
Introduction to System Health Engineering and Management in Aerospace

Stephen B. Johnson
NASA Marshall Space Flight Center
Advanced Sensors and Health Management Systems Branch, EV23

ABSTRACT

This paper provides a technical overview of Integrated System Health Engineering and Management
(ISHEM). We define ISHEM as “the prmsses, techniques, and technologies used to design, analyze,
build, verifi, and operate a system to prevent faults andor minimize their effects.” This includes design
and manufacturing techniques as well operational and managerial methods. ISHEM is not a “purely
technical issue” as it also involves and must account for organizational, communicative, and cognitive
f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all
of these elements, h m the technical to the cognitive and social, are necessary to build dependable
human-machine systems. The paper outlines a functional hmework and architecture for ISHEM
operations, describes the processes needed to implement ISHEM in the system lifecycle, and provides a
theoretical h e w o r k to understand the relationship tietween the different aspects of the discipline. It
then derives from these and the social and cognitive bases a set of design and operational principles for
ISKEM.

1

. . .

Introduction and Definition

Integrated System Health Engineering and Management (ISHEM) is defined as the processes,
techniques, and technologies used to design, analyze, buiM, verifi, and operate a system toprevent fmlts
andor mitigate their efects. It is both something old and something new. It is old in that it consists of a
variety of methods, techniques, and ideas that have been used in theory and practice for decades, all
related to the analysis of failure and the maintenance of the health of complex human-machine systems. It
is new in that the recognition of the relationships between these various methods, techniques and ideas is
much more recent and is rapidly evolving in the early 2 Is century.

growing over time. This can be seen in a variety of ways:
The recognition that these different techniques and technologies must be brought together has been

- the creation of reliability theory, environmental and system testing and quality methods in the
1950s and 1960s
the total quality management fad of the 1980s and early 1990s
the development of redundancy management and fault tolerance methods from the 1960s to the
lrre=t
the formulation of Byzantine computer theory in the 1970s and 1980s
the development of new standards such as integrated diagnostics and maintainability in the 1990s
the emergence of vehicle and system health management as technology areas in both air and
space applications in the 1990s and early 2000s
the recognition of “culture problems” m NASA and the Department of Defmse as crucial fictors
leading to system failure in the 2oooS.

-
-

-
-
-

-

We argue tfiat these disparate but related ideas are best considered fiom a broader perspective, which
we call Integrated System Heahh Engineering and Management (ISHEM). The term ISHEM evolved in
the late 1980s and early 1990s h m the phrase “Vehicle Health Monitoring (VHM),” which within the
NASA research community ref& to pmper selection and use of sensors and software to monitor the
health of space vehicles. Within year or two of its original use, space engineers found the phrase Vehicle
Health Monitoring deficient in two ways. First, merely monitoring was insufiicim, the real issue was
rather what actions to take based on the parameters so monitored. The word “management” soon
substituted for “monitoring” to refer to this more active idea. Seumd, given that vehicles 8ce merely one
aspect of the complex human-machint systems that aerospace engineers design and operate, the term
“system” soon replaced %chicle," such that by the rnid-l990s, ‘‘System Health Maoagement” became the
most common pbrase usedto deal with thesubject.

The Deperhnent of Dehse during this same jmiod had created a set of pocesses dealing witb
similar topics, but under tlnc title “Iatcgrated Diagnostics.” Tbe DoDs term referred to the operational
maintenance issues (usually in an aircraft enviroament) thatthe DoD faced in trying to detect faults,
determine their location, and mplace them. Given that huh symptoms thquently manifkstcd themselves
in componentsthat were not the source ofthe anginal fbult, it required “mtegmted” diagoostics looking at

component should be replaced. This word soon found its way into the NASA tenninolo~, becoming
“Integrated System Health Managenrent” 0. Motivation to use “integrated” in the NASA
terminology almost certainfy related to the issue of sepadng “system-level” issues h m the various
subsystems and disciplines that dealt with fail- within their own areas. Highlighting the system aspects
helped to define ISHM as a new system issue, instead of an old subsystem conoem.

many aspects of &e vehicle in q d m to detmnme * thesctnalsourceoftbe~dhcacewbat

2

Finally, in 2005, the program committee for organizing the Forum on Integrated System Health
Engineering and Management in the Fall of 2005 decided to add the word “Engineering” to the title. The
motivation to add yet another word to the term was to distinguish between the technical and social aspects
of the problem of preventing and mitigating failures. The major difference between the discussions of the
1990s and in the early 2 1 ‘ century is the growing recognition of the criticality of social and cognitive
issues in dealing with failures. The word “engineering” in ISHEM now refers to the classical technical
aspects of the problem. This now distinguishes technical aspects from the organizational and social issues,
which the word “management” clearly implies by common usage. It is important for old-time VHM
personnel to realize that in the new definition, the implication of “activity” versus “passivity” in the term
management is still correct, but it now also has the added nuance of the social and cognitive aspects of
system health.

A synonym for ISHEM is “Dependable System Design and Operations.” Bath phrases (ISHEM and
Dependable System Design and Operations) signifl that the new discipline deals with ensuring the
“health” of a technological system, or ahmnatively, preventing its degradation and failure. This includes
design and manufhctmhg techniques as well operational and managerial methods. ISHEM is not a
“purely technical issue” as it also involves and must account for organhtiod, communicative, and
cognitive features of humans as social beings and as individuals.

For simplicity, the subject matter of IS= or of Dependable System Design and operations, is
“dependability.” This word connotes more than other “ilities” such as reliability (quantitative estimation
of succes~ll operation or fiiilure), maintainabii (how to maintain the performance of a system in
operations), “diagnosibility” (a b i i to determine the so- of a hult), “testability“ (the ability to
properly test a system or its components), “quality” (a multiplydefined term if ewer there was one) and
other similar terms. kpedability includes qwdtative and qualitative features, design as well as
operations, prevention as well as mitiption of fidurts. Psychologically, human trust in a system requires
asystem to perform according to human expectations. A system that meets human expechtions is
dependable, and is ISHEM’s goal, achieved by focus on its opposite, fitilure.

We argue that ISHEM sbould be treated and organized as a coherent discipline. Organizing ISHEM
as a discipline provides an institutioaal means to oqpnize knowledge about dependable system design
and operatiow, and it heightens nwareness oftbevarious techniques to create and operate such systems.
The "suiting specialization of knowledge will allow for neation of theories and models of system health
and hilure, of pmcessa to monitor health and mitigate Ma, all with greater depth and understanding
than here$ofoE. We fix1 this step is neoessary, since the disciplines and pcesses that currently exist,
such as m l i i t h e o r y , systems e q k m i q , management theory and othrrs, have bee0 found wanting
astbesophisticrOiaa md camplnrity ofsystcsm- to irraerse. As the degtfi of ISHEM kaowiedge
i n c r e a s e s , t h t ~ i d e a s m u s t b e f k d b & c i n t o o 4 h e r d i s c i p ~ a o d p r o c e s s e g b o t h m ~ - r m d
instiMional cmtexts. When lSHEh4 is taught as an academic discipline in its own right, and when
ISHEM is integratedinto enginewingandmnnegementtheories and processes, we will begin to see
significant improvement in the dependability of human-machine systems.

