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ABSTRACT 

This paper provides a technical overview of Integrated System Health Engineering and Management 
(ISHEM). We define ISHEM as “the prmsses, techniques, and technologies used to design, analyze, 
build, verifi, and operate a system to prevent faults andor minimize their effects.” This includes design 
and manufacturing techniques as well operational and managerial methods. ISHEM is not a “purely 
technical issue” as it also involves and must account for organizational, communicative, and cognitive 
f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all 
of these elements, h m  the technical to the cognitive and social, are necessary to build dependable 
human-machine systems. The paper outlines a functional hmework and architecture for ISHEM 
operations, describes the processes needed to implement ISHEM in the system lifecycle, and provides a 
theoretical h e w o r k  to understand the relationship tietween the different aspects of the discipline. It 
then derives from these and the social and cognitive bases a set of design and operational principles for 
ISKEM. 
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Introduction and Definition 

Integrated System Health Engineering and Management (ISHEM) is defined as the processes, 
techniques, and technologies used to design, analyze, buiM, verifi, and operate a system toprevent fmlts 
andor mitigate their efects. It is both something old and something new. It is old in that it consists of a 
variety of methods, techniques, and ideas that have been used in theory and practice for decades, all 
related to the analysis of failure and the maintenance of the health of complex human-machine systems. It 
is new in that the recognition of the relationships between these various methods, techniques and ideas is 
much more recent and is rapidly evolving in the early 2 Is century. 

growing over time. This can be seen in a variety of ways: 
The recognition that these different techniques and technologies must be brought together has been 

- the creation of reliability theory, environmental and system testing and quality methods in the 
1950s and 1960s 
the total quality management fad of the 1980s and early 1990s 
the development of redundancy management and fault tolerance methods from the 1960s to the 
lrre=t 
the formulation of Byzantine computer theory in the 1970s and 1980s 
the development of new standards such as integrated diagnostics and maintainability in the 1990s 
the emergence of vehicle and system health management as technology areas in both air and 
space applications in the 1990s and early 2000s 
the recognition of “culture problems” m NASA and the Department of Defmse as crucial fictors 
leading to system failure in the 2oooS. 

- 
- 

- 
- 
- 

- 

We argue tfiat these disparate but related ideas are best considered fiom a broader perspective, which 
we call Integrated System Heahh Engineering and Management (ISHEM). The term ISHEM evolved in 
the late 1980s and early 1990s h m  the phrase “Vehicle Health Monitoring (VHM),” which within the 
NASA research community ref& to pmper selection and use of sensors and software to monitor the 
health of space vehicles. Within year or two of its original use, space engineers found the phrase Vehicle 
Health Monitoring deficient in two ways. First, merely monitoring was insufiicim, the real issue was 
rather what actions to take based on the parameters so monitored. The word “management” soon 
substituted for “monitoring” to refer to this more active idea. Seumd, given that vehicles 8ce merely one 
aspect of the complex human-machint systems that aerospace engineers design and operate, the term 
“system” soon replaced %chicle," such that by the rnid-l990s, ‘‘System Health Maoagement” became the 
most common pbrase usedto deal with thesubject. 

The Deperhnent of Dehse  during this same jmiod had created a set of pocesses dealing witb 
similar topics, but under tlnc title “Iatcgrated Diagnostics.” Tbe DoDs term referred to the operational 
maintenance issues (usually in an aircraft enviroament) thatthe DoD faced in trying to detect faults, 
determine their location, and mplace them. Given that huh symptoms thquently manifkstcd themselves 
in componentsthat were not the source ofthe anginal fbult, it required “mtegmted” diagoostics looking at 

component should be replaced. This word soon found its way into the NASA tenninolo~, becoming 
“Integrated System Health Managenrent” 0. Motivation to use “integrated” in the NASA 
terminology almost certainfy related to the issue of sepadng “system-level” issues h m  the various 
subsystems and disciplines that dealt with fail- within their own areas. Highlighting the system aspects 
helped to define ISHM as a new system issue, instead of an old subsystem conoem. 

many aspects of &e vehicle in q d m  to detmnme * thesctnalsourceoftbe~dhcacewbat  

2 



Finally, in 2005, the program committee for organizing the Forum on Integrated System Health 
Engineering and Management in the Fall of 2005 decided to add the word “Engineering” to the title. The 
motivation to add yet another word to the term was to distinguish between the technical and social aspects 
of the problem of preventing and mitigating failures. The major difference between the discussions of the 
1990s and in the early 2 1 ‘ century is the growing recognition of the criticality of social and cognitive 
issues in dealing with failures. The word “engineering” in ISHEM now refers to the classical technical 
aspects of the problem. This now distinguishes technical aspects from the organizational and social issues, 
which the word “management” clearly implies by common usage. It is important for old-time VHM 
personnel to realize that in the new definition, the implication of “activity” versus “passivity” in the term 
management is still correct, but it now also has the added nuance of the social and cognitive aspects of 
system health. 

A synonym for ISHEM is “Dependable System Design and Operations.” Bath phrases (ISHEM and 
Dependable System Design and Operations) signifl that the new discipline deals with ensuring the 
“health” of a technological system, or ahmnatively, preventing its degradation and failure. This includes 
design and manufhctmhg techniques as well operational and managerial methods. ISHEM is not a 
“purely technical issue” as it also involves and must account for organhtiod, communicative, and 
cognitive features of humans as social beings and as individuals. 

For simplicity, the subject matter of IS= or of Dependable System Design and operations, is 
“dependability.” This word connotes more than other “ilities” such as reliability (quantitative estimation 
of succes~ll operation or fiiilure), maintainabii (how to maintain the performance of a system in 
operations), “diagnosibility” ( a b i i  to determine the so- of a hult), “testability“ (the ability to 
properly test a system or its components), “quality” (a multiplydefined term if ewer there was one) and 
other similar terms. kpedability includes qwdtative and qualitative features, design as well as 
operations, prevention as well as mitiption of fidurts. Psychologically, human trust in a system requires 
asystem to perform according to human expectations. A system that meets human expechtions is 
dependable, and is ISHEM’s goal, achieved by focus on its opposite, fitilure. 

We argue that ISHEM sbould be treated and organized as a coherent discipline. Organizing ISHEM 
as a discipline provides an institutioaal means to oqpnize knowledge about dependable system design 
and operatiow, and it heightens nwareness oftbevarious techniques to create and operate such systems. 
The "suiting specialization of knowledge will allow for neation of theories and models of system health 
and hilure, of pmcessa to monitor health and mitigate Ma, all with greater depth and understanding 
than here$ofoE. We fix1 this step is neoessary, since the disciplines and pcesses that currently exist, 
such as m l i i t h e o r y ,  systems e q k m i q ,  management theory and othrrs, have bee0 found wanting 
astbesophisticrOiaa md camplnrity ofsystcsm- to irraerse. As the degtfi of ISHEM kaowiedge 
i n c r e a s e s , t h t ~ i d e a s m u s t b e f k d b & c i n t o o 4 h e r d i s c i p ~ a o d p r o c e s s e g b o t h m ~  - r m d  
instiMional cmtexts. When lSHEh4 is taught as an academic discipline in its own right, and when 
ISHEM is integratedinto enginewingandmnnegementtheories and processes, we will begin to see 
significant improvement in the dependability of human-machine systems. 

