Software
Architect’
Handbook

Become a successful software architect by implementing effective
architecture concepts

R

- Packb

www.packt.com

By Joseph Ingeno

Software Architect's Handbook

Become a successful software architect by implementing
effective architecture concepts

Joseph Ingeno

BIRMINGHAM - MUMBAI

Software Architect's Handbook

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Denim Pinto

Content Development Editor: Priyanka Sawant
Technical Editor: Ketan Kamble

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Jason Monteiro

Production Coordinator: Aparna Bhagat

First published: August 2018
Production reference: 1290818
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78862-406-0

www.packtpub.com

To my children, Adriana and Alexander,
who make the world a better place.

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Joseph Ingeno is a software architect who oversees a number of enterprise software
applications. During his career, he has designed and developed software for a variety of
different industries. He has extensive experience working on web, mobile, and desktop
applications using different technologies and frameworks.

Joseph graduated from the University of Miami a with Master of Science and a Bachelor of
Business Administration degrees in Computer Information Systems, and followed that with
a Master of Software Engineering degree from Brandeis University.

He holds several certifications, including the Microsoft Certified Solutions Developer and
the Professional Software Engineering Master Certification from the IEEE Computer
Society.

A special thanks to my wife, Sally, and the rest of my family for their understanding and
patience while I devoted the time necessary to write this book.

I would like to thank Priyanka Sawant, Ketan Kamble, Ruvika Rao, Gaurav Aroraa,
Anand Pillai, Denim Pinto, and everyone at Packt Publishing who provided input and
support during the writing of this book.

About the reviewers

Gaurav Aroraa has done an MPhil in computer science. He is a Microsoft MVDP, a lifetime
member of Computer Society of India (CSI), an advisory member of IndiaMentor,
certified as a Scrum trainer/coach, XEN for ITIL-F, and APMG for PRINCE-F and PRINCE-
P. He is an open source developer, a contributor to TechNet Wiki, and the founder of
Ovatic Systems Private Limited. In his career of over 20 years, he has mentored thousands
of students and industry professionals. Apart from that, he's written over 100 white papers
for research scholars and various universities across the globe.

I'd like to thank my wife, Shuby Arora, and my angel daughter, Aarchi Arora, as well as
the team at PACKT.

Anand B Pillai is a technophile by profession with 20 years' of experience in software
development, design, and architecture. Over the years, he has worked with numerous
companies in fields ranging from security, search engines, large-scale web portals and big
data. He is a founder of the Bangalore Python Users' Group and is the author of Software
Architecture with Python (PacktPub, April 2017). Anand is currently a VP of an engineering
at the early-stage legal technology startup, Klarity Law. He happily resides with his family
in Bangalore, India.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Chapter 1: The Meaning of Software Architecture
What is software architecture?
ISO/IEC/IEEE 42010 standard definition
What makes up a software architecture?
Software architecture is an abstraction
Software architecture is about the important stuff
Why is software architecture important?
Defining a solution to meet requirements
Enabling and inhibiting quality attributes
Giving you the ability to predict software system qualities
Easing communication among stakeholders
Managing change
Providing a reusable model
Imposing implementation constraints
Improving cost and effort estimates
Serves as training for team members
Software architecture is not a silver bullet
Who are the consumers of software architectures?
What is the software architect role?
Software architects are technical leaders
Software architects perform a number of duties
Ivory tower software architects
What are software architects expected to know?
Don't be overwhelmed
Is the software architect role right for you?
Summary

Chapter 2: Software Architecture in an Organization
Types of software architects
Enterprise architect
Solution architect
Application architect
Data architect/information architect
Infrastructure architect
Information security architect
Cloud architect
Software development methodologies
The Waterfall model

Table of Contents

Phases of the Waterfall methodology
Issues with the Waterfall methodology
Agile software development methodologies

Agile values and principles
An iterative methodology
Adaptive rather than predictive
Daily stand-up meetings

Project management

The importance of software project estimation

Putting effort into the estimates
Being a realist (or even a pessimist)
Team and situational factors to consider
Project schedule changes
Getting a project back on schedule
Working overtime
Reducing scope
Adding resources
Reallocating resources
Identifying problem areas
Acting as early as possible
Office politics
Understanding your organization's goals
Addressing the concerns of others
Assisting people with their goals
Knowing when to compromise
Being aware of cultural differences
Software risk management
Risk avoidance
Transferring the risk to another party
Risk mitigation
Risk acceptance
Configuration management
Changing management
Software product lines
Benefits of a software product line
Core assets of an organization
Risks of product line engineering
Summary

Chapter 3: Understanding the Domain
Developing business acumen
Familiarity with general business topics
Understanding your organization's business
Domain-driven design
Encourages and improves communication
What is a ubiquitous language?

[ii]

Table of Contents

Entities, value objects, and aggregates
Entities
Value objects
Aggregates and root entities

Separating the domain into subdomains

What are bounded contexts?
Requirements engineering
Types of software requirements
Business requirements
Functional requirements
Non-functional requirements
Constraints

The importance of requirements engineering
Software requirements must be measurable and testable
Software requirements that affect architecture

Requirements elicitation
Techniques to elicit requirements
Interviews
Requirements workshops
Brainstorming
Observation
Focus groups
Surveys
Document analysis
Prototyping
Reverse engineering
Get access to the proper stakeholders

Summary

Chapter 4: Software Quality Attributes
Quality attributes
External or internal
Quality attributes and the SDLC
Testing quality attributes
Maintainability
Types of software maintenance
Corrective maintenance
Perfective maintenance
Adaptive maintenance
Preventive maintenance
Modifiability
Extensibility and flexibility
Scope of modifications
Designing for maintainability
Reducing size
Increasing cohesion
Reducing coupling
Measuring maintainability

[iii]

Table of Contents

Lines of code (LOC)
Cyclomatic complexity
Depth of inheritance tree (DIT)
Usability
Allowing users to complete their tasks efficiently
Learnability
Providing useful feedback
Accessibility
Usability needs to be considered during requirements
Usability testing
Appealing visual design
Providing a good help system
Software must be useful, and not just usable
Availability
Calculating availability based on time
Calculating availability based on request success rate
Faults, errors, and failures
Detecting faults
Ping/echo reply
Heartbeat
Timestamp
Voting
Sanity test/sanity checking
Condition monitoring
Self-tests
Recovering from faults
Exception handling
Retry strategy
Varying levels of redundancy
Rollback
Graceful degradation
Ignoring faulty behavior
Preventing faults
Removal from service
Transactions
Increasing competence sets
Exception prevention
Portability
Adaptability
Installability
Replaceability
Internationalization and localization
Maintaining portability
Interoperability
Challenges with interoperability

Locating and exchanging information with another system

Interoperability standards

[iv]

Table of Contents

Interoperability testing 104
Testability 105
Controllability 105
Observability 106
Isolability 106
Automatability 106
Complexity of the software 107
Importance of test documentation 108
What makes a good tester? 109
Summary 110
Chapter 5: Designing Software Architectures 111
Software architecture design 112
Making design decisions 112
Software architecture design terms 113
Structure 113
Element 114
System 114
Subsystem 114

Module 114
Component 115

The importance of software architecture design 115
Making key decisions 115
Avoiding design decisions can incur technical debt 116
Communicating the architecture to others 116
Providing guidance to developers 117
Influencing non-technical parts of the project 117
Top-down versus bottom-up design approaches 117
Top-down approach 117
Advantages of the top-down approach 118
Disadvantages of the top-down approach 118
Bottom-up approach 119
Advantages of the bottom-up approach 120
Disadvantages of the bottom-up approach 120

Which approach should | use? 121
Greenfield versus brownfield software systems 123
Greenfield systems 123
Brownfield systems 124
Architectural drivers 124
Design objectives 125
Primary functional requirements 126
Quality attribute scenarios 126
Prioritizing quality attribute scenarios 127
Constraints 127
Architectural concerns 128
Leveraging design principles and existing solutions 129

[v]

Table of Contents

Selecting a design concept
Software architecture patterns
Reference architectures
Benefits of reference architectures
Refactoring a reference architecture for your needs
Creating your own reference architecture
Tactics
Externally developed software
Buy or build?
Advantages/disadvantages of building
Advantages/disadvantages of buying
Researching external software
Should | use open source software (OSS)?
Advantages of using open source software
Disadvantages of using open source software
Documenting the software architecture design
Sketching the architecture design
Documenting the design rationale
Design rationale for design evaluation
Design rationale for design verification
Design rationale for design knowledge transfer
Design rationale for design communication
Design rationale for design maintenance
Design rationale for design documentation
Design rationale for design reuse
Using a systematic approach to software architecture design
A general model of software architecture design
Architectural analysis
Architectural synthesis
Architectural evaluation
Architecture design is an iterative process
Selecting an architecture design process
Attribute-driven design (ADD)
Step 1 — Reviewing inputs
Step 2 — Establishing the iteration goal and selecting inputs to be
considered in the iteration
Step 3 — Choosing one or more elements of the system to refine
Step 4 — Choosing one or more design concepts that satisfy the inputs
considered in the iteration
Step 5 — Instantiating architectural elements, allocating responsibilities, and
defining interfaces
Step 6 — Sketching views and recording design decisions
Step 7 — Performing analysis of current design and reviewing the iteration
goal and design objectives
Step 8 — Iterating if necessary
Microsoft's technique for architecture and design
Step 1 — Identifying architecture objectives