The new discipline includes classical engineering issues such as advanced sensors, redundancy

methods. It also includes ”qussi-technical” t e d m k p s and disciplines such as quality assumme, systems
architectUte and engi..ering, knowledge capture, testability and maintainability, and human fsctors,
Finally, it includes social and cognitive issues of institutional design and processes, education and
training for operations, and cxxmomics of systems integration. All of these disciplines and methods are
important factors in designing and operating dependable, ‘‘healthy’’ systems of humans and machines.

attificial intelligence fix disgwstics probabilistic reliability theory and fixmal validation

Complexity, Human Abilities and the Nidure of Faults

A driving fa m the recognition of ISHEM as a discipline is the growth of complexity in the
modem world. This complexity, in tum, leads to unexpected behaviors and consequences, many of which

3

result from or result in system failure, loss of human life, destruction of property, poltution of the natural
world, huge expenses to repair or repay damages, and so on. One definition of ‘‘cxxqAex’’ in Wehster’s
Dictionary is “hard to separate7 analyze7 or solve.” (Webster’s 1991) We extrapolate fiom this defhition,
defining something as complex when it is bqond the wmplete understanding of any one individual. In
passing, we note that many systems such as the Space Shuttle elude the complete understanding of entire
organizations devoted to theii care and operation.

Complex technologies can be beyond the gasp of any single person when one of the following four
condifiOIls appks. Firsf the techndogy conld be ktemgmeour, meaning that several disparate kinds of
devices 8 f e invoked, such BS power9 progolsion, attitde COntroI, computing, etc. Second, technologies
can be deep, meaning that each type requires many years of study to master. This is true of almost all
aetospgce technologies. Third, even if the technologies are of a single type and me relatively simple
individually, there may be so many of them that the s d e of the resulting system is too large for any one
person to uaderstand. Fomtb, the interactMity of the system within its internal cosnponents, or with its
environment can %is0 be complex, in plarticufarastheybecome more autmomms. Most ofthese factas
exist in amspace systems, snd some systems display dl of these issues. The same issues o b hold true
for other systems with fewer and simpler tbchnologies but more people perfbrming divase firnctions
(johnson 20024 c m 1)

&cause of their complexity, aemspace systems must have sevml or many people working on them,
each of whom SpCcMizes in a small portion. The system must be subdivided into small chunks, each of
whkh must be ‘‘simple” enough for one to cxffaprehend. “Sinpie” in this case is the opposite of
complex: “hat which a single p e m can completely understand.” Of course, “compietely” is a rclativc
term, depending on the potential tlses of that portion of the system that the single individual m9sters, that
person's cognitivs abilities, and the naim of that system eiement. Thus a fundamental limitatioa on any
.;yslcm clesip~ is thc propix divisiori of the systcm into cognitivdy mmprchensible pieces. Since
understanding of 4 portion of a system is the fvst step to understanding how the system will behave
when tach porticar is comecbd to a ? k parti<ms, social division oftho system into sirnailer ckments, each
of which is comprehensible with individual human cognitive capabilities, i s fiindamcmtai to depmdahlc
design and operation.

Since each pmson can master only a small part of the d o l e , by definition each must communicate
with others in order to dcvelop, build, and operate the system. The implication is clear. For m y complex
system to fmrcticta ppoperfy, those designing, m*Lctufin& and operating the system must mmmunieate
well with eaeh other. Engineers have mdiaxl this to scwne exteat; this is the mason fw the existence 04‘
systems m g i d n g 8s a discipline. Howevw, systems cngimring i s
communi&hn or social skills, focusing instead on culturally congemid tcchnicaf aad procass issues. This
is a fun-a flaw in the cOIlception of systems engineering, and for engiIleeting in general. (Jahnsoo
2003)

Analysis of failures ccmfirms this line of m m g + While comprehensive statkticd or other studies
on this mgtter do not yet exist, this author’s experieftco: and analysis ofvsriws aemspwe failures suggest
that the vast majority (perhaps W A or mote) of failurcs arc ultimatcjy due to one of two fimmlarnenfrtt
c a w : individual prfonnance failures, a d such1 communicative failures. This &odd come as little
surprise. I i u m s create 4 operate systems €br their own purposes and with thcir own individual and
.social ~ R X X S S L . S , a d it is human Fadings in thesc same amas hat lead to internal flaws in design,
manufactming, or operations.

or pmcemes. While the “immcdiatc sausc” is seen in thc tech~~ology, in fwt t h ultimatc mot cause of
thew component and p m s failures result from either individual performance or social communicative
Failures. ‘W Columbia tlccideret Imsfigatim 3wrd Report of 2W3 makes this clear with the Columbia
trdgdy, hi i t is typical for triany &cr fajlures as well. ‘nis is casicr to undcrstand when we realize that
technologies are merely the final products of human knowledge applied to creating useful artifiicts. How
coulditbedhenwe * ?An Hixi ?nerdy embodies copd incarnates knowledgejwm its creators, d
hence ifit k a f d t , this is ultimc;de& due to ajkw in the knowledge of its crmlors or in CI rnimakh

mx:ptualimd in tc?rms of

Tyaieally, people recognize faufts 8s due to failures of hardware, sofhvate, or opemtkd compoamts

4

between the knowledge of its creators and that of its werx We see in this statement that faults result from
both individual and social causes. The most obvious example of this fad is the requirements capture
process, which is one of the most common places where design faults come into existence. Another is
where the operators use the system in a way not envisioned by the designers. Thus the use of the
ARPANET for email instead of data communications and simulation, and the Intemet for ecornmerce are
both uses of network technology that took the designem by surprise. While this case is benign from a
failure standpoint, others are not, such as launching the Space Shuttle ChuZZenger m temperstures beIow
its tested design limits.

Software and operetions fkilures am obviously due to peoplethat build the software cn openstethe
spacecraft Hardware failures do not always appear to follow this logic, but in fact they usually do. Many
hardwm failures are due to @roper opetation (oprrating outside the tested environment, asinthe
Challenger d o) or to wealmtsses in the num- pmcesses for the
back to design flaws or simple operational mistakes, which m turn stem from individual ptrfonnance or
socialcomrmmicativefkihnes.

Individual performance tipihues result from the f s t that individuals make mistakes. These can be as
simple as a transposition of numbers, an error in a computer algorithm, a misintqrctation of data, or
poor solder joints in an electronic assembly process (a solderer's mind wanders, W i n g to a poor solder).
Other faults are due to communication failures. These have two causes. The first is miscommunication,
when one person attempts to transmit infarmation, but that bfma t ion is not received properly by
another. Thc attempts to communicate the lngency of the foam impact m the CuZumbia accident are a
good example of this type. The second is when there is no communication. In this situation, the
information needed by one person exists with another person, but the communjcation of that information
never occurs. In the C M h g e r accident, the data needed to determine the real dangers of low
temperatures on O-rings existed, but the communication of that information among the relevant experts
never took p k on the night of tbt decision to launch, in part because some of them were absent and in
part due to asymmetries in social p e r ('Ihiokol engineers would not challenge Thidrol managers that
controlled their paychecks, and Thidrol managers would not challenge NASA managers that controlled
Thiokol's funding.).

and the system does not fail). That is, misunderstandings and miscommunications in the design or
prepmtion prior to flight may become manifest when the system is finally used. Any faults m our

circumstances. Once the error or failure occurs, then it is relatively easy to trace back the underlying
cause. The problem, however, is to find the probkm before failure occurs; that is, before the flight or use.
Ultimately, this means discovering the &lying individual perfotmmce and social communicative
faults before they are embedded in the technology, or barring that, discovering them in the technology
befm operathd use, and then ensllring the h k m the system is removed or avoided.