The new discipline includes classical engineering issues such as advanced sensors, redundancy 

methods. It also includes ”qussi-technical” t e d m k p s  and disciplines such as quality assumme, systems 
architectUte and engi..ering, knowledge capture, testability and maintainability, and human fsctors, 
Finally, it includes social and cognitive issues of institutional design and processes, education and 
training for operations, and cxxmomics of systems integration. All of these disciplines and methods are 
important factors in designing and operating dependable, ‘‘healthy’’ systems of humans and machines. 

attificial intelligence fix disgwstics probabilistic reliability theory and fixmal validation 

Complexity, Human Abilities and the Nidure of Faults 

A driving fa m the recognition of ISHEM as a discipline is the growth of complexity in the 
modem world. This complexity, in tum, leads to unexpected behaviors and consequences, many of which 
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result from or result in system failure, loss of human life, destruction of property, poltution of the natural 
world, huge expenses to repair or repay damages, and so on. One definition of ‘‘cxxqAex’’ in Wehster’s 
Dictionary is “hard to separate7 analyze7 or solve.” (Webster’s 1991) We extrapolate fiom this defhition, 
defining something as complex when it is bqond the wmplete understanding of any one individual. In 
passing, we note that many systems such as the Space Shuttle elude the complete understanding of entire 
organizations devoted to theii care and operation. 

Complex technologies can be beyond the gasp of any single person when one of the following four 
condifiOIls appks. Firsf the techndogy conld be ktemgmeour, meaning that several disparate kinds of 
devices 8 f e  invoked, such BS power9 progolsion, attitde COntroI, computing, etc. Second, technologies 
can be deep, meaning that each type requires many years of study to master. This is true of almost all 
aetospgce technologies. Third, even if the technologies are of a single type and me relatively simple 
individually, there may be so many of them that the s d e  of the resulting system is too large for any one 
person to uaderstand. Fomtb, the interactMity of the system within its internal cosnponents, or with its 
environment can %is0 be complex, in plarticufarastheybecome more autmomms. Most ofthese factas 
exist in amspace systems, snd some systems display dl of these issues. The same issues o b  hold true 
for other systems with fewer and simpler tbchnologies but more people perfbrming divase firnctions 
(johnson 20024 c m  1) 

&cause of their complexity, aemspace systems must have sevml or many people working on them, 
each of whom SpCcMizes in a small portion. The system must be subdivided into small chunks, each of 
whkh must be ‘‘simple” enough for one to cxffaprehend. “Sinpie” in this case is the opposite of 
complex: “hat which a single p e m  can completely understand.” Of course, “compietely” is a rclativc 
term, depending on the potential tlses of that portion of the system that the single individual m9sters, that 
person's cognitivs abilities, and the naim of that system eiement. Thus a fundamental limitatioa on any 
.;yslcm clesip~ is thc propix divisiori of the systcm into cognitivdy mmprchensible pieces. Since 
understanding of 4 portion of a system is the fvst step to understanding how the system will behave 
when tach porticar is comecbd to a ? k  parti<ms, social division oftho system into sirnailer ckments, each 
of which is comprehensible with individual human cognitive capabilities, i s  fiindamcmtai to depmdahlc 
design and operation. 

Since each pmson can master only a small part of the d o l e ,  by definition each must communicate 
with others in order to dcvelop, build, and operate the system. The implication is clear. For m y  complex 
system to fmrcticta ppoperfy, those designing, m*Lctufin& and operating the system must mmmunieate 
well with eaeh other. Engineers have mdiaxl this to scwne exteat; this is the mason fw the existence 04‘ 
systems m g i d n g  8s a discipline. Howevw, systems cngimring i s  
communi&hn or social skills, focusing instead on culturally congemid tcchnicaf aad procass issues. This 
is a fun-a flaw in the cOIlception of systems engineering, and for engiIleeting in general. (Jahnsoo 
2003) 

Analysis of failures ccmfirms this line of m m g +  While comprehensive statkticd or other studies 
on this mgtter do not yet exist, this author’s experieftco: and analysis ofvsriws aemspwe failures suggest 
that the vast majority (perhaps W A  or mote) of failurcs arc ultimatcjy due to one of two fimmlarnenfrtt 
c a w :  individual prfonnance failures, a d  such1 communicative failures. This &odd come as little 
surprise. I i u m s  create 4 operate systems €br their own purposes and with thcir own individual and 
.social ~ R X X S S L . S ,  a d  it is  human Fadings in thesc same amas hat lead to internal flaws in design, 
manufactming, or operations. 

or pmcemes. While the “immcdiatc sausc” is seen in thc tech~~ology, in fwt t h  ultimatc mot cause of 
thew component and p m s  failures result from either individual performance or social communicative 
Failures. ‘W Columbia tlccideret Imsfigatim 3wrd Report of 2W3 makes this clear with the Columbia 
trdgdy, hi i t  is typical for triany &cr fajlures as well. ‘nis is casicr to undcrstand when we realize that 
technologies are merely the final products of human knowledge applied to creating useful artifiicts. How 
coulditbedhenwe * ?An Hixi ?nerdy embodies copd incarnates knowledgejwm its creators, d 
hence ifit k a f d t ,  this is ultimc;de& due to  ajkw in the knowledge of its crmlors or in CI rnimakh 

mx:ptualimd in tc?rms of 

Tyaieally, people recognize faufts 8s due to failures of hardware, sofhvate, or opemtkd compoamts 
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between the knowledge of its creators and that of its werx We see in this statement that faults result from 
both individual and social causes. The most obvious example of this fad is the requirements capture 
process, which is one of the most common places where design faults come into existence. Another is 
where the operators use the system in a way not envisioned by the designers. Thus the use of the 
ARPANET for email instead of data communications and simulation, and the Intemet for ecornmerce are 
both uses of network technology that took the designem by surprise. While this case is benign from a 
failure standpoint, others are not, such as launching the Space Shuttle ChuZZenger m temperstures beIow 
its tested design limits. 

Software and operetions fkilures am obviously due to peoplethat build the software cn openstethe 
spacecraft Hardware failures do not always appear to follow this logic, but in fact they usually do. Many 
hardwm failures are due to @roper opetation (oprrating outside the tested environment, asinthe 
Challenger d o )  or to wealmtsses in the num- pmcesses for the 
back to design flaws or simple operational mistakes, which m turn stem from individual ptrfonnance or 
socialcomrmmicativefkihnes. 

Individual performance tipihues result from the f s t  that individuals make mistakes. These can be as 
simple as a transposition of numbers, an error in a computer algorithm, a misintqrctation of data, or 
poor solder joints in an electronic assembly process (a solderer's mind wanders, W i n g  to a poor solder). 
Other faults are due to communication failures. These have two causes. The first is miscommunication, 
when one person attempts to transmit infarmation, but that bfma t ion  is not received properly by 
another. Thc attempts to communicate the lngency of the foam impact m the CuZumbia accident are a 
good example of this type. The second is when there is no communication. In this situation, the 
information needed by one person exists with another person, but the communjcation of that information 
never occurs. In the C M h g e r  accident, the data needed to determine the real dangers of low 
temperatures on O-rings existed, but the communication of that information among the relevant experts 
never took p k  on the night of tbt decision to launch, in part because some of them were absent and in 
part due to asymmetries in social p e r  ('Ihiokol engineers would not challenge Thidrol managers that 
controlled their paychecks, and Thidrol managers would not challenge NASA managers that controlled 
Thiokol's funding.). 

and the system does not fail). That is, misunderstandings and miscommunications in the design or 
prepmtion prior to flight may become manifest when the system is finally used. Any faults m our 

circumstances. Once the error or failure occurs, then it is relatively easy to trace back the underlying 
cause. The problem, however, is to find the probkm before failure occurs; that is, before the flight or use. 
Ultimately, this means discovering the &lying individual perfotmmce and social communicative 
faults before they are embedded in the technology, or barring that, discovering them in the technology 
befm operathd use, and then ensllring the h k  m the system is removed or avoided. 

