2)

∂ω1
and τ2 = −∂θ(ω1, ω2)

∂ω2
(18.67)

878 DIGITAL SIGNAL PROCESSING

Example 18.6 A 2-D nonrecursive digital filter designed by using the method in Ref. [30]
has the transfer function

H (z1, z2) =
4∑

i=1

(−1)i+1 Hi (z1)Hi (z2)

where

Hi (zk) =
24∑
j=0

ai j z
− j
k for k = 1, 2

and

ai j = ai(24− j) for i = 1, 2, 3, 4 (18.68)

The coefficients ai j are given in Table 18.3. Obtain the amplitude response of the filter.

Table 18.3 Coefficients of 2-D transfer function (Example 18.6)

j a1 j a2 j a3 j a4 j

0 0.0007 0.0012 0.0031 0.0027
1 −0.0004 −0.0009 0.0006 0.0034
2 −0.0013 −0.0033 −0.0065 −0.0063
3 0.0022 0.0043 −0.0009 −0.0099
4 0.0025 0.0105 0.0173 0.0155
5 −0.0086 −0.0119 −0.0019 0.0301
6 −0.0036 −0.0206 −0.0474 −0.0109
7 0.0241 0.0374 −0.0154 −0.0460
8 −0.0007 0.0549 0.0746 −0.0214
9 −0.0688 −0.0713 0.0744 −0.0007

10 0.0189 −0.1635 0.0015 −0.0137
11 0.3145 −0.0519 −0.0028 −0.0049
12 0.4935 0.0544 0.0250 0.0124

Solution

The amplitude response can be obtained as shown in Fig. 18.32, by using Eq. (18.65).
As can be seen, the given transfer function represents a lowpass filter with a circular
passband. Equation (18.68) amounts to symmetrical impulse responses in the 1-D filters,
represented by H1(z1) and H2(z2), that is, these filters have a linear phase response (see
Sec. 9.2). Therefore, the phase response of the 2-D filter, given by Eq. (18.66), is linear
with respect to bothω1 andω2, and the group delays in Eq. (18.67) are constant throughout
the baseband. It should be mentioned in passing that a linear phase response is highly
desirable in image processing applications.

DIGITAL SIGNAL PROCESSING APPLICATIONS 879

ω1 ω2

(a)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
ω1

ω2

(b)

Figure 18.32 Amplitude response of 2-D digital filter (Example 18.6): (a) 3-D plot,
(b) contour plot.

880 DIGITAL SIGNAL PROCESSING

18.6.6 Types of 2-D Filters

As in the case of 1-D filters, different types of 2-D filters can be identified on the basis of their
amplitude responses, e.g., lowpass, highpass, bandpass, and bandstop. Passbands and stopbands are
now subareas of the (ω1,ω2) plane and can be rectangular or circular. A 2-D lowpass filter has an
amplitude response of the form

M(ω1, ω2) ≈
{

1 for (ω1, ω2) ∈ R1

0 for (ω1, ω2) ∈ R2

where

R1 = {(ω1, ω2) : |ω1| ≤ ωp1 and |ω2| ≤ ωp2}

and

R2 = {(ω1, ω2) : |ω1| ≥ ωa1 or |ω2| ≥ ωa2}

in a filter with rectangular band boundaries or

R1 =
{

(ω1, ω2) :
√

ω2
1 + ω2

2 < ωp

}

and

R2 =
{

(ω1, ω2) :
√

ω2
1 + ω2

2 > ωa

}

in a filter with circular band boundaries. A 2-D highpass filter, on the other hand, has an amplitude
response

M(ω1, ω2) ≈
{

0 for (ω1, ω2) ∈ R1

1 for (ω1, ω2) ∈ R2

where R1 and R2 are as above.
Another type of filter that has no counterpart in the 1-D domain is the so called fan filter. A

fan filter has an amplitude response

M1(ω1, ω2) ≈
{

1 for (ω1, ω2) ∈ S1

0 for (ω1, ω2) ∈ S2

where

S1 =
{

(ω1, ω2) :

∣∣∣∣tan−1 ω2

ω1

∣∣∣∣ < θ1 or

∣∣∣∣tan−1 ω2

ω1

∣∣∣∣ > π − θ1

}

DIGITAL SIGNAL PROCESSING APPLICATIONS 881

and

S2 =
{

(ω1, ω2) :

∣∣∣∣tan−1 ω2

ω1

∣∣∣∣ > θ2 or

∣∣∣∣tan−1 ω2

ω1

∣∣∣∣ < π − θ2

}

with θ2 > θ1.

18.6.7 Approximations

The most difficult task in the design of 2-D digital filters is the solution of the approximation problem,
which entails the derivation of a stable transfer function such that prescribed amplitude and/or phase
response specifications are achieved. As in 1-D filters, the approximation problem can be solved by
using direct or indirect methods in terms of closed-form or iterative solutions.

Nonrecursive filters can be designed by using the 2-D Fourier series in conjunction with
2-D window functions [31] (see Secs. 9.3 and 9.4) or by using a transformation due to McClellan
[32, 33]. Recursive filters, on the other hand, can be designed by applying transformations to 1-D
filters [34, 35]. Nonrecursive as well as recursive filters can be designed by using the singular-value
decomposition [30, 36] or through the application of optimization methods [37–40].

If the numerator and denominator of the transfer function can be factorized into products
N1(z1)N2(z2) and D1(z1)D2(z2), then the transfer function is said to be separable and can be expressed
as

H (z1, z2) = H1(z1, z2)H2(z1, z2)

where

H1(z1, z2) = N1(z1, z2)

D1(z1, z2)
and H2(z1, z2) = N2(z1, z2)

D2(z1, z2)

Filters of this class can be readily designed using the approximation techniques for 1-D digital filters
described in the previous chapters, and they are suitable for applications where rectangular band
boundaries are acceptable. However, if the transfer function is not separable, as may be the case in
filters with circular band boundaries, the design is much more involved.

18.6.8 Applications

Two-dimensional digital filters are useful in several areas. Lowpass filters can be used for the reduction
of noise in images for the same reasons as their 1-D counterparts. Use is made of the fact that the
information content of the 2-D signal is often concentrated at low frequencies, whereas noise tends
to be distributed throughout the baseband. Highpass filters are sometimes used for the enhancement
of edges in images; their application is based on the fact that abrupt changes in an image tend to
increase the high-frequency content of an image, and its amplification by a highpass filter tends to
exaggerate edges or outlines. Edge enhancement finds applications in pattern recognition, surveying,
and computer vision. Fan filters have been found very useful for the processing of geophysical signals;
for example, they can enhance the quality of seismic signals by eliminating signal components that
are not associated with the subsurface ground formations. Seismic signals are indispensable for oil
prospecting and other geological applications [11].

882 DIGITAL SIGNAL PROCESSING

REFERENCES

[1] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1983.

[2] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ:
Prentice-Hall, 1993.

[3] T. Nguyen, “Digital filter bank design quadratic-constrained formulation,” IEEE Trans.
Signal Processing, vol. 43, pp. 2103–2108, Sept. 1995.

[4] P. Heller, T. Karp, and T. Nguyen, “A general formulation of modulated filter banks,” IEEE
Trans. Signal Processing, vol. 47, pp. 986–1002, Apr. 1999.

[5] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ:
Prentice-Hall, 1985.

[6] P. A. Regalia, Adaptive IIR Filtering for Signal Processing Control, New York: Marcel
Dekker, 1995.

[7] S. Haykin, Adaptive Filter Theory, 4th ed., Englewood Cliffs, NJ: Prentice-Hall, 2002.
[8] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 2th ed.,

Boston: Kluwer Academic Publishers, 2002.
[9] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing,

Englewood Cliffs, NJ: Prentice-Hall, 1984.
[10] J. S. Lim, Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ:

Prentice-Hall, 1990.
[11] W.-S. Lu and A. Antoniou, Two-Dimensional Digital Filters, New York: Marcel Dekker,

1992.
[12] H. Scheuermann and H. Gockler, “A comprehensive survey of digital transmultiplexing

methods,” Proc. IEEE, vol. 69, pp. 1419–1450, Nov. 1981.
[13] N. S. Jayant and P. Noll, Digital Coding of Waveforms, Englewood Cliffs, NJ: Prentice-Hall,

1984.
[14] J. D. Johnson and R. E. Crochiere, “An all-digital commentary grade sub-band coder,”

J. Audio Eng. Soc., vol. 27, pp. 855–865, Nov. 1979.
[15] J. D. Johnson, “A filter family designed for use in quadrature mirror filter banks,” in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 1984, pp. 291–294,
Apr. 1980.

[16] V. K. Jain and R. E. Crochiere, “Quadrature mirror filter design in the time domain,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 32, pp. 353–361, Apr. 1984.

[17] P. P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, and
applications: A tutorial,” Proc. IEEE, vol. 78, pp. 56–93, Jan. 1990.

[18] M. J. T. Smith and T. P. Barnwell, III, “Exact reconstruction techniques for tree-structured
subband coders,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34, pp. 434–441, June
1986.

[19] B. Gold, A. V. Oppenheim, and C. M. Rader, “Theory and implementation of the discrete
Hilbert transform,” Proc. Symp. Computer Process. in Comm., vol. 19, pp. 235–250, New
York: Polytechnic Press, 1970. (See also Digital Signal Processing, edited by L. R. Rabiner
and C. M. Rader, IEEE Press, pp. 94–109, 1972.)

[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs,
NJ: Prentice-Hall, 1989.

DIGITAL SIGNAL PROCESSING APPLICATIONS 883

[21] D. T. M. Slock and T. Kailath, “Numerically stable fast transversal filters for recursive least
squares adaptive filtering,” IEEE Trans. Signal Processing, vol. 39, pp. 92–114, Jan. 1991.

[22] P. A. Regalia and M. G. Bellanger, “On the duality between fast QR methods and lattice
methods in least squares adaptive filtering,” IEEE Trans. Signal Processing, vol. 39,
pp. 879–891, Apr. 1991.

[23] G. Carayannis, D. G. Manolakis, and N. Kalouptsidis, “A fast sequential algorithm for
least-squares filtering and prediction,” IEEE Trans. Acoust., Speech, Signal Process., vol. 31,
pp. 1394–1402, Dec. 1983.

[24] P. A. Regalia, “Stable and efficient lattice algorithms for adaptive IIR filtering,” IEEE Trans.
Signal Processing, vol. 40, pp. 375–388, Feb. 1992.

[25] M. G. Bellanger, “FLS-QR algorithm for adaptive filtering,” Signal Processing, vol. 17,
pp. 291–304, 1989.

[26] J. J. Shynk, “Adaptive IIR filtering,” IEEE ASSP Magazine, vol. 6, pp. 4–21, Apr. 1989.
[27] M. Nayeri and W. K. Jenkins, “Alternate realizations to adaptive IIR filters and properties of

their performance surfaces,” IEEE Trans. Circuits Syst., vol. 36, pp. 485–496, Apr. 1989.
[28] J. L. Shanks, “Two-dimensional recursive filters,” SWIEECO Rec., pp. 19E1–19E8, 1969.
[29] J. L. Shanks, S. Treitel, and J. H. Justice, “Stability and synthesis of two-dimensional

recursive filters,” IEEE Trans. Audio Electroacoust., vol. 20, pp. 115–128, June 1972.
[30] A. Antoniou and W.-S. Lu, “Design of two-dimensional digital filters by using the singular

value decomposition,” IEEE Trans. Circuits Syst., vol. 34, pp. 1191–1198, Oct. 1987.
[31] T. S. Huang, “Two-dimensional windows,” IEEE Trans. Audio Electroacoust.vol. 20,

pp. 88–89, Mar. 1972.
[32] J. H. McClellan, “The design of two-dimensional digital filters by transformations,”

Proc. 7th Annual Princeton Conf. Information Sciences and Systems, pp. 247–251, 1973.
[33] R. M. Mersereau, W. F. G. Mecklenbräuker, and T. F. Quatieri, Jr., “McClellan

transformations for two-dimensional digital filtering: I—Design,” IEEE Trans. Circuits
Syst., vol. 23, pp. 405–413, July 1976.

[34] J. M. Costa and A. N. Venetsanopoulos, “Design of circularly symmetric two-dimensional
recursive filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 22, pp. 432–443,
Dec. 1974.

[35] D. M. Goodman, “A design technique for circularly symmetric low-pass filters,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 26, pp. 290–304, Aug. 1978.

[36] W.-S. Lu, H.-P. Wang, and A. Antoniou, “Design of two-dimensional FIR digital filters by
using the singular value decomposition,” IEEE Trans. Circuits Syst., vol. 37, pp. 35–46,
Jan. 1990.

[37] G. A. Maria and M. M. Fahmy, “An l p design technique for two-dimensional digital recursive
filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 22, pp. 15–21, Feb. 1974.

[38] P. A. Ramamoorthy and L. T. Bruton, “Design of stable two-dimensional analogue and
digital filters with applications in image processing,” Int. J. Circuit Theory Appl., vol. 7,
pp. 229–245, 1979.

[39] C. Charalambous, “The performance of an algorithm for minimax design of
two-dimensional linear phase FIR digital filters,” IEEE Trans. Circuits Syst., vol. 32,
pp. 1016–1028, Oct. 1985.

[40] C. Charalambous, “Design of 2-dimensional circularly-symmetric digital Filters,” Proc. Inst.
Elect. Eng., Part G, vol. 129, pp. 47–54, Apr. 1982.

884 DIGITAL SIGNAL PROCESSING

ADDITIONAL REFERENCES

Friedlander, B, “Lattice filters for adaptive processing,” Proc. IEEE, vol. 70, pp. 829–867,
Aug. 1982.

Gilloire, A. and M. Vetterli, “Adaptive filtering in subbands with critical sampling: Analysis,
experiments, and applications to acoustic echo cancellation,” IEEE Trans. Signal Processing,
vol. 40, pp. 1862–1875, Aug. 1992.

Glentis, G. O., K. Berberidis, and S. Theodoridis, “Efficient least-squares adaptive algorithms for
FIR transversal filtering,” IEEE Signal Processing Magazine, vol. 16, pp. 13–41, July 1999.

Johns, D. A., W. M. Snelgrove, and A. S. Sedra, “Adaptive recursive state-space filters using a
gradient-based algorithm,” IEEE Trans. Circuits Syst., vol. 37, pp. 673–683, June 1990.

Johnson, Jr., C. R, “On the interaction of adaptive filtering, identification, and control,” IEEE
Signal Processing Magazine, vol. 12, pp. 22–37, Mar. 1995.

Koilpillai, R. D. and P. P. Vaidyanathan, “Cosine-modulated FIR filter banks satisfying perfect
reconstruction,” IEEE Trans. Signal Processing, vol. 40, pp. 770–783, Apr. 1992.

Lin, Y.-P. and P. P. Vaidyanathan,“Linear phase cosine modulated maximally decimated filter banks
with perfect reconstruction,” IEEE Trans. Signal Processing, vol. 42, pp. 2525–2539,
Nov. 1995.

Marshall, D. F., W. K. Jenkins, and J. J. Murphy, “The use of orthogonal transforms for improving
performance of adaptive filters,” IEEE Trans. Circuits Syst., vol. 36, pp. 474–483, Apr. 1989.

Mathews, V. J., “Adaptive polynomial filters,” IEEE Signal Processing Magazine, vol. 8,
pp. 10–26, July 1991.

Shynk, J. J., “Adaptive IIR filtering using parallel-form realizations,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 37, pp. 519–533, Apr. 1989.

Shynk, J. J., “Frequency-domain and multirate adaptive filtering,” IEEE Signal Processing
Magazine, vol. 9, pp. 14–37, Jan. 1992.

PROBLEMS

18.1. The input signal x(nT) in the downsampler of Fig. 18.2a has the real frequency spectrum depicted in
Fig. P18.1 and ωs = 20 rad/s.
(a) Sketch the frequency spectrum of xd (nT ′) if M = 2.
(b) Repeat part (a) if M = 4.
(c) Comment on the answers obtained in parts (a) and (b).

2010

ω, rad /s

4.0

Figure P18.1

DIGITAL SIGNAL PROCESSING APPLICATIONS 885

18.2. Repeat Prob. 18.1 if the spectrum of x(nT) is given by

X (e jωT) = Re X (e jωT) + j Im X (e jωT)

where

Re X (e jωT) =
{

1 − |ω| for −1 < ω < 1
0 for 1 ≤ |ω| ≤ 10

and

Im X (e jωT) =
{−ω for −1 < ω < 1

0 for 1 ≤ |ω| ≤ 10

The sampling frequency is the same as in Prob. 18.1.

18.3. The spectrum of signal x(nT) in the downsampler of Fig. 18.2a is given by

X (e jωT) = e−|ω| for 0 ≤ |ω| < 12

and ωs = 24 rad/s. Find the maximum value of M that will limit the aliasing error to a value less than 1
percent relative to the spectrum of the signal at ω = 1 rad/s.

18.4. In an application, the sampling frequency needs to be increased by a factor of 10.
(a) Design a nonrecursive filter that can be used along with an upsampler to construct an interpolator.

Linear interpolation is acceptable.
(b) Plot the amplitude response of the filter.

18.5. A signal x(nT) is applied at the input of the configuration depicted in Fig. P18.5a. The frequency
spectrum of xc(t), namely, Xc(jω), is zero for |ω| ≥ ωc, as illustrated in Fig. P18.5b. The filter shown
is a nonrecursive filter of length N with a frequency response

H (jω) = M(ω)e jθ (ω)

where

M(ω) =
{

3 for |ω| < ωc

0 for ωc ≤ |ω| ≤ ω′
s/2

and

θ(ω) = (N − 1)ωT ′/2

(a) Sketch the frequency spectrums at points A, B, C, and D.
(b) Write expressions for the signals and their frequency spectrums at points A, B, C, and D.

886 DIGITAL SIGNAL PROCESSING

B
3

A Lowpass
filter

C D
3

ωs
¢ωs ωs

¢ ωs

(a)

−ωc ωc

(b)

0

1.0

Figure P18.5

18.6. Demonstrate the validity of Eq. (18.29).

18.7. The signal x(nT) in a 4-band QMF bank has the triangular frequency spectrum shown in Fig. 18.10b.
(a) Sketch the frequency spectrums at the various nodes of the analysis section.
(b) Repeat part (a) for the synthesis section.

18.8. Time-division to frequency-division multiplex translation can be carried out by using the scheme depicted
in Fig. P18.8. Signals xck(t) for k = 0, 1, . . . , K −1 are bandlimited such that Xck(jω) = 0 for |ω| ≥ ωm .
The lowpass filters shown are identical and each has a cutoff frequency ωc = ωm . On the other hand,
the highpass filters have distinct cutoff frequencies ω0, ω1, . . . , ωK−1. For correct operation, ωs ≥ 2ωm ,
ω′

s > 2(ωL O + Kωm), and ωk ≥ ωk−1 + ωm for k = 1, 2, . . . , K − 1.

C1
L

A1 Lowpass
filter

D1 E1

xc0(t)

B1
A/D

x0(nT)

Highpass
filter

F1

C2
L

A2 Lowpass
filter

D2 E2

xc1(t)

B2
A/D

x1(nT)

Highpass
filter

F2

CK
L

AK Lowpass
filter

DK EK

xc(K−1)(t)

BK
A/D

xK−1(nT)

Highpass
filter

FK

ωs

G

cos ω1nT¢
y(nT)′

cos ω0nT ¢

cos ωK−1nT¢

ωs¢

Figure P18.8

(a) Sketch the frequency spectrums at points Ak, Bk, . . . , Fk , and G for the case where K = 3.
(b) Explain the role of the lowpass and highpass filters.

18.9. Find the maximum number of channels in the scheme of Fig. P18.8 if ωm = 4 kHz, ωL O = 60 kHz,
ωs = 8 kHz, and ω′

s = 216 kHz.

DIGITAL SIGNAL PROCESSING APPLICATIONS 887

18.10. Frequency-division to time-division multiplex translation can be carried out by using the scheme depicted
in Fig. P18.10 where the bandpass filters have passbands ωk ≤ ω ≤ ωk + ωm for k = 1, 2, . . . , K − 1
and each of the lowpass filters has a cutoff frequency ωc ≥ ωm . Sketch the frequency spectrums of the
signals at nodes A, Bk, Ck , Dk , and Ek for the case where K = 3.

C1
M

D1 E1
B1

C2 M
D2

E2B2 Lowpass
filter

CK
M

DK
EKBK Lowpass

filter

Bandpass
filter

Bandpass
filter

Bandpass
filter

xK−1(nT)

x1(nT)

x0(nT)

ωs

Lowpass
filter

A

cos ωK−1nT ′

y(nT)′

cos ω1nT ′
ωs

′

cos ω0nT ′

Figure P18.10

18.11. Chapter 9 describes the Fourier series method for the design of nonrecursive filters for the case where
the filter length N is odd. Derive the impulse response for a lowpass filter with cutoff frequency ωc for
the case where N is even.

18.12. (a) Using the formula for the impulse response obtained in Prob. 18.11 along with the von Hann window
design a halfband lowpass filter. Assume that N = 32 and ωs = 16 rad/s.

(b) Design a corresponding halfband highpass filter.
(c) The filters in parts (a) and (b) are used in a QMF bank. Plot the amplitude response of the QMF

bank.

18.13. Redesign the filters in Prob. 18.12 using the Kaiser window with α = 3.0. Compare the results with
those obtained using the von Hann window.

18.14. Let the numerator polynomial of transfer function HA(s) in Example 18.2 be N (s). Demonstrate that
N (s) and polynomials dA(s) and dB(s) in Eqs. (18.25) and (18.26) satisfy the relation

1
2 [dA(s)dB(−s) + dA(−s)dB(s)] = N (s)

(see Sec. 17.5).
18.15. (a) Redesign the filter in Example 18.2 using a fifth-order Butterworth approximation.

(b) Demonstrate that the formula in Prob. 18.14 applies.
(c) Two copies of the filter obtained will be used as the analysis and synthesis banks in a transmission

system. Plot the overall group delay characteristic of the system.

18.16. (a) Redesign the filter of Example 18.2 using a fifth-order Chebyshev approximation.
(b) Determine the amplitude response of the lowpass filter by applying the bilinear transformation to

the analog transfer function.
(c) Determine the amplitude response of the lowpass filter by analyzing the lattice structure obtained

(see Sec. 17.8).

888 DIGITAL SIGNAL PROCESSING

18.17. The filter obtained in Prob. 18.16 is to be used both for the analysis and synthesis banks in the scheme
of Fig. 18.9. Find the overall phase response of the system.

18.18. (a) Design a Hilbert transformer of length N = 31 using the Kaiser window with α = 4.0, assuming a
sampling frequency of 100 rad/s.

(b) Repeat part (a) with N = 32.
(c) Compare the results obtained in the two cases.

18.19. Formulate the error function and obtain the necessary derivatives to enable the design of Hilbert trans-
formers using the Remez exchange algorithm (say Algorithm 4 in Chap. 15).

18.20. Demonstrate the validity of Eq. (18.44).

18.21. The eigenvalues of an N×N matrix Rn are λ1, λ2, . . . , λN . Show that the eigenvalues of R̃n = In−2αRn
are given by λ̃i = 1 − 2αλi .

18.22. The input and desired signals in an adaptive filter are given by

x(n) = e− jω n/N

and

d(n) = e− j(ω n/N+φ) + n1(n)

respectively, where n1(n) is a white noise source with variance σ 2
n .

(a) Calculate pn and Rn for the case where a nonrecursive filter of length N = 2 is employed.
(b) Obtain the Wiener solution as well as the minimum MSE at the output.

18.23. Show that the inequality in Eq. (18.62) is a sufficient condition for the stability of the LMS algorithm.

18.24. Three variations of the standard LMS updating formula given in Eq. (18.61) are

an+1 = an + 2α sgn[e(n)]xn

an+1 = an + 2αe(n) sgn(xn)

and

an+1 = an + 2α sgn[e(n)] sgn(xn)

where

sgn(x) =
{

1 for x ≥ 0
−1 for x < 0

and

sgn(x) = [sgn(x1) sgn(x2) . . . sgn(xN)]T

Constant 2α is usually chosen to be a power of two for the sake of computational efficiency. Discuss the
effects of these simplifications on the gradient direction, convergence, and the residual error.

18.25. Apply the LMS algorithm and each of the variations described in Prob. 18.24 for the identification of a
system characterized by

H (z) =
4∑

i=0

z−i

using the initial coefficient vector a0 = [0 0 0 0 0]T . Discuss the results obtained.

18.26. If matrix Rn is approximated by a diagonal matrix whose diagonal elements are all equal to

‖xn‖2 = xT
n xn

the so-called normalized-LMS algorithm is obtained.

DIGITAL SIGNAL PROCESSING APPLICATIONS 889

(a) Show that in this algorithm, the updating formula assumes the form

an+1 = an + 2α e(n)xn

γ + xT
n xn

where γ is a small constant.
(b) Explain the purpose of constant γ .

18.27. A transmission channel can be represented by the transfer function

H (z) =
8∑

i=0

(i − 4)z−i

Identify the channel by using first the LMS algorithm and then the normalized-LMS algorithm, and
compare the results obtained.

18.28. In real-time applications an estimate for Rn , designated by R̃n , can be generated as

R̃n = (1 − µ)R̃n−1 + µxnxT
n

where µ is a constant. On the other hand, if A, B, C, and D are matrices of appropriate dimensions, then
they are interrelated in terms of the so-called matrix inversion lemma which states that

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

Using the above formulas, derive a recursive formula for R̃−1
n .

18.29. Algorithms using the gradient estimate given in Eq. (18.60) along with some estimate for R̃−1
n are referred

to as LMS-Newton adaptation algorithms.

(a) Construct such an algorithm using the estimate for R̃−1
n obtained in Prob. 18.28.

(b) Apply this algorithm to the system identification problem described in Prob. 18.25.

18.30. A 2-D digital filter has the transfer function

H (z1, z2) = N (z1, z2)

D(z1, z2)
= 2z1z2

z1z2 − 0.5z1 − 0.5z2 + 0.25

Find its impulse response. The 2-D impulse function is defined as

δ(n1, n2) =
{

1 for n1 = n2 = 0
0 otherwise

18.31. Repeat Prob. 18.30 if the transfer function is given by

H (z1, z2) = N (z1, z2)

D(z1, z2)
= z1z2

2z1z2 − 1

18.32. Plot the amplitude and phase response of the filter described in Prob. 18.30.

18.33. Check the stability of the filters described in Probs. 18.30 and 18.31.

18.34. A 2-D digital filter is characterized by the transfer function

H (z1, z2) = N (z1, z2)

D(z1, z2)

890 DIGITAL SIGNAL PROCESSING

where

N (z1, z2) = 64(z1 − 1)2(z2 − 1)2

and

D(z1, z2) = 64z2
1z2

2 − 32z1z2
2 + 48z2

1z2 + 8z2
2 + 8z2

1

−24z1z2 − 4z1 + 6z2 + 1

Check its stability.

18.35. A 2-D lowpass digital filter comprises two cascaded 1-D lowpass filters with passband edges ωpi rad/s,
stopband edges ωai rad/s, passband ripples Api dB, and minimum stopband attenuations Aai rad/s for
i = 1 and 2. Find the passband and stopband edges, passband ripple, and minimum stopband attenuation
of the 2-D filter.

18.36. Using the formulas obtained in Prob. 18.35 design a 2-D lowpass filter satisfying the following specifi-
cations:

ωp1 = 2.0 rad/s ωp2 = 3.0 rad/s

ωa1 = 2.4 rad/s ωa2 = 3.6 rad/s ωs1 = ωs2 = 10 rad/s

Ap = 1.0 dB Aa ≥ 40.0 dB

APPENDIX

A
COMPLEX
ANALYSIS

A.1 INTRODUCTION

Digital signal processing (DSP) relies heavily on transform theory which, in turn, necessitates a fairly
good understanding of complex analysis. In many universities, a course is available on this branch of
mathematics, which is usually a prerequisite for courses on system theory, linear circuits, and DSP.
Often no such course is offered and the instructor of DSP is obliged to deal with the relevant parts
of complex analysis on the fly along with the standard DSP material.

This appendix deals with the fundamentals of complex analysis and the basic objective is to
enable an instructor to teach DSP at a university where a suitable prerequisite on complex analysis is
not available. It can also serve as a quick reference to the basic principles. The topics to be discussed
are selected on the basis of their relevance to DSP and the exposition is intended for the practitioner
rather than the mathematician, i.e., principles, definitions, and theorems are presented with minimal
rigor or proof. For a more mathematical treatment of the subject, the reader is referred to one of the
standard textbooks on complex analysis [1–3].

The subjects considered include complex arithmetic, complex variables, differentiability, and
analyticity of functions of a complex variable and their representation in terms of power series
like the Laurent series. The appendix also includes brief biographical notes on some of the great
mathematicians who developed the subject in the first place. Some of this material originates from
the Biographies Index of the The MacTutor History of Mathematics Archive, School of Mathematics
and Statistics, University of St. Andrews, Scotland [4].