129
130
130
130
131
131
132
132
133
133
134
134
135
136
136
137
137
138
139
139
139
140
140
140
140
141
142
142
143
143
143
144
145
147

147
148

148

148
149

149
149
150
150

[vi]

Table of Contents

Step 2 — Identifying key scenarios
Step 3 — Creating application overview
Determining your application type
Identifying your deployment constraints
Identifying important architecture design styles
Determining relevant technologies
Step 4 — Identifying key issues
Step 5 — Defining candidate solutions
Architecture-centric design method (ACDM)
Step 1 — Discovering architectural drivers
Step 2 — Establishing project scope
Step 3 — Creating notional architecture
Step 4 — Architectural review
Step 5 — Production go/no-go
Step 6 — Experiment planning
Step 7 — Experimenting with and refining the architecture
Production planning and production
Architecture development method (ADM)
The Open Group Architecture Framework (TOGAF)
TOGAF architecture domains
TOGAF documentation
Phases of the ADM
Phase A — Architecture vision
Phase B — Business architecture
Phase C — Information systems architectures
Phase D — Technology architecture
Phase E — Opportunities and solutions
Phase F — Migration planning
Phase G — Implementation governance
Phase H — Architecture change management
Tracking the progress of the software architecture's design
Using a backlog to track the architecture design progress
Prioritizing the backlog
DIVE criteria
Dependencies
Insure against risks
Business value
Estimated effort

Active and dynamic architecture backlogs
Summary

Chapter 6: Software Development Principles and Practices
Designing orthogonal software systems
Loose coupling
Types of coupling
Content coupling

Common coupling
External coupling

151
151
152
152
152
152
153
153
153
155
155
155
155
156
156
156
157
157
157
158
158
159
160
160
161
161
161
162
162
162
162
163
163
164
164
164
164
164

164
165

167
168
168
169
169
169
170

[vii]

Table of Contents

Control coupling

Stamp coupling (data-structured coupling)

Data coupling
Message coupling
No coupling

The Law of Demeter (LoD) / principle of least knowledge

Designing for loose coupling
High cohesion

Types of cohesion
Coincidental cohesion
Logical cohesion
Temporal cohesion
Procedural cohesion
Communicational cohesion
Sequential cohesion
Functional cohesion

Designing for high cohesion

Minimizing complexity

KISS principle — "Keep It Simple, Stupid”

Origin of KISS
Applying KISS to software
Don't make it overly simple
DRY - "Don't Repeat Yourself"
Copy-and-paste programming
Magic strings
How to avoid duplication
Don't make things overly DRY
Information hiding
Reasons for information hiding
What needs to be exposed/hidden?
YAGNI —"You Aren't Gonna Need It"
Avoid over-engineering a solution
Situations where YAGNI doesn't apply
Separation of Concerns (SoC)
Following SOLID design principles
Single Responsibility Principle (SRP)
Open/Closed Principle (OCP)
Liskov Substitution Principle (LSP)
Interface Segregation Principle (ISP)
Dependency Inversion Principle (DIP)
Inversion of Control (IoC)
Dependency Injection (DI)
Benefits of DI
DI patterns
DI containers
Helping your team succeed
Unit testing
What are unit tests?
Benefits of unit testing
Properties of a good unit test

[wiii]

170
170
170
171
171
171
171
172
172
172
173
173
173
174
174
174
175
175
176
176
177
177
178
178
178
180
180
180
181
181
182
182
182
183
184
184
187
189
191
194
195
196
196
197
200
201
201
201
202
202

Table of Contents

Atomic
Deterministic
Automated and repeatable
Isolated and independent
Easy to set up and implement
Fast
The AAA pattern
Arrange
Act
Assert
Naming conventions for unit tests
Unit test class names
Unit test method names
Code coverage for unit tests
Keeping unit tests up to date
Setting up development environments
Providing a README file
Pair programming
Benefits of pair programming
Using pair programming when it is needed
Reviewing deliverables
Code reviews
Formal inspections
Roles for a formal inspection
Inspection meeting and follow-up
Walkthroughs

Summary

Chapter 7: Software Architecture Patterns
Software architecture patterns
Using software architecture patterns
Overusing architecture patterns

Understanding the difference between architecture styles and architecture

patterns
Layered architecture
Open versus closed layers
Tiers versus layers
Advantages of layered architectures
Disadvantages of layered architectures

Client-server architecture (two-tier architecture)
Using stored procedures for application logic

N-tier architecture
Presentation tier
Business tier
Data tier

Event-driven architecture

Event channels

Message queues
The point-to-point channel pattern

Message topics

202
203
203
203
203
203
204
204
204
204
204
205
205
205
206
206
207
208
208
209
209
209
210
211
21
212

212

213
214
214
215

215
216
216
217
218
219
220
221
222
223
223
224
224
224
225
225
225

[ix]

Table of Contents

The publish-subscribe pattern
Event-driven architecture topologies
The mediator topology
Event mediator implementations
The broker topology
Event processing styles
Simple event processing (SEP)
Event stream processing (ESP)
Complex event processing (CEP)
Types of event-driven functionality
Event notification
Event-carried state transfer
Event-sourcing
The Model-View-Controller pattern
Model
View
Controller
Advantages of the MVC pattern
Disadvantages of the MVC pattern
The Model-View-Presenter pattern
Model
View
Presenter
The Model-View-ViewModel pattern
Model
View
ViewModel
The Command Query Responsibility Segregation pattern
The query model and the command model
Using event-sourcing with CQRS
Advantages of CQRS
Disadvantages of CQRS
Service-oriented architecture
What makes SOA different from other distributed solutions?
Benefits of using a SOA
Increases alignment between business and technology
Promotes federation within an organization
Allows for vendor diversity
Increases intrinsic interoperability
Works well with agile development methodologies
Cost-benefit analysis of SOA
Challenges with SOA
Key principles for service orientation
Standardized service contract
Service loose coupling
Service abstraction
Service reusability

225
226
226
227
227
228
229
229
229
230
230
230
231
232
233
233
234
234
234
235
235
235
236
236
237
237
237
238
239
240
240
241
241
242
242
243
243
243
244
244
244
245
246
246
246
247
247

[x]

Table of Contents

Service autonomy
Service statelessness
Service discoverability
Service composability
SOA delivery strategies
The top-down strategy
The bottom-up strategy
The agile strategy
Service-oriented analysis
Defining business automation requirements
Identifying existing automation systems
Modeling candidate services
Service layers and service models
Task service
Entity service
Utility service
Service-oriented design
Service interface design
Service interface granularity
Service registries
Service descriptions
Structuring namespaces
Orchestration and choreography

Summary

Chapter 8: Architecting Modern Applications
Monolithic architecture
Benefits of a monolithic architecture
Drawbacks of a monolithic architecture
Microservice architecture
SOA done right
Characteristics of microservice architecture
Small, focused services
Well-defined service interfaces
Autonomous and independently deployable services
Independent data storage
Better fault isolation
Communicating with lightweight message protocols
Designing polyglot microservices
Polyglot programming
Polyglot persistence
Using too many technologies
Considering service granularity
Nanoservices
Sharing dependencies between microservices
Stateless versus stateful microservices
Service discovery
Using a service registry
Self-registration pattern

247
248
248
248
248
249
249
250
250
250
251
251
251
253
253
253
253
254
255
255
256
257
258

259

260
260
261
262
263
263
264
264
265
265
265
266
266
267
268
268
269
269
269
270
271
271

271
272

[xil

Table of Contents

Third-party registration pattern
Types of service discovery
Client-side discovery pattern
Server-side discovery pattern
Using microservices is not for everyone
Serverless architecture
Function as a Service (FaaS)
Backend as a Service (BaaS)
Advantages of serverless architectures
Cost savings
Scalable and flexible
Focus on building your core products
Polyglot development
Disadvantages of serverless architectures
Difficulties with debugging and monitoring
Multitenancy issues
Vendor lock-in
Complexity of designing many functions
Not as many runtime optimizations
Still immature
Taking a hybrid approach to serverless
Function deployment
Function invocation
Synchronous request
Asynchronous request (message queue)
Message stream
Batch job
Cloud-native applications
Reasons to move to the cloud
Reducing costs
Greater flexibility and scalability
Automatic updates
Disaster recovery
What are cloud-native applications?
Containerized
Dynamically orchestrated
Microservices-oriented
No downtime
Continuous delivery
Support for a variety of devices
Twelve-factor apps
Codebase
Dependencies
Configuration
Backing services
Build/Release/Run
Processes
Port binding
Concurrency