In summary, c~aplexity forces dK division of systems into many mall partp. This forces the division 
of the system into small, individually-comphsible pieces, which in turn requires all of die individuals 
working on small pieces to communicate with others. Individuals make mistakes, and the social collective 
of individuals have communicatioll pbtems, both of which result in faulty knowledge becoming 
embeddcd in the system, creating faults, some of which become failures. The challenge is to prevent or 
find these faults bfore they create fhilures. 

which traoe 

Faults may lead to identifdle symptoms during flight or use (some faults cause no identifiabk errors, 

knowlodge ale emhided into the system, waiting to appear a!3 errors and failures under the proper 

Failure. Faults, Md Anomalies 

ISHEM purports to be the discipline that studies prevention and mitigation of failures, and then 
Ndes the enation of methods, technologies, and techniques that in fact prevent and mitigate failures. 
Tbese methods, technologies, and techniques might or might not be classical "technologies." For example, 
a specialized sensor to monitor fluid flow, connected to a redline algorithm to determine if an error exists, 
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which in turn is connected to artificial-intelligence-based diagnostic software would be a classical set of 
health management technologies. However, an effective way to reduce the number of operator failures is 
education, simulation, and training methods for mission operators or aircraft maintenance crew. Both of 
these examples portray health management functions necessary for proper system functioning, even 
though one is a classical technology, and the other is a set of social processes. Any theory of system 
health engineering and management must be able to encompass the technological, social, and 
psychological aspects of dealing with failures. 

Since failure is the subject matter of the discipline, we must define it for the discipline to have a 
proper object of study. Failure is d+ed as the loss of mtended*tion or theper$onmmce of an 
unintendedjimction. In this definition, intent is defined by anyone that “uses” or “interacts” with the 
system, whether as designer, manufacture, openitor, or user. It is crucial to recognize that failure is 
socially defined. What one user may perceive as normal, another might consider a failure. Thus some 
failures result from a mismatch between the designer’s intent and the operator’s ihctions. The system does 
precisek what the designer mtended, but its behavior is not what the operator wanted. (Campbell et al, 
1992, p- 3) 

Users can always determine if a fitilure occurs, because failures create some identifiable behavior 
related to the loss of some desirabk h c t k d i t y  of the system. This undesirable behavior is called a 
momdy or error or f i t  symptom, all of which are synonyms that we define as a detectable undesired 
state. The root cause of an anomaly is called a ‘‘fault. ” Faults might or might not lead to errors or to 
failures. 

behavior is “undesired.” In many cases, such as the breakup of Space Shuttle Columbia upon re-entry in 
February 2003, everyone agrees that the behavior of the system was undesired, but there are many 
situations where minor anomalies occur and thm is disagnxment as to whether it umstitutes an anomaly, 
or whether it is merely typical and acqhdde system behavior. InNASA, theseare o h  rekrredto as 
“out-of-family“ events. In the Cdtanbia aud CWmger cases, some engimem and managers coosidered 
insulation foam fdiing off the extend tank, or (king erosion to be anomalies, but after a time were re- 
classified as normal system behavior, that is “in-family.” These warning signs wexe masked by numerous 

classification of the anomalies to be normal behavior. This is sociologist Diane Vmghan’s so-called 
“mrmdizatioa ofdeviame.” (Vlugban 1996, Cbapters 4 and 5). Recogniziogthatthis is a social process 
is crucial, Anomdies are not”outthere”rec0gnizable to all; they are defined as ncnmal or abnormal by 
various individuals and groups with ohdiffer ing criteria and values. Over the last few decades, 
research on the nature oftechnology in the social si- community has made this clear, most obviously 
in the theory ofthe “Social Const ruc~~  of Technology.” (sijkcr et al., 1987) 

Like failures, anomalies and h u h  atre m thc eye of the beholder. Sometme must decide tba! a state or 

other problems that seemed mort urgent, rmd then the lack of disastrous -ledtore- 

While these social and individual factom give the impression that there can be an infinite n u m k  of 
possible - s ofnonnal and ammahs, in practicethe most common in- - sare 
relatively fkw. The criteria for discriminating between errors and hilures on one hand, and normal 
behavior on the other, are based on the expected functions of the system in question. Those specifying the 
requirements for a fiiture system defme a set of functions that the system is to petform. In turn, the 
designers and mandacturers then create a system capable of performing those functions, while the 
operators use the system to actually perfonn the function. Over time, the designers or operators may find 
or mate other hctions that the system can perform. Faihue is defined with respect to those functions, 
whether old or new, that the system perf‘s. Thus a themy of ISHEM pertains to the success or failure 
of a system to p e r f i i  its proper fimctions. 

Mitigation: F m  tional and AT Chitectune 

Mitigation forms the opemtional core of ISHEM, and as such is its most visible aspect. It q u i r e s  
sensors to detect anomalies, algorithms or experts to isolab the fault and diagnose the mot cause, and a 
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variety of operational changes to the system’s configuration to respond to the fault. The discrimination of 
normal versus anomalous behavior must occur on a regular basis in order to ensure proper system 
operation. Should anomalies occur, the detection and response to those anomalies are dynamic processes 
that modiG internal or external system structures and behaviors so as to minimize the loss of system 
functionality within other schedule and cost constraints. 

dynamic system. These in turn form the “mitigation” aspects of ISHEM, along with active elements of 
failure prevention (predicting failure based on sensed degradation, and acting to prevent the failure). 
Figure 1 shows the characteristic looping structure of operational health management functim, which is 
a reflection of the timedependent repetitive feedback processes typical of dynamic systems. (Albert et al. 
1995) 

Any fault or its resulting errors must first be pvented from corrupting or destroying the rest of the 
system. If this is not done, then the spread of the fault andor its effects will cause the system to fail. It can 
also corrupt the mechanisms needed to monitor the system and respond to any problems. Once the hdt 
and its errors are contained, the system must provide data about the a n d o u s  behaviors, and must then 
determine whether that behavior is normal or anomalous. If it anomalous, then the system can either mask 
the problem (ifthere is sufficient redundancy) and continue, or it can take active measures to determine 
the location of (isolate) the faulty components. Determining the mot cause (diagnosis) might or might not 
be necessary in the shortterm, but in the long term it is f k q u e d y  necessary in order to aptimize or adjust 
the system forfuture fundions. Oncethepossiblefhultlocationsare identified, the system can re-route 
around them, snd then recovery procedures can begin. When the system is once agam fimctioning, 
operators canthentalremeasurestopreventfailuresfiomoccurringaudto optimize system performance. 
In addition, prognosis metbods can pradict hilures before they occur, allowing operators to replace, repair, 
or re-routc around compormts betbre they fail. 

ISHEM theory begins with a framework of functions necessary to monitor and manage the health of a 

This ISHEM functional flow 
chart provides a basis for 
understanding the primary 
characteristics and functions of 
health management systems. 
Classical health management 
technologies and processes for 
pedormance monitoring, error 
detection, isolation, and response, 
diagnostics, prognostics, and 
maintainability are all represented 
and shown to be subsets of the 
larger flow of ISHEM operations. 
These functions can be performed 
by people or technologies or some 
mixture of the two, making the 
framework general enough to 
handle either their social or 
technological aspects. 