891

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

892 DIGITAL SIGNAL PROCESSING

A.2 COMPLEX NUMBERS

The first reference to what we know today as complex numbers occurred during the fifteenth century.
According to the record, the first person to carry out a calculation involving complex numbers was
an Italian by the name of Cardano who was a qualified medical doctor turned mathematician by
circumstances.1 Cardano’s quote in Fn. 1 makes it quite clear that he did not grasp the enormity of
what he had stumbled upon but another Italian by the name of Bombelli was able to put everything
into perspective.2

The term complex number was introduced by Gauss who also paved the way for the devel-
opment of complex numbers as an organized branch of mathematics.3 The correct meaning of the
term is of course composite number, not complicated number as perceived by students more or less
everywhere.

The roots of a quadratic equation

az2 + bz + c = 0

are given by

z = − b

2a
±

√
b2 − 4ac

2a
(A.1)

and if b2 < 4ac, we can write

z = − b

2a
±

√
b2 − 4ac

2a

= − b

2a
± √−1 ·

√
4ac − b2

2a
= x + j y

where x = −b/2a, y =
√

(4ac − b2)/(2a), and j = √−1. The components of a complex number,
x and y, are called the real and imaginary parts and can be represented by the notation

x = Re z and y = Im z

1Girolano Cardano (Cardan in Latin) (1501–1576) is known for his work on the solution of the cubic and quartic
equations. In his mathematical treatise Ars Magna, which also deals with his methods for the solution of cubic and quartic
equations, Cardano states “Dismissing mental tortures, and multiplying 5 +

√−15 by 5 − √−15, we obtain 25 − (−15).
Therefore the product is 40, . . . , and thus far does arithmetical subtlety go, of which this, the extreme, is, as I have said, so
subtle that it is useless.” [4].

2Rafael Bombelli (1525–1572) was the first person to work out the rules of complex arithmetic. He also published an
algebra book that dealt with the state of the art on the subject and included his own contributions to complex arithmetic. The
historical record shows that Bombelli had studied Cardano’s work and, no doubt, he was influenced quite substantially by it.

3Carl Friedrich Gauss (1777–1855) made many contributions to mathematics in the areas of differential equations,
complex analysis, numerical analysis, and number theory. He also made important contributions to the theory of magnetism
and, apparently, Gauss and Weber built a primitive telegraph device that could send messages over a distance of 5000 ft.

COMPLEX ANALYSIS 893

z plane

z=x+jy

x

jy

r

ψ

Figure A.1 Complex z plane (Argand diagram).

and j is called the imaginary unit [3].4 If coefficients a, b, and c are variables, then z in Eq. (A.1)
becomes a complex variable, in general, which can assume real values.

A complex number is deemed to be equal to zero if and only if its real and imaginary parts are
both zero and two complex numbers z1 and z2 are deemed to be equal to one another if and only if5

the real and imaginary parts of z1 are equal to the real and imaginary parts of z2, respectively, i.e.,

z1 = z2 iff x1 = x2 and y1 = y2

A complex number can be depicted graphically in an {x, y} rectangular coordinate system
such as that in Fig. A.1. A coordinate system of this type is known as a complex plane or Argand
diagram.6 The representation of a complex number in terms of its real and imaginary parts is known
as the Cartesian representation.7

From Fig. A.1, we note that

x = r cos ψ and y = r sin ψ

where

r = |z| =
√

x2 + y2 and ψ = arg z = tan−1 y

x
(A.2)

4Mathematicians tend to use the symbol i for the imaginary unit.
5“If and only if ” is often denoted as iff in mathematical language.
6Jean-Robert Argand (1768–1822) was an accountant and bookkeeper by profession but delved into mathematics in his

spare time. He made other important contributions to mathematics in addition to his geometrical representations of complex
numbers. For example, on the fundamental theorem of algebra that states that an nth-order polynomial has n roots and on
combinations whereby r distinct objects are taken at a time from a set of s objects.

7After René Descartes (1596–1650), the inventor of analytic geometry.

894 DIGITAL SIGNAL PROCESSING

are the magnitude (radius) and angle (or argument) of z, respectively. Therefore,

z = x + j y = r (cos ψ + j sin ψ) (A.3)

Evidently, the radius and angle completely specify complex number z and the set {r, ψ} is said to
be its polar representation.

A.2.1 Complex Arithmetic

Complex numbers and variables can be added, subtracted, or multiplied according to the usual laws
of algebra, such as, the commutative, associative, and distributive laws (see Sec. 4.4.1). Therefore,
complex arithmetic need not present problems.

A complex arithmetic operation that has no counterpart in real arithmetic is complex conjuga-
tion. The complex conjugate (or simply conjugate) of z = x + j y is defined as

z∗ = (x + j y)∗ = x − j y

Addition or subtraction of two complex numbers z1 = x1 + j y1 and z2 = x2 + j y2 is carried
out by adding or subtracting their respective real and imaginary parts, i.e.,

z1 + z2 = x1 + j y1 + x2 + j y2 = (x1 + x2) + j(y1 + y2) (A.4a)

and

z1 − z2 = (x1 + j y1) − (x2 + j y2) = (x1 − x2) + j(y1 − y2) (A.4b)

Multiplication is carried out by multiplying the two complex numbers term by term treating
j just like a real number. Powers of j are simplified by noting that j2 = −1, j3 = − j , j4 = 1,
j5 = j , and so on. Thus

z1z2 = (x1 + j y1)(x2 + j y2) = x1x2 + j(x2 y1 + x1 y2) + j2 y1 y2

= (x1x2 − y1 y2) + j(x2 y1 + x1 y2) (A.4c)

Division can be carried out by multiplying the dividend and divisor by the conjugate of the divisor,
i.e.,

z1

z2
= x1 + j y1

x2 + j y2
= (x1 + j y1)(x2 − j y2)

(x2 + j y2)(x2 − j y2)

= x1x2 + y1 y2 + j(x2 y1 − x1 y2)

x2
2 + y2

2

(A.4d)

A.2.2 De Moivre’s Theorem

If z1 = x1 + j y1 = r1(cos ψ1 + j sin ψ1) and z2 = x2 + j y2 = r2(cos ψ2 + j sin ψ2), it can be easily
shown that

z1z2 = r1r2[cos(ψ1 + ψ2) + j sin(ψ1 + ψ2)] (A.5a)

COMPLEX ANALYSIS 895

and

z1

z2
= r1

r2
[cos(ψ1 − ψ2) + j sin(ψ1 − ψ2)] (A.5b)

The formula in Eq. (A.5a) can be readily extended to a product of n complex numbers as

z1z2 · · · zn = r1r2 · · · rn[cos(ψ1 + ψ2 + · · · ψn) + j sin(ψ1 + ψ2 + · · · + ψn)]

and if z1 = z2 = · · · = z = r (cos ψ + j sin ψ), we get

zn = [r (cos ψ + j sin ψ)]n = rn(cos nψ + j sin nψ) (A.6)

This relation is known as De Moivre’s theorem.
If wn = z, then w = z1/n is said to be an nth root of z. Using De Moivre’s relation in Eq. (A.6),

it can be shown that a complex number has n nth roots, given by

wk = z1/n = r1/n(cos ψ + j sin ψ)1/n

= r1/n

(
cos

ψ + 2kπ

n
+ j sin

ψ + 2kπ

n

)
(A.7)

for k = 0, 1, . . . , n − 1.

A.2.3 Euler’s Formula

An alternative representation for a complex number z, referred to in this textbook as the exponential
form, can be deduced from the following well-known series

sin ψ = ψ − ψ3

3!
+ ψ5

5!
+ · · · (A.8)

cos ψ = 1 − ψ2

2!
+ ψ4

4!
− · · · (A.9)

tan ψ = ψ + ψ3

3
+ 2ψ5

15
+ · · · (A.10)

eψ = 1 + ψ + ψ2

2!
+ ψ3

3!
+ ψ4

4!
+ ψ5

5!
· · · (A.11a)

If we replace ψ by jψ in Eq. (A.10), we get

e jψ = 1 + jψ + j2ψ2

2!
+ j3ψ3

3!
+ j4ψ4

4!
+ j5ψ5

5!
· · ·

= 1 + jψ − ψ2

2!
− jψ3

3!
+ ψ4

4!
+ jψ5

5!
· · ·

=
(

1 − ψ2

2!
+ ψ4

4!
· · ·

)
+ j

(
ψ − ψ3

3!
+ ψ5

5!
· · ·

)
(A.11b)

896 DIGITAL SIGNAL PROCESSING

and from Eqs. (A.8), (A.9), and (A.11b), we obtain the relation

e jψ = cos ψ + j sin ψ (A.12)

which is known as Euler’s formula.

A.2.4 Exponential Form

An arbitrary complex number z with polar representation {r, ψ} can be expressed as

z = r cos ψ + jr sin ψ = r (cos ψ + j sin ψ) (A.13a)

and from Euler’s formula in Eq. (A.12), z can be expressed in terms of the exponential form

z = re jψ (A.13b)

where r = |z| and ψ = arg z.
Complex numbers like their real counterparts obey the law of exponents and thus the product

of two complex numbers z1 = r1e jψ1 and z2 = r2e jψ2 can be obtained as

z1z2 = r1e jψ1r2e jψ2 = r1r2e j(ψ1+ψ2) (A.14a)

Hence

|z1z2| = r1r2 and arg(z1z2) = ψ1 + ψ2 (A.14b)

Division is just as easy. We can write

z1

z2
= r1e jψ1

r2e jψ2
= r1

r2
e j(ψ1−ψ2) (A.15a)

and hence ∣∣∣∣ z1

z2

∣∣∣∣ = r1

r2
and arg

z1

z2
= ψ1 − ψ2 (A.15b)

In general, an arbitrary ratio of products can be expressed as∏M
i=1 zmi∏N
i=1 zni

= re jψ (A.16a)

where

r =
∏M

i=1 |zmi |∏N
i=1 |zni |

(A.16b)

COMPLEX ANALYSIS 897

and

ψ =
M∑

i=1

arg zmi −
N∑

i=1

arg zni (A.16c)

Similarly, the nth power of z can be expressed as

zn = (re jψ)n = rne jnψ = rn(cos nψ + j sin nψ) (A.17)

which is an alternative form of De Moivre’s relation. Note that Euler’s formula in Eq. (A.12) is
actually De Moivre’s relation for the special case where r = 1 and n = 1.

A.2.5 Vector Representation

Complex numbers may be deemed to be two-dimensional vectors. Hence vector methodology can be
used. Thus two complex numbers z1 and z2 can be added by using the parallelogram law illustrated
in Fig. A.2a. Extending this principle, an arbitrary number of complex numbers can be added by
aligning them end to end. For example, three complex numbers z1 = −1 + j1, z2 = 2 + j2,
and z3 = 2 − j1 can be added by using the construction illustrated in Fig. A.2b.

The sum of the magnitudes of N complex numbers is equal to or greater than the magnitude
of their sum, i.e.,

N∑
i=1

|zi | ≥
∣∣∣∣∣

N∑
i=1

zi

∣∣∣∣∣ (A.18)

z plane

z1

z1+ z2
z2

(a)

x

jy

z plane

z1 = −1+ j1

z2 = 2+ j2

z3 = 2− j1

x

jy

(b)

z1+z2+z3

Figure A.2 Vector representation of complex numbers: (a) Addition of two complex numbers using the
parallelogram law, (b) addition of three complex numbers.

898 DIGITAL SIGNAL PROCESSING

where the equal sign applies only if the complex numbers have the same angle. For example, if
z1 = −1 + j1, z2 = 2 + j2, and z3 = 2 − j1, we have

3∑
i=1

|zi | = |(−1 + j1)| + |(2 + j2)| + |(2 − j1)| =
√

2 +
√

8 +
√

5 = 6.479

whereas ∣∣∣∣∣
3∑

i=1

ci

∣∣∣∣∣ = |(−1 + j1) + (2 + j2) + (2 − j1)| = |3 + j2| =
√

13 = 3.606

Clearly,

3∑
i=1

|zi | >

∣∣∣∣∣
3∑

i=1

zi

∣∣∣∣∣
This simple, yet important, inequality is illustrated in Fig. A.2b.

A.2.6 Spherical Representation

It is sometimes convenient to represent the complex z plane in terms of the surface of a sphere
of unit radius, as depicted in Fig. A.3 where the line passing through the north and south poles
of the sphere passes through the origin of the complex z plane and is perpendicular to it. In this

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1.0

1.5

2.0

2.5

3.0

x axis
 jy axis

z
ax

is

S

N

P

P'

z plane

Figure A.3 Riemann sphere.

COMPLEX ANALYSIS 899

geometrical construction, which is known as a Riemann sphere,8 given an arbitrary point P in the
z plane, a line can be drawn joining point P with the north pole N of the sphere, as depicted in
Fig. A.3, and the point of intersection of line PN with the surface of the sphere, namely, P′, bares a
one-to-one correspondence with point P. Evidently, each and every point in the complex z plane can
be mapped onto a corresponding point on the surface of the sphere. The most significant feature of
this stereographic projection is that any point situated at a very large distance from the origin will
map in the neighborhood of the north pole and thus a point at infinity will map at the north pole. The
Riemann sphere renders the abstract concept of infinity easier to understand.

A.3 FUNCTIONS OF A COMPLEX VARIABLE

A complex variable W may be a function of another complex variable z = x + j y. Such a relation
can be expressed as

W = F(z)

and if U and V are the real and imaginary parts of W , we have

W = F(z) = U (x, y) + j V (x, y)

Functions of a complex variable appear frequently in DSP and several types are available, e.g.,

• polynomials,

• rational algebraic functions,

• inverse algebraic functions,

• exponential and logarithmic functions,

• trigonometric and their inverse functions,

• hyperbolic and their inverse functions, etc.

These functions are generalizations of their real counterparts.

A.3.1 Polynomials

A polynomial in z assumes the form

P(z) = a0 + a1z + a2z2 + · · · + aN zN =
N∑

i=0

ai z
i

where z is a complex variable and coefficients ai for 0, 1, . . . , N are typically real in DSP although
they could be complex in certain applications. Integer N is the degree or order of the polynomial.

8Friedrich Bernhard Riemann (1826–1866) was born in Breselenz, Hanover (now in Germany). He took lessons from
Gauss and Dirichlet. He contributed greatly to the theory of complex analysis and built upon the theories of Cauchy. He
produced original work on conformal transformations (see Sec. A.9) and introduced topological methods into complex
analysis.

900 DIGITAL SIGNAL PROCESSING

Values of z that yield P(z) = 0 are said to be the roots of the polynomial and from the so-called
fundamental theorem of algebra, an N th-order polynomial has N roots. If the coefficients are real,
the roots are either real or occur in complex-conjugate pairs.

A.3.2 Inverse Algebraic Functions

Given a function

s = F(z)

where s and z are both complex variables, a new function

z = G(s)

can sometimes be obtained. Such a function is said to be the inverse of F(z) and can be expressed as

z = G(s) = F−1{s}

For example, if

s = z + 1

z − 1

then

z = F−1{s} = s + 1

s − 1

A.3.3 Trigonometric Functions and Their Inverses

On replacing ψ in Eqs. (A.8)–(A.10) first by z and then by −z, we can readily conclude that the sine
and tangent functions are odd functions and the cosine is an even function of z, i.e.,

sin(−z) = − sin z cos(−z) = cos z tan(−z) = − tan z (A.19)

Now on replacing ψ first by z and then by −z in e jψ in Eq. (A.11b), the basic trigonometric functions
of a complex variable z can be obtained as

sin z = 1

2 j
(e jz − e− j z) (A.20a)

cos z = 1

2
(e jz + e− j z) (A.20b)

tan z = sin z

cos z
= e jz − e− j z

j(e jz + e− j z)
(A.20c)

COMPLEX ANALYSIS 901

The following identities follow their real counterparts:

sin (z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2 (A.21a)

cos (z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2 (A.21b)

tan (z1 ± z2) = tan z1 ± tan z2

1 ∓ tan z1 tan z2
(A.21c)

sin2 z + cos2 z = 1 (A.21d)

The standard inverse trigonometric functions are given by

sin−1 z = 1

j
ln

(
j z +

√
1 − z2

)
(A.22a)

cos−1 z = 1

j
ln

(
z +

√
z2 − 1

)
(A.22b)

tan−1 z = 1

2 j
ln

(
1 + j z

1 − j z

)
(A.22c)

where ln z ≡ loge z is the natural logarithm of z.

A.3.4 Hyperbolic Functions and Their Inverses

Like their trigonometric counterparts, the hyperbolic sine and tangent are odd functions and the
hyperbolic cosine is an even function of z, i.e.,

sinh (−z) = − sinh z cosh (−z) = cosh z tanh (−z) = − tanh z (A.23)

and by analogy with Eqns. (A.20) and (A.21), we have

sinh z = 1

2
(ez − e−z) = − j sin j z (A.24a)

cosh z = 1

2
(ez + e−z) = cos j z (A.24b)

tanh z = sinh z

cosh z
= ez − e−z

ez + e−z
= − j tan j z (A.24c)

and

sinh (z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2 (A.25a)

cosh (z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2 (A.25b)

tanh (z1 ± z2) = tanh z1 ± tanh z2

1 ± tanh z1 tanh z2
(A.25c)

cosh2 z − sinh2 z = 1 (A.25d)

902 DIGITAL SIGNAL PROCESSING

On the other hand, the inverse hyperbolic functions are given by

sinh−1 z = ln
(

z +
√

z2 + 1
)

(A.26a)

cosh−1 z = ln
(

z ±
√

z2 − 1
)

(A.26b)

tanh−1 z = 1

2
ln

(
1 + z

1 − z

)
(A.26c)

A.3.5 Multi-Valued Functions

In a functional relation of the form

w = F(z)

z can assume arbitrary complex values in the z plane and for each value of z there is one or more
values of w that can be plotted in the w plane. We can say that the relation maps points of the z plane
onto points of the w plane.

Consider the functional relation

w = z1/2 (A.27)

and let z = re jψ be an arbitrary complex number which can be drawn as shown in Fig. A.4a. Solving
Eq. (A.27) for w, we get

w1 = u1 + jv1 = r1/2e jψ/2

and thus point z in Fig. A.4a maps onto point w1 in Fig. A.4b. Since angles ψ and ψ + 2π are
essentially one and the same angle, complex number z can also be written as

z = re j(ψ+2π)

w plane

u

w1

jv

(b)

z plane

x

z

jy

(a)

w2

ψ

r

Figure A.4 Multi-valued function w = z1/2.

COMPLEX ANALYSIS 903

and if we solve Eq. (A.27) again for w, we get

w2 = u2 + jv2 = r1/2e jψ/2+π

Thus, one and the same point in the z plane maps onto two points in the w plane, which means that
for each value of z, function w assumes two distinct values, as depicted in Fig. A.4b. Such a function
is, in effect, a two-valued function. Generalizing this principle, a function w = F(z) that can assume
more than one value in the w plane for each value of z is said to be a multi-valued function.

Many of the theorems of complex analysis are applicable only to single-valued functions and
it would appear that such theorems would not be applicable to multi-valued functions such as the one
in Eq. (A.27). However, through a geometrical interpretation due to Riemann it is possible to treat
multi-valued functions as if they were single-valued. In this interpretation, the z plane is deemed to
be made up of overlapping sheets and points like z = re jψ and z′ = re jψ+2π are considered to be
unique points on different overlapping sheets. To illustrate this idea, let us reconsider the function

x axis

jy axis

Branch cut

Branch point

z

z�

z plane

(a)

w plane

u

w1

jv

(b)

w2

Figure A.5 Multi-valued function w = z1/2.

904 DIGITAL SIGNAL PROCESSING

in Eq. (A.27). By imagining the z plane to be made of two overlapping sheets such that the bottom
sheet is joined to the top sheet along the positive real axis through a four-way seam, as depicted
in Fig. A.5a, then points z = re jψ and z′ = re jψ+2π can be considered to be distinct thereby
causing the mapping to become one-to-one, i.e., each and every point in the z plane corresponds to
a unique point in the w plane, as depicted in Fig. A.5b. Under these circumstances, the function in
Eq. (A.27) can be considered as if it were single-valued and, consequently, any theorems that apply
to single-valued functions also apply to the function in Eq. (A.27).

Surfaces such as that in Fig. A.5a are said to be Riemann surfaces after their inventor. The
four-way seam in Fig. A.5a (solid line), which extends from x = 0 to infinity, is commonly referred
to as a branch cut and the origin of the Riemann surface is called a branch point.

Another example of a multi-valued function is the n root of z, that is,

w = z1/n

As in the previous example, the origin of the z plane is a branch point and the positive real axis is a
branch cut. The Riemann surface comprises n sheets in this case.

In certain multi-valued functions, the Riemann surface has an infinite number of sheets and
such functions are, therefore, said to be infinite-valued. Consider the natural logarithm of z given by

w = ln z (A.28)

where

z = re jψ

For any integer k, the identity 1 ≡ (cos 2kπ + j sin 2kπ) ≡ e j2kπ holds and thus we can write

z = re jψ · 1 = re jψ · e j2kπ = re j(ψ+2kπ) (A.29)

Hence Eqs. (A.28) and (A.29) give

w = ln z = ln(re j(ψ+2kπ)) = ln r + ln e j(ψ+2kπ)

= ln r + j(ψ + 2kπ)

We conclude, therefore, the natural logarithm of z is an infinite-valued function.
Just like the other multi-valued functions considered, the natural logarithm of z can also be

treated as if it were a single-valued function by representing the z plane in terms of a Riemann surface
comprising an infinite number of sheets connected in the form of a spiral as that illustrated in Fig. A.6.
The distance between overlapping sheets is, of course, zero, in theory. The range −π < ψ ≤ π is
said to be the principal angle of z.

A.3.6 Periodic Functions

In DSP, certain functions of a complex variable such as the frequency spectrum of a signal or the
frequency response of a discrete-time system are periodic.

A function H (e jωT) is a periodic function of ω with period ωs , if

H (e j(ω+kωs)T) = H (e jωT) (A.30)

COMPLEX ANALYSIS 905

−1.0

−0.5−0.5
0

0.5

1.0

−1.0

0

0.5

1.0
20

10

0

10

20

x axisjy axis

z
ax

is

Figure A.6 Riemann surface of a periodic function.

As in the case of multi-valued functions, the nature of periodic functions can be elucidated by
representing the z plane in terms of a Riemann surface. For the periodic function of Eq. (A.30), the
Riemann surface would assume the form of a spiral ramp such as those found in car parkades, as
illustrated in Fig. A.6. The parkade would have an infinite number of floors above as well as below
ground level but the height between floors would be zero. For a given ω, points . . . e j(ω−ωs), e jω,
e j(ω+ωs) . . . would map at the same coordinates but on distinct sheets one above the other in Fig. A.6.

Note that there is an important difference between the Riemann surface of the periodic function
in Eq. (A.30) and that of the multi-valued function in Eq. (A.27). The latter has a branch cut on the
positive real axis as depicted in Fig. A.5a but the former does not.

A.3.7 Rational Algebraic Functions

A rational algebraic function is a ratio of polynomials of the form

H (z) = N (z)

D(z)
=

∑A
i=0 ai zi∑B
i=0 bi zi

(A.31)

Rational functions arise frequently both in analog and digital filters in the form of continuous- or
discrete-time transfer functions. The frequency response of these filters is determined by evaluating
the transfer function with respect to some domain of a complex plane, for example, the frequency
response of a digital filter is obtained by letting z = e jωT in the discrete-time transfer function H (z),
that is, H (e jωT), whereas for an analog filter, we evaluate the continuous-time transfer function on
the jω axis. The amplitude and phase responses of a digital filter are simply the magnitude and angle

906 DIGITAL SIGNAL PROCESSING

of the frequency response (see Chap. 5) and can be obtained as

M(ω) = |H (e jωT)| and θ (ω) = arg H (e jωT) (A.32a)

and as in Eqs. (A.16a)–(A.16c), Eq. (A.31) gives

M(ω) =
∣∣∣∣ N (e jωT)

D(e jωT)

∣∣∣∣
=

{
[Re N (e jωT)]2 + [Im N (e jωT)]2

[Re D(e jωT)]2 + [Im D(e jωT)]2

}1/2

(A.32b)

and

θ (ω) = arg H (e jωT) = arg N (e jωT) − arg D(e jωT)

= tan−1 Im N (e jωT)

Re N (e jωT)
− tan−1 Im D(e jωT)

Re D(e jωT)
(A.32c)

The determination of angle θ(ω) needs special attention because the inverse tangent is a multi-
valued function. To start with, one should not divide each imaginary part by the corresponding real
part before calculating the inverse tangents, otherwise, an erroneous result may be obtained through
loss of information. If, for example, the real and imaginary parts are both negative, then the inverse
tangent would give an angle in the third quadrant but if the real part were divided by the imaginary part
to start with, a positive number would be obtained, which would give an angle in the first quadrant.9

Another issue to be resolved has to do with the fact that computers in general will evaluate θ (ω)
in the range −π ≤ θ (ω) ≤ π although the phase response of a digital filter can be smaller than −π

or larger than π . This problem can be resolved on the basis of the continuity of the phase response.
If the phase angle changes in an anticlockwise direction from π − ϑ1 to π + ϑ2, where 0 < ϑ1 < π

and 0 < ϑ2 < π , the new phase angle will be evaluated as −π + ϑ2. Thus if the complex value of
the frequency response moves from the second to the third quadrant of the z plane, an angle of 2π

must be added to the computed phase response in order to get the correct phase angle. On the other
hand, if the phase angle changes in a clockwise direction from −(π − ϑ1) to −(π + ϑ2), the phase
angle would be computed as π − ϑ2, i.e., if the complex value of the frequency response moves
from the third to the second quadrant, an angle of 2π must be subtracted from the computed phase
angle. In other words, if the complex value of the frequency response crosses the negative real axis
in an anticlockwise or clockwise direction an angle of 2π must be added to or subtracted from the
computed value, as appropriate.

A.4 BASIC PRINCIPLES OF COMPLEX ANALYSIS

Below some of the key basic principles of complex analysis are highlighted.

A.4.1 Limit

A function F(z) is said to have a limit F0 as z approaches z0, if (a) F(z) is defined in a neighborhood
of z0 (except perhaps at point z0) and (b) for every positive real number ε there exists a positive real

9In the MATLAB environment, one should use the four-quadrant inverse tangent function atan2.

COMPLEX ANALYSIS 907

number δ such that |F(z) − F0| < ε for all values of z �= z0 in the disk |z − z0| < δ. Limit F0 can
be expressed as

F0 = lim
z→z0

F(z)

A function F(z) is said to be continuous at point z = z0 if F(z0) is defined and is given by

F(z0) = lim
z→z0

F(z) = F0

Extending this concept somewhat, a continuous function is one that is continuous at all the points
where it is defined.

A.4.2 Differentiability

The concept of limit leads readily to the definition of differentiability of a complex function.

Definition A.1 Differentiability A function F(z) is said to be differentiable at a point z = z0 if
the limit

F ′(z0) = lim
	z→0

F(z0 + 	z) − F(z0)

	z
(A.33)

exists. This limit is called the derivative of F(z) at point z = z0. �

If we let z0 + 	z = z in Eq. (A.33), we obtain

F ′(z0) = lim
z→z0

F(z) − F(z0)

z − z0
(A.34)

Hence the derivative exists if and only if the quotient in Eq. (A.34) approaches a unique value
independent of the path z may take to approach z0.

A.4.3 Analyticity

A closely related property to differentiability is the analyticity of a complex function.

Definition A.2 Analyticity A function F(z) is said to be analytic at a point z = z0 if it is defined
and has a derivative at every point in some neighborhood of z0. A function F(z) is said to be analytic
(also referred to as holomorphic or regular) in a domain D if it is analytic at every point in D. �

Differentiability is a crucial requirement in practice and, consequently, the importance of
analyticity cannot be overstated. Indeed, complex analysis is concerned exclusively with analytic
functions. Two important equations that pertain to the analyticity of a function are the Cauchy-
Riemann equations which are given by

∂U

∂x
= ∂V

∂y
and

∂U

∂y
= −∂V

∂x

908 DIGITAL SIGNAL PROCESSING

These equations are necessary and sufficient for a function to be analytic; that is, if the real and
imaginary parts of a function satisfy the Cauchy-Riemann equations in domain D, then the function
is analytic in D, and conversely.10

A.4.4 Zeros

If a function F(z) is analytic in a domain D and is zero at a point z0, then the function is said to have
a zero at z0. If in addition to F(z), the derivatives

d F(z)

dz
· · · d (n−1) F(z)

dzn−1

are also zero and

dn F(z)

dzn
�= 0 at z = z0

then the function is said to have a zero of order n at point z0. A function F(z) that has an nth-order
zero can be expressed as

F(z) = (z − z0)nG(z) (A.35)

where G(z0) �= 0. A first-order zero is usually referred to as a simple zero.
An analytic function F(z) is said to have an nth-order zero at infinity if F(1/z) has an nth-order

zero at z = 0.

