
Preface to the Second Edition

In the preface to the first edition of this book I remarked on the paucity of intro-
ductory texts devoted to the arithmetic of elliptic curves. That unfortunate state of
affairs has long since been remedied with the publication of many volumes, among
which may be mentioned books by Cassels [43], Cremona [54], Husemöller [118],
Knapp [127], McKean et. al [167], Milne [178], and Schmitt et. al [222] that high-
light the arithmetic and modular theory, and books by Blake et. al [22], Cohen et.
al [51], Hankerson et. al [107], and Washington [304] that concentrate on the use of
elliptic curves in cryptography. However, even among this cornucopia of literature, I
hope that this updated version of the original text will continue to be useful.

The past two decades have witnessed tremendous progress in the study of elliptic
curves. Among the many highlights are the proof by Merel [170] of uniform bound-
edness for torsion points on elliptic curves over number fields, results of Rubin [215]
and Kolyvagin [130] on the finiteness of Shafarevich–Tate groups and on the con-
jecture of Birch and Swinnerton-Dyer, the work of Wiles [311] on the modularity of
elliptic curves, and the proof by Elkies [77] that there exist infinitely many supersin-
gular primes. Although this introductory volume is unable to include proofs of these
deep results, it will guide the reader along the beginning of the trail that ultimately
leads to these summits.

My primary goals in preparing this second edition, over and above the pedagog-
ical aims of the first edition, are the following:

• Update and expand results and references, especially in Appendix C, which
includes a new section on the variation of the trace of Frobenius.

• Add a chapter devoted to algorithmic aspects of elliptic curves, with an em-
phasis on those features that are used in cryptography.

• Add a section on Szpiro’s conjecture and theABC conjecture.

• Correct, clarify, and simplify the proofs of some results.

• Correct numerous typographical and minor mathematical errors. However,
since this volume has been entirely retypeset, I beg the reader’s indulgence
for any new typos that have been introduced.

• Significantly expand the selection of exercises.

It has been gratifying to see the first edition of this book become a standard
text and reference in the subject. In order to maintain backward compatibility of
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cross-references, I have taken some care to leave the numbering system unchanged.
Thus Proposition III.8.1 in the first edition remains Proposition III.8.1 in the second
edition, and similarly for Exercise 3.5. New material has been assigned new numbers,
and although there are many new exercises, they have been appended to the exercises
from the first edition.

Electronic Resources: There are many computer packages that perform computa-
tions on elliptic curves. Of particular note are two free packages, Sage [275] and
Pari [202], each of which implements an extensive collection of elliptic curve algo-
rithms. For additional links to online elliptic curve resources, and for other material,
the reader is invited to visit theArithmetic of Elliptic Curveshome page at

www.math.brown.edu/˜jhs/AECHome.html

No book is ever free from error or incapable of being improved. I would be
delighted to receive comments, positive or negative, and corrections from you, the
reader. You can send mail to me at

jhs@math.brown.edu
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zini, Ronald van Luijk, David Masser, Martin Olsson, Chol Park, Bjorn Poonen,
Michael Reid, Michael Rosen, Jordan Risov, Robert Sarvis, Ed Schaefer, René
Schoof, Nigel Smart, Jeroen Spandaw, Douglas Squirrel, Katherine Stange, Sinan
Unver, John Voight, Jianqiang Zhao, Michael Zieve.

Providence, Rhode Island JOSEPHH. SILVERMAN

November, 2008
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The preface to a textbook frequently contains the author’s justification for offering
the public “another book” on a given subject. For our chosen topic, the arithmetic of
elliptic curves, there is little need for such an apologia. Considering the vast amount
of research currently being done in this area, the paucity of introductory texts is
somewhat surprising. Parts of the theory are contained in various books of Lang,
especially [135] and [140], and there are books of Koblitz [129] and Robert [210]
(the latter now out of print) that concentrate on the analytic and modular theory.
In addition, there are survey articles by Cassels [41], which is really a short book,
and Tate [289], which is beautifully written, but includes no proofs. Thus the author
hopes that this volume fills a real need, both for the serious student who wishes to
learn basic facts about the arithmetic of elliptic curves and for the research mathe-
matician who needs a reference source for those same basic facts.

Our approach is more algebraic than that taken in, say, [135] or [140], where
many of the basic theorems are derived using complex analytic methods and the Lef-
schetz principle. For this reason, we have had to rely somewhat more on techniques
from algebraic geometry. However, the geometry of (smooth) curves, which is es-
sentially all that we use, does not require a great deal of machinery. And the small
price paid in learning a little bit of algebraic geometry is amply repaid in a unity of
exposition that, to the author, seems to be lacking when one makes extensive use of
either the Lefschetz principle or lengthy, albeit elementary, calculations with explicit
polynomial equations.