The characteristic looping 
structure of these functions also 
has architectural implications, as 
shown in Figure 2. The looping 
represents the flow of time 

~ ~~~ ~~ ~ 

Figure 1: ISHEM Functional Flow 

required to monitor, detect, isolate, diagnose, and respond to problems within a system. Any health 
management architecture must take into account the time required to perform these functions, leading to a 
series of concentric architectural loops, each of which corresponds to a characteristic time available to 
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perform these functions using combinations of technologies and humans. The fastest loops, generally 
local to components and subsystems, deal with h u h  that pmpagate so fast that computers are unable 
react quickly enough. The on-board software then deals with faults whose effects propagate more slowly, 
but typically faster than what humans can handle. Crewed vehicles have the option of on-board human 
response, which is the third level of response. For situations that can take hours or days to repair, human 
ground operators can be involved in the fourth level of response. Some of these responses involve 
changes to the flight system, which in turn aff" the test and maintenance equipnrrent. Finally, for 
expendable launchers or utkr componeats that have assembly lines opetating to sapply many vehicles, 
flight information is usedto m o d i f l t h e ~ u ~ a n d t t s t e q u i p m e n t t o  make the manukturing 
processes more reliable for the next gemration of vehicles and technologies, and to redesign system 
elements to rartove discovered failure modes. Total Quality Mmgement, for example focusa largely on 
the improvements to designs and theit rnanuikturing imphentation through assembly lines based on 
0perationalexperi~. 

et al., 1995) The components of this archkdm are arranged in the looping fashioo c- - 
The system heatth mamgamnt opraationsl architecture shown above is typical for l c t~sp~ce  system, 

and in f&, if one deletes the word "vehicle," it is typical for many other kinds of systems as well. (Albert 
'cof 

ISHEM functioas, as described in the functional flow chart just described. ISHEM functians are then 
mapped into these architectural elements. There ace three primary factors that determine this mapping 
time, rriticality, and cost. 

Vehlcle FUR Loop 

Maintenance 

I 
I I  m I 

I I I 

Figure 2: System Health Management Operational Architecture 
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Time is crucial, because if the fault detection, isolation, and response (FDIR), along with subsequent 
re-planning, do not occur quickly enough, then a fault may lead to system failure. The actual time 
required for each loop depends both on the nature of the fault, but equally important, how quickly the 
fault or its symptoms spread beyond the point of origination. FDIR loops must be significantly faster than 
the- - time for that fault's propagation. The following table shows the order-of-magnitude 
propagation times based on the physical or logical ppagation mechanisms. These also apply to the times 
required for each element of an FDIR loop, and by summing them, for the overall FDIR time available. 
Arch~ectmdly,desigmersmustcreirteFDIRmeclmnism~~tbsnthec~ - 'cpropagationtimes 
of the faults m question. In Inally c8ses, this implies creation of hub and ermr contaimnent zx)lKs that 
ensure a hult or its symptoms cannot ppagate  past a predetermined point. 

Along with the propaghon time, the Criticaliry of a fault dramabd - yaffectsadesigner's 
architectural choices. For a fault to even be noticed, it must create an enor or symptom that is detectable. 
If fault symptoms are mer detectable, then it follows IogicaHy that the hult is unimportant This is 
because i fa  f d  D important, it rmutmanifest itself in a symptom related to a functioo ofthe system in 
question. Put another way, if B fidt never Compromises a system fimction, then its existence is either 
completely invisible to users, or is visible but irrelevant, since it will never lead to system failure. This 
situation implicitly p v i d e s  evidence that the designers created irrelevant functions m the system, 
because if a device on the system fails, but its failure is irrelevant, what relevant fimction did it perform to 
begin witb? A p p d y  designed, near-ophal system will have only components that c o n t r i i  to 
system functions, and thus component fhilures must degrade system fimctions m some mner. 

Datacomputation 

Planetary probe radio data 
transfer 

Electron transport and processor 
cycle times 
Electromagnetic waves Seconds to hours 

10-100 milliseconds 

Figare 3: Typical Functions, Mechanisms and Characteristic Tmes 

This good news is partially compromised by the existence of Zatent f i t s .  Latent faults are faults 
embedded in the system, but do not show any symptoms until some later event creates the conditions in 
which the fault manifests itself. Virtually all design faults behave in this rnanner by their nature, but 
physical component fkiluns can act similarly. The classic example of this is where a switch has failed 
such that itwill stick in the current pos i t ion  that it &y inhabits. Only wben swneanetriesto flip the 
switch will its inebilitytochange state become apparent. 

There are other limimions to this theoretical net~-loOO! detection probability. First, pacticalities of 
cost may make it phibitive to monitor all appropriate behaviors. second, evety added hardware sensor 
itself may fail. Third and most W y ,  the symptoms of faults and the c~a~dquence~ of the fjlult may 
be such that by the time a fault symptom becomes visible, the system has already failed, or the time 
between decaction ofa huh symptom to system failure is so fitst that nothing can be done about it. In such 
cases, the hub acts much like a latent fault that does not manifest any symptoms until the fauh actually 
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occurs. So even though it is a certainty that any fault we care about will create symptoms that we can 
detect, this is no particular cause for celebration if the system is doomed by the time we can see the 
symptom. 

enhancements or margins. Failures of enhancing components will degrade system performance now or in 
the future, but will not cause total system failure. An example is the failure of an unused chunk of 
memory. Built-in-Test may well detect such a failure, and the resulting actions ensure that the soilsvare 
never uses the location, thus reducing memory margins. Failures of componemts necessary to basic system 
operation will lead to failure of some or all functions. For some systems, function Mures can lead to 
injury or death to humans. These are the situations in which the discipline of "safety" comes into play. 
Saf" and heaW management are related but not identical, because there exist situations in which a 
system performs properly but still remains hazardous to humans (military weapons, for example), while 
there are many fault situations in which human safety is unaffected (a robotic probe fails in deep space). 

ramifications can cause loss of human He, and these rank "highest" on a criticality scale. At the other end 
of ramifications are those fhults that am merely a nuisance, leading to slight degradation of current or 
potential ktme performance. In between these extremes are a variety of possibilities. These include: 
losses of margins against f h r e  failures (losing one of two strings of a d u a l - r e d b t  system, for 
example), significant losses of perfornaance that leave other fimctions relatively unaffected (such as 
degradation of a science instnrmen t leading to loss of science data or loss of a &&gain antenna, leaving 
only a low-gain antenna available), etc. 

fault. For example, a fault occurring during an orbit insertion maneuver is far more likely to lead to total 
system failure than that same fault occurring during a benign several-month cruise phase. Similarly, i fa  
fault occurs and it is detected while an ainxaft is on the ground, it is often less likelytocause significant 
damage or danger than if- same f& occucs in flight. 

Combining the time and criticality leads to an important theomtical construct: time-to-criticdity 
(TTC). One of the most impdant factors in mapping a system function to an archikduml design is that 
fbnction's TTC, which &If depends on the mission mode (the changing functions of the system as it 
performs various tasks). As noted previously, if a fault does not affect a system fiinction, it is irrelevant. If 
it does affect a fimction, then the TTC dctemincs the ramification of the fault, as well as how long it will 
take for that ramification to occur. These two fktors then deteimine the speed of the physical mccbanhn 
needed to respond to a loss of that function, along with the type of response necessary. If the fault can 
cause loss of the e n t b  system, and there is no time to allow an on-board computer response, then the 
designers must create hxdware mechanisms that prevent, mask, or immediately respond to a fault, 
without awaiting any computer 
performance in the ibture, then pvidhg an On-bolud mechanism to detect the problem and relay it to 
ground-based humans to determine the proper unuse of action is appropriate. 