A.4.5 Singularities

A point z∞ at which a function F(z) ceases to be analytic is referred to as a singular point of the
function; alternatively, the function is said to have a singularity at z = z∞.

There are several types of singularities, e.g.,

• poles,

• essential singularities,

• branch points, etc.

(see Ref. [1]) but the most significant ones for DSP are the poles; the other types show up only rarely.

POLES. A function

F(z) = G(z)

(z − z∞)n

10Augustin-Louis Cauchy (1789–1857) grew up in Paris during the difficult times of the French revolution. In 1810
Cauchy took up his first job to work on port facilities for Napoleon’s English invasion fleet. Laplace and Lagrange were
family friends, Legendre was an acquaintance, and Ampere was his tutor.

COMPLEX ANALYSIS 909

is said to have an nth-order pole at z = z∞ if

lim
z→z∞

(z − z∞)n F(z) = G(z∞) �= 0 (A.36)

As in the case of zeros, a pole is said to be simple if n = 1 . A function F(z) has a pole at infinity if
F(1/z) has a pole at the origin.

Some functions with poles are as follows:

FA(z) = z − 1

z + 1
has a simple zero at z = 1

FB(z) = z2

z2 − 2z + 1
has a second-order zero at z = 0

FC (z) = (z2 + 9)3 has a third-order zero at z = ± j3

FD(z) = 1

z5
has a fifth-order zero at z = ∞

BRANCH POINTS. Branch points occur in multi-valued functions. As was shown in Sec. A.3.5,
w = z1/2 is a multi-valued function with a branch point at the origin of the z plane. Since

dw

dz
= 1

2z1/2

the derivative of w does not exist at z = 0 and, therefore, w has a singularity at the origin.

ESSENTIAL SINGULARITIES. Essential singularities typically arise in functions that can be ex-
pressed in terms of infinite series (see Laurent Theorem in Sec. A.6). The following two functions
have essential singularities at the origin of the z plane:

FE (z) = e1/z = 1 + 1

z
+ 1

2!z2
+ 1

3!z3
+ · · ·

FF (z) = tan
1

z
= 1

z
+ 1

3z3
+ 2

15z5
+ · · ·

ISOLATED AND NONISOLATED SINGULARITIES. Singularities can also be classified as isolated
or nonisolated. An isolated singularity has a neighborhood that contains no other singular points. If
no such neighborhood can be found, the singularity is said to be nonisolated.

Poles are always isolated singularities. Essential singularities can be either isolated or noniso-
lated. The function

FE (z) = e1/z = 1 + 1

z
+ 1

2!z2
+ 1

3!z3
+ · · ·

910 DIGITAL SIGNAL PROCESSING

has an isolated essential singularity at the origin, since F(z) does not have a singularity at z = 0 + ε.
On the other hand, function FF (z) = tan 1/z has a nonisolated singularity at z = 0 since the
function is not analytic at an infinite number of points clustered in any neighborhood of z = 0. To
demonstrate this fact, we note that the tangent function assumes an infinite value if its argument
is ±π/2, ±3π/2, ±5π/2, Hence FF (z) is not analytic at

z = ± 2

π
, ± 2

3π
, ± 2

5π
, . . .

and, therefore, it is not analytic at an infinite number of points in the range −ε ≤ Re z ≤ ε for any
positive ε.

A.4.6 Zero-Pole Plots

An arbitrary rational function can be expressed as

F(z) = N (z)

D(z)
=

∑M
i=0 ai zM−i

zN + ∑N
i=1 bi zN−i

(A.37a)

and by finding the roots of the numerator and denominator polynomials N (z) and D(z), F(z) can be
put in the form

F(z) = N (z)

D(z)
= H0

∏Z
i=1(z − zi)mi∏P
i=1(z − pi)ni

(A.37b)

where z1, z2, . . . , zZ and p1, p2, . . . , pP are the zeros and poles of F(z), respectively, mi and ni

are the orders of the i th zero and i th pole, respectively, and H0 is a multiplier constant. The order of
the numerator and denominator polynomials in F(z) are given by

M =
Z∑

i=1

mi and N =
P∑

i=1

ni (A.37c)

respectively.
A plot of the zeros and poles of a rational function is said to be the zero-pole plot of the

function. Such a plot along with the corresponding orders of the zeros and poles and the multiplier
constant H0 completely represent the function.

As an example, the function

F(z) = (z2 − 4)

(z2 − 1)(z2 + 4)
(A.38a)

can be expressed as

F(z) = (z − 2)(z + 2)

(z − 1)(z + 1)(z − j2)(z + j2)
(A.38b)

and by using small circles and crosses for the zeros and poles, respectively, the zero-pole plot of
Fig. A.7 can be constructed for F(z).

COMPLEX ANALYSIS 911

j2

−2 −1 21

−j2

z plane

Re z

jIm z

Figure A.7 Zero-pole plot.

Functions of z that are analytic in the entire finite z plane, e.g., a polynomial in z such as
F(z) = 1 + 2z + 3z2 + z4, are called entire functions. Functions whose singularities in the finite z
plane (i.e., for all z �= ∞) are poles, e.g., rational functions, are called meromorphic functions.

A.5 SERIES

Given a sequence of numbers w0, w1, . . . , wi . . . , which may be real or complex, the infinite series

∞∑
i=0

wi (A.39)

can be formed where wi is said to be the i th term of the series.
The sum

Sn =
n∑

i=0

wi

is said to be the nth partial sum and

Rn =
∞∑

i=n+1

wi

is said to be the nth remainder of the series.
If

S = lim
n→∞ Sn =

∞∑
i=0

wi

and a number N can be found such that

|S − Sn| < ε for all n > N (A.40)

then the series converges and S is said to be the limit of the sum.

912 DIGITAL SIGNAL PROCESSING

Series arise quite frequently in DSP. Some of their properties can be summarized in terms of
a number of theorems, as follows [1].

Theorem A.1 If a series w0 + w1 + · · · + wN + · · · converges then

lim
N→∞

wN → 0 � (A.41)

Theorem A.1 is stating, in effect, that a series diverges if Eq. (A.41) is not satisfied.
A series w0 + w1 + · · · + wN + · · · is said to be absolutely convergent if the series

∞∑
i=0

|wi |

converges.

Theorem A.2 Absolute Convergence If a series w0 +w1 + · · · +wN + · · · is absolutely
convergent, i.e., |w0| + |w1| + · · · + |wN| + · · · is finite, then the series converges. �

Theorem A.2 follows from the fact that sum of the magnitudes of a series of complex numbers
is equal to or greater than the magnitude of the sum of the same series of complex numbers (see
Eq. (A.18)).

A number of tests that can be used to check the convergence of a series are available such as
the ratio and root tests. The ratio test can be stated in terms of the following theorem.

Theorem A.3 Ratio Test If wi �= 0 for i = 0, 1, 2, . . . and in addition∣∣∣∣wn+1

wn

∣∣∣∣ ≤ q for i > N

where q is a fixed number less than 1, then the series in Eq. (A.39) converges. On the other
hand, if ∣∣∣∣wn+1

wn

∣∣∣∣ ≥ 1 for i > N

then the series diverges. �
If wi is replaced by ci zi in the series of Eq. (A.39) where z is a complex variable, a series of

the form
∞∑

i=0

ci z
i (A.42)

is obtained, which is usually referred to as a power series. The sum of a power series and its nth
partial sum are given by

S(z) =
∞∑

i=0

ci z
i

and

Sn(z) =
n∑

i=0

ci z
i

COMPLEX ANALYSIS 913

respectively. If for any given ε > 0, a number N can be found such that

|S(z) − Sn(z)| < ε for all n > N (A.43)

where N may depend on ε and z, then the power series converges. If a number N can be found that
is independent of z, then the power series is said to converge uniformly.

A power series may converge for some values of z and diverge for others. Regions of the
z plane over which a power series converges or diverges are said to be regions of convergence or
divergence.

If ci = 1, the series in Eq. (A.42) assumes the form

∞∑
i=0

zi (A.44)

Such a series is said to be a geometric series with a common ratio

wN+1

wN
= z (A.45)

In order to check the convergence of a geometric series, let

S =
N∑

i=0

zi (A.46a)

be the sum of a finite geometric series. We can write

S − zS = (1 − z)S

= (1 + z + z2 + · · · + zN) − z(1 + z + z2 + · · · + zN)

= 1 − z(N+1)

and hence

S = 1 − z(N+1)

1 − z
(A.46b)

Now if |z| < 1, say z = re jθ with r < 1, we have

∞∑
i=0

zi = lim
N→∞

S

= lim
N→∞

1 − r (N+1)e jθ (N+1)

1 − re jθ
= 1

1 − z

since limN→∞ r (N+1) → 0 for r < 1. Therefore, the series converges for |z| < 1.

914 DIGITAL SIGNAL PROCESSING

For |z| > 1, say z = re jθ with r > 1, we can now write

lim
N→∞

S = lim
N→∞

N∑
i=0

r N e jθ N → ∞

since limN→∞ r (N+1) → ∞ for r > 1.
For |z| = 1, say z = e jθ , the N th term of the series assumes the form

wN = e j Nθ = cos Nθ + j sin Nθ

and since

lim
N→∞

wN �= 0

then on the basis of Theorem A.1, we conclude that the series does not converge for |z| = 1.
If a power series converges for values of z such that |z| > ρ and diverges for |z| < ρ or the

other way around, then the circle |z| = ρ is said to be the circle of convergence and ρ is the radius
of convergence. For the geometric infinite series of Eq. (A.44), ρ = 1.

A power series that occurs frequently in DSP is the binomial series which is given by

(1 + b)r = 1 +
(

r

1

)
b +

(
r

2

)
b2 + · · · +

(
r

s

)
bs + · · · (A.47)

where

(
r

s

)
= r (r − 1) · · · (r − s + 1)

s!
(A.48)

and 0! = 1. For a positive integer r , the coefficients of the polynomial obtained are the entries of the
(r + 1)th row in the so-called Pascal triangle, which is as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
...

...
...

e.g., for r = 3, we have (1 + b)3 = 1 + 3b + 3b2 + b3.

COMPLEX ANALYSIS 915

A.6 LAURENT THEOREM

One of the most important theorems in complex analysis is the Laurent theorem11 which defines the
Laurent series and deals with some of its properties. The Laurent series happens to be particularly
important for DSP because, as shown in Chap. 3, the z transform is actually a Laurent series.

Theorem A.4 Laurent Theorem (a) If F(z) is an analytic and single-valued function12 on
two concentric circles C1 and C2 with center a and in the annulus between them, as illustrated
in Fig. A.8a, then it can be represented by the Laurent series

F(z) =
∞∑

n=−∞
an(z − a)−n (A.49)

where

an =
1

2π j

∮
Γ

F(z)(z − a)n−1 dz (A.50)

The contour of integration Γ is a closed contour in the counterclockwise sense lying in the
annulus between circles C1 and C2 and encircling the inner circle.

(b) The Laurent series converges and represents F(z) in the open annulus obtained by
continuously increasing the radius of C2 and decreasing the radius of C1 until each of C1

and C2 reaches a point where F(z) is singular, as depicted in Fig. A.8b.

(c) A function F(z) can have several, possibly many, annuli of convergence about a
given point z = a, as shown in Fig. A.8c, and for each one a Laurent series can be obtained.

(d) The Laurent series for a given annulus of convergence is unique. �

The Laurent series can expressed as a sum of two series as

F(z) =
∞∑

n=−∞
an(z − a)−n

=
0∑

n=−∞
an(z − a)−n +

∞∑
n=1

an(z − a)−n

11Pierre Laurent (1813–1854) was born in Paris. He served in the engineering corps and spent six years directing
the operations for the enlargement of the port at Le Havre (north-west of Paris). Laurent submitted his famous work on the
Laurent series for the Grand Prize of 1842 of the Academie des Sciences but, unfortunately, he missed the official deadline.
Cauchy, who was 24 years his senior, reported on the work and argued that the submission should be approved but it was not
accepted.

12The Laurent theorem is also applicable to multi-valued functions provided that the z plane is treated as a Riemann
surface (see Sec. A.3.5).

916 DIGITAL SIGNAL PROCESSING

z plane

a

�C1

C2

z plane

a

(a)

�

C1

C2

a
I

II

III

z plane

(b)

(c)

Figure A.8 Laurent theorem.

and if we let an = b−n and then replace n by −n in the first part, we obtain

F(z) =
0∑

n=−∞
b−n(z − a)−n +

∞∑
n=1

cn

(z − a)n

=
∞∑

n=0

bn(z − a)n +
∞∑

n=1

cn

(z − a)n
(A.51)

The left- and right-hand parts of the Laurent series are known as the analytic and principal parts,
respectively, and if the Laurent series has a principal part, then function F(z) has a singularity at
z = a. The type of singularity depends on the number of terms in the principal part as follows:

• If the principal part has just one term, i.e., c1 �= 0 and cn = 0 for n > 1, then F(z) has a simple
pole at z = a.

• If the principal part has just m terms, i.e., cm �= 0 and cn = 0 for n > m, then F(z) has an
mth-order pole at z = a.

• If the principal part has an infinite number of terms, then F(z) has an essential singularity at
z = a.

COMPLEX ANALYSIS 917

Coefficient c1, that is, the first coefficient in the principal part, is of crucial importance in
complex analysis and for this reason it has a special name. It is called the residue of function F(z) at
the singular point z = a and it will surface again in the next section in the so-called residue theorem.

Some typical Laurent series are as follows:

FA(z) = z2 + 2z + 1 + 1

z − 3
has a simple pole at z = 3

FB(z) = z2 + 2z + 1 + 1

(z − 1)
+ 2

(z − 1)2
+ 3

(z − 1)3
has a third-order pole at z = 1

FC (z) = 4z4 + 3z3 + 2z2 + z + 1 is analytic in the finite z plane

FD(z) = 1 + 1

z7
has a seventh-order pole at z = 0

FE (z) = e1/z = 1 + 1

z
+ 1

2!z2
+ 1

3!z3
+ · · · has an isolated essential singularity at z = 0

FF (z) = tan
1

z
= 1

z
+ 1

3z3
+ 2

15z5
+ · · · has an nonisolated essential singularity at z = 0

According to part (c) of the Laurent theorem, a function F(z) can have one and only one
Laurent series in a given annulus of convergence. However, a function can have several annuli of
convergence and each will have its unique Laurent series. For example, function F(z) in Eq. (A.38b)
has three annuli of convergence about point z = a, as depicted in Fig. A.9a and b, where the radius
of the inner circle in annulus I can be infinitesimally small and that of the radius of the outer circle
in annulus III can be infinitely large.

If cn = 0 for all n ≥ 1, the Laurent series assumes the form

F(z) =
∞∑

n=0

bn(z − a)n (A.52a)

and if we let z − a = h or z = a + h, we get

F(a + h) =
∞∑

n=0

bnhn (A.52b)

Straightforward analysis will show that

b0 = F(a) and bn = 1

n!

dn F(a + h)

dhn

∣∣∣∣
h=0

(A.52c)

918 DIGITAL SIGNAL PROCESSING

z plane

III

II

I
a

(b)

−j2

z plane

j2

−2 −1 1 2

(a)

Re z

jIm z

Figure A.9 Annuli of convergence for function F(z) in Eq. (A.38b) for point z = a.

and from Eqs. (A.52b) and (A.52c), we get

F(a + h) = F(a) +
∞∑

n=1

hn

n!

dn F(a + h)

dhn

∣∣∣∣
h=0

(A.52d)

COMPLEX ANALYSIS 919

If z is assumed to be a real variable and a ≡ x , Eq. (A.52d) assumes the form of the familiar Taylor
series of a function of a real variable, namely,

F(x + h) = F(x) +
∞∑

n=1

hn

n!

dn F(x)

dhn
(A.52e)

In effect, Eq. (A.52a) is the Taylor series for F(z) about point z = a. If, in addition, a = 0, the
Taylor series about the origin of the z plane is obtained, i.e.,

F(z) =
∞∑

n=0

bnzn (A.52f)

which is commonly referred to as the Maclaurin series of F(z).

A.7 RESIDUE THEOREM

A Laurent series for a function F(z) can be obtained by evaluating coefficients an for −∞ < n < ∞
using the contour integral in Eq. (A.50). This appears to be a formidable task but for the class of
meromorphic functions, the evaluation of the contour integral in Eq. (A.50) becomes a matter of
simple algebra by virtue of the residue theorem.

Theorem A.5 Residue Theorem If G(z) is an analytic function on a simple contour Γ and
inside Γ, except for a finite number of singular points p1, p2, . . . , pP , then

1
2π j

∮
Γ

G(z) dz =
P∑

i=1

Res
z→pi

G(z) (A.53)

where the integral is taken in the counterclockwise sense and Resz→pi G(z) is the residue of
G(z) at singular point z = pi . �

For a rational function of the form

G(z) = N (z)

D(z)
= H0

∏Z
i=1(z − zi)mi∏P
i=1(z − pi)ni

(A.54)

the residue at a pole z = pi of order ni is given by the general formula

Res
z=pi

G(z) = 1

(ni − 1)!
lim

z→pi

dni −1

dzni −1
[(z − pi)

ni G(z)] (A.55)

For a simple pole, i.e., if ni = 1, we differentiate zero times and since 0!=1 by definition, we
get the simplified formula

Res
z=pi

G(z) = lim
z→pi

[(z − pi)G(z)]

920 DIGITAL SIGNAL PROCESSING

A.8 ANALYTIC CONTINUATION

On many occasions in the design of analog and digital filters, a function of a complex variable z, say,
F(z), is known to be analytic in some specified region of the z plane, say, inside circle C1 shown in
Fig. A.10, but is otherwise unknown. Such a function can be represented by a Taylor series of the
form

S1 =
∞∑

n=0

bn(z − a)−n (A.56a)

Series S1 represents function F(z) everywhere inside circle C1 and hence the function value
and its derivatives at point ã can be determined. If function F(z) is analytic in circle C2, then a new
Taylor series can obtained for F(z) given by

S2 =
∞∑

n=0

b̃n(z − ã)−n (A.56b)

where coefficients b̃n can be obtained from the derivatives of F(z) at point ã using Eq. (A.56a). Series
S2 can now be used to obtain the function value and its derivatives at point â. If F(z) is analytic in
circle C3, a new Taylor series can obtained for F(z) given by

S3 =
∞∑

n=0

b̂n(z − â)−n (A.56c)

where coefficients b̂ can be determined from the derivatives of F(z) at point â. Series S3 represents
F(z) everywhere in circle C3. Through this process, the domain of validity of F(z) can be extended
to include the areas of circles C2 and C3. Proceeding in the same way, the domain of validity of F(z)

C1

C2

C3
a

a~

â

z plane

Figure A.10 Analytic continuation.

COMPLEX ANALYSIS 921

can be extended to cover all the areas of the z plane over which the function is analytic. This process
is known as analytic continuation [5] and it has a number of applications in DSP.

The frequency response of a stable analog filter, HA(jω), is analytic on the jω axis of the s
plane. Through analytic continuation, the domain of the function can be extended to points off the
imaginary axis and hence jω can be replaced by s = σ + jω. The function obtained, namely, HA(s)
is the transfer function of the analog filter and represents the filter at all points where HA(s) is not
singular. Similarly, the frequency response H (e jωT) of a stable digital filter is analytic on the unit
circle |z| = 1 and on the basis of analytic continuation, e jωT can be replaced by z to obtain the
transfer function H (z) of the digital filter, which is valid everywhere in the z plane except at points
where H (z) is not singular.

A.9 CONFORMAL TRANSFORMATIONS

An equation of the form

w = u + jv = F(z) (A.57)

where z = x + j y is, in effect, a transformation that will map points in the z plane to corresponding
points in the w plane. If each and every point in the z plane maps to one and only one point in the w

plane, and conversely, then the transformation is said to be one-to-one.
An important class of transformations is the so-called class of conformal transformations.

These are transformations that have the important property that intersecting curves in the z plane
map into intersecting curves in the w plane such that the angles between the z plane curves at the
point of intersection are equal to the corresponding angles in the w plane both in magnitude as well
as sense. A conformal transformation is illustrated in Fig. A.11 where θ1 and θ2 are equal to θ ′

1 and
θ ′

2, respectively. If the angles at intersection points are equal in magnitude but opposite in sense, then
the transformation is said to be isogonal.

Theorem A.6 If f (z) is analytic in a region R, then the transformation in Eq. (A.57) is
conformal for all points in R except at points where f ′(z) = 0 (see Ref. [1]). �

Some standard conformal transformations are as follows:

1. Translation

w = z + σ + jω (A.58a)

It translates a point x + j y in the z plane to point x + σ + j(y + jω) in the w plane.

2. Rotation

w = e jθ z (A.58b)

It rotates a point z = re jφ in the z plane to a point w = re j(φ+θ) in the w plane.

3. Scaling

w = λz (A.58c)

922 DIGITAL SIGNAL PROCESSING

C1

C2

z plane

θ1
θ2

C1

C2

w plane

θ1

θ2

�

�

�

�

Figure A.11 Conformal transformation.

It scales a point z = re jφ in the z plane to a point w = λre j(φ) in the w plane. If λ > 1 the
magnitude of z is scaled up, and if λ < 1 it is scaled down.

4. Rotation and scaling

w = λe jθ z (A.58d)

It combines rotation as in item (2) and scaling as in item (3).

5. Inversion

w = 1

z
(A.58e)

It inverts a point z = re jφ in the z plane to a point w = 1
r e− jφ in the w plane.

5. Inversion and scaling

w = λ

z
(A.58f)

It combines inversion with scaling.

COMPLEX ANALYSIS 923

6. Linear transformation

w = λz + σ + jω (A.58g)

It combines translation and scaling as in items (1) and (3).

7. Bilinear transformation

w = αz + β

γ z + δ
where αδ − βγ �= 0 (A.58h)

Through straightforward algebraic manipulation, the transformation can be expressed as

w = α

γ
+ βγ − αδ

γ (γ z + δ)
= ε + ζ

z + η
(A.58i)

where

ε = α

γ
ζ = βγ − αδ

γ 2
and η = δ

γ

are constants. Now Eq. (A.58i) can be viewed as a series of transformations, namely, translation

w1 = z + η

followed by inversion

w2 = 1

w1
= 1

z + η

followed by scaling

w3 = ζw2 = ζ

z + η

followed by translation

w = ε + w3 = ε + ζ

z + η

The bilinear transformation maps circles in the z plane into circles in the w plane whose relative
sizes and locations depend on constants α, β, γ , and δ but by choosing α = γ = δ = 1 and β = −1
the transformation would map the jω axis of the z plane onto the unit circle of the w plane.

An interesting feature of conformal transformations is that small figures in the z plane map
into similar figures in the w plane. However, this property does not extend to large figures.

Conformal transformations are used in Chap. 10 for obtaining denormalized lowpass, highpass,
bandpass, or bandstop analog filters from normalized lowpass analog filters, and in Chap. 11 for
deriving digital filters of the standard types from a given lowpass digital filter.

924 DIGITAL SIGNAL PROCESSING

REFERENCES

[1] E. Kreyszig, Advanced Engineering Mathematics, New York: Wiley, 1972.
[2] R. V. Churchill, Complex Variables and Applications, New York: McGraw-Hill, 1960.
[3] M. R. Spiegel, Complex Variables, New York: McGraw-Hill, 1964.
[4] Biographies Index of the The MacTutor History of Mathematics Archive, School of

Mathematics and Statistics, University of St. Andrews, Scotland: http://www-groups.dcs.
st-and.ac.uk/ history/BiogIndex.html

[5] W. R. LePage, Complex Variables and the Laplace Transform for Engineers, New York:
McGraw-Hill, 1961.

http://www-groups.dcs.st-and.ac.uk/history/BiogIndex.html
http://www-groups.dcs.st-and.ac.uk/history/BiogIndex.html

APPENDIX

B
ELLIPTIC

FUNCTIONS

B.1 INTRODUCTION

The Jacobian elliptic functions are derived by employing the Legendre elliptic integral of the first
kind. Their theory is quite extensive and is discussed in detail by Bowman [1] and Hancock [2, 3].
We provide here a brief but adequate treatment of this theory to facilitate the understanding of the
derivation of the elliptic approximation in Chap. 10 [4].

B.2 ELLIPTIC INTEGRAL OF THE FIRST KIND

The elliptic integral of the first kind can be expressed as

u ≡ u(φ, k) =
∫ φ

0

dθ√
1 − k2 sin2 θ

(B.1)

where 0 ≤ k < 1. The parameter k is called the modulus and the upper limit of integration φ is called
the amplitude of the integral. Evidently, for a real value of φ, u(φ, k) is real and represents the area
bounded by the curve

I = 1√
1 − k2 sin2 θ

and the vertical lines θ = 0 and θ = φ. Plots of I and u(φ, k) for k = 0.995 are shown in Fig. B.1.
The integrand I has minima equal to unity at θ = 0, π, 2π . . . and maxima equal to 1/

√
1 − k2 at

925

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

926 DIGITAL SIGNAL PROCESSING

0 1 2

K

3 4 5 6
0

5

10

15
I,

 u
(φ

,k
)

I

θ, φ

2πππ
2

3π
2

K

4K

3K

2K

u(φ,k)

Figure B.1 Plots of I versus θ and u(φ, k) versus φ for k = 0.995.

θ = π/2, 3π/2, In effect, I is a periodic function of θ with a period π . The area bounded by
lines θ = nπ/2 and θ = (n + 1)π/2 is constant for any n because of the symmetry of I and is equal
to the area bounded by lines θ = 0 and θ = π/2. This area is referred to as the complete elliptic
integral of the first kind and is given by

u
(π

2
, k

)
= K =

∫ π/2

0

dθ√
1 − k2 sin2 θ

(B.2)

(see Fig. B.1).
As a consequence of the periodicity and symmetry of I , we can write

u(nπ + φ1, k) = 2nK + u(φ1, k) and u
(π

2
+ φ1, k

)
= 2K − u

(π

2
− φ1, k

)
where 0 ≤ φ1 < π/2. That is, the elliptic integral for a given k and any real φ can be determined
from a table giving the values of the integral in the interval 0 ≤ φ < π/2.

If k = 0, Eq. (B.1) gives

u(φ, 0) =
∫ φ

0
dθ = φ

and if k = 1,

u(φ, 1) =
∫ φ

0

dθ

cos θ
= ln

[
tan

(
π

4
+ φ

2

)]

ELLIPTIC FUNCTIONS 927

0 1 2 3 4 5 6
0

5

10

15

φ

u(
φ

,k
)

k = 0.9999

k = 1

2πππ
2

3π
2

k = 0.9

k = 0.995

k = 0

Figure B.2 Plots of u versus φ for various values of k.

according to standard integral tables. Hence u(φ, 0) increases linearly with φ, whereas u(φ, 1) is
discontinuous at φ = π/2. For 0 ≤ φ < π/2

u(φ, 0) ≤ u(φ, k) ≤ u(φ, 1)

as can be seen in Fig. B.2.

B.3 ELLIPTIC FUNCTIONS

Figure B.2 demonstrates a one-to-one correspondence between u and φ. Thus for a given pair of
values (u, k) there corresponds a unique amplitude φ such that

φ = f (u, k)

The Jacobian elliptic functions are defined as

sn(u, k) = sin φ (B.3)

cn(u, k) = cos φ (B.4)

dn(u, k) =
√

1 − k2 sin2 φ (B.5)

Many of the properties of elliptic functions follow directly from the properties of trigonometric
functions. For example, we can write

sn2(u, k) + cn2(u, k) = 1 (B.6)

and k2 sn2(u, k) + dn2(u, k) = 1 (B.7)

and so forth.

928 DIGITAL SIGNAL PROCESSING

Plots of the elliptic functions versus u can be constructed as in Fig. B.3. As can be seen,
sn(u, k), cn(u, k), and dn(u, k) are periodic functions u with periods 4K , 4K , and 2K , respectively,
i.e.,

sn(u + 4mK , k) = sn(u, k) (B.8)

cn(u + 4mK , k) = cn(u, k) (B.9)

dn(u + 2mK , k) = dn(u, k) (B.10)

0 5 10 15

−1.0

−1.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

u

K

2K
3K

4K

0 5 10 15

−6

−5

−4

−3

−2

−1

0

u

φ

sin(φ)

2π

π

π
2

3π
2

dn(u,k)

sn(u,k)

cn(u,k)

k = 0.995

Figure B.3 Plots of sn(u, k), cn(u, k), and dn(u, k) versus u.