This last point is worth amplifying. It has been the author’s experience that “ele-
mentary” proofs requiring page after page of algebra tend to be quite uninstructive.
A student may be able to verify such a proof, line by line, and at the end will agree
that the proof is complete. But little true understanding results from such a proce-
dure. In this book, our policy is always to state when a result can be proven by such
an elementary calculation, indicate briefly how that calculation might be done, and
then to give a more enlightening proof that is based on general principles.

The basic (global) theorems in the arithmetic of elliptic curves are the Mordell–
Weil theorem, which is proven in Chapter VIII and analyzed more closely in Chap-
ter X, and Siegel’s theorem, which is proven in Chapter IX. The reader desiring to
reach these results fairly rapidly might take the following path:

I and II (briefly review), III (§§1–8), IV (§§1–6), V (§1)
VII ( §§1–5), VIII (§§1–6), IX (§§1–7), X (§§1–6).
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This material also makes a good one-semester course, possibly with some time left
at the end for special topics. The present volume is built around the notes for such
a course, taught by the author at M.I.T. during the spring term of 1983. Of course,
there are many other ways to structure a course. For example, one might include all
of chapters V and VI, skipping IX and, if pressed for time, X. Other important topics
in the arithmetic of elliptic curves, which do not appear in this volume due to time
and space limitations, are briefly discussed in Appendix C.

It is certainly true that some of the deepest results in the subject, such as Mazur’s
theorem bounding torsion overQ and Faltings’ proof of the isogeny conjecture, re-
quire many of the resources of modern “SGA-style” algebraic geometry. On the other
hand, one needs no machinery at all to write down the equation of an elliptic curve
and to do explicit computations with it; so there are many important theorems whose
proof requires nothing more than cleverness and hard work. Whether your inclination
leans toward heavy machinery or imaginative calculations, you will find much that
remains to be discovered in the arithmetic theory of elliptic curves. Happy Hunting!
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Introduction

The study of Diophantine equations, that is, the solution of polynomial equations
in integers or rational numbers, has a history stretching back to ancient Greece and
beyond. The termDiophantine geometryis of more recent origin and refers to the
study of Diophantine equations through a combination of techniques from algebraic
number theory and algebraic geometry. On the one hand, the problem of finding
integer and rational solutions to polynomial equations calls into play the tools of
algebraic number theory that describe the rings and fields wherein those solutions
lie. On the other hand, such a system of polynomial equations describes an algebraic
variety, which is a geometric object. It is the interplay between these two points of
view that is the subject of Diophantine geometry.

The simplest sort of equation is linear:

aX + bY = c, a, b, c ∈ Z, a or b 6= 0.

Such an equation always has rational solutions. It has integer solutions if and only if
the greatest common divisor ofa andb dividesc, and if this occurs, then we can find
all solutions using the Euclidean algorithm.

Next in order of difficulty come quadratic equations:

aX2 + bXY + cY 2 + dX + eY + f = 0, a, . . . , f ∈ Z, a, b or c 6= 0.

They describe conic sections, and by a suitable change of coordinateswith rational
coefficients, we can transform a given equation into one of the following forms:

AX2 + BY 2 = C ellipse,

AX2 −BY 2 = C hyperbola,

AX + BY 2 = 0 parabola.

For quadratic equations we have the following powerful theorem that aids in their
solution.

Hasse–Minkowski Theorem 0.1.([232, IV Theorem 8])Let f(X, Y ) ∈ Q[X,Y ]
be a quadratic polynomial. The equationf(X, Y ) = 0 has a solution(x, y) ∈ Q2

if and only if it has a solution(x, y) ∈ R2 and a solution(x, y) ∈ Q2
p for every

primep. (HereQp is the field ofp-adic numbers.)

xv
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In other words, a quadratic polynomial has a solution inQ if and only if it has a
solution in every completion ofQ. Hensel’s lemma says that checking for solutions
in Qp is more or less the same as checking for solutions in the finite fieldZ/pZ,
and this is turn is easily accomplished using quadratic reciprocity. We summarize
the steps that go into the Diophantine analysis of quadratic equations.

(1) Analyze the equations over finite fields [quadratic reciprocity].

(2) Use this information to study the equations over complete local fieldsQp

[Hensel’s lemma]. (We must also analyze them overR.)

(3) Piece together the local information to obtain results for the global fieldQ
[Hasse principle].

Where does the geometry appear? Linear and quadratic equations in two vari-
ables define curves of genus zero. The above discussion says that we have a fairly
good understanding of the arithmetic of such curves. The next simplest case, namely
the arithmetic properties of curves of genus one (which are given by cubic equations
in two variables), is our object of study in this book. The arithmetic of these so-called
elliptic curvesalready presents complexities on which much current research is cen-
tered. Further, they provide a standard testing ground for conjectures and techniques
that can then be fruitfully applied to the study of curves of higher genus and (abelian)
varieties of higher dimension.