Of course, some functions are crucial for basic system operation, while others provide performance 

Criticdw generally refers to a scale of possible ramifidcms of a huh. The most critical 

The criticality of a fault fi-equently depends on the function the system is performing at the time of the 

* . If a fault is relatively b e n i  in the --term, but degrades 

Prevention: ISIlEM in the Svstem Life-Cwle 

Failure prevention requires not only active means to detect and respond to anomalies, but also 
measures in the design, manufkturhg, and operational proctsses to eliminate the existence of Certain 
potential failure modes. It is quite common for misunderstandm * gs in design to lead to architectum otnd 
subsystems to umtain failure modes that could have been removed entirely. Prevention methods include a 
host of means, b m  designing out failures, to improved means of communication to reduce the chances of 
misunderstandings or lack of data, to inspections and quality control to catch parts manufscturing or 
software problems be fm they get into the final system, to operational mechanisms to avoid stressing 
vulnerable components. It is geaerally fitr more cost-effdve to design out problems at the very start of a 
program, and to design in approgriate mitigation methods, than it is to patch a host of Operational 
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mitigation features into a badlydesigned system. Failure prevention is thus largely an issue of appropriate 
design processes, much like systems engineering. 

The design process is about envisioning a goal along with an idea for the mix of technologies and 
human processes that can achieve that goal, and progressively elaborating these concepts until it can take 
shape into physical artifacts interact& with humans to perform the function originally intended. To deal 
with the potential of the artifid’s later hilure, designers must understand where failures are likely to 
originate within the design process, and also to progressively better understand the ramifications of faults 
in the system as the idea moves fi-om conception to reality. Thus as the system’s requkmentq 
architecture, aadcomponentsbecomeelaborated,wemuste and un derstaadhow f d m a r i s e a n d  
propagate within the requirements, architecture, and components. 

The umcept of oprrations defines the essential functions that the system must p e r f i i  along with 
how humans will interact wi6 the system’s technologieS to p e r f i i  those hctions. This in turn leads to 
an initial determination of dependability requirements, which typically include fault tolerance and 
redundancy levels, guentitatiVe reliability specifications, mairrtrtinability (typically through meaa-the-to- 
repair requirements), and d e t y .  

Typically, faults are considered only after the system’s architamre has been conceived and the 
components selected or designed. The usual reason for waiting to consider huh later is that Mure 
modes, effixts, and criticality analyses (FMECA) cannot be done until there are unnponents available, 
upon which the adyses operate. The problem with this strategy is that by that time, many faults have 
already been designed into the system. What is needed is a way to analyzz faults and fbilures Mi the 
specific hardware and other components are specifid 

Figure 4: ISHEM in the System Life Cycle 

This can be accomplished through a “functional fault analysis” in which time-to-criticality plays an 
essential role in designing for dependability. The analysis takes the initial system architecture, and posits 
the failure of the function performed by that architectuml element. Since each element consists of known 
physical processes, and since the connections between archikctural components are physical or logical, 
the both the failure of components and the propagation of the fault symptoms from the component failure 
can be analyzed. These determine timing, redundancy, and fmlt and error containment requirements for 
the system, and an allocation of health management functions to various system control loops or to 
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preventing the fault occurring by use of large design margins. The TTC analysis largely defines the top- 
level roles of humans, computers, and other technologies in dealing with faults. Fnnn these allocated roles 
flow the specific sensors, algorithms, and operator training necessary to monitor and respond to system 
health issues. 

Once the roles of humans and machines are defined and the dependability requirements levied, the 
system and subsystem engineers can go about their typical design processes, which are augmented by 
institutional arrangements to enfm dependability standards in design, and not merely in manufacturhg 
or verification and validation. Testability tools and adyses can greatly aid the selection of sensors and 
other related issues. 

A “health management enginee?‘ (HME) position created at the system level significantly aids 
dependability design. This engineer works alongside the chief engineer and the system engineer. The 
HME is then responsible for actively seeking trouble spots in the design, in particular interaCti ve 
problems that cross subsystem boundaries. This engineer also orchestrates health management design 
reviews that put teeth into the efforts to design dependability into the system. These reviews parallel the 
standard design reviews for the system and subsystems, but focus explicitly on preventing and mitigating 
failure across the entire system. 

and Criticality Analyses, Risk Management Analyses and related analyses, which in turn provide the data 
on fault symptoms needed to test the system. Health management systems by their nature do little besides 
monitoring until faufts occur, at which point the relevant humans and machines spring into action. The 
only way to test health management systems is to create fault conditions that will stimulate the algorithms 
or the humans into executing contingency procedures. It is well-known that mission operations training 
for human space flight relies on simulation of fkilum, which forces the mission Operations team to work 
together under stressfid conditions to solve problems. The same holds true for robotic missions. In both 
cases, simulated failures are injected into the system, which includes both the real or shulated flight 
vehicle and the opemtcm (and crew, ifapplicable) of that vehicle. The FMECAs provide many or all of 
the symptoms used to simulate fituk, which then test both the flight hardware and software, as well as the 
operators and crew. To inject faults, the test and mission operations systems must be able to simulate fault 
symp?oms as well as nominal compomnt behavior. 

Cost is an important Eactor in the design process for dependability as for any other system feature. 
While it might be technically feasible to create design fixes to various faults, m some cases it may be 
cost-pmhiiitive to do so. In these cases, the soIution may well be to take the risk of failure, aftca doing 
appropriate statisticat and physical analyses to assess the risks, and weigh those versus the cosf of a 
design solution. In other cases there may be a range of potential solutions that can mitigate various levels 
of pmgram and system risk. A common solution is to use operational or procedural fixes to a problem. 
Thus a spacecraft may have a thermal fault that can be operationally mitigated by ensuring the spacecraft 
never points its vulnerable location at the Sun. Cost versus statistical reliability trsdeoffs often help to 
make specific design hisions of this sort. Another crucial co6t issue is to automate the transfer of design 
knowledge from ISHEM-related designs and analyses for use in p d u r a l  or automated mitigation, such 
as contingency plans and dficial intelligence-based models for diagnosis and prognosis. 

The ihc lhmd fault analysis also @des a Starting point for more in-depth Failure Modes, Effects 

The previous sections descrii the fundamentals of a h r y  of JSHEM. However, translating these 
theoretical ideas into conc~ete design principles and processes is an effort that will take many years and 
experience with implementing these ideas. This section bcgins the process of moving fiom theq to 
principles that can form a basis for action. It collects a number of promising avenues for further research 
and application, as opposed to a complete set of priuciples deductively derived fiam the th-, in the 
hopes thatrcsamhers,dcsigners, and qemtors can usethtse as stepping stcmesto move the themy and 
the applications f o m d .  
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One of the major problems facing system designers and operators is the problem of “preparing for the 
unforeseen.” The small but growing body of literature on how and why technologies fail makes it clear 
that failures often occur due to some unforeseen circumstance or implication, either internal or extemal to 
the system. If failures were easy for humans to predict, then they would be quite rare. Unfortunately, even 
in those cases where there is evidence of impending failure, a variety of factors cloud human abilities to 
perceive or understand the signals of that impending hilure. This reality means that designers and 
operators must somehow prepare for the unexpected and recognize that the problem that is likely to 
happen will often be one that nobody considered, and that never showed up in any analysis orFh4EA. 
Since these unexpeckd failures are by definition unanticipated, the FMEAS used as the basis for fault 
injection and testing do not include them. Nor will system models and simulations necessarily include 
these fiiults. The system’s responses, whether by bardware, software, or people or some combination, 
cannot, -fore, be anticipated. 