ELLIPTIC FUNCTIONS 929

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−1.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

sn
(u

,k
)

0 5 10 15

−1.0

−1.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2
sn

(u
,k

)

u

u/K

k = 0.995

k = 0

(a)

(b)

−1.0

k = 0.9

k = 0.995

k = 0
k = 0.9

Figure B.4 Effect of variations in k on the elliptic sine (a) sn(n, k) versus u, (b) sn(n, k) versus u/K .

Variations in k tend to change the shape and period of the elliptic functions, as illustrated in
Fig. B.4. i.e., the elliptic sine and cosine are generalizations of the conventional sine and cosine,
respectively.

If k = 0, we have

u(φ, 0) = φ

and so sn(u, 0) = sn(φ, 0) = sin φ cn(u, 0) = cn(φ, 0) = cos φ

that is, sn(n, k) and cn(n, k) become the usual sine and cosine functions of φ.

930 DIGITAL SIGNAL PROCESSING

B.4 IMAGINARY ARGUMENT

Thus far the argument of the elliptic functions, namely, u, has been assumed to be a real quantity.
By performing the integration of Eq. (B.1) over an appropriate path in a complex plane, the elliptic
integral can assume complex values. Let us consider the case of imaginary value whereby

jv =
∫ ψ

0

dθ√
1 − k2 sin2 θ

(B.11)

As in Sec. B.3, we can define

sn(jv, k) = sin ψ (B.12)

cn(jv, k) = cos ψ (B.13)

dn(jv, k) =
√

1 − k2 sin2 ψ (B.14)

These functions can be expressed in terms of elliptic functions that have real arguments, as we will
now show.

By applying the transformations

sin θ = j tan θ ′ sin ψ = j tan ψ ′ (B.15)

in Eq. (B.11), we have

jv =
∫ ψ ′

0

j dθ ′√
1 − sin2 θ ′ + k2 sin2 θ ′

Alternatively,

v =
∫ ψ ′

0

dθ ′√
1 − (k ′)2 sin2 θ ′

where k ′, given by

k ′ =
√

1 − k2

is called the complementary modulus. Now, from Sec. B.3

sn(v, k ′) = sin ψ ′ (B.16)

cn(v, k ′) = cos ψ ′ (B.17)

dn(v, k ′) =
√

1 − (k ′)2 sin2 ψ ′ (B.18)

ELLIPTIC FUNCTIONS 931

and, therefore, from Eqs. (B.12)–(B.18),

sn(jv, k) = j tan ψ ′ = j
sin ψ ′

cos ψ ′ = jsn(v, k ′)
cn(v, k ′)

(B.19)

cn(jv, k) = 1

cn(v, k ′)
(B.20)

dn(jv, k) = dn(v, k ′)
cn(v, k ′)

(B.21)

By analogy with Eq. (B.2), the complementary complete integral of the first kind is given by

K ′ =
∫ π/2

0

dθ ′√
1 − (k ′)2 sin2 θ ′

This has a similar interpretation as K ; that is, it is the quarter period of sn(v, k ′) and cn(v, k ′) or the
half period of dn(v, k ′).

The functions sn(jv, k), cn(jv, k), and dn(jv, k) are periodic functions of jv, as can be seen
in Fig. B.5, with periods j2K ′, j4K ′, and j4K ′, respectively, i.e.,

sn(jv + j2nK ′, k) = sn(jv, k)

cn(jv + j4nK ′, k) = cn(jv, k)

dn(jv + j4nK ′, k) = dn(jv, k)

0 1 2 3 4 5 6 7 8 9
−6

−4

−2

0

2

4

6

v

4K ′2K ′

cn(jv,k)

[sn(jv,k)]/j

dn(jv,k)

Figure B.5 Plots of [sn(jv, k)]/j , cn(jv, k), and dn(jv, k) versus v.

932 DIGITAL SIGNAL PROCESSING

B.5 FORMULAS

Elliptic functions, like trigonometric functions, are interrelated by many useful formulas. The most
basic one is the addition formula, which is of the form

sn(z1 + z2, k) = sn(z1, k) cn(z2, k) dn(z2, k) + cn(z1, k) sn(z2, k) dn(z1, k)

D
(B.22)

where D = 1 − k2 sn2(z1, k) sn2(z2, k)

The variables z1 and z2 can assume real or complex values. By using the above formula and
Eqs. (B.6) and (B.7) we can show that

cn(z1 + z2, k) = cn(z1, k) cn(z2, k) − sn(z1, k) sn(z2, k) dn(z1, k) dn(z2, k)

D
(B.23)

dn(z1 + z2, k) = dn(z1, k) dn(z2, k) − k2 sn(z1, k) sn(z2, k) cn(z1, k)cn(z2, k)

D
(B.24)

Another formula of interest is

dn2
(z

2
, k

)
= dn(z, k) + cn(z, k)

1 + cn(z, k)
(B.25)

B.6 PERIODICITY

In the preceding sections we have demonstrated that sn(z, k), where z = u + jv, has a real period
of 4K if v = 0 and an imaginary period of 2K ′ if u = 0. In fact these are general properties for any
value of v or u as can be easily shown. From the addition formula

sn(z + 4mK , k) = sn(z, k) cn(4mK , k) dn(4mK , k) + cn(z, k) sn(4mK , k) dn(z, k)

1 − k2 sn2 (z, k) sn2 (4mK , k)

and since

sn(4mK , k) = sn(0, k) = 0

cn(4mK , k) = cn(0, k) = 1

dn(4mK , k) = dn(0, k) = 1

according to Eqs. (B.8)–(B.10), it follows that

sn(z + 4mK , k) = sn(z, k) (B.26)

Similarly,

sn(z + j2nK ′, k) = sn(z, k) cn(j2nK ′, k) dn(j2nK ′, k) + cn(z, k) sn(j2nK ′, k) dn(z, k)

1 − k2 sn2(z, k) sn2(j2nK ′, k)

ELLIPTIC FUNCTIONS 933

and from Eqs. (B.19)–(B.21)

sn(j2nK ′, k) = jsn(2nK ′, k ′)
cn(2nK ′, k ′)

= 0

cn(j2nK ′, k) = 1

cn(2nK ′, k ′)
= (−1)n

dn(j2nK ′, k) = dn(2nK ′, k ′)
cn(2nK ′, k ′)

= (−1)n

Hence we have

sn(z + j2nK ′, k) = sn(z, k) (B.27)

Therefore, by combining Eqs. (B.26) and (B.27) we obtain

sn(z + 4mK + j2nK ′, k) = sn(z, k)

that is, sn(z, k) is a doubly periodic function of z with a real period of 4K and an imaginary period
of 2K ′.

The z plane can be subdivided into period parallelograms by means of lines

u = 4mK and jv = j2nK ′

as illustrated in Fig. B.6. The specific parallelogram defined by vertices (0, 0), (4K , 0), (4K , j2K ′),
and (0, j2K ′) is called the fundamental period parallelogram. If the value of sn(z, k) is known for
each and every value of z within this parallelogram and along any two adjacent sides, the function
is known over the entire z plane.

z plane

u

jv

4K−4K

−j2K

j2K �

�

Figure B.6 Period parallelograms of sn(z, k).

934 DIGITAL SIGNAL PROCESSING

Similarly, the functions cn(z, k) and dn(z, k) can be shown to be doubly periodic. The first has
a real period of 4K and an imaginary period of 4K ′, whereas the second has a real period of 2K and
an imaginary period of 4K ′.

B.7 TRANSFORMATION

The equation

ω =
√

k sn(z, k) (B.28)

is essentially a variable transformation that maps points in the z plane onto corresponding points in
the ω plane. Let us examine the mapping properties of this transformation. These are required in the
derivation of F(ω) in Sec. 10.6.

A point z p as well as all points

z = z p + 4mK + j2nK ′

map onto a single point in the ω plane by virtue of the periodicity of sn(z, k). Hence, only points
in the fundamental period parallelogram need be considered. Three domains of

√
k sn(z, k) are of

interest as follows:

• Domain 1: z = u with 0 ≤ u ≤ K

• Domain 2: z = K + jv with 0 ≤ v ≤ K ′

• Domain 3: z = u + j K ′ with 0 ≤ u ≤ K

In domain 1, we have

ω =
√

k sn(u, k)

If u = 0, then

ω =
√

k sn(0, k) = 0

and if u = K , we obtain

ω =
√

k sn(K , k) =
√

k

that is, Eq. (B.28) maps points on the real axis of the z plane between 0 and K onto points on the
real axis of the ω plane between 0 and

√
k.

In domain 2, we have

ω =
√

k sn(K + jv, k)

ELLIPTIC FUNCTIONS 935

From the addition formula

ω =
√

k cn(jv, k) dn(jv, k)

1 − k2 sn2(jv, k)
(B.29)

since cn(K , k) = 0, and from Eqs. (B.19)–(B.21)

ω =
√

k dn(v, k ′)
cn2(v, k ′) + k2 sn2(v, k ′)

Now from Eqs. (B.6) and (B.7)

cn2(v, k ′) + k2 sn2(v, k ′) = 1 − sn2(v, k ′) + k2 sn2(v, k ′)

= 1 − (k ′)2 sn2(v, k ′) = dn2(v, k ′)

Therefore, Eq. (B.29) simplifies to

ω =
√

k

dn(v, k ′)

If v = 0, then

ω =
√

k

dn(0, k ′)
=

√
k

and if v = K ′, we have

ω =
√

k

dn(K ′, k ′)
= 1√

k

For v = K ′/2, the use of Eq. (B.25) yields

ω =
√

k

dn(K ′/2, k ′)
=

√
k

[
1 + cn(K ′, k ′)

dn(K ′, k ′) + cn(K ′, k ′)

]1/2

= 1

Thus Eq. (B.28) maps points on the line z = K + jv for v between 0 and K ′ onto points on the
real axis of the ω plane between

√
k and 1/

√
k; in particular, point z = K + j K ′/2 maps onto point

ω = 1.
In domain 3, Eq. (B.28) assumes the form

ω =
√

k sn(u + j K ′, k)

and, as above, Eq. (B.22) yields

ω = 1√
k sn(u, k)

936 DIGITAL SIGNAL PROCESSING

z plane

u

jv

K−K

jK �

A

A� B� C�F�E� D�D�

B

CDE

F

j Im ω

Re ω

ω plane

1−1 ∞−∞
√k

−√k1
√k

−
1

√k

Figure B.7 Mapping properties of transformation ω = √
k sn(z, k).

If u = 0, then

ω = 1√
k sn(0, k)

= ∞

and if u = K , we get

ω = 1√
k sn(K , k)

= 1√
k

i.e., points on line z = u + j K ′ with u between 0 and K map onto the real axis of the ω plane between
∞ and 1/

√
k.

By considering mirror-image points to those considered so far, the mapping depicted in Fig. B.7
can be completed, where points A, B, . . . map onto points A′, B ′,

B.8 SERIES REPRESENTATION

Elliptic functions, like trigonometric functions, can be represented in terms of series. From Ref. [3]
or [4],

sn(z, k) = 1√
k

θ1(z/2K , q)

θ0(z/2K , q)
(B.30)

cn(z, k) =
√

k ′

k

θ2(z/2K , q)

θ0(z/2K , q)
(B.31)

dn(z, k) =
√

k ′ θ3(z/2K , q)

θ0(z/2K , q)
(B.32)

ELLIPTIC FUNCTIONS 937

The parameter q is known as the modular constant and is given by

q = e−π K ′/K

The functions θ0(z/2K , q) to θ3(z/2K , q) are called theta functions and are given by

θ0

(z

2K
, q

)
= 1 + 2

∞∑
m=1

(−1)mqm2
cos

(
2m

π z

2K

)

θ1

(z

2K
, q

)
= 2q1/4

∞∑
m=0

(−1)mqm(m+1) sin
[
(2m + 1)

π z

2K

]

θ2

(z

2K
, q

)
= 2q1/4

∞∑
m=0

qm(m+1) cos
[
(2m + 1)

π z

2K

]

θ3

(z

2K
, q

)
= 1 + 2

∞∑
m=1

qm2
cos

(
2m

π z

2K

)

The above series converge rapidly and can be used to evaluate the elliptic functions to any
desired degree of accuracy.

REFERENCES

[1] F. Bowman, Introduction to Elliptic Functions with Applications, New York: Dover, 1961.
[2] H. Hancock, Elliptic Integrals, New York: Dover, 1958.
[3] H. Hancock, Lectures on the Theory of Elliptic Functions, New York: Dover, 1958.
[4] A. J. Grossman, “Synthesis of Tchebyscheff Parameter Symmetrical Filters,” Proc. IRE,

vol. 45, pp. 454–473, Apr. 1957.

This page intentionally left blank

INDEX

In index entries with more than one page number, the bold page number designates the more significant citation.

Absolute convergence of
a series, 912
z transform, 81

Absolute (phase) delay in discrete-time
systems, 252

A/D, see Analog-to-digital
Adaptation algorithms:

least-mean-square, 870–871
Newton algorithm, 867

convergence factor, 867
steepest-descent algorithm,

867–868
Wiener solution, 865–867

cross correlation, 866
expected value in, 866
gradient of MSE in, 866
mean-square error, 866
objective function, 866

Adaptive filters:
algorithms, see Adaptation

algorithms
applications

channel equalization, 872
signal enhancement, 873
signal prediction, 873–874
system identification, 872

introduction to, 862–865
recursive, 871–872
typical configuration, 865
Wiener filters, 865–867

Adaptors in wave digital filters:
2-port, 783–784
type P1, 783
type P2, 783

type S1, 782
type S2, 780
unconstrained, 783

Adder, 142
Addition

in complex arithmetic, 894
floating-point, 624
formulas of elliptic functions,

932
one’s complement, 622
signed-magnitude, 622
two’s complement, 622

Additivity condition in discrete-time
systems, 133

Adjoint of a matrix, 211
Adjoint signal flow graph, 410
Adjustable bracket, 689
Admittance conversion function, 811
Agarwal, R. C., 633
Al-Baali, M., 734
Algorithms:

for adaptive filters:
least-mean-square algorithm,

870–871
Newton algorithm, 867
steepest-descent algorithm,

867–868
alternative Newton algorithm,

727–728
alternative rejection scheme for

superfluous potential extremals,
682

Charalambous minimax algorithm,
740–741

decimation-in-frequency
8-point FFT, 374–375
N -point FFT, 370–373

decimation-in-time
8-point FFT, 368–369
N -point FFT, 362–368

design of
digital differentiators satisfying

prescribed specifications,
710

filters satisfying prescribed
specifications, 701

recursive equalizers, 757–758
exhaustive step-by-step search,

680
Fletcher inexact line search,

733
least-pth minimax algorithm,

739
Newton algorithm, 724

disadvantages, 726
practical quasi-Newton algorithm,

734–735
quasi-Newton algorithm,

729
Remez exchange algorithm, see

Remez exchange algorithm
Aliasing

frequency-domain, 229–231
at the movies, 230–231
in QMF banks, 841
time-domain, 333, 335

Allpass CGIC second-order section,
817

939

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.

940 INDEX

Allpass transfer function
continuous-time, 524
discrete-time

first-order, 246
second-order, 251
high-order, 587

Allpole filters, 534
Alternation theorem, 677–678
Alternative Newton algorithm, 727–728
Alternative rejection scheme for

superfluous potential extremals,
682

Ambiguity in phase response, 232
Ambiguity in the determination of the

angle of a rational algebraic
function, 906

Amplitude and phase distortion in
QMF banks, 841

Amplitude distortion in discrete-time
systems, 253

Amplitude equalization, 588
Amplitude of elliptic integral, 925
Amplitude response:

in first-order discrete-time systems,
161

graphical evaluation, 227–228
influence of warping effect, 546
in systems of arbitrary order, 226
in two-dimensional digital filters,

877
Amplitude spectrum:

in DFT, 322
discrete-time signals, 119
nonperiodic signals, 50
periodic signals, 5, 34

Analog filters:
amplitude response in, 470
analog G-CGIC configuration,

811–812
applications, 16
approximations, see Approximations

for analog filters
attenuation, 470
basic concepts, 465–474
Cauer forms, 793
chain matrix, 787
characterization in terms of a

differential equation, 465
circulators, 788
cutoff frequency, 472
delay characteristic, 470
discrete active RC, 15
equally terminated LC, 774
families of, 15

Feldkeller equation, 796
final value of a signal, 469
Foster forms, 793
frequency-dependent negative

resistance (FDNR) networks,
802

frequency-domain analysis, 469–471
steady-state sinusoidal response,

470
generalized-immittance converter

(GIC), 811
admittance conversion function,

811
current-conversion type (CGIC),

811
group delay, 470
Hurwitz polynomials, 794
ideal, 471–472

bandpass, 472
bandstop, 472
highpass, 472
lowpass, 471

impedances, 778
impulse response, 469
initial conditions, 466
initial value of a signal, 469
initially relaxed, 466
insertion loss, 774
integrated active RC, 15
inverse Laplace transform, 465
ladder LC network, 799
Laplace transform, 465

operator notation, 466
lattice LC network, 791

alternative configuration, 792–796
analysis, 791–792
transfer function, 793

loss, 471
characteristic, 471
function, 471

maximum output power, 775
microwave, 16
passband, 472
passive RLC, 15
phase response, 470
phase shift in, 470
practical

bandpass, 473–474
bandstop, 473–474
highpass, 473
lowpass, 473
maximum passband loss, 473
minimum stopband loss, 473
passband edge, 473

stopband edge, 473
representation in terms of

continuous-time transfer
functions, 466

resonant circuits, 788–791
s2-impedance elements, 802
sensitivity considerations, 774–775
stopband, 472
switched-capacitor, 15
time-domain response

to an arbitrary excitation, 467
in terms of the time convolution,

466
using inverse Laplace transform,

467
transformers, 784–786
unit elements, 786–788
unit-step response, 469
voltage sources, 779–781
wire interconnections

parallel, 782
series, 780

zero-pole plot of
loss function, 472
transfer function, 472

Analog integrator, 541
Analog signals, 3
Analog-to-digital (A/D)

converter
encoder, 303
ideal, 305
practical, 305
quantization error, 305
sample-and-hold device, 303

interface, 4
encoder, 4
quantizer, 4
sampler, 4

Analysis section of a QMF bank, 840
Analysis:

network analysis by using
Mason’s method, see Signal flow

graphs
the node-elimination method, see

Signal flow graphs
the shift operator, 143–144

stability, see Stability
time-domain, see Time-domain

analysis
Analytic continuation, 920–921
Analytic part of a Laurent series, 916
Analytic signals, 852
Analyticity in complex analysis, 907
Anderson, B. D. O., 219

INDEX 941

Angle (argument) of a complex
number, 894

Angle of a rational algebraic function,
906

Annulus, 82
of convergence, 84
innermost, 103
of a Laurent series, 915
outermost, 85

Antisymmetrical impulse response in
nonrecursive filters, 427

Antoniou, A., 634, 664
Application of the z transform to

discrete-time systems
introduction to, 201

Applications:
of adaptive filters for

channel equalization, 872
signal enhancement, 873
signal prediction, 873–874
system identification, 872

of analog filters, 16
of Constantinides transformations,

554
of digital filters, 21
frequency-division multiplex (FDM)

system, 16–18
frequency-division to time-division

multiplex translation, 887
of Hilbert transformers

for the sampling of bandpassed
signals, 861–862

for single-sideband modulation,
859–861

processing of EKG signals, 23–24
processing of stock exchange data,

24–27
of state-space method, 186
time-division to frequency-division

multiplex translation, 886
of two-dimensional digital filters,

881
use of the FFT approach in signal

processing, 376–382
overlap-and-add method, 377–380
overlap-and-save method,

380–382
window technique, 354–356

Approximation error in recursive
filters, 720

Approximations:
for analog filters, see

Approximations for analog
filters

closed-form, 390
direct, 390
indirect, 390
introduction to, 390
iterative, 390
for nonrecursive filters, see

Nonrecursive filters
for recursive filters, see Recursive

filters
for two-dimensional digital filters,

881
by using the McClellan

transformation, 881
by using singular-value

decomposition, 881
Approximations for analog filters:

basic concepts, 465–474
Bessel-Thomson:

delay characteristics, 515
gamma function, 514
introduction to, 513
loss characteristics, 515
normalized transfer function,

513
properties, 514

Butterworth:
derivation, 475
loss, 476
loss characteristics, 476
maximally flat property, 475
maximum passband loss, 479
minimum filter order, 479
minimum stopband loss, 479
normalized transfer function, 476
zero-pole plots of loss function,

478
Chebyshev:

derivation, 481–485
fourth-order, 481–484
introduction to, 481
loss, 485
loss characteristics, 486
minimum filter order, 490–491
normalized transfer function, 489
nth-order, 484–485
properties, 482
zero-pole plots of loss function,

488
zeros of loss function, 485–487

definition, 474
denormalized, 475
elliptic:

derivation, 497–508
discrimination factor, 497

elliptic functions, 500
elliptic integral, 499
even-order, 507–508
fifth-order, 497–504
infinite-loss frequencies, 503
introduction to, 497
loss, 497
loss characteristic, 498
minimum filter order, 509
minimum stopband loss, 509
modular constant, 507
normalized transfer function,

509–512
odd-order, 504
plots of minimum stopband loss

versus selectivity, 510
properties, 498
selectivity factor, 497
specification constraint, 508–509
zero-loss frequencies, 502
zeros and poles of loss function,

504–507
ideal, 471–472
introduction to, 463
inverse-Chebyshev:

derivation, 522
introduction to, 493
loss, 493
loss characteristics, 486
maximum passband loss, 496
minimum filter order, 494
normalized transfer function,

493–494
normalized, 475

Argand diagrams, 893
Argand, J.-R., 893
Arithmetic, see Computer arithmetic
Associative law of algebra, 144
Attenuation in analog filters, 470
Attenuation in discrete-time systems,

227
Autocorrelation function

in continuous-time random
processes, 602

in discrete-time random processes,
609

Avenhaus, E., 628

Babbage, C., 20
Backward difference, ∇x(nT), of

numerical analysis, 454
Bandpass CGIC second-order section,

816
Bandpass filtering, 8

942 INDEX

Bandpass filters
nonrecursive

design of filters satisfying
prescribed specifications, 450

recursive
design of filters satisfying

prescribed specifications,
568–573

Bandpass transfer function
discrete-time

second-order, 249
Bandpassed signals, 861–862
Bandstop (notch) transfer function

discrete-time
second-order, 250

Bandstop filtering, 8
Bandstop filters

nonrecursive
design of filters satisfying

prescribed specifications, 450
recursive

design of filters satisfying
prescribed specifications, 573

Barnwell, III, T. P., 849
Bartlett (triangular) window function

discrete-time, 385
Base period, 30
Baseband, 120, 232
Bessel

function zeroth-order modified of the
first kind, 346

functions, 514
polynomial, 513

Bessel-Thomson approximation:
delay characteristics, 515
example, 516
gamma function, 514
introduction to, 513
loss characteristics, 515
normalized transfer function, 513
properties, 514

Bias in floating-point number
representation, 624

BIBO stability, see Bounded-input,
bounded-output stability

Bilinear-transformation method,
541–545

derivation of, 541–543
design formulas, 548
example, 547–549
mapping properties, 543–545
prescribed specifications, see

Prescribed specifications
prewarping technique, 546

warping effect, 545–548
influence on amplitude response,

546
influence on phase response, 548
in wave digital filters, 802

Binary number system, 618–625
Binary point, 618
Binomial series, 103, 914
Bits, 618
Blackman, R. B., 20
Blackman window function, 439

main-lobe width in, 439
ripple ratio in, 439

Block-optimal structures, 649
Bode, H. W., 20
Bombelli, R., 892
Bounded-input, bounded-output

(BIBO) stability, 172
Bowman, F., 925
Branch cut in a function of a complex

variable, 904
Branch point in a function of a complex

variable, 909
Broyden-Fletcher-Goldfarb-Shanno

(BFGS) updating formula, 730
Bruton, L. T., 802, 811
Burrus, C. S., 633
Butterfly signal flow graphs in FFT

algorithms, 363
Butterworth approximation:

derivation, 475
design of recursive filters satisfying

prescribed specifications,
573–574

examples, 477–478, 480–481
loss, 476
loss characteristics, 476
maximally flat property, 475
maximum passband loss, 479
minimum filter order, 479
minimum stopband loss, 479
normalized transfer function, 476
zero-pole plots of loss function, 478

Canonic realizations (structures), 395
Cardano, G., 892
Cartesian representation of complex

numbers, 893
Cascade realization

signal scaling, 645
example, 645–646
ordering of filter sections, 647

Cascade realization method, 404–406
example, 406

Cascade wave digital filters:
allpass CGIC section, 817
bandpass CGIC section, 816
CGIC realization, 811–812
design procedure, 814–815

example, 816–817
digital G-CGIC configuration,

812–814
highpass CGIC section, 815
lowpass CGIC section, 815
notch CGIC section, 816
output noise, 818–819
power spectral density, 819
scaling, 817–818

Cauchy, A.-L., 908
Cauchy-Riemann equations in complex

analysis, 907
Cauer forms of analog networks, 793
Causal discrete-time systems, 136
Central difference, δx(nT), of

numerical analysis, 454
Central-limit theorem, 630
CGIC, see Generalized-immittance

converter, current-conversion
type

Chain matrix in analog LC filters, 787
Chan, D. S. K., 701
Characteristic impedance in unit

elements, 786
Characteristic polynomial, 211
Characterization of

analog filters
by wave characterization, see

Wave network characterization
discrete-time systems

by state-space equations, see
State-space characterization

nonrecursive discrete-time systems
by difference equation, 140

recursive discrete-time systems
by difference equation, 141

Charalambous, C., 739
Charalambous minimax algorithm,

740–741
objective function, 739–740

Chebyshev, P. L., 481
Chebyshev approximation:

derivation, 481–485
design of recursive filters satisfying

prescribed specifications,
575–576

examples, 490–492
fourth-order, 481–484
introduction to, 481

INDEX 943

loss, 485
loss characteristics, 486
minimum filter order, 490–491
normalized transfer function, 489
nth-order, 484–485
properties, 482
zero-pole plots of loss function, 488
zeros of loss function, 485–487

Chebyshev polynomial, 441, 484
Circle of convergence of a power

series, 914
Circulators in analog LC filters, 788
Claasen, T. A. C. M., 666
Closed-form approximations, 390
Coefficient quantization, 627–632

error, 617
low-sensitivity structures, 632–637
normalized sensitivity, 632
optimum word length, 628
sensitivity of the

amplitude response, 629
phase response, 631

statistical word length, 630
Cofactor of a matrix, 206
Common factors in rational functions,

214–215
example, 215–216
test for, 215

Common region of convergence, 91
Commutative law of algebra, 144
Complementary complete elliptic

integral, 931
Complementary modulus, 930
Complete elliptic integral of the first

kind, 926
Complex analysis:

absolute convergence of a series,
912

analytic continuation, 920–921
analyticity, 907
binomial series, 914
branch point in a function of a

complex variable, 909
Cauchy-Riemann equations, 907
circle of convergence of a power

series, 914
conformal transformations:

bilinear, 923
inversion and scaling, 922
isogonal, 921
linear, 923
rotation, 921
rotation and scaling, 922
scaling, 921

translation, 921
convergence of a series, 912
derivative, 907
differentiability, 907
entire functions, 911
essential singularities, 909
geometric series, 913
holomorphic functions, 907
introduction to, 891
isolated singularities, 909
Laurent series:

analytic part, 916
annulus of convergence, 915
principal part, 916
relation with Maclaurin series, 919
relation with Taylor series,

919
residue of a pole, 917

Laurent theorem, 915
annulus of convergence, 915
open annulus, 915

limit, 906
meromorphic functions, 911
multiplier constant in a rational

function, 910
nonisolated singularities, 909
nth-order pole in a rational algebraic

function, 909
nth-order zero at infinity, 908
nth-order zero in a rational algebraic

function, 908
nth partial sum of a series, 911
nth remainder of a series, 911
Pascal triangle, 914
pole at infinity, 909
power series, 912
radius of convergence of a power

series, 914
ratio test for the convergence of a

series, 912
region of convergence of a power

series, 913
regular functions, 907
residue theorem, 919
series of complex numbers, 911
simple poles in a rational algebraic

function, 909
simple zeros in a rational algebraic

function, 908
singular points, 908
sum of a geometric series, 913
sum of a series, 911
uniform convergence in a power

series, 913

zero-pole plot of a rational algebraic
function, 910

zeros in a rational algebraic function,
908

Complex conjugate, 894
Complex convolution

application in the design of
nonrecursive filters, 434–435

Complex convolution theorem of z
transform, 91

Complex differentiation theorem of z
transform, 87

Complex numbers:
addition, 894
angle (argument), 894
Argand diagrams, 893
Cartesian representation, 893
complex conjugate, 894
De Moivre’s theorem, 894–895
division, 896
equality of two complex numbers,

893
Euler’s formula, 895–896
exponential form, 896
imaginary part, 892
imaginary unit, 893
magnitude (radius), 894
multiplication, 894, 896
nth power, 897
nth root of a complex number,