In summary, c~aplexity forces dK division of systems into many mall partp. This forces the division
of the system into small, individually-comphsible pieces, which in turn requires all of die individuals
working on small pieces to communicate with others. Individuals make mistakes, and the social collective
of individuals have communicatioll pbtems, both of which result in faulty knowledge becoming
embeddcd in the system, creating faults, some of which become failures. The challenge is to prevent or
find these faults bfore they create fhilures.

which traoe

Faults may lead to identifdle symptoms during flight or use (some faults cause no identifiabk errors,

knowlodge ale emhided into the system, waiting to appear a!3 errors and failures under the proper

Failure. Faults, Md Anomalies

ISHEM purports to be the discipline that studies prevention and mitigation of failures, and then
Ndes the enation of methods, technologies, and techniques that in fact prevent and mitigate failures.
Tbese methods, technologies, and techniques might or might not be classical "technologies." For example,
a specialized sensor to monitor fluid flow, connected to a redline algorithm to determine if an error exists,

5

which in turn is connected to artificial-intelligence-based diagnostic software would be a classical set of
health management technologies. However, an effective way to reduce the number of operator failures is
education, simulation, and training methods for mission operators or aircraft maintenance crew. Both of
these examples portray health management functions necessary for proper system functioning, even
though one is a classical technology, and the other is a set of social processes. Any theory of system
health engineering and management must be able to encompass the technological, social, and
psychological aspects of dealing with failures.

Since failure is the subject matter of the discipline, we must define it for the discipline to have a
proper object of study. Failure is d+ed as the loss of mtended*tion or theper$onmmce of an
unintendedjimction. In this definition, intent is defined by anyone that “uses” or “interacts” with the
system, whether as designer, manufacture, openitor, or user. It is crucial to recognize that failure is
socially defined. What one user may perceive as normal, another might consider a failure. Thus some
failures result from a mismatch between the designer’s intent and the operator’s ihctions. The system does
precisek what the designer mtended, but its behavior is not what the operator wanted. (Campbell et al,
1992, p- 3)

Users can always determine if a fitilure occurs, because failures create some identifiable behavior
related to the loss of some desirabk h c t k d i t y of the system. This undesirable behavior is called a
momdy or error or f i t symptom, all of which are synonyms that we define as a detectable undesired
state. The root cause of an anomaly is called a ‘‘fault. ” Faults might or might not lead to errors or to
failures.

behavior is “undesired.” In many cases, such as the breakup of Space Shuttle Columbia upon re-entry in
February 2003, everyone agrees that the behavior of the system was undesired, but there are many
situations where minor anomalies occur and thm is disagnxment as to whether it umstitutes an anomaly,
or whether it is merely typical and acqhdde system behavior. InNASA, theseare o h rekrredto as
“out-of-family“ events. In the Cdtanbia aud CWmger cases, some engimem and managers coosidered
insulation foam fdiing off the extend tank, or (king erosion to be anomalies, but after a time were re-
classified as normal system behavior, that is “in-family.” These warning signs wexe masked by numerous

classification of the anomalies to be normal behavior. This is sociologist Diane Vmghan’s so-called
“mrmdizatioa ofdeviame.” (Vlugban 1996, Cbapters 4 and 5). Recogniziogthatthis is a social process
is crucial, Anomdies are not”outthere”rec0gnizable to all; they are defined as ncnmal or abnormal by
various individuals and groups with ohdiffer ing criteria and values. Over the last few decades,
research on the nature oftechnology in the social si- community has made this clear, most obviously
in the theory ofthe “Social Const ruc~~ of Technology.” (sijkcr et al., 1987)

Like failures, anomalies and h u h atre m thc eye of the beholder. Sometme must decide tba! a state or

other problems that seemed mort urgent, rmd then the lack of disastrous -ledtore-

While these social and individual factom give the impression that there can be an infinite n u m k of
possible - s ofnonnal and ammahs, in practicethe most common in- - sare
relatively fkw. The criteria for discriminating between errors and hilures on one hand, and normal
behavior on the other, are based on the expected functions of the system in question. Those specifying the
requirements for a fiiture system defme a set of functions that the system is to petform. In turn, the
designers and mandacturers then create a system capable of performing those functions, while the
operators use the system to actually perfonn the function. Over time, the designers or operators may find
or mate other hctions that the system can perform. Faihue is defined with respect to those functions,
whether old or new, that the system perf‘s. Thus a themy of ISHEM pertains to the success or failure
of a system to p e r f i i its proper fimctions.

Mitigation: F m tional and AT Chitectune

Mitigation forms the opemtional core of ISHEM, and as such is its most visible aspect. It q u i r e s
sensors to detect anomalies, algorithms or experts to isolab the fault and diagnose the mot cause, and a

6

. .

variety of operational changes to the system’s configuration to respond to the fault. The discrimination of
normal versus anomalous behavior must occur on a regular basis in order to ensure proper system
operation. Should anomalies occur, the detection and response to those anomalies are dynamic processes
that modiG internal or external system structures and behaviors so as to minimize the loss of system
functionality within other schedule and cost constraints.

dynamic system. These in turn form the “mitigation” aspects of ISHEM, along with active elements of
failure prevention (predicting failure based on sensed degradation, and acting to prevent the failure).
Figure 1 shows the characteristic looping structure of operational health management functim, which is
a reflection of the timedependent repetitive feedback processes typical of dynamic systems. (Albert et al.
1995)

Any fault or its resulting errors must first be pvented from corrupting or destroying the rest of the
system. If this is not done, then the spread of the fault andor its effects will cause the system to fail. It can
also corrupt the mechanisms needed to monitor the system and respond to any problems. Once the hdt
and its errors are contained, the system must provide data about the a n d o u s behaviors, and must then
determine whether that behavior is normal or anomalous. If it anomalous, then the system can either mask
the problem (ifthere is sufficient redundancy) and continue, or it can take active measures to determine
the location of (isolate) the faulty components. Determining the mot cause (diagnosis) might or might not
be necessary in the shortterm, but in the long term it is f k q u e d y necessary in order to aptimize or adjust
the system forfuture fundions. Oncethepossiblefhultlocationsare identified, the system can re-route
around them, snd then recovery procedures can begin. When the system is once agam fimctioning,
operators canthentalremeasurestopreventfailuresfiomoccurringaudto optimize system performance.
In addition, prognosis metbods can pradict hilures before they occur, allowing operators to replace, repair,
or re-routc around compormts betbre they fail.

ISHEM theory begins with a framework of functions necessary to monitor and manage the health of a

This ISHEM functional flow
chart provides a basis for
understanding the primary
characteristics and functions of
health management systems.
Classical health management
technologies and processes for
pedormance monitoring, error
detection, isolation, and response,
diagnostics, prognostics, and
maintainability are all represented
and shown to be subsets of the
larger flow of ISHEM operations.
These functions can be performed
by people or technologies or some
mixture of the two, making the
framework general enough to
handle either their social or
technological aspects.

The characteristic looping
structure of these functions also
has architectural implications, as
shown in Figure 2. The looping
represents the flow of time

~ ~~~ ~~ ~

Figure 1: ISHEM Functional Flow

required to monitor, detect, isolate, diagnose, and respond to problems within a system. Any health
management architecture must take into account the time required to perform these functions, leading to a
series of concentric architectural loops, each of which corresponds to a characteristic time available to

7

perform these functions using combinations of technologies and humans. The fastest loops, generally
local to components and subsystems, deal with h u h that pmpagate so fast that computers are unable
react quickly enough. The on-board software then deals with faults whose effects propagate more slowly,
but typically faster than what humans can handle. Crewed vehicles have the option of on-board human
response, which is the third level of response. For situations that can take hours or days to repair, human
ground operators can be involved in the fourth level of response. Some of these responses involve
changes to the flight system, which in turn aff" the test and maintenance equipnrrent. Finally, for
expendable launchers or utkr componeats that have assembly lines opetating to sapply many vehicles,
flight information is usedto m o d i f l t h e ~ u ~ a n d t t s t e q u i p m e n t t o make the manukturing
processes more reliable for the next gemration of vehicles and technologies, and to redesign system
elements to rartove discovered failure modes. Total Quality Mmgement, for example focusa largely on
the improvements to designs and theit rnanuikturing imphentation through assembly lines based on
0perationalexperi~.

et al., 1995) The components of this archkdm are arranged in the looping fashioo c- -
The system heatth mamgamnt opraationsl architecture shown above is typical for l c t~sp~ce system,

and in f&, if one deletes the word "vehicle," it is typical for many other kinds of systems as well. (Albert
'cof

ISHEM functioas, as described in the functional flow chart just described. ISHEM functians are then
mapped into these architectural elements. There ace three primary factors that determine this mapping
time, rriticality, and cost.

Vehlcle FUR Loop

Maintenance

I
I I m I

I I I

Figure 2: System Health Management Operational Architecture

8

Time is crucial, because if the fault detection, isolation, and response (FDIR), along with subsequent
re-planning, do not occur quickly enough, then a fault may lead to system failure. The actual time
required for each loop depends both on the nature of the fault, but equally important, how quickly the
fault or its symptoms spread beyond the point of origination. FDIR loops must be significantly faster than
the- - time for that fault's propagation. The following table shows the order-of-magnitude
propagation times based on the physical or logical ppagation mechanisms. These also apply to the times
required for each element of an FDIR loop, and by summing them, for the overall FDIR time available.
Arch~ectmdly,desigmersmustcreirteFDIRmeclmnism~~tbsnthec~ - 'cpropagationtimes
of the faults m question. In Inally c8ses, this implies creation of hub and ermr contaimnent zx)lKs that
ensure a hult or its symptoms cannot ppagate past a predetermined point.

Along with the propaghon time, the Criticaliry of a fault dramabd - yaffectsadesigner's
architectural choices. For a fault to even be noticed, it must create an enor or symptom that is detectable.
If fault symptoms are mer detectable, then it follows IogicaHy that the hult is unimportant This is
because i fa f d D important, it rmutmanifest itself in a symptom related to a functioo ofthe system in
question. Put another way, if B fidt never Compromises a system fimction, then its existence is either
completely invisible to users, or is visible but irrelevant, since it will never lead to system failure. This
situation implicitly p v i d e s evidence that the designers created irrelevant functions m the system,
because if a device on the system fails, but its failure is irrelevant, what relevant fimction did it perform to
begin witb? A p p d y designed, near-ophal system will have only components that c o n t r i i to
system functions, and thus component fhilures must degrade system fimctions m some mner.

Datacomputation

Planetary probe radio data
transfer

Electron transport and processor
cycle times
Electromagnetic waves Seconds to hours

10-100 milliseconds

Figare 3: Typical Functions, Mechanisms and Characteristic Tmes

This good news is partially compromised by the existence of Zatent f i t s . Latent faults are faults
embedded in the system, but do not show any symptoms until some later event creates the conditions in
which the fault manifests itself. Virtually all design faults behave in this rnanner by their nature, but
physical component fkiluns can act similarly. The classic example of this is where a switch has failed
such that itwill stick in the current pos i t ion that it &y inhabits. Only wben swneanetriesto flip the
switch will its inebilitytochange state become apparent.

There are other limimions to this theoretical net~-loOO! detection probability. First, pacticalities of
cost may make it phibitive to monitor all appropriate behaviors. second, evety added hardware sensor
itself may fail. Third and most W y , the symptoms of faults and the c~a~dquence~ of the fjlult may
be such that by the time a fault symptom becomes visible, the system has already failed, or the time
between decaction ofa huh symptom to system failure is so fitst that nothing can be done about it. In such
cases, the hub acts much like a latent fault that does not manifest any symptoms until the fauh actually

9

. .

occurs. So even though it is a certainty that any fault we care about will create symptoms that we can
detect, this is no particular cause for celebration if the system is doomed by the time we can see the
symptom.

enhancements or margins. Failures of enhancing components will degrade system performance now or in
the future, but will not cause total system failure. An example is the failure of an unused chunk of
memory. Built-in-Test may well detect such a failure, and the resulting actions ensure that the soilsvare
never uses the location, thus reducing memory margins. Failures of componemts necessary to basic system
operation will lead to failure of some or all functions. For some systems, function Mures can lead to
injury or death to humans. These are the situations in which the discipline of "safety" comes into play.
Saf" and heaW management are related but not identical, because there exist situations in which a
system performs properly but still remains hazardous to humans (military weapons, for example), while
there are many fault situations in which human safety is unaffected (a robotic probe fails in deep space).

ramifications can cause loss of human He, and these rank "highest" on a criticality scale. At the other end
of ramifications are those fhults that am merely a nuisance, leading to slight degradation of current or
potential ktme performance. In between these extremes are a variety of possibilities. These include:
losses of margins against f h r e failures (losing one of two strings of a d u a l - r e d b t system, for
example), significant losses of perfornaance that leave other fimctions relatively unaffected (such as
degradation of a science instnrmen t leading to loss of science data or loss of a &&gain antenna, leaving
only a low-gain antenna available), etc.

fault. For example, a fault occurring during an orbit insertion maneuver is far more likely to lead to total
system failure than that same fault occurring during a benign several-month cruise phase. Similarly, i fa
fault occurs and it is detected while an ainxaft is on the ground, it is often less likelytocause significant
damage or danger than if- same f& occucs in flight.

Combining the time and criticality leads to an important theomtical construct: time-to-criticdity
(TTC). One of the most impdant factors in mapping a system function to an archikduml design is that
fbnction's TTC, which &If depends on the mission mode (the changing functions of the system as it
performs various tasks). As noted previously, if a fault does not affect a system fiinction, it is irrelevant. If
it does affect a fimction, then the TTC dctemincs the ramification of the fault, as well as how long it will
take for that ramification to occur. These two fktors then deteimine the speed of the physical mccbanhn
needed to respond to a loss of that function, along with the type of response necessary. If the fault can
cause loss of the e n t b system, and there is no time to allow an on-board computer response, then the
designers must create hxdware mechanisms that prevent, mask, or immediately respond to a fault,
without awaiting any computer
performance in the ibture, then pvidhg an On-bolud mechanism to detect the problem and relay it to
ground-based humans to determine the proper unuse of action is appropriate.

Of course, some functions are crucial for basic system operation, while others provide performance

Criticdw generally refers to a scale of possible ramifidcms of a huh. The most critical

The criticality of a fault fi-equently depends on the function the system is performing at the time of the

* . If a fault is relatively b e n i in the --term, but degrades

Prevention: ISIlEM in the Svstem Life-Cwle

Failure prevention requires not only active means to detect and respond to anomalies, but also
measures in the design, manufkturhg, and operational proctsses to eliminate the existence of Certain
potential failure modes. It is quite common for misunderstandm * gs in design to lead to architectum otnd
subsystems to umtain failure modes that could have been removed entirely. Prevention methods include a
host of means, b m designing out failures, to improved means of communication to reduce the chances of
misunderstandings or lack of data, to inspections and quality control to catch parts manufscturing or
software problems be fm they get into the final system, to operational mechanisms to avoid stressing
vulnerable components. It is geaerally fitr more cost-effdve to design out problems at the very start of a
program, and to design in approgriate mitigation methods, than it is to patch a host of Operational

10

mitigation features into a badlydesigned system. Failure prevention is thus largely an issue of appropriate
design processes, much like systems engineering.

The design process is about envisioning a goal along with an idea for the mix of technologies and
human processes that can achieve that goal, and progressively elaborating these concepts until it can take
shape into physical artifacts interact& with humans to perform the function originally intended. To deal
with the potential of the artifid’s later hilure, designers must understand where failures are likely to
originate within the design process, and also to progressively better understand the ramifications of faults
in the system as the idea moves fi-om conception to reality. Thus as the system’s requkmentq
architecture, aadcomponentsbecomeelaborated,wemuste and un derstaadhow f d m a r i s e a n d
propagate within the requirements, architecture, and components.

The umcept of oprrations defines the essential functions that the system must p e r f i i along with
how humans will interact wi6 the system’s technologieS to p e r f i i those hctions. This in turn leads to
an initial determination of dependability requirements, which typically include fault tolerance and
redundancy levels, guentitatiVe reliability specifications, mairrtrtinability (typically through meaa-the-to-
repair requirements), and d e t y .

Typically, faults are considered only after the system’s architamre has been conceived and the
components selected or designed. The usual reason for waiting to consider huh later is that Mure
modes, effixts, and criticality analyses (FMECA) cannot be done until there are unnponents available,
upon which the adyses operate. The problem with this strategy is that by that time, many faults have
already been designed into the system. What is needed is a way to analyzz faults and fbilures Mi the
specific hardware and other components are specifid

Figure 4: ISHEM in the System Life Cycle

This can be accomplished through a “functional fault analysis” in which time-to-criticality plays an
essential role in designing for dependability. The analysis takes the initial system architecture, and posits
the failure of the function performed by that architectuml element. Since each element consists of known
physical processes, and since the connections between archikctural components are physical or logical,
the both the failure of components and the propagation of the fault symptoms from the component failure
can be analyzed. These determine timing, redundancy, and fmlt and error containment requirements for
the system, and an allocation of health management functions to various system control loops or to

1 1

preventing the fault occurring by use of large design margins. The TTC analysis largely defines the top-
level roles of humans, computers, and other technologies in dealing with faults. Fnnn these allocated roles
flow the specific sensors, algorithms, and operator training necessary to monitor and respond to system
health issues.

Once the roles of humans and machines are defined and the dependability requirements levied, the
system and subsystem engineers can go about their typical design processes, which are augmented by
institutional arrangements to enfm dependability standards in design, and not merely in manufacturhg
or verification and validation. Testability tools and adyses can greatly aid the selection of sensors and
other related issues.

A “health management enginee?‘ (HME) position created at the system level significantly aids
dependability design. This engineer works alongside the chief engineer and the system engineer. The
HME is then responsible for actively seeking trouble spots in the design, in particular interaCti ve
problems that cross subsystem boundaries. This engineer also orchestrates health management design
reviews that put teeth into the efforts to design dependability into the system. These reviews parallel the
standard design reviews for the system and subsystems, but focus explicitly on preventing and mitigating
failure across the entire system.

and Criticality Analyses, Risk Management Analyses and related analyses, which in turn provide the data
on fault symptoms needed to test the system. Health management systems by their nature do little besides
monitoring until faufts occur, at which point the relevant humans and machines spring into action. The
only way to test health management systems is to create fault conditions that will stimulate the algorithms
or the humans into executing contingency procedures. It is well-known that mission operations training
for human space flight relies on simulation of fkilum, which forces the mission Operations team to work
together under stressfid conditions to solve problems. The same holds true for robotic missions. In both
cases, simulated failures are injected into the system, which includes both the real or shulated flight
vehicle and the opemtcm (and crew, ifapplicable) of that vehicle. The FMECAs provide many or all of
the symptoms used to simulate fituk, which then test both the flight hardware and software, as well as the
operators and crew. To inject faults, the test and mission operations systems must be able to simulate fault
symp?oms as well as nominal compomnt behavior.

Cost is an important Eactor in the design process for dependability as for any other system feature.
While it might be technically feasible to create design fixes to various faults, m some cases it may be
cost-pmhiiitive to do so. In these cases, the soIution may well be to take the risk of failure, aftca doing
appropriate statisticat and physical analyses to assess the risks, and weigh those versus the cosf of a
design solution. In other cases there may be a range of potential solutions that can mitigate various levels
of pmgram and system risk. A common solution is to use operational or procedural fixes to a problem.
Thus a spacecraft may have a thermal fault that can be operationally mitigated by ensuring the spacecraft
never points its vulnerable location at the Sun. Cost versus statistical reliability trsdeoffs often help to
make specific design hisions of this sort. Another crucial co6t issue is to automate the transfer of design
knowledge from ISHEM-related designs and analyses for use in p d u r a l or automated mitigation, such
as contingency plans and dficial intelligence-based models for diagnosis and prognosis.

The ihc lhmd fault analysis also @des a Starting point for more in-depth Failure Modes, Effects

The previous sections descrii the fundamentals of a h r y of JSHEM. However, translating these
theoretical ideas into conc~ete design principles and processes is an effort that will take many years and
experience with implementing these ideas. This section bcgins the process of moving fiom theq to
principles that can form a basis for action. It collects a number of promising avenues for further research
and application, as opposed to a complete set of priuciples deductively derived fiam the th-, in the
hopes thatrcsamhers,dcsigners, and qemtors can usethtse as stepping stcmesto move the themy and
the applications f o m d .

12

One of the major problems facing system designers and operators is the problem of “preparing for the
unforeseen.” The small but growing body of literature on how and why technologies fail makes it clear
that failures often occur due to some unforeseen circumstance or implication, either internal or extemal to
the system. If failures were easy for humans to predict, then they would be quite rare. Unfortunately, even
in those cases where there is evidence of impending failure, a variety of factors cloud human abilities to
perceive or understand the signals of that impending hilure. This reality means that designers and
operators must somehow prepare for the unexpected and recognize that the problem that is likely to
happen will often be one that nobody considered, and that never showed up in any analysis orFh4EA.
Since these unexpeckd failures are by definition unanticipated, the FMEAS used as the basis for fault
injection and testing do not include them. Nor will system models and simulations necessarily include
these fiiults. The system’s responses, whether by bardware, software, or people or some combination,
cannot, -fore, be anticipated.

Put in other terms, humans+equently create systems whose behavior, particularly m f i t cmes, is so
complex thot their creators carmot~&pedic t it. Unlike nature, which is a reasonably stable entity that
scientists can study over the course of centuries in the knowledge that it does not change vtry much,
every humanengineered system is unique, with behaviors that change with each change in design or
component A launch vehicle that seems reliable in the present may become more unreliable in the future
due to design changes or changes in its operational environment, such as the fetirement of experienced
operators.

The biggest fear of any engineer OT operator ofa complex system is the fear of what she does not
know. What subtle design interaction has gone unnoticed for years, ready to strike in the right operational
circumstance? What aspect of the external environment has not been anticipated, leaving the system to
cope with it in umpcted ways? What nagging minor problem is actually a sign of a much bigger
problem just waiting to happen? The potential fault space is essentially infinite, and there is no way, even
in principle, to be sure that all significant contingencies or problems have been anticipated. In fact, there
is a significant probability that they have not.

signijkance must manvat itselfwith a symptom that fleets a system function. f d t detection can
qproach IWA by monitoring all rerevmCr~temfislctiofis. Although we cannot define all the things that
might go wrong, we can in principle deteamm . what it means for the system to behave properly.
Designers and operators should be able to define limits of proper functioning for all relevant system
functions, and then detection mechanisms can be designed into the system to monitor thost functions.
Fault detection netxi not wony about all of the possible ways in which a function can go a w - a task
with no knowable bounds-it merely d s to determine deviation from nominal functioning, which is a
iinite problem. This is the basis for the theory of parametric fault detection, which cumpares actual
performance to expected performance, seeking a residual difference that may indicate a fault. As noted
earlier, the wistence of bent f d t s and time critidity issues negate some of the ptentkd benefits of the
ability to dkwwts. The field of prognostics is dedicated to Betecting small c k in current behavior
that lead to prediction of future failure, and is hence one means to deal with latent faults.

Isolating the location of a fault i s in principle more difficult, but is generally eased by the practical
limitations on the number of possible compoIlcnts that can be electronically or mechanically switched,
The so-called “line replaceable unit“ or LRU, is the level of component at which maintenance personnel
can replace a unit, or in the case of robotic sp9cecraft, that can be electronically or functionally r o d
around. F m a practical standpoint, it does not necessarily matter if cine c81 isolate the fkult to a specific
chip, if one can only switch an entire compufer processor in which the chip exists. In practice, a typical
procedure to determine where a fault exists is simply to keep swapping components until the system starts
to function, and assuming that the last swap switched out the faulty unit. Isolation to the LRU can be, and
often is a finite and straight-forward process under the assumption that only one fault exists in the system
at a given time, However, the existence of latent faults that manifest themselves only when another fault
occurs m o t be discounted. This complicates matters, and has caused tbe complete fhilure of a number
of systems. Another complication is when the root cause of the fa& is not any single compomt, but

It is possible in principle to detect the existience of any “significant“ fault. Since llny f d t of

13

rat,er the interactions between components. In these cases, and also in cases where there is no unit that
can be readily replaced, it is less crucial to isolate failures than it is to know of their existence and find
other means to mitigate them in the current or in future systems.

cases. Determining how to best operate a system in the future often requires knowing the specific root
cause of a fault in the present. When the system is in deep space, for example, it is sometimes impossible
to determine the exact cause of a fault with certainty, due to a lack of data and inability to directly inspect
or test the spacecraft. In these cases, operators determine the set of possible causes, and then determine
future actions based on the possibility it could have been any of them. Even in ground-based situations
where the device in question can be tom down, tested, and inspected, finding the mot cause is often quite
difficult, as the component in which the h l t occurs almost always has been built by another organization
that could be in a dif€emt country. The root cause of the fault may well be in an assembly l i e or with
the procedures ur performance of a specific person or machine. In addition, it is often difficult or
impossible to create the envkmment in which a fault occurred, making it difficult or impossible to
replicate. The most importaut thing is to ensure system functionality. 'That is always aided by proper
diagnosis of mot cause, but it can nonetheless often be accomplished even when the mot cause cannot be
determined.

Behind many of these difficulties lies the problem of complexity. Complexity is a feature that relates
to human cognitive and social abilities, and hence solutions to the problem of complexity must be tailored
to and draw from those same human abilities. While it is often stated that computes can resolve the
problem of complexity, this is not strictly true. Only if computers can compute, create andor present
information in a way that makes it easier for humans to understand systems and their operations, will they
assist humans in dealing with complexity. A simple example is the use of computer graphics to potiray
information, as opposed to many pages of text or a hexadecimal readout of computer memory. Humans
frequently find a graphical mpmmt&m easierto cum-& even though this is not the optimal
representation fix computers, which ultimately store data m serial digital firshion using binary operations.
The presentation of the data in a so-called "uscr-Mly" form makes all the difference.

for their effectiveness arc typically left unexplained. One example is the use of clean mter$hces, which is
de$ned as the pmctice of s i m p l m g the connections between components. However, the reason that
simplification of interfeces is an effective practice not usually explained. The reasom are uhimately
related to human cognitive and social abilities. First, t-er the m b e r ofphysical cnad logical
(sofiwm) connections and mteractions, the more likely it is fm humans to understand the entirety of
connections ad interttctions ad their implications for other parts of the system. Secondly, a ptrysical
interjibce i s d l y also a social interjiie between two or more organizations andpeople. Simple
interfaces also mean simpler communication between people and organizations and their individual
cultures and idiosyncrasies. Miscommunication becomes less likely, reducing the chances of failures due
tomiscommunication.

Complexity also relates directfy to knowledge. Something is "too complex" when our knowledge
about them is incomplete or hard to acquire. As previously described, the technologies we create merely
embody the knowledge of those who create them. Gaps or m r s in our knowledge lead to faults in the
devices we build. If we do not find the gaps and enrors in our knowledge before we build a device, then
the interumnection of ~ various components will in some cases lead to immediate failure upon
connection (interface fiilures), or in other cases leads to failures under special circumstances encountered
only later in operation. System integration, which is the process of connecting the parts to make the whole,
is when many failures occur precisely because many miscommuuicatious of or inconsistencies in our
knowledge show up when we umnect the parts to-. Theparts fail when connected bemuse the
knowledge they repesent is inconsistent or fauacious.

This leads to a fundamental principle. Since technologies are nothing but embedded knowledge, the
only way to cktcmme * ifs hult exists is by comparing the existing knowledge with another independenr
source of knowledge. Whem components are hodred together for the first time chYing w o n , this

Diagnosing the root cause of these faults is not so easy, and in principle cannot be determined in all

A number of typical practices and guidelines are geared to reduce complexity, although the reasons

14

.
.-

compares the knowledge of one designer with that of another, and mismatches result in errors appearing
at this time. Redlines placed in on-board fault protection sohare are often generated by different
processes than those used to design the system they are trying to protect. When the source of knowledge
is the same for a design and the test, then both can be contaminated by a common assumption underlying
both, allowing a “common mode fault” to slip by unnoticed. Since an independent source of knowledge is
needed, this generally requires a different person or group from the original designer, and this in turn
requires communication.

The end result of these insights is that d e m a b l e operation of a system requires communication
processes to compare indement knowledge sources for all criticaljlight elements and operations. Even
when this is done, it does not guarantee success, as it is always possible that some faults will remain
undetected because there remain common assumptions with the “independent? knowledge sources, or
there are situations that none of the knowledge sources considered. The only remedies are to find yet
more independent knowledge sources to consider the system and its many possible behaviors, and to give
existing knowledge sources more time to consider the possibilities and ramifications.

Interestingly, complete independence of knowledge is impossible. Someone that has sufficiently
different background to have “complete” independence of knowledge will by definition know nothing
about the thing they are asked to verify or cross-check. The problem with someone from the same
organization as the one building and operating a device is that they have all of the same assumptions,
background, and training. Someone with complete independence will have none of the assumptions,
background, and training of the Organization they are txying to ver@. How, in that case, will they have
any knowledge of the organization or devices if they know nothing about it? They will be useless in
verifymg the operation or device.

Knowledge independence does not and c8Mot mean complete independence. It means that some
commonalities must be eliminated, but others must remain to allow for any kind of verification. This is a
conundrum that cannot be evaded. The solution appears to be to have different kinds of verification, with
different people having different backgrounds, each of which has some commonality with tbe item and
Organization in question, but collectively having many differeoces. Thus another principle is that it is
impossible to attain complete knowledge independme for system verifwztion.

The principle of knowledge independence, and its corollary Stating impossibility of complete
independence are used quite fmquently, though not described quite in this manner. Testing of all kinds is
a means of verification because it is a means to use another mechanism and set of knowledge to interact
with the system. The test subsystem itself embodies knowledge of the system, as well as the simulated
faults. Analysis is where either the designer or someone else uses a different method to understand the
behavior of the system than the origtnal design itself. So too is inspection, where an inspector visually (or
otherwise) seaxches for flaws using his or her knowledge of what she should see. Finally, even design
mechanisms like d i n e tests or triple modular dundant voting are independent tests of behavior.
Testing an in-flight behavior means comparison to some other assessment of in-flight behavior, whether it
is an apriori analysis leading to a redline boundary placed into a software parameter, or two pmumors
being compared to a third. Trying to find B command error b e f i i upload to a spacecraft depends on
humans reviewing the work of other humans, or computer programs searching for problems using pre-
programmed rules for what n o d (or abnormal) command sequences should appear. In all cases,
independent knowledge sources come into play. Another way of viewing knowledge indepedence is to
realize that it is another way of saying that we use redundant mechanisms to check any other mechanism,
whether by humans or by machines programmed or designed by humans.

Aerospace systems frequently operate correcfly because many of the design, development,
manufacturiag, and operational processes actuaUy compare independent knowledge sources through
communication processes. Systems management, which is the management system developed within the
U.S. Air Force and NASA in the 1950s and 1% developed to deal with the technical, political, and
economic issues of spaceflight. Systems engineering developed in the same time and for similar reasons.
(Johnson 1997) These maaagerial processes primarily use social meam to check for technical problems.
To the exlent that they actually compare independent knowledge sources and provide sufficient time to

15

those sources to consider all possibilities, they prevent many failures. However, to the extent that these
processes have become bureaucratized, which is necessary to ensure that beneficial practices are passed
along to the next generation, the very processes of standardization create common beliefs that undermine
the independence and alertness needed to find problems.

This leads to another principle: bureaucracy is needed to ensure consistency of dependability
processes, but human cognitive tendencies to lose focus during repetitive actions and to suppress the
reasoning behind bureaucratic rules leads create conditions for human errors. put another way, humans
are at their best in situations that are neither wholly chaotic nor wholly repetitive. The nature of large
complex aerospace systems is such that they require millions of tiny actions and communications, a fault
in any of which can lead to system failure. Humans cannot maintain strong focus in situations of long-
term repetitive action, whether it is assembly-line wrench-turning or the launch of 50 consecutive Space
Shuttle flights. One solution to this problem is to automate repetitive functions using machines, which
excel at repetition. Unforhmately, this is not always possible. Humans must have some mind-stimulating
activities to maintain p r o p awareness. The solution is almost certainly related to proper education and
training to keep operators alert to possible dangers. A variety of methods are used already, and even more
are necessary. Training through use of inserted faults in simulations is an excellent and typical method for
operations. Another necessary method is to train designers, manufacturers and operators in the
fundamental theories and principles regardiig the origins and nature of faults and failures, and how to
deal with them. We need knowledge based both on empirical experience (simulations) and fundamental
principles that allow operators to reason through failure issues, both as designers and operators.

To summarize, the most significant aspects of ensuring dependable system design and operation
relate to the uncertainties in our knowledge of that system, and our human inability to maintain proper
focus. The h l t s that lead to failures are fkquently unanticipated, unanalyzed, and not modeled.
Unfortunately, many o h are simple, yet remain undetected due to human limitations. The first strategy
to solve this problem is to simplify the system as much as possible, which means dividing the system into
comprehensible chunks needed for individual comprehension, and then defining clean interfaces between
them, which minimizes the chances of social miscommunication. Then the system must be analyzed and
verified by comparison with independent knowledge sources. Unfortunately complete independence is
impossible, even in principle. Nonetheless, a strategy of using multiple knowledge sources is nonetheless
crucial to detect failures before operational use of the system. Actual operational use is, of course, the
ultimate test of knowledge. In this case, exposure to the environment and to the system's human operators
will unearth. those problems not found earlier. Maintaining proper focus to detect and resolve problems
before they lead to failure requires a balance between repetition and consistency on one hand, and
originality and c d v i t y on the other.

Overview of ISHEM Research and Practice

Although the ISHEM label is somewhat new, design engineers and system operators have created
many methods for preventing and mitigating faults, while researchers have been developing a variety of
technologies to aid the pracftioners. In addition, other disciplines have begun assessing the problem of
system failure and conversely, the issue of system health h m their disciplinary or problem-based
perspectives. This collection of papers is organized into several groups to reflect the current state of the
art both in theory and m practice.

At the top level, this paper, along with others on the current ISHEM statedf-the-art, the system life
cycle, and technical readiness assessment describe top-level issues that affect both research and practice
in all of the other disciplines. They provide theoretical and practical frameworks in which to place the
other research and application areas.

organizatianS, safety and hazard analysis, verification and validation and human factors, each describe
cognitive and social issues of integrating humans and machines into dependable systems.

The next set of papers, on knowledge management, economics of systems integration, high reliability

16

r

. . :

Another major way of viewing ISHEM is to review what has been done in practice in major
application areas. For aerospace, this means understanding the nuances of how ISHEM is designed into
commercial and military aircraft, rotorcraft, robotic and human-occupied space vehicles, launchers,
armaments and munitions, and the ground operations to operate these diverse kinds of systems.

Similarly, but in a more disciplinary fashion, these systems are built from subsystems, each of which
has its own nuances. Thus power systems have similar issues whether for spacecraft or commercial
aircraft. Other typical subsystems with unique ISHEM features include aircraft and spacecraft propulsion,
computing, avionics, structures, thermal and mechanical systems, life support, and sensors.

Finally, researchers and system specialists have devised a variety of methods that apply to specific
portions of the ISHEM functional cycle. Diagnosis and prognosis are the most obvious. However, there
are several others: quality assurance, probabilistic risk assessment, risk management, maintainability,
failure assessment, failure data collection and dissemination, physics of failure, and data analysis and
mining.

Conclusion

The complexity of the systems we now create regularly exceeds our ability to understand the behavior
of our creations. This results in a variety of dangerous, costly, and embarrassing failures. One
contributing cause for these failures is the lack of any comprehensive discipline to understand the nature
of our engineering systems, the roles of our human cognitive and social abilities in creating them, and the
resulting faults and failures that ensue.

Integrated System Health Engineering and Management is a comprehensive umbrella for a variety of
disparate methods that have developed over decades to prevent and mitigate failures. We have outlined
here the beginnings of a theory and some principles to under@ ISHEM practices and technologies, so as
to aid in the implementation of ISHEM in new and existing systems, and so that researchers will focus
their efforts in the right directions in providing tools, techniques, and technologies that will make the
systems we create more dependable.

Acknowledgements
Thanks to Phil Scandura for helpful comments regarding the d e f ~ t i o n of failure, aircraft health

management and the historical context of ISHEM. Andrew Koehler provided thoughtful ideas regarding
complexity and causality. serdar Uckun correctly pointed out the complexities of a system’s interactions
with its external environment, and the relationship of prognostics to fault latency.

BibliomaDhv

[Albert et al. 19951 Albert, Je&y, Dim Alyea, Larry Cooper, Stephen Johnson, and Don W c h ,
May 1995. “Vehicle Health Management (VHM) Architecture Process
Development,” Proceedings of SAE Aerospace Atlantic Conference, Dayton,
Ohio.
Bijker, Wiebe E., Thomas P. Hughes, and Trevor Pinch, eds. 1987. The Social
Construction of Technological Systems: New Directions in the Sociology and
History of Technology. Cambridge, Mass.: MIT Press.

[Campbell et al. 19921 Campbell, Glen, Stephen B. Johnson, Maxine Obleski and Ron L. Puening. 14
July 1992. System Health Management Design Methodology, Martin Marietta
Space Launch Systems Company, Rocket Engine Condition Monitoring System
(RECMS) conlract, Pratt & Whey Corporation, Purchase Order #F435025.

[Bijker, et al., 19871

17

[Johnson 19971 Johnson, Stephen B. 1997. “Three Approaches to Big Technology: Operations
Research, Systems Engineering, and Project Management,” Technology and
Culture 3 8, no 4: 89 1-9 19.
Johnson, Stephen B. 2002. The United States Air Force and the Culture of
Innovation 1945-1965. Washington, D.C.: United States Air Force and Museums

Johnson, Stephen B. 2002. The Secret of Apollo: Systems Management in
American and European Space Programs. Baltimore: The Johns Hopkins
University Press.
Johnson, Stephen B. 2003. “Systems Integration and the Social Solution of
Technical Problems in Complex Systems,” in Andrea Prencipe, Andrew Davies,
and Michael Hobday, eds. The Business of Systems Integration. oxford: oxford
University Press, 2003. pp. 35-55.
Vaughan, Diane. 1996. The Challenger Launch Decision: Rkky Technology,
Culture, and Deviance at NASA. Chicago: University of Chicago Press.
Webster ’s Ninth New Collegiate Dictionary. 199 1. Springfield, Massachusetts:
Merriam-Webster, Inc., Publishers.

[Johnson 2002al

program.
[Johnson 2002bl

[Johnson 20031

[Vaughan 19961

[Webster’s 19911

18

r 1

Q

Introduction to Integrated
System Health Engineering

and Management in
Aerospace

-+w

Dr. Stephen B. Johnson
NASA Marshall Space Flght Center

sjohns22@ccs.edu
ISHEY Fon*n.8Novob: Paga 1

I 1

I I
I f 1 1 I I Implication of Complexity I I
I ‘

By definition, beyond what any one
person can master (our cognitive abilities
are limited)
REQUIRES communication among
individuals
Implication:
- Engineering of a ‘complex” system requires

excellent communication and social skills

I ISHEM Forum. 8 N o V ob: P W 5 I

I f 7 1
Outline of Talk I I

Definitions
Operational & Design Theory

I i
I f I I
I I Complexity I I
l L I

Beyond the capability of any one person
to understand or keep track of all details
- Heterogeneous (power, propulsion, etc.)
- Deep: requires many years of study to master
- Scale: the system requirea so many

components that it is impossible for any one
person to keep all in mind

- Interactivity: interactions between internal
components, and with the external
environment are “messy”

ISHEM Forum, 8 h o b : Pap. 4

I

Failure

“A loss of intended function or
performance of an unintended function.”
- Can be designer‘s or user‘s intent

defined
- ‘in the eye of the behokler“
- Some “failures” are considered normal by

Failure is both individually and socially

Others

W M Forum. 8 Nov ob: Pap. 6

I I

ISHEM Functional
Relationshitm

I 1 Faultsand Errors I I
I ‘ I

Fault: The physical or logical cause of an
anomaly.
- The “root cause”, can be at various levels
- Might or might not lead to ”failure”
Anomaly (error): A detectable undesired
state.
- The ‘detector“ must ultimately interpret the

- Can be user, designer, others
“state” as “undesirable”

ISHEM F m . 8 Nar 05: - 7

I EmbeddedKnowledge I I
I ‘ J I

Technologies are nothing more than
“embedded knowledge”
Technologies embody (incarnate) the
knowledge of their creators
“Faults” result from flaws in the
knowledge of the creatoni, OR mismatch
in understanding between creators and
users
- Cognitive or Communicative1

ISHEM Fonwn. 8 Nov 0% Page 9

I

ISHEM Operational
Architecture

I Causes of Faults and Failures I
Individual performance failure (cognitive)
- Lack of knowledge (unaware of data)
- Misinterpreted data
- Simple mistakes (transposition, sign error, poor

solder, etc.. usually from human inattention)
Social performance failure (communicative)
- Miscommunication (misinterpretation)
- Failure to communicate: information exists, but

never got to the person or people who needed it

W E M Forum. 8 Nov 05. Paw 8

Circular,
“closed-loop”
relationships
Hints at the
physical
architecture

ISHEM Forum. 8 NOV 05: Pap. 10

r
Typical Functions, Mechanisms,

and Characteristic Times

ISHEM in the System
Life Cycle

ISHEM Faurn. 8 Nov 05: Pap. 13

1 Principle of Knowledge 1 Redundancv. and Limits
Checking for failure or faults requires a
separate, independent, credible
knowledge source
Commonality means that reviewers share
common assumptions with the reviewed
Independence means reviewers share
nothing in common with the reviewed
Complete independence neither possible
nor desirable

tSHEM Forum, 8 Nov 05: Pap. 14

I f > I
Clean Interfaces I I

Desired and sometimes required
Reduce the “interactivii between
components
Reduce the interactivii of the people and
organizations designing and operating the
components

chance for miscommunication!
Simplifies communication, reduces

ISHEM FwUn. 6 Nov 05: P80.15

I I Conclusion I /
\ J

NASA has a “culture problem” that leads to

The problem is social and cognitive as well

ISHEM to be the overarching theory over

occasional failures

as technical

the technical, social, and cognitive aspects
of preventing 8 mitigating failure
We are working to install I instill ISHEM into
the new Vision for Space Exploration

ISHEM Forum, 8 Nov05: P8p. 17