Put in other terms, humans+equently create systems whose behavior, particularly m f i t  cmes, is so 
complex thot their creators carmot~&pedic t  it. Unlike nature, which is a reasonably stable entity that 
scientists can study over the course of centuries in the knowledge that it does not change vtry much, 
every humanengineered system is unique, with behaviors that change with each change in design or 
component A launch vehicle that seems reliable in the present may become more unreliable in the future 
due to design changes or changes in its operational environment, such as the fetirement of experienced 
operators. 

The biggest fear of any engineer OT operator ofa complex system is the fear of what she does not 
know. What subtle design interaction has gone unnoticed for years, ready to strike in the right operational 
circumstance? What aspect of the external environment has not been anticipated, leaving the system to 
cope with it in umpcted ways? What nagging minor problem is actually a sign of a much bigger 
problem just waiting to happen? The potential fault space is essentially infinite, and there is no way, even 
in principle, to be sure that all significant contingencies or problems have been anticipated. In fact, there 
is a significant probability that they have not. 

signijkance must manvat itselfwith a symptom that fleets a system function. f d t  detection can 
qproach IWA by monitoring all rerevmCr~temfislctiofis. Although we cannot define all the things that 
might go wrong, we can in principle deteamm . what it means for the system to behave properly. 
Designers and operators should be able to define limits of proper functioning for all relevant system 
functions, and then detection mechanisms can be designed into the system to monitor thost functions. 
Fault detection netxi not wony about all of the possible ways in which a function can go a w - a  task 
with no knowable bounds-it merely d s  to determine deviation from nominal functioning, which is a 
iinite problem. This is the basis for the theory of parametric fault detection, which cumpares actual 
performance to expected performance, seeking a residual difference that may indicate a fault. As noted 
earlier, the wistence of bent f d t s  and time critidity issues negate some of the ptentkd benefits of the 
ability to dkwwts. The field of prognostics is dedicated to Betecting small c k  in current behavior 
that lead to prediction of future failure, and is hence one means to deal with latent faults. 

Isolating the location of a fault i s  in principle more difficult, but is generally eased by the practical 
limitations on the number of possible compoIlcnts that can be electronically or mechanically switched, 
The so-called “line replaceable unit“ or LRU, is the level of component at which maintenance personnel 
can replace a unit, or in the case of robotic sp9cecraft, that can be electronically or functionally r o d  
around. F m  a practical standpoint, it does not necessarily matter if cine c81 isolate the fkult to a specific 
chip, if one can only switch an entire compufer processor in which the chip exists. In practice, a typical 
procedure to determine where a fault exists is simply to keep swapping components until the system starts 
to function, and assuming that the last swap switched out the faulty unit. Isolation to the LRU can be, and 
often is a finite and straight-forward process under the assumption that only one fault exists in the system 
at a given time, However, the existence of latent faults that manifest themselves only when another fault 
occurs m o t  be discounted. This complicates matters, and has caused tbe complete fhilure of a number 
of systems. Another complication is when the root cause of the fa& is not any single compomt, but 

It is possible in principle to detect the existience of any “significant“ fault. Since llny f d t  of 
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rat,er the interactions between components. In these cases, and also in cases where there is no unit that 
can be readily replaced, it is less crucial to isolate failures than it is to know of their existence and find 
other means to mitigate them in the current or in future systems. 

cases. Determining how to best operate a system in the future often requires knowing the specific root 
cause of a fault in the present. When the system is in deep space, for example, it is sometimes impossible 
to determine the exact cause of a fault with certainty, due to a lack of data and inability to directly inspect 
or test the spacecraft. In these cases, operators determine the set of possible causes, and then determine 
future actions based on the possibility it could have been any of them. Even in ground-based situations 
where the device in question can be tom down, tested, and inspected, finding the mot cause is often quite 
difficult, as the component in which the h l t  occurs almost always has been built by another organization 
that could be in a dif€emt country. The root cause of the fault may well be in an assembly l i e  or with 
the procedures ur performance of a specific person or machine. In addition, it is often difficult or 
impossible to create the envkmment in which a fault occurred, making it difficult or impossible to 
replicate. The most importaut thing is to ensure system functionality. 'That is always aided by proper 
diagnosis of mot cause, but it can nonetheless often be accomplished even when the mot cause cannot be 
determined. 

Behind many of these difficulties lies the problem of complexity. Complexity is a feature that relates 
to human cognitive and social abilities, and hence solutions to the problem of complexity must be tailored 
to and draw from those same human abilities. While it is often stated that computes can resolve the 
problem of complexity, this is not strictly true. Only if computers can compute, create andor present 
information in a way that makes it easier for humans to understand systems and their operations, will they 
assist humans in dealing with complexity. A simple example is the use of computer graphics to potiray 
information, as opposed to many pages of text or a hexadecimal readout of computer memory. Humans 
frequently find a graphical mpmmt&m easierto cum-& even though this is not the optimal 
representation fix computers, which ultimately store data m serial digital firshion using binary operations. 
The presentation of the data in a so-called "uscr-Mly" form makes all the difference. 

for their effectiveness arc typically left unexplained. One example is the use of clean mter$hces, which is 
de$ned as the pmctice of s i m p l m g  the connections between components. However, the reason that 
simplification of interfeces is an effective practice not usually explained. The reasom are uhimately 
related to human cognitive and social abilities. First, t-er the m b e r  ofphysical cnad logical 
(sofiwm) connections and mteractions, the more likely it is fm humans to understand the entirety of 
connections ad interttctions ad their implications for other parts of the system. Secondly, a ptrysical 
interjibce i s  d l y  also a social interjiie between two or more organizations andpeople. Simple 
interfaces also mean simpler communication between people and organizations and their individual 
cultures and idiosyncrasies. Miscommunication becomes less likely, reducing the chances of failures due 
tomiscommunication. 

Complexity also relates directfy to knowledge. Something is "too complex" when our knowledge 
about them is incomplete or hard to acquire. As previously described, the technologies we create merely 
embody the knowledge of those who create them. Gaps or m r s  in our knowledge lead to faults in the 
devices we build. If we do not find the gaps and enrors in our knowledge before we build a device, then 
the interumnection of ~ various components will in some cases lead to immediate failure upon 
connection (interface fiilures), or in other cases leads to failures under special circumstances encountered 
only later in operation. System integration, which is the process of connecting the parts to make the whole, 
is when many failures occur precisely because many miscommuuicatious of or inconsistencies in our 
knowledge show up when we umnect the parts to-. Theparts fail when connected bemuse the 
knowledge they repesent is inconsistent or fauacious. 

This leads to a fundamental principle. Since technologies are nothing but embedded knowledge, the 
only way to cktcmme * ifs hult exists is by comparing the existing knowledge with another independenr 
source of knowledge. Whem components are hodred together for the first time chYing w o n ,  this 

Diagnosing the root cause of these faults is not so easy, and in principle cannot be determined in all 

A number of typical practices and guidelines are geared to reduce complexity, although the reasons 
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compares the knowledge of one designer with that of another, and mismatches result in errors appearing 
at this time. Redlines placed in on-board fault protection sohare  are often generated by different 
processes than those used to design the system they are trying to protect. When the source of knowledge 
is the same for a design and the test, then both can be contaminated by a common assumption underlying 
both, allowing a “common mode fault” to slip by unnoticed. Since an independent source of knowledge is 
needed, this generally requires a different person or group from the original designer, and this in turn 
requires communication. 