895
parallelogram law, 897
polar representation, 894
ratio of products, 896
real part, 892
relation between the sum of the

magnitudes and the magnitude
of the sum of a set of complex
numbers, 897

Riemann sphere, 898
spherical representation, 898
square-root of a complex number,

902
subtraction, 894
vector representation, 897

Complex scale change theorem of z
transform, 87

Compression, 831
Compressor, 831
Computability, 175–176

delay-free loops in signal flow
graphs, 175

Computation of IDFT using FFT
algorithms, 322

944 INDEX

Computational complexity of
FFT algorithms, 369
Remez exchange algorithm, 683

Computer arithmetic:
disadvantages of fixed-point

arithmetic, 623–624
examples, 623
fixed-point, 620–623
floating-point, 623–625

addition, 624
multiplication, 624

number representation
bias in floating-point number

representation, 624
binary number system, 618–625
binary point, 618
bits, 618
conversion from binary to decimal

numbers, 619
conversion from decimal to binary

numbers, 619
end-around carry, 622
exponent, 624
IEEE Floating-point

representation, 624
mantissa, 624
number normalization in

floating-point arithmetic, 624
number quantization, 625–627
one’s complement, 621
one’s complement of a negative

number, 621
radix, 618
radix point, 618
rounding, 625
sign bit, 621
signed-magnitude, 621
significand, 624
truncation, 625
two’s complement, 621–622
two’s complement of a negative

number, 622
word length, 621

one’s complement
addition, 622
multiplication, 622

overflow in one’s- or
two’s-complement addition,
623

signed-magnitude
arithmetic, 622
multiplication, 622

two’s complement
addition, 622

arithmetic, 622
multiplication, 622

Concurrency
in hardware implementations, 412

Condition for
causality in discrete-time systems,

136–137
linearity in discrete-time systems,

132–133
stability on

eigenvalues, 211
impulse response, 172
poles, 210

time-invariance in discrete-time
systems, 134

Conformal transformations:
bilinear, 923
in complex convolution, 92
inversion and scaling, 922
isogonal, 921
linear, 923
rotation, 921
rotation and scaling, 922
scaling, 921
translation, 921

Constant-input limit cycles, 664
Constant-delay

allpass transfer function, 524
nonrecursive filters, 426–428
recursive filters, 586–587

Constantinides transformations:
application, 554
general, 549–551
lowpass-to-bandpass, 553
lowpass-to-bandstop, 552–553
lowpass-to-highpass, 553
lowpass-to-lowpass, 551–552
mapping properties, 550
table, 553

Constraint on
eigenvalues for stability, 211
impulse response for stability, 172
poles for stability, 210

Continuous-time signals:
definition, 2
processing by using digital filters,

298–301
example, 301–303

spectral energy, 337
spectral relation with discrete-time

signals, 290–292
Continuous-time unit-step function, 56
Continuous-time window functions,

337–347

effect on frequency spectrum,
339–343

example, 343–346
Kaiser window, 346–347

Bessel function, 346
frequency spectrum of, 346
main-lobe width in, 348
ripple ratio in, 348

main-lobe width, 338
rectangular window, 337

frequency spectrum, 338
ripple ratio in, 339

ripple ratio, 338
window length, 338

Convergence
annulus of, 84
factor in adaptive filters, 867
of Fourier series, 36
of Fourier transform, 58
radius of, 82
of a series, 912
of z transform, 81

Conversion from
binary to decimal numbers, 619

example, 619
decimal to binary numbers, 619

example, 619
Convex functions, 722
Convolution summation, 88, 163–166

decomposition of a discrete-time
signal into a sum of impulses,
164

derivation, 163–164
examples, 166–169
graphical representation, 165
special forms, 164–166
two-dimensional, 875

Cooley, J. W., 321
Corollary of initial-value theorem, 89
Correction of multiplier constant in

recursive filters, 539
Correction of phase response,

234–235
Correction of the angle of a rational

algebraic function, 906
Crochiere, R. E., 628
Cross correlation in adaptive filters,

866
Cubic interpolation search in Remez

exchange algorithm, 687–689
Cutoff frequency in analog filters,

472
Cyclic convolutions, see Periodic

convolutions

INDEX 945

D/A, see Digital-to-analog
Davidon-Fletcher-Powell (DFP)

updating formula, 730
De Moivre’s theorem, 894–895
Deadband effect, 654
Deadband range in limit cycles, 656
Decimation-in-frequency algorithm

8-point FFT, 374–375
N-point FFT, 370–373

Decimation-in-time algorithm
8-point FFT, 368–369
N -point FFT, 362–368

Decimators, 830–833
Decomposition section of a QMF bank,

840
Definition of

a continuous-time random process,
598

random variable, 593
transfer function, 202
z transform, 80

Delay characteristic, 252
Delay characteristics in

analog filters, 470
Bessel-Thomson filters, 515

Delay distortion in discrete-time
systems, 253

Delay equalization in recursive filters,
586–587

Delay-free loops in
digital filters derived from analog

filters, 775
signal flow graphs, 175

Denormalized approximations, 475
Derivation of

Bessel-Thomson approximation,
513

bilinear transformation method,
541–543

Butterworth approximation, 475
Chebyshev approximation, 481–485
convolution summation, 163–164
elliptic approximation, 497–508
Fourier transform, 47–49
inverse-Chebyshev filters, 522
inverse-Fourier transform, 49–50
transfer function from

difference equation, 202–203
state-space characterization, 205
system network, 204

Derivative of a function of a complex
variable, 907

Descartes, A. R., 893
Descent direction, 724

Design:
approximation step, 390
of cascade wave digital filters, see

Cascade wave realization
of decimators and interpolators, 839
effects of arithmetic errors

introduction to, 391
general considerations, 412
of Hilbert transformers, 854–856

example, 856–858
implementation, see Hardware or

Software implementation
implementation step, 391
introduction to, 389–391
nonrecurring costs, 412
of nonrecursive filters, see

Nonrecursive filters
of nonrecursive filters by

optimization, see Nonrecursive
filters by optimization

of QMF banks, 846–848
example, 848–849

realization step, 390
recurring costs, 412
of recursive filters, see Recursive

filters
of recursive filters by optimization,

see Recursive filters by
optimization

of wave digital filters, see Wave
digital filters

Determinant of
a 3 × 3 matrix, 213
a general matrix, 206
a signal flow graph, 154

DFT, see Discrete Fourier transform
Differentiability in complex analysis,

907
Differentiation (numerical) formulas,

455
Digital differentiators:

design by using numerical-analysis
formulas, 455

example, 456–457
design by using the Fourier series

method
example, 457–458

by optimization:
first derivative, 708
ideal frequency response, 707
minimum differentiator length,

708–709
prescribed specifications, 708
problem formulation, 707–708

using the Fourier series method,
457

Digital filters:
amplitude equalization, 588
applications, 21
approximations, see Approximations
choice of structure, 819–820
definition, 19
delay equalization, 586–587
design, see Design
effects of arithmetic errors

introduction to, 391
families of, 21
frequency response, 232–235
hardware, 22
historical evolution, 19–20
implementation, see Implementation
overflow, 640
processing of continuous-time

signals by using, 298–301
example, 301–303

realization, see Realization
software, 22
software implementation by using

the FFT approach, 376–377
structures, see Structures
transfer functions:

first-order, 246
first-order allpass, 246
high-order, 251
high-order allpass, 587
second-order allpass, 251
second-order bandpass, 249
second-order highpass, 248
second-order lowpass, 246–247
second-order notch, 250

zero-phase (zero-delay) filters,
587–588

Digital integrator, 542
Digital signal processing (DSP)

introduction to, 1
Digital signals, 3
Digital systems

merits of, 21
Digital-to-analog (D/A)

converter
example, 309–310
ideal, 306
model, 306–307
practical, 305
response, 307

interface, 4
smoothing device, 4

Diniz, P. S. R., 634, 664

946 INDEX

Direct approximation methods, 390
Direct canonic realization method,

395–396
Direct paths in signal flow graphs, 154
Direct realization method, 392–393
Directed branches in signal flow

graphs, 147
Dirichlet conditions, 36
Discrete active RC filters, 15
Discrete Fourier transform (DFT):

amplitude spectrum, 322
of complex signals, 383
definition, 322
example, 324–325
FFT algorithms, see Fast

Fourier-transform algorithms
frequency-domain sampling

theorem, 328–333
frequency spectrum, 322
introduction to, 321
inverse, 322–323
linearity of, 323
operator notation, 322
periodic convolutions, 358–362
periodicity, 323
phase spectrum, 322
relation with

continuous Fourier transform,
333–335

Fourier series, 335–336
z transform, 325–327

simplified notation, 358
symmetry of, 323–324
window technique, 354

application, 354–356
example, 356–358
introduction to, 337

zero padding, 327–329
Discrete-time sampling, 831

by a noninteger factor, 839
Discrete-time signals:

amplitude spectrum, 119
definition, 2
exponential, 95
frequency spectrum, 119
notation, 7
phase spectrum, 119
sinusoid, 95
spectral relation with

continuous-time signals,
290–292

time
denormalization, 7
normalization, 7

unit impulse, 95
unit ramp, 95
unit step, 95

Discrete-time systems:
absolute (phase) delay, 252
amplitude distortion, 253
amplitude response

in first-order systems, 161
of a system of arbitrary order,

226
attenuation, 227
causality, 136
computability, 175–176
delay distortion, 253
elements

adder, 142
multiplier, 142
unit delay, 142

excitation (input), 132
frequency response, 161, 226
group delay, 252
implementation, 146
initially relaxed, 134
instability in, 161
introduction to, 131
linear, 132
linearity, 132–133

additivity condition, 133
homogeneity condition, 133
proportionality condition, 133
superposition condition, 133

network analysis by using
Mason’s method, see Signal flow

graphs
the node-elimination method, see

Signal flow graphs
the shift operator, 143–144

nonlinear, 133
nonrecursive:

characterization by difference
equation, 140

relation with FIR and systems,
170–171

stability, 210
system order, 140

operation, 147
phase distortion, 253
phase response

ambiguity in, 232
correction of, 234–235
in systems of arbitrary order,

226
phase response in first-order

systems, 161

recursive:
characterization by difference

equation, 141
relation with IIR systems,

170–171
system order, 141

relaxed, 134
representation by

networks, 143
operator notation, 132
signal flow graphs, 147–148
state-space equations, 176–178

response (output), 132
rule of correspondence in, 132
sampling theorem, see Sampling

theorem
stability, see Stability
state-space characterization, see

State-space characterization
test for

causality, 136–137
linearity, 132–133
time-invariance, 134

time invariance, 134
time-dependent systems, 134
time-domain analysis, see

Time-domain analysis
transfer function, see Transfer

function: discrete-time
Discrete-time window functions:

Bartlett (triangular) window, 385
Blackman window, 439
Dolph-Chebyshev window,

440–444
Hamming window, 437
Kaiser window, 350, 445

frequency spectrum of, 351
z transform of, 351

rectangular window, 350, 435
frequency spectrum of, 350
z transform of, 350

Saramäki window, 453
trade-off between main-lobe width

and ripple ratio in the design of
nonrecursive filters, 439

ultraspherical window, 453
von Hann window, 437

Discrimination factor
elliptic approximation, 497

Distribution nodes in signal flow
graphs, 147

Distributive law of algebra, 144
Division in complex arithmetic, 894,

896

INDEX 947

Dolph-Chebyshev window,
440–442

example, 442–444
main-lobe width in, 441
normalization of amplitude response,

442
ripple ratio in, 440

Double periodicity in elliptic functions,
933

Downsampler, 831
Downsampling, 831
Duality principle in optimization

theory, 736

Ebert, P. M., 660
Effects of arithmetic errors

introduction to, 391
Effects of finite word length

introduction to, 617–618
Efficient Remez exchange algorithm,

691–693
Eigenvalues, 211
Elementary discrete-time signals:

exponential, 95
sinusoid, 95
unit impulse, 95
unit ramp, 95
unit step, 95

Elements of discrete-time systems
adder, 142
multiplier, 142
unit delay, 142

Elimination of
aliasing errors in QMF banks,

844–846
constant-input limit cycles, 664
nodes with multiple incoming and

multiple outgoing branches in
signal flow graphs, 149

overflow limit cycles, 665–666
parallel branches in signal flow

graphs, 149
quantization limit cycles, 660–663

example, 663–664
quantization limit cycles in wave

digital filters, 808–810
pseudopower, 808
stored power, 808

self loops in signal flow graphs,
150

series branches in signal flow graphs,
148

Elliptic approximation:
derivation, 497–508

design of recursive filters satisfying
prescribed specifications,
576–577

discrimination factor, 497
elliptic functions, 500
elliptic integral, 499
even-order, 507–508
example, 512–513
fifth-order, 497–504
infinite-loss frequencies, 503
introduction to, 497
loss, 497
loss characteristic, 498
minimum filter order, 509
minimum stopband loss, 509
modular constant, 507
normalized transfer function,

509–512
odd-order, 504
plots of minimum stopband loss

versus selectivity, 510
properties, 498
selectivity factor, 497
specification constraint, 508–509
zero-loss frequencies, 502
zeros and poles of loss function,

504–507
Elliptic functions:

addition formulas, 932
definition, 927
double periodicity, 933
effect of variations in the modulus on

the elliptic functions, 928
in elliptic approximation, 500
fundamental period parallelogram,

933
imaginary argument, 930–931
imaginary period, 932
introduction to, 925
modular constant, 937
period parallelograms, 933
periodicity, 932–934
plots, 928
series representation, 936–937
theta functions, 937
transformation ω = √

k sn(z, k), 934
mapping properties, 934–936

Elliptic integral:
amplitude, 925
complementary complete, 931
complementary modulus, 930
complete, 926
definition, 925
in elliptic approximation, 499

of the first kind, 925
modulus, 925

Encoder, 4, 303
End-around carry, 622
Energy spectral density of nonperiodic

signals, 63
Energy spectrum of nonperiodic

signals, 63
Ensemble in continuous-time random

processes, 598
Entire functions of a complex variable,

911
Equality of two complex numbers, 893
Equalizers by optimization:

algorithm, 757–758
examples, 759–765

Equally terminated LC filters, 774
Equiripple solution, 441
Equivalent impulse functions, 268
Error function in nonrecursive filters,

681
Error function in recursive

filters, 720, 745
recursive equalizers, 756

Error-spectrum shaping, 651–654
noise model for, 651
PSD of output noise, 651
signal-to-noise ratio, 653

Errors:
coefficient quantization, 617
input quantization, 617
introduced by rounding, 626
introduced by truncation, 626
product quantization, 617

Essential singularities in complex
analysis, 909

Eswaran, C., 637, 819
Euclidean

norm, 722
space, 724

Euler’s formula, 895–896
Euler-Fourier formulas, 33
Evaluation of frequency spectrum, 119
Excitation in discrete-time systems, 132
Exhaustive step-by-step search, 680
Expander, 833
Expected value

in adaptive filters, 866
of a random variable, 595
of a random variable that depends on

two or more variables, 596
Exponent, 624
Exponential excitation in first-order

systems, 158–159

948 INDEX

Exponential form of a complex
number, 896

Extrapolation in quasi-Newton
algorithm, 733

Extremal frequencies (or extremals) in
nonrecursive filters, 678

Fan two-dimensional digital filters, 880
Fast Fourier-transform (FFT)

algorithms:
application to signal processing,

376–382
overlap-and-add method, 377–380
overlap-and-save method,

380–382
butterfly signal flow graph, 363
computation of inverse DFT using,

375
computational complexity, 369
decimation-in-frequency

8-point FFT, 374–375
N -point FFT, 370–373

decimation-in-time
8-point FFT, 368–369
N -point FFT, 362–368

introduction to, 362
number of multiplications in, 369

FDNR networks, 802
Feasible stability region for recursive

filters and equalizers, 755
Feldkeller equation, 796, 849
Fettweis, A., 773, 802, 808
FFT, see Fast Fourier-transform

algorithms
Filtering:

bandpass, 8
bandstop, 8
definition, 8, 12
highpass, 8
lowpass, 8

Filtering of discrete-time random
processes, 610–611

example, 612
Filters:

analog, see Analog filters
digital, see Digital filters
electrical, 13

Final value of a signal, 469
Final-value theorem of z transform, 90
FIR filters, see Nonrecursive filters
FIR systems, see Discrete-time

systems: nonrecursive
First-order statistics in continuous-time

random processes, 599

Fixed-point arithmetic, 620–623
Fletcher inexact line search, 733
Fletcher, R., 729, 734
Flip-flop as a memory device, 619
Floating-point

addition, 624
arithmetic, 623–625
multiplication, 624

Forced response, 666
Forward difference, 	x(nT), of

numerical analysis, 454
Foster forms of analog networks,

793
Fourier, J. B. J., 30
Fourier series:

amplitude spectrum, 34
of antisymmetrical signals, 35
base period, 30
of complex signals, 37
definition, 30
design of nonrecursive filters,

431–432
Dirichlet conditions, 36
of even functions, 34
examples, 39–46
frequency spectrum, 34
fundamental, 34
general form, 30
harmonics, 34
introduction to, 29
kernel

defined, 278
theorem, 278

of odd functions, 35
periodic continuation, 30
phase spectrum, 34
relation with

DFT, 335–336
Fourier transform, 280–283

of symmetrical signals, 34
in terms of

exponentials, 30
sines and/or cosines, 33–34

theorems
convergence, 36
least-squares approximation, 38
Parseval’s formula, 37
uniqueness, 39

Fourier transform:
amplitude spectrum in, 50
of complex signals, 50
of cos ω0t , 273
derivation of, 47–49
energy spectral density, 63

energy spectrum, 63
examples, 54–57, 63–72, 276–278
frequency spectrum in, 50
of an impulse function, 266
of impulse-modulated signals, 288
introduction to, 29
inverse of, 49–50
operator notation, 50
particular forms, 50–54
of periodic signals, 274
phase spectrum in, 50
pitfalls associated with periodic

signals, 272
properties, 57–63
relation with

DFT, 333–335
Fourier series, 280–283
z transform, 288

of sin ω0t , 273
table of standard Fourier transforms,

72, 275
theorems:

convergence, 58
frequency convolution, 62
frequency differentiation, 60
frequency shifting, 60
linearity, 58
moments, 60
Parseval’s formula, 62
symmetry, 58
time convolution, 61
time differentiation, 60
time scaling, 59
time shifting, 60

of unit step function, 274
of unity function, 271

Frequency convolution of Fourier
transform, 62

Frequency-dependent negative
resistance (FDNR) networks,
802

Frequency differentiation theorem of
Fourier transform, 60

Frequency-division multiplex (FDM)
system, 16–18

Frequency-domain:
aliasing, 229–231, 296–297
impulse function, 271
periodic convolution, 361

theorem, 362
sampling theorem, 328–333
unity function, 266

Frequency-domain analysis:
for analog filters:

INDEX 949

steady-state sinusoidal response,
470

examples, 236–245
for two-dimensional digital filters,

877
using the z transform, 224–235
for wave digital filters, 805–807

Frequency-domain representation:
of continuous-time random

processes, 604–608
example, 608
Wiener-Khinchine relation, 608

of discrete-time random processes,
609–610

of discrete-time signals
amplitude spectrum, 119
frequency spectrum, 119
phase spectrum, 119

of nonperiodic signals
amplitude spectrum, 50
frequency spectrum, 50
phase spectrum, 50

of periodic signals
amplitude spectrum, 5, 34
phase spectrum, 5, 34

Frequency of limit cycle, 656
Frequency response:

amplitude response
in analog filters, 470
in first-order systems, 161
in systems of arbitrary order, 226

in analog filters, 470
attenuation in analog filters, 470
definition, 226
delay characteristic, 252

in analog filters, 470
in digital filters, 232–235
of discrete-time systems, 161
examples, 236–245
gain, 160
gain in analog filters, 470
graphical evaluation, 227–228
group delay in analog filters, 470
in Hilbert transformers, 858
loss

characteristic in analog filters, 471
function in analog filters, 471
in analog filters, 471

in nonrecursive filters, 428–430
formulas, 430

periodicity, 229
phase response, 161

ambiguity in, 232
in analog filters, 470

correction in, 234–235
in systems of arbitrary order, 226

phase shift, 160
in analog filters, 470

in QMF banks, 847
in two-dimensional digital filters,

877
Frequency shifting theorem of the

Fourier transform, 60
Frequency spectrum:

of continuous-time Kaiser window,
346

of decaying sinusoid, 122–124
in DFT, 322
of discrete-time Kaiser window,

351
of discrete-time rectangular window,

350
discrete-time signals, 119
of Hamming window, 438
of Kaiser window, 445
of nonperiodic signals, 50
of periodic signals, 34
periodicity of spectrum in

discrete-time signals, 120
of pulse signal, 120–122
of rectangular window, 435
of von Hann window, 438

Functions of a complex variable:
ambiguity in the determination of the

angle of a rational algebraic
function, 906

angle of a rational algebraic
function, 906

branch cut, 904
correction of the angle of a rational

algebraic function, 906
hyperbolic functions, 901

identities, 901
inverse

algebraic functions, 900
hyperbolic functions, 902
trigonometric functions, 901

magnitude of a rational algebraic
function, 906

multi-valued functions, 902–904
periodic functions, 904–905
polynomials, 899
principal angle, 904
rational algebraic functions, 905–906
Riemann surface, 903–904
trigonometric functions, 900

identities, 901
Fundamental in a Fourier series, 34

Fundamental period parallelogram in
elliptic functions, 933

Gain, 160, 226
in analog filters, 470
in decibels (dBs), 227

Gamma function, 514
Ganapathy, V., 819
Gauss, C. F., 892
Gaussian function, 70
Gaussian probability-density function,

594
Gazsi, L., 848
G-CGIC configuration

analog, 811–812
digital, 812–814

General form of Fourier series, 30
General inversion method of z

transform, 85–86
Generalized functions, 274
Generalized-immittance converter

(GIC), 811
admittance conversion function, 811
current-conversion type (CGIC), 811

Geometric series, 913
Gibbs’ oscillations, 433
GIC, see Generalized-immittance

converter
Global minimum, 725
Gradient information for Remez

exchange algorithm, 694–696
Gradient of MSE in adaptive filters, 866
Gradient vector

definition, 723
in equalizers, 756
in minimax algorithm, 739
in recursive filters, 746

Gramians
observability, 648
reachability, 648

Graphical evaluation
frequency (amplitude and phase)

response, 227–228
Graphical representation:

of convolution summation, 165
of interrelations between

continuous-time,
impulse-modulated, and
discrete-time signals, 297–298

of time-domain periodic
convolution, 359–361

Gray, Jr., A. H., 401
Green, B. D., 661
Gregory, J., 20

950 INDEX

Gregory-Newton interpolation
formulas, 454

Grossman, A. J., 497
Group delay in

analog filters, 470
discrete-time systems, 252
nonrecursive filters, 426
two-dimensional digital filters, 877

Hamming window function, 437
frequency spectrum of, 438
main-lobe width in, 439
ripple ratio in, 438

Hancock, H., 925
Hardware digital filters, 22
Hardware implementation:

basics of, 412
concurrency, 412
general design considerations, 412
introduction to, 391
pipelining, 413
processing elements, 412
systolic, 412–416

example, 416–417
latency, 414
processing rate, 413

in terms of VLSI chips, 412
Harmonics in a Fourier series, 34
Herrmann, O., 674, 701
Hessian matrix, 723

indefinite, 725
negative definite, 725
positive definite, 725

Higgins, W. E., 653
Higher-order central differences,

δn x(nT), of numerical analysis,
454

Highpass CGIC second-order section,
815

Highpass filtering, 8
Highpass filters

nonrecursive
design of filters satisfying

prescribed specifications, 450
recursive

design of filters satisfying
prescribed specifications, 568

two-dimensional digital, 880
Highpass transfer function

discrete-time
second-order, 248

Hilbert transform of a signal, 854
Hilbert transformers:

analytic signals, 852

applications
sampling of bandpassed signals,

861–862
single-sideband modulation,

859–861
design of, 854–856
example, 856–858
frequency response, 858
introduction to, 851–852

Hirano, K., 637
Historical evolution of digital filters,

19–20
Hofstetter E., 674
Holder inequality, 642
Holomorphic functions in complex

analysis, 907
Homogeneity condition in

discrete-time systems, 133
Hurwitz polynomials in analog filters,

794
Hwang, S. Y., 647
Hyperbolic functions, 901

identities, 901

Ideal analog filters
bandpass, 472
bandstop, 472
highpass, 472
lowpass, 471

IDFT, see Inverse discrete Fourier
transform

IEEE Floating-point representation of
numbers, 624

IIR filters, see Recursive filters
IIR systems, see Discrete-time systems:

recursive
Images produced by upsampling, 834
Imaginary argument in elliptic

functions, 930–931
Imaginary part of a complex number,

892
Imaginary period in elliptic functions,

932
Imaginary unit, 893
Impedances in analog LC filters, 778
Implementation:

of discrete-time systems, 146
hardware

concurrency, 412
pipelining, 413
processing elements, 412
systolic, 412–416
in terms of VLSI chips, 412

nonreal-time, 391

real-time, 391
software, 391

Improved formulation for Remez
exchange algorithm, 689–691

Impulse functions, 263–272
alternative equivalent impulse

functions, 268
definition, 265
Fourier transform of

an impulse function, 266
a unity function, 271

frequency-domain impulse function,
271

pitfalls associated with the definition
of an impulse function, 263–265

properties of
frequency-domain impulse

functions, 272
time-domain impulse functions,

269
time-domain

impulse function, 265
unity function, 271

Impulse-modulated filters, 298
continuous-time transfer function of,

299
discrete-time transfer function of,

299
impulse response, 299

Impulse-modulated signals:
Fourier transform of, 288
generation of, 286–288
Laplace transform of, 291–292
periodicity of spectrum, 291
spectral relation with continuous-

and discrete-time signals,
290–292

Impulse modulator, 286
Impulse response:

in analog filters, 469
of first-order systems, 155–156
of impulse-modulated filter, 299
in nonrecursive filters

antisymmetrical, odd filter length,
705

symmetrical, odd filter length, 683
of N th-order systems

using mathematical induction, 163
using the z transform, 207–208

scaling in nonrecursive filters, 442
using state-space characterization,

185
Incident wave quantity, 775
Indirect approximations, 390

INDEX 951

Indirect realization methods, 390
Induction, see Mathematical induction
Inexact line searches, 730–734
Infinite-loss frequencies in elliptic

filters, 503
Initial conditions

in analog filters, 466
Initial value of a signal, 469
Initial-value theorem of z transform, 89
Initialization of extremals in Remez

exchange algorithm, 679
Initially relaxed

analog filters, 466
discrete-time systems, 134

Innermost annulus of convergence, 103
Input quantization error, 617
Insertion loss in analog filters, 774
Instability in discrete-time systems, 161
Integrated active RC filters, 15
Integration (numerical) formulas, 455
Integrators

using numerical-analysis formulas,
455

Interior band edge in nonrecursive
filters, 680

Interpolation
formula, 296
Gregory-Newton formula in terms of

backward differences, 454
forward differences, 454

Lagrange barycentric formula, 681
linear, 838
in quasi-Newton algorithm, 733
Stirling formula, 454

Interpolation (numerical) formulas, 454
Interpolators, 833–838

example, 838–839
Interrelation between

continuous-time,
impulse-modulated, and
discrete-time signals, 288

graphical representation, 297–298
the discrete and continuous Fourier

transforms, 333–335
the discrete Fourier and z transforms,

325–327
the discrete Fourier transform and

the Fourier series, 335–336
the Fourier and z transforms, 288

example, 289–290
the Fourier series and the Fourier

transform, 280–283
example, 283–284

Laplace and z transforms, 291–292

the spectrums of continuous-time,
impulse-modulated, and
discrete-time signals, 290–292

example, 292–293
Invariant

impulse-response method, 530–532
example, 532–534
merits and demerits, 532

sinusoid-response method, 558
unit-step-response method, 557

Inverse
algebraic functions, 900
discrete Fourier transform (IDFT)

computation of, 375
definition of, 322

Fourier transform
derivation of, 49–50

hyperbolic functions, 902
Laplace transform, 465
of a matrix, 206
shift operator, 143
trigonometric functions, 901
z transform, 85

Inverse-Chebyshev approximation:
derivation, 522
design of recursive filters satisfying

prescribed specifications, 576
example, 495–496
introduction to, 493
loss, 493
loss characteristics, 486
maximum passband loss, 496
minimum filter order, 494
normalized transfer function,