272
273
274
274

275

276
277
278
279
279
279
279
280
280
280
280
281
281
281
281
282
282
283
283
284
284
285
285
286
286
286
286
287
287
287
288
289
289
289
290
290
291
291
292
292
292
293
293
294

[xii]

Table of Contents

Disposability

Development/production parity

Logs

Administrative processes
Summary

Chapter 9: Cross-Cutting Concerns
Cross-cutting concerns

General guidelines for cross-cutting concerns

Identifying cross-cutting concerns
Using open-source and third-party solutions
Maintaining consistency
Avoiding scattered solutions
Avoiding tangled solutions
Implementing cross-cutting concerns
Using dependency injection (D)
Using the decorator pattern
Aspect-oriented programming
Types of advice
Weaving
Compile-time weaving
Runtime weaving
Types of cross-cutting concerns
Caching
Configuration management
Auditing
Security
Exception management
Logging
Understanding log levels
Routing log entries
Using Elastic Stack
Elasticsearch
Logstash

Kibana
Beats

Cross-cutting concerns for microservices
Leveraging a microservice chassis
Using the sidecar pattern

Summary

Chapter 10: Performance Considerations
The importance of performance
Performance affects user experience
Bounce rate
Conversion rate
Performance is a requirement

294
294
295
295

296

297
2908
299
299
299
299
300
300
301
301
302
306
307
308
309
309
310
310
311
312
312
312
313
313
314
315
315
316

316
317

317
317
318
320

321
321
322
322
322
323

[xiii]

Table of Contents

Page speed affects search rankings
Defining performance terminology

Latency

Throughput

Bandwidth

Processing time

Response time

Workload

Utilization

Taking a systematic approach to performance improvement

Profiling an application
Instrumentation
Statistical profilers
Analyzing the results
Implementing changes
Monitoring results
Server-side caching
Caching data in distributed applications
Using a private caching strategy
Using a shared caching strategy
Priming the cache
Invalidating cached data
Expiring data
Evicting data
Cache usage patterns
Cache-aside pattern
Read-through pattern
Write-through pattern
Write-behind pattern
Improving web application performance
Leveraging HTTP caching
Using a validation token
Specifying cache-control directives
Taking advantage of compression
File compression
Lossless compression
Lossy compression
Content-encoding (end-to-end) compression
Minifying resources
Bundling resources
Using HTTP/2
Multiplexing
Server push
Header compression
Implementing HTTP/2
Using content delivery networks (CDNSs)
Optimizing web fonts

323
323
324
324
324
325
325
325
325
326
326
327
327
328
328
329
329
330
330
330
331
331
331
331
332
332
332
333
333
333
333
334
334
335
335
336
336
337
337
338
341
342
342
343
343
344
344

[xiv]

Table of Contents

Optimizing the critical rendering path
Database performance

Designing an efficient database schema
Normalizing a database
Denormalizing a database
Identifying primary and foreign keys
Selecting the most appropriate data types

Using database indexes
Primary/clustered indexes
Secondary/non-clustered indexes
Having too many indexes

Scaling up and out

Database concurrency
Database transactions

Optimistic versus pessimistic concurrency control

CAP theorem

ACID model
Atomicity
Consistency
Isolation
Durability

BASE model
Basic availability
Soft state
Eventual consistency

Summary

Chapter 11: Security Considerations
Securing software systems
The three states of information
The CIA triad
Confidentiality
Integrity
Availability
Threat modeling
Decomposing an application
Identifying and categorizing potential threats
STRIDE threat model
Spoofing identity
Tampering with data
Repudiation
Information disclosure
Denial-of-service
Elevation of Privilege
Prioritizing potential threats
DREAD risk assessment model
Damage potential
Reproducibility
Exploitability
Affected users

346
347
347
347
348
348
349
349
349
350
350
351
352
352
352
353
354
354
354
354
355
355
355
355
355

356

357
358
358
359
359
359
360
360
361
361
362
362
362
362
363
363
363
363
364
364
364
365
365

[xv]

Table of Contents

Discoverability 365
Responses to threats 365
Avoiding the risk 366
Transferring the risk 366
Accepting the risk 366
Mitigating the risk 367
Types of security control 367
Physical security controls 367
Administrative controls 368
Technical security controls 369
Prevention 369
Detection 370
Response 370
Secure by design 370
Minimizing the attack surface 371
Defense in depth 371
Principle of least privilege (PoLP) 371
Avoiding security by obscurity 372
Keep software designs simple 372
Secure by default 372
Default deny 373
Validating input 373
Secure the weakest link 373
Security must be usable 373
Fail securely 374
Cryptography 374
Encryption 374
Symmetric (secret key) encryption 375
Asymmetric (public key) encryption 375
Cryptographic hash functions 375
Identity and access management (IAM) 377
Authentication 377
What is multi-factor authentication (MFA)? 378
Authorization 378
Storing plaintext passwords 379
Storing encrypted passwords 379
Storing hashed passwords 379
Using domain authentication 380
Implementing a centralized identity provider (IdP) 380
OAuth 2/0OpenlD Connect (OIDC) 381
OAuth 2 roles 381
JSON web token (JWT) 382
Header 383

Payload 383
Signature 384
Authorizing with the authorization server 384
Most common web application security risks 385
Injection 385

[xvi]

Table of Contents

Broken authentication 385
Sensitive data exposure 386
XML external entity (XXE) attack 386
Broken access control 388
Security misconfiguration 388
Cross-site scripting (XSS) 389
Insecure deserialization 389
Using components with known vulnerable components 390
Insufficient logging and monitoring 390
Unvalidated redirects and forwards 391
Summary 391
Chapter 12: Documenting and Reviewing Software Architectures 393
Uses of software architecture documentation 394
Communicating your architecture to others 394
Assisting the development team 395
Educates team members 395
Providing input for software architecture reviews 395
Allowing for the reuse of architectural knowledge 396
Help the software architect 396
Creating architecture descriptions (ADs) 397
Software architecture views 397
Software architecture notations 398
Informal software architecture notations 398
Semiformal software architecture notations 399

Formal software architecture notations 399
Including design rationales 400
Overview of the Unified Modeling Language (UML) 401
Types of modeling 401
Class diagrams 401
Visibility 402
Association 402
Aggregation 403
Composition 404
Multiplicity 404
Dependency 405
Generalization/specialization 405
Realization 406
Component diagrams 407
Package diagrams 409
Deployment diagrams 410
Use case diagrams 411
Sequence diagrams 413
Lifeline 414
Activation boxes 414
Messages 414

Loops 415

Optional flows 416
Alternative flows 416

Activity diagrams 417

[xvii]

Table of Contents

Start/end nodes
Actions/Control flow
Decision/merge nodes
Fork/join nodes
Reviewing software architectures
Software architecture analysis method (SAAM)
Scenario-based analysis of software architecture
SAAM steps
Step 1 — Develop scenarios
Step 2 — Describe the architecture
Step 3 — Classify and prioritize scenarios
Step 4 — Evaluate scenarios
Step 5 — Assess scenario interaction
Step 6 — Create an overall evaluation
Architecture tradeoff analysis method (ATAM)
ATAM participant roles
ATAM phases
Phase 0 — Partnership and preparation
Phase 1 — Evaluation
Phase 2 — Evaluation (continued)
Phase 3 — Follow-up
Active design review (ADR)
ADR steps
Step 1 — Prepare the documentation for review
Step 2 — Identify the specialized reviews
Step 3 — Identify the reviewers needed
Step 4 — Design the questionnaires
Step 5 — Conduct the review
Active reviews of intermediate designs (ARID)
ARID participant roles
ARID phases
Phase 1 — Pre-meeting
Phase 2 — Review meeting

Summary

Chapter 13: DevOps and Software Architecture
DevOps
CALMS
Culture
Automation
Lean
Measurement
Sharing
Why DevOps?
DevOps toolchain
DevOps practices
Continuous integration (ClI)
Automated builds
Software versioning
Automated testing
Continuous delivery (CD)

418
419
419
420
420
421
421
422
422
422
422
423
423
423
424
424
424
425
425
428
429
429
430
430
431
431
431
431
432
432
432
433
434

435

436
437
437
438
439
440
441
441
441
442
444
445
445
446
447
448

[xviii]

Table of Contents

Continuous deployment
Architecting for DevOps
Important quality attributes for DevOps
Some architecture patterns complement DevOps
Deploying to the cloud
Cloud types
Public cloud
Private cloud
Hybrid cloud
Cloud models
Infrastructure as a service (laaS)
Containers as a Service (CaaS)
Platform as a Service (PaaS)
Serverless/Function as a Service (FaaS)
Software as a Service (SaaS)
Summary