The end result of these insights is that d e m a b l e  operation of a system requires communication 
processes to compare indement  knowledge sources for all criticaljlight elements and operations. Even 
when this is done, it does not guarantee success, as it is always possible that some faults will remain 
undetected because there remain common assumptions with the “independent? knowledge sources, or 
there are situations that none of the knowledge sources considered. The only remedies are to find yet 
more independent knowledge sources to consider the system and its many possible behaviors, and to give 
existing knowledge sources more time to consider the possibilities and ramifications. 

Interestingly, complete independence of knowledge is impossible. Someone that has sufficiently 
different background to have “complete” independence of knowledge will by definition know nothing 
about the thing they are asked to verify or cross-check. The problem with someone from the same 
organization as the one building and operating a device is that they have all of the same assumptions, 
background, and training. Someone with complete independence will have none of the assumptions, 
background, and training of the Organization they are txying to ver@. How, in that case, will they have 
any knowledge of the organization or devices if they know nothing about it? They will be useless in 
verifymg the operation or device. 

Knowledge independence does not and c8Mot mean complete independence. It means that some 
commonalities must be eliminated, but others must remain to allow for any kind of verification. This is a 
conundrum that cannot be evaded. The solution appears to be to have different kinds of verification, with 
different people having different backgrounds, each of which has some commonality with tbe item and 
Organization in question, but collectively having many differeoces. Thus another principle is that it is 
impossible to attain complete knowledge independme for system verifwztion. 

The principle of knowledge independence, and its corollary Stating impossibility of complete 
independence are used quite fmquently, though not described quite in this manner. Testing of all kinds is 
a means of verification because it is a means to use another mechanism and set of knowledge to interact 
with the system. The test subsystem itself embodies knowledge of the system, as well as the simulated 
faults. Analysis is where either the designer or someone else uses a different method to understand the 
behavior of the system than the origtnal design itself. So too is inspection, where an inspector visually (or 
otherwise) seaxches for flaws using his or her knowledge of what she should see. Finally, even design 
mechanisms like d i n e  tests or triple modular dundant voting are independent tests of behavior. 
Testing an in-flight behavior means comparison to some other assessment of in-flight behavior, whether it 
is an apriori analysis leading to a redline boundary placed into a software parameter, or two pmumors 
being compared to a third. Trying to find B command error b e f i i  upload to a spacecraft depends on 
humans reviewing the work of other humans, or computer programs searching for problems using pre- 
programmed rules for what n o d  (or abnormal) command sequences should appear. In all cases, 
independent knowledge sources come into play. Another way of viewing knowledge indepedence is to 
realize that it is another way of saying that we use redundant mechanisms to check any other mechanism, 
whether by humans or by machines programmed or designed by humans. 

Aerospace systems frequently operate correcfly because many of the design, development, 
manufacturiag, and operational processes actuaUy compare independent knowledge sources through 
communication processes. Systems management, which is the management system developed within the 
U.S. Air Force and NASA in the 1950s and 1% developed to deal with the technical, political, and 
economic issues of spaceflight. Systems engineering developed in the same time and for similar reasons. 
(Johnson 1997) These maaagerial processes primarily use social meam to check for technical problems. 
To the exlent that they actually compare independent knowledge sources and provide sufficient time to 
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those sources to consider all possibilities, they prevent many failures. However, to the extent that these 
processes have become bureaucratized, which is necessary to ensure that beneficial practices are passed 
along to the next generation, the very processes of standardization create common beliefs that undermine 
the independence and alertness needed to find problems. 

This leads to another principle: bureaucracy is needed to ensure consistency of dependability 
processes, but human cognitive tendencies to lose focus during repetitive actions and to suppress the 
reasoning behind bureaucratic rules leads create conditions for human errors. put another way, humans 
are at their best in situations that are neither wholly chaotic nor wholly repetitive. The nature of large 
complex aerospace systems is such that they require millions of tiny actions and communications, a fault 
in any of which can lead to system failure. Humans cannot maintain strong focus in situations of long- 
term repetitive action, whether it is assembly-line wrench-turning or the launch of 50 consecutive Space 
Shuttle flights. One solution to this problem is to automate repetitive functions using machines, which 
excel at repetition. Unforhmately, this is not always possible. Humans must have some mind-stimulating 
activities to maintain p r o p  awareness. The solution is almost certainly related to proper education and 
training to keep operators alert to possible dangers. A variety of methods are used already, and even more 
are necessary. Training through use of inserted faults in simulations is an excellent and typical method for 
operations. Another necessary method is to train designers, manufacturers and operators in the 
fundamental theories and principles regardiig the origins and nature of faults and failures, and how to 
deal with them. We need knowledge based both on empirical experience (simulations) and fundamental 
principles that allow operators to reason through failure issues, both as designers and operators. 

To summarize, the most significant aspects of ensuring dependable system design and operation 
relate to the uncertainties in our knowledge of that system, and our human inability to maintain proper 
focus. The h l t s  that lead to failures are fkquently unanticipated, unanalyzed, and not modeled. 
Unfortunately, many o h  are simple, yet remain undetected due to human limitations. The first strategy 
to solve this problem is to simplify the system as much as possible, which means dividing the system into 
comprehensible chunks needed for individual comprehension, and then defining clean interfaces between 
them, which minimizes the chances of social miscommunication. Then the system must be analyzed and 
verified by comparison with independent knowledge sources. Unfortunately complete independence is 
impossible, even in principle. Nonetheless, a strategy of using multiple knowledge sources is nonetheless 
crucial to detect failures before operational use of the system. Actual operational use is, of course, the 
ultimate test of knowledge. In this case, exposure to the environment and to the system's human operators 
will unearth. those problems not found earlier. Maintaining proper focus to detect and resolve problems 
before they lead to failure requires a balance between repetition and consistency on one hand, and 
originality and c d v i t y  on the other. 

Overview of ISHEM Research and Practice 

Although the ISHEM label is somewhat new, design engineers and system operators have created 
many methods for preventing and mitigating faults, while researchers have been developing a variety of 
technologies to aid the pracftioners. In addition, other disciplines have begun assessing the problem of 
system failure and conversely, the issue of system health h m  their disciplinary or problem-based 
perspectives. This collection of papers is organized into several groups to reflect the current state of the 
art both in theory and m practice. 

At the top level, this paper, along with others on the current ISHEM statedf-the-art, the system life 
cycle, and technical readiness assessment describe top-level issues that affect both research and practice 
in all of the other disciplines. They provide theoretical and practical frameworks in which to place the 
other research and application areas. 

organizatianS, safety and hazard analysis, verification and validation and human factors, each describe 
cognitive and social issues of integrating humans and machines into dependable systems. 

The next set of papers, on knowledge management, economics of systems integration, high reliability 
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Another major way of viewing ISHEM is to review what has been done in practice in major 
application areas. For aerospace, this means understanding the nuances of how ISHEM is designed into 
commercial and military aircraft, rotorcraft, robotic and human-occupied space vehicles, launchers, 
armaments and munitions, and the ground operations to operate these diverse kinds of systems. 

Similarly, but in a more disciplinary fashion, these systems are built from subsystems, each of which 
has its own nuances. Thus power systems have similar issues whether for spacecraft or commercial 
aircraft. Other typical subsystems with unique ISHEM features include aircraft and spacecraft propulsion, 
computing, avionics, structures, thermal and mechanical systems, life support, and sensors. 