493–494
Inversion techniques for z transform:

general inversion method, 85–86
example, 101–102

use of binomial series, 103
examples, 103–108

use of convolution theorem, 108
example, 108–110

use of initial-value theorem, 113
example, 113–114

use of long division, 110–113
example, 111–112

use of partial fractions, 115–116
example, 116–118

Isolated singularities, 909
Iterative approximation methods, 390

Jackson, L. B., 21, 640, 647, 649, 654
Joint distribution function

definition, 594–595

Joint probability-density function
definition, 595

Jury, E. I., 219
Jury-Marden

array, 219
stability criterion, 219–220

examples, 220–222

Kaiser, J. F., 661
Kaiser window function

continuous-time, 346–347
Bessel function, 346
example, 347–349
frequency spectrum of, 346
main-lobe width in, 348
ripple ratio in, 348

discrete-time, 350, 445
frequency spectrum of, 351, 445
main-lobe width in, 445
ripple ratio in, 445
z transform of, 351

Kim, Y., 649
kth-order statistics in continuous-time

random processes, 600

L1 norm, 721
L2 norm, 722
L2-scaling transformation, 650
L2 signal scaling, 643
L2 versus L∞ scaling, 643–645
Ladder LC network, 799
Ladder wave realization, 798–799

example, 799–801
transfer function, 799

Lagrange barycentric interpolation
formula, 681

Lagrange, J. L., 20
Laplace transform:

definition, 465
final value of a signal, 469
of impulse-modulated signals,

291–292
initial value of a signal, 469
operator notation, 466
relation with

z transform, 291–292
Latency in systolic structures, 414
Lattice LC network, 791

alternative configuration, 792–796
analysis, 791–792
transfer function, 793

Lattice realization method, 401–404
1-multiplier section, 403–404
2-multiplier section, 403–404

952 INDEX

Lattice realization method (Cont.):
example, 402–403

Lattice wave realization, 796–797
transfer function, 797

example, 797–798
Laurent, P., 915
Laurent series:

analytic part, 916
annulus of convergence, 915
principal part, 916
relation with

Maclaurin series, 919
Taylor series, 919
the z transform, 83–84

residue of a pole, 917
Laurent theorem, 915

annulus of convergence, 915
open annulus, 915

Law of exponents for shift operator,
143

Laws of algebra, 144
Least-mean-square algorithm, 870–871
Least-pth minimax algorithm, 739

gradient vector, 739
objective function, 739

Least-squares approximation theorem
of Fourier series, 38

Least-squares solution, 722
l’Hôpital’s rule, 158
Lighthill, M. J., 274
Limit-cycle oscillations

overflow limit cycles, see Overflow
limit cycles

quantization (granularity) limit
cycles, see Quantization
(granularity) limit cycles

Limit in complex analysis, 906
Lindgren, A. G., 649
Line searches, 724
Linear difference equation, 140
Linear discrete-time systems, 132–133
Linear-phase nonrecursive filters,

426–428
Linearity

of DFT, 323
of discrete-time systems, 132–133
of Fourier transform, 58
of shift operator, 143
theorem

of z transform, 86
Linearly independent vectors, 727
Liu, A., 21
Liu, V., 661
Local minima, 725

Location of zeros in nonrecursive filters
with constant group delay,
430–431

Long, J. L., 661
Loop transmittances in signal flow

graphs, 154
Loss characteristics in:

analog filters, 471
Bessel-Thomson filters, 515
Butterworth filters, 476
Chebyshev filters, 486
elliptic filters, 498
inverse-Chebyshev filters, 486

Loss function
in analog filters, 471

Loss in
analog filters, 471
Butterworth filters, 476
Chebyshev filters, 485
elliptic filters, 497
inverse-Chebyshev filters, 493

Lossless-discrete-integrator (LDI)
ladder filters, 811

Low-sensitivity structures, 632–637
Lowpass CGIC second-order section,

815
Lowpass filtering, 8
Lowpass filters

nonrecursive
design of filters satisfying

prescribed specifications,
445–447

recursive
design of filters satisfying

prescribed specifications,
565–568

two-dimensional digital, 880
Lowpass-to-bandpass transformation

for analog filters, 516
graphical interpretation, 519
mapping, 518

for digital filters, 553
Lowpass-to-bandstop transformation

for analog filters, 519
for digital filters, 552–553

Lowpass-to-highpass transformation
for analog filters, 519
for digital filters, 553

Lowpass-to-lowpass transformation
for analog filters, 516

graphical interpretation, 517
mapping, 517

for digital filters, 551–552
Lowpass transfer function

discrete-time
second-order, 246–247

L p norm, 721
L p signal scaling, 641–643
L∞ norm, 722
L∞-scaling transformation, 650
L∞ signal scaling, 643
Lyapunov

equation, 222
stability criterion, 222–223

Magnitude of a rational algebraic
function, 906

Magnitude (radius) of a complex
number, 894

Main-lobe width:
in Blackman window, 439
in continuous-time window

functions, 338
in Dolph-Chebyshev window, 441
in Hamming window, 439
in Kaiser window, 445
in Kaiser window function, 348
in rectangular window, 435
trade-off with ripple ratio in the

design of nonrecursive filters,
439

in von Hann window, 439
Mantissa, 624
Mapping properties of bilinear

transformation, 543–545
Markel, J. D., 401
Mason’s

gain formula, 153
method for network analysis,

153–154
example, 154–155

Matched-z transformation method,
538–539

correction of multiplier constant,
539

example, 539–541
merits and demerits, 539

Mathematical induction as a tool for
time-domain analysis, 155–163

Matrices:
adjoint, 211
characteristic polynomial, 211
cofactor, 206
determinant of

a 3 × 3 matrix, 213
a general matrix, 206

eigenvalues, 211
inverse, 206

INDEX 953

minor determinants (minors)
defined, 206

positive definite, 217
principal minor determinants

(minors) of an N × N matrix,
217

quadratic forms, 217
Maxima of the error function in

nonrecursive filters, 679
Maximally flat property of Butterworth

approximation, 475
Maximum

output power in analog filters,
775

passband loss in
Butterworth filters, 479
inverse-Chebyshev filters, 496
practical analog filters, 473

Mazo, J. E., 660
McClellan, J. H., 674
Mean of a discrete-time random

process, 609
Mean square

of a discrete-time random process,
609

error (MSE) in adaptive filters,
866

(second moment) of a random
variable, 596

Mecklenbräuker, W. F. G., 666
Meerkötter, K., 808
Meerkötter’s realization, 663–664
Merits of digital systems, 21
Meromorphic functions, 911
Microwave filters, 16
Mills, W. L., 661
Minimax algorithms, 738–745

nonuniform variable sampling
technique, 741–743

virtual sample points, 742
Minimax solution in recursive filters,

722
Minimization of output roundoff noise,

647–650
block-optimal structures, 649
L2-scaling transformation,

650
L∞-scaling transformation, 650
noise model for error-spectrum

shaping, 651
observability gramian, 648
PSD of output noise in

error-spectrum shaping
structure, 651

reachability gramian, 648
section-optimal structures, 649

second-order, 649
signal-to-noise ratio in

error-spectrum shaping
structure, 653

in state-space structures, 648
by using error-spectrum shaping,

651–654
Minimum

filter length to achieve prescribed
specifications

in digital differentiators, 708–709
in nonrecursive filters, 700–701

filter order in
Butterworth filters, 479
Chebyshev filters, 490–491
elliptic filters, 509
inverse-Chebyshev filters, 494

point, 724
stopband attenuation

in nonrecursive filters, 444
stopband loss in

Butterworth filters, 479
elliptic filters, 509
practical analog filters, 473

Minor determinants (minors) of a
matrix defined, 206

Mirror-image polynomials, 431
Mitra, S. K., 810
Modified invariant impulse-response

method, 534–535
example, 536–538
merits and demerits, 535
stabilization technique, 535

Modular constant, 937
in elliptic filters, 507

Modulus of elliptic integral, 925
Moments theorem of Fourier

transform, 60
MSE, see Mean-square error
Mullis, C. T., 647, 661
Multiband nonrecursive filters by

optimization, 712–713
example, 713–715

Multiplication
in complex arithmetic, 894, 896
floating-point, 624
one’s complement, 622
signed-magnitude, 622
two’s complement, 622

Multiplier, 142
Multiplier constant in a rational

algebraic function, 910

Multi-valued functions, 902–904
Munson, Jr., D. C., 653

Natural signals, 2
Network analysis by using

Mason’s method, see Signal flow
graphs

the node-elimination method, see
Signal flow graphs

the shift operator, 143–144
example, 145–146

Newton algorithm, 724
in adaptive filters, 867

convergence factor, 867
disadvantages, 726
example, 725–726

Newton direction, 724
Newton, I., 20
Nishimura, S., 637
Node-elimination method for network

analysis, 148–153
example, 150–152

Noise model for
multiplier, 638–639
second-order canonic section, 639

Noncausal discrete-time systems, 136
Noncomputable signal flow graphs,

176
Nonisolated singularities, 909
Nonlinear discrete-time systems,

133
Nonperiodic signals

amplitude spectrum, 50
frequency spectrum, 50
phase spectrum, 50

Nonquadratic functions, 724
Nonquantized signals, 3
Nonrecursive discrete-time systems,

see Discrete-time systems:
nonrecursive

Nonrecursive filters:
application of complex convolution,

434–435
comparisons with recursive filters,

554
constant-delay, 426–428
design by using numerical-analysis

formulas, 455
design by using the Fourier series

method, 431–432
examples, 432–433, 439–440,

442–444, 448–449, 451–453
design by using window functions,

434

954 INDEX

Nonrecursive filters (Cont.):
design of differentiators by using the

Fourier series method, 457
design of filters satisfying prescribed

specifications
bandpass, 450
bandstop, 450
highpass, 450
lowpass, 445–447

formulas for frequency response,
430

frequency response, 428–430
Gibbs’ oscillations, 433
group delay in, 426
introduction to the approximation

problem for, 425
linear phase, 426–428
location of zeros in filters with

constant group delay, 430–431
minimum stopband attenuation, 444
mirror-image polynomials, 431
normalization of amplitude response,

442
by optimization:

adjustable bracket, 689
alternation theorem, 677–678
alternative rejection scheme for

superfluous potential extremals,
682

arbitrary amplitude responses,
712

computational complexity, 683
cubic interpolation search,

687–689
design of filters with even length

and antisymmetrical impulse
response, 706

design of filters with even length
and symmetrical impulse
response, 705–706

design of filters with odd length
and antisymmetrical impulse
response, 703–705

design of filters with odd length
and symmetrical impulse
response, 674–678

design of multiband filters,
712–713

efficient Remez exchange
algorithm, 691–693

error function, 681
exhaustive step-by-step search,

680
extremals, 678

impulse response, odd filter
length, antisymmetrical, 705

impulse response, odd filter
length, symmetrical, 683

initialization of extremals, 679
interior band edge, 680
introduction to, 673–674
Lagrange barycentric interpolation

formula, 681
maxima of the error function, 679
minimum filter length, 700–701
potential extremals, 678
prescribed specifications, 700–701
problem formulation, 674–678
quadratic interpolation search, 689
rejection of superfluous potential

extremals, 682–683
Remez exchange algorithm,

678–679
selective step-by-step search,

683–687
use of weighting, 674
weighted-Chebyshev method,

673–674
peak-to-peak passband ripple, 444
phase delay (absolute) in, 426
scaling of impulse response, 442
two-dimensional, 875
with antisymmetrical impulse

response, 427
with symmetrical impulse response,

427
zero-pole plot of constant-delay

filters, 431
Nontouching loops in signal flow

graphs, 154
Nonuniform variable sampling

technique, 741–743
virtual sample points, 742

Normalization of amplitude response in
nonrecursive filters, 442

Normalization of numbers in computer
arithmetic, 624

Normalized
approximations, 475
sensitivity, 632
transfer functions, see Butterworth,

Chebyshev, inverse-Chebyshev,
elliptic, or Bessel-Thomson
approximation

Notation
for continuous-time random

processes, 598
for DFT, 358

for the representation of
discrete-time signals, 7

in terms of operators, see Operator
notation

Notation for continuous-time random
processes, 599

Notch CGIC second-order section,
816

Notch transfer function
discrete-time

second-order, 250
N -port network (or N -port), 775
nth central moment of a random

variable, 596
nth moment of a random variable, 596
nth-order pole in a rational algebraic

function, 909
nth-order zero at infinity, 908
nth-order zero in a rational algebraic

function, 908
nth partial sum of a series, 911
nth power of a complex number, 897
nth remainder of a series, 911
nth root of a complex number, 895
Number quantization, 625–627

quantization error, 625
by rounding, 625
by truncation, 625

Number representation:
binary number system, 618–625

bias in floating-point number
representation, 624

binary point, 618
bits, 618
conversion from binary to decimal

numbers, 619
conversion from decimal to binary

numbers, 619
end-around carry, 622
exponent, 624
IEEE Floating-point

representation, 624
mantissa, 624
number normalization in

floating-point arithmetic, 624
number quantization, 625–627
one’s complement, 621
one’s complement of a negative

number, 621
quantization error, 625
radix, 618
radix point, 618
rounding, 625
sign bit, 621

INDEX 955

signed-magnitude, 621
significand, 624
truncation, 625
two’s complement, 621–622
two’s complement of negative

number, 622
word length, 621

Numerical-analysis formulas,
453–455

for differentiation, 455
Gregory-Newton formulas for

interpolation, 454
for integration, 455
for interpolation, 454
Stirling formula for interpolation,

454
Nyquist frequency, 120, 228
Nyquist, H., 294

Objective function for
least-pth minimax algorithm, 739
recursive equalizers, 756
recursive filters, 721, 745

Observability gramian, 648
One’s complement:

addition, 622
multiplication, 622
of a negative number, 621
number representation, 621

Open annulus in Laurent theorem, 915
Operation of

QMF banks, 840–844
upsampler and interpolator, 833–838

Operator notation:
for DFT, 322
for discrete-time systems, 132
for Fourier transform, 50
for Laplace transform, 466
for z transform, 86

Oppenheim, A., 674
Optimization:

digital differentiators:
first derivative, 708
ideal frequency response, 707
minimum differentiator length,

708–709
prescribed specifications, 708
problem formulation, 707–708

nonrecursive filters:
adjustable bracket, 689
alternation theorem, 677–678
alternative rejection scheme for

superfluous potential extremals,
682

arbitrary amplitude responses, 712
computational complexity, 683
cubic interpolation search,

687–689
design of filters with even length

and antisymmetrical impulse
response, 706

design of filters with even length
and symmetrical impulse
response, 705–706

design of filters with odd length
and antisymmetrical impulse
response, 703–705

design of filters with odd length
and symmetrical impulse
response, 674–678

design of multiband filters,
712–713

efficient Remez exchange
algorithm, 691–693

error function, 681
exhaustive step-by-step search,

680
extremals, 678
impulse response, odd filter

length, antisymmetrical, 705
impulse response, odd filter

length, symmetrical, 683
initialization of extremals, 679
interior band edge, 680
introduction to, 673–674
Lagrange barycentric interpolation

formula, 681
maxima of the error function, 679
minimum filter length, 700–701
potential extremals, 678
prescribed specifications, 700–701
problem formulation, 674–678
quadratic interpolation search, 689
rejection of superfluous potential

extremals, 682–683
Remez exchange algorithm,

678–679
selective step-by-step search,

683–687
use of weighting, 674
weighted-Chebyshev method,

673–674
recursive equalizers:

algorithm, 757–758
design, 753–759
error function, 756
examples, 759–765
feasible stability region, 755

gradient vector, 756
group delay of equalizer, 754
group delay of filter, 754
objective function, 756
problem formulation, 753–756
stability conditions, 755
transfer function, 754

recursive filters:
alternative Newton algorithm,

727–728
approximation error, 720
BFGS updating formulas for

inverse Hessian, 730
Charalambous minimax

algorithm, 740–741
convex functions, 722
descent direction, 724
design, 745–748
DFP updating formulas for inverse

Hessian, 730
duality principle in optimization

theory, 736
error function, 720, 745
Euclidean norm, 722
Euclidean space, 724
extrapolation, 733
Fletcher inexact line search, 733
global minimum, 725
gradient vector, 723, 746
Hessian matrix, 723
inexact line searches, 730–734
interpolation, 733
introduction to, 719
L1 norm, 721
L2 norm, 722
least-pth minimax algorithm,

739
least-squares solution, 722
line searches, 724
linearly independent vectors, 727
local minima, 725
L p norm, 721
L∞ norm, 722
minimax algorithms, 738–745
minimax solution, 722
minimum filter order, 746
minimum point, 724
negative definite Hessian, 725
Newton algorithm, 724
Newton direction, 724
nonquadratic functions, 724
N th-order transfer function, 720
objective function, 721, 745
positive definite Hessian, 725

956 INDEX

Optimization (Cont.):
recursive filters (Cont.):

practical quasi-Newton algorithm,
734–735

problem formulation, 720–722
quadratic functions, 722
quasi-Newton algorithm, 729
stability, 746
stationary point, 723
sum of the squares, 722
Taylor series, 723
termination tolerances, 725
unconstrained algorithms, 722
unimodal functions, 730
updating formulas for inverse

Hessian, 729–730
use of weighting, 747–748
virtual sample points, 742

Optimum word length, 628
Order of

nonrecursive discrete-time systems,
140

recursive discrete-time systems, 141
a two-dimensional filter, 875

Ordering of filter sections in cascade
realization, 647

Outermost annulus of convergence, 85
Output noise in cascade wave

realization, 818–819
Overflow

in digital filters, 640
limit cycles, 659–660

elimination of, 665–666
example, 660
forced response, 666
stability of the forced response,

666
in one’s- or two’s-complement

addition, 623
Overlap-and-add method, 377–380
Overlap-and-save method, 380–382

Pal, R. N., 637
Papoulis, A., 50, 278
Parallel realization method, 407

example, 408–409
Parallelogram law in complex

arithmetic, 897
Parhami, B., 625
Parks, T. W., 674
Parseval de Chenes, M. A., 37
Parseval’s formula:

for discrete-time signals, 94
for nonperiodic signals, 62

for normalized discrete-time signals,
95

for periodic signals, 37
in signal scaling, 644

Partial fractions, 115–116
Pascal triangle, 914
Passband edge in practical analog

filters, 473
Passband in analog filters, 472
Passive RLC filters, 15
Peak-to-peak passband ripple

in nonrecursive filters, 444
Peek, J. B. H., 666
Peled, A., 21
Perfect reconstruction in QMF banks,

849–851
Period in periodic signals, 30
Period parallelograms in elliptic

functions, 933
Periodic continuation, 30, 294, 328
Periodic convolutions, 358–362

frequency-domain, 361
time-domain, 359

example, 359–361
graphical representation, 359–361

Periodic functions of a complex
variable, 904–905

Periodic signals:
amplitude spectrum, 5, 34
discrete window functions, 353

example, 354
Fourier transform of, 274
frequency spectrum, 34
fundamental, 34
harmonics, 34
period of, 30
periodic continuation, 30
periodic discrete window functions,

352
phase spectrum, 5, 34
pitfalls associated with the Fourier

transforms of, 272
spectral representation, 5

Periodicity
of DFT, 323
of elliptic functions, 932–934
of frequency response, 229
of frequency spectrum

of discrete-time signals, 120
of impulse-modulated signals, 291

Phase (absolute) delay
in nonrecursive filters, 426

Phase distortion in discrete-time
systems, 253

Phase response:
ambiguity, 232
correction, 234–235
in discrete-time systems of arbitrary

order, 226
in first-order discrete-time systems,

161
graphical evaluation, 227–228
influence of warping effect, 548
in two-dimensional digital filters,

877
Phase shift, 160, 226

in analog filters, 470
Phase spectrum:

in DFT, 322
discrete-time signals, 119
nonperiodic signals, 50
periodic signals, 5, 34

Pipelining, 413
Pitfalls

associated with
the definition of an impulse

function, 263–265
the Fourier transforms of periodic

signals, 272
in general inversion method of z

transform, 101–102
in the use of partial fractions, 118

Plots of elliptic functions, 928
Poisson’s summation formula, 284–286
Polar representation of complex

numbers, 894
Pole at infinity, 909
Poles

of discrete-time transfer function,
203

of z transform, 80
Polynomials of a complex variable,

899
Port conductance, 783
Port resistance, 775
Positive definite matrix, 217
Potential extremals in nonrecursive

filters, 678
Power density spectrum of a

continuous-time random
process, 605

Power in a discrete-time random
process, 610

Power series, 912
Power spectral density (PSD) of

a noise source, 638
output in a canonic section, 640
a random process, 605

INDEX 957

Practical filters:
bandpass, 473–474
bandstop, 473–474
highpass, 473
lowpass, 473
maximum passband loss, 473
minimum stopband loss, 473
passband edge, 473
stopband edge, 473

Practical quasi-Newton algorithm,
734–735

example, 736–738
Prescribed specifications:

in digital differentiators by
optimization, 708

example, 710–712
in nonrecursive filters by

optimization, 700–701
example, 701–703

nonrecursive filters:
bandpass, 450
bandstop, 450
example, 448–449, 451–453
highpass, 450
lowpass, 445–447

recursive filters:
amplitude equalization, 588
analog-filter transformations,

565
bandpass filters, 568–573
bandstop filters, 573
Butterworth filters, 573–574
Chebyshev filters, 575–576
constant-delay, 586–587
delay equalization, 586–587
design formulas for lowpass and

highpass filters, 568
design procedure, 564–565
design using formulas and tables,

577–578
elliptic filters, 576–577
examples, 578–585
highpass filters, 568
introduction to the design of

recursive filters satisfying
prescribed specifications,
563–564

inverse Chebyshev filters, 576
lowpass filters, 565–568
zero-phase (zero-delay) filters,

587–588
wave digital filters, 802

example, 802–805
Prewarping technique, 546

Principal angle of a function of a
complex variable, 904

Principal minor determinants (minors),
725

of an N × N matrix, 217
Principal part of a Laurent series,

916
Probability-density function

definition, 594
Gaussian, 594
Rayleigh, 614
uniform, 594

Probability-distribution function
definition, 594

Problem formulation for the design of
digital differentiators, 707–708
nonrecursive filters by optimization,

674–678
bandpass, 676–677
bandstop, 677
highpass, 675–676
lowpass, 675

recursive equalizers by optimization,
753–756

recursive filters by optimization,
720–722

Processing elements, 412
Processing of continuous-time signals

by using digital filters, 298–301
example, 301–303

Processing rate in systolic structures,
413

Product quantization, 638–640
noise model for

a multiplier, 638–639
second-order canonic section, 639

output PSD in canonic section, 640
PSD of a noise source, 638
signal scaling based on L p norm,

641–643
white-noise process, 638

Propagation delay, 143
of adder, 147
of multiplier, 147
of unit delay, 147

Properties of
discrete-time systems, see

Discrete-time systems
Fourier transform, see Fourier

transform
z transform, see z transform

Proportionality condition in
discrete-time systems, 133

PSD, see Power spectral density

Pseudopower in wave digital filters,
808

QMF, see Quadrature-mirror-image
filter bank

Quadratic form in matrices, 217
Quadratic functions, 722
Quadratic interpolation search in

Remez exchange algorithm, 689
Quadrature-mirror-image filter (QMF)

banks:
aliasing in, 841
amplitude and phase distortion in,

841
analysis section, 840
application to

frequency-division to
time-division multiplex
translation, 887

time-division to
frequency-division multiplex
translation, 886

decomposition section, 840
design of, 846–848
elimination of aliasing in, 844–846
frequency response in, 847
introduction to, 839–840
operation, 840–844
perfect reconstruction, 849–851
reconstruction section, 840
synthesis section, 840

Quantization error, 625
introduced by rounding, 626
introduced by truncation

in one’s- or two’s- complement
numbers, 626

in signed-magnitude numbers, 626
Quantization errors

in A/D converters, 305
introduction to, 390

Quantization (granularity) limit cycles,
654–659

constant-input limit cycles, 664
elimination of, 664

deadband effect, 654
deadband range, 656
elimination of, 660–663
in first-order section, 654
frequency of limit cycle, 656
in second-order section, 656

Quantized signals, 3
Quantizer, 4, 627

transfer characteristic, 627
Quasi-Newton algorithm, 729

958 INDEX

Rabiner, L. R., 674, 701
Radius of convergence, 82

of a power series, 914
Radix, 618
Radix point, 618
Raleigh probability-density function,

614
Ramana Rao, Y. V., 637
Random processes:

continuous-time:
autocorrelation function, 602
definition, 598
ensemble, 598
examples, 600–602
first-order statistics, 599
frequency-domain representation,

604–608
kth-order statistics, 600
notation, 598–599
power density spectrum, 605
power spectral density (PSD), 605
relation between the Fourier

transform of the autocorrelation
function and the power density
spectrum, 606–608

sample function, 598
second-order statistics, 600
strictly stationary processes, 604
wide-sense stationary processes,

604
Wiener-Khinchine relation, 608

discrete-time:
autocorrelation, 609
filtering of, 610–611
frequency-domain representation,

609–610
mean, 609
mean square, 609
power in, 610
relation between the z transform

of the autocorrelation function
and the power density spectrum,
609–610

introduction to, 593
Random signals, see Random processes
Random variables:

definition, 593
example, 597–598
expected value of

a random variable, 595
a random variable that depends on

two or more variables, 596
joint distribution function

definition, 594–595

joint probability-density function
definition, 595

mean square (second moment) of a
random variable, 596

nth central moment of a random
variable, 596

nth moment of a random variable,
596

probability-density function
definition, 594
Gaussian, 594
Rayleigh, 614
uniform, 594

probability-distribution function
definition, 594

statistical independence, 595
variance (second central moment) of

a random variable, 596
Ratio of products of complex numbers,

896
Ratio test for the convergence of a

series, 912
Rational algebraic functions of a

complex variable,
905–906

Rational functions, 80
Reachability gramian, 648
Real-convolution integral derived from

complex convolution, 93
Real-convolution theorem of z

transform, 88
Real part of a complex number, 892
Realizability constraints

for continuous-time transfer
functions, 474

for discrete-time transfer functions,
530

for wave digital filters, 791
Realization:

canonic, 395
of cascade wave digital filters, see

Cascade wave digital filters
choice of realization, 819–820
introduction to, 390
of Meerkötter, 663–664
methods:

cascade, 404–406
direct, 390, 392–393
direct canonic, 395–396
indirect, 390
lattice, 401–404
parallel, 407
state-space, 397–399
using transposition, 410

of wave digital filters, see Wave
digital filters

Reconstruction section of a QMF bank,
840

Rectangular window function
continuous-time, 337

frequency spectrum of, 338
ripple ratio in, 339

discrete-time, 350, 435
frequency spectrum of, 350, 435
ripple ratio in, 339, 435
transition width in, 435
z transform of, 350

Recursive discrete-time systems, see
Discrete-time systems:
recursive

Recursive equalizers:
by optimization:

algorithm, 757–758
design, 753–759
error function, 756
feasible stability region, 755
gradient vector, 756
group delay of equalizer, 754
group delay of filter, 754
objective function, 756
problem formulation, 753–756
stability conditions, 755
transfer function, 754

Recursive filters:
adaptive, 871–872
bilinear-transformation method,

541–545
derivation of, 541–543
design formulas, 548
mapping properties, 543–545
prewarping technique, 546
warping effect, 545–548

comparisons with nonrecursive
filters, 554

introduction to the approximation
problem for recursive filters,
529

invariant impulse-response method,
530–532

merits and demerits, 532
invariant sinusoid-response method,

558
invariant unit-step-response method,

557
matched-z transformation method,

538–539
correction of multiplier constant,

539

INDEX 959

merits and demerits, 539
modified invariant impulse-response

method, 534–535
merits and demerits, 535
stabilization technique, 535

by optimization:
alternative Newton algorithm,

727–728
approximation error, 720
BFGS updating formula for

inverse Hessian, 730
Charalambous minimax

algorithm, 740–741
convex functions, 722
descent direction, 724
design, 745–748
DFP updating formula for inverse

Hessian, 730
duality principle in optimization

theory, 736
equalization, see Recursive

equalizers: by optimization
error function, 720, 745
Euclidean norm, 722
Euclidean space, 724
examples, 748–753
extrapolation, 733
Fletcher inexact line search,

733
global minimum, 725
gradient vector, 723, 746
Hessian matrix, 723
inexact line searches, 730–734
interpolation, 733
introduction to, 719
L1 norm, 721
L2 norm, 722
least-pth minimax algorithm, 739
least-squares solution, 722
line searches, 724
linearly independent vectors, 727
local minima, 725
L p norm, 721
L∞ norm, 722
minimax algorithms, 738–745
minimax solution, 722
minimum filter order, 746
minimum point, 724
negative definite Hessian, 725
Newton algorithm, 724
Newton direction, 724
nonquadratic functions, 724
nonuniform variable sampling

technique, 741–743

N th-order transfer function, 720
objective function, 721, 745
positive definite Hessian, 725
practical quasi-Newton algorithm,

734–735
problem formulation, 720–722
quadratic functions, 722
quasi-Newton algorithm, 729
stability, 746
stationary point, 723
sum of the squares, 722
Taylor series, 723
termination tolerances, 725
unconstrained algorithms, 722
unimodal functions, 730
updating formulas for inverse