Chapter 14: Architecting Legacy Applications
Legacy applications
Issues with legacy applications
Why are legacy applications used?
More than just code
Refactoring legacy applications
Making legacy code testable
Benefits of unit testing
Refactoring for unit tests
Where to start writing tests?
Removing redundant code
Unreachable code
Dead code
Commented-out code
Duplicate code
Using tools to refactor
Making small, incremental changes
Transforming monoliths to microservices
Migrating to the cloud
The 6 R's
Remove (or retire)
Retain
Replatform
Rehost
Repurchase
Refactor (or re-architect)
Moving to an agile approach
Modernizing build and deployment processes
Automating the build and deployment processes
Practicing continuous integration (ClI)

448
449
449
451
451
452
452
452
453
454
455
456
458
459
459

460

461
461
462
463
464
464
465
465
466
466
467
467
468
468
468
469
469
469
470
471
471
471
472
472
472
472
473
473
474
474

[xix]

Table of Contents

Practicing continuous delivery (CD) 475
Updating the build tools 475
Integrating with legacy applications 475
Confirming the need for integration 476
Determining the type of integration 476
Sharing functionality between systems 477
Performing data integration 477
Summary 477
Chapter 15: The Soft Skills of Software Architects 479
Soft skills 479
Communication 480
Communicating the architecture 480
Communicating about quality attributes 481
Communicating expectations 481
The 7 Cs of communication 481
Clarity 482
Conciseness 482
Concreteness 483
Courteousness 483
Consideration 483
Correctness 484
Completeness 484
Listening skills 485
Hearing is not listening 485
Showing empathy 485

Tips for effective listening 485

Giving presentations 486
The 4 Ps of presentations 487

Plan 487

Prepare 487

Practice 488

Present 489
Leadership 489
Getting others to follow you 489
Dealing with challenges 490
Being a technical leader 490
Taking responsibility 490
Focusing on others 491
Delegating tasks 491
Driving change 492
Communication and leadership 492
Mentoring others 493
Leading by example 493
Depending on others 494
Negotiation 494
How negotiation skills may be used 495

[xx]

Table of Contents

Informal/formal negotiations
Working with remote resources
Benefits of using remote resources
Challenges when using remote resources
Communication
Cultural differences
Impromptu meetings
New employee onboarding
Work quality
Confidential company data
Summary

Chapter 16: Evolutionary Architecture
Change is inevitable
Reasons for change
Expecting change
Lehman's laws of software evolution
Lehman's software categories
S-type systems
P-type systems
E-type systems

The laws
Law | — Continuing change
Law Il — Increasing complexity
Law Il — Self-regulation

Law IV — Conservation of organizational stability
Law V — Conservation of familiarity
Law VI — Continuing growth
Law VIl — Declining quality
Law VIl — Feedback system
Designing evolutionary architectures
Making guided architectural changes
Fitness functions
Categories of fitness functions
Examples of fitness functions

Making incremental changes
Architectural changes across multiple dimensions
Loosely coupled architectures
Designing evolvable APIs
Applying Postel's Law to APIs
Using standards in your software system
Last responsible moment (LRM)
Summary

Chapter 17: Becoming a Better Software Architect
Practicing continuous learning
Improving the breadth and depth of your knowledge
Avoiding the law of the instrument

495
497
497
497
498
498
498
498
499
499

500

501
501
502
502
503
503
503
504
504
504
505
505
505
506
506
506
506
507
507
508
508

509
510

511
512
512
513
514
514
515

515

517
518
518
519

[xxil]

Table of Contents

Finding the time for learning 519
Ways to keep your skills sharp 520
Participating in open source projects 521
Creating your own open source project 521
Writing your own blog 522
Increasing your visibility 523
Starting your own blog 523
Things to avoid 524
Spending time teaching others 524
Finding opportunities to teach 525
Being a mentor 525
Trying new technologies 526
Continuing to write code 527
Assigning yourself coding tasks 527
Working on your own project 527
Reading code 528
Attending user groups and conferences 528
Presenting at a user group or conference 529
Meeting new people 530
Taking responsibility for your work 530
Attending to your well-being 531
Being proud of your work 531
Summary 531
Other Books You May Enjoy 533
Index 536

[xxii]

Preface

Modern software systems are complex, and the software architect role is a challenging one.
This book was written to help software developers transition into the role of a software
architect, and to assist existing software architects to be successful in their role. It

helps readers understand how being a software architect is different than being a developer
and what it takes to be an effective software architect.

This comprehensive guide to software architecture begins by explaining what software
architecture entails, the responsibilities of the software architect position, and what you will
be expected to know. Software architects must have technical and non-technical skills, and
they must have both breadth and depth of knowledge.

The book progress to covering non-technical topics such as the importance of
understanding your organization's business, working in the context of an organization, and
gathering requirements for software systems. It then takes a deep dive into technical topics
such as software quality attributes, software architecture design, software development
best practices, architecture patterns, how to improve performance, and security
considerations.

After reading this book, you should have a familiarity with the many topics related to
software architecture and understand how to be a software architect. Technologies and
practices may change over time, but the book lays a strong foundation on which you can
build a successful career as a software architect.

Who this book is for

This book is aimed at senior developers and software architects who want to learn how to
be a successful software architect. Readers should be experienced software development
professionals who want to advance in their career and become a software architect. It
covers a wide range of topics that will help readers learn what it takes to be effective in the
software architect role.

Preface

What this book covers

Chapter 1, The Meaning of Software Architecture, begins the book by providing a definition
of software architecture. The book establishes what makes up a software architecture and
the reasons why it is important to a software system. It also details the software architect
role, including the responsibilities of software architects and what they are expected to
know.

Chapter 2, Software Architecture in an Organization, focuses on software architecture in the
context of an organization. It covers the different types of software architect roles and
software development methodologies that you may encounter. Non-technical topics such
as project management, office politics, and risk management are explained. The
development of software product lines and the creation of architectural core assets are also
covered.

Chapter 3, Understanding the Domain, discusses the business aspects of being a software
architect. It covers topics such as familiarizing yourself with your organization's business,
domain-driven design (DDD), and how to effectively elicit requirements for the software
system from stakeholders.

Chapter 4, Software Quality Attributes, covers software quality attributes and their
importance to a software architecture. Some common software quality attributes are
presented, including maintainability, usability, availability, portability, interoperability,
and testability.

Chapter 5, Designing Software Architectures, concentrates on the important topic of software
architecture design. It details what is involved with architecture design and its importance
to a software system. The chapter discusses different approaches to architecture design, the
drivers for it, and the design principles that can be leveraged during the process.

The chapter presents the use of various systematic approaches to software architecture
design, including attribute-driven design (ADD), Microsoft's technique for architecture
and design, the architecture-centric design method (ACDM), and the architecture
development method (ADM).

Chapter 6, Software Development Principles and Practices, describes proven software
development principles and practices that can be used to build high-quality software
systems. Concepts such as loose coupling and high cohesion are covered, as well as
principles such as KISS, DRY, information hiding, YAGNI, and the Separation of Concerns
(SoC).

[2]

Preface

The chapter includes a discussion of the SOLID principles, which include the single
responsibility, open/closed, Liskov substitution, interface segregation, and dependency
inversion principles. The chapter closes with topics related to helping your team succeed,
including unit testing, setting up development environments, pair programming, and
reviewing deliverables.

Chapter 7, Software Architecture Patterns, discusses one of the most useful software
architecture design concepts. Learning the architecture patterns that are available to you
and when to properly apply them is a key skill for software architects. The chapter details a
number of software architecture patterns, including layered architecture, event-driven
architecture (EDA), Model-View-Controller (MVC), Model-View-Presenter (MVP),
Model-View-ViewModel (MVVM), Command Query Responsibility Segregation
(CQORS), and Service-Oriented Architecture (SOA).

Chapter 8, Architecting Modern Applications, explains the software architecture patterns and
paradigms that are used with modern applications deployed to the cloud. After describing
a monolithic architecture, the chapter details microservices architecture, serverless
architecture, and cloud-native applications.

Chapter 9, Cross-Cutting Concerns, places its focus on functionality that is used in multiple
areas of the system. It explains how to handle cross-cutting concerns in your applications.
Topics covered include using Dependency Injection (DI), the decorator pattern, and
aspect-oriented programming (AOP) to implement cross-cutting concerns. The chapter
also provides a look at different cross-cutting concerns, including caching, configuration
management, auditing, security, exception management, and logging.

Chapter 10, Performance Considerations, takes a close look at performance. It describes the
importance of performance and techniques to improve it. Topics such as server-side
caching and database performance are discussed. An examination of web application
performance is included in the chapter, including coverage of HITP caching, compression,
minimizing and bundling of resources, HTTP/2, content delivery networks (CDNs),
optimizing web fonts, and the critical rendering path.

Chapter 11, Security Considerations, covers the critical topic of software application security.
Security concepts such as the confidentiality, integrity, and availability (CIA) triad and
threat modeling are presented. The chapter provides readers with various principles and
practices for creating software that is secure by design.

[3]

Preface

Chapter 12, Documenting and Reviewing Software Architectures, places its focus on software
architecture documentation and reviewing software architectures. It describes the various
uses for software architecture documentation and explains how to use UML to document a
software architecture. The chapter discusses various software architecture review methods,
including the software architecture analysis method (SAAM), architecture tradeoff
analysis method (ATAM), active design review (ADM), and active reviews of
intermediate designs (ARID).