Finally, researchers and system specialists have devised a variety of methods that apply to specific 
portions of the ISHEM functional cycle. Diagnosis and prognosis are the most obvious. However, there 
are several others: quality assurance, probabilistic risk assessment, risk management, maintainability, 
failure assessment, failure data collection and dissemination, physics of failure, and data analysis and 
mining. 

Conclusion 

The complexity of the systems we now create regularly exceeds our ability to understand the behavior 
of our creations. This results in a variety of dangerous, costly, and embarrassing failures. One 
contributing cause for these failures is the lack of any comprehensive discipline to understand the nature 
of our engineering systems, the roles of our human cognitive and social abilities in creating them, and the 
resulting faults and failures that ensue. 

Integrated System Health Engineering and Management is a comprehensive umbrella for a variety of 
disparate methods that have developed over decades to prevent and mitigate failures. We have outlined 
here the beginnings of a theory and some principles to under@ ISHEM practices and technologies, so as 
to aid in the implementation of ISHEM in new and existing systems, and so that researchers will focus 
their efforts in the right directions in providing tools, techniques, and technologies that will make the 
systems we create more dependable. 

Acknowledgements 
Thanks to Phil Scandura for helpful comments regarding the d e f ~ t i o n  of failure, aircraft health 

management and the historical context of ISHEM. Andrew Koehler provided thoughtful ideas regarding 
complexity and causality. serdar Uckun correctly pointed out the complexities of a system’s interactions 
with its external environment, and the relationship of prognostics to fault latency. 

BibliomaDhv 

[Albert et al. 19951 Albert, Je&y, Dim Alyea, Larry Cooper, Stephen Johnson, and Don W c h ,  
May 1995. “Vehicle Health Management (VHM) Architecture Process 
Development,” Proceedings of SAE Aerospace Atlantic Conference, Dayton, 
Ohio. 
Bijker, Wiebe E., Thomas P. Hughes, and Trevor Pinch, eds. 1987. The Social 
Construction of Technological Systems: New Directions in the Sociology and 
History of Technology. Cambridge, Mass.: MIT Press. 

[Campbell et al. 19921 Campbell, Glen, Stephen B. Johnson, Maxine Obleski and Ron L. Puening. 14 
July 1992. System Health Management Design Methodology, Martin Marietta 
Space Launch Systems Company, Rocket Engine Condition Monitoring System 
(RECMS) conlract, Pratt & Whey Corporation, Purchase Order #F435025. 

[Bijker, et al., 19871 

17 



[Johnson 19971 Johnson, Stephen B. 1997. “Three Approaches to Big Technology: Operations 
Research, Systems Engineering, and Project Management,” Technology and 
Culture 3 8, no 4: 89 1-9 19. 
Johnson, Stephen B. 2002. The United States Air Force and the Culture of 
Innovation 1945-1965. Washington, D.C.: United States Air Force and Museums 

Johnson, Stephen B. 2002. The Secret of Apollo: Systems Management in 
American and European Space Programs. Baltimore: The Johns Hopkins 
University Press. 
Johnson, Stephen B. 2003. “Systems Integration and the Social Solution of 
Technical Problems in Complex Systems,” in Andrea Prencipe, Andrew Davies, 
and Michael Hobday, eds. The Business of Systems Integration. oxford: oxford 
University Press, 2003. pp. 35-55. 
Vaughan, Diane. 1996. The Challenger Launch Decision: Rkky Technology, 
Culture, and Deviance at NASA. Chicago: University of Chicago Press. 
Webster ’s Ninth New Collegiate Dictionary. 199 1. Springfield, Massachusetts: 
Merriam-Webster, Inc., Publishers. 

[Johnson 2002al 

program. 
[Johnson 2002bl 

[Johnson 20031 

[Vaughan 19961 

[Webster’s 19911 

18 



r 1 

Q 

Introduction to Integrated 
System Health Engineering 

and Management in 
Aerospace 

-+w 

Dr. Stephen B. Johnson 
NASA Marshall Space Flght Center 

sjohns22@ccs.edu 
ISHEY Fon*n.8Novob: Paga 1 

I 1 

I I 
I f  1 1  I I Implication of Complexity I I 
I ‘  

By definition, beyond what any one 
person can master (our cognitive abilities 
are limited) 
REQUIRES communication among 
individuals 
Implication: 
- Engineering of a ‘complex” system requires 

excellent communication and social skills 
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I f  7 1  
Outline of Talk I I  

Definitions 
Operational & Design Theory 

I i 
I f  I I  
I I  Complexity I I  
l L  I 

Beyond the capability of any one person 
to understand or keep track of all details 
- Heterogeneous (power, propulsion, etc.) 
- Deep: requires many years of study to master 
- Scale: the system requirea so many 

components that it is impossible for any one 
person to keep all in mind 

- Interactivity: interactions between internal 
components, and with the external 
environment are “messy” 
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I 

Failure 

“A loss of intended function or 
performance of an unintended function.” 
- Can be designer‘s or user‘s intent 

defined 
- ‘in the eye of the behokler“ 
- Some “failures” are considered normal by 

Failure is both individually and socially 

Others 
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I I 

ISHEM Functional 
Relationshitm 

I 1 Faultsand Errors I I 
I ‘  I 

Fault: The physical or logical cause of an 
anomaly. 
- The “root cause”, can be at various levels 
- Might or might not lead to ”failure” 
Anomaly (error): A detectable undesired 
state. 
- The ‘detector“ must ultimately interpret the 

- Can be user, designer, others 
“state” as “undesirable” 
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I EmbeddedKnowledge I I 
I ‘  J I  

Technologies are nothing more than 
“embedded knowledge” 
Technologies embody (incarnate) the 
knowledge of their creators 
“Faults” result from flaws in the 
knowledge of the creatoni, OR mismatch 
in understanding between creators and 
users 
- Cognitive or Communicative1 
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I 

ISHEM Operational 
Architecture 

I Causes of Faults and Failures I 
Individual performance failure (cognitive) 
- Lack of knowledge (unaware of data) 
- Misinterpreted data 
- Simple mistakes (transposition, sign error, poor 

solder, etc.. usually from human inattention) 
Social performance failure (communicative) 
- Miscommunication (misinterpretation) 
- Failure to communicate: information exists, but 

never got to the person or people who needed it 
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Circular, 
“closed-loop” 
relationships 
Hints at the 
physical 
architecture 
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r 
Typical Functions, Mechanisms, 

and Characteristic Times 



ISHEM in the System 
Life Cycle 
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1 Principle of Knowledge 1 Redundancv. and Limits 
Checking for failure or faults requires a 
separate, independent, credible 
knowledge source 
Commonality means that reviewers share 
common assumptions with the reviewed 
Independence means reviewers share 
nothing in common with the reviewed 
Complete independence neither possible 
nor desirable 
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I f  > I  
Clean Interfaces I I  

Desired and sometimes required 
Reduce the “interactivii between 
components 
Reduce the interactivii of the people and 
organizations designing and operating the 
components 

chance for miscommunication! 
Simplifies communication, reduces 
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I I  Conclusion I /  
\ J 

NASA has a “culture problem” that leads to 

The problem is social and cognitive as well 

ISHEM to be the overarching theory over 

occasional failures 

as technical 

the technical, social, and cognitive aspects 
of preventing 8 mitigating failure 
We are working to install I instill ISHEM into 
the new Vision for Space Exploration 
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