Hessian, 729–730
use of weighting, 747–748
virtual sample points, 742

prescribed specifications:
amplitude equalization, 588
analog-filter transformations,

565
bandpass filters, 568–573
bandstop filters, 573
Butterworth filters, 573–574
Chebyshev filters, 575–576
constant-delay, 586–587
delay equalization, 586–587
design formulas for lowpass and

highpass filters, 568
design procedure, 564–565
design using formulas and tables,

577–578
elliptic filters, 576–577
examples, 578–585
highpass filters, 568
introduction to the design of

recursive filters satisfying
prescribed specifications,
563–564

inverse Chebyshev filters, 576
lowpass filters, 565–568
zero-phase (zero-delay) filters,

587–588
transformations:

application, 554
general, 549–551
lowpass-to-bandpass, 553
lowpass-to-bandstop, 552–553
lowpass-to-highpass, 553
lowpass-to-lowpass, 551–552
mapping properties, 550
table, 553

two-dimensional, 874
Reflected wave quantity, 775
Region of convergence of a power

series, 913
Register, 619
Regular functions in complex analysis,

907
Rejection of superfluous potential

extremals, 682–683
Relation between

the Fourier transform of the
autocorrelation function and the
power density spectrum of a
random process, 606–608

the sum of the magnitudes and the
magnitude of the sum of a set of
complex numbers, 897

transfer function and impulse
response, 202

the z transform of the autocorrelation
function and the power density
spectrum of a random process,
609–610

Relatively prime polynomials, 207
Relaxed discrete-time systems, 134
Remez exchange algorithm:

alternative rejection scheme for
superfluous potential extremals,
682

computational complexity, 683
cubic interpolation search, 687–689
design of digital differentiators:

first derivative, 708
ideal frequency response, 707
minimum differentiator length,

708–709
prescribed specifications, 708
problem formulation, 707–708

efficient implementation, 691–693
error function, 681
examples, 696–700
extremals, 678
gradient information, 694–696
improved formulation for Remez

exchange algorithm, 689–691
initialization of extremals, 679
interior band edge, 680
maxima of the error function, 679
potential extremals, 678
quadratic interpolation search, 689
rejection of superfluous potential

extremals, 682–683
selective step-by-step search,

683–687

960 INDEX

Replacement of several self loops by a
single self loop in signal flow
graphs, 150

Representation of
transfer functions

by zero-pole plots, 203
two-dimensional digital filters by

a difference equation, 874
the 2-D convolution, 875
a 2-D transfer function, 875

z transform
by rational functions, 80
by zero-pole plots, 80

Residue, 86
Residue of a pole, 917
Residue theorem, 86, 919
Resonant circuits in analog LC filters,

788–791
Response (output) in discrete-time

systems, 132
Rhodes, J. D., 794
Riemann, R. B., 898
Riemann-Lebesque lemma, 267
Riemann sphere, 898
Riemann surface of a function,

903–904
Right-sided signals, 53
Ripple ratio:

in Blackman window, 439
in continuous-time window

functions, 338
in Dolph-Chebyshev window,

440
in Hamming window, 438
in Kaiser window, 348, 445
in rectangular window, 339, 435
trade-off with main-lobe width in the

design of nonrecursive filters,
439

in von Hann window, 438
Roberts, R. A., 647, 661
Rosenbrock function, 767
Rounding, 625
Rounding error, 626
Roundoff noise

minimization, 647–650
Rule of correspondence in

discrete-time systems, 132

s2-impedance elements, 802
Saal, R., 802
Sample-and-hold device, 303
Sample function in continuous-time

random processes, 598

Sampler, 4
Sampling frequency, 3
Sampling-frequency conversion:

compression, 831
compressor, 831
decimators, 830–833
downsampler, 831
downsampling, 831
expander, 833
images produced by upsampling, 834
interpolators, 833–838
introduction to, 830
by a noninteger factor, 839
operation of upsampler and

interpolator, 833–838
upsampler, 833

Sampling of bandpassed signals,
861–862

Sampling period, 3
Sampling process

introduction to, 261–262
Sampling theorem

frequency-domain, 328–333
introduction to, 125
time-domain, 294–296

Sandberg, I. W., 661
Saramäki window, 453
Scaling

in digital-filter structures, see Signal
scaling

Scaling of impulse response in
nonrecursive filters, 442

Schur polynomials, 217
Schur-Cohn stability criterion,

216–217
Schur-Cohn-Fujiwara

simplified stability criterion, 219
stability criterion, 217–218

example, 218–219
Schwarz inequality, 642
Second-order statistics in

continuous-time random
processes, 600

Section-optimal structures, 649
Sedlmeyer, A., 773
Selective step-by-step search,

683–687
Selectivity factor

elliptic approximation, 497
Sensitivity

of the amplitude response, 629
normalized, 632
of the phase response, 631

Sensitivity considerations

in analog filters, 774–775
in wave digital filters, 774–775

Separable transfer functions in
two-dimensional digital filters,
881

Series of complex numbers, 911
Series representation of elliptic

functions, 936–937
Shannon, C. E., 20, 294
Shift operator:

definition, 143
inverse shift operator, 143
law of exponents, 143
linearity of, 143

Sidebands, 294
Siegel, J., 674
Sign bit, 621
Signal flow graphs:

adjoint, 410
analysis by using

Mason’s method, 153–154
the node-elimination method,

148–153
butterfly, 363
direct paths in, 154
directed branches in, 147
distribution nodes in, 147
elimination of

nodes with multiple incoming and
multiple outgoing branches, 149

parallel branches, 149
self loops, 150
series branches, 148

example, 150–152
graph determinant, 154
loop transmittances in, 154
Mason’s gain formula, 153
nontouching loops in, 154
replacement of several self loops by

a single self loop, 150
subgraph determinants in, 154
subgraphs in, 154
transmittances in, 147
transpose, 410
transposition theorem, 410

Signal scaling, 640–647
application to cascade realization,

645
based on

L2 norm, 643
L p norm, 641–643
L∞ norm, 643

in cascade wave realization, 817–818
L2 versus L∞ scaling, 643–645

INDEX 961

ordering of filter sections, 647
overflow in digital filters, 640
use of Holder inequality in, 642
use of Parseval’s formula in, 644
use of Schwarz inequality in, 642
in wave digital filters, 807–808

Signals:
analog, 3
analytic, 852
bandpassed, 861
continuous-time, see

Continuous-time signals
DFT of complex signals, 383
digital, 3
discrete-time, see Discrete-time

signals
impulse-modulated, 286–288
man-made, 1
natural, 2
nonperiodic, see Nonperiodic signals
nonquantized, 3
periodic, see Periodic signals
quantized, 3
right-sided, 53
sinc function, 266
two-dimensional, 2, 874
two-sided, 90
unity function, 271

Signed-magnitude
addition, 622
arithmetic, 620
multiplication, 622
number representation, 621

Significand in number representation,
624

Simple poles in a rational algebraic
function, 909

Simple zeros in a rational algebraic
function, 908

Simpson’s one-third rule, 344
Sinc distortion, 307

reduction in, 308
Sinc function, 266
Single-sideband modulation, 859–861
Singularities (singular points) in a

rational algebraic function, 908
Sinusoidal response of

analog filters, 470
discrete-time systems

first-order, 159–160
N th-order, 224–226

Skwirzynski, J. K., 802
Smith, M. J. T., 849
Smoothing device, 4

Software digital filters, 22
Software implementation, 391

by using the FFT approach, 376–377
Specification constraint in elliptic

filters, 508–509
Spectral energy in continuous-time

signals, 337
Spectral interrelation between discrete-

and continuous-time signals,
290–292

example, 292–293
Spectral representation

of discrete-time signals, 119
of nonperiodic signals, 50
of periodic signals, 5, 34

Spectrum, see Frequency, Amplitude,
or Phase spectrum

Spherical representation of complex
numbers, 898

Square-root of a complex variable, 902
Stability:

analysis, 207–210
bounded-input, bounded-output

(BIBO), 172
constraint

on eigenvalues, 211
on impulse response, 172
on poles, 210

criteria (tests):
Jury-Marden, 219–220
Lyapunov, 222–223
Schur-Cohn, 216–217
Schur-Cohn-Fujiwara, 217–218
Schur-Cohn-Fujiwara criterion

simplified, 219
example, 173–174
feasible region for recursive filters

and equalizers, 755
of the forced response, 666
impulse response

of N th-order systems, 207–208
introduction to, 207
Jury-Marden array, 219
Lyapunov equation, 222
necessary and sufficient condition

for, 172
in nonrecursive systems, 173, 210
relatively prime polynomials, 207
stabilization technique for recursive

filters, 535
in steepest-descent algorithm, 870
test for common factors, 215
in two-dimensional digital filters,

876

Stabilization technique for recursive
filters, 535

Standard Fourier transforms, 275
Standard z transforms, 100
State variables, 176
State-space characterization, 176–178

examples, 179–185
time-domain analysis, 184–185

example, 185
impulse response, 185
response to arbitrary excitation,

184
unit-step response, 185

State-space method
applications of, 186

State-space realization method,
397–399

example, 399–400
Stationary point, 723
Statistical independence in random

variables, 595
Statistical word length, 630
Steady-state

component, 160
sinusoidal response, 160

of N -order systems, 224–226
value of unit-step response in a

first-order system, 157
Steepest-descent algorithm in adaptive

filters, 867–868
example, 868–870
stability in, 870

Stirling interpolation formula, 454
Stirling, J., 20
Stopband edge in practical analog

filters, 473
Stopband in analog filters, 472
Stored power in wave digital filters, 808
Strictly stationary continuous-time

processes, 604
Structures:

block-optimal, 649
canonic, 395
cascade, 404–406
cascade wave structures, see Wave

digital filters: cascade wave
realization

choice of structure, 819–820
direct, 392–393
direct canonic, 395–396
elimination of quantization limit

cycles in, 660–663
lattice, 401–404
low-sensitivity, 632–637

962 INDEX

Structures (Cont.):
Meerkötter’s realization, 663–664
parallel, 407
section-optimal, 649
state-space, 397–399

minimization of roundoff noise,
647–649

systolic, 412–416
transpose, 410
wave structures, see Wave digital

filters
Subgraph determinants in signal flow

graphs, 154
Subgraphs in signal flow graphs, 154
Subtraction in complex arithmetic, 894
Sum of

a geometric series, 913
a series, 911
the squares, 722

Superposition condition in
discrete-time systems, 133

Switched-capacitor filters, 15
Symmetrical impulse response in

nonrecursive filters, 427
Symmetry of DFT, 323–324
Symmetry theorem of Fourier

transform, 58
Synthesis section of a QMF bank,

840
Systolic structures, 412–416

Tables:
analog-filter transformations, 518,

565
Constantinides transformations, 553
design formulas for the design of

bandpass and bandstop filters
satisfying prescribed
specifications, 573

Butterworth filters satisfying
prescribed specifications, 574

Chebyshev filters satisfying
prescribed specifications, 575

elliptic filters satisfying prescribed
specifications, 577

lowpass and highpass filters
satisfying prescribed
specifications, 568

elementary discrete-time signals, 95
elements of discrete-time systems,

142
formulas for frequency response of

nonrecursive filters, 430
impulse and unity functions, 269

standard Fourier transforms, 72, 275
standard z transforms, 100
summary of window parameters, 437

Taylor, B., 20
Taylor, M. G., 660
Taylor series, 475, 723
Termination tolerances, 725
Test for

causality in discrete-time systems,
136–137

examples, 137–139
common factors, 215
linearity in discrete-time systems,

132–133
example, 133–134

stability
Jury-Marden, 219–220
Schur-Cohn, 216–217
Schur-Cohn-Fujiwara, 217–218

time-invariance in discrete-time
systems, 134

example, 135–136
Theorems:

absolute convergence of a series, 912
alternation theorem, 677–678
convergence of a series, 912
De Moivre’s theorem, 894–895
Fourier series:

convergence, 36
kernel, 278
least-squares approximation, 38
Parseval’s formula, 37
uniqueness, 39

Fourier transform:
convergence, 58
frequency convolution, 62
frequency differentiation, 60
frequency shifting, 60
linearity, 58
moments, 60
Parseval’s formula, 62
symmetry, 58
time convolution, 61
time differentiation, 60
time scaling, 59
time shifting, 60

frequency-domain periodic
convolution, 362

interrelation between the Fourier
series and the Fourier
transform, 280–281

properties of
frequency-domain impulse

functions, 272

time-domain impulse functions,
269

ratio test for the convergence of a
series, 912

residue theorem, 919
sampling theorem

frequency-domain, 328–333
time-domain, 294–296

time-domain periodic convolution,
361

transposition in signal flow graphs,
410

z transform:
absolute convergence, 81
complex convolution theorem, 91
complex differentiation theorem,

87
complex scale change theorem, 87
final-value theorem, 90
initial-value theorem, 89
linearity, 86
Parseval’s formula, 94
Parseval’s formula for normalized

discrete-time signals, 95
real convolution theorem, 88
time shifting, 87
uniform convergence, 82

Theta functions, 937
Thomson, W. E., 514
Time

denormalization, 7
invariance in discrete-time systems,

134
normalization, 7

Time-convolution theorem of Fourier
transform, 61

Time-dependent discrete-time systems,
134

Time-differentiation theorem of Fourier
transform, 60

Time-domain
aliasing, 333, 335
impulse function, 265
periodic convolution, 359

graphical representation, 359–361
theorem, 361

unity function, 271
Time-domain analysis:

examples, 155–161
of higher-order systems

using mathematical induction,
162–163

impulse response of first-order
systems, 155–156

INDEX 963

introduction to, 155
steady-state component, 160
steady-state sinusoidal response,

160
transient component, 160
unit-step response of first-order

systems, 156–158
using convolution summation,

166–169
using mathematical induction,

155–163
using state-space characterization,

184–185
using the z transform, 223

example, 223–224
Time-domain representation of

periodic signals, 5
Time-domain response:

of analog filters
to an arbitrary excitation, 467
to an impulse, 469
to a sinusoidal excitation, 469
to a unit step, 469

of first-order discrete-time systems
to an exponential excitation,

158–159
to an impulse, 155–156
to a sinusoidal excitation, 159–160
to a unit step, 156–158

of N th-order discrete-time systems
to an impulse, 163
to a sinusoidal excitation, 224–226

using state-space characterization
to an arbitrary excitation, 184
to an impulse, 185
to a unit-step, 185

Time-invariant discrete-time systems,
134

Time-scaling theorem of Fourier
transform, 59

Time-shifting theorem
of the Fourier transform, 60
of the z transform, 87

Transfer characteristic of
fixed-point adder incorporating

saturation mechanism, 659
one’s or two’s complement

fixed-point adder, 659
a quantizer, 627

Transfer functions:
Bessel-Thomson, see

Bessel-Thomson approximation
Butterworth, see Butterworth

approximation

Chebyshev, see Chebyshev
approximation

continuous-time:
allpass, 524
definition, 466
denormalized, 475
normalized, 475
realizability constraints, 474
relation with impulse response,

467
representation by zeros and poles,

466
for digital filters, 245–251
discrete-time:

of causal, linear, time-invariant
system, 203

definition, 202
derivation from difference

equation, 202–203
derivation from state-space

characterization, 205
derivation from system network,

204
example, 206–207
first-order, 246
first-order allpass, 246
high-order, 251
high-order allpass, 587
of nonrecursive system, 203
order of, 203
realizability constraints, 530
relation with impulse response,

202
representation by a zero-pole plot,

203
second-order allpass, 251
second-order bandpass, 249
second-order highpass, 248
second-order lowpass, 246–247
second-order notch, 250

elliptic, see Elliptic approximation
of equalizers, 754
of impulse-modulated filter

continuous-time, 299
discrete-time, 299

inverse-Chebyshev, see
Inverse-Chebyshev
approximation

ladder wave structure, 799
lattice LC network, 793
lattice wave realization, 797
N th-order for recursive filters, 720
two-dimensional, 875

separable, 881

Transformation ω = √
k sn(z, k), 934

mapping properties, 934–936
Transformations for

analog filters:
lowpass-to-bandpass, 516
lowpass-to-bandstop, 519
lowpass-to-highpass, 519
lowpass-to-lowpass, 516
table, 518

digital filters:
application, 554
general, 549–551
lowpass-to-bandpass, 553
lowpass-to-bandstop, 552–553
lowpass-to-highpass, 553
lowpass-to-lowpass, 551–552
mapping properties, 550
table, 553

Transformers in analog LC filters,
784–786

Transforms:
Fourier transform, see Fourier

transform
Laplace transform, see Laplace

transform
z transform, see z transform

Transient component, 160
Transmittances in signal flow graphs,

147
Transpose signal flow graph, 410
Transposition realization method, 410

example, 410–411
Transposition theorem, 410
Trick, T. N., 661
Trigonometric functions, 900

identities, 901
Truncation, 625
Truncation error for

one’s or two’s complement numbers,
626

signed-magnitude numbers, 626
Tukey, J. W., 20, 321
Turner, L. E., 661, 664
Two’s complement:

addition, 622
multiplication, 622
of a negative number, 622
number representation, 621–622

Two-dimensional convolution, 875
Two-dimensional digital filters:

amplitude response, 877
example, 878–879

applications of, 881
approximations, 881

964 INDEX

Two-dimensional digital filters (Cont.):
approximations (Cont.):

by singular-value decomposition,
881

by using the McClellan
transformation, 881

fan, 880
frequency response, 877
group delay, 877
highpass, 880
introduction to, 874
lowpass, 880
nonrecursive, 875
order, 875
phase response, 877
recursive, 874
representation by

a difference equation, 874
the 2-D convolution, 875
a 2-D transfer function, 875

stability, 876
example, 876–877

types of, 880
with circular passband and stopband

boundaries, 880
with rectangular passband and

stopband boundaries, 880
with separable transfer functions,

881
Two-dimensional signals, 2, 874
Two-dimensional transfer function, 875
Two-dimensional z transform, 875
Two-sided signals, 90

Ultraspherical window, 453
Unconstrained adaptors, 783
Unconstrained optimization

algorithms, 722
Uniform convergence in a power series,

913
Uniform convergence of z transform,

82
Uniform probability-density function,

594
Unimodal functions, 730
Uniqueness theorem of Fourier series,

39
Unit circle of z plane, 119
Unit delay, 142
Unit elements in analog LC filters,

786–788
characteristic impedance in, 786

Unit-step function, 274
continuous-time, 56

Unit-step response
in analog filters, 469
of first-order systems, 156–158
steady-state value in first-order

systems, 157
using convolution summation,

166–167
using state-space characterization,

185
Unity function

frequency-domain, 266
time-domain, 271

Updating formulas for inverse Hessian
BFGS formula, 730
DFP formula, 730
rank-one formula, 729
rank-two formula, 729

Upsampler, 833

Vaidyanathan, P. P., 661, 810
Variance (second central moment) of a

random variable, 596
Vaughan-Pope, D. A., 811
Vector representation of complex

numbers, 897
Verkroost, G., 664
Virtual sample points, 742
VLSI implementation, 412
Voltage sources in analog LC filters,

779–781
von Hann, J., 435
von Hann window function, 437

frequency spectrum of, 438
main-lobe width in, 439
ripple ratio in, 438

Warping effect
in bilinear-transformation method,

545–548
influence on amplitude response,

546
influence on phase response, 548

in wave digital filters, 802
Wave digital filters:

adaptors:
parallel 1-multiplier (P1), 783
parallel 2-multiplier (P2), 783
series 1-multiplier (S1), 782
series 2-multiplier (S2), 780
2-port, 783–784

cascade wave realization:
allpass CGIC section, 817
bandpass CGIC section, 816
CGIC realization, 811–812

design procedure, 814–815
digital G-CGIC configuration,

812–814
highpass CGIC section, 815
lowpass CGIC section, 815
notch CGIC section, 816
output noise, 818–819
power spectral density, 819
scaling, 817–818

delay-free loops, 775
design procedure

for ladder wave filters, 798–799
for lattice wave filters, 796–797

elimination of limit cycles, 808–810
pseudopower, 808
stored power, 808

frequency-domain analysis, 805–807
introduction to, 773–774
prescribed specifications, 802
realizability constraint, 791
realization of:

analog elements, 777–778
circulators, 788
FDNR networks, 802
impedances, 778
LC ladder network, 799
LC lattice network, 796
parallel wire interconnections,

782–783
related realization methods,

810–811
resonant circuits, 788–791
s2-impedance elements, 802
series wire interconnections,

780–782
transformers, 784–786
unit elements, 786–788
voltage sources, 779–781

realization procedure, 777–778
scaling, 807–808
transfer function for ladder wave

structure, 799
transfer function for lattice wave

structure, 797
unconstrained adaptors, 783

Wave network characterization:
incident wave quantity, 775
for N -port network, 775
port conductance, 783
port resistance, 775
reflected wave quantity, 775

Weighted-Chebyshev method,
673–674

Weighting in the design of

INDEX 965

nonrecursive filters by optimization,
674

recursive filters by optimization,
747–748

White-noise process, 638
Wide-sense stationary continuous-time

random processes, 604
Wiener filters, 865–867
Wiener-Khinchine relation,

608
Window functions:

continuous-time, see
Continuous-time window
functions

definition, 337
design of nonrecursive filters, see

Nonrecursive filters
discrete-time, see Discrete-time

window functions
periodic discrete-time,

352–353
example, 354

two-sided, 337
Window length in continuous-time

window functions, 338
Window technique

application, 354–356
estimation of sampling frequency,

356
example, 356–358

design of nonrecursive filters, see
Nonrecursive filters

introduction to, 337
Wire interconnections in analog LC

filters
parallel, 782
series, 780

Word length, 621
optimum, 628
statistical, 630

z transform:
annulus of convergence, 84
common region of convergence, 91
conformal transformation

(mapping), 92
convergence, 81
corollary of initial-value theorem, 89
definition of, 80
frequency-domain analysis, 224–235
general inversion method, 85–86
introduction to, 79
inverse, 85–86
inversion techniques:

use of binomial series, 103
use of convolution theorem, 108
use of initial-value theorem, 113
use of long division, 110–113
use of partial fractions, 115–116
using general inversion method,

85–86
of Kaiser window function, 351
as a Laurent series, 83–84
outermost annulus, 85
radius of convergence, 82
of rectangular window, 350
relation with

DFT, 325–327
Fourier transform, 288
Laplace transform, 291–292

representation
by rational functions, 80
by zero-pole plots, 80

residue, 86
residue theorem, 86
theorems:

absolute convergence, 81
complex convolution theorem, 91
complex differentiation theorem,

87
complex scale change theorem, 87

final-value theorem, 90
initial-value theorem, 89
linearity, 86
Parseval’s formula, 94
Parseval’s formula for normalized

discrete-time signals, 95
real convolution theorem, 88
time shifting, 87
uniform convergence, 82

time-domain analysis, 223
two-dimensional, 875

Zero-loss frequencies in elliptic filters,
502

Zero padding in DFT, 327–329
Zero-phase (zero-delay) filters,

587–588
Zero-pole plots:

of constant-delay nonrecursive
filters, 431

of continuous-time transfer function,
472

of loss function in
analog filters, 472
Butterworth filters, 478
Chebyshev filters, 488

of a rational algebraic function,
910

representation of transfer functions
by, 203

Zeros
of discrete-time transfer function,

203
of z transform, 80

Zeros and poles of loss function in
elliptic filters, 504–507

Zeros in rational algebraic function,
908

Zeros of loss function in Chebyshev
filters, 485–487

Zverev, A. I., 802

	Table of Contents
	Preface
	Chapter 1. Introduction to Digital Signal Processing
	1.1 Introduction
	1.2 Signals
	1.3 Frequency-Domain Representation
	1.4 Notation
	1.5 Signal Processing
	1.6 Analog Filters
	1.7 Applications of Analog Filters
	1.8 Digital Filters
	1.9 Two DSP Applications
	1.9.1 Processing of EKG signals
	1.9.2 Processing of Stock-Exchange Data

	References

	Chapter 2. The Fourier Series and Fourier Transform
	2.1 Introduction
	2.2 Fourier Series
	2.2.1 Definition
	2.2.2 Particular Forms
	2.2.3 Theorems and Properties

	2.3 Fourier Transform
	2.3.1 Derivation
	2.3.2 Particular Forms
	2.3.3 Theorems and Properties

	References
	Problems

	Chapter 3. The z Transform
	3.1 Introduction
	3.2 Definition of z Transform
	3.3 Convergence Properties
	3.4 The z Transform as a Laurent Series
	3.5 Inverse z Transform
	3.6 Theorems and Properties
	3.7 Elementary Discrete-Time Signals
	3.8 z-Transform Inversion Techniques
	3.8.1 Use of Binomial Series
	3.8.2 Use of Convolution Theorem
	3.8.3 Use of Long Division
	3.8.4 Use of Initial-Value Theorem
	3.8.5 Use of Partial Fractions

	3.9 Spectral Representation of Discrete-Time Signals
	3.9.1 Frequency Spectrum
	3.9.2 Periodicity of Frequency Spectrum
	3.9.3 Interrelations

	References
	Problems

	Chapter 4. Discrete-Time Systems
	4.1 Introduction
	4.2 Basic System Properties
	4.2.1 Linearity
	4.2.2 Time Invariance
	4.2.3 Causality

	4.3 Characterization of Discrete-Time Systems
	4.3.1 Nonrecursive Systems
	4.3.2 Recursive Systems

	4.4 Discrete-Time System Networks
	4.4.1 Network Analysis
	4.4.2 Implementation of Discrete-Time Systems
	4.4.3 Signal Flow-Graph Analysis

	4.5 Introduction to Time-Domain Analysis
	4.6 Convolution Summation
	4.6.1 Graphical Interpretation
	4.6.2 Alternative Classification

	4.7 Stability
	4.8 State-Space Representation
	4.8.1 Computability
	4.8.2 Characterization
	4.8.3 Time-Domain Analysis
	4.8.4 Applications of State-Space Method

	References
	Problems

	Chapter 5. The Application of the z Transform
	5.1 Introduction
	5.2 The Discrete-Time Transfer Function
	5.2.1 Derivation of H(z) from Difference Equation
	5.2.2 Derivation of H(z) from System Network
	5.2.3 Derivation of H(z) from State-Space Characterization

	5.3 Stability
	5.3.1 Constraint on Poles
	5.3.2 Constraint on Eigenvalues
	5.3.3 Stability Criteria
	5.3.4 Test for Common Factors
	5.3.5 Schur-Cohn Stability Criterion
	5.3.6 Schur-Cohn-Fujiwara Stability Criterion
	5.3.7 Jury-Marden Stability Criterion
	5.3.8 Lyapunov Stability Criterion

	5.4 Time-Domain Analysis
	5.5 Frequency-Domain Analysis
	5.5.1 Steady-State Sinusoidal Response
	5.5.2 Evaluation of Frequency Response
	5.5.3 Periodicity of Frequency Response
	5.5.4 Aliasing
	5.5.5 Frequency Response of Digital Filters

	5.6 Transfer Functions for Digital Filters
	5.6.1 First-Order Transfer Functions
	5.6.2 Second-Order Transfer Functions
	5.6.3 Higher-Order Transfer Functions

	5.7 Amplitude and Delay Distortion
	References
	Problems

	Chapter 6. The Sampling Process
	6.1 Introduction
	6.2 Fourier Transform Revisited
	6.2.1 Impulse Functions
	6.2.2 Periodic Signals
	6.2.3 Unit-Step Function
	6.2.4 Generalized Functions

	6.3 Interrelation Between the Fourier Series and the Fourier Transform
	6.4 Poisson's Summation Formula
	6.5 Impulse-Modulated Signals
	6.5.1 Interrelation Between the Fourier and z Transforms
	6.5.2 Spectral Relationship Between Discrete- and Continuous-Time Signals

	6.6 The Sampling Theorem
	6.7 Aliasing
	6.8 Graphical Representation of Interrelations
	6.9 Processing of Continuous-Time Signals Using Digital Filters
	6.10 Practical A/D and D/A Converters
	References
	Problems

	Chapter 7. The Discrete Fourier Transform
	7.1 Introduction
	7.2 Definition
	7.3 Inverse DFT
	7.4 Properties
	7.4.1 Linearity
	7.4.2 Periodicity
	7.4.3 Symmetry

	7.5 Interrelation Between the DFT and the z Transform
	7.5.1 Frequency-Domain Sampling Theorem
	7.5.2 Time-Domain Aliasing

	7.6 Interrelation Between the DFT and the CFT
	7.6.1 Time-Domain Aliasing

	7.7 Interrelation Between the DFT and the Fourier Series
	7.8 Window Technique
	7.8.1 Continuous-Time Windows
	7.8.2 Discrete-Time Windows
	7.8.3 Periodic Discrete-Time Windows
	7.8.4 Application of Window Technique