Chapter 13, DevOps and Software Architecture, provides coverage of the culture, practices,
tools, and culture of DevOps. The chapter explains key DevOps practices such as
continuous integration (CI), continuous delivery (CD), and continuous deployment.

Chapter 14, Architecting Legacy Applications, provides readers with an understanding of
how to work with legacy applications. The widespread use of legacy applications makes
this topic important for software architects. The chapter covers refactoring legacy
applications and how to migrate them to the cloud. It discusses modernizing build and
deployment processes for legacy applications as well as how to integrate with them.

Chapter 15, The Soft Skills of Software Architects, is all about the soft skills that software
architects should possess to be an effective software architect. After describing what soft
skills are, the chapter proceeds to topics such as communication, leadership, negotiation,
and working with remote resources.

Chapter 16, Evolutionary Architecture, teaches how to design software systems so that they
have the ability to adapt to change. It explains that change is inevitable, so software
architects should design software architectures that can evolve over time. The chapter
explains some of the ways that change can be handled and it introduces the use of fitness
functions to ensure that an architecture continues to meet its desired architectural
characteristics as it undergoes change.

Chapter 17, Becoming a Better Software Architect, stresses to readers that the process of career
development is an ongoing one. After becoming a software architect, one must seek to
continuously gain new knowledge and improve their skills. The chapter details ways that a
software architect can practice self-improvement, including continuous learning,
participating in open source projects, writing your own blog, spending time teaching
others, trying new technologies, continuing to write code, attending user groups and
conferences, taking responsibility for your work, and attending to your general well-being.

[4]

Preface

To get the most out of this book

Although readers should have experience of software development, no specific
prerequisites are required to begin reading this book. All of the information that you need
is contained in the various chapters. The book does not require knowledge of any particular
programming language, framework, or tool. The code snippets in the book that illustrate
various concepts are written in C#, but they are simple enough that prior C# experience is
not necessary.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it

here: nttps://www.packtpub.com/sites/default/files/downloads/SoftwareArchitectsH
andbook_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
tile extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Now we can use that constant in our GetFilePath method."

A block of code is set as follows:

public string GetFilePath ()

{
string result = _cache.Get (FilePathCacheKey) ;

if (string.IsNullOrEmpty (result))

{
_cache.Put (FilePathCacheKey, DetermineFilePath());
result = _cache.Get (FilePathCacheKey) ;

;

return result;

[5]

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public string GetFilePath()

{
string result = _cache.Get (FilePathCacheKey) ;

if (string.IsNullOrEmpty (result))

{
_cache.Put (FilePathCacheKey, DetermineFilePath());

result = _cache.Get (FilePathCacheKey) ;
}

return result;

}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In a direct dependency graph, at compile-time, Class A references Class B, which
references Class C"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[6]

Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

[7]

The Meaning of Software
Architecture

A comprehensive look at software architecture must first begin with its definition. This
chapter provides reasons as to why software architecture plays an important role in a
software project, and the benefits of having a good architectural design.

It is also important to understand the stakeholders and team members who are affected by
the software architecture of a system. The chapter will go into detail about the software
architect's role, what software architects are supposed to know, and whether the role is
right for you.

In this chapter, we will cover the following topics:

e What is software architecture?

e Why is software architecture important?

e Who are the consumers of software architectures?
e What is the software architect role?

What is software architecture?

What exactly is software architecture? You probably have your own ideas about what it is,
based on your knowledge and experiences. Certainly, there are plenty of definitions out
there. If you do an online search or ask various friends and colleagues, you will get varying
answers. The definition is somewhat subjective and influenced by the viewpoints and
perceptions of the individual who is providing the definition. However, there are some core
concepts that are essential to software architecture, and before we delve into deeper topics,
establishing a common understanding of what software architecture entails is imperative.

The Meaning of Software Architecture Chapter 1

Using the word architecture for software originated from similarities with the construction
industry. When the term was first used, the Waterfall software development methodology
was common and it dictated that large, up-front designs needed to be completed before any
code was written. Similar to the architecture of a building, which necessitates a lot of
planning before construction takes place, so it was with software as well.

In modern software design, the relationship between the construction and software
industries is no longer as close. Software methodologies now focus on developing software
applications that are highly adaptable and can be changed easily over time, resulting in less
of a need for rigid, upfront planning. However, software architecture still consists of early
design decisions that can be difficult to change later.

ISO/IEC/IEEE 42010 standard definition

There is a standard definition for software architecture, which resulted from a joint effort
between the International Organization for Standardization (ISO) and the Institute of
Electrical and Electronics Engineers (IEEE). ISO/IEC/IEEE 42010 systems and software
engineering's architecture description is an international standard that defines software
architecture as:

"Fundamental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution.”

The standard makes the following main points:

¢ A software architecture is a fundamental part of a software system

¢ A software system is situated in an environment, and its software architecture
takes into consideration the environment in which it must operate

¢ An architecture description documents the architecture and communicates to
stakeholders how the architecture meets the system's needs

¢ Architecture views are created from the architecture description, and each view
covers one or more architecture concerns of the stakeholders

[9]

The Meaning of Software Architecture Chapter 1

What makes up a software architecture?

In the book, Software Architecture in Practice, 2nd Edition, a definition of software architecture
is given as:

"The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.”

A software system contains structures, and this definition notes that a software system is
made up of one or more of them. It is the combination of these that forms the overall
software architecture. A large software project may have multiple teams working on it,
each responsible for a particular structure.

Software architecture is an abstraction

Software architecture is an abstraction of a software system. The structures of a software
system consist of its elements. Software architecture concerns itself with defining and
detailing the structures, their elements, and the relationships of those elements with each
other.

Software architecture focuses on the public aspects of the elements, and how they interact
with each other. For elements, this may take the form of their public interfaces. It does not
deal with the private implementation details of the elements. While the behavior of the
elements does not have to be exhaustively documented, care should be taken in
understanding how elements have to be designed and written so that they can properly
interact with each other.

Software architecture is about the important stuff

Computer scientist Ralph Johnson, who co-authored Design Patterns: Elements of Reusable
Object-Oriented Software, once said:

" Architecture is about the important stuff. Whatever that is.”

Software projects vary, and the amount of design effort, time, focus, and documentation
devoted to particular aspects of a software architecture differ. Ultimately, software
architecture consists of important design decisions that shape the system. It is made up of
the structures and components that are significant to the quality, longevity, and usefulness
of the system.

[10]

The Meaning of Software Architecture Chapter 1

Software architecture consists of some of the earliest decisions that are made for a software
system and some of the hardest to change. In modern software development, the
architecture should anticipate change, and be designed in such a way as to maximize the
potential of adapting and evolving to this change. We will be discussing evolutionary
architecture in chapter 16, Evolutionary Architecture.

Why is software architecture important?

Why should we care about software architecture anyway? Sometimes a developer just
wants to jump right in and start coding.

Software architecture is the foundation of a software system. Like other types of
engineering, the foundation has a profound effect on the quality of what is built on top of it.
As such, it holds a great deal of importance in terms of the successful development, and
eventual maintenance, of the system.

Software architecture is a series of decisions. Some of the earliest decisions come from
designing the architecture, and these carry a high degree of importance because they affect
the decisions that come after it.

Another reason software architecture is important is because all software systems have an
architecture. Even if it comprised just one structure with one element, there is an
architecture. There are software systems that don't have a formal design and others that
don't formally document the architecture, but even these systems still have an architecture.

The greater the size and complexity of a software system, the more you will need a well
thought-out architecture in order to succeed. Software architecture provides a number of
benefits when done properly, which greatly increase the chances that the software system
will succeed.

A proper foundation laid down by a software system's architecture yields a number of
benefits. Let's take a deeper look at those benefits.

Defining a solution to meet requirements

Software strives to meet all functional, non-functional, technical, and operational
requirements. Working closely with stakeholders, such as domain experts, business
analysts, product owners, and end users, allows requirements to be identified and
understood. A software architecture defines a solution that will meet those requirements.

[11]

The Meaning of Software Architecture Chapter 1

Software architecture is the foundation for software, so software systems that lack a solid
architecture make it more difficult to meet all of the requirements. Poor architectures will
lead to implementations that fail to meet the measurable goals of quality attributes, and
they are typically difficult to maintain, deploy, and manage.

Enabling and inhibiting quality attributes

Software architecture either enables quality attributes or inhibits them. Quality attributes
are measurable and testable properties of a system. Some examples of quality attributes
include maintainability, interoperability, security, and performance.

They are non-functional requirements of a software system as opposed to its features, which
are functional requirements. Quality attributes and how they satisfy the stakeholders of the
system are critical, and software architecture plays a large role in ensuring that quality
attributes are satisfied. The design of a software architecture can be made to focus on
certain quality attributes at the cost of others. Quality attributes may be in conflict with
each other. A software architecture, when designed properly, sets out to achieve agreed-
upon and validated requirements related to quality attributes.

Giving you the ability to predict software system
qualities

When you look at a software architecture and its documentation, you can predict the
software system's qualities. Making architecture decisions based on quality attributes
makes it easier to fulfill those requirements. You want to start thinking about quality
attributes as early as possible in the software development process as it is much more
difficult (and costly) to make changes to fulfill them later. By thinking about them up front,
and using modeling and analysis techniques, we can ensure that the software architecture
can meet its non-functional requirements.

If you are not able to predict if a software system will fulfill quality attributes until it is
implemented and tested, then costly and time-consuming rework may be necessary. A
software architecture allows you to predict a software system's qualities and avoid costly
rework.

[12]

The Meaning of Software Architecture Chapter 1

Easing communication among stakeholders

Software architecture and its documentation allow you to communicate the software
architecture and explain it to others. It can form the basis for discussions related to aspects
of the project, such as costs and duration. We will discuss this topic further when we go
into detail about software architecture in an organization.

A software architecture is abstract enough that many stakeholders, with little or no
guidance, should be able to reason about the software system. Although different
stakeholders will have different concerns and priorities in terms of what they want to know
about the architecture, providing a common language and architecture design artifacts
allows them to understand the software system. It is particularly useful for large, complex
systems that would otherwise be too difficult to fully understand. As requirements and
other early decisions are made for the software system, a formal software architecture plays
an important role and facilitates negotiations and discussions.

Managing change

Changes to a software system are inevitable. The catalyst for change can come from the
market, new requirements, changes to business processes, technology advances, and bug
fixes, among other things.

Some view software architecture as inhibiting agility and would prefer to just let it emerge
without up-front design. However, a good software architecture helps with both
implementing and managing changes. Changes fall into one of the following categories:

e Limited to a single element
¢ Involve a combination of elements, but do not require any architectural changes
e Require an architectural change

Software architecture allows you to manage and understand what it would take to make a
particular change. Furthermore, a good architecture reduces complexity so that most of the
changes that need to be made can be limited to a single element or just a few elements,
without having to make architectural changes.

[13]

The Meaning of Software Architecture Chapter 1

Providing a reusable model

An established architecture might be used again within an organization for other products
in a product line, particularly if the products have similar requirements. We'll discuss an
organization's product lines, reuse of architecture, and the benefits in the next chapter. For
now, simply recognize that, once a software architecture is completed, documented,
understood, and used in a successful implementation, it can be reused.

When code is reused, resources, such as time and money, are saved. More importantly, the
quality of software that takes advantage of reuse is increased because the code has already
been tested and proven. The increase in quality alone translates to savings in resources.

When a software architecture is reused, it is not just code that is reused. All of the early
decisions that shaped the original architecture are leveraged as well. The thought and effort
that went into the requirements necessary for the architecture, particularly non-functional
requirements, may be applicable to other products. The effort that went into making those
decisions does not necessarily have to be repeated. The experience gained from the original
architectural design can be leveraged for other software systems.

When a software architecture is reused, it is the architecture itself, and not just the software
product, that becomes an asset to the organization.

Imposing implementation constraints

A software architecture introduces constraints on implementation and restricts design
choices. This reduces the complexity of a software system and prevents developers from
making incorrect decisions.

If the implementation of an element conforms to the designed architecture, then it is
abiding by the design decisions made by the architecture. Software architecture, when done
properly, enables developers to accomplish their objectives and prevents them from
implementing things incorrectly.

Improving cost and effort estimates

Project managers ask questions such as: When is it going to be done? How long is it going
to take? How much is it going to cost? They need this type of information to properly plan
resources and monitor progress. One of the many duties of a software architect is to assist
project management by providing this type of information and assisting with determining
the necessary tasks and estimates for those tasks.

[14]

The Meaning of Software Architecture Chapter 1

The design of the software architecture itself affects what types of task will be necessary for
implementation. As a result, work-breakdown of tasks is dependent on the software
architecture and the software architect can assist project management with the creation of
the tasks.

Two major approaches to project management estimation are as follows:

¢ Top-down approach: This starts with the final deliverables and goals and breaks
them down into smaller packages of work

¢ Bottom-up approach: This starts with specific tasks first, and groups them
together into packages of work

For some projects, a project manager may take a more top-down approach, while
developers who are going to be working on specific tasks may take a bottom-up
perspective. With the experience and knowledge that most software architects possess, they
can potentially assist with either approach. A combination of these approaches, where tasks
are looked at from both viewpoints, can lead to the best estimates.

It can be helpful when project managers, the software architect, and the developers work
together to provide estimates. The most accurate estimates can be obtained by mutual
discussions between team members until a consensus is achieved. Sometimes during the
consensus building, someone on the team will provide an insight that others had not
previously considered, allowing everyone to rethink their position and possibly revise their
estimates.

A software system with accurate requirements that are reflected in the software
architecture can avoid costly rework that would be necessary if key requirements were
missed. In addition, a well-thought-out architecture reduces complexity, allowing it to be
easily reasoned about and understood. Reduced complexity can result in more accurate cost
and effort estimates.

Serves as training for team members

The system's architecture and its documentation serve as training for the developers on the
team. By learning the various structures and elements of the system, and how they are
supposed to interact, they learn the proper way in which the functionality is to be
implemented.

A software development team may experience change, such as having new team members
join or existing ones leave. The introduction and orientation of new members to a team
often takes time. A well-thought-out architecture can make it easier for developers to
transition to the team.

[15]

The Meaning of Software Architecture Chapter 1

The maintenance phase of a software system can be one of the longest and costliest phases
of a software project. Like new team members introduced during development, it is
common for different developers to work on the system over time, including those
introduced to maintain it. Having a solid architecture available to teach and bring aboard
new developers can provide an important advantage.

Software architecture is not a silver bullet

The Mythical Man-Month by Frederick P. Brooks is one of the seminal texts in software
project management. It contains various essays on software engineering. Although this
book was written some time ago, and some of the references are now outdated, it provides
thought-provoking advice about software development that is timeless and still applicable
today:

"There is no single development, in either technology or management technique, which by
itself promises even one order-of-magnitude improvement within a decade in productivity,
in reliability, in simplicity.”

Fred Brooks 1986 essay, No Silver Bullet — Essence and Accident in Software Engineering, which
is included in the twentieth anniversary edition of the book, begins with this quote. It
essentially conveys the idea that there is no silver bullet in software development.

Software architecture, as well, is not a silver bullet. Although we have covered a number of
reasons why software architecture is important, there is no specific architecture or
combination of components that will serve as a silver bullet. It can't be thought of as a
magical solution that will solve all problems. As we will learn in more detail later, software
architectures are about compromises between different and sometimes conflicting
requirements. Each architectural approach has pros and cons that must be weighed and
evaluated. No one approach should be viewed as a silver bullet.

Who are the consumers of software
architectures?

When we create a software architecture, who is it for? There are a variety of stakeholders in
a software system, such as the end users of the system, business analysts, domain experts,
quality assurance personnel, managers, those who may integrate with the system, and
operations staff members. Each of these stakeholders is affected by the software
architecture to some degree. While certain stakeholders will have access to, and be
interested in, examining the software architecture and its documentation, others will not.

[16]

The Meaning of Software Architecture Chapter 1

Some of these stakeholders are indirect consumers of the architecture in that they care
about the software, and because the software architecture is the foundation of the system,
they become indirect consumers of the architecture. As a software architect, you are serving
these types of consumers in addition to the direct consumers. For example, end users are
perhaps one of the most important stakeholders and should be a major focus. The software
architecture must allow the implementation to satisfy the requirements of the end users.

When we discuss the consumers of a software architecture, we can't omit the developers
who work on that software. As a software architect, you need to be thinking about your
developers, whose work is directly affected by the software architecture. They are the ones
who will be working on the software on a daily basis.

What is the software architect role?

Now that we know what software architecture is, the importance and benefits of it, and
have an understanding that there are a variety of stakeholders who are affected by it, let's
examine the software architect role. What makes someone a software architect? What does
it mean to be a software architect?

Certainly, software systems can be developed without a software architect. You may have
worked on a project in which no one was playing the software architect role. In some of
those cases, the project may have succeeded despite that, or it may have failed because of it.

When no one is specifically given the software architect title, someone on the team may end
up making architectural decisions. Such an individual is sometimes called an accidental
architect. They haven't been given the title of software architect, but they are performing
some of the same duties and making the same types of decision. Occasionally, when there
is no software architect, the architectural design results from a collaboration between
multiple developers.

The smaller and less complex the software system is, the more you may be able to succeed
without a software architect. However, if a project is large in size and/or complexity, you
are more likely to need someone to play the formal role of software architect.

Software architects are technical leaders

Software architects are technical leaders of a software project and should be committed to
the project no matter what challenges arise. They provide technical guidance to
management, customers, and developers. As such, they are often a liaison between
technical and non-technical resources.

[17]

The Meaning of Software Architecture Chapter 1

Although software architects have many responsibilities, foremost among them is being
responsible for the technical aspects of software systems. While the software architect
collaborates with others, as the technical leader the software architect is ultimately
responsible for the software architecture, its design, and the architecture documentation for
a software system.

Software architects perform a number of duties

Software architects are required to undertake different types of duties, not all of which are
technical. Software architects combine their experience, knowledge, and skills, both
technical and non-technical, to fulfill such duties. Software architects will be expected to
have a firm grasp of designing software architectures, architecture patterns, and best
practices.

Software architects should have the ability to foresee possible issues and design
architectures to overcome them. They should be able to mitigate risks and evaluate
solutions such that they can select the proper one to resolve a particular problem. While
some of the skills and duties of a software architect are similar to what a senior developer
might do, it is a very different role. Software architects shoulder a greater amount of
responsibility, and there is a larger expectation of what a software architect brings to a
project.

Senior developers have a great depth of knowledge regarding the technologies that they use
on a project. They are highly proficient in the languages, tools, frameworks, and databases
that are used in their software systems. While software architects are expected to have this
depth of knowledge as well, they must also possess a wide breadth of knowledge. They
need to be familiar with technologies that are not currently being used in the organization
so that they can make informed decisions about the design of the architecture.

Ideally, software architects have the breadth of knowledge to be aware of multiple
solutions to a problem and understand the trade-offs between them. It can be just as
important for a software architect to understand why a particular solution will not work as
it is to understand why one will.

Ivory tower software architects

If you find yourself in the role of a software architect, you are going to want to avoid being
an ivory tower architect. A software architect who is in an ivory tower refers to one who,
either by how they approach their position or because of how an organization works, is
isolated from others.

[18]

The Meaning of Software Architecture Chapter 1

If a software architect is working from an ivory tower, they may be creating an architecture
based on a perfect-world environment that really doesn't reflect real scenarios. In addition,
they may not be working closely with the developers who will be creating implementations
based on the architecture.

The more that a software architect works on their own, isolated from stakeholders and
other developers, the more likely they are to be out of touch with the needs of those
individuals. As a result, they may be designing software architectures that do not meet the
varying needs and requirements of a diverse group of stakeholders.

Software architects should take a more hands-on approach. A software architect's duties
should already include involvement in a number of phases in a software life cycle, but
being hands-on helps avoid being out of touch. For example, a software architect may do
some of the coding with the team in order to stay more involved. Leading by example, such
as using your own code to serve as references for others, is one way to take a hands-on
approach while also keeping your skills sharpened.

An involved approach will help you keep abreast of what issues and difficulties developers
may be facing, and what the architecture may be lacking. Leading from the trenches can be
much more effective than leading from an ivory tower, and you are more likely to gain the
trust and respect of your teammates. If a software architect is out of touch or misinformed,
even if the perception is inaccurate, their effectiveness as a leader will be diminished.

An ivory tower architect might be someone who is viewed as commanding from above. A
software architect should use their experience and knowledge to teach others, and not
preach. Take opportunities to make your teammates better by teaching, but also look
forward to learning from others. Teammates can and will provide valuable and insightful
feedback regarding your designs.

An organization should not have processes and/or an organizational hierarchy in place that
separate the architect from stakeholders. They should not be separated from the technical
implementation because doing so will take the architect away from the technology and
skills that made them a good candidate for being a software architect in the first place.

What are software architects expected to know?

Software architects are expected to have skills and knowledge on a variety of topics. This
book focuses on many of those topics. They include non-technical duties, such as:

e Providing leadership
¢ Assisting project management, including cost and effort estimation
¢ Mentoring team members

[19]

The Meaning of Software Architecture Chapter 1

Helping to select team members

Understanding the business domain

Participating in gathering and analyzing requirements

Communicating with a variety of technical and non-technical stakeholders
Having a vision for future products

Technical topics that software architects should be familiar with include:

Understanding non-functional requirements and quality attributes
Being able to effectively design software architectures
Understanding patterns and best practices for software development

Having a deep knowledge of software architecture patterns, their pros and cons,
and knowing when to choose one over another

Knowing how to handle cross-cutting concerns

Ensuring performance and security requirements are met

Being able to document and review software architectures
Having an understanding of DevOps and the deployment process
Knowing how to integrate and work with legacy applications

Being able to design software architectures that adapt to change and evolve over
time

Don’'t be overwhelmed

If you find yourself in the software architect role for the first time, or if you are joining a
team that has been working on an existing software system for some time, it can be natural
to feel overwhelmed by all that you do not know. It will take time to wrap your head
around everything that you will eventually need to know.

As your experience grows, you'll feel more comfortable when you start on a new project.
Just like anything, experience in different situations will make you more comfortable with
taking on new challenges. You'll also understand that it will take some time to become
acquainted with the business domain, people, processes, technology, details, and intricacies
that come with each software system.

[20]

The Meaning of Software Architecture Chapter 1

Is the software architect role right for you?

If you care about the software that you are working on and all of its stakeholders, including
the software's end users and developers, then you care about the important design
decisions that go into building the software. Ultimately, that means you care about its
architecture. Concerning yourself with the most important decisions can be challenging,
but it can be enjoyable and rewarding for that very reason.

Software architects need to communicate with a variety of stakeholders and sometimes
serve as a bridge between management, technical staff, and non-technical staff. If this is not
something you want to get involved with, being a software architect may not be the best fit
for you.

Software architects are passionate about technology. They have a deep understanding of
the technologies they are working with and keep those skills fresh by practicing their craft
and being involved with projects. They must have a large breadth of knowledge and have a
familiarity with technologies that they may not be currently using on a project. It is
necessary to keep up with the fast pace of change in areas such as languages, tools, and
frameworks. Being aware of a range of technologies will allow you to recommend the best
solution to a particular problem.

Software architects should love to learn and play with new technologies because being a
software architect requires continuous learning. As someone with a lot of wisdom to share,
and who will be a leader on a team, you should enjoy mentoring and teaching others.
Making those who work around you better at their jobs is a part of your job.

All software applications have a purpose. Good software architects make every effort to
ensure that the software applications they work on serve their purpose as best that they
can. If this is something you care about, the software architect role may be right for you.

[21]

The Meaning of Software Architecture Chapter 1

Summary

Software architecture is the structure or structures of a system, their elements, and the
relationships between those elements. It is an abstraction of a software system. Software
architecture is important because all software systems have an architecture, and that
architecture is the foundation for the software system.

Software architecture provides a number of benefits, such as enabling and inhibiting
quality attributes, allowing you to predict software system qualities, easing communication
with stakeholders, and allowing you to more easily make changes. It also provides a
reusable model that could be used in multiple software products, imposes implementation
constraints that reduce complexity and minimizes developer errors, improves cost/effort
estimates, and serves as training for new team members.

Software architects are technical leaders who are ultimately responsible for technical
decisions, the architecture, and its documentation. They perform a number of duties and
are expected to have knowledge of a variety of topics, both technical and non-technical.
Although the role can be challenging, if you care about the software that you are working
on and all of its stakeholders, then the software architect role can be extremely rewarding.

In the next chapter, we'll explore software architecture in an organization. Most software
architects operate within the context of an organization, so it is important to understand the
dynamics of developing software within one. The chapter will detail topics such as the
various software architect roles you will typically find in an organization, software
development methodologies that are used, working with project and configuration
management, navigating office politics, and creating software product lines that leverage
architectural reuse.

[22]

Software Architecture in an
Organization

In the previous chapter, we discussed software architecture and the role of the software
architect. In this chapter, we will explore those topics further, but in the context of an
organization.

Software systems are developed to satisfy the business goals of an organization. Many
software architects work as part of an organization. As a result, the organization's business
goals, objectives, stakeholders, project management, and processes greatly affect the
software architect and their work.

This chapter focuses on topics a software architect should be familiar with when working
within an organization. We will take a look at the various types of software architecture
roles that are commonly found in organizations, and the software development
methodologies they adopt. You'll gain a good understanding of how you might be expected
to work with project management and the dynamics of office politics.

Risk management and configuration management are two other aspects of working on
software projects within an organization. Finally, we'll take a look at software product lines,
and how architectural reuse can create core assets that can make building software
products faster, more efficient, and of a higher quality.

In this chapter, we will cover the following topics:

e Types of software architects

Software development methodologies

Project management

Office politics

Software risk management

Configuration management

Software product lines

Software Architecture in an Organization Chapter 2

Types of software architects

The role of a software architect can vary from organization to organization. You may have
also heard of a variety of job titles related to software architects, such as the following;

¢ Enterprise architect

Solution architect

Application architect

Data architect/Information architect
Solution architect

Security architect
Cloud architect

Some organizations have one or more architects who perform a combination of these roles.
They may go by the title of software architect or by the title of one of these roles. In other
organizations, different individuals play different architectural roles. Some companies
organize their software architects so that they are in an architecture team. They collaborate
with the team on architecture tasks but also work on other teams to design and implement
software products.

This book does not focus on any one type of software architect. It deals with mostly
technical topics, and so is geared toward a number of technical architect roles. Many of the
technical, non-technical, and soft skills described in this book are required by more than
one type of software architect. Even in organizations that have different types of architects,
there is an overlap in their responsibilities and duties. Let's take a closer look at the
different types of software architect roles and what they typically mean.

Enterprise architect

Enterprise architects are responsible for the technical solutions and strategic direction of an
organization. They must work with a variety of stakeholders to understand an
organization's market, customers, products, business domain, requirements, and
technology.

The enterprise architect ensures that an organization's business and strategic goals are in
sync with the technical solutions. They need to take a holistic view to ensure that their
architecture designs, and the designs of other architects, are in line with the overall
organization.

[24]

Software Architecture in an Organization Chapter 2

They should have both a deep and broad understanding of technology so that they can
make the proper recommendations and architecture designs. They must also look to the
future to ensure that solutions are in line with both existing needs as well as anticipated
ones.

In addition to high-level architecture design documents, enterprise architects work with
other architects, such as application architects, to ensure that solutions meet all of the
defined requirements. Enterprise architects come up with and maintain best practices for
things such as designs, implementations, and policies. For organizations that have multiple
software products, they will analyze them to identify areas for architectural reuse.

Enterprise architects provide guidance, mentorship, advice, and technical leadership for
other architects and developers.

Solution architect

A solution architect converts requirements into an architecture for a solution. They work
closely with business analysts and product owners to understand the requirements so that
they can design a solution that will satisfy those requirements.

Solution architects select the most appropriate technologies for the problem that needs to be
solved. They may work with enterprise architects, or if such a role does not exist in the
organization, take on the responsibilities of an enterprise architect, to consider an
organization's overall strategic goals and enterprise architecture principles when designing
their solution.

The designs created by solution architects may be reused in multiple projects. It is common
in an organization to reuse architectural components and to reuse patterns across
architectures in different solution areas. In large organizations that have architects playing
different roles, solution architects bridge a gap between enterprise architects and
application architects.

Application architect

Application architects focus on one or more applications and their architecture. They
ensure that the requirements for their application are satisfied by the design of that
application. They may serve as a liaison between the technical and non-technical staff
working on an application.

[25]

Software Architecture in an Organization Chapter 2

Most of the time, application architects are involved in all the steps in the software
development process. They may recommend solutions or technologies for an application,
and evaluate alternative approaches to problems. Individuals in this role need to keep up
with trends and new technologies. They know when to use them in order to solve a
problem or take advantage of an opportunity. When appropriate, they are involved with
how applications within an organization will work and integrate with each other.

Application architects ensure that the development team is following best practices and
standards during implementation. They provide guidance and leadership for team
members. They may be involved in reviewing designs and code. Application architects
work with enterprise architects to ensure that the solutions designed for an individual
application align with the overall strategy of the organization.

Data architect/information architect

Data architects are responsible for designing, deploying, and managing an organization's
data architecture. They focus on data management systems, and their goal is to ensure that
the appropriate consumers of an organization's data have access to the data in the right
place at the right time.

Data architects are responsible for all of an organization's data sources, both internal and
external. They ensure that an organization's strategic data requirements are met. They
create designs and models and decide how data will be stored, consumed, and integrated
into the organization's various software systems. Data architects also ensure the security of
the organization's data, and define processes for data backup, data archiving, and database
recovery.

They maintain database performance by monitoring environments and may be tasked with
identifying and resolving various issues, including problems in production environments.
Data architects may support developers by assisting with their database design and coding
work.

Some organizations have the role of an information architect. Although the data architect
and information architect roles are related, and may even be fulfilled by the same person,
there is a difference between the two roles.

While data architects focus their attention on databases and data structures, information
architects place their focus on users. They are concerned with user intent related to data
and how data affects the user experience. They are primarily interested in how the data is
going to be used and what is going to be done with it.

[26]

Software Architecture in an Organization Chapter 2

Information architects want to provide a positive user experience and ensure that users can
easily interact with the data. They want to design solutions so that users have the ability to
intuitively find the information that they need. They may conduct usability testing to
gather feedback so that they can determine what changes, if any, should be made to a
system. They work with UX designers and others to develop strategies that will improve
the user experience.

Infrastructure architect

Infrastructure architects focus on the design and implementation of an organization's
enterprise infrastructure. This type of architect is responsible for the infrastructure
environment meeting the organization's business goals, and provide hardware,
networking, operating system, and software solutions to satisfy them.

The infrastructure must support the business processes and software applications of the
organization. These architects are involved with infrastructure components such as the
following:

Servers: Physical or virtual servers for either cloud or on-premises environments

Network elements: Elements such as routers, switches, firewalls, cabling, and
load balancers

Storage systems: Data storage systems such as storage area networks (SAN) and
network-attached storage (NAS)

Facilities: The physical location of the infrastructure equipment, and ensuring
power, cooling, and security needs are met

Infrastructure architects support the delivery of an enterprise's software applications. This
includes designing and implementing infrastructure solutions and integrating new
software systems with an existing or new infrastructure. Once in production, they also
ensure that existing software systems continue to fulfill requirements affected by
infrastructure, and run at optimal levels. Infrastructure architects may make
recommendations, such as using new technologies or hardware, which will improve an
organization's infrastructure.

To fulfill the demands of the enterprise, they monitor and analyze characteristics such as
workload, throughput, latency, capacity, and redundancy so that a proper balance is
achieved and desired performance levels are met. They use infrastructure management
tools and services to assist them with the management of the infrastructure.

[27]

Software Architecture in an Organization Chapter 2

Information security architect

A security architect is responsible for an organization's computer and network security.
They build, oversee, and maintain an organization's security implementations. Security
architects must have a full understanding of an organization's systems and infrastructure so
that they can design secure systems.

Security architects conduct security assessments and vulnerability testing to identify and
evaluate potential threats. Security architects should be familiar with security standards,
best practices, and techniques that can be used to combat any identified threats. They
recognize security gaps in existing and proposed software architectures and recommend
solutions to close those gaps.

Once security components are put into place, security architects are involved in testing
them to ensure that they work as expected. When a security incident does occur, security
architects are involved in their resolution and conduct a post-incident analysis. The results
of the analysis are used to take proper action so that a similar incident will not occur again.

A security architect may oversee an organization's security awareness program and help to
implement an organization's corporate security policies and procedures.

Cloud architect

Now that cloud deployments are the norm, having someone in an organization dedicated
to cloud adoption, with the relevant expertise, has become increasingly common and
necessary. A cloud architect is someone who is responsible for an organization's cloud
computing strategy and initiatives. They are responsible for the cloud architecture used for
the deployment of software systems. An organization that has someone who is focused on
cloud architecture leads to increased levels of success with cloud adoption.

The responsibilities of cloud architects include selecting a cloud provider and selecting the
model (for example, SaaS, PaaS, or IaaS) that is most appropriate for the organization's
needs. They create cloud migration plans for existing applications not already in the cloud,
including the coordination of the adoption process. They may also be involved in designing
new cloud-native applications that are built from the ground up for the cloud.

[28]

Software Architecture in an Organization Chapter 2

Cloud architects oversee cloud management, and create policies and procedures for
governance. They use tools and services to monitor and manage cloud deployments. The
expertise that cloud architects possess typically means they are involved in negotiating
contracts with cloud service providers and ensuring that service-level agreements (SLAs)
are satisfied.

Cloud architects should have a firm understanding of security concerns, such as protecting
data deployed into different types of cloud and cloud/hybrid systems. They work with
security architects, or if such a role does not exist in the organization, take on the
responsibilities of a security architect, to ensure that systems deployed to the cloud are
secure.

For organizations that have not fully migrated to the cloud, one of the tasks for a cloud
architect is to lead a cultural change within the organization for cloud adoption. Cloud
strategies can fail if the organization's culture does not fully embrace them. Part of the
cloud architect's job is to evangelize cloud adoption by communicating the many benefits,
and influence behavior changes toward cloud adoption that will ultimately lead to cultural
changes.

Software development methodologies

As a software architect working in an organization, you will typically be required to use the
software development methodology that has been adopted by the organization. However,
in some cases, the software architect may play a role in deciding which software
development methodology is used. Either way, software architects may be able to provide
input to an organization's processes, giving them the ability to make suggestions that may
improve these processes.

For these reasons, it is good to have an understanding of the more common software
development methodologies. There are a variety of different types that can be employed for
a software project, each of which has its own strengths and weaknesses. Today, Agile
methodologies are much more widely used than traditional ones, but even among the
methodologies that are considered Agile, there are numerous variations.

Unfortunately, sometimes, a software project moves forward with a software development
methodology that is not appropriate for the project. Prior to choosing one, you should
consider which one would be the most appropriate to use. In the following sections, we'll
take a look at two types of software development methodologies: the Waterfall model and
Agile.

[29]