Briefly, the organization of this book is as follows. After two introductory chap-
ters giving basic material on algebraic geometry, we start by studying the geometry
of elliptic curves over algebraically closed fields (Chapter III). We then follow the
program outlined above and investigate the properties of elliptic curves over finite
fields (Chapter V), local fields (Chapters VI, VII), and global (number) fields (Chap-
ters VIII, IX, X). Our understanding of elliptic curves over finite and local fields
will be fairly satisfactory. However, it turns out that the analogue of the Hasse–
Minkowski theorem is false for polynomials of degree greater than2. This means
that the transition from local to global is far more tenuous than in the degree2 case.
We study this problem in some detail in Chapter X. Finally, in Chapter XI we in-
vestigate computational aspects of the theory of elliptic curves, especially those that
have become important in the field of cryptography.

The theory of elliptic curves is rich, varied, and amazingly vast. The original aim
of this book was to provide an essentially self-contained introduction to the basic
arithmetic properties of elliptic curves. Even such a limited goal proved to be too
ambitious. The material described above is approximately half of what the author
had hoped to include. The reader will find a brief discussion and list of references for
the omitted topics in Appendix C, about half of which are covered in the companion
volume [266] to this book.

Our other goal, that of being self-contained, has been more successful. We have,
of course, felt free to state results that every reader should know, even when the
proofs are far beyond the scope of this book. However, we have endeavored not to
use such results for making further deductions. There are three major exceptions to
this general policy. First, we do not prove that every elliptic curve overC is uni-
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formized by elliptic functions (VI.5.1). This result fits most naturally into a discus-
sion of modular functions, which is one of the omitted topics; it is covered [266, I§4]
in the companion volume. Second, we do not prove that over a complete local field,
the “nonsingular” points sit with finite index inside the set of all points (VII.6.1).
This can be proven by quite explicit polynomial computations (cf. [283]), but they
are rather lengthy and have not been included for lack of space. (This result is proven
in the companion volume [266, IV§§8, 9].) Finally, in the study of integral points on
elliptic curves, we make use of Roth’s theorem (IX.1.4) without giving a proof. We
include a brief discussion of the proof in (IX§8), and the reader who wishes to see
the myriad details can proceed to one of the references listed there.

The prerequisites for reading this book are fairly modest. We assume that the
reader has had a first course in algebraic number theory, and thus is acquainted with
number fields, rings of integers, prime ideals, ramification, absolute values, comple-
tions, etc. The contents of any basic text on algebraic number theory, such as [142,
Part I] or [25], should more than suffice. Chapter VI, which deals with elliptic curves
overC, assumes a familiarity with the basic principles of complex analysis. In Chap-
ter X, we use a little bit of group cohomology, but justH0 andH1. The reader will
find in Appendix B the cohomological facts needed to read Chapter X. Finally, since
our approach is mainly algebraic, there is the question of background material in al-
gebraic geometry. On the one hand, since much of the theory of elliptic curves can
be obtained through the use of explicit equations and calculations, we do not want to
require that the reader already know a great deal of algebraic geometry. On the other
hand, this being a book on number theory and not algebraic geometry, it would not
be reasonable to spend half the book developing from first principles the algebro-
geometric facts that we will use. As a compromise, the first two chapters give an
introduction to the algebraic geometry of varieties and curves, stating all of the facts
that we need, giving complete references, and providing enough proofs so that the
reader can gain a flavor for some of the basic techniques used in algebraic geometry.

Numerous exercises have been included at the end of each chapter. The reader
desiring to gain a real understanding of the subject is urged to attempt as many as
possible. Some of these exercises are (special cases of) results that have appeared
in the literature. A list of comments and citations for the exercises may be found on
page 461. Exercises with a single asterisk are somewhat more difficult, while two
asterisks signal an unsolved problem.

References
Bibliographical references are enclosed in square brackets, e.g., [289, Theorem 6].
Cross-references to theorems, propositions, lemmas, etc., are given in full with the
chapter roman numeral or appendix letter, e.g., (IV.3.1) and (B.2.1). Reference to
an exercise is given by the chapter number followed by the exercise number, e.g.,
Exercise 3.6.
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Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, Fq, andZ`

to denote the integers, rational numbers, real numbers, complex numbers, a field
with q elements, and thè-adic integers, respectively. Further, ifR is any ring,
thenR∗ denotes the group of invertible elements ofR, and ifA is an abelian group,
thenA[m] denotes the subgroup ofA consisting of elements of order dividingm.
For a more complete list of notation, see page 467.