	7.9 Simplified Notation
	7.10 Periodic Convolutions
	7.10.1 Time-Domain Periodic Convolution
	7.10.2 Frequency-Domain Periodic Convolution

	7.11 Fast Fourier-Transform Algorithms
	7.11.1 Decimation-in-Time Algorithm
	7.11.2 Decimation-in-Frequency Algorithm
	7.11.3 Inverse DFT

	7.12 Application of the FFT Approach to Signal Processing
	7.12.1 Overlap-and-Add Method
	7.12.2 Overlap-and-Save Method

	References
	Problems

	Chapter 8. Realization of Digital Filters
	8.1 Introduction
	8.2 Realization
	8.2.1 Direct Realization
	8.2.2 Direct Canonic Realization
	8.2.3 State-Space Realization
	8.2.4 Lattice Realization
	8.2.5 Cascade Realization
	8.2.6 Parallel Realization
	8.2.7 Transposition

	8.3 Implementation
	8.3.1 Design Considerations
	8.3.2 Systolic Implementations

	References
	Problems

	Chapter 9. Design of Nonrecursive (FIR) Filters
	9.1 Introduction
	9.2 Properties of Constant-Delay Nonrecursive Filters
	9.2.1 Impulse Response Symmetries
	9.2.2 Frequency Response
	9.2.3 Location of Zeros

	9.3 Design Using the Fourier Series
	9.4 Use of Window Functions
	9.4.1 Rectangular Window
	9.4.2 von Hann and Hamming Windows
	9.4.3 Blackman Window
	9.4.4 Dolph-Chebyshev Window
	9.4.5 Kaiser Window
	9.4.6 Prescribed Filter Specifications
	9.4.7 Other Windows

	9.5 Design Based on Numerical-Analysis Formulas
	References
	Problems

	Chapter 10. Approximations for Analog Filters
	10.1 Introduction
	10.2 Basic Concepts
	10.2.1 Characterization
	10.2.2 Laplace Transform
	10.2.3 The Transfer Function
	10.2.4 Time-Domain Response
	10.2.5 Frequency-Domain Analysis
	10.2.6 Ideal and Practical Filters
	10.2.7 Realizability Constraints

	10.3 Butterworth Approximation
	10.3.1 Derivation
	10.3.2 Normalized Transfer Function
	10.3.3 Minimum Filter Order

	10.4 Chebyshev Approximation
	10.4.1 Derivation
	10.4.2 Zeros of Loss Function
	10.4.3 Normalized Transfer Function
	10.4.4 Minimum Filter Order

	10.5 Inverse-Chebyshev Approximation
	10.5.1 Normalized Transfer Function
	10.5.2 Minimum Filter Order

	10.6 Elliptic Approximation
	10.6.1 Fifth-Order Approximation
	10.6.2 Nth-Order Approximation (n Odd)
	10.6.3 Zeros and Poles of L(–s[sup(2)])
	10.6.4 Nth-Order Approximation (n Even)
	10.6.5 Specification Constraint
	10.6.6 Normalized Transfer Function

	10.7 Bessel-Thomson Approximation
	10.8 Transformations
	10.8.1 Lowpass-to-Lowpass Transformation
	10.8.2 Lowpass-to-Bandpass Transformation

	References
	Problems

	Chapter 11. Design of Recursive (IIR) Filters
	11.1 Introduction
	11.2 Realizability Constraints
	11.3 Invariant Impulse-Response Method
	11.4 Modified Invariant Impulse-Response Method
	11.5 Matched-z Transformation Method
	11.6 Bilinear-Transformation Method
	11.6.1 Derivation
	11.6.2 Mapping Properties of Bilinear Transformation
	11.6.3 The Warping Effect

	11.7 Digital-Filter Transformations
	11.7.1 General Transformation
	11.7.2 Lowpass-to-Lowpass Transformation
	11.7.3 Lowpass-to-Bandstop Transformation
	11.7.4 Application

	11.8 Comparison Between Recursive and Nonrecursive Designs
	References
	Problems

	Chapter 12. Recursive (IIR) Filters Satisfying Prescribed Specifications
	12.1 Introduction
	12.2 Design Procedure
	12.3 Design Formulas
	12.3.1 Lowpass and Highpass Filters
	12.3.2 Bandpass and Bandstop Filters
	12.3.3 Butterworth Filters
	12.3.4 Chebyshev Filters
	12.3.5 Inverse-Chebyshev Filters
	12.3.6 Elliptic Filters

	12.4 Design Using the Formulas and Tables
	12.5 Constant Group Delay
	12.5.1 Delay Equalization
	12.5.2 Zero-Phase Filters

	12.6 Amplitude Equalization
	References
	Problems

	Chapter 13. Random Signals
	13.1 Introduction
	13.2 Random Variables
	13.2.1 Probability-Distribution Function
	13.2.2 Probability-Density Function
	13.2.3 Uniform Probability Density
	13.2.4 Gaussian Probability Density
	13.2.5 Joint Distributions
	13.2.6 Mean Values and Moments

	13.3 Random Processes
	13.3.1 Notation

	13.4 First- and Second-Order Statistics
	13.5 Moments and Autocorrelation
	13.6 Stationary Processes
	13.7 Frequency-Domain Representation
	13.8 Discrete-Time Random Processes
	13.9 Filtering of Discrete-Time Random Signals
	References
	Problems

	Chapter 14. Effects of Finite Word Length in Digital Filters
	14.1 Introduction
	14.2 Number Representation
	14.2.1 Binary System
	14.2.2 Fixed-Point Arithmetic
	14.2.3 Floating-Point Arithmetic
	14.2.4 Number Quantization

	14.3 Coefficient Quantization
	14.4 Low-Sensitivity Structures
	14.4.1 Case I
	14.4.2 Case II

	14.5 Product Quantization
	14.6 Signal Scaling
	14.6.1 Method A
	14.6.2 Method B
	14.6.3 Types of Scaling
	14.6.4 Application of Scaling

	14.7 Minimization of Output Roundoff Noise
	14.8 Application of Error-Spectrum Shaping
	14.9 Limit-Cycle Oscillations
	14.9.1 Quantization Limit Cycles
	14.9.2 Overflow Limit Cycles
	14.9.3 Elimination of Quantization Limit Cycles
	14.9.4 Elimination of Overflow Limit Cycles

	References
	Problems

	Chapter 15. Design of Nonrecursive Filters Using Optimization Methods
	15.1 Introduction
	15.2 Problem Formulation
	15.2.1 Lowpass and Highpass Filters
	15.2.2 Bandpass and Bandstop Filters
	15.2.3 Alternation Theorem

	15.3 Remez Exchange Algorithm
	15.3.1 Initialization of Extremals
	15.3.2 Location of Maxima of the Error Function
	15.3.3 Computation of |E(ω)| and P[sub(c)](ω)
	15.3.4 Rejection of Superfluous Potential Extremals
	15.3.5 Computation of Impulse Response

	15.4 Improved Search Methods
	15.4.1 Selective Step-by-Step Search
	15.4.2 Cubic Interpolation
	15.4.3 Quadratic Interpolation
	15.4.4 Improved Formulation

	15.5 Efficient Remez Exchange Algorithm
	15.6 Gradient Information
	15.6.1 Property 1
	15.6.2 Property 2
	15.6.3 Property 3
	15.6.4 Property 4
	15.6.5 Property 5

	15.7 Prescribed Specifications
	15.8 Generalization
	15.8.1 Antisymmetrical Impulse Response and Odd Filter Length
	15.8.2 Even Filter Length

	15.9 Digital Differentiators
	15.9.1 Problem Formulation
	15.9.2 First Derivative
	15.9.3 Prescribed Specifications

	15.10 Arbitrary Amplitude Responses
	15.11 Multiband Filters
	References
	Additional References
	Problems

	Chapter 16. Design of Recursive Filters Using Optimization Methods
	16.1 Introduction
	16.2 Problem Formulation
	16.3 Newton's Method
	16.4 Quasi-Newton Algorithms
	16.4.1 Basic Quasi-Newton Algorithm
	16.4.2 Updating Formulas for Matrix S[sub(k+1)]
	16.4.3 Inexact Line Searches
	16.4.4 Practical Quasi-Newton Algorithm

	16.5 Minimax Algorithms
	16.6 Improved Minimax Algorithms
	16.7 Design of Recursive Filters
	16.7.1 Objective Function
	16.7.2 Gradient Information
	16.7.3 Stability
	16.7.4 Minimum Filter Order
	16.7.5 Use of Weighting

	16.8 Design of Recursive Delay Equalizers
	References
	Additional References
	Problems

	Chapter 17. Wave Digital Filters
	17.1 Introduction
	17.2 Sensitivity Considerations
	17.3 Wave Network Characterization
	17.4 Element Realizations
	17.4.1 Impedances
	17.4.2 Voltage Sources
	17.4.3 Series Wire Interconnection
	17.4.4 Parallel Wire Interconnection
	17.4.5 2-Port Adaptors
	17.4.6 Transformers
	17.4.7 Unit Elements
	17.4.8 Circulators
	17.4.9 Resonant Circuits
	17.4.10 Realizability Constraint

	17.5 Lattice Wave Digital Filters
	17.5.1 Analysis
	17.5.2 Alternative Lattice Configuration
	17.5.3 Digital Realization

	17.6 Ladder Wave Digital Filters
	17.7 Filters Satisfying Prescribed Specifications
	17.8 Frequency-Domain Analysis
	17.9 Scaling
	17.10 Elimination of Limit-Cycle Oscillations
	17.11 Related Synthesis Methods
	17.12 A Cascade Synthesis Based on the Wave Characterization
	17.12.1 Generalized-Immittance Converters
	17.12.2 Analog G-CGIC Configuration
	17.12.3 Digital G-CGIC Configuration
	17.12.4 Cascade Synthesis
	17.12.5 Signal Scaling
	17.12.6 Output Noise

	17.13 Choice of Structure
	References
	Problems

	Chapter 18. Digital Signal Processing Applications
	18.1 Introduction
	18.2 Sampling-Frequency Conversion
	18.2.1 Decimators
	18.2.2 Interpolators
	18.2.3 Sampling Frequency Conversion by a Noninteger Factor
	18.2.4 Design Considerations

	18.3 Quadrature-Mirror-Image Filter Banks
	18.3.1 Operation
	18.3.2 Elimination of Aliasing Errors
	18.3.3 Design Considerations
	18.3.4 Perfect Reconstruction

	18.4 Hilbert Transformers
	18.4.1 Design of Hilbert Transformers
	18.4.2 Single-Sideband Modulation
	18.4.3 Sampling of Bandpassed Signals

	18.5 Adaptive Digital Filters
	18.5.1 Wiener Filters
	18.5.2 Newton Algorithm
	18.5.3 Steepest-Descent Algorithm
	18.5.4 Least-Mean-Square Algorithm
	18.5.5 Recursive Filters
	18.5.6 Applications

	18.6 Two-Dimensional Digital Filters
	18.6.1 Two-Dimensional Convolution
	18.6.2 Two-Dimensional z Transform
	18.6.3 Two-Dimensional Transfer Function
	18.6.4 Stability
	18.6.5 Frequency-Domain Analysis
	18.6.6 Types of 2-D Filters
	18.6.7 Approximations
	18.6.8 Applications

	References
	Additional References
	Problems

	Appendix A. Complex Analysis
	A.1 Introduction
	A.2 Complex Numbers
	A.2.1 Complex Arithmetic
	A.2.2 De Moivre's Theorem
	A.2.3 Euler's Formula
	A.2.4 Exponential Form
	A.2.5 Vector Representation
	A.2.6 Spherical Representation

	A.3 Functions of a Complex Variable
	A.3.1 Polynomials
	A.3.2 Inverse Algebraic Functions
	A.3.3 Trigonometric Functions and Their Inverses
	A.3.4 Hyperbolic Functions and Their Inverses
	A.3.5 Multi-Valued Functions
	A.3.6 Periodic Functions
	A.3.7 Rational Algebraic Functions

	A.4 Basic Principles of Complex Analysis
	A.4.1 Limit
	A.4.2 Differentiability
	A.4.3 Analyticity
	A.4.4 Zeros
	A.4.5 Singularities
	A.4.6 Zero-Pole Plots

	A.5 Series
	A.6 Laurent Theorem
	A.7 Residue Theorem
	A.8 Analytic Continuation
	A.9 Conformal Transformations
	References

	Appendix B. Elliptic Functions
	B.1 Introduction
	B.2 Elliptic Integral of the First Kind
	B.3 Elliptic Functions
	B.4 Imaginary Argument
	B.5 Formulas
	B.6 Periodicity
	B.7 Transformation
	B.8 Series Representation
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Copyright © 2006 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

	Preface:
	Chapter 1:
	 Introduction to Digital Signal Processing:

	1:
	1 Introduction:
	2 Signals:
	3 Frequency-Domain Representation:
	4 Notation:
	5 Signal Processing:
	6 Analog Filters:
	7 Applications of Analog Filters:
	8 Digital Filters:
	9 Two DSP Applications:
	9:
	1 Processing of EKG signals:
	2 Processing of Stock-Exchange Data:

	Chapter 2:
	 The Fourier Series and Fourier Transform:

	2:
	1 Introduction:
	2 Fourier Series:
	2:
	1 Definition:
	2 Particular Forms:
	3 Theorems and Properties:

	3 Fourier Transform:
	3:
	1 Derivation:
	2 Particular Forms:
	3 Theorems and Properties:

	References:
	Chapter 3:
	 The z Transform:

	3:
	1 Introduction:
	2 Definition of z Transform:
	3 Convergence Properties:
	4 The z Transform as a Laurent Series:
	5 Inverse z Transform:
	6 Theorems and Properties:
	7 Elementary Discrete-Time Signals:
	8 z-Transform Inversion Techniques:
	8:
	1 Use of Binomial Series:
	2 Use of Convolution Theorem:
	3 Use of Long Division:
	4 Use of Initial-Value Theorem:
	5 Use of Partial Fractions:

	9 Spectral Representation of Discrete-Time Signals:
	9:
	1 Frequency Spectrum:
	2 Periodicity of Frequency Spectrum:
	3 Interrelations:

	Problems:
	Chapter 4:
	 Discrete-Time Systems:

	4:
	1 Introduction:
	2 Basic System Properties:
	2:
	1 Linearity:
	2 Time Invariance:
	3 Causality:

	3 Characterization of Discrete-Time Systems:
	3:
	1 Nonrecursive Systems:
	2 Recursive Systems:

	4 Discrete-Time System Networks:
	4:
	1 Network Analysis:
	2 Implementation of Discrete-Time Systems:
	3 Signal Flow-Graph Analysis:

	5 Introduction to Time-Domain Analysis:
	6 Convolution Summation:
	6:
	1 Graphical Interpretation:
	2 Alternative Classification:

	7 Stability:
	8 State-Space Representation:
	8:
	1 Computability:
	2 Characterization:
	3 Time-Domain Analysis:
	4 Applications of State-Space Method:

	Chapter 5:
	 The Application of the z Transform:

	5:
	1 Introduction:
	2 The Discrete-Time Transfer Function:
	2:
	1 Derivation of H(z) from Difference Equation:
	2 Derivation of H(z) from System Network:
	3 Derivation of H(z) from State-Space Characterization:

	3 Stability:
	3:
	1 Constraint on Poles:
	2 Constraint on Eigenvalues:
	3 Stability Criteria:
	4 Test for Common Factors:
	5 Schur-Cohn Stability Criterion:
	6 Schur-Cohn-Fujiwara Stability Criterion:
	7 Jury-Marden Stability Criterion:
	8 Lyapunov Stability Criterion:

	4 Time-Domain Analysis:
	5 Frequency-Domain Analysis:
	5:
	1 Steady-State Sinusoidal Response:
	2 Evaluation of Frequency Response:
	3 Periodicity of Frequency Response:
	4 Aliasing:
	5 Frequency Response of Digital Filters:

	6 Transfer Functions for Digital Filters:
	6:
	1 First-Order Transfer Functions:
	2 Second-Order Transfer Functions:
	3 Higher-Order Transfer Functions:

	7 Amplitude and Delay Distortion:

	Chapter 6:
	 The Sampling Process:

	6:
	1 Introduction:
	2 Fourier Transform Revisited:
	2:
	1 Impulse Functions:
	2 Periodic Signals:
	3 Unit-Step Function:
	4 Generalized Functions:

	3 Interrelation Between the Fourier Series and the Fourier Transform:
	4 Poisson's Summation Formula:
	5 Impulse-Modulated Signals:
	5:
	1 Interrelation Between the Fourier and z Transforms:
	2 Spectral Relationship Between Discrete- and Continuous-Time Signals:

	6 The Sampling Theorem:
	7 Aliasing:
	8 Graphical Representation of Interrelations:
	9 Processing of Continuous-Time Signals Using Digital Filters:
	10 Practical A/D and D/A Converters:

	Chapter 7:
	 The Discrete Fourier Transform:

	7:
	1 Introduction:
	2 Definition:
	3 Inverse DFT:
	4 Properties:
	4:
	1 Linearity:
	2 Periodicity:
	3 Symmetry:

	5 Interrelation Between the DFT and the z Transform:
	5:
	1 Frequency-Domain Sampling Theorem:
	2 Time-Domain Aliasing:

	6 Interrelation Between the DFT and the CFT:
	6:
	1 Time-Domain Aliasing:

	7 Interrelation Between the DFT and the Fourier Series:
	8 Window Technique:
	8:
	1 Continuous-Time Windows:
	2 Discrete-Time Windows:
	3 Periodic Discrete-Time Windows:
	4 Application of Window Technique:

	9 Simplified Notation:
	10 Periodic Convolutions:
	10:
	1 Time-Domain Periodic Convolution:
	2 Frequency-Domain Periodic Convolution:

	11 Fast Fourier-Transform Algorithms:
	11:
	1 Decimation-in-Time Algorithm:
	2 Decimation-in-Frequency Algorithm:
	3 Inverse DFT:

	12 Application of the FFT Approach to Signal Processing:
	12:
	1 Overlap-and-Add Method:
	2 Overlap-and-Save Method:

	Chapter 8:
	 Realization of Digital Filters:

	8:
	1 Introduction:
	2 Realization:
	2:
	1 Direct Realization:
	2 Direct Canonic Realization:
	3 State-Space Realization:
	4 Lattice Realization:
	5 Cascade Realization:
	6 Parallel Realization:
	7 Transposition:

	3 Implementation:
	3:
	1 Design Considerations:
	2 Systolic Implementations:

	Chapter 9:
	 Design of Nonrecursive (FIR) Filters:

	9:
	1 Introduction:
	2 Properties of Constant-Delay Nonrecursive Filters:
	2:
	1 Impulse Response Symmetries:
	2 Frequency Response:
	3 Location of Zeros:

	3 Design Using the Fourier Series:
	4 Use of Window Functions:
	4:
	1 Rectangular Window:
	2 von Hann and Hamming Windows:
	3 Blackman Window:
	4 Dolph-Chebyshev Window:
	5 Kaiser Window:
	6 Prescribed Filter Specifications:
	7 Other Windows:

	5 Design Based on Numerical-Analysis Formulas:

	Chapter 10:
	 Approximations for Analog Filters:

	10:
	1 Introduction:
	2 Basic Concepts:
	2:
	1 Characterization:
	2 Laplace Transform:
	3 The Transfer Function:
	4 Time-Domain Response:
	5 Frequency-Domain Analysis:
	6 Ideal and Practical Filters:
	7 Realizability Constraints:

	3 Butterworth Approximation:
	3:
	1 Derivation:
	2 Normalized Transfer Function:
	3 Minimum Filter Order:

	4 Chebyshev Approximation:
	4:
	1 Derivation:
	2 Zeros of Loss Function:
	3 Normalized Transfer Function:
	4 Minimum Filter Order:

	5 Inverse-Chebyshev Approximation:
	5:
	1 Normalized Transfer Function:
	2 Minimum Filter Order:

	6 Elliptic Approximation:
	6:
	1 Fifth-Order Approximation:
	2 Nth-Order Approximation (n Odd):
	3 Zeros and Poles of L(…s[sup(2)]):
	4 Nth-Order Approximation (n Even):
	5 Specification Constraint:
	6 Normalized Transfer Function:

	7 Bessel-Thomson Approximation:
	8 Transformations:
	8:
	1 Lowpass-to-Lowpass Transformation:
	2 Lowpass-to-Bandpass Transformation:

	Chapter 11:
	 Design of Recursive (IIR) Filters:

	11:
	1 Introduction:
	2 Realizability Constraints:
	3 Invariant Impulse-Response Method:
	4 Modified Invariant Impulse-Response Method:
	5 Matched-z Transformation Method:
	6 Bilinear-Transformation Method:
	6:
	1 Derivation:
	2 Mapping Properties of Bilinear Transformation:
	3 The Warping Effect:

	7 Digital-Filter Transformations:
	7:
	1 General Transformation:
	2 Lowpass-to-Lowpass Transformation:
	3 Lowpass-to-Bandstop Transformation:
	4 Application:

	8 Comparison Between Recursive and Nonrecursive Designs:

	Chapter 12:
	 Recursive (IIR) Filters Satisfying Prescribed Specifications:

	12:
	1 Introduction:
	2 Design Procedure:
	3 Design Formulas:
	3:
	1 Lowpass and Highpass Filters:
	2 Bandpass and Bandstop Filters:
	3 Butterworth Filters:
	4 Chebyshev Filters:
	5 Inverse-Chebyshev Filters:
	6 Elliptic Filters:

	4 Design Using the Formulas and Tables:
	5 Constant Group Delay:
	5:
	1 Delay Equalization:
	2 Zero-Phase Filters:

	6 Amplitude Equalization:

	Chapter 13:
	 Random Signals:

	13:
	1 Introduction:
	2 Random Variables:
	2:
	1 Probability-Distribution Function:
	2 Probability-Density Function:
	3 Uniform Probability Density:
	4 Gaussian Probability Density:
	5 Joint Distributions:
	6 Mean Values and Moments:

	3 Random Processes:
	3:
	1 Notation:

	4 First- and Second-Order Statistics:
	5 Moments and Autocorrelation:
	6 Stationary Processes:
	7 Frequency-Domain Representation:
	8 Discrete-Time Random Processes:
	9 Filtering of Discrete-Time Random Signals:

	Chapter 14:
	 Effects of Finite Word Length in Digital Filters:

	14:
	1 Introduction:
	2 Number Representation:
	2:
	1 Binary System:
	2 Fixed-Point Arithmetic:
	3 Floating-Point Arithmetic:
	4 Number Quantization:

	3 Coefficient Quantization:
	4 Low-Sensitivity Structures:
	4:
	1 Case I:
	2 Case II:

	5 Product Quantization:
	6 Signal Scaling:
	6:
	1 Method A:
	2 Method B:
	3 Types of Scaling:
	4 Application of Scaling:

	7 Minimization of Output Roundoff Noise:
	8 Application of Error-Spectrum Shaping:
	9 Limit-Cycle Oscillations:
	9:
	1 Quantization Limit Cycles:
	2 Overflow Limit Cycles:
	3 Elimination of Quantization Limit Cycles:
	4 Elimination of Overflow Limit Cycles:

	Chapter 15:
	 Design of Nonrecursive Filters Using Optimization Methods:

	15:
	1 Introduction:
	2 Problem Formulation:
	2:
	1 Lowpass and Highpass Filters:
	2 Bandpass and Bandstop Filters:
	3 Alternation Theorem:

	3 Remez Exchange Algorithm:
	3:
	1 Initialization of Extremals:
	2 Location of Maxima of the Error Function:
	3 Computation of |E(ω)| and P[sub(c)](ω):
	4 Rejection of Superfluous Potential Extremals:
	5 Computation of Impulse Response:

	4 Improved Search Methods:
	4:
	1 Selective Step-by-Step Search:
	2 Cubic Interpolation:
	3 Quadratic Interpolation:
	4 Improved Formulation:

	5 Efficient Remez Exchange Algorithm:
	6 Gradient Information:
	6:
	1 Property 1:
	2 Property 2:
	3 Property 3:
	4 Property 4:
	5 Property 5:

	7 Prescribed Specifications:
	8 Generalization:
	8:
	1 Antisymmetrical Impulse Response and Odd Filter Length:
	2 Even Filter Length:

	9 Digital Differentiators:
	9:
	1 Problem Formulation:
	2 First Derivative:
	3 Prescribed Specifications:

	10 Arbitrary Amplitude Responses:
	11 Multiband Filters:

	Chapter 16:
	 Design of Recursive Filters Using Optimization Methods:

	16:
	1 Introduction:
	2 Problem Formulation:
	3 Newton's Method:
	4 Quasi-Newton Algorithms:
	4:
	1 Basic Quasi-Newton Algorithm:
	2 Updating Formulas for Matrix S[sub(k+1)]:
	3 Inexact Line Searches:
	4 Practical Quasi-Newton Algorithm:

	5 Minimax Algorithms:
	6 Improved Minimax Algorithms:
	7 Design of Recursive Filters:
	7:
	1 Objective Function:
	2 Gradient Information:
	3 Stability:
	4 Minimum Filter Order:
	5 Use of Weighting:

	8 Design of Recursive Delay Equalizers:

	Additional References:
	Chapter 17:
	 Wave Digital Filters:

	17:
	1 Introduction:
	2 Sensitivity Considerations:
	3 Wave Network Characterization:
	4 Element Realizations:
	4:
	1 Impedances:
	2 Voltage Sources:
	3 Series Wire Interconnection:
	4 Parallel Wire Interconnection:
	5 2-Port Adaptors:
	6 Transformers:
	7 Unit Elements:
	8 Circulators:
	9 Resonant Circuits:
	10 Realizability Constraint:

	5 Lattice Wave Digital Filters:
	5:
	1 Analysis:
	2 Alternative Lattice Configuration:
	3 Digital Realization:

	6 Ladder Wave Digital Filters:
	7 Filters Satisfying Prescribed Specifications:
	8 Frequency-Domain Analysis:
	9 Scaling:
	10 Elimination of Limit-Cycle Oscillations:
	11 Related Synthesis Methods:
	12 A Cascade Synthesis Based on the Wave Characterization:
	12:
	1 Generalized-Immittance Converters:
	2 Analog G-CGIC Configuration:
	3 Digital G-CGIC Configuration:
	4 Cascade Synthesis:
	5 Signal Scaling:
	6 Output Noise:

	13 Choice of Structure:

	Chapter 18:
	 Digital Signal Processing Applications:

	18:
	1 Introduction:
	2 Sampling-Frequency Conversion:
	2:
	1 Decimators:
	2 Interpolators:
	3 Sampling Frequency Conversion by a Noninteger Factor:
	4 Design Considerations:

	3 Quadrature-Mirror-Image Filter Banks:
	3:
	1 Operation:
	2 Elimination of Aliasing Errors:
	3 Design Considerations:
	4 Perfect Reconstruction:

	4 Hilbert Transformers:
	4:
	1 Design of Hilbert Transformers:
	2 Single-Sideband Modulation:
	3 Sampling of Bandpassed Signals:

	5 Adaptive Digital Filters:
	5:
	1 Wiener Filters:
	2 Newton Algorithm:
	3 Steepest-Descent Algorithm:
	4 Least-Mean-Square Algorithm:
	5 Recursive Filters:
	6 Applications:

	6 Two-Dimensional Digital Filters:
	6:
	1 Two-Dimensional Convolution:
	2 Two-Dimensional z Transform:
	3 Two-Dimensional Transfer Function:
	4 Stability:
	5 Frequency-Domain Analysis:
	6 Types of 2-D Filters:
	7 Approximations:
	8 Applications:

	Appendix A:
	 Complex Analysis:

	A:
	1 Introduction:
	2 Complex Numbers:
	2:
	1 Complex Arithmetic:
	2 De Moivre's Theorem:
	3 Euler's Formula:
	4 Exponential Form:
	5 Vector Representation:
	6 Spherical Representation:

	3 Functions of a Complex Variable:
	3:
	1 Polynomials:
	2 Inverse Algebraic Functions:
	3 Trigonometric Functions and Their Inverses:
	4 Hyperbolic Functions and Their Inverses:
	5 Multi-Valued Functions:
	6 Periodic Functions:
	7 Rational Algebraic Functions:

	4 Basic Principles of Complex Analysis:
	4:
	1 Limit:
	2 Differentiability:
	3 Analyticity:
	4 Zeros:
	5 Singularities:
	6 Zero-Pole Plots:

	5 Series:
	6 Laurent Theorem:
	7 Residue Theorem:
	8 Analytic Continuation:
	9 Conformal Transformations:

	Appendix B:
	 Elliptic Functions:

	B:
	1 Introduction:
	2 Elliptic Integral of the First Kind:
	3 Elliptic Functions:
	4 Imaginary Argument:
	5 Formulas:
	6 Periodicity:
	7 Transformation:
	8 Series Representation:

	Index:

