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Preface
 
Control engineering courses have been given in universities for over fifty years. In fact it is just 
fifty years since I gave my first lectures on the subject. The basic theoretical topics taught in what 
is now often referred to as classical control have changed little over these years, but the tools 
which can be used to support theoretical analysis and the technologies used in control systems 
implementation have changed beyond recognition. I was lucky enough in the early days to have 
access to one of the first digital computers in a UK university, but programming was elementary, 
input was paper tape and output results, obtained often after a considerable delay, were just 
numbers on paper, which had to be laboriously plotted if one needed a graph. Simulations were 
done on analogue computers, which although having some nice features, had many deficiences. 
Today there are powerful digital simulation languages and specialised numerical software 
programs, which can be used on a desk top or lap top computer with excellent interaction and 
good graphical output. Although this book is not concerned with the technological 
implementation of control systems the technology has changed from components such as the 
vacuum tube, individual resistors and capacitors, and d.c commutator motors to integrated 
circuits, microprocessors, solid state power electronics and brushless machines. All of these are 
orders of magnitude cheaper, more robust, reliable and efficient.  
 
The majority of students graduating from engineering courses in universities will go on to work 
in industry where employers, if the company is to survive, will provide their employees doing 
analytical control system design with computers with appropriate computational software. The 
role of the university lecturer should therefore be to teach courses in such a way that the student 
knows enough detail about the concepts used that he can see whether results obtained are 
plausible, whilst leaving the computer to do the detailed analytical calculations. This has the 
advantage that more realistic problems can be studied, comparisons can easily be made between 
the results produced by alternative design approaches and hopefully the student can learn more 
about control engineering than worrying about doing mathematics. Many students, without doubt, 
are ‘turned off’ control engineering because of the perceived mathematical content and whilst 
further study on the theoretical aspects is required for prospective research students, they will be 
a small proportion of the class in a first course on control engineering. There are difficulties in 
this approach, as I am strongly of the opinion that student’s weaknesses in algebra have been 
caused by them not having carried out traditional procedures in arithmetic due to the adoption of 
calculators. However, I’m also sure there is a ‘happy medium’ somewhere. The use of modern 
software with simulation facilities allows the student to practice the interesting philosophy about 
doing engineering put forward in the book ‘Think, Play, Do’ by Dodgson et al OUP,2005. 
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The material presented in this book has been set out with this philosophy in mind and it is hoped 
that it will enable the reader to obtain a sound knowledge of classical control system analytical 
design methods. Several software packages could have been used to support this approach but 
here MATLAB, which is the most widely used, has been employed. Sadly, however, if 
universities continue to use outdated examining methods where students are required to plot root 
locus, Nyquist diagrams etc. the reader may have to spend some additional time doing 
computations best done by a computer! Because I want to ‘get over’ ideas, understanding and 
concepts without detailed mathematics I have used words such as ‘it can be shown that’ to 
shorten some of the mathematical detail. This provides the reader interested in theory with the 
opportunity to do additional calculations. 
 
The first chapter provides a brief introduction to feedback control and then has a section 
reviewing the contents of the book, which will therefore not be repeated here. I am indebted to 
my recent former students Ali Boz and Nusret Tan for providing me with some diagrams, 
assistance with computations, reading the text and doing some of the research which has 
provided information and results on some of the topics covered. For over forty years I have 
benefitted greatly from discussions with and input from many research students, who are too 
numerous to name here but have all helped to enrich the learning experience. Finally, I would 
like to acknowledge the efforts of my friend Dr Karl Jones in reading through the manuscript and 
providing me with constructive feedback. I trust that few errors remain in the text and I’d 
appreciate feedback from any reader who finds any or has any questions on the contents. 
 

Derek P. Atherton 
Brighton, 
February 2009  
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1. Introduction 
 
1.1 What is Control Engineering? 
 
As its name implies control engineering involves the design of an engineering product or system 
where a requirement is to accurately control some quantity, say the temperature in a room or the 
position or speed of an electric motor. To do this one needs to know the value of the quantity 
being controlled, so that being able to measure is fundamental to control. In principle one can 
control a quantity in a so called open loop manner where ‘knowledge’ has been built up on what 
input will produce the required output, say the voltage required to be input to an electric motor 
for it to run at a certain speed. This works well if the ‘knowledge’ is accurate but if the motor is 
driving a pump which has a load highly dependent on the temperature of the fluid being pumped 
then the ‘knowledge’ will not be accurate unless information is obtained for different fluid 
temperatures. But this may not be the only practical aspect that affects the load on the motor and 
therefore the speed at which it will run for a given input, so if accurate speed control is required 
an alternative approach is necessary. 
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This alternative approach is the use of feedback whereby the quantity to be controlled, say C, is 
measured, compared with the desired value, R, and the error between the two, 
E = R - C used to adjust C. This gives the classical feedback loop structure of Figure 1.1. 
 
In the case of the control of motor speed, where the required speed, R, known as the reference is 
either fixed or moved between fixed values, the control is often known as a regulatory control, as 
the action of the loop allows accurate speed control of the motor for the aforementioned situation 
in spite of the changes in temperature of the pump fluid which affects the motor load. In other 
instances the output C may be required to follow a changing R, which for example, might be the 
required position movement of a robot arm. The system is then often known as a 
servomechanism and many early textbooks in the control engineering field used the word 
servomechanism in their title rather than control.  
 

 
 

Figure 1.1 Basic Feedback Control Structure 
 
The use of feedback to regulate a system has a long history [1.1, 1.2], one of the earliest concepts, 
used in Ancient Greece, was the float regulator to control water level, which is still used today in 
water tanks. The first automatic regulator for an industrial process is believed to have been the 
flyball governor developed in 1769 by James Watt. It was not, however, until the wartime period 
beginning in 1939, that control engineering really started to develop with the demand for 
servomechanisms for munitions fire control and guidance. With the major improvements in 
technology since that time the applications of control have grown rapidly and can be found in all 
walks of life. Control engineering has, in fact, been referred to as the ‘unseen technology’ as so 
often people are unaware of its existence until something goes wrong. Few people are, for 
instance, aware of its contribution to the development of storage media in digital computers 
where accurate head positioning is required. This started with the magnetic drum in the 50’s and 
is required today in disk drives where position accuracy is of the order of 1μm and movement 
between tracks must be done in a few ms.  
 
Feedback is, of course, not just a feature of industrial control but is found in biological, economic 
and many other forms of system, so that theories relating to feedback control can be applied to 
many walks of life. 
 

Introduction
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1.2 Contents of the Book 
 
The book is concerned with theoretical methods for continuous linear feedback control system 
design, and is primarily restricted to single-input single-output systems. Continuous linear time 
invariant systems have linear differential equation mathematical models and are always an 
approximation to a real device or system. All real systems will change with time due to age and 
environmental changes and may only operate reasonably linearly over a restricted range of 
operation. There is, however, a rich theory for the analysis of linear systems which can provide 
excellent approximations for the analysis and design of real world situations when used within 
the correct context. Further simulation is now an excellent means to support linear theoretical 
studies as model errors, such as the affects of neglected nonlinearity, can easily be assessed.  
 
There are total of 11 chapters and some appendices, the major one being Appendix A on Laplace 
transforms. The next chapter provides a brief description of the forms of mathematical model 
representations used in control engineering analysis and design. It does not deal with 
mathematical modelling of engineering devices, which is a huge subject and is best dealt with in 
the discipline covering the subject, since the devices or components could be electrical, 
mechanical, hydraulic etc. Suffice to say that one hopes to obtain an approximate linear 
mathematical model for these components so that their effect in a system can be investigated 
using linear control theory. The mathematical models discussed are the linear differential 
equation, the transfer function and a state space representation, together with the notations used 
for them in MATLAB.  
 
Chapter 3 discusses transfer functions, their zeros and poles, and their responses to different 
inputs. The following chapter discusses in detail the various methods for plotting steady state 
frequency responses with Bode, Nyquist and Nichols plots being illustrated in MATLAB. 
Hopefully sufficient detail, which is brief when compared with many textbooks, is given so that 
the reader clearly understands the information these plots provide and more importantly 
understands the form of frequency response expected from a specific transfer function.  
 
The material of chapters 2-4 could be covered in other courses as it is basic systems theory, there 
having been no mention of control, which starts in chapter 5. The basic feedback loop structure 
shown in Figure 1.1 is commented on further, followed by a discussion of typical performance 
specifications which might have to be met in both the time and frequency domains. Steady state 
errors are considered both for input and disturbance signals and the importance and properties of 
an integrator are discussed from a physical as well as mathematical viewpoint. The chapter 
concludes with a discussion on stability and a presentation of several results including the 
Mikhailov criterion, which is rarely mentioned in English language texts. Chapter 6 first 
introduces the properties of a time delay before continuing with further material relating to the 
analysis and properties of the closed loop. Briefly mentioned are the root locus and its plotting 
using MATLAB and various concepts of relative stability. These include gain and phase margins, 
sensitivity functions and M and N circles. 
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Chapter 7 is a relatively long chapter dealing with classical controller design methods. The basic 
concept of classical control design is that one decides on a suitable control strategy and then the 
design problem becomes one of obtaining appropriate parameters for the controller elements in 
order to meet specified control performance objectives. Typically a controller with a specified 
structure is placed in either the forward or feedback paths, or even both, of the closed loop. The 
first point discussed is therefore the difference between a feedforward and a feedback controller 
on the closed loop transfer function. The design of lead and lag controllers is then discussed 
followed by a long section on PID control, a topic on which far too much has probably been 
written in the literature in recent years due in no part to its extensive use in practice. The early 
work of Ziegler and Nichols is the starting point which largely focuses on the control of a plant 
with a time constant plus time delay. By dealing with this plant in so called normalised form, 
where its behaviour is expressible in terms of the time delay to time constant ratio, new results 
are presented comparing various suggested parameter settings, usually known as tuning, for PID 
controllers. It is pointed out that if a mathematical model is obtained for the plant then the 
principles and possibilities for obtaining parameters for a PID controller are no different to those 
which may be used for any other type of controller. However a major contribution of Ziegler and 
Nichols in their loop cycling method was to show how the PID controller parameters might be 
chosen without a mathematical model, but simply from knowledge of the so called plant transfer 
function critical point, namely the magnitude and frequency of the transfer function for 180° 
phase shift. Its modern equivalent is known as relay autotuning and this topic is covered in some 
detail at the end of the chapter. 
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The controller design concepts presented in the previous chapter based on open loop frequency 
response compensation were regularly used in the early days of control engineering by designers 
who were adept at sketching Bode diagrams, so that the use of modern software has simply 
brought more efficiency to the design process. Some significant theoretical work on optimising 
controller parameters to meet specific performance criteria was also done in the early days but 
here the limitation was the difficulty of using the theory to obtain results of significance. With 
modern computation tools numerical approaches can be used to solve these problems either by 
writing MATLAB programs based on linear system theory or writing optimisation programs 
around digital simulations in programs such as SIMULINK. These are appropriate industrial 
design methods which appear to receive little attention in textbooks, possibly because they are 
not suitable for traditional examinations. Chapter 8 covers parameter optimisation based on 
integral performance criteria because it allows some simple results to be obtained and concepts 
understood. Further it leads to a design approach based on closed loop transfer function synthesis, 
known as standard forms, presented at the end of the chapter. Chapter 9 discusses further aspects 
of classical controller design and highlights the difficulty of trying to design series compensators 
for, so called uncertain plants, plants whose parameters may vary or not be accurately known. 
This leads to consideration of some elegant recent results on uncertain plants but which 
unfortunately appear too conservative for practical use in many instances. 
 
The final two chapters are concerned with the use of state space methods in control system 
analysis and design. Chapter 10 provides basic coverage of state space concepts covering state 
equations and their solution, state transformations, state representations of transfer functions, and 
controllability and observability. Some state space design methods are covered in Chapter 11, 
including state variable feedback, LQR design and state variable feedback design to achieve the 
closed loop standard forms of chapter 8. 
 

1.3 References 
 
Bennett, S. A history of Control Engineering, 1800-1930. IEE control engineering series. Peter 
Peregrinus, 1979, 
Bennett, S. A history of Control Engineering, 1930-1955. IEE control engineering series. Peter 
Peregrinus, 1993. 
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2. Mathematical Model Representations of 
Linear Dynamical Systems 
 

2.1 Introduction 
 
Control systems exist in many fields of engineering so that components of a control system may 
be electrical, mechanical, hydraulic etc. devices. If a system has to be designed to perform in a 
specific way then one needs to develop descriptions of how the outputs of the individual 
components, which make up the system, will react to changes in their inputs. This is known as 
mathematical modelling and can be done either from the basic laws of physics or from 
processing the input and output signals in which case it is known as identification. Examples of 
physical modelling include deriving differential equations for electrical circuits involving 
resistance, inductance and capacitance and for combinations of masses, springs and dampers in 
mechanical systems. It is not the intent here to derive models for various devices which may be 
used in control systems but to assume that a suitable approximation will be a linear differential 
equation. In practice an improved model might include nonlinear effects, for example Hooke’s 
Law for a spring in a mechanical system is only linear over a certain range; or account for time 
variations of components. Mathematical models of any device will always be approximate, even 
if nonlinear effects and time variations are also included by using more general nonlinear or time 
varying differential equations. Thus, it is always important in using mathematical models to have 
an appreciation of the conditions under which they are valid and to what accuracy.  
 
Starting therefore with the assumption that our model is a linear differential equation then in 
general it will have the form:- 
 

)()()()( tuDBtyDA      (2.1) 
 

where D denotes the differential operator d/dt. A(D) and B(D) are polynomials in D with 
iii dtdD / , the ith derivative, u(t) is the model input and y(t) its output. So that one can write 
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where the a and b coefficients will be real numbers. The orders of the polynomials A and B are 
assumed to be n and m, respectively, with n  m.  
 
Thus, for example, the differential equation  
 

u
dt
duy

dt
dy

dt
yd 2342

2

    (2.4) 
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with the dependence of y and u on t assumed can be written 

uDyDD )12()34( 2     (2.5) 

In order to solve an nth order differential equation, that is determine the output y for a given input 
u, one must know the initial conditions of y and its first n-1 derivatives. For example if a 
projectile is falling under gravity, that is constant acceleration, so that D2y= constant, where y is 
the height, then in order to find the time taken to fall to a lower height, one must know not only 
the initial height, normally assumed to be at time zero, but the initial velocity, dy/dt, that is two 
initial conditions as the equation is second order (n = 2). Control engineers typically study 
solutions to differential equations using either Laplace transforms or a state space representation. 

2.2 The Laplace Transform and Transfer Functions 

A short introduction to the Laplace transformation is given in Appendix A for the reader who is 
not familiar with its use. It is an integral transformation and its major, but not sole use, is for 
differential equations where the independent time variable t is transformed to the complex 
variable s by the expression 

0
)()( dtetfsF st      (2.6) 
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Since the exponential term has no units the units of s are seconds-1, that is using mks notation s 
has units of s-1. If denotes the Laplace transform then one may write
 [f(t)] = F(s) and  -1[F(s)] = f(t). The relationship is unique in that for every f(t), [F(s)], there is a 

unique F(s), [f(t)]. It is shown in Appendix A that when the n-1 initial conditions, Dn-1y(0) are 
zero the Laplace transform of Dny(t) is snY(s). Thus the Laplace transform of the differential 
equation (2.1) with zero initial conditions can be written  
 

)()()()( sUsBsYsA       (2.7) 
 
or simply 
 

UsBYsA )()(      (2.8) 
 
with the assumed notation that signals as functions of time are denoted by lower case letters and 
as functions of s by the corresponding capital letter. 
 
If equation (2.8) is written 
 

)(
)(
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)( sG
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     (2.9) 

 
then this is known as the transfer function, G(s), between the input and output of the ‘system’, 
that is whatever is modelled by equation (2.1). B(s), of order m, is referred to as the numerator 
polynomial and A(s), of order n, as the denominator polynomial and are from equations (2.2) and 
(2.3) 
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                      01
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m
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Since the a and b coefficients of the polynomials are real numbers the roots of the polynomials 
are either real or complex pairs. The transfer function is zero for those values of s which are the 
roots of B(s), so these values of s are called the zeros of the transfer function. Similarly, the 
transfer function will be infinite at the roots of the denominator polynomial A(s), and these values 
are called the poles of the transfer function. The general transfer function (2.9) thus has m zeros 
and n poles and is said to have a relative degree of n-m, which can be shown from physical 
realisation considerations cannot be negative. Further for n > m it is referred to as a strictly 
proper transfer function and for n  m as a proper transfer function. 
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When the input u(t) to the differential equation of (2.1) is constant the output y(t)   becomes 
constant when all the derivatives of the output are zero. Thus the steady state gain, or since the 
input is often thought of as a signal the term d.c. gain (although it is more often a voltage than a 
current!) is used, and is given by 
 

00 /)0( abG        (2.12) 

 
If the n roots of A(s) are i , i = 1….n and of B(s) are j, j = 1….m, then the transfer function may 
be written in the zero-pole form 
 

n

i i

m

j j

s
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1

1
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)(
)(      (2.13) 

 
where in this case  
 

n

i i

m

j jK
G

1

1)0(       (2.14) 

 
When the transfer function is known in the zero-pole form then the location of its zeros and poles 
can be shown on an s plane zero-pole plot, where the zeros are marked with a circle and the poles 
by a cross. The information on this plot then completely defines the transfer function apart from 
the gain K. In most instances engineers prefer to keep any complex roots in quadratic form, thus 
for example writing  
 

)1)(2(
)1(4)( 2 sss

ssG     (2.15) 

 
rather than writing )866.05.0)(866.05.0( jsjs  for the quadratic term in the 
denominator. This transfer function has K = 4, a zero at -1, three poles at -2, -0.5 ± 0.866 
respectively, and the zero-pole plot is shown in Figure 2.1 
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Figure 2.1 Zero-pole plot. 
 

2.3 State space representations 
 
Consider first the differential equation given in equation (2.4) but without the derivative of u 
term, that is 
 

uy
dt
dy

dt
yd 342

2

       (2.16) 

 
To solve this equation, as mentioned earlier, one must know the initial values of y and dy/dt, or 
put another way the initial state of the system. Let us choose therefore to represent y and dy/dt by 
x1 and x2 the components of a state vector x of order two. Thus we have 21 xx , by choice, and 

from substitution in the differential equation uxxx 122 34 . The two equations can be 
written in the matrix form 
 

uxx
1
0

43
10

     (2.17) 

 
and the output y is simply, in this case, the state x1 and can be written 
 

xy 01            (2.18) 
 
For this choice of state vector the representation is often known as the phase variable 
representation. The solution for no input, that is u = 0, from an initial state can be plotted in an 
x1-x2 plane, known as a phase plane with time a parameter on the solution trajectory. Equation 
(2.17) is a state equation and (2.18) an output equation and together they provide a state space 
representation of the differential equation or the system described by the differential equation.  
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Since this system has one input, u, and one output, y, it is often referred to as a single-input 
single-output (SISO) system. The choice of the state variable x is not unique and more will be 
said on this later, but the point is easily illustrated by considering the simple R-C circuit in Figure 
2.2. If one derives the differential equation for the output voltage in terms of the input voltage, it 
will be a second order one similar to equation (2.16) and one could choose as in that equation the 
output, the capacitor voltage, and its derivative as the components of the state variable, or simply 
the states, to have a representation similar to equation (2.17). From a physical point of view, 
however, any initial non zero state will be due to charge stored in one or both of the two 
capacitors and therefore it might be more appropriate to choose the voltages of these two 
capacitors as the states. 

 
 

Figure 2.2 Simple R-C circuit. 
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In the state space representation of (2.17) and (2.18) x1 is the same as y so that for the state 
equation (2.18) the transfer function between U(s) and X1(s) is obviously 
 

34
1

)(
)(

2
1

sssU
sX

      (2.19) 

 
That is x1 replacing y in the transfer function corresponding to the differential equation (2.16). 
Now the transfer function corresponding to equation (2.5) is  
 

34
12

)(
)(

2 ss
s

sU
sY

      (2.20) 

 
which can be written as  
 

     )()(2
)(
)(

11 sXssX
sU
sY

     (2.21) 

 
Since in our state representation 21 xx , which in transform terms is )()( 21 sXssX , this 
means in this case with the same state equation the output equation is now y = 2x2+x1. Thus a 
state space representation for equation (2.5) is 
 

uxx
1
0

43
10

,    xy 21         (2.22) 

 
It is easy to show that for the more general case of the differential equation (2.1) a possible state 
space representation, which is known as the controllable canonical form, illustrated for m < n-1, 
is 
 

ux

aaaa

x

n 1
.
.
.
.
0
0
0

....
1.......
010.....
........
........
0..01000
0...0100
0....010

1210

    (2.23) 

 
xbbby m 0.....1... 110       (2.24) 
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In matrix form the state and output equations can be written 
 

 BuAxx       Cxy     (2.25) 
 

where the state vector, x, is of order n, the A matrix is nxn, B is a column vector of order, n, and 
C is a row vector of order, n. Because B and C are vectors for the SISO system they are often 
denoted by b and cT, respectively. Also in the controllable canonical form representation given 
above the A matrix and B vector take on specific forms, the former having the pole polynomial 
coefficients in the last row and the latter being all zeros apart from the unit value in the last row. 
If m and n are of the same order, for example if they are both 2 and the corresponding transfer 

function is 
34
65

2

2

ss
ss

, then this can be written as 
34

31 2 ss
s

, which means there is a unit 

gain direct transmission between input and output, then the state representation takes the more 
general form  
 

     BuAxx     DuCxy      (2.26) 
 
where D is a scalar, being unity of course in the above example. A state space representation can 
be used for a mathematical model of a system with multiple inputs and outputs, denoted by 
MIMO, and in this case B, C and D will be matrices of appropriate dimensions which accounts 
for the use of capital letters. 
 
Thus, in conclusion, a mathematical model of a linear dynamical system may be a differential 
equation, a transfer function or a state space representation. A state space representation has a 
unique transfer function but the reverse is not the case.  
 

2.4 Mathematical Models in MATLAB 
 
MATLAB, although not the only language with good facilities for control system design, is easy 
to use and very popular. As well as tools for analysis it also contains a simulation language, 
SIMULINK, which is also very useful. If it has a weakness it is probably with regard to physical 
modelling but for the contents of this book, where our starting point is a mathematical model, this 
is not a problem. Models of system components can be entered into MATLAB either as transfer 
functions or state space representations. A model is an object defined by a symbol, say G, and its 
transfer function can be entered in the form G=tf(num,den) where num and den contain a string 
of coefficients describing the numerator and denominator polynomials respectively. MATLAB 
statements in the text, such as the above for G, will be entered in bold italics but not in program 
extracts such as that below. The coefficients are entered beginning with the highest power of s. 

Thus the transfer function 
34

12)( 2 ss
ssG , can be entered by typing:- 

>>num=[2 1]; 
>> den=[1 4 3]; 
>> G=tf(num,den) 
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Transfer function: 
 
    2s + 1 
-------------- 
s^2 + 4 s + 3 
 
The >> is the MATLAB prompt and the semicolon at the end of a line suppresses a MATLAB 
response.  This has been omitted from the expression for G so MATLAB responds with the 
transfer function G as shown. Alternatively, the entry could have been done in one expression by 
typing:- 
 
>>G=tf([2 1],[1 4 3]) 
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The roots of a polynomial can be found by typing roots before the coefficient string in square 
brackets. Thus typing:- 
 
>> roots(den) 
 
ans = 
 
    -3 
    -1 
 
Alternatively the transfer function can be entered in zero, pole, gain form where the command is 
in the form G=zpk(zeros,poles,gain) 
 
Thus for the same example 
 
>> G=zpk([-0.5],[-1;-3],2) 
 
Zero/pole/gain: 
   2 (s+0.5) 
----------- 
(s+1) (s+3) 
 
where the values of zeros or poles in a string are separated by a semicolon. Also to enter a string 
with a single number, here the value of K, the square brackets may be omitted. 
 
A state space model or object formed from known A,B,C,D matrices, often denoted by 
(A,B,C,D),can be entered into MATLAB with the command G=ss(A,B,C,D). 
 
Thus for the same example by entering the following commands one defines the state space 
model 
 
>> A=[0,1;-3,-4]; 
>> B=[0;1]; 
>> C=[1,2]; 
>> D=0; 
>> G=ss(A,B,C,D); 
 
And asking afterwards for the transfer function of the model by typing 
 
>> tf(G) 
One obtains 
Transfer function: 
   2 s + 1 
------------- 
s^2 + 4 s + 3 
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Obviously the above have been very simple examples but hopefully they have covered the basics 
of putting the mathematical model of a linear dynamical system into MATLAB. The only way to 
learn is by doing examples and since MATLAB has an excellent help facility this should not be 
difficult. For a more extensive coverage of MATLAB routines and examples of their use in 
control engineering the reader is referred to the book given in reference 2.1. 

2.5 Interconnecting Models in MATLAB 

Control systems are made up of several components, so as well as describing a component by a 
mathematical model, one needs to deal with the mathematical models for interconnected 
components. Typically a component is represented as a block with input and output signals and 
labelled, usually with a transfer function, say G1(s), as shown in Figure 2.3. Strictly speaking if 
the block is labelled with a transfer function the input and output signals should also be in the s
domain, as the block in Figure 2.3 implies 

)()()( 1 sUsGsY      (2.27) 

but it is usually accepted that the time domain notations, y(t) and u(t) for the signals, may also be 
used.

Figure 2.3 Block representation of a transfer function 

When a second block, with transfer function G2(s), is connected to the output of the first block, to 
give a series connection, then it is assumed that in making the connection of Figure 2.4 that the 
second block does not affect the output of the first one. In this case the resultant transfer function 
of the series combination between input u and output y is G1(s)G2(s), which is obtained directly 
by substitution from the individual block relationships X(s)=G1(s)U(s) and Y(s)=G2(s)X(s) where 
x is the output of the first block. 

Figure 2.4 Series (or cascade) connection of blocks 
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If two system objects G1 and G2 are provided to MATLAB then the system object corresponding 
to the series combination can be obtained by typing G=G1*G2

If two transfer function models, G1(s) and G2(s) are connected in parallel, as shown in Figure 2.5, 
then the resultant transfer function between the input u and output y is obtained from the 
relationships X1(s) = G1(s)U(s), X2(s) = G2(s)U(s) and Y(s) = X1(s)+X2(s) and is G1(s)+G2(s). It 
can be obtained in MATLAB by typing G=G1+G2

Figure 2.5 Parallel connection of blocks 
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Another connection of blocks which will be used is the feedback connection shown in Figure 2.6. 
For the negative feedback connection of Figure 2.6 the relationship 
is )]()()()[()( sYsHsUsGsY , where the expression in the square brackets is the input to 
G(s). This can be rearranged to give a transfer function between the input u and output y of  

)()(1
)(

)(
)(

sHsG
sG

sU
sY

.     (2.28) 

If this transfer function is denoted by T(s) then the MATLAB command to obtain T(s) is
T=feedback(G,H). If the positive feedback configuration is required then the statement 
T=feedback(G,H,sign) where the sign = 1. This can also be used for the negative feedback with 
sign = -1 

Figure 2.6 Feedback connection of blocks. 

2.6 Reference 

2.1 Xue D, Chen Y and Atherton D P  Linear Feedback Control: Analysis and Design in 
MATLAB, Siam, USA, 2007. 
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Transfer Functions and Their Responses

3. Transfer Functions and Their Responses 
 
3.1 Introduction 
 
As mentioned previously a major reason for wishing to obtain a mathematical model of a device 
is to be able to evaluate the output in response to a given input. Using the transfer function and 
Laplace transforms provides a particularly elegant way of doing this. This is because for a block 
with input U(s) and transfer function G(s) the output Y(s) = G(s)U(s). When the input, u(t), is a 
unit impulse which is conventionally denoted by (t), U(s) = 1 so that the output Y(s) = G(s). 
Thus in the time domain, y(t) = g(t), the inverse Laplace transform of G(s), which is called the 
impulse response or weighting function of the block. The evaluation of y(t) for any input u(t) can 
be done in the time domain using the convolution integral (see Appendix A, theorem (ix)) 
 

dttugty
t

)()()(
0

         (3.1) 

 
but it is normally much easier to use the transform relationship Y(s) = G(s)U(s). To do this one 
needs to find the Laplace transform of the input u(t), form the product G(s)U(s) and then find its 
inverse Laplace transform. G(s)U(s) will be a ratio of polynomials in s and to find the inverse 
Laplace transform, the roots of the denominator polynomial must be found to allow the 
expression to be put into partial fractions with each term involving one denominator root (pole). 
Assuming, for example, the input is a unit step so that U(s) = 1/s then putting G(s)U(s) into 
partial fractions will result in an expression for Y(s) of the form 
 

n

i i

i

s
C

s
C

sY
1

0)(     (3.2) 

 
where in the transfer function G(s) = B(s)/A(s), the n poles of G(s) [zeros of A(s)] are i, i = 1…n 
and the coefficients C0 and Ci, i = 1…n, will depend on the numerator polynomial B(s), and are 
known as the residues at the poles. Taking the inverse Laplace transform yields 

n

i

t
i

ieCCty
1

0)(       (3.3) 

 
The first term is a constant C0, sometimes written C0u0(t) because the Laplace transform is 
defined for t  0, where u0(t) denotes the unit step at time zero. Each of the other terms is an 
exponential, which provided the real part of i is negative will decay to zero as t becomes large. 
In this case the transfer function is said to be stable as a bounded input has produced a bounded 
output. Thus a transfer function is stable if all its poles lie in the left hand side (lhs) of the s plane 
zero-pole plot illustrated in Figure 2.1. The larger the negative value of i the more rapidly the 
contribution from the ith term decays to zero. Since any poles which are complex occur in  
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complex pairs, say of the form 1, 2 =  ± j , then the corresponding two residues C1 and C2 will 

be complex pairs and the two terms will combine to give a term of the form )sin( tCe t . 
This is a damped oscillatory exponential term where , which will be negative for a stable 
transfer function, determines the damping and  the frequency [strictly angular frequency] of the 
oscillation. For a specific calculation most engineers, as mentioned earlier, will leave a complex 
pair of roots as a quadratic factor in the partial factorization process, as illustrated in the Laplace 
transform inversion example given in Appendix A. For any other input to G(s), as with the step 
input, the poles of the Laplace transform of the input will occur in a term of the partial fraction 
expansion (3.2), [as for the C0/s term above], and will therefore produce a bounded output for a 
bounded input. 
 

3.2 Step Responses of Some Specific Transfer Functions 
 
In control engineering the major deterministic input signals that one may wish to obtain 
responses to are a step, an impulse, a ramp and a constant frequency input. The purpose of this 
section is to discuss step responses of specific transfer functions, hopefully imparting an 
understanding of what can be expected from a knowledge of the zeros and poles of the transfer 
function without going into detailed mathematics. 
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3.1.1 A Single Pole Transfer Function 
 

A transfer function with a single pole is 
as

KsG 1)( , which may also be written in the so-

called time constant form
sT

KsG
1

)( , where aKK /1 and aT /1  The steady state 

gain KG )0( , that is the final value of the response, and T is called the time constant as it 
determines the speed of the response. K will have units relating the input quantity to the output 
quantity, for example °C/V, if the input is a voltage and the output temperature. T will have the 
same units of time as s-1, normally seconds. The output, Y(s), for a unit step input is given by 
 

)1()1(
)(

sT
KT

s
K

sTs
KsY     (3.4). 

 
Taking the inverse Laplace transform gives the result 
 

)1()( / TteKty     (3.5) 
 

The larger the value of T (i.e. the smaller the value of a), the slower the exponential response. It 

can easily be shown that KTy 632.0)( , T
dt

dy )0(
and KTy 993.0)5( or in words, the 

output reaches 63.2% of the final value after a time T, the initial slope of the response is T and 
the response has essentially reached the final value after a time 5T. The step response in 
MATLAB can be obtained by the command step(num,den). The figure below shows the step 
response for the transfer function with K = 1 on a normalised time scale.  
. 

 
 

Figure 3.1 Normalised step response for a single time constant transfer function. 
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3.1.2 Two Complex Poles 
 
Here the transfer function G(s) is often assumed to be of the form 
 

22

2

2
)(

oo

o

ss
sG  .    (3..6) 

 

It has a unit steady state gain, i.e G(0) = 1, and poles at 21oo js , which are 

complex when 1. For a unit step input the output Y(s), can be shown after some algebra, 
which has been done so that the inverse Laplace transforms of the second and third terms are 
damped cosinusoidal and sinusoidal expressions, to be given by 
 

)1()()1()(
1

)2(
)( 22222222

2

oo

o

oo

o

oo

o

ss
s

ssss
sY  (3.7)  

 
Taking the inverse Laplace transform it yields, again after some algebra, 
 

)1sin(
1

1)( 2

2
tety o

to

   (3.8)  

where 1cos . is known as the damping ratio. It can also be seen that the angle to the 
negative real axis from the origin to the pole with positive imaginary part is  

12/121 cos/)1(tan .  Measurement of the angle  and this relationship is often 
used to refer to the damping of complex poles even when not dealing with a second order system. 
The response on the normalised time scale ot can be found from Matlab by taking o equal to 
one. The damping of the response then depends on  and the oscillatory behaviour on the 

normalised damped frequency, that is 21/ o .. Figure 3.2 shows a normalised plot for 

several values of .  
 
The response can be shown to have the following properties:- 
 
1) For 0  the response is undamped and continues to oscillate with frequency o ( o =1 on 
the normalised plot) 
2) The overshoots and undershoots occur at half periods of the damped frequency, , that is 
times of n / , for integers n greater and equal to 1. 

3) The first overshoot is
21/e , then the undershoot is 2, the next overshoot is 3 and 

so on. 
4) The overshoot is often given as a percentage, i.e.100 , and is shown in Figure 3.3 as a 
function of .  
5) For  > 1 the transfer function has two real poles and the response has no overshoot.  
6) For  =1 both poles are at - o and the response is the fastest with no overshoot.  
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Figure 3.2 Normalised step response of second order system for different  
 

 
 

Figure 3.3 Graph of % overshoot as a function of the damping ratio. 
 
3.1.3 The Effect of a Zero 

Consider the general transfer function G(s) = B(s)/A(s) again, and also G0(s) = 1/A(s), that is G(s) 
with B(s) = 1. As outlined above the effect of a non-unity B(s) will be to give different values of 
the C coefficients in the partial fraction expansion of equation (3.2). Thus one can find the new 
partial fraction expansion when B(s) is not a constant and invert to find the time response. There 
is another way, however, which also helps in understanding the response and that is to recognise 
that s can be regarded as a derivative operator. Thus, for example, suppose the response of G0(s) 
to a unit step input is y0(t) then the response of G(s) to a unit step input can be written 
 

)(
)(

..........
)()(

)( 00
01

)1(
0

)1(
10 tyb

dt
tdyb

dt
tydb

dt
tyd

ty m

m
m

m

m

   (3.9) 
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where the b’s are the coefficients of B(s) in equation (2.11). 
 
To illustrate this consider  
 

)2)(1(
1)(

ss
sTsG   so that 

)2(2
1

)1(2
1

2
1

)2)(1(
1)(

ssssss
sYo  

 
then the solution for y0(t) is )1(5.0)( 2

0
tt eety , which cannot have an overshoot as the 

exponentials decrease with increase in time. Using the above result y(t) is given by 
 

dt
eedTeety

tt
tt )1(5.0)1(5.0)(

2
2  
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It is easy to show mathematically that the response will have an overshoot for T > 1. The 
responses for T = 0.5, T = 1 and T = 2 are shown in Figure 3.4, obtained using the following 
MATLAB statements. 
 
>> G0=tf([1],[1 3 2]); 
>> step(G0) 
>> hold 
Current plot held 
>> G1=tf([0.5 1],[1 3 2]); 
>> G2=tf([1 1],[1 3 2]); 
>> G3=tf([2 1],[1 3 2]); 
>> step(G1) 
>> step(G2) 
>> step(G3) 
where the hold statement keeps the plot allowing the responses to be compared. 
 

 
 

Figure 3.4 Step responses for various values of T 
 

The unit impulse, (t), is the derivative of the unit step and has a Laplace transform of unity. 
Thus the response to a unit impulse is the derivative of the response to a unit step.  
 
3.1.4 A 3 Pole Transfer Function 
 
In order to appreciate the response from multiple poles consider the step responses of two 
transfer functions each with three poles, a real pole and a complex pair. The example transfer 
functions are written in factored form, which of course corresponds to transfer functions in 
parallel, and are:- 

2.0
1.0

12.0
5.0)( 21 sss

sG  
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and

5
5.2

12.0
5.0)( 22 sss

sG .

Both transfer functions when written with a common denominator have two zeros and each term 
in G1 and G2 contributes a final value of 0.5, with the response from the complex poles the same. 
The step responses are shown in Figure 3.5. The time constant of the single pole in G1 is 5 
seconds but only 0.2 seconds in G2. Thus for the step response of G1 the time constant slows the 
response down and the overshoot is not as large as it would be for the complex poles alone, 
although the response still oscillates. The smaller time constant of G2 is evident in the rapid 
initial change in the step response. 

Figure 3.5  Step response of 3 pole transfer functions. 

3.3 Response to a Sinusoid 

The Laplace transform of tsin is )/( 22s , so that when the partial fraction expansion is 
used to get Y(s) it will now be of the form 

n

i i

i

s
C

s
sCC

sY
1

22
0201)(    (3.10) 

For a stable transfer function, G(s), all the exponential terms in the summation will eventually go 
to zero and the inverse Laplace transform of the first term will be expressible as )sin( tM ,
a sinusoidal signal of magnitude (or amplitude) M and phase lag  relative to the input sinusoid, 
where M and  will be functions of . This is known as the steady state frequency response of  
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G(s), often simply shortened to frequency response. To determine its value it is not necessary to 
go through the partial fraction and Laplace transform process indicated above as it can be shown 
that it can be obtained from the complex number )( jG , where M is the modulus and  the 

argument of )( jG . This is a very basic property of a linear system that for a sine wave input 
the output will also be a sine wave of the same frequency with the magnitude and phase shift 
dependent on the frequency.  

The value of a transfer function G(s) for a specific value of s = s1 is G(s1) and from consideration 
of the zero-pole representation of equation (2.13) it can be seen that it is given by 

n

i i

m

j j

PA

PBK
sM

1

1
1 )(      (3.11) 

where P is the point s1 in the s plane and PBj and PAi are the distances from P to the m zeros, j

and n poles, i. Also the argument  is given by 

n

i
i

m

j
js

11
1 )( (3.12)
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where j and i are the zero and pole angles respectively, that is the angles measured from the 
direction of the positive real axis to the lines drawn from zero j to the point P and from pole i to 
the point, P, respectively. Evaluating the frequency response as  goes from 0 to  means 
evaluating the above as s1 goes from 0 to  on the imaginary axis of the s-plane. The value of 
understanding this is that it enables one to appreciate how M and  of a frequency response will 
vary as  is increased. 
 
As a simple example consider again the transfer function of equation (2.15) that is       
 

)1)(2(
)1(4)( 2 sss

ssG         (3.13) 

 
Its zero-pole plot, shown in Figure 2.1, is repeated below as Figure 3.6 but with the edition of 
lines joining the one zero and three poles to the point P = 2j on the imaginary axis. The lengths of 
the lines and angles are marked from which it can be seen that the frequency response of G at  
= 2, has  
 

877.0
909.2*239.1*22

54
**

*4

321

1

PAPAPA
PBM   (3.14) 

 
and  
 

732.5tan268.2tan1tan2tan 1111
3211  

 
giving  
 

ooooo 9.1271.802.66454.63      (3.15) 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
Figure 3.6 Graphical evaluation of a frequency response from the zero-pole plot. 
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Magnitude and phase of the output for a sinusoidal input have a very physical meaning but 
mathematically they are a polar representation of the output, which can therefore be written in the 
rectangular form for a complex number, that is 
 

)()()()( )( jYXeMjG j    (3.16) 
 

The relationships between the polar and rectangular representations are  
 

2/122 )]()([)( YXM     (3.17) 

))(),((2tan XYa     (3.18) 
 

2tana  is the arctangent function used in MATLAB which correctly gives the phase  between 0 

and 360°. Most books write ))(/)((tan 1 XY which is simply incorrect without further 

qualification as the mathematical function 1tan only exists between -90° and 90°. 
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4. Frequency Responses and Their Plotting 

4.1 Introduction 
 
The frequency response of a transfer function G(j ) was introduced in the last chapter. As G(j ) 
is a complex number with a magnitude and argument (phase) if one wishes to show its behaviour 
over a frequency range then one has 3 parameters to deal with the frequency, , the magnitude, 
M, and the phase . Engineers use three common ways to plot the information, which are known 
as Bode diagrams, Nyquist diagrams and Nichols diagrams in honour of the people who 
introduced them. All portray the same information and can be readily drawn in MATLAB for a 
system transfer function object G(s).  
 
One diagram may prove more convenient for a particular application, although engineers often 
have a preference. In the early days when computing facilities were not available Bode diagrams, 
for example, had some popularity because of the ease with which they could, in many instances, 
be rapidly approximated. All the plots will be discussed below, quoting many results without 
going into mathematical detail, in the hope that the reader will obtain enough knowledge to know 
whether MATLAB plots obtained are of the general shape expected. 
 

4.2 Bode Diagram  

A Bode diagram consists of two separate plots the magnitude, M, as a function of frequency and 
the phase  as a function of frequency. For both plots the frequency is plotted on a logarithmic 
(log) scale along the x axis. A log scale has the property that the midpoint between two 

frequencies 1 and 2 is the frequency 21 . A decade of frequency is from a value to 

ten times that value and an octave from a value to twice that value. The magnitude is plotted 
either on a log scale or in decibels (dB), where MdB 10log20 . The phase is plotted on a linear 

scale. Bode showed that for a transfer function with no right hand side (rhs) s-plane zeros the 
phase is related to the slope of the magnitude characteristic by the relationship 
 

duu
du
dA

2
||cothlog1)( 1     (4.1) 

 
where ( 1) is the phase at frequency 1, )/(log 1eu and |)(|log)( jGA e . 

 
It can be further shown from this expression that a relatively good approximation is that the 
phase at any frequency is 15° times the slope of the magnitude curve in dB/octave. This was a 
useful concept to avoid drawing both diagrams when no computer facilities were available. 
 
For two transfer functions G1 and G2 in series the resultant transfer function, G, is their product, 
this means for their frequency response 
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)()()( 21 jGjGjG         (4.2) 
 

which in terms of their magnitudes and phases can be written 
 

21MMM  and 21       (4.3) 
 

Thus since a log scale is used on the magnitude of a Bode diagram this means Bode magnitude 
plots for two transfer functions in series can be added, as also their phases on the phase diagram. 
Hence a transfer function in zero-pole form can be plotted on the magnitude and phase Bode 
diagrams simple by adding the individual contributions from each zero and pole. It is thus only 
necessary to know the Bode plots of single roots and quadratic factors to put together Bode plots 
for a complicated transfer function if it is known in zero-pole form. 
 
4.2.1 A single time constant  
 
The single pole transfer function is normally considered in time constant form with unit steady 
state gain, that is  
 

sT
sG

1
1)(        (4.4) 
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It is easy to show that this transfer function can be approximated by two straight lines, one 
constant at 0 dB, as G(0) = 1, until the frequency, 1/T, known as the break point, and then from 
that point by a line with slope -6dB/octave. The actual curve and the approximation are shown in 
Figure 4.1 together with the phase curve. The differences between the exact magnitude curve and 
the approximation are symmetrical, that is a maximum at the breakpoint of 3dB, 1dB one octave 
each side of the breakpoint, 0.3 dB two octaves away etc. The phase changes between 0° and -
90° again with symmetry about the breakpoint phase of -45°. Note a steady slope of -6 dB/octave 
has a corresponding phase of -90° 
 

 
Figure 4.1 Bode exact and approximate magnitude curves, and phase curve, for a single time 

constant. 
 
The Bode magnitude plot of a single zero time constant, that is  
 

sTsG 1)(       (4.5) 
 

is simply a reflection in the 0 dB axis of the pole plot. That is the approximate magnitude curve is 
flat at 0 dB until the break point frequency, 1/T, and then increases at 6 dB/octave. Theoretically 
as the frequency tends to infinity so does its gain so that it is not physically realisable. The phase 
curve goes from 0° to +90° 
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4.2.2 An Integrator 

The transfer function of an integrator, which is a pole at the origin in the zero-pole plot, is 1/s. It 
is sometimes taken with a gain K, i.e.K/s. Here K will be replaced by 1/T to give the transfer 
function  
 

sT
sG 1)(        (4.6) 

 
On a Bode diagram the magnitude is a constant slope of -6 dB/octave passing through 0 dB at the 
frequency 1/T. Note that on a log scale for frequency, zero frequency where the integrator has 
infinite gain (the transfer function can only be produced electronically by an active device) is 
never reached. The phase is -90° at all frequencies. A differentiator has a transfer function of sT 
which gives a gain characteristic with a slope of 6 dB/octave passing through 0dB at a frequency 
of 1/T. Theoretically it produces infinite gain at infinite frequency so again it is not physically 
realisable. It has a phase of +90° at all frequencies. 
 
4.2.3 A Quadratic Form 

The quadratic factor form is again taken for two complex poles with  < 1 as in equation (3.7), 
that is 

22

2

2
)(

oo

o

ss
sG     (4.7) 

 
Again G(0) = 1 so the response starts at 0 dB and can be approximated by a straight line at 0 dB 
until o and by a line from o at -12 dB/octave. However, this is a very coarse approximation as 
the behaviour around o is highly dependent on . It can be shown that the magnitude reaches a 

maximum value of 
212

1
pM , which is approximately 1/2  for small , at a frequency 

of 221o .  This frequency is thus always less than o and only exists for  < 0.707. 

The response with  = 0.707 always has magnitude, M < 1. The phase curve goes from 0° to -
180° as expected from the original and final slopes of the magnitude curve, it has a phase shift of 
-90° at the frequency o independent of  and changes more rapidly near o for smaller , as 
expected due to the more rapid change in the slope of the corresponding magnitude curve. Figure 
4.2 shows Bode plots for various values of  against normalised frequency / o. For the 
quadratic zero  

2

22 2
)(

o

ooss
sG      (4.8) 

 
the Bode plots are just reflections in the 0 dB and zero phase axes of the graphs for the quadratic 
pole. 
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Figure 4.2 Normalised Bode plots for the quadratic pole form for different  
 
4.2.4 An Example Bode Plot 
 
Consider again the one zero, three pole transfer function 
 

)1)(2(
)1(4)( 2 sss

ssG     (4.9) 

 
Dividing numerator and denominator by 2, it can be written in the form 
 

)1)(5.01(
)1(2)( 2 sss

ssG      (4.10) 

 
For plotting the Bode diagram it can be thought of as 4 transfer functions:- 
 
(1) a constant gain of 2  
(2) a single zero with a breakpoint of 1 
(3) a single pole with a breakpoint of 2  
(4) a quadratic pole with natural frequency 1 and damping ratio,  = 0.5. 
 
The instruction in MATLAB to obtain the Bode plot of a transfer function object G is simply 
bode(G). The resultant Bode magnitude plot, marked (R), is shown in Figure 4.3 together with 
the individual plots of its four constituents, marked (1) to (4) as given above. The grid is added to 
the plot by typing grid. 
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Figure 4.3 Bode plot of G(s) of equation (4.10) and its constituents. 
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4.3 Nyquist Plot 
 
Since  
 

)()()()( )( jYXeMjG j     (4.11) 
 
every choice of  gives a point in a complex plane either plotted in polar coordinates for the M, 

 form or in rectangular coordinates in X, Y form. Joining the points together as  is varied 
produces a locus with  as a parameter which is known as a polar or Nyquist plot. To obtain 
analytical results one needs to be able to work in both polar and rectangular coordinates, since 
one may be more appropriate than the other for a particular evaluation. From consideration of the 
individual elements of a transfer function in the Bode approach of the previous section one 
should be able to estimate the shape of a Nyquist plot.  
 
Important points in this respect are the high and low frequency limits, that is the value of G(j ) 
as   and 0. For large s the limit of the general transfer function G(s) of equation (2.9) will 
tend to 1/s(n-m), that is 1 over s to the relative degree. Thus for a strictly proper transfer function 
the gain will tend to zero and the phase to -90(n - m)° as . For a proper transfer function 
with n = m the gain will tend to a finite value and the phase to zero. At low frequencies the 
transfer function, G(0) will tend either to a constant or s to the power of the number of 
differentiation terms minus integration terms in the transfer function. Typically only integration 
terms exist in transfer functions for control systems so the behaviour at low frequencies depends 
on the number of integrators and G(s) tends to 1/si where i is the number of integrators. Thus at 
low frequencies for i > 0 the magnitude tends to infinity and the phase to -90i°. This phase result 
does not mean that the locus starts on an axis as sketches in many books incorrectly show. As a 
simple example of this point consider the transfer function  
   

2)1(
1)(

ss
sG         (4.12) 

 
then putting js , and writing )( jG  in the form )()( jYX  gives  
 

22 )1(
2)(X  and 22

2

)1(
)1()(Y .  Clearly as 0 , 2)(X , not the  

 
imaginary axis, although the phase does tend to -90°.  This will always be the case that the locus 
for a transfer function with one or more integrators will tend to an asymptote which in principle 
can be calculated. The Nyquist plot of this transfer function is obtained with the instruction 
nyquist(G). It is shown in Figure 4.4, which is obtained by the following single instruction 
defining the transfer function of G in the Nyquist statement:-  
 
>> nyquist(tf(1,[1 2 1 0])) 
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Information about where a Nyquist plot cuts the axes can be obtained from the facts that the real 
axis is cut when Y( ) = 0 or arg G(j ) = 0° or 180°, and the imaginary axis when X( ) = 0 or arg 
G(j ) = -90° or +90°. Which are the easiest calculations can depend on the transfer function. For 
the above example it is easily seen from Y( ) that the real axis is cut when  = 1 and the 
imaginary axis is only reached as  tends to infinity. However for G(s) = 1/(1 + s)6 then where it 
cuts the axes is best obtained using arg G(j ), which is simply equal to – 6 tan-1 . 
 

 
 

Figure 4.4 Nyquist plot of 1/s(s + 1)2. 
 

Three further comments must be made here about the plot of Figure 4.4:- 
 

(1) For reasons to be explained later the graph is drawn for both positive and negative 
frequencies. The labelling of these has been added to the plot afterwards. 

(2) It can be shown for all transfer functions that X( ) is an even function and Y( ) an odd 
function of . Thus the negative frequency part of the plot is a reflection of the positive 
frequency plot in the real axis.  

(3) MATLAB does not label the frequencies automatically on the plot but they can be 
selected by use of the cursor as has been done to obtain one frequency point on this plot.  

(4) The frequency response plot instructions bode(G) and nyquist(G) in MATLAB 
automatically select the frequency range. This can be done by the user by selecting a 
vector , typically on a log scale using the instruction  = logspace(a,b,n) , which 
generates n points on a log scale between 10a and 10b. If n is omitted the default is 50 
points. The plot instructions are then bode(G, ) and nyquist(G, ). 
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The last instruction in (4) has been used with the  vector generated by logspace for  
a = -0.5 and b = 1 to show a more detailed plot near the origin in Figure 4.5. From the two plots 
it can be clearly seen that at low frequencies, where the gain tends to infinity because of the 
single integration, the locus starts from the asymptote at X( ) = -2 with a phase of -90°, crosses 
the real axis, that is has a phase of -180°, at X = -0.5 and tends to the origin (zero gain) at high 
frequencies with a phase of -270° (relative degree of 3 times -90°). The real axis crossing occurs 
at a frequency of unity. 

Figure 4.5 Nyquist plot with new  vector. 

A final comment on Nyquist plots is that sometimes Inverse Nyquist plots are drawn, these are 
simply the Nyquist plot of the inverse of the transfer function, i.e a Nyquist plot of G(j )-1

4.4 Nichols Plot 

The Nichols plot is similar to the Nyquist plot in that it is a locus as a function of , the 
difference being the chosen axes. On a Nichols plot these are the magnitude in dB on the ordinate 
and the phase in degrees on the abscissa. The origin is chosen, for reasons which will be 
explained, later as 0 dB and -180°. The Nichols plot for the same transfer function as the Nyquist 
plot of Figure 4.4 is obtained by the instruction nichols(G) and is shown in Figure 4.6. The grid 
is obtained by typing ngrid. As expected the plot shows the magnitude decreasing monotonically 
with increase in frequency, the arrow for which was added to the plot, and the phase changing 
from -90° to -270°. 
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Figure 4.6 Nichols plot of 1/s(s + 1)2. 
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5. The Basic Feedback Loop 

5.1 Introduction 

The basic concept, of feedback control, as mentioned in the first chapter is to measure the 
quantity to be controlled, usually called the controlled variable and denoted by C, and to compare 
it with the desired or reference value, usually denoted by R, and to use any error to adjust C to the 
desired value. Thus a basic feedback loop has the structure shown in the diagram of Figure 5.1 
where the various physical elements are represented by their mathematical models in transfer 
function form. The process being controlled, denoted G(s), is usually referred to as the process or 
plant transfer function. 
 
Measurement of its output, C, is obtained by a sensor of transfer function H, which is also known 
as the feedback transfer function. In many cases the dynamics of H may be neglected, so that H is 
just a constant with units converting the output to appropriate units for use in the control system. 
For example, if the output controlled variable is a temperature and the control system error 
channel uses voltage then H will have units of °C/V. The importance of H cannot be 
underestimated since if the sensor is supposed to give 5V at 50°C but actually gives 5V at 48°C 
the perfect control system with its reference set to 50°C will control the temperature at 48°C. In 
other cases H will contain dynamics of the sensor and/or loop compensation dynamics. Some 
sensors introduce a significant noise level into the loop and this can be represented by the signal, 
N, shown. The error signal is normally processed through a controller of transfer function Gc(s), 
as shown, before providing the plant input signal U. The transfer function of the forward path of 
the loop is Gc(s)G(s). 
 
The loop is often subject to disturbance inputs, for instance in a position control system for a 
large antenna dish, varying wind speeds impacting the dish will produce a torque disturbance. A 
disturbance signal D is therefore shown in Figure 5.1. Since the loop is linear the effect of all of 
the three input signals, R, D and N at a particular point can be found independently and then 
summed. 

 
 

Figure 5.1 Basic Block Diagram of Feedback Control System. 
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5.2 The Closed Loop 
 
It can be shown for the closed loop of Figure 5.1 that 
 

)()()(1
)()()()(

)()()(1
)()(

)()()(1
)()()(

)(
sHsGsG
sNsHsGsG

sHsGsG
sDsG

sHsGsG
sRsGsG

sC
c

c

cc

c   (5.1) 

 
The numerator terms are the loop transfer functions from the specific input to the output C(s) and 
the denominator term is 1 plus the product of the transfer functions in the loop, which is known 
as the open loop transfer function, Gol(s) That is 
 

)()()()( sHsGsGsG col      (5.2) 

 
The negative feedback is always assumed so in actual fact if the loop were opened and a signal, 
V(s), injected, it would return as –Gol(s)V(s). From here, unless otherwise stated, our concern 
will be with the response to the input R, so that D and N will be assumed to be zero. 
 
The transfer function from R to C, often denoted by T(s), is given by 
 

)(()(1
)()(

)(
)()(

ssHGsG
sGsG

sR
sCsT

c

c     (5.3) 

 
Its poles are the roots of  
 

0)(1)()()(1)( sGsHsGsGsF olc    (5.4) 

 
which is known as the characteristic equation of the closed loop system, and the closed loop will 
be stable if all its roots are in the left hand side (lhs) of the s-plane. Denoting each of the 
individual element transfer functions in terms of their numerator and denominator polynomials, 
that is  
 

)(
)(

)(
sD
sN

sG
c

c
c ,    

)(
)()(

sD
sNsG    and   

)(
)(

)(
sD
sN

sH
h

h   (5.5) 

 
then the closed loop transfer function 
 

)()()()()()(
)()()(

)(
sDsDsDsNsNsN

sDsNsN
sT

hchc

hc .   (5.6) 

 
The important point to note is that the zeros of T(s) are the zeros of Gc(s) and G(s), but the poles 
of H(s)  
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5.3 System Specifications 
 
The designer of a closed loop control system will be given specifications which the resulting 
system has to meet. Design is invariably an iterative process and begins with the selection and 
modelling of the various system components before the performance of the closed loop system 
can be evaluated. It may be after some analysis, say for a position control system, it is found that 
the required speed of response can only be achieved with a larger motor, so the designer returns 
to the component selection and modelling process. Here it is assumed that the plant transfer 
function is fixed and Gc and possibly H have to be chosen to try and meet the specifications. The 
actual design specifications, which, for example, may involve a limit on the use of energy, may 
have to be ‘translated’ into appropriate quantifiable properties of the closed loop, which is all that 
can be satisfied with analytical control techniques. To make the design easier it is often assumed 
that there are a limited number of transfer functions that might be used in Gc and H and the design 
objective then becomes one of selecting suitable parameters for these fixed form controllers. The 
feedback loop of Figure 5.1 can be redrawn, as in Figure 5.2, with H in the forward path of the 
loop and the reference, R, going through 1/H.  
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Figure 5.2 Equivalent block diagram to Figure 5.1. 

The input to H in the forward path of the loop is then the error in output units, say °C for a 
temperature control, and its output the error in the sensor output units, say voltage V. For loop 
analysis the gain of H can then be included in Gc, so for this reason many results are derived with 
H=1.

Some typical closed loop specifications are therefore discussed below:- 

(1) Stability. Obviously the prime requirement for a feedback loop is that it be stable. 
Methods for investigating stability are discussed in the next section. 

(2) Steady state error. In many instances the inputs, particularly R and D, may be assumed 
constant and it is often required that in the steady state they do not produce an error. 
Mathematically the steady state error can be found by applying the final value theorem 
to the s domain expression E(s) for the error, which for the feedback loop of Figure 5.1 
with H = 1, for the input R(s) a step of amplitude R is

)()(1
1lim)( 0 sGsGs

RssE
c

s      (5.7) 

which will only be zero if )()(lim 0 sGsGcs , and this will only be true if       

Gc(s)G(s) contains an integrator. Obviously if this is not the case then equation (5.7) 
allows the error magnitude to be calculated. However, if one just needs to determine if 
the steady state error is zero then this can be done simply from a consideration of the d.c. 
gain of the loop elements. This is infinite for an integrator, as in the steady state it can 
have a finite output with zero input. For example, for the above case a finite output C has 
to be obtained in the steady state for zero E, which is only possible with an integrator in 
the forward loop. If E were required to be zero for a ramp input the forward loop would 
require two integrators, the first producing a constant output for no input in the steady 
state and the second integrating the constant to produce a ramp. In the case of a 
disturbance D the error it produces is the value it has at C, (i.e C should not be affected 
by it). For D not to affect C then the forward path signal at the point where D enters the 
loop, U, should be equal and opposite to it. Thus if D is a constant Gc(s) must contain an 
integrator for the output not to be affected in the steady state. 
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(3) Step response. Characteristics of the closed loop response to a step input are often 
specified. These are based on the typical response with zero steady state error to a unit 
step shown in Figure 5.3 and are:- 

(a) Rise time,tr. This is the time taken to reach the steady state value of unity for the 
first time. If the response has no overshoot the time is often given for the 
response to go from 0.1 to 0.9, that is from 10 to 90% 

(b) Peak time,tp This is the time taken to reach the first overshoot of the response. 
(c) Overshoot,%O. This is the magnitude of the first overshoot in the response, 

normally expressed as a percentage. If the peak value is 1.2 then the overshoot is 
20%. 

(d) Settling time,ts. This is a measure of the time for the response to have 
approximately reached the steady state of unity. It is normally defined as the 
time to reach within a 2% band of the steady state (between 0.98 and 1.02) and 
remain there. Sometimes a 5% band is used as in the figure illustration. 

 

 
 

Figure 5.3 Typical step response for specifications. 
 
For the response illustrated in the figure tr is approximately 2 seconds, tp approximately 4 
seconds with a %O of 52% and ts of 13.5 seconds for a 5% band. 

 
(4) Frequency response. Sometimes specifications are given with respect to the closed loop 

frequency response requirements of the system. The ideal requirement is for C to follow 
R exactly but this cannot be achieved as the input frequency is increased but is normally 
the case at low frequencies. Thus the closed loop frequency response T(j ) typically 
starts at unit gain (0dB) and zero phase shift. The magnitude response may have one or 
more peaks, the usual case as shown in Figure 5.4, and then decrease.

(a) Bandwidth, Bw. This is defined from zero frequency to the first time (often the 
only time) the magnitude goes through -3dB (value of 0.707) 

(b) Frequency peak, Mp. This is the maximum of the frequency response, provided 
it exceeds 0dB (unit gain). 
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For the response shown in the figure Mp is approximately 16dB at 0.9 rads/s and Bw is around 
1.3 rads/s. The frequency response specifications are related to the step response ones dependent 
on the specific transfer function. For a simple transfer function like the second order one of 
equation (3.6) these relationships can easily be found as in section 3.2.2 it was shown how the 
overshoot was related to  and in section 4.2.3 how Mp was related to . Thus if one is given time 
domain and frequency domain specifications one must look at their consistency. A rise time of 
0.01 seconds, for example, would require a bandwidth significantly greater than 10 rads/s.  

 
Figure 5.4 Typical frequency response for specifications. 

 

5.4 Stability 
 
The requirement for stability of the closed loop is that all the poles of the closed loop transfer 
function T(s) of equation (5.3) lie in the lhs s-plane. The poles are the zeros of the characteristic 
equation (5.4), which will be a polynomial in s. If this polynomial is denoted by   
 

01
)1(

)1( ....)( fsfsfsfsF n
n

n
n   with f0 > 0   (5.8) 

 
then its roots can easily be found using Matlab by the command roots (poly), where poly is 
entered like num or den as a string of coefficients with the highest power of s first. For example 
>> roots([1 6 11 6]) 
     ans = 
 
   -3.0000 
   -2.0000 
   -1.0000 
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5.4.1 Routh Hurwitz Criterion. 
 
Finding the roots of a polynomial of large order was very difficult before the advent of modern 
computational techniques and in 1876 a major contribution was made by Routh who obtained 
conditions which had to be satisfied for all roots of a polynomial to lie in the lhs s-plane. A 
polynomial which satisfies this condition is known as a stable polynomial. The criterion was later 
modified by Hurwitz to give the Routh-Hurwitz results presented in Appendix B. 
Two simple results which prove useful are 
 

(a) A necessary but not sufficient condition, apart from the second order polynomial where 
it is both necessary and sufficient, is that all the coefficients of s must be positive that is fj  > 
0 for all j 
(b) For the third order polynomial a necessary and sufficient condition is all the coefficients 

must be positive and 3021 ffff  
 
5.4.2 Mikhailov Criterion 
 
The Mikhailov criterion is a simple graphical approach only normally mentioned in Russian 
textbooks. If the polynomial F(j ) is plotted for  increasing from zero on a complex plane, then 
all its roots will lie in the lhs s-plane if from starting on the positive real axis at f0 it moves in a 
counter clockwise direction passing successively through the positive imaginary axis, negative 
real axis etc in turn until it cuts no further axes but ‘heads’ for infinity as illustrated in Figure 5.5. 
The number of axes cut will be n-1 
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Figure 5.5 Illustration of Mikhailov Criterion for Stable Fourth Order F(j ). 

 
5.4.3 Nyquist Criterion 
 
In the early days when control engineering was developing as a discipline it was very desirable to 
try and develop concepts to predict aspects of the closed loop system behaviour based on 
properties of the open loop transfer function. There were three major reasons for this:- 
 

(a) When a compensator (controller) is within the loop it is much easier to see how changes 
in its parameters will affect the open loop properties, for example the frequency 
response, than the closed loop properties. 

(b)  Plant models were often obtained by frequency response testing so that G(j ) was then 
available as a plot from experimental data.  

(c)  Even when all the loop transfer functions were known calculating a closed loop step 
response was a laborious procedure. 

 
For these reasons the Nyquist stability criterion, which is based on the open loop frequency 
response, was thus not only useful but also very practical. The derivation of the criterion, which 
uses the mathematics of functions of a complex variable, is relatively easy to explain in principle. 
It is based on Cauchy’s mapping theorem which states that if a complex function, F(s), is mapped 
around a closed contour in a clockwise direction in the s-plane (that is its value calculated at 
points on the contour and plotted in its own complex plane) the origin will be encircled No times 
in the clockwise direction where No is the difference between the number of zeros and poles of 
F(s) enclosed by the chosen s-plane contour. When the contour is taken as the imaginary axis, 
this means taking  from –  to , and then the infinite semicircle in the right hand side (rhs) s-
plane (around this  remains infinite), known as the Nyquist D contour, shown in Figure 5.6, 
then the origin will be encircled by F(j ) No times in a clockwise direction, where No is given 
by:- 
 
   No = [zeros of F(s) – poles of F(s)] in rhs s-plane    (5.9) 
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The zeros of F(s) are required to assess stability so the equation may be written 
 
   zeros of F(s) in rhs = No + poles of F(s) in rhs.     (5.10) 
 
From equation (5.4) it can be seen that the poles of F(s) are the same as the poles of Gol(s) and 
that the only difference between a mapping of F(j ) and Gol(j ) is that the latter is shifted from 
the former by -1 along the real axis. Thus equation (5.10) can be written 
 
   zeros of F(s) in rhs = N + poles of Gol(s) in rhs.     (5.11) 
 
where N now denotes the clockwise encirclements of the (-1,0) point by the plot of Gol(j ). Thus 
if the number of poles of Gol in the rhs s-plane is known, which will of course be zero for a stable 
Gol, the number of zeros of F(s) in the rhs s-plane can be found from equation (5.11) to determine 
the stability of the feedback loop.  
 
This equation gives the Nyquist stability criterion which may be formally stated as the closed 
loop system will be stable if the number of clockwise encirclements by the frequency response 
locus Gol(j ) of the (-1,0) point plus the number of rhs s-plane poles of Gol(s) is zero. Showing 
the Nyquist plot for both negative and positive frequencies allows the encirclements to be found. 
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So that the D contour does not pass through them when singularities (poles or zeros) exist on the 
imaginary axis, it has to be modified so that they lie outside by indentations of infinitesimal 
radius, , as shown dotted in figure 5.6. In many instances the plant to be controlled will be stable 
so that Gol(s) will have no rhs s-plane poles so for stability the Nyquist plot of Gol(j ) must have 
N = 0. Control engineers are, however, required to control plants which are unstable, a modern 
fighter aircraft being a good example. 
 

 
Figure 5.6 Nyquist D contour. 
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6. More on Analysis of the Closed Loop System 
 
6.1 Introduction 
 
In the previous chapter the basic feedback loop was discussed and typical specifications that 
might be required for its performance introduced. Before going on to discuss analytical methods 
that can be used for designing the controller to try and meet given specifications it is necessary to 
present some further analytical concepts used for feedback loop analysis. Also up to this point it 
has been assumed that the transfer function representation for block descriptions is a ratio of 
polynomials in s. There is, however, one linear element which often exists in a control system for 
which this is not the case, namely a time delay. This is therefore covered first in the next section. 
 

6.2 Time Delay 

A time delay as its name suggests is an element which produces an output which is a time 
delayed version of its input. It is also known as dead time or transport delay. The latter name 
reflects the fact that a common occurrence is due to say, a temperature measurement being made 
on a moving fluid down stream from where it has been heated. It is normally assumed that its 
initial output is zero. Thus for example, if the time delay is  seconds the input, v(t), and output 
will be as shown in Figure 6.1 for the linear input v(t) = t.  
 
Mathematically the input, v(t) can be defined as either v(t) = 0 for t < 0 and t for t > 0, or tu0(t) 
where u0(t) is the unit step at t = 0. Using the unit step notation the output can be written as 
(t - )u0(t - ), that is a unit ramp beginning at time . The Laplace transform of the input is 1/s2 
and of the output e-s /s2 (see theorem (vi) Appendix A). Thus the transfer function for the time 
delay block, the ratio of the output to the input in the s-domain, is e-s . 
 

Input      Output 

 
        0                                                          Time                0                                                             Time 
 

Figure 6.1 Illustration of a time delay 
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The time delay transfer function is easily handled when using frequency domain methods as with 
s = j , it is e-j , which has a unit magnitude at all frequencies and a phase lag of . Thus, for 
example, its Nyquist plot is a unit circle which has frequency points of value /2 , / , 3 /2 , 2 / , 
5 /2  etc, at -90°, -180°, -270°, -360°, -450°, etc. Figure 6.2 shows Nyquist plots of the transfer 

functions )1/(1)( 2 sssG  and sesG )( , that is the former with an additional time delay of 
1 second. 

 
Figure 6.2 Nyquist plot of )1/(1)( 2 sssG  with (dotted) and without time delay of 1 second. 

 
Although a time delay can be approximated by the standard series for an exponential a better 
approximation is to use a ratio of polynomials, a result due to Pade. This allows choice of the 
order of the numerator and denominator polynomials. The Pade Table of approximations is given 
in Appendix C. 
 

6.3 The Root Locus 
 
Design of a simple control loop may sometimes just involve the choice of a suitable gain, K, in 
which case the characteristic equation will be  
 

0)(1 sKGol      (6.1) 

 
and the poles of the closed loop transfer function , the roots of equation (6.1), will vary with K. 
Evans in 1948 found a diagrammatic method for showing how these roots would vary as K 
changed, known as a root locus, by recognising that, since s is complex, equation (6.1) could be 
written as the two equations 
 

Arg(Gol(s)) = -180°     (6.2) 
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More on Analysis of the Closed Loop System

and  
 

K|Gol(s)|= 1      (6.3) 
 

Based on equation (6.2) he was able to prove several results indicating where the roots would be 
and then used equation (6.3) to mark the corresponding value of gain on the locus. MATLAB 
plots a root locus with the command rlocus(G).   
 
Some simple rules which enable a quick check of a root locus, assuming Gol is in the form of G(s) 
given in equations (2.9) to (2.11), and K is positive are:- 
 

(1) The number of root locus paths will be n, assuming n  m. 
(2) The loci start at the poles of the open loop transfer function, Gol, with K = 0 
(3) The loci finish at the zeros of the open loop transfer function, Gol ,as K  
(4) A number of loci equal to the relative degree, (n-m), or the so-called number of zeros at 

infinity, of the open loop transfer function will tend to infinity as K tends to infinity 
(5) Loci exist on the real axis to the left of an odd number of singularities (poles plus zeros). 

 

it’s an interesting world

Get under the skin of it.
Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold: 
to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists – in IT, internet, engineering, languages,
information assurance, mathematics and intelligence – get well
beneath the surface of global affairs. If you thought the world was 
an interesting place, you really ought to explore our world of work.

www.careersinbritishintelligence.co.uk
Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
all sections of the community. We want our workforce to reflect the diversity of our work.

TOP
GOVERNMENT

EMPLOYER

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/73341/62


Download free books at BookBooN.com

Control Engineering

 
63 

As a simple example the command  
>> rlocus(tf([1],[1 3 2 0])) 
 
produces the root locus shown in Figure 6.3. This transfer function for, Gol, has no zeros and 3 
poles at 0,-1 and -2, and it can easily be seen that the plot satisfies the above five rules for the 
loci. The characteristic equation has three roots all of which, initially for low gain, are real. As 
gain increases the root moving from the origin moves towards that from the one at -1, they meet 
at the so called breakaway point where they are equal and then form a complex pair for further 
increase in gain. The third root moves all the time to the left on the negative real axis from -2. 
Information for a specific point on the locus can be obtained by pointing at it and using a left side 
cursor click, with the result shown by the label on the Figure. The value of the Gain, K, and the 
coordinates of the point as Pole, are given. The other information given on the damping is based 
on the assumption, as explained in section 3.2.2, that this complex pole was one of the two 
complex poles of a second order system with the transfer function of equation (3.6). This is 
obviously only indicative since, for example, the closed loop response to a step input will, as 
indicated earlier depend upon any zeros; and in this case when there are no zeros on the relative 
weighting of the responses from the real pole beyond -2, actually at -2.50 for K = 1.89, and the 
complex pair, as illustrated in section 3.2.4. The overshoot of the closed loop step response for 
this third order transfer function with the gain value of 1.89 is 37.0 not 39.4% 
 

 
 

Figure 6.3 Illustrative root locus plot. 
 

The gain range for the root locus plot is selected automatically but as for  in a frequency 
response may be selected if preferred by the command K=linspace(a,b,n), which generates n 
points linearly spaced from a to b, inclusive, and then use of the plotting command rlocus(G,K). 
When a root passes into the rhs s-plane the closed loop becomes unstable. For the above case 
intersection with the imaginary axis occurs for K = 6 at a frequency of 21/2 = 1.414, the value of 

More on Analysis of the Closed Loop System



Download free books at BookBooN.com

Control Engineering

 
64 

the imaginary axis coordinate. This condition is often referred to as being neutrally stable, since 
mathematically a constant amplitude oscillation exists. 
 
Although the root locus method is normally used for a varying gain in the characteristic equation 
it can be used for any variable parameter. Consider for example 
 

))(1(
4)(

asss
sGol     (6.4) 

 
The closed loop characteristic equation is 
 

04)1( 23 assas     (6.5) 
 
This can be written, by dividing by the terms independent of a, as 
 

0
4

)1(1 23 ss
sas

     (6.6) 

 

Thus comparing with equation (6.1) a replaces K and the equivalent Gol is
4

)1(
23 ss

ss
. Plotting 

the root locus of this transfer function will then show how the closed loop poles vary as a 
function of a. Note that to find the poles a cubic has to be solved, which is as mentioned 
previously easily done in MATLAB with roots. 
 

6.4 Relative Stability 
 
Relative stability, which may also be called robustness, is a measure of how near a system is to 
being unstable. Robustness, however, is used with respect to many properties and its use is best 
qualified by using it in the form robustness of property X with respect to property Y if the 
context is not clear. There are several measures which are used to indicate relative stability and 
some are discussed below. 
 
6.4.1 Pole positions. 

Obviously since instability results from a pole entering the rhs s-plane, the nearer a pole in the lhs 
s-plane is to the imaginary axis the nearer the system being studied will be to instability. Thus in 
the previous root locus example the nearer the gain to the value of 6 the nearer the two complex 
poles are to the imaginary axis. The information in the panel of the root locus plot therefore gives 
an indication of the relative stability of the system. 
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6.4.2 Gain and Phase Margin. 
 
If the open loop system transfer function is stable then from the Nyquist criterion given in section 
5.4.3 the closed loop system will be stable if its Nyquist plot does not encircle the Nyquist point 
(-1, 0).  Passing of the locus through this point corresponds to neutral stability like the crossing of 
the imaginary axis in a root locus plot. For the G(s) considered in the root locus plot this would 
occur at a frequency of 1.414 rad/s. with an additional gain of K = 6. In gain-phase terms the 
Nyquist point has a gain of unity and a phase of -180°, hence the choice of this point as the origin 
for a Nichols plot. Obviously therefore measures of how near the open loop frequency response 
locus is to this critical point, on the Nyquist or Nichols plots, are indicators of relative stability. 
Figure 6.4 shows a typical open loop frequency response Nyquist plot, it is in fact  
 

)2)((1(
3)(

sss
sGol     (6.7) 

 
the plant transfer function as used in the root locus plot with an additional gain of 3. The (-1, 0) 
point is labelled N, the origin O, and the point where the locus cuts the negative real axis as P. 
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(1) Gain Margin. The gain margin is the amount by which the gain needs to be increased 

for the closed loop to become unstable. It is usually given in dB’s and is 20log10(ON/OP). 
For the example plot the negative real axis is cut at -0.5, so for the locus to pass through 
N the gain has to be increased by a factor of 2, which is 6dB. As the phase shift is -180° 
the frequency at this point is usually known as the phase crossover frequency, which will 
be denoted by pc and is 1.414 rad/s. in the example. 

(2) Phase Margin The phase margin is the amount by which the loop phase needs to be 
changed for the loop to become unstable. The point G on the frequency response has a 
gain of unity, that is OG = 1, so for this point to pass through N the phase needs to be 
changed by the amount of the angle GON marked in the figure. Mathematically the 
phase margin is 180° + arg (G(j gc), where gc is the frequency at G and is known as the 
gain crossover frequency since |(G(j gc)|=1. In the example gc = 0.969 rads/s. and the 
phase margin is 20.0°

Figure 6.4 Nyquist plot illustrating gain and phase margins. 
 

 
Figure 6.5 Bode plot illustrating gain and phase margins. 
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Figure 6.5 gives the Bode plots of the same open loop transfer function of equation (6.7) and 
shows how the closed loop gain and phase margins are found from it. Figure 6.4 also illustrates 
another point that for a stable open loop transfer function the closed loop will be stable if the 
open loop frequency response traced with increasing frequency passes the critical point to its left. 
Sometimes Nyquist loci are much more complicated than the simple smooth one shown, for 
example with multiple crossings of the negative real axis, and in such cases further clarification 
may be necessary when using gain and phase margin terms. Note also that with a non smooth 
locus it would be possible to have a large gain margin and a small phase margin or visa versa. 
 
6.4.3 Sensitivity functions 
 
The closed loop transfer function, with H = 1, is 
 

)(1
)(

)(
sG

sG
sT

ol

ol      (6.8) 

 
If one regards Gol(s) as a variable and wishes to describe the sensitivity, S, of T to changes in Gol 

then this may be written as  
 

ol

ol

olol dG
dT

T
G

GG
TTS

/
/

    (6.9) 

 
which on evaluating the differentiation gives  
 

)(1
1

sG
S

ol

      (6.10) 

 
The complimentary sensitivity function is defined as 
 

TS1        (6.11) 
 

which is the closed loop transfer function. Since the vector 1 + Gol(j ) is a measure of the 
distance of Gol at any frequency from the Nyquist point (i.e. in figure 6.4 the length NG is 
1+Gol(j gc), when this is small S(j ) and T(j ) will have large peak magnitudes, so their 
maximum magnitudes may be used as relative stability indicators. That of T(j ) is discussed 
further in the next section  
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6.5 M and N Circles 

The idea of M and N circles again relates to the days when computer software was not available 
and designers were interested in finding out about the closed loop frequency response behaviour 
from the open loop frequency response. The computations from open loop to closed loop 
properties are now easily done but the concepts are still of some value, particularly that of M 
circles. If the feedback transfer function H = 1 then, Gol(j ) = Gc(j )G(j ), and the closed loop 
frequency response function is  
 

)(1
)(

)(
jG

jG
jT

ol

ol      (6.12) 

 
If the magnitude of this function is required to remain constant, at a value M, as  varies then it 
can be shown that Gol(j ) should move on a circular path on a Nyquist plot. Thus by 
superimposing this grid, known as M circles, on a Nyquist plot of the open loop frequency 
response one can see how the magnitude of the closed loop frequency response will vary with 
frequency. The magnitude values of M are normally labelled in dBs. It can further be shown that 
if the closed loop phase is to remain constant then this also produces a grid of circles, known as 
N circles. The M circles can be overlaid on a Nyquist plot in MATLAB by using the right hand 
mouse button and selecting grid from the resulting options. This is shown in Figure 6.6 for the 
same transfer function as used in Figures 6.4.and 6.5. 
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Figure 6.6 Nyquist plot with M circles. 

 
The largest M value circle which the plot reaches is seen to be approximately 10dB at the point P. 
Thus the closed loop frequency response should have a maximum magnitude Mp of 10dB at the 
frequency of the point P, which is approximately 1 rad/s., as is seen to be the case in the 
MATLAB plot of Figure 6.7. The observant reader may also have noticed that the 0dB (unit gain) 
M circle is in fact a straight line (circle with centre at infinity and infinite radius) through the 
point (-0.5,0). This means for a typical open loop Nyquist plot it must always stay to the right of 
this line if the closed loop frequency response must not have a gain greater than unity. Obviously 
specifying the Mp of a frequency response is another measure of relative stability.  
 

 
Figure 6.7 Closed loop frequency response for Gol(j ) of equation (6.7) with H = 1. 
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7. Classical Controller Design 

7.1 Introduction 
 
Classical controller design involves the choice of a suitable transfer function in the controller Gc, 
or possibly H, of Figure 5.1 so that the closed loop performance meets the required specifications. 
This can often be achieved with quite simple transfer functions with three common ones being 
the phase lead controller, the phase lag controller and the PID (Proportional, Integral and 
Derivative) controller. Since the system specification often includes that there should be no 
steady state error to a step input, the phase lead and lag controllers, which do not include an 
integral term, are normally used with plant transfer functions with an integral term. Many plant 
transfer functions in process control, for example temperature control, do not include an integral 
term so that PID controllers, or sometimes just PI controllers, are often used to control them. PID 
controllers are also used on plants with an integration term to eliminate steady state errors caused 
by a constant disturbance, D, in Figure 5.1; a topic which will be discussed in chapter 9. 
 
Most textbooks discuss the design of phase lead and lag controllers using both frequency domain 
and root locus methods but here only frequency domain methods will be covered.  The main 
reason for this is that frequency domain methods involve ‘loop shaping’ which is used in recent 
approaches to multivariable control.  Both methods invariably involve iteration as in the 
frequency domain approach one is shaping the open loop frequency response and in the root 
locus approach one is selecting the closed loop poles. As explained earlier the relationship 
between these properties and the resulting closed loop step response, which is often a system 
specification, is based on qualitative concepts. For example, it can be seen from equation (5.6) 
that if the compensator is moved from the forward path to the feedback path, the closed loop 
transfer function, T(s) changes, but both the open loop frequency response and location of the 
closed loop poles are unchanged. 
 

7.2 Phase Lead Design 

A phase lead controller as stated above is normally used when the plant transfer function G(s) has 
an integration. Assuming this to be the case then, with Gc = K and H = 1, it will be found that 

sKsGsG vcs /)()(lim 0 , where Kv is a constant and the error to a ramp input will be smaller 

the larger the value of Kv . This consideration often affects the choice of the controller gain so 
that the phase lead content of the controller is normally determined assuming Gc(0) = 0 so as not 
to affect Kv. The transfer function of the phase lead controller is therefore taken as  
 

Ts
sTsG

1
1)(      (7.1) 

 
which produces a lead when  < 1. 
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A common frequency domain approach for selecting the parameters  and T for a phase lead 
controller is to do the design so that the compensated open loop frequency response locus 
achieves a preselected phase margin, °. This is based on the assumption that for a smooth open 
loop frequency response increasing the phase margin will reduce the overshoot in the step 
response. There are several ways of trying to achieve this and dependent on the choice of  for a 
given G(s) they may or may not be successful. Possible methods are :- 
 
(i) The ‘classical’ method, which will be described below, and is covered in most textbooks. 
(ii) Choosing the controller zero to cancel the dominant pole of the plant, assuming of course 

one exists. 
(iii) Designing for a chosen phase or gain crossover frequency, i.e. where the open loop gain 

is unity or the phase -180°. 
(iv) Fix , usually based on bandwidth or noise considerations, and find a suitable value of T. 
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Before outlining the procedure of (i) a few facts regarding the phase lead network are needed. 
The derivations are straightforward and can be found in many textbooks on control. The network 

gives a maximum phase lead, m at the frequency m T
1

 of sin 1 1
1

 and the 

corresponding gain is 20 1010 10log log . Note that on the Bode diagram with the 
logarithmic scale for frequency, the frequency m lies half way between the two break points, 1/T 
and 1/ T, and the corresponding gain in dB is half the gain of the starting and finishing gains 
Values of the phase lead and the corresponding gain for choices of  are given in Table 7.1 and 
Fig 7.1 shows a Bode diagram for the phase lead network for T = 1 and = 1/8. 
 

  1/2 1/3 1/4 1/5 1/6 1/8 1/10 

Max. Lead m 19.5 30.0 38.9 41.8 45.6 51.1 54.9 

Gain at m GmdB 3.01 4.77 6.02 6.99 7.78 9.03 10.00 

 
Table 7.1 Phase lead network parameters. 

 

 
 

Figure 7.1 Bode diagram of phase lead with T = 1 and  = 1/8.  
 

The procedure for (i), if the desired phase margin is , is then as follows:- 
 

1. Evaluate the uncompensated system phase margin . 
2. Allowing for a small amount of safety, , estimate the required phase lead, m =  -  + 

 (  typically 5 -18 ). 
3. Evaluate  for this value of m from the above equation (or use Table 7.1). 
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Classical Controller Design

4. Evaluate 10log10  (or take from Table 7.1 where Gm dB = -10log10 dB) and determine 
the frequency where the uncompensated Bode frequency magnitude curve is equal to 
10log10 dB. This frequency is the estimated new 0 dB crossover frequency and m

simultaneously (if the guess for  is correct), because the compensation network 
provides a gain of 10log10  at m.

5. Draw the compensated frequency response, check the resulting phase margin, and repeat 
the steps from 2 if necessary (i.e. change ).

6. If the design does not meet the specifications repeat for a different choice of phase 
margin, i.e. increase if the overshoot is too high. 

The problem with the approach is in estimating  although it is much easier interacting with Bode 
plots in MATLAB than it was with sketched Bode plots and pencil and paper. Critical to the 
success of the method is the rate of change of phase of the plant transfer function beyond the 
frequency of the uncompensated system phase margin. If this is too high the method will fail. 
This also affects the estimate that should be taken for . A guide, is 5 -10  for a plant of relative 
degree 2, and 12 - 18  for one of relative degree 3.  

As an example consider a plant with transfer function 

    
)1.01)(5.01(

6)(
sss

sG      (7.2) 

If after doing the Bode plots the command margin(G) is given in Matlab then the values of the 
gain and phase margins for the transfer function will be given on the Bode diagram as shown in 
Figure 7.2. The phase margin is seen to be 15.6°. For a second order system a phase margin of 
40° corresponds to an overshoot of slightly over 25%, so let us assume the phase lead 
compensator is required to produce a phase margin of around 40°. 

Figure 7.2 Bode diagram for the transfer function G(s) 
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The extra phase required to increase the phase margin to 40° is (40-15.6+ )° is 40° if  is taken 
equal to 15.6° which is reasonable for a transfer function with relative degree 3. From Table 7.1 
this suggests an  of either 1/4 or 1/5. Taking the latter value means  = 17.4° and from Table 7.1 
the dB for  = 1/5 is 6.99. From Figure 7.2 the gain plot is approximately 7dB down at a 
frequency of 4.73, which is slightly higher than the phase crossover frequency. 

Thus 2.0/173.4 T , giving T = 0.472. The compensator is therefore taken 

as
s
ssGc 094.01

472.01)( .  Figure 7.3 shows the compensated open loop frequency response 

together with that of the plant alone. It can be seen that the guess for  was very good with the 
resulting gain crossover frequency being 4.72 and the phase margin 39.6°.  Use of a phase lead 
compensator is seen to increase the gain and phase crossover frequencies and the open loop 
bandwidth. It therefore can be expected that the closed loop step response of the compensated 
system will be faster than that for the plant with a unit gain compensator. These step responses 
are shown in Figure 7.4 where the overshoot of the phase lead compensated system is 
significantly less as expected because of its increased phase margin. The overshoot of the 
compensated system is, however, slightly more than 25%. It is of interest to compare this closed 
loop response with that obtained with the phase advance compensator placed in the feedback path 
and this is shown in Figure 7.5. The compensator in the feedback path is seen to result in a 
response which has a longer rise time, a comparable settling time, and no overshoot. Another 
interesting aspect of placing the compensator in the feedback path is seen by looking at the 
controller output signals, normally called the control signals, for step inputs. These are shown in 
Figure 7.6.  
 

 
 

Figure 7.3 Open loop frequency responses of the compensated and uncompensated systems. 
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Figure 7.4 Closed loop step responses of the compensated and uncompensated systems. 
 

As the relative degree of the phase advance compensator transfer function is zero, its initial 
output in response to a step input is 1/ , in this case 5. Thus the closed loop response for the 
compensator in the forward loop produces a ‘derivative kick’ of 5. This accounts for the faster 
rise time but also means that the control signal may cause saturation for large step inputs. In 
contrast, with the compensator in the feedback path the control signal starts from zero and 
reaches, in this case, a maximum of around unity. 
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Before concluding phase lead controller design a few comments on the other suggested 
approaches (ii) to (iv) are appropriate. First with respect to method (ii), the dominant plant pole 
in the example G(s) of equation (7.2), i.e the largest time constant, is 0.5, so using this method 

the phase advance controller transfer function would be 
'1

5.01)(
sT

ssGc , where T’ would be 

evaluated to give the required phase margin. The result for this particular example, choosing a 
phase margin of 40°, gives T’ = 0.09, which makes the compensator almost the same as in (i) due 
to the nearness of 0.5 to 0.472. With method (iii), which is usually done for the gain crossover 
frequency, the problem is selecting how much higher this frequency should be than for the plant 
 

 
Figure 7.5 Comparison of step responses for forward path and feedback path locations of the 

compensator. 
 

 
Figure 7.6 Corresponding control signals for the different compensator positions. 
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alone. If it is selected too high a design will not be possible. Method (iv) is straight forward, a 
value of , usually in the range 1/8 to 1/16, is selected and then T found to give the desired phase 
margin. If in the above example  is selected as 1/8, then T can be found by iteration in 
MATLAB to be about 0.19, with a corresponding gain crossover frequency of 3.41 rads/s. 
Interestingly this open loop frequency response has a higher gain margin but a smaller phase 
margin than the design using method (i) as shown in Figure 7.7. Lead compensation may not be 
possible in some cases as it depends very much how rapidly the phase of the plant transfer 
function changes beyond the existing uncompensated gain crossover frequency. 
 

 
 

Figure 7.7 Comparison of Bode diagrams for method (i) with a design using an alpha of 1/8. 
 

7.3 Phase Lag Design 

A phase lag compensator is achieved with the transfer function of equation (7.1) with  
 >1. In doing a phase lag design one uses the fact that the compensator gain changes from 0dB 

at low frequencies to 20log10(1/ )dB = -20log10( )dB at high frequencies. The Bode diagram for 

the phase lag transfer function 
sT

sTsG
1
1)( is shown in Figure 7.8 for  = 10 and T=1. The 

phase lag, , a decade above the second break point is 10tan10tan 11 , which depends 
upon , with values of 2.85°, 4.27°, 4.99° and 5.13° for  = 2, 4, 8 and 10 respectively. The 
corresponding gain differs by less than 0.05dB from the asymptotic value of -20log10 . The idea 
is to have this point as the gain crossover frequency of the compensated locus. Thus if the 
required phase margin of the compensated system is , then one needs to find the frequency , 
where arg G(j ) = -(180- ) -  and |G(j )| = 20log10 . 
 
As an example the same plant as previously, given by equation (7.2), is taken for a phase lag 
compensator design with again the requirement for the compensated system to have a phase 
margin of 40°. Assuming  = 4° the frequency where G(j ) has a phase of  
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-136° is required. From the Bode diagram this is approximately at 1.51rads/s. where the 
corresponding gain is 9.89dB, a gain of 3.12. Thus, 10/T = 1.51,  = 3.12 and the required 

compensator transfer function is
s
ssGc 7.201

62.61)( .  

 

  
 

Figure 7.8 Bode diagram of lag compensator. 
 

The Bode diagrams for the plant alone and the lag compensated system are shown in Figure 7.9. 
The bandwidth of the compensated system with the lag network is lower and the closed loop step 
response is slower. This response and that for the phase lead compensated system with the 
compensators in the forward path are shown in Figure 7.10. Note the %overshoot for both plots is 
roughly the same. The lag compensator does produce a small initial jump in the control signal to 
1/3.12 which is roughly its peak value. Unlike lead compensation the use of lag compensation in 
the feedback path produces very poor results due to the delay it causes to the feedback signal. 
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Figure 7.9 Bode diagrams for the plant alone and the lag compensated system 
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For this example a very much slower response, with an overshoot of over 250%, results. Unlike 
lead compensation lag compensation is usually possible, however since it slows down the 
response and reduces the bandwidth it may not be desirable 
 

 
 

Figure 7.10 Closed loop step responses for lead and lag compensated systems. 
 

7.4 PID Control 
 
Most plants in the process industries do not contain an integration term in their transfer function. 
It has been seen that it is necessary to have an integration term in the forward path to achieve 
zero error in the steady state response to a reference step input, so an integration term is normally 
required in the controller for these plants. The ideal phase lead controller with  = 0, is a PD, that 
is proportional plus derivative, controller. Thus the use of a PID controller containing 
proportional, integral and derivative terms is a logical form of fixed term controller for plants 
without an integration term in their transfer function. PID controllers have thus been used 
extensively in the process control industries for many years. PID control was first implemented 
with pneumatic controllers and subsequently went through the use of vacuum tubes, transistors, 
integrated circuits to today’s situation where it is typically software in a microprocessor.  
 
There are various ways in which the controller may be implemented with most academic papers 
considering its representation by the ideal transfer function  
 

])/1[1()( idcc sTsTKsG     (7.3) 

 
with the loop error as input. 
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An alternative form with real zeros only which is also frequently used is  
 

])/1[1)(1()( 21
' sTsTKsG cc    (7.4) 

 
The above can be converted to the former using, KcT2 = Kc’Ti, Kc = Kc’(T1+T2)/T2, and KcTd = 
Kc’T1. Sometimes the derivative term is fed from the output rather than the error, which will be 
denoted PI-D. This avoids the ‘derivative kick’ discussed earlier with respect to the phase lead 
compensator. Also in practice the derivative term has an additional time constant being of the 
form sTd/(1 + s Td), with  typically around 0.1. 
 
7.4.1 The Ziegler–Nichols Approach 
 
The earliest work usually referenced on PID control is that of Ziegler and Nichols (Z-N) [7.1], 
which related to identification and control, the idea being to present techniques which could be 
used to set the parameters of the PID controller by process commissioning engineers. Thus the 
procedure is often known as controller tuning and Z-N suggested the following two methods 
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Method 1.  
 
An open loop step response identification of the plant was suggested with the resulting response 
modelled (‘fit’) by a first order plus dead time (FOPDT) transfer function..  
Based on the FOPDT model 

sT
eK

sG
s

p

1
)(      (7.5) 

 they suggested the controller parameters be set according to Table 7.1   
 

Type   Kc Ti Td 

P T/ Kp   

PI 0.9T/ Kp 3.33   

PID 1.2T/ Kp 2  0.5  

 
Table 7.1 Z-N Method 1 Parameters 

 
Method 2 
 
They suggested that with the controller ‘in situ’ in the loop it should be put into the P mode and 
the gain turned up until an oscillation took place. The gain, of the P term, known as the critical 
(or ultimate) gain, K’c , and the frequency of the oscillation , c=2 /Tc, known as the critical 
(ultimate) frequency were then recorded. 
Based on these values the controller parameters should then be set according to Table 7.2. 

 

Type Kc Ti Td 

P 0.5Kc’   

PI 0.45Kc’ 0.8Tc  

PID 0.6Kc’ 0.5Tc 0.125Tc 

 
Table 7.2 Z-N Method 2 Parameters 

 
The first method is a classical identification and then controller design approach. Step responses 
were regularly used in the early days of control for identification and trying to fit to another 
model, if felt appropriate, say from physical considerations could be done. The FOPDT model, 
however, is often a good estimate for many processes.  Others that have been used are second 
order plus time delay (SOPDT) and a single time constant to a large power, say 6 or higher. 
There is no reason why after identifying an FOPDT model another design method should not be 
used to set the controller parameters. The Z-N design method was based on achieving around a 
25% overshoot to a set point step response. 
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The second method is based on the fact that if a simple linear feedback loop becomes unstable it 
will do so at a frequency where the phase shift is -180 . Thus, in principle, the approach gives the 
frequency, c, and the gain, 1/Kc’, of the point at -180  on the plant frequency response. From a 
theoretical viewpoint the method is fine but it suffers from many practical problems. These 
include:- 
 

1. Even if the loop were linear the fact that many processes have very long time constants 
makes it extremely difficult and time consuming to try and find the gain, Kc’. 

2. It can be dangerous if there is no satisfactory limiting effect in the loop as an adjustment 
to an over estimated value of Kc’ can result in a large oscillation. 

3. Many practical loops are nonlinear. Saturation is helpful in limiting the amplitude of the 
oscillation but dead zone effects make finding Kc’ even more difficult. 

 
7.4.2 Time Scaling and the FOPDT Plant 
 
Time scaling and amplitude scaling were very familiar to users of an analogue computer. Time 
scaling was seen to be useful in plotting step responses in chapter 3 since it basically reduces the 
parameter dependence by one. Here its relevance to selecting (or tuning) controller parameters 
for a PID controller controlling an FOPDT plant is discussed. If for the transfer function of 
equation (7.5) a normalised s, sn, is taken equal to sT and with  = /T the transfer function 
becomes 
 

n

s
p

n s
eK

sG
n

1
)(      (7.6) 

 
which can be referred to as a normalised FOPDT transfer function. 
 
The normalised transfer function has a unit time constant and only two parameters Kp and . The 
actual system has a step response which is T times slower and markings on its frequency 
response T times smaller. If this normalised plant is controlled by an ideal PID controller in the 
error channel with the transfer function of equation (7.3) then this becomes  
 

])/1[1( ''
indnc TsTsK      (7.7)  

 
where T’d = Td/T and T’i=Ti/T and the normalised open loop transfer function can be  written  
 

])/1[1(
1

)( ''
indn

n

s

nol TsTs
s

KesG
n

   (7.8) 

 
where K = KpKc. This means that if the controller parameters are designed based on some 
property of the open or closed loop transfer function, the results will be of the form:- 
 

K = f1( ), T’d = f2( ), and T’i = f3( ). 
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Thus for any FOPDT plant the controller parameters must be of the form 
 

Kc = f1( ) /Kp, Td = Tf2( ), and Ti = Tf3( ). 
 

for the same performance property to be maintained for all plants which can be time scaled to the 
same normalised plant. This will be referred to as consistent tuning. Method 1 of Z-N is easily 
seen to be consistent with a simple choice for the functions f1, f2 and f3 of being inversely 
proportional, proportional, and proportional to , respectively. It is also easy to show that Method 
2 is also consistent. Table 7.3 lists the functions of  for several consistent tuning formula which 
have been suggested. Apart from Z-N method 1 the others are Cohen and Coon (C-C) [7.2], 
Zhuang and Atherton (Z-A) [7.3] and Wang, Juang and Chan (W-J-C) [7.4]. Figures 7.11 to 7.13 
show these relationships graphically for both Z-N methods and the others. The C-C results are 
omitted from f1 as its value at small values of  becomes large. The a and b parameters in the Z-A 
method depend on the integral performance tuning criterion used. 
 
The book by O’Dwyer [7.5] gives a large number of so-called tuning rules for PID controllers 
but they are unfortunately not given in the normalised form which has been demonstrated here 
for the FOPDT plant. Two other plant transfer functions which can also be normalised in terms 
of the parameter  are 

)1(
)(1 sTs

eK
sG

s
p       (7.9) 

and 

n

s
p

sT
eK

sG
)1(

)(2
,      (7.10) 

For time scaling consistency the required controller parameters must again be in the 
form pc KfK /)(1 , )(2TfTi and ).(3TfTd  

 

 f1( ) f2( ) f3( ) 

Z-N 
(Method1) 

/2.1  2  5.0  

C-C 
212

316
 

813
)632(

 
211

4
 

Z-A 1
1

ba  

22

1
ba

 
3

3
ba  

W-J-C 

)1(
)5.01)(73.053.0( 5.01  

5.01
5.0

 

 
Table 7.3 Functions of Rho for Different Tuning Formulas. 
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Figure 7.11 Gain K (= KcKp) as a function of rho 
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7.4.3 Relay Autotuning and Critical Point Design 

The principle of the Z-N second method is very useful as it can be used in closed loop but the 
difficulty of adjusting the P, as mentioned earlier was a practical difficulty. With the advent of 
microprocessor controller, however , Astrom and Hagglund [7.6] suggested a much more suitable 
method for practical implementation for estimating the critical point. 

Figure 7.12 Graph of normalised integral time against rho. 

Figure 7.13 Graph of normalised derivative time against rho. 
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This involved replacing the P term by an ideal relay function to obtain a limit cycle. It can then 
easily be shown using a describing function (DF) analysis that the frequency of the limit cycle, 

o, is approximately the critical frequency, c, and the critical gain, Kc, is given approximately 
by Kc = 4h/a , where 2h is the peak to peak amplitude of the relay output and, a, is the 
fundamental frequency amplitude of the limit cycle. It can be shown that the estimate for c will 
be better than for Kc and that the results will be better the nearer the limit cycle at the relay input 
is to a sinusoid. The error introduced by replacing a by half the peak to peak amplitude of the 
limit cycle is usually quite small and is normally done in practice because of the ease of 
measurement. 
 
Thus with a more practical approach for estimating the critical point it is appropriate to comment 
further on use of the critical point in PID tuning. First what is the principle of the Z-N method 2 
in using the critical point for tuning? Since all that is known about the plant is its critical point 
then all one can do in selecting the controller parameters is to place this frequency at a known 
point on the compensated open loop frequency response locus. Since in the Z-N method Ti is 
taken equal to 4Td, which corresponds to the two zeros of the PID controller transfer function 
being real and equal, it is easy to show that for the PI controller this point is 0.46 arg -192° and 
for the PID controller it is 0.66 arg -155°.  
 
This concept is a useful design approach and if felt appropriate a different point can be chosen, 
within the allowable range. Also since one only has freedom to adjust two controller parameters 
the Ti/Td ratio may be selected to be other than 4. It is easy to show with Ti/Td = 4, that for the 
FOPDT plant the controller parameters are obtained from the following equations for moving the 
critical point to g arg - (180 - )°. 
 

oo
1tan       (7.11) 

 

)2/tan(1(2
)2/tan(1'

o
dT       (7.12) 

 

2'2

2/12'

41
)1(4

do

odo

T
Tg

K     (7.13) 

 
Critical point design is a useful concept since closed loop performance is very dependent on the 
open loop frequency response in the region of the Nyquist critical point (-1, 0). Certainly if one 
has little knowledge of the plant dynamics it can be very useful as illustrated here for a plant with 
transfer function G(s) and a possible reduced order model Gr(s), for which the step responses are 
shown in Figure 7.14. The difference between the step responses is very small and it would be 
difficult to detect with noisy measurements. However, the frequency responses shown in Figure 
7.15 are quite different around the Nyquist critical point, indeed G(s) has a finite gain margin 
whilst that of Gr(s) is infinite. 
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Thus designing a controller based on what appears to be a reasonable reduced order model from 
step response information would be extremely poor compared with use of an approximate critical 
point. The trouble with a step response is that the higher frequency information is contained in 
the early part of the response. For the interested reader the two transfer functions are  
 

)8)(4)(2)(5.0(
)1(320)(

ssss
ssG    (7.14) 

 

 
 

Figure 7.14 Step responses of G(s) and Gr(s). 
 

 
 

Figure 7.15 Frequency responses of G(s) and Gr(s) 
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and 
 

591.3537.6
91.35)( 2 ss

sGr     (7.15) 

 
Before concluding this section it is probably worth mentioning that although relay autotuning has 
been primarily associated with PID controllers it can also be used for other simple controllers, 
such as phase lead and phase lag [7.7]. Also by including known networks with the relay, 
additional information can be obtained, for instance including a tuned filter at the estimated limit 
cycle frequency will make the limit cycle almost sinusoidal and yield more accurate critical point 
information.  
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7.4.4 Further Design Aspects 
 
When a transfer function model is available for a plant for which a PID controller is to be used 
then a frequency response approach to achieve certain properties, say a phase margin as used for 
the lead and lag network designs, can be used. Often to make it easier this is done with a fixed 
ratio for Ti/Td, typically 4 since the approximate Bode amplitude diagram for this is a ‘V’ shape. 
Pole placement designs are also often suggested but these have a major difficulty that for the 
ideal PID controller in the error channel one has two zeros in the closed loop transfer function. 
Their effect on the closed loop response is not easy to predict and their location is affected by the 
choice of the poles. In general the best method of design for selecting parameters of fixed form 
controllers is to use optimisation methods, which will be discussed in the next chapter. 
 
Practical PID controllers always have a facility to prevent ‘integral windup’ that is a mechanism, 
and many algorithms are used, for stopping the integrator integrating when plant input or actuator 
saturation occurs. Also it is quite common for PID controllers to be sold in pairs as they are often 
used in cascade in process control, as illustrated in the block diagram of Figure 7.16. The set 
point for the inner loop controller comes from the outer loop controller and two measurements 
are available as feedback from the process. The main advantage is to obtain a faster reaction to 
the inner loop disturbance D1. But often an improved input-output response can also be achieved. 
Also the inner loop controller is often set in just the P or PI mode. 

 
Figure 7.16 Block Diagram of Cascade Control. 
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8. Parameter Optimisation for Fixed Controllers 

8.1 Introduction 
 
The basic concept here is to optimise the controller parameters to meet a performance criterion. 
Before the prevalence of digital computers criteria were put forward for which analytical results 
could possibly be found, or computations could be done using analogue simulation. A logical 
choice was to choose a criterion based on minimisation of the error over time, as the objective of 
good control is to maintain a minimum error between the desired and actual output,. Thus 
integral performance criteria of the form  
 

dtttefJ )),((       (8.1) 

 
where f(e(t),t) is a function of time and the time varying error, were suggested. Typical criteria 
used are summarised in Table 8.1. 
 

Function f Name 

|e(t)| Integral absolute error- IAE 

t|e(t)| Integral time absolute error- ITAE 

t2|e(t)| Integral time squared absolute error – IT2AE 

e2(t) Integral squared error- ISE 

[te(t)]2 Integral squared time error - ISTE 

[tne(t)]2 Integral squared time to n error - ISTnE 

 
Table 8.1 List of Some Error Functions. 

 
It is possible in principle to obtain analytical solutions for the last three since the integral squared 
error, denoted by J0, can be found in the s-domain from 

j

j

dssEsE
j

dtteJ )()(
2

1)(
0

2
0     (8.2) 

 
which is known as Parseval’s integral. It can be evaluated when E(s) = c(s)/d(s) is a ratio of 
polynomials in s, as given in Table D.1 in Appendix D for low order polynomials d(s), and for 
higher order polynomials, d(s), can be evaluated using recursion relationships as given by 
Astrom [8.1]. For the higher time weightings  
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dttetJ n
n

2

0

)]([       (8.3) 

 
can again, in principle, be evaluated in the s-domain by utilising the time multiplication formula 

of the Laplace transform  tf t
dF s

ds
 (Theorem (v) Appendix A.). The difficulty for 

hand calculations is that the order of d(s) doubles with each differentiation, however, it is easy to 
write a computer program to compute the results for some low values of n. An excellent treatise 
on the analytical approach which also considers a weighting on the control effort in the 
performance criterion and possible satisfaction of constraints is reference [8.2].  
 

8.2 Some Simple Examples 
 
Here some simple analytical examples are given to illustrate the approach and bring out some 
basic ideas. For realistic practical problems, however, results will normally have to be obtained 
computationally. 
 
Example 1 
 
Consider a feedback loop with G = 1/s, i.e. an integrator, and Gc = K a gain. For a unit step input 
R = 1/s and E = 1/(s + K). Clearly e = exp(-Kt) and since the expression for e is so simple its 
integral squared value can be found from either the time domain or s- domain integral to give the 
ISE = 1/2K. This is as expected, since the maximum phase lag of the loop is 90  it remains stable 
no matter how high the gain. However, the initial value of the control signal at the input to the 
plant, given by u = Kexp(-Kt), increases as K increases. One way to find a finite gain value is to 
put a constraint on some function of u. A simple solution is to minimise the time domain integral  

dttuteI
0

222 )]()([      (8.4) 

 
which is easily shown, by substituting u = Ke, to have the value 
 

KKI 2/)1( 22       (8.5) 
 
By differentiation, it is found that /1K  yields the minimum value for I of . This example 
although trivial brings out the point that care has to be taken in obtaining solutions to 
optimisation problems. It is important to understand the problem so as to know whether a 
solution will only exist if some constraints are imposed and also when a minimum has been 
found that it is realistic. Systematic approaches may be necessary, for example if a controller has 
two variable parameters it may be desirable to fix one initially and just look at the effects of 
varying the other.  

Parameter Optimisation for Fixed Controllers



Download free books at BookBooN.com

Control Engineering

 
94 

Example 2 
 
Consider G = 1/s(s + 1)2 and Gc = K.  In this case, it is easily shown that if K is increased the 
system will go unstable for K > 2 so there should be a value of K < 2 which minimises the ISE. 
For a unit step input one obtains 
 

Ksss
ssE 23

2

2
12

     (8.6) 

 
Using Table D.1 to evaluate I3 gives 

 

)2(2
23

3 KK
KI      (8.7) 

 
Differentiating to find the minimum yields K = 2/3 and the corresponding minimum value of the 
performance index is I3min = 2.25. Checking the step response for this value of K shows it to have 
an overshoot of 36%. Incidentally, a second order transfer function corresponding to the 
dominant complex pair of poles has an overshoot of 40%. 
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Example 3 
 
As another example consider the control of a double integrator plant, G(s) = 1/s2, by a phase lead 
controller with transfer function (1+ sT)/(1 + sT), in both the forward, Gc, and feedback, H, 
paths. With the controller in Gc, the value of, E, for R a unit step is 
 

123

2

sTsTs
sTsE      (8.8) 

 
 
and using Table D1 for I3, gives for the ISE, 
 

)1(2
12

3 T
TI       (8.9) 

 
Differentiating with respect to T, shows that the optimum value of T =  -1/2, and the 
corresponding minimum value of I3 is 1/2/(1 - ). This can be seen to be infinite when  = 1, as 
the system is neutrally stable, and tends to zero as  tends to zero, which results in the derivative 
kick of the control signal tending to infinity. On the other hand if the controller is placed in H, 
the closed loop transfer function is 

1
1

23 sTsTs
sT

R
C

     (8.10) 

 
The error signal is  
 

CRE         (8.11) 
 
so that 
 

1
)1(1 23

23

sTsTs
sTsTs

R
C

R
E

    (8.12) 

 
giving for a unit step input R = 1/s 
 

1
)1(

23

2

sTsTs
TsTsE       (8.13) 

 
Again using the Table D1 one obtains 
 

)1(2
331 2222

3 T
TTTI      (8.14) 
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Differentiating to find the optimal value of T yields 
 

2/12 )331(
1T     (8.15) 

 
and the corresponding value of the ISE is 
 

1
)331( 2/12

minISE     (8.16) 

 
Differentiation of this expression shows that the absolute minimum value obtainable is 0.866 
when  = 1/3 and the value of T = 1.732. 
 
Three simple examples have been taken to illustrate the analytical approach to minimising the 
ISE ,which corresponds to n = 0 in the general criterion of equation (8.3). This has been done to 
illustrate the procedure whilst keeping the algebra relatively simple. If, for example, one wished 
to investigate the last example for the ISTE criterion, that is n = 1, then one has to differentiate 
E(s) with respect to s. This increases the order of the denominator from 3 to 6, the algebra for the 
integral becomes ‘horrendous’ and differentiation of the result is then required for the optimum 
values.  Computationally, however, the minimum can be found very quickly, one selects values 
for T and , evaluates the ISTE and has an optimisation algorithm built around to adjust T and  
to converge to the optimum values, which will of course exist if the compensator is in H.   
One reason for having covered the classical optimization approach in some detail is that it leads 
naturally to the consideration of standard forms. These provide an interesting closed loop direct 
synthesis approach for obtaining controller parameters.

8.3. Standard Forms 

Based on the approach of the previous section it is possible to obtain normalised closed loop 
transfer functions which satisfy error performance criteria. Their value is that they indicate 
‘good’ pole locations for the closed loop transfer function. To illustrate the approach consider a 
feedback system with G = 1/s(s + a), Gc = K and H = 1. For a unit step input E = (s + a)/(s2 + as 
+ K).  The ISE can be found from Table D.1 and since the denominator of E is second order it is 
denoted, I2, and is given by  
 

.2/)( 2
2 aKaKI       (8.17) 
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This can be shown to be a minimum for Ka  and the corresponding closed loop transfer 
function is 
 

KKss
KsT

2
)( .     (8.18) 

 
Comparing this with the standard form for the second order equation of 
 

22

2

2
)(

oo

o

ss
sT      (8.19) 

 

shows that 2
oK , so the natural frequency increases with K but the damping ratio .5.0   

 
This value of  gives a step response overshoot of around 16%. The value is less than the unit 
value required for no overshoot in the step response and the value of 0.707 required for no peak 
in the frequency response.  
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Time scaling the standard second order equation (8.19), that is replacing s/ o by sn, gives the 
transfer function 

12
1)( 2

nn
n ss

sT       (8.20) 

 
This equation is known as the time normalised form and as explained in chapter 3 has exactly the 
same time response as eqn.(8.19) but eqn. (8.19) is a factor o faster. Eqn. (8.20) with  = 0.5 is 
referred to as the standard form of the second order all pole closed loop transfer function which 
minimises the ISE, J0, for H = 1. Note also that the forward loop transfer function, GGc, must 
contain an integrator to ensure zero steady state error to a step input. Standard forms for any 
order of the denominator polynomial and for various integral performance criteria can be found 
and written, with the subscript n dropped from s, as 
 

1.....
1)(

1
1

1 sdsds
sT j

j
j      (8.21) 

 
They have been derived in reference [8.3] for the more general performance index ISTnE for 
different values of n and are denoted as:- 
 

1.....
1)(

1
1

1
0 sdsds

sT j
j

jj     (8.22) 

 
The required coefficient values as well as the resulting value of the performance index are given 
in Table 8.2. Note the value of the index increases for larger n because of the time weighting 
factor as the settling time is greater than unity.  
 
It is interesting to look at the coefficients of these transfer functions. First, purely of academic 
interest, is the fact that for the ISE, that is n = 0, all the coefficients are integer values. More 
important, however, is the fact that as n is increased the coefficients increase in value and the 
step responses have less overshoot with only a small change in settling time. This can be seen for 
the second order system as the damping ratio , equal to d1/2 in Table 8.2, increases as n 
increases. These points are further demonstrated by Fig. 8.1 which shows the step responses for j 
= 4 for n = 0 to 3. 
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Figure 8.1 Step responses for j = 4 
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)(0 sT j  n d1 d2 d3 d4 d5 Jn

0 1.000     1 

1 1.335     0.8686 

2 1.537     3.2823 

 
)(02 sT  

3 1.665     28.1005 

0 2.000 1.000    1.5000 

1 2.042 1.472    2.1142 

2 2.155 1.825    10.400 

 
)(03 sT  

3 2.281 2.082    105.1355 

0 2.000 3.000 1.000   2.0000 

1 2.372 3.072 1.539   4.2355 

2 2.620 3.295 1.990   27.350 

 
)(04 sT  

3 2.809 3.577 2.349   329.4304 

0 3.000 3.000 4.000 1.000  2.5000 

1 3.052 3.897 4.094 1.576  7.4816 

2 3.195 4.572 4.402 2.092  62.0700 

 
)(05 sT  

3 3.360 5.129 4.827 2.527  898.3668 

0 3.000 6.000 4.000 5.000 1.000 3.0000 

1 3.385 6.145 5.489 5.110 1.597 12.1017 

2 3.649 6.570 6.705 5.481 2.157 126.4600 

 
)(06 sT  

3 3.862 7.108 7.756 6.026 2.649 2189.100 

 
Table 8.2 All Pole Standard Forms for T0j (From reference 8.4) 

 
Since adding a compensator often results in a closed loop transfer function having a zero, a 
suggested use for these standard forms in controller design has been to add a prefilter with a pole 
to cancel the zero. To avoid the use of a prefilter studies have been done to investigate standard 
forms with a zero, that is for 
 

1.....
1)(

1
1

1

1
1 sdsds

scsT j
j

jj      (8.23) 
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In early work on this topic results were given to minimise the ITAE criterion but with the 
requirement that the system should also have zero steady state error to a ramp input, which 
requires the constraint that 11 dc . Recently [8.4] results have been derived without this 
constraint but the required d coefficients vary with the choice of c1, as illustrated in Fig 8.2 for 
T14(s). It is also possible to plot how the poles of the transfer function vary with the zero 
parameter c1, and some of these can be found in reference [8.4]. These plots show that the 
optimal pole positions vary appreciably with the value of the zero.  
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Figure 8.2 d coefficients for T14 for 3 values of n. 

 
 

The concept of trying to design a controller so that the closed loop transfer function has a specific 
form is useful, as it addresses the closed loop performance directly, and will be illustrated by an 
example in the next section, as well as being given further consideration in chapter 11. There are 
many closed loop standard forms that might be chosen apart from those based on the criteria of 
Table 8.1. For example, the Butterworth filter form could be selected. 
 
8.4 Control of an Unstable Plant 

A simple linearised model for a magnetic suspension is often taken as  
 

2)(
s

K
sG p       (8.24) 

 
It is required to control this plant transfer function with a PID type controller. If the classical PID 
controller of equation (7.3) is used in the error channel then the closed loop transfer function, 
T(s), is given by 
 

pcipcpcdii

dipc

KKTKKsKKTTsTs
TTssKK

sT
)(

)1(
)( 23

2

  (8.25) 
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It can be seen that the 3 poles of the transfer function can be allocated by the choice of the three 
controller parameters, but the two zeros cannot then be located independently as their location is 
dependent on the parameters chosen to locate the poles. If, however a PI-PD controller is used, 
that is a controller whose output is obtained from the error feeding the PI and the plant output the 
PD, then the open loop transfer function is  
 

))(
1

()( 2
pfdp

p

i

i
col KKTsKs

K
sT

sT
KsG    (8.26) 

 
where the controller parameters are Kc and Ti for the PI terms and Kf and Td for the PD terms. 
This gives the closed loop transfer function  
 

pcfppcipdii

ipc

KKKKKKsTKTTsTs
sTKK

sT
)(

)1(
)( 23   (8.27) 

 
In this case the 3 poles and the zero can be adjusted independently by the controller parameters. 
To design the controller using the standard form approach equation (8.27) can be written in 
normalised form as 

1]/)[()/(
1

)( 223
pfpcnpdnn

in
n KKKKsKTss

Ts
sT   (8.28) 
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where  is the timescale factor (KcKp/Ti)1/3 by which the system is faster than the normalised one. 

In principle the time scale, , can be selected by the choice of Kp, and the coefficients for the 
chosen standard form; d2 by the choice of Td, d1 by the choice of Kf, and c1 by the choice of Ti. In 
practice Kp will normally be constrained to an upper value, possibly to limit the initial control 
effort, and Ti will involve a trade off between the values chosen for  and c1

Consider , for example, the case of the plant parameters Kp = 2 and  = 4 and constraining Kp to a 
maximum of 1. Then two possible designs could be:- 

(i) Time scaling by 2. This means selecting  = 2 which gives Ti = 0.25 and c1 = 0.5. 
For this value of c1 the values of d2 and d1, respectively, to minimise the ISTE are 
1.595 and 2.120. This gives Td = 1.595 and Kf = 5.240 

(ii) No time scaling. This means selecting  = 1 which gives Ti = 2 and c1= 2. For this 
value of c1 the values of d2 and d1, respectively, to minimise the ISTE are 2.215 and 
2.991. This gives Td = 1.107 and Kf = 2.495. 

Because both designs are based on minimisation of the ISTE the closed loop step responses are 
quite similar in shape with around 10% overshoot, and the first twice as fast as the second. The 
faster time scaled response in this case has been achieved not by increasing the controller gain Kc

but by variations of Ti and c1.

8.5 Further Comments 

The topic of optimising the parameters of a fixed form controller has been discussed in this 
chapter. Some simple analytical examples based on the ISE integral performance criterion were 
first discussed and then a simple algebraic approach based on standard forms was given, which 
will be considered further in chapter 11. It is very common to use fixed form controllers in 
industrial design and with today’s computation facilities optimisation of the parameters to meet 
the design specifications is an excellent practical approach. References [8.5, 8.6] describe 
software that has been developed to do designs using optimisation techniques and to show how 
the various performance constraints might be traded off against each other. When a large number 
of criteria need to be considered these programs can become very complicated. Optimisation 
approaches, such as the use of integral performance criteria when there are only a few variable 
parameters, can often be achieved using simulation, as the performance criteria listed in Table 
8.1 can easily be found from a simulation run. One may then either interact with the simulation 
manually to obtain the optimal parameters or do so with an optimisation program controlling the 
simulation runs. 
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9. Further Controller Design Considerations 

9.1 Introduction 

Additional aspects related to compensator design are covered in this chapter. The first topic 
discussed in the next section is lag-lead compensator design an extension of the lead and lag 
compensators discussed in chapter 7. In the next two sections some aspects of speed and position 
control are discussed with particular emphasis on the rejection of steady state disturbances. It is 
shown that this requires an integration in the controller which complicates the design for 
obtaining a good step response. Simple rigid body type plant transfer functions are used in these 
sections, whereas in many cases it is required to control the speed or position of a shaft which is 
driven through a flexible link. Typically this results in a transfer function containing not only 
complex poles but also complex zeros. To illustrate the difficulties of controlling such systems 
with a series compensator the next section considers the control of a plant transfer function with 
complex poles. 

The final section discusses the problem of the effect of parameter variations on control system 
performance. Although this is a topic of major interest in design it is a very difficult theoretical 
one and few results of practical significance have been obtained However modern calculation 
and simulation methods are now so fast that the increase in time required for doing studies with 
different sets of parameters is usually economically justifiable.  

9.2 Lag-Lead Compensation 

As mentioned in section 7.2 it may not be possible to achieve a satisfactory phase lead design and 
the bandwidth achievable by a phase lag design may be less than desired. It may be possible to 
improve the loop performance by a lag-lead design. This is illustrated by taking a system with the 
same transfer function dynamics but with a higher gain in the numerator, which might be 
required to reduce the steady state error to a ramp input, Kv, as mentioned in section 7.2. 
Consider therefore 

)1.01)(5.01(
12)(

sss
sG      (9.1) 

The closed loop system with this G(s) and H(s) = Gc(s ) = 1 is neutrally stable so that the phase 
margin is zero compared with a value of 15.6° for the previously considered transfer function

)1.01)(5.01(
6)(1 sss

sG      (9.2) 
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To add a phase lead network to G(s) to achieve the same phase margin of 40° will require a lead 
of around 60° which is very high and the design may not be achievable. An alternative is to use a 
lag-lead design where the gain is reduced by a lag network before the gain crossover frequency is 
reached. If after adding the lag network the frequency response around the gain crossover 
frequency is similar to that of G1(s) then the phase lead network of section 7.2 will be suitable. 
Thus, choosing a lag network with transfer function 
 

s
ssGc 201

101)(1         (9.3) 

 
and plotting the Bode diagram of the series combination Gc1G, it is seen to be almost identical to 
G1, in the required region, as shown in Figure 9.1. 
 

 
 

Figure 9.1 Bode diagrams for the example.
 
Adding the phase lead compensator of section 7.2 the lag-lead compensator is  
 

)
094.01
472.01)(

201
101()(

s
s

s
ssGc     (9.4) 

 
The resulting system has a phase margin of 39° at a frequency of 4.72 rads/s. The closed loop 
step response is shown in Figure 9.2 together with that using a lag network design, and as 
expected an appreciable increase in the speed of response has been achieved. 
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Figure 9.2 Comparison of step responses. 

9.3 Speed Control 
 
Control of speed is a common problem encountered by many control engineers, perhaps the most 
common well known situation being the cruise control fitted to many automobiles. Here it will be 
assumed that the speed is rotary and the transfer function from the torque to the load, where the 
speed has to be controlled, is 
 

)1/()( sTKsG .      (9.5) 
 
In practice there may be more than one time constant but quite often there is one dominant one as 
assumed here. A problem which often arises, however, is when the coupling from the drive 
torque to the load is not rigid and a more complicated transfer function results with both complex 
poles and zeros. This presents a much more difficult control problem which will be commented 
on further in section 9.5. The control loop is typically as shown in Figure 5.1, where N is 
assumed zero and H will convert speed, say radians per second to voltage with a time constant 
which is probably small enough to be neglected. In order that the speed should remain constant at 
the required value with a fixed reference input, R, assuming H is calibrated correctly, the 
controller Gc must contain an integration. This can also be seen from Figure 5.1 to be a 
requirement for a constant disturbance D to have no effect on the load speed in the steady state as 
the output of the controller must have a signal equal and opposite to D. Thus, Gc, is typically a PI 
controller and the open loop transfer function is  
 

)1(
)1(

)1(
)( 1

sTs
sTk

sTs
HsKKK

HGG Pi
c     (9.6) 
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where KP and Ki are respectively the controller proportional and integral gains and 
HKKk i and iP KKT /1 . Moving H inside the loop as explained in section 5.3, the closed 

loop transfer function can be written as 
 

)1()1(
)1()(

1

1

sTksTs
sTksT     (9.7) 

 
One approach to the design is to choose TT1 , so that T(s) becomes a single time constant 
transfer function, although such a zero-pole cancellation will never be correct in practice due to 
uncertainty in the system parameters. This does provide a simple analytical approach and k can in 
principle be increased, by increasing Ki and consequently KP for a given T1, as much as required 
to speed up the system response. In practice k will be restricted as increasing k increases the 
maximum magnitude of the controller output signal. Another approach is to do a design based on 
the open loop transfer function of equation (9.6) with T1  T, using say frequency response or 
root locus techniques. One point to note is that if the closed loop transfer function is written as 
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that is with critical damping for the second order denominator, where Tko /2  and 

TkTo /)1(2 1 , then an overshoot may still exist in the closed loop step response due to the 

zero. It is easily shown that the step response of equation (9.7) is  

t
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t
ooo teTtee 2

11     (9.9) 

and that it has a maximum when )1/( 11 TTt o . Thus an overshoot will exist when this is 

positive, that is for 11To .

9.4 Position Control 

Many of the early applications of control engineering were involved with position control due to 
the requirement for accurate position control of guns and other devices during the 1940’s. Indeed 
several of the early textbooks written in control engineering used the word servomechanisms in 
the title to account for the fact that much of their coverage was related to position or speed 
control. Today there remain many requirements for accurate position control from large drives 
and robotics to heads for reading or writing to rotary storage media. Again if flexure in the drive 
dynamics can be neglected the simple rigid body transfer function for the plant in Figure 5.1 of a 
position control may often be taken as  

)1(/)( sTsKsG        (9.10) 

There will be no steady state error to a step input as G(s) contains an integration term, so that a 
satisfactory closed loop step response may be achieved with Gc(s) a constant gain, phase lead or 
lag network. Also velocity feedback may be used which means that the transfer function H(s) is 
of the form 1+sT1 and the closed loop transfer function will become 

)1(()1(
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1sTKsTs
KsT     (9.11) 

Apart from the dynamic response requirements more stringent steady state requirements are often 
required of a position control system such as being able to follow a ramp input with no position 
error or reject the effect of any constant disturbance D on the output. Both these require the 
controller to have an integration term. If H = 1 and Gc is a PI controller ssKKG ipc /)(

then the closed loop transfer function is

iP
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On the other hand if velocity feedback is used 11 sTH  and with sKsG CC /)(  the closed 

loop transfer function is  
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23)(         (9.13) 

 
This avoids the zero and therefore is somewhat easier to design for a required dynamic response. 
One simple way is to make use of standard forms. The transfer function in normalised form is  
 

1)/(
1)(

1
23

nnCn
n sTsKKs

sT              (9.14) 

 
where the time scale factor 3/1)/( TKKC . Since there are only two variable controller 

parameters KC and T1 one can choose the values so that the denominator coefficients fit a 
standard form but in doing so the time scale factor, , is fixed.  Figure 9.3 shows the closed loop 
step responses obtained using this design procedure to achieve the performance indices Jn for n = 
0 to 3. 
 

 
 

Figure 9.3 Step responses for standard form designs. 
 

9.5 A Transfer Function with Complex Poles 

As mentioned earlier plant transfer functions may involve complex poles which may be lightly 
damped. Designing of satisfactory series compensators for such systems is not easy so this is a 
problem which will be examined again in chapter 11 when state feedback compensation is 
discussed. To see the difficulties consider the transfer function  
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)12.0(
1.0)( 2 sss

sG      (9.15) 

 
where the complex poles have a natural frequency of unity and a damping ratio of 0.1. The phase 
of the Bode plot changes rapidly near the resonant frequency of unity as seen in Figure 9.4 and 
with a unit gain controller the closed loop has a gain margin of 6dB and a phase margin of 89°. 
The step response, however, has oscillations on it due to the complex poles (see curve Kc = 1 in 
Figure 9.5).  

Figure 9.4 Bode diagram of transfer function of equation (9.15). 
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The poor step response is due to the low gain margin, not low phase margin, and a simple phase 
lead design to speed up the response is not possible. A possible approach is to use a compensator 
with two zeros and two poles with the former being chosen to cancel the complex poles of the 
plant. Choosing  
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Kc can be chosen equal to 0.5 which gives a gain margin of 12dB, a phase margin of 44° and a 
step response with around 25% overshoot. The problem is if the parameters of the plant are not as 
assumed. Figure 9.5 shows step responses for a controller with gain 1 and 0.5, the slower 
responses, and with the transfer function of equation (9.16) with Kc = 0.5 for the three cases of 
the plant complex poles having the nominal damping ratio of 0.1 and also 0.15 and 0.05. The step 
response is thus hardly affected by an incorrect assumption for the damping ratio.  
 
On the other hand the open loop Bode diagrams are shown in Figure 9.6 for the compensator plus 
the plant with resonant frequencies for the poles of 0.8 and 1.2, not the nominal value of unity. It 
can be seen that the gain margin for the resonant frequency of 0.8 is very small and therefore not 
surprisingly the step response is highly oscillatory as shown in Figure 9.7, together with that for a 
natural frequency of 1.2. It is thus seen from this example that the closed loop step response is 
very sensitive to an over estimation of the resonant frequency of the plant poles. 
 

 
 

Figure 9.5 Step responses for different controllers and plant pole damping ratio. 
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Figure 9.6 Bode diagrams for compensating controller plus plant for different natural frequencies 
of the plant poles. 

Figure 9.7 Step responses for closed loop with controller and plant for different natural 
frequencies of the plant poles.  
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9.6 The Effect of Parameter Variations 

Most methods of controller design, as has been seen, require the use of a mathematical model for 
the process. In practice this model, which may be called the nominal model, is always an 
approximation of the real situation. Further the model may change dependent on environmental 
changes or with age. The effect of inaccuracies in a model on the system performance has 
therefore always been a concern of the design engineer. The comments in this section will 
assume that the form of the model is not in doubt but uncertainty exists in the estimates for some 
of its parameters. From a practical viewpoint today’s simulation facilities are so fast that for the 
majority of situations after a design is completed multiple simulations can be done to assess the 
effect of changes in model parameters. However some theoretical results are available which will 
be commented on here. Much of the recent interest in this topic was started as a result of the 
work on the stability of interval polynomials by Kharitonov considered in the next section. 
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9.6.1 Stability of Interval Polynomials 

Much recent work on systems with uncertain parameters has been based on Kharitonov’s result 
[9.1] on the stability of interval polynomials. Kharitonov showed that for the interval polynomial 
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where ],[ iii aaa , ni ,.....,2,1 , the stability of the set could be found by applying the Routh-

Hurwitz criterion to only the following four polynomials 
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Although this may seem a surprising result it is easily proved from the Mikhailov criterion of 
section 5.4.2. It can be easily shown that the value set of an interval polynomial at a fixed 
frequency is a rectangle (Kharitonov rectangle) as shown in Figure 9.8, that is the value of every 
polynomial of the family at that frequency lies within or on the rectangle, whose sides are 
parallel to the real and imaginary axes. Since the sides of the rectangular value set are parallel to 
the real and imaginary axes, it can easily be shown that the exclusion of the origin from the 
rectangular value set at all frequencies, which will be required for all the polynomials to satisfy 
the Mikhailov criterion, can be checked by using the corner points which correspond to the four 
Kharitonov polynomials. The Kharitonov theorem is only applicable to interval uncertain 
parameters but unfortunately the characteristic equations of even simple control systems do not 
normally have an interval uncertainty structure. For example, to take a simple case, consider a 
plant transfer function model of the form 
 
   )1)(1(/)( 21 sTsTsKsG      (9.19) 
 
where uncertainty may exist in K , 1T  and 2T . If the plant is in the feedback loop of Figure 5.1 
with Gc = H = 1 the characteristic equation for assessing stability is 
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which is not an interval polynomial. The only simple way to use the Kharitonov result is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9.8 : Kharitonov box and the Mikhailov locus for )(1 sp  

 
to overbound and underbound the parameters of 3s  and 2s , which produces a very conservative 
result. Assuming ],[ iii TTT  the gain required to satisfy the four equations 

is 2121 /)( TTTTK . For this specific example the direct application of the Routh-Hurwitz 

criterion gives the result )/1()/1(/)( 212121 TTTTTTK , which obviously has a 
minimum value when T1 and T2 have their maximum values. For the specific case of the 
bounds ]2,1[1T  and ]4,2[2T  the exact result of the Routh-Hurwitz criterion is 

4/3K whereas the Kharitonov result is 8/3K , which is conservative by a factor of 2. The 
fact that one can obtain an exact solution from the Routh-Hurwitz criterion is because this is one 
of a few unique situations. It does, however, serve to show the conservativeness of results that 
can be expected from the Kharitonov criterion when applied to practical control situations, 
because of the parameter dependence typical of the terms in the closed loop characteristic 
equation. 
 
9.6.2 Envelopes on Bode Plots 
 
It is possible to obtain bounds on Bode plots for transfer functions with variable parameters [9.2]. 
To see this consider a general transfer function factorised into zero-pole form as given below 
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where Ns  in the denominator represents a pole of multiplicity N at the origin and 
bnNma 22 . It is assumed that the parameters K , kL , ni , ni , dj , dj , lT  and  

are not known exactly but vary within the following intervals  
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],[ KKK , ],[ kkk LLL , ],[ ninini , ],[ ninini , ],[ djdjdj , 

],[ djdjdj , ],[ lll TTT  and ],[        (9.22) 

 
The maximum gain and maximum phase lag at a particular frequency will be obtained from 
the product of the maximum gains and the sum of the maximum phase lags at that frequency 
of the individual elements, with a similar result for the minimum values. Therefore 
considering the individual elements in turn beginning with the time delay, since its gain is 
always unity, the maximum (minimum) phase lag is obtained with the maximum (minimum) 
value of . Also from sketches of Bode gain and phase diagrams for a single time constant 
transfer function it is obvious that the curves for T  give the maximum gain and minimum 

phase shift and those for T  give the minimum gain and maximum phase shift, respectively. 
The curves for all other values of T  lie within the respective gain and phase boundaries of 
these plots. Finally the Bode gain diagram for the second order complex pole transfer function 
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only has a peak in the response if  is less than 0.707. Thus, if the Bode gain and phase 

diagrams are considered for this transfer function with ],[  and ],[ 000 , and are 

drawn for the four cases of 0  with  and  , and 0  with  and  it can easily be seen 

that: 
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and from x  to  by 
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2. The maximum magnitude if (a) 707.0 is given for all  by 
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and if (b) 707.0  then from 0  to 2
0min 21p  it is given by 
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The maximum value of the gain at minp  is  
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and the maximum possible gain remains constant at this value independent of  until 
2

0max 21p  and then for ),[ maxp  it is given by 

 

2
00

2

2
0

2
)(

j
jG    (9.30) 

 

3. The maximum phase for ),0[ 0  is given by 
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and for ),[ 0  by 
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4. The minimum phase for ),0[ 0  is given by 
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]
2

arg[)](arg[
2
00

2

2
0

j
jG   (9.34) 

 

Further Controller Design Considerations



Download free books at BookBooN.com

Control Engineering

 
120 

1 0
- 1

1 0
0

1 0
1

1 0
2

- 1 5 0

- 1 0 0

- 5 0

0

5 0

F r e q u e n c y ( r a d / s e c )

G
ai

n 
db

1 0
- 1

1 0
0

1 0
1

1 0
2

- 3 0 0

- 2 5 0

- 2 0 0

- 1 5 0

- 1 0 0

F r e q u e n c y ( r a d / s e c )

P
ha

se
 d

eg

Unfortunately it is not possible to derive similar results for Nyquist plots. Some results have been 
obtained but they do not provide accurate bounds on the plots [9.3]. Also although accurate 
bounding of the Bode plots is obtained by the above approach results obtained using them are 
still conservative because the link between the gain plot and the phase plot of a specific transfer 
function is lost.  To show this, consider the closed loop stability problem for the open loop 
transfer function of equation (9.19) with the same bounds on the time constants. The bounds of 
the Bode plots are shown in Figure 9.9 and to ensure stability one has to use the lower bound of 
the phase plot and the upper bound of the gain plot. This give a value for stability of K < 0.46, an 
improvement on the Kharitonov result but still very conservative. 

Figure 9.9 Stability from the Bounds of the Bode plots. 
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10. State Space Methods 

10.1 Introduction 

State space modelling was briefly introduced in chapter 2. Here more coverage is provided of 
state space methods before some of their uses in control system design are covered in the next 
chapter. A state space model, or representation, as given in equation (2.26), is denoted by the two 
equations 
 

BuAxx        (10.1) 
DuCxy        (10.2) 

 
where equations (10.1) and (10.2) are respectively the state equation and output equation. 
The representation can be used for both single-input single-output systems (SISO) and multiple-
input multiple-output systems (MIMO). For the MIMO representation A, B, C and D will all be 
matrices. If the state dimension is n and there are r inputs and m outputs then A, B , C and D will 
be matrices of order, n x n, n x r, m x n and m x r, respectively. For SISO systems B will be an n 
x 1 column vector, often denoted by b, C a 1 x n row vector, often denoted by cT, and D a scalar 
often denoted by d. Here the capital letter notation will be used, even though only SISO systems 
are considered, and B, C, and D will have the aforementioned dimensions. As mentioned in 
chapter 2 the choice of states is not unique and this will be considered further in section 10.3. 
First, however, obtaining a solution of the state equation is discussed in the next section. 
 

10.2 Solution of the State Equation 
 
Obtaining the time domain solution to the state equation is analogous to the classical approach 
used to solve the simple first order equation  

uaxx        (10.3) 
 
The procedure in this case is to take u = 0, initially, and to assume a solution for x(t) of eatx(0) 
where x(0) is the initial value of x(t). Differentiating this expression gives 
 

)()0()( taxxaetx at so that the assumed solution is valid. Now if the input u is considered 
this is assumed to yield a solution of the form x(t) = eatf(t), which on differentiating gives  
 

)()()( tfetfaetx atat . Thus the differential equation is satisfied if  
 

)()()()( tutfaetfetfae atatat , giving )(][)( 1 tuetf at , which has the solution  
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t
a duetf

0

1 )(][)( , giving
t

aat dueetx
0

1 )(][)( , where  is a dummy variable. This 

solution can be written 
t

ta duetx
0

)( )()( so that the complete solution for x(t) consists of 

the sum of the two solutions, known as the complimentary function (or initial condition response) 
and particular integral (or forced response), respectively and is 
 

duexetx
t

taat )()0()(
0

)(     (10.4) 

 
For equation (10.1) x is an n vector and A an n x n matrix not a scalar a and to obtain the 

complimentary function one assumes )0()( xetx At . eAt is now a function of a matrix, which is 
defined by an infinite power series in exactly the same way as the scalar expression, so that 
 

....!3/!2/ 332 tAAtAtIe At        (10.5) 
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where I is the n x n identity matrix. Term by term differentiation of equation (10.5) shows that 

the derivative of eAt is AeAt and that )0()( xetx At satisfies the differential equation with u = 0. 
eAt is often denoted by (t) and is known as the state transition matrix. Using the same approach 
as for the scalar case to get the forced response the total solution is found to be  
 

dButxttx
t

)()()()0()()(
0

1     (10.6) 

 

It is easily shown that the state transition matrix Ae)( has the property that 

)()()( 1tt so that equation (10.6) can be written alternatively as 
 

dButxttx
t

)()()0()()(
0

      (10.7) 

 
This time domain solution of equation (10.1) is useful but most engineers prefer to make use of 
the Laplace transform approach. Taking the Laplace transform of equation (10.1) gives 
 

)()()0()( sBUsAXxssX      (10.8) 
 
which on rearranging as X(s) is an n vector and A a n x n matrix gives 
 

)()()0()()( 11 sBUAsIxAsIsX    (10.9) 
 
Taking the inverse Laplace transform of this and comparing with equation (10.7) indicates that  
 

1)()()]([ AsIst      (10.10) 
 
Also taking the Laplace transform of the output equation (10.2) and substituting for X(s) gives  
 

)(])([)0()()( 11 sUDBAsICxAsICsY    (10.11) 
 
so that the transfer function, G(s), between the input u and output y is                       
 

DBsCDBAsICsGsUsY )()()()(/)( 1   (10.12)  
 
This will, of course, be the same independent of the choice of the states. 
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10.3 A State Transformation 
 
Obviously there must be an algebraic relationship between different possible choices of state 
variables. Let this relationship be  
 

Tzx       (10.13) 
 

 where x is the original choice in equations (10.1) and (10.2) and z is the new choice. Substituting 
this relationship in equation (10.2) gives BuATzzT which can be written 
 

BuTATzTz 11       (10.14) 
 
Also substituting in the output equation (10.2) gives  
 

DuCTzy       (10.15) 
 
Thus under the state transformation of equation (10.13) a different state space representation 

),,,( 11 DCTBTATT is obtained. If the new A matrix is denoted by ATTAz
1  then it is 

easy to show that A and Az have the following properties 
 

(i) The same eigenvalues 
(ii) The same determinant 
(iii) The same trace (Sum of elements on the main diagonal) 

 
There are some specific forms of the A matrix which are often commonly used in control 
engineering and not unsurprisingly these relate to how one might consider obtaining a state space 
representation for a transfer function, the topic of the next section. 
 

10.4 State Representations of Transfer Functions 
 
This topic was introduced in section 2.3 where the controllable canonical form for a differential 
equation was considered. Here this and some other forms will be considered by making use of 
block diagrams where every state will be an integrator output. To develop some representations 
consider the transfer function 
 

8147
43)(

)(
)(

23

2

sss
sssG

sU
sY

    (10.16) 

 

State Space Methods



Download free books at BookBooN.com

Control Engineering

 
125 

10.4.1 Controllable Canonical Form. 

As seen from equation (2.20) the first n-1 state variables are integrals of the next state, that is 

dxxx jj )1( , or as shown in the equation by jj xx )1( , for j = 2 to n. Thus the block 

diagram to represent this is n integrators in series. The input to the first integrator is nx  and its 

value is given by uxaxaxaxn .....322110 , the last row of the matrix representation of 

equation (2.20). The numerator terms are provided by feeding forward from the states to give the 
required output. Thus, for our simple example, this can be shown in the block diagram of Figure 
10.1, done in SIMULINK, where since the transfer function is third order n = 3, there are three 
integrators, blocks with transfer functions 1/s, in series. Feedback from the states, where the 
integrator outputs from left to right are the states x3, x2, and x1, respectively, is by the coefficients 
-8, -14 and -7. (negative and in the reverse order of the transfer function denominator). The 
numerator coefficients provide feedforward from the states, with the s2 term from x3.
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Figure 10.1 Controllable Canonical Form Diagram for the Example. 

The matrices for the state representation are  

7148
100
010

A ,
1
0
0

B  and 134C .

MATLAB has a companion form, which for any state space system G=ss(A,B,C,D), will be 
returned on typing sys=canon(G,’companion’). The companion representation sys will have an 
A matrix which is the transpose of the above A matrix and a B = (1 0 0)T.

10.4.2 Observable Canonical Form 

The observable canonical form is related to the controllable form by the following relationships,
Ao = Ac

T, Bo = Cc
T and Co = Bc

T. The subscripts c and o relate to the controllable and observable 
form matrices respectively and T denotes the transpose. It is left to the interested reader to 
develop a block diagram similar to Figure 10.1 for this form. 

10.4.3 Diagonal (or Modal) Form. 

If the impulse response of G(s) is required then its evaluation by inverse Laplace transforms 
requires a partial fraction expansion of G(s).
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This is 
4
3/4

2
1

1
3/2)(

sss
sG ,  

 
which is simply a parallel connection of three first order transfer functions. The first order 
transfer function K/(s + a) can be modelled with one integrator as shown in Figure 10.2. If the 
output of the integrator is denoted by the state variable x1 then its state and output equations are 

buaxx 11 , 1cxy . 
 
 
 
 
 
 

 
Figure 10.2 Diagram of Model for One State Variable. 

 
Note that there is no unique value for b and c as all that is required is that their product should 
equal K. Thus a state representation for G(s) has 
 

400
020
001

A , 
1
1
1

B  and 3/413/2C  

 
where we have chosen to take all the B values as unity. This form of the A matrix is known as a 
diagonal form and can always be found if the denominator of the transfer function has real roots. 
To keep the matrix real for complex roots, say  ± j , the corresponding rows around the 

diagonal are replaced by the matrix . For example if 
)1(

1)( 2 sss
sG , the 

controllable canonical form, with the matrices subscripted with c, is  
 

110
100
010

cA , 
1
0
0

cB  and 001cC . 
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A diagonal form is 
 

5.0866.00
866.05.00
000

A , 
1
732.1
1

B  and 05774.01C  

 
This is the one given by MATLAB if the instruction csys=canon(G,’modal’) is used, where csys 
is the new state space representation in the chosen canonical form ‘modal’. A special case is 

when G(s) has a repeated root, for example if 2)1(
1)(

ss
sG , which has a state space 

representation of
110

010
000

JA , 
0
1
1

JB  and 111JC . This can be seen 

from the partial fraction expansion of G(s), which is 2)1(
1

1
11)(

sss
sG . The numerator 

coefficients are in C, the three roots 0, -1, -1 remain on the diagonal but the off-diagonal unit 
term in A and the zero in B are due to the fact that the last term of the partial fraction expansion 
has as input the output from the second state, not the input u. This form of A matrix is known as a 
Jordan form and due to the numerical methods used cannot be found with MATLAB. 
 
10.4.4 Guillemin Form  
 
Another simple way of obtaining a state space representation of a transfer function is to make 
repeated use of the state representation of Figure 10.3 for the one-zero one-pole transfer function

)/()( ascds which has a state space representation (a,1,e-ad,d) for the single state x.  
 

Figure 10.3 Diagram for One State Variable for Guillemin Form. 
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Thus for a transfer function with real poles and zeros in factored form given by 
)5)(3(/)2)(1()( ssssssG one can split it into one of several possible series (cascade) 

combinations such as )
5
2)(

3
1)(1(

s
s

s
s

s
 and then use the representation of Figure 10.3 for each 

transfer function to constitute the overall model as in Figure 10.4 , which has, assuming the 
outputs of the integrators from left to right are x3, x2 and x1, respectively, the equations 
 

ux3 322 3 xxx   2211 5 xxxx  and 112 xxy .  Substituting appropriately for 

the derivatives gives the state representation 
 

000
130
125

A , 
1
0
0

B  and 123C  
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where the A matrix is upper triangular. 

 
Figure 10.4. Diagram for Guillemin Form State Representation. 

 

10.5. State Transformations between Different Forms 
 
Given a state space representation then one can evaluate the corresponding transfer function and 
use this to obtain a different state space representation. In some cases, however, it is more 
convenient if one can obtain the specific state transformation, T, discussed in section 10.3, that 
will do this directly.  It can be shown that any A matrix can be transformed to a diagonal form by 
its own eigenvector matrix. Eigenvectors only define directions, however, so that such a matrix is 
not unique with a scalar multiplier being allowed on any column vector ti of T. The eigenvector, ti, 
corresponding to a particular eigenvalue, si, of a matrix A is found from 0)( ii tAIs  for i = 

1…n. For example, the A matrix 
512

12
A  has a characteristic equation of 

012)5)(2( ss , giving 0)1)(2(232 ssss , so has eigenvalues of -1 and -2. 

The corresponding eigenvectors are obtained from 0)( 1tAI  and 0)2( 2tAI , 

yielding Taat 31 and Tbbt 42 where a and b are any constants. Thus taking 

ba
ba

T
43

 then the transformation T-1AT will yield the diagonal 

matrix
20

01
A whatever the choice of a and b. However, if the transformation was 

applied to a state space representation (A,B,C,D) the resulting  (A ,B ,C ,D), would have 
different results for B  and C  dependent on the choice of a and b. When the given A matrix is in 
controllable canonical form then it can be shown that the column eigenvectors ti of T are given by 

Tn
iiii ssst )1(2 ....1 , which is known as a Vandermonde matrix. 
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10.5.1 Transforming to Controllable Canonical Form 
 
If it is required to find the controllable canonical form of a state space representation (A,B,C,D) 
then this can be achieved by a unique transformation as not only is the Ac matrix of a specific 
form but so also is the vector Bc. From the two equations 
 

cAATT 1  and BTBc  

 
it can be shown that the column vectors ti of T are given, for i = 1…n, by 
 

Btn , ntaAt 11 , ntatAt 212 , ntatAt 323 , etc. 

 
Here the ai , i = 0…..(n-1), are the coefficients of the characteristic equation of A, which of course 
form the last row of Ac. Some algebraic manipulations on these equations show that the 
transformation matrix T can be written as 
 

121

21

1
12

........1
...10

...00
1...000

1....000

....

aaa
aa

a
BABAABBT

nn

n

n
n    (10.17) 

 

10.6 Evaluation of the State Transition Matrix 
 

There are several ways to evaluate the state transition matrix Atet)( and some of these are 
outlined below.  
 
10.6.1 Direct Expansion 
 
This is tedious and involves calculating powers of A, substituting them in equation (10.5) and 
finding the exponential series which give each term in the summed matrix expression. 
 
10.6.2 The Inverse Laplace Transform 
 
This involves finding (t) from the inverse of equation (10.10), that is (t) =  1(sI-A)-1. This is 
straightforward but very laborious for calculating the required matrix inversion, except for low 
order matrices, A. One then has to find the inverse Laplace transforms of the individual matrix 
terms which are functions of s. 
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10.6.3 Use of a Diagonal Transformation 
 
If the matrix T is a transformation which diagonalises the A matrix to  then it can be shown that 

1)( TTeet tAt . Thus, once T and its inverse have been found this approach requires 
evaluation of the product of three n x n matrices. 
 
10.6.4 Use of the Cayley Hamilton Theorem 
 
This theorem states that a matrix satisfies its own characteristic equation. Thus, if the matrix A 
has a characteristic equation 0......)( 01

1
1 asasass n

n
n , then 

0......)( 01
1

1 aAaAaAA n
n

n . This means that An can be calculated in lower 

powers of A and that any infinite series of A, ..............)( 3
3

2
210 toAcAcAcIcAf , 

can be expressed as 1
1

3
3

2
210 .............)( n

n AAAAIAf  for a matrix of order n. 

Further all eigenvalues of A must also satisfy this equation. Thus when the function of the matrix 
A of order n is the exponential its eigenvalues and the matrix must satisfy 
 

1

0

n

k

k
ik

ts se i and  
1

0

n

k

k
k

At Ae     (10.18) 
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The first equation when used for all the eigenvalues provides n equations which can be solved for 
the n coefficients . Substituting these in the second equation enables the state transition matrix 

Atet)(  to be found. 
 

10.7 Controllability and Observability 
 
Consider a state space representation (A,B,C,0) with  
 

4000
0300
0020
0001

A  , 

0
1
0
1

B  and 0011C  

 
Then, in block diagram form this consists of the four modes at -1, -2, -3 , -4 which are connected 
respectively to the input and output, output only, input only and to neither input or output. The 
transfer function from input to output is simply 1/(s+1) as the -1 mode is the only one connected 
to both the input and output. Since the -1 mode is connected to both input and output it is said to 
be both controllable and observable. The -2 mode is said to be uncontrollable and observable 
being connected to the output only; the -3 mode controllable and unobservable being connected 
to the input only; and the -4 mode is said to be uncontrollable and unobservable being connected 
to neither the input or the output. Given a state space description it is desirable, as will be seen in 
the next chapter, to know which modes are in the different situations exemplified by the four 
above modes. A system is said to be controllable if all the states are controllable, and observable 
if all the states are observable. The formal definitions are given below. From the above example 
it is clear that only those modes which are controllable and observable appear in the transfer 
function between input and output. Thus, if a system with an n x n A matrix is controllable and 
observable the denominator of its transfer function will be of order n (i.e. it will have n poles). 
 
10.7.1 Controllability 
 
A system is controllable if there exists an input u which transfers the initial state x(0) to the zero 
state x(t) = 0 in a finite time t. Given any SISO system, A (n x n) and B (n x 1) matrices then it 
can be shown that the system will be controllable if the (n x n) controllability 

matrix BABAABB n 12 .....  has rank n. It will be noticed that this matrix is the 
first part of the transformation matrix for T in equation (10.17) and, as a consequence, a system 
can only be put into controllable canonical form if it is controllable. Or, alternatively, a system 
which has a controllable canonical form state space representation is controllable. 
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10.7.2 Observability 
 
A system is observable if the initial state x(0) can be uniquely determined by observing the 
output over a finite time t. Given any SISO system, A (n x n) and C (1 x n) matrices then it can be 

shown that the system will be controllable if the (n x n) observability matrix 

1

2

::
nCA

CA
CA
C

 has 

rank n.  
 
Again it can be shown that a system can only be put into observable form if it is observable. 
 

10.8 Cascade Connection 
 
In previous chapters on control system design significant attention has been given to cascade 
compensation and the effect on the open loop frequency response locus of adding a compensator. 
If the compensator and plant are given in state space form then it may be desirable to obtain a 
state space representation for their cascade combination. Thus, let the compensator Gc(s) with 
state z, input e, and output u have the state space representation (A1,B1,C1,D1) and the plant G(s) 
with state x, have input u, and output c have the state space representation (A2,B2,C2,D2), then 
 

eBzAz 11 , eDzCu 11  

and uBxAx 22 , uDxCc 22  
 

Writing a combined state vector (z, x)T one can write e
DB

B
x
z

ACB
A

x
z

12

1

212

1 0
 and 

eDD
x
z

CCDc 12212 which gives a state space representation (A,B,C,D) with 

 

212

1 0
ACB

A
A , 

12

1

DB
B

B , 212 CCDC  and 12 DDD .  (10.19) 
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11. Some State Space Design Methods 
 
11.1 Introduction 
 
The previous chapters on controller design have mainly concentrated on introducing the 
compensator in the forward path, but use of a simple compensator in the feedback path has been 
discussed. Also feedback compensation has been mentioned with respect to the PI-PD controller 
and velocity feedback in a position control system. Both these two cases can be regarded as 
feedback of two states, namely, the output to form the error and the derivative of the output. It is 
therefore appropriate to look in general at how the performance of a control system can be 
changed by the feedback of state variables. If this is to be done in practice then the state variables 
have to be available either as measured values or estimates. Obtaining measurements can be 
costly because of the requirement for additional sensors so in many cases the variables are 
estimated using estimation methods. This is a topic outside the scope of this book but it will 
suffice to say that estimation methods have become relatively easy to implement with the use of 
modern technologies employing microprocessors with significant software included to do the 
required computations. In the next section results are derived for full state variable feedback and 
this is followed by a discussion of the linear quadratic regulator problem.  The problem of direct 
closed loop transfer function synthesis, or standard forms, is looked at again in terms of using 
state variable feedback to achieve such a design. Finally as an example of the benefits of using a 
state variable feedback design the problem of controlling a plant having a transfer function with 
lightly damped complex poles, considered initially in section 9.5 is reconsidered. 
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11.2 State Variable Feedback 
 
Consider a SISO system, G, with a state space representation (A,B,C,0).  Assume state feedback 
is used so that the system input )( xkvKu T

c , as shown in Figure 11.1. Here the row vector 

kT, is given by .....321 n
T kkkkk , which means that the signal fed back and 

subtracted from v is nn xkxkxk ......2211 . The thick line is used to show that it represents more 

than one signal, in this case the state x which has n components. 

 
Figure 11.1 Block diagram of state feedback 

 
The new system, with input v, is  
 

vBKxkBKAxx c
T

c      (11.1) 

 
which can be written  
 

vBxAx ff      (11.2) 

 
where the matrices 
 

T
cf kBKAA and cf BKB      (11.3) 
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Now suppose the original system was in controllable canonical form so that  
 

1210 ....
1.......
010.....
........
........
0..01000
0...0100
0....010

n

c

aaaa

AA              

1
.
.
.
.
0
0
0

cBB  (11.4) 

 
then 
 

cncncccccc

f

kKakKakKakKa

A

1322110 ....
1.......
010.....
........
........
0..01000
0...0100
0....010

(11.5) 

 
as the matrix T

cckBK is all zeros apart from the last row. The gain vector has been subscripted by 

c to denote that it has state inputs from the controllable canonical form. 
 
Thus the characteristic equation of the system with state feedback is  
 

0)........()()( 1021
2

)1(2
1

1 cccc
n

nccn
n

cncn
n kKaskKaskKaskKas (11.6)   

 
and in principle the poles can be placed anywhere by choice of the components of T

ck . Larger 

values of the components of T
ck will speed up the system response but in practice this will not be 

possible due to physical limitations on the magnitudes of signals for linear operation. The gain Kc 

is basically redundant, however, it is useful to include it as the structure might, as is clear from 
Figure 11.1, be a resultant closed loop system with Kc the controller gain. In this case the 
controller input will include the error and for this to be the case when the state x1 is the output, k1 
will be equal to one. If the system is not in controllable canonical form then the coefficient terms 
in the characteristic equation will not each involve a single feedback gain. This means that 
simultaneous equations need to be solved to find the required feedback gains to give a specific 
characteristic equation. One way to avoid this is to transform the original system to controllable 
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canonical form, determine the required feedback gains for this representation and then transform 
these gains back to the required feedback values from the original states. The system must be 
controllable to do this transformation and it can be shown that this is a required condition to be 
able to place the poles in desired locations. Thus, if the calculated state feedback gain vector is 
kc

T from the controllable form states xc and the transformation from the original states x is x = Txc 
then the required vector kT for the original states, x, is obtained from the relationship kT = kc

TT-1. 
Several algorithms are available in MATLAB which calculate the required feedback gain vector 
kT for a given system (A,B) to give specified pole locations 

The feedback signal kTx can be written in transfer function terms as BUsk T )( and the output 

BUsCsY )()( so that in terms of the classical block diagram of Figure 5.1 the state feedback 

is equivalent to a feedback transfer function of
)(
)()(

sC
sksH

T

.  

 

11.3 Linear Quadratic Regulator Problem 
 
It can be shown [11.1] for a state space representation with matrix A and column vector B that if 
a performance index 

dttRutQxtxJ T )]()()([ 2

0

   (11.7) 
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Some State Space Design Methods

is to be minimised then the required control signal, u(t), is given )()( txktu T , a linear 
function of the state variables. Further the value of the feedback gain vector is given by 

PBRk TT 1  where P is the unique positive definite symmetrical matrix solution of the 
algebraic Riccati equation (ARE) 

01 QPBPBRPAPA TT      (11.8) 

Obviously the solution for kT depends upon the choice of the positive scalar, R, and the matrix Q
which must be at least semi-positive definite. Although this is a very elegant theoretical result, 
the solution depends on the choice of the weighting matrix Q and scalar R. No simple method is 
available for choosing their values so that the closed loop performance meets a given 
specification. A further point is that whatever values are chosen then the open loop frequency 
response must avoid the circle of unit radius centred at (-1,0) on the Nyquist plot [11.2]. This 
means a phase margin of at least 90°, which makes the design very conservative. The command 
[x,l,g] = care( A,B,cT*c,R) in MATLAB will return the solution P for the ARE in x, where the 

vector c defines the matrix Q by ccQ T * .

11.4 State Variable Feedback for Standard Forms 

To show how state variable feedback can be used to achieve a standard form step response design 
consider a fourth order all-pole system transfer function G(s) with one integrator given in phase 
variable canonical state space form with  

43210
10000
01000
00100
00010

aaaa

Ac  , 

1
0
0
0
0

cB and Cc = (Kp 0 0 0 0)           (11.9)

Using state variable feedback the new state space description has a state variable representation with 

cccccc

f

KkaKkaKk

A

54211 **
10000
01000
00100
00010

,

1
0
0
0
0

fB ,

and )0000( pf KC .    (11.10) 
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The corresponding closed loop transfer function is  
 

cccccc

cp

KksKkasKkas

KK

121
4

54
5 )(....)(

     (11.11) 

 
Dividing by KpKc and setting kc1 = Kp, gives the standard form 
 

1
1

1
2

2
3

3
4

4
5

nnnnn sdsdsdsds
,         (11.12) 

 
where the time scale factor by which the transfer function is ‘faster’ than the normalised one is  
= (KpKc)1/5 and di = (ai+kc(i+1)Kc)/ (5-i) for i = 1 to 4. Thus time scaling is achieved by varying Kc 

and then the standard form accomplished by choosing the values of kc2 to kc5 to give the required 
values of d1 to d4. Speeding up of the response can be done by increasing Kc or by increasing the 
feedback gains but this also increases the magnitude of the control signal. Thus, in practice 
limiting values will normally exist for these quantities. Trade offs are of course possible if there 
is some flexibility in the allowable response time. It may, for example, be possible to choose the 
time scale so as to require no feedback from one state or to realise an almost standard form with 
no feedback from more than one state. 
 
If the plant has a zero then Cf will be of the form Cf = (Kp K2 0 0 0). Proceeding as above the only 
change is that the numerator of the transfer function will be KcKp+KcK2s which in normalised 
form is 1+c1sn, with c1 = K2/Kp and the parameters di now need to be chosen for the chosen 
value of c1, which depends on the time scale factor. 
 
For a plant transfer function with no integration term the design can be achieved using a PI 
controller. In this case again assuming the plant transfer function is in controllable canonical 
form 

 

43210

10000
01000
00100
00010

aaaaa

Ac ,

1
0
0
0
0

cB  and Cc = (Kp 0 0 0 0).   (11.13) 

 
If state feedback is applied according to u = r-kc

Txc, where r is the output of the PI controller with 
transfer function (K1+K2s)/s, then the closed loop transfer function is  
 

)()(....)(

)(

2110
5

54
6

21

sKKKskaskas

sKKK

pcc

p
  (11.14) 
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The transfer function is normalised by dividing by KpK1 to give 
 

1

1

1
2

2
3

3
4

4
5

5
6

1

nnnnnn

n

sdsdsdsdsds

sc
   (11.15) 

 
where di = [a(i-1)+kci]/ (6-i) for i = 2 to 5, d1 = (a0+kc1+KpK2)/ 5, c1 = K2/K1, and the time scale 
factor  = (KpK1)1/6. Thus, in principle K1 can be chosen to select the time scale, K2 to select the 
zero and the feedback gains to get the correct values of the d coefficients for the chosen zero. 
Again trade offs are possible if there is flexibility in the choice of the response speed. To 
illustrate the procedure two examples are given below. 
 
Example 1 
 
A system with a plant transfer function having the state space representation 
 

6120
110
6130

A ,    
1
0
1

B  and  C = (10 10 10). 
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is considered. 
 
If xc denotes the state for the controllable canonical form and x that for the original system, then 
the required transformation x=Txc has  
 

110
010
111

T  

 
and the controllable canonical form is 
 

560
100
010

cA , 
1
0
0

cB  and Cc = (10 0 0). 

 
The corresponding system transfer function is (10s+10)/(s3+5s2+6s), which is seen to contain an 
integration term. Designs are carried out for the ISTE and IST2E criteria, with =1 and 2. First 
for the ISTE cases with  = 1, Kc = 0.1, c1 = 1, d1 = 2.32, d2 = 1.80 giving Kckc

T = (1 -3.68 -3.20) 
and KckT = (1 -6.88 -2.20) and secondly with  = 2, Kc = 0.8, c1 = 2, d1 = 2.95, d2 = 2.20 giving 
Kckc

T = (8 5.80 -0.60) and KckT = (8 5.20 7.40). For the IST2E cases with  = 1, Kc = 0.1, c1 = 1, 
d1 = 2.43, d2 = 2.14 giving Kckc

T= (1 -3.58 -2.86) and KckT =(1 -6.43 -1.86) and secondly with  
 = 2, Kc = 0.8, c1 = 2, d1 = 3.09, d2 = 2.61 giving Kckc

T = (8 6.36 0.22) and KckT = (8 6.58 8.22). 
The responses for the four cases are shown in Fig.11.2. 
 

 
 

Fig.11.2 Responses for example 1 for ISTE (i) and (ii); IST2E (iii) and (iv) 
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Example 2 
 
Consider a plant with state space representation 
 

7133
5.05.05.0
5.65.145.3

A ,   
1
0
1

B  and C = (10 0 -10). 

The transformation cTxx to put the representation into controllable canonical form has  

 

111
010
101

T  and gives

3710
100
010

cA .  

 
Using the state feedback u = r - kc

Txc and the PI controller (K1+K2)/s gives the closed loop 
transfer function 
 

121
2

2
3

3
4

21

10)1010()7()3(
)(10

KsKksksks
sKK

ccc

,  

 
which can be put into normalised form by dividing by 10K1. 
 
The time scale factor  = (10K1)1/4 and the  coefficients of the normalised form are c1 = K2/K1, 
d3 = (3+kc3)/ , d2 = (7+kc2)/ 2 and d3 = (10+kc1+10K2)/ 3. From examination of these values it 
can be seen that time scaling by two should give reasonable feedback gain values. Fig 11.3 shows 
the coefficients required as functions of c1 for ISE, ISTE and IST2E designs, from which it can 
again be seen that the coefficients increase with increasing values of c1 and are larger for a given 
c1 the higher the time weighting in the performance index. Designs are done to minimise the 
ISTE with  = 2 and c1 = 1 and 4. For these two cases the required values of the feedback vector 
kc

T are (4.0 6.92 0.64) and (-0.08 16.0 2.04), respectively. From the original system states the 
required vectors are kc

TT-1 and are (1.68 9.24 2.32) and (-1.06 17.0 0.98), respectively. The 
resulting output responses for the two cases are shown in Fig 11.4, where the one with the faster 
rise time is for c1 = 4.  
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Fig 11.3 Optimum coefficients for T14(s). 

 

 
 

Fig 11.4 Closed loop step responses for example 2. 
 

11.5 Transfer Function with Complex Poles 
 
The design of a state feedback compensator is considered for the plant transfer function with 

complex poles, 
)12.0(

1.0)( 2 sss
sG discussed in section 9.5. So that the sensitivity of the 

response to changes in the damping and natural frequency of the lightly damped poles can be 

seen the transfer function is taken as 
)2(

)( 22

2

o

op

sss
K

sG , where the nominal values of Kp, 

o, and  are 0.1, 1 and 0.1, respectively. In controllable canonical form, with a scaling on 2x  
and the plant gain taken at the input, the state space matrices are  
 

oo

ocA
20

00
010

, 

p

c

K
B 0

0
 and 001cC .  (11.16) 
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The closed loop transfer function with the state feedback is then 
 

cpcocpcooocpco

ocp

KKksKKksKKks
KK

1
2

2
222

3
3

2

)()2(  (11.17) 

 
It can be seen from the transfer function that without feedback the coefficient of the s2 term can 
be much smaller than that of the s term. With 11ck , the nominal parameters substituted and the 

controller gain chosen as 10 the closed loop transfer function 

is
1)1()2.0(

1)(
2

2
3

3 sksks
sG

cc

, which is in normalised form. Doing an ISTE 

design requires 272.13ck and 042.12ck . Closed loop step responses are shown for this 

design in Figure 11.5. The responses marked 0.8 and 1.2 are obtained with the natural frequency 
of the plant at these values rather than the nominal one of unity. The three responses shown, all 
marked 1.0, are for the nominal natural frequency of unity and with damping ratios equal to 0.05, 
0.1 the nominal value, and 0.15, respectively, for the plant. It can be seen from these results that a 
much better performance can be achieved by state feedback than by the series compensator used 
in section 9.5 if the plant parameters change. 
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Fig. 11.5 Closed loop step responses for the system having a plant with complex poles 
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Appendix A 
 
The Laplace Transformation 
 
The defining integral of the transformation is 

F s e f t dtst

0
 

 
where s is the Laplace complex variable, often denoted by j , with units seconds-1. In 
shorthand form the notation  is often used to denote the transformation that is 

F (s) =  [f(t))] and for the inverse f(t) = - -1[F(s)]. 
 
f(t) and F(s) are referred to as transform pairs and have a unique correspondence, that is, for a 
given f(t) or F(s) there is a corresponding unique F(s) or f(t). The three ‘most basic’ results are: 

 (1)  [e-at] = 1/(s+a) 
 (2)  [sin t] = /(s2+ 2) 
 (3)  [cos t] = s/(s2+ 2) 
 
The result of (1) is easily shown from the defining integral. It will also be seen on doing the 
integral that the solution can only exist provided Re(s) > -a, so that the integrand tends to zero as 
t . Mathematical rigour such as this and the fact that a contour integral exists to evaluate f(t) 
from F(s) do not normally need to be considered for control engineering applications. Results (2) 
and (3) are then easily obtained from (1) by writing sin t and cos t in terms of complex 

exponentials, i.e. sin t e e jj t j t 2  and using the superposition theorem (i) below. 

Useful theorems are: 

 (i) Superposition theorem 

   af t bf t aF s bF s1 2 1 2  

 
(ii) Complex shifting theorem 

   e f t F s aat  

 
(iii) Derivative theorem 

   0fssF
dt
df

 

   1n

1n
2n1nn

n

n

dt
0fd

dt
0dfs0fssFs

dt
fd .....  

 
(iv) Integral theorem 
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s
0psF

s
1df

t

0
 where p t f d

t

0
 

 
(v) t multiplying (or complex differentiation) theorem 

   tf t
dF s

ds
 

 (vi) Real shifting theorem 

   sFeatuatf as
0  

where u0(t) is the unit step at t = 0. 

 

All other transforms which are normally required can be easily obtained from the above 
information. For example, using (ii) with (2) and (3) gives 

 (4)   e t
s a

at sin 2 2  

 (5)   e t
s a

s a
at cos 2 2  

Also noting the unit step u0(t) for t > 0 is lim e-at it follows that 
  a 0 

(6)   
s

tu 1
0 . 

The unit impulse, (t), equals tu
dt
d

0 , so that from (6) and (iii) 

 (7)   t 1 

The inverse transforms corresponding to higher order denominators with repeated roots in F(s) 
can be found by repeated use of (v), for example, 

 (8)   tf t
s a

1
2  

 (9)   t
s
1
2  

Additional useful theorems are: 

 (vii) Final value theorem 
 lim    f(t)  = lim    sF(s) 
 t    s 0 
 
(viii) Initial value theorem 
 lim    f(t)  = lim    sF(s) 
 t 0   s  
 
(ix) Convolution theorem 
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   f f t d F s F s
t

10 2 1 2  

 
Transforming a Differential Equation 
 
Consider the differential equation: 
 
 ÿ + ay           + by = u 
 
where  denotes the derivative w.r.t. time. Taking transforms of both sides of the equation and 
denoting the transforms of y(t) and u(t) by Y(s) and U(s), as is a standard convention, use of the 
theorem in (iii) above gives 
 
 s2Y(s) – sy(0) - y       (0) + a(sY(s) – y(0) + bY(s) = U(s) 
 
that is 
 
 (s2 + as + b)Y(s) – y(0) (a+s) - y   (0) = U(s). 
 
Note that to solve the equation, since it is second order, two initial conditions are required. When 
the initial conditions are zero the equation becomes 
 
 (s2 + as + b) Y(s) = U(s) 
 
and when written in the form 
 

 
bass

1
sU
sY

2)(
)(

 

 
the resulting expression is known as the transfer function between the input, u, and output, y. 
Systems are often described by their transfer functions, often denoted by a single symbol such as 
G(s) or F(s). 
 
To obtain   1[F(s)] one first puts F(s) into partial fractions. This requires determination of the 
roots of the denominator of F(s) which will be real or complex pairs. If (4) and (5) are used then 
the complex roots may be left as a quadratic factor. 
 
Finding the Inverse of F(s) 
 
As an example consider the transfer function 
 

1s2s2s
3s4s2sF 23

2
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The denominator can be factored into (s + 1) (s2 + s + 1) and F(s) written as 
 

1ss
2s

1s
1sF 2  

Partial fraction expansions can be obtained using MATLAB but it separates the quadratic into the 
two complex poles (s + 0.5 + j0.866) and (s + 0.5 – j0.866). The command to do this is  
[r,p,k]=residue(b,a). The required inputs are vectors b and a, the coefficients of the numerator 
and denominator polynomials in descending order. The residues are returned in r, the poles in p 
and any direct gain in k. Thus for the above transfer function one obtains:- 
>> [r,p,k]=residue([2 4 3],[1 2 2 1]) 
 
r = 
 
   1.0000           
   0.5000 - 0.8660i 
   0.5000 + 0.8660i 
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p = 
 
  -1.0000           
  -0.5000 + 0.8660i 
  -0.5000 - 0.8660i 
 
 
k = 
 
     [] 
The quadratic factor can then be split into the forms of (4) and (5), that is 
 

3
2321s

23

2321s

21s
1s

1sF 2222
.

/

/

/
 

so that from (1), (4) and (5) one obtains 
 

2
t3e3

2
t3eetf 2t2tt sincos /  

 
Note that f(0) = 2 and  
 
 lim   sF(s) = lim) 
 s    s        
 
in agreement with the initial value theorem. 
 
Also f( ) = 0 and  
 
 lim   sF(s) = lim) 
 s 0   s 0     
 
in agreement with the final value theorem. 
 

0
1s2s2s

s3s4s2
23

23

 

2
1s2s2s

s3s4s2
23

23
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Appendix B 
 

The Routh-Hurwitz Criterion. 
 

Research on the roots of a polynomial was an important area of work in mathematics in the 19th 
century.  The work of Routh and later Hurwitz led to the Routh-Hurwitz criterion which is useful 
for investigating the stability of linear feedback systems. Given the polynomial  
 
                      01

)1(
)1( ....)( fsfsfsfsF n

n
n

n    with f0 > 0                       (B1) 

 
The following table is constructed from the polynomial coefficients  
   

Row label     

sn fn fn-2 fn-4 ….. 

sn-1 fn-1 fn-3 fn-5 ….. 

 
It is then continued as follows 
 

Row label     

sn fn fn-2 fn-4 ….. 

sn-1 fn-1 fn-3 fn-5 ….. 

sn-2 b1 b2 b3 ….. 

sn-3 c1 c2 c3 …… 

. . . .  

. . . .  

s0 g1    
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with the new values found from 
 

31

2

1
1

1
nn

nn

n ff
ff

f
b ,  

51

4

1
2

1
nn

nn

n ff
ff

f
b ,  

21

31

1
1

1
bb
ff

b
c nn , 

31

51

1
2

1
bb
ff

b
c nn   

 
and so on until one number is reached in the first column, here denoted by g1.  The number of 
sign changes of the numbers in the first column, that is  1111 ,.......,,, gcbff nn ,gives the number 

of roots in the right hand side of the s plane.  
 
Thus for a stable polynomial, for f0 > 0, they will all be positive.  Two special cases arise (i) 
when a number in the first column is zero and (ii) when all the elements of a row are zero.  These 
are discussed with examples in many texts. In case (i) the zero is replaced by a small positive 
value , the table completed, and the sign changes examined as 0. Case (ii) arises when a pair 
of roots give a term of the form (s2± 2).  In this case the table is restarted by forming a 
polynomial from the coefficients in the row above the row with the zeros.  
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Appendix C 

Pade Table. 
 

As mentioned in section 6.2 a result was obtained by Pade which gives approximations for e-x as 
a ratio of polynomials. Different orders can be chosen for the numerator ,n, and denominator ,m, 
polynomials as given in the following table for n, m  3. 
 

Table C  Pade expansions for e-x. 
 

m 
_ 
n 

0 1 2 3 

0 

1
1

 
1

1 x
 

1
2

1
2xx

 
1

62
1

32 xxx
 

1 

x1
1

 

2
1

2
1

x

x

 

3
1

63
21

2

x

xx

 

4
1

2444
31

32

x

xxx

 

2 

2
1

1
2xx

 

63
21

3
1

2xx

x

 

122
1

122
1

2

2

xx

xx

 

205
21

6020
3

5
31

2

32

xx

xxx

 

3 

62
1

1
32 xxx

 2444
31

4
1

32 xxx

x

 

6020
3

5
31

205
21

32

2

xxx

xx

 

120102
1

120102
1

32

32
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Appendix D 
 

Table of Integrals 
 

As mentioned in section 8.1 the integral
j

j

dssEsE
j

dtteJ )()(
2

1)(
0

2
0 can be evaluated 

in the s-domain when 
)(
)()(

sd
scsE and c(s) and d(s) are the polynomials 

01
2

2
1

1 .........)( cscscscsc n
n

n
n  and 01

1
1 .........)( dsdsdsdsd n

n
n

n . A 

short table is given below where the integral is denoted by In for d(s) of order n. 
 

10

2
0

1 2 dd
c

I  

210

2
2
00

2
1

2 2 ddd
dcdc

I  

)(2
)2(

302130

32
2
02020

2
110

2
2

3 dddddd
ddcddcccddc

I  

)(2
)()2()2()(

2
14

2
3032140

2
41432

2
043020

2
141031

2
2

2
03210

2
3

4 ddddddddd
dddddcdddcccdddcccdddddc

I
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